This table lists the benchmark results for the high-res multi-view scenario. The following metrics are evaluated:

(*) For exact definitions, detailing how potentially incomplete ground truth is taken into account, see our paper.

The datasets are grouped into different categories, and result averages are computed for a category and method if results of the method are available for all datasets within the category. Note that the category "all" includes both the high-res multi-view and the low-res many-view scenarios.

Methods with suffix _ROB may participate in the Robust Vision Challenge.

Click a dataset result cell to show a visualization of the reconstruction. For training datasets, ground truth and accuracy / completeness visualizations are also available. The visualizations may not work with mobile browsers.




Method Infoallhigh-res
multi-view
indooroutdoorbotani.boulde.bridgedoorexhibi.lectur.living.loungeobserv.old co.statueterrac.
sort bysort bysort bysort bysorted bysort bysort bysort bysort bysort bysort bysort bysort bysort bysort bysort by
LCM-MVSNet99.93 199.92 199.94 199.99 199.97 199.90 199.89 1099.98 199.99 199.96 199.77 2100.00 199.81 11100.00 199.85 19
Gipumacopyleft99.03 5999.16 4598.64 18199.94 298.51 10299.32 2399.75 3299.58 2598.60 21199.62 3498.22 7499.51 33297.70 14099.73 14297.89 358
S. Galliani, K. Lasinger, K. Schindler: Massively Parallel Multiview Stereopsis by Surface Normal Diffusion. ICCV 2015
OurMVSNet-221017-099.37 2499.31 3099.53 3499.91 398.98 6599.63 699.58 5599.44 3899.78 2699.76 1096.39 19599.92 5099.44 3699.92 5599.68 54
pmmvs699.67 399.70 399.60 1199.90 499.27 2299.53 799.76 2999.64 1599.84 2099.83 399.50 899.87 10099.36 3899.92 5599.64 63
PS-MVSNAJss99.46 1499.49 1299.35 7099.90 498.15 12899.20 4599.65 4699.48 3299.92 899.71 1798.07 8699.96 1199.53 30100.00 199.93 8
testf199.25 3399.16 4599.51 4399.89 699.63 398.71 9199.69 3798.90 9899.43 7699.35 8398.86 2899.67 26797.81 13299.81 9999.24 222
APD_test299.25 3399.16 4599.51 4399.89 699.63 398.71 9199.69 3798.90 9899.43 7699.35 8398.86 2899.67 26797.81 13299.81 9999.24 222
ANet_high99.57 799.67 599.28 8599.89 698.09 13599.14 5499.93 499.82 399.93 699.81 599.17 1899.94 3599.31 41100.00 199.82 25
anonymousdsp99.51 1199.47 1699.62 699.88 999.08 6399.34 2099.69 3798.93 9699.65 4599.72 1698.93 2699.95 2299.11 52100.00 199.82 25
v7n99.53 999.57 999.41 6099.88 998.54 10099.45 1099.61 5199.66 1399.68 3999.66 2798.44 5999.95 2299.73 1999.96 2599.75 43
mvs_tets99.63 599.67 599.49 4899.88 998.61 9299.34 2099.71 3499.27 5799.90 1299.74 1399.68 499.97 499.55 2999.99 599.88 14
test_fmvsmconf0.01_n99.57 799.63 799.36 6499.87 1298.13 13198.08 15999.95 199.45 3699.98 299.75 1199.80 199.97 499.82 899.99 599.99 1
RRT_MVS99.09 5498.94 6699.55 2399.87 1298.82 7899.48 998.16 31699.49 3199.59 5299.65 3094.79 25699.95 2299.45 3599.96 2599.88 14
jajsoiax99.58 699.61 899.48 5199.87 1298.61 9299.28 3799.66 4599.09 8199.89 1599.68 2099.53 799.97 499.50 3299.99 599.87 16
test_djsdf99.52 1099.51 1199.53 3499.86 1598.74 8299.39 1799.56 6999.11 7199.70 3599.73 1599.00 2299.97 499.26 4399.98 1299.89 11
MIMVSNet199.38 2399.32 2899.55 2399.86 1599.19 3799.41 1399.59 5399.59 2399.71 3399.57 4297.12 15599.90 6499.21 4899.87 7799.54 108
LTVRE_ROB98.40 199.67 399.71 299.56 2199.85 1799.11 5999.90 199.78 2799.63 1799.78 2699.67 2599.48 999.81 17799.30 4299.97 1999.77 35
Andreas Kuhn, Heiko Hirschmüller, Daniel Scharstein, Helmut Mayer: A TV Prior for High-Quality Scalable Multi-View Stereo Reconstruction. International Journal of Computer Vision 2016
UniMVSNet_ETH3D99.69 299.69 499.69 399.84 1899.34 1599.69 499.58 5599.90 299.86 1899.78 899.58 699.95 2299.00 6199.95 3299.78 33
mvsmamba99.24 3799.15 5099.49 4899.83 1998.85 7499.41 1399.55 7399.54 2799.40 8399.52 5795.86 22399.91 5999.32 4099.95 3299.70 51
SixPastTwentyTwo98.75 9598.62 10499.16 10599.83 1997.96 15599.28 3798.20 31399.37 4599.70 3599.65 3092.65 29799.93 4099.04 5899.84 8599.60 74
Baseline_NR-MVSNet98.98 6598.86 7499.36 6499.82 2198.55 9797.47 24199.57 6299.37 4599.21 12099.61 3796.76 17999.83 15498.06 11699.83 9299.71 46
pm-mvs199.44 1599.48 1499.33 7899.80 2298.63 8999.29 3399.63 4799.30 5499.65 4599.60 3999.16 2099.82 16499.07 5599.83 9299.56 97
TransMVSNet (Re)99.44 1599.47 1699.36 6499.80 2298.58 9599.27 3999.57 6299.39 4399.75 3099.62 3499.17 1899.83 15499.06 5699.62 18799.66 58
K. test v398.00 19097.66 21299.03 13099.79 2497.56 18599.19 4992.47 39199.62 2099.52 6299.66 2789.61 32299.96 1199.25 4599.81 9999.56 97
test_fmvsmconf0.1_n99.49 1299.54 1099.34 7399.78 2598.11 13297.77 20399.90 999.33 5099.97 399.66 2799.71 399.96 1199.79 1399.99 599.96 5
APD_test198.83 8398.66 9899.34 7399.78 2599.47 698.42 12899.45 10898.28 13798.98 15099.19 11397.76 10899.58 30996.57 21799.55 21398.97 267
test_vis3_rt99.14 4699.17 4399.07 12099.78 2598.38 10998.92 7599.94 297.80 17299.91 1199.67 2597.15 15498.91 38899.76 1699.56 21099.92 9
EGC-MVSNET85.24 37080.54 37399.34 7399.77 2899.20 3499.08 5899.29 17512.08 40620.84 40799.42 7397.55 12699.85 12097.08 17299.72 14998.96 269
Anonymous2024052198.69 10698.87 7198.16 23799.77 2895.11 28199.08 5899.44 11299.34 4999.33 9799.55 4894.10 27499.94 3599.25 4599.96 2599.42 161
FC-MVSNet-test99.27 3099.25 3899.34 7399.77 2898.37 11199.30 3299.57 6299.61 2299.40 8399.50 5997.12 15599.85 12099.02 6099.94 4099.80 29
test_vis1_n98.31 16198.50 12097.73 27299.76 3194.17 30798.68 9499.91 796.31 27899.79 2599.57 4292.85 29499.42 34999.79 1399.84 8599.60 74
test_fmvs399.12 5199.41 1998.25 22999.76 3195.07 28299.05 6499.94 297.78 17499.82 2199.84 298.56 5299.71 24699.96 199.96 2599.97 3
XXY-MVS99.14 4699.15 5099.10 11499.76 3197.74 17598.85 8199.62 4898.48 12499.37 8999.49 6398.75 3699.86 10898.20 10899.80 10999.71 46
TDRefinement99.42 1999.38 2199.55 2399.76 3199.33 1699.68 599.71 3499.38 4499.53 6099.61 3798.64 4399.80 18498.24 10599.84 8599.52 118
fmvsm_s_conf0.1_n_a99.17 4299.30 3298.80 16099.75 3596.59 23297.97 17999.86 1398.22 14099.88 1799.71 1798.59 4999.84 13799.73 1999.98 1299.98 2
tt080598.69 10698.62 10498.90 15099.75 3599.30 1799.15 5396.97 34698.86 10198.87 17897.62 32398.63 4598.96 38599.41 3798.29 33698.45 326
test_vis1_n_192098.40 15098.92 6896.81 32699.74 3790.76 37598.15 15199.91 798.33 12999.89 1599.55 4895.07 24499.88 8399.76 1699.93 4499.79 30
FOURS199.73 3899.67 299.43 1199.54 7899.43 4099.26 112
PEN-MVS99.41 2099.34 2599.62 699.73 3899.14 5299.29 3399.54 7899.62 2099.56 5399.42 7398.16 8299.96 1198.78 7299.93 4499.77 35
lessismore_v098.97 13899.73 3897.53 18786.71 40599.37 8999.52 5789.93 32099.92 5098.99 6299.72 14999.44 154
SteuartSystems-ACMMP98.79 8898.54 11599.54 2799.73 3899.16 4398.23 14199.31 15997.92 16398.90 16898.90 18798.00 9299.88 8396.15 25099.72 14999.58 86
Skip Steuart: Steuart Systems R&D Blog.
PVSNet_Blended_VisFu98.17 17998.15 17098.22 23299.73 3895.15 27897.36 24799.68 4294.45 33198.99 14999.27 9896.87 16999.94 3597.13 16999.91 6399.57 91
Vis-MVSNetpermissive99.34 2599.36 2299.27 8899.73 3898.26 11899.17 5099.78 2799.11 7199.27 10899.48 6498.82 3199.95 2298.94 6499.93 4499.59 80
Jingyang Zhang, Yao Yao, Shiwei Li, Zixin Luo, Tian Fang: Visibility-aware Multiview Stereo Network. BMVC 2020
SSC-MVS98.71 9998.74 8398.62 18699.72 4496.08 25098.74 8598.64 29499.74 699.67 4199.24 10594.57 26099.95 2299.11 5299.24 26799.82 25
test_f98.67 11498.87 7198.05 24699.72 4495.59 26098.51 11599.81 2496.30 28099.78 2699.82 496.14 20498.63 39399.82 899.93 4499.95 6
ACMH96.65 799.25 3399.24 3999.26 9099.72 4498.38 10999.07 6199.55 7398.30 13299.65 4599.45 7099.22 1599.76 22198.44 9699.77 12499.64 63
Qingshan Xu and Wenbing Tao: Multi-Scale Geometric Consistency Guided Multi-View Stereo. CVPR 2019
fmvsm_s_conf0.1_n99.16 4599.33 2698.64 18199.71 4796.10 24597.87 19199.85 1598.56 12199.90 1299.68 2098.69 4199.85 12099.72 2199.98 1299.97 3
PS-CasMVS99.40 2199.33 2699.62 699.71 4799.10 6099.29 3399.53 8199.53 2999.46 7199.41 7698.23 7199.95 2298.89 6899.95 3299.81 28
DTE-MVSNet99.43 1899.35 2399.66 499.71 4799.30 1799.31 2799.51 8599.64 1599.56 5399.46 6698.23 7199.97 498.78 7299.93 4499.72 45
WR-MVS_H99.33 2699.22 4099.65 599.71 4799.24 2599.32 2399.55 7399.46 3599.50 6799.34 8797.30 14499.93 4098.90 6699.93 4499.77 35
HPM-MVS_fast99.01 6098.82 7799.57 1699.71 4799.35 1299.00 6899.50 8797.33 21698.94 16498.86 19798.75 3699.82 16497.53 14799.71 15499.56 97
ACMH+96.62 999.08 5799.00 6299.33 7899.71 4798.83 7698.60 10199.58 5599.11 7199.53 6099.18 11698.81 3299.67 26796.71 20999.77 12499.50 123
PMVScopyleft91.26 2097.86 20197.94 19097.65 27699.71 4797.94 15798.52 11098.68 29098.99 9097.52 29599.35 8397.41 13998.18 39791.59 36299.67 17396.82 385
Y. Furukawa, J. Ponce: Accurate, dense, and robust multiview stereopsis. PAMI (2010)
FIs99.14 4699.09 5599.29 8499.70 5498.28 11799.13 5599.52 8499.48 3299.24 11799.41 7696.79 17699.82 16498.69 8199.88 7499.76 39
VPNet98.87 7898.83 7699.01 13399.70 5497.62 18498.43 12699.35 14199.47 3499.28 10699.05 14796.72 18299.82 16498.09 11499.36 24799.59 80
test_cas_vis1_n_192098.33 15898.68 9597.27 30399.69 5692.29 35298.03 16799.85 1597.62 18499.96 499.62 3493.98 27599.74 23399.52 3199.86 8099.79 30
MP-MVS-pluss98.57 12798.23 16099.60 1199.69 5699.35 1297.16 26499.38 12894.87 32198.97 15498.99 16598.01 9199.88 8397.29 15799.70 15999.58 86
MP-MVS-pluss: MP-MVS-pluss. MP-MVS-pluss
SDMVSNet99.23 3899.32 2898.96 13999.68 5897.35 19698.84 8399.48 9699.69 999.63 4899.68 2099.03 2199.96 1197.97 12399.92 5599.57 91
sd_testset99.28 2999.31 3099.19 10199.68 5898.06 14499.41 1399.30 16799.69 999.63 4899.68 2099.25 1499.96 1197.25 16099.92 5599.57 91
test_fmvs1_n98.09 18498.28 15497.52 28999.68 5893.47 33198.63 9799.93 495.41 31099.68 3999.64 3291.88 30799.48 33899.82 899.87 7799.62 67
CHOSEN 1792x268897.49 22997.14 24598.54 20399.68 5896.09 24896.50 29699.62 4891.58 36998.84 18198.97 17192.36 30099.88 8396.76 20299.95 3299.67 57
tfpnnormal98.90 7598.90 7098.91 14799.67 6297.82 16899.00 6899.44 11299.45 3699.51 6699.24 10598.20 7799.86 10895.92 25999.69 16299.04 255
MTAPA98.88 7798.64 10199.61 999.67 6299.36 1198.43 12699.20 19898.83 10598.89 17098.90 18796.98 16599.92 5097.16 16499.70 15999.56 97
test_fmvsmvis_n_192099.26 3299.49 1298.54 20399.66 6496.97 21898.00 17399.85 1599.24 5999.92 899.50 5999.39 1199.95 2299.89 399.98 1298.71 306
fmvsm_l_conf0.5_n_a99.19 4199.27 3598.94 14299.65 6597.05 21497.80 19999.76 2998.70 10999.78 2699.11 13398.79 3499.95 2299.85 599.96 2599.83 22
WB-MVS98.52 13998.55 11398.43 21499.65 6595.59 26098.52 11098.77 28199.65 1499.52 6299.00 16494.34 26699.93 4098.65 8398.83 31199.76 39
CP-MVSNet99.21 3999.09 5599.56 2199.65 6598.96 7099.13 5599.34 14799.42 4199.33 9799.26 10097.01 16399.94 3598.74 7699.93 4499.79 30
HPM-MVScopyleft98.79 8898.53 11699.59 1599.65 6599.29 1999.16 5199.43 11896.74 25898.61 20998.38 26998.62 4699.87 10096.47 22999.67 17399.59 80
Chunlin Ren, Qingshan Xu, Shikun Zhang, Jiaqi Yang: Hierarchical Prior Mining for Non-local Multi-View Stereo. ICCV 2023
RPSCF98.62 12298.36 14499.42 5899.65 6599.42 798.55 10699.57 6297.72 17898.90 16899.26 10096.12 20699.52 32895.72 27099.71 15499.32 203
fmvsm_l_conf0.5_n99.21 3999.28 3499.02 13299.64 7097.28 20097.82 19699.76 2998.73 10699.82 2199.09 13998.81 3299.95 2299.86 499.96 2599.83 22
test_fmvsmconf_n99.44 1599.48 1499.31 8399.64 7098.10 13497.68 21499.84 1899.29 5599.92 899.57 4299.60 599.96 1199.74 1899.98 1299.89 11
TSAR-MVS + MP.98.63 12098.49 12499.06 12699.64 7097.90 15998.51 11598.94 24896.96 24599.24 11798.89 19397.83 10299.81 17796.88 19299.49 23299.48 137
Zhenlong Yuan, Jiakai Cao, Zhaoqi Wang, Zhaoxin Li: TSAR-MVS: Textureless-aware Segmentation and Correlative Refinement Guided Multi-View Stereo. Pattern Recognition
PM-MVS98.82 8498.72 8799.12 11099.64 7098.54 10097.98 17699.68 4297.62 18499.34 9699.18 11697.54 12799.77 21597.79 13499.74 13999.04 255
KD-MVS_self_test99.25 3399.18 4299.44 5799.63 7499.06 6498.69 9399.54 7899.31 5299.62 5199.53 5497.36 14299.86 10899.24 4799.71 15499.39 175
EU-MVSNet97.66 21898.50 12095.13 36499.63 7485.84 39498.35 13498.21 31298.23 13999.54 5699.46 6695.02 24599.68 26498.24 10599.87 7799.87 16
HyFIR lowres test97.19 25396.60 27798.96 13999.62 7697.28 20095.17 35699.50 8794.21 33699.01 14798.32 27786.61 34099.99 297.10 17199.84 8599.60 74
ACMMP_NAP98.75 9598.48 12599.57 1699.58 7799.29 1997.82 19699.25 18796.94 24798.78 18899.12 13298.02 9099.84 13797.13 16999.67 17399.59 80
nrg03099.40 2199.35 2399.54 2799.58 7799.13 5598.98 7199.48 9699.68 1199.46 7199.26 10098.62 4699.73 23899.17 5199.92 5599.76 39
VDDNet98.21 17497.95 18899.01 13399.58 7797.74 17599.01 6697.29 33999.67 1298.97 15499.50 5990.45 31799.80 18497.88 12999.20 27399.48 137
COLMAP_ROBcopyleft96.50 1098.99 6298.85 7599.41 6099.58 7799.10 6098.74 8599.56 6999.09 8199.33 9799.19 11398.40 6199.72 24595.98 25799.76 13599.42 161
Johannes L. Schönberger, Enliang Zheng, Marc Pollefeys, Jan-Michael Frahm: Pixelwise View Selection for Unstructured Multi-View Stereo. ECCV 2016
test_fmvsm_n_192099.33 2699.45 1898.99 13599.57 8197.73 17797.93 18099.83 2099.22 6099.93 699.30 9499.42 1099.96 1199.85 599.99 599.29 212
ZNCC-MVS98.68 11198.40 13799.54 2799.57 8199.21 2898.46 12399.29 17597.28 22298.11 25498.39 26798.00 9299.87 10096.86 19599.64 18199.55 104
MSP-MVS98.40 15098.00 18499.61 999.57 8199.25 2498.57 10499.35 14197.55 19499.31 10597.71 31694.61 25999.88 8396.14 25199.19 27699.70 51
Zhenlong Yuan, Cong Liu, Fei Shen, Zhaoxin Li, Jingguo luo, Tianlu Mao and Zhaoqi Wang: MSP-MVS: Multi-granularity Segmentation Prior Guided Multi-View Stereo. AAAI2025
testgi98.32 15998.39 14098.13 23899.57 8195.54 26397.78 20199.49 9497.37 21399.19 12297.65 32098.96 2499.49 33596.50 22898.99 30099.34 196
MP-MVScopyleft98.46 14498.09 17599.54 2799.57 8199.22 2798.50 11799.19 20297.61 18797.58 28998.66 23397.40 14099.88 8394.72 29599.60 19499.54 108
Rongxuan Tan, Qing Wang, et al.: MP-MVS: Multi-Scale Windows PatchMatch and Planar Prior Multi-View Stereo.
LPG-MVS_test98.71 9998.46 12999.47 5499.57 8198.97 6698.23 14199.48 9696.60 26399.10 13299.06 14098.71 3999.83 15495.58 27799.78 11999.62 67
LGP-MVS_train99.47 5499.57 8198.97 6699.48 9696.60 26399.10 13299.06 14098.71 3999.83 15495.58 27799.78 11999.62 67
IS-MVSNet98.19 17697.90 19499.08 11899.57 8197.97 15299.31 2798.32 30899.01 8998.98 15099.03 15191.59 30899.79 19795.49 27999.80 10999.48 137
dcpmvs_298.78 9099.11 5297.78 26399.56 8993.67 32799.06 6299.86 1399.50 3099.66 4299.26 10097.21 15299.99 298.00 12199.91 6399.68 54
test_040298.76 9498.71 8998.93 14499.56 8998.14 13098.45 12599.34 14799.28 5698.95 15798.91 18498.34 6799.79 19795.63 27499.91 6398.86 285
EPP-MVSNet98.30 16298.04 18199.07 12099.56 8997.83 16599.29 3398.07 32099.03 8798.59 21399.13 13092.16 30399.90 6496.87 19399.68 16799.49 127
ACMMPcopyleft98.75 9598.50 12099.52 3999.56 8999.16 4398.87 7899.37 13297.16 23798.82 18599.01 16197.71 11199.87 10096.29 24099.69 16299.54 108
Qingshan Xu, Weihang Kong, Wenbing Tao, Marc Pollefeys: Multi-Scale Geometric Consistency Guided and Planar Prior Assisted Multi-View Stereo. IEEE Transactions on Pattern Analysis and Machine Intelligence
fmvsm_s_conf0.5_n_a99.10 5399.20 4198.78 16699.55 9396.59 23297.79 20099.82 2298.21 14199.81 2399.53 5498.46 5899.84 13799.70 2299.97 1999.90 10
fmvsm_s_conf0.5_n99.09 5499.26 3798.61 18999.55 9396.09 24897.74 20899.81 2498.55 12299.85 1999.55 4898.60 4899.84 13799.69 2499.98 1299.89 11
FMVSNet199.17 4299.17 4399.17 10299.55 9398.24 12099.20 4599.44 11299.21 6299.43 7699.55 4897.82 10599.86 10898.42 9899.89 7399.41 164
Vis-MVSNet (Re-imp)97.46 23197.16 24298.34 22299.55 9396.10 24598.94 7398.44 30398.32 13198.16 24898.62 24288.76 32799.73 23893.88 32199.79 11499.18 236
ACMM96.08 1298.91 7398.73 8599.48 5199.55 9399.14 5298.07 16199.37 13297.62 18499.04 14398.96 17498.84 3099.79 19797.43 15199.65 17999.49 127
Qingshan Xu and Wenbing Tao: Multi-Scale Geometric Consistency Guided Multi-View Stereo. CVPR 2019
test_fmvs298.70 10398.97 6597.89 25699.54 9894.05 30998.55 10699.92 696.78 25699.72 3199.78 896.60 18799.67 26799.91 299.90 6999.94 7
mPP-MVS98.64 11898.34 14799.54 2799.54 9899.17 3998.63 9799.24 19297.47 20098.09 25698.68 22897.62 12099.89 7496.22 24599.62 18799.57 91
XVG-ACMP-BASELINE98.56 12898.34 14799.22 9899.54 9898.59 9497.71 21199.46 10597.25 22598.98 15098.99 16597.54 12799.84 13795.88 26099.74 13999.23 224
region2R98.69 10698.40 13799.54 2799.53 10199.17 3998.52 11099.31 15997.46 20598.44 23098.51 25497.83 10299.88 8396.46 23099.58 20399.58 86
PGM-MVS98.66 11598.37 14399.55 2399.53 10199.18 3898.23 14199.49 9497.01 24498.69 19898.88 19498.00 9299.89 7495.87 26399.59 19899.58 86
Patchmatch-RL test97.26 24697.02 24997.99 25099.52 10395.53 26496.13 31999.71 3497.47 20099.27 10899.16 12284.30 36199.62 29297.89 12699.77 12498.81 292
ACMMPR98.70 10398.42 13599.54 2799.52 10399.14 5298.52 11099.31 15997.47 20098.56 21898.54 25097.75 10999.88 8396.57 21799.59 19899.58 86
GST-MVS98.61 12398.30 15299.52 3999.51 10599.20 3498.26 13999.25 18797.44 20898.67 20098.39 26797.68 11299.85 12096.00 25599.51 22499.52 118
Anonymous2023120698.21 17498.21 16198.20 23399.51 10595.43 26998.13 15299.32 15496.16 28398.93 16598.82 20696.00 21299.83 15497.32 15699.73 14299.36 190
ACMP95.32 1598.41 14898.09 17599.36 6499.51 10598.79 8097.68 21499.38 12895.76 29798.81 18798.82 20698.36 6399.82 16494.75 29299.77 12499.48 137
Qingshan Xu and Wenbing Tao: Planar Prior Assisted PatchMatch Multi-View Stereo. AAAI 2020
DVP-MVScopyleft98.77 9398.52 11799.52 3999.50 10899.21 2898.02 16998.84 27097.97 15899.08 13499.02 15297.61 12199.88 8396.99 17999.63 18499.48 137
Zhenlong Yuan, Jinguo Luo, Fei Shen, Zhaoxin Li, Cong Liu, Tianlu Mao, Zhaoqi Wang: DVP-MVS: Synergize Depth-Edge and Visibility Prior for Multi-View Stereo. AAAI2025
test_0728_SECOND99.60 1199.50 10899.23 2698.02 16999.32 15499.88 8396.99 17999.63 18499.68 54
test072699.50 10899.21 2898.17 15099.35 14197.97 15899.26 11299.06 14097.61 121
AllTest98.44 14698.20 16299.16 10599.50 10898.55 9798.25 14099.58 5596.80 25498.88 17499.06 14097.65 11599.57 31194.45 30299.61 19299.37 184
TestCases99.16 10599.50 10898.55 9799.58 5596.80 25498.88 17499.06 14097.65 11599.57 31194.45 30299.61 19299.37 184
XVG-OURS98.53 13698.34 14799.11 11299.50 10898.82 7895.97 32599.50 8797.30 22099.05 14198.98 16999.35 1299.32 36395.72 27099.68 16799.18 236
EG-PatchMatch MVS98.99 6299.01 6198.94 14299.50 10897.47 18998.04 16699.59 5398.15 15299.40 8399.36 8298.58 5199.76 22198.78 7299.68 16799.59 80
SED-MVS98.91 7398.72 8799.49 4899.49 11599.17 3998.10 15799.31 15998.03 15599.66 4299.02 15298.36 6399.88 8396.91 18599.62 18799.41 164
IU-MVS99.49 11599.15 4798.87 26192.97 35499.41 8096.76 20299.62 18799.66 58
test_241102_ONE99.49 11599.17 3999.31 15997.98 15799.66 4298.90 18798.36 6399.48 338
UA-Net99.47 1399.40 2099.70 299.49 11599.29 1999.80 399.72 3399.82 399.04 14399.81 598.05 8999.96 1198.85 6999.99 599.86 18
HFP-MVS98.71 9998.44 13299.51 4399.49 11599.16 4398.52 11099.31 15997.47 20098.58 21598.50 25897.97 9699.85 12096.57 21799.59 19899.53 115
VPA-MVSNet99.30 2899.30 3299.28 8599.49 11598.36 11499.00 6899.45 10899.63 1799.52 6299.44 7198.25 6999.88 8399.09 5499.84 8599.62 67
XVG-OURS-SEG-HR98.49 14198.28 15499.14 10899.49 11598.83 7696.54 29399.48 9697.32 21899.11 12998.61 24499.33 1399.30 36696.23 24498.38 33299.28 214
114514_t96.50 28895.77 29598.69 17899.48 12297.43 19397.84 19599.55 7381.42 40096.51 34498.58 24795.53 23199.67 26793.41 33499.58 20398.98 264
IterMVS-LS98.55 13298.70 9298.09 23999.48 12294.73 29097.22 26099.39 12698.97 9299.38 8799.31 9396.00 21299.93 4098.58 8699.97 1999.60 74
Fangjinhua Wang, Silvano Galliani, Christoph Vogel, Marc Pollefeys: IterMVS: Iterative Probability Estimation for Efficient Multi-View Stereo.
v899.01 6099.16 4598.57 19599.47 12496.31 24098.90 7699.47 10399.03 8799.52 6299.57 4296.93 16699.81 17799.60 2599.98 1299.60 74
XVS98.72 9898.45 13099.53 3499.46 12599.21 2898.65 9599.34 14798.62 11497.54 29398.63 24097.50 13399.83 15496.79 19899.53 21999.56 97
X-MVStestdata94.32 33292.59 35099.53 3499.46 12599.21 2898.65 9599.34 14798.62 11497.54 29345.85 40497.50 13399.83 15496.79 19899.53 21999.56 97
test20.0398.78 9098.77 8298.78 16699.46 12597.20 20797.78 20199.24 19299.04 8699.41 8098.90 18797.65 11599.76 22197.70 14099.79 11499.39 175
CSCG98.68 11198.50 12099.20 9999.45 12898.63 8998.56 10599.57 6297.87 16798.85 17998.04 29897.66 11499.84 13796.72 20799.81 9999.13 244
GeoE99.05 5898.99 6499.25 9399.44 12998.35 11598.73 8899.56 6998.42 12598.91 16798.81 20898.94 2599.91 5998.35 10099.73 14299.49 127
v14898.45 14598.60 10998.00 24999.44 12994.98 28397.44 24399.06 22998.30 13299.32 10398.97 17196.65 18599.62 29298.37 9999.85 8199.39 175
v1098.97 6699.11 5298.55 20099.44 12996.21 24498.90 7699.55 7398.73 10699.48 6899.60 3996.63 18699.83 15499.70 2299.99 599.61 73
V4298.78 9098.78 8198.76 17099.44 12997.04 21598.27 13899.19 20297.87 16799.25 11699.16 12296.84 17099.78 20899.21 4899.84 8599.46 146
MDA-MVSNet-bldmvs97.94 19497.91 19398.06 24499.44 12994.96 28496.63 29199.15 21898.35 12798.83 18299.11 13394.31 26799.85 12096.60 21498.72 31799.37 184
casdiffmvs_mvgpermissive99.12 5199.16 4598.99 13599.43 13497.73 17798.00 17399.62 4899.22 6099.55 5599.22 10998.93 2699.75 22898.66 8299.81 9999.50 123
Fangjinhua Wang, Qingshan Xu, Yew-Soon Ong, Marc Pollefeys: Lightweight and Accurate Multi-View Stereo With Confidence-Aware Diffusion Model. IEEE T-PAMI 2025
test111196.49 28996.82 26195.52 35899.42 13587.08 39199.22 4287.14 40499.11 7199.46 7199.58 4188.69 32899.86 10898.80 7199.95 3299.62 67
v2v48298.56 12898.62 10498.37 22099.42 13595.81 25797.58 22999.16 21397.90 16599.28 10699.01 16195.98 21799.79 19799.33 3999.90 6999.51 120
OPM-MVS98.56 12898.32 15199.25 9399.41 13798.73 8597.13 26699.18 20697.10 24098.75 19498.92 18398.18 7899.65 28396.68 21199.56 21099.37 184
Ray L. Khuboni, Hongjun Xu: Octagram Propagation Matching for Multi-Scale View Stereopsis (OPM-MVS).
PMMVS298.07 18698.08 17898.04 24799.41 13794.59 29694.59 37599.40 12497.50 19798.82 18598.83 20396.83 17299.84 13797.50 14999.81 9999.71 46
test_one_060199.39 13999.20 3499.31 15998.49 12398.66 20299.02 15297.64 118
mvsany_test398.87 7898.92 6898.74 17799.38 14096.94 22298.58 10399.10 22496.49 26899.96 499.81 598.18 7899.45 34498.97 6399.79 11499.83 22
patch_mono-298.51 14098.63 10298.17 23599.38 14094.78 28797.36 24799.69 3798.16 15198.49 22699.29 9597.06 15899.97 498.29 10499.91 6399.76 39
test250692.39 36091.89 36293.89 37699.38 14082.28 40699.32 2366.03 41299.08 8398.77 19199.57 4266.26 40299.84 13798.71 7999.95 3299.54 108
ECVR-MVScopyleft96.42 29196.61 27595.85 35099.38 14088.18 38799.22 4286.00 40699.08 8399.36 9299.57 4288.47 33399.82 16498.52 9299.95 3299.54 108
casdiffmvspermissive98.95 6999.00 6298.81 15899.38 14097.33 19797.82 19699.57 6299.17 6999.35 9499.17 12098.35 6699.69 25598.46 9599.73 14299.41 164
Fangjinhua Wang, Qingshan Xu, Yew-Soon Ong, Marc Pollefeys: Lightweight and Accurate Multi-View Stereo With Confidence-Aware Diffusion Model. IEEE T-PAMI 2025
baseline98.96 6899.02 6098.76 17099.38 14097.26 20298.49 11899.50 8798.86 10199.19 12299.06 14098.23 7199.69 25598.71 7999.76 13599.33 201
TranMVSNet+NR-MVSNet99.17 4299.07 5899.46 5699.37 14698.87 7398.39 13099.42 12199.42 4199.36 9299.06 14098.38 6299.95 2298.34 10199.90 6999.57 91
tttt051795.64 31394.98 32297.64 27899.36 14793.81 32398.72 8990.47 39998.08 15498.67 20098.34 27473.88 39399.92 5097.77 13599.51 22499.20 229
test_part299.36 14799.10 6099.05 141
v114498.60 12498.66 9898.41 21699.36 14795.90 25397.58 22999.34 14797.51 19699.27 10899.15 12696.34 20099.80 18499.47 3499.93 4499.51 120
CP-MVS98.70 10398.42 13599.52 3999.36 14799.12 5798.72 8999.36 13697.54 19598.30 24098.40 26697.86 10199.89 7496.53 22699.72 14999.56 97
Test_1112_low_res96.99 26896.55 27998.31 22599.35 15195.47 26795.84 33699.53 8191.51 37196.80 33298.48 26191.36 31199.83 15496.58 21599.53 21999.62 67
DeepC-MVS97.60 498.97 6698.93 6799.10 11499.35 15197.98 15198.01 17299.46 10597.56 19299.54 5699.50 5998.97 2399.84 13798.06 11699.92 5599.49 127
Andreas Kuhn, Christian Sormann, Mattia Rossi, Oliver Erdler, Friedrich Fraundorfer: DeepC-MVS: Deep Confidence Prediction for Multi-View Stereo Reconstruction. 3DV 2020
1112_ss97.29 24596.86 25798.58 19399.34 15396.32 23996.75 28599.58 5593.14 35296.89 32797.48 33092.11 30499.86 10896.91 18599.54 21599.57 91
SF-MVS98.53 13698.27 15699.32 8099.31 15498.75 8198.19 14699.41 12296.77 25798.83 18298.90 18797.80 10699.82 16495.68 27399.52 22299.38 182
CPTT-MVS97.84 20797.36 23299.27 8899.31 15498.46 10598.29 13699.27 18194.90 32097.83 27398.37 27094.90 24799.84 13793.85 32399.54 21599.51 120
UnsupCasMVSNet_eth97.89 19797.60 21798.75 17399.31 15497.17 21097.62 22399.35 14198.72 10898.76 19398.68 22892.57 29899.74 23397.76 13995.60 39199.34 196
pmmvs-eth3d98.47 14398.34 14798.86 15299.30 15797.76 17397.16 26499.28 17895.54 30399.42 7999.19 11397.27 14799.63 28997.89 12699.97 1999.20 229
Anonymous2023121199.27 3099.27 3599.26 9099.29 15898.18 12699.49 899.51 8599.70 899.80 2499.68 2096.84 17099.83 15499.21 4899.91 6399.77 35
UnsupCasMVSNet_bld97.30 24396.92 25398.45 21299.28 15996.78 22996.20 31499.27 18195.42 30798.28 24298.30 27893.16 28599.71 24694.99 28797.37 36798.87 284
EC-MVSNet99.09 5499.05 5999.20 9999.28 15998.93 7199.24 4199.84 1899.08 8398.12 25398.37 27098.72 3899.90 6499.05 5799.77 12498.77 300
DPE-MVScopyleft98.59 12698.26 15799.57 1699.27 16199.15 4797.01 26999.39 12697.67 18099.44 7598.99 16597.53 12999.89 7495.40 28199.68 16799.66 58
Kehua Chen, Zhenlong Yuan, Tianlu Mao, Zhaoqi Wang: Dual-Level Precision Edges Guided Multi-View Stereo with Accurate Planarization. AAAI2025
IterMVS-SCA-FT97.85 20698.18 16596.87 32299.27 16191.16 37095.53 34499.25 18799.10 7899.41 8099.35 8393.10 28799.96 1198.65 8399.94 4099.49 127
v119298.60 12498.66 9898.41 21699.27 16195.88 25497.52 23599.36 13697.41 20999.33 9799.20 11296.37 19899.82 16499.57 2799.92 5599.55 104
N_pmnet97.63 22097.17 24198.99 13599.27 16197.86 16295.98 32493.41 38895.25 31299.47 7098.90 18795.63 22899.85 12096.91 18599.73 14299.27 215
FPMVS93.44 34892.23 35397.08 31199.25 16597.86 16295.61 34197.16 34192.90 35693.76 39098.65 23575.94 39095.66 40379.30 40397.49 36097.73 368
new-patchmatchnet98.35 15698.74 8397.18 30699.24 16692.23 35496.42 30199.48 9698.30 13299.69 3799.53 5497.44 13899.82 16498.84 7099.77 12499.49 127
MCST-MVS98.00 19097.63 21599.10 11499.24 16698.17 12796.89 27898.73 28895.66 29897.92 26597.70 31897.17 15399.66 27896.18 24999.23 26999.47 144
UniMVSNet (Re)98.87 7898.71 8999.35 7099.24 16698.73 8597.73 21099.38 12898.93 9699.12 12898.73 21996.77 17799.86 10898.63 8599.80 10999.46 146
jason97.45 23397.35 23397.76 26799.24 16693.93 31795.86 33398.42 30494.24 33598.50 22598.13 28894.82 25199.91 5997.22 16199.73 14299.43 158
jason: jason.
IterMVS97.73 21298.11 17496.57 33199.24 16690.28 37895.52 34699.21 19698.86 10199.33 9799.33 8993.11 28699.94 3598.49 9499.94 4099.48 137
Fangjinhua Wang, Silvano Galliani, Christoph Vogel, Marc Pollefeys: IterMVS: Iterative Probability Estimation for Efficient Multi-View Stereo.
v124098.55 13298.62 10498.32 22399.22 17195.58 26297.51 23799.45 10897.16 23799.45 7499.24 10596.12 20699.85 12099.60 2599.88 7499.55 104
ITE_SJBPF98.87 15199.22 17198.48 10499.35 14197.50 19798.28 24298.60 24597.64 11899.35 35993.86 32299.27 26298.79 298
h-mvs3397.77 21097.33 23599.10 11499.21 17397.84 16498.35 13498.57 29799.11 7198.58 21599.02 15288.65 33199.96 1198.11 11296.34 38399.49 127
v14419298.54 13498.57 11298.45 21299.21 17395.98 25197.63 22299.36 13697.15 23999.32 10399.18 11695.84 22499.84 13799.50 3299.91 6399.54 108
APDe-MVScopyleft98.99 6298.79 8099.60 1199.21 17399.15 4798.87 7899.48 9697.57 19099.35 9499.24 10597.83 10299.89 7497.88 12999.70 15999.75 43
Zhaojie Zeng, Yuesong Wang, Tao Guan: Matching Ambiguity-Resilient Multi-View Stereo via Adaptive Patch Deformation. Pattern Recognition
DP-MVS98.93 7198.81 7999.28 8599.21 17398.45 10698.46 12399.33 15299.63 1799.48 6899.15 12697.23 15099.75 22897.17 16399.66 17899.63 66
SR-MVS-dyc-post98.81 8698.55 11399.57 1699.20 17799.38 898.48 12199.30 16798.64 11098.95 15798.96 17497.49 13699.86 10896.56 22199.39 24399.45 150
RE-MVS-def98.58 11199.20 17799.38 898.48 12199.30 16798.64 11098.95 15798.96 17497.75 10996.56 22199.39 24399.45 150
v192192098.54 13498.60 10998.38 21999.20 17795.76 25997.56 23199.36 13697.23 23199.38 8799.17 12096.02 21099.84 13799.57 2799.90 6999.54 108
thisisatest053095.27 32094.45 32997.74 27099.19 18094.37 30197.86 19390.20 40097.17 23698.22 24497.65 32073.53 39499.90 6496.90 19099.35 24998.95 270
Anonymous2024052998.93 7198.87 7199.12 11099.19 18098.22 12599.01 6698.99 24699.25 5899.54 5699.37 7997.04 15999.80 18497.89 12699.52 22299.35 194
APD-MVS_3200maxsize98.84 8298.61 10899.53 3499.19 18099.27 2298.49 11899.33 15298.64 11099.03 14698.98 16997.89 9999.85 12096.54 22599.42 24099.46 146
HQP_MVS97.99 19397.67 20998.93 14499.19 18097.65 18197.77 20399.27 18198.20 14597.79 27697.98 30194.90 24799.70 25094.42 30499.51 22499.45 150
plane_prior799.19 18097.87 161
ab-mvs98.41 14898.36 14498.59 19299.19 18097.23 20399.32 2398.81 27597.66 18198.62 20799.40 7896.82 17399.80 18495.88 26099.51 22498.75 303
F-COLMAP97.30 24396.68 27099.14 10899.19 18098.39 10897.27 25699.30 16792.93 35596.62 33998.00 29995.73 22699.68 26492.62 35098.46 33199.35 194
SR-MVS98.71 9998.43 13399.57 1699.18 18799.35 1298.36 13399.29 17598.29 13598.88 17498.85 20097.53 12999.87 10096.14 25199.31 25599.48 137
UniMVSNet_NR-MVSNet98.86 8198.68 9599.40 6299.17 18898.74 8297.68 21499.40 12499.14 7099.06 13698.59 24696.71 18399.93 4098.57 8899.77 12499.53 115
LF4IMVS97.90 19597.69 20898.52 20599.17 18897.66 18097.19 26399.47 10396.31 27897.85 27298.20 28596.71 18399.52 32894.62 29699.72 14998.38 334
SMA-MVScopyleft98.40 15098.03 18299.51 4399.16 19099.21 2898.05 16499.22 19594.16 33798.98 15099.10 13697.52 13199.79 19796.45 23199.64 18199.53 115
Yufeng Yin; Xiaoyan Liu; Zichao Zhang: SMA-MVS: Segmentation-Guided Multi-Scale Anchor Deformation Patch Multi-View Stereo. IEEE Transactions on Circuits and Systems for Video Technology
DU-MVS98.82 8498.63 10299.39 6399.16 19098.74 8297.54 23399.25 18798.84 10499.06 13698.76 21696.76 17999.93 4098.57 8899.77 12499.50 123
NR-MVSNet98.95 6998.82 7799.36 6499.16 19098.72 8799.22 4299.20 19899.10 7899.72 3198.76 21696.38 19799.86 10898.00 12199.82 9599.50 123
MVS_111021_LR98.30 16298.12 17398.83 15599.16 19098.03 14696.09 32199.30 16797.58 18998.10 25598.24 28198.25 6999.34 36096.69 21099.65 17999.12 245
DSMNet-mixed97.42 23597.60 21796.87 32299.15 19491.46 36098.54 10899.12 22192.87 35797.58 28999.63 3396.21 20399.90 6495.74 26999.54 21599.27 215
D2MVS97.84 20797.84 19997.83 25999.14 19594.74 28996.94 27398.88 25995.84 29598.89 17098.96 17494.40 26499.69 25597.55 14499.95 3299.05 251
pmmvs597.64 21997.49 22498.08 24299.14 19595.12 28096.70 28899.05 23293.77 34498.62 20798.83 20393.23 28399.75 22898.33 10399.76 13599.36 190
CS-MVS-test99.13 4999.09 5599.26 9099.13 19798.97 6699.31 2799.88 1199.44 3898.16 24898.51 25498.64 4399.93 4098.91 6599.85 8198.88 283
VDD-MVS98.56 12898.39 14099.07 12099.13 19798.07 14198.59 10297.01 34499.59 2399.11 12999.27 9894.82 25199.79 19798.34 10199.63 18499.34 196
save fliter99.11 19997.97 15296.53 29599.02 24098.24 138
APD-MVScopyleft98.10 18197.67 20999.42 5899.11 19998.93 7197.76 20699.28 17894.97 31898.72 19798.77 21497.04 15999.85 12093.79 32499.54 21599.49 127
Yuesong Wang, Zhaojie Zeng and etc.: Adaptive Patch Deformation for Textureless-Resilient Multi-View Stereo. CVPR2023
EI-MVSNet-UG-set98.69 10698.71 8998.62 18699.10 20196.37 23797.23 25798.87 26199.20 6499.19 12298.99 16597.30 14499.85 12098.77 7599.79 11499.65 62
EI-MVSNet98.40 15098.51 11898.04 24799.10 20194.73 29097.20 26198.87 26198.97 9299.06 13699.02 15296.00 21299.80 18498.58 8699.82 9599.60 74
CVMVSNet96.25 29697.21 24093.38 38299.10 20180.56 40997.20 26198.19 31596.94 24799.00 14899.02 15289.50 32499.80 18496.36 23699.59 19899.78 33
EI-MVSNet-Vis-set98.68 11198.70 9298.63 18599.09 20496.40 23697.23 25798.86 26699.20 6499.18 12698.97 17197.29 14699.85 12098.72 7899.78 11999.64 63
HPM-MVS++copyleft98.10 18197.64 21499.48 5199.09 20499.13 5597.52 23598.75 28597.46 20596.90 32697.83 31196.01 21199.84 13795.82 26799.35 24999.46 146
DP-MVS Recon97.33 24196.92 25398.57 19599.09 20497.99 14896.79 28199.35 14193.18 35197.71 28098.07 29695.00 24699.31 36493.97 31799.13 28498.42 331
MVS_111021_HR98.25 17098.08 17898.75 17399.09 20497.46 19095.97 32599.27 18197.60 18897.99 26398.25 28098.15 8499.38 35596.87 19399.57 20799.42 161
9.1497.78 20199.07 20897.53 23499.32 15495.53 30498.54 22298.70 22597.58 12399.76 22194.32 30999.46 234
PAPM_NR96.82 27596.32 28598.30 22699.07 20896.69 23197.48 23998.76 28295.81 29696.61 34096.47 35794.12 27399.17 37790.82 37697.78 35599.06 250
TAMVS98.24 17198.05 18098.80 16099.07 20897.18 20997.88 18898.81 27596.66 26299.17 12799.21 11094.81 25399.77 21596.96 18399.88 7499.44 154
CLD-MVS97.49 22997.16 24298.48 20999.07 20897.03 21694.71 36899.21 19694.46 32998.06 25897.16 34297.57 12499.48 33894.46 30199.78 11998.95 270
Zhaoxin Li, Wangmeng Zuo, Zhaoqi Wang, Lei Zhang: Confidence-based Large-scale Dense Multi-view Stereo. IEEE Transaction on Image Processing, 2020
CS-MVS99.13 4999.10 5499.24 9599.06 21299.15 4799.36 1999.88 1199.36 4898.21 24598.46 26298.68 4299.93 4099.03 5999.85 8198.64 315
thres100view90094.19 33593.67 33995.75 35399.06 21291.35 36398.03 16794.24 38398.33 12997.40 30494.98 38479.84 37799.62 29283.05 39698.08 34896.29 389
thres600view794.45 33093.83 33696.29 33899.06 21291.53 35997.99 17594.24 38398.34 12897.44 30295.01 38279.84 37799.67 26784.33 39498.23 33797.66 371
plane_prior199.05 215
YYNet197.60 22297.67 20997.39 29999.04 21693.04 33895.27 35398.38 30797.25 22598.92 16698.95 17895.48 23599.73 23896.99 17998.74 31599.41 164
MDA-MVSNet_test_wron97.60 22297.66 21297.41 29899.04 21693.09 33495.27 35398.42 30497.26 22498.88 17498.95 17895.43 23699.73 23897.02 17698.72 31799.41 164
MIMVSNet96.62 28396.25 29097.71 27399.04 21694.66 29399.16 5196.92 35097.23 23197.87 26999.10 13686.11 34699.65 28391.65 36099.21 27298.82 288
PatchMatch-RL97.24 24996.78 26498.61 18999.03 21997.83 16596.36 30499.06 22993.49 34997.36 30797.78 31295.75 22599.49 33593.44 33398.77 31498.52 322
ZD-MVS99.01 22098.84 7599.07 22894.10 33998.05 26098.12 29096.36 19999.86 10892.70 34999.19 276
CDPH-MVS97.26 24696.66 27399.07 12099.00 22198.15 12896.03 32399.01 24391.21 37597.79 27697.85 31096.89 16899.69 25592.75 34799.38 24699.39 175
diffmvspermissive98.22 17298.24 15998.17 23599.00 22195.44 26896.38 30399.58 5597.79 17398.53 22398.50 25896.76 17999.74 23397.95 12599.64 18199.34 196
Fangjinhua Wang, Qingshan Xu, Yew-Soon Ong, Marc Pollefeys: Lightweight and Accurate Multi-View Stereo With Confidence-Aware Diffusion Model. IEEE T-PAMI 2025
WR-MVS98.40 15098.19 16499.03 13099.00 22197.65 18196.85 27998.94 24898.57 11998.89 17098.50 25895.60 22999.85 12097.54 14699.85 8199.59 80
plane_prior698.99 22497.70 17994.90 247
xiu_mvs_v1_base_debu97.86 20198.17 16696.92 31998.98 22593.91 31896.45 29899.17 21097.85 16998.41 23397.14 34498.47 5599.92 5098.02 11899.05 29096.92 382
xiu_mvs_v1_base97.86 20198.17 16696.92 31998.98 22593.91 31896.45 29899.17 21097.85 16998.41 23397.14 34498.47 5599.92 5098.02 11899.05 29096.92 382
xiu_mvs_v1_base_debi97.86 20198.17 16696.92 31998.98 22593.91 31896.45 29899.17 21097.85 16998.41 23397.14 34498.47 5599.92 5098.02 11899.05 29096.92 382
MVP-Stereo98.08 18597.92 19298.57 19598.96 22896.79 22697.90 18599.18 20696.41 27498.46 22898.95 17895.93 22099.60 29996.51 22798.98 30299.31 207
Qingsong Yan: MVP-Stereo: A Parallel Multi-View Patchmatch Stereo Method with Dilation Matching for Photogrammetric Application.
SD-MVS98.40 15098.68 9597.54 28798.96 22897.99 14897.88 18899.36 13698.20 14599.63 4899.04 14998.76 3595.33 40596.56 22199.74 13999.31 207
Zhenlong Yuan, Jiakai Cao, Zhaoxin Li, Hao Jiang and Zhaoqi Wang: SD-MVS: Segmentation-driven Deformation Multi-View Stereo with Spherical Refinement and EM optimization. AAAI2024
新几何198.91 14798.94 23097.76 17398.76 28287.58 39296.75 33598.10 29294.80 25499.78 20892.73 34899.00 29999.20 229
USDC97.41 23697.40 22897.44 29698.94 23093.67 32795.17 35699.53 8194.03 34198.97 15499.10 13695.29 23899.34 36095.84 26699.73 14299.30 210
tfpn200view994.03 33993.44 34195.78 35298.93 23291.44 36197.60 22694.29 38197.94 16197.10 31294.31 39079.67 37999.62 29283.05 39698.08 34896.29 389
testdata98.09 23998.93 23295.40 27098.80 27790.08 38397.45 30198.37 27095.26 23999.70 25093.58 32998.95 30599.17 240
thres40094.14 33793.44 34196.24 34198.93 23291.44 36197.60 22694.29 38197.94 16197.10 31294.31 39079.67 37999.62 29283.05 39698.08 34897.66 371
TAPA-MVS96.21 1196.63 28295.95 29398.65 18098.93 23298.09 13596.93 27599.28 17883.58 39898.13 25297.78 31296.13 20599.40 35193.52 33099.29 26098.45 326
Andrea Romanoni, Matteo Matteucci: TAPA-MVS: Textureless-Aware PAtchMatch Multi-View Stereo. ICCV 2019
test22298.92 23696.93 22395.54 34398.78 28085.72 39596.86 32998.11 29194.43 26299.10 28999.23 224
PVSNet_BlendedMVS97.55 22697.53 22097.60 28098.92 23693.77 32596.64 29099.43 11894.49 32797.62 28599.18 11696.82 17399.67 26794.73 29399.93 4499.36 190
PVSNet_Blended96.88 27196.68 27097.47 29498.92 23693.77 32594.71 36899.43 11890.98 37797.62 28597.36 33896.82 17399.67 26794.73 29399.56 21098.98 264
MSDG97.71 21497.52 22198.28 22898.91 23996.82 22594.42 37899.37 13297.65 18298.37 23898.29 27997.40 14099.33 36294.09 31599.22 27098.68 313
Anonymous20240521197.90 19597.50 22399.08 11898.90 24098.25 11998.53 10996.16 36298.87 10099.11 12998.86 19790.40 31899.78 20897.36 15499.31 25599.19 234
原ACMM198.35 22198.90 24096.25 24298.83 27492.48 36196.07 35598.10 29295.39 23799.71 24692.61 35198.99 30099.08 247
GBi-Net98.65 11698.47 12799.17 10298.90 24098.24 12099.20 4599.44 11298.59 11698.95 15799.55 4894.14 27099.86 10897.77 13599.69 16299.41 164
test198.65 11698.47 12799.17 10298.90 24098.24 12099.20 4599.44 11298.59 11698.95 15799.55 4894.14 27099.86 10897.77 13599.69 16299.41 164
FMVSNet298.49 14198.40 13798.75 17398.90 24097.14 21398.61 10099.13 22098.59 11699.19 12299.28 9694.14 27099.82 16497.97 12399.80 10999.29 212
OMC-MVS97.88 19997.49 22499.04 12998.89 24598.63 8996.94 27399.25 18795.02 31698.53 22398.51 25497.27 14799.47 34193.50 33299.51 22499.01 259
MVSFormer98.26 16898.43 13397.77 26498.88 24693.89 32199.39 1799.56 6999.11 7198.16 24898.13 28893.81 27899.97 499.26 4399.57 20799.43 158
lupinMVS97.06 26196.86 25797.65 27698.88 24693.89 32195.48 34797.97 32293.53 34798.16 24897.58 32493.81 27899.91 5996.77 20199.57 20799.17 240
dmvs_re95.98 30395.39 31297.74 27098.86 24897.45 19198.37 13295.69 37297.95 16096.56 34195.95 36590.70 31597.68 39988.32 38496.13 38798.11 346
DELS-MVS98.27 16698.20 16298.48 20998.86 24896.70 23095.60 34299.20 19897.73 17698.45 22998.71 22297.50 13399.82 16498.21 10799.59 19898.93 275
Christian Sormann, Emanuele Santellani, Mattia Rossi, Andreas Kuhn, Friedrich Fraundorfer: DELS-MVS: Deep Epipolar Line Search for Multi-View Stereo. Winter Conference on Applications of Computer Vision (WACV), 2023
TinyColmap97.89 19797.98 18697.60 28098.86 24894.35 30296.21 31399.44 11297.45 20799.06 13698.88 19497.99 9599.28 37094.38 30899.58 20399.18 236
LCM-MVSNet-Re98.64 11898.48 12599.11 11298.85 25198.51 10298.49 11899.83 2098.37 12699.69 3799.46 6698.21 7699.92 5094.13 31499.30 25898.91 279
pmmvs497.58 22597.28 23698.51 20698.84 25296.93 22395.40 35198.52 30093.60 34698.61 20998.65 23595.10 24399.60 29996.97 18299.79 11498.99 263
NP-MVS98.84 25297.39 19596.84 348
sss97.21 25196.93 25198.06 24498.83 25495.22 27696.75 28598.48 30294.49 32797.27 30897.90 30792.77 29599.80 18496.57 21799.32 25399.16 243
PVSNet93.40 1795.67 31195.70 29895.57 35798.83 25488.57 38392.50 39597.72 32792.69 35996.49 34796.44 35893.72 28199.43 34793.61 32799.28 26198.71 306
MVEpermissive83.40 2292.50 35991.92 36194.25 37198.83 25491.64 35892.71 39483.52 40895.92 29386.46 40595.46 37795.20 24095.40 40480.51 40198.64 32495.73 397
Simon Fuhrmann, Fabian Langguth, Michael Goesele: MVE - A Multi-View Reconstruction Environment. EUROGRAPHICS Workshops on Graphics and Cultural Heritage (2014)
MVS_030498.10 18197.88 19698.76 17098.82 25796.50 23497.90 18591.35 39799.56 2698.32 23999.13 13096.06 20899.93 4099.84 799.97 1999.85 19
ambc98.24 23198.82 25795.97 25298.62 9999.00 24599.27 10899.21 11096.99 16499.50 33396.55 22499.50 23199.26 218
旧先验198.82 25797.45 19198.76 28298.34 27495.50 23499.01 29899.23 224
test_vis1_rt97.75 21197.72 20797.83 25998.81 26096.35 23897.30 25299.69 3794.61 32597.87 26998.05 29796.26 20298.32 39698.74 7698.18 34098.82 288
WTY-MVS96.67 28096.27 28997.87 25798.81 26094.61 29596.77 28397.92 32494.94 31997.12 31197.74 31591.11 31399.82 16493.89 32098.15 34499.18 236
3Dnovator+97.89 398.69 10698.51 11899.24 9598.81 26098.40 10799.02 6599.19 20298.99 9098.07 25799.28 9697.11 15799.84 13796.84 19699.32 25399.47 144
QAPM97.31 24296.81 26398.82 15698.80 26397.49 18899.06 6299.19 20290.22 38197.69 28299.16 12296.91 16799.90 6490.89 37599.41 24199.07 249
VNet98.42 14798.30 15298.79 16398.79 26497.29 19998.23 14198.66 29199.31 5298.85 17998.80 20994.80 25499.78 20898.13 11199.13 28499.31 207
DPM-MVS96.32 29395.59 30398.51 20698.76 26597.21 20694.54 37798.26 31091.94 36696.37 34897.25 34093.06 28999.43 34791.42 36598.74 31598.89 280
3Dnovator98.27 298.81 8698.73 8599.05 12798.76 26597.81 17099.25 4099.30 16798.57 11998.55 22099.33 8997.95 9799.90 6497.16 16499.67 17399.44 154
PLCcopyleft94.65 1696.51 28695.73 29798.85 15398.75 26797.91 15896.42 30199.06 22990.94 37895.59 36197.38 33694.41 26399.59 30390.93 37398.04 35399.05 251
Jie Liao, Yanping Fu, Qingan Yan, Chunxia xiao: Pyramid Multi-View Stereo with Local Consistency. Pacific Graphics 2019
BH-untuned96.83 27396.75 26697.08 31198.74 26893.33 33296.71 28798.26 31096.72 25998.44 23097.37 33795.20 24099.47 34191.89 35697.43 36498.44 328
hse-mvs297.46 23197.07 24698.64 18198.73 26997.33 19797.45 24297.64 33299.11 7198.58 21597.98 30188.65 33199.79 19798.11 11297.39 36698.81 292
CDS-MVSNet97.69 21597.35 23398.69 17898.73 26997.02 21796.92 27798.75 28595.89 29498.59 21398.67 23092.08 30599.74 23396.72 20799.81 9999.32 203
Khang Truong Giang, Soohwan Song, Sungho Jo: Curvature-guided dynamic scale networks for Multi-view Stereo. ICLR 2022
EIA-MVS98.00 19097.74 20498.80 16098.72 27198.09 13598.05 16499.60 5297.39 21196.63 33895.55 37397.68 11299.80 18496.73 20699.27 26298.52 322
LFMVS97.20 25296.72 26798.64 18198.72 27196.95 22198.93 7494.14 38599.74 698.78 18899.01 16184.45 35899.73 23897.44 15099.27 26299.25 219
new_pmnet96.99 26896.76 26597.67 27498.72 27194.89 28595.95 32998.20 31392.62 36098.55 22098.54 25094.88 25099.52 32893.96 31899.44 23998.59 320
Fast-Effi-MVS+97.67 21797.38 23098.57 19598.71 27497.43 19397.23 25799.45 10894.82 32296.13 35296.51 35498.52 5499.91 5996.19 24798.83 31198.37 336
TEST998.71 27498.08 13995.96 32799.03 23791.40 37295.85 35897.53 32696.52 19099.76 221
train_agg97.10 25896.45 28299.07 12098.71 27498.08 13995.96 32799.03 23791.64 36795.85 35897.53 32696.47 19299.76 22193.67 32699.16 27999.36 190
TSAR-MVS + GP.98.18 17797.98 18698.77 16998.71 27497.88 16096.32 30798.66 29196.33 27699.23 11998.51 25497.48 13799.40 35197.16 16499.46 23499.02 258
FA-MVS(test-final)96.99 26896.82 26197.50 29198.70 27894.78 28799.34 2096.99 34595.07 31598.48 22799.33 8988.41 33499.65 28396.13 25398.92 30898.07 349
AUN-MVS96.24 29795.45 30898.60 19198.70 27897.22 20597.38 24597.65 33095.95 29295.53 36897.96 30582.11 37399.79 19796.31 23897.44 36398.80 297
our_test_397.39 23797.73 20696.34 33698.70 27889.78 38094.61 37498.97 24796.50 26799.04 14398.85 20095.98 21799.84 13797.26 15999.67 17399.41 164
ppachtmachnet_test97.50 22797.74 20496.78 32898.70 27891.23 36994.55 37699.05 23296.36 27599.21 12098.79 21196.39 19599.78 20896.74 20499.82 9599.34 196
PCF-MVS92.86 1894.36 33193.00 34898.42 21598.70 27897.56 18593.16 39399.11 22379.59 40197.55 29297.43 33392.19 30299.73 23879.85 40299.45 23697.97 355
Andreas Kuhn, Shan Lin, Oliver Erdler: Plane Completion and Filtering for Multi-View Stereo Reconstruction. GCPR 2019
ETV-MVS98.03 18797.86 19898.56 19998.69 28398.07 14197.51 23799.50 8798.10 15397.50 29795.51 37498.41 6099.88 8396.27 24199.24 26797.71 370
test_prior98.95 14198.69 28397.95 15699.03 23799.59 30399.30 210
agg_prior98.68 28597.99 14899.01 24395.59 36199.77 215
test_898.67 28698.01 14795.91 33299.02 24091.64 36795.79 36097.50 32996.47 19299.76 221
HQP-NCC98.67 28696.29 30996.05 28695.55 364
ACMP_Plane98.67 28696.29 30996.05 28695.55 364
CNVR-MVS98.17 17997.87 19799.07 12098.67 28698.24 12097.01 26998.93 25097.25 22597.62 28598.34 27497.27 14799.57 31196.42 23299.33 25299.39 175
HQP-MVS97.00 26796.49 28198.55 20098.67 28696.79 22696.29 30999.04 23596.05 28695.55 36496.84 34893.84 27699.54 32292.82 34499.26 26599.32 203
MM98.22 17297.99 18598.91 14798.66 29196.97 21897.89 18794.44 37999.54 2798.95 15799.14 12993.50 28299.92 5099.80 1299.96 2599.85 19
test_fmvs197.72 21397.94 19097.07 31398.66 29192.39 34997.68 21499.81 2495.20 31499.54 5699.44 7191.56 30999.41 35099.78 1599.77 12499.40 173
thres20093.72 34493.14 34695.46 36198.66 29191.29 36596.61 29294.63 37897.39 21196.83 33093.71 39379.88 37699.56 31482.40 39998.13 34595.54 398
wuyk23d96.06 29997.62 21691.38 38598.65 29498.57 9698.85 8196.95 34896.86 25299.90 1299.16 12299.18 1798.40 39589.23 38299.77 12477.18 403
NCCC97.86 20197.47 22799.05 12798.61 29598.07 14196.98 27198.90 25697.63 18397.04 31697.93 30695.99 21699.66 27895.31 28298.82 31399.43 158
DeepC-MVS_fast96.85 698.30 16298.15 17098.75 17398.61 29597.23 20397.76 20699.09 22697.31 21998.75 19498.66 23397.56 12599.64 28696.10 25499.55 21399.39 175
Andreas Kuhn, Christian Sormann, Mattia Rossi, Oliver Erdler, Friedrich Fraundorfer: DeepC-MVS: Deep Confidence Prediction for Multi-View Stereo Reconstruction. 3DV 2020
testing393.51 34692.09 35597.75 26898.60 29794.40 30097.32 25095.26 37497.56 19296.79 33395.50 37553.57 41199.77 21595.26 28398.97 30399.08 247
thisisatest051594.12 33893.16 34596.97 31798.60 29792.90 33993.77 38990.61 39894.10 33996.91 32395.87 36874.99 39299.80 18494.52 29999.12 28798.20 342
GA-MVS95.86 30695.32 31597.49 29298.60 29794.15 30893.83 38897.93 32395.49 30596.68 33697.42 33483.21 36699.30 36696.22 24598.55 33099.01 259
dmvs_testset92.94 35592.21 35495.13 36498.59 30090.99 37197.65 22092.09 39496.95 24694.00 38793.55 39492.34 30196.97 40272.20 40592.52 40097.43 378
OPU-MVS98.82 15698.59 30098.30 11698.10 15798.52 25398.18 7898.75 39294.62 29699.48 23399.41 164
MSLP-MVS++98.02 18898.14 17297.64 27898.58 30295.19 27797.48 23999.23 19497.47 20097.90 26798.62 24297.04 15998.81 39197.55 14499.41 24198.94 274
test1298.93 14498.58 30297.83 16598.66 29196.53 34295.51 23399.69 25599.13 28499.27 215
CL-MVSNet_self_test97.44 23497.22 23998.08 24298.57 30495.78 25894.30 38198.79 27896.58 26598.60 21198.19 28694.74 25899.64 28696.41 23398.84 31098.82 288
PS-MVSNAJ97.08 26097.39 22996.16 34798.56 30592.46 34795.24 35598.85 26997.25 22597.49 29895.99 36498.07 8699.90 6496.37 23498.67 32396.12 394
CNLPA97.17 25596.71 26898.55 20098.56 30598.05 14596.33 30698.93 25096.91 24997.06 31597.39 33594.38 26599.45 34491.66 35999.18 27898.14 345
xiu_mvs_v2_base97.16 25697.49 22496.17 34598.54 30792.46 34795.45 34898.84 27097.25 22597.48 29996.49 35598.31 6899.90 6496.34 23798.68 32296.15 393
alignmvs97.35 23996.88 25698.78 16698.54 30798.09 13597.71 21197.69 32999.20 6497.59 28895.90 36788.12 33699.55 31798.18 10998.96 30498.70 309
FE-MVS95.66 31294.95 32497.77 26498.53 30995.28 27399.40 1696.09 36493.11 35397.96 26499.26 10079.10 38399.77 21592.40 35398.71 31998.27 340
Effi-MVS+98.02 18897.82 20098.62 18698.53 30997.19 20897.33 24999.68 4297.30 22096.68 33697.46 33298.56 5299.80 18496.63 21398.20 33998.86 285
baseline195.96 30495.44 30997.52 28998.51 31193.99 31598.39 13096.09 36498.21 14198.40 23797.76 31486.88 33899.63 28995.42 28089.27 40398.95 270
MVS_Test98.18 17798.36 14497.67 27498.48 31294.73 29098.18 14799.02 24097.69 17998.04 26199.11 13397.22 15199.56 31498.57 8898.90 30998.71 306
BH-RMVSNet96.83 27396.58 27897.58 28298.47 31394.05 30996.67 28997.36 33596.70 26197.87 26997.98 30195.14 24299.44 34690.47 37798.58 32999.25 219
canonicalmvs98.34 15798.26 15798.58 19398.46 31497.82 16898.96 7299.46 10599.19 6897.46 30095.46 37798.59 4999.46 34398.08 11598.71 31998.46 324
MVS-HIRNet94.32 33295.62 30190.42 38698.46 31475.36 41096.29 30989.13 40295.25 31295.38 37099.75 1192.88 29299.19 37694.07 31699.39 24396.72 387
PHI-MVS98.29 16597.95 18899.34 7398.44 31699.16 4398.12 15499.38 12896.01 28998.06 25898.43 26497.80 10699.67 26795.69 27299.58 20399.20 229
DVP-MVS++98.90 7598.70 9299.51 4398.43 31799.15 4799.43 1199.32 15498.17 14899.26 11299.02 15298.18 7899.88 8397.07 17399.45 23699.49 127
MSC_two_6792asdad99.32 8098.43 31798.37 11198.86 26699.89 7497.14 16799.60 19499.71 46
No_MVS99.32 8098.43 31798.37 11198.86 26699.89 7497.14 16799.60 19499.71 46
Fast-Effi-MVS+-dtu98.27 16698.09 17598.81 15898.43 31798.11 13297.61 22599.50 8798.64 11097.39 30597.52 32898.12 8599.95 2296.90 19098.71 31998.38 334
OpenMVS_ROBcopyleft95.38 1495.84 30795.18 31997.81 26198.41 32197.15 21297.37 24698.62 29583.86 39798.65 20398.37 27094.29 26899.68 26488.41 38398.62 32796.60 388
DeepPCF-MVS96.93 598.32 15998.01 18399.23 9798.39 32298.97 6695.03 36099.18 20696.88 25099.33 9798.78 21298.16 8299.28 37096.74 20499.62 18799.44 154
Patchmatch-test96.55 28496.34 28497.17 30898.35 32393.06 33598.40 12997.79 32597.33 21698.41 23398.67 23083.68 36599.69 25595.16 28599.31 25598.77 300
AdaColmapbinary97.14 25796.71 26898.46 21198.34 32497.80 17196.95 27298.93 25095.58 30296.92 32197.66 31995.87 22299.53 32490.97 37299.14 28298.04 350
OpenMVScopyleft96.65 797.09 25996.68 27098.32 22398.32 32597.16 21198.86 8099.37 13289.48 38596.29 35099.15 12696.56 18899.90 6492.90 34199.20 27397.89 358
MG-MVS96.77 27696.61 27597.26 30498.31 32693.06 33595.93 33098.12 31996.45 27297.92 26598.73 21993.77 28099.39 35391.19 37099.04 29399.33 201
test_yl96.69 27896.29 28797.90 25498.28 32795.24 27497.29 25397.36 33598.21 14198.17 24697.86 30886.27 34299.55 31794.87 29098.32 33398.89 280
DCV-MVSNet96.69 27896.29 28797.90 25498.28 32795.24 27497.29 25397.36 33598.21 14198.17 24697.86 30886.27 34299.55 31794.87 29098.32 33398.89 280
CHOSEN 280x42095.51 31795.47 30695.65 35698.25 32988.27 38693.25 39298.88 25993.53 34794.65 37997.15 34386.17 34499.93 4097.41 15299.93 4498.73 305
SCA96.41 29296.66 27395.67 35498.24 33088.35 38595.85 33596.88 35196.11 28497.67 28398.67 23093.10 28799.85 12094.16 31099.22 27098.81 292
DeepMVS_CXcopyleft93.44 38198.24 33094.21 30594.34 38064.28 40391.34 39994.87 38889.45 32592.77 40677.54 40493.14 39993.35 401
MS-PatchMatch97.68 21697.75 20397.45 29598.23 33293.78 32497.29 25398.84 27096.10 28598.64 20498.65 23596.04 20999.36 35696.84 19699.14 28299.20 229
BH-w/o95.13 32294.89 32695.86 34998.20 33391.31 36495.65 34097.37 33493.64 34596.52 34395.70 37193.04 29099.02 38288.10 38595.82 39097.24 380
mvs_anonymous97.83 20998.16 16996.87 32298.18 33491.89 35697.31 25198.90 25697.37 21398.83 18299.46 6696.28 20199.79 19798.90 6698.16 34398.95 270
miper_lstm_enhance97.18 25497.16 24297.25 30598.16 33592.85 34095.15 35899.31 15997.25 22598.74 19698.78 21290.07 31999.78 20897.19 16299.80 10999.11 246
ET-MVSNet_ETH3D94.30 33493.21 34497.58 28298.14 33694.47 29994.78 36793.24 39094.72 32389.56 40195.87 36878.57 38699.81 17796.91 18597.11 37598.46 324
ADS-MVSNet295.43 31894.98 32296.76 32998.14 33691.74 35797.92 18297.76 32690.23 37996.51 34498.91 18485.61 34999.85 12092.88 34296.90 37698.69 310
ADS-MVSNet95.24 32194.93 32596.18 34498.14 33690.10 37997.92 18297.32 33890.23 37996.51 34498.91 18485.61 34999.74 23392.88 34296.90 37698.69 310
c3_l97.36 23897.37 23197.31 30098.09 33993.25 33395.01 36199.16 21397.05 24198.77 19198.72 22192.88 29299.64 28696.93 18499.76 13599.05 251
FMVSNet397.50 22797.24 23898.29 22798.08 34095.83 25697.86 19398.91 25597.89 16698.95 15798.95 17887.06 33799.81 17797.77 13599.69 16299.23 224
PAPM91.88 36890.34 37196.51 33298.06 34192.56 34592.44 39697.17 34086.35 39390.38 40096.01 36386.61 34099.21 37570.65 40695.43 39297.75 367
Effi-MVS+-dtu98.26 16897.90 19499.35 7098.02 34299.49 598.02 16999.16 21398.29 13597.64 28497.99 30096.44 19499.95 2296.66 21298.93 30798.60 318
eth_miper_zixun_eth97.23 25097.25 23797.17 30898.00 34392.77 34294.71 36899.18 20697.27 22398.56 21898.74 21891.89 30699.69 25597.06 17599.81 9999.05 251
iter_conf05_1196.72 27796.30 28697.97 25197.97 34496.24 24394.99 36296.19 36196.45 27296.77 33496.84 34891.46 31099.78 20896.27 24199.78 11997.90 356
bld_raw_dy_0_6497.62 22197.51 22297.96 25297.97 34496.28 24198.20 14599.82 2296.46 27199.37 8997.12 34792.42 29999.70 25096.27 24199.97 1997.90 356
HY-MVS95.94 1395.90 30595.35 31497.55 28697.95 34694.79 28698.81 8496.94 34992.28 36495.17 37298.57 24889.90 32199.75 22891.20 36997.33 37198.10 347
UGNet98.53 13698.45 13098.79 16397.94 34796.96 22099.08 5898.54 29899.10 7896.82 33199.47 6596.55 18999.84 13798.56 9199.94 4099.55 104
Wanjuan Su, Qingshan Xu, Wenbing Tao: Uncertainty-guided Multi-view Stereo Network for Depth Estimation. IEEE Transactions on Circuits and Systems for Video Technology, 2022
MAR-MVS96.47 29095.70 29898.79 16397.92 34899.12 5798.28 13798.60 29692.16 36595.54 36796.17 36294.77 25799.52 32889.62 38098.23 33797.72 369
Zhenyu Xu, Yiguang Liu, Xuelei Shi, Ying Wang, Yunan Zheng: MARMVS: Matching Ambiguity Reduced Multiple View Stereo for Efficient Large Scale Scene Reconstruction. CVPR 2020
MVSTER96.86 27296.55 27997.79 26297.91 34994.21 30597.56 23198.87 26197.49 19999.06 13699.05 14780.72 37499.80 18498.44 9699.82 9599.37 184
iter_conf0596.54 28596.07 29197.92 25397.90 35094.50 29797.87 19199.14 21997.73 17698.89 17098.95 17875.75 39199.87 10098.50 9399.92 5599.40 173
API-MVS97.04 26396.91 25597.42 29797.88 35198.23 12498.18 14798.50 30197.57 19097.39 30596.75 35196.77 17799.15 37990.16 37899.02 29794.88 399
miper_ehance_all_eth97.06 26197.03 24897.16 31097.83 35293.06 33594.66 37199.09 22695.99 29098.69 19898.45 26392.73 29699.61 29896.79 19899.03 29498.82 288
cl____97.02 26496.83 26097.58 28297.82 35394.04 31194.66 37199.16 21397.04 24298.63 20598.71 22288.68 33099.69 25597.00 17799.81 9999.00 262
DIV-MVS_self_test97.02 26496.84 25997.58 28297.82 35394.03 31294.66 37199.16 21397.04 24298.63 20598.71 22288.69 32899.69 25597.00 17799.81 9999.01 259
CANet97.87 20097.76 20298.19 23497.75 35595.51 26596.76 28499.05 23297.74 17596.93 32098.21 28495.59 23099.89 7497.86 13199.93 4499.19 234
mvsany_test197.60 22297.54 21997.77 26497.72 35695.35 27195.36 35297.13 34294.13 33899.71 3399.33 8997.93 9899.30 36697.60 14398.94 30698.67 314
PVSNet_089.98 2191.15 36990.30 37293.70 37897.72 35684.34 40390.24 39897.42 33390.20 38293.79 38993.09 39790.90 31498.89 39086.57 39172.76 40597.87 360
CR-MVSNet96.28 29595.95 29397.28 30297.71 35894.22 30398.11 15598.92 25392.31 36396.91 32399.37 7985.44 35299.81 17797.39 15397.36 36997.81 363
RPMNet97.02 26496.93 25197.30 30197.71 35894.22 30398.11 15599.30 16799.37 4596.91 32399.34 8786.72 33999.87 10097.53 14797.36 36997.81 363
ETVMVS92.60 35891.08 36797.18 30697.70 36093.65 32996.54 29395.70 37096.51 26694.68 37892.39 40061.80 40899.50 33386.97 38897.41 36598.40 332
pmmvs395.03 32494.40 33096.93 31897.70 36092.53 34695.08 35997.71 32888.57 38997.71 28098.08 29579.39 38199.82 16496.19 24799.11 28898.43 329
baseline293.73 34392.83 34996.42 33597.70 36091.28 36696.84 28089.77 40193.96 34392.44 39695.93 36679.14 38299.77 21592.94 34096.76 38098.21 341
tpm94.67 32894.34 33295.66 35597.68 36388.42 38497.88 18894.90 37594.46 32996.03 35798.56 24978.66 38499.79 19795.88 26095.01 39498.78 299
CANet_DTU97.26 24697.06 24797.84 25897.57 36494.65 29496.19 31598.79 27897.23 23195.14 37398.24 28193.22 28499.84 13797.34 15599.84 8599.04 255
testing1193.08 35392.02 35796.26 34097.56 36590.83 37496.32 30795.70 37096.47 27092.66 39593.73 39264.36 40699.59 30393.77 32597.57 35898.37 336
tpm293.09 35292.58 35194.62 36897.56 36586.53 39297.66 21895.79 36986.15 39494.07 38698.23 28375.95 38999.53 32490.91 37496.86 37997.81 363
testing9193.32 34992.27 35296.47 33497.54 36791.25 36796.17 31896.76 35397.18 23593.65 39193.50 39565.11 40599.63 28993.04 33997.45 36298.53 321
TR-MVS95.55 31595.12 32096.86 32597.54 36793.94 31696.49 29796.53 35894.36 33497.03 31896.61 35394.26 26999.16 37886.91 39096.31 38497.47 377
testing9993.04 35491.98 36096.23 34297.53 36990.70 37696.35 30595.94 36796.87 25193.41 39293.43 39663.84 40799.59 30393.24 33797.19 37298.40 332
131495.74 30995.60 30296.17 34597.53 36992.75 34398.07 16198.31 30991.22 37494.25 38296.68 35295.53 23199.03 38191.64 36197.18 37396.74 386
CostFormer93.97 34093.78 33794.51 36997.53 36985.83 39597.98 17695.96 36689.29 38794.99 37598.63 24078.63 38599.62 29294.54 29896.50 38198.09 348
FMVSNet596.01 30195.20 31898.41 21697.53 36996.10 24598.74 8599.50 8797.22 23498.03 26299.04 14969.80 39599.88 8397.27 15899.71 15499.25 219
PMMVS96.51 28695.98 29298.09 23997.53 36995.84 25594.92 36498.84 27091.58 36996.05 35695.58 37295.68 22799.66 27895.59 27698.09 34798.76 302
PAPR95.29 31994.47 32897.75 26897.50 37495.14 27994.89 36598.71 28991.39 37395.35 37195.48 37694.57 26099.14 38084.95 39397.37 36798.97 267
testing22291.96 36690.37 37096.72 33097.47 37592.59 34496.11 32094.76 37696.83 25392.90 39492.87 39857.92 40999.55 31786.93 38997.52 35998.00 354
PatchT96.65 28196.35 28397.54 28797.40 37695.32 27297.98 17696.64 35599.33 5096.89 32799.42 7384.32 36099.81 17797.69 14297.49 36097.48 376
tpm cat193.29 35093.13 34793.75 37797.39 37784.74 39897.39 24497.65 33083.39 39994.16 38398.41 26582.86 36999.39 35391.56 36395.35 39397.14 381
PatchmatchNetpermissive95.58 31495.67 30095.30 36397.34 37887.32 39097.65 22096.65 35495.30 31197.07 31498.69 22684.77 35599.75 22894.97 28898.64 32498.83 287
Fangjinhua Wang, Silvano Galliani, Christoph Vogel, Pablo Speciale, Marc Pollefeys: PatchmatchNet: Learned Multi-View Patchmatch Stereo.
Patchmtry97.35 23996.97 25098.50 20897.31 37996.47 23598.18 14798.92 25398.95 9598.78 18899.37 7985.44 35299.85 12095.96 25899.83 9299.17 240
LS3D98.63 12098.38 14299.36 6497.25 38099.38 899.12 5799.32 15499.21 6298.44 23098.88 19497.31 14399.80 18496.58 21599.34 25198.92 276
IB-MVS91.63 1992.24 36490.90 36896.27 33997.22 38191.24 36894.36 38093.33 38992.37 36292.24 39794.58 38966.20 40399.89 7493.16 33894.63 39697.66 371
Christian Sormann, Mattia Rossi, Andreas Kuhn and Friedrich Fraundorfer: IB-MVS: An Iterative Algorithm for Deep Multi-View Stereo based on Binary Decisions. BMVC 2021
UWE-MVS92.38 36191.76 36494.21 37297.16 38284.65 39995.42 35088.45 40395.96 29196.17 35195.84 37066.36 40199.71 24691.87 35798.64 32498.28 339
tpmrst95.07 32395.46 30793.91 37597.11 38384.36 40297.62 22396.96 34794.98 31796.35 34998.80 20985.46 35199.59 30395.60 27596.23 38597.79 366
Syy-MVS96.04 30095.56 30597.49 29297.10 38494.48 29896.18 31696.58 35695.65 29994.77 37692.29 40191.27 31299.36 35698.17 11098.05 35198.63 316
myMVS_eth3d91.92 36790.45 36996.30 33797.10 38490.90 37296.18 31696.58 35695.65 29994.77 37692.29 40153.88 41099.36 35689.59 38198.05 35198.63 316
MDTV_nov1_ep1395.22 31797.06 38683.20 40497.74 20896.16 36294.37 33396.99 31998.83 20383.95 36399.53 32493.90 31997.95 354
MVS93.19 35192.09 35596.50 33396.91 38794.03 31298.07 16198.06 32168.01 40294.56 38196.48 35695.96 21999.30 36683.84 39596.89 37896.17 391
E-PMN94.17 33694.37 33193.58 37996.86 38885.71 39690.11 39997.07 34398.17 14897.82 27597.19 34184.62 35798.94 38689.77 37997.68 35796.09 395
JIA-IIPM95.52 31695.03 32197.00 31496.85 38994.03 31296.93 27595.82 36899.20 6494.63 38099.71 1783.09 36799.60 29994.42 30494.64 39597.36 379
EMVS93.83 34294.02 33493.23 38396.83 39084.96 39789.77 40096.32 36097.92 16397.43 30396.36 36186.17 34498.93 38787.68 38697.73 35695.81 396
cl2295.79 30895.39 31296.98 31696.77 39192.79 34194.40 37998.53 29994.59 32697.89 26898.17 28782.82 37099.24 37296.37 23499.03 29498.92 276
WB-MVSnew95.73 31095.57 30496.23 34296.70 39290.70 37696.07 32293.86 38695.60 30197.04 31695.45 37996.00 21299.55 31791.04 37198.31 33598.43 329
dp93.47 34793.59 34093.13 38496.64 39381.62 40897.66 21896.42 35992.80 35896.11 35398.64 23878.55 38799.59 30393.31 33592.18 40298.16 344
test-LLR93.90 34193.85 33594.04 37396.53 39484.62 40094.05 38592.39 39296.17 28194.12 38495.07 38082.30 37199.67 26795.87 26398.18 34097.82 361
test-mter92.33 36391.76 36494.04 37396.53 39484.62 40094.05 38592.39 39294.00 34294.12 38495.07 38065.63 40499.67 26795.87 26398.18 34097.82 361
TESTMET0.1,192.19 36591.77 36393.46 38096.48 39682.80 40594.05 38591.52 39694.45 33194.00 38794.88 38666.65 40099.56 31495.78 26898.11 34698.02 351
miper_enhance_ethall96.01 30195.74 29696.81 32696.41 39792.27 35393.69 39098.89 25891.14 37698.30 24097.35 33990.58 31699.58 30996.31 23899.03 29498.60 318
tpmvs95.02 32595.25 31694.33 37096.39 39885.87 39398.08 15996.83 35295.46 30695.51 36998.69 22685.91 34799.53 32494.16 31096.23 38597.58 374
CMPMVSbinary75.91 2396.29 29495.44 30998.84 15496.25 39998.69 8897.02 26899.12 22188.90 38897.83 27398.86 19789.51 32398.90 38991.92 35599.51 22498.92 276
M. Jancosek, T. Pajdla: Multi-View Reconstruction Preserving Weakly-Supported Surfaces. CVPR 2011
test0.0.03 194.51 32993.69 33896.99 31596.05 40093.61 33094.97 36393.49 38796.17 28197.57 29194.88 38682.30 37199.01 38493.60 32894.17 39898.37 336
EPMVS93.72 34493.27 34395.09 36696.04 40187.76 38898.13 15285.01 40794.69 32496.92 32198.64 23878.47 38899.31 36495.04 28696.46 38298.20 342
cascas94.79 32794.33 33396.15 34896.02 40292.36 35192.34 39799.26 18685.34 39695.08 37494.96 38592.96 29198.53 39494.41 30798.59 32897.56 375
gg-mvs-nofinetune92.37 36291.20 36695.85 35095.80 40392.38 35099.31 2781.84 40999.75 591.83 39899.74 1368.29 39699.02 38287.15 38797.12 37496.16 392
gm-plane-assit94.83 40481.97 40788.07 39194.99 38399.60 29991.76 358
GG-mvs-BLEND94.76 36794.54 40592.13 35599.31 2780.47 41088.73 40391.01 40367.59 39998.16 39882.30 40094.53 39793.98 400
EPNet_dtu94.93 32694.78 32795.38 36293.58 40687.68 38996.78 28295.69 37297.35 21589.14 40298.09 29488.15 33599.49 33594.95 28999.30 25898.98 264
Wanjuan Su, Wenbing Tao: Efficient Edge-Preserving Multi-View Stereo Network for Depth Estimation. AAAI 2023
KD-MVS_2432*160092.87 35691.99 35895.51 35991.37 40789.27 38194.07 38398.14 31795.42 30797.25 30996.44 35867.86 39799.24 37291.28 36796.08 38898.02 351
miper_refine_blended92.87 35691.99 35895.51 35991.37 40789.27 38194.07 38398.14 31795.42 30797.25 30996.44 35867.86 39799.24 37291.28 36796.08 38898.02 351
EPNet96.14 29895.44 30998.25 22990.76 40995.50 26697.92 18294.65 37798.97 9292.98 39398.85 20089.12 32699.87 10095.99 25699.68 16799.39 175
Wanjuan Su, Wenbing Tao: Efficient Edge-Preserving Multi-View Stereo Network for Depth Estimation. AAAI 2023
test_method79.78 37179.50 37480.62 38780.21 41045.76 41370.82 40198.41 30631.08 40580.89 40697.71 31684.85 35497.37 40091.51 36480.03 40498.75 303
tmp_tt78.77 37278.73 37578.90 38858.45 41174.76 41294.20 38278.26 41139.16 40486.71 40492.82 39980.50 37575.19 40786.16 39292.29 40186.74 402
testmvs17.12 37420.53 3776.87 39012.05 4124.20 41593.62 3916.73 4134.62 40810.41 40824.33 4058.28 4133.56 4099.69 40815.07 40612.86 405
test12317.04 37520.11 3787.82 38910.25 4134.91 41494.80 3664.47 4144.93 40710.00 40924.28 4069.69 4123.64 40810.14 40712.43 40714.92 404
test_blank0.00 3780.00 3810.00 3910.00 4140.00 4160.00 4020.00 4150.00 4090.00 4100.00 4090.00 4140.00 4100.00 4090.00 4080.00 406
eth-test20.00 414
eth-test0.00 414
uanet_test0.00 3780.00 3810.00 3910.00 4140.00 4160.00 4020.00 4150.00 4090.00 4100.00 4090.00 4140.00 4100.00 4090.00 4080.00 406
DCPMVS0.00 3780.00 3810.00 3910.00 4140.00 4160.00 4020.00 4150.00 4090.00 4100.00 4090.00 4140.00 4100.00 4090.00 4080.00 406
cdsmvs_eth3d_5k24.66 37332.88 3760.00 3910.00 4140.00 4160.00 40299.10 2240.00 4090.00 41097.58 32499.21 160.00 4100.00 4090.00 4080.00 406
pcd_1.5k_mvsjas8.17 37610.90 3790.00 3910.00 4140.00 4160.00 4020.00 4150.00 4090.00 4100.00 40998.07 860.00 4100.00 4090.00 4080.00 406
sosnet-low-res0.00 3780.00 3810.00 3910.00 4140.00 4160.00 4020.00 4150.00 4090.00 4100.00 4090.00 4140.00 4100.00 4090.00 4080.00 406
sosnet0.00 3780.00 3810.00 3910.00 4140.00 4160.00 4020.00 4150.00 4090.00 4100.00 4090.00 4140.00 4100.00 4090.00 4080.00 406
uncertanet0.00 3780.00 3810.00 3910.00 4140.00 4160.00 4020.00 4150.00 4090.00 4100.00 4090.00 4140.00 4100.00 4090.00 4080.00 406
Regformer0.00 3780.00 3810.00 3910.00 4140.00 4160.00 4020.00 4150.00 4090.00 4100.00 4090.00 4140.00 4100.00 4090.00 4080.00 406
ab-mvs-re8.12 37710.83 3800.00 3910.00 4140.00 4160.00 4020.00 4150.00 4090.00 41097.48 3300.00 4140.00 4100.00 4090.00 4080.00 406
uanet0.00 3780.00 3810.00 3910.00 4140.00 4160.00 4020.00 4150.00 4090.00 4100.00 4090.00 4140.00 4100.00 4090.00 4080.00 406
WAC-MVS90.90 37291.37 366
PC_three_145293.27 35099.40 8398.54 25098.22 7497.00 40195.17 28499.45 23699.49 127
test_241102_TWO99.30 16798.03 15599.26 11299.02 15297.51 13299.88 8396.91 18599.60 19499.66 58
test_0728_THIRD98.17 14899.08 13499.02 15297.89 9999.88 8397.07 17399.71 15499.70 51
GSMVS98.81 292
sam_mvs184.74 35698.81 292
sam_mvs84.29 362
MTGPAbinary99.20 198
test_post197.59 22820.48 40883.07 36899.66 27894.16 310
test_post21.25 40783.86 36499.70 250
patchmatchnet-post98.77 21484.37 35999.85 120
MTMP97.93 18091.91 395
test9_res93.28 33699.15 28199.38 182
agg_prior292.50 35299.16 27999.37 184
test_prior497.97 15295.86 333
test_prior295.74 33896.48 26996.11 35397.63 32295.92 22194.16 31099.20 273
旧先验295.76 33788.56 39097.52 29599.66 27894.48 300
新几何295.93 330
无先验95.74 33898.74 28789.38 38699.73 23892.38 35499.22 228
原ACMM295.53 344
testdata299.79 19792.80 346
segment_acmp97.02 162
testdata195.44 34996.32 277
plane_prior599.27 18199.70 25094.42 30499.51 22499.45 150
plane_prior497.98 301
plane_prior397.78 17297.41 20997.79 276
plane_prior297.77 20398.20 145
plane_prior97.65 18197.07 26796.72 25999.36 247
n20.00 415
nn0.00 415
door-mid99.57 62
test1198.87 261
door99.41 122
HQP5-MVS96.79 226
BP-MVS92.82 344
HQP4-MVS95.56 36399.54 32299.32 203
HQP3-MVS99.04 23599.26 265
HQP2-MVS93.84 276
MDTV_nov1_ep13_2view74.92 41197.69 21390.06 38497.75 27985.78 34893.52 33098.69 310
ACMMP++_ref99.77 124
ACMMP++99.68 167
Test By Simon96.52 190