MSC_two_6792asdad | | | | | 100.00 1 | 100.00 1 | 100.00 1 | | 99.42 124 | | | | | 100.00 1 | 100.00 1 | 100.00 1 | 100.00 1 |
|
No_MVS | | | | | 100.00 1 | 100.00 1 | 100.00 1 | | 99.42 124 | | | | | 100.00 1 | 100.00 1 | 100.00 1 | 100.00 1 |
|
OPU-MVS | | | | | 100.00 1 | 100.00 1 | 100.00 1 | 100.00 1 | | | | 100.00 1 | 99.54 26 | 100.00 1 | 100.00 1 | 100.00 1 | 100.00 1 |
|
DPM-MVS | | | 99.63 50 | 99.51 59 | 100.00 1 | 99.90 106 | 100.00 1 | 100.00 1 | 99.43 114 | 99.00 25 | 100.00 1 | 100.00 1 | 99.58 22 | 100.00 1 | 97.64 243 | 100.00 1 | 100.00 1 |
|
DVP-MVS++ | | | 99.81 11 | 99.75 14 | 100.00 1 | 100.00 1 | 99.99 5 | 100.00 1 | 99.42 124 | 98.79 50 | 100.00 1 | 100.00 1 | 99.54 26 | 100.00 1 | 100.00 1 | 100.00 1 | 100.00 1 |
|
test_one_0601 | | | | | | 100.00 1 | 99.99 5 | | 99.42 124 | 98.72 54 | 100.00 1 | 100.00 1 | 99.60 17 | | | | |
|
SED-MVS | | | 99.83 7 | 99.77 9 | 100.00 1 | 100.00 1 | 99.99 5 | 100.00 1 | 99.42 124 | 99.03 19 | 100.00 1 | 100.00 1 | 99.50 37 | 100.00 1 | 100.00 1 | 100.00 1 | 100.00 1 |
|
IU-MVS | | | | | | 100.00 1 | 99.99 5 | | 99.42 124 | 99.12 6 | 100.00 1 | | | | 100.00 1 | 100.00 1 | 100.00 1 |
|
test_241102_ONE | | | | | | 100.00 1 | 99.99 5 | | 99.42 124 | 99.03 19 | 100.00 1 | 100.00 1 | 99.50 37 | 100.00 1 | | | |
|
DVP-MVS |  | | 99.83 7 | 99.78 7 | 100.00 1 | 100.00 1 | 99.99 5 | 100.00 1 | 99.42 124 | 99.04 14 | 100.00 1 | 100.00 1 | 99.53 29 | 100.00 1 | 100.00 1 | 100.00 1 | 100.00 1 |
Zhenlong Yuan, Jinguo Luo, Fei Shen, Zhaoxin Li, Cong Liu, Tianlu Mao, Zhaoqi Wang: DVP-MVS: Synergize Depth-Edge and Visibility Prior for Multi-View Stereo. AAAI2025 |
test_0728_SECOND | | | | | 100.00 1 | 99.99 49 | 99.99 5 | 100.00 1 | 99.42 124 | | | | | 100.00 1 | 100.00 1 | 100.00 1 | 100.00 1 |
|
test0726 | | | | | | 100.00 1 | 99.99 5 | 100.00 1 | 99.42 124 | 99.04 14 | 100.00 1 | 100.00 1 | 99.53 29 | | | | |
|
test_part2 | | | | | | 100.00 1 | 99.99 5 | | | | 100.00 1 | | | | | | |
|
MCST-MVS | | | 99.85 3 | 99.80 4 | 100.00 1 | 100.00 1 | 99.99 5 | 100.00 1 | 99.73 55 | 99.19 5 | 100.00 1 | 100.00 1 | 99.31 63 | 100.00 1 | 100.00 1 | 100.00 1 | 100.00 1 |
|
CNVR-MVS | | | 99.85 3 | 99.80 4 | 100.00 1 | 100.00 1 | 99.99 5 | 100.00 1 | 99.77 47 | 99.07 9 | 100.00 1 | 100.00 1 | 99.39 56 | 100.00 1 | 100.00 1 | 100.00 1 | 100.00 1 |
|
NCCC | | | 99.86 2 | 99.82 3 | 100.00 1 | 100.00 1 | 99.99 5 | 100.00 1 | 99.71 60 | 99.07 9 | 100.00 1 | 100.00 1 | 99.59 20 | 100.00 1 | 100.00 1 | 100.00 1 | 100.00 1 |
|
ZD-MVS | | | | | | 100.00 1 | 99.98 17 | | 99.80 42 | 97.31 164 | 100.00 1 | 100.00 1 | 99.32 61 | 99.99 91 | 100.00 1 | 100.00 1 | |
|
DPE-MVS |  | | 99.79 14 | 99.73 17 | 99.99 12 | 99.99 49 | 99.98 17 | 100.00 1 | 99.42 124 | 98.91 36 | 100.00 1 | 100.00 1 | 99.22 75 | 100.00 1 | 100.00 1 | 100.00 1 | 100.00 1 |
Kehua Chen, Zhenlong Yuan, Tianlu Mao, Zhaoqi Wang: Dual-Level Precision Edges Guided Multi-View Stereo with Accurate Planarization. AAAI2025 |
HPM-MVS++ |  | | 99.82 9 | 99.76 12 | 99.99 12 | 99.99 49 | 99.98 17 | 100.00 1 | 99.83 38 | 98.88 38 | 99.96 108 | 100.00 1 | 99.21 76 | 100.00 1 | 100.00 1 | 100.00 1 | 99.99 99 |
|
APDe-MVS | | | 99.84 6 | 99.78 7 | 99.99 12 | 100.00 1 | 99.98 17 | 100.00 1 | 99.44 108 | 99.06 11 | 100.00 1 | 100.00 1 | 99.56 23 | 99.99 91 | 100.00 1 | 100.00 1 | 100.00 1 |
|
FOURS1 | | | | | | 100.00 1 | 99.97 21 | 100.00 1 | 99.42 124 | 98.52 64 | 100.00 1 | | | | | | |
|
CHOSEN 280x420 | | | 99.85 3 | 99.87 1 | 99.80 92 | 99.99 49 | 99.97 21 | 99.97 213 | 99.98 16 | 98.96 28 | 100.00 1 | 100.00 1 | 99.96 5 | 99.42 231 | 100.00 1 | 100.00 1 | 100.00 1 |
|
CDPH-MVS | | | 99.73 25 | 99.64 33 | 99.99 12 | 100.00 1 | 99.97 21 | 100.00 1 | 99.42 124 | 98.02 96 | 100.00 1 | 100.00 1 | 99.32 61 | 99.99 91 | 100.00 1 | 100.00 1 | 100.00 1 |
|
TSAR-MVS + MP. | | | 99.82 9 | 99.77 9 | 99.99 12 | 100.00 1 | 99.96 24 | 100.00 1 | 99.43 114 | 99.05 13 | 100.00 1 | 100.00 1 | 99.45 45 | 99.99 91 | 100.00 1 | 100.00 1 | 100.00 1 |
Zhenlong Yuan, Jiakai Cao, Zhaoqi Wang, Zhaoxin Li: TSAR-MVS: Textureless-aware Segmentation and Correlative Refinement Guided Multi-View Stereo. Pattern Recognition |
新几何1 | | | | | 99.99 12 | 100.00 1 | 99.96 24 | | 99.81 41 | 97.89 109 | 100.00 1 | 100.00 1 | 99.20 77 | 100.00 1 | 97.91 236 | 100.00 1 | 100.00 1 |
|
SD-MVS | | | 99.81 11 | 99.75 14 | 99.99 12 | 99.99 49 | 99.96 24 | 100.00 1 | 99.42 124 | 99.01 24 | 100.00 1 | 100.00 1 | 99.33 58 | 100.00 1 | 100.00 1 | 100.00 1 | 100.00 1 |
Zhenlong Yuan, Jiakai Cao, Zhaoxin Li, Hao Jiang and Zhaoqi Wang: SD-MVS: Segmentation-driven Deformation Multi-View Stereo with Spherical Refinement and EM optimization. AAAI2024 |
MSLP-MVS++ | | | 99.89 1 | 99.85 2 | 99.99 12 | 100.00 1 | 99.96 24 | 100.00 1 | 99.95 18 | 99.11 7 | 100.00 1 | 100.00 1 | 99.60 17 | 100.00 1 | 100.00 1 | 100.00 1 | 100.00 1 |
|
APD-MVS |  | | 99.68 39 | 99.58 45 | 99.97 31 | 99.99 49 | 99.96 24 | 100.00 1 | 99.42 124 | 97.53 143 | 100.00 1 | 100.00 1 | 99.27 72 | 99.97 114 | 100.00 1 | 100.00 1 | 100.00 1 |
Yuesong Wang, Zhaojie Zeng and etc.: Adaptive Patch Deformation for Textureless-Resilient Multi-View Stereo. CVPR2023 |
PAPM_NR | | | 99.74 22 | 99.66 30 | 99.99 12 | 100.00 1 | 99.96 24 | 100.00 1 | 99.47 75 | 97.87 111 | 100.00 1 | 100.00 1 | 99.60 17 | 100.00 1 | 100.00 1 | 100.00 1 | 100.00 1 |
|
PAPR | | | 99.76 18 | 99.68 25 | 99.99 12 | 100.00 1 | 99.96 24 | 100.00 1 | 99.47 75 | 98.16 84 | 100.00 1 | 100.00 1 | 99.51 33 | 100.00 1 | 100.00 1 | 100.00 1 | 100.00 1 |
|
DeepC-MVS_fast | | 98.92 1 | 99.75 20 | 99.67 27 | 99.99 12 | 99.99 49 | 99.96 24 | 99.73 270 | 99.52 68 | 99.06 11 | 100.00 1 | 100.00 1 | 98.80 114 | 100.00 1 | 99.95 82 | 100.00 1 | 100.00 1 |
Andreas Kuhn, Christian Sormann, Mattia Rossi, Oliver Erdler, Friedrich Fraundorfer: DeepC-MVS: Deep Confidence Prediction for Multi-View Stereo Reconstruction. 3DV 2020 |
SR-MVS | | | 99.68 39 | 99.58 45 | 99.98 23 | 100.00 1 | 99.95 32 | 100.00 1 | 99.64 63 | 97.59 137 | 100.00 1 | 100.00 1 | 98.99 92 | 99.99 91 | 100.00 1 | 100.00 1 | 100.00 1 |
|
TEST9 | | | | | | 100.00 1 | 99.95 32 | 100.00 1 | 99.42 124 | 97.65 128 | 100.00 1 | 100.00 1 | 99.53 29 | 99.97 114 | | | |
|
train_agg | | | 99.71 29 | 99.63 37 | 99.97 31 | 100.00 1 | 99.95 32 | 100.00 1 | 99.42 124 | 97.70 123 | 100.00 1 | 100.00 1 | 99.51 33 | 99.97 114 | 100.00 1 | 100.00 1 | 100.00 1 |
|
canonicalmvs | | | 99.03 111 | 98.73 134 | 99.94 63 | 99.75 141 | 99.95 32 | 100.00 1 | 99.30 221 | 97.64 130 | 100.00 1 | 100.00 1 | 95.22 206 | 99.97 114 | 99.76 112 | 96.90 224 | 99.91 133 |
|
MVS | | | 99.22 99 | 98.96 108 | 99.98 23 | 99.00 262 | 99.95 32 | 99.24 323 | 99.94 21 | 98.14 87 | 98.88 218 | 100.00 1 | 95.63 201 | 100.00 1 | 99.85 97 | 100.00 1 | 100.00 1 |
|
SteuartSystems-ACMMP | | | 99.78 16 | 99.71 20 | 99.98 23 | 99.76 139 | 99.95 32 | 100.00 1 | 99.42 124 | 98.69 55 | 100.00 1 | 100.00 1 | 99.52 32 | 99.99 91 | 100.00 1 | 100.00 1 | 100.00 1 |
Skip Steuart: Steuart Systems R&D Blog. |
DP-MVS Recon | | | 99.76 18 | 99.69 22 | 99.98 23 | 100.00 1 | 99.95 32 | 100.00 1 | 99.52 68 | 97.99 98 | 99.99 95 | 100.00 1 | 99.72 12 | 100.00 1 | 99.96 77 | 100.00 1 | 100.00 1 |
|
PAPM | | | 99.78 16 | 99.76 12 | 99.85 80 | 99.01 258 | 99.95 32 | 100.00 1 | 99.75 51 | 99.37 3 | 99.99 95 | 100.00 1 | 99.76 11 | 99.60 191 | 100.00 1 | 100.00 1 | 100.00 1 |
|
XVS | | | 99.79 14 | 99.73 17 | 99.98 23 | 100.00 1 | 99.94 40 | 100.00 1 | 99.75 51 | 98.67 57 | 100.00 1 | 100.00 1 | 99.16 80 | 100.00 1 | 100.00 1 | 100.00 1 | 100.00 1 |
|
X-MVStestdata | | | 97.04 225 | 96.06 252 | 99.98 23 | 100.00 1 | 99.94 40 | 100.00 1 | 99.75 51 | 98.67 57 | 100.00 1 | 66.97 378 | 99.16 80 | 100.00 1 | 100.00 1 | 100.00 1 | 100.00 1 |
|
MP-MVS |  | | 99.61 54 | 99.49 62 | 99.98 23 | 99.99 49 | 99.94 40 | 100.00 1 | 99.42 124 | 97.82 114 | 99.99 95 | 100.00 1 | 98.20 132 | 100.00 1 | 99.99 57 | 100.00 1 | 100.00 1 |
Rongxuan Tan, Qing Wang, et al.: MP-MVS: Multi-Scale Windows PatchMatch and Planar Prior Multi-View Stereo. |
save fliter | | | | | | 99.99 49 | 99.93 43 | 100.00 1 | 99.42 124 | 98.93 34 | | | | | | | |
|
SMA-MVS |  | | 99.69 35 | 99.59 43 | 99.98 23 | 99.99 49 | 99.93 43 | 100.00 1 | 99.43 114 | 97.50 147 | 100.00 1 | 100.00 1 | 99.43 50 | 100.00 1 | 100.00 1 | 100.00 1 | 100.00 1 |
Yufeng Yin; Xiaoyan Liu; Zichao Zhang: SMA-MVS: Segmentation-Guided Multi-Scale Anchor Deformation Patch Multi-View Stereo. IEEE Transactions on Circuits and Systems for Video Technology |
test_prior4 | | | | | | | 99.93 43 | 100.00 1 | | | | | | | | | |
|
WTY-MVS | | | 99.54 60 | 99.40 66 | 99.95 51 | 99.81 120 | 99.93 43 | 100.00 1 | 100.00 1 | 97.98 100 | 99.84 148 | 100.00 1 | 98.94 100 | 99.98 109 | 99.86 95 | 98.21 186 | 99.94 119 |
|
HY-MVS | | 96.53 9 | 99.50 64 | 99.35 75 | 99.96 42 | 99.81 120 | 99.93 43 | 99.64 282 | 100.00 1 | 97.97 102 | 99.84 148 | 99.85 214 | 98.94 100 | 99.99 91 | 99.86 95 | 98.23 185 | 99.95 114 |
|
MP-MVS-pluss | | | 99.61 54 | 99.50 60 | 99.97 31 | 99.98 84 | 99.92 48 | 100.00 1 | 99.42 124 | 97.53 143 | 99.77 162 | 100.00 1 | 98.77 115 | 100.00 1 | 99.99 57 | 100.00 1 | 99.99 99 |
MP-MVS-pluss: MP-MVS-pluss. MP-MVS-pluss |
ACMMP_NAP | | | 99.67 42 | 99.57 48 | 99.97 31 | 99.98 84 | 99.92 48 | 100.00 1 | 99.42 124 | 97.83 113 | 100.00 1 | 100.00 1 | 98.89 106 | 100.00 1 | 99.98 68 | 100.00 1 | 100.00 1 |
|
alignmvs | | | 99.38 75 | 99.21 89 | 99.91 67 | 99.73 142 | 99.92 48 | 100.00 1 | 99.51 72 | 97.61 134 | 100.00 1 | 100.00 1 | 99.06 86 | 99.93 148 | 99.83 100 | 97.12 218 | 99.90 142 |
|
SR-MVS-dyc-post | | | 99.63 50 | 99.52 58 | 99.97 31 | 99.99 49 | 99.91 51 | 100.00 1 | 99.42 124 | 97.62 132 | 100.00 1 | 100.00 1 | 98.65 120 | 99.99 91 | 99.99 57 | 100.00 1 | 100.00 1 |
|
RE-MVS-def | | | | 99.55 54 | | 99.99 49 | 99.91 51 | 100.00 1 | 99.42 124 | 97.62 132 | 100.00 1 | 100.00 1 | 98.94 100 | | 99.99 57 | 100.00 1 | 100.00 1 |
|
MTAPA | | | 99.68 39 | 99.59 43 | 99.97 31 | 99.99 49 | 99.91 51 | 100.00 1 | 99.42 124 | 98.32 78 | 99.94 132 | 100.00 1 | 98.65 120 | 100.00 1 | 99.96 77 | 100.00 1 | 100.00 1 |
|
test_8 | | | | | | 100.00 1 | 99.91 51 | 100.00 1 | 99.42 124 | 97.70 123 | 100.00 1 | 100.00 1 | 99.51 33 | 99.98 109 | | | |
|
APD-MVS_3200maxsize | | | 99.65 45 | 99.55 54 | 99.97 31 | 99.99 49 | 99.91 51 | 100.00 1 | 99.48 74 | 97.54 141 | 100.00 1 | 100.00 1 | 98.97 94 | 99.99 91 | 99.98 68 | 100.00 1 | 100.00 1 |
|
mPP-MVS | | | 99.69 35 | 99.60 42 | 99.97 31 | 100.00 1 | 99.91 51 | 100.00 1 | 99.42 124 | 97.91 108 | 100.00 1 | 100.00 1 | 99.04 89 | 100.00 1 | 100.00 1 | 100.00 1 | 100.00 1 |
|
MG-MVS | | | 99.75 20 | 99.68 25 | 99.97 31 | 100.00 1 | 99.91 51 | 99.98 207 | 99.47 75 | 99.09 8 | 100.00 1 | 100.00 1 | 98.59 123 | 100.00 1 | 99.95 82 | 100.00 1 | 100.00 1 |
|
ZNCC-MVS | | | 99.71 29 | 99.62 40 | 99.97 31 | 99.99 49 | 99.90 58 | 100.00 1 | 99.79 44 | 97.97 102 | 99.97 104 | 100.00 1 | 98.97 94 | 100.00 1 | 99.94 84 | 100.00 1 | 100.00 1 |
|
test_yl | | | 99.51 61 | 99.37 71 | 99.95 51 | 99.82 116 | 99.90 58 | 100.00 1 | 99.47 75 | 97.48 149 | 100.00 1 | 100.00 1 | 99.80 6 | 100.00 1 | 99.98 68 | 97.75 210 | 99.94 119 |
|
DCV-MVSNet | | | 99.51 61 | 99.37 71 | 99.95 51 | 99.82 116 | 99.90 58 | 100.00 1 | 99.47 75 | 97.48 149 | 100.00 1 | 100.00 1 | 99.80 6 | 100.00 1 | 99.98 68 | 97.75 210 | 99.94 119 |
|
region2R | | | 99.72 26 | 99.64 33 | 99.97 31 | 100.00 1 | 99.90 58 | 100.00 1 | 99.74 54 | 97.86 112 | 100.00 1 | 100.00 1 | 99.19 78 | 100.00 1 | 99.99 57 | 100.00 1 | 100.00 1 |
|
test222 | | | | | | 99.99 49 | 99.90 58 | 100.00 1 | 99.69 61 | 97.66 127 | 100.00 1 | 100.00 1 | 99.30 68 | | | 100.00 1 | 100.00 1 |
|
thres200 | | | 99.27 91 | 99.04 100 | 99.96 42 | 99.81 120 | 99.90 58 | 100.00 1 | 99.94 21 | 97.31 164 | 99.83 150 | 99.96 191 | 97.04 166 | 100.00 1 | 99.62 142 | 97.88 201 | 99.98 101 |
|
3Dnovator | | 95.63 14 | 99.06 107 | 98.76 130 | 99.96 42 | 98.86 277 | 99.90 58 | 99.98 207 | 99.93 29 | 98.95 31 | 98.49 248 | 100.00 1 | 92.91 236 | 100.00 1 | 99.71 119 | 100.00 1 | 100.00 1 |
|
tfpn200view9 | | | 99.26 93 | 99.03 101 | 99.96 42 | 99.81 120 | 99.89 65 | 100.00 1 | 99.94 21 | 97.23 169 | 99.83 150 | 99.96 191 | 97.04 166 | 100.00 1 | 99.59 143 | 97.85 203 | 99.98 101 |
|
HFP-MVS | | | 99.74 22 | 99.67 27 | 99.96 42 | 100.00 1 | 99.89 65 | 100.00 1 | 99.76 48 | 97.95 106 | 100.00 1 | 100.00 1 | 99.31 63 | 100.00 1 | 99.99 57 | 100.00 1 | 100.00 1 |
|
1314 | | | 99.38 75 | 99.19 93 | 99.96 42 | 98.88 274 | 99.89 65 | 99.24 323 | 99.93 29 | 98.88 38 | 98.79 228 | 100.00 1 | 97.02 169 | 100.00 1 | 100.00 1 | 100.00 1 | 100.00 1 |
|
ACMMPR | | | 99.74 22 | 99.67 27 | 99.96 42 | 100.00 1 | 99.89 65 | 100.00 1 | 99.76 48 | 97.95 106 | 100.00 1 | 100.00 1 | 99.29 69 | 100.00 1 | 99.99 57 | 100.00 1 | 100.00 1 |
|
thres400 | | | 99.26 93 | 99.03 101 | 99.95 51 | 99.81 120 | 99.89 65 | 100.00 1 | 99.94 21 | 97.23 169 | 99.83 150 | 99.96 191 | 97.04 166 | 100.00 1 | 99.59 143 | 97.85 203 | 99.97 106 |
|
test12 | | | | | 99.95 51 | 99.99 49 | 99.89 65 | | 99.42 124 | | 100.00 1 | | 99.24 74 | 99.97 114 | | 100.00 1 | 100.00 1 |
|
3Dnovator+ | | 95.58 15 | 99.03 111 | 98.71 137 | 99.96 42 | 98.99 265 | 99.89 65 | 100.00 1 | 99.51 72 | 98.96 28 | 98.32 256 | 100.00 1 | 92.78 237 | 100.00 1 | 99.87 94 | 100.00 1 | 100.00 1 |
|
agg_prior | | | | | | 100.00 1 | 99.88 72 | | 99.42 124 | | 100.00 1 | | | 99.97 114 | | | |
|
旧先验1 | | | | | | 99.99 49 | 99.88 72 | | 99.82 39 | | | 100.00 1 | 99.27 72 | | | 100.00 1 | 100.00 1 |
|
thres100view900 | | | 99.25 96 | 99.01 103 | 99.95 51 | 99.81 120 | 99.87 74 | 100.00 1 | 99.94 21 | 97.13 174 | 99.83 150 | 99.96 191 | 97.01 170 | 100.00 1 | 99.59 143 | 97.85 203 | 99.98 101 |
|
thres600view7 | | | 99.24 98 | 99.00 104 | 99.95 51 | 99.81 120 | 99.87 74 | 100.00 1 | 99.94 21 | 97.13 174 | 99.83 150 | 99.96 191 | 97.01 170 | 100.00 1 | 99.54 151 | 97.77 209 | 99.97 106 |
|
QAPM | | | 98.99 120 | 98.66 139 | 99.96 42 | 99.01 258 | 99.87 74 | 99.88 240 | 99.93 29 | 97.99 98 | 98.68 233 | 100.00 1 | 93.17 232 | 100.00 1 | 99.32 165 | 100.00 1 | 100.00 1 |
|
GST-MVS | | | 99.64 47 | 99.53 56 | 99.95 51 | 100.00 1 | 99.86 77 | 100.00 1 | 99.79 44 | 97.72 121 | 99.95 130 | 100.00 1 | 98.39 129 | 100.00 1 | 99.96 77 | 99.99 97 | 100.00 1 |
|
MSP-MVS | | | 99.81 11 | 99.77 9 | 99.94 63 | 100.00 1 | 99.86 77 | 100.00 1 | 99.42 124 | 98.87 41 | 100.00 1 | 100.00 1 | 99.65 15 | 99.96 125 | 100.00 1 | 100.00 1 | 100.00 1 |
Zhenlong Yuan, Cong Liu, Fei Shen, Zhaoxin Li, Jingguo luo, Tianlu Mao and Zhaoqi Wang: MSP-MVS: Multi-granularity Segmentation Prior Guided Multi-View Stereo. AAAI2025 |
AdaColmap |  | | 99.44 71 | 99.26 82 | 99.95 51 | 100.00 1 | 99.86 77 | 99.70 275 | 99.99 13 | 98.53 63 | 99.90 140 | 100.00 1 | 95.34 203 | 100.00 1 | 99.92 86 | 100.00 1 | 100.00 1 |
|
SF-MVS | | | 99.66 44 | 99.57 48 | 99.95 51 | 99.99 49 | 99.85 80 | 100.00 1 | 99.42 124 | 97.67 126 | 100.00 1 | 100.00 1 | 99.05 87 | 99.99 91 | 100.00 1 | 100.00 1 | 100.00 1 |
|
PGM-MVS | | | 99.69 35 | 99.61 41 | 99.95 51 | 99.99 49 | 99.85 80 | 100.00 1 | 99.58 65 | 97.69 125 | 100.00 1 | 100.00 1 | 99.44 46 | 100.00 1 | 99.79 105 | 100.00 1 | 100.00 1 |
|
CP-MVS | | | 99.67 42 | 99.58 45 | 99.95 51 | 100.00 1 | 99.84 82 | 100.00 1 | 99.42 124 | 97.77 118 | 100.00 1 | 100.00 1 | 99.07 85 | 100.00 1 | 100.00 1 | 100.00 1 | 100.00 1 |
|
MVS_111021_HR | | | 99.71 29 | 99.63 37 | 99.93 65 | 99.95 94 | 99.83 83 | 100.00 1 | 100.00 1 | 98.89 37 | 100.00 1 | 100.00 1 | 97.85 142 | 99.95 134 | 100.00 1 | 100.00 1 | 100.00 1 |
|
PS-MVSNAJ | | | 99.64 47 | 99.57 48 | 99.85 80 | 99.78 136 | 99.81 84 | 99.95 224 | 99.42 124 | 98.38 70 | 100.00 1 | 100.00 1 | 98.75 116 | 100.00 1 | 99.88 91 | 99.99 97 | 99.74 200 |
|
OpenMVS |  | 95.20 17 | 98.76 138 | 98.41 156 | 99.78 98 | 98.89 273 | 99.81 84 | 99.99 186 | 99.76 48 | 98.02 96 | 98.02 272 | 100.00 1 | 91.44 250 | 100.00 1 | 99.63 141 | 99.97 108 | 99.55 213 |
|
原ACMM1 | | | | | 99.93 65 | 100.00 1 | 99.80 86 | | 99.66 62 | 98.18 83 | 100.00 1 | 100.00 1 | 99.43 50 | 100.00 1 | 99.50 155 | 100.00 1 | 100.00 1 |
|
HPM-MVS_fast | | | 99.60 57 | 99.49 62 | 99.91 67 | 99.99 49 | 99.78 87 | 100.00 1 | 99.42 124 | 97.09 176 | 100.00 1 | 100.00 1 | 98.95 98 | 99.96 125 | 99.98 68 | 100.00 1 | 100.00 1 |
|
baseline1 | | | 98.91 129 | 98.61 144 | 99.81 88 | 99.71 143 | 99.77 88 | 99.78 255 | 99.44 108 | 97.51 146 | 98.81 226 | 99.99 166 | 98.25 131 | 99.76 179 | 98.60 208 | 95.41 235 | 99.89 146 |
|
CANet | | | 99.40 73 | 99.24 85 | 99.89 72 | 99.99 49 | 99.76 89 | 100.00 1 | 99.73 55 | 98.40 69 | 99.78 161 | 100.00 1 | 95.28 204 | 99.96 125 | 100.00 1 | 99.99 97 | 99.96 109 |
|
ET-MVSNet_ETH3D | | | 96.41 253 | 95.48 282 | 99.20 168 | 99.81 120 | 99.75 90 | 100.00 1 | 99.02 326 | 97.30 166 | 78.33 367 | 100.00 1 | 97.73 146 | 97.94 335 | 99.70 122 | 87.41 334 | 99.92 131 |
|
test_prior | | | | | 99.90 70 | 100.00 1 | 99.75 90 | | 99.73 55 | | | | | 99.97 114 | | | 100.00 1 |
|
VNet | | | 99.04 109 | 98.75 132 | 99.90 70 | 99.81 120 | 99.75 90 | 99.50 299 | 99.47 75 | 98.36 74 | 100.00 1 | 99.99 166 | 94.66 214 | 100.00 1 | 99.90 88 | 97.09 219 | 99.96 109 |
|
xiu_mvs_v2_base | | | 99.51 61 | 99.41 65 | 99.82 85 | 99.70 145 | 99.73 93 | 99.92 232 | 99.40 173 | 98.15 86 | 100.00 1 | 100.00 1 | 98.50 126 | 100.00 1 | 99.85 97 | 99.13 147 | 99.74 200 |
|
CNLPA | | | 99.72 26 | 99.65 31 | 99.91 67 | 99.97 88 | 99.72 94 | 100.00 1 | 99.47 75 | 98.43 68 | 99.88 145 | 100.00 1 | 99.14 83 | 100.00 1 | 99.97 75 | 100.00 1 | 100.00 1 |
|
xiu_mvs_v1_base_debu | | | 99.35 78 | 99.21 89 | 99.79 94 | 99.67 153 | 99.71 95 | 99.78 255 | 99.36 196 | 98.13 88 | 100.00 1 | 100.00 1 | 97.00 173 | 100.00 1 | 99.83 100 | 99.07 149 | 99.66 209 |
|
xiu_mvs_v1_base | | | 99.35 78 | 99.21 89 | 99.79 94 | 99.67 153 | 99.71 95 | 99.78 255 | 99.36 196 | 98.13 88 | 100.00 1 | 100.00 1 | 97.00 173 | 100.00 1 | 99.83 100 | 99.07 149 | 99.66 209 |
|
xiu_mvs_v1_base_debi | | | 99.35 78 | 99.21 89 | 99.79 94 | 99.67 153 | 99.71 95 | 99.78 255 | 99.36 196 | 98.13 88 | 100.00 1 | 100.00 1 | 97.00 173 | 100.00 1 | 99.83 100 | 99.07 149 | 99.66 209 |
|
LS3D | | | 99.31 86 | 99.13 97 | 99.87 77 | 99.99 49 | 99.71 95 | 99.55 293 | 99.46 90 | 97.32 162 | 99.82 158 | 100.00 1 | 96.85 180 | 99.97 114 | 99.14 178 | 100.00 1 | 99.92 131 |
|
HPM-MVS |  | | 99.59 58 | 99.50 60 | 99.89 72 | 100.00 1 | 99.70 99 | 100.00 1 | 99.42 124 | 97.46 151 | 100.00 1 | 100.00 1 | 98.60 122 | 99.96 125 | 99.99 57 | 100.00 1 | 100.00 1 |
Chunlin Ren, Qingshan Xu, Shikun Zhang, Jiaqi Yang: Hierarchical Prior Mining for Non-local Multi-View Stereo. ICCV 2023 |
MVS_111021_LR | | | 99.70 32 | 99.65 31 | 99.88 76 | 99.96 93 | 99.70 99 | 100.00 1 | 99.97 17 | 98.96 28 | 100.00 1 | 100.00 1 | 97.93 140 | 99.95 134 | 99.99 57 | 100.00 1 | 100.00 1 |
|
MVSTER | | | 98.58 152 | 98.52 151 | 98.77 192 | 99.65 158 | 99.68 101 | 100.00 1 | 99.29 225 | 95.63 249 | 98.65 234 | 99.80 226 | 99.78 8 | 98.88 265 | 98.59 209 | 95.31 239 | 97.73 274 |
|
ACMMP |  | | 99.65 45 | 99.57 48 | 99.89 72 | 99.99 49 | 99.66 102 | 99.75 264 | 99.73 55 | 98.16 84 | 99.75 165 | 100.00 1 | 98.90 105 | 100.00 1 | 99.96 77 | 99.88 118 | 100.00 1 |
Qingshan Xu, Weihang Kong, Wenbing Tao, Marc Pollefeys: Multi-Scale Geometric Consistency Guided and Planar Prior Assisted Multi-View Stereo. IEEE Transactions on Pattern Analysis and Machine Intelligence |
MAR-MVS | | | 99.49 66 | 99.36 73 | 99.89 72 | 99.97 88 | 99.66 102 | 99.74 265 | 99.95 18 | 97.89 109 | 100.00 1 | 100.00 1 | 96.71 183 | 100.00 1 | 100.00 1 | 100.00 1 | 100.00 1 |
Zhenyu Xu, Yiguang Liu, Xuelei Shi, Ying Wang, Yunan Zheng: MARMVS: Matching Ambiguity Reduced Multiple View Stereo for Efficient Large Scale Scene Reconstruction. CVPR 2020 |
EI-MVSNet-UG-set | | | 99.69 35 | 99.63 37 | 99.87 77 | 99.99 49 | 99.64 104 | 99.95 224 | 99.44 108 | 98.35 76 | 100.00 1 | 100.00 1 | 98.98 93 | 99.97 114 | 99.98 68 | 100.00 1 | 100.00 1 |
|
EI-MVSNet-Vis-set | | | 99.70 32 | 99.64 33 | 99.87 77 | 100.00 1 | 99.64 104 | 99.98 207 | 99.44 108 | 98.35 76 | 99.99 95 | 100.00 1 | 99.04 89 | 99.96 125 | 99.98 68 | 100.00 1 | 100.00 1 |
|
PVSNet_BlendedMVS | | | 98.71 143 | 98.62 143 | 98.98 181 | 99.98 84 | 99.60 106 | 100.00 1 | 100.00 1 | 97.23 169 | 100.00 1 | 99.03 304 | 96.57 185 | 99.99 91 | 100.00 1 | 94.75 261 | 97.35 330 |
|
PVSNet_Blended | | | 99.48 68 | 99.36 73 | 99.83 84 | 99.98 84 | 99.60 106 | 100.00 1 | 100.00 1 | 97.79 116 | 100.00 1 | 100.00 1 | 96.57 185 | 99.99 91 | 100.00 1 | 99.88 118 | 99.90 142 |
|
thisisatest0515 | | | 99.42 72 | 99.31 78 | 99.74 102 | 99.59 178 | 99.55 108 | 100.00 1 | 99.46 90 | 96.65 209 | 99.92 136 | 100.00 1 | 99.44 46 | 99.85 162 | 99.09 181 | 99.63 139 | 99.81 181 |
|
mvsany_test1 | | | 99.57 59 | 99.48 64 | 99.85 80 | 99.86 113 | 99.54 109 | 100.00 1 | 99.36 196 | 98.94 33 | 100.00 1 | 100.00 1 | 97.97 138 | 100.00 1 | 99.88 91 | 99.28 145 | 100.00 1 |
|
CPTT-MVS | | | 99.49 66 | 99.38 68 | 99.85 80 | 100.00 1 | 99.54 109 | 100.00 1 | 99.42 124 | 97.58 138 | 99.98 100 | 100.00 1 | 97.43 162 | 100.00 1 | 99.99 57 | 100.00 1 | 100.00 1 |
|
nrg030 | | | 97.64 196 | 97.27 210 | 98.75 193 | 98.34 293 | 99.53 111 | 100.00 1 | 99.22 255 | 96.21 233 | 98.27 261 | 99.95 198 | 94.40 217 | 98.98 253 | 99.23 173 | 89.78 317 | 97.75 245 |
|
test2506 | | | 99.48 68 | 99.38 68 | 99.75 101 | 99.89 108 | 99.51 112 | 99.45 303 | 100.00 1 | 98.38 70 | 99.83 150 | 100.00 1 | 98.86 107 | 99.81 171 | 99.25 170 | 98.78 156 | 99.94 119 |
|
LFMVS | | | 97.42 208 | 96.62 228 | 99.81 88 | 99.80 130 | 99.50 113 | 99.16 337 | 99.56 66 | 94.48 284 | 100.00 1 | 100.00 1 | 79.35 342 | 100.00 1 | 99.89 90 | 97.37 216 | 99.94 119 |
|
MVS_Test | | | 98.93 128 | 98.65 140 | 99.77 100 | 99.62 171 | 99.50 113 | 99.99 186 | 99.19 268 | 95.52 255 | 99.96 108 | 99.86 212 | 96.54 187 | 99.98 109 | 98.65 202 | 98.48 167 | 99.82 176 |
|
sss | | | 99.45 70 | 99.34 77 | 99.80 92 | 99.76 139 | 99.50 113 | 100.00 1 | 99.91 34 | 97.72 121 | 99.98 100 | 99.94 202 | 98.45 127 | 100.00 1 | 99.53 153 | 98.75 159 | 99.89 146 |
|
GG-mvs-BLEND | | | | | 99.59 120 | 99.54 189 | 99.49 116 | 99.17 336 | 99.52 68 | | 99.96 108 | 99.68 245 | 100.00 1 | 99.33 238 | 99.71 119 | 99.99 97 | 99.96 109 |
|
MVSFormer | | | 98.94 127 | 98.82 123 | 99.28 162 | 99.45 217 | 99.49 116 | 100.00 1 | 99.13 291 | 95.46 260 | 99.97 104 | 100.00 1 | 96.76 181 | 98.59 292 | 98.63 205 | 100.00 1 | 99.74 200 |
|
lupinMVS | | | 99.29 89 | 99.16 96 | 99.69 107 | 99.45 217 | 99.49 116 | 100.00 1 | 99.15 282 | 97.45 152 | 99.97 104 | 100.00 1 | 96.76 181 | 99.76 179 | 99.67 133 | 100.00 1 | 99.81 181 |
|
PVSNet_Blended_VisFu | | | 99.33 83 | 99.18 95 | 99.78 98 | 99.82 116 | 99.49 116 | 100.00 1 | 99.95 18 | 97.36 157 | 99.63 171 | 100.00 1 | 96.45 189 | 99.95 134 | 99.79 105 | 99.65 137 | 99.89 146 |
|
114514_t | | | 99.39 74 | 99.25 83 | 99.81 88 | 99.97 88 | 99.48 120 | 100.00 1 | 99.42 124 | 95.53 253 | 100.00 1 | 100.00 1 | 98.37 130 | 99.95 134 | 99.97 75 | 100.00 1 | 100.00 1 |
|
DELS-MVS | | | 99.62 52 | 99.56 53 | 99.82 85 | 99.92 102 | 99.45 121 | 100.00 1 | 99.78 46 | 98.92 35 | 99.73 166 | 100.00 1 | 97.70 148 | 100.00 1 | 99.93 85 | 100.00 1 | 100.00 1 |
Christian Sormann, Emanuele Santellani, Mattia Rossi, Andreas Kuhn, Friedrich Fraundorfer: DELS-MVS: Deep Epipolar Line Search for Multi-View Stereo. Winter Conference on Applications of Computer Vision (WACV), 2023 |
DP-MVS | | | 98.86 133 | 98.54 150 | 99.81 88 | 99.97 88 | 99.45 121 | 99.52 297 | 99.40 173 | 94.35 288 | 98.36 252 | 100.00 1 | 96.13 191 | 99.97 114 | 99.12 180 | 100.00 1 | 100.00 1 |
|
PHI-MVS | | | 99.50 64 | 99.39 67 | 99.82 85 | 100.00 1 | 99.45 121 | 100.00 1 | 99.94 21 | 96.38 226 | 100.00 1 | 100.00 1 | 98.18 133 | 100.00 1 | 100.00 1 | 100.00 1 | 100.00 1 |
|
FA-MVS(test-final) | | | 99.00 117 | 98.75 132 | 99.73 105 | 99.63 166 | 99.43 124 | 99.83 245 | 99.43 114 | 95.84 244 | 99.52 175 | 99.37 285 | 97.84 143 | 99.96 125 | 97.63 244 | 99.68 133 | 99.79 194 |
|
thisisatest0530 | | | 99.37 77 | 99.27 79 | 99.69 107 | 99.59 178 | 99.41 125 | 100.00 1 | 99.46 90 | 96.46 220 | 99.90 140 | 100.00 1 | 99.44 46 | 99.85 162 | 98.97 184 | 99.58 141 | 99.80 192 |
|
UA-Net | | | 99.06 107 | 98.83 122 | 99.74 102 | 99.52 199 | 99.40 126 | 99.08 347 | 99.45 97 | 97.64 130 | 99.83 150 | 100.00 1 | 95.80 196 | 99.94 146 | 98.35 217 | 99.80 128 | 99.88 157 |
|
tttt0517 | | | 99.34 81 | 99.23 88 | 99.67 109 | 99.57 186 | 99.38 127 | 100.00 1 | 99.46 90 | 96.33 229 | 99.89 143 | 100.00 1 | 99.44 46 | 99.84 164 | 98.93 186 | 99.46 144 | 99.78 195 |
|
TESTMET0.1,1 | | | 99.08 105 | 98.96 108 | 99.44 137 | 99.63 166 | 99.38 127 | 100.00 1 | 99.45 97 | 95.53 253 | 99.48 178 | 100.00 1 | 99.71 13 | 99.02 249 | 96.84 268 | 99.99 97 | 99.91 133 |
|
IS-MVSNet | | | 99.08 105 | 98.91 116 | 99.59 120 | 99.65 158 | 99.38 127 | 99.78 255 | 99.24 249 | 96.70 203 | 99.51 176 | 100.00 1 | 98.44 128 | 99.52 216 | 98.47 213 | 98.39 174 | 99.88 157 |
|
API-MVS | | | 99.72 26 | 99.70 21 | 99.79 94 | 99.97 88 | 99.37 130 | 99.96 218 | 99.94 21 | 98.48 65 | 100.00 1 | 100.00 1 | 98.92 103 | 100.00 1 | 100.00 1 | 100.00 1 | 100.00 1 |
|
gg-mvs-nofinetune | | | 96.95 229 | 96.10 250 | 99.50 131 | 99.41 222 | 99.36 131 | 99.07 349 | 99.52 68 | 83.69 359 | 99.96 108 | 83.60 375 | 100.00 1 | 99.20 242 | 99.68 130 | 99.99 97 | 99.96 109 |
|
ETV-MVS | | | 99.34 81 | 99.24 85 | 99.64 113 | 99.58 183 | 99.33 132 | 100.00 1 | 99.25 244 | 97.57 139 | 99.96 108 | 100.00 1 | 97.44 161 | 99.79 173 | 99.70 122 | 99.65 137 | 99.81 181 |
|
VPA-MVSNet | | | 97.03 226 | 96.43 236 | 98.82 189 | 98.64 283 | 99.32 133 | 99.38 311 | 99.47 75 | 96.73 200 | 98.91 216 | 98.94 313 | 87.00 302 | 99.40 232 | 99.23 173 | 89.59 318 | 97.76 234 |
|
jason | | | 99.11 103 | 98.96 108 | 99.59 120 | 99.17 243 | 99.31 134 | 100.00 1 | 99.13 291 | 97.38 156 | 99.83 150 | 100.00 1 | 95.54 202 | 99.72 185 | 99.57 147 | 99.97 108 | 99.74 200 |
jason: jason. |
PatchMatch-RL | | | 99.02 115 | 98.78 127 | 99.74 102 | 99.99 49 | 99.29 135 | 100.00 1 | 100.00 1 | 98.38 70 | 99.89 143 | 99.81 223 | 93.14 234 | 99.99 91 | 97.85 238 | 99.98 105 | 99.95 114 |
|
test-LLR | | | 99.03 111 | 98.91 116 | 99.40 144 | 99.40 227 | 99.28 136 | 100.00 1 | 99.45 97 | 96.70 203 | 99.42 182 | 99.12 295 | 99.31 63 | 99.01 250 | 96.82 269 | 99.99 97 | 99.91 133 |
|
test-mter | | | 98.96 124 | 98.82 123 | 99.40 144 | 99.40 227 | 99.28 136 | 100.00 1 | 99.45 97 | 95.44 262 | 99.42 182 | 99.12 295 | 99.70 14 | 99.01 250 | 96.82 269 | 99.99 97 | 99.91 133 |
|
Effi-MVS+ | | | 98.58 152 | 98.24 166 | 99.61 116 | 99.60 175 | 99.26 138 | 97.85 364 | 99.10 301 | 96.22 232 | 99.97 104 | 99.89 208 | 93.75 223 | 99.77 178 | 99.43 157 | 98.34 178 | 99.81 181 |
|
HyFIR lowres test | | | 99.32 85 | 99.24 85 | 99.58 124 | 99.95 94 | 99.26 138 | 100.00 1 | 99.99 13 | 96.72 201 | 99.29 190 | 99.91 206 | 99.49 39 | 99.47 223 | 99.74 114 | 98.08 193 | 100.00 1 |
|
FMVSNet3 | | | 97.30 213 | 96.95 216 | 98.37 211 | 99.65 158 | 99.25 140 | 99.71 273 | 99.28 231 | 94.23 289 | 98.53 243 | 98.91 315 | 93.30 229 | 98.11 322 | 95.31 292 | 93.60 271 | 97.73 274 |
|
MSDG | | | 98.90 131 | 98.63 142 | 99.70 106 | 99.92 102 | 99.25 140 | 100.00 1 | 99.37 190 | 95.71 247 | 99.40 187 | 100.00 1 | 96.58 184 | 99.95 134 | 96.80 271 | 99.94 113 | 99.91 133 |
|
FIs | | | 97.95 185 | 97.73 192 | 98.62 197 | 98.53 288 | 99.24 142 | 100.00 1 | 99.43 114 | 96.74 198 | 97.87 280 | 99.82 220 | 95.27 205 | 98.89 262 | 98.78 194 | 93.07 277 | 97.74 268 |
|
mvs_anonymous | | | 98.80 137 | 98.60 146 | 99.38 148 | 99.57 186 | 99.24 142 | 100.00 1 | 99.21 264 | 95.87 239 | 98.92 214 | 99.82 220 | 96.39 190 | 99.03 248 | 99.13 179 | 98.50 165 | 99.88 157 |
|
MDTV_nov1_ep13_2view | | | | | | | 99.24 142 | 99.56 292 | | 96.31 230 | 99.96 108 | | 98.86 107 | | 98.92 187 | | 99.89 146 |
|
iter_conf05 | | | 98.73 140 | 98.77 128 | 98.60 198 | 99.65 158 | 99.22 145 | 100.00 1 | 99.22 255 | 96.68 207 | 98.98 212 | 99.97 178 | 99.99 3 | 98.84 267 | 99.29 168 | 95.11 253 | 97.75 245 |
|
EPMVS | | | 99.25 96 | 99.13 97 | 99.60 118 | 99.60 175 | 99.20 146 | 99.60 288 | 100.00 1 | 96.93 184 | 99.92 136 | 99.36 286 | 99.05 87 | 99.71 186 | 98.77 195 | 98.94 153 | 99.90 142 |
|
BH-RMVSNet | | | 98.46 160 | 98.08 175 | 99.59 120 | 99.61 173 | 99.19 147 | 100.00 1 | 99.28 231 | 97.06 180 | 98.95 213 | 100.00 1 | 88.99 280 | 99.82 168 | 98.83 193 | 100.00 1 | 99.77 196 |
|
FE-MVS | | | 99.16 101 | 98.99 106 | 99.66 111 | 99.65 158 | 99.18 148 | 99.58 290 | 99.43 114 | 95.24 263 | 99.91 138 | 99.59 266 | 99.37 57 | 99.97 114 | 98.31 219 | 99.81 126 | 99.83 171 |
|
iter_conf_final | | | 98.72 141 | 98.76 130 | 98.59 200 | 99.64 164 | 99.17 149 | 100.00 1 | 99.22 255 | 96.63 212 | 99.02 209 | 99.97 178 | 99.98 4 | 98.84 267 | 99.22 175 | 95.18 247 | 97.76 234 |
|
diffmvs |  | | 98.96 124 | 98.73 134 | 99.63 114 | 99.54 189 | 99.16 150 | 100.00 1 | 99.18 275 | 97.33 161 | 99.96 108 | 100.00 1 | 94.60 215 | 99.91 151 | 99.66 136 | 98.33 181 | 99.82 176 |
Fangjinhua Wang, Qingshan Xu, Yew-Soon Ong, Marc Pollefeys: Lightweight and Accurate Multi-View Stereo With Confidence-Aware Diffusion Model. IEEE T-PAMI 2025 |
baseline2 | | | 98.99 120 | 98.93 114 | 99.18 169 | 99.26 240 | 99.15 151 | 100.00 1 | 99.46 90 | 96.71 202 | 96.79 312 | 100.00 1 | 99.42 52 | 99.25 241 | 98.75 197 | 99.94 113 | 99.15 221 |
|
UniMVSNet (Re) | | | 97.29 214 | 96.85 220 | 98.59 200 | 98.49 289 | 99.13 152 | 100.00 1 | 99.42 124 | 96.52 218 | 98.24 265 | 98.90 316 | 94.93 210 | 98.89 262 | 97.54 247 | 87.61 333 | 97.75 245 |
|
WR-MVS | | | 97.09 221 | 96.64 226 | 98.46 205 | 98.43 290 | 99.09 153 | 99.97 213 | 99.33 212 | 95.62 250 | 97.76 282 | 99.67 246 | 91.17 254 | 98.56 297 | 98.49 212 | 89.28 322 | 97.74 268 |
|
DROMVSNet | | | 99.19 100 | 99.09 99 | 99.48 134 | 99.42 220 | 99.07 154 | 100.00 1 | 99.21 264 | 96.95 183 | 99.96 108 | 100.00 1 | 96.88 179 | 99.48 221 | 99.64 138 | 99.79 129 | 99.88 157 |
|
F-COLMAP | | | 99.64 47 | 99.64 33 | 99.67 109 | 99.99 49 | 99.07 154 | 100.00 1 | 99.44 108 | 98.30 79 | 99.90 140 | 100.00 1 | 99.18 79 | 99.99 91 | 99.91 87 | 100.00 1 | 99.94 119 |
|
Fast-Effi-MVS+ | | | 98.40 166 | 98.02 181 | 99.55 128 | 99.63 166 | 99.06 156 | 100.00 1 | 99.15 282 | 95.07 265 | 99.42 182 | 99.95 198 | 93.26 230 | 99.73 184 | 97.44 250 | 98.24 184 | 99.87 165 |
|
FC-MVSNet-test | | | 97.84 187 | 97.63 196 | 98.45 206 | 98.30 298 | 99.05 157 | 100.00 1 | 99.43 114 | 96.63 212 | 97.61 291 | 99.82 220 | 95.19 207 | 98.57 295 | 98.64 203 | 93.05 278 | 97.73 274 |
|
miper_enhance_ethall | | | 98.33 169 | 98.27 164 | 98.51 203 | 99.66 157 | 99.04 158 | 100.00 1 | 99.22 255 | 97.53 143 | 98.51 246 | 99.38 284 | 99.49 39 | 98.75 278 | 98.02 231 | 92.61 282 | 97.76 234 |
|
DeepC-MVS | | 97.84 5 | 99.00 117 | 98.80 126 | 99.60 118 | 99.93 99 | 99.03 159 | 100.00 1 | 99.40 173 | 98.61 61 | 99.33 188 | 100.00 1 | 92.23 244 | 99.95 134 | 99.74 114 | 99.96 110 | 99.83 171 |
Andreas Kuhn, Christian Sormann, Mattia Rossi, Oliver Erdler, Friedrich Fraundorfer: DeepC-MVS: Deep Confidence Prediction for Multi-View Stereo Reconstruction. 3DV 2020 |
cascas | | | 98.43 161 | 98.07 176 | 99.50 131 | 99.65 158 | 99.02 160 | 100.00 1 | 99.22 255 | 94.21 291 | 99.72 167 | 99.98 170 | 92.03 247 | 99.93 148 | 99.68 130 | 98.12 191 | 99.54 214 |
|
PCF-MVS | | 98.23 3 | 98.69 145 | 98.37 161 | 99.62 115 | 99.78 136 | 99.02 160 | 99.23 328 | 99.06 319 | 96.43 221 | 98.08 268 | 100.00 1 | 94.72 213 | 99.95 134 | 98.16 226 | 99.91 116 | 99.90 142 |
Andreas Kuhn, Shan Lin, Oliver Erdler: Plane Completion and Filtering for Multi-View Stereo Reconstruction. GCPR 2019 |
cl22 | | | 98.23 176 | 98.11 173 | 98.58 202 | 99.82 116 | 99.01 162 | 100.00 1 | 99.28 231 | 96.92 186 | 98.33 255 | 99.21 292 | 98.09 137 | 98.97 255 | 98.72 198 | 92.61 282 | 97.76 234 |
|
EPNet_dtu | | | 98.53 157 | 98.23 168 | 99.43 139 | 99.92 102 | 99.01 162 | 99.96 218 | 99.47 75 | 98.80 48 | 99.96 108 | 99.96 191 | 98.56 124 | 99.30 239 | 87.78 349 | 99.68 133 | 100.00 1 |
Wanjuan Su, Wenbing Tao: Efficient Edge-Preserving Multi-View Stereo Network for Depth Estimation. AAAI 2023 |
CS-MVS | | | 99.33 83 | 99.27 79 | 99.50 131 | 99.99 49 | 99.00 164 | 100.00 1 | 99.13 291 | 97.26 167 | 99.96 108 | 100.00 1 | 97.79 145 | 99.64 190 | 99.64 138 | 99.67 135 | 99.87 165 |
|
ab-mvs | | | 98.42 163 | 98.02 181 | 99.61 116 | 99.71 143 | 99.00 164 | 99.10 344 | 99.64 63 | 96.70 203 | 99.04 208 | 99.81 223 | 90.64 259 | 99.98 109 | 99.64 138 | 97.93 198 | 99.84 168 |
|
NR-MVSNet | | | 96.63 242 | 96.04 253 | 98.38 210 | 98.31 296 | 98.98 166 | 99.22 330 | 99.35 205 | 95.87 239 | 94.43 340 | 99.65 250 | 92.73 240 | 98.40 307 | 96.78 272 | 88.05 330 | 97.75 245 |
|
PMMVS | | | 99.12 102 | 98.97 107 | 99.58 124 | 99.57 186 | 98.98 166 | 100.00 1 | 99.30 221 | 97.14 173 | 99.96 108 | 100.00 1 | 96.53 188 | 99.82 168 | 99.70 122 | 98.49 166 | 99.94 119 |
|
testdata | | | | | 99.66 111 | 99.99 49 | 98.97 168 | | 99.73 55 | 97.96 105 | 100.00 1 | 100.00 1 | 99.42 52 | 100.00 1 | 99.28 169 | 100.00 1 | 100.00 1 |
|
XXY-MVS | | | 97.14 220 | 96.63 227 | 98.67 195 | 98.65 282 | 98.92 169 | 99.54 295 | 99.29 225 | 95.57 252 | 97.63 288 | 99.83 217 | 87.79 295 | 99.35 236 | 98.39 215 | 92.95 279 | 97.75 245 |
|
Vis-MVSNet (Re-imp) | | | 98.99 120 | 98.89 120 | 99.29 159 | 99.64 164 | 98.89 170 | 99.98 207 | 99.31 219 | 96.74 198 | 99.48 178 | 100.00 1 | 98.11 135 | 99.10 245 | 98.39 215 | 98.34 178 | 99.89 146 |
|
CR-MVSNet | | | 98.02 183 | 97.71 193 | 98.93 183 | 99.31 234 | 98.86 171 | 99.13 341 | 99.00 329 | 96.53 217 | 99.96 108 | 98.98 308 | 96.94 176 | 98.10 325 | 91.18 330 | 98.40 172 | 99.84 168 |
|
RPMNet | | | 95.26 290 | 93.82 298 | 99.56 127 | 99.31 234 | 98.86 171 | 99.13 341 | 99.42 124 | 79.82 364 | 99.96 108 | 95.13 357 | 95.69 199 | 99.98 109 | 77.54 368 | 98.40 172 | 99.84 168 |
|
PLC |  | 98.56 2 | 99.70 32 | 99.74 16 | 99.58 124 | 100.00 1 | 98.79 173 | 100.00 1 | 99.54 67 | 98.58 62 | 99.96 108 | 100.00 1 | 99.59 20 | 100.00 1 | 100.00 1 | 100.00 1 | 99.94 119 |
Jie Liao, Yanping Fu, Qingan Yan, Chunxia xiao: Pyramid Multi-View Stereo with Local Consistency. Pacific Graphics 2019 |
CS-MVS-test | | | 99.31 86 | 99.27 79 | 99.43 139 | 99.99 49 | 98.77 174 | 100.00 1 | 99.19 268 | 97.24 168 | 99.96 108 | 100.00 1 | 97.56 154 | 99.70 187 | 99.68 130 | 99.81 126 | 99.82 176 |
|
EIA-MVS | | | 99.26 93 | 99.19 93 | 99.45 136 | 99.63 166 | 98.75 175 | 100.00 1 | 99.27 239 | 96.93 184 | 99.95 130 | 100.00 1 | 97.47 158 | 99.79 173 | 99.74 114 | 99.72 131 | 99.82 176 |
|
Test_1112_low_res | | | 98.83 135 | 98.60 146 | 99.51 129 | 99.69 146 | 98.75 175 | 99.99 186 | 99.14 287 | 96.81 193 | 98.84 223 | 99.06 299 | 97.45 159 | 99.89 153 | 98.66 200 | 97.75 210 | 99.89 146 |
|
1112_ss | | | 98.91 129 | 98.71 137 | 99.51 129 | 99.69 146 | 98.75 175 | 99.99 186 | 99.15 282 | 96.82 192 | 98.84 223 | 100.00 1 | 97.45 159 | 99.89 153 | 98.66 200 | 97.75 210 | 99.89 146 |
|
casdiffmvs |  | | 98.65 147 | 98.38 159 | 99.46 135 | 99.52 199 | 98.74 178 | 100.00 1 | 99.15 282 | 96.91 187 | 99.05 207 | 100.00 1 | 92.75 238 | 99.83 165 | 99.70 122 | 98.38 175 | 99.81 181 |
Fangjinhua Wang, Qingshan Xu, Yew-Soon Ong, Marc Pollefeys: Lightweight and Accurate Multi-View Stereo With Confidence-Aware Diffusion Model. IEEE T-PAMI 2025 |
tfpnnormal | | | 96.36 258 | 95.69 273 | 98.37 211 | 98.55 286 | 98.71 179 | 99.69 277 | 99.45 97 | 93.16 317 | 96.69 316 | 99.71 235 | 88.44 290 | 98.99 252 | 94.17 306 | 91.38 303 | 97.41 327 |
|
CANet_DTU | | | 99.02 115 | 98.90 119 | 99.41 142 | 99.88 110 | 98.71 179 | 100.00 1 | 99.29 225 | 98.84 43 | 100.00 1 | 100.00 1 | 94.02 221 | 100.00 1 | 98.08 228 | 99.96 110 | 99.52 215 |
|
EPP-MVSNet | | | 99.10 104 | 99.00 104 | 99.40 144 | 99.51 204 | 98.68 181 | 99.92 232 | 99.43 114 | 95.47 259 | 99.65 170 | 100.00 1 | 99.51 33 | 99.76 179 | 99.53 153 | 98.00 194 | 99.75 199 |
|
CP-MVSNet | | | 96.73 236 | 96.25 244 | 98.18 225 | 98.21 304 | 98.67 182 | 99.77 260 | 99.32 214 | 95.06 266 | 97.20 302 | 99.65 250 | 90.10 266 | 98.19 315 | 98.06 230 | 88.90 325 | 97.66 301 |
|
baseline | | | 98.69 145 | 98.45 155 | 99.41 142 | 99.52 199 | 98.67 182 | 100.00 1 | 99.17 280 | 97.03 181 | 99.13 199 | 100.00 1 | 93.17 232 | 99.74 182 | 99.70 122 | 98.34 178 | 99.81 181 |
|
pmmvs4 | | | 97.17 217 | 96.80 221 | 98.27 218 | 97.68 323 | 98.64 184 | 100.00 1 | 99.18 275 | 94.22 290 | 98.55 241 | 99.71 235 | 93.67 224 | 98.47 304 | 95.66 286 | 92.57 285 | 97.71 289 |
|
casdiffmvs_mvg |  | | 98.64 148 | 98.39 158 | 99.40 144 | 99.50 207 | 98.60 185 | 100.00 1 | 99.22 255 | 96.85 190 | 99.10 201 | 100.00 1 | 92.75 238 | 99.78 177 | 99.71 119 | 98.35 177 | 99.81 181 |
Fangjinhua Wang, Qingshan Xu, Yew-Soon Ong, Marc Pollefeys: Lightweight and Accurate Multi-View Stereo With Confidence-Aware Diffusion Model. IEEE T-PAMI 2025 |
JIA-IIPM | | | 97.09 221 | 96.34 241 | 99.36 149 | 98.88 274 | 98.59 186 | 99.81 249 | 99.43 114 | 84.81 357 | 99.96 108 | 90.34 367 | 98.55 125 | 99.52 216 | 97.00 263 | 98.28 183 | 99.98 101 |
|
Patchmtry | | | 96.81 232 | 96.37 239 | 98.14 230 | 99.31 234 | 98.55 187 | 98.91 352 | 99.00 329 | 90.45 338 | 97.92 277 | 98.98 308 | 96.94 176 | 98.12 320 | 94.27 305 | 91.53 299 | 97.75 245 |
|
UGNet | | | 98.41 165 | 98.11 173 | 99.31 158 | 99.54 189 | 98.55 187 | 99.18 331 | 100.00 1 | 98.64 60 | 99.79 160 | 99.04 302 | 87.61 296 | 100.00 1 | 99.30 167 | 99.89 117 | 99.40 218 |
Wanjuan Su, Qingshan Xu, Wenbing Tao: Uncertainty-guided Multi-view Stereo Network for Depth Estimation. IEEE Transactions on Circuits and Systems for Video Technology, 2022 |
Vis-MVSNet |  | | 98.52 158 | 98.25 165 | 99.34 151 | 99.68 149 | 98.55 187 | 99.68 279 | 99.41 170 | 97.34 160 | 99.94 132 | 100.00 1 | 90.38 265 | 99.70 187 | 99.03 183 | 98.84 154 | 99.76 198 |
Jingyang Zhang, Yao Yao, Shiwei Li, Zixin Luo, Tian Fang: Visibility-aware Multiview Stereo Network. BMVC 2020 |
mvsmamba | | | 98.13 178 | 98.06 177 | 98.32 215 | 98.22 303 | 98.50 190 | 100.00 1 | 99.22 255 | 96.41 223 | 98.91 216 | 99.96 191 | 95.69 199 | 98.73 280 | 99.19 177 | 94.95 260 | 97.73 274 |
|
GeoE | | | 98.06 180 | 97.65 195 | 99.29 159 | 99.47 214 | 98.41 191 | 100.00 1 | 99.19 268 | 94.85 270 | 98.88 218 | 100.00 1 | 91.21 252 | 99.59 193 | 97.02 262 | 98.19 188 | 99.88 157 |
|
UniMVSNet_NR-MVSNet | | | 97.16 218 | 96.80 221 | 98.22 222 | 98.38 292 | 98.41 191 | 100.00 1 | 99.45 97 | 96.14 234 | 97.76 282 | 99.64 254 | 95.05 208 | 98.50 301 | 97.98 232 | 86.84 337 | 97.75 245 |
|
DU-MVS | | | 96.93 230 | 96.49 233 | 98.22 222 | 98.31 296 | 98.41 191 | 100.00 1 | 99.37 190 | 96.41 223 | 97.76 282 | 99.65 250 | 92.14 245 | 98.50 301 | 97.98 232 | 86.84 337 | 97.75 245 |
|
v2v482 | | | 96.70 239 | 96.18 247 | 98.27 218 | 98.04 310 | 98.39 194 | 100.00 1 | 99.13 291 | 94.19 293 | 98.58 239 | 99.08 298 | 90.48 263 | 98.67 283 | 95.69 285 | 90.44 313 | 97.75 245 |
|
ADS-MVSNet | | | 98.70 144 | 98.51 152 | 99.28 162 | 99.51 204 | 98.39 194 | 99.24 323 | 99.44 108 | 95.52 255 | 99.96 108 | 99.70 238 | 97.57 152 | 99.58 197 | 97.11 260 | 98.54 163 | 99.88 157 |
|
PatchT | | | 95.90 280 | 94.95 293 | 98.75 193 | 99.03 256 | 98.39 194 | 99.08 347 | 99.32 214 | 85.52 355 | 99.96 108 | 94.99 359 | 97.94 139 | 98.05 331 | 80.20 364 | 98.47 168 | 99.81 181 |
|
miper_ehance_all_eth | | | 97.81 189 | 97.66 194 | 98.23 221 | 99.49 209 | 98.37 197 | 99.99 186 | 99.11 299 | 94.78 271 | 98.25 263 | 99.21 292 | 98.18 133 | 98.57 295 | 97.35 256 | 92.61 282 | 97.76 234 |
|
EPNet | | | 99.62 52 | 99.69 22 | 99.42 141 | 99.99 49 | 98.37 197 | 100.00 1 | 99.89 35 | 98.83 44 | 100.00 1 | 100.00 1 | 98.97 94 | 100.00 1 | 99.90 88 | 99.61 140 | 99.89 146 |
Wanjuan Su, Wenbing Tao: Efficient Edge-Preserving Multi-View Stereo Network for Depth Estimation. AAAI 2023 |
MDTV_nov1_ep13 | | | | 98.94 113 | | 99.53 192 | 98.36 199 | 99.39 310 | 99.46 90 | 96.54 216 | 99.99 95 | 99.63 258 | 98.92 103 | 99.86 157 | 98.30 222 | 98.71 160 | |
|
CDS-MVSNet | | | 98.96 124 | 98.95 112 | 99.01 178 | 99.48 211 | 98.36 199 | 99.93 231 | 99.37 190 | 96.79 194 | 99.31 189 | 99.83 217 | 99.77 10 | 98.91 259 | 98.07 229 | 97.98 195 | 99.77 196 |
Khang Truong Giang, Soohwan Song, Sungho Jo: Curvature-guided dynamic scale networks for Multi-view Stereo. ICLR 2022 |
FMVSNet2 | | | 96.22 265 | 95.60 276 | 98.06 240 | 99.53 192 | 98.33 201 | 99.45 303 | 99.27 239 | 93.71 299 | 98.03 270 | 98.84 318 | 84.23 321 | 98.10 325 | 93.97 310 | 93.40 274 | 97.73 274 |
|
PatchmatchNet |  | | 99.03 111 | 98.96 108 | 99.26 164 | 99.49 209 | 98.33 201 | 99.38 311 | 99.45 97 | 96.64 210 | 99.96 108 | 99.58 268 | 99.49 39 | 99.50 219 | 97.63 244 | 99.00 152 | 99.93 129 |
Fangjinhua Wang, Silvano Galliani, Christoph Vogel, Pablo Speciale, Marc Pollefeys: PatchmatchNet: Learned Multi-View Patchmatch Stereo. |
PVSNet | | 94.91 18 | 99.30 88 | 99.25 83 | 99.44 137 | 100.00 1 | 98.32 203 | 100.00 1 | 99.86 37 | 98.04 95 | 100.00 1 | 100.00 1 | 96.10 192 | 100.00 1 | 99.55 148 | 99.73 130 | 100.00 1 |
|
VPNet | | | 96.41 253 | 95.76 267 | 98.33 214 | 98.61 284 | 98.30 204 | 99.48 300 | 99.45 97 | 96.98 182 | 98.87 220 | 99.88 209 | 81.57 334 | 98.93 257 | 99.22 175 | 87.82 332 | 97.76 234 |
|
TR-MVS | | | 98.14 177 | 97.74 190 | 99.33 154 | 99.59 178 | 98.28 205 | 99.27 320 | 99.21 264 | 96.42 222 | 99.15 198 | 99.94 202 | 88.87 283 | 99.79 173 | 98.88 189 | 98.29 182 | 99.93 129 |
|
PS-CasMVS | | | 96.34 260 | 95.78 266 | 98.03 247 | 98.18 306 | 98.27 206 | 99.71 273 | 99.32 214 | 94.75 272 | 96.82 311 | 99.65 250 | 86.98 303 | 98.15 317 | 97.74 240 | 88.85 326 | 97.66 301 |
|
SCA | | | 98.30 170 | 97.98 183 | 99.23 166 | 99.41 222 | 98.25 207 | 99.99 186 | 99.45 97 | 96.91 187 | 99.76 164 | 99.58 268 | 89.65 272 | 99.54 210 | 98.31 219 | 98.79 155 | 99.91 133 |
|
v8 | | | 96.35 259 | 95.73 269 | 98.21 224 | 98.11 308 | 98.23 208 | 99.94 229 | 99.07 311 | 92.66 325 | 98.29 258 | 99.00 307 | 91.46 249 | 98.77 276 | 94.17 306 | 88.83 327 | 97.62 313 |
|
V42 | | | 96.65 241 | 96.16 249 | 98.11 235 | 98.17 307 | 98.23 208 | 99.99 186 | 99.09 306 | 93.97 296 | 98.74 230 | 99.05 301 | 91.09 255 | 98.82 270 | 95.46 290 | 89.90 315 | 97.27 332 |
|
ECVR-MVS |  | | 98.43 161 | 98.14 171 | 99.32 156 | 99.89 108 | 98.21 210 | 99.46 301 | 100.00 1 | 98.38 70 | 99.47 181 | 100.00 1 | 87.91 291 | 99.80 172 | 99.35 162 | 98.78 156 | 99.94 119 |
|
bld_raw_dy_0_64 | | | 97.71 194 | 97.56 197 | 98.15 229 | 97.83 319 | 98.16 211 | 99.95 224 | 99.12 297 | 95.95 238 | 98.73 231 | 99.97 178 | 93.19 231 | 98.63 286 | 98.64 203 | 94.69 263 | 97.66 301 |
|
c3_l | | | 97.58 200 | 97.42 200 | 98.06 240 | 99.48 211 | 98.16 211 | 99.96 218 | 99.10 301 | 94.54 280 | 98.13 267 | 99.20 294 | 97.87 141 | 98.25 314 | 97.28 257 | 91.20 305 | 97.75 245 |
|
test1111 | | | 98.42 163 | 98.12 172 | 99.29 159 | 99.88 110 | 98.15 213 | 99.46 301 | 100.00 1 | 98.36 74 | 99.42 182 | 100.00 1 | 87.91 291 | 99.79 173 | 99.31 166 | 98.78 156 | 99.94 119 |
|
v1192 | | | 96.18 267 | 95.49 280 | 98.26 220 | 98.01 311 | 98.15 213 | 99.99 186 | 99.08 307 | 93.36 311 | 98.54 242 | 98.97 311 | 89.47 275 | 98.89 262 | 91.15 331 | 90.82 308 | 97.75 245 |
|
cl____ | | | 97.54 203 | 97.32 206 | 98.18 225 | 99.47 214 | 98.14 215 | 100.00 1 | 99.10 301 | 94.16 294 | 97.60 292 | 99.63 258 | 97.52 155 | 98.65 285 | 96.47 276 | 91.97 294 | 97.76 234 |
|
DIV-MVS_self_test | | | 97.52 205 | 97.35 205 | 98.05 244 | 99.46 216 | 98.11 216 | 100.00 1 | 99.10 301 | 94.21 291 | 97.62 290 | 99.63 258 | 97.65 149 | 98.29 311 | 96.47 276 | 91.98 293 | 97.76 234 |
|
v144192 | | | 96.40 256 | 95.81 262 | 98.17 227 | 97.89 316 | 98.11 216 | 99.99 186 | 99.06 319 | 93.39 310 | 98.75 229 | 99.09 297 | 90.43 264 | 98.66 284 | 93.10 317 | 90.55 312 | 97.75 245 |
|
IB-MVS | | 96.24 12 | 97.54 203 | 96.95 216 | 99.33 154 | 99.67 153 | 98.10 218 | 100.00 1 | 99.47 75 | 97.42 155 | 99.26 191 | 99.69 241 | 98.83 111 | 99.89 153 | 99.43 157 | 78.77 359 | 100.00 1 |
Christian Sormann, Mattia Rossi, Andreas Kuhn and Friedrich Fraundorfer: IB-MVS: An Iterative Algorithm for Deep Multi-View Stereo based on Binary Decisions. BMVC 2021 |
test_fmvs1 | | | 98.37 168 | 98.04 179 | 99.34 151 | 99.84 114 | 98.07 219 | 100.00 1 | 99.00 329 | 98.85 42 | 100.00 1 | 100.00 1 | 85.11 316 | 99.96 125 | 99.69 129 | 99.88 118 | 100.00 1 |
|
test0.0.03 1 | | | 98.12 179 | 98.03 180 | 98.39 209 | 99.11 246 | 98.07 219 | 100.00 1 | 99.93 29 | 96.70 203 | 96.91 308 | 99.95 198 | 99.31 63 | 98.19 315 | 91.93 325 | 98.44 169 | 98.91 225 |
|
anonymousdsp | | | 97.16 218 | 96.88 218 | 98.00 248 | 97.08 342 | 98.06 221 | 99.81 249 | 99.15 282 | 94.58 278 | 97.84 281 | 99.62 262 | 90.49 262 | 98.60 290 | 97.98 232 | 95.32 238 | 97.33 331 |
|
TSAR-MVS + GP. | | | 99.61 54 | 99.69 22 | 99.35 150 | 99.99 49 | 98.06 221 | 100.00 1 | 99.36 196 | 99.83 2 | 100.00 1 | 100.00 1 | 98.95 98 | 99.99 91 | 100.00 1 | 99.11 148 | 100.00 1 |
|
test_vis1_n_1920 | | | 97.77 190 | 97.24 212 | 99.34 151 | 99.79 133 | 98.04 223 | 100.00 1 | 99.25 244 | 98.88 38 | 100.00 1 | 100.00 1 | 77.52 347 | 100.00 1 | 99.88 91 | 99.85 122 | 100.00 1 |
|
v1144 | | | 96.51 248 | 95.97 257 | 98.13 233 | 97.98 313 | 98.04 223 | 99.99 186 | 99.08 307 | 93.51 308 | 98.62 237 | 98.98 308 | 90.98 258 | 98.62 287 | 93.79 312 | 90.79 309 | 97.74 268 |
|
test_djsdf | | | 97.55 202 | 97.38 203 | 98.07 236 | 97.50 332 | 97.99 225 | 100.00 1 | 99.13 291 | 95.46 260 | 98.47 249 | 99.85 214 | 92.01 248 | 98.59 292 | 98.63 205 | 95.36 237 | 97.62 313 |
|
test_vis1_n | | | 96.69 240 | 95.81 262 | 99.32 156 | 99.14 244 | 97.98 226 | 99.97 213 | 98.98 332 | 98.45 67 | 100.00 1 | 100.00 1 | 66.44 364 | 99.99 91 | 99.78 111 | 99.57 142 | 100.00 1 |
|
v1921920 | | | 96.16 270 | 95.50 278 | 98.14 230 | 97.88 318 | 97.96 227 | 99.99 186 | 99.07 311 | 93.33 312 | 98.60 238 | 99.24 291 | 89.37 276 | 98.71 281 | 91.28 329 | 90.74 310 | 97.75 245 |
|
v10 | | | 96.14 272 | 95.50 278 | 98.07 236 | 98.19 305 | 97.96 227 | 99.83 245 | 99.07 311 | 92.10 328 | 98.07 269 | 98.94 313 | 91.07 256 | 98.61 288 | 92.41 324 | 89.82 316 | 97.63 311 |
|
eth_miper_zixun_eth | | | 97.47 206 | 97.28 208 | 98.06 240 | 99.41 222 | 97.94 229 | 99.62 286 | 99.08 307 | 94.46 285 | 98.19 266 | 99.56 272 | 96.91 178 | 98.50 301 | 96.78 272 | 91.49 300 | 97.74 268 |
|
GA-MVS | | | 97.72 193 | 97.27 210 | 99.06 172 | 99.24 241 | 97.93 230 | 100.00 1 | 99.24 249 | 95.80 245 | 98.99 211 | 99.64 254 | 89.77 270 | 99.36 234 | 95.12 297 | 97.62 215 | 99.89 146 |
|
tpmvs | | | 98.59 151 | 98.38 159 | 99.23 166 | 99.69 146 | 97.90 231 | 99.31 318 | 99.47 75 | 94.52 281 | 99.68 169 | 99.28 290 | 97.64 150 | 99.89 153 | 97.71 241 | 98.17 190 | 99.89 146 |
|
IterMVS-LS | | | 97.56 201 | 97.44 199 | 97.92 255 | 99.38 231 | 97.90 231 | 99.89 238 | 99.10 301 | 94.41 286 | 98.32 256 | 99.54 275 | 97.21 164 | 98.11 322 | 97.50 248 | 91.62 298 | 97.75 245 |
Fangjinhua Wang, Silvano Galliani, Christoph Vogel, Marc Pollefeys: IterMVS: Iterative Probability Estimation for Efficient Multi-View Stereo. |
TransMVSNet (Re) | | | 94.78 294 | 93.72 299 | 97.93 254 | 98.34 293 | 97.88 233 | 99.23 328 | 97.98 355 | 91.60 330 | 94.55 337 | 99.71 235 | 87.89 293 | 98.36 308 | 89.30 345 | 84.92 343 | 97.56 319 |
|
WR-MVS_H | | | 96.73 236 | 96.32 243 | 97.95 251 | 98.26 300 | 97.88 233 | 99.72 272 | 99.43 114 | 95.06 266 | 96.99 305 | 98.68 325 | 93.02 235 | 98.53 299 | 97.43 251 | 88.33 329 | 97.43 326 |
|
v1240 | | | 95.96 278 | 95.25 286 | 98.07 236 | 97.91 315 | 97.87 235 | 99.96 218 | 99.07 311 | 93.24 315 | 98.64 236 | 98.96 312 | 88.98 281 | 98.61 288 | 89.58 343 | 90.92 307 | 97.75 245 |
|
EI-MVSNet | | | 97.98 184 | 97.93 184 | 98.16 228 | 99.11 246 | 97.84 236 | 99.74 265 | 99.29 225 | 94.39 287 | 98.65 234 | 100.00 1 | 97.21 164 | 98.88 265 | 97.62 246 | 95.31 239 | 97.75 245 |
|
KD-MVS_2432*1600 | | | 94.15 298 | 93.08 306 | 97.35 273 | 99.53 192 | 97.83 237 | 99.63 284 | 99.19 268 | 92.88 321 | 96.29 320 | 97.68 345 | 98.84 109 | 96.70 347 | 89.73 341 | 63.92 368 | 97.53 321 |
|
miper_refine_blended | | | 94.15 298 | 93.08 306 | 97.35 273 | 99.53 192 | 97.83 237 | 99.63 284 | 99.19 268 | 92.88 321 | 96.29 320 | 97.68 345 | 98.84 109 | 96.70 347 | 89.73 341 | 63.92 368 | 97.53 321 |
|
CHOSEN 1792x2688 | | | 99.00 117 | 98.91 116 | 99.25 165 | 99.90 106 | 97.79 239 | 100.00 1 | 99.99 13 | 98.79 50 | 98.28 259 | 100.00 1 | 93.63 225 | 99.95 134 | 99.66 136 | 99.95 112 | 100.00 1 |
|
tpmrst | | | 98.98 123 | 98.93 114 | 99.14 171 | 99.61 173 | 97.74 240 | 99.52 297 | 99.36 196 | 96.05 235 | 99.98 100 | 99.64 254 | 99.04 89 | 99.86 157 | 98.94 185 | 98.19 188 | 99.82 176 |
|
TAMVS | | | 98.76 138 | 98.73 134 | 98.86 188 | 99.44 219 | 97.69 241 | 99.57 291 | 99.34 210 | 96.57 214 | 99.12 200 | 99.81 223 | 98.83 111 | 99.16 243 | 97.97 235 | 97.91 199 | 99.73 204 |
|
CVMVSNet | | | 98.56 154 | 98.47 154 | 98.82 189 | 99.11 246 | 97.67 242 | 99.74 265 | 99.47 75 | 97.57 139 | 99.06 206 | 100.00 1 | 95.72 198 | 98.97 255 | 98.21 225 | 97.33 217 | 99.83 171 |
|
Patchmatch-test | | | 97.83 188 | 97.42 200 | 99.06 172 | 99.08 249 | 97.66 243 | 98.66 357 | 99.21 264 | 93.65 303 | 98.25 263 | 99.58 268 | 99.47 43 | 99.57 198 | 90.25 339 | 98.59 162 | 99.95 114 |
|
TranMVSNet+NR-MVSNet | | | 96.45 252 | 96.01 254 | 97.79 259 | 98.00 312 | 97.62 244 | 100.00 1 | 99.35 205 | 95.98 236 | 97.31 299 | 99.64 254 | 90.09 267 | 98.00 332 | 96.89 267 | 86.80 340 | 97.75 245 |
|
CostFormer | | | 98.84 134 | 98.77 128 | 99.04 176 | 99.41 222 | 97.58 245 | 99.67 280 | 99.35 205 | 94.66 276 | 99.96 108 | 99.36 286 | 99.28 71 | 99.74 182 | 99.41 159 | 97.81 207 | 99.81 181 |
|
miper_lstm_enhance | | | 97.40 209 | 97.28 208 | 97.75 261 | 99.48 211 | 97.52 246 | 100.00 1 | 99.07 311 | 94.08 295 | 98.01 273 | 99.61 264 | 97.38 163 | 97.98 333 | 96.44 279 | 91.47 302 | 97.76 234 |
|
Anonymous20231211 | | | 96.29 262 | 95.70 270 | 98.07 236 | 99.80 130 | 97.49 247 | 99.15 339 | 99.40 173 | 89.11 344 | 97.75 285 | 99.45 281 | 88.93 282 | 98.98 253 | 98.26 224 | 89.47 320 | 97.73 274 |
|
test_fmvs1_n | | | 97.43 207 | 96.86 219 | 99.15 170 | 99.68 149 | 97.48 248 | 99.99 186 | 98.98 332 | 98.82 46 | 100.00 1 | 100.00 1 | 74.85 352 | 99.96 125 | 99.67 133 | 99.70 132 | 100.00 1 |
|
pm-mvs1 | | | 95.76 282 | 95.01 291 | 98.00 248 | 98.23 302 | 97.45 249 | 99.24 323 | 99.04 324 | 93.13 318 | 95.93 327 | 99.72 233 | 86.28 307 | 98.84 267 | 95.62 288 | 87.92 331 | 97.72 281 |
|
VDDNet | | | 96.39 257 | 95.55 277 | 98.90 185 | 99.27 238 | 97.45 249 | 99.15 339 | 99.92 33 | 91.28 332 | 99.98 100 | 100.00 1 | 73.55 353 | 100.00 1 | 99.85 97 | 96.98 222 | 99.24 219 |
|
dp | | | 98.72 141 | 98.61 144 | 99.03 177 | 99.53 192 | 97.39 251 | 99.45 303 | 99.39 186 | 95.62 250 | 99.94 132 | 99.52 276 | 98.83 111 | 99.82 168 | 96.77 274 | 98.42 171 | 99.89 146 |
|
COLMAP_ROB |  | 97.10 7 | 98.29 172 | 98.17 170 | 98.65 196 | 99.94 97 | 97.39 251 | 99.30 319 | 99.40 173 | 95.64 248 | 97.75 285 | 100.00 1 | 92.69 241 | 99.95 134 | 98.89 188 | 99.92 115 | 98.62 229 |
Johannes L. Schönberger, Enliang Zheng, Marc Pollefeys, Jan-Michael Frahm: Pixelwise View Selection for Unstructured Multi-View Stereo. ECCV 2016 |
AllTest | | | 98.55 155 | 98.40 157 | 98.99 179 | 99.93 99 | 97.35 253 | 100.00 1 | 99.40 173 | 97.08 178 | 99.09 202 | 99.98 170 | 93.37 227 | 99.95 134 | 96.94 264 | 99.84 123 | 99.68 207 |
|
TestCases | | | | | 98.99 179 | 99.93 99 | 97.35 253 | | 99.40 173 | 97.08 178 | 99.09 202 | 99.98 170 | 93.37 227 | 99.95 134 | 96.94 264 | 99.84 123 | 99.68 207 |
|
v7n | | | 96.06 276 | 95.42 285 | 97.99 250 | 97.58 329 | 97.35 253 | 99.86 242 | 99.11 299 | 92.81 324 | 97.91 278 | 99.49 278 | 90.99 257 | 98.92 258 | 92.51 321 | 88.49 328 | 97.70 290 |
|
PS-MVSNAJss | | | 98.03 182 | 98.06 177 | 97.94 252 | 97.63 324 | 97.33 256 | 99.89 238 | 99.23 253 | 96.27 231 | 98.03 270 | 99.59 266 | 98.75 116 | 98.78 273 | 98.52 211 | 94.61 265 | 97.70 290 |
|
Anonymous20240529 | | | 96.93 230 | 96.22 246 | 99.05 174 | 99.79 133 | 97.30 257 | 99.16 337 | 99.47 75 | 88.51 347 | 98.69 232 | 100.00 1 | 83.50 327 | 100.00 1 | 99.83 100 | 97.02 221 | 99.83 171 |
|
mvs_tets | | | 97.00 228 | 96.69 225 | 97.94 252 | 97.41 339 | 97.27 258 | 99.60 288 | 99.18 275 | 96.51 219 | 97.35 298 | 99.69 241 | 86.53 306 | 98.91 259 | 98.84 191 | 95.09 254 | 97.65 307 |
|
gm-plane-assit | | | | | | 99.52 199 | 97.26 259 | | | 95.86 241 | | 100.00 1 | | 99.43 229 | 98.76 196 | | |
|
MDA-MVSNet_test_wron | | | 92.61 310 | 91.09 318 | 97.19 281 | 96.71 344 | 97.26 259 | 100.00 1 | 99.14 287 | 88.61 346 | 67.90 373 | 98.32 338 | 89.03 279 | 96.57 350 | 90.47 337 | 89.59 318 | 97.74 268 |
|
PEN-MVS | | | 96.01 277 | 95.48 282 | 97.58 266 | 97.74 321 | 97.26 259 | 99.90 235 | 99.29 225 | 94.55 279 | 96.79 312 | 99.55 273 | 87.38 298 | 97.84 337 | 96.92 266 | 87.24 335 | 97.65 307 |
|
CSCG | | | 99.28 90 | 99.35 75 | 99.05 174 | 99.99 49 | 97.15 262 | 100.00 1 | 99.47 75 | 97.44 153 | 99.42 182 | 100.00 1 | 97.83 144 | 100.00 1 | 99.99 57 | 100.00 1 | 100.00 1 |
|
jajsoiax | | | 97.07 223 | 96.79 223 | 97.89 256 | 97.28 340 | 97.12 263 | 99.95 224 | 99.19 268 | 96.55 215 | 97.31 299 | 99.69 241 | 87.35 300 | 98.91 259 | 98.70 199 | 95.12 252 | 97.66 301 |
|
tpm2 | | | 98.64 148 | 98.58 148 | 98.81 191 | 99.42 220 | 97.12 263 | 99.69 277 | 99.37 190 | 93.63 304 | 99.94 132 | 99.67 246 | 98.96 97 | 99.47 223 | 98.62 207 | 97.95 197 | 99.83 171 |
|
tpm cat1 | | | 98.05 181 | 97.76 188 | 98.92 184 | 99.50 207 | 97.10 265 | 99.77 260 | 99.30 221 | 90.20 341 | 99.72 167 | 98.71 323 | 97.71 147 | 99.86 157 | 96.75 275 | 98.20 187 | 99.81 181 |
|
RRT_MVS | | | 97.77 190 | 97.76 188 | 97.78 260 | 97.89 316 | 97.06 266 | 100.00 1 | 99.29 225 | 95.74 246 | 98.00 275 | 99.97 178 | 95.94 193 | 98.55 298 | 98.87 190 | 94.18 268 | 97.72 281 |
|
YYNet1 | | | 92.44 311 | 90.92 319 | 97.03 284 | 96.20 346 | 97.06 266 | 99.99 186 | 99.14 287 | 88.21 349 | 67.93 372 | 98.43 335 | 88.63 285 | 96.28 354 | 90.64 333 | 89.08 324 | 97.74 268 |
|
OMC-MVS | | | 99.27 91 | 99.38 68 | 98.96 182 | 99.95 94 | 97.06 266 | 100.00 1 | 99.40 173 | 98.83 44 | 99.88 145 | 100.00 1 | 97.01 170 | 99.86 157 | 99.47 156 | 99.84 123 | 99.97 106 |
|
IterMVS | | | 96.76 235 | 96.46 235 | 97.63 262 | 99.41 222 | 96.89 269 | 99.99 186 | 99.13 291 | 94.74 274 | 97.59 293 | 99.66 248 | 89.63 274 | 98.28 312 | 95.71 284 | 92.31 288 | 97.72 281 |
Fangjinhua Wang, Silvano Galliani, Christoph Vogel, Marc Pollefeys: IterMVS: Iterative Probability Estimation for Efficient Multi-View Stereo. |
EU-MVSNet | | | 96.63 242 | 96.53 230 | 96.94 290 | 97.59 328 | 96.87 270 | 99.76 262 | 99.47 75 | 96.35 227 | 96.85 310 | 99.78 229 | 92.57 242 | 96.27 355 | 95.33 291 | 91.08 306 | 97.68 296 |
|
IterMVS-SCA-FT | | | 96.72 238 | 96.42 237 | 97.62 264 | 99.40 227 | 96.83 271 | 99.99 186 | 99.14 287 | 94.65 277 | 97.55 294 | 99.72 233 | 89.65 272 | 98.31 310 | 95.62 288 | 92.05 291 | 97.73 274 |
|
Baseline_NR-MVSNet | | | 96.16 270 | 95.70 270 | 97.56 267 | 98.28 299 | 96.79 272 | 100.00 1 | 97.86 358 | 91.93 329 | 97.63 288 | 99.47 280 | 92.14 245 | 98.35 309 | 97.13 259 | 86.83 339 | 97.54 320 |
|
BH-w/o | | | 98.82 136 | 98.81 125 | 98.88 187 | 99.62 171 | 96.71 273 | 100.00 1 | 99.28 231 | 97.09 176 | 98.81 226 | 100.00 1 | 94.91 211 | 99.96 125 | 99.54 151 | 100.00 1 | 99.96 109 |
|
Anonymous202405211 | | | 97.87 186 | 97.53 198 | 98.90 185 | 99.81 120 | 96.70 274 | 99.35 314 | 99.46 90 | 92.98 319 | 98.83 225 | 99.99 166 | 90.63 260 | 100.00 1 | 99.70 122 | 97.03 220 | 100.00 1 |
|
MDA-MVSNet-bldmvs | | | 91.65 317 | 89.94 324 | 96.79 299 | 96.72 343 | 96.70 274 | 99.42 308 | 98.94 334 | 88.89 345 | 66.97 375 | 98.37 336 | 81.43 335 | 95.91 358 | 89.24 346 | 89.46 321 | 97.75 245 |
|
MIMVSNet | | | 97.06 224 | 96.73 224 | 98.05 244 | 99.38 231 | 96.64 276 | 98.47 360 | 99.35 205 | 93.41 309 | 99.48 178 | 98.53 330 | 89.66 271 | 97.70 341 | 94.16 308 | 98.11 192 | 99.80 192 |
|
v148 | | | 96.29 262 | 95.84 261 | 97.63 262 | 97.74 321 | 96.53 277 | 100.00 1 | 99.07 311 | 93.52 307 | 98.01 273 | 99.42 283 | 91.22 251 | 98.60 290 | 96.37 280 | 87.22 336 | 97.75 245 |
|
DTE-MVSNet | | | 95.52 285 | 94.99 292 | 97.08 282 | 97.49 334 | 96.45 278 | 100.00 1 | 99.25 244 | 93.82 298 | 96.17 323 | 99.57 271 | 87.81 294 | 97.18 343 | 94.57 301 | 86.26 342 | 97.62 313 |
|
BH-untuned | | | 98.64 148 | 98.65 140 | 98.60 198 | 99.59 178 | 96.17 279 | 100.00 1 | 99.28 231 | 96.67 208 | 98.41 251 | 100.00 1 | 94.52 216 | 99.83 165 | 99.41 159 | 100.00 1 | 99.81 181 |
|
MVS-HIRNet | | | 94.12 300 | 92.73 312 | 98.29 217 | 99.33 233 | 95.95 280 | 99.38 311 | 99.19 268 | 74.54 367 | 98.26 262 | 86.34 371 | 86.07 309 | 99.06 247 | 91.60 328 | 99.87 121 | 99.85 167 |
|
XVG-OURS-SEG-HR | | | 98.27 174 | 98.31 163 | 98.14 230 | 99.59 178 | 95.92 281 | 100.00 1 | 99.36 196 | 98.48 65 | 99.21 193 | 100.00 1 | 89.27 277 | 99.94 146 | 99.76 112 | 99.17 146 | 98.56 230 |
|
XVG-OURS | | | 98.30 170 | 98.36 162 | 98.13 233 | 99.58 183 | 95.91 282 | 100.00 1 | 99.36 196 | 98.69 55 | 99.23 192 | 100.00 1 | 91.20 253 | 99.92 150 | 99.34 163 | 97.82 206 | 98.56 230 |
|
h-mvs33 | | | 97.03 226 | 96.53 230 | 98.51 203 | 99.79 133 | 95.90 283 | 99.45 303 | 99.45 97 | 98.21 80 | 100.00 1 | 99.78 229 | 97.49 156 | 99.99 91 | 99.72 117 | 74.92 361 | 99.65 212 |
|
tpm | | | 98.24 175 | 98.22 169 | 98.32 215 | 99.13 245 | 95.79 284 | 99.53 296 | 99.12 297 | 95.20 264 | 99.96 108 | 99.36 286 | 97.58 151 | 99.28 240 | 97.41 252 | 96.67 225 | 99.88 157 |
|
TAPA-MVS | | 96.40 10 | 97.64 196 | 97.37 204 | 98.45 206 | 99.94 97 | 95.70 285 | 100.00 1 | 99.40 173 | 97.65 128 | 99.53 174 | 100.00 1 | 99.31 63 | 99.66 189 | 80.48 363 | 100.00 1 | 100.00 1 |
Andrea Romanoni, Matteo Matteucci: TAPA-MVS: Textureless-Aware PAtchMatch Multi-View Stereo. ICCV 2019 |
AUN-MVS | | | 96.26 264 | 95.67 274 | 98.06 240 | 99.68 149 | 95.60 286 | 99.82 248 | 99.42 124 | 96.78 195 | 99.88 145 | 99.80 226 | 94.84 212 | 99.47 223 | 97.48 249 | 73.29 363 | 99.12 222 |
|
hse-mvs2 | | | 96.79 233 | 96.38 238 | 98.04 246 | 99.68 149 | 95.54 287 | 99.81 249 | 99.42 124 | 98.21 80 | 100.00 1 | 99.80 226 | 97.49 156 | 99.46 227 | 99.72 117 | 73.27 364 | 99.12 222 |
|
VDD-MVS | | | 96.58 245 | 95.99 255 | 98.34 213 | 99.52 199 | 95.33 288 | 99.18 331 | 99.38 188 | 96.64 210 | 99.77 162 | 100.00 1 | 72.51 357 | 100.00 1 | 100.00 1 | 96.94 223 | 99.70 205 |
|
ppachtmachnet_test | | | 96.17 269 | 95.89 259 | 97.02 285 | 97.61 326 | 95.24 289 | 99.99 186 | 99.24 249 | 93.31 313 | 96.71 315 | 99.62 262 | 94.34 218 | 98.07 327 | 89.87 340 | 92.30 289 | 97.75 245 |
|
PVSNet_0 | | 93.57 19 | 96.41 253 | 95.74 268 | 98.41 208 | 99.84 114 | 95.22 290 | 100.00 1 | 100.00 1 | 98.08 93 | 97.55 294 | 99.78 229 | 84.40 319 | 100.00 1 | 100.00 1 | 81.99 352 | 100.00 1 |
|
UniMVSNet_ETH3D | | | 95.28 289 | 94.41 295 | 97.89 256 | 98.91 271 | 95.14 291 | 99.13 341 | 99.35 205 | 92.11 327 | 97.17 303 | 99.66 248 | 70.28 360 | 99.36 234 | 97.88 237 | 95.18 247 | 99.16 220 |
|
our_test_3 | | | 96.51 248 | 96.35 240 | 96.98 288 | 97.61 326 | 95.05 292 | 99.98 207 | 99.01 328 | 94.68 275 | 96.77 314 | 99.06 299 | 95.87 195 | 98.14 318 | 91.81 326 | 92.37 287 | 97.75 245 |
|
ADS-MVSNet2 | | | 98.28 173 | 98.51 152 | 97.62 264 | 99.51 204 | 95.03 293 | 99.24 323 | 99.41 170 | 95.52 255 | 99.96 108 | 99.70 238 | 97.57 152 | 97.94 335 | 97.11 260 | 98.54 163 | 99.88 157 |
|
GBi-Net | | | 96.07 274 | 95.80 264 | 96.89 293 | 99.53 192 | 94.87 294 | 99.18 331 | 99.27 239 | 93.71 299 | 98.53 243 | 98.81 319 | 84.23 321 | 98.07 327 | 95.31 292 | 93.60 271 | 97.72 281 |
|
test1 | | | 96.07 274 | 95.80 264 | 96.89 293 | 99.53 192 | 94.87 294 | 99.18 331 | 99.27 239 | 93.71 299 | 98.53 243 | 98.81 319 | 84.23 321 | 98.07 327 | 95.31 292 | 93.60 271 | 97.72 281 |
|
FMVSNet1 | | | 94.45 295 | 93.63 301 | 96.89 293 | 98.87 276 | 94.87 294 | 99.18 331 | 99.27 239 | 90.95 336 | 97.31 299 | 98.81 319 | 72.89 356 | 98.07 327 | 92.61 319 | 92.81 280 | 97.72 281 |
|
HQP5-MVS | | | | | | | 94.82 297 | | | | | | | | | | |
|
HQP-MVS | | | 97.73 192 | 97.85 185 | 97.39 270 | 99.07 250 | 94.82 297 | 100.00 1 | 99.40 173 | 99.04 14 | 99.17 194 | 99.97 178 | 88.61 286 | 99.57 198 | 99.79 105 | 95.58 229 | 97.77 232 |
|
NP-MVS | | | | | | 99.07 250 | 94.81 299 | | | | | 99.97 178 | | | | | |
|
HQP_MVS | | | 97.71 194 | 97.82 187 | 97.37 271 | 99.00 262 | 94.80 300 | 100.00 1 | 99.40 173 | 99.00 25 | 99.08 204 | 99.97 178 | 88.58 288 | 99.55 207 | 99.79 105 | 95.57 233 | 97.76 234 |
|
plane_prior6 | | | | | | 99.06 254 | 94.80 300 | | | | | | 88.58 288 | | | | |
|
plane_prior | | | | | | | 94.80 300 | 100.00 1 | | 99.03 19 | | | | | | 95.58 229 | |
|
plane_prior3 | | | | | | | 94.79 303 | | | 99.03 19 | 99.08 204 | | | | | | |
|
plane_prior7 | | | | | | 99.00 262 | 94.78 304 | | | | | | | | | | |
|
CLD-MVS | | | 97.64 196 | 97.74 190 | 97.36 272 | 99.01 258 | 94.76 305 | 100.00 1 | 99.34 210 | 99.30 4 | 99.00 210 | 99.97 178 | 87.49 297 | 99.57 198 | 99.96 77 | 95.58 229 | 97.75 245 |
Zhaoxin Li, Wangmeng Zuo, Zhaoqi Wang, Lei Zhang: Confidence-based Large-scale Dense Multi-view Stereo. IEEE Transaction on Image Processing, 2020 |
OPM-MVS | | | 97.21 215 | 97.18 214 | 97.32 275 | 98.08 309 | 94.66 306 | 100.00 1 | 99.28 231 | 98.65 59 | 98.92 214 | 99.98 170 | 86.03 311 | 99.56 202 | 98.28 223 | 95.41 235 | 97.72 281 |
Ray L. Khuboni, Hongjun Xu: Octagram Propagation Matching for Multi-Scale View Stereopsis (OPM-MVS). |
pmmvs5 | | | 95.94 279 | 95.61 275 | 96.95 289 | 97.42 337 | 94.66 306 | 100.00 1 | 98.08 351 | 93.60 305 | 97.05 304 | 99.43 282 | 87.02 301 | 98.46 305 | 95.76 283 | 92.12 290 | 97.72 281 |
|
ACMM | | 97.17 6 | 97.37 210 | 97.40 202 | 97.29 276 | 99.01 258 | 94.64 308 | 100.00 1 | 99.25 244 | 98.07 94 | 98.44 250 | 99.98 170 | 87.38 298 | 99.55 207 | 99.25 170 | 95.19 246 | 97.69 294 |
Qingshan Xu and Wenbing Tao: Multi-Scale Geometric Consistency Guided Multi-View Stereo. CVPR 2019 |
D2MVS | | | 97.63 199 | 97.83 186 | 97.05 283 | 98.83 280 | 94.60 309 | 100.00 1 | 99.82 39 | 96.89 189 | 98.28 259 | 99.03 304 | 94.05 219 | 99.47 223 | 98.58 210 | 94.97 258 | 97.09 336 |
|
LPG-MVS_test | | | 97.31 212 | 97.32 206 | 97.28 277 | 98.85 278 | 94.60 309 | 100.00 1 | 99.37 190 | 97.35 158 | 98.85 221 | 99.98 170 | 86.66 304 | 99.56 202 | 99.55 148 | 95.26 241 | 97.70 290 |
|
LGP-MVS_train | | | | | 97.28 277 | 98.85 278 | 94.60 309 | | 99.37 190 | 97.35 158 | 98.85 221 | 99.98 170 | 86.66 304 | 99.56 202 | 99.55 148 | 95.26 241 | 97.70 290 |
|
ACMP | | 97.00 8 | 97.19 216 | 97.16 215 | 97.27 279 | 98.97 267 | 94.58 312 | 100.00 1 | 99.32 214 | 97.97 102 | 97.45 296 | 99.98 170 | 85.79 313 | 99.56 202 | 99.70 122 | 95.24 244 | 97.67 300 |
Qingshan Xu and Wenbing Tao: Planar Prior Assisted PatchMatch Multi-View Stereo. AAAI 2020 |
Fast-Effi-MVS+-dtu | | | 98.38 167 | 98.56 149 | 97.82 258 | 99.58 183 | 94.44 313 | 100.00 1 | 99.16 281 | 96.75 196 | 99.51 176 | 99.63 258 | 95.03 209 | 99.60 191 | 97.71 241 | 99.67 135 | 99.42 217 |
|
ACMH | | 96.25 11 | 96.77 234 | 96.62 228 | 97.21 280 | 98.96 268 | 94.43 314 | 99.64 282 | 99.33 212 | 97.43 154 | 96.55 317 | 99.97 178 | 83.52 326 | 99.54 210 | 99.07 182 | 95.13 251 | 97.66 301 |
Qingshan Xu and Wenbing Tao: Multi-Scale Geometric Consistency Guided Multi-View Stereo. CVPR 2019 |
MVP-Stereo | | | 96.51 248 | 96.48 234 | 96.60 302 | 95.65 353 | 94.25 315 | 98.84 354 | 98.16 347 | 95.85 243 | 95.23 331 | 99.04 302 | 92.54 243 | 99.13 244 | 92.98 318 | 99.98 105 | 96.43 348 |
Qingsong Yan: MVP-Stereo: A Parallel Multi-View Patchmatch Stereo Method with Dilation Matching for Photogrammetric Application. |
Effi-MVS+-dtu | | | 98.51 159 | 98.86 121 | 97.47 268 | 99.77 138 | 94.21 316 | 100.00 1 | 98.94 334 | 97.61 134 | 99.91 138 | 98.75 322 | 95.89 194 | 99.51 218 | 99.36 161 | 99.48 143 | 98.68 227 |
|
testgi | | | 96.18 267 | 95.93 258 | 96.93 291 | 98.98 266 | 94.20 317 | 100.00 1 | 99.07 311 | 97.16 172 | 96.06 325 | 99.86 212 | 84.08 324 | 97.79 338 | 90.38 338 | 97.80 208 | 98.81 226 |
|
LTVRE_ROB | | 95.29 16 | 96.32 261 | 96.10 250 | 96.99 287 | 98.55 286 | 93.88 318 | 99.45 303 | 99.28 231 | 94.50 283 | 96.46 318 | 99.52 276 | 84.86 317 | 99.48 221 | 97.26 258 | 95.03 255 | 97.59 317 |
Andreas Kuhn, Heiko Hirschmüller, Daniel Scharstein, Helmut Mayer: A TV Prior for High-Quality Scalable Multi-View Stereo Reconstruction. International Journal of Computer Vision 2016 |
ACMH+ | | 96.20 13 | 96.49 251 | 96.33 242 | 97.00 286 | 99.06 254 | 93.80 319 | 99.81 249 | 99.31 219 | 97.32 162 | 95.89 328 | 99.97 178 | 82.62 331 | 99.54 210 | 98.34 218 | 94.63 264 | 97.65 307 |
|
test_0402 | | | 94.35 296 | 93.70 300 | 96.32 306 | 97.92 314 | 93.60 320 | 99.61 287 | 98.85 340 | 88.19 350 | 94.68 336 | 99.48 279 | 80.01 339 | 98.58 294 | 89.39 344 | 95.15 250 | 96.77 342 |
|
tt0805 | | | 96.52 246 | 96.23 245 | 97.40 269 | 99.30 237 | 93.55 321 | 99.32 316 | 99.45 97 | 96.75 196 | 97.88 279 | 99.99 166 | 79.99 340 | 99.59 193 | 97.39 254 | 95.98 228 | 99.06 224 |
|
ITE_SJBPF | | | | | 96.84 296 | 98.96 268 | 93.49 322 | | 98.12 349 | 98.12 91 | 98.35 253 | 99.97 178 | 84.45 318 | 99.56 202 | 95.63 287 | 95.25 243 | 97.49 323 |
|
OurMVSNet-221017-0 | | | 96.14 272 | 95.98 256 | 96.62 301 | 97.49 334 | 93.44 323 | 99.92 232 | 98.16 347 | 95.86 241 | 97.65 287 | 99.95 198 | 85.71 314 | 98.78 273 | 94.93 299 | 94.18 268 | 97.64 310 |
|
K. test v3 | | | 95.46 287 | 95.14 289 | 96.40 304 | 97.53 331 | 93.40 324 | 99.99 186 | 99.23 253 | 95.49 258 | 92.70 347 | 99.73 232 | 84.26 320 | 98.12 320 | 93.94 311 | 93.38 275 | 97.68 296 |
|
XVG-ACMP-BASELINE | | | 96.60 244 | 96.52 232 | 96.84 296 | 98.41 291 | 93.29 325 | 99.99 186 | 99.32 214 | 97.76 120 | 98.51 246 | 99.29 289 | 81.95 333 | 99.54 210 | 98.40 214 | 95.03 255 | 97.68 296 |
|
SixPastTwentyTwo | | | 95.71 283 | 95.49 280 | 96.38 305 | 97.42 337 | 93.01 326 | 99.84 244 | 98.23 346 | 94.75 272 | 95.98 326 | 99.97 178 | 85.35 315 | 98.43 306 | 94.71 300 | 93.17 276 | 97.69 294 |
|
TinyColmap | | | 95.50 286 | 95.12 290 | 96.64 300 | 98.69 281 | 93.00 327 | 99.40 309 | 97.75 360 | 96.40 225 | 96.14 324 | 99.87 210 | 79.47 341 | 99.50 219 | 93.62 313 | 94.72 262 | 97.40 328 |
|
FMVSNet5 | | | 95.32 288 | 95.43 284 | 94.99 318 | 99.39 230 | 92.99 328 | 99.25 322 | 99.24 249 | 90.45 338 | 97.44 297 | 98.45 333 | 95.78 197 | 94.39 364 | 87.02 350 | 91.88 295 | 97.59 317 |
|
new_pmnet | | | 94.11 301 | 93.47 303 | 96.04 310 | 96.60 345 | 92.82 329 | 99.97 213 | 98.91 337 | 90.21 340 | 95.26 330 | 98.05 343 | 85.89 312 | 98.14 318 | 84.28 355 | 92.01 292 | 97.16 334 |
|
EGC-MVSNET | | | 79.46 334 | 74.04 342 | 95.72 313 | 96.00 349 | 92.73 330 | 99.09 346 | 99.04 324 | 5.08 379 | 16.72 379 | 98.71 323 | 73.03 355 | 98.74 279 | 82.05 360 | 96.64 226 | 95.69 355 |
|
pmmvs-eth3d | | | 91.73 316 | 90.67 320 | 94.92 320 | 91.63 366 | 92.71 331 | 99.90 235 | 98.54 343 | 91.19 333 | 88.08 358 | 95.50 355 | 79.31 343 | 96.13 356 | 90.55 336 | 81.32 355 | 95.91 353 |
|
TDRefinement | | | 91.93 313 | 90.48 321 | 96.27 307 | 81.60 375 | 92.65 332 | 99.10 344 | 97.61 363 | 93.96 297 | 93.77 342 | 99.85 214 | 80.03 338 | 99.53 215 | 97.82 239 | 70.59 365 | 96.63 346 |
|
USDC | | | 95.90 280 | 95.70 270 | 96.50 303 | 98.60 285 | 92.56 333 | 100.00 1 | 98.30 345 | 97.77 118 | 96.92 306 | 99.94 202 | 81.25 337 | 99.45 228 | 93.54 314 | 94.96 259 | 97.49 323 |
|
UnsupCasMVSNet_eth | | | 94.25 297 | 93.89 297 | 95.34 314 | 97.63 324 | 92.13 334 | 99.73 270 | 99.36 196 | 94.88 269 | 92.78 344 | 98.63 327 | 82.72 329 | 96.53 351 | 94.57 301 | 84.73 344 | 97.36 329 |
|
LF4IMVS | | | 96.19 266 | 96.18 247 | 96.23 308 | 98.26 300 | 92.09 335 | 100.00 1 | 97.89 357 | 97.82 114 | 97.94 276 | 99.87 210 | 82.71 330 | 99.38 233 | 97.41 252 | 93.71 270 | 97.20 333 |
|
test20.03 | | | 93.11 306 | 92.85 310 | 93.88 331 | 95.19 357 | 91.83 336 | 100.00 1 | 98.87 339 | 93.68 302 | 92.76 345 | 98.88 317 | 89.20 278 | 92.71 369 | 77.88 367 | 89.19 323 | 97.09 336 |
|
lessismore_v0 | | | | | 96.05 309 | 97.55 330 | 91.80 337 | | 99.22 255 | | 91.87 348 | 99.91 206 | 83.50 327 | 98.68 282 | 92.48 322 | 90.42 314 | 97.68 296 |
|
MIMVSNet1 | | | 91.96 312 | 91.20 315 | 94.23 328 | 94.94 359 | 91.69 338 | 99.34 315 | 99.22 255 | 88.23 348 | 94.18 341 | 98.45 333 | 75.52 351 | 93.41 368 | 79.37 365 | 91.49 300 | 97.60 316 |
|
pmmvs3 | | | 90.62 322 | 89.36 326 | 94.40 324 | 90.53 369 | 91.49 339 | 100.00 1 | 96.73 368 | 84.21 358 | 93.65 343 | 96.65 352 | 82.56 332 | 94.83 362 | 82.28 359 | 77.62 360 | 96.89 341 |
|
pmmvs6 | | | 93.64 302 | 92.87 309 | 95.94 311 | 97.47 336 | 91.41 340 | 98.92 351 | 99.02 326 | 87.84 351 | 95.01 333 | 99.61 264 | 77.24 348 | 98.77 276 | 94.33 304 | 86.41 341 | 97.63 311 |
|
Anonymous20240521 | | | 93.29 305 | 92.76 311 | 94.90 321 | 95.64 354 | 91.27 341 | 99.97 213 | 98.82 341 | 87.04 352 | 94.71 335 | 98.19 340 | 83.86 325 | 96.80 346 | 84.04 356 | 92.56 286 | 96.64 345 |
|
KD-MVS_self_test | | | 91.16 318 | 90.09 323 | 94.35 325 | 94.44 360 | 91.27 341 | 99.74 265 | 99.08 307 | 90.82 337 | 94.53 338 | 94.91 360 | 86.11 308 | 94.78 363 | 82.67 358 | 68.52 366 | 96.99 338 |
|
MVS_0304 | | | 95.11 293 | 94.84 294 | 95.91 312 | 99.60 175 | 91.24 343 | 98.64 358 | 99.88 36 | 94.51 282 | 99.62 172 | 98.31 339 | 69.19 362 | 98.82 270 | 95.22 295 | 98.60 161 | 97.66 301 |
|
dcpmvs_2 | | | 98.87 132 | 99.53 56 | 96.90 292 | 99.87 112 | 90.88 344 | 99.94 229 | 99.07 311 | 98.20 82 | 100.00 1 | 100.00 1 | 98.69 119 | 99.86 157 | 100.00 1 | 100.00 1 | 99.95 114 |
|
patch_mono-2 | | | 99.04 109 | 99.79 6 | 96.81 298 | 99.92 102 | 90.47 345 | 100.00 1 | 99.41 170 | 98.95 31 | 100.00 1 | 100.00 1 | 99.78 8 | 100.00 1 | 100.00 1 | 100.00 1 | 99.95 114 |
|
DSMNet-mixed | | | 95.18 291 | 95.21 288 | 95.08 315 | 96.03 348 | 90.21 346 | 99.65 281 | 93.64 376 | 92.91 320 | 98.34 254 | 97.40 348 | 90.05 268 | 95.51 361 | 91.02 332 | 97.86 202 | 99.51 216 |
|
Anonymous20231206 | | | 93.45 304 | 93.17 305 | 94.30 326 | 95.00 358 | 89.69 347 | 99.98 207 | 98.43 344 | 93.30 314 | 94.50 339 | 98.59 328 | 90.52 261 | 95.73 360 | 77.46 369 | 90.73 311 | 97.48 325 |
|
MS-PatchMatch | | | 95.66 284 | 95.87 260 | 95.05 316 | 97.80 320 | 89.25 348 | 98.88 353 | 99.30 221 | 96.35 227 | 96.86 309 | 99.01 306 | 81.35 336 | 99.43 229 | 93.30 316 | 99.98 105 | 96.46 347 |
|
CL-MVSNet_self_test | | | 91.07 319 | 90.35 322 | 93.24 333 | 93.27 361 | 89.16 349 | 99.55 293 | 99.25 244 | 92.34 326 | 95.23 331 | 97.05 350 | 88.86 284 | 93.59 367 | 80.67 362 | 66.95 367 | 96.96 339 |
|
test_fmvs2 | | | 95.17 292 | 95.23 287 | 95.01 317 | 98.95 270 | 88.99 350 | 99.99 186 | 97.77 359 | 97.79 116 | 98.58 239 | 99.70 238 | 73.36 354 | 99.34 237 | 95.88 282 | 95.03 255 | 96.70 344 |
|
UnsupCasMVSNet_bld | | | 89.50 324 | 88.00 328 | 93.99 330 | 95.30 356 | 88.86 351 | 98.52 359 | 99.28 231 | 85.50 356 | 87.80 360 | 94.11 361 | 61.63 365 | 96.96 345 | 90.63 334 | 79.26 356 | 96.15 349 |
|
new-patchmatchnet | | | 90.30 323 | 89.46 325 | 92.84 335 | 90.77 368 | 88.55 352 | 99.83 245 | 98.80 342 | 90.07 342 | 87.86 359 | 95.00 358 | 78.77 344 | 94.30 365 | 84.86 354 | 79.15 357 | 95.68 356 |
|
OpenMVS_ROB |  | 88.34 20 | 91.89 314 | 91.12 316 | 94.19 329 | 95.55 355 | 87.63 353 | 99.26 321 | 98.03 352 | 86.61 354 | 90.65 354 | 96.82 351 | 70.14 361 | 98.78 273 | 86.54 352 | 96.50 227 | 96.15 349 |
|
EG-PatchMatch MVS | | | 92.94 309 | 92.49 313 | 94.29 327 | 95.87 350 | 87.07 354 | 99.07 349 | 98.11 350 | 93.19 316 | 88.98 356 | 98.66 326 | 70.89 358 | 99.08 246 | 92.43 323 | 95.21 245 | 96.72 343 |
|
LCM-MVSNet-Re | | | 96.52 246 | 97.21 213 | 94.44 323 | 99.27 238 | 85.80 355 | 99.85 243 | 96.61 370 | 95.98 236 | 92.75 346 | 98.48 332 | 93.97 222 | 97.55 342 | 99.58 146 | 98.43 170 | 99.98 101 |
|
test_vis1_rt | | | 93.10 307 | 92.93 308 | 93.58 332 | 99.63 166 | 85.07 356 | 99.99 186 | 93.71 375 | 97.49 148 | 90.96 350 | 97.10 349 | 60.40 366 | 99.95 134 | 99.24 172 | 97.90 200 | 95.72 354 |
|
DeepPCF-MVS | | 98.03 4 | 98.54 156 | 99.72 19 | 94.98 319 | 99.99 49 | 84.94 357 | 100.00 1 | 99.42 124 | 99.98 1 | 100.00 1 | 100.00 1 | 98.11 135 | 100.00 1 | 100.00 1 | 100.00 1 | 100.00 1 |
|
RPSCF | | | 97.37 210 | 98.24 166 | 94.76 322 | 99.80 130 | 84.57 358 | 99.99 186 | 99.05 321 | 94.95 268 | 99.82 158 | 100.00 1 | 94.03 220 | 100.00 1 | 98.15 227 | 98.38 175 | 99.70 205 |
|
Patchmatch-RL test | | | 93.49 303 | 93.63 301 | 93.05 334 | 91.78 364 | 83.41 359 | 98.21 362 | 96.95 367 | 91.58 331 | 91.05 349 | 97.64 347 | 99.40 55 | 95.83 359 | 94.11 309 | 81.95 353 | 99.91 133 |
|
Gipuma |  | | 84.73 329 | 83.50 334 | 88.40 343 | 97.50 332 | 82.21 360 | 88.87 369 | 99.05 321 | 65.81 369 | 85.71 361 | 90.49 366 | 53.70 367 | 96.31 353 | 78.64 366 | 91.74 296 | 86.67 368 |
S. Galliani, K. Lasinger, K. Schindler: Massively Parallel Multiview Stereopsis by Surface Normal Diffusion. ICCV 2015 |
PM-MVS | | | 88.39 326 | 87.41 329 | 91.31 336 | 91.73 365 | 82.02 361 | 99.79 254 | 96.62 369 | 91.06 335 | 90.71 353 | 95.73 354 | 48.60 370 | 95.96 357 | 90.56 335 | 81.91 354 | 95.97 352 |
|
mvsany_test3 | | | 89.36 325 | 88.96 327 | 90.56 338 | 91.95 363 | 78.97 362 | 99.74 265 | 96.59 371 | 96.84 191 | 89.25 355 | 96.07 353 | 52.59 368 | 97.11 344 | 95.17 296 | 82.44 351 | 95.58 357 |
|
test_method | | | 91.04 320 | 91.10 317 | 90.85 337 | 98.34 293 | 77.63 363 | 100.00 1 | 98.93 336 | 76.69 365 | 96.25 322 | 98.52 331 | 70.44 359 | 97.98 333 | 89.02 348 | 91.74 296 | 96.92 340 |
|
test_fmvs3 | | | 87.19 327 | 87.02 330 | 87.71 344 | 92.69 362 | 76.64 364 | 99.96 218 | 97.27 364 | 93.55 306 | 90.82 352 | 94.03 362 | 38.00 376 | 92.19 370 | 93.49 315 | 83.35 350 | 94.32 359 |
|
test_f | | | 86.87 328 | 86.06 331 | 89.28 341 | 91.45 367 | 76.37 365 | 99.87 241 | 97.11 365 | 91.10 334 | 88.46 357 | 93.05 364 | 38.31 375 | 96.66 349 | 91.77 327 | 83.46 349 | 94.82 358 |
|
PMMVS2 | | | 79.15 336 | 77.28 339 | 84.76 348 | 82.34 374 | 72.66 366 | 99.70 275 | 95.11 374 | 71.68 368 | 84.78 365 | 90.87 365 | 32.05 378 | 89.99 371 | 75.53 372 | 63.45 370 | 91.64 365 |
|
APD_test1 | | | 93.07 308 | 94.14 296 | 89.85 340 | 99.18 242 | 72.49 367 | 99.76 262 | 98.90 338 | 92.86 323 | 96.35 319 | 99.94 202 | 75.56 350 | 99.91 151 | 86.73 351 | 97.98 195 | 97.15 335 |
|
test123 | | | 79.44 335 | 79.23 337 | 80.05 353 | 80.03 376 | 71.72 368 | 100.00 1 | 77.93 384 | 62.52 370 | 94.81 334 | 99.69 241 | 78.21 345 | 74.53 377 | 92.57 320 | 27.33 377 | 93.90 360 |
|
DeepMVS_CX |  | | | | 89.98 339 | 98.90 272 | 71.46 369 | | 99.18 275 | 97.61 134 | 96.92 306 | 99.83 217 | 86.07 309 | 99.83 165 | 96.02 281 | 97.65 214 | 98.65 228 |
|
ambc | | | | | 88.45 342 | 86.84 371 | 70.76 370 | 97.79 365 | 98.02 354 | | 90.91 351 | 95.14 356 | 38.69 374 | 98.51 300 | 94.97 298 | 84.23 345 | 96.09 351 |
|
test_vis3_rt | | | 79.61 333 | 78.19 338 | 83.86 349 | 88.68 370 | 69.56 371 | 99.81 249 | 82.19 383 | 86.78 353 | 68.57 371 | 84.51 374 | 25.06 380 | 98.26 313 | 89.18 347 | 78.94 358 | 83.75 371 |
|
LCM-MVSNet | | | 79.01 337 | 76.93 340 | 85.27 347 | 78.28 377 | 68.01 372 | 96.57 366 | 98.03 352 | 55.10 373 | 82.03 366 | 93.27 363 | 31.99 379 | 93.95 366 | 82.72 357 | 74.37 362 | 93.84 361 |
|
CMPMVS |  | 66.12 22 | 90.65 321 | 92.04 314 | 86.46 346 | 96.18 347 | 66.87 373 | 98.03 363 | 99.38 188 | 83.38 360 | 85.49 362 | 99.55 273 | 77.59 346 | 98.80 272 | 94.44 303 | 94.31 267 | 93.72 362 |
M. Jancosek, T. Pajdla: Multi-View Reconstruction Preserving Weakly-Supported Surfaces. CVPR 2011 |
N_pmnet | | | 91.88 315 | 93.37 304 | 87.40 345 | 97.24 341 | 66.33 374 | 99.90 235 | 91.05 378 | 89.77 343 | 95.65 329 | 98.58 329 | 90.05 268 | 98.11 322 | 85.39 353 | 92.72 281 | 97.75 245 |
|
EMVS | | | 69.88 341 | 69.09 344 | 72.24 359 | 84.70 372 | 65.82 375 | 99.96 218 | 87.08 382 | 49.82 376 | 71.51 370 | 84.74 373 | 49.30 369 | 75.32 376 | 50.97 377 | 43.71 374 | 75.59 374 |
|
E-PMN | | | 70.72 340 | 70.06 343 | 72.69 358 | 83.92 373 | 65.48 376 | 99.95 224 | 92.72 377 | 49.88 375 | 72.30 369 | 86.26 372 | 47.17 371 | 77.43 375 | 53.83 376 | 44.49 373 | 75.17 375 |
|
ANet_high | | | 66.05 343 | 63.44 347 | 73.88 356 | 61.14 381 | 63.45 377 | 95.68 368 | 87.18 380 | 79.93 363 | 47.35 377 | 80.68 377 | 22.35 381 | 72.33 379 | 61.24 374 | 35.42 375 | 85.88 370 |
|
MVE |  | 68.59 21 | 67.22 342 | 64.68 346 | 74.84 354 | 74.67 380 | 62.32 378 | 95.84 367 | 90.87 379 | 50.98 374 | 58.72 376 | 81.05 376 | 12.20 384 | 78.95 374 | 61.06 375 | 56.75 371 | 83.24 372 |
Simon Fuhrmann, Fabian Langguth, Michael Goesele: MVE - A Multi-View Reconstruction Environment. EUROGRAPHICS Workshops on Graphics and Cultural Heritage (2014) |
testmvs | | | 80.17 332 | 81.95 335 | 74.80 355 | 58.54 382 | 59.58 379 | 100.00 1 | 87.14 381 | 76.09 366 | 99.61 173 | 100.00 1 | 67.06 363 | 74.19 378 | 98.84 191 | 50.30 372 | 90.64 367 |
|
testf1 | | | 84.40 330 | 84.79 332 | 83.23 350 | 95.71 351 | 58.71 380 | 98.79 355 | 97.75 360 | 81.58 361 | 84.94 363 | 98.07 341 | 45.33 372 | 97.73 339 | 77.09 370 | 83.85 346 | 93.24 363 |
|
APD_test2 | | | 84.40 330 | 84.79 332 | 83.23 350 | 95.71 351 | 58.71 380 | 98.79 355 | 97.75 360 | 81.58 361 | 84.94 363 | 98.07 341 | 45.33 372 | 97.73 339 | 77.09 370 | 83.85 346 | 93.24 363 |
|
tmp_tt | | | 75.80 339 | 74.26 341 | 80.43 352 | 52.91 384 | 53.67 382 | 87.42 371 | 97.98 355 | 61.80 371 | 67.04 374 | 100.00 1 | 76.43 349 | 96.40 352 | 96.47 276 | 28.26 376 | 91.23 366 |
|
FPMVS | | | 77.92 338 | 79.45 336 | 73.34 357 | 76.87 378 | 46.81 383 | 98.24 361 | 99.05 321 | 59.89 372 | 73.55 368 | 98.34 337 | 36.81 377 | 86.55 372 | 80.96 361 | 91.35 304 | 86.65 369 |
|
PMVS |  | 60.66 23 | 65.98 344 | 65.05 345 | 68.75 360 | 55.06 383 | 38.40 384 | 88.19 370 | 96.98 366 | 48.30 377 | 44.82 378 | 88.52 369 | 12.22 383 | 86.49 373 | 67.58 373 | 83.79 348 | 81.35 373 |
Y. Furukawa, J. Ponce: Accurate, dense, and robust multiview stereopsis. PAMI (2010) |
wuyk23d | | | 28.28 345 | 29.73 349 | 23.92 361 | 75.89 379 | 32.61 385 | 66.50 372 | 12.88 385 | 16.09 378 | 14.59 380 | 16.59 379 | 12.35 382 | 32.36 380 | 39.36 378 | 13.36 378 | 6.79 376 |
|
test_blank | | | 0.07 349 | 0.09 352 | 0.00 362 | 0.00 385 | 0.00 386 | 0.00 373 | 0.00 386 | 0.00 380 | 0.00 381 | 0.79 380 | 0.00 385 | 0.00 381 | 0.00 379 | 0.00 379 | 0.00 377 |
|
uanet_test | | | 0.01 350 | 0.02 353 | 0.00 362 | 0.00 385 | 0.00 386 | 0.00 373 | 0.00 386 | 0.00 380 | 0.00 381 | 0.14 381 | 0.00 385 | 0.00 381 | 0.00 379 | 0.00 379 | 0.00 377 |
|
DCPMVS | | | 0.01 350 | 0.02 353 | 0.00 362 | 0.00 385 | 0.00 386 | 0.00 373 | 0.00 386 | 0.00 380 | 0.00 381 | 0.14 381 | 0.00 385 | 0.00 381 | 0.00 379 | 0.00 379 | 0.00 377 |
|
cdsmvs_eth3d_5k | | | 24.41 346 | 32.55 348 | 0.00 362 | 0.00 385 | 0.00 386 | 0.00 373 | 99.39 186 | 0.00 380 | 0.00 381 | 100.00 1 | 93.55 226 | 0.00 381 | 0.00 379 | 0.00 379 | 0.00 377 |
|
pcd_1.5k_mvsjas | | | 8.24 348 | 10.99 351 | 0.00 362 | 0.00 385 | 0.00 386 | 0.00 373 | 0.00 386 | 0.00 380 | 0.00 381 | 0.14 381 | 98.75 116 | 0.00 381 | 0.00 379 | 0.00 379 | 0.00 377 |
|
sosnet-low-res | | | 0.01 350 | 0.02 353 | 0.00 362 | 0.00 385 | 0.00 386 | 0.00 373 | 0.00 386 | 0.00 380 | 0.00 381 | 0.14 381 | 0.00 385 | 0.00 381 | 0.00 379 | 0.00 379 | 0.00 377 |
|
sosnet | | | 0.01 350 | 0.02 353 | 0.00 362 | 0.00 385 | 0.00 386 | 0.00 373 | 0.00 386 | 0.00 380 | 0.00 381 | 0.14 381 | 0.00 385 | 0.00 381 | 0.00 379 | 0.00 379 | 0.00 377 |
|
uncertanet | | | 0.01 350 | 0.02 353 | 0.00 362 | 0.00 385 | 0.00 386 | 0.00 373 | 0.00 386 | 0.00 380 | 0.00 381 | 0.14 381 | 0.00 385 | 0.00 381 | 0.00 379 | 0.00 379 | 0.00 377 |
|
Regformer | | | 0.01 350 | 0.02 353 | 0.00 362 | 0.00 385 | 0.00 386 | 0.00 373 | 0.00 386 | 0.00 380 | 0.00 381 | 0.14 381 | 0.00 385 | 0.00 381 | 0.00 379 | 0.00 379 | 0.00 377 |
|
ab-mvs-re | | | 8.33 347 | 11.11 350 | 0.00 362 | 0.00 385 | 0.00 386 | 0.00 373 | 0.00 386 | 0.00 380 | 0.00 381 | 100.00 1 | 0.00 385 | 0.00 381 | 0.00 379 | 0.00 379 | 0.00 377 |
|
uanet | | | 0.01 350 | 0.02 353 | 0.00 362 | 0.00 385 | 0.00 386 | 0.00 373 | 0.00 386 | 0.00 380 | 0.00 381 | 0.14 381 | 0.00 385 | 0.00 381 | 0.00 379 | 0.00 379 | 0.00 377 |
|
PC_three_1452 | | | | | | | | | | 98.80 48 | 100.00 1 | 100.00 1 | 99.54 26 | 100.00 1 | 100.00 1 | 100.00 1 | 100.00 1 |
|
eth-test2 | | | | | | 0.00 385 | | | | | | | | | | | |
|
eth-test | | | | | | 0.00 385 | | | | | | | | | | | |
|
test_241102_TWO | | | | | | | | | 99.42 124 | 99.03 19 | 100.00 1 | 100.00 1 | 99.56 23 | 100.00 1 | 100.00 1 | 100.00 1 | 100.00 1 |
|
9.14 | | | | 99.57 48 | | 99.99 49 | | 100.00 1 | 99.42 124 | 97.54 141 | 100.00 1 | 100.00 1 | 99.15 82 | 99.99 91 | 100.00 1 | 100.00 1 | |
|
test_0728_THIRD | | | | | | | | | | 98.79 50 | 100.00 1 | 100.00 1 | 99.61 16 | 100.00 1 | 100.00 1 | 100.00 1 | 100.00 1 |
|
GSMVS | | | | | | | | | | | | | | | | | 99.91 133 |
|
sam_mvs1 | | | | | | | | | | | | | 99.29 69 | | | | 99.91 133 |
|
sam_mvs | | | | | | | | | | | | | 99.33 58 | | | | |
|
MTGPA |  | | | | | | | | 99.42 124 | | | | | | | | |
|
test_post1 | | | | | | | | 99.32 316 | | | | 88.24 370 | 99.33 58 | 99.59 193 | 98.31 219 | | |
|
test_post | | | | | | | | | | | | 89.05 368 | 99.49 39 | 99.59 193 | | | |
|
patchmatchnet-post | | | | | | | | | | | | 97.79 344 | 99.41 54 | 99.54 210 | | | |
|
MTMP | | | | | | | | 100.00 1 | 99.18 275 | | | | | | | | |
|
test9_res | | | | | | | | | | | | | | | 100.00 1 | 100.00 1 | 100.00 1 |
|
agg_prior2 | | | | | | | | | | | | | | | 100.00 1 | 100.00 1 | 100.00 1 |
|
test_prior2 | | | | | | | | 100.00 1 | | 98.82 46 | 100.00 1 | 100.00 1 | 99.47 43 | | 100.00 1 | 100.00 1 | |
|
旧先验2 | | | | | | | | 100.00 1 | | 98.11 92 | 100.00 1 | | | 100.00 1 | 99.67 133 | | |
|
新几何2 | | | | | | | | 100.00 1 | | | | | | | | | |
|
无先验 | | | | | | | | 100.00 1 | 99.80 42 | 97.98 100 | | | | 100.00 1 | 99.33 164 | | 100.00 1 |
|
原ACMM2 | | | | | | | | 100.00 1 | | | | | | | | | |
|
testdata2 | | | | | | | | | | | | | | 100.00 1 | 97.36 255 | | |
|
segment_acmp | | | | | | | | | | | | | 99.55 25 | | | | |
|
testdata1 | | | | | | | | 100.00 1 | | 98.77 53 | | | | | | | |
|
plane_prior5 | | | | | | | | | 99.40 173 | | | | | 99.55 207 | 99.79 105 | 95.57 233 | 97.76 234 |
|
plane_prior4 | | | | | | | | | | | | 99.97 178 | | | | | |
|
plane_prior2 | | | | | | | | 100.00 1 | | 99.00 25 | | | | | | | |
|
plane_prior1 | | | | | | 99.02 257 | | | | | | | | | | | |
|
n2 | | | | | | | | | 0.00 386 | | | | | | | | |
|
nn | | | | | | | | | 0.00 386 | | | | | | | | |
|
door-mid | | | | | | | | | 96.32 372 | | | | | | | | |
|
test11 | | | | | | | | | 99.42 124 | | | | | | | | |
|
door | | | | | | | | | 96.13 373 | | | | | | | | |
|
HQP-NCC | | | | | | 99.07 250 | | 100.00 1 | | 99.04 14 | 99.17 194 | | | | | | |
|
ACMP_Plane | | | | | | 99.07 250 | | 100.00 1 | | 99.04 14 | 99.17 194 | | | | | | |
|
BP-MVS | | | | | | | | | | | | | | | 99.79 105 | | |
|
HQP4-MVS | | | | | | | | | | | 99.17 194 | | | 99.57 198 | | | 97.77 232 |
|
HQP3-MVS | | | | | | | | | 99.40 173 | | | | | | | 95.58 229 | |
|
HQP2-MVS | | | | | | | | | | | | | 88.61 286 | | | | |
|
ACMMP++_ref | | | | | | | | | | | | | | | | 94.58 266 | |
|
ACMMP++ | | | | | | | | | | | | | | | | 95.17 249 | |
|
Test By Simon | | | | | | | | | | | | | 99.10 84 | | | | |
|