This table lists the benchmark results for the high-res multi-view scenario. The following metrics are evaluated:

(*) For exact definitions, detailing how potentially incomplete ground truth is taken into account, see our paper.

The datasets are grouped into different categories, and result averages are computed for a category and method if results of the method are available for all datasets within the category. Note that the category "all" includes both the high-res multi-view and the low-res many-view scenarios.

Methods with suffix _ROB may participate in the Robust Vision Challenge.

Click a dataset result cell to show a visualization of the reconstruction. For training datasets, ground truth and accuracy / completeness visualizations are also available. The visualizations may not work with mobile browsers.




Method Infoallhigh-res
multi-view
indooroutdoorbotani.boulde.bridgedoorexhibi.lectur.living.loungeobserv.old co.statueterrac.
sort bysort bysort bysort bysorted bysort bysort bysort bysort bysort bysort bysort bysort bysort bysort bysort by
LCM-MVSNet99.43 199.49 199.24 199.95 198.13 199.37 199.57 199.82 199.86 199.85 199.52 199.73 197.58 199.94 199.85 1
UniMVSNet_ETH3D97.13 697.72 395.35 9399.51 287.38 13997.70 897.54 11298.16 298.94 299.33 297.84 499.08 10490.73 13499.73 1499.59 13
FOURS199.21 394.68 1298.45 498.81 897.73 698.27 20
PEN-MVS96.69 2097.39 894.61 12499.16 484.50 19296.54 3598.05 6298.06 498.64 1398.25 3495.01 4899.65 392.95 8399.83 699.68 4
MIMVSNet195.52 7095.45 7595.72 8199.14 589.02 10696.23 5696.87 16893.73 6197.87 2998.49 2690.73 15199.05 10986.43 23199.60 2999.10 50
PS-CasMVS96.69 2097.43 594.49 13599.13 684.09 20196.61 3297.97 7797.91 598.64 1398.13 3895.24 3699.65 393.39 6499.84 399.72 2
DTE-MVSNet96.74 1797.43 594.67 12199.13 684.68 19196.51 3697.94 8398.14 398.67 1298.32 3295.04 4599.69 293.27 7099.82 899.62 10
pmmvs696.80 1397.36 995.15 10499.12 887.82 13496.68 3097.86 8596.10 2698.14 2499.28 397.94 398.21 22191.38 12499.69 1599.42 21
HPM-MVS_fast97.01 796.89 1597.39 2299.12 893.92 2997.16 1498.17 4193.11 7396.48 8597.36 8096.92 699.34 6894.31 2799.38 6198.92 72
MP-MVS-pluss96.08 5095.92 5896.57 4699.06 1091.21 6793.25 15998.32 2187.89 20296.86 7197.38 7695.55 2499.39 5495.47 1599.47 4499.11 47
MP-MVS-pluss: MP-MVS-pluss. MP-MVS-pluss
OurMVSNet-221017-096.80 1396.75 1896.96 3699.03 1191.85 5997.98 798.01 7194.15 5198.93 399.07 588.07 18699.57 1495.86 1099.69 1599.46 20
WR-MVS_H96.60 2597.05 1495.24 10099.02 1286.44 16496.78 2898.08 5597.42 998.48 1697.86 5491.76 12299.63 694.23 3099.84 399.66 6
TDRefinement97.68 397.60 497.93 299.02 1295.95 598.61 398.81 897.41 1097.28 5398.46 2894.62 5898.84 14294.64 2199.53 3998.99 58
CP-MVSNet96.19 4796.80 1794.38 14198.99 1483.82 20496.31 5197.53 11497.60 798.34 1997.52 6891.98 11899.63 693.08 7999.81 999.70 3
PMVScopyleft87.21 1494.97 9295.33 8193.91 15698.97 1597.16 295.54 8395.85 21796.47 2193.40 20697.46 7295.31 3395.47 33386.18 23598.78 14489.11 360
Y. Furukawa, J. Ponce: Accurate, dense, and robust multiview stereopsis. PAMI (2010)
zzz-MVS96.47 3196.14 4697.47 1598.95 1694.05 2393.69 14997.62 10494.46 4596.29 9596.94 10693.56 7399.37 6294.29 2899.42 5398.99 58
MTAPA96.65 2296.38 3397.47 1598.95 1694.05 2395.88 6997.62 10494.46 4596.29 9596.94 10693.56 7399.37 6294.29 2899.42 5398.99 58
ACMMP_NAP96.21 4696.12 4896.49 5198.90 1891.42 6594.57 12098.03 6790.42 14796.37 8897.35 8395.68 1999.25 8294.44 2499.34 6498.80 86
HPM-MVScopyleft96.81 1296.62 2397.36 2498.89 1993.53 3997.51 998.44 1392.35 8695.95 11396.41 14396.71 899.42 3593.99 3799.36 6299.13 44
Chunlin Ren, Qingshan Xu, Shikun Zhang, Jiaqi Yang: Hierarchical Prior Mining for Non-local Multi-View Stereo. ICCV 2023
VDDNet94.03 13294.27 12693.31 17698.87 2082.36 22095.51 8591.78 31197.19 1296.32 9298.60 1884.24 23498.75 16187.09 21998.83 13798.81 84
TSAR-MVS + MP.94.96 9394.75 10495.57 8798.86 2188.69 11396.37 4596.81 17285.23 24394.75 16897.12 9691.85 12099.40 4993.45 5898.33 18898.62 111
Zhenlong Yuan, Jiakai Cao, Zhaoqi Wang, Zhaoxin Li: TSAR-MVS: Textureless-aware Segmentation and Correlative Refinement Guided Multi-View Stereo. Pattern Recognition
RRT_MVS95.41 7695.20 8996.05 5998.86 2188.92 10897.49 1094.48 26093.12 7297.94 2898.54 2181.19 26699.63 695.48 1499.69 1599.60 12
EGC-MVSNET80.97 33375.73 34496.67 4498.85 2394.55 1596.83 2496.60 1842.44 3795.32 38098.25 3492.24 11098.02 23791.85 11099.21 8997.45 209
mvs_tets96.83 996.71 1997.17 2798.83 2492.51 5096.58 3497.61 10787.57 21198.80 798.90 996.50 1099.59 1396.15 799.47 4499.40 24
PS-MVSNAJss96.01 5296.04 5395.89 7298.82 2588.51 12195.57 8297.88 8488.72 18498.81 698.86 1090.77 14799.60 995.43 1699.53 3999.57 14
MP-MVScopyleft96.14 4895.68 6897.51 1398.81 2694.06 2196.10 5997.78 9792.73 7593.48 20396.72 12694.23 6699.42 3591.99 10499.29 7499.05 53
Rongxuan Tan, Qing Wang, et al.: MP-MVS: Multi-Scale Windows PatchMatch and Planar Prior Multi-View Stereo.
LTVRE_ROB93.87 197.93 298.16 297.26 2698.81 2693.86 3299.07 298.98 697.01 1398.92 498.78 1495.22 3798.61 18496.85 299.77 1099.31 31
Andreas Kuhn, Heiko Hirschmüller, Daniel Scharstein, Helmut Mayer: A TV Prior for High-Quality Scalable Multi-View Stereo Reconstruction. International Journal of Computer Vision 2016
ZNCC-MVS96.42 3696.20 4297.07 3098.80 2892.79 4896.08 6098.16 4491.74 11395.34 14096.36 15195.68 1999.44 3094.41 2599.28 7998.97 64
jajsoiax96.59 2796.42 2997.12 2998.76 2992.49 5196.44 4297.42 12186.96 22098.71 1098.72 1795.36 3199.56 1795.92 999.45 4899.32 30
test_low_dy_conf_00195.63 6595.32 8396.56 4798.74 3090.71 7797.10 2095.47 23490.00 15397.57 3998.49 2684.73 23299.46 2696.06 899.69 1599.50 17
MSP-MVS95.34 7994.63 11297.48 1498.67 3194.05 2396.41 4498.18 3791.26 12595.12 15195.15 21086.60 21699.50 2193.43 6296.81 26798.89 75
Zhenlong Yuan, Cong Liu, Fei Shen, Zhaoxin Li, Jingguo luo, Tianlu Mao and Zhaoqi Wang: MSP-MVS: Multi-granularity Segmentation Prior Guided Multi-View Stereo. AAAI2025
GST-MVS96.24 4495.99 5597.00 3498.65 3292.71 4995.69 7798.01 7192.08 9495.74 12496.28 15695.22 3799.42 3593.17 7499.06 10398.88 77
SteuartSystems-ACMMP96.40 3896.30 3696.71 4298.63 3391.96 5795.70 7598.01 7193.34 6996.64 8096.57 13594.99 4999.36 6493.48 5599.34 6498.82 83
Skip Steuart: Steuart Systems R&D Blog.
region2R96.41 3796.09 4997.38 2398.62 3493.81 3696.32 5097.96 7892.26 8995.28 14496.57 13595.02 4799.41 4293.63 4699.11 10198.94 67
mPP-MVS96.46 3296.05 5297.69 598.62 3494.65 1396.45 4097.74 9892.59 8095.47 13396.68 12894.50 6199.42 3593.10 7799.26 8298.99 58
ACMMPcopyleft96.61 2496.34 3497.43 1998.61 3693.88 3096.95 2298.18 3792.26 8996.33 9196.84 11695.10 4399.40 4993.47 5699.33 6699.02 55
Qingshan Xu, Weihang Kong, Wenbing Tao, Marc Pollefeys: Multi-Scale Geometric Consistency Guided and Planar Prior Assisted Multi-View Stereo. IEEE Transactions on Pattern Analysis and Machine Intelligence
VPNet93.08 15693.76 13791.03 25098.60 3775.83 31791.51 22795.62 22291.84 10595.74 12497.10 9789.31 17398.32 21285.07 24899.06 10398.93 68
ACMMPR96.46 3296.14 4697.41 2198.60 3793.82 3496.30 5397.96 7892.35 8695.57 13196.61 13394.93 5199.41 4293.78 4299.15 9799.00 56
PGM-MVS96.32 4195.94 5697.43 1998.59 3993.84 3395.33 8998.30 2491.40 12295.76 12296.87 11295.26 3599.45 2892.77 8599.21 8999.00 56
XVS96.49 2996.18 4397.44 1798.56 4093.99 2796.50 3797.95 8094.58 4194.38 17896.49 13794.56 5999.39 5493.57 4899.05 10698.93 68
X-MVStestdata90.70 21388.45 25597.44 1798.56 4093.99 2796.50 3797.95 8094.58 4194.38 17826.89 37794.56 5999.39 5493.57 4899.05 10698.93 68
ACMH88.36 1296.59 2797.43 594.07 14898.56 4085.33 18596.33 4898.30 2494.66 4098.72 898.30 3397.51 598.00 23994.87 1899.59 3198.86 78
Qingshan Xu and Wenbing Tao: Multi-Scale Geometric Consistency Guided Multi-View Stereo. CVPR 2019
bld_raw_dy_0_6494.27 12394.15 12994.65 12398.55 4386.28 17095.80 7295.55 23088.41 19297.09 5898.08 4178.69 27998.87 13895.63 1299.53 3998.81 84
test_0728_SECOND94.88 11298.55 4386.72 15595.20 9598.22 3399.38 6093.44 6099.31 6998.53 118
test_djsdf96.62 2396.49 2897.01 3398.55 4391.77 6197.15 1597.37 12388.98 17898.26 2298.86 1093.35 8299.60 996.41 499.45 4899.66 6
v7n96.82 1097.31 1095.33 9598.54 4686.81 15396.83 2498.07 5896.59 2098.46 1798.43 3092.91 9699.52 1996.25 699.76 1199.65 8
abl_697.31 597.12 1397.86 398.54 4695.32 796.61 3298.35 2095.81 3197.55 4097.44 7396.51 999.40 4994.06 3499.23 8698.85 81
ACMH+88.43 1196.48 3096.82 1695.47 9098.54 4689.06 10595.65 7898.61 1196.10 2698.16 2397.52 6896.90 798.62 18390.30 14799.60 2998.72 97
bld_raw_conf00596.23 4596.22 4096.26 5498.53 4989.90 8897.25 1398.12 4792.70 7698.10 2598.51 2587.19 20299.46 2695.86 1099.69 1599.42 21
SixPastTwentyTwo94.91 9495.21 8793.98 15098.52 5083.19 21195.93 6694.84 24994.86 3998.49 1598.74 1681.45 26099.60 994.69 2099.39 6099.15 42
SED-MVS96.00 5396.41 3294.76 11798.51 5186.97 14995.21 9398.10 5191.95 9697.63 3597.25 8896.48 1199.35 6593.29 6899.29 7497.95 167
IU-MVS98.51 5186.66 15896.83 17172.74 33995.83 12093.00 8199.29 7498.64 107
test_241102_ONE98.51 5186.97 14998.10 5191.85 10297.63 3597.03 10196.48 1198.95 126
DVP-MVScopyleft95.82 5996.18 4394.72 11998.51 5186.69 15695.20 9597.00 15591.85 10297.40 5197.35 8395.58 2299.34 6893.44 6099.31 6998.13 148
Zhenlong Yuan, Jinguo Luo, Fei Shen, Zhaoxin Li, Cong Liu, Tianlu Mao, Zhaoqi Wang: DVP-MVS: Synergize Depth-Edge and Visibility Prior for Multi-View Stereo. AAAI2025
test072698.51 5186.69 15695.34 8898.18 3791.85 10297.63 3597.37 7795.58 22
HFP-MVS96.39 3996.17 4597.04 3198.51 5193.37 4096.30 5397.98 7492.35 8695.63 12896.47 13895.37 2899.27 8093.78 4299.14 9898.48 122
#test#95.89 5595.51 7397.04 3198.51 5193.37 4095.14 9897.98 7489.34 16995.63 12896.47 13895.37 2899.27 8091.99 10499.14 9898.48 122
Baseline_NR-MVSNet94.47 11595.09 9492.60 20298.50 5880.82 24092.08 20296.68 18093.82 6096.29 9598.56 2090.10 16597.75 26390.10 15899.66 2499.24 35
OPM-MVS95.61 6795.45 7596.08 5898.49 5991.00 7092.65 17697.33 13290.05 15296.77 7696.85 11395.04 4598.56 19292.77 8599.06 10398.70 100
Ray L. Khuboni, Hongjun Xu: Octagram Propagation Matching for Multi-Scale View Stereopsis (OPM-MVS).
FC-MVSNet-test95.32 8095.88 5993.62 16498.49 5981.77 22595.90 6898.32 2193.93 5797.53 4397.56 6588.48 17999.40 4992.91 8499.83 699.68 4
mvsmamba95.61 6795.40 7896.22 5598.44 6189.86 9097.14 1797.45 12091.25 12797.49 4598.14 3683.49 23799.45 2895.52 1399.66 2499.36 27
XVG-ACMP-BASELINE95.68 6495.34 8096.69 4398.40 6293.04 4394.54 12498.05 6290.45 14696.31 9396.76 12092.91 9698.72 16691.19 12599.42 5398.32 131
ACMM88.83 996.30 4396.07 5196.97 3598.39 6392.95 4694.74 11298.03 6790.82 13697.15 5696.85 11396.25 1599.00 11893.10 7799.33 6698.95 66
Qingshan Xu and Wenbing Tao: Multi-Scale Geometric Consistency Guided Multi-View Stereo. CVPR 2019
pm-mvs195.43 7495.94 5693.93 15498.38 6485.08 18895.46 8697.12 14991.84 10597.28 5398.46 2895.30 3497.71 26590.17 15499.42 5398.99 58
COLMAP_ROBcopyleft91.06 596.75 1696.62 2397.13 2898.38 6494.31 1796.79 2798.32 2196.69 1796.86 7197.56 6595.48 2598.77 16090.11 15699.44 5198.31 133
Johannes L. Schönberger, Enliang Zheng, Marc Pollefeys, Jan-Michael Frahm: Pixelwise View Selection for Unstructured Multi-View Stereo. ECCV 2016
TransMVSNet (Re)95.27 8696.04 5392.97 18498.37 6681.92 22495.07 10196.76 17793.97 5697.77 3198.57 1995.72 1897.90 24588.89 18599.23 8699.08 51
LPG-MVS_test96.38 4096.23 3996.84 4098.36 6792.13 5495.33 8998.25 2891.78 10997.07 5997.22 9196.38 1399.28 7892.07 10299.59 3199.11 47
LGP-MVS_train96.84 4098.36 6792.13 5498.25 2891.78 10997.07 5997.22 9196.38 1399.28 7892.07 10299.59 3199.11 47
CP-MVS96.44 3596.08 5097.54 1198.29 6994.62 1496.80 2698.08 5592.67 7995.08 15596.39 14894.77 5499.42 3593.17 7499.44 5198.58 116
FIs94.90 9595.35 7993.55 16798.28 7081.76 22695.33 8998.14 4593.05 7497.07 5997.18 9387.65 19399.29 7691.72 11499.69 1599.61 11
SMA-MVScopyleft95.77 6095.54 7296.47 5298.27 7191.19 6895.09 9997.79 9686.48 22397.42 5097.51 7094.47 6399.29 7693.55 5099.29 7498.93 68
Yufeng Yin; Xiaoyan Liu; Zichao Zhang: SMA-MVS: Segmentation-Guided Multi-Scale Anchor Deformation Patch Multi-View Stereo. IEEE Transactions on Circuits and Systems for Video Technology
test_one_060198.26 7287.14 14498.18 3794.25 4896.99 6697.36 8095.13 40
TranMVSNet+NR-MVSNet96.07 5196.26 3895.50 8998.26 7287.69 13593.75 14797.86 8595.96 3097.48 4697.14 9595.33 3299.44 3090.79 13399.76 1199.38 25
IS-MVSNet94.49 11494.35 12194.92 11098.25 7486.46 16397.13 1894.31 26496.24 2496.28 9896.36 15182.88 24499.35 6588.19 19799.52 4298.96 65
UA-Net97.35 497.24 1197.69 598.22 7593.87 3198.42 698.19 3696.95 1495.46 13599.23 493.45 7799.57 1495.34 1799.89 299.63 9
test_part298.21 7689.41 10096.72 77
test_040295.73 6296.22 4094.26 14398.19 7785.77 18093.24 16097.24 14096.88 1697.69 3397.77 5794.12 6899.13 9691.54 12199.29 7497.88 176
ACMP88.15 1395.71 6395.43 7796.54 4898.17 7891.73 6294.24 13198.08 5589.46 16596.61 8296.47 13895.85 1799.12 10090.45 13999.56 3798.77 90
Qingshan Xu and Wenbing Tao: Planar Prior Assisted PatchMatch Multi-View Stereo. AAAI 2020
CPTT-MVS94.74 10494.12 13096.60 4598.15 7993.01 4495.84 7097.66 10289.21 17593.28 21095.46 19888.89 17698.98 11989.80 16398.82 13897.80 185
SF-MVS95.88 5795.88 5995.87 7398.12 8089.65 9495.58 8198.56 1291.84 10596.36 8996.68 12894.37 6499.32 7492.41 9599.05 10698.64 107
Vis-MVSNetpermissive95.50 7195.48 7495.56 8898.11 8189.40 10195.35 8798.22 3392.36 8594.11 18198.07 4292.02 11599.44 3093.38 6597.67 24097.85 180
Jingyang Zhang, Yao Yao, Shiwei Li, Zixin Luo, Tian Fang: Visibility-aware Multiview Stereo Network. BMVC 2020
XVG-OURS-SEG-HR95.38 7795.00 9696.51 4998.10 8294.07 2092.46 18398.13 4690.69 13993.75 19496.25 15998.03 297.02 29492.08 10195.55 29398.45 125
EPP-MVSNet93.91 13593.68 14194.59 12998.08 8385.55 18397.44 1194.03 26994.22 5094.94 16096.19 16182.07 25599.57 1487.28 21698.89 12598.65 103
SR-MVS-dyc-post96.84 896.60 2597.56 1098.07 8495.27 896.37 4598.12 4795.66 3397.00 6497.03 10194.85 5299.42 3593.49 5298.84 13298.00 159
RE-MVS-def96.66 2098.07 8495.27 896.37 4598.12 4795.66 3397.00 6497.03 10195.40 2793.49 5298.84 13298.00 159
SR-MVS96.70 1996.42 2997.54 1198.05 8694.69 1196.13 5898.07 5895.17 3796.82 7396.73 12595.09 4499.43 3492.99 8298.71 14998.50 120
K. test v393.37 14593.27 15593.66 16398.05 8682.62 21894.35 12786.62 34196.05 2897.51 4498.85 1276.59 30199.65 393.21 7298.20 20698.73 96
lessismore_v093.87 15998.05 8683.77 20580.32 37297.13 5797.91 5177.49 28999.11 10292.62 9198.08 21798.74 94
test111190.39 22290.61 21789.74 28698.04 8971.50 34795.59 7979.72 37489.41 16695.94 11598.14 3670.79 31998.81 14988.52 19399.32 6898.90 74
test117296.79 1596.52 2797.60 998.03 9094.87 1096.07 6198.06 6195.76 3296.89 6996.85 11394.85 5299.42 3593.35 6698.81 14098.53 118
AllTest94.88 9794.51 11796.00 6198.02 9192.17 5295.26 9298.43 1490.48 14495.04 15796.74 12392.54 10697.86 25185.11 24698.98 11597.98 163
TestCases96.00 6198.02 9192.17 5298.43 1490.48 14495.04 15796.74 12392.54 10697.86 25185.11 24698.98 11597.98 163
anonymousdsp96.74 1796.42 2997.68 798.00 9394.03 2696.97 2197.61 10787.68 20898.45 1898.77 1594.20 6799.50 2196.70 399.40 5999.53 15
XVG-OURS94.72 10594.12 13096.50 5098.00 9394.23 1891.48 22898.17 4190.72 13895.30 14296.47 13887.94 19096.98 29591.41 12397.61 24398.30 134
114514_t90.51 21789.80 23392.63 20098.00 9382.24 22193.40 15797.29 13665.84 36489.40 29994.80 23086.99 20698.75 16183.88 25998.61 15896.89 234
Gipumacopyleft95.31 8395.80 6593.81 16197.99 9690.91 7296.42 4397.95 8096.69 1791.78 25898.85 1291.77 12195.49 33291.72 11499.08 10295.02 297
S. Galliani, K. Lasinger, K. Schindler: Massively Parallel Multiview Stereopsis by Surface Normal Diffusion. ICCV 2015
APD-MVS_3200maxsize96.82 1096.65 2197.32 2597.95 9793.82 3496.31 5198.25 2895.51 3596.99 6697.05 10095.63 2199.39 5493.31 6798.88 12798.75 91
DPE-MVScopyleft95.89 5595.88 5995.92 6997.93 9889.83 9193.46 15598.30 2492.37 8497.75 3296.95 10595.14 3999.51 2091.74 11399.28 7998.41 127
Kehua Chen, Zhenlong Yuan, Tianlu Mao, Zhaoqi Wang: Dual-Level Precision Edges Guided Multi-View Stereo with Accurate Planarization. AAAI2025
HPM-MVS++copyleft95.02 9094.39 11996.91 3897.88 9993.58 3894.09 13796.99 15791.05 13192.40 24295.22 20991.03 14599.25 8292.11 9998.69 15297.90 173
EG-PatchMatch MVS94.54 11394.67 11094.14 14697.87 10086.50 16092.00 20796.74 17888.16 19796.93 6897.61 6393.04 9397.90 24591.60 11898.12 21398.03 157
nrg03096.32 4196.55 2695.62 8497.83 10188.55 11995.77 7398.29 2792.68 7798.03 2797.91 5195.13 4098.95 12693.85 4099.49 4399.36 27
test250685.42 30484.57 30687.96 31497.81 10266.53 36596.14 5756.35 38289.04 17693.55 20298.10 3942.88 38498.68 17688.09 20199.18 9398.67 101
ECVR-MVScopyleft90.12 23390.16 22590.00 28397.81 10272.68 34195.76 7478.54 37589.04 17695.36 13998.10 3970.51 32098.64 18287.10 21899.18 9398.67 101
UniMVSNet (Re)95.32 8095.15 9095.80 7697.79 10488.91 10992.91 16798.07 5893.46 6796.31 9395.97 17190.14 16199.34 6892.11 9999.64 2799.16 41
VPA-MVSNet95.14 8895.67 6993.58 16697.76 10583.15 21294.58 11997.58 10993.39 6897.05 6298.04 4493.25 8498.51 19789.75 16699.59 3199.08 51
DU-MVS95.28 8495.12 9295.75 8097.75 10688.59 11792.58 17797.81 9293.99 5396.80 7495.90 17290.10 16599.41 4291.60 11899.58 3599.26 33
NR-MVSNet95.28 8495.28 8595.26 9997.75 10687.21 14395.08 10097.37 12393.92 5997.65 3495.90 17290.10 16599.33 7390.11 15699.66 2499.26 33
XXY-MVS92.58 17593.16 15790.84 25997.75 10679.84 25491.87 21696.22 20485.94 23295.53 13297.68 5992.69 10294.48 34583.21 26497.51 24598.21 142
PVSNet_Blended_VisFu91.63 19691.20 20392.94 18897.73 10983.95 20392.14 20097.46 11878.85 30892.35 24594.98 22084.16 23599.08 10486.36 23296.77 26995.79 277
tfpnnormal94.27 12394.87 10092.48 20697.71 11080.88 23994.55 12395.41 23693.70 6296.67 7997.72 5891.40 13098.18 22587.45 21299.18 9398.36 129
HQP_MVS94.26 12593.93 13295.23 10197.71 11088.12 12694.56 12197.81 9291.74 11393.31 20795.59 18886.93 20898.95 12689.26 17698.51 17098.60 114
plane_prior797.71 11088.68 114
UniMVSNet_NR-MVSNet95.35 7895.21 8795.76 7997.69 11388.59 11792.26 19697.84 8994.91 3896.80 7495.78 18290.42 15699.41 4291.60 11899.58 3599.29 32
APDe-MVS96.46 3296.64 2295.93 6797.68 11489.38 10296.90 2398.41 1792.52 8197.43 4897.92 5095.11 4299.50 2194.45 2399.30 7198.92 72
DeepC-MVS91.39 495.43 7495.33 8195.71 8297.67 11590.17 8393.86 14598.02 6987.35 21396.22 10197.99 4794.48 6299.05 10992.73 8899.68 2197.93 169
Andreas Kuhn, Christian Sormann, Mattia Rossi, Oliver Erdler, Friedrich Fraundorfer: DeepC-MVS: Deep Confidence Prediction for Multi-View Stereo Reconstruction. 3DV 2020
KD-MVS_self_test94.10 13094.73 10692.19 21297.66 11679.49 26394.86 10897.12 14989.59 16496.87 7097.65 6190.40 15998.34 21189.08 18199.35 6398.75 91
Vis-MVSNet (Re-imp)90.42 22090.16 22591.20 24697.66 11677.32 29694.33 12887.66 33591.20 12892.99 22295.13 21275.40 30598.28 21477.86 31299.19 9197.99 162
ETH3D-3000-0.194.86 9894.55 11495.81 7497.61 11889.72 9294.05 13898.37 1888.09 19895.06 15695.85 17492.58 10499.10 10390.33 14698.99 11498.62 111
dcpmvs_293.96 13495.01 9590.82 26097.60 11974.04 33193.68 15198.85 789.80 15997.82 3097.01 10491.14 14399.21 8690.56 13798.59 16099.19 39
FMVSNet194.84 10095.13 9193.97 15197.60 11984.29 19495.99 6296.56 18692.38 8397.03 6398.53 2290.12 16298.98 11988.78 18799.16 9698.65 103
RPSCF95.58 6994.89 9997.62 897.58 12196.30 495.97 6597.53 11492.42 8293.41 20497.78 5591.21 13897.77 26091.06 12697.06 25798.80 86
WR-MVS93.49 14293.72 13892.80 19497.57 12280.03 25090.14 26495.68 22193.70 6296.62 8195.39 20487.21 20199.04 11287.50 21199.64 2799.33 29
CSCG94.69 10694.75 10494.52 13297.55 12387.87 13295.01 10497.57 11092.68 7796.20 10393.44 27491.92 11998.78 15689.11 18099.24 8596.92 232
MCST-MVS92.91 16292.51 17294.10 14797.52 12485.72 18191.36 23297.13 14880.33 29092.91 22594.24 24791.23 13798.72 16689.99 16097.93 22797.86 178
F-COLMAP92.28 18491.06 20795.95 6497.52 12491.90 5893.53 15397.18 14383.98 25988.70 31294.04 25488.41 18198.55 19480.17 29395.99 28497.39 216
9.1494.81 10197.49 12694.11 13698.37 1887.56 21295.38 13796.03 16894.66 5699.08 10490.70 13598.97 119
VDD-MVS94.37 11794.37 12094.40 14097.49 12686.07 17593.97 14293.28 28194.49 4496.24 9997.78 5587.99 18998.79 15288.92 18399.14 9898.34 130
testgi90.38 22391.34 20087.50 32097.49 12671.54 34689.43 28295.16 24288.38 19394.54 17494.68 23592.88 9893.09 35971.60 35197.85 23197.88 176
xxxxxxxxxxxxxcwj95.03 8994.93 9795.33 9597.46 12988.05 12892.04 20498.42 1687.63 20996.36 8996.68 12894.37 6499.32 7492.41 9599.05 10698.64 107
save fliter97.46 12988.05 12892.04 20497.08 15187.63 209
Anonymous2023121196.60 2597.13 1295.00 10897.46 12986.35 16897.11 1998.24 3197.58 898.72 898.97 793.15 8899.15 9293.18 7399.74 1399.50 17
plane_prior197.38 132
APD-MVScopyleft95.00 9194.69 10795.93 6797.38 13290.88 7394.59 11797.81 9289.22 17495.46 13596.17 16493.42 8099.34 6889.30 17298.87 13097.56 203
Yuesong Wang, Zhaojie Zeng and etc.: Adaptive Patch Deformation for Textureless-Resilient Multi-View Stereo. CVPR2023
ITE_SJBPF95.95 6497.34 13493.36 4296.55 18991.93 9894.82 16595.39 20491.99 11797.08 29285.53 23997.96 22597.41 212
Anonymous2024052995.50 7195.83 6394.50 13397.33 13585.93 17795.19 9796.77 17696.64 1997.61 3898.05 4393.23 8598.79 15288.60 19299.04 11298.78 88
OMC-MVS94.22 12793.69 14095.81 7497.25 13691.27 6692.27 19597.40 12287.10 21994.56 17395.42 20193.74 7198.11 23086.62 22698.85 13198.06 151
GeoE94.55 11194.68 10994.15 14597.23 13785.11 18794.14 13597.34 13188.71 18595.26 14595.50 19694.65 5799.12 10090.94 13098.40 17698.23 139
ZD-MVS97.23 13790.32 8297.54 11284.40 25794.78 16795.79 17992.76 10199.39 5488.72 19098.40 176
testtj94.81 10294.42 11896.01 6097.23 13790.51 8194.77 11197.85 8891.29 12494.92 16295.66 18691.71 12399.40 4988.07 20298.25 19898.11 150
plane_prior697.21 14088.23 12586.93 208
DP-MVS Recon92.31 18391.88 18593.60 16597.18 14186.87 15291.10 23797.37 12384.92 25292.08 25394.08 25388.59 17898.20 22283.50 26198.14 21095.73 279
新几何193.17 18097.16 14287.29 14094.43 26167.95 35891.29 26394.94 22286.97 20798.23 22081.06 28797.75 23393.98 321
DP-MVS95.62 6695.84 6294.97 10997.16 14288.62 11694.54 12497.64 10396.94 1596.58 8397.32 8693.07 9298.72 16690.45 13998.84 13297.57 201
112190.26 22989.23 24093.34 17497.15 14487.40 13891.94 21094.39 26267.88 35991.02 27094.91 22386.91 21098.59 18881.17 28597.71 23794.02 320
CHOSEN 1792x268887.19 29285.92 30091.00 25397.13 14579.41 26484.51 34995.60 22364.14 36790.07 28694.81 22778.26 28597.14 29073.34 34095.38 30096.46 250
HyFIR lowres test87.19 29285.51 30292.24 21097.12 14680.51 24185.03 34396.06 20966.11 36391.66 25992.98 28570.12 32199.14 9475.29 33195.23 30397.07 225
ab-mvs92.40 18092.62 17091.74 22697.02 14781.65 22795.84 7095.50 23386.95 22192.95 22497.56 6590.70 15297.50 27379.63 30097.43 24896.06 265
tttt051789.81 24388.90 24992.55 20497.00 14879.73 25995.03 10383.65 36389.88 15795.30 14294.79 23153.64 37299.39 5491.99 10498.79 14398.54 117
h-mvs3392.89 16391.99 18295.58 8696.97 14990.55 7993.94 14394.01 27289.23 17293.95 18996.19 16176.88 29899.14 9491.02 12795.71 29097.04 228
test22296.95 15085.27 18688.83 29793.61 27565.09 36690.74 27494.85 22684.62 23397.36 25093.91 322
CDPH-MVS92.67 17291.83 18695.18 10396.94 15188.46 12290.70 24697.07 15277.38 31592.34 24795.08 21592.67 10398.88 13385.74 23798.57 16298.20 143
CNVR-MVS94.58 11094.29 12395.46 9196.94 15189.35 10391.81 22296.80 17389.66 16193.90 19295.44 20092.80 10098.72 16692.74 8798.52 16898.32 131
DROMVSNet95.44 7395.62 7094.89 11196.93 15387.69 13596.48 3999.14 493.93 5792.77 22994.52 23993.95 7099.49 2493.62 4799.22 8897.51 206
原ACMM192.87 19196.91 15484.22 19797.01 15476.84 32089.64 29794.46 24088.00 18898.70 17281.53 28098.01 22395.70 281
ambc92.98 18396.88 15583.01 21595.92 6796.38 19696.41 8697.48 7188.26 18297.80 25689.96 16198.93 12498.12 149
testdata91.03 25096.87 15682.01 22294.28 26571.55 34392.46 23895.42 20185.65 22697.38 28482.64 26997.27 25293.70 328
CS-MVS-test95.32 8095.10 9395.96 6396.86 15790.75 7696.33 4899.20 293.99 5391.03 26993.73 26793.52 7699.55 1891.81 11199.45 4897.58 200
OPU-MVS95.15 10496.84 15889.43 9995.21 9395.66 18693.12 8998.06 23286.28 23498.61 15897.95 167
CS-MVS95.77 6095.58 7196.37 5396.84 15891.72 6396.73 2999.06 594.23 4992.48 23794.79 23193.56 7399.49 2493.47 5699.05 10697.89 175
ETH3D cwj APD-0.1693.99 13393.38 15195.80 7696.82 16089.92 8692.72 17298.02 6984.73 25593.65 19895.54 19591.68 12499.22 8588.78 18798.49 17398.26 137
NP-MVS96.82 16087.10 14593.40 275
3Dnovator+92.74 295.86 5895.77 6696.13 5796.81 16290.79 7596.30 5397.82 9196.13 2594.74 16997.23 9091.33 13299.16 9193.25 7198.30 19398.46 124
Test_1112_low_res87.50 28486.58 29090.25 27596.80 16377.75 29087.53 31496.25 20069.73 35386.47 33393.61 27075.67 30497.88 24779.95 29593.20 33395.11 295
PAPM_NR91.03 20790.81 21291.68 23096.73 16481.10 23693.72 14896.35 19788.19 19688.77 31092.12 30585.09 22997.25 28682.40 27393.90 32596.68 242
1112_ss88.42 26787.41 27591.45 23696.69 16580.99 23789.72 27696.72 17973.37 33587.00 33190.69 32677.38 29198.20 22281.38 28193.72 32895.15 293
patch_mono-292.46 17992.72 16891.71 22896.65 16678.91 27488.85 29697.17 14483.89 26192.45 23996.76 12089.86 16997.09 29190.24 15198.59 16099.12 46
v894.65 10895.29 8492.74 19596.65 16679.77 25894.59 11797.17 14491.86 10197.47 4797.93 4988.16 18499.08 10494.32 2699.47 4499.38 25
MVS_111021_HR93.63 14093.42 15094.26 14396.65 16686.96 15189.30 28796.23 20288.36 19493.57 20194.60 23693.45 7797.77 26090.23 15298.38 18198.03 157
ANet_high94.83 10196.28 3790.47 26896.65 16673.16 33694.33 12898.74 1096.39 2398.09 2698.93 893.37 8198.70 17290.38 14299.68 2199.53 15
SD-MVS95.19 8795.73 6793.55 16796.62 17088.88 11294.67 11498.05 6291.26 12597.25 5596.40 14495.42 2694.36 34992.72 8999.19 9197.40 215
Zhenlong Yuan, Jiakai Cao, Zhaoxin Li, Hao Jiang and Zhaoqi Wang: SD-MVS: Segmentation-driven Deformation Multi-View Stereo with Spherical Refinement and EM optimization. AAAI2024
ETH3 D test640091.91 19191.25 20293.89 15796.59 17184.41 19392.10 20197.72 10078.52 30991.82 25793.78 26688.70 17799.13 9683.61 26098.39 17998.14 146
PM-MVS93.33 14692.67 16995.33 9596.58 17294.06 2192.26 19692.18 30285.92 23396.22 10196.61 13385.64 22795.99 32590.35 14498.23 20195.93 270
Anonymous2024052192.86 16693.57 14590.74 26296.57 17375.50 31994.15 13495.60 22389.38 16795.90 11897.90 5380.39 27097.96 24392.60 9299.68 2198.75 91
v1094.68 10795.27 8692.90 19096.57 17380.15 24494.65 11697.57 11090.68 14097.43 4898.00 4688.18 18399.15 9294.84 1999.55 3899.41 23
Anonymous20240521192.58 17592.50 17392.83 19396.55 17583.22 21092.43 18591.64 31294.10 5295.59 13096.64 13181.88 25997.50 27385.12 24598.52 16897.77 187
DVP-MVS++95.93 5496.34 3494.70 12096.54 17686.66 15898.45 498.22 3393.26 7097.54 4197.36 8093.12 8999.38 6093.88 3898.68 15398.04 154
MSC_two_6792asdad95.90 7096.54 17689.57 9596.87 16899.41 4294.06 3499.30 7198.72 97
No_MVS95.90 7096.54 17689.57 9596.87 16899.41 4294.06 3499.30 7198.72 97
PLCcopyleft85.34 1590.40 22188.92 24794.85 11396.53 17990.02 8491.58 22696.48 19280.16 29186.14 33592.18 30285.73 22498.25 21976.87 32294.61 31696.30 256
Jie Liao, Yanping Fu, Qingan Yan, Chunxia xiao: Pyramid Multi-View Stereo with Local Consistency. Pacific Graphics 2019
TAPA-MVS88.58 1092.49 17891.75 19094.73 11896.50 18089.69 9392.91 16797.68 10178.02 31392.79 22894.10 25290.85 14697.96 24384.76 25298.16 20896.54 243
Andrea Romanoni, Matteo Matteucci: TAPA-MVS: Textureless-Aware PAtchMatch Multi-View Stereo. ICCV 2019
NCCC94.08 13193.54 14795.70 8396.49 18189.90 8892.39 18896.91 16490.64 14192.33 24894.60 23690.58 15598.96 12490.21 15397.70 23898.23 139
TAMVS90.16 23289.05 24493.49 17296.49 18186.37 16690.34 25792.55 29780.84 28892.99 22294.57 23881.94 25898.20 22273.51 33998.21 20495.90 273
TEST996.45 18389.46 9790.60 24896.92 16279.09 30490.49 27794.39 24391.31 13398.88 133
train_agg92.71 17191.83 18695.35 9396.45 18389.46 9790.60 24896.92 16279.37 29990.49 27794.39 24391.20 13998.88 13388.66 19198.43 17597.72 191
test_896.37 18589.14 10490.51 25196.89 16579.37 29990.42 27994.36 24591.20 13998.82 144
CLD-MVS91.82 19291.41 19893.04 18196.37 18583.65 20686.82 32897.29 13684.65 25692.27 24989.67 33892.20 11297.85 25383.95 25899.47 4497.62 198
Zhaoxin Li, Wangmeng Zuo, Zhaoqi Wang, Lei Zhang: Confidence-based Large-scale Dense Multi-view Stereo. IEEE Transaction on Image Processing, 2020
HQP-NCC96.36 18791.37 22987.16 21688.81 306
ACMP_Plane96.36 18791.37 22987.16 21688.81 306
HQP-MVS92.09 18891.49 19693.88 15896.36 18784.89 18991.37 22997.31 13387.16 21688.81 30693.40 27584.76 23098.60 18686.55 22897.73 23498.14 146
v2v48293.29 14793.63 14292.29 20896.35 19078.82 27691.77 22496.28 19888.45 19095.70 12796.26 15886.02 22298.90 13093.02 8098.81 14099.14 43
MSLP-MVS++93.25 15293.88 13391.37 23896.34 19182.81 21793.11 16197.74 9889.37 16894.08 18395.29 20890.40 15996.35 31690.35 14498.25 19894.96 298
thisisatest053088.69 26487.52 27492.20 21196.33 19279.36 26592.81 16984.01 36286.44 22493.67 19792.68 29353.62 37399.25 8289.65 16898.45 17498.00 159
FPMVS84.50 31083.28 31488.16 31296.32 19394.49 1685.76 33885.47 35283.09 26885.20 33994.26 24663.79 34986.58 37363.72 36991.88 35183.40 368
Anonymous2023120688.77 26288.29 25990.20 27896.31 19478.81 27789.56 28093.49 27974.26 33192.38 24395.58 19182.21 25295.43 33572.07 34798.75 14896.34 254
MVP-Stereo90.07 23788.92 24793.54 16996.31 19486.49 16190.93 24095.59 22779.80 29291.48 26095.59 18880.79 26797.39 28278.57 31091.19 35396.76 240
Qingsong Yan: MVP-Stereo: A Parallel Multi-View Patchmatch Stereo Method with Dilation Matching for Photogrammetric Application.
v114493.50 14193.81 13492.57 20396.28 19679.61 26191.86 22096.96 15886.95 22195.91 11796.32 15387.65 19398.96 12493.51 5198.88 12799.13 44
LFMVS91.33 20391.16 20691.82 22396.27 19779.36 26595.01 10485.61 35196.04 2994.82 16597.06 9972.03 31698.46 20484.96 24998.70 15197.65 196
VNet92.67 17292.96 15891.79 22496.27 19780.15 24491.95 20894.98 24592.19 9294.52 17596.07 16687.43 19797.39 28284.83 25098.38 18197.83 181
IterMVS-LS93.78 13794.28 12492.27 20996.27 19779.21 27091.87 21696.78 17491.77 11196.57 8497.07 9887.15 20398.74 16491.99 10499.03 11398.86 78
Fangjinhua Wang, Silvano Galliani, Christoph Vogel, Marc Pollefeys: IterMVS: Iterative Probability Estimation for Efficient Multi-View Stereo.
v14892.87 16593.29 15291.62 23196.25 20077.72 29191.28 23395.05 24389.69 16095.93 11696.04 16787.34 19898.38 20790.05 15997.99 22498.78 88
MVS_111021_LR93.66 13993.28 15494.80 11596.25 20090.95 7190.21 26095.43 23587.91 20093.74 19694.40 24292.88 9896.38 31490.39 14198.28 19497.07 225
agg_prior192.60 17491.76 18995.10 10696.20 20288.89 11090.37 25596.88 16679.67 29690.21 28294.41 24191.30 13498.78 15688.46 19498.37 18697.64 197
agg_prior96.20 20288.89 11096.88 16690.21 28298.78 156
旧先验196.20 20284.17 19994.82 25095.57 19289.57 17197.89 22996.32 255
CNLPA91.72 19491.20 20393.26 17896.17 20591.02 6991.14 23595.55 23090.16 15190.87 27193.56 27286.31 21894.40 34879.92 29997.12 25694.37 311
hse-mvs292.24 18691.20 20395.38 9296.16 20690.65 7892.52 17992.01 30989.23 17293.95 18992.99 28476.88 29898.69 17491.02 12796.03 28296.81 237
v119293.49 14293.78 13692.62 20196.16 20679.62 26091.83 22197.22 14286.07 23096.10 10996.38 14987.22 20099.02 11594.14 3398.88 12799.22 36
test_part194.39 11694.55 11493.92 15596.14 20882.86 21695.54 8398.09 5495.36 3698.27 2098.36 3175.91 30399.44 3093.41 6399.84 399.47 19
thres100view90087.35 28786.89 28588.72 30396.14 20873.09 33793.00 16485.31 35492.13 9393.26 21290.96 32163.42 35098.28 21471.27 35396.54 27494.79 301
DeepC-MVS_fast89.96 793.73 13893.44 14994.60 12896.14 20887.90 13193.36 15897.14 14685.53 24093.90 19295.45 19991.30 13498.59 18889.51 16998.62 15797.31 221
Andreas Kuhn, Christian Sormann, Mattia Rossi, Oliver Erdler, Friedrich Fraundorfer: DeepC-MVS: Deep Confidence Prediction for Multi-View Stereo Reconstruction. 3DV 2020
DPM-MVS89.35 24888.40 25692.18 21596.13 21184.20 19886.96 32396.15 20875.40 32687.36 32891.55 31483.30 24098.01 23882.17 27696.62 27394.32 313
AUN-MVS90.05 23888.30 25895.32 9896.09 21290.52 8092.42 18692.05 30882.08 28188.45 31592.86 28665.76 33898.69 17488.91 18496.07 28196.75 241
baseline94.26 12594.80 10292.64 19896.08 21380.99 23793.69 14998.04 6690.80 13794.89 16396.32 15393.19 8698.48 20291.68 11698.51 17098.43 126
PCF-MVS84.52 1789.12 25287.71 27193.34 17496.06 21485.84 17986.58 33697.31 13368.46 35793.61 20093.89 26287.51 19698.52 19667.85 36298.11 21495.66 283
Andreas Kuhn, Shan Lin, Oliver Erdler: Plane Completion and Filtering for Multi-View Stereo Reconstruction. GCPR 2019
v14419293.20 15593.54 14792.16 21696.05 21578.26 28391.95 20897.14 14684.98 25195.96 11296.11 16587.08 20599.04 11293.79 4198.84 13299.17 40
thres600view787.66 27987.10 28389.36 29396.05 21573.17 33592.72 17285.31 35491.89 10093.29 20990.97 32063.42 35098.39 20573.23 34196.99 26496.51 245
casdiffmvs94.32 12194.80 10292.85 19296.05 21581.44 23292.35 19198.05 6291.53 12095.75 12396.80 11793.35 8298.49 19891.01 12998.32 19098.64 107
MIMVSNet87.13 29486.54 29288.89 30096.05 21576.11 31294.39 12688.51 32781.37 28488.27 31896.75 12272.38 31395.52 33065.71 36795.47 29695.03 296
v192192093.26 15093.61 14392.19 21296.04 21978.31 28291.88 21597.24 14085.17 24596.19 10596.19 16186.76 21399.05 10994.18 3298.84 13299.22 36
v124093.29 14793.71 13992.06 21996.01 22077.89 28891.81 22297.37 12385.12 24796.69 7896.40 14486.67 21499.07 10894.51 2298.76 14699.22 36
BH-untuned90.68 21490.90 20890.05 28295.98 22179.57 26290.04 26794.94 24787.91 20094.07 18493.00 28387.76 19297.78 25979.19 30695.17 30492.80 342
DeepPCF-MVS90.46 694.20 12893.56 14696.14 5695.96 22292.96 4589.48 28197.46 11885.14 24696.23 10095.42 20193.19 8698.08 23190.37 14398.76 14697.38 218
test_prior393.29 14792.85 16194.61 12495.95 22387.23 14190.21 26097.36 12889.33 17090.77 27294.81 22790.41 15798.68 17688.21 19598.55 16397.93 169
test_prior94.61 12495.95 22387.23 14197.36 12898.68 17697.93 169
test1294.43 13995.95 22386.75 15496.24 20189.76 29589.79 17098.79 15297.95 22697.75 190
LCM-MVSNet-Re94.20 12894.58 11393.04 18195.91 22683.13 21393.79 14699.19 392.00 9598.84 598.04 4493.64 7299.02 11581.28 28298.54 16696.96 231
PatchMatch-RL89.18 25088.02 26892.64 19895.90 22792.87 4788.67 30391.06 31580.34 28990.03 28791.67 31183.34 23994.42 34776.35 32694.84 31090.64 357
ETV-MVS92.99 16092.74 16593.72 16295.86 22886.30 16992.33 19297.84 8991.70 11692.81 22786.17 36292.22 11199.19 8988.03 20397.73 23495.66 283
TSAR-MVS + GP.93.07 15892.41 17595.06 10795.82 22990.87 7490.97 23992.61 29688.04 19994.61 17293.79 26588.08 18597.81 25589.41 17198.39 17996.50 248
QAPM92.88 16492.77 16393.22 17995.82 22983.31 20896.45 4097.35 13083.91 26093.75 19496.77 11889.25 17498.88 13384.56 25497.02 25997.49 207
EIA-MVS92.35 18292.03 18093.30 17795.81 23183.97 20292.80 17098.17 4187.71 20689.79 29487.56 35291.17 14299.18 9087.97 20497.27 25296.77 239
tfpn200view987.05 29586.52 29388.67 30495.77 23272.94 33891.89 21386.00 34690.84 13492.61 23389.80 33363.93 34798.28 21471.27 35396.54 27494.79 301
thres40087.20 29186.52 29389.24 29795.77 23272.94 33891.89 21386.00 34690.84 13492.61 23389.80 33363.93 34798.28 21471.27 35396.54 27496.51 245
pmmvs-eth3d91.54 19890.73 21593.99 14995.76 23487.86 13390.83 24293.98 27378.23 31294.02 18896.22 16082.62 25096.83 30186.57 22798.33 18897.29 222
jason89.17 25188.32 25791.70 22995.73 23580.07 24788.10 30693.22 28271.98 34290.09 28492.79 28978.53 28398.56 19287.43 21397.06 25796.46 250
jason: jason.
alignmvs93.26 15092.85 16194.50 13395.70 23687.45 13793.45 15695.76 21991.58 11895.25 14792.42 30081.96 25798.72 16691.61 11797.87 23097.33 220
xiu_mvs_v1_base_debu91.47 20091.52 19391.33 23995.69 23781.56 22889.92 27196.05 21083.22 26591.26 26490.74 32391.55 12798.82 14489.29 17395.91 28593.62 330
xiu_mvs_v1_base91.47 20091.52 19391.33 23995.69 23781.56 22889.92 27196.05 21083.22 26591.26 26490.74 32391.55 12798.82 14489.29 17395.91 28593.62 330
xiu_mvs_v1_base_debi91.47 20091.52 19391.33 23995.69 23781.56 22889.92 27196.05 21083.22 26591.26 26490.74 32391.55 12798.82 14489.29 17395.91 28593.62 330
PHI-MVS94.34 12093.80 13595.95 6495.65 24091.67 6494.82 10997.86 8587.86 20393.04 22194.16 25191.58 12698.78 15690.27 14998.96 12197.41 212
LF4IMVS92.72 17092.02 18194.84 11495.65 24091.99 5692.92 16696.60 18485.08 24992.44 24093.62 26986.80 21296.35 31686.81 22198.25 19896.18 261
test20.0390.80 21090.85 21190.63 26595.63 24279.24 26889.81 27592.87 28789.90 15694.39 17796.40 14485.77 22395.27 34073.86 33899.05 10697.39 216
TinyColmap92.00 19092.76 16489.71 28795.62 24377.02 29990.72 24596.17 20787.70 20795.26 14596.29 15592.54 10696.45 31181.77 27898.77 14595.66 283
canonicalmvs94.59 10994.69 10794.30 14295.60 24487.03 14895.59 7998.24 3191.56 11995.21 15092.04 30694.95 5098.66 17991.45 12297.57 24497.20 224
AdaColmapbinary91.63 19691.36 19992.47 20795.56 24586.36 16792.24 19896.27 19988.88 18289.90 29092.69 29291.65 12598.32 21277.38 31997.64 24192.72 343
UnsupCasMVSNet_bld88.50 26688.03 26789.90 28495.52 24678.88 27587.39 31694.02 27179.32 30293.06 21994.02 25680.72 26894.27 35075.16 33293.08 33796.54 243
3Dnovator92.54 394.80 10394.90 9894.47 13695.47 24787.06 14696.63 3197.28 13891.82 10894.34 18097.41 7490.60 15498.65 18192.47 9498.11 21497.70 192
Fast-Effi-MVS+91.28 20590.86 21092.53 20595.45 24882.53 21989.25 29096.52 19085.00 25089.91 28988.55 34892.94 9498.84 14284.72 25395.44 29796.22 259
GBi-Net93.21 15392.96 15893.97 15195.40 24984.29 19495.99 6296.56 18688.63 18695.10 15298.53 2281.31 26298.98 11986.74 22298.38 18198.65 103
test193.21 15392.96 15893.97 15195.40 24984.29 19495.99 6296.56 18688.63 18695.10 15298.53 2281.31 26298.98 11986.74 22298.38 18198.65 103
FMVSNet292.78 16892.73 16792.95 18695.40 24981.98 22394.18 13395.53 23288.63 18696.05 11097.37 7781.31 26298.81 14987.38 21598.67 15598.06 151
CDS-MVSNet89.55 24588.22 26393.53 17095.37 25286.49 16189.26 28893.59 27679.76 29491.15 26792.31 30177.12 29498.38 20777.51 31797.92 22895.71 280
Khang Truong Giang, Soohwan Song, Sungho Jo: Curvature-guided dynamic scale networks for Multi-view Stereo. ICLR 2022
V4293.43 14493.58 14492.97 18495.34 25381.22 23492.67 17596.49 19187.25 21596.20 10396.37 15087.32 19998.85 14192.39 9798.21 20498.85 81
Patchmatch-RL test88.81 26188.52 25389.69 28895.33 25479.94 25286.22 33792.71 29278.46 31095.80 12194.18 25066.25 33695.33 33889.22 17898.53 16793.78 325
CL-MVSNet_self_test90.04 23989.90 23290.47 26895.24 25577.81 28986.60 33592.62 29585.64 23893.25 21493.92 26083.84 23696.06 32379.93 29798.03 22197.53 205
BH-RMVSNet90.47 21990.44 22190.56 26795.21 25678.65 28089.15 29193.94 27488.21 19592.74 23094.22 24886.38 21797.88 24778.67 30995.39 29995.14 294
Effi-MVS+92.79 16792.74 16592.94 18895.10 25783.30 20994.00 14097.53 11491.36 12389.35 30090.65 32894.01 6998.66 17987.40 21495.30 30196.88 235
USDC89.02 25389.08 24388.84 30195.07 25874.50 32688.97 29396.39 19573.21 33693.27 21196.28 15682.16 25496.39 31377.55 31698.80 14295.62 286
WTY-MVS86.93 29786.50 29588.24 31194.96 25974.64 32287.19 31992.07 30778.29 31188.32 31791.59 31378.06 28694.27 35074.88 33393.15 33595.80 276
PS-MVSNAJ88.86 26088.99 24688.48 30894.88 26074.71 32186.69 33195.60 22380.88 28687.83 32387.37 35590.77 14798.82 14482.52 27194.37 31991.93 349
MG-MVS89.54 24689.80 23388.76 30294.88 26072.47 34389.60 27892.44 29985.82 23489.48 29895.98 17082.85 24597.74 26481.87 27795.27 30296.08 264
xiu_mvs_v2_base89.00 25589.19 24188.46 30994.86 26274.63 32386.97 32295.60 22380.88 28687.83 32388.62 34791.04 14498.81 14982.51 27294.38 31891.93 349
MAR-MVS90.32 22788.87 25094.66 12294.82 26391.85 5994.22 13294.75 25380.91 28587.52 32788.07 35186.63 21597.87 25076.67 32396.21 28094.25 314
Zhenyu Xu, Yiguang Liu, Xuelei Shi, Ying Wang, Yunan Zheng: MARMVS: Matching Ambiguity Reduced Multiple View Stereo for Efficient Large Scale Scene Reconstruction. CVPR 2020
PVSNet_BlendedMVS90.35 22589.96 23091.54 23494.81 26478.80 27890.14 26496.93 16079.43 29888.68 31395.06 21686.27 21998.15 22880.27 29098.04 22097.68 194
PVSNet_Blended88.74 26388.16 26590.46 27094.81 26478.80 27886.64 33296.93 16074.67 32888.68 31389.18 34486.27 21998.15 22880.27 29096.00 28394.44 310
BH-w/o87.21 29087.02 28487.79 31894.77 26677.27 29787.90 30793.21 28481.74 28389.99 28888.39 35083.47 23896.93 29871.29 35292.43 34589.15 359
LS3D96.11 4995.83 6396.95 3794.75 26794.20 1997.34 1297.98 7497.31 1195.32 14196.77 11893.08 9199.20 8891.79 11298.16 20897.44 211
Effi-MVS+-dtu93.90 13692.60 17197.77 494.74 26896.67 394.00 14095.41 23689.94 15491.93 25692.13 30490.12 16298.97 12387.68 20997.48 24697.67 195
mvs-test193.07 15891.80 18896.89 3994.74 26895.83 692.17 19995.41 23689.94 15489.85 29190.59 32990.12 16298.88 13387.68 20995.66 29195.97 268
MVSFormer92.18 18792.23 17692.04 22094.74 26880.06 24897.15 1597.37 12388.98 17888.83 30492.79 28977.02 29599.60 996.41 496.75 27096.46 250
lupinMVS88.34 26987.31 27691.45 23694.74 26880.06 24887.23 31792.27 30171.10 34688.83 30491.15 31777.02 29598.53 19586.67 22596.75 27095.76 278
baseline187.62 28187.31 27688.54 30694.71 27274.27 32993.10 16288.20 33186.20 22792.18 25193.04 28273.21 31195.52 33079.32 30485.82 36595.83 275
MDA-MVSNet-bldmvs91.04 20690.88 20991.55 23394.68 27380.16 24385.49 34092.14 30590.41 14894.93 16195.79 17985.10 22896.93 29885.15 24394.19 32497.57 201
Fast-Effi-MVS+-dtu92.77 16992.16 17794.58 13194.66 27488.25 12492.05 20396.65 18289.62 16290.08 28591.23 31692.56 10598.60 18686.30 23396.27 27996.90 233
iter_conf_final90.23 23089.32 23992.95 18694.65 27581.46 23194.32 13095.40 23985.61 23992.84 22695.37 20654.58 36999.13 9692.16 9898.94 12398.25 138
UnsupCasMVSNet_eth90.33 22690.34 22390.28 27394.64 27680.24 24289.69 27795.88 21585.77 23593.94 19195.69 18581.99 25692.98 36084.21 25791.30 35297.62 198
OpenMVS_ROBcopyleft85.12 1689.52 24789.05 24490.92 25594.58 27781.21 23591.10 23793.41 28077.03 31993.41 20493.99 25883.23 24197.80 25679.93 29794.80 31193.74 327
OpenMVScopyleft89.45 892.27 18592.13 17992.68 19794.53 27884.10 20095.70 7597.03 15382.44 27891.14 26896.42 14288.47 18098.38 20785.95 23697.47 24795.55 287
thres20085.85 30285.18 30387.88 31794.44 27972.52 34289.08 29286.21 34388.57 18991.44 26188.40 34964.22 34598.00 23968.35 36195.88 28893.12 336
DELS-MVS92.05 18992.16 17791.72 22794.44 27980.13 24687.62 30997.25 13987.34 21492.22 25093.18 28189.54 17298.73 16589.67 16798.20 20696.30 256
Christian Sormann, Emanuele Santellani, Mattia Rossi, Andreas Kuhn, Friedrich Fraundorfer: DELS-MVS: Deep Epipolar Line Search for Multi-View Stereo. Winter Conference on Applications of Computer Vision (WACV), 2023
N_pmnet88.90 25987.25 27893.83 16094.40 28193.81 3684.73 34587.09 33879.36 30193.26 21292.43 29979.29 27591.68 36477.50 31897.22 25496.00 267
pmmvs488.95 25787.70 27292.70 19694.30 28285.60 18287.22 31892.16 30474.62 32989.75 29694.19 24977.97 28796.41 31282.71 26896.36 27896.09 263
new-patchmatchnet88.97 25690.79 21383.50 34694.28 28355.83 38085.34 34193.56 27786.18 22895.47 13395.73 18483.10 24296.51 30985.40 24098.06 21898.16 144
API-MVS91.52 19991.61 19191.26 24294.16 28486.26 17294.66 11594.82 25091.17 12992.13 25291.08 31990.03 16897.06 29379.09 30797.35 25190.45 358
MSDG90.82 20990.67 21691.26 24294.16 28483.08 21486.63 33396.19 20590.60 14391.94 25591.89 30789.16 17595.75 32780.96 28894.51 31794.95 299
TR-MVS87.70 27787.17 28089.27 29594.11 28679.26 26788.69 30191.86 31081.94 28290.69 27589.79 33582.82 24697.42 27972.65 34591.98 34991.14 354
test_yl90.11 23489.73 23691.26 24294.09 28779.82 25590.44 25292.65 29390.90 13293.19 21693.30 27773.90 30898.03 23482.23 27496.87 26595.93 270
DCV-MVSNet90.11 23489.73 23691.26 24294.09 28779.82 25590.44 25292.65 29390.90 13293.19 21693.30 27773.90 30898.03 23482.23 27496.87 26595.93 270
D2MVS89.93 24089.60 23890.92 25594.03 28978.40 28188.69 30194.85 24878.96 30693.08 21895.09 21474.57 30696.94 29688.19 19798.96 12197.41 212
sss87.23 28986.82 28688.46 30993.96 29077.94 28586.84 32692.78 29177.59 31487.61 32691.83 30878.75 27891.92 36377.84 31394.20 32395.52 288
PVSNet76.22 2082.89 31982.37 31984.48 34193.96 29064.38 37378.60 36688.61 32671.50 34484.43 34686.36 36174.27 30794.60 34469.87 35993.69 32994.46 309
IterMVS-SCA-FT91.65 19591.55 19291.94 22193.89 29279.22 26987.56 31293.51 27891.53 12095.37 13896.62 13278.65 28098.90 13091.89 10994.95 30797.70 192
UGNet93.08 15692.50 17394.79 11693.87 29387.99 13095.07 10194.26 26690.64 14187.33 32997.67 6086.89 21198.49 19888.10 20098.71 14997.91 172
Wanjuan Su, Qingshan Xu, Wenbing Tao: Uncertainty-guided Multi-view Stereo Network for Depth Estimation. IEEE Transactions on Circuits and Systems for Video Technology, 2022
PAPM81.91 32780.11 33787.31 32293.87 29372.32 34484.02 35393.22 28269.47 35476.13 37389.84 33272.15 31497.23 28753.27 37589.02 35992.37 346
CANet92.38 18191.99 18293.52 17193.82 29583.46 20791.14 23597.00 15589.81 15886.47 33394.04 25487.90 19199.21 8689.50 17098.27 19597.90 173
HY-MVS82.50 1886.81 29885.93 29989.47 28993.63 29677.93 28694.02 13991.58 31375.68 32283.64 35093.64 26877.40 29097.42 27971.70 35092.07 34893.05 339
MVS_Test92.57 17793.29 15290.40 27193.53 29775.85 31592.52 17996.96 15888.73 18392.35 24596.70 12790.77 14798.37 21092.53 9395.49 29596.99 230
EU-MVSNet87.39 28686.71 28989.44 29093.40 29876.11 31294.93 10790.00 32257.17 37395.71 12697.37 7764.77 34497.68 26792.67 9094.37 31994.52 308
MS-PatchMatch88.05 27287.75 27088.95 29893.28 29977.93 28687.88 30892.49 29875.42 32592.57 23593.59 27180.44 26994.24 35281.28 28292.75 34094.69 306
GA-MVS87.70 27786.82 28690.31 27293.27 30077.22 29884.72 34792.79 29085.11 24889.82 29290.07 33066.80 33197.76 26284.56 25494.27 32295.96 269
pmmvs587.87 27487.14 28190.07 28093.26 30176.97 30388.89 29592.18 30273.71 33488.36 31693.89 26276.86 30096.73 30480.32 28996.81 26796.51 245
MVS_030490.96 20890.15 22893.37 17393.17 30287.06 14693.62 15292.43 30089.60 16382.25 35895.50 19682.56 25197.83 25484.41 25697.83 23295.22 291
IterMVS90.18 23190.16 22590.21 27793.15 30375.98 31487.56 31292.97 28686.43 22594.09 18296.40 14478.32 28497.43 27887.87 20694.69 31497.23 223
Fangjinhua Wang, Silvano Galliani, Christoph Vogel, Marc Pollefeys: IterMVS: Iterative Probability Estimation for Efficient Multi-View Stereo.
MVS-HIRNet78.83 34180.60 33373.51 35893.07 30447.37 38187.10 32178.00 37668.94 35577.53 37197.26 8771.45 31794.62 34363.28 37088.74 36078.55 373
diffmvs91.74 19391.93 18491.15 24893.06 30578.17 28488.77 29997.51 11786.28 22692.42 24193.96 25988.04 18797.46 27690.69 13696.67 27297.82 183
ET-MVSNet_ETH3D86.15 30084.27 30991.79 22493.04 30681.28 23387.17 32086.14 34479.57 29783.65 34988.66 34657.10 36498.18 22587.74 20895.40 29895.90 273
FMVSNet390.78 21190.32 22492.16 21693.03 30779.92 25392.54 17894.95 24686.17 22995.10 15296.01 16969.97 32298.75 16186.74 22298.38 18197.82 183
thisisatest051584.72 30982.99 31789.90 28492.96 30875.33 32084.36 35083.42 36477.37 31688.27 31886.65 35753.94 37198.72 16682.56 27097.40 24995.67 282
PAPR87.65 28086.77 28890.27 27492.85 30977.38 29588.56 30496.23 20276.82 32184.98 34189.75 33786.08 22197.16 28972.33 34693.35 33196.26 258
Regformer-194.55 11194.33 12295.19 10292.83 31088.54 12091.87 21695.84 21893.99 5395.95 11395.04 21792.00 11698.79 15293.14 7698.31 19198.23 139
Regformer-294.86 9894.55 11495.77 7892.83 31089.98 8591.87 21696.40 19494.38 4796.19 10595.04 21792.47 10999.04 11293.49 5298.31 19198.28 135
Regformer-394.28 12294.23 12894.46 13792.78 31286.28 17092.39 18894.70 25593.69 6595.97 11195.56 19391.34 13198.48 20293.45 5898.14 21098.62 111
Regformer-494.90 9594.67 11095.59 8592.78 31289.02 10692.39 18895.91 21494.50 4396.41 8695.56 19392.10 11499.01 11794.23 3098.14 21098.74 94
iter_conf0588.94 25888.09 26691.50 23592.74 31476.97 30392.80 17095.92 21382.82 27393.65 19895.37 20649.41 37699.13 9690.82 13299.28 7998.40 128
EI-MVSNet-Vis-set94.36 11894.28 12494.61 12492.55 31585.98 17692.44 18494.69 25693.70 6296.12 10895.81 17891.24 13698.86 13993.76 4598.22 20398.98 63
EI-MVSNet-UG-set94.35 11994.27 12694.59 12992.46 31685.87 17892.42 18694.69 25693.67 6696.13 10795.84 17791.20 13998.86 13993.78 4298.23 20199.03 54
FMVSNet587.82 27686.56 29191.62 23192.31 31779.81 25793.49 15494.81 25283.26 26491.36 26296.93 10852.77 37497.49 27576.07 32798.03 22197.55 204
c3_l91.32 20491.42 19791.00 25392.29 31876.79 30687.52 31596.42 19385.76 23694.72 17193.89 26282.73 24798.16 22790.93 13198.55 16398.04 154
MDA-MVSNet_test_wron88.16 27188.23 26287.93 31592.22 31973.71 33280.71 36488.84 32482.52 27694.88 16495.14 21182.70 24893.61 35583.28 26393.80 32796.46 250
YYNet188.17 27088.24 26187.93 31592.21 32073.62 33380.75 36388.77 32582.51 27794.99 15995.11 21382.70 24893.70 35483.33 26293.83 32696.48 249
CANet_DTU89.85 24289.17 24291.87 22292.20 32180.02 25190.79 24395.87 21686.02 23182.53 35791.77 30980.01 27198.57 19185.66 23897.70 23897.01 229
mvs_anonymous90.37 22491.30 20187.58 31992.17 32268.00 36089.84 27494.73 25483.82 26293.22 21597.40 7587.54 19597.40 28187.94 20595.05 30697.34 219
EI-MVSNet92.99 16093.26 15692.19 21292.12 32379.21 27092.32 19394.67 25891.77 11195.24 14895.85 17487.14 20498.49 19891.99 10498.26 19698.86 78
CVMVSNet85.16 30684.72 30486.48 32692.12 32370.19 35292.32 19388.17 33256.15 37490.64 27695.85 17467.97 32696.69 30588.78 18790.52 35692.56 344
eth_miper_zixun_eth90.72 21290.61 21791.05 24992.04 32576.84 30586.91 32496.67 18185.21 24494.41 17693.92 26079.53 27498.26 21889.76 16597.02 25998.06 151
SCA87.43 28587.21 27988.10 31392.01 32671.98 34589.43 28288.11 33382.26 28088.71 31192.83 28778.65 28097.59 26979.61 30193.30 33294.75 303
cl____90.65 21590.56 21990.91 25791.85 32776.98 30286.75 32995.36 24085.53 24094.06 18594.89 22477.36 29397.98 24290.27 14998.98 11597.76 188
DIV-MVS_self_test90.65 21590.56 21990.91 25791.85 32776.99 30186.75 32995.36 24085.52 24294.06 18594.89 22477.37 29297.99 24190.28 14898.97 11997.76 188
our_test_387.55 28287.59 27387.44 32191.76 32970.48 35183.83 35490.55 32079.79 29392.06 25492.17 30378.63 28295.63 32884.77 25194.73 31296.22 259
ppachtmachnet_test88.61 26588.64 25288.50 30791.76 32970.99 35084.59 34892.98 28579.30 30392.38 24393.53 27379.57 27397.45 27786.50 23097.17 25597.07 225
131486.46 29986.33 29686.87 32591.65 33174.54 32491.94 21094.10 26874.28 33084.78 34387.33 35683.03 24395.00 34278.72 30891.16 35491.06 355
miper_ehance_all_eth90.48 21890.42 22290.69 26391.62 33276.57 30886.83 32796.18 20683.38 26394.06 18592.66 29482.20 25398.04 23389.79 16497.02 25997.45 209
cascas87.02 29686.28 29789.25 29691.56 33376.45 30984.33 35196.78 17471.01 34786.89 33285.91 36381.35 26196.94 29683.09 26595.60 29294.35 312
baseline283.38 31581.54 32488.90 29991.38 33472.84 34088.78 29881.22 36978.97 30579.82 36887.56 35261.73 35797.80 25674.30 33690.05 35896.05 266
miper_lstm_enhance89.90 24189.80 23390.19 27991.37 33577.50 29383.82 35595.00 24484.84 25393.05 22094.96 22176.53 30295.20 34189.96 16198.67 15597.86 178
IB-MVS77.21 1983.11 31681.05 32789.29 29491.15 33675.85 31585.66 33986.00 34679.70 29582.02 36286.61 35848.26 37798.39 20577.84 31392.22 34693.63 329
Christian Sormann, Mattia Rossi, Andreas Kuhn and Friedrich Fraundorfer: IB-MVS: An Iterative Algorithm for Deep Multi-View Stereo based on Binary Decisions. BMVC 2021
MVS84.98 30884.30 30887.01 32391.03 33777.69 29291.94 21094.16 26759.36 37284.23 34787.50 35485.66 22596.80 30271.79 34893.05 33886.54 365
CR-MVSNet87.89 27387.12 28290.22 27691.01 33878.93 27292.52 17992.81 28873.08 33789.10 30196.93 10867.11 32897.64 26888.80 18692.70 34194.08 315
RPMNet90.31 22890.14 22990.81 26191.01 33878.93 27292.52 17998.12 4791.91 9989.10 30196.89 11168.84 32399.41 4290.17 15492.70 34194.08 315
new_pmnet81.22 33081.01 32981.86 35090.92 34070.15 35384.03 35280.25 37370.83 34885.97 33689.78 33667.93 32784.65 37467.44 36391.90 35090.78 356
PatchT87.51 28388.17 26485.55 33390.64 34166.91 36292.02 20686.09 34592.20 9189.05 30397.16 9464.15 34696.37 31589.21 17992.98 33993.37 334
Patchmatch-test86.10 30186.01 29886.38 33090.63 34274.22 33089.57 27986.69 34085.73 23789.81 29392.83 28765.24 34291.04 36677.82 31595.78 28993.88 324
PVSNet_070.34 2174.58 34272.96 34579.47 35490.63 34266.24 36673.26 36783.40 36563.67 36978.02 37078.35 37372.53 31289.59 37056.68 37360.05 37782.57 371
PMMVS281.31 32983.44 31374.92 35790.52 34446.49 38269.19 37185.23 35784.30 25887.95 32294.71 23476.95 29784.36 37564.07 36898.09 21693.89 323
tpm84.38 31184.08 31085.30 33690.47 34563.43 37589.34 28585.63 35077.24 31887.62 32595.03 21961.00 36097.30 28579.26 30591.09 35595.16 292
wuyk23d87.83 27590.79 21378.96 35590.46 34688.63 11592.72 17290.67 31991.65 11798.68 1197.64 6296.06 1677.53 37659.84 37199.41 5870.73 374
Patchmtry90.11 23489.92 23190.66 26490.35 34777.00 30092.96 16592.81 28890.25 15094.74 16996.93 10867.11 32897.52 27285.17 24198.98 11597.46 208
CHOSEN 280x42080.04 33877.97 34386.23 33190.13 34874.53 32572.87 36989.59 32366.38 36276.29 37285.32 36556.96 36595.36 33669.49 36094.72 31388.79 362
MVSTER89.32 24988.75 25191.03 25090.10 34976.62 30790.85 24194.67 25882.27 27995.24 14895.79 17961.09 35998.49 19890.49 13898.26 19697.97 166
tpm281.46 32880.35 33584.80 33889.90 35065.14 36990.44 25285.36 35365.82 36582.05 36192.44 29857.94 36396.69 30570.71 35688.49 36192.56 344
cl2289.02 25388.50 25490.59 26689.76 35176.45 30986.62 33494.03 26982.98 27192.65 23292.49 29572.05 31597.53 27188.93 18297.02 25997.78 186
test0.0.03 182.48 32181.47 32585.48 33489.70 35273.57 33484.73 34581.64 36883.07 26988.13 32086.61 35862.86 35389.10 37266.24 36690.29 35793.77 326
test-LLR83.58 31483.17 31584.79 33989.68 35366.86 36383.08 35684.52 35983.07 26982.85 35584.78 36662.86 35393.49 35682.85 26694.86 30894.03 318
test-mter81.21 33180.01 33884.79 33989.68 35366.86 36383.08 35684.52 35973.85 33382.85 35584.78 36643.66 38193.49 35682.85 26694.86 30894.03 318
DSMNet-mixed82.21 32381.56 32284.16 34389.57 35570.00 35690.65 24777.66 37754.99 37583.30 35397.57 6477.89 28890.50 36866.86 36595.54 29491.97 348
PatchmatchNetpermissive85.22 30584.64 30586.98 32489.51 35669.83 35790.52 25087.34 33778.87 30787.22 33092.74 29166.91 33096.53 30781.77 27886.88 36494.58 307
Fangjinhua Wang, Silvano Galliani, Christoph Vogel, Pablo Speciale, Marc Pollefeys: PatchmatchNet: Learned Multi-View Patchmatch Stereo.
MDTV_nov1_ep1383.88 31289.42 35761.52 37688.74 30087.41 33673.99 33284.96 34294.01 25765.25 34195.53 32978.02 31193.16 334
CostFormer83.09 31782.21 32085.73 33289.27 35867.01 36190.35 25686.47 34270.42 35083.52 35293.23 28061.18 35896.85 30077.21 32088.26 36293.34 335
ADS-MVSNet284.01 31382.20 32189.41 29189.04 35976.37 31187.57 31090.98 31672.71 34084.46 34492.45 29668.08 32496.48 31070.58 35783.97 36795.38 289
ADS-MVSNet82.25 32281.55 32384.34 34289.04 35965.30 36787.57 31085.13 35872.71 34084.46 34492.45 29668.08 32492.33 36270.58 35783.97 36795.38 289
tpm cat180.61 33679.46 33984.07 34488.78 36165.06 37189.26 28888.23 33062.27 37081.90 36389.66 33962.70 35595.29 33971.72 34980.60 37391.86 351
CMPMVSbinary68.83 2287.28 28885.67 30192.09 21888.77 36285.42 18490.31 25894.38 26370.02 35288.00 32193.30 27773.78 31094.03 35375.96 32996.54 27496.83 236
M. Jancosek, T. Pajdla: Multi-View Reconstruction Preserving Weakly-Supported Surfaces. CVPR 2011
miper_enhance_ethall88.42 26787.87 26990.07 28088.67 36375.52 31885.10 34295.59 22775.68 32292.49 23689.45 34178.96 27697.88 24787.86 20797.02 25996.81 237
tpmrst82.85 32082.93 31882.64 34887.65 36458.99 37890.14 26487.90 33475.54 32483.93 34891.63 31266.79 33395.36 33681.21 28481.54 37293.57 333
JIA-IIPM85.08 30783.04 31691.19 24787.56 36586.14 17489.40 28484.44 36188.98 17882.20 35997.95 4856.82 36696.15 31976.55 32583.45 36991.30 353
TESTMET0.1,179.09 34078.04 34282.25 34987.52 36664.03 37483.08 35680.62 37170.28 35180.16 36783.22 36944.13 38090.56 36779.95 29593.36 33092.15 347
gg-mvs-nofinetune82.10 32681.02 32885.34 33587.46 36771.04 34894.74 11267.56 37996.44 2279.43 36998.99 645.24 37896.15 31967.18 36492.17 34788.85 361
pmmvs380.83 33478.96 34086.45 32787.23 36877.48 29484.87 34482.31 36663.83 36885.03 34089.50 34049.66 37593.10 35873.12 34395.10 30588.78 363
tpmvs84.22 31283.97 31184.94 33787.09 36965.18 36891.21 23488.35 32882.87 27285.21 33890.96 32165.24 34296.75 30379.60 30385.25 36692.90 341
gm-plane-assit87.08 37059.33 37771.22 34583.58 36897.20 28873.95 337
MVEpermissive59.87 2373.86 34372.65 34677.47 35687.00 37174.35 32761.37 37360.93 38167.27 36069.69 37686.49 36081.24 26572.33 37756.45 37483.45 36985.74 366
Simon Fuhrmann, Fabian Langguth, Michael Goesele: MVE - A Multi-View Reconstruction Environment. EUROGRAPHICS Workshops on Graphics and Cultural Heritage (2014)
EPNet_dtu85.63 30384.37 30789.40 29286.30 37274.33 32891.64 22588.26 32984.84 25372.96 37589.85 33171.27 31897.69 26676.60 32497.62 24296.18 261
Wanjuan Su, Wenbing Tao: Efficient Edge-Preserving Multi-View Stereo Network for Depth Estimation. AAAI 2023
dp79.28 33978.62 34181.24 35185.97 37356.45 37986.91 32485.26 35672.97 33881.45 36589.17 34556.01 36895.45 33473.19 34276.68 37491.82 352
EPMVS81.17 33280.37 33483.58 34585.58 37465.08 37090.31 25871.34 37877.31 31785.80 33791.30 31559.38 36192.70 36179.99 29482.34 37192.96 340
E-PMN80.72 33580.86 33080.29 35385.11 37568.77 35972.96 36881.97 36787.76 20583.25 35483.01 37062.22 35689.17 37177.15 32194.31 32182.93 369
GG-mvs-BLEND83.24 34785.06 37671.03 34994.99 10665.55 38074.09 37475.51 37444.57 37994.46 34659.57 37287.54 36384.24 367
EMVS80.35 33780.28 33680.54 35284.73 37769.07 35872.54 37080.73 37087.80 20481.66 36481.73 37162.89 35289.84 36975.79 33094.65 31582.71 370
EPNet89.80 24488.25 26094.45 13883.91 37886.18 17393.87 14487.07 33991.16 13080.64 36694.72 23378.83 27798.89 13285.17 24198.89 12598.28 135
Wanjuan Su, Wenbing Tao: Efficient Edge-Preserving Multi-View Stereo Network for Depth Estimation. AAAI 2023
PMMVS83.00 31881.11 32688.66 30583.81 37986.44 16482.24 36085.65 34961.75 37182.07 36085.64 36479.75 27291.59 36575.99 32893.09 33687.94 364
KD-MVS_2432*160082.17 32480.75 33186.42 32882.04 38070.09 35481.75 36190.80 31782.56 27490.37 28089.30 34242.90 38296.11 32174.47 33492.55 34393.06 337
miper_refine_blended82.17 32480.75 33186.42 32882.04 38070.09 35481.75 36190.80 31782.56 27490.37 28089.30 34242.90 38296.11 32174.47 33492.55 34393.06 337
DeepMVS_CXcopyleft53.83 36070.38 38264.56 37248.52 38433.01 37665.50 37774.21 37556.19 36746.64 37938.45 37870.07 37550.30 375
test_method50.44 34448.94 34754.93 35939.68 38312.38 38528.59 37490.09 3216.82 37741.10 37978.41 37254.41 37070.69 37850.12 37651.26 37881.72 372
tmp_tt37.97 34544.33 34818.88 36111.80 38421.54 38463.51 37245.66 3854.23 37851.34 37850.48 37659.08 36222.11 38044.50 37768.35 37613.00 376
test1239.49 34712.01 3501.91 3622.87 3851.30 38682.38 3591.34 3871.36 3802.84 3816.56 3792.45 3850.97 3812.73 3795.56 3793.47 377
testmvs9.02 34811.42 3511.81 3632.77 3861.13 38779.44 3651.90 3861.18 3812.65 3826.80 3781.95 3860.87 3822.62 3803.45 3803.44 378
test_blank0.00 3510.00 3540.00 3640.00 3870.00 3880.00 3750.00 3880.00 3820.00 3830.00 3820.00 3870.00 3830.00 3810.00 3810.00 379
eth-test20.00 387
eth-test0.00 387
uanet_test0.00 3510.00 3540.00 3640.00 3870.00 3880.00 3750.00 3880.00 3820.00 3830.00 3820.00 3870.00 3830.00 3810.00 3810.00 379
DCPMVS0.00 3510.00 3540.00 3640.00 3870.00 3880.00 3750.00 3880.00 3820.00 3830.00 3820.00 3870.00 3830.00 3810.00 3810.00 379
cdsmvs_eth3d_5k23.35 34631.13 3490.00 3640.00 3870.00 3880.00 37595.58 2290.00 3820.00 38391.15 31793.43 790.00 3830.00 3810.00 3810.00 379
pcd_1.5k_mvsjas7.56 34910.09 3520.00 3640.00 3870.00 3880.00 3750.00 3880.00 3820.00 3830.00 38290.77 1470.00 3830.00 3810.00 3810.00 379
sosnet-low-res0.00 3510.00 3540.00 3640.00 3870.00 3880.00 3750.00 3880.00 3820.00 3830.00 3820.00 3870.00 3830.00 3810.00 3810.00 379
sosnet0.00 3510.00 3540.00 3640.00 3870.00 3880.00 3750.00 3880.00 3820.00 3830.00 3820.00 3870.00 3830.00 3810.00 3810.00 379
uncertanet0.00 3510.00 3540.00 3640.00 3870.00 3880.00 3750.00 3880.00 3820.00 3830.00 3820.00 3870.00 3830.00 3810.00 3810.00 379
Regformer0.00 3510.00 3540.00 3640.00 3870.00 3880.00 3750.00 3880.00 3820.00 3830.00 3820.00 3870.00 3830.00 3810.00 3810.00 379
ab-mvs-re7.56 34910.08 3530.00 3640.00 3870.00 3880.00 3750.00 3880.00 3820.00 38390.69 3260.00 3870.00 3830.00 3810.00 3810.00 379
uanet0.00 3510.00 3540.00 3640.00 3870.00 3880.00 3750.00 3880.00 3820.00 3830.00 3820.00 3870.00 3830.00 3810.00 3810.00 379
PC_three_145275.31 32795.87 11995.75 18392.93 9596.34 31887.18 21798.68 15398.04 154
test_241102_TWO98.10 5191.95 9697.54 4197.25 8895.37 2899.35 6593.29 6899.25 8398.49 121
test_0728_THIRD93.26 7097.40 5197.35 8394.69 5599.34 6893.88 3899.42 5398.89 75
GSMVS94.75 303
sam_mvs166.64 33494.75 303
sam_mvs66.41 335
MTGPAbinary97.62 104
test_post190.21 2605.85 38165.36 34096.00 32479.61 301
test_post6.07 38065.74 33995.84 326
patchmatchnet-post91.71 31066.22 33797.59 269
MTMP94.82 10954.62 383
test9_res88.16 19998.40 17697.83 181
agg_prior287.06 22098.36 18797.98 163
test_prior489.91 8790.74 244
test_prior290.21 26089.33 17090.77 27294.81 22790.41 15788.21 19598.55 163
旧先验290.00 26968.65 35692.71 23196.52 30885.15 243
新几何290.02 268
无先验89.94 27095.75 22070.81 34998.59 18881.17 28594.81 300
原ACMM289.34 285
testdata298.03 23480.24 292
segment_acmp92.14 113
testdata188.96 29488.44 191
plane_prior597.81 9298.95 12689.26 17698.51 17098.60 114
plane_prior495.59 188
plane_prior388.43 12390.35 14993.31 207
plane_prior294.56 12191.74 113
plane_prior88.12 12693.01 16388.98 17898.06 218
n20.00 388
nn0.00 388
door-mid92.13 306
test1196.65 182
door91.26 314
HQP5-MVS84.89 189
BP-MVS86.55 228
HQP4-MVS88.81 30698.61 18498.15 145
HQP3-MVS97.31 13397.73 234
HQP2-MVS84.76 230
MDTV_nov1_ep13_2view42.48 38388.45 30567.22 36183.56 35166.80 33172.86 34494.06 317
ACMMP++_ref98.82 138
ACMMP++99.25 83
Test By Simon90.61 153