This table lists the benchmark results for the high-res multi-view scenario. The following metrics are evaluated:

(*) For exact definitions, detailing how potentially incomplete ground truth is taken into account, see our paper.

The datasets are grouped into different categories, and result averages are computed for a category and method if results of the method are available for all datasets within the category. Note that the category "all" includes both the high-res multi-view and the low-res many-view scenarios.

Methods with suffix _ROB may participate in the Robust Vision Challenge.

Click a dataset result cell to show a visualization of the reconstruction. For training datasets, ground truth and accuracy / completeness visualizations are also available. The visualizations may not work with mobile browsers.




Method Infoallhigh-res
multi-view
indooroutdoorbotani.boulde.bridgedoorexhibi.lectur.living.loungeobserv.old co.statueterrac.
sort bysort bysort bysort bysorted bysort bysort bysort bysort bysort bysort bysort bysort bysort bysort bysort by
test_0728_SECOND87.71 3295.34 171.43 5693.49 994.23 397.49 489.08 1296.41 1294.21 42
SED-MVS90.08 290.85 287.77 2695.30 270.98 6393.57 794.06 1077.24 5093.10 195.72 882.99 197.44 689.07 1496.63 494.88 14
IU-MVS95.30 271.25 5792.95 5166.81 25592.39 688.94 1696.63 494.85 19
test_241102_ONE95.30 270.98 6394.06 1077.17 5393.10 195.39 1182.99 197.27 11
DVP-MVScopyleft89.60 390.35 387.33 4095.27 571.25 5793.49 992.73 5977.33 4892.12 995.78 480.98 997.40 889.08 1296.41 1293.33 84
Zhenlong Yuan, Jinguo Luo, Fei Shen, Zhaoxin Li, Cong Liu, Tianlu Mao, Zhaoqi Wang: DVP-MVS: Synergize Depth-Edge and Visibility Prior for Multi-View Stereo. AAAI2025
test072695.27 571.25 5793.60 694.11 677.33 4892.81 395.79 380.98 9
test_one_060195.07 771.46 5594.14 578.27 3592.05 1195.74 680.83 11
test_part295.06 872.65 3291.80 13
HPM-MVS++copyleft89.02 989.15 988.63 595.01 976.03 192.38 2792.85 5480.26 1187.78 2994.27 3275.89 1996.81 2387.45 3296.44 993.05 96
FOURS195.00 1072.39 3995.06 193.84 1574.49 11391.30 15
DPE-MVScopyleft89.48 589.98 488.01 1694.80 1172.69 3191.59 4394.10 875.90 8592.29 795.66 1081.67 697.38 1087.44 3396.34 1593.95 52
Kehua Chen, Zhenlong Yuan, Tianlu Mao, Zhaoqi Wang: Dual-Level Precision Edges Guided Multi-View Stereo with Accurate Planarization. AAAI2025
CNVR-MVS88.93 1089.13 1088.33 894.77 1273.82 890.51 6193.00 4380.90 788.06 2694.06 4276.43 1696.84 2188.48 2495.99 1894.34 37
ACMMPR87.44 2387.23 2788.08 1494.64 1373.59 1293.04 1293.20 3476.78 6584.66 6694.52 2168.81 8496.65 3084.53 4994.90 4094.00 50
region2R87.42 2587.20 2888.09 1394.63 1473.55 1393.03 1493.12 3776.73 6884.45 7094.52 2169.09 7896.70 2784.37 5194.83 4494.03 49
OPU-MVS89.06 394.62 1575.42 493.57 794.02 4482.45 396.87 2083.77 5896.48 894.88 14
HFP-MVS87.58 2287.47 2487.94 1994.58 1673.54 1593.04 1293.24 3376.78 6584.91 5994.44 2870.78 6096.61 3284.53 4994.89 4193.66 65
MCST-MVS87.37 2787.25 2687.73 2894.53 1772.46 3889.82 7793.82 1673.07 14984.86 6292.89 7476.22 1796.33 3884.89 4495.13 3694.40 34
APDe-MVScopyleft89.15 789.63 687.73 2894.49 1871.69 5293.83 493.96 1375.70 8991.06 1696.03 176.84 1497.03 1789.09 1195.65 2794.47 31
Zhaojie Zeng, Yuesong Wang, Tao Guan: Matching Ambiguity-Resilient Multi-View Stereo via Adaptive Patch Deformation. Pattern Recognition
DP-MVS Recon83.11 9182.09 9886.15 5894.44 1970.92 6888.79 11392.20 8170.53 19279.17 13791.03 11964.12 12796.03 4668.39 20690.14 10291.50 146
XVS87.18 2986.91 3388.00 1794.42 2073.33 1992.78 1892.99 4579.14 2183.67 8594.17 3667.45 9596.60 3383.06 6394.50 5094.07 47
X-MVStestdata80.37 14577.83 18288.00 1794.42 2073.33 1992.78 1892.99 4579.14 2183.67 8512.47 40367.45 9596.60 3383.06 6394.50 5094.07 47
mPP-MVS86.67 3786.32 3987.72 3094.41 2273.55 1392.74 2092.22 8076.87 6282.81 9794.25 3466.44 10596.24 4182.88 6794.28 5693.38 81
NCCC88.06 1588.01 1988.24 1194.41 2273.62 1191.22 5292.83 5581.50 585.79 4893.47 6073.02 3997.00 1884.90 4294.94 3994.10 45
ZNCC-MVS87.94 1987.85 2088.20 1294.39 2473.33 1993.03 1493.81 1776.81 6385.24 5394.32 3171.76 4896.93 1985.53 3995.79 2294.32 38
ZD-MVS94.38 2572.22 4492.67 6170.98 18287.75 3194.07 4174.01 3296.70 2784.66 4794.84 43
MP-MVScopyleft87.71 2087.64 2287.93 2194.36 2673.88 692.71 2292.65 6477.57 4183.84 8294.40 3072.24 4396.28 4085.65 3895.30 3593.62 72
Rongxuan Tan, Qing Wang, et al.: MP-MVS: Multi-Scale Windows PatchMatch and Planar Prior Multi-View Stereo.
DVP-MVS++90.23 191.01 187.89 2494.34 2771.25 5795.06 194.23 378.38 3392.78 495.74 682.45 397.49 489.42 996.68 294.95 10
MSC_two_6792asdad89.16 194.34 2775.53 292.99 4597.53 289.67 696.44 994.41 32
No_MVS89.16 194.34 2775.53 292.99 4597.53 289.67 696.44 994.41 32
MSP-MVS89.51 489.91 588.30 1094.28 3073.46 1792.90 1694.11 680.27 1091.35 1494.16 3778.35 1396.77 2489.59 894.22 5894.67 24
Zhenlong Yuan, Cong Liu, Fei Shen, Zhaoxin Li, Jingguo luo, Tianlu Mao and Zhaoqi Wang: MSP-MVS: Multi-granularity Segmentation Prior Guided Multi-View Stereo. AAAI2025
SMA-MVScopyleft89.08 889.23 788.61 694.25 3173.73 992.40 2493.63 2174.77 10792.29 795.97 274.28 2997.24 1288.58 2196.91 194.87 16
Yufeng Yin; Xiaoyan Liu; Zichao Zhang: SMA-MVS: Segmentation-Guided Multi-Scale Anchor Deformation Patch Multi-View Stereo. IEEE Transactions on Circuits and Systems for Video Technology
APD-MVScopyleft87.44 2387.52 2387.19 4294.24 3272.39 3991.86 4192.83 5573.01 15188.58 2194.52 2173.36 3496.49 3684.26 5295.01 3792.70 105
Yuesong Wang, Zhaojie Zeng and etc.: Adaptive Patch Deformation for Textureless-Resilient Multi-View Stereo. CVPR2023
PGM-MVS86.68 3686.27 4087.90 2294.22 3373.38 1890.22 7093.04 3875.53 9183.86 8194.42 2967.87 9296.64 3182.70 7294.57 4993.66 65
CP-MVS87.11 3086.92 3287.68 3494.20 3473.86 793.98 392.82 5876.62 7083.68 8494.46 2567.93 9095.95 5284.20 5594.39 5393.23 87
MTAPA87.23 2887.00 2987.90 2294.18 3574.25 586.58 18792.02 8579.45 1985.88 4694.80 1768.07 8996.21 4286.69 3695.34 3393.23 87
GST-MVS87.42 2587.26 2587.89 2494.12 3672.97 2492.39 2693.43 2876.89 6184.68 6393.99 4870.67 6296.82 2284.18 5695.01 3793.90 55
SR-MVS86.73 3486.67 3586.91 4694.11 3772.11 4792.37 2892.56 6774.50 11286.84 4294.65 2067.31 9795.77 5484.80 4692.85 6792.84 103
114514_t80.68 13579.51 14184.20 11594.09 3867.27 14989.64 8591.11 11958.75 34474.08 25490.72 12458.10 19895.04 8569.70 19189.42 11390.30 192
HPM-MVScopyleft87.11 3086.98 3087.50 3893.88 3972.16 4592.19 3493.33 3176.07 8283.81 8393.95 5169.77 7296.01 4885.15 4094.66 4694.32 38
Chunlin Ren, Qingshan Xu, Shikun Zhang, Jiaqi Yang: Hierarchical Prior Mining for Non-local Multi-View Stereo. ICCV 2023
save fliter93.80 4072.35 4290.47 6491.17 11674.31 116
ACMMP_NAP88.05 1788.08 1787.94 1993.70 4173.05 2290.86 5693.59 2376.27 7988.14 2495.09 1571.06 5796.67 2987.67 2996.37 1494.09 46
HPM-MVS_fast85.35 5884.95 6386.57 5393.69 4270.58 7592.15 3691.62 10373.89 12682.67 9994.09 4062.60 14495.54 6080.93 8392.93 6693.57 74
TSAR-MVS + MP.88.02 1888.11 1687.72 3093.68 4372.13 4691.41 4792.35 7474.62 11188.90 2093.85 5275.75 2096.00 4987.80 2894.63 4795.04 7
Zhenlong Yuan, Jiakai Cao, Zhaoqi Wang, Zhaoxin Li: TSAR-MVS: Textureless-aware Segmentation and Correlative Refinement Guided Multi-View Stereo. Pattern Recognition
MP-MVS-pluss87.67 2187.72 2187.54 3693.64 4472.04 4889.80 7993.50 2575.17 10086.34 4495.29 1270.86 5996.00 4988.78 1996.04 1694.58 27
MP-MVS-pluss: MP-MVS-pluss. MP-MVS-pluss
ACMMPcopyleft85.89 4885.39 5487.38 3993.59 4572.63 3392.74 2093.18 3676.78 6580.73 12193.82 5364.33 12596.29 3982.67 7390.69 9493.23 87
Qingshan Xu, Weihang Kong, Wenbing Tao, Marc Pollefeys: Multi-Scale Geometric Consistency Guided and Planar Prior Assisted Multi-View Stereo. IEEE Transactions on Pattern Analysis and Machine Intelligence
DeepC-MVS_fast79.65 386.91 3386.62 3687.76 2793.52 4672.37 4191.26 4893.04 3876.62 7084.22 7493.36 6371.44 5496.76 2580.82 8595.33 3494.16 43
Andreas Kuhn, Christian Sormann, Mattia Rossi, Oliver Erdler, Friedrich Fraundorfer: DeepC-MVS: Deep Confidence Prediction for Multi-View Stereo Reconstruction. 3DV 2020
CDPH-MVS85.76 5085.29 5987.17 4393.49 4771.08 6188.58 12392.42 7268.32 24484.61 6793.48 5872.32 4296.15 4579.00 9895.43 3194.28 40
DP-MVS76.78 22874.57 24383.42 14793.29 4869.46 9488.55 12483.70 27963.98 29670.20 29288.89 16854.01 23294.80 9646.66 35981.88 21986.01 311
CPTT-MVS83.73 7483.33 8084.92 8793.28 4970.86 6992.09 3790.38 13768.75 23679.57 13292.83 7660.60 18493.04 17880.92 8491.56 8490.86 169
TEST993.26 5072.96 2588.75 11591.89 9368.44 24285.00 5793.10 6774.36 2895.41 67
train_agg86.43 3986.20 4187.13 4493.26 5072.96 2588.75 11591.89 9368.69 23785.00 5793.10 6774.43 2695.41 6784.97 4195.71 2593.02 98
test_893.13 5272.57 3588.68 12091.84 9768.69 23784.87 6193.10 6774.43 2695.16 76
新几何183.42 14793.13 5270.71 7185.48 25657.43 35481.80 10791.98 9063.28 13392.27 20164.60 23792.99 6587.27 284
AdaColmapbinary80.58 14079.42 14384.06 12593.09 5468.91 10489.36 9488.97 18869.27 21975.70 21789.69 14357.20 20995.77 5463.06 24788.41 12787.50 279
SR-MVS-dyc-post85.77 4985.61 5286.23 5693.06 5570.63 7391.88 3992.27 7673.53 13785.69 4994.45 2665.00 12395.56 5882.75 6891.87 7992.50 114
RE-MVS-def85.48 5393.06 5570.63 7391.88 3992.27 7673.53 13785.69 4994.45 2663.87 12982.75 6891.87 7992.50 114
原ACMM184.35 10793.01 5768.79 10692.44 6963.96 29781.09 11791.57 10166.06 11195.45 6367.19 21694.82 4588.81 252
CSCG86.41 4186.19 4287.07 4592.91 5872.48 3790.81 5793.56 2473.95 12383.16 9191.07 11675.94 1895.19 7579.94 9494.38 5493.55 76
agg_prior92.85 5971.94 5191.78 10084.41 7194.93 87
9.1488.26 1592.84 6091.52 4694.75 173.93 12588.57 2294.67 1975.57 2295.79 5386.77 3595.76 23
SF-MVS88.46 1288.74 1287.64 3592.78 6171.95 5092.40 2494.74 275.71 8789.16 1995.10 1475.65 2196.19 4387.07 3496.01 1794.79 21
MG-MVS83.41 8383.45 7683.28 15292.74 6262.28 24888.17 13889.50 16475.22 9681.49 11192.74 8266.75 10095.11 8072.85 16291.58 8392.45 117
APD-MVS_3200maxsize85.97 4585.88 4886.22 5792.69 6369.53 8991.93 3892.99 4573.54 13685.94 4594.51 2465.80 11595.61 5783.04 6592.51 7193.53 78
test1286.80 4992.63 6470.70 7291.79 9982.71 9871.67 5196.16 4494.50 5093.54 77
test_prior86.33 5492.61 6569.59 8892.97 5095.48 6293.91 53
SD-MVS88.06 1588.50 1486.71 5192.60 6672.71 2991.81 4293.19 3577.87 3690.32 1794.00 4674.83 2393.78 13687.63 3094.27 5793.65 69
Zhenlong Yuan, Jiakai Cao, Zhaoxin Li, Hao Jiang and Zhaoqi Wang: SD-MVS: Segmentation-driven Deformation Multi-View Stereo with Spherical Refinement and EM optimization. AAAI2024
PAPM_NR83.02 9282.41 9284.82 9092.47 6766.37 16487.93 14891.80 9873.82 12777.32 17990.66 12567.90 9194.90 9170.37 18389.48 11293.19 91
DeepPCF-MVS80.84 188.10 1388.56 1386.73 5092.24 6869.03 9989.57 8793.39 3077.53 4589.79 1894.12 3978.98 1296.58 3585.66 3795.72 2494.58 27
SteuartSystems-ACMMP88.72 1188.86 1188.32 992.14 6972.96 2593.73 593.67 2080.19 1288.10 2594.80 1773.76 3397.11 1587.51 3195.82 2194.90 13
Skip Steuart: Steuart Systems R&D Blog.
UA-Net85.08 6284.96 6285.45 7092.07 7068.07 12989.78 8090.86 12682.48 384.60 6893.20 6669.35 7595.22 7471.39 17490.88 9293.07 95
旧先验191.96 7165.79 17886.37 24493.08 7169.31 7792.74 6888.74 256
MSLP-MVS++85.43 5685.76 5084.45 10391.93 7270.24 7690.71 5892.86 5377.46 4784.22 7492.81 7867.16 9992.94 18080.36 9094.35 5590.16 196
LFMVS81.82 10881.23 10983.57 14491.89 7363.43 23089.84 7681.85 30877.04 5883.21 8993.10 6752.26 24693.43 15571.98 16989.95 10793.85 57
PLCcopyleft70.83 1178.05 20176.37 22083.08 16391.88 7467.80 13488.19 13789.46 16564.33 29069.87 30188.38 18353.66 23493.58 14458.86 28782.73 20887.86 270
Jie Liao, Yanping Fu, Qingan Yan, Chunxia xiao: Pyramid Multi-View Stereo with Local Consistency. Pacific Graphics 2019
dcpmvs_285.63 5286.15 4484.06 12591.71 7564.94 19786.47 19091.87 9573.63 13286.60 4393.02 7276.57 1591.87 21683.36 6092.15 7595.35 3
MVS_111021_HR85.14 6084.75 6486.32 5591.65 7672.70 3085.98 20290.33 14176.11 8182.08 10291.61 10071.36 5694.17 12081.02 8292.58 7092.08 131
test22291.50 7768.26 12484.16 24883.20 29054.63 36579.74 12991.63 9958.97 19391.42 8586.77 297
TSAR-MVS + GP.85.71 5185.33 5686.84 4791.34 7872.50 3689.07 10487.28 22876.41 7285.80 4790.22 13474.15 3195.37 7281.82 7791.88 7892.65 109
MAR-MVS81.84 10780.70 11885.27 7491.32 7971.53 5489.82 7790.92 12269.77 21078.50 15186.21 24562.36 15094.52 10665.36 23092.05 7789.77 220
Zhenyu Xu, Yiguang Liu, Xuelei Shi, Ying Wang, Yunan Zheng: MARMVS: Matching Ambiguity Reduced Multiple View Stereo for Efficient Large Scale Scene Reconstruction. CVPR 2020
DeepC-MVS79.81 287.08 3286.88 3487.69 3391.16 8072.32 4390.31 6893.94 1477.12 5582.82 9694.23 3572.13 4597.09 1684.83 4595.37 3293.65 69
Andreas Kuhn, Christian Sormann, Mattia Rossi, Oliver Erdler, Friedrich Fraundorfer: DeepC-MVS: Deep Confidence Prediction for Multi-View Stereo Reconstruction. 3DV 2020
3Dnovator+77.84 485.48 5484.47 6988.51 791.08 8173.49 1693.18 1193.78 1880.79 876.66 19593.37 6260.40 18896.75 2677.20 11793.73 6295.29 5
Anonymous20240521178.25 19377.01 20281.99 19491.03 8260.67 26784.77 23083.90 27770.65 19180.00 12891.20 11141.08 34791.43 23565.21 23185.26 16593.85 57
CS-MVS-test86.29 4286.48 3785.71 6591.02 8367.21 15292.36 2993.78 1878.97 2883.51 8891.20 11170.65 6395.15 7781.96 7694.89 4194.77 22
VDD-MVS83.01 9382.36 9484.96 8491.02 8366.40 16388.91 10888.11 20777.57 4184.39 7293.29 6452.19 24793.91 13177.05 11988.70 12294.57 29
API-MVS81.99 10581.23 10984.26 11490.94 8570.18 8291.10 5389.32 16971.51 17178.66 14788.28 18665.26 11895.10 8364.74 23691.23 8887.51 278
testdata79.97 24190.90 8664.21 21284.71 26359.27 33885.40 5192.91 7362.02 15789.08 28068.95 19991.37 8686.63 301
PHI-MVS86.43 3986.17 4387.24 4190.88 8770.96 6592.27 3294.07 972.45 15485.22 5491.90 9269.47 7496.42 3783.28 6295.94 1994.35 36
VNet82.21 10082.41 9281.62 20090.82 8860.93 26284.47 23889.78 15676.36 7784.07 7891.88 9364.71 12490.26 25870.68 18088.89 11893.66 65
PVSNet_Blended_VisFu82.62 9681.83 10484.96 8490.80 8969.76 8788.74 11791.70 10269.39 21678.96 13988.46 18165.47 11794.87 9474.42 14588.57 12390.24 194
MM89.16 689.23 788.97 490.79 9073.65 1092.66 2391.17 11686.57 187.39 3594.97 1671.70 5097.68 192.19 195.63 2895.57 1
CS-MVS86.69 3586.95 3185.90 6390.76 9167.57 14092.83 1793.30 3279.67 1784.57 6992.27 8671.47 5395.02 8684.24 5493.46 6395.13 6
Anonymous2024052980.19 15078.89 15884.10 11890.60 9264.75 20188.95 10790.90 12365.97 27280.59 12291.17 11349.97 27693.73 14269.16 19782.70 21093.81 60
h-mvs3383.15 8882.19 9686.02 6190.56 9370.85 7088.15 14089.16 17876.02 8384.67 6491.39 10761.54 16295.50 6182.71 7075.48 29891.72 139
Anonymous2023121178.97 17977.69 19082.81 17690.54 9464.29 21190.11 7291.51 10765.01 28276.16 21288.13 19550.56 27093.03 17969.68 19277.56 26891.11 158
LS3D76.95 22674.82 24183.37 15090.45 9567.36 14689.15 10286.94 23561.87 31969.52 30490.61 12651.71 25994.53 10546.38 36286.71 14688.21 265
VDDNet81.52 11680.67 11984.05 12890.44 9664.13 21489.73 8285.91 25071.11 17883.18 9093.48 5850.54 27193.49 15073.40 15688.25 12894.54 30
CNLPA78.08 19976.79 20981.97 19590.40 9771.07 6287.59 15784.55 26666.03 27172.38 27489.64 14557.56 20486.04 31259.61 27983.35 20088.79 253
PAPR81.66 11480.89 11683.99 13390.27 9864.00 21586.76 18391.77 10168.84 23577.13 18889.50 14967.63 9394.88 9367.55 21188.52 12593.09 94
Vis-MVSNetpermissive83.46 8282.80 8985.43 7190.25 9968.74 11090.30 6990.13 14876.33 7880.87 12092.89 7461.00 17694.20 11872.45 16890.97 9093.35 83
Jingyang Zhang, Yao Yao, Shiwei Li, Zixin Luo, Tian Fang: Visibility-aware Multiview Stereo Network. BMVC 2020
DPM-MVS84.93 6384.29 7086.84 4790.20 10073.04 2387.12 16993.04 3869.80 20882.85 9591.22 11073.06 3896.02 4776.72 12694.63 4791.46 150
EPP-MVSNet83.40 8483.02 8484.57 9690.13 10164.47 20792.32 3090.73 12874.45 11579.35 13591.10 11469.05 8195.12 7872.78 16387.22 13894.13 44
CANet86.45 3886.10 4587.51 3790.09 10270.94 6789.70 8392.59 6681.78 481.32 11291.43 10670.34 6497.23 1384.26 5293.36 6494.37 35
test250677.30 22076.49 21679.74 24690.08 10352.02 35687.86 15263.10 39174.88 10480.16 12792.79 7938.29 36092.35 19868.74 20292.50 7294.86 17
ECVR-MVScopyleft79.61 15879.26 14980.67 22890.08 10354.69 34087.89 15077.44 34874.88 10480.27 12492.79 7948.96 29392.45 19268.55 20392.50 7294.86 17
HQP_MVS83.64 7783.14 8185.14 7790.08 10368.71 11291.25 5092.44 6979.12 2378.92 14191.00 12060.42 18695.38 6978.71 10286.32 15191.33 151
plane_prior790.08 10368.51 119
patch_mono-283.65 7684.54 6680.99 22090.06 10765.83 17584.21 24788.74 19871.60 16985.01 5592.44 8474.51 2583.50 33382.15 7592.15 7593.64 71
test111179.43 16579.18 15380.15 23889.99 10853.31 35387.33 16477.05 35175.04 10180.23 12692.77 8148.97 29292.33 20068.87 20092.40 7494.81 20
CHOSEN 1792x268877.63 21475.69 22583.44 14689.98 10968.58 11878.70 32587.50 22456.38 35975.80 21686.84 22258.67 19491.40 23661.58 26585.75 16390.34 189
IS-MVSNet83.15 8882.81 8884.18 11689.94 11063.30 23291.59 4388.46 20479.04 2579.49 13392.16 8865.10 12094.28 11267.71 20991.86 8194.95 10
plane_prior189.90 111
canonicalmvs85.91 4785.87 4986.04 6089.84 11269.44 9590.45 6693.00 4376.70 6988.01 2891.23 10973.28 3693.91 13181.50 7988.80 12094.77 22
plane_prior689.84 11268.70 11460.42 186
MVS_030488.08 1488.08 1788.08 1489.67 11472.04 4892.26 3389.26 17384.19 285.01 5595.18 1369.93 6997.20 1491.63 295.60 2994.99 9
NP-MVS89.62 11568.32 12290.24 132
EIA-MVS83.31 8782.80 8984.82 9089.59 11665.59 18188.21 13692.68 6074.66 10978.96 13986.42 24169.06 8095.26 7375.54 13890.09 10393.62 72
HyFIR lowres test77.53 21575.40 23383.94 13689.59 11666.62 16080.36 30488.64 20156.29 36076.45 20085.17 26957.64 20393.28 15861.34 26883.10 20491.91 135
TAPA-MVS73.13 979.15 17377.94 17882.79 17989.59 11662.99 24188.16 13991.51 10765.77 27377.14 18791.09 11560.91 17793.21 16350.26 34187.05 14092.17 128
Andrea Romanoni, Matteo Matteucci: TAPA-MVS: Textureless-Aware PAtchMatch Multi-View Stereo. ICCV 2019
thres100view90076.50 23275.55 23079.33 25489.52 11956.99 30985.83 20983.23 28873.94 12476.32 20587.12 21851.89 25691.95 21148.33 35083.75 18989.07 235
GeoE81.71 11081.01 11483.80 13989.51 12064.45 20888.97 10688.73 19971.27 17578.63 14889.76 14266.32 10793.20 16669.89 18986.02 15893.74 63
alignmvs85.48 5485.32 5785.96 6289.51 12069.47 9289.74 8192.47 6876.17 8087.73 3391.46 10570.32 6593.78 13681.51 7888.95 11794.63 26
PS-MVSNAJ81.69 11181.02 11383.70 14189.51 12068.21 12684.28 24690.09 14970.79 18481.26 11685.62 25963.15 13894.29 11175.62 13688.87 11988.59 259
ACMP74.13 681.51 11880.57 12084.36 10689.42 12368.69 11589.97 7491.50 11074.46 11475.04 24290.41 13053.82 23394.54 10477.56 11382.91 20589.86 216
Qingshan Xu and Wenbing Tao: Planar Prior Assisted PatchMatch Multi-View Stereo. AAAI 2020
thres600view776.50 23275.44 23179.68 24889.40 12457.16 30685.53 21783.23 28873.79 12976.26 20687.09 21951.89 25691.89 21448.05 35583.72 19290.00 208
ETV-MVS84.90 6584.67 6585.59 6789.39 12568.66 11688.74 11792.64 6579.97 1584.10 7785.71 25469.32 7695.38 6980.82 8591.37 8692.72 104
BH-RMVSNet79.61 15878.44 16783.14 16089.38 12665.93 17284.95 22787.15 23273.56 13578.19 16189.79 14156.67 21293.36 15659.53 28086.74 14590.13 198
iter_conf_final80.63 13679.35 14684.46 10289.36 12767.70 13789.85 7584.49 26773.19 14778.30 15788.94 16545.98 31394.56 10279.59 9684.48 17791.11 158
HQP-NCC89.33 12889.17 9876.41 7277.23 182
ACMP_Plane89.33 12889.17 9876.41 7277.23 182
HQP-MVS82.61 9782.02 10084.37 10589.33 12866.98 15589.17 9892.19 8276.41 7277.23 18290.23 13360.17 18995.11 8077.47 11485.99 15991.03 163
EC-MVSNet86.01 4386.38 3884.91 8889.31 13166.27 16692.32 3093.63 2179.37 2084.17 7691.88 9369.04 8295.43 6583.93 5793.77 6193.01 99
ACMM73.20 880.78 13479.84 13583.58 14389.31 13168.37 12189.99 7391.60 10470.28 19777.25 18089.66 14453.37 23893.53 14974.24 14882.85 20688.85 250
Qingshan Xu and Wenbing Tao: Multi-Scale Geometric Consistency Guided Multi-View Stereo. CVPR 2019
Test_1112_low_res76.40 23675.44 23179.27 25589.28 13358.09 29081.69 28287.07 23359.53 33672.48 27286.67 23161.30 16989.33 27560.81 27280.15 24090.41 187
F-COLMAP76.38 23774.33 24882.50 18689.28 13366.95 15888.41 12789.03 18364.05 29466.83 32988.61 17646.78 30492.89 18157.48 29978.55 25687.67 273
LPG-MVS_test82.08 10281.27 10884.50 9989.23 13568.76 10890.22 7091.94 9175.37 9476.64 19691.51 10254.29 22894.91 8878.44 10483.78 18689.83 217
LGP-MVS_train84.50 9989.23 13568.76 10891.94 9175.37 9476.64 19691.51 10254.29 22894.91 8878.44 10483.78 18689.83 217
BH-untuned79.47 16378.60 16382.05 19289.19 13765.91 17386.07 20188.52 20372.18 15975.42 22587.69 20061.15 17393.54 14860.38 27386.83 14486.70 299
xiu_mvs_v2_base81.69 11181.05 11283.60 14289.15 13868.03 13184.46 24090.02 15070.67 18781.30 11586.53 23963.17 13794.19 11975.60 13788.54 12488.57 260
test_yl81.17 12180.47 12383.24 15589.13 13963.62 22186.21 19789.95 15372.43 15781.78 10889.61 14657.50 20593.58 14470.75 17886.90 14292.52 112
DCV-MVSNet81.17 12180.47 12383.24 15589.13 13963.62 22186.21 19789.95 15372.43 15781.78 10889.61 14657.50 20593.58 14470.75 17886.90 14292.52 112
tfpn200view976.42 23575.37 23579.55 25389.13 13957.65 30085.17 22083.60 28073.41 14076.45 20086.39 24252.12 24891.95 21148.33 35083.75 18989.07 235
thres40076.50 23275.37 23579.86 24389.13 13957.65 30085.17 22083.60 28073.41 14076.45 20086.39 24252.12 24891.95 21148.33 35083.75 18990.00 208
1112_ss77.40 21876.43 21880.32 23589.11 14360.41 27283.65 25587.72 22062.13 31773.05 26586.72 22662.58 14689.97 26462.11 26080.80 23190.59 180
SDMVSNet80.38 14380.18 12980.99 22089.03 14464.94 19780.45 30389.40 16675.19 9876.61 19889.98 13760.61 18387.69 30176.83 12383.55 19590.33 190
sd_testset77.70 21277.40 19578.60 26689.03 14460.02 27679.00 32185.83 25275.19 9876.61 19889.98 13754.81 21985.46 31962.63 25383.55 19590.33 190
Fast-Effi-MVS+80.81 12979.92 13283.47 14588.85 14664.51 20485.53 21789.39 16770.79 18478.49 15285.06 27267.54 9493.58 14467.03 21986.58 14792.32 120
PVSNet_BlendedMVS80.60 13880.02 13082.36 18988.85 14665.40 18686.16 19992.00 8769.34 21878.11 16386.09 24966.02 11294.27 11371.52 17182.06 21687.39 280
PVSNet_Blended80.98 12480.34 12582.90 17288.85 14665.40 18684.43 24292.00 8767.62 25078.11 16385.05 27366.02 11294.27 11371.52 17189.50 11189.01 242
MVS_111021_LR82.61 9782.11 9784.11 11788.82 14971.58 5385.15 22286.16 24774.69 10880.47 12391.04 11762.29 15190.55 25680.33 9190.08 10490.20 195
BH-w/o78.21 19577.33 19880.84 22488.81 15065.13 19384.87 22887.85 21769.75 21174.52 25084.74 27761.34 16893.11 17358.24 29485.84 16184.27 334
FIs82.07 10382.42 9181.04 21988.80 15158.34 28888.26 13593.49 2676.93 6078.47 15391.04 11769.92 7092.34 19969.87 19084.97 16792.44 118
OPM-MVS83.50 8182.95 8685.14 7788.79 15270.95 6689.13 10391.52 10677.55 4480.96 11991.75 9560.71 17994.50 10779.67 9586.51 14989.97 212
Ray L. Khuboni, Hongjun Xu: Octagram Propagation Matching for Multi-Scale View Stereopsis (OPM-MVS).
WR-MVS79.49 16279.22 15180.27 23688.79 15258.35 28785.06 22488.61 20278.56 3077.65 17288.34 18463.81 13190.66 25564.98 23477.22 27091.80 138
OMC-MVS82.69 9581.97 10284.85 8988.75 15467.42 14387.98 14490.87 12574.92 10379.72 13091.65 9762.19 15493.96 12475.26 14086.42 15093.16 92
hse-mvs281.72 10980.94 11584.07 12388.72 15567.68 13885.87 20687.26 22976.02 8384.67 6488.22 18961.54 16293.48 15182.71 7073.44 32691.06 161
AUN-MVS79.21 17277.60 19284.05 12888.71 15667.61 13985.84 20887.26 22969.08 22877.23 18288.14 19453.20 24093.47 15275.50 13973.45 32591.06 161
ACMH67.68 1675.89 24373.93 25281.77 19888.71 15666.61 16188.62 12289.01 18569.81 20766.78 33086.70 23041.95 34491.51 23155.64 31378.14 26387.17 286
Qingshan Xu and Wenbing Tao: Multi-Scale Geometric Consistency Guided Multi-View Stereo. CVPR 2019
Vis-MVSNet (Re-imp)78.36 19278.45 16678.07 27788.64 15851.78 36286.70 18479.63 33274.14 12175.11 23990.83 12361.29 17089.75 26858.10 29591.60 8292.69 107
PatchMatch-RL72.38 28070.90 28476.80 29488.60 15967.38 14579.53 31376.17 35762.75 31069.36 30682.00 32445.51 31984.89 32453.62 32180.58 23478.12 372
ACMH+68.96 1476.01 24274.01 25082.03 19388.60 15965.31 19088.86 11087.55 22270.25 19967.75 31887.47 20841.27 34593.19 16858.37 29275.94 29187.60 275
LTVRE_ROB69.57 1376.25 23874.54 24581.41 20688.60 15964.38 21079.24 31789.12 18270.76 18669.79 30387.86 19749.09 28993.20 16656.21 31280.16 23986.65 300
Andreas Kuhn, Heiko Hirschmüller, Daniel Scharstein, Helmut Mayer: A TV Prior for High-Quality Scalable Multi-View Stereo Reconstruction. International Journal of Computer Vision 2016
DELS-MVS85.41 5785.30 5885.77 6488.49 16267.93 13285.52 21993.44 2778.70 2983.63 8789.03 16474.57 2495.71 5680.26 9294.04 5993.66 65
Christian Sormann, Emanuele Santellani, Mattia Rossi, Andreas Kuhn, Friedrich Fraundorfer: DELS-MVS: Deep Epipolar Line Search for Multi-View Stereo. Winter Conference on Applications of Computer Vision (WACV), 2023
CLD-MVS82.31 9981.65 10584.29 11088.47 16367.73 13685.81 21092.35 7475.78 8678.33 15686.58 23664.01 12894.35 11076.05 13187.48 13590.79 170
Zhaoxin Li, Wangmeng Zuo, Zhaoqi Wang, Lei Zhang: Confidence-based Large-scale Dense Multi-view Stereo. IEEE Transaction on Image Processing, 2020
UniMVSNet_NR-MVSNet81.88 10681.54 10682.92 17188.46 16463.46 22887.13 16892.37 7380.19 1278.38 15489.14 16071.66 5293.05 17670.05 18676.46 28192.25 123
ab-mvs79.51 16178.97 15781.14 21688.46 16460.91 26383.84 25289.24 17570.36 19479.03 13888.87 16963.23 13690.21 26065.12 23282.57 21192.28 122
testing9176.54 23075.66 22879.18 25888.43 16655.89 32781.08 29083.00 29473.76 13075.34 22884.29 28446.20 31190.07 26264.33 23884.50 17391.58 142
FC-MVSNet-test81.52 11682.02 10080.03 24088.42 16755.97 32687.95 14693.42 2977.10 5677.38 17790.98 12269.96 6891.79 21768.46 20584.50 17392.33 119
Effi-MVS+83.62 7983.08 8285.24 7588.38 16867.45 14288.89 10989.15 17975.50 9282.27 10088.28 18669.61 7394.45 10977.81 11187.84 13093.84 59
UniMVSNet (Re)81.60 11581.11 11183.09 16288.38 16864.41 20987.60 15693.02 4278.42 3278.56 15088.16 19069.78 7193.26 15969.58 19376.49 28091.60 140
VPNet78.69 18578.66 16278.76 26388.31 17055.72 32984.45 24186.63 24076.79 6478.26 15890.55 12859.30 19189.70 27066.63 22077.05 27290.88 168
FA-MVS(test-final)80.96 12579.91 13384.10 11888.30 17165.01 19584.55 23790.01 15173.25 14579.61 13187.57 20358.35 19794.72 9971.29 17586.25 15392.56 111
TR-MVS77.44 21676.18 22181.20 21488.24 17263.24 23384.61 23586.40 24367.55 25177.81 16986.48 24054.10 23093.15 17057.75 29882.72 20987.20 285
EI-MVSNet-Vis-set84.19 6883.81 7385.31 7388.18 17367.85 13387.66 15589.73 15980.05 1482.95 9289.59 14870.74 6194.82 9580.66 8984.72 17093.28 86
testing1175.14 25474.01 25078.53 26988.16 17456.38 32080.74 29780.42 32370.67 18772.69 27083.72 29743.61 33189.86 26562.29 25683.76 18889.36 230
testing9976.09 24175.12 23979.00 25988.16 17455.50 33280.79 29481.40 31273.30 14375.17 23684.27 28644.48 32590.02 26364.28 23984.22 18391.48 148
baseline176.98 22576.75 21277.66 28288.13 17655.66 33085.12 22381.89 30673.04 15076.79 19188.90 16762.43 14987.78 30063.30 24671.18 34189.55 226
test_040272.79 27870.44 28979.84 24488.13 17665.99 17185.93 20484.29 27165.57 27667.40 32485.49 26146.92 30392.61 18735.88 38574.38 31680.94 364
tttt051779.40 16777.91 17983.90 13888.10 17863.84 21888.37 13184.05 27571.45 17276.78 19289.12 16149.93 27994.89 9270.18 18583.18 20392.96 101
FE-MVS77.78 20875.68 22684.08 12288.09 17966.00 17083.13 26687.79 21868.42 24378.01 16685.23 26745.50 32095.12 7859.11 28485.83 16291.11 158
VPA-MVSNet80.60 13880.55 12180.76 22688.07 18060.80 26586.86 17791.58 10575.67 9080.24 12589.45 15563.34 13290.25 25970.51 18279.22 25291.23 155
UGNet80.83 12879.59 14084.54 9888.04 18168.09 12889.42 9188.16 20676.95 5976.22 20789.46 15349.30 28693.94 12768.48 20490.31 9891.60 140
Wanjuan Su, Qingshan Xu, Wenbing Tao: Uncertainty-guided Multi-view Stereo Network for Depth Estimation. IEEE Transactions on Circuits and Systems for Video Technology, 2022
WR-MVS_H78.51 18978.49 16578.56 26788.02 18256.38 32088.43 12692.67 6177.14 5473.89 25587.55 20566.25 10889.24 27758.92 28673.55 32490.06 206
QAPM80.88 12679.50 14285.03 8188.01 18368.97 10391.59 4392.00 8766.63 26475.15 23892.16 8857.70 20295.45 6363.52 24288.76 12190.66 176
3Dnovator76.31 583.38 8582.31 9586.59 5287.94 18472.94 2890.64 5992.14 8477.21 5275.47 22192.83 7658.56 19594.72 9973.24 15992.71 6992.13 130
testing22274.04 26272.66 26578.19 27487.89 18555.36 33381.06 29179.20 33671.30 17474.65 24883.57 30039.11 35688.67 28951.43 33385.75 16390.53 182
EI-MVSNet-UG-set83.81 7283.38 7885.09 8087.87 18667.53 14187.44 16189.66 16079.74 1682.23 10189.41 15770.24 6694.74 9879.95 9383.92 18592.99 100
TranMVSNet+NR-MVSNet80.84 12780.31 12682.42 18787.85 18762.33 24687.74 15491.33 11280.55 977.99 16789.86 13965.23 11992.62 18667.05 21875.24 30892.30 121
iter_conf0580.00 15478.70 16083.91 13787.84 18865.83 17588.84 11284.92 26271.61 16878.70 14488.94 16543.88 32994.56 10279.28 9784.28 18191.33 151
CP-MVSNet78.22 19478.34 17077.84 27987.83 18954.54 34287.94 14791.17 11677.65 3873.48 26088.49 18062.24 15388.43 29262.19 25774.07 31790.55 181
DU-MVS81.12 12380.52 12282.90 17287.80 19063.46 22887.02 17291.87 9579.01 2678.38 15489.07 16265.02 12193.05 17670.05 18676.46 28192.20 126
NR-MVSNet80.23 14879.38 14482.78 18087.80 19063.34 23186.31 19491.09 12079.01 2672.17 27689.07 16267.20 9892.81 18566.08 22575.65 29492.20 126
TAMVS78.89 18177.51 19483.03 16687.80 19067.79 13584.72 23185.05 26067.63 24976.75 19387.70 19962.25 15290.82 25158.53 29187.13 13990.49 184
thres20075.55 24774.47 24678.82 26287.78 19357.85 29783.07 26983.51 28372.44 15675.84 21584.42 27952.08 25191.75 21947.41 35783.64 19486.86 295
ETVMVS72.25 28371.05 28275.84 29987.77 19451.91 35979.39 31574.98 36069.26 22073.71 25782.95 30840.82 34986.14 31146.17 36384.43 17989.47 227
PS-CasMVS78.01 20378.09 17577.77 28187.71 19554.39 34488.02 14391.22 11377.50 4673.26 26288.64 17560.73 17888.41 29361.88 26173.88 32190.53 182
PCF-MVS73.52 780.38 14378.84 15985.01 8287.71 19568.99 10283.65 25591.46 11163.00 30477.77 17190.28 13166.10 10995.09 8461.40 26688.22 12990.94 167
Andreas Kuhn, Shan Lin, Oliver Erdler: Plane Completion and Filtering for Multi-View Stereo Reconstruction. GCPR 2019
thisisatest053079.40 16777.76 18784.31 10987.69 19765.10 19487.36 16284.26 27370.04 20177.42 17688.26 18849.94 27794.79 9770.20 18484.70 17193.03 97
casdiffmvs_mvgpermissive85.99 4486.09 4685.70 6687.65 19867.22 15188.69 11993.04 3879.64 1885.33 5292.54 8373.30 3594.50 10783.49 5991.14 8995.37 2
Fangjinhua Wang, Qingshan Xu, Yew-Soon Ong, Marc Pollefeys: Lightweight and Accurate Multi-View Stereo With Confidence-Aware Diffusion Model. IEEE T-PAMI 2025
RRT_MVS80.35 14679.22 15183.74 14087.63 19965.46 18591.08 5488.92 19173.82 12776.44 20390.03 13649.05 29194.25 11776.84 12179.20 25391.51 144
GBi-Net78.40 19077.40 19581.40 20787.60 20063.01 23888.39 12889.28 17071.63 16575.34 22887.28 21054.80 22091.11 24262.72 24979.57 24590.09 202
test178.40 19077.40 19581.40 20787.60 20063.01 23888.39 12889.28 17071.63 16575.34 22887.28 21054.80 22091.11 24262.72 24979.57 24590.09 202
FMVSNet278.20 19677.21 19981.20 21487.60 20062.89 24287.47 16089.02 18471.63 16575.29 23487.28 21054.80 22091.10 24562.38 25479.38 24989.61 224
CDS-MVSNet79.07 17677.70 18983.17 15987.60 20068.23 12584.40 24486.20 24667.49 25276.36 20486.54 23861.54 16290.79 25261.86 26287.33 13690.49 184
Khang Truong Giang, Soohwan Song, Sungho Jo: Curvature-guided dynamic scale networks for Multi-view Stereo. ICLR 2022
HY-MVS69.67 1277.95 20477.15 20080.36 23387.57 20460.21 27583.37 26287.78 21966.11 26875.37 22787.06 22163.27 13490.48 25761.38 26782.43 21290.40 188
mvsmamba81.69 11180.74 11784.56 9787.45 20566.72 15991.26 4885.89 25174.66 10978.23 15990.56 12754.33 22794.91 8880.73 8883.54 19792.04 134
xiu_mvs_v1_base_debu80.80 13179.72 13784.03 13087.35 20670.19 7985.56 21288.77 19469.06 22981.83 10488.16 19050.91 26592.85 18278.29 10887.56 13289.06 237
xiu_mvs_v1_base80.80 13179.72 13784.03 13087.35 20670.19 7985.56 21288.77 19469.06 22981.83 10488.16 19050.91 26592.85 18278.29 10887.56 13289.06 237
xiu_mvs_v1_base_debi80.80 13179.72 13784.03 13087.35 20670.19 7985.56 21288.77 19469.06 22981.83 10488.16 19050.91 26592.85 18278.29 10887.56 13289.06 237
MVSFormer82.85 9482.05 9985.24 7587.35 20670.21 7790.50 6290.38 13768.55 23981.32 11289.47 15161.68 15993.46 15378.98 9990.26 10092.05 132
lupinMVS81.39 11980.27 12884.76 9387.35 20670.21 7785.55 21586.41 24262.85 30781.32 11288.61 17661.68 15992.24 20378.41 10690.26 10091.83 136
testing368.56 31567.67 31671.22 34287.33 21142.87 39083.06 27071.54 37270.36 19469.08 30984.38 28130.33 37985.69 31537.50 38475.45 30185.09 327
baseline84.93 6384.98 6184.80 9287.30 21265.39 18887.30 16592.88 5277.62 3984.04 7992.26 8771.81 4793.96 12481.31 8090.30 9995.03 8
PAPM77.68 21376.40 21981.51 20387.29 21361.85 25383.78 25389.59 16264.74 28471.23 28488.70 17262.59 14593.66 14352.66 32687.03 14189.01 242
LCM-MVSNet-Re77.05 22376.94 20577.36 28787.20 21451.60 36380.06 30780.46 32275.20 9767.69 31986.72 22662.48 14788.98 28263.44 24489.25 11491.51 144
casdiffmvspermissive85.11 6185.14 6085.01 8287.20 21465.77 17987.75 15392.83 5577.84 3784.36 7392.38 8572.15 4493.93 13081.27 8190.48 9695.33 4
Fangjinhua Wang, Qingshan Xu, Yew-Soon Ong, Marc Pollefeys: Lightweight and Accurate Multi-View Stereo With Confidence-Aware Diffusion Model. IEEE T-PAMI 2025
COLMAP_ROBcopyleft66.92 1773.01 27570.41 29080.81 22587.13 21665.63 18088.30 13484.19 27462.96 30563.80 35587.69 20038.04 36192.56 18946.66 35974.91 31184.24 335
Johannes L. Schönberger, Enliang Zheng, Marc Pollefeys, Jan-Michael Frahm: Pixelwise View Selection for Unstructured Multi-View Stereo. ECCV 2016
PEN-MVS77.73 20977.69 19077.84 27987.07 21753.91 34787.91 14991.18 11577.56 4373.14 26488.82 17061.23 17189.17 27859.95 27672.37 33290.43 186
MVS_Test83.15 8883.06 8383.41 14986.86 21863.21 23486.11 20092.00 8774.31 11682.87 9489.44 15670.03 6793.21 16377.39 11688.50 12693.81 60
UniMVSNet_ETH3D79.10 17578.24 17381.70 19986.85 21960.24 27487.28 16688.79 19374.25 11876.84 18990.53 12949.48 28291.56 22667.98 20782.15 21493.29 85
FMVSNet377.88 20676.85 20780.97 22286.84 22062.36 24586.52 18988.77 19471.13 17775.34 22886.66 23254.07 23191.10 24562.72 24979.57 24589.45 228
FMVSNet177.44 21676.12 22281.40 20786.81 22163.01 23888.39 12889.28 17070.49 19374.39 25187.28 21049.06 29091.11 24260.91 27078.52 25790.09 202
nrg03083.88 7183.53 7584.96 8486.77 22269.28 9890.46 6592.67 6174.79 10682.95 9291.33 10872.70 4193.09 17480.79 8779.28 25192.50 114
ET-MVSNet_ETH3D78.63 18676.63 21584.64 9586.73 22369.47 9285.01 22584.61 26569.54 21466.51 33786.59 23450.16 27491.75 21976.26 12884.24 18292.69 107
fmvsm_s_conf0.5_n83.80 7383.71 7484.07 12386.69 22467.31 14789.46 8983.07 29271.09 17986.96 4193.70 5569.02 8391.47 23388.79 1884.62 17293.44 80
UWE-MVS72.13 28471.49 27574.03 31986.66 22547.70 37681.40 28876.89 35363.60 29975.59 21884.22 28739.94 35285.62 31648.98 34786.13 15688.77 254
jason81.39 11980.29 12784.70 9486.63 22669.90 8585.95 20386.77 23863.24 30081.07 11889.47 15161.08 17592.15 20578.33 10790.07 10592.05 132
jason: jason.
PS-MVSNAJss82.07 10381.31 10784.34 10886.51 22767.27 14989.27 9691.51 10771.75 16379.37 13490.22 13463.15 13894.27 11377.69 11282.36 21391.49 147
WTY-MVS75.65 24675.68 22675.57 30386.40 22856.82 31177.92 33582.40 30265.10 27976.18 20987.72 19863.13 14180.90 34860.31 27481.96 21789.00 244
DTE-MVSNet76.99 22476.80 20877.54 28686.24 22953.06 35587.52 15890.66 12977.08 5772.50 27188.67 17460.48 18589.52 27257.33 30270.74 34390.05 207
PVSNet64.34 1872.08 28570.87 28575.69 30186.21 23056.44 31874.37 35680.73 31762.06 31870.17 29482.23 32042.86 33583.31 33554.77 31684.45 17887.32 283
fmvsm_s_conf0.5_n_a83.63 7883.41 7784.28 11186.14 23168.12 12789.43 9082.87 29770.27 19887.27 3793.80 5469.09 7891.58 22488.21 2683.65 19393.14 93
test_fmvsm_n_192085.29 5985.34 5585.13 7986.12 23269.93 8388.65 12190.78 12769.97 20488.27 2393.98 4971.39 5591.54 22888.49 2390.45 9793.91 53
tfpnnormal74.39 25773.16 26178.08 27686.10 23358.05 29184.65 23487.53 22370.32 19671.22 28585.63 25854.97 21889.86 26543.03 37375.02 31086.32 303
IterMVS-LS80.06 15179.38 14482.11 19185.89 23463.20 23586.79 18089.34 16874.19 11975.45 22486.72 22666.62 10192.39 19572.58 16576.86 27590.75 173
Fangjinhua Wang, Silvano Galliani, Christoph Vogel, Marc Pollefeys: IterMVS: Iterative Probability Estimation for Efficient Multi-View Stereo.
Baseline_NR-MVSNet78.15 19878.33 17177.61 28485.79 23556.21 32486.78 18185.76 25373.60 13477.93 16887.57 20365.02 12188.99 28167.14 21775.33 30587.63 274
cascas76.72 22974.64 24282.99 16885.78 23665.88 17482.33 27589.21 17660.85 32572.74 26781.02 32947.28 30093.75 14067.48 21285.02 16689.34 231
MVS78.19 19776.99 20481.78 19785.66 23766.99 15484.66 23290.47 13555.08 36472.02 27885.27 26563.83 13094.11 12266.10 22489.80 10984.24 335
XVG-OURS80.41 14279.23 15083.97 13485.64 23869.02 10183.03 27190.39 13671.09 17977.63 17391.49 10454.62 22691.35 23775.71 13483.47 19891.54 143
CANet_DTU80.61 13779.87 13482.83 17485.60 23963.17 23787.36 16288.65 20076.37 7675.88 21488.44 18253.51 23693.07 17573.30 15789.74 11092.25 123
XVG-OURS-SEG-HR80.81 12979.76 13683.96 13585.60 23968.78 10783.54 26090.50 13470.66 19076.71 19491.66 9660.69 18091.26 23976.94 12081.58 22291.83 136
TransMVSNet (Re)75.39 25274.56 24477.86 27885.50 24157.10 30886.78 18186.09 24972.17 16071.53 28287.34 20963.01 14289.31 27656.84 30761.83 36987.17 286
fmvsm_l_conf0.5_n84.47 6784.54 6684.27 11385.42 24268.81 10588.49 12587.26 22968.08 24688.03 2793.49 5772.04 4691.77 21888.90 1789.14 11692.24 125
fmvsm_l_conf0.5_n_a84.13 6984.16 7184.06 12585.38 24368.40 12088.34 13286.85 23767.48 25387.48 3493.40 6170.89 5891.61 22288.38 2589.22 11592.16 129
MVP-Stereo76.12 23974.46 24781.13 21785.37 24469.79 8684.42 24387.95 21365.03 28167.46 32285.33 26453.28 23991.73 22158.01 29683.27 20181.85 359
Qingsong Yan: MVP-Stereo: A Parallel Multi-View Patchmatch Stereo Method with Dilation Matching for Photogrammetric Application.
thisisatest051577.33 21975.38 23483.18 15885.27 24563.80 21982.11 27883.27 28765.06 28075.91 21383.84 29349.54 28194.27 11367.24 21586.19 15491.48 148
tt080578.73 18377.83 18281.43 20585.17 24660.30 27389.41 9290.90 12371.21 17677.17 18688.73 17146.38 30693.21 16372.57 16678.96 25490.79 170
OpenMVScopyleft72.83 1079.77 15678.33 17184.09 12185.17 24669.91 8490.57 6090.97 12166.70 25872.17 27691.91 9154.70 22493.96 12461.81 26390.95 9188.41 263
AllTest70.96 29268.09 30779.58 25185.15 24863.62 22184.58 23679.83 32962.31 31460.32 36686.73 22432.02 37388.96 28450.28 33971.57 33986.15 307
TestCases79.58 25185.15 24863.62 22179.83 32962.31 31460.32 36686.73 22432.02 37388.96 28450.28 33971.57 33986.15 307
Effi-MVS+-dtu80.03 15278.57 16484.42 10485.13 25068.74 11088.77 11488.10 20874.99 10274.97 24383.49 30157.27 20893.36 15673.53 15380.88 22991.18 156
SixPastTwentyTwo73.37 26971.26 28179.70 24785.08 25157.89 29685.57 21183.56 28271.03 18165.66 34185.88 25142.10 34292.57 18859.11 28463.34 36788.65 258
bld_raw_dy_0_6477.29 22175.98 22381.22 21385.04 25265.47 18488.14 14277.56 34569.20 22473.77 25689.40 15942.24 34188.85 28776.78 12481.64 22189.33 232
test_fmvsmconf_n85.92 4686.04 4785.57 6885.03 25369.51 9089.62 8690.58 13173.42 13987.75 3194.02 4472.85 4093.24 16090.37 390.75 9393.96 51
EG-PatchMatch MVS74.04 26271.82 27280.71 22784.92 25467.42 14385.86 20788.08 20966.04 27064.22 35183.85 29235.10 36992.56 18957.44 30080.83 23082.16 358
fmvsm_s_conf0.1_n83.56 8083.38 7884.10 11884.86 25567.28 14889.40 9383.01 29370.67 18787.08 3893.96 5068.38 8791.45 23488.56 2284.50 17393.56 75
IB-MVS68.01 1575.85 24473.36 25983.31 15184.76 25666.03 16883.38 26185.06 25970.21 20069.40 30581.05 32845.76 31794.66 10165.10 23375.49 29789.25 234
Christian Sormann, Mattia Rossi, Andreas Kuhn and Friedrich Fraundorfer: IB-MVS: An Iterative Algorithm for Deep Multi-View Stereo based on Binary Decisions. BMVC 2021
mvs_tets79.13 17477.77 18683.22 15784.70 25766.37 16489.17 9890.19 14669.38 21775.40 22689.46 15344.17 32793.15 17076.78 12480.70 23390.14 197
Syy-MVS68.05 31967.85 31068.67 35584.68 25840.97 39678.62 32673.08 36966.65 26266.74 33179.46 34452.11 25082.30 34032.89 38876.38 28682.75 353
myMVS_eth3d67.02 32566.29 32669.21 35084.68 25842.58 39178.62 32673.08 36966.65 26266.74 33179.46 34431.53 37682.30 34039.43 38176.38 28682.75 353
jajsoiax79.29 17077.96 17783.27 15384.68 25866.57 16289.25 9790.16 14769.20 22475.46 22389.49 15045.75 31893.13 17276.84 12180.80 23190.11 200
WB-MVSnew71.96 28671.65 27472.89 32884.67 26151.88 36082.29 27677.57 34462.31 31473.67 25883.00 30753.49 23781.10 34745.75 36682.13 21585.70 316
MIMVSNet70.69 29669.30 29574.88 31084.52 26256.35 32275.87 34679.42 33364.59 28567.76 31782.41 31641.10 34681.54 34446.64 36181.34 22386.75 298
MSDG73.36 27170.99 28380.49 23184.51 26365.80 17780.71 29886.13 24865.70 27465.46 34283.74 29644.60 32390.91 25051.13 33476.89 27484.74 330
mvs_anonymous79.42 16679.11 15480.34 23484.45 26457.97 29482.59 27387.62 22167.40 25476.17 21188.56 17968.47 8689.59 27170.65 18186.05 15793.47 79
EI-MVSNet80.52 14179.98 13182.12 19084.28 26563.19 23686.41 19188.95 18974.18 12078.69 14587.54 20666.62 10192.43 19372.57 16680.57 23590.74 174
CVMVSNet72.99 27672.58 26674.25 31784.28 26550.85 36886.41 19183.45 28544.56 38173.23 26387.54 20649.38 28485.70 31465.90 22678.44 25986.19 306
pm-mvs177.25 22276.68 21478.93 26184.22 26758.62 28686.41 19188.36 20571.37 17373.31 26188.01 19661.22 17289.15 27964.24 24073.01 32989.03 241
EPNet83.72 7582.92 8786.14 5984.22 26769.48 9191.05 5585.27 25781.30 676.83 19091.65 9766.09 11095.56 5876.00 13293.85 6093.38 81
Wanjuan Su, Wenbing Tao: Efficient Edge-Preserving Multi-View Stereo Network for Depth Estimation. AAAI 2023
test_fmvsmvis_n_192084.02 7083.87 7284.49 10184.12 26969.37 9788.15 14087.96 21270.01 20283.95 8093.23 6568.80 8591.51 23188.61 2089.96 10692.57 110
v879.97 15579.02 15682.80 17784.09 27064.50 20687.96 14590.29 14474.13 12275.24 23586.81 22362.88 14393.89 13374.39 14675.40 30390.00 208
v1079.74 15778.67 16182.97 17084.06 27164.95 19687.88 15190.62 13073.11 14875.11 23986.56 23761.46 16594.05 12373.68 15175.55 29689.90 214
SCA74.22 26072.33 26979.91 24284.05 27262.17 24979.96 31079.29 33566.30 26772.38 27480.13 33851.95 25488.60 29059.25 28277.67 26788.96 246
test_djsdf80.30 14779.32 14783.27 15383.98 27365.37 18990.50 6290.38 13768.55 23976.19 20888.70 17256.44 21393.46 15378.98 9980.14 24190.97 166
131476.53 23175.30 23780.21 23783.93 27462.32 24784.66 23288.81 19260.23 32970.16 29584.07 29055.30 21790.73 25467.37 21383.21 20287.59 277
MS-PatchMatch73.83 26572.67 26477.30 28983.87 27566.02 16981.82 27984.66 26461.37 32368.61 31382.82 31247.29 29988.21 29459.27 28184.32 18077.68 373
fmvsm_s_conf0.1_n_a83.32 8682.99 8584.28 11183.79 27668.07 12989.34 9582.85 29869.80 20887.36 3694.06 4268.34 8891.56 22687.95 2783.46 19993.21 90
v114480.03 15279.03 15583.01 16783.78 27764.51 20487.11 17090.57 13371.96 16278.08 16586.20 24661.41 16693.94 12774.93 14177.23 26990.60 179
OurMVSNet-221017-074.26 25972.42 26879.80 24583.76 27859.59 28185.92 20586.64 23966.39 26666.96 32787.58 20239.46 35391.60 22365.76 22869.27 34888.22 264
v2v48280.23 14879.29 14883.05 16583.62 27964.14 21387.04 17189.97 15273.61 13378.18 16287.22 21461.10 17493.82 13476.11 12976.78 27891.18 156
XXY-MVS75.41 25175.56 22974.96 30983.59 28057.82 29880.59 30083.87 27866.54 26574.93 24488.31 18563.24 13580.09 35162.16 25876.85 27686.97 293
v119279.59 16078.43 16883.07 16483.55 28164.52 20386.93 17590.58 13170.83 18377.78 17085.90 25059.15 19293.94 12773.96 15077.19 27190.76 172
EGC-MVSNET52.07 35847.05 36267.14 35983.51 28260.71 26680.50 30267.75 3820.07 4060.43 40775.85 37024.26 38681.54 34428.82 39162.25 36859.16 391
v7n78.97 17977.58 19383.14 16083.45 28365.51 18288.32 13391.21 11473.69 13172.41 27386.32 24457.93 19993.81 13569.18 19675.65 29490.11 200
v14419279.47 16378.37 16982.78 18083.35 28463.96 21686.96 17390.36 14069.99 20377.50 17485.67 25760.66 18193.77 13874.27 14776.58 27990.62 177
tpm273.26 27271.46 27678.63 26483.34 28556.71 31480.65 29980.40 32456.63 35873.55 25982.02 32351.80 25891.24 24056.35 31178.42 26087.95 267
v192192079.22 17178.03 17682.80 17783.30 28663.94 21786.80 17990.33 14169.91 20677.48 17585.53 26058.44 19693.75 14073.60 15276.85 27690.71 175
baseline275.70 24573.83 25581.30 21083.26 28761.79 25582.57 27480.65 31866.81 25566.88 32883.42 30257.86 20192.19 20463.47 24379.57 24589.91 213
v124078.99 17877.78 18582.64 18383.21 28863.54 22586.62 18690.30 14369.74 21377.33 17885.68 25657.04 21093.76 13973.13 16076.92 27390.62 177
XVG-ACMP-BASELINE76.11 24074.27 24981.62 20083.20 28964.67 20283.60 25889.75 15869.75 21171.85 27987.09 21932.78 37292.11 20669.99 18880.43 23788.09 266
MDTV_nov1_ep1369.97 29483.18 29053.48 35077.10 34080.18 32860.45 32669.33 30780.44 33548.89 29486.90 30551.60 33178.51 258
PatchmatchNetpermissive73.12 27471.33 27978.49 27183.18 29060.85 26479.63 31278.57 33964.13 29171.73 28079.81 34351.20 26385.97 31357.40 30176.36 28888.66 257
Fangjinhua Wang, Silvano Galliani, Christoph Vogel, Pablo Speciale, Marc Pollefeys: PatchmatchNet: Learned Multi-View Patchmatch Stereo.
Fast-Effi-MVS+-dtu78.02 20276.49 21682.62 18483.16 29266.96 15786.94 17487.45 22672.45 15471.49 28384.17 28854.79 22391.58 22467.61 21080.31 23889.30 233
gg-mvs-nofinetune69.95 30467.96 30875.94 29883.07 29354.51 34377.23 33970.29 37563.11 30270.32 29162.33 38643.62 33088.69 28853.88 32087.76 13184.62 332
MVSTER79.01 17777.88 18182.38 18883.07 29364.80 20084.08 25188.95 18969.01 23278.69 14587.17 21754.70 22492.43 19374.69 14280.57 23589.89 215
K. test v371.19 28968.51 30179.21 25783.04 29557.78 29984.35 24576.91 35272.90 15362.99 35882.86 31139.27 35491.09 24761.65 26452.66 38588.75 255
eth_miper_zixun_eth77.92 20576.69 21381.61 20283.00 29661.98 25183.15 26589.20 17769.52 21574.86 24584.35 28361.76 15892.56 18971.50 17372.89 33090.28 193
diffmvspermissive82.10 10181.88 10382.76 18283.00 29663.78 22083.68 25489.76 15772.94 15282.02 10389.85 14065.96 11490.79 25282.38 7487.30 13793.71 64
Fangjinhua Wang, Qingshan Xu, Yew-Soon Ong, Marc Pollefeys: Lightweight and Accurate Multi-View Stereo With Confidence-Aware Diffusion Model. IEEE T-PAMI 2025
test_fmvsmconf0.1_n85.61 5385.65 5185.50 6982.99 29869.39 9689.65 8490.29 14473.31 14287.77 3094.15 3871.72 4993.23 16190.31 490.67 9593.89 56
FMVSNet569.50 30767.96 30874.15 31882.97 29955.35 33480.01 30982.12 30562.56 31263.02 35681.53 32536.92 36481.92 34248.42 34974.06 31885.17 325
c3_l78.75 18277.91 17981.26 21182.89 30061.56 25784.09 25089.13 18169.97 20475.56 21984.29 28466.36 10692.09 20773.47 15575.48 29890.12 199
sss73.60 26773.64 25773.51 32382.80 30155.01 33876.12 34281.69 30962.47 31374.68 24785.85 25357.32 20778.11 35960.86 27180.93 22887.39 280
GA-MVS76.87 22775.17 23881.97 19582.75 30262.58 24381.44 28786.35 24572.16 16174.74 24682.89 31046.20 31192.02 20968.85 20181.09 22791.30 154
v14878.72 18477.80 18481.47 20482.73 30361.96 25286.30 19588.08 20973.26 14476.18 20985.47 26262.46 14892.36 19771.92 17073.82 32290.09 202
IterMVS-SCA-FT75.43 25073.87 25480.11 23982.69 30464.85 19981.57 28483.47 28469.16 22670.49 28984.15 28951.95 25488.15 29569.23 19572.14 33587.34 282
miper_ehance_all_eth78.59 18877.76 18781.08 21882.66 30561.56 25783.65 25589.15 17968.87 23475.55 22083.79 29566.49 10492.03 20873.25 15876.39 28389.64 223
CostFormer75.24 25373.90 25379.27 25582.65 30658.27 28980.80 29382.73 30061.57 32075.33 23283.13 30655.52 21591.07 24864.98 23478.34 26288.45 261
EPNet_dtu75.46 24974.86 24077.23 29082.57 30754.60 34186.89 17683.09 29171.64 16466.25 33985.86 25255.99 21488.04 29754.92 31586.55 14889.05 240
Wanjuan Su, Wenbing Tao: Efficient Edge-Preserving Multi-View Stereo Network for Depth Estimation. AAAI 2023
RPSCF73.23 27371.46 27678.54 26882.50 30859.85 27782.18 27782.84 29958.96 34171.15 28689.41 15745.48 32184.77 32558.82 28871.83 33791.02 165
cl____77.72 21076.76 21080.58 22982.49 30960.48 27083.09 26787.87 21569.22 22274.38 25285.22 26862.10 15591.53 22971.09 17675.41 30289.73 222
DIV-MVS_self_test77.72 21076.76 21080.58 22982.48 31060.48 27083.09 26787.86 21669.22 22274.38 25285.24 26662.10 15591.53 22971.09 17675.40 30389.74 221
tpm cat170.57 29768.31 30377.35 28882.41 31157.95 29578.08 33280.22 32752.04 37068.54 31477.66 36052.00 25387.84 29951.77 32972.07 33686.25 304
cl2278.07 20077.01 20281.23 21282.37 31261.83 25483.55 25987.98 21168.96 23375.06 24183.87 29161.40 16791.88 21573.53 15376.39 28389.98 211
tpm72.37 28171.71 27374.35 31682.19 31352.00 35779.22 31877.29 34964.56 28672.95 26683.68 29951.35 26183.26 33658.33 29375.80 29287.81 271
tpmvs71.09 29169.29 29676.49 29582.04 31456.04 32578.92 32381.37 31364.05 29467.18 32678.28 35549.74 28089.77 26749.67 34472.37 33283.67 342
dmvs_re71.14 29070.58 28672.80 32981.96 31559.68 27975.60 34879.34 33468.55 23969.27 30880.72 33449.42 28376.54 36752.56 32777.79 26482.19 357
pmmvs474.03 26471.91 27180.39 23281.96 31568.32 12281.45 28682.14 30459.32 33769.87 30185.13 27052.40 24488.13 29660.21 27574.74 31384.73 331
TinyColmap67.30 32464.81 32974.76 31281.92 31756.68 31580.29 30681.49 31160.33 32756.27 38083.22 30324.77 38587.66 30245.52 36769.47 34779.95 368
ITE_SJBPF78.22 27381.77 31860.57 26883.30 28669.25 22167.54 32087.20 21536.33 36687.28 30454.34 31874.62 31486.80 296
miper_enhance_ethall77.87 20776.86 20680.92 22381.65 31961.38 25982.68 27288.98 18665.52 27775.47 22182.30 31865.76 11692.00 21072.95 16176.39 28389.39 229
MVS-HIRNet59.14 34757.67 35063.57 36481.65 31943.50 38971.73 36365.06 38839.59 38851.43 38557.73 39238.34 35982.58 33939.53 37973.95 31964.62 388
GG-mvs-BLEND75.38 30681.59 32155.80 32879.32 31669.63 37767.19 32573.67 37543.24 33288.90 28650.41 33684.50 17381.45 361
IterMVS74.29 25872.94 26378.35 27281.53 32263.49 22781.58 28382.49 30168.06 24769.99 29883.69 29851.66 26085.54 31765.85 22771.64 33886.01 311
Fangjinhua Wang, Silvano Galliani, Christoph Vogel, Marc Pollefeys: IterMVS: Iterative Probability Estimation for Efficient Multi-View Stereo.
CHOSEN 280x42066.51 32964.71 33071.90 33481.45 32363.52 22657.98 39368.95 38153.57 36662.59 36076.70 36346.22 31075.29 38055.25 31479.68 24476.88 375
gm-plane-assit81.40 32453.83 34862.72 31180.94 33192.39 19563.40 245
pmmvs674.69 25673.39 25878.61 26581.38 32557.48 30386.64 18587.95 21364.99 28370.18 29386.61 23350.43 27289.52 27262.12 25970.18 34588.83 251
test-LLR72.94 27772.43 26774.48 31481.35 32658.04 29278.38 32877.46 34666.66 25969.95 29979.00 34948.06 29679.24 35366.13 22284.83 16886.15 307
test-mter71.41 28870.39 29174.48 31481.35 32658.04 29278.38 32877.46 34660.32 32869.95 29979.00 34936.08 36779.24 35366.13 22284.83 16886.15 307
CR-MVSNet73.37 26971.27 28079.67 24981.32 32865.19 19175.92 34480.30 32559.92 33272.73 26881.19 32652.50 24286.69 30659.84 27777.71 26587.11 290
RPMNet73.51 26870.49 28882.58 18581.32 32865.19 19175.92 34492.27 7657.60 35272.73 26876.45 36552.30 24595.43 6548.14 35477.71 26587.11 290
V4279.38 16978.24 17382.83 17481.10 33065.50 18385.55 21589.82 15571.57 17078.21 16086.12 24860.66 18193.18 16975.64 13575.46 30089.81 219
lessismore_v078.97 26081.01 33157.15 30765.99 38561.16 36382.82 31239.12 35591.34 23859.67 27846.92 39188.43 262
Patchmtry70.74 29569.16 29875.49 30580.72 33254.07 34674.94 35580.30 32558.34 34570.01 29681.19 32652.50 24286.54 30753.37 32371.09 34285.87 315
PatchT68.46 31767.85 31070.29 34680.70 33343.93 38872.47 36174.88 36160.15 33070.55 28776.57 36449.94 27781.59 34350.58 33574.83 31285.34 320
USDC70.33 30068.37 30276.21 29780.60 33456.23 32379.19 31986.49 24160.89 32461.29 36285.47 26231.78 37589.47 27453.37 32376.21 28982.94 352
tpmrst72.39 27972.13 27073.18 32780.54 33549.91 37279.91 31179.08 33763.11 30271.69 28179.95 34055.32 21682.77 33865.66 22973.89 32086.87 294
anonymousdsp78.60 18777.15 20082.98 16980.51 33667.08 15387.24 16789.53 16365.66 27575.16 23787.19 21652.52 24192.25 20277.17 11879.34 25089.61 224
OpenMVS_ROBcopyleft64.09 1970.56 29868.19 30477.65 28380.26 33759.41 28385.01 22582.96 29658.76 34365.43 34382.33 31737.63 36391.23 24145.34 36976.03 29082.32 355
test_fmvsmconf0.01_n84.73 6684.52 6885.34 7280.25 33869.03 9989.47 8889.65 16173.24 14686.98 4094.27 3266.62 10193.23 16190.26 589.95 10793.78 62
Anonymous2023120668.60 31367.80 31371.02 34380.23 33950.75 36978.30 33180.47 32156.79 35766.11 34082.63 31546.35 30878.95 35543.62 37275.70 29383.36 345
miper_lstm_enhance74.11 26173.11 26277.13 29180.11 34059.62 28072.23 36286.92 23666.76 25770.40 29082.92 30956.93 21182.92 33769.06 19872.63 33188.87 249
MIMVSNet168.58 31466.78 32473.98 32080.07 34151.82 36180.77 29584.37 26864.40 28859.75 36982.16 32136.47 36583.63 33242.73 37470.33 34486.48 302
ADS-MVSNet266.20 33463.33 33774.82 31179.92 34258.75 28567.55 37975.19 35953.37 36765.25 34575.86 36842.32 33880.53 35041.57 37668.91 35085.18 323
ADS-MVSNet64.36 33862.88 34168.78 35479.92 34247.17 37867.55 37971.18 37353.37 36765.25 34575.86 36842.32 33873.99 38441.57 37668.91 35085.18 323
test_vis1_n_192075.52 24875.78 22474.75 31379.84 34457.44 30483.26 26385.52 25562.83 30879.34 13686.17 24745.10 32279.71 35278.75 10181.21 22687.10 292
D2MVS74.82 25573.21 26079.64 25079.81 34562.56 24480.34 30587.35 22764.37 28968.86 31082.66 31446.37 30790.10 26167.91 20881.24 22586.25 304
our_test_369.14 30967.00 32275.57 30379.80 34658.80 28477.96 33377.81 34259.55 33562.90 35978.25 35647.43 29883.97 32951.71 33067.58 35583.93 340
ppachtmachnet_test70.04 30367.34 32078.14 27579.80 34661.13 26079.19 31980.59 31959.16 33965.27 34479.29 34646.75 30587.29 30349.33 34566.72 35686.00 313
dp66.80 32665.43 32870.90 34579.74 34848.82 37575.12 35374.77 36259.61 33464.08 35277.23 36142.89 33480.72 34948.86 34866.58 35883.16 347
EPMVS69.02 31068.16 30571.59 33679.61 34949.80 37477.40 33766.93 38362.82 30970.01 29679.05 34745.79 31677.86 36156.58 30975.26 30787.13 289
PVSNet_057.27 2061.67 34559.27 34868.85 35379.61 34957.44 30468.01 37873.44 36855.93 36158.54 37270.41 38244.58 32477.55 36247.01 35835.91 39471.55 382
CL-MVSNet_self_test72.37 28171.46 27675.09 30879.49 35153.53 34980.76 29685.01 26169.12 22770.51 28882.05 32257.92 20084.13 32852.27 32866.00 36187.60 275
Patchmatch-test64.82 33763.24 33869.57 34879.42 35249.82 37363.49 39069.05 38051.98 37259.95 36880.13 33850.91 26570.98 38840.66 37873.57 32387.90 269
MDA-MVSNet-bldmvs66.68 32763.66 33675.75 30079.28 35360.56 26973.92 35878.35 34064.43 28750.13 38779.87 34244.02 32883.67 33146.10 36456.86 37783.03 350
TESTMET0.1,169.89 30569.00 29972.55 33179.27 35456.85 31078.38 32874.71 36457.64 35168.09 31677.19 36237.75 36276.70 36663.92 24184.09 18484.10 338
N_pmnet52.79 35653.26 35551.40 38078.99 3557.68 41269.52 3723.89 41151.63 37357.01 37774.98 37240.83 34865.96 39537.78 38364.67 36480.56 367
dmvs_testset62.63 34264.11 33358.19 37078.55 35624.76 40675.28 34965.94 38667.91 24860.34 36576.01 36753.56 23573.94 38531.79 38967.65 35475.88 377
EU-MVSNet68.53 31667.61 31771.31 34178.51 35747.01 37984.47 23884.27 27242.27 38466.44 33884.79 27640.44 35083.76 33058.76 28968.54 35383.17 346
pmmvs571.55 28770.20 29375.61 30277.83 35856.39 31981.74 28180.89 31457.76 35067.46 32284.49 27849.26 28785.32 32157.08 30475.29 30685.11 326
test0.0.03 168.00 32067.69 31568.90 35277.55 35947.43 37775.70 34772.95 37166.66 25966.56 33382.29 31948.06 29675.87 37444.97 37074.51 31583.41 344
Patchmatch-RL test70.24 30167.78 31477.61 28477.43 36059.57 28271.16 36570.33 37462.94 30668.65 31272.77 37750.62 26985.49 31869.58 19366.58 35887.77 272
pmmvs-eth3d70.50 29967.83 31278.52 27077.37 36166.18 16781.82 27981.51 31058.90 34263.90 35480.42 33642.69 33686.28 31058.56 29065.30 36383.11 348
JIA-IIPM66.32 33162.82 34276.82 29377.09 36261.72 25665.34 38675.38 35858.04 34964.51 34962.32 38742.05 34386.51 30851.45 33269.22 34982.21 356
Gipumacopyleft45.18 36441.86 36755.16 37777.03 36351.52 36432.50 39980.52 32032.46 39527.12 39835.02 3999.52 40275.50 37622.31 39860.21 37538.45 398
S. Galliani, K. Lasinger, K. Schindler: Massively Parallel Multiview Stereopsis by Surface Normal Diffusion. ICCV 2015
MDA-MVSNet_test_wron65.03 33562.92 33971.37 33875.93 36456.73 31269.09 37774.73 36357.28 35554.03 38377.89 35745.88 31474.39 38349.89 34361.55 37082.99 351
test_cas_vis1_n_192073.76 26673.74 25673.81 32175.90 36559.77 27880.51 30182.40 30258.30 34681.62 11085.69 25544.35 32676.41 37076.29 12778.61 25585.23 322
YYNet165.03 33562.91 34071.38 33775.85 36656.60 31669.12 37674.66 36557.28 35554.12 38277.87 35845.85 31574.48 38249.95 34261.52 37183.05 349
PMMVS69.34 30868.67 30071.35 34075.67 36762.03 25075.17 35073.46 36750.00 37668.68 31179.05 34752.07 25278.13 35861.16 26982.77 20773.90 379
testgi66.67 32866.53 32567.08 36075.62 36841.69 39575.93 34376.50 35466.11 26865.20 34786.59 23435.72 36874.71 38143.71 37173.38 32784.84 329
test20.0367.45 32266.95 32368.94 35175.48 36944.84 38677.50 33677.67 34366.66 25963.01 35783.80 29447.02 30278.40 35742.53 37568.86 35283.58 343
KD-MVS_2432*160066.22 33263.89 33473.21 32475.47 37053.42 35170.76 36884.35 26964.10 29266.52 33578.52 35334.55 37084.98 32250.40 33750.33 38881.23 362
miper_refine_blended66.22 33263.89 33473.21 32475.47 37053.42 35170.76 36884.35 26964.10 29266.52 33578.52 35334.55 37084.98 32250.40 33750.33 38881.23 362
Anonymous2024052168.80 31267.22 32173.55 32274.33 37254.11 34583.18 26485.61 25458.15 34761.68 36180.94 33130.71 37881.27 34657.00 30573.34 32885.28 321
KD-MVS_self_test68.81 31167.59 31872.46 33274.29 37345.45 38177.93 33487.00 23463.12 30163.99 35378.99 35142.32 33884.77 32556.55 31064.09 36687.16 288
PM-MVS66.41 33064.14 33273.20 32673.92 37456.45 31778.97 32264.96 38963.88 29864.72 34880.24 33719.84 39183.44 33466.24 22164.52 36579.71 369
test_fmvs170.93 29370.52 28772.16 33373.71 37555.05 33780.82 29278.77 33851.21 37578.58 14984.41 28031.20 37776.94 36575.88 13380.12 24284.47 333
UnsupCasMVSNet_bld63.70 34061.53 34670.21 34773.69 37651.39 36672.82 36081.89 30655.63 36257.81 37571.80 37938.67 35778.61 35649.26 34652.21 38680.63 365
WB-MVS54.94 35054.72 35255.60 37673.50 37720.90 40874.27 35761.19 39359.16 33950.61 38674.15 37347.19 30175.78 37517.31 40035.07 39570.12 383
UnsupCasMVSNet_eth67.33 32365.99 32771.37 33873.48 37851.47 36575.16 35185.19 25865.20 27860.78 36480.93 33342.35 33777.20 36357.12 30353.69 38485.44 319
TDRefinement67.49 32164.34 33176.92 29273.47 37961.07 26184.86 22982.98 29559.77 33358.30 37385.13 27026.06 38387.89 29847.92 35660.59 37481.81 360
ambc75.24 30773.16 38050.51 37063.05 39187.47 22564.28 35077.81 35917.80 39389.73 26957.88 29760.64 37385.49 318
CMPMVSbinary51.72 2170.19 30268.16 30576.28 29673.15 38157.55 30279.47 31483.92 27648.02 37856.48 37984.81 27543.13 33386.42 30962.67 25281.81 22084.89 328
M. Jancosek, T. Pajdla: Multi-View Reconstruction Preserving Weakly-Supported Surfaces. CVPR 2011
SSC-MVS53.88 35353.59 35454.75 37872.87 38219.59 40973.84 35960.53 39557.58 35349.18 38873.45 37646.34 30975.47 37816.20 40332.28 39769.20 384
new-patchmatchnet61.73 34461.73 34561.70 36672.74 38324.50 40769.16 37578.03 34161.40 32156.72 37875.53 37138.42 35876.48 36945.95 36557.67 37684.13 337
test_vis1_n69.85 30669.21 29771.77 33572.66 38455.27 33681.48 28576.21 35652.03 37175.30 23383.20 30528.97 38076.22 37274.60 14378.41 26183.81 341
test_fmvs1_n70.86 29470.24 29272.73 33072.51 38555.28 33581.27 28979.71 33151.49 37478.73 14384.87 27427.54 38277.02 36476.06 13079.97 24385.88 314
LF4IMVS64.02 33962.19 34369.50 34970.90 38653.29 35476.13 34177.18 35052.65 36958.59 37180.98 33023.55 38776.52 36853.06 32566.66 35778.68 371
mvsany_test162.30 34361.26 34765.41 36269.52 38754.86 33966.86 38149.78 40246.65 37968.50 31583.21 30449.15 28866.28 39456.93 30660.77 37275.11 378
test_fmvs268.35 31867.48 31970.98 34469.50 38851.95 35880.05 30876.38 35549.33 37774.65 24884.38 28123.30 38875.40 37974.51 14475.17 30985.60 317
new_pmnet50.91 35950.29 35952.78 37968.58 38934.94 40163.71 38856.63 39939.73 38744.95 38965.47 38521.93 38958.48 39834.98 38656.62 37864.92 387
DSMNet-mixed57.77 34956.90 35160.38 36867.70 39035.61 39969.18 37453.97 40032.30 39657.49 37679.88 34140.39 35168.57 39338.78 38272.37 33276.97 374
test_vis1_rt60.28 34658.42 34965.84 36167.25 39155.60 33170.44 37060.94 39444.33 38259.00 37066.64 38424.91 38468.67 39262.80 24869.48 34673.25 380
APD_test153.31 35549.93 36063.42 36565.68 39250.13 37171.59 36466.90 38434.43 39340.58 39271.56 3808.65 40476.27 37134.64 38755.36 38263.86 389
FPMVS53.68 35451.64 35659.81 36965.08 39351.03 36769.48 37369.58 37841.46 38540.67 39172.32 37816.46 39570.00 39124.24 39765.42 36258.40 393
pmmvs357.79 34854.26 35368.37 35664.02 39456.72 31375.12 35365.17 38740.20 38652.93 38469.86 38320.36 39075.48 37745.45 36855.25 38372.90 381
test_fmvs363.36 34161.82 34467.98 35762.51 39546.96 38077.37 33874.03 36645.24 38067.50 32178.79 35212.16 39972.98 38772.77 16466.02 36083.99 339
wuyk23d16.82 37315.94 37619.46 38758.74 39631.45 40239.22 3973.74 4126.84 4036.04 4062.70 4061.27 41124.29 40610.54 40614.40 4052.63 403
testf145.72 36241.96 36557.00 37156.90 39745.32 38266.14 38459.26 39626.19 39730.89 39660.96 3904.14 40770.64 38926.39 39546.73 39255.04 394
APD_test245.72 36241.96 36557.00 37156.90 39745.32 38266.14 38459.26 39626.19 39730.89 39660.96 3904.14 40770.64 38926.39 39546.73 39255.04 394
mvsany_test353.99 35251.45 35761.61 36755.51 39944.74 38763.52 38945.41 40643.69 38358.11 37476.45 36517.99 39263.76 39754.77 31647.59 39076.34 376
test_vis3_rt49.26 36147.02 36356.00 37354.30 40045.27 38566.76 38348.08 40336.83 39044.38 39053.20 3957.17 40664.07 39656.77 30855.66 38058.65 392
PMMVS240.82 36638.86 36946.69 38153.84 40116.45 41048.61 39649.92 40137.49 38931.67 39460.97 3898.14 40556.42 40028.42 39230.72 39867.19 386
test_f52.09 35750.82 35855.90 37453.82 40242.31 39459.42 39258.31 39836.45 39156.12 38170.96 38112.18 39857.79 39953.51 32256.57 37967.60 385
LCM-MVSNet54.25 35149.68 36167.97 35853.73 40345.28 38466.85 38280.78 31635.96 39239.45 39362.23 3888.70 40378.06 36048.24 35351.20 38780.57 366
E-PMN31.77 36730.64 37035.15 38452.87 40427.67 40357.09 39447.86 40424.64 39916.40 40433.05 40011.23 40054.90 40114.46 40418.15 40122.87 400
EMVS30.81 36929.65 37134.27 38550.96 40525.95 40556.58 39546.80 40524.01 40015.53 40530.68 40112.47 39754.43 40212.81 40517.05 40222.43 401
ANet_high50.57 36046.10 36463.99 36348.67 40639.13 39770.99 36780.85 31561.39 32231.18 39557.70 39317.02 39473.65 38631.22 39015.89 40379.18 370
MVEpermissive26.22 2330.37 37025.89 37443.81 38244.55 40735.46 40028.87 40039.07 40718.20 40118.58 40340.18 3982.68 41047.37 40417.07 40223.78 40048.60 397
Simon Fuhrmann, Fabian Langguth, Michael Goesele: MVE - A Multi-View Reconstruction Environment. EUROGRAPHICS Workshops on Graphics and Cultural Heritage (2014)
PMVScopyleft37.38 2244.16 36540.28 36855.82 37540.82 40842.54 39365.12 38763.99 39034.43 39324.48 39957.12 3943.92 40976.17 37317.10 40155.52 38148.75 396
Y. Furukawa, J. Ponce: Accurate, dense, and robust multiview stereopsis. PAMI (2010)
DeepMVS_CXcopyleft27.40 38640.17 40926.90 40424.59 41017.44 40223.95 40048.61 3979.77 40126.48 40518.06 39924.47 39928.83 399
test_method31.52 36829.28 37238.23 38327.03 4106.50 41320.94 40162.21 3924.05 40422.35 40252.50 39613.33 39647.58 40327.04 39434.04 39660.62 390
tmp_tt18.61 37221.40 37510.23 3884.82 41110.11 41134.70 39830.74 4091.48 40523.91 40126.07 40228.42 38113.41 40727.12 39315.35 4047.17 402
testmvs6.04 3768.02 3790.10 3900.08 4120.03 41569.74 3710.04 4130.05 4070.31 4081.68 4070.02 4130.04 4080.24 4070.02 4060.25 405
test1236.12 3758.11 3780.14 3890.06 4130.09 41471.05 3660.03 4140.04 4080.25 4091.30 4080.05 4120.03 4090.21 4080.01 4070.29 404
test_blank0.00 3780.00 3810.00 3910.00 4140.00 4160.00 4020.00 4150.00 4090.00 4100.00 4090.00 4140.00 4100.00 4090.00 4080.00 406
eth-test20.00 414
eth-test0.00 414
uanet_test0.00 3780.00 3810.00 3910.00 4140.00 4160.00 4020.00 4150.00 4090.00 4100.00 4090.00 4140.00 4100.00 4090.00 4080.00 406
DCPMVS0.00 3780.00 3810.00 3910.00 4140.00 4160.00 4020.00 4150.00 4090.00 4100.00 4090.00 4140.00 4100.00 4090.00 4080.00 406
cdsmvs_eth3d_5k19.96 37126.61 3730.00 3910.00 4140.00 4160.00 40289.26 1730.00 4090.00 41088.61 17661.62 1610.00 4100.00 4090.00 4080.00 406
pcd_1.5k_mvsjas5.26 3777.02 3800.00 3910.00 4140.00 4160.00 4020.00 4150.00 4090.00 4100.00 40963.15 1380.00 4100.00 4090.00 4080.00 406
sosnet-low-res0.00 3780.00 3810.00 3910.00 4140.00 4160.00 4020.00 4150.00 4090.00 4100.00 4090.00 4140.00 4100.00 4090.00 4080.00 406
sosnet0.00 3780.00 3810.00 3910.00 4140.00 4160.00 4020.00 4150.00 4090.00 4100.00 4090.00 4140.00 4100.00 4090.00 4080.00 406
uncertanet0.00 3780.00 3810.00 3910.00 4140.00 4160.00 4020.00 4150.00 4090.00 4100.00 4090.00 4140.00 4100.00 4090.00 4080.00 406
Regformer0.00 3780.00 3810.00 3910.00 4140.00 4160.00 4020.00 4150.00 4090.00 4100.00 4090.00 4140.00 4100.00 4090.00 4080.00 406
ab-mvs-re7.23 3749.64 3770.00 3910.00 4140.00 4160.00 4020.00 4150.00 4090.00 41086.72 2260.00 4140.00 4100.00 4090.00 4080.00 406
uanet0.00 3780.00 3810.00 3910.00 4140.00 4160.00 4020.00 4150.00 4090.00 4100.00 4090.00 4140.00 4100.00 4090.00 4080.00 406
WAC-MVS42.58 39139.46 380
PC_three_145268.21 24592.02 1294.00 4682.09 595.98 5184.58 4896.68 294.95 10
test_241102_TWO94.06 1077.24 5092.78 495.72 881.26 897.44 689.07 1496.58 694.26 41
test_0728_THIRD78.38 3392.12 995.78 481.46 797.40 889.42 996.57 794.67 24
GSMVS88.96 246
sam_mvs151.32 26288.96 246
sam_mvs50.01 275
MTGPAbinary92.02 85
test_post178.90 3245.43 40548.81 29585.44 32059.25 282
test_post5.46 40450.36 27384.24 327
patchmatchnet-post74.00 37451.12 26488.60 290
MTMP92.18 3532.83 408
test9_res84.90 4295.70 2692.87 102
agg_prior282.91 6695.45 3092.70 105
test_prior472.60 3489.01 105
test_prior288.85 11175.41 9384.91 5993.54 5674.28 2983.31 6195.86 20
旧先验286.56 18858.10 34887.04 3988.98 28274.07 149
新几何286.29 196
无先验87.48 15988.98 18660.00 33194.12 12167.28 21488.97 245
原ACMM286.86 177
testdata291.01 24962.37 255
segment_acmp73.08 37
testdata184.14 24975.71 87
plane_prior592.44 6995.38 6978.71 10286.32 15191.33 151
plane_prior491.00 120
plane_prior368.60 11778.44 3178.92 141
plane_prior291.25 5079.12 23
plane_prior68.71 11290.38 6777.62 3986.16 155
n20.00 415
nn0.00 415
door-mid69.98 376
test1192.23 79
door69.44 379
HQP5-MVS66.98 155
BP-MVS77.47 114
HQP4-MVS77.24 18195.11 8091.03 163
HQP3-MVS92.19 8285.99 159
HQP2-MVS60.17 189
MDTV_nov1_ep13_2view37.79 39875.16 35155.10 36366.53 33449.34 28553.98 31987.94 268
ACMMP++_ref81.95 218
ACMMP++81.25 224
Test By Simon64.33 125