This table lists the benchmark results for the high-res multi-view scenario. The following metrics are evaluated:

(*) For exact definitions, detailing how potentially incomplete ground truth is taken into account, see our paper.

The datasets are grouped into different categories, and result averages are computed for a category and method if results of the method are available for all datasets within the category. Note that the category "all" includes both the high-res multi-view and the low-res many-view scenarios.

Methods with suffix _ROB may participate in the Robust Vision Challenge.

Click a dataset result cell to show a visualization of the reconstruction. For training datasets, ground truth and accuracy / completeness visualizations are also available. The visualizations may not work with mobile browsers.




Method Infoallhigh-res
multi-view
indooroutdoorbotani.boulde.bridgedoorexhibi.lectur.living.loungeobserv.old co.statueterrac.
sort bysort bysort bysort bysort bysorted bysort bysort bysort bysort bysort bysort bysort bysort bysort bysort by
DPM-MVS98.83 2198.46 3099.97 199.33 9899.92 199.96 3498.44 12397.96 1499.55 5499.94 497.18 21100.00 193.81 21499.94 5499.98 48
MSC_two_6792asdad99.93 299.91 3999.80 298.41 148100.00 199.96 9100.00 1100.00 1
No_MVS99.93 299.91 3999.80 298.41 148100.00 199.96 9100.00 1100.00 1
OPU-MVS99.93 299.89 4599.80 299.96 3499.80 5197.44 14100.00 1100.00 199.98 32100.00 1
MCST-MVS99.32 399.14 499.86 599.97 399.59 599.97 2798.64 7698.47 299.13 8599.92 1396.38 31100.00 199.74 30100.00 1100.00 1
CNVR-MVS99.40 199.26 199.84 699.98 299.51 699.98 1498.69 6898.20 799.93 199.98 296.82 23100.00 199.75 28100.00 199.99 23
test_0728_SECOND99.82 799.94 1399.47 799.95 5298.43 131100.00 199.99 5100.00 1100.00 1
MM98.83 2198.53 2799.76 1099.59 8199.33 899.99 499.76 698.39 399.39 7299.80 5190.49 17299.96 6199.89 1699.43 11099.98 48
HY-MVS92.50 797.79 7697.17 9499.63 1798.98 11899.32 997.49 33999.52 1595.69 8298.32 12497.41 24293.32 10699.77 12898.08 11395.75 20699.81 94
DVP-MVS++99.26 699.09 999.77 899.91 3999.31 1099.95 5298.43 13196.48 5999.80 1799.93 1197.44 14100.00 199.92 1299.98 32100.00 1
IU-MVS99.93 2499.31 1098.41 14897.71 1999.84 12100.00 1100.00 1100.00 1
test_one_060199.94 1399.30 1298.41 14896.63 5699.75 2999.93 1197.49 10
SED-MVS99.28 599.11 799.77 899.93 2499.30 1299.96 3498.43 13197.27 3499.80 1799.94 496.71 24100.00 1100.00 1100.00 1100.00 1
test_241102_ONE99.93 2499.30 1298.43 13197.26 3699.80 1799.88 2196.71 24100.00 1
DVP-MVScopyleft99.30 499.16 399.73 1299.93 2499.29 1599.95 5298.32 17297.28 3299.83 1399.91 1497.22 19100.00 199.99 5100.00 199.89 84
Zhenlong Yuan, Jinguo Luo, Fei Shen, Zhaoxin Li, Cong Liu, Tianlu Mao, Zhaoqi Wang: DVP-MVS: Synergize Depth-Edge and Visibility Prior for Multi-View Stereo. AAAI2025
test072699.93 2499.29 1599.96 3498.42 14397.28 3299.86 799.94 497.22 19
WTY-MVS98.10 6197.60 7699.60 2298.92 12599.28 1799.89 9899.52 1595.58 8598.24 12999.39 12393.33 10599.74 13497.98 11995.58 20999.78 100
test_part299.89 4599.25 1899.49 62
DPE-MVScopyleft99.26 699.10 899.74 1199.89 4599.24 1999.87 10498.44 12397.48 2799.64 4299.94 496.68 2699.99 3699.99 5100.00 199.99 23
Kehua Chen, Zhenlong Yuan, Tianlu Mao, Zhaoqi Wang: Dual-Level Precision Edges Guided Multi-View Stereo with Accurate Planarization. AAAI2025
MVS96.60 13195.56 15599.72 1396.85 25399.22 2098.31 31898.94 4191.57 23090.90 25199.61 10386.66 21699.96 6197.36 13999.88 6899.99 23
NCCC99.37 299.25 299.71 1499.96 899.15 2199.97 2798.62 8198.02 1399.90 399.95 397.33 17100.00 199.54 39100.00 1100.00 1
MVS_030498.87 2098.61 2399.67 1699.18 10399.13 2299.87 10499.65 1298.17 898.75 10599.75 6992.76 12499.94 7799.88 1899.44 10899.94 74
CANet98.27 5297.82 6999.63 1799.72 7499.10 2399.98 1498.51 10797.00 4398.52 11499.71 8387.80 20199.95 6999.75 2899.38 11299.83 91
MG-MVS98.91 1898.65 2099.68 1599.94 1399.07 2499.64 18499.44 2097.33 3199.00 9099.72 8194.03 8899.98 4398.73 83100.00 1100.00 1
HPM-MVS++copyleft99.07 1098.88 1699.63 1799.90 4299.02 2599.95 5298.56 9297.56 2599.44 6599.85 3095.38 48100.00 199.31 5199.99 2199.87 87
PAPM98.60 3098.42 3199.14 5996.05 27398.96 2699.90 9099.35 2596.68 5598.35 12399.66 9696.45 3098.51 20699.45 4599.89 6699.96 64
canonicalmvs97.09 10896.32 12499.39 4098.93 12398.95 2799.72 16697.35 27094.45 11597.88 14099.42 11886.71 21599.52 15198.48 9593.97 23399.72 107
TEST999.92 3198.92 2899.96 3498.43 13193.90 14899.71 3499.86 2695.88 3899.85 108
train_agg98.88 1998.65 2099.59 2399.92 3198.92 2899.96 3498.43 13194.35 12299.71 3499.86 2695.94 3599.85 10899.69 3599.98 3299.99 23
PS-MVSNAJ98.44 4198.20 4699.16 5598.80 13698.92 2899.54 20098.17 19197.34 2999.85 999.85 3091.20 15599.89 9699.41 4899.67 8598.69 216
test_899.92 3198.88 3199.96 3498.43 13194.35 12299.69 3699.85 3095.94 3599.85 108
SMA-MVScopyleft98.76 2498.48 2999.62 2099.87 5198.87 3299.86 11798.38 15993.19 16999.77 2799.94 495.54 43100.00 199.74 3099.99 21100.00 1
Yufeng Yin; Xiaoyan Liu; Zichao Zhang: SMA-MVS: Segmentation-Guided Multi-Scale Anchor Deformation Patch Multi-View Stereo. IEEE Transactions on Circuits and Systems for Video Technology
CHOSEN 280x42099.01 1399.03 1098.95 7699.38 9698.87 3298.46 31099.42 2297.03 4299.02 8999.09 14599.35 198.21 23999.73 3299.78 7999.77 101
DeepC-MVS_fast96.59 198.81 2398.54 2699.62 2099.90 4298.85 3499.24 24098.47 11598.14 1099.08 8699.91 1493.09 114100.00 199.04 6399.99 21100.00 1
Andreas Kuhn, Christian Sormann, Mattia Rossi, Oliver Erdler, Friedrich Fraundorfer: DeepC-MVS: Deep Confidence Prediction for Multi-View Stereo Reconstruction. 3DV 2020
thres20096.96 11396.21 12799.22 4698.97 11998.84 3599.85 12099.71 793.17 17096.26 18198.88 17289.87 17999.51 15294.26 20394.91 22099.31 174
tfpn200view996.79 12095.99 13299.19 4998.94 12198.82 3699.78 14499.71 792.86 17896.02 18698.87 17589.33 18699.50 15493.84 21194.57 22399.27 180
thres40096.78 12295.99 13299.16 5598.94 12198.82 3699.78 14499.71 792.86 17896.02 18698.87 17589.33 18699.50 15493.84 21194.57 22399.16 187
save fliter99.82 5898.79 3899.96 3498.40 15297.66 21
thres600view796.69 12895.87 14799.14 5998.90 13098.78 3999.74 15899.71 792.59 19695.84 18998.86 17789.25 18899.50 15493.44 22394.50 22699.16 187
thres100view90096.74 12595.92 14499.18 5098.90 13098.77 4099.74 15899.71 792.59 19695.84 18998.86 17789.25 18899.50 15493.84 21194.57 22399.27 180
agg_prior99.93 2498.77 4098.43 13199.63 4399.85 108
PAPR98.52 3598.16 4999.58 2499.97 398.77 4099.95 5298.43 13195.35 9198.03 13499.75 6994.03 8899.98 4398.11 11099.83 7299.99 23
APDe-MVScopyleft99.06 1198.91 1499.51 2999.94 1398.76 4399.91 8398.39 15597.20 3899.46 6399.85 3095.53 4599.79 12399.86 21100.00 199.99 23
Zhaojie Zeng, Yuesong Wang, Tao Guan: Matching Ambiguity-Resilient Multi-View Stereo via Adaptive Patch Deformation. Pattern Recognition
SD-MVS98.92 1798.70 1999.56 2599.70 7698.73 4499.94 6898.34 16996.38 6599.81 1599.76 6394.59 6899.98 4399.84 2299.96 4699.97 58
Zhenlong Yuan, Jiakai Cao, Zhaoxin Li, Hao Jiang and Zhaoqi Wang: SD-MVS: Segmentation-driven Deformation Multi-View Stereo with Spherical Refinement and EM optimization. AAAI2024
CDPH-MVS98.65 2898.36 3899.49 3299.94 1398.73 4499.87 10498.33 17093.97 14399.76 2899.87 2494.99 5999.75 13298.55 93100.00 199.98 48
DP-MVS Recon98.41 4598.02 5799.56 2599.97 398.70 4699.92 7898.44 12392.06 21798.40 12199.84 4195.68 41100.00 198.19 10599.71 8399.97 58
SF-MVS98.67 2798.40 3299.50 3099.77 6598.67 4799.90 9098.21 18693.53 15899.81 1599.89 1994.70 6799.86 10799.84 2299.93 6099.96 64
TSAR-MVS + MP.98.93 1698.77 1899.41 3899.74 6998.67 4799.77 14798.38 15996.73 5399.88 699.74 7694.89 6199.59 14999.80 2599.98 3299.97 58
Zhenlong Yuan, Jiakai Cao, Zhaoqi Wang, Zhaoxin Li: TSAR-MVS: Textureless-aware Segmentation and Correlative Refinement Guided Multi-View Stereo. Pattern Recognition
xiu_mvs_v2_base98.23 5797.97 5999.02 7098.69 14198.66 4999.52 20298.08 20397.05 4199.86 799.86 2690.65 16899.71 13899.39 5098.63 13898.69 216
alignmvs97.81 7397.33 8699.25 4498.77 13898.66 4999.99 498.44 12394.40 12198.41 11999.47 11493.65 9999.42 16298.57 9294.26 22999.67 113
DELS-MVS98.54 3398.22 4499.50 3099.15 10898.65 51100.00 198.58 8797.70 2098.21 13099.24 13792.58 13099.94 7798.63 9199.94 5499.92 81
Christian Sormann, Emanuele Santellani, Mattia Rossi, Andreas Kuhn, Friedrich Fraundorfer: DELS-MVS: Deep Epipolar Line Search for Multi-View Stereo. Winter Conference on Applications of Computer Vision (WACV), 2023
3Dnovator+91.53 1196.31 14495.24 16399.52 2896.88 25298.64 5299.72 16698.24 18395.27 9488.42 30298.98 15782.76 24999.94 7797.10 14799.83 7299.96 64
ACMMP_NAP98.49 3798.14 5099.54 2799.66 7898.62 5399.85 12098.37 16294.68 11099.53 5799.83 4392.87 120100.00 198.66 8899.84 7199.99 23
ZD-MVS99.92 3198.57 5498.52 10492.34 20999.31 7699.83 4395.06 5499.80 12199.70 3499.97 42
test1299.43 3599.74 6998.56 5598.40 15299.65 4094.76 6499.75 13299.98 3299.99 23
131496.84 11895.96 13899.48 3496.74 26098.52 5698.31 31898.86 5395.82 7889.91 26398.98 15787.49 20599.96 6197.80 12699.73 8299.96 64
APD-MVScopyleft98.62 2998.35 3999.41 3899.90 4298.51 5799.87 10498.36 16394.08 13599.74 3199.73 7894.08 8699.74 13499.42 4799.99 2199.99 23
Yuesong Wang, Zhaojie Zeng and etc.: Adaptive Patch Deformation for Textureless-Resilient Multi-View Stereo. CVPR2023
test_prior99.43 3599.94 1398.49 5898.65 7499.80 12199.99 23
MSLP-MVS++99.13 899.01 1199.49 3299.94 1398.46 5999.98 1498.86 5397.10 4099.80 1799.94 495.92 37100.00 199.51 40100.00 1100.00 1
MP-MVS-pluss98.07 6297.64 7499.38 4199.74 6998.41 6099.74 15898.18 19093.35 16396.45 17599.85 3092.64 12799.97 5398.91 7299.89 6699.77 101
MP-MVS-pluss: MP-MVS-pluss. MP-MVS-pluss
新几何199.42 3799.75 6898.27 6198.63 8092.69 18999.55 5499.82 4694.40 72100.00 191.21 25099.94 5499.99 23
xiu_mvs_v1_base_debu97.43 8997.06 9598.55 10097.74 20298.14 6299.31 23197.86 22596.43 6299.62 4699.69 8785.56 22599.68 14299.05 6098.31 14597.83 232
xiu_mvs_v1_base97.43 8997.06 9598.55 10097.74 20298.14 6299.31 23197.86 22596.43 6299.62 4699.69 8785.56 22599.68 14299.05 6098.31 14597.83 232
xiu_mvs_v1_base_debi97.43 8997.06 9598.55 10097.74 20298.14 6299.31 23197.86 22596.43 6299.62 4699.69 8785.56 22599.68 14299.05 6098.31 14597.83 232
baseline195.78 15994.86 17598.54 10398.47 15798.07 6599.06 25897.99 20992.68 19094.13 21498.62 19693.28 10998.69 19793.79 21685.76 29398.84 207
test_prior498.05 6699.94 68
sss97.57 8597.03 9999.18 5098.37 16198.04 6799.73 16399.38 2393.46 16098.76 10399.06 14891.21 15499.89 9696.33 16297.01 17999.62 124
GG-mvs-BLEND98.54 10398.21 17498.01 6893.87 37998.52 10497.92 13797.92 23099.02 297.94 25698.17 10699.58 9699.67 113
ET-MVSNet_ETH3D94.37 19993.28 21797.64 15798.30 16697.99 6999.99 497.61 24394.35 12271.57 38599.45 11796.23 3295.34 35596.91 15785.14 30099.59 130
test_yl97.83 7097.37 8499.21 4799.18 10397.98 7099.64 18499.27 2791.43 23797.88 14098.99 15595.84 3999.84 11698.82 7795.32 21599.79 97
DCV-MVSNet97.83 7097.37 8499.21 4799.18 10397.98 7099.64 18499.27 2791.43 23797.88 14098.99 15595.84 3999.84 11698.82 7795.32 21599.79 97
gg-mvs-nofinetune93.51 22291.86 24998.47 10897.72 20797.96 7292.62 38398.51 10774.70 38597.33 15269.59 39898.91 397.79 26097.77 13199.56 9799.67 113
MTAPA98.29 5197.96 6299.30 4299.85 5497.93 7399.39 22198.28 17995.76 8097.18 15699.88 2192.74 125100.00 198.67 8699.88 6899.99 23
fmvsm_l_conf0.5_n_a99.00 1498.91 1499.28 4399.21 10297.91 7499.98 1498.85 5698.25 499.92 299.75 6994.72 6599.97 5399.87 1999.64 8799.95 71
114514_t97.41 9496.83 10699.14 5999.51 9097.83 7599.89 9898.27 18188.48 29999.06 8799.66 9690.30 17499.64 14896.32 16399.97 4299.96 64
VNet97.21 10296.57 11899.13 6398.97 11997.82 7699.03 26599.21 2994.31 12599.18 8498.88 17286.26 22199.89 9698.93 6994.32 22799.69 110
fmvsm_l_conf0.5_n98.94 1598.84 1799.25 4499.17 10697.81 7799.98 1498.86 5398.25 499.90 399.76 6394.21 8399.97 5399.87 1999.52 9999.98 48
MVSTER95.53 16895.22 16496.45 20198.56 14797.72 7899.91 8397.67 23692.38 20891.39 24497.14 24997.24 1897.30 28094.80 19087.85 27894.34 279
SteuartSystems-ACMMP99.02 1298.97 1399.18 5098.72 14097.71 7999.98 1498.44 12396.85 4699.80 1799.91 1497.57 899.85 10899.44 4699.99 2199.99 23
Skip Steuart: Steuart Systems R&D Blog.
QAPM95.40 17194.17 19099.10 6496.92 24797.71 7999.40 21798.68 7089.31 27888.94 29098.89 17182.48 25099.96 6193.12 23099.83 7299.62 124
MVSFormer96.94 11496.60 11697.95 13697.28 23597.70 8199.55 19897.27 28091.17 24499.43 6699.54 11090.92 16396.89 30994.67 19599.62 8999.25 182
lupinMVS97.85 6997.60 7698.62 9397.28 23597.70 8199.99 497.55 24995.50 8999.43 6699.67 9490.92 16398.71 19598.40 9799.62 8999.45 157
FOURS199.92 3197.66 8399.95 5298.36 16395.58 8599.52 59
ZNCC-MVS98.31 4998.03 5699.17 5399.88 4997.59 8499.94 6898.44 12394.31 12598.50 11699.82 4693.06 11599.99 3698.30 10399.99 2199.93 76
GST-MVS98.27 5297.97 5999.17 5399.92 3197.57 8599.93 7598.39 15594.04 14198.80 9999.74 7692.98 117100.00 198.16 10799.76 8099.93 76
CANet_DTU96.76 12396.15 12898.60 9598.78 13797.53 8699.84 12597.63 23897.25 3799.20 8199.64 9981.36 26099.98 4392.77 23498.89 13098.28 225
thisisatest051597.41 9497.02 10098.59 9797.71 20997.52 8799.97 2798.54 10191.83 22397.45 14999.04 14997.50 999.10 17594.75 19296.37 19199.16 187
iter_conf0596.07 15095.95 14096.44 20398.43 15897.52 8799.91 8396.85 32494.16 13192.49 23597.98 22798.20 497.34 27597.26 14288.29 27194.45 269
旧先验199.76 6697.52 8798.64 7699.85 3095.63 4299.94 5499.99 23
XVS98.70 2698.55 2599.15 5799.94 1397.50 9099.94 6898.42 14396.22 7199.41 6899.78 5994.34 7799.96 6198.92 7099.95 4999.99 23
X-MVStestdata93.83 21092.06 24399.15 5799.94 1397.50 9099.94 6898.42 14396.22 7199.41 6841.37 40794.34 7799.96 6198.92 7099.95 4999.99 23
OpenMVScopyleft90.15 1594.77 18593.59 20598.33 11796.07 27297.48 9299.56 19698.57 8990.46 26286.51 32598.95 16678.57 29199.94 7793.86 21099.74 8197.57 241
3Dnovator91.47 1296.28 14795.34 16099.08 6596.82 25597.47 9399.45 21498.81 6095.52 8889.39 27799.00 15481.97 25399.95 6997.27 14199.83 7299.84 90
HFP-MVS98.56 3298.37 3699.14 5999.96 897.43 9499.95 5298.61 8294.77 10599.31 7699.85 3094.22 81100.00 198.70 8499.98 3299.98 48
FMVSNet392.69 24391.58 25295.99 21498.29 16797.42 9599.26 23997.62 24089.80 27489.68 26995.32 31681.62 25896.27 33587.01 31185.65 29494.29 281
test22299.55 8697.41 9699.34 22798.55 9891.86 22299.27 8099.83 4393.84 9599.95 4999.99 23
jason97.24 10096.86 10598.38 11695.73 28797.32 9799.97 2797.40 26795.34 9298.60 11399.54 11087.70 20298.56 20397.94 12099.47 10499.25 182
jason: jason.
MSP-MVS99.09 999.12 598.98 7399.93 2497.24 9899.95 5298.42 14397.50 2699.52 5999.88 2197.43 1699.71 13899.50 4199.98 32100.00 1
Zhenlong Yuan, Cong Liu, Fei Shen, Zhaoxin Li, Jingguo luo, Tianlu Mao and Zhaoqi Wang: MSP-MVS: Multi-granularity Segmentation Prior Guided Multi-View Stereo. AAAI2025
MVS_Test96.46 13695.74 14998.61 9498.18 17797.23 9999.31 23197.15 29191.07 24998.84 9697.05 25588.17 20098.97 17894.39 19997.50 16599.61 127
nrg03093.51 22292.53 23596.45 20194.36 31397.20 10099.81 13797.16 29091.60 22989.86 26597.46 24086.37 21997.68 26495.88 17080.31 33994.46 264
region2R98.54 3398.37 3699.05 6699.96 897.18 10199.96 3498.55 9894.87 10399.45 6499.85 3094.07 87100.00 198.67 86100.00 199.98 48
ACMMPR98.50 3698.32 4099.05 6699.96 897.18 10199.95 5298.60 8494.77 10599.31 7699.84 4193.73 97100.00 198.70 8499.98 3299.98 48
MVS_111021_HR98.72 2598.62 2299.01 7199.36 9797.18 10199.93 7599.90 196.81 5198.67 10899.77 6193.92 9099.89 9699.27 5399.94 5499.96 64
MP-MVScopyleft98.23 5797.97 5999.03 6899.94 1397.17 10499.95 5298.39 15594.70 10998.26 12899.81 5091.84 149100.00 198.85 7699.97 4299.93 76
Rongxuan Tan, Qing Wang, et al.: MP-MVS: Multi-Scale Windows PatchMatch and Planar Prior Multi-View Stereo.
ETVMVS97.03 11196.64 11498.20 12398.67 14397.12 10599.89 9898.57 8991.10 24898.17 13198.59 19793.86 9498.19 24095.64 17495.24 21799.28 179
PHI-MVS98.41 4598.21 4599.03 6899.86 5397.10 10699.98 1498.80 6290.78 25899.62 4699.78 5995.30 49100.00 199.80 2599.93 6099.99 23
SR-MVS98.46 3998.30 4398.93 7799.88 4997.04 10799.84 12598.35 16594.92 10199.32 7599.80 5193.35 10499.78 12599.30 5299.95 4999.96 64
iter_conf_final96.01 15395.93 14296.28 20898.38 16097.03 10899.87 10497.03 30494.05 14092.61 23197.98 22798.01 597.34 27597.02 14988.39 27094.47 263
PGM-MVS98.34 4898.13 5198.99 7299.92 3197.00 10999.75 15599.50 1893.90 14899.37 7399.76 6393.24 111100.00 197.75 13399.96 4699.98 48
原ACMM198.96 7599.73 7296.99 11098.51 10794.06 13899.62 4699.85 3094.97 6099.96 6195.11 17999.95 4999.92 81
PVSNet_BlendedMVS96.05 15195.82 14896.72 19499.59 8196.99 11099.95 5299.10 3194.06 13898.27 12695.80 29189.00 19399.95 6999.12 5887.53 28493.24 342
PVSNet_Blended97.94 6497.64 7498.83 8199.59 8196.99 110100.00 199.10 3195.38 9098.27 12699.08 14689.00 19399.95 6999.12 5899.25 11899.57 137
mPP-MVS98.39 4798.20 4698.97 7499.97 396.92 11399.95 5298.38 15995.04 9798.61 11299.80 5193.39 102100.00 198.64 89100.00 199.98 48
test250697.53 8697.19 9298.58 9898.66 14496.90 11498.81 28899.77 594.93 9997.95 13698.96 16192.51 13299.20 16994.93 18498.15 15099.64 119
CNLPA97.76 7897.38 8398.92 7899.53 8796.84 11599.87 10498.14 19993.78 15196.55 17399.69 8792.28 13999.98 4397.13 14599.44 10899.93 76
testing22297.08 11096.75 11098.06 13298.56 14796.82 11699.85 12098.61 8292.53 20098.84 9698.84 18193.36 10398.30 23095.84 17194.30 22899.05 197
FIs94.10 20593.43 21096.11 21294.70 30896.82 11699.58 19298.93 4592.54 19989.34 27997.31 24587.62 20497.10 29494.22 20586.58 28994.40 271
EPNet98.49 3798.40 3298.77 8499.62 8096.80 11899.90 9099.51 1797.60 2299.20 8199.36 12693.71 9899.91 8997.99 11798.71 13799.61 127
Wanjuan Su, Wenbing Tao: Efficient Edge-Preserving Multi-View Stereo Network for Depth Estimation. AAAI 2023
thisisatest053097.10 10696.72 11198.22 12297.60 21596.70 11999.92 7898.54 10191.11 24797.07 15998.97 15997.47 1299.03 17693.73 21996.09 19498.92 202
PVSNet_Blended_VisFu97.27 9996.81 10798.66 9098.81 13596.67 12099.92 7898.64 7694.51 11496.38 17998.49 20689.05 19299.88 10297.10 14798.34 14399.43 160
TSAR-MVS + GP.98.60 3098.51 2898.86 8099.73 7296.63 12199.97 2797.92 21998.07 1198.76 10399.55 10895.00 5899.94 7799.91 1597.68 16299.99 23
CP-MVS98.45 4098.32 4098.87 7999.96 896.62 12299.97 2798.39 15594.43 11798.90 9499.87 2494.30 79100.00 199.04 6399.99 2199.99 23
APD-MVS_3200maxsize98.25 5598.08 5598.78 8299.81 6096.60 12399.82 13598.30 17793.95 14599.37 7399.77 6192.84 12199.76 13198.95 6799.92 6399.97 58
EI-MVSNet-Vis-set98.27 5298.11 5398.75 8599.83 5796.59 12499.40 21798.51 10795.29 9398.51 11599.76 6393.60 10199.71 13898.53 9499.52 9999.95 71
ETV-MVS97.92 6697.80 7098.25 12198.14 18096.48 12599.98 1497.63 23895.61 8499.29 7999.46 11692.55 13198.82 18599.02 6698.54 13999.46 155
TESTMET0.1,196.74 12596.26 12598.16 12497.36 22896.48 12599.96 3498.29 17891.93 22095.77 19298.07 22295.54 4398.29 23190.55 26698.89 13099.70 108
HPM-MVS_fast97.80 7497.50 7998.68 8899.79 6296.42 12799.88 10198.16 19591.75 22798.94 9299.54 11091.82 15099.65 14797.62 13699.99 2199.99 23
test_fmvsmconf_n98.43 4398.32 4098.78 8298.12 18296.41 12899.99 498.83 5998.22 699.67 3899.64 9991.11 15999.94 7799.67 3699.62 8999.98 48
Test_1112_low_res95.72 16094.83 17698.42 11397.79 19996.41 12899.65 18096.65 33792.70 18892.86 22996.13 28592.15 14299.30 16391.88 24493.64 23599.55 139
1112_ss96.01 15395.20 16598.42 11397.80 19896.41 12899.65 18096.66 33692.71 18792.88 22899.40 12192.16 14199.30 16391.92 24393.66 23499.55 139
HPM-MVScopyleft97.96 6397.72 7198.68 8899.84 5696.39 13199.90 9098.17 19192.61 19498.62 11199.57 10791.87 14899.67 14598.87 7599.99 2199.99 23
Chunlin Ren, Qingshan Xu, Shikun Zhang, Jiaqi Yang: Hierarchical Prior Mining for Non-local Multi-View Stereo. ICCV 2023
SR-MVS-dyc-post98.31 4998.17 4898.71 8699.79 6296.37 13299.76 15298.31 17494.43 11799.40 7099.75 6993.28 10999.78 12598.90 7399.92 6399.97 58
RE-MVS-def98.13 5199.79 6296.37 13299.76 15298.31 17494.43 11799.40 7099.75 6992.95 11898.90 7399.92 6399.97 58
EI-MVSNet-UG-set98.14 5997.99 5898.60 9599.80 6196.27 13499.36 22698.50 11295.21 9598.30 12599.75 6993.29 10899.73 13798.37 9999.30 11699.81 94
Effi-MVS+96.30 14595.69 15198.16 12497.85 19596.26 13597.41 34197.21 28490.37 26498.65 11098.58 20086.61 21798.70 19697.11 14697.37 17099.52 147
cascas94.64 19093.61 20297.74 15397.82 19796.26 13599.96 3497.78 23185.76 33494.00 21597.54 23876.95 30299.21 16697.23 14395.43 21297.76 236
ab-mvs94.69 18793.42 21198.51 10698.07 18396.26 13596.49 35898.68 7090.31 26694.54 20597.00 25776.30 31099.71 13895.98 16893.38 23899.56 138
MDTV_nov1_ep13_2view96.26 13596.11 36691.89 22198.06 13394.40 7294.30 20299.67 113
UniMVSNet (Re)93.07 23392.13 24095.88 21694.84 30596.24 13999.88 10198.98 3892.49 20489.25 28195.40 31087.09 21197.14 29093.13 22978.16 35094.26 282
test_fmvsmconf0.1_n97.74 7997.44 8198.64 9295.76 28496.20 14099.94 6898.05 20698.17 898.89 9599.42 11887.65 20399.90 9199.50 4199.60 9599.82 92
FC-MVSNet-test93.81 21293.15 21995.80 22094.30 31596.20 14099.42 21698.89 4992.33 21089.03 28997.27 24787.39 20796.83 31393.20 22586.48 29094.36 275
VPA-MVSNet92.70 24291.55 25496.16 21195.09 30196.20 14098.88 27999.00 3691.02 25191.82 24195.29 32076.05 31497.96 25395.62 17581.19 32794.30 280
diffmvspermissive97.00 11296.64 11498.09 13097.64 21396.17 14399.81 13797.19 28594.67 11198.95 9199.28 12986.43 21898.76 19098.37 9997.42 16899.33 172
Fangjinhua Wang, Qingshan Xu, Yew-Soon Ong, Marc Pollefeys: Lightweight and Accurate Multi-View Stereo With Confidence-Aware Diffusion Model. IEEE T-PAMI 2025
PAPM_NR98.12 6097.93 6498.70 8799.94 1396.13 14499.82 13598.43 13194.56 11397.52 14699.70 8594.40 7299.98 4397.00 15099.98 3299.99 23
ACMMPcopyleft97.74 7997.44 8198.66 9099.92 3196.13 14499.18 24599.45 1994.84 10496.41 17899.71 8391.40 15299.99 3697.99 11798.03 15799.87 87
Qingshan Xu, Weihang Kong, Wenbing Tao, Marc Pollefeys: Multi-Scale Geometric Consistency Guided and Planar Prior Assisted Multi-View Stereo. IEEE Transactions on Pattern Analysis and Machine Intelligence
EPMVS96.53 13496.01 13198.09 13098.43 15896.12 14696.36 36099.43 2193.53 15897.64 14495.04 32694.41 7198.38 22291.13 25298.11 15399.75 103
testing1197.48 8897.27 8898.10 12998.36 16296.02 14799.92 7898.45 11893.45 16298.15 13298.70 18795.48 4699.22 16597.85 12595.05 21999.07 196
PCF-MVS94.20 595.18 17494.10 19198.43 11298.55 15095.99 14897.91 33497.31 27590.35 26589.48 27699.22 13885.19 23099.89 9690.40 27198.47 14199.41 162
Andreas Kuhn, Shan Lin, Oliver Erdler: Plane Completion and Filtering for Multi-View Stereo Reconstruction. GCPR 2019
baseline296.71 12796.49 12097.37 17395.63 29595.96 14999.74 15898.88 5192.94 17591.61 24298.97 15997.72 798.62 20194.83 18998.08 15697.53 242
DeepC-MVS94.51 496.92 11696.40 12398.45 11099.16 10795.90 15099.66 17898.06 20496.37 6894.37 20999.49 11383.29 24799.90 9197.63 13599.61 9399.55 139
Andreas Kuhn, Christian Sormann, Mattia Rossi, Oliver Erdler, Friedrich Fraundorfer: DeepC-MVS: Deep Confidence Prediction for Multi-View Stereo Reconstruction. 3DV 2020
tttt051796.85 11796.49 12097.92 13997.48 22295.89 15199.85 12098.54 10190.72 25996.63 17098.93 17097.47 1299.02 17793.03 23195.76 20598.85 206
PVSNet91.05 1397.13 10596.69 11398.45 11099.52 8895.81 15299.95 5299.65 1294.73 10799.04 8899.21 13984.48 23799.95 6994.92 18598.74 13699.58 136
MVS_111021_LR98.42 4498.38 3498.53 10599.39 9595.79 15399.87 10499.86 296.70 5498.78 10099.79 5592.03 14599.90 9199.17 5799.86 7099.88 85
CPTT-MVS97.64 8497.32 8798.58 9899.97 395.77 15499.96 3498.35 16589.90 27298.36 12299.79 5591.18 15899.99 3698.37 9999.99 2199.99 23
NR-MVSNet91.56 26790.22 27695.60 22294.05 31895.76 15598.25 32098.70 6791.16 24680.78 35996.64 27083.23 24896.57 32391.41 24877.73 35494.46 264
mvs_anonymous95.65 16695.03 17197.53 16398.19 17695.74 15699.33 22897.49 25890.87 25390.47 25597.10 25188.23 19997.16 28895.92 16997.66 16399.68 111
FMVSNet291.02 27589.56 28995.41 22997.53 21895.74 15698.98 26897.41 26687.05 31788.43 30095.00 32971.34 33996.24 33785.12 32485.21 29994.25 284
UA-Net96.54 13395.96 13898.27 12098.23 17295.71 15898.00 33298.45 11893.72 15498.41 11999.27 13288.71 19799.66 14691.19 25197.69 16199.44 159
testing9997.17 10396.91 10297.95 13698.35 16495.70 15999.91 8398.43 13192.94 17597.36 15198.72 18594.83 6299.21 16697.00 15094.64 22198.95 201
LFMVS94.75 18693.56 20798.30 11999.03 11395.70 15998.74 29397.98 21187.81 30998.47 11799.39 12367.43 35699.53 15098.01 11595.20 21899.67 113
IB-MVS92.85 694.99 17993.94 19698.16 12497.72 20795.69 16199.99 498.81 6094.28 12792.70 23096.90 25995.08 5399.17 17296.07 16673.88 36999.60 129
Christian Sormann, Mattia Rossi, Andreas Kuhn and Friedrich Fraundorfer: IB-MVS: An Iterative Algorithm for Deep Multi-View Stereo based on Binary Decisions. BMVC 2021
testing9197.16 10496.90 10397.97 13598.35 16495.67 16299.91 8398.42 14392.91 17797.33 15298.72 18594.81 6399.21 16696.98 15294.63 22299.03 198
EC-MVSNet97.38 9697.24 8997.80 14497.41 22495.64 16399.99 497.06 30194.59 11299.63 4399.32 12889.20 19198.14 24298.76 8199.23 12099.62 124
FA-MVS(test-final)95.86 15695.09 16998.15 12797.74 20295.62 16496.31 36298.17 19191.42 23996.26 18196.13 28590.56 17099.47 16092.18 23997.07 17599.35 169
AdaColmapbinary97.23 10196.80 10898.51 10699.99 195.60 16599.09 25198.84 5893.32 16596.74 16899.72 8186.04 222100.00 198.01 11599.43 11099.94 74
test_fmvsmconf0.01_n96.39 14095.74 14998.32 11891.47 36495.56 16699.84 12597.30 27697.74 1897.89 13999.35 12779.62 27999.85 10899.25 5499.24 11999.55 139
VPNet91.81 25990.46 26995.85 21894.74 30795.54 16798.98 26898.59 8692.14 21390.77 25397.44 24168.73 35097.54 26994.89 18877.89 35294.46 264
casdiffmvs_mvgpermissive96.43 13795.94 14197.89 14397.44 22395.47 16899.86 11797.29 27893.35 16396.03 18599.19 14085.39 22898.72 19497.89 12497.04 17799.49 153
Fangjinhua Wang, Qingshan Xu, Yew-Soon Ong, Marc Pollefeys: Lightweight and Accurate Multi-View Stereo With Confidence-Aware Diffusion Model. IEEE T-PAMI 2025
test-LLR96.47 13596.04 13097.78 14797.02 24295.44 16999.96 3498.21 18694.07 13695.55 19496.38 27693.90 9298.27 23590.42 26998.83 13499.64 119
test-mter96.39 14095.93 14297.78 14797.02 24295.44 16999.96 3498.21 18691.81 22595.55 19496.38 27695.17 5098.27 23590.42 26998.83 13499.64 119
SDMVSNet94.80 18293.96 19597.33 17798.92 12595.42 17199.59 19098.99 3792.41 20692.55 23397.85 23175.81 31598.93 18197.90 12391.62 24497.64 237
API-MVS97.86 6897.66 7398.47 10899.52 8895.41 17299.47 21198.87 5291.68 22898.84 9699.85 3092.34 13899.99 3698.44 9699.96 46100.00 1
XXY-MVS91.82 25890.46 26995.88 21693.91 32195.40 17398.87 28297.69 23488.63 29787.87 30797.08 25274.38 32897.89 25791.66 24684.07 30994.35 278
test_fmvsmvis_n_192097.67 8397.59 7897.91 14197.02 24295.34 17499.95 5298.45 11897.87 1597.02 16099.59 10489.64 18199.98 4399.41 4899.34 11598.42 222
testdata98.42 11399.47 9295.33 17598.56 9293.78 15199.79 2599.85 3093.64 10099.94 7794.97 18399.94 54100.00 1
WR-MVS92.31 25191.25 25995.48 22794.45 31295.29 17699.60 18998.68 7090.10 26888.07 30596.89 26080.68 26996.80 31593.14 22879.67 34394.36 275
UniMVSNet_NR-MVSNet92.95 23592.11 24195.49 22494.61 31095.28 17799.83 13299.08 3391.49 23289.21 28496.86 26287.14 21096.73 31793.20 22577.52 35594.46 264
DU-MVS92.46 24891.45 25795.49 22494.05 31895.28 17799.81 13798.74 6492.25 21289.21 28496.64 27081.66 25696.73 31793.20 22577.52 35594.46 264
miper_enhance_ethall94.36 20193.98 19495.49 22498.68 14295.24 17999.73 16397.29 27893.28 16789.86 26595.97 28994.37 7697.05 29792.20 23884.45 30594.19 288
BH-RMVSNet95.18 17494.31 18797.80 14498.17 17895.23 18099.76 15297.53 25392.52 20294.27 21299.25 13676.84 30398.80 18690.89 26099.54 9899.35 169
PatchMatch-RL96.04 15295.40 15797.95 13699.59 8195.22 18199.52 20299.07 3493.96 14496.49 17498.35 21482.28 25199.82 12090.15 27499.22 12198.81 209
CS-MVS-test97.88 6797.94 6397.70 15499.28 10095.20 18299.98 1497.15 29195.53 8799.62 4699.79 5592.08 14498.38 22298.75 8299.28 11799.52 147
test_fmvsm_n_192098.44 4198.61 2397.92 13999.27 10195.18 183100.00 198.90 4798.05 1299.80 1799.73 7892.64 12799.99 3699.58 3899.51 10298.59 219
baseline96.43 13795.98 13497.76 15197.34 22995.17 18499.51 20497.17 28893.92 14796.90 16399.28 12985.37 22998.64 20097.50 13796.86 18399.46 155
LS3D95.84 15895.11 16898.02 13499.85 5495.10 18598.74 29398.50 11287.22 31693.66 21899.86 2687.45 20699.95 6990.94 25899.81 7899.02 199
casdiffmvspermissive96.42 13995.97 13797.77 14997.30 23394.98 18699.84 12597.09 29893.75 15396.58 17299.26 13585.07 23198.78 18897.77 13197.04 17799.54 143
Fangjinhua Wang, Qingshan Xu, Yew-Soon Ong, Marc Pollefeys: Lightweight and Accurate Multi-View Stereo With Confidence-Aware Diffusion Model. IEEE T-PAMI 2025
pmmvs492.10 25591.07 26295.18 23792.82 34694.96 18799.48 21096.83 32687.45 31288.66 29696.56 27483.78 24396.83 31389.29 28184.77 30393.75 327
CDS-MVSNet96.34 14296.07 12997.13 18197.37 22794.96 18799.53 20197.91 22091.55 23195.37 19898.32 21695.05 5597.13 29193.80 21595.75 20699.30 176
Khang Truong Giang, Soohwan Song, Sungho Jo: Curvature-guided dynamic scale networks for Multi-view Stereo. ICLR 2022
UGNet95.33 17394.57 18197.62 16098.55 15094.85 18998.67 30199.32 2695.75 8196.80 16796.27 28072.18 33599.96 6194.58 19799.05 12898.04 230
Wanjuan Su, Qingshan Xu, Wenbing Tao: Uncertainty-guided Multi-view Stereo Network for Depth Estimation. IEEE Transactions on Circuits and Systems for Video Technology, 2022
EIA-MVS97.53 8697.46 8097.76 15198.04 18594.84 19099.98 1497.61 24394.41 12097.90 13899.59 10492.40 13698.87 18298.04 11499.13 12499.59 130
Vis-MVSNet (Re-imp)96.32 14395.98 13497.35 17697.93 19094.82 19199.47 21198.15 19891.83 22395.09 20199.11 14491.37 15397.47 27193.47 22297.43 16699.74 104
IS-MVSNet96.29 14695.90 14597.45 16798.13 18194.80 19299.08 25397.61 24392.02 21995.54 19698.96 16190.64 16998.08 24593.73 21997.41 16999.47 154
MAR-MVS97.43 8997.19 9298.15 12799.47 9294.79 19399.05 26298.76 6392.65 19298.66 10999.82 4688.52 19899.98 4398.12 10999.63 8899.67 113
Zhenyu Xu, Yiguang Liu, Xuelei Shi, Ying Wang, Yunan Zheng: MARMVS: Matching Ambiguity Reduced Multiple View Stereo for Efficient Large Scale Scene Reconstruction. CVPR 2020
PLCcopyleft95.54 397.93 6597.89 6798.05 13399.82 5894.77 19499.92 7898.46 11793.93 14697.20 15599.27 13295.44 4799.97 5397.41 13899.51 10299.41 162
Jie Liao, Yanping Fu, Qingan Yan, Chunxia xiao: Pyramid Multi-View Stereo with Local Consistency. Pacific Graphics 2019
FE-MVS95.70 16495.01 17297.79 14698.21 17494.57 19595.03 37498.69 6888.90 29097.50 14896.19 28292.60 12999.49 15889.99 27697.94 15999.31 174
Fast-Effi-MVS+95.02 17894.19 18997.52 16497.88 19294.55 19699.97 2797.08 29988.85 29294.47 20897.96 22984.59 23698.41 21489.84 27897.10 17499.59 130
SCA94.69 18793.81 20097.33 17797.10 23894.44 19798.86 28398.32 17293.30 16696.17 18495.59 30076.48 30897.95 25491.06 25497.43 16699.59 130
cl2293.77 21493.25 21895.33 23299.49 9194.43 19899.61 18898.09 20190.38 26389.16 28795.61 29890.56 17097.34 27591.93 24284.45 30594.21 287
CS-MVS97.79 7697.91 6597.43 16999.10 10994.42 19999.99 497.10 29695.07 9699.68 3799.75 6992.95 11898.34 22698.38 9899.14 12399.54 143
fmvsm_s_conf0.5_n97.80 7497.85 6897.67 15599.06 11194.41 20099.98 1498.97 4097.34 2999.63 4399.69 8787.27 20899.97 5399.62 3799.06 12798.62 218
PatchmatchNetpermissive95.94 15595.45 15697.39 17297.83 19694.41 20096.05 36798.40 15292.86 17897.09 15795.28 32194.21 8398.07 24789.26 28298.11 15399.70 108
Fangjinhua Wang, Silvano Galliani, Christoph Vogel, Pablo Speciale, Marc Pollefeys: PatchmatchNet: Learned Multi-View Patchmatch Stereo.
fmvsm_s_conf0.1_n97.30 9797.21 9197.60 16197.38 22694.40 20299.90 9098.64 7696.47 6199.51 6199.65 9884.99 23399.93 8599.22 5599.09 12698.46 220
TR-MVS94.54 19293.56 20797.49 16697.96 18894.34 20398.71 29697.51 25690.30 26794.51 20798.69 18875.56 31698.77 18992.82 23395.99 19699.35 169
Vis-MVSNetpermissive95.72 16095.15 16797.45 16797.62 21494.28 20499.28 23798.24 18394.27 12996.84 16598.94 16879.39 28198.76 19093.25 22498.49 14099.30 176
Jingyang Zhang, Yao Yao, Shiwei Li, Zixin Luo, Tian Fang: Visibility-aware Multiview Stereo Network. BMVC 2020
fmvsm_s_conf0.5_n_a97.73 8197.72 7197.77 14998.63 14694.26 20599.96 3498.92 4697.18 3999.75 2999.69 8787.00 21399.97 5399.46 4498.89 13099.08 195
test_cas_vis1_n_192096.59 13296.23 12697.65 15698.22 17394.23 20699.99 497.25 28297.77 1799.58 5399.08 14677.10 29899.97 5397.64 13499.45 10798.74 213
fmvsm_s_conf0.1_n_a97.09 10896.90 10397.63 15995.65 29394.21 20799.83 13298.50 11296.27 7099.65 4099.64 9984.72 23499.93 8599.04 6398.84 13398.74 213
MDTV_nov1_ep1395.69 15197.90 19194.15 20895.98 36998.44 12393.12 17197.98 13595.74 29395.10 5298.58 20290.02 27596.92 181
tfpnnormal89.29 31287.61 31894.34 27394.35 31494.13 20998.95 27298.94 4183.94 35084.47 34195.51 30574.84 32497.39 27277.05 36880.41 33791.48 365
mvsmamba94.10 20593.72 20195.25 23593.57 32694.13 20999.67 17796.45 34593.63 15791.34 24697.77 23486.29 22097.22 28696.65 16088.10 27594.40 271
KD-MVS_2432*160088.00 32086.10 32493.70 29796.91 24894.04 21197.17 34697.12 29484.93 34481.96 35192.41 36392.48 13394.51 36579.23 35652.68 39792.56 352
miper_refine_blended88.00 32086.10 32493.70 29796.91 24894.04 21197.17 34697.12 29484.93 34481.96 35192.41 36392.48 13394.51 36579.23 35652.68 39792.56 352
DP-MVS94.54 19293.42 21197.91 14199.46 9494.04 21198.93 27497.48 25981.15 36690.04 26099.55 10887.02 21299.95 6988.97 28498.11 15399.73 105
TranMVSNet+NR-MVSNet91.68 26690.61 26894.87 24693.69 32593.98 21499.69 17398.65 7491.03 25088.44 29896.83 26680.05 27796.18 33890.26 27376.89 36394.45 269
MSDG94.37 19993.36 21597.40 17198.88 13293.95 21599.37 22497.38 26885.75 33690.80 25299.17 14284.11 24299.88 10286.35 31598.43 14298.36 224
HyFIR lowres test96.66 13096.43 12297.36 17599.05 11293.91 21699.70 17299.80 390.54 26196.26 18198.08 22192.15 14298.23 23896.84 15895.46 21099.93 76
v2v48291.30 26890.07 28295.01 24193.13 33593.79 21799.77 14797.02 30588.05 30589.25 28195.37 31480.73 26897.15 28987.28 30580.04 34294.09 302
ADS-MVSNet94.79 18394.02 19397.11 18397.87 19393.79 21794.24 37598.16 19590.07 26996.43 17694.48 34490.29 17598.19 24087.44 30197.23 17199.36 167
gm-plane-assit96.97 24593.76 21991.47 23598.96 16198.79 18794.92 185
ECVR-MVScopyleft95.66 16595.05 17097.51 16598.66 14493.71 22098.85 28598.45 11894.93 9996.86 16498.96 16175.22 32199.20 16995.34 17698.15 15099.64 119
UWE-MVS96.79 12096.72 11197.00 18498.51 15493.70 22199.71 16898.60 8492.96 17497.09 15798.34 21596.67 2898.85 18492.11 24096.50 18798.44 221
v114491.09 27489.83 28394.87 24693.25 33493.69 22299.62 18796.98 31086.83 32389.64 27394.99 33080.94 26597.05 29785.08 32581.16 32893.87 321
WB-MVSnew92.90 23692.77 22893.26 30896.95 24693.63 22399.71 16898.16 19591.49 23294.28 21198.14 21981.33 26196.48 32679.47 35595.46 21089.68 378
GA-MVS93.83 21092.84 22496.80 19095.73 28793.57 22499.88 10197.24 28392.57 19892.92 22696.66 26878.73 28997.67 26587.75 29994.06 23299.17 186
miper_ehance_all_eth93.16 22992.60 23194.82 25097.57 21693.56 22599.50 20697.07 30088.75 29388.85 29295.52 30490.97 16296.74 31690.77 26284.45 30594.17 289
GeoE94.36 20193.48 20996.99 18597.29 23493.54 22699.96 3496.72 33488.35 30293.43 21998.94 16882.05 25298.05 24888.12 29696.48 18999.37 166
TAMVS95.85 15795.58 15496.65 19797.07 23993.50 22799.17 24697.82 22991.39 24195.02 20298.01 22392.20 14097.30 28093.75 21895.83 20399.14 190
bld_raw_dy_0_6492.74 24092.03 24494.87 24693.09 33993.46 22899.12 24895.41 36692.84 18190.44 25697.54 23878.08 29597.04 29993.94 20787.77 28094.11 300
V4291.28 27090.12 28194.74 25193.42 33193.46 22899.68 17597.02 30587.36 31389.85 26795.05 32581.31 26297.34 27587.34 30480.07 34193.40 337
v1090.25 29588.82 30494.57 26093.53 32893.43 23099.08 25396.87 32385.00 34387.34 31794.51 34280.93 26697.02 30482.85 33879.23 34493.26 341
EPNet_dtu95.71 16295.39 15896.66 19698.92 12593.41 23199.57 19498.90 4796.19 7397.52 14698.56 20292.65 12697.36 27377.89 36398.33 14499.20 185
Wanjuan Su, Wenbing Tao: Efficient Edge-Preserving Multi-View Stereo Network for Depth Estimation. AAAI 2023
v890.54 28789.17 29794.66 25493.43 33093.40 23299.20 24396.94 31785.76 33487.56 31194.51 34281.96 25497.19 28784.94 32678.25 34993.38 339
test111195.57 16794.98 17397.37 17398.56 14793.37 23398.86 28398.45 11894.95 9896.63 17098.95 16675.21 32299.11 17495.02 18298.14 15299.64 119
OMC-MVS97.28 9897.23 9097.41 17099.76 6693.36 23499.65 18097.95 21496.03 7597.41 15099.70 8589.61 18299.51 15296.73 15998.25 14999.38 164
tpmrst96.27 14895.98 13497.13 18197.96 18893.15 23596.34 36198.17 19192.07 21598.71 10795.12 32493.91 9198.73 19294.91 18796.62 18499.50 151
v119290.62 28689.25 29694.72 25393.13 33593.07 23699.50 20697.02 30586.33 32889.56 27595.01 32779.22 28397.09 29682.34 34281.16 32894.01 308
CHOSEN 1792x268896.81 11996.53 11997.64 15798.91 12993.07 23699.65 18099.80 395.64 8395.39 19798.86 17784.35 24099.90 9196.98 15299.16 12299.95 71
EPP-MVSNet96.69 12896.60 11696.96 18697.74 20293.05 23899.37 22498.56 9288.75 29395.83 19199.01 15296.01 3398.56 20396.92 15697.20 17399.25 182
mvsany_test197.82 7297.90 6697.55 16298.77 13893.04 23999.80 14197.93 21696.95 4599.61 5299.68 9390.92 16399.83 11899.18 5698.29 14899.80 96
c3_l92.53 24691.87 24894.52 26297.40 22592.99 24099.40 21796.93 31887.86 30788.69 29595.44 30889.95 17896.44 32890.45 26880.69 33694.14 298
anonymousdsp91.79 26490.92 26394.41 27190.76 37092.93 24198.93 27497.17 28889.08 28087.46 31495.30 31778.43 29496.92 30892.38 23688.73 26293.39 338
cl____92.31 25191.58 25294.52 26297.33 23192.77 24299.57 19496.78 33186.97 32187.56 31195.51 30589.43 18496.62 32188.60 28782.44 31894.16 294
v14419290.79 28189.52 29194.59 25893.11 33892.77 24299.56 19696.99 30886.38 32789.82 26894.95 33280.50 27397.10 29483.98 33180.41 33793.90 318
DIV-MVS_self_test92.32 25091.60 25194.47 26697.31 23292.74 24499.58 19296.75 33286.99 32087.64 30995.54 30289.55 18396.50 32588.58 28882.44 31894.17 289
IterMVS-LS92.69 24392.11 24194.43 27096.80 25692.74 24499.45 21496.89 32188.98 28589.65 27295.38 31388.77 19596.34 33290.98 25782.04 32194.22 285
Fangjinhua Wang, Silvano Galliani, Christoph Vogel, Marc Pollefeys: IterMVS: Iterative Probability Estimation for Efficient Multi-View Stereo.
dp95.05 17794.43 18396.91 18797.99 18792.73 24696.29 36397.98 21189.70 27595.93 18894.67 33993.83 9698.45 21186.91 31496.53 18699.54 143
EI-MVSNet93.73 21693.40 21494.74 25196.80 25692.69 24799.06 25897.67 23688.96 28791.39 24499.02 15088.75 19697.30 28091.07 25387.85 27894.22 285
CR-MVSNet93.45 22592.62 23095.94 21596.29 26692.66 24892.01 38696.23 34992.62 19396.94 16193.31 35791.04 16096.03 34579.23 35695.96 19799.13 191
RPMNet89.76 30587.28 32097.19 18096.29 26692.66 24892.01 38698.31 17470.19 39196.94 16185.87 39087.25 20999.78 12562.69 39295.96 19799.13 191
VDDNet93.12 23191.91 24796.76 19296.67 26392.65 25098.69 29998.21 18682.81 35997.75 14399.28 12961.57 37599.48 15998.09 11294.09 23198.15 227
WR-MVS_H91.30 26890.35 27294.15 27694.17 31792.62 25199.17 24698.94 4188.87 29186.48 32794.46 34684.36 23896.61 32288.19 29378.51 34893.21 343
CostFormer96.10 14995.88 14696.78 19197.03 24192.55 25297.08 34997.83 22890.04 27198.72 10694.89 33395.01 5798.29 23196.54 16195.77 20499.50 151
v192192090.46 28889.12 29894.50 26492.96 34392.46 25399.49 20896.98 31086.10 33089.61 27495.30 31778.55 29297.03 30282.17 34380.89 33594.01 308
test_djsdf92.83 23892.29 23994.47 26691.90 35892.46 25399.55 19897.27 28091.17 24489.96 26196.07 28881.10 26396.89 30994.67 19588.91 25794.05 305
CP-MVSNet91.23 27290.22 27694.26 27493.96 32092.39 25599.09 25198.57 8988.95 28886.42 32896.57 27379.19 28496.37 33090.29 27278.95 34594.02 306
BH-w/o95.71 16295.38 15996.68 19598.49 15692.28 25699.84 12597.50 25792.12 21492.06 24098.79 18284.69 23598.67 19995.29 17899.66 8699.09 193
v124090.20 29688.79 30594.44 26893.05 34192.27 25799.38 22296.92 31985.89 33289.36 27894.87 33477.89 29697.03 30280.66 35081.08 33194.01 308
PS-MVSNAJss93.64 21993.31 21694.61 25692.11 35592.19 25899.12 24897.38 26892.51 20388.45 29796.99 25891.20 15597.29 28394.36 20087.71 28194.36 275
test0.0.03 193.86 20993.61 20294.64 25595.02 30492.18 25999.93 7598.58 8794.07 13687.96 30698.50 20593.90 9294.96 36081.33 34793.17 23996.78 245
PMMVS96.76 12396.76 10996.76 19298.28 16992.10 26099.91 8397.98 21194.12 13399.53 5799.39 12386.93 21498.73 19296.95 15597.73 16099.45 157
GBi-Net90.88 27889.82 28494.08 27997.53 21891.97 26198.43 31296.95 31387.05 31789.68 26994.72 33571.34 33996.11 34087.01 31185.65 29494.17 289
test190.88 27889.82 28494.08 27997.53 21891.97 26198.43 31296.95 31387.05 31789.68 26994.72 33571.34 33996.11 34087.01 31185.65 29494.17 289
FMVSNet188.50 31686.64 32294.08 27995.62 29691.97 26198.43 31296.95 31383.00 35786.08 33394.72 33559.09 37996.11 34081.82 34684.07 30994.17 289
pm-mvs189.36 31187.81 31794.01 28393.40 33291.93 26498.62 30496.48 34486.25 32983.86 34496.14 28473.68 33197.04 29986.16 31775.73 36793.04 346
CSCG97.10 10697.04 9897.27 17999.89 4591.92 26599.90 9099.07 3488.67 29595.26 20099.82 4693.17 11399.98 4398.15 10899.47 10499.90 83
HQP5-MVS91.85 266
HQP-MVS94.61 19194.50 18294.92 24595.78 28091.85 26699.87 10497.89 22196.82 4893.37 22098.65 19280.65 27098.39 21897.92 12189.60 24894.53 258
NP-MVS95.77 28391.79 26898.65 192
TAPA-MVS92.12 894.42 19793.60 20496.90 18899.33 9891.78 26999.78 14498.00 20889.89 27394.52 20699.47 11491.97 14699.18 17169.90 38099.52 9999.73 105
Andrea Romanoni, Matteo Matteucci: TAPA-MVS: Textureless-Aware PAtchMatch Multi-View Stereo. ICCV 2019
HQP_MVS94.49 19594.36 18494.87 24695.71 29091.74 27099.84 12597.87 22396.38 6593.01 22498.59 19780.47 27498.37 22497.79 12989.55 25194.52 260
plane_prior91.74 27099.86 11796.76 5289.59 250
F-COLMAP96.93 11596.95 10196.87 18999.71 7591.74 27099.85 12097.95 21493.11 17295.72 19399.16 14392.35 13799.94 7795.32 17799.35 11498.92 202
plane_prior695.76 28491.72 27380.47 274
PS-CasMVS90.63 28589.51 29293.99 28593.83 32291.70 27498.98 26898.52 10488.48 29986.15 33296.53 27575.46 31796.31 33488.83 28578.86 34793.95 314
tpm295.47 16995.18 16696.35 20796.91 24891.70 27496.96 35297.93 21688.04 30698.44 11895.40 31093.32 10697.97 25194.00 20695.61 20899.38 164
plane_prior391.64 27696.63 5693.01 224
MIMVSNet90.30 29388.67 30795.17 23896.45 26591.64 27692.39 38497.15 29185.99 33190.50 25493.19 35966.95 35794.86 36282.01 34493.43 23699.01 200
plane_prior795.71 29091.59 278
tpmvs94.28 20393.57 20696.40 20498.55 15091.50 27995.70 37398.55 9887.47 31192.15 23794.26 34891.42 15198.95 18088.15 29495.85 20298.76 211
tpm cat193.51 22292.52 23696.47 19997.77 20091.47 28096.13 36598.06 20480.98 36792.91 22793.78 35289.66 18098.87 18287.03 31096.39 19099.09 193
h-mvs3394.92 18094.36 18496.59 19898.85 13391.29 28198.93 27498.94 4195.90 7698.77 10198.42 21390.89 16699.77 12897.80 12670.76 37498.72 215
BH-untuned95.18 17494.83 17696.22 21098.36 16291.22 28299.80 14197.32 27490.91 25291.08 24898.67 18983.51 24498.54 20594.23 20499.61 9398.92 202
TransMVSNet (Re)87.25 32385.28 33093.16 31093.56 32791.03 28398.54 30794.05 38483.69 35481.09 35796.16 28375.32 31896.40 32976.69 36968.41 38192.06 359
WAC-MVS90.97 28486.10 319
myMVS_eth3d94.46 19694.76 17893.55 30197.68 21090.97 28499.71 16898.35 16590.79 25692.10 23898.67 18992.46 13593.09 37787.13 30795.95 19996.59 248
v14890.70 28289.63 28793.92 28792.97 34290.97 28499.75 15596.89 32187.51 31088.27 30395.01 32781.67 25597.04 29987.40 30377.17 36093.75 327
jajsoiax91.92 25791.18 26094.15 27691.35 36590.95 28799.00 26797.42 26492.61 19487.38 31597.08 25272.46 33497.36 27394.53 19888.77 26194.13 299
PEN-MVS90.19 29789.06 30093.57 30093.06 34090.90 28899.06 25898.47 11588.11 30485.91 33496.30 27976.67 30495.94 34887.07 30876.91 36293.89 319
sd_testset93.55 22192.83 22595.74 22198.92 12590.89 28998.24 32198.85 5692.41 20692.55 23397.85 23171.07 34398.68 19893.93 20891.62 24497.64 237
OPM-MVS93.21 22792.80 22694.44 26893.12 33790.85 29099.77 14797.61 24396.19 7391.56 24398.65 19275.16 32398.47 20793.78 21789.39 25493.99 311
Ray L. Khuboni, Hongjun Xu: Octagram Propagation Matching for Multi-Scale View Stereopsis (OPM-MVS).
CLD-MVS94.06 20793.90 19794.55 26196.02 27490.69 29199.98 1497.72 23296.62 5891.05 25098.85 18077.21 29798.47 20798.11 11089.51 25394.48 262
Zhaoxin Li, Wangmeng Zuo, Zhaoqi Wang, Lei Zhang: Confidence-based Large-scale Dense Multi-view Stereo. IEEE Transaction on Image Processing, 2020
eth_miper_zixun_eth92.41 24991.93 24693.84 29197.28 23590.68 29298.83 28696.97 31288.57 29889.19 28695.73 29589.24 19096.69 31989.97 27781.55 32494.15 295
Anonymous2023121189.86 30388.44 31094.13 27898.93 12390.68 29298.54 30798.26 18276.28 37886.73 32195.54 30270.60 34497.56 26890.82 26180.27 34094.15 295
Anonymous2024052992.10 25590.65 26696.47 19998.82 13490.61 29498.72 29598.67 7375.54 38293.90 21798.58 20066.23 36099.90 9194.70 19490.67 24698.90 205
mvs_tets91.81 25991.08 26194.00 28491.63 36290.58 29598.67 30197.43 26292.43 20587.37 31697.05 25571.76 33697.32 27994.75 19288.68 26394.11 300
v7n89.65 30788.29 31293.72 29492.22 35390.56 29699.07 25797.10 29685.42 34186.73 32194.72 33580.06 27697.13 29181.14 34878.12 35193.49 335
Patchmatch-test92.65 24591.50 25596.10 21396.85 25390.49 29791.50 38897.19 28582.76 36090.23 25795.59 30095.02 5698.00 25077.41 36596.98 18099.82 92
PVSNet_088.03 1991.80 26290.27 27596.38 20698.27 17090.46 29899.94 6899.61 1493.99 14286.26 33197.39 24471.13 34299.89 9698.77 8067.05 38598.79 210
ppachtmachnet_test89.58 30888.35 31193.25 30992.40 35190.44 29999.33 22896.73 33385.49 33985.90 33595.77 29281.09 26496.00 34776.00 37182.49 31793.30 340
IterMVS90.91 27790.17 27993.12 31196.78 25990.42 30098.89 27797.05 30389.03 28286.49 32695.42 30976.59 30695.02 35887.22 30684.09 30893.93 316
Fangjinhua Wang, Silvano Galliani, Christoph Vogel, Marc Pollefeys: IterMVS: Iterative Probability Estimation for Efficient Multi-View Stereo.
MVS-HIRNet86.22 32783.19 34095.31 23396.71 26290.29 30192.12 38597.33 27362.85 39286.82 32070.37 39769.37 34797.49 27075.12 37297.99 15898.15 227
testing393.92 20894.23 18892.99 31597.54 21790.23 30299.99 499.16 3090.57 26091.33 24798.63 19592.99 11692.52 38182.46 34095.39 21396.22 253
VDD-MVS93.77 21492.94 22296.27 20998.55 15090.22 30398.77 29297.79 23090.85 25496.82 16699.42 11861.18 37799.77 12898.95 6794.13 23098.82 208
PatchT90.38 29088.75 30695.25 23595.99 27590.16 30491.22 39097.54 25176.80 37797.26 15486.01 38991.88 14796.07 34466.16 38895.91 20199.51 149
LTVRE_ROB88.28 1890.29 29489.05 30194.02 28295.08 30290.15 30597.19 34597.43 26284.91 34683.99 34397.06 25474.00 33098.28 23384.08 32987.71 28193.62 333
Andreas Kuhn, Heiko Hirschmüller, Daniel Scharstein, Helmut Mayer: A TV Prior for High-Quality Scalable Multi-View Stereo Reconstruction. International Journal of Computer Vision 2016
AUN-MVS93.28 22692.60 23195.34 23198.29 16790.09 30699.31 23198.56 9291.80 22696.35 18098.00 22489.38 18598.28 23392.46 23569.22 37997.64 237
RRT_MVS93.14 23092.92 22393.78 29293.31 33390.04 30799.66 17897.69 23492.53 20088.91 29197.76 23584.36 23896.93 30795.10 18086.99 28794.37 274
hse-mvs294.38 19894.08 19295.31 23398.27 17090.02 30899.29 23698.56 9295.90 7698.77 10198.00 22490.89 16698.26 23797.80 12669.20 38097.64 237
IterMVS-SCA-FT90.85 28090.16 28092.93 31696.72 26189.96 30998.89 27796.99 30888.95 28886.63 32395.67 29676.48 30895.00 35987.04 30984.04 31193.84 323
DTE-MVSNet89.40 31088.24 31392.88 31792.66 34889.95 31099.10 25098.22 18587.29 31485.12 33996.22 28176.27 31195.30 35783.56 33575.74 36693.41 336
Baseline_NR-MVSNet90.33 29289.51 29292.81 31892.84 34489.95 31099.77 14793.94 38584.69 34889.04 28895.66 29781.66 25696.52 32490.99 25676.98 36191.97 361
Patchmtry89.70 30688.49 30993.33 30596.24 26989.94 31291.37 38996.23 34978.22 37587.69 30893.31 35791.04 16096.03 34580.18 35482.10 32094.02 306
pmmvs590.17 29889.09 29993.40 30392.10 35689.77 31399.74 15895.58 36385.88 33387.24 31895.74 29373.41 33296.48 32688.54 28983.56 31293.95 314
Anonymous20240521193.10 23291.99 24596.40 20499.10 10989.65 31498.88 27997.93 21683.71 35394.00 21598.75 18468.79 34899.88 10295.08 18191.71 24399.68 111
our_test_390.39 28989.48 29493.12 31192.40 35189.57 31599.33 22896.35 34887.84 30885.30 33794.99 33084.14 24196.09 34380.38 35184.56 30493.71 332
D2MVS92.76 23992.59 23493.27 30795.13 30089.54 31699.69 17399.38 2392.26 21187.59 31094.61 34185.05 23297.79 26091.59 24788.01 27692.47 355
XVG-OURS-SEG-HR94.79 18394.70 18095.08 23998.05 18489.19 31799.08 25397.54 25193.66 15594.87 20399.58 10678.78 28899.79 12397.31 14093.40 23796.25 250
XVG-OURS94.82 18194.74 17995.06 24098.00 18689.19 31799.08 25397.55 24994.10 13494.71 20499.62 10280.51 27299.74 13496.04 16793.06 24296.25 250
miper_lstm_enhance91.81 25991.39 25893.06 31497.34 22989.18 31999.38 22296.79 33086.70 32487.47 31395.22 32290.00 17795.86 34988.26 29281.37 32694.15 295
ACMM91.95 1092.88 23792.52 23693.98 28695.75 28689.08 32099.77 14797.52 25593.00 17389.95 26297.99 22676.17 31298.46 21093.63 22188.87 25994.39 273
Qingshan Xu and Wenbing Tao: Multi-Scale Geometric Consistency Guided Multi-View Stereo. CVPR 2019
MVP-Stereo90.93 27690.45 27192.37 32291.25 36788.76 32198.05 33196.17 35187.27 31584.04 34295.30 31778.46 29397.27 28583.78 33399.70 8491.09 366
Qingsong Yan: MVP-Stereo: A Parallel Multi-View Patchmatch Stereo Method with Dilation Matching for Photogrammetric Application.
test_vis1_n_192095.44 17095.31 16195.82 21998.50 15588.74 32299.98 1497.30 27697.84 1699.85 999.19 14066.82 35899.97 5398.82 7799.46 10698.76 211
ACMP92.05 992.74 24092.42 23893.73 29395.91 27888.72 32399.81 13797.53 25394.13 13287.00 31998.23 21774.07 32998.47 20796.22 16588.86 26093.99 311
Qingshan Xu and Wenbing Tao: Planar Prior Assisted PatchMatch Multi-View Stereo. AAAI 2020
LPG-MVS_test92.96 23492.71 22993.71 29595.43 29788.67 32499.75 15597.62 24092.81 18290.05 25898.49 20675.24 31998.40 21695.84 17189.12 25594.07 303
LGP-MVS_train93.71 29595.43 29788.67 32497.62 24092.81 18290.05 25898.49 20675.24 31998.40 21695.84 17189.12 25594.07 303
ACMH89.72 1790.64 28489.63 28793.66 29995.64 29488.64 32698.55 30597.45 26089.03 28281.62 35497.61 23769.75 34698.41 21489.37 28087.62 28393.92 317
Qingshan Xu and Wenbing Tao: Multi-Scale Geometric Consistency Guided Multi-View Stereo. CVPR 2019
MDA-MVSNet_test_wron85.51 33183.32 33992.10 32490.96 36888.58 32799.20 24396.52 34279.70 37257.12 39792.69 36179.11 28593.86 37177.10 36777.46 35793.86 322
AllTest92.48 24791.64 25095.00 24299.01 11488.43 32898.94 27396.82 32886.50 32588.71 29398.47 21074.73 32599.88 10285.39 32296.18 19296.71 246
TestCases95.00 24299.01 11488.43 32896.82 32886.50 32588.71 29398.47 21074.73 32599.88 10285.39 32296.18 19296.71 246
FMVSNet588.32 31787.47 31990.88 33396.90 25188.39 33097.28 34395.68 36082.60 36184.67 34092.40 36579.83 27891.16 38676.39 37081.51 32593.09 344
YYNet185.50 33283.33 33892.00 32590.89 36988.38 33199.22 24296.55 34179.60 37357.26 39692.72 36079.09 28793.78 37277.25 36677.37 35893.84 323
USDC90.00 30188.96 30293.10 31394.81 30688.16 33298.71 29695.54 36493.66 15583.75 34597.20 24865.58 36298.31 22983.96 33287.49 28592.85 349
UniMVSNet_ETH3D90.06 30088.58 30894.49 26594.67 30988.09 33397.81 33797.57 24883.91 35288.44 29897.41 24257.44 38197.62 26791.41 24888.59 26697.77 235
COLMAP_ROBcopyleft90.47 1492.18 25491.49 25694.25 27599.00 11688.04 33498.42 31596.70 33582.30 36288.43 30099.01 15276.97 30199.85 10886.11 31896.50 18794.86 257
Johannes L. Schönberger, Enliang Zheng, Marc Pollefeys, Jan-Michael Frahm: Pixelwise View Selection for Unstructured Multi-View Stereo. ECCV 2016
MDA-MVSNet-bldmvs84.09 34081.52 34791.81 32891.32 36688.00 33598.67 30195.92 35680.22 37055.60 39893.32 35668.29 35393.60 37473.76 37376.61 36493.82 325
tt080591.28 27090.18 27894.60 25796.26 26887.55 33698.39 31698.72 6589.00 28489.22 28398.47 21062.98 37198.96 17990.57 26588.00 27797.28 243
JIA-IIPM91.76 26590.70 26594.94 24496.11 27187.51 33793.16 38298.13 20075.79 38197.58 14577.68 39592.84 12197.97 25188.47 29196.54 18599.33 172
tpm93.70 21893.41 21394.58 25995.36 29987.41 33897.01 35096.90 32090.85 25496.72 16994.14 34990.40 17396.84 31290.75 26388.54 26799.51 149
dcpmvs_297.42 9398.09 5495.42 22899.58 8587.24 33999.23 24196.95 31394.28 12798.93 9399.73 7894.39 7599.16 17399.89 1699.82 7699.86 89
pmmvs-eth3d84.03 34181.97 34590.20 34084.15 38887.09 34098.10 32994.73 37783.05 35674.10 38387.77 38465.56 36394.01 36881.08 34969.24 37889.49 381
test_vis1_n93.61 22093.03 22195.35 23095.86 27986.94 34199.87 10496.36 34796.85 4699.54 5698.79 18252.41 38799.83 11898.64 8998.97 12999.29 178
CVMVSNet94.68 18994.94 17493.89 29096.80 25686.92 34299.06 25898.98 3894.45 11594.23 21399.02 15085.60 22495.31 35690.91 25995.39 21399.43 160
patch_mono-298.24 5699.12 595.59 22399.67 7786.91 34399.95 5298.89 4997.60 2299.90 399.76 6396.54 2999.98 4399.94 1199.82 7699.88 85
Fast-Effi-MVS+-dtu93.72 21793.86 19993.29 30697.06 24086.16 34499.80 14196.83 32692.66 19192.58 23297.83 23381.39 25997.67 26589.75 27996.87 18296.05 255
ACMH+89.98 1690.35 29189.54 29092.78 31995.99 27586.12 34598.81 28897.18 28789.38 27783.14 34797.76 23568.42 35298.43 21289.11 28386.05 29293.78 326
ADS-MVSNet293.80 21393.88 19893.55 30197.87 19385.94 34694.24 37596.84 32590.07 26996.43 17694.48 34490.29 17595.37 35487.44 30197.23 17199.36 167
XVG-ACMP-BASELINE91.22 27390.75 26492.63 32093.73 32485.61 34798.52 30997.44 26192.77 18589.90 26496.85 26366.64 35998.39 21892.29 23788.61 26493.89 319
TinyColmap87.87 32286.51 32391.94 32695.05 30385.57 34897.65 33894.08 38284.40 34981.82 35396.85 26362.14 37398.33 22780.25 35386.37 29191.91 362
MS-PatchMatch90.65 28390.30 27491.71 32994.22 31685.50 34998.24 32197.70 23388.67 29586.42 32896.37 27867.82 35498.03 24983.62 33499.62 8991.60 363
ITE_SJBPF92.38 32195.69 29285.14 35095.71 35992.81 18289.33 28098.11 22070.23 34598.42 21385.91 32088.16 27493.59 334
test_040285.58 32983.94 33490.50 33793.81 32385.04 35198.55 30595.20 37276.01 37979.72 36495.13 32364.15 36896.26 33666.04 38986.88 28890.21 374
test_fmvs195.35 17295.68 15394.36 27298.99 11784.98 35299.96 3496.65 33797.60 2299.73 3298.96 16171.58 33899.93 8598.31 10299.37 11398.17 226
testgi89.01 31488.04 31591.90 32793.49 32984.89 35399.73 16395.66 36193.89 15085.14 33898.17 21859.68 37894.66 36477.73 36488.88 25896.16 254
TDRefinement84.76 33582.56 34391.38 33174.58 40184.80 35497.36 34294.56 37984.73 34780.21 36196.12 28763.56 36998.39 21887.92 29763.97 39090.95 369
pmmvs685.69 32883.84 33591.26 33290.00 37684.41 35597.82 33696.15 35275.86 38081.29 35695.39 31261.21 37696.87 31183.52 33673.29 37092.50 354
MIMVSNet182.58 34580.51 35188.78 35186.68 38484.20 35696.65 35695.41 36678.75 37478.59 36892.44 36251.88 38889.76 38965.26 39078.95 34592.38 357
dmvs_re93.20 22893.15 21993.34 30496.54 26483.81 35798.71 29698.51 10791.39 24192.37 23698.56 20278.66 29097.83 25993.89 20989.74 24798.38 223
test_fmvs1_n94.25 20494.36 18493.92 28797.68 21083.70 35899.90 9096.57 34097.40 2899.67 3898.88 17261.82 37499.92 8898.23 10499.13 12498.14 229
UnsupCasMVSNet_eth85.52 33083.99 33290.10 34189.36 37883.51 35996.65 35697.99 20989.14 27975.89 37993.83 35163.25 37093.92 36981.92 34567.90 38492.88 348
OpenMVS_ROBcopyleft79.82 2083.77 34381.68 34690.03 34288.30 38182.82 36098.46 31095.22 37173.92 38776.00 37891.29 36955.00 38396.94 30668.40 38388.51 26890.34 372
Anonymous2024052185.15 33483.81 33689.16 34888.32 38082.69 36198.80 29095.74 35879.72 37181.53 35590.99 37065.38 36494.16 36772.69 37581.11 33090.63 371
new_pmnet84.49 33982.92 34289.21 34790.03 37582.60 36296.89 35495.62 36280.59 36875.77 38089.17 37765.04 36694.79 36372.12 37781.02 33290.23 373
Effi-MVS+-dtu94.53 19495.30 16292.22 32397.77 20082.54 36399.59 19097.06 30194.92 10195.29 19995.37 31485.81 22397.89 25794.80 19097.07 17596.23 252
pmmvs380.27 35177.77 35687.76 35880.32 39682.43 36498.23 32391.97 39372.74 38978.75 36687.97 38357.30 38290.99 38770.31 37962.37 39289.87 376
SixPastTwentyTwo88.73 31588.01 31690.88 33391.85 35982.24 36598.22 32495.18 37388.97 28682.26 35096.89 26071.75 33796.67 32084.00 33082.98 31393.72 331
K. test v388.05 31987.24 32190.47 33891.82 36082.23 36698.96 27197.42 26489.05 28176.93 37595.60 29968.49 35195.42 35385.87 32181.01 33393.75 327
UnsupCasMVSNet_bld79.97 35477.03 35988.78 35185.62 38681.98 36793.66 38097.35 27075.51 38370.79 38683.05 39248.70 39094.91 36178.31 36260.29 39589.46 382
EG-PatchMatch MVS85.35 33383.81 33689.99 34390.39 37281.89 36898.21 32596.09 35381.78 36474.73 38193.72 35351.56 38997.12 29379.16 35988.61 26490.96 368
CL-MVSNet_self_test84.50 33883.15 34188.53 35486.00 38581.79 36998.82 28797.35 27085.12 34283.62 34690.91 37276.66 30591.40 38569.53 38160.36 39492.40 356
DeepPCF-MVS95.94 297.71 8298.98 1293.92 28799.63 7981.76 37099.96 3498.56 9299.47 199.19 8399.99 194.16 85100.00 199.92 1299.93 60100.00 1
EGC-MVSNET69.38 35863.76 36886.26 36190.32 37381.66 37196.24 36493.85 3860.99 4083.22 40992.33 36652.44 38692.92 37959.53 39584.90 30184.21 389
OurMVSNet-221017-089.81 30489.48 29490.83 33591.64 36181.21 37298.17 32695.38 36891.48 23485.65 33697.31 24572.66 33397.29 28388.15 29484.83 30293.97 313
LF4IMVS89.25 31388.85 30390.45 33992.81 34781.19 37398.12 32794.79 37591.44 23686.29 33097.11 25065.30 36598.11 24488.53 29085.25 29892.07 358
EU-MVSNet90.14 29990.34 27389.54 34592.55 34981.06 37498.69 29998.04 20791.41 24086.59 32496.84 26580.83 26793.31 37686.20 31681.91 32294.26 282
lessismore_v090.53 33690.58 37180.90 37595.80 35777.01 37495.84 29066.15 36196.95 30583.03 33775.05 36893.74 330
KD-MVS_self_test83.59 34482.06 34488.20 35686.93 38380.70 37697.21 34496.38 34682.87 35882.49 34988.97 37867.63 35592.32 38273.75 37462.30 39391.58 364
test20.0384.72 33783.99 33286.91 35988.19 38280.62 37798.88 27995.94 35588.36 30178.87 36594.62 34068.75 34989.11 39066.52 38775.82 36591.00 367
Anonymous2023120686.32 32685.42 32989.02 34989.11 37980.53 37899.05 26295.28 36985.43 34082.82 34893.92 35074.40 32793.44 37566.99 38581.83 32393.08 345
new-patchmatchnet81.19 34779.34 35486.76 36082.86 39180.36 37997.92 33395.27 37082.09 36372.02 38486.87 38662.81 37290.74 38871.10 37863.08 39189.19 384
LCM-MVSNet-Re92.31 25192.60 23191.43 33097.53 21879.27 38099.02 26691.83 39492.07 21580.31 36094.38 34783.50 24595.48 35297.22 14497.58 16499.54 143
test_vis1_rt86.87 32586.05 32789.34 34696.12 27078.07 38199.87 10483.54 40592.03 21878.21 37089.51 37645.80 39199.91 8996.25 16493.11 24190.03 375
test_fmvs289.47 30989.70 28688.77 35394.54 31175.74 38299.83 13294.70 37894.71 10891.08 24896.82 26754.46 38497.78 26292.87 23288.27 27292.80 350
Patchmatch-RL test86.90 32485.98 32889.67 34484.45 38775.59 38389.71 39392.43 39186.89 32277.83 37290.94 37194.22 8193.63 37387.75 29969.61 37699.79 97
DSMNet-mixed88.28 31888.24 31388.42 35589.64 37775.38 38498.06 33089.86 39885.59 33888.20 30492.14 36776.15 31391.95 38478.46 36196.05 19597.92 231
Syy-MVS90.00 30190.63 26788.11 35797.68 21074.66 38599.71 16898.35 16590.79 25692.10 23898.67 18979.10 28693.09 37763.35 39195.95 19996.59 248
PM-MVS80.47 35078.88 35585.26 36283.79 39072.22 38695.89 37191.08 39585.71 33776.56 37788.30 38036.64 39593.90 37082.39 34169.57 37789.66 380
mvsany_test382.12 34681.14 34885.06 36381.87 39270.41 38797.09 34892.14 39291.27 24377.84 37188.73 37939.31 39495.49 35190.75 26371.24 37389.29 383
RPSCF91.80 26292.79 22788.83 35098.15 17969.87 38898.11 32896.60 33983.93 35194.33 21099.27 13279.60 28099.46 16191.99 24193.16 24097.18 244
Gipumacopyleft66.95 36565.00 36572.79 37791.52 36367.96 38966.16 40095.15 37447.89 39858.54 39567.99 40029.74 39787.54 39450.20 39977.83 35362.87 400
S. Galliani, K. Lasinger, K. Schindler: Massively Parallel Multiview Stereopsis by Surface Normal Diffusion. ICCV 2015
test_method80.79 34979.70 35384.08 36492.83 34567.06 39099.51 20495.42 36554.34 39681.07 35893.53 35444.48 39292.22 38378.90 36077.23 35992.94 347
test_fmvs379.99 35380.17 35279.45 37084.02 38962.83 39199.05 26293.49 38988.29 30380.06 36386.65 38728.09 39988.00 39188.63 28673.27 37187.54 387
ambc83.23 36677.17 39962.61 39287.38 39594.55 38076.72 37686.65 38730.16 39696.36 33184.85 32769.86 37590.73 370
CMPMVSbinary61.59 2184.75 33685.14 33183.57 36590.32 37362.54 39396.98 35197.59 24774.33 38669.95 38796.66 26864.17 36798.32 22887.88 29888.41 26989.84 377
M. Jancosek, T. Pajdla: Multi-View Reconstruction Preserving Weakly-Supported Surfaces. CVPR 2011
test_f78.40 35577.59 35780.81 36980.82 39462.48 39496.96 35293.08 39083.44 35574.57 38284.57 39127.95 40092.63 38084.15 32872.79 37287.32 388
PMMVS267.15 36464.15 36776.14 37470.56 40462.07 39593.89 37887.52 40258.09 39360.02 39278.32 39422.38 40384.54 39759.56 39447.03 39981.80 392
test_vis3_rt68.82 35966.69 36475.21 37576.24 40060.41 39696.44 35968.71 41075.13 38450.54 40169.52 39916.42 40996.32 33380.27 35266.92 38668.89 397
APD_test181.15 34880.92 34981.86 36892.45 35059.76 39796.04 36893.61 38873.29 38877.06 37396.64 27044.28 39396.16 33972.35 37682.52 31689.67 379
DeepMVS_CXcopyleft82.92 36795.98 27758.66 39896.01 35492.72 18678.34 36995.51 30558.29 38098.08 24582.57 33985.29 29792.03 360
ANet_high56.10 36752.24 37067.66 38349.27 40956.82 39983.94 39682.02 40670.47 39033.28 40664.54 40117.23 40869.16 40445.59 40123.85 40377.02 396
LCM-MVSNet67.77 36364.73 36676.87 37362.95 40756.25 40089.37 39493.74 38744.53 39961.99 39180.74 39320.42 40686.53 39669.37 38259.50 39687.84 385
WB-MVS76.28 35677.28 35873.29 37681.18 39354.68 40197.87 33594.19 38181.30 36569.43 38890.70 37377.02 30082.06 39935.71 40468.11 38383.13 390
SSC-MVS75.42 35776.40 36072.49 38080.68 39553.62 40297.42 34094.06 38380.42 36968.75 38990.14 37576.54 30781.66 40033.25 40566.34 38782.19 391
MVEpermissive53.74 2251.54 37047.86 37462.60 38459.56 40850.93 40379.41 39877.69 40735.69 40336.27 40561.76 4045.79 41369.63 40337.97 40336.61 40067.24 398
Simon Fuhrmann, Fabian Langguth, Michael Goesele: MVE - A Multi-View Reconstruction Environment. EUROGRAPHICS Workshops on Graphics and Cultural Heritage (2014)
testf168.38 36166.92 36272.78 37878.80 39750.36 40490.95 39187.35 40355.47 39458.95 39388.14 38120.64 40487.60 39257.28 39664.69 38880.39 393
APD_test268.38 36166.92 36272.78 37878.80 39750.36 40490.95 39187.35 40355.47 39458.95 39388.14 38120.64 40487.60 39257.28 39664.69 38880.39 393
tmp_tt65.23 36662.94 36972.13 38144.90 41050.03 40681.05 39789.42 40138.45 40048.51 40299.90 1854.09 38578.70 40291.84 24518.26 40487.64 386
dmvs_testset83.79 34286.07 32676.94 37292.14 35448.60 40796.75 35590.27 39789.48 27678.65 36798.55 20479.25 28286.65 39566.85 38682.69 31595.57 256
E-PMN52.30 36952.18 37152.67 38671.51 40245.40 40893.62 38176.60 40836.01 40243.50 40364.13 40227.11 40167.31 40531.06 40626.06 40145.30 404
N_pmnet80.06 35280.78 35077.89 37191.94 35745.28 40998.80 29056.82 41178.10 37680.08 36293.33 35577.03 29995.76 35068.14 38482.81 31492.64 351
EMVS51.44 37151.22 37352.11 38770.71 40344.97 41094.04 37775.66 40935.34 40442.40 40461.56 40528.93 39865.87 40627.64 40724.73 40245.49 403
FPMVS68.72 36068.72 36168.71 38265.95 40544.27 41195.97 37094.74 37651.13 39753.26 39990.50 37425.11 40283.00 39860.80 39380.97 33478.87 395
PMVScopyleft49.05 2353.75 36851.34 37260.97 38540.80 41134.68 41274.82 39989.62 40037.55 40128.67 40772.12 3967.09 41181.63 40143.17 40268.21 38266.59 399
Y. Furukawa, J. Ponce: Accurate, dense, and robust multiview stereopsis. PAMI (2010)
wuyk23d20.37 37520.84 37818.99 39065.34 40627.73 41350.43 4017.67 4149.50 4078.01 4086.34 4086.13 41226.24 40723.40 40810.69 4062.99 405
test12337.68 37339.14 37633.31 38819.94 41224.83 41498.36 3179.75 41315.53 40651.31 40087.14 38519.62 40717.74 40847.10 4003.47 40757.36 401
testmvs40.60 37244.45 37529.05 38919.49 41314.11 41599.68 17518.47 41220.74 40564.59 39098.48 20910.95 41017.09 40956.66 39811.01 40555.94 402
test_blank0.00 3780.00 3810.00 3910.00 4140.00 4160.00 4020.00 4150.00 4090.00 4100.02 4090.00 4140.00 4100.00 4090.00 4080.00 406
uanet_test0.00 3780.00 3810.00 3910.00 4140.00 4160.00 4020.00 4150.00 4090.00 4100.00 4100.00 4140.00 4100.00 4090.00 4080.00 406
DCPMVS0.00 3780.00 3810.00 3910.00 4140.00 4160.00 4020.00 4150.00 4090.00 4100.00 4100.00 4140.00 4100.00 4090.00 4080.00 406
cdsmvs_eth3d_5k23.43 37431.24 3770.00 3910.00 4140.00 4160.00 40298.09 2010.00 4090.00 41099.67 9483.37 2460.00 4100.00 4090.00 4080.00 406
pcd_1.5k_mvsjas7.60 37710.13 3800.00 3910.00 4140.00 4160.00 4020.00 4150.00 4090.00 4100.00 41091.20 1550.00 4100.00 4090.00 4080.00 406
sosnet-low-res0.00 3780.00 3810.00 3910.00 4140.00 4160.00 4020.00 4150.00 4090.00 4100.00 4100.00 4140.00 4100.00 4090.00 4080.00 406
sosnet0.00 3780.00 3810.00 3910.00 4140.00 4160.00 4020.00 4150.00 4090.00 4100.00 4100.00 4140.00 4100.00 4090.00 4080.00 406
uncertanet0.00 3780.00 3810.00 3910.00 4140.00 4160.00 4020.00 4150.00 4090.00 4100.00 4100.00 4140.00 4100.00 4090.00 4080.00 406
Regformer0.00 3780.00 3810.00 3910.00 4140.00 4160.00 4020.00 4150.00 4090.00 4100.00 4100.00 4140.00 4100.00 4090.00 4080.00 406
ab-mvs-re8.28 37611.04 3790.00 3910.00 4140.00 4160.00 4020.00 4150.00 4090.00 41099.40 1210.00 4140.00 4100.00 4090.00 4080.00 406
uanet0.00 3780.00 3810.00 3910.00 4140.00 4160.00 4020.00 4150.00 4090.00 4100.00 4100.00 4140.00 4100.00 4090.00 4080.00 406
PC_three_145296.96 4499.80 1799.79 5597.49 10100.00 199.99 599.98 32100.00 1
eth-test20.00 414
eth-test0.00 414
test_241102_TWO98.43 13197.27 3499.80 1799.94 497.18 21100.00 1100.00 1100.00 1100.00 1
9.1498.38 3499.87 5199.91 8398.33 17093.22 16899.78 2699.89 1994.57 6999.85 10899.84 2299.97 42
test_0728_THIRD96.48 5999.83 1399.91 1497.87 6100.00 199.92 12100.00 1100.00 1
GSMVS99.59 130
sam_mvs194.72 6599.59 130
sam_mvs94.25 80
MTGPAbinary98.28 179
test_post195.78 37259.23 40693.20 11297.74 26391.06 254
test_post63.35 40394.43 7098.13 243
patchmatchnet-post91.70 36895.12 5197.95 254
MTMP99.87 10496.49 343
test9_res99.71 3399.99 21100.00 1
agg_prior299.48 43100.00 1100.00 1
test_prior299.95 5295.78 7999.73 3299.76 6396.00 3499.78 27100.00 1
旧先验299.46 21394.21 13099.85 999.95 6996.96 154
新几何299.40 217
无先验99.49 20898.71 6693.46 160100.00 194.36 20099.99 23
原ACMM299.90 90
testdata299.99 3690.54 267
segment_acmp96.68 26
testdata199.28 23796.35 69
plane_prior597.87 22398.37 22497.79 12989.55 25194.52 260
plane_prior498.59 197
plane_prior299.84 12596.38 65
plane_prior195.73 287
n20.00 415
nn0.00 415
door-mid89.69 399
test1198.44 123
door90.31 396
HQP-NCC95.78 28099.87 10496.82 4893.37 220
ACMP_Plane95.78 28099.87 10496.82 4893.37 220
BP-MVS97.92 121
HQP4-MVS93.37 22098.39 21894.53 258
HQP3-MVS97.89 22189.60 248
HQP2-MVS80.65 270
ACMMP++_ref87.04 286
ACMMP++88.23 273
Test By Simon92.82 123