DPM-MVS | | | 98.83 22 | 98.46 32 | 99.97 1 | 99.33 113 | 99.92 1 | 99.96 25 | 98.44 112 | 97.96 7 | 99.55 49 | 99.94 4 | 97.18 20 | 100.00 1 | 93.81 200 | 99.94 61 | 99.98 55 |
|
MSC_two_6792asdad | | | | | 99.93 2 | 99.91 44 | 99.80 2 | | 98.41 136 | | | | | 100.00 1 | 99.96 9 | 100.00 1 | 100.00 1 |
|
No_MVS | | | | | 99.93 2 | 99.91 44 | 99.80 2 | | 98.41 136 | | | | | 100.00 1 | 99.96 9 | 100.00 1 | 100.00 1 |
|
OPU-MVS | | | | | 99.93 2 | 99.89 50 | 99.80 2 | 99.96 25 | | | | 99.80 60 | 97.44 13 | 100.00 1 | 100.00 1 | 99.98 35 | 100.00 1 |
|
MCST-MVS | | | 99.32 3 | 99.14 4 | 99.86 5 | 99.97 3 | 99.59 5 | 99.97 18 | 98.64 65 | 98.47 2 | 99.13 83 | 99.92 13 | 96.38 30 | 100.00 1 | 99.74 30 | 100.00 1 | 100.00 1 |
|
CNVR-MVS | | | 99.40 1 | 99.26 1 | 99.84 6 | 99.98 2 | 99.51 6 | 99.98 10 | 98.69 57 | 98.20 3 | 99.93 1 | 99.98 2 | 96.82 22 | 100.00 1 | 99.75 28 | 100.00 1 | 99.99 24 |
|
test_0728_SECOND | | | | | 99.82 7 | 99.94 14 | 99.47 7 | 99.95 43 | 98.43 120 | | | | | 100.00 1 | 99.99 5 | 100.00 1 | 100.00 1 |
|
HY-MVS | | 92.50 7 | 97.79 82 | 97.17 98 | 99.63 15 | 98.98 127 | 99.32 8 | 97.49 319 | 99.52 14 | 95.69 70 | 98.32 121 | 97.41 221 | 93.32 112 | 99.77 120 | 98.08 109 | 95.75 199 | 99.81 104 |
|
DVP-MVS++ | | | 99.26 6 | 99.09 9 | 99.77 8 | 99.91 44 | 99.31 9 | 99.95 43 | 98.43 120 | 96.48 43 | 99.80 17 | 99.93 11 | 97.44 13 | 100.00 1 | 99.92 13 | 99.98 35 | 100.00 1 |
|
IU-MVS | | | | | | 99.93 27 | 99.31 9 | | 98.41 136 | 97.71 8 | 99.84 9 | | | | 100.00 1 | 100.00 1 | 100.00 1 |
|
test_one_0601 | | | | | | 99.94 14 | 99.30 11 | | 98.41 136 | 96.63 40 | 99.75 28 | 99.93 11 | 97.49 9 | | | | |
|
SED-MVS | | | 99.28 5 | 99.11 7 | 99.77 8 | 99.93 27 | 99.30 11 | 99.96 25 | 98.43 120 | 97.27 21 | 99.80 17 | 99.94 4 | 96.71 23 | 100.00 1 | 100.00 1 | 100.00 1 | 100.00 1 |
|
test_241102_ONE | | | | | | 99.93 27 | 99.30 11 | | 98.43 120 | 97.26 23 | 99.80 17 | 99.88 24 | 96.71 23 | 100.00 1 | | | |
|
DVP-MVS |  | | 99.30 4 | 99.16 3 | 99.73 11 | 99.93 27 | 99.29 14 | 99.95 43 | 98.32 160 | 97.28 19 | 99.83 11 | 99.91 15 | 97.22 18 | 100.00 1 | 99.99 5 | 100.00 1 | 99.89 94 |
Zhenlong Yuan, Jinguo Luo, Fei Shen, Zhaoxin Li, Cong Liu, Tianlu Mao, Zhaoqi Wang: DVP-MVS: Synergize Depth-Edge and Visibility Prior for Multi-View Stereo. AAAI2025 |
test0726 | | | | | | 99.93 27 | 99.29 14 | 99.96 25 | 98.42 132 | 97.28 19 | 99.86 5 | 99.94 4 | 97.22 18 | | | | |
|
WTY-MVS | | | 98.10 69 | 97.60 81 | 99.60 20 | 98.92 134 | 99.28 16 | 99.89 87 | 99.52 14 | 95.58 73 | 98.24 126 | 99.39 125 | 93.33 111 | 99.74 130 | 97.98 115 | 95.58 202 | 99.78 109 |
|
test_part2 | | | | | | 99.89 50 | 99.25 17 | | | | 99.49 56 | | | | | | |
|
DPE-MVS |  | | 99.26 6 | 99.10 8 | 99.74 10 | 99.89 50 | 99.24 18 | 99.87 93 | 98.44 112 | 97.48 16 | 99.64 40 | 99.94 4 | 96.68 25 | 99.99 40 | 99.99 5 | 100.00 1 | 99.99 24 |
Kehua Chen, Zhenlong Yuan, Tianlu Mao, Zhaoqi Wang: Dual-Level Precision Edges Guided Multi-View Stereo with Accurate Planarization. AAAI2025 |
MVS | | | 96.60 129 | 95.56 148 | 99.72 12 | 96.85 243 | 99.22 19 | 98.31 298 | 98.94 37 | 91.57 217 | 90.90 232 | 99.61 107 | 86.66 212 | 99.96 58 | 97.36 132 | 99.88 80 | 99.99 24 |
|
NCCC | | | 99.37 2 | 99.25 2 | 99.71 13 | 99.96 8 | 99.15 20 | 99.97 18 | 98.62 69 | 98.02 6 | 99.90 2 | 99.95 3 | 97.33 16 | 100.00 1 | 99.54 39 | 100.00 1 | 100.00 1 |
|
CANet | | | 98.27 60 | 97.82 74 | 99.63 15 | 99.72 88 | 99.10 21 | 99.98 10 | 98.51 99 | 97.00 29 | 98.52 111 | 99.71 92 | 87.80 200 | 99.95 65 | 99.75 28 | 99.38 119 | 99.83 102 |
|
MG-MVS | | | 98.91 18 | 98.65 22 | 99.68 14 | 99.94 14 | 99.07 22 | 99.64 166 | 99.44 19 | 97.33 18 | 99.00 90 | 99.72 90 | 94.03 95 | 99.98 46 | 98.73 80 | 100.00 1 | 100.00 1 |
|
HPM-MVS++ |  | | 99.07 10 | 98.88 15 | 99.63 15 | 99.90 47 | 99.02 23 | 99.95 43 | 98.56 79 | 97.56 14 | 99.44 59 | 99.85 35 | 95.38 49 | 100.00 1 | 99.31 49 | 99.99 22 | 99.87 98 |
|
PAPM | | | 98.60 34 | 98.42 33 | 99.14 66 | 96.05 260 | 98.96 24 | 99.90 79 | 99.35 24 | 96.68 39 | 98.35 120 | 99.66 103 | 96.45 29 | 98.51 194 | 99.45 43 | 99.89 78 | 99.96 74 |
|
canonicalmvs | | | 97.09 110 | 96.32 122 | 99.39 46 | 98.93 132 | 98.95 25 | 99.72 151 | 97.35 261 | 94.45 108 | 97.88 135 | 99.42 121 | 86.71 211 | 99.52 147 | 98.48 92 | 93.97 219 | 99.72 116 |
|
ETH3 D test6400 | | | 98.81 23 | 98.54 28 | 99.59 21 | 99.93 27 | 98.93 26 | 99.93 67 | 98.46 107 | 94.56 105 | 99.84 9 | 99.92 13 | 94.32 85 | 99.86 95 | 99.96 9 | 99.98 35 | 100.00 1 |
|
TEST9 | | | | | | 99.92 36 | 98.92 27 | 99.96 25 | 98.43 120 | 93.90 139 | 99.71 34 | 99.86 31 | 95.88 38 | 99.85 99 | | | |
|
train_agg | | | 98.88 20 | 98.65 22 | 99.59 21 | 99.92 36 | 98.92 27 | 99.96 25 | 98.43 120 | 94.35 115 | 99.71 34 | 99.86 31 | 95.94 35 | 99.85 99 | 99.69 37 | 99.98 35 | 99.99 24 |
|
PS-MVSNAJ | | | 98.44 48 | 98.20 52 | 99.16 62 | 98.80 144 | 98.92 27 | 99.54 181 | 98.17 183 | 97.34 17 | 99.85 7 | 99.85 35 | 91.20 158 | 99.89 84 | 99.41 46 | 99.67 101 | 98.69 212 |
|
test_8 | | | | | | 99.92 36 | 98.88 30 | 99.96 25 | 98.43 120 | 94.35 115 | 99.69 36 | 99.85 35 | 95.94 35 | 99.85 99 | | | |
|
SMA-MVS |  | | 98.76 27 | 98.48 31 | 99.62 18 | 99.87 57 | 98.87 31 | 99.86 104 | 98.38 147 | 93.19 160 | 99.77 26 | 99.94 4 | 95.54 44 | 100.00 1 | 99.74 30 | 99.99 22 | 100.00 1 |
Yufeng Yin; Xiaoyan Liu; Zichao Zhang: SMA-MVS: Segmentation-Guided Multi-Scale Anchor Deformation Patch Multi-View Stereo. IEEE Transactions on Circuits and Systems for Video Technology |
CHOSEN 280x420 | | | 99.01 13 | 99.03 10 | 98.95 86 | 99.38 111 | 98.87 31 | 98.46 291 | 99.42 21 | 97.03 28 | 99.02 87 | 99.09 145 | 99.35 1 | 98.21 226 | 99.73 33 | 99.78 94 | 99.77 110 |
|
DeepC-MVS_fast | | 96.59 1 | 98.81 23 | 98.54 28 | 99.62 18 | 99.90 47 | 98.85 33 | 99.24 222 | 98.47 105 | 98.14 4 | 99.08 84 | 99.91 15 | 93.09 121 | 100.00 1 | 99.04 60 | 99.99 22 | 100.00 1 |
Andreas Kuhn, Christian Sormann, Mattia Rossi, Oliver Erdler, Friedrich Fraundorfer: DeepC-MVS: Deep Confidence Prediction for Multi-View Stereo Reconstruction. 3DV 2020 |
thres200 | | | 96.96 112 | 96.21 124 | 99.22 53 | 98.97 128 | 98.84 34 | 99.85 107 | 99.71 6 | 93.17 161 | 96.26 173 | 98.88 171 | 89.87 178 | 99.51 148 | 94.26 191 | 94.91 209 | 99.31 181 |
|
tfpn200view9 | | | 96.79 119 | 95.99 129 | 99.19 56 | 98.94 130 | 98.82 35 | 99.78 129 | 99.71 6 | 92.86 166 | 96.02 176 | 98.87 173 | 89.33 184 | 99.50 150 | 93.84 197 | 94.57 210 | 99.27 184 |
|
thres400 | | | 96.78 120 | 95.99 129 | 99.16 62 | 98.94 130 | 98.82 35 | 99.78 129 | 99.71 6 | 92.86 166 | 96.02 176 | 98.87 173 | 89.33 184 | 99.50 150 | 93.84 197 | 94.57 210 | 99.16 191 |
|
xxxxxxxxxxxxxcwj | | | 98.98 15 | 98.79 17 | 99.54 26 | 99.82 70 | 98.79 37 | 99.96 25 | 97.52 243 | 97.66 10 | 99.81 13 | 99.89 21 | 94.70 69 | 99.86 95 | 99.84 19 | 99.93 67 | 99.96 74 |
|
save fliter | | | | | | 99.82 70 | 98.79 37 | 99.96 25 | 98.40 140 | 97.66 10 | | | | | | | |
|
thres600view7 | | | 96.69 126 | 95.87 142 | 99.14 66 | 98.90 137 | 98.78 39 | 99.74 143 | 99.71 6 | 92.59 184 | 95.84 179 | 98.86 175 | 89.25 186 | 99.50 150 | 93.44 210 | 94.50 213 | 99.16 191 |
|
thres100view900 | | | 96.74 123 | 95.92 139 | 99.18 57 | 98.90 137 | 98.77 40 | 99.74 143 | 99.71 6 | 92.59 184 | 95.84 179 | 98.86 175 | 89.25 186 | 99.50 150 | 93.84 197 | 94.57 210 | 99.27 184 |
|
agg_prior1 | | | 98.88 20 | 98.66 21 | 99.54 26 | 99.93 27 | 98.77 40 | 99.96 25 | 98.43 120 | 94.63 103 | 99.63 41 | 99.85 35 | 95.79 41 | 99.85 99 | 99.72 34 | 99.99 22 | 99.99 24 |
|
agg_prior | | | | | | 99.93 27 | 98.77 40 | | 98.43 120 | | 99.63 41 | | | 99.85 99 | | | |
|
PAPR | | | 98.52 42 | 98.16 55 | 99.58 23 | 99.97 3 | 98.77 40 | 99.95 43 | 98.43 120 | 95.35 78 | 98.03 130 | 99.75 81 | 94.03 95 | 99.98 46 | 98.11 106 | 99.83 85 | 99.99 24 |
|
APDe-MVS | | | 99.06 11 | 98.91 14 | 99.51 31 | 99.94 14 | 98.76 44 | 99.91 75 | 98.39 143 | 97.20 25 | 99.46 57 | 99.85 35 | 95.53 46 | 99.79 114 | 99.86 18 | 100.00 1 | 99.99 24 |
|
SD-MVS | | | 98.92 17 | 98.70 19 | 99.56 24 | 99.70 90 | 98.73 45 | 99.94 61 | 98.34 157 | 96.38 48 | 99.81 13 | 99.76 75 | 94.59 71 | 99.98 46 | 99.84 19 | 99.96 52 | 99.97 67 |
Zhenlong Yuan, Jiakai Cao, Zhaoxin Li, Hao Jiang and Zhaoqi Wang: SD-MVS: Segmentation-driven Deformation Multi-View Stereo with Spherical Refinement and EM optimization. AAAI2024 |
CDPH-MVS | | | 98.65 32 | 98.36 44 | 99.49 34 | 99.94 14 | 98.73 45 | 99.87 93 | 98.33 158 | 93.97 134 | 99.76 27 | 99.87 28 | 94.99 62 | 99.75 126 | 98.55 90 | 100.00 1 | 99.98 55 |
|
DP-MVS Recon | | | 98.41 50 | 98.02 64 | 99.56 24 | 99.97 3 | 98.70 47 | 99.92 71 | 98.44 112 | 92.06 204 | 98.40 118 | 99.84 48 | 95.68 42 | 100.00 1 | 98.19 101 | 99.71 99 | 99.97 67 |
|
SF-MVS | | | 98.67 31 | 98.40 37 | 99.50 32 | 99.77 78 | 98.67 48 | 99.90 79 | 98.21 177 | 93.53 151 | 99.81 13 | 99.89 21 | 94.70 69 | 99.86 95 | 99.84 19 | 99.93 67 | 99.96 74 |
|
TSAR-MVS + MP. | | | 98.93 16 | 98.77 18 | 99.41 42 | 99.74 82 | 98.67 48 | 99.77 132 | 98.38 147 | 96.73 37 | 99.88 4 | 99.74 86 | 94.89 66 | 99.59 145 | 99.80 24 | 99.98 35 | 99.97 67 |
Zhenlong Yuan, Jiakai Cao, Zhaoqi Wang, Zhaoxin Li: TSAR-MVS: Textureless-aware Segmentation and Correlative Refinement Guided Multi-View Stereo. Pattern Recognition |
xiu_mvs_v2_base | | | 98.23 65 | 97.97 67 | 99.02 80 | 98.69 148 | 98.66 50 | 99.52 183 | 98.08 194 | 97.05 27 | 99.86 5 | 99.86 31 | 90.65 169 | 99.71 134 | 99.39 47 | 98.63 136 | 98.69 212 |
|
alignmvs | | | 97.81 80 | 97.33 91 | 99.25 52 | 98.77 146 | 98.66 50 | 99.99 4 | 98.44 112 | 94.40 114 | 98.41 116 | 99.47 117 | 93.65 105 | 99.42 156 | 98.57 89 | 94.26 215 | 99.67 122 |
|
DELS-MVS | | | 98.54 40 | 98.22 50 | 99.50 32 | 99.15 118 | 98.65 52 | 100.00 1 | 98.58 75 | 97.70 9 | 98.21 127 | 99.24 139 | 92.58 134 | 99.94 73 | 98.63 88 | 99.94 61 | 99.92 91 |
Christian Sormann, Emanuele Santellani, Mattia Rossi, Andreas Kuhn, Friedrich Fraundorfer: DELS-MVS: Deep Epipolar Line Search for Multi-View Stereo. Winter Conference on Applications of Computer Vision (WACV), 2023 |
3Dnovator+ | | 91.53 11 | 96.31 139 | 95.24 155 | 99.52 29 | 96.88 242 | 98.64 53 | 99.72 151 | 98.24 173 | 95.27 81 | 88.42 281 | 98.98 156 | 82.76 242 | 99.94 73 | 97.10 139 | 99.83 85 | 99.96 74 |
|
ACMMP_NAP | | | 98.49 44 | 98.14 56 | 99.54 26 | 99.66 93 | 98.62 54 | 99.85 107 | 98.37 150 | 94.68 100 | 99.53 51 | 99.83 51 | 92.87 126 | 100.00 1 | 98.66 86 | 99.84 84 | 99.99 24 |
|
ZD-MVS | | | | | | 99.92 36 | 98.57 55 | | 98.52 92 | 92.34 195 | 99.31 71 | 99.83 51 | 95.06 56 | 99.80 111 | 99.70 36 | 99.97 48 | |
|
ETH3D-3000-0.1 | | | 98.68 30 | 98.42 33 | 99.47 37 | 99.83 68 | 98.57 55 | 99.90 79 | 98.37 150 | 93.81 142 | 99.81 13 | 99.90 19 | 94.34 81 | 99.86 95 | 99.84 19 | 99.98 35 | 99.97 67 |
|
testtj | | | 98.89 19 | 98.69 20 | 99.52 29 | 99.94 14 | 98.56 57 | 99.90 79 | 98.55 85 | 95.14 83 | 99.72 33 | 99.84 48 | 95.46 47 | 100.00 1 | 99.65 38 | 99.99 22 | 99.99 24 |
|
test12 | | | | | 99.43 38 | 99.74 82 | 98.56 57 | | 98.40 140 | | 99.65 39 | | 94.76 67 | 99.75 126 | | 99.98 35 | 99.99 24 |
|
1314 | | | 96.84 117 | 95.96 136 | 99.48 36 | 96.74 250 | 98.52 59 | 98.31 298 | 98.86 47 | 95.82 62 | 89.91 244 | 98.98 156 | 87.49 203 | 99.96 58 | 97.80 119 | 99.73 97 | 99.96 74 |
|
APD-MVS |  | | 98.62 33 | 98.35 45 | 99.41 42 | 99.90 47 | 98.51 60 | 99.87 93 | 98.36 152 | 94.08 127 | 99.74 29 | 99.73 88 | 94.08 93 | 99.74 130 | 99.42 45 | 99.99 22 | 99.99 24 |
Yuesong Wang, Zhaojie Zeng and etc.: Adaptive Patch Deformation for Textureless-Resilient Multi-View Stereo. CVPR2023 |
test_prior3 | | | 98.99 14 | 98.84 16 | 99.43 38 | 99.94 14 | 98.49 61 | 99.95 43 | 98.65 62 | 95.78 64 | 99.73 30 | 99.76 75 | 96.00 33 | 99.80 111 | 99.78 26 | 100.00 1 | 99.99 24 |
|
test_prior | | | | | 99.43 38 | 99.94 14 | 98.49 61 | | 98.65 62 | | | | | 99.80 111 | | | 99.99 24 |
|
MSLP-MVS++ | | | 99.13 8 | 99.01 11 | 99.49 34 | 99.94 14 | 98.46 63 | 99.98 10 | 98.86 47 | 97.10 26 | 99.80 17 | 99.94 4 | 95.92 37 | 100.00 1 | 99.51 40 | 100.00 1 | 100.00 1 |
|
ETH3D cwj APD-0.16 | | | 98.40 52 | 98.07 62 | 99.40 44 | 99.59 96 | 98.41 64 | 99.86 104 | 98.24 173 | 92.18 199 | 99.73 30 | 99.87 28 | 93.47 108 | 99.85 99 | 99.74 30 | 99.95 55 | 99.93 85 |
|
MP-MVS-pluss | | | 98.07 70 | 97.64 78 | 99.38 47 | 99.74 82 | 98.41 64 | 99.74 143 | 98.18 182 | 93.35 155 | 96.45 167 | 99.85 35 | 92.64 133 | 99.97 56 | 98.91 68 | 99.89 78 | 99.77 110 |
MP-MVS-pluss: MP-MVS-pluss. MP-MVS-pluss |
Regformer-1 | | | 98.79 25 | 98.60 25 | 99.36 48 | 99.85 60 | 98.34 66 | 99.87 93 | 98.52 92 | 96.05 57 | 99.41 62 | 99.79 64 | 94.93 64 | 99.76 123 | 99.07 55 | 99.90 76 | 99.99 24 |
|
RRT_MVS | | | 95.23 164 | 94.77 168 | 96.61 190 | 98.28 166 | 98.32 67 | 99.81 120 | 97.41 256 | 92.59 184 | 91.28 229 | 97.76 215 | 95.02 58 | 97.23 270 | 93.65 207 | 87.14 263 | 94.28 262 |
|
Regformer-2 | | | 98.78 26 | 98.59 26 | 99.36 48 | 99.85 60 | 98.32 67 | 99.87 93 | 98.52 92 | 96.04 58 | 99.41 62 | 99.79 64 | 94.92 65 | 99.76 123 | 99.05 56 | 99.90 76 | 99.98 55 |
|
新几何1 | | | | | 99.42 41 | 99.75 81 | 98.27 69 | | 98.63 68 | 92.69 177 | 99.55 49 | 99.82 55 | 94.40 75 | 100.00 1 | 91.21 234 | 99.94 61 | 99.99 24 |
|
1121 | | | 98.03 71 | 97.57 83 | 99.40 44 | 99.74 82 | 98.21 70 | 98.31 298 | 98.62 69 | 92.78 172 | 99.53 51 | 99.83 51 | 95.08 54 | 100.00 1 | 94.36 187 | 99.92 71 | 99.99 24 |
|
xiu_mvs_v1_base_debu | | | 97.43 93 | 97.06 99 | 98.55 110 | 97.74 200 | 98.14 71 | 99.31 213 | 97.86 214 | 96.43 45 | 99.62 44 | 99.69 97 | 85.56 221 | 99.68 138 | 99.05 56 | 98.31 143 | 97.83 221 |
|
xiu_mvs_v1_base | | | 97.43 93 | 97.06 99 | 98.55 110 | 97.74 200 | 98.14 71 | 99.31 213 | 97.86 214 | 96.43 45 | 99.62 44 | 99.69 97 | 85.56 221 | 99.68 138 | 99.05 56 | 98.31 143 | 97.83 221 |
|
xiu_mvs_v1_base_debi | | | 97.43 93 | 97.06 99 | 98.55 110 | 97.74 200 | 98.14 71 | 99.31 213 | 97.86 214 | 96.43 45 | 99.62 44 | 99.69 97 | 85.56 221 | 99.68 138 | 99.05 56 | 98.31 143 | 97.83 221 |
|
baseline1 | | | 95.78 151 | 94.86 165 | 98.54 113 | 98.47 159 | 98.07 74 | 99.06 239 | 97.99 199 | 92.68 178 | 94.13 203 | 98.62 187 | 93.28 115 | 98.69 186 | 93.79 202 | 85.76 270 | 98.84 206 |
|
test_prior4 | | | | | | | 98.05 75 | 99.94 61 | | | | | | | | | |
|
sss | | | 97.57 89 | 97.03 103 | 99.18 57 | 98.37 161 | 98.04 76 | 99.73 148 | 99.38 22 | 93.46 153 | 98.76 101 | 99.06 147 | 91.21 157 | 99.89 84 | 96.33 150 | 97.01 175 | 99.62 133 |
|
GG-mvs-BLEND | | | | | 98.54 113 | 98.21 172 | 98.01 77 | 93.87 351 | 98.52 92 | | 97.92 133 | 97.92 213 | 99.02 2 | 97.94 242 | 98.17 102 | 99.58 109 | 99.67 122 |
|
ET-MVSNet_ETH3D | | | 94.37 189 | 93.28 204 | 97.64 153 | 98.30 163 | 97.99 78 | 99.99 4 | 97.61 231 | 94.35 115 | 71.57 360 | 99.45 120 | 96.23 31 | 95.34 335 | 96.91 146 | 85.14 277 | 99.59 139 |
|
test_yl | | | 97.83 78 | 97.37 88 | 99.21 54 | 99.18 115 | 97.98 79 | 99.64 166 | 99.27 26 | 91.43 223 | 97.88 135 | 98.99 154 | 95.84 39 | 99.84 108 | 98.82 73 | 95.32 206 | 99.79 106 |
|
DCV-MVSNet | | | 97.83 78 | 97.37 88 | 99.21 54 | 99.18 115 | 97.98 79 | 99.64 166 | 99.27 26 | 91.43 223 | 97.88 135 | 98.99 154 | 95.84 39 | 99.84 108 | 98.82 73 | 95.32 206 | 99.79 106 |
|
gg-mvs-nofinetune | | | 93.51 207 | 91.86 231 | 98.47 118 | 97.72 204 | 97.96 81 | 92.62 355 | 98.51 99 | 74.70 358 | 97.33 145 | 69.59 369 | 98.91 3 | 97.79 245 | 97.77 124 | 99.56 110 | 99.67 122 |
|
zzz-MVS | | | 98.33 56 | 98.00 65 | 99.30 50 | 99.85 60 | 97.93 82 | 99.80 125 | 98.28 167 | 95.76 66 | 97.18 148 | 99.88 24 | 92.74 130 | 100.00 1 | 98.67 83 | 99.88 80 | 99.99 24 |
|
MTAPA | | | 98.29 59 | 97.96 70 | 99.30 50 | 99.85 60 | 97.93 82 | 99.39 203 | 98.28 167 | 95.76 66 | 97.18 148 | 99.88 24 | 92.74 130 | 100.00 1 | 98.67 83 | 99.88 80 | 99.99 24 |
|
114514_t | | | 97.41 98 | 96.83 107 | 99.14 66 | 99.51 105 | 97.83 84 | 99.89 87 | 98.27 170 | 88.48 275 | 99.06 85 | 99.66 103 | 90.30 173 | 99.64 144 | 96.32 151 | 99.97 48 | 99.96 74 |
|
VNet | | | 97.21 106 | 96.57 116 | 99.13 71 | 98.97 128 | 97.82 85 | 99.03 245 | 99.21 28 | 94.31 118 | 99.18 82 | 98.88 171 | 86.26 216 | 99.89 84 | 98.93 65 | 94.32 214 | 99.69 119 |
|
MVSTER | | | 95.53 159 | 95.22 156 | 96.45 194 | 98.56 152 | 97.72 86 | 99.91 75 | 97.67 224 | 92.38 194 | 91.39 227 | 97.14 228 | 97.24 17 | 97.30 264 | 94.80 174 | 87.85 256 | 94.34 259 |
|
SteuartSystems-ACMMP | | | 99.02 12 | 98.97 13 | 99.18 57 | 98.72 147 | 97.71 87 | 99.98 10 | 98.44 112 | 96.85 31 | 99.80 17 | 99.91 15 | 97.57 6 | 99.85 99 | 99.44 44 | 99.99 22 | 99.99 24 |
Skip Steuart: Steuart Systems R&D Blog. |
QAPM | | | 95.40 162 | 94.17 178 | 99.10 72 | 96.92 237 | 97.71 87 | 99.40 199 | 98.68 58 | 89.31 256 | 88.94 270 | 98.89 169 | 82.48 243 | 99.96 58 | 93.12 217 | 99.83 85 | 99.62 133 |
|
MVSFormer | | | 96.94 113 | 96.60 114 | 97.95 140 | 97.28 226 | 97.70 89 | 99.55 179 | 97.27 269 | 91.17 227 | 99.43 60 | 99.54 113 | 90.92 165 | 96.89 291 | 94.67 181 | 99.62 104 | 99.25 186 |
|
lupinMVS | | | 97.85 77 | 97.60 81 | 98.62 103 | 97.28 226 | 97.70 89 | 99.99 4 | 97.55 237 | 95.50 76 | 99.43 60 | 99.67 101 | 90.92 165 | 98.71 184 | 98.40 94 | 99.62 104 | 99.45 165 |
|
FOURS1 | | | | | | 99.92 36 | 97.66 91 | 99.95 43 | 98.36 152 | 95.58 73 | 99.52 54 | | | | | | |
|
ZNCC-MVS | | | 98.31 57 | 98.03 63 | 99.17 60 | 99.88 54 | 97.59 92 | 99.94 61 | 98.44 112 | 94.31 118 | 98.50 113 | 99.82 55 | 93.06 123 | 99.99 40 | 98.30 100 | 99.99 22 | 99.93 85 |
|
GST-MVS | | | 98.27 60 | 97.97 67 | 99.17 60 | 99.92 36 | 97.57 93 | 99.93 67 | 98.39 143 | 94.04 132 | 98.80 97 | 99.74 86 | 92.98 124 | 100.00 1 | 98.16 103 | 99.76 95 | 99.93 85 |
|
Regformer-3 | | | 98.58 37 | 98.41 35 | 99.10 72 | 99.84 65 | 97.57 93 | 99.66 159 | 98.52 92 | 95.79 63 | 99.01 88 | 99.77 71 | 94.40 75 | 99.75 126 | 98.82 73 | 99.83 85 | 99.98 55 |
|
CANet_DTU | | | 96.76 121 | 96.15 125 | 98.60 105 | 98.78 145 | 97.53 95 | 99.84 111 | 97.63 226 | 97.25 24 | 99.20 78 | 99.64 105 | 81.36 254 | 99.98 46 | 92.77 220 | 98.89 130 | 98.28 215 |
|
thisisatest0515 | | | 97.41 98 | 97.02 104 | 98.59 107 | 97.71 206 | 97.52 96 | 99.97 18 | 98.54 89 | 91.83 209 | 97.45 143 | 99.04 148 | 97.50 8 | 99.10 166 | 94.75 177 | 96.37 186 | 99.16 191 |
|
Regformer-4 | | | 98.56 38 | 98.39 39 | 99.08 74 | 99.84 65 | 97.52 96 | 99.66 159 | 98.52 92 | 95.76 66 | 99.01 88 | 99.77 71 | 94.33 84 | 99.75 126 | 98.80 76 | 99.83 85 | 99.98 55 |
|
旧先验1 | | | | | | 99.76 79 | 97.52 96 | | 98.64 65 | | | 99.85 35 | 95.63 43 | | | 99.94 61 | 99.99 24 |
|
XVS | | | 98.70 29 | 98.55 27 | 99.15 64 | 99.94 14 | 97.50 99 | 99.94 61 | 98.42 132 | 96.22 53 | 99.41 62 | 99.78 69 | 94.34 81 | 99.96 58 | 98.92 66 | 99.95 55 | 99.99 24 |
|
X-MVStestdata | | | 93.83 197 | 92.06 226 | 99.15 64 | 99.94 14 | 97.50 99 | 99.94 61 | 98.42 132 | 96.22 53 | 99.41 62 | 41.37 377 | 94.34 81 | 99.96 58 | 98.92 66 | 99.95 55 | 99.99 24 |
|
OpenMVS |  | 90.15 15 | 94.77 175 | 93.59 192 | 98.33 127 | 96.07 259 | 97.48 101 | 99.56 177 | 98.57 77 | 90.46 241 | 86.51 305 | 98.95 164 | 78.57 280 | 99.94 73 | 93.86 196 | 99.74 96 | 97.57 228 |
|
3Dnovator | | 91.47 12 | 96.28 142 | 95.34 153 | 99.08 74 | 96.82 245 | 97.47 102 | 99.45 195 | 98.81 50 | 95.52 75 | 89.39 258 | 99.00 153 | 81.97 246 | 99.95 65 | 97.27 134 | 99.83 85 | 99.84 101 |
|
test_part1 | | | 92.15 237 | 90.72 247 | 96.44 196 | 98.87 140 | 97.46 103 | 98.99 248 | 98.26 171 | 85.89 307 | 86.34 310 | 96.34 258 | 81.71 248 | 97.48 255 | 91.06 238 | 78.99 322 | 94.37 254 |
|
HFP-MVS | | | 98.56 38 | 98.37 42 | 99.14 66 | 99.96 8 | 97.43 104 | 99.95 43 | 98.61 71 | 94.77 96 | 99.31 71 | 99.85 35 | 94.22 88 | 100.00 1 | 98.70 81 | 99.98 35 | 99.98 55 |
|
#test# | | | 98.59 36 | 98.41 35 | 99.14 66 | 99.96 8 | 97.43 104 | 99.95 43 | 98.61 71 | 95.00 87 | 99.31 71 | 99.85 35 | 94.22 88 | 100.00 1 | 98.78 77 | 99.98 35 | 99.98 55 |
|
FMVSNet3 | | | 92.69 225 | 91.58 234 | 95.99 206 | 98.29 164 | 97.42 106 | 99.26 221 | 97.62 228 | 89.80 253 | 89.68 250 | 95.32 294 | 81.62 252 | 96.27 317 | 87.01 291 | 85.65 271 | 94.29 261 |
|
test222 | | | | | | 99.55 101 | 97.41 107 | 99.34 209 | 98.55 85 | 91.86 208 | 99.27 76 | 99.83 51 | 93.84 101 | | | 99.95 55 | 99.99 24 |
|
jason | | | 97.24 104 | 96.86 106 | 98.38 126 | 95.73 272 | 97.32 108 | 99.97 18 | 97.40 258 | 95.34 79 | 98.60 110 | 99.54 113 | 87.70 201 | 98.56 191 | 97.94 116 | 99.47 115 | 99.25 186 |
jason: jason. |
MSP-MVS | | | 99.09 9 | 99.12 5 | 98.98 83 | 99.93 27 | 97.24 109 | 99.95 43 | 98.42 132 | 97.50 15 | 99.52 54 | 99.88 24 | 97.43 15 | 99.71 134 | 99.50 41 | 99.98 35 | 100.00 1 |
Zhenlong Yuan, Cong Liu, Fei Shen, Zhaoxin Li, Jingguo luo, Tianlu Mao and Zhaoqi Wang: MSP-MVS: Multi-granularity Segmentation Prior Guided Multi-View Stereo. AAAI2025 |
MVS_Test | | | 96.46 133 | 95.74 144 | 98.61 104 | 98.18 174 | 97.23 110 | 99.31 213 | 97.15 279 | 91.07 231 | 98.84 95 | 97.05 234 | 88.17 199 | 98.97 170 | 94.39 186 | 97.50 162 | 99.61 136 |
|
nrg030 | | | 93.51 207 | 92.53 217 | 96.45 194 | 94.36 296 | 97.20 111 | 99.81 120 | 97.16 278 | 91.60 216 | 89.86 246 | 97.46 219 | 86.37 215 | 97.68 248 | 95.88 157 | 80.31 316 | 94.46 245 |
|
region2R | | | 98.54 40 | 98.37 42 | 99.05 76 | 99.96 8 | 97.18 112 | 99.96 25 | 98.55 85 | 94.87 94 | 99.45 58 | 99.85 35 | 94.07 94 | 100.00 1 | 98.67 83 | 100.00 1 | 99.98 55 |
|
ACMMPR | | | 98.50 43 | 98.32 46 | 99.05 76 | 99.96 8 | 97.18 112 | 99.95 43 | 98.60 73 | 94.77 96 | 99.31 71 | 99.84 48 | 93.73 103 | 100.00 1 | 98.70 81 | 99.98 35 | 99.98 55 |
|
MVS_111021_HR | | | 98.72 28 | 98.62 24 | 99.01 81 | 99.36 112 | 97.18 112 | 99.93 67 | 99.90 1 | 96.81 35 | 98.67 105 | 99.77 71 | 93.92 97 | 99.89 84 | 99.27 51 | 99.94 61 | 99.96 74 |
|
MP-MVS |  | | 98.23 65 | 97.97 67 | 99.03 78 | 99.94 14 | 97.17 115 | 99.95 43 | 98.39 143 | 94.70 99 | 98.26 125 | 99.81 59 | 91.84 151 | 100.00 1 | 98.85 72 | 99.97 48 | 99.93 85 |
Rongxuan Tan, Qing Wang, et al.: MP-MVS: Multi-Scale Windows PatchMatch and Planar Prior Multi-View Stereo. |
PHI-MVS | | | 98.41 50 | 98.21 51 | 99.03 78 | 99.86 59 | 97.10 116 | 99.98 10 | 98.80 52 | 90.78 238 | 99.62 44 | 99.78 69 | 95.30 50 | 100.00 1 | 99.80 24 | 99.93 67 | 99.99 24 |
|
SR-MVS | | | 98.46 46 | 98.30 48 | 98.93 87 | 99.88 54 | 97.04 117 | 99.84 111 | 98.35 155 | 94.92 91 | 99.32 70 | 99.80 60 | 93.35 110 | 99.78 116 | 99.30 50 | 99.95 55 | 99.96 74 |
|
PGM-MVS | | | 98.34 55 | 98.13 57 | 98.99 82 | 99.92 36 | 97.00 118 | 99.75 140 | 99.50 17 | 93.90 139 | 99.37 68 | 99.76 75 | 93.24 118 | 100.00 1 | 97.75 126 | 99.96 52 | 99.98 55 |
|
原ACMM1 | | | | | 98.96 85 | 99.73 86 | 96.99 119 | | 98.51 99 | 94.06 130 | 99.62 44 | 99.85 35 | 94.97 63 | 99.96 58 | 95.11 164 | 99.95 55 | 99.92 91 |
|
PVSNet_BlendedMVS | | | 96.05 145 | 95.82 143 | 96.72 186 | 99.59 96 | 96.99 119 | 99.95 43 | 99.10 29 | 94.06 130 | 98.27 123 | 95.80 269 | 89.00 191 | 99.95 65 | 99.12 53 | 87.53 261 | 93.24 324 |
|
PVSNet_Blended | | | 97.94 73 | 97.64 78 | 98.83 91 | 99.59 96 | 96.99 119 | 100.00 1 | 99.10 29 | 95.38 77 | 98.27 123 | 99.08 146 | 89.00 191 | 99.95 65 | 99.12 53 | 99.25 122 | 99.57 146 |
|
mPP-MVS | | | 98.39 53 | 98.20 52 | 98.97 84 | 99.97 3 | 96.92 122 | 99.95 43 | 98.38 147 | 95.04 86 | 98.61 109 | 99.80 60 | 93.39 109 | 100.00 1 | 98.64 87 | 100.00 1 | 99.98 55 |
|
test2506 | | | 97.53 90 | 97.19 95 | 98.58 108 | 98.66 150 | 96.90 123 | 98.81 270 | 99.77 5 | 94.93 89 | 97.95 132 | 98.96 160 | 92.51 136 | 99.20 160 | 94.93 168 | 98.15 147 | 99.64 128 |
|
CNLPA | | | 97.76 83 | 97.38 87 | 98.92 88 | 99.53 102 | 96.84 124 | 99.87 93 | 98.14 189 | 93.78 144 | 96.55 165 | 99.69 97 | 92.28 142 | 99.98 46 | 97.13 137 | 99.44 117 | 99.93 85 |
|
FIs | | | 94.10 194 | 93.43 197 | 96.11 204 | 94.70 292 | 96.82 125 | 99.58 173 | 98.93 41 | 92.54 188 | 89.34 260 | 97.31 224 | 87.62 202 | 97.10 278 | 94.22 193 | 86.58 266 | 94.40 252 |
|
EPNet | | | 98.49 44 | 98.40 37 | 98.77 93 | 99.62 95 | 96.80 126 | 99.90 79 | 99.51 16 | 97.60 12 | 99.20 78 | 99.36 128 | 93.71 104 | 99.91 79 | 97.99 113 | 98.71 135 | 99.61 136 |
Wanjuan Su, Wenbing Tao: Efficient Edge-Preserving Multi-View Stereo Network for Depth Estimation. AAAI 2023 |
thisisatest0530 | | | 97.10 108 | 96.72 111 | 98.22 131 | 97.60 209 | 96.70 127 | 99.92 71 | 98.54 89 | 91.11 230 | 97.07 151 | 98.97 158 | 97.47 11 | 99.03 167 | 93.73 205 | 96.09 189 | 98.92 201 |
|
PVSNet_Blended_VisFu | | | 97.27 103 | 96.81 108 | 98.66 100 | 98.81 143 | 96.67 128 | 99.92 71 | 98.64 65 | 94.51 107 | 96.38 171 | 98.49 194 | 89.05 190 | 99.88 90 | 97.10 139 | 98.34 141 | 99.43 168 |
|
TSAR-MVS + GP. | | | 98.60 34 | 98.51 30 | 98.86 90 | 99.73 86 | 96.63 129 | 99.97 18 | 97.92 208 | 98.07 5 | 98.76 101 | 99.55 111 | 95.00 61 | 99.94 73 | 99.91 16 | 97.68 159 | 99.99 24 |
|
CP-MVS | | | 98.45 47 | 98.32 46 | 98.87 89 | 99.96 8 | 96.62 130 | 99.97 18 | 98.39 143 | 94.43 110 | 98.90 94 | 99.87 28 | 94.30 86 | 100.00 1 | 99.04 60 | 99.99 22 | 99.99 24 |
|
APD-MVS_3200maxsize | | | 98.25 63 | 98.08 61 | 98.78 92 | 99.81 73 | 96.60 131 | 99.82 118 | 98.30 165 | 93.95 136 | 99.37 68 | 99.77 71 | 92.84 127 | 99.76 123 | 98.95 63 | 99.92 71 | 99.97 67 |
|
EI-MVSNet-Vis-set | | | 98.27 60 | 98.11 59 | 98.75 95 | 99.83 68 | 96.59 132 | 99.40 199 | 98.51 99 | 95.29 80 | 98.51 112 | 99.76 75 | 93.60 107 | 99.71 134 | 98.53 91 | 99.52 112 | 99.95 82 |
|
test1172 | | | 98.38 54 | 98.25 49 | 98.77 93 | 99.88 54 | 96.56 133 | 99.80 125 | 98.36 152 | 94.68 100 | 99.20 78 | 99.80 60 | 93.28 115 | 99.78 116 | 99.34 48 | 99.92 71 | 99.98 55 |
|
ETV-MVS | | | 97.92 75 | 97.80 75 | 98.25 130 | 98.14 177 | 96.48 134 | 99.98 10 | 97.63 226 | 95.61 72 | 99.29 75 | 99.46 119 | 92.55 135 | 98.82 174 | 99.02 62 | 98.54 137 | 99.46 163 |
|
TESTMET0.1,1 | | | 96.74 123 | 96.26 123 | 98.16 132 | 97.36 219 | 96.48 134 | 99.96 25 | 98.29 166 | 91.93 206 | 95.77 182 | 98.07 207 | 95.54 44 | 98.29 218 | 90.55 249 | 98.89 130 | 99.70 117 |
|
HPM-MVS_fast | | | 97.80 81 | 97.50 84 | 98.68 98 | 99.79 75 | 96.42 136 | 99.88 90 | 98.16 186 | 91.75 213 | 98.94 92 | 99.54 113 | 91.82 152 | 99.65 143 | 97.62 128 | 99.99 22 | 99.99 24 |
|
Test_1112_low_res | | | 95.72 152 | 94.83 166 | 98.42 123 | 97.79 196 | 96.41 137 | 99.65 162 | 96.65 324 | 92.70 176 | 92.86 219 | 96.13 264 | 92.15 145 | 99.30 157 | 91.88 228 | 93.64 221 | 99.55 148 |
|
1112_ss | | | 96.01 147 | 95.20 157 | 98.42 123 | 97.80 195 | 96.41 137 | 99.65 162 | 96.66 323 | 92.71 175 | 92.88 218 | 99.40 123 | 92.16 144 | 99.30 157 | 91.92 227 | 93.66 220 | 99.55 148 |
|
HPM-MVS |  | | 97.96 72 | 97.72 76 | 98.68 98 | 99.84 65 | 96.39 139 | 99.90 79 | 98.17 183 | 92.61 182 | 98.62 108 | 99.57 110 | 91.87 150 | 99.67 141 | 98.87 71 | 99.99 22 | 99.99 24 |
Chunlin Ren, Qingshan Xu, Shikun Zhang, Jiaqi Yang: Hierarchical Prior Mining for Non-local Multi-View Stereo. ICCV 2023 |
SR-MVS-dyc-post | | | 98.31 57 | 98.17 54 | 98.71 96 | 99.79 75 | 96.37 140 | 99.76 137 | 98.31 162 | 94.43 110 | 99.40 66 | 99.75 81 | 93.28 115 | 99.78 116 | 98.90 69 | 99.92 71 | 99.97 67 |
|
RE-MVS-def | | | | 98.13 57 | | 99.79 75 | 96.37 140 | 99.76 137 | 98.31 162 | 94.43 110 | 99.40 66 | 99.75 81 | 92.95 125 | | 98.90 69 | 99.92 71 | 99.97 67 |
|
EI-MVSNet-UG-set | | | 98.14 67 | 97.99 66 | 98.60 105 | 99.80 74 | 96.27 142 | 99.36 208 | 98.50 103 | 95.21 82 | 98.30 122 | 99.75 81 | 93.29 114 | 99.73 133 | 98.37 95 | 99.30 121 | 99.81 104 |
|
Effi-MVS+ | | | 96.30 140 | 95.69 145 | 98.16 132 | 97.85 192 | 96.26 143 | 97.41 320 | 97.21 272 | 90.37 243 | 98.65 107 | 98.58 190 | 86.61 213 | 98.70 185 | 97.11 138 | 97.37 167 | 99.52 157 |
|
cascas | | | 94.64 180 | 93.61 189 | 97.74 151 | 97.82 194 | 96.26 143 | 99.96 25 | 97.78 220 | 85.76 310 | 94.00 204 | 97.54 218 | 76.95 288 | 99.21 159 | 97.23 135 | 95.43 204 | 97.76 225 |
|
ab-mvs | | | 94.69 177 | 93.42 198 | 98.51 116 | 98.07 179 | 96.26 143 | 96.49 334 | 98.68 58 | 90.31 245 | 94.54 195 | 97.00 236 | 76.30 295 | 99.71 134 | 95.98 155 | 93.38 224 | 99.56 147 |
|
MDTV_nov1_ep13_2view | | | | | | | 96.26 143 | 96.11 340 | | 91.89 207 | 98.06 129 | | 94.40 75 | | 94.30 190 | | 99.67 122 |
|
UniMVSNet (Re) | | | 93.07 216 | 92.13 223 | 95.88 209 | 94.84 289 | 96.24 147 | 99.88 90 | 98.98 35 | 92.49 192 | 89.25 262 | 95.40 288 | 87.09 208 | 97.14 274 | 93.13 216 | 78.16 328 | 94.26 263 |
|
FC-MVSNet-test | | | 93.81 199 | 93.15 206 | 95.80 212 | 94.30 298 | 96.20 148 | 99.42 198 | 98.89 43 | 92.33 196 | 89.03 269 | 97.27 226 | 87.39 205 | 96.83 295 | 93.20 212 | 86.48 267 | 94.36 255 |
|
VPA-MVSNet | | | 92.70 224 | 91.55 236 | 96.16 203 | 95.09 285 | 96.20 148 | 98.88 260 | 99.00 34 | 91.02 233 | 91.82 224 | 95.29 298 | 76.05 299 | 97.96 239 | 95.62 160 | 81.19 304 | 94.30 260 |
|
diffmvs | | | 97.00 111 | 96.64 113 | 98.09 136 | 97.64 207 | 96.17 150 | 99.81 120 | 97.19 273 | 94.67 102 | 98.95 91 | 99.28 130 | 86.43 214 | 98.76 180 | 98.37 95 | 97.42 165 | 99.33 179 |
|
PAPM_NR | | | 98.12 68 | 97.93 71 | 98.70 97 | 99.94 14 | 96.13 151 | 99.82 118 | 98.43 120 | 94.56 105 | 97.52 141 | 99.70 94 | 94.40 75 | 99.98 46 | 97.00 141 | 99.98 35 | 99.99 24 |
|
ACMMP |  | | 97.74 84 | 97.44 86 | 98.66 100 | 99.92 36 | 96.13 151 | 99.18 227 | 99.45 18 | 94.84 95 | 96.41 170 | 99.71 92 | 91.40 154 | 99.99 40 | 97.99 113 | 98.03 155 | 99.87 98 |
Qingshan Xu, Weihang Kong, Wenbing Tao, Marc Pollefeys: Multi-Scale Geometric Consistency Guided and Planar Prior Assisted Multi-View Stereo. IEEE Transactions on Pattern Analysis and Machine Intelligence |
EPMVS | | | 96.53 131 | 96.01 128 | 98.09 136 | 98.43 160 | 96.12 153 | 96.36 335 | 99.43 20 | 93.53 151 | 97.64 139 | 95.04 304 | 94.41 74 | 98.38 210 | 91.13 236 | 98.11 150 | 99.75 112 |
|
abl_6 | | | 97.67 87 | 97.34 90 | 98.66 100 | 99.68 91 | 96.11 154 | 99.68 156 | 98.14 189 | 93.80 143 | 99.27 76 | 99.70 94 | 88.65 196 | 99.98 46 | 97.46 130 | 99.72 98 | 99.89 94 |
|
RRT_test8_iter05 | | | 94.58 182 | 94.11 179 | 95.98 207 | 97.88 188 | 96.11 154 | 99.89 87 | 97.45 249 | 91.66 215 | 88.28 282 | 96.71 246 | 96.53 28 | 97.40 257 | 94.73 179 | 83.85 290 | 94.45 250 |
|
PCF-MVS | | 94.20 5 | 95.18 165 | 94.10 180 | 98.43 122 | 98.55 154 | 95.99 156 | 97.91 314 | 97.31 266 | 90.35 244 | 89.48 257 | 99.22 140 | 85.19 226 | 99.89 84 | 90.40 254 | 98.47 139 | 99.41 170 |
Andreas Kuhn, Shan Lin, Oliver Erdler: Plane Completion and Filtering for Multi-View Stereo Reconstruction. GCPR 2019 |
baseline2 | | | 96.71 125 | 96.49 118 | 97.37 165 | 95.63 279 | 95.96 157 | 99.74 143 | 98.88 45 | 92.94 165 | 91.61 225 | 98.97 158 | 97.72 5 | 98.62 189 | 94.83 173 | 98.08 154 | 97.53 229 |
|
DeepC-MVS | | 94.51 4 | 96.92 115 | 96.40 121 | 98.45 120 | 99.16 117 | 95.90 158 | 99.66 159 | 98.06 195 | 96.37 51 | 94.37 199 | 99.49 116 | 83.29 240 | 99.90 80 | 97.63 127 | 99.61 107 | 99.55 148 |
Andreas Kuhn, Christian Sormann, Mattia Rossi, Oliver Erdler, Friedrich Fraundorfer: DeepC-MVS: Deep Confidence Prediction for Multi-View Stereo Reconstruction. 3DV 2020 |
tttt0517 | | | 96.85 116 | 96.49 118 | 97.92 142 | 97.48 215 | 95.89 159 | 99.85 107 | 98.54 89 | 90.72 239 | 96.63 161 | 98.93 168 | 97.47 11 | 99.02 168 | 93.03 218 | 95.76 198 | 98.85 205 |
|
PVSNet | | 91.05 13 | 97.13 107 | 96.69 112 | 98.45 120 | 99.52 103 | 95.81 160 | 99.95 43 | 99.65 11 | 94.73 98 | 99.04 86 | 99.21 141 | 84.48 231 | 99.95 65 | 94.92 169 | 98.74 134 | 99.58 145 |
|
MVS_111021_LR | | | 98.42 49 | 98.38 40 | 98.53 115 | 99.39 110 | 95.79 161 | 99.87 93 | 99.86 2 | 96.70 38 | 98.78 98 | 99.79 64 | 92.03 147 | 99.90 80 | 99.17 52 | 99.86 83 | 99.88 96 |
|
CPTT-MVS | | | 97.64 88 | 97.32 92 | 98.58 108 | 99.97 3 | 95.77 162 | 99.96 25 | 98.35 155 | 89.90 251 | 98.36 119 | 99.79 64 | 91.18 161 | 99.99 40 | 98.37 95 | 99.99 22 | 99.99 24 |
|
NR-MVSNet | | | 91.56 250 | 90.22 258 | 95.60 213 | 94.05 301 | 95.76 163 | 98.25 301 | 98.70 56 | 91.16 229 | 80.78 340 | 96.64 250 | 83.23 241 | 96.57 306 | 91.41 232 | 77.73 332 | 94.46 245 |
|
mvs_anonymous | | | 95.65 157 | 95.03 162 | 97.53 156 | 98.19 173 | 95.74 164 | 99.33 210 | 97.49 247 | 90.87 235 | 90.47 237 | 97.10 230 | 88.23 198 | 97.16 272 | 95.92 156 | 97.66 160 | 99.68 120 |
|
FMVSNet2 | | | 91.02 257 | 89.56 269 | 95.41 220 | 97.53 211 | 95.74 164 | 98.98 249 | 97.41 256 | 87.05 292 | 88.43 279 | 95.00 307 | 71.34 322 | 96.24 319 | 85.12 303 | 85.21 276 | 94.25 265 |
|
UA-Net | | | 96.54 130 | 95.96 136 | 98.27 129 | 98.23 171 | 95.71 166 | 98.00 312 | 98.45 109 | 93.72 147 | 98.41 116 | 99.27 133 | 88.71 195 | 99.66 142 | 91.19 235 | 97.69 158 | 99.44 167 |
|
LFMVS | | | 94.75 176 | 93.56 194 | 98.30 128 | 99.03 123 | 95.70 167 | 98.74 275 | 97.98 201 | 87.81 284 | 98.47 114 | 99.39 125 | 67.43 338 | 99.53 146 | 98.01 111 | 95.20 208 | 99.67 122 |
|
IB-MVS | | 92.85 6 | 94.99 170 | 93.94 184 | 98.16 132 | 97.72 204 | 95.69 168 | 99.99 4 | 98.81 50 | 94.28 120 | 92.70 220 | 96.90 238 | 95.08 54 | 99.17 163 | 96.07 153 | 73.88 347 | 99.60 138 |
Christian Sormann, Mattia Rossi, Andreas Kuhn and Friedrich Fraundorfer: IB-MVS: An Iterative Algorithm for Deep Multi-View Stereo based on Binary Decisions. BMVC 2021 |
DROMVSNet | | | 97.38 100 | 97.24 93 | 97.80 144 | 97.41 216 | 95.64 169 | 99.99 4 | 97.06 288 | 94.59 104 | 99.63 41 | 99.32 129 | 89.20 189 | 98.14 228 | 98.76 79 | 99.23 123 | 99.62 133 |
|
AdaColmap |  | | 97.23 105 | 96.80 109 | 98.51 116 | 99.99 1 | 95.60 170 | 99.09 232 | 98.84 49 | 93.32 156 | 96.74 159 | 99.72 90 | 86.04 217 | 100.00 1 | 98.01 111 | 99.43 118 | 99.94 84 |
|
VPNet | | | 91.81 242 | 90.46 251 | 95.85 211 | 94.74 291 | 95.54 171 | 98.98 249 | 98.59 74 | 92.14 200 | 90.77 234 | 97.44 220 | 68.73 332 | 97.54 253 | 94.89 172 | 77.89 330 | 94.46 245 |
|
test-LLR | | | 96.47 132 | 96.04 127 | 97.78 146 | 97.02 234 | 95.44 172 | 99.96 25 | 98.21 177 | 94.07 128 | 95.55 184 | 96.38 255 | 93.90 99 | 98.27 222 | 90.42 252 | 98.83 132 | 99.64 128 |
|
test-mter | | | 96.39 136 | 95.93 138 | 97.78 146 | 97.02 234 | 95.44 172 | 99.96 25 | 98.21 177 | 91.81 211 | 95.55 184 | 96.38 255 | 95.17 51 | 98.27 222 | 90.42 252 | 98.83 132 | 99.64 128 |
|
API-MVS | | | 97.86 76 | 97.66 77 | 98.47 118 | 99.52 103 | 95.41 174 | 99.47 192 | 98.87 46 | 91.68 214 | 98.84 95 | 99.85 35 | 92.34 141 | 99.99 40 | 98.44 93 | 99.96 52 | 100.00 1 |
|
XXY-MVS | | | 91.82 241 | 90.46 251 | 95.88 209 | 93.91 304 | 95.40 175 | 98.87 263 | 97.69 223 | 88.63 273 | 87.87 287 | 97.08 231 | 74.38 312 | 97.89 243 | 91.66 230 | 84.07 287 | 94.35 258 |
|
testdata | | | | | 98.42 123 | 99.47 107 | 95.33 176 | | 98.56 79 | 93.78 144 | 99.79 24 | 99.85 35 | 93.64 106 | 99.94 73 | 94.97 167 | 99.94 61 | 100.00 1 |
|
WR-MVS | | | 92.31 233 | 91.25 241 | 95.48 218 | 94.45 295 | 95.29 177 | 99.60 171 | 98.68 58 | 90.10 247 | 88.07 285 | 96.89 239 | 80.68 262 | 96.80 297 | 93.14 215 | 79.67 320 | 94.36 255 |
|
UniMVSNet_NR-MVSNet | | | 92.95 219 | 92.11 224 | 95.49 215 | 94.61 294 | 95.28 178 | 99.83 117 | 99.08 31 | 91.49 219 | 89.21 264 | 96.86 241 | 87.14 207 | 96.73 299 | 93.20 212 | 77.52 333 | 94.46 245 |
|
DU-MVS | | | 92.46 230 | 91.45 239 | 95.49 215 | 94.05 301 | 95.28 178 | 99.81 120 | 98.74 54 | 92.25 198 | 89.21 264 | 96.64 250 | 81.66 250 | 96.73 299 | 93.20 212 | 77.52 333 | 94.46 245 |
|
miper_enhance_ethall | | | 94.36 191 | 93.98 183 | 95.49 215 | 98.68 149 | 95.24 180 | 99.73 148 | 97.29 267 | 93.28 158 | 89.86 246 | 95.97 267 | 94.37 80 | 97.05 281 | 92.20 224 | 84.45 282 | 94.19 269 |
|
BH-RMVSNet | | | 95.18 165 | 94.31 176 | 97.80 144 | 98.17 175 | 95.23 181 | 99.76 137 | 97.53 241 | 92.52 189 | 94.27 201 | 99.25 137 | 76.84 289 | 98.80 175 | 90.89 245 | 99.54 111 | 99.35 177 |
|
PatchMatch-RL | | | 96.04 146 | 95.40 150 | 97.95 140 | 99.59 96 | 95.22 182 | 99.52 183 | 99.07 32 | 93.96 135 | 96.49 166 | 98.35 201 | 82.28 244 | 99.82 110 | 90.15 257 | 99.22 124 | 98.81 208 |
|
baseline | | | 96.43 134 | 95.98 131 | 97.76 149 | 97.34 220 | 95.17 183 | 99.51 185 | 97.17 276 | 93.92 138 | 96.90 154 | 99.28 130 | 85.37 224 | 98.64 188 | 97.50 129 | 96.86 179 | 99.46 163 |
|
LS3D | | | 95.84 150 | 95.11 160 | 98.02 139 | 99.85 60 | 95.10 184 | 98.74 275 | 98.50 103 | 87.22 291 | 93.66 208 | 99.86 31 | 87.45 204 | 99.95 65 | 90.94 243 | 99.81 93 | 99.02 199 |
|
bset_n11_16_dypcd | | | 93.05 217 | 92.30 221 | 95.31 223 | 90.23 352 | 95.05 185 | 99.44 197 | 97.28 268 | 92.51 190 | 90.65 235 | 96.68 247 | 85.30 225 | 96.71 301 | 94.49 185 | 84.14 285 | 94.16 275 |
|
casdiffmvs | | | 96.42 135 | 95.97 134 | 97.77 148 | 97.30 224 | 94.98 186 | 99.84 111 | 97.09 285 | 93.75 146 | 96.58 163 | 99.26 136 | 85.07 227 | 98.78 177 | 97.77 124 | 97.04 174 | 99.54 152 |
|
pmmvs4 | | | 92.10 238 | 91.07 244 | 95.18 227 | 92.82 326 | 94.96 187 | 99.48 191 | 96.83 313 | 87.45 287 | 88.66 275 | 96.56 253 | 83.78 236 | 96.83 295 | 89.29 263 | 84.77 280 | 93.75 309 |
|
CDS-MVSNet | | | 96.34 137 | 96.07 126 | 97.13 174 | 97.37 218 | 94.96 187 | 99.53 182 | 97.91 209 | 91.55 218 | 95.37 188 | 98.32 202 | 95.05 57 | 97.13 275 | 93.80 201 | 95.75 199 | 99.30 182 |
Khang Truong Giang, Soohwan Song, Sungho Jo: Curvature-guided dynamic scale networks for Multi-view Stereo. ICLR 2022 |
UGNet | | | 95.33 163 | 94.57 171 | 97.62 155 | 98.55 154 | 94.85 189 | 98.67 282 | 99.32 25 | 95.75 69 | 96.80 158 | 96.27 260 | 72.18 319 | 99.96 58 | 94.58 183 | 99.05 129 | 98.04 219 |
Wanjuan Su, Qingshan Xu, Wenbing Tao: Uncertainty-guided Multi-view Stereo Network for Depth Estimation. IEEE Transactions on Circuits and Systems for Video Technology, 2022 |
EIA-MVS | | | 97.53 90 | 97.46 85 | 97.76 149 | 98.04 181 | 94.84 190 | 99.98 10 | 97.61 231 | 94.41 113 | 97.90 134 | 99.59 108 | 92.40 139 | 98.87 172 | 98.04 110 | 99.13 126 | 99.59 139 |
|
Vis-MVSNet (Re-imp) | | | 96.32 138 | 95.98 131 | 97.35 168 | 97.93 186 | 94.82 191 | 99.47 192 | 98.15 188 | 91.83 209 | 95.09 191 | 99.11 144 | 91.37 155 | 97.47 256 | 93.47 209 | 97.43 163 | 99.74 113 |
|
IS-MVSNet | | | 96.29 141 | 95.90 140 | 97.45 160 | 98.13 178 | 94.80 192 | 99.08 234 | 97.61 231 | 92.02 205 | 95.54 186 | 98.96 160 | 90.64 170 | 98.08 231 | 93.73 205 | 97.41 166 | 99.47 162 |
|
MAR-MVS | | | 97.43 93 | 97.19 95 | 98.15 135 | 99.47 107 | 94.79 193 | 99.05 243 | 98.76 53 | 92.65 180 | 98.66 106 | 99.82 55 | 88.52 197 | 99.98 46 | 98.12 105 | 99.63 103 | 99.67 122 |
Zhenyu Xu, Yiguang Liu, Xuelei Shi, Ying Wang, Yunan Zheng: MARMVS: Matching Ambiguity Reduced Multiple View Stereo for Efficient Large Scale Scene Reconstruction. CVPR 2020 |
PLC |  | 95.54 3 | 97.93 74 | 97.89 73 | 98.05 138 | 99.82 70 | 94.77 194 | 99.92 71 | 98.46 107 | 93.93 137 | 97.20 147 | 99.27 133 | 95.44 48 | 99.97 56 | 97.41 131 | 99.51 114 | 99.41 170 |
Jie Liao, Yanping Fu, Qingan Yan, Chunxia xiao: Pyramid Multi-View Stereo with Local Consistency. Pacific Graphics 2019 |
DWT-MVSNet_test | | | 97.31 101 | 97.19 95 | 97.66 152 | 98.24 170 | 94.67 195 | 98.86 264 | 98.20 181 | 93.60 150 | 98.09 128 | 98.89 169 | 97.51 7 | 98.78 177 | 94.04 194 | 97.28 168 | 99.55 148 |
|
Fast-Effi-MVS+ | | | 95.02 169 | 94.19 177 | 97.52 157 | 97.88 188 | 94.55 196 | 99.97 18 | 97.08 286 | 88.85 268 | 94.47 198 | 97.96 212 | 84.59 230 | 98.41 202 | 89.84 260 | 97.10 172 | 99.59 139 |
|
SCA | | | 94.69 177 | 93.81 188 | 97.33 169 | 97.10 229 | 94.44 197 | 98.86 264 | 98.32 160 | 93.30 157 | 96.17 175 | 95.59 278 | 76.48 293 | 97.95 240 | 91.06 238 | 97.43 163 | 99.59 139 |
|
cl22 | | | 93.77 201 | 93.25 205 | 95.33 222 | 99.49 106 | 94.43 198 | 99.61 170 | 98.09 192 | 90.38 242 | 89.16 267 | 95.61 276 | 90.56 171 | 97.34 261 | 91.93 226 | 84.45 282 | 94.21 268 |
|
PatchmatchNet |  | | 95.94 148 | 95.45 149 | 97.39 164 | 97.83 193 | 94.41 199 | 96.05 341 | 98.40 140 | 92.86 166 | 97.09 150 | 95.28 299 | 94.21 91 | 98.07 233 | 89.26 264 | 98.11 150 | 99.70 117 |
Fangjinhua Wang, Silvano Galliani, Christoph Vogel, Pablo Speciale, Marc Pollefeys: PatchmatchNet: Learned Multi-View Patchmatch Stereo. |
TR-MVS | | | 94.54 183 | 93.56 194 | 97.49 159 | 97.96 184 | 94.34 200 | 98.71 278 | 97.51 245 | 90.30 246 | 94.51 197 | 98.69 182 | 75.56 300 | 98.77 179 | 92.82 219 | 95.99 191 | 99.35 177 |
|
Vis-MVSNet |  | | 95.72 152 | 95.15 159 | 97.45 160 | 97.62 208 | 94.28 201 | 99.28 219 | 98.24 173 | 94.27 122 | 96.84 156 | 98.94 166 | 79.39 273 | 98.76 180 | 93.25 211 | 98.49 138 | 99.30 182 |
Jingyang Zhang, Yao Yao, Shiwei Li, Zixin Luo, Tian Fang: Visibility-aware Multiview Stereo Network. BMVC 2020 |
MDTV_nov1_ep13 | | | | 95.69 145 | | 97.90 187 | 94.15 202 | 95.98 342 | 98.44 112 | 93.12 162 | 97.98 131 | 95.74 271 | 95.10 53 | 98.58 190 | 90.02 258 | 96.92 177 | |
|
tfpnnormal | | | 89.29 292 | 87.61 299 | 94.34 260 | 94.35 297 | 94.13 203 | 98.95 253 | 98.94 37 | 83.94 327 | 84.47 322 | 95.51 283 | 74.84 308 | 97.39 258 | 77.05 344 | 80.41 314 | 91.48 346 |
|
KD-MVS_2432*1600 | | | 88.00 301 | 86.10 305 | 93.70 283 | 96.91 238 | 94.04 204 | 97.17 325 | 97.12 282 | 84.93 321 | 81.96 332 | 92.41 342 | 92.48 137 | 94.51 345 | 79.23 332 | 52.68 367 | 92.56 333 |
|
miper_refine_blended | | | 88.00 301 | 86.10 305 | 93.70 283 | 96.91 238 | 94.04 204 | 97.17 325 | 97.12 282 | 84.93 321 | 81.96 332 | 92.41 342 | 92.48 137 | 94.51 345 | 79.23 332 | 52.68 367 | 92.56 333 |
|
DP-MVS | | | 94.54 183 | 93.42 198 | 97.91 143 | 99.46 109 | 94.04 204 | 98.93 255 | 97.48 248 | 81.15 341 | 90.04 241 | 99.55 111 | 87.02 209 | 99.95 65 | 88.97 266 | 98.11 150 | 99.73 114 |
|
TranMVSNet+NR-MVSNet | | | 91.68 249 | 90.61 250 | 94.87 236 | 93.69 308 | 93.98 207 | 99.69 154 | 98.65 62 | 91.03 232 | 88.44 277 | 96.83 245 | 80.05 270 | 96.18 320 | 90.26 256 | 76.89 341 | 94.45 250 |
|
MSDG | | | 94.37 189 | 93.36 202 | 97.40 163 | 98.88 139 | 93.95 208 | 99.37 206 | 97.38 259 | 85.75 312 | 90.80 233 | 99.17 142 | 84.11 235 | 99.88 90 | 86.35 295 | 98.43 140 | 98.36 214 |
|
HyFIR lowres test | | | 96.66 128 | 96.43 120 | 97.36 167 | 99.05 122 | 93.91 209 | 99.70 153 | 99.80 3 | 90.54 240 | 96.26 173 | 98.08 206 | 92.15 145 | 98.23 225 | 96.84 147 | 95.46 203 | 99.93 85 |
|
v2v482 | | | 91.30 251 | 90.07 263 | 95.01 231 | 93.13 316 | 93.79 210 | 99.77 132 | 97.02 293 | 88.05 280 | 89.25 262 | 95.37 292 | 80.73 261 | 97.15 273 | 87.28 286 | 80.04 319 | 94.09 283 |
|
ADS-MVSNet | | | 94.79 173 | 94.02 182 | 97.11 176 | 97.87 190 | 93.79 210 | 94.24 347 | 98.16 186 | 90.07 248 | 96.43 168 | 94.48 322 | 90.29 174 | 98.19 227 | 87.44 282 | 97.23 169 | 99.36 175 |
|
gm-plane-assit | | | | | | 96.97 236 | 93.76 212 | | | 91.47 221 | | 98.96 160 | | 98.79 176 | 94.92 169 | | |
|
ECVR-MVS |  | | 95.66 156 | 95.05 161 | 97.51 158 | 98.66 150 | 93.71 213 | 98.85 267 | 98.45 109 | 94.93 89 | 96.86 155 | 98.96 160 | 75.22 305 | 99.20 160 | 95.34 161 | 98.15 147 | 99.64 128 |
|
CS-MVS | | | 97.73 85 | 97.92 72 | 97.18 172 | 99.09 120 | 93.69 214 | 99.99 4 | 97.14 281 | 95.06 85 | 99.67 37 | 99.75 81 | 93.09 121 | 98.31 215 | 98.32 98 | 99.12 127 | 99.54 152 |
|
CS-MVS-test | | | 97.53 90 | 97.64 78 | 97.18 172 | 99.09 120 | 93.69 214 | 100.00 1 | 97.04 292 | 95.07 84 | 99.67 37 | 99.25 137 | 91.22 156 | 98.31 215 | 98.32 98 | 99.12 127 | 99.54 152 |
|
v1144 | | | 91.09 256 | 89.83 264 | 94.87 236 | 93.25 315 | 93.69 214 | 99.62 169 | 96.98 298 | 86.83 298 | 89.64 254 | 94.99 308 | 80.94 258 | 97.05 281 | 85.08 304 | 81.16 305 | 93.87 302 |
|
GA-MVS | | | 93.83 197 | 92.84 208 | 96.80 182 | 95.73 272 | 93.57 217 | 99.88 90 | 97.24 271 | 92.57 187 | 92.92 216 | 96.66 248 | 78.73 279 | 97.67 249 | 87.75 280 | 94.06 218 | 99.17 190 |
|
miper_ehance_all_eth | | | 93.16 213 | 92.60 213 | 94.82 239 | 97.57 210 | 93.56 218 | 99.50 187 | 97.07 287 | 88.75 269 | 88.85 271 | 95.52 282 | 90.97 164 | 96.74 298 | 90.77 247 | 84.45 282 | 94.17 270 |
|
GeoE | | | 94.36 191 | 93.48 196 | 96.99 177 | 97.29 225 | 93.54 219 | 99.96 25 | 96.72 321 | 88.35 278 | 93.43 209 | 98.94 166 | 82.05 245 | 98.05 234 | 88.12 277 | 96.48 184 | 99.37 174 |
|
TAMVS | | | 95.85 149 | 95.58 147 | 96.65 189 | 97.07 230 | 93.50 220 | 99.17 228 | 97.82 218 | 91.39 226 | 95.02 192 | 98.01 208 | 92.20 143 | 97.30 264 | 93.75 204 | 95.83 196 | 99.14 194 |
|
V42 | | | 91.28 253 | 90.12 262 | 94.74 240 | 93.42 313 | 93.46 221 | 99.68 156 | 97.02 293 | 87.36 288 | 89.85 248 | 95.05 303 | 81.31 255 | 97.34 261 | 87.34 285 | 80.07 318 | 93.40 319 |
|
v10 | | | 90.25 277 | 88.82 284 | 94.57 248 | 93.53 310 | 93.43 222 | 99.08 234 | 96.87 311 | 85.00 320 | 87.34 297 | 94.51 320 | 80.93 259 | 97.02 287 | 82.85 317 | 79.23 321 | 93.26 323 |
|
EPNet_dtu | | | 95.71 154 | 95.39 151 | 96.66 188 | 98.92 134 | 93.41 223 | 99.57 175 | 98.90 42 | 96.19 55 | 97.52 141 | 98.56 192 | 92.65 132 | 97.36 259 | 77.89 339 | 98.33 142 | 99.20 189 |
Wanjuan Su, Wenbing Tao: Efficient Edge-Preserving Multi-View Stereo Network for Depth Estimation. AAAI 2023 |
v8 | | | 90.54 269 | 89.17 277 | 94.66 243 | 93.43 312 | 93.40 224 | 99.20 225 | 96.94 305 | 85.76 310 | 87.56 291 | 94.51 320 | 81.96 247 | 97.19 271 | 84.94 305 | 78.25 327 | 93.38 321 |
|
test1111 | | | 95.57 158 | 94.98 163 | 97.37 165 | 98.56 152 | 93.37 225 | 98.86 264 | 98.45 109 | 94.95 88 | 96.63 161 | 98.95 164 | 75.21 306 | 99.11 165 | 95.02 166 | 98.14 149 | 99.64 128 |
|
OMC-MVS | | | 97.28 102 | 97.23 94 | 97.41 162 | 99.76 79 | 93.36 226 | 99.65 162 | 97.95 204 | 96.03 59 | 97.41 144 | 99.70 94 | 89.61 180 | 99.51 148 | 96.73 148 | 98.25 146 | 99.38 172 |
|
tpmrst | | | 96.27 143 | 95.98 131 | 97.13 174 | 97.96 184 | 93.15 227 | 96.34 336 | 98.17 183 | 92.07 202 | 98.71 104 | 95.12 302 | 93.91 98 | 98.73 182 | 94.91 171 | 96.62 180 | 99.50 160 |
|
v1192 | | | 90.62 268 | 89.25 276 | 94.72 242 | 93.13 316 | 93.07 228 | 99.50 187 | 97.02 293 | 86.33 303 | 89.56 256 | 95.01 305 | 79.22 274 | 97.09 280 | 82.34 320 | 81.16 305 | 94.01 289 |
|
CHOSEN 1792x2688 | | | 96.81 118 | 96.53 117 | 97.64 153 | 98.91 136 | 93.07 228 | 99.65 162 | 99.80 3 | 95.64 71 | 95.39 187 | 98.86 175 | 84.35 233 | 99.90 80 | 96.98 142 | 99.16 125 | 99.95 82 |
|
EPP-MVSNet | | | 96.69 126 | 96.60 114 | 96.96 178 | 97.74 200 | 93.05 230 | 99.37 206 | 98.56 79 | 88.75 269 | 95.83 181 | 99.01 151 | 96.01 32 | 98.56 191 | 96.92 145 | 97.20 171 | 99.25 186 |
|
c3_l | | | 92.53 228 | 91.87 230 | 94.52 250 | 97.40 217 | 92.99 231 | 99.40 199 | 96.93 306 | 87.86 282 | 88.69 274 | 95.44 286 | 89.95 177 | 96.44 310 | 90.45 251 | 80.69 313 | 94.14 280 |
|
anonymousdsp | | | 91.79 247 | 90.92 245 | 94.41 259 | 90.76 347 | 92.93 232 | 98.93 255 | 97.17 276 | 89.08 258 | 87.46 294 | 95.30 295 | 78.43 283 | 96.92 290 | 92.38 222 | 88.73 245 | 93.39 320 |
|
cl____ | | | 92.31 233 | 91.58 234 | 94.52 250 | 97.33 222 | 92.77 233 | 99.57 175 | 96.78 318 | 86.97 296 | 87.56 291 | 95.51 283 | 89.43 182 | 96.62 304 | 88.60 268 | 82.44 295 | 94.16 275 |
|
v144192 | | | 90.79 263 | 89.52 271 | 94.59 246 | 93.11 319 | 92.77 233 | 99.56 177 | 96.99 296 | 86.38 302 | 89.82 249 | 94.95 310 | 80.50 266 | 97.10 278 | 83.98 310 | 80.41 314 | 93.90 299 |
|
DIV-MVS_self_test | | | 92.32 232 | 91.60 233 | 94.47 254 | 97.31 223 | 92.74 235 | 99.58 173 | 96.75 319 | 86.99 295 | 87.64 289 | 95.54 280 | 89.55 181 | 96.50 308 | 88.58 269 | 82.44 295 | 94.17 270 |
|
IterMVS-LS | | | 92.69 225 | 92.11 224 | 94.43 258 | 96.80 246 | 92.74 235 | 99.45 195 | 96.89 309 | 88.98 262 | 89.65 253 | 95.38 291 | 88.77 193 | 96.34 314 | 90.98 242 | 82.04 298 | 94.22 266 |
Fangjinhua Wang, Silvano Galliani, Christoph Vogel, Marc Pollefeys: IterMVS: Iterative Probability Estimation for Efficient Multi-View Stereo. |
dp | | | 95.05 168 | 94.43 173 | 96.91 179 | 97.99 183 | 92.73 237 | 96.29 337 | 97.98 201 | 89.70 254 | 95.93 178 | 94.67 317 | 93.83 102 | 98.45 199 | 86.91 294 | 96.53 182 | 99.54 152 |
|
EI-MVSNet | | | 93.73 203 | 93.40 201 | 94.74 240 | 96.80 246 | 92.69 238 | 99.06 239 | 97.67 224 | 88.96 264 | 91.39 227 | 99.02 149 | 88.75 194 | 97.30 264 | 91.07 237 | 87.85 256 | 94.22 266 |
|
CR-MVSNet | | | 93.45 210 | 92.62 212 | 95.94 208 | 96.29 255 | 92.66 239 | 92.01 358 | 96.23 332 | 92.62 181 | 96.94 152 | 93.31 335 | 91.04 162 | 96.03 326 | 79.23 332 | 95.96 192 | 99.13 195 |
|
RPMNet | | | 89.76 286 | 87.28 301 | 97.19 171 | 96.29 255 | 92.66 239 | 92.01 358 | 98.31 162 | 70.19 363 | 96.94 152 | 85.87 362 | 87.25 206 | 99.78 116 | 62.69 365 | 95.96 192 | 99.13 195 |
|
VDDNet | | | 93.12 214 | 91.91 229 | 96.76 184 | 96.67 253 | 92.65 241 | 98.69 280 | 98.21 177 | 82.81 335 | 97.75 138 | 99.28 130 | 61.57 354 | 99.48 154 | 98.09 108 | 94.09 217 | 98.15 217 |
|
WR-MVS_H | | | 91.30 251 | 90.35 254 | 94.15 264 | 94.17 300 | 92.62 242 | 99.17 228 | 98.94 37 | 88.87 267 | 86.48 307 | 94.46 324 | 84.36 232 | 96.61 305 | 88.19 274 | 78.51 326 | 93.21 325 |
|
CostFormer | | | 96.10 144 | 95.88 141 | 96.78 183 | 97.03 233 | 92.55 243 | 97.08 327 | 97.83 217 | 90.04 250 | 98.72 103 | 94.89 311 | 95.01 60 | 98.29 218 | 96.54 149 | 95.77 197 | 99.50 160 |
|
v1921920 | | | 90.46 270 | 89.12 278 | 94.50 252 | 92.96 323 | 92.46 244 | 99.49 189 | 96.98 298 | 86.10 305 | 89.61 255 | 95.30 295 | 78.55 281 | 97.03 285 | 82.17 321 | 80.89 312 | 94.01 289 |
|
test_djsdf | | | 92.83 221 | 92.29 222 | 94.47 254 | 91.90 336 | 92.46 244 | 99.55 179 | 97.27 269 | 91.17 227 | 89.96 242 | 96.07 266 | 81.10 256 | 96.89 291 | 94.67 181 | 88.91 240 | 94.05 286 |
|
CP-MVSNet | | | 91.23 254 | 90.22 258 | 94.26 261 | 93.96 303 | 92.39 246 | 99.09 232 | 98.57 77 | 88.95 265 | 86.42 308 | 96.57 252 | 79.19 275 | 96.37 312 | 90.29 255 | 78.95 323 | 94.02 287 |
|
BH-w/o | | | 95.71 154 | 95.38 152 | 96.68 187 | 98.49 158 | 92.28 247 | 99.84 111 | 97.50 246 | 92.12 201 | 92.06 223 | 98.79 179 | 84.69 229 | 98.67 187 | 95.29 163 | 99.66 102 | 99.09 197 |
|
v1240 | | | 90.20 278 | 88.79 285 | 94.44 256 | 93.05 321 | 92.27 248 | 99.38 204 | 96.92 307 | 85.89 307 | 89.36 259 | 94.87 312 | 77.89 284 | 97.03 285 | 80.66 328 | 81.08 308 | 94.01 289 |
|
PS-MVSNAJss | | | 93.64 206 | 93.31 203 | 94.61 245 | 92.11 333 | 92.19 249 | 99.12 230 | 97.38 259 | 92.51 190 | 88.45 276 | 96.99 237 | 91.20 158 | 97.29 267 | 94.36 187 | 87.71 258 | 94.36 255 |
|
test0.0.03 1 | | | 93.86 196 | 93.61 189 | 94.64 244 | 95.02 288 | 92.18 250 | 99.93 67 | 98.58 75 | 94.07 128 | 87.96 286 | 98.50 193 | 93.90 99 | 94.96 340 | 81.33 325 | 93.17 225 | 96.78 231 |
|
PMMVS | | | 96.76 121 | 96.76 110 | 96.76 184 | 98.28 166 | 92.10 251 | 99.91 75 | 97.98 201 | 94.12 125 | 99.53 51 | 99.39 125 | 86.93 210 | 98.73 182 | 96.95 144 | 97.73 157 | 99.45 165 |
|
GBi-Net | | | 90.88 260 | 89.82 265 | 94.08 267 | 97.53 211 | 91.97 252 | 98.43 293 | 96.95 301 | 87.05 292 | 89.68 250 | 94.72 313 | 71.34 322 | 96.11 321 | 87.01 291 | 85.65 271 | 94.17 270 |
|
test1 | | | 90.88 260 | 89.82 265 | 94.08 267 | 97.53 211 | 91.97 252 | 98.43 293 | 96.95 301 | 87.05 292 | 89.68 250 | 94.72 313 | 71.34 322 | 96.11 321 | 87.01 291 | 85.65 271 | 94.17 270 |
|
FMVSNet1 | | | 88.50 297 | 86.64 303 | 94.08 267 | 95.62 280 | 91.97 252 | 98.43 293 | 96.95 301 | 83.00 333 | 86.08 314 | 94.72 313 | 59.09 358 | 96.11 321 | 81.82 324 | 84.07 287 | 94.17 270 |
|
pm-mvs1 | | | 89.36 291 | 87.81 298 | 94.01 271 | 93.40 314 | 91.93 255 | 98.62 285 | 96.48 329 | 86.25 304 | 83.86 325 | 96.14 263 | 73.68 315 | 97.04 283 | 86.16 297 | 75.73 345 | 93.04 328 |
|
CSCG | | | 97.10 108 | 97.04 102 | 97.27 170 | 99.89 50 | 91.92 256 | 99.90 79 | 99.07 32 | 88.67 271 | 95.26 190 | 99.82 55 | 93.17 120 | 99.98 46 | 98.15 104 | 99.47 115 | 99.90 93 |
|
HQP5-MVS | | | | | | | 91.85 257 | | | | | | | | | | |
|
HQP-MVS | | | 94.61 181 | 94.50 172 | 94.92 235 | 95.78 266 | 91.85 257 | 99.87 93 | 97.89 210 | 96.82 32 | 93.37 210 | 98.65 184 | 80.65 263 | 98.39 206 | 97.92 117 | 89.60 231 | 94.53 240 |
|
NP-MVS | | | | | | 95.77 269 | 91.79 259 | | | | | 98.65 184 | | | | | |
|
TAPA-MVS | | 92.12 8 | 94.42 187 | 93.60 191 | 96.90 180 | 99.33 113 | 91.78 260 | 99.78 129 | 98.00 198 | 89.89 252 | 94.52 196 | 99.47 117 | 91.97 148 | 99.18 162 | 69.90 355 | 99.52 112 | 99.73 114 |
Andrea Romanoni, Matteo Matteucci: TAPA-MVS: Textureless-Aware PAtchMatch Multi-View Stereo. ICCV 2019 |
HQP_MVS | | | 94.49 186 | 94.36 174 | 94.87 236 | 95.71 275 | 91.74 261 | 99.84 111 | 97.87 212 | 96.38 48 | 93.01 214 | 98.59 188 | 80.47 267 | 98.37 211 | 97.79 122 | 89.55 234 | 94.52 242 |
|
plane_prior | | | | | | | 91.74 261 | 99.86 104 | | 96.76 36 | | | | | | 89.59 233 | |
|
F-COLMAP | | | 96.93 114 | 96.95 105 | 96.87 181 | 99.71 89 | 91.74 261 | 99.85 107 | 97.95 204 | 93.11 163 | 95.72 183 | 99.16 143 | 92.35 140 | 99.94 73 | 95.32 162 | 99.35 120 | 98.92 201 |
|
plane_prior6 | | | | | | 95.76 270 | 91.72 264 | | | | | | 80.47 267 | | | | |
|
PS-CasMVS | | | 90.63 267 | 89.51 272 | 93.99 273 | 93.83 305 | 91.70 265 | 98.98 249 | 98.52 92 | 88.48 275 | 86.15 313 | 96.53 254 | 75.46 301 | 96.31 315 | 88.83 267 | 78.86 325 | 93.95 295 |
|
tpm2 | | | 95.47 161 | 95.18 158 | 96.35 200 | 96.91 238 | 91.70 265 | 96.96 330 | 97.93 206 | 88.04 281 | 98.44 115 | 95.40 288 | 93.32 112 | 97.97 237 | 94.00 195 | 95.61 201 | 99.38 172 |
|
plane_prior3 | | | | | | | 91.64 267 | | | 96.63 40 | 93.01 214 | | | | | | |
|
MIMVSNet | | | 90.30 275 | 88.67 287 | 95.17 228 | 96.45 254 | 91.64 267 | 92.39 356 | 97.15 279 | 85.99 306 | 90.50 236 | 93.19 337 | 66.95 339 | 94.86 342 | 82.01 322 | 93.43 222 | 99.01 200 |
|
plane_prior7 | | | | | | 95.71 275 | 91.59 269 | | | | | | | | | | |
|
tpmvs | | | 94.28 193 | 93.57 193 | 96.40 197 | 98.55 154 | 91.50 270 | 95.70 346 | 98.55 85 | 87.47 286 | 92.15 222 | 94.26 326 | 91.42 153 | 98.95 171 | 88.15 275 | 95.85 195 | 98.76 210 |
|
tpm cat1 | | | 93.51 207 | 92.52 218 | 96.47 192 | 97.77 197 | 91.47 271 | 96.13 339 | 98.06 195 | 80.98 342 | 92.91 217 | 93.78 330 | 89.66 179 | 98.87 172 | 87.03 290 | 96.39 185 | 99.09 197 |
|
h-mvs33 | | | 94.92 171 | 94.36 174 | 96.59 191 | 98.85 141 | 91.29 272 | 98.93 255 | 98.94 37 | 95.90 60 | 98.77 99 | 98.42 200 | 90.89 167 | 99.77 120 | 97.80 119 | 70.76 349 | 98.72 211 |
|
BH-untuned | | | 95.18 165 | 94.83 166 | 96.22 202 | 98.36 162 | 91.22 273 | 99.80 125 | 97.32 265 | 90.91 234 | 91.08 230 | 98.67 183 | 83.51 237 | 98.54 193 | 94.23 192 | 99.61 107 | 98.92 201 |
|
TransMVSNet (Re) | | | 87.25 304 | 85.28 309 | 93.16 293 | 93.56 309 | 91.03 274 | 98.54 288 | 94.05 363 | 83.69 331 | 81.09 338 | 96.16 262 | 75.32 302 | 96.40 311 | 76.69 345 | 68.41 356 | 92.06 340 |
|
v148 | | | 90.70 264 | 89.63 267 | 93.92 275 | 92.97 322 | 90.97 275 | 99.75 140 | 96.89 309 | 87.51 285 | 88.27 283 | 95.01 305 | 81.67 249 | 97.04 283 | 87.40 284 | 77.17 338 | 93.75 309 |
|
jajsoiax | | | 91.92 240 | 91.18 242 | 94.15 264 | 91.35 342 | 90.95 276 | 99.00 247 | 97.42 254 | 92.61 182 | 87.38 295 | 97.08 231 | 72.46 318 | 97.36 259 | 94.53 184 | 88.77 244 | 94.13 281 |
|
PEN-MVS | | | 90.19 279 | 89.06 280 | 93.57 286 | 93.06 320 | 90.90 277 | 99.06 239 | 98.47 105 | 88.11 279 | 85.91 315 | 96.30 259 | 76.67 290 | 95.94 329 | 87.07 288 | 76.91 340 | 93.89 300 |
|
OPM-MVS | | | 93.21 212 | 92.80 209 | 94.44 256 | 93.12 318 | 90.85 278 | 99.77 132 | 97.61 231 | 96.19 55 | 91.56 226 | 98.65 184 | 75.16 307 | 98.47 195 | 93.78 203 | 89.39 237 | 93.99 292 |
Ray L. Khuboni, Hongjun Xu: Octagram Propagation Matching for Multi-Scale View Stereopsis (OPM-MVS). |
CLD-MVS | | | 94.06 195 | 93.90 185 | 94.55 249 | 96.02 261 | 90.69 279 | 99.98 10 | 97.72 221 | 96.62 42 | 91.05 231 | 98.85 178 | 77.21 285 | 98.47 195 | 98.11 106 | 89.51 236 | 94.48 244 |
Zhaoxin Li, Wangmeng Zuo, Zhaoqi Wang, Lei Zhang: Confidence-based Large-scale Dense Multi-view Stereo. IEEE Transaction on Image Processing, 2020 |
eth_miper_zixun_eth | | | 92.41 231 | 91.93 228 | 93.84 278 | 97.28 226 | 90.68 280 | 98.83 268 | 96.97 300 | 88.57 274 | 89.19 266 | 95.73 273 | 89.24 188 | 96.69 302 | 89.97 259 | 81.55 301 | 94.15 277 |
|
Anonymous20231211 | | | 89.86 284 | 88.44 290 | 94.13 266 | 98.93 132 | 90.68 280 | 98.54 288 | 98.26 171 | 76.28 352 | 86.73 301 | 95.54 280 | 70.60 326 | 97.56 252 | 90.82 246 | 80.27 317 | 94.15 277 |
|
Anonymous20240529 | | | 92.10 238 | 90.65 249 | 96.47 192 | 98.82 142 | 90.61 282 | 98.72 277 | 98.67 61 | 75.54 356 | 93.90 206 | 98.58 190 | 66.23 341 | 99.90 80 | 94.70 180 | 90.67 230 | 98.90 204 |
|
mvs_tets | | | 91.81 242 | 91.08 243 | 94.00 272 | 91.63 340 | 90.58 283 | 98.67 282 | 97.43 252 | 92.43 193 | 87.37 296 | 97.05 234 | 71.76 320 | 97.32 263 | 94.75 177 | 88.68 246 | 94.11 282 |
|
v7n | | | 89.65 288 | 88.29 293 | 93.72 280 | 92.22 332 | 90.56 284 | 99.07 238 | 97.10 284 | 85.42 318 | 86.73 301 | 94.72 313 | 80.06 269 | 97.13 275 | 81.14 326 | 78.12 329 | 93.49 317 |
|
Patchmatch-test | | | 92.65 227 | 91.50 237 | 96.10 205 | 96.85 243 | 90.49 285 | 91.50 360 | 97.19 273 | 82.76 336 | 90.23 238 | 95.59 278 | 95.02 58 | 98.00 236 | 77.41 341 | 96.98 176 | 99.82 103 |
|
PVSNet_0 | | 88.03 19 | 91.80 245 | 90.27 257 | 96.38 199 | 98.27 168 | 90.46 286 | 99.94 61 | 99.61 12 | 93.99 133 | 86.26 312 | 97.39 223 | 71.13 325 | 99.89 84 | 98.77 78 | 67.05 359 | 98.79 209 |
|
ppachtmachnet_test | | | 89.58 289 | 88.35 291 | 93.25 292 | 92.40 330 | 90.44 287 | 99.33 210 | 96.73 320 | 85.49 316 | 85.90 316 | 95.77 270 | 81.09 257 | 96.00 328 | 76.00 347 | 82.49 294 | 93.30 322 |
|
IterMVS | | | 90.91 259 | 90.17 260 | 93.12 294 | 96.78 249 | 90.42 288 | 98.89 258 | 97.05 291 | 89.03 260 | 86.49 306 | 95.42 287 | 76.59 292 | 95.02 338 | 87.22 287 | 84.09 286 | 93.93 297 |
Fangjinhua Wang, Silvano Galliani, Christoph Vogel, Marc Pollefeys: IterMVS: Iterative Probability Estimation for Efficient Multi-View Stereo. |
MVS-HIRNet | | | 86.22 307 | 83.19 319 | 95.31 223 | 96.71 252 | 90.29 289 | 92.12 357 | 97.33 264 | 62.85 364 | 86.82 300 | 70.37 368 | 69.37 329 | 97.49 254 | 75.12 348 | 97.99 156 | 98.15 217 |
|
VDD-MVS | | | 93.77 201 | 92.94 207 | 96.27 201 | 98.55 154 | 90.22 290 | 98.77 274 | 97.79 219 | 90.85 236 | 96.82 157 | 99.42 121 | 61.18 356 | 99.77 120 | 98.95 63 | 94.13 216 | 98.82 207 |
|
PatchT | | | 90.38 272 | 88.75 286 | 95.25 226 | 95.99 262 | 90.16 291 | 91.22 362 | 97.54 239 | 76.80 351 | 97.26 146 | 86.01 361 | 91.88 149 | 96.07 325 | 66.16 362 | 95.91 194 | 99.51 158 |
|
LTVRE_ROB | | 88.28 18 | 90.29 276 | 89.05 281 | 94.02 270 | 95.08 286 | 90.15 292 | 97.19 324 | 97.43 252 | 84.91 323 | 83.99 324 | 97.06 233 | 74.00 314 | 98.28 220 | 84.08 308 | 87.71 258 | 93.62 315 |
Andreas Kuhn, Heiko Hirschmüller, Daniel Scharstein, Helmut Mayer: A TV Prior for High-Quality Scalable Multi-View Stereo Reconstruction. International Journal of Computer Vision 2016 |
AUN-MVS | | | 93.28 211 | 92.60 213 | 95.34 221 | 98.29 164 | 90.09 293 | 99.31 213 | 98.56 79 | 91.80 212 | 96.35 172 | 98.00 209 | 89.38 183 | 98.28 220 | 92.46 221 | 69.22 354 | 97.64 226 |
|
hse-mvs2 | | | 94.38 188 | 94.08 181 | 95.31 223 | 98.27 168 | 90.02 294 | 99.29 218 | 98.56 79 | 95.90 60 | 98.77 99 | 98.00 209 | 90.89 167 | 98.26 224 | 97.80 119 | 69.20 355 | 97.64 226 |
|
IterMVS-SCA-FT | | | 90.85 262 | 90.16 261 | 92.93 298 | 96.72 251 | 89.96 295 | 98.89 258 | 96.99 296 | 88.95 265 | 86.63 303 | 95.67 274 | 76.48 293 | 95.00 339 | 87.04 289 | 84.04 289 | 93.84 304 |
|
DTE-MVSNet | | | 89.40 290 | 88.24 294 | 92.88 299 | 92.66 328 | 89.95 296 | 99.10 231 | 98.22 176 | 87.29 289 | 85.12 320 | 96.22 261 | 76.27 296 | 95.30 337 | 83.56 314 | 75.74 344 | 93.41 318 |
|
Baseline_NR-MVSNet | | | 90.33 274 | 89.51 272 | 92.81 300 | 92.84 324 | 89.95 296 | 99.77 132 | 93.94 364 | 84.69 325 | 89.04 268 | 95.66 275 | 81.66 250 | 96.52 307 | 90.99 241 | 76.98 339 | 91.97 342 |
|
Patchmtry | | | 89.70 287 | 88.49 289 | 93.33 289 | 96.24 257 | 89.94 298 | 91.37 361 | 96.23 332 | 78.22 349 | 87.69 288 | 93.31 335 | 91.04 162 | 96.03 326 | 80.18 331 | 82.10 297 | 94.02 287 |
|
pmmvs5 | | | 90.17 280 | 89.09 279 | 93.40 288 | 92.10 334 | 89.77 299 | 99.74 143 | 95.58 346 | 85.88 309 | 87.24 298 | 95.74 271 | 73.41 316 | 96.48 309 | 88.54 270 | 83.56 291 | 93.95 295 |
|
Anonymous202405211 | | | 93.10 215 | 91.99 227 | 96.40 197 | 99.10 119 | 89.65 300 | 98.88 260 | 97.93 206 | 83.71 330 | 94.00 204 | 98.75 180 | 68.79 330 | 99.88 90 | 95.08 165 | 91.71 229 | 99.68 120 |
|
our_test_3 | | | 90.39 271 | 89.48 274 | 93.12 294 | 92.40 330 | 89.57 301 | 99.33 210 | 96.35 331 | 87.84 283 | 85.30 318 | 94.99 308 | 84.14 234 | 96.09 324 | 80.38 329 | 84.56 281 | 93.71 314 |
|
D2MVS | | | 92.76 222 | 92.59 216 | 93.27 291 | 95.13 284 | 89.54 302 | 99.69 154 | 99.38 22 | 92.26 197 | 87.59 290 | 94.61 319 | 85.05 228 | 97.79 245 | 91.59 231 | 88.01 255 | 92.47 336 |
|
XVG-OURS-SEG-HR | | | 94.79 173 | 94.70 170 | 95.08 229 | 98.05 180 | 89.19 303 | 99.08 234 | 97.54 239 | 93.66 148 | 94.87 193 | 99.58 109 | 78.78 278 | 99.79 114 | 97.31 133 | 93.40 223 | 96.25 234 |
|
XVG-OURS | | | 94.82 172 | 94.74 169 | 95.06 230 | 98.00 182 | 89.19 303 | 99.08 234 | 97.55 237 | 94.10 126 | 94.71 194 | 99.62 106 | 80.51 265 | 99.74 130 | 96.04 154 | 93.06 227 | 96.25 234 |
|
miper_lstm_enhance | | | 91.81 242 | 91.39 240 | 93.06 297 | 97.34 220 | 89.18 305 | 99.38 204 | 96.79 317 | 86.70 299 | 87.47 293 | 95.22 300 | 90.00 176 | 95.86 330 | 88.26 273 | 81.37 303 | 94.15 277 |
|
ACMM | | 91.95 10 | 92.88 220 | 92.52 218 | 93.98 274 | 95.75 271 | 89.08 306 | 99.77 132 | 97.52 243 | 93.00 164 | 89.95 243 | 97.99 211 | 76.17 297 | 98.46 198 | 93.63 208 | 88.87 242 | 94.39 253 |
Qingshan Xu and Wenbing Tao: Multi-Scale Geometric Consistency Guided Multi-View Stereo. CVPR 2019 |
MVP-Stereo | | | 90.93 258 | 90.45 253 | 92.37 304 | 91.25 344 | 88.76 307 | 98.05 311 | 96.17 334 | 87.27 290 | 84.04 323 | 95.30 295 | 78.46 282 | 97.27 269 | 83.78 312 | 99.70 100 | 91.09 347 |
Qingsong Yan: MVP-Stereo: A Parallel Multi-View Patchmatch Stereo Method with Dilation Matching for Photogrammetric Application. |
ACMP | | 92.05 9 | 92.74 223 | 92.42 220 | 93.73 279 | 95.91 265 | 88.72 308 | 99.81 120 | 97.53 241 | 94.13 124 | 87.00 299 | 98.23 203 | 74.07 313 | 98.47 195 | 96.22 152 | 88.86 243 | 93.99 292 |
Qingshan Xu and Wenbing Tao: Planar Prior Assisted PatchMatch Multi-View Stereo. AAAI 2020 |
LPG-MVS_test | | | 92.96 218 | 92.71 211 | 93.71 281 | 95.43 281 | 88.67 309 | 99.75 140 | 97.62 228 | 92.81 169 | 90.05 239 | 98.49 194 | 75.24 303 | 98.40 204 | 95.84 158 | 89.12 238 | 94.07 284 |
|
LGP-MVS_train | | | | | 93.71 281 | 95.43 281 | 88.67 309 | | 97.62 228 | 92.81 169 | 90.05 239 | 98.49 194 | 75.24 303 | 98.40 204 | 95.84 158 | 89.12 238 | 94.07 284 |
|
ACMH | | 89.72 17 | 90.64 266 | 89.63 267 | 93.66 285 | 95.64 278 | 88.64 311 | 98.55 286 | 97.45 249 | 89.03 260 | 81.62 335 | 97.61 217 | 69.75 328 | 98.41 202 | 89.37 262 | 87.62 260 | 93.92 298 |
Qingshan Xu and Wenbing Tao: Multi-Scale Geometric Consistency Guided Multi-View Stereo. CVPR 2019 |
MDA-MVSNet_test_wron | | | 85.51 311 | 83.32 318 | 92.10 307 | 90.96 345 | 88.58 312 | 99.20 225 | 96.52 327 | 79.70 346 | 57.12 368 | 92.69 340 | 79.11 276 | 93.86 351 | 77.10 343 | 77.46 335 | 93.86 303 |
|
AllTest | | | 92.48 229 | 91.64 232 | 95.00 232 | 99.01 124 | 88.43 313 | 98.94 254 | 96.82 315 | 86.50 300 | 88.71 272 | 98.47 198 | 74.73 309 | 99.88 90 | 85.39 301 | 96.18 187 | 96.71 232 |
|
TestCases | | | | | 95.00 232 | 99.01 124 | 88.43 313 | | 96.82 315 | 86.50 300 | 88.71 272 | 98.47 198 | 74.73 309 | 99.88 90 | 85.39 301 | 96.18 187 | 96.71 232 |
|
FMVSNet5 | | | 88.32 298 | 87.47 300 | 90.88 316 | 96.90 241 | 88.39 315 | 97.28 322 | 95.68 343 | 82.60 337 | 84.67 321 | 92.40 344 | 79.83 271 | 91.16 362 | 76.39 346 | 81.51 302 | 93.09 326 |
|
YYNet1 | | | 85.50 312 | 83.33 317 | 92.00 308 | 90.89 346 | 88.38 316 | 99.22 224 | 96.55 326 | 79.60 347 | 57.26 367 | 92.72 338 | 79.09 277 | 93.78 352 | 77.25 342 | 77.37 336 | 93.84 304 |
|
USDC | | | 90.00 283 | 88.96 282 | 93.10 296 | 94.81 290 | 88.16 317 | 98.71 278 | 95.54 347 | 93.66 148 | 83.75 326 | 97.20 227 | 65.58 343 | 98.31 215 | 83.96 311 | 87.49 262 | 92.85 331 |
|
UniMVSNet_ETH3D | | | 90.06 282 | 88.58 288 | 94.49 253 | 94.67 293 | 88.09 318 | 97.81 316 | 97.57 236 | 83.91 329 | 88.44 277 | 97.41 221 | 57.44 360 | 97.62 251 | 91.41 232 | 88.59 249 | 97.77 224 |
|
COLMAP_ROB |  | 90.47 14 | 92.18 236 | 91.49 238 | 94.25 262 | 99.00 126 | 88.04 319 | 98.42 296 | 96.70 322 | 82.30 338 | 88.43 279 | 99.01 151 | 76.97 287 | 99.85 99 | 86.11 298 | 96.50 183 | 94.86 239 |
Johannes L. Schönberger, Enliang Zheng, Marc Pollefeys, Jan-Michael Frahm: Pixelwise View Selection for Unstructured Multi-View Stereo. ECCV 2016 |
MDA-MVSNet-bldmvs | | | 84.09 320 | 81.52 326 | 91.81 311 | 91.32 343 | 88.00 320 | 98.67 282 | 95.92 339 | 80.22 344 | 55.60 369 | 93.32 334 | 68.29 335 | 93.60 354 | 73.76 349 | 76.61 342 | 93.82 306 |
|
JIA-IIPM | | | 91.76 248 | 90.70 248 | 94.94 234 | 96.11 258 | 87.51 321 | 93.16 354 | 98.13 191 | 75.79 355 | 97.58 140 | 77.68 366 | 92.84 127 | 97.97 237 | 88.47 272 | 96.54 181 | 99.33 179 |
|
tpm | | | 93.70 205 | 93.41 200 | 94.58 247 | 95.36 283 | 87.41 322 | 97.01 328 | 96.90 308 | 90.85 236 | 96.72 160 | 94.14 327 | 90.40 172 | 96.84 294 | 90.75 248 | 88.54 250 | 99.51 158 |
|
dcpmvs_2 | | | 97.42 97 | 98.09 60 | 95.42 219 | 99.58 100 | 87.24 323 | 99.23 223 | 96.95 301 | 94.28 120 | 98.93 93 | 99.73 88 | 94.39 79 | 99.16 164 | 99.89 17 | 99.82 91 | 99.86 100 |
|
pmmvs-eth3d | | | 84.03 321 | 81.97 324 | 90.20 323 | 84.15 366 | 87.09 324 | 98.10 309 | 94.73 359 | 83.05 332 | 74.10 358 | 87.77 357 | 65.56 344 | 94.01 348 | 81.08 327 | 69.24 353 | 89.49 359 |
|
CVMVSNet | | | 94.68 179 | 94.94 164 | 93.89 277 | 96.80 246 | 86.92 325 | 99.06 239 | 98.98 35 | 94.45 108 | 94.23 202 | 99.02 149 | 85.60 220 | 95.31 336 | 90.91 244 | 95.39 205 | 99.43 168 |
|
patch_mono-2 | | | 98.24 64 | 99.12 5 | 95.59 214 | 99.67 92 | 86.91 326 | 99.95 43 | 98.89 43 | 97.60 12 | 99.90 2 | 99.76 75 | 96.54 27 | 99.98 46 | 99.94 12 | 99.82 91 | 99.88 96 |
|
MVS_0304 | | | 89.28 293 | 88.31 292 | 92.21 306 | 97.05 232 | 86.53 327 | 97.76 317 | 99.57 13 | 85.58 315 | 93.86 207 | 92.71 339 | 51.04 367 | 96.30 316 | 84.49 307 | 92.72 228 | 93.79 307 |
|
Fast-Effi-MVS+-dtu | | | 93.72 204 | 93.86 187 | 93.29 290 | 97.06 231 | 86.16 328 | 99.80 125 | 96.83 313 | 92.66 179 | 92.58 221 | 97.83 214 | 81.39 253 | 97.67 249 | 89.75 261 | 96.87 178 | 96.05 238 |
|
ACMH+ | | 89.98 16 | 90.35 273 | 89.54 270 | 92.78 301 | 95.99 262 | 86.12 329 | 98.81 270 | 97.18 275 | 89.38 255 | 83.14 328 | 97.76 215 | 68.42 334 | 98.43 200 | 89.11 265 | 86.05 269 | 93.78 308 |
|
ADS-MVSNet2 | | | 93.80 200 | 93.88 186 | 93.55 287 | 97.87 190 | 85.94 330 | 94.24 347 | 96.84 312 | 90.07 248 | 96.43 168 | 94.48 322 | 90.29 174 | 95.37 334 | 87.44 282 | 97.23 169 | 99.36 175 |
|
XVG-ACMP-BASELINE | | | 91.22 255 | 90.75 246 | 92.63 302 | 93.73 307 | 85.61 331 | 98.52 290 | 97.44 251 | 92.77 173 | 89.90 245 | 96.85 242 | 66.64 340 | 98.39 206 | 92.29 223 | 88.61 247 | 93.89 300 |
|
TinyColmap | | | 87.87 303 | 86.51 304 | 91.94 309 | 95.05 287 | 85.57 332 | 97.65 318 | 94.08 362 | 84.40 326 | 81.82 334 | 96.85 242 | 62.14 353 | 98.33 213 | 80.25 330 | 86.37 268 | 91.91 343 |
|
MS-PatchMatch | | | 90.65 265 | 90.30 256 | 91.71 312 | 94.22 299 | 85.50 333 | 98.24 302 | 97.70 222 | 88.67 271 | 86.42 308 | 96.37 257 | 67.82 336 | 98.03 235 | 83.62 313 | 99.62 104 | 91.60 344 |
|
mvs-test1 | | | 95.53 159 | 95.97 134 | 94.20 263 | 97.77 197 | 85.44 334 | 99.95 43 | 97.06 288 | 94.92 91 | 96.58 163 | 98.72 181 | 85.81 218 | 98.98 169 | 94.80 174 | 98.11 150 | 98.18 216 |
|
ITE_SJBPF | | | | | 92.38 303 | 95.69 277 | 85.14 335 | | 95.71 342 | 92.81 169 | 89.33 261 | 98.11 205 | 70.23 327 | 98.42 201 | 85.91 299 | 88.16 254 | 93.59 316 |
|
test_0402 | | | 85.58 309 | 83.94 313 | 90.50 320 | 93.81 306 | 85.04 336 | 98.55 286 | 95.20 354 | 76.01 353 | 79.72 344 | 95.13 301 | 64.15 349 | 96.26 318 | 66.04 363 | 86.88 265 | 90.21 355 |
|
testgi | | | 89.01 295 | 88.04 296 | 91.90 310 | 93.49 311 | 84.89 337 | 99.73 148 | 95.66 344 | 93.89 141 | 85.14 319 | 98.17 204 | 59.68 357 | 94.66 344 | 77.73 340 | 88.88 241 | 96.16 237 |
|
TDRefinement | | | 84.76 315 | 82.56 322 | 91.38 314 | 74.58 371 | 84.80 338 | 97.36 321 | 94.56 360 | 84.73 324 | 80.21 342 | 96.12 265 | 63.56 350 | 98.39 206 | 87.92 278 | 63.97 360 | 90.95 350 |
|
pmmvs6 | | | 85.69 308 | 83.84 314 | 91.26 315 | 90.00 354 | 84.41 339 | 97.82 315 | 96.15 335 | 75.86 354 | 81.29 337 | 95.39 290 | 61.21 355 | 96.87 293 | 83.52 315 | 73.29 348 | 92.50 335 |
|
MIMVSNet1 | | | 82.58 324 | 80.51 328 | 88.78 333 | 86.68 362 | 84.20 340 | 96.65 332 | 95.41 349 | 78.75 348 | 78.59 347 | 92.44 341 | 51.88 365 | 89.76 365 | 65.26 364 | 78.95 323 | 92.38 338 |
|
UnsupCasMVSNet_eth | | | 85.52 310 | 83.99 311 | 90.10 324 | 89.36 356 | 83.51 341 | 96.65 332 | 97.99 199 | 89.14 257 | 75.89 355 | 93.83 329 | 63.25 351 | 93.92 349 | 81.92 323 | 67.90 358 | 92.88 330 |
|
OpenMVS_ROB |  | 79.82 20 | 83.77 322 | 81.68 325 | 90.03 325 | 88.30 359 | 82.82 342 | 98.46 291 | 95.22 353 | 73.92 360 | 76.00 354 | 91.29 348 | 55.00 362 | 96.94 289 | 68.40 358 | 88.51 251 | 90.34 353 |
|
Anonymous20240521 | | | 85.15 314 | 83.81 315 | 89.16 330 | 88.32 358 | 82.69 343 | 98.80 272 | 95.74 341 | 79.72 345 | 81.53 336 | 90.99 349 | 65.38 345 | 94.16 347 | 72.69 351 | 81.11 307 | 90.63 352 |
|
new_pmnet | | | 84.49 319 | 82.92 321 | 89.21 329 | 90.03 353 | 82.60 344 | 96.89 331 | 95.62 345 | 80.59 343 | 75.77 356 | 89.17 353 | 65.04 347 | 94.79 343 | 72.12 352 | 81.02 309 | 90.23 354 |
|
Effi-MVS+-dtu | | | 94.53 185 | 95.30 154 | 92.22 305 | 97.77 197 | 82.54 345 | 99.59 172 | 97.06 288 | 94.92 91 | 95.29 189 | 95.37 292 | 85.81 218 | 97.89 243 | 94.80 174 | 97.07 173 | 96.23 236 |
|
pmmvs3 | | | 80.27 328 | 77.77 332 | 87.76 338 | 80.32 369 | 82.43 346 | 98.23 303 | 91.97 368 | 72.74 361 | 78.75 346 | 87.97 356 | 57.30 361 | 90.99 363 | 70.31 354 | 62.37 362 | 89.87 356 |
|
SixPastTwentyTwo | | | 88.73 296 | 88.01 297 | 90.88 316 | 91.85 337 | 82.24 347 | 98.22 304 | 95.18 355 | 88.97 263 | 82.26 331 | 96.89 239 | 71.75 321 | 96.67 303 | 84.00 309 | 82.98 292 | 93.72 313 |
|
K. test v3 | | | 88.05 300 | 87.24 302 | 90.47 321 | 91.82 338 | 82.23 348 | 98.96 252 | 97.42 254 | 89.05 259 | 76.93 351 | 95.60 277 | 68.49 333 | 95.42 333 | 85.87 300 | 81.01 310 | 93.75 309 |
|
UnsupCasMVSNet_bld | | | 79.97 330 | 77.03 333 | 88.78 333 | 85.62 364 | 81.98 349 | 93.66 352 | 97.35 261 | 75.51 357 | 70.79 361 | 83.05 363 | 48.70 368 | 94.91 341 | 78.31 338 | 60.29 365 | 89.46 360 |
|
EG-PatchMatch MVS | | | 85.35 313 | 83.81 315 | 89.99 326 | 90.39 349 | 81.89 350 | 98.21 305 | 96.09 336 | 81.78 340 | 74.73 357 | 93.72 331 | 51.56 366 | 97.12 277 | 79.16 335 | 88.61 247 | 90.96 349 |
|
CL-MVSNet_self_test | | | 84.50 318 | 83.15 320 | 88.53 335 | 86.00 363 | 81.79 351 | 98.82 269 | 97.35 261 | 85.12 319 | 83.62 327 | 90.91 351 | 76.66 291 | 91.40 361 | 69.53 356 | 60.36 364 | 92.40 337 |
|
DeepPCF-MVS | | 95.94 2 | 97.71 86 | 98.98 12 | 93.92 275 | 99.63 94 | 81.76 352 | 99.96 25 | 98.56 79 | 99.47 1 | 99.19 81 | 99.99 1 | 94.16 92 | 100.00 1 | 99.92 13 | 99.93 67 | 100.00 1 |
|
EGC-MVSNET | | | 69.38 331 | 63.76 338 | 86.26 341 | 90.32 350 | 81.66 353 | 96.24 338 | 93.85 365 | 0.99 378 | 3.22 379 | 92.33 345 | 52.44 364 | 92.92 357 | 59.53 368 | 84.90 278 | 84.21 364 |
|
OurMVSNet-221017-0 | | | 89.81 285 | 89.48 274 | 90.83 318 | 91.64 339 | 81.21 354 | 98.17 306 | 95.38 350 | 91.48 220 | 85.65 317 | 97.31 224 | 72.66 317 | 97.29 267 | 88.15 275 | 84.83 279 | 93.97 294 |
|
LF4IMVS | | | 89.25 294 | 88.85 283 | 90.45 322 | 92.81 327 | 81.19 355 | 98.12 307 | 94.79 357 | 91.44 222 | 86.29 311 | 97.11 229 | 65.30 346 | 98.11 230 | 88.53 271 | 85.25 275 | 92.07 339 |
|
EU-MVSNet | | | 90.14 281 | 90.34 255 | 89.54 328 | 92.55 329 | 81.06 356 | 98.69 280 | 98.04 197 | 91.41 225 | 86.59 304 | 96.84 244 | 80.83 260 | 93.31 356 | 86.20 296 | 81.91 299 | 94.26 263 |
|
lessismore_v0 | | | | | 90.53 319 | 90.58 348 | 80.90 357 | | 95.80 340 | | 77.01 350 | 95.84 268 | 66.15 342 | 96.95 288 | 83.03 316 | 75.05 346 | 93.74 312 |
|
KD-MVS_self_test | | | 83.59 323 | 82.06 323 | 88.20 337 | 86.93 361 | 80.70 358 | 97.21 323 | 96.38 330 | 82.87 334 | 82.49 330 | 88.97 354 | 67.63 337 | 92.32 358 | 73.75 350 | 62.30 363 | 91.58 345 |
|
test20.03 | | | 84.72 317 | 83.99 311 | 86.91 339 | 88.19 360 | 80.62 359 | 98.88 260 | 95.94 338 | 88.36 277 | 78.87 345 | 94.62 318 | 68.75 331 | 89.11 366 | 66.52 361 | 75.82 343 | 91.00 348 |
|
Anonymous20231206 | | | 86.32 306 | 85.42 308 | 89.02 331 | 89.11 357 | 80.53 360 | 99.05 243 | 95.28 351 | 85.43 317 | 82.82 329 | 93.92 328 | 74.40 311 | 93.44 355 | 66.99 360 | 81.83 300 | 93.08 327 |
|
new-patchmatchnet | | | 81.19 325 | 79.34 330 | 86.76 340 | 82.86 368 | 80.36 361 | 97.92 313 | 95.27 352 | 82.09 339 | 72.02 359 | 86.87 359 | 62.81 352 | 90.74 364 | 71.10 353 | 63.08 361 | 89.19 361 |
|
LCM-MVSNet-Re | | | 92.31 233 | 92.60 213 | 91.43 313 | 97.53 211 | 79.27 362 | 99.02 246 | 91.83 369 | 92.07 202 | 80.31 341 | 94.38 325 | 83.50 238 | 95.48 332 | 97.22 136 | 97.58 161 | 99.54 152 |
|
Patchmatch-RL test | | | 86.90 305 | 85.98 307 | 89.67 327 | 84.45 365 | 75.59 363 | 89.71 363 | 92.43 367 | 86.89 297 | 77.83 349 | 90.94 350 | 94.22 88 | 93.63 353 | 87.75 280 | 69.61 351 | 99.79 106 |
|
DSMNet-mixed | | | 88.28 299 | 88.24 294 | 88.42 336 | 89.64 355 | 75.38 364 | 98.06 310 | 89.86 372 | 85.59 314 | 88.20 284 | 92.14 346 | 76.15 298 | 91.95 360 | 78.46 337 | 96.05 190 | 97.92 220 |
|
PM-MVS | | | 80.47 327 | 78.88 331 | 85.26 342 | 83.79 367 | 72.22 365 | 95.89 344 | 91.08 370 | 85.71 313 | 76.56 353 | 88.30 355 | 36.64 370 | 93.90 350 | 82.39 319 | 69.57 352 | 89.66 358 |
|
RPSCF | | | 91.80 245 | 92.79 210 | 88.83 332 | 98.15 176 | 69.87 366 | 98.11 308 | 96.60 325 | 83.93 328 | 94.33 200 | 99.27 133 | 79.60 272 | 99.46 155 | 91.99 225 | 93.16 226 | 97.18 230 |
|
Gipuma |  | | 66.95 335 | 65.00 335 | 72.79 350 | 91.52 341 | 67.96 367 | 66.16 370 | 95.15 356 | 47.89 368 | 58.54 366 | 67.99 370 | 29.74 372 | 87.54 367 | 50.20 370 | 77.83 331 | 62.87 370 |
S. Galliani, K. Lasinger, K. Schindler: Massively Parallel Multiview Stereopsis by Surface Normal Diffusion. ICCV 2015 |
test_method | | | 80.79 326 | 79.70 329 | 84.08 343 | 92.83 325 | 67.06 368 | 99.51 185 | 95.42 348 | 54.34 366 | 81.07 339 | 93.53 332 | 44.48 369 | 92.22 359 | 78.90 336 | 77.23 337 | 92.94 329 |
|
ambc | | | | | 83.23 345 | 77.17 370 | 62.61 369 | 87.38 365 | 94.55 361 | | 76.72 352 | 86.65 360 | 30.16 371 | 96.36 313 | 84.85 306 | 69.86 350 | 90.73 351 |
|
CMPMVS |  | 61.59 21 | 84.75 316 | 85.14 310 | 83.57 344 | 90.32 350 | 62.54 370 | 96.98 329 | 97.59 235 | 74.33 359 | 69.95 362 | 96.66 248 | 64.17 348 | 98.32 214 | 87.88 279 | 88.41 252 | 89.84 357 |
M. Jancosek, T. Pajdla: Multi-View Reconstruction Preserving Weakly-Supported Surfaces. CVPR 2011 |
PMMVS2 | | | 67.15 334 | 64.15 337 | 76.14 349 | 70.56 374 | 62.07 371 | 93.89 350 | 87.52 376 | 58.09 365 | 60.02 365 | 78.32 365 | 22.38 376 | 84.54 369 | 59.56 367 | 47.03 369 | 81.80 365 |
|
DeepMVS_CX |  | | | | 82.92 346 | 95.98 264 | 58.66 372 | | 96.01 337 | 92.72 174 | 78.34 348 | 95.51 283 | 58.29 359 | 98.08 231 | 82.57 318 | 85.29 274 | 92.03 341 |
|
ANet_high | | | 56.10 337 | 52.24 340 | 67.66 353 | 49.27 379 | 56.82 373 | 83.94 366 | 82.02 377 | 70.47 362 | 33.28 376 | 64.54 371 | 17.23 379 | 69.16 374 | 45.59 372 | 23.85 373 | 77.02 367 |
|
LCM-MVSNet | | | 67.77 333 | 64.73 336 | 76.87 348 | 62.95 377 | 56.25 374 | 89.37 364 | 93.74 366 | 44.53 369 | 61.99 364 | 80.74 364 | 20.42 377 | 86.53 368 | 69.37 357 | 59.50 366 | 87.84 362 |
|
MVE |  | 53.74 22 | 51.54 340 | 47.86 344 | 62.60 354 | 59.56 378 | 50.93 375 | 79.41 368 | 77.69 378 | 35.69 373 | 36.27 375 | 61.76 374 | 5.79 383 | 69.63 373 | 37.97 374 | 36.61 370 | 67.24 368 |
Simon Fuhrmann, Fabian Langguth, Michael Goesele: MVE - A Multi-View Reconstruction Environment. EUROGRAPHICS Workshops on Graphics and Cultural Heritage (2014) |
tmp_tt | | | 65.23 336 | 62.94 339 | 72.13 351 | 44.90 380 | 50.03 376 | 81.05 367 | 89.42 375 | 38.45 370 | 48.51 372 | 99.90 19 | 54.09 363 | 78.70 372 | 91.84 229 | 18.26 374 | 87.64 363 |
|
E-PMN | | | 52.30 339 | 52.18 341 | 52.67 356 | 71.51 372 | 45.40 377 | 93.62 353 | 76.60 379 | 36.01 372 | 43.50 373 | 64.13 372 | 27.11 374 | 67.31 375 | 31.06 375 | 26.06 371 | 45.30 374 |
|
N_pmnet | | | 80.06 329 | 80.78 327 | 77.89 347 | 91.94 335 | 45.28 378 | 98.80 272 | 56.82 381 | 78.10 350 | 80.08 343 | 93.33 333 | 77.03 286 | 95.76 331 | 68.14 359 | 82.81 293 | 92.64 332 |
|
EMVS | | | 51.44 341 | 51.22 343 | 52.11 357 | 70.71 373 | 44.97 379 | 94.04 349 | 75.66 380 | 35.34 374 | 42.40 374 | 61.56 375 | 28.93 373 | 65.87 376 | 27.64 376 | 24.73 372 | 45.49 373 |
|
FPMVS | | | 68.72 332 | 68.72 334 | 68.71 352 | 65.95 375 | 44.27 380 | 95.97 343 | 94.74 358 | 51.13 367 | 53.26 370 | 90.50 352 | 25.11 375 | 83.00 370 | 60.80 366 | 80.97 311 | 78.87 366 |
|
PMVS |  | 49.05 23 | 53.75 338 | 51.34 342 | 60.97 355 | 40.80 381 | 34.68 381 | 74.82 369 | 89.62 374 | 37.55 371 | 28.67 377 | 72.12 367 | 7.09 381 | 81.63 371 | 43.17 373 | 68.21 357 | 66.59 369 |
Y. Furukawa, J. Ponce: Accurate, dense, and robust multiview stereopsis. PAMI (2010) |
wuyk23d | | | 20.37 345 | 20.84 348 | 18.99 360 | 65.34 376 | 27.73 382 | 50.43 371 | 7.67 384 | 9.50 377 | 8.01 378 | 6.34 378 | 6.13 382 | 26.24 377 | 23.40 377 | 10.69 376 | 2.99 375 |
|
test123 | | | 37.68 343 | 39.14 346 | 33.31 358 | 19.94 382 | 24.83 383 | 98.36 297 | 9.75 383 | 15.53 376 | 51.31 371 | 87.14 358 | 19.62 378 | 17.74 378 | 47.10 371 | 3.47 377 | 57.36 371 |
|
testmvs | | | 40.60 342 | 44.45 345 | 29.05 359 | 19.49 383 | 14.11 384 | 99.68 156 | 18.47 382 | 20.74 375 | 64.59 363 | 98.48 197 | 10.95 380 | 17.09 379 | 56.66 369 | 11.01 375 | 55.94 372 |
|
test_blank | | | 0.00 348 | 0.00 351 | 0.00 361 | 0.00 384 | 0.00 385 | 0.00 372 | 0.00 385 | 0.00 379 | 0.00 380 | 0.02 379 | 0.00 384 | 0.00 380 | 0.00 378 | 0.00 378 | 0.00 376 |
|
uanet_test | | | 0.00 348 | 0.00 351 | 0.00 361 | 0.00 384 | 0.00 385 | 0.00 372 | 0.00 385 | 0.00 379 | 0.00 380 | 0.00 380 | 0.00 384 | 0.00 380 | 0.00 378 | 0.00 378 | 0.00 376 |
|
DCPMVS | | | 0.00 348 | 0.00 351 | 0.00 361 | 0.00 384 | 0.00 385 | 0.00 372 | 0.00 385 | 0.00 379 | 0.00 380 | 0.00 380 | 0.00 384 | 0.00 380 | 0.00 378 | 0.00 378 | 0.00 376 |
|
cdsmvs_eth3d_5k | | | 23.43 344 | 31.24 347 | 0.00 361 | 0.00 384 | 0.00 385 | 0.00 372 | 98.09 192 | 0.00 379 | 0.00 380 | 99.67 101 | 83.37 239 | 0.00 380 | 0.00 378 | 0.00 378 | 0.00 376 |
|
pcd_1.5k_mvsjas | | | 7.60 347 | 10.13 350 | 0.00 361 | 0.00 384 | 0.00 385 | 0.00 372 | 0.00 385 | 0.00 379 | 0.00 380 | 0.00 380 | 91.20 158 | 0.00 380 | 0.00 378 | 0.00 378 | 0.00 376 |
|
sosnet-low-res | | | 0.00 348 | 0.00 351 | 0.00 361 | 0.00 384 | 0.00 385 | 0.00 372 | 0.00 385 | 0.00 379 | 0.00 380 | 0.00 380 | 0.00 384 | 0.00 380 | 0.00 378 | 0.00 378 | 0.00 376 |
|
sosnet | | | 0.00 348 | 0.00 351 | 0.00 361 | 0.00 384 | 0.00 385 | 0.00 372 | 0.00 385 | 0.00 379 | 0.00 380 | 0.00 380 | 0.00 384 | 0.00 380 | 0.00 378 | 0.00 378 | 0.00 376 |
|
uncertanet | | | 0.00 348 | 0.00 351 | 0.00 361 | 0.00 384 | 0.00 385 | 0.00 372 | 0.00 385 | 0.00 379 | 0.00 380 | 0.00 380 | 0.00 384 | 0.00 380 | 0.00 378 | 0.00 378 | 0.00 376 |
|
Regformer | | | 0.00 348 | 0.00 351 | 0.00 361 | 0.00 384 | 0.00 385 | 0.00 372 | 0.00 385 | 0.00 379 | 0.00 380 | 0.00 380 | 0.00 384 | 0.00 380 | 0.00 378 | 0.00 378 | 0.00 376 |
|
ab-mvs-re | | | 8.28 346 | 11.04 349 | 0.00 361 | 0.00 384 | 0.00 385 | 0.00 372 | 0.00 385 | 0.00 379 | 0.00 380 | 99.40 123 | 0.00 384 | 0.00 380 | 0.00 378 | 0.00 378 | 0.00 376 |
|
uanet | | | 0.00 348 | 0.00 351 | 0.00 361 | 0.00 384 | 0.00 385 | 0.00 372 | 0.00 385 | 0.00 379 | 0.00 380 | 0.00 380 | 0.00 384 | 0.00 380 | 0.00 378 | 0.00 378 | 0.00 376 |
|
PC_three_1452 | | | | | | | | | | 96.96 30 | 99.80 17 | 99.79 64 | 97.49 9 | 100.00 1 | 99.99 5 | 99.98 35 | 100.00 1 |
|
eth-test2 | | | | | | 0.00 384 | | | | | | | | | | | |
|
eth-test | | | | | | 0.00 384 | | | | | | | | | | | |
|
test_241102_TWO | | | | | | | | | 98.43 120 | 97.27 21 | 99.80 17 | 99.94 4 | 97.18 20 | 100.00 1 | 100.00 1 | 100.00 1 | 100.00 1 |
|
9.14 | | | | 98.38 40 | | 99.87 57 | | 99.91 75 | 98.33 158 | 93.22 159 | 99.78 25 | 99.89 21 | 94.57 72 | 99.85 99 | 99.84 19 | 99.97 48 | |
|
test_0728_THIRD | | | | | | | | | | 96.48 43 | 99.83 11 | 99.91 15 | 97.87 4 | 100.00 1 | 99.92 13 | 100.00 1 | 100.00 1 |
|
GSMVS | | | | | | | | | | | | | | | | | 99.59 139 |
|
sam_mvs1 | | | | | | | | | | | | | 94.72 68 | | | | 99.59 139 |
|
sam_mvs | | | | | | | | | | | | | 94.25 87 | | | | |
|
MTGPA |  | | | | | | | | 98.28 167 | | | | | | | | |
|
test_post1 | | | | | | | | 95.78 345 | | | | 59.23 376 | 93.20 119 | 97.74 247 | 91.06 238 | | |
|
test_post | | | | | | | | | | | | 63.35 373 | 94.43 73 | 98.13 229 | | | |
|
patchmatchnet-post | | | | | | | | | | | | 91.70 347 | 95.12 52 | 97.95 240 | | | |
|
MTMP | | | | | | | | 99.87 93 | 96.49 328 | | | | | | | | |
|
test9_res | | | | | | | | | | | | | | | 99.71 35 | 99.99 22 | 100.00 1 |
|
agg_prior2 | | | | | | | | | | | | | | | 99.48 42 | 100.00 1 | 100.00 1 |
|
test_prior2 | | | | | | | | 99.95 43 | | 95.78 64 | 99.73 30 | 99.76 75 | 96.00 33 | | 99.78 26 | 100.00 1 | |
|
旧先验2 | | | | | | | | 99.46 194 | | 94.21 123 | 99.85 7 | | | 99.95 65 | 96.96 143 | | |
|
新几何2 | | | | | | | | 99.40 199 | | | | | | | | | |
|
无先验 | | | | | | | | 99.49 189 | 98.71 55 | 93.46 153 | | | | 100.00 1 | 94.36 187 | | 99.99 24 |
|
原ACMM2 | | | | | | | | 99.90 79 | | | | | | | | | |
|
testdata2 | | | | | | | | | | | | | | 99.99 40 | 90.54 250 | | |
|
segment_acmp | | | | | | | | | | | | | 96.68 25 | | | | |
|
testdata1 | | | | | | | | 99.28 219 | | 96.35 52 | | | | | | | |
|
plane_prior5 | | | | | | | | | 97.87 212 | | | | | 98.37 211 | 97.79 122 | 89.55 234 | 94.52 242 |
|
plane_prior4 | | | | | | | | | | | | 98.59 188 | | | | | |
|
plane_prior2 | | | | | | | | 99.84 111 | | 96.38 48 | | | | | | | |
|
plane_prior1 | | | | | | 95.73 272 | | | | | | | | | | | |
|
n2 | | | | | | | | | 0.00 385 | | | | | | | | |
|
nn | | | | | | | | | 0.00 385 | | | | | | | | |
|
door-mid | | | | | | | | | 89.69 373 | | | | | | | | |
|
test11 | | | | | | | | | 98.44 112 | | | | | | | | |
|
door | | | | | | | | | 90.31 371 | | | | | | | | |
|
HQP-NCC | | | | | | 95.78 266 | | 99.87 93 | | 96.82 32 | 93.37 210 | | | | | | |
|
ACMP_Plane | | | | | | 95.78 266 | | 99.87 93 | | 96.82 32 | 93.37 210 | | | | | | |
|
BP-MVS | | | | | | | | | | | | | | | 97.92 117 | | |
|
HQP4-MVS | | | | | | | | | | | 93.37 210 | | | 98.39 206 | | | 94.53 240 |
|
HQP3-MVS | | | | | | | | | 97.89 210 | | | | | | | 89.60 231 | |
|
HQP2-MVS | | | | | | | | | | | | | 80.65 263 | | | | |
|
ACMMP++_ref | | | | | | | | | | | | | | | | 87.04 264 | |
|
ACMMP++ | | | | | | | | | | | | | | | | 88.23 253 | |
|
Test By Simon | | | | | | | | | | | | | 92.82 129 | | | | |
|