This table lists the benchmark results for the high-res multi-view scenario. The following metrics are evaluated:

(*) For exact definitions, detailing how potentially incomplete ground truth is taken into account, see our paper.

The datasets are grouped into different categories, and result averages are computed for a category and method if results of the method are available for all datasets within the category. Note that the category "all" includes both the high-res multi-view and the low-res many-view scenarios.

Methods with suffix _ROB may participate in the Robust Vision Challenge.

Click a dataset result cell to show a visualization of the reconstruction. For training datasets, ground truth and accuracy / completeness visualizations are also available. The visualizations may not work with mobile browsers.




Method Infoallhigh-res
multi-view
indooroutdoorbotani.boulde.bridgedoorexhibi.lectur.living.loungeobserv.old co.statueterrac.
sort bysort bysort bysort bysort bysorted bysort bysort bysort bysort bysort bysort bysort bysort bysort bysort by
DPM-MVS98.83 2298.46 3299.97 199.33 11399.92 199.96 2598.44 11297.96 799.55 4999.94 497.18 20100.00 193.81 20099.94 6199.98 55
MSC_two_6792asdad99.93 299.91 4499.80 298.41 136100.00 199.96 9100.00 1100.00 1
No_MVS99.93 299.91 4499.80 298.41 136100.00 199.96 9100.00 1100.00 1
OPU-MVS99.93 299.89 5099.80 299.96 2599.80 6097.44 13100.00 1100.00 199.98 35100.00 1
MCST-MVS99.32 399.14 499.86 599.97 399.59 599.97 1898.64 6598.47 299.13 8399.92 1396.38 30100.00 199.74 30100.00 1100.00 1
CNVR-MVS99.40 199.26 199.84 699.98 299.51 699.98 1098.69 5798.20 399.93 199.98 296.82 22100.00 199.75 28100.00 199.99 24
test_0728_SECOND99.82 799.94 1499.47 799.95 4398.43 120100.00 199.99 5100.00 1100.00 1
HY-MVS92.50 797.79 8297.17 9899.63 1598.98 12799.32 897.49 31999.52 1495.69 7098.32 12197.41 22193.32 11299.77 12098.08 10995.75 19999.81 104
DVP-MVS++99.26 699.09 999.77 899.91 4499.31 999.95 4398.43 12096.48 4399.80 1799.93 1197.44 13100.00 199.92 1399.98 35100.00 1
IU-MVS99.93 2799.31 998.41 13697.71 899.84 9100.00 1100.00 1100.00 1
test_one_060199.94 1499.30 1198.41 13696.63 4099.75 2899.93 1197.49 9
SED-MVS99.28 599.11 799.77 899.93 2799.30 1199.96 2598.43 12097.27 2199.80 1799.94 496.71 23100.00 1100.00 1100.00 1100.00 1
test_241102_ONE99.93 2799.30 1198.43 12097.26 2399.80 1799.88 2496.71 23100.00 1
DVP-MVScopyleft99.30 499.16 399.73 1199.93 2799.29 1499.95 4398.32 16097.28 1999.83 1199.91 1597.22 18100.00 199.99 5100.00 199.89 94
Zhenlong Yuan, Jinguo Luo, Fei Shen, Zhaoxin Li, Cong Liu, Tianlu Mao, Zhaoqi Wang: DVP-MVS: Synergize Depth-Edge and Visibility Prior for Multi-View Stereo. AAAI2025
test072699.93 2799.29 1499.96 2598.42 13297.28 1999.86 599.94 497.22 18
WTY-MVS98.10 6997.60 8199.60 2098.92 13499.28 1699.89 8799.52 1495.58 7398.24 12699.39 12593.33 11199.74 13097.98 11595.58 20299.78 109
test_part299.89 5099.25 1799.49 56
DPE-MVScopyleft99.26 699.10 899.74 1099.89 5099.24 1899.87 9398.44 11297.48 1699.64 4099.94 496.68 2599.99 4099.99 5100.00 199.99 24
Kehua Chen, Zhenlong Yuan, Tianlu Mao, Zhaoqi Wang: Dual-Level Precision Edges Guided Multi-View Stereo with Accurate Planarization. AAAI2025
MVS96.60 12995.56 14899.72 1296.85 24399.22 1998.31 29898.94 3791.57 21790.90 23299.61 10786.66 21299.96 5897.36 13299.88 8099.99 24
NCCC99.37 299.25 299.71 1399.96 899.15 2099.97 1898.62 6998.02 699.90 299.95 397.33 16100.00 199.54 39100.00 1100.00 1
CANet98.27 6097.82 7499.63 1599.72 8899.10 2199.98 1098.51 9997.00 2998.52 11199.71 9287.80 20099.95 6599.75 2899.38 11999.83 102
MG-MVS98.91 1898.65 2299.68 1499.94 1499.07 2299.64 16699.44 1997.33 1899.00 9099.72 9094.03 9599.98 4698.73 80100.00 1100.00 1
HPM-MVS++copyleft99.07 1098.88 1599.63 1599.90 4799.02 2399.95 4398.56 7997.56 1499.44 5999.85 3595.38 49100.00 199.31 4999.99 2299.87 98
PAPM98.60 3498.42 3399.14 6696.05 26098.96 2499.90 7999.35 2496.68 3998.35 12099.66 10396.45 2998.51 19499.45 4399.89 7899.96 74
canonicalmvs97.09 11096.32 12299.39 4698.93 13298.95 2599.72 15197.35 26194.45 10897.88 13599.42 12186.71 21199.52 14798.48 9293.97 21999.72 116
ETH3 D test640098.81 2398.54 2899.59 2199.93 2798.93 2699.93 6798.46 10794.56 10599.84 999.92 1394.32 8599.86 9599.96 999.98 35100.00 1
TEST999.92 3698.92 2799.96 2598.43 12093.90 13999.71 3499.86 3195.88 3899.85 99
train_agg98.88 2098.65 2299.59 2199.92 3698.92 2799.96 2598.43 12094.35 11599.71 3499.86 3195.94 3599.85 9999.69 3799.98 3599.99 24
PS-MVSNAJ98.44 4898.20 5299.16 6298.80 14498.92 2799.54 18198.17 18397.34 1799.85 799.85 3591.20 15899.89 8499.41 4699.67 10198.69 212
test_899.92 3698.88 3099.96 2598.43 12094.35 11599.69 3699.85 3595.94 3599.85 99
SMA-MVScopyleft98.76 2798.48 3199.62 1899.87 5798.87 3199.86 10498.38 14793.19 16099.77 2699.94 495.54 44100.00 199.74 3099.99 22100.00 1
Yufeng Yin; Xiaoyan Liu; Zichao Zhang: SMA-MVS: Segmentation-Guided Multi-Scale Anchor Deformation Patch Multi-View Stereo. IEEE Transactions on Circuits and Systems for Video Technology
CHOSEN 280x42099.01 1399.03 1098.95 8699.38 11198.87 3198.46 29199.42 2197.03 2899.02 8799.09 14599.35 198.21 22699.73 3399.78 9499.77 110
DeepC-MVS_fast96.59 198.81 2398.54 2899.62 1899.90 4798.85 3399.24 22298.47 10598.14 499.08 8499.91 1593.09 121100.00 199.04 6099.99 22100.00 1
Andreas Kuhn, Christian Sormann, Mattia Rossi, Oliver Erdler, Friedrich Fraundorfer: DeepC-MVS: Deep Confidence Prediction for Multi-View Stereo Reconstruction. 3DV 2020
thres20096.96 11296.21 12499.22 5398.97 12898.84 3499.85 10799.71 693.17 16196.26 17398.88 17189.87 17899.51 14894.26 19194.91 20999.31 181
tfpn200view996.79 11995.99 12999.19 5698.94 13098.82 3599.78 12999.71 692.86 16696.02 17698.87 17389.33 18499.50 15093.84 19794.57 21099.27 184
thres40096.78 12095.99 12999.16 6298.94 13098.82 3599.78 12999.71 692.86 16696.02 17698.87 17389.33 18499.50 15093.84 19794.57 21099.16 191
xxxxxxxxxxxxxcwj98.98 1598.79 1799.54 2699.82 7098.79 3799.96 2597.52 24397.66 1099.81 1399.89 2194.70 6999.86 9599.84 1999.93 6799.96 74
save fliter99.82 7098.79 3799.96 2598.40 14097.66 10
thres600view796.69 12695.87 14299.14 6698.90 13798.78 3999.74 14399.71 692.59 18495.84 17998.86 17589.25 18699.50 15093.44 21094.50 21399.16 191
thres100view90096.74 12395.92 13999.18 5798.90 13798.77 4099.74 14399.71 692.59 18495.84 17998.86 17589.25 18699.50 15093.84 19794.57 21099.27 184
agg_prior198.88 2098.66 2199.54 2699.93 2798.77 4099.96 2598.43 12094.63 10399.63 4199.85 3595.79 4199.85 9999.72 3499.99 2299.99 24
agg_prior99.93 2798.77 4098.43 12099.63 4199.85 99
PAPR98.52 4298.16 5599.58 2399.97 398.77 4099.95 4398.43 12095.35 7898.03 13099.75 8194.03 9599.98 4698.11 10699.83 8599.99 24
APDe-MVS99.06 1198.91 1499.51 3199.94 1498.76 4499.91 7598.39 14397.20 2599.46 5799.85 3595.53 4699.79 11499.86 18100.00 199.99 24
SD-MVS98.92 1798.70 1999.56 2499.70 9098.73 4599.94 6198.34 15796.38 4899.81 1399.76 7594.59 7199.98 4699.84 1999.96 5299.97 67
Zhenlong Yuan, Jiakai Cao, Zhaoxin Li, Hao Jiang and Zhaoqi Wang: SD-MVS: Segmentation-driven Deformation Multi-View Stereo with Spherical Refinement and EM optimization. AAAI2024
CDPH-MVS98.65 3298.36 4499.49 3499.94 1498.73 4599.87 9398.33 15893.97 13499.76 2799.87 2894.99 6299.75 12698.55 90100.00 199.98 55
DP-MVS Recon98.41 5098.02 6499.56 2499.97 398.70 4799.92 7198.44 11292.06 20498.40 11899.84 4895.68 42100.00 198.19 10199.71 9999.97 67
SF-MVS98.67 3198.40 3799.50 3299.77 7898.67 4899.90 7998.21 17793.53 15199.81 1399.89 2194.70 6999.86 9599.84 1999.93 6799.96 74
TSAR-MVS + MP.98.93 1698.77 1899.41 4299.74 8298.67 4899.77 13298.38 14796.73 3799.88 499.74 8694.89 6699.59 14599.80 2499.98 3599.97 67
Zhenlong Yuan, Jiakai Cao, Zhaoqi Wang, Zhaoxin Li: TSAR-MVS: Textureless-aware Segmentation and Correlative Refinement Guided Multi-View Stereo. Pattern Recognition
xiu_mvs_v2_base98.23 6597.97 6799.02 8098.69 14898.66 5099.52 18398.08 19497.05 2799.86 599.86 3190.65 16999.71 13499.39 4798.63 13698.69 212
alignmvs97.81 8097.33 9199.25 5298.77 14698.66 5099.99 498.44 11294.40 11498.41 11699.47 11793.65 10599.42 15698.57 8994.26 21599.67 122
DELS-MVS98.54 4098.22 5099.50 3299.15 11898.65 52100.00 198.58 7597.70 998.21 12799.24 13992.58 13499.94 7398.63 8899.94 6199.92 91
Christian Sormann, Emanuele Santellani, Mattia Rossi, Andreas Kuhn, Friedrich Fraundorfer: DELS-MVS: Deep Epipolar Line Search for Multi-View Stereo. Winter Conference on Applications of Computer Vision (WACV), 2023
3Dnovator+91.53 1196.31 13995.24 15599.52 2996.88 24298.64 5399.72 15198.24 17395.27 8188.42 28198.98 15682.76 24299.94 7397.10 13999.83 8599.96 74
ACMMP_NAP98.49 4498.14 5699.54 2699.66 9398.62 5499.85 10798.37 15094.68 10099.53 5199.83 5192.87 126100.00 198.66 8699.84 8499.99 24
ZD-MVS99.92 3698.57 5598.52 9292.34 19599.31 7199.83 5195.06 5699.80 11199.70 3699.97 48
ETH3D-3000-0.198.68 3098.42 3399.47 3799.83 6898.57 5599.90 7998.37 15093.81 14299.81 1399.90 1994.34 8199.86 9599.84 1999.98 3599.97 67
testtj98.89 1998.69 2099.52 2999.94 1498.56 5799.90 7998.55 8595.14 8399.72 3399.84 4895.46 47100.00 199.65 3899.99 2299.99 24
test1299.43 3899.74 8298.56 5798.40 14099.65 3994.76 6799.75 12699.98 3599.99 24
131496.84 11795.96 13699.48 3696.74 25098.52 5998.31 29898.86 4795.82 6289.91 24498.98 15687.49 20399.96 5897.80 11999.73 9799.96 74
APD-MVScopyleft98.62 3398.35 4599.41 4299.90 4798.51 6099.87 9398.36 15294.08 12799.74 2999.73 8894.08 9399.74 13099.42 4599.99 2299.99 24
Yuesong Wang, Zhaojie Zeng and etc.: Adaptive Patch Deformation for Textureless-Resilient Multi-View Stereo. CVPR2023
test_prior398.99 1498.84 1699.43 3899.94 1498.49 6199.95 4398.65 6295.78 6499.73 3099.76 7596.00 3399.80 11199.78 26100.00 199.99 24
test_prior99.43 3899.94 1498.49 6198.65 6299.80 11199.99 24
MSLP-MVS++99.13 899.01 1199.49 3499.94 1498.46 6399.98 1098.86 4797.10 2699.80 1799.94 495.92 37100.00 199.51 40100.00 1100.00 1
ETH3D cwj APD-0.1698.40 5298.07 6299.40 4499.59 9698.41 6499.86 10498.24 17392.18 19999.73 3099.87 2893.47 10899.85 9999.74 3099.95 5599.93 85
MP-MVS-pluss98.07 7097.64 7899.38 4799.74 8298.41 6499.74 14398.18 18293.35 15596.45 16799.85 3592.64 13399.97 5698.91 6899.89 7899.77 110
MP-MVS-pluss: MP-MVS-pluss. MP-MVS-pluss
Regformer-198.79 2598.60 2599.36 4899.85 6098.34 6699.87 9398.52 9296.05 5799.41 6299.79 6494.93 6499.76 12399.07 5599.90 7699.99 24
RRT_MVS95.23 16494.77 16896.61 19098.28 16698.32 6799.81 12097.41 25692.59 18491.28 22997.76 21595.02 5897.23 27093.65 20787.14 26394.28 262
Regformer-298.78 2698.59 2699.36 4899.85 6098.32 6799.87 9398.52 9296.04 5899.41 6299.79 6494.92 6599.76 12399.05 5699.90 7699.98 55
新几何199.42 4199.75 8198.27 6998.63 6892.69 17799.55 4999.82 5594.40 75100.00 191.21 23499.94 6199.99 24
112198.03 7197.57 8399.40 4499.74 8298.21 7098.31 29898.62 6992.78 17299.53 5199.83 5195.08 54100.00 194.36 18799.92 7199.99 24
xiu_mvs_v1_base_debu97.43 9397.06 9998.55 11097.74 20098.14 7199.31 21397.86 21496.43 4599.62 4499.69 9785.56 22199.68 13899.05 5698.31 14397.83 221
xiu_mvs_v1_base97.43 9397.06 9998.55 11097.74 20098.14 7199.31 21397.86 21496.43 4599.62 4499.69 9785.56 22199.68 13899.05 5698.31 14397.83 221
xiu_mvs_v1_base_debi97.43 9397.06 9998.55 11097.74 20098.14 7199.31 21397.86 21496.43 4599.62 4499.69 9785.56 22199.68 13899.05 5698.31 14397.83 221
baseline195.78 15194.86 16598.54 11398.47 15998.07 7499.06 23997.99 19992.68 17894.13 20398.62 18793.28 11598.69 18693.79 20285.76 27098.84 206
test_prior498.05 7599.94 61
sss97.57 8997.03 10399.18 5798.37 16198.04 7699.73 14899.38 2293.46 15398.76 10199.06 14791.21 15799.89 8496.33 15097.01 17599.62 133
GG-mvs-BLEND98.54 11398.21 17298.01 7793.87 35198.52 9297.92 13397.92 21399.02 297.94 24298.17 10299.58 10999.67 122
ET-MVSNet_ETH3D94.37 18993.28 20497.64 15398.30 16397.99 7899.99 497.61 23194.35 11571.57 36099.45 12096.23 3195.34 33596.91 14685.14 27799.59 139
test_yl97.83 7897.37 8899.21 5499.18 11597.98 7999.64 16699.27 2691.43 22397.88 13598.99 15495.84 3999.84 10898.82 7395.32 20699.79 106
DCV-MVSNet97.83 7897.37 8899.21 5499.18 11597.98 7999.64 16699.27 2691.43 22397.88 13598.99 15495.84 3999.84 10898.82 7395.32 20699.79 106
gg-mvs-nofinetune93.51 20791.86 23198.47 11897.72 20497.96 8192.62 35598.51 9974.70 35897.33 14569.59 36998.91 397.79 24597.77 12499.56 11099.67 122
zzz-MVS98.33 5698.00 6599.30 5099.85 6097.93 8299.80 12598.28 16795.76 6697.18 14899.88 2492.74 130100.00 198.67 8399.88 8099.99 24
MTAPA98.29 5997.96 7099.30 5099.85 6097.93 8299.39 20398.28 16795.76 6697.18 14899.88 2492.74 130100.00 198.67 8399.88 8099.99 24
114514_t97.41 9896.83 10799.14 6699.51 10597.83 8499.89 8798.27 17088.48 27599.06 8599.66 10390.30 17399.64 14496.32 15199.97 4899.96 74
VNet97.21 10696.57 11699.13 7198.97 12897.82 8599.03 24599.21 2894.31 11899.18 8298.88 17186.26 21699.89 8498.93 6594.32 21499.69 119
MVSTER95.53 15995.22 15696.45 19498.56 15297.72 8699.91 7597.67 22492.38 19491.39 22797.14 22897.24 1797.30 26494.80 17487.85 25694.34 259
SteuartSystems-ACMMP99.02 1298.97 1399.18 5798.72 14797.71 8799.98 1098.44 11296.85 3199.80 1799.91 1597.57 699.85 9999.44 4499.99 2299.99 24
Skip Steuart: Steuart Systems R&D Blog.
QAPM95.40 16294.17 17899.10 7296.92 23797.71 8799.40 19998.68 5889.31 25688.94 27098.89 16982.48 24399.96 5893.12 21799.83 8599.62 133
MVSFormer96.94 11396.60 11497.95 14097.28 22697.70 8999.55 17997.27 26991.17 22799.43 6099.54 11390.92 16596.89 29194.67 18199.62 10499.25 186
lupinMVS97.85 7797.60 8198.62 10397.28 22697.70 8999.99 497.55 23795.50 7699.43 6099.67 10190.92 16598.71 18498.40 9499.62 10499.45 165
FOURS199.92 3697.66 9199.95 4398.36 15295.58 7399.52 54
ZNCC-MVS98.31 5798.03 6399.17 6099.88 5497.59 9299.94 6198.44 11294.31 11898.50 11399.82 5593.06 12399.99 4098.30 10099.99 2299.93 85
GST-MVS98.27 6097.97 6799.17 6099.92 3697.57 9399.93 6798.39 14394.04 13298.80 9799.74 8692.98 124100.00 198.16 10399.76 9599.93 85
Regformer-398.58 3798.41 3599.10 7299.84 6597.57 9399.66 15998.52 9295.79 6399.01 8899.77 7194.40 7599.75 12698.82 7399.83 8599.98 55
CANet_DTU96.76 12196.15 12598.60 10598.78 14597.53 9599.84 11197.63 22697.25 2499.20 7899.64 10581.36 25499.98 4692.77 22098.89 13098.28 215
thisisatest051597.41 9897.02 10498.59 10797.71 20697.52 9699.97 1898.54 8991.83 20997.45 14399.04 14897.50 899.10 16694.75 17796.37 18699.16 191
Regformer-498.56 3898.39 3999.08 7499.84 6597.52 9699.66 15998.52 9295.76 6699.01 8899.77 7194.33 8499.75 12698.80 7699.83 8599.98 55
旧先验199.76 7997.52 9698.64 6599.85 3595.63 4399.94 6199.99 24
XVS98.70 2998.55 2799.15 6499.94 1497.50 9999.94 6198.42 13296.22 5399.41 6299.78 6994.34 8199.96 5898.92 6699.95 5599.99 24
X-MVStestdata93.83 19792.06 22699.15 6499.94 1497.50 9999.94 6198.42 13296.22 5399.41 6241.37 37794.34 8199.96 5898.92 6699.95 5599.99 24
OpenMVScopyleft90.15 1594.77 17593.59 19298.33 12796.07 25997.48 10199.56 17798.57 7790.46 24186.51 30598.95 16478.57 28099.94 7393.86 19699.74 9697.57 228
3Dnovator91.47 1296.28 14295.34 15399.08 7496.82 24597.47 10299.45 19598.81 5095.52 7589.39 25899.00 15381.97 24699.95 6597.27 13499.83 8599.84 101
test_part192.15 23790.72 24796.44 19698.87 14097.46 10398.99 24898.26 17185.89 30786.34 31096.34 25881.71 24897.48 25591.06 23878.99 32294.37 254
HFP-MVS98.56 3898.37 4299.14 6699.96 897.43 10499.95 4398.61 7194.77 9699.31 7199.85 3594.22 88100.00 198.70 8199.98 3599.98 55
#test#98.59 3698.41 3599.14 6699.96 897.43 10499.95 4398.61 7195.00 8799.31 7199.85 3594.22 88100.00 198.78 7799.98 3599.98 55
FMVSNet392.69 22591.58 23495.99 20698.29 16497.42 10699.26 22197.62 22889.80 25389.68 25095.32 29481.62 25296.27 31787.01 29185.65 27194.29 261
test22299.55 10197.41 10799.34 20998.55 8591.86 20899.27 7699.83 5193.84 10199.95 5599.99 24
jason97.24 10496.86 10698.38 12695.73 27297.32 10899.97 1897.40 25895.34 7998.60 11099.54 11387.70 20198.56 19197.94 11699.47 11599.25 186
jason: jason.
MSP-MVS99.09 999.12 598.98 8399.93 2797.24 10999.95 4398.42 13297.50 1599.52 5499.88 2497.43 1599.71 13499.50 4199.98 35100.00 1
Zhenlong Yuan, Cong Liu, Fei Shen, Zhaoxin Li, Jingguo luo, Tianlu Mao and Zhaoqi Wang: MSP-MVS: Multi-granularity Segmentation Prior Guided Multi-View Stereo. AAAI2025
MVS_Test96.46 13395.74 14498.61 10498.18 17497.23 11099.31 21397.15 27991.07 23198.84 9597.05 23488.17 19998.97 17094.39 18697.50 16299.61 136
nrg03093.51 20792.53 21796.45 19494.36 29697.20 11199.81 12097.16 27891.60 21689.86 24697.46 21986.37 21597.68 24895.88 15780.31 31694.46 245
region2R98.54 4098.37 4299.05 7699.96 897.18 11299.96 2598.55 8594.87 9499.45 5899.85 3594.07 94100.00 198.67 83100.00 199.98 55
ACMMPR98.50 4398.32 4699.05 7699.96 897.18 11299.95 4398.60 7394.77 9699.31 7199.84 4893.73 103100.00 198.70 8199.98 3599.98 55
MVS_111021_HR98.72 2898.62 2499.01 8199.36 11297.18 11299.93 6799.90 196.81 3598.67 10599.77 7193.92 9799.89 8499.27 5199.94 6199.96 74
MP-MVScopyleft98.23 6597.97 6799.03 7899.94 1497.17 11599.95 4398.39 14394.70 9998.26 12599.81 5991.84 151100.00 198.85 7299.97 4899.93 85
Rongxuan Tan, Qing Wang, et al.: MP-MVS: Multi-Scale Windows PatchMatch and Planar Prior Multi-View Stereo.
PHI-MVS98.41 5098.21 5199.03 7899.86 5997.10 11699.98 1098.80 5290.78 23899.62 4499.78 6995.30 50100.00 199.80 2499.93 6799.99 24
SR-MVS98.46 4698.30 4898.93 8799.88 5497.04 11799.84 11198.35 15594.92 9199.32 7099.80 6093.35 11099.78 11699.30 5099.95 5599.96 74
PGM-MVS98.34 5598.13 5798.99 8299.92 3697.00 11899.75 14099.50 1793.90 13999.37 6899.76 7593.24 118100.00 197.75 12699.96 5299.98 55
原ACMM198.96 8599.73 8696.99 11998.51 9994.06 13099.62 4499.85 3594.97 6399.96 5895.11 16499.95 5599.92 91
PVSNet_BlendedMVS96.05 14595.82 14396.72 18699.59 9696.99 11999.95 4399.10 2994.06 13098.27 12395.80 26989.00 19199.95 6599.12 5387.53 26193.24 324
PVSNet_Blended97.94 7397.64 7898.83 9199.59 9696.99 119100.00 199.10 2995.38 7798.27 12399.08 14689.00 19199.95 6599.12 5399.25 12299.57 146
mPP-MVS98.39 5398.20 5298.97 8499.97 396.92 12299.95 4398.38 14795.04 8698.61 10999.80 6093.39 109100.00 198.64 87100.00 199.98 55
test250697.53 9097.19 9598.58 10898.66 15096.90 12398.81 27099.77 594.93 8997.95 13298.96 16092.51 13699.20 16094.93 16898.15 14799.64 128
CNLPA97.76 8397.38 8798.92 8899.53 10296.84 12499.87 9398.14 18993.78 14496.55 16599.69 9792.28 14299.98 4697.13 13799.44 11799.93 85
FIs94.10 19493.43 19796.11 20494.70 29296.82 12599.58 17398.93 4192.54 18889.34 26097.31 22487.62 20297.10 27894.22 19386.58 26694.40 252
EPNet98.49 4498.40 3798.77 9399.62 9596.80 12699.90 7999.51 1697.60 1299.20 7899.36 12893.71 10499.91 7997.99 11398.71 13599.61 136
Wanjuan Su, Wenbing Tao: Efficient Edge-Preserving Multi-View Stereo Network for Depth Estimation. AAAI 2023
thisisatest053097.10 10896.72 11198.22 13197.60 20996.70 12799.92 7198.54 8991.11 23097.07 15198.97 15897.47 1199.03 16793.73 20596.09 18998.92 201
PVSNet_Blended_VisFu97.27 10396.81 10898.66 10098.81 14396.67 12899.92 7198.64 6594.51 10796.38 17198.49 19489.05 19099.88 9097.10 13998.34 14199.43 168
TSAR-MVS + GP.98.60 3498.51 3098.86 9099.73 8696.63 12999.97 1897.92 20898.07 598.76 10199.55 11195.00 6199.94 7399.91 1697.68 15999.99 24
CP-MVS98.45 4798.32 4698.87 8999.96 896.62 13099.97 1898.39 14394.43 11098.90 9499.87 2894.30 86100.00 199.04 6099.99 2299.99 24
APD-MVS_3200maxsize98.25 6398.08 6198.78 9299.81 7396.60 13199.82 11898.30 16593.95 13699.37 6899.77 7192.84 12799.76 12398.95 6399.92 7199.97 67
EI-MVSNet-Vis-set98.27 6098.11 5998.75 9599.83 6896.59 13299.40 19998.51 9995.29 8098.51 11299.76 7593.60 10799.71 13498.53 9199.52 11299.95 82
test117298.38 5498.25 4998.77 9399.88 5496.56 13399.80 12598.36 15294.68 10099.20 7899.80 6093.28 11599.78 11699.34 4899.92 7199.98 55
ETV-MVS97.92 7597.80 7598.25 13098.14 17796.48 13499.98 1097.63 22695.61 7299.29 7599.46 11992.55 13598.82 17499.02 6298.54 13799.46 163
TESTMET0.1,196.74 12396.26 12398.16 13297.36 21996.48 13499.96 2598.29 16691.93 20695.77 18298.07 20795.54 4498.29 21890.55 24998.89 13099.70 117
HPM-MVS_fast97.80 8197.50 8498.68 9899.79 7596.42 13699.88 9098.16 18691.75 21398.94 9299.54 11391.82 15299.65 14397.62 12899.99 2299.99 24
Test_1112_low_res95.72 15294.83 16698.42 12397.79 19696.41 13799.65 16296.65 32492.70 17692.86 21996.13 26492.15 14599.30 15791.88 22893.64 22199.55 148
1112_ss96.01 14795.20 15798.42 12397.80 19596.41 13799.65 16296.66 32392.71 17592.88 21899.40 12392.16 14499.30 15791.92 22793.66 22099.55 148
HPM-MVScopyleft97.96 7297.72 7698.68 9899.84 6596.39 13999.90 7998.17 18392.61 18298.62 10899.57 11091.87 15099.67 14198.87 7199.99 2299.99 24
Chunlin Ren, Qingshan Xu, Shikun Zhang, Jiaqi Yang: Hierarchical Prior Mining for Non-local Multi-View Stereo. ICCV 2023
SR-MVS-dyc-post98.31 5798.17 5498.71 9699.79 7596.37 14099.76 13798.31 16294.43 11099.40 6699.75 8193.28 11599.78 11698.90 6999.92 7199.97 67
RE-MVS-def98.13 5799.79 7596.37 14099.76 13798.31 16294.43 11099.40 6699.75 8192.95 12598.90 6999.92 7199.97 67
EI-MVSNet-UG-set98.14 6797.99 6698.60 10599.80 7496.27 14299.36 20898.50 10395.21 8298.30 12299.75 8193.29 11499.73 13398.37 9599.30 12199.81 104
Effi-MVS+96.30 14095.69 14598.16 13297.85 19296.26 14397.41 32097.21 27290.37 24398.65 10798.58 19086.61 21398.70 18597.11 13897.37 16799.52 157
cascas94.64 18093.61 18997.74 15197.82 19496.26 14399.96 2597.78 22085.76 31094.00 20497.54 21876.95 28899.21 15997.23 13595.43 20497.76 225
ab-mvs94.69 17793.42 19898.51 11698.07 17996.26 14396.49 33498.68 5890.31 24594.54 19597.00 23676.30 29599.71 13495.98 15593.38 22499.56 147
MDTV_nov1_ep13_2view96.26 14396.11 34091.89 20798.06 12994.40 7594.30 19099.67 122
UniMVSNet (Re)93.07 21692.13 22395.88 20994.84 28996.24 14799.88 9098.98 3592.49 19289.25 26295.40 28887.09 20897.14 27493.13 21678.16 32894.26 263
FC-MVSNet-test93.81 19993.15 20695.80 21294.30 29896.20 14899.42 19898.89 4392.33 19689.03 26997.27 22687.39 20596.83 29593.20 21286.48 26794.36 255
VPA-MVSNet92.70 22491.55 23696.16 20395.09 28596.20 14898.88 26099.00 3491.02 23391.82 22495.29 29876.05 29997.96 23995.62 16081.19 30494.30 260
diffmvs97.00 11196.64 11398.09 13697.64 20796.17 15099.81 12097.19 27394.67 10298.95 9199.28 13086.43 21498.76 18098.37 9597.42 16599.33 179
PAPM_NR98.12 6897.93 7198.70 9799.94 1496.13 15199.82 11898.43 12094.56 10597.52 14199.70 9494.40 7599.98 4697.00 14199.98 3599.99 24
ACMMPcopyleft97.74 8497.44 8698.66 10099.92 3696.13 15199.18 22799.45 1894.84 9596.41 17099.71 9291.40 15499.99 4097.99 11398.03 15599.87 98
Qingshan Xu, Weihang Kong, Wenbing Tao, Marc Pollefeys: Multi-Scale Geometric Consistency Guided and Planar Prior Assisted Multi-View Stereo. IEEE Transactions on Pattern Analysis and Machine Intelligence
EPMVS96.53 13196.01 12898.09 13698.43 16096.12 15396.36 33599.43 2093.53 15197.64 13995.04 30494.41 7498.38 21091.13 23698.11 15099.75 112
abl_697.67 8797.34 9098.66 10099.68 9196.11 15499.68 15698.14 18993.80 14399.27 7699.70 9488.65 19699.98 4697.46 13099.72 9899.89 94
RRT_test8_iter0594.58 18294.11 17995.98 20797.88 18896.11 15499.89 8797.45 24991.66 21588.28 28296.71 24696.53 2897.40 25794.73 17983.85 29094.45 250
PCF-MVS94.20 595.18 16594.10 18098.43 12298.55 15495.99 15697.91 31497.31 26690.35 24489.48 25799.22 14085.19 22699.89 8490.40 25498.47 13999.41 170
Andreas Kuhn, Shan Lin, Oliver Erdler: Plane Completion and Filtering for Multi-View Stereo Reconstruction. GCPR 2019
baseline296.71 12596.49 11897.37 16595.63 27995.96 15799.74 14398.88 4592.94 16591.61 22598.97 15897.72 598.62 18994.83 17398.08 15497.53 229
DeepC-MVS94.51 496.92 11596.40 12198.45 12099.16 11795.90 15899.66 15998.06 19596.37 5194.37 19999.49 11683.29 24099.90 8097.63 12799.61 10799.55 148
Andreas Kuhn, Christian Sormann, Mattia Rossi, Oliver Erdler, Friedrich Fraundorfer: DeepC-MVS: Deep Confidence Prediction for Multi-View Stereo Reconstruction. 3DV 2020
tttt051796.85 11696.49 11897.92 14297.48 21595.89 15999.85 10798.54 8990.72 23996.63 16198.93 16897.47 1199.02 16893.03 21895.76 19898.85 205
PVSNet91.05 1397.13 10796.69 11298.45 12099.52 10395.81 16099.95 4399.65 1194.73 9899.04 8699.21 14184.48 23199.95 6594.92 16998.74 13499.58 145
MVS_111021_LR98.42 4998.38 4098.53 11599.39 11095.79 16199.87 9399.86 296.70 3898.78 9899.79 6492.03 14799.90 8099.17 5299.86 8399.88 96
CPTT-MVS97.64 8897.32 9298.58 10899.97 395.77 16299.96 2598.35 15589.90 25198.36 11999.79 6491.18 16199.99 4098.37 9599.99 2299.99 24
NR-MVSNet91.56 25090.22 25895.60 21394.05 30195.76 16398.25 30198.70 5691.16 22980.78 34096.64 25083.23 24196.57 30691.41 23277.73 33294.46 245
mvs_anonymous95.65 15795.03 16297.53 15698.19 17395.74 16499.33 21097.49 24790.87 23590.47 23797.10 23088.23 19897.16 27295.92 15697.66 16099.68 120
FMVSNet291.02 25789.56 26995.41 22097.53 21195.74 16498.98 24997.41 25687.05 29288.43 27995.00 30771.34 32296.24 31985.12 30385.21 27694.25 265
UA-Net96.54 13095.96 13698.27 12998.23 17195.71 16698.00 31298.45 10993.72 14798.41 11699.27 13388.71 19599.66 14291.19 23597.69 15899.44 167
LFMVS94.75 17693.56 19498.30 12899.03 12395.70 16798.74 27597.98 20187.81 28498.47 11499.39 12567.43 33899.53 14698.01 11195.20 20899.67 122
IB-MVS92.85 694.99 17093.94 18498.16 13297.72 20495.69 16899.99 498.81 5094.28 12092.70 22096.90 23895.08 5499.17 16396.07 15373.88 34799.60 138
Christian Sormann, Mattia Rossi, Andreas Kuhn and Friedrich Fraundorfer: IB-MVS: An Iterative Algorithm for Deep Multi-View Stereo based on Binary Decisions. BMVC 2021
DROMVSNet97.38 10097.24 9397.80 14497.41 21695.64 16999.99 497.06 28894.59 10499.63 4199.32 12989.20 18998.14 22898.76 7999.23 12399.62 133
AdaColmapbinary97.23 10596.80 10998.51 11699.99 195.60 17099.09 23298.84 4993.32 15696.74 15999.72 9086.04 217100.00 198.01 11199.43 11899.94 84
VPNet91.81 24290.46 25195.85 21194.74 29195.54 17198.98 24998.59 7492.14 20090.77 23497.44 22068.73 33297.54 25394.89 17277.89 33094.46 245
test-LLR96.47 13296.04 12797.78 14697.02 23495.44 17299.96 2598.21 17794.07 12895.55 18496.38 25593.90 9998.27 22290.42 25298.83 13299.64 128
test-mter96.39 13695.93 13897.78 14697.02 23495.44 17299.96 2598.21 17791.81 21195.55 18496.38 25595.17 5198.27 22290.42 25298.83 13299.64 128
API-MVS97.86 7697.66 7798.47 11899.52 10395.41 17499.47 19298.87 4691.68 21498.84 9599.85 3592.34 14199.99 4098.44 9399.96 52100.00 1
XXY-MVS91.82 24190.46 25195.88 20993.91 30495.40 17598.87 26397.69 22388.63 27387.87 28797.08 23174.38 31297.89 24391.66 23084.07 28794.35 258
testdata98.42 12399.47 10795.33 17698.56 7993.78 14499.79 2499.85 3593.64 10699.94 7394.97 16799.94 61100.00 1
WR-MVS92.31 23391.25 24195.48 21894.45 29595.29 17799.60 17198.68 5890.10 24788.07 28596.89 23980.68 26296.80 29793.14 21579.67 32094.36 255
UniMVSNet_NR-MVSNet92.95 21992.11 22495.49 21594.61 29495.28 17899.83 11799.08 3191.49 21989.21 26496.86 24187.14 20796.73 29993.20 21277.52 33394.46 245
DU-MVS92.46 23091.45 23995.49 21594.05 30195.28 17899.81 12098.74 5492.25 19889.21 26496.64 25081.66 25096.73 29993.20 21277.52 33394.46 245
miper_enhance_ethall94.36 19193.98 18395.49 21598.68 14995.24 18099.73 14897.29 26793.28 15889.86 24695.97 26794.37 8097.05 28192.20 22484.45 28294.19 269
BH-RMVSNet95.18 16594.31 17697.80 14498.17 17595.23 18199.76 13797.53 24192.52 18994.27 20199.25 13776.84 28998.80 17590.89 24599.54 11199.35 177
PatchMatch-RL96.04 14695.40 15097.95 14099.59 9695.22 18299.52 18399.07 3293.96 13596.49 16698.35 20182.28 24499.82 11090.15 25799.22 12498.81 208
baseline96.43 13495.98 13197.76 14997.34 22095.17 18399.51 18597.17 27693.92 13896.90 15499.28 13085.37 22498.64 18897.50 12996.86 17999.46 163
LS3D95.84 15095.11 16098.02 13999.85 6095.10 18498.74 27598.50 10387.22 29193.66 20899.86 3187.45 20499.95 6590.94 24399.81 9399.02 199
bset_n11_16_dypcd93.05 21792.30 22195.31 22390.23 35295.05 18599.44 19797.28 26892.51 19090.65 23596.68 24785.30 22596.71 30194.49 18584.14 28594.16 275
casdiffmvs96.42 13595.97 13497.77 14897.30 22494.98 18699.84 11197.09 28593.75 14696.58 16399.26 13685.07 22798.78 17797.77 12497.04 17499.54 152
pmmvs492.10 23891.07 24495.18 22792.82 32694.96 18799.48 19196.83 31387.45 28788.66 27596.56 25383.78 23696.83 29589.29 26384.77 28093.75 309
CDS-MVSNet96.34 13796.07 12697.13 17497.37 21894.96 18799.53 18297.91 20991.55 21895.37 18898.32 20295.05 5797.13 27593.80 20195.75 19999.30 182
Khang Truong Giang, Soohwan Song, Sungho Jo: Curvature-guided dynamic scale networks for Multi-view Stereo. ICLR 2022
UGNet95.33 16394.57 17197.62 15598.55 15494.85 18998.67 28299.32 2595.75 6996.80 15896.27 26072.18 31999.96 5894.58 18399.05 12998.04 219
Wanjuan Su, Qingshan Xu, Wenbing Tao: Uncertainty-guided Multi-view Stereo Network for Depth Estimation. IEEE Transactions on Circuits and Systems for Video Technology, 2022
EIA-MVS97.53 9097.46 8597.76 14998.04 18194.84 19099.98 1097.61 23194.41 11397.90 13499.59 10892.40 13998.87 17298.04 11099.13 12699.59 139
Vis-MVSNet (Re-imp)96.32 13895.98 13197.35 16897.93 18694.82 19199.47 19298.15 18891.83 20995.09 19199.11 14491.37 15597.47 25693.47 20997.43 16399.74 113
IS-MVSNet96.29 14195.90 14097.45 16098.13 17894.80 19299.08 23497.61 23192.02 20595.54 18698.96 16090.64 17098.08 23193.73 20597.41 16699.47 162
MAR-MVS97.43 9397.19 9598.15 13599.47 10794.79 19399.05 24398.76 5392.65 18098.66 10699.82 5588.52 19799.98 4698.12 10599.63 10399.67 122
Zhenyu Xu, Yiguang Liu, Xuelei Shi, Ying Wang, Yunan Zheng: MARMVS: Matching Ambiguity Reduced Multiple View Stereo for Efficient Large Scale Scene Reconstruction. CVPR 2020
PLCcopyleft95.54 397.93 7497.89 7398.05 13899.82 7094.77 19499.92 7198.46 10793.93 13797.20 14799.27 13395.44 4899.97 5697.41 13199.51 11499.41 170
Jie Liao, Yanping Fu, Qingan Yan, Chunxia xiao: Pyramid Multi-View Stereo with Local Consistency. Pacific Graphics 2019
DWT-MVSNet_test97.31 10197.19 9597.66 15298.24 17094.67 19598.86 26498.20 18193.60 15098.09 12898.89 16997.51 798.78 17794.04 19497.28 16899.55 148
Fast-Effi-MVS+95.02 16994.19 17797.52 15797.88 18894.55 19699.97 1897.08 28688.85 26894.47 19897.96 21284.59 23098.41 20289.84 26097.10 17299.59 139
SCA94.69 17793.81 18897.33 16997.10 22994.44 19798.86 26498.32 16093.30 15796.17 17595.59 27876.48 29397.95 24091.06 23897.43 16399.59 139
cl2293.77 20193.25 20595.33 22299.49 10694.43 19899.61 17098.09 19290.38 24289.16 26795.61 27690.56 17197.34 26191.93 22684.45 28294.21 268
PatchmatchNetpermissive95.94 14895.45 14997.39 16497.83 19394.41 19996.05 34198.40 14092.86 16697.09 15095.28 29994.21 9198.07 23389.26 26498.11 15099.70 117
Fangjinhua Wang, Silvano Galliani, Christoph Vogel, Pablo Speciale, Marc Pollefeys: PatchmatchNet: Learned Multi-View Patchmatch Stereo.
TR-MVS94.54 18393.56 19497.49 15997.96 18494.34 20098.71 27897.51 24590.30 24694.51 19798.69 18275.56 30098.77 17992.82 21995.99 19199.35 177
Vis-MVSNetpermissive95.72 15295.15 15997.45 16097.62 20894.28 20199.28 21998.24 17394.27 12296.84 15698.94 16679.39 27398.76 18093.25 21198.49 13899.30 182
Jingyang Zhang, Yao Yao, Shiwei Li, Zixin Luo, Tian Fang: Visibility-aware Multiview Stereo Network. BMVC 2020
MDTV_nov1_ep1395.69 14597.90 18794.15 20295.98 34298.44 11293.12 16297.98 13195.74 27195.10 5398.58 19090.02 25896.92 177
tfpnnormal89.29 29287.61 29994.34 26094.35 29794.13 20398.95 25398.94 3783.94 32784.47 32295.51 28374.84 30897.39 25877.05 34480.41 31491.48 346
KD-MVS_2432*160088.00 30186.10 30593.70 28396.91 23894.04 20497.17 32597.12 28284.93 32181.96 33292.41 34292.48 13794.51 34579.23 33252.68 36792.56 333
miper_refine_blended88.00 30186.10 30593.70 28396.91 23894.04 20497.17 32597.12 28284.93 32181.96 33292.41 34292.48 13794.51 34579.23 33252.68 36792.56 333
DP-MVS94.54 18393.42 19897.91 14399.46 10994.04 20498.93 25597.48 24881.15 34190.04 24199.55 11187.02 20999.95 6588.97 26698.11 15099.73 114
TranMVSNet+NR-MVSNet91.68 24990.61 25094.87 23693.69 30893.98 20799.69 15498.65 6291.03 23288.44 27796.83 24580.05 27096.18 32090.26 25676.89 34194.45 250
MSDG94.37 18993.36 20297.40 16398.88 13993.95 20899.37 20697.38 25985.75 31290.80 23399.17 14284.11 23599.88 9086.35 29598.43 14098.36 214
HyFIR lowres test96.66 12896.43 12097.36 16799.05 12293.91 20999.70 15399.80 390.54 24096.26 17398.08 20692.15 14598.23 22596.84 14795.46 20399.93 85
v2v48291.30 25190.07 26395.01 23193.13 31693.79 21099.77 13297.02 29388.05 28089.25 26295.37 29280.73 26197.15 27387.28 28680.04 31994.09 283
ADS-MVSNet94.79 17394.02 18297.11 17697.87 19093.79 21094.24 34798.16 18690.07 24896.43 16894.48 32290.29 17498.19 22787.44 28297.23 16999.36 175
gm-plane-assit96.97 23693.76 21291.47 22198.96 16098.79 17694.92 169
ECVR-MVScopyleft95.66 15695.05 16197.51 15898.66 15093.71 21398.85 26798.45 10994.93 8996.86 15598.96 16075.22 30599.20 16095.34 16198.15 14799.64 128
CS-MVS97.73 8597.92 7297.18 17299.09 12093.69 21499.99 497.14 28195.06 8599.67 3799.75 8193.09 12198.31 21598.32 9899.12 12799.54 152
CS-MVS-test97.53 9097.64 7897.18 17299.09 12093.69 214100.00 197.04 29295.07 8499.67 3799.25 13791.22 15698.31 21598.32 9899.12 12799.54 152
v114491.09 25689.83 26494.87 23693.25 31593.69 21499.62 16996.98 29886.83 29889.64 25494.99 30880.94 25897.05 28185.08 30481.16 30593.87 302
GA-MVS93.83 19792.84 20896.80 18295.73 27293.57 21799.88 9097.24 27192.57 18792.92 21696.66 24878.73 27997.67 24987.75 28094.06 21899.17 190
miper_ehance_all_eth93.16 21392.60 21394.82 23997.57 21093.56 21899.50 18797.07 28788.75 26988.85 27195.52 28290.97 16496.74 29890.77 24784.45 28294.17 270
GeoE94.36 19193.48 19696.99 17797.29 22593.54 21999.96 2596.72 32188.35 27893.43 20998.94 16682.05 24598.05 23488.12 27796.48 18499.37 174
TAMVS95.85 14995.58 14796.65 18997.07 23093.50 22099.17 22897.82 21891.39 22695.02 19298.01 20892.20 14397.30 26493.75 20495.83 19699.14 194
V4291.28 25390.12 26294.74 24093.42 31393.46 22199.68 15697.02 29387.36 28889.85 24895.05 30381.31 25597.34 26187.34 28580.07 31893.40 319
v1090.25 27788.82 28494.57 24893.53 31093.43 22299.08 23496.87 31185.00 32087.34 29794.51 32080.93 25997.02 28782.85 31779.23 32193.26 323
EPNet_dtu95.71 15495.39 15196.66 18898.92 13493.41 22399.57 17598.90 4296.19 5597.52 14198.56 19292.65 13297.36 25977.89 33998.33 14299.20 189
Wanjuan Su, Wenbing Tao: Efficient Edge-Preserving Multi-View Stereo Network for Depth Estimation. AAAI 2023
v890.54 26989.17 27794.66 24393.43 31293.40 22499.20 22596.94 30585.76 31087.56 29194.51 32081.96 24797.19 27184.94 30578.25 32793.38 321
test111195.57 15894.98 16397.37 16598.56 15293.37 22598.86 26498.45 10994.95 8896.63 16198.95 16475.21 30699.11 16595.02 16698.14 14999.64 128
OMC-MVS97.28 10297.23 9497.41 16299.76 7993.36 22699.65 16297.95 20496.03 5997.41 14499.70 9489.61 18099.51 14896.73 14898.25 14699.38 172
tpmrst96.27 14395.98 13197.13 17497.96 18493.15 22796.34 33698.17 18392.07 20298.71 10495.12 30293.91 9898.73 18294.91 17196.62 18099.50 160
v119290.62 26889.25 27694.72 24293.13 31693.07 22899.50 18797.02 29386.33 30389.56 25695.01 30579.22 27497.09 28082.34 32081.16 30594.01 289
CHOSEN 1792x268896.81 11896.53 11797.64 15398.91 13693.07 22899.65 16299.80 395.64 7195.39 18798.86 17584.35 23399.90 8096.98 14299.16 12599.95 82
EPP-MVSNet96.69 12696.60 11496.96 17897.74 20093.05 23099.37 20698.56 7988.75 26995.83 18199.01 15196.01 3298.56 19196.92 14597.20 17199.25 186
c3_l92.53 22891.87 23094.52 25097.40 21792.99 23199.40 19996.93 30687.86 28288.69 27495.44 28689.95 17796.44 31090.45 25180.69 31394.14 280
anonymousdsp91.79 24790.92 24594.41 25990.76 34792.93 23298.93 25597.17 27689.08 25887.46 29495.30 29578.43 28396.92 29092.38 22288.73 24593.39 320
cl____92.31 23391.58 23494.52 25097.33 22292.77 23399.57 17596.78 31886.97 29687.56 29195.51 28389.43 18296.62 30488.60 26882.44 29594.16 275
v14419290.79 26389.52 27194.59 24693.11 31992.77 23399.56 17796.99 29686.38 30289.82 24994.95 31080.50 26697.10 27883.98 31080.41 31493.90 299
DIV-MVS_self_test92.32 23291.60 23394.47 25497.31 22392.74 23599.58 17396.75 31986.99 29587.64 28995.54 28089.55 18196.50 30888.58 26982.44 29594.17 270
IterMVS-LS92.69 22592.11 22494.43 25896.80 24692.74 23599.45 19596.89 30988.98 26289.65 25395.38 29188.77 19396.34 31490.98 24282.04 29894.22 266
Fangjinhua Wang, Silvano Galliani, Christoph Vogel, Marc Pollefeys: IterMVS: Iterative Probability Estimation for Efficient Multi-View Stereo.
dp95.05 16894.43 17396.91 17997.99 18392.73 23796.29 33797.98 20189.70 25495.93 17894.67 31793.83 10298.45 19986.91 29496.53 18299.54 152
EI-MVSNet93.73 20393.40 20194.74 24096.80 24692.69 23899.06 23997.67 22488.96 26491.39 22799.02 14988.75 19497.30 26491.07 23787.85 25694.22 266
CR-MVSNet93.45 21092.62 21295.94 20896.29 25592.66 23992.01 35896.23 33292.62 18196.94 15293.31 33591.04 16296.03 32679.23 33295.96 19299.13 195
RPMNet89.76 28687.28 30197.19 17196.29 25592.66 23992.01 35898.31 16270.19 36396.94 15285.87 36287.25 20699.78 11662.69 36595.96 19299.13 195
VDDNet93.12 21491.91 22996.76 18496.67 25392.65 24198.69 28098.21 17782.81 33597.75 13899.28 13061.57 35499.48 15498.09 10894.09 21798.15 217
WR-MVS_H91.30 25190.35 25494.15 26494.17 30092.62 24299.17 22898.94 3788.87 26786.48 30794.46 32484.36 23296.61 30588.19 27478.51 32693.21 325
CostFormer96.10 14495.88 14196.78 18397.03 23392.55 24397.08 32797.83 21790.04 25098.72 10394.89 31195.01 6098.29 21896.54 14995.77 19799.50 160
v192192090.46 27089.12 27894.50 25292.96 32392.46 24499.49 18996.98 29886.10 30589.61 25595.30 29578.55 28197.03 28582.17 32180.89 31294.01 289
test_djsdf92.83 22192.29 22294.47 25491.90 33692.46 24499.55 17997.27 26991.17 22789.96 24296.07 26681.10 25696.89 29194.67 18188.91 24094.05 286
CP-MVSNet91.23 25490.22 25894.26 26193.96 30392.39 24699.09 23298.57 7788.95 26586.42 30896.57 25279.19 27596.37 31290.29 25578.95 32394.02 287
BH-w/o95.71 15495.38 15296.68 18798.49 15892.28 24799.84 11197.50 24692.12 20192.06 22398.79 17984.69 22998.67 18795.29 16399.66 10299.09 197
v124090.20 27888.79 28594.44 25693.05 32192.27 24899.38 20496.92 30785.89 30789.36 25994.87 31277.89 28497.03 28580.66 32881.08 30894.01 289
PS-MVSNAJss93.64 20693.31 20394.61 24592.11 33392.19 24999.12 23097.38 25992.51 19088.45 27696.99 23791.20 15897.29 26794.36 18787.71 25894.36 255
test0.0.03 193.86 19693.61 18994.64 24495.02 28892.18 25099.93 6798.58 7594.07 12887.96 28698.50 19393.90 9994.96 34081.33 32593.17 22596.78 231
PMMVS96.76 12196.76 11096.76 18498.28 16692.10 25199.91 7597.98 20194.12 12599.53 5199.39 12586.93 21098.73 18296.95 14497.73 15799.45 165
GBi-Net90.88 26089.82 26594.08 26797.53 21191.97 25298.43 29396.95 30187.05 29289.68 25094.72 31371.34 32296.11 32187.01 29185.65 27194.17 270
test190.88 26089.82 26594.08 26797.53 21191.97 25298.43 29396.95 30187.05 29289.68 25094.72 31371.34 32296.11 32187.01 29185.65 27194.17 270
FMVSNet188.50 29786.64 30394.08 26795.62 28091.97 25298.43 29396.95 30183.00 33386.08 31494.72 31359.09 35896.11 32181.82 32484.07 28794.17 270
pm-mvs189.36 29187.81 29894.01 27193.40 31491.93 25598.62 28596.48 32986.25 30483.86 32596.14 26373.68 31597.04 28386.16 29775.73 34593.04 328
CSCG97.10 10897.04 10297.27 17099.89 5091.92 25699.90 7999.07 3288.67 27195.26 19099.82 5593.17 12099.98 4698.15 10499.47 11599.90 93
HQP5-MVS91.85 257
HQP-MVS94.61 18194.50 17294.92 23595.78 26691.85 25799.87 9397.89 21096.82 3293.37 21098.65 18480.65 26398.39 20697.92 11789.60 23194.53 240
NP-MVS95.77 26991.79 25998.65 184
TAPA-MVS92.12 894.42 18793.60 19196.90 18099.33 11391.78 26099.78 12998.00 19889.89 25294.52 19699.47 11791.97 14899.18 16269.90 35599.52 11299.73 114
Andrea Romanoni, Matteo Matteucci: TAPA-MVS: Textureless-Aware PAtchMatch Multi-View Stereo. ICCV 2019
HQP_MVS94.49 18694.36 17494.87 23695.71 27591.74 26199.84 11197.87 21296.38 4893.01 21498.59 18880.47 26798.37 21197.79 12289.55 23494.52 242
plane_prior91.74 26199.86 10496.76 3689.59 233
F-COLMAP96.93 11496.95 10596.87 18199.71 8991.74 26199.85 10797.95 20493.11 16395.72 18399.16 14392.35 14099.94 7395.32 16299.35 12098.92 201
plane_prior695.76 27091.72 26480.47 267
PS-CasMVS90.63 26789.51 27293.99 27393.83 30591.70 26598.98 24998.52 9288.48 27586.15 31396.53 25475.46 30196.31 31588.83 26778.86 32593.95 295
tpm295.47 16195.18 15896.35 20096.91 23891.70 26596.96 33097.93 20688.04 28198.44 11595.40 28893.32 11297.97 23794.00 19595.61 20199.38 172
plane_prior391.64 26796.63 4093.01 214
MIMVSNet90.30 27588.67 28795.17 22896.45 25491.64 26792.39 35697.15 27985.99 30690.50 23693.19 33766.95 33994.86 34282.01 32293.43 22299.01 200
plane_prior795.71 27591.59 269
tpmvs94.28 19393.57 19396.40 19798.55 15491.50 27095.70 34698.55 8587.47 28692.15 22294.26 32691.42 15398.95 17188.15 27595.85 19598.76 210
tpm cat193.51 20792.52 21896.47 19297.77 19791.47 27196.13 33998.06 19580.98 34292.91 21793.78 33089.66 17998.87 17287.03 29096.39 18599.09 197
h-mvs3394.92 17194.36 17496.59 19198.85 14191.29 27298.93 25598.94 3795.90 6098.77 9998.42 20090.89 16799.77 12097.80 11970.76 34998.72 211
BH-untuned95.18 16594.83 16696.22 20298.36 16291.22 27399.80 12597.32 26590.91 23491.08 23098.67 18383.51 23798.54 19394.23 19299.61 10798.92 201
TransMVSNet (Re)87.25 30485.28 30993.16 29393.56 30991.03 27498.54 28894.05 36383.69 33181.09 33896.16 26275.32 30296.40 31176.69 34568.41 35692.06 340
v14890.70 26489.63 26793.92 27592.97 32290.97 27599.75 14096.89 30987.51 28588.27 28395.01 30581.67 24997.04 28387.40 28477.17 33893.75 309
jajsoiax91.92 24091.18 24294.15 26491.35 34290.95 27699.00 24797.42 25492.61 18287.38 29597.08 23172.46 31897.36 25994.53 18488.77 24494.13 281
PEN-MVS90.19 27989.06 28093.57 28693.06 32090.90 27799.06 23998.47 10588.11 27985.91 31596.30 25976.67 29095.94 32987.07 28876.91 34093.89 300
OPM-MVS93.21 21292.80 20994.44 25693.12 31890.85 27899.77 13297.61 23196.19 5591.56 22698.65 18475.16 30798.47 19593.78 20389.39 23793.99 292
Ray L. Khuboni, Hongjun Xu: Octagram Propagation Matching for Multi-Scale View Stereopsis (OPM-MVS).
CLD-MVS94.06 19593.90 18594.55 24996.02 26190.69 27999.98 1097.72 22196.62 4291.05 23198.85 17877.21 28598.47 19598.11 10689.51 23694.48 244
Zhaoxin Li, Wangmeng Zuo, Zhaoqi Wang, Lei Zhang: Confidence-based Large-scale Dense Multi-view Stereo. IEEE Transaction on Image Processing, 2020
eth_miper_zixun_eth92.41 23191.93 22893.84 27897.28 22690.68 28098.83 26896.97 30088.57 27489.19 26695.73 27389.24 18896.69 30289.97 25981.55 30194.15 277
Anonymous2023121189.86 28488.44 29094.13 26698.93 13290.68 28098.54 28898.26 17176.28 35286.73 30195.54 28070.60 32697.56 25290.82 24680.27 31794.15 277
Anonymous2024052992.10 23890.65 24996.47 19298.82 14290.61 28298.72 27798.67 6175.54 35693.90 20698.58 19066.23 34199.90 8094.70 18090.67 23098.90 204
mvs_tets91.81 24291.08 24394.00 27291.63 34090.58 28398.67 28297.43 25292.43 19387.37 29697.05 23471.76 32097.32 26394.75 17788.68 24694.11 282
v7n89.65 28888.29 29393.72 28092.22 33290.56 28499.07 23897.10 28485.42 31886.73 30194.72 31380.06 26997.13 27581.14 32678.12 32993.49 317
Patchmatch-test92.65 22791.50 23796.10 20596.85 24390.49 28591.50 36097.19 27382.76 33690.23 23895.59 27895.02 5898.00 23677.41 34196.98 17699.82 103
PVSNet_088.03 1991.80 24590.27 25796.38 19998.27 16890.46 28699.94 6199.61 1293.99 13386.26 31297.39 22371.13 32599.89 8498.77 7867.05 35998.79 209
ppachtmachnet_test89.58 28988.35 29193.25 29292.40 33090.44 28799.33 21096.73 32085.49 31685.90 31695.77 27081.09 25796.00 32876.00 34782.49 29493.30 322
IterMVS90.91 25990.17 26093.12 29496.78 24990.42 28898.89 25897.05 29189.03 26086.49 30695.42 28776.59 29295.02 33887.22 28784.09 28693.93 297
Fangjinhua Wang, Silvano Galliani, Christoph Vogel, Marc Pollefeys: IterMVS: Iterative Probability Estimation for Efficient Multi-View Stereo.
MVS-HIRNet86.22 30783.19 31995.31 22396.71 25290.29 28992.12 35797.33 26462.85 36486.82 30070.37 36869.37 32997.49 25475.12 34897.99 15698.15 217
VDD-MVS93.77 20192.94 20796.27 20198.55 15490.22 29098.77 27497.79 21990.85 23696.82 15799.42 12161.18 35699.77 12098.95 6394.13 21698.82 207
PatchT90.38 27288.75 28695.25 22695.99 26290.16 29191.22 36297.54 23976.80 35197.26 14686.01 36191.88 14996.07 32566.16 36295.91 19499.51 158
LTVRE_ROB88.28 1890.29 27689.05 28194.02 27095.08 28690.15 29297.19 32497.43 25284.91 32383.99 32497.06 23374.00 31498.28 22084.08 30887.71 25893.62 315
Andreas Kuhn, Heiko Hirschmüller, Daniel Scharstein, Helmut Mayer: A TV Prior for High-Quality Scalable Multi-View Stereo Reconstruction. International Journal of Computer Vision 2016
AUN-MVS93.28 21192.60 21395.34 22198.29 16490.09 29399.31 21398.56 7991.80 21296.35 17298.00 20989.38 18398.28 22092.46 22169.22 35497.64 226
hse-mvs294.38 18894.08 18195.31 22398.27 16890.02 29499.29 21898.56 7995.90 6098.77 9998.00 20990.89 16798.26 22497.80 11969.20 35597.64 226
IterMVS-SCA-FT90.85 26290.16 26192.93 29896.72 25189.96 29598.89 25896.99 29688.95 26586.63 30395.67 27476.48 29395.00 33987.04 28984.04 28993.84 304
DTE-MVSNet89.40 29088.24 29492.88 29992.66 32889.95 29699.10 23198.22 17687.29 28985.12 32096.22 26176.27 29695.30 33783.56 31475.74 34493.41 318
Baseline_NR-MVSNet90.33 27489.51 27292.81 30092.84 32489.95 29699.77 13293.94 36484.69 32589.04 26895.66 27581.66 25096.52 30790.99 24176.98 33991.97 342
Patchmtry89.70 28788.49 28993.33 28996.24 25789.94 29891.37 36196.23 33278.22 34987.69 28893.31 33591.04 16296.03 32680.18 33182.10 29794.02 287
pmmvs590.17 28089.09 27993.40 28892.10 33489.77 29999.74 14395.58 34685.88 30987.24 29895.74 27173.41 31696.48 30988.54 27083.56 29193.95 295
Anonymous20240521193.10 21591.99 22796.40 19799.10 11989.65 30098.88 26097.93 20683.71 33094.00 20498.75 18068.79 33099.88 9095.08 16591.71 22999.68 120
our_test_390.39 27189.48 27493.12 29492.40 33089.57 30199.33 21096.35 33187.84 28385.30 31894.99 30884.14 23496.09 32480.38 32984.56 28193.71 314
D2MVS92.76 22292.59 21693.27 29195.13 28489.54 30299.69 15499.38 2292.26 19787.59 29094.61 31985.05 22897.79 24591.59 23188.01 25592.47 336
XVG-OURS-SEG-HR94.79 17394.70 17095.08 22998.05 18089.19 30399.08 23497.54 23993.66 14894.87 19399.58 10978.78 27899.79 11497.31 13393.40 22396.25 234
XVG-OURS94.82 17294.74 16995.06 23098.00 18289.19 30399.08 23497.55 23794.10 12694.71 19499.62 10680.51 26599.74 13096.04 15493.06 22796.25 234
miper_lstm_enhance91.81 24291.39 24093.06 29797.34 22089.18 30599.38 20496.79 31786.70 29987.47 29395.22 30090.00 17695.86 33088.26 27381.37 30394.15 277
ACMM91.95 1092.88 22092.52 21893.98 27495.75 27189.08 30699.77 13297.52 24393.00 16489.95 24397.99 21176.17 29798.46 19893.63 20888.87 24294.39 253
Qingshan Xu and Wenbing Tao: Multi-Scale Geometric Consistency Guided Multi-View Stereo. CVPR 2019
MVP-Stereo90.93 25890.45 25392.37 30491.25 34488.76 30798.05 31196.17 33487.27 29084.04 32395.30 29578.46 28297.27 26983.78 31299.70 10091.09 347
Qingsong Yan: MVP-Stereo: A Parallel Multi-View Patchmatch Stereo Method with Dilation Matching for Photogrammetric Application.
ACMP92.05 992.74 22392.42 22093.73 27995.91 26588.72 30899.81 12097.53 24194.13 12487.00 29998.23 20374.07 31398.47 19596.22 15288.86 24393.99 292
Qingshan Xu and Wenbing Tao: Planar Prior Assisted PatchMatch Multi-View Stereo. AAAI 2020
LPG-MVS_test92.96 21892.71 21193.71 28195.43 28188.67 30999.75 14097.62 22892.81 16990.05 23998.49 19475.24 30398.40 20495.84 15889.12 23894.07 284
LGP-MVS_train93.71 28195.43 28188.67 30997.62 22892.81 16990.05 23998.49 19475.24 30398.40 20495.84 15889.12 23894.07 284
ACMH89.72 1790.64 26689.63 26793.66 28595.64 27888.64 31198.55 28697.45 24989.03 26081.62 33597.61 21769.75 32898.41 20289.37 26287.62 26093.92 298
Qingshan Xu and Wenbing Tao: Multi-Scale Geometric Consistency Guided Multi-View Stereo. CVPR 2019
MDA-MVSNet_test_wron85.51 31183.32 31892.10 30790.96 34588.58 31299.20 22596.52 32779.70 34657.12 36892.69 34079.11 27693.86 35177.10 34377.46 33593.86 303
AllTest92.48 22991.64 23295.00 23299.01 12488.43 31398.94 25496.82 31586.50 30088.71 27298.47 19874.73 30999.88 9085.39 30196.18 18796.71 232
TestCases95.00 23299.01 12488.43 31396.82 31586.50 30088.71 27298.47 19874.73 30999.88 9085.39 30196.18 18796.71 232
FMVSNet588.32 29887.47 30090.88 31696.90 24188.39 31597.28 32295.68 34382.60 33784.67 32192.40 34479.83 27191.16 36276.39 34681.51 30293.09 326
YYNet185.50 31283.33 31792.00 30890.89 34688.38 31699.22 22496.55 32679.60 34757.26 36792.72 33879.09 27793.78 35277.25 34277.37 33693.84 304
USDC90.00 28388.96 28293.10 29694.81 29088.16 31798.71 27895.54 34793.66 14883.75 32697.20 22765.58 34398.31 21583.96 31187.49 26292.85 331
UniMVSNet_ETH3D90.06 28288.58 28894.49 25394.67 29388.09 31897.81 31697.57 23683.91 32988.44 27797.41 22157.44 36097.62 25191.41 23288.59 24997.77 224
COLMAP_ROBcopyleft90.47 1492.18 23691.49 23894.25 26299.00 12688.04 31998.42 29696.70 32282.30 33888.43 27999.01 15176.97 28799.85 9986.11 29896.50 18394.86 239
Johannes L. Schönberger, Enliang Zheng, Marc Pollefeys, Jan-Michael Frahm: Pixelwise View Selection for Unstructured Multi-View Stereo. ECCV 2016
MDA-MVSNet-bldmvs84.09 32081.52 32691.81 31191.32 34388.00 32098.67 28295.92 33980.22 34455.60 36993.32 33468.29 33593.60 35473.76 34976.61 34293.82 306
JIA-IIPM91.76 24890.70 24894.94 23496.11 25887.51 32193.16 35498.13 19175.79 35597.58 14077.68 36692.84 12797.97 23788.47 27296.54 18199.33 179
tpm93.70 20593.41 20094.58 24795.36 28387.41 32297.01 32896.90 30890.85 23696.72 16094.14 32790.40 17296.84 29490.75 24888.54 25099.51 158
dcpmvs_297.42 9798.09 6095.42 21999.58 10087.24 32399.23 22396.95 30194.28 12098.93 9399.73 8894.39 7999.16 16499.89 1799.82 9199.86 100
pmmvs-eth3d84.03 32181.97 32490.20 32384.15 36687.09 32498.10 30994.73 35983.05 33274.10 35887.77 35765.56 34494.01 34881.08 32769.24 35389.49 359
CVMVSNet94.68 17994.94 16493.89 27796.80 24686.92 32599.06 23998.98 3594.45 10894.23 20299.02 14985.60 22095.31 33690.91 24495.39 20599.43 168
patch_mono-298.24 6499.12 595.59 21499.67 9286.91 32699.95 4398.89 4397.60 1299.90 299.76 7596.54 2799.98 4699.94 1299.82 9199.88 96
MVS_030489.28 29388.31 29292.21 30697.05 23286.53 32797.76 31799.57 1385.58 31593.86 20792.71 33951.04 36796.30 31684.49 30792.72 22893.79 307
Fast-Effi-MVS+-dtu93.72 20493.86 18793.29 29097.06 23186.16 32899.80 12596.83 31392.66 17992.58 22197.83 21481.39 25397.67 24989.75 26196.87 17896.05 238
ACMH+89.98 1690.35 27389.54 27092.78 30195.99 26286.12 32998.81 27097.18 27589.38 25583.14 32897.76 21568.42 33498.43 20089.11 26586.05 26993.78 308
ADS-MVSNet293.80 20093.88 18693.55 28797.87 19085.94 33094.24 34796.84 31290.07 24896.43 16894.48 32290.29 17495.37 33487.44 28297.23 16999.36 175
XVG-ACMP-BASELINE91.22 25590.75 24692.63 30293.73 30785.61 33198.52 29097.44 25192.77 17389.90 24596.85 24266.64 34098.39 20692.29 22388.61 24793.89 300
TinyColmap87.87 30386.51 30491.94 30995.05 28785.57 33297.65 31894.08 36284.40 32681.82 33496.85 24262.14 35398.33 21380.25 33086.37 26891.91 343
MS-PatchMatch90.65 26590.30 25691.71 31294.22 29985.50 33398.24 30297.70 22288.67 27186.42 30896.37 25767.82 33698.03 23583.62 31399.62 10491.60 344
mvs-test195.53 15995.97 13494.20 26397.77 19785.44 33499.95 4397.06 28894.92 9196.58 16398.72 18185.81 21898.98 16994.80 17498.11 15098.18 216
ITE_SJBPF92.38 30395.69 27785.14 33595.71 34292.81 16989.33 26198.11 20570.23 32798.42 20185.91 29988.16 25493.59 316
test_040285.58 30983.94 31390.50 32093.81 30685.04 33698.55 28695.20 35476.01 35379.72 34495.13 30164.15 34996.26 31866.04 36386.88 26590.21 355
testgi89.01 29588.04 29691.90 31093.49 31184.89 33799.73 14895.66 34493.89 14185.14 31998.17 20459.68 35794.66 34477.73 34088.88 24196.16 237
TDRefinement84.76 31582.56 32291.38 31474.58 37184.80 33897.36 32194.56 36084.73 32480.21 34296.12 26563.56 35098.39 20687.92 27863.97 36090.95 350
pmmvs685.69 30883.84 31491.26 31590.00 35484.41 33997.82 31596.15 33575.86 35481.29 33795.39 29061.21 35596.87 29383.52 31573.29 34892.50 335
MIMVSNet182.58 32480.51 32888.78 33386.68 36284.20 34096.65 33295.41 34978.75 34878.59 34792.44 34151.88 36589.76 36565.26 36478.95 32392.38 338
UnsupCasMVSNet_eth85.52 31083.99 31190.10 32489.36 35683.51 34196.65 33297.99 19989.14 25775.89 35593.83 32963.25 35193.92 34981.92 32367.90 35892.88 330
OpenMVS_ROBcopyleft79.82 2083.77 32281.68 32590.03 32588.30 35982.82 34298.46 29195.22 35373.92 36076.00 35491.29 34855.00 36296.94 28968.40 35888.51 25190.34 353
Anonymous2024052185.15 31483.81 31589.16 33088.32 35882.69 34398.80 27295.74 34179.72 34581.53 33690.99 34965.38 34594.16 34772.69 35181.11 30790.63 352
new_pmnet84.49 31982.92 32189.21 32990.03 35382.60 34496.89 33195.62 34580.59 34375.77 35689.17 35365.04 34794.79 34372.12 35281.02 30990.23 354
Effi-MVS+-dtu94.53 18595.30 15492.22 30597.77 19782.54 34599.59 17297.06 28894.92 9195.29 18995.37 29285.81 21897.89 24394.80 17497.07 17396.23 236
pmmvs380.27 32877.77 33287.76 33880.32 36982.43 34698.23 30391.97 36872.74 36178.75 34687.97 35657.30 36190.99 36370.31 35462.37 36289.87 356
SixPastTwentyTwo88.73 29688.01 29790.88 31691.85 33782.24 34798.22 30495.18 35588.97 26382.26 33196.89 23971.75 32196.67 30384.00 30982.98 29293.72 313
K. test v388.05 30087.24 30290.47 32191.82 33882.23 34898.96 25297.42 25489.05 25976.93 35195.60 27768.49 33395.42 33385.87 30081.01 31093.75 309
UnsupCasMVSNet_bld79.97 33077.03 33388.78 33385.62 36481.98 34993.66 35297.35 26175.51 35770.79 36183.05 36348.70 36894.91 34178.31 33860.29 36589.46 360
EG-PatchMatch MVS85.35 31383.81 31589.99 32690.39 34981.89 35098.21 30596.09 33681.78 34074.73 35793.72 33151.56 36697.12 27779.16 33588.61 24790.96 349
CL-MVSNet_self_test84.50 31883.15 32088.53 33586.00 36381.79 35198.82 26997.35 26185.12 31983.62 32790.91 35176.66 29191.40 36169.53 35660.36 36492.40 337
DeepPCF-MVS95.94 297.71 8698.98 1293.92 27599.63 9481.76 35299.96 2598.56 7999.47 199.19 8199.99 194.16 92100.00 199.92 1399.93 67100.00 1
EGC-MVSNET69.38 33163.76 33886.26 34190.32 35081.66 35396.24 33893.85 3650.99 3783.22 37992.33 34552.44 36492.92 35759.53 36884.90 27884.21 364
OurMVSNet-221017-089.81 28589.48 27490.83 31891.64 33981.21 35498.17 30695.38 35091.48 22085.65 31797.31 22472.66 31797.29 26788.15 27584.83 27993.97 294
LF4IMVS89.25 29488.85 28390.45 32292.81 32781.19 35598.12 30794.79 35791.44 22286.29 31197.11 22965.30 34698.11 23088.53 27185.25 27592.07 339
EU-MVSNet90.14 28190.34 25589.54 32892.55 32981.06 35698.69 28098.04 19791.41 22586.59 30496.84 24480.83 26093.31 35686.20 29681.91 29994.26 263
lessismore_v090.53 31990.58 34880.90 35795.80 34077.01 35095.84 26866.15 34296.95 28883.03 31675.05 34693.74 312
KD-MVS_self_test83.59 32382.06 32388.20 33786.93 36180.70 35897.21 32396.38 33082.87 33482.49 33088.97 35467.63 33792.32 35873.75 35062.30 36391.58 345
test20.0384.72 31783.99 31186.91 33988.19 36080.62 35998.88 26095.94 33888.36 27778.87 34594.62 31868.75 33189.11 36666.52 36175.82 34391.00 348
Anonymous2023120686.32 30685.42 30889.02 33189.11 35780.53 36099.05 24395.28 35185.43 31782.82 32993.92 32874.40 31193.44 35566.99 36081.83 30093.08 327
new-patchmatchnet81.19 32579.34 33086.76 34082.86 36880.36 36197.92 31395.27 35282.09 33972.02 35986.87 35962.81 35290.74 36471.10 35363.08 36189.19 361
LCM-MVSNet-Re92.31 23392.60 21391.43 31397.53 21179.27 36299.02 24691.83 36992.07 20280.31 34194.38 32583.50 23895.48 33297.22 13697.58 16199.54 152
Patchmatch-RL test86.90 30585.98 30789.67 32784.45 36575.59 36389.71 36392.43 36786.89 29777.83 34990.94 35094.22 8893.63 35387.75 28069.61 35199.79 106
DSMNet-mixed88.28 29988.24 29488.42 33689.64 35575.38 36498.06 31089.86 37285.59 31488.20 28492.14 34676.15 29891.95 36078.46 33796.05 19097.92 220
PM-MVS80.47 32778.88 33185.26 34283.79 36772.22 36595.89 34491.08 37085.71 31376.56 35388.30 35536.64 37093.90 35082.39 31969.57 35289.66 358
RPSCF91.80 24592.79 21088.83 33298.15 17669.87 36698.11 30896.60 32583.93 32894.33 20099.27 13379.60 27299.46 15591.99 22593.16 22697.18 230
Gipumacopyleft66.95 33565.00 33572.79 35091.52 34167.96 36766.16 37095.15 35647.89 36858.54 36667.99 37029.74 37287.54 36750.20 37077.83 33162.87 370
S. Galliani, K. Lasinger, K. Schindler: Massively Parallel Multiview Stereopsis by Surface Normal Diffusion. ICCV 2015
test_method80.79 32679.70 32984.08 34392.83 32567.06 36899.51 18595.42 34854.34 36681.07 33993.53 33244.48 36992.22 35978.90 33677.23 33792.94 329
ambc83.23 34577.17 37062.61 36987.38 36594.55 36176.72 35286.65 36030.16 37196.36 31384.85 30669.86 35090.73 351
CMPMVSbinary61.59 2184.75 31685.14 31083.57 34490.32 35062.54 37096.98 32997.59 23574.33 35969.95 36296.66 24864.17 34898.32 21487.88 27988.41 25289.84 357
M. Jancosek, T. Pajdla: Multi-View Reconstruction Preserving Weakly-Supported Surfaces. CVPR 2011
PMMVS267.15 33464.15 33776.14 34970.56 37462.07 37193.89 35087.52 37658.09 36560.02 36578.32 36522.38 37684.54 36959.56 36747.03 36981.80 365
DeepMVS_CXcopyleft82.92 34695.98 26458.66 37296.01 33792.72 17478.34 34895.51 28358.29 35998.08 23182.57 31885.29 27492.03 341
ANet_high56.10 33752.24 34067.66 35349.27 37956.82 37383.94 36682.02 37770.47 36233.28 37664.54 37117.23 37969.16 37445.59 37223.85 37377.02 367
LCM-MVSNet67.77 33364.73 33676.87 34862.95 37756.25 37489.37 36493.74 36644.53 36961.99 36480.74 36420.42 37786.53 36869.37 35759.50 36687.84 362
MVEpermissive53.74 2251.54 34047.86 34462.60 35459.56 37850.93 37579.41 36877.69 37835.69 37336.27 37561.76 3745.79 38369.63 37337.97 37436.61 37067.24 368
Simon Fuhrmann, Fabian Langguth, Michael Goesele: MVE - A Multi-View Reconstruction Environment. EUROGRAPHICS Workshops on Graphics and Cultural Heritage (2014)
tmp_tt65.23 33662.94 33972.13 35144.90 38050.03 37681.05 36789.42 37538.45 37048.51 37299.90 1954.09 36378.70 37291.84 22918.26 37487.64 363
E-PMN52.30 33952.18 34152.67 35671.51 37245.40 37793.62 35376.60 37936.01 37243.50 37364.13 37227.11 37467.31 37531.06 37526.06 37145.30 374
N_pmnet80.06 32980.78 32777.89 34791.94 33545.28 37898.80 27256.82 38178.10 35080.08 34393.33 33377.03 28695.76 33168.14 35982.81 29392.64 332
EMVS51.44 34151.22 34352.11 35770.71 37344.97 37994.04 34975.66 38035.34 37442.40 37461.56 37528.93 37365.87 37627.64 37624.73 37245.49 373
FPMVS68.72 33268.72 33468.71 35265.95 37544.27 38095.97 34394.74 35851.13 36753.26 37090.50 35225.11 37583.00 37060.80 36680.97 31178.87 366
PMVScopyleft49.05 2353.75 33851.34 34260.97 35540.80 38134.68 38174.82 36989.62 37437.55 37128.67 37772.12 3677.09 38181.63 37143.17 37368.21 35766.59 369
Y. Furukawa, J. Ponce: Accurate, dense, and robust multiview stereopsis. PAMI (2010)
wuyk23d20.37 34520.84 34818.99 36065.34 37627.73 38250.43 3717.67 3849.50 3778.01 3786.34 3786.13 38226.24 37723.40 37710.69 3762.99 375
test12337.68 34339.14 34633.31 35819.94 38224.83 38398.36 2979.75 38315.53 37651.31 37187.14 35819.62 37817.74 37847.10 3713.47 37757.36 371
testmvs40.60 34244.45 34529.05 35919.49 38314.11 38499.68 15618.47 38220.74 37564.59 36398.48 19710.95 38017.09 37956.66 36911.01 37555.94 372
test_blank0.00 3480.00 3510.00 3610.00 3840.00 3850.00 3720.00 3850.00 3790.00 3800.02 3790.00 3840.00 3800.00 3780.00 3780.00 376
uanet_test0.00 3480.00 3510.00 3610.00 3840.00 3850.00 3720.00 3850.00 3790.00 3800.00 3800.00 3840.00 3800.00 3780.00 3780.00 376
DCPMVS0.00 3480.00 3510.00 3610.00 3840.00 3850.00 3720.00 3850.00 3790.00 3800.00 3800.00 3840.00 3800.00 3780.00 3780.00 376
cdsmvs_eth3d_5k23.43 34431.24 3470.00 3610.00 3840.00 3850.00 37298.09 1920.00 3790.00 38099.67 10183.37 2390.00 3800.00 3780.00 3780.00 376
pcd_1.5k_mvsjas7.60 34710.13 3500.00 3610.00 3840.00 3850.00 3720.00 3850.00 3790.00 3800.00 38091.20 1580.00 3800.00 3780.00 3780.00 376
sosnet-low-res0.00 3480.00 3510.00 3610.00 3840.00 3850.00 3720.00 3850.00 3790.00 3800.00 3800.00 3840.00 3800.00 3780.00 3780.00 376
sosnet0.00 3480.00 3510.00 3610.00 3840.00 3850.00 3720.00 3850.00 3790.00 3800.00 3800.00 3840.00 3800.00 3780.00 3780.00 376
uncertanet0.00 3480.00 3510.00 3610.00 3840.00 3850.00 3720.00 3850.00 3790.00 3800.00 3800.00 3840.00 3800.00 3780.00 3780.00 376
Regformer0.00 3480.00 3510.00 3610.00 3840.00 3850.00 3720.00 3850.00 3790.00 3800.00 3800.00 3840.00 3800.00 3780.00 3780.00 376
ab-mvs-re8.28 34611.04 3490.00 3610.00 3840.00 3850.00 3720.00 3850.00 3790.00 38099.40 1230.00 3840.00 3800.00 3780.00 3780.00 376
uanet0.00 3480.00 3510.00 3610.00 3840.00 3850.00 3720.00 3850.00 3790.00 3800.00 3800.00 3840.00 3800.00 3780.00 3780.00 376
PC_three_145296.96 3099.80 1799.79 6497.49 9100.00 199.99 599.98 35100.00 1
eth-test20.00 384
eth-test0.00 384
test_241102_TWO98.43 12097.27 2199.80 1799.94 497.18 20100.00 1100.00 1100.00 1100.00 1
9.1498.38 4099.87 5799.91 7598.33 15893.22 15999.78 2599.89 2194.57 7299.85 9999.84 1999.97 48
test_0728_THIRD96.48 4399.83 1199.91 1597.87 4100.00 199.92 13100.00 1100.00 1
GSMVS99.59 139
sam_mvs194.72 6899.59 139
sam_mvs94.25 87
MTGPAbinary98.28 167
test_post195.78 34559.23 37693.20 11997.74 24791.06 238
test_post63.35 37394.43 7398.13 229
patchmatchnet-post91.70 34795.12 5297.95 240
MTMP99.87 9396.49 328
test9_res99.71 3599.99 22100.00 1
agg_prior299.48 42100.00 1100.00 1
test_prior299.95 4395.78 6499.73 3099.76 7596.00 3399.78 26100.00 1
旧先验299.46 19494.21 12399.85 799.95 6596.96 143
新几何299.40 199
无先验99.49 18998.71 5593.46 153100.00 194.36 18799.99 24
原ACMM299.90 79
testdata299.99 4090.54 250
segment_acmp96.68 25
testdata199.28 21996.35 52
plane_prior597.87 21298.37 21197.79 12289.55 23494.52 242
plane_prior498.59 188
plane_prior299.84 11196.38 48
plane_prior195.73 272
n20.00 385
nn0.00 385
door-mid89.69 373
test1198.44 112
door90.31 371
HQP-NCC95.78 26699.87 9396.82 3293.37 210
ACMP_Plane95.78 26699.87 9396.82 3293.37 210
BP-MVS97.92 117
HQP4-MVS93.37 21098.39 20694.53 240
HQP3-MVS97.89 21089.60 231
HQP2-MVS80.65 263
ACMMP++_ref87.04 264
ACMMP++88.23 253
Test By Simon92.82 129