This table lists the benchmark results for the high-res multi-view scenario. The following metrics are evaluated:

(*) For exact definitions, detailing how potentially incomplete ground truth is taken into account, see our paper.

The datasets are grouped into different categories, and result averages are computed for a category and method if results of the method are available for all datasets within the category. Note that the category "all" includes both the high-res multi-view and the low-res many-view scenarios.

Methods with suffix _ROB may participate in the Robust Vision Challenge.

Click a dataset result cell to show a visualization of the reconstruction. For training datasets, ground truth and accuracy / completeness visualizations are also available. The visualizations may not work with mobile browsers.




Method Infoallhigh-res
multi-view
indooroutdoorbotani.boulde.bridgedoorexhibi.lectur.living.loungeobserv.old co.statueterrac.
sort bysort bysort bysorted bysort bysort bysort bysort bysort bysort bysort bysort bysort bysort bysort bysort by
MSC_two_6792asdad96.52 197.78 5790.86 196.85 6599.61 396.03 199.06 999.07 4
No_MVS96.52 197.78 5790.86 196.85 6599.61 396.03 199.06 999.07 4
OPU-MVS96.21 398.00 4690.85 397.13 1297.08 4292.59 298.94 8792.25 5198.99 1498.84 12
HPM-MVS++copyleft95.14 1094.91 1295.83 498.25 3189.65 495.92 6596.96 5591.75 794.02 3996.83 5488.12 2499.55 1593.41 2898.94 1698.28 52
SMA-MVScopyleft95.20 895.07 1095.59 598.14 3888.48 896.26 4397.28 3185.90 14497.67 398.10 288.41 2099.56 1094.66 1399.19 198.71 16
Yufeng Yin; Xiaoyan Liu; Zichao Zhang: SMA-MVS: Segmentation-Guided Multi-Scale Anchor Deformation Patch Multi-View Stereo. IEEE Transactions on Circuits and Systems for Video Technology
3Dnovator+87.14 492.42 7591.37 8395.55 695.63 12788.73 697.07 1696.77 7690.84 1784.02 24696.62 6975.95 16299.34 3687.77 12097.68 8198.59 22
CNVR-MVS95.40 795.37 795.50 798.11 3988.51 795.29 9596.96 5592.09 395.32 2397.08 4289.49 1599.33 3995.10 1198.85 1998.66 18
ACMMP_NAP94.74 1594.56 1795.28 898.02 4587.70 1295.68 7597.34 2288.28 8595.30 2497.67 1585.90 5299.54 1993.91 2098.95 1598.60 21
DPE-MVScopyleft95.57 495.67 495.25 998.36 2787.28 1795.56 8297.51 489.13 6197.14 897.91 1191.64 799.62 194.61 1499.17 298.86 9
Kehua Chen, Zhenlong Yuan, Tianlu Mao, Zhaoqi Wang: Dual-Level Precision Edges Guided Multi-View Stereo with Accurate Planarization. AAAI2025
SF-MVS94.97 1194.90 1395.20 1097.84 5287.76 1096.65 3197.48 987.76 10495.71 1997.70 1388.28 2299.35 3493.89 2198.78 2598.48 28
MCST-MVS94.45 2194.20 2995.19 1198.46 2087.50 1595.00 11597.12 4387.13 11792.51 8096.30 8089.24 1799.34 3693.46 2598.62 4898.73 15
NCCC94.81 1494.69 1695.17 1297.83 5387.46 1695.66 7796.93 5892.34 293.94 4096.58 7187.74 2799.44 3092.83 3798.40 5798.62 20
ETH3D-3000-0.194.61 1794.44 1995.12 1397.70 6087.71 1195.98 6297.44 1486.67 13095.25 2597.31 2787.73 2899.24 4793.11 3598.76 3098.40 39
DPM-MVS92.58 7091.74 8095.08 1496.19 10389.31 592.66 23896.56 10083.44 19991.68 10095.04 12486.60 4598.99 8085.60 14997.92 7596.93 124
ETH3D cwj APD-0.1693.91 4293.53 5195.06 1596.76 8687.78 994.92 12097.21 3784.33 18093.89 4297.09 4187.20 3699.29 4491.90 6998.44 5598.12 66
ZNCC-MVS94.47 1994.28 2395.03 1698.52 1686.96 1996.85 2697.32 2788.24 8693.15 5997.04 4586.17 4799.62 192.40 4798.81 2298.52 24
test_0728_SECOND95.01 1798.79 286.43 4397.09 1497.49 599.61 395.62 899.08 798.99 7
testtj94.39 2694.18 3095.00 1898.24 3386.77 3096.16 4897.23 3587.28 11594.85 2897.04 4586.99 4099.52 2391.54 7598.33 6098.71 16
zzz-MVS94.47 1994.30 2295.00 1898.42 2286.95 2095.06 11396.97 5291.07 1393.14 6097.56 1684.30 7099.56 1093.43 2698.75 3198.47 32
MTAPA94.42 2594.22 2695.00 1898.42 2286.95 2094.36 16396.97 5291.07 1393.14 6097.56 1684.30 7099.56 1093.43 2698.75 3198.47 32
MSP-MVS95.42 695.56 694.98 2198.49 1886.52 4096.91 2397.47 1091.73 896.10 1796.69 6189.90 1299.30 4294.70 1298.04 7099.13 1
Zhenlong Yuan, Cong Liu, Fei Shen, Zhaoxin Li, Jingguo luo, Tianlu Mao and Zhaoqi Wang: MSP-MVS: Multi-granularity Segmentation Prior Guided Multi-View Stereo. AAAI2025
ETH3 D test640093.64 5093.22 5694.92 2297.79 5486.84 2495.31 8997.26 3282.67 21793.81 4396.29 8187.29 3599.27 4589.87 9798.67 4198.65 19
region2R94.43 2394.27 2594.92 2298.65 886.67 3496.92 2297.23 3588.60 7693.58 5197.27 2985.22 5999.54 1992.21 5298.74 3398.56 23
APDe-MVS95.46 595.64 594.91 2498.26 3086.29 5197.46 497.40 2089.03 6596.20 1698.10 289.39 1699.34 3695.88 399.03 1199.10 3
ACMMPR94.43 2394.28 2394.91 2498.63 986.69 3296.94 1897.32 2788.63 7493.53 5497.26 3185.04 6299.54 1992.35 4998.78 2598.50 26
GST-MVS94.21 3493.97 3994.90 2698.41 2486.82 2596.54 3397.19 3888.24 8693.26 5596.83 5485.48 5699.59 791.43 7998.40 5798.30 48
HFP-MVS94.52 1894.40 2094.86 2798.61 1086.81 2696.94 1897.34 2288.63 7493.65 4797.21 3486.10 4899.49 2692.35 4998.77 2898.30 48
#test#94.32 2994.14 3294.86 2798.61 1086.81 2696.43 3497.34 2287.51 11093.65 4797.21 3486.10 4899.49 2691.68 7398.77 2898.30 48
MP-MVS-pluss94.21 3494.00 3894.85 2998.17 3686.65 3594.82 12797.17 4186.26 13892.83 6897.87 1285.57 5599.56 1094.37 1798.92 1798.34 43
MP-MVS-pluss: MP-MVS-pluss. MP-MVS-pluss
canonicalmvs93.27 6092.75 6794.85 2995.70 12587.66 1396.33 3896.41 10690.00 3794.09 3794.60 14282.33 9398.62 10992.40 4792.86 16798.27 54
XVS94.45 2194.32 2194.85 2998.54 1486.60 3896.93 2097.19 3890.66 2592.85 6697.16 3985.02 6399.49 2691.99 6198.56 5198.47 32
X-MVStestdata88.31 16886.13 21194.85 2998.54 1486.60 3896.93 2097.19 3890.66 2592.85 6623.41 37185.02 6399.49 2691.99 6198.56 5198.47 32
SteuartSystems-ACMMP95.20 895.32 994.85 2996.99 8186.33 4797.33 597.30 2991.38 1195.39 2297.46 1988.98 1999.40 3194.12 1898.89 1898.82 14
Skip Steuart: Steuart Systems R&D Blog.
DVP-MVS++95.98 196.36 194.82 3497.78 5786.00 5698.29 197.49 590.75 2097.62 598.06 692.59 299.61 395.64 699.02 1298.86 9
alignmvs93.08 6492.50 7294.81 3595.62 12887.61 1495.99 6096.07 12989.77 4494.12 3694.87 12980.56 11198.66 10592.42 4693.10 16298.15 63
SED-MVS95.91 296.28 294.80 3698.77 585.99 5897.13 1297.44 1490.31 2997.71 198.07 492.31 499.58 895.66 499.13 398.84 12
DeepC-MVS_fast89.43 294.04 3793.79 4394.80 3697.48 6786.78 2895.65 7996.89 6189.40 5392.81 6996.97 4885.37 5899.24 4790.87 8898.69 3798.38 42
Andreas Kuhn, Christian Sormann, Mattia Rossi, Oliver Erdler, Friedrich Fraundorfer: DeepC-MVS: Deep Confidence Prediction for Multi-View Stereo Reconstruction. 3DV 2020
MP-MVScopyleft94.25 3094.07 3594.77 3898.47 1986.31 4996.71 2996.98 5189.04 6391.98 9097.19 3685.43 5799.56 1092.06 6098.79 2398.44 37
Rongxuan Tan, Qing Wang, et al.: MP-MVS: Multi-Scale Windows PatchMatch and Planar Prior Multi-View Stereo.
APD-MVScopyleft94.24 3194.07 3594.75 3998.06 4386.90 2395.88 6696.94 5785.68 15095.05 2797.18 3787.31 3499.07 6191.90 6998.61 4998.28 52
Yuesong Wang, Zhaojie Zeng and etc.: Adaptive Patch Deformation for Textureless-Resilient Multi-View Stereo. CVPR2023
CP-MVS94.34 2794.21 2894.74 4098.39 2586.64 3697.60 397.24 3388.53 7892.73 7397.23 3285.20 6099.32 4092.15 5598.83 2198.25 57
Regformer-294.33 2894.22 2694.68 4195.54 13186.75 3194.57 14396.70 8691.84 694.41 2996.56 7387.19 3799.13 5793.50 2497.65 8398.16 62
PGM-MVS93.96 4193.72 4694.68 4198.43 2186.22 5295.30 9297.78 187.45 11393.26 5597.33 2684.62 6899.51 2490.75 9198.57 5098.32 47
DVP-MVScopyleft95.67 396.02 394.64 4398.78 385.93 6197.09 1496.73 8190.27 3197.04 1098.05 891.47 899.55 1595.62 899.08 798.45 36
Zhenlong Yuan, Jinguo Luo, Fei Shen, Zhaoxin Li, Cong Liu, Tianlu Mao, Zhaoqi Wang: DVP-MVS: Synergize Depth-Edge and Visibility Prior for Multi-View Stereo. AAAI2025
mPP-MVS93.99 3993.78 4494.63 4498.50 1785.90 6696.87 2496.91 5988.70 7291.83 9697.17 3883.96 7799.55 1591.44 7898.64 4798.43 38
PHI-MVS93.89 4493.65 4994.62 4596.84 8486.43 4396.69 3097.49 585.15 16693.56 5396.28 8285.60 5499.31 4192.45 4498.79 2398.12 66
TSAR-MVS + MP.94.85 1394.94 1194.58 4698.25 3186.33 4796.11 5496.62 9488.14 9296.10 1796.96 4989.09 1898.94 8794.48 1598.68 3998.48 28
Zhenlong Yuan, Jiakai Cao, Zhaoqi Wang, Zhaoxin Li: TSAR-MVS: Textureless-aware Segmentation and Correlative Refinement Guided Multi-View Stereo. Pattern Recognition
CANet93.54 5293.20 5894.55 4795.65 12685.73 7194.94 11896.69 8891.89 590.69 11395.88 9981.99 10299.54 1993.14 3497.95 7498.39 40
train_agg93.44 5493.08 5994.52 4897.53 6386.49 4194.07 18096.78 7481.86 23792.77 7096.20 8687.63 3099.12 5892.14 5698.69 3797.94 79
Regformer-194.22 3394.13 3394.51 4995.54 13186.36 4694.57 14396.44 10391.69 994.32 3296.56 7387.05 3999.03 6793.35 2997.65 8398.15 63
xxxxxxxxxxxxxcwj94.65 1694.70 1594.48 5097.85 5085.63 7295.21 10195.47 17689.44 5095.71 1997.70 1388.28 2299.35 3493.89 2198.78 2598.48 28
CDPH-MVS92.83 6692.30 7494.44 5197.79 5486.11 5494.06 18296.66 9180.09 26492.77 7096.63 6886.62 4299.04 6687.40 12598.66 4498.17 61
3Dnovator86.66 591.73 8490.82 9594.44 5194.59 17486.37 4597.18 1097.02 4989.20 5884.31 24196.66 6473.74 19799.17 5386.74 13597.96 7397.79 90
SR-MVS94.23 3294.17 3194.43 5398.21 3585.78 6996.40 3796.90 6088.20 8994.33 3197.40 2384.75 6799.03 6793.35 2997.99 7198.48 28
HPM-MVScopyleft94.02 3893.88 4094.43 5398.39 2585.78 6997.25 897.07 4786.90 12592.62 7796.80 5884.85 6699.17 5392.43 4598.65 4698.33 44
Chunlin Ren, Qingshan Xu, Shikun Zhang, Jiaqi Yang: Hierarchical Prior Mining for Non-local Multi-View Stereo. ICCV 2023
TSAR-MVS + GP.93.66 4993.41 5394.41 5596.59 9186.78 2894.40 15593.93 24689.77 4494.21 3395.59 11087.35 3398.61 11092.72 4096.15 11297.83 88
test1294.34 5697.13 7986.15 5396.29 11291.04 11185.08 6199.01 7398.13 6797.86 86
ACMMPcopyleft93.24 6192.88 6594.30 5798.09 4285.33 7796.86 2597.45 1388.33 8290.15 12297.03 4781.44 10599.51 2490.85 8995.74 11598.04 73
Qingshan Xu, Weihang Kong, Wenbing Tao, Marc Pollefeys: Multi-Scale Geometric Consistency Guided and Planar Prior Assisted Multi-View Stereo. IEEE Transactions on Pattern Analysis and Machine Intelligence
agg_prior193.29 5992.97 6394.26 5897.38 6985.92 6393.92 19196.72 8381.96 23192.16 8596.23 8487.85 2598.97 8391.95 6598.55 5397.90 83
DeepC-MVS88.79 393.31 5892.99 6294.26 5896.07 11085.83 6794.89 12296.99 5089.02 6689.56 12697.37 2582.51 9099.38 3292.20 5398.30 6197.57 98
Andreas Kuhn, Christian Sormann, Mattia Rossi, Oliver Erdler, Friedrich Fraundorfer: DeepC-MVS: Deep Confidence Prediction for Multi-View Stereo Reconstruction. 3DV 2020
Regformer-493.91 4293.81 4294.19 6095.36 13685.47 7594.68 13596.41 10691.60 1093.75 4496.71 5985.95 5199.10 6093.21 3396.65 10398.01 76
EPNet91.79 8191.02 9194.10 6190.10 31985.25 7896.03 5992.05 28792.83 187.39 16395.78 10379.39 12799.01 7388.13 11797.48 8598.05 72
Wanjuan Su, Wenbing Tao: Efficient Edge-Preserving Multi-View Stereo Network for Depth Estimation. AAAI 2023
DELS-MVS93.43 5693.25 5593.97 6295.42 13585.04 7993.06 22897.13 4290.74 2291.84 9495.09 12386.32 4699.21 5091.22 8098.45 5497.65 93
Christian Sormann, Emanuele Santellani, Mattia Rossi, Andreas Kuhn, Friedrich Fraundorfer: DELS-MVS: Deep Epipolar Line Search for Multi-View Stereo. Winter Conference on Applications of Computer Vision (WACV), 2023
DP-MVS Recon91.95 7991.28 8593.96 6398.33 2985.92 6394.66 13896.66 9182.69 21690.03 12495.82 10182.30 9499.03 6784.57 16196.48 10996.91 125
HPM-MVS_fast93.40 5793.22 5693.94 6498.36 2784.83 8197.15 1196.80 7385.77 14792.47 8197.13 4082.38 9199.07 6190.51 9398.40 5797.92 82
SD-MVS94.96 1295.33 893.88 6597.25 7886.69 3296.19 4797.11 4590.42 2896.95 1297.27 2989.53 1496.91 24694.38 1698.85 1998.03 74
Zhenlong Yuan, Jiakai Cao, Zhaoxin Li, Hao Jiang and Zhaoqi Wang: SD-MVS: Segmentation-driven Deformation Multi-View Stereo with Spherical Refinement and EM optimization. AAAI2024
MVS_111021_HR93.45 5393.31 5493.84 6696.99 8184.84 8093.24 22197.24 3388.76 7191.60 10195.85 10086.07 5098.66 10591.91 6698.16 6598.03 74
SR-MVS-dyc-post93.82 4593.82 4193.82 6797.92 4784.57 8696.28 4196.76 7787.46 11193.75 4497.43 2084.24 7299.01 7392.73 3897.80 7897.88 84
test_prior393.60 5193.53 5193.82 6797.29 7484.49 9094.12 17396.88 6287.67 10792.63 7596.39 7886.62 4298.87 9191.50 7698.67 4198.11 68
test_prior93.82 6797.29 7484.49 9096.88 6298.87 9198.11 68
Regformer-393.68 4893.64 5093.81 7095.36 13684.61 8494.68 13595.83 14991.27 1293.60 5096.71 5985.75 5398.86 9492.87 3696.65 10397.96 78
APD-MVS_3200maxsize93.78 4693.77 4593.80 7197.92 4784.19 10196.30 3996.87 6486.96 12193.92 4197.47 1883.88 7898.96 8692.71 4197.87 7698.26 56
CSCG93.23 6293.05 6093.76 7298.04 4484.07 10396.22 4697.37 2184.15 18290.05 12395.66 10787.77 2699.15 5689.91 9698.27 6298.07 70
UA-Net92.83 6692.54 7193.68 7396.10 10884.71 8395.66 7796.39 10891.92 493.22 5796.49 7583.16 8298.87 9184.47 16295.47 12097.45 103
test117293.97 4094.07 3593.66 7498.11 3983.45 12096.26 4396.84 6788.33 8294.19 3497.43 2084.24 7299.01 7393.26 3197.98 7298.52 24
QAPM89.51 13188.15 15493.59 7594.92 15784.58 8596.82 2796.70 8678.43 28783.41 26296.19 8973.18 20599.30 4277.11 26496.54 10696.89 126
abl_693.18 6393.05 6093.57 7697.52 6584.27 10095.53 8396.67 9087.85 10193.20 5897.22 3380.35 11299.18 5291.91 6697.21 8997.26 108
EI-MVSNet-Vis-set93.01 6592.92 6493.29 7795.01 15083.51 11994.48 14795.77 15390.87 1692.52 7996.67 6384.50 6999.00 7891.99 6194.44 14097.36 104
Vis-MVSNetpermissive91.75 8391.23 8693.29 7795.32 13983.78 11196.14 5195.98 13589.89 3890.45 11596.58 7175.09 17498.31 13284.75 15996.90 9697.78 91
Jingyang Zhang, Yao Yao, Shiwei Li, Zixin Luo, Tian Fang: Visibility-aware Multiview Stereo Network. BMVC 2020
VNet92.24 7791.91 7893.24 7996.59 9183.43 12194.84 12696.44 10389.19 5994.08 3895.90 9877.85 14798.17 13888.90 10793.38 15698.13 65
112190.42 11089.49 11693.20 8097.27 7684.46 9392.63 23995.51 17471.01 34791.20 10896.21 8582.92 8699.05 6380.56 22598.07 6996.10 153
VDD-MVS90.74 10089.92 11293.20 8096.27 10183.02 13295.73 7293.86 25088.42 8192.53 7896.84 5362.09 30798.64 10790.95 8692.62 17097.93 81
nrg03091.08 9690.39 9893.17 8293.07 22886.91 2296.41 3696.26 11488.30 8488.37 14394.85 13282.19 9797.64 18491.09 8182.95 27394.96 192
EI-MVSNet-UG-set92.74 6892.62 7093.12 8394.86 16283.20 12694.40 15595.74 15690.71 2492.05 8996.60 7084.00 7698.99 8091.55 7493.63 14897.17 113
新几何193.10 8497.30 7384.35 9995.56 16871.09 34691.26 10796.24 8382.87 8798.86 9479.19 24498.10 6896.07 155
OMC-MVS91.23 9290.62 9793.08 8596.27 10184.07 10393.52 20695.93 13986.95 12289.51 12796.13 9278.50 13898.35 12785.84 14692.90 16696.83 127
OpenMVScopyleft83.78 1188.74 15887.29 17393.08 8592.70 23985.39 7696.57 3296.43 10578.74 28380.85 29196.07 9369.64 24799.01 7378.01 25596.65 10394.83 199
MAR-MVS90.30 11189.37 12193.07 8796.61 9084.48 9295.68 7595.67 16082.36 22287.85 15192.85 20576.63 15698.80 10180.01 23396.68 10295.91 160
Zhenyu Xu, Yiguang Liu, Xuelei Shi, Ying Wang, Yunan Zheng: MARMVS: Matching Ambiguity Reduced Multiple View Stereo for Efficient Large Scale Scene Reconstruction. CVPR 2020
lupinMVS90.92 9790.21 10193.03 8893.86 20483.88 10892.81 23593.86 25079.84 26791.76 9794.29 15377.92 14498.04 15790.48 9497.11 9097.17 113
Effi-MVS+91.59 8791.11 8893.01 8994.35 18783.39 12394.60 14095.10 20087.10 11890.57 11493.10 19981.43 10698.07 15489.29 10394.48 13897.59 97
MVS_111021_LR92.47 7492.29 7592.98 9095.99 11484.43 9793.08 22696.09 12788.20 8991.12 10995.72 10681.33 10797.76 17391.74 7197.37 8896.75 129
ETV-MVS92.74 6892.66 6992.97 9195.20 14584.04 10595.07 11096.51 10190.73 2392.96 6491.19 26084.06 7498.34 12891.72 7296.54 10696.54 138
LFMVS90.08 11589.13 12892.95 9296.71 8782.32 15596.08 5589.91 33786.79 12692.15 8796.81 5662.60 30498.34 12887.18 12993.90 14498.19 60
UGNet89.95 12088.95 13292.95 9294.51 17783.31 12495.70 7495.23 19389.37 5487.58 15793.94 16764.00 29798.78 10283.92 16896.31 11196.74 130
Wanjuan Su, Qingshan Xu, Wenbing Tao: Uncertainty-guided Multi-view Stereo Network for Depth Estimation. IEEE Transactions on Circuits and Systems for Video Technology, 2022
jason90.80 9890.10 10592.90 9493.04 23083.53 11893.08 22694.15 24080.22 26191.41 10494.91 12776.87 15097.93 16790.28 9596.90 9697.24 109
jason: jason.
DP-MVS87.25 20685.36 23792.90 9497.65 6183.24 12594.81 12892.00 28974.99 31881.92 28195.00 12572.66 21099.05 6366.92 33292.33 17496.40 139
CANet_DTU90.26 11389.41 12092.81 9693.46 21883.01 13393.48 20794.47 22889.43 5287.76 15594.23 15770.54 23799.03 6784.97 15496.39 11096.38 140
MVSFormer91.68 8691.30 8492.80 9793.86 20483.88 10895.96 6395.90 14384.66 17691.76 9794.91 12777.92 14497.30 21489.64 9997.11 9097.24 109
PVSNet_Blended_VisFu91.38 8990.91 9392.80 9796.39 9883.17 12794.87 12496.66 9183.29 20389.27 13194.46 14780.29 11499.17 5387.57 12395.37 12396.05 157
VDDNet89.56 13088.49 14592.76 9995.07 14982.09 15796.30 3993.19 26281.05 25691.88 9296.86 5261.16 31798.33 13088.43 11392.49 17397.84 87
h-mvs3390.80 9890.15 10492.75 10096.01 11282.66 14695.43 8595.53 17289.80 4093.08 6295.64 10875.77 16399.00 7892.07 5878.05 32996.60 134
casdiffmvs92.51 7392.43 7392.74 10194.41 18381.98 16094.54 14596.23 11889.57 4891.96 9196.17 9082.58 8998.01 16090.95 8695.45 12298.23 58
test_yl90.69 10290.02 11092.71 10295.72 12382.41 15394.11 17595.12 19885.63 15191.49 10294.70 13674.75 17898.42 12386.13 14292.53 17197.31 105
DCV-MVSNet90.69 10290.02 11092.71 10295.72 12382.41 15394.11 17595.12 19885.63 15191.49 10294.70 13674.75 17898.42 12386.13 14292.53 17197.31 105
PCF-MVS84.11 1087.74 18386.08 21592.70 10494.02 19584.43 9789.27 30695.87 14673.62 33084.43 23394.33 15078.48 13998.86 9470.27 30794.45 13994.81 200
Andreas Kuhn, Shan Lin, Oliver Erdler: Plane Completion and Filtering for Multi-View Stereo Reconstruction. GCPR 2019
baseline92.39 7692.29 7592.69 10594.46 18081.77 16494.14 17296.27 11389.22 5791.88 9296.00 9482.35 9297.99 16291.05 8295.27 12798.30 48
MSLP-MVS++93.72 4794.08 3492.65 10697.31 7283.43 12195.79 7097.33 2590.03 3693.58 5196.96 4984.87 6597.76 17392.19 5498.66 4496.76 128
DROMVSNet93.44 5493.71 4792.63 10795.21 14482.43 15097.27 796.71 8590.57 2792.88 6595.80 10283.16 8298.16 13993.68 2398.14 6697.31 105
ab-mvs89.41 13788.35 14792.60 10895.15 14882.65 14792.20 25495.60 16783.97 18688.55 13993.70 18274.16 18998.21 13782.46 19089.37 20696.94 123
LS3D87.89 17886.32 20592.59 10996.07 11082.92 13695.23 9994.92 21175.66 31082.89 26995.98 9572.48 21399.21 5068.43 32195.23 12895.64 172
Anonymous2024052988.09 17486.59 19592.58 11096.53 9481.92 16295.99 6095.84 14874.11 32689.06 13595.21 11961.44 31298.81 10083.67 17387.47 23597.01 120
CPTT-MVS91.99 7891.80 7992.55 11198.24 3381.98 16096.76 2896.49 10281.89 23690.24 11896.44 7778.59 13698.61 11089.68 9897.85 7797.06 117
114514_t89.51 13188.50 14392.54 11298.11 3981.99 15995.16 10696.36 11070.19 34985.81 19095.25 11776.70 15498.63 10882.07 19696.86 9997.00 121
PAPM_NR91.22 9390.78 9692.52 11397.60 6281.46 17394.37 16296.24 11786.39 13687.41 16094.80 13482.06 10098.48 11682.80 18595.37 12397.61 95
DeepPCF-MVS89.96 194.20 3694.77 1492.49 11496.52 9580.00 21794.00 18797.08 4690.05 3595.65 2197.29 2889.66 1398.97 8393.95 1998.71 3498.50 26
IS-MVSNet91.43 8891.09 9092.46 11595.87 12081.38 17696.95 1793.69 25589.72 4689.50 12895.98 9578.57 13797.77 17283.02 17996.50 10898.22 59
API-MVS90.66 10490.07 10692.45 11696.36 9984.57 8696.06 5895.22 19582.39 22089.13 13294.27 15680.32 11398.46 11880.16 23296.71 10194.33 223
xiu_mvs_v1_base_debu90.64 10590.05 10792.40 11793.97 20184.46 9393.32 21195.46 17785.17 16392.25 8294.03 15970.59 23398.57 11290.97 8394.67 13194.18 226
xiu_mvs_v1_base90.64 10590.05 10792.40 11793.97 20184.46 9393.32 21195.46 17785.17 16392.25 8294.03 15970.59 23398.57 11290.97 8394.67 13194.18 226
xiu_mvs_v1_base_debi90.64 10590.05 10792.40 11793.97 20184.46 9393.32 21195.46 17785.17 16392.25 8294.03 15970.59 23398.57 11290.97 8394.67 13194.18 226
RRT_MVS88.86 15487.68 16492.39 12092.02 25586.09 5594.38 16194.94 20685.45 15787.14 16693.84 17565.88 28997.11 23188.73 10986.77 24593.98 239
AdaColmapbinary89.89 12389.07 12992.37 12197.41 6883.03 13194.42 15495.92 14082.81 21486.34 18394.65 14073.89 19399.02 7180.69 22295.51 11895.05 187
CNLPA89.07 14787.98 15892.34 12296.87 8384.78 8294.08 17993.24 26081.41 24784.46 23195.13 12275.57 17096.62 25677.21 26293.84 14695.61 173
ET-MVSNet_ETH3D87.51 19685.91 22292.32 12393.70 21283.93 10692.33 24990.94 31884.16 18172.09 34992.52 21669.90 24295.85 29889.20 10488.36 22497.17 113
Anonymous20240521187.68 18486.13 21192.31 12496.66 8880.74 19594.87 12491.49 30480.47 26089.46 12995.44 11154.72 34398.23 13482.19 19489.89 19897.97 77
CHOSEN 1792x268888.84 15587.69 16392.30 12596.14 10481.42 17590.01 29695.86 14774.52 32387.41 16093.94 16775.46 17198.36 12580.36 22895.53 11797.12 116
HY-MVS83.01 1289.03 14987.94 16092.29 12694.86 16282.77 13892.08 25994.49 22781.52 24686.93 16992.79 21178.32 14198.23 13479.93 23490.55 18895.88 162
CDS-MVSNet89.45 13488.51 14292.29 12693.62 21383.61 11793.01 22994.68 22481.95 23287.82 15393.24 19378.69 13496.99 24180.34 22993.23 16096.28 143
Khang Truong Giang, Soohwan Song, Sungho Jo: Curvature-guided dynamic scale networks for Multi-view Stereo. ICLR 2022
PAPR90.02 11789.27 12692.29 12695.78 12180.95 18992.68 23796.22 11981.91 23486.66 17693.75 18082.23 9598.44 12279.40 24394.79 13097.48 101
PLCcopyleft84.53 789.06 14888.03 15692.15 12997.27 7682.69 14594.29 16595.44 18279.71 26984.01 24794.18 15876.68 15598.75 10377.28 26193.41 15595.02 188
Jie Liao, Yanping Fu, Qingan Yan, Chunxia xiao: Pyramid Multi-View Stereo with Local Consistency. Pacific Graphics 2019
EPP-MVSNet91.70 8591.56 8292.13 13095.88 11880.50 20297.33 595.25 19286.15 14089.76 12595.60 10983.42 8198.32 13187.37 12793.25 15997.56 99
test_part189.00 15287.99 15792.04 13195.94 11783.81 11096.14 5196.05 13286.44 13485.69 19393.73 18171.57 21997.66 18085.80 14780.54 31094.66 204
CS-MVS-test92.55 7192.72 6892.02 13294.87 16081.34 17796.43 3496.57 9889.04 6391.05 11094.41 14883.85 7998.09 15090.83 9097.47 8696.64 133
原ACMM192.01 13397.34 7181.05 18596.81 7278.89 27890.45 11595.92 9782.65 8898.84 9980.68 22398.26 6396.14 148
UniMVSNet (Re)89.80 12589.07 12992.01 13393.60 21484.52 8994.78 13097.47 1089.26 5686.44 18192.32 22282.10 9897.39 21184.81 15880.84 30694.12 230
MG-MVS91.77 8291.70 8192.00 13597.08 8080.03 21593.60 20495.18 19687.85 10190.89 11296.47 7682.06 10098.36 12585.07 15397.04 9397.62 94
EIA-MVS91.95 7991.94 7791.98 13695.16 14680.01 21695.36 8696.73 8188.44 7989.34 13092.16 22783.82 8098.45 12189.35 10297.06 9297.48 101
PVSNet_Blended90.73 10190.32 10091.98 13696.12 10581.25 17992.55 24396.83 6982.04 22989.10 13392.56 21581.04 10998.85 9786.72 13795.91 11395.84 164
PS-MVSNAJ91.18 9490.92 9291.96 13895.26 14282.60 14992.09 25895.70 15886.27 13791.84 9492.46 21779.70 12298.99 8089.08 10595.86 11494.29 224
TAMVS89.21 14288.29 15191.96 13893.71 21082.62 14893.30 21594.19 23882.22 22487.78 15493.94 16778.83 13196.95 24377.70 25792.98 16596.32 141
MVS_Test91.31 9191.11 8891.93 14094.37 18480.14 20893.46 20995.80 15186.46 13391.35 10693.77 17882.21 9698.09 15087.57 12394.95 12997.55 100
NR-MVSNet88.58 16387.47 16991.93 14093.04 23084.16 10294.77 13196.25 11689.05 6280.04 30593.29 19179.02 13097.05 23781.71 20780.05 31794.59 209
HyFIR lowres test88.09 17486.81 18491.93 14096.00 11380.63 19790.01 29695.79 15273.42 33187.68 15692.10 23373.86 19497.96 16480.75 22191.70 17797.19 112
GeoE90.05 11689.43 11991.90 14395.16 14680.37 20495.80 6994.65 22583.90 18787.55 15994.75 13578.18 14297.62 18681.28 21193.63 14897.71 92
thisisatest053088.67 15987.61 16691.86 14494.87 16080.07 21194.63 13989.90 33884.00 18588.46 14193.78 17766.88 27698.46 11883.30 17592.65 16997.06 117
xiu_mvs_v2_base91.13 9590.89 9491.86 14494.97 15382.42 15192.24 25295.64 16586.11 14391.74 9993.14 19779.67 12598.89 9089.06 10695.46 12194.28 225
DU-MVS89.34 14188.50 14391.85 14693.04 23083.72 11294.47 15096.59 9689.50 4986.46 17893.29 19177.25 14897.23 22384.92 15581.02 30294.59 209
OPM-MVS90.12 11489.56 11591.82 14793.14 22583.90 10794.16 17195.74 15688.96 6787.86 15095.43 11372.48 21397.91 16888.10 11890.18 19393.65 259
Ray L. Khuboni, Hongjun Xu: Octagram Propagation Matching for Multi-Scale View Stereopsis (OPM-MVS).
HQP_MVS90.60 10890.19 10291.82 14794.70 17082.73 14295.85 6796.22 11990.81 1886.91 17194.86 13074.23 18598.12 14088.15 11589.99 19494.63 205
UniMVSNet_NR-MVSNet89.92 12289.29 12491.81 14993.39 21983.72 11294.43 15397.12 4389.80 4086.46 17893.32 18883.16 8297.23 22384.92 15581.02 30294.49 218
diffmvs91.37 9091.23 8691.77 15093.09 22780.27 20592.36 24895.52 17387.03 12091.40 10594.93 12680.08 11697.44 19992.13 5794.56 13697.61 95
1112_ss88.42 16487.33 17291.72 15194.92 15780.98 18792.97 23194.54 22678.16 29283.82 25193.88 17278.78 13397.91 16879.45 23989.41 20596.26 144
Fast-Effi-MVS+89.41 13788.64 13891.71 15294.74 16680.81 19393.54 20595.10 20083.11 20686.82 17490.67 27879.74 12197.75 17680.51 22793.55 15096.57 136
WTY-MVS89.60 12888.92 13391.67 15395.47 13481.15 18392.38 24794.78 22183.11 20689.06 13594.32 15178.67 13596.61 25981.57 20890.89 18797.24 109
TAPA-MVS84.62 688.16 17287.01 18091.62 15496.64 8980.65 19694.39 15796.21 12276.38 30386.19 18695.44 11179.75 12098.08 15362.75 34795.29 12596.13 149
Andrea Romanoni, Matteo Matteucci: TAPA-MVS: Textureless-Aware PAtchMatch Multi-View Stereo. ICCV 2019
VPA-MVSNet89.62 12788.96 13191.60 15593.86 20482.89 13795.46 8497.33 2587.91 9688.43 14293.31 18974.17 18897.40 20887.32 12882.86 27894.52 214
CS-MVS92.55 7192.87 6691.58 15694.21 18980.54 20095.30 9296.68 8988.18 9192.09 8894.57 14584.06 7498.05 15692.56 4398.19 6496.15 146
XVG-OURS89.40 13988.70 13791.52 15794.06 19381.46 17391.27 27496.07 12986.14 14188.89 13795.77 10468.73 26297.26 22087.39 12689.96 19695.83 165
hse-mvs289.88 12489.34 12291.51 15894.83 16481.12 18493.94 19093.91 24989.80 4093.08 6293.60 18375.77 16397.66 18092.07 5877.07 33695.74 169
TranMVSNet+NR-MVSNet88.84 15587.95 15991.49 15992.68 24083.01 13394.92 12096.31 11189.88 3985.53 19993.85 17476.63 15696.96 24281.91 20079.87 32094.50 216
AUN-MVS87.78 18286.54 19791.48 16094.82 16581.05 18593.91 19493.93 24683.00 20986.93 16993.53 18469.50 24997.67 17986.14 14077.12 33595.73 170
XVG-OURS-SEG-HR89.95 12089.45 11791.47 16194.00 19981.21 18291.87 26196.06 13185.78 14688.55 13995.73 10574.67 18197.27 21888.71 11089.64 20395.91 160
MVS87.44 19986.10 21491.44 16292.61 24183.62 11692.63 23995.66 16267.26 35381.47 28392.15 22877.95 14398.22 13679.71 23695.48 11992.47 300
F-COLMAP87.95 17786.80 18591.40 16396.35 10080.88 19194.73 13395.45 18079.65 27082.04 27994.61 14171.13 22498.50 11576.24 27291.05 18594.80 201
thisisatest051587.33 20285.99 21791.37 16493.49 21679.55 22490.63 28489.56 34480.17 26287.56 15890.86 27167.07 27398.28 13381.50 20993.02 16496.29 142
HQP-MVS89.80 12589.28 12591.34 16594.17 19081.56 16794.39 15796.04 13388.81 6885.43 20993.97 16673.83 19597.96 16487.11 13289.77 20194.50 216
FMVSNet387.40 20186.11 21391.30 16693.79 20983.64 11594.20 17094.81 21983.89 18884.37 23491.87 24268.45 26596.56 26478.23 25285.36 25193.70 258
FMVSNet287.19 21285.82 22491.30 16694.01 19683.67 11494.79 12994.94 20683.57 19483.88 24992.05 23766.59 28196.51 26777.56 25985.01 25493.73 256
RPMNet83.95 27281.53 28291.21 16890.58 31079.34 23185.24 34296.76 7771.44 34485.55 19782.97 35170.87 22998.91 8961.01 35189.36 20795.40 179
IB-MVS80.51 1585.24 25683.26 26891.19 16992.13 25079.86 22091.75 26491.29 30983.28 20480.66 29488.49 31361.28 31398.46 11880.99 21779.46 32395.25 183
Christian Sormann, Mattia Rossi, Andreas Kuhn and Friedrich Fraundorfer: IB-MVS: An Iterative Algorithm for Deep Multi-View Stereo based on Binary Decisions. BMVC 2021
CLD-MVS89.47 13388.90 13491.18 17094.22 18882.07 15892.13 25696.09 12787.90 9785.37 21592.45 21874.38 18397.56 18987.15 13090.43 18993.93 240
Zhaoxin Li, Wangmeng Zuo, Zhaoqi Wang, Lei Zhang: Confidence-based Large-scale Dense Multi-view Stereo. IEEE Transaction on Image Processing, 2020
LPG-MVS_test89.45 13488.90 13491.12 17194.47 17881.49 17195.30 9296.14 12486.73 12885.45 20695.16 12069.89 24398.10 14287.70 12189.23 21093.77 253
LGP-MVS_train91.12 17194.47 17881.49 17196.14 12486.73 12885.45 20695.16 12069.89 24398.10 14287.70 12189.23 21093.77 253
ACMM84.12 989.14 14388.48 14691.12 17194.65 17381.22 18195.31 8996.12 12685.31 16185.92 18994.34 14970.19 24198.06 15585.65 14888.86 21594.08 234
Qingshan Xu and Wenbing Tao: Multi-Scale Geometric Consistency Guided Multi-View Stereo. CVPR 2019
tttt051788.61 16187.78 16291.11 17494.96 15477.81 26695.35 8789.69 34185.09 16888.05 14894.59 14366.93 27498.48 11683.27 17692.13 17697.03 119
GBi-Net87.26 20485.98 21891.08 17594.01 19683.10 12895.14 10794.94 20683.57 19484.37 23491.64 24666.59 28196.34 27978.23 25285.36 25193.79 249
test187.26 20485.98 21891.08 17594.01 19683.10 12895.14 10794.94 20683.57 19484.37 23491.64 24666.59 28196.34 27978.23 25285.36 25193.79 249
FMVSNet185.85 24484.11 25791.08 17592.81 23783.10 12895.14 10794.94 20681.64 24282.68 27191.64 24659.01 33096.34 27975.37 27983.78 26393.79 249
Test_1112_low_res87.65 18686.51 19891.08 17594.94 15679.28 23591.77 26394.30 23476.04 30883.51 26092.37 22077.86 14697.73 17778.69 24889.13 21296.22 145
PS-MVSNAJss89.97 11989.62 11491.02 17991.90 25880.85 19295.26 9895.98 13586.26 13886.21 18594.29 15379.70 12297.65 18288.87 10888.10 22794.57 211
BH-RMVSNet88.37 16687.48 16891.02 17995.28 14079.45 22792.89 23393.07 26485.45 15786.91 17194.84 13370.35 23897.76 17373.97 29094.59 13595.85 163
UniMVSNet_ETH3D87.53 19586.37 20191.00 18192.44 24378.96 24094.74 13295.61 16684.07 18485.36 21694.52 14659.78 32697.34 21382.93 18087.88 23296.71 131
FIs90.51 10990.35 9990.99 18293.99 20080.98 18795.73 7297.54 389.15 6086.72 17594.68 13881.83 10497.24 22285.18 15288.31 22594.76 202
ACMP84.23 889.01 15188.35 14790.99 18294.73 16781.27 17895.07 11095.89 14586.48 13283.67 25594.30 15269.33 25197.99 16287.10 13488.55 21793.72 257
Qingshan Xu and Wenbing Tao: Planar Prior Assisted PatchMatch Multi-View Stereo. AAAI 2020
Anonymous2023121186.59 23085.13 24090.98 18496.52 9581.50 16996.14 5196.16 12373.78 32883.65 25692.15 22863.26 30197.37 21282.82 18481.74 29194.06 235
sss88.93 15388.26 15390.94 18594.05 19480.78 19491.71 26695.38 18681.55 24588.63 13893.91 17175.04 17595.47 31482.47 18991.61 17896.57 136
PVSNet_BlendedMVS89.98 11889.70 11390.82 18696.12 10581.25 17993.92 19196.83 6983.49 19889.10 13392.26 22581.04 10998.85 9786.72 13787.86 23392.35 305
cascas86.43 23684.98 24390.80 18792.10 25280.92 19090.24 29095.91 14273.10 33483.57 25988.39 31465.15 29297.46 19684.90 15791.43 17994.03 237
ECVR-MVScopyleft89.09 14688.53 14190.77 18895.62 12875.89 29496.16 4884.22 35987.89 9990.20 11996.65 6563.19 30298.10 14285.90 14596.94 9498.33 44
GA-MVS86.61 22885.27 23890.66 18991.33 28078.71 24290.40 28793.81 25385.34 16085.12 21989.57 29961.25 31497.11 23180.99 21789.59 20496.15 146
bset_n11_16_dypcd86.83 22085.55 23090.65 19088.22 34181.70 16588.88 31490.42 32585.26 16285.49 20390.69 27767.11 27297.02 23989.51 10184.39 25893.23 275
thres600view787.65 18686.67 19090.59 19196.08 10978.72 24194.88 12391.58 30087.06 11988.08 14692.30 22368.91 25998.10 14270.05 31491.10 18194.96 192
thres40087.62 19186.64 19190.57 19295.99 11478.64 24394.58 14191.98 29186.94 12388.09 14491.77 24369.18 25698.10 14270.13 31191.10 18194.96 192
baseline188.10 17387.28 17490.57 19294.96 15480.07 21194.27 16691.29 30986.74 12787.41 16094.00 16476.77 15396.20 28380.77 22079.31 32595.44 177
FC-MVSNet-test90.27 11290.18 10390.53 19493.71 21079.85 22195.77 7197.59 289.31 5586.27 18494.67 13981.93 10397.01 24084.26 16488.09 22994.71 203
PAPM86.68 22785.39 23590.53 19493.05 22979.33 23489.79 29994.77 22278.82 28081.95 28093.24 19376.81 15197.30 21466.94 33093.16 16194.95 195
WR-MVS88.38 16587.67 16590.52 19693.30 22280.18 20693.26 21895.96 13788.57 7785.47 20592.81 20976.12 15896.91 24681.24 21282.29 28194.47 221
MVSTER88.84 15588.29 15190.51 19792.95 23580.44 20393.73 19895.01 20384.66 17687.15 16493.12 19872.79 20997.21 22587.86 11987.36 23893.87 244
testdata90.49 19896.40 9777.89 26395.37 18872.51 33993.63 4996.69 6182.08 9997.65 18283.08 17797.39 8795.94 159
test111189.10 14488.64 13890.48 19995.53 13374.97 30096.08 5584.89 35788.13 9390.16 12196.65 6563.29 30098.10 14286.14 14096.90 9698.39 40
jajsoiax88.24 17087.50 16790.48 19990.89 29980.14 20895.31 8995.65 16484.97 17084.24 24394.02 16265.31 29197.42 20188.56 11188.52 21993.89 241
PatchMatch-RL86.77 22685.54 23190.47 20195.88 11882.71 14490.54 28592.31 28079.82 26884.32 23991.57 25368.77 26196.39 27573.16 29593.48 15492.32 306
tfpn200view987.58 19386.64 19190.41 20295.99 11478.64 24394.58 14191.98 29186.94 12388.09 14491.77 24369.18 25698.10 14270.13 31191.10 18194.48 219
VPNet88.20 17187.47 16990.39 20393.56 21579.46 22694.04 18395.54 17188.67 7386.96 16894.58 14469.33 25197.15 22784.05 16780.53 31294.56 212
ACMH80.38 1785.36 25183.68 26390.39 20394.45 18180.63 19794.73 13394.85 21582.09 22677.24 32392.65 21360.01 32497.58 18772.25 29984.87 25592.96 286
Qingshan Xu and Wenbing Tao: Multi-Scale Geometric Consistency Guided Multi-View Stereo. CVPR 2019
thres100view90087.63 18986.71 18890.38 20596.12 10578.55 24595.03 11491.58 30087.15 11688.06 14792.29 22468.91 25998.10 14270.13 31191.10 18194.48 219
mvs-test189.45 13489.14 12790.38 20593.33 22077.63 27294.95 11794.36 23187.70 10587.10 16792.81 20973.45 20098.03 15985.57 15093.04 16395.48 175
mvs_tets88.06 17687.28 17490.38 20590.94 29579.88 21995.22 10095.66 16285.10 16784.21 24493.94 16763.53 29997.40 20888.50 11288.40 22393.87 244
131487.51 19686.57 19690.34 20892.42 24479.74 22392.63 23995.35 19078.35 28880.14 30291.62 25074.05 19097.15 22781.05 21393.53 15194.12 230
LTVRE_ROB82.13 1386.26 23884.90 24690.34 20894.44 18281.50 16992.31 25194.89 21283.03 20879.63 31092.67 21269.69 24697.79 17171.20 30286.26 24691.72 314
Andreas Kuhn, Heiko Hirschmüller, Daniel Scharstein, Helmut Mayer: A TV Prior for High-Quality Scalable Multi-View Stereo Reconstruction. International Journal of Computer Vision 2016
test_djsdf89.03 14988.64 13890.21 21090.74 30579.28 23595.96 6395.90 14384.66 17685.33 21792.94 20374.02 19197.30 21489.64 9988.53 21894.05 236
v2v48287.84 17987.06 17890.17 21190.99 29179.23 23894.00 18795.13 19784.87 17185.53 19992.07 23674.45 18297.45 19784.71 16081.75 29093.85 247
pmmvs485.43 25083.86 26190.16 21290.02 32282.97 13590.27 28892.67 27375.93 30980.73 29291.74 24571.05 22595.73 30478.85 24683.46 27091.78 313
V4287.68 18486.86 18290.15 21390.58 31080.14 20894.24 16895.28 19183.66 19285.67 19491.33 25574.73 18097.41 20684.43 16381.83 28892.89 289
MSDG84.86 26383.09 27090.14 21493.80 20780.05 21389.18 30993.09 26378.89 27878.19 31691.91 24065.86 29097.27 21868.47 32088.45 22193.11 281
anonymousdsp87.84 17987.09 17790.12 21589.13 33080.54 20094.67 13795.55 16982.05 22783.82 25192.12 23071.47 22297.15 22787.15 13087.80 23492.67 294
thres20087.21 21086.24 20990.12 21595.36 13678.53 24693.26 21892.10 28586.42 13588.00 14991.11 26669.24 25598.00 16169.58 31591.04 18693.83 248
CR-MVSNet85.35 25283.76 26290.12 21590.58 31079.34 23185.24 34291.96 29378.27 28985.55 19787.87 32471.03 22695.61 30573.96 29189.36 20795.40 179
v114487.61 19286.79 18690.06 21891.01 29079.34 23193.95 18995.42 18583.36 20285.66 19591.31 25874.98 17697.42 20183.37 17482.06 28493.42 268
XXY-MVS87.65 18686.85 18390.03 21992.14 24980.60 19993.76 19795.23 19382.94 21184.60 22694.02 16274.27 18495.49 31381.04 21483.68 26694.01 238
Vis-MVSNet (Re-imp)89.59 12989.44 11890.03 21995.74 12275.85 29595.61 8090.80 32287.66 10987.83 15295.40 11476.79 15296.46 27278.37 24996.73 10097.80 89
test250687.21 21086.28 20790.02 22195.62 12873.64 31396.25 4571.38 37287.89 9990.45 11596.65 6555.29 34198.09 15086.03 14496.94 9498.33 44
BH-untuned88.60 16288.13 15590.01 22295.24 14378.50 24893.29 21694.15 24084.75 17484.46 23193.40 18575.76 16597.40 20877.59 25894.52 13794.12 230
v119287.25 20686.33 20490.00 22390.76 30479.04 23993.80 19595.48 17582.57 21885.48 20491.18 26273.38 20497.42 20182.30 19282.06 28493.53 262
v7n86.81 22185.76 22889.95 22490.72 30679.25 23795.07 11095.92 14084.45 17982.29 27490.86 27172.60 21297.53 19179.42 24280.52 31393.08 283
v887.50 19886.71 18889.89 22591.37 27779.40 22894.50 14695.38 18684.81 17383.60 25891.33 25576.05 15997.42 20182.84 18380.51 31492.84 291
v1087.25 20686.38 20089.85 22691.19 28379.50 22594.48 14795.45 18083.79 19083.62 25791.19 26075.13 17397.42 20181.94 19980.60 30892.63 296
baseline286.50 23385.39 23589.84 22791.12 28776.70 28491.88 26088.58 34682.35 22379.95 30690.95 27073.42 20297.63 18580.27 23189.95 19795.19 184
pm-mvs186.61 22885.54 23189.82 22891.44 27180.18 20695.28 9794.85 21583.84 18981.66 28292.62 21472.45 21596.48 26979.67 23778.06 32892.82 292
TR-MVS86.78 22385.76 22889.82 22894.37 18478.41 25092.47 24492.83 26881.11 25586.36 18292.40 21968.73 26297.48 19473.75 29389.85 20093.57 261
ACMH+81.04 1485.05 25983.46 26789.82 22894.66 17279.37 22994.44 15294.12 24382.19 22578.04 31892.82 20858.23 33297.54 19073.77 29282.90 27792.54 297
EI-MVSNet89.10 14488.86 13689.80 23191.84 26078.30 25393.70 20195.01 20385.73 14887.15 16495.28 11579.87 11997.21 22583.81 17087.36 23893.88 243
v14419287.19 21286.35 20389.74 23290.64 30878.24 25593.92 19195.43 18381.93 23385.51 20191.05 26874.21 18797.45 19782.86 18281.56 29293.53 262
COLMAP_ROBcopyleft80.39 1683.96 27182.04 27889.74 23295.28 14079.75 22294.25 16792.28 28175.17 31678.02 31993.77 17858.60 33197.84 17065.06 34085.92 24791.63 316
Johannes L. Schönberger, Enliang Zheng, Marc Pollefeys, Jan-Michael Frahm: Pixelwise View Selection for Unstructured Multi-View Stereo. ECCV 2016
SCA86.32 23785.18 23989.73 23492.15 24876.60 28591.12 27791.69 29883.53 19785.50 20288.81 30766.79 27796.48 26976.65 26790.35 19196.12 150
IterMVS-LS88.36 16787.91 16189.70 23593.80 20778.29 25493.73 19895.08 20285.73 14884.75 22491.90 24179.88 11896.92 24583.83 16982.51 27993.89 241
Fangjinhua Wang, Silvano Galliani, Christoph Vogel, Marc Pollefeys: IterMVS: Iterative Probability Estimation for Efficient Multi-View Stereo.
v192192086.97 21786.06 21689.69 23690.53 31378.11 25893.80 19595.43 18381.90 23585.33 21791.05 26872.66 21097.41 20682.05 19781.80 28993.53 262
Fast-Effi-MVS+-dtu87.44 19986.72 18789.63 23792.04 25377.68 27194.03 18493.94 24585.81 14582.42 27391.32 25770.33 23997.06 23680.33 23090.23 19294.14 229
v124086.78 22385.85 22389.56 23890.45 31477.79 26793.61 20395.37 18881.65 24185.43 20991.15 26471.50 22197.43 20081.47 21082.05 28693.47 266
Effi-MVS+-dtu88.65 16088.35 14789.54 23993.33 22076.39 28994.47 15094.36 23187.70 10585.43 20989.56 30073.45 20097.26 22085.57 15091.28 18094.97 189
AllTest83.42 27781.39 28389.52 24095.01 15077.79 26793.12 22390.89 32077.41 29576.12 33193.34 18654.08 34697.51 19268.31 32284.27 26093.26 271
TestCases89.52 24095.01 15077.79 26790.89 32077.41 29576.12 33193.34 18654.08 34697.51 19268.31 32284.27 26093.26 271
mvs_anonymous89.37 14089.32 12389.51 24293.47 21774.22 30791.65 26994.83 21782.91 21285.45 20693.79 17681.23 10896.36 27886.47 13994.09 14297.94 79
XVG-ACMP-BASELINE86.00 24084.84 24889.45 24391.20 28278.00 25991.70 26795.55 16985.05 16982.97 26892.25 22654.49 34497.48 19482.93 18087.45 23792.89 289
MVP-Stereo85.97 24184.86 24789.32 24490.92 29782.19 15692.11 25794.19 23878.76 28278.77 31591.63 24968.38 26696.56 26475.01 28493.95 14389.20 345
Qingsong Yan: MVP-Stereo: A Parallel Multi-View Patchmatch Stereo Method with Dilation Matching for Photogrammetric Application.
PatchmatchNetpermissive85.85 24484.70 25089.29 24591.76 26375.54 29888.49 31991.30 30881.63 24385.05 22088.70 31171.71 21796.24 28274.61 28789.05 21396.08 154
Fangjinhua Wang, Silvano Galliani, Christoph Vogel, Pablo Speciale, Marc Pollefeys: PatchmatchNet: Learned Multi-View Patchmatch Stereo.
v14887.04 21686.32 20589.21 24690.94 29577.26 27893.71 20094.43 22984.84 17284.36 23790.80 27476.04 16097.05 23782.12 19579.60 32293.31 270
tfpnnormal84.72 26583.23 26989.20 24792.79 23880.05 21394.48 14795.81 15082.38 22181.08 28991.21 25969.01 25896.95 24361.69 34980.59 30990.58 336
cl2286.78 22385.98 21889.18 24892.34 24577.62 27390.84 28194.13 24281.33 24983.97 24890.15 28773.96 19296.60 26184.19 16582.94 27493.33 269
BH-w/o87.57 19487.05 17989.12 24994.90 15977.90 26292.41 24593.51 25782.89 21383.70 25491.34 25475.75 16697.07 23575.49 27793.49 15292.39 303
WR-MVS_H87.80 18187.37 17189.10 25093.23 22378.12 25795.61 8097.30 2987.90 9783.72 25392.01 23879.65 12696.01 29176.36 26980.54 31093.16 279
miper_enhance_ethall86.90 21886.18 21089.06 25191.66 26877.58 27490.22 29294.82 21879.16 27584.48 23089.10 30379.19 12996.66 25484.06 16682.94 27492.94 287
c3_l87.14 21486.50 19989.04 25292.20 24777.26 27891.22 27694.70 22382.01 23084.34 23890.43 28278.81 13296.61 25983.70 17281.09 29993.25 273
miper_ehance_all_eth87.22 20986.62 19489.02 25392.13 25077.40 27790.91 28094.81 21981.28 25084.32 23990.08 28979.26 12896.62 25683.81 17082.94 27493.04 284
gg-mvs-nofinetune81.77 28979.37 30288.99 25490.85 30177.73 27086.29 33679.63 36874.88 32183.19 26769.05 36260.34 32196.11 28775.46 27894.64 13493.11 281
pmmvs683.42 27781.60 28188.87 25588.01 34477.87 26494.96 11694.24 23774.67 32278.80 31491.09 26760.17 32396.49 26877.06 26675.40 34092.23 308
DWT-MVSNet_test84.95 26183.68 26388.77 25691.43 27473.75 31191.74 26590.98 31680.66 25983.84 25087.36 32962.44 30597.11 23178.84 24785.81 24895.46 176
MIMVSNet82.59 28380.53 28888.76 25791.51 27078.32 25286.57 33590.13 33179.32 27180.70 29388.69 31252.98 35093.07 34466.03 33588.86 21594.90 196
cl____86.52 23285.78 22588.75 25892.03 25476.46 28790.74 28294.30 23481.83 23983.34 26490.78 27575.74 16896.57 26281.74 20581.54 29393.22 276
DIV-MVS_self_test86.53 23185.78 22588.75 25892.02 25576.45 28890.74 28294.30 23481.83 23983.34 26490.82 27375.75 16696.57 26281.73 20681.52 29493.24 274
CP-MVSNet87.63 18987.26 17688.74 26093.12 22676.59 28695.29 9596.58 9788.43 8083.49 26192.98 20275.28 17295.83 29978.97 24581.15 29893.79 249
eth_miper_zixun_eth86.50 23385.77 22788.68 26191.94 25775.81 29690.47 28694.89 21282.05 22784.05 24590.46 28175.96 16196.77 25082.76 18679.36 32493.46 267
CHOSEN 280x42085.15 25783.99 25988.65 26292.47 24278.40 25179.68 35992.76 27074.90 32081.41 28589.59 29869.85 24595.51 31079.92 23595.29 12592.03 310
PS-CasMVS87.32 20386.88 18188.63 26392.99 23476.33 29195.33 8896.61 9588.22 8883.30 26693.07 20073.03 20795.79 30278.36 25081.00 30493.75 255
TransMVSNet (Re)84.43 26883.06 27188.54 26491.72 26478.44 24995.18 10492.82 26982.73 21579.67 30992.12 23073.49 19995.96 29371.10 30668.73 35491.21 325
RRT_test8_iter0586.90 21886.36 20288.52 26593.00 23373.27 31794.32 16495.96 13785.50 15684.26 24292.86 20460.76 31997.70 17888.32 11482.29 28194.60 208
EG-PatchMatch MVS82.37 28580.34 29188.46 26690.27 31679.35 23092.80 23694.33 23377.14 29973.26 34690.18 28647.47 36096.72 25170.25 30887.32 24089.30 343
PEN-MVS86.80 22286.27 20888.40 26792.32 24675.71 29795.18 10496.38 10987.97 9482.82 27093.15 19673.39 20395.92 29476.15 27379.03 32793.59 260
Baseline_NR-MVSNet87.07 21586.63 19388.40 26791.44 27177.87 26494.23 16992.57 27584.12 18385.74 19292.08 23477.25 14896.04 28882.29 19379.94 31891.30 322
D2MVS85.90 24285.09 24188.35 26990.79 30277.42 27691.83 26295.70 15880.77 25880.08 30490.02 29066.74 27996.37 27681.88 20187.97 23191.26 323
pmmvs584.21 26982.84 27588.34 27088.95 33276.94 28292.41 24591.91 29575.63 31180.28 29991.18 26264.59 29595.57 30677.09 26583.47 26992.53 298
LCM-MVSNet-Re88.30 16988.32 15088.27 27194.71 16972.41 32993.15 22290.98 31687.77 10379.25 31391.96 23978.35 14095.75 30383.04 17895.62 11696.65 132
CostFormer85.77 24684.94 24588.26 27291.16 28672.58 32789.47 30491.04 31576.26 30686.45 18089.97 29270.74 23196.86 24982.35 19187.07 24395.34 182
ITE_SJBPF88.24 27391.88 25977.05 28192.92 26685.54 15480.13 30393.30 19057.29 33496.20 28372.46 29884.71 25691.49 318
PVSNet78.82 1885.55 24884.65 25188.23 27494.72 16871.93 33087.12 33292.75 27178.80 28184.95 22290.53 28064.43 29696.71 25374.74 28593.86 14596.06 156
IterMVS-SCA-FT85.45 24984.53 25488.18 27591.71 26576.87 28390.19 29392.65 27485.40 15981.44 28490.54 27966.79 27795.00 32281.04 21481.05 30092.66 295
EPNet_dtu86.49 23585.94 22188.14 27690.24 31772.82 32194.11 17592.20 28386.66 13179.42 31292.36 22173.52 19895.81 30171.26 30193.66 14795.80 167
Wanjuan Su, Wenbing Tao: Efficient Edge-Preserving Multi-View Stereo Network for Depth Estimation. AAAI 2023
MVS_030483.46 27681.92 27988.10 27790.63 30977.49 27593.26 21893.75 25480.04 26580.44 29887.24 33247.94 35895.55 30775.79 27588.16 22691.26 323
Patchmtry82.71 28180.93 28788.06 27890.05 32176.37 29084.74 34691.96 29372.28 34181.32 28787.87 32471.03 22695.50 31268.97 31780.15 31692.32 306
DTE-MVSNet86.11 23985.48 23387.98 27991.65 26974.92 30194.93 11995.75 15587.36 11482.26 27593.04 20172.85 20895.82 30074.04 28977.46 33393.20 277
PMMVS85.71 24784.96 24487.95 28088.90 33377.09 28088.68 31790.06 33372.32 34086.47 17790.76 27672.15 21694.40 32581.78 20493.49 15292.36 304
GG-mvs-BLEND87.94 28189.73 32777.91 26187.80 32578.23 37080.58 29583.86 34659.88 32595.33 31671.20 30292.22 17590.60 335
pmmvs-eth3d80.97 30278.72 31187.74 28284.99 35879.97 21890.11 29591.65 29975.36 31373.51 34486.03 33859.45 32793.96 33475.17 28172.21 34589.29 344
MS-PatchMatch85.05 25984.16 25687.73 28391.42 27578.51 24791.25 27593.53 25677.50 29480.15 30191.58 25161.99 30895.51 31075.69 27694.35 14189.16 346
test_040281.30 29979.17 30787.67 28493.19 22478.17 25692.98 23091.71 29675.25 31576.02 33390.31 28459.23 32896.37 27650.22 36283.63 26788.47 352
IterMVS84.88 26283.98 26087.60 28591.44 27176.03 29390.18 29492.41 27783.24 20581.06 29090.42 28366.60 28094.28 32979.46 23880.98 30592.48 299
Fangjinhua Wang, Silvano Galliani, Christoph Vogel, Marc Pollefeys: IterMVS: Iterative Probability Estimation for Efficient Multi-View Stereo.
Patchmatch-test81.37 29779.30 30387.58 28690.92 29774.16 30980.99 35787.68 35170.52 34876.63 32888.81 30771.21 22392.76 34660.01 35586.93 24495.83 165
EPMVS83.90 27482.70 27687.51 28790.23 31872.67 32388.62 31881.96 36481.37 24885.01 22188.34 31566.31 28494.45 32475.30 28087.12 24195.43 178
ADS-MVSNet281.66 29279.71 30087.50 28891.35 27874.19 30883.33 35188.48 34772.90 33682.24 27685.77 34164.98 29393.20 34264.57 34183.74 26495.12 185
OurMVSNet-221017-085.35 25284.64 25287.49 28990.77 30372.59 32694.01 18694.40 23084.72 17579.62 31193.17 19561.91 30996.72 25181.99 19881.16 29693.16 279
tpm284.08 27082.94 27287.48 29091.39 27671.27 33489.23 30890.37 32771.95 34284.64 22589.33 30167.30 26896.55 26675.17 28187.09 24294.63 205
RPSCF85.07 25884.27 25587.48 29092.91 23670.62 34291.69 26892.46 27676.20 30782.67 27295.22 11863.94 29897.29 21777.51 26085.80 24994.53 213
miper_lstm_enhance85.27 25584.59 25387.31 29291.28 28174.63 30287.69 32894.09 24481.20 25481.36 28689.85 29574.97 17794.30 32881.03 21679.84 32193.01 285
FMVSNet581.52 29579.60 30187.27 29391.17 28477.95 26091.49 27192.26 28276.87 30076.16 33087.91 32351.67 35192.34 34867.74 32681.16 29691.52 317
USDC82.76 28081.26 28587.26 29491.17 28474.55 30389.27 30693.39 25978.26 29075.30 33692.08 23454.43 34596.63 25571.64 30085.79 25090.61 333
test-LLR85.87 24385.41 23487.25 29590.95 29371.67 33289.55 30089.88 33983.41 20084.54 22887.95 32167.25 26995.11 31981.82 20293.37 15794.97 189
test-mter84.54 26783.64 26587.25 29590.95 29371.67 33289.55 30089.88 33979.17 27484.54 22887.95 32155.56 33895.11 31981.82 20293.37 15794.97 189
JIA-IIPM81.04 30078.98 31087.25 29588.64 33473.48 31581.75 35689.61 34373.19 33382.05 27873.71 35966.07 28895.87 29771.18 30484.60 25792.41 302
TDRefinement79.81 31077.34 31487.22 29879.24 36675.48 29993.12 22392.03 28876.45 30275.01 33791.58 25149.19 35696.44 27370.22 31069.18 35189.75 340
tpmvs83.35 27982.07 27787.20 29991.07 28971.00 33988.31 32291.70 29778.91 27780.49 29787.18 33369.30 25497.08 23468.12 32583.56 26893.51 265
ppachtmachnet_test81.84 28880.07 29687.15 30088.46 33774.43 30689.04 31292.16 28475.33 31477.75 32088.99 30466.20 28595.37 31565.12 33977.60 33191.65 315
tpm cat181.96 28680.27 29287.01 30191.09 28871.02 33887.38 33191.53 30366.25 35480.17 30086.35 33768.22 26796.15 28669.16 31682.29 28193.86 246
OpenMVS_ROBcopyleft74.94 1979.51 31277.03 31886.93 30287.00 34776.23 29292.33 24990.74 32368.93 35174.52 34088.23 31849.58 35596.62 25657.64 35784.29 25987.94 354
SixPastTwentyTwo83.91 27382.90 27386.92 30390.99 29170.67 34193.48 20791.99 29085.54 15477.62 32292.11 23260.59 32096.87 24876.05 27477.75 33093.20 277
ADS-MVSNet81.56 29479.78 29886.90 30491.35 27871.82 33183.33 35189.16 34572.90 33682.24 27685.77 34164.98 29393.76 33564.57 34183.74 26495.12 185
PatchT82.68 28281.27 28486.89 30590.09 32070.94 34084.06 34890.15 33074.91 31985.63 19683.57 34869.37 25094.87 32365.19 33788.50 22094.84 198
tpm84.73 26484.02 25886.87 30690.33 31568.90 34989.06 31189.94 33680.85 25785.75 19189.86 29468.54 26495.97 29277.76 25684.05 26295.75 168
Patchmatch-RL test81.67 29179.96 29786.81 30785.42 35671.23 33582.17 35587.50 35278.47 28677.19 32482.50 35270.81 23093.48 33882.66 18772.89 34495.71 171
MDA-MVSNet-bldmvs78.85 31676.31 31986.46 30889.76 32673.88 31088.79 31590.42 32579.16 27559.18 36188.33 31660.20 32294.04 33162.00 34868.96 35291.48 319
tpmrst85.35 25284.99 24286.43 30990.88 30067.88 35388.71 31691.43 30680.13 26386.08 18888.80 30973.05 20696.02 29082.48 18883.40 27295.40 179
TESTMET0.1,183.74 27582.85 27486.42 31089.96 32371.21 33689.55 30087.88 34877.41 29583.37 26387.31 33056.71 33593.65 33780.62 22492.85 16894.40 222
our_test_381.93 28780.46 29086.33 31188.46 33773.48 31588.46 32091.11 31176.46 30176.69 32788.25 31766.89 27594.36 32668.75 31879.08 32691.14 327
lessismore_v086.04 31288.46 33768.78 35080.59 36673.01 34790.11 28855.39 33996.43 27475.06 28365.06 35692.90 288
TinyColmap79.76 31177.69 31385.97 31391.71 26573.12 31889.55 30090.36 32875.03 31772.03 35090.19 28546.22 36196.19 28563.11 34581.03 30188.59 351
KD-MVS_2432*160078.50 31776.02 32285.93 31486.22 35074.47 30484.80 34492.33 27879.29 27276.98 32585.92 33953.81 34893.97 33267.39 32757.42 36289.36 341
miper_refine_blended78.50 31776.02 32285.93 31486.22 35074.47 30484.80 34492.33 27879.29 27276.98 32585.92 33953.81 34893.97 33267.39 32757.42 36289.36 341
K. test v381.59 29380.15 29585.91 31689.89 32569.42 34892.57 24287.71 35085.56 15373.44 34589.71 29755.58 33795.52 30977.17 26369.76 34892.78 293
MIMVSNet179.38 31377.28 31585.69 31786.35 34973.67 31291.61 27092.75 27178.11 29372.64 34888.12 31948.16 35791.97 35260.32 35277.49 33291.43 320
UnsupCasMVSNet_eth80.07 30878.27 31285.46 31885.24 35772.63 32588.45 32194.87 21482.99 21071.64 35288.07 32056.34 33691.75 35373.48 29463.36 35992.01 311
CL-MVSNet_self_test81.74 29080.53 28885.36 31985.96 35272.45 32890.25 28993.07 26481.24 25279.85 30887.29 33170.93 22892.52 34766.95 32969.23 35091.11 329
MDA-MVSNet_test_wron79.21 31577.19 31785.29 32088.22 34172.77 32285.87 33890.06 33374.34 32462.62 36087.56 32766.14 28691.99 35166.90 33373.01 34291.10 330
YYNet179.22 31477.20 31685.28 32188.20 34372.66 32485.87 33890.05 33574.33 32562.70 35987.61 32666.09 28792.03 35066.94 33072.97 34391.15 326
dp81.47 29680.23 29385.17 32289.92 32465.49 35986.74 33390.10 33276.30 30581.10 28887.12 33462.81 30395.92 29468.13 32479.88 31994.09 233
UnsupCasMVSNet_bld76.23 32373.27 32685.09 32383.79 36072.92 31985.65 34193.47 25871.52 34368.84 35579.08 35649.77 35493.21 34166.81 33460.52 36189.13 348
Anonymous2023120681.03 30179.77 29984.82 32487.85 34670.26 34491.42 27292.08 28673.67 32977.75 32089.25 30262.43 30693.08 34361.50 35082.00 28791.12 328
test0.0.03 182.41 28481.69 28084.59 32588.23 34072.89 32090.24 29087.83 34983.41 20079.86 30789.78 29667.25 26988.99 36065.18 33883.42 27191.90 312
CMPMVSbinary59.16 2180.52 30479.20 30684.48 32683.98 35967.63 35589.95 29893.84 25264.79 35666.81 35791.14 26557.93 33395.17 31776.25 27188.10 22790.65 332
M. Jancosek, T. Pajdla: Multi-View Reconstruction Preserving Weakly-Supported Surfaces. CVPR 2011
CVMVSNet84.69 26684.79 24984.37 32791.84 26064.92 36193.70 20191.47 30566.19 35586.16 18795.28 11567.18 27193.33 34080.89 21990.42 19094.88 197
PVSNet_073.20 2077.22 32074.83 32584.37 32790.70 30771.10 33783.09 35389.67 34272.81 33873.93 34383.13 35060.79 31893.70 33668.54 31950.84 36588.30 353
LF4IMVS80.37 30679.07 30984.27 32986.64 34869.87 34789.39 30591.05 31476.38 30374.97 33890.00 29147.85 35994.25 33074.55 28880.82 30788.69 350
Anonymous2024052180.44 30579.21 30584.11 33085.75 35467.89 35292.86 23493.23 26175.61 31275.59 33587.47 32850.03 35394.33 32771.14 30581.21 29590.12 338
PM-MVS78.11 31976.12 32184.09 33183.54 36170.08 34588.97 31385.27 35679.93 26674.73 33986.43 33534.70 36693.48 33879.43 24172.06 34688.72 349
testgi80.94 30380.20 29483.18 33287.96 34566.29 35691.28 27390.70 32483.70 19178.12 31792.84 20651.37 35290.82 35663.34 34482.46 28092.43 301
KD-MVS_self_test80.20 30779.24 30483.07 33385.64 35565.29 36091.01 27993.93 24678.71 28476.32 32986.40 33659.20 32992.93 34572.59 29769.35 34991.00 331
ambc83.06 33479.99 36563.51 36377.47 36092.86 26774.34 34284.45 34528.74 36795.06 32173.06 29668.89 35390.61 333
test20.0379.95 30979.08 30882.55 33585.79 35367.74 35491.09 27891.08 31281.23 25374.48 34189.96 29361.63 31090.15 35760.08 35376.38 33789.76 339
EU-MVSNet81.32 29880.95 28682.42 33688.50 33663.67 36293.32 21191.33 30764.02 35780.57 29692.83 20761.21 31692.27 34976.34 27080.38 31591.32 321
pmmvs371.81 32668.71 32981.11 33775.86 36770.42 34386.74 33383.66 36058.95 36068.64 35680.89 35436.93 36589.52 35963.10 34663.59 35883.39 356
new-patchmatchnet76.41 32275.17 32480.13 33882.65 36459.61 36487.66 32991.08 31278.23 29169.85 35383.22 34954.76 34291.63 35564.14 34364.89 35789.16 346
DSMNet-mixed76.94 32176.29 32078.89 33983.10 36256.11 36987.78 32679.77 36760.65 35975.64 33488.71 31061.56 31188.34 36160.07 35489.29 20992.21 309
EGC-MVSNET61.97 33056.37 33478.77 34089.63 32873.50 31489.12 31082.79 3610.21 3761.24 37784.80 34439.48 36490.04 35844.13 36475.94 33972.79 363
new_pmnet72.15 32570.13 32878.20 34182.95 36365.68 35783.91 34982.40 36362.94 35864.47 35879.82 35542.85 36386.26 36357.41 35874.44 34182.65 359
MVS-HIRNet73.70 32472.20 32778.18 34291.81 26256.42 36882.94 35482.58 36255.24 36168.88 35466.48 36355.32 34095.13 31858.12 35688.42 22283.01 357
LCM-MVSNet66.00 32862.16 33277.51 34364.51 37358.29 36583.87 35090.90 31948.17 36454.69 36273.31 36016.83 37686.75 36265.47 33661.67 36087.48 355
ANet_high58.88 33254.22 33672.86 34456.50 37656.67 36780.75 35886.00 35373.09 33537.39 36864.63 36522.17 37179.49 36843.51 36523.96 37082.43 360
FPMVS64.63 32962.55 33170.88 34570.80 36956.71 36684.42 34784.42 35851.78 36349.57 36381.61 35323.49 37081.48 36640.61 36776.25 33874.46 362
N_pmnet68.89 32768.44 33070.23 34689.07 33128.79 37888.06 32319.50 37969.47 35071.86 35184.93 34361.24 31591.75 35354.70 35977.15 33490.15 337
PMMVS259.60 33156.40 33369.21 34768.83 37046.58 37373.02 36477.48 37155.07 36249.21 36472.95 36117.43 37580.04 36749.32 36344.33 36780.99 361
Gipumacopyleft57.99 33354.91 33567.24 34888.51 33565.59 35852.21 36790.33 32943.58 36642.84 36751.18 36820.29 37385.07 36434.77 36870.45 34751.05 367
S. Galliani, K. Lasinger, K. Schindler: Massively Parallel Multiview Stereopsis by Surface Normal Diffusion. ICCV 2015
PMVScopyleft47.18 2252.22 33448.46 33863.48 34945.72 37846.20 37473.41 36378.31 36941.03 36730.06 37065.68 3646.05 37783.43 36530.04 36965.86 35560.80 364
Y. Furukawa, J. Ponce: Accurate, dense, and robust multiview stereopsis. PAMI (2010)
MVEpermissive39.65 2343.39 33638.59 34257.77 35056.52 37548.77 37255.38 36658.64 37629.33 37028.96 37152.65 3674.68 37864.62 37228.11 37033.07 36859.93 365
Simon Fuhrmann, Fabian Langguth, Michael Goesele: MVE - A Multi-View Reconstruction Environment. EUROGRAPHICS Workshops on Graphics and Cultural Heritage (2014)
test_method50.52 33548.47 33756.66 35152.26 37718.98 38041.51 36981.40 36510.10 37144.59 36675.01 35828.51 36868.16 36953.54 36049.31 36682.83 358
DeepMVS_CXcopyleft56.31 35274.23 36851.81 37156.67 37744.85 36548.54 36575.16 35727.87 36958.74 37340.92 36652.22 36458.39 366
E-PMN43.23 33742.29 33946.03 35365.58 37237.41 37573.51 36264.62 37333.99 36828.47 37247.87 36919.90 37467.91 37022.23 37124.45 36932.77 368
EMVS42.07 33841.12 34044.92 35463.45 37435.56 37773.65 36163.48 37433.05 36926.88 37345.45 37021.27 37267.14 37119.80 37223.02 37132.06 369
tmp_tt35.64 33939.24 34124.84 35514.87 37923.90 37962.71 36551.51 3786.58 37336.66 36962.08 36644.37 36230.34 37552.40 36122.00 37220.27 370
wuyk23d21.27 34120.48 34423.63 35668.59 37136.41 37649.57 3686.85 3809.37 3727.89 3744.46 3764.03 37931.37 37417.47 37316.07 3733.12 371
test1238.76 34311.22 3461.39 3570.85 3810.97 38185.76 3400.35 3820.54 3752.45 3768.14 3750.60 3800.48 3762.16 3750.17 3752.71 372
testmvs8.92 34211.52 3451.12 3581.06 3800.46 38286.02 3370.65 3810.62 3742.74 3759.52 3740.31 3810.45 3772.38 3740.39 3742.46 373
test_blank0.00 3460.00 3490.00 3590.00 3820.00 3830.00 3700.00 3830.00 3770.00 3780.00 3770.00 3820.00 3780.00 3760.00 3760.00 374
uanet_test0.00 3460.00 3490.00 3590.00 3820.00 3830.00 3700.00 3830.00 3770.00 3780.00 3770.00 3820.00 3780.00 3760.00 3760.00 374
cdsmvs_eth3d_5k22.14 34029.52 3430.00 3590.00 3820.00 3830.00 37095.76 1540.00 3770.00 37894.29 15375.66 1690.00 3780.00 3760.00 3760.00 374
pcd_1.5k_mvsjas6.64 3458.86 3480.00 3590.00 3820.00 3830.00 3700.00 3830.00 3770.00 3780.00 37779.70 1220.00 3780.00 3760.00 3760.00 374
sosnet-low-res0.00 3460.00 3490.00 3590.00 3820.00 3830.00 3700.00 3830.00 3770.00 3780.00 3770.00 3820.00 3780.00 3760.00 3760.00 374
sosnet0.00 3460.00 3490.00 3590.00 3820.00 3830.00 3700.00 3830.00 3770.00 3780.00 3770.00 3820.00 3780.00 3760.00 3760.00 374
uncertanet0.00 3460.00 3490.00 3590.00 3820.00 3830.00 3700.00 3830.00 3770.00 3780.00 3770.00 3820.00 3780.00 3760.00 3760.00 374
Regformer0.00 3460.00 3490.00 3590.00 3820.00 3830.00 3700.00 3830.00 3770.00 3780.00 3770.00 3820.00 3780.00 3760.00 3760.00 374
ab-mvs-re7.82 34410.43 3470.00 3590.00 3820.00 3830.00 3700.00 3830.00 3770.00 37893.88 1720.00 3820.00 3780.00 3760.00 3760.00 374
uanet0.00 3460.00 3490.00 3590.00 3820.00 3830.00 3700.00 3830.00 3770.00 3780.00 3770.00 3820.00 3780.00 3760.00 3760.00 374
FOURS198.86 185.54 7498.29 197.49 589.79 4396.29 15
PC_three_145282.47 21997.09 997.07 4492.72 198.04 15792.70 4299.02 1298.86 9
test_one_060198.58 1285.83 6797.44 1491.05 1596.78 1398.06 691.45 11
eth-test20.00 382
eth-test0.00 382
ZD-MVS98.15 3786.62 3797.07 4783.63 19394.19 3496.91 5187.57 3299.26 4691.99 6198.44 55
RE-MVS-def93.68 4897.92 4784.57 8696.28 4196.76 7787.46 11193.75 4497.43 2082.94 8592.73 3897.80 7897.88 84
IU-MVS98.77 586.00 5696.84 6781.26 25197.26 795.50 1099.13 399.03 6
test_241102_TWO97.44 1490.31 2997.62 598.07 491.46 1099.58 895.66 499.12 698.98 8
test_241102_ONE98.77 585.99 5897.44 1490.26 3397.71 197.96 1092.31 499.38 32
9.1494.47 1897.79 5496.08 5597.44 1486.13 14295.10 2697.40 2388.34 2199.22 4993.25 3298.70 36
save fliter97.85 5085.63 7295.21 10196.82 7189.44 50
test_0728_THIRD90.75 2097.04 1098.05 892.09 699.55 1595.64 699.13 399.13 1
test072698.78 385.93 6197.19 997.47 1090.27 3197.64 498.13 191.47 8
GSMVS96.12 150
test_part298.55 1387.22 1896.40 14
sam_mvs171.70 21896.12 150
sam_mvs70.60 232
MTGPAbinary96.97 52
test_post188.00 3249.81 37369.31 25395.53 30876.65 267
test_post10.29 37270.57 23695.91 296
patchmatchnet-post83.76 34771.53 22096.48 269
MTMP96.16 4860.64 375
gm-plane-assit89.60 32968.00 35177.28 29888.99 30497.57 18879.44 240
test9_res91.91 6698.71 3498.07 70
TEST997.53 6386.49 4194.07 18096.78 7481.61 24492.77 7096.20 8687.71 2999.12 58
test_897.49 6686.30 5094.02 18596.76 7781.86 23792.70 7496.20 8687.63 3099.02 71
agg_prior290.54 9298.68 3998.27 54
agg_prior97.38 6985.92 6396.72 8392.16 8598.97 83
test_prior485.96 6094.11 175
test_prior294.12 17387.67 10792.63 7596.39 7886.62 4291.50 7698.67 41
旧先验293.36 21071.25 34594.37 3097.13 23086.74 135
新几何293.11 225
旧先验196.79 8581.81 16395.67 16096.81 5686.69 4197.66 8296.97 122
无先验93.28 21796.26 11473.95 32799.05 6380.56 22596.59 135
原ACMM292.94 232
test22296.55 9381.70 16592.22 25395.01 20368.36 35290.20 11996.14 9180.26 11597.80 7896.05 157
testdata298.75 10378.30 251
segment_acmp87.16 38
testdata192.15 25587.94 95
plane_prior794.70 17082.74 141
plane_prior694.52 17682.75 13974.23 185
plane_prior596.22 11998.12 14088.15 11589.99 19494.63 205
plane_prior494.86 130
plane_prior382.75 13990.26 3386.91 171
plane_prior295.85 6790.81 18
plane_prior194.59 174
plane_prior82.73 14295.21 10189.66 4789.88 199
n20.00 383
nn0.00 383
door-mid85.49 354
test1196.57 98
door85.33 355
HQP5-MVS81.56 167
HQP-NCC94.17 19094.39 15788.81 6885.43 209
ACMP_Plane94.17 19094.39 15788.81 6885.43 209
BP-MVS87.11 132
HQP4-MVS85.43 20997.96 16494.51 215
HQP3-MVS96.04 13389.77 201
HQP2-MVS73.83 195
NP-MVS94.37 18482.42 15193.98 165
MDTV_nov1_ep13_2view55.91 37087.62 33073.32 33284.59 22770.33 23974.65 28695.50 174
MDTV_nov1_ep1383.56 26691.69 26769.93 34687.75 32791.54 30278.60 28584.86 22388.90 30669.54 24896.03 28970.25 30888.93 214
ACMMP++_ref87.47 235
ACMMP++88.01 230
Test By Simon80.02 117