This table lists the benchmark results for the high-res multi-view scenario. The following metrics are evaluated:

(*) For exact definitions, detailing how potentially incomplete ground truth is taken into account, see our paper.

The datasets are grouped into different categories, and result averages are computed for a category and method if results of the method are available for all datasets within the category. Note that the category "all" includes both the high-res multi-view and the low-res many-view scenarios.

Methods with suffix _ROB may participate in the Robust Vision Challenge.

Click a dataset result cell to show a visualization of the reconstruction. For training datasets, ground truth and accuracy / completeness visualizations are also available. The visualizations may not work with mobile browsers.




Method Infoallhigh-res
multi-view
indooroutdoorbotani.boulde.bridgedoorexhibi.lectur.living.loungeobserv.old co.statueterrac.
sort bysort bysort bysort bysorted bysort bysort bysort bysort bysort bysort bysort bysort bysort bysort bysort by
LCM-MVSNet99.86 199.86 199.87 199.99 199.77 199.77 199.80 199.97 199.97 199.95 199.74 199.98 199.56 1100.00 199.85 3
pmmvs699.07 499.24 498.56 5099.81 296.38 6498.87 999.30 1299.01 1699.63 999.66 399.27 299.68 13297.75 3499.89 2699.62 29
UniMVSNet_ETH3D99.12 399.28 398.65 4399.77 396.34 6699.18 599.20 1999.67 299.73 399.65 499.15 399.86 2597.22 5199.92 1499.77 10
OurMVSNet-221017-098.61 1698.61 2398.63 4599.77 396.35 6599.17 699.05 4698.05 4499.61 1199.52 593.72 18399.88 2098.72 999.88 2899.65 26
Gipumacopyleft98.07 4498.31 3097.36 15699.76 596.28 6998.51 2799.10 3498.76 2396.79 20699.34 1896.61 8098.82 31196.38 7999.50 12496.98 322
S. Galliani, K. Lasinger, K. Schindler: Massively Parallel Multiview Stereopsis by Surface Normal Diffusion. ICCV 2015
MIMVSNet198.51 2098.45 2798.67 4199.72 696.71 5298.76 1298.89 8398.49 2899.38 1799.14 3695.44 13099.84 3196.47 7699.80 4299.47 68
LTVRE_ROB96.88 199.18 299.34 298.72 3899.71 796.99 4699.69 299.57 799.02 1599.62 1099.36 1498.53 799.52 18898.58 1599.95 599.66 23
Andreas Kuhn, Heiko Hirschmüller, Daniel Scharstein, Helmut Mayer: A TV Prior for High-Quality Scalable Multi-View Stereo Reconstruction. International Journal of Computer Vision 2016
mvs_tets98.90 598.94 698.75 3399.69 896.48 6298.54 2499.22 1696.23 12099.71 499.48 798.77 699.93 398.89 399.95 599.84 5
PS-MVSNAJss98.53 1998.63 1998.21 8399.68 994.82 13598.10 5599.21 1796.91 9299.75 299.45 995.82 11099.92 598.80 499.96 499.89 1
RRT_MVS97.95 5497.79 6198.43 6099.67 1095.56 9898.86 1096.73 29797.99 4699.15 3199.35 1689.84 25899.90 1498.64 1199.90 2499.82 6
jajsoiax98.77 998.79 1298.74 3599.66 1196.48 6298.45 3199.12 3195.83 14799.67 699.37 1298.25 1099.92 598.77 599.94 899.82 6
v7n98.73 1198.99 597.95 10299.64 1294.20 16298.67 1699.14 2999.08 1099.42 1599.23 2496.53 8599.91 1399.27 299.93 1099.73 17
test_djsdf98.73 1198.74 1698.69 4099.63 1396.30 6898.67 1699.02 5596.50 10899.32 2099.44 1097.43 3199.92 598.73 799.95 599.86 2
test_low_dy_conf_00198.18 3498.04 4198.60 4699.62 1496.14 7398.66 1997.66 25797.24 8498.78 5099.33 1992.47 21499.87 2298.71 1099.89 2699.80 8
anonymousdsp98.72 1498.63 1998.99 1399.62 1497.29 3998.65 2099.19 2195.62 15599.35 1999.37 1297.38 3399.90 1498.59 1499.91 1799.77 10
FOURS199.59 1698.20 499.03 799.25 1598.96 1898.87 43
PEN-MVS98.75 1098.85 1098.44 5899.58 1795.67 9498.45 3199.15 2799.33 599.30 2199.00 4597.27 3899.92 597.64 3899.92 1499.75 15
EGC-MVSNET83.08 34377.93 34698.53 5299.57 1897.55 2798.33 3898.57 1664.71 37910.38 38098.90 5595.60 12399.50 19395.69 11299.61 8498.55 237
bld_raw_conf00598.51 2098.52 2498.47 5699.57 1895.91 8398.75 1399.27 1498.28 3599.17 2999.27 2193.85 17899.83 3498.63 1299.91 1799.66 23
Baseline_NR-MVSNet97.72 8297.79 6197.50 13999.56 2093.29 19295.44 20198.86 9498.20 3998.37 8299.24 2394.69 15299.55 17995.98 9899.79 4399.65 26
SixPastTwentyTwo97.49 9997.57 8997.26 16299.56 2092.33 20998.28 4296.97 28698.30 3499.45 1499.35 1688.43 27499.89 1898.01 2599.76 4999.54 44
PS-CasMVS98.73 1198.85 1098.39 6499.55 2295.47 10798.49 2899.13 3099.22 899.22 2798.96 4997.35 3499.92 597.79 3299.93 1099.79 9
DTE-MVSNet98.79 898.86 898.59 4899.55 2296.12 7498.48 3099.10 3499.36 499.29 2399.06 4397.27 3899.93 397.71 3699.91 1799.70 20
bld_raw_dy_0_6497.69 8497.61 8597.91 10599.54 2494.27 15998.06 5898.60 16196.60 10198.79 4998.95 5089.62 25999.84 3198.43 1899.91 1799.62 29
HPM-MVS_fast98.32 2898.13 3498.88 2499.54 2497.48 3298.35 3599.03 5395.88 14297.88 14398.22 11798.15 1299.74 8296.50 7599.62 7899.42 87
TDRefinement98.90 598.86 899.02 999.54 2498.06 899.34 499.44 1098.85 2099.00 3999.20 2697.42 3299.59 16697.21 5299.76 4999.40 90
mvsmamba98.16 3598.06 3998.44 5899.53 2795.87 8498.70 1498.94 7797.71 6098.85 4499.10 3891.35 23699.83 3498.47 1699.90 2499.64 28
pm-mvs198.47 2298.67 1797.86 11099.52 2894.58 14598.28 4299.00 6397.57 6699.27 2499.22 2598.32 999.50 19397.09 5899.75 5499.50 51
TransMVSNet (Re)98.38 2698.67 1797.51 13699.51 2993.39 19198.20 5098.87 9198.23 3799.48 1299.27 2198.47 899.55 17996.52 7399.53 11099.60 31
WR-MVS_H98.65 1598.62 2198.75 3399.51 2996.61 5898.55 2399.17 2299.05 1399.17 2998.79 6095.47 12899.89 1897.95 2699.91 1799.75 15
PMVScopyleft89.60 1796.71 15096.97 12795.95 23099.51 2997.81 1797.42 10097.49 26897.93 4895.95 24998.58 7496.88 6696.91 36789.59 29699.36 16793.12 367
Y. Furukawa, J. Ponce: Accurate, dense, and robust multiview stereopsis. PAMI (2010)
MP-MVS-pluss97.69 8497.36 10298.70 3999.50 3296.84 4995.38 20898.99 6692.45 25898.11 11598.31 9797.25 4199.77 6096.60 6999.62 7899.48 65
MP-MVS-pluss: MP-MVS-pluss. MP-MVS-pluss
FC-MVSNet-test98.16 3598.37 2897.56 13199.49 3393.10 19698.35 3599.21 1798.43 2998.89 4298.83 5994.30 16799.81 4097.87 2899.91 1799.77 10
VPNet97.26 11597.49 9696.59 19799.47 3490.58 24496.27 15498.53 16897.77 5198.46 7598.41 8894.59 15899.68 13294.61 17599.29 19099.52 48
CP-MVSNet98.42 2498.46 2598.30 7399.46 3595.22 12398.27 4498.84 10399.05 1399.01 3898.65 7295.37 13199.90 1497.57 4099.91 1799.77 10
XXY-MVS97.54 9597.70 6997.07 17199.46 3592.21 21397.22 10999.00 6394.93 18598.58 6498.92 5397.31 3699.41 22394.44 18299.43 15099.59 32
zzz-MVS98.01 4897.66 7499.06 499.44 3797.90 1295.66 19198.73 13397.69 6297.90 14097.96 14795.81 11499.82 3796.13 8799.61 8499.45 75
MTAPA98.14 3797.84 5699.06 499.44 3797.90 1297.25 10698.73 13397.69 6297.90 14097.96 14795.81 11499.82 3796.13 8799.61 8499.45 75
SteuartSystems-ACMMP98.02 4797.76 6698.79 3199.43 3997.21 4397.15 11198.90 8296.58 10498.08 12197.87 16397.02 5399.76 6595.25 14399.59 9099.40 90
Skip Steuart: Steuart Systems R&D Blog.
ACMH93.61 998.44 2398.76 1397.51 13699.43 3993.54 18798.23 4599.05 4697.40 7899.37 1899.08 4198.79 599.47 20197.74 3599.71 6399.50 51
Qingshan Xu and Wenbing Tao: Multi-Scale Geometric Consistency Guided Multi-View Stereo. CVPR 2019
HPM-MVScopyleft98.11 4197.83 5998.92 2299.42 4197.46 3398.57 2199.05 4695.43 16497.41 16997.50 19597.98 1599.79 4795.58 12399.57 9599.50 51
Chunlin Ren, Qingshan Xu, Shikun Zhang, Jiaqi Yang: Hierarchical Prior Mining for Non-local Multi-View Stereo. ICCV 2023
K. test v396.44 16496.28 16596.95 17699.41 4291.53 22997.65 8290.31 36398.89 1998.93 4199.36 1484.57 30399.92 597.81 3099.56 9899.39 92
VDDNet96.98 12896.84 13597.41 15399.40 4393.26 19397.94 6395.31 32299.26 798.39 8199.18 3087.85 28399.62 15895.13 15599.09 21799.35 104
ACMH+93.58 1098.23 3398.31 3097.98 10199.39 4495.22 12397.55 8999.20 1998.21 3899.25 2598.51 8198.21 1199.40 22594.79 16999.72 6099.32 107
TSAR-MVS + MP.97.42 10497.23 11298.00 10099.38 4595.00 13097.63 8498.20 20993.00 24598.16 10998.06 13795.89 10599.72 9295.67 11499.10 21699.28 121
Zhenlong Yuan, Jiakai Cao, Zhaoqi Wang, Zhaoxin Li: TSAR-MVS: Textureless-aware Segmentation and Correlative Refinement Guided Multi-View Stereo. Pattern Recognition
FIs97.93 6098.07 3797.48 14399.38 4592.95 19998.03 6199.11 3298.04 4598.62 5898.66 7093.75 18299.78 5197.23 5099.84 3499.73 17
lessismore_v097.05 17299.36 4792.12 21784.07 37598.77 5398.98 4785.36 29799.74 8297.34 4999.37 16499.30 113
Anonymous2024052197.07 12297.51 9395.76 23899.35 4888.18 28197.78 7298.40 18597.11 8798.34 8899.04 4489.58 26199.79 4798.09 2399.93 1099.30 113
ACMMP_NAP97.89 6797.63 8198.67 4199.35 4896.84 4996.36 15098.79 12095.07 17897.88 14398.35 9397.24 4299.72 9296.05 9199.58 9299.45 75
Vis-MVSNetpermissive98.27 3098.34 2998.07 9399.33 5095.21 12598.04 5999.46 997.32 8197.82 15199.11 3796.75 7499.86 2597.84 2999.36 16799.15 148
Jingyang Zhang, Yao Yao, Shiwei Li, Zixin Luo, Tian Fang: Visibility-aware Multiview Stereo Network. BMVC 2020
ANet_high98.31 2998.94 696.41 21199.33 5089.64 25597.92 6699.56 899.27 699.66 899.50 697.67 2599.83 3497.55 4199.98 299.77 10
ZNCC-MVS97.92 6197.62 8398.83 2699.32 5297.24 4197.45 9698.84 10395.76 14996.93 20097.43 20197.26 4099.79 4796.06 8999.53 11099.45 75
MP-MVScopyleft97.64 8797.18 11599.00 1299.32 5297.77 1897.49 9598.73 13396.27 11795.59 26497.75 17496.30 9899.78 5193.70 21699.48 13299.45 75
Rongxuan Tan, Qing Wang, et al.: MP-MVS: Multi-Scale Windows PatchMatch and Planar Prior Multi-View Stereo.
PVSNet_Blended_VisFu95.95 18395.80 18596.42 20999.28 5490.62 24395.31 21499.08 4088.40 30496.97 19898.17 12292.11 22199.78 5193.64 21799.21 19998.86 205
tfpnnormal97.72 8297.97 4696.94 17799.26 5592.23 21297.83 7198.45 17598.25 3699.13 3398.66 7096.65 7799.69 12593.92 20899.62 7898.91 194
MSP-MVS97.45 10296.92 13299.03 899.26 5597.70 1997.66 8198.89 8395.65 15398.51 6896.46 27192.15 21999.81 4095.14 15398.58 27099.58 33
Zhenlong Yuan, Cong Liu, Fei Shen, Zhaoxin Li, Jingguo luo, Tianlu Mao and Zhaoqi Wang: MSP-MVS: Multi-granularity Segmentation Prior Guided Multi-View Stereo. AAAI2025
testgi96.07 17796.50 15894.80 27999.26 5587.69 29495.96 17598.58 16595.08 17798.02 12996.25 28197.92 1697.60 36488.68 31098.74 25599.11 161
IS-MVSNet96.93 13096.68 14497.70 12299.25 5894.00 16898.57 2196.74 29598.36 3198.14 11397.98 14688.23 27699.71 10893.10 22899.72 6099.38 94
DVP-MVScopyleft97.78 7897.65 7698.16 8499.24 5995.51 10296.74 13398.23 20495.92 13998.40 7998.28 10697.06 5099.71 10895.48 12899.52 11599.26 126
Zhenlong Yuan, Jinguo Luo, Fei Shen, Zhaoxin Li, Cong Liu, Tianlu Mao, Zhaoqi Wang: DVP-MVS: Synergize Depth-Edge and Visibility Prior for Multi-View Stereo. AAAI2025
test072699.24 5995.51 10296.89 12598.89 8395.92 13998.64 5798.31 9797.06 50
test_0728_SECOND98.25 7899.23 6195.49 10696.74 13398.89 8399.75 7295.48 12899.52 11599.53 47
GST-MVS97.82 7597.49 9698.81 2999.23 6197.25 4097.16 11098.79 12095.96 13697.53 15797.40 20396.93 6099.77 6095.04 15999.35 17299.42 87
ACMMPcopyleft98.05 4597.75 6898.93 2199.23 6197.60 2398.09 5698.96 7495.75 15197.91 13998.06 13796.89 6499.76 6595.32 13999.57 9599.43 86
Qingshan Xu, Weihang Kong, Wenbing Tao, Marc Pollefeys: Multi-Scale Geometric Consistency Guided and Planar Prior Assisted Multi-View Stereo. IEEE Transactions on Pattern Analysis and Machine Intelligence
KD-MVS_self_test97.86 7198.07 3797.25 16399.22 6492.81 20297.55 8998.94 7797.10 8898.85 4498.88 5695.03 14399.67 13797.39 4899.65 7399.26 126
SED-MVS97.94 5797.90 5098.07 9399.22 6495.35 11396.79 13098.83 11096.11 12699.08 3498.24 11297.87 2099.72 9295.44 13299.51 12099.14 151
IU-MVS99.22 6495.40 10898.14 22185.77 32998.36 8595.23 14599.51 12099.49 59
test_241102_ONE99.22 6495.35 11398.83 11096.04 13199.08 3498.13 12497.87 2099.33 246
nrg03098.54 1898.62 2198.32 6999.22 6495.66 9597.90 6799.08 4098.31 3399.02 3798.74 6497.68 2499.61 16497.77 3399.85 3399.70 20
region2R97.92 6197.59 8798.92 2299.22 6497.55 2797.60 8598.84 10396.00 13497.22 17397.62 18596.87 6899.76 6595.48 12899.43 15099.46 70
mPP-MVS97.91 6497.53 9199.04 799.22 6497.87 1597.74 7898.78 12496.04 13197.10 18397.73 17796.53 8599.78 5195.16 15099.50 12499.46 70
COLMAP_ROBcopyleft94.48 698.25 3298.11 3598.64 4499.21 7197.35 3797.96 6299.16 2398.34 3298.78 5098.52 8097.32 3599.45 20894.08 19999.67 7099.13 153
Johannes L. Schönberger, Enliang Zheng, Marc Pollefeys, Jan-Michael Frahm: Pixelwise View Selection for Unstructured Multi-View Stereo. ECCV 2016
ACMMPR97.95 5497.62 8398.94 1899.20 7297.56 2697.59 8698.83 11096.05 12997.46 16797.63 18496.77 7399.76 6595.61 12099.46 13799.49 59
PGM-MVS97.88 6897.52 9298.96 1699.20 7297.62 2297.09 11699.06 4495.45 16297.55 15697.94 15297.11 4499.78 5194.77 17299.46 13799.48 65
test_040297.84 7297.97 4697.47 14499.19 7494.07 16596.71 13898.73 13398.66 2598.56 6598.41 8896.84 7099.69 12594.82 16799.81 3998.64 227
EPP-MVSNet96.84 13696.58 14897.65 12699.18 7593.78 17898.68 1596.34 30097.91 4997.30 17198.06 13788.46 27399.85 2893.85 21099.40 16099.32 107
abl_698.42 2498.19 3399.09 399.16 7698.10 697.73 8099.11 3297.76 5498.62 5898.27 11097.88 1999.80 4695.67 11499.50 12499.38 94
XVG-ACMP-BASELINE97.58 9397.28 10898.49 5499.16 7696.90 4896.39 14798.98 6995.05 17998.06 12398.02 14195.86 10699.56 17594.37 18799.64 7599.00 177
CHOSEN 1792x268894.10 26093.41 26796.18 22199.16 7690.04 25092.15 32498.68 14879.90 36096.22 23897.83 16587.92 28299.42 21489.18 30299.65 7399.08 166
HFP-MVS97.94 5797.64 7998.83 2699.15 7997.50 3097.59 8698.84 10396.05 12997.49 16197.54 19097.07 4899.70 11795.61 12099.46 13799.30 113
#test#97.62 8997.22 11398.83 2699.15 7997.50 3096.81 12898.84 10394.25 20597.49 16197.54 19097.07 4899.70 11794.37 18799.46 13799.30 113
XVS97.96 5097.63 8198.94 1899.15 7997.66 2097.77 7398.83 11097.42 7496.32 23197.64 18396.49 8899.72 9295.66 11699.37 16499.45 75
X-MVStestdata92.86 28790.83 31198.94 1899.15 7997.66 2097.77 7398.83 11097.42 7496.32 23136.50 37796.49 8899.72 9295.66 11699.37 16499.45 75
LPG-MVS_test97.94 5797.67 7398.74 3599.15 7997.02 4497.09 11699.02 5595.15 17498.34 8898.23 11497.91 1799.70 11794.41 18499.73 5699.50 51
LGP-MVS_train98.74 3599.15 7997.02 4499.02 5595.15 17498.34 8898.23 11497.91 1799.70 11794.41 18499.73 5699.50 51
RPSCF97.87 6997.51 9398.95 1799.15 7998.43 397.56 8899.06 4496.19 12398.48 7298.70 6794.72 15199.24 26594.37 18799.33 18299.17 144
ACMM93.33 1198.05 4597.79 6198.85 2599.15 7997.55 2796.68 13998.83 11095.21 17098.36 8598.13 12498.13 1499.62 15896.04 9299.54 10799.39 92
Qingshan Xu and Wenbing Tao: Multi-Scale Geometric Consistency Guided Multi-View Stereo. CVPR 2019
FMVSNet197.95 5498.08 3697.56 13199.14 8793.67 18198.23 4598.66 15397.41 7799.00 3999.19 2795.47 12899.73 8795.83 10799.76 4999.30 113
Vis-MVSNet (Re-imp)95.11 21694.85 21795.87 23599.12 8889.17 26397.54 9494.92 32496.50 10896.58 21897.27 21883.64 30899.48 19888.42 31399.67 7098.97 181
dcpmvs_297.12 12097.99 4594.51 29299.11 8984.00 34397.75 7699.65 597.38 7999.14 3298.42 8795.16 13899.96 295.52 12499.78 4699.58 33
OPM-MVS97.54 9597.25 10998.41 6299.11 8996.61 5895.24 22098.46 17494.58 19698.10 11898.07 13297.09 4799.39 23095.16 15099.44 14299.21 135
Ray L. Khuboni, Hongjun Xu: Octagram Propagation Matching for Multi-Scale View Stereopsis (OPM-MVS).
UA-Net98.88 798.76 1399.22 299.11 8997.89 1499.47 399.32 1199.08 1097.87 14699.67 296.47 9099.92 597.88 2799.98 299.85 3
AllTest97.20 11996.92 13298.06 9599.08 9296.16 7197.14 11399.16 2394.35 20197.78 15298.07 13295.84 10799.12 28091.41 25399.42 15398.91 194
TestCases98.06 9599.08 9296.16 7199.16 2394.35 20197.78 15298.07 13295.84 10799.12 28091.41 25399.42 15398.91 194
TranMVSNet+NR-MVSNet98.33 2798.30 3298.43 6099.07 9495.87 8496.73 13799.05 4698.67 2498.84 4698.45 8597.58 2899.88 2096.45 7799.86 3099.54 44
test111194.53 24694.81 22193.72 30699.06 9581.94 35598.31 3983.87 37696.37 11398.49 7199.17 3281.49 31399.73 8796.64 6799.86 3099.49 59
VPA-MVSNet98.27 3098.46 2597.70 12299.06 9593.80 17697.76 7599.00 6398.40 3099.07 3698.98 4796.89 6499.75 7297.19 5599.79 4399.55 43
114514_t93.96 26493.22 27196.19 22099.06 9590.97 23795.99 17298.94 7773.88 37393.43 32496.93 24192.38 21799.37 23689.09 30399.28 19198.25 268
EG-PatchMatch MVS97.69 8497.79 6197.40 15499.06 9593.52 18895.96 17598.97 7394.55 19798.82 4798.76 6397.31 3699.29 25797.20 5499.44 14299.38 94
test_one_060199.05 9995.50 10598.87 9197.21 8698.03 12798.30 10196.93 60
ACMP92.54 1397.47 10197.10 11998.55 5199.04 10096.70 5396.24 15898.89 8393.71 22197.97 13497.75 17497.44 3099.63 15093.22 22599.70 6699.32 107
Qingshan Xu and Wenbing Tao: Planar Prior Assisted PatchMatch Multi-View Stereo. AAAI 2020
test_part299.03 10196.07 7698.08 121
XVG-OURS-SEG-HR97.38 10797.07 12298.30 7399.01 10297.41 3694.66 24999.02 5595.20 17198.15 11197.52 19398.83 498.43 34494.87 16596.41 33799.07 168
XVG-OURS97.12 12096.74 14198.26 7598.99 10397.45 3493.82 28599.05 4695.19 17298.32 9397.70 17995.22 13798.41 34594.27 19298.13 28598.93 189
CP-MVS97.92 6197.56 9098.99 1398.99 10397.82 1697.93 6498.96 7496.11 12696.89 20397.45 19996.85 6999.78 5195.19 14699.63 7799.38 94
test250689.86 32489.16 32991.97 33898.95 10576.83 37098.54 2461.07 38496.20 12197.07 18899.16 3355.19 38399.69 12596.43 7899.83 3699.38 94
ECVR-MVScopyleft94.37 25194.48 23994.05 30398.95 10583.10 34798.31 3982.48 37796.20 12198.23 10299.16 3381.18 31699.66 14395.95 9999.83 3699.38 94
CSCG97.40 10697.30 10597.69 12498.95 10594.83 13497.28 10598.99 6696.35 11698.13 11495.95 29895.99 10399.66 14394.36 19099.73 5698.59 233
SF-MVS97.60 9197.39 10098.22 8098.93 10895.69 9197.05 11899.10 3495.32 16797.83 14997.88 16196.44 9299.72 9294.59 17999.39 16199.25 130
HyFIR lowres test93.72 26992.65 28596.91 18098.93 10891.81 22691.23 34198.52 16982.69 34896.46 22596.52 26980.38 32199.90 1490.36 28698.79 25099.03 174
PM-MVS97.36 11097.10 11998.14 8898.91 11096.77 5196.20 16098.63 15993.82 21898.54 6698.33 9593.98 17599.05 29095.99 9799.45 14198.61 232
CPTT-MVS96.69 15196.08 17498.49 5498.89 11196.64 5797.25 10698.77 12592.89 25196.01 24897.13 22592.23 21899.67 13792.24 23799.34 17599.17 144
patch_mono-296.59 15696.93 13095.55 24898.88 11287.12 30594.47 25699.30 1294.12 21096.65 21698.41 8894.98 14699.87 2295.81 10999.78 4699.66 23
GeoE97.75 8097.70 6997.89 10798.88 11294.53 14697.10 11598.98 6995.75 15197.62 15497.59 18797.61 2799.77 6096.34 8199.44 14299.36 102
DPE-MVScopyleft97.64 8797.35 10398.50 5398.85 11496.18 7095.21 22298.99 6695.84 14698.78 5098.08 13096.84 7099.81 4093.98 20699.57 9599.52 48
Kehua Chen, Zhenlong Yuan, Tianlu Mao, Zhaoqi Wang: Dual-Level Precision Edges Guided Multi-View Stereo with Accurate Planarization. AAAI2025
SMA-MVScopyleft97.48 10097.11 11898.60 4698.83 11596.67 5596.74 13398.73 13391.61 26998.48 7298.36 9296.53 8599.68 13295.17 14899.54 10799.45 75
Yufeng Yin; Xiaoyan Liu; Zichao Zhang: SMA-MVS: Segmentation-Guided Multi-Scale Anchor Deformation Patch Multi-View Stereo. IEEE Transactions on Circuits and Systems for Video Technology
SR-MVS-dyc-post98.14 3797.84 5699.02 998.81 11698.05 997.55 8998.86 9497.77 5198.20 10498.07 13296.60 8299.76 6595.49 12599.20 20099.26 126
RE-MVS-def97.88 5498.81 11698.05 997.55 8998.86 9497.77 5198.20 10498.07 13296.94 5895.49 12599.20 20099.26 126
UniMVSNet (Re)97.83 7397.65 7698.35 6898.80 11895.86 8695.92 18099.04 5297.51 7198.22 10397.81 16994.68 15499.78 5197.14 5799.75 5499.41 89
Anonymous2023121198.55 1798.76 1397.94 10398.79 11994.37 15398.84 1199.15 2799.37 399.67 699.43 1195.61 12299.72 9298.12 2199.86 3099.73 17
APD-MVS_3200maxsize98.13 4097.90 5098.79 3198.79 11997.31 3897.55 8998.92 8097.72 5898.25 10098.13 12497.10 4599.75 7295.44 13299.24 19899.32 107
test117298.08 4397.76 6699.05 698.78 12198.07 797.41 10198.85 9897.57 6698.15 11197.96 14796.60 8299.76 6595.30 14099.18 20499.33 106
DeepC-MVS95.41 497.82 7597.70 6998.16 8498.78 12195.72 8996.23 15999.02 5593.92 21698.62 5898.99 4697.69 2399.62 15896.18 8699.87 2999.15 148
Andreas Kuhn, Christian Sormann, Mattia Rossi, Oliver Erdler, Friedrich Fraundorfer: DeepC-MVS: Deep Confidence Prediction for Multi-View Stereo Reconstruction. 3DV 2020
SR-MVS98.00 4997.66 7499.01 1198.77 12397.93 1197.38 10298.83 11097.32 8198.06 12397.85 16496.65 7799.77 6095.00 16299.11 21499.32 107
MCST-MVS96.24 17095.80 18597.56 13198.75 12494.13 16494.66 24998.17 21590.17 28796.21 23996.10 29195.14 13999.43 21394.13 19898.85 24599.13 153
DU-MVS97.79 7797.60 8698.36 6698.73 12595.78 8795.65 19498.87 9197.57 6698.31 9597.83 16594.69 15299.85 2897.02 6199.71 6399.46 70
NR-MVSNet97.96 5097.86 5598.26 7598.73 12595.54 10098.14 5398.73 13397.79 5099.42 1597.83 16594.40 16599.78 5195.91 10299.76 4999.46 70
Anonymous2023120695.27 21095.06 20895.88 23498.72 12789.37 26095.70 18797.85 24388.00 30996.98 19797.62 18591.95 22699.34 24389.21 30199.53 11098.94 185
APDe-MVS98.14 3798.03 4398.47 5698.72 12796.04 7798.07 5799.10 3495.96 13698.59 6398.69 6896.94 5899.81 4096.64 6799.58 9299.57 38
UniMVSNet_NR-MVSNet97.83 7397.65 7698.37 6598.72 12795.78 8795.66 19199.02 5598.11 4198.31 9597.69 18194.65 15699.85 2897.02 6199.71 6399.48 65
tttt051793.31 28192.56 28895.57 24598.71 13087.86 28897.44 9787.17 37195.79 14897.47 16696.84 24764.12 37399.81 4096.20 8499.32 18499.02 176
v897.60 9198.06 3996.23 21798.71 13089.44 25997.43 9998.82 11897.29 8398.74 5499.10 3893.86 17799.68 13298.61 1399.94 899.56 41
HQP_MVS96.66 15496.33 16497.68 12598.70 13294.29 15596.50 14398.75 12996.36 11496.16 24196.77 25391.91 23099.46 20492.59 23499.20 20099.28 121
plane_prior798.70 13294.67 143
Anonymous2024052997.96 5098.04 4197.71 12098.69 13494.28 15897.86 6998.31 19898.79 2299.23 2698.86 5895.76 11799.61 16495.49 12599.36 16799.23 133
VDD-MVS97.37 10897.25 10997.74 11898.69 13494.50 14997.04 11995.61 31698.59 2698.51 6898.72 6592.54 21199.58 16896.02 9499.49 12899.12 158
DROMVSNet97.90 6697.94 4997.79 11498.66 13695.14 12698.31 3999.66 497.57 6695.95 24997.01 23796.99 5599.82 3797.66 3799.64 7598.39 249
HPM-MVS++copyleft96.99 12596.38 16198.81 2998.64 13797.59 2495.97 17498.20 20995.51 16095.06 27496.53 26794.10 17299.70 11794.29 19199.15 20699.13 153
ab-mvs96.59 15696.59 14796.60 19698.64 13792.21 21398.35 3597.67 25594.45 19896.99 19598.79 6094.96 14799.49 19590.39 28599.07 22098.08 277
F-COLMAP95.30 20994.38 24498.05 9898.64 13796.04 7795.61 19798.66 15389.00 29793.22 32896.40 27592.90 19999.35 24187.45 32797.53 31298.77 216
ITE_SJBPF97.85 11198.64 13796.66 5698.51 17195.63 15497.22 17397.30 21795.52 12598.55 33890.97 26398.90 23798.34 257
v14896.58 15896.97 12795.42 25598.63 14187.57 29595.09 22697.90 24095.91 14198.24 10197.96 14793.42 18899.39 23096.04 9299.52 11599.29 120
ETH3D-3000-0.196.89 13596.46 15998.16 8498.62 14295.69 9195.96 17598.98 6993.36 22997.04 19097.31 21694.93 14899.63 15092.60 23299.34 17599.17 144
UnsupCasMVSNet_bld94.72 23494.26 24696.08 22498.62 14290.54 24793.38 30098.05 23590.30 28597.02 19396.80 25289.54 26299.16 27688.44 31296.18 34098.56 235
DP-MVS97.87 6997.89 5397.81 11398.62 14294.82 13597.13 11498.79 12098.98 1798.74 5498.49 8295.80 11699.49 19595.04 15999.44 14299.11 161
v1097.55 9497.97 4696.31 21598.60 14589.64 25597.44 9799.02 5596.60 10198.72 5699.16 3393.48 18799.72 9298.76 699.92 1499.58 33
Test_1112_low_res93.53 27792.86 27795.54 24998.60 14588.86 26992.75 31298.69 14682.66 34992.65 33896.92 24384.75 30199.56 17590.94 26497.76 29898.19 273
V4297.04 12397.16 11696.68 19498.59 14791.05 23496.33 15298.36 19094.60 19397.99 13098.30 10193.32 18999.62 15897.40 4799.53 11099.38 94
1112_ss94.12 25993.42 26696.23 21798.59 14790.85 23894.24 26498.85 9885.49 33092.97 33194.94 31986.01 29399.64 14891.78 24797.92 29298.20 272
v2v48296.78 14397.06 12395.95 23098.57 14988.77 27295.36 20998.26 20195.18 17397.85 14898.23 11492.58 20899.63 15097.80 3199.69 6799.45 75
WR-MVS96.90 13396.81 13797.16 16598.56 15092.20 21594.33 25998.12 22497.34 8098.20 10497.33 21492.81 20099.75 7294.79 16999.81 3999.54 44
APD-MVScopyleft97.00 12496.53 15498.41 6298.55 15196.31 6796.32 15398.77 12592.96 25097.44 16897.58 18995.84 10799.74 8291.96 24099.35 17299.19 140
Yuesong Wang, Zhaojie Zeng and etc.: Adaptive Patch Deformation for Textureless-Resilient Multi-View Stereo. CVPR2023
Patchmatch-RL test94.66 23894.49 23895.19 26298.54 15288.91 26792.57 31698.74 13191.46 27298.32 9397.75 17477.31 33798.81 31396.06 8999.61 8497.85 296
9.1496.69 14398.53 15396.02 17098.98 6993.23 23497.18 17797.46 19896.47 9099.62 15892.99 22999.32 184
CS-MVS-test97.91 6497.84 5698.14 8898.52 15496.03 7998.38 3499.67 398.11 4195.50 26696.92 24396.81 7299.87 2296.87 6599.76 4998.51 239
baseline97.44 10397.78 6596.43 20798.52 15490.75 24296.84 12699.03 5396.51 10797.86 14798.02 14196.67 7699.36 23897.09 5899.47 13499.19 140
casdiffmvs97.50 9897.81 6096.56 20198.51 15691.04 23595.83 18499.09 3997.23 8598.33 9298.30 10197.03 5299.37 23696.58 7199.38 16399.28 121
IterMVS-LS96.92 13197.29 10695.79 23798.51 15688.13 28495.10 22598.66 15396.99 8998.46 7598.68 6992.55 20999.74 8296.91 6399.79 4399.50 51
Fangjinhua Wang, Silvano Galliani, Christoph Vogel, Marc Pollefeys: IterMVS: Iterative Probability Estimation for Efficient Multi-View Stereo.
DP-MVS Recon95.55 19695.13 20396.80 18698.51 15693.99 16994.60 25198.69 14690.20 28695.78 25896.21 28492.73 20398.98 29990.58 27998.86 24397.42 313
h-mvs3396.29 16895.63 19198.26 7598.50 15996.11 7596.90 12497.09 28196.58 10497.21 17598.19 11984.14 30499.78 5195.89 10396.17 34198.89 198
test20.0396.58 15896.61 14696.48 20598.49 16091.72 22795.68 19097.69 25496.81 9598.27 9997.92 15594.18 17198.71 32290.78 27099.66 7299.00 177
plane_prior198.49 160
xxxxxxxxxxxxxcwj97.24 11797.03 12597.89 10798.48 16294.71 13994.53 25499.07 4395.02 18197.83 14997.88 16196.44 9299.72 9294.59 17999.39 16199.25 130
save fliter98.48 16294.71 13994.53 25498.41 18395.02 181
MDA-MVSNet-bldmvs95.69 19095.67 18995.74 23998.48 16288.76 27392.84 30997.25 27396.00 13497.59 15597.95 15191.38 23599.46 20493.16 22796.35 33898.99 180
UnsupCasMVSNet_eth95.91 18495.73 18896.44 20698.48 16291.52 23095.31 21498.45 17595.76 14997.48 16497.54 19089.53 26498.69 32494.43 18394.61 35699.13 153
testtj96.69 15196.13 17098.36 6698.46 16696.02 8096.44 14598.70 14394.26 20496.79 20697.13 22594.07 17399.75 7290.53 28098.80 24999.31 112
CS-MVS98.09 4298.01 4498.32 6998.45 16796.69 5498.52 2699.69 298.07 4396.07 24497.19 22396.88 6699.86 2597.50 4399.73 5698.41 246
ZD-MVS98.43 16895.94 8298.56 16790.72 28196.66 21497.07 23195.02 14499.74 8291.08 26098.93 235
thisisatest053092.71 29091.76 29795.56 24798.42 16988.23 27996.03 16987.35 37094.04 21396.56 22095.47 31164.03 37499.77 6094.78 17199.11 21498.68 226
v114496.84 13697.08 12196.13 22398.42 16989.28 26295.41 20598.67 15194.21 20697.97 13498.31 9793.06 19499.65 14598.06 2499.62 7899.45 75
plane_prior698.38 17194.37 15391.91 230
FPMVS89.92 32388.63 33193.82 30498.37 17296.94 4791.58 33293.34 33888.00 30990.32 35697.10 22970.87 36491.13 37671.91 37496.16 34293.39 366
PAPM_NR94.61 24194.17 25195.96 22898.36 17391.23 23295.93 17997.95 23792.98 24693.42 32594.43 33190.53 24598.38 34887.60 32396.29 33998.27 266
MVS_111021_HR96.73 14796.54 15397.27 16098.35 17493.66 18493.42 29798.36 19094.74 18896.58 21896.76 25596.54 8498.99 29794.87 16599.27 19399.15 148
TAMVS95.49 19894.94 21197.16 16598.31 17593.41 19095.07 22996.82 29191.09 27897.51 15997.82 16889.96 25599.42 21488.42 31399.44 14298.64 227
OMC-MVS96.48 16296.00 17797.91 10598.30 17696.01 8194.86 24198.60 16191.88 26697.18 17797.21 22296.11 10199.04 29190.49 28499.34 17598.69 224
新几何197.25 16398.29 17794.70 14297.73 25177.98 36694.83 28196.67 26092.08 22399.45 20888.17 31798.65 26497.61 307
jason94.39 25094.04 25495.41 25798.29 17787.85 29092.74 31496.75 29485.38 33595.29 27096.15 28688.21 27799.65 14594.24 19399.34 17598.74 218
jason: jason.
v119296.83 13997.06 12396.15 22298.28 17989.29 26195.36 20998.77 12593.73 22098.11 11598.34 9493.02 19899.67 13798.35 1999.58 9299.50 51
CDPH-MVS95.45 20394.65 22797.84 11298.28 17994.96 13193.73 28998.33 19585.03 33895.44 26796.60 26395.31 13499.44 21190.01 29099.13 21099.11 161
MVS_111021_LR96.82 14096.55 15197.62 12898.27 18195.34 11593.81 28798.33 19594.59 19596.56 22096.63 26296.61 8098.73 32094.80 16899.34 17598.78 213
CLD-MVS95.47 20195.07 20696.69 19398.27 18192.53 20691.36 33598.67 15191.22 27795.78 25894.12 33595.65 12198.98 29990.81 26899.72 6098.57 234
Zhaoxin Li, Wangmeng Zuo, Zhaoqi Wang, Lei Zhang: Confidence-based Large-scale Dense Multi-view Stereo. IEEE Transaction on Image Processing, 2020
112194.26 25293.26 26997.27 16098.26 18394.73 13795.86 18197.71 25377.96 36794.53 28896.71 25791.93 22899.40 22587.71 31998.64 26597.69 304
Anonymous20240521196.34 16795.98 17997.43 15198.25 18493.85 17496.74 13394.41 32997.72 5898.37 8298.03 14087.15 28799.53 18494.06 20099.07 22098.92 193
pmmvs-eth3d96.49 16196.18 16997.42 15298.25 18494.29 15594.77 24698.07 23389.81 29097.97 13498.33 9593.11 19399.08 28795.46 13199.84 3498.89 198
v14419296.69 15196.90 13496.03 22598.25 18488.92 26695.49 19998.77 12593.05 24398.09 11998.29 10592.51 21399.70 11798.11 2299.56 9899.47 68
ambc96.56 20198.23 18791.68 22897.88 6898.13 22398.42 7898.56 7794.22 17099.04 29194.05 20399.35 17298.95 183
thres100view90091.76 30591.26 30493.26 31598.21 18884.50 33896.39 14790.39 36196.87 9396.33 23093.08 34473.44 35799.42 21478.85 36597.74 29995.85 347
v192192096.72 14896.96 12995.99 22698.21 18888.79 27195.42 20398.79 12093.22 23598.19 10798.26 11192.68 20499.70 11798.34 2099.55 10499.49 59
thres600view792.03 30191.43 29993.82 30498.19 19084.61 33796.27 15490.39 36196.81 9596.37 22993.11 34073.44 35799.49 19580.32 36197.95 29197.36 314
PatchMatch-RL94.61 24193.81 26197.02 17598.19 19095.72 8993.66 29097.23 27488.17 30794.94 27995.62 30791.43 23498.57 33587.36 32897.68 30596.76 335
LF4IMVS96.07 17795.63 19197.36 15698.19 19095.55 9995.44 20198.82 11892.29 26095.70 26296.55 26592.63 20798.69 32491.75 24999.33 18297.85 296
v124096.74 14597.02 12695.91 23398.18 19388.52 27495.39 20798.88 8993.15 24198.46 7598.40 9192.80 20199.71 10898.45 1799.49 12899.49 59
TAPA-MVS93.32 1294.93 22394.23 24797.04 17398.18 19394.51 14795.22 22198.73 13381.22 35596.25 23795.95 29893.80 18198.98 29989.89 29298.87 24197.62 306
Andrea Romanoni, Matteo Matteucci: TAPA-MVS: Textureless-Aware PAtchMatch Multi-View Stereo. ICCV 2019
test22298.17 19593.24 19492.74 31497.61 26675.17 37194.65 28596.69 25990.96 24198.66 26297.66 305
MIMVSNet93.42 27892.86 27795.10 26598.17 19588.19 28098.13 5493.69 33292.07 26195.04 27798.21 11880.95 31999.03 29481.42 35998.06 28898.07 279
原ACMM196.58 19898.16 19792.12 21798.15 22085.90 32793.49 32096.43 27292.47 21499.38 23387.66 32298.62 26698.23 269
testdata95.70 24298.16 19790.58 24497.72 25280.38 35895.62 26397.02 23592.06 22498.98 29989.06 30598.52 27197.54 309
MVP-Stereo95.69 19095.28 19996.92 17898.15 19993.03 19795.64 19698.20 20990.39 28496.63 21797.73 17791.63 23399.10 28591.84 24697.31 32098.63 229
Qingsong Yan: MVP-Stereo: A Parallel Multi-View Patchmatch Stereo Method with Dilation Matching for Photogrammetric Application.
SD-MVS97.37 10897.70 6996.35 21298.14 20095.13 12796.54 14298.92 8095.94 13899.19 2898.08 13097.74 2295.06 37395.24 14499.54 10798.87 204
Zhenlong Yuan, Jiakai Cao, Zhaoxin Li, Hao Jiang and Zhaoqi Wang: SD-MVS: Segmentation-driven Deformation Multi-View Stereo with Spherical Refinement and EM optimization. AAAI2024
EU-MVSNet94.25 25394.47 24093.60 30998.14 20082.60 35097.24 10892.72 34585.08 33698.48 7298.94 5182.59 31198.76 31897.47 4599.53 11099.44 85
NP-MVS98.14 20093.72 18095.08 315
LCM-MVSNet-Re97.33 11197.33 10497.32 15898.13 20393.79 17796.99 12299.65 596.74 9799.47 1398.93 5296.91 6399.84 3190.11 28899.06 22398.32 258
ETH3 D test640094.77 22993.87 26097.47 14498.12 20493.73 17994.56 25398.70 14385.45 33394.70 28495.93 30091.77 23299.63 15086.45 33399.14 20799.05 172
3Dnovator+96.13 397.73 8197.59 8798.15 8798.11 20595.60 9798.04 5998.70 14398.13 4096.93 20098.45 8595.30 13599.62 15895.64 11898.96 22999.24 132
VNet96.84 13696.83 13696.88 18198.06 20692.02 22096.35 15197.57 26797.70 6197.88 14397.80 17092.40 21699.54 18294.73 17498.96 22999.08 166
test_part196.77 14496.53 15497.47 14498.04 20792.92 20097.93 6498.85 9898.83 2199.30 2199.07 4279.25 32499.79 4797.59 3999.93 1099.69 22
LFMVS95.32 20894.88 21696.62 19598.03 20891.47 23197.65 8290.72 36099.11 997.89 14298.31 9779.20 32599.48 19893.91 20999.12 21398.93 189
tfpn200view991.55 30791.00 30693.21 31898.02 20984.35 34095.70 18790.79 35896.26 11895.90 25492.13 35773.62 35499.42 21478.85 36597.74 29995.85 347
thres40091.68 30691.00 30693.71 30798.02 20984.35 34095.70 18790.79 35896.26 11895.90 25492.13 35773.62 35499.42 21478.85 36597.74 29997.36 314
OPU-MVS97.64 12798.01 21195.27 11896.79 13097.35 21296.97 5698.51 34191.21 25999.25 19599.14 151
xiu_mvs_v1_base_debu95.62 19395.96 18094.60 28698.01 21188.42 27593.99 27898.21 20692.98 24695.91 25194.53 32796.39 9499.72 9295.43 13598.19 28295.64 351
xiu_mvs_v1_base95.62 19395.96 18094.60 28698.01 21188.42 27593.99 27898.21 20692.98 24695.91 25194.53 32796.39 9499.72 9295.43 13598.19 28295.64 351
xiu_mvs_v1_base_debi95.62 19395.96 18094.60 28698.01 21188.42 27593.99 27898.21 20692.98 24695.91 25194.53 32796.39 9499.72 9295.43 13598.19 28295.64 351
CNVR-MVS96.92 13196.55 15198.03 9998.00 21595.54 10094.87 24098.17 21594.60 19396.38 22897.05 23395.67 12099.36 23895.12 15699.08 21899.19 140
PLCcopyleft91.02 1694.05 26392.90 27697.51 13698.00 21595.12 12894.25 26398.25 20286.17 32391.48 34995.25 31391.01 23999.19 27085.02 34696.69 33298.22 270
Jie Liao, Yanping Fu, Qingan Yan, Chunxia xiao: Pyramid Multi-View Stereo with Local Consistency. Pacific Graphics 2019
GBi-Net96.99 12596.80 13897.56 13197.96 21793.67 18198.23 4598.66 15395.59 15797.99 13099.19 2789.51 26599.73 8794.60 17699.44 14299.30 113
test196.99 12596.80 13897.56 13197.96 21793.67 18198.23 4598.66 15395.59 15797.99 13099.19 2789.51 26599.73 8794.60 17699.44 14299.30 113
FMVSNet296.72 14896.67 14596.87 18297.96 21791.88 22397.15 11198.06 23495.59 15798.50 7098.62 7389.51 26599.65 14594.99 16399.60 8899.07 168
BH-untuned94.69 23594.75 22494.52 29197.95 22087.53 29694.07 27597.01 28493.99 21497.10 18395.65 30592.65 20698.95 30487.60 32396.74 33197.09 318
ETH3D cwj APD-0.1696.23 17195.61 19398.09 9297.91 22195.65 9694.94 23798.74 13191.31 27596.02 24797.08 23094.05 17499.69 12591.51 25298.94 23398.93 189
DPM-MVS93.68 27192.77 28396.42 20997.91 22192.54 20591.17 34297.47 27084.99 33993.08 33094.74 32389.90 25699.00 29587.54 32598.09 28797.72 302
QAPM95.88 18695.57 19496.80 18697.90 22391.84 22598.18 5298.73 13388.41 30396.42 22698.13 12494.73 15099.75 7288.72 30898.94 23398.81 209
TinyColmap96.00 18296.34 16394.96 27097.90 22387.91 28794.13 27398.49 17294.41 19998.16 10997.76 17196.29 9998.68 32790.52 28199.42 15398.30 262
HQP-NCC97.85 22594.26 26093.18 23792.86 333
ACMP_Plane97.85 22594.26 26093.18 23792.86 333
N_pmnet95.18 21394.23 24798.06 9597.85 22596.55 6092.49 31891.63 35389.34 29398.09 11997.41 20290.33 24899.06 28991.58 25199.31 18698.56 235
HQP-MVS95.17 21594.58 23596.92 17897.85 22592.47 20794.26 26098.43 17893.18 23792.86 33395.08 31590.33 24899.23 26790.51 28298.74 25599.05 172
hse-mvs295.77 18995.09 20597.79 11497.84 22995.51 10295.66 19195.43 32196.58 10497.21 17596.16 28584.14 30499.54 18295.89 10396.92 32498.32 258
TEST997.84 22995.23 12093.62 29198.39 18686.81 31993.78 30795.99 29394.68 15499.52 188
train_agg95.46 20294.66 22697.88 10997.84 22995.23 12093.62 29198.39 18687.04 31793.78 30795.99 29394.58 15999.52 18891.76 24898.90 23798.89 198
MSLP-MVS++96.42 16696.71 14295.57 24597.82 23290.56 24695.71 18698.84 10394.72 18996.71 21297.39 20794.91 14998.10 35995.28 14199.02 22598.05 286
test_897.81 23395.07 12993.54 29498.38 18887.04 31793.71 31195.96 29794.58 15999.52 188
NCCC96.52 16095.99 17898.10 9197.81 23395.68 9395.00 23598.20 20995.39 16595.40 26996.36 27793.81 18099.45 20893.55 21998.42 27599.17 144
WTY-MVS93.55 27693.00 27595.19 26297.81 23387.86 28893.89 28396.00 30689.02 29694.07 30095.44 31286.27 29199.33 24687.69 32196.82 32898.39 249
CNLPA95.04 21994.47 24096.75 18997.81 23395.25 11994.12 27497.89 24194.41 19994.57 28695.69 30390.30 25198.35 35186.72 33298.76 25396.64 337
AUN-MVS93.95 26692.69 28497.74 11897.80 23795.38 11095.57 19895.46 32091.26 27692.64 33996.10 29174.67 34899.55 17993.72 21596.97 32398.30 262
EIA-MVS96.04 17995.77 18796.85 18397.80 23792.98 19896.12 16499.16 2394.65 19193.77 30991.69 36295.68 11999.67 13794.18 19598.85 24597.91 294
agg_prior195.39 20594.60 23297.75 11797.80 23794.96 13193.39 29998.36 19087.20 31593.49 32095.97 29694.65 15699.53 18491.69 25098.86 24398.77 216
agg_prior97.80 23794.96 13198.36 19093.49 32099.53 184
旧先验197.80 23793.87 17297.75 25097.04 23493.57 18698.68 25998.72 221
PCF-MVS89.43 1892.12 30090.64 31496.57 20097.80 23793.48 18989.88 35998.45 17574.46 37296.04 24695.68 30490.71 24499.31 25073.73 37199.01 22796.91 326
Andreas Kuhn, Shan Lin, Oliver Erdler: Plane Completion and Filtering for Multi-View Stereo Reconstruction. GCPR 2019
test_prior395.91 18495.39 19797.46 14797.79 24394.26 16093.33 30298.42 18194.21 20694.02 30296.25 28193.64 18499.34 24391.90 24298.96 22998.79 211
test_prior97.46 14797.79 24394.26 16098.42 18199.34 24398.79 211
PVSNet_BlendedMVS95.02 22294.93 21395.27 25997.79 24387.40 30094.14 27298.68 14888.94 29894.51 28998.01 14393.04 19599.30 25389.77 29499.49 12899.11 161
PVSNet_Blended93.96 26493.65 26394.91 27197.79 24387.40 30091.43 33498.68 14884.50 34394.51 28994.48 33093.04 19599.30 25389.77 29498.61 26798.02 289
USDC94.56 24394.57 23794.55 29097.78 24786.43 31592.75 31298.65 15885.96 32596.91 20297.93 15490.82 24298.74 31990.71 27599.59 9098.47 243
alignmvs96.01 18195.52 19597.50 13997.77 24894.71 13996.07 16696.84 28997.48 7296.78 21094.28 33485.50 29699.40 22596.22 8398.73 25898.40 247
ETV-MVS96.13 17695.90 18396.82 18597.76 24993.89 17195.40 20698.95 7695.87 14395.58 26591.00 36896.36 9799.72 9293.36 22098.83 24796.85 329
D2MVS95.18 21395.17 20295.21 26197.76 24987.76 29394.15 27097.94 23889.77 29196.99 19597.68 18287.45 28599.14 27895.03 16199.81 3998.74 218
DVP-MVS++97.96 5097.90 5098.12 9097.75 25195.40 10899.03 798.89 8396.62 9998.62 5898.30 10196.97 5699.75 7295.70 11099.25 19599.21 135
MSC_two_6792asdad98.22 8097.75 25195.34 11598.16 21899.75 7295.87 10599.51 12099.57 38
No_MVS98.22 8097.75 25195.34 11598.16 21899.75 7295.87 10599.51 12099.57 38
TSAR-MVS + GP.96.47 16396.12 17197.49 14297.74 25495.23 12094.15 27096.90 28893.26 23398.04 12696.70 25894.41 16498.89 30694.77 17299.14 20798.37 251
3Dnovator96.53 297.61 9097.64 7997.50 13997.74 25493.65 18598.49 2898.88 8996.86 9497.11 18298.55 7895.82 11099.73 8795.94 10099.42 15399.13 153
sss94.22 25493.72 26295.74 23997.71 25689.95 25293.84 28496.98 28588.38 30593.75 31095.74 30287.94 27898.89 30691.02 26298.10 28698.37 251
DeepC-MVS_fast94.34 796.74 14596.51 15797.44 15097.69 25794.15 16396.02 17098.43 17893.17 24097.30 17197.38 20995.48 12799.28 25993.74 21399.34 17598.88 202
Andreas Kuhn, Christian Sormann, Mattia Rossi, Oliver Erdler, Friedrich Fraundorfer: DeepC-MVS: Deep Confidence Prediction for Multi-View Stereo Reconstruction. 3DV 2020
IterMVS-SCA-FT95.86 18796.19 16894.85 27697.68 25885.53 32392.42 32097.63 26496.99 8998.36 8598.54 7987.94 27899.75 7297.07 6099.08 21899.27 125
MVSFormer96.14 17596.36 16295.49 25197.68 25887.81 29198.67 1699.02 5596.50 10894.48 29196.15 28686.90 28899.92 598.73 799.13 21098.74 218
lupinMVS93.77 26793.28 26895.24 26097.68 25887.81 29192.12 32596.05 30484.52 34294.48 29195.06 31786.90 28899.63 15093.62 21899.13 21098.27 266
Fast-Effi-MVS+95.49 19895.07 20696.75 18997.67 26192.82 20194.22 26698.60 16191.61 26993.42 32592.90 34796.73 7599.70 11792.60 23297.89 29597.74 301
canonicalmvs97.23 11897.21 11497.30 15997.65 26294.39 15197.84 7099.05 4697.42 7496.68 21393.85 33797.63 2699.33 24696.29 8298.47 27498.18 274
CDS-MVSNet94.88 22594.12 25297.14 16797.64 26393.57 18693.96 28197.06 28390.05 28896.30 23496.55 26586.10 29299.47 20190.10 28999.31 18698.40 247
Khang Truong Giang, Soohwan Song, Sungho Jo: Curvature-guided dynamic scale networks for Multi-view Stereo. ICLR 2022
pmmvs594.63 24094.34 24595.50 25097.63 26488.34 27894.02 27697.13 27987.15 31695.22 27297.15 22487.50 28499.27 26193.99 20599.26 19498.88 202
test1297.46 14797.61 26594.07 16597.78 24993.57 31893.31 19099.42 21498.78 25198.89 198
PMMVS293.66 27294.07 25392.45 33497.57 26680.67 36086.46 36796.00 30693.99 21497.10 18397.38 20989.90 25697.82 36188.76 30799.47 13498.86 205
BH-RMVSNet94.56 24394.44 24394.91 27197.57 26687.44 29993.78 28896.26 30193.69 22296.41 22796.50 27092.10 22299.00 29585.96 33597.71 30298.31 260
PVSNet86.72 1991.10 31190.97 30891.49 34097.56 26878.04 36587.17 36694.60 32784.65 34192.34 34392.20 35687.37 28698.47 34285.17 34597.69 30497.96 291
DELS-MVS96.17 17496.23 16695.99 22697.55 26990.04 25092.38 32298.52 16994.13 20996.55 22297.06 23294.99 14599.58 16895.62 11999.28 19198.37 251
Christian Sormann, Emanuele Santellani, Mattia Rossi, Andreas Kuhn, Friedrich Fraundorfer: DELS-MVS: Deep Epipolar Line Search for Multi-View Stereo. Winter Conference on Applications of Computer Vision (WACV), 2023
IterMVS95.42 20495.83 18494.20 30097.52 27083.78 34592.41 32197.47 27095.49 16198.06 12398.49 8287.94 27899.58 16896.02 9499.02 22599.23 133
Fangjinhua Wang, Silvano Galliani, Christoph Vogel, Marc Pollefeys: IterMVS: Iterative Probability Estimation for Efficient Multi-View Stereo.
CL-MVSNet_self_test95.04 21994.79 22395.82 23697.51 27189.79 25391.14 34396.82 29193.05 24396.72 21196.40 27590.82 24299.16 27691.95 24198.66 26298.50 241
new-patchmatchnet95.67 19296.58 14892.94 32697.48 27280.21 36192.96 30898.19 21494.83 18698.82 4798.79 6093.31 19099.51 19295.83 10799.04 22499.12 158
MDA-MVSNet_test_wron94.73 23094.83 22094.42 29497.48 27285.15 33090.28 35395.87 31092.52 25597.48 16497.76 17191.92 22999.17 27593.32 22196.80 33098.94 185
PHI-MVS96.96 12996.53 15498.25 7897.48 27296.50 6196.76 13298.85 9893.52 22496.19 24096.85 24695.94 10499.42 21493.79 21299.43 15098.83 207
DeepPCF-MVS94.58 596.90 13396.43 16098.31 7297.48 27297.23 4292.56 31798.60 16192.84 25298.54 6697.40 20396.64 7998.78 31594.40 18699.41 15998.93 189
thres20091.00 31390.42 31792.77 32897.47 27683.98 34494.01 27791.18 35695.12 17695.44 26791.21 36673.93 35099.31 25077.76 36897.63 30995.01 357
YYNet194.73 23094.84 21894.41 29597.47 27685.09 33290.29 35295.85 31192.52 25597.53 15797.76 17191.97 22599.18 27193.31 22296.86 32798.95 183
Effi-MVS+96.19 17396.01 17696.71 19197.43 27892.19 21696.12 16499.10 3495.45 16293.33 32794.71 32497.23 4399.56 17593.21 22697.54 31198.37 251
pmmvs494.82 22794.19 25096.70 19297.42 27992.75 20492.09 32796.76 29386.80 32095.73 26197.22 22189.28 26898.89 30693.28 22399.14 20798.46 245
MSDG95.33 20795.13 20395.94 23297.40 28091.85 22491.02 34698.37 18995.30 16896.31 23395.99 29394.51 16298.38 34889.59 29697.65 30897.60 308
EI-MVSNet-Vis-set97.32 11297.39 10097.11 16897.36 28192.08 21995.34 21197.65 26097.74 5598.29 9898.11 12895.05 14099.68 13297.50 4399.50 12499.56 41
PS-MVSNAJ94.10 26094.47 24093.00 32397.35 28284.88 33491.86 32997.84 24591.96 26494.17 29692.50 35495.82 11099.71 10891.27 25697.48 31494.40 361
Regformer-397.25 11697.29 10697.11 16897.35 28292.32 21095.26 21897.62 26597.67 6498.17 10897.89 15795.05 14099.56 17597.16 5699.42 15399.46 70
Regformer-497.53 9797.47 9897.71 12097.35 28293.91 17095.26 21898.14 22197.97 4798.34 8897.89 15795.49 12699.71 10897.41 4699.42 15399.51 50
diffmvs96.04 17996.23 16695.46 25397.35 28288.03 28693.42 29799.08 4094.09 21296.66 21496.93 24193.85 17899.29 25796.01 9698.67 26099.06 170
EI-MVSNet-UG-set97.32 11297.40 9997.09 17097.34 28692.01 22195.33 21297.65 26097.74 5598.30 9798.14 12395.04 14299.69 12597.55 4199.52 11599.58 33
baseline193.14 28592.64 28694.62 28597.34 28687.20 30496.67 14093.02 34094.71 19096.51 22395.83 30181.64 31298.60 33490.00 29188.06 37198.07 279
AdaColmapbinary95.11 21694.62 23196.58 19897.33 28894.45 15094.92 23898.08 22993.15 24193.98 30595.53 31094.34 16699.10 28585.69 33898.61 26796.20 345
xiu_mvs_v2_base94.22 25494.63 23092.99 32497.32 28984.84 33592.12 32597.84 24591.96 26494.17 29693.43 33896.07 10299.71 10891.27 25697.48 31494.42 360
OpenMVS_ROBcopyleft91.80 1493.64 27493.05 27295.42 25597.31 29091.21 23395.08 22896.68 29881.56 35296.88 20496.41 27390.44 24799.25 26485.39 34297.67 30695.80 349
EI-MVSNet96.63 15596.93 13095.74 23997.26 29188.13 28495.29 21697.65 26096.99 8997.94 13798.19 11992.55 20999.58 16896.91 6399.56 9899.50 51
CVMVSNet92.33 29692.79 28090.95 34397.26 29175.84 37395.29 21692.33 34881.86 35096.27 23598.19 11981.44 31498.46 34394.23 19498.29 28098.55 237
iter_conf_final94.54 24593.91 25996.43 20797.23 29390.41 24896.81 12898.10 22593.87 21796.80 20597.89 15768.02 36999.72 9296.73 6699.77 4899.18 143
Regformer-197.27 11497.16 11697.61 12997.21 29493.86 17394.85 24298.04 23697.62 6598.03 12797.50 19595.34 13299.63 15096.52 7399.31 18699.35 104
Regformer-297.41 10597.24 11197.93 10497.21 29494.72 13894.85 24298.27 19997.74 5598.11 11597.50 19595.58 12499.69 12596.57 7299.31 18699.37 101
Fast-Effi-MVS+-dtu96.44 16496.12 17197.39 15597.18 29694.39 15195.46 20098.73 13396.03 13394.72 28294.92 32196.28 10099.69 12593.81 21197.98 29098.09 276
OpenMVScopyleft94.22 895.48 20095.20 20096.32 21497.16 29791.96 22297.74 7898.84 10387.26 31394.36 29398.01 14393.95 17699.67 13790.70 27698.75 25497.35 316
BH-w/o92.14 29991.94 29392.73 32997.13 29885.30 32692.46 31995.64 31389.33 29494.21 29592.74 35089.60 26098.24 35481.68 35894.66 35594.66 359
MG-MVS94.08 26294.00 25594.32 29797.09 29985.89 32093.19 30695.96 30892.52 25594.93 28097.51 19489.54 26298.77 31687.52 32697.71 30298.31 260
thisisatest051590.43 31689.18 32894.17 30297.07 30085.44 32489.75 36087.58 36988.28 30693.69 31391.72 36165.27 37299.58 16890.59 27898.67 26097.50 311
MVS-HIRNet88.40 33490.20 31982.99 35897.01 30160.04 38293.11 30785.61 37484.45 34488.72 36599.09 4084.72 30298.23 35582.52 35796.59 33590.69 373
GA-MVS92.83 28892.15 29294.87 27596.97 30287.27 30390.03 35496.12 30391.83 26794.05 30194.57 32576.01 34498.97 30392.46 23697.34 31998.36 256
test_yl94.40 24894.00 25595.59 24396.95 30389.52 25794.75 24795.55 31896.18 12496.79 20696.14 28881.09 31799.18 27190.75 27197.77 29698.07 279
DCV-MVSNet94.40 24894.00 25595.59 24396.95 30389.52 25794.75 24795.55 31896.18 12496.79 20696.14 28881.09 31799.18 27190.75 27197.77 29698.07 279
MVS_Test96.27 16996.79 14094.73 28296.94 30586.63 31296.18 16198.33 19594.94 18396.07 24498.28 10695.25 13699.26 26297.21 5297.90 29498.30 262
MAR-MVS94.21 25693.03 27497.76 11696.94 30597.44 3596.97 12397.15 27887.89 31192.00 34692.73 35192.14 22099.12 28083.92 35197.51 31396.73 336
Zhenyu Xu, Yiguang Liu, Xuelei Shi, Ying Wang, Yunan Zheng: MARMVS: Matching Ambiguity Reduced Multiple View Stereo for Efficient Large Scale Scene Reconstruction. CVPR 2020
Effi-MVS+-dtu96.81 14196.09 17398.99 1396.90 30798.69 296.42 14698.09 22795.86 14495.15 27395.54 30994.26 16899.81 4094.06 20098.51 27398.47 243
mvs-test196.20 17295.50 19698.32 6996.90 30798.16 595.07 22998.09 22795.86 14493.63 31494.32 33394.26 16899.71 10894.06 20097.27 32297.07 319
MS-PatchMatch94.83 22694.91 21594.57 28996.81 30987.10 30694.23 26597.34 27288.74 30197.14 17997.11 22891.94 22798.23 35592.99 22997.92 29298.37 251
UGNet96.81 14196.56 15097.58 13096.64 31093.84 17597.75 7697.12 28096.47 11193.62 31598.88 5693.22 19299.53 18495.61 12099.69 6799.36 102
Wanjuan Su, Qingshan Xu, Wenbing Tao: Uncertainty-guided Multi-view Stereo Network for Depth Estimation. IEEE Transactions on Circuits and Systems for Video Technology, 2022
API-MVS95.09 21895.01 21095.31 25896.61 31194.02 16796.83 12797.18 27795.60 15695.79 25694.33 33294.54 16198.37 35085.70 33798.52 27193.52 364
PAPM87.64 33985.84 34493.04 32196.54 31284.99 33388.42 36595.57 31779.52 36183.82 37393.05 34680.57 32098.41 34562.29 37792.79 36295.71 350
FMVSNet395.26 21194.94 21196.22 21996.53 31390.06 24995.99 17297.66 25794.11 21197.99 13097.91 15680.22 32299.63 15094.60 17699.44 14298.96 182
HY-MVS91.43 1592.58 29191.81 29694.90 27396.49 31488.87 26897.31 10394.62 32685.92 32690.50 35596.84 24785.05 29899.40 22583.77 35495.78 34696.43 342
TR-MVS92.54 29292.20 29193.57 31096.49 31486.66 31193.51 29594.73 32589.96 28994.95 27893.87 33690.24 25398.61 33281.18 36094.88 35395.45 355
ET-MVSNet_ETH3D91.12 31089.67 32295.47 25296.41 31689.15 26591.54 33390.23 36489.07 29586.78 37292.84 34869.39 36799.44 21194.16 19696.61 33497.82 298
CANet95.86 18795.65 19096.49 20496.41 31690.82 23994.36 25898.41 18394.94 18392.62 34196.73 25692.68 20499.71 10895.12 15699.60 8898.94 185
mvs_anonymous95.36 20696.07 17593.21 31896.29 31881.56 35694.60 25197.66 25793.30 23296.95 19998.91 5493.03 19799.38 23396.60 6997.30 32198.69 224
MVS_030495.50 19795.05 20996.84 18496.28 31993.12 19597.00 12196.16 30295.03 18089.22 36397.70 17990.16 25499.48 19894.51 18199.34 17597.93 293
SCA93.38 28093.52 26592.96 32596.24 32081.40 35793.24 30494.00 33191.58 27194.57 28696.97 23887.94 27899.42 21489.47 29897.66 30798.06 283
LS3D97.77 7997.50 9598.57 4996.24 32097.58 2598.45 3198.85 9898.58 2797.51 15997.94 15295.74 11899.63 15095.19 14698.97 22898.51 239
new_pmnet92.34 29591.69 29894.32 29796.23 32289.16 26492.27 32392.88 34284.39 34595.29 27096.35 27885.66 29596.74 37184.53 34997.56 31097.05 320
MVEpermissive73.61 2286.48 34185.92 34388.18 35596.23 32285.28 32881.78 37375.79 37986.01 32482.53 37591.88 35992.74 20287.47 37871.42 37594.86 35491.78 369
Simon Fuhrmann, Fabian Langguth, Michael Goesele: MVE - A Multi-View Reconstruction Environment. EUROGRAPHICS Workshops on Graphics and Cultural Heritage (2014)
c3_l95.20 21295.32 19894.83 27896.19 32486.43 31591.83 33098.35 19493.47 22697.36 17097.26 21988.69 27199.28 25995.41 13899.36 16798.78 213
DSMNet-mixed92.19 29891.83 29593.25 31696.18 32583.68 34696.27 15493.68 33476.97 37092.54 34299.18 3089.20 27098.55 33883.88 35298.60 26997.51 310
miper_lstm_enhance94.81 22894.80 22294.85 27696.16 32686.45 31491.14 34398.20 20993.49 22597.03 19297.37 21184.97 30099.26 26295.28 14199.56 9898.83 207
our_test_394.20 25894.58 23593.07 32096.16 32681.20 35890.42 35196.84 28990.72 28197.14 17997.13 22590.47 24699.11 28394.04 20498.25 28198.91 194
ppachtmachnet_test94.49 24794.84 21893.46 31296.16 32682.10 35290.59 34997.48 26990.53 28397.01 19497.59 18791.01 23999.36 23893.97 20799.18 20498.94 185
Patchmatch-test93.60 27593.25 27094.63 28496.14 32987.47 29796.04 16894.50 32893.57 22396.47 22496.97 23876.50 34098.61 33290.67 27798.41 27697.81 300
iter_conf0593.65 27393.05 27295.46 25396.13 33087.45 29895.95 17898.22 20592.66 25497.04 19097.89 15763.52 37599.72 9296.19 8599.82 3899.21 135
wuyk23d93.25 28395.20 20087.40 35796.07 33195.38 11097.04 11994.97 32395.33 16699.70 598.11 12898.14 1391.94 37577.76 36899.68 6974.89 375
eth_miper_zixun_eth94.89 22494.93 21394.75 28195.99 33286.12 31891.35 33698.49 17293.40 22797.12 18197.25 22086.87 29099.35 24195.08 15898.82 24898.78 213
CANet_DTU94.65 23994.21 24995.96 22895.90 33389.68 25493.92 28297.83 24793.19 23690.12 35895.64 30688.52 27299.57 17493.27 22499.47 13498.62 230
DIV-MVS_self_test94.73 23094.64 22895.01 26895.86 33487.00 30791.33 33798.08 22993.34 23097.10 18397.34 21384.02 30699.31 25095.15 15299.55 10498.72 221
cl____94.73 23094.64 22895.01 26895.85 33587.00 30791.33 33798.08 22993.34 23097.10 18397.33 21484.01 30799.30 25395.14 15399.56 9898.71 223
MVSTER94.21 25693.93 25895.05 26795.83 33686.46 31395.18 22397.65 26092.41 25997.94 13798.00 14572.39 35999.58 16896.36 8099.56 9899.12 158
FMVSNet593.39 27992.35 28996.50 20395.83 33690.81 24197.31 10398.27 19992.74 25396.27 23598.28 10662.23 37699.67 13790.86 26699.36 16799.03 174
miper_ehance_all_eth94.69 23594.70 22594.64 28395.77 33886.22 31791.32 33998.24 20391.67 26897.05 18996.65 26188.39 27599.22 26994.88 16498.34 27798.49 242
PVSNet_081.89 2184.49 34283.21 34588.34 35495.76 33974.97 37683.49 37092.70 34678.47 36587.94 36786.90 37483.38 30996.63 37273.44 37266.86 37893.40 365
PAPR92.22 29791.27 30395.07 26695.73 34088.81 27091.97 32897.87 24285.80 32890.91 35192.73 35191.16 23798.33 35279.48 36295.76 34798.08 277
baseline289.65 32688.44 33393.25 31695.62 34182.71 34893.82 28585.94 37388.89 29987.35 37092.54 35371.23 36299.33 24686.01 33494.60 35797.72 302
CHOSEN 280x42089.98 32189.19 32792.37 33595.60 34281.13 35986.22 36897.09 28181.44 35487.44 36993.15 33973.99 34999.47 20188.69 30999.07 22096.52 341
ADS-MVSNet291.47 30890.51 31694.36 29695.51 34385.63 32195.05 23295.70 31283.46 34692.69 33696.84 24779.15 32699.41 22385.66 33990.52 36698.04 287
ADS-MVSNet90.95 31490.26 31893.04 32195.51 34382.37 35195.05 23293.41 33783.46 34692.69 33696.84 24779.15 32698.70 32385.66 33990.52 36698.04 287
CR-MVSNet93.29 28292.79 28094.78 28095.44 34588.15 28296.18 16197.20 27584.94 34094.10 29898.57 7577.67 33299.39 23095.17 14895.81 34396.81 333
RPMNet94.68 23794.60 23294.90 27395.44 34588.15 28296.18 16198.86 9497.43 7394.10 29898.49 8279.40 32399.76 6595.69 11295.81 34396.81 333
131492.38 29492.30 29092.64 33095.42 34785.15 33095.86 18196.97 28685.40 33490.62 35293.06 34591.12 23897.80 36286.74 33195.49 35094.97 358
tpm91.08 31290.85 31091.75 33995.33 34878.09 36495.03 23491.27 35588.75 30093.53 31997.40 20371.24 36199.30 25391.25 25893.87 35997.87 295
IB-MVS85.98 2088.63 33286.95 34193.68 30895.12 34984.82 33690.85 34790.17 36587.55 31288.48 36691.34 36558.01 37799.59 16687.24 32993.80 36096.63 339
Christian Sormann, Mattia Rossi, Andreas Kuhn and Friedrich Fraundorfer: IB-MVS: An Iterative Algorithm for Deep Multi-View Stereo based on Binary Decisions. BMVC 2021
PatchT93.75 26893.57 26494.29 29995.05 35087.32 30296.05 16792.98 34197.54 7094.25 29498.72 6575.79 34599.24 26595.92 10195.81 34396.32 343
tpm288.47 33387.69 33790.79 34494.98 35177.34 36895.09 22691.83 35177.51 36989.40 36196.41 27367.83 37098.73 32083.58 35692.60 36496.29 344
Patchmtry95.03 22194.59 23496.33 21394.83 35290.82 23996.38 14997.20 27596.59 10397.49 16198.57 7577.67 33299.38 23392.95 23199.62 7898.80 210
MVS90.02 31989.20 32692.47 33394.71 35386.90 30995.86 18196.74 29564.72 37590.62 35292.77 34992.54 21198.39 34779.30 36395.56 34992.12 368
CostFormer89.75 32589.25 32391.26 34294.69 35478.00 36695.32 21391.98 35081.50 35390.55 35496.96 24071.06 36398.89 30688.59 31192.63 36396.87 327
PatchmatchNetpermissive91.98 30291.87 29492.30 33694.60 35579.71 36295.12 22493.59 33689.52 29293.61 31697.02 23577.94 33099.18 27190.84 26794.57 35898.01 290
Fangjinhua Wang, Silvano Galliani, Christoph Vogel, Pablo Speciale, Marc Pollefeys: PatchmatchNet: Learned Multi-View Patchmatch Stereo.
tpm cat188.01 33787.33 33890.05 34994.48 35676.28 37294.47 25694.35 33073.84 37489.26 36295.61 30873.64 35398.30 35384.13 35086.20 37395.57 354
MDTV_nov1_ep1391.28 30294.31 35773.51 37794.80 24493.16 33986.75 32193.45 32397.40 20376.37 34198.55 33888.85 30696.43 336
cl2293.25 28392.84 27994.46 29394.30 35886.00 31991.09 34596.64 29990.74 28095.79 25696.31 27978.24 32998.77 31694.15 19798.34 27798.62 230
cascas91.89 30391.35 30193.51 31194.27 35985.60 32288.86 36498.61 16079.32 36292.16 34591.44 36489.22 26998.12 35890.80 26997.47 31696.82 332
test-LLR89.97 32289.90 32090.16 34794.24 36074.98 37489.89 35689.06 36692.02 26289.97 35990.77 36973.92 35198.57 33591.88 24497.36 31796.92 324
test-mter87.92 33887.17 33990.16 34794.24 36074.98 37489.89 35689.06 36686.44 32289.97 35990.77 36954.96 38498.57 33591.88 24497.36 31796.92 324
pmmvs390.00 32088.90 33093.32 31394.20 36285.34 32591.25 34092.56 34778.59 36493.82 30695.17 31467.36 37198.69 32489.08 30498.03 28995.92 346
tpmrst90.31 31790.61 31589.41 35094.06 36372.37 37995.06 23193.69 33288.01 30892.32 34496.86 24577.45 33498.82 31191.04 26187.01 37297.04 321
test0.0.03 190.11 31889.21 32592.83 32793.89 36486.87 31091.74 33188.74 36892.02 26294.71 28391.14 36773.92 35194.48 37483.75 35592.94 36197.16 317
JIA-IIPM91.79 30490.69 31395.11 26493.80 36590.98 23694.16 26991.78 35296.38 11290.30 35799.30 2072.02 36098.90 30588.28 31590.17 36895.45 355
miper_enhance_ethall93.14 28592.78 28294.20 30093.65 36685.29 32789.97 35597.85 24385.05 33796.15 24394.56 32685.74 29499.14 27893.74 21398.34 27798.17 275
TESTMET0.1,187.20 34086.57 34289.07 35193.62 36772.84 37889.89 35687.01 37285.46 33289.12 36490.20 37156.00 38297.72 36390.91 26596.92 32496.64 337
CMPMVSbinary73.10 2392.74 28991.39 30096.77 18893.57 36894.67 14394.21 26797.67 25580.36 35993.61 31696.60 26382.85 31097.35 36584.86 34798.78 25198.29 265
M. Jancosek, T. Pajdla: Multi-View Reconstruction Preserving Weakly-Supported Surfaces. CVPR 2011
E-PMN89.52 32789.78 32188.73 35293.14 36977.61 36783.26 37192.02 34994.82 18793.71 31193.11 34075.31 34696.81 36885.81 33696.81 32991.77 370
PMMVS92.39 29391.08 30596.30 21693.12 37092.81 20290.58 35095.96 30879.17 36391.85 34892.27 35590.29 25298.66 32989.85 29396.68 33397.43 312
EMVS89.06 32989.22 32488.61 35393.00 37177.34 36882.91 37290.92 35794.64 19292.63 34091.81 36076.30 34297.02 36683.83 35396.90 32691.48 371
dp88.08 33688.05 33488.16 35692.85 37268.81 38194.17 26892.88 34285.47 33191.38 35096.14 28868.87 36898.81 31386.88 33083.80 37596.87 327
gg-mvs-nofinetune88.28 33586.96 34092.23 33792.84 37384.44 33998.19 5174.60 38099.08 1087.01 37199.47 856.93 37898.23 35578.91 36495.61 34894.01 362
tpmvs90.79 31590.87 30990.57 34692.75 37476.30 37195.79 18593.64 33591.04 27991.91 34796.26 28077.19 33898.86 31089.38 30089.85 36996.56 340
EPMVS89.26 32888.55 33291.39 34192.36 37579.11 36395.65 19479.86 37888.60 30293.12 32996.53 26770.73 36598.10 35990.75 27189.32 37096.98 322
gm-plane-assit91.79 37671.40 38081.67 35190.11 37298.99 29784.86 347
GG-mvs-BLEND90.60 34591.00 37784.21 34298.23 4572.63 38382.76 37484.11 37556.14 38196.79 36972.20 37392.09 36590.78 372
DeepMVS_CXcopyleft77.17 35990.94 37885.28 32874.08 38252.51 37680.87 37788.03 37375.25 34770.63 37959.23 37884.94 37475.62 374
EPNet_dtu91.39 30990.75 31293.31 31490.48 37982.61 34994.80 24492.88 34293.39 22881.74 37694.90 32281.36 31599.11 28388.28 31598.87 24198.21 271
Wanjuan Su, Wenbing Tao: Efficient Edge-Preserving Multi-View Stereo Network for Depth Estimation. AAAI 2023
KD-MVS_2432*160088.93 33087.74 33592.49 33188.04 38081.99 35389.63 36195.62 31491.35 27395.06 27493.11 34056.58 37998.63 33085.19 34395.07 35196.85 329
miper_refine_blended88.93 33087.74 33592.49 33188.04 38081.99 35389.63 36195.62 31491.35 27395.06 27493.11 34056.58 37998.63 33085.19 34395.07 35196.85 329
EPNet93.72 26992.62 28797.03 17487.61 38292.25 21196.27 15491.28 35496.74 9787.65 36897.39 20785.00 29999.64 14892.14 23899.48 13299.20 139
Wanjuan Su, Wenbing Tao: Efficient Edge-Preserving Multi-View Stereo Network for Depth Estimation. AAAI 2023
test_method66.88 34466.13 34769.11 36062.68 38325.73 38549.76 37496.04 30514.32 37864.27 37991.69 36273.45 35688.05 37776.06 37066.94 37793.54 363
tmp_tt57.23 34562.50 34841.44 36134.77 38449.21 38483.93 36960.22 38515.31 37771.11 37879.37 37670.09 36644.86 38064.76 37682.93 37630.25 376
test12312.59 34715.49 3503.87 3626.07 3852.55 38690.75 3482.59 3872.52 3805.20 38213.02 3794.96 3851.85 3825.20 3799.09 3797.23 377
testmvs12.33 34815.23 3513.64 3635.77 3862.23 38788.99 3633.62 3862.30 3815.29 38113.09 3784.52 3861.95 3815.16 3808.32 3806.75 378
test_blank0.00 3510.00 3540.00 3640.00 3870.00 3880.00 3750.00 3880.00 3820.00 3830.00 3820.00 3870.00 3830.00 3810.00 3810.00 379
eth-test20.00 387
eth-test0.00 387
uanet_test0.00 3510.00 3540.00 3640.00 3870.00 3880.00 3750.00 3880.00 3820.00 3830.00 3820.00 3870.00 3830.00 3810.00 3810.00 379
DCPMVS0.00 3510.00 3540.00 3640.00 3870.00 3880.00 3750.00 3880.00 3820.00 3830.00 3820.00 3870.00 3830.00 3810.00 3810.00 379
cdsmvs_eth3d_5k24.22 34632.30 3490.00 3640.00 3870.00 3880.00 37598.10 2250.00 3820.00 38395.06 31797.54 290.00 3830.00 3810.00 3810.00 379
pcd_1.5k_mvsjas7.98 34910.65 3520.00 3640.00 3870.00 3880.00 3750.00 3880.00 3820.00 3830.00 38295.82 1100.00 3830.00 3810.00 3810.00 379
sosnet-low-res0.00 3510.00 3540.00 3640.00 3870.00 3880.00 3750.00 3880.00 3820.00 3830.00 3820.00 3870.00 3830.00 3810.00 3810.00 379
sosnet0.00 3510.00 3540.00 3640.00 3870.00 3880.00 3750.00 3880.00 3820.00 3830.00 3820.00 3870.00 3830.00 3810.00 3810.00 379
uncertanet0.00 3510.00 3540.00 3640.00 3870.00 3880.00 3750.00 3880.00 3820.00 3830.00 3820.00 3870.00 3830.00 3810.00 3810.00 379
Regformer0.00 3510.00 3540.00 3640.00 3870.00 3880.00 3750.00 3880.00 3820.00 3830.00 3820.00 3870.00 3830.00 3810.00 3810.00 379
ab-mvs-re7.91 35010.55 3530.00 3640.00 3870.00 3880.00 3750.00 3880.00 3820.00 38394.94 3190.00 3870.00 3830.00 3810.00 3810.00 379
uanet0.00 3510.00 3540.00 3640.00 3870.00 3880.00 3750.00 3880.00 3820.00 3830.00 3820.00 3870.00 3830.00 3810.00 3810.00 379
PC_three_145287.24 31498.37 8297.44 20097.00 5496.78 37092.01 23999.25 19599.21 135
test_241102_TWO98.83 11096.11 12698.62 5898.24 11296.92 6299.72 9295.44 13299.49 12899.49 59
test_0728_THIRD96.62 9998.40 7998.28 10697.10 4599.71 10895.70 11099.62 7899.58 33
GSMVS98.06 283
sam_mvs177.80 33198.06 283
sam_mvs77.38 335
MTGPAbinary98.73 133
test_post194.98 23610.37 38176.21 34399.04 29189.47 298
test_post10.87 38076.83 33999.07 288
patchmatchnet-post96.84 24777.36 33699.42 214
MTMP96.55 14174.60 380
test9_res91.29 25598.89 24099.00 177
agg_prior290.34 28798.90 23799.10 165
test_prior495.38 11093.61 293
test_prior293.33 30294.21 20694.02 30296.25 28193.64 18491.90 24298.96 229
旧先验293.35 30177.95 36895.77 26098.67 32890.74 274
新几何293.43 296
无先验93.20 30597.91 23980.78 35699.40 22587.71 31997.94 292
原ACMM292.82 310
testdata299.46 20487.84 318
segment_acmp95.34 132
testdata192.77 31193.78 219
plane_prior598.75 12999.46 20492.59 23499.20 20099.28 121
plane_prior496.77 253
plane_prior394.51 14795.29 16996.16 241
plane_prior296.50 14396.36 114
plane_prior94.29 15595.42 20394.31 20398.93 235
n20.00 388
nn0.00 388
door-mid98.17 215
test1198.08 229
door97.81 248
HQP5-MVS92.47 207
BP-MVS90.51 282
HQP4-MVS92.87 33299.23 26799.06 170
HQP3-MVS98.43 17898.74 255
HQP2-MVS90.33 248
MDTV_nov1_ep13_2view57.28 38394.89 23980.59 35794.02 30278.66 32885.50 34197.82 298
ACMMP++_ref99.52 115
ACMMP++99.55 104
Test By Simon94.51 162