This table lists the benchmark results for the high-res multi-view scenario. The following metrics are evaluated:

(*) For exact definitions, detailing how potentially incomplete ground truth is taken into account, see our paper.

The datasets are grouped into different categories, and result averages are computed for a category and method if results of the method are available for all datasets within the category. Note that the category "all" includes both the high-res multi-view and the low-res many-view scenarios.

Methods with suffix _ROB may participate in the Robust Vision Challenge.

Click a dataset result cell to show a visualization of the reconstruction. For training datasets, ground truth and accuracy / completeness visualizations are also available. The visualizations may not work with mobile browsers.




Method Infoallhigh-res
multi-view
indooroutdoorbotani.boulde.bridgedoorexhibi.lectur.living.loungeobserv.old co.statueterrac.
sort bysort bysort bysort bysort bysorted bysort bysort bysort bysort bysort bysort bysort bysort bysort bysort by
DPM-MVS97.86 897.25 1899.68 198.25 10799.10 199.76 1297.78 6396.61 498.15 3499.53 793.62 16100.00 191.79 14599.80 2799.94 18
MSC_two_6792asdad99.51 299.61 2798.60 297.69 8199.98 1099.55 999.83 1599.96 10
No_MVS99.51 299.61 2798.60 297.69 8199.98 1099.55 999.83 1599.96 10
OPU-MVS99.49 499.64 2098.51 499.77 999.19 3495.12 799.97 2399.90 199.92 399.99 1
PS-MVSNAJ96.87 3496.40 4098.29 1897.35 13397.29 599.03 10197.11 17195.83 1098.97 1399.14 4582.48 17799.60 9598.60 2399.08 8498.00 182
xiu_mvs_v2_base96.66 3896.17 4898.11 2797.11 14396.96 699.01 10497.04 17895.51 1698.86 1699.11 5382.19 18399.36 12598.59 2598.14 11398.00 182
MVS93.92 11192.28 13598.83 695.69 18896.82 796.22 28198.17 3184.89 24784.34 22698.61 10179.32 20599.83 6193.88 12099.43 6899.86 32
WTY-MVS95.97 6095.11 7998.54 1297.62 12496.65 899.44 5298.74 1392.25 7295.21 10698.46 11386.56 11499.46 11595.00 10292.69 17799.50 86
MCST-MVS98.18 297.95 898.86 599.85 396.60 999.70 1797.98 4497.18 295.96 9099.33 2392.62 25100.00 198.99 1799.93 199.98 6
DELS-MVS97.12 2596.60 3698.68 1098.03 11596.57 1099.84 397.84 5396.36 895.20 10798.24 12188.17 7699.83 6196.11 7799.60 5699.64 71
Christian Sormann, Emanuele Santellani, Mattia Rossi, Andreas Kuhn, Friedrich Fraundorfer: DELS-MVS: Deep Epipolar Line Search for Multi-View Stereo. Winter Conference on Applications of Computer Vision (WACV), 2023
ETH3 D test640097.67 1197.33 1798.69 999.69 996.43 1199.63 2597.73 7291.05 9898.66 2299.53 790.59 4199.71 7799.32 1199.80 2799.91 22
HY-MVS88.56 795.29 7894.23 9298.48 1397.72 12096.41 1294.03 31298.74 1392.42 6895.65 10094.76 21286.52 11599.49 10895.29 9692.97 17399.53 82
test_0728_SECOND98.77 799.66 1596.37 1399.72 1497.68 8399.98 1099.64 699.82 1999.96 10
CNVR-MVS98.46 198.38 198.72 899.80 496.19 1499.80 797.99 4397.05 399.41 299.59 292.89 24100.00 198.99 1799.90 799.96 10
CANet97.00 2896.49 3898.55 1198.86 9396.10 1599.83 497.52 12195.90 997.21 6098.90 7982.66 17499.93 3998.71 2098.80 9899.63 73
canonicalmvs95.02 8693.96 10398.20 2097.53 13095.92 1698.71 13196.19 22691.78 8195.86 9598.49 10979.53 20399.03 14496.12 7691.42 20099.66 69
MG-MVS97.24 1996.83 3098.47 1499.79 595.71 1799.07 9699.06 994.45 2396.42 8398.70 9588.81 6699.74 7495.35 9499.86 1299.97 7
alignmvs95.77 7095.00 8198.06 2897.35 13395.68 1899.71 1697.50 12791.50 8796.16 8698.61 10186.28 12199.00 14596.19 7591.74 19499.51 85
test_part299.54 4095.42 1998.13 35
DPE-MVScopyleft98.11 698.00 698.44 1599.50 4795.39 2099.29 7197.72 7494.50 2198.64 2399.54 393.32 1899.97 2399.58 899.90 799.95 15
Kehua Chen, Zhenlong Yuan, Tianlu Mao, Zhaoqi Wang: Dual-Level Precision Edges Guided Multi-View Stereo with Accurate Planarization. AAAI2025
DVP-MVS++.98.18 298.09 598.44 1599.61 2795.38 2199.55 3497.68 8393.01 5199.23 799.45 1695.12 799.98 1099.25 1499.92 399.97 7
IU-MVS99.63 2195.38 2197.73 7295.54 1599.54 199.69 599.81 2399.99 1
PAPM96.35 4895.94 5697.58 4394.10 24195.25 2398.93 11198.17 3194.26 2493.94 12798.72 9289.68 5797.88 18596.36 7299.29 7899.62 75
SED-MVS98.18 298.10 498.41 1799.63 2195.24 2499.77 997.72 7494.17 2599.30 599.54 393.32 1899.98 1099.70 399.81 2399.99 1
test_241102_ONE99.63 2195.24 2497.72 7494.16 2799.30 599.49 1093.32 1899.98 10
xiu_mvs_v1_base_debu94.73 9293.98 10096.99 6895.19 20695.24 2498.62 14796.50 20592.99 5397.52 5298.83 8372.37 25399.15 13797.03 5596.74 13296.58 212
xiu_mvs_v1_base94.73 9293.98 10096.99 6895.19 20695.24 2498.62 14796.50 20592.99 5397.52 5298.83 8372.37 25399.15 13797.03 5596.74 13296.58 212
xiu_mvs_v1_base_debi94.73 9293.98 10096.99 6895.19 20695.24 2498.62 14796.50 20592.99 5397.52 5298.83 8372.37 25399.15 13797.03 5596.74 13296.58 212
DVP-MVScopyleft98.07 798.00 698.29 1899.66 1595.20 2999.72 1497.47 13293.95 3099.07 1099.46 1193.18 2199.97 2399.64 699.82 1999.69 64
Zhenlong Yuan, Jinguo Luo, Fei Shen, Zhaoxin Li, Cong Liu, Tianlu Mao, Zhaoqi Wang: DVP-MVS: Synergize Depth-Edge and Visibility Prior for Multi-View Stereo. AAAI2025
test072699.66 1595.20 2999.77 997.70 7993.95 3099.35 499.54 393.18 21
RRT_MVS91.95 15791.09 15894.53 16696.71 15795.12 3198.64 14496.23 22289.04 15285.24 21995.06 20787.71 8596.43 25889.10 17882.06 25792.05 253
3Dnovator+87.72 893.43 12691.84 14798.17 2195.73 18795.08 3298.92 11397.04 17891.42 9281.48 26997.60 14274.60 23099.79 6990.84 15598.97 8999.64 71
ETH3D-3000-0.197.29 1797.01 2398.12 2599.18 7494.97 3399.47 4497.52 12189.85 12898.79 1999.46 1190.41 4799.69 7998.78 1999.67 4299.70 61
thres600view793.18 13592.00 14396.75 8697.62 12494.92 3499.07 9699.36 287.96 18990.47 17396.78 17683.29 16098.71 15682.93 24490.47 20996.61 210
test_one_060199.59 3194.89 3597.64 9293.14 5098.93 1599.45 1693.45 17
SF-MVS97.22 2296.92 2598.12 2599.11 7894.88 3699.44 5297.45 13589.60 13798.70 2099.42 1990.42 4599.72 7598.47 2999.65 4499.77 48
MVSFormer94.71 9594.08 9896.61 9595.05 21994.87 3797.77 22196.17 22786.84 21498.04 4198.52 10585.52 12995.99 28389.83 16398.97 8998.96 126
lupinMVS96.32 5095.94 5697.44 4895.05 21994.87 3799.86 296.50 20593.82 3998.04 4198.77 8685.52 12998.09 17296.98 5998.97 8999.37 94
thres100view90093.34 13092.15 14096.90 7797.62 12494.84 3999.06 9899.36 287.96 18990.47 17396.78 17683.29 16098.75 15284.11 23090.69 20597.12 201
tfpn200view993.43 12692.27 13696.90 7797.68 12294.84 3999.18 7799.36 288.45 17190.79 16596.90 17183.31 15898.75 15284.11 23090.69 20597.12 201
thres40093.39 12892.27 13696.73 8897.68 12294.84 3999.18 7799.36 288.45 17190.79 16596.90 17183.31 15898.75 15284.11 23090.69 20596.61 210
GG-mvs-BLEND96.98 7196.53 16094.81 4287.20 34297.74 6893.91 12896.40 18696.56 296.94 23495.08 9998.95 9299.20 111
HPM-MVS++copyleft97.72 1097.59 1098.14 2299.53 4594.76 4399.19 7597.75 6695.66 1398.21 3399.29 2491.10 3199.99 597.68 4699.87 999.68 65
thres20093.69 11892.59 13196.97 7297.76 11994.74 4499.35 6699.36 289.23 14691.21 16296.97 16883.42 15798.77 15085.08 21590.96 20397.39 195
ETH3D cwj APD-0.1696.94 3296.58 3798.01 2998.62 10094.73 4599.13 9297.38 14688.44 17498.53 2799.39 2189.66 5899.69 7998.43 3199.61 5599.61 76
CANet_DTU94.31 10593.35 11497.20 6097.03 14794.71 4698.62 14795.54 27495.61 1497.21 6098.47 11171.88 25899.84 5988.38 18297.46 12697.04 206
gg-mvs-nofinetune90.00 19387.71 21496.89 8296.15 17694.69 4785.15 34897.74 6868.32 35192.97 14160.16 36096.10 396.84 23693.89 11998.87 9399.14 114
baseline192.61 14591.28 15696.58 9797.05 14694.63 4897.72 22596.20 22489.82 12988.56 19296.85 17486.85 10497.82 18988.42 18180.10 26597.30 197
FMVSNet388.81 21487.08 22493.99 18696.52 16194.59 4998.08 20596.20 22485.85 22982.12 25491.60 26874.05 24095.40 30679.04 27180.24 26291.99 255
NCCC98.12 598.11 398.13 2399.76 694.46 5099.81 597.88 4996.54 598.84 1799.46 1192.55 2699.98 1098.25 3899.93 199.94 18
test1297.83 3499.33 6494.45 5197.55 11497.56 5188.60 6899.50 10799.71 3899.55 81
DeepC-MVS_fast93.52 297.16 2496.84 2998.13 2399.61 2794.45 5198.85 11997.64 9296.51 795.88 9399.39 2187.35 9699.99 596.61 6599.69 4199.96 10
Andreas Kuhn, Christian Sormann, Mattia Rossi, Oliver Erdler, Friedrich Fraundorfer: DeepC-MVS: Deep Confidence Prediction for Multi-View Stereo Reconstruction. 3DV 2020
CHOSEN 280x42096.80 3696.85 2896.66 9497.85 11894.42 5394.76 30498.36 2392.50 6395.62 10197.52 14597.92 197.38 22098.31 3798.80 9898.20 178
131493.44 12591.98 14497.84 3395.24 20394.38 5496.22 28197.92 4790.18 11982.28 25197.71 13777.63 21799.80 6891.94 14498.67 10399.34 97
DP-MVS Recon95.85 6695.15 7897.95 3199.87 294.38 5499.60 2897.48 13086.58 22094.42 11899.13 4787.36 9599.98 1093.64 12598.33 11199.48 89
jason95.40 7794.86 8297.03 6492.91 27294.23 5699.70 1796.30 21693.56 4596.73 7798.52 10581.46 19297.91 18296.08 7898.47 10998.96 126
jason: jason.
SMA-MVScopyleft97.24 1996.99 2498.00 3099.30 6594.20 5799.16 8097.65 9189.55 14199.22 999.52 990.34 4999.99 598.32 3699.83 1599.82 34
Yufeng Yin; Xiaoyan Liu; Zichao Zhang: SMA-MVS: Segmentation-Guided Multi-Scale Anchor Deformation Patch Multi-View Stereo. IEEE Transactions on Circuits and Systems for Video Technology
PAPR96.35 4895.82 6097.94 3299.63 2194.19 5899.42 5797.55 11492.43 6593.82 13199.12 4887.30 9799.91 4294.02 11799.06 8599.74 55
ET-MVSNet_ETH3D92.56 14791.45 15595.88 12496.39 16494.13 5999.46 4996.97 18492.18 7466.94 34898.29 12094.65 1394.28 32694.34 11583.82 24499.24 107
sss94.85 8993.94 10597.58 4396.43 16394.09 6098.93 11199.16 889.50 14295.27 10597.85 12881.50 19099.65 8892.79 13994.02 16598.99 123
CDPH-MVS96.56 4196.18 4697.70 3999.59 3193.92 6199.13 9297.44 13989.02 15397.90 4899.22 3188.90 6599.49 10894.63 11099.79 2999.68 65
VNet95.08 8594.26 9197.55 4698.07 11493.88 6298.68 13898.73 1590.33 11597.16 6297.43 14979.19 20699.53 10196.91 6191.85 19299.24 107
xxxxxxxxxxxxxcwj97.51 1397.42 1497.78 3799.34 5893.85 6399.65 2395.45 27995.69 1198.70 2099.42 1990.42 4599.72 7598.47 2999.65 4499.77 48
save fliter99.34 5893.85 6399.65 2397.63 9795.69 11
SD-MVS97.51 1397.40 1597.81 3599.01 8493.79 6599.33 6997.38 14693.73 4198.83 1899.02 6090.87 3699.88 4898.69 2199.74 3299.77 48
Zhenlong Yuan, Jiakai Cao, Zhaoxin Li, Hao Jiang and Zhaoqi Wang: SD-MVS: Segmentation-driven Deformation Multi-View Stereo with Spherical Refinement and EM optimization. AAAI2024
APDe-MVS97.53 1297.47 1197.70 3999.58 3393.63 6699.56 3397.52 12193.59 4498.01 4399.12 4890.80 3899.55 9899.26 1399.79 2999.93 21
APD-MVScopyleft96.95 3096.72 3397.63 4199.51 4693.58 6799.16 8097.44 13990.08 12498.59 2599.07 5489.06 6299.42 11997.92 4399.66 4399.88 28
Yuesong Wang, Zhaojie Zeng and etc.: Adaptive Patch Deformation for Textureless-Resilient Multi-View Stereo. CVPR2023
ACMMP_NAP96.59 4096.18 4697.81 3598.82 9493.55 6898.88 11897.59 10690.66 10497.98 4499.14 4586.59 112100.00 196.47 6999.46 6499.89 27
nrg03090.23 18688.87 19494.32 17391.53 29093.54 6998.79 12895.89 25188.12 18584.55 22494.61 21478.80 21096.88 23592.35 14275.21 28992.53 237
OpenMVScopyleft85.28 1490.75 17888.84 19596.48 10193.58 25893.51 7098.80 12497.41 14382.59 28278.62 29897.49 14768.00 28399.82 6484.52 22498.55 10796.11 220
TSAR-MVS + MP.97.44 1697.46 1297.39 5299.12 7793.49 7198.52 15897.50 12794.46 2298.99 1298.64 9891.58 2899.08 14398.49 2899.83 1599.60 77
Zhenlong Yuan, Jiakai Cao, Zhaoqi Wang, Zhaoxin Li: TSAR-MVS: Textureless-aware Segmentation and Correlative Refinement Guided Multi-View Stereo. Pattern Recognition
QAPM91.41 16689.49 18397.17 6195.66 19193.42 7298.60 15197.51 12480.92 30581.39 27097.41 15072.89 25099.87 5182.33 24998.68 10298.21 177
testtj97.23 2197.05 2197.75 3899.75 793.34 7399.16 8097.74 6891.28 9598.40 2999.29 2489.95 5299.98 1098.20 3999.70 3999.94 18
ZD-MVS99.67 1393.28 7497.61 10087.78 19497.41 5699.16 4190.15 5099.56 9798.35 3399.70 39
MSLP-MVS++97.50 1597.45 1397.63 4199.65 1993.21 7599.70 1798.13 3694.61 1997.78 5099.46 1189.85 5399.81 6697.97 4299.91 699.88 28
TEST999.57 3793.17 7699.38 6197.66 8689.57 13998.39 3099.18 3790.88 3599.66 84
train_agg97.20 2397.08 2097.57 4599.57 3793.17 7699.38 6197.66 8690.18 11998.39 3099.18 3790.94 3399.66 8498.58 2699.85 1399.88 28
Regformer-196.97 2996.80 3197.47 4799.46 5293.11 7898.89 11697.94 4592.89 5796.90 6599.02 6089.78 5499.53 10197.06 5499.26 8099.75 52
EPNet96.82 3596.68 3597.25 5898.65 9893.10 7999.48 4298.76 1296.54 597.84 4998.22 12287.49 8999.66 8495.35 9497.78 11999.00 122
Wanjuan Su, Wenbing Tao: Efficient Edge-Preserving Multi-View Stereo Network for Depth Estimation. AAAI 2023
test_899.55 3993.07 8099.37 6497.64 9290.18 11998.36 3299.19 3490.94 3399.64 90
3Dnovator87.35 1193.17 13691.77 14997.37 5495.41 20093.07 8098.82 12297.85 5291.53 8582.56 24597.58 14471.97 25799.82 6491.01 15299.23 8299.22 110
cascas90.93 17589.33 18795.76 12895.69 18893.03 8298.99 10696.59 19680.49 30786.79 21194.45 21565.23 30198.60 15993.52 12792.18 18795.66 223
test_yl95.27 7994.60 8597.28 5698.53 10392.98 8399.05 9998.70 1686.76 21794.65 11697.74 13587.78 8299.44 11695.57 9092.61 17899.44 91
DCV-MVSNet95.27 7994.60 8597.28 5698.53 10392.98 8399.05 9998.70 1686.76 21794.65 11697.74 13587.78 8299.44 11695.57 9092.61 17899.44 91
Regformer-296.94 3296.78 3297.42 4999.46 5292.97 8598.89 11697.93 4692.86 5996.88 6699.02 6089.74 5699.53 10197.03 5599.26 8099.75 52
MVSTER92.71 14192.32 13493.86 18997.29 13592.95 8699.01 10496.59 19690.09 12385.51 21794.00 22294.61 1496.56 24890.77 15783.03 25092.08 251
旧先验198.97 8592.90 8797.74 6899.15 4391.05 3299.33 7499.60 77
MP-MVS-pluss95.80 6895.30 7297.29 5598.95 8892.66 8898.59 15397.14 16788.95 15693.12 13799.25 2785.62 12899.94 3796.56 6799.48 6399.28 103
MP-MVS-pluss: MP-MVS-pluss. MP-MVS-pluss
agg_prior197.12 2597.03 2297.38 5399.54 4092.66 8899.35 6697.64 9290.38 11397.98 4499.17 3990.84 3799.61 9398.57 2799.78 3199.87 31
agg_prior99.54 4092.66 8897.64 9297.98 4499.61 93
MVS_Test93.67 12192.67 12996.69 9296.72 15592.66 8897.22 24596.03 23387.69 20095.12 10994.03 22081.55 18998.28 16589.17 17696.46 13599.14 114
thisisatest051594.75 9194.19 9396.43 10496.13 18092.64 9299.47 4497.60 10287.55 20393.17 13697.59 14394.71 1198.42 16088.28 18393.20 17098.24 175
112195.19 8294.45 8897.42 4998.88 9192.58 9396.22 28197.75 6685.50 23596.86 6999.01 6488.59 7099.90 4487.64 19199.60 5699.79 38
FMVSNet286.90 24184.79 25993.24 20095.11 21392.54 9497.67 22895.86 25582.94 27680.55 27591.17 27762.89 30895.29 30877.23 28279.71 26891.90 257
新几何197.40 5198.92 8992.51 9597.77 6585.52 23396.69 7899.06 5688.08 7999.89 4784.88 21999.62 5199.79 38
test_part188.43 22086.68 23093.67 19597.56 12992.40 9698.12 20096.55 20182.26 28980.31 27893.16 24574.59 23296.62 24585.00 21872.61 31691.99 255
114514_t94.06 10793.05 12197.06 6399.08 8192.26 9798.97 10897.01 18282.58 28392.57 14398.22 12280.68 19699.30 13289.34 17299.02 8799.63 73
test_prior492.00 9899.41 58
test_prior397.07 2797.09 1997.01 6599.58 3391.77 9999.57 3197.57 11191.43 9098.12 3798.97 6690.43 4399.49 10898.33 3499.81 2399.79 38
test_prior97.01 6599.58 3391.77 9997.57 11199.49 10899.79 38
PHI-MVS96.65 3996.46 3997.21 5999.34 5891.77 9999.70 1798.05 3986.48 22398.05 4099.20 3389.33 6099.96 3098.38 3299.62 5199.90 24
Regformer-396.50 4396.36 4296.91 7699.34 5891.72 10298.71 13197.90 4892.48 6496.00 8798.95 7388.60 6899.52 10496.44 7098.83 9599.49 87
ab-mvs91.05 17289.17 18996.69 9295.96 18191.72 10292.62 32597.23 15785.61 23289.74 18393.89 22668.55 27799.42 11991.09 15087.84 21798.92 133
TSAR-MVS + GP.96.95 3096.91 2697.07 6298.88 9191.62 10499.58 3096.54 20395.09 1896.84 7298.63 10091.16 2999.77 7199.04 1696.42 13799.81 35
PVSNet_BlendedMVS93.36 12993.20 11893.84 19098.77 9591.61 10599.47 4498.04 4091.44 8994.21 12292.63 25483.50 15499.87 5197.41 4983.37 24890.05 314
PVSNet_Blended95.94 6295.66 6796.75 8698.77 9591.61 10599.88 198.04 4093.64 4394.21 12297.76 13383.50 15499.87 5197.41 4997.75 12098.79 145
PCF-MVS89.78 591.26 16789.63 18096.16 11595.44 19891.58 10795.29 30096.10 23185.07 24282.75 24197.45 14878.28 21399.78 7080.60 26395.65 15497.12 201
Andreas Kuhn, Shan Lin, Oliver Erdler: Plane Completion and Filtering for Multi-View Stereo Reconstruction. GCPR 2019
SteuartSystems-ACMMP97.25 1897.34 1697.01 6597.38 13291.46 10899.75 1397.66 8694.14 2998.13 3599.26 2692.16 2799.66 8497.91 4499.64 4799.90 24
Skip Steuart: Steuart Systems R&D Blog.
Regformer-496.45 4696.33 4496.81 8399.34 5891.44 10998.71 13197.88 4992.43 6595.97 8998.95 7388.42 7299.51 10596.40 7198.83 9599.49 87
VPNet88.30 22286.57 23193.49 19691.95 28391.35 11098.18 19597.20 16388.61 16484.52 22594.89 20962.21 31196.76 24189.34 17272.26 32192.36 240
CS-MVS95.86 6595.81 6295.98 12195.62 19291.26 11199.80 796.12 23092.15 7697.93 4798.45 11485.88 12797.55 21197.56 4798.80 9899.14 114
GST-MVS95.97 6095.66 6796.90 7799.49 5091.22 11299.45 5197.48 13089.69 13395.89 9298.72 9286.37 12099.95 3494.62 11199.22 8399.52 83
test22298.32 10691.21 11398.08 20597.58 10883.74 26295.87 9499.02 6086.74 10799.64 4799.81 35
ZNCC-MVS96.09 5695.81 6296.95 7599.42 5491.19 11499.55 3497.53 11889.72 13295.86 9598.94 7886.59 11299.97 2395.13 9899.56 5999.68 65
zzz-MVS96.21 5495.96 5596.96 7399.29 6691.19 11498.69 13697.45 13592.58 6094.39 11999.24 2986.43 11899.99 596.22 7399.40 7299.71 59
MTAPA96.09 5695.80 6496.96 7399.29 6691.19 11497.23 24497.45 13592.58 6094.39 11999.24 2986.43 11899.99 596.22 7399.40 7299.71 59
MDTV_nov1_ep13_2view91.17 11791.38 33287.45 20593.08 13886.67 11087.02 19598.95 130
FIs90.70 17989.87 17893.18 20192.29 27791.12 11898.17 19798.25 2689.11 15083.44 23394.82 21182.26 18196.17 27787.76 18982.76 25292.25 243
1112_ss92.71 14191.55 15396.20 11195.56 19491.12 11898.48 16694.69 30688.29 18086.89 20898.50 10787.02 10198.66 15784.75 22089.77 21298.81 143
PVSNet_Blended_VisFu94.67 9694.11 9696.34 10997.14 14091.10 12099.32 7097.43 14192.10 7791.53 15696.38 18983.29 16099.68 8293.42 13096.37 13898.25 174
Test_1112_low_res92.27 15290.97 16196.18 11295.53 19691.10 12098.47 16894.66 30788.28 18186.83 21093.50 23887.00 10298.65 15884.69 22189.74 21398.80 144
LFMVS92.23 15390.84 16596.42 10598.24 10891.08 12298.24 19096.22 22383.39 26994.74 11498.31 11761.12 31698.85 14794.45 11492.82 17499.32 98
ETV-MVS96.00 5896.00 5496.00 11996.56 15991.05 12399.63 2596.61 19493.26 4997.39 5798.30 11886.62 11198.13 16998.07 4197.57 12198.82 142
VPA-MVSNet89.10 20387.66 21593.45 19792.56 27491.02 12497.97 21198.32 2486.92 21386.03 21492.01 26068.84 27697.10 22890.92 15375.34 28892.23 245
MVS_111021_HR96.69 3796.69 3496.72 9098.58 10291.00 12599.14 8999.45 193.86 3695.15 10898.73 9088.48 7199.76 7297.23 5399.56 5999.40 93
HFP-MVS96.42 4796.26 4596.90 7799.69 990.96 12699.47 4497.81 5890.54 10996.88 6699.05 5787.57 8699.96 3095.65 8599.72 3499.78 42
#test#96.48 4496.34 4396.90 7799.69 990.96 12699.53 3997.81 5890.94 10296.88 6699.05 5787.57 8699.96 3095.87 8199.72 3499.78 42
UniMVSNet (Re)89.50 20188.32 20793.03 20392.21 27990.96 12698.90 11598.39 2289.13 14983.22 23492.03 25881.69 18896.34 26886.79 20072.53 31791.81 258
IB-MVS89.43 692.12 15490.83 16795.98 12195.40 20190.78 12999.81 598.06 3891.23 9785.63 21693.66 23290.63 4098.78 14991.22 14971.85 32498.36 170
Christian Sormann, Mattia Rossi, Andreas Kuhn and Friedrich Fraundorfer: IB-MVS: An Iterative Algorithm for Deep Multi-View Stereo based on Binary Decisions. BMVC 2021
Effi-MVS+93.87 11493.15 11996.02 11895.79 18490.76 13096.70 26695.78 25886.98 21195.71 9897.17 16079.58 20198.01 18094.57 11296.09 14599.31 99
DeepC-MVS91.02 494.56 10193.92 10696.46 10297.16 13990.76 13098.39 17997.11 17193.92 3288.66 19198.33 11678.14 21499.85 5895.02 10198.57 10698.78 147
Andreas Kuhn, Christian Sormann, Mattia Rossi, Oliver Erdler, Friedrich Fraundorfer: DeepC-MVS: Deep Confidence Prediction for Multi-View Stereo Reconstruction. 3DV 2020
diffmvs94.59 10094.19 9395.81 12695.54 19590.69 13298.70 13595.68 26591.61 8395.96 9097.81 13080.11 19898.06 17696.52 6895.76 15198.67 153
NR-MVSNet87.74 23286.00 24092.96 20591.46 29190.68 13396.65 26797.42 14288.02 18873.42 32693.68 23077.31 21895.83 29484.26 22671.82 32592.36 240
bset_n11_16_dypcd89.07 20487.85 21192.76 21186.16 34490.66 13497.30 23895.62 26889.78 13183.94 23093.15 24674.85 22795.89 29291.34 14878.48 27191.74 259
XVS96.47 4596.37 4196.77 8499.62 2590.66 13499.43 5597.58 10892.41 6996.86 6998.96 7187.37 9299.87 5195.65 8599.43 6899.78 42
X-MVStestdata90.69 18088.66 20096.77 8499.62 2590.66 13499.43 5597.58 10892.41 6996.86 6929.59 37187.37 9299.87 5195.65 8599.43 6899.78 42
ACMMPR96.28 5296.14 5296.73 8899.68 1290.47 13799.47 4497.80 6090.54 10996.83 7499.03 5986.51 11699.95 3495.65 8599.72 3499.75 52
EI-MVSNet-Vis-set95.76 7195.63 7196.17 11499.14 7690.33 13898.49 16597.82 5591.92 7894.75 11398.88 8187.06 10099.48 11395.40 9397.17 13098.70 152
region2R96.30 5196.17 4896.70 9199.70 890.31 13999.46 4997.66 8690.55 10897.07 6399.07 5486.85 10499.97 2395.43 9299.74 3299.81 35
TESTMET0.1,193.82 11593.26 11795.49 13595.21 20590.25 14099.15 8697.54 11789.18 14891.79 14994.87 21089.13 6197.63 20486.21 20496.29 14298.60 157
baseline294.04 10893.80 10994.74 15993.07 27090.25 14098.12 20098.16 3389.86 12786.53 21296.95 16995.56 598.05 17791.44 14794.53 16095.93 221
PVSNet87.13 1293.69 11892.83 12696.28 11097.99 11690.22 14299.38 6198.93 1091.42 9293.66 13297.68 13871.29 26599.64 9087.94 18897.20 12998.98 124
MSP-MVS97.77 998.18 296.53 10099.54 4090.14 14399.41 5897.70 7995.46 1798.60 2499.19 3495.71 499.49 10898.15 4099.85 1399.95 15
Zhenlong Yuan, Cong Liu, Fei Shen, Zhaoxin Li, Jingguo luo, Tianlu Mao and Zhaoqi Wang: MSP-MVS: Multi-granularity Segmentation Prior Guided Multi-View Stereo. AAAI2025
PAPM_NR95.43 7495.05 8096.57 9899.42 5490.14 14398.58 15597.51 12490.65 10692.44 14598.90 7987.77 8499.90 4490.88 15499.32 7599.68 65
MP-MVScopyleft96.00 5895.82 6096.54 9999.47 5190.13 14599.36 6597.41 14390.64 10795.49 10298.95 7385.51 13199.98 1096.00 8099.59 5899.52 83
Rongxuan Tan, Qing Wang, et al.: MP-MVS: Multi-Scale Windows PatchMatch and Planar Prior Multi-View Stereo.
原ACMM196.18 11299.03 8390.08 14697.63 9788.98 15497.00 6498.97 6688.14 7899.71 7788.23 18499.62 5198.76 149
UniMVSNet_NR-MVSNet89.60 19888.55 20492.75 21292.17 28090.07 14798.74 13098.15 3488.37 17783.21 23593.98 22382.86 16895.93 28786.95 19772.47 31892.25 243
DU-MVS88.83 21287.51 21692.79 20991.46 29190.07 14798.71 13197.62 9988.87 16083.21 23593.68 23074.63 22895.93 28786.95 19772.47 31892.36 240
baseline93.91 11293.30 11595.72 12995.10 21690.07 14797.48 23395.91 24891.03 9993.54 13397.68 13879.58 20198.02 17994.27 11695.14 15699.08 119
API-MVS94.78 9094.18 9596.59 9699.21 7390.06 15098.80 12497.78 6383.59 26693.85 12999.21 3283.79 15199.97 2392.37 14199.00 8899.74 55
EPMVS92.59 14691.59 15295.59 13497.22 13790.03 15191.78 33098.04 4090.42 11291.66 15290.65 29086.49 11797.46 21581.78 25596.31 14099.28 103
thisisatest053094.00 10993.52 11295.43 13895.76 18690.02 15298.99 10697.60 10286.58 22091.74 15097.36 15194.78 1098.34 16186.37 20392.48 18197.94 184
CNLPA93.64 12292.74 12796.36 10898.96 8790.01 15399.19 7595.89 25186.22 22689.40 18698.85 8280.66 19799.84 5988.57 18096.92 13199.24 107
EI-MVSNet-UG-set95.43 7495.29 7395.86 12599.07 8289.87 15498.43 17097.80 6091.78 8194.11 12498.77 8686.25 12299.48 11394.95 10496.45 13698.22 176
FC-MVSNet-test90.22 18789.40 18592.67 21591.78 28789.86 15597.89 21398.22 2888.81 16182.96 24094.66 21381.90 18795.96 28585.89 21082.52 25592.20 247
casdiffmvs93.98 11093.43 11395.61 13395.07 21889.86 15598.80 12495.84 25690.98 10092.74 14297.66 14079.71 20098.10 17194.72 10895.37 15598.87 137
PGM-MVS95.85 6695.65 6996.45 10399.50 4789.77 15798.22 19198.90 1189.19 14796.74 7698.95 7385.91 12699.92 4093.94 11899.46 6499.66 69
RRT_test8_iter0591.04 17390.40 17592.95 20696.20 17489.75 15898.97 10896.38 21188.52 16782.00 25993.51 23790.69 3996.73 24290.43 15976.91 28392.38 239
XXY-MVS87.75 23086.02 23992.95 20690.46 30289.70 15997.71 22795.90 24984.02 25780.95 27194.05 21767.51 28797.10 22885.16 21478.41 27292.04 254
mvs_anonymous92.50 14891.65 15195.06 14896.60 15889.64 16097.06 25096.44 20986.64 21984.14 22793.93 22482.49 17696.17 27791.47 14696.08 14699.35 95
CP-MVS96.22 5396.15 5196.42 10599.67 1389.62 16199.70 1797.61 10090.07 12596.00 8799.16 4187.43 9099.92 4096.03 7999.72 3499.70 61
WR-MVS88.54 21987.22 22392.52 21691.93 28589.50 16298.56 15697.84 5386.99 20981.87 26393.81 22774.25 23995.92 28985.29 21374.43 29892.12 249
DWT-MVSNet_test94.36 10393.95 10495.62 13196.99 14889.47 16396.62 26897.38 14690.96 10193.07 13997.27 15293.73 1598.09 17285.86 21193.65 16899.29 101
CDS-MVSNet93.47 12493.04 12294.76 15794.75 23089.45 16498.82 12297.03 18087.91 19190.97 16496.48 18489.06 6296.36 26289.50 16792.81 17698.49 161
Khang Truong Giang, Soohwan Song, Sungho Jo: Curvature-guided dynamic scale networks for Multi-view Stereo. ICLR 2022
mPP-MVS95.90 6495.75 6596.38 10799.58 3389.41 16599.26 7297.41 14390.66 10494.82 11298.95 7386.15 12399.98 1095.24 9799.64 4799.74 55
HPM-MVScopyleft95.41 7695.22 7695.99 12099.29 6689.14 16699.17 7997.09 17587.28 20795.40 10398.48 11084.93 14099.38 12395.64 8999.65 4499.47 90
Chunlin Ren, Qingshan Xu, Shikun Zhang, Jiaqi Yang: Hierarchical Prior Mining for Non-local Multi-View Stereo. ICCV 2023
AdaColmapbinary93.82 11593.06 12096.10 11699.88 189.07 16798.33 18397.55 11486.81 21690.39 17598.65 9775.09 22699.98 1093.32 13197.53 12499.26 105
SR-MVS96.13 5596.16 5096.07 11799.42 5489.04 16898.59 15397.33 15190.44 11196.84 7299.12 4886.75 10699.41 12197.47 4899.44 6799.76 51
PatchmatchNetpermissive92.05 15691.04 16095.06 14896.17 17589.04 16891.26 33497.26 15289.56 14090.64 16990.56 29688.35 7497.11 22679.53 26796.07 14799.03 121
Fangjinhua Wang, Silvano Galliani, Christoph Vogel, Pablo Speciale, Marc Pollefeys: PatchmatchNet: Learned Multi-View Patchmatch Stereo.
KD-MVS_2432*160082.98 29080.52 29890.38 26094.32 23788.98 17092.87 32295.87 25380.46 30873.79 32487.49 32782.76 17293.29 33270.56 32346.53 36188.87 330
miper_refine_blended82.98 29080.52 29890.38 26094.32 23788.98 17092.87 32295.87 25380.46 30873.79 32487.49 32782.76 17293.29 33270.56 32346.53 36188.87 330
FOURS199.50 4788.94 17299.55 3497.47 13291.32 9498.12 37
miper_enhance_ethall90.33 18489.70 17992.22 21997.12 14288.93 17398.35 18295.96 23788.60 16583.14 23992.33 25687.38 9196.18 27686.49 20277.89 27591.55 269
pmmvs487.58 23586.17 23891.80 23089.58 31288.92 17497.25 24295.28 28982.54 28480.49 27693.17 24475.62 22496.05 28282.75 24578.90 26990.42 305
SCA90.64 18189.25 18894.83 15694.95 22388.83 17596.26 27897.21 15990.06 12690.03 17990.62 29266.61 29396.81 23883.16 24094.36 16298.84 138
GBi-Net86.67 24684.96 25391.80 23095.11 21388.81 17696.77 26095.25 29082.94 27682.12 25490.25 30362.89 30894.97 31379.04 27180.24 26291.62 263
test186.67 24684.96 25391.80 23095.11 21388.81 17696.77 26095.25 29082.94 27682.12 25490.25 30362.89 30894.97 31379.04 27180.24 26291.62 263
FMVSNet183.94 28681.32 29491.80 23091.94 28488.81 17696.77 26095.25 29077.98 31978.25 30390.25 30350.37 34794.97 31373.27 31377.81 27991.62 263
CHOSEN 1792x268894.35 10493.82 10895.95 12397.40 13188.74 17998.41 17398.27 2592.18 7491.43 15796.40 18678.88 20799.81 6693.59 12697.81 11699.30 100
UGNet91.91 15890.85 16495.10 14597.06 14588.69 18098.01 20998.24 2792.41 6992.39 14693.61 23360.52 31799.68 8288.14 18597.25 12896.92 208
Wanjuan Su, Qingshan Xu, Wenbing Tao: Uncertainty-guided Multi-view Stereo Network for Depth Estimation. IEEE Transactions on Circuits and Systems for Video Technology, 2022
TranMVSNet+NR-MVSNet87.75 23086.31 23592.07 22590.81 29888.56 18198.33 18397.18 16487.76 19581.87 26393.90 22572.45 25295.43 30483.13 24271.30 32892.23 245
BH-RMVSNet91.25 16989.99 17795.03 15096.75 15488.55 18298.65 14294.95 29987.74 19787.74 19797.80 13168.27 28098.14 16880.53 26497.49 12598.41 164
MDTV_nov1_ep1390.47 17496.14 17788.55 18291.34 33397.51 12489.58 13892.24 14790.50 30086.99 10397.61 20677.64 28192.34 183
UA-Net93.30 13192.62 13095.34 14196.27 16888.53 18495.88 29196.97 18490.90 10395.37 10497.07 16482.38 18099.10 14283.91 23494.86 15998.38 167
HPM-MVS_fast94.89 8794.62 8495.70 13099.11 7888.44 18599.14 8997.11 17185.82 23095.69 9998.47 11183.46 15699.32 13193.16 13399.63 5099.35 95
Vis-MVSNetpermissive92.64 14391.85 14695.03 15095.12 21288.23 18698.48 16696.81 18891.61 8392.16 14897.22 15671.58 26398.00 18185.85 21297.81 11698.88 135
Jingyang Zhang, Yao Yao, Shiwei Li, Zixin Luo, Tian Fang: Visibility-aware Multiview Stereo Network. BMVC 2020
CS-MVS-test95.20 8195.27 7494.98 15295.67 19088.17 18799.62 2795.84 25691.52 8697.42 5598.30 11885.07 13897.51 21295.81 8298.20 11299.26 105
DROMVSNet95.09 8495.17 7794.84 15595.42 19988.17 18799.48 4295.92 24391.47 8897.34 5998.36 11582.77 17097.41 21997.24 5298.58 10598.94 131
gm-plane-assit94.69 23188.14 18988.22 18297.20 15798.29 16490.79 156
ACMMPcopyleft94.67 9694.30 9095.79 12799.25 6988.13 19098.41 17398.67 1990.38 11391.43 15798.72 9282.22 18299.95 3493.83 12295.76 15199.29 101
Qingshan Xu, Weihang Kong, Wenbing Tao, Marc Pollefeys: Multi-Scale Geometric Consistency Guided and Planar Prior Assisted Multi-View Stereo. IEEE Transactions on Pattern Analysis and Machine Intelligence
tfpnnormal83.65 28781.35 29390.56 25591.37 29388.06 19197.29 23997.87 5178.51 31876.20 30990.91 28064.78 30296.47 25561.71 34873.50 30987.13 343
HyFIR lowres test93.68 12093.29 11694.87 15397.57 12888.04 19298.18 19598.47 2187.57 20291.24 16195.05 20885.49 13297.46 21593.22 13292.82 17499.10 117
TR-MVS90.77 17789.44 18494.76 15796.31 16788.02 19397.92 21295.96 23785.52 23388.22 19597.23 15566.80 29298.09 17284.58 22392.38 18298.17 179
GA-MVS90.10 19188.69 19994.33 17292.44 27687.97 19499.08 9596.26 22089.65 13486.92 20793.11 24768.09 28196.96 23282.54 24890.15 21098.05 180
APD-MVS_3200maxsize95.64 7395.65 6995.62 13199.24 7087.80 19598.42 17197.22 15888.93 15896.64 8198.98 6585.49 13299.36 12596.68 6299.27 7999.70 61
MVS_111021_LR95.78 6995.94 5695.28 14398.19 11187.69 19698.80 12499.26 793.39 4695.04 11098.69 9684.09 14999.76 7296.96 6099.06 8598.38 167
VDDNet90.08 19288.54 20594.69 16194.41 23687.68 19798.21 19396.40 21076.21 32893.33 13597.75 13454.93 33598.77 15094.71 10990.96 20397.61 192
TAMVS92.62 14492.09 14294.20 17794.10 24187.68 19798.41 17396.97 18487.53 20489.74 18396.04 19584.77 14496.49 25488.97 17992.31 18498.42 163
cl-mvsnet289.57 19988.79 19791.91 22697.94 11787.62 19997.98 21096.51 20485.03 24382.37 25091.79 26483.65 15296.50 25285.96 20777.89 27591.61 266
v2v48287.27 23885.76 24391.78 23489.59 31187.58 20098.56 15695.54 27484.53 25182.51 24691.78 26573.11 24796.47 25582.07 25174.14 30491.30 280
ADS-MVSNet88.99 20587.30 22094.07 18196.21 17187.56 20187.15 34396.78 19083.01 27489.91 18187.27 33078.87 20897.01 23174.20 30692.27 18597.64 188
PLCcopyleft91.07 394.23 10694.01 9994.87 15399.17 7587.49 20299.25 7396.55 20188.43 17591.26 16098.21 12485.92 12599.86 5689.77 16697.57 12197.24 199
Jie Liao, Yanping Fu, Qingan Yan, Chunxia xiao: Pyramid Multi-View Stereo with Local Consistency. Pacific Graphics 2019
MAR-MVS94.43 10294.09 9795.45 13799.10 8087.47 20398.39 17997.79 6288.37 17794.02 12699.17 3978.64 21299.91 4292.48 14098.85 9498.96 126
Zhenyu Xu, Yiguang Liu, Xuelei Shi, Ying Wang, Yunan Zheng: MARMVS: Matching Ambiguity Reduced Multiple View Stereo for Efficient Large Scale Scene Reconstruction. CVPR 2020
tpmrst92.78 14092.16 13994.65 16296.27 16887.45 20491.83 32997.10 17489.10 15194.68 11590.69 28788.22 7597.73 20089.78 16591.80 19398.77 148
DP-MVS88.75 21686.56 23295.34 14198.92 8987.45 20497.64 22993.52 32970.55 34381.49 26897.25 15374.43 23499.88 4871.14 32194.09 16498.67 153
Fast-Effi-MVS+91.72 16090.79 16894.49 16795.89 18287.40 20699.54 3895.70 26385.01 24589.28 18895.68 19977.75 21697.57 21083.22 23995.06 15798.51 160
MIMVSNet84.48 27881.83 28892.42 21791.73 28887.36 20785.52 34694.42 31381.40 29881.91 26187.58 32551.92 34392.81 33773.84 30988.15 21697.08 205
IS-MVSNet93.00 13892.51 13294.49 16796.14 17787.36 20798.31 18695.70 26388.58 16690.17 17797.50 14683.02 16697.22 22387.06 19496.07 14798.90 134
testdata95.26 14498.20 10987.28 20997.60 10285.21 23898.48 2899.15 4388.15 7798.72 15590.29 16099.45 6699.78 42
test-LLR93.11 13792.68 12894.40 17094.94 22487.27 21099.15 8697.25 15390.21 11791.57 15394.04 21884.89 14197.58 20785.94 20896.13 14398.36 170
test-mter93.27 13392.89 12594.40 17094.94 22487.27 21099.15 8697.25 15388.95 15691.57 15394.04 21888.03 8097.58 20785.94 20896.13 14398.36 170
SR-MVS-dyc-post95.75 7295.86 5995.41 13999.22 7187.26 21298.40 17697.21 15989.63 13596.67 7998.97 6686.73 10899.36 12596.62 6399.31 7699.60 77
RE-MVS-def95.70 6699.22 7187.26 21298.40 17697.21 15989.63 13596.67 7998.97 6685.24 13796.62 6399.31 7699.60 77
test117295.92 6396.07 5395.46 13699.42 5487.24 21498.51 16197.24 15590.29 11696.56 8299.12 4886.73 10899.36 12597.33 5199.42 7199.78 42
v114486.83 24385.31 25091.40 23689.75 30987.21 21598.31 18695.45 27983.22 27182.70 24390.78 28373.36 24396.36 26279.49 26874.69 29590.63 302
OMC-MVS93.90 11393.62 11194.73 16098.63 9987.00 21698.04 20896.56 20092.19 7392.46 14498.73 9079.49 20499.14 14092.16 14394.34 16398.03 181
abl_694.63 9894.48 8795.09 14698.61 10186.96 21798.06 20796.97 18489.31 14595.86 9598.56 10379.82 19999.64 9094.53 11398.65 10498.66 156
miper_ehance_all_eth88.94 20788.12 21091.40 23695.32 20286.93 21897.85 21795.55 27384.19 25581.97 26091.50 27084.16 14895.91 29084.69 22177.89 27591.36 277
v886.11 25584.45 26491.10 24189.99 30586.85 21997.24 24395.36 28781.99 29279.89 28589.86 31174.53 23396.39 26078.83 27572.32 32090.05 314
CPTT-MVS94.60 9994.43 8995.09 14699.66 1586.85 21999.44 5297.47 13283.22 27194.34 12198.96 7182.50 17599.55 9894.81 10599.50 6298.88 135
v1085.73 26484.01 27090.87 24990.03 30486.73 22197.20 24695.22 29781.25 30079.85 28689.75 31273.30 24696.28 27476.87 28672.64 31589.61 321
Vis-MVSNet (Re-imp)93.26 13493.00 12494.06 18296.14 17786.71 22298.68 13896.70 19188.30 17989.71 18597.64 14185.43 13596.39 26088.06 18796.32 13999.08 119
EIA-MVS95.11 8395.27 7494.64 16396.34 16686.51 22399.59 2996.62 19392.51 6294.08 12598.64 9886.05 12498.24 16695.07 10098.50 10899.18 112
CSCG94.87 8894.71 8395.36 14099.54 4086.49 22499.34 6898.15 3482.71 28190.15 17899.25 2789.48 5999.86 5694.97 10398.82 9799.72 58
tttt051793.30 13193.01 12394.17 17895.57 19386.47 22598.51 16197.60 10285.99 22890.55 17097.19 15894.80 998.31 16285.06 21691.86 19197.74 186
dp90.16 19088.83 19694.14 17996.38 16586.42 22691.57 33197.06 17784.76 24988.81 19090.19 30884.29 14797.43 21875.05 29991.35 20298.56 158
v119286.32 25384.71 26091.17 24089.53 31486.40 22798.13 19895.44 28182.52 28582.42 24890.62 29271.58 26396.33 26977.23 28274.88 29290.79 294
HQP5-MVS86.39 228
HQP-MVS91.50 16391.23 15792.29 21893.95 24586.39 22899.16 8096.37 21293.92 3287.57 19896.67 18073.34 24497.77 19393.82 12386.29 22392.72 233
PatchMatch-RL91.47 16490.54 17294.26 17598.20 10986.36 23096.94 25497.14 16787.75 19688.98 18995.75 19871.80 26099.40 12280.92 26097.39 12797.02 207
LS3D90.19 18888.72 19894.59 16598.97 8586.33 23196.90 25696.60 19574.96 33284.06 22998.74 8975.78 22399.83 6174.93 30097.57 12197.62 191
CR-MVSNet88.83 21287.38 21993.16 20293.47 26086.24 23284.97 35094.20 31888.92 15990.76 16786.88 33484.43 14594.82 31870.64 32292.17 18898.41 164
RPMNet85.07 27081.88 28794.64 16393.47 26086.24 23284.97 35097.21 15964.85 35790.76 16778.80 35480.95 19599.27 13353.76 35892.17 18898.41 164
NP-MVS93.94 24886.22 23496.67 180
BH-w/o92.32 15091.79 14893.91 18896.85 15086.18 23599.11 9495.74 26188.13 18484.81 22197.00 16777.26 21997.91 18289.16 17798.03 11497.64 188
cl_fuxian88.19 22587.23 22291.06 24294.97 22286.17 23697.72 22595.38 28583.43 26881.68 26791.37 27282.81 16995.72 29784.04 23373.70 30691.29 281
MSDG88.29 22386.37 23494.04 18496.90 14986.15 23796.52 27094.36 31577.89 32379.22 29396.95 16969.72 27199.59 9673.20 31492.58 18096.37 218
CLD-MVS91.06 17190.71 16992.10 22494.05 24486.10 23899.55 3496.29 21994.16 2784.70 22297.17 16069.62 27297.82 18994.74 10786.08 22892.39 238
Zhaoxin Li, Wangmeng Zuo, Zhaoqi Wang, Lei Zhang: Confidence-based Large-scale Dense Multi-view Stereo. IEEE Transaction on Image Processing, 2020
V4287.00 24085.68 24590.98 24589.91 30686.08 23998.32 18595.61 27083.67 26582.72 24290.67 28874.00 24196.53 25081.94 25474.28 30190.32 307
HQP_MVS91.26 16790.95 16292.16 22293.84 25286.07 24099.02 10296.30 21693.38 4786.99 20596.52 18272.92 24897.75 19893.46 12886.17 22692.67 235
plane_prior86.07 24099.14 8993.81 4086.26 225
plane_prior693.92 24986.02 24272.92 248
plane_prior385.91 24393.65 4286.99 205
CostFormer92.89 13992.48 13394.12 18094.99 22185.89 24492.89 32197.00 18386.98 21195.00 11190.78 28390.05 5197.51 21292.92 13791.73 19598.96 126
EI-MVSNet89.87 19589.38 18691.36 23894.32 23785.87 24597.61 23096.59 19685.10 24085.51 21797.10 16281.30 19496.56 24883.85 23683.03 25091.64 261
IterMVS-LS88.34 22187.44 21791.04 24394.10 24185.85 24698.10 20395.48 27785.12 23982.03 25891.21 27681.35 19395.63 30083.86 23575.73 28791.63 262
Fangjinhua Wang, Silvano Galliani, Christoph Vogel, Marc Pollefeys: IterMVS: Iterative Probability Estimation for Efficient Multi-View Stereo.
VDD-MVS91.24 17090.18 17694.45 16997.08 14485.84 24798.40 17696.10 23186.99 20993.36 13498.16 12554.27 33799.20 13496.59 6690.63 20898.31 173
plane_prior793.84 25285.73 248
EPP-MVSNet93.75 11793.67 11094.01 18595.86 18385.70 24998.67 14097.66 8684.46 25291.36 15997.18 15991.16 2997.79 19192.93 13693.75 16698.53 159
v14419286.40 25184.89 25690.91 24689.48 31585.59 25098.21 19395.43 28282.45 28682.62 24490.58 29572.79 25196.36 26278.45 27774.04 30590.79 294
OPM-MVS89.76 19689.15 19091.57 23590.53 30185.58 25198.11 20295.93 24292.88 5886.05 21396.47 18567.06 29197.87 18689.29 17586.08 22891.26 282
Ray L. Khuboni, Hongjun Xu: Octagram Propagation Matching for Multi-Scale View Stereopsis (OPM-MVS).
tpm291.77 15991.09 15893.82 19194.83 22885.56 25292.51 32697.16 16684.00 25893.83 13090.66 28987.54 8897.17 22487.73 19091.55 19898.72 150
GeoE90.60 18289.56 18193.72 19495.10 21685.43 25399.41 5894.94 30083.96 26087.21 20496.83 17574.37 23597.05 23080.50 26593.73 16798.67 153
cl-mvsnet____87.82 22786.79 22990.89 24894.88 22685.43 25397.81 21895.24 29382.91 28080.71 27491.22 27581.97 18695.84 29381.34 25775.06 29091.40 276
cl-mvsnet187.82 22786.81 22890.87 24994.87 22785.39 25597.81 21895.22 29782.92 27980.76 27391.31 27481.99 18495.81 29581.36 25675.04 29191.42 275
tpm cat188.89 20887.27 22193.76 19295.79 18485.32 25690.76 33897.09 17576.14 32985.72 21588.59 32182.92 16798.04 17876.96 28591.43 19997.90 185
v192192086.02 25684.44 26590.77 25189.32 31785.20 25798.10 20395.35 28882.19 29082.25 25290.71 28570.73 26696.30 27376.85 28774.49 29790.80 293
pm-mvs184.68 27482.78 28090.40 25989.58 31285.18 25897.31 23794.73 30481.93 29476.05 31192.01 26065.48 30096.11 28078.75 27669.14 33189.91 317
TAPA-MVS87.50 990.35 18389.05 19194.25 17698.48 10585.17 25998.42 17196.58 19982.44 28787.24 20398.53 10482.77 17098.84 14859.09 35397.88 11598.72 150
Andrea Romanoni, Matteo Matteucci: TAPA-MVS: Textureless-Aware PAtchMatch Multi-View Stereo. ICCV 2019
v124085.77 26384.11 26890.73 25289.26 31885.15 26097.88 21595.23 29681.89 29582.16 25390.55 29769.60 27396.31 27075.59 29774.87 29390.72 299
ppachtmachnet_test83.63 28881.57 29189.80 27489.01 31985.09 26197.13 24894.50 31078.84 31576.14 31091.00 27969.78 27094.61 32363.40 34374.36 29989.71 320
hse-mvs392.47 14991.95 14594.05 18397.13 14185.01 26298.36 18198.08 3793.85 3796.27 8496.73 17883.19 16399.43 11895.81 8268.09 33497.70 187
Anonymous2024052987.66 23385.58 24693.92 18797.59 12785.01 26298.13 19897.13 16966.69 35588.47 19396.01 19655.09 33499.51 10587.00 19684.12 24097.23 200
EPNet_dtu92.28 15192.15 14092.70 21397.29 13584.84 26498.64 14497.82 5592.91 5693.02 14097.02 16685.48 13495.70 29872.25 31894.89 15897.55 193
Wanjuan Su, Wenbing Tao: Efficient Edge-Preserving Multi-View Stereo Network for Depth Estimation. AAAI 2023
BH-untuned91.46 16590.84 16593.33 19996.51 16284.83 26598.84 12195.50 27686.44 22583.50 23296.70 17975.49 22597.77 19386.78 20197.81 11697.40 194
tpmvs89.16 20287.76 21293.35 19897.19 13884.75 26690.58 34097.36 14981.99 29284.56 22389.31 31883.98 15098.17 16774.85 30290.00 21197.12 201
PVSNet_083.28 1687.31 23785.16 25193.74 19394.78 22984.59 26798.91 11498.69 1889.81 13078.59 30093.23 24261.95 31299.34 13094.75 10655.72 35697.30 197
Anonymous2023121184.72 27382.65 28490.91 24697.71 12184.55 26897.28 24096.67 19266.88 35479.18 29490.87 28258.47 32196.60 24682.61 24774.20 30291.59 268
test0.0.03 188.96 20688.61 20190.03 27091.09 29584.43 26998.97 10897.02 18190.21 11780.29 27996.31 19084.89 14191.93 34972.98 31585.70 23193.73 228
PS-MVSNAJss89.54 20089.05 19191.00 24488.77 32284.36 27097.39 23495.97 23588.47 16881.88 26293.80 22882.48 17796.50 25289.34 17283.34 24992.15 248
pmmvs585.87 25884.40 26790.30 26388.53 32684.23 27198.60 15193.71 32581.53 29780.29 27992.02 25964.51 30395.52 30282.04 25378.34 27391.15 284
Anonymous20240521188.84 21087.03 22594.27 17498.14 11384.18 27298.44 16995.58 27276.79 32789.34 18796.88 17353.42 34099.54 10087.53 19387.12 22199.09 118
v14886.38 25285.06 25290.37 26289.47 31684.10 27398.52 15895.48 27783.80 26180.93 27290.22 30674.60 23096.31 27080.92 26071.55 32690.69 300
TransMVSNet (Re)81.97 29579.61 30389.08 29189.70 31084.01 27497.26 24191.85 34778.84 31573.07 33191.62 26767.17 29095.21 31067.50 33259.46 35188.02 334
FMVSNet582.29 29380.54 29787.52 30693.79 25584.01 27493.73 31492.47 33876.92 32674.27 32186.15 33963.69 30789.24 35569.07 32774.79 29489.29 325
our_test_384.47 27982.80 27889.50 28389.01 31983.90 27697.03 25194.56 30981.33 29975.36 31890.52 29871.69 26194.54 32468.81 32876.84 28490.07 312
MVP-Stereo86.61 24885.83 24288.93 29588.70 32483.85 27796.07 28694.41 31482.15 29175.64 31691.96 26267.65 28696.45 25777.20 28498.72 10186.51 346
Qingsong Yan: MVP-Stereo: A Parallel Multi-View Patchmatch Stereo Method with Dilation Matching for Photogrammetric Application.
IterMVS85.81 26184.67 26189.22 28893.51 25983.67 27896.32 27594.80 30285.09 24178.69 29690.17 30966.57 29593.17 33479.48 26977.42 28190.81 292
Fangjinhua Wang, Silvano Galliani, Christoph Vogel, Marc Pollefeys: IterMVS: Iterative Probability Estimation for Efficient Multi-View Stereo.
USDC84.74 27282.93 27690.16 26591.73 28883.54 27995.00 30293.30 33188.77 16273.19 32793.30 24053.62 33997.65 20375.88 29581.54 26089.30 324
D2MVS87.96 22687.39 21889.70 27791.84 28683.40 28098.31 18698.49 2088.04 18778.23 30490.26 30273.57 24296.79 24084.21 22783.53 24688.90 329
Baseline_NR-MVSNet85.83 26084.82 25888.87 29688.73 32383.34 28198.63 14691.66 34880.41 31082.44 24791.35 27374.63 22895.42 30584.13 22971.39 32787.84 335
WR-MVS_H86.53 25085.49 24889.66 28091.04 29683.31 28297.53 23298.20 3084.95 24679.64 28790.90 28178.01 21595.33 30776.29 29272.81 31390.35 306
LTVRE_ROB81.71 1984.59 27682.72 28290.18 26492.89 27383.18 28393.15 31994.74 30378.99 31475.14 31992.69 25265.64 29997.63 20469.46 32681.82 25989.74 318
Andreas Kuhn, Heiko Hirschmüller, Daniel Scharstein, Helmut Mayer: A TV Prior for High-Quality Scalable Multi-View Stereo Reconstruction. International Journal of Computer Vision 2016
PatchT85.44 26783.19 27492.22 21993.13 26983.00 28483.80 35696.37 21270.62 34290.55 17079.63 35384.81 14394.87 31658.18 35591.59 19798.79 145
anonymousdsp86.69 24585.75 24489.53 28286.46 34282.94 28596.39 27295.71 26283.97 25979.63 28890.70 28668.85 27595.94 28686.01 20584.02 24189.72 319
ACMH83.09 1784.60 27582.61 28590.57 25493.18 26882.94 28596.27 27694.92 30181.01 30372.61 33493.61 23356.54 32697.79 19174.31 30581.07 26190.99 288
Qingshan Xu and Wenbing Tao: Multi-Scale Geometric Consistency Guided Multi-View Stereo. CVPR 2019
IterMVS-SCA-FT85.73 26484.64 26289.00 29393.46 26282.90 28796.27 27694.70 30585.02 24478.62 29890.35 30166.61 29393.33 33179.38 27077.36 28290.76 296
F-COLMAP92.07 15591.75 15093.02 20498.16 11282.89 28898.79 12895.97 23586.54 22287.92 19697.80 13178.69 21199.65 8885.97 20695.93 14996.53 215
Patchmatch-test86.25 25484.06 26992.82 20894.42 23582.88 28982.88 35794.23 31771.58 34079.39 29190.62 29289.00 6496.42 25963.03 34591.37 20199.16 113
Patchmtry83.61 28981.64 28989.50 28393.36 26482.84 29084.10 35394.20 31869.47 34879.57 28986.88 33484.43 14594.78 31968.48 33074.30 30090.88 291
CP-MVSNet86.54 24985.45 24989.79 27591.02 29782.78 29197.38 23697.56 11385.37 23679.53 29093.03 24871.86 25995.25 30979.92 26673.43 31191.34 278
AUN-MVS90.17 18989.50 18292.19 22196.21 17182.67 29297.76 22397.53 11888.05 18691.67 15196.15 19183.10 16597.47 21488.11 18666.91 33896.43 216
eth_miper_zixun_eth87.76 22987.00 22690.06 26794.67 23282.65 29397.02 25395.37 28684.19 25581.86 26591.58 26981.47 19195.90 29183.24 23873.61 30791.61 266
hse-mvs291.67 16191.51 15492.15 22396.22 17082.61 29497.74 22497.53 11893.85 3796.27 8496.15 19183.19 16397.44 21795.81 8266.86 33996.40 217
MS-PatchMatch86.75 24485.92 24189.22 28891.97 28282.47 29596.91 25596.14 22983.74 26277.73 30593.53 23658.19 32297.37 22276.75 28898.35 11087.84 335
test_djsdf88.26 22487.73 21389.84 27388.05 33182.21 29697.77 22196.17 22786.84 21482.41 24991.95 26372.07 25695.99 28389.83 16384.50 23791.32 279
PS-CasMVS85.81 26184.58 26389.49 28590.77 29982.11 29797.20 24697.36 14984.83 24879.12 29592.84 25167.42 28895.16 31178.39 27873.25 31291.21 283
v7n84.42 28082.75 28189.43 28688.15 32981.86 29896.75 26395.67 26680.53 30678.38 30289.43 31669.89 26996.35 26773.83 31072.13 32290.07 312
jajsoiax87.35 23686.51 23389.87 27187.75 33681.74 29997.03 25195.98 23488.47 16880.15 28193.80 22861.47 31396.36 26289.44 17084.47 23891.50 270
MVS-HIRNet79.01 30875.13 31890.66 25393.82 25481.69 30085.16 34793.75 32454.54 35974.17 32259.15 36257.46 32496.58 24763.74 34294.38 16193.72 229
tpm89.67 19788.95 19391.82 22992.54 27581.43 30192.95 32095.92 24387.81 19390.50 17289.44 31584.99 13995.65 29983.67 23782.71 25398.38 167
PMMVS93.62 12393.90 10792.79 20996.79 15381.40 30298.85 11996.81 18891.25 9696.82 7598.15 12677.02 22098.13 16993.15 13496.30 14198.83 141
mvs_tets87.09 23986.22 23689.71 27687.87 33281.39 30396.73 26595.90 24988.19 18379.99 28393.61 23359.96 31996.31 27089.40 17184.34 23991.43 274
ACMM86.95 1388.77 21588.22 20990.43 25893.61 25781.34 30498.50 16395.92 24387.88 19283.85 23195.20 20667.20 28997.89 18486.90 19984.90 23492.06 252
Qingshan Xu and Wenbing Tao: Multi-Scale Geometric Consistency Guided Multi-View Stereo. CVPR 2019
PEN-MVS85.21 26983.93 27189.07 29289.89 30881.31 30597.09 24997.24 15584.45 25378.66 29792.68 25368.44 27994.87 31675.98 29470.92 32991.04 287
XVG-OURS90.83 17690.49 17391.86 22795.23 20481.25 30695.79 29695.92 24388.96 15590.02 18098.03 12771.60 26299.35 12991.06 15187.78 21894.98 224
miper_lstm_enhance86.90 24186.20 23789.00 29394.53 23481.19 30796.74 26495.24 29382.33 28880.15 28190.51 29981.99 18494.68 32280.71 26273.58 30891.12 285
pmmvs-eth3d78.71 31176.16 31586.38 31380.25 35981.19 30794.17 31092.13 34377.97 32066.90 34982.31 34655.76 32892.56 34173.63 31262.31 34785.38 350
XVG-OURS-SEG-HR90.95 17490.66 17191.83 22895.18 20981.14 30995.92 28895.92 24388.40 17690.33 17697.85 12870.66 26899.38 12392.83 13888.83 21494.98 224
ACMP87.39 1088.71 21788.24 20890.12 26693.91 25081.06 31098.50 16395.67 26689.43 14380.37 27795.55 20065.67 29897.83 18890.55 15884.51 23691.47 271
Qingshan Xu and Wenbing Tao: Planar Prior Assisted PatchMatch Multi-View Stereo. AAAI 2020
LPG-MVS_test88.86 20988.47 20690.06 26793.35 26580.95 31198.22 19195.94 24087.73 19883.17 23796.11 19366.28 29697.77 19390.19 16185.19 23291.46 272
LGP-MVS_train90.06 26793.35 26580.95 31195.94 24087.73 19883.17 23796.11 19366.28 29697.77 19390.19 16185.19 23291.46 272
UniMVSNet_ETH3D85.65 26683.79 27291.21 23990.41 30380.75 31395.36 29995.78 25878.76 31781.83 26694.33 21649.86 34896.66 24384.30 22583.52 24796.22 219
MVS_030484.13 28482.66 28388.52 29893.07 27080.15 31495.81 29598.21 2979.27 31286.85 20986.40 33741.33 35994.69 32176.36 29186.69 22290.73 298
MDA-MVSNet_test_wron79.65 30677.05 31087.45 30787.79 33580.13 31596.25 27994.44 31173.87 33651.80 35987.47 32968.04 28292.12 34766.02 33767.79 33690.09 310
YYNet179.64 30777.04 31187.43 30887.80 33479.98 31696.23 28094.44 31173.83 33751.83 35887.53 32667.96 28492.07 34866.00 33867.75 33790.23 309
DTE-MVSNet84.14 28382.80 27888.14 30188.95 32179.87 31796.81 25996.24 22183.50 26777.60 30692.52 25567.89 28594.24 32772.64 31769.05 33290.32 307
ACMH+83.78 1584.21 28182.56 28689.15 29093.73 25679.16 31896.43 27194.28 31681.09 30274.00 32394.03 22054.58 33697.67 20176.10 29378.81 27090.63 302
ADS-MVSNet287.62 23486.88 22789.86 27296.21 17179.14 31987.15 34392.99 33283.01 27489.91 18187.27 33078.87 20892.80 33874.20 30692.27 18597.64 188
COLMAP_ROBcopyleft82.69 1884.54 27782.82 27789.70 27796.72 15578.85 32095.89 28992.83 33571.55 34177.54 30795.89 19759.40 32099.14 14067.26 33388.26 21591.11 286
Johannes L. Schönberger, Enliang Zheng, Marc Pollefeys, Jan-Michael Frahm: Pixelwise View Selection for Unstructured Multi-View Stereo. ECCV 2016
AllTest84.97 27183.12 27590.52 25696.82 15178.84 32195.89 28992.17 34177.96 32175.94 31295.50 20155.48 33099.18 13571.15 31987.14 21993.55 230
TestCases90.52 25696.82 15178.84 32192.17 34177.96 32175.94 31295.50 20155.48 33099.18 13571.15 31987.14 21993.55 230
TinyColmap80.42 30277.94 30687.85 30392.09 28178.58 32393.74 31389.94 35774.99 33169.77 33891.78 26546.09 35397.58 20765.17 34177.89 27587.38 338
MDA-MVSNet-bldmvs77.82 31674.75 32087.03 31088.33 32778.52 32496.34 27492.85 33475.57 33048.87 36187.89 32357.32 32592.49 34360.79 34964.80 34390.08 311
test_040278.81 31076.33 31486.26 31491.18 29478.44 32595.88 29191.34 35268.55 34970.51 33789.91 31052.65 34294.99 31247.14 36179.78 26785.34 352
Fast-Effi-MVS+-dtu88.84 21088.59 20389.58 28193.44 26378.18 32698.65 14294.62 30888.46 17084.12 22895.37 20568.91 27496.52 25182.06 25291.70 19694.06 227
pmmvs679.90 30477.31 30987.67 30584.17 34978.13 32795.86 29393.68 32667.94 35272.67 33389.62 31450.98 34695.75 29674.80 30366.04 34089.14 327
DeepPCF-MVS93.56 196.55 4297.84 992.68 21498.71 9778.11 32899.70 1797.71 7898.18 197.36 5899.76 190.37 4899.94 3799.27 1299.54 6199.99 1
OpenMVS_ROBcopyleft73.86 2077.99 31575.06 31986.77 31283.81 35177.94 32996.38 27391.53 35167.54 35368.38 34187.13 33343.94 35596.08 28155.03 35781.83 25886.29 347
EG-PatchMatch MVS79.92 30377.59 30786.90 31187.06 34077.90 33096.20 28494.06 32074.61 33366.53 35088.76 32040.40 36196.20 27567.02 33483.66 24586.61 344
XVG-ACMP-BASELINE85.86 25984.95 25588.57 29789.90 30777.12 33194.30 30895.60 27187.40 20682.12 25492.99 25053.42 34097.66 20285.02 21783.83 24290.92 290
ITE_SJBPF87.93 30292.26 27876.44 33293.47 33087.67 20179.95 28495.49 20356.50 32797.38 22075.24 29882.33 25689.98 316
UnsupCasMVSNet_bld73.85 32270.14 32584.99 32179.44 36075.73 33388.53 34195.24 29370.12 34661.94 35574.81 35541.41 35893.62 32968.65 32951.13 36085.62 349
MIMVSNet175.92 31973.30 32283.81 32881.29 35775.57 33492.26 32792.05 34473.09 33967.48 34786.18 33840.87 36087.64 35855.78 35670.68 33088.21 333
CL-MVSNet_2432*160079.89 30578.34 30584.54 32581.56 35675.01 33596.88 25795.62 26881.10 30175.86 31485.81 34068.49 27890.26 35363.21 34456.51 35488.35 332
UnsupCasMVSNet_eth78.90 30976.67 31385.58 31982.81 35474.94 33691.98 32896.31 21584.64 25065.84 35287.71 32451.33 34492.23 34572.89 31656.50 35589.56 322
testgi82.29 29381.00 29686.17 31587.24 33874.84 33797.39 23491.62 34988.63 16375.85 31595.42 20446.07 35491.55 35066.87 33679.94 26692.12 249
mvs-test191.57 16292.20 13889.70 27795.15 21074.34 33899.51 4095.40 28391.92 7891.02 16397.25 15374.27 23798.08 17589.45 16895.83 15096.67 209
pmmvs372.86 32369.76 32782.17 33273.86 36374.19 33994.20 30989.01 36164.23 35867.72 34480.91 35041.48 35788.65 35762.40 34654.02 35883.68 355
TDRefinement78.01 31475.31 31786.10 31670.06 36573.84 34093.59 31791.58 35074.51 33473.08 33091.04 27849.63 35097.12 22574.88 30159.47 35087.33 340
JIA-IIPM85.97 25784.85 25789.33 28793.23 26773.68 34185.05 34997.13 16969.62 34791.56 15568.03 35888.03 8096.96 23277.89 28093.12 17197.34 196
CVMVSNet90.30 18590.91 16388.46 30094.32 23773.58 34297.61 23097.59 10690.16 12288.43 19497.10 16276.83 22192.86 33582.64 24693.54 16998.93 132
Anonymous2023120680.76 30079.42 30484.79 32384.78 34772.98 34396.53 26992.97 33379.56 31174.33 32088.83 31961.27 31592.15 34660.59 35075.92 28689.24 326
Anonymous2024052178.63 31276.90 31283.82 32782.82 35372.86 34495.72 29793.57 32873.55 33872.17 33584.79 34249.69 34992.51 34265.29 34074.50 29686.09 348
new_pmnet76.02 31873.71 32182.95 33083.88 35072.85 34591.26 33492.26 34070.44 34462.60 35481.37 34847.64 35292.32 34461.85 34772.10 32383.68 355
LCM-MVSNet-Re88.59 21888.61 20188.51 29995.53 19672.68 34696.85 25888.43 36288.45 17173.14 32890.63 29175.82 22294.38 32592.95 13595.71 15398.48 162
new-patchmatchnet74.80 32172.40 32481.99 33478.36 36272.20 34794.44 30692.36 33977.06 32463.47 35379.98 35251.04 34588.85 35660.53 35154.35 35784.92 353
Effi-MVS+-dtu89.97 19490.68 17087.81 30495.15 21071.98 34897.87 21695.40 28391.92 7887.57 19891.44 27174.27 23796.84 23689.45 16893.10 17294.60 226
test20.0378.51 31377.48 30881.62 33583.07 35271.03 34996.11 28592.83 33581.66 29669.31 33989.68 31357.53 32387.29 35958.65 35468.47 33386.53 345
SixPastTwentyTwo82.63 29281.58 29085.79 31788.12 33071.01 35095.17 30192.54 33784.33 25472.93 33292.08 25760.41 31895.61 30174.47 30474.15 30390.75 297
OurMVSNet-221017-084.13 28483.59 27385.77 31887.81 33370.24 35194.89 30393.65 32786.08 22776.53 30893.28 24161.41 31496.14 27980.95 25977.69 28090.93 289
K. test v381.04 29979.77 30284.83 32287.41 33770.23 35295.60 29893.93 32283.70 26467.51 34689.35 31755.76 32893.58 33076.67 28968.03 33590.67 301
Patchmatch-RL test81.90 29780.13 30087.23 30980.71 35870.12 35384.07 35488.19 36383.16 27370.57 33682.18 34787.18 9892.59 34082.28 25062.78 34498.98 124
lessismore_v085.08 32085.59 34569.28 35490.56 35567.68 34590.21 30754.21 33895.46 30373.88 30862.64 34590.50 304
DIV-MVS_2432*160077.47 31775.88 31682.24 33181.59 35568.93 35592.83 32494.02 32177.03 32573.14 32883.39 34455.44 33290.42 35267.95 33157.53 35387.38 338
LF4IMVS81.94 29681.17 29584.25 32687.23 33968.87 35693.35 31891.93 34683.35 27075.40 31793.00 24949.25 35196.65 24478.88 27478.11 27487.22 342
EU-MVSNet84.19 28284.42 26683.52 32988.64 32567.37 35796.04 28795.76 26085.29 23778.44 30193.18 24370.67 26791.48 35175.79 29675.98 28591.70 260
PM-MVS74.88 32072.85 32380.98 33778.98 36164.75 35890.81 33785.77 36580.95 30468.23 34382.81 34529.08 36492.84 33676.54 29062.46 34685.36 351
RPSCF85.33 26885.55 24784.67 32494.63 23362.28 35993.73 31493.76 32374.38 33585.23 22097.06 16564.09 30498.31 16280.98 25886.08 22893.41 232
DSMNet-mixed81.60 29881.43 29282.10 33384.36 34860.79 36093.63 31686.74 36479.00 31379.32 29287.15 33263.87 30689.78 35466.89 33591.92 19095.73 222
CMPMVSbinary58.40 2180.48 30180.11 30181.59 33685.10 34659.56 36194.14 31195.95 23968.54 35060.71 35693.31 23955.35 33397.87 18683.06 24384.85 23587.33 340
M. Jancosek, T. Pajdla: Multi-View Reconstruction Preserving Weakly-Supported Surfaces. CVPR 2011
Gipumacopyleft54.77 32952.22 33362.40 34686.50 34159.37 36250.20 36490.35 35636.52 36341.20 36449.49 36418.33 36881.29 36132.10 36465.34 34146.54 364
S. Galliani, K. Lasinger, K. Schindler: Massively Parallel Multiview Stereopsis by Surface Normal Diffusion. ICCV 2015
ambc79.60 33872.76 36456.61 36376.20 35992.01 34568.25 34280.23 35123.34 36594.73 32073.78 31160.81 34887.48 337
test_method70.10 32568.66 32874.41 34086.30 34355.84 36494.47 30589.82 35835.18 36466.15 35184.75 34330.54 36377.96 36470.40 32560.33 34989.44 323
PMMVS258.97 32855.07 33170.69 34362.72 36655.37 36585.97 34580.52 36849.48 36045.94 36268.31 35715.73 37080.78 36249.79 36037.12 36375.91 358
ANet_high50.71 33146.17 33464.33 34544.27 37352.30 36676.13 36078.73 36964.95 35627.37 36755.23 36314.61 37167.74 36636.01 36318.23 36672.95 360
DeepMVS_CXcopyleft76.08 33990.74 30051.65 36790.84 35486.47 22457.89 35787.98 32235.88 36292.60 33965.77 33965.06 34283.97 354
LCM-MVSNet60.07 32756.37 33071.18 34154.81 37148.67 36882.17 35889.48 36037.95 36249.13 36069.12 35613.75 37281.76 36059.28 35251.63 35983.10 357
MVEpermissive44.00 2241.70 33337.64 33853.90 34949.46 37243.37 36965.09 36366.66 37226.19 36825.77 36948.53 3653.58 37563.35 36826.15 36627.28 36454.97 363
Simon Fuhrmann, Fabian Langguth, Michael Goesele: MVE - A Multi-View Reconstruction Environment. EUROGRAPHICS Workshops on Graphics and Cultural Heritage (2014)
FPMVS61.57 32660.32 32965.34 34460.14 36942.44 37091.02 33689.72 35944.15 36142.63 36380.93 34919.02 36680.59 36342.50 36272.76 31473.00 359
tmp_tt53.66 33052.86 33256.05 34732.75 37541.97 37173.42 36176.12 37121.91 36939.68 36596.39 18842.59 35665.10 36778.00 27914.92 36861.08 361
E-PMN41.02 33440.93 33641.29 35061.97 36733.83 37284.00 35565.17 37327.17 36627.56 36646.72 36617.63 36960.41 36919.32 36718.82 36529.61 365
PMVScopyleft41.42 2345.67 33242.50 33555.17 34834.28 37432.37 37366.24 36278.71 37030.72 36522.04 37059.59 3614.59 37377.85 36527.49 36558.84 35255.29 362
Y. Furukawa, J. Ponce: Accurate, dense, and robust multiview stereopsis. PAMI (2010)
EMVS39.96 33539.88 33740.18 35159.57 37032.12 37484.79 35264.57 37426.27 36726.14 36844.18 36918.73 36759.29 37017.03 36817.67 36729.12 366
N_pmnet70.19 32469.87 32671.12 34288.24 32830.63 37595.85 29428.70 37570.18 34568.73 34086.55 33664.04 30593.81 32853.12 35973.46 31088.94 328
wuyk23d16.71 33816.73 34216.65 35260.15 36825.22 37641.24 3655.17 3766.56 3705.48 3733.61 3723.64 37422.72 37115.20 3699.52 3691.99 369
test12316.58 33919.47 3417.91 3533.59 3775.37 37794.32 3071.39 3782.49 37213.98 37244.60 3682.91 3762.65 37211.35 3710.57 37115.70 367
testmvs18.81 33723.05 3406.10 3544.48 3762.29 37897.78 2203.00 3773.27 37118.60 37162.71 3591.53 3772.49 37314.26 3701.80 37013.50 368
uanet_test0.00 3420.00 3450.00 3550.00 3780.00 3790.00 3660.00 3790.00 3730.00 3740.00 3730.00 3780.00 3740.00 3720.00 3720.00 370
cdsmvs_eth3d_5k22.52 33630.03 3390.00 3550.00 3780.00 3790.00 36697.17 1650.00 3730.00 37498.77 8674.35 2360.00 3740.00 3720.00 3720.00 370
pcd_1.5k_mvsjas6.87 3419.16 3440.00 3550.00 3780.00 3790.00 3660.00 3790.00 3730.00 3740.00 37382.48 1770.00 3740.00 3720.00 3720.00 370
sosnet-low-res0.00 3420.00 3450.00 3550.00 3780.00 3790.00 3660.00 3790.00 3730.00 3740.00 3730.00 3780.00 3740.00 3720.00 3720.00 370
sosnet0.00 3420.00 3450.00 3550.00 3780.00 3790.00 3660.00 3790.00 3730.00 3740.00 3730.00 3780.00 3740.00 3720.00 3720.00 370
uncertanet0.00 3420.00 3450.00 3550.00 3780.00 3790.00 3660.00 3790.00 3730.00 3740.00 3730.00 3780.00 3740.00 3720.00 3720.00 370
Regformer0.00 3420.00 3450.00 3550.00 3780.00 3790.00 3660.00 3790.00 3730.00 3740.00 3730.00 3780.00 3740.00 3720.00 3720.00 370
ab-mvs-re8.21 34010.94 3430.00 3550.00 3780.00 3790.00 3660.00 3790.00 3730.00 37498.50 1070.00 3780.00 3740.00 3720.00 3720.00 370
uanet0.00 3420.00 3450.00 3550.00 3780.00 3790.00 3660.00 3790.00 3730.00 3740.00 3730.00 3780.00 3740.00 3720.00 3720.00 370
PC_three_145294.60 2099.41 299.12 4895.50 699.96 3099.84 299.92 399.97 7
eth-test20.00 378
eth-test0.00 378
test_241102_TWO97.72 7494.17 2599.23 799.54 393.14 2399.98 1099.70 399.82 1999.99 1
9.1496.87 2799.34 5899.50 4197.49 12989.41 14498.59 2599.43 1889.78 5499.69 7998.69 2199.62 51
test_0728_THIRD93.01 5199.07 1099.46 1194.66 1299.97 2399.25 1499.82 1999.95 15
GSMVS98.84 138
sam_mvs188.39 7398.84 138
sam_mvs87.08 99
MTGPAbinary97.45 135
test_post190.74 33941.37 37085.38 13696.36 26283.16 240
test_post46.00 36787.37 9297.11 226
patchmatchnet-post84.86 34188.73 6796.81 238
MTMP99.21 7491.09 353
test9_res98.60 2399.87 999.90 24
agg_prior297.84 4599.87 999.91 22
test_prior299.57 3191.43 9098.12 3798.97 6690.43 4398.33 3499.81 23
旧先验298.67 14085.75 23198.96 1498.97 14693.84 121
新几何298.26 189
无先验98.52 15897.82 5587.20 20899.90 4487.64 19199.85 33
原ACMM298.69 136
testdata299.88 4884.16 228
segment_acmp90.56 42
testdata197.89 21392.43 65
plane_prior596.30 21697.75 19893.46 12886.17 22692.67 235
plane_prior496.52 182
plane_prior299.02 10293.38 47
plane_prior193.90 251
n20.00 379
nn0.00 379
door-mid84.90 367
test1197.68 83
door85.30 366
HQP-NCC93.95 24599.16 8093.92 3287.57 198
ACMP_Plane93.95 24599.16 8093.92 3287.57 198
BP-MVS93.82 123
HQP4-MVS87.57 19897.77 19392.72 233
HQP3-MVS96.37 21286.29 223
HQP2-MVS73.34 244
ACMMP++_ref82.64 254
ACMMP++83.83 242
Test By Simon83.62 153