This table lists the benchmark results for the high-res multi-view scenario. The following metrics are evaluated:

(*) For exact definitions, detailing how potentially incomplete ground truth is taken into account, see our paper.

The datasets are grouped into different categories, and result averages are computed for a category and method if results of the method are available for all datasets within the category. Note that the category "all" includes both the high-res multi-view and the low-res many-view scenarios.

Methods with suffix _ROB may participate in the Robust Vision Challenge.

Click a dataset result cell to show a visualization of the reconstruction. For training datasets, ground truth and accuracy / completeness visualizations are also available. The visualizations may not work with mobile browsers.




Method Infoallhigh-res
multi-view
indooroutdoorbotani.boulde.bridgedoorexhibi.lectur.living.loungeobserv.old co.statueterrac.
sort bysort bysort bysort bysort bysorted bysort bysort bysort bysort bysort bysort bysort bysort bysort bysort by
DPM-MVS97.86 897.25 1999.68 198.25 10999.10 199.76 1197.78 6596.61 498.15 3699.53 793.62 17100.00 191.79 15099.80 2799.94 18
MSC_two_6792asdad99.51 299.61 2798.60 297.69 8399.98 1099.55 1099.83 1599.96 10
No_MVS99.51 299.61 2798.60 297.69 8399.98 1099.55 1099.83 1599.96 10
OPU-MVS99.49 499.64 2098.51 499.77 899.19 3495.12 899.97 2399.90 199.92 399.99 1
PS-MVSNAJ96.87 3596.40 4198.29 1897.35 13797.29 599.03 10497.11 17295.83 1098.97 1499.14 4582.48 17999.60 9698.60 2599.08 8698.00 186
xiu_mvs_v2_base96.66 3996.17 5298.11 2797.11 14896.96 699.01 10797.04 17995.51 1698.86 1799.11 5382.19 18599.36 12698.59 2798.14 11598.00 186
MVS93.92 11392.28 13998.83 695.69 19496.82 796.22 28998.17 3384.89 25584.34 23298.61 10579.32 20799.83 6293.88 12499.43 6899.86 32
WTY-MVS95.97 6295.11 8198.54 1297.62 12896.65 899.44 5398.74 1492.25 7695.21 10898.46 11786.56 11699.46 11695.00 10492.69 18199.50 87
MCST-MVS98.18 297.95 998.86 599.85 396.60 999.70 1697.98 4697.18 295.96 9199.33 2392.62 26100.00 198.99 1999.93 199.98 6
DELS-MVS97.12 2596.60 3798.68 1098.03 11896.57 1099.84 397.84 5596.36 895.20 10998.24 12388.17 7899.83 6296.11 8099.60 5699.64 72
Christian Sormann, Emanuele Santellani, Mattia Rossi, Andreas Kuhn, Friedrich Fraundorfer: DELS-MVS: Deep Epipolar Line Search for Multi-View Stereo. Winter Conference on Applications of Computer Vision (WACV), 2023
ETH3 D test640097.67 1197.33 1898.69 999.69 996.43 1199.63 2697.73 7491.05 10198.66 2399.53 790.59 4299.71 7899.32 1299.80 2799.91 22
HY-MVS88.56 795.29 8194.23 9498.48 1397.72 12496.41 1294.03 32098.74 1492.42 7195.65 10294.76 22186.52 11799.49 10995.29 9892.97 17799.53 83
test_0728_SECOND98.77 799.66 1596.37 1399.72 1397.68 8599.98 1099.64 699.82 1999.96 10
CNVR-MVS98.46 198.38 198.72 899.80 496.19 1499.80 797.99 4597.05 399.41 299.59 292.89 25100.00 198.99 1999.90 799.96 10
CANet97.00 2996.49 3998.55 1198.86 9496.10 1599.83 497.52 12395.90 997.21 6198.90 8182.66 17699.93 4098.71 2298.80 10199.63 74
canonicalmvs95.02 8893.96 10698.20 2097.53 13495.92 1698.71 13396.19 22791.78 8595.86 9698.49 11379.53 20599.03 14596.12 7991.42 20499.66 70
MG-MVS97.24 1996.83 3198.47 1499.79 595.71 1799.07 9899.06 994.45 2496.42 8498.70 9888.81 6899.74 7595.35 9699.86 1299.97 7
alignmvs95.77 7195.00 8398.06 2897.35 13795.68 1899.71 1597.50 12991.50 9096.16 8798.61 10586.28 12399.00 14696.19 7891.74 19899.51 86
test_part299.54 4095.42 1998.13 37
DPE-MVScopyleft98.11 698.00 698.44 1599.50 4795.39 2099.29 7397.72 7694.50 2298.64 2499.54 393.32 1999.97 2399.58 999.90 799.95 15
Kehua Chen, Zhenlong Yuan, Tianlu Mao, Zhaoqi Wang: Dual-Level Precision Edges Guided Multi-View Stereo with Accurate Planarization. AAAI2025
DVP-MVS++98.18 298.09 598.44 1599.61 2795.38 2199.55 3597.68 8593.01 5399.23 899.45 1695.12 899.98 1099.25 1599.92 399.97 7
IU-MVS99.63 2195.38 2197.73 7495.54 1599.54 199.69 599.81 2399.99 1
PAPM96.35 4995.94 6097.58 4394.10 24595.25 2398.93 11398.17 3394.26 2593.94 12998.72 9589.68 5997.88 18996.36 7599.29 7899.62 76
SED-MVS98.18 298.10 498.41 1799.63 2195.24 2499.77 897.72 7694.17 2699.30 699.54 393.32 1999.98 1099.70 399.81 2399.99 1
test_241102_ONE99.63 2195.24 2497.72 7694.16 2899.30 699.49 1093.32 1999.98 10
xiu_mvs_v1_base_debu94.73 9593.98 10396.99 6895.19 21095.24 2498.62 14896.50 20692.99 5597.52 5498.83 8672.37 25699.15 13897.03 5696.74 13796.58 216
xiu_mvs_v1_base94.73 9593.98 10396.99 6895.19 21095.24 2498.62 14896.50 20692.99 5597.52 5498.83 8672.37 25699.15 13897.03 5696.74 13796.58 216
xiu_mvs_v1_base_debi94.73 9593.98 10396.99 6895.19 21095.24 2498.62 14896.50 20692.99 5597.52 5498.83 8672.37 25699.15 13897.03 5696.74 13796.58 216
DVP-MVScopyleft98.07 798.00 698.29 1899.66 1595.20 2999.72 1397.47 13493.95 3199.07 1199.46 1193.18 2299.97 2399.64 699.82 1999.69 65
Zhenlong Yuan, Jinguo Luo, Fei Shen, Zhaoxin Li, Cong Liu, Tianlu Mao, Zhaoqi Wang: DVP-MVS: Synergize Depth-Edge and Visibility Prior for Multi-View Stereo. AAAI2025
test072699.66 1595.20 2999.77 897.70 8193.95 3199.35 599.54 393.18 22
3Dnovator+87.72 893.43 12991.84 15198.17 2195.73 19395.08 3198.92 11597.04 17991.42 9581.48 27797.60 14474.60 23299.79 7090.84 16098.97 9199.64 72
ETH3D-3000-0.197.29 1797.01 2498.12 2599.18 7594.97 3299.47 4597.52 12389.85 13698.79 2099.46 1190.41 4999.69 8098.78 2199.67 4299.70 62
thres600view793.18 13992.00 14796.75 8697.62 12894.92 3399.07 9899.36 287.96 19790.47 17796.78 18083.29 16298.71 15782.93 25290.47 21396.61 214
test_one_060199.59 3194.89 3497.64 9493.14 5298.93 1699.45 1693.45 18
SF-MVS97.22 2296.92 2698.12 2599.11 7994.88 3599.44 5397.45 13789.60 14498.70 2199.42 1990.42 4799.72 7698.47 3199.65 4499.77 49
MVSFormer94.71 9894.08 10196.61 9595.05 22394.87 3697.77 22996.17 22886.84 22298.04 4498.52 10985.52 13295.99 29289.83 16998.97 9198.96 130
lupinMVS96.32 5195.94 6097.44 4895.05 22394.87 3699.86 296.50 20693.82 4098.04 4498.77 8985.52 13298.09 17796.98 6098.97 9199.37 97
thres100view90093.34 13392.15 14496.90 7797.62 12894.84 3899.06 10099.36 287.96 19790.47 17796.78 18083.29 16298.75 15384.11 23890.69 20997.12 205
tfpn200view993.43 12992.27 14096.90 7797.68 12694.84 3899.18 7999.36 288.45 17890.79 16996.90 17583.31 16098.75 15384.11 23890.69 20997.12 205
thres40093.39 13192.27 14096.73 8897.68 12694.84 3899.18 7999.36 288.45 17890.79 16996.90 17583.31 16098.75 15384.11 23890.69 20996.61 214
GG-mvs-BLEND96.98 7196.53 16494.81 4187.20 35197.74 7093.91 13096.40 19096.56 296.94 23895.08 10198.95 9499.20 113
HPM-MVS++copyleft97.72 1097.59 1198.14 2299.53 4594.76 4299.19 7797.75 6895.66 1398.21 3599.29 2491.10 3399.99 597.68 4899.87 999.68 66
thres20093.69 12092.59 13596.97 7297.76 12394.74 4399.35 6799.36 289.23 15591.21 16596.97 17283.42 15998.77 15185.08 22390.96 20797.39 199
ETH3D cwj APD-0.1696.94 3396.58 3898.01 2998.62 10294.73 4499.13 9497.38 14888.44 18198.53 2899.39 2189.66 6099.69 8098.43 3399.61 5599.61 77
CANet_DTU94.31 10793.35 11697.20 6097.03 15294.71 4598.62 14895.54 27495.61 1497.21 6198.47 11571.88 26199.84 6088.38 19097.46 12897.04 210
gg-mvs-nofinetune90.00 19787.71 22096.89 8296.15 18194.69 4685.15 35797.74 7068.32 35992.97 14360.16 36996.10 396.84 24093.89 12398.87 9699.14 116
baseline192.61 14991.28 16196.58 9797.05 15194.63 4797.72 23396.20 22589.82 13788.56 19696.85 17886.85 10697.82 19388.42 18980.10 27597.30 201
FMVSNet388.81 21987.08 23193.99 19096.52 16594.59 4898.08 20996.20 22585.85 23782.12 26391.60 27674.05 24295.40 31479.04 27980.24 27291.99 263
NCCC98.12 598.11 398.13 2399.76 694.46 4999.81 597.88 5196.54 598.84 1899.46 1192.55 2799.98 1098.25 4099.93 199.94 18
test1297.83 3499.33 6494.45 5097.55 11697.56 5388.60 7099.50 10899.71 3899.55 82
DeepC-MVS_fast93.52 297.16 2496.84 3098.13 2399.61 2794.45 5098.85 12197.64 9496.51 795.88 9499.39 2187.35 9799.99 596.61 6899.69 4199.96 10
Andreas Kuhn, Christian Sormann, Mattia Rossi, Oliver Erdler, Friedrich Fraundorfer: DeepC-MVS: Deep Confidence Prediction for Multi-View Stereo Reconstruction. 3DV 2020
CHOSEN 280x42096.80 3796.85 2996.66 9497.85 12294.42 5294.76 31298.36 2492.50 6695.62 10397.52 14797.92 197.38 22498.31 3998.80 10198.20 182
131493.44 12891.98 14897.84 3395.24 20794.38 5396.22 28997.92 4990.18 12782.28 26097.71 13977.63 21999.80 6991.94 14998.67 10599.34 101
DP-MVS Recon95.85 6795.15 8097.95 3199.87 294.38 5399.60 2997.48 13286.58 22894.42 12099.13 4787.36 9699.98 1093.64 12998.33 11499.48 90
jason95.40 8094.86 8497.03 6492.91 27694.23 5599.70 1696.30 21793.56 4796.73 7898.52 10981.46 19497.91 18696.08 8198.47 11298.96 130
jason: jason.
SMA-MVScopyleft97.24 1996.99 2598.00 3099.30 6594.20 5699.16 8297.65 9389.55 14899.22 1099.52 990.34 5199.99 598.32 3899.83 1599.82 34
Yufeng Yin; Xiaoyan Liu; Zichao Zhang: SMA-MVS: Segmentation-Guided Multi-Scale Anchor Deformation Patch Multi-View Stereo. IEEE Transactions on Circuits and Systems for Video Technology
PAPR96.35 4995.82 6497.94 3299.63 2194.19 5799.42 5897.55 11692.43 6893.82 13399.12 4887.30 9899.91 4394.02 12099.06 8799.74 56
iter_conf0593.48 12693.18 12194.39 17497.15 14494.17 5899.30 7292.97 33792.38 7586.70 21795.42 20895.67 596.59 25094.67 11284.32 24592.39 243
ET-MVSNet_ETH3D92.56 15191.45 15995.88 12496.39 17094.13 5999.46 5096.97 18592.18 7866.94 35698.29 12294.65 1594.28 33494.34 11883.82 25199.24 109
sss94.85 9193.94 10797.58 4396.43 16794.09 6098.93 11399.16 889.50 14995.27 10797.85 13081.50 19299.65 8992.79 14494.02 17098.99 127
CDPH-MVS96.56 4296.18 4997.70 3999.59 3193.92 6199.13 9497.44 14189.02 16197.90 5099.22 3188.90 6799.49 10994.63 11399.79 2999.68 66
VNet95.08 8794.26 9397.55 4698.07 11693.88 6298.68 14098.73 1690.33 12297.16 6397.43 15179.19 20899.53 10296.91 6391.85 19699.24 109
xxxxxxxxxxxxxcwj97.51 1397.42 1597.78 3799.34 5893.85 6399.65 2495.45 27995.69 1198.70 2199.42 1990.42 4799.72 7698.47 3199.65 4499.77 49
save fliter99.34 5893.85 6399.65 2497.63 9995.69 11
SD-MVS97.51 1397.40 1697.81 3599.01 8593.79 6599.33 7097.38 14893.73 4298.83 1999.02 6190.87 3899.88 4998.69 2399.74 3299.77 49
Zhenlong Yuan, Jiakai Cao, Zhaoxin Li, Hao Jiang and Zhaoqi Wang: SD-MVS: Segmentation-driven Deformation Multi-View Stereo with Spherical Refinement and EM optimization. AAAI2024
APDe-MVS97.53 1297.47 1297.70 3999.58 3393.63 6699.56 3497.52 12393.59 4698.01 4699.12 4890.80 4099.55 9999.26 1499.79 2999.93 21
APD-MVScopyleft96.95 3196.72 3497.63 4199.51 4693.58 6799.16 8297.44 14190.08 13298.59 2699.07 5489.06 6499.42 12097.92 4599.66 4399.88 28
Yuesong Wang, Zhaojie Zeng and etc.: Adaptive Patch Deformation for Textureless-Resilient Multi-View Stereo. CVPR2023
ACMMP_NAP96.59 4196.18 4997.81 3598.82 9593.55 6898.88 12097.59 10890.66 11197.98 4799.14 4586.59 114100.00 196.47 7299.46 6499.89 27
nrg03090.23 19088.87 19994.32 17691.53 29493.54 6998.79 13095.89 25388.12 19384.55 23094.61 22378.80 21296.88 23992.35 14775.21 29792.53 241
OpenMVScopyleft85.28 1490.75 18288.84 20096.48 10293.58 26293.51 7098.80 12697.41 14582.59 29078.62 30697.49 14968.00 28799.82 6584.52 23298.55 11096.11 224
TSAR-MVS + MP.97.44 1697.46 1397.39 5299.12 7893.49 7198.52 15997.50 12994.46 2398.99 1398.64 10191.58 3099.08 14498.49 3099.83 1599.60 78
Zhenlong Yuan, Jiakai Cao, Zhaoqi Wang, Zhaoxin Li: TSAR-MVS: Textureless-aware Segmentation and Correlative Refinement Guided Multi-View Stereo. Pattern Recognition
QAPM91.41 17189.49 18797.17 6195.66 19693.42 7298.60 15297.51 12680.92 31381.39 27897.41 15272.89 25399.87 5282.33 25798.68 10498.21 181
testtj97.23 2197.05 2297.75 3899.75 793.34 7399.16 8297.74 7091.28 9898.40 3099.29 2489.95 5499.98 1098.20 4199.70 3999.94 18
ZD-MVS99.67 1393.28 7497.61 10287.78 20297.41 5799.16 4190.15 5299.56 9898.35 3599.70 39
MSLP-MVS++97.50 1597.45 1497.63 4199.65 1993.21 7599.70 1698.13 3894.61 2097.78 5299.46 1189.85 5599.81 6797.97 4499.91 699.88 28
TEST999.57 3793.17 7699.38 6297.66 8889.57 14698.39 3199.18 3790.88 3799.66 85
train_agg97.20 2397.08 2197.57 4599.57 3793.17 7699.38 6297.66 8890.18 12798.39 3199.18 3790.94 3599.66 8598.58 2899.85 1399.88 28
Regformer-196.97 3096.80 3297.47 4799.46 5293.11 7898.89 11897.94 4792.89 5996.90 6699.02 6189.78 5699.53 10297.06 5599.26 8099.75 53
EPNet96.82 3696.68 3697.25 5898.65 10093.10 7999.48 4398.76 1396.54 597.84 5198.22 12487.49 9099.66 8595.35 9697.78 12199.00 126
Wanjuan Su, Wenbing Tao: Efficient Edge-Preserving Multi-View Stereo Network for Depth Estimation. AAAI 2023
test_899.55 3993.07 8099.37 6597.64 9490.18 12798.36 3399.19 3490.94 3599.64 91
3Dnovator87.35 1193.17 14091.77 15397.37 5495.41 20493.07 8098.82 12497.85 5491.53 8982.56 25397.58 14671.97 26099.82 6591.01 15799.23 8299.22 112
cascas90.93 17989.33 19295.76 12895.69 19493.03 8298.99 10996.59 19780.49 31586.79 21694.45 22565.23 30998.60 16193.52 13192.18 19195.66 227
test_yl95.27 8294.60 8797.28 5698.53 10592.98 8399.05 10198.70 1786.76 22594.65 11897.74 13787.78 8499.44 11795.57 9292.61 18299.44 93
DCV-MVSNet95.27 8294.60 8797.28 5698.53 10592.98 8399.05 10198.70 1786.76 22594.65 11897.74 13787.78 8499.44 11795.57 9292.61 18299.44 93
Regformer-296.94 3396.78 3397.42 4999.46 5292.97 8598.89 11897.93 4892.86 6196.88 6799.02 6189.74 5899.53 10297.03 5699.26 8099.75 53
MVSTER92.71 14592.32 13893.86 19397.29 13992.95 8699.01 10796.59 19790.09 13185.51 22394.00 23294.61 1696.56 25390.77 16283.03 26092.08 259
旧先验198.97 8692.90 8797.74 7099.15 4391.05 3499.33 7499.60 78
MP-MVS-pluss95.80 6995.30 7597.29 5598.95 8992.66 8898.59 15497.14 16888.95 16493.12 14099.25 2785.62 13199.94 3796.56 7099.48 6399.28 106
MP-MVS-pluss: MP-MVS-pluss. MP-MVS-pluss
agg_prior197.12 2597.03 2397.38 5399.54 4092.66 8899.35 6797.64 9490.38 12097.98 4799.17 3990.84 3999.61 9498.57 2999.78 3199.87 31
agg_prior99.54 4092.66 8897.64 9497.98 4799.61 94
MVS_Test93.67 12392.67 13396.69 9296.72 16092.66 8897.22 25496.03 23587.69 20895.12 11194.03 23081.55 19198.28 17089.17 18496.46 14099.14 116
thisisatest051594.75 9494.19 9696.43 10596.13 18692.64 9299.47 4597.60 10487.55 21193.17 13997.59 14594.71 1398.42 16488.28 19193.20 17498.24 179
112195.19 8494.45 9097.42 4998.88 9292.58 9396.22 28997.75 6885.50 24396.86 7099.01 6588.59 7299.90 4587.64 20099.60 5699.79 38
FMVSNet286.90 24984.79 26793.24 20595.11 21792.54 9497.67 23695.86 25782.94 28480.55 28391.17 28562.89 31695.29 31677.23 29079.71 27891.90 265
新几何197.40 5198.92 9092.51 9597.77 6785.52 24196.69 7999.06 5688.08 8199.89 4884.88 22799.62 5199.79 38
test_part188.43 22786.68 23893.67 20097.56 13392.40 9698.12 20296.55 20282.26 29780.31 28693.16 25474.59 23496.62 24885.00 22672.61 32591.99 263
114514_t94.06 10993.05 12497.06 6399.08 8292.26 9798.97 11197.01 18382.58 29192.57 14598.22 12480.68 19899.30 13389.34 18099.02 8999.63 74
iter_conf_final93.22 13893.04 12593.76 19697.03 15292.22 9899.05 10193.31 33492.11 8086.93 21195.42 20895.01 1096.59 25093.98 12184.48 24292.46 242
test250694.80 9294.21 9596.58 9796.41 16892.18 9998.01 21498.96 1090.82 10893.46 13697.28 15485.92 12898.45 16389.82 17197.19 13299.12 118
test_prior492.00 10099.41 59
test_prior397.07 2897.09 2097.01 6599.58 3391.77 10199.57 3297.57 11391.43 9398.12 3998.97 6790.43 4599.49 10998.33 3699.81 2399.79 38
test_prior97.01 6599.58 3391.77 10197.57 11399.49 10999.79 38
PHI-MVS96.65 4096.46 4097.21 5999.34 5891.77 10199.70 1698.05 4186.48 23198.05 4399.20 3389.33 6299.96 3098.38 3499.62 5199.90 24
Regformer-396.50 4496.36 4396.91 7699.34 5891.72 10498.71 13397.90 5092.48 6796.00 8898.95 7488.60 7099.52 10596.44 7398.83 9899.49 88
ab-mvs91.05 17789.17 19496.69 9295.96 18791.72 10492.62 33397.23 15885.61 24089.74 18793.89 23668.55 28199.42 12091.09 15587.84 22198.92 137
TSAR-MVS + GP.96.95 3196.91 2797.07 6298.88 9291.62 10699.58 3196.54 20495.09 1996.84 7398.63 10391.16 3199.77 7299.04 1896.42 14299.81 35
PVSNet_BlendedMVS93.36 13293.20 12093.84 19498.77 9791.61 10799.47 4598.04 4291.44 9294.21 12492.63 26283.50 15699.87 5297.41 5083.37 25790.05 322
PVSNet_Blended95.94 6495.66 7096.75 8698.77 9791.61 10799.88 198.04 4293.64 4594.21 12497.76 13583.50 15699.87 5297.41 5097.75 12298.79 149
PCF-MVS89.78 591.26 17289.63 18496.16 11695.44 20291.58 10995.29 30896.10 23285.07 25082.75 24997.45 15078.28 21599.78 7180.60 27195.65 15997.12 205
Andreas Kuhn, Shan Lin, Oliver Erdler: Plane Completion and Filtering for Multi-View Stereo Reconstruction. GCPR 2019
SteuartSystems-ACMMP97.25 1897.34 1797.01 6597.38 13691.46 11099.75 1297.66 8894.14 3098.13 3799.26 2692.16 2999.66 8597.91 4699.64 4799.90 24
Skip Steuart: Steuart Systems R&D Blog.
Regformer-496.45 4796.33 4696.81 8399.34 5891.44 11198.71 13397.88 5192.43 6895.97 9098.95 7488.42 7499.51 10696.40 7498.83 9899.49 88
VPNet88.30 22986.57 23993.49 20191.95 28791.35 11298.18 19797.20 16488.61 17284.52 23194.89 21662.21 31996.76 24589.34 18072.26 33092.36 245
GST-MVS95.97 6295.66 7096.90 7799.49 5091.22 11399.45 5297.48 13289.69 14095.89 9398.72 9586.37 12299.95 3494.62 11499.22 8399.52 84
test22298.32 10891.21 11498.08 20997.58 11083.74 27095.87 9599.02 6186.74 10999.64 4799.81 35
ZNCC-MVS96.09 5795.81 6696.95 7599.42 5491.19 11599.55 3597.53 12089.72 13995.86 9698.94 7986.59 11499.97 2395.13 10099.56 5999.68 66
zzz-MVS96.21 5595.96 5996.96 7399.29 6691.19 11598.69 13897.45 13792.58 6394.39 12199.24 2986.43 12099.99 596.22 7699.40 7299.71 60
MTAPA96.09 5795.80 6796.96 7399.29 6691.19 11597.23 25397.45 13792.58 6394.39 12199.24 2986.43 12099.99 596.22 7699.40 7299.71 60
MDTV_nov1_ep13_2view91.17 11891.38 34087.45 21393.08 14186.67 11287.02 20498.95 134
FIs90.70 18389.87 18293.18 20692.29 28191.12 11998.17 19998.25 2789.11 15983.44 23994.82 21982.26 18396.17 28587.76 19882.76 26292.25 248
1112_ss92.71 14591.55 15796.20 11295.56 19891.12 11998.48 16794.69 30988.29 18786.89 21398.50 11187.02 10398.66 15984.75 22889.77 21698.81 147
PVSNet_Blended_VisFu94.67 9994.11 9996.34 11097.14 14591.10 12199.32 7197.43 14392.10 8191.53 15896.38 19383.29 16299.68 8393.42 13496.37 14398.25 178
Test_1112_low_res92.27 15790.97 16696.18 11395.53 20091.10 12198.47 16994.66 31088.28 18886.83 21593.50 24787.00 10498.65 16084.69 22989.74 21798.80 148
LFMVS92.23 15890.84 17096.42 10698.24 11091.08 12398.24 19296.22 22383.39 27794.74 11698.31 12061.12 32498.85 14894.45 11792.82 17899.32 102
ETV-MVS96.00 5996.00 5896.00 12096.56 16391.05 12499.63 2696.61 19593.26 5197.39 5898.30 12186.62 11398.13 17498.07 4397.57 12398.82 146
VPA-MVSNet89.10 20887.66 22193.45 20292.56 27891.02 12597.97 21798.32 2586.92 22186.03 22092.01 26868.84 28097.10 23290.92 15875.34 29692.23 250
MVS_111021_HR96.69 3896.69 3596.72 9098.58 10491.00 12699.14 9199.45 193.86 3795.15 11098.73 9388.48 7399.76 7397.23 5499.56 5999.40 95
HFP-MVS96.42 4896.26 4796.90 7799.69 990.96 12799.47 4597.81 6090.54 11696.88 6799.05 5787.57 8799.96 3095.65 8799.72 3499.78 42
#test#96.48 4596.34 4496.90 7799.69 990.96 12799.53 4097.81 6090.94 10596.88 6799.05 5787.57 8799.96 3095.87 8499.72 3499.78 42
UniMVSNet (Re)89.50 20688.32 21493.03 20892.21 28390.96 12798.90 11798.39 2389.13 15883.22 24192.03 26681.69 19096.34 27486.79 20972.53 32691.81 266
IB-MVS89.43 692.12 15990.83 17295.98 12295.40 20590.78 13099.81 598.06 4091.23 10085.63 22293.66 24290.63 4198.78 15091.22 15371.85 33398.36 174
Christian Sormann, Mattia Rossi, Andreas Kuhn and Friedrich Fraundorfer: IB-MVS: An Iterative Algorithm for Deep Multi-View Stereo based on Binary Decisions. BMVC 2021
Effi-MVS+93.87 11693.15 12296.02 11995.79 19090.76 13196.70 27595.78 25986.98 21995.71 10097.17 16479.58 20398.01 18494.57 11596.09 15099.31 103
DeepC-MVS91.02 494.56 10493.92 10896.46 10397.16 14390.76 13198.39 18197.11 17293.92 3388.66 19598.33 11978.14 21699.85 5995.02 10398.57 10998.78 151
Andreas Kuhn, Christian Sormann, Mattia Rossi, Oliver Erdler, Friedrich Fraundorfer: DeepC-MVS: Deep Confidence Prediction for Multi-View Stereo Reconstruction. 3DV 2020
diffmvs94.59 10394.19 9695.81 12695.54 19990.69 13398.70 13795.68 26691.61 8795.96 9197.81 13280.11 20098.06 18096.52 7195.76 15698.67 157
NR-MVSNet87.74 24086.00 24892.96 21091.46 29590.68 13496.65 27697.42 14488.02 19673.42 33493.68 24077.31 22095.83 30284.26 23471.82 33492.36 245
XVS96.47 4696.37 4296.77 8499.62 2590.66 13599.43 5697.58 11092.41 7296.86 7098.96 7287.37 9399.87 5295.65 8799.43 6899.78 42
X-MVStestdata90.69 18488.66 20596.77 8499.62 2590.66 13599.43 5697.58 11092.41 7296.86 7029.59 38087.37 9399.87 5295.65 8799.43 6899.78 42
ACMMPR96.28 5396.14 5696.73 8899.68 1290.47 13799.47 4597.80 6290.54 11696.83 7599.03 6086.51 11899.95 3495.65 8799.72 3499.75 53
EI-MVSNet-Vis-set95.76 7295.63 7496.17 11599.14 7790.33 13898.49 16697.82 5791.92 8294.75 11598.88 8487.06 10299.48 11495.40 9597.17 13498.70 156
region2R96.30 5296.17 5296.70 9199.70 890.31 13999.46 5097.66 8890.55 11597.07 6499.07 5486.85 10699.97 2395.43 9499.74 3299.81 35
TESTMET0.1,193.82 11793.26 11995.49 13495.21 20990.25 14099.15 8897.54 11989.18 15791.79 15194.87 21789.13 6397.63 20986.21 21396.29 14798.60 161
baseline294.04 11093.80 11194.74 16093.07 27490.25 14098.12 20298.16 3589.86 13586.53 21896.95 17395.56 698.05 18191.44 15294.53 16595.93 225
PVSNet87.13 1293.69 12092.83 13096.28 11197.99 11990.22 14299.38 6298.93 1191.42 9593.66 13497.68 14071.29 26899.64 9187.94 19797.20 13198.98 128
MSP-MVS97.77 998.18 296.53 10199.54 4090.14 14399.41 5997.70 8195.46 1798.60 2599.19 3495.71 499.49 10998.15 4299.85 1399.95 15
Zhenlong Yuan, Cong Liu, Fei Shen, Zhaoxin Li, Jingguo luo, Tianlu Mao and Zhaoqi Wang: MSP-MVS: Multi-granularity Segmentation Prior Guided Multi-View Stereo. AAAI2025
PAPM_NR95.43 7795.05 8296.57 9999.42 5490.14 14398.58 15697.51 12690.65 11392.44 14798.90 8187.77 8699.90 4590.88 15999.32 7599.68 66
MP-MVScopyleft96.00 5995.82 6496.54 10099.47 5190.13 14599.36 6697.41 14590.64 11495.49 10498.95 7485.51 13499.98 1096.00 8399.59 5899.52 84
Rongxuan Tan, Qing Wang, et al.: MP-MVS: Multi-Scale Windows PatchMatch and Planar Prior Multi-View Stereo.
原ACMM196.18 11399.03 8490.08 14697.63 9988.98 16297.00 6598.97 6788.14 8099.71 7888.23 19299.62 5198.76 153
UniMVSNet_NR-MVSNet89.60 20388.55 21092.75 21592.17 28490.07 14798.74 13298.15 3688.37 18483.21 24293.98 23382.86 17095.93 29686.95 20672.47 32792.25 248
DU-MVS88.83 21787.51 22392.79 21391.46 29590.07 14798.71 13397.62 10188.87 16883.21 24293.68 24074.63 23095.93 29686.95 20672.47 32792.36 245
baseline93.91 11493.30 11795.72 12995.10 22090.07 14797.48 24195.91 25091.03 10293.54 13597.68 14079.58 20398.02 18394.27 11995.14 16199.08 122
API-MVS94.78 9394.18 9896.59 9699.21 7390.06 15098.80 12697.78 6583.59 27493.85 13199.21 3283.79 15399.97 2392.37 14699.00 9099.74 56
EPMVS92.59 15091.59 15695.59 13397.22 14190.03 15191.78 33898.04 4290.42 11991.66 15490.65 29886.49 11997.46 21981.78 26396.31 14599.28 106
thisisatest053094.00 11193.52 11495.43 13795.76 19290.02 15298.99 10997.60 10486.58 22891.74 15297.36 15394.78 1298.34 16686.37 21292.48 18597.94 188
CNLPA93.64 12492.74 13196.36 10998.96 8890.01 15399.19 7795.89 25386.22 23489.40 19098.85 8580.66 19999.84 6088.57 18896.92 13699.24 109
EI-MVSNet-UG-set95.43 7795.29 7695.86 12599.07 8389.87 15498.43 17197.80 6291.78 8594.11 12698.77 8986.25 12599.48 11494.95 10696.45 14198.22 180
FC-MVSNet-test90.22 19189.40 19092.67 21891.78 29189.86 15597.89 21998.22 3088.81 16982.96 24794.66 22281.90 18995.96 29485.89 21982.52 26592.20 253
casdiffmvs93.98 11293.43 11595.61 13295.07 22289.86 15598.80 12695.84 25890.98 10492.74 14497.66 14279.71 20298.10 17694.72 11095.37 16098.87 141
PGM-MVS95.85 6795.65 7296.45 10499.50 4789.77 15798.22 19398.90 1289.19 15696.74 7798.95 7485.91 13099.92 4193.94 12299.46 6499.66 70
XXY-MVS87.75 23886.02 24792.95 21190.46 30789.70 15897.71 23595.90 25184.02 26580.95 27994.05 22767.51 29197.10 23285.16 22278.41 28192.04 262
mvs_anonymous92.50 15291.65 15595.06 14896.60 16289.64 15997.06 25996.44 21086.64 22784.14 23493.93 23482.49 17896.17 28591.47 15196.08 15199.35 99
CP-MVS96.22 5496.15 5596.42 10699.67 1389.62 16099.70 1697.61 10290.07 13396.00 8899.16 4187.43 9199.92 4196.03 8299.72 3499.70 62
WR-MVS88.54 22587.22 23092.52 21991.93 28989.50 16198.56 15797.84 5586.99 21781.87 27193.81 23774.25 24195.92 29885.29 22174.43 30692.12 256
CDS-MVSNet93.47 12793.04 12594.76 15894.75 23489.45 16298.82 12497.03 18187.91 19990.97 16796.48 18889.06 6496.36 26889.50 17592.81 18098.49 165
Khang Truong Giang, Soohwan Song, Sungho Jo: Curvature-guided dynamic scale networks for Multi-view Stereo. ICLR 2022
mPP-MVS95.90 6695.75 6896.38 10899.58 3389.41 16399.26 7497.41 14590.66 11194.82 11498.95 7486.15 12699.98 1095.24 9999.64 4799.74 56
HPM-MVScopyleft95.41 7995.22 7895.99 12199.29 6689.14 16499.17 8197.09 17687.28 21595.40 10598.48 11484.93 14299.38 12495.64 9199.65 4499.47 91
Chunlin Ren, Qingshan Xu, Shikun Zhang, Jiaqi Yang: Hierarchical Prior Mining for Non-local Multi-View Stereo. ICCV 2023
AdaColmapbinary93.82 11793.06 12396.10 11799.88 189.07 16598.33 18597.55 11686.81 22490.39 17998.65 10075.09 22999.98 1093.32 13597.53 12699.26 108
SR-MVS96.13 5696.16 5496.07 11899.42 5489.04 16698.59 15497.33 15290.44 11896.84 7399.12 4886.75 10899.41 12297.47 4999.44 6799.76 52
PatchmatchNetpermissive92.05 16291.04 16595.06 14896.17 18089.04 16691.26 34297.26 15389.56 14790.64 17390.56 30488.35 7697.11 23079.53 27596.07 15299.03 125
Fangjinhua Wang, Silvano Galliani, Christoph Vogel, Pablo Speciale, Marc Pollefeys: PatchmatchNet: Learned Multi-View Patchmatch Stereo.
KD-MVS_2432*160082.98 29880.52 30690.38 26694.32 24188.98 16892.87 33095.87 25580.46 31673.79 33287.49 33582.76 17493.29 34070.56 33146.53 37088.87 338
miper_refine_blended82.98 29880.52 30690.38 26694.32 24188.98 16892.87 33095.87 25580.46 31673.79 33287.49 33582.76 17493.29 34070.56 33146.53 37088.87 338
FOURS199.50 4788.94 17099.55 3597.47 13491.32 9798.12 39
miper_enhance_ethall90.33 18889.70 18392.22 22297.12 14788.93 17198.35 18495.96 23988.60 17383.14 24692.33 26487.38 9296.18 28386.49 21177.89 28491.55 277
pmmvs487.58 24386.17 24691.80 23389.58 32088.92 17297.25 25195.28 29082.54 29280.49 28493.17 25375.62 22796.05 29082.75 25378.90 27990.42 313
SCA90.64 18589.25 19394.83 15794.95 22788.83 17396.26 28697.21 16090.06 13490.03 18390.62 30066.61 29896.81 24283.16 24894.36 16798.84 142
GBi-Net86.67 25484.96 26191.80 23395.11 21788.81 17496.77 26995.25 29182.94 28482.12 26390.25 31162.89 31694.97 32179.04 27980.24 27291.62 271
test186.67 25484.96 26191.80 23395.11 21788.81 17496.77 26995.25 29182.94 28482.12 26390.25 31162.89 31694.97 32179.04 27980.24 27291.62 271
FMVSNet183.94 29481.32 30291.80 23391.94 28888.81 17496.77 26995.25 29177.98 32778.25 31190.25 31150.37 35594.97 32173.27 32177.81 28891.62 271
CHOSEN 1792x268894.35 10693.82 11095.95 12397.40 13588.74 17798.41 17498.27 2692.18 7891.43 15996.40 19078.88 20999.81 6793.59 13097.81 11899.30 104
UGNet91.91 16390.85 16995.10 14597.06 15088.69 17898.01 21498.24 2992.41 7292.39 14893.61 24360.52 32599.68 8388.14 19397.25 13096.92 212
Wanjuan Su, Qingshan Xu, Wenbing Tao: Uncertainty-guided Multi-view Stereo Network for Depth Estimation. IEEE Transactions on Circuits and Systems for Video Technology, 2022
TranMVSNet+NR-MVSNet87.75 23886.31 24392.07 22890.81 30288.56 17998.33 18597.18 16587.76 20381.87 27193.90 23572.45 25595.43 31283.13 25071.30 33792.23 250
BH-RMVSNet91.25 17489.99 18195.03 15096.75 15988.55 18098.65 14494.95 30087.74 20587.74 20197.80 13368.27 28498.14 17380.53 27297.49 12798.41 168
MDTV_nov1_ep1390.47 17996.14 18388.55 18091.34 34197.51 12689.58 14592.24 14990.50 30886.99 10597.61 21177.64 28992.34 187
UA-Net93.30 13492.62 13495.34 14096.27 17488.53 18295.88 29996.97 18590.90 10695.37 10697.07 16882.38 18299.10 14383.91 24294.86 16498.38 171
HPM-MVS_fast94.89 8994.62 8695.70 13099.11 7988.44 18399.14 9197.11 17285.82 23895.69 10198.47 11583.46 15899.32 13293.16 13799.63 5099.35 99
Vis-MVSNetpermissive92.64 14791.85 15095.03 15095.12 21688.23 18498.48 16796.81 18991.61 8792.16 15097.22 16071.58 26698.00 18585.85 22097.81 11898.88 139
Jingyang Zhang, Yao Yao, Shiwei Li, Zixin Luo, Tian Fang: Visibility-aware Multiview Stereo Network. BMVC 2020
DROMVSNet95.09 8695.17 7994.84 15695.42 20388.17 18599.48 4395.92 24591.47 9197.34 6098.36 11882.77 17297.41 22397.24 5398.58 10898.94 135
gm-plane-assit94.69 23588.14 18688.22 19097.20 16198.29 16990.79 161
ACMMPcopyleft94.67 9994.30 9295.79 12799.25 6988.13 18798.41 17498.67 2090.38 12091.43 15998.72 9582.22 18499.95 3493.83 12695.76 15699.29 105
Qingshan Xu, Weihang Kong, Wenbing Tao, Marc Pollefeys: Multi-Scale Geometric Consistency Guided and Planar Prior Assisted Multi-View Stereo. IEEE Transactions on Pattern Analysis and Machine Intelligence
tfpnnormal83.65 29581.35 30190.56 26191.37 29788.06 18897.29 24897.87 5378.51 32676.20 31790.91 28864.78 31096.47 26161.71 35673.50 31787.13 351
HyFIR lowres test93.68 12293.29 11894.87 15497.57 13288.04 18998.18 19798.47 2287.57 21091.24 16495.05 21485.49 13597.46 21993.22 13692.82 17899.10 120
TR-MVS90.77 18189.44 18894.76 15896.31 17388.02 19097.92 21895.96 23985.52 24188.22 19997.23 15966.80 29798.09 17784.58 23192.38 18698.17 183
GA-MVS90.10 19588.69 20494.33 17592.44 28087.97 19199.08 9796.26 22189.65 14186.92 21293.11 25568.09 28596.96 23682.54 25690.15 21498.05 184
ECVR-MVScopyleft92.29 15591.33 16095.15 14496.41 16887.84 19298.10 20694.84 30390.82 10891.42 16197.28 15465.61 30698.49 16290.33 16597.19 13299.12 118
APD-MVS_3200maxsize95.64 7695.65 7295.62 13199.24 7087.80 19398.42 17297.22 15988.93 16696.64 8298.98 6685.49 13599.36 12696.68 6599.27 7999.70 62
MVS_111021_LR95.78 7095.94 6095.28 14298.19 11387.69 19498.80 12699.26 793.39 4895.04 11298.69 9984.09 15199.76 7396.96 6199.06 8798.38 171
VDDNet90.08 19688.54 21194.69 16294.41 24087.68 19598.21 19596.40 21176.21 33693.33 13897.75 13654.93 34398.77 15194.71 11190.96 20797.61 196
TAMVS92.62 14892.09 14694.20 18094.10 24587.68 19598.41 17496.97 18587.53 21289.74 18796.04 19984.77 14696.49 26088.97 18692.31 18898.42 167
CS-MVS-test95.98 6196.34 4494.90 15398.06 11787.66 19799.69 2296.10 23293.66 4398.35 3499.05 5786.28 12397.66 20696.96 6198.90 9599.37 97
cl2289.57 20488.79 20291.91 22997.94 12087.62 19897.98 21696.51 20585.03 25182.37 25991.79 27283.65 15496.50 25885.96 21677.89 28491.61 274
v2v48287.27 24685.76 25191.78 23789.59 31987.58 19998.56 15795.54 27484.53 25982.51 25491.78 27373.11 25096.47 26182.07 25974.14 31291.30 288
ADS-MVSNet88.99 20987.30 22794.07 18596.21 17787.56 20087.15 35296.78 19183.01 28289.91 18587.27 33878.87 21097.01 23574.20 31492.27 18997.64 192
PLCcopyleft91.07 394.23 10894.01 10294.87 15499.17 7687.49 20199.25 7596.55 20288.43 18291.26 16398.21 12685.92 12899.86 5789.77 17397.57 12397.24 203
Jie Liao, Yanping Fu, Qingan Yan, Chunxia xiao: Pyramid Multi-View Stereo with Local Consistency. Pacific Graphics 2019
MAR-MVS94.43 10594.09 10095.45 13699.10 8187.47 20298.39 18197.79 6488.37 18494.02 12899.17 3978.64 21499.91 4392.48 14598.85 9798.96 130
Zhenyu Xu, Yiguang Liu, Xuelei Shi, Ying Wang, Yunan Zheng: MARMVS: Matching Ambiguity Reduced Multiple View Stereo for Efficient Large Scale Scene Reconstruction. CVPR 2020
tpmrst92.78 14492.16 14394.65 16396.27 17487.45 20391.83 33797.10 17589.10 16094.68 11790.69 29588.22 7797.73 20489.78 17291.80 19798.77 152
DP-MVS88.75 22286.56 24095.34 14098.92 9087.45 20397.64 23793.52 33270.55 35181.49 27697.25 15774.43 23699.88 4971.14 32994.09 16998.67 157
Fast-Effi-MVS+91.72 16590.79 17394.49 16795.89 18887.40 20599.54 3995.70 26485.01 25389.28 19295.68 20377.75 21897.57 21683.22 24795.06 16298.51 164
test111192.12 15991.19 16394.94 15296.15 18187.36 20698.12 20294.84 30390.85 10790.97 16797.26 15665.60 30798.37 16589.74 17497.14 13599.07 124
MIMVSNet84.48 28681.83 29692.42 22091.73 29287.36 20685.52 35594.42 31681.40 30681.91 26987.58 33351.92 35192.81 34573.84 31788.15 22097.08 209
IS-MVSNet93.00 14292.51 13694.49 16796.14 18387.36 20698.31 18895.70 26488.58 17490.17 18197.50 14883.02 16897.22 22787.06 20396.07 15298.90 138
testdata95.26 14398.20 11187.28 20997.60 10485.21 24698.48 2999.15 4388.15 7998.72 15690.29 16699.45 6699.78 42
test-LLR93.11 14192.68 13294.40 17194.94 22887.27 21099.15 8897.25 15490.21 12491.57 15594.04 22884.89 14397.58 21385.94 21796.13 14898.36 174
test-mter93.27 13692.89 12994.40 17194.94 22887.27 21099.15 8897.25 15488.95 16491.57 15594.04 22888.03 8297.58 21385.94 21796.13 14898.36 174
SR-MVS-dyc-post95.75 7395.86 6395.41 13899.22 7187.26 21298.40 17797.21 16089.63 14296.67 8098.97 6786.73 11099.36 12696.62 6699.31 7699.60 78
RE-MVS-def95.70 6999.22 7187.26 21298.40 17797.21 16089.63 14296.67 8098.97 6785.24 14096.62 6699.31 7699.60 78
test117295.92 6596.07 5795.46 13599.42 5487.24 21498.51 16297.24 15690.29 12396.56 8399.12 4886.73 11099.36 12697.33 5299.42 7199.78 42
v114486.83 25185.31 25891.40 24089.75 31787.21 21598.31 18895.45 27983.22 27982.70 25190.78 29173.36 24596.36 26879.49 27674.69 30390.63 310
OMC-MVS93.90 11593.62 11394.73 16198.63 10187.00 21698.04 21396.56 20192.19 7792.46 14698.73 9379.49 20699.14 14192.16 14894.34 16898.03 185
abl_694.63 10194.48 8995.09 14698.61 10386.96 21798.06 21296.97 18589.31 15295.86 9698.56 10779.82 20199.64 9194.53 11698.65 10698.66 160
miper_ehance_all_eth88.94 21188.12 21791.40 24095.32 20686.93 21897.85 22495.55 27384.19 26381.97 26891.50 27884.16 15095.91 29984.69 22977.89 28491.36 285
v886.11 26384.45 27291.10 24689.99 31286.85 21997.24 25295.36 28881.99 30079.89 29389.86 31974.53 23596.39 26678.83 28372.32 32990.05 322
CPTT-MVS94.60 10294.43 9195.09 14699.66 1586.85 21999.44 5397.47 13483.22 27994.34 12398.96 7282.50 17799.55 9994.81 10799.50 6298.88 139
v1085.73 27284.01 27890.87 25590.03 31186.73 22197.20 25595.22 29881.25 30879.85 29489.75 32073.30 24896.28 28076.87 29472.64 32489.61 329
Vis-MVSNet (Re-imp)93.26 13793.00 12894.06 18696.14 18386.71 22298.68 14096.70 19288.30 18689.71 18997.64 14385.43 13896.39 26688.06 19596.32 14499.08 122
EIA-MVS95.11 8595.27 7794.64 16496.34 17286.51 22399.59 3096.62 19492.51 6594.08 12798.64 10186.05 12798.24 17195.07 10298.50 11199.18 114
CSCG94.87 9094.71 8595.36 13999.54 4086.49 22499.34 6998.15 3682.71 28990.15 18299.25 2789.48 6199.86 5794.97 10598.82 10099.72 59
tttt051793.30 13493.01 12794.17 18195.57 19786.47 22598.51 16297.60 10485.99 23690.55 17497.19 16294.80 1198.31 16785.06 22491.86 19597.74 190
dp90.16 19488.83 20194.14 18296.38 17186.42 22691.57 33997.06 17884.76 25788.81 19490.19 31684.29 14997.43 22275.05 30791.35 20698.56 162
v119286.32 26184.71 26891.17 24489.53 32386.40 22798.13 20095.44 28282.52 29382.42 25690.62 30071.58 26696.33 27577.23 29074.88 30090.79 302
HQP5-MVS86.39 228
HQP-MVS91.50 16891.23 16292.29 22193.95 24986.39 22899.16 8296.37 21393.92 3387.57 20296.67 18473.34 24697.77 19793.82 12786.29 22792.72 237
PatchMatch-RL91.47 16990.54 17794.26 17898.20 11186.36 23096.94 26397.14 16887.75 20488.98 19395.75 20271.80 26399.40 12380.92 26897.39 12997.02 211
mvsmamba89.99 19889.42 18991.69 23890.64 30586.34 23198.40 17792.27 34591.01 10384.80 22794.93 21576.12 22496.51 25792.81 14383.84 24892.21 252
LS3D90.19 19288.72 20394.59 16698.97 8686.33 23296.90 26596.60 19674.96 34084.06 23698.74 9275.78 22699.83 6274.93 30897.57 12397.62 195
CR-MVSNet88.83 21787.38 22693.16 20793.47 26486.24 23384.97 35994.20 32188.92 16790.76 17186.88 34284.43 14794.82 32670.64 33092.17 19298.41 168
RPMNet85.07 27881.88 29594.64 16493.47 26486.24 23384.97 35997.21 16064.85 36590.76 17178.80 36380.95 19799.27 13453.76 36692.17 19298.41 168
CS-MVS95.75 7396.19 4894.40 17197.88 12186.22 23599.66 2396.12 23192.69 6298.07 4298.89 8387.09 10097.59 21296.71 6498.62 10799.39 96
NP-MVS93.94 25286.22 23596.67 184
BH-w/o92.32 15491.79 15293.91 19296.85 15586.18 23799.11 9695.74 26288.13 19284.81 22697.00 17177.26 22197.91 18689.16 18598.03 11697.64 192
c3_l88.19 23287.23 22991.06 24894.97 22686.17 23897.72 23395.38 28683.43 27681.68 27591.37 28082.81 17195.72 30584.04 24173.70 31491.29 289
MSDG88.29 23086.37 24294.04 18896.90 15486.15 23996.52 27894.36 31877.89 33179.22 30196.95 17369.72 27599.59 9773.20 32292.58 18496.37 222
CLD-MVS91.06 17690.71 17492.10 22794.05 24886.10 24099.55 3596.29 22094.16 2884.70 22897.17 16469.62 27697.82 19394.74 10986.08 23292.39 243
Zhaoxin Li, Wangmeng Zuo, Zhaoqi Wang, Lei Zhang: Confidence-based Large-scale Dense Multi-view Stereo. IEEE Transaction on Image Processing, 2020
V4287.00 24885.68 25390.98 25189.91 31386.08 24198.32 18795.61 27083.67 27382.72 25090.67 29674.00 24396.53 25581.94 26274.28 30990.32 315
HQP_MVS91.26 17290.95 16792.16 22593.84 25686.07 24299.02 10596.30 21793.38 4986.99 20996.52 18672.92 25197.75 20293.46 13286.17 23092.67 239
plane_prior86.07 24299.14 9193.81 4186.26 229
plane_prior693.92 25386.02 24472.92 251
plane_prior385.91 24593.65 4486.99 209
CostFormer92.89 14392.48 13794.12 18394.99 22585.89 24692.89 32997.00 18486.98 21995.00 11390.78 29190.05 5397.51 21792.92 14191.73 19998.96 130
EI-MVSNet89.87 20089.38 19191.36 24294.32 24185.87 24797.61 23896.59 19785.10 24885.51 22397.10 16681.30 19696.56 25383.85 24483.03 26091.64 269
IterMVS-LS88.34 22887.44 22491.04 24994.10 24585.85 24898.10 20695.48 27785.12 24782.03 26791.21 28481.35 19595.63 30883.86 24375.73 29591.63 270
Fangjinhua Wang, Silvano Galliani, Christoph Vogel, Marc Pollefeys: IterMVS: Iterative Probability Estimation for Efficient Multi-View Stereo.
VDD-MVS91.24 17590.18 18094.45 17097.08 14985.84 24998.40 17796.10 23286.99 21793.36 13798.16 12754.27 34599.20 13596.59 6990.63 21298.31 177
plane_prior793.84 25685.73 250
EPP-MVSNet93.75 11993.67 11294.01 18995.86 18985.70 25198.67 14297.66 8884.46 26091.36 16297.18 16391.16 3197.79 19592.93 14093.75 17198.53 163
bld_raw_dy_0_6487.82 23486.71 23791.15 24589.54 32285.61 25297.37 24589.16 36889.26 15483.42 24094.50 22465.79 30396.18 28388.00 19683.37 25791.67 268
v14419286.40 25984.89 26490.91 25289.48 32485.59 25398.21 19595.43 28382.45 29482.62 25290.58 30372.79 25496.36 26878.45 28574.04 31390.79 302
OPM-MVS89.76 20189.15 19591.57 23990.53 30685.58 25498.11 20595.93 24492.88 6086.05 21996.47 18967.06 29697.87 19089.29 18386.08 23291.26 290
Ray L. Khuboni, Hongjun Xu: Octagram Propagation Matching for Multi-Scale View Stereopsis (OPM-MVS).
tpm291.77 16491.09 16493.82 19594.83 23285.56 25592.51 33497.16 16784.00 26693.83 13290.66 29787.54 8997.17 22887.73 19991.55 20298.72 154
GeoE90.60 18689.56 18593.72 19995.10 22085.43 25699.41 5994.94 30183.96 26887.21 20896.83 17974.37 23797.05 23480.50 27393.73 17298.67 157
cl____87.82 23486.79 23690.89 25494.88 23085.43 25697.81 22595.24 29482.91 28880.71 28291.22 28381.97 18895.84 30181.34 26575.06 29891.40 284
DIV-MVS_self_test87.82 23486.81 23590.87 25594.87 23185.39 25897.81 22595.22 29882.92 28780.76 28191.31 28281.99 18695.81 30381.36 26475.04 29991.42 283
tpm cat188.89 21387.27 22893.76 19695.79 19085.32 25990.76 34697.09 17676.14 33785.72 22188.59 32982.92 16998.04 18276.96 29391.43 20397.90 189
v192192086.02 26484.44 27390.77 25789.32 32685.20 26098.10 20695.35 28982.19 29882.25 26190.71 29370.73 27096.30 27976.85 29574.49 30590.80 301
pm-mvs184.68 28282.78 28890.40 26589.58 32085.18 26197.31 24794.73 30781.93 30276.05 31992.01 26865.48 30896.11 28878.75 28469.14 34089.91 325
TAPA-MVS87.50 990.35 18789.05 19694.25 17998.48 10785.17 26298.42 17296.58 20082.44 29587.24 20798.53 10882.77 17298.84 14959.09 36197.88 11798.72 154
Andrea Romanoni, Matteo Matteucci: TAPA-MVS: Textureless-Aware PAtchMatch Multi-View Stereo. ICCV 2019
v124085.77 27184.11 27690.73 25889.26 32785.15 26397.88 22195.23 29781.89 30382.16 26290.55 30569.60 27796.31 27675.59 30574.87 30190.72 307
ppachtmachnet_test83.63 29681.57 29989.80 28289.01 32885.09 26497.13 25794.50 31378.84 32376.14 31891.00 28769.78 27494.61 33163.40 35174.36 30789.71 328
h-mvs3392.47 15391.95 14994.05 18797.13 14685.01 26598.36 18398.08 3993.85 3896.27 8596.73 18283.19 16599.43 11995.81 8568.09 34397.70 191
Anonymous2024052987.66 24185.58 25493.92 19197.59 13185.01 26598.13 20097.13 17066.69 36388.47 19796.01 20055.09 34299.51 10687.00 20584.12 24697.23 204
EPNet_dtu92.28 15692.15 14492.70 21697.29 13984.84 26798.64 14697.82 5792.91 5893.02 14297.02 17085.48 13795.70 30672.25 32694.89 16397.55 197
Wanjuan Su, Wenbing Tao: Efficient Edge-Preserving Multi-View Stereo Network for Depth Estimation. AAAI 2023
BH-untuned91.46 17090.84 17093.33 20496.51 16684.83 26898.84 12395.50 27686.44 23383.50 23896.70 18375.49 22897.77 19786.78 21097.81 11897.40 198
tpmvs89.16 20787.76 21893.35 20397.19 14284.75 26990.58 34897.36 15081.99 30084.56 22989.31 32683.98 15298.17 17274.85 31090.00 21597.12 205
bld_raw_conf00588.44 22687.56 22291.09 24790.18 31084.69 27097.81 22590.17 36390.20 12682.77 24894.81 22067.23 29396.46 26391.13 15483.71 25392.11 258
PVSNet_083.28 1687.31 24585.16 25993.74 19894.78 23384.59 27198.91 11698.69 1989.81 13878.59 30893.23 25161.95 32099.34 13194.75 10855.72 36597.30 201
Anonymous2023121184.72 28182.65 29290.91 25297.71 12584.55 27297.28 24996.67 19366.88 36279.18 30290.87 29058.47 32996.60 24982.61 25574.20 31091.59 276
test0.0.03 188.96 21088.61 20690.03 27791.09 29984.43 27398.97 11197.02 18290.21 12480.29 28796.31 19484.89 14391.93 35772.98 32385.70 23593.73 232
PS-MVSNAJss89.54 20589.05 19691.00 25088.77 33184.36 27497.39 24295.97 23788.47 17581.88 27093.80 23882.48 17996.50 25889.34 18083.34 25992.15 254
pmmvs585.87 26684.40 27590.30 26988.53 33584.23 27598.60 15293.71 32881.53 30580.29 28792.02 26764.51 31195.52 31082.04 26178.34 28291.15 292
dcpmvs_295.67 7596.18 4994.12 18398.82 9584.22 27697.37 24595.45 27990.70 11095.77 9998.63 10390.47 4498.68 15899.20 1799.22 8399.45 92
Anonymous20240521188.84 21587.03 23294.27 17798.14 11584.18 27798.44 17095.58 27276.79 33589.34 19196.88 17753.42 34899.54 10187.53 20287.12 22599.09 121
v14886.38 26085.06 26090.37 26889.47 32584.10 27898.52 15995.48 27783.80 26980.93 28090.22 31474.60 23296.31 27680.92 26871.55 33590.69 308
TransMVSNet (Re)81.97 30379.61 31189.08 29989.70 31884.01 27997.26 25091.85 35378.84 32373.07 33991.62 27567.17 29595.21 31867.50 34059.46 36088.02 342
FMVSNet582.29 30180.54 30587.52 31493.79 25984.01 27993.73 32292.47 34376.92 33474.27 32986.15 34763.69 31589.24 36369.07 33574.79 30289.29 333
our_test_384.47 28782.80 28689.50 29189.01 32883.90 28197.03 26094.56 31281.33 30775.36 32690.52 30671.69 26494.54 33268.81 33676.84 29290.07 320
MVP-Stereo86.61 25685.83 25088.93 30388.70 33383.85 28296.07 29494.41 31782.15 29975.64 32491.96 27067.65 29096.45 26477.20 29298.72 10386.51 354
Qingsong Yan: MVP-Stereo: A Parallel Multi-View Patchmatch Stereo Method with Dilation Matching for Photogrammetric Application.
patch_mono-297.10 2797.97 894.49 16799.21 7383.73 28399.62 2898.25 2795.28 1899.38 498.91 8092.28 2899.94 3799.61 899.22 8399.78 42
IterMVS85.81 26984.67 26989.22 29693.51 26383.67 28496.32 28394.80 30585.09 24978.69 30490.17 31766.57 30093.17 34279.48 27777.42 29090.81 300
Fangjinhua Wang, Silvano Galliani, Christoph Vogel, Marc Pollefeys: IterMVS: Iterative Probability Estimation for Efficient Multi-View Stereo.
USDC84.74 28082.93 28490.16 27191.73 29283.54 28595.00 31093.30 33588.77 17073.19 33593.30 24953.62 34797.65 20875.88 30381.54 27089.30 332
D2MVS87.96 23387.39 22589.70 28591.84 29083.40 28698.31 18898.49 2188.04 19578.23 31290.26 31073.57 24496.79 24484.21 23583.53 25588.90 337
Baseline_NR-MVSNet85.83 26884.82 26688.87 30488.73 33283.34 28798.63 14791.66 35480.41 31882.44 25591.35 28174.63 23095.42 31384.13 23771.39 33687.84 343
WR-MVS_H86.53 25885.49 25689.66 28891.04 30083.31 28897.53 24098.20 3284.95 25479.64 29590.90 28978.01 21795.33 31576.29 30072.81 32290.35 314
LTVRE_ROB81.71 1984.59 28482.72 29090.18 27092.89 27783.18 28993.15 32794.74 30678.99 32275.14 32792.69 26065.64 30597.63 20969.46 33481.82 26989.74 326
Andreas Kuhn, Heiko Hirschmüller, Daniel Scharstein, Helmut Mayer: A TV Prior for High-Quality Scalable Multi-View Stereo Reconstruction. International Journal of Computer Vision 2016
PatchT85.44 27583.19 28292.22 22293.13 27383.00 29083.80 36596.37 21370.62 35090.55 17479.63 36284.81 14594.87 32458.18 36391.59 20198.79 149
anonymousdsp86.69 25385.75 25289.53 29086.46 35182.94 29196.39 28095.71 26383.97 26779.63 29690.70 29468.85 27995.94 29586.01 21484.02 24789.72 327
ACMH83.09 1784.60 28382.61 29390.57 26093.18 27282.94 29196.27 28494.92 30281.01 31172.61 34293.61 24356.54 33497.79 19574.31 31381.07 27190.99 296
Qingshan Xu and Wenbing Tao: Multi-Scale Geometric Consistency Guided Multi-View Stereo. CVPR 2019
IterMVS-SCA-FT85.73 27284.64 27089.00 30193.46 26682.90 29396.27 28494.70 30885.02 25278.62 30690.35 30966.61 29893.33 33979.38 27877.36 29190.76 304
F-COLMAP92.07 16191.75 15493.02 20998.16 11482.89 29498.79 13095.97 23786.54 23087.92 20097.80 13378.69 21399.65 8985.97 21595.93 15496.53 219
Patchmatch-test86.25 26284.06 27792.82 21294.42 23982.88 29582.88 36694.23 32071.58 34879.39 29990.62 30089.00 6696.42 26563.03 35391.37 20599.16 115
Patchmtry83.61 29781.64 29789.50 29193.36 26882.84 29684.10 36294.20 32169.47 35679.57 29786.88 34284.43 14794.78 32768.48 33874.30 30890.88 299
CP-MVSNet86.54 25785.45 25789.79 28391.02 30182.78 29797.38 24497.56 11585.37 24479.53 29893.03 25671.86 26295.25 31779.92 27473.43 32091.34 286
AUN-MVS90.17 19389.50 18692.19 22496.21 17782.67 29897.76 23197.53 12088.05 19491.67 15396.15 19583.10 16797.47 21888.11 19466.91 34796.43 220
eth_miper_zixun_eth87.76 23787.00 23390.06 27494.67 23682.65 29997.02 26295.37 28784.19 26381.86 27391.58 27781.47 19395.90 30083.24 24673.61 31591.61 274
hse-mvs291.67 16691.51 15892.15 22696.22 17682.61 30097.74 23297.53 12093.85 3896.27 8596.15 19583.19 16597.44 22195.81 8566.86 34896.40 221
MS-PatchMatch86.75 25285.92 24989.22 29691.97 28682.47 30196.91 26496.14 23083.74 27077.73 31393.53 24658.19 33097.37 22676.75 29698.35 11387.84 343
test_low_dy_conf_00188.79 22088.33 21390.16 27189.83 31682.22 30297.87 22296.22 22388.25 18984.24 23395.09 21371.11 26996.19 28288.63 18783.76 25292.06 260
test_djsdf88.26 23187.73 21989.84 28188.05 34082.21 30397.77 22996.17 22886.84 22282.41 25791.95 27172.07 25995.99 29289.83 16984.50 24191.32 287
PS-CasMVS85.81 26984.58 27189.49 29390.77 30382.11 30497.20 25597.36 15084.83 25679.12 30392.84 25967.42 29295.16 31978.39 28673.25 32191.21 291
v7n84.42 28882.75 28989.43 29488.15 33881.86 30596.75 27295.67 26780.53 31478.38 31089.43 32469.89 27396.35 27373.83 31872.13 33190.07 320
jajsoiax87.35 24486.51 24189.87 27987.75 34581.74 30697.03 26095.98 23688.47 17580.15 28993.80 23861.47 32196.36 26889.44 17884.47 24391.50 278
MVS-HIRNet79.01 31675.13 32690.66 25993.82 25881.69 30785.16 35693.75 32754.54 36774.17 33059.15 37157.46 33296.58 25263.74 35094.38 16693.72 233
RRT_MVS88.91 21288.56 20989.93 27890.31 30981.61 30898.08 20996.38 21289.30 15382.41 25794.84 21873.15 24996.04 29190.38 16482.23 26792.15 254
tpm89.67 20288.95 19891.82 23292.54 27981.43 30992.95 32895.92 24587.81 20190.50 17689.44 32384.99 14195.65 30783.67 24582.71 26398.38 171
PMMVS93.62 12593.90 10992.79 21396.79 15881.40 31098.85 12196.81 18991.25 9996.82 7698.15 12877.02 22298.13 17493.15 13896.30 14698.83 145
mvs_tets87.09 24786.22 24489.71 28487.87 34181.39 31196.73 27495.90 25188.19 19179.99 29193.61 24359.96 32796.31 27689.40 17984.34 24491.43 282
ACMM86.95 1388.77 22188.22 21690.43 26493.61 26181.34 31298.50 16495.92 24587.88 20083.85 23795.20 21267.20 29497.89 18886.90 20884.90 23892.06 260
Qingshan Xu and Wenbing Tao: Multi-Scale Geometric Consistency Guided Multi-View Stereo. CVPR 2019
PEN-MVS85.21 27783.93 27989.07 30089.89 31581.31 31397.09 25897.24 15684.45 26178.66 30592.68 26168.44 28394.87 32475.98 30270.92 33891.04 295
XVG-OURS90.83 18090.49 17891.86 23095.23 20881.25 31495.79 30495.92 24588.96 16390.02 18498.03 12971.60 26599.35 13091.06 15687.78 22294.98 228
miper_lstm_enhance86.90 24986.20 24589.00 30194.53 23881.19 31596.74 27395.24 29482.33 29680.15 28990.51 30781.99 18694.68 33080.71 27073.58 31691.12 293
pmmvs-eth3d78.71 31976.16 32386.38 32180.25 36881.19 31594.17 31892.13 34977.97 32866.90 35782.31 35555.76 33692.56 34973.63 32062.31 35685.38 358
XVG-OURS-SEG-HR90.95 17890.66 17691.83 23195.18 21381.14 31795.92 29695.92 24588.40 18390.33 18097.85 13070.66 27299.38 12492.83 14288.83 21894.98 228
ACMP87.39 1088.71 22388.24 21590.12 27393.91 25481.06 31898.50 16495.67 26789.43 15080.37 28595.55 20465.67 30497.83 19290.55 16384.51 24091.47 279
Qingshan Xu and Wenbing Tao: Planar Prior Assisted PatchMatch Multi-View Stereo. AAAI 2020
LPG-MVS_test88.86 21488.47 21290.06 27493.35 26980.95 31998.22 19395.94 24287.73 20683.17 24496.11 19766.28 30197.77 19790.19 16785.19 23691.46 280
LGP-MVS_train90.06 27493.35 26980.95 31995.94 24287.73 20683.17 24496.11 19766.28 30197.77 19790.19 16785.19 23691.46 280
UniMVSNet_ETH3D85.65 27483.79 28091.21 24390.41 30880.75 32195.36 30795.78 25978.76 32581.83 27494.33 22649.86 35696.66 24684.30 23383.52 25696.22 223
MVS_030484.13 29282.66 29188.52 30693.07 27480.15 32295.81 30398.21 3179.27 32086.85 21486.40 34541.33 36794.69 32976.36 29986.69 22690.73 306
MDA-MVSNet_test_wron79.65 31477.05 31887.45 31587.79 34480.13 32396.25 28794.44 31473.87 34451.80 36787.47 33768.04 28692.12 35566.02 34567.79 34590.09 318
YYNet179.64 31577.04 31987.43 31687.80 34379.98 32496.23 28894.44 31473.83 34551.83 36687.53 33467.96 28892.07 35666.00 34667.75 34690.23 317
DTE-MVSNet84.14 29182.80 28688.14 30988.95 33079.87 32596.81 26896.24 22283.50 27577.60 31492.52 26367.89 28994.24 33572.64 32569.05 34190.32 315
ACMH+83.78 1584.21 28982.56 29489.15 29893.73 26079.16 32696.43 27994.28 31981.09 31074.00 33194.03 23054.58 34497.67 20576.10 30178.81 28090.63 310
ADS-MVSNet287.62 24286.88 23489.86 28096.21 17779.14 32787.15 35292.99 33683.01 28289.91 18587.27 33878.87 21092.80 34674.20 31492.27 18997.64 192
COLMAP_ROBcopyleft82.69 1884.54 28582.82 28589.70 28596.72 16078.85 32895.89 29792.83 34071.55 34977.54 31595.89 20159.40 32899.14 14167.26 34188.26 21991.11 294
Johannes L. Schönberger, Enliang Zheng, Marc Pollefeys, Jan-Michael Frahm: Pixelwise View Selection for Unstructured Multi-View Stereo. ECCV 2016
AllTest84.97 27983.12 28390.52 26296.82 15678.84 32995.89 29792.17 34777.96 32975.94 32095.50 20555.48 33899.18 13671.15 32787.14 22393.55 234
TestCases90.52 26296.82 15678.84 32992.17 34777.96 32975.94 32095.50 20555.48 33899.18 13671.15 32787.14 22393.55 234
TinyColmap80.42 31077.94 31487.85 31192.09 28578.58 33193.74 32189.94 36474.99 33969.77 34691.78 27346.09 36197.58 21365.17 34977.89 28487.38 346
MDA-MVSNet-bldmvs77.82 32474.75 32887.03 31888.33 33678.52 33296.34 28292.85 33975.57 33848.87 36987.89 33157.32 33392.49 35160.79 35764.80 35290.08 319
test_040278.81 31876.33 32286.26 32291.18 29878.44 33395.88 29991.34 35868.55 35770.51 34589.91 31852.65 35094.99 32047.14 36979.78 27785.34 360
Fast-Effi-MVS+-dtu88.84 21588.59 20889.58 28993.44 26778.18 33498.65 14494.62 31188.46 17784.12 23595.37 21168.91 27896.52 25682.06 26091.70 20094.06 231
pmmvs679.90 31277.31 31787.67 31384.17 35878.13 33595.86 30193.68 32967.94 36072.67 34189.62 32250.98 35495.75 30474.80 31166.04 34989.14 335
DeepPCF-MVS93.56 196.55 4397.84 1092.68 21798.71 9978.11 33699.70 1697.71 8098.18 197.36 5999.76 190.37 5099.94 3799.27 1399.54 6199.99 1
OpenMVS_ROBcopyleft73.86 2077.99 32375.06 32786.77 32083.81 36077.94 33796.38 28191.53 35767.54 36168.38 34987.13 34143.94 36396.08 28955.03 36581.83 26886.29 355
EG-PatchMatch MVS79.92 31177.59 31586.90 31987.06 34977.90 33896.20 29294.06 32374.61 34166.53 35888.76 32840.40 36996.20 28167.02 34283.66 25486.61 352
XVG-ACMP-BASELINE85.86 26784.95 26388.57 30589.90 31477.12 33994.30 31695.60 27187.40 21482.12 26392.99 25853.42 34897.66 20685.02 22583.83 24990.92 298
ITE_SJBPF87.93 31092.26 28276.44 34093.47 33387.67 20979.95 29295.49 20756.50 33597.38 22475.24 30682.33 26689.98 324
UnsupCasMVSNet_bld73.85 33070.14 33384.99 32979.44 36975.73 34188.53 35095.24 29470.12 35461.94 36374.81 36441.41 36693.62 33768.65 33751.13 36985.62 357
MIMVSNet175.92 32773.30 33083.81 33681.29 36675.57 34292.26 33592.05 35073.09 34767.48 35586.18 34640.87 36887.64 36755.78 36470.68 33988.21 341
CL-MVSNet_self_test79.89 31378.34 31384.54 33381.56 36575.01 34396.88 26695.62 26981.10 30975.86 32285.81 34868.49 28290.26 36163.21 35256.51 36388.35 340
UnsupCasMVSNet_eth78.90 31776.67 32185.58 32782.81 36374.94 34491.98 33696.31 21684.64 25865.84 36087.71 33251.33 35292.23 35372.89 32456.50 36489.56 330
testgi82.29 30181.00 30486.17 32387.24 34774.84 34597.39 24291.62 35588.63 17175.85 32395.42 20846.07 36291.55 35866.87 34479.94 27692.12 256
mvs-test191.57 16792.20 14289.70 28595.15 21474.34 34699.51 4195.40 28491.92 8291.02 16697.25 15774.27 23998.08 17989.45 17695.83 15596.67 213
pmmvs372.86 33169.76 33582.17 34073.86 37274.19 34794.20 31789.01 36964.23 36667.72 35280.91 35941.48 36588.65 36562.40 35454.02 36783.68 363
TDRefinement78.01 32275.31 32586.10 32470.06 37473.84 34893.59 32591.58 35674.51 34273.08 33891.04 28649.63 35897.12 22974.88 30959.47 35987.33 348
JIA-IIPM85.97 26584.85 26589.33 29593.23 27173.68 34985.05 35897.13 17069.62 35591.56 15768.03 36788.03 8296.96 23677.89 28893.12 17597.34 200
CVMVSNet90.30 18990.91 16888.46 30894.32 24173.58 35097.61 23897.59 10890.16 13088.43 19897.10 16676.83 22392.86 34382.64 25493.54 17398.93 136
Anonymous2023120680.76 30879.42 31284.79 33184.78 35672.98 35196.53 27792.97 33779.56 31974.33 32888.83 32761.27 32392.15 35460.59 35875.92 29489.24 334
Anonymous2024052178.63 32076.90 32083.82 33582.82 36272.86 35295.72 30593.57 33173.55 34672.17 34384.79 35049.69 35792.51 35065.29 34874.50 30486.09 356
new_pmnet76.02 32673.71 32982.95 33883.88 35972.85 35391.26 34292.26 34670.44 35262.60 36281.37 35747.64 36092.32 35261.85 35572.10 33283.68 363
LCM-MVSNet-Re88.59 22488.61 20688.51 30795.53 20072.68 35496.85 26788.43 37088.45 17873.14 33690.63 29975.82 22594.38 33392.95 13995.71 15898.48 166
new-patchmatchnet74.80 32972.40 33281.99 34278.36 37172.20 35594.44 31492.36 34477.06 33263.47 36179.98 36151.04 35388.85 36460.53 35954.35 36684.92 361
Effi-MVS+-dtu89.97 19990.68 17587.81 31295.15 21471.98 35697.87 22295.40 28491.92 8287.57 20291.44 27974.27 23996.84 24089.45 17693.10 17694.60 230
EGC-MVSNET60.70 33555.37 33976.72 34786.35 35271.08 35789.96 34984.44 3760.38 3811.50 38284.09 35237.30 37088.10 36640.85 37173.44 31970.97 369
test20.0378.51 32177.48 31681.62 34383.07 36171.03 35896.11 29392.83 34081.66 30469.31 34789.68 32157.53 33187.29 36858.65 36268.47 34286.53 353
SixPastTwentyTwo82.63 30081.58 29885.79 32588.12 33971.01 35995.17 30992.54 34284.33 26272.93 34092.08 26560.41 32695.61 30974.47 31274.15 31190.75 305
OurMVSNet-221017-084.13 29283.59 28185.77 32687.81 34270.24 36094.89 31193.65 33086.08 23576.53 31693.28 25061.41 32296.14 28780.95 26777.69 28990.93 297
K. test v381.04 30779.77 31084.83 33087.41 34670.23 36195.60 30693.93 32583.70 27267.51 35489.35 32555.76 33693.58 33876.67 29768.03 34490.67 309
Patchmatch-RL test81.90 30580.13 30887.23 31780.71 36770.12 36284.07 36388.19 37183.16 28170.57 34482.18 35687.18 9992.59 34882.28 25862.78 35398.98 128
lessismore_v085.08 32885.59 35469.28 36390.56 36167.68 35390.21 31554.21 34695.46 31173.88 31662.64 35490.50 312
KD-MVS_self_test77.47 32575.88 32482.24 33981.59 36468.93 36492.83 33294.02 32477.03 33373.14 33683.39 35355.44 34090.42 36067.95 33957.53 36287.38 346
LF4IMVS81.94 30481.17 30384.25 33487.23 34868.87 36593.35 32691.93 35283.35 27875.40 32593.00 25749.25 35996.65 24778.88 28278.11 28387.22 350
EU-MVSNet84.19 29084.42 27483.52 33788.64 33467.37 36696.04 29595.76 26185.29 24578.44 30993.18 25270.67 27191.48 35975.79 30475.98 29391.70 267
PM-MVS74.88 32872.85 33180.98 34578.98 37064.75 36790.81 34585.77 37380.95 31268.23 35182.81 35429.08 37392.84 34476.54 29862.46 35585.36 359
RPSCF85.33 27685.55 25584.67 33294.63 23762.28 36893.73 32293.76 32674.38 34385.23 22597.06 16964.09 31298.31 16780.98 26686.08 23293.41 236
DSMNet-mixed81.60 30681.43 30082.10 34184.36 35760.79 36993.63 32486.74 37279.00 32179.32 30087.15 34063.87 31489.78 36266.89 34391.92 19495.73 226
CMPMVSbinary58.40 2180.48 30980.11 30981.59 34485.10 35559.56 37094.14 31995.95 24168.54 35860.71 36493.31 24855.35 34197.87 19083.06 25184.85 23987.33 348
M. Jancosek, T. Pajdla: Multi-View Reconstruction Preserving Weakly-Supported Surfaces. CVPR 2011
Gipumacopyleft54.77 33852.22 34262.40 35586.50 35059.37 37150.20 37390.35 36236.52 37141.20 37249.49 37318.33 37781.29 37032.10 37365.34 35046.54 373
S. Galliani, K. Lasinger, K. Schindler: Massively Parallel Multiview Stereopsis by Surface Normal Diffusion. ICCV 2015
ambc79.60 34672.76 37356.61 37276.20 36892.01 35168.25 35080.23 36023.34 37494.73 32873.78 31960.81 35787.48 345
test_method70.10 33368.66 33674.41 34986.30 35355.84 37394.47 31389.82 36535.18 37266.15 35984.75 35130.54 37277.96 37370.40 33360.33 35889.44 331
PMMVS258.97 33755.07 34070.69 35262.72 37555.37 37485.97 35480.52 37749.48 36845.94 37068.31 36615.73 37980.78 37149.79 36837.12 37275.91 366
ANet_high50.71 34046.17 34364.33 35444.27 38252.30 37576.13 36978.73 37864.95 36427.37 37555.23 37214.61 38067.74 37536.01 37218.23 37572.95 368
DeepMVS_CXcopyleft76.08 34890.74 30451.65 37690.84 36086.47 23257.89 36587.98 33035.88 37192.60 34765.77 34765.06 35183.97 362
LCM-MVSNet60.07 33656.37 33871.18 35054.81 38048.67 37782.17 36789.48 36737.95 37049.13 36869.12 36513.75 38181.76 36959.28 36051.63 36883.10 365
MVEpermissive44.00 2241.70 34237.64 34753.90 35849.46 38143.37 37865.09 37266.66 38126.19 37625.77 37748.53 3743.58 38463.35 37726.15 37527.28 37354.97 372
Simon Fuhrmann, Fabian Langguth, Michael Goesele: MVE - A Multi-View Reconstruction Environment. EUROGRAPHICS Workshops on Graphics and Cultural Heritage (2014)
FPMVS61.57 33460.32 33765.34 35360.14 37842.44 37991.02 34489.72 36644.15 36942.63 37180.93 35819.02 37580.59 37242.50 37072.76 32373.00 367
tmp_tt53.66 33952.86 34156.05 35632.75 38441.97 38073.42 37076.12 38021.91 37739.68 37396.39 19242.59 36465.10 37678.00 28714.92 37761.08 370
E-PMN41.02 34340.93 34541.29 35961.97 37633.83 38184.00 36465.17 38227.17 37427.56 37446.72 37517.63 37860.41 37819.32 37618.82 37429.61 374
PMVScopyleft41.42 2345.67 34142.50 34455.17 35734.28 38332.37 38266.24 37178.71 37930.72 37322.04 37859.59 3704.59 38277.85 37427.49 37458.84 36155.29 371
Y. Furukawa, J. Ponce: Accurate, dense, and robust multiview stereopsis. PAMI (2010)
EMVS39.96 34439.88 34640.18 36059.57 37932.12 38384.79 36164.57 38326.27 37526.14 37644.18 37818.73 37659.29 37917.03 37717.67 37629.12 375
N_pmnet70.19 33269.87 33471.12 35188.24 33730.63 38495.85 30228.70 38470.18 35368.73 34886.55 34464.04 31393.81 33653.12 36773.46 31888.94 336
wuyk23d16.71 34716.73 35116.65 36160.15 37725.22 38541.24 3745.17 3856.56 3785.48 3813.61 3813.64 38322.72 38015.20 3789.52 3781.99 378
test12316.58 34819.47 3507.91 3623.59 3865.37 38694.32 3151.39 3872.49 38013.98 38044.60 3772.91 3852.65 38111.35 3800.57 38015.70 376
testmvs18.81 34623.05 3496.10 3634.48 3852.29 38797.78 2283.00 3863.27 37918.60 37962.71 3681.53 3862.49 38214.26 3791.80 37913.50 377
test_blank0.00 3510.00 3540.00 3640.00 3870.00 3880.00 3750.00 3880.00 3820.00 3830.00 3820.00 3870.00 3830.00 3810.00 3810.00 379
uanet_test0.00 3510.00 3540.00 3640.00 3870.00 3880.00 3750.00 3880.00 3820.00 3830.00 3820.00 3870.00 3830.00 3810.00 3810.00 379
DCPMVS0.00 3510.00 3540.00 3640.00 3870.00 3880.00 3750.00 3880.00 3820.00 3830.00 3820.00 3870.00 3830.00 3810.00 3810.00 379
cdsmvs_eth3d_5k22.52 34530.03 3480.00 3640.00 3870.00 3880.00 37597.17 1660.00 3820.00 38398.77 8974.35 2380.00 3830.00 3810.00 3810.00 379
pcd_1.5k_mvsjas6.87 3509.16 3530.00 3640.00 3870.00 3880.00 3750.00 3880.00 3820.00 3830.00 38282.48 1790.00 3830.00 3810.00 3810.00 379
sosnet-low-res0.00 3510.00 3540.00 3640.00 3870.00 3880.00 3750.00 3880.00 3820.00 3830.00 3820.00 3870.00 3830.00 3810.00 3810.00 379
sosnet0.00 3510.00 3540.00 3640.00 3870.00 3880.00 3750.00 3880.00 3820.00 3830.00 3820.00 3870.00 3830.00 3810.00 3810.00 379
uncertanet0.00 3510.00 3540.00 3640.00 3870.00 3880.00 3750.00 3880.00 3820.00 3830.00 3820.00 3870.00 3830.00 3810.00 3810.00 379
Regformer0.00 3510.00 3540.00 3640.00 3870.00 3880.00 3750.00 3880.00 3820.00 3830.00 3820.00 3870.00 3830.00 3810.00 3810.00 379
ab-mvs-re8.21 34910.94 3520.00 3640.00 3870.00 3880.00 3750.00 3880.00 3820.00 38398.50 1110.00 3870.00 3830.00 3810.00 3810.00 379
uanet0.00 3510.00 3540.00 3640.00 3870.00 3880.00 3750.00 3880.00 3820.00 3830.00 3820.00 3870.00 3830.00 3810.00 3810.00 379
PC_three_145294.60 2199.41 299.12 4895.50 799.96 3099.84 299.92 399.97 7
eth-test20.00 387
eth-test0.00 387
test_241102_TWO97.72 7694.17 2699.23 899.54 393.14 2499.98 1099.70 399.82 1999.99 1
9.1496.87 2899.34 5899.50 4297.49 13189.41 15198.59 2699.43 1889.78 5699.69 8098.69 2399.62 51
test_0728_THIRD93.01 5399.07 1199.46 1194.66 1499.97 2399.25 1599.82 1999.95 15
GSMVS98.84 142
sam_mvs188.39 7598.84 142
sam_mvs87.08 101
MTGPAbinary97.45 137
test_post190.74 34741.37 37985.38 13996.36 26883.16 248
test_post46.00 37687.37 9397.11 230
patchmatchnet-post84.86 34988.73 6996.81 242
MTMP99.21 7691.09 359
test9_res98.60 2599.87 999.90 24
agg_prior297.84 4799.87 999.91 22
test_prior299.57 3291.43 9398.12 3998.97 6790.43 4598.33 3699.81 23
旧先验298.67 14285.75 23998.96 1598.97 14793.84 125
新几何298.26 191
无先验98.52 15997.82 5787.20 21699.90 4587.64 20099.85 33
原ACMM298.69 138
testdata299.88 4984.16 236
segment_acmp90.56 43
testdata197.89 21992.43 68
plane_prior596.30 21797.75 20293.46 13286.17 23092.67 239
plane_prior496.52 186
plane_prior299.02 10593.38 49
plane_prior193.90 255
n20.00 388
nn0.00 388
door-mid84.90 375
test1197.68 85
door85.30 374
HQP-NCC93.95 24999.16 8293.92 3387.57 202
ACMP_Plane93.95 24999.16 8293.92 3387.57 202
BP-MVS93.82 127
HQP4-MVS87.57 20297.77 19792.72 237
HQP3-MVS96.37 21386.29 227
HQP2-MVS73.34 246
ACMMP++_ref82.64 264
ACMMP++83.83 249
Test By Simon83.62 155