This table lists the benchmark results for the high-res multi-view scenario. The following metrics are evaluated:

(*) For exact definitions, detailing how potentially incomplete ground truth is taken into account, see our paper.

The datasets are grouped into different categories, and result averages are computed for a category and method if results of the method are available for all datasets within the category. Note that the category "all" includes both the high-res multi-view and the low-res many-view scenarios.

Methods with suffix _ROB may participate in the Robust Vision Challenge.

Click a dataset result cell to show a visualization of the reconstruction. For training datasets, ground truth and accuracy / completeness visualizations are also available. The visualizations may not work with mobile browsers.




Method Infoallhigh-res
multi-view
indooroutdoorbotani.boulde.bridgedoorexhibi.lectur.living.loungeobserv.old co.statueterrac.
sort bysort bysort bysort bysorted bysort bysort bysort bysort bysort bysort bysort bysort bysort bysort bysort by
LCM-MVSNet86.90 188.67 181.57 2591.50 163.30 12384.80 3487.77 1086.18 196.26 196.06 190.32 184.49 7068.08 9397.05 196.93 1
zzz-MVS83.01 2583.63 2581.13 3591.16 278.16 1482.72 5580.63 12872.08 3984.93 5690.79 4274.65 4984.42 7380.98 494.75 2980.82 196
MTAPA83.19 2083.87 2081.13 3591.16 278.16 1484.87 3280.63 12872.08 3984.93 5690.79 4274.65 4984.42 7380.98 494.75 2980.82 196
mPP-MVS84.01 1284.39 1382.88 890.65 481.38 487.08 1382.79 9272.41 3685.11 5590.85 4176.65 3084.89 6479.30 1794.63 3482.35 171
MP-MVScopyleft83.19 2083.54 2682.14 2290.54 579.00 1186.42 2383.59 8371.31 4381.26 10290.96 3874.57 5184.69 6878.41 2294.78 2882.74 162
Rongxuan Tan, Qing Wang, et al.: MP-MVS: Multi-Scale Windows PatchMatch and Planar Prior Multi-View Stereo.
PMVScopyleft70.70 681.70 3683.15 3477.36 8390.35 682.82 282.15 5779.22 15174.08 2287.16 3091.97 1984.80 276.97 20564.98 11993.61 6572.28 282
Y. Furukawa, J. Ponce: Accurate, dense, and robust multiview stereopsis. PAMI (2010)
PS-CasMVS80.41 5282.86 3973.07 14089.93 739.21 29977.15 11381.28 11479.74 690.87 492.73 1175.03 4584.93 6363.83 13095.19 1695.07 3
DTE-MVSNet80.35 5382.89 3872.74 15189.84 837.34 31777.16 11281.81 10480.45 490.92 392.95 774.57 5186.12 3063.65 13194.68 3394.76 6
PEN-MVS80.46 5182.91 3773.11 13989.83 939.02 30277.06 11582.61 9580.04 590.60 692.85 974.93 4785.21 5763.15 13995.15 1895.09 2
region2R83.54 1683.86 2182.58 1689.82 1077.53 2087.06 1484.23 7370.19 5183.86 7390.72 4775.20 4286.27 2279.41 1594.25 5283.95 123
ACMMPR83.62 1483.93 1982.69 1389.78 1177.51 2287.01 1584.19 7470.23 4984.49 6490.67 4875.15 4386.37 1979.58 1194.26 5184.18 119
MSP-MVS80.49 5079.67 6582.96 789.70 1277.46 2387.16 1285.10 4664.94 9081.05 10488.38 10657.10 20487.10 879.75 883.87 22484.31 116
Zhenlong Yuan, Cong Liu, Fei Shen, Zhaoxin Li, Jingguo luo, Tianlu Mao and Zhaoqi Wang: MSP-MVS: Multi-granularity Segmentation Prior Guided Multi-View Stereo. AAAI2025
CP-MVSNet79.48 6081.65 5072.98 14389.66 1339.06 30176.76 11780.46 13378.91 890.32 791.70 2468.49 9784.89 6463.40 13695.12 1995.01 4
PGM-MVS83.07 2383.25 3382.54 1889.57 1477.21 2482.04 5985.40 3967.96 6284.91 6090.88 3975.59 3886.57 1578.16 2394.71 3283.82 124
WR-MVS_H80.22 5682.17 4574.39 11789.46 1542.69 27578.24 10082.24 9878.21 1089.57 992.10 1868.05 10285.59 4766.04 11195.62 994.88 5
XVS83.51 1783.73 2282.85 1089.43 1677.61 1886.80 1884.66 5872.71 2982.87 8290.39 6173.86 5686.31 2078.84 2094.03 5784.64 100
X-MVStestdata76.81 8474.79 10382.85 1089.43 1677.61 1886.80 1884.66 5872.71 2982.87 829.95 36773.86 5686.31 2078.84 2094.03 5784.64 100
CP-MVS84.12 1084.55 1282.80 1289.42 1879.74 788.19 584.43 6571.96 4284.70 6290.56 5077.12 2686.18 2779.24 1895.36 1382.49 168
ACMMP_NAP82.33 3183.28 3179.46 5389.28 1969.09 8083.62 4484.98 4864.77 9183.97 7291.02 3775.53 4185.93 3682.00 294.36 4783.35 142
UniMVSNet_ETH3D76.74 8579.02 6869.92 18989.27 2043.81 26374.47 14771.70 22872.33 3785.50 4993.65 377.98 2276.88 20854.60 20591.64 9489.08 31
HFP-MVS83.39 1984.03 1881.48 2789.25 2175.69 2887.01 1584.27 6970.23 4984.47 6590.43 5576.79 2785.94 3379.58 1194.23 5382.82 158
#test#82.40 3082.71 4181.48 2789.25 2175.69 2884.47 3684.27 6964.45 9484.47 6590.43 5576.79 2785.94 3376.01 3994.23 5382.82 158
ACMMPcopyleft84.22 884.84 1082.35 2089.23 2376.66 2687.65 685.89 3171.03 4585.85 4190.58 4978.77 1785.78 4179.37 1695.17 1784.62 102
Qingshan Xu, Weihang Kong, Wenbing Tao, Marc Pollefeys: Multi-Scale Geometric Consistency Guided and Planar Prior Assisted Multi-View Stereo. IEEE Transactions on Pattern Analysis and Machine Intelligence
CPTT-MVS81.51 3881.76 4780.76 4089.20 2478.75 1286.48 2282.03 10168.80 5680.92 10788.52 10372.00 6882.39 10874.80 4793.04 7381.14 187
FOURS189.19 2577.84 1691.64 189.11 284.05 291.57 2
ZNCC-MVS83.12 2283.68 2381.45 2989.14 2673.28 4686.32 2485.97 3067.39 6484.02 7190.39 6174.73 4886.46 1680.73 794.43 4284.60 105
HPM-MVS++copyleft79.89 5779.80 6380.18 4589.02 2778.44 1383.49 4880.18 13964.71 9378.11 13988.39 10565.46 12883.14 9677.64 3291.20 10578.94 223
GST-MVS82.79 2783.27 3281.34 3288.99 2873.29 4585.94 2685.13 4468.58 6084.14 7090.21 7273.37 6186.41 1779.09 1993.98 6084.30 118
TSAR-MVS + MP.79.05 6478.81 6979.74 4888.94 2967.52 8786.61 2081.38 11251.71 22377.15 15191.42 3265.49 12787.20 679.44 1487.17 18184.51 110
Zhenlong Yuan, Jiakai Cao, Zhaoqi Wang, Zhaoxin Li: TSAR-MVS: Textureless-aware Segmentation and Correlative Refinement Guided Multi-View Stereo. Pattern Recognition
UA-Net81.56 3782.28 4479.40 5488.91 3069.16 7884.67 3580.01 14275.34 1779.80 11994.91 269.79 8780.25 14972.63 6394.46 3888.78 41
SMA-MVScopyleft82.12 3282.68 4280.43 4288.90 3169.52 7185.12 3084.76 5363.53 10484.23 6991.47 2972.02 6787.16 779.74 1094.36 4784.61 103
Yufeng Yin; Xiaoyan Liu; Zichao Zhang: SMA-MVS: Segmentation-Guided Multi-Scale Anchor Deformation Patch Multi-View Stereo. IEEE Transactions on Circuits and Systems for Video Technology
MP-MVS-pluss82.54 2983.46 2879.76 4788.88 3268.44 8281.57 6286.33 2263.17 11085.38 5191.26 3376.33 3284.67 6983.30 194.96 2386.17 68
MP-MVS-pluss: MP-MVS-pluss. MP-MVS-pluss
TDRefinement86.32 286.33 286.29 188.64 3381.19 588.84 490.72 178.27 987.95 1592.53 1379.37 1384.79 6774.51 5196.15 292.88 7
HPM-MVS_fast84.59 685.10 883.06 688.60 3475.83 2786.27 2586.89 1873.69 2586.17 3691.70 2478.23 2085.20 5879.45 1394.91 2588.15 45
SR-MVS84.51 785.27 682.25 2188.52 3577.71 1786.81 1785.25 4277.42 1586.15 3790.24 7081.69 585.94 3377.77 2993.58 6783.09 148
新几何169.99 18788.37 3671.34 5662.08 29243.85 28774.99 18786.11 15952.85 22570.57 26850.99 23083.23 23168.05 314
112169.23 18068.26 19372.12 16288.36 3771.40 5468.59 21762.06 29343.80 28874.75 19086.18 15452.92 22476.85 20954.47 20683.27 23068.12 313
test117284.85 485.39 583.21 388.34 3880.50 685.12 3085.22 4381.06 387.20 2890.28 6979.20 1485.58 4878.04 2794.08 5683.55 132
HPM-MVScopyleft84.12 1084.63 1182.60 1588.21 3974.40 3585.24 2987.21 1670.69 4885.14 5490.42 5778.99 1686.62 1480.83 694.93 2486.79 62
Chunlin Ren, Qingshan Xu, Shikun Zhang, Jiaqi Yang: Hierarchical Prior Mining for Non-local Multi-View Stereo. ICCV 2023
ACMM69.25 982.11 3383.31 3078.49 6888.17 4073.96 3883.11 5184.52 6466.40 7487.45 2389.16 9381.02 980.52 14474.27 5395.73 780.98 192
Qingshan Xu and Wenbing Tao: Multi-Scale Geometric Consistency Guided Multi-View Stereo. CVPR 2019
test22287.30 4169.15 7967.85 22759.59 30241.06 30673.05 21585.72 16748.03 25480.65 25966.92 319
XVG-ACMP-BASELINE80.54 4981.06 5378.98 6187.01 4272.91 4780.23 7685.56 3466.56 7385.64 4489.57 8269.12 9180.55 14372.51 6593.37 6983.48 136
xxxxxxxxxxxxxcwj80.31 5480.94 5478.42 7087.00 4367.23 9079.24 8588.61 556.65 16684.29 6789.18 9073.73 5983.22 9476.01 3993.77 6284.81 96
save fliter87.00 4367.23 9079.24 8577.94 17456.65 166
LPG-MVS_test83.47 1884.33 1480.90 3887.00 4370.41 6582.04 5986.35 2069.77 5387.75 1691.13 3481.83 386.20 2577.13 3795.96 586.08 69
LGP-MVS_train80.90 3887.00 4370.41 6586.35 2069.77 5387.75 1691.13 3481.83 386.20 2577.13 3795.96 586.08 69
OPM-MVS80.99 4681.63 5179.07 5886.86 4769.39 7479.41 8484.00 7965.64 7885.54 4889.28 8676.32 3383.47 8974.03 5493.57 6884.35 115
Ray L. Khuboni, Hongjun Xu: Octagram Propagation Matching for Multi-Scale View Stereopsis (OPM-MVS).
abl_684.92 385.70 382.57 1786.72 4879.27 887.56 786.08 2877.48 1388.12 1491.53 2781.18 884.31 7678.12 2494.47 3784.15 120
DeepC-MVS72.44 481.00 4580.83 5681.50 2686.70 4970.03 6982.06 5887.00 1759.89 13380.91 10890.53 5172.19 6588.56 173.67 5794.52 3685.92 74
Andreas Kuhn, Christian Sormann, Mattia Rossi, Oliver Erdler, Friedrich Fraundorfer: DeepC-MVS: Deep Confidence Prediction for Multi-View Stereo Reconstruction. 3DV 2020
ACMP69.50 882.64 2883.38 2980.40 4386.50 5069.44 7382.30 5686.08 2866.80 6986.70 3289.99 7581.64 685.95 3274.35 5296.11 385.81 75
Qingshan Xu and Wenbing Tao: Planar Prior Assisted PatchMatch Multi-View Stereo. AAAI 2020
XVG-OURS-SEG-HR79.62 5879.99 6178.49 6886.46 5174.79 3477.15 11385.39 4066.73 7080.39 11488.85 10174.43 5478.33 18574.73 4985.79 19482.35 171
VDDNet71.60 15373.13 13367.02 22986.29 5241.11 28569.97 19566.50 26768.72 5874.74 19191.70 2459.90 17375.81 21848.58 24991.72 9184.15 120
test_0728_SECOND76.57 9186.20 5360.57 14683.77 4285.49 3585.90 3775.86 4294.39 4383.25 144
SR-MVS-dyc-post84.75 585.26 783.21 386.19 5479.18 987.23 986.27 2377.51 1187.65 1990.73 4579.20 1485.58 4878.11 2594.46 3884.89 92
RE-MVS-def85.50 486.19 5479.18 987.23 986.27 2377.51 1187.65 1990.73 4581.38 778.11 2594.46 3884.89 92
DVP-MVScopyleft81.15 4283.12 3575.24 11086.16 5660.78 14383.77 4280.58 13172.48 3485.83 4290.41 5878.57 1885.69 4475.86 4294.39 4379.24 220
Zhenlong Yuan, Jinguo Luo, Fei Shen, Zhaoxin Li, Cong Liu, Tianlu Mao, Zhaoqi Wang: DVP-MVS: Synergize Depth-Edge and Visibility Prior for Multi-View Stereo. AAAI2025
test072686.16 5660.78 14383.81 4185.10 4672.48 3485.27 5389.96 7678.57 18
SED-MVS81.78 3583.48 2776.67 8986.12 5861.06 13783.62 4484.72 5572.61 3287.38 2589.70 8077.48 2485.89 3975.29 4594.39 4383.08 149
IU-MVS86.12 5860.90 14180.38 13545.49 27781.31 10175.64 4494.39 4384.65 99
test_241102_ONE86.12 5861.06 13784.72 5572.64 3187.38 2589.47 8377.48 2485.74 43
XVG-OURS79.51 5979.82 6278.58 6786.11 6174.96 3376.33 12384.95 5066.89 6682.75 8588.99 9866.82 11378.37 18374.80 4790.76 12382.40 170
test_part285.90 6266.44 9784.61 63
原ACMM173.90 12485.90 6265.15 10981.67 10650.97 23374.25 20086.16 15661.60 15783.54 8756.75 18291.08 11073.00 273
testdata64.13 24985.87 6463.34 12261.80 29647.83 26376.42 17486.60 14348.83 24862.31 31554.46 20881.26 25166.74 323
CNVR-MVS78.49 7178.59 7478.16 7385.86 6567.40 8878.12 10381.50 10863.92 9977.51 14886.56 14468.43 9984.82 6673.83 5591.61 9682.26 174
test_one_060185.84 6661.45 13485.63 3375.27 1985.62 4790.38 6376.72 29
NCCC78.25 7578.04 7978.89 6385.61 6769.45 7279.80 8180.99 12365.77 7775.55 18186.25 15367.42 10785.42 5070.10 7990.88 11881.81 180
TEST985.47 6869.32 7676.42 11978.69 16053.73 20476.97 15486.74 13466.84 11281.10 128
train_agg76.38 8776.55 8975.86 10285.47 6869.32 7676.42 11978.69 16054.00 19976.97 15486.74 13466.60 11681.10 12872.50 6691.56 9777.15 243
DPE-MVScopyleft82.00 3483.02 3678.95 6285.36 7067.25 8982.91 5284.98 4873.52 2685.43 5090.03 7476.37 3186.97 1174.56 5094.02 5982.62 164
Kehua Chen, Zhenlong Yuan, Tianlu Mao, Zhaoqi Wang: Dual-Level Precision Edges Guided Multi-View Stereo with Accurate Planarization. AAAI2025
HQP_MVS78.77 6778.78 7178.72 6485.18 7165.18 10782.74 5385.49 3565.45 8078.23 13689.11 9460.83 16786.15 2871.09 7490.94 11284.82 94
plane_prior785.18 7166.21 99
SteuartSystems-ACMMP83.07 2383.64 2481.35 3185.14 7371.00 5985.53 2784.78 5270.91 4685.64 4490.41 5875.55 4087.69 379.75 895.08 2085.36 82
Skip Steuart: Steuart Systems R&D Blog.
test_885.09 7467.89 8576.26 12478.66 16254.00 19976.89 15986.72 13666.60 11680.89 139
WR-MVS71.20 15572.48 14267.36 22484.98 7535.70 32764.43 27268.66 25865.05 8981.49 9986.43 14857.57 20076.48 21350.36 23593.32 7189.90 21
PS-MVSNAJss77.54 7877.35 8478.13 7584.88 7666.37 9878.55 9479.59 14753.48 20686.29 3592.43 1562.39 14980.25 14967.90 9990.61 12487.77 48
LTVRE_ROB75.46 184.22 884.98 981.94 2384.82 7775.40 3091.60 387.80 873.52 2688.90 1193.06 671.39 7581.53 12181.53 392.15 8988.91 37
Andreas Kuhn, Heiko Hirschmüller, Daniel Scharstein, Helmut Mayer: A TV Prior for High-Quality Scalable Multi-View Stereo Reconstruction. International Journal of Computer Vision 2016
mvs_tets78.93 6578.67 7379.72 4984.81 7873.93 3980.65 6676.50 18951.98 22187.40 2491.86 2176.09 3578.53 17568.58 8890.20 12986.69 64
APDe-MVS82.88 2684.14 1679.08 5784.80 7966.72 9586.54 2185.11 4572.00 4186.65 3391.75 2378.20 2187.04 977.93 2894.32 5083.47 137
MSLP-MVS++74.48 10975.78 9670.59 17484.66 8062.40 12678.65 9284.24 7260.55 12977.71 14681.98 20863.12 14277.64 19962.95 14088.14 15971.73 287
jajsoiax78.51 7078.16 7879.59 5284.65 8173.83 4180.42 6976.12 19151.33 22987.19 2991.51 2873.79 5878.44 17968.27 9190.13 13486.49 66
TranMVSNet+NR-MVSNet76.13 8877.66 8171.56 16584.61 8242.57 27770.98 18578.29 16968.67 5983.04 7989.26 8772.99 6380.75 14055.58 19895.47 1091.35 11
旧先验184.55 8360.36 14863.69 28387.05 12454.65 21783.34 22969.66 304
APD-MVScopyleft81.13 4381.73 4879.36 5584.47 8470.53 6483.85 4083.70 8169.43 5583.67 7588.96 9975.89 3686.41 1772.62 6492.95 7481.14 187
Yuesong Wang, Zhaojie Zeng and etc.: Adaptive Patch Deformation for Textureless-Resilient Multi-View Stereo. CVPR2023
plane_prior184.46 85
agg_prior175.89 8976.41 9074.31 11984.44 8666.02 10176.12 12578.62 16354.40 19176.95 15686.85 12866.44 11980.34 14672.45 6791.42 10076.57 247
agg_prior84.44 8666.02 10178.62 16376.95 15680.34 146
DeepPCF-MVS71.07 578.48 7277.14 8782.52 1984.39 8877.04 2576.35 12184.05 7756.66 16580.27 11585.31 17168.56 9687.03 1067.39 10391.26 10383.50 133
CDPH-MVS77.33 8077.06 8878.14 7484.21 8963.98 11876.07 12683.45 8454.20 19577.68 14787.18 11969.98 8485.37 5168.01 9592.72 8285.08 89
plane_prior684.18 9065.31 10660.83 167
114514_t73.40 12373.33 13073.64 12884.15 9157.11 16978.20 10180.02 14143.76 28972.55 22086.07 16164.00 13983.35 9360.14 16191.03 11180.45 206
testtj81.19 4181.70 4979.67 5183.95 9269.77 7083.58 4784.63 6072.13 3882.85 8488.36 10775.00 4686.79 1271.99 7292.84 7682.44 169
ZD-MVS83.91 9369.36 7581.09 12058.91 14382.73 8689.11 9475.77 3786.63 1372.73 6292.93 75
DeepC-MVS_fast69.89 777.17 8176.33 9279.70 5083.90 9467.94 8480.06 7983.75 8056.73 16474.88 18985.32 17065.54 12687.79 265.61 11591.14 10883.35 142
Andreas Kuhn, Christian Sormann, Mattia Rossi, Oliver Erdler, Friedrich Fraundorfer: DeepC-MVS: Deep Confidence Prediction for Multi-View Stereo Reconstruction. 3DV 2020
h-mvs3373.08 12971.61 15577.48 8083.89 9572.89 4870.47 19171.12 24354.28 19377.89 14083.41 19049.04 24580.98 13363.62 13290.77 12278.58 227
SD-MVS80.28 5581.55 5276.47 9483.57 9667.83 8683.39 5085.35 4164.42 9586.14 3887.07 12374.02 5580.97 13477.70 3192.32 8780.62 203
Zhenlong Yuan, Jiakai Cao, Zhaoxin Li, Hao Jiang and Zhaoqi Wang: SD-MVS: Segmentation-driven Deformation Multi-View Stereo with Spherical Refinement and EM optimization. AAAI2024
DU-MVS74.91 10475.57 9972.93 14583.50 9745.79 24969.47 20280.14 14065.22 8681.74 9687.08 12161.82 15581.07 13056.21 19094.98 2191.93 8
NR-MVSNet73.62 11974.05 11372.33 16083.50 9743.71 26465.65 25877.32 18264.32 9675.59 18087.08 12162.45 14881.34 12254.90 20195.63 891.93 8
test_040278.17 7679.48 6674.24 12083.50 9759.15 15972.52 16074.60 20875.34 1788.69 1391.81 2275.06 4482.37 10965.10 11788.68 15781.20 185
OPU-MVS78.65 6683.44 10066.85 9483.62 4486.12 15866.82 11386.01 3161.72 14689.79 14183.08 149
NP-MVS83.34 10163.07 12585.97 162
DVP-MVS++.81.24 3982.74 4076.76 8883.14 10260.90 14191.64 185.49 3574.03 2384.93 5690.38 6366.82 11385.90 3777.43 3390.78 12083.49 134
MSC_two_6792asdad79.02 5983.14 10267.03 9280.75 12586.24 2377.27 3594.85 2683.78 127
No_MVS79.02 5983.14 10267.03 9280.75 12586.24 2377.27 3594.85 2683.78 127
UniMVSNet (Re)75.00 10275.48 10073.56 13083.14 10247.92 22970.41 19381.04 12263.67 10279.54 12186.37 14962.83 14381.82 11657.10 18195.25 1590.94 15
hse-mvs272.32 14770.66 16877.31 8583.10 10671.77 5169.19 20771.45 23454.28 19377.89 14078.26 25649.04 24579.23 16263.62 13289.13 15380.92 193
UniMVSNet_NR-MVSNet74.90 10575.65 9772.64 15483.04 10745.79 24969.26 20578.81 15766.66 7281.74 9686.88 12763.26 14181.07 13056.21 19094.98 2191.05 13
HyFIR lowres test63.01 24460.47 26170.61 17383.04 10754.10 18759.93 30672.24 22633.67 34369.00 25875.63 27638.69 30376.93 20636.60 31975.45 29980.81 199
COLMAP_ROBcopyleft72.78 383.75 1384.11 1782.68 1482.97 10974.39 3687.18 1188.18 778.98 786.11 3991.47 2979.70 1285.76 4266.91 10895.46 1187.89 47
Johannes L. Schönberger, Enliang Zheng, Marc Pollefeys, Jan-Michael Frahm: Pixelwise View Selection for Unstructured Multi-View Stereo. ECCV 2016
AUN-MVS70.22 16467.88 20177.22 8682.96 11071.61 5269.08 20871.39 23549.17 25171.70 23078.07 26037.62 31079.21 16361.81 14489.15 15180.82 196
DP-MVS Recon73.57 12072.69 14076.23 9782.85 11163.39 12174.32 14882.96 9057.75 15070.35 24881.98 20864.34 13884.41 7549.69 23989.95 13780.89 194
APD-MVS_3200maxsize83.57 1584.33 1481.31 3382.83 11273.53 4485.50 2887.45 1474.11 2186.45 3490.52 5380.02 1184.48 7177.73 3094.34 4985.93 73
PVSNet_Blended_VisFu70.04 16668.88 18473.53 13182.71 11363.62 12074.81 13981.95 10348.53 25767.16 27579.18 24651.42 23378.38 18254.39 20979.72 27178.60 226
DPM-MVS69.98 16869.22 18072.26 16182.69 11458.82 16170.53 19081.23 11647.79 26464.16 29080.21 22851.32 23483.12 9760.14 16184.95 21074.83 260
EG-PatchMatch MVS70.70 16070.88 16470.16 18282.64 11558.80 16271.48 17573.64 21254.98 18076.55 16881.77 21161.10 16578.94 16754.87 20280.84 25772.74 277
HQP-NCC82.37 11677.32 10959.08 13771.58 232
ACMP_Plane82.37 11677.32 10959.08 13771.58 232
HQP-MVS75.24 9875.01 10275.94 10082.37 11658.80 16277.32 10984.12 7559.08 13771.58 23285.96 16358.09 19285.30 5367.38 10489.16 14983.73 130
test1276.51 9282.28 11960.94 14081.64 10773.60 20664.88 13385.19 5990.42 12783.38 140
TAMVS65.31 22163.75 23469.97 18882.23 12059.76 15466.78 24563.37 28545.20 28069.79 25379.37 24147.42 25772.17 25334.48 33085.15 20577.99 239
test_prior376.71 8677.19 8575.27 10882.15 12159.85 15275.57 13084.33 6758.92 14176.53 17086.78 13167.83 10583.39 9169.81 8292.76 8082.58 165
test_prior75.27 10882.15 12159.85 15284.33 6783.39 9182.58 165
SF-MVS80.72 4881.80 4677.48 8082.03 12364.40 11583.41 4988.46 665.28 8584.29 6789.18 9073.73 5983.22 9476.01 3993.77 6284.81 96
AdaColmapbinary74.22 11174.56 10573.20 13781.95 12460.97 13979.43 8280.90 12465.57 7972.54 22181.76 21270.98 7885.26 5447.88 25590.00 13573.37 270
PAPM_NR73.91 11374.16 11273.16 13881.90 12553.50 19281.28 6381.40 11166.17 7573.30 21283.31 19659.96 17283.10 9858.45 17381.66 24882.87 156
DP-MVS78.44 7379.29 6775.90 10181.86 12665.33 10579.05 8984.63 6074.83 2080.41 11386.27 15171.68 7183.45 9062.45 14392.40 8578.92 224
ETH3 D test640075.73 9276.00 9474.92 11181.75 12756.93 17078.31 9784.60 6252.83 21277.15 15185.14 17368.59 9584.03 7965.44 11690.20 12983.82 124
F-COLMAP75.29 9773.99 11479.18 5681.73 12871.90 5081.86 6182.98 8959.86 13472.27 22484.00 18564.56 13783.07 9951.48 22587.19 18082.56 167
SixPastTwentyTwo75.77 9076.34 9174.06 12381.69 12954.84 18276.47 11875.49 19764.10 9887.73 1892.24 1750.45 23881.30 12467.41 10291.46 9986.04 71
Vis-MVSNetpermissive74.85 10774.56 10575.72 10381.63 13064.64 11176.35 12179.06 15362.85 11273.33 21188.41 10462.54 14779.59 16063.94 12982.92 23282.94 154
Jingyang Zhang, Yao Yao, Shiwei Li, Zixin Luo, Tian Fang: Visibility-aware Multiview Stereo Network. BMVC 2020
test_djsdf78.88 6678.27 7680.70 4181.42 13171.24 5783.98 3875.72 19552.27 21687.37 2792.25 1668.04 10380.56 14172.28 6891.15 10790.32 20
3Dnovator+73.19 281.08 4480.48 5782.87 981.41 13272.03 4984.38 3786.23 2677.28 1680.65 11090.18 7359.80 17687.58 473.06 6091.34 10289.01 33
MCST-MVS73.42 12273.34 12973.63 12981.28 13359.17 15874.80 14183.13 8845.50 27572.84 21683.78 18865.15 13180.99 13264.54 12189.09 15480.73 201
MIMVSNet166.57 21269.23 17958.59 29581.26 13437.73 31464.06 27557.62 30757.02 15978.40 13590.75 4462.65 14458.10 32641.77 28789.58 14579.95 212
ACMH+66.64 1081.20 4082.48 4377.35 8481.16 13562.39 12780.51 6787.80 873.02 2887.57 2191.08 3680.28 1082.44 10764.82 12096.10 487.21 56
MVS_111021_HR72.98 13672.97 13872.99 14280.82 13665.47 10468.81 21272.77 21957.67 15375.76 17882.38 20571.01 7777.17 20361.38 14886.15 19076.32 248
9.1480.22 5980.68 13780.35 7287.69 1159.90 13283.00 8088.20 11074.57 5181.75 11973.75 5693.78 61
ETH3D-3000-0.179.14 6379.80 6377.16 8780.67 13864.57 11280.26 7487.60 1260.74 12782.47 8888.03 11571.73 7081.81 11773.12 5993.61 6585.09 87
OMC-MVS79.41 6178.79 7081.28 3480.62 13970.71 6380.91 6584.76 5362.54 11481.77 9486.65 14071.46 7383.53 8867.95 9892.44 8489.60 23
OurMVSNet-221017-078.57 6978.53 7578.67 6580.48 14064.16 11680.24 7582.06 10061.89 11888.77 1293.32 457.15 20282.60 10670.08 8092.80 7889.25 27
CDS-MVSNet64.33 23362.66 24669.35 19480.44 14158.28 16665.26 26265.66 27044.36 28567.30 27475.54 27743.27 27571.77 25937.68 31184.44 21778.01 238
Khang Truong Giang, Soohwan Song, Sungho Jo: Curvature-guided dynamic scale networks for Multi-view Stereo. ICLR 2022
PLCcopyleft62.01 1671.79 15270.28 17076.33 9580.31 14268.63 8178.18 10281.24 11554.57 18967.09 27680.63 22359.44 17781.74 12046.91 26284.17 21978.63 225
Jie Liao, Yanping Fu, Qingan Yan, Chunxia xiao: Pyramid Multi-View Stereo with Local Consistency. Pacific Graphics 2019
ETH3D cwj APD-0.1678.38 7478.72 7277.38 8280.09 14366.16 10079.08 8886.13 2757.55 15680.93 10687.76 11871.98 6982.73 10472.11 7192.83 7783.25 144
CHOSEN 1792x268858.09 27956.30 29063.45 25779.95 14450.93 20454.07 32865.59 27128.56 35861.53 30474.33 29041.09 28966.52 29833.91 33367.69 33972.92 274
K. test v373.67 11773.61 12473.87 12579.78 14555.62 18074.69 14562.04 29566.16 7684.76 6193.23 549.47 24280.97 13465.66 11486.67 18785.02 91
VPNet65.58 21967.56 20359.65 28979.72 14630.17 35360.27 30462.14 29054.19 19671.24 23986.63 14158.80 18567.62 28744.17 27590.87 11981.18 186
ACMH63.62 1477.50 7980.11 6069.68 19079.61 14756.28 17478.81 9083.62 8263.41 10887.14 3190.23 7176.11 3473.32 24067.58 10094.44 4179.44 218
Qingshan Xu and Wenbing Tao: Multi-Scale Geometric Consistency Guided Multi-View Stereo. CVPR 2019
lessismore_v072.75 15079.60 14856.83 17357.37 31083.80 7489.01 9747.45 25678.74 17164.39 12386.49 18982.69 163
MVS_111021_LR72.10 14971.82 15172.95 14479.53 14973.90 4070.45 19266.64 26656.87 16176.81 16381.76 21268.78 9371.76 26061.81 14483.74 22673.18 272
Test_1112_low_res58.78 27658.69 27359.04 29379.41 15038.13 31057.62 31666.98 26534.74 33659.62 31877.56 26442.92 27863.65 31038.66 30370.73 32475.35 257
CSCG74.12 11274.39 10873.33 13379.35 15161.66 13377.45 10881.98 10262.47 11679.06 12780.19 23061.83 15478.79 17059.83 16587.35 17479.54 217
MVP-Stereo61.56 25759.22 26868.58 20979.28 15260.44 14769.20 20671.57 23043.58 29256.42 32878.37 25539.57 30076.46 21434.86 32960.16 35168.86 312
Qingsong Yan: MVP-Stereo: A Parallel Multi-View Patchmatch Stereo Method with Dilation Matching for Photogrammetric Application.
MG-MVS70.47 16371.34 16067.85 21879.26 15340.42 29474.67 14675.15 20458.41 14468.74 26488.14 11456.08 21283.69 8359.90 16481.71 24779.43 219
IS-MVSNet75.10 10075.42 10174.15 12279.23 15448.05 22779.43 8278.04 17270.09 5279.17 12688.02 11653.04 22383.60 8558.05 17693.76 6490.79 17
FC-MVSNet-test73.32 12574.78 10468.93 20379.21 15536.57 31971.82 17379.54 14957.63 15582.57 8790.38 6359.38 18078.99 16657.91 17794.56 3591.23 12
AllTest77.66 7777.43 8278.35 7179.19 15670.81 6078.60 9388.64 365.37 8380.09 11788.17 11170.33 8178.43 18055.60 19590.90 11685.81 75
TestCases78.35 7179.19 15670.81 6088.64 365.37 8380.09 11788.17 11170.33 8178.43 18055.60 19590.90 11685.81 75
xiu_mvs_v1_base_debu67.87 19867.07 21070.26 17979.13 15861.90 13067.34 23471.25 23947.98 26067.70 27074.19 29561.31 16072.62 24756.51 18478.26 28376.27 249
xiu_mvs_v1_base67.87 19867.07 21070.26 17979.13 15861.90 13067.34 23471.25 23947.98 26067.70 27074.19 29561.31 16072.62 24756.51 18478.26 28376.27 249
xiu_mvs_v1_base_debi67.87 19867.07 21070.26 17979.13 15861.90 13067.34 23471.25 23947.98 26067.70 27074.19 29561.31 16072.62 24756.51 18478.26 28376.27 249
VDD-MVS70.81 15971.44 15968.91 20479.07 16146.51 24467.82 22870.83 24761.23 12274.07 20388.69 10259.86 17475.62 22151.11 22890.28 12884.61 103
TSAR-MVS + GP.73.08 12971.60 15677.54 7978.99 16270.73 6274.96 13669.38 25460.73 12874.39 19978.44 25457.72 19982.78 10260.16 16089.60 14379.11 222
FIs72.56 14473.80 11768.84 20678.74 16337.74 31371.02 18479.83 14356.12 17080.88 10989.45 8458.18 18978.28 18656.63 18393.36 7090.51 19
v7n79.37 6280.41 5876.28 9678.67 16455.81 17779.22 8782.51 9770.72 4787.54 2292.44 1468.00 10481.34 12272.84 6191.72 9191.69 10
LS3D80.99 4680.85 5581.41 3078.37 16571.37 5587.45 885.87 3277.48 1381.98 9189.95 7769.14 9085.26 5466.15 10991.24 10487.61 51
CNLPA73.44 12173.03 13674.66 11278.27 16675.29 3175.99 12778.49 16565.39 8275.67 17983.22 20061.23 16366.77 29653.70 21585.33 20181.92 179
EPP-MVSNet73.86 11473.38 12775.31 10778.19 16753.35 19480.45 6877.32 18265.11 8876.47 17286.80 12949.47 24283.77 8253.89 21392.72 8288.81 40
PCF-MVS63.80 1372.70 14271.69 15275.72 10378.10 16860.01 15173.04 15581.50 10845.34 27979.66 12084.35 18165.15 13182.65 10548.70 24789.38 14884.50 111
Andreas Kuhn, Shan Lin, Oliver Erdler: Plane Completion and Filtering for Multi-View Stereo Reconstruction. GCPR 2019
GeoE73.14 12773.77 11971.26 16978.09 16952.64 19774.32 14879.56 14856.32 16976.35 17583.36 19570.76 7977.96 19363.32 13781.84 24383.18 147
LFMVS67.06 20967.89 20064.56 24678.02 17038.25 30870.81 18959.60 30165.18 8771.06 24286.56 14443.85 27275.22 22546.35 26589.63 14280.21 210
anonymousdsp78.60 6877.80 8081.00 3778.01 17174.34 3780.09 7776.12 19150.51 23889.19 1090.88 3971.45 7477.78 19773.38 5890.60 12590.90 16
BH-untuned69.39 17769.46 17569.18 19677.96 17256.88 17168.47 22277.53 17956.77 16377.79 14479.63 23760.30 17180.20 15246.04 26680.65 25970.47 296
test_part176.97 8378.21 7773.25 13677.87 17345.76 25178.27 9987.26 1566.69 7185.31 5291.43 3155.95 21384.24 7865.71 11395.43 1289.75 22
1112_ss59.48 27158.99 27160.96 28177.84 17442.39 27861.42 29668.45 26037.96 32259.93 31767.46 34345.11 26565.07 30340.89 29271.81 31875.41 255
PS-MVSNAJ64.27 23463.73 23565.90 23977.82 17551.42 20263.33 28472.33 22445.09 28261.60 30368.04 34162.39 14973.95 23849.07 24373.87 31072.34 280
ambc70.10 18577.74 17650.21 20974.28 15077.93 17579.26 12588.29 10954.11 22079.77 15764.43 12291.10 10980.30 208
xiu_mvs_v2_base64.43 23163.96 23265.85 24077.72 17751.32 20363.63 28172.31 22545.06 28361.70 30269.66 33062.56 14573.93 23949.06 24473.91 30972.31 281
Anonymous2023121175.54 9477.19 8570.59 17477.67 17845.70 25374.73 14380.19 13868.80 5682.95 8192.91 866.26 12076.76 21158.41 17492.77 7989.30 26
FMVSNet171.06 15672.48 14266.81 23077.65 17940.68 29071.96 16773.03 21461.14 12379.45 12390.36 6660.44 16975.20 22650.20 23688.05 16184.54 106
FPMVS59.43 27260.07 26357.51 29977.62 18071.52 5362.33 29150.92 33657.40 15769.40 25580.00 23239.14 30161.92 31637.47 31466.36 34039.09 363
Effi-MVS+-dtu75.43 9572.28 14584.91 277.05 18183.58 178.47 9577.70 17657.68 15174.89 18878.13 25964.80 13484.26 7756.46 18785.32 20286.88 61
mvs-test173.81 11570.69 16783.18 577.05 18181.39 375.39 13277.70 17657.68 15171.19 24174.72 28564.80 13483.66 8456.46 18781.19 25284.50 111
CLD-MVS72.88 13872.36 14474.43 11677.03 18354.30 18668.77 21583.43 8552.12 21876.79 16474.44 28969.54 8883.91 8055.88 19393.25 7285.09 87
Zhaoxin Li, Wangmeng Zuo, Zhaoqi Wang, Lei Zhang: Confidence-based Large-scale Dense Multi-view Stereo. IEEE Transaction on Image Processing, 2020
Baseline_NR-MVSNet70.62 16173.19 13162.92 26576.97 18434.44 33568.84 21070.88 24660.25 13079.50 12290.53 5161.82 15569.11 27854.67 20495.27 1485.22 83
ITE_SJBPF80.35 4476.94 18573.60 4280.48 13266.87 6783.64 7686.18 15470.25 8379.90 15661.12 15288.95 15587.56 52
jason64.47 23062.84 24469.34 19576.91 18659.20 15567.15 23865.67 26935.29 33365.16 28476.74 27044.67 26770.68 26654.74 20379.28 27478.14 235
jason: jason.
ETV-MVS72.72 14172.16 14874.38 11876.90 18755.95 17573.34 15484.67 5762.04 11772.19 22770.81 32065.90 12485.24 5658.64 17184.96 20981.95 178
Anonymous2024052972.56 14473.79 11868.86 20576.89 18845.21 25568.80 21477.25 18467.16 6576.89 15990.44 5465.95 12374.19 23750.75 23190.00 13587.18 58
DROMVSNet77.08 8277.39 8376.14 9976.86 18956.87 17280.32 7387.52 1363.45 10674.66 19584.52 17869.87 8684.94 6269.76 8489.59 14486.60 65
PM-MVS64.49 22963.61 23667.14 22876.68 19075.15 3268.49 22142.85 35451.17 23277.85 14280.51 22445.76 25866.31 29952.83 22076.35 29159.96 346
TransMVSNet (Re)69.62 17271.63 15463.57 25576.51 19135.93 32565.75 25771.29 23861.05 12475.02 18689.90 7865.88 12570.41 27249.79 23889.48 14684.38 114
BH-RMVSNet68.69 18968.20 19770.14 18376.40 19253.90 19064.62 26973.48 21358.01 14773.91 20581.78 21059.09 18278.22 18748.59 24877.96 28678.31 230
PHI-MVS74.92 10374.36 11076.61 9076.40 19262.32 12880.38 7083.15 8754.16 19773.23 21380.75 22162.19 15283.86 8168.02 9490.92 11583.65 131
UGNet70.20 16569.05 18173.65 12776.24 19463.64 11975.87 12872.53 22261.48 12060.93 31186.14 15752.37 22777.12 20450.67 23285.21 20380.17 211
Wanjuan Su, Qingshan Xu, Wenbing Tao: Uncertainty-guided Multi-view Stereo Network for Depth Estimation. IEEE Transactions on Circuits and Systems for Video Technology, 2022
PatchMatch-RL58.68 27757.72 28061.57 27376.21 19573.59 4361.83 29349.00 34347.30 26861.08 30768.97 33550.16 23959.01 32336.06 32568.84 33452.10 353
VPA-MVSNet68.71 18870.37 16963.72 25476.13 19638.06 31164.10 27471.48 23356.60 16874.10 20288.31 10864.78 13669.72 27347.69 25790.15 13283.37 141
PAPM61.79 25660.37 26266.05 23776.09 19741.87 28169.30 20476.79 18840.64 31053.80 34079.62 23844.38 26982.92 10129.64 34873.11 31373.36 271
BH-w/o64.81 22664.29 23166.36 23576.08 19854.71 18365.61 25975.23 20350.10 24271.05 24371.86 31554.33 21979.02 16538.20 30876.14 29365.36 328
pmmvs671.82 15173.66 12266.31 23675.94 19942.01 28066.99 24172.53 22263.45 10676.43 17392.78 1072.95 6469.69 27451.41 22690.46 12687.22 55
CANet73.00 13471.84 15076.48 9375.82 20061.28 13574.81 13980.37 13663.17 11062.43 30180.50 22561.10 16585.16 6064.00 12684.34 21883.01 153
pmmvs-eth3d64.41 23263.27 24067.82 22075.81 20160.18 14969.49 20162.05 29438.81 31874.13 20182.23 20643.76 27368.65 28042.53 28180.63 26174.63 261
CS-MVS-test73.63 11873.74 12073.30 13575.80 20251.70 19977.02 11686.83 1961.29 12168.47 26579.23 24365.42 12985.14 6164.04 12585.55 19683.07 151
TR-MVS64.59 22763.54 23767.73 22275.75 20350.83 20563.39 28370.29 25049.33 24971.55 23674.55 28750.94 23578.46 17840.43 29475.69 29573.89 267
tttt051769.46 17567.79 20274.46 11475.34 20452.72 19675.05 13563.27 28654.69 18678.87 12984.37 18026.63 35281.15 12663.95 12787.93 16589.51 24
cascas64.59 22762.77 24570.05 18675.27 20550.02 21061.79 29471.61 22942.46 29963.68 29568.89 33749.33 24480.35 14547.82 25684.05 22179.78 215
API-MVS70.97 15871.51 15869.37 19275.20 20655.94 17680.99 6476.84 18662.48 11571.24 23977.51 26561.51 15980.96 13852.04 22185.76 19571.22 291
EIA-MVS68.59 19067.16 20972.90 14675.18 20755.64 17969.39 20381.29 11352.44 21564.53 28670.69 32160.33 17082.30 11154.27 21176.31 29280.75 200
PAPR69.20 18168.66 19070.82 17175.15 20847.77 23175.31 13381.11 11849.62 24866.33 27879.27 24261.53 15882.96 10048.12 25381.50 25081.74 181
MVSFormer69.93 16969.03 18272.63 15574.93 20959.19 15683.98 3875.72 19552.27 21663.53 29776.74 27043.19 27680.56 14172.28 6878.67 27978.14 235
lupinMVS63.36 23961.49 25468.97 20174.93 20959.19 15665.80 25664.52 28034.68 33863.53 29774.25 29343.19 27670.62 26753.88 21478.67 27977.10 244
nrg03074.87 10675.99 9571.52 16674.90 21149.88 21474.10 15182.58 9654.55 19083.50 7789.21 8971.51 7275.74 22061.24 14992.34 8688.94 36
TAPA-MVS65.27 1275.16 9974.29 11177.77 7774.86 21268.08 8377.89 10484.04 7855.15 17976.19 17783.39 19166.91 11180.11 15460.04 16390.14 13385.13 86
Andrea Romanoni, Matteo Matteucci: TAPA-MVS: Textureless-Aware PAtchMatch Multi-View Stereo. ICCV 2019
RPSCF75.76 9174.37 10979.93 4674.81 21377.53 2077.53 10779.30 15059.44 13678.88 12889.80 7971.26 7673.09 24257.45 17880.89 25689.17 30
EI-MVSNet-Vis-set72.78 14071.87 14975.54 10574.77 21459.02 16072.24 16271.56 23163.92 9978.59 13071.59 31666.22 12178.60 17367.58 10080.32 26289.00 34
Regformer-372.86 13972.28 14574.62 11374.74 21560.18 14972.91 15671.76 22764.74 9278.42 13472.07 31067.00 11076.28 21567.97 9780.91 25487.39 53
Regformer-474.64 10873.67 12177.55 7874.74 21564.49 11472.91 15675.42 19967.45 6380.24 11672.07 31068.98 9280.19 15370.29 7880.91 25487.98 46
v124073.06 13173.14 13272.84 14874.74 21547.27 23971.88 17281.11 11851.80 22282.28 9084.21 18256.22 21182.34 11068.82 8687.17 18188.91 37
v192192072.96 13772.98 13772.89 14774.67 21847.58 23471.92 17080.69 12751.70 22481.69 9883.89 18656.58 20982.25 11268.34 9087.36 17388.82 39
EI-MVSNet-UG-set72.63 14371.68 15375.47 10674.67 21858.64 16572.02 16571.50 23263.53 10478.58 13271.39 31965.98 12278.53 17567.30 10680.18 26489.23 28
Fast-Effi-MVS+68.81 18668.30 19270.35 17874.66 22048.61 22066.06 25178.32 16750.62 23771.48 23875.54 27768.75 9479.59 16050.55 23478.73 27882.86 157
v119273.40 12373.42 12573.32 13474.65 22148.67 21972.21 16381.73 10552.76 21381.85 9284.56 17757.12 20382.24 11368.58 8887.33 17589.06 32
v14419272.99 13573.06 13572.77 14974.58 22247.48 23571.90 17180.44 13451.57 22581.46 10084.11 18458.04 19682.12 11467.98 9687.47 17188.70 42
MAR-MVS67.72 20166.16 21672.40 15874.45 22364.99 11074.87 13777.50 18048.67 25565.78 28268.58 34057.01 20677.79 19646.68 26481.92 24174.42 263
Zhenyu Xu, Yiguang Liu, Xuelei Shi, Ying Wang, Yunan Zheng: MARMVS: Matching Ambiguity Reduced Multiple View Stereo for Efficient Large Scale Scene Reconstruction. CVPR 2020
v1075.69 9376.20 9374.16 12174.44 22448.69 21875.84 12982.93 9159.02 14085.92 4089.17 9258.56 18782.74 10370.73 7689.14 15291.05 13
canonicalmvs72.29 14873.38 12769.04 19874.23 22547.37 23773.93 15283.18 8654.36 19276.61 16781.64 21472.03 6675.34 22457.12 18087.28 17784.40 113
Anonymous20240521166.02 21566.89 21363.43 25874.22 22638.14 30959.00 31066.13 26863.33 10969.76 25485.95 16451.88 22870.50 26944.23 27487.52 16981.64 182
Regformer-174.28 11073.63 12376.21 9874.22 22664.12 11772.77 15875.46 19866.86 6879.27 12472.08 30869.29 8978.74 17168.73 8784.02 22285.77 80
Regformer-275.32 9674.47 10777.88 7674.22 22666.65 9672.77 15877.54 17868.47 6180.44 11272.08 30870.60 8080.97 13470.08 8084.02 22286.01 72
Effi-MVS+72.10 14972.28 14571.58 16474.21 22950.33 20774.72 14482.73 9362.62 11370.77 24476.83 26969.96 8580.97 13460.20 15878.43 28183.45 139
v114473.29 12673.39 12673.01 14174.12 23048.11 22672.01 16681.08 12153.83 20381.77 9484.68 17558.07 19581.91 11568.10 9286.86 18388.99 35
EI-MVSNet69.61 17369.01 18371.41 16873.94 23149.90 21171.31 18071.32 23658.22 14575.40 18470.44 32258.16 19075.85 21662.51 14179.81 26888.48 43
CVMVSNet59.21 27358.44 27661.51 27473.94 23147.76 23271.31 18064.56 27926.91 36260.34 31370.44 32236.24 31367.65 28653.57 21668.66 33569.12 310
IterMVS-LS73.01 13373.12 13472.66 15373.79 23349.90 21171.63 17478.44 16658.22 14580.51 11186.63 14158.15 19179.62 15862.51 14188.20 15888.48 43
Fangjinhua Wang, Silvano Galliani, Christoph Vogel, Marc Pollefeys: IterMVS: Iterative Probability Estimation for Efficient Multi-View Stereo.
alignmvs70.54 16271.00 16369.15 19773.50 23448.04 22869.85 19879.62 14453.94 20276.54 16982.00 20759.00 18374.68 23257.32 17987.21 17984.72 98
Fast-Effi-MVS+-dtu70.00 16768.74 18873.77 12673.47 23564.53 11371.36 17878.14 17155.81 17468.84 26374.71 28665.36 13075.75 21952.00 22279.00 27581.03 189
v875.07 10175.64 9873.35 13273.42 23647.46 23675.20 13481.45 11060.05 13185.64 4489.26 8758.08 19481.80 11869.71 8587.97 16490.79 17
tfpnnormal66.48 21367.93 19962.16 27073.40 23736.65 31863.45 28264.99 27555.97 17172.82 21787.80 11757.06 20569.10 27948.31 25287.54 16880.72 202
IterMVS-SCA-FT67.68 20266.07 21772.49 15673.34 23858.20 16763.80 27865.55 27248.10 25976.91 15882.64 20245.20 26378.84 16861.20 15077.89 28780.44 207
VNet64.01 23765.15 22360.57 28373.28 23935.61 32857.60 31767.08 26454.61 18866.76 27783.37 19356.28 21066.87 29242.19 28385.20 20479.23 221
3Dnovator65.95 1171.50 15471.22 16172.34 15973.16 24063.09 12478.37 9678.32 16757.67 15372.22 22684.61 17654.77 21578.47 17760.82 15581.07 25375.45 254
GBi-Net68.30 19368.79 18566.81 23073.14 24140.68 29071.96 16773.03 21454.81 18174.72 19290.36 6648.63 25175.20 22647.12 25985.37 19884.54 106
test168.30 19368.79 18566.81 23073.14 24140.68 29071.96 16773.03 21454.81 18174.72 19290.36 6648.63 25175.20 22647.12 25985.37 19884.54 106
FMVSNet267.48 20468.21 19665.29 24173.14 24138.94 30368.81 21271.21 24254.81 18176.73 16586.48 14648.63 25174.60 23347.98 25486.11 19282.35 171
thisisatest053067.05 21065.16 22172.73 15273.10 24450.55 20671.26 18263.91 28250.22 24074.46 19880.75 22126.81 35180.25 14959.43 16786.50 18887.37 54
pm-mvs168.40 19169.85 17364.04 25273.10 24439.94 29664.61 27070.50 24855.52 17673.97 20489.33 8563.91 14068.38 28249.68 24088.02 16283.81 126
pmmvs460.78 26259.04 27066.00 23873.06 24657.67 16864.53 27160.22 29936.91 32765.96 27977.27 26639.66 29968.54 28138.87 30174.89 30371.80 286
bset_n11_16_dypcd66.91 21165.84 21970.12 18472.95 24753.54 19163.64 28068.65 25948.54 25672.54 22174.28 29240.58 29378.54 17463.52 13587.82 16678.29 231
v2v48272.55 14672.58 14172.43 15772.92 24846.72 24271.41 17779.13 15255.27 17781.17 10385.25 17255.41 21481.13 12767.25 10785.46 19789.43 25
MIMVSNet54.39 29456.12 29249.20 32172.57 24930.91 35159.98 30548.43 34541.66 30255.94 33083.86 18741.19 28850.42 33426.05 35575.38 30066.27 324
Patchmatch-RL test59.95 26859.12 26962.44 26872.46 25054.61 18559.63 30747.51 34741.05 30774.58 19674.30 29131.06 33865.31 30151.61 22479.85 26767.39 316
CL-MVSNet_self_test62.44 25163.40 23859.55 29072.34 25132.38 34456.39 31964.84 27651.21 23167.46 27381.01 22050.75 23663.51 31138.47 30688.12 16082.75 161
Vis-MVSNet (Re-imp)62.74 24863.21 24161.34 27772.19 25231.56 34867.31 23753.87 32453.60 20569.88 25283.37 19340.52 29470.98 26541.40 28886.78 18681.48 184
thres100view90061.17 25961.09 25661.39 27672.14 25335.01 33165.42 26156.99 31455.23 17870.71 24579.90 23332.07 33072.09 25435.61 32681.73 24477.08 245
ab-mvs64.11 23565.13 22461.05 27971.99 25438.03 31267.59 22968.79 25749.08 25365.32 28386.26 15258.02 19766.85 29439.33 29879.79 27078.27 233
thres600view761.82 25561.38 25563.12 26171.81 25534.93 33264.64 26856.99 31454.78 18570.33 24979.74 23532.07 33072.42 25238.61 30483.46 22882.02 176
QAPM69.18 18269.26 17868.94 20271.61 25652.58 19880.37 7178.79 15949.63 24773.51 20785.14 17353.66 22179.12 16455.11 20075.54 29775.11 258
baseline73.10 12873.96 11570.51 17671.46 25746.39 24772.08 16484.40 6655.95 17276.62 16686.46 14767.20 10878.03 19264.22 12487.27 17887.11 59
casdiffmvs73.06 13173.84 11670.72 17271.32 25846.71 24370.93 18684.26 7155.62 17577.46 14987.10 12067.09 10977.81 19563.95 12786.83 18487.64 50
RRT_MVS73.80 11671.19 16281.60 2471.04 25970.33 6778.78 9174.91 20556.96 16077.83 14385.56 16832.82 32387.39 571.16 7391.68 9387.07 60
Anonymous2023120654.13 29555.82 29349.04 32470.89 26035.96 32451.73 33350.87 33734.86 33462.49 30079.22 24442.52 28244.29 35127.95 35381.88 24266.88 320
tfpn200view960.35 26659.97 26461.51 27470.78 26135.35 32963.27 28557.47 30853.00 21068.31 26677.09 26732.45 32772.09 25435.61 32681.73 24477.08 245
thres40060.77 26359.97 26463.15 26070.78 26135.35 32963.27 28557.47 30853.00 21068.31 26677.09 26732.45 32772.09 25435.61 32681.73 24482.02 176
MSDG67.47 20567.48 20667.46 22370.70 26354.69 18466.90 24378.17 17060.88 12670.41 24774.76 28361.22 16473.18 24147.38 25876.87 28974.49 262
CS-MVS69.29 17969.70 17468.07 21670.59 26442.36 27969.70 20084.56 6353.13 20867.96 26876.74 27059.41 17883.56 8660.33 15784.84 21178.28 232
test_yl65.11 22265.09 22665.18 24270.59 26440.86 28763.22 28772.79 21757.91 14868.88 26179.07 24942.85 27974.89 23045.50 26984.97 20679.81 213
DCV-MVSNet65.11 22265.09 22665.18 24270.59 26440.86 28763.22 28772.79 21757.91 14868.88 26179.07 24942.85 27974.89 23045.50 26984.97 20679.81 213
OpenMVScopyleft62.51 1568.76 18768.75 18768.78 20770.56 26753.91 18978.29 9877.35 18148.85 25470.22 25083.52 18952.65 22676.93 20655.31 19981.99 24075.49 253
DELS-MVS68.83 18568.31 19170.38 17770.55 26848.31 22263.78 27982.13 9954.00 19968.96 26075.17 28158.95 18480.06 15558.55 17282.74 23482.76 160
Christian Sormann, Emanuele Santellani, Mattia Rossi, Andreas Kuhn, Friedrich Fraundorfer: DELS-MVS: Deep Epipolar Line Search for Multi-View Stereo. Winter Conference on Applications of Computer Vision (WACV), 2023
LCM-MVSNet-Re69.10 18371.57 15761.70 27270.37 26934.30 33761.45 29579.62 14456.81 16289.59 888.16 11368.44 9872.94 24342.30 28287.33 17577.85 240
SCA58.57 27858.04 27860.17 28670.17 27041.07 28665.19 26353.38 32943.34 29661.00 31073.48 29945.20 26369.38 27640.34 29570.31 32670.05 300
ET-MVSNet_ETH3D63.32 24060.69 26071.20 17070.15 27155.66 17865.02 26564.32 28143.28 29768.99 25972.05 31425.46 35878.19 19054.16 21282.80 23379.74 216
PVSNet_BlendedMVS65.38 22064.30 23068.61 20869.81 27249.36 21565.60 26078.96 15445.50 27559.98 31478.61 25251.82 22978.20 18844.30 27284.11 22078.27 233
PVSNet_Blended62.90 24661.64 25166.69 23369.81 27249.36 21561.23 29878.96 15442.04 30059.98 31468.86 33851.82 22978.20 18844.30 27277.77 28872.52 278
OpenMVS_ROBcopyleft54.93 1763.23 24263.28 23963.07 26269.81 27245.34 25468.52 22067.14 26343.74 29070.61 24679.22 24447.90 25572.66 24648.75 24673.84 31171.21 292
FMVSNet365.00 22565.16 22164.52 24769.47 27537.56 31666.63 24670.38 24951.55 22674.72 19283.27 19737.89 30974.44 23547.12 25985.37 19881.57 183
MVS_030462.51 25062.27 24863.25 25969.39 27648.47 22164.05 27662.48 28859.69 13554.10 33981.04 21945.71 25966.31 29941.38 28982.58 23674.96 259
MS-PatchMatch55.59 28954.89 29757.68 29869.18 27749.05 21761.00 30062.93 28735.98 33058.36 32168.93 33636.71 31266.59 29737.62 31363.30 34757.39 349
baseline157.82 28158.36 27756.19 30269.17 27830.76 35262.94 28955.21 32046.04 27463.83 29378.47 25341.20 28763.68 30939.44 29768.99 33374.13 264
v14869.38 17869.39 17669.36 19369.14 27944.56 25868.83 21172.70 22054.79 18478.59 13084.12 18354.69 21676.74 21259.40 16882.20 23886.79 62
CANet_DTU64.04 23663.83 23364.66 24568.39 28042.97 27373.45 15374.50 20952.05 22054.78 33475.44 28043.99 27170.42 27153.49 21778.41 28280.59 204
EU-MVSNet60.82 26160.80 25960.86 28268.37 28141.16 28472.27 16168.27 26126.96 36169.08 25775.71 27532.09 32967.44 28855.59 19778.90 27673.97 265
PVSNet43.83 2151.56 30951.17 31252.73 31168.34 28238.27 30748.22 34053.56 32736.41 32854.29 33764.94 35034.60 31754.20 33230.34 34369.87 32965.71 327
EPNet69.10 18367.32 20774.46 11468.33 28361.27 13677.56 10663.57 28460.95 12556.62 32782.75 20151.53 23281.24 12554.36 21090.20 12980.88 195
Wanjuan Su, Wenbing Tao: Efficient Edge-Preserving Multi-View Stereo Network for Depth Estimation. AAAI 2023
IB-MVS49.67 1859.69 27056.96 28567.90 21768.19 28450.30 20861.42 29665.18 27447.57 26655.83 33167.15 34723.77 36379.60 15943.56 27879.97 26673.79 268
Christian Sormann, Mattia Rossi, Andreas Kuhn and Friedrich Fraundorfer: IB-MVS: An Iterative Algorithm for Deep Multi-View Stereo based on Binary Decisions. BMVC 2021
MVS60.62 26459.97 26462.58 26768.13 28547.28 23868.59 21773.96 21132.19 34759.94 31668.86 33850.48 23777.64 19941.85 28675.74 29462.83 338
eth_miper_zixun_eth69.42 17668.73 18971.50 16767.99 28646.42 24567.58 23078.81 15750.72 23678.13 13880.34 22750.15 24080.34 14660.18 15984.65 21287.74 49
TinyColmap67.98 19769.28 17764.08 25067.98 28746.82 24170.04 19475.26 20253.05 20977.36 15086.79 13059.39 17972.59 25045.64 26888.01 16372.83 275
EPNet_dtu58.93 27558.52 27460.16 28767.91 28847.70 23369.97 19558.02 30549.73 24547.28 35573.02 30438.14 30562.34 31436.57 32085.99 19370.43 297
Wanjuan Su, Wenbing Tao: Efficient Edge-Preserving Multi-View Stereo Network for Depth Estimation. AAAI 2023
thres20057.55 28257.02 28459.17 29167.89 28934.93 33258.91 31257.25 31250.24 23964.01 29171.46 31832.49 32671.39 26231.31 34079.57 27271.19 293
our_test_356.46 28456.51 28856.30 30167.70 29039.66 29855.36 32552.34 33440.57 31163.85 29269.91 32940.04 29658.22 32543.49 27975.29 30271.03 295
ppachtmachnet_test60.26 26759.61 26762.20 26967.70 29044.33 26058.18 31460.96 29840.75 30965.80 28172.57 30641.23 28663.92 30846.87 26382.42 23778.33 229
MVS_Test69.84 17070.71 16667.24 22567.49 29243.25 27169.87 19781.22 11752.69 21471.57 23586.68 13762.09 15374.51 23466.05 11078.74 27783.96 122
thisisatest051560.48 26557.86 27968.34 21167.25 29346.42 24560.58 30262.14 29040.82 30863.58 29669.12 33326.28 35478.34 18448.83 24582.13 23980.26 209
V4271.06 15670.83 16571.72 16367.25 29347.14 24065.94 25280.35 13751.35 22883.40 7883.23 19859.25 18178.80 16965.91 11280.81 25889.23 28
GA-MVS62.91 24561.66 25066.66 23467.09 29544.49 25961.18 29969.36 25551.33 22969.33 25674.47 28836.83 31174.94 22950.60 23374.72 30480.57 205
RRT_test8_iter0565.80 21765.13 22467.80 22167.02 29640.85 28967.13 23975.33 20049.73 24572.69 21881.32 21524.45 36277.37 20261.69 14786.82 18585.18 85
HY-MVS49.31 1957.96 28057.59 28159.10 29266.85 29736.17 32265.13 26465.39 27339.24 31554.69 33678.14 25844.28 27067.18 29133.75 33470.79 32373.95 266
CR-MVSNet58.96 27458.49 27560.36 28566.37 29848.24 22470.93 18656.40 31732.87 34661.35 30586.66 13833.19 32163.22 31248.50 25070.17 32769.62 305
RPMNet65.77 21865.08 22867.84 21966.37 29848.24 22470.93 18686.27 2354.66 18761.35 30586.77 13333.29 32085.67 4655.93 19270.17 32769.62 305
IterMVS63.12 24362.48 24765.02 24466.34 30052.86 19563.81 27762.25 28946.57 27271.51 23780.40 22644.60 26866.82 29551.38 22775.47 29875.38 256
Fangjinhua Wang, Silvano Galliani, Christoph Vogel, Marc Pollefeys: IterMVS: Iterative Probability Estimation for Efficient Multi-View Stereo.
c3_l69.82 17169.89 17269.61 19166.24 30143.48 26768.12 22579.61 14651.43 22777.72 14580.18 23154.61 21878.15 19163.62 13287.50 17087.20 57
tpm256.12 28554.64 29860.55 28466.24 30136.01 32368.14 22456.77 31633.60 34458.25 32275.52 27930.25 34474.33 23633.27 33569.76 33171.32 289
Anonymous2024052163.55 23866.07 21755.99 30366.18 30344.04 26268.77 21568.80 25646.99 26972.57 21985.84 16539.87 29750.22 33553.40 21992.23 8873.71 269
Patchmtry60.91 26063.01 24354.62 30666.10 30426.27 36267.47 23256.40 31754.05 19872.04 22886.66 13833.19 32160.17 32043.69 27687.45 17277.42 241
FMVSNet555.08 29255.54 29553.71 30765.80 30533.50 34156.22 32152.50 33343.72 29161.06 30883.38 19225.46 35854.87 32930.11 34581.64 24972.75 276
131459.83 26958.86 27262.74 26665.71 30644.78 25768.59 21772.63 22133.54 34561.05 30967.29 34643.62 27471.26 26349.49 24167.84 33872.19 283
MDTV_nov1_ep1354.05 30065.54 30729.30 35559.00 31055.22 31935.96 33152.44 34275.98 27430.77 34159.62 32138.21 30773.33 312
baseline255.57 29052.74 30464.05 25165.26 30844.11 26162.38 29054.43 32339.03 31651.21 34567.35 34533.66 31972.45 25137.14 31664.22 34575.60 252
USDC62.80 24763.10 24261.89 27165.19 30943.30 27067.42 23374.20 21035.80 33272.25 22584.48 17945.67 26071.95 25837.95 31084.97 20670.42 298
tpm50.60 31052.42 30745.14 33565.18 31026.29 36160.30 30343.50 35237.41 32457.01 32479.09 24830.20 34642.32 35632.77 33766.36 34066.81 322
PatchmatchNetpermissive54.60 29354.27 29955.59 30465.17 31139.08 30066.92 24251.80 33539.89 31258.39 32073.12 30331.69 33258.33 32443.01 28058.38 35769.38 308
Fangjinhua Wang, Silvano Galliani, Christoph Vogel, Pablo Speciale, Marc Pollefeys: PatchmatchNet: Learned Multi-View Patchmatch Stereo.
miper_ehance_all_eth68.36 19268.16 19868.98 20065.14 31243.34 26967.07 24078.92 15649.11 25276.21 17677.72 26253.48 22277.92 19461.16 15184.59 21485.68 81
cl____68.26 19668.26 19368.29 21264.98 31343.67 26565.89 25374.67 20650.04 24376.86 16182.42 20448.74 24975.38 22260.92 15489.81 13985.80 79
DIV-MVS_self_test68.27 19568.26 19368.29 21264.98 31343.67 26565.89 25374.67 20650.04 24376.86 16182.43 20348.74 24975.38 22260.94 15389.81 13985.81 75
tpm cat154.02 29752.63 30558.19 29764.85 31539.86 29766.26 25057.28 31132.16 34856.90 32570.39 32432.75 32565.30 30234.29 33158.79 35469.41 307
XXY-MVS55.19 29157.40 28348.56 32564.45 31634.84 33451.54 33453.59 32638.99 31763.79 29479.43 23956.59 20845.57 34336.92 31871.29 32065.25 329
PatchT53.35 29956.47 28943.99 33964.19 31717.46 37059.15 30843.10 35352.11 21954.74 33586.95 12529.97 34749.98 33643.62 27774.40 30764.53 336
D2MVS62.58 24961.05 25767.20 22663.85 31847.92 22956.29 32069.58 25339.32 31370.07 25178.19 25734.93 31672.68 24553.44 21883.74 22681.00 191
mvs_anonymous65.08 22465.49 22063.83 25363.79 31937.60 31566.52 24869.82 25243.44 29373.46 20986.08 16058.79 18671.75 26151.90 22375.63 29682.15 175
CostFormer57.35 28356.14 29160.97 28063.76 32038.43 30567.50 23160.22 29937.14 32659.12 31976.34 27332.78 32471.99 25739.12 30069.27 33272.47 279
Gipumacopyleft69.55 17472.83 13959.70 28863.63 32153.97 18880.08 7875.93 19364.24 9773.49 20888.93 10057.89 19862.46 31359.75 16691.55 9862.67 340
S. Galliani, K. Lasinger, K. Schindler: Massively Parallel Multiview Stereopsis by Surface Normal Diffusion. ICCV 2015
cl2267.14 20766.51 21469.03 19963.20 32243.46 26866.88 24476.25 19049.22 25074.48 19777.88 26145.49 26277.40 20160.64 15684.59 21486.24 67
gg-mvs-nofinetune55.75 28756.75 28752.72 31262.87 32328.04 35868.92 20941.36 36271.09 4450.80 34792.63 1220.74 36666.86 29329.97 34672.41 31563.25 337
gm-plane-assit62.51 32433.91 33937.25 32562.71 35272.74 24438.70 302
MVS-HIRNet45.53 32247.29 32240.24 34562.29 32526.82 36056.02 32237.41 36729.74 35743.69 36481.27 21633.96 31855.48 32824.46 36156.79 35838.43 364
diffmvs67.42 20667.50 20567.20 22662.26 32645.21 25564.87 26677.04 18548.21 25871.74 22979.70 23658.40 18871.17 26464.99 11880.27 26385.22 83
CHOSEN 280x42041.62 33039.89 33546.80 32861.81 32751.59 20033.56 36135.74 36827.48 36037.64 36853.53 35923.24 36442.09 35727.39 35458.64 35546.72 358
KD-MVS_self_test66.38 21467.51 20462.97 26461.76 32834.39 33658.11 31575.30 20150.84 23577.12 15385.42 16956.84 20769.44 27551.07 22991.16 10685.08 89
MDA-MVSNet-bldmvs62.34 25261.73 24964.16 24861.64 32949.90 21148.11 34157.24 31353.31 20780.95 10579.39 24049.00 24761.55 31745.92 26780.05 26581.03 189
miper_enhance_ethall65.86 21665.05 22968.28 21461.62 33042.62 27664.74 26777.97 17342.52 29873.42 21072.79 30549.66 24177.68 19858.12 17584.59 21484.54 106
DWT-MVSNet_test53.04 30051.12 31358.77 29461.23 33138.67 30462.16 29257.74 30638.24 31951.76 34459.07 35721.36 36567.40 28944.80 27163.76 34670.25 299
WTY-MVS49.39 31450.31 31746.62 32961.22 33232.00 34746.61 34649.77 34033.87 34154.12 33869.55 33241.96 28345.40 34531.28 34164.42 34462.47 341
CMPMVSbinary48.73 2061.54 25860.89 25863.52 25661.08 33351.55 20168.07 22668.00 26233.88 34065.87 28081.25 21737.91 30867.71 28549.32 24282.60 23571.31 290
M. Jancosek, T. Pajdla: Multi-View Reconstruction Preserving Weakly-Supported Surfaces. CVPR 2011
test-LLR50.43 31150.69 31649.64 31960.76 33441.87 28153.18 33045.48 35043.41 29449.41 35260.47 35529.22 34944.73 34942.09 28472.14 31662.33 342
test-mter48.56 31648.20 32149.64 31960.76 33441.87 28153.18 33045.48 35031.91 35249.41 35260.47 35518.34 36944.73 34942.09 28472.14 31662.33 342
GG-mvs-BLEND52.24 31360.64 33629.21 35669.73 19942.41 35545.47 35752.33 36120.43 36768.16 28325.52 35965.42 34259.36 347
tpmvs55.84 28655.45 29657.01 30060.33 33733.20 34265.89 25359.29 30347.52 26756.04 32973.60 29831.05 33968.06 28440.64 29364.64 34369.77 303
miper_lstm_enhance61.97 25361.63 25262.98 26360.04 33845.74 25247.53 34370.95 24444.04 28673.06 21478.84 25139.72 29860.33 31955.82 19484.64 21382.88 155
PVSNet_036.71 2241.12 33140.78 33442.14 34159.97 33940.13 29540.97 35342.24 35930.81 35644.86 36049.41 36340.70 29245.12 34723.15 36234.96 36641.16 362
new-patchmatchnet52.89 30155.76 29444.26 33859.94 3406.31 37337.36 36050.76 33841.10 30564.28 28979.82 23444.77 26648.43 33836.24 32387.61 16778.03 237
test20.0355.74 28857.51 28250.42 31659.89 34132.09 34650.63 33549.01 34250.11 24165.07 28583.23 19845.61 26148.11 33930.22 34483.82 22571.07 294
MVSTER63.29 24161.60 25368.36 21059.77 34246.21 24860.62 30171.32 23641.83 30175.40 18479.12 24730.25 34475.85 21656.30 18979.81 26883.03 152
N_pmnet52.06 30651.11 31454.92 30559.64 34371.03 5837.42 35961.62 29733.68 34257.12 32372.10 30737.94 30731.03 36529.13 35271.35 31962.70 339
JIA-IIPM54.03 29651.62 30861.25 27859.14 34455.21 18159.10 30947.72 34650.85 23450.31 35185.81 16620.10 36863.97 30736.16 32455.41 36264.55 335
LF4IMVS67.50 20367.31 20868.08 21558.86 34561.93 12971.43 17675.90 19444.67 28472.42 22380.20 22957.16 20170.44 27058.99 17086.12 19171.88 285
UnsupCasMVSNet_bld50.01 31351.03 31546.95 32658.61 34632.64 34348.31 33953.27 33034.27 33960.47 31271.53 31741.40 28547.07 34030.68 34260.78 35061.13 344
dp44.09 32844.88 32941.72 34458.53 34723.18 36654.70 32742.38 35734.80 33544.25 36265.61 34924.48 36144.80 34829.77 34749.42 36457.18 350
testgi54.00 29856.86 28645.45 33358.20 34825.81 36349.05 33749.50 34145.43 27867.84 26981.17 21851.81 23143.20 35529.30 34979.41 27367.34 318
wuyk23d61.97 25366.25 21549.12 32358.19 34960.77 14566.32 24952.97 33155.93 17390.62 586.91 12673.07 6235.98 36320.63 36591.63 9550.62 354
ANet_high67.08 20869.94 17158.51 29657.55 35027.09 35958.43 31376.80 18763.56 10382.40 8991.93 2059.82 17564.98 30450.10 23788.86 15683.46 138
Patchmatch-test47.93 31749.96 31841.84 34257.42 35124.26 36548.75 33841.49 36139.30 31456.79 32673.48 29930.48 34333.87 36429.29 35072.61 31467.39 316
new_pmnet37.55 33339.80 33630.79 34856.83 35216.46 37139.35 35630.65 37025.59 36345.26 35861.60 35424.54 36028.02 36721.60 36352.80 36347.90 357
pmmvs346.71 32045.09 32751.55 31556.76 35348.25 22355.78 32339.53 36624.13 36550.35 35063.40 35115.90 37351.08 33329.29 35070.69 32555.33 352
sss47.59 31948.32 31945.40 33456.73 35433.96 33845.17 34948.51 34432.11 35152.37 34365.79 34840.39 29541.91 35931.85 33861.97 34860.35 345
tpmrst50.15 31251.38 31146.45 33056.05 35524.77 36464.40 27349.98 33936.14 32953.32 34169.59 33135.16 31548.69 33739.24 29958.51 35665.89 325
TESTMET0.1,145.17 32344.93 32845.89 33256.02 35638.31 30653.18 33041.94 36027.85 35944.86 36056.47 35817.93 37041.50 36038.08 30968.06 33657.85 348
ADS-MVSNet248.76 31547.25 32353.29 31055.90 35740.54 29347.34 34454.99 32231.41 35450.48 34872.06 31231.23 33554.26 33125.93 35655.93 35965.07 330
ADS-MVSNet44.62 32645.58 32541.73 34355.90 35720.83 36847.34 34439.94 36531.41 35450.48 34872.06 31231.23 33539.31 36125.93 35655.93 35965.07 330
test0.0.03 147.72 31848.31 32045.93 33155.53 35929.39 35446.40 34741.21 36343.41 29455.81 33267.65 34229.22 34943.77 35425.73 35869.87 32964.62 334
UnsupCasMVSNet_eth52.26 30553.29 30349.16 32255.08 36033.67 34050.03 33658.79 30437.67 32363.43 29974.75 28441.82 28445.83 34238.59 30559.42 35367.98 315
pmmvs552.49 30452.58 30652.21 31454.99 36132.38 34455.45 32453.84 32532.15 34955.49 33374.81 28238.08 30657.37 32734.02 33274.40 30766.88 320
DSMNet-mixed43.18 32944.66 33038.75 34754.75 36228.88 35757.06 31827.42 37213.47 36747.27 35677.67 26338.83 30239.29 36225.32 36060.12 35248.08 356
MDA-MVSNet_test_wron52.57 30353.49 30249.81 31854.24 36336.47 32040.48 35546.58 34838.13 32075.47 18373.32 30141.05 29143.85 35340.98 29171.20 32169.10 311
YYNet152.58 30253.50 30149.85 31754.15 36436.45 32140.53 35446.55 34938.09 32175.52 18273.31 30241.08 29043.88 35241.10 29071.14 32269.21 309
EPMVS45.74 32146.53 32443.39 34054.14 36522.33 36755.02 32635.00 36934.69 33751.09 34670.20 32625.92 35642.04 35837.19 31555.50 36165.78 326
KD-MVS_2432*160052.05 30751.58 30953.44 30852.11 36631.20 34944.88 35064.83 27741.53 30364.37 28770.03 32715.61 37464.20 30536.25 32174.61 30564.93 332
miper_refine_blended52.05 30751.58 30953.44 30852.11 36631.20 34944.88 35064.83 27741.53 30364.37 28770.03 32715.61 37464.20 30536.25 32174.61 30564.93 332
E-PMN45.17 32345.36 32644.60 33750.07 36842.75 27438.66 35742.29 35846.39 27339.55 36551.15 36226.00 35545.37 34637.68 31176.41 29045.69 360
PMMVS44.69 32543.95 33246.92 32750.05 36953.47 19348.08 34242.40 35622.36 36644.01 36353.05 36042.60 28145.49 34431.69 33961.36 34941.79 361
EMVS44.61 32744.45 33145.10 33648.91 37043.00 27237.92 35841.10 36446.75 27138.00 36748.43 36426.42 35346.27 34137.11 31775.38 30046.03 359
MVEpermissive27.91 2336.69 33435.64 33739.84 34643.37 37135.85 32619.49 36324.61 37324.68 36439.05 36662.63 35338.67 30427.10 36821.04 36447.25 36556.56 351
Simon Fuhrmann, Fabian Langguth, Michael Goesele: MVE - A Multi-View Reconstruction Environment. EUROGRAPHICS Workshops on Graphics and Cultural Heritage (2014)
PMMVS237.74 33240.87 33328.36 34942.41 3725.35 37424.61 36227.75 37132.15 34947.85 35470.27 32535.85 31429.51 36619.08 36667.85 33750.22 355
DeepMVS_CXcopyleft11.83 35115.51 37313.86 37211.25 3765.76 36820.85 37026.46 36617.06 3729.22 3709.69 36913.82 36912.42 366
test_method19.26 33519.12 33919.71 3509.09 3741.91 3767.79 36553.44 3281.42 36910.27 37135.80 36517.42 37125.11 36912.44 36724.38 36832.10 365
tmp_tt11.98 33714.73 3403.72 3522.28 3754.62 37519.44 36414.50 3750.47 37021.55 3699.58 36825.78 3574.57 37111.61 36827.37 3671.96 367
test1234.43 3405.78 3430.39 3540.97 3760.28 37746.33 3480.45 3770.31 3710.62 3721.50 3710.61 3770.11 3730.56 3700.63 3700.77 369
testmvs4.06 3415.28 3440.41 3530.64 3770.16 37842.54 3520.31 3780.26 3720.50 3731.40 3720.77 3760.17 3720.56 3700.55 3710.90 368
test_blank0.00 3420.00 3450.00 3550.00 3780.00 3790.00 3660.00 3790.00 3730.00 3740.00 3730.00 3780.00 3740.00 3720.00 3720.00 370
eth-test20.00 378
eth-test0.00 378
uanet_test0.00 3420.00 3450.00 3550.00 3780.00 3790.00 3660.00 3790.00 3730.00 3740.00 3730.00 3780.00 3740.00 3720.00 3720.00 370
cdsmvs_eth3d_5k17.71 33623.62 3380.00 3550.00 3780.00 3790.00 36670.17 2510.00 3730.00 37474.25 29368.16 1010.00 3740.00 3720.00 3720.00 370
pcd_1.5k_mvsjas5.20 3396.93 3420.00 3550.00 3780.00 3790.00 3660.00 3790.00 3730.00 3740.00 37362.39 1490.00 3740.00 3720.00 3720.00 370
sosnet-low-res0.00 3420.00 3450.00 3550.00 3780.00 3790.00 3660.00 3790.00 3730.00 3740.00 3730.00 3780.00 3740.00 3720.00 3720.00 370
sosnet0.00 3420.00 3450.00 3550.00 3780.00 3790.00 3660.00 3790.00 3730.00 3740.00 3730.00 3780.00 3740.00 3720.00 3720.00 370
uncertanet0.00 3420.00 3450.00 3550.00 3780.00 3790.00 3660.00 3790.00 3730.00 3740.00 3730.00 3780.00 3740.00 3720.00 3720.00 370
Regformer0.00 3420.00 3450.00 3550.00 3780.00 3790.00 3660.00 3790.00 3730.00 3740.00 3730.00 3780.00 3740.00 3720.00 3720.00 370
ab-mvs-re5.62 3387.50 3410.00 3550.00 3780.00 3790.00 3660.00 3790.00 3730.00 37467.46 3430.00 3780.00 3740.00 3720.00 3720.00 370
uanet0.00 3420.00 3450.00 3550.00 3780.00 3790.00 3660.00 3790.00 3730.00 3740.00 3730.00 3780.00 3740.00 3720.00 3720.00 370
PC_three_145246.98 27081.83 9386.28 15066.55 11884.47 7263.31 13890.78 12083.49 134
test_241102_TWO84.80 5172.61 3284.93 5689.70 8077.73 2385.89 3975.29 4594.22 5583.25 144
test_0728_THIRD74.03 2385.83 4290.41 5875.58 3985.69 4477.43 3394.74 3184.31 116
GSMVS70.05 300
sam_mvs131.41 33370.05 300
sam_mvs31.21 337
MTGPAbinary80.63 128
test_post166.63 2462.08 36930.66 34259.33 32240.34 295
test_post1.99 37030.91 34054.76 330
patchmatchnet-post68.99 33431.32 33469.38 276
MTMP84.83 3319.26 374
test9_res72.12 7091.37 10177.40 242
agg_prior270.70 7790.93 11478.55 228
test_prior470.14 6877.57 105
test_prior275.57 13058.92 14176.53 17086.78 13167.83 10569.81 8292.76 80
旧先验271.17 18345.11 28178.54 13361.28 31859.19 169
新几何271.33 179
无先验74.82 13870.94 24547.75 26576.85 20954.47 20672.09 284
原ACMM274.78 142
testdata267.30 29048.34 251
segment_acmp68.30 100
testdata168.34 22357.24 158
plane_prior585.49 3586.15 2871.09 7490.94 11284.82 94
plane_prior489.11 94
plane_prior365.67 10363.82 10178.23 136
plane_prior282.74 5365.45 80
plane_prior65.18 10780.06 7961.88 11989.91 138
n20.00 379
nn0.00 379
door-mid55.02 321
test1182.71 94
door52.91 332
HQP5-MVS58.80 162
BP-MVS67.38 104
HQP4-MVS71.59 23185.31 5283.74 129
HQP3-MVS84.12 7589.16 149
HQP2-MVS58.09 192
MDTV_nov1_ep13_2view18.41 36953.74 32931.57 35344.89 35929.90 34832.93 33671.48 288
ACMMP++_ref89.47 147
ACMMP++91.96 90
Test By Simon62.56 145