This table lists the benchmark results for the high-res multi-view scenario. The following metrics are evaluated:

(*) For exact definitions, detailing how potentially incomplete ground truth is taken into account, see our paper.

The datasets are grouped into different categories, and result averages are computed for a category and method if results of the method are available for all datasets within the category. Note that the category "all" includes both the high-res multi-view and the low-res many-view scenarios.

Methods with suffix _ROB may participate in the Robust Vision Challenge.

Click a dataset result cell to show a visualization of the reconstruction. For training datasets, ground truth and accuracy / completeness visualizations are also available. The visualizations may not work with mobile browsers.




Method Infoallhigh-res
multi-view
indooroutdoorbotani.boulde.bridgedoorexhibi.lectur.living.loungeobserv.old co.statueterrac.
sort bysort bysort bysort bysorted bysort bysort bysort bysort bysort bysort bysort bysort bysort bysort bysort by
mamv490.28 188.75 194.85 193.34 196.17 182.69 5791.63 186.34 197.97 194.77 366.57 12095.38 187.74 197.72 193.00 7
LCM-MVSNet86.90 288.67 281.57 2591.50 263.30 12384.80 3587.77 1086.18 296.26 296.06 190.32 184.49 7268.08 9197.05 296.93 1
MTAPA83.19 2283.87 2281.13 3491.16 378.16 1284.87 3380.63 13072.08 4184.93 5990.79 4874.65 4984.42 7580.98 594.75 3280.82 208
mPP-MVS84.01 1484.39 1582.88 790.65 481.38 487.08 1382.79 8772.41 3985.11 5890.85 4776.65 3184.89 6679.30 2094.63 3682.35 178
MP-MVScopyleft83.19 2283.54 2782.14 2090.54 579.00 986.42 2583.59 7771.31 4481.26 10390.96 4274.57 5084.69 7078.41 2594.78 3182.74 168
Rongxuan Tan, Qing Wang, et al.: MP-MVS: Multi-Scale Windows PatchMatch and Planar Prior Multi-View Stereo.
PMVScopyleft70.70 681.70 3683.15 3577.36 7990.35 682.82 382.15 5979.22 15674.08 2487.16 3291.97 2184.80 276.97 20064.98 12293.61 6372.28 313
Y. Furukawa, J. Ponce: Accurate, dense, and robust multiview stereopsis. PAMI (2010)
PS-CasMVS80.41 5182.86 4073.07 13689.93 739.21 32877.15 11581.28 11479.74 690.87 592.73 1275.03 4684.93 6563.83 13595.19 1995.07 3
DTE-MVSNet80.35 5282.89 3972.74 15089.84 837.34 34877.16 11481.81 10480.45 490.92 492.95 874.57 5086.12 3163.65 13694.68 3594.76 6
PEN-MVS80.46 5082.91 3873.11 13589.83 939.02 33177.06 11782.61 9280.04 590.60 792.85 1074.93 4785.21 6063.15 14395.15 2195.09 2
region2R83.54 1883.86 2382.58 1589.82 1077.53 1887.06 1684.23 6770.19 5383.86 7390.72 5275.20 4386.27 2379.41 1894.25 5383.95 128
ACMMPR83.62 1683.93 2182.69 1289.78 1177.51 2287.01 1784.19 6870.23 5184.49 6690.67 5375.15 4486.37 2079.58 1494.26 5284.18 123
MSP-MVS80.49 4979.67 6282.96 689.70 1277.46 2387.16 1285.10 4364.94 9381.05 10688.38 11757.10 21787.10 979.75 1183.87 23384.31 120
Zhenlong Yuan, Cong Liu, Fei Shen, Zhaoxin Li, Jingguo luo, Tianlu Mao and Zhaoqi Wang: MSP-MVS: Multi-granularity Segmentation Prior Guided Multi-View Stereo. AAAI2025
CP-MVSNet79.48 5881.65 4972.98 13989.66 1339.06 33076.76 11880.46 13478.91 990.32 891.70 2968.49 9684.89 6663.40 14095.12 2295.01 4
PGM-MVS83.07 2583.25 3482.54 1689.57 1477.21 2482.04 6185.40 3667.96 6484.91 6290.88 4575.59 3986.57 1678.16 2694.71 3483.82 130
WR-MVS_H80.22 5482.17 4574.39 11389.46 1542.69 30178.24 10182.24 9678.21 1389.57 1092.10 1968.05 10185.59 5066.04 11595.62 1094.88 5
XVS83.51 1983.73 2482.85 989.43 1677.61 1686.80 2084.66 5672.71 3282.87 8390.39 6573.86 5586.31 2178.84 2394.03 5684.64 103
X-MVStestdata76.81 8174.79 10382.85 989.43 1677.61 1686.80 2084.66 5672.71 3282.87 839.95 41873.86 5586.31 2178.84 2394.03 5684.64 103
CP-MVS84.12 1284.55 1482.80 1189.42 1879.74 688.19 584.43 6171.96 4384.70 6490.56 5577.12 2886.18 2879.24 2195.36 1382.49 176
ACMMP_NAP82.33 3183.28 3279.46 5189.28 1969.09 7883.62 4684.98 4564.77 9483.97 7291.02 4175.53 4285.93 3882.00 394.36 4883.35 149
UniMVSNet_ETH3D76.74 8279.02 6569.92 19389.27 2043.81 28874.47 15371.70 23572.33 4085.50 5393.65 477.98 2376.88 20354.60 21991.64 8889.08 31
HFP-MVS83.39 2184.03 2081.48 2789.25 2175.69 2887.01 1784.27 6470.23 5184.47 6790.43 6076.79 2985.94 3679.58 1494.23 5482.82 165
ACMMPcopyleft84.22 1084.84 1282.35 1889.23 2276.66 2687.65 785.89 2671.03 4785.85 4590.58 5478.77 1885.78 4479.37 1995.17 2084.62 105
Qingshan Xu, Weihang Kong, Wenbing Tao, Marc Pollefeys: Multi-Scale Geometric Consistency Guided and Planar Prior Assisted Multi-View Stereo. IEEE Transactions on Pattern Analysis and Machine Intelligence
CPTT-MVS81.51 3881.76 4780.76 3889.20 2378.75 1086.48 2482.03 10068.80 5880.92 10888.52 11372.00 6882.39 10374.80 4793.04 7081.14 198
FOURS189.19 2477.84 1491.64 189.11 384.05 391.57 3
ZNCC-MVS83.12 2483.68 2581.45 2889.14 2573.28 4686.32 2685.97 2567.39 6584.02 7190.39 6574.73 4886.46 1780.73 794.43 4384.60 108
HPM-MVS++copyleft79.89 5579.80 6180.18 4389.02 2678.44 1183.49 4980.18 14064.71 9578.11 14088.39 11665.46 13183.14 9277.64 3391.20 9878.94 241
GST-MVS82.79 2883.27 3381.34 3188.99 2773.29 4585.94 2885.13 4168.58 6284.14 7090.21 7573.37 5986.41 1879.09 2293.98 5984.30 122
TSAR-MVS + MP.79.05 6178.81 6679.74 4688.94 2867.52 8786.61 2281.38 11251.71 23177.15 15191.42 3665.49 13087.20 779.44 1787.17 18884.51 114
Zhenlong Yuan, Jiakai Cao, Zhaoqi Wang, Zhaoxin Li: TSAR-MVS: Textureless-aware Segmentation and Correlative Refinement Guided Multi-View Stereo. Pattern Recognition
UA-Net81.56 3782.28 4479.40 5288.91 2969.16 7684.67 3680.01 14375.34 1979.80 11994.91 269.79 8880.25 14472.63 6694.46 3988.78 41
SMA-MVScopyleft82.12 3282.68 4280.43 4088.90 3069.52 6985.12 3284.76 5063.53 10684.23 6991.47 3472.02 6787.16 879.74 1394.36 4884.61 106
Yufeng Yin; Xiaoyan Liu; Zichao Zhang: SMA-MVS: Segmentation-Guided Multi-Scale Anchor Deformation Patch Multi-View Stereo. IEEE Transactions on Circuits and Systems for Video Technology
MP-MVS-pluss82.54 3083.46 2979.76 4588.88 3168.44 8081.57 6486.33 1963.17 11285.38 5591.26 3776.33 3384.67 7183.30 294.96 2686.17 68
MP-MVS-pluss: MP-MVS-pluss. MP-MVS-pluss
TDRefinement86.32 386.33 386.29 288.64 3281.19 588.84 490.72 278.27 1287.95 1892.53 1479.37 1584.79 6974.51 5196.15 392.88 8
HPM-MVS_fast84.59 885.10 1083.06 588.60 3375.83 2786.27 2786.89 1673.69 2786.17 4091.70 2978.23 2185.20 6179.45 1694.91 2888.15 46
SR-MVS84.51 985.27 882.25 1988.52 3477.71 1586.81 1985.25 4077.42 1786.15 4190.24 7381.69 585.94 3677.77 3093.58 6483.09 156
新几何169.99 19188.37 3571.34 5562.08 31343.85 30574.99 19386.11 17152.85 24170.57 27350.99 24783.23 24268.05 351
HPM-MVScopyleft84.12 1284.63 1382.60 1488.21 3674.40 3585.24 3187.21 1470.69 5085.14 5790.42 6178.99 1786.62 1580.83 694.93 2786.79 62
Chunlin Ren, Qingshan Xu, Shikun Zhang, Jiaqi Yang: Hierarchical Prior Mining for Non-local Multi-View Stereo. ICCV 2023
ACMM69.25 982.11 3383.31 3178.49 6688.17 3773.96 3883.11 5384.52 6066.40 7387.45 2689.16 9681.02 880.52 14074.27 5495.73 880.98 204
Qingshan Xu and Wenbing Tao: Multi-Scale Geometric Consistency Guided Multi-View Stereo. CVPR 2019
test22287.30 3869.15 7767.85 24359.59 32341.06 32973.05 22685.72 17948.03 27380.65 27066.92 356
XVG-ACMP-BASELINE80.54 4881.06 5278.98 5987.01 3972.91 4780.23 8085.56 3166.56 7285.64 4889.57 8569.12 9280.55 13972.51 6893.37 6683.48 142
save fliter87.00 4067.23 9079.24 8977.94 18256.65 169
LPG-MVS_test83.47 2084.33 1680.90 3687.00 4070.41 6482.04 6186.35 1769.77 5587.75 1991.13 3881.83 386.20 2677.13 3995.96 686.08 69
LGP-MVS_train80.90 3687.00 4070.41 6486.35 1769.77 5587.75 1991.13 3881.83 386.20 2677.13 3995.96 686.08 69
EGC-MVSNET64.77 24161.17 27575.60 10086.90 4374.47 3484.04 3968.62 2720.60 4201.13 42291.61 3265.32 13374.15 23664.01 12988.28 16278.17 251
OPM-MVS80.99 4581.63 5079.07 5686.86 4469.39 7279.41 8884.00 7365.64 7785.54 5289.28 8976.32 3483.47 8774.03 5693.57 6584.35 119
Ray L. Khuboni, Hongjun Xu: Octagram Propagation Matching for Multi-Scale View Stereopsis (OPM-MVS).
DeepC-MVS72.44 481.00 4480.83 5481.50 2686.70 4570.03 6882.06 6087.00 1559.89 13680.91 10990.53 5672.19 6488.56 273.67 5994.52 3885.92 74
Andreas Kuhn, Christian Sormann, Mattia Rossi, Oliver Erdler, Friedrich Fraundorfer: DeepC-MVS: Deep Confidence Prediction for Multi-View Stereo Reconstruction. 3DV 2020
ACMP69.50 882.64 2983.38 3080.40 4186.50 4669.44 7182.30 5886.08 2466.80 6986.70 3489.99 7881.64 685.95 3574.35 5396.11 485.81 75
Qingshan Xu and Wenbing Tao: Planar Prior Assisted PatchMatch Multi-View Stereo. AAAI 2020
XVG-OURS-SEG-HR79.62 5679.99 5978.49 6686.46 4774.79 3377.15 11585.39 3766.73 7080.39 11588.85 10574.43 5378.33 18174.73 4985.79 20482.35 178
VDDNet71.60 15573.13 13467.02 23986.29 4841.11 31169.97 21166.50 28168.72 6074.74 19691.70 2959.90 18575.81 21148.58 26991.72 8684.15 125
test_0728_SECOND76.57 8786.20 4960.57 15283.77 4485.49 3285.90 4075.86 4294.39 4483.25 151
SR-MVS-dyc-post84.75 785.26 983.21 486.19 5079.18 787.23 986.27 2077.51 1487.65 2290.73 5079.20 1685.58 5178.11 2794.46 3984.89 93
RE-MVS-def85.50 786.19 5079.18 787.23 986.27 2077.51 1487.65 2290.73 5081.38 778.11 2794.46 3984.89 93
DVP-MVScopyleft81.15 4183.12 3675.24 10586.16 5260.78 14983.77 4480.58 13272.48 3785.83 4690.41 6278.57 1985.69 4775.86 4294.39 4479.24 237
Zhenlong Yuan, Jinguo Luo, Fei Shen, Zhaoxin Li, Cong Liu, Tianlu Mao, Zhaoqi Wang: DVP-MVS: Synergize Depth-Edge and Visibility Prior for Multi-View Stereo. AAAI2025
test072686.16 5260.78 14983.81 4385.10 4372.48 3785.27 5689.96 7978.57 19
SED-MVS81.78 3583.48 2876.67 8586.12 5461.06 14383.62 4684.72 5272.61 3587.38 2889.70 8377.48 2685.89 4275.29 4594.39 4483.08 157
IU-MVS86.12 5460.90 14780.38 13645.49 29381.31 10275.64 4494.39 4484.65 102
test_241102_ONE86.12 5461.06 14384.72 5272.64 3487.38 2889.47 8677.48 2685.74 46
reproduce-ours84.97 485.93 482.10 2186.11 5777.53 1887.08 1385.81 2878.70 1088.94 1391.88 2479.74 1286.05 3279.90 995.21 1682.72 169
our_new_method84.97 485.93 482.10 2186.11 5777.53 1887.08 1385.81 2878.70 1088.94 1391.88 2479.74 1286.05 3279.90 995.21 1682.72 169
XVG-OURS79.51 5779.82 6078.58 6586.11 5774.96 3276.33 12784.95 4766.89 6782.75 8688.99 10266.82 11378.37 17974.80 4790.76 11882.40 177
test_part285.90 6066.44 9584.61 65
原ACMM173.90 12085.90 6065.15 11081.67 10650.97 24374.25 20786.16 16861.60 16483.54 8556.75 19491.08 10573.00 303
testdata64.13 26085.87 6263.34 12261.80 31647.83 27476.42 17786.60 15548.83 26762.31 33454.46 22181.26 26366.74 360
CNVR-MVS78.49 6878.59 7078.16 7085.86 6367.40 8878.12 10481.50 10863.92 10077.51 14886.56 15668.43 9884.82 6873.83 5791.61 9082.26 182
test_one_060185.84 6461.45 13785.63 3075.27 2185.62 5190.38 6776.72 30
NCCC78.25 7178.04 7678.89 6185.61 6569.45 7079.80 8580.99 12365.77 7675.55 18586.25 16567.42 10685.42 5270.10 7890.88 11381.81 189
reproduce_model84.87 685.80 682.05 2385.52 6678.14 1387.69 685.36 3879.26 789.12 1292.10 1977.52 2585.92 3980.47 895.20 1882.10 184
TEST985.47 6769.32 7476.42 12378.69 16753.73 21376.97 15386.74 14666.84 11281.10 125
train_agg76.38 8476.55 8875.86 9785.47 6769.32 7476.42 12378.69 16754.00 20876.97 15386.74 14666.60 11881.10 12572.50 6991.56 9177.15 265
DPE-MVScopyleft82.00 3483.02 3778.95 6085.36 6967.25 8982.91 5484.98 4573.52 2885.43 5490.03 7776.37 3286.97 1374.56 5094.02 5882.62 173
Kehua Chen, Zhenlong Yuan, Tianlu Mao, Zhaoqi Wang: Dual-Level Precision Edges Guided Multi-View Stereo with Accurate Planarization. AAAI2025
HQP_MVS78.77 6478.78 6878.72 6285.18 7065.18 10882.74 5585.49 3265.45 8078.23 13789.11 9760.83 17786.15 2971.09 7390.94 10784.82 98
plane_prior785.18 7066.21 98
SteuartSystems-ACMMP83.07 2583.64 2681.35 3085.14 7271.00 5885.53 2984.78 4970.91 4885.64 4890.41 6275.55 4187.69 579.75 1195.08 2385.36 84
Skip Steuart: Steuart Systems R&D Blog.
test_885.09 7367.89 8376.26 12878.66 16954.00 20876.89 15786.72 14866.60 11880.89 135
WR-MVS71.20 15872.48 14767.36 23484.98 7435.70 35864.43 29068.66 27165.05 9081.49 10086.43 16057.57 21276.48 20750.36 25293.32 6889.90 22
PS-MVSNAJss77.54 7577.35 8278.13 7284.88 7566.37 9678.55 9679.59 15053.48 21586.29 3992.43 1662.39 15680.25 14467.90 9690.61 11987.77 48
LTVRE_ROB75.46 184.22 1084.98 1181.94 2484.82 7675.40 2991.60 387.80 873.52 2888.90 1593.06 771.39 7381.53 11781.53 492.15 8488.91 37
Andreas Kuhn, Heiko Hirschmüller, Daniel Scharstein, Helmut Mayer: A TV Prior for High-Quality Scalable Multi-View Stereo Reconstruction. International Journal of Computer Vision 2016
mvs_tets78.93 6278.67 6979.72 4784.81 7773.93 3980.65 7176.50 19751.98 22987.40 2791.86 2676.09 3678.53 17168.58 8690.20 12486.69 64
APDe-MVScopyleft82.88 2784.14 1879.08 5584.80 7866.72 9486.54 2385.11 4272.00 4286.65 3591.75 2878.20 2287.04 1177.93 2994.32 5183.47 143
Zhaojie Zeng, Yuesong Wang, Tao Guan: Matching Ambiguity-Resilient Multi-View Stereo via Adaptive Patch Deformation. Pattern Recognition
MSLP-MVS++74.48 10975.78 9570.59 17784.66 7962.40 12778.65 9484.24 6660.55 13177.71 14681.98 22963.12 14777.64 19562.95 14488.14 16471.73 318
jajsoiax78.51 6778.16 7579.59 4984.65 8073.83 4180.42 7476.12 19951.33 23987.19 3191.51 3373.79 5778.44 17568.27 8990.13 12886.49 66
TranMVSNet+NR-MVSNet76.13 8577.66 7971.56 16884.61 8142.57 30370.98 19878.29 17668.67 6183.04 7989.26 9072.99 6180.75 13655.58 21095.47 1191.35 12
旧先验184.55 8260.36 15463.69 30487.05 13754.65 23183.34 24169.66 339
APD-MVScopyleft81.13 4281.73 4879.36 5384.47 8370.53 6383.85 4283.70 7569.43 5783.67 7588.96 10375.89 3786.41 1872.62 6792.95 7181.14 198
Yuesong Wang, Zhaojie Zeng and etc.: Adaptive Patch Deformation for Textureless-Resilient Multi-View Stereo. CVPR2023
plane_prior184.46 84
agg_prior84.44 8566.02 10178.62 17076.95 15580.34 142
DeepPCF-MVS71.07 578.48 6977.14 8482.52 1784.39 8677.04 2576.35 12584.05 7156.66 16880.27 11685.31 18268.56 9587.03 1267.39 10291.26 9683.50 139
CDPH-MVS77.33 7777.06 8578.14 7184.21 8763.98 11876.07 13183.45 7854.20 20377.68 14787.18 13269.98 8585.37 5368.01 9392.72 7685.08 90
plane_prior684.18 8865.31 10760.83 177
114514_t73.40 12173.33 13173.64 12484.15 8957.11 17678.20 10280.02 14243.76 30872.55 23186.07 17364.00 14383.35 9060.14 16891.03 10680.45 219
ZD-MVS83.91 9069.36 7381.09 12058.91 14682.73 8789.11 9775.77 3886.63 1472.73 6592.93 72
DeepC-MVS_fast69.89 777.17 7876.33 9079.70 4883.90 9167.94 8280.06 8383.75 7456.73 16774.88 19585.32 18165.54 12987.79 365.61 11991.14 10183.35 149
Andreas Kuhn, Christian Sormann, Mattia Rossi, Oliver Erdler, Friedrich Fraundorfer: DeepC-MVS: Deep Confidence Prediction for Multi-View Stereo Reconstruction. 3DV 2020
h-mvs3373.08 12871.61 16077.48 7783.89 9272.89 4870.47 20571.12 25254.28 19977.89 14183.41 20649.04 26480.98 13063.62 13790.77 11778.58 245
SD-MVS80.28 5381.55 5176.47 9083.57 9367.83 8483.39 5185.35 3964.42 9686.14 4287.07 13674.02 5480.97 13177.70 3292.32 8280.62 216
Zhenlong Yuan, Jiakai Cao, Zhaoxin Li, Hao Jiang and Zhaoqi Wang: SD-MVS: Segmentation-driven Deformation Multi-View Stereo with Spherical Refinement and EM optimization. AAAI2024
DU-MVS74.91 10475.57 9872.93 14383.50 9445.79 27369.47 21780.14 14165.22 8681.74 9787.08 13461.82 16281.07 12756.21 20194.98 2491.93 9
NR-MVSNet73.62 11674.05 11572.33 16083.50 9443.71 28965.65 27577.32 18964.32 9775.59 18487.08 13462.45 15581.34 11954.90 21495.63 991.93 9
test_040278.17 7279.48 6374.24 11583.50 9459.15 16372.52 16874.60 21475.34 1988.69 1791.81 2775.06 4582.37 10465.10 12088.68 15881.20 196
OPU-MVS78.65 6483.44 9766.85 9383.62 4686.12 17066.82 11386.01 3461.72 15189.79 13683.08 157
NP-MVS83.34 9863.07 12585.97 174
DVP-MVS++81.24 3982.74 4176.76 8483.14 9960.90 14791.64 185.49 3274.03 2584.93 5990.38 6766.82 11385.90 4077.43 3490.78 11583.49 140
MSC_two_6792asdad79.02 5783.14 9967.03 9180.75 12586.24 2477.27 3794.85 2983.78 132
No_MVS79.02 5783.14 9967.03 9180.75 12586.24 2477.27 3794.85 2983.78 132
UniMVSNet (Re)75.00 10275.48 9973.56 12783.14 9947.92 24970.41 20781.04 12263.67 10479.54 12186.37 16162.83 15081.82 11357.10 19395.25 1590.94 16
hse-mvs272.32 14770.66 17377.31 8183.10 10371.77 5169.19 22371.45 24154.28 19977.89 14178.26 28549.04 26479.23 15863.62 13789.13 15280.92 205
UniMVSNet_NR-MVSNet74.90 10575.65 9672.64 15383.04 10445.79 27369.26 22178.81 16266.66 7181.74 9786.88 14163.26 14681.07 12756.21 20194.98 2491.05 14
HyFIR lowres test63.01 26160.47 28270.61 17683.04 10454.10 19659.93 32472.24 23433.67 38069.00 27675.63 30738.69 32576.93 20136.60 35575.45 32280.81 210
COLMAP_ROBcopyleft72.78 383.75 1584.11 1982.68 1382.97 10674.39 3687.18 1188.18 778.98 886.11 4391.47 3479.70 1485.76 4566.91 11095.46 1287.89 47
Johannes L. Schönberger, Enliang Zheng, Marc Pollefeys, Jan-Michael Frahm: Pixelwise View Selection for Unstructured Multi-View Stereo. ECCV 2016
AUN-MVS70.22 16967.88 20777.22 8282.96 10771.61 5269.08 22471.39 24249.17 26371.70 24178.07 29037.62 33379.21 15961.81 14889.15 15080.82 208
DP-MVS Recon73.57 11872.69 14376.23 9382.85 10863.39 12174.32 15482.96 8557.75 15470.35 25981.98 22964.34 14284.41 7649.69 25689.95 13180.89 206
APD-MVS_3200maxsize83.57 1784.33 1681.31 3282.83 10973.53 4485.50 3087.45 1374.11 2386.45 3890.52 5880.02 1084.48 7377.73 3194.34 5085.93 73
PVSNet_Blended_VisFu70.04 17168.88 18973.53 12882.71 11063.62 12074.81 14481.95 10248.53 26867.16 30279.18 27451.42 25078.38 17854.39 22379.72 28578.60 244
DPM-MVS69.98 17369.22 18572.26 16182.69 11158.82 16770.53 20481.23 11647.79 27564.16 32080.21 25351.32 25183.12 9360.14 16884.95 22074.83 285
EG-PatchMatch MVS70.70 16470.88 16970.16 18782.64 11258.80 16871.48 18873.64 21954.98 18476.55 17081.77 23261.10 17478.94 16454.87 21580.84 26772.74 308
HQP-NCC82.37 11377.32 11159.08 14071.58 243
ACMP_Plane82.37 11377.32 11159.08 14071.58 243
HQP-MVS75.24 9775.01 10275.94 9582.37 11358.80 16877.32 11184.12 6959.08 14071.58 24385.96 17558.09 20485.30 5567.38 10489.16 14883.73 135
test1276.51 8882.28 11660.94 14681.64 10773.60 21764.88 13785.19 6290.42 12283.38 147
TAMVS65.31 23463.75 25369.97 19282.23 11759.76 15866.78 26263.37 30745.20 29769.79 26979.37 27047.42 27672.17 25634.48 36885.15 21577.99 256
test_prior75.27 10482.15 11859.85 15784.33 6383.39 8982.58 174
SF-MVS80.72 4781.80 4677.48 7782.03 11964.40 11583.41 5088.46 665.28 8584.29 6889.18 9473.73 5883.22 9176.01 4193.77 6184.81 100
AdaColmapbinary74.22 11074.56 10673.20 13281.95 12060.97 14579.43 8680.90 12465.57 7872.54 23281.76 23370.98 7885.26 5747.88 27890.00 12973.37 299
PAPM_NR73.91 11274.16 11373.16 13381.90 12153.50 20181.28 6681.40 11166.17 7473.30 22383.31 21259.96 18483.10 9458.45 18381.66 26082.87 163
DP-MVS78.44 7079.29 6475.90 9681.86 12265.33 10679.05 9184.63 5874.83 2280.41 11486.27 16371.68 6983.45 8862.45 14792.40 7978.92 242
F-COLMAP75.29 9573.99 11679.18 5481.73 12371.90 5081.86 6382.98 8459.86 13772.27 23584.00 19964.56 14083.07 9551.48 24187.19 18782.56 175
SixPastTwentyTwo75.77 8776.34 8974.06 11881.69 12454.84 19076.47 12075.49 20664.10 9987.73 2192.24 1850.45 25581.30 12167.41 10091.46 9386.04 71
Vis-MVSNetpermissive74.85 10874.56 10675.72 9881.63 12564.64 11376.35 12579.06 15862.85 11573.33 22288.41 11562.54 15479.59 15563.94 13482.92 24382.94 161
Jingyang Zhang, Yao Yao, Shiwei Li, Zixin Luo, Tian Fang: Visibility-aware Multiview Stereo Network. BMVC 2020
test_djsdf78.88 6378.27 7380.70 3981.42 12671.24 5683.98 4075.72 20452.27 22487.37 3092.25 1768.04 10280.56 13772.28 7091.15 10090.32 21
3Dnovator+73.19 281.08 4380.48 5582.87 881.41 12772.03 4984.38 3886.23 2377.28 1880.65 11290.18 7659.80 18887.58 673.06 6291.34 9589.01 33
tt080576.12 8678.43 7269.20 20381.32 12841.37 30976.72 11977.64 18563.78 10382.06 9187.88 12679.78 1179.05 16164.33 12792.40 7987.17 59
MCST-MVS73.42 12073.34 13073.63 12581.28 12959.17 16274.80 14683.13 8345.50 29172.84 22783.78 20365.15 13580.99 12964.54 12489.09 15480.73 212
MIMVSNet166.57 22369.23 18458.59 31581.26 13037.73 34564.06 29357.62 32757.02 16278.40 13690.75 4962.65 15158.10 35241.77 31989.58 14079.95 226
ACMH+66.64 1081.20 4082.48 4377.35 8081.16 13162.39 12880.51 7287.80 873.02 3087.57 2491.08 4080.28 982.44 10264.82 12396.10 587.21 56
MVSMamba_PlusPlus76.88 8078.21 7472.88 14680.83 13248.71 23783.28 5282.79 8772.78 3179.17 12691.94 2256.47 22483.95 7870.51 7786.15 19985.99 72
MVS_111021_HR72.98 13572.97 14072.99 13880.82 13365.47 10468.81 22872.77 22757.67 15675.76 18282.38 22571.01 7777.17 19861.38 15386.15 19976.32 273
9.1480.22 5780.68 13480.35 7787.69 1159.90 13583.00 8088.20 12074.57 5081.75 11573.75 5893.78 60
OMC-MVS79.41 5978.79 6781.28 3380.62 13570.71 6280.91 6984.76 5062.54 11781.77 9586.65 15271.46 7183.53 8667.95 9592.44 7889.60 23
OurMVSNet-221017-078.57 6678.53 7178.67 6380.48 13664.16 11680.24 7982.06 9961.89 12188.77 1693.32 557.15 21582.60 10170.08 7992.80 7389.25 27
CDS-MVSNet64.33 24962.66 26669.35 20080.44 13758.28 17265.26 28065.66 28744.36 30367.30 30175.54 30843.27 29571.77 26237.68 34584.44 22878.01 255
Khang Truong Giang, Soohwan Song, Sungho Jo: Curvature-guided dynamic scale networks for Multi-view Stereo. ICLR 2022
PLCcopyleft62.01 1671.79 15370.28 17676.33 9180.31 13868.63 7978.18 10381.24 11554.57 19467.09 30380.63 24759.44 18981.74 11646.91 28584.17 23078.63 243
Jie Liao, Yanping Fu, Qingan Yan, Chunxia xiao: Pyramid Multi-View Stereo with Local Consistency. Pacific Graphics 2019
MM78.15 7377.68 7879.55 5080.10 13965.47 10480.94 6878.74 16671.22 4572.40 23488.70 10760.51 17987.70 477.40 3689.13 15285.48 83
CHOSEN 1792x268858.09 30256.30 31363.45 26979.95 14050.93 21554.07 36565.59 28828.56 39661.53 33974.33 32141.09 30966.52 31333.91 37167.69 38072.92 304
K. test v373.67 11573.61 12473.87 12179.78 14155.62 18874.69 15062.04 31566.16 7584.76 6393.23 649.47 26080.97 13165.66 11886.67 19585.02 92
VPNet65.58 23267.56 21059.65 30779.72 14230.17 38860.27 32162.14 31154.19 20471.24 25186.63 15358.80 19667.62 29744.17 30590.87 11481.18 197
ACMH63.62 1477.50 7680.11 5869.68 19579.61 14356.28 18078.81 9383.62 7663.41 11087.14 3390.23 7476.11 3573.32 24267.58 9794.44 4279.44 235
Qingshan Xu and Wenbing Tao: Multi-Scale Geometric Consistency Guided Multi-View Stereo. CVPR 2019
lessismore_v072.75 14979.60 14456.83 17957.37 33083.80 7489.01 10147.45 27578.74 16864.39 12686.49 19882.69 171
MVS_111021_LR72.10 15071.82 15672.95 14079.53 14573.90 4070.45 20666.64 28056.87 16376.81 16181.76 23368.78 9371.76 26361.81 14883.74 23573.18 301
Test_1112_low_res58.78 29858.69 29459.04 31379.41 14638.13 34157.62 34066.98 27934.74 37359.62 35577.56 29442.92 29863.65 32938.66 33770.73 36175.35 282
CSCG74.12 11174.39 10873.33 13079.35 14761.66 13577.45 11081.98 10162.47 11979.06 12880.19 25561.83 16178.79 16759.83 17287.35 17879.54 234
MVP-Stereo61.56 27659.22 28968.58 22079.28 14860.44 15369.20 22271.57 23743.58 31156.42 37178.37 28439.57 32076.46 20834.86 36760.16 39768.86 347
Qingsong Yan: MVP-Stereo: A Parallel Multi-View Patchmatch Stereo Method with Dilation Matching for Photogrammetric Application.
MG-MVS70.47 16771.34 16567.85 22879.26 14940.42 32274.67 15175.15 21058.41 14868.74 28788.14 12456.08 22783.69 8259.90 17181.71 25979.43 236
IS-MVSNet75.10 9975.42 10074.15 11779.23 15048.05 24779.43 8678.04 18070.09 5479.17 12688.02 12553.04 24083.60 8358.05 18693.76 6290.79 18
FC-MVSNet-test73.32 12374.78 10468.93 21379.21 15136.57 35071.82 18579.54 15257.63 15982.57 8890.38 6759.38 19178.99 16357.91 18794.56 3791.23 13
AllTest77.66 7477.43 8078.35 6879.19 15270.81 5978.60 9588.64 465.37 8380.09 11788.17 12170.33 8178.43 17655.60 20790.90 11185.81 75
TestCases78.35 6879.19 15270.81 5988.64 465.37 8380.09 11788.17 12170.33 8178.43 17655.60 20790.90 11185.81 75
xiu_mvs_v1_base_debu67.87 20567.07 21870.26 18379.13 15461.90 13267.34 25071.25 24747.98 27167.70 29574.19 32561.31 16772.62 24956.51 19678.26 29976.27 274
xiu_mvs_v1_base67.87 20567.07 21870.26 18379.13 15461.90 13267.34 25071.25 24747.98 27167.70 29574.19 32561.31 16772.62 24956.51 19678.26 29976.27 274
xiu_mvs_v1_base_debi67.87 20567.07 21870.26 18379.13 15461.90 13267.34 25071.25 24747.98 27167.70 29574.19 32561.31 16772.62 24956.51 19678.26 29976.27 274
VDD-MVS70.81 16371.44 16468.91 21479.07 15746.51 26767.82 24470.83 25661.23 12474.07 21188.69 10859.86 18675.62 21451.11 24590.28 12384.61 106
test111164.62 24265.19 23862.93 27779.01 15829.91 38965.45 27854.41 35154.09 20671.47 25088.48 11437.02 33574.29 23446.83 28789.94 13284.58 109
TSAR-MVS + GP.73.08 12871.60 16177.54 7678.99 15970.73 6174.96 14169.38 26560.73 13074.39 20578.44 28357.72 21182.78 9860.16 16689.60 13879.11 239
test250661.23 27860.85 27962.38 28278.80 16027.88 39767.33 25337.42 41354.23 20167.55 29888.68 10917.87 41674.39 23246.33 29189.41 14484.86 96
ECVR-MVScopyleft64.82 23965.22 23763.60 26678.80 16031.14 38366.97 25856.47 34154.23 20169.94 26788.68 10937.23 33474.81 22745.28 30189.41 14484.86 96
FIs72.56 14373.80 11968.84 21678.74 16237.74 34471.02 19779.83 14556.12 17280.88 11189.45 8758.18 20078.28 18256.63 19593.36 6790.51 20
v7n79.37 6080.41 5676.28 9278.67 16355.81 18579.22 9082.51 9470.72 4987.54 2592.44 1568.00 10381.34 11972.84 6491.72 8691.69 11
LS3D80.99 4580.85 5381.41 2978.37 16471.37 5487.45 885.87 2777.48 1681.98 9289.95 8069.14 9185.26 5766.15 11291.24 9787.61 51
CNLPA73.44 11973.03 13874.66 10778.27 16575.29 3075.99 13278.49 17165.39 8275.67 18383.22 21861.23 17066.77 31153.70 23085.33 21181.92 188
EPP-MVSNet73.86 11473.38 12775.31 10378.19 16653.35 20380.45 7377.32 18965.11 8976.47 17586.80 14249.47 26083.77 8153.89 22892.72 7688.81 40
PCF-MVS63.80 1372.70 14171.69 15775.72 9878.10 16760.01 15673.04 16581.50 10845.34 29679.66 12084.35 19565.15 13582.65 10048.70 26789.38 14784.50 115
Andreas Kuhn, Shan Lin, Oliver Erdler: Plane Completion and Filtering for Multi-View Stereo Reconstruction. GCPR 2019
GeoE73.14 12673.77 12171.26 17278.09 16852.64 20674.32 15479.56 15156.32 17176.35 17883.36 21170.76 7977.96 18963.32 14181.84 25483.18 154
LFMVS67.06 21867.89 20664.56 25778.02 16938.25 33970.81 20259.60 32265.18 8771.06 25386.56 15643.85 29275.22 21946.35 29089.63 13780.21 224
anonymousdsp78.60 6577.80 7781.00 3578.01 17074.34 3780.09 8176.12 19950.51 24889.19 1190.88 4571.45 7277.78 19373.38 6090.60 12090.90 17
BH-untuned69.39 18369.46 18069.18 20477.96 17156.88 17768.47 23877.53 18656.77 16577.79 14479.63 26460.30 18280.20 14746.04 29380.65 27070.47 331
1112_ss59.48 29258.99 29260.96 29877.84 17242.39 30461.42 31168.45 27337.96 35459.93 35267.46 37745.11 28565.07 32240.89 32571.81 35375.41 280
PS-MVSNAJ64.27 25063.73 25465.90 25077.82 17351.42 21163.33 30072.33 23245.09 29961.60 33868.04 37462.39 15673.95 23849.07 26373.87 33872.34 311
ambc70.10 18977.74 17450.21 22274.28 15677.93 18379.26 12488.29 11954.11 23679.77 15164.43 12591.10 10480.30 222
xiu_mvs_v2_base64.43 24763.96 25165.85 25177.72 17551.32 21263.63 29772.31 23345.06 30061.70 33769.66 36062.56 15273.93 23949.06 26473.91 33772.31 312
Anonymous2023121175.54 9277.19 8370.59 17777.67 17645.70 27674.73 14880.19 13968.80 5882.95 8292.91 966.26 12276.76 20558.41 18492.77 7489.30 26
FMVSNet171.06 15972.48 14766.81 24077.65 17740.68 31871.96 17973.03 22261.14 12579.45 12390.36 7060.44 18075.20 22150.20 25388.05 16684.54 110
FPMVS59.43 29360.07 28457.51 32177.62 17871.52 5362.33 30750.92 36957.40 16069.40 27380.00 25939.14 32361.92 33637.47 34866.36 38239.09 412
balanced_conf0373.59 11774.06 11472.17 16377.48 17947.72 25481.43 6582.20 9754.38 19679.19 12587.68 12854.41 23383.57 8463.98 13185.78 20585.22 85
testing358.28 30158.38 29858.00 31977.45 18026.12 40660.78 31743.00 39956.02 17370.18 26275.76 30513.27 42467.24 30348.02 27680.89 26580.65 215
Effi-MVS+-dtu75.43 9472.28 15184.91 377.05 18183.58 278.47 9777.70 18457.68 15574.89 19478.13 28964.80 13884.26 7756.46 19985.32 21286.88 61
CLD-MVS72.88 13872.36 15074.43 11277.03 18254.30 19468.77 23183.43 7952.12 22676.79 16274.44 32069.54 9083.91 7955.88 20493.25 6985.09 89
Zhaoxin Li, Wangmeng Zuo, Zhaoqi Wang, Lei Zhang: Confidence-based Large-scale Dense Multi-view Stereo. IEEE Transaction on Image Processing, 2020
CS-MVS76.51 8376.00 9378.06 7377.02 18364.77 11280.78 7082.66 9160.39 13274.15 20883.30 21369.65 8982.07 11069.27 8486.75 19487.36 54
SPE-MVS-test74.89 10674.23 11276.86 8377.01 18462.94 12678.98 9284.61 5958.62 14770.17 26380.80 24466.74 11781.96 11161.74 15089.40 14685.69 80
Baseline_NR-MVSNet70.62 16573.19 13262.92 27876.97 18534.44 36668.84 22670.88 25560.25 13379.50 12290.53 5661.82 16269.11 28454.67 21895.27 1485.22 85
ITE_SJBPF80.35 4276.94 18673.60 4280.48 13366.87 6883.64 7686.18 16670.25 8379.90 15061.12 15788.95 15687.56 52
SSC-MVS61.79 27466.08 22848.89 36776.91 18710.00 42453.56 36747.37 38568.20 6376.56 16989.21 9254.13 23557.59 35354.75 21674.07 33679.08 240
jason64.47 24662.84 26469.34 20176.91 18759.20 15967.15 25565.67 28635.29 36965.16 31376.74 30144.67 28770.68 27154.74 21779.28 28878.14 252
jason: jason.
ETV-MVS72.72 14072.16 15374.38 11476.90 18955.95 18273.34 16384.67 5562.04 12072.19 23870.81 34765.90 12685.24 5958.64 18184.96 21981.95 187
Anonymous2024052972.56 14373.79 12068.86 21576.89 19045.21 27968.80 23077.25 19167.16 6676.89 15790.44 5965.95 12574.19 23550.75 24890.00 12987.18 58
EC-MVSNet77.08 7977.39 8176.14 9476.86 19156.87 17880.32 7887.52 1263.45 10874.66 20084.52 19269.87 8784.94 6469.76 8189.59 13986.60 65
PM-MVS64.49 24563.61 25567.14 23876.68 19275.15 3168.49 23742.85 40051.17 24277.85 14380.51 24845.76 27966.31 31452.83 23676.35 31359.96 389
mvsmamba68.87 18967.30 21673.57 12676.58 19353.70 20084.43 3774.25 21645.38 29576.63 16584.55 19135.85 34085.27 5649.54 25978.49 29681.75 191
TransMVSNet (Re)69.62 17871.63 15963.57 26776.51 19435.93 35665.75 27471.29 24661.05 12675.02 19289.90 8165.88 12770.41 27749.79 25589.48 14284.38 118
BH-RMVSNet68.69 19568.20 20270.14 18876.40 19553.90 19964.62 28773.48 22058.01 15173.91 21581.78 23159.09 19378.22 18348.59 26877.96 30378.31 248
PHI-MVS74.92 10374.36 11076.61 8676.40 19562.32 12980.38 7583.15 8254.16 20573.23 22480.75 24562.19 15983.86 8068.02 9290.92 11083.65 136
UGNet70.20 17069.05 18673.65 12376.24 19763.64 11975.87 13472.53 23061.48 12360.93 34686.14 16952.37 24377.12 19950.67 24985.21 21380.17 225
Wanjuan Su, Qingshan Xu, Wenbing Tao: Uncertainty-guided Multi-view Stereo Network for Depth Estimation. IEEE Transactions on Circuits and Systems for Video Technology, 2022
PatchMatch-RL58.68 29957.72 30361.57 28876.21 19873.59 4361.83 30849.00 37947.30 27961.08 34268.97 36550.16 25659.01 34536.06 36268.84 37352.10 399
VPA-MVSNet68.71 19470.37 17563.72 26576.13 19938.06 34264.10 29271.48 24056.60 17074.10 21088.31 11864.78 13969.72 27947.69 28090.15 12683.37 148
WB-MVS60.04 28864.19 24947.59 37076.09 20010.22 42352.44 37246.74 38765.17 8874.07 21187.48 12953.48 23855.28 35949.36 26172.84 34477.28 261
PAPM61.79 27460.37 28366.05 24876.09 20041.87 30669.30 22076.79 19640.64 33753.80 38479.62 26544.38 28982.92 9729.64 38973.11 34373.36 300
BH-w/o64.81 24064.29 24866.36 24576.08 20254.71 19165.61 27675.23 20950.10 25471.05 25471.86 34154.33 23479.02 16238.20 34276.14 31565.36 366
dcpmvs_271.02 16172.65 14466.16 24776.06 20350.49 21871.97 17879.36 15350.34 24982.81 8583.63 20464.38 14167.27 30261.54 15283.71 23780.71 214
pmmvs671.82 15273.66 12266.31 24675.94 20442.01 30566.99 25772.53 23063.45 10876.43 17692.78 1172.95 6269.69 28051.41 24390.46 12187.22 55
CANet73.00 13371.84 15576.48 8975.82 20561.28 13974.81 14480.37 13763.17 11262.43 33680.50 24961.10 17485.16 6364.00 13084.34 22983.01 160
pmmvs-eth3d64.41 24863.27 26067.82 23075.81 20660.18 15569.49 21662.05 31438.81 34974.13 20982.23 22643.76 29368.65 28842.53 31280.63 27274.63 287
TR-MVS64.59 24363.54 25667.73 23175.75 20750.83 21663.39 29970.29 26049.33 26171.55 24774.55 31850.94 25278.46 17440.43 32775.69 31873.89 296
MVS_030475.45 9374.66 10577.83 7475.58 20861.53 13678.29 9977.18 19263.15 11469.97 26687.20 13157.54 21387.05 1074.05 5588.96 15584.89 93
tttt051769.46 18167.79 20974.46 10975.34 20952.72 20575.05 14063.27 30854.69 19078.87 13084.37 19426.63 38781.15 12363.95 13287.93 17089.51 24
cascas64.59 24362.77 26570.05 19075.27 21050.02 22461.79 30971.61 23642.46 31963.68 32768.89 36849.33 26280.35 14147.82 27984.05 23279.78 229
API-MVS70.97 16271.51 16369.37 19875.20 21155.94 18380.99 6776.84 19462.48 11871.24 25177.51 29561.51 16680.96 13452.04 23785.76 20671.22 324
EIA-MVS68.59 19667.16 21772.90 14475.18 21255.64 18769.39 21881.29 11352.44 22364.53 31670.69 34860.33 18182.30 10654.27 22576.31 31480.75 211
PAPR69.20 18568.66 19570.82 17475.15 21347.77 25275.31 13781.11 11849.62 25966.33 30579.27 27161.53 16582.96 9648.12 27581.50 26281.74 192
MVSFormer69.93 17469.03 18772.63 15474.93 21459.19 16083.98 4075.72 20452.27 22463.53 33076.74 30143.19 29680.56 13772.28 7078.67 29478.14 252
lupinMVS63.36 25661.49 27368.97 21174.93 21459.19 16065.80 27364.52 29934.68 37563.53 33074.25 32343.19 29670.62 27253.88 22978.67 29477.10 266
nrg03074.87 10775.99 9471.52 16974.90 21649.88 23174.10 15882.58 9354.55 19583.50 7789.21 9271.51 7075.74 21361.24 15492.34 8188.94 36
TAPA-MVS65.27 1275.16 9874.29 11177.77 7574.86 21768.08 8177.89 10584.04 7255.15 18376.19 18083.39 20766.91 11180.11 14860.04 17090.14 12785.13 88
Andrea Romanoni, Matteo Matteucci: TAPA-MVS: Textureless-Aware PAtchMatch Multi-View Stereo. ICCV 2019
RPSCF75.76 8874.37 10979.93 4474.81 21877.53 1877.53 10979.30 15559.44 13978.88 12989.80 8271.26 7473.09 24457.45 18980.89 26589.17 30
EI-MVSNet-Vis-set72.78 13971.87 15475.54 10174.77 21959.02 16672.24 17171.56 23863.92 10078.59 13271.59 34266.22 12378.60 17067.58 9780.32 27389.00 34
v124073.06 13073.14 13372.84 14774.74 22047.27 26271.88 18481.11 11851.80 23082.28 9084.21 19656.22 22682.34 10568.82 8587.17 18888.91 37
v192192072.96 13672.98 13972.89 14574.67 22147.58 25671.92 18280.69 12751.70 23281.69 9983.89 20156.58 22282.25 10768.34 8887.36 17788.82 39
EI-MVSNet-UG-set72.63 14271.68 15875.47 10274.67 22158.64 17172.02 17671.50 23963.53 10678.58 13471.39 34665.98 12478.53 17167.30 10780.18 27689.23 28
Fast-Effi-MVS+68.81 19168.30 19870.35 18274.66 22348.61 24066.06 26878.32 17450.62 24771.48 24975.54 30868.75 9479.59 15550.55 25178.73 29382.86 164
v119273.40 12173.42 12573.32 13174.65 22448.67 23972.21 17281.73 10552.76 22081.85 9384.56 19057.12 21682.24 10868.58 8687.33 18089.06 32
v14419272.99 13473.06 13772.77 14874.58 22547.48 25771.90 18380.44 13551.57 23381.46 10184.11 19858.04 20882.12 10967.98 9487.47 17588.70 42
MAR-MVS67.72 20866.16 22772.40 15874.45 22664.99 11174.87 14277.50 18748.67 26765.78 30968.58 37257.01 21977.79 19246.68 28881.92 25174.42 292
Zhenyu Xu, Yiguang Liu, Xuelei Shi, Ying Wang, Yunan Zheng: MARMVS: Matching Ambiguity Reduced Multiple View Stereo for Efficient Large Scale Scene Reconstruction. CVPR 2020
v1075.69 8976.20 9174.16 11674.44 22748.69 23875.84 13582.93 8659.02 14485.92 4489.17 9558.56 19882.74 9970.73 7589.14 15191.05 14
sasdasda72.29 14873.38 12769.04 20774.23 22847.37 25973.93 16083.18 8054.36 19776.61 16781.64 23572.03 6575.34 21757.12 19187.28 18284.40 116
canonicalmvs72.29 14873.38 12769.04 20774.23 22847.37 25973.93 16083.18 8054.36 19776.61 16781.64 23572.03 6575.34 21757.12 19187.28 18284.40 116
Anonymous20240521166.02 22966.89 22263.43 27074.22 23038.14 34059.00 32966.13 28363.33 11169.76 27085.95 17651.88 24570.50 27444.23 30487.52 17381.64 193
Effi-MVS+72.10 15072.28 15171.58 16774.21 23150.33 22074.72 14982.73 8962.62 11670.77 25576.83 30069.96 8680.97 13160.20 16478.43 29783.45 145
FE-MVS68.29 20166.96 22172.26 16174.16 23254.24 19577.55 10873.42 22157.65 15872.66 22984.91 18632.02 36081.49 11848.43 27181.85 25381.04 200
v114473.29 12473.39 12673.01 13774.12 23348.11 24572.01 17781.08 12153.83 21281.77 9584.68 18758.07 20781.91 11268.10 9086.86 19088.99 35
FA-MVS(test-final)71.27 15771.06 16771.92 16573.96 23452.32 20876.45 12276.12 19959.07 14374.04 21386.18 16652.18 24479.43 15759.75 17481.76 25584.03 126
EI-MVSNet69.61 17969.01 18871.41 17173.94 23549.90 22771.31 19371.32 24458.22 14975.40 18970.44 34958.16 20175.85 20962.51 14579.81 28288.48 43
CVMVSNet59.21 29458.44 29761.51 28973.94 23547.76 25371.31 19364.56 29826.91 40260.34 34870.44 34936.24 33967.65 29653.57 23168.66 37469.12 345
IterMVS-LS73.01 13273.12 13572.66 15273.79 23749.90 22771.63 18778.44 17258.22 14980.51 11386.63 15358.15 20279.62 15362.51 14588.20 16388.48 43
Fangjinhua Wang, Silvano Galliani, Christoph Vogel, Marc Pollefeys: IterMVS: Iterative Probability Estimation for Efficient Multi-View Stereo.
UWE-MVS52.94 33552.70 33853.65 33973.56 23827.49 39857.30 34349.57 37638.56 35162.79 33471.42 34519.49 41160.41 33924.33 40977.33 30873.06 302
alignmvs70.54 16671.00 16869.15 20573.50 23948.04 24869.85 21479.62 14753.94 21176.54 17182.00 22759.00 19474.68 22857.32 19087.21 18684.72 101
Fast-Effi-MVS+-dtu70.00 17268.74 19373.77 12273.47 24064.53 11471.36 19178.14 17955.81 17768.84 28574.71 31765.36 13275.75 21252.00 23879.00 29081.03 201
v875.07 10075.64 9773.35 12973.42 24147.46 25875.20 13881.45 11060.05 13485.64 4889.26 9058.08 20681.80 11469.71 8387.97 16990.79 18
tfpnnormal66.48 22467.93 20562.16 28473.40 24236.65 34963.45 29864.99 29355.97 17472.82 22887.80 12757.06 21869.10 28548.31 27387.54 17280.72 213
IterMVS-SCA-FT67.68 20966.07 22972.49 15673.34 24358.20 17363.80 29565.55 28948.10 27076.91 15682.64 22245.20 28378.84 16561.20 15577.89 30580.44 220
VNet64.01 25365.15 24160.57 30173.28 24435.61 35957.60 34167.08 27854.61 19266.76 30483.37 20956.28 22566.87 30742.19 31585.20 21479.23 238
MGCFI-Net71.70 15473.10 13667.49 23273.23 24543.08 29772.06 17582.43 9554.58 19375.97 18182.00 22772.42 6375.22 21957.84 18887.34 17984.18 123
3Dnovator65.95 1171.50 15671.22 16672.34 15973.16 24663.09 12478.37 9878.32 17457.67 15672.22 23784.61 18954.77 22978.47 17360.82 16081.07 26475.45 279
GBi-Net68.30 19968.79 19066.81 24073.14 24740.68 31871.96 17973.03 22254.81 18574.72 19790.36 7048.63 27075.20 22147.12 28285.37 20884.54 110
test168.30 19968.79 19066.81 24073.14 24740.68 31871.96 17973.03 22254.81 18574.72 19790.36 7048.63 27075.20 22147.12 28285.37 20884.54 110
FMVSNet267.48 21168.21 20165.29 25273.14 24738.94 33268.81 22871.21 25154.81 18576.73 16386.48 15848.63 27074.60 22947.98 27786.11 20282.35 178
thisisatest053067.05 21965.16 23972.73 15173.10 25050.55 21771.26 19563.91 30350.22 25274.46 20480.75 24526.81 38680.25 14459.43 17686.50 19787.37 53
pm-mvs168.40 19769.85 17964.04 26373.10 25039.94 32564.61 28870.50 25855.52 17973.97 21489.33 8863.91 14468.38 29049.68 25788.02 16783.81 131
pmmvs460.78 28259.04 29166.00 24973.06 25257.67 17564.53 28960.22 32036.91 36265.96 30677.27 29639.66 31968.54 28938.87 33574.89 32671.80 317
SDMVSNet66.36 22667.85 20861.88 28673.04 25346.14 27258.54 33471.36 24351.42 23668.93 28182.72 22065.62 12862.22 33554.41 22284.67 22177.28 261
sd_testset63.55 25465.38 23558.07 31873.04 25338.83 33457.41 34265.44 29051.42 23668.93 28182.72 22063.76 14558.11 35141.05 32384.67 22177.28 261
v2v48272.55 14572.58 14572.43 15772.92 25546.72 26571.41 19079.13 15755.27 18181.17 10585.25 18355.41 22881.13 12467.25 10885.46 20789.43 25
casdiffmvs_mvgpermissive75.26 9676.18 9272.52 15572.87 25649.47 23272.94 16684.71 5459.49 13880.90 11088.81 10670.07 8479.71 15267.40 10188.39 16188.40 45
Fangjinhua Wang, Qingshan Xu, Yew-Soon Ong, Marc Pollefeys: Lightweight and Accurate Multi-View Stereo With Confidence-Aware Diffusion Model. IEEE T-PAMI 2025
MIMVSNet54.39 32356.12 31549.20 36372.57 25730.91 38459.98 32348.43 38141.66 32355.94 37383.86 20241.19 30850.42 36926.05 40075.38 32366.27 361
Patchmatch-RL test59.95 28959.12 29062.44 28172.46 25854.61 19359.63 32547.51 38441.05 33074.58 20274.30 32231.06 36965.31 32051.61 24079.85 28167.39 353
CL-MVSNet_self_test62.44 26963.40 25859.55 30872.34 25932.38 37556.39 34764.84 29551.21 24167.46 29981.01 24250.75 25363.51 33038.47 34088.12 16582.75 167
Vis-MVSNet (Re-imp)62.74 26663.21 26161.34 29472.19 26031.56 38067.31 25453.87 35353.60 21469.88 26883.37 20940.52 31370.98 27041.40 32186.78 19381.48 195
thres100view90061.17 27961.09 27661.39 29272.14 26135.01 36265.42 27956.99 33555.23 18270.71 25679.90 26032.07 35872.09 25735.61 36381.73 25677.08 267
ab-mvs64.11 25165.13 24261.05 29671.99 26238.03 34367.59 24568.79 27049.08 26565.32 31286.26 16458.02 20966.85 30939.33 33179.79 28478.27 249
RRT-MVS70.33 16870.73 17169.14 20671.93 26345.24 27875.10 13975.08 21160.85 12978.62 13187.36 13049.54 25978.64 16960.16 16677.90 30483.55 138
thres600view761.82 27361.38 27463.12 27371.81 26434.93 36364.64 28656.99 33554.78 18970.33 26079.74 26232.07 35872.42 25438.61 33883.46 24082.02 185
QAPM69.18 18669.26 18368.94 21271.61 26552.58 20780.37 7678.79 16549.63 25873.51 21885.14 18453.66 23779.12 16055.11 21275.54 32075.11 284
WB-MVSnew53.94 32954.76 32651.49 35171.53 26628.05 39558.22 33750.36 37237.94 35559.16 35670.17 35449.21 26351.94 36624.49 40771.80 35474.47 291
baseline73.10 12773.96 11770.51 17971.46 26746.39 27072.08 17484.40 6255.95 17576.62 16686.46 15967.20 10778.03 18864.22 12887.27 18487.11 60
casdiffmvspermissive73.06 13073.84 11870.72 17571.32 26846.71 26670.93 19984.26 6555.62 17877.46 14987.10 13367.09 10977.81 19163.95 13286.83 19287.64 50
Fangjinhua Wang, Qingshan Xu, Yew-Soon Ong, Marc Pollefeys: Lightweight and Accurate Multi-View Stereo With Confidence-Aware Diffusion Model. IEEE T-PAMI 2025
test_fmvsmvis_n_192072.36 14672.49 14671.96 16471.29 26964.06 11772.79 16781.82 10340.23 33981.25 10481.04 24170.62 8068.69 28769.74 8283.60 23983.14 155
Anonymous2023120654.13 32455.82 31749.04 36670.89 27035.96 35551.73 37450.87 37034.86 37062.49 33579.22 27242.52 30244.29 39527.95 39681.88 25266.88 357
fmvsm_s_conf0.1_n_a67.37 21566.36 22570.37 18170.86 27161.17 14174.00 15957.18 33440.77 33468.83 28680.88 24363.11 14867.61 29866.94 10974.72 32782.33 181
tfpn200view960.35 28659.97 28561.51 28970.78 27235.35 36063.27 30157.47 32853.00 21868.31 29077.09 29832.45 35572.09 25735.61 36381.73 25677.08 267
thres40060.77 28359.97 28563.15 27270.78 27235.35 36063.27 30157.47 32853.00 21868.31 29077.09 29832.45 35572.09 25735.61 36381.73 25682.02 185
MSDG67.47 21367.48 21367.46 23370.70 27454.69 19266.90 26078.17 17760.88 12870.41 25874.76 31561.22 17273.18 24347.38 28176.87 31074.49 290
testing9155.74 31355.29 32357.08 32270.63 27530.85 38554.94 36056.31 34450.34 24957.08 36470.10 35624.50 39765.86 31536.98 35376.75 31174.53 289
test_yl65.11 23565.09 24365.18 25370.59 27640.86 31463.22 30372.79 22557.91 15268.88 28379.07 27742.85 29974.89 22545.50 29884.97 21679.81 227
DCV-MVSNet65.11 23565.09 24365.18 25370.59 27640.86 31463.22 30372.79 22557.91 15268.88 28379.07 27742.85 29974.89 22545.50 29884.97 21679.81 227
test_fmvsm_n_192069.63 17768.45 19673.16 13370.56 27865.86 10270.26 20878.35 17337.69 35674.29 20678.89 27961.10 17468.10 29365.87 11779.07 28985.53 82
OpenMVScopyleft62.51 1568.76 19268.75 19268.78 21770.56 27853.91 19878.29 9977.35 18848.85 26670.22 26183.52 20552.65 24276.93 20155.31 21181.99 25075.49 278
DELS-MVS68.83 19068.31 19770.38 18070.55 28048.31 24163.78 29682.13 9854.00 20868.96 27875.17 31358.95 19580.06 14958.55 18282.74 24582.76 166
Christian Sormann, Emanuele Santellani, Mattia Rossi, Andreas Kuhn, Friedrich Fraundorfer: DELS-MVS: Deep Epipolar Line Search for Multi-View Stereo. Winter Conference on Applications of Computer Vision (WACV), 2023
testing22253.37 33152.50 34155.98 33070.51 28129.68 39056.20 35051.85 36646.19 28556.76 36868.94 36619.18 41265.39 31925.87 40376.98 30972.87 305
testing1153.13 33352.26 34355.75 33170.44 28231.73 37954.75 36152.40 36444.81 30152.36 38968.40 37321.83 40565.74 31832.64 37772.73 34569.78 337
LCM-MVSNet-Re69.10 18771.57 16261.70 28770.37 28334.30 36861.45 31079.62 14756.81 16489.59 988.16 12368.44 9772.94 24542.30 31387.33 18077.85 258
UBG49.18 35849.35 36248.66 36870.36 28426.56 40350.53 37845.61 39037.43 35853.37 38565.97 38223.03 40354.20 36326.29 39871.54 35565.20 368
patch_mono-262.73 26764.08 25058.68 31470.36 28455.87 18460.84 31664.11 30241.23 32764.04 32178.22 28660.00 18348.80 37454.17 22683.71 23771.37 321
ETVMVS50.32 35349.87 36151.68 34970.30 28626.66 40152.33 37343.93 39543.54 31254.91 37867.95 37520.01 41060.17 34122.47 41173.40 34068.22 348
SCA58.57 30058.04 30160.17 30470.17 28741.07 31265.19 28153.38 35943.34 31661.00 34573.48 32945.20 28369.38 28240.34 32870.31 36470.05 334
WBMVS53.38 33054.14 33051.11 35370.16 28826.66 40150.52 37951.64 36839.32 34363.08 33377.16 29723.53 40055.56 35731.99 37879.88 28071.11 327
ET-MVSNet_ETH3D63.32 25760.69 28171.20 17370.15 28955.66 18665.02 28364.32 30043.28 31768.99 27772.05 34025.46 39378.19 18654.16 22782.80 24479.74 230
testing9955.16 31954.56 32856.98 32470.13 29030.58 38754.55 36354.11 35249.53 26056.76 36870.14 35522.76 40465.79 31736.99 35276.04 31674.57 288
APD_test175.04 10175.38 10174.02 11969.89 29170.15 6676.46 12179.71 14665.50 7982.99 8188.60 11266.94 11072.35 25559.77 17388.54 15979.56 231
PVSNet_BlendedMVS65.38 23364.30 24768.61 21969.81 29249.36 23365.60 27778.96 15945.50 29159.98 34978.61 28151.82 24678.20 18444.30 30284.11 23178.27 249
PVSNet_Blended62.90 26361.64 27066.69 24369.81 29249.36 23361.23 31378.96 15942.04 32059.98 34968.86 36951.82 24678.20 18444.30 30277.77 30672.52 309
OpenMVS_ROBcopyleft54.93 1763.23 25963.28 25963.07 27469.81 29245.34 27768.52 23667.14 27743.74 30970.61 25779.22 27247.90 27472.66 24848.75 26673.84 33971.21 325
test_fmvsmconf0.01_n73.91 11273.64 12374.71 10669.79 29566.25 9775.90 13379.90 14446.03 28776.48 17485.02 18567.96 10473.97 23774.47 5287.22 18583.90 129
fmvsm_s_conf0.5_n_a67.00 22065.95 23270.17 18669.72 29661.16 14273.34 16356.83 33740.96 33168.36 28980.08 25862.84 14967.57 29966.90 11174.50 33181.78 190
FMVSNet365.00 23865.16 23964.52 25869.47 29737.56 34766.63 26370.38 25951.55 23474.72 19783.27 21437.89 33174.44 23147.12 28285.37 20881.57 194
MS-PatchMatch55.59 31554.89 32557.68 32069.18 29849.05 23661.00 31562.93 30935.98 36658.36 35968.93 36736.71 33766.59 31237.62 34763.30 38957.39 395
baseline157.82 30458.36 29956.19 32869.17 29930.76 38662.94 30555.21 34646.04 28663.83 32578.47 28241.20 30763.68 32839.44 33068.99 37274.13 293
v14869.38 18469.39 18169.36 19969.14 30044.56 28368.83 22772.70 22854.79 18878.59 13284.12 19754.69 23076.74 20659.40 17782.20 24886.79 62
test_fmvsmconf0.1_n73.26 12572.82 14274.56 10869.10 30166.18 9974.65 15279.34 15445.58 29075.54 18683.91 20067.19 10873.88 24073.26 6186.86 19083.63 137
fmvsm_s_conf0.1_n66.60 22265.54 23369.77 19468.99 30259.15 16372.12 17356.74 33940.72 33668.25 29280.14 25761.18 17366.92 30567.34 10674.40 33283.23 153
Syy-MVS54.13 32455.45 32050.18 35768.77 30323.59 41055.02 35744.55 39343.80 30658.05 36164.07 38746.22 27858.83 34646.16 29272.36 34868.12 349
myMVS_eth3d50.36 35250.52 35749.88 35868.77 30322.69 41255.02 35744.55 39343.80 30658.05 36164.07 38714.16 42258.83 34633.90 37272.36 34868.12 349
test_fmvsmconf_n72.91 13772.40 14974.46 10968.62 30566.12 10074.21 15778.80 16445.64 28974.62 20183.25 21566.80 11673.86 24172.97 6386.66 19683.39 146
CANet_DTU64.04 25263.83 25264.66 25668.39 30642.97 29973.45 16274.50 21552.05 22854.78 37975.44 31143.99 29170.42 27653.49 23278.41 29880.59 217
EU-MVSNet60.82 28160.80 28060.86 29968.37 30741.16 31072.27 17068.27 27426.96 40069.08 27575.71 30632.09 35767.44 30055.59 20978.90 29173.97 294
PVSNet43.83 2151.56 34651.17 34952.73 34468.34 30838.27 33848.22 38453.56 35736.41 36354.29 38264.94 38634.60 34454.20 36330.34 38469.87 36765.71 364
EPNet69.10 18767.32 21474.46 10968.33 30961.27 14077.56 10763.57 30560.95 12756.62 37082.75 21951.53 24981.24 12254.36 22490.20 12480.88 207
Wanjuan Su, Wenbing Tao: Efficient Edge-Preserving Multi-View Stereo Network for Depth Estimation. AAAI 2023
fmvsm_s_conf0.5_n66.34 22865.27 23669.57 19768.20 31059.14 16571.66 18656.48 34040.92 33267.78 29479.46 26661.23 17066.90 30667.39 10274.32 33582.66 172
IB-MVS49.67 1859.69 29156.96 30867.90 22768.19 31150.30 22161.42 31165.18 29247.57 27755.83 37467.15 38123.77 39979.60 15443.56 30879.97 27873.79 297
Christian Sormann, Mattia Rossi, Andreas Kuhn and Friedrich Fraundorfer: IB-MVS: An Iterative Algorithm for Deep Multi-View Stereo based on Binary Decisions. BMVC 2021
MVS60.62 28459.97 28562.58 28068.13 31247.28 26168.59 23473.96 21832.19 38459.94 35168.86 36950.48 25477.64 19541.85 31875.74 31762.83 378
eth_miper_zixun_eth69.42 18268.73 19471.50 17067.99 31346.42 26867.58 24678.81 16250.72 24678.13 13980.34 25250.15 25780.34 14260.18 16584.65 22387.74 49
TinyColmap67.98 20469.28 18264.08 26167.98 31446.82 26470.04 20975.26 20853.05 21777.36 15086.79 14359.39 19072.59 25245.64 29688.01 16872.83 306
EPNet_dtu58.93 29758.52 29560.16 30567.91 31547.70 25569.97 21158.02 32649.73 25747.28 40373.02 33438.14 32762.34 33336.57 35685.99 20370.43 332
Wanjuan Su, Wenbing Tao: Efficient Edge-Preserving Multi-View Stereo Network for Depth Estimation. AAAI 2023
thres20057.55 30557.02 30759.17 31067.89 31634.93 36358.91 33257.25 33250.24 25164.01 32271.46 34432.49 35471.39 26731.31 38179.57 28671.19 326
our_test_356.46 30856.51 31156.30 32767.70 31739.66 32755.36 35652.34 36540.57 33863.85 32469.91 35940.04 31658.22 35043.49 30975.29 32571.03 329
ppachtmachnet_test60.26 28759.61 28862.20 28367.70 31744.33 28558.18 33860.96 31840.75 33565.80 30872.57 33641.23 30663.92 32746.87 28682.42 24778.33 247
MVS_Test69.84 17570.71 17267.24 23567.49 31943.25 29669.87 21381.22 11752.69 22171.57 24686.68 14962.09 16074.51 23066.05 11478.74 29283.96 127
fmvsm_l_conf0.5_n67.48 21166.88 22369.28 20267.41 32062.04 13070.69 20369.85 26239.46 34269.59 27181.09 24058.15 20268.73 28667.51 9978.16 30277.07 269
thisisatest051560.48 28557.86 30268.34 22267.25 32146.42 26860.58 31962.14 31140.82 33363.58 32969.12 36326.28 38978.34 18048.83 26582.13 24980.26 223
V4271.06 15970.83 17071.72 16667.25 32147.14 26365.94 26980.35 13851.35 23883.40 7883.23 21659.25 19278.80 16665.91 11680.81 26889.23 28
fmvsm_l_conf0.5_n_a66.66 22165.97 23168.72 21867.09 32361.38 13870.03 21069.15 26838.59 35068.41 28880.36 25156.56 22368.32 29166.10 11377.45 30776.46 271
GA-MVS62.91 26261.66 26966.66 24467.09 32344.49 28461.18 31469.36 26651.33 23969.33 27474.47 31936.83 33674.94 22450.60 25074.72 32780.57 218
testf175.66 9076.57 8672.95 14067.07 32567.62 8576.10 12980.68 12864.95 9186.58 3690.94 4371.20 7571.68 26560.46 16291.13 10279.56 231
APD_test275.66 9076.57 8672.95 14067.07 32567.62 8576.10 12980.68 12864.95 9186.58 3690.94 4371.20 7571.68 26560.46 16291.13 10279.56 231
mmtdpeth68.76 19270.55 17463.40 27167.06 32756.26 18168.73 23371.22 25055.47 18070.09 26488.64 11165.29 13456.89 35558.94 18089.50 14177.04 270
HY-MVS49.31 1957.96 30357.59 30459.10 31266.85 32836.17 35365.13 28265.39 29139.24 34654.69 38178.14 28844.28 29067.18 30433.75 37370.79 36073.95 295
CR-MVSNet58.96 29558.49 29660.36 30366.37 32948.24 24370.93 19956.40 34232.87 38361.35 34086.66 15033.19 34963.22 33148.50 27070.17 36569.62 340
RPMNet65.77 23165.08 24567.84 22966.37 32948.24 24370.93 19986.27 2054.66 19161.35 34086.77 14533.29 34885.67 4955.93 20370.17 36569.62 340
IterMVS63.12 26062.48 26765.02 25566.34 33152.86 20463.81 29462.25 31046.57 28371.51 24880.40 25044.60 28866.82 31051.38 24475.47 32175.38 281
Fangjinhua Wang, Silvano Galliani, Christoph Vogel, Marc Pollefeys: IterMVS: Iterative Probability Estimation for Efficient Multi-View Stereo.
c3_l69.82 17669.89 17869.61 19666.24 33243.48 29268.12 24179.61 14951.43 23577.72 14580.18 25654.61 23278.15 18763.62 13787.50 17487.20 57
tpm256.12 31054.64 32760.55 30266.24 33236.01 35468.14 24056.77 33833.60 38158.25 36075.52 31030.25 37574.33 23333.27 37469.76 36971.32 322
Anonymous2024052163.55 25466.07 22955.99 32966.18 33444.04 28768.77 23168.80 26946.99 28072.57 23085.84 17739.87 31750.22 37053.40 23592.23 8373.71 298
Patchmtry60.91 28063.01 26354.62 33666.10 33526.27 40567.47 24856.40 34254.05 20772.04 23986.66 15033.19 34960.17 34143.69 30687.45 17677.42 259
FMVSNet555.08 32055.54 31953.71 33865.80 33633.50 37256.22 34952.50 36343.72 31061.06 34383.38 20825.46 39354.87 36030.11 38681.64 26172.75 307
131459.83 29058.86 29362.74 27965.71 33744.78 28268.59 23472.63 22933.54 38261.05 34467.29 38043.62 29471.26 26849.49 26067.84 37972.19 314
MonoMVSNet62.75 26563.42 25760.73 30065.60 33840.77 31672.49 16970.56 25752.49 22275.07 19179.42 26839.52 32169.97 27846.59 28969.06 37171.44 320
MDTV_nov1_ep1354.05 33265.54 33929.30 39259.00 32955.22 34535.96 36752.44 38775.98 30430.77 37259.62 34338.21 34173.33 342
baseline255.57 31652.74 33764.05 26265.26 34044.11 28662.38 30654.43 35039.03 34751.21 39267.35 37933.66 34772.45 25337.14 35064.22 38775.60 277
USDC62.80 26463.10 26261.89 28565.19 34143.30 29567.42 24974.20 21735.80 36872.25 23684.48 19345.67 28071.95 26137.95 34484.97 21670.42 333
tpm50.60 35052.42 34245.14 38165.18 34226.29 40460.30 32043.50 39637.41 35957.01 36579.09 27630.20 37742.32 40032.77 37666.36 38266.81 359
PatchmatchNetpermissive54.60 32254.27 32955.59 33265.17 34339.08 32966.92 25951.80 36739.89 34058.39 35873.12 33331.69 36358.33 34943.01 31158.38 40369.38 343
Fangjinhua Wang, Silvano Galliani, Christoph Vogel, Pablo Speciale, Marc Pollefeys: PatchmatchNet: Learned Multi-View Patchmatch Stereo.
miper_ehance_all_eth68.36 19868.16 20368.98 21065.14 34443.34 29467.07 25678.92 16149.11 26476.21 17977.72 29253.48 23877.92 19061.16 15684.59 22585.68 81
cl____68.26 20368.26 19968.29 22364.98 34543.67 29065.89 27074.67 21250.04 25576.86 15982.42 22448.74 26875.38 21560.92 15989.81 13485.80 79
DIV-MVS_self_test68.27 20268.26 19968.29 22364.98 34543.67 29065.89 27074.67 21250.04 25576.86 15982.43 22348.74 26875.38 21560.94 15889.81 13485.81 75
tpm cat154.02 32752.63 33958.19 31764.85 34739.86 32666.26 26757.28 33132.16 38556.90 36670.39 35132.75 35365.30 32134.29 36958.79 40069.41 342
XXY-MVS55.19 31857.40 30648.56 36964.45 34834.84 36551.54 37553.59 35538.99 34863.79 32679.43 26756.59 22145.57 38536.92 35471.29 35765.25 367
PatchT53.35 33256.47 31243.99 38664.19 34917.46 41759.15 32643.10 39852.11 22754.74 38086.95 13929.97 37849.98 37143.62 30774.40 33264.53 375
D2MVS62.58 26861.05 27767.20 23663.85 35047.92 24956.29 34869.58 26439.32 34370.07 26578.19 28734.93 34372.68 24753.44 23383.74 23581.00 203
mvs_anonymous65.08 23765.49 23463.83 26463.79 35137.60 34666.52 26569.82 26343.44 31373.46 22086.08 17258.79 19771.75 26451.90 23975.63 31982.15 183
CostFormer57.35 30656.14 31460.97 29763.76 35238.43 33667.50 24760.22 32037.14 36159.12 35776.34 30332.78 35271.99 26039.12 33469.27 37072.47 310
Gipumacopyleft69.55 18072.83 14159.70 30663.63 35353.97 19780.08 8275.93 20264.24 9873.49 21988.93 10457.89 21062.46 33259.75 17491.55 9262.67 380
S. Galliani, K. Lasinger, K. Schindler: Massively Parallel Multiview Stereopsis by Surface Normal Diffusion. ICCV 2015
cl2267.14 21666.51 22469.03 20963.20 35443.46 29366.88 26176.25 19849.22 26274.48 20377.88 29145.49 28277.40 19760.64 16184.59 22586.24 67
gg-mvs-nofinetune55.75 31256.75 31052.72 34562.87 35528.04 39668.92 22541.36 40871.09 4650.80 39492.63 1320.74 40766.86 30829.97 38772.41 34763.25 377
gm-plane-assit62.51 35633.91 37037.25 36062.71 39272.74 24638.70 336
mvs5depth66.35 22767.98 20461.47 29162.43 35751.05 21369.38 21969.24 26756.74 16673.62 21689.06 10046.96 27758.63 34855.87 20588.49 16074.73 286
MVS-HIRNet45.53 36747.29 36740.24 39262.29 35826.82 40056.02 35237.41 41429.74 39543.69 41381.27 23733.96 34555.48 35824.46 40856.79 40438.43 413
diffmvspermissive67.42 21467.50 21267.20 23662.26 35945.21 27964.87 28477.04 19348.21 26971.74 24079.70 26358.40 19971.17 26964.99 12180.27 27485.22 85
Fangjinhua Wang, Qingshan Xu, Yew-Soon Ong, Marc Pollefeys: Lightweight and Accurate Multi-View Stereo With Confidence-Aware Diffusion Model. IEEE T-PAMI 2025
CHOSEN 280x42041.62 37839.89 38346.80 37461.81 36051.59 20933.56 41235.74 41527.48 39937.64 41753.53 40623.24 40142.09 40127.39 39758.64 40146.72 405
KD-MVS_self_test66.38 22567.51 21162.97 27661.76 36134.39 36758.11 33975.30 20750.84 24577.12 15285.42 18056.84 22069.44 28151.07 24691.16 9985.08 90
MDA-MVSNet-bldmvs62.34 27061.73 26864.16 25961.64 36249.90 22748.11 38557.24 33353.31 21680.95 10779.39 26949.00 26661.55 33745.92 29480.05 27781.03 201
miper_enhance_ethall65.86 23065.05 24668.28 22561.62 36342.62 30264.74 28577.97 18142.52 31873.42 22172.79 33549.66 25877.68 19458.12 18584.59 22584.54 110
WTY-MVS49.39 35750.31 35946.62 37561.22 36432.00 37846.61 39049.77 37433.87 37854.12 38369.55 36241.96 30345.40 38731.28 38264.42 38662.47 382
CMPMVSbinary48.73 2061.54 27760.89 27863.52 26861.08 36551.55 21068.07 24268.00 27533.88 37765.87 30781.25 23837.91 33067.71 29549.32 26282.60 24671.31 323
M. Jancosek, T. Pajdla: Multi-View Reconstruction Preserving Weakly-Supported Surfaces. CVPR 2011
test-LLR50.43 35150.69 35649.64 36160.76 36641.87 30653.18 36845.48 39143.41 31449.41 39960.47 40029.22 38144.73 39242.09 31672.14 35162.33 384
test-mter48.56 36048.20 36549.64 36160.76 36641.87 30653.18 36845.48 39131.91 38949.41 39960.47 40018.34 41344.73 39242.09 31672.14 35162.33 384
GG-mvs-BLEND52.24 34660.64 36829.21 39369.73 21542.41 40145.47 40652.33 40920.43 40868.16 29225.52 40565.42 38459.36 391
tpmvs55.84 31155.45 32057.01 32360.33 36933.20 37365.89 27059.29 32447.52 27856.04 37273.60 32831.05 37068.06 29440.64 32664.64 38569.77 338
miper_lstm_enhance61.97 27161.63 27162.98 27560.04 37045.74 27547.53 38770.95 25344.04 30473.06 22578.84 28039.72 31860.33 34055.82 20684.64 22482.88 162
dmvs_re49.91 35650.77 35547.34 37159.98 37138.86 33353.18 36853.58 35639.75 34155.06 37761.58 39636.42 33844.40 39429.15 39468.23 37558.75 392
PVSNet_036.71 2241.12 37940.78 38242.14 38859.97 37240.13 32340.97 40142.24 40530.81 39344.86 40949.41 41240.70 31245.12 38923.15 41034.96 41541.16 411
dmvs_testset45.26 36847.51 36638.49 39559.96 37314.71 41958.50 33543.39 39741.30 32651.79 39156.48 40439.44 32249.91 37321.42 41355.35 40950.85 400
new-patchmatchnet52.89 33655.76 31844.26 38559.94 3746.31 42537.36 40950.76 37141.10 32864.28 31979.82 26144.77 28648.43 37836.24 35987.61 17178.03 254
test20.0355.74 31357.51 30550.42 35659.89 37532.09 37750.63 37749.01 37850.11 25365.07 31483.23 21645.61 28148.11 37930.22 38583.82 23471.07 328
MVSTER63.29 25861.60 27268.36 22159.77 37646.21 27160.62 31871.32 24441.83 32275.40 18979.12 27530.25 37575.85 20956.30 20079.81 28283.03 159
reproduce_monomvs58.94 29658.14 30061.35 29359.70 37740.98 31360.24 32263.51 30645.85 28868.95 27975.31 31218.27 41465.82 31651.47 24279.97 27877.26 264
N_pmnet52.06 34251.11 35054.92 33359.64 37871.03 5737.42 40861.62 31733.68 37957.12 36372.10 33737.94 32931.03 41429.13 39571.35 35662.70 379
test_vis1_n_192052.96 33453.50 33351.32 35259.15 37944.90 28156.13 35164.29 30130.56 39459.87 35360.68 39840.16 31547.47 38048.25 27462.46 39161.58 386
JIA-IIPM54.03 32651.62 34561.25 29559.14 38055.21 18959.10 32847.72 38250.85 24450.31 39885.81 17820.10 40963.97 32636.16 36055.41 40864.55 374
LF4IMVS67.50 21067.31 21568.08 22658.86 38161.93 13171.43 18975.90 20344.67 30272.42 23380.20 25457.16 21470.44 27558.99 17986.12 20171.88 316
UnsupCasMVSNet_bld50.01 35551.03 35246.95 37258.61 38232.64 37448.31 38353.27 36034.27 37660.47 34771.53 34341.40 30547.07 38230.68 38360.78 39661.13 387
dongtai31.66 38432.98 38727.71 39958.58 38312.61 42145.02 39414.24 42541.90 32147.93 40143.91 41410.65 42541.81 40414.06 41720.53 41828.72 415
dp44.09 37444.88 37641.72 39158.53 38423.18 41154.70 36242.38 40334.80 37244.25 41165.61 38424.48 39844.80 39129.77 38849.42 41157.18 396
testgi54.00 32856.86 30945.45 37958.20 38525.81 40749.05 38149.50 37745.43 29467.84 29381.17 23951.81 24843.20 39929.30 39079.41 28767.34 355
wuyk23d61.97 27166.25 22649.12 36558.19 38660.77 15166.32 26652.97 36155.93 17690.62 686.91 14073.07 6035.98 41220.63 41591.63 8950.62 401
ANet_high67.08 21769.94 17758.51 31657.55 38727.09 39958.43 33676.80 19563.56 10582.40 8991.93 2359.82 18764.98 32350.10 25488.86 15783.46 144
Patchmatch-test47.93 36149.96 36041.84 38957.42 38824.26 40948.75 38241.49 40739.30 34556.79 36773.48 32930.48 37433.87 41329.29 39172.61 34667.39 353
test_vis1_n51.27 34850.41 35853.83 33756.99 38950.01 22556.75 34560.53 31925.68 40559.74 35457.86 40329.40 38047.41 38143.10 31063.66 38864.08 376
new_pmnet37.55 38239.80 38430.79 39756.83 39016.46 41839.35 40530.65 41725.59 40645.26 40761.60 39524.54 39628.02 41721.60 41252.80 41047.90 404
pmmvs346.71 36445.09 37451.55 35056.76 39148.25 24255.78 35439.53 41224.13 41050.35 39763.40 38915.90 41951.08 36829.29 39170.69 36255.33 398
sss47.59 36348.32 36345.40 38056.73 39233.96 36945.17 39348.51 38032.11 38852.37 38865.79 38340.39 31441.91 40331.85 37961.97 39360.35 388
tpmrst50.15 35451.38 34846.45 37656.05 39324.77 40864.40 29149.98 37336.14 36553.32 38669.59 36135.16 34248.69 37539.24 33258.51 40265.89 362
TESTMET0.1,145.17 36944.93 37545.89 37856.02 39438.31 33753.18 36841.94 40627.85 39744.86 40956.47 40517.93 41541.50 40538.08 34368.06 37657.85 393
ADS-MVSNet248.76 35947.25 36853.29 34355.90 39540.54 32147.34 38854.99 34831.41 39150.48 39572.06 33831.23 36654.26 36225.93 40155.93 40565.07 369
ADS-MVSNet44.62 37245.58 37141.73 39055.90 39520.83 41547.34 38839.94 41131.41 39150.48 39572.06 33831.23 36639.31 40825.93 40155.93 40565.07 369
ttmdpeth56.40 30955.45 32059.25 30955.63 39740.69 31758.94 33149.72 37536.22 36465.39 31086.97 13823.16 40256.69 35642.30 31380.74 26980.36 221
test0.0.03 147.72 36248.31 36445.93 37755.53 39829.39 39146.40 39141.21 40943.41 31455.81 37567.65 37629.22 38143.77 39825.73 40469.87 36764.62 373
UnsupCasMVSNet_eth52.26 34153.29 33649.16 36455.08 39933.67 37150.03 38058.79 32537.67 35763.43 33274.75 31641.82 30445.83 38438.59 33959.42 39967.98 352
pmmvs552.49 34052.58 34052.21 34754.99 40032.38 37555.45 35553.84 35432.15 38655.49 37674.81 31438.08 32857.37 35434.02 37074.40 33266.88 357
DSMNet-mixed43.18 37744.66 37738.75 39454.75 40128.88 39457.06 34427.42 41913.47 41747.27 40477.67 29338.83 32439.29 40925.32 40660.12 39848.08 403
MDA-MVSNet_test_wron52.57 33953.49 33549.81 36054.24 40236.47 35140.48 40346.58 38838.13 35275.47 18873.32 33141.05 31143.85 39740.98 32471.20 35869.10 346
YYNet152.58 33853.50 33349.85 35954.15 40336.45 35240.53 40246.55 38938.09 35375.52 18773.31 33241.08 31043.88 39641.10 32271.14 35969.21 344
EPMVS45.74 36646.53 36943.39 38754.14 40422.33 41455.02 35735.00 41634.69 37451.09 39370.20 35325.92 39142.04 40237.19 34955.50 40765.78 363
test_cas_vis1_n_192050.90 34950.92 35350.83 35554.12 40547.80 25151.44 37654.61 34926.95 40163.95 32360.85 39737.86 33244.97 39045.53 29762.97 39059.72 390
test_fmvs356.78 30755.99 31659.12 31153.96 40648.09 24658.76 33366.22 28227.54 39876.66 16468.69 37125.32 39551.31 36753.42 23473.38 34177.97 257
test_fmvs1_n52.70 33752.01 34454.76 33453.83 40750.36 21955.80 35365.90 28424.96 40765.39 31060.64 39927.69 38448.46 37645.88 29567.99 37765.46 365
KD-MVS_2432*160052.05 34351.58 34653.44 34152.11 40831.20 38144.88 39564.83 29641.53 32464.37 31770.03 35715.61 42064.20 32436.25 35774.61 32964.93 371
miper_refine_blended52.05 34351.58 34653.44 34152.11 40831.20 38144.88 39564.83 29641.53 32464.37 31770.03 35715.61 42064.20 32436.25 35774.61 32964.93 371
test_fmvs254.80 32154.11 33156.88 32551.76 41049.95 22656.70 34665.80 28526.22 40369.42 27265.25 38531.82 36149.98 37149.63 25870.36 36370.71 330
E-PMN45.17 36945.36 37244.60 38350.07 41142.75 30038.66 40642.29 40446.39 28439.55 41451.15 41026.00 39045.37 38837.68 34576.41 31245.69 407
PMMVS44.69 37143.95 37946.92 37350.05 41253.47 20248.08 38642.40 40222.36 41344.01 41253.05 40842.60 30145.49 38631.69 38061.36 39541.79 410
test_fmvs151.51 34750.86 35453.48 34049.72 41349.35 23554.11 36464.96 29424.64 40963.66 32859.61 40228.33 38348.45 37745.38 30067.30 38162.66 381
EMVS44.61 37344.45 37845.10 38248.91 41443.00 29837.92 40741.10 41046.75 28238.00 41648.43 41326.42 38846.27 38337.11 35175.38 32346.03 406
mvsany_test343.76 37641.01 38052.01 34848.09 41557.74 17442.47 39923.85 42223.30 41264.80 31562.17 39427.12 38540.59 40629.17 39348.11 41257.69 394
mvsany_test137.88 38035.74 38544.28 38447.28 41649.90 22736.54 41024.37 42119.56 41645.76 40553.46 40732.99 35137.97 41126.17 39935.52 41444.99 409
test_vis3_rt51.94 34551.04 35154.65 33546.32 41750.13 22344.34 39778.17 17723.62 41168.95 27962.81 39121.41 40638.52 41041.49 32072.22 35075.30 283
test_vis1_rt46.70 36545.24 37351.06 35444.58 41851.04 21439.91 40467.56 27621.84 41551.94 39050.79 41133.83 34639.77 40735.25 36661.50 39462.38 383
MVStest155.38 31754.97 32456.58 32643.72 41940.07 32459.13 32747.09 38634.83 37176.53 17284.65 18813.55 42353.30 36555.04 21380.23 27576.38 272
MVEpermissive27.91 2336.69 38335.64 38639.84 39343.37 42035.85 35719.49 41424.61 42024.68 40839.05 41562.63 39338.67 32627.10 41821.04 41447.25 41356.56 397
Simon Fuhrmann, Fabian Langguth, Michael Goesele: MVE - A Multi-View Reconstruction Environment. EUROGRAPHICS Workshops on Graphics and Cultural Heritage (2014)
PMMVS237.74 38140.87 38128.36 39842.41 4215.35 42624.61 41327.75 41832.15 38647.85 40270.27 35235.85 34029.51 41619.08 41667.85 37850.22 402
test_f43.79 37545.63 37038.24 39642.29 42238.58 33534.76 41147.68 38322.22 41467.34 30063.15 39031.82 36130.60 41539.19 33362.28 39245.53 408
kuosan22.02 38523.52 38917.54 40141.56 42311.24 42241.99 40013.39 42626.13 40428.87 41830.75 4169.72 42621.94 4204.77 42114.49 41919.43 416
DeepMVS_CXcopyleft11.83 40215.51 42413.86 42011.25 4275.76 41820.85 42026.46 41717.06 4189.22 4219.69 42013.82 42012.42 417
test_method19.26 38619.12 39019.71 4009.09 4251.91 4287.79 41653.44 3581.42 41910.27 42135.80 41517.42 41725.11 41912.44 41824.38 41732.10 414
tmp_tt11.98 38814.73 3913.72 4032.28 4264.62 42719.44 41514.50 4240.47 42121.55 4199.58 41925.78 3924.57 42211.61 41927.37 4161.96 418
test1234.43 3915.78 3940.39 4050.97 4270.28 42946.33 3920.45 4280.31 4220.62 4231.50 4220.61 4280.11 4240.56 4220.63 4210.77 420
testmvs4.06 3925.28 3950.41 4040.64 4280.16 43042.54 3980.31 4290.26 4230.50 4241.40 4230.77 4270.17 4230.56 4220.55 4220.90 419
mmdepth0.00 3930.00 3960.00 4060.00 4290.00 4310.00 4170.00 4300.00 4240.00 4250.00 4240.00 4290.00 4250.00 4240.00 4230.00 421
monomultidepth0.00 3930.00 3960.00 4060.00 4290.00 4310.00 4170.00 4300.00 4240.00 4250.00 4240.00 4290.00 4250.00 4240.00 4230.00 421
test_blank0.00 3930.00 3960.00 4060.00 4290.00 4310.00 4170.00 4300.00 4240.00 4250.00 4240.00 4290.00 4250.00 4240.00 4230.00 421
eth-test20.00 429
eth-test0.00 429
uanet_test0.00 3930.00 3960.00 4060.00 4290.00 4310.00 4170.00 4300.00 4240.00 4250.00 4240.00 4290.00 4250.00 4240.00 4230.00 421
DCPMVS0.00 3930.00 3960.00 4060.00 4290.00 4310.00 4170.00 4300.00 4240.00 4250.00 4240.00 4290.00 4250.00 4240.00 4230.00 421
cdsmvs_eth3d_5k17.71 38723.62 3880.00 4060.00 4290.00 4310.00 41770.17 2610.00 4240.00 42574.25 32368.16 1000.00 4250.00 4240.00 4230.00 421
pcd_1.5k_mvsjas5.20 3906.93 3930.00 4060.00 4290.00 4310.00 4170.00 4300.00 4240.00 4250.00 42462.39 1560.00 4250.00 4240.00 4230.00 421
sosnet-low-res0.00 3930.00 3960.00 4060.00 4290.00 4310.00 4170.00 4300.00 4240.00 4250.00 4240.00 4290.00 4250.00 4240.00 4230.00 421
sosnet0.00 3930.00 3960.00 4060.00 4290.00 4310.00 4170.00 4300.00 4240.00 4250.00 4240.00 4290.00 4250.00 4240.00 4230.00 421
uncertanet0.00 3930.00 3960.00 4060.00 4290.00 4310.00 4170.00 4300.00 4240.00 4250.00 4240.00 4290.00 4250.00 4240.00 4230.00 421
Regformer0.00 3930.00 3960.00 4060.00 4290.00 4310.00 4170.00 4300.00 4240.00 4250.00 4240.00 4290.00 4250.00 4240.00 4230.00 421
ab-mvs-re5.62 3897.50 3920.00 4060.00 4290.00 4310.00 4170.00 4300.00 4240.00 42567.46 3770.00 4290.00 4250.00 4240.00 4230.00 421
uanet0.00 3930.00 3960.00 4060.00 4290.00 4310.00 4170.00 4300.00 4240.00 4250.00 4240.00 4290.00 4250.00 4240.00 4230.00 421
WAC-MVS22.69 41236.10 361
PC_three_145246.98 28181.83 9486.28 16266.55 12184.47 7463.31 14290.78 11583.49 140
test_241102_TWO84.80 4872.61 3584.93 5989.70 8377.73 2485.89 4275.29 4594.22 5583.25 151
test_0728_THIRD74.03 2585.83 4690.41 6275.58 4085.69 4777.43 3494.74 3384.31 120
GSMVS70.05 334
sam_mvs131.41 36470.05 334
sam_mvs31.21 368
MTGPAbinary80.63 130
test_post166.63 2632.08 42030.66 37359.33 34440.34 328
test_post1.99 42130.91 37154.76 361
patchmatchnet-post68.99 36431.32 36569.38 282
MTMP84.83 3419.26 423
test9_res72.12 7291.37 9477.40 260
agg_prior270.70 7690.93 10978.55 246
test_prior470.14 6777.57 106
test_prior275.57 13658.92 14576.53 17286.78 14467.83 10569.81 8092.76 75
旧先验271.17 19645.11 29878.54 13561.28 33859.19 178
新几何271.33 192
无先验74.82 14370.94 25447.75 27676.85 20454.47 22072.09 315
原ACMM274.78 147
testdata267.30 30148.34 272
segment_acmp68.30 99
testdata168.34 23957.24 161
plane_prior585.49 3286.15 2971.09 7390.94 10784.82 98
plane_prior489.11 97
plane_prior365.67 10363.82 10278.23 137
plane_prior282.74 5565.45 80
plane_prior65.18 10880.06 8361.88 12289.91 133
n20.00 430
nn0.00 430
door-mid55.02 347
test1182.71 90
door52.91 362
HQP5-MVS58.80 168
BP-MVS67.38 104
HQP4-MVS71.59 24285.31 5483.74 134
HQP3-MVS84.12 6989.16 148
HQP2-MVS58.09 204
MDTV_nov1_ep13_2view18.41 41653.74 36631.57 39044.89 40829.90 37932.93 37571.48 319
ACMMP++_ref89.47 143
ACMMP++91.96 85
Test By Simon62.56 152