DPM-MVS | | | 97.86 8 | 97.25 19 | 99.68 1 | 98.25 109 | 99.10 1 | 99.76 11 | 97.78 65 | 96.61 4 | 98.15 36 | 99.53 7 | 93.62 17 | 100.00 1 | 91.79 150 | 99.80 27 | 99.94 18 |
|
MSC_two_6792asdad | | | | | 99.51 2 | 99.61 27 | 98.60 2 | | 97.69 83 | | | | | 99.98 10 | 99.55 10 | 99.83 15 | 99.96 10 |
|
No_MVS | | | | | 99.51 2 | 99.61 27 | 98.60 2 | | 97.69 83 | | | | | 99.98 10 | 99.55 10 | 99.83 15 | 99.96 10 |
|
OPU-MVS | | | | | 99.49 4 | 99.64 20 | 98.51 4 | 99.77 8 | | | | 99.19 34 | 95.12 8 | 99.97 23 | 99.90 1 | 99.92 3 | 99.99 1 |
|
PS-MVSNAJ | | | 96.87 35 | 96.40 41 | 98.29 18 | 97.35 137 | 97.29 5 | 99.03 104 | 97.11 172 | 95.83 10 | 98.97 14 | 99.14 45 | 82.48 179 | 99.60 96 | 98.60 25 | 99.08 86 | 98.00 186 |
|
xiu_mvs_v2_base | | | 96.66 39 | 96.17 52 | 98.11 27 | 97.11 148 | 96.96 6 | 99.01 107 | 97.04 179 | 95.51 16 | 98.86 17 | 99.11 53 | 82.19 185 | 99.36 126 | 98.59 27 | 98.14 115 | 98.00 186 |
|
MVS | | | 93.92 113 | 92.28 139 | 98.83 6 | 95.69 194 | 96.82 7 | 96.22 289 | 98.17 33 | 84.89 255 | 84.34 232 | 98.61 105 | 79.32 207 | 99.83 62 | 93.88 124 | 99.43 68 | 99.86 32 |
|
WTY-MVS | | | 95.97 62 | 95.11 81 | 98.54 12 | 97.62 128 | 96.65 8 | 99.44 53 | 98.74 14 | 92.25 76 | 95.21 108 | 98.46 117 | 86.56 116 | 99.46 116 | 95.00 104 | 92.69 181 | 99.50 87 |
|
MCST-MVS | | | 98.18 2 | 97.95 9 | 98.86 5 | 99.85 3 | 96.60 9 | 99.70 16 | 97.98 46 | 97.18 2 | 95.96 91 | 99.33 23 | 92.62 26 | 100.00 1 | 98.99 19 | 99.93 1 | 99.98 6 |
|
DELS-MVS | | | 97.12 25 | 96.60 37 | 98.68 10 | 98.03 118 | 96.57 10 | 99.84 3 | 97.84 55 | 96.36 8 | 95.20 109 | 98.24 123 | 88.17 78 | 99.83 62 | 96.11 80 | 99.60 56 | 99.64 72 |
Christian Sormann, Emanuele Santellani, Mattia Rossi, Andreas Kuhn, Friedrich Fraundorfer: DELS-MVS: Deep Epipolar Line Search for Multi-View Stereo. Winter Conference on Applications of Computer Vision (WACV), 2023 |
ETH3 D test6400 | | | 97.67 11 | 97.33 18 | 98.69 9 | 99.69 9 | 96.43 11 | 99.63 26 | 97.73 74 | 91.05 101 | 98.66 23 | 99.53 7 | 90.59 42 | 99.71 78 | 99.32 12 | 99.80 27 | 99.91 22 |
|
HY-MVS | | 88.56 7 | 95.29 81 | 94.23 94 | 98.48 13 | 97.72 124 | 96.41 12 | 94.03 320 | 98.74 14 | 92.42 71 | 95.65 102 | 94.76 221 | 86.52 117 | 99.49 109 | 95.29 98 | 92.97 177 | 99.53 83 |
|
test_0728_SECOND | | | | | 98.77 7 | 99.66 15 | 96.37 13 | 99.72 13 | 97.68 85 | | | | | 99.98 10 | 99.64 6 | 99.82 19 | 99.96 10 |
|
CNVR-MVS | | | 98.46 1 | 98.38 1 | 98.72 8 | 99.80 4 | 96.19 14 | 99.80 7 | 97.99 45 | 97.05 3 | 99.41 2 | 99.59 2 | 92.89 25 | 100.00 1 | 98.99 19 | 99.90 7 | 99.96 10 |
|
CANet | | | 97.00 29 | 96.49 39 | 98.55 11 | 98.86 94 | 96.10 15 | 99.83 4 | 97.52 123 | 95.90 9 | 97.21 61 | 98.90 81 | 82.66 176 | 99.93 40 | 98.71 22 | 98.80 101 | 99.63 74 |
|
canonicalmvs | | | 95.02 88 | 93.96 106 | 98.20 20 | 97.53 134 | 95.92 16 | 98.71 133 | 96.19 227 | 91.78 85 | 95.86 96 | 98.49 113 | 79.53 205 | 99.03 145 | 96.12 79 | 91.42 204 | 99.66 70 |
|
MG-MVS | | | 97.24 19 | 96.83 31 | 98.47 14 | 99.79 5 | 95.71 17 | 99.07 98 | 99.06 9 | 94.45 24 | 96.42 84 | 98.70 98 | 88.81 68 | 99.74 75 | 95.35 96 | 99.86 12 | 99.97 7 |
|
alignmvs | | | 95.77 71 | 95.00 83 | 98.06 28 | 97.35 137 | 95.68 18 | 99.71 15 | 97.50 129 | 91.50 90 | 96.16 87 | 98.61 105 | 86.28 123 | 99.00 146 | 96.19 78 | 91.74 198 | 99.51 86 |
|
test_part2 | | | | | | 99.54 40 | 95.42 19 | | | | 98.13 37 | | | | | | |
|
DPE-MVS |  | | 98.11 6 | 98.00 6 | 98.44 15 | 99.50 47 | 95.39 20 | 99.29 73 | 97.72 76 | 94.50 22 | 98.64 24 | 99.54 3 | 93.32 19 | 99.97 23 | 99.58 9 | 99.90 7 | 99.95 15 |
Kehua Chen, Zhenlong Yuan, Tianlu Mao, Zhaoqi Wang: Dual-Level Precision Edges Guided Multi-View Stereo with Accurate Planarization. AAAI2025 |
DVP-MVS++ | | | 98.18 2 | 98.09 5 | 98.44 15 | 99.61 27 | 95.38 21 | 99.55 35 | 97.68 85 | 93.01 53 | 99.23 8 | 99.45 16 | 95.12 8 | 99.98 10 | 99.25 15 | 99.92 3 | 99.97 7 |
|
IU-MVS | | | | | | 99.63 21 | 95.38 21 | | 97.73 74 | 95.54 15 | 99.54 1 | | | | 99.69 5 | 99.81 23 | 99.99 1 |
|
PAPM | | | 96.35 49 | 95.94 60 | 97.58 43 | 94.10 245 | 95.25 23 | 98.93 113 | 98.17 33 | 94.26 25 | 93.94 129 | 98.72 95 | 89.68 59 | 97.88 189 | 96.36 75 | 99.29 78 | 99.62 76 |
|
SED-MVS | | | 98.18 2 | 98.10 4 | 98.41 17 | 99.63 21 | 95.24 24 | 99.77 8 | 97.72 76 | 94.17 26 | 99.30 6 | 99.54 3 | 93.32 19 | 99.98 10 | 99.70 3 | 99.81 23 | 99.99 1 |
|
test_241102_ONE | | | | | | 99.63 21 | 95.24 24 | | 97.72 76 | 94.16 28 | 99.30 6 | 99.49 10 | 93.32 19 | 99.98 10 | | | |
|
xiu_mvs_v1_base_debu | | | 94.73 95 | 93.98 103 | 96.99 68 | 95.19 210 | 95.24 24 | 98.62 148 | 96.50 206 | 92.99 55 | 97.52 54 | 98.83 86 | 72.37 256 | 99.15 138 | 97.03 56 | 96.74 137 | 96.58 216 |
|
xiu_mvs_v1_base | | | 94.73 95 | 93.98 103 | 96.99 68 | 95.19 210 | 95.24 24 | 98.62 148 | 96.50 206 | 92.99 55 | 97.52 54 | 98.83 86 | 72.37 256 | 99.15 138 | 97.03 56 | 96.74 137 | 96.58 216 |
|
xiu_mvs_v1_base_debi | | | 94.73 95 | 93.98 103 | 96.99 68 | 95.19 210 | 95.24 24 | 98.62 148 | 96.50 206 | 92.99 55 | 97.52 54 | 98.83 86 | 72.37 256 | 99.15 138 | 97.03 56 | 96.74 137 | 96.58 216 |
|
DVP-MVS |  | | 98.07 7 | 98.00 6 | 98.29 18 | 99.66 15 | 95.20 29 | 99.72 13 | 97.47 134 | 93.95 31 | 99.07 11 | 99.46 11 | 93.18 22 | 99.97 23 | 99.64 6 | 99.82 19 | 99.69 65 |
Zhenlong Yuan, Jinguo Luo, Fei Shen, Zhaoxin Li, Cong Liu, Tianlu Mao, Zhaoqi Wang: DVP-MVS: Synergize Depth-Edge and Visibility Prior for Multi-View Stereo. AAAI2025 |
test0726 | | | | | | 99.66 15 | 95.20 29 | 99.77 8 | 97.70 81 | 93.95 31 | 99.35 5 | 99.54 3 | 93.18 22 | | | | |
|
3Dnovator+ | | 87.72 8 | 93.43 129 | 91.84 151 | 98.17 21 | 95.73 193 | 95.08 31 | 98.92 115 | 97.04 179 | 91.42 95 | 81.48 277 | 97.60 144 | 74.60 232 | 99.79 70 | 90.84 160 | 98.97 91 | 99.64 72 |
|
ETH3D-3000-0.1 | | | 97.29 17 | 97.01 24 | 98.12 25 | 99.18 75 | 94.97 32 | 99.47 45 | 97.52 123 | 89.85 136 | 98.79 20 | 99.46 11 | 90.41 49 | 99.69 80 | 98.78 21 | 99.67 42 | 99.70 62 |
|
thres600view7 | | | 93.18 139 | 92.00 147 | 96.75 86 | 97.62 128 | 94.92 33 | 99.07 98 | 99.36 2 | 87.96 197 | 90.47 177 | 96.78 180 | 83.29 162 | 98.71 157 | 82.93 252 | 90.47 213 | 96.61 214 |
|
test_one_0601 | | | | | | 99.59 31 | 94.89 34 | | 97.64 94 | 93.14 52 | 98.93 16 | 99.45 16 | 93.45 18 | | | | |
|
SF-MVS | | | 97.22 22 | 96.92 26 | 98.12 25 | 99.11 79 | 94.88 35 | 99.44 53 | 97.45 137 | 89.60 144 | 98.70 21 | 99.42 19 | 90.42 47 | 99.72 76 | 98.47 31 | 99.65 44 | 99.77 49 |
|
MVSFormer | | | 94.71 98 | 94.08 101 | 96.61 95 | 95.05 223 | 94.87 36 | 97.77 229 | 96.17 228 | 86.84 222 | 98.04 44 | 98.52 109 | 85.52 132 | 95.99 292 | 89.83 169 | 98.97 91 | 98.96 130 |
|
lupinMVS | | | 96.32 51 | 95.94 60 | 97.44 48 | 95.05 223 | 94.87 36 | 99.86 2 | 96.50 206 | 93.82 40 | 98.04 44 | 98.77 89 | 85.52 132 | 98.09 177 | 96.98 60 | 98.97 91 | 99.37 97 |
|
thres100view900 | | | 93.34 133 | 92.15 144 | 96.90 77 | 97.62 128 | 94.84 38 | 99.06 100 | 99.36 2 | 87.96 197 | 90.47 177 | 96.78 180 | 83.29 162 | 98.75 153 | 84.11 238 | 90.69 209 | 97.12 205 |
|
tfpn200view9 | | | 93.43 129 | 92.27 140 | 96.90 77 | 97.68 126 | 94.84 38 | 99.18 79 | 99.36 2 | 88.45 178 | 90.79 169 | 96.90 175 | 83.31 160 | 98.75 153 | 84.11 238 | 90.69 209 | 97.12 205 |
|
thres400 | | | 93.39 131 | 92.27 140 | 96.73 88 | 97.68 126 | 94.84 38 | 99.18 79 | 99.36 2 | 88.45 178 | 90.79 169 | 96.90 175 | 83.31 160 | 98.75 153 | 84.11 238 | 90.69 209 | 96.61 214 |
|
GG-mvs-BLEND | | | | | 96.98 71 | 96.53 164 | 94.81 41 | 87.20 351 | 97.74 70 | | 93.91 130 | 96.40 190 | 96.56 2 | 96.94 238 | 95.08 101 | 98.95 94 | 99.20 113 |
|
HPM-MVS++ |  | | 97.72 10 | 97.59 11 | 98.14 22 | 99.53 45 | 94.76 42 | 99.19 77 | 97.75 68 | 95.66 13 | 98.21 35 | 99.29 24 | 91.10 33 | 99.99 5 | 97.68 48 | 99.87 9 | 99.68 66 |
|
thres200 | | | 93.69 120 | 92.59 135 | 96.97 72 | 97.76 123 | 94.74 43 | 99.35 67 | 99.36 2 | 89.23 155 | 91.21 165 | 96.97 172 | 83.42 159 | 98.77 151 | 85.08 223 | 90.96 207 | 97.39 199 |
|
ETH3D cwj APD-0.16 | | | 96.94 33 | 96.58 38 | 98.01 29 | 98.62 102 | 94.73 44 | 99.13 94 | 97.38 148 | 88.44 181 | 98.53 28 | 99.39 21 | 89.66 60 | 99.69 80 | 98.43 33 | 99.61 55 | 99.61 77 |
|
CANet_DTU | | | 94.31 107 | 93.35 116 | 97.20 60 | 97.03 152 | 94.71 45 | 98.62 148 | 95.54 274 | 95.61 14 | 97.21 61 | 98.47 115 | 71.88 261 | 99.84 60 | 88.38 190 | 97.46 128 | 97.04 210 |
|
gg-mvs-nofinetune | | | 90.00 197 | 87.71 220 | 96.89 82 | 96.15 181 | 94.69 46 | 85.15 357 | 97.74 70 | 68.32 359 | 92.97 143 | 60.16 369 | 96.10 3 | 96.84 240 | 93.89 123 | 98.87 96 | 99.14 116 |
|
baseline1 | | | 92.61 149 | 91.28 161 | 96.58 97 | 97.05 151 | 94.63 47 | 97.72 233 | 96.20 225 | 89.82 137 | 88.56 196 | 96.85 178 | 86.85 106 | 97.82 193 | 88.42 189 | 80.10 275 | 97.30 201 |
|
FMVSNet3 | | | 88.81 219 | 87.08 231 | 93.99 190 | 96.52 165 | 94.59 48 | 98.08 209 | 96.20 225 | 85.85 237 | 82.12 263 | 91.60 276 | 74.05 242 | 95.40 314 | 79.04 279 | 80.24 272 | 91.99 263 |
|
NCCC | | | 98.12 5 | 98.11 3 | 98.13 23 | 99.76 6 | 94.46 49 | 99.81 5 | 97.88 51 | 96.54 5 | 98.84 18 | 99.46 11 | 92.55 27 | 99.98 10 | 98.25 40 | 99.93 1 | 99.94 18 |
|
test12 | | | | | 97.83 34 | 99.33 64 | 94.45 50 | | 97.55 116 | | 97.56 53 | | 88.60 70 | 99.50 108 | | 99.71 38 | 99.55 82 |
|
DeepC-MVS_fast | | 93.52 2 | 97.16 24 | 96.84 30 | 98.13 23 | 99.61 27 | 94.45 50 | 98.85 121 | 97.64 94 | 96.51 7 | 95.88 94 | 99.39 21 | 87.35 97 | 99.99 5 | 96.61 68 | 99.69 41 | 99.96 10 |
Andreas Kuhn, Christian Sormann, Mattia Rossi, Oliver Erdler, Friedrich Fraundorfer: DeepC-MVS: Deep Confidence Prediction for Multi-View Stereo Reconstruction. 3DV 2020 |
CHOSEN 280x420 | | | 96.80 37 | 96.85 29 | 96.66 94 | 97.85 122 | 94.42 52 | 94.76 312 | 98.36 24 | 92.50 66 | 95.62 103 | 97.52 147 | 97.92 1 | 97.38 224 | 98.31 39 | 98.80 101 | 98.20 182 |
|
1314 | | | 93.44 128 | 91.98 148 | 97.84 33 | 95.24 207 | 94.38 53 | 96.22 289 | 97.92 49 | 90.18 127 | 82.28 260 | 97.71 139 | 77.63 219 | 99.80 69 | 91.94 149 | 98.67 105 | 99.34 101 |
|
DP-MVS Recon | | | 95.85 67 | 95.15 80 | 97.95 31 | 99.87 2 | 94.38 53 | 99.60 29 | 97.48 132 | 86.58 228 | 94.42 120 | 99.13 47 | 87.36 96 | 99.98 10 | 93.64 129 | 98.33 114 | 99.48 90 |
|
jason | | | 95.40 80 | 94.86 84 | 97.03 64 | 92.91 276 | 94.23 55 | 99.70 16 | 96.30 217 | 93.56 47 | 96.73 78 | 98.52 109 | 81.46 194 | 97.91 186 | 96.08 81 | 98.47 112 | 98.96 130 |
jason: jason. |
SMA-MVS |  | | 97.24 19 | 96.99 25 | 98.00 30 | 99.30 65 | 94.20 56 | 99.16 82 | 97.65 93 | 89.55 148 | 99.22 10 | 99.52 9 | 90.34 51 | 99.99 5 | 98.32 38 | 99.83 15 | 99.82 34 |
Yufeng Yin; Xiaoyan Liu; Zichao Zhang: SMA-MVS: Segmentation-Guided Multi-Scale Anchor Deformation Patch Multi-View Stereo. IEEE Transactions on Circuits and Systems for Video Technology |
PAPR | | | 96.35 49 | 95.82 64 | 97.94 32 | 99.63 21 | 94.19 57 | 99.42 58 | 97.55 116 | 92.43 68 | 93.82 133 | 99.12 48 | 87.30 98 | 99.91 43 | 94.02 120 | 99.06 87 | 99.74 56 |
|
iter_conf05 | | | 93.48 126 | 93.18 121 | 94.39 174 | 97.15 144 | 94.17 58 | 99.30 72 | 92.97 337 | 92.38 75 | 86.70 217 | 95.42 208 | 95.67 5 | 96.59 250 | 94.67 112 | 84.32 245 | 92.39 243 |
|
ET-MVSNet_ETH3D | | | 92.56 151 | 91.45 159 | 95.88 124 | 96.39 170 | 94.13 59 | 99.46 50 | 96.97 185 | 92.18 78 | 66.94 356 | 98.29 122 | 94.65 15 | 94.28 334 | 94.34 118 | 83.82 251 | 99.24 109 |
|
sss | | | 94.85 91 | 93.94 107 | 97.58 43 | 96.43 167 | 94.09 60 | 98.93 113 | 99.16 8 | 89.50 149 | 95.27 107 | 97.85 130 | 81.50 192 | 99.65 89 | 92.79 144 | 94.02 170 | 98.99 127 |
|
CDPH-MVS | | | 96.56 42 | 96.18 49 | 97.70 39 | 99.59 31 | 93.92 61 | 99.13 94 | 97.44 141 | 89.02 161 | 97.90 50 | 99.22 31 | 88.90 67 | 99.49 109 | 94.63 113 | 99.79 29 | 99.68 66 |
|
VNet | | | 95.08 87 | 94.26 93 | 97.55 46 | 98.07 116 | 93.88 62 | 98.68 140 | 98.73 16 | 90.33 122 | 97.16 63 | 97.43 151 | 79.19 208 | 99.53 102 | 96.91 63 | 91.85 196 | 99.24 109 |
|
xxxxxxxxxxxxxcwj | | | 97.51 13 | 97.42 15 | 97.78 37 | 99.34 58 | 93.85 63 | 99.65 24 | 95.45 279 | 95.69 11 | 98.70 21 | 99.42 19 | 90.42 47 | 99.72 76 | 98.47 31 | 99.65 44 | 99.77 49 |
|
save fliter | | | | | | 99.34 58 | 93.85 63 | 99.65 24 | 97.63 99 | 95.69 11 | | | | | | | |
|
SD-MVS | | | 97.51 13 | 97.40 16 | 97.81 35 | 99.01 85 | 93.79 65 | 99.33 70 | 97.38 148 | 93.73 42 | 98.83 19 | 99.02 61 | 90.87 38 | 99.88 49 | 98.69 23 | 99.74 32 | 99.77 49 |
Zhenlong Yuan, Jiakai Cao, Zhaoxin Li, Hao Jiang and Zhaoqi Wang: SD-MVS: Segmentation-driven Deformation Multi-View Stereo with Spherical Refinement and EM optimization. AAAI2024 |
APDe-MVS | | | 97.53 12 | 97.47 12 | 97.70 39 | 99.58 33 | 93.63 66 | 99.56 34 | 97.52 123 | 93.59 46 | 98.01 46 | 99.12 48 | 90.80 40 | 99.55 99 | 99.26 14 | 99.79 29 | 99.93 21 |
|
APD-MVS |  | | 96.95 31 | 96.72 34 | 97.63 41 | 99.51 46 | 93.58 67 | 99.16 82 | 97.44 141 | 90.08 132 | 98.59 26 | 99.07 54 | 89.06 64 | 99.42 120 | 97.92 45 | 99.66 43 | 99.88 28 |
Yuesong Wang, Zhaojie Zeng and etc.: Adaptive Patch Deformation for Textureless-Resilient Multi-View Stereo. CVPR2023 |
ACMMP_NAP | | | 96.59 41 | 96.18 49 | 97.81 35 | 98.82 95 | 93.55 68 | 98.88 120 | 97.59 108 | 90.66 111 | 97.98 47 | 99.14 45 | 86.59 114 | 100.00 1 | 96.47 72 | 99.46 64 | 99.89 27 |
|
nrg030 | | | 90.23 190 | 88.87 199 | 94.32 176 | 91.53 294 | 93.54 69 | 98.79 130 | 95.89 253 | 88.12 193 | 84.55 230 | 94.61 223 | 78.80 212 | 96.88 239 | 92.35 147 | 75.21 297 | 92.53 241 |
|
OpenMVS |  | 85.28 14 | 90.75 182 | 88.84 200 | 96.48 102 | 93.58 262 | 93.51 70 | 98.80 126 | 97.41 145 | 82.59 290 | 78.62 306 | 97.49 149 | 68.00 287 | 99.82 65 | 84.52 232 | 98.55 110 | 96.11 224 |
|
TSAR-MVS + MP. | | | 97.44 16 | 97.46 13 | 97.39 52 | 99.12 78 | 93.49 71 | 98.52 159 | 97.50 129 | 94.46 23 | 98.99 13 | 98.64 101 | 91.58 30 | 99.08 144 | 98.49 30 | 99.83 15 | 99.60 78 |
Zhenlong Yuan, Jiakai Cao, Zhaoqi Wang, Zhaoxin Li: TSAR-MVS: Textureless-aware Segmentation and Correlative Refinement Guided Multi-View Stereo. Pattern Recognition |
QAPM | | | 91.41 171 | 89.49 187 | 97.17 61 | 95.66 196 | 93.42 72 | 98.60 152 | 97.51 126 | 80.92 313 | 81.39 278 | 97.41 152 | 72.89 253 | 99.87 52 | 82.33 257 | 98.68 104 | 98.21 181 |
|
testtj | | | 97.23 21 | 97.05 22 | 97.75 38 | 99.75 7 | 93.34 73 | 99.16 82 | 97.74 70 | 91.28 98 | 98.40 30 | 99.29 24 | 89.95 54 | 99.98 10 | 98.20 41 | 99.70 39 | 99.94 18 |
|
ZD-MVS | | | | | | 99.67 13 | 93.28 74 | | 97.61 102 | 87.78 202 | 97.41 57 | 99.16 41 | 90.15 52 | 99.56 98 | 98.35 35 | 99.70 39 | |
|
MSLP-MVS++ | | | 97.50 15 | 97.45 14 | 97.63 41 | 99.65 19 | 93.21 75 | 99.70 16 | 98.13 38 | 94.61 20 | 97.78 52 | 99.46 11 | 89.85 55 | 99.81 67 | 97.97 44 | 99.91 6 | 99.88 28 |
|
TEST9 | | | | | | 99.57 37 | 93.17 76 | 99.38 62 | 97.66 88 | 89.57 146 | 98.39 31 | 99.18 37 | 90.88 37 | 99.66 85 | | | |
|
train_agg | | | 97.20 23 | 97.08 21 | 97.57 45 | 99.57 37 | 93.17 76 | 99.38 62 | 97.66 88 | 90.18 127 | 98.39 31 | 99.18 37 | 90.94 35 | 99.66 85 | 98.58 28 | 99.85 13 | 99.88 28 |
|
Regformer-1 | | | 96.97 30 | 96.80 32 | 97.47 47 | 99.46 52 | 93.11 78 | 98.89 118 | 97.94 47 | 92.89 59 | 96.90 66 | 99.02 61 | 89.78 56 | 99.53 102 | 97.06 55 | 99.26 80 | 99.75 53 |
|
EPNet | | | 96.82 36 | 96.68 36 | 97.25 58 | 98.65 100 | 93.10 79 | 99.48 43 | 98.76 13 | 96.54 5 | 97.84 51 | 98.22 124 | 87.49 90 | 99.66 85 | 95.35 96 | 97.78 121 | 99.00 126 |
Wanjuan Su, Wenbing Tao: Efficient Edge-Preserving Multi-View Stereo Network for Depth Estimation. AAAI 2023 |
test_8 | | | | | | 99.55 39 | 93.07 80 | 99.37 65 | 97.64 94 | 90.18 127 | 98.36 33 | 99.19 34 | 90.94 35 | 99.64 91 | | | |
|
3Dnovator | | 87.35 11 | 93.17 140 | 91.77 153 | 97.37 54 | 95.41 204 | 93.07 80 | 98.82 124 | 97.85 54 | 91.53 89 | 82.56 253 | 97.58 146 | 71.97 260 | 99.82 65 | 91.01 157 | 99.23 82 | 99.22 112 |
|
cascas | | | 90.93 179 | 89.33 192 | 95.76 128 | 95.69 194 | 93.03 82 | 98.99 109 | 96.59 197 | 80.49 315 | 86.79 216 | 94.45 225 | 65.23 309 | 98.60 161 | 93.52 131 | 92.18 191 | 95.66 227 |
|
test_yl | | | 95.27 82 | 94.60 87 | 97.28 56 | 98.53 105 | 92.98 83 | 99.05 101 | 98.70 17 | 86.76 225 | 94.65 118 | 97.74 137 | 87.78 84 | 99.44 117 | 95.57 92 | 92.61 182 | 99.44 93 |
|
DCV-MVSNet | | | 95.27 82 | 94.60 87 | 97.28 56 | 98.53 105 | 92.98 83 | 99.05 101 | 98.70 17 | 86.76 225 | 94.65 118 | 97.74 137 | 87.78 84 | 99.44 117 | 95.57 92 | 92.61 182 | 99.44 93 |
|
Regformer-2 | | | 96.94 33 | 96.78 33 | 97.42 49 | 99.46 52 | 92.97 85 | 98.89 118 | 97.93 48 | 92.86 61 | 96.88 67 | 99.02 61 | 89.74 58 | 99.53 102 | 97.03 56 | 99.26 80 | 99.75 53 |
|
MVSTER | | | 92.71 145 | 92.32 138 | 93.86 193 | 97.29 139 | 92.95 86 | 99.01 107 | 96.59 197 | 90.09 131 | 85.51 223 | 94.00 232 | 94.61 16 | 96.56 253 | 90.77 162 | 83.03 260 | 92.08 259 |
|
旧先验1 | | | | | | 98.97 86 | 92.90 87 | | 97.74 70 | | | 99.15 43 | 91.05 34 | | | 99.33 74 | 99.60 78 |
|
MP-MVS-pluss | | | 95.80 69 | 95.30 75 | 97.29 55 | 98.95 89 | 92.66 88 | 98.59 154 | 97.14 168 | 88.95 164 | 93.12 140 | 99.25 27 | 85.62 131 | 99.94 37 | 96.56 70 | 99.48 63 | 99.28 106 |
MP-MVS-pluss: MP-MVS-pluss. MP-MVS-pluss |
agg_prior1 | | | 97.12 25 | 97.03 23 | 97.38 53 | 99.54 40 | 92.66 88 | 99.35 67 | 97.64 94 | 90.38 120 | 97.98 47 | 99.17 39 | 90.84 39 | 99.61 94 | 98.57 29 | 99.78 31 | 99.87 31 |
|
agg_prior | | | | | | 99.54 40 | 92.66 88 | | 97.64 94 | | 97.98 47 | | | 99.61 94 | | | |
|
MVS_Test | | | 93.67 123 | 92.67 133 | 96.69 92 | 96.72 160 | 92.66 88 | 97.22 254 | 96.03 235 | 87.69 208 | 95.12 111 | 94.03 230 | 81.55 191 | 98.28 170 | 89.17 184 | 96.46 140 | 99.14 116 |
|
thisisatest0515 | | | 94.75 94 | 94.19 96 | 96.43 105 | 96.13 186 | 92.64 92 | 99.47 45 | 97.60 104 | 87.55 211 | 93.17 139 | 97.59 145 | 94.71 13 | 98.42 164 | 88.28 191 | 93.20 174 | 98.24 179 |
|
1121 | | | 95.19 84 | 94.45 90 | 97.42 49 | 98.88 92 | 92.58 93 | 96.22 289 | 97.75 68 | 85.50 243 | 96.86 70 | 99.01 65 | 88.59 72 | 99.90 45 | 87.64 200 | 99.60 56 | 99.79 38 |
|
FMVSNet2 | | | 86.90 249 | 84.79 267 | 93.24 205 | 95.11 217 | 92.54 94 | 97.67 236 | 95.86 257 | 82.94 284 | 80.55 283 | 91.17 285 | 62.89 316 | 95.29 316 | 77.23 290 | 79.71 278 | 91.90 265 |
|
新几何1 | | | | | 97.40 51 | 98.92 90 | 92.51 95 | | 97.77 67 | 85.52 241 | 96.69 79 | 99.06 56 | 88.08 81 | 99.89 48 | 84.88 227 | 99.62 51 | 99.79 38 |
|
test_part1 | | | 88.43 227 | 86.68 238 | 93.67 200 | 97.56 133 | 92.40 96 | 98.12 202 | 96.55 202 | 82.26 297 | 80.31 286 | 93.16 254 | 74.59 234 | 96.62 248 | 85.00 226 | 72.61 325 | 91.99 263 |
|
114514_t | | | 94.06 109 | 93.05 124 | 97.06 63 | 99.08 82 | 92.26 97 | 98.97 111 | 97.01 183 | 82.58 291 | 92.57 145 | 98.22 124 | 80.68 198 | 99.30 133 | 89.34 180 | 99.02 89 | 99.63 74 |
|
iter_conf_final | | | 93.22 138 | 93.04 125 | 93.76 196 | 97.03 152 | 92.22 98 | 99.05 101 | 93.31 334 | 92.11 80 | 86.93 211 | 95.42 208 | 95.01 10 | 96.59 250 | 93.98 121 | 84.48 242 | 92.46 242 |
|
test2506 | | | 94.80 92 | 94.21 95 | 96.58 97 | 96.41 168 | 92.18 99 | 98.01 214 | 98.96 10 | 90.82 108 | 93.46 136 | 97.28 154 | 85.92 128 | 98.45 163 | 89.82 171 | 97.19 132 | 99.12 118 |
|
test_prior4 | | | | | | | 92.00 100 | 99.41 59 | | | | | | | | | |
|
test_prior3 | | | 97.07 28 | 97.09 20 | 97.01 65 | 99.58 33 | 91.77 101 | 99.57 32 | 97.57 113 | 91.43 93 | 98.12 39 | 98.97 67 | 90.43 45 | 99.49 109 | 98.33 36 | 99.81 23 | 99.79 38 |
|
test_prior | | | | | 97.01 65 | 99.58 33 | 91.77 101 | | 97.57 113 | | | | | 99.49 109 | | | 99.79 38 |
|
PHI-MVS | | | 96.65 40 | 96.46 40 | 97.21 59 | 99.34 58 | 91.77 101 | 99.70 16 | 98.05 41 | 86.48 231 | 98.05 43 | 99.20 33 | 89.33 62 | 99.96 30 | 98.38 34 | 99.62 51 | 99.90 24 |
|
Regformer-3 | | | 96.50 44 | 96.36 43 | 96.91 76 | 99.34 58 | 91.72 104 | 98.71 133 | 97.90 50 | 92.48 67 | 96.00 88 | 98.95 74 | 88.60 70 | 99.52 105 | 96.44 73 | 98.83 98 | 99.49 88 |
|
ab-mvs | | | 91.05 177 | 89.17 194 | 96.69 92 | 95.96 187 | 91.72 104 | 92.62 333 | 97.23 158 | 85.61 240 | 89.74 187 | 93.89 236 | 68.55 281 | 99.42 120 | 91.09 155 | 87.84 221 | 98.92 137 |
|
TSAR-MVS + GP. | | | 96.95 31 | 96.91 27 | 97.07 62 | 98.88 92 | 91.62 106 | 99.58 31 | 96.54 204 | 95.09 19 | 96.84 73 | 98.63 103 | 91.16 31 | 99.77 72 | 99.04 18 | 96.42 142 | 99.81 35 |
|
PVSNet_BlendedMVS | | | 93.36 132 | 93.20 120 | 93.84 194 | 98.77 97 | 91.61 107 | 99.47 45 | 98.04 42 | 91.44 92 | 94.21 124 | 92.63 262 | 83.50 156 | 99.87 52 | 97.41 50 | 83.37 257 | 90.05 322 |
|
PVSNet_Blended | | | 95.94 64 | 95.66 70 | 96.75 86 | 98.77 97 | 91.61 107 | 99.88 1 | 98.04 42 | 93.64 45 | 94.21 124 | 97.76 135 | 83.50 156 | 99.87 52 | 97.41 50 | 97.75 122 | 98.79 149 |
|
PCF-MVS | | 89.78 5 | 91.26 172 | 89.63 184 | 96.16 116 | 95.44 202 | 91.58 109 | 95.29 308 | 96.10 232 | 85.07 250 | 82.75 249 | 97.45 150 | 78.28 215 | 99.78 71 | 80.60 271 | 95.65 159 | 97.12 205 |
Andreas Kuhn, Shan Lin, Oliver Erdler: Plane Completion and Filtering for Multi-View Stereo Reconstruction. GCPR 2019 |
SteuartSystems-ACMMP | | | 97.25 18 | 97.34 17 | 97.01 65 | 97.38 136 | 91.46 110 | 99.75 12 | 97.66 88 | 94.14 30 | 98.13 37 | 99.26 26 | 92.16 29 | 99.66 85 | 97.91 46 | 99.64 47 | 99.90 24 |
Skip Steuart: Steuart Systems R&D Blog. |
Regformer-4 | | | 96.45 47 | 96.33 46 | 96.81 83 | 99.34 58 | 91.44 111 | 98.71 133 | 97.88 51 | 92.43 68 | 95.97 90 | 98.95 74 | 88.42 74 | 99.51 106 | 96.40 74 | 98.83 98 | 99.49 88 |
|
VPNet | | | 88.30 229 | 86.57 239 | 93.49 201 | 91.95 287 | 91.35 112 | 98.18 197 | 97.20 164 | 88.61 172 | 84.52 231 | 94.89 216 | 62.21 319 | 96.76 245 | 89.34 180 | 72.26 330 | 92.36 245 |
|
GST-MVS | | | 95.97 62 | 95.66 70 | 96.90 77 | 99.49 50 | 91.22 113 | 99.45 52 | 97.48 132 | 89.69 140 | 95.89 93 | 98.72 95 | 86.37 122 | 99.95 34 | 94.62 114 | 99.22 83 | 99.52 84 |
|
test222 | | | | | | 98.32 108 | 91.21 114 | 98.08 209 | 97.58 110 | 83.74 270 | 95.87 95 | 99.02 61 | 86.74 109 | | | 99.64 47 | 99.81 35 |
|
ZNCC-MVS | | | 96.09 57 | 95.81 66 | 96.95 75 | 99.42 54 | 91.19 115 | 99.55 35 | 97.53 120 | 89.72 139 | 95.86 96 | 98.94 79 | 86.59 114 | 99.97 23 | 95.13 100 | 99.56 59 | 99.68 66 |
|
zzz-MVS | | | 96.21 55 | 95.96 59 | 96.96 73 | 99.29 66 | 91.19 115 | 98.69 138 | 97.45 137 | 92.58 63 | 94.39 121 | 99.24 29 | 86.43 120 | 99.99 5 | 96.22 76 | 99.40 72 | 99.71 60 |
|
MTAPA | | | 96.09 57 | 95.80 67 | 96.96 73 | 99.29 66 | 91.19 115 | 97.23 253 | 97.45 137 | 92.58 63 | 94.39 121 | 99.24 29 | 86.43 120 | 99.99 5 | 96.22 76 | 99.40 72 | 99.71 60 |
|
MDTV_nov1_ep13_2view | | | | | | | 91.17 118 | 91.38 340 | | 87.45 213 | 93.08 141 | | 86.67 112 | | 87.02 204 | | 98.95 134 |
|
FIs | | | 90.70 183 | 89.87 182 | 93.18 206 | 92.29 281 | 91.12 119 | 98.17 199 | 98.25 27 | 89.11 159 | 83.44 239 | 94.82 219 | 82.26 183 | 96.17 285 | 87.76 198 | 82.76 262 | 92.25 248 |
|
1112_ss | | | 92.71 145 | 91.55 157 | 96.20 112 | 95.56 198 | 91.12 119 | 98.48 167 | 94.69 309 | 88.29 187 | 86.89 213 | 98.50 111 | 87.02 103 | 98.66 159 | 84.75 228 | 89.77 216 | 98.81 147 |
|
PVSNet_Blended_VisFu | | | 94.67 99 | 94.11 99 | 96.34 110 | 97.14 145 | 91.10 121 | 99.32 71 | 97.43 143 | 92.10 81 | 91.53 158 | 96.38 193 | 83.29 162 | 99.68 83 | 93.42 134 | 96.37 143 | 98.25 178 |
|
Test_1112_low_res | | | 92.27 157 | 90.97 166 | 96.18 113 | 95.53 200 | 91.10 121 | 98.47 169 | 94.66 310 | 88.28 188 | 86.83 215 | 93.50 247 | 87.00 104 | 98.65 160 | 84.69 229 | 89.74 217 | 98.80 148 |
|
LFMVS | | | 92.23 158 | 90.84 170 | 96.42 106 | 98.24 110 | 91.08 123 | 98.24 192 | 96.22 223 | 83.39 277 | 94.74 116 | 98.31 120 | 61.12 324 | 98.85 148 | 94.45 117 | 92.82 178 | 99.32 102 |
|
ETV-MVS | | | 96.00 59 | 96.00 58 | 96.00 120 | 96.56 163 | 91.05 124 | 99.63 26 | 96.61 195 | 93.26 51 | 97.39 58 | 98.30 121 | 86.62 113 | 98.13 174 | 98.07 43 | 97.57 123 | 98.82 146 |
|
VPA-MVSNet | | | 89.10 208 | 87.66 221 | 93.45 202 | 92.56 278 | 91.02 125 | 97.97 217 | 98.32 25 | 86.92 221 | 86.03 220 | 92.01 268 | 68.84 280 | 97.10 232 | 90.92 158 | 75.34 296 | 92.23 250 |
|
MVS_111021_HR | | | 96.69 38 | 96.69 35 | 96.72 90 | 98.58 104 | 91.00 126 | 99.14 91 | 99.45 1 | 93.86 37 | 95.15 110 | 98.73 93 | 88.48 73 | 99.76 73 | 97.23 54 | 99.56 59 | 99.40 95 |
|
HFP-MVS | | | 96.42 48 | 96.26 47 | 96.90 77 | 99.69 9 | 90.96 127 | 99.47 45 | 97.81 60 | 90.54 116 | 96.88 67 | 99.05 57 | 87.57 87 | 99.96 30 | 95.65 87 | 99.72 34 | 99.78 42 |
|
#test# | | | 96.48 45 | 96.34 44 | 96.90 77 | 99.69 9 | 90.96 127 | 99.53 40 | 97.81 60 | 90.94 105 | 96.88 67 | 99.05 57 | 87.57 87 | 99.96 30 | 95.87 84 | 99.72 34 | 99.78 42 |
|
UniMVSNet (Re) | | | 89.50 206 | 88.32 214 | 93.03 208 | 92.21 283 | 90.96 127 | 98.90 117 | 98.39 23 | 89.13 158 | 83.22 241 | 92.03 266 | 81.69 190 | 96.34 274 | 86.79 209 | 72.53 326 | 91.81 266 |
|
IB-MVS | | 89.43 6 | 92.12 159 | 90.83 172 | 95.98 122 | 95.40 205 | 90.78 130 | 99.81 5 | 98.06 40 | 91.23 100 | 85.63 222 | 93.66 242 | 90.63 41 | 98.78 150 | 91.22 153 | 71.85 333 | 98.36 174 |
Christian Sormann, Mattia Rossi, Andreas Kuhn and Friedrich Fraundorfer: IB-MVS: An Iterative Algorithm for Deep Multi-View Stereo based on Binary Decisions. BMVC 2021 |
Effi-MVS+ | | | 93.87 116 | 93.15 122 | 96.02 119 | 95.79 190 | 90.76 131 | 96.70 275 | 95.78 259 | 86.98 219 | 95.71 100 | 97.17 164 | 79.58 203 | 98.01 184 | 94.57 115 | 96.09 150 | 99.31 103 |
|
DeepC-MVS | | 91.02 4 | 94.56 104 | 93.92 108 | 96.46 103 | 97.16 143 | 90.76 131 | 98.39 181 | 97.11 172 | 93.92 33 | 88.66 195 | 98.33 119 | 78.14 216 | 99.85 59 | 95.02 103 | 98.57 109 | 98.78 151 |
Andreas Kuhn, Christian Sormann, Mattia Rossi, Oliver Erdler, Friedrich Fraundorfer: DeepC-MVS: Deep Confidence Prediction for Multi-View Stereo Reconstruction. 3DV 2020 |
diffmvs | | | 94.59 103 | 94.19 96 | 95.81 126 | 95.54 199 | 90.69 133 | 98.70 137 | 95.68 266 | 91.61 87 | 95.96 91 | 97.81 132 | 80.11 200 | 98.06 180 | 96.52 71 | 95.76 156 | 98.67 157 |
|
NR-MVSNet | | | 87.74 240 | 86.00 248 | 92.96 210 | 91.46 295 | 90.68 134 | 96.65 276 | 97.42 144 | 88.02 196 | 73.42 334 | 93.68 240 | 77.31 220 | 95.83 302 | 84.26 234 | 71.82 334 | 92.36 245 |
|
XVS | | | 96.47 46 | 96.37 42 | 96.77 84 | 99.62 25 | 90.66 135 | 99.43 56 | 97.58 110 | 92.41 72 | 96.86 70 | 98.96 72 | 87.37 93 | 99.87 52 | 95.65 87 | 99.43 68 | 99.78 42 |
|
X-MVStestdata | | | 90.69 184 | 88.66 205 | 96.77 84 | 99.62 25 | 90.66 135 | 99.43 56 | 97.58 110 | 92.41 72 | 96.86 70 | 29.59 380 | 87.37 93 | 99.87 52 | 95.65 87 | 99.43 68 | 99.78 42 |
|
ACMMPR | | | 96.28 53 | 96.14 56 | 96.73 88 | 99.68 12 | 90.47 137 | 99.47 45 | 97.80 62 | 90.54 116 | 96.83 75 | 99.03 60 | 86.51 118 | 99.95 34 | 95.65 87 | 99.72 34 | 99.75 53 |
|
EI-MVSNet-Vis-set | | | 95.76 72 | 95.63 74 | 96.17 115 | 99.14 77 | 90.33 138 | 98.49 166 | 97.82 57 | 91.92 82 | 94.75 115 | 98.88 84 | 87.06 102 | 99.48 114 | 95.40 95 | 97.17 134 | 98.70 156 |
|
region2R | | | 96.30 52 | 96.17 52 | 96.70 91 | 99.70 8 | 90.31 139 | 99.46 50 | 97.66 88 | 90.55 115 | 97.07 64 | 99.07 54 | 86.85 106 | 99.97 23 | 95.43 94 | 99.74 32 | 99.81 35 |
|
TESTMET0.1,1 | | | 93.82 117 | 93.26 119 | 95.49 134 | 95.21 209 | 90.25 140 | 99.15 88 | 97.54 119 | 89.18 157 | 91.79 151 | 94.87 217 | 89.13 63 | 97.63 209 | 86.21 213 | 96.29 147 | 98.60 161 |
|
baseline2 | | | 94.04 110 | 93.80 111 | 94.74 160 | 93.07 274 | 90.25 140 | 98.12 202 | 98.16 35 | 89.86 135 | 86.53 218 | 96.95 173 | 95.56 6 | 98.05 181 | 91.44 152 | 94.53 165 | 95.93 225 |
|
PVSNet | | 87.13 12 | 93.69 120 | 92.83 130 | 96.28 111 | 97.99 119 | 90.22 142 | 99.38 62 | 98.93 11 | 91.42 95 | 93.66 134 | 97.68 140 | 71.29 268 | 99.64 91 | 87.94 197 | 97.20 131 | 98.98 128 |
|
MSP-MVS | | | 97.77 9 | 98.18 2 | 96.53 101 | 99.54 40 | 90.14 143 | 99.41 59 | 97.70 81 | 95.46 17 | 98.60 25 | 99.19 34 | 95.71 4 | 99.49 109 | 98.15 42 | 99.85 13 | 99.95 15 |
Zhenlong Yuan, Cong Liu, Fei Shen, Zhaoxin Li, Jingguo luo, Tianlu Mao and Zhaoqi Wang: MSP-MVS: Multi-granularity Segmentation Prior Guided Multi-View Stereo. AAAI2025 |
PAPM_NR | | | 95.43 77 | 95.05 82 | 96.57 99 | 99.42 54 | 90.14 143 | 98.58 156 | 97.51 126 | 90.65 113 | 92.44 147 | 98.90 81 | 87.77 86 | 99.90 45 | 90.88 159 | 99.32 75 | 99.68 66 |
|
MP-MVS |  | | 96.00 59 | 95.82 64 | 96.54 100 | 99.47 51 | 90.13 145 | 99.36 66 | 97.41 145 | 90.64 114 | 95.49 104 | 98.95 74 | 85.51 134 | 99.98 10 | 96.00 83 | 99.59 58 | 99.52 84 |
Rongxuan Tan, Qing Wang, et al.: MP-MVS: Multi-Scale Windows PatchMatch and Planar Prior Multi-View Stereo. |
原ACMM1 | | | | | 96.18 113 | 99.03 84 | 90.08 146 | | 97.63 99 | 88.98 162 | 97.00 65 | 98.97 67 | 88.14 80 | 99.71 78 | 88.23 192 | 99.62 51 | 98.76 153 |
|
UniMVSNet_NR-MVSNet | | | 89.60 203 | 88.55 210 | 92.75 215 | 92.17 284 | 90.07 147 | 98.74 132 | 98.15 36 | 88.37 184 | 83.21 242 | 93.98 233 | 82.86 170 | 95.93 296 | 86.95 206 | 72.47 327 | 92.25 248 |
|
DU-MVS | | | 88.83 217 | 87.51 223 | 92.79 213 | 91.46 295 | 90.07 147 | 98.71 133 | 97.62 101 | 88.87 168 | 83.21 242 | 93.68 240 | 74.63 230 | 95.93 296 | 86.95 206 | 72.47 327 | 92.36 245 |
|
baseline | | | 93.91 114 | 93.30 117 | 95.72 129 | 95.10 220 | 90.07 147 | 97.48 241 | 95.91 250 | 91.03 102 | 93.54 135 | 97.68 140 | 79.58 203 | 98.02 183 | 94.27 119 | 95.14 161 | 99.08 122 |
|
API-MVS | | | 94.78 93 | 94.18 98 | 96.59 96 | 99.21 73 | 90.06 150 | 98.80 126 | 97.78 65 | 83.59 274 | 93.85 131 | 99.21 32 | 83.79 153 | 99.97 23 | 92.37 146 | 99.00 90 | 99.74 56 |
|
EPMVS | | | 92.59 150 | 91.59 156 | 95.59 133 | 97.22 141 | 90.03 151 | 91.78 338 | 98.04 42 | 90.42 119 | 91.66 154 | 90.65 298 | 86.49 119 | 97.46 219 | 81.78 263 | 96.31 145 | 99.28 106 |
|
thisisatest0530 | | | 94.00 111 | 93.52 114 | 95.43 137 | 95.76 192 | 90.02 152 | 98.99 109 | 97.60 104 | 86.58 228 | 91.74 152 | 97.36 153 | 94.78 12 | 98.34 166 | 86.37 212 | 92.48 185 | 97.94 188 |
|
CNLPA | | | 93.64 124 | 92.74 131 | 96.36 109 | 98.96 88 | 90.01 153 | 99.19 77 | 95.89 253 | 86.22 234 | 89.40 190 | 98.85 85 | 80.66 199 | 99.84 60 | 88.57 188 | 96.92 136 | 99.24 109 |
|
EI-MVSNet-UG-set | | | 95.43 77 | 95.29 76 | 95.86 125 | 99.07 83 | 89.87 154 | 98.43 171 | 97.80 62 | 91.78 85 | 94.11 126 | 98.77 89 | 86.25 125 | 99.48 114 | 94.95 106 | 96.45 141 | 98.22 180 |
|
FC-MVSNet-test | | | 90.22 191 | 89.40 190 | 92.67 218 | 91.78 291 | 89.86 155 | 97.89 219 | 98.22 30 | 88.81 169 | 82.96 247 | 94.66 222 | 81.90 189 | 95.96 294 | 85.89 219 | 82.52 265 | 92.20 253 |
|
casdiffmvs | | | 93.98 112 | 93.43 115 | 95.61 132 | 95.07 222 | 89.86 155 | 98.80 126 | 95.84 258 | 90.98 104 | 92.74 144 | 97.66 142 | 79.71 202 | 98.10 176 | 94.72 110 | 95.37 160 | 98.87 141 |
|
PGM-MVS | | | 95.85 67 | 95.65 72 | 96.45 104 | 99.50 47 | 89.77 157 | 98.22 193 | 98.90 12 | 89.19 156 | 96.74 77 | 98.95 74 | 85.91 130 | 99.92 41 | 93.94 122 | 99.46 64 | 99.66 70 |
|
XXY-MVS | | | 87.75 238 | 86.02 247 | 92.95 211 | 90.46 307 | 89.70 158 | 97.71 235 | 95.90 251 | 84.02 265 | 80.95 279 | 94.05 227 | 67.51 291 | 97.10 232 | 85.16 222 | 78.41 281 | 92.04 262 |
|
mvs_anonymous | | | 92.50 152 | 91.65 155 | 95.06 148 | 96.60 162 | 89.64 159 | 97.06 259 | 96.44 210 | 86.64 227 | 84.14 234 | 93.93 234 | 82.49 178 | 96.17 285 | 91.47 151 | 96.08 151 | 99.35 99 |
|
CP-MVS | | | 96.22 54 | 96.15 55 | 96.42 106 | 99.67 13 | 89.62 160 | 99.70 16 | 97.61 102 | 90.07 133 | 96.00 88 | 99.16 41 | 87.43 91 | 99.92 41 | 96.03 82 | 99.72 34 | 99.70 62 |
|
WR-MVS | | | 88.54 225 | 87.22 230 | 92.52 219 | 91.93 289 | 89.50 161 | 98.56 157 | 97.84 55 | 86.99 217 | 81.87 271 | 93.81 237 | 74.25 241 | 95.92 298 | 85.29 221 | 74.43 306 | 92.12 256 |
|
CDS-MVSNet | | | 93.47 127 | 93.04 125 | 94.76 158 | 94.75 234 | 89.45 162 | 98.82 124 | 97.03 181 | 87.91 199 | 90.97 167 | 96.48 188 | 89.06 64 | 96.36 268 | 89.50 175 | 92.81 180 | 98.49 165 |
Khang Truong Giang, Soohwan Song, Sungho Jo: Curvature-guided dynamic scale networks for Multi-view Stereo. ICLR 2022 |
mPP-MVS | | | 95.90 66 | 95.75 68 | 96.38 108 | 99.58 33 | 89.41 163 | 99.26 74 | 97.41 145 | 90.66 111 | 94.82 114 | 98.95 74 | 86.15 126 | 99.98 10 | 95.24 99 | 99.64 47 | 99.74 56 |
|
HPM-MVS |  | | 95.41 79 | 95.22 78 | 95.99 121 | 99.29 66 | 89.14 164 | 99.17 81 | 97.09 176 | 87.28 215 | 95.40 105 | 98.48 114 | 84.93 142 | 99.38 124 | 95.64 91 | 99.65 44 | 99.47 91 |
Chunlin Ren, Qingshan Xu, Shikun Zhang, Jiaqi Yang: Hierarchical Prior Mining for Non-local Multi-View Stereo. ICCV 2023 |
AdaColmap |  | | 93.82 117 | 93.06 123 | 96.10 117 | 99.88 1 | 89.07 165 | 98.33 185 | 97.55 116 | 86.81 224 | 90.39 179 | 98.65 100 | 75.09 229 | 99.98 10 | 93.32 135 | 97.53 126 | 99.26 108 |
|
SR-MVS | | | 96.13 56 | 96.16 54 | 96.07 118 | 99.42 54 | 89.04 166 | 98.59 154 | 97.33 152 | 90.44 118 | 96.84 73 | 99.12 48 | 86.75 108 | 99.41 122 | 97.47 49 | 99.44 67 | 99.76 52 |
|
PatchmatchNet |  | | 92.05 162 | 91.04 165 | 95.06 148 | 96.17 180 | 89.04 166 | 91.26 342 | 97.26 153 | 89.56 147 | 90.64 173 | 90.56 304 | 88.35 76 | 97.11 230 | 79.53 275 | 96.07 152 | 99.03 125 |
Fangjinhua Wang, Silvano Galliani, Christoph Vogel, Pablo Speciale, Marc Pollefeys: PatchmatchNet: Learned Multi-View Patchmatch Stereo. |
KD-MVS_2432*1600 | | | 82.98 298 | 80.52 306 | 90.38 266 | 94.32 241 | 88.98 168 | 92.87 330 | 95.87 255 | 80.46 316 | 73.79 332 | 87.49 335 | 82.76 174 | 93.29 340 | 70.56 331 | 46.53 370 | 88.87 338 |
|
miper_refine_blended | | | 82.98 298 | 80.52 306 | 90.38 266 | 94.32 241 | 88.98 168 | 92.87 330 | 95.87 255 | 80.46 316 | 73.79 332 | 87.49 335 | 82.76 174 | 93.29 340 | 70.56 331 | 46.53 370 | 88.87 338 |
|
FOURS1 | | | | | | 99.50 47 | 88.94 170 | 99.55 35 | 97.47 134 | 91.32 97 | 98.12 39 | | | | | | |
|
miper_enhance_ethall | | | 90.33 188 | 89.70 183 | 92.22 222 | 97.12 147 | 88.93 171 | 98.35 184 | 95.96 239 | 88.60 173 | 83.14 246 | 92.33 264 | 87.38 92 | 96.18 283 | 86.49 211 | 77.89 284 | 91.55 277 |
|
pmmvs4 | | | 87.58 243 | 86.17 246 | 91.80 233 | 89.58 320 | 88.92 172 | 97.25 251 | 95.28 290 | 82.54 292 | 80.49 284 | 93.17 253 | 75.62 227 | 96.05 290 | 82.75 253 | 78.90 279 | 90.42 313 |
|
SCA | | | 90.64 185 | 89.25 193 | 94.83 157 | 94.95 227 | 88.83 173 | 96.26 286 | 97.21 160 | 90.06 134 | 90.03 183 | 90.62 300 | 66.61 298 | 96.81 242 | 83.16 248 | 94.36 167 | 98.84 142 |
|
GBi-Net | | | 86.67 254 | 84.96 261 | 91.80 233 | 95.11 217 | 88.81 174 | 96.77 269 | 95.25 291 | 82.94 284 | 82.12 263 | 90.25 311 | 62.89 316 | 94.97 321 | 79.04 279 | 80.24 272 | 91.62 271 |
|
test1 | | | 86.67 254 | 84.96 261 | 91.80 233 | 95.11 217 | 88.81 174 | 96.77 269 | 95.25 291 | 82.94 284 | 82.12 263 | 90.25 311 | 62.89 316 | 94.97 321 | 79.04 279 | 80.24 272 | 91.62 271 |
|
FMVSNet1 | | | 83.94 294 | 81.32 302 | 91.80 233 | 91.94 288 | 88.81 174 | 96.77 269 | 95.25 291 | 77.98 327 | 78.25 311 | 90.25 311 | 50.37 355 | 94.97 321 | 73.27 321 | 77.81 288 | 91.62 271 |
|
CHOSEN 1792x2688 | | | 94.35 106 | 93.82 110 | 95.95 123 | 97.40 135 | 88.74 177 | 98.41 174 | 98.27 26 | 92.18 78 | 91.43 159 | 96.40 190 | 78.88 209 | 99.81 67 | 93.59 130 | 97.81 118 | 99.30 104 |
|
UGNet | | | 91.91 163 | 90.85 169 | 95.10 145 | 97.06 150 | 88.69 178 | 98.01 214 | 98.24 29 | 92.41 72 | 92.39 148 | 93.61 243 | 60.52 325 | 99.68 83 | 88.14 193 | 97.25 130 | 96.92 212 |
Wanjuan Su, Qingshan Xu, Wenbing Tao: Uncertainty-guided Multi-view Stereo Network for Depth Estimation. IEEE Transactions on Circuits and Systems for Video Technology, 2022 |
TranMVSNet+NR-MVSNet | | | 87.75 238 | 86.31 243 | 92.07 228 | 90.81 302 | 88.56 179 | 98.33 185 | 97.18 165 | 87.76 203 | 81.87 271 | 93.90 235 | 72.45 255 | 95.43 312 | 83.13 250 | 71.30 337 | 92.23 250 |
|
BH-RMVSNet | | | 91.25 174 | 89.99 181 | 95.03 150 | 96.75 159 | 88.55 180 | 98.65 144 | 94.95 300 | 87.74 205 | 87.74 201 | 97.80 133 | 68.27 284 | 98.14 173 | 80.53 272 | 97.49 127 | 98.41 168 |
|
MDTV_nov1_ep13 | | | | 90.47 179 | | 96.14 183 | 88.55 180 | 91.34 341 | 97.51 126 | 89.58 145 | 92.24 149 | 90.50 308 | 86.99 105 | 97.61 211 | 77.64 289 | 92.34 187 | |
|
UA-Net | | | 93.30 134 | 92.62 134 | 95.34 140 | 96.27 174 | 88.53 182 | 95.88 299 | 96.97 185 | 90.90 106 | 95.37 106 | 97.07 168 | 82.38 182 | 99.10 143 | 83.91 242 | 94.86 164 | 98.38 171 |
|
HPM-MVS_fast | | | 94.89 89 | 94.62 86 | 95.70 130 | 99.11 79 | 88.44 183 | 99.14 91 | 97.11 172 | 85.82 238 | 95.69 101 | 98.47 115 | 83.46 158 | 99.32 132 | 93.16 137 | 99.63 50 | 99.35 99 |
|
Vis-MVSNet |  | | 92.64 147 | 91.85 150 | 95.03 150 | 95.12 216 | 88.23 184 | 98.48 167 | 96.81 189 | 91.61 87 | 92.16 150 | 97.22 160 | 71.58 266 | 98.00 185 | 85.85 220 | 97.81 118 | 98.88 139 |
Jingyang Zhang, Yao Yao, Shiwei Li, Zixin Luo, Tian Fang: Visibility-aware Multiview Stereo Network. BMVC 2020 |
DROMVSNet | | | 95.09 86 | 95.17 79 | 94.84 156 | 95.42 203 | 88.17 185 | 99.48 43 | 95.92 245 | 91.47 91 | 97.34 60 | 98.36 118 | 82.77 172 | 97.41 223 | 97.24 53 | 98.58 108 | 98.94 135 |
|
gm-plane-assit | | | | | | 94.69 235 | 88.14 186 | | | 88.22 190 | | 97.20 161 | | 98.29 169 | 90.79 161 | | |
|
ACMMP |  | | 94.67 99 | 94.30 92 | 95.79 127 | 99.25 69 | 88.13 187 | 98.41 174 | 98.67 20 | 90.38 120 | 91.43 159 | 98.72 95 | 82.22 184 | 99.95 34 | 93.83 126 | 95.76 156 | 99.29 105 |
Qingshan Xu, Weihang Kong, Wenbing Tao, Marc Pollefeys: Multi-Scale Geometric Consistency Guided and Planar Prior Assisted Multi-View Stereo. IEEE Transactions on Pattern Analysis and Machine Intelligence |
tfpnnormal | | | 83.65 295 | 81.35 301 | 90.56 261 | 91.37 297 | 88.06 188 | 97.29 248 | 97.87 53 | 78.51 326 | 76.20 317 | 90.91 288 | 64.78 310 | 96.47 261 | 61.71 356 | 73.50 317 | 87.13 351 |
|
HyFIR lowres test | | | 93.68 122 | 93.29 118 | 94.87 154 | 97.57 132 | 88.04 189 | 98.18 197 | 98.47 22 | 87.57 210 | 91.24 164 | 95.05 214 | 85.49 135 | 97.46 219 | 93.22 136 | 92.82 178 | 99.10 120 |
|
TR-MVS | | | 90.77 181 | 89.44 188 | 94.76 158 | 96.31 173 | 88.02 190 | 97.92 218 | 95.96 239 | 85.52 241 | 88.22 199 | 97.23 159 | 66.80 297 | 98.09 177 | 84.58 231 | 92.38 186 | 98.17 183 |
|
GA-MVS | | | 90.10 195 | 88.69 204 | 94.33 175 | 92.44 280 | 87.97 191 | 99.08 97 | 96.26 221 | 89.65 141 | 86.92 212 | 93.11 255 | 68.09 285 | 96.96 236 | 82.54 256 | 90.15 214 | 98.05 184 |
|
ECVR-MVS |  | | 92.29 155 | 91.33 160 | 95.15 144 | 96.41 168 | 87.84 192 | 98.10 206 | 94.84 303 | 90.82 108 | 91.42 161 | 97.28 154 | 65.61 306 | 98.49 162 | 90.33 165 | 97.19 132 | 99.12 118 |
|
APD-MVS_3200maxsize | | | 95.64 76 | 95.65 72 | 95.62 131 | 99.24 70 | 87.80 193 | 98.42 172 | 97.22 159 | 88.93 166 | 96.64 82 | 98.98 66 | 85.49 135 | 99.36 126 | 96.68 65 | 99.27 79 | 99.70 62 |
|
MVS_111021_LR | | | 95.78 70 | 95.94 60 | 95.28 142 | 98.19 113 | 87.69 194 | 98.80 126 | 99.26 7 | 93.39 48 | 95.04 112 | 98.69 99 | 84.09 151 | 99.76 73 | 96.96 61 | 99.06 87 | 98.38 171 |
|
VDDNet | | | 90.08 196 | 88.54 211 | 94.69 162 | 94.41 240 | 87.68 195 | 98.21 195 | 96.40 211 | 76.21 336 | 93.33 138 | 97.75 136 | 54.93 343 | 98.77 151 | 94.71 111 | 90.96 207 | 97.61 196 |
|
TAMVS | | | 92.62 148 | 92.09 146 | 94.20 180 | 94.10 245 | 87.68 195 | 98.41 174 | 96.97 185 | 87.53 212 | 89.74 187 | 96.04 199 | 84.77 146 | 96.49 260 | 88.97 186 | 92.31 188 | 98.42 167 |
|
CS-MVS-test | | | 95.98 61 | 96.34 44 | 94.90 153 | 98.06 117 | 87.66 197 | 99.69 22 | 96.10 232 | 93.66 43 | 98.35 34 | 99.05 57 | 86.28 123 | 97.66 206 | 96.96 61 | 98.90 95 | 99.37 97 |
|
cl22 | | | 89.57 204 | 88.79 202 | 91.91 229 | 97.94 120 | 87.62 198 | 97.98 216 | 96.51 205 | 85.03 251 | 82.37 259 | 91.79 272 | 83.65 154 | 96.50 258 | 85.96 216 | 77.89 284 | 91.61 274 |
|
v2v482 | | | 87.27 246 | 85.76 251 | 91.78 237 | 89.59 319 | 87.58 199 | 98.56 157 | 95.54 274 | 84.53 259 | 82.51 254 | 91.78 273 | 73.11 250 | 96.47 261 | 82.07 259 | 74.14 312 | 91.30 288 |
|
ADS-MVSNet | | | 88.99 209 | 87.30 227 | 94.07 185 | 96.21 177 | 87.56 200 | 87.15 352 | 96.78 191 | 83.01 282 | 89.91 185 | 87.27 338 | 78.87 210 | 97.01 235 | 74.20 314 | 92.27 189 | 97.64 192 |
|
PLC |  | 91.07 3 | 94.23 108 | 94.01 102 | 94.87 154 | 99.17 76 | 87.49 201 | 99.25 75 | 96.55 202 | 88.43 182 | 91.26 163 | 98.21 126 | 85.92 128 | 99.86 57 | 89.77 173 | 97.57 123 | 97.24 203 |
Jie Liao, Yanping Fu, Qingan Yan, Chunxia xiao: Pyramid Multi-View Stereo with Local Consistency. Pacific Graphics 2019 |
MAR-MVS | | | 94.43 105 | 94.09 100 | 95.45 136 | 99.10 81 | 87.47 202 | 98.39 181 | 97.79 64 | 88.37 184 | 94.02 128 | 99.17 39 | 78.64 214 | 99.91 43 | 92.48 145 | 98.85 97 | 98.96 130 |
Zhenyu Xu, Yiguang Liu, Xuelei Shi, Ying Wang, Yunan Zheng: MARMVS: Matching Ambiguity Reduced Multiple View Stereo for Efficient Large Scale Scene Reconstruction. CVPR 2020 |
tpmrst | | | 92.78 144 | 92.16 143 | 94.65 163 | 96.27 174 | 87.45 203 | 91.83 337 | 97.10 175 | 89.10 160 | 94.68 117 | 90.69 295 | 88.22 77 | 97.73 204 | 89.78 172 | 91.80 197 | 98.77 152 |
|
DP-MVS | | | 88.75 222 | 86.56 240 | 95.34 140 | 98.92 90 | 87.45 203 | 97.64 237 | 93.52 332 | 70.55 351 | 81.49 276 | 97.25 157 | 74.43 236 | 99.88 49 | 71.14 329 | 94.09 169 | 98.67 157 |
|
Fast-Effi-MVS+ | | | 91.72 165 | 90.79 173 | 94.49 167 | 95.89 188 | 87.40 205 | 99.54 39 | 95.70 264 | 85.01 253 | 89.28 192 | 95.68 203 | 77.75 218 | 97.57 216 | 83.22 247 | 95.06 162 | 98.51 164 |
|
test1111 | | | 92.12 159 | 91.19 163 | 94.94 152 | 96.15 181 | 87.36 206 | 98.12 202 | 94.84 303 | 90.85 107 | 90.97 167 | 97.26 156 | 65.60 307 | 98.37 165 | 89.74 174 | 97.14 135 | 99.07 124 |
|
MIMVSNet | | | 84.48 286 | 81.83 296 | 92.42 220 | 91.73 292 | 87.36 206 | 85.52 355 | 94.42 316 | 81.40 306 | 81.91 269 | 87.58 333 | 51.92 351 | 92.81 345 | 73.84 317 | 88.15 220 | 97.08 209 |
|
IS-MVSNet | | | 93.00 142 | 92.51 136 | 94.49 167 | 96.14 183 | 87.36 206 | 98.31 188 | 95.70 264 | 88.58 174 | 90.17 181 | 97.50 148 | 83.02 168 | 97.22 227 | 87.06 203 | 96.07 152 | 98.90 138 |
|
testdata | | | | | 95.26 143 | 98.20 111 | 87.28 209 | | 97.60 104 | 85.21 246 | 98.48 29 | 99.15 43 | 88.15 79 | 98.72 156 | 90.29 166 | 99.45 66 | 99.78 42 |
|
test-LLR | | | 93.11 141 | 92.68 132 | 94.40 171 | 94.94 228 | 87.27 210 | 99.15 88 | 97.25 154 | 90.21 124 | 91.57 155 | 94.04 228 | 84.89 143 | 97.58 213 | 85.94 217 | 96.13 148 | 98.36 174 |
|
test-mter | | | 93.27 136 | 92.89 129 | 94.40 171 | 94.94 228 | 87.27 210 | 99.15 88 | 97.25 154 | 88.95 164 | 91.57 155 | 94.04 228 | 88.03 82 | 97.58 213 | 85.94 217 | 96.13 148 | 98.36 174 |
|
SR-MVS-dyc-post | | | 95.75 73 | 95.86 63 | 95.41 138 | 99.22 71 | 87.26 212 | 98.40 177 | 97.21 160 | 89.63 142 | 96.67 80 | 98.97 67 | 86.73 110 | 99.36 126 | 96.62 66 | 99.31 76 | 99.60 78 |
|
RE-MVS-def | | | | 95.70 69 | | 99.22 71 | 87.26 212 | 98.40 177 | 97.21 160 | 89.63 142 | 96.67 80 | 98.97 67 | 85.24 140 | | 96.62 66 | 99.31 76 | 99.60 78 |
|
test1172 | | | 95.92 65 | 96.07 57 | 95.46 135 | 99.42 54 | 87.24 214 | 98.51 162 | 97.24 156 | 90.29 123 | 96.56 83 | 99.12 48 | 86.73 110 | 99.36 126 | 97.33 52 | 99.42 71 | 99.78 42 |
|
v1144 | | | 86.83 251 | 85.31 258 | 91.40 240 | 89.75 317 | 87.21 215 | 98.31 188 | 95.45 279 | 83.22 279 | 82.70 251 | 90.78 291 | 73.36 245 | 96.36 268 | 79.49 276 | 74.69 303 | 90.63 310 |
|
OMC-MVS | | | 93.90 115 | 93.62 113 | 94.73 161 | 98.63 101 | 87.00 216 | 98.04 213 | 96.56 201 | 92.19 77 | 92.46 146 | 98.73 93 | 79.49 206 | 99.14 141 | 92.16 148 | 94.34 168 | 98.03 185 |
|
abl_6 | | | 94.63 101 | 94.48 89 | 95.09 146 | 98.61 103 | 86.96 217 | 98.06 212 | 96.97 185 | 89.31 152 | 95.86 96 | 98.56 107 | 79.82 201 | 99.64 91 | 94.53 116 | 98.65 106 | 98.66 160 |
|
miper_ehance_all_eth | | | 88.94 211 | 88.12 217 | 91.40 240 | 95.32 206 | 86.93 218 | 97.85 224 | 95.55 273 | 84.19 263 | 81.97 268 | 91.50 278 | 84.16 150 | 95.91 299 | 84.69 229 | 77.89 284 | 91.36 285 |
|
v8 | | | 86.11 263 | 84.45 272 | 91.10 246 | 89.99 312 | 86.85 219 | 97.24 252 | 95.36 288 | 81.99 300 | 79.89 293 | 89.86 319 | 74.53 235 | 96.39 266 | 78.83 283 | 72.32 329 | 90.05 322 |
|
CPTT-MVS | | | 94.60 102 | 94.43 91 | 95.09 146 | 99.66 15 | 86.85 219 | 99.44 53 | 97.47 134 | 83.22 279 | 94.34 123 | 98.96 72 | 82.50 177 | 99.55 99 | 94.81 107 | 99.50 62 | 98.88 139 |
|
v10 | | | 85.73 272 | 84.01 278 | 90.87 255 | 90.03 311 | 86.73 221 | 97.20 255 | 95.22 298 | 81.25 308 | 79.85 294 | 89.75 320 | 73.30 248 | 96.28 280 | 76.87 294 | 72.64 324 | 89.61 329 |
|
Vis-MVSNet (Re-imp) | | | 93.26 137 | 93.00 128 | 94.06 186 | 96.14 183 | 86.71 222 | 98.68 140 | 96.70 192 | 88.30 186 | 89.71 189 | 97.64 143 | 85.43 138 | 96.39 266 | 88.06 195 | 96.32 144 | 99.08 122 |
|
EIA-MVS | | | 95.11 85 | 95.27 77 | 94.64 164 | 96.34 172 | 86.51 223 | 99.59 30 | 96.62 194 | 92.51 65 | 94.08 127 | 98.64 101 | 86.05 127 | 98.24 171 | 95.07 102 | 98.50 111 | 99.18 114 |
|
CSCG | | | 94.87 90 | 94.71 85 | 95.36 139 | 99.54 40 | 86.49 224 | 99.34 69 | 98.15 36 | 82.71 289 | 90.15 182 | 99.25 27 | 89.48 61 | 99.86 57 | 94.97 105 | 98.82 100 | 99.72 59 |
|
tttt0517 | | | 93.30 134 | 93.01 127 | 94.17 181 | 95.57 197 | 86.47 225 | 98.51 162 | 97.60 104 | 85.99 236 | 90.55 174 | 97.19 162 | 94.80 11 | 98.31 167 | 85.06 224 | 91.86 195 | 97.74 190 |
|
dp | | | 90.16 194 | 88.83 201 | 94.14 182 | 96.38 171 | 86.42 226 | 91.57 339 | 97.06 178 | 84.76 257 | 88.81 194 | 90.19 316 | 84.29 149 | 97.43 222 | 75.05 307 | 91.35 206 | 98.56 162 |
|
v1192 | | | 86.32 261 | 84.71 268 | 91.17 244 | 89.53 323 | 86.40 227 | 98.13 200 | 95.44 282 | 82.52 293 | 82.42 256 | 90.62 300 | 71.58 266 | 96.33 275 | 77.23 290 | 74.88 300 | 90.79 302 |
|
HQP5-MVS | | | | | | | 86.39 228 | | | | | | | | | | |
|
HQP-MVS | | | 91.50 168 | 91.23 162 | 92.29 221 | 93.95 249 | 86.39 228 | 99.16 82 | 96.37 213 | 93.92 33 | 87.57 202 | 96.67 184 | 73.34 246 | 97.77 197 | 93.82 127 | 86.29 227 | 92.72 237 |
|
PatchMatch-RL | | | 91.47 169 | 90.54 177 | 94.26 178 | 98.20 111 | 86.36 230 | 96.94 263 | 97.14 168 | 87.75 204 | 88.98 193 | 95.75 202 | 71.80 263 | 99.40 123 | 80.92 268 | 97.39 129 | 97.02 211 |
|
mvsmamba | | | 89.99 198 | 89.42 189 | 91.69 238 | 90.64 305 | 86.34 231 | 98.40 177 | 92.27 345 | 91.01 103 | 84.80 227 | 94.93 215 | 76.12 224 | 96.51 257 | 92.81 143 | 83.84 248 | 92.21 252 |
|
LS3D | | | 90.19 192 | 88.72 203 | 94.59 166 | 98.97 86 | 86.33 232 | 96.90 265 | 96.60 196 | 74.96 340 | 84.06 236 | 98.74 92 | 75.78 226 | 99.83 62 | 74.93 308 | 97.57 123 | 97.62 195 |
|
CR-MVSNet | | | 88.83 217 | 87.38 226 | 93.16 207 | 93.47 264 | 86.24 233 | 84.97 359 | 94.20 321 | 88.92 167 | 90.76 171 | 86.88 342 | 84.43 147 | 94.82 326 | 70.64 330 | 92.17 192 | 98.41 168 |
|
RPMNet | | | 85.07 278 | 81.88 295 | 94.64 164 | 93.47 264 | 86.24 233 | 84.97 359 | 97.21 160 | 64.85 365 | 90.76 171 | 78.80 363 | 80.95 197 | 99.27 134 | 53.76 366 | 92.17 192 | 98.41 168 |
|
CS-MVS | | | 95.75 73 | 96.19 48 | 94.40 171 | 97.88 121 | 86.22 235 | 99.66 23 | 96.12 231 | 92.69 62 | 98.07 42 | 98.89 83 | 87.09 100 | 97.59 212 | 96.71 64 | 98.62 107 | 99.39 96 |
|
NP-MVS | | | | | | 93.94 252 | 86.22 235 | | | | | 96.67 184 | | | | | |
|
BH-w/o | | | 92.32 154 | 91.79 152 | 93.91 192 | 96.85 155 | 86.18 237 | 99.11 96 | 95.74 262 | 88.13 192 | 84.81 226 | 97.00 171 | 77.26 221 | 97.91 186 | 89.16 185 | 98.03 116 | 97.64 192 |
|
c3_l | | | 88.19 232 | 87.23 229 | 91.06 248 | 94.97 226 | 86.17 238 | 97.72 233 | 95.38 286 | 83.43 276 | 81.68 275 | 91.37 280 | 82.81 171 | 95.72 305 | 84.04 241 | 73.70 314 | 91.29 289 |
|
MSDG | | | 88.29 230 | 86.37 242 | 94.04 188 | 96.90 154 | 86.15 239 | 96.52 278 | 94.36 318 | 77.89 331 | 79.22 301 | 96.95 173 | 69.72 275 | 99.59 97 | 73.20 322 | 92.58 184 | 96.37 222 |
|
CLD-MVS | | | 91.06 176 | 90.71 174 | 92.10 227 | 94.05 248 | 86.10 240 | 99.55 35 | 96.29 220 | 94.16 28 | 84.70 228 | 97.17 164 | 69.62 276 | 97.82 193 | 94.74 109 | 86.08 232 | 92.39 243 |
Zhaoxin Li, Wangmeng Zuo, Zhaoqi Wang, Lei Zhang: Confidence-based Large-scale Dense Multi-view Stereo. IEEE Transaction on Image Processing, 2020 |
V42 | | | 87.00 248 | 85.68 253 | 90.98 251 | 89.91 313 | 86.08 241 | 98.32 187 | 95.61 270 | 83.67 273 | 82.72 250 | 90.67 296 | 74.00 243 | 96.53 255 | 81.94 262 | 74.28 309 | 90.32 315 |
|
HQP_MVS | | | 91.26 172 | 90.95 167 | 92.16 225 | 93.84 256 | 86.07 242 | 99.02 105 | 96.30 217 | 93.38 49 | 86.99 209 | 96.52 186 | 72.92 251 | 97.75 202 | 93.46 132 | 86.17 230 | 92.67 239 |
|
plane_prior | | | | | | | 86.07 242 | 99.14 91 | | 93.81 41 | | | | | | 86.26 229 | |
|
plane_prior6 | | | | | | 93.92 253 | 86.02 244 | | | | | | 72.92 251 | | | | |
|
plane_prior3 | | | | | | | 85.91 245 | | | 93.65 44 | 86.99 209 | | | | | | |
|
CostFormer | | | 92.89 143 | 92.48 137 | 94.12 183 | 94.99 225 | 85.89 246 | 92.89 329 | 97.00 184 | 86.98 219 | 95.00 113 | 90.78 291 | 90.05 53 | 97.51 217 | 92.92 141 | 91.73 199 | 98.96 130 |
|
EI-MVSNet | | | 89.87 200 | 89.38 191 | 91.36 242 | 94.32 241 | 85.87 247 | 97.61 238 | 96.59 197 | 85.10 248 | 85.51 223 | 97.10 166 | 81.30 196 | 96.56 253 | 83.85 244 | 83.03 260 | 91.64 269 |
|
IterMVS-LS | | | 88.34 228 | 87.44 224 | 91.04 249 | 94.10 245 | 85.85 248 | 98.10 206 | 95.48 277 | 85.12 247 | 82.03 267 | 91.21 284 | 81.35 195 | 95.63 308 | 83.86 243 | 75.73 295 | 91.63 270 |
Fangjinhua Wang, Silvano Galliani, Christoph Vogel, Marc Pollefeys: IterMVS: Iterative Probability Estimation for Efficient Multi-View Stereo. |
VDD-MVS | | | 91.24 175 | 90.18 180 | 94.45 170 | 97.08 149 | 85.84 249 | 98.40 177 | 96.10 232 | 86.99 217 | 93.36 137 | 98.16 127 | 54.27 345 | 99.20 135 | 96.59 69 | 90.63 212 | 98.31 177 |
|
plane_prior7 | | | | | | 93.84 256 | 85.73 250 | | | | | | | | | | |
|
EPP-MVSNet | | | 93.75 119 | 93.67 112 | 94.01 189 | 95.86 189 | 85.70 251 | 98.67 142 | 97.66 88 | 84.46 260 | 91.36 162 | 97.18 163 | 91.16 31 | 97.79 195 | 92.93 140 | 93.75 171 | 98.53 163 |
|
bld_raw_dy_0_64 | | | 87.82 234 | 86.71 237 | 91.15 245 | 89.54 322 | 85.61 252 | 97.37 245 | 89.16 368 | 89.26 154 | 83.42 240 | 94.50 224 | 65.79 303 | 96.18 283 | 88.00 196 | 83.37 257 | 91.67 268 |
|
v144192 | | | 86.40 259 | 84.89 264 | 90.91 252 | 89.48 324 | 85.59 253 | 98.21 195 | 95.43 283 | 82.45 294 | 82.62 252 | 90.58 303 | 72.79 254 | 96.36 268 | 78.45 285 | 74.04 313 | 90.79 302 |
|
OPM-MVS | | | 89.76 201 | 89.15 195 | 91.57 239 | 90.53 306 | 85.58 254 | 98.11 205 | 95.93 244 | 92.88 60 | 86.05 219 | 96.47 189 | 67.06 296 | 97.87 190 | 89.29 183 | 86.08 232 | 91.26 290 |
Ray L. Khuboni, Hongjun Xu: Octagram Propagation Matching for Multi-Scale View Stereopsis (OPM-MVS). |
tpm2 | | | 91.77 164 | 91.09 164 | 93.82 195 | 94.83 232 | 85.56 255 | 92.51 334 | 97.16 167 | 84.00 266 | 93.83 132 | 90.66 297 | 87.54 89 | 97.17 228 | 87.73 199 | 91.55 202 | 98.72 154 |
|
GeoE | | | 90.60 186 | 89.56 185 | 93.72 199 | 95.10 220 | 85.43 256 | 99.41 59 | 94.94 301 | 83.96 268 | 87.21 208 | 96.83 179 | 74.37 237 | 97.05 234 | 80.50 273 | 93.73 172 | 98.67 157 |
|
cl____ | | | 87.82 234 | 86.79 236 | 90.89 254 | 94.88 230 | 85.43 256 | 97.81 225 | 95.24 294 | 82.91 288 | 80.71 282 | 91.22 283 | 81.97 188 | 95.84 301 | 81.34 265 | 75.06 298 | 91.40 284 |
|
DIV-MVS_self_test | | | 87.82 234 | 86.81 235 | 90.87 255 | 94.87 231 | 85.39 258 | 97.81 225 | 95.22 298 | 82.92 287 | 80.76 281 | 91.31 282 | 81.99 186 | 95.81 303 | 81.36 264 | 75.04 299 | 91.42 283 |
|
tpm cat1 | | | 88.89 213 | 87.27 228 | 93.76 196 | 95.79 190 | 85.32 259 | 90.76 346 | 97.09 176 | 76.14 337 | 85.72 221 | 88.59 329 | 82.92 169 | 98.04 182 | 76.96 293 | 91.43 203 | 97.90 189 |
|
v1921920 | | | 86.02 264 | 84.44 273 | 90.77 257 | 89.32 326 | 85.20 260 | 98.10 206 | 95.35 289 | 82.19 298 | 82.25 261 | 90.71 293 | 70.73 270 | 96.30 279 | 76.85 295 | 74.49 305 | 90.80 301 |
|
pm-mvs1 | | | 84.68 282 | 82.78 288 | 90.40 265 | 89.58 320 | 85.18 261 | 97.31 247 | 94.73 307 | 81.93 302 | 76.05 319 | 92.01 268 | 65.48 308 | 96.11 288 | 78.75 284 | 69.14 340 | 89.91 325 |
|
TAPA-MVS | | 87.50 9 | 90.35 187 | 89.05 196 | 94.25 179 | 98.48 107 | 85.17 262 | 98.42 172 | 96.58 200 | 82.44 295 | 87.24 207 | 98.53 108 | 82.77 172 | 98.84 149 | 59.09 361 | 97.88 117 | 98.72 154 |
Andrea Romanoni, Matteo Matteucci: TAPA-MVS: Textureless-Aware PAtchMatch Multi-View Stereo. ICCV 2019 |
v1240 | | | 85.77 271 | 84.11 276 | 90.73 258 | 89.26 327 | 85.15 263 | 97.88 221 | 95.23 297 | 81.89 303 | 82.16 262 | 90.55 305 | 69.60 277 | 96.31 276 | 75.59 305 | 74.87 301 | 90.72 307 |
|
ppachtmachnet_test | | | 83.63 296 | 81.57 299 | 89.80 282 | 89.01 328 | 85.09 264 | 97.13 257 | 94.50 313 | 78.84 323 | 76.14 318 | 91.00 287 | 69.78 274 | 94.61 331 | 63.40 351 | 74.36 307 | 89.71 328 |
|
h-mvs33 | | | 92.47 153 | 91.95 149 | 94.05 187 | 97.13 146 | 85.01 265 | 98.36 183 | 98.08 39 | 93.85 38 | 96.27 85 | 96.73 182 | 83.19 165 | 99.43 119 | 95.81 85 | 68.09 343 | 97.70 191 |
|
Anonymous20240529 | | | 87.66 241 | 85.58 254 | 93.92 191 | 97.59 131 | 85.01 265 | 98.13 200 | 97.13 170 | 66.69 363 | 88.47 197 | 96.01 200 | 55.09 342 | 99.51 106 | 87.00 205 | 84.12 246 | 97.23 204 |
|
EPNet_dtu | | | 92.28 156 | 92.15 144 | 92.70 216 | 97.29 139 | 84.84 267 | 98.64 146 | 97.82 57 | 92.91 58 | 93.02 142 | 97.02 170 | 85.48 137 | 95.70 306 | 72.25 326 | 94.89 163 | 97.55 197 |
Wanjuan Su, Wenbing Tao: Efficient Edge-Preserving Multi-View Stereo Network for Depth Estimation. AAAI 2023 |
BH-untuned | | | 91.46 170 | 90.84 170 | 93.33 204 | 96.51 166 | 84.83 268 | 98.84 123 | 95.50 276 | 86.44 233 | 83.50 238 | 96.70 183 | 75.49 228 | 97.77 197 | 86.78 210 | 97.81 118 | 97.40 198 |
|
tpmvs | | | 89.16 207 | 87.76 218 | 93.35 203 | 97.19 142 | 84.75 269 | 90.58 348 | 97.36 150 | 81.99 300 | 84.56 229 | 89.31 326 | 83.98 152 | 98.17 172 | 74.85 310 | 90.00 215 | 97.12 205 |
|
bld_raw_conf005 | | | 88.44 226 | 87.56 222 | 91.09 247 | 90.18 310 | 84.69 270 | 97.81 225 | 90.17 363 | 90.20 126 | 82.77 248 | 94.81 220 | 67.23 293 | 96.46 263 | 91.13 154 | 83.71 253 | 92.11 258 |
|
PVSNet_0 | | 83.28 16 | 87.31 245 | 85.16 259 | 93.74 198 | 94.78 233 | 84.59 271 | 98.91 116 | 98.69 19 | 89.81 138 | 78.59 308 | 93.23 251 | 61.95 320 | 99.34 131 | 94.75 108 | 55.72 365 | 97.30 201 |
|
Anonymous20231211 | | | 84.72 281 | 82.65 292 | 90.91 252 | 97.71 125 | 84.55 272 | 97.28 249 | 96.67 193 | 66.88 362 | 79.18 302 | 90.87 290 | 58.47 329 | 96.60 249 | 82.61 255 | 74.20 310 | 91.59 276 |
|
test0.0.03 1 | | | 88.96 210 | 88.61 206 | 90.03 277 | 91.09 299 | 84.43 273 | 98.97 111 | 97.02 182 | 90.21 124 | 80.29 287 | 96.31 194 | 84.89 143 | 91.93 357 | 72.98 323 | 85.70 235 | 93.73 232 |
|
PS-MVSNAJss | | | 89.54 205 | 89.05 196 | 91.00 250 | 88.77 331 | 84.36 274 | 97.39 242 | 95.97 237 | 88.47 175 | 81.88 270 | 93.80 238 | 82.48 179 | 96.50 258 | 89.34 180 | 83.34 259 | 92.15 254 |
|
pmmvs5 | | | 85.87 266 | 84.40 275 | 90.30 269 | 88.53 335 | 84.23 275 | 98.60 152 | 93.71 328 | 81.53 305 | 80.29 287 | 92.02 267 | 64.51 311 | 95.52 310 | 82.04 261 | 78.34 282 | 91.15 292 |
|
dcpmvs_2 | | | 95.67 75 | 96.18 49 | 94.12 183 | 98.82 95 | 84.22 276 | 97.37 245 | 95.45 279 | 90.70 110 | 95.77 99 | 98.63 103 | 90.47 44 | 98.68 158 | 99.20 17 | 99.22 83 | 99.45 92 |
|
Anonymous202405211 | | | 88.84 215 | 87.03 232 | 94.27 177 | 98.14 115 | 84.18 277 | 98.44 170 | 95.58 272 | 76.79 335 | 89.34 191 | 96.88 177 | 53.42 348 | 99.54 101 | 87.53 202 | 87.12 225 | 99.09 121 |
|
v148 | | | 86.38 260 | 85.06 260 | 90.37 268 | 89.47 325 | 84.10 278 | 98.52 159 | 95.48 277 | 83.80 269 | 80.93 280 | 90.22 314 | 74.60 232 | 96.31 276 | 80.92 268 | 71.55 335 | 90.69 308 |
|
TransMVSNet (Re) | | | 81.97 303 | 79.61 311 | 89.08 299 | 89.70 318 | 84.01 279 | 97.26 250 | 91.85 353 | 78.84 323 | 73.07 339 | 91.62 275 | 67.17 295 | 95.21 318 | 67.50 340 | 59.46 360 | 88.02 342 |
|
FMVSNet5 | | | 82.29 301 | 80.54 305 | 87.52 314 | 93.79 259 | 84.01 279 | 93.73 322 | 92.47 343 | 76.92 334 | 74.27 329 | 86.15 347 | 63.69 315 | 89.24 363 | 69.07 335 | 74.79 302 | 89.29 333 |
|
our_test_3 | | | 84.47 287 | 82.80 286 | 89.50 291 | 89.01 328 | 83.90 281 | 97.03 260 | 94.56 312 | 81.33 307 | 75.36 326 | 90.52 306 | 71.69 264 | 94.54 332 | 68.81 336 | 76.84 292 | 90.07 320 |
|
MVP-Stereo | | | 86.61 256 | 85.83 250 | 88.93 303 | 88.70 333 | 83.85 282 | 96.07 294 | 94.41 317 | 82.15 299 | 75.64 324 | 91.96 270 | 67.65 290 | 96.45 264 | 77.20 292 | 98.72 103 | 86.51 354 |
Qingsong Yan: MVP-Stereo: A Parallel Multi-View Patchmatch Stereo Method with Dilation Matching for Photogrammetric Application. |
patch_mono-2 | | | 97.10 27 | 97.97 8 | 94.49 167 | 99.21 73 | 83.73 283 | 99.62 28 | 98.25 27 | 95.28 18 | 99.38 4 | 98.91 80 | 92.28 28 | 99.94 37 | 99.61 8 | 99.22 83 | 99.78 42 |
|
IterMVS | | | 85.81 269 | 84.67 269 | 89.22 296 | 93.51 263 | 83.67 284 | 96.32 283 | 94.80 305 | 85.09 249 | 78.69 304 | 90.17 317 | 66.57 300 | 93.17 342 | 79.48 277 | 77.42 290 | 90.81 300 |
Fangjinhua Wang, Silvano Galliani, Christoph Vogel, Marc Pollefeys: IterMVS: Iterative Probability Estimation for Efficient Multi-View Stereo. |
USDC | | | 84.74 280 | 82.93 284 | 90.16 271 | 91.73 292 | 83.54 285 | 95.00 310 | 93.30 335 | 88.77 170 | 73.19 335 | 93.30 249 | 53.62 347 | 97.65 208 | 75.88 303 | 81.54 270 | 89.30 332 |
|
D2MVS | | | 87.96 233 | 87.39 225 | 89.70 285 | 91.84 290 | 83.40 286 | 98.31 188 | 98.49 21 | 88.04 195 | 78.23 312 | 90.26 310 | 73.57 244 | 96.79 244 | 84.21 235 | 83.53 255 | 88.90 337 |
|
Baseline_NR-MVSNet | | | 85.83 268 | 84.82 266 | 88.87 304 | 88.73 332 | 83.34 287 | 98.63 147 | 91.66 354 | 80.41 318 | 82.44 255 | 91.35 281 | 74.63 230 | 95.42 313 | 84.13 237 | 71.39 336 | 87.84 343 |
|
WR-MVS_H | | | 86.53 258 | 85.49 256 | 89.66 288 | 91.04 300 | 83.31 288 | 97.53 240 | 98.20 32 | 84.95 254 | 79.64 295 | 90.90 289 | 78.01 217 | 95.33 315 | 76.29 300 | 72.81 322 | 90.35 314 |
|
LTVRE_ROB | | 81.71 19 | 84.59 284 | 82.72 290 | 90.18 270 | 92.89 277 | 83.18 289 | 93.15 327 | 94.74 306 | 78.99 322 | 75.14 327 | 92.69 260 | 65.64 305 | 97.63 209 | 69.46 334 | 81.82 269 | 89.74 326 |
Andreas Kuhn, Heiko Hirschmüller, Daniel Scharstein, Helmut Mayer: A TV Prior for High-Quality Scalable Multi-View Stereo Reconstruction. International Journal of Computer Vision 2016 |
PatchT | | | 85.44 275 | 83.19 282 | 92.22 222 | 93.13 273 | 83.00 290 | 83.80 365 | 96.37 213 | 70.62 350 | 90.55 174 | 79.63 362 | 84.81 145 | 94.87 324 | 58.18 363 | 91.59 201 | 98.79 149 |
|
anonymousdsp | | | 86.69 253 | 85.75 252 | 89.53 290 | 86.46 351 | 82.94 291 | 96.39 280 | 95.71 263 | 83.97 267 | 79.63 296 | 90.70 294 | 68.85 279 | 95.94 295 | 86.01 214 | 84.02 247 | 89.72 327 |
|
ACMH | | 83.09 17 | 84.60 283 | 82.61 293 | 90.57 260 | 93.18 272 | 82.94 291 | 96.27 284 | 94.92 302 | 81.01 311 | 72.61 342 | 93.61 243 | 56.54 334 | 97.79 195 | 74.31 313 | 81.07 271 | 90.99 296 |
Qingshan Xu and Wenbing Tao: Multi-Scale Geometric Consistency Guided Multi-View Stereo. CVPR 2019 |
IterMVS-SCA-FT | | | 85.73 272 | 84.64 270 | 89.00 301 | 93.46 266 | 82.90 293 | 96.27 284 | 94.70 308 | 85.02 252 | 78.62 306 | 90.35 309 | 66.61 298 | 93.33 339 | 79.38 278 | 77.36 291 | 90.76 304 |
|
F-COLMAP | | | 92.07 161 | 91.75 154 | 93.02 209 | 98.16 114 | 82.89 294 | 98.79 130 | 95.97 237 | 86.54 230 | 87.92 200 | 97.80 133 | 78.69 213 | 99.65 89 | 85.97 215 | 95.93 154 | 96.53 219 |
|
Patchmatch-test | | | 86.25 262 | 84.06 277 | 92.82 212 | 94.42 239 | 82.88 295 | 82.88 366 | 94.23 320 | 71.58 348 | 79.39 299 | 90.62 300 | 89.00 66 | 96.42 265 | 63.03 353 | 91.37 205 | 99.16 115 |
|
Patchmtry | | | 83.61 297 | 81.64 297 | 89.50 291 | 93.36 268 | 82.84 296 | 84.10 362 | 94.20 321 | 69.47 356 | 79.57 297 | 86.88 342 | 84.43 147 | 94.78 327 | 68.48 338 | 74.30 308 | 90.88 299 |
|
CP-MVSNet | | | 86.54 257 | 85.45 257 | 89.79 283 | 91.02 301 | 82.78 297 | 97.38 244 | 97.56 115 | 85.37 244 | 79.53 298 | 93.03 256 | 71.86 262 | 95.25 317 | 79.92 274 | 73.43 320 | 91.34 286 |
|
AUN-MVS | | | 90.17 193 | 89.50 186 | 92.19 224 | 96.21 177 | 82.67 298 | 97.76 231 | 97.53 120 | 88.05 194 | 91.67 153 | 96.15 195 | 83.10 167 | 97.47 218 | 88.11 194 | 66.91 347 | 96.43 220 |
|
eth_miper_zixun_eth | | | 87.76 237 | 87.00 233 | 90.06 274 | 94.67 236 | 82.65 299 | 97.02 262 | 95.37 287 | 84.19 263 | 81.86 273 | 91.58 277 | 81.47 193 | 95.90 300 | 83.24 246 | 73.61 315 | 91.61 274 |
|
hse-mvs2 | | | 91.67 166 | 91.51 158 | 92.15 226 | 96.22 176 | 82.61 300 | 97.74 232 | 97.53 120 | 93.85 38 | 96.27 85 | 96.15 195 | 83.19 165 | 97.44 221 | 95.81 85 | 66.86 348 | 96.40 221 |
|
MS-PatchMatch | | | 86.75 252 | 85.92 249 | 89.22 296 | 91.97 286 | 82.47 301 | 96.91 264 | 96.14 230 | 83.74 270 | 77.73 313 | 93.53 246 | 58.19 330 | 97.37 226 | 76.75 296 | 98.35 113 | 87.84 343 |
|
test_low_dy_conf_001 | | | 88.79 220 | 88.33 213 | 90.16 271 | 89.83 316 | 82.22 302 | 97.87 222 | 96.22 223 | 88.25 189 | 84.24 233 | 95.09 213 | 71.11 269 | 96.19 282 | 88.63 187 | 83.76 252 | 92.06 260 |
|
test_djsdf | | | 88.26 231 | 87.73 219 | 89.84 281 | 88.05 340 | 82.21 303 | 97.77 229 | 96.17 228 | 86.84 222 | 82.41 257 | 91.95 271 | 72.07 259 | 95.99 292 | 89.83 169 | 84.50 241 | 91.32 287 |
|
PS-CasMVS | | | 85.81 269 | 84.58 271 | 89.49 293 | 90.77 303 | 82.11 304 | 97.20 255 | 97.36 150 | 84.83 256 | 79.12 303 | 92.84 259 | 67.42 292 | 95.16 319 | 78.39 286 | 73.25 321 | 91.21 291 |
|
v7n | | | 84.42 288 | 82.75 289 | 89.43 294 | 88.15 338 | 81.86 305 | 96.75 272 | 95.67 267 | 80.53 314 | 78.38 310 | 89.43 324 | 69.89 273 | 96.35 273 | 73.83 318 | 72.13 331 | 90.07 320 |
|
jajsoiax | | | 87.35 244 | 86.51 241 | 89.87 279 | 87.75 345 | 81.74 306 | 97.03 260 | 95.98 236 | 88.47 175 | 80.15 289 | 93.80 238 | 61.47 321 | 96.36 268 | 89.44 178 | 84.47 243 | 91.50 278 |
|
MVS-HIRNet | | | 79.01 316 | 75.13 326 | 90.66 259 | 93.82 258 | 81.69 307 | 85.16 356 | 93.75 327 | 54.54 367 | 74.17 330 | 59.15 371 | 57.46 332 | 96.58 252 | 63.74 350 | 94.38 166 | 93.72 233 |
|
RRT_MVS | | | 88.91 212 | 88.56 209 | 89.93 278 | 90.31 309 | 81.61 308 | 98.08 209 | 96.38 212 | 89.30 153 | 82.41 257 | 94.84 218 | 73.15 249 | 96.04 291 | 90.38 164 | 82.23 267 | 92.15 254 |
|
tpm | | | 89.67 202 | 88.95 198 | 91.82 232 | 92.54 279 | 81.43 309 | 92.95 328 | 95.92 245 | 87.81 201 | 90.50 176 | 89.44 323 | 84.99 141 | 95.65 307 | 83.67 245 | 82.71 263 | 98.38 171 |
|
PMMVS | | | 93.62 125 | 93.90 109 | 92.79 213 | 96.79 158 | 81.40 310 | 98.85 121 | 96.81 189 | 91.25 99 | 96.82 76 | 98.15 128 | 77.02 222 | 98.13 174 | 93.15 138 | 96.30 146 | 98.83 145 |
|
mvs_tets | | | 87.09 247 | 86.22 244 | 89.71 284 | 87.87 341 | 81.39 311 | 96.73 274 | 95.90 251 | 88.19 191 | 79.99 291 | 93.61 243 | 59.96 327 | 96.31 276 | 89.40 179 | 84.34 244 | 91.43 282 |
|
ACMM | | 86.95 13 | 88.77 221 | 88.22 216 | 90.43 264 | 93.61 261 | 81.34 312 | 98.50 164 | 95.92 245 | 87.88 200 | 83.85 237 | 95.20 212 | 67.20 294 | 97.89 188 | 86.90 208 | 84.90 238 | 92.06 260 |
Qingshan Xu and Wenbing Tao: Multi-Scale Geometric Consistency Guided Multi-View Stereo. CVPR 2019 |
PEN-MVS | | | 85.21 277 | 83.93 279 | 89.07 300 | 89.89 315 | 81.31 313 | 97.09 258 | 97.24 156 | 84.45 261 | 78.66 305 | 92.68 261 | 68.44 283 | 94.87 324 | 75.98 302 | 70.92 338 | 91.04 295 |
|
XVG-OURS | | | 90.83 180 | 90.49 178 | 91.86 230 | 95.23 208 | 81.25 314 | 95.79 304 | 95.92 245 | 88.96 163 | 90.02 184 | 98.03 129 | 71.60 265 | 99.35 130 | 91.06 156 | 87.78 222 | 94.98 228 |
|
miper_lstm_enhance | | | 86.90 249 | 86.20 245 | 89.00 301 | 94.53 238 | 81.19 315 | 96.74 273 | 95.24 294 | 82.33 296 | 80.15 289 | 90.51 307 | 81.99 186 | 94.68 330 | 80.71 270 | 73.58 316 | 91.12 293 |
|
pmmvs-eth3d | | | 78.71 319 | 76.16 323 | 86.38 321 | 80.25 368 | 81.19 315 | 94.17 318 | 92.13 349 | 77.97 328 | 66.90 357 | 82.31 355 | 55.76 336 | 92.56 349 | 73.63 320 | 62.31 356 | 85.38 358 |
|
XVG-OURS-SEG-HR | | | 90.95 178 | 90.66 176 | 91.83 231 | 95.18 213 | 81.14 317 | 95.92 296 | 95.92 245 | 88.40 183 | 90.33 180 | 97.85 130 | 70.66 272 | 99.38 124 | 92.83 142 | 88.83 218 | 94.98 228 |
|
ACMP | | 87.39 10 | 88.71 223 | 88.24 215 | 90.12 273 | 93.91 254 | 81.06 318 | 98.50 164 | 95.67 267 | 89.43 150 | 80.37 285 | 95.55 204 | 65.67 304 | 97.83 192 | 90.55 163 | 84.51 240 | 91.47 279 |
Qingshan Xu and Wenbing Tao: Planar Prior Assisted PatchMatch Multi-View Stereo. AAAI 2020 |
LPG-MVS_test | | | 88.86 214 | 88.47 212 | 90.06 274 | 93.35 269 | 80.95 319 | 98.22 193 | 95.94 242 | 87.73 206 | 83.17 244 | 96.11 197 | 66.28 301 | 97.77 197 | 90.19 167 | 85.19 236 | 91.46 280 |
|
LGP-MVS_train | | | | | 90.06 274 | 93.35 269 | 80.95 319 | | 95.94 242 | 87.73 206 | 83.17 244 | 96.11 197 | 66.28 301 | 97.77 197 | 90.19 167 | 85.19 236 | 91.46 280 |
|
UniMVSNet_ETH3D | | | 85.65 274 | 83.79 280 | 91.21 243 | 90.41 308 | 80.75 321 | 95.36 307 | 95.78 259 | 78.76 325 | 81.83 274 | 94.33 226 | 49.86 356 | 96.66 246 | 84.30 233 | 83.52 256 | 96.22 223 |
|
MVS_0304 | | | 84.13 292 | 82.66 291 | 88.52 306 | 93.07 274 | 80.15 322 | 95.81 303 | 98.21 31 | 79.27 320 | 86.85 214 | 86.40 345 | 41.33 367 | 94.69 329 | 76.36 299 | 86.69 226 | 90.73 306 |
|
MDA-MVSNet_test_wron | | | 79.65 314 | 77.05 318 | 87.45 315 | 87.79 344 | 80.13 323 | 96.25 287 | 94.44 314 | 73.87 344 | 51.80 367 | 87.47 337 | 68.04 286 | 92.12 355 | 66.02 345 | 67.79 345 | 90.09 318 |
|
YYNet1 | | | 79.64 315 | 77.04 319 | 87.43 316 | 87.80 343 | 79.98 324 | 96.23 288 | 94.44 314 | 73.83 345 | 51.83 366 | 87.53 334 | 67.96 288 | 92.07 356 | 66.00 346 | 67.75 346 | 90.23 317 |
|
DTE-MVSNet | | | 84.14 291 | 82.80 286 | 88.14 309 | 88.95 330 | 79.87 325 | 96.81 268 | 96.24 222 | 83.50 275 | 77.60 314 | 92.52 263 | 67.89 289 | 94.24 335 | 72.64 325 | 69.05 341 | 90.32 315 |
|
ACMH+ | | 83.78 15 | 84.21 289 | 82.56 294 | 89.15 298 | 93.73 260 | 79.16 326 | 96.43 279 | 94.28 319 | 81.09 310 | 74.00 331 | 94.03 230 | 54.58 344 | 97.67 205 | 76.10 301 | 78.81 280 | 90.63 310 |
|
ADS-MVSNet2 | | | 87.62 242 | 86.88 234 | 89.86 280 | 96.21 177 | 79.14 327 | 87.15 352 | 92.99 336 | 83.01 282 | 89.91 185 | 87.27 338 | 78.87 210 | 92.80 346 | 74.20 314 | 92.27 189 | 97.64 192 |
|
COLMAP_ROB |  | 82.69 18 | 84.54 285 | 82.82 285 | 89.70 285 | 96.72 160 | 78.85 328 | 95.89 297 | 92.83 340 | 71.55 349 | 77.54 315 | 95.89 201 | 59.40 328 | 99.14 141 | 67.26 341 | 88.26 219 | 91.11 294 |
Johannes L. Schönberger, Enliang Zheng, Marc Pollefeys, Jan-Michael Frahm: Pixelwise View Selection for Unstructured Multi-View Stereo. ECCV 2016 |
AllTest | | | 84.97 279 | 83.12 283 | 90.52 262 | 96.82 156 | 78.84 329 | 95.89 297 | 92.17 347 | 77.96 329 | 75.94 320 | 95.50 205 | 55.48 338 | 99.18 136 | 71.15 327 | 87.14 223 | 93.55 234 |
|
TestCases | | | | | 90.52 262 | 96.82 156 | 78.84 329 | | 92.17 347 | 77.96 329 | 75.94 320 | 95.50 205 | 55.48 338 | 99.18 136 | 71.15 327 | 87.14 223 | 93.55 234 |
|
TinyColmap | | | 80.42 310 | 77.94 314 | 87.85 311 | 92.09 285 | 78.58 331 | 93.74 321 | 89.94 364 | 74.99 339 | 69.77 346 | 91.78 273 | 46.09 361 | 97.58 213 | 65.17 349 | 77.89 284 | 87.38 346 |
|
MDA-MVSNet-bldmvs | | | 77.82 324 | 74.75 328 | 87.03 318 | 88.33 336 | 78.52 332 | 96.34 282 | 92.85 339 | 75.57 338 | 48.87 369 | 87.89 331 | 57.32 333 | 92.49 351 | 60.79 357 | 64.80 352 | 90.08 319 |
|
test_0402 | | | 78.81 318 | 76.33 322 | 86.26 322 | 91.18 298 | 78.44 333 | 95.88 299 | 91.34 358 | 68.55 357 | 70.51 345 | 89.91 318 | 52.65 350 | 94.99 320 | 47.14 369 | 79.78 277 | 85.34 360 |
|
Fast-Effi-MVS+-dtu | | | 88.84 215 | 88.59 208 | 89.58 289 | 93.44 267 | 78.18 334 | 98.65 144 | 94.62 311 | 88.46 177 | 84.12 235 | 95.37 211 | 68.91 278 | 96.52 256 | 82.06 260 | 91.70 200 | 94.06 231 |
|
pmmvs6 | | | 79.90 312 | 77.31 317 | 87.67 313 | 84.17 358 | 78.13 335 | 95.86 301 | 93.68 329 | 67.94 360 | 72.67 341 | 89.62 322 | 50.98 354 | 95.75 304 | 74.80 311 | 66.04 349 | 89.14 335 |
|
DeepPCF-MVS | | 93.56 1 | 96.55 43 | 97.84 10 | 92.68 217 | 98.71 99 | 78.11 336 | 99.70 16 | 97.71 80 | 98.18 1 | 97.36 59 | 99.76 1 | 90.37 50 | 99.94 37 | 99.27 13 | 99.54 61 | 99.99 1 |
|
OpenMVS_ROB |  | 73.86 20 | 77.99 323 | 75.06 327 | 86.77 320 | 83.81 360 | 77.94 337 | 96.38 281 | 91.53 357 | 67.54 361 | 68.38 349 | 87.13 341 | 43.94 363 | 96.08 289 | 55.03 365 | 81.83 268 | 86.29 355 |
|
EG-PatchMatch MVS | | | 79.92 311 | 77.59 315 | 86.90 319 | 87.06 349 | 77.90 338 | 96.20 292 | 94.06 323 | 74.61 341 | 66.53 358 | 88.76 328 | 40.40 369 | 96.20 281 | 67.02 342 | 83.66 254 | 86.61 352 |
|
XVG-ACMP-BASELINE | | | 85.86 267 | 84.95 263 | 88.57 305 | 89.90 314 | 77.12 339 | 94.30 316 | 95.60 271 | 87.40 214 | 82.12 263 | 92.99 258 | 53.42 348 | 97.66 206 | 85.02 225 | 83.83 249 | 90.92 298 |
|
ITE_SJBPF | | | | | 87.93 310 | 92.26 282 | 76.44 340 | | 93.47 333 | 87.67 209 | 79.95 292 | 95.49 207 | 56.50 335 | 97.38 224 | 75.24 306 | 82.33 266 | 89.98 324 |
|
UnsupCasMVSNet_bld | | | 73.85 330 | 70.14 333 | 84.99 329 | 79.44 369 | 75.73 341 | 88.53 350 | 95.24 294 | 70.12 354 | 61.94 363 | 74.81 364 | 41.41 366 | 93.62 337 | 68.65 337 | 51.13 369 | 85.62 357 |
|
MIMVSNet1 | | | 75.92 327 | 73.30 330 | 83.81 336 | 81.29 366 | 75.57 342 | 92.26 335 | 92.05 350 | 73.09 347 | 67.48 355 | 86.18 346 | 40.87 368 | 87.64 367 | 55.78 364 | 70.68 339 | 88.21 341 |
|
CL-MVSNet_self_test | | | 79.89 313 | 78.34 313 | 84.54 333 | 81.56 365 | 75.01 343 | 96.88 266 | 95.62 269 | 81.10 309 | 75.86 322 | 85.81 348 | 68.49 282 | 90.26 361 | 63.21 352 | 56.51 363 | 88.35 340 |
|
UnsupCasMVSNet_eth | | | 78.90 317 | 76.67 321 | 85.58 327 | 82.81 363 | 74.94 344 | 91.98 336 | 96.31 216 | 84.64 258 | 65.84 360 | 87.71 332 | 51.33 352 | 92.23 353 | 72.89 324 | 56.50 364 | 89.56 330 |
|
testgi | | | 82.29 301 | 81.00 304 | 86.17 323 | 87.24 347 | 74.84 345 | 97.39 242 | 91.62 355 | 88.63 171 | 75.85 323 | 95.42 208 | 46.07 362 | 91.55 358 | 66.87 344 | 79.94 276 | 92.12 256 |
|
mvs-test1 | | | 91.57 167 | 92.20 142 | 89.70 285 | 95.15 214 | 74.34 346 | 99.51 41 | 95.40 284 | 91.92 82 | 91.02 166 | 97.25 157 | 74.27 239 | 98.08 179 | 89.45 176 | 95.83 155 | 96.67 213 |
|
pmmvs3 | | | 72.86 331 | 69.76 335 | 82.17 340 | 73.86 372 | 74.19 347 | 94.20 317 | 89.01 369 | 64.23 366 | 67.72 352 | 80.91 359 | 41.48 365 | 88.65 365 | 62.40 354 | 54.02 367 | 83.68 363 |
|
TDRefinement | | | 78.01 322 | 75.31 325 | 86.10 324 | 70.06 374 | 73.84 348 | 93.59 325 | 91.58 356 | 74.51 342 | 73.08 338 | 91.04 286 | 49.63 358 | 97.12 229 | 74.88 309 | 59.47 359 | 87.33 348 |
|
JIA-IIPM | | | 85.97 265 | 84.85 265 | 89.33 295 | 93.23 271 | 73.68 349 | 85.05 358 | 97.13 170 | 69.62 355 | 91.56 157 | 68.03 367 | 88.03 82 | 96.96 236 | 77.89 288 | 93.12 175 | 97.34 200 |
|
CVMVSNet | | | 90.30 189 | 90.91 168 | 88.46 308 | 94.32 241 | 73.58 350 | 97.61 238 | 97.59 108 | 90.16 130 | 88.43 198 | 97.10 166 | 76.83 223 | 92.86 343 | 82.64 254 | 93.54 173 | 98.93 136 |
|
Anonymous20231206 | | | 80.76 308 | 79.42 312 | 84.79 331 | 84.78 356 | 72.98 351 | 96.53 277 | 92.97 337 | 79.56 319 | 74.33 328 | 88.83 327 | 61.27 323 | 92.15 354 | 60.59 358 | 75.92 294 | 89.24 334 |
|
Anonymous20240521 | | | 78.63 320 | 76.90 320 | 83.82 335 | 82.82 362 | 72.86 352 | 95.72 305 | 93.57 331 | 73.55 346 | 72.17 343 | 84.79 350 | 49.69 357 | 92.51 350 | 65.29 348 | 74.50 304 | 86.09 356 |
|
new_pmnet | | | 76.02 326 | 73.71 329 | 82.95 338 | 83.88 359 | 72.85 353 | 91.26 342 | 92.26 346 | 70.44 352 | 62.60 362 | 81.37 357 | 47.64 360 | 92.32 352 | 61.85 355 | 72.10 332 | 83.68 363 |
|
LCM-MVSNet-Re | | | 88.59 224 | 88.61 206 | 88.51 307 | 95.53 200 | 72.68 354 | 96.85 267 | 88.43 370 | 88.45 178 | 73.14 336 | 90.63 299 | 75.82 225 | 94.38 333 | 92.95 139 | 95.71 158 | 98.48 166 |
|
new-patchmatchnet | | | 74.80 329 | 72.40 332 | 81.99 342 | 78.36 371 | 72.20 355 | 94.44 314 | 92.36 344 | 77.06 332 | 63.47 361 | 79.98 361 | 51.04 353 | 88.85 364 | 60.53 359 | 54.35 366 | 84.92 361 |
|
Effi-MVS+-dtu | | | 89.97 199 | 90.68 175 | 87.81 312 | 95.15 214 | 71.98 356 | 97.87 222 | 95.40 284 | 91.92 82 | 87.57 202 | 91.44 279 | 74.27 239 | 96.84 240 | 89.45 176 | 93.10 176 | 94.60 230 |
|
EGC-MVSNET | | | 60.70 335 | 55.37 339 | 76.72 347 | 86.35 352 | 71.08 357 | 89.96 349 | 84.44 376 | 0.38 381 | 1.50 382 | 84.09 352 | 37.30 370 | 88.10 366 | 40.85 371 | 73.44 319 | 70.97 369 |
|
test20.03 | | | 78.51 321 | 77.48 316 | 81.62 343 | 83.07 361 | 71.03 358 | 96.11 293 | 92.83 340 | 81.66 304 | 69.31 347 | 89.68 321 | 57.53 331 | 87.29 368 | 58.65 362 | 68.47 342 | 86.53 353 |
|
SixPastTwentyTwo | | | 82.63 300 | 81.58 298 | 85.79 325 | 88.12 339 | 71.01 359 | 95.17 309 | 92.54 342 | 84.33 262 | 72.93 340 | 92.08 265 | 60.41 326 | 95.61 309 | 74.47 312 | 74.15 311 | 90.75 305 |
|
OurMVSNet-221017-0 | | | 84.13 292 | 83.59 281 | 85.77 326 | 87.81 342 | 70.24 360 | 94.89 311 | 93.65 330 | 86.08 235 | 76.53 316 | 93.28 250 | 61.41 322 | 96.14 287 | 80.95 267 | 77.69 289 | 90.93 297 |
|
K. test v3 | | | 81.04 307 | 79.77 310 | 84.83 330 | 87.41 346 | 70.23 361 | 95.60 306 | 93.93 325 | 83.70 272 | 67.51 354 | 89.35 325 | 55.76 336 | 93.58 338 | 76.67 297 | 68.03 344 | 90.67 309 |
|
Patchmatch-RL test | | | 81.90 305 | 80.13 308 | 87.23 317 | 80.71 367 | 70.12 362 | 84.07 363 | 88.19 371 | 83.16 281 | 70.57 344 | 82.18 356 | 87.18 99 | 92.59 348 | 82.28 258 | 62.78 353 | 98.98 128 |
|
lessismore_v0 | | | | | 85.08 328 | 85.59 354 | 69.28 363 | | 90.56 361 | | 67.68 353 | 90.21 315 | 54.21 346 | 95.46 311 | 73.88 316 | 62.64 354 | 90.50 312 |
|
KD-MVS_self_test | | | 77.47 325 | 75.88 324 | 82.24 339 | 81.59 364 | 68.93 364 | 92.83 332 | 94.02 324 | 77.03 333 | 73.14 336 | 83.39 353 | 55.44 340 | 90.42 360 | 67.95 339 | 57.53 362 | 87.38 346 |
|
LF4IMVS | | | 81.94 304 | 81.17 303 | 84.25 334 | 87.23 348 | 68.87 365 | 93.35 326 | 91.93 352 | 83.35 278 | 75.40 325 | 93.00 257 | 49.25 359 | 96.65 247 | 78.88 282 | 78.11 283 | 87.22 350 |
|
EU-MVSNet | | | 84.19 290 | 84.42 274 | 83.52 337 | 88.64 334 | 67.37 366 | 96.04 295 | 95.76 261 | 85.29 245 | 78.44 309 | 93.18 252 | 70.67 271 | 91.48 359 | 75.79 304 | 75.98 293 | 91.70 267 |
|
PM-MVS | | | 74.88 328 | 72.85 331 | 80.98 345 | 78.98 370 | 64.75 367 | 90.81 345 | 85.77 373 | 80.95 312 | 68.23 351 | 82.81 354 | 29.08 373 | 92.84 344 | 76.54 298 | 62.46 355 | 85.36 359 |
|
RPSCF | | | 85.33 276 | 85.55 255 | 84.67 332 | 94.63 237 | 62.28 368 | 93.73 322 | 93.76 326 | 74.38 343 | 85.23 225 | 97.06 169 | 64.09 312 | 98.31 167 | 80.98 266 | 86.08 232 | 93.41 236 |
|
DSMNet-mixed | | | 81.60 306 | 81.43 300 | 82.10 341 | 84.36 357 | 60.79 369 | 93.63 324 | 86.74 372 | 79.00 321 | 79.32 300 | 87.15 340 | 63.87 314 | 89.78 362 | 66.89 343 | 91.92 194 | 95.73 226 |
|
CMPMVS |  | 58.40 21 | 80.48 309 | 80.11 309 | 81.59 344 | 85.10 355 | 59.56 370 | 94.14 319 | 95.95 241 | 68.54 358 | 60.71 364 | 93.31 248 | 55.35 341 | 97.87 190 | 83.06 251 | 84.85 239 | 87.33 348 |
M. Jancosek, T. Pajdla: Multi-View Reconstruction Preserving Weakly-Supported Surfaces. CVPR 2011 |
Gipuma |  | | 54.77 338 | 52.22 342 | 62.40 355 | 86.50 350 | 59.37 371 | 50.20 373 | 90.35 362 | 36.52 371 | 41.20 372 | 49.49 373 | 18.33 377 | 81.29 370 | 32.10 373 | 65.34 350 | 46.54 373 |
S. Galliani, K. Lasinger, K. Schindler: Massively Parallel Multiview Stereopsis by Surface Normal Diffusion. ICCV 2015 |
ambc | | | | | 79.60 346 | 72.76 373 | 56.61 372 | 76.20 368 | 92.01 351 | | 68.25 350 | 80.23 360 | 23.34 374 | 94.73 328 | 73.78 319 | 60.81 357 | 87.48 345 |
|
test_method | | | 70.10 333 | 68.66 336 | 74.41 349 | 86.30 353 | 55.84 373 | 94.47 313 | 89.82 365 | 35.18 372 | 66.15 359 | 84.75 351 | 30.54 372 | 77.96 373 | 70.40 333 | 60.33 358 | 89.44 331 |
|
PMMVS2 | | | 58.97 337 | 55.07 340 | 70.69 352 | 62.72 375 | 55.37 374 | 85.97 354 | 80.52 377 | 49.48 368 | 45.94 370 | 68.31 366 | 15.73 379 | 80.78 371 | 49.79 368 | 37.12 372 | 75.91 366 |
|
ANet_high | | | 50.71 340 | 46.17 343 | 64.33 354 | 44.27 382 | 52.30 375 | 76.13 369 | 78.73 378 | 64.95 364 | 27.37 375 | 55.23 372 | 14.61 380 | 67.74 375 | 36.01 372 | 18.23 375 | 72.95 368 |
|
DeepMVS_CX |  | | | | 76.08 348 | 90.74 304 | 51.65 376 | | 90.84 360 | 86.47 232 | 57.89 365 | 87.98 330 | 35.88 371 | 92.60 347 | 65.77 347 | 65.06 351 | 83.97 362 |
|
LCM-MVSNet | | | 60.07 336 | 56.37 338 | 71.18 350 | 54.81 380 | 48.67 377 | 82.17 367 | 89.48 367 | 37.95 370 | 49.13 368 | 69.12 365 | 13.75 381 | 81.76 369 | 59.28 360 | 51.63 368 | 83.10 365 |
|
MVE |  | 44.00 22 | 41.70 342 | 37.64 347 | 53.90 358 | 49.46 381 | 43.37 378 | 65.09 372 | 66.66 381 | 26.19 376 | 25.77 377 | 48.53 374 | 3.58 384 | 63.35 377 | 26.15 375 | 27.28 373 | 54.97 372 |
Simon Fuhrmann, Fabian Langguth, Michael Goesele: MVE - A Multi-View Reconstruction Environment. EUROGRAPHICS Workshops on Graphics and Cultural Heritage (2014) |
FPMVS | | | 61.57 334 | 60.32 337 | 65.34 353 | 60.14 378 | 42.44 379 | 91.02 344 | 89.72 366 | 44.15 369 | 42.63 371 | 80.93 358 | 19.02 375 | 80.59 372 | 42.50 370 | 72.76 323 | 73.00 367 |
|
tmp_tt | | | 53.66 339 | 52.86 341 | 56.05 356 | 32.75 384 | 41.97 380 | 73.42 370 | 76.12 380 | 21.91 377 | 39.68 373 | 96.39 192 | 42.59 364 | 65.10 376 | 78.00 287 | 14.92 377 | 61.08 370 |
|
E-PMN | | | 41.02 343 | 40.93 345 | 41.29 359 | 61.97 376 | 33.83 381 | 84.00 364 | 65.17 382 | 27.17 374 | 27.56 374 | 46.72 375 | 17.63 378 | 60.41 378 | 19.32 376 | 18.82 374 | 29.61 374 |
|
PMVS |  | 41.42 23 | 45.67 341 | 42.50 344 | 55.17 357 | 34.28 383 | 32.37 382 | 66.24 371 | 78.71 379 | 30.72 373 | 22.04 378 | 59.59 370 | 4.59 382 | 77.85 374 | 27.49 374 | 58.84 361 | 55.29 371 |
Y. Furukawa, J. Ponce: Accurate, dense, and robust multiview stereopsis. PAMI (2010) |
EMVS | | | 39.96 344 | 39.88 346 | 40.18 360 | 59.57 379 | 32.12 383 | 84.79 361 | 64.57 383 | 26.27 375 | 26.14 376 | 44.18 378 | 18.73 376 | 59.29 379 | 17.03 377 | 17.67 376 | 29.12 375 |
|
N_pmnet | | | 70.19 332 | 69.87 334 | 71.12 351 | 88.24 337 | 30.63 384 | 95.85 302 | 28.70 384 | 70.18 353 | 68.73 348 | 86.55 344 | 64.04 313 | 93.81 336 | 53.12 367 | 73.46 318 | 88.94 336 |
|
wuyk23d | | | 16.71 347 | 16.73 351 | 16.65 361 | 60.15 377 | 25.22 385 | 41.24 374 | 5.17 385 | 6.56 378 | 5.48 381 | 3.61 381 | 3.64 383 | 22.72 380 | 15.20 378 | 9.52 378 | 1.99 378 |
|
test123 | | | 16.58 348 | 19.47 350 | 7.91 362 | 3.59 386 | 5.37 386 | 94.32 315 | 1.39 387 | 2.49 380 | 13.98 380 | 44.60 377 | 2.91 385 | 2.65 381 | 11.35 380 | 0.57 380 | 15.70 376 |
|
testmvs | | | 18.81 346 | 23.05 349 | 6.10 363 | 4.48 385 | 2.29 387 | 97.78 228 | 3.00 386 | 3.27 379 | 18.60 379 | 62.71 368 | 1.53 386 | 2.49 382 | 14.26 379 | 1.80 379 | 13.50 377 |
|
test_blank | | | 0.00 351 | 0.00 354 | 0.00 364 | 0.00 387 | 0.00 388 | 0.00 375 | 0.00 388 | 0.00 382 | 0.00 383 | 0.00 382 | 0.00 387 | 0.00 383 | 0.00 381 | 0.00 381 | 0.00 379 |
|
uanet_test | | | 0.00 351 | 0.00 354 | 0.00 364 | 0.00 387 | 0.00 388 | 0.00 375 | 0.00 388 | 0.00 382 | 0.00 383 | 0.00 382 | 0.00 387 | 0.00 383 | 0.00 381 | 0.00 381 | 0.00 379 |
|
DCPMVS | | | 0.00 351 | 0.00 354 | 0.00 364 | 0.00 387 | 0.00 388 | 0.00 375 | 0.00 388 | 0.00 382 | 0.00 383 | 0.00 382 | 0.00 387 | 0.00 383 | 0.00 381 | 0.00 381 | 0.00 379 |
|
cdsmvs_eth3d_5k | | | 22.52 345 | 30.03 348 | 0.00 364 | 0.00 387 | 0.00 388 | 0.00 375 | 97.17 166 | 0.00 382 | 0.00 383 | 98.77 89 | 74.35 238 | 0.00 383 | 0.00 381 | 0.00 381 | 0.00 379 |
|
pcd_1.5k_mvsjas | | | 6.87 350 | 9.16 353 | 0.00 364 | 0.00 387 | 0.00 388 | 0.00 375 | 0.00 388 | 0.00 382 | 0.00 383 | 0.00 382 | 82.48 179 | 0.00 383 | 0.00 381 | 0.00 381 | 0.00 379 |
|
sosnet-low-res | | | 0.00 351 | 0.00 354 | 0.00 364 | 0.00 387 | 0.00 388 | 0.00 375 | 0.00 388 | 0.00 382 | 0.00 383 | 0.00 382 | 0.00 387 | 0.00 383 | 0.00 381 | 0.00 381 | 0.00 379 |
|
sosnet | | | 0.00 351 | 0.00 354 | 0.00 364 | 0.00 387 | 0.00 388 | 0.00 375 | 0.00 388 | 0.00 382 | 0.00 383 | 0.00 382 | 0.00 387 | 0.00 383 | 0.00 381 | 0.00 381 | 0.00 379 |
|
uncertanet | | | 0.00 351 | 0.00 354 | 0.00 364 | 0.00 387 | 0.00 388 | 0.00 375 | 0.00 388 | 0.00 382 | 0.00 383 | 0.00 382 | 0.00 387 | 0.00 383 | 0.00 381 | 0.00 381 | 0.00 379 |
|
Regformer | | | 0.00 351 | 0.00 354 | 0.00 364 | 0.00 387 | 0.00 388 | 0.00 375 | 0.00 388 | 0.00 382 | 0.00 383 | 0.00 382 | 0.00 387 | 0.00 383 | 0.00 381 | 0.00 381 | 0.00 379 |
|
ab-mvs-re | | | 8.21 349 | 10.94 352 | 0.00 364 | 0.00 387 | 0.00 388 | 0.00 375 | 0.00 388 | 0.00 382 | 0.00 383 | 98.50 111 | 0.00 387 | 0.00 383 | 0.00 381 | 0.00 381 | 0.00 379 |
|
uanet | | | 0.00 351 | 0.00 354 | 0.00 364 | 0.00 387 | 0.00 388 | 0.00 375 | 0.00 388 | 0.00 382 | 0.00 383 | 0.00 382 | 0.00 387 | 0.00 383 | 0.00 381 | 0.00 381 | 0.00 379 |
|
PC_three_1452 | | | | | | | | | | 94.60 21 | 99.41 2 | 99.12 48 | 95.50 7 | 99.96 30 | 99.84 2 | 99.92 3 | 99.97 7 |
|
eth-test2 | | | | | | 0.00 387 | | | | | | | | | | | |
|
eth-test | | | | | | 0.00 387 | | | | | | | | | | | |
|
test_241102_TWO | | | | | | | | | 97.72 76 | 94.17 26 | 99.23 8 | 99.54 3 | 93.14 24 | 99.98 10 | 99.70 3 | 99.82 19 | 99.99 1 |
|
9.14 | | | | 96.87 28 | | 99.34 58 | | 99.50 42 | 97.49 131 | 89.41 151 | 98.59 26 | 99.43 18 | 89.78 56 | 99.69 80 | 98.69 23 | 99.62 51 | |
|
test_0728_THIRD | | | | | | | | | | 93.01 53 | 99.07 11 | 99.46 11 | 94.66 14 | 99.97 23 | 99.25 15 | 99.82 19 | 99.95 15 |
|
GSMVS | | | | | | | | | | | | | | | | | 98.84 142 |
|
sam_mvs1 | | | | | | | | | | | | | 88.39 75 | | | | 98.84 142 |
|
sam_mvs | | | | | | | | | | | | | 87.08 101 | | | | |
|
MTGPA |  | | | | | | | | 97.45 137 | | | | | | | | |
|
test_post1 | | | | | | | | 90.74 347 | | | | 41.37 379 | 85.38 139 | 96.36 268 | 83.16 248 | | |
|
test_post | | | | | | | | | | | | 46.00 376 | 87.37 93 | 97.11 230 | | | |
|
patchmatchnet-post | | | | | | | | | | | | 84.86 349 | 88.73 69 | 96.81 242 | | | |
|
MTMP | | | | | | | | 99.21 76 | 91.09 359 | | | | | | | | |
|
test9_res | | | | | | | | | | | | | | | 98.60 25 | 99.87 9 | 99.90 24 |
|
agg_prior2 | | | | | | | | | | | | | | | 97.84 47 | 99.87 9 | 99.91 22 |
|
test_prior2 | | | | | | | | 99.57 32 | | 91.43 93 | 98.12 39 | 98.97 67 | 90.43 45 | | 98.33 36 | 99.81 23 | |
|
旧先验2 | | | | | | | | 98.67 142 | | 85.75 239 | 98.96 15 | | | 98.97 147 | 93.84 125 | | |
|
新几何2 | | | | | | | | 98.26 191 | | | | | | | | | |
|
无先验 | | | | | | | | 98.52 159 | 97.82 57 | 87.20 216 | | | | 99.90 45 | 87.64 200 | | 99.85 33 |
|
原ACMM2 | | | | | | | | 98.69 138 | | | | | | | | | |
|
testdata2 | | | | | | | | | | | | | | 99.88 49 | 84.16 236 | | |
|
segment_acmp | | | | | | | | | | | | | 90.56 43 | | | | |
|
testdata1 | | | | | | | | 97.89 219 | | 92.43 68 | | | | | | | |
|
plane_prior5 | | | | | | | | | 96.30 217 | | | | | 97.75 202 | 93.46 132 | 86.17 230 | 92.67 239 |
|
plane_prior4 | | | | | | | | | | | | 96.52 186 | | | | | |
|
plane_prior2 | | | | | | | | 99.02 105 | | 93.38 49 | | | | | | | |
|
plane_prior1 | | | | | | 93.90 255 | | | | | | | | | | | |
|
n2 | | | | | | | | | 0.00 388 | | | | | | | | |
|
nn | | | | | | | | | 0.00 388 | | | | | | | | |
|
door-mid | | | | | | | | | 84.90 375 | | | | | | | | |
|
test11 | | | | | | | | | 97.68 85 | | | | | | | | |
|
door | | | | | | | | | 85.30 374 | | | | | | | | |
|
HQP-NCC | | | | | | 93.95 249 | | 99.16 82 | | 93.92 33 | 87.57 202 | | | | | | |
|
ACMP_Plane | | | | | | 93.95 249 | | 99.16 82 | | 93.92 33 | 87.57 202 | | | | | | |
|
BP-MVS | | | | | | | | | | | | | | | 93.82 127 | | |
|
HQP4-MVS | | | | | | | | | | | 87.57 202 | | | 97.77 197 | | | 92.72 237 |
|
HQP3-MVS | | | | | | | | | 96.37 213 | | | | | | | 86.29 227 | |
|
HQP2-MVS | | | | | | | | | | | | | 73.34 246 | | | | |
|
ACMMP++_ref | | | | | | | | | | | | | | | | 82.64 264 | |
|
ACMMP++ | | | | | | | | | | | | | | | | 83.83 249 | |
|
Test By Simon | | | | | | | | | | | | | 83.62 155 | | | | |
|