This table lists the benchmark results for the high-res multi-view scenario. The following metrics are evaluated:

(*) For exact definitions, detailing how potentially incomplete ground truth is taken into account, see our paper.

The datasets are grouped into different categories, and result averages are computed for a category and method if results of the method are available for all datasets within the category. Note that the category "all" includes both the high-res multi-view and the low-res many-view scenarios.

Methods with suffix _ROB may participate in the Robust Vision Challenge.

Click a dataset result cell to show a visualization of the reconstruction. For training datasets, ground truth and accuracy / completeness visualizations are also available. The visualizations may not work with mobile browsers.




Method Infoallhigh-res
multi-view
indooroutdoorbotani.boulde.bridgedoorexhibi.lectur.living.loungeobserv.old co.statueterrac.
sort bysort bysort bysort bysort bysorted bysort bysort bysort bysort bysort bysort bysort bysort bysort bysort by
MSC_two_6792asdad100.00 1100.00 1100.00 199.42 131100.00 1100.00 1100.00 1100.00 1
No_MVS100.00 1100.00 1100.00 199.42 131100.00 1100.00 1100.00 1100.00 1
OPU-MVS100.00 1100.00 1100.00 1100.00 1100.00 199.54 26100.00 1100.00 1100.00 1100.00 1
DPM-MVS99.63 5199.51 60100.00 199.90 107100.00 1100.00 199.43 12199.00 27100.00 1100.00 199.58 22100.00 197.64 258100.00 1100.00 1
DVP-MVS++99.81 1199.75 14100.00 1100.00 199.99 5100.00 199.42 13198.79 58100.00 1100.00 199.54 26100.00 1100.00 1100.00 1100.00 1
test_one_0601100.00 199.99 599.42 13198.72 62100.00 1100.00 199.60 17
SED-MVS99.83 799.77 9100.00 1100.00 199.99 5100.00 199.42 13199.03 20100.00 1100.00 199.50 37100.00 1100.00 1100.00 1100.00 1
IU-MVS100.00 199.99 599.42 13199.12 6100.00 1100.00 1100.00 1100.00 1
test_241102_ONE100.00 199.99 599.42 13199.03 20100.00 1100.00 199.50 37100.00 1
DVP-MVScopyleft99.83 799.78 7100.00 1100.00 199.99 5100.00 199.42 13199.04 15100.00 1100.00 199.53 29100.00 1100.00 1100.00 1100.00 1
Zhenlong Yuan, Jinguo Luo, Fei Shen, Zhaoxin Li, Cong Liu, Tianlu Mao, Zhaoqi Wang: DVP-MVS: Synergize Depth-Edge and Visibility Prior for Multi-View Stereo. AAAI2025
test_0728_SECOND100.00 199.99 4999.99 5100.00 199.42 131100.00 1100.00 1100.00 1100.00 1
test0726100.00 199.99 5100.00 199.42 13199.04 15100.00 1100.00 199.53 29
test_part2100.00 199.99 5100.00 1
MCST-MVS99.85 399.80 4100.00 1100.00 199.99 5100.00 199.73 5699.19 5100.00 1100.00 199.31 63100.00 1100.00 1100.00 1100.00 1
CNVR-MVS99.85 399.80 4100.00 1100.00 199.99 5100.00 199.77 4899.07 10100.00 1100.00 199.39 56100.00 1100.00 1100.00 1100.00 1
NCCC99.86 299.82 3100.00 1100.00 199.99 5100.00 199.71 6199.07 10100.00 1100.00 199.59 20100.00 1100.00 1100.00 1100.00 1
ZD-MVS100.00 199.98 1799.80 4397.31 178100.00 1100.00 199.32 6199.99 94100.00 1100.00 1
DPE-MVScopyleft99.79 1499.73 1799.99 1299.99 4999.98 17100.00 199.42 13198.91 39100.00 1100.00 199.22 75100.00 1100.00 1100.00 1100.00 1
Kehua Chen, Zhenlong Yuan, Tianlu Mao, Zhaoqi Wang: Dual-Level Precision Edges Guided Multi-View Stereo with Accurate Planarization. AAAI2025
HPM-MVS++copyleft99.82 999.76 1299.99 1299.99 4999.98 17100.00 199.83 3998.88 4299.96 115100.00 199.21 76100.00 1100.00 1100.00 199.99 105
APDe-MVScopyleft99.84 699.78 799.99 12100.00 199.98 17100.00 199.44 11599.06 12100.00 1100.00 199.56 2399.99 94100.00 1100.00 1100.00 1
Zhaojie Zeng, Yuesong Wang, Tao Guan: Matching Ambiguity-Resilient Multi-View Stereo via Adaptive Patch Deformation. Pattern Recognition
FOURS1100.00 199.97 21100.00 199.42 13198.52 72100.00 1
CHOSEN 280x42099.85 399.87 199.80 9999.99 4999.97 2199.97 23199.98 1698.96 30100.00 1100.00 199.96 599.42 245100.00 1100.00 1100.00 1
CDPH-MVS99.73 2599.64 3399.99 12100.00 199.97 21100.00 199.42 13198.02 106100.00 1100.00 199.32 6199.99 94100.00 1100.00 1100.00 1
TSAR-MVS + MP.99.82 999.77 999.99 12100.00 199.96 24100.00 199.43 12199.05 14100.00 1100.00 199.45 4599.99 94100.00 1100.00 1100.00 1
Zhenlong Yuan, Jiakai Cao, Zhaoqi Wang, Zhaoxin Li: TSAR-MVS: Textureless-aware Segmentation and Correlative Refinement Guided Multi-View Stereo. Pattern Recognition
新几何199.99 12100.00 199.96 2499.81 4297.89 119100.00 1100.00 199.20 77100.00 197.91 251100.00 1100.00 1
SD-MVS99.81 1199.75 1499.99 1299.99 4999.96 24100.00 199.42 13199.01 26100.00 1100.00 199.33 58100.00 1100.00 1100.00 1100.00 1
Zhenlong Yuan, Jiakai Cao, Zhaoxin Li, Hao Jiang and Zhaoqi Wang: SD-MVS: Segmentation-driven Deformation Multi-View Stereo with Spherical Refinement and EM optimization. AAAI2024
MSLP-MVS++99.89 199.85 299.99 12100.00 199.96 24100.00 199.95 1999.11 7100.00 1100.00 199.60 17100.00 1100.00 1100.00 1100.00 1
APD-MVScopyleft99.68 4099.58 4699.97 3199.99 4999.96 24100.00 199.42 13197.53 155100.00 1100.00 199.27 7299.97 121100.00 1100.00 1100.00 1
Yuesong Wang, Zhaojie Zeng and etc.: Adaptive Patch Deformation for Textureless-Resilient Multi-View Stereo. CVPR2023
PAPM_NR99.74 2299.66 3099.99 12100.00 199.96 24100.00 199.47 7997.87 121100.00 1100.00 199.60 17100.00 1100.00 1100.00 1100.00 1
PAPR99.76 1899.68 2599.99 12100.00 199.96 24100.00 199.47 7998.16 94100.00 1100.00 199.51 33100.00 1100.00 1100.00 1100.00 1
DeepC-MVS_fast98.92 199.75 2099.67 2799.99 1299.99 4999.96 2499.73 29099.52 7299.06 12100.00 1100.00 198.80 116100.00 199.95 89100.00 1100.00 1
Andreas Kuhn, Christian Sormann, Mattia Rossi, Oliver Erdler, Friedrich Fraundorfer: DeepC-MVS: Deep Confidence Prediction for Multi-View Stereo Reconstruction. 3DV 2020
SR-MVS99.68 4099.58 4699.98 23100.00 199.95 32100.00 199.64 6497.59 149100.00 1100.00 198.99 9499.99 94100.00 1100.00 1100.00 1
TEST9100.00 199.95 32100.00 199.42 13197.65 138100.00 1100.00 199.53 2999.97 121
train_agg99.71 2999.63 3799.97 31100.00 199.95 32100.00 199.42 13197.70 133100.00 1100.00 199.51 3399.97 121100.00 1100.00 1100.00 1
canonicalmvs99.03 11898.73 14199.94 6399.75 14799.95 32100.00 199.30 23397.64 140100.00 1100.00 195.22 21399.97 12199.76 12496.90 23899.91 145
MVS99.22 10598.96 11599.98 2399.00 27599.95 3299.24 34499.94 2298.14 9798.88 232100.00 195.63 208100.00 199.85 107100.00 1100.00 1
SteuartSystems-ACMMP99.78 1699.71 2099.98 2399.76 14599.95 32100.00 199.42 13198.69 63100.00 1100.00 199.52 3299.99 94100.00 1100.00 1100.00 1
Skip Steuart: Steuart Systems R&D Blog.
DP-MVS Recon99.76 1899.69 2299.98 23100.00 199.95 32100.00 199.52 7297.99 10899.99 101100.00 199.72 12100.00 199.96 83100.00 1100.00 1
PAPM99.78 1699.76 1299.85 8399.01 27199.95 32100.00 199.75 5299.37 399.99 101100.00 199.76 1199.60 205100.00 1100.00 1100.00 1
XVS99.79 1499.73 1799.98 23100.00 199.94 40100.00 199.75 5298.67 65100.00 1100.00 199.16 80100.00 1100.00 1100.00 1100.00 1
X-MVStestdata97.04 24196.06 26999.98 23100.00 199.94 40100.00 199.75 5298.67 65100.00 166.97 39899.16 80100.00 1100.00 1100.00 1100.00 1
MP-MVScopyleft99.61 5599.49 6399.98 2399.99 4999.94 40100.00 199.42 13197.82 12499.99 101100.00 198.20 134100.00 199.99 59100.00 1100.00 1
Rongxuan Tan, Qing Wang, et al.: MP-MVS: Multi-Scale Windows PatchMatch and Planar Prior Multi-View Stereo.
save fliter99.99 4999.93 43100.00 199.42 13198.93 36
SMA-MVScopyleft99.69 3599.59 4499.98 2399.99 4999.93 43100.00 199.43 12197.50 160100.00 1100.00 199.43 50100.00 1100.00 1100.00 1100.00 1
Yufeng Yin; Xiaoyan Liu; Zichao Zhang: SMA-MVS: Segmentation-Guided Multi-Scale Anchor Deformation Patch Multi-View Stereo. IEEE Transactions on Circuits and Systems for Video Technology
test_prior499.93 43100.00 1
WTY-MVS99.54 6399.40 6999.95 5199.81 12599.93 43100.00 1100.00 197.98 11099.84 157100.00 198.94 10299.98 11699.86 10598.21 19799.94 131
HY-MVS96.53 999.50 6799.35 7999.96 4299.81 12599.93 4399.64 302100.00 197.97 11299.84 15799.85 23398.94 10299.99 9499.86 10598.23 19699.95 126
MP-MVS-pluss99.61 5599.50 6199.97 3199.98 8499.92 48100.00 199.42 13197.53 15599.77 172100.00 198.77 117100.00 199.99 59100.00 199.99 105
MP-MVS-pluss: MP-MVS-pluss. MP-MVS-pluss
ACMMP_NAP99.67 4399.57 4999.97 3199.98 8499.92 48100.00 199.42 13197.83 123100.00 1100.00 198.89 108100.00 199.98 71100.00 1100.00 1
alignmvs99.38 7999.21 9399.91 6899.73 14899.92 48100.00 199.51 7697.61 146100.00 1100.00 199.06 8899.93 15999.83 11197.12 23299.90 154
SR-MVS-dyc-post99.63 5199.52 5999.97 3199.99 4999.91 51100.00 199.42 13197.62 142100.00 1100.00 198.65 12299.99 9499.99 59100.00 1100.00 1
RE-MVS-def99.55 5599.99 4999.91 51100.00 199.42 13197.62 142100.00 1100.00 198.94 10299.99 59100.00 1100.00 1
MTAPA99.68 4099.59 4499.97 3199.99 4999.91 51100.00 199.42 13198.32 8699.94 140100.00 198.65 122100.00 199.96 83100.00 1100.00 1
test_8100.00 199.91 51100.00 199.42 13197.70 133100.00 1100.00 199.51 3399.98 116
APD-MVS_3200maxsize99.65 4699.55 5599.97 3199.99 4999.91 51100.00 199.48 7897.54 153100.00 1100.00 198.97 9699.99 9499.98 71100.00 1100.00 1
mPP-MVS99.69 3599.60 4399.97 31100.00 199.91 51100.00 199.42 13197.91 118100.00 1100.00 199.04 91100.00 1100.00 1100.00 1100.00 1
MG-MVS99.75 2099.68 2599.97 31100.00 199.91 5199.98 22599.47 7999.09 9100.00 1100.00 198.59 125100.00 199.95 89100.00 1100.00 1
ZNCC-MVS99.71 2999.62 4199.97 3199.99 4999.90 58100.00 199.79 4597.97 11299.97 110100.00 198.97 96100.00 199.94 91100.00 1100.00 1
test_yl99.51 6499.37 7499.95 5199.82 11999.90 58100.00 199.47 7997.48 162100.00 1100.00 199.80 6100.00 199.98 7197.75 22499.94 131
DCV-MVSNet99.51 6499.37 7499.95 5199.82 11999.90 58100.00 199.47 7997.48 162100.00 1100.00 199.80 6100.00 199.98 7197.75 22499.94 131
region2R99.72 2699.64 3399.97 31100.00 199.90 58100.00 199.74 5597.86 122100.00 1100.00 199.19 78100.00 199.99 59100.00 1100.00 1
test22299.99 4999.90 58100.00 199.69 6297.66 137100.00 1100.00 199.30 68100.00 1100.00 1
thres20099.27 9699.04 10699.96 4299.81 12599.90 58100.00 199.94 2297.31 17899.83 15999.96 20797.04 172100.00 199.62 15597.88 21499.98 107
3Dnovator95.63 1499.06 11498.76 13799.96 4298.86 29299.90 5899.98 22599.93 3098.95 3398.49 262100.00 192.91 246100.00 199.71 132100.00 1100.00 1
tfpn200view999.26 9899.03 10799.96 4299.81 12599.89 65100.00 199.94 2297.23 18399.83 15999.96 20797.04 172100.00 199.59 15797.85 21699.98 107
HFP-MVS99.74 2299.67 2799.96 42100.00 199.89 65100.00 199.76 4997.95 116100.00 1100.00 199.31 63100.00 199.99 59100.00 1100.00 1
131499.38 7999.19 9799.96 4298.88 28899.89 6599.24 34499.93 3098.88 4298.79 242100.00 197.02 175100.00 1100.00 1100.00 1100.00 1
ACMMPR99.74 2299.67 2799.96 42100.00 199.89 65100.00 199.76 4997.95 116100.00 1100.00 199.29 69100.00 199.99 59100.00 1100.00 1
thres40099.26 9899.03 10799.95 5199.81 12599.89 65100.00 199.94 2297.23 18399.83 15999.96 20797.04 172100.00 199.59 15797.85 21699.97 114
test1299.95 5199.99 4999.89 6599.42 131100.00 199.24 7499.97 121100.00 1100.00 1
3Dnovator+95.58 1599.03 11898.71 14499.96 4298.99 27899.89 65100.00 199.51 7698.96 3098.32 270100.00 192.78 248100.00 199.87 104100.00 1100.00 1
agg_prior100.00 199.88 7299.42 131100.00 199.97 121
旧先验199.99 4999.88 7299.82 40100.00 199.27 72100.00 1100.00 1
thres100view90099.25 10199.01 10999.95 5199.81 12599.87 74100.00 199.94 2297.13 18899.83 15999.96 20797.01 176100.00 199.59 15797.85 21699.98 107
thres600view799.24 10499.00 11199.95 5199.81 12599.87 74100.00 199.94 2297.13 18899.83 15999.96 20797.01 176100.00 199.54 16597.77 22399.97 114
QAPM98.99 12798.66 14699.96 4299.01 27199.87 7499.88 25999.93 3097.99 10898.68 247100.00 193.17 242100.00 199.32 179100.00 1100.00 1
GST-MVS99.64 4899.53 5799.95 51100.00 199.86 77100.00 199.79 4597.72 13199.95 138100.00 198.39 131100.00 199.96 8399.99 97100.00 1
MSP-MVS99.81 1199.77 999.94 63100.00 199.86 77100.00 199.42 13198.87 45100.00 1100.00 199.65 1599.96 132100.00 1100.00 1100.00 1
Zhenlong Yuan, Cong Liu, Fei Shen, Zhaoxin Li, Jingguo luo, Tianlu Mao and Zhaoqi Wang: MSP-MVS: Multi-granularity Segmentation Prior Guided Multi-View Stereo. AAAI2025
AdaColmapbinary99.44 7599.26 8699.95 51100.00 199.86 7799.70 29599.99 1398.53 7199.90 148100.00 195.34 210100.00 199.92 94100.00 1100.00 1
SF-MVS99.66 4599.57 4999.95 5199.99 4999.85 80100.00 199.42 13197.67 136100.00 1100.00 199.05 8999.99 94100.00 1100.00 1100.00 1
PGM-MVS99.69 3599.61 4299.95 5199.99 4999.85 80100.00 199.58 6797.69 135100.00 1100.00 199.44 46100.00 199.79 117100.00 1100.00 1
CP-MVS99.67 4399.58 4699.95 51100.00 199.84 82100.00 199.42 13197.77 128100.00 1100.00 199.07 87100.00 1100.00 1100.00 1100.00 1
MVS_111021_HR99.71 2999.63 3799.93 6699.95 9599.83 83100.00 1100.00 198.89 41100.00 1100.00 197.85 14599.95 144100.00 1100.00 1100.00 1
MM99.94 6399.82 84100.00 199.97 1799.11 7100.00 1100.00 196.65 190100.00 1100.00 199.97 110100.00 1
PS-MVSNAJ99.64 4899.57 4999.85 8399.78 14299.81 8599.95 24299.42 13198.38 78100.00 1100.00 198.75 118100.00 199.88 10199.99 9799.74 219
OpenMVScopyleft95.20 1798.76 14698.41 16599.78 10598.89 28799.81 8599.99 20199.76 4998.02 10698.02 288100.00 191.44 263100.00 199.63 15499.97 11099.55 232
原ACMM199.93 66100.00 199.80 8799.66 6398.18 93100.00 1100.00 199.43 50100.00 199.50 169100.00 1100.00 1
HPM-MVS_fast99.60 5899.49 6399.91 6899.99 4999.78 88100.00 199.42 13197.09 190100.00 1100.00 198.95 10099.96 13299.98 71100.00 1100.00 1
baseline198.91 13698.61 15199.81 9499.71 14999.77 8999.78 27599.44 11597.51 15998.81 24099.99 18098.25 13399.76 19398.60 22395.41 25199.89 159
CANet99.40 7799.24 8999.89 7399.99 4999.76 90100.00 199.73 5698.40 7799.78 171100.00 195.28 21199.96 132100.00 199.99 9799.96 120
ET-MVSNet_ETH3D96.41 26995.48 29999.20 18199.81 12599.75 91100.00 199.02 34397.30 18078.33 387100.00 197.73 14997.94 34999.70 13587.41 35499.92 143
test_prior99.90 71100.00 199.75 9199.73 5699.97 121100.00 1
VNet99.04 11698.75 13999.90 7199.81 12599.75 9199.50 31999.47 7998.36 82100.00 199.99 18094.66 223100.00 199.90 9797.09 23399.96 120
xiu_mvs_v2_base99.51 6499.41 6899.82 8999.70 15199.73 9499.92 25099.40 18198.15 96100.00 1100.00 198.50 128100.00 199.85 10799.13 15999.74 219
CNLPA99.72 2699.65 3199.91 6899.97 8899.72 95100.00 199.47 7998.43 7699.88 153100.00 199.14 83100.00 199.97 81100.00 1100.00 1
xiu_mvs_v1_base_debu99.35 8299.21 9399.79 10199.67 16199.71 9699.78 27599.36 20598.13 98100.00 1100.00 197.00 179100.00 199.83 11199.07 16199.66 228
xiu_mvs_v1_base99.35 8299.21 9399.79 10199.67 16199.71 9699.78 27599.36 20598.13 98100.00 1100.00 197.00 179100.00 199.83 11199.07 16199.66 228
xiu_mvs_v1_base_debi99.35 8299.21 9399.79 10199.67 16199.71 9699.78 27599.36 20598.13 98100.00 1100.00 197.00 179100.00 199.83 11199.07 16199.66 228
LS3D99.31 9199.13 10299.87 7899.99 4999.71 9699.55 31399.46 9497.32 17699.82 167100.00 196.85 18699.97 12199.14 192100.00 199.92 143
HPM-MVScopyleft99.59 5999.50 6199.89 73100.00 199.70 100100.00 199.42 13197.46 164100.00 1100.00 198.60 12499.96 13299.99 59100.00 1100.00 1
Chunlin Ren, Qingshan Xu, Shikun Zhang, Jiaqi Yang: Hierarchical Prior Mining for Non-local Multi-View Stereo. ICCV 2023
MVS_111021_LR99.70 3299.65 3199.88 7799.96 9399.70 100100.00 199.97 1798.96 30100.00 1100.00 197.93 14299.95 14499.99 59100.00 1100.00 1
MVSTER98.58 16398.52 15898.77 20699.65 16699.68 102100.00 199.29 23795.63 26898.65 24899.80 24599.78 898.88 28098.59 22495.31 25597.73 293
ACMMPcopyleft99.65 4699.57 4999.89 7399.99 4999.66 10399.75 28499.73 5698.16 9499.75 175100.00 198.90 107100.00 199.96 8399.88 126100.00 1
Qingshan Xu, Weihang Kong, Wenbing Tao, Marc Pollefeys: Multi-Scale Geometric Consistency Guided and Planar Prior Assisted Multi-View Stereo. IEEE Transactions on Pattern Analysis and Machine Intelligence
MAR-MVS99.49 6999.36 7799.89 7399.97 8899.66 10399.74 28599.95 1997.89 119100.00 1100.00 196.71 189100.00 1100.00 1100.00 1100.00 1
Zhenyu Xu, Yiguang Liu, Xuelei Shi, Ying Wang, Yunan Zheng: MARMVS: Matching Ambiguity Reduced Multiple View Stereo for Efficient Large Scale Scene Reconstruction. CVPR 2020
EI-MVSNet-UG-set99.69 3599.63 3799.87 7899.99 4999.64 10599.95 24299.44 11598.35 84100.00 1100.00 198.98 9599.97 12199.98 71100.00 1100.00 1
EI-MVSNet-Vis-set99.70 3299.64 3399.87 78100.00 199.64 10599.98 22599.44 11598.35 8499.99 101100.00 199.04 9199.96 13299.98 71100.00 1100.00 1
MVS_030499.69 3599.63 3799.86 8199.96 9399.63 107100.00 199.92 3499.03 2099.97 110100.00 197.87 14399.96 132100.00 199.96 113100.00 1
PVSNet_BlendedMVS98.71 15198.62 15098.98 19499.98 8499.60 108100.00 1100.00 197.23 183100.00 199.03 32396.57 19299.99 94100.00 194.75 27897.35 348
PVSNet_Blended99.48 7199.36 7799.83 8799.98 8499.60 108100.00 1100.00 197.79 126100.00 1100.00 196.57 19299.99 94100.00 199.88 12699.90 154
test_fmvsmconf_n99.56 6199.46 6799.86 8199.68 15699.58 110100.00 199.31 22998.92 3799.88 153100.00 197.35 16899.99 9499.98 7199.99 97100.00 1
test_fmvsmconf0.1_n99.25 10199.05 10599.82 8998.92 28499.55 111100.00 199.23 26898.91 3999.75 17599.97 19394.79 22199.94 15699.94 9199.99 9799.97 114
thisisatest051599.42 7699.31 8299.74 11199.59 18599.55 111100.00 199.46 9496.65 22499.92 144100.00 199.44 4699.85 17599.09 19699.63 15199.81 198
mvsany_test199.57 6099.48 6699.85 8399.86 11499.54 113100.00 199.36 20598.94 35100.00 1100.00 197.97 140100.00 199.88 10199.28 157100.00 1
CPTT-MVS99.49 6999.38 7199.85 83100.00 199.54 113100.00 199.42 13197.58 15099.98 106100.00 197.43 166100.00 199.99 59100.00 1100.00 1
fmvsm_s_conf0.5_n99.21 10699.01 10999.83 8799.84 11699.53 115100.00 199.38 19698.29 88100.00 1100.00 193.62 23599.99 9499.99 5999.93 11999.98 107
SDMVSNet98.49 17298.08 18899.73 11499.82 11999.53 11599.99 20199.45 10297.62 14299.38 20099.86 22990.06 28499.88 16999.92 9496.61 24199.79 211
nrg03097.64 21197.27 22698.75 20798.34 30999.53 115100.00 199.22 27196.21 25198.27 27599.95 21594.40 22698.98 26899.23 18789.78 33597.75 264
fmvsm_s_conf0.1_n98.77 14598.42 16499.82 8999.47 22599.52 118100.00 199.27 25197.53 155100.00 1100.00 189.73 28999.96 13299.84 11099.93 11999.97 114
test250699.48 7199.38 7199.75 11099.89 10999.51 11999.45 323100.00 198.38 7899.83 159100.00 198.86 10999.81 18499.25 18498.78 16899.94 131
LFMVS97.42 22496.62 24499.81 9499.80 13599.50 12099.16 35899.56 7094.48 302100.00 1100.00 179.35 363100.00 199.89 9997.37 23099.94 131
MVS_Test98.93 13598.65 14799.77 10899.62 17999.50 12099.99 20199.19 28495.52 27499.96 11599.86 22996.54 19499.98 11698.65 21798.48 17899.82 190
sss99.45 7499.34 8199.80 9999.76 14599.50 120100.00 199.91 3697.72 13199.98 10699.94 21998.45 129100.00 199.53 16798.75 17199.89 159
GG-mvs-BLEND99.59 13399.54 19799.49 12399.17 35799.52 7299.96 11599.68 264100.00 199.33 25299.71 13299.99 9799.96 120
MVSFormer98.94 13498.82 13099.28 17599.45 22999.49 123100.00 199.13 30795.46 27999.97 110100.00 196.76 18798.59 30698.63 220100.00 199.74 219
lupinMVS99.29 9499.16 10099.69 11999.45 22999.49 123100.00 199.15 29897.45 16599.97 110100.00 196.76 18799.76 19399.67 146100.00 199.81 198
PVSNet_Blended_VisFu99.33 8799.18 9999.78 10599.82 11999.49 123100.00 199.95 1997.36 17199.63 182100.00 196.45 19699.95 14499.79 11799.65 14999.89 159
114514_t99.39 7899.25 8799.81 9499.97 8899.48 127100.00 199.42 13195.53 272100.00 1100.00 198.37 13299.95 14499.97 81100.00 1100.00 1
fmvsm_s_conf0.5_n_a99.32 8999.15 10199.81 9499.80 13599.47 128100.00 199.35 21498.22 89100.00 1100.00 195.21 21499.99 9499.96 8399.86 13099.98 107
DELS-MVS99.62 5399.56 5499.82 8999.92 10399.45 129100.00 199.78 4798.92 3799.73 177100.00 197.70 151100.00 199.93 93100.00 1100.00 1
Christian Sormann, Emanuele Santellani, Mattia Rossi, Andreas Kuhn, Friedrich Fraundorfer: DELS-MVS: Deep Epipolar Line Search for Multi-View Stereo. Winter Conference on Applications of Computer Vision (WACV), 2023
DP-MVS98.86 14098.54 15799.81 9499.97 8899.45 12999.52 31799.40 18194.35 30698.36 266100.00 196.13 19899.97 12199.12 195100.00 1100.00 1
PHI-MVS99.50 6799.39 7099.82 89100.00 199.45 129100.00 199.94 2296.38 242100.00 1100.00 198.18 135100.00 1100.00 1100.00 1100.00 1
FA-MVS(test-final)99.00 12498.75 13999.73 11499.63 17499.43 13299.83 26599.43 12195.84 26399.52 18699.37 30497.84 14699.96 13297.63 25999.68 14599.79 211
fmvsm_s_conf0.1_n_a98.71 15198.36 17299.78 10599.09 26199.42 133100.00 199.26 25797.42 168100.00 1100.00 189.78 28799.96 13299.82 11699.85 13399.97 114
thisisatest053099.37 8199.27 8399.69 11999.59 18599.41 134100.00 199.46 9496.46 23599.90 148100.00 199.44 4699.85 17598.97 19999.58 15399.80 209
UA-Net99.06 11498.83 12999.74 11199.52 20799.40 13599.08 36899.45 10297.64 14099.83 159100.00 195.80 20399.94 15698.35 23299.80 14099.88 170
tttt051799.34 8599.23 9299.67 12199.57 19399.38 136100.00 199.46 9496.33 24599.89 151100.00 199.44 4699.84 17798.93 20199.46 15699.78 214
TESTMET0.1,199.08 11298.96 11599.44 15099.63 17499.38 136100.00 199.45 10295.53 27299.48 189100.00 199.71 1399.02 26496.84 28399.99 9799.91 145
IS-MVSNet99.08 11298.91 12399.59 13399.65 16699.38 13699.78 27599.24 26496.70 21899.51 187100.00 198.44 13099.52 23098.47 22898.39 18599.88 170
API-MVS99.72 2699.70 2199.79 10199.97 8899.37 13999.96 23699.94 2298.48 73100.00 1100.00 198.92 105100.00 1100.00 1100.00 1100.00 1
gg-mvs-nofinetune96.95 24596.10 26799.50 14499.41 23499.36 14099.07 37099.52 7283.69 37999.96 11583.60 395100.00 199.20 25799.68 14399.99 9799.96 120
ETV-MVS99.34 8599.24 8999.64 12699.58 19099.33 141100.00 199.25 25997.57 15199.96 115100.00 197.44 16599.79 18699.70 13599.65 14999.81 198
test_cas_vis1_n_192098.63 16098.25 17699.77 10899.69 15299.32 142100.00 199.31 22998.84 4999.96 115100.00 187.42 31799.99 9499.14 19299.86 130100.00 1
VPA-MVSNet97.03 24296.43 25398.82 20298.64 29999.32 14299.38 33199.47 7996.73 21598.91 23098.94 33287.00 32299.40 24699.23 18789.59 33697.76 253
jason99.11 11098.96 11599.59 13399.17 25599.31 144100.00 199.13 30797.38 17099.83 159100.00 195.54 20999.72 19999.57 16199.97 11099.74 219
jason: jason.
PatchMatch-RL99.02 12298.78 13499.74 11199.99 4999.29 145100.00 1100.00 198.38 7899.89 15199.81 24293.14 24499.99 9497.85 25399.98 10799.95 126
test-LLR99.03 11898.91 12399.40 15799.40 23999.28 146100.00 199.45 10296.70 21899.42 19399.12 31499.31 6399.01 26596.82 28499.99 9799.91 145
test-mter98.96 13198.82 13099.40 15799.40 23999.28 146100.00 199.45 10295.44 28199.42 19399.12 31499.70 1499.01 26596.82 28499.99 9799.91 145
Effi-MVS+98.58 16398.24 17899.61 12999.60 18399.26 14897.85 38499.10 31796.22 25099.97 11099.89 22593.75 23299.77 19199.43 17198.34 18999.81 198
HyFIR lowres test99.32 8999.24 8999.58 13799.95 9599.26 148100.00 199.99 1396.72 21699.29 20499.91 22399.49 3999.47 23799.74 12698.08 204100.00 1
FMVSNet397.30 22996.95 23298.37 22799.65 16699.25 15099.71 29399.28 24394.23 30798.53 25798.91 33493.30 23998.11 33695.31 30993.60 28897.73 293
MSDG98.90 13898.63 14999.70 11899.92 10399.25 150100.00 199.37 19995.71 26699.40 199100.00 196.58 19199.95 14496.80 28699.94 11799.91 145
FIs97.95 19997.73 20798.62 21298.53 30499.24 152100.00 199.43 12196.74 21397.87 29799.82 23995.27 21298.89 27798.78 20993.07 29497.74 287
mvs_anonymous98.80 14498.60 15399.38 16199.57 19399.24 152100.00 199.21 28095.87 25898.92 22899.82 23996.39 19799.03 26399.13 19498.50 17699.88 170
MDTV_nov1_ep13_2view99.24 15299.56 31296.31 24699.96 11598.86 10998.92 20299.89 159
iter_conf0598.73 14898.77 13598.60 21399.65 16699.22 155100.00 199.22 27196.68 22298.98 22699.97 19399.99 398.84 28299.29 18295.11 27097.75 264
test_fmvsmconf0.01_n98.60 16198.24 17899.67 12196.90 35999.21 15699.99 20199.04 34098.80 5599.57 18499.96 20790.12 28199.91 16299.89 9999.89 12499.90 154
EPMVS99.25 10199.13 10299.60 13199.60 18399.20 15799.60 308100.00 196.93 19999.92 14499.36 30599.05 8999.71 20098.77 21098.94 16599.90 154
test_fmvsm_n_192099.55 6299.49 6399.73 11499.85 11599.19 158100.00 199.41 17798.87 45100.00 1100.00 197.34 169100.00 199.98 7199.90 123100.00 1
BH-RMVSNet98.46 17398.08 18899.59 13399.61 18199.19 158100.00 199.28 24397.06 19498.95 227100.00 188.99 29999.82 18198.83 208100.00 199.77 215
test_fmvsmvis_n_192099.46 7399.37 7499.73 11498.88 28899.18 160100.00 199.26 25798.85 4799.79 169100.00 197.70 151100.00 199.98 7199.86 130100.00 1
FE-MVS99.16 10898.99 11399.66 12499.65 16699.18 16099.58 31099.43 12195.24 28299.91 14699.59 28599.37 5799.97 12198.31 23499.81 13899.83 185
iter_conf_final98.72 14998.76 13798.59 21599.64 17299.17 162100.00 199.22 27196.63 22799.02 22399.97 19399.98 498.84 28299.22 18995.18 26497.76 253
diffmvspermissive98.96 13198.73 14199.63 12799.54 19799.16 163100.00 199.18 29197.33 17599.96 115100.00 194.60 22499.91 16299.66 14998.33 19299.82 190
Fangjinhua Wang, Qingshan Xu, Yew-Soon Ong, Marc Pollefeys: Lightweight and Accurate Multi-View Stereo With Confidence-Aware Diffusion Model. IEEE T-PAMI 2025
baseline298.99 12798.93 12199.18 18299.26 25299.15 164100.00 199.46 9496.71 21796.79 329100.00 199.42 5299.25 25698.75 21299.94 11799.15 240
UniMVSNet (Re)97.29 23096.85 23698.59 21598.49 30599.13 165100.00 199.42 13196.52 23398.24 27998.90 33594.93 21898.89 27797.54 26287.61 35397.75 264
WR-MVS97.09 23796.64 24298.46 22198.43 30699.09 16699.97 23199.33 22295.62 26997.76 29999.67 26591.17 26798.56 31198.49 22789.28 34197.74 287
EC-MVSNet99.19 10799.09 10499.48 14799.42 23299.07 167100.00 199.21 28096.95 19899.96 115100.00 196.88 18599.48 23599.64 15199.79 14199.88 170
F-COLMAP99.64 4899.64 3399.67 12199.99 4999.07 167100.00 199.44 11598.30 8799.90 148100.00 199.18 7999.99 9499.91 96100.00 199.94 131
Fast-Effi-MVS+98.40 18098.02 19599.55 14199.63 17499.06 169100.00 199.15 29895.07 28499.42 19399.95 21593.26 24099.73 19897.44 26598.24 19599.87 178
FC-MVSNet-test97.84 20197.63 21198.45 22298.30 31499.05 170100.00 199.43 12196.63 22797.61 30899.82 23995.19 21598.57 30998.64 21893.05 29597.73 293
miper_enhance_ethall98.33 18398.27 17598.51 21999.66 16599.04 171100.00 199.22 27197.53 15598.51 26099.38 30399.49 3998.75 29298.02 24692.61 29997.76 253
DeepC-MVS97.84 599.00 12498.80 13399.60 13199.93 10099.03 172100.00 199.40 18198.61 6999.33 202100.00 192.23 25799.95 14499.74 12699.96 11399.83 185
Andreas Kuhn, Christian Sormann, Mattia Rossi, Oliver Erdler, Friedrich Fraundorfer: DeepC-MVS: Deep Confidence Prediction for Multi-View Stereo Reconstruction. 3DV 2020
cascas98.43 17598.07 19099.50 14499.65 16699.02 173100.00 199.22 27194.21 30999.72 17899.98 18592.03 26099.93 15999.68 14398.12 20299.54 233
PCF-MVS98.23 398.69 15498.37 17099.62 12899.78 14299.02 17399.23 34999.06 33596.43 23698.08 282100.00 194.72 22299.95 14498.16 24199.91 12299.90 154
Andreas Kuhn, Shan Lin, Oliver Erdler: Plane Completion and Filtering for Multi-View Stereo Reconstruction. GCPR 2019
cl2298.23 19098.11 18698.58 21799.82 11999.01 175100.00 199.28 24396.92 20198.33 26999.21 31198.09 13998.97 27098.72 21392.61 29997.76 253
EPNet_dtu98.53 16898.23 18199.43 15299.92 10399.01 17599.96 23699.47 7998.80 5599.96 11599.96 20798.56 12699.30 25387.78 36799.68 145100.00 1
Wanjuan Su, Wenbing Tao: Efficient Edge-Preserving Multi-View Stereo Network for Depth Estimation. AAAI 2023
CS-MVS99.33 8799.27 8399.50 14499.99 4999.00 177100.00 199.13 30797.26 18199.96 115100.00 197.79 14899.64 20499.64 15199.67 14799.87 178
ab-mvs98.42 17798.02 19599.61 12999.71 14999.00 17799.10 36599.64 6496.70 21899.04 22299.81 24290.64 27499.98 11699.64 15197.93 21199.84 182
NR-MVSNet96.63 25896.04 27098.38 22698.31 31298.98 17999.22 35199.35 21495.87 25894.43 35799.65 26992.73 25198.40 32196.78 28788.05 35097.75 264
PMMVS99.12 10998.97 11499.58 13799.57 19398.98 179100.00 199.30 23397.14 18799.96 115100.00 196.53 19599.82 18199.70 13598.49 17799.94 131
testdata99.66 12499.99 4998.97 18199.73 5697.96 115100.00 1100.00 199.42 52100.00 199.28 183100.00 1100.00 1
XXY-MVS97.14 23696.63 24398.67 20998.65 29898.92 18299.54 31599.29 23795.57 27197.63 30599.83 23687.79 31499.35 25098.39 23092.95 29697.75 264
Vis-MVSNet (Re-imp)98.99 12798.89 12799.29 17299.64 17298.89 18399.98 22599.31 22996.74 21399.48 189100.00 198.11 13799.10 26098.39 23098.34 18999.89 159
CR-MVSNet98.02 19797.71 20898.93 19699.31 24698.86 18499.13 36299.00 34696.53 23299.96 11598.98 32796.94 18298.10 33991.18 34798.40 18399.84 182
RPMNet95.26 30793.82 31599.56 14099.31 24698.86 18499.13 36299.42 13179.82 38499.96 11595.13 37795.69 20699.98 11677.54 38798.40 18399.84 182
PLCcopyleft98.56 299.70 3299.74 1699.58 137100.00 198.79 186100.00 199.54 7198.58 7099.96 115100.00 199.59 20100.00 1100.00 1100.00 199.94 131
Jie Liao, Yanping Fu, Qingan Yan, Chunxia xiao: Pyramid Multi-View Stereo with Local Consistency. Pacific Graphics 2019
CS-MVS-test99.31 9199.27 8399.43 15299.99 4998.77 187100.00 199.19 28497.24 18299.96 115100.00 197.56 15899.70 20199.68 14399.81 13899.82 190
EIA-MVS99.26 9899.19 9799.45 14999.63 17498.75 188100.00 199.27 25196.93 19999.95 138100.00 197.47 16299.79 18699.74 12699.72 14399.82 190
Test_1112_low_res98.83 14298.60 15399.51 14299.69 15298.75 18899.99 20199.14 30396.81 20898.84 23799.06 31897.45 16399.89 16598.66 21597.75 22499.89 159
1112_ss98.91 13698.71 14499.51 14299.69 15298.75 18899.99 20199.15 29896.82 20798.84 237100.00 197.45 16399.89 16598.66 21597.75 22499.89 159
casdiffmvspermissive98.65 15698.38 16899.46 14899.52 20798.74 191100.00 199.15 29896.91 20299.05 221100.00 192.75 24999.83 17899.70 13598.38 18699.81 198
Fangjinhua Wang, Qingshan Xu, Yew-Soon Ong, Marc Pollefeys: Lightweight and Accurate Multi-View Stereo With Confidence-Aware Diffusion Model. IEEE T-PAMI 2025
tfpnnormal96.36 27495.69 29098.37 22798.55 30298.71 19299.69 29799.45 10293.16 33596.69 33399.71 25488.44 30998.99 26794.17 32391.38 32197.41 345
CANet_DTU99.02 12298.90 12699.41 15599.88 11198.71 192100.00 199.29 23798.84 49100.00 1100.00 194.02 230100.00 198.08 24399.96 11399.52 234
EPP-MVSNet99.10 11199.00 11199.40 15799.51 21298.68 19499.92 25099.43 12195.47 27899.65 181100.00 199.51 3399.76 19399.53 16798.00 20599.75 218
CP-MVSNet96.73 25296.25 26198.18 24198.21 32098.67 19599.77 28099.32 22495.06 28597.20 31999.65 26990.10 28298.19 32998.06 24588.90 34497.66 320
baseline98.69 15498.45 16399.41 15599.52 20798.67 195100.00 199.17 29697.03 19599.13 213100.00 193.17 24299.74 19699.70 13598.34 18999.81 198
pmmvs497.17 23396.80 23798.27 23497.68 33998.64 197100.00 199.18 29194.22 30898.55 25599.71 25493.67 23398.47 31895.66 30392.57 30297.71 308
casdiffmvs_mvgpermissive98.64 15798.39 16799.40 15799.50 21698.60 198100.00 199.22 27196.85 20599.10 215100.00 192.75 24999.78 19099.71 13298.35 18899.81 198
Fangjinhua Wang, Qingshan Xu, Yew-Soon Ong, Marc Pollefeys: Lightweight and Accurate Multi-View Stereo With Confidence-Aware Diffusion Model. IEEE T-PAMI 2025
JIA-IIPM97.09 23796.34 25899.36 16298.88 28898.59 19999.81 26999.43 12184.81 37799.96 11590.34 38798.55 12799.52 23097.00 27898.28 19499.98 107
Patchmtry96.81 24896.37 25698.14 24699.31 24698.55 20098.91 37399.00 34690.45 35797.92 29498.98 32796.94 18298.12 33494.27 32291.53 31797.75 264
UGNet98.41 17998.11 18699.31 17199.54 19798.55 20099.18 352100.00 198.64 6899.79 16999.04 32187.61 315100.00 199.30 18199.89 12499.40 237
Wanjuan Su, Qingshan Xu, Wenbing Tao: Uncertainty-guided Multi-view Stereo Network for Depth Estimation. IEEE Transactions on Circuits and Systems for Video Technology, 2022
Vis-MVSNetpermissive98.52 16998.25 17699.34 16499.68 15698.55 20099.68 29999.41 17797.34 17499.94 140100.00 190.38 28099.70 20199.03 19898.84 16699.76 217
Jingyang Zhang, Yao Yao, Shiwei Li, Zixin Luo, Tian Fang: Visibility-aware Multiview Stereo Network. BMVC 2020
mvsmamba98.13 19298.06 19198.32 23198.22 31998.50 203100.00 199.22 27196.41 23998.91 23099.96 20795.69 20698.73 29499.19 19194.95 27797.73 293
GeoE98.06 19497.65 21099.29 17299.47 22598.41 204100.00 199.19 28494.85 28998.88 232100.00 191.21 26599.59 20797.02 27798.19 19999.88 170
UniMVSNet_NR-MVSNet97.16 23496.80 23798.22 23898.38 30898.41 204100.00 199.45 10296.14 25397.76 29999.64 27395.05 21698.50 31597.98 24786.84 35797.75 264
DU-MVS96.93 24696.49 25098.22 23898.31 31298.41 204100.00 199.37 19996.41 23997.76 29999.65 26992.14 25898.50 31597.98 24786.84 35797.75 264
v2v48296.70 25596.18 26498.27 23498.04 32698.39 207100.00 199.13 30794.19 31198.58 25399.08 31790.48 27898.67 29795.69 30290.44 33197.75 264
ADS-MVSNet98.70 15398.51 15999.28 17599.51 21298.39 20799.24 34499.44 11595.52 27499.96 11599.70 25797.57 15699.58 21197.11 27598.54 17499.88 170
PatchT95.90 29794.95 31198.75 20799.03 26998.39 20799.08 36899.32 22485.52 37599.96 11594.99 37997.94 14198.05 34580.20 38398.47 17999.81 198
miper_ehance_all_eth97.81 20397.66 20998.23 23799.49 22098.37 21099.99 20199.11 31594.78 29098.25 27799.21 31198.18 13598.57 30997.35 27192.61 29997.76 253
EPNet99.62 5399.69 2299.42 15499.99 4998.37 210100.00 199.89 3798.83 51100.00 1100.00 198.97 96100.00 199.90 9799.61 15299.89 159
Wanjuan Su, Wenbing Tao: Efficient Edge-Preserving Multi-View Stereo Network for Depth Estimation. AAAI 2023
MDTV_nov1_ep1398.94 12099.53 20098.36 21299.39 33099.46 9496.54 23199.99 10199.63 27798.92 10599.86 17098.30 23798.71 172
CDS-MVSNet98.96 13198.95 11999.01 19199.48 22298.36 21299.93 24999.37 19996.79 20999.31 20399.83 23699.77 1098.91 27498.07 24497.98 20699.77 215
Khang Truong Giang, Soohwan Song, Sungho Jo: Curvature-guided dynamic scale networks for Multi-view Stereo. ICLR 2022
FMVSNet296.22 28195.60 29398.06 25699.53 20098.33 21499.45 32399.27 25193.71 31798.03 28698.84 33784.23 34298.10 33993.97 32793.40 29197.73 293
PatchmatchNetpermissive99.03 11898.96 11599.26 17799.49 22098.33 21499.38 33199.45 10296.64 22599.96 11599.58 28799.49 3999.50 23397.63 25999.00 16499.93 141
Fangjinhua Wang, Silvano Galliani, Christoph Vogel, Pablo Speciale, Marc Pollefeys: PatchmatchNet: Learned Multi-View Patchmatch Stereo.
testing398.44 17498.37 17098.65 21099.51 21298.32 216100.00 199.62 6696.43 23697.93 29399.99 18099.11 8497.81 35294.88 31697.80 22199.82 190
PVSNet94.91 1899.30 9399.25 8799.44 150100.00 198.32 216100.00 199.86 3898.04 105100.00 1100.00 196.10 199100.00 199.55 16299.73 142100.00 1
VPNet96.41 26995.76 28498.33 23098.61 30098.30 21899.48 32099.45 10296.98 19798.87 23499.88 22681.57 35598.93 27299.22 18987.82 35297.76 253
TR-MVS98.14 19197.74 20599.33 16799.59 18598.28 21999.27 34199.21 28096.42 23899.15 21299.94 21988.87 30299.79 18698.88 20498.29 19399.93 141
PS-CasMVS96.34 27695.78 28398.03 26398.18 32298.27 22099.71 29399.32 22494.75 29196.82 32899.65 26986.98 32398.15 33197.74 25588.85 34597.66 320
SCA98.30 18497.98 19799.23 17999.41 23498.25 22199.99 20199.45 10296.91 20299.76 17499.58 28789.65 29199.54 22498.31 23498.79 16799.91 145
v896.35 27595.73 28698.21 24098.11 32498.23 22299.94 24799.07 32792.66 34398.29 27299.00 32691.46 26298.77 29094.17 32388.83 34697.62 331
V4296.65 25796.16 26698.11 25198.17 32398.23 22299.99 20199.09 32293.97 31498.74 24499.05 32091.09 26898.82 28595.46 30789.90 33397.27 350
ECVR-MVScopyleft98.43 17598.14 18499.32 16999.89 10998.21 22499.46 321100.00 198.38 7899.47 192100.00 187.91 31099.80 18599.35 17698.78 16899.94 131
bld_raw_dy_0_6497.71 20997.56 21298.15 24597.83 33598.16 22599.95 24299.12 31395.95 25798.73 24599.97 19393.19 24198.63 30098.64 21894.69 28097.66 320
c3_l97.58 21597.42 21698.06 25699.48 22298.16 22599.96 23699.10 31794.54 29998.13 28199.20 31397.87 14398.25 32897.28 27291.20 32397.75 264
test111198.42 17798.12 18599.29 17299.88 11198.15 22799.46 321100.00 198.36 8299.42 193100.00 187.91 31099.79 18699.31 18098.78 16899.94 131
v119296.18 28395.49 29798.26 23698.01 32798.15 22799.99 20199.08 32393.36 32998.54 25698.97 33089.47 29498.89 27791.15 34890.82 32697.75 264
cl____97.54 21897.32 22298.18 24199.47 22598.14 229100.00 199.10 31794.16 31297.60 30999.63 27797.52 15998.65 29996.47 29191.97 31197.76 253
DIV-MVS_self_test97.52 22197.35 22198.05 26099.46 22898.11 230100.00 199.10 31794.21 30997.62 30799.63 27797.65 15398.29 32596.47 29191.98 31097.76 253
v14419296.40 27295.81 27998.17 24397.89 33298.11 23099.99 20199.06 33593.39 32898.75 24399.09 31690.43 27998.66 29893.10 33490.55 33097.75 264
IB-MVS96.24 1297.54 21896.95 23299.33 16799.67 16198.10 232100.00 199.47 7997.42 16899.26 20599.69 26098.83 11399.89 16599.43 17178.77 379100.00 1
Christian Sormann, Mattia Rossi, Andreas Kuhn and Friedrich Fraundorfer: IB-MVS: An Iterative Algorithm for Deep Multi-View Stereo based on Binary Decisions. BMVC 2021
test_fmvs198.37 18298.04 19399.34 16499.84 11698.07 233100.00 199.00 34698.85 47100.00 1100.00 185.11 33799.96 13299.69 14299.88 126100.00 1
test0.0.03 198.12 19398.03 19498.39 22599.11 25898.07 233100.00 199.93 3096.70 21896.91 32599.95 21599.31 6398.19 32991.93 34298.44 18098.91 244
anonymousdsp97.16 23496.88 23498.00 26497.08 35898.06 23599.81 26999.15 29894.58 29797.84 29899.62 28190.49 27798.60 30497.98 24795.32 25497.33 349
TSAR-MVS + GP.99.61 5599.69 2299.35 16399.99 4998.06 235100.00 199.36 20599.83 2100.00 1100.00 198.95 10099.99 94100.00 199.11 160100.00 1
test_vis1_n_192097.77 20597.24 22899.34 16499.79 13998.04 237100.00 199.25 25998.88 42100.00 1100.00 177.52 368100.00 199.88 10199.85 133100.00 1
v114496.51 26495.97 27498.13 24997.98 32998.04 23799.99 20199.08 32393.51 32698.62 25198.98 32790.98 27298.62 30193.79 32990.79 32797.74 287
test_djsdf97.55 21797.38 21998.07 25297.50 34897.99 239100.00 199.13 30795.46 27998.47 26399.85 23392.01 26198.59 30698.63 22095.36 25397.62 331
WAC-MVS97.98 24095.74 300
myMVS_eth3d98.52 16998.51 15998.53 21899.50 21697.98 240100.00 199.57 6896.23 24898.07 283100.00 199.09 8697.81 35296.17 29697.96 20899.82 190
test_vis1_n96.69 25695.81 27999.32 16999.14 25697.98 24099.97 23198.98 34998.45 75100.00 1100.00 166.44 38499.99 9499.78 12399.57 154100.00 1
v192192096.16 28795.50 29598.14 24697.88 33497.96 24399.99 20199.07 32793.33 33098.60 25299.24 31089.37 29598.71 29591.28 34690.74 32897.75 264
v1096.14 28995.50 29598.07 25298.19 32197.96 24399.83 26599.07 32792.10 34698.07 28398.94 33291.07 26998.61 30292.41 34189.82 33497.63 329
eth_miper_zixun_eth97.47 22297.28 22498.06 25699.41 23497.94 24599.62 30699.08 32394.46 30398.19 28099.56 29196.91 18498.50 31596.78 28791.49 31897.74 287
GA-MVS97.72 20897.27 22699.06 18599.24 25397.93 246100.00 199.24 26495.80 26498.99 22599.64 27389.77 28899.36 24895.12 31397.62 22999.89 159
tpmvs98.59 16298.38 16899.23 17999.69 15297.90 24799.31 33999.47 7994.52 30099.68 18099.28 30997.64 15499.89 16597.71 25698.17 20199.89 159
IterMVS-LS97.56 21697.44 21597.92 27199.38 24397.90 24799.89 25799.10 31794.41 30498.32 27099.54 29497.21 17098.11 33697.50 26391.62 31597.75 264
Fangjinhua Wang, Silvano Galliani, Christoph Vogel, Marc Pollefeys: IterMVS: Iterative Probability Estimation for Efficient Multi-View Stereo.
TransMVSNet (Re)94.78 31093.72 31697.93 27098.34 30997.88 24999.23 34997.98 37591.60 34894.55 35499.71 25487.89 31298.36 32289.30 36384.92 36397.56 337
WR-MVS_H96.73 25296.32 26097.95 26798.26 31697.88 24999.72 29299.43 12195.06 28596.99 32298.68 34493.02 24598.53 31397.43 26688.33 34997.43 344
v124095.96 29595.25 30498.07 25297.91 33197.87 25199.96 23699.07 32793.24 33398.64 25098.96 33188.98 30098.61 30289.58 36190.92 32597.75 264
EI-MVSNet97.98 19897.93 19898.16 24499.11 25897.84 25299.74 28599.29 23794.39 30598.65 248100.00 197.21 17098.88 28097.62 26195.31 25597.75 264
KD-MVS_2432*160094.15 31493.08 32397.35 28999.53 20097.83 25399.63 30499.19 28492.88 33996.29 33797.68 36598.84 11196.70 36489.73 35863.92 38897.53 339
miper_refine_blended94.15 31493.08 32397.35 28999.53 20097.83 25399.63 30499.19 28492.88 33996.29 33797.68 36598.84 11196.70 36489.73 35863.92 38897.53 339
CHOSEN 1792x268899.00 12498.91 12399.25 17899.90 10797.79 255100.00 199.99 1398.79 5898.28 273100.00 193.63 23499.95 14499.66 14999.95 116100.00 1
tpmrst98.98 13098.93 12199.14 18499.61 18197.74 25699.52 31799.36 20596.05 25499.98 10699.64 27399.04 9199.86 17098.94 20098.19 19999.82 190
TAMVS98.76 14698.73 14198.86 20199.44 23197.69 25799.57 31199.34 22096.57 22999.12 21499.81 24298.83 11399.16 25897.97 25097.91 21299.73 223
CVMVSNet98.56 16598.47 16298.82 20299.11 25897.67 25899.74 28599.47 7997.57 15199.06 220100.00 195.72 20598.97 27098.21 24097.33 23199.83 185
Patchmatch-test97.83 20297.42 21699.06 18599.08 26297.66 25998.66 37899.21 28093.65 32198.25 27799.58 28799.47 4399.57 21290.25 35698.59 17399.95 126
TranMVSNet+NR-MVSNet96.45 26896.01 27197.79 27598.00 32897.62 260100.00 199.35 21495.98 25597.31 31699.64 27390.09 28398.00 34696.89 28286.80 36097.75 264
CostFormer98.84 14198.77 13599.04 18999.41 23497.58 26199.67 30099.35 21494.66 29599.96 11599.36 30599.28 7199.74 19699.41 17397.81 22099.81 198
miper_lstm_enhance97.40 22597.28 22497.75 27799.48 22297.52 262100.00 199.07 32794.08 31398.01 28999.61 28397.38 16797.98 34796.44 29491.47 32097.76 253
Anonymous2023121196.29 27895.70 28798.07 25299.80 13597.49 26399.15 36099.40 18189.11 36497.75 30299.45 30088.93 30198.98 26898.26 23989.47 33897.73 293
test_fmvs1_n97.43 22396.86 23599.15 18399.68 15697.48 26499.99 20198.98 34998.82 53100.00 1100.00 174.85 37399.96 13299.67 14699.70 144100.00 1
pm-mvs195.76 29995.01 30998.00 26498.23 31897.45 26599.24 34499.04 34093.13 33695.93 34499.72 25286.28 32798.84 28295.62 30587.92 35197.72 300
VDDNet96.39 27395.55 29498.90 19899.27 25097.45 26599.15 36099.92 3491.28 35099.98 106100.00 173.55 374100.00 199.85 10796.98 23699.24 238
dp98.72 14998.61 15199.03 19099.53 20097.39 26799.45 32399.39 19495.62 26999.94 14099.52 29598.83 11399.82 18196.77 28998.42 18299.89 159
COLMAP_ROBcopyleft97.10 798.29 18698.17 18398.65 21099.94 9897.39 26799.30 34099.40 18195.64 26797.75 302100.00 192.69 25399.95 14498.89 20399.92 12198.62 248
Johannes L. Schönberger, Enliang Zheng, Marc Pollefeys, Jan-Michael Frahm: Pixelwise View Selection for Unstructured Multi-View Stereo. ECCV 2016
AllTest98.55 16698.40 16698.99 19299.93 10097.35 269100.00 199.40 18197.08 19299.09 21699.98 18593.37 23799.95 14496.94 27999.84 13599.68 226
TestCases98.99 19299.93 10097.35 26999.40 18197.08 19299.09 21699.98 18593.37 23799.95 14496.94 27999.84 13599.68 226
v7n96.06 29395.42 30397.99 26697.58 34597.35 26999.86 26199.11 31592.81 34297.91 29599.49 29790.99 27198.92 27392.51 33888.49 34897.70 309
PS-MVSNAJss98.03 19698.06 19197.94 26897.63 34097.33 27299.89 25799.23 26896.27 24798.03 28699.59 28598.75 11898.78 28798.52 22694.61 28297.70 309
Anonymous2024052996.93 24696.22 26399.05 18799.79 13997.30 27399.16 35899.47 7988.51 36798.69 246100.00 183.50 348100.00 199.83 11197.02 23599.83 185
mvs_tets97.00 24496.69 24197.94 26897.41 35597.27 27499.60 30899.18 29196.51 23497.35 31599.69 26086.53 32698.91 27498.84 20695.09 27197.65 325
gm-plane-assit99.52 20797.26 27595.86 260100.00 199.43 24398.76 211
MDA-MVSNet_test_wron92.61 32791.09 33597.19 29796.71 36197.26 275100.00 199.14 30388.61 36667.90 39398.32 35789.03 29896.57 36790.47 35489.59 33697.74 287
PEN-MVS96.01 29495.48 29997.58 28297.74 33797.26 27599.90 25499.29 23794.55 29896.79 32999.55 29287.38 31897.84 35196.92 28187.24 35597.65 325
CSCG99.28 9599.35 7999.05 18799.99 4997.15 278100.00 199.47 7997.44 16699.42 193100.00 197.83 147100.00 199.99 59100.00 1100.00 1
jajsoiax97.07 23996.79 23997.89 27297.28 35697.12 27999.95 24299.19 28496.55 23097.31 31699.69 26087.35 32098.91 27498.70 21495.12 26997.66 320
tpm298.64 15798.58 15598.81 20499.42 23297.12 27999.69 29799.37 19993.63 32299.94 14099.67 26598.96 9999.47 23798.62 22297.95 21099.83 185
tpm cat198.05 19597.76 20398.92 19799.50 21697.10 28199.77 28099.30 23390.20 36199.72 17898.71 34297.71 15099.86 17096.75 29098.20 19899.81 198
RRT_MVS97.77 20597.76 20397.78 27697.89 33297.06 282100.00 199.29 23795.74 26598.00 29199.97 19395.94 20098.55 31298.87 20594.18 28597.72 300
YYNet192.44 32890.92 33697.03 30096.20 36397.06 28299.99 20199.14 30388.21 36967.93 39298.43 35488.63 30496.28 37190.64 35089.08 34397.74 287
OMC-MVS99.27 9699.38 7198.96 19599.95 9597.06 282100.00 199.40 18198.83 5199.88 153100.00 197.01 17699.86 17099.47 17099.84 13599.97 114
IterMVS96.76 25196.46 25297.63 27899.41 23496.89 28599.99 20199.13 30794.74 29397.59 31099.66 26789.63 29398.28 32695.71 30192.31 30597.72 300
Fangjinhua Wang, Silvano Galliani, Christoph Vogel, Marc Pollefeys: IterMVS: Iterative Probability Estimation for Efficient Multi-View Stereo.
EU-MVSNet96.63 25896.53 24796.94 30697.59 34496.87 28699.76 28299.47 7996.35 24396.85 32799.78 24892.57 25496.27 37295.33 30891.08 32497.68 315
IterMVS-SCA-FT96.72 25496.42 25497.62 28099.40 23996.83 28799.99 20199.14 30394.65 29697.55 31199.72 25289.65 29198.31 32495.62 30592.05 30897.73 293
sd_testset97.81 20397.48 21498.79 20599.82 11996.80 28899.32 33699.45 10297.62 14299.38 20099.86 22985.56 33599.77 19199.72 12996.61 24199.79 211
Baseline_NR-MVSNet96.16 28795.70 28797.56 28398.28 31596.79 289100.00 197.86 37891.93 34797.63 30599.47 29992.14 25898.35 32397.13 27486.83 35997.54 338
BH-w/o98.82 14398.81 13298.88 20099.62 17996.71 290100.00 199.28 24397.09 19098.81 240100.00 194.91 21999.96 13299.54 165100.00 199.96 120
Anonymous20240521197.87 20097.53 21398.90 19899.81 12596.70 29199.35 33499.46 9492.98 33798.83 23999.99 18090.63 275100.00 199.70 13597.03 234100.00 1
MDA-MVSNet-bldmvs91.65 33489.94 34296.79 31596.72 36096.70 29199.42 32898.94 35188.89 36566.97 39598.37 35581.43 35695.91 37589.24 36489.46 33997.75 264
MIMVSNet97.06 24096.73 24098.05 26099.38 24396.64 29398.47 38099.35 21493.41 32799.48 18998.53 34989.66 29097.70 35894.16 32598.11 20399.80 209
v14896.29 27895.84 27897.63 27897.74 33796.53 294100.00 199.07 32793.52 32598.01 28999.42 30291.22 26498.60 30496.37 29587.22 35697.75 264
DTE-MVSNet95.52 30294.99 31097.08 29897.49 35096.45 295100.00 199.25 25993.82 31696.17 34099.57 29087.81 31397.18 36094.57 31886.26 36297.62 331
BH-untuned98.64 15798.65 14798.60 21399.59 18596.17 296100.00 199.28 24396.67 22398.41 265100.00 194.52 22599.83 17899.41 173100.00 199.81 198
MVS-HIRNet94.12 31692.73 32998.29 23399.33 24595.95 29799.38 33199.19 28474.54 38798.26 27686.34 39186.07 32999.06 26291.60 34599.87 12999.85 181
XVG-OURS-SEG-HR98.27 18898.31 17498.14 24699.59 18595.92 298100.00 199.36 20598.48 7399.21 207100.00 189.27 29699.94 15699.76 12499.17 15898.56 249
XVG-OURS98.30 18498.36 17298.13 24999.58 19095.91 299100.00 199.36 20598.69 6399.23 206100.00 191.20 26699.92 16199.34 17797.82 21998.56 249
h-mvs3397.03 24296.53 24798.51 21999.79 13995.90 30099.45 32399.45 10298.21 90100.00 199.78 24897.49 16099.99 9499.72 12974.92 38199.65 231
tpm98.24 18998.22 18298.32 23199.13 25795.79 30199.53 31699.12 31395.20 28399.96 11599.36 30597.58 15599.28 25597.41 26796.67 23999.88 170
TAPA-MVS96.40 1097.64 21197.37 22098.45 22299.94 9895.70 302100.00 199.40 18197.65 13899.53 185100.00 199.31 6399.66 20380.48 382100.00 1100.00 1
Andrea Romanoni, Matteo Matteucci: TAPA-MVS: Textureless-Aware PAtchMatch Multi-View Stereo. ICCV 2019
AUN-MVS96.26 28095.67 29198.06 25699.68 15695.60 30399.82 26899.42 13196.78 21099.88 15399.80 24594.84 22099.47 23797.48 26473.29 38399.12 241
hse-mvs296.79 24996.38 25598.04 26299.68 15695.54 30499.81 26999.42 13198.21 90100.00 199.80 24597.49 16099.46 24199.72 12973.27 38499.12 241
VDD-MVS96.58 26195.99 27298.34 22999.52 20795.33 30599.18 35299.38 19696.64 22599.77 172100.00 172.51 378100.00 1100.00 196.94 23799.70 224
ppachtmachnet_test96.17 28595.89 27697.02 30197.61 34295.24 30699.99 20199.24 26493.31 33196.71 33299.62 28194.34 22798.07 34189.87 35792.30 30697.75 264
PVSNet_093.57 1996.41 26995.74 28598.41 22499.84 11695.22 307100.00 1100.00 198.08 10397.55 31199.78 24884.40 340100.00 1100.00 181.99 372100.00 1
UniMVSNet_ETH3D95.28 30694.41 31297.89 27298.91 28595.14 30899.13 36299.35 21492.11 34597.17 32099.66 26770.28 38199.36 24897.88 25295.18 26499.16 239
our_test_396.51 26496.35 25796.98 30497.61 34295.05 30999.98 22599.01 34594.68 29496.77 33199.06 31895.87 20298.14 33291.81 34392.37 30497.75 264
ADS-MVSNet298.28 18798.51 15997.62 28099.51 21295.03 31099.24 34499.41 17795.52 27499.96 11599.70 25797.57 15697.94 34997.11 27598.54 17499.88 170
GBi-Net96.07 29195.80 28196.89 30999.53 20094.87 31199.18 35299.27 25193.71 31798.53 25798.81 33884.23 34298.07 34195.31 30993.60 28897.72 300
test196.07 29195.80 28196.89 30999.53 20094.87 31199.18 35299.27 25193.71 31798.53 25798.81 33884.23 34298.07 34195.31 30993.60 28897.72 300
FMVSNet194.45 31193.63 31896.89 30998.87 29194.87 31199.18 35299.27 25190.95 35497.31 31698.81 33872.89 37798.07 34192.61 33692.81 29797.72 300
HQP5-MVS94.82 314
HQP-MVS97.73 20797.85 20097.39 28699.07 26394.82 314100.00 199.40 18199.04 1599.17 20899.97 19388.61 30599.57 21299.79 11795.58 24597.77 251
NP-MVS99.07 26394.81 31699.97 193
HQP_MVS97.71 20997.82 20297.37 28799.00 27594.80 317100.00 199.40 18199.00 2799.08 21899.97 19388.58 30799.55 22199.79 11795.57 24997.76 253
plane_prior699.06 26794.80 31788.58 307
plane_prior94.80 317100.00 199.03 2095.58 245
plane_prior394.79 32099.03 2099.08 218
plane_prior799.00 27594.78 321
CLD-MVS97.64 21197.74 20597.36 28899.01 27194.76 322100.00 199.34 22099.30 499.00 22499.97 19387.49 31699.57 21299.96 8395.58 24597.75 264
Zhaoxin Li, Wangmeng Zuo, Zhaoqi Wang, Lei Zhang: Confidence-based Large-scale Dense Multi-view Stereo. IEEE Transaction on Image Processing, 2020
OPM-MVS97.21 23197.18 23097.32 29198.08 32594.66 323100.00 199.28 24398.65 6798.92 22899.98 18586.03 33199.56 21698.28 23895.41 25197.72 300
Ray L. Khuboni, Hongjun Xu: Octagram Propagation Matching for Multi-Scale View Stereopsis (OPM-MVS).
pmmvs595.94 29695.61 29296.95 30597.42 35394.66 323100.00 198.08 37193.60 32397.05 32199.43 30187.02 32198.46 31995.76 29992.12 30797.72 300
ACMM97.17 697.37 22697.40 21897.29 29299.01 27194.64 325100.00 199.25 25998.07 10498.44 26499.98 18587.38 31899.55 22199.25 18495.19 26397.69 313
Qingshan Xu and Wenbing Tao: Multi-Scale Geometric Consistency Guided Multi-View Stereo. CVPR 2019
D2MVS97.63 21497.83 20197.05 29998.83 29594.60 326100.00 199.82 4096.89 20498.28 27399.03 32394.05 22899.47 23798.58 22594.97 27597.09 354
LPG-MVS_test97.31 22897.32 22297.28 29398.85 29394.60 326100.00 199.37 19997.35 17298.85 23599.98 18586.66 32499.56 21699.55 16295.26 25797.70 309
LGP-MVS_train97.28 29398.85 29394.60 32699.37 19997.35 17298.85 23599.98 18586.66 32499.56 21699.55 16295.26 25797.70 309
ACMP97.00 897.19 23297.16 23197.27 29598.97 28094.58 329100.00 199.32 22497.97 11297.45 31399.98 18585.79 33399.56 21699.70 13595.24 26097.67 319
Qingshan Xu and Wenbing Tao: Planar Prior Assisted PatchMatch Multi-View Stereo. AAAI 2020
Fast-Effi-MVS+-dtu98.38 18198.56 15697.82 27499.58 19094.44 330100.00 199.16 29796.75 21199.51 18799.63 27795.03 21799.60 20597.71 25699.67 14799.42 236
ACMH96.25 1196.77 25096.62 24497.21 29698.96 28194.43 33199.64 30299.33 22297.43 16796.55 33499.97 19383.52 34799.54 22499.07 19795.13 26897.66 320
Qingshan Xu and Wenbing Tao: Multi-Scale Geometric Consistency Guided Multi-View Stereo. CVPR 2019
MVP-Stereo96.51 26496.48 25196.60 31895.65 37094.25 33298.84 37598.16 36795.85 26295.23 34899.04 32192.54 25599.13 25992.98 33599.98 10796.43 366
Qingsong Yan: MVP-Stereo: A Parallel Multi-View Patchmatch Stereo Method with Dilation Matching for Photogrammetric Application.
Effi-MVS+-dtu98.51 17198.86 12897.47 28499.77 14494.21 333100.00 198.94 35197.61 14699.91 14698.75 34195.89 20199.51 23299.36 17599.48 15598.68 246
testgi96.18 28395.93 27596.93 30798.98 27994.20 334100.00 199.07 32797.16 18696.06 34299.86 22984.08 34597.79 35590.38 35597.80 22198.81 245
LTVRE_ROB95.29 1696.32 27796.10 26796.99 30398.55 30293.88 33599.45 32399.28 24394.50 30196.46 33599.52 29584.86 33899.48 23597.26 27395.03 27297.59 335
Andreas Kuhn, Heiko Hirschmüller, Daniel Scharstein, Helmut Mayer: A TV Prior for High-Quality Scalable Multi-View Stereo Reconstruction. International Journal of Computer Vision 2016
ACMH+96.20 1396.49 26796.33 25997.00 30299.06 26793.80 33699.81 26999.31 22997.32 17695.89 34599.97 19382.62 35299.54 22498.34 23394.63 28197.65 325
test_040294.35 31293.70 31796.32 32397.92 33093.60 33799.61 30798.85 35888.19 37094.68 35399.48 29880.01 36098.58 30889.39 36295.15 26796.77 360
tt080596.52 26296.23 26297.40 28599.30 24993.55 33899.32 33699.45 10296.75 21197.88 29699.99 18079.99 36199.59 20797.39 26995.98 24499.06 243
ITE_SJBPF96.84 31298.96 28193.49 33998.12 36998.12 10198.35 26799.97 19384.45 33999.56 21695.63 30495.25 25997.49 341
OurMVSNet-221017-096.14 28995.98 27396.62 31797.49 35093.44 34099.92 25098.16 36795.86 26097.65 30499.95 21585.71 33498.78 28794.93 31594.18 28597.64 328
K. test v395.46 30495.14 30796.40 32197.53 34793.40 34199.99 20199.23 26895.49 27792.70 36599.73 25184.26 34198.12 33493.94 32893.38 29297.68 315
XVG-ACMP-BASELINE96.60 26096.52 24996.84 31298.41 30793.29 34299.99 20199.32 22497.76 13098.51 26099.29 30881.95 35499.54 22498.40 22995.03 27297.68 315
SixPastTwentyTwo95.71 30095.49 29796.38 32297.42 35393.01 34399.84 26498.23 36694.75 29195.98 34399.97 19385.35 33698.43 32094.71 31793.17 29397.69 313
TinyColmap95.50 30395.12 30896.64 31698.69 29793.00 34499.40 32997.75 38096.40 24196.14 34199.87 22779.47 36299.50 23393.62 33094.72 27997.40 346
FMVSNet595.32 30595.43 30294.99 33599.39 24292.99 34599.25 34399.24 26490.45 35797.44 31498.45 35295.78 20494.39 38187.02 36891.88 31297.59 335
new_pmnet94.11 31793.47 32096.04 32796.60 36292.82 34699.97 23198.91 35490.21 36095.26 34798.05 36385.89 33298.14 33284.28 37492.01 30997.16 352
EGC-MVSNET79.46 35374.04 36195.72 32996.00 36692.73 34799.09 36799.04 3405.08 39916.72 39998.71 34273.03 37698.74 29382.05 37996.64 24095.69 373
pmmvs-eth3d91.73 33390.67 33794.92 33791.63 38392.71 34899.90 25498.54 36391.19 35188.08 37695.50 37579.31 36496.13 37390.55 35381.32 37595.91 371
TDRefinement91.93 33090.48 33896.27 32481.60 39492.65 34999.10 36597.61 38393.96 31593.77 35999.85 23380.03 35999.53 22997.82 25470.59 38596.63 364
USDC95.90 29795.70 28796.50 32098.60 30192.56 350100.00 198.30 36597.77 12896.92 32399.94 21981.25 35899.45 24293.54 33194.96 27697.49 341
UnsupCasMVSNet_eth94.25 31393.89 31495.34 33097.63 34092.13 35199.73 29099.36 20594.88 28892.78 36298.63 34682.72 35096.53 36894.57 31884.73 36497.36 347
LF4IMVS96.19 28296.18 26496.23 32598.26 31692.09 352100.00 197.89 37797.82 12497.94 29299.87 22782.71 35199.38 24797.41 26793.71 28797.20 351
test20.0393.11 32392.85 32793.88 34895.19 37491.83 353100.00 198.87 35793.68 32092.76 36398.88 33689.20 29792.71 38677.88 38689.19 34297.09 354
lessismore_v096.05 32697.55 34691.80 35499.22 27191.87 36699.91 22383.50 34898.68 29692.48 33990.42 33297.68 315
MIMVSNet191.96 32991.20 33294.23 34594.94 37691.69 35599.34 33599.22 27188.23 36894.18 35898.45 35275.52 37293.41 38579.37 38491.49 31897.60 334
pmmvs390.62 33989.36 34594.40 34190.53 38891.49 356100.00 196.73 38884.21 37893.65 36096.65 37282.56 35394.83 37982.28 37877.62 38096.89 359
pmmvs693.64 31892.87 32695.94 32897.47 35291.41 35798.92 37299.02 34387.84 37195.01 35099.61 28377.24 36998.77 29094.33 32186.41 36197.63 329
Anonymous2024052193.29 32192.76 32894.90 33895.64 37191.27 35899.97 23198.82 35987.04 37294.71 35298.19 35883.86 34696.80 36384.04 37592.56 30396.64 363
KD-MVS_self_test91.16 33590.09 34094.35 34294.44 37791.27 35899.74 28599.08 32390.82 35594.53 35594.91 38086.11 32894.78 38082.67 37768.52 38696.99 356
dcpmvs_298.87 13999.53 5796.90 30899.87 11390.88 36099.94 24799.07 32798.20 92100.00 1100.00 198.69 12199.86 170100.00 1100.00 199.95 126
patch_mono-299.04 11699.79 696.81 31499.92 10390.47 361100.00 199.41 17798.95 33100.00 1100.00 199.78 8100.00 1100.00 1100.00 199.95 126
dmvs_re97.54 21897.88 19996.54 31999.55 19690.35 36299.86 26199.46 9497.00 19699.41 198100.00 190.78 27399.30 25399.60 15695.24 26099.96 120
DSMNet-mixed95.18 30895.21 30695.08 33196.03 36590.21 36399.65 30193.64 39692.91 33898.34 26897.40 36890.05 28595.51 37891.02 34997.86 21599.51 235
Anonymous2023120693.45 32093.17 32294.30 34395.00 37589.69 36499.98 22598.43 36493.30 33294.50 35698.59 34790.52 27695.73 37777.46 38890.73 32997.48 343
MS-PatchMatch95.66 30195.87 27795.05 33297.80 33689.25 36598.88 37499.30 23396.35 24396.86 32699.01 32581.35 35799.43 24393.30 33399.98 10796.46 365
CL-MVSNet_self_test91.07 33690.35 33993.24 35093.27 37889.16 36699.55 31399.25 25992.34 34495.23 34897.05 37088.86 30393.59 38480.67 38166.95 38796.96 357
test_fmvs295.17 30995.23 30595.01 33398.95 28388.99 36799.99 20197.77 37997.79 12698.58 25399.70 25773.36 37599.34 25195.88 29895.03 27296.70 362
UnsupCasMVSNet_bld89.50 34188.00 34793.99 34795.30 37388.86 36898.52 37999.28 24385.50 37687.80 37894.11 38161.63 38596.96 36290.63 35179.26 37696.15 367
new-patchmatchnet90.30 34089.46 34492.84 35290.77 38688.55 36999.83 26598.80 36090.07 36287.86 37795.00 37878.77 36594.30 38284.86 37379.15 37795.68 374
OpenMVS_ROBcopyleft88.34 2091.89 33191.12 33394.19 34695.55 37287.63 37099.26 34298.03 37286.61 37490.65 37296.82 37170.14 38298.78 28786.54 37096.50 24396.15 367
Syy-MVS96.17 28596.57 24695.00 33499.50 21687.37 371100.00 199.57 6896.23 24898.07 283100.00 192.41 25697.81 35285.34 37297.96 20899.82 190
EG-PatchMatch MVS92.94 32692.49 33094.29 34495.87 36787.07 37299.07 37098.11 37093.19 33488.98 37498.66 34570.89 37999.08 26192.43 34095.21 26296.72 361
LCM-MVSNet-Re96.52 26297.21 22994.44 34099.27 25085.80 37399.85 26396.61 39095.98 25592.75 36498.48 35193.97 23197.55 35999.58 16098.43 18199.98 107
test_vis1_rt93.10 32492.93 32593.58 34999.63 17485.07 37499.99 20193.71 39597.49 16190.96 36897.10 36960.40 38699.95 14499.24 18697.90 21395.72 372
DeepPCF-MVS98.03 498.54 16799.72 1994.98 33699.99 4984.94 375100.00 199.42 13199.98 1100.00 1100.00 198.11 137100.00 1100.00 1100.00 1100.00 1
RPSCF97.37 22698.24 17894.76 33999.80 13584.57 37699.99 20199.05 33794.95 28799.82 167100.00 194.03 229100.00 198.15 24298.38 18699.70 224
Patchmatch-RL test93.49 31993.63 31893.05 35191.78 38183.41 37798.21 38296.95 38791.58 34991.05 36797.64 36799.40 5595.83 37694.11 32681.95 37399.91 145
Gipumacopyleft84.73 34883.50 35388.40 36097.50 34882.21 37888.87 38999.05 33765.81 38985.71 38190.49 38653.70 38796.31 37078.64 38591.74 31386.67 388
S. Galliani, K. Lasinger, K. Schindler: Massively Parallel Multiview Stereopsis by Surface Normal Diffusion. ICCV 2015
PM-MVS88.39 34387.41 34891.31 35391.73 38282.02 37999.79 27496.62 38991.06 35390.71 37195.73 37448.60 39095.96 37490.56 35281.91 37495.97 370
mvsany_test389.36 34288.96 34690.56 35591.95 38078.97 38099.74 28596.59 39196.84 20689.25 37396.07 37352.59 38897.11 36195.17 31282.44 37195.58 375
test_method91.04 33791.10 33490.85 35498.34 30977.63 381100.00 198.93 35376.69 38596.25 33998.52 35070.44 38097.98 34789.02 36691.74 31396.92 358
test_fmvs387.19 34687.02 34987.71 36192.69 37976.64 38299.96 23697.27 38493.55 32490.82 37094.03 38238.00 39692.19 38793.49 33283.35 37094.32 377
test_f86.87 34786.06 35089.28 35891.45 38576.37 38399.87 26097.11 38591.10 35288.46 37593.05 38438.31 39596.66 36691.77 34483.46 36994.82 376
PMMVS279.15 35577.28 35884.76 36682.34 39372.66 38499.70 29595.11 39471.68 38884.78 38590.87 38532.05 39889.99 38975.53 39163.45 39091.64 385
APD_test193.07 32594.14 31389.85 35799.18 25472.49 38599.76 28298.90 35692.86 34196.35 33699.94 21975.56 37199.91 16286.73 36997.98 20697.15 353
test12379.44 35479.23 35680.05 37380.03 39571.72 386100.00 177.93 40462.52 39094.81 35199.69 26078.21 36674.53 39792.57 33727.33 39793.90 378
DeepMVS_CXcopyleft89.98 35698.90 28671.46 38799.18 29197.61 14696.92 32399.83 23686.07 32999.83 17896.02 29797.65 22898.65 247
ambc88.45 35986.84 39070.76 38897.79 38598.02 37490.91 36995.14 37638.69 39498.51 31494.97 31484.23 36596.09 369
test_vis3_rt79.61 35278.19 35783.86 36788.68 38969.56 38999.81 26982.19 40386.78 37368.57 39184.51 39425.06 40098.26 32789.18 36578.94 37883.75 391
WB-MVS88.24 34490.09 34082.68 37091.56 38469.51 390100.00 198.73 36190.72 35687.29 37998.12 35992.87 24785.01 39262.19 39389.34 34093.54 381
SSC-MVS87.61 34589.47 34382.04 37190.63 38768.77 39199.99 20198.66 36290.34 35986.70 38098.08 36092.72 25284.12 39359.41 39688.71 34793.22 384
dmvs_testset93.27 32295.48 29986.65 36398.74 29668.42 39299.92 25098.91 35496.19 25293.28 361100.00 191.06 27091.67 38889.64 36091.54 31699.86 180
LCM-MVSNet79.01 35676.93 35985.27 36578.28 39668.01 39396.57 38698.03 37255.10 39382.03 38693.27 38331.99 39993.95 38382.72 37674.37 38293.84 379
CMPMVSbinary66.12 2290.65 33892.04 33186.46 36496.18 36466.87 39498.03 38399.38 19683.38 38085.49 38299.55 29277.59 36798.80 28694.44 32094.31 28493.72 380
M. Jancosek, T. Pajdla: Multi-View Reconstruction Preserving Weakly-Supported Surfaces. CVPR 2011
N_pmnet91.88 33293.37 32187.40 36297.24 35766.33 39599.90 25491.05 39889.77 36395.65 34698.58 34890.05 28598.11 33685.39 37192.72 29897.75 264
EMVS69.88 36069.09 36372.24 37984.70 39165.82 39699.96 23687.08 40249.82 39671.51 39084.74 39349.30 38975.32 39650.97 39843.71 39475.59 394
E-PMN70.72 35970.06 36272.69 37883.92 39265.48 39799.95 24292.72 39749.88 39572.30 38986.26 39247.17 39177.43 39553.83 39744.49 39375.17 395
ANet_high66.05 36263.44 36673.88 37661.14 40063.45 39895.68 38887.18 40079.93 38347.35 39780.68 39722.35 40172.33 39961.24 39435.42 39585.88 390
MVEpermissive68.59 2167.22 36164.68 36574.84 37474.67 39962.32 39995.84 38790.87 39950.98 39458.72 39681.05 39612.20 40478.95 39461.06 39556.75 39183.24 392
Simon Fuhrmann, Fabian Langguth, Michael Goesele: MVE - A Multi-View Reconstruction Environment. EUROGRAPHICS Workshops on Graphics and Cultural Heritage (2014)
testmvs80.17 35181.95 35474.80 37558.54 40159.58 400100.00 187.14 40176.09 38699.61 183100.00 167.06 38374.19 39898.84 20650.30 39290.64 387
testf184.40 34984.79 35183.23 36895.71 36858.71 40198.79 37697.75 38081.58 38184.94 38398.07 36145.33 39297.73 35677.09 38983.85 36693.24 382
APD_test284.40 34984.79 35183.23 36895.71 36858.71 40198.79 37697.75 38081.58 38184.94 38398.07 36145.33 39297.73 35677.09 38983.85 36693.24 382
tmp_tt75.80 35874.26 36080.43 37252.91 40353.67 40387.42 39197.98 37561.80 39167.04 394100.00 176.43 37096.40 36996.47 29128.26 39691.23 386
FPMVS77.92 35779.45 35573.34 37776.87 39746.81 40498.24 38199.05 33759.89 39273.55 38898.34 35636.81 39786.55 39080.96 38091.35 32286.65 389
PMVScopyleft60.66 2365.98 36365.05 36468.75 38055.06 40238.40 40588.19 39096.98 38648.30 39744.82 39888.52 38912.22 40386.49 39167.58 39283.79 36881.35 393
Y. Furukawa, J. Ponce: Accurate, dense, and robust multiview stereopsis. PAMI (2010)
wuyk23d28.28 36429.73 36823.92 38175.89 39832.61 40666.50 39212.88 40516.09 39814.59 40016.59 39912.35 40232.36 40039.36 39913.36 3986.79 396
test_blank0.07 3680.09 3710.00 3820.00 4040.00 4070.00 3930.00 4060.00 4000.00 4010.79 4000.00 4050.00 4010.00 4000.00 3990.00 397
uanet_test0.01 3690.02 3720.00 3820.00 4040.00 4070.00 3930.00 4060.00 4000.00 4010.14 4010.00 4050.00 4010.00 4000.00 3990.00 397
DCPMVS0.01 3690.02 3720.00 3820.00 4040.00 4070.00 3930.00 4060.00 4000.00 4010.14 4010.00 4050.00 4010.00 4000.00 3990.00 397
cdsmvs_eth3d_5k24.41 36532.55 3670.00 3820.00 4040.00 4070.00 39399.39 1940.00 4000.00 401100.00 193.55 2360.00 4010.00 4000.00 3990.00 397
pcd_1.5k_mvsjas8.24 36710.99 3700.00 3820.00 4040.00 4070.00 3930.00 4060.00 4000.00 4010.14 40198.75 1180.00 4010.00 4000.00 3990.00 397
sosnet-low-res0.01 3690.02 3720.00 3820.00 4040.00 4070.00 3930.00 4060.00 4000.00 4010.14 4010.00 4050.00 4010.00 4000.00 3990.00 397
sosnet0.01 3690.02 3720.00 3820.00 4040.00 4070.00 3930.00 4060.00 4000.00 4010.14 4010.00 4050.00 4010.00 4000.00 3990.00 397
uncertanet0.01 3690.02 3720.00 3820.00 4040.00 4070.00 3930.00 4060.00 4000.00 4010.14 4010.00 4050.00 4010.00 4000.00 3990.00 397
Regformer0.01 3690.02 3720.00 3820.00 4040.00 4070.00 3930.00 4060.00 4000.00 4010.14 4010.00 4050.00 4010.00 4000.00 3990.00 397
ab-mvs-re8.33 36611.11 3690.00 3820.00 4040.00 4070.00 3930.00 4060.00 4000.00 401100.00 10.00 4050.00 4010.00 4000.00 3990.00 397
uanet0.01 3690.02 3720.00 3820.00 4040.00 4070.00 3930.00 4060.00 4000.00 4010.14 4010.00 4050.00 4010.00 4000.00 3990.00 397
PC_three_145298.80 55100.00 1100.00 199.54 26100.00 1100.00 1100.00 1100.00 1
eth-test20.00 404
eth-test0.00 404
test_241102_TWO99.42 13199.03 20100.00 1100.00 199.56 23100.00 1100.00 1100.00 1100.00 1
9.1499.57 4999.99 49100.00 199.42 13197.54 153100.00 1100.00 199.15 8299.99 94100.00 1100.00 1
test_0728_THIRD98.79 58100.00 1100.00 199.61 16100.00 1100.00 1100.00 1100.00 1
GSMVS99.91 145
sam_mvs199.29 6999.91 145
sam_mvs99.33 58
MTGPAbinary99.42 131
test_post199.32 33688.24 39099.33 5899.59 20798.31 234
test_post89.05 38899.49 3999.59 207
patchmatchnet-post97.79 36499.41 5499.54 224
MTMP100.00 199.18 291
test9_res100.00 1100.00 1100.00 1
agg_prior2100.00 1100.00 1100.00 1
test_prior2100.00 198.82 53100.00 1100.00 199.47 43100.00 1100.00 1
旧先验2100.00 198.11 102100.00 1100.00 199.67 146
新几何2100.00 1
无先验100.00 199.80 4397.98 110100.00 199.33 178100.00 1
原ACMM2100.00 1
testdata2100.00 197.36 270
segment_acmp99.55 25
testdata1100.00 198.77 61
plane_prior599.40 18199.55 22199.79 11795.57 24997.76 253
plane_prior499.97 193
plane_prior2100.00 199.00 27
plane_prior199.02 270
n20.00 406
nn0.00 406
door-mid96.32 392
test1199.42 131
door96.13 393
HQP-NCC99.07 263100.00 199.04 1599.17 208
ACMP_Plane99.07 263100.00 199.04 1599.17 208
BP-MVS99.79 117
HQP4-MVS99.17 20899.57 21297.77 251
HQP3-MVS99.40 18195.58 245
HQP2-MVS88.61 305
ACMMP++_ref94.58 283
ACMMP++95.17 266
Test By Simon99.10 85