This table lists the benchmark results for the high-res multi-view scenario. The following metrics are evaluated:

(*) For exact definitions, detailing how potentially incomplete ground truth is taken into account, see our paper.

The datasets are grouped into different categories, and result averages are computed for a category and method if results of the method are available for all datasets within the category. Note that the category "all" includes both the high-res multi-view and the low-res many-view scenarios.

Methods with suffix _ROB may participate in the Robust Vision Challenge.

Click a dataset result cell to show a visualization of the reconstruction. For training datasets, ground truth and accuracy / completeness visualizations are also available. The visualizations may not work with mobile browsers.




Method Infoallhigh-res
multi-view
indooroutdoorbotani.boulde.bridgedoorexhibi.lectur.living.loungeobserv.old co.statueterrac.
sort bysort bysort bysorted bysort bysort bysort bysort bysort bysort bysort bysort bysort bysort bysort bysort by
MSC_two_6792asdad98.86 198.67 5896.94 197.93 10599.86 897.68 1699.67 699.77 2
No_MVS98.86 198.67 5896.94 197.93 10599.86 897.68 1699.67 699.77 2
OPU-MVS98.55 398.82 5296.86 398.25 3698.26 6696.04 299.24 12495.36 8999.59 1799.56 29
test_0728_SECOND98.51 499.45 395.93 598.21 4398.28 3699.86 897.52 2299.67 699.75 6
DPE-MVScopyleft97.86 497.65 898.47 599.17 3295.78 797.21 15998.35 2795.16 2298.71 2098.80 2295.05 1099.89 396.70 4199.73 199.73 10
Kehua Chen, Zhenlong Yuan, Tianlu Mao, Zhaoqi Wang: Dual-Level Precision Edges Guided Multi-View Stereo with Accurate Planarization. AAAI2025
HPM-MVS++copyleft97.34 1796.97 2798.47 599.08 3696.16 497.55 12297.97 10195.59 1196.61 7297.89 9092.57 3499.84 2395.95 6699.51 3199.40 54
CNVR-MVS97.68 697.44 1398.37 798.90 5095.86 697.27 15198.08 7495.81 997.87 3698.31 6094.26 1399.68 5497.02 3399.49 3699.57 26
SMA-MVScopyleft97.35 1697.03 2498.30 899.06 3895.42 1097.94 7198.18 5790.57 19498.85 1598.94 993.33 2399.83 2696.72 4099.68 499.63 17
Yufeng Yin; Xiaoyan Liu; Zichao Zhang: SMA-MVS: Segmentation-Guided Multi-Scale Anchor Deformation Patch Multi-View Stereo. IEEE Transactions on Circuits and Systems for Video Technology
DVP-MVS++98.06 197.99 198.28 998.67 5895.39 1199.29 198.28 3694.78 4198.93 998.87 1596.04 299.86 897.45 2699.58 2199.59 22
SED-MVS98.05 297.99 198.24 1099.42 795.30 1798.25 3698.27 3995.13 2399.19 498.89 1395.54 599.85 1897.52 2299.66 1099.56 29
MM97.29 1996.98 2698.23 1198.01 10795.03 2598.07 5295.76 28197.78 197.52 4098.80 2288.09 10299.86 899.44 199.37 5699.80 1
ACMMP_NAP97.20 2096.86 3198.23 1199.09 3495.16 2297.60 11598.19 5592.82 11897.93 3498.74 2691.60 5199.86 896.26 5099.52 2899.67 13
DVP-MVScopyleft97.91 397.81 498.22 1399.45 395.36 1398.21 4397.85 11694.92 3298.73 1898.87 1595.08 899.84 2397.52 2299.67 699.48 44
Zhenlong Yuan, Jinguo Luo, Fei Shen, Zhaoxin Li, Cong Liu, Tianlu Mao, Zhaoqi Wang: DVP-MVS: Synergize Depth-Edge and Visibility Prior for Multi-View Stereo. AAAI2025
MCST-MVS97.18 2196.84 3398.20 1499.30 2495.35 1597.12 16698.07 7993.54 8396.08 9497.69 10693.86 1699.71 4696.50 4699.39 5299.55 32
SF-MVS97.39 1597.13 1698.17 1599.02 4295.28 1998.23 4098.27 3992.37 12998.27 2798.65 2993.33 2399.72 4596.49 4799.52 2899.51 37
3Dnovator+91.43 495.40 8294.48 10498.16 1696.90 16695.34 1698.48 2197.87 11194.65 4988.53 28698.02 8283.69 16799.71 4693.18 13698.96 8899.44 49
NCCC97.30 1897.03 2498.11 1798.77 5395.06 2497.34 14498.04 8995.96 697.09 5597.88 9293.18 2599.71 4695.84 7199.17 7399.56 29
APDe-MVScopyleft97.82 597.73 798.08 1899.15 3394.82 2798.81 798.30 3294.76 4398.30 2698.90 1293.77 1799.68 5497.93 1499.69 399.75 6
Zhaojie Zeng, Yuesong Wang, Tao Guan: Matching Ambiguity-Resilient Multi-View Stereo via Adaptive Patch Deformation. Pattern Recognition
DPM-MVS95.69 7594.92 8898.01 1998.08 10495.71 995.27 29197.62 14190.43 19795.55 11397.07 14491.72 4699.50 9989.62 20798.94 8998.82 111
APD-MVScopyleft96.95 3296.60 4798.01 1999.03 4194.93 2697.72 9898.10 7291.50 15398.01 3198.32 5992.33 3899.58 7794.85 10099.51 3199.53 36
Yuesong Wang, Zhaojie Zeng and etc.: Adaptive Patch Deformation for Textureless-Resilient Multi-View Stereo. CVPR2023
MP-MVS-pluss96.70 4796.27 6197.98 2199.23 3094.71 2896.96 17898.06 8290.67 18595.55 11398.78 2591.07 6399.86 896.58 4499.55 2499.38 58
MP-MVS-pluss: MP-MVS-pluss. MP-MVS-pluss
MTAPA97.08 2596.78 3997.97 2299.37 1694.42 3397.24 15398.08 7495.07 2796.11 9298.59 3090.88 6899.90 296.18 5999.50 3399.58 25
MVS_030497.04 2896.73 4297.96 2397.60 13494.36 3498.01 5794.09 34797.33 296.29 8698.79 2489.73 8299.86 899.36 299.42 4699.67 13
SteuartSystems-ACMMP97.62 997.53 1197.87 2498.39 7794.25 3898.43 2498.27 3995.34 1798.11 2898.56 3194.53 1299.71 4696.57 4599.62 1599.65 15
Skip Steuart: Steuart Systems R&D Blog.
ZNCC-MVS96.96 3196.67 4597.85 2599.37 1694.12 4498.49 2098.18 5792.64 12496.39 8498.18 7091.61 5099.88 495.59 8599.55 2499.57 26
HFP-MVS97.14 2396.92 3097.83 2699.42 794.12 4498.52 1698.32 3093.21 9697.18 5098.29 6392.08 4299.83 2695.63 8099.59 1799.54 33
GST-MVS96.85 3996.52 5197.82 2799.36 1894.14 4398.29 3198.13 6592.72 12196.70 6698.06 7791.35 5799.86 894.83 10199.28 6199.47 46
XVS97.18 2196.96 2897.81 2899.38 1494.03 4898.59 1298.20 5294.85 3496.59 7498.29 6391.70 4899.80 3095.66 7599.40 5099.62 18
X-MVStestdata91.71 21589.67 27697.81 2899.38 1494.03 4898.59 1298.20 5294.85 3496.59 7432.69 40391.70 4899.80 3095.66 7599.40 5099.62 18
ACMMPR97.07 2696.84 3397.79 3099.44 693.88 5098.52 1698.31 3193.21 9697.15 5198.33 5791.35 5799.86 895.63 8099.59 1799.62 18
alignmvs95.87 7395.23 8297.78 3197.56 13895.19 2197.86 7997.17 19394.39 5796.47 8096.40 18785.89 13899.20 12796.21 5795.11 19098.95 96
DeepC-MVS_fast93.89 296.93 3496.64 4697.78 3198.64 6494.30 3597.41 13498.04 8994.81 3996.59 7498.37 4991.24 5999.64 6695.16 9399.52 2899.42 53
Andreas Kuhn, Christian Sormann, Mattia Rossi, Oliver Erdler, Friedrich Fraundorfer: DeepC-MVS: Deep Confidence Prediction for Multi-View Stereo Reconstruction. 3DV 2020
region2R97.07 2696.84 3397.77 3399.46 293.79 5298.52 1698.24 4793.19 9997.14 5298.34 5491.59 5299.87 795.46 8799.59 1799.64 16
CDPH-MVS95.97 7095.38 7897.77 3398.93 4794.44 3296.35 23197.88 10986.98 29696.65 7097.89 9091.99 4499.47 10292.26 14999.46 3999.39 56
canonicalmvs96.02 6895.45 7597.75 3597.59 13595.15 2398.28 3297.60 14294.52 5296.27 8896.12 20087.65 11199.18 13096.20 5894.82 19498.91 101
MSP-MVS97.59 1097.54 1097.73 3699.40 1193.77 5498.53 1598.29 3495.55 1398.56 2297.81 9993.90 1599.65 5896.62 4299.21 6999.77 2
Zhenlong Yuan, Cong Liu, Fei Shen, Zhaoxin Li, Jingguo luo, Tianlu Mao and Zhaoqi Wang: MSP-MVS: Multi-granularity Segmentation Prior Guided Multi-View Stereo. AAAI2025
train_agg96.30 6295.83 6997.72 3798.70 5694.19 4096.41 22398.02 9488.58 25196.03 9597.56 12192.73 3199.59 7495.04 9599.37 5699.39 56
MP-MVScopyleft96.77 4496.45 5797.72 3799.39 1393.80 5198.41 2598.06 8293.37 9195.54 11598.34 5490.59 7299.88 494.83 10199.54 2699.49 42
Rongxuan Tan, Qing Wang, et al.: MP-MVS: Multi-Scale Windows PatchMatch and Planar Prior Multi-View Stereo.
PHI-MVS96.77 4496.46 5697.71 3998.40 7594.07 4698.21 4398.45 2289.86 20797.11 5498.01 8392.52 3599.69 5296.03 6499.53 2799.36 60
TSAR-MVS + MP.97.42 1397.33 1597.69 4099.25 2794.24 3998.07 5297.85 11693.72 7598.57 2198.35 5193.69 1899.40 11097.06 3299.46 3999.44 49
Zhenlong Yuan, Jiakai Cao, Zhaoqi Wang, Zhaoxin Li: TSAR-MVS: Textureless-aware Segmentation and Correlative Refinement Guided Multi-View Stereo. Pattern Recognition
PGM-MVS96.81 4296.53 5097.65 4199.35 2093.53 5897.65 10698.98 292.22 13197.14 5298.44 4491.17 6299.85 1894.35 11399.46 3999.57 26
test1297.65 4198.46 7094.26 3797.66 13495.52 11690.89 6799.46 10399.25 6699.22 70
mPP-MVS96.86 3796.60 4797.64 4399.40 1193.44 5998.50 1998.09 7393.27 9595.95 10098.33 5791.04 6499.88 495.20 9299.57 2399.60 21
CP-MVS97.02 2996.81 3797.64 4399.33 2193.54 5798.80 898.28 3692.99 10796.45 8298.30 6291.90 4599.85 1895.61 8299.68 499.54 33
CANet96.39 5996.02 6497.50 4597.62 13193.38 6197.02 17197.96 10295.42 1594.86 12597.81 9987.38 11999.82 2896.88 3699.20 7199.29 63
SR-MVS97.01 3096.86 3197.47 4699.09 3493.27 6697.98 6198.07 7993.75 7497.45 4298.48 4191.43 5599.59 7496.22 5399.27 6299.54 33
3Dnovator91.36 595.19 9194.44 10697.44 4796.56 19193.36 6398.65 1198.36 2494.12 6389.25 27198.06 7782.20 20399.77 3793.41 13399.32 5999.18 72
HPM-MVScopyleft96.69 4996.45 5797.40 4899.36 1893.11 6998.87 698.06 8291.17 16896.40 8397.99 8490.99 6599.58 7795.61 8299.61 1699.49 42
Chunlin Ren, Qingshan Xu, Shikun Zhang, Jiaqi Yang: Hierarchical Prior Mining for Non-local Multi-View Stereo. ICCV 2023
DP-MVS Recon95.68 7695.12 8697.37 4999.19 3194.19 4097.03 16998.08 7488.35 26095.09 12397.65 11189.97 7999.48 10192.08 15898.59 10298.44 140
fmvsm_l_conf0.5_n97.65 797.75 697.34 5098.21 9292.75 7697.83 8498.73 995.04 2899.30 198.84 2093.34 2299.78 3599.32 399.13 7799.50 40
新几何197.32 5198.60 6593.59 5697.75 12381.58 36395.75 10697.85 9690.04 7799.67 5686.50 27099.13 7798.69 119
DELS-MVS96.61 5296.38 5997.30 5297.79 12093.19 6795.96 25598.18 5795.23 1995.87 10197.65 11191.45 5399.70 5195.87 6799.44 4599.00 92
Christian Sormann, Emanuele Santellani, Mattia Rossi, Andreas Kuhn, Friedrich Fraundorfer: DELS-MVS: Deep Epipolar Line Search for Multi-View Stereo. Winter Conference on Applications of Computer Vision (WACV), 2023
test_fmvsmconf_n97.49 1297.56 997.29 5397.44 14092.37 8897.91 7598.88 495.83 898.92 1299.05 591.45 5399.80 3099.12 699.46 3999.69 12
DeepC-MVS93.07 396.06 6695.66 7097.29 5397.96 10993.17 6897.30 14998.06 8293.92 6993.38 15898.66 2786.83 12599.73 4295.60 8499.22 6898.96 94
Andreas Kuhn, Christian Sormann, Mattia Rossi, Oliver Erdler, Friedrich Fraundorfer: DeepC-MVS: Deep Confidence Prediction for Multi-View Stereo Reconstruction. 3DV 2020
ACMMPcopyleft96.27 6395.93 6597.28 5599.24 2892.62 8098.25 3698.81 592.99 10794.56 13198.39 4888.96 8999.85 1894.57 11297.63 13299.36 60
Qingshan Xu, Weihang Kong, Wenbing Tao, Marc Pollefeys: Multi-Scale Geometric Consistency Guided and Planar Prior Assisted Multi-View Stereo. IEEE Transactions on Pattern Analysis and Machine Intelligence
TSAR-MVS + GP.96.69 4996.49 5297.27 5698.31 8193.39 6096.79 19096.72 23494.17 6297.44 4397.66 11092.76 2899.33 11596.86 3797.76 13199.08 83
fmvsm_l_conf0.5_n_a97.63 897.76 597.26 5798.25 8692.59 8297.81 8898.68 1394.93 3099.24 398.87 1593.52 2099.79 3399.32 399.21 6999.40 54
test_prior97.23 5898.67 5892.99 7198.00 9899.41 10999.29 63
HPM-MVS_fast96.51 5596.27 6197.22 5999.32 2292.74 7798.74 998.06 8290.57 19496.77 6398.35 5190.21 7599.53 9194.80 10499.63 1499.38 58
VNet95.89 7295.45 7597.21 6098.07 10592.94 7397.50 12598.15 6293.87 7197.52 4097.61 11785.29 14599.53 9195.81 7295.27 18699.16 73
UA-Net95.95 7195.53 7297.20 6197.67 12592.98 7297.65 10698.13 6594.81 3996.61 7298.35 5188.87 9099.51 9690.36 19197.35 14299.11 81
test_fmvsmconf0.1_n97.09 2497.06 1997.19 6295.67 23992.21 9497.95 7098.27 3995.78 1098.40 2599.00 689.99 7899.78 3599.06 799.41 4999.59 22
EPNet95.20 9094.56 9897.14 6392.80 35492.68 7997.85 8294.87 33096.64 392.46 17497.80 10186.23 13299.65 5893.72 12798.62 10099.10 82
Wanjuan Su, Wenbing Tao: Efficient Edge-Preserving Multi-View Stereo Network for Depth Estimation. AAAI 2023
APD-MVS_3200maxsize96.81 4296.71 4497.12 6499.01 4592.31 9197.98 6198.06 8293.11 10497.44 4398.55 3390.93 6699.55 8796.06 6099.25 6699.51 37
SR-MVS-dyc-post96.88 3696.80 3897.11 6599.02 4292.34 8997.98 6198.03 9193.52 8597.43 4598.51 3691.40 5699.56 8596.05 6199.26 6499.43 51
SD-MVS97.41 1497.53 1197.06 6698.57 6994.46 3197.92 7398.14 6494.82 3899.01 698.55 3394.18 1497.41 32596.94 3499.64 1399.32 62
Zhenlong Yuan, Jiakai Cao, Zhaoxin Li, Hao Jiang and Zhaoqi Wang: SD-MVS: Segmentation-driven Deformation Multi-View Stereo with Spherical Refinement and EM optimization. AAAI2024
test_fmvsmconf0.01_n96.15 6595.85 6897.03 6792.66 35791.83 10697.97 6797.84 12095.57 1297.53 3999.00 684.20 16199.76 3898.82 1199.08 8199.48 44
MVS_111021_HR96.68 5196.58 4996.99 6898.46 7092.31 9196.20 24498.90 394.30 6095.86 10297.74 10492.33 3899.38 11396.04 6399.42 4699.28 65
QAPM93.45 14692.27 17496.98 6996.77 17792.62 8098.39 2698.12 6784.50 33688.27 29397.77 10282.39 20099.81 2985.40 28998.81 9398.51 129
WTY-MVS94.71 10694.02 11096.79 7097.71 12492.05 10096.59 21497.35 18290.61 19194.64 12996.93 15086.41 13199.39 11191.20 17894.71 19898.94 97
CPTT-MVS95.57 8095.19 8396.70 7199.27 2691.48 12198.33 2898.11 7087.79 27795.17 12198.03 8087.09 12399.61 6993.51 12999.42 4699.02 86
sss94.51 10793.80 11496.64 7297.07 15491.97 10396.32 23498.06 8288.94 23894.50 13296.78 15784.60 15399.27 12291.90 15996.02 16998.68 120
ab-mvs93.57 14292.55 16496.64 7297.28 14391.96 10495.40 28397.45 16689.81 21193.22 16496.28 19279.62 24899.46 10390.74 18593.11 22498.50 130
EI-MVSNet-Vis-set96.51 5596.47 5396.63 7498.24 8791.20 13596.89 18297.73 12694.74 4496.49 7898.49 3890.88 6899.58 7796.44 4898.32 11399.13 77
114514_t93.95 12693.06 14196.63 7499.07 3791.61 11497.46 13397.96 10277.99 38093.00 16697.57 11986.14 13799.33 11589.22 21899.15 7598.94 97
HY-MVS89.66 993.87 13092.95 14496.63 7497.10 15392.49 8595.64 27496.64 24289.05 23393.00 16695.79 21885.77 14199.45 10589.16 22294.35 20097.96 171
MSLP-MVS++96.94 3397.06 1996.59 7798.72 5591.86 10597.67 10398.49 1994.66 4897.24 4998.41 4792.31 4098.94 15996.61 4399.46 3998.96 94
CANet_DTU94.37 10993.65 11896.55 7896.46 20392.13 9896.21 24396.67 24194.38 5893.53 15497.03 14779.34 25199.71 4690.76 18498.45 10997.82 181
test_fmvsm_n_192097.55 1197.89 396.53 7998.41 7491.73 10798.01 5799.02 196.37 499.30 198.92 1092.39 3799.79 3399.16 599.46 3998.08 167
LFMVS93.60 13992.63 15996.52 8098.13 10091.27 13097.94 7193.39 36190.57 19496.29 8698.31 6069.00 34399.16 13294.18 11695.87 17399.12 80
DP-MVS92.76 17991.51 20196.52 8098.77 5390.99 14397.38 14196.08 27082.38 35689.29 26897.87 9383.77 16699.69 5281.37 33296.69 16098.89 105
CNLPA94.28 11193.53 12396.52 8098.38 7892.55 8396.59 21496.88 22590.13 20391.91 19197.24 13585.21 14699.09 14287.64 25097.83 12797.92 173
casdiffmvs_mvgpermissive95.81 7495.57 7196.51 8396.87 16791.49 12097.50 12597.56 14993.99 6795.13 12297.92 8987.89 10798.78 17495.97 6597.33 14399.26 67
Fangjinhua Wang, Qingshan Xu, Yew-Soon Ong, Marc Pollefeys: Lightweight and Accurate Multi-View Stereo With Confidence-Aware Diffusion Model. IEEE T-PAMI 2025
Vis-MVSNetpermissive95.23 8894.81 9096.51 8397.18 14791.58 11798.26 3598.12 6794.38 5894.90 12498.15 7282.28 20198.92 16191.45 17398.58 10399.01 89
Jingyang Zhang, Yao Yao, Shiwei Li, Zixin Luo, Tian Fang: Visibility-aware Multiview Stereo Network. BMVC 2020
MAR-MVS94.22 11293.46 12896.51 8398.00 10892.19 9797.67 10397.47 15988.13 26793.00 16695.84 21284.86 15199.51 9687.99 23798.17 12097.83 180
Zhenyu Xu, Yiguang Liu, Xuelei Shi, Ying Wang, Yunan Zheng: MARMVS: Matching Ambiguity Reduced Multiple View Stereo for Efficient Large Scale Scene Reconstruction. CVPR 2020
PAPR94.18 11393.42 13396.48 8697.64 12991.42 12595.55 27697.71 13288.99 23592.34 18195.82 21489.19 8599.11 13886.14 27697.38 14098.90 102
EI-MVSNet-UG-set96.34 6196.30 6096.47 8798.20 9390.93 14796.86 18497.72 12894.67 4796.16 9198.46 4290.43 7399.58 7796.23 5297.96 12598.90 102
LS3D93.57 14292.61 16296.47 8797.59 13591.61 11497.67 10397.72 12885.17 32690.29 23198.34 5484.60 15399.73 4283.85 31098.27 11598.06 168
CSCG96.05 6795.91 6696.46 8999.24 2890.47 16498.30 3098.57 1889.01 23493.97 14597.57 11992.62 3399.76 3894.66 10799.27 6299.15 75
CS-MVS-test96.89 3597.04 2396.45 9098.29 8291.66 11399.03 497.85 11695.84 796.90 5997.97 8691.24 5998.75 17996.92 3599.33 5898.94 97
test_yl94.78 10494.23 10896.43 9197.74 12291.22 13196.85 18597.10 19891.23 16595.71 10796.93 15084.30 15899.31 11993.10 13795.12 18898.75 113
DCV-MVSNet94.78 10494.23 10896.43 9197.74 12291.22 13196.85 18597.10 19891.23 16595.71 10796.93 15084.30 15899.31 11993.10 13795.12 18898.75 113
ETV-MVS96.02 6895.89 6796.40 9397.16 14892.44 8697.47 13197.77 12294.55 5096.48 7994.51 27591.23 6198.92 16195.65 7898.19 11897.82 181
OpenMVScopyleft89.19 1292.86 17491.68 19396.40 9395.34 25892.73 7898.27 3398.12 6784.86 33185.78 33297.75 10378.89 26499.74 4187.50 25498.65 9896.73 223
MVS_111021_LR96.24 6496.19 6396.39 9598.23 9191.35 12796.24 24298.79 693.99 6795.80 10497.65 11189.92 8099.24 12495.87 6799.20 7198.58 123
原ACMM196.38 9698.59 6691.09 14297.89 10787.41 28895.22 12097.68 10790.25 7499.54 8987.95 23899.12 7998.49 132
PVSNet_Blended_VisFu95.27 8694.91 8996.38 9698.20 9390.86 14997.27 15198.25 4590.21 19994.18 13997.27 13387.48 11699.73 4293.53 12897.77 13098.55 124
Effi-MVS+94.93 9894.45 10596.36 9896.61 18591.47 12296.41 22397.41 17591.02 17494.50 13295.92 20887.53 11498.78 17493.89 12396.81 15598.84 110
PCF-MVS89.48 1191.56 22589.95 26496.36 9896.60 18692.52 8492.51 36597.26 18879.41 37588.90 27596.56 17984.04 16499.55 8777.01 35997.30 14597.01 213
Andreas Kuhn, Shan Lin, Oliver Erdler: Plane Completion and Filtering for Multi-View Stereo Reconstruction. GCPR 2019
test_fmvsmvis_n_192096.70 4796.84 3396.31 10096.62 18491.73 10797.98 6198.30 3296.19 596.10 9398.95 889.42 8399.76 3898.90 1099.08 8197.43 199
UGNet94.04 12493.28 13696.31 10096.85 16891.19 13697.88 7897.68 13394.40 5693.00 16696.18 19673.39 31999.61 6991.72 16598.46 10898.13 161
Wanjuan Su, Qingshan Xu, Wenbing Tao: Uncertainty-guided Multi-view Stereo Network for Depth Estimation. IEEE Transactions on Circuits and Systems for Video Technology, 2022
MG-MVS95.61 7895.38 7896.31 10098.42 7390.53 16296.04 25097.48 15693.47 8795.67 11098.10 7389.17 8699.25 12391.27 17698.77 9499.13 77
AdaColmapbinary94.34 11093.68 11796.31 10098.59 6691.68 11296.59 21497.81 12189.87 20692.15 18597.06 14583.62 17099.54 8989.34 21398.07 12297.70 186
lupinMVS94.99 9794.56 9896.29 10496.34 20991.21 13395.83 26296.27 26188.93 23996.22 8996.88 15586.20 13598.85 16895.27 9199.05 8398.82 111
nrg03094.05 12393.31 13596.27 10595.22 26994.59 2998.34 2797.46 16192.93 11591.21 21896.64 16887.23 12298.22 22694.99 9885.80 31495.98 246
CS-MVS96.86 3797.06 1996.26 10698.16 9891.16 14099.09 397.87 11195.30 1897.06 5698.03 8091.72 4698.71 18597.10 3199.17 7398.90 102
EC-MVSNet96.42 5796.47 5396.26 10697.01 16291.52 11998.89 597.75 12394.42 5596.64 7197.68 10789.32 8498.60 19597.45 2699.11 8098.67 121
PAPM_NR95.01 9394.59 9696.26 10698.89 5190.68 15997.24 15397.73 12691.80 14592.93 17196.62 17789.13 8799.14 13589.21 21997.78 12998.97 93
OMC-MVS95.09 9294.70 9496.25 10998.46 7091.28 12996.43 22197.57 14692.04 14094.77 12797.96 8787.01 12499.09 14291.31 17596.77 15698.36 147
1112_ss93.37 14892.42 17196.21 11097.05 15990.99 14396.31 23596.72 23486.87 29989.83 25096.69 16486.51 12999.14 13588.12 23593.67 21898.50 130
fmvsm_s_conf0.5_n_a96.75 4696.93 2996.20 11197.64 12990.72 15698.00 5998.73 994.55 5098.91 1399.08 388.22 10199.63 6798.91 998.37 11198.25 151
jason94.84 10294.39 10796.18 11295.52 24590.93 14796.09 24896.52 25089.28 22596.01 9897.32 12984.70 15298.77 17795.15 9498.91 9198.85 108
jason: jason.
fmvsm_s_conf0.1_n_a96.40 5896.47 5396.16 11395.48 24790.69 15797.91 7598.33 2994.07 6498.93 999.14 187.44 11799.61 6998.63 1398.32 11398.18 156
PLCcopyleft91.00 694.11 12093.43 13196.13 11498.58 6891.15 14196.69 20197.39 17687.29 29191.37 20796.71 16088.39 9999.52 9587.33 25797.13 15197.73 184
Jie Liao, Yanping Fu, Qingan Yan, Chunxia xiao: Pyramid Multi-View Stereo with Local Consistency. Pacific Graphics 2019
casdiffmvspermissive95.64 7795.49 7396.08 11596.76 18090.45 16597.29 15097.44 17094.00 6695.46 11797.98 8587.52 11598.73 18195.64 7997.33 14399.08 83
Fangjinhua Wang, Qingshan Xu, Yew-Soon Ong, Marc Pollefeys: Lightweight and Accurate Multi-View Stereo With Confidence-Aware Diffusion Model. IEEE T-PAMI 2025
baseline95.58 7995.42 7796.08 11596.78 17590.41 16797.16 16397.45 16693.69 7895.65 11197.85 9687.29 12098.68 18795.66 7597.25 14799.13 77
CHOSEN 1792x268894.15 11693.51 12696.06 11798.27 8389.38 20095.18 29598.48 2185.60 31893.76 14997.11 14283.15 17899.61 6991.33 17498.72 9699.19 71
IS-MVSNet94.90 9994.52 10296.05 11897.67 12590.56 16198.44 2396.22 26493.21 9693.99 14397.74 10485.55 14398.45 20789.98 19697.86 12699.14 76
fmvsm_s_conf0.5_n96.85 3997.13 1696.04 11998.07 10590.28 16997.97 6798.76 894.93 3098.84 1699.06 488.80 9299.65 5899.06 798.63 9998.18 156
h-mvs3394.15 11693.52 12596.04 11997.81 11990.22 17197.62 11497.58 14595.19 2096.74 6497.45 12483.67 16899.61 6995.85 6979.73 36598.29 150
VDD-MVS93.82 13393.08 14096.02 12197.88 11689.96 18097.72 9895.85 27892.43 12795.86 10298.44 4468.42 35099.39 11196.31 4994.85 19298.71 118
VDDNet93.05 16492.07 17896.02 12196.84 16990.39 16898.08 5195.85 27886.22 31095.79 10598.46 4267.59 35399.19 12894.92 9994.85 19298.47 135
fmvsm_s_conf0.1_n96.58 5496.77 4096.01 12396.67 18290.25 17097.91 7598.38 2394.48 5398.84 1699.14 188.06 10399.62 6898.82 1198.60 10198.15 160
MVSFormer95.37 8395.16 8495.99 12496.34 20991.21 13398.22 4197.57 14691.42 15796.22 8997.32 12986.20 13597.92 27994.07 11799.05 8398.85 108
CDS-MVSNet94.14 11993.54 12295.93 12596.18 21691.46 12396.33 23397.04 20888.97 23793.56 15196.51 18187.55 11397.89 28389.80 20195.95 17198.44 140
Khang Truong Giang, Soohwan Song, Sungho Jo: Curvature-guided dynamic scale networks for Multi-view Stereo. ICLR 2022
API-MVS94.84 10294.49 10395.90 12697.90 11592.00 10297.80 8997.48 15689.19 22894.81 12696.71 16088.84 9199.17 13188.91 22698.76 9596.53 226
HyFIR lowres test93.66 13892.92 14595.87 12798.24 8789.88 18194.58 30898.49 1985.06 32893.78 14895.78 21982.86 18798.67 18891.77 16495.71 17899.07 85
SDMVSNet94.17 11493.61 11995.86 12898.09 10191.37 12697.35 14398.20 5293.18 10091.79 19597.28 13179.13 25598.93 16094.61 11092.84 22797.28 207
Test_1112_low_res92.84 17691.84 18795.85 12997.04 16089.97 17995.53 27896.64 24285.38 32189.65 25695.18 24585.86 13999.10 13987.70 24593.58 22398.49 132
PVSNet_Blended94.87 10194.56 9895.81 13098.27 8389.46 19795.47 28198.36 2488.84 24294.36 13496.09 20488.02 10499.58 7793.44 13198.18 11998.40 143
Anonymous20240521192.07 20590.83 22695.76 13198.19 9588.75 22097.58 11795.00 32086.00 31393.64 15097.45 12466.24 36499.53 9190.68 18792.71 23099.01 89
EPP-MVSNet95.22 8995.04 8795.76 13197.49 13989.56 19098.67 1097.00 21290.69 18394.24 13797.62 11689.79 8198.81 17293.39 13496.49 16498.92 100
xiu_mvs_v1_base_debu95.01 9394.76 9195.75 13396.58 18891.71 10996.25 23997.35 18292.99 10796.70 6696.63 17482.67 19199.44 10696.22 5397.46 13596.11 242
xiu_mvs_v1_base95.01 9394.76 9195.75 13396.58 18891.71 10996.25 23997.35 18292.99 10796.70 6696.63 17482.67 19199.44 10696.22 5397.46 13596.11 242
xiu_mvs_v1_base_debi95.01 9394.76 9195.75 13396.58 18891.71 10996.25 23997.35 18292.99 10796.70 6696.63 17482.67 19199.44 10696.22 5397.46 13596.11 242
Anonymous2024052991.98 20890.73 23195.73 13698.14 9989.40 19997.99 6097.72 12879.63 37493.54 15397.41 12769.94 33999.56 8591.04 18191.11 26098.22 153
GeoE93.89 12993.28 13695.72 13796.96 16589.75 18498.24 3996.92 22189.47 22092.12 18797.21 13784.42 15698.39 21487.71 24496.50 16399.01 89
EIA-MVS95.53 8195.47 7495.71 13897.06 15789.63 18697.82 8697.87 11193.57 7993.92 14695.04 25090.61 7198.95 15894.62 10998.68 9798.54 125
MVS_Test94.89 10094.62 9595.68 13996.83 17189.55 19196.70 19997.17 19391.17 16895.60 11296.11 20387.87 10898.76 17893.01 14497.17 15098.72 116
TAMVS94.01 12593.46 12895.64 14096.16 21890.45 16596.71 19896.89 22489.27 22693.46 15696.92 15387.29 12097.94 27588.70 23095.74 17698.53 126
ET-MVSNet_ETH3D91.49 22990.11 25795.63 14196.40 20691.57 11895.34 28593.48 36090.60 19375.58 38295.49 23580.08 23896.79 34794.25 11589.76 27998.52 127
diffmvspermissive95.25 8795.13 8595.63 14196.43 20589.34 20295.99 25497.35 18292.83 11796.31 8597.37 12886.44 13098.67 18896.26 5097.19 14998.87 107
Fangjinhua Wang, Qingshan Xu, Yew-Soon Ong, Marc Pollefeys: Lightweight and Accurate Multi-View Stereo With Confidence-Aware Diffusion Model. IEEE T-PAMI 2025
UniMVSNet (Re)93.31 15092.55 16495.61 14395.39 25293.34 6497.39 13998.71 1193.14 10390.10 24194.83 26087.71 10998.03 25791.67 16983.99 34195.46 274
Fast-Effi-MVS+93.46 14592.75 15495.59 14496.77 17790.03 17396.81 18997.13 19588.19 26391.30 21194.27 29186.21 13498.63 19287.66 24996.46 16698.12 162
PatchMatch-RL92.90 17292.02 18195.56 14598.19 9590.80 15295.27 29197.18 19187.96 26991.86 19495.68 22580.44 23198.99 15684.01 30597.54 13496.89 219
TAPA-MVS90.10 792.30 19591.22 21295.56 14598.33 8089.60 18896.79 19097.65 13681.83 36091.52 20397.23 13687.94 10698.91 16371.31 38198.37 11198.17 159
Andrea Romanoni, Matteo Matteucci: TAPA-MVS: Textureless-Aware PAtchMatch Multi-View Stereo. ICCV 2019
baseline192.82 17791.90 18595.55 14797.20 14690.77 15497.19 16094.58 33692.20 13392.36 17896.34 19084.16 16298.21 22789.20 22083.90 34597.68 187
NR-MVSNet92.34 19291.27 20995.53 14894.95 28393.05 7097.39 13998.07 7992.65 12384.46 34395.71 22285.00 14997.77 29489.71 20383.52 34895.78 256
MVS91.71 21590.44 24195.51 14995.20 27191.59 11696.04 25097.45 16673.44 38887.36 31295.60 22985.42 14499.10 13985.97 28197.46 13595.83 251
VPA-MVSNet93.24 15292.48 16995.51 14995.70 23792.39 8797.86 7998.66 1692.30 13092.09 18995.37 23880.49 23098.40 21093.95 12085.86 31395.75 261
thisisatest053093.03 16592.21 17695.49 15197.07 15489.11 21497.49 13092.19 37290.16 20194.09 14196.41 18676.43 29299.05 15190.38 19095.68 17998.31 149
PS-MVSNAJ95.37 8395.33 8095.49 15197.35 14290.66 16095.31 28897.48 15693.85 7296.51 7795.70 22488.65 9599.65 5894.80 10498.27 11596.17 237
DU-MVS92.90 17292.04 17995.49 15194.95 28392.83 7497.16 16398.24 4793.02 10690.13 23795.71 22283.47 17197.85 28591.71 16683.93 34295.78 256
UniMVSNet_NR-MVSNet93.37 14892.67 15895.47 15495.34 25892.83 7497.17 16298.58 1792.98 11290.13 23795.80 21588.37 10097.85 28591.71 16683.93 34295.73 263
testdata95.46 15598.18 9788.90 21897.66 13482.73 35497.03 5798.07 7690.06 7698.85 16889.67 20598.98 8798.64 122
xiu_mvs_v2_base95.32 8595.29 8195.40 15697.22 14490.50 16395.44 28297.44 17093.70 7796.46 8196.18 19688.59 9899.53 9194.79 10697.81 12896.17 237
F-COLMAP93.58 14192.98 14395.37 15798.40 7588.98 21697.18 16197.29 18787.75 28090.49 22697.10 14385.21 14699.50 9986.70 26796.72 15997.63 188
FA-MVS(test-final)93.52 14492.92 14595.31 15896.77 17788.54 22794.82 30296.21 26689.61 21594.20 13895.25 24383.24 17599.14 13590.01 19596.16 16898.25 151
FIs94.09 12193.70 11695.27 15995.70 23792.03 10198.10 4998.68 1393.36 9390.39 22996.70 16287.63 11297.94 27592.25 15190.50 27295.84 250
thisisatest051592.29 19691.30 20795.25 16096.60 18688.90 21894.36 31892.32 37187.92 27093.43 15794.57 27277.28 28499.00 15589.42 21195.86 17497.86 177
PAPM91.52 22890.30 24795.20 16195.30 26489.83 18293.38 35196.85 22886.26 30988.59 28495.80 21584.88 15098.15 23375.67 36495.93 17297.63 188
thres600view792.49 18591.60 19595.18 16297.91 11489.47 19597.65 10694.66 33392.18 13793.33 15994.91 25578.06 27799.10 13981.61 32694.06 21396.98 214
DeepPCF-MVS93.97 196.61 5297.09 1895.15 16398.09 10186.63 27996.00 25398.15 6295.43 1497.95 3398.56 3193.40 2199.36 11496.77 3899.48 3799.45 47
131492.81 17892.03 18095.14 16495.33 26189.52 19496.04 25097.44 17087.72 28186.25 32995.33 23983.84 16598.79 17389.26 21697.05 15297.11 212
TranMVSNet+NR-MVSNet92.50 18391.63 19495.14 16494.76 29592.07 9997.53 12398.11 7092.90 11689.56 25996.12 20083.16 17797.60 30889.30 21483.20 35195.75 261
thres40092.42 18791.52 19995.12 16697.85 11789.29 20597.41 13494.88 32792.19 13593.27 16294.46 28078.17 27399.08 14481.40 32994.08 20996.98 214
FE-MVS92.05 20691.05 21695.08 16796.83 17187.93 24693.91 33695.70 28486.30 30794.15 14094.97 25176.59 28899.21 12684.10 30396.86 15398.09 166
sd_testset93.10 16092.45 17095.05 16898.09 10189.21 20996.89 18297.64 13893.18 10091.79 19597.28 13175.35 30398.65 19088.99 22492.84 22797.28 207
iter_conf_final93.60 13993.11 13995.04 16997.13 15191.30 12897.92 7395.65 29092.98 11291.60 20096.64 16879.28 25398.13 23595.34 9091.49 25095.70 264
FC-MVSNet-test93.94 12793.57 12095.04 16995.48 24791.45 12498.12 4898.71 1193.37 9190.23 23296.70 16287.66 11097.85 28591.49 17190.39 27395.83 251
FMVSNet391.78 21390.69 23495.03 17196.53 19692.27 9397.02 17196.93 21789.79 21289.35 26594.65 26977.01 28597.47 31986.12 27788.82 28695.35 283
patch_mono-296.83 4197.44 1395.01 17299.05 3985.39 30296.98 17698.77 794.70 4597.99 3298.66 2793.61 1999.91 197.67 1899.50 3399.72 11
VPNet92.23 20091.31 20694.99 17395.56 24390.96 14597.22 15897.86 11592.96 11490.96 22096.62 17775.06 30498.20 22891.90 15983.65 34795.80 254
FMVSNet291.31 24090.08 25894.99 17396.51 19892.21 9497.41 13496.95 21588.82 24488.62 28394.75 26473.87 31397.42 32485.20 29288.55 29195.35 283
thres100view90092.43 18691.58 19694.98 17597.92 11389.37 20197.71 10094.66 33392.20 13393.31 16094.90 25678.06 27799.08 14481.40 32994.08 20996.48 229
BH-RMVSNet92.72 18191.97 18394.97 17697.16 14887.99 24596.15 24695.60 29290.62 19091.87 19397.15 14178.41 27098.57 19983.16 31297.60 13398.36 147
MSDG91.42 23290.24 25194.96 17797.15 15088.91 21793.69 34396.32 25985.72 31786.93 32396.47 18380.24 23598.98 15780.57 33695.05 19196.98 214
tfpn200view992.38 18991.52 19994.95 17897.85 11789.29 20597.41 13494.88 32792.19 13593.27 16294.46 28078.17 27399.08 14481.40 32994.08 20996.48 229
XXY-MVS92.16 20291.23 21194.95 17894.75 29790.94 14697.47 13197.43 17389.14 22988.90 27596.43 18579.71 24598.24 22489.56 20887.68 29795.67 267
Vis-MVSNet (Re-imp)94.15 11693.88 11394.95 17897.61 13287.92 24798.10 4995.80 28092.22 13193.02 16597.45 12484.53 15597.91 28288.24 23497.97 12499.02 86
mvsmamba93.83 13293.46 12894.93 18194.88 29090.85 15098.55 1495.49 29894.24 6191.29 21496.97 14983.04 18298.14 23495.56 8691.17 25895.78 256
tttt051792.96 16892.33 17394.87 18297.11 15287.16 26697.97 6792.09 37390.63 18993.88 14797.01 14876.50 28999.06 15090.29 19395.45 18398.38 145
iter_conf0593.18 15892.63 15994.83 18396.64 18390.69 15797.60 11595.53 29792.52 12591.58 20196.64 16876.35 29398.13 23595.43 8891.42 25395.68 266
OPM-MVS93.28 15192.76 15294.82 18494.63 30390.77 15496.65 20597.18 19193.72 7591.68 19997.26 13479.33 25298.63 19292.13 15592.28 23595.07 299
Ray L. Khuboni, Hongjun Xu: Octagram Propagation Matching for Multi-Scale View Stereopsis (OPM-MVS).
HQP_MVS93.78 13593.43 13194.82 18496.21 21389.99 17697.74 9397.51 15394.85 3491.34 20896.64 16881.32 21798.60 19593.02 14292.23 23695.86 247
hse-mvs293.45 14692.99 14294.81 18697.02 16188.59 22496.69 20196.47 25395.19 2096.74 6496.16 19983.67 16898.48 20695.85 6979.13 36997.35 204
AUN-MVS91.76 21490.75 22994.81 18697.00 16388.57 22596.65 20596.49 25289.63 21492.15 18596.12 20078.66 26698.50 20390.83 18279.18 36897.36 202
XVG-OURS-SEG-HR93.86 13193.55 12194.81 18697.06 15788.53 22895.28 28997.45 16691.68 14994.08 14297.68 10782.41 19998.90 16493.84 12592.47 23396.98 214
XVG-OURS93.72 13793.35 13494.80 18997.07 15488.61 22394.79 30397.46 16191.97 14393.99 14397.86 9581.74 21298.88 16592.64 14892.67 23296.92 218
IB-MVS87.33 1789.91 28688.28 30194.79 19095.26 26887.70 25495.12 29793.95 35289.35 22487.03 31892.49 34070.74 33299.19 12889.18 22181.37 35997.49 197
Christian Sormann, Mattia Rossi, Andreas Kuhn and Friedrich Fraundorfer: IB-MVS: An Iterative Algorithm for Deep Multi-View Stereo based on Binary Decisions. BMVC 2021
WR-MVS92.34 19291.53 19894.77 19195.13 27690.83 15196.40 22797.98 10091.88 14489.29 26895.54 23382.50 19697.80 29089.79 20285.27 32295.69 265
RPMNet88.98 29987.05 31394.77 19194.45 31087.19 26490.23 38098.03 9177.87 38292.40 17587.55 38580.17 23799.51 9668.84 38693.95 21497.60 193
thres20092.23 20091.39 20294.75 19397.61 13289.03 21596.60 21395.09 31792.08 13993.28 16194.00 30478.39 27199.04 15481.26 33494.18 20596.19 236
UniMVSNet_ETH3D91.34 23990.22 25494.68 19494.86 29187.86 25097.23 15797.46 16187.99 26889.90 24796.92 15366.35 36298.23 22590.30 19290.99 26397.96 171
ETVMVS90.52 27189.14 29094.67 19596.81 17487.85 25195.91 25893.97 35189.71 21392.34 18192.48 34165.41 36897.96 27081.37 33294.27 20398.21 154
GA-MVS91.38 23490.31 24694.59 19694.65 30287.62 25594.34 31996.19 26790.73 18190.35 23093.83 30871.84 32497.96 27087.22 25993.61 22198.21 154
GBi-Net91.35 23790.27 24994.59 19696.51 19891.18 13797.50 12596.93 21788.82 24489.35 26594.51 27573.87 31397.29 33186.12 27788.82 28695.31 286
test191.35 23790.27 24994.59 19696.51 19891.18 13797.50 12596.93 21788.82 24489.35 26594.51 27573.87 31397.29 33186.12 27788.82 28695.31 286
FMVSNet189.88 28988.31 30094.59 19695.41 25191.18 13797.50 12596.93 21786.62 30287.41 31094.51 27565.94 36697.29 33183.04 31487.43 30095.31 286
cascas91.20 24590.08 25894.58 20094.97 28189.16 21393.65 34597.59 14479.90 37389.40 26392.92 33475.36 30298.36 21692.14 15494.75 19696.23 233
ECVR-MVScopyleft93.19 15592.73 15694.57 20197.66 12785.41 30098.21 4388.23 39193.43 8994.70 12898.21 6772.57 32199.07 14893.05 14198.49 10599.25 68
HQP-MVS93.19 15592.74 15594.54 20295.86 23089.33 20396.65 20597.39 17693.55 8090.14 23395.87 21080.95 22098.50 20392.13 15592.10 24195.78 256
testing9191.90 21091.02 21794.53 20396.54 19486.55 28295.86 26095.64 29191.77 14691.89 19293.47 32569.94 33998.86 16690.23 19493.86 21698.18 156
testing1191.68 21890.75 22994.47 20496.53 19686.56 28195.76 26794.51 33891.10 17291.24 21793.59 32068.59 34798.86 16691.10 17994.29 20298.00 170
PVSNet_BlendedMVS94.06 12293.92 11294.47 20498.27 8389.46 19796.73 19598.36 2490.17 20094.36 13495.24 24488.02 10499.58 7793.44 13190.72 26894.36 336
gg-mvs-nofinetune87.82 31385.61 32594.44 20694.46 30989.27 20891.21 37484.61 40080.88 36689.89 24974.98 39471.50 32697.53 31485.75 28597.21 14896.51 227
PS-MVSNAJss93.74 13693.51 12694.44 20693.91 32689.28 20797.75 9297.56 14992.50 12689.94 24696.54 18088.65 9598.18 23193.83 12690.90 26595.86 247
PMMVS92.86 17492.34 17294.42 20894.92 28686.73 27594.53 31096.38 25784.78 33394.27 13695.12 24983.13 17998.40 21091.47 17296.49 16498.12 162
bld_raw_dy_0_6492.37 19091.69 19294.39 20994.28 31889.73 18597.71 10093.65 35892.78 12090.46 22796.67 16675.88 29697.97 26592.92 14690.89 26695.48 270
MVSTER93.20 15492.81 15194.37 21096.56 19189.59 18997.06 16897.12 19691.24 16491.30 21195.96 20682.02 20698.05 25393.48 13090.55 27095.47 273
testing22290.31 27588.96 29294.35 21196.54 19487.29 25895.50 27993.84 35590.97 17591.75 19792.96 33362.18 37798.00 26082.86 31594.08 20997.76 183
ACMM89.79 892.96 16892.50 16894.35 21196.30 21188.71 22197.58 11797.36 18191.40 15990.53 22596.65 16779.77 24498.75 17991.24 17791.64 24695.59 268
Qingshan Xu and Wenbing Tao: Multi-Scale Geometric Consistency Guided Multi-View Stereo. CVPR 2019
CHOSEN 280x42093.12 15992.72 15794.34 21396.71 18187.27 26090.29 37997.72 12886.61 30391.34 20895.29 24084.29 16098.41 20993.25 13598.94 8997.35 204
testing9991.62 22090.72 23294.32 21496.48 20186.11 29295.81 26394.76 33191.55 15191.75 19793.44 32668.55 34898.82 17090.43 18893.69 21798.04 169
CLD-MVS92.98 16792.53 16694.32 21496.12 22389.20 21095.28 28997.47 15992.66 12289.90 24795.62 22880.58 22898.40 21092.73 14792.40 23495.38 281
Zhaoxin Li, Wangmeng Zuo, Zhaoqi Wang, Lei Zhang: Confidence-based Large-scale Dense Multi-view Stereo. IEEE Transaction on Image Processing, 2020
dcpmvs_296.37 6097.05 2294.31 21698.96 4684.11 32097.56 11997.51 15393.92 6997.43 4598.52 3592.75 2999.32 11797.32 3099.50 3399.51 37
test111193.19 15592.82 15094.30 21797.58 13784.56 31598.21 4389.02 38993.53 8494.58 13098.21 6772.69 32099.05 15193.06 14098.48 10799.28 65
test_cas_vis1_n_192094.48 10894.55 10194.28 21896.78 17586.45 28397.63 11297.64 13893.32 9497.68 3898.36 5073.75 31799.08 14496.73 3999.05 8397.31 206
Anonymous2023121190.63 26889.42 28394.27 21998.24 8789.19 21298.05 5497.89 10779.95 37288.25 29494.96 25272.56 32298.13 23589.70 20485.14 32495.49 269
LTVRE_ROB88.41 1390.99 25489.92 26694.19 22096.18 21689.55 19196.31 23597.09 20087.88 27285.67 33395.91 20978.79 26598.57 19981.50 32789.98 27694.44 334
Andreas Kuhn, Heiko Hirschmüller, Daniel Scharstein, Helmut Mayer: A TV Prior for High-Quality Scalable Multi-View Stereo Reconstruction. International Journal of Computer Vision 2016
pmmvs490.93 25889.85 26894.17 22193.34 34590.79 15394.60 30796.02 27184.62 33487.45 30895.15 24681.88 21097.45 32187.70 24587.87 29694.27 341
tt080591.09 24990.07 26194.16 22295.61 24088.31 23297.56 11996.51 25189.56 21689.17 27295.64 22767.08 36098.38 21591.07 18088.44 29295.80 254
TR-MVS91.48 23090.59 23794.16 22296.40 20687.33 25795.67 27095.34 30687.68 28291.46 20595.52 23476.77 28798.35 21782.85 31793.61 22196.79 222
LPG-MVS_test92.94 17092.56 16394.10 22496.16 21888.26 23597.65 10697.46 16191.29 16090.12 23997.16 13979.05 25798.73 18192.25 15191.89 24495.31 286
LGP-MVS_train94.10 22496.16 21888.26 23597.46 16191.29 16090.12 23997.16 13979.05 25798.73 18192.25 15191.89 24495.31 286
mvs_anonymous93.82 13393.74 11594.06 22696.44 20485.41 30095.81 26397.05 20689.85 20990.09 24296.36 18987.44 11797.75 29593.97 11996.69 16099.02 86
ACMP89.59 1092.62 18292.14 17794.05 22796.40 20688.20 23897.36 14297.25 19091.52 15288.30 29196.64 16878.46 26998.72 18491.86 16291.48 25195.23 293
Qingshan Xu and Wenbing Tao: Planar Prior Assisted PatchMatch Multi-View Stereo. AAAI 2020
test250691.60 22190.78 22794.04 22897.66 12783.81 32398.27 3375.53 40693.43 8995.23 11998.21 6767.21 35699.07 14893.01 14498.49 10599.25 68
jajsoiax92.42 18791.89 18694.03 22993.33 34688.50 22997.73 9597.53 15192.00 14288.85 27896.50 18275.62 30198.11 24193.88 12491.56 24995.48 270
test_djsdf93.07 16392.76 15294.00 23093.49 34088.70 22298.22 4197.57 14691.42 15790.08 24395.55 23282.85 18897.92 27994.07 11791.58 24895.40 279
AllTest90.23 27988.98 29193.98 23197.94 11186.64 27696.51 21895.54 29585.38 32185.49 33596.77 15870.28 33499.15 13380.02 34092.87 22596.15 239
TestCases93.98 23197.94 11186.64 27695.54 29585.38 32185.49 33596.77 15870.28 33499.15 13380.02 34092.87 22596.15 239
anonymousdsp92.16 20291.55 19793.97 23392.58 35989.55 19197.51 12497.42 17489.42 22288.40 28894.84 25980.66 22697.88 28491.87 16191.28 25694.48 331
pm-mvs190.72 26589.65 27893.96 23494.29 31789.63 18697.79 9096.82 23089.07 23186.12 33195.48 23678.61 26797.78 29286.97 26581.67 35794.46 332
WR-MVS_H92.00 20791.35 20393.95 23595.09 27889.47 19598.04 5598.68 1391.46 15588.34 28994.68 26785.86 13997.56 31085.77 28484.24 33994.82 316
CR-MVSNet90.82 26189.77 27293.95 23594.45 31087.19 26490.23 38095.68 28886.89 29892.40 17592.36 34680.91 22297.05 33781.09 33593.95 21497.60 193
mvs_tets92.31 19491.76 18893.94 23793.41 34388.29 23397.63 11297.53 15192.04 14088.76 28196.45 18474.62 30998.09 24593.91 12291.48 25195.45 275
baseline291.63 21990.86 22293.94 23794.33 31486.32 28595.92 25791.64 37789.37 22386.94 32294.69 26681.62 21498.69 18688.64 23194.57 19996.81 221
RRT_MVS93.10 16092.83 14993.93 23994.76 29588.04 24398.47 2296.55 24993.44 8890.01 24597.04 14680.64 22797.93 27894.33 11490.21 27595.83 251
BH-untuned92.94 17092.62 16193.92 24097.22 14486.16 29196.40 22796.25 26390.06 20489.79 25196.17 19883.19 17698.35 21787.19 26097.27 14697.24 209
ACMH87.59 1690.53 27089.42 28393.87 24196.21 21387.92 24797.24 15396.94 21688.45 25783.91 35396.27 19371.92 32398.62 19484.43 30089.43 28295.05 301
Qingshan Xu and Wenbing Tao: Multi-Scale Geometric Consistency Guided Multi-View Stereo. CVPR 2019
SCA91.84 21291.18 21493.83 24295.59 24184.95 31194.72 30495.58 29490.82 17792.25 18393.69 31475.80 29898.10 24286.20 27495.98 17098.45 137
CP-MVSNet91.89 21191.24 21093.82 24395.05 27988.57 22597.82 8698.19 5591.70 14888.21 29595.76 22081.96 20797.52 31687.86 23984.65 33195.37 282
v2v48291.59 22290.85 22493.80 24493.87 32888.17 24096.94 17996.88 22589.54 21789.53 26094.90 25681.70 21398.02 25889.25 21785.04 32895.20 294
COLMAP_ROBcopyleft87.81 1590.40 27489.28 28693.79 24597.95 11087.13 26796.92 18095.89 27782.83 35386.88 32597.18 13873.77 31699.29 12178.44 35093.62 22094.95 303
Johannes L. Schönberger, Enliang Zheng, Marc Pollefeys, Jan-Michael Frahm: Pixelwise View Selection for Unstructured Multi-View Stereo. ECCV 2016
mvsany_test193.93 12893.98 11193.78 24694.94 28586.80 27294.62 30692.55 37088.77 24896.85 6098.49 3888.98 8898.08 24695.03 9695.62 18096.46 231
V4291.58 22490.87 22193.73 24794.05 32388.50 22997.32 14796.97 21388.80 24789.71 25294.33 28682.54 19598.05 25389.01 22385.07 32694.64 329
PVSNet86.66 1892.24 19991.74 19193.73 24797.77 12183.69 32792.88 36096.72 23487.91 27193.00 16694.86 25878.51 26899.05 15186.53 26897.45 13998.47 135
MIMVSNet88.50 30786.76 31793.72 24994.84 29287.77 25391.39 37094.05 34886.41 30687.99 30092.59 33963.27 37295.82 36077.44 35392.84 22797.57 195
Patchmatch-test89.42 29687.99 30393.70 25095.27 26585.11 30788.98 38694.37 34281.11 36487.10 31793.69 31482.28 20197.50 31774.37 37094.76 19598.48 134
PS-CasMVS91.55 22690.84 22593.69 25194.96 28288.28 23497.84 8398.24 4791.46 15588.04 29995.80 21579.67 24697.48 31887.02 26484.54 33695.31 286
v114491.37 23690.60 23693.68 25293.89 32788.23 23796.84 18797.03 21088.37 25989.69 25494.39 28282.04 20597.98 26287.80 24185.37 31994.84 313
GG-mvs-BLEND93.62 25393.69 33389.20 21092.39 36783.33 40287.98 30189.84 37071.00 33096.87 34582.08 32595.40 18494.80 319
tfpnnormal89.70 29488.40 29993.60 25495.15 27490.10 17297.56 11998.16 6187.28 29286.16 33094.63 27077.57 28298.05 25374.48 36884.59 33492.65 362
PatchmatchNetpermissive91.91 20991.35 20393.59 25595.38 25384.11 32093.15 35595.39 30089.54 21792.10 18893.68 31682.82 18998.13 23584.81 29595.32 18598.52 127
Fangjinhua Wang, Silvano Galliani, Christoph Vogel, Pablo Speciale, Marc Pollefeys: PatchmatchNet: Learned Multi-View Patchmatch Stereo.
v119291.07 25090.23 25293.58 25693.70 33287.82 25296.73 19597.07 20387.77 27889.58 25794.32 28880.90 22497.97 26586.52 26985.48 31794.95 303
v891.29 24290.53 24093.57 25794.15 31988.12 24297.34 14497.06 20588.99 23588.32 29094.26 29383.08 18098.01 25987.62 25183.92 34494.57 330
ADS-MVSNet89.89 28888.68 29693.53 25895.86 23084.89 31290.93 37595.07 31883.23 35191.28 21591.81 35579.01 26197.85 28579.52 34291.39 25497.84 178
v1091.04 25290.23 25293.49 25994.12 32088.16 24197.32 14797.08 20188.26 26288.29 29294.22 29682.17 20497.97 26586.45 27184.12 34094.33 337
EI-MVSNet93.03 16592.88 14793.48 26095.77 23586.98 26996.44 21997.12 19690.66 18791.30 21197.64 11486.56 12798.05 25389.91 19890.55 27095.41 276
PEN-MVS91.20 24590.44 24193.48 26094.49 30887.91 24997.76 9198.18 5791.29 16087.78 30395.74 22180.35 23397.33 32985.46 28882.96 35295.19 297
v7n90.76 26289.86 26793.45 26293.54 33787.60 25697.70 10297.37 17988.85 24187.65 30594.08 30281.08 21998.10 24284.68 29783.79 34694.66 328
v14419291.06 25190.28 24893.39 26393.66 33587.23 26396.83 18897.07 20387.43 28789.69 25494.28 29081.48 21598.00 26087.18 26184.92 33094.93 307
EPMVS90.70 26689.81 27093.37 26494.73 29984.21 31893.67 34488.02 39289.50 21992.38 17793.49 32377.82 28197.78 29286.03 28092.68 23198.11 165
IterMVS-LS92.29 19691.94 18493.34 26596.25 21286.97 27096.57 21797.05 20690.67 18589.50 26294.80 26286.59 12697.64 30389.91 19886.11 31295.40 279
Fangjinhua Wang, Silvano Galliani, Christoph Vogel, Marc Pollefeys: IterMVS: Iterative Probability Estimation for Efficient Multi-View Stereo.
BH-w/o92.14 20491.75 18993.31 26696.99 16485.73 29595.67 27095.69 28688.73 24989.26 27094.82 26182.97 18598.07 25085.26 29196.32 16796.13 241
v192192090.85 26090.03 26393.29 26793.55 33686.96 27196.74 19497.04 20887.36 28989.52 26194.34 28580.23 23697.97 26586.27 27285.21 32394.94 305
ACMH+87.92 1490.20 28189.18 28893.25 26896.48 20186.45 28396.99 17596.68 23988.83 24384.79 34296.22 19570.16 33698.53 20184.42 30188.04 29494.77 324
v124090.70 26689.85 26893.23 26993.51 33986.80 27296.61 21197.02 21187.16 29489.58 25794.31 28979.55 24997.98 26285.52 28785.44 31894.90 310
PatchT88.87 30387.42 30793.22 27094.08 32285.10 30889.51 38494.64 33581.92 35992.36 17888.15 38180.05 23997.01 34072.43 37793.65 21997.54 196
Fast-Effi-MVS+-dtu92.29 19691.99 18293.21 27195.27 26585.52 29897.03 16996.63 24592.09 13889.11 27495.14 24780.33 23498.08 24687.54 25394.74 19796.03 245
miper_enhance_ethall91.54 22791.01 21893.15 27295.35 25787.07 26893.97 33196.90 22286.79 30089.17 27293.43 32986.55 12897.64 30389.97 19786.93 30494.74 325
cl2291.21 24490.56 23993.14 27396.09 22586.80 27294.41 31696.58 24887.80 27688.58 28593.99 30580.85 22597.62 30689.87 20086.93 30494.99 302
XVG-ACMP-BASELINE90.93 25890.21 25593.09 27494.31 31685.89 29395.33 28697.26 18891.06 17389.38 26495.44 23768.61 34698.60 19589.46 21091.05 26194.79 321
TransMVSNet (Re)88.94 30087.56 30693.08 27594.35 31388.45 23197.73 9595.23 31187.47 28684.26 34695.29 24079.86 24397.33 32979.44 34674.44 38093.45 352
DTE-MVSNet90.56 26989.75 27493.01 27693.95 32487.25 26197.64 11097.65 13690.74 18087.12 31595.68 22579.97 24197.00 34183.33 31181.66 35894.78 323
EPNet_dtu91.71 21591.28 20892.99 27793.76 33183.71 32696.69 20195.28 30793.15 10287.02 31995.95 20783.37 17497.38 32779.46 34596.84 15497.88 176
Wanjuan Su, Wenbing Tao: Efficient Edge-Preserving Multi-View Stereo Network for Depth Estimation. AAAI 2023
miper_ehance_all_eth91.59 22291.13 21592.97 27895.55 24486.57 28094.47 31296.88 22587.77 27888.88 27794.01 30386.22 13397.54 31289.49 20986.93 30494.79 321
Baseline_NR-MVSNet91.20 24590.62 23592.95 27993.83 32988.03 24497.01 17495.12 31688.42 25889.70 25395.13 24883.47 17197.44 32289.66 20683.24 35093.37 353
test_vis1_n_192094.17 11494.58 9792.91 28097.42 14182.02 34197.83 8497.85 11694.68 4698.10 2998.49 3870.15 33799.32 11797.91 1598.82 9297.40 201
cl____90.96 25790.32 24592.89 28195.37 25586.21 28994.46 31496.64 24287.82 27488.15 29794.18 29782.98 18497.54 31287.70 24585.59 31594.92 309
DIV-MVS_self_test90.97 25690.33 24492.88 28295.36 25686.19 29094.46 31496.63 24587.82 27488.18 29694.23 29482.99 18397.53 31487.72 24285.57 31694.93 307
c3_l91.38 23490.89 22092.88 28295.58 24286.30 28694.68 30596.84 22988.17 26488.83 28094.23 29485.65 14297.47 31989.36 21284.63 33294.89 311
pmmvs589.86 29188.87 29492.82 28492.86 35286.23 28896.26 23895.39 30084.24 33887.12 31594.51 27574.27 31197.36 32887.61 25287.57 29894.86 312
v14890.99 25490.38 24392.81 28593.83 32985.80 29496.78 19296.68 23989.45 22188.75 28293.93 30782.96 18697.82 28987.83 24083.25 34994.80 319
Patchmtry88.64 30687.25 30992.78 28694.09 32186.64 27689.82 38395.68 28880.81 36887.63 30692.36 34680.91 22297.03 33878.86 34885.12 32594.67 327
test_vis1_n92.37 19092.26 17592.72 28794.75 29782.64 33398.02 5696.80 23191.18 16797.77 3797.93 8858.02 38198.29 22297.63 1998.21 11797.23 210
MVP-Stereo90.74 26490.08 25892.71 28893.19 34888.20 23895.86 26096.27 26186.07 31284.86 34194.76 26377.84 28097.75 29583.88 30998.01 12392.17 371
Qingsong Yan: MVP-Stereo: A Parallel Multi-View Patchmatch Stereo Method with Dilation Matching for Photogrammetric Application.
pmmvs687.81 31486.19 32192.69 28991.32 36986.30 28697.34 14496.41 25680.59 37184.05 35294.37 28467.37 35597.67 30084.75 29679.51 36794.09 344
Effi-MVS+-dtu93.08 16293.21 13892.68 29096.02 22783.25 33097.14 16596.72 23493.85 7291.20 21993.44 32683.08 18098.30 22191.69 16895.73 17796.50 228
CostFormer91.18 24890.70 23392.62 29194.84 29281.76 34394.09 32994.43 33984.15 33992.72 17393.77 31279.43 25098.20 22890.70 18692.18 23997.90 174
LCM-MVSNet-Re92.50 18392.52 16792.44 29296.82 17381.89 34296.92 18093.71 35792.41 12884.30 34594.60 27185.08 14897.03 33891.51 17097.36 14198.40 143
ITE_SJBPF92.43 29395.34 25885.37 30395.92 27391.47 15487.75 30496.39 18871.00 33097.96 27082.36 32389.86 27893.97 345
dmvs_re90.21 28089.50 28192.35 29495.47 25085.15 30695.70 26994.37 34290.94 17688.42 28793.57 32174.63 30895.67 36382.80 31889.57 28196.22 234
D2MVS91.30 24190.95 21992.35 29494.71 30085.52 29896.18 24598.21 5188.89 24086.60 32693.82 31079.92 24297.95 27489.29 21590.95 26493.56 349
eth_miper_zixun_eth91.02 25390.59 23792.34 29695.33 26184.35 31694.10 32896.90 22288.56 25388.84 27994.33 28684.08 16397.60 30888.77 22984.37 33895.06 300
test_fmvs1_n92.73 18092.88 14792.29 29796.08 22681.05 34997.98 6197.08 20190.72 18296.79 6298.18 7063.07 37398.45 20797.62 2098.42 11097.36 202
USDC88.94 30087.83 30592.27 29894.66 30184.96 31093.86 33795.90 27587.34 29083.40 35595.56 23167.43 35498.19 23082.64 32289.67 28093.66 348
test_fmvs193.21 15393.53 12392.25 29996.55 19381.20 34897.40 13896.96 21490.68 18496.80 6198.04 7969.25 34298.40 21097.58 2198.50 10497.16 211
tpm289.96 28589.21 28792.23 30094.91 28881.25 34693.78 33994.42 34080.62 37091.56 20293.44 32676.44 29197.94 27585.60 28692.08 24397.49 197
test-LLR91.42 23291.19 21392.12 30194.59 30480.66 35294.29 32392.98 36391.11 17090.76 22392.37 34379.02 25998.07 25088.81 22796.74 15797.63 188
test-mter90.19 28289.54 28092.12 30194.59 30480.66 35294.29 32392.98 36387.68 28290.76 22392.37 34367.67 35298.07 25088.81 22796.74 15797.63 188
ADS-MVSNet289.45 29588.59 29792.03 30395.86 23082.26 33990.93 37594.32 34583.23 35191.28 21591.81 35579.01 26195.99 35579.52 34291.39 25497.84 178
TESTMET0.1,190.06 28489.42 28391.97 30494.41 31280.62 35494.29 32391.97 37587.28 29290.44 22892.47 34268.79 34497.67 30088.50 23396.60 16297.61 192
JIA-IIPM88.26 31087.04 31491.91 30593.52 33881.42 34589.38 38594.38 34180.84 36790.93 22180.74 39279.22 25497.92 27982.76 31991.62 24796.38 232
tpmvs89.83 29289.15 28991.89 30694.92 28680.30 35993.11 35695.46 29986.28 30888.08 29892.65 33680.44 23198.52 20281.47 32889.92 27796.84 220
TDRefinement86.53 32484.76 33591.85 30782.23 39784.25 31796.38 22995.35 30384.97 33084.09 35094.94 25365.76 36798.34 22084.60 29974.52 37992.97 356
miper_lstm_enhance90.50 27390.06 26291.83 30895.33 26183.74 32493.86 33796.70 23887.56 28587.79 30293.81 31183.45 17396.92 34387.39 25584.62 33394.82 316
IterMVS-SCA-FT90.31 27589.81 27091.82 30995.52 24584.20 31994.30 32296.15 26890.61 19187.39 31194.27 29175.80 29896.44 35087.34 25686.88 30894.82 316
tpm cat188.36 30887.21 31191.81 31095.13 27680.55 35592.58 36495.70 28474.97 38587.45 30891.96 35378.01 27998.17 23280.39 33888.74 28996.72 224
tpmrst91.44 23191.32 20591.79 31195.15 27479.20 37193.42 35095.37 30288.55 25493.49 15593.67 31782.49 19798.27 22390.41 18989.34 28397.90 174
MS-PatchMatch90.27 27789.77 27291.78 31294.33 31484.72 31495.55 27696.73 23386.17 31186.36 32895.28 24271.28 32897.80 29084.09 30498.14 12192.81 359
FMVSNet587.29 31885.79 32491.78 31294.80 29487.28 25995.49 28095.28 30784.09 34083.85 35491.82 35462.95 37494.17 37778.48 34985.34 32193.91 346
EG-PatchMatch MVS87.02 32285.44 32691.76 31492.67 35685.00 30996.08 24996.45 25483.41 35079.52 37393.49 32357.10 38397.72 29779.34 34790.87 26792.56 363
tpm90.25 27889.74 27591.76 31493.92 32579.73 36593.98 33093.54 35988.28 26191.99 19093.25 33077.51 28397.44 32287.30 25887.94 29598.12 162
IterMVS90.15 28389.67 27691.61 31695.48 24783.72 32594.33 32096.12 26989.99 20587.31 31494.15 29975.78 30096.27 35386.97 26586.89 30794.83 314
Fangjinhua Wang, Silvano Galliani, Christoph Vogel, Marc Pollefeys: IterMVS: Iterative Probability Estimation for Efficient Multi-View Stereo.
ppachtmachnet_test88.35 30987.29 30891.53 31792.45 36283.57 32893.75 34095.97 27284.28 33785.32 33894.18 29779.00 26396.93 34275.71 36384.99 32994.10 342
pmmvs-eth3d86.22 32984.45 33691.53 31788.34 38687.25 26194.47 31295.01 31983.47 34979.51 37489.61 37169.75 34195.71 36183.13 31376.73 37691.64 372
test_040286.46 32584.79 33491.45 31995.02 28085.55 29796.29 23794.89 32680.90 36582.21 36193.97 30668.21 35197.29 33162.98 39088.68 29091.51 375
OurMVSNet-221017-090.51 27290.19 25691.44 32093.41 34381.25 34696.98 17696.28 26091.68 14986.55 32796.30 19174.20 31297.98 26288.96 22587.40 30295.09 298
test0.0.03 189.37 29788.70 29591.41 32192.47 36185.63 29695.22 29492.70 36891.11 17086.91 32493.65 31879.02 25993.19 38678.00 35289.18 28495.41 276
KD-MVS_2432*160084.81 34082.64 34491.31 32291.07 37185.34 30491.22 37295.75 28285.56 31983.09 35790.21 36667.21 35695.89 35677.18 35762.48 39692.69 360
miper_refine_blended84.81 34082.64 34491.31 32291.07 37185.34 30491.22 37295.75 28285.56 31983.09 35790.21 36667.21 35695.89 35677.18 35762.48 39692.69 360
UWE-MVS89.91 28689.48 28291.21 32495.88 22978.23 37694.91 30190.26 38589.11 23092.35 18094.52 27468.76 34597.96 27083.95 30795.59 18197.42 200
TinyColmap86.82 32385.35 32991.21 32494.91 28882.99 33293.94 33394.02 35083.58 34781.56 36394.68 26762.34 37698.13 23575.78 36287.35 30392.52 365
our_test_388.78 30487.98 30491.20 32692.45 36282.53 33593.61 34795.69 28685.77 31684.88 34093.71 31379.99 24096.78 34879.47 34486.24 30994.28 340
MDA-MVSNet-bldmvs85.00 33882.95 34391.17 32793.13 35083.33 32994.56 30995.00 32084.57 33565.13 39392.65 33670.45 33395.85 35873.57 37477.49 37294.33 337
SixPastTwentyTwo89.15 29888.54 29890.98 32893.49 34080.28 36096.70 19994.70 33290.78 17884.15 34895.57 23071.78 32597.71 29884.63 29885.07 32694.94 305
PVSNet_082.17 1985.46 33783.64 34090.92 32995.27 26579.49 36890.55 37895.60 29283.76 34583.00 35989.95 36871.09 32997.97 26582.75 32060.79 39895.31 286
OpenMVS_ROBcopyleft81.14 2084.42 34282.28 34890.83 33090.06 37684.05 32295.73 26894.04 34973.89 38780.17 37291.53 35859.15 37997.64 30366.92 38889.05 28590.80 381
WB-MVSnew89.88 28989.56 27990.82 33194.57 30783.06 33195.65 27392.85 36587.86 27390.83 22294.10 30079.66 24796.88 34476.34 36094.19 20492.54 364
Patchmatch-RL test87.38 31786.24 32090.81 33288.74 38578.40 37588.12 39093.17 36287.11 29582.17 36289.29 37381.95 20895.60 36588.64 23177.02 37398.41 142
dp88.90 30288.26 30290.81 33294.58 30676.62 37892.85 36194.93 32485.12 32790.07 24493.07 33175.81 29798.12 24080.53 33787.42 30197.71 185
MDA-MVSNet_test_wron85.87 33484.23 33890.80 33492.38 36482.57 33493.17 35395.15 31482.15 35767.65 38992.33 34978.20 27295.51 36777.33 35479.74 36494.31 339
YYNet185.87 33484.23 33890.78 33592.38 36482.46 33793.17 35395.14 31582.12 35867.69 38892.36 34678.16 27595.50 36877.31 35579.73 36594.39 335
UnsupCasMVSNet_eth85.99 33284.45 33690.62 33689.97 37782.40 33893.62 34697.37 17989.86 20778.59 37792.37 34365.25 36995.35 37082.27 32470.75 38694.10 342
MIMVSNet184.93 33983.05 34190.56 33789.56 38084.84 31395.40 28395.35 30383.91 34180.38 36992.21 35057.23 38293.34 38570.69 38482.75 35593.50 350
lessismore_v090.45 33891.96 36779.09 37387.19 39580.32 37094.39 28266.31 36397.55 31184.00 30676.84 37494.70 326
RPSCF90.75 26390.86 22290.42 33996.84 16976.29 38095.61 27596.34 25883.89 34291.38 20697.87 9376.45 29098.78 17487.16 26292.23 23696.20 235
K. test v387.64 31686.75 31890.32 34093.02 35179.48 36996.61 21192.08 37490.66 18780.25 37194.09 30167.21 35696.65 34985.96 28280.83 36194.83 314
testgi87.97 31187.21 31190.24 34192.86 35280.76 35096.67 20494.97 32291.74 14785.52 33495.83 21362.66 37594.47 37576.25 36188.36 29395.48 270
UnsupCasMVSNet_bld82.13 34979.46 35490.14 34288.00 38782.47 33690.89 37796.62 24778.94 37775.61 38184.40 39056.63 38496.31 35277.30 35666.77 39391.63 373
testing387.67 31586.88 31690.05 34396.14 22180.71 35197.10 16792.85 36590.15 20287.54 30794.55 27355.70 38694.10 37873.77 37394.10 20895.35 283
LF4IMVS87.94 31287.25 30989.98 34492.38 36480.05 36394.38 31795.25 31087.59 28484.34 34494.74 26564.31 37097.66 30284.83 29487.45 29992.23 368
Anonymous2023120687.09 32186.14 32289.93 34591.22 37080.35 35796.11 24795.35 30383.57 34884.16 34793.02 33273.54 31895.61 36472.16 37886.14 31193.84 347
CL-MVSNet_self_test86.31 32885.15 33089.80 34688.83 38481.74 34493.93 33496.22 26486.67 30185.03 33990.80 36278.09 27694.50 37374.92 36771.86 38593.15 355
CVMVSNet91.23 24391.75 18989.67 34795.77 23574.69 38296.44 21994.88 32785.81 31592.18 18497.64 11479.07 25695.58 36688.06 23695.86 17498.74 115
myMVS_eth3d87.18 31986.38 31989.58 34895.16 27279.53 36695.00 29893.93 35388.55 25486.96 32091.99 35156.23 38594.00 37975.47 36694.11 20695.20 294
test_vis1_rt86.16 33085.06 33189.46 34993.47 34280.46 35696.41 22386.61 39785.22 32479.15 37588.64 37652.41 38997.06 33693.08 13990.57 26990.87 380
Anonymous2024052186.42 32685.44 32689.34 35090.33 37479.79 36496.73 19595.92 27383.71 34683.25 35691.36 35963.92 37196.01 35478.39 35185.36 32092.22 369
test_fmvs289.77 29389.93 26589.31 35193.68 33476.37 37997.64 11095.90 27589.84 21091.49 20496.26 19458.77 38097.10 33594.65 10891.13 25994.46 332
KD-MVS_self_test85.95 33384.95 33288.96 35289.55 38179.11 37295.13 29696.42 25585.91 31484.07 35190.48 36370.03 33894.82 37280.04 33972.94 38392.94 357
test20.0386.14 33185.40 32888.35 35390.12 37580.06 36295.90 25995.20 31288.59 25081.29 36493.62 31971.43 32792.65 38771.26 38281.17 36092.34 367
PM-MVS83.48 34481.86 35088.31 35487.83 38877.59 37793.43 34991.75 37686.91 29780.63 36789.91 36944.42 39395.84 35985.17 29376.73 37691.50 376
EU-MVSNet88.72 30588.90 29388.20 35593.15 34974.21 38396.63 21094.22 34685.18 32587.32 31395.97 20576.16 29494.98 37185.27 29086.17 31095.41 276
new_pmnet82.89 34781.12 35288.18 35689.63 37980.18 36191.77 36992.57 36976.79 38475.56 38388.23 38061.22 37894.48 37471.43 38082.92 35389.87 384
CMPMVSbinary62.92 2185.62 33684.92 33387.74 35789.14 38273.12 38794.17 32696.80 23173.98 38673.65 38594.93 25466.36 36197.61 30783.95 30791.28 25692.48 366
M. Jancosek, T. Pajdla: Multi-View Reconstruction Preserving Weakly-Supported Surfaces. CVPR 2011
Syy-MVS87.13 32087.02 31587.47 35895.16 27273.21 38695.00 29893.93 35388.55 25486.96 32091.99 35175.90 29594.00 37961.59 39294.11 20695.20 294
pmmvs379.97 35277.50 35787.39 35982.80 39679.38 37092.70 36390.75 38470.69 38978.66 37687.47 38651.34 39093.40 38473.39 37569.65 38889.38 385
new-patchmatchnet83.18 34681.87 34987.11 36086.88 38975.99 38193.70 34195.18 31385.02 32977.30 38088.40 37865.99 36593.88 38274.19 37270.18 38791.47 377
mvsany_test383.59 34382.44 34787.03 36183.80 39373.82 38493.70 34190.92 38386.42 30582.51 36090.26 36546.76 39295.71 36190.82 18376.76 37591.57 374
DSMNet-mixed86.34 32786.12 32387.00 36289.88 37870.43 38894.93 30090.08 38677.97 38185.42 33792.78 33574.44 31093.96 38174.43 36995.14 18796.62 225
ambc86.56 36383.60 39470.00 39085.69 39294.97 32280.60 36888.45 37737.42 39696.84 34682.69 32175.44 37892.86 358
MVS-HIRNet82.47 34881.21 35186.26 36495.38 25369.21 39188.96 38789.49 38766.28 39180.79 36674.08 39668.48 34997.39 32671.93 37995.47 18292.18 370
EGC-MVSNET68.77 36363.01 36886.07 36592.49 36082.24 34093.96 33290.96 3820.71 4082.62 40990.89 36153.66 38793.46 38357.25 39584.55 33582.51 391
APD_test179.31 35377.70 35684.14 36689.11 38369.07 39292.36 36891.50 37869.07 39073.87 38492.63 33839.93 39594.32 37670.54 38580.25 36389.02 386
test_fmvs383.21 34583.02 34283.78 36786.77 39068.34 39396.76 19394.91 32586.49 30484.14 34989.48 37236.04 39791.73 38991.86 16280.77 36291.26 379
test_f80.57 35179.62 35383.41 36883.38 39567.80 39593.57 34893.72 35680.80 36977.91 37987.63 38433.40 39892.08 38887.14 26379.04 37090.34 383
LCM-MVSNet72.55 35869.39 36282.03 36970.81 40765.42 39890.12 38294.36 34455.02 39765.88 39181.72 39124.16 40589.96 39074.32 37168.10 39190.71 382
PMMVS270.19 36066.92 36380.01 37076.35 40165.67 39786.22 39187.58 39464.83 39362.38 39480.29 39326.78 40388.49 39763.79 38954.07 39985.88 387
test_vis3_rt72.73 35770.55 36079.27 37180.02 39868.13 39493.92 33574.30 40876.90 38358.99 39773.58 39720.29 40695.37 36984.16 30272.80 38474.31 396
N_pmnet78.73 35478.71 35578.79 37292.80 35446.50 40994.14 32743.71 41178.61 37880.83 36591.66 35774.94 30696.36 35167.24 38784.45 33793.50 350
dmvs_testset81.38 35082.60 34677.73 37391.74 36851.49 40693.03 35884.21 40189.07 23178.28 37891.25 36076.97 28688.53 39656.57 39682.24 35693.16 354
WB-MVS76.77 35576.63 35877.18 37485.32 39156.82 40494.53 31089.39 38882.66 35571.35 38689.18 37475.03 30588.88 39435.42 40266.79 39285.84 388
ANet_high63.94 36659.58 36977.02 37561.24 40966.06 39685.66 39387.93 39378.53 37942.94 40171.04 39825.42 40480.71 40152.60 39830.83 40284.28 390
testf169.31 36166.76 36476.94 37678.61 39961.93 40088.27 38886.11 39855.62 39559.69 39585.31 38820.19 40789.32 39157.62 39369.44 38979.58 393
APD_test269.31 36166.76 36476.94 37678.61 39961.93 40088.27 38886.11 39855.62 39559.69 39585.31 38820.19 40789.32 39157.62 39369.44 38979.58 393
SSC-MVS76.05 35675.83 35976.72 37884.77 39256.22 40594.32 32188.96 39081.82 36170.52 38788.91 37574.79 30788.71 39533.69 40364.71 39485.23 389
FPMVS71.27 35969.85 36175.50 37974.64 40259.03 40291.30 37191.50 37858.80 39457.92 39888.28 37929.98 40185.53 39953.43 39782.84 35481.95 392
Gipumacopyleft67.86 36465.41 36675.18 38092.66 35773.45 38566.50 39994.52 33753.33 39857.80 39966.07 39930.81 39989.20 39348.15 39978.88 37162.90 399
S. Galliani, K. Lasinger, K. Schindler: Massively Parallel Multiview Stereopsis by Surface Normal Diffusion. ICCV 2015
DeepMVS_CXcopyleft74.68 38190.84 37364.34 39981.61 40465.34 39267.47 39088.01 38348.60 39180.13 40262.33 39173.68 38279.58 393
test_method66.11 36564.89 36769.79 38272.62 40535.23 41365.19 40092.83 36720.35 40365.20 39288.08 38243.14 39482.70 40073.12 37663.46 39591.45 378
PMVScopyleft53.92 2258.58 36755.40 37068.12 38351.00 41048.64 40778.86 39687.10 39646.77 39935.84 40574.28 3958.76 40986.34 39842.07 40073.91 38169.38 397
Y. Furukawa, J. Ponce: Accurate, dense, and robust multiview stereopsis. PAMI (2010)
MVEpermissive50.73 2353.25 36948.81 37466.58 38465.34 40857.50 40372.49 39870.94 40940.15 40239.28 40463.51 4006.89 41173.48 40538.29 40142.38 40068.76 398
Simon Fuhrmann, Fabian Langguth, Michael Goesele: MVE - A Multi-View Reconstruction Environment. EUROGRAPHICS Workshops on Graphics and Cultural Heritage (2014)
E-PMN53.28 36852.56 37255.43 38574.43 40347.13 40883.63 39576.30 40542.23 40042.59 40262.22 40128.57 40274.40 40331.53 40431.51 40144.78 400
EMVS52.08 37051.31 37354.39 38672.62 40545.39 41083.84 39475.51 40741.13 40140.77 40359.65 40230.08 40073.60 40428.31 40529.90 40344.18 401
tmp_tt51.94 37153.82 37146.29 38733.73 41145.30 41178.32 39767.24 41018.02 40450.93 40087.05 38752.99 38853.11 40670.76 38325.29 40440.46 402
wuyk23d25.11 37224.57 37626.74 38873.98 40439.89 41257.88 4019.80 41212.27 40510.39 4066.97 4087.03 41036.44 40725.43 40617.39 4053.89 405
test12313.04 37515.66 3785.18 3894.51 4133.45 41492.50 3661.81 4142.50 4077.58 40820.15 4053.67 4122.18 4097.13 4081.07 4079.90 403
testmvs13.36 37416.33 3774.48 3905.04 4122.26 41593.18 3523.28 4132.70 4068.24 40721.66 4042.29 4132.19 4087.58 4072.96 4069.00 404
test_blank0.00 3780.00 3810.00 3910.00 4140.00 4160.00 4020.00 4150.00 4090.00 4100.00 4090.00 4140.00 4100.00 4090.00 4080.00 406
uanet_test0.00 3780.00 3810.00 3910.00 4140.00 4160.00 4020.00 4150.00 4090.00 4100.00 4090.00 4140.00 4100.00 4090.00 4080.00 406
DCPMVS0.00 3780.00 3810.00 3910.00 4140.00 4160.00 4020.00 4150.00 4090.00 4100.00 4090.00 4140.00 4100.00 4090.00 4080.00 406
cdsmvs_eth3d_5k23.24 37330.99 3750.00 3910.00 4140.00 4160.00 40297.63 1400.00 4090.00 41096.88 15584.38 1570.00 4100.00 4090.00 4080.00 406
pcd_1.5k_mvsjas7.39 3779.85 3800.00 3910.00 4140.00 4160.00 4020.00 4150.00 4090.00 4100.00 40988.65 950.00 4100.00 4090.00 4080.00 406
sosnet-low-res0.00 3780.00 3810.00 3910.00 4140.00 4160.00 4020.00 4150.00 4090.00 4100.00 4090.00 4140.00 4100.00 4090.00 4080.00 406
sosnet0.00 3780.00 3810.00 3910.00 4140.00 4160.00 4020.00 4150.00 4090.00 4100.00 4090.00 4140.00 4100.00 4090.00 4080.00 406
uncertanet0.00 3780.00 3810.00 3910.00 4140.00 4160.00 4020.00 4150.00 4090.00 4100.00 4090.00 4140.00 4100.00 4090.00 4080.00 406
Regformer0.00 3780.00 3810.00 3910.00 4140.00 4160.00 4020.00 4150.00 4090.00 4100.00 4090.00 4140.00 4100.00 4090.00 4080.00 406
ab-mvs-re8.06 37610.74 3790.00 3910.00 4140.00 4160.00 4020.00 4150.00 4090.00 41096.69 1640.00 4140.00 4100.00 4090.00 4080.00 406
uanet0.00 3780.00 3810.00 3910.00 4140.00 4160.00 4020.00 4150.00 4090.00 4100.00 4090.00 4140.00 4100.00 4090.00 4080.00 406
WAC-MVS79.53 36675.56 365
FOURS199.55 193.34 6499.29 198.35 2794.98 2998.49 23
PC_three_145290.77 17998.89 1498.28 6596.24 198.35 21795.76 7399.58 2199.59 22
test_one_060199.32 2295.20 2098.25 4595.13 2398.48 2498.87 1595.16 7
eth-test20.00 414
eth-test0.00 414
ZD-MVS99.05 3994.59 2998.08 7489.22 22797.03 5798.10 7392.52 3599.65 5894.58 11199.31 60
RE-MVS-def96.72 4399.02 4292.34 8997.98 6198.03 9193.52 8597.43 4598.51 3690.71 7096.05 6199.26 6499.43 51
IU-MVS99.42 795.39 1197.94 10490.40 19898.94 897.41 2999.66 1099.74 8
test_241102_TWO98.27 3995.13 2398.93 998.89 1394.99 1199.85 1897.52 2299.65 1299.74 8
test_241102_ONE99.42 795.30 1798.27 3995.09 2699.19 498.81 2195.54 599.65 58
9.1496.75 4198.93 4797.73 9598.23 5091.28 16397.88 3598.44 4493.00 2699.65 5895.76 7399.47 38
save fliter98.91 4994.28 3697.02 17198.02 9495.35 16
test_0728_THIRD94.78 4198.73 1898.87 1595.87 499.84 2397.45 2699.72 299.77 2
test072699.45 395.36 1398.31 2998.29 3494.92 3298.99 798.92 1095.08 8
GSMVS98.45 137
test_part299.28 2595.74 898.10 29
sam_mvs182.76 19098.45 137
sam_mvs81.94 209
MTGPAbinary98.08 74
test_post192.81 36216.58 40780.53 22997.68 29986.20 274
test_post17.58 40681.76 21198.08 246
patchmatchnet-post90.45 36482.65 19498.10 242
MTMP97.86 7982.03 403
gm-plane-assit93.22 34778.89 37484.82 33293.52 32298.64 19187.72 242
test9_res94.81 10399.38 5399.45 47
TEST998.70 5694.19 4096.41 22398.02 9488.17 26496.03 9597.56 12192.74 3099.59 74
test_898.67 5894.06 4796.37 23098.01 9788.58 25195.98 9997.55 12392.73 3199.58 77
agg_prior293.94 12199.38 5399.50 40
agg_prior98.67 5893.79 5298.00 9895.68 10999.57 84
test_prior493.66 5596.42 222
test_prior296.35 23192.80 11996.03 9597.59 11892.01 4395.01 9799.38 53
旧先验295.94 25681.66 36297.34 4898.82 17092.26 149
新几何295.79 265
旧先验198.38 7893.38 6197.75 12398.09 7592.30 4199.01 8699.16 73
无先验95.79 26597.87 11183.87 34499.65 5887.68 24898.89 105
原ACMM295.67 270
test22298.24 8792.21 9495.33 28697.60 14279.22 37695.25 11897.84 9888.80 9299.15 7598.72 116
testdata299.67 5685.96 282
segment_acmp92.89 27
testdata195.26 29393.10 105
plane_prior796.21 21389.98 178
plane_prior696.10 22490.00 17481.32 217
plane_prior597.51 15398.60 19593.02 14292.23 23695.86 247
plane_prior496.64 168
plane_prior390.00 17494.46 5491.34 208
plane_prior297.74 9394.85 34
plane_prior196.14 221
plane_prior89.99 17697.24 15394.06 6592.16 240
n20.00 415
nn0.00 415
door-mid91.06 381
test1197.88 109
door91.13 380
HQP5-MVS89.33 203
HQP-NCC95.86 23096.65 20593.55 8090.14 233
ACMP_Plane95.86 23096.65 20593.55 8090.14 233
BP-MVS92.13 155
HQP4-MVS90.14 23398.50 20395.78 256
HQP3-MVS97.39 17692.10 241
HQP2-MVS80.95 220
NP-MVS95.99 22889.81 18395.87 210
MDTV_nov1_ep13_2view70.35 38993.10 35783.88 34393.55 15282.47 19886.25 27398.38 145
MDTV_nov1_ep1390.76 22895.22 26980.33 35893.03 35895.28 30788.14 26692.84 17293.83 30881.34 21698.08 24682.86 31594.34 201
ACMMP++_ref90.30 274
ACMMP++91.02 262
Test By Simon88.73 94