This table lists the benchmark results for the high-res multi-view scenario. The following metrics are evaluated:

(*) For exact definitions, detailing how potentially incomplete ground truth is taken into account, see our paper.

The datasets are grouped into different categories, and result averages are computed for a category and method if results of the method are available for all datasets within the category. Note that the category "all" includes both the high-res multi-view and the low-res many-view scenarios.

Methods with suffix _ROB may participate in the Robust Vision Challenge.

Click a dataset result cell to show a visualization of the reconstruction. For training datasets, ground truth and accuracy / completeness visualizations are also available. The visualizations may not work with mobile browsers.




Method Infoallhigh-res
multi-view
indooroutdoorbotani.boulde.bridgedoorexhibi.lectur.living.loungeobserv.old co.statueterrac.
sort bysort bysort bysort bysort bysorted bysort bysort bysort bysort bysort bysort bysort bysort bysort bysort by
DPM-MVS98.83 2198.46 3099.97 199.33 9999.92 199.96 3598.44 12597.96 1499.55 5599.94 497.18 19100.00 193.81 21799.94 5599.98 48
MSC_two_6792asdad99.93 299.91 3999.80 298.41 150100.00 199.96 9100.00 1100.00 1
No_MVS99.93 299.91 3999.80 298.41 150100.00 199.96 9100.00 1100.00 1
OPU-MVS99.93 299.89 4599.80 299.96 3599.80 5197.44 12100.00 1100.00 199.98 32100.00 1
MCST-MVS99.32 399.14 499.86 599.97 399.59 599.97 2898.64 7698.47 399.13 8999.92 1396.38 29100.00 199.74 30100.00 1100.00 1
CNVR-MVS99.40 199.26 199.84 699.98 299.51 699.98 1598.69 6898.20 899.93 199.98 296.82 21100.00 199.75 28100.00 199.99 23
test_0728_SECOND99.82 799.94 1399.47 799.95 5398.43 133100.00 199.99 5100.00 1100.00 1
MM98.83 2198.53 2799.76 1099.59 8299.33 899.99 499.76 698.39 499.39 7499.80 5190.49 17699.96 6299.89 1799.43 11499.98 48
HY-MVS92.50 797.79 7997.17 9799.63 1798.98 11899.32 997.49 34499.52 1495.69 8298.32 12897.41 24793.32 10899.77 12898.08 12195.75 21299.81 94
DVP-MVS++99.26 699.09 999.77 899.91 3999.31 1099.95 5398.43 13396.48 5999.80 1799.93 1197.44 12100.00 199.92 1399.98 32100.00 1
IU-MVS99.93 2499.31 1098.41 15097.71 1999.84 12100.00 1100.00 1100.00 1
test_one_060199.94 1399.30 1298.41 15096.63 5699.75 2999.93 1197.49 8
SED-MVS99.28 599.11 799.77 899.93 2499.30 1299.96 3598.43 13397.27 3499.80 1799.94 496.71 22100.00 1100.00 1100.00 1100.00 1
test_241102_ONE99.93 2499.30 1298.43 13397.26 3699.80 1799.88 2196.71 22100.00 1
DVP-MVScopyleft99.30 499.16 399.73 1299.93 2499.29 1599.95 5398.32 17497.28 3299.83 1399.91 1497.22 17100.00 199.99 5100.00 199.89 84
Zhenlong Yuan, Jinguo Luo, Fei Shen, Zhaoxin Li, Cong Liu, Tianlu Mao, Zhaoqi Wang: DVP-MVS: Synergize Depth-Edge and Visibility Prior for Multi-View Stereo. AAAI2025
test072699.93 2499.29 1599.96 3598.42 14597.28 3299.86 799.94 497.22 17
WTY-MVS98.10 6297.60 7799.60 2298.92 12699.28 1799.89 9899.52 1495.58 8598.24 13399.39 12593.33 10799.74 13497.98 12795.58 21599.78 100
test_part299.89 4599.25 1899.49 63
DPE-MVScopyleft99.26 699.10 899.74 1199.89 4599.24 1999.87 10498.44 12597.48 2799.64 4399.94 496.68 2499.99 3699.99 5100.00 199.99 23
Kehua Chen, Zhenlong Yuan, Tianlu Mao, Zhaoqi Wang: Dual-Level Precision Edges Guided Multi-View Stereo with Accurate Planarization. AAAI2025
MVS96.60 13895.56 16199.72 1396.85 26199.22 2098.31 32198.94 4191.57 23090.90 25699.61 10386.66 22399.96 6297.36 14799.88 7199.99 23
MVS_030499.06 1198.84 1799.72 1399.76 6699.21 2199.99 499.34 2598.70 299.44 6699.75 6993.24 11399.99 3699.94 1199.41 11699.95 71
NCCC99.37 299.25 299.71 1599.96 899.15 2299.97 2898.62 8198.02 1399.90 399.95 397.33 15100.00 199.54 39100.00 1100.00 1
CANet98.27 5297.82 7099.63 1799.72 7599.10 2399.98 1598.51 10897.00 4398.52 11799.71 8387.80 20799.95 7099.75 2899.38 11799.83 91
MG-MVS98.91 1998.65 2199.68 1699.94 1399.07 2499.64 18299.44 1997.33 3199.00 9499.72 8194.03 9099.98 4498.73 89100.00 1100.00 1
HPM-MVS++copyleft99.07 1098.88 1699.63 1799.90 4299.02 2599.95 5398.56 9297.56 2599.44 6699.85 3095.38 46100.00 199.31 5199.99 2199.87 87
PAPM98.60 3098.42 3199.14 6196.05 28198.96 2699.90 9099.35 2496.68 5598.35 12799.66 9696.45 2898.51 21499.45 4599.89 6799.96 64
sasdasda97.09 11296.32 13099.39 4098.93 12398.95 2799.72 16497.35 27794.45 11697.88 14499.42 11886.71 22199.52 15198.48 10193.97 23999.72 107
canonicalmvs97.09 11296.32 13099.39 4098.93 12398.95 2799.72 16497.35 27794.45 11697.88 14499.42 11886.71 22199.52 15198.48 10193.97 23999.72 107
TEST999.92 3198.92 2999.96 3598.43 13393.90 15099.71 3599.86 2695.88 3699.85 108
train_agg98.88 2098.65 2199.59 2399.92 3198.92 2999.96 3598.43 13394.35 12499.71 3599.86 2695.94 3399.85 10899.69 3599.98 3299.99 23
PS-MVSNAJ98.44 4198.20 4699.16 5798.80 13898.92 2999.54 20198.17 19397.34 2999.85 999.85 3091.20 15799.89 9699.41 4899.67 8998.69 224
test_899.92 3198.88 3299.96 3598.43 13394.35 12499.69 3799.85 3095.94 3399.85 108
SMA-MVScopyleft98.76 2498.48 2999.62 2099.87 5198.87 3399.86 11598.38 16193.19 17099.77 2799.94 495.54 41100.00 199.74 3099.99 21100.00 1
Yufeng Yin; Xiaoyan Liu; Zichao Zhang: SMA-MVS: Segmentation-Guided Multi-Scale Anchor Deformation Patch Multi-View Stereo. IEEE Transactions on Circuits and Systems for Video Technology
CHOSEN 280x42099.01 1499.03 1098.95 8099.38 9798.87 3398.46 31299.42 2197.03 4299.02 9399.09 14799.35 198.21 24799.73 3299.78 8399.77 101
DeepC-MVS_fast96.59 198.81 2398.54 2699.62 2099.90 4298.85 3599.24 24398.47 11798.14 1099.08 9099.91 1493.09 117100.00 199.04 6499.99 21100.00 1
Andreas Kuhn, Christian Sormann, Mattia Rossi, Oliver Erdler, Friedrich Fraundorfer: DeepC-MVS: Deep Confidence Prediction for Multi-View Stereo Reconstruction. 3DV 2020
thres20096.96 11996.21 13599.22 4898.97 11998.84 3699.85 11899.71 793.17 17196.26 18798.88 17489.87 18499.51 15394.26 20794.91 22699.31 182
tfpn200view996.79 12795.99 14099.19 5198.94 12198.82 3799.78 14299.71 792.86 18096.02 19298.87 17789.33 19199.50 15593.84 21494.57 22999.27 188
thres40096.78 12995.99 14099.16 5798.94 12198.82 3799.78 14299.71 792.86 18096.02 19298.87 17789.33 19199.50 15593.84 21494.57 22999.16 195
MGCFI-Net97.00 11796.22 13499.34 4398.86 13498.80 3999.67 17697.30 28494.31 12797.77 14899.41 12286.36 22799.50 15598.38 10593.90 24199.72 107
save fliter99.82 5898.79 4099.96 3598.40 15497.66 21
thres600view796.69 13595.87 15399.14 6198.90 13198.78 4199.74 15699.71 792.59 19795.84 19798.86 17989.25 19399.50 15593.44 22694.50 23299.16 195
thres100view90096.74 13295.92 15099.18 5298.90 13198.77 4299.74 15699.71 792.59 19795.84 19798.86 17989.25 19399.50 15593.84 21494.57 22999.27 188
agg_prior99.93 2498.77 4298.43 13399.63 4499.85 108
PAPR98.52 3598.16 4999.58 2499.97 398.77 4299.95 5398.43 13395.35 9198.03 13899.75 6994.03 9099.98 4498.11 11899.83 7599.99 23
APDe-MVScopyleft99.06 1198.91 1499.51 2999.94 1398.76 4599.91 8498.39 15797.20 3899.46 6499.85 3095.53 4399.79 12399.86 21100.00 199.99 23
Zhaojie Zeng, Yuesong Wang, Tao Guan: Matching Ambiguity-Resilient Multi-View Stereo via Adaptive Patch Deformation. Pattern Recognition
SD-MVS98.92 1898.70 2099.56 2599.70 7798.73 4699.94 6998.34 17196.38 6599.81 1599.76 6394.59 6799.98 4499.84 2299.96 4699.97 58
Zhenlong Yuan, Jiakai Cao, Zhaoxin Li, Hao Jiang and Zhaoqi Wang: SD-MVS: Segmentation-driven Deformation Multi-View Stereo with Spherical Refinement and EM optimization. AAAI2024
CDPH-MVS98.65 2898.36 3899.49 3299.94 1398.73 4699.87 10498.33 17293.97 14599.76 2899.87 2494.99 5799.75 13298.55 99100.00 199.98 48
DP-MVS Recon98.41 4598.02 5799.56 2599.97 398.70 4899.92 7998.44 12592.06 21798.40 12599.84 4195.68 39100.00 198.19 11399.71 8799.97 58
SF-MVS98.67 2798.40 3299.50 3099.77 6598.67 4999.90 9098.21 18893.53 15999.81 1599.89 1994.70 6699.86 10799.84 2299.93 6199.96 64
TSAR-MVS + MP.98.93 1798.77 1999.41 3899.74 7098.67 4999.77 14598.38 16196.73 5399.88 699.74 7694.89 5999.59 14999.80 2599.98 3299.97 58
Zhenlong Yuan, Jiakai Cao, Zhaoqi Wang, Zhaoxin Li: TSAR-MVS: Textureless-aware Segmentation and Correlative Refinement Guided Multi-View Stereo. Pattern Recognition
xiu_mvs_v2_base98.23 5897.97 6099.02 7398.69 14398.66 5199.52 20398.08 20597.05 4199.86 799.86 2690.65 17199.71 13899.39 5098.63 14498.69 224
alignmvs97.81 7697.33 8999.25 4698.77 14098.66 5199.99 498.44 12594.40 12398.41 12399.47 11493.65 10199.42 16498.57 9894.26 23599.67 115
DELS-MVS98.54 3398.22 4499.50 3099.15 10898.65 53100.00 198.58 8797.70 2098.21 13499.24 13992.58 13299.94 7898.63 9799.94 5599.92 81
Christian Sormann, Emanuele Santellani, Mattia Rossi, Andreas Kuhn, Friedrich Fraundorfer: DELS-MVS: Deep Epipolar Line Search for Multi-View Stereo. Winter Conference on Applications of Computer Vision (WACV), 2023
3Dnovator+91.53 1196.31 15195.24 16999.52 2896.88 26098.64 5499.72 16498.24 18595.27 9488.42 30698.98 15982.76 25599.94 7897.10 15499.83 7599.96 64
ACMMP_NAP98.49 3798.14 5099.54 2799.66 7998.62 5599.85 11898.37 16494.68 11099.53 5899.83 4392.87 123100.00 198.66 9499.84 7499.99 23
ZD-MVS99.92 3198.57 5698.52 10592.34 20999.31 7899.83 4395.06 5299.80 12199.70 3499.97 42
test1299.43 3599.74 7098.56 5798.40 15499.65 4194.76 6299.75 13299.98 3299.99 23
131496.84 12595.96 14699.48 3496.74 26898.52 5898.31 32198.86 5395.82 7889.91 26798.98 15987.49 21199.96 6297.80 13499.73 8699.96 64
APD-MVScopyleft98.62 2998.35 3999.41 3899.90 4298.51 5999.87 10498.36 16594.08 13799.74 3199.73 7894.08 8899.74 13499.42 4799.99 2199.99 23
Yuesong Wang, Zhaojie Zeng and etc.: Adaptive Patch Deformation for Textureless-Resilient Multi-View Stereo. CVPR2023
test_prior99.43 3599.94 1398.49 6098.65 7499.80 12199.99 23
MSLP-MVS++99.13 899.01 1199.49 3299.94 1398.46 6199.98 1598.86 5397.10 4099.80 1799.94 495.92 35100.00 199.51 40100.00 1100.00 1
balanced_conf0398.27 5297.99 5899.11 6698.64 14998.43 6299.47 21297.79 23294.56 11399.74 3198.35 21794.33 7899.25 16799.12 5899.96 4699.64 121
MP-MVS-pluss98.07 6397.64 7599.38 4299.74 7098.41 6399.74 15698.18 19293.35 16496.45 18199.85 3092.64 12999.97 5498.91 7799.89 6799.77 101
MP-MVS-pluss: MP-MVS-pluss. MP-MVS-pluss
新几何199.42 3799.75 6998.27 6498.63 8092.69 19099.55 5599.82 4694.40 71100.00 191.21 25399.94 5599.99 23
MVSMamba_PlusPlus97.83 7197.45 8298.99 7598.60 15198.15 6599.58 19197.74 23590.34 26699.26 8398.32 22094.29 8099.23 16899.03 6799.89 6799.58 139
bld_raw_conf0397.82 7497.45 8298.94 8198.51 16098.15 6599.58 19197.74 23594.01 14399.26 8398.38 21690.66 17099.09 18298.99 7199.89 6799.58 139
xiu_mvs_v1_base_debu97.43 9297.06 9898.55 10697.74 21098.14 6799.31 23497.86 22796.43 6299.62 4799.69 8785.56 23299.68 14299.05 6198.31 15197.83 241
xiu_mvs_v1_base97.43 9297.06 9898.55 10697.74 21098.14 6799.31 23497.86 22796.43 6299.62 4799.69 8785.56 23299.68 14299.05 6198.31 15197.83 241
xiu_mvs_v1_base_debi97.43 9297.06 9898.55 10697.74 21098.14 6799.31 23497.86 22796.43 6299.62 4799.69 8785.56 23299.68 14299.05 6198.31 15197.83 241
baseline195.78 16494.86 18198.54 10998.47 16498.07 7099.06 26097.99 21192.68 19194.13 22298.62 19893.28 11198.69 20593.79 21985.76 29898.84 215
test_prior498.05 7199.94 69
sss97.57 8897.03 10299.18 5298.37 16798.04 7299.73 16199.38 2293.46 16198.76 10799.06 15091.21 15699.89 9696.33 16797.01 18599.62 127
GG-mvs-BLEND98.54 10998.21 18098.01 7393.87 38498.52 10597.92 14197.92 23599.02 297.94 26498.17 11499.58 10199.67 115
ET-MVSNet_ETH3D94.37 20593.28 22297.64 16398.30 17297.99 7499.99 497.61 24994.35 12471.57 39099.45 11796.23 3095.34 35996.91 16385.14 30599.59 133
test_yl97.83 7197.37 8799.21 4999.18 10497.98 7599.64 18299.27 2791.43 23797.88 14498.99 15795.84 3799.84 11698.82 8295.32 22199.79 97
DCV-MVSNet97.83 7197.37 8799.21 4999.18 10497.98 7599.64 18299.27 2791.43 23797.88 14498.99 15795.84 3799.84 11698.82 8295.32 22199.79 97
gg-mvs-nofinetune93.51 22791.86 25398.47 11497.72 21597.96 7792.62 38898.51 10874.70 39097.33 15869.59 40398.91 397.79 26897.77 13999.56 10299.67 115
MTAPA98.29 5197.96 6399.30 4499.85 5497.93 7899.39 22498.28 18195.76 8097.18 16299.88 2192.74 127100.00 198.67 9299.88 7199.99 23
fmvsm_l_conf0.5_n_a99.00 1598.91 1499.28 4599.21 10397.91 7999.98 1598.85 5698.25 599.92 299.75 6994.72 6499.97 5499.87 1999.64 9199.95 71
114514_t97.41 9796.83 11199.14 6199.51 9197.83 8099.89 9898.27 18388.48 30299.06 9199.66 9690.30 17999.64 14896.32 16899.97 4299.96 64
VNet97.21 10696.57 12499.13 6598.97 11997.82 8199.03 26799.21 2994.31 12799.18 8898.88 17486.26 22899.89 9698.93 7494.32 23399.69 112
fmvsm_l_conf0.5_n98.94 1698.84 1799.25 4699.17 10697.81 8299.98 1598.86 5398.25 599.90 399.76 6394.21 8599.97 5499.87 1999.52 10499.98 48
MVSTER95.53 17395.22 17096.45 20898.56 15397.72 8399.91 8497.67 24192.38 20891.39 25097.14 25497.24 1697.30 28694.80 19487.85 28594.34 285
SteuartSystems-ACMMP99.02 1398.97 1399.18 5298.72 14297.71 8499.98 1598.44 12596.85 4699.80 1799.91 1497.57 699.85 10899.44 4699.99 2199.99 23
Skip Steuart: Steuart Systems R&D Blog.
QAPM95.40 17694.17 19699.10 6796.92 25597.71 8499.40 22098.68 7089.31 28188.94 29498.89 17382.48 25699.96 6293.12 23399.83 7599.62 127
MVSFormer96.94 12096.60 12297.95 14297.28 24397.70 8699.55 19997.27 28991.17 24499.43 6899.54 11090.92 16596.89 31394.67 19999.62 9499.25 190
lupinMVS97.85 7097.60 7798.62 9997.28 24397.70 8699.99 497.55 25595.50 8999.43 6899.67 9490.92 16598.71 20398.40 10499.62 9499.45 164
FOURS199.92 3197.66 8899.95 5398.36 16595.58 8599.52 60
ZNCC-MVS98.31 4998.03 5699.17 5599.88 4997.59 8999.94 6998.44 12594.31 12798.50 11999.82 4693.06 11899.99 3698.30 11199.99 2199.93 76
iter_conf0597.35 10096.89 10998.73 9198.60 15197.59 8998.26 32497.46 26690.34 26695.94 19498.32 22094.29 8099.23 16899.03 6799.82 7999.36 174
GST-MVS98.27 5297.97 6099.17 5599.92 3197.57 9199.93 7698.39 15794.04 14298.80 10399.74 7692.98 120100.00 198.16 11599.76 8499.93 76
CANet_DTU96.76 13096.15 13698.60 10198.78 13997.53 9299.84 12397.63 24497.25 3799.20 8599.64 9981.36 26699.98 4492.77 23798.89 13698.28 233
thisisatest051597.41 9797.02 10398.59 10397.71 21797.52 9399.97 2898.54 10191.83 22397.45 15599.04 15197.50 799.10 18194.75 19696.37 19799.16 195
旧先验199.76 6697.52 9398.64 7699.85 3095.63 4099.94 5599.99 23
XVS98.70 2698.55 2599.15 5999.94 1397.50 9599.94 6998.42 14596.22 7199.41 7099.78 5994.34 7699.96 6298.92 7599.95 5099.99 23
X-MVStestdata93.83 21592.06 24899.15 5999.94 1397.50 9599.94 6998.42 14596.22 7199.41 7041.37 41294.34 7699.96 6298.92 7599.95 5099.99 23
OpenMVScopyleft90.15 1594.77 19193.59 21098.33 12396.07 28097.48 9799.56 19798.57 8990.46 26286.51 32998.95 16878.57 29799.94 7893.86 21399.74 8597.57 250
3Dnovator91.47 1296.28 15495.34 16699.08 6896.82 26397.47 9899.45 21798.81 6095.52 8889.39 28199.00 15681.97 25999.95 7097.27 14999.83 7599.84 90
HFP-MVS98.56 3298.37 3699.14 6199.96 897.43 9999.95 5398.61 8294.77 10599.31 7899.85 3094.22 83100.00 198.70 9099.98 3299.98 48
FMVSNet392.69 24791.58 25695.99 21998.29 17397.42 10099.26 24297.62 24689.80 27789.68 27395.32 32181.62 26496.27 33987.01 31485.65 29994.29 287
test22299.55 8797.41 10199.34 23098.55 9891.86 22299.27 8299.83 4393.84 9799.95 5099.99 23
jason97.24 10496.86 11098.38 12295.73 29597.32 10299.97 2897.40 27495.34 9298.60 11699.54 11087.70 20898.56 21197.94 12899.47 10999.25 190
jason: jason.
MSP-MVS99.09 999.12 598.98 7799.93 2497.24 10399.95 5398.42 14597.50 2699.52 6099.88 2197.43 1499.71 13899.50 4199.98 32100.00 1
Zhenlong Yuan, Cong Liu, Fei Shen, Zhaoxin Li, Jingguo luo, Tianlu Mao and Zhaoqi Wang: MSP-MVS: Multi-granularity Segmentation Prior Guided Multi-View Stereo. AAAI2025
MVS_Test96.46 14395.74 15598.61 10098.18 18397.23 10499.31 23497.15 30091.07 24998.84 10097.05 26088.17 20598.97 18594.39 20397.50 17199.61 130
nrg03093.51 22792.53 24096.45 20894.36 32197.20 10599.81 13597.16 29991.60 22989.86 26997.46 24586.37 22697.68 27295.88 17580.31 34494.46 273
region2R98.54 3398.37 3699.05 6999.96 897.18 10699.96 3598.55 9894.87 10399.45 6599.85 3094.07 89100.00 198.67 92100.00 199.98 48
ACMMPR98.50 3698.32 4099.05 6999.96 897.18 10699.95 5398.60 8494.77 10599.31 7899.84 4193.73 99100.00 198.70 9099.98 3299.98 48
MVS_111021_HR98.72 2598.62 2399.01 7499.36 9897.18 10699.93 7699.90 196.81 5198.67 11199.77 6193.92 9299.89 9699.27 5399.94 5599.96 64
MP-MVScopyleft98.23 5897.97 6099.03 7199.94 1397.17 10999.95 5398.39 15794.70 10998.26 13299.81 5091.84 151100.00 198.85 8199.97 4299.93 76
Rongxuan Tan, Qing Wang, et al.: MP-MVS: Multi-Scale Windows PatchMatch and Planar Prior Multi-View Stereo.
ETVMVS97.03 11696.64 12098.20 12998.67 14597.12 11099.89 9898.57 8991.10 24898.17 13598.59 19993.86 9698.19 24895.64 17995.24 22399.28 187
PHI-MVS98.41 4598.21 4599.03 7199.86 5397.10 11199.98 1598.80 6290.78 25899.62 4799.78 5995.30 47100.00 199.80 2599.93 6199.99 23
SR-MVS98.46 3998.30 4398.93 8299.88 4997.04 11299.84 12398.35 16794.92 10199.32 7799.80 5193.35 10699.78 12599.30 5299.95 5099.96 64
PGM-MVS98.34 4898.13 5198.99 7599.92 3197.00 11399.75 15399.50 1793.90 15099.37 7599.76 6393.24 113100.00 197.75 14199.96 4699.98 48
原ACMM198.96 7999.73 7396.99 11498.51 10894.06 14099.62 4799.85 3094.97 5899.96 6295.11 18499.95 5099.92 81
PVSNet_BlendedMVS96.05 15795.82 15496.72 20199.59 8296.99 11499.95 5399.10 3194.06 14098.27 13095.80 29689.00 19899.95 7099.12 5887.53 29093.24 347
PVSNet_Blended97.94 6597.64 7598.83 8699.59 8296.99 114100.00 199.10 3195.38 9098.27 13099.08 14889.00 19899.95 7099.12 5899.25 12399.57 142
mPP-MVS98.39 4798.20 4698.97 7899.97 396.92 11799.95 5398.38 16195.04 9798.61 11599.80 5193.39 104100.00 198.64 95100.00 199.98 48
test250697.53 8997.19 9598.58 10498.66 14696.90 11898.81 29099.77 594.93 9997.95 14098.96 16392.51 13499.20 17494.93 18898.15 15699.64 121
CNLPA97.76 8197.38 8698.92 8399.53 8896.84 11999.87 10498.14 20193.78 15396.55 17999.69 8792.28 14199.98 4497.13 15299.44 11399.93 76
testing22297.08 11596.75 11598.06 13898.56 15396.82 12099.85 11898.61 8292.53 20198.84 10098.84 18393.36 10598.30 23895.84 17694.30 23499.05 205
FIs94.10 21193.43 21596.11 21794.70 31696.82 12099.58 19198.93 4592.54 20089.34 28397.31 25087.62 21097.10 29994.22 20986.58 29494.40 279
EPNet98.49 3798.40 3298.77 8999.62 8196.80 12299.90 9099.51 1697.60 2299.20 8599.36 12893.71 10099.91 8997.99 12598.71 14399.61 130
Wanjuan Su, Wenbing Tao: Efficient Edge-Preserving Multi-View Stereo Network for Depth Estimation. AAAI 2023
thisisatest053097.10 11096.72 11798.22 12897.60 22396.70 12399.92 7998.54 10191.11 24797.07 16598.97 16197.47 1099.03 18393.73 22296.09 20098.92 210
PVSNet_Blended_VisFu97.27 10396.81 11298.66 9698.81 13796.67 12499.92 7998.64 7694.51 11596.38 18598.49 20889.05 19799.88 10297.10 15498.34 14999.43 167
TSAR-MVS + GP.98.60 3098.51 2898.86 8599.73 7396.63 12599.97 2897.92 22198.07 1198.76 10799.55 10895.00 5699.94 7899.91 1697.68 16899.99 23
CP-MVS98.45 4098.32 4098.87 8499.96 896.62 12699.97 2898.39 15794.43 11998.90 9899.87 2494.30 79100.00 199.04 6499.99 2199.99 23
APD-MVS_3200maxsize98.25 5698.08 5598.78 8799.81 6096.60 12799.82 13398.30 17993.95 14799.37 7599.77 6192.84 12499.76 13198.95 7299.92 6499.97 58
EI-MVSNet-Vis-set98.27 5298.11 5398.75 9099.83 5796.59 12899.40 22098.51 10895.29 9398.51 11899.76 6393.60 10399.71 13898.53 10099.52 10499.95 71
ETV-MVS97.92 6797.80 7198.25 12798.14 18796.48 12999.98 1597.63 24495.61 8499.29 8199.46 11692.55 13398.82 19299.02 6998.54 14599.46 162
TESTMET0.1,196.74 13296.26 13298.16 13097.36 23696.48 12999.96 3598.29 18091.93 22095.77 20098.07 22995.54 4198.29 23990.55 26998.89 13699.70 110
HPM-MVS_fast97.80 7797.50 8098.68 9499.79 6296.42 13199.88 10198.16 19791.75 22798.94 9699.54 11091.82 15299.65 14797.62 14499.99 2199.99 23
test_fmvsmconf_n98.43 4398.32 4098.78 8798.12 18996.41 13299.99 498.83 5998.22 799.67 3999.64 9991.11 16199.94 7899.67 3699.62 9499.98 48
Test_1112_low_res95.72 16594.83 18298.42 11997.79 20796.41 13299.65 17896.65 34492.70 18992.86 23796.13 29092.15 14499.30 16591.88 24793.64 24399.55 144
1112_ss96.01 15995.20 17198.42 11997.80 20696.41 13299.65 17896.66 34392.71 18892.88 23699.40 12392.16 14399.30 16591.92 24693.66 24299.55 144
HPM-MVScopyleft97.96 6497.72 7298.68 9499.84 5696.39 13599.90 9098.17 19392.61 19598.62 11499.57 10791.87 15099.67 14598.87 8099.99 2199.99 23
Chunlin Ren, Qingshan Xu, Shikun Zhang, Jiaqi Yang: Hierarchical Prior Mining for Non-local Multi-View Stereo. ICCV 2023
SR-MVS-dyc-post98.31 4998.17 4898.71 9299.79 6296.37 13699.76 15098.31 17694.43 11999.40 7299.75 6993.28 11199.78 12598.90 7899.92 6499.97 58
RE-MVS-def98.13 5199.79 6296.37 13699.76 15098.31 17694.43 11999.40 7299.75 6992.95 12198.90 7899.92 6499.97 58
EI-MVSNet-UG-set98.14 6097.99 5898.60 10199.80 6196.27 13899.36 22998.50 11495.21 9598.30 12999.75 6993.29 11099.73 13798.37 10799.30 12199.81 94
Effi-MVS+96.30 15295.69 15798.16 13097.85 20396.26 13997.41 34697.21 29390.37 26498.65 11398.58 20286.61 22498.70 20497.11 15397.37 17699.52 153
cascas94.64 19693.61 20797.74 15997.82 20596.26 13999.96 3597.78 23485.76 33794.00 22397.54 24476.95 30799.21 17197.23 15095.43 21897.76 245
ab-mvs94.69 19393.42 21698.51 11298.07 19096.26 13996.49 36398.68 7090.31 26894.54 21397.00 26276.30 31599.71 13895.98 17393.38 24799.56 143
MDTV_nov1_ep13_2view96.26 13996.11 37191.89 22198.06 13794.40 7194.30 20699.67 115
UniMVSNet (Re)93.07 23892.13 24595.88 22194.84 31396.24 14399.88 10198.98 3892.49 20489.25 28595.40 31587.09 21797.14 29593.13 23278.16 35594.26 288
test_fmvsmconf0.1_n97.74 8297.44 8498.64 9895.76 29296.20 14499.94 6998.05 20898.17 998.89 9999.42 11887.65 20999.90 9199.50 4199.60 10099.82 92
FC-MVSNet-test93.81 21793.15 22495.80 22594.30 32396.20 14499.42 21998.89 4992.33 21089.03 29397.27 25287.39 21396.83 31793.20 22886.48 29594.36 281
VPA-MVSNet92.70 24691.55 25896.16 21695.09 30996.20 14498.88 28199.00 3691.02 25191.82 24795.29 32576.05 31997.96 26195.62 18081.19 33294.30 286
diffmvspermissive97.00 11796.64 12098.09 13697.64 22196.17 14799.81 13597.19 29494.67 11198.95 9599.28 13186.43 22598.76 19798.37 10797.42 17499.33 180
Fangjinhua Wang, Qingshan Xu, Yew-Soon Ong, Marc Pollefeys: Lightweight and Accurate Multi-View Stereo With Confidence-Aware Diffusion Model. IEEE T-PAMI 2025
PAPM_NR98.12 6197.93 6598.70 9399.94 1396.13 14899.82 13398.43 13394.56 11397.52 15299.70 8594.40 7199.98 4497.00 15699.98 3299.99 23
ACMMPcopyleft97.74 8297.44 8498.66 9699.92 3196.13 14899.18 24899.45 1894.84 10496.41 18499.71 8391.40 15499.99 3697.99 12598.03 16399.87 87
Qingshan Xu, Weihang Kong, Wenbing Tao, Marc Pollefeys: Multi-Scale Geometric Consistency Guided and Planar Prior Assisted Multi-View Stereo. IEEE Transactions on Pattern Analysis and Machine Intelligence
EPMVS96.53 14196.01 13998.09 13698.43 16596.12 15096.36 36599.43 2093.53 15997.64 15095.04 33194.41 7098.38 23091.13 25598.11 15999.75 103
testing1197.48 9197.27 9198.10 13598.36 16896.02 15199.92 7998.45 12093.45 16398.15 13698.70 18995.48 4499.22 17097.85 13395.05 22599.07 204
PCF-MVS94.20 595.18 18094.10 19798.43 11898.55 15695.99 15297.91 33997.31 28390.35 26589.48 28099.22 14085.19 23799.89 9690.40 27498.47 14799.41 169
Andreas Kuhn, Shan Lin, Oliver Erdler: Plane Completion and Filtering for Multi-View Stereo Reconstruction. GCPR 2019
baseline296.71 13496.49 12697.37 18095.63 30395.96 15399.74 15698.88 5192.94 17791.61 24898.97 16197.72 598.62 20994.83 19398.08 16297.53 251
DeepC-MVS94.51 496.92 12396.40 12998.45 11699.16 10795.90 15499.66 17798.06 20696.37 6894.37 21799.49 11383.29 25399.90 9197.63 14399.61 9899.55 144
Andreas Kuhn, Christian Sormann, Mattia Rossi, Oliver Erdler, Friedrich Fraundorfer: DeepC-MVS: Deep Confidence Prediction for Multi-View Stereo Reconstruction. 3DV 2020
tttt051796.85 12496.49 12697.92 14597.48 23095.89 15599.85 11898.54 10190.72 25996.63 17698.93 17297.47 1099.02 18493.03 23495.76 21198.85 214
PVSNet91.05 1397.13 10996.69 11998.45 11699.52 8995.81 15699.95 5399.65 1294.73 10799.04 9299.21 14184.48 24499.95 7094.92 18998.74 14299.58 139
MVS_111021_LR98.42 4498.38 3498.53 11199.39 9695.79 15799.87 10499.86 296.70 5498.78 10499.79 5592.03 14799.90 9199.17 5799.86 7399.88 85
CPTT-MVS97.64 8797.32 9098.58 10499.97 395.77 15899.96 3598.35 16789.90 27598.36 12699.79 5591.18 16099.99 3698.37 10799.99 2199.99 23
NR-MVSNet91.56 27190.22 28195.60 22794.05 32695.76 15998.25 32598.70 6791.16 24680.78 36496.64 27583.23 25496.57 32791.41 25177.73 35994.46 273
mvs_anonymous95.65 17195.03 17797.53 17098.19 18295.74 16099.33 23197.49 26490.87 25390.47 26097.10 25688.23 20497.16 29395.92 17497.66 16999.68 113
FMVSNet291.02 28089.56 29495.41 23497.53 22695.74 16098.98 27097.41 27387.05 32088.43 30495.00 33471.34 34496.24 34185.12 32785.21 30494.25 290
UA-Net96.54 14095.96 14698.27 12698.23 17895.71 16298.00 33798.45 12093.72 15698.41 12399.27 13488.71 20299.66 14691.19 25497.69 16799.44 166
testing9997.17 10796.91 10597.95 14298.35 17095.70 16399.91 8498.43 13392.94 17797.36 15798.72 18794.83 6099.21 17197.00 15694.64 22798.95 209
LFMVS94.75 19293.56 21298.30 12599.03 11395.70 16398.74 29597.98 21387.81 31298.47 12099.39 12567.43 36199.53 15098.01 12395.20 22499.67 115
IB-MVS92.85 694.99 18593.94 20298.16 13097.72 21595.69 16599.99 498.81 6094.28 13092.70 23896.90 26495.08 5199.17 17796.07 17173.88 37499.60 132
Christian Sormann, Mattia Rossi, Andreas Kuhn and Friedrich Fraundorfer: IB-MVS: An Iterative Algorithm for Deep Multi-View Stereo based on Binary Decisions. BMVC 2021
testing9197.16 10896.90 10697.97 14198.35 17095.67 16699.91 8498.42 14592.91 17997.33 15898.72 18794.81 6199.21 17196.98 15894.63 22899.03 206
EC-MVSNet97.38 9997.24 9297.80 15097.41 23295.64 16799.99 497.06 31094.59 11299.63 4499.32 13089.20 19698.14 25098.76 8799.23 12599.62 127
FA-MVS(test-final)95.86 16195.09 17598.15 13397.74 21095.62 16896.31 36798.17 19391.42 23996.26 18796.13 29090.56 17499.47 16292.18 24297.07 18199.35 177
AdaColmapbinary97.23 10596.80 11398.51 11299.99 195.60 16999.09 25398.84 5893.32 16696.74 17499.72 8186.04 229100.00 198.01 12399.43 11499.94 75
test_fmvsmconf0.01_n96.39 14795.74 15598.32 12491.47 36995.56 17099.84 12397.30 28497.74 1897.89 14399.35 12979.62 28599.85 10899.25 5499.24 12499.55 144
VPNet91.81 26390.46 27495.85 22394.74 31595.54 17198.98 27098.59 8692.14 21390.77 25897.44 24668.73 35597.54 27794.89 19277.89 35794.46 273
casdiffmvs_mvgpermissive96.43 14495.94 14897.89 14997.44 23195.47 17299.86 11597.29 28793.35 16496.03 19199.19 14285.39 23598.72 20297.89 13297.04 18399.49 160
Fangjinhua Wang, Qingshan Xu, Yew-Soon Ong, Marc Pollefeys: Lightweight and Accurate Multi-View Stereo With Confidence-Aware Diffusion Model. IEEE T-PAMI 2025
test-LLR96.47 14296.04 13897.78 15397.02 25095.44 17399.96 3598.21 18894.07 13895.55 20296.38 28193.90 9498.27 24390.42 27298.83 14099.64 121
test-mter96.39 14795.93 14997.78 15397.02 25095.44 17399.96 3598.21 18891.81 22595.55 20296.38 28195.17 4898.27 24390.42 27298.83 14099.64 121
SDMVSNet94.80 18893.96 20197.33 18498.92 12695.42 17599.59 18998.99 3792.41 20692.55 24097.85 23875.81 32098.93 18897.90 13191.62 25497.64 246
API-MVS97.86 6997.66 7498.47 11499.52 8995.41 17699.47 21298.87 5291.68 22898.84 10099.85 3092.34 14099.99 3698.44 10399.96 46100.00 1
XXY-MVS91.82 26290.46 27495.88 22193.91 32995.40 17798.87 28497.69 24088.63 30087.87 31197.08 25774.38 33397.89 26591.66 24984.07 31494.35 284
test_fmvsmvis_n_192097.67 8697.59 7997.91 14797.02 25095.34 17899.95 5398.45 12097.87 1597.02 16699.59 10489.64 18699.98 4499.41 4899.34 12098.42 230
testdata98.42 11999.47 9395.33 17998.56 9293.78 15399.79 2599.85 3093.64 10299.94 7894.97 18799.94 55100.00 1
WR-MVS92.31 25591.25 26395.48 23294.45 32095.29 18099.60 18898.68 7090.10 27088.07 30996.89 26580.68 27596.80 31993.14 23179.67 34894.36 281
UniMVSNet_NR-MVSNet92.95 24092.11 24695.49 22994.61 31895.28 18199.83 13099.08 3391.49 23289.21 28896.86 26787.14 21696.73 32193.20 22877.52 36094.46 273
DU-MVS92.46 25291.45 26195.49 22994.05 32695.28 18199.81 13598.74 6492.25 21289.21 28896.64 27581.66 26296.73 32193.20 22877.52 36094.46 273
miper_enhance_ethall94.36 20793.98 20095.49 22998.68 14495.24 18399.73 16197.29 28793.28 16889.86 26995.97 29494.37 7597.05 30292.20 24184.45 31094.19 294
BH-RMVSNet95.18 18094.31 19397.80 15098.17 18495.23 18499.76 15097.53 25992.52 20294.27 22099.25 13876.84 30898.80 19390.89 26399.54 10399.35 177
PatchMatch-RL96.04 15895.40 16397.95 14299.59 8295.22 18599.52 20399.07 3493.96 14696.49 18098.35 21782.28 25799.82 12090.15 27799.22 12698.81 217
CS-MVS-test97.88 6897.94 6497.70 16099.28 10195.20 18699.98 1597.15 30095.53 8799.62 4799.79 5592.08 14698.38 23098.75 8899.28 12299.52 153
test_fmvsm_n_192098.44 4198.61 2497.92 14599.27 10295.18 187100.00 198.90 4798.05 1299.80 1799.73 7892.64 12999.99 3699.58 3899.51 10798.59 227
baseline96.43 14495.98 14297.76 15797.34 23795.17 18899.51 20597.17 29793.92 14996.90 16999.28 13185.37 23698.64 20897.50 14596.86 18999.46 162
LS3D95.84 16395.11 17498.02 14099.85 5495.10 18998.74 29598.50 11487.22 31993.66 22699.86 2687.45 21299.95 7090.94 26199.81 8299.02 207
casdiffmvspermissive96.42 14695.97 14597.77 15597.30 24194.98 19099.84 12397.09 30793.75 15596.58 17899.26 13785.07 23898.78 19597.77 13997.04 18399.54 148
Fangjinhua Wang, Qingshan Xu, Yew-Soon Ong, Marc Pollefeys: Lightweight and Accurate Multi-View Stereo With Confidence-Aware Diffusion Model. IEEE T-PAMI 2025
pmmvs492.10 25991.07 26795.18 24192.82 35194.96 19199.48 21196.83 33387.45 31588.66 29996.56 27983.78 24996.83 31789.29 28484.77 30893.75 332
CDS-MVSNet96.34 14996.07 13797.13 18897.37 23594.96 19199.53 20297.91 22291.55 23195.37 20698.32 22095.05 5397.13 29693.80 21895.75 21299.30 184
Khang Truong Giang, Soohwan Song, Sungho Jo: Curvature-guided dynamic scale networks for Multi-view Stereo. ICLR 2022
UGNet95.33 17894.57 18797.62 16698.55 15694.85 19398.67 30399.32 2695.75 8196.80 17396.27 28572.18 34099.96 6294.58 20199.05 13398.04 238
Wanjuan Su, Qingshan Xu, Wenbing Tao: Uncertainty-guided Multi-view Stereo Network for Depth Estimation. IEEE Transactions on Circuits and Systems for Video Technology, 2022
EIA-MVS97.53 8997.46 8197.76 15798.04 19294.84 19499.98 1597.61 24994.41 12297.90 14299.59 10492.40 13898.87 18998.04 12299.13 12999.59 133
Vis-MVSNet (Re-imp)96.32 15095.98 14297.35 18397.93 19894.82 19599.47 21298.15 20091.83 22395.09 20999.11 14691.37 15597.47 27993.47 22597.43 17299.74 104
IS-MVSNet96.29 15395.90 15197.45 17498.13 18894.80 19699.08 25597.61 24992.02 21995.54 20498.96 16390.64 17298.08 25393.73 22297.41 17599.47 161
MAR-MVS97.43 9297.19 9598.15 13399.47 9394.79 19799.05 26498.76 6392.65 19398.66 11299.82 4688.52 20399.98 4498.12 11799.63 9399.67 115
Zhenyu Xu, Yiguang Liu, Xuelei Shi, Ying Wang, Yunan Zheng: MARMVS: Matching Ambiguity Reduced Multiple View Stereo for Efficient Large Scale Scene Reconstruction. CVPR 2020
PLCcopyleft95.54 397.93 6697.89 6898.05 13999.82 5894.77 19899.92 7998.46 11993.93 14897.20 16199.27 13495.44 4599.97 5497.41 14699.51 10799.41 169
Jie Liao, Yanping Fu, Qingan Yan, Chunxia xiao: Pyramid Multi-View Stereo with Local Consistency. Pacific Graphics 2019
FE-MVS95.70 16995.01 17897.79 15298.21 18094.57 19995.03 37998.69 6888.90 29397.50 15496.19 28792.60 13199.49 16089.99 27997.94 16599.31 182
Fast-Effi-MVS+95.02 18494.19 19597.52 17197.88 20094.55 20099.97 2897.08 30888.85 29594.47 21697.96 23484.59 24398.41 22289.84 28197.10 18099.59 133
SCA94.69 19393.81 20697.33 18497.10 24694.44 20198.86 28598.32 17493.30 16796.17 19095.59 30576.48 31397.95 26291.06 25797.43 17299.59 133
cl2293.77 21993.25 22395.33 23799.49 9294.43 20299.61 18798.09 20390.38 26389.16 29195.61 30390.56 17497.34 28391.93 24584.45 31094.21 293
CS-MVS97.79 7997.91 6697.43 17699.10 10994.42 20399.99 497.10 30595.07 9699.68 3899.75 6992.95 12198.34 23498.38 10599.14 12899.54 148
fmvsm_s_conf0.5_n97.80 7797.85 6997.67 16199.06 11194.41 20499.98 1598.97 4097.34 2999.63 4499.69 8787.27 21499.97 5499.62 3799.06 13298.62 226
PatchmatchNetpermissive95.94 16095.45 16297.39 17997.83 20494.41 20496.05 37298.40 15492.86 18097.09 16395.28 32694.21 8598.07 25589.26 28598.11 15999.70 110
Fangjinhua Wang, Silvano Galliani, Christoph Vogel, Pablo Speciale, Marc Pollefeys: PatchmatchNet: Learned Multi-View Patchmatch Stereo.
fmvsm_s_conf0.1_n97.30 10197.21 9497.60 16797.38 23494.40 20699.90 9098.64 7696.47 6199.51 6299.65 9884.99 24099.93 8599.22 5599.09 13198.46 228
mvsmamba96.94 12096.73 11697.55 16897.99 19494.37 20799.62 18597.70 23893.13 17298.42 12297.92 23588.02 20698.75 19998.78 8599.01 13499.52 153
TR-MVS94.54 19893.56 21297.49 17397.96 19694.34 20898.71 29897.51 26290.30 26994.51 21598.69 19075.56 32198.77 19692.82 23695.99 20299.35 177
Vis-MVSNetpermissive95.72 16595.15 17397.45 17497.62 22294.28 20999.28 24098.24 18594.27 13296.84 17198.94 17079.39 28798.76 19793.25 22798.49 14699.30 184
Jingyang Zhang, Yao Yao, Shiwei Li, Zixin Luo, Tian Fang: Visibility-aware Multiview Stereo Network. BMVC 2020
fmvsm_s_conf0.5_n_a97.73 8497.72 7297.77 15598.63 15094.26 21099.96 3598.92 4697.18 3999.75 2999.69 8787.00 21999.97 5499.46 4498.89 13699.08 203
test_cas_vis1_n_192096.59 13996.23 13397.65 16298.22 17994.23 21199.99 497.25 29197.77 1799.58 5499.08 14877.10 30399.97 5497.64 14299.45 11298.74 221
fmvsm_s_conf0.1_n_a97.09 11296.90 10697.63 16595.65 30194.21 21299.83 13098.50 11496.27 7099.65 4199.64 9984.72 24199.93 8599.04 6498.84 13998.74 221
MDTV_nov1_ep1395.69 15797.90 19994.15 21395.98 37498.44 12593.12 17397.98 13995.74 29895.10 5098.58 21090.02 27896.92 187
tfpnnormal89.29 31787.61 32394.34 27794.35 32294.13 21498.95 27498.94 4183.94 35484.47 34695.51 31074.84 32997.39 28077.05 37280.41 34291.48 370
KD-MVS_2432*160088.00 32586.10 32993.70 30096.91 25694.04 21597.17 35197.12 30384.93 34781.96 35692.41 36892.48 13594.51 37079.23 36052.68 40292.56 357
miper_refine_blended88.00 32586.10 32993.70 30096.91 25694.04 21597.17 35197.12 30384.93 34781.96 35692.41 36892.48 13594.51 37079.23 36052.68 40292.56 357
DP-MVS94.54 19893.42 21697.91 14799.46 9594.04 21598.93 27697.48 26581.15 37190.04 26499.55 10887.02 21899.95 7088.97 28798.11 15999.73 105
TranMVSNet+NR-MVSNet91.68 27090.61 27394.87 25093.69 33393.98 21899.69 17298.65 7491.03 25088.44 30296.83 27180.05 28396.18 34290.26 27676.89 36894.45 278
MSDG94.37 20593.36 22097.40 17898.88 13393.95 21999.37 22797.38 27585.75 33990.80 25799.17 14484.11 24899.88 10286.35 31898.43 14898.36 232
HyFIR lowres test96.66 13796.43 12897.36 18299.05 11293.91 22099.70 17199.80 390.54 26196.26 18798.08 22892.15 14498.23 24696.84 16495.46 21699.93 76
v2v48291.30 27390.07 28795.01 24593.13 34193.79 22199.77 14597.02 31388.05 30889.25 28595.37 31980.73 27497.15 29487.28 30880.04 34794.09 307
ADS-MVSNet94.79 18994.02 19997.11 19097.87 20193.79 22194.24 38098.16 19790.07 27196.43 18294.48 34990.29 18098.19 24887.44 30497.23 17799.36 174
gm-plane-assit96.97 25393.76 22391.47 23598.96 16398.79 19494.92 189
ECVR-MVScopyleft95.66 17095.05 17697.51 17298.66 14693.71 22498.85 28798.45 12094.93 9996.86 17098.96 16375.22 32699.20 17495.34 18198.15 15699.64 121
UWE-MVS96.79 12796.72 11797.00 19198.51 16093.70 22599.71 16798.60 8492.96 17697.09 16398.34 21996.67 2698.85 19192.11 24396.50 19398.44 229
v114491.09 27989.83 28894.87 25093.25 34093.69 22699.62 18596.98 31886.83 32689.64 27794.99 33580.94 27197.05 30285.08 32881.16 33393.87 326
WB-MVSnew92.90 24192.77 23293.26 31196.95 25493.63 22799.71 16798.16 19791.49 23294.28 21998.14 22681.33 26796.48 33079.47 35995.46 21689.68 383
GA-MVS93.83 21592.84 22896.80 19795.73 29593.57 22899.88 10197.24 29292.57 19992.92 23496.66 27378.73 29597.67 27387.75 30294.06 23899.17 194
miper_ehance_all_eth93.16 23592.60 23594.82 25497.57 22493.56 22999.50 20797.07 30988.75 29688.85 29595.52 30990.97 16496.74 32090.77 26584.45 31094.17 295
GeoE94.36 20793.48 21496.99 19297.29 24293.54 23099.96 3596.72 34188.35 30593.43 22798.94 17082.05 25898.05 25688.12 29996.48 19599.37 173
TAMVS95.85 16295.58 16096.65 20497.07 24793.50 23199.17 24997.82 23191.39 24195.02 21098.01 23092.20 14297.30 28693.75 22195.83 20999.14 198
V4291.28 27590.12 28694.74 25593.42 33893.46 23299.68 17497.02 31387.36 31689.85 27195.05 33081.31 26897.34 28387.34 30780.07 34693.40 342
v1090.25 30088.82 30994.57 26493.53 33593.43 23399.08 25596.87 33185.00 34687.34 32194.51 34780.93 27297.02 30982.85 34279.23 34993.26 346
EPNet_dtu95.71 16795.39 16496.66 20398.92 12693.41 23499.57 19598.90 4796.19 7397.52 15298.56 20492.65 12897.36 28177.89 36798.33 15099.20 193
Wanjuan Su, Wenbing Tao: Efficient Edge-Preserving Multi-View Stereo Network for Depth Estimation. AAAI 2023
v890.54 29289.17 30294.66 25893.43 33793.40 23599.20 24696.94 32585.76 33787.56 31594.51 34781.96 26097.19 29284.94 32978.25 35493.38 344
test111195.57 17294.98 17997.37 18098.56 15393.37 23698.86 28598.45 12094.95 9896.63 17698.95 16875.21 32799.11 17995.02 18698.14 15899.64 121
OMC-MVS97.28 10297.23 9397.41 17799.76 6693.36 23799.65 17897.95 21696.03 7597.41 15699.70 8589.61 18799.51 15396.73 16598.25 15599.38 171
tpmrst96.27 15595.98 14297.13 18897.96 19693.15 23896.34 36698.17 19392.07 21598.71 11095.12 32993.91 9398.73 20094.91 19196.62 19099.50 158
v119290.62 29189.25 30194.72 25793.13 34193.07 23999.50 20797.02 31386.33 33189.56 27995.01 33279.22 28997.09 30182.34 34681.16 33394.01 313
CHOSEN 1792x268896.81 12696.53 12597.64 16398.91 13093.07 23999.65 17899.80 395.64 8395.39 20598.86 17984.35 24699.90 9196.98 15899.16 12799.95 71
EPP-MVSNet96.69 13596.60 12296.96 19397.74 21093.05 24199.37 22798.56 9288.75 29695.83 19999.01 15496.01 3198.56 21196.92 16297.20 17999.25 190
mvsany_test197.82 7497.90 6797.55 16898.77 14093.04 24299.80 13997.93 21896.95 4599.61 5399.68 9390.92 16599.83 11899.18 5698.29 15499.80 96
c3_l92.53 25091.87 25294.52 26697.40 23392.99 24399.40 22096.93 32687.86 31088.69 29895.44 31389.95 18396.44 33290.45 27180.69 34194.14 304
anonymousdsp91.79 26890.92 26894.41 27590.76 37592.93 24498.93 27697.17 29789.08 28387.46 31895.30 32278.43 30096.92 31292.38 23988.73 27293.39 343
cl____92.31 25591.58 25694.52 26697.33 23992.77 24599.57 19596.78 33886.97 32487.56 31595.51 31089.43 18996.62 32588.60 29082.44 32394.16 300
v14419290.79 28689.52 29694.59 26293.11 34492.77 24599.56 19796.99 31686.38 33089.82 27294.95 33780.50 27997.10 29983.98 33480.41 34293.90 323
DIV-MVS_self_test92.32 25491.60 25594.47 27097.31 24092.74 24799.58 19196.75 33986.99 32387.64 31395.54 30789.55 18896.50 32988.58 29182.44 32394.17 295
IterMVS-LS92.69 24792.11 24694.43 27496.80 26492.74 24799.45 21796.89 32988.98 28889.65 27695.38 31888.77 20096.34 33690.98 26082.04 32694.22 291
Fangjinhua Wang, Silvano Galliani, Christoph Vogel, Marc Pollefeys: IterMVS: Iterative Probability Estimation for Efficient Multi-View Stereo.
dp95.05 18394.43 18996.91 19497.99 19492.73 24996.29 36897.98 21389.70 27895.93 19594.67 34493.83 9898.45 21986.91 31796.53 19299.54 148
EI-MVSNet93.73 22193.40 21994.74 25596.80 26492.69 25099.06 26097.67 24188.96 29091.39 25099.02 15288.75 20197.30 28691.07 25687.85 28594.22 291
CR-MVSNet93.45 23092.62 23495.94 22096.29 27492.66 25192.01 39196.23 35592.62 19496.94 16793.31 36291.04 16296.03 34979.23 36095.96 20399.13 199
RPMNet89.76 31087.28 32597.19 18796.29 27492.66 25192.01 39198.31 17670.19 39696.94 16785.87 39587.25 21599.78 12562.69 39795.96 20399.13 199
VDDNet93.12 23691.91 25196.76 19996.67 27192.65 25398.69 30198.21 18882.81 36497.75 14999.28 13161.57 38099.48 16198.09 12094.09 23798.15 235
WR-MVS_H91.30 27390.35 27794.15 28094.17 32592.62 25499.17 24998.94 4188.87 29486.48 33194.46 35184.36 24596.61 32688.19 29678.51 35393.21 348
CostFormer96.10 15695.88 15296.78 19897.03 24992.55 25597.08 35497.83 23090.04 27398.72 10994.89 33895.01 5598.29 23996.54 16695.77 21099.50 158
v192192090.46 29389.12 30394.50 26892.96 34892.46 25699.49 20996.98 31886.10 33389.61 27895.30 32278.55 29897.03 30782.17 34780.89 34094.01 313
test_djsdf92.83 24392.29 24494.47 27091.90 36392.46 25699.55 19997.27 28991.17 24489.96 26596.07 29381.10 26996.89 31394.67 19988.91 26794.05 310
CP-MVSNet91.23 27790.22 28194.26 27893.96 32892.39 25899.09 25398.57 8988.95 29186.42 33296.57 27879.19 29096.37 33490.29 27578.95 35094.02 311
BH-w/o95.71 16795.38 16596.68 20298.49 16392.28 25999.84 12397.50 26392.12 21492.06 24698.79 18484.69 24298.67 20795.29 18399.66 9099.09 201
v124090.20 30188.79 31094.44 27293.05 34692.27 26099.38 22596.92 32785.89 33589.36 28294.87 33977.89 30197.03 30780.66 35481.08 33694.01 313
PS-MVSNAJss93.64 22493.31 22194.61 26092.11 36092.19 26199.12 25197.38 27592.51 20388.45 30196.99 26391.20 15797.29 28994.36 20487.71 28794.36 281
test0.0.03 193.86 21493.61 20794.64 25995.02 31292.18 26299.93 7698.58 8794.07 13887.96 31098.50 20793.90 9494.96 36481.33 35193.17 24896.78 255
PMMVS96.76 13096.76 11496.76 19998.28 17592.10 26399.91 8497.98 21394.12 13599.53 5899.39 12586.93 22098.73 20096.95 16197.73 16699.45 164
GBi-Net90.88 28389.82 28994.08 28397.53 22691.97 26498.43 31596.95 32187.05 32089.68 27394.72 34071.34 34496.11 34487.01 31485.65 29994.17 295
test190.88 28389.82 28994.08 28397.53 22691.97 26498.43 31596.95 32187.05 32089.68 27394.72 34071.34 34496.11 34487.01 31485.65 29994.17 295
FMVSNet188.50 32186.64 32794.08 28395.62 30491.97 26498.43 31596.95 32183.00 36286.08 33794.72 34059.09 38496.11 34481.82 35084.07 31494.17 295
pm-mvs189.36 31687.81 32294.01 28793.40 33991.93 26798.62 30696.48 35186.25 33283.86 34996.14 28973.68 33697.04 30586.16 32075.73 37293.04 351
CSCG97.10 11097.04 10197.27 18699.89 4591.92 26899.90 9099.07 3488.67 29895.26 20899.82 4693.17 11699.98 4498.15 11699.47 10999.90 83
HQP5-MVS91.85 269
HQP-MVS94.61 19794.50 18894.92 24995.78 28891.85 26999.87 10497.89 22396.82 4893.37 22898.65 19480.65 27698.39 22697.92 12989.60 25894.53 268
NP-MVS95.77 29191.79 27198.65 194
TAPA-MVS92.12 894.42 20393.60 20996.90 19599.33 9991.78 27299.78 14298.00 21089.89 27694.52 21499.47 11491.97 14899.18 17669.90 38599.52 10499.73 105
Andrea Romanoni, Matteo Matteucci: TAPA-MVS: Textureless-Aware PAtchMatch Multi-View Stereo. ICCV 2019
HQP_MVS94.49 20194.36 19094.87 25095.71 29891.74 27399.84 12397.87 22596.38 6593.01 23298.59 19980.47 28098.37 23297.79 13789.55 26194.52 270
plane_prior91.74 27399.86 11596.76 5289.59 260
F-COLMAP96.93 12296.95 10496.87 19699.71 7691.74 27399.85 11897.95 21693.11 17495.72 20199.16 14592.35 13999.94 7895.32 18299.35 11998.92 210
plane_prior695.76 29291.72 27680.47 280
PS-CasMVS90.63 29089.51 29793.99 28993.83 33091.70 27798.98 27098.52 10588.48 30286.15 33696.53 28075.46 32296.31 33888.83 28878.86 35293.95 319
tpm295.47 17495.18 17296.35 21396.91 25691.70 27796.96 35797.93 21888.04 30998.44 12195.40 31593.32 10897.97 25994.00 21095.61 21499.38 171
plane_prior391.64 27996.63 5693.01 232
MIMVSNet90.30 29888.67 31295.17 24296.45 27391.64 27992.39 38997.15 30085.99 33490.50 25993.19 36466.95 36294.86 36782.01 34893.43 24599.01 208
plane_prior795.71 29891.59 281
tpmvs94.28 20993.57 21196.40 21098.55 15691.50 28295.70 37898.55 9887.47 31492.15 24394.26 35391.42 15398.95 18788.15 29795.85 20898.76 219
tpm cat193.51 22792.52 24196.47 20697.77 20891.47 28396.13 37098.06 20680.98 37292.91 23593.78 35789.66 18598.87 18987.03 31396.39 19699.09 201
h-mvs3394.92 18694.36 19096.59 20598.85 13591.29 28498.93 27698.94 4195.90 7698.77 10598.42 21590.89 16899.77 12897.80 13470.76 37998.72 223
BH-untuned95.18 18094.83 18296.22 21598.36 16891.22 28599.80 13997.32 28290.91 25291.08 25398.67 19183.51 25098.54 21394.23 20899.61 9898.92 210
TransMVSNet (Re)87.25 32885.28 33593.16 31393.56 33491.03 28698.54 30994.05 38983.69 35881.09 36296.16 28875.32 32396.40 33376.69 37368.41 38692.06 364
WAC-MVS90.97 28786.10 322
myMVS_eth3d94.46 20294.76 18493.55 30497.68 21890.97 28799.71 16798.35 16790.79 25692.10 24498.67 19192.46 13793.09 38287.13 31095.95 20596.59 258
v14890.70 28789.63 29293.92 29192.97 34790.97 28799.75 15396.89 32987.51 31388.27 30795.01 33281.67 26197.04 30587.40 30677.17 36593.75 332
jajsoiax91.92 26191.18 26494.15 28091.35 37090.95 29099.00 26997.42 27192.61 19587.38 31997.08 25772.46 33997.36 28194.53 20288.77 27194.13 305
PEN-MVS90.19 30289.06 30593.57 30393.06 34590.90 29199.06 26098.47 11788.11 30785.91 33896.30 28476.67 30995.94 35287.07 31176.91 36793.89 324
sd_testset93.55 22692.83 22995.74 22698.92 12690.89 29298.24 32698.85 5692.41 20692.55 24097.85 23871.07 34898.68 20693.93 21191.62 25497.64 246
OPM-MVS93.21 23292.80 23094.44 27293.12 34390.85 29399.77 14597.61 24996.19 7391.56 24998.65 19475.16 32898.47 21593.78 22089.39 26493.99 316
Ray L. Khuboni, Hongjun Xu: Octagram Propagation Matching for Multi-Scale View Stereopsis (OPM-MVS).
CLD-MVS94.06 21293.90 20394.55 26596.02 28290.69 29499.98 1597.72 23796.62 5891.05 25598.85 18277.21 30298.47 21598.11 11889.51 26394.48 272
Zhaoxin Li, Wangmeng Zuo, Zhaoqi Wang, Lei Zhang: Confidence-based Large-scale Dense Multi-view Stereo. IEEE Transaction on Image Processing, 2020
eth_miper_zixun_eth92.41 25391.93 25093.84 29597.28 24390.68 29598.83 28896.97 32088.57 30189.19 29095.73 30089.24 19596.69 32389.97 28081.55 32994.15 301
Anonymous2023121189.86 30888.44 31594.13 28298.93 12390.68 29598.54 30998.26 18476.28 38386.73 32595.54 30770.60 34997.56 27690.82 26480.27 34594.15 301
Anonymous2024052992.10 25990.65 27196.47 20698.82 13690.61 29798.72 29798.67 7375.54 38793.90 22598.58 20266.23 36599.90 9194.70 19890.67 25698.90 213
mvs_tets91.81 26391.08 26694.00 28891.63 36790.58 29898.67 30397.43 26992.43 20587.37 32097.05 26071.76 34197.32 28594.75 19688.68 27394.11 306
v7n89.65 31288.29 31793.72 29792.22 35890.56 29999.07 25997.10 30585.42 34486.73 32594.72 34080.06 28297.13 29681.14 35278.12 35693.49 340
Patchmatch-test92.65 24991.50 25996.10 21896.85 26190.49 30091.50 39397.19 29482.76 36590.23 26195.59 30595.02 5498.00 25877.41 36996.98 18699.82 92
PVSNet_088.03 1991.80 26690.27 28096.38 21298.27 17690.46 30199.94 6999.61 1393.99 14486.26 33597.39 24971.13 34799.89 9698.77 8667.05 39098.79 218
ppachtmachnet_test89.58 31388.35 31693.25 31292.40 35690.44 30299.33 23196.73 34085.49 34285.90 33995.77 29781.09 27096.00 35176.00 37682.49 32293.30 345
IterMVS90.91 28290.17 28493.12 31496.78 26790.42 30398.89 27997.05 31289.03 28586.49 33095.42 31476.59 31195.02 36287.22 30984.09 31393.93 321
Fangjinhua Wang, Silvano Galliani, Christoph Vogel, Marc Pollefeys: IterMVS: Iterative Probability Estimation for Efficient Multi-View Stereo.
MVS-HIRNet86.22 33283.19 34595.31 23896.71 27090.29 30492.12 39097.33 28162.85 39786.82 32470.37 40269.37 35297.49 27875.12 37797.99 16498.15 235
testing393.92 21394.23 19492.99 31897.54 22590.23 30599.99 499.16 3090.57 26091.33 25298.63 19792.99 11992.52 38682.46 34495.39 21996.22 263
VDD-MVS93.77 21992.94 22796.27 21498.55 15690.22 30698.77 29497.79 23290.85 25496.82 17299.42 11861.18 38299.77 12898.95 7294.13 23698.82 216
PatchT90.38 29588.75 31195.25 24095.99 28390.16 30791.22 39597.54 25776.80 38297.26 16086.01 39491.88 14996.07 34866.16 39395.91 20799.51 156
LTVRE_ROB88.28 1890.29 29989.05 30694.02 28695.08 31090.15 30897.19 35097.43 26984.91 34983.99 34897.06 25974.00 33598.28 24184.08 33287.71 28793.62 338
Andreas Kuhn, Heiko Hirschmüller, Daniel Scharstein, Helmut Mayer: A TV Prior for High-Quality Scalable Multi-View Stereo Reconstruction. International Journal of Computer Vision 2016
AUN-MVS93.28 23192.60 23595.34 23698.29 17390.09 30999.31 23498.56 9291.80 22696.35 18698.00 23189.38 19098.28 24192.46 23869.22 38497.64 246
hse-mvs294.38 20494.08 19895.31 23898.27 17690.02 31099.29 23998.56 9295.90 7698.77 10598.00 23190.89 16898.26 24597.80 13469.20 38597.64 246
IterMVS-SCA-FT90.85 28590.16 28592.93 31996.72 26989.96 31198.89 27996.99 31688.95 29186.63 32795.67 30176.48 31395.00 36387.04 31284.04 31693.84 328
DTE-MVSNet89.40 31588.24 31892.88 32092.66 35389.95 31299.10 25298.22 18787.29 31785.12 34396.22 28676.27 31695.30 36183.56 33875.74 37193.41 341
Baseline_NR-MVSNet90.33 29789.51 29792.81 32292.84 34989.95 31299.77 14593.94 39084.69 35189.04 29295.66 30281.66 26296.52 32890.99 25976.98 36691.97 366
Patchmtry89.70 31188.49 31493.33 30896.24 27789.94 31491.37 39496.23 35578.22 38087.69 31293.31 36291.04 16296.03 34980.18 35882.10 32594.02 311
pmmvs590.17 30389.09 30493.40 30692.10 36189.77 31599.74 15695.58 36985.88 33687.24 32295.74 29873.41 33796.48 33088.54 29283.56 31793.95 319
Anonymous20240521193.10 23791.99 24996.40 21099.10 10989.65 31698.88 28197.93 21883.71 35794.00 22398.75 18668.79 35399.88 10295.08 18591.71 25399.68 113
our_test_390.39 29489.48 29993.12 31492.40 35689.57 31799.33 23196.35 35487.84 31185.30 34194.99 33584.14 24796.09 34780.38 35584.56 30993.71 337
kuosan93.17 23492.60 23594.86 25398.40 16689.54 31898.44 31498.53 10484.46 35288.49 30097.92 23590.57 17397.05 30283.10 34093.49 24497.99 239
D2MVS92.76 24492.59 23993.27 31095.13 30889.54 31899.69 17299.38 2292.26 21187.59 31494.61 34685.05 23997.79 26891.59 25088.01 28392.47 360
XVG-OURS-SEG-HR94.79 18994.70 18695.08 24398.05 19189.19 32099.08 25597.54 25793.66 15794.87 21199.58 10678.78 29499.79 12397.31 14893.40 24696.25 260
XVG-OURS94.82 18794.74 18595.06 24498.00 19389.19 32099.08 25597.55 25594.10 13694.71 21299.62 10280.51 27899.74 13496.04 17293.06 25196.25 260
miper_lstm_enhance91.81 26391.39 26293.06 31797.34 23789.18 32299.38 22596.79 33786.70 32787.47 31795.22 32790.00 18295.86 35388.26 29581.37 33194.15 301
ACMM91.95 1092.88 24292.52 24193.98 29095.75 29489.08 32399.77 14597.52 26193.00 17589.95 26697.99 23376.17 31798.46 21893.63 22488.87 26994.39 280
Qingshan Xu and Wenbing Tao: Multi-Scale Geometric Consistency Guided Multi-View Stereo. CVPR 2019
MVP-Stereo90.93 28190.45 27692.37 32691.25 37288.76 32498.05 33696.17 35787.27 31884.04 34795.30 32278.46 29997.27 29183.78 33699.70 8891.09 371
Qingsong Yan: MVP-Stereo: A Parallel Multi-View Patchmatch Stereo Method with Dilation Matching for Photogrammetric Application.
test_vis1_n_192095.44 17595.31 16795.82 22498.50 16288.74 32599.98 1597.30 28497.84 1699.85 999.19 14266.82 36399.97 5498.82 8299.46 11198.76 219
ACMP92.05 992.74 24592.42 24393.73 29695.91 28688.72 32699.81 13597.53 25994.13 13487.00 32398.23 22474.07 33498.47 21596.22 17088.86 27093.99 316
Qingshan Xu and Wenbing Tao: Planar Prior Assisted PatchMatch Multi-View Stereo. AAAI 2020
LPG-MVS_test92.96 23992.71 23393.71 29895.43 30588.67 32799.75 15397.62 24692.81 18390.05 26298.49 20875.24 32498.40 22495.84 17689.12 26594.07 308
LGP-MVS_train93.71 29895.43 30588.67 32797.62 24692.81 18390.05 26298.49 20875.24 32498.40 22495.84 17689.12 26594.07 308
ACMH89.72 1790.64 28989.63 29293.66 30295.64 30288.64 32998.55 30797.45 26789.03 28581.62 35997.61 24269.75 35198.41 22289.37 28387.62 28993.92 322
Qingshan Xu and Wenbing Tao: Multi-Scale Geometric Consistency Guided Multi-View Stereo. CVPR 2019
MDA-MVSNet_test_wron85.51 33683.32 34492.10 32890.96 37388.58 33099.20 24696.52 34979.70 37757.12 40292.69 36679.11 29193.86 37677.10 37177.46 36293.86 327
AllTest92.48 25191.64 25495.00 24699.01 11488.43 33198.94 27596.82 33586.50 32888.71 29698.47 21274.73 33099.88 10285.39 32596.18 19896.71 256
TestCases95.00 24699.01 11488.43 33196.82 33586.50 32888.71 29698.47 21274.73 33099.88 10285.39 32596.18 19896.71 256
FMVSNet588.32 32287.47 32490.88 33796.90 25988.39 33397.28 34895.68 36682.60 36684.67 34592.40 37079.83 28491.16 39176.39 37481.51 33093.09 349
YYNet185.50 33783.33 34392.00 32990.89 37488.38 33499.22 24596.55 34879.60 37857.26 40192.72 36579.09 29393.78 37777.25 37077.37 36393.84 328
USDC90.00 30688.96 30793.10 31694.81 31488.16 33598.71 29895.54 37093.66 15783.75 35097.20 25365.58 36798.31 23783.96 33587.49 29192.85 354
UniMVSNet_ETH3D90.06 30588.58 31394.49 26994.67 31788.09 33697.81 34297.57 25483.91 35688.44 30297.41 24757.44 38697.62 27591.41 25188.59 27697.77 244
COLMAP_ROBcopyleft90.47 1492.18 25891.49 26094.25 27999.00 11688.04 33798.42 31896.70 34282.30 36788.43 30499.01 15476.97 30699.85 10886.11 32196.50 19394.86 267
Johannes L. Schönberger, Enliang Zheng, Marc Pollefeys, Jan-Michael Frahm: Pixelwise View Selection for Unstructured Multi-View Stereo. ECCV 2016
MDA-MVSNet-bldmvs84.09 34581.52 35291.81 33291.32 37188.00 33898.67 30395.92 36280.22 37555.60 40393.32 36168.29 35893.60 37973.76 37876.61 36993.82 330
tt080591.28 27590.18 28394.60 26196.26 27687.55 33998.39 31998.72 6589.00 28789.22 28798.47 21262.98 37698.96 18690.57 26888.00 28497.28 252
JIA-IIPM91.76 26990.70 27094.94 24896.11 27987.51 34093.16 38798.13 20275.79 38697.58 15177.68 40092.84 12497.97 25988.47 29496.54 19199.33 180
tpm93.70 22393.41 21894.58 26395.36 30787.41 34197.01 35596.90 32890.85 25496.72 17594.14 35490.40 17796.84 31690.75 26688.54 27799.51 156
dcpmvs_297.42 9698.09 5495.42 23399.58 8687.24 34299.23 24496.95 32194.28 13098.93 9799.73 7894.39 7499.16 17899.89 1799.82 7999.86 89
pmmvs-eth3d84.03 34681.97 35090.20 34584.15 39387.09 34398.10 33494.73 38283.05 36174.10 38887.77 38965.56 36894.01 37381.08 35369.24 38389.49 386
test_vis1_n93.61 22593.03 22695.35 23595.86 28786.94 34499.87 10496.36 35396.85 4699.54 5798.79 18452.41 39299.83 11898.64 9598.97 13599.29 186
CVMVSNet94.68 19594.94 18093.89 29496.80 26486.92 34599.06 26098.98 3894.45 11694.23 22199.02 15285.60 23195.31 36090.91 26295.39 21999.43 167
patch_mono-298.24 5799.12 595.59 22899.67 7886.91 34699.95 5398.89 4997.60 2299.90 399.76 6396.54 2799.98 4499.94 1199.82 7999.88 85
dongtai91.55 27291.13 26592.82 32198.16 18586.35 34799.47 21298.51 10883.24 36085.07 34497.56 24390.33 17894.94 36576.09 37591.73 25297.18 253
Fast-Effi-MVS+-dtu93.72 22293.86 20593.29 30997.06 24886.16 34899.80 13996.83 33392.66 19292.58 23997.83 24081.39 26597.67 27389.75 28296.87 18896.05 265
ACMH+89.98 1690.35 29689.54 29592.78 32395.99 28386.12 34998.81 29097.18 29689.38 28083.14 35297.76 24168.42 35798.43 22089.11 28686.05 29793.78 331
ADS-MVSNet293.80 21893.88 20493.55 30497.87 20185.94 35094.24 38096.84 33290.07 27196.43 18294.48 34990.29 18095.37 35887.44 30497.23 17799.36 174
XVG-ACMP-BASELINE91.22 27890.75 26992.63 32493.73 33285.61 35198.52 31197.44 26892.77 18689.90 26896.85 26866.64 36498.39 22692.29 24088.61 27493.89 324
TinyColmap87.87 32786.51 32891.94 33095.05 31185.57 35297.65 34394.08 38784.40 35381.82 35896.85 26862.14 37898.33 23580.25 35786.37 29691.91 367
MS-PatchMatch90.65 28890.30 27991.71 33394.22 32485.50 35398.24 32697.70 23888.67 29886.42 33296.37 28367.82 35998.03 25783.62 33799.62 9491.60 368
ITE_SJBPF92.38 32595.69 30085.14 35495.71 36592.81 18389.33 28498.11 22770.23 35098.42 22185.91 32388.16 28293.59 339
test_040285.58 33483.94 33990.50 34193.81 33185.04 35598.55 30795.20 37776.01 38479.72 36995.13 32864.15 37396.26 34066.04 39486.88 29390.21 379
test_fmvs195.35 17795.68 15994.36 27698.99 11784.98 35699.96 3596.65 34497.60 2299.73 3398.96 16371.58 34399.93 8598.31 11099.37 11898.17 234
testgi89.01 31988.04 32091.90 33193.49 33684.89 35799.73 16195.66 36793.89 15285.14 34298.17 22559.68 38394.66 36977.73 36888.88 26896.16 264
TDRefinement84.76 34082.56 34891.38 33574.58 40684.80 35897.36 34794.56 38484.73 35080.21 36696.12 29263.56 37498.39 22687.92 30063.97 39590.95 374
pmmvs685.69 33383.84 34091.26 33690.00 38184.41 35997.82 34196.15 35875.86 38581.29 36195.39 31761.21 38196.87 31583.52 33973.29 37592.50 359
MIMVSNet182.58 35080.51 35688.78 35686.68 38984.20 36096.65 36195.41 37278.75 37978.59 37392.44 36751.88 39389.76 39465.26 39578.95 35092.38 362
dmvs_re93.20 23393.15 22493.34 30796.54 27283.81 36198.71 29898.51 10891.39 24192.37 24298.56 20478.66 29697.83 26793.89 21289.74 25798.38 231
test_fmvs1_n94.25 21094.36 19093.92 29197.68 21883.70 36299.90 9096.57 34797.40 2899.67 3998.88 17461.82 37999.92 8898.23 11299.13 12998.14 237
UnsupCasMVSNet_eth85.52 33583.99 33790.10 34689.36 38383.51 36396.65 36197.99 21189.14 28275.89 38493.83 35663.25 37593.92 37481.92 34967.90 38992.88 353
OpenMVS_ROBcopyleft79.82 2083.77 34881.68 35190.03 34788.30 38682.82 36498.46 31295.22 37673.92 39276.00 38391.29 37455.00 38896.94 31168.40 38888.51 27890.34 377
Anonymous2024052185.15 33983.81 34189.16 35388.32 38582.69 36598.80 29295.74 36479.72 37681.53 36090.99 37565.38 36994.16 37272.69 38081.11 33590.63 376
new_pmnet84.49 34482.92 34789.21 35290.03 38082.60 36696.89 35995.62 36880.59 37375.77 38589.17 38265.04 37194.79 36872.12 38281.02 33790.23 378
Effi-MVS+-dtu94.53 20095.30 16892.22 32797.77 20882.54 36799.59 18997.06 31094.92 10195.29 20795.37 31985.81 23097.89 26594.80 19497.07 18196.23 262
pmmvs380.27 35677.77 36187.76 36380.32 40182.43 36898.23 32891.97 39872.74 39478.75 37187.97 38857.30 38790.99 39270.31 38462.37 39789.87 381
SixPastTwentyTwo88.73 32088.01 32190.88 33791.85 36482.24 36998.22 32995.18 37888.97 28982.26 35596.89 26571.75 34296.67 32484.00 33382.98 31893.72 336
K. test v388.05 32487.24 32690.47 34291.82 36582.23 37098.96 27397.42 27189.05 28476.93 38095.60 30468.49 35695.42 35785.87 32481.01 33893.75 332
UnsupCasMVSNet_bld79.97 35977.03 36488.78 35685.62 39181.98 37193.66 38597.35 27775.51 38870.79 39183.05 39748.70 39594.91 36678.31 36660.29 40089.46 387
EG-PatchMatch MVS85.35 33883.81 34189.99 34890.39 37781.89 37298.21 33096.09 35981.78 36974.73 38693.72 35851.56 39497.12 29879.16 36388.61 27490.96 373
CL-MVSNet_self_test84.50 34383.15 34688.53 35986.00 39081.79 37398.82 28997.35 27785.12 34583.62 35190.91 37776.66 31091.40 39069.53 38660.36 39992.40 361
DeepPCF-MVS95.94 297.71 8598.98 1293.92 29199.63 8081.76 37499.96 3598.56 9299.47 199.19 8799.99 194.16 87100.00 199.92 1399.93 61100.00 1
EGC-MVSNET69.38 36363.76 37386.26 36690.32 37881.66 37596.24 36993.85 3910.99 4133.22 41492.33 37152.44 39192.92 38459.53 40084.90 30684.21 394
OurMVSNet-221017-089.81 30989.48 29990.83 33991.64 36681.21 37698.17 33195.38 37391.48 23485.65 34097.31 25072.66 33897.29 28988.15 29784.83 30793.97 318
LF4IMVS89.25 31888.85 30890.45 34392.81 35281.19 37798.12 33294.79 38091.44 23686.29 33497.11 25565.30 37098.11 25288.53 29385.25 30392.07 363
EU-MVSNet90.14 30490.34 27889.54 35092.55 35481.06 37898.69 30198.04 20991.41 24086.59 32896.84 27080.83 27393.31 38186.20 31981.91 32794.26 288
lessismore_v090.53 34090.58 37680.90 37995.80 36377.01 37995.84 29566.15 36696.95 31083.03 34175.05 37393.74 335
KD-MVS_self_test83.59 34982.06 34988.20 36186.93 38880.70 38097.21 34996.38 35282.87 36382.49 35488.97 38367.63 36092.32 38773.75 37962.30 39891.58 369
test20.0384.72 34283.99 33786.91 36488.19 38780.62 38198.88 28195.94 36188.36 30478.87 37094.62 34568.75 35489.11 39566.52 39275.82 37091.00 372
Anonymous2023120686.32 33185.42 33489.02 35489.11 38480.53 38299.05 26495.28 37485.43 34382.82 35393.92 35574.40 33293.44 38066.99 39081.83 32893.08 350
new-patchmatchnet81.19 35279.34 35986.76 36582.86 39680.36 38397.92 33895.27 37582.09 36872.02 38986.87 39162.81 37790.74 39371.10 38363.08 39689.19 389
LCM-MVSNet-Re92.31 25592.60 23591.43 33497.53 22679.27 38499.02 26891.83 39992.07 21580.31 36594.38 35283.50 25195.48 35697.22 15197.58 17099.54 148
test_vis1_rt86.87 33086.05 33289.34 35196.12 27878.07 38599.87 10483.54 41092.03 21878.21 37589.51 38145.80 39699.91 8996.25 16993.11 25090.03 380
test_fmvs289.47 31489.70 29188.77 35894.54 31975.74 38699.83 13094.70 38394.71 10891.08 25396.82 27254.46 38997.78 27092.87 23588.27 28092.80 355
Patchmatch-RL test86.90 32985.98 33389.67 34984.45 39275.59 38789.71 39892.43 39686.89 32577.83 37790.94 37694.22 8393.63 37887.75 30269.61 38199.79 97
DSMNet-mixed88.28 32388.24 31888.42 36089.64 38275.38 38898.06 33589.86 40385.59 34188.20 30892.14 37276.15 31891.95 38978.46 36596.05 20197.92 240
Syy-MVS90.00 30690.63 27288.11 36297.68 21874.66 38999.71 16798.35 16790.79 25692.10 24498.67 19179.10 29293.09 38263.35 39695.95 20596.59 258
PM-MVS80.47 35578.88 36085.26 36783.79 39572.22 39095.89 37691.08 40085.71 34076.56 38288.30 38536.64 40093.90 37582.39 34569.57 38289.66 385
mamv495.24 17996.90 10690.25 34498.65 14872.11 39198.28 32397.64 24389.99 27495.93 19598.25 22394.74 6399.11 17999.01 7099.64 9199.53 152
mvsany_test382.12 35181.14 35385.06 36881.87 39770.41 39297.09 35392.14 39791.27 24377.84 37688.73 38439.31 39995.49 35590.75 26671.24 37889.29 388
RPSCF91.80 26692.79 23188.83 35598.15 18669.87 39398.11 33396.60 34683.93 35594.33 21899.27 13479.60 28699.46 16391.99 24493.16 24997.18 253
Gipumacopyleft66.95 37065.00 37072.79 38291.52 36867.96 39466.16 40595.15 37947.89 40358.54 40067.99 40529.74 40287.54 39950.20 40477.83 35862.87 405
S. Galliani, K. Lasinger, K. Schindler: Massively Parallel Multiview Stereopsis by Surface Normal Diffusion. ICCV 2015
test_method80.79 35479.70 35884.08 36992.83 35067.06 39599.51 20595.42 37154.34 40181.07 36393.53 35944.48 39792.22 38878.90 36477.23 36492.94 352
test_fmvs379.99 35880.17 35779.45 37584.02 39462.83 39699.05 26493.49 39488.29 30680.06 36886.65 39228.09 40488.00 39688.63 28973.27 37687.54 392
ambc83.23 37177.17 40462.61 39787.38 40094.55 38576.72 38186.65 39230.16 40196.36 33584.85 33069.86 38090.73 375
CMPMVSbinary61.59 2184.75 34185.14 33683.57 37090.32 37862.54 39896.98 35697.59 25374.33 39169.95 39296.66 27364.17 37298.32 23687.88 30188.41 27989.84 382
M. Jancosek, T. Pajdla: Multi-View Reconstruction Preserving Weakly-Supported Surfaces. CVPR 2011
test_f78.40 36077.59 36280.81 37480.82 39962.48 39996.96 35793.08 39583.44 35974.57 38784.57 39627.95 40592.63 38584.15 33172.79 37787.32 393
PMMVS267.15 36964.15 37276.14 37970.56 40962.07 40093.89 38387.52 40758.09 39860.02 39778.32 39922.38 40884.54 40259.56 39947.03 40481.80 397
test_vis3_rt68.82 36466.69 36975.21 38076.24 40560.41 40196.44 36468.71 41575.13 38950.54 40669.52 40416.42 41496.32 33780.27 35666.92 39168.89 402
APD_test181.15 35380.92 35481.86 37392.45 35559.76 40296.04 37393.61 39373.29 39377.06 37896.64 27544.28 39896.16 34372.35 38182.52 32189.67 384
DeepMVS_CXcopyleft82.92 37295.98 28558.66 40396.01 36092.72 18778.34 37495.51 31058.29 38598.08 25382.57 34385.29 30292.03 365
ANet_high56.10 37252.24 37567.66 38849.27 41456.82 40483.94 40182.02 41170.47 39533.28 41164.54 40617.23 41369.16 40945.59 40623.85 40877.02 401
LCM-MVSNet67.77 36864.73 37176.87 37862.95 41256.25 40589.37 39993.74 39244.53 40461.99 39680.74 39820.42 41186.53 40169.37 38759.50 40187.84 390
WB-MVS76.28 36177.28 36373.29 38181.18 39854.68 40697.87 34094.19 38681.30 37069.43 39390.70 37877.02 30582.06 40435.71 40968.11 38883.13 395
SSC-MVS75.42 36276.40 36572.49 38580.68 40053.62 40797.42 34594.06 38880.42 37468.75 39490.14 38076.54 31281.66 40533.25 41066.34 39282.19 396
MVEpermissive53.74 2251.54 37547.86 37962.60 38959.56 41350.93 40879.41 40377.69 41235.69 40836.27 41061.76 4095.79 41869.63 40837.97 40836.61 40567.24 403
Simon Fuhrmann, Fabian Langguth, Michael Goesele: MVE - A Multi-View Reconstruction Environment. EUROGRAPHICS Workshops on Graphics and Cultural Heritage (2014)
testf168.38 36666.92 36772.78 38378.80 40250.36 40990.95 39687.35 40855.47 39958.95 39888.14 38620.64 40987.60 39757.28 40164.69 39380.39 398
APD_test268.38 36666.92 36772.78 38378.80 40250.36 40990.95 39687.35 40855.47 39958.95 39888.14 38620.64 40987.60 39757.28 40164.69 39380.39 398
tmp_tt65.23 37162.94 37472.13 38644.90 41550.03 41181.05 40289.42 40638.45 40548.51 40799.90 1854.09 39078.70 40791.84 24818.26 40987.64 391
dmvs_testset83.79 34786.07 33176.94 37792.14 35948.60 41296.75 36090.27 40289.48 27978.65 37298.55 20679.25 28886.65 40066.85 39182.69 32095.57 266
E-PMN52.30 37452.18 37652.67 39171.51 40745.40 41393.62 38676.60 41336.01 40743.50 40864.13 40727.11 40667.31 41031.06 41126.06 40645.30 409
N_pmnet80.06 35780.78 35577.89 37691.94 36245.28 41498.80 29256.82 41678.10 38180.08 36793.33 36077.03 30495.76 35468.14 38982.81 31992.64 356
EMVS51.44 37651.22 37852.11 39270.71 40844.97 41594.04 38275.66 41435.34 40942.40 40961.56 41028.93 40365.87 41127.64 41224.73 40745.49 408
FPMVS68.72 36568.72 36668.71 38765.95 41044.27 41695.97 37594.74 38151.13 40253.26 40490.50 37925.11 40783.00 40360.80 39880.97 33978.87 400
PMVScopyleft49.05 2353.75 37351.34 37760.97 39040.80 41634.68 41774.82 40489.62 40537.55 40628.67 41272.12 4017.09 41681.63 40643.17 40768.21 38766.59 404
Y. Furukawa, J. Ponce: Accurate, dense, and robust multiview stereopsis. PAMI (2010)
wuyk23d20.37 38020.84 38318.99 39565.34 41127.73 41850.43 4067.67 4199.50 4128.01 4136.34 4136.13 41726.24 41223.40 41310.69 4112.99 410
test12337.68 37839.14 38133.31 39319.94 41724.83 41998.36 3209.75 41815.53 41151.31 40587.14 39019.62 41217.74 41347.10 4053.47 41257.36 406
testmvs40.60 37744.45 38029.05 39419.49 41814.11 42099.68 17418.47 41720.74 41064.59 39598.48 21110.95 41517.09 41456.66 40311.01 41055.94 407
test_blank0.00 3830.00 3860.00 3960.00 4190.00 4210.00 4070.00 4200.00 4140.00 4150.02 4140.00 4190.00 4150.00 4140.00 4130.00 411
uanet_test0.00 3830.00 3860.00 3960.00 4190.00 4210.00 4070.00 4200.00 4140.00 4150.00 4150.00 4190.00 4150.00 4140.00 4130.00 411
DCPMVS0.00 3830.00 3860.00 3960.00 4190.00 4210.00 4070.00 4200.00 4140.00 4150.00 4150.00 4190.00 4150.00 4140.00 4130.00 411
cdsmvs_eth3d_5k23.43 37931.24 3820.00 3960.00 4190.00 4210.00 40798.09 2030.00 4140.00 41599.67 9483.37 2520.00 4150.00 4140.00 4130.00 411
pcd_1.5k_mvsjas7.60 38210.13 3850.00 3960.00 4190.00 4210.00 4070.00 4200.00 4140.00 4150.00 41591.20 1570.00 4150.00 4140.00 4130.00 411
sosnet-low-res0.00 3830.00 3860.00 3960.00 4190.00 4210.00 4070.00 4200.00 4140.00 4150.00 4150.00 4190.00 4150.00 4140.00 4130.00 411
sosnet0.00 3830.00 3860.00 3960.00 4190.00 4210.00 4070.00 4200.00 4140.00 4150.00 4150.00 4190.00 4150.00 4140.00 4130.00 411
uncertanet0.00 3830.00 3860.00 3960.00 4190.00 4210.00 4070.00 4200.00 4140.00 4150.00 4150.00 4190.00 4150.00 4140.00 4130.00 411
Regformer0.00 3830.00 3860.00 3960.00 4190.00 4210.00 4070.00 4200.00 4140.00 4150.00 4150.00 4190.00 4150.00 4140.00 4130.00 411
ab-mvs-re8.28 38111.04 3840.00 3960.00 4190.00 4210.00 4070.00 4200.00 4140.00 41599.40 1230.00 4190.00 4150.00 4140.00 4130.00 411
uanet0.00 3830.00 3860.00 3960.00 4190.00 4210.00 4070.00 4200.00 4140.00 4150.00 4150.00 4190.00 4150.00 4140.00 4130.00 411
PC_three_145296.96 4499.80 1799.79 5597.49 8100.00 199.99 599.98 32100.00 1
eth-test20.00 419
eth-test0.00 419
test_241102_TWO98.43 13397.27 3499.80 1799.94 497.18 19100.00 1100.00 1100.00 1100.00 1
9.1498.38 3499.87 5199.91 8498.33 17293.22 16999.78 2699.89 1994.57 6899.85 10899.84 2299.97 42
test_0728_THIRD96.48 5999.83 1399.91 1497.87 4100.00 199.92 13100.00 1100.00 1
GSMVS99.59 133
sam_mvs194.72 6499.59 133
sam_mvs94.25 82
MTGPAbinary98.28 181
test_post195.78 37759.23 41193.20 11597.74 27191.06 257
test_post63.35 40894.43 6998.13 251
patchmatchnet-post91.70 37395.12 4997.95 262
MTMP99.87 10496.49 350
test9_res99.71 3399.99 21100.00 1
agg_prior299.48 43100.00 1100.00 1
test_prior299.95 5395.78 7999.73 3399.76 6396.00 3299.78 27100.00 1
旧先验299.46 21694.21 13399.85 999.95 7096.96 160
新几何299.40 220
无先验99.49 20998.71 6693.46 161100.00 194.36 20499.99 23
原ACMM299.90 90
testdata299.99 3690.54 270
segment_acmp96.68 24
testdata199.28 24096.35 69
plane_prior597.87 22598.37 23297.79 13789.55 26194.52 270
plane_prior498.59 199
plane_prior299.84 12396.38 65
plane_prior195.73 295
n20.00 420
nn0.00 420
door-mid89.69 404
test1198.44 125
door90.31 401
HQP-NCC95.78 28899.87 10496.82 4893.37 228
ACMP_Plane95.78 28899.87 10496.82 4893.37 228
BP-MVS97.92 129
HQP4-MVS93.37 22898.39 22694.53 268
HQP3-MVS97.89 22389.60 258
HQP2-MVS80.65 276
ACMMP++_ref87.04 292
ACMMP++88.23 281
Test By Simon92.82 126