This table lists the benchmark results for the high-res multi-view scenario. The following metrics are evaluated:

(*) For exact definitions, detailing how potentially incomplete ground truth is taken into account, see our paper.

The datasets are grouped into different categories, and result averages are computed for a category and method if results of the method are available for all datasets within the category. Note that the category "all" includes both the high-res multi-view and the low-res many-view scenarios.

Methods with suffix _ROB may participate in the Robust Vision Challenge.

Click a dataset result cell to show a visualization of the reconstruction. For training datasets, ground truth and accuracy / completeness visualizations are also available. The visualizations may not work with mobile browsers.




Method Infoallhigh-res
multi-view
indooroutdoorbotani.boulde.bridgedoorexhibi.lectur.living.loungeobserv.old co.statueterrac.
sort bysort bysort bysort bysort bysorted bysort bysort bysort bysort bysort bysort bysort bysort bysort bysort by
MSC_two_6792asdad100.00 1100.00 1100.00 199.42 138100.00 1100.00 1100.00 1100.00 1
No_MVS100.00 1100.00 1100.00 199.42 138100.00 1100.00 1100.00 1100.00 1
OPU-MVS100.00 1100.00 1100.00 1100.00 1100.00 199.54 26100.00 1100.00 1100.00 1100.00 1
DPM-MVS99.63 5199.51 63100.00 199.90 108100.00 1100.00 199.43 12299.00 27100.00 1100.00 199.58 22100.00 197.64 266100.00 1100.00 1
DVP-MVS++99.81 1199.75 14100.00 1100.00 199.99 5100.00 199.42 13898.79 60100.00 1100.00 199.54 26100.00 1100.00 1100.00 1100.00 1
test_one_0601100.00 199.99 599.42 13898.72 64100.00 1100.00 199.60 17
SED-MVS99.83 799.77 9100.00 1100.00 199.99 5100.00 199.42 13899.03 20100.00 1100.00 199.50 37100.00 1100.00 1100.00 1100.00 1
IU-MVS100.00 199.99 599.42 13899.12 6100.00 1100.00 1100.00 1100.00 1
test_241102_ONE100.00 199.99 599.42 13899.03 20100.00 1100.00 199.50 37100.00 1
DVP-MVScopyleft99.83 799.78 7100.00 1100.00 199.99 5100.00 199.42 13899.04 15100.00 1100.00 199.53 29100.00 1100.00 1100.00 1100.00 1
Zhenlong Yuan, Jinguo Luo, Fei Shen, Zhaoxin Li, Cong Liu, Tianlu Mao, Zhaoqi Wang: DVP-MVS: Synergize Depth-Edge and Visibility Prior for Multi-View Stereo. AAAI2025
test_0728_SECOND100.00 199.99 4999.99 5100.00 199.42 138100.00 1100.00 1100.00 1100.00 1
test0726100.00 199.99 5100.00 199.42 13899.04 15100.00 1100.00 199.53 29
test_part2100.00 199.99 5100.00 1
MCST-MVS99.85 399.80 4100.00 1100.00 199.99 5100.00 199.73 5699.19 5100.00 1100.00 199.31 64100.00 1100.00 1100.00 1100.00 1
CNVR-MVS99.85 399.80 4100.00 1100.00 199.99 5100.00 199.77 4899.07 10100.00 1100.00 199.39 57100.00 1100.00 1100.00 1100.00 1
NCCC99.86 299.82 3100.00 1100.00 199.99 5100.00 199.71 6199.07 10100.00 1100.00 199.59 20100.00 1100.00 1100.00 1100.00 1
ZD-MVS100.00 199.98 1799.80 4397.31 182100.00 1100.00 199.32 6299.99 94100.00 1100.00 1
DPE-MVScopyleft99.79 1499.73 1799.99 1299.99 4999.98 17100.00 199.42 13898.91 41100.00 1100.00 199.22 76100.00 1100.00 1100.00 1100.00 1
Kehua Chen, Zhenlong Yuan, Tianlu Mao, Zhaoqi Wang: Dual-Level Precision Edges Guided Multi-View Stereo with Accurate Planarization. AAAI2025
HPM-MVS++copyleft99.82 999.76 1299.99 1299.99 4999.98 17100.00 199.83 3998.88 4499.96 119100.00 199.21 77100.00 1100.00 1100.00 199.99 109
APDe-MVScopyleft99.84 699.78 799.99 12100.00 199.98 17100.00 199.44 11699.06 12100.00 1100.00 199.56 2399.99 94100.00 1100.00 1100.00 1
Zhaojie Zeng, Yuesong Wang, Tao Guan: Matching Ambiguity-Resilient Multi-View Stereo via Adaptive Patch Deformation. Pattern Recognition
FOURS1100.00 199.97 21100.00 199.42 13898.52 74100.00 1
CHOSEN 280x42099.85 399.87 199.80 10199.99 4999.97 2199.97 24199.98 1698.96 32100.00 1100.00 199.96 499.42 255100.00 1100.00 1100.00 1
CDPH-MVS99.73 2599.64 3399.99 12100.00 199.97 21100.00 199.42 13898.02 108100.00 1100.00 199.32 6299.99 94100.00 1100.00 1100.00 1
TSAR-MVS + MP.99.82 999.77 999.99 12100.00 199.96 24100.00 199.43 12299.05 14100.00 1100.00 199.45 4599.99 94100.00 1100.00 1100.00 1
Zhenlong Yuan, Jiakai Cao, Zhaoqi Wang, Zhaoxin Li: TSAR-MVS: Textureless-aware Segmentation and Correlative Refinement Guided Multi-View Stereo. Pattern Recognition
新几何199.99 12100.00 199.96 2499.81 4297.89 121100.00 1100.00 199.20 78100.00 197.91 258100.00 1100.00 1
SD-MVS99.81 1199.75 1499.99 1299.99 4999.96 24100.00 199.42 13899.01 26100.00 1100.00 199.33 59100.00 1100.00 1100.00 1100.00 1
Zhenlong Yuan, Jiakai Cao, Zhaoxin Li, Hao Jiang and Zhaoqi Wang: SD-MVS: Segmentation-driven Deformation Multi-View Stereo with Spherical Refinement and EM optimization. AAAI2024
MSLP-MVS++99.89 199.85 299.99 12100.00 199.96 24100.00 199.95 1999.11 7100.00 1100.00 199.60 17100.00 1100.00 1100.00 1100.00 1
APD-MVScopyleft99.68 4099.58 4699.97 3199.99 4999.96 24100.00 199.42 13897.53 159100.00 1100.00 199.27 7399.97 125100.00 1100.00 1100.00 1
Yuesong Wang, Zhaojie Zeng and etc.: Adaptive Patch Deformation for Textureless-Resilient Multi-View Stereo. CVPR2023
PAPM_NR99.74 2299.66 3099.99 12100.00 199.96 24100.00 199.47 7997.87 123100.00 1100.00 199.60 17100.00 1100.00 1100.00 1100.00 1
PAPR99.76 1899.68 2599.99 12100.00 199.96 24100.00 199.47 7998.16 96100.00 1100.00 199.51 33100.00 1100.00 1100.00 1100.00 1
DeepC-MVS_fast98.92 199.75 2099.67 2799.99 1299.99 4999.96 2499.73 29999.52 7299.06 12100.00 1100.00 198.80 119100.00 199.95 91100.00 1100.00 1
Andreas Kuhn, Christian Sormann, Mattia Rossi, Oliver Erdler, Friedrich Fraundorfer: DeepC-MVS: Deep Confidence Prediction for Multi-View Stereo Reconstruction. 3DV 2020
SR-MVS99.68 4099.58 4699.98 23100.00 199.95 32100.00 199.64 6497.59 153100.00 1100.00 198.99 9799.99 94100.00 1100.00 1100.00 1
TEST9100.00 199.95 32100.00 199.42 13897.65 142100.00 1100.00 199.53 2999.97 125
train_agg99.71 2999.63 3799.97 31100.00 199.95 32100.00 199.42 13897.70 137100.00 1100.00 199.51 3399.97 125100.00 1100.00 1100.00 1
canonicalmvs99.03 12798.73 14999.94 6399.75 15099.95 32100.00 199.30 24297.64 144100.00 1100.00 195.22 22099.97 12599.76 12696.90 24899.91 149
MVS99.22 10998.96 12399.98 2399.00 28699.95 3299.24 35399.94 2298.14 9998.88 242100.00 195.63 215100.00 199.85 109100.00 1100.00 1
SteuartSystems-ACMMP99.78 1699.71 2099.98 2399.76 14899.95 32100.00 199.42 13898.69 65100.00 1100.00 199.52 3299.99 94100.00 1100.00 1100.00 1
Skip Steuart: Steuart Systems R&D Blog.
DP-MVS Recon99.76 1899.69 2299.98 23100.00 199.95 32100.00 199.52 7297.99 11099.99 103100.00 199.72 12100.00 199.96 85100.00 1100.00 1
PAPM99.78 1699.76 1299.85 8599.01 28299.95 32100.00 199.75 5299.37 399.99 103100.00 199.76 1199.60 215100.00 1100.00 1100.00 1
XVS99.79 1499.73 1799.98 23100.00 199.94 40100.00 199.75 5298.67 67100.00 1100.00 199.16 81100.00 1100.00 1100.00 1100.00 1
X-MVStestdata97.04 25096.06 27999.98 23100.00 199.94 40100.00 199.75 5298.67 67100.00 166.97 40799.16 81100.00 1100.00 1100.00 1100.00 1
MP-MVScopyleft99.61 5899.49 6699.98 2399.99 4999.94 40100.00 199.42 13897.82 12899.99 103100.00 198.20 139100.00 199.99 61100.00 1100.00 1
Rongxuan Tan, Qing Wang, et al.: MP-MVS: Multi-Scale Windows PatchMatch and Planar Prior Multi-View Stereo.
save fliter99.99 4999.93 43100.00 199.42 13898.93 38
SMA-MVScopyleft99.69 3599.59 4499.98 2399.99 4999.93 43100.00 199.43 12297.50 164100.00 1100.00 199.43 50100.00 1100.00 1100.00 1100.00 1
Yufeng Yin; Xiaoyan Liu; Zichao Zhang: SMA-MVS: Segmentation-Guided Multi-Scale Anchor Deformation Patch Multi-View Stereo. IEEE Transactions on Circuits and Systems for Video Technology
test_prior499.93 43100.00 1
WTY-MVS99.54 6699.40 7299.95 5199.81 12799.93 43100.00 1100.00 197.98 11299.84 164100.00 198.94 10599.98 11899.86 10798.21 20299.94 135
HY-MVS96.53 999.50 7099.35 8299.96 4299.81 12799.93 4399.64 311100.00 197.97 11499.84 16499.85 24298.94 10599.99 9499.86 10798.23 20199.95 130
MP-MVS-pluss99.61 5899.50 6499.97 3199.98 8599.92 48100.00 199.42 13897.53 15999.77 181100.00 198.77 120100.00 199.99 61100.00 199.99 109
MP-MVS-pluss: MP-MVS-pluss. MP-MVS-pluss
ACMMP_NAP99.67 4399.57 4999.97 3199.98 8599.92 48100.00 199.42 13897.83 127100.00 1100.00 198.89 111100.00 199.98 73100.00 1100.00 1
alignmvs99.38 8299.21 9699.91 6899.73 15199.92 48100.00 199.51 7697.61 150100.00 1100.00 199.06 8999.93 16699.83 11397.12 24299.90 158
SR-MVS-dyc-post99.63 5199.52 6199.97 3199.99 4999.91 51100.00 199.42 13897.62 146100.00 1100.00 198.65 12599.99 9499.99 61100.00 1100.00 1
RE-MVS-def99.55 5699.99 4999.91 51100.00 199.42 13897.62 146100.00 1100.00 198.94 10599.99 61100.00 1100.00 1
MTAPA99.68 4099.59 4499.97 3199.99 4999.91 51100.00 199.42 13898.32 8899.94 145100.00 198.65 125100.00 199.96 85100.00 1100.00 1
test_8100.00 199.91 51100.00 199.42 13897.70 137100.00 1100.00 199.51 3399.98 118
APD-MVS_3200maxsize99.65 4699.55 5699.97 3199.99 4999.91 51100.00 199.48 7897.54 157100.00 1100.00 198.97 9999.99 9499.98 73100.00 1100.00 1
mPP-MVS99.69 3599.60 4399.97 31100.00 199.91 51100.00 199.42 13897.91 120100.00 1100.00 199.04 94100.00 1100.00 1100.00 1100.00 1
MG-MVS99.75 2099.68 2599.97 31100.00 199.91 5199.98 23599.47 7999.09 9100.00 1100.00 198.59 129100.00 199.95 91100.00 1100.00 1
ZNCC-MVS99.71 2999.62 4199.97 3199.99 4999.90 58100.00 199.79 4597.97 11499.97 114100.00 198.97 99100.00 199.94 93100.00 1100.00 1
test_yl99.51 6799.37 7799.95 5199.82 12199.90 58100.00 199.47 7997.48 166100.00 1100.00 199.80 5100.00 199.98 7397.75 23099.94 135
DCV-MVSNet99.51 6799.37 7799.95 5199.82 12199.90 58100.00 199.47 7997.48 166100.00 1100.00 199.80 5100.00 199.98 7397.75 23099.94 135
region2R99.72 2699.64 3399.97 31100.00 199.90 58100.00 199.74 5597.86 124100.00 1100.00 199.19 79100.00 199.99 61100.00 1100.00 1
test22299.99 4999.90 58100.00 199.69 6297.66 141100.00 1100.00 199.30 69100.00 1100.00 1
thres20099.27 9999.04 11399.96 4299.81 12799.90 58100.00 199.94 2297.31 18299.83 16799.96 20997.04 179100.00 199.62 16097.88 21999.98 111
3Dnovator95.63 1499.06 12398.76 14699.96 4298.86 30399.90 5899.98 23599.93 3098.95 3598.49 271100.00 192.91 253100.00 199.71 136100.00 1100.00 1
tfpn200view999.26 10199.03 11499.96 4299.81 12799.89 65100.00 199.94 2297.23 18799.83 16799.96 20997.04 179100.00 199.59 16497.85 22199.98 111
HFP-MVS99.74 2299.67 2799.96 42100.00 199.89 65100.00 199.76 4997.95 118100.00 1100.00 199.31 64100.00 199.99 61100.00 1100.00 1
131499.38 8299.19 10099.96 4298.88 29999.89 6599.24 35399.93 3098.88 4498.79 252100.00 197.02 182100.00 1100.00 1100.00 1100.00 1
ACMMPR99.74 2299.67 2799.96 42100.00 199.89 65100.00 199.76 4997.95 118100.00 1100.00 199.29 70100.00 199.99 61100.00 1100.00 1
thres40099.26 10199.03 11499.95 5199.81 12799.89 65100.00 199.94 2297.23 18799.83 16799.96 20997.04 179100.00 199.59 16497.85 22199.97 118
test1299.95 5199.99 4999.89 6599.42 138100.00 199.24 7599.97 125100.00 1100.00 1
3Dnovator+95.58 1599.03 12798.71 15299.96 4298.99 28999.89 65100.00 199.51 7698.96 3298.32 279100.00 192.78 255100.00 199.87 106100.00 1100.00 1
agg_prior100.00 199.88 7299.42 138100.00 199.97 125
旧先验199.99 4999.88 7299.82 40100.00 199.27 73100.00 1100.00 1
thres100view90099.25 10599.01 11699.95 5199.81 12799.87 74100.00 199.94 2297.13 19299.83 16799.96 20997.01 183100.00 199.59 16497.85 22199.98 111
thres600view799.24 10899.00 11899.95 5199.81 12799.87 74100.00 199.94 2297.13 19299.83 16799.96 20997.01 183100.00 199.54 17297.77 22999.97 118
QAPM98.99 13698.66 15499.96 4299.01 28299.87 7499.88 26899.93 3097.99 11098.68 256100.00 193.17 249100.00 199.32 186100.00 1100.00 1
GST-MVS99.64 4899.53 5999.95 51100.00 199.86 77100.00 199.79 4597.72 13599.95 143100.00 198.39 136100.00 199.96 8599.99 98100.00 1
MSP-MVS99.81 1199.77 999.94 63100.00 199.86 77100.00 199.42 13898.87 47100.00 1100.00 199.65 1599.96 137100.00 1100.00 1100.00 1
Zhenlong Yuan, Cong Liu, Fei Shen, Zhaoxin Li, Jingguo luo, Tianlu Mao and Zhaoqi Wang: MSP-MVS: Multi-granularity Segmentation Prior Guided Multi-View Stereo. AAAI2025
AdaColmapbinary99.44 7899.26 8999.95 51100.00 199.86 7799.70 30499.99 1398.53 7399.90 155100.00 195.34 217100.00 199.92 96100.00 1100.00 1
SF-MVS99.66 4599.57 4999.95 5199.99 4999.85 80100.00 199.42 13897.67 140100.00 1100.00 199.05 9199.99 94100.00 1100.00 1100.00 1
PGM-MVS99.69 3599.61 4299.95 5199.99 4999.85 80100.00 199.58 6797.69 139100.00 1100.00 199.44 46100.00 199.79 119100.00 1100.00 1
CP-MVS99.67 4399.58 4699.95 51100.00 199.84 82100.00 199.42 13897.77 132100.00 1100.00 199.07 88100.00 1100.00 1100.00 1100.00 1
MVS_111021_HR99.71 2999.63 3799.93 6699.95 9699.83 83100.00 1100.00 198.89 43100.00 1100.00 197.85 15199.95 150100.00 1100.00 1100.00 1
MM99.63 5199.52 6199.94 6399.99 4999.82 84100.00 199.97 1799.11 7100.00 1100.00 196.65 197100.00 1100.00 199.97 111100.00 1
PS-MVSNAJ99.64 4899.57 4999.85 8599.78 14599.81 8599.95 25299.42 13898.38 80100.00 1100.00 198.75 121100.00 199.88 10399.99 9899.74 229
OpenMVScopyleft95.20 1798.76 15598.41 17399.78 10798.89 29899.81 8599.99 21199.76 4998.02 10898.02 297100.00 191.44 270100.00 199.63 15999.97 11199.55 242
原ACMM199.93 66100.00 199.80 8799.66 6398.18 95100.00 1100.00 199.43 50100.00 199.50 176100.00 1100.00 1
HPM-MVS_fast99.60 6199.49 6699.91 6899.99 4999.78 88100.00 199.42 13897.09 194100.00 1100.00 198.95 10399.96 13799.98 73100.00 1100.00 1
baseline198.91 14598.61 15999.81 9699.71 15299.77 8999.78 28499.44 11697.51 16398.81 25099.99 18498.25 13899.76 20298.60 23095.41 26199.89 163
CANet99.40 8099.24 9299.89 7399.99 4999.76 90100.00 199.73 5698.40 7999.78 180100.00 195.28 21899.96 137100.00 199.99 9899.96 124
ET-MVSNet_ETH3D96.41 27995.48 30999.20 19199.81 12799.75 91100.00 199.02 35097.30 18478.33 396100.00 197.73 15697.94 35899.70 13987.41 36399.92 147
test_prior99.90 71100.00 199.75 9199.73 5699.97 125100.00 1
VNet99.04 12598.75 14799.90 7199.81 12799.75 9199.50 32899.47 7998.36 84100.00 199.99 18494.66 230100.00 199.90 9997.09 24399.96 124
xiu_mvs_v2_base99.51 6799.41 7199.82 9199.70 15499.73 9499.92 25999.40 18898.15 98100.00 1100.00 198.50 133100.00 199.85 10999.13 16299.74 229
CNLPA99.72 2699.65 3199.91 6899.97 8999.72 95100.00 199.47 7998.43 7899.88 160100.00 199.14 84100.00 199.97 83100.00 1100.00 1
xiu_mvs_v1_base_debu99.35 8599.21 9699.79 10399.67 16499.71 9699.78 28499.36 21298.13 100100.00 1100.00 197.00 186100.00 199.83 11399.07 16499.66 238
xiu_mvs_v1_base99.35 8599.21 9699.79 10399.67 16499.71 9699.78 28499.36 21298.13 100100.00 1100.00 197.00 186100.00 199.83 11399.07 16499.66 238
xiu_mvs_v1_base_debi99.35 8599.21 9699.79 10399.67 16499.71 9699.78 28499.36 21298.13 100100.00 1100.00 197.00 186100.00 199.83 11399.07 16499.66 238
LS3D99.31 9499.13 10699.87 7899.99 4999.71 9699.55 32299.46 9497.32 18099.82 175100.00 196.85 19399.97 12599.14 198100.00 199.92 147
HPM-MVScopyleft99.59 6299.50 6499.89 73100.00 199.70 100100.00 199.42 13897.46 168100.00 1100.00 198.60 12899.96 13799.99 61100.00 1100.00 1
Chunlin Ren, Qingshan Xu, Shikun Zhang, Jiaqi Yang: Hierarchical Prior Mining for Non-local Multi-View Stereo. ICCV 2023
MVS_111021_LR99.70 3299.65 3199.88 7799.96 9499.70 100100.00 199.97 1798.96 32100.00 1100.00 197.93 14799.95 15099.99 61100.00 1100.00 1
MVSTER98.58 17198.52 16698.77 21699.65 17499.68 102100.00 199.29 24695.63 27798.65 25799.80 25499.78 898.88 29098.59 23195.31 26697.73 302
ACMMPcopyleft99.65 4699.57 4999.89 7399.99 4999.66 10399.75 29399.73 5698.16 9699.75 184100.00 198.90 110100.00 199.96 8599.88 129100.00 1
Qingshan Xu, Weihang Kong, Wenbing Tao, Marc Pollefeys: Multi-Scale Geometric Consistency Guided and Planar Prior Assisted Multi-View Stereo. IEEE Transactions on Pattern Analysis and Machine Intelligence
MAR-MVS99.49 7299.36 8099.89 7399.97 8999.66 10399.74 29499.95 1997.89 121100.00 1100.00 196.71 196100.00 1100.00 1100.00 1100.00 1
Zhenyu Xu, Yiguang Liu, Xuelei Shi, Ying Wang, Yunan Zheng: MARMVS: Matching Ambiguity Reduced Multiple View Stereo for Efficient Large Scale Scene Reconstruction. CVPR 2020
EI-MVSNet-UG-set99.69 3599.63 3799.87 7899.99 4999.64 10599.95 25299.44 11698.35 86100.00 1100.00 198.98 9899.97 12599.98 73100.00 1100.00 1
EI-MVSNet-Vis-set99.70 3299.64 3399.87 78100.00 199.64 10599.98 23599.44 11698.35 8699.99 103100.00 199.04 9499.96 13799.98 73100.00 1100.00 1
MVS_030499.69 3599.63 3799.86 8199.96 9499.63 107100.00 199.92 3499.03 2099.97 114100.00 197.87 14999.96 137100.00 199.96 114100.00 1
PVSNet_BlendedMVS98.71 15998.62 15898.98 20499.98 8599.60 108100.00 1100.00 197.23 187100.00 199.03 33296.57 19999.99 94100.00 194.75 28897.35 356
PVSNet_Blended99.48 7499.36 8099.83 8999.98 8599.60 108100.00 1100.00 197.79 130100.00 1100.00 196.57 19999.99 94100.00 199.88 12999.90 158
fmvsm_l_conf0.5_n99.63 5199.56 5499.86 8199.81 12799.59 110100.00 199.36 21298.98 30100.00 1100.00 197.92 14899.99 94100.00 199.95 117100.00 1
fmvsm_l_conf0.5_n_a99.63 5199.55 5699.86 8199.83 12099.58 111100.00 199.36 21298.98 30100.00 1100.00 197.85 15199.99 94100.00 199.94 119100.00 1
test_fmvsmconf_n99.56 6499.46 7099.86 8199.68 15999.58 111100.00 199.31 23898.92 3999.88 160100.00 197.35 17599.99 9499.98 7399.99 98100.00 1
ETVMVS99.16 11598.98 12199.69 12299.67 16499.56 113100.00 199.45 10296.36 25199.98 10999.95 21798.65 12599.64 21399.11 20297.63 23799.88 174
test_fmvsmconf0.1_n99.25 10599.05 11299.82 9198.92 29599.55 114100.00 199.23 27798.91 4199.75 18499.97 19794.79 22899.94 16299.94 9399.99 9899.97 118
thisisatest051599.42 7999.31 8599.74 11399.59 19599.55 114100.00 199.46 9496.65 23399.92 150100.00 199.44 4699.85 18499.09 20399.63 15499.81 204
mvsany_test199.57 6399.48 6999.85 8599.86 11599.54 116100.00 199.36 21298.94 37100.00 1100.00 197.97 145100.00 199.88 10399.28 160100.00 1
CPTT-MVS99.49 7299.38 7499.85 85100.00 199.54 116100.00 199.42 13897.58 15499.98 109100.00 197.43 173100.00 199.99 61100.00 1100.00 1
fmvsm_s_conf0.5_n99.21 11099.01 11699.83 8999.84 11799.53 118100.00 199.38 20398.29 90100.00 1100.00 193.62 24299.99 9499.99 6199.93 12299.98 111
SDMVSNet98.49 18098.08 19699.73 11699.82 12199.53 11899.99 21199.45 10297.62 14699.38 20999.86 23790.06 29199.88 17699.92 9696.61 25199.79 221
nrg03097.64 21997.27 23498.75 21798.34 32099.53 118100.00 199.22 28096.21 26098.27 28499.95 21794.40 23398.98 27899.23 19489.78 34497.75 273
fmvsm_s_conf0.1_n98.77 15498.42 17299.82 9199.47 23599.52 121100.00 199.27 26097.53 159100.00 1100.00 189.73 29699.96 13799.84 11299.93 12299.97 118
testing22299.14 11798.94 12899.73 11699.67 16499.51 122100.00 199.43 12296.90 20999.99 10399.90 23198.55 13199.86 17898.85 21397.18 24199.81 204
test250699.48 7499.38 7499.75 11299.89 11099.51 12299.45 332100.00 198.38 8099.83 167100.00 198.86 11299.81 19399.25 19198.78 17199.94 135
LFMVS97.42 23396.62 25499.81 9699.80 13899.50 12499.16 36799.56 7094.48 311100.00 1100.00 179.35 372100.00 199.89 10197.37 23999.94 135
MVS_Test98.93 14498.65 15599.77 11099.62 18799.50 12499.99 21199.19 29295.52 28399.96 11999.86 23796.54 20199.98 11898.65 22598.48 18199.82 195
sss99.45 7799.34 8499.80 10199.76 14899.50 124100.00 199.91 3697.72 13599.98 10999.94 22298.45 134100.00 199.53 17498.75 17499.89 163
GG-mvs-BLEND99.59 13999.54 20799.49 12799.17 36699.52 7299.96 11999.68 273100.00 199.33 26299.71 13699.99 9899.96 124
MVSFormer98.94 14398.82 13999.28 18599.45 23999.49 127100.00 199.13 31595.46 28899.97 114100.00 196.76 19498.59 31498.63 227100.00 199.74 229
lupinMVS99.29 9799.16 10499.69 12299.45 23999.49 127100.00 199.15 30697.45 16999.97 114100.00 196.76 19499.76 20299.67 150100.00 199.81 204
PVSNet_Blended_VisFu99.33 9099.18 10399.78 10799.82 12199.49 127100.00 199.95 1997.36 17599.63 191100.00 196.45 20399.95 15099.79 11999.65 15299.89 163
114514_t99.39 8199.25 9099.81 9699.97 8999.48 131100.00 199.42 13895.53 281100.00 1100.00 198.37 13799.95 15099.97 83100.00 1100.00 1
fmvsm_s_conf0.5_n_a99.32 9299.15 10599.81 9699.80 13899.47 132100.00 199.35 22398.22 91100.00 1100.00 195.21 22199.99 9499.96 8599.86 13399.98 111
DELS-MVS99.62 5699.56 5499.82 9199.92 10499.45 133100.00 199.78 4798.92 3999.73 186100.00 197.70 158100.00 199.93 95100.00 1100.00 1
Christian Sormann, Emanuele Santellani, Mattia Rossi, Andreas Kuhn, Friedrich Fraundorfer: DELS-MVS: Deep Epipolar Line Search for Multi-View Stereo. Winter Conference on Applications of Computer Vision (WACV), 2023
DP-MVS98.86 14998.54 16599.81 9699.97 8999.45 13399.52 32699.40 18894.35 31598.36 275100.00 196.13 20599.97 12599.12 201100.00 1100.00 1
PHI-MVS99.50 7099.39 7399.82 91100.00 199.45 133100.00 199.94 2296.38 250100.00 1100.00 198.18 140100.00 1100.00 1100.00 1100.00 1
FA-MVS(test-final)99.00 13398.75 14799.73 11699.63 18299.43 13699.83 27499.43 12295.84 27299.52 19599.37 31397.84 15399.96 13797.63 26799.68 14899.79 221
fmvsm_s_conf0.1_n_a98.71 15998.36 18099.78 10799.09 27299.42 137100.00 199.26 26697.42 172100.00 1100.00 189.78 29499.96 13799.82 11899.85 13699.97 118
thisisatest053099.37 8499.27 8699.69 12299.59 19599.41 138100.00 199.46 9496.46 24399.90 155100.00 199.44 4699.85 18498.97 20699.58 15699.80 218
UA-Net99.06 12398.83 13899.74 11399.52 21799.40 13999.08 37799.45 10297.64 14499.83 167100.00 195.80 21099.94 16298.35 23999.80 14399.88 174
tttt051799.34 8899.23 9599.67 12599.57 20399.38 140100.00 199.46 9496.33 25499.89 158100.00 199.44 4699.84 18698.93 20899.46 15999.78 224
TESTMET0.1,199.08 12198.96 12399.44 15899.63 18299.38 140100.00 199.45 10295.53 28199.48 198100.00 199.71 1399.02 27496.84 29199.99 9899.91 149
IS-MVSNet99.08 12198.91 13299.59 13999.65 17499.38 14099.78 28499.24 27396.70 22799.51 196100.00 198.44 13599.52 24098.47 23598.39 18899.88 174
API-MVS99.72 2699.70 2199.79 10399.97 8999.37 14399.96 24699.94 2298.48 75100.00 1100.00 198.92 108100.00 1100.00 1100.00 1100.00 1
gg-mvs-nofinetune96.95 25596.10 27799.50 15199.41 24599.36 14499.07 37999.52 7283.69 38899.96 11983.60 404100.00 199.20 26799.68 14799.99 9899.96 124
ETV-MVS99.34 8899.24 9299.64 13199.58 20099.33 145100.00 199.25 26897.57 15599.96 119100.00 197.44 17299.79 19599.70 13999.65 15299.81 204
test_cas_vis1_n_192098.63 16898.25 18499.77 11099.69 15599.32 146100.00 199.31 23898.84 5199.96 119100.00 187.42 32499.99 9499.14 19899.86 133100.00 1
VPA-MVSNet97.03 25196.43 26398.82 21298.64 31099.32 14699.38 34099.47 7996.73 22498.91 24098.94 34187.00 32999.40 25699.23 19489.59 34597.76 263
jason99.11 11998.96 12399.59 13999.17 26699.31 148100.00 199.13 31597.38 17499.83 167100.00 195.54 21699.72 20899.57 16899.97 11199.74 229
jason: jason.
PatchMatch-RL99.02 13198.78 14399.74 11399.99 4999.29 149100.00 1100.00 198.38 8099.89 15899.81 25193.14 25199.99 9497.85 26099.98 10899.95 130
test-LLR99.03 12798.91 13299.40 16799.40 25099.28 150100.00 199.45 10296.70 22799.42 20299.12 32399.31 6499.01 27596.82 29299.99 9899.91 149
test-mter98.96 14098.82 13999.40 16799.40 25099.28 150100.00 199.45 10295.44 29099.42 20299.12 32399.70 1499.01 27596.82 29299.99 9899.91 149
Effi-MVS+98.58 17198.24 18699.61 13599.60 19199.26 15297.85 39399.10 32496.22 25999.97 11499.89 23293.75 23999.77 20099.43 17898.34 19399.81 204
HyFIR lowres test99.32 9299.24 9299.58 14399.95 9699.26 152100.00 199.99 1396.72 22599.29 21499.91 22999.49 3999.47 24799.74 12898.08 209100.00 1
FMVSNet397.30 23896.95 24298.37 23699.65 17499.25 15499.71 30299.28 25294.23 31698.53 26698.91 34393.30 24798.11 34595.31 31793.60 29797.73 302
MSDG98.90 14798.63 15799.70 12199.92 10499.25 154100.00 199.37 20695.71 27599.40 208100.00 196.58 19899.95 15096.80 29499.94 11999.91 149
FIs97.95 20897.73 21698.62 22298.53 31599.24 156100.00 199.43 12296.74 22297.87 30699.82 24895.27 21998.89 28798.78 21793.07 30397.74 296
mvs_anonymous98.80 15398.60 16199.38 17199.57 20399.24 156100.00 199.21 28895.87 26798.92 23899.82 24896.39 20499.03 27399.13 20098.50 17999.88 174
MDTV_nov1_ep13_2view99.24 15699.56 32196.31 25599.96 11998.86 11298.92 20999.89 163
iter_conf0598.73 15798.77 14498.60 22399.65 17499.22 159100.00 199.22 28096.68 23198.98 23599.97 19799.99 398.84 29299.29 18995.11 28097.75 273
test_fmvsmconf0.01_n98.60 16998.24 18699.67 12596.90 36999.21 16099.99 21199.04 34798.80 5799.57 19399.96 20990.12 28899.91 16999.89 10199.89 12799.90 158
EPMVS99.25 10599.13 10699.60 13799.60 19199.20 16199.60 317100.00 196.93 20499.92 15099.36 31499.05 9199.71 20998.77 21898.94 16899.90 158
test_fmvsm_n_192099.55 6599.49 6699.73 11699.85 11699.19 162100.00 199.41 18498.87 47100.00 1100.00 197.34 176100.00 199.98 7399.90 126100.00 1
BH-RMVSNet98.46 18198.08 19699.59 13999.61 18999.19 162100.00 199.28 25297.06 19898.95 236100.00 188.99 30699.82 19098.83 216100.00 199.77 225
test_fmvsmvis_n_192099.46 7699.37 7799.73 11698.88 29999.18 164100.00 199.26 26698.85 4999.79 178100.00 197.70 158100.00 199.98 7399.86 133100.00 1
FE-MVS99.16 11598.99 12099.66 12899.65 17499.18 16499.58 31999.43 12295.24 29199.91 15399.59 29499.37 5899.97 12598.31 24199.81 14199.83 190
diffmvspermissive98.96 14098.73 14999.63 13299.54 20799.16 166100.00 199.18 29997.33 17999.96 119100.00 194.60 23199.91 16999.66 15498.33 19699.82 195
Fangjinhua Wang, Qingshan Xu, Yew-Soon Ong, Marc Pollefeys: Lightweight and Accurate Multi-View Stereo With Confidence-Aware Diffusion Model. IEEE T-PAMI 2025
baseline298.99 13698.93 13099.18 19299.26 26399.15 167100.00 199.46 9496.71 22696.79 338100.00 199.42 5399.25 26698.75 22099.94 11999.15 250
UniMVSNet (Re)97.29 23996.85 24698.59 22598.49 31699.13 168100.00 199.42 13896.52 24198.24 28898.90 34494.93 22598.89 28797.54 27087.61 36297.75 273
WR-MVS97.09 24696.64 25298.46 23098.43 31799.09 16999.97 24199.33 23195.62 27897.76 30899.67 27491.17 27498.56 31998.49 23489.28 35097.74 296
EC-MVSNet99.19 11199.09 11099.48 15499.42 24399.07 170100.00 199.21 28896.95 20299.96 119100.00 196.88 19299.48 24599.64 15699.79 14499.88 174
F-COLMAP99.64 4899.64 3399.67 12599.99 4999.07 170100.00 199.44 11698.30 8999.90 155100.00 199.18 8099.99 9499.91 98100.00 199.94 135
iter_conf05_1198.21 19997.74 21399.65 13099.67 16499.06 172100.00 198.87 36497.84 12699.96 119100.00 183.57 35499.88 17699.72 131100.00 1100.00 1
Fast-Effi-MVS+98.40 18898.02 20399.55 14799.63 18299.06 172100.00 199.15 30695.07 29399.42 20299.95 21793.26 24899.73 20797.44 27398.24 20099.87 183
FC-MVSNet-test97.84 21097.63 22098.45 23198.30 32599.05 174100.00 199.43 12296.63 23697.61 31799.82 24895.19 22298.57 31798.64 22693.05 30497.73 302
miper_enhance_ethall98.33 19198.27 18398.51 22899.66 17399.04 175100.00 199.22 28097.53 15998.51 26999.38 31299.49 3998.75 30198.02 25392.61 30897.76 263
DeepC-MVS97.84 599.00 13398.80 14299.60 13799.93 10199.03 176100.00 199.40 18898.61 7199.33 212100.00 192.23 26499.95 15099.74 12899.96 11499.83 190
Andreas Kuhn, Christian Sormann, Mattia Rossi, Oliver Erdler, Friedrich Fraundorfer: DeepC-MVS: Deep Confidence Prediction for Multi-View Stereo Reconstruction. 3DV 2020
cascas98.43 18398.07 19899.50 15199.65 17499.02 177100.00 199.22 28094.21 31899.72 18799.98 18992.03 26799.93 16699.68 14798.12 20799.54 243
PCF-MVS98.23 398.69 16298.37 17899.62 13499.78 14599.02 17799.23 35899.06 34296.43 24498.08 291100.00 194.72 22999.95 15098.16 24899.91 12599.90 158
Andreas Kuhn, Shan Lin, Oliver Erdler: Plane Completion and Filtering for Multi-View Stereo Reconstruction. GCPR 2019
cl2298.23 19898.11 19498.58 22699.82 12199.01 179100.00 199.28 25296.92 20698.33 27899.21 32098.09 14498.97 28098.72 22192.61 30897.76 263
EPNet_dtu98.53 17698.23 18999.43 16099.92 10499.01 17999.96 24699.47 7998.80 5799.96 11999.96 20998.56 13099.30 26387.78 37699.68 148100.00 1
Wanjuan Su, Wenbing Tao: Efficient Edge-Preserving Multi-View Stereo Network for Depth Estimation. AAAI 2023
CS-MVS99.33 9099.27 8699.50 15199.99 4999.00 181100.00 199.13 31597.26 18599.96 119100.00 197.79 15599.64 21399.64 15699.67 15099.87 183
ab-mvs98.42 18598.02 20399.61 13599.71 15299.00 18199.10 37499.64 6496.70 22799.04 23299.81 25190.64 28199.98 11899.64 15697.93 21699.84 187
NR-MVSNet96.63 26896.04 28098.38 23598.31 32398.98 18399.22 36099.35 22395.87 26794.43 36699.65 27892.73 25898.40 33096.78 29588.05 35997.75 273
PMMVS99.12 11898.97 12299.58 14399.57 20398.98 183100.00 199.30 24297.14 19199.96 119100.00 196.53 20299.82 19099.70 13998.49 18099.94 135
testdata99.66 12899.99 4998.97 18599.73 5697.96 117100.00 1100.00 199.42 53100.00 199.28 190100.00 1100.00 1
bld_raw_dy_0_6497.64 21996.98 24199.63 13299.67 16498.94 186100.00 197.98 38397.85 12598.93 237100.00 183.23 35899.96 13799.72 13195.41 261100.00 1
XXY-MVS97.14 24596.63 25398.67 21998.65 30998.92 18799.54 32499.29 24695.57 28097.63 31499.83 24587.79 32199.35 26098.39 23792.95 30597.75 273
Vis-MVSNet (Re-imp)98.99 13698.89 13699.29 18299.64 18098.89 18899.98 23599.31 23896.74 22299.48 198100.00 198.11 14299.10 27098.39 23798.34 19399.89 163
CR-MVSNet98.02 20697.71 21798.93 20699.31 25798.86 18999.13 37199.00 35396.53 24099.96 11998.98 33696.94 18998.10 34891.18 35598.40 18699.84 187
RPMNet95.26 31793.82 32599.56 14699.31 25798.86 18999.13 37199.42 13879.82 39399.96 11995.13 38695.69 21399.98 11877.54 39698.40 18699.84 187
UWE-MVS99.18 11299.06 11199.51 14899.67 16498.80 191100.00 199.43 12296.80 21599.93 14999.86 23799.79 799.94 16297.78 26298.33 19699.80 218
PLCcopyleft98.56 299.70 3299.74 1699.58 143100.00 198.79 192100.00 199.54 7198.58 7299.96 119100.00 199.59 20100.00 1100.00 1100.00 199.94 135
Jie Liao, Yanping Fu, Qingan Yan, Chunxia xiao: Pyramid Multi-View Stereo with Local Consistency. Pacific Graphics 2019
CS-MVS-test99.31 9499.27 8699.43 16099.99 4998.77 193100.00 199.19 29297.24 18699.96 119100.00 197.56 16599.70 21099.68 14799.81 14199.82 195
EIA-MVS99.26 10199.19 10099.45 15799.63 18298.75 194100.00 199.27 26096.93 20499.95 143100.00 197.47 16999.79 19599.74 12899.72 14699.82 195
Test_1112_low_res98.83 15198.60 16199.51 14899.69 15598.75 19499.99 21199.14 31196.81 21498.84 24799.06 32797.45 17099.89 17298.66 22397.75 23099.89 163
1112_ss98.91 14598.71 15299.51 14899.69 15598.75 19499.99 21199.15 30696.82 21398.84 247100.00 197.45 17099.89 17298.66 22397.75 23099.89 163
casdiffmvspermissive98.65 16498.38 17699.46 15599.52 21798.74 197100.00 199.15 30696.91 20799.05 231100.00 192.75 25699.83 18799.70 13998.38 19099.81 204
Fangjinhua Wang, Qingshan Xu, Yew-Soon Ong, Marc Pollefeys: Lightweight and Accurate Multi-View Stereo With Confidence-Aware Diffusion Model. IEEE T-PAMI 2025
tfpnnormal96.36 28495.69 30098.37 23698.55 31398.71 19899.69 30699.45 10293.16 34496.69 34299.71 26388.44 31698.99 27794.17 33191.38 33097.41 353
CANet_DTU99.02 13198.90 13599.41 16399.88 11298.71 198100.00 199.29 24698.84 51100.00 1100.00 194.02 237100.00 198.08 25099.96 11499.52 244
EPP-MVSNet99.10 12099.00 11899.40 16799.51 22298.68 20099.92 25999.43 12295.47 28799.65 190100.00 199.51 3399.76 20299.53 17498.00 21099.75 228
CP-MVSNet96.73 26296.25 27198.18 25098.21 33198.67 20199.77 28999.32 23395.06 29497.20 32899.65 27890.10 28998.19 33898.06 25288.90 35397.66 329
baseline98.69 16298.45 17199.41 16399.52 21798.67 201100.00 199.17 30497.03 19999.13 223100.00 193.17 24999.74 20599.70 13998.34 19399.81 204
pmmvs497.17 24296.80 24798.27 24397.68 34998.64 203100.00 199.18 29994.22 31798.55 26499.71 26393.67 24098.47 32695.66 31192.57 31197.71 317
testing1199.26 10199.19 10099.46 15599.64 18098.61 204100.00 199.43 12296.94 20399.92 15099.94 22299.43 5099.97 12599.67 15097.79 22899.82 195
casdiffmvs_mvgpermissive98.64 16598.39 17599.40 16799.50 22698.60 205100.00 199.22 28096.85 21199.10 225100.00 192.75 25699.78 19999.71 13698.35 19299.81 204
Fangjinhua Wang, Qingshan Xu, Yew-Soon Ong, Marc Pollefeys: Lightweight and Accurate Multi-View Stereo With Confidence-Aware Diffusion Model. IEEE T-PAMI 2025
JIA-IIPM97.09 24696.34 26899.36 17298.88 29998.59 20699.81 27899.43 12284.81 38699.96 11990.34 39698.55 13199.52 24097.00 28698.28 19999.98 111
Patchmtry96.81 25896.37 26698.14 25499.31 25798.55 20798.91 38299.00 35390.45 36697.92 30398.98 33696.94 18998.12 34394.27 33091.53 32697.75 273
UGNet98.41 18798.11 19499.31 18199.54 20798.55 20799.18 361100.00 198.64 7099.79 17899.04 33087.61 322100.00 199.30 18899.89 12799.40 247
Wanjuan Su, Qingshan Xu, Wenbing Tao: Uncertainty-guided Multi-view Stereo Network for Depth Estimation. IEEE Transactions on Circuits and Systems for Video Technology, 2022
Vis-MVSNetpermissive98.52 17798.25 18499.34 17499.68 15998.55 20799.68 30899.41 18497.34 17899.94 145100.00 190.38 28799.70 21099.03 20598.84 16999.76 227
Jingyang Zhang, Yao Yao, Shiwei Li, Zixin Luo, Tian Fang: Visibility-aware Multiview Stereo Network. BMVC 2020
mvsmamba98.13 20198.06 19998.32 24098.22 33098.50 210100.00 199.22 28096.41 24798.91 24099.96 20995.69 21398.73 30399.19 19794.95 28797.73 302
testing9199.18 11299.10 10899.41 16399.60 19198.43 211100.00 199.43 12296.76 21899.82 17599.92 22799.05 9199.98 11899.62 16097.67 23499.81 204
testing9999.18 11299.10 10899.41 16399.60 19198.43 211100.00 199.43 12296.76 21899.84 16499.92 22799.06 8999.98 11899.62 16097.67 23499.81 204
GeoE98.06 20397.65 21999.29 18299.47 23598.41 213100.00 199.19 29294.85 29898.88 242100.00 191.21 27299.59 21797.02 28598.19 20499.88 174
UniMVSNet_NR-MVSNet97.16 24396.80 24798.22 24798.38 31998.41 213100.00 199.45 10296.14 26297.76 30899.64 28295.05 22398.50 32397.98 25486.84 36697.75 273
DU-MVS96.93 25696.49 26098.22 24798.31 32398.41 213100.00 199.37 20696.41 24797.76 30899.65 27892.14 26598.50 32397.98 25486.84 36697.75 273
v2v48296.70 26596.18 27498.27 24398.04 33798.39 216100.00 199.13 31594.19 32098.58 26299.08 32690.48 28598.67 30695.69 31090.44 34097.75 273
ADS-MVSNet98.70 16198.51 16799.28 18599.51 22298.39 21699.24 35399.44 11695.52 28399.96 11999.70 26697.57 16399.58 22197.11 28398.54 17799.88 174
PatchT95.90 30794.95 32198.75 21799.03 28098.39 21699.08 37799.32 23385.52 38499.96 11994.99 38897.94 14698.05 35480.20 39298.47 18299.81 204
miper_ehance_all_eth97.81 21297.66 21898.23 24699.49 23098.37 21999.99 21199.11 32294.78 29998.25 28699.21 32098.18 14098.57 31797.35 27992.61 30897.76 263
EPNet99.62 5699.69 2299.42 16299.99 4998.37 219100.00 199.89 3798.83 53100.00 1100.00 198.97 99100.00 199.90 9999.61 15599.89 163
Wanjuan Su, Wenbing Tao: Efficient Edge-Preserving Multi-View Stereo Network for Depth Estimation. AAAI 2023
MDTV_nov1_ep1398.94 12899.53 21098.36 22199.39 33999.46 9496.54 23999.99 10399.63 28698.92 10899.86 17898.30 24498.71 175
CDS-MVSNet98.96 14098.95 12799.01 20199.48 23298.36 22199.93 25899.37 20696.79 21699.31 21399.83 24599.77 1098.91 28498.07 25197.98 21199.77 225
Khang Truong Giang, Soohwan Song, Sungho Jo: Curvature-guided dynamic scale networks for Multi-view Stereo. ICLR 2022
FMVSNet296.22 29195.60 30398.06 26499.53 21098.33 22399.45 33299.27 26093.71 32698.03 29598.84 34684.23 34998.10 34893.97 33593.40 30097.73 302
PatchmatchNetpermissive99.03 12798.96 12399.26 18799.49 23098.33 22399.38 34099.45 10296.64 23499.96 11999.58 29699.49 3999.50 24397.63 26799.00 16799.93 145
Fangjinhua Wang, Silvano Galliani, Christoph Vogel, Pablo Speciale, Marc Pollefeys: PatchmatchNet: Learned Multi-View Patchmatch Stereo.
testing398.44 18298.37 17898.65 22099.51 22298.32 225100.00 199.62 6696.43 24497.93 30299.99 18499.11 8597.81 36194.88 32497.80 22699.82 195
PVSNet94.91 1899.30 9699.25 9099.44 158100.00 198.32 225100.00 199.86 3898.04 107100.00 1100.00 196.10 206100.00 199.55 16999.73 145100.00 1
VPNet96.41 27995.76 29498.33 23998.61 31198.30 22799.48 32999.45 10296.98 20198.87 24499.88 23481.57 36498.93 28299.22 19687.82 36197.76 263
TR-MVS98.14 20097.74 21399.33 17799.59 19598.28 22899.27 35099.21 28896.42 24699.15 22299.94 22288.87 30999.79 19598.88 21198.29 19899.93 145
PS-CasMVS96.34 28695.78 29398.03 27198.18 33398.27 22999.71 30299.32 23394.75 30096.82 33799.65 27886.98 33098.15 34097.74 26388.85 35497.66 329
SCA98.30 19297.98 20599.23 18999.41 24598.25 23099.99 21199.45 10296.91 20799.76 18399.58 29689.65 29899.54 23498.31 24198.79 17099.91 149
v896.35 28595.73 29698.21 24998.11 33598.23 23199.94 25699.07 33492.66 35298.29 28199.00 33591.46 26998.77 29994.17 33188.83 35597.62 339
V4296.65 26796.16 27698.11 25998.17 33498.23 23199.99 21199.09 32993.97 32398.74 25499.05 32991.09 27598.82 29495.46 31589.90 34297.27 358
ECVR-MVScopyleft98.43 18398.14 19299.32 17999.89 11098.21 23399.46 330100.00 198.38 8099.47 201100.00 187.91 31799.80 19499.35 18398.78 17199.94 135
c3_l97.58 22497.42 22498.06 26499.48 23298.16 23499.96 24699.10 32494.54 30898.13 29099.20 32297.87 14998.25 33797.28 28091.20 33297.75 273
test111198.42 18598.12 19399.29 18299.88 11298.15 23599.46 330100.00 198.36 8499.42 202100.00 187.91 31799.79 19599.31 18798.78 17199.94 135
v119296.18 29395.49 30798.26 24598.01 33898.15 23599.99 21199.08 33093.36 33898.54 26598.97 33989.47 30198.89 28791.15 35690.82 33597.75 273
cl____97.54 22797.32 23098.18 25099.47 23598.14 237100.00 199.10 32494.16 32197.60 31899.63 28697.52 16698.65 30896.47 29991.97 32097.76 263
DIV-MVS_self_test97.52 23097.35 22998.05 26899.46 23898.11 238100.00 199.10 32494.21 31897.62 31699.63 28697.65 16098.29 33496.47 29991.98 31997.76 263
v14419296.40 28295.81 28998.17 25297.89 34398.11 23899.99 21199.06 34293.39 33798.75 25399.09 32590.43 28698.66 30793.10 34290.55 33997.75 273
IB-MVS96.24 1297.54 22796.95 24299.33 17799.67 16498.10 240100.00 199.47 7997.42 17299.26 21599.69 26998.83 11699.89 17299.43 17878.77 388100.00 1
Christian Sormann, Mattia Rossi, Andreas Kuhn and Friedrich Fraundorfer: IB-MVS: An Iterative Algorithm for Deep Multi-View Stereo based on Binary Decisions. BMVC 2021
test_fmvs198.37 19098.04 20199.34 17499.84 11798.07 241100.00 199.00 35398.85 49100.00 1100.00 185.11 34499.96 13799.69 14699.88 129100.00 1
test0.0.03 198.12 20298.03 20298.39 23499.11 26998.07 241100.00 199.93 3096.70 22796.91 33499.95 21799.31 6498.19 33891.93 35098.44 18398.91 254
anonymousdsp97.16 24396.88 24498.00 27297.08 36898.06 24399.81 27899.15 30694.58 30697.84 30799.62 29090.49 28498.60 31297.98 25495.32 26597.33 357
TSAR-MVS + GP.99.61 5899.69 2299.35 17399.99 4998.06 243100.00 199.36 21299.83 2100.00 1100.00 198.95 10399.99 94100.00 199.11 163100.00 1
test_vis1_n_192097.77 21497.24 23699.34 17499.79 14298.04 245100.00 199.25 26898.88 44100.00 1100.00 177.52 377100.00 199.88 10399.85 136100.00 1
v114496.51 27495.97 28498.13 25797.98 34098.04 24599.99 21199.08 33093.51 33598.62 26098.98 33690.98 27998.62 30993.79 33790.79 33697.74 296
test_djsdf97.55 22697.38 22798.07 26097.50 35897.99 247100.00 199.13 31595.46 28898.47 27299.85 24292.01 26898.59 31498.63 22795.36 26497.62 339
WAC-MVS97.98 24895.74 308
myMVS_eth3d98.52 17798.51 16798.53 22799.50 22697.98 248100.00 199.57 6896.23 25798.07 292100.00 199.09 8797.81 36196.17 30497.96 21399.82 195
test_vis1_n96.69 26695.81 28999.32 17999.14 26797.98 24899.97 24198.98 35698.45 77100.00 1100.00 166.44 39399.99 9499.78 12599.57 157100.00 1
v192192096.16 29795.50 30598.14 25497.88 34597.96 25199.99 21199.07 33493.33 33998.60 26199.24 31989.37 30298.71 30491.28 35490.74 33797.75 273
v1096.14 29995.50 30598.07 26098.19 33297.96 25199.83 27499.07 33492.10 35598.07 29298.94 34191.07 27698.61 31092.41 34989.82 34397.63 337
eth_miper_zixun_eth97.47 23197.28 23298.06 26499.41 24597.94 25399.62 31599.08 33094.46 31298.19 28999.56 30096.91 19198.50 32396.78 29591.49 32797.74 296
GA-MVS97.72 21797.27 23499.06 19599.24 26497.93 254100.00 199.24 27395.80 27398.99 23499.64 28289.77 29599.36 25895.12 32197.62 23899.89 163
tpmvs98.59 17098.38 17699.23 18999.69 15597.90 25599.31 34899.47 7994.52 30999.68 18999.28 31897.64 16199.89 17297.71 26498.17 20699.89 163
IterMVS-LS97.56 22597.44 22397.92 27999.38 25497.90 25599.89 26699.10 32494.41 31398.32 27999.54 30397.21 17798.11 34597.50 27191.62 32497.75 273
Fangjinhua Wang, Silvano Galliani, Christoph Vogel, Marc Pollefeys: IterMVS: Iterative Probability Estimation for Efficient Multi-View Stereo.
TransMVSNet (Re)94.78 32093.72 32697.93 27898.34 32097.88 25799.23 35897.98 38391.60 35794.55 36399.71 26387.89 31998.36 33189.30 37184.92 37297.56 345
WR-MVS_H96.73 26296.32 27097.95 27598.26 32797.88 25799.72 30199.43 12295.06 29496.99 33198.68 35393.02 25298.53 32197.43 27488.33 35897.43 352
v124095.96 30595.25 31498.07 26097.91 34297.87 25999.96 24699.07 33493.24 34298.64 25998.96 34088.98 30798.61 31089.58 36990.92 33497.75 273
EI-MVSNet97.98 20797.93 20698.16 25399.11 26997.84 26099.74 29499.29 24694.39 31498.65 257100.00 197.21 17798.88 29097.62 26995.31 26697.75 273
KD-MVS_2432*160094.15 32493.08 33397.35 29799.53 21097.83 26199.63 31399.19 29292.88 34896.29 34697.68 37498.84 11496.70 37389.73 36663.92 39797.53 347
miper_refine_blended94.15 32493.08 33397.35 29799.53 21097.83 26199.63 31399.19 29292.88 34896.29 34697.68 37498.84 11496.70 37389.73 36663.92 39797.53 347
CHOSEN 1792x268899.00 13398.91 13299.25 18899.90 10897.79 263100.00 199.99 1398.79 6098.28 282100.00 193.63 24199.95 15099.66 15499.95 117100.00 1
tpmrst98.98 13998.93 13099.14 19499.61 18997.74 26499.52 32699.36 21296.05 26499.98 10999.64 28299.04 9499.86 17898.94 20798.19 20499.82 195
TAMVS98.76 15598.73 14998.86 21199.44 24197.69 26599.57 32099.34 22996.57 23799.12 22499.81 25198.83 11699.16 26897.97 25797.91 21799.73 233
CVMVSNet98.56 17398.47 17098.82 21299.11 26997.67 26699.74 29499.47 7997.57 15599.06 230100.00 195.72 21298.97 28098.21 24797.33 24099.83 190
Patchmatch-test97.83 21197.42 22499.06 19599.08 27397.66 26798.66 38799.21 28893.65 33098.25 28699.58 29699.47 4399.57 22290.25 36498.59 17699.95 130
TranMVSNet+NR-MVSNet96.45 27896.01 28197.79 28398.00 33997.62 268100.00 199.35 22395.98 26597.31 32599.64 28290.09 29098.00 35596.89 29086.80 36997.75 273
CostFormer98.84 15098.77 14499.04 19999.41 24597.58 26999.67 30999.35 22394.66 30499.96 11999.36 31499.28 7299.74 20599.41 18097.81 22599.81 204
miper_lstm_enhance97.40 23497.28 23297.75 28599.48 23297.52 270100.00 199.07 33494.08 32298.01 29899.61 29297.38 17497.98 35696.44 30291.47 32997.76 263
Anonymous2023121196.29 28895.70 29798.07 26099.80 13897.49 27199.15 36999.40 18889.11 37397.75 31199.45 30988.93 30898.98 27898.26 24689.47 34797.73 302
test_fmvs1_n97.43 23296.86 24599.15 19399.68 15997.48 27299.99 21198.98 35698.82 55100.00 1100.00 174.85 38299.96 13799.67 15099.70 147100.00 1
pm-mvs195.76 30995.01 31998.00 27298.23 32997.45 27399.24 35399.04 34793.13 34595.93 35399.72 26186.28 33498.84 29295.62 31387.92 36097.72 309
VDDNet96.39 28395.55 30498.90 20899.27 26197.45 27399.15 36999.92 3491.28 35999.98 109100.00 173.55 383100.00 199.85 10996.98 24699.24 248
dp98.72 15898.61 15999.03 20099.53 21097.39 27599.45 33299.39 20195.62 27899.94 14599.52 30498.83 11699.82 19096.77 29798.42 18599.89 163
COLMAP_ROBcopyleft97.10 798.29 19498.17 19198.65 22099.94 9997.39 27599.30 34999.40 18895.64 27697.75 311100.00 192.69 26099.95 15098.89 21099.92 12498.62 258
Johannes L. Schönberger, Enliang Zheng, Marc Pollefeys, Jan-Michael Frahm: Pixelwise View Selection for Unstructured Multi-View Stereo. ECCV 2016
WB-MVSnew97.02 25397.24 23696.37 33199.44 24197.36 277100.00 199.43 12296.12 26399.35 21199.89 23293.60 24398.42 32988.91 37598.39 18893.33 390
AllTest98.55 17498.40 17498.99 20299.93 10197.35 278100.00 199.40 18897.08 19699.09 22699.98 18993.37 24599.95 15096.94 28799.84 13899.68 236
TestCases98.99 20299.93 10197.35 27899.40 18897.08 19699.09 22699.98 18993.37 24599.95 15096.94 28799.84 13899.68 236
v7n96.06 30395.42 31397.99 27497.58 35597.35 27899.86 27099.11 32292.81 35197.91 30499.49 30690.99 27898.92 28392.51 34688.49 35797.70 318
PS-MVSNAJss98.03 20598.06 19997.94 27697.63 35097.33 28199.89 26699.23 27796.27 25698.03 29599.59 29498.75 12198.78 29698.52 23394.61 29197.70 318
Anonymous2024052996.93 25696.22 27399.05 19799.79 14297.30 28299.16 36799.47 7988.51 37698.69 255100.00 183.50 356100.00 199.83 11397.02 24599.83 190
mvs_tets97.00 25496.69 25197.94 27697.41 36597.27 28399.60 31799.18 29996.51 24297.35 32499.69 26986.53 33398.91 28498.84 21495.09 28197.65 333
gm-plane-assit99.52 21797.26 28495.86 269100.00 199.43 25398.76 219
MDA-MVSNet_test_wron92.61 33791.09 34597.19 30596.71 37197.26 284100.00 199.14 31188.61 37567.90 40298.32 36689.03 30596.57 37690.47 36289.59 34597.74 296
PEN-MVS96.01 30495.48 30997.58 29097.74 34797.26 28499.90 26399.29 24694.55 30796.79 33899.55 30187.38 32597.84 36096.92 28987.24 36497.65 333
CSCG99.28 9899.35 8299.05 19799.99 4997.15 287100.00 199.47 7997.44 17099.42 202100.00 197.83 154100.00 199.99 61100.00 1100.00 1
jajsoiax97.07 24896.79 24997.89 28097.28 36697.12 28899.95 25299.19 29296.55 23897.31 32599.69 26987.35 32798.91 28498.70 22295.12 27997.66 329
tpm298.64 16598.58 16398.81 21499.42 24397.12 28899.69 30699.37 20693.63 33199.94 14599.67 27498.96 10299.47 24798.62 22997.95 21599.83 190
tpm cat198.05 20497.76 21198.92 20799.50 22697.10 29099.77 28999.30 24290.20 37099.72 18798.71 35197.71 15799.86 17896.75 29898.20 20399.81 204
RRT_MVS97.77 21497.76 21197.78 28497.89 34397.06 291100.00 199.29 24695.74 27498.00 30099.97 19795.94 20798.55 32098.87 21294.18 29497.72 309
YYNet192.44 33890.92 34697.03 30896.20 37397.06 29199.99 21199.14 31188.21 37867.93 40198.43 36388.63 31196.28 38090.64 35889.08 35297.74 296
OMC-MVS99.27 9999.38 7498.96 20599.95 9697.06 291100.00 199.40 18898.83 5399.88 160100.00 197.01 18399.86 17899.47 17799.84 13899.97 118
IterMVS96.76 26196.46 26297.63 28699.41 24596.89 29499.99 21199.13 31594.74 30297.59 31999.66 27689.63 30098.28 33595.71 30992.31 31497.72 309
Fangjinhua Wang, Silvano Galliani, Christoph Vogel, Marc Pollefeys: IterMVS: Iterative Probability Estimation for Efficient Multi-View Stereo.
EU-MVSNet96.63 26896.53 25796.94 31497.59 35496.87 29599.76 29199.47 7996.35 25296.85 33699.78 25792.57 26196.27 38195.33 31691.08 33397.68 324
IterMVS-SCA-FT96.72 26496.42 26497.62 28899.40 25096.83 29699.99 21199.14 31194.65 30597.55 32099.72 26189.65 29898.31 33395.62 31392.05 31797.73 302
sd_testset97.81 21297.48 22298.79 21599.82 12196.80 29799.32 34599.45 10297.62 14699.38 20999.86 23785.56 34299.77 20099.72 13196.61 25199.79 221
Baseline_NR-MVSNet96.16 29795.70 29797.56 29198.28 32696.79 298100.00 197.86 38791.93 35697.63 31499.47 30892.14 26598.35 33297.13 28286.83 36897.54 346
BH-w/o98.82 15298.81 14198.88 21099.62 18796.71 299100.00 199.28 25297.09 19498.81 250100.00 194.91 22699.96 13799.54 172100.00 199.96 124
Anonymous20240521197.87 20997.53 22198.90 20899.81 12796.70 30099.35 34399.46 9492.98 34698.83 24999.99 18490.63 282100.00 199.70 13997.03 244100.00 1
MDA-MVSNet-bldmvs91.65 34489.94 35296.79 32396.72 37096.70 30099.42 33798.94 35888.89 37466.97 40498.37 36481.43 36595.91 38489.24 37289.46 34897.75 273
MIMVSNet97.06 24996.73 25098.05 26899.38 25496.64 30298.47 38999.35 22393.41 33699.48 19898.53 35889.66 29797.70 36794.16 33398.11 20899.80 218
v14896.29 28895.84 28897.63 28697.74 34796.53 303100.00 199.07 33493.52 33498.01 29899.42 31191.22 27198.60 31296.37 30387.22 36597.75 273
DTE-MVSNet95.52 31294.99 32097.08 30697.49 36096.45 304100.00 199.25 26893.82 32596.17 34999.57 29987.81 32097.18 36994.57 32686.26 37197.62 339
BH-untuned98.64 16598.65 15598.60 22399.59 19596.17 305100.00 199.28 25296.67 23298.41 274100.00 194.52 23299.83 18799.41 180100.00 199.81 204
MVS-HIRNet94.12 32692.73 33998.29 24299.33 25695.95 30699.38 34099.19 29274.54 39698.26 28586.34 40086.07 33699.06 27291.60 35399.87 13299.85 186
XVG-OURS-SEG-HR98.27 19698.31 18298.14 25499.59 19595.92 307100.00 199.36 21298.48 7599.21 217100.00 189.27 30399.94 16299.76 12699.17 16198.56 259
XVG-OURS98.30 19298.36 18098.13 25799.58 20095.91 308100.00 199.36 21298.69 6599.23 216100.00 191.20 27399.92 16899.34 18497.82 22498.56 259
h-mvs3397.03 25196.53 25798.51 22899.79 14295.90 30999.45 33299.45 10298.21 92100.00 199.78 25797.49 16799.99 9499.72 13174.92 39099.65 241
tpm98.24 19798.22 19098.32 24099.13 26895.79 31099.53 32599.12 32195.20 29299.96 11999.36 31497.58 16299.28 26597.41 27596.67 24999.88 174
TAPA-MVS96.40 1097.64 21997.37 22898.45 23199.94 9995.70 311100.00 199.40 18897.65 14299.53 194100.00 199.31 6499.66 21280.48 391100.00 1100.00 1
Andrea Romanoni, Matteo Matteucci: TAPA-MVS: Textureless-Aware PAtchMatch Multi-View Stereo. ICCV 2019
AUN-MVS96.26 29095.67 30198.06 26499.68 15995.60 31299.82 27799.42 13896.78 21799.88 16099.80 25494.84 22799.47 24797.48 27273.29 39299.12 251
hse-mvs296.79 25996.38 26598.04 27099.68 15995.54 31399.81 27899.42 13898.21 92100.00 199.80 25497.49 16799.46 25199.72 13173.27 39399.12 251
VDD-MVS96.58 27195.99 28298.34 23899.52 21795.33 31499.18 36199.38 20396.64 23499.77 181100.00 172.51 387100.00 1100.00 196.94 24799.70 234
ppachtmachnet_test96.17 29595.89 28697.02 30997.61 35295.24 31599.99 21199.24 27393.31 34096.71 34199.62 29094.34 23498.07 35089.87 36592.30 31597.75 273
PVSNet_093.57 1996.41 27995.74 29598.41 23399.84 11795.22 316100.00 1100.00 198.08 10597.55 32099.78 25784.40 347100.00 1100.00 181.99 381100.00 1
UniMVSNet_ETH3D95.28 31694.41 32297.89 28098.91 29695.14 31799.13 37199.35 22392.11 35497.17 32999.66 27670.28 39099.36 25897.88 25995.18 27599.16 249
our_test_396.51 27496.35 26796.98 31297.61 35295.05 31899.98 23599.01 35294.68 30396.77 34099.06 32795.87 20998.14 34191.81 35192.37 31397.75 273
ADS-MVSNet298.28 19598.51 16797.62 28899.51 22295.03 31999.24 35399.41 18495.52 28399.96 11999.70 26697.57 16397.94 35897.11 28398.54 17799.88 174
GBi-Net96.07 30195.80 29196.89 31799.53 21094.87 32099.18 36199.27 26093.71 32698.53 26698.81 34784.23 34998.07 35095.31 31793.60 29797.72 309
test196.07 30195.80 29196.89 31799.53 21094.87 32099.18 36199.27 26093.71 32698.53 26698.81 34784.23 34998.07 35095.31 31793.60 29797.72 309
FMVSNet194.45 32193.63 32896.89 31798.87 30294.87 32099.18 36199.27 26090.95 36397.31 32598.81 34772.89 38698.07 35092.61 34492.81 30697.72 309
HQP5-MVS94.82 323
HQP-MVS97.73 21697.85 20897.39 29499.07 27494.82 323100.00 199.40 18899.04 1599.17 21899.97 19788.61 31299.57 22299.79 11995.58 25597.77 261
NP-MVS99.07 27494.81 32599.97 197
HQP_MVS97.71 21897.82 21097.37 29599.00 28694.80 326100.00 199.40 18899.00 2799.08 22899.97 19788.58 31499.55 23199.79 11995.57 25997.76 263
plane_prior699.06 27894.80 32688.58 314
plane_prior94.80 326100.00 199.03 2095.58 255
plane_prior394.79 32999.03 2099.08 228
plane_prior799.00 28694.78 330
CLD-MVS97.64 21997.74 21397.36 29699.01 28294.76 331100.00 199.34 22999.30 499.00 23399.97 19787.49 32399.57 22299.96 8595.58 25597.75 273
Zhaoxin Li, Wangmeng Zuo, Zhaoqi Wang, Lei Zhang: Confidence-based Large-scale Dense Multi-view Stereo. IEEE Transaction on Image Processing, 2020
OPM-MVS97.21 24097.18 23997.32 29998.08 33694.66 332100.00 199.28 25298.65 6998.92 23899.98 18986.03 33899.56 22698.28 24595.41 26197.72 309
Ray L. Khuboni, Hongjun Xu: Octagram Propagation Matching for Multi-Scale View Stereopsis (OPM-MVS).
pmmvs595.94 30695.61 30296.95 31397.42 36394.66 332100.00 198.08 37993.60 33297.05 33099.43 31087.02 32898.46 32795.76 30792.12 31697.72 309
ACMM97.17 697.37 23597.40 22697.29 30099.01 28294.64 334100.00 199.25 26898.07 10698.44 27399.98 18987.38 32599.55 23199.25 19195.19 27497.69 322
Qingshan Xu and Wenbing Tao: Multi-Scale Geometric Consistency Guided Multi-View Stereo. CVPR 2019
D2MVS97.63 22397.83 20997.05 30798.83 30694.60 335100.00 199.82 4096.89 21098.28 28299.03 33294.05 23599.47 24798.58 23294.97 28597.09 362
LPG-MVS_test97.31 23797.32 23097.28 30198.85 30494.60 335100.00 199.37 20697.35 17698.85 24599.98 18986.66 33199.56 22699.55 16995.26 26897.70 318
LGP-MVS_train97.28 30198.85 30494.60 33599.37 20697.35 17698.85 24599.98 18986.66 33199.56 22699.55 16995.26 26897.70 318
ACMP97.00 897.19 24197.16 24097.27 30398.97 29194.58 338100.00 199.32 23397.97 11497.45 32299.98 18985.79 34099.56 22699.70 13995.24 27197.67 328
Qingshan Xu and Wenbing Tao: Planar Prior Assisted PatchMatch Multi-View Stereo. AAAI 2020
Fast-Effi-MVS+-dtu98.38 18998.56 16497.82 28299.58 20094.44 339100.00 199.16 30596.75 22099.51 19699.63 28695.03 22499.60 21597.71 26499.67 15099.42 246
ACMH96.25 1196.77 26096.62 25497.21 30498.96 29294.43 34099.64 31199.33 23197.43 17196.55 34399.97 19783.52 35599.54 23499.07 20495.13 27897.66 329
Qingshan Xu and Wenbing Tao: Multi-Scale Geometric Consistency Guided Multi-View Stereo. CVPR 2019
MVP-Stereo96.51 27496.48 26196.60 32695.65 38094.25 34198.84 38498.16 37595.85 27195.23 35799.04 33092.54 26299.13 26992.98 34399.98 10896.43 374
Qingsong Yan: MVP-Stereo: A Parallel Multi-View Patchmatch Stereo Method with Dilation Matching for Photogrammetric Application.
Effi-MVS+-dtu98.51 17998.86 13797.47 29299.77 14794.21 342100.00 198.94 35897.61 15099.91 15398.75 35095.89 20899.51 24299.36 18299.48 15898.68 256
testgi96.18 29395.93 28596.93 31598.98 29094.20 343100.00 199.07 33497.16 19096.06 35199.86 23784.08 35297.79 36490.38 36397.80 22698.81 255
LTVRE_ROB95.29 1696.32 28796.10 27796.99 31198.55 31393.88 34499.45 33299.28 25294.50 31096.46 34499.52 30484.86 34599.48 24597.26 28195.03 28297.59 343
Andreas Kuhn, Heiko Hirschmüller, Daniel Scharstein, Helmut Mayer: A TV Prior for High-Quality Scalable Multi-View Stereo Reconstruction. International Journal of Computer Vision 2016
ACMH+96.20 1396.49 27796.33 26997.00 31099.06 27893.80 34599.81 27899.31 23897.32 18095.89 35499.97 19782.62 36199.54 23498.34 24094.63 29097.65 333
test_040294.35 32293.70 32796.32 33297.92 34193.60 34699.61 31698.85 36688.19 37994.68 36299.48 30780.01 36998.58 31689.39 37095.15 27796.77 368
tt080596.52 27296.23 27297.40 29399.30 26093.55 34799.32 34599.45 10296.75 22097.88 30599.99 18479.99 37099.59 21797.39 27795.98 25499.06 253
ITE_SJBPF96.84 32098.96 29293.49 34898.12 37798.12 10398.35 27699.97 19784.45 34699.56 22695.63 31295.25 27097.49 349
OurMVSNet-221017-096.14 29995.98 28396.62 32597.49 36093.44 34999.92 25998.16 37595.86 26997.65 31399.95 21785.71 34198.78 29694.93 32394.18 29497.64 336
K. test v395.46 31495.14 31796.40 32997.53 35793.40 35099.99 21199.23 27795.49 28692.70 37499.73 26084.26 34898.12 34393.94 33693.38 30197.68 324
XVG-ACMP-BASELINE96.60 27096.52 25996.84 32098.41 31893.29 35199.99 21199.32 23397.76 13498.51 26999.29 31781.95 36399.54 23498.40 23695.03 28297.68 324
SixPastTwentyTwo95.71 31095.49 30796.38 33097.42 36393.01 35299.84 27398.23 37494.75 30095.98 35299.97 19785.35 34398.43 32894.71 32593.17 30297.69 322
TinyColmap95.50 31395.12 31896.64 32498.69 30893.00 35399.40 33897.75 38996.40 24996.14 35099.87 23579.47 37199.50 24393.62 33894.72 28997.40 354
FMVSNet595.32 31595.43 31294.99 34499.39 25392.99 35499.25 35299.24 27390.45 36697.44 32398.45 36195.78 21194.39 39087.02 37791.88 32197.59 343
new_pmnet94.11 32793.47 33096.04 33696.60 37292.82 35599.97 24198.91 36190.21 36995.26 35698.05 37285.89 33998.14 34184.28 38392.01 31897.16 360
EGC-MVSNET79.46 36374.04 37195.72 33896.00 37692.73 35699.09 37699.04 3475.08 40816.72 40898.71 35173.03 38598.74 30282.05 38896.64 25095.69 381
pmmvs-eth3d91.73 34390.67 34794.92 34691.63 39392.71 35799.90 26398.54 37191.19 36088.08 38595.50 38479.31 37396.13 38290.55 36181.32 38495.91 379
TDRefinement91.93 34090.48 34896.27 33381.60 40492.65 35899.10 37497.61 39293.96 32493.77 36899.85 24280.03 36899.53 23997.82 26170.59 39496.63 372
USDC95.90 30795.70 29796.50 32898.60 31292.56 359100.00 198.30 37397.77 13296.92 33299.94 22281.25 36799.45 25293.54 33994.96 28697.49 349
UnsupCasMVSNet_eth94.25 32393.89 32495.34 33997.63 35092.13 36099.73 29999.36 21294.88 29792.78 37198.63 35582.72 35996.53 37794.57 32684.73 37397.36 355
LF4IMVS96.19 29296.18 27496.23 33498.26 32792.09 361100.00 197.89 38697.82 12897.94 30199.87 23582.71 36099.38 25797.41 27593.71 29697.20 359
test20.0393.11 33392.85 33793.88 35795.19 38491.83 362100.00 198.87 36493.68 32992.76 37298.88 34589.20 30492.71 39577.88 39589.19 35197.09 362
lessismore_v096.05 33597.55 35691.80 36399.22 28091.87 37599.91 22983.50 35698.68 30592.48 34790.42 34197.68 324
MIMVSNet191.96 33991.20 34294.23 35494.94 38691.69 36499.34 34499.22 28088.23 37794.18 36798.45 36175.52 38193.41 39479.37 39391.49 32797.60 342
pmmvs390.62 34989.36 35594.40 35090.53 39891.49 365100.00 196.73 39784.21 38793.65 36996.65 38182.56 36294.83 38882.28 38777.62 38996.89 367
pmmvs693.64 32892.87 33695.94 33797.47 36291.41 36698.92 38199.02 35087.84 38095.01 35999.61 29277.24 37898.77 29994.33 32986.41 37097.63 337
Anonymous2024052193.29 33192.76 33894.90 34795.64 38191.27 36799.97 24198.82 36787.04 38194.71 36198.19 36783.86 35396.80 37284.04 38492.56 31296.64 371
KD-MVS_self_test91.16 34590.09 35094.35 35194.44 38791.27 36799.74 29499.08 33090.82 36494.53 36494.91 38986.11 33594.78 38982.67 38668.52 39596.99 364
dcpmvs_298.87 14899.53 5996.90 31699.87 11490.88 36999.94 25699.07 33498.20 94100.00 1100.00 198.69 12499.86 178100.00 1100.00 199.95 130
patch_mono-299.04 12599.79 696.81 32299.92 10490.47 370100.00 199.41 18498.95 35100.00 1100.00 199.78 8100.00 1100.00 1100.00 199.95 130
dmvs_re97.54 22797.88 20796.54 32799.55 20690.35 37199.86 27099.46 9497.00 20099.41 207100.00 190.78 28099.30 26399.60 16395.24 27199.96 124
DSMNet-mixed95.18 31895.21 31695.08 34096.03 37590.21 37299.65 31093.64 40592.91 34798.34 27797.40 37790.05 29295.51 38791.02 35797.86 22099.51 245
Anonymous2023120693.45 33093.17 33294.30 35295.00 38589.69 37399.98 23598.43 37293.30 34194.50 36598.59 35690.52 28395.73 38677.46 39790.73 33897.48 351
MS-PatchMatch95.66 31195.87 28795.05 34197.80 34689.25 37498.88 38399.30 24296.35 25296.86 33599.01 33481.35 36699.43 25393.30 34199.98 10896.46 373
CL-MVSNet_self_test91.07 34690.35 34993.24 35993.27 38889.16 37599.55 32299.25 26892.34 35395.23 35797.05 37988.86 31093.59 39380.67 39066.95 39696.96 365
test_fmvs295.17 31995.23 31595.01 34298.95 29488.99 37699.99 21197.77 38897.79 13098.58 26299.70 26673.36 38499.34 26195.88 30695.03 28296.70 370
UnsupCasMVSNet_bld89.50 35188.00 35793.99 35695.30 38388.86 37798.52 38899.28 25285.50 38587.80 38794.11 39061.63 39496.96 37190.63 35979.26 38596.15 375
new-patchmatchnet90.30 35089.46 35492.84 36190.77 39688.55 37899.83 27498.80 36890.07 37187.86 38695.00 38778.77 37494.30 39184.86 38279.15 38695.68 382
OpenMVS_ROBcopyleft88.34 2091.89 34191.12 34394.19 35595.55 38287.63 37999.26 35198.03 38086.61 38390.65 38196.82 38070.14 39198.78 29686.54 37996.50 25396.15 375
Syy-MVS96.17 29596.57 25695.00 34399.50 22687.37 380100.00 199.57 6896.23 25798.07 292100.00 192.41 26397.81 36185.34 38197.96 21399.82 195
EG-PatchMatch MVS92.94 33692.49 34094.29 35395.87 37787.07 38199.07 37998.11 37893.19 34388.98 38398.66 35470.89 38899.08 27192.43 34895.21 27396.72 369
LCM-MVSNet-Re96.52 27297.21 23894.44 34999.27 26185.80 38299.85 27296.61 39995.98 26592.75 37398.48 36093.97 23897.55 36899.58 16798.43 18499.98 111
test_vis1_rt93.10 33492.93 33593.58 35899.63 18285.07 38399.99 21193.71 40497.49 16590.96 37797.10 37860.40 39599.95 15099.24 19397.90 21895.72 380
DeepPCF-MVS98.03 498.54 17599.72 1994.98 34599.99 4984.94 384100.00 199.42 13899.98 1100.00 1100.00 198.11 142100.00 1100.00 1100.00 1100.00 1
RPSCF97.37 23598.24 18694.76 34899.80 13884.57 38599.99 21199.05 34494.95 29699.82 175100.00 194.03 236100.00 198.15 24998.38 19099.70 234
Patchmatch-RL test93.49 32993.63 32893.05 36091.78 39183.41 38698.21 39196.95 39691.58 35891.05 37697.64 37699.40 5695.83 38594.11 33481.95 38299.91 149
Gipumacopyleft84.73 35883.50 36388.40 36997.50 35882.21 38788.87 39899.05 34465.81 39885.71 39090.49 39553.70 39696.31 37978.64 39491.74 32286.67 397
S. Galliani, K. Lasinger, K. Schindler: Massively Parallel Multiview Stereopsis by Surface Normal Diffusion. ICCV 2015
PM-MVS88.39 35387.41 35891.31 36291.73 39282.02 38899.79 28396.62 39891.06 36290.71 38095.73 38348.60 39995.96 38390.56 36081.91 38395.97 378
mvsany_test389.36 35288.96 35690.56 36491.95 39078.97 38999.74 29496.59 40096.84 21289.25 38296.07 38252.59 39797.11 37095.17 32082.44 38095.58 383
test_method91.04 34791.10 34490.85 36398.34 32077.63 390100.00 198.93 36076.69 39496.25 34898.52 35970.44 38997.98 35689.02 37491.74 32296.92 366
test_fmvs387.19 35687.02 35987.71 37092.69 38976.64 39199.96 24697.27 39393.55 33390.82 37994.03 39138.00 40592.19 39693.49 34083.35 37994.32 385
test_f86.87 35786.06 36089.28 36791.45 39576.37 39299.87 26997.11 39491.10 36188.46 38493.05 39338.31 40496.66 37591.77 35283.46 37894.82 384
PMMVS279.15 36577.28 36884.76 37582.34 40372.66 39399.70 30495.11 40371.68 39784.78 39490.87 39432.05 40789.99 39875.53 40063.45 39991.64 394
APD_test193.07 33594.14 32389.85 36699.18 26572.49 39499.76 29198.90 36392.86 35096.35 34599.94 22275.56 38099.91 16986.73 37897.98 21197.15 361
test12379.44 36479.23 36680.05 38280.03 40571.72 395100.00 177.93 41362.52 39994.81 36099.69 26978.21 37574.53 40692.57 34527.33 40693.90 386
DeepMVS_CXcopyleft89.98 36598.90 29771.46 39699.18 29997.61 15096.92 33299.83 24586.07 33699.83 18796.02 30597.65 23698.65 257
ambc88.45 36886.84 40070.76 39797.79 39498.02 38290.91 37895.14 38538.69 40398.51 32294.97 32284.23 37496.09 377
test_vis3_rt79.61 36278.19 36783.86 37688.68 39969.56 39899.81 27882.19 41286.78 38268.57 40084.51 40325.06 40998.26 33689.18 37378.94 38783.75 400
WB-MVS88.24 35490.09 35082.68 37991.56 39469.51 399100.00 198.73 36990.72 36587.29 38898.12 36892.87 25485.01 40162.19 40289.34 34993.54 389
SSC-MVS87.61 35589.47 35382.04 38090.63 39768.77 40099.99 21198.66 37090.34 36886.70 38998.08 36992.72 25984.12 40259.41 40588.71 35693.22 393
dmvs_testset93.27 33295.48 30986.65 37298.74 30768.42 40199.92 25998.91 36196.19 26193.28 370100.00 191.06 27791.67 39789.64 36891.54 32599.86 185
LCM-MVSNet79.01 36676.93 36985.27 37478.28 40668.01 40296.57 39598.03 38055.10 40282.03 39593.27 39231.99 40893.95 39282.72 38574.37 39193.84 387
CMPMVSbinary66.12 2290.65 34892.04 34186.46 37396.18 37466.87 40398.03 39299.38 20383.38 38985.49 39199.55 30177.59 37698.80 29594.44 32894.31 29393.72 388
M. Jancosek, T. Pajdla: Multi-View Reconstruction Preserving Weakly-Supported Surfaces. CVPR 2011
N_pmnet91.88 34293.37 33187.40 37197.24 36766.33 40499.90 26391.05 40789.77 37295.65 35598.58 35790.05 29298.11 34585.39 38092.72 30797.75 273
EMVS69.88 37069.09 37372.24 38884.70 40165.82 40599.96 24687.08 41149.82 40571.51 39984.74 40249.30 39875.32 40550.97 40743.71 40375.59 403
E-PMN70.72 36970.06 37272.69 38783.92 40265.48 40699.95 25292.72 40649.88 40472.30 39886.26 40147.17 40077.43 40453.83 40644.49 40275.17 404
ANet_high66.05 37263.44 37673.88 38561.14 41063.45 40795.68 39787.18 40979.93 39247.35 40680.68 40622.35 41072.33 40861.24 40335.42 40485.88 399
MVEpermissive68.59 2167.22 37164.68 37574.84 38374.67 40962.32 40895.84 39690.87 40850.98 40358.72 40581.05 40512.20 41378.95 40361.06 40456.75 40083.24 401
Simon Fuhrmann, Fabian Langguth, Michael Goesele: MVE - A Multi-View Reconstruction Environment. EUROGRAPHICS Workshops on Graphics and Cultural Heritage (2014)
testmvs80.17 36181.95 36474.80 38458.54 41159.58 409100.00 187.14 41076.09 39599.61 192100.00 167.06 39274.19 40798.84 21450.30 40190.64 396
testf184.40 35984.79 36183.23 37795.71 37858.71 41098.79 38597.75 38981.58 39084.94 39298.07 37045.33 40197.73 36577.09 39883.85 37593.24 391
APD_test284.40 35984.79 36183.23 37795.71 37858.71 41098.79 38597.75 38981.58 39084.94 39298.07 37045.33 40197.73 36577.09 39883.85 37593.24 391
tmp_tt75.80 36874.26 37080.43 38152.91 41353.67 41287.42 40097.98 38361.80 40067.04 403100.00 176.43 37996.40 37896.47 29928.26 40591.23 395
FPMVS77.92 36779.45 36573.34 38676.87 40746.81 41398.24 39099.05 34459.89 40173.55 39798.34 36536.81 40686.55 39980.96 38991.35 33186.65 398
PMVScopyleft60.66 2365.98 37365.05 37468.75 38955.06 41238.40 41488.19 39996.98 39548.30 40644.82 40788.52 39812.22 41286.49 40067.58 40183.79 37781.35 402
Y. Furukawa, J. Ponce: Accurate, dense, and robust multiview stereopsis. PAMI (2010)
wuyk23d28.28 37429.73 37823.92 39075.89 40832.61 41566.50 40112.88 41416.09 40714.59 40916.59 40812.35 41132.36 40939.36 40813.36 4076.79 405
test_blank0.07 3780.09 3810.00 3910.00 4140.00 4160.00 4020.00 4150.00 4090.00 4100.79 4090.00 4140.00 4100.00 4090.00 4080.00 406
uanet_test0.01 3790.02 3820.00 3910.00 4140.00 4160.00 4020.00 4150.00 4090.00 4100.14 4100.00 4140.00 4100.00 4090.00 4080.00 406
DCPMVS0.01 3790.02 3820.00 3910.00 4140.00 4160.00 4020.00 4150.00 4090.00 4100.14 4100.00 4140.00 4100.00 4090.00 4080.00 406
cdsmvs_eth3d_5k24.41 37532.55 3770.00 3910.00 4140.00 4160.00 40299.39 2010.00 4090.00 410100.00 193.55 2440.00 4100.00 4090.00 4080.00 406
pcd_1.5k_mvsjas8.24 37710.99 3800.00 3910.00 4140.00 4160.00 4020.00 4150.00 4090.00 4100.14 41098.75 1210.00 4100.00 4090.00 4080.00 406
sosnet-low-res0.01 3790.02 3820.00 3910.00 4140.00 4160.00 4020.00 4150.00 4090.00 4100.14 4100.00 4140.00 4100.00 4090.00 4080.00 406
sosnet0.01 3790.02 3820.00 3910.00 4140.00 4160.00 4020.00 4150.00 4090.00 4100.14 4100.00 4140.00 4100.00 4090.00 4080.00 406
uncertanet0.01 3790.02 3820.00 3910.00 4140.00 4160.00 4020.00 4150.00 4090.00 4100.14 4100.00 4140.00 4100.00 4090.00 4080.00 406
Regformer0.01 3790.02 3820.00 3910.00 4140.00 4160.00 4020.00 4150.00 4090.00 4100.14 4100.00 4140.00 4100.00 4090.00 4080.00 406
ab-mvs-re8.33 37611.11 3790.00 3910.00 4140.00 4160.00 4020.00 4150.00 4090.00 410100.00 10.00 4140.00 4100.00 4090.00 4080.00 406
uanet0.01 3790.02 3820.00 3910.00 4140.00 4160.00 4020.00 4150.00 4090.00 4100.14 4100.00 4140.00 4100.00 4090.00 4080.00 406
PC_three_145298.80 57100.00 1100.00 199.54 26100.00 1100.00 1100.00 1100.00 1
eth-test20.00 414
eth-test0.00 414
test_241102_TWO99.42 13899.03 20100.00 1100.00 199.56 23100.00 1100.00 1100.00 1100.00 1
9.1499.57 4999.99 49100.00 199.42 13897.54 157100.00 1100.00 199.15 8399.99 94100.00 1100.00 1
test_0728_THIRD98.79 60100.00 1100.00 199.61 16100.00 1100.00 1100.00 1100.00 1
GSMVS99.91 149
sam_mvs199.29 7099.91 149
sam_mvs99.33 59
MTGPAbinary99.42 138
test_post199.32 34588.24 39999.33 5999.59 21798.31 241
test_post89.05 39799.49 3999.59 217
patchmatchnet-post97.79 37399.41 5599.54 234
MTMP100.00 199.18 299
test9_res100.00 1100.00 1100.00 1
agg_prior2100.00 1100.00 1100.00 1
test_prior2100.00 198.82 55100.00 1100.00 199.47 43100.00 1100.00 1
旧先验2100.00 198.11 104100.00 1100.00 199.67 150
新几何2100.00 1
无先验100.00 199.80 4397.98 112100.00 199.33 185100.00 1
原ACMM2100.00 1
testdata2100.00 197.36 278
segment_acmp99.55 25
testdata1100.00 198.77 63
plane_prior599.40 18899.55 23199.79 11995.57 25997.76 263
plane_prior499.97 197
plane_prior2100.00 199.00 27
plane_prior199.02 281
n20.00 415
nn0.00 415
door-mid96.32 401
test1199.42 138
door96.13 402
HQP-NCC99.07 274100.00 199.04 1599.17 218
ACMP_Plane99.07 274100.00 199.04 1599.17 218
BP-MVS99.79 119
HQP4-MVS99.17 21899.57 22297.77 261
HQP3-MVS99.40 18895.58 255
HQP2-MVS88.61 312
ACMMP++_ref94.58 292
ACMMP++95.17 276
Test By Simon99.10 86