This table lists the benchmark results for the high-res multi-view scenario. The following metrics are evaluated:

(*) For exact definitions, detailing how potentially incomplete ground truth is taken into account, see our paper.

The datasets are grouped into different categories, and result averages are computed for a category and method if results of the method are available for all datasets within the category. Note that the category "all" includes both the high-res multi-view and the low-res many-view scenarios.

Methods with suffix _ROB may participate in the Robust Vision Challenge.

Click a dataset result cell to show a visualization of the reconstruction. For training datasets, ground truth and accuracy / completeness visualizations are also available. The visualizations may not work with mobile browsers.




Method Infoallhigh-res
multi-view
indooroutdoorbotani.boulde.bridgedoorexhibi.lectur.living.loungeobserv.old co.statueterrac.
sort bysort bysort bysort bysort bysorted bysort bysort bysort bysort bysort bysort bysort bysort bysort bysort by
DPM-MVS98.83 1998.46 2799.97 199.33 9799.92 199.96 2898.44 11097.96 999.55 4899.94 497.18 21100.00 193.81 19999.94 5499.98 48
MSC_two_6792asdad99.93 299.91 3999.80 298.41 133100.00 199.96 9100.00 1100.00 1
No_MVS99.93 299.91 3999.80 298.41 133100.00 199.96 9100.00 1100.00 1
OPU-MVS99.93 299.89 4599.80 299.96 2899.80 5197.44 14100.00 1100.00 199.98 32100.00 1
MCST-MVS99.32 399.14 499.86 599.97 399.59 599.97 2198.64 6998.47 299.13 7799.92 1396.38 30100.00 199.74 27100.00 1100.00 1
CNVR-MVS99.40 199.26 199.84 699.98 299.51 699.98 1198.69 6198.20 399.93 199.98 296.82 23100.00 199.75 25100.00 199.99 23
test_0728_SECOND99.82 799.94 1399.47 799.95 4598.43 118100.00 199.99 5100.00 1100.00 1
HY-MVS92.50 797.79 7197.17 8599.63 1698.98 11499.32 897.49 31899.52 1495.69 7298.32 11497.41 22293.32 9899.77 11898.08 10395.75 19399.81 89
DVP-MVS++99.26 699.09 999.77 899.91 3999.31 999.95 4598.43 11896.48 5199.80 1599.93 1197.44 14100.00 199.92 1299.98 32100.00 1
IU-MVS99.93 2499.31 998.41 13397.71 1399.84 10100.00 1100.00 1100.00 1
test_one_060199.94 1399.30 1198.41 13396.63 4899.75 2799.93 1197.49 10
SED-MVS99.28 599.11 799.77 899.93 2499.30 1199.96 2898.43 11897.27 2799.80 1599.94 496.71 24100.00 1100.00 1100.00 1100.00 1
test_241102_ONE99.93 2499.30 1198.43 11897.26 2999.80 1599.88 2196.71 24100.00 1
DVP-MVScopyleft99.30 499.16 399.73 1199.93 2499.29 1499.95 4598.32 15597.28 2599.83 1199.91 1497.22 19100.00 199.99 5100.00 199.89 80
Zhenlong Yuan, Jinguo Luo, Fei Shen, Zhaoxin Li, Cong Liu, Tianlu Mao, Zhaoqi Wang: DVP-MVS: Synergize Depth-Edge and Visibility Prior for Multi-View Stereo. AAAI2025
test072699.93 2499.29 1499.96 2898.42 12997.28 2599.86 599.94 497.22 19
WTY-MVS98.10 5797.60 7099.60 2198.92 12199.28 1699.89 8699.52 1495.58 7598.24 11999.39 11493.33 9799.74 12497.98 10995.58 19699.78 95
test_part299.89 4599.25 1799.49 55
DPE-MVScopyleft99.26 699.10 899.74 1099.89 4599.24 1899.87 9198.44 11097.48 2199.64 3799.94 496.68 2699.99 3699.99 5100.00 199.99 23
Kehua Chen, Zhenlong Yuan, Tianlu Mao, Zhaoqi Wang: Dual-Level Precision Edges Guided Multi-View Stereo with Accurate Planarization. AAAI2025
MVS96.60 11695.56 13999.72 1296.85 23699.22 1998.31 29898.94 3891.57 21590.90 23199.61 9586.66 20199.96 5797.36 12899.88 6899.99 23
NCCC99.37 299.25 299.71 1399.96 899.15 2099.97 2198.62 7398.02 899.90 299.95 397.33 17100.00 199.54 34100.00 1100.00 1
MVS_030498.87 1898.61 2199.67 1599.18 10199.13 2199.87 9199.65 1198.17 498.75 9599.75 6792.76 11599.94 7299.88 1799.44 10499.94 70
CANet98.27 4897.82 6499.63 1699.72 7499.10 2299.98 1198.51 9697.00 3598.52 10499.71 8087.80 18999.95 6499.75 2599.38 10799.83 87
MG-MVS98.91 1698.65 1899.68 1499.94 1399.07 2399.64 16499.44 1997.33 2499.00 8299.72 7894.03 8299.98 4398.73 73100.00 1100.00 1
HPM-MVS++copyleft99.07 1098.88 1599.63 1699.90 4299.02 2499.95 4598.56 8197.56 1999.44 5899.85 3095.38 46100.00 199.31 4499.99 2199.87 83
PAPM98.60 2798.42 2899.14 5696.05 25698.96 2599.90 7999.35 2496.68 4798.35 11399.66 9196.45 2998.51 19299.45 3899.89 6699.96 61
canonicalmvs97.09 9796.32 10999.39 3998.93 11998.95 2699.72 15097.35 25194.45 10597.88 12799.42 11086.71 20099.52 14198.48 8593.97 21399.72 102
TEST999.92 3198.92 2799.96 2898.43 11893.90 13899.71 3199.86 2695.88 3799.85 99
train_agg98.88 1798.65 1899.59 2299.92 3198.92 2799.96 2898.43 11894.35 11299.71 3199.86 2695.94 3499.85 9999.69 3299.98 3299.99 23
PS-MVSNAJ98.44 3898.20 4299.16 5298.80 13298.92 2799.54 18098.17 17497.34 2399.85 799.85 3091.20 14599.89 8799.41 4199.67 8598.69 203
test_899.92 3198.88 3099.96 2898.43 11894.35 11299.69 3399.85 3095.94 3499.85 99
SMA-MVScopyleft98.76 2198.48 2699.62 1999.87 5198.87 3199.86 10498.38 14493.19 15899.77 2599.94 495.54 42100.00 199.74 2799.99 21100.00 1
Yufeng Yin; Xiaoyan Liu; Zichao Zhang: SMA-MVS: Segmentation-Guided Multi-Scale Anchor Deformation Patch Multi-View Stereo. IEEE Transactions on Circuits and Systems for Video Technology
CHOSEN 280x42099.01 1399.03 1098.95 7399.38 9598.87 3198.46 29099.42 2197.03 3499.02 8199.09 13599.35 198.21 22499.73 2999.78 7999.77 96
DeepC-MVS_fast96.59 198.81 2098.54 2499.62 1999.90 4298.85 3399.24 22098.47 10398.14 599.08 7899.91 1493.09 106100.00 199.04 5499.99 21100.00 1
Andreas Kuhn, Christian Sormann, Mattia Rossi, Oliver Erdler, Friedrich Fraundorfer: DeepC-MVS: Deep Confidence Prediction for Multi-View Stereo Reconstruction. 3DV 2020
thres20096.96 9996.21 11299.22 4398.97 11598.84 3499.85 10799.71 693.17 15996.26 16598.88 16289.87 16799.51 14294.26 18894.91 20399.31 168
tfpn200view996.79 10695.99 11799.19 4698.94 11798.82 3599.78 12899.71 692.86 16496.02 17098.87 16589.33 17499.50 14493.84 19694.57 20499.27 173
thres40096.78 10795.99 11799.16 5298.94 11798.82 3599.78 12899.71 692.86 16496.02 17098.87 16589.33 17499.50 14493.84 19694.57 20499.16 180
save fliter99.82 5898.79 3799.96 2898.40 13797.66 15
thres600view796.69 11395.87 13299.14 5698.90 12698.78 3899.74 14299.71 692.59 18295.84 17398.86 16789.25 17699.50 14493.44 20894.50 20799.16 180
thres100view90096.74 11095.92 12999.18 4798.90 12698.77 3999.74 14299.71 692.59 18295.84 17398.86 16789.25 17699.50 14493.84 19694.57 20499.27 173
agg_prior99.93 2498.77 3998.43 11899.63 3899.85 99
PAPR98.52 3298.16 4599.58 2399.97 398.77 3999.95 4598.43 11895.35 8198.03 12299.75 6794.03 8299.98 4398.11 10099.83 7299.99 23
APDe-MVS99.06 1198.91 1499.51 2899.94 1398.76 4299.91 7498.39 14097.20 3199.46 5699.85 3095.53 4499.79 11399.86 18100.00 199.99 23
SD-MVS98.92 1598.70 1799.56 2499.70 7698.73 4399.94 6198.34 15296.38 5699.81 1399.76 6294.59 6399.98 4399.84 1999.96 4699.97 55
Zhenlong Yuan, Jiakai Cao, Zhaoxin Li, Hao Jiang and Zhaoqi Wang: SD-MVS: Segmentation-driven Deformation Multi-View Stereo with Spherical Refinement and EM optimization. AAAI2024
CDPH-MVS98.65 2598.36 3599.49 3199.94 1398.73 4399.87 9198.33 15393.97 13399.76 2699.87 2494.99 5799.75 12298.55 83100.00 199.98 48
DP-MVS Recon98.41 4198.02 5399.56 2499.97 398.70 4599.92 7098.44 11092.06 20298.40 11199.84 4195.68 40100.00 198.19 9599.71 8399.97 55
SF-MVS98.67 2498.40 2999.50 2999.77 6598.67 4699.90 7998.21 16993.53 14899.81 1399.89 1994.70 6299.86 9899.84 1999.93 6099.96 61
TSAR-MVS + MP.98.93 1498.77 1699.41 3799.74 6998.67 4699.77 13198.38 14496.73 4599.88 499.74 7394.89 5999.59 13999.80 2299.98 3299.97 55
Zhenlong Yuan, Jiakai Cao, Zhaoqi Wang, Zhaoxin Li: TSAR-MVS: Textureless-aware Segmentation and Correlative Refinement Guided Multi-View Stereo. Pattern Recognition
xiu_mvs_v2_base98.23 5397.97 5599.02 6798.69 13798.66 4899.52 18298.08 18597.05 3399.86 599.86 2690.65 15799.71 12899.39 4398.63 12898.69 203
alignmvs97.81 6997.33 7999.25 4298.77 13498.66 4899.99 498.44 11094.40 11198.41 10999.47 10693.65 9299.42 15298.57 8294.26 20999.67 108
DELS-MVS98.54 3098.22 4099.50 2999.15 10598.65 50100.00 198.58 7797.70 1498.21 12099.24 12792.58 12199.94 7298.63 8199.94 5499.92 77
Christian Sormann, Emanuele Santellani, Mattia Rossi, Andreas Kuhn, Friedrich Fraundorfer: DELS-MVS: Deep Epipolar Line Search for Multi-View Stereo. Winter Conference on Applications of Computer Vision (WACV), 2023
3Dnovator+91.53 1196.31 12895.24 14799.52 2796.88 23598.64 5199.72 15098.24 16695.27 8488.42 28298.98 14782.76 23299.94 7297.10 13699.83 7299.96 61
ACMMP_NAP98.49 3498.14 4699.54 2699.66 7898.62 5299.85 10798.37 14794.68 10099.53 5199.83 4392.87 111100.00 198.66 7899.84 7199.99 23
ZD-MVS99.92 3198.57 5398.52 9392.34 19499.31 6899.83 4395.06 5299.80 11199.70 3199.97 42
test1299.43 3499.74 6998.56 5498.40 13799.65 3694.76 6099.75 12299.98 3299.99 23
131496.84 10495.96 12399.48 3396.74 24398.52 5598.31 29898.86 4995.82 6889.91 24398.98 14787.49 19299.96 5797.80 11599.73 8299.96 61
APD-MVScopyleft98.62 2698.35 3699.41 3799.90 4298.51 5699.87 9198.36 14894.08 12599.74 2899.73 7594.08 8099.74 12499.42 4099.99 2199.99 23
Yuesong Wang, Zhaojie Zeng and etc.: Adaptive Patch Deformation for Textureless-Resilient Multi-View Stereo. CVPR2023
test_prior99.43 3499.94 1398.49 5798.65 6799.80 11199.99 23
MSLP-MVS++99.13 899.01 1199.49 3199.94 1398.46 5899.98 1198.86 4997.10 3299.80 1599.94 495.92 36100.00 199.51 35100.00 1100.00 1
MP-MVS-pluss98.07 5897.64 6899.38 4099.74 6998.41 5999.74 14298.18 17393.35 15296.45 15999.85 3092.64 11899.97 5398.91 6299.89 6699.77 96
MP-MVS-pluss: MP-MVS-pluss. MP-MVS-pluss
新几何199.42 3699.75 6898.27 6098.63 7292.69 17599.55 4899.82 4694.40 67100.00 191.21 23499.94 5499.99 23
xiu_mvs_v1_base_debu97.43 8197.06 8698.55 9597.74 19098.14 6199.31 21197.86 20696.43 5399.62 4099.69 8485.56 21099.68 13299.05 5198.31 13597.83 216
xiu_mvs_v1_base97.43 8197.06 8698.55 9597.74 19098.14 6199.31 21197.86 20696.43 5399.62 4099.69 8485.56 21099.68 13299.05 5198.31 13597.83 216
xiu_mvs_v1_base_debi97.43 8197.06 8698.55 9597.74 19098.14 6199.31 21197.86 20696.43 5399.62 4099.69 8485.56 21099.68 13299.05 5198.31 13597.83 216
baseline195.78 14394.86 15998.54 9898.47 14998.07 6499.06 23897.99 19092.68 17694.13 19798.62 17993.28 10198.69 18393.79 20185.76 27398.84 195
test_prior498.05 6599.94 61
sss97.57 7897.03 9099.18 4798.37 15398.04 6699.73 14799.38 2293.46 15098.76 9399.06 13891.21 14499.89 8796.33 14997.01 16999.62 119
GG-mvs-BLEND98.54 9898.21 16398.01 6793.87 35798.52 9397.92 12597.92 21099.02 297.94 24098.17 9699.58 9399.67 108
ET-MVSNet_ETH3D94.37 18293.28 19997.64 14498.30 15597.99 6899.99 497.61 22494.35 11271.57 36599.45 10996.23 3195.34 33896.91 14485.14 28099.59 125
test_yl97.83 6697.37 7799.21 4499.18 10197.98 6999.64 16499.27 2691.43 22197.88 12798.99 14595.84 3899.84 10698.82 6795.32 20099.79 92
DCV-MVSNet97.83 6697.37 7799.21 4499.18 10197.98 6999.64 16499.27 2691.43 22197.88 12798.99 14595.84 3899.84 10698.82 6795.32 20099.79 92
gg-mvs-nofinetune93.51 20491.86 23098.47 10397.72 19597.96 7192.62 36198.51 9674.70 36397.33 13869.59 37698.91 397.79 24497.77 12099.56 9499.67 108
MTAPA98.29 4797.96 5899.30 4199.85 5497.93 7299.39 20198.28 16295.76 7097.18 14199.88 2192.74 116100.00 198.67 7699.88 6899.99 23
114514_t97.41 8696.83 9499.14 5699.51 8997.83 7399.89 8698.27 16488.48 27999.06 7999.66 9190.30 16299.64 13896.32 15099.97 4299.96 61
VNet97.21 9396.57 10399.13 6098.97 11597.82 7499.03 24599.21 2894.31 11599.18 7698.88 16286.26 20699.89 8798.93 5994.32 20899.69 105
MVSTER95.53 15295.22 14896.45 18598.56 14197.72 7599.91 7497.67 21792.38 19391.39 22597.14 22997.24 1897.30 26494.80 17587.85 25894.34 260
SteuartSystems-ACMMP99.02 1298.97 1399.18 4798.72 13697.71 7699.98 1198.44 11096.85 3899.80 1599.91 1497.57 899.85 9999.44 3999.99 2199.99 23
Skip Steuart: Steuart Systems R&D Blog.
QAPM95.40 15594.17 17299.10 6196.92 23097.71 7699.40 19798.68 6389.31 25888.94 27098.89 16182.48 23399.96 5793.12 21599.83 7299.62 119
MVSFormer96.94 10096.60 10197.95 12697.28 21997.70 7899.55 17897.27 26091.17 22899.43 5999.54 10290.92 15296.89 29394.67 18099.62 8899.25 175
lupinMVS97.85 6597.60 7098.62 8897.28 21997.70 7899.99 497.55 23095.50 7999.43 5999.67 8990.92 15298.71 18198.40 8799.62 8899.45 151
FOURS199.92 3197.66 8099.95 4598.36 14895.58 7599.52 53
ZNCC-MVS98.31 4598.03 5299.17 5099.88 4997.59 8199.94 6198.44 11094.31 11598.50 10699.82 4693.06 10799.99 3698.30 9399.99 2199.93 72
GST-MVS98.27 4897.97 5599.17 5099.92 3197.57 8299.93 6798.39 14094.04 13198.80 8999.74 7392.98 108100.00 198.16 9799.76 8099.93 72
CANet_DTU96.76 10896.15 11398.60 9098.78 13397.53 8399.84 11197.63 21997.25 3099.20 7399.64 9381.36 24399.98 4392.77 21998.89 12298.28 209
thisisatest051597.41 8697.02 9198.59 9297.71 19797.52 8499.97 2198.54 9091.83 20897.45 13699.04 13997.50 999.10 16294.75 17796.37 18099.16 180
iter_conf0596.07 13495.95 12596.44 18798.43 15097.52 8499.91 7496.85 30494.16 12192.49 21897.98 20798.20 497.34 25997.26 13188.29 25194.45 250
旧先验199.76 6697.52 8498.64 6999.85 3095.63 4199.94 5499.99 23
XVS98.70 2398.55 2399.15 5499.94 1397.50 8799.94 6198.42 12996.22 6199.41 6199.78 5894.34 7299.96 5798.92 6099.95 4999.99 23
X-MVStestdata93.83 19292.06 22499.15 5499.94 1397.50 8799.94 6198.42 12996.22 6199.41 6141.37 38594.34 7299.96 5798.92 6099.95 4999.99 23
OpenMVScopyleft90.15 1594.77 16993.59 18798.33 11296.07 25597.48 8999.56 17698.57 7990.46 24286.51 30598.95 15678.57 27199.94 7293.86 19599.74 8197.57 225
3Dnovator91.47 1296.28 13195.34 14499.08 6296.82 23897.47 9099.45 19498.81 5395.52 7889.39 25799.00 14481.97 23699.95 6497.27 13099.83 7299.84 86
HFP-MVS98.56 2998.37 3399.14 5699.96 897.43 9199.95 4598.61 7494.77 9599.31 6899.85 3094.22 76100.00 198.70 7499.98 3299.98 48
FMVSNet392.69 22491.58 23395.99 19898.29 15697.42 9299.26 21997.62 22189.80 25489.68 24995.32 29681.62 24196.27 31887.01 29485.65 27494.29 262
test22299.55 8597.41 9399.34 20798.55 8791.86 20799.27 7299.83 4393.84 8899.95 4999.99 23
jason97.24 9196.86 9398.38 11195.73 26997.32 9499.97 2197.40 24895.34 8298.60 10399.54 10287.70 19098.56 18997.94 11099.47 10099.25 175
jason: jason.
MSP-MVS99.09 999.12 598.98 7099.93 2497.24 9599.95 4598.42 12997.50 2099.52 5399.88 2197.43 1699.71 12899.50 3699.98 32100.00 1
Zhenlong Yuan, Cong Liu, Fei Shen, Zhaoxin Li, Jingguo luo, Tianlu Mao and Zhaoqi Wang: MSP-MVS: Multi-granularity Segmentation Prior Guided Multi-View Stereo. AAAI2025
MVS_Test96.46 12195.74 13498.61 8998.18 16697.23 9699.31 21197.15 27191.07 23298.84 8797.05 23588.17 18898.97 16594.39 18497.50 15599.61 122
nrg03093.51 20492.53 21696.45 18594.36 29497.20 9799.81 12197.16 27091.60 21489.86 24597.46 22086.37 20497.68 24895.88 15780.31 31994.46 245
region2R98.54 3098.37 3399.05 6399.96 897.18 9899.96 2898.55 8794.87 9399.45 5799.85 3094.07 81100.00 198.67 76100.00 199.98 48
ACMMPR98.50 3398.32 3799.05 6399.96 897.18 9899.95 4598.60 7594.77 9599.31 6899.84 4193.73 90100.00 198.70 7499.98 3299.98 48
MVS_111021_HR98.72 2298.62 2099.01 6899.36 9697.18 9899.93 6799.90 196.81 4398.67 9899.77 6093.92 8499.89 8799.27 4699.94 5499.96 61
MP-MVScopyleft98.23 5397.97 5599.03 6599.94 1397.17 10199.95 4598.39 14094.70 9998.26 11899.81 5091.84 139100.00 198.85 6699.97 4299.93 72
Rongxuan Tan, Qing Wang, et al.: MP-MVS: Multi-Scale Windows PatchMatch and Planar Prior Multi-View Stereo.
PHI-MVS98.41 4198.21 4199.03 6599.86 5397.10 10299.98 1198.80 5590.78 23999.62 4099.78 5895.30 47100.00 199.80 2299.93 6099.99 23
SR-MVS98.46 3698.30 3998.93 7499.88 4997.04 10399.84 11198.35 15094.92 9199.32 6799.80 5193.35 9699.78 11599.30 4599.95 4999.96 61
iter_conf_final96.01 13795.93 12796.28 19298.38 15297.03 10499.87 9197.03 28494.05 13092.61 21497.98 20798.01 597.34 25997.02 13888.39 25094.47 244
PGM-MVS98.34 4498.13 4798.99 6999.92 3197.00 10599.75 13999.50 1793.90 13899.37 6599.76 6293.24 103100.00 197.75 12299.96 4699.98 48
原ACMM198.96 7299.73 7296.99 10698.51 9694.06 12899.62 4099.85 3094.97 5899.96 5795.11 16499.95 4999.92 77
PVSNet_BlendedMVS96.05 13595.82 13396.72 17899.59 8196.99 10699.95 4599.10 2994.06 12898.27 11695.80 27189.00 18199.95 6499.12 4987.53 26493.24 323
PVSNet_Blended97.94 6097.64 6898.83 7899.59 8196.99 106100.00 199.10 2995.38 8098.27 11699.08 13689.00 18199.95 6499.12 4999.25 11399.57 132
mPP-MVS98.39 4398.20 4298.97 7199.97 396.92 10999.95 4598.38 14495.04 8798.61 10299.80 5193.39 95100.00 198.64 79100.00 199.98 48
test250697.53 7997.19 8398.58 9398.66 13996.90 11098.81 26899.77 594.93 8997.95 12498.96 15192.51 12399.20 15694.93 16998.15 14099.64 114
CNLPA97.76 7397.38 7698.92 7599.53 8696.84 11199.87 9198.14 18193.78 14196.55 15799.69 8492.28 12999.98 4397.13 13499.44 10499.93 72
FIs94.10 18893.43 19296.11 19694.70 28996.82 11299.58 17298.93 4292.54 18589.34 25997.31 22587.62 19197.10 27894.22 19086.58 26994.40 252
EPNet98.49 3498.40 2998.77 8099.62 8096.80 11399.90 7999.51 1697.60 1699.20 7399.36 11793.71 9199.91 8197.99 10798.71 12799.61 122
Wanjuan Su, Wenbing Tao: Efficient Edge-Preserving Multi-View Stereo Network for Depth Estimation. AAAI 2023
thisisatest053097.10 9596.72 9898.22 11697.60 20196.70 11499.92 7098.54 9091.11 23197.07 14398.97 14997.47 1299.03 16393.73 20496.09 18398.92 190
PVSNet_Blended_VisFu97.27 9096.81 9598.66 8698.81 13196.67 11599.92 7098.64 6994.51 10496.38 16398.49 18889.05 18099.88 9397.10 13698.34 13399.43 154
TSAR-MVS + GP.98.60 2798.51 2598.86 7799.73 7296.63 11699.97 2197.92 20098.07 698.76 9399.55 10095.00 5699.94 7299.91 1597.68 15299.99 23
CP-MVS98.45 3798.32 3798.87 7699.96 896.62 11799.97 2198.39 14094.43 10798.90 8699.87 2494.30 74100.00 199.04 5499.99 2199.99 23
APD-MVS_3200maxsize98.25 5198.08 5198.78 7999.81 6096.60 11899.82 11998.30 16093.95 13599.37 6599.77 6092.84 11299.76 12198.95 5799.92 6399.97 55
EI-MVSNet-Vis-set98.27 4898.11 4998.75 8199.83 5796.59 11999.40 19798.51 9695.29 8398.51 10599.76 6293.60 9499.71 12898.53 8499.52 9699.95 68
ETV-MVS97.92 6297.80 6598.25 11598.14 16996.48 12099.98 1197.63 21995.61 7499.29 7199.46 10892.55 12298.82 17199.02 5698.54 12999.46 149
TESTMET0.1,196.74 11096.26 11098.16 11797.36 21296.48 12099.96 2898.29 16191.93 20595.77 17698.07 20295.54 4298.29 21690.55 25098.89 12299.70 103
HPM-MVS_fast97.80 7097.50 7398.68 8499.79 6296.42 12299.88 8898.16 17891.75 21298.94 8499.54 10291.82 14099.65 13797.62 12599.99 2199.99 23
Test_1112_low_res95.72 14494.83 16098.42 10897.79 18796.41 12399.65 16096.65 31792.70 17492.86 21296.13 26592.15 13299.30 15391.88 22893.64 21599.55 134
1112_ss96.01 13795.20 14998.42 10897.80 18696.41 12399.65 16096.66 31692.71 17392.88 21199.40 11292.16 13199.30 15391.92 22793.66 21499.55 134
HPM-MVScopyleft97.96 5997.72 6698.68 8499.84 5696.39 12599.90 7998.17 17492.61 18098.62 10199.57 9991.87 13899.67 13598.87 6599.99 2199.99 23
Chunlin Ren, Qingshan Xu, Shikun Zhang, Jiaqi Yang: Hierarchical Prior Mining for Non-local Multi-View Stereo. ICCV 2023
SR-MVS-dyc-post98.31 4598.17 4498.71 8299.79 6296.37 12699.76 13698.31 15794.43 10799.40 6399.75 6793.28 10199.78 11598.90 6399.92 6399.97 55
RE-MVS-def98.13 4799.79 6296.37 12699.76 13698.31 15794.43 10799.40 6399.75 6792.95 10998.90 6399.92 6399.97 55
EI-MVSNet-UG-set98.14 5597.99 5498.60 9099.80 6196.27 12899.36 20698.50 10195.21 8598.30 11599.75 6793.29 10099.73 12798.37 8999.30 11199.81 89
Effi-MVS+96.30 12995.69 13598.16 11797.85 18396.26 12997.41 31997.21 26490.37 24498.65 10098.58 18286.61 20298.70 18297.11 13597.37 16099.52 141
cascas94.64 17493.61 18497.74 14197.82 18596.26 12999.96 2897.78 21285.76 31494.00 19897.54 21876.95 28199.21 15597.23 13295.43 19897.76 220
ab-mvs94.69 17193.42 19398.51 10198.07 17196.26 12996.49 33698.68 6390.31 24694.54 18997.00 23776.30 28899.71 12895.98 15593.38 21899.56 133
MDTV_nov1_ep13_2view96.26 12996.11 34491.89 20698.06 12194.40 6794.30 18799.67 108
UniMVSNet (Re)93.07 21592.13 22195.88 20094.84 28696.24 13399.88 8898.98 3692.49 18989.25 26195.40 29087.09 19797.14 27493.13 21478.16 33094.26 263
FC-MVSNet-test93.81 19493.15 20195.80 20494.30 29696.20 13499.42 19698.89 4592.33 19589.03 26997.27 22787.39 19496.83 29793.20 21086.48 27094.36 256
VPA-MVSNet92.70 22391.55 23596.16 19595.09 28296.20 13498.88 25999.00 3491.02 23491.82 22295.29 30076.05 29297.96 23795.62 16081.19 30794.30 261
diffmvspermissive97.00 9896.64 10098.09 12297.64 19996.17 13699.81 12197.19 26594.67 10198.95 8399.28 11986.43 20398.76 17698.37 8997.42 15899.33 166
Fangjinhua Wang, Qingshan Xu, Yew-Soon Ong, Marc Pollefeys: Lightweight and Accurate Multi-View Stereo With Confidence-Aware Diffusion Model. IEEE T-PAMI 2025
PAPM_NR98.12 5697.93 6098.70 8399.94 1396.13 13799.82 11998.43 11894.56 10397.52 13399.70 8294.40 6799.98 4397.00 13999.98 3299.99 23
ACMMPcopyleft97.74 7497.44 7598.66 8699.92 3196.13 13799.18 22599.45 1894.84 9496.41 16299.71 8091.40 14299.99 3697.99 10798.03 14799.87 83
Qingshan Xu, Weihang Kong, Wenbing Tao, Marc Pollefeys: Multi-Scale Geometric Consistency Guided and Planar Prior Assisted Multi-View Stereo. IEEE Transactions on Pattern Analysis and Machine Intelligence
EPMVS96.53 11996.01 11698.09 12298.43 15096.12 13996.36 33899.43 2093.53 14897.64 13195.04 30694.41 6698.38 20891.13 23698.11 14399.75 98
PCF-MVS94.20 595.18 15894.10 17398.43 10798.55 14395.99 14097.91 31497.31 25690.35 24589.48 25699.22 12885.19 21599.89 8790.40 25598.47 13199.41 156
Andreas Kuhn, Shan Lin, Oliver Erdler: Plane Completion and Filtering for Multi-View Stereo Reconstruction. GCPR 2019
baseline296.71 11296.49 10597.37 15895.63 27695.96 14199.74 14298.88 4792.94 16391.61 22398.97 14997.72 798.62 18794.83 17498.08 14697.53 226
DeepC-MVS94.51 496.92 10296.40 10898.45 10599.16 10495.90 14299.66 15898.06 18696.37 5994.37 19399.49 10583.29 23099.90 8397.63 12499.61 9199.55 134
Andreas Kuhn, Christian Sormann, Mattia Rossi, Oliver Erdler, Friedrich Fraundorfer: DeepC-MVS: Deep Confidence Prediction for Multi-View Stereo Reconstruction. 3DV 2020
tttt051796.85 10396.49 10597.92 12897.48 20795.89 14399.85 10798.54 9090.72 24096.63 15498.93 16097.47 1299.02 16493.03 21695.76 19298.85 194
PVSNet91.05 1397.13 9496.69 9998.45 10599.52 8795.81 14499.95 4599.65 1194.73 9799.04 8099.21 12984.48 22099.95 6494.92 17098.74 12699.58 131
MVS_111021_LR98.42 4098.38 3198.53 10099.39 9495.79 14599.87 9199.86 296.70 4698.78 9099.79 5492.03 13599.90 8399.17 4899.86 7099.88 81
CPTT-MVS97.64 7797.32 8098.58 9399.97 395.77 14699.96 2898.35 15089.90 25298.36 11299.79 5491.18 14899.99 3698.37 8999.99 2199.99 23
NR-MVSNet91.56 24890.22 25695.60 20694.05 29995.76 14798.25 30098.70 6091.16 23080.78 33996.64 25083.23 23196.57 30791.41 23277.73 33494.46 245
mvs_anonymous95.65 15095.03 15597.53 14898.19 16595.74 14899.33 20897.49 23990.87 23690.47 23597.10 23188.23 18797.16 27295.92 15697.66 15399.68 106
FMVSNet291.02 25689.56 26995.41 21397.53 20395.74 14898.98 24897.41 24787.05 29788.43 28095.00 30971.34 31796.24 32085.12 30685.21 27994.25 265
UA-Net96.54 11895.96 12398.27 11498.23 16195.71 15098.00 31298.45 10693.72 14498.41 10999.27 12288.71 18599.66 13691.19 23597.69 15199.44 153
LFMVS94.75 17093.56 18998.30 11399.03 10995.70 15198.74 27397.98 19287.81 28998.47 10799.39 11467.43 33499.53 14098.01 10595.20 20299.67 108
IB-MVS92.85 694.99 16393.94 17898.16 11797.72 19595.69 15299.99 498.81 5394.28 11792.70 21396.90 23995.08 5199.17 15996.07 15373.88 34999.60 124
Christian Sormann, Mattia Rossi, Andreas Kuhn and Friedrich Fraundorfer: IB-MVS: An Iterative Algorithm for Deep Multi-View Stereo based on Binary Decisions. BMVC 2021
EC-MVSNet97.38 8897.24 8197.80 13397.41 20995.64 15399.99 497.06 28194.59 10299.63 3899.32 11889.20 17998.14 22698.76 7199.23 11499.62 119
FA-MVS(test-final)95.86 14095.09 15398.15 12097.74 19095.62 15496.31 34098.17 17491.42 22396.26 16596.13 26590.56 15999.47 15092.18 22497.07 16599.35 163
AdaColmapbinary97.23 9296.80 9698.51 10199.99 195.60 15599.09 23198.84 5293.32 15496.74 15299.72 7886.04 207100.00 198.01 10599.43 10699.94 70
VPNet91.81 24090.46 24995.85 20294.74 28895.54 15698.98 24898.59 7692.14 19890.77 23397.44 22168.73 32897.54 25394.89 17377.89 33294.46 245
casdiffmvs_mvgpermissive96.43 12295.94 12697.89 13297.44 20895.47 15799.86 10497.29 25893.35 15296.03 16999.19 13085.39 21398.72 18097.89 11497.04 16799.49 147
Fangjinhua Wang, Qingshan Xu, Yew-Soon Ong, Marc Pollefeys: Lightweight and Accurate Multi-View Stereo With Confidence-Aware Diffusion Model. IEEE T-PAMI 2025
test-LLR96.47 12096.04 11597.78 13697.02 22695.44 15899.96 2898.21 16994.07 12695.55 17896.38 25693.90 8698.27 22090.42 25398.83 12499.64 114
test-mter96.39 12595.93 12797.78 13697.02 22695.44 15899.96 2898.21 16991.81 21095.55 17896.38 25695.17 4898.27 22090.42 25398.83 12499.64 114
SDMVSNet94.80 16693.96 17797.33 16298.92 12195.42 16099.59 17098.99 3592.41 19192.55 21697.85 21175.81 29398.93 16897.90 11391.62 22497.64 221
API-MVS97.86 6497.66 6798.47 10399.52 8795.41 16199.47 19198.87 4891.68 21398.84 8799.85 3092.34 12899.99 3698.44 8699.96 46100.00 1
XXY-MVS91.82 23990.46 24995.88 20093.91 30295.40 16298.87 26297.69 21588.63 27787.87 28797.08 23274.38 30697.89 24191.66 23084.07 28994.35 259
test_fmvsmvis_n_192097.67 7697.59 7297.91 13097.02 22695.34 16399.95 4598.45 10697.87 1097.02 14499.59 9689.64 16999.98 4399.41 4199.34 11098.42 206
testdata98.42 10899.47 9195.33 16498.56 8193.78 14199.79 2399.85 3093.64 9399.94 7294.97 16899.94 54100.00 1
WR-MVS92.31 23291.25 24095.48 21194.45 29395.29 16599.60 16998.68 6390.10 24888.07 28596.89 24080.68 25196.80 29993.14 21379.67 32394.36 256
UniMVSNet_NR-MVSNet92.95 21792.11 22295.49 20894.61 29195.28 16699.83 11799.08 3191.49 21789.21 26496.86 24287.14 19696.73 30193.20 21077.52 33594.46 245
DU-MVS92.46 22991.45 23895.49 20894.05 29995.28 16699.81 12198.74 5792.25 19789.21 26496.64 25081.66 23996.73 30193.20 21077.52 33594.46 245
miper_enhance_ethall94.36 18493.98 17695.49 20898.68 13895.24 16899.73 14797.29 25893.28 15689.86 24595.97 26994.37 7197.05 28192.20 22384.45 28594.19 269
BH-RMVSNet95.18 15894.31 17097.80 13398.17 16795.23 16999.76 13697.53 23492.52 18794.27 19599.25 12676.84 28298.80 17290.89 24499.54 9599.35 163
PatchMatch-RL96.04 13695.40 14197.95 12699.59 8195.22 17099.52 18299.07 3293.96 13496.49 15898.35 19682.28 23499.82 11090.15 25899.22 11598.81 197
CS-MVS-test97.88 6397.94 5997.70 14299.28 9995.20 17199.98 1197.15 27195.53 7799.62 4099.79 5492.08 13498.38 20898.75 7299.28 11299.52 141
test_fmvsm_n_192098.44 3898.61 2197.92 12899.27 10095.18 172100.00 198.90 4398.05 799.80 1599.73 7592.64 11899.99 3699.58 3399.51 9898.59 205
baseline96.43 12295.98 11997.76 13997.34 21395.17 17399.51 18497.17 26893.92 13796.90 14799.28 11985.37 21498.64 18697.50 12696.86 17399.46 149
LS3D95.84 14295.11 15298.02 12599.85 5495.10 17498.74 27398.50 10187.22 29693.66 20199.86 2687.45 19399.95 6490.94 24299.81 7899.02 188
casdiffmvspermissive96.42 12495.97 12297.77 13897.30 21794.98 17599.84 11197.09 27893.75 14396.58 15699.26 12585.07 21698.78 17497.77 12097.04 16799.54 137
Fangjinhua Wang, Qingshan Xu, Yew-Soon Ong, Marc Pollefeys: Lightweight and Accurate Multi-View Stereo With Confidence-Aware Diffusion Model. IEEE T-PAMI 2025
pmmvs492.10 23691.07 24395.18 22192.82 32794.96 17699.48 19096.83 30687.45 29288.66 27696.56 25483.78 22696.83 29789.29 26584.77 28393.75 308
CDS-MVSNet96.34 12696.07 11497.13 16697.37 21194.96 17699.53 18197.91 20191.55 21695.37 18298.32 19795.05 5397.13 27593.80 20095.75 19399.30 170
Khang Truong Giang, Soohwan Song, Sungho Jo: Curvature-guided dynamic scale networks for Multi-view Stereo. ICLR 2022
UGNet95.33 15794.57 16497.62 14698.55 14394.85 17898.67 28199.32 2595.75 7196.80 15196.27 26072.18 31399.96 5794.58 18299.05 12098.04 214
Wanjuan Su, Qingshan Xu, Wenbing Tao: Uncertainty-guided Multi-view Stereo Network for Depth Estimation. IEEE Transactions on Circuits and Systems for Video Technology, 2022
EIA-MVS97.53 7997.46 7497.76 13998.04 17394.84 17999.98 1197.61 22494.41 11097.90 12699.59 9692.40 12698.87 16998.04 10499.13 11899.59 125
Vis-MVSNet (Re-imp)96.32 12795.98 11997.35 16197.93 17894.82 18099.47 19198.15 18091.83 20895.09 18599.11 13491.37 14397.47 25593.47 20797.43 15699.74 99
IS-MVSNet96.29 13095.90 13097.45 15298.13 17094.80 18199.08 23397.61 22492.02 20495.54 18098.96 15190.64 15898.08 22993.73 20497.41 15999.47 148
MAR-MVS97.43 8197.19 8398.15 12099.47 9194.79 18299.05 24298.76 5692.65 17898.66 9999.82 4688.52 18699.98 4398.12 9999.63 8799.67 108
Zhenyu Xu, Yiguang Liu, Xuelei Shi, Ying Wang, Yunan Zheng: MARMVS: Matching Ambiguity Reduced Multiple View Stereo for Efficient Large Scale Scene Reconstruction. CVPR 2020
PLCcopyleft95.54 397.93 6197.89 6398.05 12499.82 5894.77 18399.92 7098.46 10593.93 13697.20 14099.27 12295.44 4599.97 5397.41 12799.51 9899.41 156
Jie Liao, Yanping Fu, Qingan Yan, Chunxia xiao: Pyramid Multi-View Stereo with Local Consistency. Pacific Graphics 2019
FE-MVS95.70 14895.01 15697.79 13598.21 16394.57 18495.03 35298.69 6188.90 27097.50 13596.19 26292.60 12099.49 14889.99 26097.94 14999.31 168
Fast-Effi-MVS+95.02 16294.19 17197.52 14997.88 18094.55 18599.97 2197.08 27988.85 27294.47 19297.96 20984.59 21998.41 20089.84 26297.10 16499.59 125
SCA94.69 17193.81 18297.33 16297.10 22294.44 18698.86 26398.32 15593.30 15596.17 16895.59 28076.48 28697.95 23891.06 23897.43 15699.59 125
cl2293.77 19693.25 20095.33 21699.49 9094.43 18799.61 16898.09 18390.38 24389.16 26795.61 27890.56 15997.34 25991.93 22684.45 28594.21 268
CS-MVS97.79 7197.91 6197.43 15499.10 10694.42 18899.99 497.10 27695.07 8699.68 3499.75 6792.95 10998.34 21298.38 8899.14 11799.54 137
PatchmatchNetpermissive95.94 13995.45 14097.39 15797.83 18494.41 18996.05 34598.40 13792.86 16497.09 14295.28 30194.21 7898.07 23189.26 26698.11 14399.70 103
Fangjinhua Wang, Silvano Galliani, Christoph Vogel, Pablo Speciale, Marc Pollefeys: PatchmatchNet: Learned Multi-View Patchmatch Stereo.
TR-MVS94.54 17693.56 18997.49 15197.96 17694.34 19098.71 27697.51 23790.30 24794.51 19198.69 17475.56 29498.77 17592.82 21895.99 18599.35 163
Vis-MVSNetpermissive95.72 14495.15 15197.45 15297.62 20094.28 19199.28 21798.24 16694.27 11996.84 14998.94 15879.39 26298.76 17693.25 20998.49 13099.30 170
Jingyang Zhang, Yao Yao, Shiwei Li, Zixin Luo, Tian Fang: Visibility-aware Multiview Stereo Network. BMVC 2020
test_cas_vis1_n_192096.59 11796.23 11197.65 14398.22 16294.23 19299.99 497.25 26297.77 1299.58 4799.08 13677.10 27899.97 5397.64 12399.45 10398.74 201
MDTV_nov1_ep1395.69 13597.90 17994.15 19395.98 34798.44 11093.12 16097.98 12395.74 27395.10 5098.58 18890.02 25996.92 171
tfpnnormal89.29 29287.61 29894.34 25794.35 29594.13 19498.95 25298.94 3883.94 33084.47 32195.51 28574.84 30297.39 25677.05 34880.41 31791.48 346
mvsmamba94.10 18893.72 18395.25 21993.57 30794.13 19499.67 15796.45 32593.63 14791.34 22797.77 21486.29 20597.22 27096.65 14788.10 25594.40 252
KD-MVS_2432*160088.00 30086.10 30493.70 28196.91 23194.04 19697.17 32497.12 27484.93 32481.96 33192.41 34392.48 12494.51 34879.23 33652.68 37592.56 333
miper_refine_blended88.00 30086.10 30493.70 28196.91 23194.04 19697.17 32497.12 27484.93 32481.96 33192.41 34392.48 12494.51 34879.23 33652.68 37592.56 333
DP-MVS94.54 17693.42 19397.91 13099.46 9394.04 19698.93 25497.48 24081.15 34590.04 24099.55 10087.02 19899.95 6488.97 26898.11 14399.73 100
TranMVSNet+NR-MVSNet91.68 24790.61 24894.87 23093.69 30693.98 19999.69 15398.65 6791.03 23388.44 27896.83 24680.05 25996.18 32190.26 25776.89 34394.45 250
MSDG94.37 18293.36 19797.40 15698.88 12893.95 20099.37 20497.38 24985.75 31690.80 23299.17 13284.11 22599.88 9386.35 29898.43 13298.36 208
HyFIR lowres test96.66 11596.43 10797.36 16099.05 10893.91 20199.70 15299.80 390.54 24196.26 16598.08 20192.15 13298.23 22396.84 14595.46 19799.93 72
v2v48291.30 24990.07 26295.01 22593.13 31693.79 20299.77 13197.02 28588.05 28589.25 26195.37 29480.73 25097.15 27387.28 28980.04 32294.09 283
ADS-MVSNet94.79 16794.02 17597.11 16897.87 18193.79 20294.24 35398.16 17890.07 24996.43 16094.48 32490.29 16398.19 22587.44 28597.23 16199.36 161
gm-plane-assit96.97 22993.76 20491.47 21998.96 15198.79 17394.92 170
ECVR-MVScopyleft95.66 14995.05 15497.51 15098.66 13993.71 20598.85 26598.45 10694.93 8996.86 14898.96 15175.22 29999.20 15695.34 16198.15 14099.64 114
v114491.09 25589.83 26394.87 23093.25 31593.69 20699.62 16796.98 29086.83 30389.64 25394.99 31080.94 24797.05 28185.08 30781.16 30893.87 302
GA-MVS93.83 19292.84 20696.80 17495.73 26993.57 20799.88 8897.24 26392.57 18492.92 20996.66 24878.73 26997.67 24987.75 28394.06 21299.17 179
miper_ehance_all_eth93.16 21192.60 21294.82 23497.57 20293.56 20899.50 18697.07 28088.75 27388.85 27295.52 28490.97 15196.74 30090.77 24684.45 28594.17 270
GeoE94.36 18493.48 19196.99 16997.29 21893.54 20999.96 2896.72 31488.35 28293.43 20298.94 15882.05 23598.05 23288.12 28096.48 17899.37 160
TAMVS95.85 14195.58 13896.65 18197.07 22393.50 21099.17 22697.82 21091.39 22595.02 18698.01 20392.20 13097.30 26493.75 20395.83 19099.14 183
bld_raw_dy_0_6492.74 22192.03 22594.87 23093.09 32093.46 21199.12 22895.41 34692.84 16790.44 23697.54 21878.08 27597.04 28393.94 19287.77 26094.11 281
V4291.28 25190.12 26194.74 23593.42 31293.46 21199.68 15597.02 28587.36 29389.85 24795.05 30581.31 24497.34 25987.34 28880.07 32193.40 318
v1090.25 27688.82 28494.57 24493.53 30993.43 21399.08 23396.87 30385.00 32387.34 29794.51 32280.93 24897.02 28882.85 32079.23 32493.26 322
EPNet_dtu95.71 14695.39 14296.66 18098.92 12193.41 21499.57 17498.90 4396.19 6397.52 13398.56 18492.65 11797.36 25777.89 34398.33 13499.20 178
Wanjuan Su, Wenbing Tao: Efficient Edge-Preserving Multi-View Stereo Network for Depth Estimation. AAAI 2023
v890.54 26889.17 27794.66 23893.43 31193.40 21599.20 22396.94 29785.76 31487.56 29194.51 32281.96 23797.19 27184.94 30878.25 32993.38 320
test111195.57 15194.98 15797.37 15898.56 14193.37 21698.86 26398.45 10694.95 8896.63 15498.95 15675.21 30099.11 16195.02 16798.14 14299.64 114
OMC-MVS97.28 8997.23 8297.41 15599.76 6693.36 21799.65 16097.95 19596.03 6597.41 13799.70 8289.61 17099.51 14296.73 14698.25 13999.38 158
tpmrst96.27 13295.98 11997.13 16697.96 17693.15 21896.34 33998.17 17492.07 20098.71 9795.12 30493.91 8598.73 17894.91 17296.62 17499.50 145
v119290.62 26789.25 27694.72 23793.13 31693.07 21999.50 18697.02 28586.33 30889.56 25595.01 30779.22 26497.09 28082.34 32381.16 30894.01 289
CHOSEN 1792x268896.81 10596.53 10497.64 14498.91 12593.07 21999.65 16099.80 395.64 7395.39 18198.86 16784.35 22399.90 8396.98 14099.16 11699.95 68
EPP-MVSNet96.69 11396.60 10196.96 17097.74 19093.05 22199.37 20498.56 8188.75 27395.83 17599.01 14296.01 3298.56 18996.92 14397.20 16399.25 175
mvsany_test197.82 6897.90 6297.55 14798.77 13493.04 22299.80 12597.93 19796.95 3799.61 4699.68 8890.92 15299.83 10899.18 4798.29 13899.80 91
c3_l92.53 22791.87 22994.52 24697.40 21092.99 22399.40 19796.93 29887.86 28788.69 27595.44 28889.95 16696.44 31190.45 25280.69 31694.14 279
anonymousdsp91.79 24590.92 24494.41 25590.76 35092.93 22498.93 25497.17 26889.08 26087.46 29495.30 29778.43 27496.92 29292.38 22188.73 24293.39 319
cl____92.31 23291.58 23394.52 24697.33 21592.77 22599.57 17496.78 31186.97 30187.56 29195.51 28589.43 17296.62 30588.60 27182.44 29894.16 275
v14419290.79 26289.52 27194.59 24293.11 31992.77 22599.56 17696.99 28886.38 30789.82 24894.95 31280.50 25597.10 27883.98 31380.41 31793.90 299
DIV-MVS_self_test92.32 23191.60 23294.47 25097.31 21692.74 22799.58 17296.75 31286.99 30087.64 28995.54 28289.55 17196.50 30988.58 27282.44 29894.17 270
IterMVS-LS92.69 22492.11 22294.43 25496.80 23992.74 22799.45 19496.89 30188.98 26589.65 25295.38 29388.77 18396.34 31590.98 24182.04 30194.22 266
Fangjinhua Wang, Silvano Galliani, Christoph Vogel, Marc Pollefeys: IterMVS: Iterative Probability Estimation for Efficient Multi-View Stereo.
dp95.05 16194.43 16696.91 17197.99 17592.73 22996.29 34197.98 19289.70 25595.93 17294.67 31993.83 8998.45 19786.91 29796.53 17699.54 137
EI-MVSNet93.73 19893.40 19694.74 23596.80 23992.69 23099.06 23897.67 21788.96 26791.39 22599.02 14088.75 18497.30 26491.07 23787.85 25894.22 266
CR-MVSNet93.45 20792.62 21195.94 19996.29 24992.66 23192.01 36496.23 32992.62 17996.94 14593.31 33791.04 14996.03 32879.23 33695.96 18699.13 184
RPMNet89.76 28587.28 30097.19 16596.29 24992.66 23192.01 36498.31 15770.19 36996.94 14585.87 36887.25 19599.78 11562.69 37195.96 18699.13 184
VDDNet93.12 21391.91 22896.76 17696.67 24692.65 23398.69 27998.21 16982.81 33997.75 13099.28 11961.57 35399.48 14998.09 10294.09 21198.15 211
WR-MVS_H91.30 24990.35 25294.15 26094.17 29892.62 23499.17 22698.94 3888.87 27186.48 30794.46 32684.36 22196.61 30688.19 27778.51 32893.21 324
CostFormer96.10 13395.88 13196.78 17597.03 22592.55 23597.08 32797.83 20990.04 25198.72 9694.89 31395.01 5598.29 21696.54 14895.77 19199.50 145
v192192090.46 26989.12 27894.50 24892.96 32492.46 23699.49 18896.98 29086.10 31089.61 25495.30 29778.55 27297.03 28682.17 32480.89 31594.01 289
test_djsdf92.83 21992.29 22094.47 25091.90 33992.46 23699.55 17897.27 26091.17 22889.96 24196.07 26881.10 24596.89 29394.67 18088.91 23794.05 286
CP-MVSNet91.23 25390.22 25694.26 25893.96 30192.39 23899.09 23198.57 7988.95 26886.42 30896.57 25379.19 26596.37 31390.29 25678.95 32594.02 287
BH-w/o95.71 14695.38 14396.68 17998.49 14892.28 23999.84 11197.50 23892.12 19992.06 22198.79 17184.69 21898.67 18595.29 16399.66 8699.09 186
v124090.20 27788.79 28594.44 25293.05 32292.27 24099.38 20296.92 29985.89 31289.36 25894.87 31477.89 27697.03 28680.66 33181.08 31194.01 289
PS-MVSNAJss93.64 20193.31 19894.61 24092.11 33692.19 24199.12 22897.38 24992.51 18888.45 27796.99 23891.20 14597.29 26794.36 18587.71 26194.36 256
test0.0.03 193.86 19193.61 18494.64 23995.02 28592.18 24299.93 6798.58 7794.07 12687.96 28698.50 18793.90 8694.96 34381.33 32893.17 21996.78 229
PMMVS96.76 10896.76 9796.76 17698.28 15892.10 24399.91 7497.98 19294.12 12399.53 5199.39 11486.93 19998.73 17896.95 14297.73 15099.45 151
GBi-Net90.88 25989.82 26494.08 26397.53 20391.97 24498.43 29296.95 29387.05 29789.68 24994.72 31571.34 31796.11 32387.01 29485.65 27494.17 270
test190.88 25989.82 26494.08 26397.53 20391.97 24498.43 29296.95 29387.05 29789.68 24994.72 31571.34 31796.11 32387.01 29485.65 27494.17 270
FMVSNet188.50 29686.64 30294.08 26395.62 27791.97 24498.43 29296.95 29383.00 33786.08 31394.72 31559.09 35796.11 32381.82 32784.07 28994.17 270
pm-mvs189.36 29187.81 29794.01 26793.40 31391.93 24798.62 28496.48 32486.25 30983.86 32496.14 26473.68 30997.04 28386.16 30075.73 34793.04 327
CSCG97.10 9597.04 8997.27 16499.89 4591.92 24899.90 7999.07 3288.67 27595.26 18499.82 4693.17 10599.98 4398.15 9899.47 10099.90 79
HQP5-MVS91.85 249
HQP-MVS94.61 17594.50 16594.92 22995.78 26391.85 24999.87 9197.89 20296.82 4093.37 20398.65 17680.65 25298.39 20497.92 11189.60 22894.53 239
NP-MVS95.77 26691.79 25198.65 176
TAPA-MVS92.12 894.42 18093.60 18696.90 17299.33 9791.78 25299.78 12898.00 18989.89 25394.52 19099.47 10691.97 13699.18 15869.90 36099.52 9699.73 100
Andrea Romanoni, Matteo Matteucci: TAPA-MVS: Textureless-Aware PAtchMatch Multi-View Stereo. ICCV 2019
HQP_MVS94.49 17994.36 16794.87 23095.71 27291.74 25399.84 11197.87 20496.38 5693.01 20798.59 18080.47 25698.37 21097.79 11889.55 23194.52 241
plane_prior91.74 25399.86 10496.76 4489.59 230
F-COLMAP96.93 10196.95 9296.87 17399.71 7591.74 25399.85 10797.95 19593.11 16195.72 17799.16 13392.35 12799.94 7295.32 16299.35 10998.92 190
plane_prior695.76 26791.72 25680.47 256
PS-CasMVS90.63 26689.51 27293.99 26993.83 30391.70 25798.98 24898.52 9388.48 27986.15 31296.53 25575.46 29596.31 31788.83 26978.86 32793.95 295
tpm295.47 15395.18 15096.35 19196.91 23191.70 25796.96 33097.93 19788.04 28698.44 10895.40 29093.32 9897.97 23594.00 19195.61 19599.38 158
plane_prior391.64 25996.63 4893.01 207
MIMVSNet90.30 27488.67 28795.17 22296.45 24891.64 25992.39 36297.15 27185.99 31190.50 23493.19 33966.95 33594.86 34582.01 32593.43 21699.01 189
plane_prior795.71 27291.59 261
tpmvs94.28 18693.57 18896.40 18898.55 14391.50 26295.70 35198.55 8787.47 29192.15 22094.26 32891.42 14198.95 16788.15 27895.85 18998.76 199
tpm cat193.51 20492.52 21796.47 18397.77 18891.47 26396.13 34398.06 18680.98 34692.91 21093.78 33289.66 16898.87 16987.03 29396.39 17999.09 186
h-mvs3394.92 16494.36 16796.59 18298.85 12991.29 26498.93 25498.94 3895.90 6698.77 9198.42 19590.89 15599.77 11897.80 11570.76 35498.72 202
BH-untuned95.18 15894.83 16096.22 19498.36 15491.22 26599.80 12597.32 25590.91 23591.08 22898.67 17583.51 22798.54 19194.23 18999.61 9198.92 190
TransMVSNet (Re)87.25 30385.28 31093.16 29293.56 30891.03 26698.54 28794.05 36283.69 33481.09 33796.16 26375.32 29696.40 31276.69 34968.41 36192.06 340
v14890.70 26389.63 26793.92 27192.97 32390.97 26799.75 13996.89 30187.51 29088.27 28395.01 30781.67 23897.04 28387.40 28777.17 34093.75 308
jajsoiax91.92 23891.18 24194.15 26091.35 34590.95 26899.00 24797.42 24592.61 18087.38 29597.08 23272.46 31297.36 25794.53 18388.77 24194.13 280
PEN-MVS90.19 27889.06 28093.57 28493.06 32190.90 26999.06 23898.47 10388.11 28485.91 31496.30 25976.67 28395.94 33187.07 29176.91 34293.89 300
sd_testset93.55 20392.83 20795.74 20598.92 12190.89 27098.24 30198.85 5192.41 19192.55 21697.85 21171.07 32198.68 18493.93 19391.62 22497.64 221
OPM-MVS93.21 20992.80 20894.44 25293.12 31890.85 27199.77 13197.61 22496.19 6391.56 22498.65 17675.16 30198.47 19393.78 20289.39 23493.99 292
Ray L. Khuboni, Hongjun Xu: Octagram Propagation Matching for Multi-Scale View Stereopsis (OPM-MVS).
CLD-MVS94.06 19093.90 17994.55 24596.02 25790.69 27299.98 1197.72 21396.62 5091.05 23098.85 17077.21 27798.47 19398.11 10089.51 23394.48 243
Zhaoxin Li, Wangmeng Zuo, Zhaoqi Wang, Lei Zhang: Confidence-based Large-scale Dense Multi-view Stereo. IEEE Transaction on Image Processing, 2020
eth_miper_zixun_eth92.41 23091.93 22793.84 27597.28 21990.68 27398.83 26696.97 29288.57 27889.19 26695.73 27589.24 17896.69 30389.97 26181.55 30494.15 276
Anonymous2023121189.86 28388.44 29094.13 26298.93 11990.68 27398.54 28798.26 16576.28 35686.73 30195.54 28270.60 32297.56 25290.82 24580.27 32094.15 276
Anonymous2024052992.10 23690.65 24796.47 18398.82 13090.61 27598.72 27598.67 6675.54 36093.90 20098.58 18266.23 33899.90 8394.70 17990.67 22698.90 193
mvs_tets91.81 24091.08 24294.00 26891.63 34390.58 27698.67 28197.43 24392.43 19087.37 29697.05 23571.76 31497.32 26394.75 17788.68 24394.11 281
v7n89.65 28788.29 29293.72 27892.22 33490.56 27799.07 23797.10 27685.42 32186.73 30194.72 31580.06 25897.13 27581.14 32978.12 33193.49 316
Patchmatch-test92.65 22691.50 23696.10 19796.85 23690.49 27891.50 36697.19 26582.76 34090.23 23795.59 28095.02 5498.00 23477.41 34596.98 17099.82 88
PVSNet_088.03 1991.80 24390.27 25596.38 19098.27 15990.46 27999.94 6199.61 1393.99 13286.26 31197.39 22471.13 32099.89 8798.77 7067.05 36498.79 198
ppachtmachnet_test89.58 28888.35 29193.25 29192.40 33290.44 28099.33 20896.73 31385.49 31985.90 31595.77 27281.09 24696.00 33076.00 35182.49 29793.30 321
IterMVS90.91 25890.17 25993.12 29396.78 24290.42 28198.89 25797.05 28389.03 26286.49 30695.42 28976.59 28595.02 34187.22 29084.09 28893.93 297
Fangjinhua Wang, Silvano Galliani, Christoph Vogel, Marc Pollefeys: IterMVS: Iterative Probability Estimation for Efficient Multi-View Stereo.
MVS-HIRNet86.22 30783.19 32095.31 21796.71 24590.29 28292.12 36397.33 25462.85 37086.82 30070.37 37569.37 32597.49 25475.12 35297.99 14898.15 211
VDD-MVS93.77 19692.94 20496.27 19398.55 14390.22 28398.77 27297.79 21190.85 23796.82 15099.42 11061.18 35599.77 11898.95 5794.13 21098.82 196
PatchT90.38 27188.75 28695.25 21995.99 25890.16 28491.22 36897.54 23276.80 35597.26 13986.01 36791.88 13796.07 32766.16 36895.91 18899.51 143
LTVRE_ROB88.28 1890.29 27589.05 28194.02 26695.08 28390.15 28597.19 32397.43 24384.91 32683.99 32397.06 23474.00 30898.28 21884.08 31187.71 26193.62 314
Andreas Kuhn, Heiko Hirschmüller, Daniel Scharstein, Helmut Mayer: A TV Prior for High-Quality Scalable Multi-View Stereo Reconstruction. International Journal of Computer Vision 2016
AUN-MVS93.28 20892.60 21295.34 21598.29 15690.09 28699.31 21198.56 8191.80 21196.35 16498.00 20489.38 17398.28 21892.46 22069.22 35997.64 221
RRT_MVS93.14 21292.92 20593.78 27693.31 31490.04 28799.66 15897.69 21592.53 18688.91 27197.76 21584.36 22196.93 29195.10 16586.99 26794.37 255
hse-mvs294.38 18194.08 17495.31 21798.27 15990.02 28899.29 21698.56 8195.90 6698.77 9198.00 20490.89 15598.26 22297.80 11569.20 36097.64 221
IterMVS-SCA-FT90.85 26190.16 26092.93 29796.72 24489.96 28998.89 25796.99 28888.95 26886.63 30395.67 27676.48 28695.00 34287.04 29284.04 29193.84 304
DTE-MVSNet89.40 29088.24 29392.88 29892.66 32989.95 29099.10 23098.22 16887.29 29485.12 31996.22 26176.27 28995.30 34083.56 31775.74 34693.41 317
Baseline_NR-MVSNet90.33 27389.51 27292.81 29992.84 32589.95 29099.77 13193.94 36384.69 32889.04 26895.66 27781.66 23996.52 30890.99 24076.98 34191.97 342
Patchmtry89.70 28688.49 28993.33 28896.24 25289.94 29291.37 36796.23 32978.22 35387.69 28893.31 33791.04 14996.03 32880.18 33582.10 30094.02 287
pmmvs590.17 27989.09 27993.40 28692.10 33789.77 29399.74 14295.58 34385.88 31387.24 29895.74 27373.41 31096.48 31088.54 27383.56 29293.95 295
Anonymous20240521193.10 21491.99 22696.40 18899.10 10689.65 29498.88 25997.93 19783.71 33394.00 19898.75 17368.79 32699.88 9395.08 16691.71 22399.68 106
our_test_390.39 27089.48 27493.12 29392.40 33289.57 29599.33 20896.35 32887.84 28885.30 31794.99 31084.14 22496.09 32680.38 33284.56 28493.71 313
D2MVS92.76 22092.59 21593.27 29095.13 28189.54 29699.69 15399.38 2292.26 19687.59 29094.61 32185.05 21797.79 24491.59 23188.01 25692.47 336
XVG-OURS-SEG-HR94.79 16794.70 16395.08 22398.05 17289.19 29799.08 23397.54 23293.66 14594.87 18799.58 9878.78 26899.79 11397.31 12993.40 21796.25 232
XVG-OURS94.82 16594.74 16295.06 22498.00 17489.19 29799.08 23397.55 23094.10 12494.71 18899.62 9480.51 25499.74 12496.04 15493.06 22296.25 232
miper_lstm_enhance91.81 24091.39 23993.06 29697.34 21389.18 29999.38 20296.79 31086.70 30487.47 29395.22 30290.00 16595.86 33288.26 27681.37 30694.15 276
ACMM91.95 1092.88 21892.52 21793.98 27095.75 26889.08 30099.77 13197.52 23693.00 16289.95 24297.99 20676.17 29098.46 19693.63 20688.87 23994.39 254
Qingshan Xu and Wenbing Tao: Multi-Scale Geometric Consistency Guided Multi-View Stereo. CVPR 2019
MVP-Stereo90.93 25790.45 25192.37 30391.25 34788.76 30198.05 31196.17 33187.27 29584.04 32295.30 29778.46 27397.27 26983.78 31599.70 8491.09 347
Qingsong Yan: MVP-Stereo: A Parallel Multi-View Patchmatch Stereo Method with Dilation Matching for Photogrammetric Application.
test_vis1_n_192095.44 15495.31 14595.82 20398.50 14788.74 30299.98 1197.30 25797.84 1199.85 799.19 13066.82 33699.97 5398.82 6799.46 10298.76 199
ACMP92.05 992.74 22192.42 21993.73 27795.91 26188.72 30399.81 12197.53 23494.13 12287.00 29998.23 19874.07 30798.47 19396.22 15288.86 24093.99 292
Qingshan Xu and Wenbing Tao: Planar Prior Assisted PatchMatch Multi-View Stereo. AAAI 2020
LPG-MVS_test92.96 21692.71 21093.71 27995.43 27888.67 30499.75 13997.62 22192.81 16890.05 23898.49 18875.24 29798.40 20295.84 15889.12 23594.07 284
LGP-MVS_train93.71 27995.43 27888.67 30497.62 22192.81 16890.05 23898.49 18875.24 29798.40 20295.84 15889.12 23594.07 284
ACMH89.72 1790.64 26589.63 26793.66 28395.64 27588.64 30698.55 28597.45 24189.03 26281.62 33497.61 21769.75 32498.41 20089.37 26487.62 26393.92 298
Qingshan Xu and Wenbing Tao: Multi-Scale Geometric Consistency Guided Multi-View Stereo. CVPR 2019
MDA-MVSNet_test_wron85.51 31183.32 31992.10 30590.96 34888.58 30799.20 22396.52 32279.70 35057.12 37592.69 34179.11 26693.86 35477.10 34777.46 33793.86 303
AllTest92.48 22891.64 23195.00 22699.01 11088.43 30898.94 25396.82 30886.50 30588.71 27398.47 19274.73 30399.88 9385.39 30496.18 18196.71 230
TestCases95.00 22699.01 11088.43 30896.82 30886.50 30588.71 27398.47 19274.73 30399.88 9385.39 30496.18 18196.71 230
FMVSNet588.32 29787.47 29990.88 31496.90 23488.39 31097.28 32195.68 34082.60 34184.67 32092.40 34579.83 26091.16 36676.39 35081.51 30593.09 325
YYNet185.50 31283.33 31892.00 30690.89 34988.38 31199.22 22296.55 32179.60 35157.26 37492.72 34079.09 26793.78 35577.25 34677.37 33893.84 304
USDC90.00 28288.96 28293.10 29594.81 28788.16 31298.71 27695.54 34493.66 14583.75 32597.20 22865.58 34098.31 21583.96 31487.49 26592.85 330
UniMVSNet_ETH3D90.06 28188.58 28894.49 24994.67 29088.09 31397.81 31697.57 22983.91 33288.44 27897.41 22257.44 35997.62 25191.41 23288.59 24697.77 219
COLMAP_ROBcopyleft90.47 1492.18 23591.49 23794.25 25999.00 11288.04 31498.42 29596.70 31582.30 34288.43 28099.01 14276.97 28099.85 9986.11 30196.50 17794.86 238
Johannes L. Schönberger, Enliang Zheng, Marc Pollefeys, Jan-Michael Frahm: Pixelwise View Selection for Unstructured Multi-View Stereo. ECCV 2016
MDA-MVSNet-bldmvs84.09 32081.52 32791.81 30991.32 34688.00 31598.67 28195.92 33680.22 34855.60 37693.32 33668.29 33193.60 35773.76 35376.61 34493.82 306
tt080591.28 25190.18 25894.60 24196.26 25187.55 31698.39 29698.72 5889.00 26489.22 26398.47 19262.98 34998.96 16690.57 24988.00 25797.28 227
JIA-IIPM91.76 24690.70 24694.94 22896.11 25487.51 31793.16 36098.13 18275.79 35997.58 13277.68 37392.84 11297.97 23588.47 27596.54 17599.33 166
tpm93.70 20093.41 19594.58 24395.36 28087.41 31897.01 32896.90 30090.85 23796.72 15394.14 32990.40 16196.84 29690.75 24788.54 24799.51 143
dcpmvs_297.42 8598.09 5095.42 21299.58 8487.24 31999.23 22196.95 29394.28 11798.93 8599.73 7594.39 7099.16 16099.89 1699.82 7699.86 85
pmmvs-eth3d84.03 32181.97 32590.20 32184.15 36887.09 32098.10 30994.73 35783.05 33674.10 36387.77 36265.56 34194.01 35181.08 33069.24 35889.49 361
test_vis1_n93.61 20293.03 20395.35 21495.86 26286.94 32199.87 9196.36 32796.85 3899.54 5098.79 17152.41 36599.83 10898.64 7998.97 12199.29 172
CVMVSNet94.68 17394.94 15893.89 27496.80 23986.92 32299.06 23898.98 3694.45 10594.23 19699.02 14085.60 20995.31 33990.91 24395.39 19999.43 154
patch_mono-298.24 5299.12 595.59 20799.67 7786.91 32399.95 4598.89 4597.60 1699.90 299.76 6296.54 2899.98 4399.94 1199.82 7699.88 81
Fast-Effi-MVS+-dtu93.72 19993.86 18193.29 28997.06 22486.16 32499.80 12596.83 30692.66 17792.58 21597.83 21381.39 24297.67 24989.75 26396.87 17296.05 236
ACMH+89.98 1690.35 27289.54 27092.78 30095.99 25886.12 32598.81 26897.18 26789.38 25783.14 32797.76 21568.42 33098.43 19889.11 26786.05 27293.78 307
ADS-MVSNet293.80 19593.88 18093.55 28597.87 18185.94 32694.24 35396.84 30590.07 24996.43 16094.48 32490.29 16395.37 33787.44 28597.23 16199.36 161
XVG-ACMP-BASELINE91.22 25490.75 24592.63 30193.73 30585.61 32798.52 28997.44 24292.77 17189.90 24496.85 24366.64 33798.39 20492.29 22288.61 24493.89 300
TinyColmap87.87 30286.51 30391.94 30795.05 28485.57 32897.65 31794.08 36184.40 32981.82 33396.85 24362.14 35198.33 21380.25 33486.37 27191.91 343
MS-PatchMatch90.65 26490.30 25491.71 31094.22 29785.50 32998.24 30197.70 21488.67 27586.42 30896.37 25867.82 33298.03 23383.62 31699.62 8891.60 344
ITE_SJBPF92.38 30295.69 27485.14 33095.71 33992.81 16889.33 26098.11 20070.23 32398.42 19985.91 30288.16 25493.59 315
test_040285.58 30983.94 31490.50 31893.81 30485.04 33198.55 28595.20 35276.01 35779.72 34495.13 30364.15 34696.26 31966.04 36986.88 26890.21 355
test_fmvs195.35 15695.68 13794.36 25698.99 11384.98 33299.96 2896.65 31797.60 1699.73 2998.96 15171.58 31699.93 7998.31 9299.37 10898.17 210
testgi89.01 29488.04 29591.90 30893.49 31084.89 33399.73 14795.66 34193.89 14085.14 31898.17 19959.68 35694.66 34777.73 34488.88 23896.16 235
TDRefinement84.76 31582.56 32391.38 31274.58 37984.80 33497.36 32094.56 35984.73 32780.21 34196.12 26763.56 34798.39 20487.92 28163.97 36890.95 350
pmmvs685.69 30883.84 31591.26 31390.00 35684.41 33597.82 31596.15 33275.86 35881.29 33695.39 29261.21 35496.87 29583.52 31873.29 35092.50 335
MIMVSNet182.58 32580.51 33188.78 33286.68 36484.20 33696.65 33495.41 34678.75 35278.59 34892.44 34251.88 36689.76 36965.26 37078.95 32592.38 338
dmvs_re93.20 21093.15 20193.34 28796.54 24783.81 33798.71 27698.51 9691.39 22592.37 21998.56 18478.66 27097.83 24393.89 19489.74 22798.38 207
test_fmvs1_n94.25 18794.36 16793.92 27197.68 19883.70 33899.90 7996.57 32097.40 2299.67 3598.88 16261.82 35299.92 8098.23 9499.13 11898.14 213
UnsupCasMVSNet_eth85.52 31083.99 31290.10 32289.36 35883.51 33996.65 33497.99 19089.14 25975.89 35993.83 33163.25 34893.92 35281.92 32667.90 36392.88 329
OpenMVS_ROBcopyleft79.82 2083.77 32381.68 32690.03 32388.30 36182.82 34098.46 29095.22 35173.92 36576.00 35891.29 34955.00 36196.94 29068.40 36388.51 24890.34 353
Anonymous2024052185.15 31483.81 31689.16 32988.32 36082.69 34198.80 27095.74 33879.72 34981.53 33590.99 35065.38 34294.16 35072.69 35581.11 31090.63 352
new_pmnet84.49 31982.92 32289.21 32890.03 35582.60 34296.89 33295.62 34280.59 34775.77 36089.17 35565.04 34494.79 34672.12 35781.02 31290.23 354
Effi-MVS+-dtu94.53 17895.30 14692.22 30497.77 18882.54 34399.59 17097.06 28194.92 9195.29 18395.37 29485.81 20897.89 24194.80 17597.07 16596.23 234
pmmvs380.27 33177.77 33687.76 33880.32 37482.43 34498.23 30391.97 37172.74 36778.75 34687.97 36157.30 36090.99 36770.31 35962.37 37089.87 357
SixPastTwentyTwo88.73 29588.01 29690.88 31491.85 34082.24 34598.22 30495.18 35388.97 26682.26 33096.89 24071.75 31596.67 30484.00 31282.98 29393.72 312
K. test v388.05 29987.24 30190.47 31991.82 34182.23 34698.96 25197.42 24589.05 26176.93 35595.60 27968.49 32995.42 33685.87 30381.01 31393.75 308
UnsupCasMVSNet_bld79.97 33477.03 33888.78 33285.62 36681.98 34793.66 35897.35 25175.51 36170.79 36683.05 37048.70 36894.91 34478.31 34260.29 37389.46 362
EG-PatchMatch MVS85.35 31383.81 31689.99 32490.39 35281.89 34898.21 30596.09 33381.78 34474.73 36193.72 33351.56 36797.12 27779.16 33988.61 24490.96 349
CL-MVSNet_self_test84.50 31883.15 32188.53 33586.00 36581.79 34998.82 26797.35 25185.12 32283.62 32690.91 35276.66 28491.40 36569.53 36160.36 37292.40 337
DeepPCF-MVS95.94 297.71 7598.98 1293.92 27199.63 7981.76 35099.96 2898.56 8199.47 199.19 7599.99 194.16 79100.00 199.92 1299.93 60100.00 1
EGC-MVSNET69.38 33663.76 34686.26 34190.32 35381.66 35196.24 34293.85 3640.99 3863.22 38792.33 34652.44 36492.92 36059.53 37484.90 28184.21 369
OurMVSNet-221017-089.81 28489.48 27490.83 31691.64 34281.21 35298.17 30695.38 34891.48 21885.65 31697.31 22572.66 31197.29 26788.15 27884.83 28293.97 294
LF4IMVS89.25 29388.85 28390.45 32092.81 32881.19 35398.12 30794.79 35591.44 22086.29 31097.11 23065.30 34398.11 22888.53 27485.25 27892.07 339
EU-MVSNet90.14 28090.34 25389.54 32692.55 33081.06 35498.69 27998.04 18891.41 22486.59 30496.84 24580.83 24993.31 35986.20 29981.91 30294.26 263
lessismore_v090.53 31790.58 35180.90 35595.80 33777.01 35495.84 27066.15 33996.95 28983.03 31975.05 34893.74 311
KD-MVS_self_test83.59 32482.06 32488.20 33786.93 36380.70 35697.21 32296.38 32682.87 33882.49 32988.97 35667.63 33392.32 36273.75 35462.30 37191.58 345
test20.0384.72 31783.99 31286.91 33988.19 36280.62 35798.88 25995.94 33588.36 28178.87 34594.62 32068.75 32789.11 37066.52 36775.82 34591.00 348
Anonymous2023120686.32 30685.42 30989.02 33089.11 35980.53 35899.05 24295.28 34985.43 32082.82 32893.92 33074.40 30593.44 35866.99 36581.83 30393.08 326
new-patchmatchnet81.19 32779.34 33486.76 34082.86 37180.36 35997.92 31395.27 35082.09 34372.02 36486.87 36462.81 35090.74 36871.10 35863.08 36989.19 364
LCM-MVSNet-Re92.31 23292.60 21291.43 31197.53 20379.27 36099.02 24691.83 37292.07 20080.31 34094.38 32783.50 22895.48 33597.22 13397.58 15499.54 137
test_vis1_rt86.87 30586.05 30789.34 32796.12 25378.07 36199.87 9183.54 38392.03 20378.21 35089.51 35445.80 36999.91 8196.25 15193.11 22190.03 356
test_fmvs289.47 28989.70 26688.77 33494.54 29275.74 36299.83 11794.70 35894.71 9891.08 22896.82 24754.46 36297.78 24692.87 21788.27 25292.80 331
Patchmatch-RL test86.90 30485.98 30889.67 32584.45 36775.59 36389.71 37192.43 36986.89 30277.83 35290.94 35194.22 7693.63 35687.75 28369.61 35699.79 92
DSMNet-mixed88.28 29888.24 29388.42 33689.64 35775.38 36498.06 31089.86 37685.59 31888.20 28492.14 34776.15 29191.95 36478.46 34196.05 18497.92 215
PM-MVS80.47 33078.88 33585.26 34283.79 37072.22 36595.89 34991.08 37385.71 31776.56 35788.30 35836.64 37393.90 35382.39 32269.57 35789.66 360
mvsany_test382.12 32681.14 32885.06 34381.87 37270.41 36697.09 32692.14 37091.27 22777.84 35188.73 35739.31 37295.49 33490.75 24771.24 35389.29 363
RPSCF91.80 24392.79 20988.83 33198.15 16869.87 36798.11 30896.60 31983.93 33194.33 19499.27 12279.60 26199.46 15191.99 22593.16 22097.18 228
Gipumacopyleft66.95 34365.00 34372.79 35691.52 34467.96 36866.16 37895.15 35447.89 37658.54 37367.99 37829.74 37587.54 37450.20 37877.83 33362.87 378
S. Galliani, K. Lasinger, K. Schindler: Massively Parallel Multiview Stereopsis by Surface Normal Diffusion. ICCV 2015
test_method80.79 32979.70 33384.08 34492.83 32667.06 36999.51 18495.42 34554.34 37481.07 33893.53 33444.48 37092.22 36378.90 34077.23 33992.94 328
test_fmvs379.99 33380.17 33279.45 35084.02 36962.83 37099.05 24293.49 36788.29 28380.06 34386.65 36528.09 37788.00 37188.63 27073.27 35187.54 367
ambc83.23 34677.17 37762.61 37187.38 37394.55 36076.72 35686.65 36530.16 37496.36 31484.85 30969.86 35590.73 351
CMPMVSbinary61.59 2184.75 31685.14 31183.57 34590.32 35362.54 37296.98 32997.59 22874.33 36469.95 36796.66 24864.17 34598.32 21487.88 28288.41 24989.84 358
M. Jancosek, T. Pajdla: Multi-View Reconstruction Preserving Weakly-Supported Surfaces. CVPR 2011
test_f78.40 33577.59 33780.81 34980.82 37362.48 37396.96 33093.08 36883.44 33574.57 36284.57 36927.95 37892.63 36184.15 31072.79 35287.32 368
PMMVS267.15 34264.15 34576.14 35470.56 38262.07 37493.89 35687.52 38058.09 37160.02 37078.32 37222.38 38184.54 37759.56 37347.03 37781.80 370
test_vis3_rt68.82 33766.69 34275.21 35576.24 37860.41 37596.44 33768.71 38875.13 36250.54 37969.52 37716.42 38796.32 31680.27 33366.92 36568.89 375
APD_test181.15 32880.92 32981.86 34892.45 33159.76 37696.04 34693.61 36673.29 36677.06 35396.64 25044.28 37196.16 32272.35 35682.52 29689.67 359
DeepMVS_CXcopyleft82.92 34795.98 26058.66 37796.01 33492.72 17278.34 34995.51 28558.29 35898.08 22982.57 32185.29 27792.03 341
ANet_high56.10 34552.24 34867.66 36149.27 38756.82 37883.94 37482.02 38470.47 36833.28 38464.54 37917.23 38669.16 38245.59 38023.85 38177.02 374
LCM-MVSNet67.77 34164.73 34476.87 35362.95 38556.25 37989.37 37293.74 36544.53 37761.99 36980.74 37120.42 38486.53 37669.37 36259.50 37487.84 365
MVEpermissive53.74 2251.54 34847.86 35262.60 36259.56 38650.93 38079.41 37677.69 38535.69 38136.27 38361.76 3825.79 39169.63 38137.97 38236.61 37867.24 376
Simon Fuhrmann, Fabian Langguth, Michael Goesele: MVE - A Multi-View Reconstruction Environment. EUROGRAPHICS Workshops on Graphics and Cultural Heritage (2014)
testf168.38 33966.92 34072.78 35778.80 37550.36 38190.95 36987.35 38155.47 37258.95 37188.14 35920.64 38287.60 37257.28 37564.69 36680.39 371
APD_test268.38 33966.92 34072.78 35778.80 37550.36 38190.95 36987.35 38155.47 37258.95 37188.14 35920.64 38287.60 37257.28 37564.69 36680.39 371
tmp_tt65.23 34462.94 34772.13 35944.90 38850.03 38381.05 37589.42 37938.45 37848.51 38099.90 1854.09 36378.70 38091.84 22918.26 38287.64 366
dmvs_testset83.79 32286.07 30676.94 35292.14 33548.60 38496.75 33390.27 37589.48 25678.65 34798.55 18679.25 26386.65 37566.85 36682.69 29595.57 237
E-PMN52.30 34752.18 34952.67 36471.51 38045.40 38593.62 35976.60 38636.01 38043.50 38164.13 38027.11 37967.31 38331.06 38326.06 37945.30 382
N_pmnet80.06 33280.78 33077.89 35191.94 33845.28 38698.80 27056.82 38978.10 35480.08 34293.33 33577.03 27995.76 33368.14 36482.81 29492.64 332
EMVS51.44 34951.22 35152.11 36570.71 38144.97 38794.04 35575.66 38735.34 38242.40 38261.56 38328.93 37665.87 38427.64 38424.73 38045.49 381
FPMVS68.72 33868.72 33968.71 36065.95 38344.27 38895.97 34894.74 35651.13 37553.26 37790.50 35325.11 38083.00 37860.80 37280.97 31478.87 373
PMVScopyleft49.05 2353.75 34651.34 35060.97 36340.80 38934.68 38974.82 37789.62 37837.55 37928.67 38572.12 3747.09 38981.63 37943.17 38168.21 36266.59 377
Y. Furukawa, J. Ponce: Accurate, dense, and robust multiview stereopsis. PAMI (2010)
wuyk23d20.37 35320.84 35618.99 36865.34 38427.73 39050.43 3797.67 3929.50 3858.01 3866.34 3866.13 39026.24 38523.40 38510.69 3842.99 383
test12337.68 35139.14 35433.31 36619.94 39024.83 39198.36 2979.75 39115.53 38451.31 37887.14 36319.62 38517.74 38647.10 3793.47 38557.36 379
testmvs40.60 35044.45 35329.05 36719.49 39114.11 39299.68 15518.47 39020.74 38364.59 36898.48 19110.95 38817.09 38756.66 37711.01 38355.94 380
test_blank0.00 3560.00 3590.00 3690.00 3920.00 3930.00 3800.00 3930.00 3870.00 3880.02 3870.00 3920.00 3880.00 3860.00 3860.00 384
uanet_test0.00 3560.00 3590.00 3690.00 3920.00 3930.00 3800.00 3930.00 3870.00 3880.00 3880.00 3920.00 3880.00 3860.00 3860.00 384
DCPMVS0.00 3560.00 3590.00 3690.00 3920.00 3930.00 3800.00 3930.00 3870.00 3880.00 3880.00 3920.00 3880.00 3860.00 3860.00 384
cdsmvs_eth3d_5k23.43 35231.24 3550.00 3690.00 3920.00 3930.00 38098.09 1830.00 3870.00 38899.67 8983.37 2290.00 3880.00 3860.00 3860.00 384
pcd_1.5k_mvsjas7.60 35510.13 3580.00 3690.00 3920.00 3930.00 3800.00 3930.00 3870.00 3880.00 38891.20 1450.00 3880.00 3860.00 3860.00 384
sosnet-low-res0.00 3560.00 3590.00 3690.00 3920.00 3930.00 3800.00 3930.00 3870.00 3880.00 3880.00 3920.00 3880.00 3860.00 3860.00 384
sosnet0.00 3560.00 3590.00 3690.00 3920.00 3930.00 3800.00 3930.00 3870.00 3880.00 3880.00 3920.00 3880.00 3860.00 3860.00 384
uncertanet0.00 3560.00 3590.00 3690.00 3920.00 3930.00 3800.00 3930.00 3870.00 3880.00 3880.00 3920.00 3880.00 3860.00 3860.00 384
Regformer0.00 3560.00 3590.00 3690.00 3920.00 3930.00 3800.00 3930.00 3870.00 3880.00 3880.00 3920.00 3880.00 3860.00 3860.00 384
ab-mvs-re8.28 35411.04 3570.00 3690.00 3920.00 3930.00 3800.00 3930.00 3870.00 38899.40 1120.00 3920.00 3880.00 3860.00 3860.00 384
uanet0.00 3560.00 3590.00 3690.00 3920.00 3930.00 3800.00 3930.00 3870.00 3880.00 3880.00 3920.00 3880.00 3860.00 3860.00 384
PC_three_145296.96 3699.80 1599.79 5497.49 10100.00 199.99 599.98 32100.00 1
eth-test20.00 392
eth-test0.00 392
test_241102_TWO98.43 11897.27 2799.80 1599.94 497.18 21100.00 1100.00 1100.00 1100.00 1
9.1498.38 3199.87 5199.91 7498.33 15393.22 15799.78 2499.89 1994.57 6499.85 9999.84 1999.97 42
test_0728_THIRD96.48 5199.83 1199.91 1497.87 6100.00 199.92 12100.00 1100.00 1
GSMVS99.59 125
sam_mvs194.72 6199.59 125
sam_mvs94.25 75
MTGPAbinary98.28 162
test_post195.78 35059.23 38493.20 10497.74 24791.06 238
test_post63.35 38194.43 6598.13 227
patchmatchnet-post91.70 34895.12 4997.95 238
MTMP99.87 9196.49 323
test9_res99.71 3099.99 21100.00 1
agg_prior299.48 37100.00 1100.00 1
test_prior299.95 4595.78 6999.73 2999.76 6296.00 3399.78 24100.00 1
旧先验299.46 19394.21 12099.85 799.95 6496.96 141
新几何299.40 197
无先验99.49 18898.71 5993.46 150100.00 194.36 18599.99 23
原ACMM299.90 79
testdata299.99 3690.54 251
segment_acmp96.68 26
testdata199.28 21796.35 60
plane_prior597.87 20498.37 21097.79 11889.55 23194.52 241
plane_prior498.59 180
plane_prior299.84 11196.38 56
plane_prior195.73 269
n20.00 393
nn0.00 393
door-mid89.69 377
test1198.44 110
door90.31 374
HQP-NCC95.78 26399.87 9196.82 4093.37 203
ACMP_Plane95.78 26399.87 9196.82 4093.37 203
BP-MVS97.92 111
HQP4-MVS93.37 20398.39 20494.53 239
HQP3-MVS97.89 20289.60 228
HQP2-MVS80.65 252
ACMMP++_ref87.04 266
ACMMP++88.23 253
Test By Simon92.82 114