This table lists the benchmark results for the high-res multi-view scenario. The following metrics are evaluated:

(*) For exact definitions, detailing how potentially incomplete ground truth is taken into account, see our paper.

The datasets are grouped into different categories, and result averages are computed for a category and method if results of the method are available for all datasets within the category. Note that the category "all" includes both the high-res multi-view and the low-res many-view scenarios.

Methods with suffix _ROB may participate in the Robust Vision Challenge.

Click a dataset result cell to show a visualization of the reconstruction. For training datasets, ground truth and accuracy / completeness visualizations are also available. The visualizations may not work with mobile browsers.




Method Infoallhigh-res
multi-view
indooroutdoorbotani.boulde.bridgedoorexhibi.lectur.living.loungeobserv.old co.statueterrac.
sort bysort bysort bysort bysorted bysort bysort bysort bysort bysort bysort bysort bysort bysort bysort bysort by
LCM-MVSNet99.86 199.86 199.87 199.99 199.77 199.77 199.80 199.97 199.97 199.95 199.74 199.98 199.56 1100.00 199.85 3
pmmvs699.07 499.24 498.56 4999.81 296.38 6198.87 799.30 999.01 1699.63 999.66 399.27 299.68 11997.75 3099.89 2299.62 25
UniMVSNet_ETH3D99.12 399.28 398.65 4399.77 396.34 6399.18 599.20 1399.67 299.73 399.65 499.15 399.86 2097.22 4599.92 1499.77 8
OurMVSNet-221017-098.61 1698.61 2398.63 4599.77 396.35 6299.17 699.05 4098.05 4099.61 1199.52 593.72 17499.88 1898.72 999.88 2399.65 23
Gipumacopyleft98.07 4098.31 2997.36 14599.76 596.28 6698.51 1999.10 2898.76 2296.79 19499.34 1796.61 7498.82 29796.38 7299.50 10896.98 306
S. Galliani, K. Lasinger, K. Schindler: Massively Parallel Multiview Stereopsis by Surface Normal Diffusion. ICCV 2015
MIMVSNet198.51 2098.45 2698.67 4199.72 696.71 5098.76 998.89 7698.49 2799.38 1799.14 3095.44 12499.84 2596.47 7099.80 3399.47 59
LTVRE_ROB96.88 199.18 299.34 298.72 3899.71 796.99 4499.69 299.57 399.02 1599.62 1099.36 1498.53 799.52 17498.58 1299.95 599.66 22
Andreas Kuhn, Heiko Hirschmüller, Daniel Scharstein, Helmut Mayer: A TV Prior for High-Quality Scalable Multi-View Stereo Reconstruction. International Journal of Computer Vision 2016
mvs_tets98.90 598.94 698.75 3399.69 896.48 5998.54 1899.22 1096.23 10799.71 499.48 798.77 699.93 298.89 399.95 599.84 5
PS-MVSNAJss98.53 1998.63 1998.21 7599.68 994.82 12298.10 4299.21 1196.91 8299.75 299.45 995.82 10599.92 498.80 499.96 499.89 1
jajsoiax98.77 998.79 1298.74 3599.66 1096.48 5998.45 2399.12 2595.83 13399.67 699.37 1298.25 1099.92 498.77 599.94 899.82 6
v7n98.73 1198.99 597.95 9299.64 1194.20 14898.67 1199.14 2399.08 1099.42 1599.23 2196.53 7999.91 1299.27 299.93 1099.73 15
test_djsdf98.73 1198.74 1698.69 4099.63 1296.30 6598.67 1199.02 4996.50 9699.32 2099.44 1097.43 3199.92 498.73 799.95 599.86 2
anonymousdsp98.72 1498.63 1998.99 1399.62 1397.29 3798.65 1499.19 1595.62 14199.35 1999.37 1297.38 3399.90 1398.59 1199.91 1799.77 8
PEN-MVS98.75 1098.85 1098.44 5599.58 1495.67 8798.45 2399.15 2199.33 599.30 2199.00 3897.27 3899.92 497.64 3399.92 1499.75 13
Baseline_NR-MVSNet97.72 7497.79 5397.50 12799.56 1593.29 17895.44 18698.86 8598.20 3798.37 7399.24 2094.69 14499.55 16595.98 9099.79 3599.65 23
SixPastTwentyTwo97.49 9097.57 7997.26 15199.56 1592.33 19798.28 2996.97 27298.30 3399.45 1499.35 1688.43 26199.89 1698.01 2099.76 3999.54 36
PS-CasMVS98.73 1198.85 1098.39 5999.55 1795.47 9898.49 2099.13 2499.22 899.22 2798.96 4297.35 3499.92 497.79 2899.93 1099.79 7
DTE-MVSNet98.79 898.86 898.59 4799.55 1796.12 7098.48 2299.10 2899.36 499.29 2399.06 3697.27 3899.93 297.71 3299.91 1799.70 18
HPM-MVS_fast98.32 2798.13 3398.88 2499.54 1997.48 3098.35 2699.03 4795.88 12897.88 13298.22 10498.15 1299.74 7296.50 6999.62 6599.42 78
TDRefinement98.90 598.86 899.02 999.54 1998.06 799.34 499.44 798.85 1999.00 3699.20 2397.42 3299.59 15297.21 4799.76 3999.40 81
pm-mvs198.47 2198.67 1797.86 9999.52 2194.58 13298.28 2999.00 5797.57 6099.27 2499.22 2298.32 999.50 17997.09 5399.75 4399.50 43
TransMVSNet (Re)98.38 2598.67 1797.51 12499.51 2293.39 17798.20 3798.87 8398.23 3599.48 1299.27 1998.47 899.55 16596.52 6799.53 9699.60 26
WR-MVS_H98.65 1598.62 2198.75 3399.51 2296.61 5598.55 1799.17 1699.05 1399.17 2998.79 5195.47 12299.89 1697.95 2199.91 1799.75 13
PMVScopyleft89.60 1796.71 14196.97 11895.95 22099.51 2297.81 1697.42 8597.49 25397.93 4395.95 23598.58 6596.88 6296.91 35389.59 28199.36 15293.12 352
Y. Furukawa, J. Ponce: Accurate, dense, and robust multiview stereopsis. PAMI (2010)
MP-MVS-pluss97.69 7697.36 9298.70 3999.50 2596.84 4795.38 19398.99 6092.45 24498.11 10598.31 8697.25 4199.77 5296.60 6399.62 6599.48 56
MP-MVS-pluss: MP-MVS-pluss. MP-MVS-pluss
FC-MVSNet-test98.16 3398.37 2797.56 11999.49 2693.10 18398.35 2699.21 1198.43 2898.89 3998.83 5094.30 15999.81 3197.87 2499.91 1799.77 8
VPNet97.26 10697.49 8696.59 18699.47 2790.58 23296.27 13998.53 15897.77 4698.46 6698.41 7894.59 15099.68 11994.61 16099.29 17599.52 40
CP-MVSNet98.42 2398.46 2498.30 6799.46 2895.22 11198.27 3198.84 9499.05 1399.01 3598.65 6395.37 12599.90 1397.57 3599.91 1799.77 8
XXY-MVS97.54 8697.70 6097.07 16099.46 2892.21 20197.22 9599.00 5794.93 17198.58 5698.92 4597.31 3699.41 20894.44 16799.43 13499.59 27
zzz-MVS98.01 4497.66 6599.06 499.44 3097.90 1195.66 17698.73 12497.69 5697.90 12997.96 13495.81 10999.82 2996.13 7999.61 7199.45 66
MTAPA98.14 3497.84 4999.06 499.44 3097.90 1197.25 9298.73 12497.69 5697.90 12997.96 13495.81 10999.82 2996.13 7999.61 7199.45 66
SteuartSystems-ACMMP98.02 4397.76 5798.79 3199.43 3297.21 4197.15 9798.90 7596.58 9298.08 11197.87 14897.02 5399.76 5795.25 12899.59 7699.40 81
Skip Steuart: Steuart Systems R&D Blog.
ACMH93.61 998.44 2298.76 1397.51 12499.43 3293.54 17398.23 3299.05 4097.40 7199.37 1899.08 3498.79 599.47 18697.74 3199.71 5199.50 43
Qingshan Xu and Wenbing Tao: Multi-Scale Geometric Consistency Guided Multi-View Stereo. CVPR 2019
HPM-MVScopyleft98.11 3897.83 5198.92 2299.42 3497.46 3198.57 1599.05 4095.43 15097.41 16097.50 18297.98 1599.79 3895.58 10999.57 8199.50 43
Chunlin Ren, Qingshan Xu, Shikun Zhang, Jiaqi Yang: Hierarchical Prior Mining for Non-local Multi-View Stereo. ICCV 2023
K. test v396.44 15496.28 15596.95 16599.41 3591.53 21797.65 6790.31 35098.89 1898.93 3899.36 1484.57 29099.92 497.81 2699.56 8499.39 83
VDDNet96.98 11896.84 12597.41 14199.40 3693.26 17997.94 4995.31 30799.26 798.39 7299.18 2787.85 27099.62 14495.13 14099.09 20199.35 93
ACMH+93.58 1098.23 3298.31 2997.98 9199.39 3795.22 11197.55 7499.20 1398.21 3699.25 2598.51 7298.21 1199.40 21094.79 15499.72 4899.32 96
TSAR-MVS + MP.97.42 9597.23 10298.00 9099.38 3895.00 11797.63 6998.20 19893.00 23298.16 9998.06 12495.89 10099.72 8295.67 10099.10 20099.28 110
Zhenlong Yuan, Jiakai Cao, Zhaoqi Wang, Zhaoxin Li: TSAR-MVS: Textureless-aware Segmentation and Correlative Refinement Guided Multi-View Stereo. Pattern Recognition
FIs97.93 5498.07 3697.48 13199.38 3892.95 18698.03 4799.11 2698.04 4198.62 5198.66 6193.75 17399.78 4297.23 4499.84 2899.73 15
lessismore_v097.05 16199.36 4092.12 20584.07 36298.77 4698.98 4085.36 28499.74 7297.34 4399.37 14999.30 102
Anonymous2024052197.07 11297.51 8395.76 22899.35 4188.18 26997.78 5898.40 17597.11 7798.34 7899.04 3789.58 24899.79 3898.09 1899.93 1099.30 102
ACMMP_NAP97.89 5997.63 7298.67 4199.35 4196.84 4796.36 13598.79 11195.07 16497.88 13298.35 8297.24 4299.72 8296.05 8399.58 7899.45 66
Vis-MVSNetpermissive98.27 2998.34 2898.07 8399.33 4395.21 11398.04 4599.46 697.32 7397.82 14099.11 3196.75 6899.86 2097.84 2599.36 15299.15 133
Jingyang Zhang, Yao Yao, Shiwei Li, Zixin Luo, Tian Fang: Visibility-aware Multiview Stereo Network. BMVC 2020
ANet_high98.31 2898.94 696.41 20099.33 4389.64 24397.92 5299.56 499.27 699.66 899.50 697.67 2599.83 2897.55 3699.98 299.77 8
ZNCC-MVS97.92 5597.62 7498.83 2699.32 4597.24 3997.45 8198.84 9495.76 13596.93 18997.43 18797.26 4099.79 3896.06 8199.53 9699.45 66
MP-MVScopyleft97.64 7897.18 10599.00 1299.32 4597.77 1797.49 8098.73 12496.27 10495.59 24997.75 16096.30 9299.78 4293.70 20199.48 11699.45 66
Rongxuan Tan, Qing Wang, et al.: MP-MVS: Multi-Scale Windows PatchMatch and Planar Prior Multi-View Stereo.
PVSNet_Blended_VisFu95.95 17395.80 17596.42 19899.28 4790.62 23195.31 19999.08 3488.40 29096.97 18798.17 10992.11 21199.78 4293.64 20299.21 18298.86 192
tfpnnormal97.72 7497.97 4196.94 16699.26 4892.23 20097.83 5798.45 16598.25 3499.13 3098.66 6196.65 7199.69 11393.92 19399.62 6598.91 181
MSP-MVS97.45 9396.92 12299.03 899.26 4897.70 1897.66 6698.89 7695.65 13998.51 6096.46 25492.15 20999.81 3195.14 13898.58 25499.58 28
Zhenlong Yuan, Cong Liu, Fei Shen, Zhaoxin Li, Jingguo luo, Tianlu Mao and Zhaoqi Wang: MSP-MVS: Multi-granularity Segmentation Prior Guided Multi-View Stereo. AAAI2025
testgi96.07 16796.50 14894.80 26799.26 4887.69 28295.96 16098.58 15595.08 16398.02 11896.25 26597.92 1697.60 35088.68 29598.74 23999.11 148
IS-MVSNet96.93 12196.68 13497.70 11099.25 5194.00 15498.57 1596.74 28198.36 3098.14 10397.98 13388.23 26399.71 9693.10 21399.72 4899.38 85
DVP-MVS97.78 7097.65 6798.16 7699.24 5295.51 9496.74 11898.23 19495.92 12598.40 7098.28 9397.06 5099.71 9695.48 11399.52 10199.26 115
Zhenlong Yuan, Jinguo Luo, Fei Shen, Zhaoxin Li, Cong Liu, Tianlu Mao, Zhaoqi Wang: DVP-MVS: Synergize Depth-Edge and Visibility Prior for Multi-View Stereo. AAAI2025
test072699.24 5295.51 9496.89 11198.89 7695.92 12598.64 5098.31 8697.06 50
test_0728_SECOND98.25 7299.23 5495.49 9796.74 11898.89 7699.75 6595.48 11399.52 10199.53 39
GST-MVS97.82 6797.49 8698.81 2999.23 5497.25 3897.16 9698.79 11195.96 12297.53 14697.40 18996.93 5799.77 5295.04 14499.35 15799.42 78
ACMMPcopyleft98.05 4197.75 5998.93 2199.23 5497.60 2298.09 4398.96 6895.75 13797.91 12898.06 12496.89 6099.76 5795.32 12499.57 8199.43 77
Qingshan Xu, Weihang Kong, Wenbing Tao, Marc Pollefeys: Multi-Scale Geometric Consistency Guided and Planar Prior Assisted Multi-View Stereo. IEEE Transactions on Pattern Analysis and Machine Intelligence
DIV-MVS_2432*160097.86 6398.07 3697.25 15299.22 5792.81 18997.55 7498.94 7197.10 7898.85 4098.88 4795.03 13699.67 12497.39 4299.65 6199.26 115
SED-MVS97.94 5197.90 4498.07 8399.22 5795.35 10396.79 11598.83 10196.11 11199.08 3198.24 9997.87 2099.72 8295.44 11799.51 10699.14 136
IU-MVS99.22 5795.40 9998.14 20885.77 31498.36 7595.23 13099.51 10699.49 51
test_241102_ONE99.22 5795.35 10398.83 10196.04 11699.08 3198.13 11197.87 2099.33 231
nrg03098.54 1898.62 2198.32 6499.22 5795.66 8897.90 5399.08 3498.31 3299.02 3498.74 5597.68 2499.61 15097.77 2999.85 2799.70 18
region2R97.92 5597.59 7798.92 2299.22 5797.55 2697.60 7098.84 9496.00 11997.22 16497.62 17296.87 6399.76 5795.48 11399.43 13499.46 61
mPP-MVS97.91 5897.53 8199.04 799.22 5797.87 1497.74 6398.78 11596.04 11697.10 17497.73 16396.53 7999.78 4295.16 13599.50 10899.46 61
COLMAP_ROBcopyleft94.48 698.25 3198.11 3498.64 4499.21 6497.35 3597.96 4899.16 1798.34 3198.78 4498.52 7197.32 3599.45 19394.08 18499.67 5899.13 139
Johannes L. Schönberger, Enliang Zheng, Marc Pollefeys, Jan-Michael Frahm: Pixelwise View Selection for Unstructured Multi-View Stereo. ECCV 2016
ACMMPR97.95 4997.62 7498.94 1899.20 6597.56 2597.59 7198.83 10196.05 11497.46 15797.63 17196.77 6799.76 5795.61 10699.46 12199.49 51
PGM-MVS97.88 6097.52 8298.96 1699.20 6597.62 2197.09 10299.06 3895.45 14897.55 14597.94 13997.11 4499.78 4294.77 15799.46 12199.48 56
test_040297.84 6497.97 4197.47 13299.19 6794.07 15196.71 12398.73 12498.66 2498.56 5798.41 7896.84 6599.69 11394.82 15299.81 3098.64 214
EPP-MVSNet96.84 12796.58 13897.65 11499.18 6893.78 16498.68 1096.34 28597.91 4497.30 16298.06 12488.46 26099.85 2293.85 19599.40 14599.32 96
abl_698.42 2398.19 3299.09 399.16 6998.10 597.73 6599.11 2697.76 4998.62 5198.27 9797.88 1999.80 3795.67 10099.50 10899.38 85
XVG-ACMP-BASELINE97.58 8497.28 9898.49 5299.16 6996.90 4696.39 13298.98 6395.05 16598.06 11398.02 12895.86 10199.56 16194.37 17299.64 6399.00 164
CHOSEN 1792x268894.10 24993.41 25696.18 21199.16 6990.04 23792.15 31098.68 13979.90 34696.22 22597.83 15187.92 26999.42 19989.18 28799.65 6199.08 153
HFP-MVS97.94 5197.64 7098.83 2699.15 7297.50 2897.59 7198.84 9496.05 11497.49 15197.54 17797.07 4899.70 10595.61 10699.46 12199.30 102
#test#97.62 8097.22 10398.83 2699.15 7297.50 2896.81 11498.84 9494.25 19397.49 15197.54 17797.07 4899.70 10594.37 17299.46 12199.30 102
XVS97.96 4697.63 7298.94 1899.15 7297.66 1997.77 5998.83 10197.42 6796.32 21897.64 17096.49 8299.72 8295.66 10299.37 14999.45 66
X-MVStestdata92.86 27590.83 30098.94 1899.15 7297.66 1997.77 5998.83 10197.42 6796.32 21836.50 36396.49 8299.72 8295.66 10299.37 14999.45 66
LPG-MVS_test97.94 5197.67 6498.74 3599.15 7297.02 4297.09 10299.02 4995.15 16098.34 7898.23 10197.91 1799.70 10594.41 16999.73 4599.50 43
LGP-MVS_train98.74 3599.15 7297.02 4299.02 4995.15 16098.34 7898.23 10197.91 1799.70 10594.41 16999.73 4599.50 43
RPSCF97.87 6197.51 8398.95 1799.15 7298.43 397.56 7399.06 3896.19 10898.48 6398.70 5894.72 14399.24 25094.37 17299.33 16799.17 129
ACMM93.33 1198.05 4197.79 5398.85 2599.15 7297.55 2696.68 12498.83 10195.21 15698.36 7598.13 11198.13 1499.62 14496.04 8499.54 9399.39 83
Qingshan Xu and Wenbing Tao: Multi-Scale Geometric Consistency Guided Multi-View Stereo. CVPR 2019
FMVSNet197.95 4998.08 3597.56 11999.14 8093.67 16798.23 3298.66 14497.41 7099.00 3699.19 2495.47 12299.73 7895.83 9699.76 3999.30 102
Vis-MVSNet (Re-imp)95.11 20694.85 20795.87 22599.12 8189.17 25197.54 7994.92 30996.50 9696.58 20597.27 20483.64 29599.48 18388.42 29899.67 5898.97 168
OPM-MVS97.54 8697.25 9998.41 5799.11 8296.61 5595.24 20698.46 16494.58 18398.10 10898.07 11997.09 4799.39 21595.16 13599.44 12699.21 124
UA-Net98.88 798.76 1399.22 299.11 8297.89 1399.47 399.32 899.08 1097.87 13599.67 296.47 8499.92 497.88 2399.98 299.85 3
AllTest97.20 11096.92 12298.06 8599.08 8496.16 6897.14 9999.16 1794.35 18997.78 14198.07 11995.84 10299.12 26591.41 23799.42 13798.91 181
TestCases98.06 8599.08 8496.16 6899.16 1794.35 18997.78 14198.07 11995.84 10299.12 26591.41 23799.42 13798.91 181
TranMVSNet+NR-MVSNet98.33 2698.30 3198.43 5699.07 8695.87 7896.73 12299.05 4098.67 2398.84 4198.45 7697.58 2899.88 1896.45 7199.86 2599.54 36
VPA-MVSNet98.27 2998.46 2497.70 11099.06 8793.80 16297.76 6199.00 5798.40 2999.07 3398.98 4096.89 6099.75 6597.19 5099.79 3599.55 35
114514_t93.96 25393.22 26096.19 21099.06 8790.97 22595.99 15798.94 7173.88 35993.43 30996.93 22592.38 20799.37 22189.09 28899.28 17698.25 251
EG-PatchMatch MVS97.69 7697.79 5397.40 14299.06 8793.52 17495.96 16098.97 6794.55 18498.82 4298.76 5497.31 3699.29 24297.20 4999.44 12699.38 85
ACMP92.54 1397.47 9297.10 10998.55 5099.04 9096.70 5196.24 14398.89 7693.71 20897.97 12397.75 16097.44 3099.63 13693.22 21099.70 5499.32 96
Qingshan Xu and Wenbing Tao: Planar Prior Assisted PatchMatch Multi-View Stereo. AAAI 2020
test_part299.03 9196.07 7298.08 111
XVG-OURS-SEG-HR97.38 9897.07 11298.30 6799.01 9297.41 3494.66 23699.02 4995.20 15798.15 10197.52 18098.83 498.43 33094.87 15096.41 32199.07 155
XVG-OURS97.12 11196.74 13198.26 6998.99 9397.45 3293.82 27199.05 4095.19 15898.32 8397.70 16695.22 13198.41 33194.27 17798.13 26998.93 176
CP-MVS97.92 5597.56 8098.99 1398.99 9397.82 1597.93 5098.96 6896.11 11196.89 19297.45 18696.85 6499.78 4295.19 13199.63 6499.38 85
CSCG97.40 9797.30 9597.69 11298.95 9594.83 12197.28 9198.99 6096.35 10398.13 10495.95 28295.99 9899.66 13094.36 17599.73 4598.59 220
SF-MVS97.60 8297.39 9098.22 7498.93 9695.69 8497.05 10499.10 2895.32 15397.83 13897.88 14696.44 8699.72 8294.59 16499.39 14699.25 119
HyFIR lowres test93.72 25892.65 27396.91 16998.93 9691.81 21491.23 32798.52 15982.69 33496.46 21296.52 25280.38 30799.90 1390.36 27198.79 23499.03 161
PM-MVS97.36 10197.10 10998.14 8098.91 9896.77 4996.20 14598.63 15093.82 20598.54 5898.33 8493.98 16799.05 27595.99 8999.45 12598.61 219
CPTT-MVS96.69 14296.08 16498.49 5298.89 9996.64 5497.25 9298.77 11692.89 23896.01 23497.13 21092.23 20899.67 12492.24 22299.34 16099.17 129
GeoE97.75 7297.70 6097.89 9698.88 10094.53 13397.10 10198.98 6395.75 13797.62 14397.59 17497.61 2799.77 5296.34 7499.44 12699.36 91
DPE-MVScopyleft97.64 7897.35 9398.50 5198.85 10196.18 6795.21 20898.99 6095.84 13298.78 4498.08 11796.84 6599.81 3193.98 19199.57 8199.52 40
Kehua Chen, Zhenlong Yuan, Tianlu Mao, Zhaoqi Wang: Dual-Level Precision Edges Guided Multi-View Stereo with Accurate Planarization. AAAI2025
SMA-MVScopyleft97.48 9197.11 10898.60 4698.83 10296.67 5296.74 11898.73 12491.61 25598.48 6398.36 8196.53 7999.68 11995.17 13399.54 9399.45 66
Yufeng Yin; Xiaoyan Liu; Zichao Zhang: SMA-MVS: Segmentation-Guided Multi-Scale Anchor Deformation Patch Multi-View Stereo. IEEE Transactions on Circuits and Systems for Video Technology
SR-MVS-dyc-post98.14 3497.84 4999.02 998.81 10398.05 897.55 7498.86 8597.77 4698.20 9498.07 11996.60 7699.76 5795.49 11099.20 18399.26 115
RE-MVS-def97.88 4798.81 10398.05 897.55 7498.86 8597.77 4698.20 9498.07 11996.94 5595.49 11099.20 18399.26 115
UniMVSNet (Re)97.83 6597.65 6798.35 6398.80 10595.86 7995.92 16499.04 4697.51 6498.22 9397.81 15594.68 14699.78 4297.14 5299.75 4399.41 80
Anonymous2023121198.55 1798.76 1397.94 9398.79 10694.37 14098.84 899.15 2199.37 399.67 699.43 1195.61 11799.72 8298.12 1699.86 2599.73 15
APD-MVS_3200maxsize98.13 3797.90 4498.79 3198.79 10697.31 3697.55 7498.92 7397.72 5398.25 9098.13 11197.10 4599.75 6595.44 11799.24 18199.32 96
test117298.08 3997.76 5799.05 698.78 10898.07 697.41 8698.85 8997.57 6098.15 10197.96 13496.60 7699.76 5795.30 12599.18 18799.33 95
DeepC-MVS95.41 497.82 6797.70 6098.16 7698.78 10895.72 8296.23 14499.02 4993.92 20498.62 5198.99 3997.69 2399.62 14496.18 7899.87 2499.15 133
Andreas Kuhn, Christian Sormann, Mattia Rossi, Oliver Erdler, Friedrich Fraundorfer: DeepC-MVS: Deep Confidence Prediction for Multi-View Stereo Reconstruction. 3DV 2020
SR-MVS98.00 4597.66 6599.01 1198.77 11097.93 1097.38 8798.83 10197.32 7398.06 11397.85 14996.65 7199.77 5295.00 14799.11 19899.32 96
MCST-MVS96.24 16095.80 17597.56 11998.75 11194.13 15094.66 23698.17 20490.17 27396.21 22696.10 27595.14 13299.43 19894.13 18398.85 22999.13 139
DU-MVS97.79 6997.60 7698.36 6198.73 11295.78 8095.65 17998.87 8397.57 6098.31 8597.83 15194.69 14499.85 2297.02 5699.71 5199.46 61
NR-MVSNet97.96 4697.86 4898.26 6998.73 11295.54 9298.14 4098.73 12497.79 4599.42 1597.83 15194.40 15799.78 4295.91 9399.76 3999.46 61
Anonymous2023120695.27 20095.06 19895.88 22498.72 11489.37 24895.70 17297.85 22988.00 29596.98 18697.62 17291.95 21699.34 22889.21 28699.53 9698.94 172
APDe-MVS98.14 3498.03 4098.47 5498.72 11496.04 7398.07 4499.10 2895.96 12298.59 5598.69 5996.94 5599.81 3196.64 6299.58 7899.57 32
UniMVSNet_NR-MVSNet97.83 6597.65 6798.37 6098.72 11495.78 8095.66 17699.02 4998.11 3998.31 8597.69 16894.65 14899.85 2297.02 5699.71 5199.48 56
tttt051793.31 26992.56 27695.57 23598.71 11787.86 27697.44 8287.17 35895.79 13497.47 15696.84 23064.12 35999.81 3196.20 7799.32 16999.02 163
v897.60 8298.06 3896.23 20798.71 11789.44 24797.43 8498.82 10997.29 7598.74 4799.10 3293.86 16999.68 11998.61 1099.94 899.56 33
HQP_MVS96.66 14596.33 15497.68 11398.70 11994.29 14296.50 12898.75 12096.36 10196.16 22896.77 23691.91 22099.46 18992.59 21999.20 18399.28 110
plane_prior798.70 11994.67 130
Anonymous2024052997.96 4698.04 3997.71 10898.69 12194.28 14597.86 5598.31 18898.79 2199.23 2698.86 4995.76 11299.61 15095.49 11099.36 15299.23 122
VDD-MVS97.37 9997.25 9997.74 10698.69 12194.50 13697.04 10595.61 30198.59 2598.51 6098.72 5692.54 20299.58 15496.02 8699.49 11299.12 144
HPM-MVS++copyleft96.99 11596.38 15198.81 2998.64 12397.59 2395.97 15998.20 19895.51 14695.06 25896.53 25094.10 16499.70 10594.29 17699.15 18999.13 139
ab-mvs96.59 14796.59 13796.60 18598.64 12392.21 20198.35 2697.67 24194.45 18596.99 18498.79 5194.96 13999.49 18090.39 27099.07 20498.08 260
F-COLMAP95.30 19994.38 23298.05 8898.64 12396.04 7395.61 18298.66 14489.00 28393.22 31396.40 25892.90 19099.35 22687.45 31297.53 29698.77 203
ITE_SJBPF97.85 10098.64 12396.66 5398.51 16195.63 14097.22 16497.30 20395.52 11998.55 32490.97 24798.90 22198.34 240
v14896.58 14896.97 11895.42 24398.63 12787.57 28395.09 21397.90 22695.91 12798.24 9297.96 13493.42 17999.39 21596.04 8499.52 10199.29 109
ETH3D-3000-0.196.89 12696.46 14998.16 7698.62 12895.69 8495.96 16098.98 6393.36 21697.04 18097.31 20294.93 14099.63 13692.60 21799.34 16099.17 129
UnsupCasMVSNet_bld94.72 22594.26 23496.08 21498.62 12890.54 23593.38 28698.05 22190.30 27197.02 18296.80 23589.54 24999.16 26188.44 29796.18 32498.56 222
DP-MVS97.87 6197.89 4697.81 10298.62 12894.82 12297.13 10098.79 11198.98 1798.74 4798.49 7395.80 11199.49 18095.04 14499.44 12699.11 148
v1097.55 8597.97 4196.31 20498.60 13189.64 24397.44 8299.02 4996.60 9098.72 4999.16 2993.48 17899.72 8298.76 699.92 1499.58 28
Test_1112_low_res93.53 26592.86 26595.54 23898.60 13188.86 25792.75 29898.69 13782.66 33592.65 32396.92 22784.75 28899.56 16190.94 24897.76 28298.19 256
V4297.04 11397.16 10696.68 18398.59 13391.05 22296.33 13798.36 18094.60 18097.99 11998.30 9093.32 18099.62 14497.40 4199.53 9699.38 85
1112_ss94.12 24893.42 25596.23 20798.59 13390.85 22694.24 25098.85 8985.49 31692.97 31694.94 30486.01 28099.64 13491.78 23197.92 27698.20 255
v2v48296.78 13497.06 11495.95 22098.57 13588.77 26095.36 19498.26 19195.18 15997.85 13798.23 10192.58 19999.63 13697.80 2799.69 5599.45 66
WR-MVS96.90 12496.81 12797.16 15498.56 13692.20 20394.33 24598.12 21197.34 7298.20 9497.33 20092.81 19199.75 6594.79 15499.81 3099.54 36
APD-MVScopyleft97.00 11496.53 14498.41 5798.55 13796.31 6496.32 13898.77 11692.96 23797.44 15997.58 17695.84 10299.74 7291.96 22499.35 15799.19 126
Yuesong Wang, Zhaojie Zeng and etc.: Adaptive Patch Deformation for Textureless-Resilient Multi-View Stereo. CVPR2023
Patchmatch-RL test94.66 22994.49 22795.19 25098.54 13888.91 25592.57 30298.74 12291.46 25898.32 8397.75 16077.31 32398.81 29996.06 8199.61 7197.85 279
9.1496.69 13398.53 13996.02 15598.98 6393.23 22197.18 16897.46 18596.47 8499.62 14492.99 21499.32 169
baseline97.44 9497.78 5696.43 19798.52 14090.75 23096.84 11299.03 4796.51 9597.86 13698.02 12896.67 7099.36 22397.09 5399.47 11899.19 126
casdiffmvs97.50 8997.81 5296.56 19198.51 14191.04 22395.83 16899.09 3397.23 7698.33 8298.30 9097.03 5299.37 22196.58 6599.38 14899.28 110
IterMVS-LS96.92 12297.29 9695.79 22798.51 14188.13 27295.10 21198.66 14496.99 7998.46 6698.68 6092.55 20099.74 7296.91 5999.79 3599.50 43
Fangjinhua Wang, Silvano Galliani, Christoph Vogel, Marc Pollefeys: IterMVS: Iterative Probability Estimation for Efficient Multi-View Stereo.
DP-MVS Recon95.55 18695.13 19396.80 17598.51 14193.99 15594.60 23898.69 13790.20 27295.78 24396.21 26892.73 19498.98 28490.58 26498.86 22797.42 296
hse-mvs396.29 15895.63 18198.26 6998.50 14496.11 7196.90 11097.09 26796.58 9297.21 16698.19 10684.14 29199.78 4295.89 9496.17 32598.89 185
test20.0396.58 14896.61 13696.48 19598.49 14591.72 21595.68 17597.69 24096.81 8598.27 8997.92 14294.18 16398.71 30890.78 25499.66 6099.00 164
plane_prior198.49 145
xxxxxxxxxxxxxcwj97.24 10897.03 11697.89 9698.48 14794.71 12694.53 24199.07 3795.02 16797.83 13897.88 14696.44 8699.72 8294.59 16499.39 14699.25 119
save fliter98.48 14794.71 12694.53 24198.41 17395.02 167
MDA-MVSNet-bldmvs95.69 18095.67 17995.74 22998.48 14788.76 26192.84 29597.25 25996.00 11997.59 14497.95 13891.38 22599.46 18993.16 21296.35 32298.99 167
UnsupCasMVSNet_eth95.91 17495.73 17896.44 19698.48 14791.52 21895.31 19998.45 16595.76 13597.48 15497.54 17789.53 25198.69 31094.43 16894.61 34099.13 139
testtj96.69 14296.13 16098.36 6198.46 15196.02 7596.44 13098.70 13494.26 19296.79 19497.13 21094.07 16599.75 6590.53 26598.80 23399.31 101
ZD-MVS98.43 15295.94 7798.56 15690.72 26796.66 20297.07 21695.02 13799.74 7291.08 24498.93 219
thisisatest053092.71 27891.76 28695.56 23798.42 15388.23 26796.03 15487.35 35794.04 20096.56 20795.47 29664.03 36099.77 5294.78 15699.11 19898.68 213
v114496.84 12797.08 11196.13 21398.42 15389.28 25095.41 19098.67 14294.21 19497.97 12398.31 8693.06 18599.65 13198.06 1999.62 6599.45 66
plane_prior698.38 15594.37 14091.91 220
FPMVS89.92 31288.63 31993.82 29098.37 15696.94 4591.58 31893.34 32388.00 29590.32 34197.10 21470.87 35191.13 36171.91 35996.16 32693.39 351
PAPM_NR94.61 23294.17 23995.96 21898.36 15791.23 22095.93 16397.95 22392.98 23393.42 31094.43 31690.53 23498.38 33487.60 30896.29 32398.27 249
MVS_111021_HR96.73 13896.54 14397.27 14998.35 15893.66 17093.42 28398.36 18094.74 17596.58 20596.76 23896.54 7898.99 28294.87 15099.27 17899.15 133
TAMVS95.49 18894.94 20197.16 15498.31 15993.41 17695.07 21696.82 27791.09 26497.51 14897.82 15489.96 24499.42 19988.42 29899.44 12698.64 214
OMC-MVS96.48 15296.00 16797.91 9598.30 16096.01 7694.86 22898.60 15291.88 25297.18 16897.21 20896.11 9599.04 27690.49 26999.34 16098.69 211
新几何197.25 15298.29 16194.70 12997.73 23777.98 35294.83 26696.67 24392.08 21399.45 19388.17 30298.65 24897.61 290
jason94.39 24094.04 24395.41 24598.29 16187.85 27892.74 30096.75 28085.38 32195.29 25496.15 27088.21 26499.65 13194.24 17899.34 16098.74 205
jason: jason.
v119296.83 13097.06 11496.15 21298.28 16389.29 24995.36 19498.77 11693.73 20798.11 10598.34 8393.02 18999.67 12498.35 1499.58 7899.50 43
CDPH-MVS95.45 19394.65 21697.84 10198.28 16394.96 11893.73 27598.33 18585.03 32495.44 25196.60 24695.31 12899.44 19690.01 27599.13 19499.11 148
MVS_111021_LR96.82 13196.55 14197.62 11698.27 16595.34 10593.81 27398.33 18594.59 18296.56 20796.63 24596.61 7498.73 30694.80 15399.34 16098.78 200
CLD-MVS95.47 19195.07 19696.69 18298.27 16592.53 19491.36 32198.67 14291.22 26395.78 24394.12 32095.65 11698.98 28490.81 25299.72 4898.57 221
Zhaoxin Li, Wangmeng Zuo, Zhaoqi Wang, Lei Zhang: Confidence-based Large-scale Dense Multi-view Stereo. IEEE Transaction on Image Processing, 2020
112194.26 24193.26 25897.27 14998.26 16794.73 12495.86 16597.71 23977.96 35394.53 27396.71 24091.93 21899.40 21087.71 30498.64 24997.69 287
Anonymous20240521196.34 15795.98 16997.43 13998.25 16893.85 16096.74 11894.41 31497.72 5398.37 7398.03 12787.15 27499.53 17094.06 18599.07 20498.92 180
pmmvs-eth3d96.49 15196.18 15997.42 14098.25 16894.29 14294.77 23398.07 21989.81 27697.97 12398.33 8493.11 18499.08 27295.46 11699.84 2898.89 185
v14419296.69 14296.90 12496.03 21598.25 16888.92 25495.49 18498.77 11693.05 23098.09 10998.29 9292.51 20499.70 10598.11 1799.56 8499.47 59
ambc96.56 19198.23 17191.68 21697.88 5498.13 21098.42 6998.56 6894.22 16299.04 27694.05 18899.35 15798.95 170
thres100view90091.76 29491.26 29393.26 30098.21 17284.50 32496.39 13290.39 34896.87 8396.33 21793.08 32973.44 34399.42 19978.85 35097.74 28395.85 332
v192192096.72 13996.96 12095.99 21698.21 17288.79 25995.42 18898.79 11193.22 22298.19 9798.26 9892.68 19599.70 10598.34 1599.55 9099.49 51
thres600view792.03 29091.43 28893.82 29098.19 17484.61 32396.27 13990.39 34896.81 8596.37 21693.11 32573.44 34399.49 18080.32 34697.95 27597.36 297
PatchMatch-RL94.61 23293.81 25097.02 16498.19 17495.72 8293.66 27697.23 26088.17 29394.94 26395.62 29291.43 22498.57 32187.36 31397.68 28996.76 319
LF4IMVS96.07 16795.63 18197.36 14598.19 17495.55 9195.44 18698.82 10992.29 24695.70 24796.55 24892.63 19898.69 31091.75 23399.33 16797.85 279
v124096.74 13697.02 11795.91 22398.18 17788.52 26295.39 19298.88 8193.15 22898.46 6698.40 8092.80 19299.71 9698.45 1399.49 11299.49 51
TAPA-MVS93.32 1294.93 21394.23 23597.04 16298.18 17794.51 13495.22 20798.73 12481.22 34196.25 22495.95 28293.80 17298.98 28489.89 27798.87 22597.62 289
Andrea Romanoni, Matteo Matteucci: TAPA-MVS: Textureless-Aware PAtchMatch Multi-View Stereo. ICCV 2019
test22298.17 17993.24 18092.74 30097.61 25175.17 35794.65 27096.69 24290.96 23098.66 24697.66 288
MIMVSNet93.42 26692.86 26595.10 25398.17 17988.19 26898.13 4193.69 31792.07 24795.04 26198.21 10580.95 30599.03 27981.42 34498.06 27298.07 262
原ACMM196.58 18898.16 18192.12 20598.15 20785.90 31293.49 30596.43 25592.47 20599.38 21887.66 30798.62 25098.23 252
testdata95.70 23298.16 18190.58 23297.72 23880.38 34495.62 24897.02 22092.06 21498.98 28489.06 29098.52 25597.54 292
MVP-Stereo95.69 18095.28 18996.92 16798.15 18393.03 18495.64 18198.20 19890.39 27096.63 20497.73 16391.63 22399.10 27091.84 23097.31 30498.63 216
Qingsong Yan: MVP-Stereo: A Parallel Multi-View Patchmatch Stereo Method with Dilation Matching for Photogrammetric Application.
SD-MVS97.37 9997.70 6096.35 20198.14 18495.13 11496.54 12798.92 7395.94 12499.19 2898.08 11797.74 2295.06 35895.24 12999.54 9398.87 191
Zhenlong Yuan, Jiakai Cao, Zhaoxin Li, Hao Jiang and Zhaoqi Wang: SD-MVS: Segmentation-driven Deformation Multi-View Stereo with Spherical Refinement and EM optimization. AAAI2024
EU-MVSNet94.25 24294.47 22893.60 29498.14 18482.60 33497.24 9492.72 33085.08 32298.48 6398.94 4382.59 29898.76 30497.47 3999.53 9699.44 76
NP-MVS98.14 18493.72 16695.08 300
LCM-MVSNet-Re97.33 10297.33 9497.32 14798.13 18793.79 16396.99 10899.65 296.74 8799.47 1398.93 4496.91 5999.84 2590.11 27399.06 20798.32 241
ETH3 D test640094.77 22093.87 24997.47 13298.12 18893.73 16594.56 24098.70 13485.45 31994.70 26995.93 28491.77 22299.63 13686.45 31899.14 19099.05 159
3Dnovator+96.13 397.73 7397.59 7798.15 7998.11 18995.60 9098.04 4598.70 13498.13 3896.93 18998.45 7695.30 12999.62 14495.64 10498.96 21399.24 121
VNet96.84 12796.83 12696.88 17098.06 19092.02 20896.35 13697.57 25297.70 5597.88 13297.80 15692.40 20699.54 16894.73 15998.96 21399.08 153
test_part196.77 13596.53 14497.47 13298.04 19192.92 18797.93 5098.85 8998.83 2099.30 2199.07 3579.25 31099.79 3897.59 3499.93 1099.69 20
LFMVS95.32 19894.88 20696.62 18498.03 19291.47 21997.65 6790.72 34799.11 997.89 13198.31 8679.20 31199.48 18393.91 19499.12 19798.93 176
tfpn200view991.55 29691.00 29593.21 30398.02 19384.35 32695.70 17290.79 34596.26 10595.90 23992.13 34273.62 34099.42 19978.85 35097.74 28395.85 332
thres40091.68 29591.00 29593.71 29298.02 19384.35 32695.70 17290.79 34596.26 10595.90 23992.13 34273.62 34099.42 19978.85 35097.74 28397.36 297
OPU-MVS97.64 11598.01 19595.27 10696.79 11597.35 19896.97 5498.51 32791.21 24399.25 18099.14 136
xiu_mvs_v1_base_debu95.62 18395.96 17094.60 27498.01 19588.42 26393.99 26498.21 19592.98 23395.91 23694.53 31296.39 8899.72 8295.43 12098.19 26695.64 336
xiu_mvs_v1_base95.62 18395.96 17094.60 27498.01 19588.42 26393.99 26498.21 19592.98 23395.91 23694.53 31296.39 8899.72 8295.43 12098.19 26695.64 336
xiu_mvs_v1_base_debi95.62 18395.96 17094.60 27498.01 19588.42 26393.99 26498.21 19592.98 23395.91 23694.53 31296.39 8899.72 8295.43 12098.19 26695.64 336
CNVR-MVS96.92 12296.55 14198.03 8998.00 19995.54 9294.87 22798.17 20494.60 18096.38 21597.05 21895.67 11599.36 22395.12 14199.08 20299.19 126
PLCcopyleft91.02 1694.05 25292.90 26497.51 12498.00 19995.12 11594.25 24998.25 19286.17 30891.48 33495.25 29891.01 22899.19 25585.02 33196.69 31698.22 253
Jie Liao, Yanping Fu, Qingan Yan, Chunxia xiao: Pyramid Multi-View Stereo with Local Consistency. Pacific Graphics 2019
GBi-Net96.99 11596.80 12897.56 11997.96 20193.67 16798.23 3298.66 14495.59 14397.99 11999.19 2489.51 25299.73 7894.60 16199.44 12699.30 102
test196.99 11596.80 12897.56 11997.96 20193.67 16798.23 3298.66 14495.59 14397.99 11999.19 2489.51 25299.73 7894.60 16199.44 12699.30 102
FMVSNet296.72 13996.67 13596.87 17197.96 20191.88 21197.15 9798.06 22095.59 14398.50 6298.62 6489.51 25299.65 13194.99 14899.60 7499.07 155
BH-untuned94.69 22694.75 21394.52 27997.95 20487.53 28494.07 26197.01 27093.99 20197.10 17495.65 29092.65 19798.95 28987.60 30896.74 31597.09 302
ETH3D cwj APD-0.1696.23 16195.61 18398.09 8297.91 20595.65 8994.94 22498.74 12291.31 26196.02 23397.08 21594.05 16699.69 11391.51 23698.94 21798.93 176
DPM-MVS93.68 26092.77 27196.42 19897.91 20592.54 19391.17 32897.47 25684.99 32593.08 31594.74 30889.90 24599.00 28087.54 31098.09 27197.72 285
QAPM95.88 17695.57 18496.80 17597.90 20791.84 21398.18 3998.73 12488.41 28996.42 21398.13 11194.73 14299.75 6588.72 29398.94 21798.81 196
TinyColmap96.00 17296.34 15394.96 25897.90 20787.91 27594.13 25998.49 16294.41 18698.16 9997.76 15796.29 9398.68 31390.52 26699.42 13798.30 245
CS-MVS96.95 12097.07 11296.59 18697.86 20992.74 19297.38 8799.52 595.98 12194.89 26595.89 28596.05 9799.76 5796.65 6199.42 13797.26 300
HQP-NCC97.85 21094.26 24693.18 22492.86 318
ACMP_Plane97.85 21094.26 24693.18 22492.86 318
N_pmnet95.18 20394.23 23598.06 8597.85 21096.55 5792.49 30491.63 33889.34 27998.09 10997.41 18890.33 23799.06 27491.58 23599.31 17198.56 222
HQP-MVS95.17 20594.58 22496.92 16797.85 21092.47 19594.26 24698.43 16893.18 22492.86 31895.08 30090.33 23799.23 25290.51 26798.74 23999.05 159
hse-mvs295.77 17995.09 19597.79 10397.84 21495.51 9495.66 17695.43 30696.58 9297.21 16696.16 26984.14 29199.54 16895.89 9496.92 30898.32 241
TEST997.84 21495.23 10893.62 27798.39 17686.81 30493.78 29295.99 27794.68 14699.52 174
train_agg95.46 19294.66 21597.88 9897.84 21495.23 10893.62 27798.39 17687.04 30293.78 29295.99 27794.58 15199.52 17491.76 23298.90 22198.89 185
MSLP-MVS++96.42 15696.71 13295.57 23597.82 21790.56 23495.71 17198.84 9494.72 17696.71 20097.39 19394.91 14198.10 34595.28 12699.02 20998.05 269
test_897.81 21895.07 11693.54 28098.38 17887.04 30293.71 29695.96 28194.58 15199.52 174
NCCC96.52 15095.99 16898.10 8197.81 21895.68 8695.00 22298.20 19895.39 15195.40 25396.36 26193.81 17199.45 19393.55 20498.42 25999.17 129
WTY-MVS93.55 26493.00 26395.19 25097.81 21887.86 27693.89 26996.00 29189.02 28294.07 28595.44 29786.27 27899.33 23187.69 30696.82 31298.39 233
CNLPA95.04 20994.47 22896.75 17897.81 21895.25 10794.12 26097.89 22794.41 18694.57 27195.69 28890.30 24098.35 33786.72 31798.76 23796.64 322
AUN-MVS93.95 25592.69 27297.74 10697.80 22295.38 10095.57 18395.46 30591.26 26292.64 32496.10 27574.67 33499.55 16593.72 20096.97 30798.30 245
EIA-MVS96.04 16995.77 17796.85 17297.80 22292.98 18596.12 14999.16 1794.65 17893.77 29491.69 34795.68 11499.67 12494.18 18098.85 22997.91 277
agg_prior195.39 19594.60 22197.75 10597.80 22294.96 11893.39 28598.36 18087.20 30093.49 30595.97 28094.65 14899.53 17091.69 23498.86 22798.77 203
agg_prior97.80 22294.96 11898.36 18093.49 30599.53 170
旧先验197.80 22293.87 15897.75 23697.04 21993.57 17798.68 24398.72 208
PCF-MVS89.43 1892.12 28990.64 30396.57 19097.80 22293.48 17589.88 34598.45 16574.46 35896.04 23295.68 28990.71 23399.31 23573.73 35699.01 21196.91 310
Andreas Kuhn, Shan Lin, Oliver Erdler: Plane Completion and Filtering for Multi-View Stereo Reconstruction. GCPR 2019
test_prior395.91 17495.39 18797.46 13597.79 22894.26 14693.33 28898.42 17194.21 19494.02 28796.25 26593.64 17599.34 22891.90 22698.96 21398.79 198
test_prior97.46 13597.79 22894.26 14698.42 17199.34 22898.79 198
PVSNet_BlendedMVS95.02 21294.93 20395.27 24797.79 22887.40 28794.14 25898.68 13988.94 28494.51 27498.01 13093.04 18699.30 23889.77 27999.49 11299.11 148
PVSNet_Blended93.96 25393.65 25294.91 25997.79 22887.40 28791.43 32098.68 13984.50 32994.51 27494.48 31593.04 18699.30 23889.77 27998.61 25198.02 272
USDC94.56 23494.57 22694.55 27897.78 23286.43 30192.75 29898.65 14985.96 31096.91 19197.93 14190.82 23198.74 30590.71 25999.59 7698.47 228
alignmvs96.01 17195.52 18597.50 12797.77 23394.71 12696.07 15196.84 27597.48 6596.78 19894.28 31985.50 28399.40 21096.22 7698.73 24298.40 231
ETV-MVS96.13 16695.90 17396.82 17497.76 23493.89 15795.40 19198.95 7095.87 12995.58 25091.00 35396.36 9199.72 8293.36 20598.83 23196.85 313
D2MVS95.18 20395.17 19295.21 24997.76 23487.76 28194.15 25697.94 22489.77 27796.99 18497.68 16987.45 27299.14 26395.03 14699.81 3098.74 205
TSAR-MVS + GP.96.47 15396.12 16197.49 13097.74 23695.23 10894.15 25696.90 27493.26 22098.04 11696.70 24194.41 15698.89 29294.77 15799.14 19098.37 234
3Dnovator96.53 297.61 8197.64 7097.50 12797.74 23693.65 17198.49 2098.88 8196.86 8497.11 17398.55 6995.82 10599.73 7895.94 9199.42 13799.13 139
sss94.22 24393.72 25195.74 22997.71 23889.95 23993.84 27096.98 27188.38 29193.75 29595.74 28787.94 26598.89 29291.02 24698.10 27098.37 234
DeepC-MVS_fast94.34 796.74 13696.51 14797.44 13897.69 23994.15 14996.02 15598.43 16893.17 22797.30 16297.38 19595.48 12199.28 24493.74 19899.34 16098.88 189
Andreas Kuhn, Christian Sormann, Mattia Rossi, Oliver Erdler, Friedrich Fraundorfer: DeepC-MVS: Deep Confidence Prediction for Multi-View Stereo Reconstruction. 3DV 2020
IterMVS-SCA-FT95.86 17796.19 15894.85 26497.68 24085.53 30992.42 30697.63 24996.99 7998.36 7598.54 7087.94 26599.75 6597.07 5599.08 20299.27 114
MVSFormer96.14 16596.36 15295.49 24097.68 24087.81 27998.67 1199.02 4996.50 9694.48 27696.15 27086.90 27599.92 498.73 799.13 19498.74 205
lupinMVS93.77 25693.28 25795.24 24897.68 24087.81 27992.12 31196.05 28984.52 32894.48 27695.06 30286.90 27599.63 13693.62 20399.13 19498.27 249
Fast-Effi-MVS+95.49 18895.07 19696.75 17897.67 24392.82 18894.22 25298.60 15291.61 25593.42 31092.90 33296.73 6999.70 10592.60 21797.89 27997.74 284
canonicalmvs97.23 10997.21 10497.30 14897.65 24494.39 13897.84 5699.05 4097.42 6796.68 20193.85 32297.63 2699.33 23196.29 7598.47 25898.18 257
CDS-MVSNet94.88 21694.12 24097.14 15697.64 24593.57 17293.96 26797.06 26990.05 27496.30 22196.55 24886.10 27999.47 18690.10 27499.31 17198.40 231
Khang Truong Giang, Soohwan Song, Sungho Jo: Curvature-guided dynamic scale networks for Multi-view Stereo. ICLR 2022
pmmvs594.63 23194.34 23395.50 23997.63 24688.34 26694.02 26297.13 26587.15 30195.22 25697.15 20987.50 27199.27 24693.99 19099.26 17998.88 189
test1297.46 13597.61 24794.07 15197.78 23593.57 30393.31 18199.42 19998.78 23598.89 185
PMMVS293.66 26194.07 24192.45 31997.57 24880.67 34386.46 35496.00 29193.99 20197.10 17497.38 19589.90 24597.82 34788.76 29299.47 11898.86 192
BH-RMVSNet94.56 23494.44 23194.91 25997.57 24887.44 28693.78 27496.26 28693.69 20996.41 21496.50 25392.10 21299.00 28085.96 32097.71 28698.31 243
bset_n11_16_dypcd94.53 23693.95 24796.25 20697.56 25089.85 24088.52 35191.32 34094.90 17297.51 14896.38 26082.34 29999.78 4297.22 4599.80 3399.12 144
PVSNet86.72 1991.10 30090.97 29791.49 32597.56 25078.04 34987.17 35394.60 31284.65 32792.34 32892.20 34187.37 27398.47 32885.17 33097.69 28897.96 274
DELS-MVS96.17 16496.23 15695.99 21697.55 25290.04 23792.38 30898.52 15994.13 19796.55 20997.06 21794.99 13899.58 15495.62 10599.28 17698.37 234
Christian Sormann, Emanuele Santellani, Mattia Rossi, Andreas Kuhn, Friedrich Fraundorfer: DELS-MVS: Deep Epipolar Line Search for Multi-View Stereo. Winter Conference on Applications of Computer Vision (WACV), 2023
IterMVS95.42 19495.83 17494.20 28797.52 25383.78 33092.41 30797.47 25695.49 14798.06 11398.49 7387.94 26599.58 15496.02 8699.02 20999.23 122
Fangjinhua Wang, Silvano Galliani, Christoph Vogel, Marc Pollefeys: IterMVS: Iterative Probability Estimation for Efficient Multi-View Stereo.
CL-MVSNet_2432*160095.04 20994.79 21295.82 22697.51 25489.79 24191.14 32996.82 27793.05 23096.72 19996.40 25890.82 23199.16 26191.95 22598.66 24698.50 226
new-patchmatchnet95.67 18296.58 13892.94 31197.48 25580.21 34492.96 29498.19 20394.83 17398.82 4298.79 5193.31 18199.51 17895.83 9699.04 20899.12 144
MDA-MVSNet_test_wron94.73 22194.83 21094.42 28197.48 25585.15 31690.28 33995.87 29592.52 24197.48 15497.76 15791.92 21999.17 26093.32 20696.80 31498.94 172
PHI-MVS96.96 11996.53 14498.25 7297.48 25596.50 5896.76 11798.85 8993.52 21196.19 22796.85 22995.94 9999.42 19993.79 19799.43 13498.83 194
DeepPCF-MVS94.58 596.90 12496.43 15098.31 6697.48 25597.23 4092.56 30398.60 15292.84 23998.54 5897.40 18996.64 7398.78 30194.40 17199.41 14498.93 176
thres20091.00 30290.42 30692.77 31397.47 25983.98 32994.01 26391.18 34395.12 16295.44 25191.21 35173.93 33699.31 23577.76 35397.63 29395.01 342
YYNet194.73 22194.84 20894.41 28297.47 25985.09 31890.29 33895.85 29692.52 24197.53 14697.76 15791.97 21599.18 25693.31 20796.86 31198.95 170
Effi-MVS+96.19 16396.01 16696.71 18097.43 26192.19 20496.12 14999.10 2895.45 14893.33 31294.71 30997.23 4399.56 16193.21 21197.54 29598.37 234
pmmvs494.82 21894.19 23896.70 18197.42 26292.75 19192.09 31396.76 27986.80 30595.73 24697.22 20789.28 25598.89 29293.28 20899.14 19098.46 230
MSDG95.33 19795.13 19395.94 22297.40 26391.85 21291.02 33298.37 17995.30 15496.31 22095.99 27794.51 15498.38 33489.59 28197.65 29297.60 291
EI-MVSNet-Vis-set97.32 10397.39 9097.11 15797.36 26492.08 20795.34 19697.65 24597.74 5098.29 8898.11 11595.05 13399.68 11997.50 3899.50 10899.56 33
PS-MVSNAJ94.10 24994.47 22893.00 30897.35 26584.88 32091.86 31597.84 23191.96 25094.17 28192.50 33995.82 10599.71 9691.27 24097.48 29894.40 346
Regformer-397.25 10797.29 9697.11 15797.35 26592.32 19895.26 20397.62 25097.67 5898.17 9897.89 14495.05 13399.56 16197.16 5199.42 13799.46 61
Regformer-497.53 8897.47 8897.71 10897.35 26593.91 15695.26 20398.14 20897.97 4298.34 7897.89 14495.49 12099.71 9697.41 4099.42 13799.51 42
diffmvs96.04 16996.23 15695.46 24297.35 26588.03 27493.42 28399.08 3494.09 19996.66 20296.93 22593.85 17099.29 24296.01 8898.67 24499.06 157
EI-MVSNet-UG-set97.32 10397.40 8997.09 15997.34 26992.01 20995.33 19797.65 24597.74 5098.30 8798.14 11095.04 13599.69 11397.55 3699.52 10199.58 28
baseline193.14 27392.64 27494.62 27397.34 26987.20 29196.67 12593.02 32594.71 17796.51 21095.83 28681.64 30098.60 32090.00 27688.06 35598.07 262
AdaColmapbinary95.11 20694.62 22096.58 18897.33 27194.45 13794.92 22598.08 21593.15 22893.98 29095.53 29594.34 15899.10 27085.69 32398.61 25196.20 330
xiu_mvs_v2_base94.22 24394.63 21992.99 30997.32 27284.84 32192.12 31197.84 23191.96 25094.17 28193.43 32396.07 9699.71 9691.27 24097.48 29894.42 345
OpenMVS_ROBcopyleft91.80 1493.64 26293.05 26195.42 24397.31 27391.21 22195.08 21596.68 28381.56 33896.88 19396.41 25690.44 23699.25 24985.39 32797.67 29095.80 334
EI-MVSNet96.63 14696.93 12195.74 22997.26 27488.13 27295.29 20197.65 24596.99 7997.94 12698.19 10692.55 20099.58 15496.91 5999.56 8499.50 43
CVMVSNet92.33 28592.79 26890.95 32997.26 27475.84 35795.29 20192.33 33381.86 33696.27 22298.19 10681.44 30198.46 32994.23 17998.29 26498.55 224
Regformer-197.27 10597.16 10697.61 11797.21 27693.86 15994.85 22998.04 22297.62 5998.03 11797.50 18295.34 12699.63 13696.52 6799.31 17199.35 93
Regformer-297.41 9697.24 10197.93 9497.21 27694.72 12594.85 22998.27 18997.74 5098.11 10597.50 18295.58 11899.69 11396.57 6699.31 17199.37 90
Fast-Effi-MVS+-dtu96.44 15496.12 16197.39 14397.18 27894.39 13895.46 18598.73 12496.03 11894.72 26794.92 30696.28 9499.69 11393.81 19697.98 27498.09 259
OpenMVScopyleft94.22 895.48 19095.20 19096.32 20397.16 27991.96 21097.74 6398.84 9487.26 29994.36 27898.01 13093.95 16899.67 12490.70 26098.75 23897.35 299
BH-w/o92.14 28891.94 28292.73 31497.13 28085.30 31292.46 30595.64 29889.33 28094.21 28092.74 33589.60 24798.24 34081.68 34394.66 33994.66 344
MG-MVS94.08 25194.00 24494.32 28497.09 28185.89 30693.19 29295.96 29392.52 24194.93 26497.51 18189.54 24998.77 30287.52 31197.71 28698.31 243
thisisatest051590.43 30589.18 31794.17 28997.07 28285.44 31089.75 34687.58 35688.28 29293.69 29891.72 34665.27 35899.58 15490.59 26398.67 24497.50 294
MVS-HIRNet88.40 32290.20 30882.99 34497.01 28360.04 36693.11 29385.61 36184.45 33088.72 35099.09 3384.72 28998.23 34182.52 34296.59 31990.69 358
GA-MVS92.83 27692.15 28194.87 26396.97 28487.27 29090.03 34096.12 28891.83 25394.05 28694.57 31076.01 33098.97 28892.46 22197.34 30398.36 239
test_yl94.40 23894.00 24495.59 23396.95 28589.52 24594.75 23495.55 30396.18 10996.79 19496.14 27281.09 30399.18 25690.75 25597.77 28098.07 262
DCV-MVSNet94.40 23894.00 24495.59 23396.95 28589.52 24594.75 23495.55 30396.18 10996.79 19496.14 27281.09 30399.18 25690.75 25597.77 28098.07 262
MVS_Test96.27 15996.79 13094.73 27096.94 28786.63 29896.18 14698.33 18594.94 16996.07 23198.28 9395.25 13099.26 24797.21 4797.90 27898.30 245
MAR-MVS94.21 24593.03 26297.76 10496.94 28797.44 3396.97 10997.15 26487.89 29792.00 33192.73 33692.14 21099.12 26583.92 33697.51 29796.73 320
Zhenyu Xu, Yiguang Liu, Xuelei Shi, Ying Wang, Yunan Zheng: MARMVS: Matching Ambiguity Reduced Multiple View Stereo for Efficient Large Scale Scene Reconstruction. CVPR 2020
Effi-MVS+-dtu96.81 13296.09 16398.99 1396.90 28998.69 296.42 13198.09 21395.86 13095.15 25795.54 29494.26 16099.81 3194.06 18598.51 25798.47 228
mvs-test196.20 16295.50 18698.32 6496.90 28998.16 495.07 21698.09 21395.86 13093.63 29994.32 31894.26 16099.71 9694.06 18597.27 30697.07 303
MS-PatchMatch94.83 21794.91 20594.57 27796.81 29187.10 29294.23 25197.34 25888.74 28797.14 17097.11 21391.94 21798.23 34192.99 21497.92 27698.37 234
UGNet96.81 13296.56 14097.58 11896.64 29293.84 16197.75 6297.12 26696.47 9993.62 30098.88 4793.22 18399.53 17095.61 10699.69 5599.36 91
Wanjuan Su, Qingshan Xu, Wenbing Tao: Uncertainty-guided Multi-view Stereo Network for Depth Estimation. IEEE Transactions on Circuits and Systems for Video Technology, 2022
API-MVS95.09 20895.01 20095.31 24696.61 29394.02 15396.83 11397.18 26395.60 14295.79 24194.33 31794.54 15398.37 33685.70 32298.52 25593.52 349
PAPM87.64 32885.84 33393.04 30696.54 29484.99 31988.42 35295.57 30279.52 34783.82 35993.05 33180.57 30698.41 33162.29 36292.79 34695.71 335
FMVSNet395.26 20194.94 20196.22 20996.53 29590.06 23695.99 15797.66 24394.11 19897.99 11997.91 14380.22 30899.63 13694.60 16199.44 12698.96 169
HY-MVS91.43 1592.58 27991.81 28594.90 26196.49 29688.87 25697.31 8994.62 31185.92 31190.50 34096.84 23085.05 28599.40 21083.77 33995.78 33096.43 327
TR-MVS92.54 28092.20 28093.57 29596.49 29686.66 29793.51 28194.73 31089.96 27594.95 26293.87 32190.24 24298.61 31881.18 34594.88 33795.45 340
ET-MVSNet_ETH3D91.12 29989.67 31195.47 24196.41 29889.15 25391.54 31990.23 35189.07 28186.78 35892.84 33369.39 35499.44 19694.16 18196.61 31897.82 281
CANet95.86 17795.65 18096.49 19496.41 29890.82 22794.36 24498.41 17394.94 16992.62 32696.73 23992.68 19599.71 9695.12 14199.60 7498.94 172
mvs_anonymous95.36 19696.07 16593.21 30396.29 30081.56 33994.60 23897.66 24393.30 21996.95 18898.91 4693.03 18899.38 21896.60 6397.30 30598.69 211
MVS_030495.50 18795.05 19996.84 17396.28 30193.12 18297.00 10796.16 28795.03 16689.22 34897.70 16690.16 24399.48 18394.51 16699.34 16097.93 276
SCA93.38 26893.52 25492.96 31096.24 30281.40 34093.24 29094.00 31691.58 25794.57 27196.97 22287.94 26599.42 19989.47 28397.66 29198.06 266
LS3D97.77 7197.50 8598.57 4896.24 30297.58 2498.45 2398.85 8998.58 2697.51 14897.94 13995.74 11399.63 13695.19 13198.97 21298.51 225
new_pmnet92.34 28491.69 28794.32 28496.23 30489.16 25292.27 30992.88 32784.39 33195.29 25496.35 26285.66 28296.74 35684.53 33497.56 29497.05 304
MVEpermissive73.61 2286.48 33085.92 33288.18 34196.23 30485.28 31481.78 36075.79 36486.01 30982.53 36191.88 34492.74 19387.47 36371.42 36094.86 33891.78 354
Simon Fuhrmann, Fabian Langguth, Michael Goesele: MVE - A Multi-View Reconstruction Environment. EUROGRAPHICS Workshops on Graphics and Cultural Heritage (2014)
cl_fuxian95.20 20295.32 18894.83 26696.19 30686.43 30191.83 31698.35 18493.47 21397.36 16197.26 20588.69 25899.28 24495.41 12399.36 15298.78 200
DSMNet-mixed92.19 28791.83 28493.25 30196.18 30783.68 33196.27 13993.68 31976.97 35692.54 32799.18 2789.20 25798.55 32483.88 33798.60 25397.51 293
miper_lstm_enhance94.81 21994.80 21194.85 26496.16 30886.45 30091.14 32998.20 19893.49 21297.03 18197.37 19784.97 28799.26 24795.28 12699.56 8498.83 194
our_test_394.20 24794.58 22493.07 30596.16 30881.20 34190.42 33796.84 27590.72 26797.14 17097.13 21090.47 23599.11 26894.04 18998.25 26598.91 181
ppachtmachnet_test94.49 23794.84 20893.46 29796.16 30882.10 33690.59 33597.48 25590.53 26997.01 18397.59 17491.01 22899.36 22393.97 19299.18 18798.94 172
Patchmatch-test93.60 26393.25 25994.63 27296.14 31187.47 28596.04 15394.50 31393.57 21096.47 21196.97 22276.50 32698.61 31890.67 26198.41 26097.81 283
wuyk23d93.25 27195.20 19087.40 34396.07 31295.38 10097.04 10594.97 30895.33 15299.70 598.11 11598.14 1391.94 36077.76 35399.68 5774.89 360
eth_miper_zixun_eth94.89 21594.93 20394.75 26995.99 31386.12 30491.35 32298.49 16293.40 21497.12 17297.25 20686.87 27799.35 22695.08 14398.82 23298.78 200
CANet_DTU94.65 23094.21 23795.96 21895.90 31489.68 24293.92 26897.83 23393.19 22390.12 34395.64 29188.52 25999.57 16093.27 20999.47 11898.62 217
cl-mvsnet194.73 22194.64 21795.01 25695.86 31587.00 29391.33 32398.08 21593.34 21797.10 17497.34 19984.02 29399.31 23595.15 13799.55 9098.72 208
cl-mvsnet____94.73 22194.64 21795.01 25695.85 31687.00 29391.33 32398.08 21593.34 21797.10 17497.33 20084.01 29499.30 23895.14 13899.56 8498.71 210
MVSTER94.21 24593.93 24895.05 25595.83 31786.46 29995.18 20997.65 24592.41 24597.94 12698.00 13272.39 34699.58 15496.36 7399.56 8499.12 144
FMVSNet593.39 26792.35 27896.50 19395.83 31790.81 22997.31 8998.27 18992.74 24096.27 22298.28 9362.23 36199.67 12490.86 25099.36 15299.03 161
miper_ehance_all_eth94.69 22694.70 21494.64 27195.77 31986.22 30391.32 32598.24 19391.67 25497.05 17996.65 24488.39 26299.22 25494.88 14998.34 26198.49 227
PVSNet_081.89 2184.49 33183.21 33488.34 34095.76 32074.97 36083.49 35792.70 33178.47 35187.94 35386.90 36083.38 29696.63 35773.44 35766.86 36393.40 350
PAPR92.22 28691.27 29295.07 25495.73 32188.81 25891.97 31497.87 22885.80 31390.91 33692.73 33691.16 22698.33 33879.48 34795.76 33198.08 260
baseline289.65 31488.44 32193.25 30195.62 32282.71 33293.82 27185.94 36088.89 28587.35 35692.54 33871.23 34999.33 23186.01 31994.60 34197.72 285
CHOSEN 280x42089.98 31089.19 31692.37 32095.60 32381.13 34286.22 35597.09 26781.44 34087.44 35593.15 32473.99 33599.47 18688.69 29499.07 20496.52 326
ADS-MVSNet291.47 29790.51 30594.36 28395.51 32485.63 30795.05 21995.70 29783.46 33292.69 32196.84 23079.15 31299.41 20885.66 32490.52 35098.04 270
ADS-MVSNet90.95 30390.26 30793.04 30695.51 32482.37 33595.05 21993.41 32283.46 33292.69 32196.84 23079.15 31298.70 30985.66 32490.52 35098.04 270
CR-MVSNet93.29 27092.79 26894.78 26895.44 32688.15 27096.18 14697.20 26184.94 32694.10 28398.57 6677.67 31899.39 21595.17 13395.81 32796.81 317
RPMNet94.68 22894.60 22194.90 26195.44 32688.15 27096.18 14698.86 8597.43 6694.10 28398.49 7379.40 30999.76 5795.69 9995.81 32796.81 317
131492.38 28392.30 27992.64 31595.42 32885.15 31695.86 16596.97 27285.40 32090.62 33793.06 33091.12 22797.80 34886.74 31695.49 33494.97 343
RRT_test8_iter0592.46 28192.52 27792.29 32295.33 32977.43 35295.73 17098.55 15794.41 18697.46 15797.72 16557.44 36499.74 7296.92 5899.14 19099.69 20
tpm91.08 30190.85 29991.75 32495.33 32978.09 34895.03 22191.27 34288.75 28693.53 30497.40 18971.24 34899.30 23891.25 24293.87 34397.87 278
IB-MVS85.98 2088.63 32086.95 32993.68 29395.12 33184.82 32290.85 33390.17 35287.55 29888.48 35191.34 35058.01 36399.59 15287.24 31493.80 34496.63 324
Christian Sormann, Mattia Rossi, Andreas Kuhn and Friedrich Fraundorfer: IB-MVS: An Iterative Algorithm for Deep Multi-View Stereo based on Binary Decisions. BMVC 2021
PatchT93.75 25793.57 25394.29 28695.05 33287.32 28996.05 15292.98 32697.54 6394.25 27998.72 5675.79 33199.24 25095.92 9295.81 32796.32 328
tpm288.47 32187.69 32590.79 33094.98 33377.34 35395.09 21391.83 33677.51 35589.40 34696.41 25667.83 35698.73 30683.58 34192.60 34896.29 329
Patchmtry95.03 21194.59 22396.33 20294.83 33490.82 22796.38 13497.20 26196.59 9197.49 15198.57 6677.67 31899.38 21892.95 21699.62 6598.80 197
MVS90.02 30889.20 31592.47 31894.71 33586.90 29595.86 16596.74 28164.72 36190.62 33792.77 33492.54 20298.39 33379.30 34895.56 33392.12 353
CostFormer89.75 31389.25 31291.26 32894.69 33678.00 35095.32 19891.98 33581.50 33990.55 33996.96 22471.06 35098.89 29288.59 29692.63 34796.87 311
PatchmatchNetpermissive91.98 29191.87 28392.30 32194.60 33779.71 34595.12 21093.59 32189.52 27893.61 30197.02 22077.94 31699.18 25690.84 25194.57 34298.01 273
Fangjinhua Wang, Silvano Galliani, Christoph Vogel, Pablo Speciale, Marc Pollefeys: PatchmatchNet: Learned Multi-View Patchmatch Stereo.
tpm cat188.01 32587.33 32690.05 33594.48 33876.28 35694.47 24394.35 31573.84 36089.26 34795.61 29373.64 33998.30 33984.13 33586.20 35895.57 339
MDTV_nov1_ep1391.28 29194.31 33973.51 36194.80 23193.16 32486.75 30693.45 30897.40 18976.37 32798.55 32488.85 29196.43 320
cl-mvsnet293.25 27192.84 26794.46 28094.30 34086.00 30591.09 33196.64 28490.74 26695.79 24196.31 26378.24 31598.77 30294.15 18298.34 26198.62 217
cascas91.89 29291.35 29093.51 29694.27 34185.60 30888.86 35098.61 15179.32 34892.16 33091.44 34989.22 25698.12 34490.80 25397.47 30096.82 316
test-LLR89.97 31189.90 30990.16 33394.24 34274.98 35889.89 34289.06 35392.02 24889.97 34490.77 35473.92 33798.57 32191.88 22897.36 30196.92 308
test-mter87.92 32687.17 32790.16 33394.24 34274.98 35889.89 34289.06 35386.44 30789.97 34490.77 35454.96 37098.57 32191.88 22897.36 30196.92 308
pmmvs390.00 30988.90 31893.32 29894.20 34485.34 31191.25 32692.56 33278.59 35093.82 29195.17 29967.36 35798.69 31089.08 28998.03 27395.92 331
tpmrst90.31 30690.61 30489.41 33694.06 34572.37 36395.06 21893.69 31788.01 29492.32 32996.86 22877.45 32098.82 29791.04 24587.01 35797.04 305
test0.0.03 190.11 30789.21 31492.83 31293.89 34686.87 29691.74 31788.74 35592.02 24894.71 26891.14 35273.92 33794.48 35983.75 34092.94 34597.16 301
JIA-IIPM91.79 29390.69 30295.11 25293.80 34790.98 22494.16 25591.78 33796.38 10090.30 34299.30 1872.02 34798.90 29088.28 30090.17 35295.45 340
miper_enhance_ethall93.14 27392.78 27094.20 28793.65 34885.29 31389.97 34197.85 22985.05 32396.15 23094.56 31185.74 28199.14 26393.74 19898.34 26198.17 258
TESTMET0.1,187.20 32986.57 33189.07 33793.62 34972.84 36289.89 34287.01 35985.46 31889.12 34990.20 35656.00 36997.72 34990.91 24996.92 30896.64 322
CMPMVSbinary73.10 2392.74 27791.39 28996.77 17793.57 35094.67 13094.21 25397.67 24180.36 34593.61 30196.60 24682.85 29797.35 35184.86 33298.78 23598.29 248
M. Jancosek, T. Pajdla: Multi-View Reconstruction Preserving Weakly-Supported Surfaces. CVPR 2011
RRT_MVS94.90 21494.07 24197.39 14393.18 35193.21 18195.26 20397.49 25393.94 20398.25 9097.85 14972.96 34599.84 2597.90 2299.78 3899.14 136
DWT-MVSNet_test87.92 32686.77 33091.39 32693.18 35178.62 34795.10 21191.42 33985.58 31588.00 35288.73 35860.60 36298.90 29090.60 26287.70 35696.65 321
E-PMN89.52 31589.78 31088.73 33893.14 35377.61 35183.26 35892.02 33494.82 17493.71 29693.11 32575.31 33296.81 35485.81 32196.81 31391.77 355
PMMVS92.39 28291.08 29496.30 20593.12 35492.81 18990.58 33695.96 29379.17 34991.85 33392.27 34090.29 24198.66 31589.85 27896.68 31797.43 295
EMVS89.06 31789.22 31388.61 33993.00 35577.34 35382.91 35990.92 34494.64 17992.63 32591.81 34576.30 32897.02 35283.83 33896.90 31091.48 356
dp88.08 32488.05 32288.16 34292.85 35668.81 36594.17 25492.88 32785.47 31791.38 33596.14 27268.87 35598.81 29986.88 31583.80 36096.87 311
gg-mvs-nofinetune88.28 32386.96 32892.23 32392.84 35784.44 32598.19 3874.60 36599.08 1087.01 35799.47 856.93 36598.23 34178.91 34995.61 33294.01 347
tpmvs90.79 30490.87 29890.57 33292.75 35876.30 35595.79 16993.64 32091.04 26591.91 33296.26 26477.19 32498.86 29689.38 28589.85 35396.56 325
EPMVS89.26 31688.55 32091.39 32692.36 35979.11 34695.65 17979.86 36388.60 28893.12 31496.53 25070.73 35298.10 34590.75 25589.32 35496.98 306
gm-plane-assit91.79 36071.40 36481.67 33790.11 35798.99 28284.86 332
GG-mvs-BLEND90.60 33191.00 36184.21 32898.23 3272.63 36882.76 36084.11 36156.14 36896.79 35572.20 35892.09 34990.78 357
DeepMVS_CXcopyleft77.17 34590.94 36285.28 31474.08 36752.51 36280.87 36388.03 35975.25 33370.63 36459.23 36384.94 35975.62 359
EPNet_dtu91.39 29890.75 30193.31 29990.48 36382.61 33394.80 23192.88 32793.39 21581.74 36294.90 30781.36 30299.11 26888.28 30098.87 22598.21 254
Wanjuan Su, Wenbing Tao: Efficient Edge-Preserving Multi-View Stereo Network for Depth Estimation. AAAI 2023
KD-MVS_2432*160088.93 31887.74 32392.49 31688.04 36481.99 33789.63 34795.62 29991.35 25995.06 25893.11 32556.58 36698.63 31685.19 32895.07 33596.85 313
miper_refine_blended88.93 31887.74 32392.49 31688.04 36481.99 33789.63 34795.62 29991.35 25995.06 25893.11 32556.58 36698.63 31685.19 32895.07 33596.85 313
EPNet93.72 25892.62 27597.03 16387.61 36692.25 19996.27 13991.28 34196.74 8787.65 35497.39 19385.00 28699.64 13492.14 22399.48 11699.20 125
Wanjuan Su, Wenbing Tao: Efficient Edge-Preserving Multi-View Stereo Network for Depth Estimation. AAAI 2023
test_method66.88 33266.13 33569.11 34662.68 36725.73 36949.76 36196.04 29014.32 36464.27 36591.69 34773.45 34288.05 36276.06 35566.94 36293.54 348
tmp_tt57.23 33362.50 33641.44 34734.77 36849.21 36883.93 35660.22 36915.31 36371.11 36479.37 36270.09 35344.86 36564.76 36182.93 36130.25 361
test12312.59 33515.49 3383.87 3486.07 3692.55 37090.75 3342.59 3712.52 3655.20 36713.02 3654.96 3711.85 3675.20 3649.09 3647.23 362
testmvs12.33 33615.23 3393.64 3495.77 3702.23 37188.99 3493.62 3702.30 3665.29 36613.09 3644.52 3721.95 3665.16 3658.32 3656.75 363
uanet_test0.00 3390.00 3420.00 3500.00 3710.00 3720.00 3620.00 3720.00 3670.00 3680.00 3680.00 3730.00 3680.00 3660.00 3660.00 364
cdsmvs_eth3d_5k24.22 33432.30 3370.00 3500.00 3710.00 3720.00 36298.10 2120.00 3670.00 36895.06 30297.54 290.00 3680.00 3660.00 3660.00 364
pcd_1.5k_mvsjas7.98 33710.65 3400.00 3500.00 3710.00 3720.00 3620.00 3720.00 3670.00 3680.00 36895.82 1050.00 3680.00 3660.00 3660.00 364
sosnet-low-res0.00 3390.00 3420.00 3500.00 3710.00 3720.00 3620.00 3720.00 3670.00 3680.00 3680.00 3730.00 3680.00 3660.00 3660.00 364
sosnet0.00 3390.00 3420.00 3500.00 3710.00 3720.00 3620.00 3720.00 3670.00 3680.00 3680.00 3730.00 3680.00 3660.00 3660.00 364
uncertanet0.00 3390.00 3420.00 3500.00 3710.00 3720.00 3620.00 3720.00 3670.00 3680.00 3680.00 3730.00 3680.00 3660.00 3660.00 364
Regformer0.00 3390.00 3420.00 3500.00 3710.00 3720.00 3620.00 3720.00 3670.00 3680.00 3680.00 3730.00 3680.00 3660.00 3660.00 364
ab-mvs-re7.91 33810.55 3410.00 3500.00 3710.00 3720.00 3620.00 3720.00 3670.00 36894.94 3040.00 3730.00 3680.00 3660.00 3660.00 364
uanet0.00 3390.00 3420.00 3500.00 3710.00 3720.00 3620.00 3720.00 3670.00 3680.00 3680.00 3730.00 3680.00 3660.00 3660.00 364
test_241102_TWO98.83 10196.11 11198.62 5198.24 9996.92 5899.72 8295.44 11799.49 11299.49 51
test_0728_THIRD96.62 8998.40 7098.28 9397.10 4599.71 9695.70 9899.62 6599.58 28
GSMVS98.06 266
sam_mvs177.80 31798.06 266
sam_mvs77.38 321
MTGPAbinary98.73 124
test_post194.98 22310.37 36776.21 32999.04 27689.47 283
test_post10.87 36676.83 32599.07 273
patchmatchnet-post96.84 23077.36 32299.42 199
MTMP96.55 12674.60 365
test9_res91.29 23998.89 22499.00 164
agg_prior290.34 27298.90 22199.10 152
test_prior495.38 10093.61 279
test_prior293.33 28894.21 19494.02 28796.25 26593.64 17591.90 22698.96 213
旧先验293.35 28777.95 35495.77 24598.67 31490.74 258
新几何293.43 282
无先验93.20 29197.91 22580.78 34299.40 21087.71 30497.94 275
原ACMM292.82 296
testdata299.46 18987.84 303
segment_acmp95.34 126
testdata192.77 29793.78 206
plane_prior598.75 12099.46 18992.59 21999.20 18399.28 110
plane_prior496.77 236
plane_prior394.51 13495.29 15596.16 228
plane_prior296.50 12896.36 101
plane_prior94.29 14295.42 18894.31 19198.93 219
n20.00 372
nn0.00 372
door-mid98.17 204
test1198.08 215
door97.81 234
HQP5-MVS92.47 195
BP-MVS90.51 267
HQP4-MVS92.87 31799.23 25299.06 157
HQP3-MVS98.43 16898.74 239
HQP2-MVS90.33 237
MDTV_nov1_ep13_2view57.28 36794.89 22680.59 34394.02 28778.66 31485.50 32697.82 281
ACMMP++_ref99.52 101
ACMMP++99.55 90
Test By Simon94.51 154