This table lists the benchmark results for the high-res multi-view scenario. The following metrics are evaluated:

(*) For exact definitions, detailing how potentially incomplete ground truth is taken into account, see our paper.

The datasets are grouped into different categories, and result averages are computed for a category and method if results of the method are available for all datasets within the category. Note that the category "all" includes both the high-res multi-view and the low-res many-view scenarios.

Methods with suffix _ROB may participate in the Robust Vision Challenge.

Click a dataset result cell to show a visualization of the reconstruction. For training datasets, ground truth and accuracy / completeness visualizations are also available. The visualizations may not work with mobile browsers.




Method Infoallhigh-res
multi-view
indooroutdoorbotani.boulde.bridgedoorexhibi.lectur.living.loungeobserv.old co.statueterrac.
sort bysort bysort bysort bysorted bysort bysort bysort bysort bysort bysort bysort bysort bysort bysort bysort by
test_0728_SECOND87.71 3195.34 171.43 5593.49 994.23 397.49 389.08 896.41 1294.21 41
SED-MVS90.08 290.85 287.77 2595.30 270.98 6293.57 794.06 1077.24 4993.10 195.72 882.99 197.44 589.07 1096.63 494.88 13
IU-MVS95.30 271.25 5692.95 5166.81 23992.39 688.94 1296.63 494.85 18
test_241102_ONE95.30 270.98 6294.06 1077.17 5293.10 195.39 1182.99 197.27 10
DVP-MVScopyleft89.60 390.35 387.33 3995.27 571.25 5693.49 992.73 5977.33 4792.12 995.78 480.98 997.40 789.08 896.41 1293.33 78
Zhenlong Yuan, Jinguo Luo, Fei Shen, Zhaoxin Li, Cong Liu, Tianlu Mao, Zhaoqi Wang: DVP-MVS: Synergize Depth-Edge and Visibility Prior for Multi-View Stereo. AAAI2025
test072695.27 571.25 5693.60 694.11 677.33 4792.81 395.79 380.98 9
test_one_060195.07 771.46 5494.14 578.27 3492.05 1195.74 680.83 11
test_part295.06 872.65 3191.80 13
HPM-MVS++copyleft89.02 889.15 888.63 495.01 976.03 192.38 2692.85 5480.26 1087.78 2894.27 3175.89 1996.81 2287.45 2296.44 993.05 88
FOURS195.00 1072.39 3895.06 193.84 1574.49 11291.30 15
DPE-MVScopyleft89.48 589.98 488.01 1594.80 1172.69 3091.59 4294.10 875.90 8492.29 795.66 1081.67 697.38 987.44 2396.34 1593.95 50
Kehua Chen, Zhenlong Yuan, Tianlu Mao, Zhaoqi Wang: Dual-Level Precision Edges Guided Multi-View Stereo with Accurate Planarization. AAAI2025
CNVR-MVS88.93 989.13 988.33 794.77 1273.82 890.51 6093.00 4380.90 688.06 2694.06 3976.43 1696.84 2088.48 1795.99 1894.34 36
ACMMPR87.44 2287.23 2688.08 1394.64 1373.59 1193.04 1293.20 3476.78 6484.66 5694.52 2068.81 7796.65 2984.53 3994.90 3994.00 49
region2R87.42 2487.20 2788.09 1294.63 1473.55 1293.03 1493.12 3776.73 6784.45 6094.52 2069.09 7396.70 2684.37 4194.83 4394.03 48
OPU-MVS89.06 394.62 1575.42 493.57 794.02 4082.45 396.87 1983.77 4896.48 894.88 13
HFP-MVS87.58 2187.47 2387.94 1894.58 1673.54 1493.04 1293.24 3376.78 6484.91 4994.44 2770.78 5596.61 3184.53 3994.89 4093.66 61
MCST-MVS87.37 2687.25 2587.73 2794.53 1772.46 3789.82 7693.82 1673.07 14384.86 5292.89 6476.22 1796.33 3784.89 3495.13 3594.40 33
APDe-MVS89.15 689.63 687.73 2794.49 1871.69 5193.83 493.96 1375.70 8891.06 1696.03 176.84 1497.03 1689.09 795.65 2794.47 30
DP-MVS Recon83.11 8182.09 8886.15 5794.44 1970.92 6788.79 10592.20 8170.53 18279.17 12791.03 10964.12 11796.03 4568.39 19690.14 9991.50 135
XVS87.18 2886.91 3288.00 1694.42 2073.33 1892.78 1892.99 4579.14 2083.67 7594.17 3467.45 8696.60 3283.06 5394.50 4994.07 46
X-MVStestdata80.37 13577.83 17288.00 1694.42 2073.33 1892.78 1892.99 4579.14 2083.67 7512.47 38167.45 8696.60 3283.06 5394.50 4994.07 46
mPP-MVS86.67 3686.32 3887.72 2994.41 2273.55 1292.74 2092.22 8076.87 6182.81 8794.25 3266.44 9596.24 4082.88 5794.28 5593.38 75
NCCC88.06 1488.01 1888.24 1094.41 2273.62 1091.22 5192.83 5581.50 485.79 3893.47 5173.02 3997.00 1784.90 3294.94 3894.10 44
ZNCC-MVS87.94 1887.85 1988.20 1194.39 2473.33 1893.03 1493.81 1776.81 6285.24 4394.32 3071.76 4696.93 1885.53 2995.79 2294.32 37
ZD-MVS94.38 2572.22 4392.67 6170.98 17487.75 2994.07 3874.01 3296.70 2684.66 3794.84 42
MP-MVScopyleft87.71 1987.64 2187.93 2094.36 2673.88 692.71 2292.65 6477.57 4083.84 7294.40 2972.24 4296.28 3985.65 2895.30 3493.62 68
Rongxuan Tan, Qing Wang, et al.: MP-MVS: Multi-Scale Windows PatchMatch and Planar Prior Multi-View Stereo.
DVP-MVS++90.23 191.01 187.89 2394.34 2771.25 5695.06 194.23 378.38 3292.78 495.74 682.45 397.49 389.42 596.68 294.95 9
MSC_two_6792asdad89.16 194.34 2775.53 292.99 4597.53 189.67 296.44 994.41 31
No_MVS89.16 194.34 2775.53 292.99 4597.53 189.67 296.44 994.41 31
MSP-MVS89.51 489.91 588.30 994.28 3073.46 1692.90 1694.11 680.27 991.35 1494.16 3578.35 1396.77 2389.59 494.22 5794.67 23
Zhenlong Yuan, Cong Liu, Fei Shen, Zhaoxin Li, Jingguo luo, Tianlu Mao and Zhaoqi Wang: MSP-MVS: Multi-granularity Segmentation Prior Guided Multi-View Stereo. AAAI2025
SMA-MVScopyleft89.08 789.23 788.61 594.25 3173.73 992.40 2393.63 2174.77 10692.29 795.97 274.28 2997.24 1188.58 1596.91 194.87 15
Yufeng Yin; Xiaoyan Liu; Zichao Zhang: SMA-MVS: Segmentation-Guided Multi-Scale Anchor Deformation Patch Multi-View Stereo. IEEE Transactions on Circuits and Systems for Video Technology
APD-MVScopyleft87.44 2287.52 2287.19 4194.24 3272.39 3891.86 4092.83 5573.01 14588.58 2194.52 2073.36 3496.49 3584.26 4295.01 3692.70 97
Yuesong Wang, Zhaojie Zeng and etc.: Adaptive Patch Deformation for Textureless-Resilient Multi-View Stereo. CVPR2023
PGM-MVS86.68 3586.27 3987.90 2194.22 3373.38 1790.22 6993.04 3875.53 9083.86 7194.42 2867.87 8396.64 3082.70 6294.57 4893.66 61
CP-MVS87.11 2986.92 3187.68 3394.20 3473.86 793.98 392.82 5876.62 6983.68 7494.46 2467.93 8195.95 5184.20 4594.39 5293.23 81
MTAPA87.23 2787.00 2887.90 2194.18 3574.25 586.58 17792.02 8579.45 1885.88 3694.80 1668.07 8096.21 4186.69 2695.34 3293.23 81
GST-MVS87.42 2487.26 2487.89 2394.12 3672.97 2392.39 2593.43 2876.89 6084.68 5393.99 4370.67 5796.82 2184.18 4695.01 3693.90 53
SR-MVS86.73 3386.67 3486.91 4594.11 3772.11 4692.37 2792.56 6774.50 11186.84 3294.65 1967.31 8895.77 5384.80 3692.85 6692.84 95
114514_t80.68 12579.51 13184.20 10894.09 3867.27 13989.64 8391.11 11858.75 32374.08 24090.72 11458.10 18895.04 8469.70 18189.42 10990.30 179
HPM-MVScopyleft87.11 2986.98 2987.50 3793.88 3972.16 4492.19 3393.33 3176.07 8183.81 7393.95 4569.77 6796.01 4785.15 3094.66 4594.32 37
Chunlin Ren, Qingshan Xu, Shikun Zhang, Jiaqi Yang: Hierarchical Prior Mining for Non-local Multi-View Stereo. ICCV 2023
save fliter93.80 4072.35 4190.47 6391.17 11674.31 115
ACMMP_NAP88.05 1688.08 1687.94 1893.70 4173.05 2190.86 5593.59 2376.27 7888.14 2495.09 1571.06 5396.67 2887.67 1996.37 1494.09 45
HPM-MVS_fast85.35 5584.95 6086.57 5293.69 4270.58 7492.15 3591.62 10373.89 12582.67 8994.09 3762.60 13495.54 5980.93 7392.93 6593.57 70
TSAR-MVS + MP.88.02 1788.11 1587.72 2993.68 4372.13 4591.41 4692.35 7474.62 11088.90 2093.85 4675.75 2096.00 4887.80 1894.63 4695.04 6
Zhenlong Yuan, Jiakai Cao, Zhaoqi Wang, Zhaoxin Li: TSAR-MVS: Textureless-aware Segmentation and Correlative Refinement Guided Multi-View Stereo. Pattern Recognition
MP-MVS-pluss87.67 2087.72 2087.54 3593.64 4472.04 4789.80 7893.50 2575.17 9986.34 3495.29 1270.86 5496.00 4888.78 1396.04 1694.58 26
MP-MVS-pluss: MP-MVS-pluss. MP-MVS-pluss
ACMMPcopyleft85.89 4685.39 5187.38 3893.59 4572.63 3292.74 2093.18 3676.78 6480.73 11193.82 4764.33 11596.29 3882.67 6390.69 9293.23 81
Qingshan Xu, Weihang Kong, Wenbing Tao, Marc Pollefeys: Multi-Scale Geometric Consistency Guided and Planar Prior Assisted Multi-View Stereo. IEEE Transactions on Pattern Analysis and Machine Intelligence
DeepC-MVS_fast79.65 386.91 3286.62 3587.76 2693.52 4672.37 4091.26 4793.04 3876.62 6984.22 6493.36 5371.44 5096.76 2480.82 7595.33 3394.16 42
Andreas Kuhn, Christian Sormann, Mattia Rossi, Oliver Erdler, Friedrich Fraundorfer: DeepC-MVS: Deep Confidence Prediction for Multi-View Stereo Reconstruction. 3DV 2020
CDPH-MVS85.76 4885.29 5687.17 4293.49 4771.08 6088.58 11592.42 7268.32 23084.61 5793.48 4972.32 4196.15 4479.00 8895.43 3094.28 39
DP-MVS76.78 21874.57 23183.42 13793.29 4869.46 9288.55 11683.70 27363.98 27870.20 27588.89 15854.01 22294.80 9546.66 34481.88 20286.01 295
CPTT-MVS83.73 6783.33 7184.92 8393.28 4970.86 6892.09 3690.38 13568.75 22279.57 12292.83 6660.60 17493.04 17480.92 7491.56 8390.86 157
TEST993.26 5072.96 2488.75 10791.89 9368.44 22885.00 4793.10 5774.36 2895.41 66
train_agg86.43 3886.20 4087.13 4393.26 5072.96 2488.75 10791.89 9368.69 22385.00 4793.10 5774.43 2695.41 6684.97 3195.71 2593.02 90
test_893.13 5272.57 3488.68 11291.84 9768.69 22384.87 5193.10 5774.43 2695.16 75
新几何183.42 13793.13 5270.71 7085.48 25057.43 33281.80 9791.98 8063.28 12392.27 19764.60 22792.99 6487.27 268
AdaColmapbinary80.58 13079.42 13384.06 11693.09 5468.91 10089.36 8788.97 18469.27 20675.70 20789.69 13357.20 19995.77 5363.06 23588.41 12187.50 263
SR-MVS-dyc-post85.77 4785.61 4986.23 5593.06 5570.63 7291.88 3892.27 7673.53 13585.69 3994.45 2565.00 11395.56 5782.75 5891.87 7892.50 106
RE-MVS-def85.48 5093.06 5570.63 7291.88 3892.27 7673.53 13585.69 3994.45 2563.87 11982.75 5891.87 7892.50 106
原ACMM184.35 10393.01 5768.79 10192.44 6963.96 27981.09 10791.57 9166.06 10195.45 6267.19 20694.82 4488.81 237
CSCG86.41 4086.19 4187.07 4492.91 5872.48 3690.81 5693.56 2473.95 12283.16 8191.07 10675.94 1895.19 7479.94 8494.38 5393.55 71
agg_prior92.85 5971.94 5091.78 10084.41 6194.93 86
9.1488.26 1492.84 6091.52 4594.75 173.93 12488.57 2294.67 1875.57 2295.79 5286.77 2595.76 23
SF-MVS88.46 1188.74 1187.64 3492.78 6171.95 4992.40 2394.74 275.71 8689.16 1995.10 1475.65 2196.19 4287.07 2496.01 1794.79 20
MG-MVS83.41 7483.45 6983.28 14292.74 6262.28 23888.17 12889.50 16075.22 9581.49 10192.74 7266.75 9195.11 7972.85 15291.58 8292.45 109
APD-MVS_3200maxsize85.97 4485.88 4686.22 5692.69 6369.53 8891.93 3792.99 4573.54 13485.94 3594.51 2365.80 10595.61 5683.04 5592.51 7093.53 73
test1286.80 4892.63 6470.70 7191.79 9982.71 8871.67 4796.16 4394.50 4993.54 72
test_prior86.33 5392.61 6569.59 8792.97 5095.48 6193.91 51
SD-MVS88.06 1488.50 1386.71 5092.60 6672.71 2891.81 4193.19 3577.87 3590.32 1794.00 4174.83 2393.78 13587.63 2094.27 5693.65 65
Zhenlong Yuan, Jiakai Cao, Zhaoxin Li, Hao Jiang and Zhaoqi Wang: SD-MVS: Segmentation-driven Deformation Multi-View Stereo with Spherical Refinement and EM optimization. AAAI2024
PAPM_NR83.02 8282.41 8284.82 8692.47 6766.37 15487.93 13891.80 9873.82 12677.32 16990.66 11567.90 8294.90 9070.37 17389.48 10893.19 84
DeepPCF-MVS80.84 188.10 1288.56 1286.73 4992.24 6869.03 9689.57 8493.39 3077.53 4489.79 1894.12 3678.98 1296.58 3485.66 2795.72 2494.58 26
SteuartSystems-ACMMP88.72 1088.86 1088.32 892.14 6972.96 2493.73 593.67 2080.19 1188.10 2594.80 1673.76 3397.11 1487.51 2195.82 2194.90 12
Skip Steuart: Steuart Systems R&D Blog.
UA-Net85.08 5984.96 5985.45 6792.07 7068.07 12289.78 7990.86 12582.48 284.60 5893.20 5669.35 7095.22 7371.39 16490.88 9193.07 87
旧先验191.96 7165.79 16886.37 23893.08 6169.31 7292.74 6788.74 240
MSLP-MVS++85.43 5385.76 4884.45 9991.93 7270.24 7590.71 5792.86 5377.46 4684.22 6492.81 6867.16 9092.94 17680.36 8094.35 5490.16 183
LFMVS81.82 9881.23 9983.57 13491.89 7363.43 22089.84 7581.85 29777.04 5783.21 7993.10 5752.26 23593.43 15471.98 15989.95 10493.85 54
PLCcopyleft70.83 1178.05 19176.37 21083.08 15391.88 7467.80 12688.19 12789.46 16164.33 27269.87 28488.38 17353.66 22493.58 14358.86 27482.73 19287.86 254
Jie Liao, Yanping Fu, Qingan Yan, Chunxia xiao: Pyramid Multi-View Stereo with Local Consistency. Pacific Graphics 2019
dcpmvs_285.63 5086.15 4384.06 11691.71 7564.94 18786.47 18091.87 9573.63 13086.60 3393.02 6276.57 1591.87 21283.36 5092.15 7495.35 2
MVS_111021_HR85.14 5784.75 6186.32 5491.65 7672.70 2985.98 19290.33 13976.11 8082.08 9291.61 9071.36 5294.17 11981.02 7292.58 6992.08 121
test22291.50 7768.26 11884.16 23883.20 28454.63 34379.74 11991.63 8958.97 18391.42 8486.77 281
TSAR-MVS + GP.85.71 4985.33 5386.84 4691.34 7872.50 3589.07 9687.28 22476.41 7185.80 3790.22 12474.15 3195.37 7181.82 6791.88 7792.65 101
MAR-MVS81.84 9780.70 10885.27 7091.32 7971.53 5389.82 7690.92 12169.77 19778.50 14186.21 23562.36 14094.52 10565.36 22092.05 7689.77 207
Zhenyu Xu, Yiguang Liu, Xuelei Shi, Ying Wang, Yunan Zheng: MARMVS: Matching Ambiguity Reduced Multiple View Stereo for Efficient Large Scale Scene Reconstruction. CVPR 2020
DeepC-MVS79.81 287.08 3186.88 3387.69 3291.16 8072.32 4290.31 6793.94 1477.12 5482.82 8694.23 3372.13 4497.09 1584.83 3595.37 3193.65 65
Andreas Kuhn, Christian Sormann, Mattia Rossi, Oliver Erdler, Friedrich Fraundorfer: DeepC-MVS: Deep Confidence Prediction for Multi-View Stereo Reconstruction. 3DV 2020
3Dnovator+77.84 485.48 5184.47 6488.51 691.08 8173.49 1593.18 1193.78 1880.79 776.66 18593.37 5260.40 17896.75 2577.20 10793.73 6195.29 4
Anonymous20240521178.25 18377.01 19281.99 18491.03 8260.67 25784.77 22083.90 27170.65 18180.00 11891.20 10141.08 33091.43 22565.21 22185.26 15793.85 54
CS-MVS-test86.29 4186.48 3685.71 6491.02 8367.21 14292.36 2893.78 1878.97 2783.51 7891.20 10170.65 5895.15 7681.96 6694.89 4094.77 21
VDD-MVS83.01 8382.36 8484.96 8091.02 8366.40 15388.91 10088.11 20377.57 4084.39 6293.29 5452.19 23693.91 13077.05 10988.70 11694.57 28
API-MVS81.99 9581.23 9984.26 10790.94 8570.18 8191.10 5289.32 16571.51 16578.66 13788.28 17665.26 10895.10 8264.74 22691.23 8787.51 262
testdata79.97 23190.90 8664.21 20284.71 25759.27 31885.40 4192.91 6362.02 14789.08 26768.95 18991.37 8586.63 285
PHI-MVS86.43 3886.17 4287.24 4090.88 8770.96 6492.27 3194.07 972.45 14885.22 4491.90 8269.47 6996.42 3683.28 5295.94 1994.35 35
VNet82.21 9082.41 8281.62 19090.82 8860.93 25284.47 22889.78 15376.36 7684.07 6891.88 8364.71 11490.26 24870.68 17088.89 11293.66 61
PVSNet_Blended_VisFu82.62 8681.83 9484.96 8090.80 8969.76 8688.74 10991.70 10269.39 20378.96 12988.46 17165.47 10794.87 9374.42 13588.57 11790.24 181
CS-MVS86.69 3486.95 3085.90 6290.76 9067.57 13292.83 1793.30 3279.67 1684.57 5992.27 7671.47 4995.02 8584.24 4493.46 6295.13 5
Anonymous2024052980.19 14078.89 14884.10 11190.60 9164.75 19188.95 9990.90 12265.97 25480.59 11291.17 10349.97 26493.73 14169.16 18782.70 19493.81 57
h-mvs3383.15 7882.19 8686.02 6090.56 9270.85 6988.15 13089.16 17476.02 8284.67 5491.39 9761.54 15295.50 6082.71 6075.48 27991.72 129
Anonymous2023121178.97 16977.69 18082.81 16690.54 9364.29 20190.11 7191.51 10765.01 26476.16 20288.13 18550.56 25893.03 17569.68 18277.56 25191.11 146
LS3D76.95 21674.82 22983.37 14090.45 9467.36 13889.15 9486.94 23061.87 29969.52 28790.61 11651.71 24794.53 10446.38 34786.71 14088.21 249
VDDNet81.52 10680.67 10984.05 11890.44 9564.13 20489.73 8185.91 24471.11 17183.18 8093.48 4950.54 25993.49 14973.40 14688.25 12294.54 29
CNLPA78.08 18976.79 19981.97 18590.40 9671.07 6187.59 14784.55 26066.03 25372.38 25789.64 13557.56 19486.04 29759.61 26683.35 18488.79 238
PAPR81.66 10480.89 10683.99 12390.27 9764.00 20586.76 17391.77 10168.84 22177.13 17889.50 13967.63 8494.88 9267.55 20188.52 11993.09 86
Vis-MVSNetpermissive83.46 7382.80 7985.43 6890.25 9868.74 10590.30 6890.13 14576.33 7780.87 11092.89 6461.00 16694.20 11772.45 15890.97 8993.35 77
Jingyang Zhang, Yao Yao, Shiwei Li, Zixin Luo, Tian Fang: Visibility-aware Multiview Stereo Network. BMVC 2020
DPM-MVS84.93 6084.29 6586.84 4690.20 9973.04 2287.12 15993.04 3869.80 19682.85 8591.22 10073.06 3896.02 4676.72 11694.63 4691.46 138
EPP-MVSNet83.40 7583.02 7584.57 9290.13 10064.47 19792.32 2990.73 12774.45 11479.35 12591.10 10469.05 7595.12 7772.78 15387.22 13294.13 43
CANet86.45 3786.10 4487.51 3690.09 10170.94 6689.70 8292.59 6681.78 381.32 10291.43 9670.34 5997.23 1284.26 4293.36 6394.37 34
test250677.30 21076.49 20679.74 23690.08 10252.02 34287.86 14263.10 37174.88 10380.16 11792.79 6938.29 34092.35 19468.74 19292.50 7194.86 16
ECVR-MVScopyleft79.61 14879.26 13980.67 21890.08 10254.69 32687.89 14077.44 33374.88 10380.27 11492.79 6948.96 28192.45 18868.55 19392.50 7194.86 16
HQP_MVS83.64 7083.14 7285.14 7390.08 10268.71 10791.25 4992.44 6979.12 2278.92 13191.00 11060.42 17695.38 6878.71 9286.32 14591.33 139
plane_prior790.08 10268.51 114
patch_mono-283.65 6984.54 6380.99 21090.06 10665.83 16584.21 23788.74 19471.60 16385.01 4592.44 7474.51 2583.50 31682.15 6592.15 7493.64 67
test111179.43 15579.18 14380.15 22889.99 10753.31 33987.33 15477.05 33675.04 10080.23 11692.77 7148.97 28092.33 19668.87 19092.40 7394.81 19
CHOSEN 1792x268877.63 20475.69 21583.44 13689.98 10868.58 11378.70 30787.50 22056.38 33775.80 20686.84 21258.67 18491.40 22661.58 25285.75 15690.34 176
IS-MVSNet83.15 7882.81 7884.18 10989.94 10963.30 22291.59 4288.46 20079.04 2479.49 12392.16 7865.10 11094.28 11167.71 19991.86 8094.95 9
plane_prior189.90 110
canonicalmvs85.91 4585.87 4786.04 5989.84 11169.44 9390.45 6593.00 4376.70 6888.01 2791.23 9973.28 3693.91 13081.50 6988.80 11494.77 21
plane_prior689.84 11168.70 10960.42 176
MVS_030488.08 1388.08 1688.08 1389.67 11372.04 4792.26 3289.26 16984.19 185.01 4595.18 1369.93 6497.20 1391.63 195.60 2894.99 8
NP-MVS89.62 11468.32 11690.24 122
EIA-MVS83.31 7782.80 7984.82 8689.59 11565.59 17188.21 12692.68 6074.66 10878.96 12986.42 23169.06 7495.26 7275.54 12890.09 10093.62 68
HyFIR lowres test77.53 20575.40 22283.94 12689.59 11566.62 15080.36 28788.64 19756.29 33876.45 19085.17 25957.64 19393.28 15761.34 25583.10 18891.91 125
TAPA-MVS73.13 979.15 16377.94 16882.79 16989.59 11562.99 23188.16 12991.51 10765.77 25577.14 17791.09 10560.91 16793.21 15950.26 32787.05 13492.17 119
Andrea Romanoni, Matteo Matteucci: TAPA-MVS: Textureless-Aware PAtchMatch Multi-View Stereo. ICCV 2019
thres100view90076.50 22175.55 21979.33 24489.52 11856.99 29985.83 19983.23 28273.94 12376.32 19587.12 20851.89 24491.95 20748.33 33583.75 17589.07 220
GeoE81.71 10081.01 10483.80 12989.51 11964.45 19888.97 9888.73 19571.27 16878.63 13889.76 13266.32 9793.20 16269.89 17986.02 15193.74 59
alignmvs85.48 5185.32 5485.96 6189.51 11969.47 9089.74 8092.47 6876.17 7987.73 3091.46 9570.32 6093.78 13581.51 6888.95 11194.63 25
PS-MVSNAJ81.69 10181.02 10383.70 13189.51 11968.21 12084.28 23690.09 14670.79 17681.26 10685.62 24963.15 12894.29 11075.62 12688.87 11388.59 243
ACMP74.13 681.51 10880.57 11084.36 10289.42 12268.69 11089.97 7391.50 11074.46 11375.04 22990.41 12053.82 22394.54 10377.56 10382.91 18989.86 203
Qingshan Xu and Wenbing Tao: Planar Prior Assisted PatchMatch Multi-View Stereo. AAAI 2020
thres600view776.50 22175.44 22079.68 23889.40 12357.16 29685.53 20783.23 28273.79 12876.26 19687.09 20951.89 24491.89 21048.05 34083.72 17890.00 195
ETV-MVS84.90 6284.67 6285.59 6689.39 12468.66 11188.74 10992.64 6579.97 1484.10 6785.71 24469.32 7195.38 6880.82 7591.37 8592.72 96
BH-RMVSNet79.61 14878.44 15783.14 15089.38 12565.93 16284.95 21787.15 22773.56 13378.19 15189.79 13156.67 20293.36 15559.53 26786.74 13990.13 185
iter_conf_final80.63 12679.35 13684.46 9889.36 12667.70 12989.85 7484.49 26173.19 14178.30 14788.94 15545.98 29894.56 10179.59 8684.48 16691.11 146
HQP-NCC89.33 12789.17 9076.41 7177.23 172
ACMP_Plane89.33 12789.17 9076.41 7177.23 172
HQP-MVS82.61 8782.02 9084.37 10189.33 12766.98 14589.17 9092.19 8276.41 7177.23 17290.23 12360.17 17995.11 7977.47 10485.99 15291.03 151
EC-MVSNet86.01 4286.38 3784.91 8489.31 13066.27 15692.32 2993.63 2179.37 1984.17 6691.88 8369.04 7695.43 6483.93 4793.77 6093.01 91
ACMM73.20 880.78 12479.84 12583.58 13389.31 13068.37 11589.99 7291.60 10470.28 18677.25 17089.66 13453.37 22793.53 14874.24 13882.85 19088.85 235
Qingshan Xu and Wenbing Tao: Multi-Scale Geometric Consistency Guided Multi-View Stereo. CVPR 2019
Test_1112_low_res76.40 22575.44 22079.27 24589.28 13258.09 28081.69 27087.07 22859.53 31672.48 25586.67 22161.30 15989.33 26260.81 25980.15 22390.41 174
F-COLMAP76.38 22674.33 23682.50 17689.28 13266.95 14888.41 11889.03 17964.05 27666.83 31188.61 16646.78 29192.89 17757.48 28678.55 23987.67 257
LPG-MVS_test82.08 9281.27 9884.50 9589.23 13468.76 10390.22 6991.94 9175.37 9376.64 18691.51 9254.29 21894.91 8778.44 9483.78 17389.83 204
LGP-MVS_train84.50 9589.23 13468.76 10391.94 9175.37 9376.64 18691.51 9254.29 21894.91 8778.44 9483.78 17389.83 204
BH-untuned79.47 15378.60 15382.05 18289.19 13665.91 16386.07 19188.52 19972.18 15375.42 21487.69 19061.15 16393.54 14760.38 26086.83 13886.70 283
xiu_mvs_v2_base81.69 10181.05 10283.60 13289.15 13768.03 12384.46 23090.02 14770.67 17981.30 10586.53 22963.17 12794.19 11875.60 12788.54 11888.57 244
test_yl81.17 11180.47 11383.24 14589.13 13863.62 21186.21 18789.95 15072.43 15181.78 9889.61 13657.50 19593.58 14370.75 16886.90 13692.52 104
DCV-MVSNet81.17 11180.47 11383.24 14589.13 13863.62 21186.21 18789.95 15072.43 15181.78 9889.61 13657.50 19593.58 14370.75 16886.90 13692.52 104
tfpn200view976.42 22475.37 22479.55 24389.13 13857.65 29085.17 21083.60 27473.41 13776.45 19086.39 23252.12 23791.95 20748.33 33583.75 17589.07 220
thres40076.50 22175.37 22479.86 23389.13 13857.65 29085.17 21083.60 27473.41 13776.45 19086.39 23252.12 23791.95 20748.33 33583.75 17590.00 195
1112_ss77.40 20876.43 20880.32 22589.11 14260.41 26283.65 24587.72 21662.13 29773.05 24986.72 21662.58 13689.97 25262.11 24780.80 21490.59 168
SDMVSNet80.38 13380.18 11980.99 21089.03 14364.94 18780.45 28689.40 16275.19 9776.61 18889.98 12760.61 17387.69 28776.83 11383.55 18090.33 177
sd_testset77.70 20277.40 18578.60 25489.03 14360.02 26679.00 30385.83 24675.19 9776.61 18889.98 12754.81 20985.46 30262.63 24183.55 18090.33 177
Fast-Effi-MVS+80.81 11979.92 12283.47 13588.85 14564.51 19485.53 20789.39 16370.79 17678.49 14285.06 26267.54 8593.58 14367.03 20986.58 14192.32 112
PVSNet_BlendedMVS80.60 12880.02 12082.36 17988.85 14565.40 17686.16 18992.00 8769.34 20578.11 15386.09 23966.02 10294.27 11271.52 16182.06 19987.39 264
PVSNet_Blended80.98 11480.34 11582.90 16288.85 14565.40 17684.43 23292.00 8767.62 23578.11 15385.05 26366.02 10294.27 11271.52 16189.50 10789.01 227
MVS_111021_LR82.61 8782.11 8784.11 11088.82 14871.58 5285.15 21286.16 24174.69 10780.47 11391.04 10762.29 14190.55 24680.33 8190.08 10190.20 182
BH-w/o78.21 18577.33 18880.84 21488.81 14965.13 18384.87 21887.85 21369.75 19874.52 23684.74 26761.34 15893.11 16958.24 28185.84 15484.27 316
FIs82.07 9382.42 8181.04 20988.80 15058.34 27888.26 12593.49 2676.93 5978.47 14391.04 10769.92 6592.34 19569.87 18084.97 15992.44 110
OPM-MVS83.50 7282.95 7685.14 7388.79 15170.95 6589.13 9591.52 10677.55 4380.96 10991.75 8560.71 16994.50 10679.67 8586.51 14389.97 199
Ray L. Khuboni, Hongjun Xu: Octagram Propagation Matching for Multi-Scale View Stereopsis (OPM-MVS).
WR-MVS79.49 15279.22 14180.27 22688.79 15158.35 27785.06 21488.61 19878.56 2977.65 16288.34 17463.81 12190.66 24564.98 22477.22 25391.80 128
OMC-MVS82.69 8581.97 9284.85 8588.75 15367.42 13587.98 13490.87 12474.92 10279.72 12091.65 8762.19 14493.96 12375.26 13086.42 14493.16 85
hse-mvs281.72 9980.94 10584.07 11588.72 15467.68 13085.87 19687.26 22576.02 8284.67 5488.22 17961.54 15293.48 15082.71 6073.44 30691.06 149
AUN-MVS79.21 16277.60 18284.05 11888.71 15567.61 13185.84 19887.26 22569.08 21477.23 17288.14 18453.20 22993.47 15175.50 12973.45 30591.06 149
ACMH67.68 1675.89 23173.93 23981.77 18888.71 15566.61 15188.62 11489.01 18169.81 19566.78 31286.70 22041.95 32791.51 22355.64 30078.14 24687.17 270
Qingshan Xu and Wenbing Tao: Multi-Scale Geometric Consistency Guided Multi-View Stereo. CVPR 2019
Vis-MVSNet (Re-imp)78.36 18278.45 15678.07 26388.64 15751.78 34686.70 17479.63 31974.14 12075.11 22690.83 11361.29 16089.75 25558.10 28291.60 8192.69 99
PatchMatch-RL72.38 26670.90 26776.80 28088.60 15867.38 13779.53 29676.17 34162.75 29169.36 28982.00 30645.51 30484.89 30753.62 30880.58 21778.12 352
ACMH+68.96 1476.01 23074.01 23882.03 18388.60 15865.31 18088.86 10287.55 21870.25 18767.75 30087.47 19841.27 32893.19 16458.37 27975.94 27287.60 259
LTVRE_ROB69.57 1376.25 22774.54 23381.41 19688.60 15864.38 20079.24 29989.12 17870.76 17869.79 28687.86 18749.09 27793.20 16256.21 29980.16 22286.65 284
Andreas Kuhn, Heiko Hirschmüller, Daniel Scharstein, Helmut Mayer: A TV Prior for High-Quality Scalable Multi-View Stereo Reconstruction. International Journal of Computer Vision 2016
DELS-MVS85.41 5485.30 5585.77 6388.49 16167.93 12485.52 20993.44 2778.70 2883.63 7789.03 15474.57 2495.71 5580.26 8294.04 5893.66 61
Christian Sormann, Emanuele Santellani, Mattia Rossi, Andreas Kuhn, Friedrich Fraundorfer: DELS-MVS: Deep Epipolar Line Search for Multi-View Stereo. Winter Conference on Applications of Computer Vision (WACV), 2023
CLD-MVS82.31 8981.65 9584.29 10688.47 16267.73 12885.81 20092.35 7475.78 8578.33 14686.58 22664.01 11894.35 10976.05 12187.48 12990.79 158
Zhaoxin Li, Wangmeng Zuo, Zhaoqi Wang, Lei Zhang: Confidence-based Large-scale Dense Multi-view Stereo. IEEE Transaction on Image Processing, 2020
UniMVSNet_NR-MVSNet81.88 9681.54 9682.92 16188.46 16363.46 21887.13 15892.37 7380.19 1178.38 14489.14 15071.66 4893.05 17270.05 17676.46 26492.25 115
ab-mvs79.51 15178.97 14781.14 20688.46 16360.91 25383.84 24289.24 17170.36 18479.03 12888.87 15963.23 12690.21 25065.12 22282.57 19592.28 114
FC-MVSNet-test81.52 10682.02 9080.03 23088.42 16555.97 31587.95 13693.42 2977.10 5577.38 16790.98 11269.96 6391.79 21368.46 19584.50 16492.33 111
Effi-MVS+83.62 7183.08 7385.24 7188.38 16667.45 13488.89 10189.15 17575.50 9182.27 9088.28 17669.61 6894.45 10877.81 10187.84 12493.84 56
UniMVSNet (Re)81.60 10581.11 10183.09 15288.38 16664.41 19987.60 14693.02 4278.42 3178.56 14088.16 18069.78 6693.26 15869.58 18376.49 26391.60 130
VPNet78.69 17578.66 15278.76 25188.31 16855.72 31784.45 23186.63 23476.79 6378.26 14890.55 11859.30 18189.70 25766.63 21077.05 25590.88 156
FA-MVS(test-final)80.96 11579.91 12384.10 11188.30 16965.01 18584.55 22790.01 14873.25 14079.61 12187.57 19358.35 18794.72 9871.29 16586.25 14792.56 103
TR-MVS77.44 20676.18 21181.20 20488.24 17063.24 22384.61 22586.40 23767.55 23677.81 15986.48 23054.10 22093.15 16657.75 28582.72 19387.20 269
EI-MVSNet-Vis-set84.19 6383.81 6785.31 6988.18 17167.85 12587.66 14589.73 15680.05 1382.95 8289.59 13870.74 5694.82 9480.66 7984.72 16293.28 80
baseline176.98 21576.75 20277.66 26888.13 17255.66 31885.12 21381.89 29573.04 14476.79 18188.90 15762.43 13987.78 28663.30 23471.18 32189.55 213
test_040272.79 26470.44 27279.84 23488.13 17265.99 16185.93 19484.29 26565.57 25867.40 30685.49 25146.92 29092.61 18335.88 36574.38 29680.94 344
tttt051779.40 15777.91 16983.90 12888.10 17463.84 20888.37 12284.05 26971.45 16676.78 18289.12 15149.93 26794.89 9170.18 17583.18 18792.96 93
FE-MVS77.78 19875.68 21684.08 11488.09 17566.00 16083.13 25687.79 21468.42 22978.01 15685.23 25745.50 30595.12 7759.11 27185.83 15591.11 146
VPA-MVSNet80.60 12880.55 11180.76 21688.07 17660.80 25586.86 16791.58 10575.67 8980.24 11589.45 14563.34 12290.25 24970.51 17279.22 23591.23 143
UGNet80.83 11879.59 13084.54 9488.04 17768.09 12189.42 8588.16 20276.95 5876.22 19789.46 14349.30 27493.94 12668.48 19490.31 9591.60 130
Wanjuan Su, Qingshan Xu, Wenbing Tao: Uncertainty-guided Multi-view Stereo Network for Depth Estimation. IEEE Transactions on Circuits and Systems for Video Technology, 2022
WR-MVS_H78.51 17978.49 15578.56 25588.02 17856.38 31088.43 11792.67 6177.14 5373.89 24187.55 19566.25 9889.24 26458.92 27373.55 30490.06 193
QAPM80.88 11679.50 13285.03 7788.01 17968.97 9991.59 4292.00 8766.63 24675.15 22592.16 7857.70 19295.45 6263.52 23088.76 11590.66 164
3Dnovator76.31 583.38 7682.31 8586.59 5187.94 18072.94 2790.64 5892.14 8477.21 5175.47 21092.83 6658.56 18594.72 9873.24 14992.71 6892.13 120
EI-MVSNet-UG-set83.81 6683.38 7085.09 7687.87 18167.53 13387.44 15189.66 15779.74 1582.23 9189.41 14770.24 6194.74 9779.95 8383.92 17292.99 92
TranMVSNet+NR-MVSNet80.84 11780.31 11682.42 17787.85 18262.33 23687.74 14491.33 11280.55 877.99 15789.86 12965.23 10992.62 18267.05 20875.24 28892.30 113
iter_conf0580.00 14478.70 15083.91 12787.84 18365.83 16588.84 10484.92 25671.61 16278.70 13488.94 15543.88 31394.56 10179.28 8784.28 16991.33 139
CP-MVSNet78.22 18478.34 16077.84 26587.83 18454.54 32887.94 13791.17 11677.65 3773.48 24488.49 17062.24 14388.43 27862.19 24474.07 29790.55 169
DU-MVS81.12 11380.52 11282.90 16287.80 18563.46 21887.02 16291.87 9579.01 2578.38 14489.07 15265.02 11193.05 17270.05 17676.46 26492.20 117
NR-MVSNet80.23 13879.38 13482.78 17087.80 18563.34 22186.31 18491.09 11979.01 2572.17 25989.07 15267.20 8992.81 18166.08 21575.65 27592.20 117
TAMVS78.89 17177.51 18483.03 15687.80 18567.79 12784.72 22185.05 25467.63 23476.75 18387.70 18962.25 14290.82 24158.53 27887.13 13390.49 171
thres20075.55 23574.47 23478.82 25087.78 18857.85 28783.07 25983.51 27772.44 15075.84 20584.42 26952.08 23991.75 21447.41 34283.64 17986.86 279
PS-CasMVS78.01 19378.09 16577.77 26787.71 18954.39 33088.02 13391.22 11377.50 4573.26 24688.64 16560.73 16888.41 27961.88 24873.88 30190.53 170
PCF-MVS73.52 780.38 13378.84 14985.01 7887.71 18968.99 9883.65 24591.46 11163.00 28577.77 16190.28 12166.10 9995.09 8361.40 25388.22 12390.94 155
Andreas Kuhn, Shan Lin, Oliver Erdler: Plane Completion and Filtering for Multi-View Stereo Reconstruction. GCPR 2019
thisisatest053079.40 15777.76 17784.31 10587.69 19165.10 18487.36 15284.26 26770.04 18977.42 16688.26 17849.94 26594.79 9670.20 17484.70 16393.03 89
casdiffmvs_mvgpermissive85.99 4386.09 4585.70 6587.65 19267.22 14188.69 11193.04 3879.64 1785.33 4292.54 7373.30 3594.50 10683.49 4991.14 8895.37 1
Fangjinhua Wang, Qingshan Xu, Yew-Soon Ong, Marc Pollefeys: Lightweight and Accurate Multi-View Stereo With Confidence-Aware Diffusion Model. IEEE T-PAMI 2025
RRT_MVS80.35 13679.22 14183.74 13087.63 19365.46 17591.08 5388.92 18773.82 12676.44 19390.03 12649.05 27994.25 11676.84 11179.20 23691.51 133
GBi-Net78.40 18077.40 18581.40 19787.60 19463.01 22888.39 11989.28 16671.63 15975.34 21787.28 20054.80 21091.11 23262.72 23779.57 22890.09 189
test178.40 18077.40 18581.40 19787.60 19463.01 22888.39 11989.28 16671.63 15975.34 21787.28 20054.80 21091.11 23262.72 23779.57 22890.09 189
FMVSNet278.20 18677.21 18981.20 20487.60 19462.89 23287.47 15089.02 18071.63 15975.29 22287.28 20054.80 21091.10 23562.38 24279.38 23289.61 211
CDS-MVSNet79.07 16677.70 17983.17 14987.60 19468.23 11984.40 23486.20 24067.49 23776.36 19486.54 22861.54 15290.79 24261.86 24987.33 13090.49 171
Khang Truong Giang, Soohwan Song, Sungho Jo: Curvature-guided dynamic scale networks for Multi-view Stereo. ICLR 2022
HY-MVS69.67 1277.95 19477.15 19080.36 22387.57 19860.21 26583.37 25287.78 21566.11 25075.37 21687.06 21163.27 12490.48 24761.38 25482.43 19690.40 175
mvsmamba81.69 10180.74 10784.56 9387.45 19966.72 14991.26 4785.89 24574.66 10878.23 14990.56 11754.33 21794.91 8780.73 7883.54 18292.04 124
xiu_mvs_v1_base_debu80.80 12179.72 12784.03 12087.35 20070.19 7885.56 20288.77 19069.06 21581.83 9488.16 18050.91 25392.85 17878.29 9887.56 12689.06 222
xiu_mvs_v1_base80.80 12179.72 12784.03 12087.35 20070.19 7885.56 20288.77 19069.06 21581.83 9488.16 18050.91 25392.85 17878.29 9887.56 12689.06 222
xiu_mvs_v1_base_debi80.80 12179.72 12784.03 12087.35 20070.19 7885.56 20288.77 19069.06 21581.83 9488.16 18050.91 25392.85 17878.29 9887.56 12689.06 222
MVSFormer82.85 8482.05 8985.24 7187.35 20070.21 7690.50 6190.38 13568.55 22581.32 10289.47 14161.68 14993.46 15278.98 8990.26 9792.05 122
lupinMVS81.39 10980.27 11884.76 8987.35 20070.21 7685.55 20586.41 23662.85 28881.32 10288.61 16661.68 14992.24 19978.41 9690.26 9791.83 126
baseline84.93 6084.98 5884.80 8887.30 20565.39 17887.30 15592.88 5277.62 3884.04 6992.26 7771.81 4593.96 12381.31 7090.30 9695.03 7
PAPM77.68 20376.40 20981.51 19387.29 20661.85 24383.78 24389.59 15864.74 26671.23 26788.70 16262.59 13593.66 14252.66 31387.03 13589.01 227
LCM-MVSNet-Re77.05 21376.94 19577.36 27387.20 20751.60 34780.06 29080.46 31075.20 9667.69 30186.72 21662.48 13788.98 26963.44 23289.25 11091.51 133
casdiffmvspermissive85.11 5885.14 5785.01 7887.20 20765.77 16987.75 14392.83 5577.84 3684.36 6392.38 7572.15 4393.93 12981.27 7190.48 9395.33 3
Fangjinhua Wang, Qingshan Xu, Yew-Soon Ong, Marc Pollefeys: Lightweight and Accurate Multi-View Stereo With Confidence-Aware Diffusion Model. IEEE T-PAMI 2025
COLMAP_ROBcopyleft66.92 1773.01 26170.41 27380.81 21587.13 20965.63 17088.30 12484.19 26862.96 28663.80 33587.69 19038.04 34192.56 18546.66 34474.91 29184.24 317
Johannes L. Schönberger, Enliang Zheng, Marc Pollefeys, Jan-Michael Frahm: Pixelwise View Selection for Unstructured Multi-View Stereo. ECCV 2016
PEN-MVS77.73 19977.69 18077.84 26587.07 21053.91 33387.91 13991.18 11577.56 4273.14 24888.82 16061.23 16189.17 26559.95 26372.37 31290.43 173
MVS_Test83.15 7883.06 7483.41 13986.86 21163.21 22486.11 19092.00 8774.31 11582.87 8489.44 14670.03 6293.21 15977.39 10688.50 12093.81 57
UniMVSNet_ETH3D79.10 16578.24 16381.70 18986.85 21260.24 26487.28 15688.79 18974.25 11776.84 17990.53 11949.48 27091.56 21967.98 19782.15 19893.29 79
FMVSNet377.88 19676.85 19780.97 21286.84 21362.36 23586.52 17988.77 19071.13 17075.34 21786.66 22254.07 22191.10 23562.72 23779.57 22889.45 214
FMVSNet177.44 20676.12 21281.40 19786.81 21463.01 22888.39 11989.28 16670.49 18374.39 23787.28 20049.06 27891.11 23260.91 25778.52 24090.09 189
nrg03083.88 6583.53 6884.96 8086.77 21569.28 9590.46 6492.67 6174.79 10582.95 8291.33 9872.70 4093.09 17080.79 7779.28 23492.50 106
ET-MVSNet_ETH3D78.63 17676.63 20584.64 9186.73 21669.47 9085.01 21584.61 25969.54 20166.51 31786.59 22450.16 26291.75 21476.26 11884.24 17092.69 99
jason81.39 10980.29 11784.70 9086.63 21769.90 8485.95 19386.77 23263.24 28181.07 10889.47 14161.08 16592.15 20178.33 9790.07 10292.05 122
jason: jason.
PS-MVSNAJss82.07 9381.31 9784.34 10486.51 21867.27 13989.27 8891.51 10771.75 15779.37 12490.22 12463.15 12894.27 11277.69 10282.36 19791.49 136
WTY-MVS75.65 23475.68 21675.57 28886.40 21956.82 30177.92 31582.40 29165.10 26176.18 19987.72 18863.13 13180.90 32860.31 26181.96 20089.00 229
DTE-MVSNet76.99 21476.80 19877.54 27286.24 22053.06 34187.52 14890.66 12877.08 5672.50 25488.67 16460.48 17589.52 25957.33 28970.74 32390.05 194
PVSNet64.34 1872.08 26970.87 26875.69 28686.21 22156.44 30874.37 33680.73 30562.06 29870.17 27782.23 30242.86 31883.31 31854.77 30384.45 16787.32 267
test_fmvsm_n_192085.29 5685.34 5285.13 7586.12 22269.93 8288.65 11390.78 12669.97 19288.27 2393.98 4471.39 5191.54 22088.49 1690.45 9493.91 51
tfpnnormal74.39 24473.16 24878.08 26286.10 22358.05 28184.65 22487.53 21970.32 18571.22 26885.63 24854.97 20889.86 25343.03 35675.02 29086.32 287
IterMVS-LS80.06 14179.38 13482.11 18185.89 22463.20 22586.79 17089.34 16474.19 11875.45 21386.72 21666.62 9292.39 19172.58 15576.86 25890.75 161
Fangjinhua Wang, Silvano Galliani, Christoph Vogel, Marc Pollefeys: IterMVS: Iterative Probability Estimation for Efficient Multi-View Stereo.
Baseline_NR-MVSNet78.15 18878.33 16177.61 27085.79 22556.21 31386.78 17185.76 24773.60 13277.93 15887.57 19365.02 11188.99 26867.14 20775.33 28587.63 258
cascas76.72 21974.64 23082.99 15885.78 22665.88 16482.33 26489.21 17260.85 30572.74 25181.02 31147.28 28893.75 13967.48 20285.02 15889.34 216
MVS78.19 18776.99 19481.78 18785.66 22766.99 14484.66 22290.47 13355.08 34272.02 26185.27 25563.83 12094.11 12166.10 21489.80 10584.24 317
XVG-OURS80.41 13279.23 14083.97 12485.64 22869.02 9783.03 26090.39 13471.09 17277.63 16391.49 9454.62 21691.35 22775.71 12483.47 18391.54 132
CANet_DTU80.61 12779.87 12482.83 16485.60 22963.17 22787.36 15288.65 19676.37 7575.88 20488.44 17253.51 22693.07 17173.30 14789.74 10692.25 115
XVG-OURS-SEG-HR80.81 11979.76 12683.96 12585.60 22968.78 10283.54 25090.50 13270.66 18076.71 18491.66 8660.69 17091.26 22976.94 11081.58 20591.83 126
TransMVSNet (Re)75.39 24074.56 23277.86 26485.50 23157.10 29886.78 17186.09 24372.17 15471.53 26587.34 19963.01 13289.31 26356.84 29461.83 34987.17 270
MVP-Stereo76.12 22874.46 23581.13 20785.37 23269.79 8584.42 23387.95 20965.03 26367.46 30485.33 25453.28 22891.73 21658.01 28383.27 18581.85 339
Qingsong Yan: MVP-Stereo: A Parallel Multi-View Patchmatch Stereo Method with Dilation Matching for Photogrammetric Application.
thisisatest051577.33 20975.38 22383.18 14885.27 23363.80 20982.11 26683.27 28165.06 26275.91 20383.84 27949.54 26994.27 11267.24 20586.19 14891.48 137
tt080578.73 17377.83 17281.43 19585.17 23460.30 26389.41 8690.90 12271.21 16977.17 17688.73 16146.38 29393.21 15972.57 15678.96 23790.79 158
OpenMVScopyleft72.83 1079.77 14678.33 16184.09 11385.17 23469.91 8390.57 5990.97 12066.70 24272.17 25991.91 8154.70 21493.96 12361.81 25090.95 9088.41 247
AllTest70.96 27568.09 29079.58 24185.15 23663.62 21184.58 22679.83 31662.31 29560.32 34686.73 21432.02 35388.96 27150.28 32571.57 31986.15 291
TestCases79.58 24185.15 23663.62 21179.83 31662.31 29560.32 34686.73 21432.02 35388.96 27150.28 32571.57 31986.15 291
Effi-MVS+-dtu80.03 14278.57 15484.42 10085.13 23868.74 10588.77 10688.10 20474.99 10174.97 23083.49 28557.27 19893.36 15573.53 14380.88 21291.18 144
SixPastTwentyTwo73.37 25571.26 26579.70 23785.08 23957.89 28685.57 20183.56 27671.03 17365.66 32185.88 24142.10 32592.57 18459.11 27163.34 34788.65 242
bld_raw_dy_0_6477.29 21175.98 21381.22 20385.04 24065.47 17488.14 13277.56 33069.20 21073.77 24289.40 14942.24 32488.85 27476.78 11481.64 20489.33 217
EG-PatchMatch MVS74.04 24971.82 25880.71 21784.92 24167.42 13585.86 19788.08 20566.04 25264.22 33183.85 27835.10 34992.56 18557.44 28780.83 21382.16 338
IB-MVS68.01 1575.85 23273.36 24683.31 14184.76 24266.03 15883.38 25185.06 25370.21 18869.40 28881.05 31045.76 30294.66 10065.10 22375.49 27889.25 219
Christian Sormann, Mattia Rossi, Andreas Kuhn and Friedrich Fraundorfer: IB-MVS: An Iterative Algorithm for Deep Multi-View Stereo based on Binary Decisions. BMVC 2021
mvs_tets79.13 16477.77 17683.22 14784.70 24366.37 15489.17 9090.19 14369.38 20475.40 21589.46 14344.17 31193.15 16676.78 11480.70 21690.14 184
jajsoiax79.29 16077.96 16783.27 14384.68 24466.57 15289.25 8990.16 14469.20 21075.46 21289.49 14045.75 30393.13 16876.84 11180.80 21490.11 187
MIMVSNet70.69 27969.30 27874.88 29584.52 24556.35 31175.87 32679.42 32064.59 26767.76 29982.41 29841.10 32981.54 32546.64 34681.34 20686.75 282
MSDG73.36 25770.99 26680.49 22184.51 24665.80 16780.71 28186.13 24265.70 25665.46 32283.74 28244.60 30890.91 24051.13 32076.89 25784.74 312
mvs_anonymous79.42 15679.11 14480.34 22484.45 24757.97 28482.59 26287.62 21767.40 23876.17 20188.56 16968.47 7989.59 25870.65 17186.05 15093.47 74
EI-MVSNet80.52 13179.98 12182.12 18084.28 24863.19 22686.41 18188.95 18574.18 11978.69 13587.54 19666.62 9292.43 18972.57 15680.57 21890.74 162
CVMVSNet72.99 26272.58 25274.25 30284.28 24850.85 35286.41 18183.45 27944.56 35973.23 24787.54 19649.38 27285.70 29965.90 21678.44 24286.19 290
pm-mvs177.25 21276.68 20478.93 24984.22 25058.62 27686.41 18188.36 20171.37 16773.31 24588.01 18661.22 16289.15 26664.24 22873.01 30989.03 226
EPNet83.72 6882.92 7786.14 5884.22 25069.48 8991.05 5485.27 25181.30 576.83 18091.65 8766.09 10095.56 5776.00 12293.85 5993.38 75
Wanjuan Su, Wenbing Tao: Efficient Edge-Preserving Multi-View Stereo Network for Depth Estimation. AAAI 2023
test_fmvsmvis_n_192084.02 6483.87 6684.49 9784.12 25269.37 9488.15 13087.96 20870.01 19083.95 7093.23 5568.80 7891.51 22388.61 1489.96 10392.57 102
v879.97 14579.02 14682.80 16784.09 25364.50 19687.96 13590.29 14274.13 12175.24 22386.81 21362.88 13393.89 13274.39 13675.40 28390.00 195
v1079.74 14778.67 15182.97 16084.06 25464.95 18687.88 14190.62 12973.11 14275.11 22686.56 22761.46 15594.05 12273.68 14175.55 27789.90 201
SCA74.22 24772.33 25579.91 23284.05 25562.17 23979.96 29379.29 32266.30 24972.38 25780.13 32051.95 24288.60 27659.25 26977.67 25088.96 231
test_djsdf80.30 13779.32 13783.27 14383.98 25665.37 17990.50 6190.38 13568.55 22576.19 19888.70 16256.44 20393.46 15278.98 8980.14 22490.97 154
131476.53 22075.30 22680.21 22783.93 25762.32 23784.66 22288.81 18860.23 30970.16 27884.07 27655.30 20790.73 24467.37 20383.21 18687.59 261
MS-PatchMatch73.83 25172.67 25177.30 27583.87 25866.02 15981.82 26784.66 25861.37 30368.61 29582.82 29447.29 28788.21 28059.27 26884.32 16877.68 353
v114480.03 14279.03 14583.01 15783.78 25964.51 19487.11 16090.57 13171.96 15678.08 15586.20 23661.41 15693.94 12674.93 13177.23 25290.60 167
OurMVSNet-221017-074.26 24672.42 25479.80 23583.76 26059.59 27185.92 19586.64 23366.39 24866.96 30987.58 19239.46 33491.60 21765.76 21869.27 32888.22 248
v2v48280.23 13879.29 13883.05 15583.62 26164.14 20387.04 16189.97 14973.61 13178.18 15287.22 20461.10 16493.82 13376.11 11976.78 26191.18 144
XXY-MVS75.41 23975.56 21874.96 29483.59 26257.82 28880.59 28383.87 27266.54 24774.93 23188.31 17563.24 12580.09 33162.16 24576.85 25986.97 277
v119279.59 15078.43 15883.07 15483.55 26364.52 19386.93 16590.58 13070.83 17577.78 16085.90 24059.15 18293.94 12673.96 14077.19 25490.76 160
EGC-MVSNET52.07 33647.05 34067.14 33983.51 26460.71 25680.50 28567.75 3620.07 3840.43 38575.85 35024.26 36481.54 32528.82 37062.25 34859.16 369
v7n78.97 16977.58 18383.14 15083.45 26565.51 17288.32 12391.21 11473.69 12972.41 25686.32 23457.93 18993.81 13469.18 18675.65 27590.11 187
v14419279.47 15378.37 15982.78 17083.35 26663.96 20686.96 16390.36 13869.99 19177.50 16485.67 24760.66 17193.77 13774.27 13776.58 26290.62 165
tpm273.26 25871.46 26078.63 25283.34 26756.71 30480.65 28280.40 31156.63 33673.55 24382.02 30551.80 24691.24 23056.35 29878.42 24387.95 251
v192192079.22 16178.03 16682.80 16783.30 26863.94 20786.80 16990.33 13969.91 19477.48 16585.53 25058.44 18693.75 13973.60 14276.85 25990.71 163
baseline275.70 23373.83 24281.30 20083.26 26961.79 24582.57 26380.65 30666.81 23966.88 31083.42 28657.86 19192.19 20063.47 23179.57 22889.91 200
v124078.99 16877.78 17582.64 17383.21 27063.54 21586.62 17690.30 14169.74 20077.33 16885.68 24657.04 20093.76 13873.13 15076.92 25690.62 165
XVG-ACMP-BASELINE76.11 22974.27 23781.62 19083.20 27164.67 19283.60 24889.75 15569.75 19871.85 26287.09 20932.78 35292.11 20269.99 17880.43 22088.09 250
MDTV_nov1_ep1369.97 27783.18 27253.48 33677.10 32080.18 31560.45 30669.33 29080.44 31748.89 28286.90 29151.60 31878.51 241
PatchmatchNetpermissive73.12 26071.33 26378.49 25883.18 27260.85 25479.63 29578.57 32564.13 27371.73 26379.81 32551.20 25185.97 29857.40 28876.36 26988.66 241
Fangjinhua Wang, Silvano Galliani, Christoph Vogel, Pablo Speciale, Marc Pollefeys: PatchmatchNet: Learned Multi-View Patchmatch Stereo.
Fast-Effi-MVS+-dtu78.02 19276.49 20682.62 17483.16 27466.96 14786.94 16487.45 22272.45 14871.49 26684.17 27454.79 21391.58 21867.61 20080.31 22189.30 218
gg-mvs-nofinetune69.95 28767.96 29175.94 28483.07 27554.51 32977.23 31970.29 35563.11 28370.32 27462.33 36443.62 31488.69 27553.88 30787.76 12584.62 314
MVSTER79.01 16777.88 17182.38 17883.07 27564.80 19084.08 24188.95 18569.01 21878.69 13587.17 20754.70 21492.43 18974.69 13280.57 21889.89 202
K. test v371.19 27268.51 28479.21 24783.04 27757.78 28984.35 23576.91 33772.90 14762.99 33882.86 29339.27 33591.09 23761.65 25152.66 36588.75 239
eth_miper_zixun_eth77.92 19576.69 20381.61 19283.00 27861.98 24183.15 25589.20 17369.52 20274.86 23284.35 27261.76 14892.56 18571.50 16372.89 31090.28 180
diffmvspermissive82.10 9181.88 9382.76 17283.00 27863.78 21083.68 24489.76 15472.94 14682.02 9389.85 13065.96 10490.79 24282.38 6487.30 13193.71 60
Fangjinhua Wang, Qingshan Xu, Yew-Soon Ong, Marc Pollefeys: Lightweight and Accurate Multi-View Stereo With Confidence-Aware Diffusion Model. IEEE T-PAMI 2025
FMVSNet569.50 29067.96 29174.15 30382.97 28055.35 32080.01 29282.12 29462.56 29363.02 33681.53 30736.92 34481.92 32348.42 33474.06 29885.17 308
c3_l78.75 17277.91 16981.26 20182.89 28161.56 24784.09 24089.13 17769.97 19275.56 20884.29 27366.36 9692.09 20373.47 14575.48 27990.12 186
sss73.60 25373.64 24473.51 30782.80 28255.01 32476.12 32281.69 29862.47 29474.68 23485.85 24357.32 19778.11 33960.86 25880.93 21187.39 264
GA-MVS76.87 21775.17 22781.97 18582.75 28362.58 23381.44 27586.35 23972.16 15574.74 23382.89 29246.20 29792.02 20568.85 19181.09 21091.30 142
v14878.72 17477.80 17481.47 19482.73 28461.96 24286.30 18588.08 20573.26 13976.18 19985.47 25262.46 13892.36 19371.92 16073.82 30290.09 189
IterMVS-SCA-FT75.43 23873.87 24180.11 22982.69 28564.85 18981.57 27283.47 27869.16 21270.49 27284.15 27551.95 24288.15 28169.23 18572.14 31587.34 266
miper_ehance_all_eth78.59 17877.76 17781.08 20882.66 28661.56 24783.65 24589.15 17568.87 22075.55 20983.79 28166.49 9492.03 20473.25 14876.39 26689.64 210
CostFormer75.24 24173.90 24079.27 24582.65 28758.27 27980.80 27882.73 28961.57 30075.33 22083.13 29055.52 20591.07 23864.98 22478.34 24588.45 245
EPNet_dtu75.46 23774.86 22877.23 27682.57 28854.60 32786.89 16683.09 28571.64 15866.25 31985.86 24255.99 20488.04 28354.92 30286.55 14289.05 225
Wanjuan Su, Wenbing Tao: Efficient Edge-Preserving Multi-View Stereo Network for Depth Estimation. AAAI 2023
RPSCF73.23 25971.46 26078.54 25682.50 28959.85 26782.18 26582.84 28858.96 32071.15 26989.41 14745.48 30684.77 30858.82 27571.83 31791.02 153
cl____77.72 20076.76 20080.58 21982.49 29060.48 26083.09 25787.87 21169.22 20874.38 23885.22 25862.10 14591.53 22171.09 16675.41 28289.73 209
DIV-MVS_self_test77.72 20076.76 20080.58 21982.48 29160.48 26083.09 25787.86 21269.22 20874.38 23885.24 25662.10 14591.53 22171.09 16675.40 28389.74 208
tpm cat170.57 28068.31 28677.35 27482.41 29257.95 28578.08 31280.22 31452.04 34868.54 29677.66 34052.00 24187.84 28551.77 31672.07 31686.25 288
cl2278.07 19077.01 19281.23 20282.37 29361.83 24483.55 24987.98 20768.96 21975.06 22883.87 27761.40 15791.88 21173.53 14376.39 26689.98 198
tpm72.37 26771.71 25974.35 30182.19 29452.00 34379.22 30077.29 33464.56 26872.95 25083.68 28451.35 24983.26 31958.33 28075.80 27387.81 255
tpmvs71.09 27469.29 27976.49 28182.04 29556.04 31478.92 30581.37 30164.05 27667.18 30878.28 33549.74 26889.77 25449.67 33072.37 31283.67 324
dmvs_re71.14 27370.58 26972.80 31281.96 29659.68 26975.60 32879.34 32168.55 22569.27 29180.72 31649.42 27176.54 34752.56 31477.79 24782.19 337
pmmvs474.03 25071.91 25780.39 22281.96 29668.32 11681.45 27482.14 29359.32 31769.87 28485.13 26052.40 23388.13 28260.21 26274.74 29384.73 313
TinyColmap67.30 30564.81 30974.76 29781.92 29856.68 30580.29 28981.49 30060.33 30756.27 36083.22 28724.77 36387.66 28845.52 35069.47 32779.95 348
ITE_SJBPF78.22 26081.77 29960.57 25883.30 28069.25 20767.54 30287.20 20536.33 34687.28 29054.34 30574.62 29486.80 280
miper_enhance_ethall77.87 19776.86 19680.92 21381.65 30061.38 24982.68 26188.98 18265.52 25975.47 21082.30 30065.76 10692.00 20672.95 15176.39 26689.39 215
MVS-HIRNet59.14 32757.67 33063.57 34481.65 30043.50 37271.73 34165.06 36839.59 36651.43 36557.73 37038.34 33982.58 32239.53 36273.95 29964.62 366
GG-mvs-BLEND75.38 29181.59 30255.80 31679.32 29869.63 35767.19 30773.67 35443.24 31588.90 27350.41 32284.50 16481.45 341
IterMVS74.29 24572.94 25078.35 25981.53 30363.49 21781.58 27182.49 29068.06 23269.99 28183.69 28351.66 24885.54 30065.85 21771.64 31886.01 295
Fangjinhua Wang, Silvano Galliani, Christoph Vogel, Marc Pollefeys: IterMVS: Iterative Probability Estimation for Efficient Multi-View Stereo.
CHOSEN 280x42066.51 30964.71 31071.90 31781.45 30463.52 21657.98 37168.95 36153.57 34462.59 34076.70 34346.22 29675.29 35855.25 30179.68 22776.88 355
gm-plane-assit81.40 30553.83 33462.72 29280.94 31392.39 19163.40 233
pmmvs674.69 24373.39 24578.61 25381.38 30657.48 29386.64 17587.95 20964.99 26570.18 27686.61 22350.43 26089.52 25962.12 24670.18 32588.83 236
test-LLR72.94 26372.43 25374.48 29981.35 30758.04 28278.38 30877.46 33166.66 24369.95 28279.00 32948.06 28479.24 33366.13 21284.83 16086.15 291
test-mter71.41 27170.39 27474.48 29981.35 30758.04 28278.38 30877.46 33160.32 30869.95 28279.00 32936.08 34779.24 33366.13 21284.83 16086.15 291
CR-MVSNet73.37 25571.27 26479.67 23981.32 30965.19 18175.92 32480.30 31259.92 31272.73 25281.19 30852.50 23186.69 29259.84 26477.71 24887.11 274
RPMNet73.51 25470.49 27182.58 17581.32 30965.19 18175.92 32492.27 7657.60 33172.73 25276.45 34552.30 23495.43 6448.14 33977.71 24887.11 274
V4279.38 15978.24 16382.83 16481.10 31165.50 17385.55 20589.82 15271.57 16478.21 15086.12 23860.66 17193.18 16575.64 12575.46 28189.81 206
lessismore_v078.97 24881.01 31257.15 29765.99 36561.16 34382.82 29439.12 33691.34 22859.67 26546.92 37188.43 246
Patchmtry70.74 27869.16 28175.49 29080.72 31354.07 33274.94 33580.30 31258.34 32470.01 27981.19 30852.50 23186.54 29353.37 31071.09 32285.87 299
PatchT68.46 29967.85 29370.29 32880.70 31443.93 37172.47 33974.88 34460.15 31070.55 27076.57 34449.94 26581.59 32450.58 32174.83 29285.34 303
USDC70.33 28368.37 28576.21 28380.60 31556.23 31279.19 30186.49 23560.89 30461.29 34285.47 25231.78 35589.47 26153.37 31076.21 27082.94 334
tpmrst72.39 26572.13 25673.18 31180.54 31649.91 35679.91 29479.08 32363.11 28371.69 26479.95 32255.32 20682.77 32165.66 21973.89 30086.87 278
anonymousdsp78.60 17777.15 19082.98 15980.51 31767.08 14387.24 15789.53 15965.66 25775.16 22487.19 20652.52 23092.25 19877.17 10879.34 23389.61 211
OpenMVS_ROBcopyleft64.09 1970.56 28168.19 28777.65 26980.26 31859.41 27385.01 21582.96 28758.76 32265.43 32382.33 29937.63 34391.23 23145.34 35276.03 27182.32 335
Anonymous2023120668.60 29667.80 29571.02 32580.23 31950.75 35378.30 31180.47 30956.79 33566.11 32082.63 29746.35 29578.95 33543.62 35575.70 27483.36 327
miper_lstm_enhance74.11 24873.11 24977.13 27780.11 32059.62 27072.23 34086.92 23166.76 24170.40 27382.92 29156.93 20182.92 32069.06 18872.63 31188.87 234
MIMVSNet168.58 29766.78 30573.98 30480.07 32151.82 34580.77 27984.37 26264.40 27059.75 34982.16 30336.47 34583.63 31542.73 35770.33 32486.48 286
ADS-MVSNet266.20 31463.33 31774.82 29679.92 32258.75 27567.55 35775.19 34353.37 34565.25 32575.86 34842.32 32180.53 33041.57 35968.91 33085.18 306
ADS-MVSNet64.36 31862.88 32168.78 33579.92 32247.17 36167.55 35771.18 35353.37 34565.25 32575.86 34842.32 32173.99 36241.57 35968.91 33085.18 306
test_vis1_n_192075.52 23675.78 21474.75 29879.84 32457.44 29483.26 25385.52 24962.83 28979.34 12686.17 23745.10 30779.71 33278.75 9181.21 20987.10 276
D2MVS74.82 24273.21 24779.64 24079.81 32562.56 23480.34 28887.35 22364.37 27168.86 29282.66 29646.37 29490.10 25167.91 19881.24 20886.25 288
our_test_369.14 29267.00 30375.57 28879.80 32658.80 27477.96 31377.81 32859.55 31562.90 33978.25 33647.43 28683.97 31251.71 31767.58 33583.93 322
ppachtmachnet_test70.04 28667.34 30178.14 26179.80 32661.13 25079.19 30180.59 30759.16 31965.27 32479.29 32646.75 29287.29 28949.33 33166.72 33686.00 297
dp66.80 30665.43 30870.90 32779.74 32848.82 35975.12 33374.77 34559.61 31464.08 33277.23 34142.89 31780.72 32948.86 33366.58 33883.16 329
EPMVS69.02 29368.16 28871.59 31979.61 32949.80 35877.40 31766.93 36362.82 29070.01 27979.05 32745.79 30177.86 34156.58 29675.26 28787.13 273
PVSNet_057.27 2061.67 32559.27 32868.85 33479.61 32957.44 29468.01 35673.44 35155.93 33958.54 35270.41 36044.58 30977.55 34247.01 34335.91 37471.55 362
CL-MVSNet_self_test72.37 26771.46 26075.09 29379.49 33153.53 33580.76 28085.01 25569.12 21370.51 27182.05 30457.92 19084.13 31152.27 31566.00 34187.60 259
Patchmatch-test64.82 31763.24 31869.57 33079.42 33249.82 35763.49 36869.05 36051.98 35059.95 34880.13 32050.91 25370.98 36640.66 36173.57 30387.90 253
MDA-MVSNet-bldmvs66.68 30763.66 31675.75 28579.28 33360.56 25973.92 33778.35 32664.43 26950.13 36679.87 32444.02 31283.67 31446.10 34856.86 35783.03 332
TESTMET0.1,169.89 28869.00 28272.55 31479.27 33456.85 30078.38 30874.71 34757.64 33068.09 29877.19 34237.75 34276.70 34663.92 22984.09 17184.10 320
N_pmnet52.79 33453.26 33351.40 35878.99 3357.68 38969.52 3503.89 38951.63 35157.01 35774.98 35240.83 33165.96 37337.78 36464.67 34480.56 347
dmvs_testset62.63 32264.11 31358.19 35078.55 33624.76 38575.28 32965.94 36667.91 23360.34 34576.01 34753.56 22573.94 36331.79 36867.65 33475.88 357
EU-MVSNet68.53 29867.61 29871.31 32478.51 33747.01 36284.47 22884.27 26642.27 36266.44 31884.79 26640.44 33283.76 31358.76 27668.54 33383.17 328
pmmvs571.55 27070.20 27675.61 28777.83 33856.39 30981.74 26980.89 30257.76 32967.46 30484.49 26849.26 27585.32 30457.08 29175.29 28685.11 309
test0.0.03 168.00 30167.69 29768.90 33377.55 33947.43 36075.70 32772.95 35266.66 24366.56 31382.29 30148.06 28475.87 35444.97 35374.51 29583.41 326
Patchmatch-RL test70.24 28467.78 29677.61 27077.43 34059.57 27271.16 34370.33 35462.94 28768.65 29472.77 35550.62 25785.49 30169.58 18366.58 33887.77 256
pmmvs-eth3d70.50 28267.83 29478.52 25777.37 34166.18 15781.82 26781.51 29958.90 32163.90 33480.42 31842.69 31986.28 29658.56 27765.30 34383.11 330
JIA-IIPM66.32 31162.82 32276.82 27977.09 34261.72 24665.34 36475.38 34258.04 32864.51 32962.32 36542.05 32686.51 29451.45 31969.22 32982.21 336
Gipumacopyleft45.18 34241.86 34555.16 35677.03 34351.52 34832.50 37780.52 30832.46 37327.12 37635.02 3779.52 38075.50 35522.31 37760.21 35538.45 376
S. Galliani, K. Lasinger, K. Schindler: Massively Parallel Multiview Stereopsis by Surface Normal Diffusion. ICCV 2015
MDA-MVSNet_test_wron65.03 31562.92 31971.37 32175.93 34456.73 30269.09 35574.73 34657.28 33354.03 36377.89 33745.88 29974.39 36149.89 32961.55 35082.99 333
test_cas_vis1_n_192073.76 25273.74 24373.81 30575.90 34559.77 26880.51 28482.40 29158.30 32581.62 10085.69 24544.35 31076.41 35076.29 11778.61 23885.23 305
YYNet165.03 31562.91 32071.38 32075.85 34656.60 30669.12 35474.66 34857.28 33354.12 36277.87 33845.85 30074.48 36049.95 32861.52 35183.05 331
PMMVS69.34 29168.67 28371.35 32375.67 34762.03 24075.17 33073.46 35050.00 35468.68 29379.05 32752.07 24078.13 33861.16 25682.77 19173.90 359
testgi66.67 30866.53 30667.08 34075.62 34841.69 37575.93 32376.50 33866.11 25065.20 32786.59 22435.72 34874.71 35943.71 35473.38 30784.84 311
test20.0367.45 30366.95 30468.94 33275.48 34944.84 36977.50 31677.67 32966.66 24363.01 33783.80 28047.02 28978.40 33742.53 35868.86 33283.58 325
KD-MVS_2432*160066.22 31263.89 31473.21 30875.47 35053.42 33770.76 34684.35 26364.10 27466.52 31578.52 33334.55 35084.98 30550.40 32350.33 36881.23 342
miper_refine_blended66.22 31263.89 31473.21 30875.47 35053.42 33770.76 34684.35 26364.10 27466.52 31578.52 33334.55 35084.98 30550.40 32350.33 36881.23 342
Anonymous2024052168.80 29567.22 30273.55 30674.33 35254.11 33183.18 25485.61 24858.15 32661.68 34180.94 31330.71 35781.27 32757.00 29273.34 30885.28 304
KD-MVS_self_test68.81 29467.59 29972.46 31574.29 35345.45 36477.93 31487.00 22963.12 28263.99 33378.99 33142.32 32184.77 30856.55 29764.09 34687.16 272
PM-MVS66.41 31064.14 31273.20 31073.92 35456.45 30778.97 30464.96 36963.88 28064.72 32880.24 31919.84 36983.44 31766.24 21164.52 34579.71 349
test_fmvs170.93 27670.52 27072.16 31673.71 35555.05 32380.82 27778.77 32451.21 35378.58 13984.41 27031.20 35676.94 34575.88 12380.12 22584.47 315
UnsupCasMVSNet_bld63.70 32061.53 32670.21 32973.69 35651.39 35072.82 33881.89 29555.63 34057.81 35571.80 35738.67 33778.61 33649.26 33252.21 36680.63 345
UnsupCasMVSNet_eth67.33 30465.99 30771.37 32173.48 35751.47 34975.16 33185.19 25265.20 26060.78 34480.93 31542.35 32077.20 34357.12 29053.69 36485.44 302
TDRefinement67.49 30264.34 31176.92 27873.47 35861.07 25184.86 21982.98 28659.77 31358.30 35385.13 26026.06 36187.89 28447.92 34160.59 35481.81 340
ambc75.24 29273.16 35950.51 35463.05 36987.47 22164.28 33077.81 33917.80 37189.73 25657.88 28460.64 35385.49 301
CMPMVSbinary51.72 2170.19 28568.16 28876.28 28273.15 36057.55 29279.47 29783.92 27048.02 35656.48 35984.81 26543.13 31686.42 29562.67 24081.81 20384.89 310
M. Jancosek, T. Pajdla: Multi-View Reconstruction Preserving Weakly-Supported Surfaces. CVPR 2011
new-patchmatchnet61.73 32461.73 32561.70 34672.74 36124.50 38669.16 35378.03 32761.40 30156.72 35875.53 35138.42 33876.48 34945.95 34957.67 35684.13 319
test_vis1_n69.85 28969.21 28071.77 31872.66 36255.27 32281.48 27376.21 34052.03 34975.30 22183.20 28928.97 35876.22 35274.60 13378.41 24483.81 323
test_fmvs1_n70.86 27770.24 27572.73 31372.51 36355.28 32181.27 27679.71 31851.49 35278.73 13384.87 26427.54 36077.02 34476.06 12079.97 22685.88 298
LF4IMVS64.02 31962.19 32369.50 33170.90 36453.29 34076.13 32177.18 33552.65 34758.59 35180.98 31223.55 36576.52 34853.06 31266.66 33778.68 351
mvsany_test162.30 32361.26 32765.41 34269.52 36554.86 32566.86 35949.78 38046.65 35768.50 29783.21 28849.15 27666.28 37256.93 29360.77 35275.11 358
test_fmvs268.35 30067.48 30070.98 32669.50 36651.95 34480.05 29176.38 33949.33 35574.65 23584.38 27123.30 36675.40 35774.51 13475.17 28985.60 300
new_pmnet50.91 33750.29 33752.78 35768.58 36734.94 38063.71 36656.63 37739.73 36544.95 36765.47 36321.93 36758.48 37634.98 36656.62 35864.92 365
DSMNet-mixed57.77 32956.90 33160.38 34867.70 36835.61 37869.18 35253.97 37832.30 37457.49 35679.88 32340.39 33368.57 37138.78 36372.37 31276.97 354
test_vis1_rt60.28 32658.42 32965.84 34167.25 36955.60 31970.44 34860.94 37344.33 36059.00 35066.64 36224.91 36268.67 37062.80 23669.48 32673.25 360
APD_test153.31 33349.93 33863.42 34565.68 37050.13 35571.59 34266.90 36434.43 37140.58 37071.56 3588.65 38276.27 35134.64 36755.36 36263.86 367
FPMVS53.68 33251.64 33459.81 34965.08 37151.03 35169.48 35169.58 35841.46 36340.67 36972.32 35616.46 37370.00 36924.24 37665.42 34258.40 371
pmmvs357.79 32854.26 33268.37 33664.02 37256.72 30375.12 33365.17 36740.20 36452.93 36469.86 36120.36 36875.48 35645.45 35155.25 36372.90 361
test_fmvs363.36 32161.82 32467.98 33762.51 37346.96 36377.37 31874.03 34945.24 35867.50 30378.79 33212.16 37772.98 36572.77 15466.02 34083.99 321
wuyk23d16.82 35115.94 35419.46 36558.74 37431.45 38139.22 3753.74 3906.84 3816.04 3842.70 3841.27 38924.29 38410.54 38314.40 3832.63 381
testf145.72 34041.96 34357.00 35156.90 37545.32 36566.14 36259.26 37426.19 37530.89 37460.96 3684.14 38570.64 36726.39 37446.73 37255.04 372
APD_test245.72 34041.96 34357.00 35156.90 37545.32 36566.14 36259.26 37426.19 37530.89 37460.96 3684.14 38570.64 36726.39 37446.73 37255.04 372
mvsany_test353.99 33151.45 33561.61 34755.51 37744.74 37063.52 36745.41 38443.69 36158.11 35476.45 34517.99 37063.76 37554.77 30347.59 37076.34 356
test_vis3_rt49.26 33947.02 34156.00 35354.30 37845.27 36866.76 36148.08 38136.83 36844.38 36853.20 3737.17 38464.07 37456.77 29555.66 36058.65 370
PMMVS240.82 34438.86 34746.69 35953.84 37916.45 38748.61 37449.92 37937.49 36731.67 37260.97 3678.14 38356.42 37828.42 37130.72 37667.19 364
test_f52.09 33550.82 33655.90 35453.82 38042.31 37459.42 37058.31 37636.45 36956.12 36170.96 35912.18 37657.79 37753.51 30956.57 35967.60 363
LCM-MVSNet54.25 33049.68 33967.97 33853.73 38145.28 36766.85 36080.78 30435.96 37039.45 37162.23 3668.70 38178.06 34048.24 33851.20 36780.57 346
E-PMN31.77 34530.64 34835.15 36252.87 38227.67 38257.09 37247.86 38224.64 37716.40 38233.05 37811.23 37854.90 37914.46 38118.15 37922.87 378
EMVS30.81 34729.65 34934.27 36350.96 38325.95 38456.58 37346.80 38324.01 37815.53 38330.68 37912.47 37554.43 38012.81 38217.05 38022.43 379
ANet_high50.57 33846.10 34263.99 34348.67 38439.13 37670.99 34580.85 30361.39 30231.18 37357.70 37117.02 37273.65 36431.22 36915.89 38179.18 350
MVEpermissive26.22 2330.37 34825.89 35243.81 36044.55 38535.46 37928.87 37839.07 38518.20 37918.58 38140.18 3762.68 38847.37 38217.07 38023.78 37848.60 375
Simon Fuhrmann, Fabian Langguth, Michael Goesele: MVE - A Multi-View Reconstruction Environment. EUROGRAPHICS Workshops on Graphics and Cultural Heritage (2014)
PMVScopyleft37.38 2244.16 34340.28 34655.82 35540.82 38642.54 37365.12 36563.99 37034.43 37124.48 37757.12 3723.92 38776.17 35317.10 37955.52 36148.75 374
Y. Furukawa, J. Ponce: Accurate, dense, and robust multiview stereopsis. PAMI (2010)
DeepMVS_CXcopyleft27.40 36440.17 38726.90 38324.59 38817.44 38023.95 37848.61 3759.77 37926.48 38318.06 37824.47 37728.83 377
test_method31.52 34629.28 35038.23 36127.03 3886.50 39020.94 37962.21 3724.05 38222.35 38052.50 37413.33 37447.58 38127.04 37334.04 37560.62 368
tmp_tt18.61 35021.40 35310.23 3664.82 38910.11 38834.70 37630.74 3871.48 38323.91 37926.07 38028.42 35913.41 38527.12 37215.35 3827.17 380
testmvs6.04 3548.02 3570.10 3680.08 3900.03 39269.74 3490.04 3910.05 3850.31 3861.68 3850.02 3910.04 3860.24 3840.02 3840.25 383
test1236.12 3538.11 3560.14 3670.06 3910.09 39171.05 3440.03 3920.04 3860.25 3871.30 3860.05 3900.03 3870.21 3850.01 3850.29 382
test_blank0.00 3560.00 3590.00 3690.00 3920.00 3930.00 3800.00 3930.00 3870.00 3880.00 3870.00 3920.00 3880.00 3860.00 3860.00 384
eth-test20.00 392
eth-test0.00 392
uanet_test0.00 3560.00 3590.00 3690.00 3920.00 3930.00 3800.00 3930.00 3870.00 3880.00 3870.00 3920.00 3880.00 3860.00 3860.00 384
DCPMVS0.00 3560.00 3590.00 3690.00 3920.00 3930.00 3800.00 3930.00 3870.00 3880.00 3870.00 3920.00 3880.00 3860.00 3860.00 384
cdsmvs_eth3d_5k19.96 34926.61 3510.00 3690.00 3920.00 3930.00 38089.26 1690.00 3870.00 38888.61 16661.62 1510.00 3880.00 3860.00 3860.00 384
pcd_1.5k_mvsjas5.26 3557.02 3580.00 3690.00 3920.00 3930.00 3800.00 3930.00 3870.00 3880.00 38763.15 1280.00 3880.00 3860.00 3860.00 384
sosnet-low-res0.00 3560.00 3590.00 3690.00 3920.00 3930.00 3800.00 3930.00 3870.00 3880.00 3870.00 3920.00 3880.00 3860.00 3860.00 384
sosnet0.00 3560.00 3590.00 3690.00 3920.00 3930.00 3800.00 3930.00 3870.00 3880.00 3870.00 3920.00 3880.00 3860.00 3860.00 384
uncertanet0.00 3560.00 3590.00 3690.00 3920.00 3930.00 3800.00 3930.00 3870.00 3880.00 3870.00 3920.00 3880.00 3860.00 3860.00 384
Regformer0.00 3560.00 3590.00 3690.00 3920.00 3930.00 3800.00 3930.00 3870.00 3880.00 3870.00 3920.00 3880.00 3860.00 3860.00 384
ab-mvs-re7.23 3529.64 3550.00 3690.00 3920.00 3930.00 3800.00 3930.00 3870.00 38886.72 2160.00 3920.00 3880.00 3860.00 3860.00 384
uanet0.00 3560.00 3590.00 3690.00 3920.00 3930.00 3800.00 3930.00 3870.00 3880.00 3870.00 3920.00 3880.00 3860.00 3860.00 384
PC_three_145268.21 23192.02 1294.00 4182.09 595.98 5084.58 3896.68 294.95 9
test_241102_TWO94.06 1077.24 4992.78 495.72 881.26 897.44 589.07 1096.58 694.26 40
test_0728_THIRD78.38 3292.12 995.78 481.46 797.40 789.42 596.57 794.67 23
GSMVS88.96 231
sam_mvs151.32 25088.96 231
sam_mvs50.01 263
MTGPAbinary92.02 85
test_post178.90 3065.43 38348.81 28385.44 30359.25 269
test_post5.46 38250.36 26184.24 310
patchmatchnet-post74.00 35351.12 25288.60 276
MTMP92.18 3432.83 386
test9_res84.90 3295.70 2692.87 94
agg_prior282.91 5695.45 2992.70 97
test_prior472.60 3389.01 97
test_prior288.85 10375.41 9284.91 4993.54 4874.28 2983.31 5195.86 20
旧先验286.56 17858.10 32787.04 3188.98 26974.07 139
新几何286.29 186
无先验87.48 14988.98 18260.00 31194.12 12067.28 20488.97 230
原ACMM286.86 167
testdata291.01 23962.37 243
segment_acmp73.08 37
testdata184.14 23975.71 86
plane_prior592.44 6995.38 6878.71 9286.32 14591.33 139
plane_prior491.00 110
plane_prior368.60 11278.44 3078.92 131
plane_prior291.25 4979.12 22
plane_prior68.71 10790.38 6677.62 3886.16 149
n20.00 393
nn0.00 393
door-mid69.98 356
test1192.23 79
door69.44 359
HQP5-MVS66.98 145
BP-MVS77.47 104
HQP4-MVS77.24 17195.11 7991.03 151
HQP3-MVS92.19 8285.99 152
HQP2-MVS60.17 179
MDTV_nov1_ep13_2view37.79 37775.16 33155.10 34166.53 31449.34 27353.98 30687.94 252
ACMMP++_ref81.95 201
ACMMP++81.25 207
Test By Simon64.33 115