This table lists the benchmark results for the high-res multi-view scenario. The following metrics are evaluated:

(*) For exact definitions, detailing how potentially incomplete ground truth is taken into account, see our paper.

The datasets are grouped into different categories, and result averages are computed for a category and method if results of the method are available for all datasets within the category. Note that the category "all" includes both the high-res multi-view and the low-res many-view scenarios.

Methods with suffix _ROB may participate in the Robust Vision Challenge.

Click a dataset result cell to show a visualization of the reconstruction. For training datasets, ground truth and accuracy / completeness visualizations are also available. The visualizations may not work with mobile browsers.




Method Infoallhigh-res
multi-view
indooroutdoorbotani.boulde.bridgedoorexhibi.lectur.living.loungeobserv.old co.statueterrac.
sort bysort bysort bysort bysort bysorted bysort bysort bysort bysort bysort bysort bysort bysort bysort bysort by
DPM-MVS97.86 897.25 1899.68 198.25 9399.10 199.76 1897.78 6896.61 1098.15 3999.53 793.62 17100.00 191.79 15599.80 2699.94 18
MSC_two_6792asdad99.51 299.61 2498.60 297.69 8399.98 999.55 1199.83 1599.96 10
No_MVS99.51 299.61 2498.60 297.69 8399.98 999.55 1199.83 1599.96 10
OPU-MVS99.49 499.64 1798.51 499.77 1599.19 2895.12 899.97 2199.90 199.92 399.99 1
PS-MVSNAJ96.87 2896.40 3698.29 1997.35 12297.29 599.03 11397.11 17095.83 1898.97 1799.14 4082.48 17499.60 10198.60 3199.08 7398.00 178
xiu_mvs_v2_base96.66 3396.17 4598.11 2797.11 13596.96 699.01 11697.04 17795.51 2598.86 2199.11 4882.19 18299.36 12898.59 3398.14 10998.00 178
MM98.86 596.83 799.81 999.13 997.66 298.29 3798.96 6485.84 11999.90 4899.72 398.80 9199.85 30
MVS93.92 10992.28 13898.83 795.69 18996.82 896.22 29598.17 3784.89 26484.34 23898.61 10179.32 20799.83 7193.88 12899.43 5999.86 29
WTY-MVS95.97 5395.11 7698.54 1397.62 11396.65 999.44 6098.74 1692.25 8795.21 10998.46 11386.56 10499.46 11695.00 10892.69 18499.50 77
MCST-MVS98.18 297.95 998.86 599.85 396.60 1099.70 2497.98 5197.18 395.96 9299.33 1992.62 26100.00 198.99 2399.93 199.98 6
DELS-MVS97.12 2296.60 3298.68 1098.03 10296.57 1199.84 697.84 5796.36 1695.20 11098.24 11988.17 6699.83 7196.11 8499.60 4899.64 62
Christian Sormann, Emanuele Santellani, Mattia Rossi, Andreas Kuhn, Friedrich Fraundorfer: DELS-MVS: Deep Epipolar Line Search for Multi-View Stereo. Winter Conference on Applications of Computer Vision (WACV), 2023
MVS_030497.53 1197.15 1998.67 1197.30 12496.52 1299.60 3698.88 1497.14 497.21 6498.94 7086.89 9499.91 4399.43 1398.91 8699.59 71
HY-MVS88.56 795.29 7594.23 8898.48 1497.72 10996.41 1394.03 32798.74 1692.42 8295.65 10294.76 22886.52 10599.49 11095.29 10192.97 18099.53 73
test_0728_SECOND98.77 899.66 1296.37 1499.72 2197.68 8599.98 999.64 799.82 1999.96 10
CNVR-MVS98.46 198.38 198.72 999.80 496.19 1599.80 1397.99 5097.05 699.41 299.59 292.89 25100.00 198.99 2399.90 799.96 10
CANet97.00 2596.49 3398.55 1298.86 8096.10 1699.83 797.52 12395.90 1797.21 6498.90 7482.66 17199.93 3798.71 2798.80 9199.63 64
canonicalmvs95.02 8293.96 10098.20 2197.53 11895.92 1798.71 14296.19 22791.78 9595.86 9798.49 10879.53 20599.03 14796.12 8391.42 20999.66 60
MG-MVS97.24 1796.83 2898.47 1599.79 595.71 1899.07 10799.06 1094.45 3896.42 8698.70 9388.81 5999.74 8695.35 9999.86 1299.97 7
alignmvs95.77 6395.00 7998.06 2897.35 12295.68 1999.71 2397.50 12891.50 10096.16 9098.61 10186.28 11099.00 14896.19 8291.74 20199.51 76
test_part299.54 3695.42 2098.13 40
DPE-MVScopyleft98.11 698.00 698.44 1699.50 4295.39 2199.29 7997.72 7694.50 3598.64 2699.54 393.32 1999.97 2199.58 1099.90 799.95 15
Kehua Chen, Zhenlong Yuan, Tianlu Mao, Zhaoqi Wang: Dual-Level Precision Edges Guided Multi-View Stereo with Accurate Planarization. AAAI2025
DVP-MVS++98.18 298.09 598.44 1699.61 2495.38 2299.55 4297.68 8593.01 6899.23 899.45 1495.12 899.98 999.25 1699.92 399.97 7
IU-MVS99.63 1895.38 2297.73 7595.54 2499.54 199.69 699.81 2399.99 1
PAPM96.35 4095.94 5197.58 4094.10 24695.25 2498.93 12398.17 3794.26 4093.94 12998.72 8989.68 5197.88 19596.36 8099.29 6799.62 66
SED-MVS98.18 298.10 498.41 1899.63 1895.24 2599.77 1597.72 7694.17 4199.30 699.54 393.32 1999.98 999.70 499.81 2399.99 1
test_241102_ONE99.63 1895.24 2597.72 7694.16 4399.30 699.49 993.32 1999.98 9
xiu_mvs_v1_base_debu94.73 8993.98 9796.99 6095.19 20795.24 2598.62 15496.50 20792.99 7097.52 5598.83 8072.37 25599.15 13997.03 6396.74 13796.58 216
xiu_mvs_v1_base94.73 8993.98 9796.99 6095.19 20795.24 2598.62 15496.50 20792.99 7097.52 5598.83 8072.37 25599.15 13997.03 6396.74 13796.58 216
xiu_mvs_v1_base_debi94.73 8993.98 9796.99 6095.19 20795.24 2598.62 15496.50 20792.99 7097.52 5598.83 8072.37 25599.15 13997.03 6396.74 13796.58 216
DVP-MVScopyleft98.07 798.00 698.29 1999.66 1295.20 3099.72 2197.47 13393.95 4699.07 1399.46 1093.18 2299.97 2199.64 799.82 1999.69 55
Zhenlong Yuan, Jinguo Luo, Fei Shen, Zhaoxin Li, Cong Liu, Tianlu Mao, Zhaoqi Wang: DVP-MVS: Synergize Depth-Edge and Visibility Prior for Multi-View Stereo. AAAI2025
test072699.66 1295.20 3099.77 1597.70 8193.95 4699.35 599.54 393.18 22
3Dnovator+87.72 893.43 12691.84 14998.17 2295.73 18895.08 3298.92 12597.04 17791.42 10481.48 28497.60 14274.60 23299.79 8090.84 16498.97 8199.64 62
thres600view793.18 13692.00 14596.75 7497.62 11394.92 3399.07 10799.36 287.96 20190.47 18096.78 18383.29 15598.71 16182.93 25990.47 21896.61 214
test_one_060199.59 2894.89 3497.64 9593.14 6798.93 1999.45 1493.45 18
SF-MVS97.22 1996.92 2298.12 2699.11 6694.88 3599.44 6097.45 13689.60 14898.70 2499.42 1790.42 4499.72 8798.47 3699.65 3899.77 43
MVSFormer94.71 9294.08 9596.61 8395.05 22194.87 3697.77 23296.17 22986.84 22798.04 4698.52 10485.52 12195.99 29889.83 17498.97 8198.96 121
lupinMVS96.32 4295.94 5197.44 4495.05 22194.87 3699.86 496.50 20793.82 5598.04 4698.77 8385.52 12198.09 18396.98 6698.97 8199.37 86
thres100view90093.34 13092.15 14296.90 6797.62 11394.84 3899.06 10999.36 287.96 20190.47 18096.78 18383.29 15598.75 15784.11 24590.69 21497.12 199
tfpn200view993.43 12692.27 13996.90 6797.68 11194.84 3899.18 8799.36 288.45 18190.79 17296.90 17683.31 15398.75 15784.11 24590.69 21497.12 199
thres40093.39 12892.27 13996.73 7697.68 11194.84 3899.18 8799.36 288.45 18190.79 17296.90 17683.31 15398.75 15784.11 24590.69 21496.61 214
GG-mvs-BLEND96.98 6396.53 15394.81 4187.20 36797.74 7293.91 13096.40 19496.56 296.94 24595.08 10498.95 8499.20 102
HPM-MVS++copyleft97.72 1097.59 1198.14 2399.53 4094.76 4299.19 8597.75 7195.66 2298.21 3899.29 2091.10 3399.99 597.68 5399.87 999.68 56
thres20093.69 11792.59 13496.97 6497.76 10894.74 4399.35 7499.36 289.23 15891.21 16996.97 17283.42 15298.77 15585.08 22990.96 21297.39 193
CANet_DTU94.31 10193.35 11397.20 5397.03 13994.71 4498.62 15495.54 27995.61 2397.21 6498.47 11171.88 26099.84 6788.38 19397.46 12497.04 204
gg-mvs-nofinetune90.00 20087.71 22696.89 7196.15 17394.69 4585.15 37397.74 7268.32 37392.97 14360.16 38696.10 396.84 24893.89 12798.87 8899.14 106
baseline192.61 14791.28 16096.58 8697.05 13894.63 4697.72 23696.20 22589.82 14188.56 19996.85 17986.85 9597.82 19988.42 19280.10 28497.30 195
FMVSNet388.81 22387.08 23693.99 19096.52 15494.59 4798.08 21496.20 22585.85 24582.12 27091.60 28574.05 24095.40 32079.04 28780.24 28191.99 272
NCCC98.12 598.11 398.13 2499.76 694.46 4899.81 997.88 5496.54 1198.84 2299.46 1092.55 2799.98 998.25 4499.93 199.94 18
test1297.83 3399.33 5394.45 4997.55 11597.56 5488.60 6199.50 10999.71 3499.55 72
DeepC-MVS_fast93.52 297.16 2196.84 2698.13 2499.61 2494.45 4998.85 12997.64 9596.51 1495.88 9599.39 1887.35 8599.99 596.61 7599.69 3699.96 10
Andreas Kuhn, Christian Sormann, Mattia Rossi, Oliver Erdler, Friedrich Fraundorfer: DeepC-MVS: Deep Confidence Prediction for Multi-View Stereo Reconstruction. 3DV 2020
CHOSEN 280x42096.80 3096.85 2596.66 8297.85 10794.42 5194.76 31998.36 2992.50 7995.62 10397.52 14697.92 197.38 23198.31 4298.80 9198.20 174
131493.44 12591.98 14697.84 3295.24 20394.38 5296.22 29597.92 5390.18 13282.28 26797.71 13777.63 21999.80 7991.94 15498.67 9799.34 90
DP-MVS Recon95.85 5995.15 7497.95 3099.87 294.38 5299.60 3697.48 13186.58 23394.42 12199.13 4287.36 8499.98 993.64 13398.33 10599.48 78
jason95.40 7494.86 8097.03 5792.91 27894.23 5499.70 2496.30 21893.56 6296.73 8098.52 10481.46 19197.91 19296.08 8598.47 10398.96 121
jason: jason.
SMA-MVScopyleft97.24 1796.99 2198.00 2999.30 5494.20 5599.16 9197.65 9489.55 15299.22 1099.52 890.34 4699.99 598.32 4199.83 1599.82 32
Yufeng Yin; Xiaoyan Liu; Zichao Zhang: SMA-MVS: Segmentation-Guided Multi-Scale Anchor Deformation Patch Multi-View Stereo. IEEE Transactions on Circuits and Systems for Video Technology
PAPR96.35 4095.82 5597.94 3199.63 1894.19 5699.42 6597.55 11592.43 8093.82 13399.12 4487.30 8699.91 4394.02 12499.06 7599.74 47
iter_conf0593.48 12393.18 11994.39 17397.15 13194.17 5799.30 7892.97 34492.38 8686.70 21995.42 21595.67 596.59 25794.67 11684.32 25492.39 252
ET-MVSNet_ETH3D92.56 14991.45 15795.88 11696.39 16194.13 5899.46 5796.97 18592.18 8966.94 36798.29 11894.65 1594.28 34094.34 12183.82 26199.24 98
sss94.85 8593.94 10197.58 4096.43 15894.09 5998.93 12399.16 889.50 15395.27 10897.85 12781.50 18999.65 9692.79 14894.02 17298.99 118
CDPH-MVS96.56 3696.18 4297.70 3699.59 2893.92 6099.13 10297.44 13989.02 16497.90 5199.22 2588.90 5899.49 11094.63 11799.79 2799.68 56
VNet95.08 8194.26 8797.55 4398.07 10093.88 6198.68 14698.73 1890.33 12997.16 6897.43 15179.19 20899.53 10796.91 6991.85 19999.24 98
save fliter99.34 5093.85 6299.65 3397.63 9995.69 20
SD-MVS97.51 1397.40 1697.81 3499.01 7293.79 6399.33 7697.38 14693.73 5798.83 2399.02 5690.87 3899.88 5298.69 2899.74 2999.77 43
Zhenlong Yuan, Jiakai Cao, Zhaoxin Li, Hao Jiang and Zhaoqi Wang: SD-MVS: Segmentation-driven Deformation Multi-View Stereo with Spherical Refinement and EM optimization. AAAI2024
APDe-MVScopyleft97.53 1197.47 1397.70 3699.58 3093.63 6499.56 4197.52 12393.59 6198.01 4899.12 4490.80 3999.55 10499.26 1599.79 2799.93 20
Zhaojie Zeng, Yuesong Wang, Tao Guan: Matching Ambiguity-Resilient Multi-View Stereo via Adaptive Patch Deformation. Pattern Recognition
APD-MVScopyleft96.95 2696.72 2997.63 3899.51 4193.58 6599.16 9197.44 13990.08 13798.59 2899.07 4989.06 5599.42 12197.92 4999.66 3799.88 26
Yuesong Wang, Zhaojie Zeng and etc.: Adaptive Patch Deformation for Textureless-Resilient Multi-View Stereo. CVPR2023
ACMMP_NAP96.59 3596.18 4297.81 3498.82 8193.55 6698.88 12897.59 10890.66 11797.98 4999.14 4086.59 102100.00 196.47 7999.46 5599.89 25
nrg03090.23 19388.87 20394.32 17591.53 30093.54 6798.79 13895.89 25888.12 19684.55 23594.61 23078.80 21296.88 24792.35 15275.21 30792.53 250
OpenMVScopyleft85.28 1490.75 18488.84 20496.48 9193.58 26593.51 6898.80 13497.41 14382.59 30178.62 31397.49 14868.00 28799.82 7484.52 23998.55 10196.11 227
TSAR-MVS + MP.97.44 1597.46 1497.39 4699.12 6593.49 6998.52 16597.50 12894.46 3698.99 1598.64 9791.58 3099.08 14698.49 3599.83 1599.60 67
Zhenlong Yuan, Jiakai Cao, Zhaoqi Wang, Zhaoxin Li: TSAR-MVS: Textureless-aware Segmentation and Correlative Refinement Guided Multi-View Stereo. Pattern Recognition
QAPM91.41 17089.49 19097.17 5495.66 19193.42 7098.60 15897.51 12580.92 32581.39 28597.41 15272.89 25299.87 5682.33 26498.68 9698.21 173
ZD-MVS99.67 1093.28 7197.61 10287.78 20697.41 5899.16 3490.15 4799.56 10398.35 3999.70 35
MSLP-MVS++97.50 1497.45 1597.63 3899.65 1693.21 7299.70 2498.13 4294.61 3397.78 5399.46 1089.85 4999.81 7797.97 4899.91 699.88 26
TEST999.57 3393.17 7399.38 6997.66 8989.57 15098.39 3399.18 3190.88 3799.66 92
train_agg97.20 2097.08 2097.57 4299.57 3393.17 7399.38 6997.66 8990.18 13298.39 3399.18 3190.94 3599.66 9298.58 3499.85 1399.88 26
EPNet96.82 2996.68 3197.25 5198.65 8693.10 7599.48 5198.76 1596.54 1197.84 5298.22 12087.49 7899.66 9295.35 9997.78 11699.00 117
Wanjuan Su, Wenbing Tao: Efficient Edge-Preserving Multi-View Stereo Network for Depth Estimation. AAAI 2023
test_899.55 3593.07 7699.37 7297.64 9590.18 13298.36 3599.19 2890.94 3599.64 98
3Dnovator87.35 1193.17 13791.77 15197.37 4795.41 19993.07 7698.82 13297.85 5691.53 9982.56 25997.58 14471.97 25999.82 7491.01 16199.23 6999.22 101
cascas90.93 18189.33 19595.76 12095.69 18993.03 7898.99 11896.59 19980.49 32786.79 21894.45 23265.23 31198.60 16593.52 13592.18 19495.66 231
test_yl95.27 7694.60 8397.28 4998.53 8992.98 7999.05 11098.70 1986.76 23094.65 11997.74 13587.78 7399.44 11795.57 9592.61 18599.44 81
DCV-MVSNet95.27 7694.60 8397.28 4998.53 8992.98 7999.05 11098.70 1986.76 23094.65 11997.74 13587.78 7399.44 11795.57 9592.61 18599.44 81
MVSTER92.71 14392.32 13793.86 19397.29 12592.95 8199.01 11696.59 19990.09 13685.51 22794.00 23994.61 1696.56 26190.77 16783.03 26892.08 269
旧先验198.97 7392.90 8297.74 7299.15 3791.05 3499.33 6399.60 67
MP-MVS-pluss95.80 6195.30 6997.29 4898.95 7692.66 8398.59 16097.14 16688.95 16793.12 14099.25 2285.62 12099.94 3496.56 7799.48 5499.28 95
MP-MVS-pluss: MP-MVS-pluss. MP-MVS-pluss
agg_prior99.54 3692.66 8397.64 9597.98 4999.61 100
MVS_Test93.67 12092.67 13296.69 8096.72 14992.66 8397.22 25996.03 23887.69 21295.12 11294.03 23781.55 18898.28 17489.17 18896.46 14099.14 106
thisisatest051594.75 8894.19 9096.43 9496.13 17892.64 8699.47 5397.60 10487.55 21593.17 13997.59 14394.71 1398.42 16888.28 19493.20 17798.24 171
FMVSNet286.90 25384.79 27293.24 20495.11 21592.54 8797.67 24195.86 26282.94 29580.55 29191.17 29462.89 32095.29 32277.23 29979.71 28791.90 273
新几何197.40 4598.92 7792.51 8897.77 7085.52 25196.69 8199.06 5188.08 7099.89 5184.88 23399.62 4499.79 36
114514_t94.06 10493.05 12297.06 5699.08 6992.26 8998.97 12197.01 18282.58 30292.57 14698.22 12080.68 19799.30 13489.34 18499.02 7899.63 64
iter_conf_final93.22 13593.04 12393.76 19697.03 13992.22 9099.05 11093.31 34192.11 9186.93 21495.42 21595.01 1096.59 25793.98 12584.48 25192.46 251
test250694.80 8694.21 8996.58 8696.41 15992.18 9198.01 21898.96 1190.82 11493.46 13697.28 15585.92 11698.45 16789.82 17697.19 13099.12 109
test_prior492.00 9299.41 66
test_prior97.01 5899.58 3091.77 9397.57 11399.49 11099.79 36
PHI-MVS96.65 3496.46 3597.21 5299.34 5091.77 9399.70 2498.05 4686.48 23898.05 4599.20 2789.33 5399.96 2898.38 3799.62 4499.90 22
ab-mvs91.05 17989.17 19796.69 8095.96 18191.72 9592.62 34197.23 15685.61 25089.74 19093.89 24368.55 28099.42 12191.09 15987.84 22798.92 129
TSAR-MVS + GP.96.95 2696.91 2397.07 5598.88 7991.62 9699.58 3996.54 20595.09 3096.84 7498.63 9991.16 3199.77 8399.04 2296.42 14299.81 33
PVSNet_BlendedMVS93.36 12993.20 11893.84 19498.77 8391.61 9799.47 5398.04 4791.44 10294.21 12492.63 26983.50 14999.87 5697.41 5783.37 26590.05 329
PVSNet_Blended95.94 5695.66 6396.75 7498.77 8391.61 9799.88 398.04 4793.64 6094.21 12497.76 13383.50 14999.87 5697.41 5797.75 11798.79 141
PCF-MVS89.78 591.26 17289.63 18796.16 10695.44 19791.58 9995.29 31596.10 23385.07 25982.75 25397.45 15078.28 21599.78 8280.60 27995.65 15897.12 199
Andreas Kuhn, Shan Lin, Oliver Erdler: Plane Completion and Filtering for Multi-View Stereo Reconstruction. GCPR 2019
SteuartSystems-ACMMP97.25 1697.34 1797.01 5897.38 12091.46 10099.75 1997.66 8994.14 4598.13 4099.26 2192.16 2999.66 9297.91 5099.64 4099.90 22
Skip Steuart: Steuart Systems R&D Blog.
VPNet88.30 23286.57 24393.49 20091.95 29291.35 10198.18 20397.20 16288.61 17584.52 23694.89 22462.21 32396.76 25389.34 18472.26 33992.36 254
GST-MVS95.97 5395.66 6396.90 6799.49 4591.22 10299.45 5997.48 13189.69 14495.89 9498.72 8986.37 10999.95 3194.62 11899.22 7099.52 74
test22298.32 9291.21 10398.08 21497.58 11083.74 28095.87 9699.02 5686.74 9899.64 4099.81 33
ZNCC-MVS96.09 4895.81 5796.95 6699.42 4791.19 10499.55 4297.53 11989.72 14395.86 9798.94 7086.59 10299.97 2195.13 10399.56 5099.68 56
MTAPA96.09 4895.80 5896.96 6599.29 5591.19 10497.23 25897.45 13692.58 7794.39 12299.24 2486.43 10899.99 596.22 8199.40 6299.71 51
MDTV_nov1_ep13_2view91.17 10691.38 35387.45 21793.08 14186.67 10087.02 20698.95 125
FIs90.70 18589.87 18593.18 20592.29 28491.12 10798.17 20598.25 3289.11 16283.44 24494.82 22782.26 18096.17 29187.76 20182.76 27092.25 258
1112_ss92.71 14391.55 15596.20 10295.56 19391.12 10798.48 17394.69 31588.29 19186.89 21698.50 10687.02 9198.66 16384.75 23489.77 22298.81 139
PVSNet_Blended_VisFu94.67 9394.11 9396.34 10097.14 13291.10 10999.32 7797.43 14192.10 9291.53 16296.38 19783.29 15599.68 9093.42 13896.37 14398.25 170
Test_1112_low_res92.27 15690.97 16696.18 10395.53 19591.10 10998.47 17594.66 31688.28 19286.83 21793.50 25487.00 9298.65 16484.69 23589.74 22398.80 140
LFMVS92.23 15790.84 17096.42 9598.24 9491.08 11198.24 19896.22 22483.39 28794.74 11798.31 11661.12 32898.85 15294.45 12092.82 18199.32 91
ETV-MVS96.00 5096.00 5096.00 11296.56 15291.05 11299.63 3496.61 19793.26 6697.39 5998.30 11786.62 10198.13 18098.07 4797.57 11998.82 138
VPA-MVSNet89.10 21287.66 22793.45 20192.56 28091.02 11397.97 22198.32 3086.92 22686.03 22292.01 27668.84 27997.10 23990.92 16275.34 30692.23 260
MVS_111021_HR96.69 3296.69 3096.72 7898.58 8891.00 11499.14 9999.45 193.86 5295.15 11198.73 8788.48 6299.76 8497.23 6199.56 5099.40 84
HFP-MVS96.42 3996.26 3996.90 6799.69 890.96 11599.47 5397.81 6390.54 12396.88 7199.05 5287.57 7699.96 2895.65 9099.72 3199.78 38
UniMVSNet (Re)89.50 20988.32 21793.03 20792.21 28690.96 11598.90 12798.39 2789.13 16183.22 24692.03 27481.69 18796.34 28186.79 21272.53 33591.81 274
casdiffmvs_mvgpermissive94.00 10693.33 11496.03 11095.22 20590.90 11799.09 10595.99 23990.58 12191.55 16197.37 15379.91 20198.06 18595.01 10795.22 16299.13 108
Fangjinhua Wang, Qingshan Xu, Yew-Soon Ong, Marc Pollefeys: Lightweight and Accurate Multi-View Stereo With Confidence-Aware Diffusion Model. IEEE T-PAMI 2025
IB-MVS89.43 692.12 15990.83 17295.98 11495.40 20090.78 11899.81 998.06 4591.23 10885.63 22693.66 24990.63 4098.78 15491.22 15871.85 34298.36 166
Christian Sormann, Mattia Rossi, Andreas Kuhn and Friedrich Fraundorfer: IB-MVS: An Iterative Algorithm for Deep Multi-View Stereo based on Binary Decisions. BMVC 2021
Effi-MVS+93.87 11293.15 12096.02 11195.79 18590.76 11996.70 28095.78 26486.98 22495.71 10097.17 16479.58 20398.01 19094.57 11996.09 15099.31 92
DeepC-MVS91.02 494.56 9893.92 10296.46 9297.16 13090.76 11998.39 18797.11 17093.92 4888.66 19898.33 11578.14 21699.85 6595.02 10698.57 10098.78 143
Andreas Kuhn, Christian Sormann, Mattia Rossi, Oliver Erdler, Friedrich Fraundorfer: DeepC-MVS: Deep Confidence Prediction for Multi-View Stereo Reconstruction. 3DV 2020
diffmvspermissive94.59 9694.19 9095.81 11895.54 19490.69 12198.70 14495.68 27191.61 9795.96 9297.81 12980.11 19998.06 18596.52 7895.76 15598.67 150
Fangjinhua Wang, Qingshan Xu, Yew-Soon Ong, Marc Pollefeys: Lightweight and Accurate Multi-View Stereo With Confidence-Aware Diffusion Model. IEEE T-PAMI 2025
NR-MVSNet87.74 24486.00 25292.96 21091.46 30190.68 12296.65 28197.42 14288.02 19973.42 34193.68 24777.31 22095.83 30884.26 24171.82 34392.36 254
XVS96.47 3896.37 3796.77 7299.62 2290.66 12399.43 6397.58 11092.41 8396.86 7298.96 6487.37 8199.87 5695.65 9099.43 5999.78 38
X-MVStestdata90.69 18688.66 20996.77 7299.62 2290.66 12399.43 6397.58 11092.41 8396.86 7229.59 39887.37 8199.87 5695.65 9099.43 5999.78 38
SDMVSNet91.09 17689.91 18494.65 16196.80 14590.54 12597.78 23097.81 6388.34 18885.73 22395.26 21966.44 30198.26 17594.25 12386.75 23295.14 232
ACMMPR96.28 4496.14 4996.73 7699.68 990.47 12699.47 5397.80 6590.54 12396.83 7699.03 5486.51 10699.95 3195.65 9099.72 3199.75 46
EI-MVSNet-Vis-set95.76 6495.63 6796.17 10599.14 6490.33 12798.49 17197.82 6091.92 9394.75 11698.88 7887.06 9099.48 11495.40 9897.17 13298.70 148
region2R96.30 4396.17 4596.70 7999.70 790.31 12899.46 5797.66 8990.55 12297.07 6999.07 4986.85 9599.97 2195.43 9799.74 2999.81 33
test_fmvsmconf_n96.78 3196.84 2696.61 8395.99 18090.25 12999.90 298.13 4296.68 998.42 3298.92 7285.34 12999.88 5299.12 2099.08 7399.70 52
TESTMET0.1,193.82 11493.26 11795.49 12995.21 20690.25 12999.15 9697.54 11889.18 16091.79 15494.87 22589.13 5497.63 21686.21 21796.29 14798.60 153
baseline294.04 10593.80 10594.74 15893.07 27790.25 12998.12 20898.16 3989.86 14086.53 22096.95 17395.56 698.05 18791.44 15794.53 16795.93 229
test_fmvsmvis_n_192095.47 7095.40 6895.70 12294.33 24190.22 13299.70 2496.98 18496.80 792.75 14498.89 7682.46 17799.92 3998.36 3898.33 10596.97 207
PVSNet87.13 1293.69 11792.83 12996.28 10197.99 10390.22 13299.38 6998.93 1291.42 10493.66 13497.68 13871.29 26799.64 9887.94 20097.20 12998.98 119
MSP-MVS97.77 998.18 296.53 9099.54 3690.14 13499.41 6697.70 8195.46 2698.60 2799.19 2895.71 499.49 11098.15 4699.85 1399.95 15
Zhenlong Yuan, Cong Liu, Fei Shen, Zhaoxin Li, Jingguo luo, Tianlu Mao and Zhaoqi Wang: MSP-MVS: Multi-granularity Segmentation Prior Guided Multi-View Stereo. AAAI2025
PAPM_NR95.43 7195.05 7896.57 8899.42 4790.14 13498.58 16297.51 12590.65 11992.44 14898.90 7487.77 7599.90 4890.88 16399.32 6499.68 56
MP-MVScopyleft96.00 5095.82 5596.54 8999.47 4690.13 13699.36 7397.41 14390.64 12095.49 10598.95 6785.51 12399.98 996.00 8799.59 4999.52 74
Rongxuan Tan, Qing Wang, et al.: MP-MVS: Multi-Scale Windows PatchMatch and Planar Prior Multi-View Stereo.
原ACMM196.18 10399.03 7190.08 13797.63 9988.98 16597.00 7098.97 6088.14 6999.71 8888.23 19599.62 4498.76 145
UniMVSNet_NR-MVSNet89.60 20688.55 21492.75 21592.17 28790.07 13898.74 14198.15 4088.37 18683.21 24793.98 24082.86 16495.93 30286.95 20872.47 33692.25 258
DU-MVS88.83 22187.51 22892.79 21391.46 30190.07 13898.71 14297.62 10188.87 17183.21 24793.68 24774.63 23095.93 30286.95 20872.47 33692.36 254
baseline93.91 11093.30 11595.72 12195.10 21890.07 13897.48 24695.91 25591.03 10993.54 13597.68 13879.58 20398.02 18994.27 12295.14 16399.08 113
API-MVS94.78 8794.18 9296.59 8599.21 6190.06 14198.80 13497.78 6883.59 28493.85 13199.21 2683.79 14699.97 2192.37 15199.00 7999.74 47
EPMVS92.59 14891.59 15495.59 12897.22 12790.03 14291.78 34798.04 4790.42 12791.66 15790.65 30786.49 10797.46 22681.78 27096.31 14599.28 95
thisisatest053094.00 10693.52 10995.43 13195.76 18790.02 14398.99 11897.60 10486.58 23391.74 15597.36 15494.78 1298.34 17086.37 21692.48 18897.94 180
CNLPA93.64 12192.74 13096.36 9998.96 7590.01 14499.19 8595.89 25886.22 24189.40 19398.85 7980.66 19899.84 6788.57 19196.92 13599.24 98
test_fmvsmconf0.1_n95.94 5695.79 5996.40 9792.42 28389.92 14599.79 1496.85 18896.53 1397.22 6398.67 9582.71 17099.84 6798.92 2598.98 8099.43 83
EI-MVSNet-UG-set95.43 7195.29 7095.86 11799.07 7089.87 14698.43 17797.80 6591.78 9594.11 12698.77 8386.25 11299.48 11494.95 11096.45 14198.22 172
FC-MVSNet-test90.22 19489.40 19392.67 21991.78 29689.86 14797.89 22398.22 3588.81 17282.96 25294.66 22981.90 18695.96 30085.89 22382.52 27392.20 264
casdiffmvspermissive93.98 10893.43 11195.61 12795.07 22089.86 14798.80 13495.84 26390.98 11192.74 14597.66 14079.71 20298.10 18294.72 11495.37 16198.87 133
Fangjinhua Wang, Qingshan Xu, Yew-Soon Ong, Marc Pollefeys: Lightweight and Accurate Multi-View Stereo With Confidence-Aware Diffusion Model. IEEE T-PAMI 2025
PGM-MVS95.85 5995.65 6596.45 9399.50 4289.77 14998.22 19998.90 1389.19 15996.74 7998.95 6785.91 11899.92 3993.94 12699.46 5599.66 60
XXY-MVS87.75 24186.02 25192.95 21190.46 31489.70 15097.71 23895.90 25684.02 27480.95 28794.05 23467.51 29297.10 23985.16 22878.41 29092.04 271
mvs_anonymous92.50 15091.65 15395.06 14596.60 15189.64 15197.06 26496.44 21186.64 23284.14 23993.93 24182.49 17396.17 29191.47 15696.08 15199.35 88
CP-MVS96.22 4596.15 4896.42 9599.67 1089.62 15299.70 2497.61 10290.07 13896.00 9199.16 3487.43 7999.92 3996.03 8699.72 3199.70 52
test_fmvsm_n_192097.08 2497.55 1295.67 12497.94 10489.61 15399.93 198.48 2497.08 599.08 1299.13 4288.17 6699.93 3799.11 2199.06 7597.47 191
WR-MVS88.54 23087.22 23592.52 22091.93 29489.50 15498.56 16397.84 5786.99 22181.87 27893.81 24474.25 23995.92 30485.29 22774.43 31692.12 267
CDS-MVSNet93.47 12493.04 12394.76 15694.75 23289.45 15598.82 13297.03 17987.91 20390.97 17096.48 19289.06 5596.36 27589.50 18092.81 18398.49 157
Khang Truong Giang, Soohwan Song, Sungho Jo: Curvature-guided dynamic scale networks for Multi-view Stereo. ICLR 2022
mPP-MVS95.90 5895.75 6096.38 9899.58 3089.41 15699.26 8297.41 14390.66 11794.82 11598.95 6786.15 11499.98 995.24 10299.64 4099.74 47
test_fmvsmconf0.01_n94.14 10393.51 11096.04 10986.79 35789.19 15799.28 8195.94 24695.70 1995.50 10498.49 10873.27 24799.79 8098.28 4398.32 10799.15 105
fmvsm_s_conf0.5_n96.19 4696.49 3395.30 13797.37 12189.16 15899.86 498.47 2595.68 2198.87 2099.15 3782.44 17899.92 3999.14 1997.43 12596.83 210
HPM-MVScopyleft95.41 7395.22 7295.99 11399.29 5589.14 15999.17 9097.09 17487.28 21995.40 10698.48 11084.93 13399.38 12695.64 9499.65 3899.47 79
Chunlin Ren, Qingshan Xu, Shikun Zhang, Jiaqi Yang: Hierarchical Prior Mining for Non-local Multi-View Stereo. ICCV 2023
fmvsm_s_conf0.1_n95.56 6995.68 6295.20 14094.35 24089.10 16099.50 4997.67 8894.76 3298.68 2599.03 5481.13 19599.86 6198.63 3097.36 12796.63 213
AdaColmapbinary93.82 11493.06 12196.10 10799.88 189.07 16198.33 19197.55 11586.81 22990.39 18298.65 9675.09 22999.98 993.32 13997.53 12299.26 97
SR-MVS96.13 4796.16 4796.07 10899.42 4789.04 16298.59 16097.33 15090.44 12696.84 7499.12 4486.75 9799.41 12497.47 5699.44 5899.76 45
PatchmatchNetpermissive92.05 16291.04 16595.06 14596.17 17289.04 16291.26 35597.26 15189.56 15190.64 17690.56 31388.35 6497.11 23779.53 28396.07 15299.03 116
Fangjinhua Wang, Silvano Galliani, Christoph Vogel, Pablo Speciale, Marc Pollefeys: PatchmatchNet: Learned Multi-View Patchmatch Stereo.
fmvsm_s_conf0.5_n_a95.97 5396.19 4095.31 13696.51 15589.01 16499.81 998.39 2795.46 2699.19 1199.16 3481.44 19299.91 4398.83 2696.97 13497.01 206
FA-MVS(test-final)92.22 15891.08 16495.64 12596.05 17988.98 16591.60 35097.25 15286.99 22191.84 15392.12 27283.03 16199.00 14886.91 21093.91 17398.93 127
KD-MVS_2432*160082.98 30480.52 31290.38 27194.32 24288.98 16592.87 33895.87 26080.46 32873.79 33987.49 34582.76 16893.29 34770.56 34046.53 38888.87 346
miper_refine_blended82.98 30480.52 31290.38 27194.32 24288.98 16592.87 33895.87 26080.46 32873.79 33987.49 34582.76 16893.29 34770.56 34046.53 38888.87 346
fmvsm_s_conf0.1_n_a95.16 7895.15 7495.18 14192.06 28988.94 16899.29 7997.53 11994.46 3698.98 1698.99 5879.99 20099.85 6598.24 4596.86 13696.73 211
FOURS199.50 4288.94 16899.55 4297.47 13391.32 10698.12 42
miper_enhance_ethall90.33 19189.70 18692.22 22397.12 13488.93 17098.35 19095.96 24388.60 17683.14 25192.33 27187.38 8096.18 28986.49 21577.89 29391.55 285
pmmvs487.58 24786.17 25091.80 23589.58 32688.92 17197.25 25695.28 29382.54 30380.49 29293.17 26175.62 22796.05 29682.75 26078.90 28890.42 320
SCA90.64 18789.25 19694.83 15594.95 22588.83 17296.26 29297.21 15890.06 13990.03 18690.62 30966.61 29896.81 25083.16 25594.36 16998.84 134
GBi-Net86.67 25884.96 26691.80 23595.11 21588.81 17396.77 27495.25 29482.94 29582.12 27090.25 32062.89 32094.97 32779.04 28780.24 28191.62 279
test186.67 25884.96 26691.80 23595.11 21588.81 17396.77 27495.25 29482.94 29582.12 27090.25 32062.89 32094.97 32779.04 28780.24 28191.62 279
FMVSNet183.94 30081.32 30891.80 23591.94 29388.81 17396.77 27495.25 29477.98 33878.25 31890.25 32050.37 36494.97 32773.27 33077.81 29791.62 279
CHOSEN 1792x268894.35 10093.82 10495.95 11597.40 11988.74 17698.41 18098.27 3192.18 8991.43 16396.40 19478.88 20999.81 7793.59 13497.81 11399.30 93
UGNet91.91 16390.85 16995.10 14397.06 13788.69 17798.01 21898.24 3492.41 8392.39 14993.61 25060.52 33099.68 9088.14 19697.25 12896.92 208
Wanjuan Su, Qingshan Xu, Wenbing Tao: Uncertainty-guided Multi-view Stereo Network for Depth Estimation. IEEE Transactions on Circuits and Systems for Video Technology, 2022
TranMVSNet+NR-MVSNet87.75 24186.31 24792.07 22990.81 30988.56 17898.33 19197.18 16387.76 20781.87 27893.90 24272.45 25495.43 31883.13 25771.30 34692.23 260
BH-RMVSNet91.25 17489.99 18395.03 14896.75 14888.55 17998.65 15094.95 30587.74 20987.74 20497.80 13068.27 28398.14 17980.53 28097.49 12398.41 160
MDTV_nov1_ep1390.47 17996.14 17588.55 17991.34 35497.51 12589.58 14992.24 15090.50 31786.99 9397.61 21877.64 29892.34 190
UA-Net93.30 13192.62 13395.34 13496.27 16688.53 18195.88 30596.97 18590.90 11295.37 10797.07 16882.38 17999.10 14583.91 24994.86 16698.38 163
HPM-MVS_fast94.89 8394.62 8295.70 12299.11 6688.44 18299.14 9997.11 17085.82 24695.69 10198.47 11183.46 15199.32 13393.16 14199.63 4399.35 88
Vis-MVSNetpermissive92.64 14591.85 14895.03 14895.12 21488.23 18398.48 17396.81 18991.61 9792.16 15297.22 16071.58 26598.00 19185.85 22497.81 11398.88 131
Jingyang Zhang, Yao Yao, Shiwei Li, Zixin Luo, Tian Fang: Visibility-aware Multiview Stereo Network. BMVC 2020
EC-MVSNet95.09 8095.17 7394.84 15495.42 19888.17 18499.48 5195.92 25091.47 10197.34 6198.36 11482.77 16697.41 23097.24 6098.58 9998.94 126
gm-plane-assit94.69 23388.14 18588.22 19397.20 16198.29 17390.79 166
ACMMPcopyleft94.67 9394.30 8695.79 11999.25 5788.13 18698.41 18098.67 2290.38 12891.43 16398.72 8982.22 18199.95 3193.83 13095.76 15599.29 94
Qingshan Xu, Weihang Kong, Wenbing Tao, Marc Pollefeys: Multi-Scale Geometric Consistency Guided and Planar Prior Assisted Multi-View Stereo. IEEE Transactions on Pattern Analysis and Machine Intelligence
tfpnnormal83.65 30181.35 30790.56 26691.37 30388.06 18797.29 25397.87 5578.51 33776.20 32490.91 29764.78 31296.47 26961.71 36773.50 32787.13 359
HyFIR lowres test93.68 11993.29 11694.87 15297.57 11788.04 18898.18 20398.47 2587.57 21491.24 16895.05 22285.49 12497.46 22693.22 14092.82 18199.10 111
TR-MVS90.77 18389.44 19194.76 15696.31 16488.02 18997.92 22295.96 24385.52 25188.22 20297.23 15966.80 29798.09 18384.58 23792.38 18998.17 175
GA-MVS90.10 19888.69 20894.33 17492.44 28287.97 19099.08 10696.26 22289.65 14586.92 21593.11 26268.09 28596.96 24382.54 26390.15 21998.05 176
ECVR-MVScopyleft92.29 15491.33 15995.15 14296.41 15987.84 19198.10 21194.84 30890.82 11491.42 16597.28 15565.61 30798.49 16690.33 17097.19 13099.12 109
APD-MVS_3200maxsize95.64 6895.65 6595.62 12699.24 5887.80 19298.42 17897.22 15788.93 16996.64 8498.98 5985.49 12499.36 12896.68 7299.27 6899.70 52
MVS_111021_LR95.78 6295.94 5195.28 13898.19 9787.69 19398.80 13499.26 793.39 6395.04 11398.69 9484.09 14399.76 8496.96 6799.06 7598.38 163
VDDNet90.08 19988.54 21594.69 16094.41 23987.68 19498.21 20196.40 21276.21 34793.33 13897.75 13454.93 35098.77 15594.71 11590.96 21297.61 189
TAMVS92.62 14692.09 14494.20 18094.10 24687.68 19498.41 18096.97 18587.53 21689.74 19096.04 20484.77 13896.49 26888.97 19092.31 19198.42 159
CS-MVS-test95.98 5296.34 3894.90 15198.06 10187.66 19699.69 3196.10 23393.66 5898.35 3699.05 5286.28 11097.66 21396.96 6798.90 8799.37 86
cl2289.57 20788.79 20691.91 23197.94 10487.62 19797.98 22096.51 20685.03 26082.37 26691.79 28183.65 14796.50 26685.96 22077.89 29391.61 282
v2v48287.27 25085.76 25591.78 23989.59 32587.58 19898.56 16395.54 27984.53 26882.51 26091.78 28273.11 24996.47 26982.07 26674.14 32291.30 296
ADS-MVSNet88.99 21387.30 23294.07 18596.21 16987.56 19987.15 36896.78 19183.01 29289.91 18887.27 34878.87 21097.01 24274.20 32392.27 19297.64 185
FE-MVS91.38 17190.16 18295.05 14796.46 15787.53 20089.69 36497.84 5782.97 29492.18 15192.00 27884.07 14498.93 15180.71 27795.52 15998.68 149
PLCcopyleft91.07 394.23 10294.01 9694.87 15299.17 6387.49 20199.25 8396.55 20488.43 18491.26 16798.21 12285.92 11699.86 6189.77 17897.57 11997.24 197
Jie Liao, Yanping Fu, Qingan Yan, Chunxia xiao: Pyramid Multi-View Stereo with Local Consistency. Pacific Graphics 2019
MAR-MVS94.43 9994.09 9495.45 13099.10 6887.47 20298.39 18797.79 6788.37 18694.02 12899.17 3378.64 21499.91 4392.48 15098.85 8998.96 121
Zhenyu Xu, Yiguang Liu, Xuelei Shi, Ying Wang, Yunan Zheng: MARMVS: Matching Ambiguity Reduced Multiple View Stereo for Efficient Large Scale Scene Reconstruction. CVPR 2020
tpmrst92.78 14292.16 14194.65 16196.27 16687.45 20391.83 34697.10 17389.10 16394.68 11890.69 30488.22 6597.73 21189.78 17791.80 20098.77 144
DP-MVS88.75 22586.56 24495.34 13498.92 7787.45 20397.64 24293.52 33970.55 36481.49 28397.25 15874.43 23599.88 5271.14 33894.09 17198.67 150
Fast-Effi-MVS+91.72 16590.79 17394.49 16695.89 18287.40 20599.54 4795.70 26985.01 26289.28 19595.68 21077.75 21897.57 22383.22 25495.06 16498.51 156
test111192.12 15991.19 16294.94 15096.15 17387.36 20698.12 20894.84 30890.85 11390.97 17097.26 15765.60 30898.37 16989.74 17997.14 13399.07 115
MIMVSNet84.48 29281.83 30292.42 22191.73 29787.36 20685.52 37194.42 32381.40 31881.91 27687.58 34251.92 35892.81 35273.84 32688.15 22697.08 203
IS-MVSNet93.00 14092.51 13594.49 16696.14 17587.36 20698.31 19495.70 26988.58 17790.17 18497.50 14783.02 16297.22 23487.06 20596.07 15298.90 130
testdata95.26 13998.20 9587.28 20997.60 10485.21 25598.48 3199.15 3788.15 6898.72 16090.29 17199.45 5799.78 38
test-LLR93.11 13892.68 13194.40 17094.94 22687.27 21099.15 9697.25 15290.21 13091.57 15894.04 23584.89 13497.58 22085.94 22196.13 14898.36 166
test-mter93.27 13392.89 12894.40 17094.94 22687.27 21099.15 9697.25 15288.95 16791.57 15894.04 23588.03 7197.58 22085.94 22196.13 14898.36 166
SR-MVS-dyc-post95.75 6595.86 5495.41 13299.22 5987.26 21298.40 18397.21 15889.63 14696.67 8298.97 6086.73 9999.36 12896.62 7399.31 6599.60 67
RE-MVS-def95.70 6199.22 5987.26 21298.40 18397.21 15889.63 14696.67 8298.97 6085.24 13096.62 7399.31 6599.60 67
v114486.83 25585.31 26391.40 24389.75 32387.21 21498.31 19495.45 28483.22 28982.70 25590.78 30073.36 24396.36 27579.49 28474.69 31390.63 317
OMC-MVS93.90 11193.62 10894.73 15998.63 8787.00 21598.04 21796.56 20392.19 8892.46 14798.73 8779.49 20699.14 14392.16 15394.34 17098.03 177
miper_ehance_all_eth88.94 21588.12 22191.40 24395.32 20286.93 21697.85 22795.55 27884.19 27281.97 27591.50 28784.16 14295.91 30584.69 23577.89 29391.36 293
v886.11 26884.45 27991.10 24989.99 31886.85 21797.24 25795.36 29181.99 31279.89 30089.86 32874.53 23496.39 27378.83 29172.32 33890.05 329
CPTT-MVS94.60 9594.43 8595.09 14499.66 1286.85 21799.44 6097.47 13383.22 28994.34 12398.96 6482.50 17299.55 10494.81 11199.50 5398.88 131
v1085.73 27784.01 28590.87 25790.03 31786.73 21997.20 26095.22 30281.25 32079.85 30189.75 32973.30 24696.28 28776.87 30372.64 33489.61 337
Vis-MVSNet (Re-imp)93.26 13493.00 12694.06 18696.14 17586.71 22098.68 14696.70 19288.30 19089.71 19297.64 14185.43 12796.39 27388.06 19896.32 14499.08 113
EIA-MVS95.11 7995.27 7194.64 16396.34 16386.51 22199.59 3896.62 19692.51 7894.08 12798.64 9786.05 11598.24 17795.07 10598.50 10299.18 103
CSCG94.87 8494.71 8195.36 13399.54 3686.49 22299.34 7598.15 4082.71 30090.15 18599.25 2289.48 5299.86 6194.97 10998.82 9099.72 50
tttt051793.30 13193.01 12594.17 18195.57 19286.47 22398.51 16897.60 10485.99 24490.55 17797.19 16294.80 1198.31 17185.06 23091.86 19897.74 182
dp90.16 19788.83 20594.14 18296.38 16286.42 22491.57 35197.06 17684.76 26688.81 19790.19 32584.29 14197.43 22975.05 31591.35 21198.56 154
v119286.32 26684.71 27491.17 24789.53 32986.40 22598.13 20695.44 28682.52 30482.42 26390.62 30971.58 26596.33 28277.23 29974.88 31090.79 310
HQP5-MVS86.39 226
HQP-MVS91.50 16791.23 16192.29 22293.95 25186.39 22699.16 9196.37 21493.92 4887.57 20596.67 18873.34 24497.77 20393.82 13186.29 23592.72 246
PatchMatch-RL91.47 16890.54 17794.26 17798.20 9586.36 22896.94 26897.14 16687.75 20888.98 19695.75 20971.80 26299.40 12580.92 27597.39 12697.02 205
mvsmamba89.99 20189.42 19291.69 24090.64 31286.34 22998.40 18392.27 35391.01 11084.80 23294.93 22376.12 22496.51 26592.81 14783.84 25892.21 262
LS3D90.19 19588.72 20794.59 16598.97 7386.33 23096.90 27096.60 19874.96 35284.06 24198.74 8675.78 22699.83 7174.93 31697.57 11997.62 188
CR-MVSNet88.83 22187.38 23193.16 20693.47 26786.24 23184.97 37594.20 32888.92 17090.76 17486.88 35284.43 13994.82 33270.64 33992.17 19598.41 160
RPMNet85.07 28481.88 30194.64 16393.47 26786.24 23184.97 37597.21 15864.85 38090.76 17478.80 37780.95 19699.27 13553.76 37992.17 19598.41 160
CS-MVS95.75 6596.19 4094.40 17097.88 10686.22 23399.66 3296.12 23292.69 7698.07 4498.89 7687.09 8897.59 21996.71 7098.62 9899.39 85
NP-MVS93.94 25486.22 23396.67 188
BH-w/o92.32 15391.79 15093.91 19296.85 14286.18 23599.11 10495.74 26788.13 19584.81 23197.00 17177.26 22197.91 19289.16 18998.03 11097.64 185
c3_l88.19 23587.23 23491.06 25094.97 22486.17 23697.72 23695.38 28983.43 28681.68 28291.37 28982.81 16595.72 31184.04 24873.70 32491.29 297
MSDG88.29 23386.37 24694.04 18896.90 14186.15 23796.52 28394.36 32577.89 34279.22 30896.95 17369.72 27399.59 10273.20 33192.58 18796.37 224
CLD-MVS91.06 17890.71 17492.10 22894.05 25086.10 23899.55 4296.29 22194.16 4384.70 23397.17 16469.62 27597.82 19994.74 11386.08 24092.39 252
Zhaoxin Li, Wangmeng Zuo, Zhaoqi Wang, Lei Zhang: Confidence-based Large-scale Dense Multi-view Stereo. IEEE Transaction on Image Processing, 2020
test_cas_vis1_n_192093.86 11393.74 10694.22 17995.39 20186.08 23999.73 2096.07 23696.38 1597.19 6797.78 13265.46 31099.86 6196.71 7098.92 8596.73 211
V4287.00 25285.68 25790.98 25389.91 31986.08 23998.32 19395.61 27583.67 28382.72 25490.67 30574.00 24196.53 26381.94 26974.28 31990.32 322
HQP_MVS91.26 17290.95 16792.16 22693.84 25886.07 24199.02 11496.30 21893.38 6486.99 21296.52 19072.92 25097.75 20993.46 13686.17 23892.67 248
plane_prior86.07 24199.14 9993.81 5686.26 237
plane_prior693.92 25586.02 24372.92 250
plane_prior385.91 24493.65 5986.99 212
CostFormer92.89 14192.48 13694.12 18394.99 22385.89 24592.89 33797.00 18386.98 22495.00 11490.78 30090.05 4897.51 22492.92 14591.73 20298.96 121
EI-MVSNet89.87 20389.38 19491.36 24594.32 24285.87 24697.61 24396.59 19985.10 25785.51 22797.10 16681.30 19496.56 26183.85 25183.03 26891.64 277
IterMVS-LS88.34 23187.44 22991.04 25194.10 24685.85 24798.10 21195.48 28285.12 25682.03 27491.21 29381.35 19395.63 31483.86 25075.73 30591.63 278
Fangjinhua Wang, Silvano Galliani, Christoph Vogel, Marc Pollefeys: IterMVS: Iterative Probability Estimation for Efficient Multi-View Stereo.
VDD-MVS91.24 17590.18 18194.45 16997.08 13685.84 24898.40 18396.10 23386.99 22193.36 13798.16 12354.27 35299.20 13696.59 7690.63 21798.31 169
plane_prior793.84 25885.73 249
EPP-MVSNet93.75 11693.67 10794.01 18995.86 18385.70 25098.67 14897.66 8984.46 26991.36 16697.18 16391.16 3197.79 20192.93 14493.75 17498.53 155
bld_raw_dy_0_6487.82 23786.71 24291.15 24889.54 32885.61 25197.37 25089.16 37789.26 15783.42 24594.50 23165.79 30496.18 28988.00 19983.37 26591.67 276
v14419286.40 26484.89 26990.91 25489.48 33085.59 25298.21 20195.43 28782.45 30682.62 25890.58 31272.79 25396.36 27578.45 29474.04 32390.79 310
OPM-MVS89.76 20489.15 19891.57 24290.53 31385.58 25398.11 21095.93 24992.88 7486.05 22196.47 19367.06 29697.87 19689.29 18786.08 24091.26 298
Ray L. Khuboni, Hongjun Xu: Octagram Propagation Matching for Multi-Scale View Stereopsis (OPM-MVS).
tpm291.77 16491.09 16393.82 19594.83 23085.56 25492.51 34297.16 16584.00 27593.83 13290.66 30687.54 7797.17 23587.73 20291.55 20598.72 146
GeoE90.60 18889.56 18893.72 19995.10 21885.43 25599.41 6694.94 30683.96 27787.21 21196.83 18274.37 23697.05 24180.50 28193.73 17598.67 150
cl____87.82 23786.79 24190.89 25694.88 22885.43 25597.81 22895.24 29782.91 29980.71 29091.22 29281.97 18595.84 30781.34 27275.06 30891.40 292
DIV-MVS_self_test87.82 23786.81 24090.87 25794.87 22985.39 25797.81 22895.22 30282.92 29880.76 28991.31 29181.99 18395.81 30981.36 27175.04 30991.42 291
sd_testset89.23 21088.05 22392.74 21696.80 14585.33 25895.85 30897.03 17988.34 18885.73 22395.26 21961.12 32897.76 20885.61 22586.75 23295.14 232
tpm cat188.89 21787.27 23393.76 19695.79 18585.32 25990.76 36097.09 17476.14 34885.72 22588.59 33882.92 16398.04 18876.96 30291.43 20897.90 181
v192192086.02 26984.44 28090.77 26089.32 33285.20 26098.10 21195.35 29282.19 31082.25 26890.71 30270.73 26896.30 28676.85 30474.49 31590.80 309
pm-mvs184.68 28882.78 29590.40 27089.58 32685.18 26197.31 25294.73 31381.93 31476.05 32692.01 27665.48 30996.11 29478.75 29269.14 34989.91 332
TAPA-MVS87.50 990.35 19089.05 20094.25 17898.48 9185.17 26298.42 17896.58 20282.44 30787.24 21098.53 10382.77 16698.84 15359.09 37397.88 11298.72 146
Andrea Romanoni, Matteo Matteucci: TAPA-MVS: Textureless-Aware PAtchMatch Multi-View Stereo. ICCV 2019
v124085.77 27684.11 28390.73 26189.26 33385.15 26397.88 22595.23 30181.89 31582.16 26990.55 31469.60 27696.31 28375.59 31374.87 31190.72 314
ppachtmachnet_test83.63 30281.57 30589.80 28789.01 33485.09 26497.13 26294.50 31978.84 33476.14 32591.00 29669.78 27294.61 33763.40 36274.36 31789.71 336
h-mvs3392.47 15191.95 14794.05 18797.13 13385.01 26598.36 18998.08 4493.85 5396.27 8896.73 18583.19 15899.43 12095.81 8868.09 35297.70 184
Anonymous2024052987.66 24585.58 25893.92 19197.59 11685.01 26598.13 20697.13 16866.69 37888.47 20096.01 20555.09 34999.51 10887.00 20784.12 25697.23 198
EPNet_dtu92.28 15592.15 14292.70 21797.29 12584.84 26798.64 15297.82 6092.91 7393.02 14297.02 17085.48 12695.70 31272.25 33594.89 16597.55 190
Wanjuan Su, Wenbing Tao: Efficient Edge-Preserving Multi-View Stereo Network for Depth Estimation. AAAI 2023
BH-untuned91.46 16990.84 17093.33 20396.51 15584.83 26898.84 13195.50 28186.44 24083.50 24396.70 18675.49 22897.77 20386.78 21397.81 11397.40 192
tpmvs89.16 21187.76 22493.35 20297.19 12884.75 26990.58 36297.36 14881.99 31284.56 23489.31 33583.98 14598.17 17874.85 31890.00 22197.12 199
PVSNet_083.28 1687.31 24985.16 26493.74 19894.78 23184.59 27098.91 12698.69 2189.81 14278.59 31593.23 25961.95 32499.34 13294.75 11255.72 37997.30 195
Anonymous2023121184.72 28782.65 29890.91 25497.71 11084.55 27197.28 25496.67 19366.88 37779.18 30990.87 29958.47 33696.60 25682.61 26274.20 32091.59 284
test0.0.03 188.96 21488.61 21090.03 28291.09 30684.43 27298.97 12197.02 18190.21 13080.29 29496.31 19984.89 13491.93 36472.98 33285.70 24393.73 239
PS-MVSNAJss89.54 20889.05 20091.00 25288.77 33784.36 27397.39 24795.97 24188.47 17881.88 27793.80 24582.48 17496.50 26689.34 18483.34 26792.15 265
pmmvs585.87 27184.40 28290.30 27488.53 34184.23 27498.60 15893.71 33581.53 31780.29 29492.02 27564.51 31395.52 31682.04 26878.34 29191.15 300
dcpmvs_295.67 6796.18 4294.12 18398.82 8184.22 27597.37 25095.45 28490.70 11695.77 9998.63 9990.47 4298.68 16299.20 1899.22 7099.45 80
Anonymous20240521188.84 21987.03 23794.27 17698.14 9984.18 27698.44 17695.58 27776.79 34689.34 19496.88 17853.42 35599.54 10687.53 20487.12 23199.09 112
v14886.38 26585.06 26590.37 27389.47 33184.10 27798.52 16595.48 28283.80 27980.93 28890.22 32374.60 23296.31 28380.92 27571.55 34490.69 315
TransMVSNet (Re)81.97 30979.61 31889.08 30389.70 32484.01 27897.26 25591.85 36178.84 33473.07 34791.62 28467.17 29595.21 32467.50 35159.46 37388.02 350
FMVSNet582.29 30780.54 31187.52 31793.79 26284.01 27893.73 32992.47 35176.92 34574.27 33686.15 35663.69 31889.24 37569.07 34574.79 31289.29 341
our_test_384.47 29382.80 29389.50 29589.01 33483.90 28097.03 26594.56 31881.33 31975.36 33390.52 31571.69 26394.54 33868.81 34676.84 30190.07 327
MVP-Stereo86.61 26085.83 25488.93 30788.70 33983.85 28196.07 29994.41 32482.15 31175.64 33191.96 27967.65 29096.45 27177.20 30198.72 9586.51 362
Qingsong Yan: MVP-Stereo: A Parallel Multi-View Patchmatch Stereo Method with Dilation Matching for Photogrammetric Application.
patch_mono-297.10 2397.97 894.49 16699.21 6183.73 28299.62 3598.25 3295.28 2899.38 498.91 7392.28 2899.94 3499.61 999.22 7099.78 38
IterMVS85.81 27484.67 27589.22 30093.51 26683.67 28396.32 28994.80 31185.09 25878.69 31190.17 32666.57 30093.17 34979.48 28577.42 29990.81 308
Fangjinhua Wang, Silvano Galliani, Christoph Vogel, Marc Pollefeys: IterMVS: Iterative Probability Estimation for Efficient Multi-View Stereo.
USDC84.74 28682.93 29190.16 27691.73 29783.54 28495.00 31793.30 34288.77 17373.19 34393.30 25753.62 35497.65 21575.88 31181.54 27889.30 340
D2MVS87.96 23687.39 23089.70 29091.84 29583.40 28598.31 19498.49 2388.04 19878.23 31990.26 31973.57 24296.79 25284.21 24283.53 26388.90 345
Baseline_NR-MVSNet85.83 27384.82 27188.87 30888.73 33883.34 28698.63 15391.66 36280.41 33082.44 26191.35 29074.63 23095.42 31984.13 24471.39 34587.84 351
WR-MVS_H86.53 26285.49 26089.66 29291.04 30783.31 28797.53 24598.20 3684.95 26379.64 30290.90 29878.01 21795.33 32176.29 30872.81 33290.35 321
LTVRE_ROB81.71 1984.59 29082.72 29790.18 27592.89 27983.18 28893.15 33494.74 31278.99 33375.14 33492.69 26765.64 30697.63 21669.46 34381.82 27789.74 334
Andreas Kuhn, Heiko Hirschmüller, Daniel Scharstein, Helmut Mayer: A TV Prior for High-Quality Scalable Multi-View Stereo Reconstruction. International Journal of Computer Vision 2016
PatchT85.44 28083.19 28992.22 22393.13 27683.00 28983.80 38196.37 21470.62 36390.55 17779.63 37684.81 13694.87 33058.18 37591.59 20498.79 141
anonymousdsp86.69 25785.75 25689.53 29486.46 35982.94 29096.39 28695.71 26883.97 27679.63 30390.70 30368.85 27895.94 30186.01 21884.02 25789.72 335
ACMH83.09 1784.60 28982.61 29990.57 26493.18 27582.94 29096.27 29094.92 30781.01 32372.61 35093.61 25056.54 34197.79 20174.31 32181.07 27990.99 304
Qingshan Xu and Wenbing Tao: Multi-Scale Geometric Consistency Guided Multi-View Stereo. CVPR 2019
IterMVS-SCA-FT85.73 27784.64 27689.00 30593.46 26982.90 29296.27 29094.70 31485.02 26178.62 31390.35 31866.61 29893.33 34679.38 28677.36 30090.76 312
F-COLMAP92.07 16191.75 15293.02 20898.16 9882.89 29398.79 13895.97 24186.54 23587.92 20397.80 13078.69 21399.65 9685.97 21995.93 15496.53 219
Patchmatch-test86.25 26784.06 28492.82 21294.42 23882.88 29482.88 38294.23 32771.58 36079.39 30690.62 30989.00 5796.42 27263.03 36491.37 21099.16 104
Patchmtry83.61 30381.64 30389.50 29593.36 27182.84 29584.10 37894.20 32869.47 37079.57 30486.88 35284.43 13994.78 33368.48 34874.30 31890.88 307
CP-MVSNet86.54 26185.45 26189.79 28891.02 30882.78 29697.38 24997.56 11485.37 25379.53 30593.03 26371.86 26195.25 32379.92 28273.43 33091.34 294
AUN-MVS90.17 19689.50 18992.19 22596.21 16982.67 29797.76 23497.53 11988.05 19791.67 15696.15 20083.10 16097.47 22588.11 19766.91 35896.43 222
eth_miper_zixun_eth87.76 24087.00 23890.06 27894.67 23482.65 29897.02 26795.37 29084.19 27281.86 28091.58 28681.47 19095.90 30683.24 25373.61 32591.61 282
hse-mvs291.67 16691.51 15692.15 22796.22 16882.61 29997.74 23597.53 11993.85 5396.27 8896.15 20083.19 15897.44 22895.81 8866.86 35996.40 223
MS-PatchMatch86.75 25685.92 25389.22 30091.97 29082.47 30096.91 26996.14 23183.74 28077.73 32093.53 25358.19 33797.37 23376.75 30598.35 10487.84 351
test_djsdf88.26 23487.73 22589.84 28688.05 34682.21 30197.77 23296.17 22986.84 22782.41 26491.95 28072.07 25895.99 29889.83 17484.50 25091.32 295
PS-CasMVS85.81 27484.58 27789.49 29790.77 31082.11 30297.20 26097.36 14884.83 26579.12 31092.84 26667.42 29395.16 32578.39 29573.25 33191.21 299
mvsany_test194.57 9795.09 7792.98 20995.84 18482.07 30398.76 14095.24 29792.87 7596.45 8598.71 9284.81 13699.15 13997.68 5395.49 16097.73 183
v7n84.42 29482.75 29689.43 29888.15 34481.86 30496.75 27795.67 27280.53 32678.38 31789.43 33369.89 27196.35 28073.83 32772.13 34090.07 327
jajsoiax87.35 24886.51 24589.87 28487.75 35181.74 30597.03 26595.98 24088.47 17880.15 29693.80 24561.47 32596.36 27589.44 18284.47 25291.50 286
MVS-HIRNet79.01 32375.13 33590.66 26293.82 26181.69 30685.16 37293.75 33454.54 38274.17 33759.15 38857.46 33996.58 26063.74 36194.38 16893.72 240
RRT_MVS88.91 21688.56 21389.93 28390.31 31681.61 30798.08 21496.38 21389.30 15682.41 26494.84 22673.15 24896.04 29790.38 16982.23 27592.15 265
tt080586.50 26384.79 27291.63 24191.97 29081.49 30896.49 28497.38 14682.24 30982.44 26195.82 20851.22 36098.25 17684.55 23880.96 28095.13 234
tpm89.67 20588.95 20291.82 23492.54 28181.43 30992.95 33695.92 25087.81 20590.50 17989.44 33284.99 13295.65 31383.67 25282.71 27198.38 163
PMMVS93.62 12293.90 10392.79 21396.79 14781.40 31098.85 12996.81 18991.25 10796.82 7798.15 12477.02 22298.13 18093.15 14296.30 14698.83 137
mvs_tets87.09 25186.22 24889.71 28987.87 34781.39 31196.73 27995.90 25688.19 19479.99 29893.61 25059.96 33296.31 28389.40 18384.34 25391.43 290
ACMM86.95 1388.77 22488.22 21990.43 26993.61 26481.34 31298.50 16995.92 25087.88 20483.85 24295.20 22167.20 29497.89 19486.90 21184.90 24792.06 270
Qingshan Xu and Wenbing Tao: Multi-Scale Geometric Consistency Guided Multi-View Stereo. CVPR 2019
PEN-MVS85.21 28283.93 28689.07 30489.89 32181.31 31397.09 26397.24 15584.45 27078.66 31292.68 26868.44 28294.87 33075.98 31070.92 34791.04 303
XVG-OURS90.83 18290.49 17891.86 23295.23 20481.25 31495.79 31095.92 25088.96 16690.02 18798.03 12671.60 26499.35 13191.06 16087.78 22894.98 235
miper_lstm_enhance86.90 25386.20 24989.00 30594.53 23781.19 31596.74 27895.24 29782.33 30880.15 29690.51 31681.99 18394.68 33680.71 27773.58 32691.12 301
pmmvs-eth3d78.71 32676.16 33186.38 32580.25 37781.19 31594.17 32592.13 35777.97 33966.90 36882.31 36655.76 34392.56 35673.63 32962.31 36985.38 366
XVG-OURS-SEG-HR90.95 18090.66 17691.83 23395.18 21081.14 31795.92 30295.92 25088.40 18590.33 18397.85 12770.66 27099.38 12692.83 14688.83 22494.98 235
ACMP87.39 1088.71 22688.24 21890.12 27793.91 25681.06 31898.50 16995.67 27289.43 15480.37 29395.55 21165.67 30597.83 19890.55 16884.51 24991.47 287
Qingshan Xu and Wenbing Tao: Planar Prior Assisted PatchMatch Multi-View Stereo. AAAI 2020
LPG-MVS_test88.86 21888.47 21690.06 27893.35 27280.95 31998.22 19995.94 24687.73 21083.17 24996.11 20266.28 30297.77 20390.19 17285.19 24591.46 288
LGP-MVS_train90.06 27893.35 27280.95 31995.94 24687.73 21083.17 24996.11 20266.28 30297.77 20390.19 17285.19 24591.46 288
UniMVSNet_ETH3D85.65 27983.79 28791.21 24690.41 31580.75 32195.36 31495.78 26478.76 33681.83 28194.33 23349.86 36596.66 25484.30 24083.52 26496.22 225
MDA-MVSNet_test_wron79.65 32177.05 32687.45 31987.79 35080.13 32296.25 29394.44 32073.87 35651.80 38287.47 34768.04 28692.12 36266.02 35667.79 35590.09 325
YYNet179.64 32277.04 32787.43 32087.80 34979.98 32396.23 29494.44 32073.83 35751.83 38187.53 34367.96 28892.07 36366.00 35767.75 35690.23 324
DTE-MVSNet84.14 29782.80 29388.14 31288.95 33679.87 32496.81 27396.24 22383.50 28577.60 32192.52 27067.89 28994.24 34172.64 33469.05 35090.32 322
WAC-MVS79.74 32567.75 350
myMVS_eth3d88.68 22889.07 19987.50 31895.14 21279.74 32597.68 23996.66 19486.52 23682.63 25696.84 18085.22 13189.89 37069.43 34491.54 20692.87 244
test_vis1_n_192093.08 13993.42 11292.04 23096.31 16479.36 32799.83 796.06 23796.72 898.53 3098.10 12558.57 33599.91 4397.86 5198.79 9496.85 209
ACMH+83.78 1584.21 29582.56 30089.15 30293.73 26379.16 32896.43 28594.28 32681.09 32274.00 33894.03 23754.58 35197.67 21276.10 30978.81 28990.63 317
ADS-MVSNet287.62 24686.88 23989.86 28596.21 16979.14 32987.15 36892.99 34383.01 29289.91 18887.27 34878.87 21092.80 35374.20 32392.27 19297.64 185
COLMAP_ROBcopyleft82.69 1884.54 29182.82 29289.70 29096.72 14978.85 33095.89 30392.83 34771.55 36177.54 32295.89 20759.40 33499.14 14367.26 35288.26 22591.11 302
Johannes L. Schönberger, Enliang Zheng, Marc Pollefeys, Jan-Michael Frahm: Pixelwise View Selection for Unstructured Multi-View Stereo. ECCV 2016
AllTest84.97 28583.12 29090.52 26796.82 14378.84 33195.89 30392.17 35577.96 34075.94 32795.50 21255.48 34599.18 13771.15 33687.14 22993.55 241
TestCases90.52 26796.82 14378.84 33192.17 35577.96 34075.94 32795.50 21255.48 34599.18 13771.15 33687.14 22993.55 241
dmvs_re88.69 22788.06 22290.59 26393.83 26078.68 33395.75 31196.18 22887.99 20084.48 23796.32 19867.52 29196.94 24584.98 23285.49 24496.14 226
TinyColmap80.42 31777.94 32287.85 31492.09 28878.58 33493.74 32889.94 37274.99 35169.77 35591.78 28246.09 37097.58 22065.17 36077.89 29387.38 354
MDA-MVSNet-bldmvs77.82 33174.75 33787.03 32288.33 34278.52 33596.34 28892.85 34675.57 34948.87 38487.89 34057.32 34092.49 35860.79 36964.80 36490.08 326
test_040278.81 32576.33 33086.26 32791.18 30578.44 33695.88 30591.34 36668.55 37170.51 35489.91 32752.65 35794.99 32647.14 38379.78 28685.34 368
Fast-Effi-MVS+-dtu88.84 21988.59 21289.58 29393.44 27078.18 33798.65 15094.62 31788.46 18084.12 24095.37 21868.91 27796.52 26482.06 26791.70 20394.06 238
pmmvs679.90 31977.31 32587.67 31684.17 36678.13 33895.86 30793.68 33667.94 37472.67 34989.62 33150.98 36295.75 31074.80 31966.04 36089.14 343
DeepPCF-MVS93.56 196.55 3797.84 1092.68 21898.71 8578.11 33999.70 2497.71 8098.18 197.36 6099.76 190.37 4599.94 3499.27 1499.54 5299.99 1
OpenMVS_ROBcopyleft73.86 2077.99 33075.06 33686.77 32483.81 36877.94 34096.38 28791.53 36567.54 37568.38 36087.13 35143.94 37296.08 29555.03 37881.83 27686.29 363
EG-PatchMatch MVS79.92 31877.59 32386.90 32387.06 35677.90 34196.20 29794.06 33074.61 35366.53 36988.76 33740.40 37996.20 28867.02 35383.66 26286.61 360
testing387.75 24188.22 21986.36 32694.66 23577.41 34299.52 4897.95 5286.05 24381.12 28696.69 18786.18 11389.31 37461.65 36890.12 22092.35 257
XVG-ACMP-BASELINE85.86 27284.95 26888.57 30989.90 32077.12 34394.30 32395.60 27687.40 21882.12 27092.99 26553.42 35597.66 21385.02 23183.83 25990.92 306
test_vis1_n90.40 18990.27 18090.79 25991.55 29976.48 34499.12 10394.44 32094.31 3997.34 6196.95 17343.60 37499.42 12197.57 5597.60 11896.47 220
ITE_SJBPF87.93 31392.26 28576.44 34593.47 34087.67 21379.95 29995.49 21456.50 34297.38 23175.24 31482.33 27489.98 331
UnsupCasMVSNet_bld73.85 34070.14 34484.99 33579.44 37875.73 34688.53 36595.24 29770.12 36761.94 37574.81 38141.41 37793.62 34468.65 34751.13 38585.62 365
MIMVSNet175.92 33573.30 34083.81 34381.29 37475.57 34792.26 34392.05 35873.09 35967.48 36686.18 35540.87 37887.64 37955.78 37770.68 34888.21 349
test_fmvs192.35 15292.94 12790.57 26497.19 12875.43 34899.55 4294.97 30495.20 2996.82 7797.57 14559.59 33399.84 6797.30 5998.29 10896.46 221
CL-MVSNet_self_test79.89 32078.34 32184.54 33981.56 37375.01 34996.88 27195.62 27481.10 32175.86 32985.81 35768.49 28190.26 36863.21 36356.51 37788.35 348
UnsupCasMVSNet_eth78.90 32476.67 32985.58 33282.81 37174.94 35091.98 34596.31 21784.64 26765.84 37187.71 34151.33 35992.23 36072.89 33356.50 37889.56 338
testgi82.29 30781.00 31086.17 32887.24 35474.84 35197.39 24791.62 36388.63 17475.85 33095.42 21546.07 37191.55 36566.87 35579.94 28592.12 267
test_fmvs1_n91.07 17791.41 15890.06 27894.10 24674.31 35299.18 8794.84 30894.81 3196.37 8797.46 14950.86 36399.82 7497.14 6297.90 11196.04 228
pmmvs372.86 34169.76 34682.17 34873.86 38474.19 35394.20 32489.01 37864.23 38167.72 36380.91 37341.48 37688.65 37762.40 36554.02 38183.68 374
TDRefinement78.01 32975.31 33386.10 32970.06 38873.84 35493.59 33291.58 36474.51 35473.08 34691.04 29549.63 36797.12 23674.88 31759.47 37287.33 356
JIA-IIPM85.97 27084.85 27089.33 29993.23 27473.68 35585.05 37497.13 16869.62 36991.56 16068.03 38488.03 7196.96 24377.89 29793.12 17897.34 194
CVMVSNet90.30 19290.91 16888.46 31194.32 24273.58 35697.61 24397.59 10890.16 13588.43 20197.10 16676.83 22392.86 35082.64 26193.54 17698.93 127
Anonymous2023120680.76 31579.42 31984.79 33784.78 36472.98 35796.53 28292.97 34479.56 33174.33 33588.83 33661.27 32792.15 36160.59 37075.92 30489.24 342
Anonymous2024052178.63 32776.90 32883.82 34282.82 37072.86 35895.72 31293.57 33873.55 35872.17 35184.79 35949.69 36692.51 35765.29 35974.50 31486.09 364
new_pmnet76.02 33473.71 33982.95 34583.88 36772.85 35991.26 35592.26 35470.44 36562.60 37481.37 36947.64 36992.32 35961.85 36672.10 34183.68 374
LCM-MVSNet-Re88.59 22988.61 21088.51 31095.53 19572.68 36096.85 27288.43 37988.45 18173.14 34490.63 30875.82 22594.38 33992.95 14395.71 15798.48 158
new-patchmatchnet74.80 33972.40 34281.99 35078.36 38072.20 36194.44 32192.36 35277.06 34363.47 37379.98 37551.04 36188.85 37660.53 37154.35 38084.92 371
Effi-MVS+-dtu89.97 20290.68 17587.81 31595.15 21171.98 36297.87 22695.40 28891.92 9387.57 20591.44 28874.27 23896.84 24889.45 18193.10 17994.60 237
EGC-MVSNET60.70 35055.37 35476.72 35686.35 36071.08 36389.96 36384.44 3870.38 3991.50 40084.09 36137.30 38088.10 37840.85 38873.44 32970.97 384
test20.0378.51 32877.48 32481.62 35183.07 36971.03 36496.11 29892.83 34781.66 31669.31 35789.68 33057.53 33887.29 38058.65 37468.47 35186.53 361
SixPastTwentyTwo82.63 30681.58 30485.79 33088.12 34571.01 36595.17 31692.54 35084.33 27172.93 34892.08 27360.41 33195.61 31574.47 32074.15 32190.75 313
test_vis1_rt81.31 31380.05 31685.11 33391.29 30470.66 36698.98 12077.39 39485.76 24868.80 35882.40 36536.56 38199.44 11792.67 14986.55 23485.24 369
OurMVSNet-221017-084.13 29883.59 28885.77 33187.81 34870.24 36794.89 31893.65 33786.08 24276.53 32393.28 25861.41 32696.14 29380.95 27477.69 29890.93 305
K. test v381.04 31479.77 31784.83 33687.41 35270.23 36895.60 31393.93 33283.70 28267.51 36589.35 33455.76 34393.58 34576.67 30668.03 35390.67 316
Patchmatch-RL test81.90 31180.13 31487.23 32180.71 37570.12 36984.07 37988.19 38083.16 29170.57 35282.18 36787.18 8792.59 35582.28 26562.78 36698.98 119
lessismore_v085.08 33485.59 36269.28 37090.56 37067.68 36490.21 32454.21 35395.46 31773.88 32562.64 36790.50 319
KD-MVS_self_test77.47 33275.88 33282.24 34781.59 37268.93 37192.83 34094.02 33177.03 34473.14 34483.39 36255.44 34790.42 36767.95 34957.53 37687.38 354
LF4IMVS81.94 31081.17 30984.25 34087.23 35568.87 37293.35 33391.93 36083.35 28875.40 33293.00 26449.25 36896.65 25578.88 29078.11 29287.22 358
EU-MVSNet84.19 29684.42 28183.52 34488.64 34067.37 37396.04 30095.76 26685.29 25478.44 31693.18 26070.67 26991.48 36675.79 31275.98 30391.70 275
Syy-MVS84.10 29984.53 27882.83 34695.14 21265.71 37497.68 23996.66 19486.52 23682.63 25696.84 18068.15 28489.89 37045.62 38491.54 20692.87 244
test_fmvs285.10 28385.45 26184.02 34189.85 32265.63 37598.49 17192.59 34990.45 12585.43 22993.32 25543.94 37296.59 25790.81 16584.19 25589.85 333
PM-MVS74.88 33872.85 34180.98 35378.98 37964.75 37690.81 35985.77 38380.95 32468.23 36282.81 36329.08 38592.84 35176.54 30762.46 36885.36 367
RPSCF85.33 28185.55 25984.67 33894.63 23662.28 37793.73 32993.76 33374.38 35585.23 23097.06 16964.09 31498.31 17180.98 27386.08 24093.41 243
DSMNet-mixed81.60 31281.43 30682.10 34984.36 36560.79 37893.63 33186.74 38279.00 33279.32 30787.15 35063.87 31689.78 37266.89 35491.92 19795.73 230
mvsany_test375.85 33674.52 33879.83 35473.53 38560.64 37991.73 34887.87 38183.91 27870.55 35382.52 36431.12 38393.66 34386.66 21462.83 36585.19 370
CMPMVSbinary58.40 2180.48 31680.11 31581.59 35285.10 36359.56 38094.14 32695.95 24568.54 37260.71 37693.31 25655.35 34897.87 19683.06 25884.85 24887.33 356
M. Jancosek, T. Pajdla: Multi-View Reconstruction Preserving Weakly-Supported Surfaces. CVPR 2011
Gipumacopyleft54.77 35552.22 35962.40 37386.50 35859.37 38150.20 39190.35 37136.52 38941.20 39049.49 39118.33 39281.29 38432.10 39065.34 36246.54 391
S. Galliani, K. Lasinger, K. Schindler: Massively Parallel Multiview Stereopsis by Surface Normal Diffusion. ICCV 2015
ambc79.60 35572.76 38756.61 38276.20 38692.01 35968.25 36180.23 37423.34 38794.73 33473.78 32860.81 37087.48 353
test_method70.10 34468.66 34774.41 36186.30 36155.84 38394.47 32089.82 37335.18 39066.15 37084.75 36030.54 38477.96 39170.40 34260.33 37189.44 339
PMMVS258.97 35255.07 35570.69 36562.72 39255.37 38485.97 37080.52 39149.48 38445.94 38568.31 38315.73 39480.78 38749.79 38237.12 39075.91 379
test_fmvs375.09 33775.19 33474.81 35977.45 38154.08 38595.93 30190.64 36982.51 30573.29 34281.19 37022.29 38886.29 38185.50 22667.89 35484.06 372
test_f71.94 34270.82 34375.30 35872.77 38653.28 38691.62 34989.66 37575.44 35064.47 37278.31 37820.48 38989.56 37378.63 29366.02 36183.05 377
APD_test168.93 34566.98 34874.77 36080.62 37653.15 38787.97 36685.01 38553.76 38359.26 37787.52 34425.19 38689.95 36956.20 37667.33 35781.19 378
test_vis3_rt61.29 34958.75 35268.92 36667.41 38952.84 38891.18 35759.23 40166.96 37641.96 38958.44 38911.37 39794.72 33574.25 32257.97 37559.20 388
ANet_high50.71 35746.17 36064.33 37044.27 39952.30 38976.13 38778.73 39264.95 37927.37 39355.23 39014.61 39567.74 39336.01 38918.23 39372.95 383
DeepMVS_CXcopyleft76.08 35790.74 31151.65 39090.84 36886.47 23957.89 37887.98 33935.88 38292.60 35465.77 35865.06 36383.97 373
LCM-MVSNet60.07 35156.37 35371.18 36354.81 39748.67 39182.17 38389.48 37637.95 38849.13 38369.12 38213.75 39681.76 38359.28 37251.63 38483.10 376
testf156.38 35353.73 35664.31 37164.84 39045.11 39280.50 38475.94 39638.87 38642.74 38675.07 37911.26 39881.19 38541.11 38653.27 38266.63 385
APD_test256.38 35353.73 35664.31 37164.84 39045.11 39280.50 38475.94 39638.87 38642.74 38675.07 37911.26 39881.19 38541.11 38653.27 38266.63 385
WB-MVS66.44 34666.29 34966.89 36774.84 38244.93 39493.00 33584.09 38871.15 36255.82 37981.63 36863.79 31780.31 38921.85 39350.47 38675.43 380
SSC-MVS65.42 34765.20 35066.06 36873.96 38343.83 39592.08 34483.54 38969.77 36854.73 38080.92 37263.30 31979.92 39020.48 39448.02 38774.44 381
MVEpermissive44.00 2241.70 35937.64 36453.90 37649.46 39843.37 39665.09 39066.66 39826.19 39425.77 39548.53 3923.58 40263.35 39526.15 39227.28 39154.97 390
Simon Fuhrmann, Fabian Langguth, Michael Goesele: MVE - A Multi-View Reconstruction Environment. EUROGRAPHICS Workshops on Graphics and Cultural Heritage (2014)
FPMVS61.57 34860.32 35165.34 36960.14 39542.44 39791.02 35889.72 37444.15 38542.63 38880.93 37119.02 39080.59 38842.50 38572.76 33373.00 382
tmp_tt53.66 35652.86 35856.05 37432.75 40141.97 39873.42 38876.12 39521.91 39539.68 39196.39 19642.59 37565.10 39478.00 29614.92 39561.08 387
dmvs_testset77.17 33378.99 32071.71 36287.25 35338.55 39991.44 35281.76 39085.77 24769.49 35695.94 20669.71 27484.37 38252.71 38176.82 30292.21 262
E-PMN41.02 36040.93 36241.29 37761.97 39333.83 40084.00 38065.17 39927.17 39227.56 39246.72 39317.63 39360.41 39619.32 39518.82 39229.61 392
PMVScopyleft41.42 2345.67 35842.50 36155.17 37534.28 40032.37 40166.24 38978.71 39330.72 39122.04 39659.59 3874.59 40077.85 39227.49 39158.84 37455.29 389
Y. Furukawa, J. Ponce: Accurate, dense, and robust multiview stereopsis. PAMI (2010)
EMVS39.96 36139.88 36340.18 37859.57 39632.12 40284.79 37764.57 40026.27 39326.14 39444.18 39618.73 39159.29 39717.03 39617.67 39429.12 393
N_pmnet70.19 34369.87 34571.12 36488.24 34330.63 40395.85 30828.70 40270.18 36668.73 35986.55 35464.04 31593.81 34253.12 38073.46 32888.94 344
wuyk23d16.71 36416.73 36816.65 37960.15 39425.22 40441.24 3925.17 4036.56 3965.48 3993.61 3993.64 40122.72 39815.20 3979.52 3961.99 396
test12316.58 36519.47 3677.91 3803.59 4035.37 40594.32 3221.39 4052.49 39813.98 39844.60 3952.91 4032.65 39911.35 3990.57 39815.70 394
testmvs18.81 36323.05 3666.10 3814.48 4022.29 40697.78 2303.00 4043.27 39718.60 39762.71 3851.53 4042.49 40014.26 3981.80 39713.50 395
test_blank0.00 3680.00 3710.00 3820.00 4040.00 4070.00 3930.00 4060.00 4000.00 4010.00 4000.00 4050.00 4010.00 4000.00 3990.00 397
uanet_test0.00 3680.00 3710.00 3820.00 4040.00 4070.00 3930.00 4060.00 4000.00 4010.00 4000.00 4050.00 4010.00 4000.00 3990.00 397
DCPMVS0.00 3680.00 3710.00 3820.00 4040.00 4070.00 3930.00 4060.00 4000.00 4010.00 4000.00 4050.00 4010.00 4000.00 3990.00 397
cdsmvs_eth3d_5k22.52 36230.03 3650.00 3820.00 4040.00 4070.00 39397.17 1640.00 4000.00 40198.77 8374.35 2370.00 4010.00 4000.00 3990.00 397
pcd_1.5k_mvsjas6.87 3679.16 3700.00 3820.00 4040.00 4070.00 3930.00 4060.00 4000.00 4010.00 40082.48 1740.00 4010.00 4000.00 3990.00 397
sosnet-low-res0.00 3680.00 3710.00 3820.00 4040.00 4070.00 3930.00 4060.00 4000.00 4010.00 4000.00 4050.00 4010.00 4000.00 3990.00 397
sosnet0.00 3680.00 3710.00 3820.00 4040.00 4070.00 3930.00 4060.00 4000.00 4010.00 4000.00 4050.00 4010.00 4000.00 3990.00 397
uncertanet0.00 3680.00 3710.00 3820.00 4040.00 4070.00 3930.00 4060.00 4000.00 4010.00 4000.00 4050.00 4010.00 4000.00 3990.00 397
Regformer0.00 3680.00 3710.00 3820.00 4040.00 4070.00 3930.00 4060.00 4000.00 4010.00 4000.00 4050.00 4010.00 4000.00 3990.00 397
ab-mvs-re8.21 36610.94 3690.00 3820.00 4040.00 4070.00 3930.00 4060.00 4000.00 40198.50 1060.00 4050.00 4010.00 4000.00 3990.00 397
uanet0.00 3680.00 3710.00 3820.00 4040.00 4070.00 3930.00 4060.00 4000.00 4010.00 4000.00 4050.00 4010.00 4000.00 3990.00 397
PC_three_145294.60 3499.41 299.12 4495.50 799.96 2899.84 299.92 399.97 7
eth-test20.00 404
eth-test0.00 404
test_241102_TWO97.72 7694.17 4199.23 899.54 393.14 2499.98 999.70 499.82 1999.99 1
9.1496.87 2499.34 5099.50 4997.49 13089.41 15598.59 2899.43 1689.78 5099.69 8998.69 2899.62 44
test_0728_THIRD93.01 6899.07 1399.46 1094.66 1499.97 2199.25 1699.82 1999.95 15
GSMVS98.84 134
sam_mvs188.39 6398.84 134
sam_mvs87.08 89
MTGPAbinary97.45 136
test_post190.74 36141.37 39785.38 12896.36 27583.16 255
test_post46.00 39487.37 8197.11 237
patchmatchnet-post84.86 35888.73 6096.81 250
MTMP99.21 8491.09 367
test9_res98.60 3199.87 999.90 22
agg_prior297.84 5299.87 999.91 21
test_prior299.57 4091.43 10398.12 4298.97 6090.43 4398.33 4099.81 23
旧先验298.67 14885.75 24998.96 1898.97 15093.84 129
新几何298.26 197
无先验98.52 16597.82 6087.20 22099.90 4887.64 20399.85 30
原ACMM298.69 145
testdata299.88 5284.16 243
segment_acmp90.56 41
testdata197.89 22392.43 80
plane_prior596.30 21897.75 20993.46 13686.17 23892.67 248
plane_prior496.52 190
plane_prior299.02 11493.38 64
plane_prior193.90 257
n20.00 406
nn0.00 406
door-mid84.90 386
test1197.68 85
door85.30 384
HQP-NCC93.95 25199.16 9193.92 4887.57 205
ACMP_Plane93.95 25199.16 9193.92 4887.57 205
BP-MVS93.82 131
HQP4-MVS87.57 20597.77 20392.72 246
HQP3-MVS96.37 21486.29 235
HQP2-MVS73.34 244
ACMMP++_ref82.64 272
ACMMP++83.83 259
Test By Simon83.62 148