This table lists the benchmark results for the high-res multi-view scenario. The following metrics are evaluated:

(*) For exact definitions, detailing how potentially incomplete ground truth is taken into account, see our paper.

The datasets are grouped into different categories, and result averages are computed for a category and method if results of the method are available for all datasets within the category. Note that the category "all" includes both the high-res multi-view and the low-res many-view scenarios.

Methods with suffix _ROB may participate in the Robust Vision Challenge.

Click a dataset result cell to show a visualization of the reconstruction. For training datasets, ground truth and accuracy / completeness visualizations are also available. The visualizations may not work with mobile browsers.




Method Infoallhigh-res
multi-view
indooroutdoorbotani.boulde.bridgedoorexhibi.lectur.living.loungeobserv.old co.statueterrac.
sort bysort bysort bysort bysorted bysort bysort bysort bysort bysort bysort bysort bysort bysort bysort bysort by
LCM-MVSNet99.93 199.92 199.94 199.99 199.97 199.90 199.89 1099.98 199.99 199.96 199.77 2100.00 199.81 9100.00 199.85 19
Gipumacopyleft99.03 5899.16 4398.64 18099.94 298.51 10299.32 2399.75 2999.58 2598.60 21099.62 3498.22 7299.51 32497.70 14099.73 14097.89 349
S. Galliani, K. Lasinger, K. Schindler: Massively Parallel Multiview Stereopsis by Surface Normal Diffusion. ICCV 2015
OurMVSNet-221017-099.37 2499.31 3099.53 3499.91 398.98 6599.63 699.58 5299.44 3899.78 2599.76 1096.39 19399.92 4999.44 3499.92 5399.68 53
pmmvs699.67 399.70 399.60 1199.90 499.27 2299.53 799.76 2899.64 1599.84 2099.83 399.50 899.87 9999.36 3699.92 5399.64 62
PS-MVSNAJss99.46 1499.49 1299.35 7099.90 498.15 12999.20 4599.65 4399.48 3299.92 899.71 1798.07 8499.96 1299.53 28100.00 199.93 8
testf199.25 3399.16 4399.51 4399.89 699.63 398.71 9299.69 3498.90 9999.43 7499.35 8498.86 2899.67 26497.81 13299.81 9899.24 222
APD_test299.25 3399.16 4399.51 4399.89 699.63 398.71 9299.69 3498.90 9999.43 7499.35 8498.86 2899.67 26497.81 13299.81 9899.24 222
ANet_high99.57 799.67 599.28 8699.89 698.09 13699.14 5499.93 499.82 399.93 699.81 599.17 1899.94 3499.31 39100.00 199.82 23
anonymousdsp99.51 1199.47 1699.62 699.88 999.08 6399.34 2099.69 3498.93 9799.65 4399.72 1698.93 2699.95 2399.11 51100.00 199.82 23
v7n99.53 999.57 999.41 6099.88 998.54 10099.45 1099.61 4899.66 1399.68 3799.66 2798.44 5799.95 2399.73 1799.96 2599.75 41
mvs_tets99.63 599.67 599.49 4899.88 998.61 9299.34 2099.71 3199.27 5899.90 1299.74 1399.68 499.97 499.55 2799.99 599.88 14
test_fmvsmconf0.01_n99.57 799.63 799.36 6499.87 1298.13 13298.08 16099.95 199.45 3699.98 299.75 1199.80 199.97 499.82 699.99 599.99 1
RRT_MVS99.09 5298.94 6599.55 2399.87 1298.82 7899.48 998.16 31599.49 3199.59 5099.65 3094.79 25499.95 2399.45 3399.96 2599.88 14
jajsoiax99.58 699.61 899.48 5199.87 1298.61 9299.28 3799.66 4299.09 8299.89 1599.68 2099.53 799.97 499.50 3099.99 599.87 16
test_djsdf99.52 1099.51 1199.53 3499.86 1598.74 8299.39 1799.56 6699.11 7299.70 3399.73 1599.00 2299.97 499.26 4299.98 1299.89 11
MIMVSNet199.38 2399.32 2899.55 2399.86 1599.19 3799.41 1399.59 5099.59 2399.71 3199.57 4297.12 15399.90 6399.21 4799.87 7699.54 107
bld_raw_dy_0_6499.07 5699.00 6099.29 8499.85 1798.18 12699.11 5899.40 12199.33 5099.38 8599.44 7195.21 23799.97 499.31 3999.98 1299.73 43
LTVRE_ROB98.40 199.67 399.71 299.56 2199.85 1799.11 5999.90 199.78 2699.63 1799.78 2599.67 2599.48 999.81 17799.30 4199.97 2099.77 33
Andreas Kuhn, Heiko Hirschmüller, Daniel Scharstein, Helmut Mayer: A TV Prior for High-Quality Scalable Multi-View Stereo Reconstruction. International Journal of Computer Vision 2016
UniMVSNet_ETH3D99.69 299.69 499.69 399.84 1999.34 1599.69 499.58 5299.90 299.86 1899.78 899.58 699.95 2399.00 6099.95 3099.78 31
mvsmamba99.24 3799.15 4899.49 4899.83 2098.85 7499.41 1399.55 7099.54 2799.40 8199.52 5795.86 22099.91 5899.32 3899.95 3099.70 50
SixPastTwentyTwo98.75 9498.62 10399.16 10699.83 2097.96 15699.28 3798.20 31299.37 4599.70 3399.65 3092.65 29599.93 3999.04 5799.84 8499.60 73
Baseline_NR-MVSNet98.98 6498.86 7399.36 6499.82 2298.55 9797.47 24099.57 5999.37 4599.21 11899.61 3796.76 17799.83 15498.06 11699.83 9199.71 45
pm-mvs199.44 1599.48 1499.33 7899.80 2398.63 8999.29 3399.63 4499.30 5599.65 4399.60 3999.16 2099.82 16499.07 5499.83 9199.56 96
TransMVSNet (Re)99.44 1599.47 1699.36 6499.80 2398.58 9599.27 3999.57 5999.39 4399.75 2899.62 3499.17 1899.83 15499.06 5599.62 18599.66 57
K. test v398.00 18897.66 21099.03 13199.79 2597.56 18699.19 4992.47 38399.62 2099.52 6099.66 2789.61 31899.96 1299.25 4499.81 9899.56 96
test_fmvsmconf0.1_n99.49 1299.54 1099.34 7399.78 2698.11 13397.77 20299.90 999.33 5099.97 399.66 2799.71 399.96 1299.79 1199.99 599.96 5
APD_test198.83 8298.66 9799.34 7399.78 2699.47 698.42 12999.45 10598.28 13698.98 14899.19 11497.76 10699.58 30396.57 21799.55 21198.97 267
test_vis3_rt99.14 4499.17 4199.07 12199.78 2698.38 10998.92 7699.94 297.80 17299.91 1199.67 2597.15 15298.91 37999.76 1499.56 20899.92 9
EGC-MVSNET85.24 36080.54 36399.34 7399.77 2999.20 3499.08 5999.29 17312.08 39720.84 39899.42 7497.55 12499.85 12097.08 17299.72 14798.96 269
Anonymous2024052198.69 10598.87 7098.16 23799.77 2995.11 27999.08 5999.44 10999.34 4999.33 9599.55 4894.10 27299.94 3499.25 4499.96 2599.42 160
FC-MVSNet-test99.27 3099.25 3699.34 7399.77 2998.37 11199.30 3299.57 5999.61 2299.40 8199.50 5997.12 15399.85 12099.02 5999.94 3899.80 27
test_vis1_n98.31 16098.50 11997.73 27099.76 3294.17 30598.68 9599.91 796.31 27199.79 2499.57 4292.85 29299.42 34099.79 1199.84 8499.60 73
test_fmvs399.12 4999.41 1998.25 22999.76 3295.07 28099.05 6599.94 297.78 17499.82 2199.84 298.56 5099.71 24599.96 199.96 2599.97 3
XXY-MVS99.14 4499.15 4899.10 11599.76 3297.74 17698.85 8299.62 4598.48 12399.37 8899.49 6398.75 3499.86 10898.20 10899.80 10899.71 45
TDRefinement99.42 1999.38 2199.55 2399.76 3299.33 1699.68 599.71 3199.38 4499.53 5899.61 3798.64 4199.80 18498.24 10599.84 8499.52 117
fmvsm_s_conf0.1_n_a99.17 4099.30 3298.80 15999.75 3696.59 23197.97 18099.86 1398.22 13999.88 1799.71 1798.59 4799.84 13799.73 1799.98 1299.98 2
tt080598.69 10598.62 10398.90 14999.75 3699.30 1799.15 5396.97 34598.86 10298.87 17697.62 32398.63 4398.96 37699.41 3598.29 33298.45 325
test_vis1_n_192098.40 14998.92 6796.81 32399.74 3890.76 36998.15 15299.91 798.33 12899.89 1599.55 4895.07 24299.88 8299.76 1499.93 4299.79 28
FOURS199.73 3999.67 299.43 1199.54 7599.43 4099.26 110
PEN-MVS99.41 2099.34 2599.62 699.73 3999.14 5299.29 3399.54 7599.62 2099.56 5199.42 7498.16 8099.96 1298.78 7199.93 4299.77 33
lessismore_v098.97 13899.73 3997.53 18886.71 39699.37 8899.52 5789.93 31699.92 4998.99 6199.72 14799.44 153
SteuartSystems-ACMMP98.79 8798.54 11499.54 2799.73 3999.16 4398.23 14399.31 15797.92 16398.90 16698.90 18798.00 9099.88 8296.15 24899.72 14799.58 85
Skip Steuart: Steuart Systems R&D Blog.
PVSNet_Blended_VisFu98.17 17798.15 16998.22 23299.73 3995.15 27697.36 24699.68 3994.45 32298.99 14799.27 9996.87 16799.94 3497.13 16999.91 6199.57 90
Vis-MVSNetpermissive99.34 2599.36 2299.27 8999.73 3998.26 11899.17 5099.78 2699.11 7299.27 10699.48 6498.82 3199.95 2398.94 6399.93 4299.59 79
Jingyang Zhang, Yao Yao, Shiwei Li, Zixin Luo, Tian Fang: Visibility-aware Multiview Stereo Network. BMVC 2020
SSC-MVS98.71 9898.74 8298.62 18599.72 4596.08 24798.74 8698.64 29399.74 699.67 3999.24 10694.57 25899.95 2399.11 5199.24 26599.82 23
test_f98.67 11398.87 7098.05 24699.72 4595.59 25898.51 11699.81 2396.30 27399.78 2599.82 496.14 20298.63 38499.82 699.93 4299.95 6
ACMH96.65 799.25 3399.24 3799.26 9199.72 4598.38 10999.07 6299.55 7098.30 13199.65 4399.45 7099.22 1599.76 22098.44 9699.77 12299.64 62
Qingshan Xu and Wenbing Tao: Multi-Scale Geometric Consistency Guided Multi-View Stereo. CVPR 2019
fmvsm_s_conf0.1_n99.16 4399.33 2698.64 18099.71 4896.10 24297.87 19299.85 1598.56 12099.90 1299.68 2098.69 3999.85 12099.72 1999.98 1299.97 3
PS-CasMVS99.40 2199.33 2699.62 699.71 4899.10 6099.29 3399.53 7899.53 2999.46 6999.41 7798.23 6999.95 2398.89 6799.95 3099.81 26
DTE-MVSNet99.43 1899.35 2399.66 499.71 4899.30 1799.31 2799.51 8299.64 1599.56 5199.46 6698.23 6999.97 498.78 7199.93 4299.72 44
WR-MVS_H99.33 2699.22 3899.65 599.71 4899.24 2599.32 2399.55 7099.46 3599.50 6599.34 8897.30 14299.93 3998.90 6599.93 4299.77 33
HPM-MVS_fast99.01 5998.82 7699.57 1699.71 4899.35 1299.00 6999.50 8497.33 21698.94 16298.86 19798.75 3499.82 16497.53 14799.71 15299.56 96
ACMH+96.62 999.08 5599.00 6099.33 7899.71 4898.83 7698.60 10299.58 5299.11 7299.53 5899.18 11798.81 3299.67 26496.71 20999.77 12299.50 122
PMVScopyleft91.26 2097.86 19997.94 18897.65 27499.71 4897.94 15898.52 11198.68 28998.99 9197.52 29499.35 8497.41 13798.18 38891.59 35699.67 17196.82 376
Y. Furukawa, J. Ponce: Accurate, dense, and robust multiview stereopsis. PAMI (2010)
FIs99.14 4499.09 5399.29 8499.70 5598.28 11799.13 5599.52 8199.48 3299.24 11599.41 7796.79 17499.82 16498.69 8099.88 7399.76 37
VPNet98.87 7798.83 7599.01 13399.70 5597.62 18598.43 12799.35 13999.47 3499.28 10499.05 14696.72 18099.82 16498.09 11499.36 24599.59 79
test_cas_vis1_n_192098.33 15798.68 9497.27 30199.69 5792.29 34898.03 16899.85 1597.62 18499.96 499.62 3493.98 27399.74 23299.52 2999.86 7999.79 28
MP-MVS-pluss98.57 12698.23 15999.60 1199.69 5799.35 1297.16 26399.38 12694.87 31298.97 15298.99 16498.01 8999.88 8297.29 15799.70 15799.58 85
MP-MVS-pluss: MP-MVS-pluss. MP-MVS-pluss
SDMVSNet99.23 3899.32 2898.96 13999.68 5997.35 19798.84 8499.48 9399.69 999.63 4699.68 2099.03 2199.96 1297.97 12399.92 5399.57 90
sd_testset99.28 2999.31 3099.19 10299.68 5998.06 14599.41 1399.30 16599.69 999.63 4699.68 2099.25 1499.96 1297.25 16099.92 5399.57 90
test_fmvs1_n98.09 18298.28 15397.52 28799.68 5993.47 32898.63 9899.93 495.41 30199.68 3799.64 3291.88 30499.48 32999.82 699.87 7699.62 66
CHOSEN 1792x268897.49 22697.14 24298.54 20299.68 5996.09 24596.50 29499.62 4591.58 36098.84 18098.97 17092.36 29799.88 8296.76 20299.95 3099.67 56
tfpnnormal98.90 7498.90 6998.91 14699.67 6397.82 16999.00 6999.44 10999.45 3699.51 6499.24 10698.20 7599.86 10895.92 25799.69 16099.04 255
MTAPA98.88 7698.64 10099.61 999.67 6399.36 1198.43 12799.20 19698.83 10698.89 16898.90 18796.98 16399.92 4997.16 16499.70 15799.56 96
test_fmvsmvis_n_192099.26 3299.49 1298.54 20299.66 6596.97 21798.00 17499.85 1599.24 6099.92 899.50 5999.39 1199.95 2399.89 399.98 1298.71 306
WB-MVS98.52 13898.55 11298.43 21499.65 6695.59 25898.52 11198.77 28099.65 1499.52 6099.00 16394.34 26499.93 3998.65 8398.83 30999.76 37
CP-MVSNet99.21 3999.09 5399.56 2199.65 6698.96 7099.13 5599.34 14599.42 4199.33 9599.26 10197.01 16199.94 3498.74 7599.93 4299.79 28
HPM-MVScopyleft98.79 8798.53 11599.59 1599.65 6699.29 1999.16 5199.43 11596.74 25598.61 20898.38 26998.62 4499.87 9996.47 22999.67 17199.59 79
Chunlin Ren, Qingshan Xu, Shikun Zhang, Jiaqi Yang: Hierarchical Prior Mining for Non-local Multi-View Stereo. ICCV 2023
RPSCF98.62 12198.36 14399.42 5899.65 6699.42 798.55 10799.57 5997.72 17898.90 16699.26 10196.12 20499.52 32095.72 26899.71 15299.32 203
test_fmvsmconf_n99.44 1599.48 1499.31 8399.64 7098.10 13597.68 21399.84 1899.29 5699.92 899.57 4299.60 599.96 1299.74 1699.98 1299.89 11
TSAR-MVS + MP.98.63 11998.49 12399.06 12799.64 7097.90 16098.51 11698.94 24796.96 24499.24 11598.89 19397.83 10099.81 17796.88 19299.49 23099.48 136
Zhenlong Yuan, Jiakai Cao, Zhaoqi Wang, Zhaoxin Li: TSAR-MVS: Textureless-aware Segmentation and Correlative Refinement Guided Multi-View Stereo. Pattern Recognition
PM-MVS98.82 8398.72 8699.12 11199.64 7098.54 10097.98 17799.68 3997.62 18499.34 9499.18 11797.54 12599.77 21497.79 13499.74 13799.04 255
KD-MVS_self_test99.25 3399.18 4099.44 5799.63 7399.06 6498.69 9499.54 7599.31 5399.62 4999.53 5497.36 14099.86 10899.24 4699.71 15299.39 175
EU-MVSNet97.66 21698.50 11995.13 35699.63 7385.84 38698.35 13598.21 31198.23 13899.54 5499.46 6695.02 24399.68 26198.24 10599.87 7699.87 16
HyFIR lowres test97.19 25096.60 27598.96 13999.62 7597.28 20195.17 34899.50 8494.21 32799.01 14598.32 27786.61 33699.99 297.10 17199.84 8499.60 73
ACMMP_NAP98.75 9498.48 12499.57 1699.58 7699.29 1997.82 19799.25 18596.94 24698.78 18799.12 13398.02 8899.84 13797.13 16999.67 17199.59 79
nrg03099.40 2199.35 2399.54 2799.58 7699.13 5598.98 7299.48 9399.68 1199.46 6999.26 10198.62 4499.73 23799.17 5099.92 5399.76 37
VDDNet98.21 17297.95 18699.01 13399.58 7697.74 17699.01 6797.29 33899.67 1298.97 15299.50 5990.45 31399.80 18497.88 12999.20 27199.48 136
COLMAP_ROBcopyleft96.50 1098.99 6198.85 7499.41 6099.58 7699.10 6098.74 8699.56 6699.09 8299.33 9599.19 11498.40 5999.72 24495.98 25599.76 13399.42 160
Johannes L. Schönberger, Enliang Zheng, Marc Pollefeys, Jan-Michael Frahm: Pixelwise View Selection for Unstructured Multi-View Stereo. ECCV 2016
test_fmvsm_n_192099.33 2699.45 1898.99 13599.57 8097.73 17897.93 18199.83 2099.22 6199.93 699.30 9599.42 1099.96 1299.85 499.99 599.29 212
ZNCC-MVS98.68 11098.40 13699.54 2799.57 8099.21 2898.46 12499.29 17397.28 22298.11 25398.39 26798.00 9099.87 9996.86 19599.64 17999.55 103
MSP-MVS98.40 14998.00 18399.61 999.57 8099.25 2498.57 10599.35 13997.55 19499.31 10397.71 31694.61 25799.88 8296.14 24999.19 27499.70 50
Zhenlong Yuan, Cong Liu, Fei Shen, Zhaoxin Li, Jingguo luo, Tianlu Mao and Zhaoqi Wang: MSP-MVS: Multi-granularity Segmentation Prior Guided Multi-View Stereo. AAAI2025
testgi98.32 15898.39 13998.13 23899.57 8095.54 26197.78 20099.49 9197.37 21399.19 12097.65 32098.96 2499.49 32696.50 22898.99 29899.34 196
MP-MVScopyleft98.46 14398.09 17499.54 2799.57 8099.22 2798.50 11899.19 20097.61 18797.58 28898.66 23397.40 13899.88 8294.72 29399.60 19299.54 107
Rongxuan Tan, Qing Wang, et al.: MP-MVS: Multi-Scale Windows PatchMatch and Planar Prior Multi-View Stereo.
LPG-MVS_test98.71 9898.46 12899.47 5499.57 8098.97 6698.23 14399.48 9396.60 26099.10 13099.06 13998.71 3799.83 15495.58 27599.78 11899.62 66
LGP-MVS_train99.47 5499.57 8098.97 6699.48 9396.60 26099.10 13099.06 13998.71 3799.83 15495.58 27599.78 11899.62 66
IS-MVSNet98.19 17497.90 19299.08 11999.57 8097.97 15399.31 2798.32 30799.01 9098.98 14899.03 15091.59 30599.79 19795.49 27799.80 10899.48 136
dcpmvs_298.78 8999.11 5097.78 26199.56 8893.67 32599.06 6399.86 1399.50 3099.66 4099.26 10197.21 15099.99 298.00 12199.91 6199.68 53
test_040298.76 9398.71 8898.93 14399.56 8898.14 13198.45 12699.34 14599.28 5798.95 15598.91 18498.34 6599.79 19795.63 27299.91 6198.86 285
EPP-MVSNet98.30 16198.04 18099.07 12199.56 8897.83 16699.29 3398.07 31999.03 8898.59 21299.13 13192.16 30099.90 6396.87 19399.68 16599.49 126
ACMMPcopyleft98.75 9498.50 11999.52 3999.56 8899.16 4398.87 7999.37 13097.16 23698.82 18499.01 16097.71 10999.87 9996.29 24099.69 16099.54 107
Qingshan Xu, Weihang Kong, Wenbing Tao, Marc Pollefeys: Multi-Scale Geometric Consistency Guided and Planar Prior Assisted Multi-View Stereo. IEEE Transactions on Pattern Analysis and Machine Intelligence
fmvsm_s_conf0.5_n_a99.10 5199.20 3998.78 16599.55 9296.59 23197.79 19999.82 2298.21 14099.81 2299.53 5498.46 5699.84 13799.70 2099.97 2099.90 10
fmvsm_s_conf0.5_n99.09 5299.26 3598.61 18899.55 9296.09 24597.74 20799.81 2398.55 12199.85 1999.55 4898.60 4699.84 13799.69 2299.98 1299.89 11
FMVSNet199.17 4099.17 4199.17 10399.55 9298.24 12099.20 4599.44 10999.21 6399.43 7499.55 4897.82 10399.86 10898.42 9899.89 7299.41 163
Vis-MVSNet (Re-imp)97.46 22897.16 23998.34 22299.55 9296.10 24298.94 7498.44 30298.32 13098.16 24798.62 24288.76 32399.73 23793.88 31999.79 11399.18 236
ACMM96.08 1298.91 7298.73 8499.48 5199.55 9299.14 5298.07 16299.37 13097.62 18499.04 14198.96 17398.84 3099.79 19797.43 15199.65 17799.49 126
Qingshan Xu and Wenbing Tao: Multi-Scale Geometric Consistency Guided Multi-View Stereo. CVPR 2019
test_fmvs298.70 10298.97 6497.89 25499.54 9794.05 30798.55 10799.92 696.78 25399.72 2999.78 896.60 18599.67 26499.91 299.90 6899.94 7
mPP-MVS98.64 11798.34 14699.54 2799.54 9799.17 3998.63 9899.24 19097.47 20098.09 25598.68 22897.62 11899.89 7396.22 24399.62 18599.57 90
XVG-ACMP-BASELINE98.56 12798.34 14699.22 9999.54 9798.59 9497.71 21099.46 10297.25 22598.98 14898.99 16497.54 12599.84 13795.88 25899.74 13799.23 224
region2R98.69 10598.40 13699.54 2799.53 10099.17 3998.52 11199.31 15797.46 20598.44 22998.51 25497.83 10099.88 8296.46 23099.58 20199.58 85
PGM-MVS98.66 11498.37 14299.55 2399.53 10099.18 3898.23 14399.49 9197.01 24398.69 19798.88 19498.00 9099.89 7395.87 26199.59 19699.58 85
Patchmatch-RL test97.26 24397.02 24697.99 25099.52 10295.53 26296.13 31499.71 3197.47 20099.27 10699.16 12384.30 35799.62 28897.89 12699.77 12298.81 292
ACMMPR98.70 10298.42 13499.54 2799.52 10299.14 5298.52 11199.31 15797.47 20098.56 21798.54 25097.75 10799.88 8296.57 21799.59 19699.58 85
GST-MVS98.61 12298.30 15199.52 3999.51 10499.20 3498.26 14199.25 18597.44 20898.67 19998.39 26797.68 11099.85 12096.00 25399.51 22299.52 117
Anonymous2023120698.21 17298.21 16098.20 23399.51 10495.43 26798.13 15399.32 15296.16 27698.93 16398.82 20696.00 21099.83 15497.32 15699.73 14099.36 190
ACMP95.32 1598.41 14798.09 17499.36 6499.51 10498.79 8097.68 21399.38 12695.76 28998.81 18698.82 20698.36 6199.82 16494.75 29099.77 12299.48 136
Qingshan Xu and Wenbing Tao: Planar Prior Assisted PatchMatch Multi-View Stereo. AAAI 2020
DVP-MVScopyleft98.77 9298.52 11699.52 3999.50 10799.21 2898.02 17098.84 26997.97 15899.08 13299.02 15197.61 11999.88 8296.99 17999.63 18299.48 136
Zhenlong Yuan, Jinguo Luo, Fei Shen, Zhaoxin Li, Cong Liu, Tianlu Mao, Zhaoqi Wang: DVP-MVS: Synergize Depth-Edge and Visibility Prior for Multi-View Stereo. AAAI2025
test_0728_SECOND99.60 1199.50 10799.23 2698.02 17099.32 15299.88 8296.99 17999.63 18299.68 53
test072699.50 10799.21 2898.17 15199.35 13997.97 15899.26 11099.06 13997.61 119
AllTest98.44 14598.20 16199.16 10699.50 10798.55 9798.25 14299.58 5296.80 25198.88 17299.06 13997.65 11399.57 30594.45 30099.61 19099.37 184
TestCases99.16 10699.50 10798.55 9799.58 5296.80 25198.88 17299.06 13997.65 11399.57 30594.45 30099.61 19099.37 184
XVG-OURS98.53 13598.34 14699.11 11399.50 10798.82 7895.97 31899.50 8497.30 22099.05 13998.98 16899.35 1299.32 35495.72 26899.68 16599.18 236
EG-PatchMatch MVS98.99 6199.01 5998.94 14299.50 10797.47 19098.04 16799.59 5098.15 15199.40 8199.36 8398.58 4999.76 22098.78 7199.68 16599.59 79
SED-MVS98.91 7298.72 8699.49 4899.49 11499.17 3998.10 15899.31 15798.03 15599.66 4099.02 15198.36 6199.88 8296.91 18599.62 18599.41 163
IU-MVS99.49 11499.15 4798.87 26092.97 34599.41 7896.76 20299.62 18599.66 57
test_241102_ONE99.49 11499.17 3999.31 15797.98 15799.66 4098.90 18798.36 6199.48 329
UA-Net99.47 1399.40 2099.70 299.49 11499.29 1999.80 399.72 3099.82 399.04 14199.81 598.05 8799.96 1298.85 6899.99 599.86 18
HFP-MVS98.71 9898.44 13199.51 4399.49 11499.16 4398.52 11199.31 15797.47 20098.58 21498.50 25897.97 9499.85 12096.57 21799.59 19699.53 114
VPA-MVSNet99.30 2899.30 3299.28 8699.49 11498.36 11499.00 6999.45 10599.63 1799.52 6099.44 7198.25 6799.88 8299.09 5399.84 8499.62 66
XVG-OURS-SEG-HR98.49 14098.28 15399.14 10999.49 11498.83 7696.54 29299.48 9397.32 21899.11 12798.61 24499.33 1399.30 35796.23 24298.38 32999.28 214
114514_t96.50 28595.77 29298.69 17799.48 12197.43 19497.84 19699.55 7081.42 39196.51 34198.58 24795.53 22899.67 26493.41 33199.58 20198.98 264
IterMVS-LS98.55 13198.70 9198.09 23999.48 12194.73 28897.22 25999.39 12498.97 9399.38 8599.31 9496.00 21099.93 3998.58 8699.97 2099.60 73
Fangjinhua Wang, Silvano Galliani, Christoph Vogel, Marc Pollefeys: IterMVS: Iterative Probability Estimation for Efficient Multi-View Stereo.
v899.01 5999.16 4398.57 19499.47 12396.31 23998.90 7799.47 10099.03 8899.52 6099.57 4296.93 16499.81 17799.60 2399.98 1299.60 73
XVS98.72 9798.45 12999.53 3499.46 12499.21 2898.65 9699.34 14598.62 11397.54 29298.63 24097.50 13199.83 15496.79 19899.53 21799.56 96
X-MVStestdata94.32 32892.59 34699.53 3499.46 12499.21 2898.65 9699.34 14598.62 11397.54 29245.85 39597.50 13199.83 15496.79 19899.53 21799.56 96
test20.0398.78 8998.77 8198.78 16599.46 12497.20 20797.78 20099.24 19099.04 8799.41 7898.90 18797.65 11399.76 22097.70 14099.79 11399.39 175
CSCG98.68 11098.50 11999.20 10099.45 12798.63 8998.56 10699.57 5997.87 16798.85 17798.04 29897.66 11299.84 13796.72 20799.81 9899.13 244
GeoE99.05 5798.99 6399.25 9499.44 12898.35 11598.73 8999.56 6698.42 12498.91 16598.81 20898.94 2599.91 5898.35 10099.73 14099.49 126
v14898.45 14498.60 10898.00 24999.44 12894.98 28197.44 24299.06 22898.30 13199.32 10198.97 17096.65 18399.62 28898.37 9999.85 8099.39 175
v1098.97 6599.11 5098.55 19999.44 12896.21 24198.90 7799.55 7098.73 10799.48 6699.60 3996.63 18499.83 15499.70 2099.99 599.61 72
V4298.78 8998.78 8098.76 16999.44 12897.04 21498.27 14099.19 20097.87 16799.25 11499.16 12396.84 16899.78 20899.21 4799.84 8499.46 145
MDA-MVSNet-bldmvs97.94 19297.91 19198.06 24499.44 12894.96 28296.63 29099.15 21698.35 12698.83 18199.11 13494.31 26599.85 12096.60 21498.72 31599.37 184
casdiffmvs_mvgpermissive99.12 4999.16 4398.99 13599.43 13397.73 17898.00 17499.62 4599.22 6199.55 5399.22 11098.93 2699.75 22798.66 8299.81 9899.50 122
Fangjinhua Wang, Qingshan Xu, Yew-Soon Ong, Marc Pollefeys: Lightweight and Accurate Multi-View Stereo With Confidence-Aware Diffusion Model. IEEE T-PAMI 2025
test111196.49 28696.82 25895.52 35099.42 13487.08 38399.22 4287.14 39599.11 7299.46 6999.58 4188.69 32499.86 10898.80 7099.95 3099.62 66
v2v48298.56 12798.62 10398.37 22099.42 13495.81 25597.58 22899.16 21197.90 16599.28 10499.01 16095.98 21499.79 19799.33 3799.90 6899.51 119
OPM-MVS98.56 12798.32 15099.25 9499.41 13698.73 8597.13 26599.18 20497.10 23998.75 19398.92 18398.18 7699.65 28096.68 21199.56 20899.37 184
Ray L. Khuboni, Hongjun Xu: Octagram Propagation Matching for Multi-Scale View Stereopsis (OPM-MVS).
PMMVS298.07 18498.08 17798.04 24799.41 13694.59 29494.59 36699.40 12197.50 19798.82 18498.83 20396.83 17099.84 13797.50 14999.81 9899.71 45
test_one_060199.39 13899.20 3499.31 15798.49 12298.66 20199.02 15197.64 116
mvsany_test398.87 7798.92 6798.74 17699.38 13996.94 22198.58 10499.10 22396.49 26499.96 499.81 598.18 7699.45 33598.97 6299.79 11399.83 22
patch_mono-298.51 13998.63 10198.17 23599.38 13994.78 28597.36 24699.69 3498.16 15098.49 22599.29 9697.06 15699.97 498.29 10499.91 6199.76 37
test250692.39 35291.89 35593.89 36799.38 13982.28 39799.32 2366.03 40399.08 8498.77 19099.57 4266.26 39899.84 13798.71 7899.95 3099.54 107
ECVR-MVScopyleft96.42 28896.61 27395.85 34299.38 13988.18 37999.22 4286.00 39799.08 8499.36 9099.57 4288.47 32999.82 16498.52 9299.95 3099.54 107
casdiffmvspermissive98.95 6899.00 6098.81 15799.38 13997.33 19897.82 19799.57 5999.17 7099.35 9299.17 12198.35 6499.69 25298.46 9599.73 14099.41 163
Fangjinhua Wang, Qingshan Xu, Yew-Soon Ong, Marc Pollefeys: Lightweight and Accurate Multi-View Stereo With Confidence-Aware Diffusion Model. IEEE T-PAMI 2025
baseline98.96 6799.02 5898.76 16999.38 13997.26 20298.49 11999.50 8498.86 10299.19 12099.06 13998.23 6999.69 25298.71 7899.76 13399.33 201
TranMVSNet+NR-MVSNet99.17 4099.07 5699.46 5699.37 14598.87 7398.39 13199.42 11899.42 4199.36 9099.06 13998.38 6099.95 2398.34 10199.90 6899.57 90
tttt051795.64 30994.98 31897.64 27699.36 14693.81 32198.72 9090.47 39198.08 15498.67 19998.34 27473.88 39099.92 4997.77 13599.51 22299.20 229
test_part299.36 14699.10 6099.05 139
v114498.60 12398.66 9798.41 21699.36 14695.90 25197.58 22899.34 14597.51 19699.27 10699.15 12796.34 19899.80 18499.47 3299.93 4299.51 119
CP-MVS98.70 10298.42 13499.52 3999.36 14699.12 5798.72 9099.36 13497.54 19598.30 23998.40 26697.86 9999.89 7396.53 22699.72 14799.56 96
Test_1112_low_res96.99 26696.55 27798.31 22599.35 15095.47 26595.84 32999.53 7891.51 36296.80 33098.48 26191.36 30799.83 15496.58 21599.53 21799.62 66
DeepC-MVS97.60 498.97 6598.93 6699.10 11599.35 15097.98 15298.01 17399.46 10297.56 19299.54 5499.50 5998.97 2399.84 13798.06 11699.92 5399.49 126
Andreas Kuhn, Christian Sormann, Mattia Rossi, Oliver Erdler, Friedrich Fraundorfer: DeepC-MVS: Deep Confidence Prediction for Multi-View Stereo Reconstruction. 3DV 2020
1112_ss97.29 24296.86 25498.58 19299.34 15296.32 23896.75 28499.58 5293.14 34396.89 32597.48 33092.11 30199.86 10896.91 18599.54 21399.57 90
SF-MVS98.53 13598.27 15599.32 8099.31 15398.75 8198.19 14799.41 11996.77 25498.83 18198.90 18797.80 10499.82 16495.68 27199.52 22099.38 182
CPTT-MVS97.84 20597.36 22999.27 8999.31 15398.46 10598.29 13899.27 17994.90 31197.83 27298.37 27094.90 24599.84 13793.85 32199.54 21399.51 119
UnsupCasMVSNet_eth97.89 19597.60 21598.75 17299.31 15397.17 21097.62 22299.35 13998.72 10898.76 19298.68 22892.57 29699.74 23297.76 13995.60 38299.34 196
pmmvs-eth3d98.47 14298.34 14698.86 15199.30 15697.76 17497.16 26399.28 17695.54 29499.42 7799.19 11497.27 14599.63 28697.89 12699.97 2099.20 229
Anonymous2023121199.27 3099.27 3499.26 9199.29 15798.18 12699.49 899.51 8299.70 899.80 2399.68 2096.84 16899.83 15499.21 4799.91 6199.77 33
UnsupCasMVSNet_bld97.30 24096.92 25098.45 21199.28 15896.78 22896.20 31099.27 17995.42 29898.28 24198.30 27893.16 28399.71 24594.99 28597.37 35998.87 284
EC-MVSNet99.09 5299.05 5799.20 10099.28 15898.93 7199.24 4199.84 1899.08 8498.12 25298.37 27098.72 3699.90 6399.05 5699.77 12298.77 300
DPE-MVScopyleft98.59 12598.26 15699.57 1699.27 16099.15 4797.01 26899.39 12497.67 18099.44 7398.99 16497.53 12799.89 7395.40 27999.68 16599.66 57
Kehua Chen, Zhenlong Yuan, Tianlu Mao, Zhaoqi Wang: Dual-Level Precision Edges Guided Multi-View Stereo with Accurate Planarization. AAAI2025
IterMVS-SCA-FT97.85 20498.18 16496.87 31999.27 16091.16 36595.53 33799.25 18599.10 7999.41 7899.35 8493.10 28599.96 1298.65 8399.94 3899.49 126
v119298.60 12398.66 9798.41 21699.27 16095.88 25297.52 23499.36 13497.41 20999.33 9599.20 11396.37 19699.82 16499.57 2599.92 5399.55 103
N_pmnet97.63 21897.17 23898.99 13599.27 16097.86 16395.98 31793.41 38095.25 30399.47 6898.90 18795.63 22599.85 12096.91 18599.73 14099.27 215
FPMVS93.44 34492.23 34897.08 30899.25 16497.86 16395.61 33497.16 34092.90 34793.76 38598.65 23575.94 38795.66 39479.30 39497.49 35497.73 359
new-patchmatchnet98.35 15598.74 8297.18 30499.24 16592.23 35096.42 29999.48 9398.30 13199.69 3599.53 5497.44 13699.82 16498.84 6999.77 12299.49 126
MCST-MVS98.00 18897.63 21399.10 11599.24 16598.17 12896.89 27798.73 28795.66 29097.92 26497.70 31897.17 15199.66 27596.18 24799.23 26799.47 143
UniMVSNet (Re)98.87 7798.71 8899.35 7099.24 16598.73 8597.73 20999.38 12698.93 9799.12 12698.73 21996.77 17599.86 10898.63 8599.80 10899.46 145
jason97.45 23097.35 23097.76 26599.24 16593.93 31595.86 32698.42 30394.24 32698.50 22498.13 28894.82 24999.91 5897.22 16199.73 14099.43 157
jason: jason.
IterMVS97.73 21098.11 17396.57 32799.24 16590.28 37095.52 33999.21 19498.86 10299.33 9599.33 9093.11 28499.94 3498.49 9499.94 3899.48 136
Fangjinhua Wang, Silvano Galliani, Christoph Vogel, Marc Pollefeys: IterMVS: Iterative Probability Estimation for Efficient Multi-View Stereo.
v124098.55 13198.62 10398.32 22399.22 17095.58 26097.51 23699.45 10597.16 23699.45 7299.24 10696.12 20499.85 12099.60 2399.88 7399.55 103
ITE_SJBPF98.87 15099.22 17098.48 10499.35 13997.50 19798.28 24198.60 24597.64 11699.35 35093.86 32099.27 26098.79 298
h-mvs3397.77 20897.33 23299.10 11599.21 17297.84 16598.35 13598.57 29699.11 7298.58 21499.02 15188.65 32799.96 1298.11 11296.34 37499.49 126
v14419298.54 13398.57 11198.45 21199.21 17295.98 24997.63 22199.36 13497.15 23899.32 10199.18 11795.84 22199.84 13799.50 3099.91 6199.54 107
APDe-MVScopyleft98.99 6198.79 7999.60 1199.21 17299.15 4798.87 7999.48 9397.57 19099.35 9299.24 10697.83 10099.89 7397.88 12999.70 15799.75 41
Zhaojie Zeng, Yuesong Wang, Tao Guan: Matching Ambiguity-Resilient Multi-View Stereo via Adaptive Patch Deformation. Pattern Recognition
DP-MVS98.93 7098.81 7899.28 8699.21 17298.45 10698.46 12499.33 15099.63 1799.48 6699.15 12797.23 14899.75 22797.17 16399.66 17699.63 65
SR-MVS-dyc-post98.81 8598.55 11299.57 1699.20 17699.38 898.48 12299.30 16598.64 10998.95 15598.96 17397.49 13499.86 10896.56 22199.39 24199.45 149
RE-MVS-def98.58 11099.20 17699.38 898.48 12299.30 16598.64 10998.95 15598.96 17397.75 10796.56 22199.39 24199.45 149
v192192098.54 13398.60 10898.38 21999.20 17695.76 25797.56 23099.36 13497.23 23199.38 8599.17 12196.02 20899.84 13799.57 2599.90 6899.54 107
thisisatest053095.27 31694.45 32597.74 26899.19 17994.37 29997.86 19490.20 39297.17 23598.22 24397.65 32073.53 39199.90 6396.90 19099.35 24798.95 270
Anonymous2024052998.93 7098.87 7099.12 11199.19 17998.22 12599.01 6798.99 24599.25 5999.54 5499.37 8097.04 15799.80 18497.89 12699.52 22099.35 194
APD-MVS_3200maxsize98.84 8198.61 10799.53 3499.19 17999.27 2298.49 11999.33 15098.64 10999.03 14498.98 16897.89 9799.85 12096.54 22599.42 23899.46 145
HQP_MVS97.99 19197.67 20798.93 14399.19 17997.65 18297.77 20299.27 17998.20 14497.79 27597.98 30194.90 24599.70 24894.42 30299.51 22299.45 149
plane_prior799.19 17997.87 162
ab-mvs98.41 14798.36 14398.59 19199.19 17997.23 20399.32 2398.81 27497.66 18198.62 20699.40 7996.82 17199.80 18495.88 25899.51 22298.75 303
F-COLMAP97.30 24096.68 26799.14 10999.19 17998.39 10897.27 25599.30 16592.93 34696.62 33698.00 29995.73 22399.68 26192.62 34598.46 32899.35 194
SR-MVS98.71 9898.43 13299.57 1699.18 18699.35 1298.36 13499.29 17398.29 13498.88 17298.85 20097.53 12799.87 9996.14 24999.31 25399.48 136
UniMVSNet_NR-MVSNet98.86 8098.68 9499.40 6299.17 18798.74 8297.68 21399.40 12199.14 7199.06 13498.59 24696.71 18199.93 3998.57 8899.77 12299.53 114
LF4IMVS97.90 19397.69 20698.52 20499.17 18797.66 18197.19 26299.47 10096.31 27197.85 27198.20 28596.71 18199.52 32094.62 29499.72 14798.38 330
SMA-MVScopyleft98.40 14998.03 18199.51 4399.16 18999.21 2898.05 16599.22 19394.16 32898.98 14899.10 13697.52 12999.79 19796.45 23199.64 17999.53 114
Yufeng Yin; Xiaoyan Liu; Zichao Zhang: SMA-MVS: Segmentation-Guided Multi-Scale Anchor Deformation Patch Multi-View Stereo. IEEE Transactions on Circuits and Systems for Video Technology
DU-MVS98.82 8398.63 10199.39 6399.16 18998.74 8297.54 23299.25 18598.84 10599.06 13498.76 21696.76 17799.93 3998.57 8899.77 12299.50 122
NR-MVSNet98.95 6898.82 7699.36 6499.16 18998.72 8799.22 4299.20 19699.10 7999.72 2998.76 21696.38 19599.86 10898.00 12199.82 9499.50 122
MVS_111021_LR98.30 16198.12 17298.83 15499.16 18998.03 14796.09 31599.30 16597.58 18998.10 25498.24 28198.25 6799.34 35196.69 21099.65 17799.12 245
DSMNet-mixed97.42 23297.60 21596.87 31999.15 19391.46 35698.54 10999.12 21992.87 34897.58 28899.63 3396.21 20199.90 6395.74 26799.54 21399.27 215
D2MVS97.84 20597.84 19797.83 25799.14 19494.74 28796.94 27298.88 25895.84 28798.89 16898.96 17394.40 26299.69 25297.55 14499.95 3099.05 251
pmmvs597.64 21797.49 22198.08 24299.14 19495.12 27896.70 28799.05 23193.77 33598.62 20698.83 20393.23 28199.75 22798.33 10399.76 13399.36 190
CS-MVS-test99.13 4799.09 5399.26 9199.13 19698.97 6699.31 2799.88 1199.44 3898.16 24798.51 25498.64 4199.93 3998.91 6499.85 8098.88 283
VDD-MVS98.56 12798.39 13999.07 12199.13 19698.07 14298.59 10397.01 34399.59 2399.11 12799.27 9994.82 24999.79 19798.34 10199.63 18299.34 196
save fliter99.11 19897.97 15396.53 29399.02 23998.24 137
APD-MVScopyleft98.10 17997.67 20799.42 5899.11 19898.93 7197.76 20599.28 17694.97 30998.72 19698.77 21497.04 15799.85 12093.79 32299.54 21399.49 126
Yuesong Wang, Zhaojie Zeng and etc.: Adaptive Patch Deformation for Textureless-Resilient Multi-View Stereo. CVPR2023
EI-MVSNet-UG-set98.69 10598.71 8898.62 18599.10 20096.37 23697.23 25698.87 26099.20 6599.19 12098.99 16497.30 14299.85 12098.77 7499.79 11399.65 61
EI-MVSNet98.40 14998.51 11798.04 24799.10 20094.73 28897.20 26098.87 26098.97 9399.06 13499.02 15196.00 21099.80 18498.58 8699.82 9499.60 73
CVMVSNet96.25 29397.21 23793.38 37399.10 20080.56 40097.20 26098.19 31496.94 24699.00 14699.02 15189.50 32099.80 18496.36 23699.59 19699.78 31
EI-MVSNet-Vis-set98.68 11098.70 9198.63 18499.09 20396.40 23597.23 25698.86 26599.20 6599.18 12498.97 17097.29 14499.85 12098.72 7799.78 11899.64 62
HPM-MVS++copyleft98.10 17997.64 21299.48 5199.09 20399.13 5597.52 23498.75 28497.46 20596.90 32497.83 31196.01 20999.84 13795.82 26599.35 24799.46 145
DP-MVS Recon97.33 23896.92 25098.57 19499.09 20397.99 14996.79 28099.35 13993.18 34297.71 27998.07 29695.00 24499.31 35593.97 31599.13 28298.42 329
MVS_111021_HR98.25 16998.08 17798.75 17299.09 20397.46 19195.97 31899.27 17997.60 18897.99 26298.25 28098.15 8299.38 34696.87 19399.57 20599.42 160
9.1497.78 19999.07 20797.53 23399.32 15295.53 29598.54 22198.70 22597.58 12199.76 22094.32 30799.46 232
PAPM_NR96.82 27396.32 28398.30 22699.07 20796.69 23097.48 23898.76 28195.81 28896.61 33796.47 35594.12 27199.17 36890.82 36997.78 35199.06 250
TAMVS98.24 17098.05 17998.80 15999.07 20797.18 20997.88 18998.81 27496.66 25999.17 12599.21 11194.81 25199.77 21496.96 18399.88 7399.44 153
CLD-MVS97.49 22697.16 23998.48 20899.07 20797.03 21594.71 35999.21 19494.46 32098.06 25797.16 34297.57 12299.48 32994.46 29999.78 11898.95 270
Zhaoxin Li, Wangmeng Zuo, Zhaoqi Wang, Lei Zhang: Confidence-based Large-scale Dense Multi-view Stereo. IEEE Transaction on Image Processing, 2020
CS-MVS99.13 4799.10 5299.24 9699.06 21199.15 4799.36 1999.88 1199.36 4898.21 24498.46 26298.68 4099.93 3999.03 5899.85 8098.64 315
thres100view90094.19 33193.67 33595.75 34599.06 21191.35 35998.03 16894.24 37698.33 12897.40 30394.98 38079.84 37399.62 28883.05 38798.08 34496.29 380
thres600view794.45 32693.83 33296.29 33399.06 21191.53 35597.99 17694.24 37698.34 12797.44 30195.01 37879.84 37399.67 26484.33 38598.23 33397.66 362
plane_prior199.05 214
YYNet197.60 21997.67 20797.39 29799.04 21593.04 33595.27 34598.38 30697.25 22598.92 16498.95 17795.48 23299.73 23796.99 17998.74 31399.41 163
MDA-MVSNet_test_wron97.60 21997.66 21097.41 29699.04 21593.09 33195.27 34598.42 30397.26 22498.88 17298.95 17795.43 23399.73 23797.02 17698.72 31599.41 163
MIMVSNet96.62 28096.25 28797.71 27199.04 21594.66 29199.16 5196.92 34997.23 23197.87 26899.10 13686.11 34299.65 28091.65 35499.21 27098.82 288
PatchMatch-RL97.24 24696.78 26198.61 18899.03 21897.83 16696.36 30299.06 22893.49 34097.36 30697.78 31295.75 22299.49 32693.44 33098.77 31298.52 321
ZD-MVS99.01 21998.84 7599.07 22794.10 33098.05 25998.12 29096.36 19799.86 10892.70 34499.19 274
CDPH-MVS97.26 24396.66 27099.07 12199.00 22098.15 12996.03 31699.01 24291.21 36697.79 27597.85 31096.89 16699.69 25292.75 34299.38 24499.39 175
diffmvspermissive98.22 17198.24 15898.17 23599.00 22095.44 26696.38 30199.58 5297.79 17398.53 22298.50 25896.76 17799.74 23297.95 12599.64 17999.34 196
Fangjinhua Wang, Qingshan Xu, Yew-Soon Ong, Marc Pollefeys: Lightweight and Accurate Multi-View Stereo With Confidence-Aware Diffusion Model. IEEE T-PAMI 2025
WR-MVS98.40 14998.19 16399.03 13199.00 22097.65 18296.85 27898.94 24798.57 11898.89 16898.50 25895.60 22699.85 12097.54 14699.85 8099.59 79
plane_prior698.99 22397.70 18094.90 245
xiu_mvs_v1_base_debu97.86 19998.17 16596.92 31698.98 22493.91 31696.45 29699.17 20897.85 16998.41 23297.14 34498.47 5399.92 4998.02 11899.05 28896.92 373
xiu_mvs_v1_base97.86 19998.17 16596.92 31698.98 22493.91 31696.45 29699.17 20897.85 16998.41 23297.14 34498.47 5399.92 4998.02 11899.05 28896.92 373
xiu_mvs_v1_base_debi97.86 19998.17 16596.92 31698.98 22493.91 31696.45 29699.17 20897.85 16998.41 23297.14 34498.47 5399.92 4998.02 11899.05 28896.92 373
MVP-Stereo98.08 18397.92 19098.57 19498.96 22796.79 22597.90 18699.18 20496.41 26798.46 22798.95 17795.93 21799.60 29596.51 22798.98 30099.31 207
Qingsong Yan: MVP-Stereo: A Parallel Multi-View Patchmatch Stereo Method with Dilation Matching for Photogrammetric Application.
SD-MVS98.40 14998.68 9497.54 28598.96 22797.99 14997.88 18999.36 13498.20 14499.63 4699.04 14898.76 3395.33 39696.56 22199.74 13799.31 207
Zhenlong Yuan, Jiakai Cao, Zhaoxin Li, Hao Jiang and Zhaoqi Wang: SD-MVS: Segmentation-driven Deformation Multi-View Stereo with Spherical Refinement and EM optimization. AAAI2024
新几何198.91 14698.94 22997.76 17498.76 28187.58 38396.75 33298.10 29294.80 25299.78 20892.73 34399.00 29799.20 229
USDC97.41 23397.40 22597.44 29498.94 22993.67 32595.17 34899.53 7894.03 33298.97 15299.10 13695.29 23599.34 35195.84 26499.73 14099.30 210
tfpn200view994.03 33593.44 33795.78 34498.93 23191.44 35797.60 22594.29 37497.94 16197.10 31194.31 38679.67 37599.62 28883.05 38798.08 34496.29 380
testdata98.09 23998.93 23195.40 26898.80 27690.08 37497.45 30098.37 27095.26 23699.70 24893.58 32698.95 30399.17 240
thres40094.14 33393.44 33796.24 33598.93 23191.44 35797.60 22594.29 37497.94 16197.10 31194.31 38679.67 37599.62 28883.05 38798.08 34497.66 362
TAPA-MVS96.21 1196.63 27995.95 29098.65 17998.93 23198.09 13696.93 27499.28 17683.58 38998.13 25197.78 31296.13 20399.40 34293.52 32799.29 25898.45 325
Andrea Romanoni, Matteo Matteucci: TAPA-MVS: Textureless-Aware PAtchMatch Multi-View Stereo. ICCV 2019
test22298.92 23596.93 22295.54 33698.78 27985.72 38696.86 32798.11 29194.43 26099.10 28799.23 224
PVSNet_BlendedMVS97.55 22397.53 21897.60 27898.92 23593.77 32396.64 28999.43 11594.49 31897.62 28499.18 11796.82 17199.67 26494.73 29199.93 4299.36 190
PVSNet_Blended96.88 26996.68 26797.47 29298.92 23593.77 32394.71 35999.43 11590.98 36897.62 28497.36 33896.82 17199.67 26494.73 29199.56 20898.98 264
MSDG97.71 21297.52 21998.28 22898.91 23896.82 22494.42 36999.37 13097.65 18298.37 23798.29 27997.40 13899.33 35394.09 31399.22 26898.68 313
Anonymous20240521197.90 19397.50 22099.08 11998.90 23998.25 11998.53 11096.16 35998.87 10199.11 12798.86 19790.40 31499.78 20897.36 15499.31 25399.19 234
原ACMM198.35 22198.90 23996.25 24098.83 27392.48 35296.07 35198.10 29295.39 23499.71 24592.61 34698.99 29899.08 247
GBi-Net98.65 11598.47 12699.17 10398.90 23998.24 12099.20 4599.44 10998.59 11598.95 15599.55 4894.14 26899.86 10897.77 13599.69 16099.41 163
test198.65 11598.47 12699.17 10398.90 23998.24 12099.20 4599.44 10998.59 11598.95 15599.55 4894.14 26899.86 10897.77 13599.69 16099.41 163
FMVSNet298.49 14098.40 13698.75 17298.90 23997.14 21398.61 10199.13 21898.59 11599.19 12099.28 9794.14 26899.82 16497.97 12399.80 10899.29 212
OMC-MVS97.88 19797.49 22199.04 13098.89 24498.63 8996.94 27299.25 18595.02 30798.53 22298.51 25497.27 14599.47 33293.50 32999.51 22299.01 259
MVSFormer98.26 16798.43 13297.77 26298.88 24593.89 31999.39 1799.56 6699.11 7298.16 24798.13 28893.81 27699.97 499.26 4299.57 20599.43 157
lupinMVS97.06 25996.86 25497.65 27498.88 24593.89 31995.48 34097.97 32193.53 33898.16 24797.58 32493.81 27699.91 5896.77 20199.57 20599.17 240
dmvs_re95.98 30095.39 30897.74 26898.86 24797.45 19298.37 13395.69 36697.95 16096.56 33895.95 36390.70 31197.68 39088.32 37796.13 37898.11 340
DELS-MVS98.27 16598.20 16198.48 20898.86 24796.70 22995.60 33599.20 19697.73 17698.45 22898.71 22297.50 13199.82 16498.21 10799.59 19698.93 275
Christian Sormann, Emanuele Santellani, Mattia Rossi, Andreas Kuhn, Friedrich Fraundorfer: DELS-MVS: Deep Epipolar Line Search for Multi-View Stereo. Winter Conference on Applications of Computer Vision (WACV), 2023
TinyColmap97.89 19597.98 18497.60 27898.86 24794.35 30096.21 30999.44 10997.45 20799.06 13498.88 19497.99 9399.28 36194.38 30699.58 20199.18 236
LCM-MVSNet-Re98.64 11798.48 12499.11 11398.85 25098.51 10298.49 11999.83 2098.37 12599.69 3599.46 6698.21 7499.92 4994.13 31299.30 25698.91 279
pmmvs497.58 22297.28 23398.51 20598.84 25196.93 22295.40 34398.52 29993.60 33798.61 20898.65 23595.10 24199.60 29596.97 18299.79 11398.99 263
NP-MVS98.84 25197.39 19696.84 347
sss97.21 24896.93 24898.06 24498.83 25395.22 27496.75 28498.48 30194.49 31897.27 30797.90 30792.77 29399.80 18496.57 21799.32 25199.16 243
PVSNet93.40 1795.67 30795.70 29595.57 34998.83 25388.57 37592.50 38697.72 32692.69 35096.49 34496.44 35693.72 27999.43 33893.61 32499.28 25998.71 306
MVEpermissive83.40 2292.50 35191.92 35494.25 36398.83 25391.64 35492.71 38583.52 39995.92 28586.46 39695.46 37495.20 23895.40 39580.51 39298.64 32295.73 388
Simon Fuhrmann, Fabian Langguth, Michael Goesele: MVE - A Multi-View Reconstruction Environment. EUROGRAPHICS Workshops on Graphics and Cultural Heritage (2014)
MVS_030498.10 17997.88 19498.76 16998.82 25696.50 23397.90 18691.35 38999.56 2698.32 23899.13 13196.06 20699.93 3999.84 599.97 2099.85 19
ambc98.24 23198.82 25695.97 25098.62 10099.00 24499.27 10699.21 11196.99 16299.50 32596.55 22499.50 22999.26 218
旧先验198.82 25697.45 19298.76 28198.34 27495.50 23199.01 29699.23 224
test_vis1_rt97.75 20997.72 20597.83 25798.81 25996.35 23797.30 25199.69 3494.61 31697.87 26898.05 29796.26 20098.32 38798.74 7598.18 33698.82 288
WTY-MVS96.67 27796.27 28697.87 25598.81 25994.61 29396.77 28297.92 32394.94 31097.12 31097.74 31591.11 30999.82 16493.89 31898.15 34099.18 236
3Dnovator+97.89 398.69 10598.51 11799.24 9698.81 25998.40 10799.02 6699.19 20098.99 9198.07 25699.28 9797.11 15599.84 13796.84 19699.32 25199.47 143
QAPM97.31 23996.81 26098.82 15598.80 26297.49 18999.06 6399.19 20090.22 37297.69 28199.16 12396.91 16599.90 6390.89 36899.41 23999.07 249
VNet98.42 14698.30 15198.79 16298.79 26397.29 20098.23 14398.66 29099.31 5398.85 17798.80 20994.80 25299.78 20898.13 11199.13 28299.31 207
DPM-MVS96.32 29095.59 30098.51 20598.76 26497.21 20694.54 36898.26 30991.94 35796.37 34597.25 34093.06 28799.43 33891.42 35998.74 31398.89 280
3Dnovator98.27 298.81 8598.73 8499.05 12898.76 26497.81 17199.25 4099.30 16598.57 11898.55 21999.33 9097.95 9599.90 6397.16 16499.67 17199.44 153
PLCcopyleft94.65 1696.51 28395.73 29498.85 15298.75 26697.91 15996.42 29999.06 22890.94 36995.59 35797.38 33694.41 26199.59 29990.93 36698.04 34999.05 251
Jie Liao, Yanping Fu, Qingan Yan, Chunxia xiao: Pyramid Multi-View Stereo with Local Consistency. Pacific Graphics 2019
BH-untuned96.83 27196.75 26397.08 30898.74 26793.33 32996.71 28698.26 30996.72 25698.44 22997.37 33795.20 23899.47 33291.89 35197.43 35798.44 327
hse-mvs297.46 22897.07 24398.64 18098.73 26897.33 19897.45 24197.64 33199.11 7298.58 21497.98 30188.65 32799.79 19798.11 11297.39 35898.81 292
CDS-MVSNet97.69 21397.35 23098.69 17798.73 26897.02 21696.92 27698.75 28495.89 28698.59 21298.67 23092.08 30299.74 23296.72 20799.81 9899.32 203
Khang Truong Giang, Soohwan Song, Sungho Jo: Curvature-guided dynamic scale networks for Multi-view Stereo. ICLR 2022
EIA-MVS98.00 18897.74 20298.80 15998.72 27098.09 13698.05 16599.60 4997.39 21196.63 33595.55 37097.68 11099.80 18496.73 20699.27 26098.52 321
LFMVS97.20 24996.72 26498.64 18098.72 27096.95 22098.93 7594.14 37899.74 698.78 18799.01 16084.45 35499.73 23797.44 15099.27 26099.25 219
new_pmnet96.99 26696.76 26297.67 27298.72 27094.89 28395.95 32298.20 31292.62 35198.55 21998.54 25094.88 24899.52 32093.96 31699.44 23798.59 320
Fast-Effi-MVS+97.67 21597.38 22798.57 19498.71 27397.43 19497.23 25699.45 10594.82 31396.13 34896.51 35298.52 5299.91 5896.19 24598.83 30998.37 332
TEST998.71 27398.08 14095.96 32099.03 23691.40 36395.85 35497.53 32696.52 18899.76 220
train_agg97.10 25596.45 28099.07 12198.71 27398.08 14095.96 32099.03 23691.64 35895.85 35497.53 32696.47 19099.76 22093.67 32399.16 27799.36 190
TSAR-MVS + GP.98.18 17597.98 18498.77 16898.71 27397.88 16196.32 30498.66 29096.33 26999.23 11798.51 25497.48 13599.40 34297.16 16499.46 23299.02 258
FA-MVS(test-final)96.99 26696.82 25897.50 28998.70 27794.78 28599.34 2096.99 34495.07 30698.48 22699.33 9088.41 33099.65 28096.13 25198.92 30698.07 343
AUN-MVS96.24 29495.45 30498.60 19098.70 27797.22 20597.38 24497.65 32995.95 28495.53 36497.96 30582.11 36999.79 19796.31 23897.44 35698.80 297
our_test_397.39 23497.73 20496.34 33198.70 27789.78 37294.61 36598.97 24696.50 26399.04 14198.85 20095.98 21499.84 13797.26 15999.67 17199.41 163
ppachtmachnet_test97.50 22497.74 20296.78 32598.70 27791.23 36494.55 36799.05 23196.36 26899.21 11898.79 21196.39 19399.78 20896.74 20499.82 9499.34 196
PCF-MVS92.86 1894.36 32793.00 34498.42 21598.70 27797.56 18693.16 38499.11 22179.59 39297.55 29197.43 33392.19 29999.73 23779.85 39399.45 23497.97 348
Andreas Kuhn, Shan Lin, Oliver Erdler: Plane Completion and Filtering for Multi-View Stereo Reconstruction. GCPR 2019
ETV-MVS98.03 18597.86 19698.56 19898.69 28298.07 14297.51 23699.50 8498.10 15297.50 29695.51 37198.41 5899.88 8296.27 24199.24 26597.71 361
test_prior98.95 14198.69 28297.95 15799.03 23699.59 29999.30 210
agg_prior98.68 28497.99 14999.01 24295.59 35799.77 214
test_898.67 28598.01 14895.91 32599.02 23991.64 35895.79 35697.50 32996.47 19099.76 220
HQP-NCC98.67 28596.29 30596.05 27995.55 360
ACMP_Plane98.67 28596.29 30596.05 27995.55 360
CNVR-MVS98.17 17797.87 19599.07 12198.67 28598.24 12097.01 26898.93 24997.25 22597.62 28498.34 27497.27 14599.57 30596.42 23299.33 25099.39 175
HQP-MVS97.00 26596.49 27998.55 19998.67 28596.79 22596.29 30599.04 23496.05 27995.55 36096.84 34793.84 27499.54 31492.82 33999.26 26399.32 203
test_fmvs197.72 21197.94 18897.07 31098.66 29092.39 34597.68 21399.81 2395.20 30599.54 5499.44 7191.56 30699.41 34199.78 1399.77 12299.40 172
thres20093.72 34093.14 34295.46 35398.66 29091.29 36196.61 29194.63 37197.39 21196.83 32893.71 38879.88 37299.56 30882.40 39098.13 34195.54 389
wuyk23d96.06 29697.62 21491.38 37698.65 29298.57 9698.85 8296.95 34796.86 25099.90 1299.16 12399.18 1798.40 38689.23 37599.77 12277.18 394
NCCC97.86 19997.47 22499.05 12898.61 29398.07 14296.98 27098.90 25597.63 18397.04 31597.93 30695.99 21399.66 27595.31 28098.82 31199.43 157
DeepC-MVS_fast96.85 698.30 16198.15 16998.75 17298.61 29397.23 20397.76 20599.09 22597.31 21998.75 19398.66 23397.56 12399.64 28396.10 25299.55 21199.39 175
Andreas Kuhn, Christian Sormann, Mattia Rossi, Oliver Erdler, Friedrich Fraundorfer: DeepC-MVS: Deep Confidence Prediction for Multi-View Stereo Reconstruction. 3DV 2020
testing393.51 34292.09 35097.75 26698.60 29594.40 29897.32 24995.26 36897.56 19296.79 33195.50 37253.57 40299.77 21495.26 28198.97 30199.08 247
thisisatest051594.12 33493.16 34196.97 31498.60 29592.90 33693.77 38090.61 39094.10 33096.91 32195.87 36674.99 38999.80 18494.52 29799.12 28598.20 336
GA-MVS95.86 30395.32 31197.49 29098.60 29594.15 30693.83 37997.93 32295.49 29696.68 33397.42 33483.21 36299.30 35796.22 24398.55 32799.01 259
dmvs_testset92.94 34892.21 34995.13 35698.59 29890.99 36697.65 21992.09 38696.95 24594.00 38293.55 38992.34 29896.97 39372.20 39692.52 39197.43 369
OPU-MVS98.82 15598.59 29898.30 11698.10 15898.52 25398.18 7698.75 38394.62 29499.48 23199.41 163
MSLP-MVS++98.02 18698.14 17197.64 27698.58 30095.19 27597.48 23899.23 19297.47 20097.90 26698.62 24297.04 15798.81 38297.55 14499.41 23998.94 274
test1298.93 14398.58 30097.83 16698.66 29096.53 33995.51 23099.69 25299.13 28299.27 215
CL-MVSNet_self_test97.44 23197.22 23698.08 24298.57 30295.78 25694.30 37298.79 27796.58 26298.60 21098.19 28694.74 25699.64 28396.41 23398.84 30898.82 288
PS-MVSNAJ97.08 25897.39 22696.16 33998.56 30392.46 34395.24 34798.85 26897.25 22597.49 29795.99 36298.07 8499.90 6396.37 23498.67 32196.12 385
CNLPA97.17 25296.71 26598.55 19998.56 30398.05 14696.33 30398.93 24996.91 24897.06 31497.39 33594.38 26399.45 33591.66 35399.18 27698.14 339
xiu_mvs_v2_base97.16 25397.49 22196.17 33798.54 30592.46 34395.45 34198.84 26997.25 22597.48 29896.49 35398.31 6699.90 6396.34 23798.68 32096.15 384
alignmvs97.35 23696.88 25398.78 16598.54 30598.09 13697.71 21097.69 32899.20 6597.59 28795.90 36588.12 33299.55 31198.18 10998.96 30298.70 309
FE-MVS95.66 30894.95 32097.77 26298.53 30795.28 27199.40 1696.09 36193.11 34497.96 26399.26 10179.10 38099.77 21492.40 34898.71 31798.27 334
iter_conf_final97.10 25596.65 27298.45 21198.53 30796.08 24798.30 13799.11 22198.10 15298.85 17798.95 17779.38 37899.87 9998.68 8199.91 6199.40 172
Effi-MVS+98.02 18697.82 19898.62 18598.53 30797.19 20897.33 24899.68 3997.30 22096.68 33397.46 33298.56 5099.80 18496.63 21398.20 33598.86 285
baseline195.96 30195.44 30597.52 28798.51 31093.99 31398.39 13196.09 36198.21 14098.40 23697.76 31486.88 33499.63 28695.42 27889.27 39498.95 270
MVS_Test98.18 17598.36 14397.67 27298.48 31194.73 28898.18 14899.02 23997.69 17998.04 26099.11 13497.22 14999.56 30898.57 8898.90 30798.71 306
BH-RMVSNet96.83 27196.58 27697.58 28098.47 31294.05 30796.67 28897.36 33496.70 25897.87 26897.98 30195.14 24099.44 33790.47 37098.58 32699.25 219
canonicalmvs98.34 15698.26 15698.58 19298.46 31397.82 16998.96 7399.46 10299.19 6997.46 29995.46 37498.59 4799.46 33498.08 11598.71 31798.46 323
MVS-HIRNet94.32 32895.62 29890.42 37798.46 31375.36 40196.29 30589.13 39495.25 30395.38 36699.75 1192.88 29099.19 36794.07 31499.39 24196.72 378
PHI-MVS98.29 16497.95 18699.34 7398.44 31599.16 4398.12 15599.38 12696.01 28298.06 25798.43 26497.80 10499.67 26495.69 27099.58 20199.20 229
DVP-MVS++98.90 7498.70 9199.51 4398.43 31699.15 4799.43 1199.32 15298.17 14799.26 11099.02 15198.18 7699.88 8297.07 17399.45 23499.49 126
MSC_two_6792asdad99.32 8098.43 31698.37 11198.86 26599.89 7397.14 16799.60 19299.71 45
No_MVS99.32 8098.43 31698.37 11198.86 26599.89 7397.14 16799.60 19299.71 45
Fast-Effi-MVS+-dtu98.27 16598.09 17498.81 15798.43 31698.11 13397.61 22499.50 8498.64 10997.39 30497.52 32898.12 8399.95 2396.90 19098.71 31798.38 330
OpenMVS_ROBcopyleft95.38 1495.84 30495.18 31597.81 25998.41 32097.15 21297.37 24598.62 29483.86 38898.65 20298.37 27094.29 26699.68 26188.41 37698.62 32496.60 379
DeepPCF-MVS96.93 598.32 15898.01 18299.23 9898.39 32198.97 6695.03 35299.18 20496.88 24999.33 9598.78 21298.16 8099.28 36196.74 20499.62 18599.44 153
Patchmatch-test96.55 28196.34 28297.17 30598.35 32293.06 33298.40 13097.79 32497.33 21698.41 23298.67 23083.68 36199.69 25295.16 28399.31 25398.77 300
AdaColmapbinary97.14 25496.71 26598.46 21098.34 32397.80 17296.95 27198.93 24995.58 29396.92 31997.66 31995.87 21999.53 31690.97 36599.14 28098.04 344
OpenMVScopyleft96.65 797.09 25796.68 26798.32 22398.32 32497.16 21198.86 8199.37 13089.48 37696.29 34799.15 12796.56 18699.90 6392.90 33699.20 27197.89 349
MG-MVS96.77 27496.61 27397.26 30298.31 32593.06 33295.93 32398.12 31896.45 26697.92 26498.73 21993.77 27899.39 34491.19 36499.04 29199.33 201
test_yl96.69 27596.29 28497.90 25298.28 32695.24 27297.29 25297.36 33498.21 14098.17 24597.86 30886.27 33899.55 31194.87 28898.32 33098.89 280
DCV-MVSNet96.69 27596.29 28497.90 25298.28 32695.24 27297.29 25297.36 33498.21 14098.17 24597.86 30886.27 33899.55 31194.87 28898.32 33098.89 280
CHOSEN 280x42095.51 31395.47 30295.65 34898.25 32888.27 37893.25 38398.88 25893.53 33894.65 37497.15 34386.17 34099.93 3997.41 15299.93 4298.73 305
SCA96.41 28996.66 27095.67 34698.24 32988.35 37795.85 32896.88 35096.11 27797.67 28298.67 23093.10 28599.85 12094.16 30899.22 26898.81 292
DeepMVS_CXcopyleft93.44 37298.24 32994.21 30394.34 37364.28 39491.34 39094.87 38489.45 32192.77 39777.54 39593.14 39093.35 392
MS-PatchMatch97.68 21497.75 20197.45 29398.23 33193.78 32297.29 25298.84 26996.10 27898.64 20398.65 23596.04 20799.36 34796.84 19699.14 28099.20 229
BH-w/o95.13 31894.89 32295.86 34198.20 33291.31 36095.65 33397.37 33393.64 33696.52 34095.70 36893.04 28899.02 37388.10 37895.82 38197.24 371
mvs_anonymous97.83 20798.16 16896.87 31998.18 33391.89 35297.31 25098.90 25597.37 21398.83 18199.46 6696.28 19999.79 19798.90 6598.16 33998.95 270
miper_lstm_enhance97.18 25197.16 23997.25 30398.16 33492.85 33795.15 35099.31 15797.25 22598.74 19598.78 21290.07 31599.78 20897.19 16299.80 10899.11 246
ET-MVSNet_ETH3D94.30 33093.21 34097.58 28098.14 33594.47 29794.78 35893.24 38294.72 31489.56 39295.87 36678.57 38399.81 17796.91 18597.11 36698.46 323
ADS-MVSNet295.43 31494.98 31896.76 32698.14 33591.74 35397.92 18397.76 32590.23 37096.51 34198.91 18485.61 34599.85 12092.88 33796.90 36798.69 310
ADS-MVSNet95.24 31794.93 32196.18 33698.14 33590.10 37197.92 18397.32 33790.23 37096.51 34198.91 18485.61 34599.74 23292.88 33796.90 36798.69 310
c3_l97.36 23597.37 22897.31 29898.09 33893.25 33095.01 35399.16 21197.05 24098.77 19098.72 22192.88 29099.64 28396.93 18499.76 13399.05 251
FMVSNet397.50 22497.24 23598.29 22798.08 33995.83 25497.86 19498.91 25497.89 16698.95 15598.95 17787.06 33399.81 17797.77 13599.69 16099.23 224
PAPM91.88 35890.34 36196.51 32898.06 34092.56 34192.44 38797.17 33986.35 38490.38 39196.01 36186.61 33699.21 36670.65 39795.43 38397.75 358
Effi-MVS+-dtu98.26 16797.90 19299.35 7098.02 34199.49 598.02 17099.16 21198.29 13497.64 28397.99 30096.44 19299.95 2396.66 21298.93 30598.60 318
eth_miper_zixun_eth97.23 24797.25 23497.17 30598.00 34292.77 33994.71 35999.18 20497.27 22398.56 21798.74 21891.89 30399.69 25297.06 17599.81 9899.05 251
HY-MVS95.94 1395.90 30295.35 31097.55 28497.95 34394.79 28498.81 8596.94 34892.28 35595.17 36898.57 24889.90 31799.75 22791.20 36397.33 36398.10 341
UGNet98.53 13598.45 12998.79 16297.94 34496.96 21999.08 5998.54 29799.10 7996.82 32999.47 6596.55 18799.84 13798.56 9199.94 3899.55 103
Wanjuan Su, Qingshan Xu, Wenbing Tao: Uncertainty-guided Multi-view Stereo Network for Depth Estimation. IEEE Transactions on Circuits and Systems for Video Technology, 2022
MAR-MVS96.47 28795.70 29598.79 16297.92 34599.12 5798.28 13998.60 29592.16 35695.54 36396.17 36094.77 25599.52 32089.62 37398.23 33397.72 360
Zhenyu Xu, Yiguang Liu, Xuelei Shi, Ying Wang, Yunan Zheng: MARMVS: Matching Ambiguity Reduced Multiple View Stereo for Efficient Large Scale Scene Reconstruction. CVPR 2020
MVSTER96.86 27096.55 27797.79 26097.91 34694.21 30397.56 23098.87 26097.49 19999.06 13499.05 14680.72 37099.80 18498.44 9699.82 9499.37 184
iter_conf0596.54 28296.07 28897.92 25197.90 34794.50 29597.87 19299.14 21797.73 17698.89 16898.95 17775.75 38899.87 9998.50 9399.92 5399.40 172
API-MVS97.04 26196.91 25297.42 29597.88 34898.23 12498.18 14898.50 30097.57 19097.39 30496.75 34996.77 17599.15 37090.16 37199.02 29594.88 390
miper_ehance_all_eth97.06 25997.03 24597.16 30797.83 34993.06 33294.66 36299.09 22595.99 28398.69 19798.45 26392.73 29499.61 29496.79 19899.03 29298.82 288
cl____97.02 26296.83 25797.58 28097.82 35094.04 30994.66 36299.16 21197.04 24198.63 20498.71 22288.68 32699.69 25297.00 17799.81 9899.00 262
DIV-MVS_self_test97.02 26296.84 25697.58 28097.82 35094.03 31094.66 36299.16 21197.04 24198.63 20498.71 22288.69 32499.69 25297.00 17799.81 9899.01 259
CANet97.87 19897.76 20098.19 23497.75 35295.51 26396.76 28399.05 23197.74 17596.93 31898.21 28495.59 22799.89 7397.86 13199.93 4299.19 234
mvsany_test197.60 21997.54 21797.77 26297.72 35395.35 26995.36 34497.13 34194.13 32999.71 3199.33 9097.93 9699.30 35797.60 14398.94 30498.67 314
PVSNet_089.98 2191.15 35990.30 36293.70 36997.72 35384.34 39490.24 38997.42 33290.20 37393.79 38493.09 39090.90 31098.89 38186.57 38272.76 39697.87 351
CR-MVSNet96.28 29295.95 29097.28 30097.71 35594.22 30198.11 15698.92 25292.31 35496.91 32199.37 8085.44 34899.81 17797.39 15397.36 36197.81 354
RPMNet97.02 26296.93 24897.30 29997.71 35594.22 30198.11 15699.30 16599.37 4596.91 32199.34 8886.72 33599.87 9997.53 14797.36 36197.81 354
pmmvs395.03 32094.40 32696.93 31597.70 35792.53 34295.08 35197.71 32788.57 38097.71 27998.08 29579.39 37799.82 16496.19 24599.11 28698.43 328
baseline293.73 33992.83 34596.42 33097.70 35791.28 36296.84 27989.77 39393.96 33492.44 38795.93 36479.14 37999.77 21492.94 33596.76 37198.21 335
tpm94.67 32494.34 32895.66 34797.68 35988.42 37697.88 18994.90 36994.46 32096.03 35398.56 24978.66 38199.79 19795.88 25895.01 38598.78 299
CANet_DTU97.26 24397.06 24497.84 25697.57 36094.65 29296.19 31198.79 27797.23 23195.14 36998.24 28193.22 28299.84 13797.34 15599.84 8499.04 255
tpm293.09 34792.58 34794.62 36097.56 36186.53 38497.66 21795.79 36586.15 38594.07 38198.23 28375.95 38699.53 31690.91 36796.86 37097.81 354
TR-MVS95.55 31195.12 31696.86 32297.54 36293.94 31496.49 29596.53 35694.36 32597.03 31696.61 35194.26 26799.16 36986.91 38196.31 37597.47 368
131495.74 30695.60 29996.17 33797.53 36392.75 34098.07 16298.31 30891.22 36594.25 37796.68 35095.53 22899.03 37291.64 35597.18 36496.74 377
CostFormer93.97 33693.78 33394.51 36197.53 36385.83 38797.98 17795.96 36389.29 37894.99 37198.63 24078.63 38299.62 28894.54 29696.50 37298.09 342
FMVSNet596.01 29895.20 31498.41 21697.53 36396.10 24298.74 8699.50 8497.22 23498.03 26199.04 14869.80 39299.88 8297.27 15899.71 15299.25 219
PMMVS96.51 28395.98 28998.09 23997.53 36395.84 25394.92 35598.84 26991.58 36096.05 35295.58 36995.68 22499.66 27595.59 27498.09 34398.76 302
PAPR95.29 31594.47 32497.75 26697.50 36795.14 27794.89 35698.71 28891.39 36495.35 36795.48 37394.57 25899.14 37184.95 38497.37 35998.97 267
PatchT96.65 27896.35 28197.54 28597.40 36895.32 27097.98 17796.64 35399.33 5096.89 32599.42 7484.32 35699.81 17797.69 14297.49 35497.48 367
tpm cat193.29 34593.13 34393.75 36897.39 36984.74 39097.39 24397.65 32983.39 39094.16 37898.41 26582.86 36599.39 34491.56 35795.35 38497.14 372
PatchmatchNetpermissive95.58 31095.67 29795.30 35597.34 37087.32 38297.65 21996.65 35295.30 30297.07 31398.69 22684.77 35199.75 22794.97 28698.64 32298.83 287
Fangjinhua Wang, Silvano Galliani, Christoph Vogel, Pablo Speciale, Marc Pollefeys: PatchmatchNet: Learned Multi-View Patchmatch Stereo.
Patchmtry97.35 23696.97 24798.50 20797.31 37196.47 23498.18 14898.92 25298.95 9698.78 18799.37 8085.44 34899.85 12095.96 25699.83 9199.17 240
LS3D98.63 11998.38 14199.36 6497.25 37299.38 899.12 5799.32 15299.21 6398.44 22998.88 19497.31 14199.80 18496.58 21599.34 24998.92 276
IB-MVS91.63 1992.24 35590.90 35996.27 33497.22 37391.24 36394.36 37193.33 38192.37 35392.24 38894.58 38566.20 39999.89 7393.16 33494.63 38797.66 362
Christian Sormann, Mattia Rossi, Andreas Kuhn and Friedrich Fraundorfer: IB-MVS: An Iterative Algorithm for Deep Multi-View Stereo based on Binary Decisions. BMVC 2021
tpmrst95.07 31995.46 30393.91 36697.11 37484.36 39397.62 22296.96 34694.98 30896.35 34698.80 20985.46 34799.59 29995.60 27396.23 37697.79 357
Syy-MVS96.04 29795.56 30197.49 29097.10 37594.48 29696.18 31296.58 35495.65 29194.77 37292.29 39291.27 30899.36 34798.17 11098.05 34798.63 316
myMVS_eth3d91.92 35790.45 36096.30 33297.10 37590.90 36796.18 31296.58 35495.65 29194.77 37292.29 39253.88 40199.36 34789.59 37498.05 34798.63 316
MDTV_nov1_ep1395.22 31397.06 37783.20 39597.74 20796.16 35994.37 32496.99 31798.83 20383.95 35999.53 31693.90 31797.95 350
MVS93.19 34692.09 35096.50 32996.91 37894.03 31098.07 16298.06 32068.01 39394.56 37696.48 35495.96 21699.30 35783.84 38696.89 36996.17 382
E-PMN94.17 33294.37 32793.58 37096.86 37985.71 38890.11 39097.07 34298.17 14797.82 27497.19 34184.62 35398.94 37789.77 37297.68 35396.09 386
JIA-IIPM95.52 31295.03 31797.00 31196.85 38094.03 31096.93 27495.82 36499.20 6594.63 37599.71 1783.09 36399.60 29594.42 30294.64 38697.36 370
EMVS93.83 33894.02 33093.23 37496.83 38184.96 38989.77 39196.32 35897.92 16397.43 30296.36 35986.17 34098.93 37887.68 37997.73 35295.81 387
cl2295.79 30595.39 30896.98 31396.77 38292.79 33894.40 37098.53 29894.59 31797.89 26798.17 28782.82 36699.24 36396.37 23499.03 29298.92 276
dp93.47 34393.59 33693.13 37596.64 38381.62 39997.66 21796.42 35792.80 34996.11 34998.64 23878.55 38499.59 29993.31 33292.18 39398.16 338
test-LLR93.90 33793.85 33194.04 36496.53 38484.62 39194.05 37692.39 38496.17 27494.12 37995.07 37682.30 36799.67 26495.87 26198.18 33697.82 352
test-mter92.33 35491.76 35794.04 36496.53 38484.62 39194.05 37692.39 38494.00 33394.12 37995.07 37665.63 40099.67 26495.87 26198.18 33697.82 352
TESTMET0.1,192.19 35691.77 35693.46 37196.48 38682.80 39694.05 37691.52 38894.45 32294.00 38294.88 38266.65 39799.56 30895.78 26698.11 34298.02 345
miper_enhance_ethall96.01 29895.74 29396.81 32396.41 38792.27 34993.69 38198.89 25791.14 36798.30 23997.35 33990.58 31299.58 30396.31 23899.03 29298.60 318
tpmvs95.02 32195.25 31294.33 36296.39 38885.87 38598.08 16096.83 35195.46 29795.51 36598.69 22685.91 34399.53 31694.16 30896.23 37697.58 365
CMPMVSbinary75.91 2396.29 29195.44 30598.84 15396.25 38998.69 8897.02 26799.12 21988.90 37997.83 27298.86 19789.51 31998.90 38091.92 35099.51 22298.92 276
M. Jancosek, T. Pajdla: Multi-View Reconstruction Preserving Weakly-Supported Surfaces. CVPR 2011
test0.0.03 194.51 32593.69 33496.99 31296.05 39093.61 32794.97 35493.49 37996.17 27497.57 29094.88 38282.30 36799.01 37593.60 32594.17 38998.37 332
EPMVS93.72 34093.27 33995.09 35896.04 39187.76 38098.13 15385.01 39894.69 31596.92 31998.64 23878.47 38599.31 35595.04 28496.46 37398.20 336
cascas94.79 32394.33 32996.15 34096.02 39292.36 34792.34 38899.26 18485.34 38795.08 37094.96 38192.96 28998.53 38594.41 30598.59 32597.56 366
gg-mvs-nofinetune92.37 35391.20 35895.85 34295.80 39392.38 34699.31 2781.84 40099.75 591.83 38999.74 1368.29 39399.02 37387.15 38097.12 36596.16 383
gm-plane-assit94.83 39481.97 39888.07 38294.99 37999.60 29591.76 352
GG-mvs-BLEND94.76 35994.54 39592.13 35199.31 2780.47 40188.73 39491.01 39467.59 39698.16 38982.30 39194.53 38893.98 391
EPNet_dtu94.93 32294.78 32395.38 35493.58 39687.68 38196.78 28195.69 36697.35 21589.14 39398.09 29488.15 33199.49 32694.95 28799.30 25698.98 264
Wanjuan Su, Wenbing Tao: Efficient Edge-Preserving Multi-View Stereo Network for Depth Estimation. AAAI 2023
KD-MVS_2432*160092.87 34991.99 35295.51 35191.37 39789.27 37394.07 37498.14 31695.42 29897.25 30896.44 35667.86 39499.24 36391.28 36196.08 37998.02 345
miper_refine_blended92.87 34991.99 35295.51 35191.37 39789.27 37394.07 37498.14 31695.42 29897.25 30896.44 35667.86 39499.24 36391.28 36196.08 37998.02 345
EPNet96.14 29595.44 30598.25 22990.76 39995.50 26497.92 18394.65 37098.97 9392.98 38698.85 20089.12 32299.87 9995.99 25499.68 16599.39 175
Wanjuan Su, Wenbing Tao: Efficient Edge-Preserving Multi-View Stereo Network for Depth Estimation. AAAI 2023
test_method79.78 36179.50 36480.62 37880.21 40045.76 40470.82 39298.41 30531.08 39680.89 39797.71 31684.85 35097.37 39191.51 35880.03 39598.75 303
tmp_tt78.77 36278.73 36578.90 37958.45 40174.76 40394.20 37378.26 40239.16 39586.71 39592.82 39180.50 37175.19 39886.16 38392.29 39286.74 393
testmvs17.12 36420.53 3676.87 38112.05 4024.20 40693.62 3826.73 4044.62 39910.41 39924.33 3968.28 4043.56 4009.69 39915.07 39712.86 396
test12317.04 36520.11 3687.82 38010.25 4034.91 40594.80 3574.47 4054.93 39810.00 40024.28 3979.69 4033.64 39910.14 39812.43 39814.92 395
test_blank0.00 3680.00 3710.00 3820.00 4040.00 4070.00 3930.00 4060.00 4000.00 4010.00 4000.00 4050.00 4010.00 4000.00 3990.00 397
eth-test20.00 404
eth-test0.00 404
uanet_test0.00 3680.00 3710.00 3820.00 4040.00 4070.00 3930.00 4060.00 4000.00 4010.00 4000.00 4050.00 4010.00 4000.00 3990.00 397
DCPMVS0.00 3680.00 3710.00 3820.00 4040.00 4070.00 3930.00 4060.00 4000.00 4010.00 4000.00 4050.00 4010.00 4000.00 3990.00 397
cdsmvs_eth3d_5k24.66 36332.88 3660.00 3820.00 4040.00 4070.00 39399.10 2230.00 4000.00 40197.58 32499.21 160.00 4010.00 4000.00 3990.00 397
pcd_1.5k_mvsjas8.17 36610.90 3690.00 3820.00 4040.00 4070.00 3930.00 4060.00 4000.00 4010.00 40098.07 840.00 4010.00 4000.00 3990.00 397
sosnet-low-res0.00 3680.00 3710.00 3820.00 4040.00 4070.00 3930.00 4060.00 4000.00 4010.00 4000.00 4050.00 4010.00 4000.00 3990.00 397
sosnet0.00 3680.00 3710.00 3820.00 4040.00 4070.00 3930.00 4060.00 4000.00 4010.00 4000.00 4050.00 4010.00 4000.00 3990.00 397
uncertanet0.00 3680.00 3710.00 3820.00 4040.00 4070.00 3930.00 4060.00 4000.00 4010.00 4000.00 4050.00 4010.00 4000.00 3990.00 397
Regformer0.00 3680.00 3710.00 3820.00 4040.00 4070.00 3930.00 4060.00 4000.00 4010.00 4000.00 4050.00 4010.00 4000.00 3990.00 397
ab-mvs-re8.12 36710.83 3700.00 3820.00 4040.00 4070.00 3930.00 4060.00 4000.00 40197.48 3300.00 4050.00 4010.00 4000.00 3990.00 397
uanet0.00 3680.00 3710.00 3820.00 4040.00 4070.00 3930.00 4060.00 4000.00 4010.00 4000.00 4050.00 4010.00 4000.00 3990.00 397
MM98.91 14696.97 21797.89 18894.44 37299.54 2798.95 15599.14 13093.50 28099.92 4999.80 1099.96 2599.85 19
WAC-MVS90.90 36791.37 360
PC_three_145293.27 34199.40 8198.54 25098.22 7297.00 39295.17 28299.45 23499.49 126
test_241102_TWO99.30 16598.03 15599.26 11099.02 15197.51 13099.88 8296.91 18599.60 19299.66 57
test_0728_THIRD98.17 14799.08 13299.02 15197.89 9799.88 8297.07 17399.71 15299.70 50
GSMVS98.81 292
sam_mvs184.74 35298.81 292
sam_mvs84.29 358
MTGPAbinary99.20 196
test_post197.59 22720.48 39983.07 36499.66 27594.16 308
test_post21.25 39883.86 36099.70 248
patchmatchnet-post98.77 21484.37 35599.85 120
MTMP97.93 18191.91 387
test9_res93.28 33399.15 27999.38 182
agg_prior292.50 34799.16 27799.37 184
test_prior497.97 15395.86 326
test_prior295.74 33196.48 26596.11 34997.63 32295.92 21894.16 30899.20 271
旧先验295.76 33088.56 38197.52 29499.66 27594.48 298
新几何295.93 323
无先验95.74 33198.74 28689.38 37799.73 23792.38 34999.22 228
原ACMM295.53 337
testdata299.79 19792.80 341
segment_acmp97.02 160
testdata195.44 34296.32 270
plane_prior599.27 17999.70 24894.42 30299.51 22299.45 149
plane_prior497.98 301
plane_prior397.78 17397.41 20997.79 275
plane_prior297.77 20298.20 144
plane_prior97.65 18297.07 26696.72 25699.36 245
n20.00 406
nn0.00 406
door-mid99.57 59
test1198.87 260
door99.41 119
HQP5-MVS96.79 225
BP-MVS92.82 339
HQP4-MVS95.56 35999.54 31499.32 203
HQP3-MVS99.04 23499.26 263
HQP2-MVS93.84 274
MDTV_nov1_ep13_2view74.92 40297.69 21290.06 37597.75 27885.78 34493.52 32798.69 310
ACMMP++_ref99.77 122
ACMMP++99.68 165
Test By Simon96.52 188