This table lists the benchmark results for the high-res multi-view scenario. The following metrics are evaluated:

(*) For exact definitions, detailing how potentially incomplete ground truth is taken into account, see our paper.

The datasets are grouped into different categories, and result averages are computed for a category and method if results of the method are available for all datasets within the category. Note that the category "all" includes both the high-res multi-view and the low-res many-view scenarios.

Methods with suffix _ROB may participate in the Robust Vision Challenge.

Click a dataset result cell to show a visualization of the reconstruction. For training datasets, ground truth and accuracy / completeness visualizations are also available. The visualizations may not work with mobile browsers.




Method Infoallhigh-res
multi-view
indooroutdoorbotani.boulde.bridgedoorexhibi.lectur.living.loungeobserv.old co.statueterrac.
sort bysort bysort bysort bysorted bysort bysort bysort bysort bysort bysort bysort bysort bysort bysort bysort by
LCM-MVSNet99.93 199.92 199.94 199.99 199.97 199.90 199.89 299.98 199.99 199.96 199.77 1100.00 199.81 1100.00 199.85 9
Gipumacopyleft99.03 4499.16 3198.64 18299.94 298.51 10899.32 2299.75 1199.58 2398.60 19199.62 2398.22 5799.51 31997.70 11899.73 11997.89 331
S. Galliani, K. Lasinger, K. Schindler: Massively Parallel Multiview Stereopsis by Surface Normal Diffusion. ICCV 2015
OurMVSNet-221017-099.37 2299.31 2399.53 3899.91 398.98 6699.63 699.58 3199.44 3399.78 1099.76 696.39 18699.92 4099.44 1499.92 4299.68 38
pmmvs699.67 399.70 399.60 1399.90 499.27 2199.53 799.76 1099.64 1399.84 899.83 299.50 599.87 9499.36 1799.92 4299.64 47
PS-MVSNAJss99.46 1299.49 1099.35 7499.90 498.15 13699.20 4499.65 2399.48 2899.92 399.71 1298.07 6899.96 1199.53 9100.00 199.93 1
ANet_high99.57 799.67 599.28 8899.89 698.09 14099.14 5299.93 199.82 399.93 299.81 399.17 1299.94 2699.31 20100.00 199.82 10
anonymousdsp99.51 1099.47 1299.62 699.88 799.08 6499.34 2099.69 1798.93 9299.65 2399.72 1198.93 1999.95 1799.11 32100.00 199.82 10
v7n99.53 899.57 899.41 6599.88 798.54 10699.45 1099.61 2799.66 1299.68 1999.66 1898.44 4299.95 1799.73 299.96 1599.75 24
mvs_tets99.63 599.67 599.49 5299.88 798.61 9899.34 2099.71 1499.27 5299.90 499.74 899.68 299.97 499.55 899.99 599.88 3
RRT_MVS99.09 3998.94 5099.55 2699.87 1098.82 8299.48 998.16 30799.49 2799.59 2999.65 2094.79 24699.95 1799.45 1399.96 1599.88 3
jajsoiax99.58 699.61 799.48 5599.87 1098.61 9899.28 3699.66 2299.09 7599.89 699.68 1499.53 499.97 499.50 1099.99 599.87 5
test_low_dy_conf_00199.26 2899.16 3199.55 2699.86 1298.86 7699.37 1898.87 25199.42 3699.46 4699.68 1496.44 18399.93 3199.39 1599.94 2899.87 5
test_djsdf99.52 999.51 999.53 3899.86 1298.74 8799.39 1699.56 4599.11 6599.70 1599.73 1099.00 1599.97 499.26 2399.98 999.89 2
MIMVSNet199.38 2199.32 2299.55 2699.86 1299.19 3799.41 1499.59 2999.59 2199.71 1499.57 3197.12 14299.90 5699.21 2899.87 6299.54 91
bld_raw_dy_0_6499.07 4299.00 4699.29 8599.85 1598.18 13299.11 5699.40 10099.33 4699.38 6199.44 5595.21 23099.97 499.31 2099.98 999.73 27
bld_raw_conf00599.41 1799.38 1599.51 4799.85 1598.88 7499.44 1199.74 1299.68 999.51 4099.61 2597.25 13699.91 5099.37 1699.95 1899.72 28
LTVRE_ROB98.40 199.67 399.71 299.56 2499.85 1599.11 6099.90 199.78 899.63 1599.78 1099.67 1799.48 699.81 17499.30 2299.97 1299.77 17
Andreas Kuhn, Heiko Hirschmüller, Daniel Scharstein, Helmut Mayer: A TV Prior for High-Quality Scalable Multi-View Stereo Reconstruction. International Journal of Computer Vision 2016
UniMVSNet_ETH3D99.69 299.69 499.69 399.84 1899.34 1599.69 499.58 3199.90 299.86 799.78 599.58 399.95 1799.00 4099.95 1899.78 15
mvsmamba99.24 3199.15 3499.49 5299.83 1998.85 7799.41 1499.55 4999.54 2499.40 5799.52 4195.86 21199.91 5099.32 1999.95 1899.70 35
SixPastTwentyTwo98.75 8198.62 8499.16 10999.83 1997.96 16199.28 3698.20 30499.37 4199.70 1599.65 2092.65 28599.93 3199.04 3799.84 6899.60 57
Baseline_NR-MVSNet98.98 5198.86 5599.36 6999.82 2198.55 10397.47 21599.57 3899.37 4199.21 9599.61 2596.76 16799.83 15098.06 9599.83 7499.71 30
pm-mvs199.44 1399.48 1199.33 8099.80 2298.63 9599.29 3299.63 2499.30 5099.65 2399.60 2899.16 1499.82 16099.07 3499.83 7499.56 79
TransMVSNet (Re)99.44 1399.47 1299.36 6999.80 2298.58 10199.27 3899.57 3899.39 3999.75 1299.62 2399.17 1299.83 15099.06 3599.62 16799.66 42
K. test v398.00 17297.66 19199.03 13599.79 2497.56 19299.19 4892.47 36799.62 1899.52 3799.66 1889.61 30399.96 1199.25 2599.81 8199.56 79
EGC-MVSNET85.24 34380.54 34699.34 7799.77 2599.20 3399.08 5799.29 15512.08 37920.84 38099.42 5797.55 10899.85 11897.08 14999.72 12698.96 260
Anonymous2024052198.69 9198.87 5398.16 23599.77 2595.11 27399.08 5799.44 8899.34 4599.33 7199.55 3594.10 26399.94 2699.25 2599.96 1599.42 149
FC-MVSNet-test99.27 2699.25 2699.34 7799.77 2598.37 11699.30 3199.57 3899.61 2099.40 5799.50 4397.12 14299.85 11899.02 3999.94 2899.80 13
XXY-MVS99.14 3599.15 3499.10 11899.76 2897.74 18398.85 7999.62 2598.48 11599.37 6499.49 4698.75 2499.86 10398.20 8799.80 8999.71 30
TDRefinement99.42 1699.38 1599.55 2699.76 2899.33 1699.68 599.71 1499.38 4099.53 3599.61 2598.64 3099.80 18398.24 8499.84 6899.52 103
FOURS199.73 3099.67 299.43 1299.54 5499.43 3599.26 86
PEN-MVS99.41 1799.34 2099.62 699.73 3099.14 5399.29 3299.54 5499.62 1899.56 3099.42 5798.16 6499.96 1198.78 5199.93 3399.77 17
lessismore_v098.97 14299.73 3097.53 19486.71 37899.37 6499.52 4189.93 30199.92 4098.99 4199.72 12699.44 142
SteuartSystems-ACMMP98.79 7298.54 9499.54 3199.73 3099.16 4398.23 13199.31 13897.92 15398.90 14598.90 15998.00 7499.88 7796.15 22799.72 12699.58 69
Skip Steuart: Steuart Systems R&D Blog.
PVSNet_Blended_VisFu98.17 16298.15 15398.22 23099.73 3095.15 27097.36 22299.68 1994.45 30298.99 12799.27 7796.87 15799.94 2697.13 14699.91 4899.57 74
Vis-MVSNetpermissive99.34 2399.36 1799.27 9199.73 3098.26 12399.17 4999.78 899.11 6599.27 8299.48 4898.82 2199.95 1798.94 4299.93 3399.59 63
Jingyang Zhang, Yao Yao, Shiwei Li, Zixin Luo, Tian Fang: Visibility-aware Multiview Stereo Network. BMVC 2020
ACMH96.65 799.25 2999.24 2799.26 9499.72 3698.38 11599.07 6099.55 4998.30 12399.65 2399.45 5499.22 999.76 22198.44 7499.77 10299.64 47
Qingshan Xu and Wenbing Tao: Multi-Scale Geometric Consistency Guided Multi-View Stereo. CVPR 2019
PS-CasMVS99.40 1999.33 2199.62 699.71 3799.10 6199.29 3299.53 5899.53 2599.46 4699.41 6098.23 5499.95 1798.89 4699.95 1899.81 12
DTE-MVSNet99.43 1599.35 1899.66 499.71 3799.30 1799.31 2699.51 6299.64 1399.56 3099.46 5098.23 5499.97 498.78 5199.93 3399.72 28
WR-MVS_H99.33 2499.22 2899.65 599.71 3799.24 2499.32 2299.55 4999.46 3199.50 4299.34 6997.30 12999.93 3198.90 4499.93 3399.77 17
HPM-MVS_fast99.01 4598.82 5899.57 1899.71 3799.35 1299.00 6799.50 6497.33 20398.94 14198.86 17298.75 2499.82 16097.53 12499.71 13199.56 79
ACMH+96.62 999.08 4199.00 4699.33 8099.71 3798.83 8098.60 9399.58 3199.11 6599.53 3599.18 9198.81 2299.67 26396.71 18699.77 10299.50 110
PMVScopyleft91.26 2097.86 18497.94 17297.65 26499.71 3797.94 16498.52 10298.68 28298.99 8497.52 27599.35 6797.41 12398.18 37291.59 34099.67 15396.82 358
Y. Furukawa, J. Ponce: Accurate, dense, and robust multiview stereopsis. PAMI (2010)
FIs99.14 3599.09 3999.29 8599.70 4398.28 12299.13 5399.52 6199.48 2899.24 9199.41 6096.79 16499.82 16098.69 5999.88 5999.76 21
VPNet98.87 6498.83 5799.01 13999.70 4397.62 19198.43 11699.35 11999.47 3099.28 8099.05 11896.72 17099.82 16098.09 9399.36 23399.59 63
MP-MVS-pluss98.57 11298.23 14299.60 1399.69 4599.35 1297.16 24199.38 10594.87 29398.97 13298.99 13698.01 7399.88 7797.29 13499.70 13699.58 69
MP-MVS-pluss: MP-MVS-pluss. MP-MVS-pluss
CHOSEN 1792x268897.49 21297.14 22798.54 20299.68 4696.09 24596.50 27799.62 2591.58 34098.84 16098.97 14292.36 28799.88 7796.76 17999.95 1899.67 41
tfpnnormal98.90 6198.90 5298.91 15099.67 4797.82 17599.00 6799.44 8899.45 3299.51 4099.24 8398.20 6099.86 10395.92 23599.69 14299.04 246
zzz-MVS98.79 7298.52 9699.61 999.67 4799.36 1097.33 22499.20 17898.83 9898.89 14898.90 15996.98 15299.92 4097.16 14099.70 13699.56 79
MTAPA98.88 6398.64 8199.61 999.67 4799.36 1098.43 11699.20 17898.83 9898.89 14898.90 15996.98 15299.92 4097.16 14099.70 13699.56 79
CP-MVSNet99.21 3299.09 3999.56 2499.65 5098.96 7199.13 5399.34 12599.42 3699.33 7199.26 7997.01 15099.94 2698.74 5599.93 3399.79 14
HPM-MVScopyleft98.79 7298.53 9599.59 1799.65 5099.29 1899.16 5099.43 9496.74 24098.61 18998.38 25398.62 3299.87 9496.47 20699.67 15399.59 63
Chunlin Ren, Qingshan Xu, Shikun Zhang, Jiaqi Yang: Hierarchical Prior Mining for Non-local Multi-View Stereo. ICCV 2023
RPSCF98.62 10598.36 12699.42 6299.65 5099.42 598.55 9999.57 3897.72 16698.90 14599.26 7996.12 19599.52 31595.72 24699.71 13199.32 193
TSAR-MVS + MP.98.63 10398.49 10399.06 13099.64 5397.90 16698.51 10698.94 23896.96 23199.24 9198.89 16797.83 8499.81 17496.88 16999.49 21599.48 124
Zhenlong Yuan, Jiakai Cao, Zhaoqi Wang, Zhaoxin Li: TSAR-MVS: Textureless-aware Segmentation and Correlative Refinement Guided Multi-View Stereo. Pattern Recognition
PM-MVS98.82 6898.72 6899.12 11499.64 5398.54 10697.98 16299.68 1997.62 17299.34 7099.18 9197.54 10999.77 21497.79 11099.74 11699.04 246
KD-MVS_self_test99.25 2999.18 2999.44 6199.63 5599.06 6598.69 8799.54 5499.31 4899.62 2899.53 3997.36 12799.86 10399.24 2799.71 13199.39 163
EU-MVSNet97.66 20198.50 10095.13 33999.63 5585.84 36798.35 12398.21 30398.23 13199.54 3299.46 5095.02 23599.68 26098.24 8499.87 6299.87 5
HyFIR lowres test97.19 23796.60 26198.96 14399.62 5797.28 20695.17 33099.50 6494.21 30799.01 12498.32 26186.61 32099.99 297.10 14899.84 6899.60 57
ACMMP_NAP98.75 8198.48 10599.57 1899.58 5899.29 1897.82 17799.25 16796.94 23298.78 16899.12 10598.02 7299.84 13597.13 14699.67 15399.59 63
nrg03099.40 1999.35 1899.54 3199.58 5899.13 5698.98 7099.48 7499.68 999.46 4699.26 7998.62 3299.73 23699.17 3199.92 4299.76 21
VDDNet98.21 15797.95 17099.01 13999.58 5897.74 18399.01 6597.29 33199.67 1198.97 13299.50 4390.45 29899.80 18397.88 10799.20 25899.48 124
COLMAP_ROBcopyleft96.50 1098.99 4798.85 5699.41 6599.58 5899.10 6198.74 8299.56 4599.09 7599.33 7199.19 8998.40 4499.72 24495.98 23399.76 11299.42 149
Johannes L. Schönberger, Enliang Zheng, Marc Pollefeys, Jan-Michael Frahm: Pixelwise View Selection for Unstructured Multi-View Stereo. ECCV 2016
ZNCC-MVS98.68 9598.40 11999.54 3199.57 6299.21 2798.46 11399.29 15597.28 20998.11 23598.39 25198.00 7499.87 9496.86 17299.64 16199.55 87
MSP-MVS98.40 13798.00 16799.61 999.57 6299.25 2398.57 9799.35 11997.55 18099.31 7997.71 30194.61 24999.88 7796.14 22899.19 26299.70 35
Zhenlong Yuan, Cong Liu, Fei Shen, Zhaoxin Li, Jingguo luo, Tianlu Mao and Zhaoqi Wang: MSP-MVS: Multi-granularity Segmentation Prior Guided Multi-View Stereo. AAAI2025
testgi98.32 14498.39 12298.13 23699.57 6295.54 25797.78 17999.49 7297.37 20099.19 9797.65 30598.96 1799.49 32196.50 20598.99 29099.34 185
MP-MVScopyleft98.46 13098.09 15899.54 3199.57 6299.22 2698.50 10799.19 18397.61 17497.58 26998.66 21197.40 12499.88 7794.72 27299.60 17599.54 91
Rongxuan Tan, Qing Wang, et al.: MP-MVS: Multi-Scale Windows PatchMatch and Planar Prior Multi-View Stereo.
LPG-MVS_test98.71 8698.46 10999.47 5899.57 6298.97 6798.23 13199.48 7496.60 24599.10 10899.06 11198.71 2799.83 15095.58 25599.78 9899.62 51
LGP-MVS_train99.47 5899.57 6298.97 6799.48 7496.60 24599.10 10899.06 11198.71 2799.83 15095.58 25599.78 9899.62 51
IS-MVSNet98.19 15997.90 17599.08 12299.57 6297.97 15799.31 2698.32 29999.01 8398.98 12999.03 12391.59 29399.79 19695.49 25799.80 8999.48 124
dcpmvs_298.78 7599.11 3697.78 25699.56 6993.67 31399.06 6299.86 599.50 2699.66 2099.26 7997.21 14099.99 298.00 10099.91 4899.68 38
test_040298.76 7998.71 7098.93 14799.56 6998.14 13898.45 11599.34 12599.28 5198.95 13598.91 15698.34 5099.79 19695.63 25299.91 4898.86 276
EPP-MVSNet98.30 14698.04 16499.07 12599.56 6997.83 17299.29 3298.07 31199.03 8198.59 19399.13 10492.16 28999.90 5696.87 17099.68 14799.49 114
ACMMPcopyleft98.75 8198.50 10099.52 4399.56 6999.16 4398.87 7699.37 10997.16 22398.82 16599.01 13397.71 9399.87 9496.29 21999.69 14299.54 91
Qingshan Xu, Weihang Kong, Wenbing Tao, Marc Pollefeys: Multi-Scale Geometric Consistency Guided and Planar Prior Assisted Multi-View Stereo. IEEE Transactions on Pattern Analysis and Machine Intelligence
FMVSNet199.17 3399.17 3099.17 10699.55 7398.24 12599.20 4499.44 8899.21 5499.43 5299.55 3597.82 8799.86 10398.42 7699.89 5899.41 152
Vis-MVSNet (Re-imp)97.46 21597.16 22498.34 22199.55 7396.10 24398.94 7298.44 29498.32 12298.16 22898.62 22288.76 30899.73 23693.88 30099.79 9499.18 227
ACMM96.08 1298.91 5998.73 6699.48 5599.55 7399.14 5398.07 14899.37 10997.62 17299.04 12098.96 14598.84 2099.79 19697.43 12899.65 15999.49 114
Qingshan Xu and Wenbing Tao: Multi-Scale Geometric Consistency Guided Multi-View Stereo. CVPR 2019
mPP-MVS98.64 10198.34 12999.54 3199.54 7699.17 3998.63 9099.24 17297.47 18698.09 23798.68 20697.62 10299.89 6696.22 22299.62 16799.57 74
XVG-ACMP-BASELINE98.56 11398.34 12999.22 10299.54 7698.59 10097.71 18899.46 8297.25 21298.98 12998.99 13697.54 10999.84 13595.88 23699.74 11699.23 215
region2R98.69 9198.40 11999.54 3199.53 7899.17 3998.52 10299.31 13897.46 19198.44 21098.51 23597.83 8499.88 7796.46 20799.58 18599.58 69
PGM-MVS98.66 9898.37 12599.55 2699.53 7899.18 3898.23 13199.49 7297.01 23098.69 17898.88 16898.00 7499.89 6695.87 23999.59 17999.58 69
Patchmatch-RL test97.26 23097.02 23197.99 24799.52 8095.53 25896.13 29599.71 1497.47 18699.27 8299.16 9784.30 34199.62 28397.89 10499.77 10298.81 282
ACMMPR98.70 8998.42 11799.54 3199.52 8099.14 5398.52 10299.31 13897.47 18698.56 19998.54 23197.75 9199.88 7796.57 19599.59 17999.58 69
GST-MVS98.61 10698.30 13499.52 4399.51 8299.20 3398.26 12999.25 16797.44 19498.67 18098.39 25197.68 9499.85 11896.00 23199.51 20799.52 103
Anonymous2023120698.21 15798.21 14398.20 23199.51 8295.43 26398.13 14099.32 13296.16 26098.93 14298.82 18496.00 20099.83 15097.32 13399.73 11999.36 179
ACMP95.32 1598.41 13598.09 15899.36 6999.51 8298.79 8597.68 19199.38 10595.76 27498.81 16798.82 18498.36 4699.82 16094.75 26999.77 10299.48 124
Qingshan Xu and Wenbing Tao: Planar Prior Assisted PatchMatch Multi-View Stereo. AAAI 2020
DVP-MVScopyleft98.77 7898.52 9699.52 4399.50 8599.21 2798.02 15798.84 26197.97 14999.08 11199.02 12497.61 10399.88 7796.99 15699.63 16499.48 124
Zhenlong Yuan, Jinguo Luo, Fei Shen, Zhaoxin Li, Cong Liu, Tianlu Mao, Zhaoqi Wang: DVP-MVS: Synergize Depth-Edge and Visibility Prior for Multi-View Stereo. AAAI2025
test_0728_SECOND99.60 1399.50 8599.23 2598.02 15799.32 13299.88 7796.99 15699.63 16499.68 38
test072699.50 8599.21 2798.17 13999.35 11997.97 14999.26 8699.06 11197.61 103
AllTest98.44 13298.20 14499.16 10999.50 8598.55 10398.25 13099.58 3196.80 23798.88 15399.06 11197.65 9799.57 30094.45 27999.61 17399.37 173
TestCases99.16 10999.50 8598.55 10399.58 3196.80 23798.88 15399.06 11197.65 9799.57 30094.45 27999.61 17399.37 173
XVG-OURS98.53 12298.34 12999.11 11699.50 8598.82 8295.97 29999.50 6497.30 20799.05 11898.98 14099.35 799.32 34395.72 24699.68 14799.18 227
EG-PatchMatch MVS98.99 4799.01 4598.94 14699.50 8597.47 19698.04 15499.59 2998.15 14299.40 5799.36 6698.58 3599.76 22198.78 5199.68 14799.59 63
SED-MVS98.91 5998.72 6899.49 5299.49 9299.17 3998.10 14599.31 13898.03 14699.66 2099.02 12498.36 4699.88 7796.91 16299.62 16799.41 152
IU-MVS99.49 9299.15 4898.87 25192.97 32499.41 5496.76 17999.62 16799.66 42
test_241102_ONE99.49 9299.17 3999.31 13897.98 14899.66 2098.90 15998.36 4699.48 324
UA-Net99.47 1199.40 1499.70 299.49 9299.29 1899.80 399.72 1399.82 399.04 12099.81 398.05 7199.96 1198.85 4899.99 599.86 8
HFP-MVS98.71 8698.44 11399.51 4799.49 9299.16 4398.52 10299.31 13897.47 18698.58 19598.50 23997.97 7899.85 11896.57 19599.59 17999.53 99
#test#98.50 12698.16 15199.51 4799.49 9299.16 4398.03 15599.31 13896.30 25798.58 19598.50 23997.97 7899.85 11895.68 24999.59 17999.53 99
VPA-MVSNet99.30 2599.30 2499.28 8899.49 9298.36 11999.00 6799.45 8599.63 1599.52 3799.44 5598.25 5299.88 7799.09 3399.84 6899.62 51
XVG-OURS-SEG-HR98.49 12798.28 13699.14 11299.49 9298.83 8096.54 27399.48 7497.32 20599.11 10598.61 22599.33 899.30 34696.23 22198.38 31699.28 205
114514_t96.50 27395.77 28098.69 17999.48 10097.43 19997.84 17699.55 4981.42 37396.51 32298.58 22895.53 22099.67 26393.41 31399.58 18598.98 255
IterMVS-LS98.55 11798.70 7398.09 23799.48 10094.73 28097.22 23499.39 10398.97 8799.38 6199.31 7396.00 20099.93 3198.58 6399.97 1299.60 57
Fangjinhua Wang, Silvano Galliani, Christoph Vogel, Marc Pollefeys: IterMVS: Iterative Probability Estimation for Efficient Multi-View Stereo.
v899.01 4599.16 3198.57 19499.47 10296.31 24098.90 7499.47 8099.03 8199.52 3799.57 3196.93 15499.81 17499.60 499.98 999.60 57
XVS98.72 8598.45 11199.53 3899.46 10399.21 2798.65 8899.34 12598.62 10697.54 27398.63 22097.50 11599.83 15096.79 17599.53 20199.56 79
X-MVStestdata94.32 31492.59 33299.53 3899.46 10399.21 2798.65 8899.34 12598.62 10697.54 27345.85 37797.50 11599.83 15096.79 17599.53 20199.56 79
test20.0398.78 7598.77 6498.78 17099.46 10397.20 21397.78 17999.24 17299.04 8099.41 5498.90 15997.65 9799.76 22197.70 11899.79 9499.39 163
abl_698.99 4798.78 6299.61 999.45 10699.46 498.60 9399.50 6498.59 10899.24 9199.04 12098.54 3799.89 6696.45 20899.62 16799.50 110
CSCG98.68 9598.50 10099.20 10399.45 10698.63 9598.56 9899.57 3897.87 15798.85 15798.04 28297.66 9699.84 13596.72 18499.81 8199.13 235
GeoE99.05 4398.99 4999.25 9799.44 10898.35 12098.73 8499.56 4598.42 11798.91 14498.81 18698.94 1899.91 5098.35 7999.73 11999.49 114
v14898.45 13198.60 8998.00 24699.44 10894.98 27497.44 21899.06 21598.30 12399.32 7798.97 14296.65 17399.62 28398.37 7899.85 6499.39 163
v1098.97 5299.11 3698.55 19999.44 10896.21 24298.90 7499.55 4998.73 10099.48 4399.60 2896.63 17499.83 15099.70 399.99 599.61 56
V4298.78 7598.78 6298.76 17399.44 10897.04 22098.27 12899.19 18397.87 15799.25 9099.16 9796.84 15899.78 20899.21 2899.84 6899.46 134
MDA-MVSNet-bldmvs97.94 17697.91 17498.06 24299.44 10894.96 27596.63 27199.15 20298.35 11998.83 16199.11 10694.31 25699.85 11896.60 19298.72 30399.37 173
test111196.49 27496.82 24595.52 33399.42 11387.08 36499.22 4187.14 37799.11 6599.46 4699.58 3088.69 30999.86 10398.80 5099.95 1899.62 51
v2v48298.56 11398.62 8498.37 21999.42 11395.81 25397.58 20399.16 19697.90 15599.28 8099.01 13395.98 20499.79 19699.33 1899.90 5599.51 106
OPM-MVS98.56 11398.32 13399.25 9799.41 11598.73 9097.13 24399.18 18797.10 22698.75 17498.92 15598.18 6199.65 27696.68 18899.56 19499.37 173
Ray L. Khuboni, Hongjun Xu: Octagram Propagation Matching for Multi-Scale View Stereopsis (OPM-MVS).
PMMVS298.07 16798.08 16198.04 24499.41 11594.59 28694.59 34899.40 10097.50 18398.82 16598.83 18196.83 16099.84 13597.50 12699.81 8199.71 30
test_one_060199.39 11799.20 3399.31 13898.49 11498.66 18299.02 12497.64 100
patch_mono-298.51 12598.63 8298.17 23399.38 11894.78 27897.36 22299.69 1798.16 14198.49 20799.29 7497.06 14599.97 498.29 8399.91 4899.76 21
test250692.39 33691.89 33993.89 34999.38 11882.28 37899.32 2266.03 38599.08 7798.77 17199.57 3166.26 38299.84 13598.71 5799.95 1899.54 91
ECVR-MVScopyleft96.42 27796.61 25995.85 32599.38 11888.18 36099.22 4186.00 37999.08 7799.36 6699.57 3188.47 31499.82 16098.52 6999.95 1899.54 91
casdiffmvs98.95 5599.00 4698.81 16399.38 11897.33 20297.82 17799.57 3899.17 6299.35 6899.17 9598.35 4999.69 25198.46 7399.73 11999.41 152
baseline98.96 5499.02 4498.76 17399.38 11897.26 20798.49 10899.50 6498.86 9599.19 9799.06 11198.23 5499.69 25198.71 5799.76 11299.33 191
TranMVSNet+NR-MVSNet99.17 3399.07 4299.46 6099.37 12398.87 7598.39 11999.42 9799.42 3699.36 6699.06 11198.38 4599.95 1798.34 8099.90 5599.57 74
tttt051795.64 29594.98 30597.64 26699.36 12493.81 30998.72 8590.47 37398.08 14598.67 18098.34 25873.88 37499.92 4097.77 11299.51 20799.20 220
test_part299.36 12499.10 6199.05 118
v114498.60 10898.66 7998.41 21599.36 12495.90 24997.58 20399.34 12597.51 18299.27 8299.15 10196.34 19199.80 18399.47 1299.93 3399.51 106
CP-MVS98.70 8998.42 11799.52 4399.36 12499.12 5898.72 8599.36 11397.54 18198.30 22098.40 24997.86 8399.89 6696.53 20399.72 12699.56 79
Test_1112_low_res96.99 25496.55 26398.31 22499.35 12895.47 26195.84 31099.53 5891.51 34296.80 31298.48 24491.36 29499.83 15096.58 19399.53 20199.62 51
DeepC-MVS97.60 498.97 5298.93 5199.10 11899.35 12897.98 15698.01 16099.46 8297.56 17999.54 3299.50 4398.97 1699.84 13598.06 9599.92 4299.49 114
Andreas Kuhn, Christian Sormann, Mattia Rossi, Oliver Erdler, Friedrich Fraundorfer: DeepC-MVS: Deep Confidence Prediction for Multi-View Stereo Reconstruction. 3DV 2020
1112_ss97.29 22996.86 24198.58 19299.34 13096.32 23996.75 26599.58 3193.14 32396.89 30797.48 31692.11 29099.86 10396.91 16299.54 19799.57 74
SF-MVS98.53 12298.27 13799.32 8299.31 13198.75 8698.19 13599.41 9896.77 23998.83 16198.90 15997.80 8899.82 16095.68 24999.52 20499.38 170
CPTT-MVS97.84 19097.36 21299.27 9199.31 13198.46 11198.29 12699.27 16194.90 29297.83 25298.37 25494.90 23799.84 13593.85 30299.54 19799.51 106
UnsupCasMVSNet_eth97.89 18097.60 19798.75 17599.31 13197.17 21697.62 19799.35 11998.72 10198.76 17398.68 20692.57 28699.74 23297.76 11695.60 36599.34 185
pmmvs-eth3d98.47 12998.34 12998.86 15799.30 13497.76 18097.16 24199.28 15895.54 27799.42 5399.19 8997.27 13299.63 28197.89 10499.97 1299.20 220
Anonymous2023121199.27 2699.27 2599.26 9499.29 13598.18 13299.49 899.51 6299.70 899.80 999.68 1496.84 15899.83 15099.21 2899.91 4899.77 17
UnsupCasMVSNet_bld97.30 22796.92 23798.45 21199.28 13696.78 23196.20 29399.27 16195.42 28298.28 22298.30 26293.16 27499.71 24594.99 26497.37 34398.87 275
DROMVSNet99.09 3999.05 4399.20 10399.28 13698.93 7299.24 4099.84 699.08 7798.12 23398.37 25498.72 2699.90 5699.05 3699.77 10298.77 290
DPE-MVScopyleft98.59 11198.26 13899.57 1899.27 13899.15 4897.01 24699.39 10397.67 16899.44 5198.99 13697.53 11199.89 6695.40 25999.68 14799.66 42
Kehua Chen, Zhenlong Yuan, Tianlu Mao, Zhaoqi Wang: Dual-Level Precision Edges Guided Multi-View Stereo with Accurate Planarization. AAAI2025
IterMVS-SCA-FT97.85 18998.18 14796.87 30499.27 13891.16 35095.53 32099.25 16799.10 7299.41 5499.35 6793.10 27699.96 1198.65 6199.94 2899.49 114
v119298.60 10898.66 7998.41 21599.27 13895.88 25097.52 20999.36 11397.41 19699.33 7199.20 8896.37 18999.82 16099.57 699.92 4299.55 87
N_pmnet97.63 20497.17 22398.99 14199.27 13897.86 16995.98 29893.41 36495.25 28699.47 4598.90 15995.63 21799.85 11896.91 16299.73 11999.27 207
FPMVS93.44 32992.23 33497.08 29499.25 14297.86 16995.61 31797.16 33392.90 32693.76 36698.65 21375.94 37195.66 37679.30 37697.49 33897.73 341
new-patchmatchnet98.35 14298.74 6597.18 29099.24 14392.23 33596.42 28299.48 7498.30 12399.69 1799.53 3997.44 12299.82 16098.84 4999.77 10299.49 114
MCST-MVS98.00 17297.63 19499.10 11899.24 14398.17 13596.89 25798.73 27995.66 27597.92 24597.70 30397.17 14199.66 27196.18 22699.23 25499.47 132
UniMVSNet (Re)98.87 6498.71 7099.35 7499.24 14398.73 9097.73 18799.38 10598.93 9299.12 10498.73 19796.77 16599.86 10398.63 6299.80 8999.46 134
jason97.45 21797.35 21397.76 25899.24 14393.93 30395.86 30798.42 29594.24 30698.50 20698.13 27294.82 24199.91 5097.22 13799.73 11999.43 146
jason: jason.
IterMVS97.73 19698.11 15796.57 31199.24 14390.28 35195.52 32299.21 17698.86 9599.33 7199.33 7193.11 27599.94 2698.49 7199.94 2899.48 124
Fangjinhua Wang, Silvano Galliani, Christoph Vogel, Marc Pollefeys: IterMVS: Iterative Probability Estimation for Efficient Multi-View Stereo.
v124098.55 11798.62 8498.32 22299.22 14895.58 25697.51 21199.45 8597.16 22399.45 5099.24 8396.12 19599.85 11899.60 499.88 5999.55 87
ITE_SJBPF98.87 15599.22 14898.48 11099.35 11997.50 18398.28 22298.60 22697.64 10099.35 33993.86 30199.27 24898.79 288
h-mvs3397.77 19597.33 21699.10 11899.21 15097.84 17198.35 12398.57 28899.11 6598.58 19599.02 12488.65 31299.96 1198.11 9096.34 35899.49 114
v14419298.54 12098.57 9298.45 21199.21 15095.98 24797.63 19699.36 11397.15 22599.32 7799.18 9195.84 21299.84 13599.50 1099.91 4899.54 91
APDe-MVS98.99 4798.79 6199.60 1399.21 15099.15 4898.87 7699.48 7497.57 17799.35 6899.24 8397.83 8499.89 6697.88 10799.70 13699.75 24
DP-MVS98.93 5798.81 6099.28 8899.21 15098.45 11298.46 11399.33 13099.63 1599.48 4399.15 10197.23 13899.75 22897.17 13999.66 15899.63 50
SR-MVS-dyc-post98.81 7098.55 9399.57 1899.20 15499.38 698.48 11199.30 14898.64 10298.95 13598.96 14597.49 11899.86 10396.56 19899.39 22899.45 138
RE-MVS-def98.58 9199.20 15499.38 698.48 11199.30 14898.64 10298.95 13598.96 14597.75 9196.56 19899.39 22899.45 138
v192192098.54 12098.60 8998.38 21899.20 15495.76 25597.56 20599.36 11397.23 21899.38 6199.17 9596.02 19899.84 13599.57 699.90 5599.54 91
thisisatest053095.27 30294.45 31197.74 26099.19 15794.37 28997.86 17490.20 37497.17 22298.22 22497.65 30573.53 37599.90 5696.90 16799.35 23598.95 261
Anonymous2024052998.93 5798.87 5399.12 11499.19 15798.22 13099.01 6598.99 23599.25 5399.54 3299.37 6397.04 14699.80 18397.89 10499.52 20499.35 183
APD-MVS_3200maxsize98.84 6798.61 8799.53 3899.19 15799.27 2198.49 10899.33 13098.64 10299.03 12398.98 14097.89 8199.85 11896.54 20299.42 22499.46 134
HQP_MVS97.99 17597.67 18898.93 14799.19 15797.65 18897.77 18299.27 16198.20 13597.79 25597.98 28594.90 23799.70 24794.42 28199.51 20799.45 138
plane_prior799.19 15797.87 168
ab-mvs98.41 13598.36 12698.59 19199.19 15797.23 20899.32 2298.81 26797.66 16998.62 18799.40 6296.82 16199.80 18395.88 23699.51 20798.75 293
F-COLMAP97.30 22796.68 25399.14 11299.19 15798.39 11497.27 23099.30 14892.93 32596.62 31798.00 28395.73 21599.68 26092.62 32898.46 31599.35 183
test117298.76 7998.49 10399.57 1899.18 16499.37 998.39 11999.31 13898.43 11698.90 14598.88 16897.49 11899.86 10396.43 21099.37 23299.48 124
SR-MVS98.71 8698.43 11599.57 1899.18 16499.35 1298.36 12299.29 15598.29 12698.88 15398.85 17597.53 11199.87 9496.14 22899.31 24199.48 124
UniMVSNet_NR-MVSNet98.86 6698.68 7699.40 6799.17 16698.74 8797.68 19199.40 10099.14 6399.06 11398.59 22796.71 17199.93 3198.57 6599.77 10299.53 99
LF4IMVS97.90 17897.69 18798.52 20399.17 16697.66 18797.19 23899.47 8096.31 25697.85 25198.20 26996.71 17199.52 31594.62 27399.72 12698.38 315
SMA-MVScopyleft98.40 13798.03 16599.51 4799.16 16899.21 2798.05 15299.22 17594.16 30998.98 12999.10 10897.52 11399.79 19696.45 20899.64 16199.53 99
Yufeng Yin; Xiaoyan Liu; Zichao Zhang: SMA-MVS: Segmentation-Guided Multi-Scale Anchor Deformation Patch Multi-View Stereo. IEEE Transactions on Circuits and Systems for Video Technology
DU-MVS98.82 6898.63 8299.39 6899.16 16898.74 8797.54 20799.25 16798.84 9799.06 11398.76 19496.76 16799.93 3198.57 6599.77 10299.50 110
NR-MVSNet98.95 5598.82 5899.36 6999.16 16898.72 9299.22 4199.20 17899.10 7299.72 1398.76 19496.38 18899.86 10398.00 10099.82 7799.50 110
MVS_111021_LR98.30 14698.12 15698.83 16099.16 16898.03 15096.09 29699.30 14897.58 17698.10 23698.24 26598.25 5299.34 34096.69 18799.65 15999.12 236
DSMNet-mixed97.42 21997.60 19796.87 30499.15 17291.46 34198.54 10099.12 20692.87 32797.58 26999.63 2296.21 19399.90 5695.74 24599.54 19799.27 207
D2MVS97.84 19097.84 17997.83 25399.14 17394.74 27996.94 25098.88 24995.84 27198.89 14898.96 14594.40 25499.69 25197.55 12199.95 1899.05 242
pmmvs597.64 20297.49 20298.08 24099.14 17395.12 27296.70 26899.05 21993.77 31598.62 18798.83 18193.23 27299.75 22898.33 8299.76 11299.36 179
CS-MVS-test99.13 3799.09 3999.26 9499.13 17598.97 6799.31 2699.88 399.44 3398.16 22898.51 23598.64 3099.93 3198.91 4399.85 6498.88 274
VDD-MVS98.56 11398.39 12299.07 12599.13 17598.07 14698.59 9597.01 33599.59 2199.11 10599.27 7794.82 24199.79 19698.34 8099.63 16499.34 185
xxxxxxxxxxxxxcwj98.44 13298.24 14099.06 13099.11 17797.97 15796.53 27499.54 5498.24 12998.83 16198.90 15997.80 8899.82 16095.68 24999.52 20499.38 170
ETH3D-3000-0.198.03 16897.62 19599.29 8599.11 17798.80 8497.47 21599.32 13295.54 27798.43 21398.62 22296.61 17599.77 21493.95 29799.49 21599.30 200
save fliter99.11 17797.97 15796.53 27499.02 22898.24 129
APD-MVScopyleft98.10 16497.67 18899.42 6299.11 17798.93 7297.76 18499.28 15894.97 29098.72 17798.77 19297.04 14699.85 11893.79 30399.54 19799.49 114
Yuesong Wang, Zhaojie Zeng and etc.: Adaptive Patch Deformation for Textureless-Resilient Multi-View Stereo. CVPR2023
EI-MVSNet-UG-set98.69 9198.71 7098.62 18799.10 18196.37 23897.23 23198.87 25199.20 5799.19 9798.99 13697.30 12999.85 11898.77 5499.79 9499.65 46
EI-MVSNet98.40 13798.51 9898.04 24499.10 18194.73 28097.20 23598.87 25198.97 8799.06 11399.02 12496.00 20099.80 18398.58 6399.82 7799.60 57
CVMVSNet96.25 28297.21 22293.38 35599.10 18180.56 38197.20 23598.19 30696.94 23299.00 12699.02 12489.50 30599.80 18396.36 21599.59 17999.78 15
EI-MVSNet-Vis-set98.68 9598.70 7398.63 18599.09 18496.40 23797.23 23198.86 25799.20 5799.18 10198.97 14297.29 13199.85 11898.72 5699.78 9899.64 47
HPM-MVS++copyleft98.10 16497.64 19399.48 5599.09 18499.13 5697.52 20998.75 27697.46 19196.90 30697.83 29596.01 19999.84 13595.82 24399.35 23599.46 134
DP-MVS Recon97.33 22596.92 23798.57 19499.09 18497.99 15296.79 26199.35 11993.18 32297.71 25998.07 28195.00 23699.31 34493.97 29599.13 27298.42 314
MVS_111021_HR98.25 15498.08 16198.75 17599.09 18497.46 19795.97 29999.27 16197.60 17597.99 24498.25 26498.15 6699.38 33796.87 17099.57 18999.42 149
9.1497.78 18199.07 18897.53 20899.32 13295.53 27998.54 20398.70 20397.58 10599.76 22194.32 28699.46 218
PAPM_NR96.82 26096.32 27098.30 22599.07 18896.69 23397.48 21398.76 27395.81 27396.61 31896.47 34294.12 26299.17 35690.82 35297.78 33599.06 241
TAMVS98.24 15598.05 16398.80 16599.07 18897.18 21597.88 17098.81 26796.66 24499.17 10299.21 8694.81 24399.77 21496.96 16099.88 5999.44 142
CLD-MVS97.49 21297.16 22498.48 20899.07 18897.03 22194.71 34199.21 17694.46 30098.06 23997.16 32997.57 10699.48 32494.46 27899.78 9898.95 261
Zhaoxin Li, Wangmeng Zuo, Zhaoqi Wang, Lei Zhang: Confidence-based Large-scale Dense Multi-view Stereo. IEEE Transaction on Image Processing, 2020
CS-MVS99.13 3799.10 3899.24 9999.06 19299.15 4899.36 1999.88 399.36 4498.21 22598.46 24598.68 2999.93 3199.03 3899.85 6498.64 303
thres100view90094.19 31793.67 32195.75 32899.06 19291.35 34498.03 15594.24 36098.33 12197.40 28494.98 36579.84 35899.62 28383.05 36998.08 32996.29 362
thres600view794.45 31293.83 31896.29 31699.06 19291.53 34097.99 16194.24 36098.34 12097.44 28295.01 36379.84 35899.67 26384.33 36798.23 31997.66 344
plane_prior199.05 195
YYNet197.60 20597.67 18897.39 28499.04 19693.04 32295.27 32798.38 29897.25 21298.92 14398.95 14995.48 22599.73 23696.99 15698.74 30199.41 152
MDA-MVSNet_test_wron97.60 20597.66 19197.41 28399.04 19693.09 31895.27 32798.42 29597.26 21198.88 15398.95 14995.43 22699.73 23697.02 15398.72 30399.41 152
MIMVSNet96.62 26896.25 27497.71 26199.04 19694.66 28399.16 5096.92 33997.23 21897.87 24999.10 10886.11 32699.65 27691.65 33899.21 25798.82 279
testtj97.79 19497.25 21899.42 6299.03 19998.85 7797.78 17999.18 18795.83 27298.12 23398.50 23995.50 22399.86 10392.23 33399.07 27899.54 91
PatchMatch-RL97.24 23396.78 24798.61 18999.03 19997.83 17296.36 28599.06 21593.49 32097.36 28797.78 29795.75 21499.49 32193.44 31298.77 30098.52 307
Regformer-398.61 10698.61 8798.63 18599.02 20196.53 23597.17 23998.84 26199.13 6499.10 10898.85 17597.24 13799.79 19698.41 7799.70 13699.57 74
Regformer-498.73 8498.68 7698.89 15399.02 20197.22 21097.17 23999.06 21599.21 5499.17 10298.85 17597.45 12199.86 10398.48 7299.70 13699.60 57
ZD-MVS99.01 20398.84 7999.07 21494.10 31098.05 24198.12 27596.36 19099.86 10392.70 32799.19 262
CDPH-MVS97.26 23096.66 25699.07 12599.00 20498.15 13696.03 29799.01 23191.21 34697.79 25597.85 29496.89 15699.69 25192.75 32599.38 23199.39 163
diffmvs98.22 15698.24 14098.17 23399.00 20495.44 26296.38 28499.58 3197.79 16298.53 20498.50 23996.76 16799.74 23297.95 10399.64 16199.34 185
WR-MVS98.40 13798.19 14699.03 13599.00 20497.65 18896.85 25898.94 23898.57 11298.89 14898.50 23995.60 21899.85 11897.54 12399.85 6499.59 63
plane_prior698.99 20797.70 18694.90 237
xiu_mvs_v1_base_debu97.86 18498.17 14896.92 30198.98 20893.91 30496.45 27999.17 19397.85 15998.41 21497.14 33198.47 3999.92 4098.02 9799.05 27996.92 355
xiu_mvs_v1_base97.86 18498.17 14896.92 30198.98 20893.91 30496.45 27999.17 19397.85 15998.41 21497.14 33198.47 3999.92 4098.02 9799.05 27996.92 355
xiu_mvs_v1_base_debi97.86 18498.17 14896.92 30198.98 20893.91 30496.45 27999.17 19397.85 15998.41 21497.14 33198.47 3999.92 4098.02 9799.05 27996.92 355
MVP-Stereo98.08 16697.92 17398.57 19498.96 21196.79 22897.90 16999.18 18796.41 25298.46 20898.95 14995.93 20799.60 29096.51 20498.98 29299.31 197
Qingsong Yan: MVP-Stereo: A Parallel Multi-View Patchmatch Stereo Method with Dilation Matching for Photogrammetric Application.
SD-MVS98.40 13798.68 7697.54 27598.96 21197.99 15297.88 17099.36 11398.20 13599.63 2699.04 12098.76 2395.33 37896.56 19899.74 11699.31 197
Zhenlong Yuan, Jiakai Cao, Zhaoxin Li, Hao Jiang and Zhaoqi Wang: SD-MVS: Segmentation-driven Deformation Multi-View Stereo with Spherical Refinement and EM optimization. AAAI2024
112196.73 26296.00 27698.91 15098.95 21397.76 18098.07 14898.73 27987.65 36496.54 31998.13 27294.52 25199.73 23692.38 33199.02 28699.24 214
新几何198.91 15098.94 21497.76 18098.76 27387.58 36596.75 31398.10 27794.80 24499.78 20892.73 32699.00 28999.20 220
USDC97.41 22097.40 20897.44 28198.94 21493.67 31395.17 33099.53 5894.03 31298.97 13299.10 10895.29 22899.34 34095.84 24299.73 11999.30 200
tfpn200view994.03 32193.44 32395.78 32798.93 21691.44 34297.60 20094.29 35897.94 15197.10 29294.31 37179.67 36099.62 28383.05 36998.08 32996.29 362
testdata98.09 23798.93 21695.40 26498.80 26990.08 35497.45 28198.37 25495.26 22999.70 24793.58 30898.95 29499.17 231
thres40094.14 31993.44 32396.24 31898.93 21691.44 34297.60 20094.29 35897.94 15197.10 29294.31 37179.67 36099.62 28383.05 36998.08 32997.66 344
TAPA-MVS96.21 1196.63 26795.95 27898.65 18198.93 21698.09 14096.93 25299.28 15883.58 37198.13 23297.78 29796.13 19499.40 33393.52 30999.29 24698.45 311
Andrea Romanoni, Matteo Matteucci: TAPA-MVS: Textureless-Aware PAtchMatch Multi-View Stereo. ICCV 2019
test22298.92 22096.93 22595.54 31998.78 27285.72 36896.86 30998.11 27694.43 25299.10 27799.23 215
PVSNet_BlendedMVS97.55 20897.53 19997.60 26898.92 22093.77 31196.64 27099.43 9494.49 29897.62 26599.18 9196.82 16199.67 26394.73 27099.93 3399.36 179
PVSNet_Blended96.88 25696.68 25397.47 27998.92 22093.77 31194.71 34199.43 9490.98 34897.62 26597.36 32496.82 16199.67 26394.73 27099.56 19498.98 255
MSDG97.71 19797.52 20098.28 22798.91 22396.82 22794.42 35199.37 10997.65 17098.37 21998.29 26397.40 12499.33 34294.09 29399.22 25598.68 302
Anonymous20240521197.90 17897.50 20199.08 12298.90 22498.25 12498.53 10196.16 34798.87 9499.11 10598.86 17290.40 29999.78 20897.36 13199.31 24199.19 225
原ACMM198.35 22098.90 22496.25 24198.83 26692.48 33196.07 33498.10 27795.39 22799.71 24592.61 32998.99 29099.08 239
GBi-Net98.65 9998.47 10799.17 10698.90 22498.24 12599.20 4499.44 8898.59 10898.95 13599.55 3594.14 25999.86 10397.77 11299.69 14299.41 152
test198.65 9998.47 10799.17 10698.90 22498.24 12599.20 4499.44 8898.59 10898.95 13599.55 3594.14 25999.86 10397.77 11299.69 14299.41 152
FMVSNet298.49 12798.40 11998.75 17598.90 22497.14 21998.61 9299.13 20498.59 10899.19 9799.28 7594.14 25999.82 16097.97 10299.80 8999.29 204
OMC-MVS97.88 18297.49 20299.04 13498.89 22998.63 9596.94 25099.25 16795.02 28898.53 20498.51 23597.27 13299.47 32693.50 31199.51 20799.01 250
ETH3 D test640096.46 27695.59 28899.08 12298.88 23098.21 13196.53 27499.18 18788.87 36097.08 29497.79 29693.64 27199.77 21488.92 35899.40 22799.28 205
MVSFormer98.26 15298.43 11597.77 25798.88 23093.89 30799.39 1699.56 4599.11 6598.16 22898.13 27293.81 26699.97 499.26 2399.57 18999.43 146
lupinMVS97.06 24696.86 24197.65 26498.88 23093.89 30795.48 32397.97 31493.53 31898.16 22897.58 30993.81 26699.91 5096.77 17899.57 18999.17 231
DELS-MVS98.27 15098.20 14498.48 20898.86 23396.70 23295.60 31899.20 17897.73 16498.45 20998.71 20097.50 11599.82 16098.21 8699.59 17998.93 266
Christian Sormann, Emanuele Santellani, Mattia Rossi, Andreas Kuhn, Friedrich Fraundorfer: DELS-MVS: Deep Epipolar Line Search for Multi-View Stereo. Winter Conference on Applications of Computer Vision (WACV), 2023
TinyColmap97.89 18097.98 16897.60 26898.86 23394.35 29096.21 29299.44 8897.45 19399.06 11398.88 16897.99 7799.28 34994.38 28599.58 18599.18 227
Regformer-198.55 11798.44 11398.87 15598.85 23597.29 20496.91 25598.99 23598.97 8798.99 12798.64 21697.26 13599.81 17497.79 11099.57 18999.51 106
Regformer-298.60 10898.46 10999.02 13898.85 23597.71 18596.91 25599.09 21198.98 8699.01 12498.64 21697.37 12699.84 13597.75 11799.57 18999.52 103
LCM-MVSNet-Re98.64 10198.48 10599.11 11698.85 23598.51 10898.49 10899.83 798.37 11899.69 1799.46 5098.21 5999.92 4094.13 29299.30 24498.91 270
pmmvs497.58 20797.28 21798.51 20598.84 23896.93 22595.40 32698.52 29193.60 31798.61 18998.65 21395.10 23499.60 29096.97 15999.79 9498.99 254
NP-MVS98.84 23897.39 20196.84 334
sss97.21 23596.93 23598.06 24298.83 24095.22 26896.75 26598.48 29394.49 29897.27 28897.90 29192.77 28399.80 18396.57 19599.32 23999.16 234
PVSNet93.40 1795.67 29495.70 28395.57 33298.83 24088.57 35692.50 36897.72 31992.69 32996.49 32596.44 34393.72 26999.43 33193.61 30699.28 24798.71 296
MVEpermissive83.40 2292.50 33591.92 33894.25 34598.83 24091.64 33992.71 36783.52 38195.92 26986.46 37895.46 35995.20 23195.40 37780.51 37498.64 30995.73 370
Simon Fuhrmann, Fabian Langguth, Michael Goesele: MVE - A Multi-View Reconstruction Environment. EUROGRAPHICS Workshops on Graphics and Cultural Heritage (2014)
ambc98.24 22998.82 24395.97 24898.62 9199.00 23499.27 8299.21 8696.99 15199.50 32096.55 20199.50 21499.26 210
旧先验198.82 24397.45 19898.76 27398.34 25895.50 22399.01 28899.23 215
WTY-MVS96.67 26596.27 27397.87 25198.81 24594.61 28596.77 26397.92 31694.94 29197.12 29197.74 30091.11 29599.82 16093.89 29998.15 32599.18 227
3Dnovator+97.89 398.69 9198.51 9899.24 9998.81 24598.40 11399.02 6499.19 18398.99 8498.07 23899.28 7597.11 14499.84 13596.84 17399.32 23999.47 132
test_part197.91 17797.46 20799.27 9198.80 24798.18 13299.07 6099.36 11399.75 599.63 2699.49 4682.20 35399.89 6698.87 4799.95 1899.74 26
QAPM97.31 22696.81 24698.82 16198.80 24797.49 19599.06 6299.19 18390.22 35297.69 26199.16 9796.91 15599.90 5690.89 35199.41 22599.07 240
VNet98.42 13498.30 13498.79 16798.79 24997.29 20498.23 13198.66 28399.31 4898.85 15798.80 18794.80 24499.78 20898.13 8999.13 27299.31 197
DPM-MVS96.32 27995.59 28898.51 20598.76 25097.21 21294.54 35098.26 30191.94 33696.37 32797.25 32693.06 27899.43 33191.42 34398.74 30198.89 271
3Dnovator98.27 298.81 7098.73 6699.05 13298.76 25097.81 17799.25 3999.30 14898.57 11298.55 20199.33 7197.95 8099.90 5697.16 14099.67 15399.44 142
PLCcopyleft94.65 1696.51 27195.73 28298.85 15898.75 25297.91 16596.42 28299.06 21590.94 34995.59 34097.38 32294.41 25399.59 29490.93 34998.04 33299.05 242
Jie Liao, Yanping Fu, Qingan Yan, Chunxia xiao: Pyramid Multi-View Stereo with Local Consistency. Pacific Graphics 2019
BH-untuned96.83 25896.75 24997.08 29498.74 25393.33 31696.71 26798.26 30196.72 24198.44 21097.37 32395.20 23199.47 32691.89 33597.43 34198.44 312
hse-mvs297.46 21597.07 22898.64 18298.73 25497.33 20297.45 21797.64 32499.11 6598.58 19597.98 28588.65 31299.79 19698.11 9097.39 34298.81 282
CDS-MVSNet97.69 19897.35 21398.69 17998.73 25497.02 22296.92 25498.75 27695.89 27098.59 19398.67 20892.08 29199.74 23296.72 18499.81 8199.32 193
Khang Truong Giang, Soohwan Song, Sungho Jo: Curvature-guided dynamic scale networks for Multi-view Stereo. ICLR 2022
EIA-MVS98.00 17297.74 18498.80 16598.72 25698.09 14098.05 15299.60 2897.39 19896.63 31695.55 35697.68 9499.80 18396.73 18399.27 24898.52 307
LFMVS97.20 23696.72 25098.64 18298.72 25696.95 22498.93 7394.14 36299.74 798.78 16899.01 13384.45 33899.73 23697.44 12799.27 24899.25 211
new_pmnet96.99 25496.76 24897.67 26298.72 25694.89 27695.95 30398.20 30492.62 33098.55 20198.54 23194.88 24099.52 31593.96 29699.44 22398.59 306
Fast-Effi-MVS+97.67 20097.38 21098.57 19498.71 25997.43 19997.23 23199.45 8594.82 29496.13 33096.51 33998.52 3899.91 5096.19 22498.83 29898.37 317
TEST998.71 25998.08 14495.96 30199.03 22491.40 34395.85 33797.53 31196.52 17899.76 221
train_agg97.10 24296.45 26699.07 12598.71 25998.08 14495.96 30199.03 22491.64 33895.85 33797.53 31196.47 18199.76 22193.67 30599.16 26599.36 179
TSAR-MVS + GP.98.18 16097.98 16898.77 17298.71 25997.88 16796.32 28798.66 28396.33 25499.23 9498.51 23597.48 12099.40 33397.16 14099.46 21899.02 249
AUN-MVS96.24 28395.45 29298.60 19098.70 26397.22 21097.38 22097.65 32295.95 26895.53 34897.96 28982.11 35499.79 19696.31 21797.44 34098.80 287
our_test_397.39 22197.73 18696.34 31598.70 26389.78 35394.61 34798.97 23796.50 24899.04 12098.85 17595.98 20499.84 13597.26 13699.67 15399.41 152
ppachtmachnet_test97.50 21097.74 18496.78 30998.70 26391.23 34994.55 34999.05 21996.36 25399.21 9598.79 18996.39 18699.78 20896.74 18199.82 7799.34 185
PCF-MVS92.86 1894.36 31393.00 33098.42 21498.70 26397.56 19293.16 36699.11 20879.59 37497.55 27297.43 31992.19 28899.73 23679.85 37599.45 22097.97 330
Andreas Kuhn, Shan Lin, Oliver Erdler: Plane Completion and Filtering for Multi-View Stereo Reconstruction. GCPR 2019
ETV-MVS98.03 16897.86 17898.56 19898.69 26798.07 14697.51 21199.50 6498.10 14397.50 27795.51 35798.41 4399.88 7796.27 22099.24 25397.71 343
test_prior397.48 21497.00 23298.95 14498.69 26797.95 16295.74 31399.03 22496.48 24996.11 33197.63 30795.92 20899.59 29494.16 28799.20 25899.30 200
test_prior98.95 14498.69 26797.95 16299.03 22499.59 29499.30 200
agg_prior197.06 24696.40 26799.03 13598.68 27097.99 15295.76 31199.01 23191.73 33795.59 34097.50 31496.49 18099.77 21493.71 30499.14 26999.34 185
agg_prior98.68 27097.99 15299.01 23195.59 34099.77 214
test_898.67 27298.01 15195.91 30699.02 22891.64 33895.79 33997.50 31496.47 18199.76 221
HQP-NCC98.67 27296.29 28896.05 26395.55 344
ACMP_Plane98.67 27296.29 28896.05 26395.55 344
CNVR-MVS98.17 16297.87 17799.07 12598.67 27298.24 12597.01 24698.93 24097.25 21297.62 26598.34 25897.27 13299.57 30096.42 21199.33 23899.39 163
HQP-MVS97.00 25396.49 26598.55 19998.67 27296.79 22896.29 28899.04 22296.05 26395.55 34496.84 33493.84 26499.54 30992.82 32299.26 25199.32 193
thres20093.72 32693.14 32895.46 33698.66 27791.29 34696.61 27294.63 35697.39 19896.83 31093.71 37379.88 35799.56 30382.40 37298.13 32695.54 371
wuyk23d96.06 28597.62 19591.38 35898.65 27898.57 10298.85 7996.95 33796.86 23699.90 499.16 9799.18 1198.40 37189.23 35799.77 10277.18 376
NCCC97.86 18497.47 20699.05 13298.61 27998.07 14696.98 24898.90 24697.63 17197.04 29797.93 29095.99 20399.66 27195.31 26098.82 29999.43 146
DeepC-MVS_fast96.85 698.30 14698.15 15398.75 17598.61 27997.23 20897.76 18499.09 21197.31 20698.75 17498.66 21197.56 10799.64 27896.10 23099.55 19699.39 163
Andreas Kuhn, Christian Sormann, Mattia Rossi, Oliver Erdler, Friedrich Fraundorfer: DeepC-MVS: Deep Confidence Prediction for Multi-View Stereo Reconstruction. 3DV 2020
thisisatest051594.12 32093.16 32796.97 29998.60 28192.90 32393.77 36290.61 37294.10 31096.91 30395.87 35274.99 37399.80 18394.52 27699.12 27598.20 320
GA-MVS95.86 29095.32 29897.49 27898.60 28194.15 29593.83 36197.93 31595.49 28096.68 31497.42 32083.21 34699.30 34696.22 22298.55 31499.01 250
OPU-MVS98.82 16198.59 28398.30 12198.10 14598.52 23498.18 6198.75 36994.62 27399.48 21799.41 152
MSLP-MVS++98.02 17098.14 15597.64 26698.58 28495.19 26997.48 21399.23 17497.47 18697.90 24798.62 22297.04 14698.81 36897.55 12199.41 22598.94 265
test1298.93 14798.58 28497.83 17298.66 28396.53 32095.51 22299.69 25199.13 27299.27 207
CL-MVSNet_self_test97.44 21897.22 22198.08 24098.57 28695.78 25494.30 35498.79 27096.58 24798.60 19198.19 27094.74 24899.64 27896.41 21298.84 29798.82 279
PS-MVSNAJ97.08 24597.39 20996.16 32298.56 28792.46 33095.24 32998.85 26097.25 21297.49 27895.99 34998.07 6899.90 5696.37 21398.67 30896.12 367
CNLPA97.17 23996.71 25198.55 19998.56 28798.05 14996.33 28698.93 24096.91 23497.06 29697.39 32194.38 25599.45 32991.66 33799.18 26498.14 323
xiu_mvs_v2_base97.16 24097.49 20296.17 32098.54 28992.46 33095.45 32498.84 26197.25 21297.48 27996.49 34098.31 5199.90 5696.34 21698.68 30796.15 366
alignmvs97.35 22396.88 24098.78 17098.54 28998.09 14097.71 18897.69 32199.20 5797.59 26895.90 35188.12 31699.55 30698.18 8898.96 29398.70 298
iter_conf_final97.10 24296.65 25898.45 21198.53 29196.08 24698.30 12599.11 20898.10 14398.85 15798.95 14979.38 36399.87 9498.68 6099.91 4899.40 161
Effi-MVS+98.02 17097.82 18098.62 18798.53 29197.19 21497.33 22499.68 1997.30 20796.68 31497.46 31898.56 3699.80 18396.63 19198.20 32198.86 276
ETH3D cwj APD-0.1697.55 20897.00 23299.19 10598.51 29398.64 9496.85 25899.13 20494.19 30897.65 26398.40 24995.78 21399.81 17493.37 31499.16 26599.12 236
baseline195.96 28895.44 29397.52 27798.51 29393.99 30198.39 11996.09 34998.21 13298.40 21897.76 29986.88 31899.63 28195.42 25889.27 37698.95 261
MVS_Test98.18 16098.36 12697.67 26298.48 29594.73 28098.18 13699.02 22897.69 16798.04 24299.11 10697.22 13999.56 30398.57 6598.90 29698.71 296
BH-RMVSNet96.83 25896.58 26297.58 27098.47 29694.05 29696.67 26997.36 32796.70 24397.87 24997.98 28595.14 23399.44 33090.47 35398.58 31399.25 211
canonicalmvs98.34 14398.26 13898.58 19298.46 29797.82 17598.96 7199.46 8299.19 6197.46 28095.46 35998.59 3499.46 32898.08 9498.71 30598.46 309
MVS-HIRNet94.32 31495.62 28690.42 35998.46 29775.36 38296.29 28889.13 37695.25 28695.38 35099.75 792.88 28199.19 35594.07 29499.39 22896.72 360
PHI-MVS98.29 14997.95 17099.34 7798.44 29999.16 4398.12 14299.38 10596.01 26698.06 23998.43 24797.80 8899.67 26395.69 24899.58 18599.20 220
DVP-MVS++98.90 6198.70 7399.51 4798.43 30099.15 4899.43 1299.32 13298.17 13899.26 8699.02 12498.18 6199.88 7797.07 15099.45 22099.49 114
MSC_two_6792asdad99.32 8298.43 30098.37 11698.86 25799.89 6697.14 14499.60 17599.71 30
No_MVS99.32 8298.43 30098.37 11698.86 25799.89 6697.14 14499.60 17599.71 30
Fast-Effi-MVS+-dtu98.27 15098.09 15898.81 16398.43 30098.11 13997.61 19999.50 6498.64 10297.39 28597.52 31398.12 6799.95 1796.90 16798.71 30598.38 315
OpenMVS_ROBcopyleft95.38 1495.84 29195.18 30297.81 25498.41 30497.15 21897.37 22198.62 28683.86 37098.65 18398.37 25494.29 25799.68 26088.41 35998.62 31196.60 361
DeepPCF-MVS96.93 598.32 14498.01 16699.23 10198.39 30598.97 6795.03 33499.18 18796.88 23599.33 7198.78 19098.16 6499.28 34996.74 18199.62 16799.44 142
Patchmatch-test96.55 26996.34 26997.17 29198.35 30693.06 31998.40 11897.79 31797.33 20398.41 21498.67 20883.68 34599.69 25195.16 26299.31 24198.77 290
AdaColmapbinary97.14 24196.71 25198.46 21098.34 30797.80 17896.95 24998.93 24095.58 27696.92 30197.66 30495.87 21099.53 31190.97 34899.14 26998.04 326
OpenMVScopyleft96.65 797.09 24496.68 25398.32 22298.32 30897.16 21798.86 7899.37 10989.48 35696.29 32999.15 10196.56 17699.90 5692.90 31999.20 25897.89 331
MG-MVS96.77 26196.61 25997.26 28898.31 30993.06 31995.93 30498.12 31096.45 25197.92 24598.73 19793.77 26899.39 33591.19 34799.04 28299.33 191
test_yl96.69 26396.29 27197.90 24998.28 31095.24 26697.29 22797.36 32798.21 13298.17 22697.86 29286.27 32299.55 30694.87 26798.32 31798.89 271
DCV-MVSNet96.69 26396.29 27197.90 24998.28 31095.24 26697.29 22797.36 32798.21 13298.17 22697.86 29286.27 32299.55 30694.87 26798.32 31798.89 271
CHOSEN 280x42095.51 29995.47 29095.65 33198.25 31288.27 35993.25 36598.88 24993.53 31894.65 35697.15 33086.17 32499.93 3197.41 12999.93 3398.73 295
SCA96.41 27896.66 25695.67 32998.24 31388.35 35895.85 30996.88 34096.11 26197.67 26298.67 20893.10 27699.85 11894.16 28799.22 25598.81 282
DeepMVS_CXcopyleft93.44 35498.24 31394.21 29394.34 35764.28 37691.34 37294.87 36989.45 30692.77 37977.54 37793.14 37393.35 374
MS-PatchMatch97.68 19997.75 18397.45 28098.23 31593.78 31097.29 22798.84 26196.10 26298.64 18498.65 21396.04 19799.36 33896.84 17399.14 26999.20 220
BH-w/o95.13 30494.89 30895.86 32498.20 31691.31 34595.65 31697.37 32693.64 31696.52 32195.70 35493.04 27999.02 36188.10 36095.82 36497.24 353
mvs_anonymous97.83 19298.16 15196.87 30498.18 31791.89 33797.31 22698.90 24697.37 20098.83 16199.46 5096.28 19299.79 19698.90 4498.16 32498.95 261
miper_lstm_enhance97.18 23897.16 22497.25 28998.16 31892.85 32495.15 33299.31 13897.25 21298.74 17698.78 19090.07 30099.78 20897.19 13899.80 8999.11 238
ET-MVSNet_ETH3D94.30 31693.21 32697.58 27098.14 31994.47 28894.78 34093.24 36694.72 29589.56 37495.87 35278.57 36799.81 17496.91 16297.11 35098.46 309
ADS-MVSNet295.43 30094.98 30596.76 31098.14 31991.74 33897.92 16697.76 31890.23 35096.51 32298.91 15685.61 32999.85 11892.88 32096.90 35198.69 299
ADS-MVSNet95.24 30394.93 30796.18 31998.14 31990.10 35297.92 16697.32 33090.23 35096.51 32298.91 15685.61 32999.74 23292.88 32096.90 35198.69 299
c3_l97.36 22297.37 21197.31 28598.09 32293.25 31795.01 33599.16 19697.05 22798.77 17198.72 19992.88 28199.64 27896.93 16199.76 11299.05 242
FMVSNet397.50 21097.24 22098.29 22698.08 32395.83 25297.86 17498.91 24597.89 15698.95 13598.95 14987.06 31799.81 17497.77 11299.69 14299.23 215
PAPM91.88 34190.34 34496.51 31298.06 32492.56 32892.44 36997.17 33286.35 36690.38 37396.01 34886.61 32099.21 35470.65 37895.43 36697.75 340
Effi-MVS+-dtu98.26 15297.90 17599.35 7498.02 32599.49 398.02 15799.16 19698.29 12697.64 26497.99 28496.44 18399.95 1796.66 18998.93 29598.60 304
mvs-test197.83 19297.48 20598.89 15398.02 32599.20 3397.20 23599.16 19698.29 12696.46 32697.17 32896.44 18399.92 4096.66 18997.90 33497.54 349
eth_miper_zixun_eth97.23 23497.25 21897.17 29198.00 32792.77 32694.71 34199.18 18797.27 21098.56 19998.74 19691.89 29299.69 25197.06 15299.81 8199.05 242
HY-MVS95.94 1395.90 28995.35 29797.55 27497.95 32894.79 27798.81 8196.94 33892.28 33495.17 35298.57 22989.90 30299.75 22891.20 34697.33 34798.10 324
UGNet98.53 12298.45 11198.79 16797.94 32996.96 22399.08 5798.54 28999.10 7296.82 31199.47 4996.55 17799.84 13598.56 6899.94 2899.55 87
Wanjuan Su, Qingshan Xu, Wenbing Tao: Uncertainty-guided Multi-view Stereo Network for Depth Estimation. IEEE Transactions on Circuits and Systems for Video Technology, 2022
MAR-MVS96.47 27595.70 28398.79 16797.92 33099.12 5898.28 12798.60 28792.16 33595.54 34796.17 34794.77 24799.52 31589.62 35698.23 31997.72 342
Zhenyu Xu, Yiguang Liu, Xuelei Shi, Ying Wang, Yunan Zheng: MARMVS: Matching Ambiguity Reduced Multiple View Stereo for Efficient Large Scale Scene Reconstruction. CVPR 2020
MVSTER96.86 25796.55 26397.79 25597.91 33194.21 29397.56 20598.87 25197.49 18599.06 11399.05 11880.72 35599.80 18398.44 7499.82 7799.37 173
iter_conf0596.54 27096.07 27597.92 24897.90 33294.50 28797.87 17399.14 20397.73 16498.89 14898.95 14975.75 37299.87 9498.50 7099.92 4299.40 161
API-MVS97.04 24996.91 23997.42 28297.88 33398.23 12998.18 13698.50 29297.57 17797.39 28596.75 33696.77 16599.15 35890.16 35499.02 28694.88 372
MVS_030497.64 20297.35 21398.52 20397.87 33496.69 23398.59 9598.05 31397.44 19493.74 36798.85 17593.69 27099.88 7798.11 9099.81 8198.98 255
miper_ehance_all_eth97.06 24697.03 23097.16 29397.83 33593.06 31994.66 34499.09 21195.99 26798.69 17898.45 24692.73 28499.61 28996.79 17599.03 28398.82 279
cl____97.02 25096.83 24497.58 27097.82 33694.04 29794.66 34499.16 19697.04 22898.63 18598.71 20088.68 31199.69 25197.00 15499.81 8199.00 253
DIV-MVS_self_test97.02 25096.84 24397.58 27097.82 33694.03 29894.66 34499.16 19697.04 22898.63 18598.71 20088.69 30999.69 25197.00 15499.81 8199.01 250
CANet97.87 18397.76 18298.19 23297.75 33895.51 25996.76 26499.05 21997.74 16396.93 30098.21 26895.59 21999.89 6697.86 10999.93 3399.19 225
PVSNet_089.98 2191.15 34290.30 34593.70 35197.72 33984.34 37590.24 37197.42 32590.20 35393.79 36593.09 37490.90 29698.89 36786.57 36472.76 37897.87 333
CR-MVSNet96.28 28195.95 27897.28 28797.71 34094.22 29198.11 14398.92 24392.31 33396.91 30399.37 6385.44 33299.81 17497.39 13097.36 34597.81 336
RPMNet97.02 25096.93 23597.30 28697.71 34094.22 29198.11 14399.30 14899.37 4196.91 30399.34 6986.72 31999.87 9497.53 12497.36 34597.81 336
pmmvs395.03 30694.40 31296.93 30097.70 34292.53 32995.08 33397.71 32088.57 36197.71 25998.08 28079.39 36299.82 16096.19 22499.11 27698.43 313
baseline293.73 32592.83 33196.42 31497.70 34291.28 34796.84 26089.77 37593.96 31492.44 36995.93 35079.14 36499.77 21492.94 31896.76 35598.21 319
tpm94.67 31094.34 31495.66 33097.68 34488.42 35797.88 17094.90 35494.46 30096.03 33698.56 23078.66 36599.79 19695.88 23695.01 36898.78 289
CANet_DTU97.26 23097.06 22997.84 25297.57 34594.65 28496.19 29498.79 27097.23 21895.14 35398.24 26593.22 27399.84 13597.34 13299.84 6899.04 246
tpm293.09 33292.58 33394.62 34297.56 34686.53 36597.66 19395.79 35286.15 36794.07 36398.23 26775.95 37099.53 31190.91 35096.86 35497.81 336
TR-MVS95.55 29795.12 30396.86 30797.54 34793.94 30296.49 27896.53 34494.36 30597.03 29896.61 33894.26 25899.16 35786.91 36396.31 35997.47 351
131495.74 29395.60 28796.17 32097.53 34892.75 32798.07 14898.31 30091.22 34594.25 35996.68 33795.53 22099.03 36091.64 33997.18 34896.74 359
CostFormer93.97 32293.78 31994.51 34397.53 34885.83 36897.98 16295.96 35089.29 35894.99 35598.63 22078.63 36699.62 28394.54 27596.50 35698.09 325
FMVSNet596.01 28695.20 30198.41 21597.53 34896.10 24398.74 8299.50 6497.22 22198.03 24399.04 12069.80 37699.88 7797.27 13599.71 13199.25 211
PMMVS96.51 27195.98 27798.09 23797.53 34895.84 25194.92 33798.84 26191.58 34096.05 33595.58 35595.68 21699.66 27195.59 25498.09 32898.76 292
PAPR95.29 30194.47 31097.75 25997.50 35295.14 27194.89 33898.71 28191.39 34495.35 35195.48 35894.57 25099.14 35984.95 36697.37 34398.97 259
PatchT96.65 26696.35 26897.54 27597.40 35395.32 26597.98 16296.64 34399.33 4696.89 30799.42 5784.32 34099.81 17497.69 12097.49 33897.48 350
tpm cat193.29 33093.13 32993.75 35097.39 35484.74 37197.39 21997.65 32283.39 37294.16 36098.41 24882.86 34999.39 33591.56 34195.35 36797.14 354
PatchmatchNetpermissive95.58 29695.67 28595.30 33897.34 35587.32 36397.65 19596.65 34295.30 28597.07 29598.69 20484.77 33599.75 22894.97 26598.64 30998.83 278
Fangjinhua Wang, Silvano Galliani, Christoph Vogel, Pablo Speciale, Marc Pollefeys: PatchmatchNet: Learned Multi-View Patchmatch Stereo.
Patchmtry97.35 22396.97 23498.50 20797.31 35696.47 23698.18 13698.92 24398.95 9198.78 16899.37 6385.44 33299.85 11895.96 23499.83 7499.17 231
LS3D98.63 10398.38 12499.36 6997.25 35799.38 699.12 5599.32 13299.21 5498.44 21098.88 16897.31 12899.80 18396.58 19399.34 23798.92 267
IB-MVS91.63 1992.24 33990.90 34396.27 31797.22 35891.24 34894.36 35393.33 36592.37 33292.24 37094.58 37066.20 38399.89 6693.16 31794.63 37097.66 344
Christian Sormann, Mattia Rossi, Andreas Kuhn and Friedrich Fraundorfer: IB-MVS: An Iterative Algorithm for Deep Multi-View Stereo based on Binary Decisions. BMVC 2021
tpmrst95.07 30595.46 29193.91 34897.11 35984.36 37497.62 19796.96 33694.98 28996.35 32898.80 18785.46 33199.59 29495.60 25396.23 36097.79 339
MDTV_nov1_ep1395.22 30097.06 36083.20 37697.74 18696.16 34794.37 30496.99 29998.83 18183.95 34399.53 31193.90 29897.95 333
MVS93.19 33192.09 33596.50 31396.91 36194.03 29898.07 14898.06 31268.01 37594.56 35896.48 34195.96 20699.30 34683.84 36896.89 35396.17 364
E-PMN94.17 31894.37 31393.58 35296.86 36285.71 36990.11 37297.07 33498.17 13897.82 25497.19 32784.62 33798.94 36489.77 35597.68 33796.09 368
JIA-IIPM95.52 29895.03 30497.00 29696.85 36394.03 29896.93 25295.82 35199.20 5794.63 35799.71 1283.09 34799.60 29094.42 28194.64 36997.36 352
EMVS93.83 32494.02 31693.23 35696.83 36484.96 37089.77 37396.32 34697.92 15397.43 28396.36 34686.17 32498.93 36587.68 36197.73 33695.81 369
cl2295.79 29295.39 29696.98 29896.77 36592.79 32594.40 35298.53 29094.59 29797.89 24898.17 27182.82 35099.24 35196.37 21399.03 28398.92 267
dp93.47 32893.59 32293.13 35796.64 36681.62 38097.66 19396.42 34592.80 32896.11 33198.64 21678.55 36899.59 29493.31 31592.18 37598.16 322
test-LLR93.90 32393.85 31794.04 34696.53 36784.62 37294.05 35892.39 36896.17 25894.12 36195.07 36182.30 35199.67 26395.87 23998.18 32297.82 334
test-mter92.33 33891.76 34194.04 34696.53 36784.62 37294.05 35892.39 36894.00 31394.12 36195.07 36165.63 38499.67 26395.87 23998.18 32297.82 334
TESTMET0.1,192.19 34091.77 34093.46 35396.48 36982.80 37794.05 35891.52 37194.45 30294.00 36494.88 36766.65 38199.56 30395.78 24498.11 32798.02 327
miper_enhance_ethall96.01 28695.74 28196.81 30896.41 37092.27 33493.69 36398.89 24891.14 34798.30 22097.35 32590.58 29799.58 29996.31 21799.03 28398.60 304
tpmvs95.02 30795.25 29994.33 34496.39 37185.87 36698.08 14796.83 34195.46 28195.51 34998.69 20485.91 32799.53 31194.16 28796.23 36097.58 347
CMPMVSbinary75.91 2396.29 28095.44 29398.84 15996.25 37298.69 9397.02 24599.12 20688.90 35997.83 25298.86 17289.51 30498.90 36691.92 33499.51 20798.92 267
M. Jancosek, T. Pajdla: Multi-View Reconstruction Preserving Weakly-Supported Surfaces. CVPR 2011
test0.0.03 194.51 31193.69 32096.99 29796.05 37393.61 31594.97 33693.49 36396.17 25897.57 27194.88 36782.30 35199.01 36393.60 30794.17 37298.37 317
EPMVS93.72 32693.27 32595.09 34096.04 37487.76 36198.13 14085.01 38094.69 29696.92 30198.64 21678.47 36999.31 34495.04 26396.46 35798.20 320
cascas94.79 30994.33 31596.15 32396.02 37592.36 33392.34 37099.26 16685.34 36995.08 35494.96 36692.96 28098.53 37094.41 28498.59 31297.56 348
gg-mvs-nofinetune92.37 33791.20 34295.85 32595.80 37692.38 33299.31 2681.84 38299.75 591.83 37199.74 868.29 37799.02 36187.15 36297.12 34996.16 365
gm-plane-assit94.83 37781.97 37988.07 36394.99 36499.60 29091.76 336
GG-mvs-BLEND94.76 34194.54 37892.13 33699.31 2680.47 38388.73 37691.01 37667.59 38098.16 37382.30 37394.53 37193.98 373
EPNet_dtu94.93 30894.78 30995.38 33793.58 37987.68 36296.78 26295.69 35397.35 20289.14 37598.09 27988.15 31599.49 32194.95 26699.30 24498.98 255
Wanjuan Su, Wenbing Tao: Efficient Edge-Preserving Multi-View Stereo Network for Depth Estimation. AAAI 2023
KD-MVS_2432*160092.87 33391.99 33695.51 33491.37 38089.27 35494.07 35698.14 30895.42 28297.25 28996.44 34367.86 37899.24 35191.28 34496.08 36298.02 327
miper_refine_blended92.87 33391.99 33695.51 33491.37 38089.27 35494.07 35698.14 30895.42 28297.25 28996.44 34367.86 37899.24 35191.28 34496.08 36298.02 327
EPNet96.14 28495.44 29398.25 22890.76 38295.50 26097.92 16694.65 35598.97 8792.98 36898.85 17589.12 30799.87 9495.99 23299.68 14799.39 163
Wanjuan Su, Wenbing Tao: Efficient Edge-Preserving Multi-View Stereo Network for Depth Estimation. AAAI 2023
test_method79.78 34479.50 34780.62 36080.21 38345.76 38570.82 37498.41 29731.08 37880.89 37997.71 30184.85 33497.37 37491.51 34280.03 37798.75 293
tmp_tt78.77 34578.73 34878.90 36158.45 38474.76 38494.20 35578.26 38439.16 37786.71 37792.82 37580.50 35675.19 38086.16 36592.29 37486.74 375
testmvs17.12 34720.53 3506.87 36312.05 3854.20 38793.62 3646.73 3864.62 38110.41 38124.33 3788.28 3863.56 3829.69 38015.07 37912.86 378
test12317.04 34820.11 3517.82 36210.25 3864.91 38694.80 3394.47 3874.93 38010.00 38224.28 3799.69 3853.64 38110.14 37912.43 38014.92 377
test_blank0.00 3510.00 3540.00 3640.00 3870.00 3880.00 3750.00 3880.00 3820.00 3830.00 3820.00 3870.00 3830.00 3810.00 3810.00 379
eth-test20.00 387
eth-test0.00 387
uanet_test0.00 3510.00 3540.00 3640.00 3870.00 3880.00 3750.00 3880.00 3820.00 3830.00 3820.00 3870.00 3830.00 3810.00 3810.00 379
DCPMVS0.00 3510.00 3540.00 3640.00 3870.00 3880.00 3750.00 3880.00 3820.00 3830.00 3820.00 3870.00 3830.00 3810.00 3810.00 379
cdsmvs_eth3d_5k24.66 34632.88 3490.00 3640.00 3870.00 3880.00 37599.10 2100.00 3820.00 38397.58 30999.21 100.00 3830.00 3810.00 3810.00 379
pcd_1.5k_mvsjas8.17 34910.90 3520.00 3640.00 3870.00 3880.00 3750.00 3880.00 3820.00 3830.00 38298.07 680.00 3830.00 3810.00 3810.00 379
sosnet-low-res0.00 3510.00 3540.00 3640.00 3870.00 3880.00 3750.00 3880.00 3820.00 3830.00 3820.00 3870.00 3830.00 3810.00 3810.00 379
sosnet0.00 3510.00 3540.00 3640.00 3870.00 3880.00 3750.00 3880.00 3820.00 3830.00 3820.00 3870.00 3830.00 3810.00 3810.00 379
uncertanet0.00 3510.00 3540.00 3640.00 3870.00 3880.00 3750.00 3880.00 3820.00 3830.00 3820.00 3870.00 3830.00 3810.00 3810.00 379
Regformer0.00 3510.00 3540.00 3640.00 3870.00 3880.00 3750.00 3880.00 3820.00 3830.00 3820.00 3870.00 3830.00 3810.00 3810.00 379
ab-mvs-re8.12 35010.83 3530.00 3640.00 3870.00 3880.00 3750.00 3880.00 3820.00 38397.48 3160.00 3870.00 3830.00 3810.00 3810.00 379
uanet0.00 3510.00 3540.00 3640.00 3870.00 3880.00 3750.00 3880.00 3820.00 3830.00 3820.00 3870.00 3830.00 3810.00 3810.00 379
PC_three_145293.27 32199.40 5798.54 23198.22 5797.00 37595.17 26199.45 22099.49 114
test_241102_TWO99.30 14898.03 14699.26 8699.02 12497.51 11499.88 7796.91 16299.60 17599.66 42
test_0728_THIRD98.17 13899.08 11199.02 12497.89 8199.88 7797.07 15099.71 13199.70 35
GSMVS98.81 282
sam_mvs184.74 33698.81 282
sam_mvs84.29 342
MTGPAbinary99.20 178
test_post197.59 20220.48 38183.07 34899.66 27194.16 287
test_post21.25 38083.86 34499.70 247
patchmatchnet-post98.77 19284.37 33999.85 118
MTMP97.93 16591.91 370
test9_res93.28 31699.15 26899.38 170
agg_prior292.50 33099.16 26599.37 173
test_prior497.97 15795.86 307
test_prior295.74 31396.48 24996.11 33197.63 30795.92 20894.16 28799.20 258
旧先验295.76 31188.56 36297.52 27599.66 27194.48 277
新几何295.93 304
无先验95.74 31398.74 27889.38 35799.73 23692.38 33199.22 219
原ACMM295.53 320
testdata299.79 19692.80 324
segment_acmp97.02 149
testdata195.44 32596.32 255
plane_prior599.27 16199.70 24794.42 28199.51 20799.45 138
plane_prior497.98 285
plane_prior397.78 17997.41 19697.79 255
plane_prior297.77 18298.20 135
plane_prior97.65 18897.07 24496.72 24199.36 233
n20.00 388
nn0.00 388
door-mid99.57 38
test1198.87 251
door99.41 98
HQP5-MVS96.79 228
BP-MVS92.82 322
HQP4-MVS95.56 34399.54 30999.32 193
HQP3-MVS99.04 22299.26 251
HQP2-MVS93.84 264
MDTV_nov1_ep13_2view74.92 38397.69 19090.06 35597.75 25885.78 32893.52 30998.69 299
ACMMP++_ref99.77 102
ACMMP++99.68 147
Test By Simon96.52 178