This table lists the benchmark results for the high-res multi-view scenario. The following metrics are evaluated:

(*) For exact definitions, detailing how potentially incomplete ground truth is taken into account, see our paper.

The datasets are grouped into different categories, and result averages are computed for a category and method if results of the method are available for all datasets within the category. Note that the category "all" includes both the high-res multi-view and the low-res many-view scenarios.

Methods with suffix _ROB may participate in the Robust Vision Challenge.

Click a dataset result cell to show a visualization of the reconstruction. For training datasets, ground truth and accuracy / completeness visualizations are also available. The visualizations may not work with mobile browsers.




Method Infoallhigh-res
multi-view
indooroutdoorbotani.boulde.bridgedoorexhibi.lectur.living.loungeobserv.old co.statueterrac.
sort bysort bysort bysorted bysort bysort bysort bysort bysort bysort bysort bysort bysort bysort bysort bysort by
test_0728_SECOND99.71 199.72 1299.35 198.97 8498.88 6299.94 898.47 4299.81 1599.84 12
DPE-MVScopyleft98.92 798.67 1299.65 299.58 3299.20 998.42 20598.91 5697.58 2799.54 2299.46 2497.10 1299.94 897.64 9299.84 1299.83 13
Kehua Chen, Zhenlong Yuan, Tianlu Mao, Zhaoqi Wang: Dual-Level Precision Edges Guided Multi-View Stereo with Accurate Planarization. AAAI2025
DVP-MVS++99.08 398.89 599.64 399.17 9499.23 799.69 198.88 6297.32 4299.53 2399.47 2097.81 399.94 898.47 4299.72 5699.74 37
SED-MVS99.09 198.91 499.63 499.71 1999.24 599.02 7498.87 6997.65 2299.73 1099.48 1897.53 799.94 898.43 4699.81 1599.70 53
DVP-MVScopyleft99.03 598.83 999.63 499.72 1299.25 298.97 8498.58 15097.62 2499.45 2599.46 2497.42 999.94 898.47 4299.81 1599.69 56
Zhenlong Yuan, Jinguo Luo, Fei Shen, Zhaoxin Li, Cong Liu, Tianlu Mao, Zhaoqi Wang: DVP-MVS: Synergize Depth-Edge and Visibility Prior for Multi-View Stereo. AAAI2025
MSC_two_6792asdad99.62 699.17 9499.08 1198.63 13999.94 898.53 3499.80 2299.86 8
No_MVS99.62 699.17 9499.08 1198.63 13999.94 898.53 3499.80 2299.86 8
SMA-MVScopyleft98.58 2398.25 4499.56 899.51 3999.04 1598.95 9098.80 9393.67 23299.37 3199.52 1196.52 2299.89 4798.06 6499.81 1599.76 34
Yufeng Yin; Xiaoyan Liu; Zichao Zhang: SMA-MVS: Segmentation-Guided Multi-Scale Anchor Deformation Patch Multi-View Stereo. IEEE Transactions on Circuits and Systems for Video Technology
ACMMP_NAP98.61 1898.30 4199.55 999.62 3098.95 1798.82 12698.81 8695.80 11899.16 4499.47 2095.37 5799.92 3197.89 7599.75 4599.79 19
HPM-MVS++copyleft98.58 2398.25 4499.55 999.50 4199.08 1198.72 15598.66 13297.51 3098.15 10298.83 12795.70 4699.92 3197.53 10299.67 6499.66 68
APDe-MVScopyleft99.02 698.84 899.55 999.57 3398.96 1699.39 1198.93 5097.38 3999.41 2899.54 896.66 1899.84 6798.86 2399.85 599.87 7
Zhaojie Zeng, Yuesong Wang, Tao Guan: Matching Ambiguity-Resilient Multi-View Stereo via Adaptive Patch Deformation. Pattern Recognition
MP-MVS-pluss98.31 5697.92 6799.49 1299.72 1298.88 1898.43 20398.78 10094.10 19997.69 13999.42 2995.25 6599.92 3198.09 6399.80 2299.67 65
MP-MVS-pluss: MP-MVS-pluss. MP-MVS-pluss
MCST-MVS98.65 1598.37 2999.48 1399.60 3198.87 1998.41 20698.68 12497.04 6398.52 8798.80 13196.78 1699.83 6997.93 7199.61 7799.74 37
MTAPA98.58 2398.29 4299.46 1499.76 298.64 2598.90 9998.74 10897.27 4998.02 11399.39 3294.81 7999.96 497.91 7399.79 2899.77 27
CNVR-MVS98.78 1198.56 1699.45 1599.32 6298.87 1998.47 19798.81 8697.72 1798.76 7099.16 7797.05 1399.78 10198.06 6499.66 6699.69 56
APD-MVScopyleft98.35 5298.00 6499.42 1699.51 3998.72 2198.80 13598.82 8194.52 18799.23 3799.25 6195.54 5199.80 8896.52 14499.77 3499.74 37
Yuesong Wang, Zhaojie Zeng and etc.: Adaptive Patch Deformation for Textureless-Resilient Multi-View Stereo. CVPR2023
SF-MVS98.59 2198.32 4099.41 1799.54 3598.71 2299.04 6898.81 8695.12 15399.32 3399.39 3296.22 2799.84 6797.72 8599.73 5399.67 65
NCCC98.61 1898.35 3299.38 1899.28 7798.61 2698.45 19898.76 10497.82 1698.45 9198.93 11496.65 1999.83 6997.38 10999.41 11199.71 49
3Dnovator+94.38 697.43 10296.78 12099.38 1897.83 22898.52 2899.37 1398.71 11697.09 6292.99 30999.13 8289.36 19099.89 4796.97 12099.57 8599.71 49
OPU-MVS99.37 2099.24 8799.05 1499.02 7499.16 7797.81 399.37 18097.24 11299.73 5399.70 53
SteuartSystems-ACMMP98.90 998.75 1099.36 2199.22 8998.43 3399.10 5998.87 6997.38 3999.35 3299.40 3197.78 599.87 5897.77 8299.85 599.78 21
Skip Steuart: Steuart Systems R&D Blog.
ZNCC-MVS98.49 3598.20 5299.35 2299.73 1198.39 3499.19 4498.86 7595.77 11998.31 10199.10 8695.46 5299.93 2597.57 9999.81 1599.74 37
GST-MVS98.43 4398.12 5599.34 2399.72 1298.38 3599.09 6098.82 8195.71 12398.73 7399.06 9695.27 6399.93 2597.07 11799.63 7499.72 45
XVS98.70 1498.49 2199.34 2399.70 2298.35 4299.29 2398.88 6297.40 3698.46 8899.20 6795.90 4299.89 4797.85 7799.74 5099.78 21
X-MVStestdata94.06 29292.30 31599.34 2399.70 2298.35 4299.29 2398.88 6297.40 3698.46 8843.50 40895.90 4299.89 4797.85 7799.74 5099.78 21
MM98.51 3398.24 4699.33 2699.12 10298.14 5698.93 9597.02 34098.96 199.17 4199.47 2091.97 13699.94 899.85 499.69 6199.91 2
train_agg97.97 6697.52 8399.33 2699.31 6498.50 2997.92 26498.73 11192.98 26397.74 13498.68 14696.20 2999.80 8896.59 14199.57 8599.68 61
HFP-MVS98.63 1798.40 2699.32 2899.72 1298.29 4599.23 3398.96 4596.10 10798.94 5499.17 7496.06 3399.92 3197.62 9399.78 3299.75 35
MSP-MVS98.74 1398.55 1799.29 2999.75 398.23 4799.26 2898.88 6297.52 2999.41 2898.78 13496.00 3699.79 9897.79 8199.59 8199.85 10
Zhenlong Yuan, Cong Liu, Fei Shen, Zhaoxin Li, Jingguo luo, Tianlu Mao and Zhaoqi Wang: MSP-MVS: Multi-granularity Segmentation Prior Guided Multi-View Stereo. AAAI2025
region2R98.61 1898.38 2899.29 2999.74 798.16 5399.23 3398.93 5096.15 10498.94 5499.17 7495.91 4099.94 897.55 10099.79 2899.78 21
ACMMPR98.59 2198.36 3099.29 2999.74 798.15 5499.23 3398.95 4696.10 10798.93 5899.19 7295.70 4699.94 897.62 9399.79 2899.78 21
MP-MVScopyleft98.33 5598.01 6399.28 3299.75 398.18 5199.22 3798.79 9896.13 10597.92 12499.23 6294.54 8299.94 896.74 14099.78 3299.73 42
Rongxuan Tan, Qing Wang, et al.: MP-MVS: Multi-Scale Windows PatchMatch and Planar Prior Multi-View Stereo.
CDPH-MVS97.94 6997.49 8499.28 3299.47 4798.44 3197.91 26698.67 12992.57 27898.77 6998.85 12495.93 3999.72 11395.56 17799.69 6199.68 61
PGM-MVS98.49 3598.23 4899.27 3499.72 1298.08 5898.99 8199.49 595.43 13599.03 4799.32 4995.56 4999.94 896.80 13799.77 3499.78 21
mPP-MVS98.51 3398.26 4399.25 3599.75 398.04 5999.28 2598.81 8696.24 9998.35 9899.23 6295.46 5299.94 897.42 10799.81 1599.77 27
SR-MVS98.57 2798.35 3299.24 3699.53 3698.18 5199.09 6098.82 8196.58 8599.10 4699.32 4995.39 5599.82 7697.70 8999.63 7499.72 45
TSAR-MVS + MP.98.78 1198.62 1399.24 3699.69 2498.28 4699.14 5198.66 13296.84 7199.56 2099.31 5196.34 2599.70 11998.32 5399.73 5399.73 42
Zhenlong Yuan, Jiakai Cao, Zhaoqi Wang, Zhaoxin Li: TSAR-MVS: Textureless-aware Segmentation and Correlative Refinement Guided Multi-View Stereo. Pattern Recognition
DPM-MVS97.55 9596.99 11099.23 3899.04 10998.55 2797.17 33198.35 20494.85 17197.93 12398.58 15795.07 7499.71 11892.60 26799.34 11899.43 109
MVS_030498.47 3898.22 5099.21 3999.00 11497.80 6998.88 10995.32 37798.86 298.53 8699.44 2794.38 8999.94 899.86 199.70 5999.90 3
test_prior99.19 4099.31 6498.22 4898.84 7999.70 11999.65 69
CP-MVS98.57 2798.36 3099.19 4099.66 2697.86 6499.34 1798.87 6995.96 11098.60 8399.13 8296.05 3499.94 897.77 8299.86 199.77 27
test1299.18 4299.16 9898.19 5098.53 16398.07 10795.13 7299.72 11399.56 9199.63 73
PHI-MVS98.34 5398.06 5999.18 4299.15 10098.12 5799.04 6899.09 3193.32 24798.83 6699.10 8696.54 2199.83 6997.70 8999.76 4099.59 79
DeepC-MVS_fast96.70 198.55 3098.34 3599.18 4299.25 8198.04 5998.50 19498.78 10097.72 1798.92 6099.28 5495.27 6399.82 7697.55 10099.77 3499.69 56
Andreas Kuhn, Christian Sormann, Mattia Rossi, Oliver Erdler, Friedrich Fraundorfer: DeepC-MVS: Deep Confidence Prediction for Multi-View Stereo Reconstruction. 3DV 2020
新几何199.16 4599.34 5798.01 6198.69 12190.06 34398.13 10398.95 11294.60 8199.89 4791.97 28899.47 10499.59 79
APD-MVS_3200maxsize98.53 3298.33 3999.15 4699.50 4197.92 6399.15 4998.81 8696.24 9999.20 3899.37 3895.30 6199.80 8897.73 8499.67 6499.72 45
fmvsm_l_conf0.5_n99.07 499.05 299.14 4799.41 5697.54 7698.89 10499.31 1298.49 899.86 299.42 2996.45 2499.96 499.86 199.74 5099.90 3
SR-MVS-dyc-post98.54 3198.35 3299.13 4899.49 4597.86 6499.11 5698.80 9396.49 8899.17 4199.35 4495.34 5999.82 7697.72 8599.65 6999.71 49
HPM-MVScopyleft98.36 5098.10 5899.13 4899.74 797.82 6899.53 798.80 9394.63 18098.61 8298.97 10595.13 7299.77 10697.65 9199.83 1499.79 19
Chunlin Ren, Qingshan Xu, Shikun Zhang, Jiaqi Yang: Hierarchical Prior Mining for Non-local Multi-View Stereo. ICCV 2023
HPM-MVS_fast98.38 4798.13 5499.12 5099.75 397.86 6499.44 1098.82 8194.46 19098.94 5499.20 6795.16 7099.74 11197.58 9699.85 599.77 27
fmvsm_l_conf0.5_n_a99.09 199.08 199.11 5199.43 5497.48 7898.88 10999.30 1398.47 999.85 499.43 2896.71 1799.96 499.86 199.80 2299.89 5
ACMMPcopyleft98.23 5797.95 6599.09 5299.74 797.62 7399.03 7199.41 695.98 10997.60 14899.36 4294.45 8799.93 2597.14 11498.85 14099.70 53
Qingshan Xu, Weihang Kong, Wenbing Tao, Marc Pollefeys: Multi-Scale Geometric Consistency Guided and Planar Prior Assisted Multi-View Stereo. IEEE Transactions on Pattern Analysis and Machine Intelligence
3Dnovator94.51 597.46 9796.93 11299.07 5397.78 23197.64 7199.35 1699.06 3497.02 6493.75 28299.16 7789.25 19399.92 3197.22 11399.75 4599.64 71
DP-MVS Recon97.86 7297.46 8799.06 5499.53 3698.35 4298.33 21098.89 5992.62 27598.05 10898.94 11395.34 5999.65 12996.04 15999.42 11099.19 144
test_fmvsmconf_n98.92 798.87 699.04 5598.88 12997.25 9198.82 12699.34 1098.75 399.80 599.61 495.16 7099.95 799.70 699.80 2299.93 1
alignmvs97.56 9497.07 10799.01 5698.66 15298.37 4098.83 12498.06 26496.74 7898.00 11797.65 24590.80 16599.48 16698.37 5096.56 21799.19 144
test_fmvsmconf0.1_n98.58 2398.44 2498.99 5797.73 23797.15 9698.84 12298.97 4298.75 399.43 2799.54 893.29 10599.93 2599.64 999.79 2899.89 5
DELS-MVS98.40 4698.20 5298.99 5799.00 11497.66 7097.75 28598.89 5997.71 1998.33 9998.97 10594.97 7699.88 5698.42 4899.76 4099.42 111
Christian Sormann, Emanuele Santellani, Mattia Rossi, Andreas Kuhn, Friedrich Fraundorfer: DELS-MVS: Deep Epipolar Line Search for Multi-View Stereo. Winter Conference on Applications of Computer Vision (WACV), 2023
sasdasda97.67 8397.23 9898.98 5998.70 14698.38 3599.34 1798.39 19596.76 7697.67 14097.40 26692.26 12299.49 16198.28 5596.28 23199.08 164
canonicalmvs97.67 8397.23 9898.98 5998.70 14698.38 3599.34 1798.39 19596.76 7697.67 14097.40 26692.26 12299.49 16198.28 5596.28 23199.08 164
UA-Net97.96 6797.62 7598.98 5998.86 13297.47 8098.89 10499.08 3296.67 8298.72 7499.54 893.15 10799.81 8194.87 19698.83 14199.65 69
VNet97.79 7697.40 9198.96 6298.88 12997.55 7598.63 17498.93 5096.74 7899.02 4898.84 12590.33 17499.83 6998.53 3496.66 21399.50 91
QAPM96.29 15495.40 17598.96 6297.85 22797.60 7499.23 3398.93 5089.76 34893.11 30699.02 9889.11 19899.93 2591.99 28699.62 7699.34 116
MGCFI-Net97.62 8897.19 10198.92 6498.66 15298.20 4999.32 2298.38 19996.69 8197.58 14997.42 26592.10 13099.50 16098.28 5596.25 23499.08 164
114514_t96.93 12796.27 14398.92 6499.50 4197.63 7298.85 11898.90 5784.80 38397.77 13099.11 8492.84 11199.66 12894.85 19799.77 3499.47 100
CPTT-MVS97.72 7997.32 9598.92 6499.64 2897.10 9799.12 5598.81 8692.34 28698.09 10699.08 9493.01 10899.92 3196.06 15899.77 3499.75 35
CANet98.05 6397.76 7198.90 6798.73 14197.27 8698.35 20898.78 10097.37 4197.72 13798.96 11091.53 14899.92 3198.79 2699.65 6999.51 89
MVS_111021_HR98.47 3898.34 3598.88 6899.22 8997.32 8397.91 26699.58 397.20 5398.33 9999.00 10395.99 3799.64 13198.05 6699.76 4099.69 56
test_fmvsmconf0.01_n97.86 7297.54 8298.83 6995.48 35996.83 10898.95 9098.60 14298.58 698.93 5899.55 688.57 21299.91 3999.54 1199.61 7799.77 27
TSAR-MVS + GP.98.38 4798.24 4698.81 7099.22 8997.25 9198.11 24498.29 21897.19 5498.99 5299.02 9896.22 2799.67 12698.52 4098.56 15499.51 89
DeepC-MVS95.98 397.88 7197.58 7798.77 7199.25 8196.93 10398.83 12498.75 10696.96 6796.89 17399.50 1590.46 17199.87 5897.84 7999.76 4099.52 86
Andreas Kuhn, Christian Sormann, Mattia Rossi, Oliver Erdler, Friedrich Fraundorfer: DeepC-MVS: Deep Confidence Prediction for Multi-View Stereo Reconstruction. 3DV 2020
CNLPA97.45 10097.03 10898.73 7299.05 10897.44 8298.07 24998.53 16395.32 14396.80 17898.53 16193.32 10399.72 11394.31 21899.31 12099.02 171
WTY-MVS97.37 10896.92 11398.72 7398.86 13296.89 10798.31 21598.71 11695.26 14697.67 14098.56 16092.21 12699.78 10195.89 16396.85 20899.48 98
EI-MVSNet-Vis-set98.47 3898.39 2798.69 7499.46 4996.49 12798.30 21798.69 12197.21 5298.84 6399.36 4295.41 5499.78 10198.62 2999.65 6999.80 18
LS3D97.16 11796.66 12998.68 7598.53 16597.19 9498.93 9598.90 5792.83 27095.99 20899.37 3892.12 12999.87 5893.67 23999.57 8598.97 176
MVS_111021_LR98.34 5398.23 4898.67 7699.27 7896.90 10597.95 26199.58 397.14 5898.44 9399.01 10295.03 7599.62 13797.91 7399.75 4599.50 91
原ACMM198.65 7799.32 6296.62 11698.67 12993.27 25197.81 12998.97 10595.18 6999.83 6993.84 23399.46 10799.50 91
PAPR96.84 13296.24 14598.65 7798.72 14596.92 10497.36 31498.57 15293.33 24696.67 18197.57 25394.30 9199.56 14691.05 30798.59 15299.47 100
MVSMamba_pp98.02 6597.82 6898.61 7998.25 18997.32 8398.73 15098.56 15696.18 10398.84 6398.72 14392.90 11099.45 17298.37 5099.85 599.07 168
EI-MVSNet-UG-set98.41 4598.34 3598.61 7999.45 5296.32 13998.28 22098.68 12497.17 5598.74 7199.37 3895.25 6599.79 9898.57 3199.54 9499.73 42
sss97.39 10596.98 11198.61 7998.60 15996.61 11898.22 22598.93 5093.97 20798.01 11698.48 16691.98 13499.85 6396.45 14698.15 17299.39 112
iter_conf0598.16 6098.02 6298.59 8298.96 12297.07 9898.90 9998.57 15294.81 17297.84 12798.90 11895.22 6899.59 14099.15 1799.84 1299.12 156
HY-MVS93.96 896.82 13396.23 14698.57 8398.46 16997.00 10098.14 23998.21 22793.95 20896.72 18097.99 21391.58 14399.76 10794.51 21196.54 21898.95 179
DP-MVS96.59 14095.93 15698.57 8399.34 5796.19 14598.70 16098.39 19589.45 35494.52 24099.35 4491.85 13799.85 6392.89 26398.88 13799.68 61
MSLP-MVS++98.56 2998.57 1598.55 8599.26 8096.80 10998.71 15699.05 3697.28 4598.84 6399.28 5496.47 2399.40 17698.52 4099.70 5999.47 100
ab-mvs96.42 14895.71 16698.55 8598.63 15696.75 11297.88 27398.74 10893.84 21496.54 19198.18 19985.34 27899.75 10995.93 16296.35 22399.15 152
test_yl97.22 11296.78 12098.54 8798.73 14196.60 11998.45 19898.31 21094.70 17498.02 11398.42 17190.80 16599.70 11996.81 13596.79 21099.34 116
DCV-MVSNet97.22 11296.78 12098.54 8798.73 14196.60 11998.45 19898.31 21094.70 17498.02 11398.42 17190.80 16599.70 11996.81 13596.79 21099.34 116
SD-MVS98.64 1698.68 1198.53 8999.33 5998.36 4198.90 9998.85 7897.28 4599.72 1299.39 3296.63 2097.60 35398.17 5999.85 599.64 71
Zhenlong Yuan, Jiakai Cao, Zhaoxin Li, Hao Jiang and Zhaoqi Wang: SD-MVS: Segmentation-driven Deformation Multi-View Stereo with Spherical Refinement and EM optimization. AAAI2024
EPNet97.28 11096.87 11598.51 9094.98 36896.14 14798.90 9997.02 34098.28 1095.99 20899.11 8491.36 15099.89 4796.98 11999.19 12499.50 91
Wanjuan Su, Wenbing Tao: Efficient Edge-Preserving Multi-View Stereo Network for Depth Estimation. AAAI 2023
1112_ss96.63 13896.00 15398.50 9198.56 16196.37 13698.18 23698.10 25292.92 26694.84 23198.43 16992.14 12899.58 14294.35 21596.51 21999.56 85
PAPM_NR97.46 9797.11 10498.50 9199.50 4196.41 13398.63 17498.60 14295.18 15097.06 16498.06 20694.26 9399.57 14393.80 23598.87 13999.52 86
EC-MVSNet98.21 5898.11 5698.49 9398.34 18197.26 9099.61 598.43 18996.78 7498.87 6298.84 12593.72 10099.01 22698.91 2299.50 9999.19 144
AdaColmapbinary97.15 11896.70 12598.48 9499.16 9896.69 11598.01 25598.89 5994.44 19196.83 17498.68 14690.69 16899.76 10794.36 21499.29 12198.98 175
LFMVS95.86 17494.98 20198.47 9598.87 13196.32 13998.84 12296.02 36793.40 24498.62 8199.20 6774.99 37199.63 13497.72 8597.20 19999.46 104
CS-MVS-test98.49 3598.50 2098.46 9699.20 9297.05 9999.64 498.50 17497.45 3598.88 6199.14 8195.25 6599.15 20298.83 2599.56 9199.20 140
test_fmvsm_n_192098.87 1099.01 398.45 9799.42 5596.43 13098.96 8999.36 998.63 599.86 299.51 1395.91 4099.97 199.72 599.75 4598.94 180
MAR-MVS96.91 12896.40 13898.45 9798.69 14996.90 10598.66 16898.68 12492.40 28597.07 16397.96 21691.54 14799.75 10993.68 23798.92 13498.69 200
Zhenyu Xu, Yiguang Liu, Xuelei Shi, Ying Wang, Yunan Zheng: MARMVS: Matching Ambiguity Reduced Multiple View Stereo for Efficient Large Scale Scene Reconstruction. CVPR 2020
casdiffmvs_mvgpermissive97.72 7997.48 8698.44 9998.42 17096.59 12198.92 9798.44 18596.20 10197.76 13199.20 6791.66 14299.23 19298.27 5898.41 16399.49 96
Fangjinhua Wang, Qingshan Xu, Yew-Soon Ong, Marc Pollefeys: Lightweight and Accurate Multi-View Stereo With Confidence-Aware Diffusion Model. IEEE T-PAMI 2025
PVSNet_Blended_VisFu97.70 8197.46 8798.44 9999.27 7895.91 16398.63 17499.16 2794.48 18997.67 14098.88 12192.80 11299.91 3997.11 11599.12 12699.50 91
MG-MVS97.81 7597.60 7698.44 9999.12 10295.97 15597.75 28598.78 10096.89 7098.46 8899.22 6493.90 9999.68 12594.81 20099.52 9799.67 65
PLCcopyleft95.07 497.20 11596.78 12098.44 9999.29 7396.31 14198.14 23998.76 10492.41 28496.39 19898.31 18694.92 7899.78 10194.06 22798.77 14499.23 136
Jie Liao, Yanping Fu, Qingan Yan, Chunxia xiao: Pyramid Multi-View Stereo with Local Consistency. Pacific Graphics 2019
PCF-MVS93.45 1194.68 24293.43 29298.42 10398.62 15796.77 11195.48 38098.20 22984.63 38493.34 29798.32 18588.55 21599.81 8184.80 37198.96 13398.68 201
Andreas Kuhn, Shan Lin, Oliver Erdler: Plane Completion and Filtering for Multi-View Stereo Reconstruction. GCPR 2019
ETV-MVS97.96 6797.81 6998.40 10498.42 17097.27 8698.73 15098.55 15996.84 7198.38 9597.44 26295.39 5599.35 18197.62 9398.89 13698.58 213
Effi-MVS+97.12 12096.69 12698.39 10598.19 19896.72 11497.37 31298.43 18993.71 22597.65 14498.02 20992.20 12799.25 18996.87 13297.79 18499.19 144
Test_1112_low_res96.34 15395.66 17198.36 10698.56 16195.94 15897.71 28898.07 25992.10 29594.79 23597.29 27291.75 13999.56 14694.17 22296.50 22099.58 83
iter_conf05_1198.04 6497.94 6698.34 10798.60 15996.38 13499.24 3198.57 15295.90 11398.99 5298.79 13392.97 10999.47 16998.58 3099.85 599.17 150
Vis-MVSNetpermissive97.42 10397.11 10498.34 10798.66 15296.23 14299.22 3799.00 3996.63 8498.04 11099.21 6588.05 22899.35 18196.01 16199.21 12299.45 106
Jingyang Zhang, Yao Yao, Shiwei Li, Zixin Luo, Tian Fang: Visibility-aware Multiview Stereo Network. BMVC 2020
OpenMVScopyleft93.04 1395.83 17695.00 19998.32 10997.18 28397.32 8399.21 4098.97 4289.96 34491.14 34299.05 9786.64 25499.92 3193.38 24599.47 10497.73 244
CS-MVS98.44 4198.49 2198.31 11099.08 10796.73 11399.67 398.47 18097.17 5598.94 5499.10 8695.73 4599.13 20598.71 2799.49 10199.09 160
casdiffmvspermissive97.63 8797.41 9098.28 11198.33 18396.14 14798.82 12698.32 20896.38 9697.95 11999.21 6591.23 15699.23 19298.12 6198.37 16499.48 98
Fangjinhua Wang, Qingshan Xu, Yew-Soon Ong, Marc Pollefeys: Lightweight and Accurate Multi-View Stereo With Confidence-Aware Diffusion Model. IEEE T-PAMI 2025
fmvsm_s_conf0.5_n_a98.38 4798.42 2598.27 11299.09 10695.41 18198.86 11699.37 897.69 2199.78 699.61 492.38 11899.91 3999.58 1099.43 10999.49 96
EIA-MVS97.75 7797.58 7798.27 11298.38 17396.44 12999.01 7698.60 14295.88 11597.26 15597.53 25694.97 7699.33 18397.38 10999.20 12399.05 169
PatchMatch-RL96.59 14096.03 15298.27 11299.31 6496.51 12697.91 26699.06 3493.72 22496.92 17198.06 20688.50 21799.65 12991.77 29299.00 13298.66 205
testdata98.26 11599.20 9295.36 18498.68 12491.89 30098.60 8399.10 8694.44 8899.82 7694.27 21999.44 10899.58 83
baseline97.64 8697.44 8998.25 11698.35 17696.20 14399.00 7898.32 20896.33 9898.03 11199.17 7491.35 15199.16 19998.10 6298.29 17099.39 112
IS-MVSNet97.22 11296.88 11498.25 11698.85 13496.36 13799.19 4497.97 27095.39 13797.23 15698.99 10491.11 15998.93 23894.60 20798.59 15299.47 100
test_fmvsmvis_n_192098.44 4198.51 1898.23 11898.33 18396.15 14698.97 8499.15 2898.55 798.45 9199.55 694.26 9399.97 199.65 799.66 6698.57 214
fmvsm_s_conf0.1_n_a98.08 6198.04 6198.21 11997.66 24395.39 18298.89 10499.17 2697.24 5099.76 899.67 191.13 15799.88 5699.39 1399.41 11199.35 115
CANet_DTU96.96 12696.55 13298.21 11998.17 20396.07 14997.98 25998.21 22797.24 5097.13 15998.93 11486.88 25199.91 3995.00 19499.37 11798.66 205
CSCG97.85 7497.74 7298.20 12199.67 2595.16 19599.22 3799.32 1193.04 26197.02 16698.92 11695.36 5899.91 3997.43 10699.64 7399.52 86
OMC-MVS97.55 9597.34 9498.20 12199.33 5995.92 16298.28 22098.59 14595.52 13197.97 11899.10 8693.28 10699.49 16195.09 19198.88 13799.19 144
UGNet96.78 13496.30 14298.19 12398.24 19095.89 16598.88 10998.93 5097.39 3896.81 17797.84 22782.60 31999.90 4596.53 14399.49 10198.79 190
Wanjuan Su, Qingshan Xu, Wenbing Tao: Uncertainty-guided Multi-view Stereo Network for Depth Estimation. IEEE Transactions on Circuits and Systems for Video Technology, 2022
SDMVSNet96.85 13196.42 13698.14 12499.30 6896.38 13499.21 4099.23 2095.92 11195.96 21098.76 14085.88 26899.44 17497.93 7195.59 24698.60 209
PVSNet_Blended97.38 10697.12 10398.14 12499.25 8195.35 18697.28 32199.26 1593.13 25797.94 12198.21 19692.74 11399.81 8196.88 12999.40 11499.27 129
HyFIR lowres test96.90 12996.49 13598.14 12499.33 5995.56 17497.38 31099.65 292.34 28697.61 14798.20 19789.29 19299.10 21396.97 12097.60 19299.77 27
fmvsm_s_conf0.5_n98.42 4498.51 1898.13 12799.30 6895.25 19198.85 11899.39 797.94 1499.74 999.62 392.59 11599.91 3999.65 799.52 9799.25 134
MVS_Test97.28 11097.00 10998.13 12798.33 18395.97 15598.74 14698.07 25994.27 19598.44 9398.07 20592.48 11699.26 18896.43 14798.19 17199.16 151
diffmvspermissive97.58 9297.40 9198.13 12798.32 18695.81 16898.06 25098.37 20196.20 10198.74 7198.89 12091.31 15499.25 18998.16 6098.52 15599.34 116
Fangjinhua Wang, Qingshan Xu, Yew-Soon Ong, Marc Pollefeys: Lightweight and Accurate Multi-View Stereo With Confidence-Aware Diffusion Model. IEEE T-PAMI 2025
lupinMVS97.44 10197.22 10098.12 13098.07 20895.76 16997.68 29097.76 28294.50 18898.79 6798.61 15292.34 11999.30 18597.58 9699.59 8199.31 122
fmvsm_s_conf0.1_n98.18 5998.21 5198.11 13198.54 16495.24 19298.87 11399.24 1797.50 3199.70 1399.67 191.33 15299.89 4799.47 1299.54 9499.21 139
GeoE96.58 14296.07 14998.10 13298.35 17695.89 16599.34 1798.12 24693.12 25896.09 20498.87 12289.71 18398.97 22892.95 25998.08 17599.43 109
bld_raw_dy_0_6497.09 12296.76 12498.08 13398.89 12796.54 12598.17 23798.52 16688.80 36295.67 21598.83 12793.32 10399.48 16698.86 2399.75 4598.21 231
MVS94.67 24593.54 28798.08 13396.88 30196.56 12398.19 23198.50 17478.05 39492.69 31798.02 20991.07 16199.63 13490.09 31898.36 16698.04 235
CHOSEN 1792x268897.12 12096.80 11798.08 13399.30 6894.56 22998.05 25199.71 193.57 23797.09 16098.91 11788.17 22299.89 4796.87 13299.56 9199.81 17
jason97.32 10997.08 10698.06 13697.45 26295.59 17297.87 27497.91 27694.79 17398.55 8598.83 12791.12 15899.23 19297.58 9699.60 7999.34 116
jason: jason.
Fast-Effi-MVS+96.28 15695.70 16898.03 13798.29 18895.97 15598.58 18098.25 22491.74 30395.29 22397.23 27791.03 16299.15 20292.90 26197.96 17898.97 176
baseline195.84 17595.12 19498.01 13898.49 16895.98 15098.73 15097.03 33895.37 14096.22 20198.19 19889.96 17999.16 19994.60 20787.48 35398.90 183
EPP-MVSNet97.46 9797.28 9697.99 13998.64 15595.38 18399.33 2198.31 21093.61 23697.19 15799.07 9594.05 9699.23 19296.89 12798.43 16299.37 114
thisisatest053096.01 16495.36 18097.97 14098.38 17395.52 17798.88 10994.19 39094.04 20197.64 14598.31 18683.82 31499.46 17195.29 18697.70 18998.93 181
F-COLMAP97.09 12296.80 11797.97 14099.45 5294.95 20898.55 18798.62 14193.02 26296.17 20398.58 15794.01 9799.81 8193.95 22998.90 13599.14 154
nrg03096.28 15695.72 16397.96 14296.90 30098.15 5499.39 1198.31 21095.47 13394.42 24898.35 17992.09 13198.69 26497.50 10489.05 33797.04 264
API-MVS97.41 10497.25 9797.91 14398.70 14696.80 10998.82 12698.69 12194.53 18598.11 10498.28 18894.50 8699.57 14394.12 22499.49 10197.37 257
CDS-MVSNet96.99 12596.69 12697.90 14498.05 21295.98 15098.20 22898.33 20793.67 23296.95 16798.49 16593.54 10198.42 29195.24 18997.74 18799.31 122
Khang Truong Giang, Soohwan Song, Sungho Jo: Curvature-guided dynamic scale networks for Multi-view Stereo. ICLR 2022
VDDNet95.36 20394.53 22097.86 14598.10 20795.13 19898.85 11897.75 28390.46 33598.36 9699.39 3273.27 37999.64 13197.98 6796.58 21698.81 189
MVSFormer97.57 9397.49 8497.84 14698.07 20895.76 16999.47 898.40 19394.98 16298.79 6798.83 12792.34 11998.41 29896.91 12399.59 8199.34 116
Vis-MVSNet (Re-imp)96.87 13096.55 13297.83 14798.73 14195.46 17999.20 4298.30 21694.96 16496.60 18698.87 12290.05 17798.59 27493.67 23998.60 15199.46 104
MSDG95.93 17095.30 18697.83 14798.90 12695.36 18496.83 35698.37 20191.32 31894.43 24798.73 14290.27 17599.60 13990.05 32198.82 14298.52 215
FA-MVS(test-final)96.41 15195.94 15597.82 14998.21 19495.20 19497.80 28197.58 29293.21 25297.36 15397.70 23989.47 18799.56 14694.12 22497.99 17698.71 199
h-mvs3396.17 15995.62 17297.81 15099.03 11094.45 23198.64 17198.75 10697.48 3298.67 7598.72 14389.76 18199.86 6297.95 6981.59 38199.11 158
131496.25 15895.73 16297.79 15197.13 28695.55 17698.19 23198.59 14593.47 24192.03 33497.82 23191.33 15299.49 16194.62 20698.44 16098.32 226
FE-MVS95.62 18794.90 20597.78 15298.37 17594.92 20997.17 33197.38 31890.95 32997.73 13697.70 23985.32 28099.63 13491.18 30098.33 16798.79 190
tttt051796.07 16295.51 17497.78 15298.41 17294.84 21299.28 2594.33 38894.26 19697.64 14598.64 15084.05 30799.47 16995.34 18297.60 19299.03 170
PAPM94.95 23094.00 25497.78 15297.04 29095.65 17196.03 37298.25 22491.23 32394.19 26197.80 23391.27 15598.86 25082.61 37997.61 19198.84 187
thisisatest051595.61 19094.89 20697.76 15598.15 20495.15 19796.77 35794.41 38692.95 26597.18 15897.43 26384.78 28999.45 17294.63 20497.73 18898.68 201
Anonymous2024052995.10 21894.22 23797.75 15699.01 11394.26 24198.87 11398.83 8085.79 37996.64 18298.97 10578.73 34399.85 6396.27 15094.89 25199.12 156
TAPA-MVS93.98 795.35 20494.56 21997.74 15799.13 10194.83 21498.33 21098.64 13786.62 37196.29 20098.61 15294.00 9899.29 18680.00 38599.41 11199.09 160
Andrea Romanoni, Matteo Matteucci: TAPA-MVS: Textureless-Aware PAtchMatch Multi-View Stereo. ICCV 2019
xiu_mvs_v1_base_debu97.60 8997.56 7997.72 15898.35 17695.98 15097.86 27598.51 16997.13 5999.01 4998.40 17391.56 14499.80 8898.53 3498.68 14597.37 257
xiu_mvs_v1_base97.60 8997.56 7997.72 15898.35 17695.98 15097.86 27598.51 16997.13 5999.01 4998.40 17391.56 14499.80 8898.53 3498.68 14597.37 257
xiu_mvs_v1_base_debi97.60 8997.56 7997.72 15898.35 17695.98 15097.86 27598.51 16997.13 5999.01 4998.40 17391.56 14499.80 8898.53 3498.68 14597.37 257
TAMVS97.02 12496.79 11997.70 16198.06 21195.31 18998.52 18998.31 21093.95 20897.05 16598.61 15293.49 10298.52 28095.33 18397.81 18399.29 127
VPA-MVSNet95.75 17995.11 19597.69 16297.24 27597.27 8698.94 9399.23 2095.13 15295.51 21797.32 27085.73 27098.91 24197.33 11189.55 32996.89 280
BH-RMVSNet95.92 17195.32 18497.69 16298.32 18694.64 22198.19 23197.45 31294.56 18396.03 20698.61 15285.02 28399.12 20790.68 31299.06 12799.30 125
ETVMVS94.50 25893.44 29197.68 16498.18 20095.35 18698.19 23197.11 33093.73 22296.40 19795.39 36374.53 37398.84 25191.10 30296.31 22698.84 187
Anonymous20240521195.28 20894.49 22297.67 16599.00 11493.75 25698.70 16097.04 33790.66 33196.49 19398.80 13178.13 35099.83 6996.21 15495.36 25099.44 107
FIs96.51 14596.12 14897.67 16597.13 28697.54 7699.36 1499.22 2395.89 11494.03 26998.35 17991.98 13498.44 28996.40 14892.76 29197.01 265
thres600view795.49 19194.77 20997.67 16598.98 11995.02 20198.85 11896.90 34795.38 13896.63 18396.90 31284.29 29999.59 14088.65 34396.33 22498.40 220
mvsany_test197.69 8297.70 7397.66 16898.24 19094.18 24497.53 30197.53 30295.52 13199.66 1599.51 1394.30 9199.56 14698.38 4998.62 15099.23 136
thres40095.38 20094.62 21697.65 16998.94 12494.98 20598.68 16396.93 34595.33 14196.55 18996.53 33084.23 30399.56 14688.11 34696.29 22898.40 220
PS-MVSNAJ97.73 7897.77 7097.62 17098.68 15095.58 17397.34 31698.51 16997.29 4498.66 7997.88 22394.51 8399.90 4597.87 7699.17 12597.39 255
VDD-MVS95.82 17795.23 18897.61 17198.84 13593.98 24898.68 16397.40 31695.02 16097.95 11999.34 4874.37 37699.78 10198.64 2896.80 20999.08 164
ET-MVSNet_ETH3D94.13 28492.98 30197.58 17298.22 19396.20 14397.31 31995.37 37694.53 18579.56 39497.63 24986.51 25597.53 35796.91 12390.74 31399.02 171
UniMVSNet (Re)95.78 17895.19 19097.58 17296.99 29397.47 8098.79 14099.18 2595.60 12793.92 27397.04 29791.68 14098.48 28295.80 16887.66 35296.79 289
xiu_mvs_v2_base97.66 8597.70 7397.56 17498.61 15895.46 17997.44 30598.46 18197.15 5798.65 8098.15 20094.33 9099.80 8897.84 7998.66 14997.41 253
FC-MVSNet-test96.42 14896.05 15097.53 17596.95 29597.27 8699.36 1499.23 2095.83 11793.93 27298.37 17792.00 13398.32 30796.02 16092.72 29297.00 266
XXY-MVS95.20 21394.45 22797.46 17696.75 30996.56 12398.86 11698.65 13693.30 24993.27 29998.27 19184.85 28798.87 24894.82 19991.26 30896.96 269
test_cas_vis1_n_192097.38 10697.36 9397.45 17798.95 12393.25 27999.00 7898.53 16397.70 2099.77 799.35 4484.71 29299.85 6398.57 3199.66 6699.26 132
NR-MVSNet94.98 22794.16 24297.44 17896.53 32097.22 9398.74 14698.95 4694.96 16489.25 35997.69 24189.32 19198.18 31994.59 20987.40 35596.92 272
tfpn200view995.32 20794.62 21697.43 17998.94 12494.98 20598.68 16396.93 34595.33 14196.55 18996.53 33084.23 30399.56 14688.11 34696.29 22897.76 241
sd_testset96.17 15995.76 16197.42 18099.30 6894.34 23898.82 12699.08 3295.92 11195.96 21098.76 14082.83 31899.32 18495.56 17795.59 24698.60 209
thres100view90095.38 20094.70 21397.41 18198.98 11994.92 20998.87 11396.90 34795.38 13896.61 18596.88 31384.29 29999.56 14688.11 34696.29 22897.76 241
PMMVS96.60 13996.33 14097.41 18197.90 22593.93 24997.35 31598.41 19192.84 26997.76 13197.45 26191.10 16099.20 19696.26 15197.91 17999.11 158
VPNet94.99 22594.19 23997.40 18397.16 28496.57 12298.71 15698.97 4295.67 12594.84 23198.24 19580.36 33498.67 26896.46 14587.32 35796.96 269
UniMVSNet_NR-MVSNet95.71 18195.15 19197.40 18396.84 30396.97 10198.74 14699.24 1795.16 15193.88 27597.72 23891.68 14098.31 30995.81 16687.25 35896.92 272
DU-MVS95.42 19794.76 21097.40 18396.53 32096.97 10198.66 16898.99 4195.43 13593.88 27597.69 24188.57 21298.31 30995.81 16687.25 35896.92 272
testing22294.12 28693.03 30097.37 18698.02 21394.66 21997.94 26396.65 36094.63 18095.78 21395.76 35371.49 38198.92 23991.17 30195.88 24398.52 215
mvsmamba96.57 14396.32 14197.32 18796.60 31696.43 13099.54 697.98 26996.49 8895.20 22498.64 15090.82 16398.55 27697.97 6893.65 27496.98 267
thres20095.25 20994.57 21897.28 18898.81 13794.92 20998.20 22897.11 33095.24 14996.54 19196.22 34184.58 29699.53 15587.93 35096.50 22097.39 255
RPMNet92.81 31591.34 32497.24 18997.00 29193.43 26894.96 38298.80 9382.27 38996.93 16992.12 39386.98 24999.82 7676.32 39496.65 21498.46 218
WR-MVS95.15 21594.46 22597.22 19096.67 31496.45 12898.21 22698.81 8694.15 19793.16 30297.69 24187.51 23998.30 31195.29 18688.62 34396.90 279
testing9194.98 22794.25 23697.20 19197.94 22193.41 27098.00 25797.58 29294.99 16195.45 21896.04 34777.20 35999.42 17594.97 19596.02 24198.78 193
CHOSEN 280x42097.18 11697.18 10297.20 19198.81 13793.27 27795.78 37699.15 2895.25 14796.79 17998.11 20392.29 12199.07 21698.56 3399.85 599.25 134
IB-MVS91.98 1793.27 30691.97 31997.19 19397.47 25893.41 27097.09 33695.99 36893.32 24792.47 32595.73 35678.06 35199.53 15594.59 20982.98 37698.62 208
Christian Sormann, Mattia Rossi, Andreas Kuhn and Friedrich Fraundorfer: IB-MVS: An Iterative Algorithm for Deep Multi-View Stereo based on Binary Decisions. BMVC 2021
mvs_anonymous96.70 13796.53 13497.18 19498.19 19893.78 25398.31 21598.19 23194.01 20494.47 24298.27 19192.08 13298.46 28697.39 10897.91 17999.31 122
TR-MVS94.94 23294.20 23897.17 19597.75 23394.14 24597.59 29897.02 34092.28 29095.75 21497.64 24783.88 31198.96 23289.77 32596.15 23898.40 220
testing1195.00 22394.28 23497.16 19697.96 22093.36 27598.09 24797.06 33694.94 16795.33 22296.15 34376.89 36299.40 17695.77 17096.30 22798.72 196
GA-MVS94.81 23694.03 25097.14 19797.15 28593.86 25196.76 35897.58 29294.00 20594.76 23697.04 29780.91 32998.48 28291.79 29196.25 23499.09 160
gg-mvs-nofinetune92.21 32290.58 33097.13 19896.75 30995.09 19995.85 37489.40 40685.43 38194.50 24181.98 40180.80 33298.40 30492.16 27998.33 16797.88 238
PVSNet_BlendedMVS96.73 13596.60 13097.12 19999.25 8195.35 18698.26 22399.26 1594.28 19497.94 12197.46 25992.74 11399.81 8196.88 12993.32 28396.20 346
TranMVSNet+NR-MVSNet95.14 21694.48 22397.11 20096.45 32596.36 13799.03 7199.03 3795.04 15993.58 28597.93 21888.27 22098.03 33194.13 22386.90 36396.95 271
FMVSNet394.97 22994.26 23597.11 20098.18 20096.62 11698.56 18698.26 22393.67 23294.09 26597.10 28384.25 30198.01 33292.08 28192.14 29596.70 301
MVSTER96.06 16395.72 16397.08 20298.23 19295.93 16198.73 15098.27 21994.86 16995.07 22698.09 20488.21 22198.54 27896.59 14193.46 27896.79 289
testing9994.83 23594.08 24797.07 20397.94 22193.13 28398.10 24697.17 32894.86 16995.34 21996.00 35076.31 36599.40 17695.08 19295.90 24298.68 201
FMVSNet294.47 26293.61 28397.04 20498.21 19496.43 13098.79 14098.27 21992.46 27993.50 29197.09 28781.16 32698.00 33491.09 30391.93 29896.70 301
XVG-OURS-SEG-HR96.51 14596.34 13997.02 20598.77 13993.76 25497.79 28398.50 17495.45 13496.94 16899.09 9287.87 23399.55 15396.76 13995.83 24597.74 243
AllTest95.24 21094.65 21596.99 20699.25 8193.21 28198.59 17898.18 23491.36 31493.52 28898.77 13684.67 29399.72 11389.70 32897.87 18198.02 236
TestCases96.99 20699.25 8193.21 28198.18 23491.36 31493.52 28898.77 13684.67 29399.72 11389.70 32897.87 18198.02 236
XVG-OURS96.55 14496.41 13796.99 20698.75 14093.76 25497.50 30498.52 16695.67 12596.83 17499.30 5288.95 20699.53 15595.88 16496.26 23397.69 246
UniMVSNet_ETH3D94.24 27693.33 29496.97 20997.19 28293.38 27398.74 14698.57 15291.21 32593.81 27998.58 15772.85 38098.77 26095.05 19393.93 26898.77 195
PVSNet91.96 1896.35 15296.15 14796.96 21099.17 9492.05 29996.08 36998.68 12493.69 22897.75 13397.80 23388.86 20799.69 12494.26 22099.01 13199.15 152
anonymousdsp95.42 19794.91 20496.94 21195.10 36795.90 16499.14 5198.41 19193.75 21993.16 30297.46 25987.50 24198.41 29895.63 17694.03 26496.50 331
hse-mvs295.71 18195.30 18696.93 21298.50 16693.53 26598.36 20798.10 25297.48 3298.67 7597.99 21389.76 18199.02 22497.95 6980.91 38698.22 229
test_djsdf96.00 16595.69 16996.93 21295.72 35195.49 17899.47 898.40 19394.98 16294.58 23897.86 22489.16 19698.41 29896.91 12394.12 26296.88 281
cascas94.63 24793.86 26696.93 21296.91 29994.27 24096.00 37398.51 16985.55 38094.54 23996.23 33984.20 30598.87 24895.80 16896.98 20697.66 247
AUN-MVS94.53 25593.73 27796.92 21598.50 16693.52 26698.34 20998.10 25293.83 21695.94 21297.98 21585.59 27399.03 22194.35 21580.94 38598.22 229
PS-MVSNAJss96.43 14796.26 14496.92 21595.84 34995.08 20099.16 4898.50 17495.87 11693.84 27898.34 18394.51 8398.61 27196.88 12993.45 28097.06 263
baseline295.11 21794.52 22196.87 21796.65 31593.56 26298.27 22294.10 39293.45 24292.02 33597.43 26387.45 24399.19 19793.88 23297.41 19797.87 239
HQP_MVS96.14 16195.90 15796.85 21897.42 26494.60 22798.80 13598.56 15697.28 4595.34 21998.28 18887.09 24699.03 22196.07 15594.27 25496.92 272
CP-MVSNet94.94 23294.30 23396.83 21996.72 31195.56 17499.11 5698.95 4693.89 21192.42 32797.90 22087.19 24598.12 32494.32 21788.21 34696.82 288
patch_mono-298.36 5098.87 696.82 22099.53 3690.68 32598.64 17199.29 1497.88 1599.19 4099.52 1196.80 1599.97 199.11 1899.86 199.82 16
pmmvs494.69 24093.99 25696.81 22195.74 35095.94 15897.40 30897.67 28690.42 33793.37 29697.59 25189.08 19998.20 31892.97 25891.67 30296.30 343
WR-MVS_H95.05 22194.46 22596.81 22196.86 30295.82 16799.24 3199.24 1793.87 21392.53 32296.84 31790.37 17298.24 31793.24 24987.93 34996.38 339
OPM-MVS95.69 18495.33 18396.76 22396.16 33794.63 22298.43 20398.39 19596.64 8395.02 22898.78 13485.15 28299.05 21795.21 19094.20 25796.60 312
Ray L. Khuboni, Hongjun Xu: Octagram Propagation Matching for Multi-Scale View Stereopsis (OPM-MVS).
jajsoiax95.45 19595.03 19896.73 22495.42 36394.63 22299.14 5198.52 16695.74 12093.22 30098.36 17883.87 31298.65 26996.95 12294.04 26396.91 277
PS-CasMVS94.67 24593.99 25696.71 22596.68 31395.26 19099.13 5499.03 3793.68 23092.33 32897.95 21785.35 27798.10 32593.59 24188.16 34896.79 289
COLMAP_ROBcopyleft93.27 1295.33 20694.87 20796.71 22599.29 7393.24 28098.58 18098.11 24989.92 34593.57 28699.10 8686.37 26099.79 9890.78 31098.10 17497.09 262
Johannes L. Schönberger, Enliang Zheng, Marc Pollefeys, Jan-Michael Frahm: Pixelwise View Selection for Unstructured Multi-View Stereo. ECCV 2016
V4294.78 23894.14 24496.70 22796.33 33095.22 19398.97 8498.09 25692.32 28894.31 25497.06 29488.39 21898.55 27692.90 26188.87 34196.34 340
HQP-MVS95.72 18095.40 17596.69 22897.20 27994.25 24298.05 25198.46 18196.43 9194.45 24397.73 23686.75 25298.96 23295.30 18494.18 25896.86 285
LTVRE_ROB92.95 1594.60 24893.90 26296.68 22997.41 26794.42 23398.52 18998.59 14591.69 30691.21 34198.35 17984.87 28699.04 22091.06 30593.44 28196.60 312
Andreas Kuhn, Heiko Hirschmüller, Daniel Scharstein, Helmut Mayer: A TV Prior for High-Quality Scalable Multi-View Stereo Reconstruction. International Journal of Computer Vision 2016
ECVR-MVScopyleft95.95 16795.71 16696.65 23099.02 11190.86 32099.03 7191.80 40096.96 6798.10 10599.26 5781.31 32599.51 15996.90 12699.04 12899.59 79
mvs_tets95.41 19995.00 19996.65 23095.58 35594.42 23399.00 7898.55 15995.73 12293.21 30198.38 17683.45 31698.63 27097.09 11694.00 26596.91 277
v2v48294.69 24094.03 25096.65 23096.17 33594.79 21798.67 16698.08 25792.72 27294.00 27097.16 28187.69 23898.45 28792.91 26088.87 34196.72 297
BH-untuned95.95 16795.72 16396.65 23098.55 16392.26 29498.23 22497.79 28193.73 22294.62 23798.01 21188.97 20599.00 22793.04 25698.51 15698.68 201
tt080594.54 25393.85 26796.63 23497.98 21893.06 28798.77 14297.84 27993.67 23293.80 28098.04 20876.88 36398.96 23294.79 20192.86 28997.86 240
Patchmatch-test94.42 26593.68 28196.63 23497.60 24791.76 30394.83 38697.49 30789.45 35494.14 26397.10 28388.99 20198.83 25485.37 36698.13 17399.29 127
ADS-MVSNet95.00 22394.45 22796.63 23498.00 21491.91 30196.04 37097.74 28490.15 34196.47 19496.64 32787.89 23198.96 23290.08 31997.06 20199.02 171
Anonymous2023121194.10 28893.26 29796.61 23799.11 10494.28 23999.01 7698.88 6286.43 37392.81 31297.57 25381.66 32398.68 26794.83 19889.02 33996.88 281
ACMM93.85 995.69 18495.38 17996.61 23797.61 24693.84 25298.91 9898.44 18595.25 14794.28 25598.47 16786.04 26799.12 20795.50 18093.95 26796.87 283
Qingshan Xu and Wenbing Tao: Multi-Scale Geometric Consistency Guided Multi-View Stereo. CVPR 2019
v114494.59 25093.92 25996.60 23996.21 33294.78 21898.59 17898.14 24491.86 30294.21 26097.02 30087.97 22998.41 29891.72 29389.57 32796.61 311
GG-mvs-BLEND96.59 24096.34 32994.98 20596.51 36688.58 40793.10 30794.34 37880.34 33698.05 33089.53 33196.99 20396.74 294
pm-mvs193.94 29593.06 29996.59 24096.49 32395.16 19598.95 9098.03 26692.32 28891.08 34397.84 22784.54 29798.41 29892.16 27986.13 36996.19 347
CR-MVSNet94.76 23994.15 24396.59 24097.00 29193.43 26894.96 38297.56 29592.46 27996.93 16996.24 33788.15 22397.88 34587.38 35296.65 21498.46 218
v894.47 26293.77 27396.57 24396.36 32894.83 21499.05 6598.19 23191.92 29993.16 30296.97 30588.82 20998.48 28291.69 29487.79 35096.39 338
dcpmvs_298.08 6198.59 1496.56 24499.57 3390.34 33299.15 4998.38 19996.82 7399.29 3499.49 1795.78 4499.57 14398.94 2199.86 199.77 27
GBi-Net94.49 25993.80 27096.56 24498.21 19495.00 20298.82 12698.18 23492.46 27994.09 26597.07 29081.16 32697.95 33792.08 28192.14 29596.72 297
test194.49 25993.80 27096.56 24498.21 19495.00 20298.82 12698.18 23492.46 27994.09 26597.07 29081.16 32697.95 33792.08 28192.14 29596.72 297
FMVSNet193.19 31092.07 31796.56 24497.54 25395.00 20298.82 12698.18 23490.38 33892.27 32997.07 29073.68 37897.95 33789.36 33591.30 30696.72 297
tfpnnormal93.66 29792.70 30796.55 24896.94 29695.94 15898.97 8499.19 2491.04 32791.38 34097.34 26884.94 28598.61 27185.45 36589.02 33995.11 367
v119294.32 27093.58 28496.53 24996.10 33894.45 23198.50 19498.17 23991.54 30994.19 26197.06 29486.95 25098.43 29090.14 31789.57 32796.70 301
EPMVS94.99 22594.48 22396.52 25097.22 27791.75 30497.23 32391.66 40194.11 19897.28 15496.81 31885.70 27198.84 25193.04 25697.28 19898.97 176
v1094.29 27393.55 28696.51 25196.39 32794.80 21698.99 8198.19 23191.35 31693.02 30896.99 30388.09 22598.41 29890.50 31488.41 34596.33 342
test_vis1_n95.47 19295.13 19296.49 25297.77 23290.41 33099.27 2798.11 24996.58 8599.66 1599.18 7367.00 39099.62 13799.21 1699.40 11499.44 107
PEN-MVS94.42 26593.73 27796.49 25296.28 33194.84 21299.17 4799.00 3993.51 23892.23 33097.83 23086.10 26497.90 34192.55 27286.92 36296.74 294
v14419294.39 26793.70 27996.48 25496.06 34094.35 23798.58 18098.16 24191.45 31194.33 25397.02 30087.50 24198.45 28791.08 30489.11 33696.63 309
v7n94.19 27993.43 29296.47 25595.90 34694.38 23699.26 2898.34 20691.99 29792.76 31497.13 28288.31 21998.52 28089.48 33387.70 35196.52 326
LPG-MVS_test95.62 18795.34 18196.47 25597.46 25993.54 26398.99 8198.54 16194.67 17894.36 25198.77 13685.39 27599.11 20995.71 17294.15 26096.76 292
LGP-MVS_train96.47 25597.46 25993.54 26398.54 16194.67 17894.36 25198.77 13685.39 27599.11 20995.71 17294.15 26096.76 292
SCA95.46 19395.13 19296.46 25897.67 24191.29 31397.33 31797.60 29194.68 17796.92 17197.10 28383.97 30998.89 24592.59 26998.32 16999.20 140
CLD-MVS95.62 18795.34 18196.46 25897.52 25693.75 25697.27 32298.46 18195.53 13094.42 24898.00 21286.21 26298.97 22896.25 15394.37 25296.66 307
Zhaoxin Li, Wangmeng Zuo, Zhaoqi Wang, Lei Zhang: Confidence-based Large-scale Dense Multi-view Stereo. IEEE Transaction on Image Processing, 2020
ACMP93.49 1095.34 20594.98 20196.43 26097.67 24193.48 26798.73 15098.44 18594.94 16792.53 32298.53 16184.50 29899.14 20495.48 18194.00 26596.66 307
Qingshan Xu and Wenbing Tao: Planar Prior Assisted PatchMatch Multi-View Stereo. AAAI 2020
test111195.94 16995.78 16096.41 26198.99 11890.12 33499.04 6892.45 39996.99 6698.03 11199.27 5681.40 32499.48 16696.87 13299.04 12899.63 73
MIMVSNet93.26 30792.21 31696.41 26197.73 23793.13 28395.65 37797.03 33891.27 32294.04 26896.06 34675.33 36997.19 36386.56 35696.23 23698.92 182
v192192094.20 27893.47 29096.40 26395.98 34394.08 24698.52 18998.15 24291.33 31794.25 25797.20 28086.41 25998.42 29190.04 32289.39 33396.69 306
EI-MVSNet95.96 16695.83 15996.36 26497.93 22393.70 26098.12 24298.27 21993.70 22795.07 22699.02 9892.23 12598.54 27894.68 20293.46 27896.84 286
PatchT93.06 31391.97 31996.35 26596.69 31292.67 29094.48 39297.08 33286.62 37197.08 16192.23 39287.94 23097.90 34178.89 38996.69 21298.49 217
v124094.06 29293.29 29696.34 26696.03 34293.90 25098.44 20198.17 23991.18 32694.13 26497.01 30286.05 26598.42 29189.13 33889.50 33196.70 301
ACMH92.88 1694.55 25293.95 25896.34 26697.63 24593.26 27898.81 13498.49 17993.43 24389.74 35498.53 16181.91 32199.08 21593.69 23693.30 28496.70 301
Qingshan Xu and Wenbing Tao: Multi-Scale Geometric Consistency Guided Multi-View Stereo. CVPR 2019
test_vis1_n_192096.71 13696.84 11696.31 26899.11 10489.74 33999.05 6598.58 15098.08 1299.87 199.37 3878.48 34699.93 2599.29 1499.69 6199.27 129
DeepPCF-MVS96.37 297.93 7098.48 2396.30 26999.00 11489.54 34497.43 30798.87 6998.16 1199.26 3699.38 3796.12 3299.64 13198.30 5499.77 3499.72 45
PatchmatchNetpermissive95.71 18195.52 17396.29 27097.58 24890.72 32496.84 35597.52 30394.06 20097.08 16196.96 30789.24 19498.90 24492.03 28598.37 16499.26 132
Fangjinhua Wang, Silvano Galliani, Christoph Vogel, Pablo Speciale, Marc Pollefeys: PatchmatchNet: Learned Multi-View Patchmatch Stereo.
BH-w/o95.38 20095.08 19696.26 27198.34 18191.79 30297.70 28997.43 31492.87 26894.24 25897.22 27888.66 21098.84 25191.55 29697.70 18998.16 233
IterMVS-LS95.46 19395.21 18996.22 27298.12 20593.72 25998.32 21498.13 24593.71 22594.26 25697.31 27192.24 12498.10 32594.63 20490.12 32096.84 286
Fangjinhua Wang, Silvano Galliani, Christoph Vogel, Marc Pollefeys: IterMVS: Iterative Probability Estimation for Efficient Multi-View Stereo.
TransMVSNet (Re)92.67 31791.51 32396.15 27396.58 31894.65 22098.90 9996.73 35490.86 33089.46 35897.86 22485.62 27298.09 32786.45 35781.12 38395.71 357
DTE-MVSNet93.98 29493.26 29796.14 27496.06 34094.39 23599.20 4298.86 7593.06 26091.78 33697.81 23285.87 26997.58 35590.53 31386.17 36796.46 336
cl2294.68 24294.19 23996.13 27598.11 20693.60 26196.94 34398.31 21092.43 28393.32 29896.87 31586.51 25598.28 31594.10 22691.16 30996.51 329
miper_enhance_ethall95.10 21894.75 21196.12 27697.53 25593.73 25896.61 36398.08 25792.20 29493.89 27496.65 32692.44 11798.30 31194.21 22191.16 30996.34 340
test250694.44 26493.91 26196.04 27799.02 11188.99 35499.06 6379.47 41396.96 6798.36 9699.26 5777.21 35899.52 15896.78 13899.04 12899.59 79
cl____94.51 25794.01 25396.02 27897.58 24893.40 27297.05 33797.96 27291.73 30592.76 31497.08 28989.06 20098.13 32392.61 26690.29 31896.52 326
DIV-MVS_self_test94.52 25694.03 25095.99 27997.57 25293.38 27397.05 33797.94 27391.74 30392.81 31297.10 28389.12 19798.07 32992.60 26790.30 31796.53 323
EPNet_dtu95.21 21294.95 20395.99 27996.17 33590.45 32998.16 23897.27 32396.77 7593.14 30598.33 18490.34 17398.42 29185.57 36398.81 14399.09 160
Wanjuan Su, Wenbing Tao: Efficient Edge-Preserving Multi-View Stereo Network for Depth Estimation. AAAI 2023
miper_ehance_all_eth95.01 22294.69 21495.97 28197.70 23993.31 27697.02 33998.07 25992.23 29193.51 29096.96 30791.85 13798.15 32193.68 23791.16 30996.44 337
Baseline_NR-MVSNet94.35 26893.81 26995.96 28296.20 33394.05 24798.61 17796.67 35891.44 31293.85 27797.60 25088.57 21298.14 32294.39 21386.93 36195.68 358
JIA-IIPM93.35 30392.49 31195.92 28396.48 32490.65 32695.01 38196.96 34385.93 37796.08 20587.33 39887.70 23798.78 25991.35 29895.58 24898.34 224
Fast-Effi-MVS+-dtu95.87 17395.85 15895.91 28497.74 23691.74 30598.69 16298.15 24295.56 12994.92 22997.68 24488.98 20498.79 25893.19 25197.78 18597.20 261
v14894.29 27393.76 27595.91 28496.10 33892.93 28898.58 18097.97 27092.59 27793.47 29296.95 30988.53 21698.32 30792.56 27187.06 36096.49 332
c3_l94.79 23794.43 22995.89 28697.75 23393.12 28597.16 33398.03 26692.23 29193.46 29397.05 29691.39 14998.01 33293.58 24289.21 33596.53 323
ACMH+92.99 1494.30 27193.77 27395.88 28797.81 23092.04 30098.71 15698.37 20193.99 20690.60 34898.47 16780.86 33199.05 21792.75 26592.40 29496.55 320
Patchmtry93.22 30892.35 31495.84 28896.77 30693.09 28694.66 38997.56 29587.37 36992.90 31096.24 33788.15 22397.90 34187.37 35390.10 32196.53 323
test-LLR95.10 21894.87 20795.80 28996.77 30689.70 34096.91 34695.21 37895.11 15494.83 23395.72 35887.71 23598.97 22893.06 25498.50 15798.72 196
test-mter94.08 29093.51 28895.80 28996.77 30689.70 34096.91 34695.21 37892.89 26794.83 23395.72 35877.69 35398.97 22893.06 25498.50 15798.72 196
test0.0.03 194.08 29093.51 28895.80 28995.53 35792.89 28997.38 31095.97 36995.11 15492.51 32496.66 32487.71 23596.94 36787.03 35493.67 27297.57 251
XVG-ACMP-BASELINE94.54 25394.14 24495.75 29296.55 31991.65 30798.11 24498.44 18594.96 16494.22 25997.90 22079.18 34299.11 20994.05 22893.85 26996.48 334
pmmvs593.65 29992.97 30295.68 29395.49 35892.37 29298.20 22897.28 32289.66 35092.58 32097.26 27382.14 32098.09 32793.18 25290.95 31296.58 314
test_fmvs196.42 14896.67 12895.66 29498.82 13688.53 36298.80 13598.20 22996.39 9599.64 1799.20 6780.35 33599.67 12699.04 1999.57 8598.78 193
test_fmvs1_n95.90 17295.99 15495.63 29598.67 15188.32 36699.26 2898.22 22696.40 9499.67 1499.26 5773.91 37799.70 11999.02 2099.50 9998.87 184
TESTMET0.1,194.18 28293.69 28095.63 29596.92 29789.12 35096.91 34694.78 38393.17 25494.88 23096.45 33378.52 34598.92 23993.09 25398.50 15798.85 185
CostFormer94.95 23094.73 21295.60 29797.28 27389.06 35197.53 30196.89 34989.66 35096.82 17696.72 32286.05 26598.95 23795.53 17996.13 23998.79 190
UWE-MVS94.30 27193.89 26495.53 29897.83 22888.95 35597.52 30393.25 39494.44 19196.63 18397.07 29078.70 34499.28 18791.99 28697.56 19498.36 223
Effi-MVS+-dtu96.29 15496.56 13195.51 29997.89 22690.22 33398.80 13598.10 25296.57 8796.45 19696.66 32490.81 16498.91 24195.72 17197.99 17697.40 254
D2MVS95.18 21495.08 19695.48 30097.10 28892.07 29898.30 21799.13 3094.02 20392.90 31096.73 32189.48 18698.73 26294.48 21293.60 27795.65 359
eth_miper_zixun_eth94.68 24294.41 23095.47 30197.64 24491.71 30696.73 36098.07 25992.71 27393.64 28397.21 27990.54 17098.17 32093.38 24589.76 32496.54 321
tpm294.19 27993.76 27595.46 30297.23 27689.04 35297.31 31996.85 35387.08 37096.21 20296.79 31983.75 31598.74 26192.43 27796.23 23698.59 211
tpmrst95.63 18695.69 16995.44 30397.54 25388.54 36196.97 34197.56 29593.50 23997.52 15196.93 31189.49 18599.16 19995.25 18896.42 22298.64 207
ITE_SJBPF95.44 30397.42 26491.32 31297.50 30595.09 15793.59 28498.35 17981.70 32298.88 24789.71 32793.39 28296.12 348
dmvs_re94.48 26194.18 24195.37 30597.68 24090.11 33598.54 18897.08 33294.56 18394.42 24897.24 27684.25 30197.76 34991.02 30892.83 29098.24 227
MVP-Stereo94.28 27593.92 25995.35 30694.95 36992.60 29197.97 26097.65 28791.61 30890.68 34797.09 28786.32 26198.42 29189.70 32899.34 11895.02 370
Qingsong Yan: MVP-Stereo: A Parallel Multi-View Patchmatch Stereo Method with Dilation Matching for Photogrammetric Application.
tpmvs94.60 24894.36 23295.33 30797.46 25988.60 36096.88 35297.68 28591.29 32093.80 28096.42 33488.58 21199.24 19191.06 30596.04 24098.17 232
testing393.19 31092.48 31295.30 30898.07 20892.27 29398.64 17197.17 32893.94 21093.98 27197.04 29767.97 38796.01 38288.40 34497.14 20097.63 248
TDRefinement91.06 33289.68 33795.21 30985.35 40691.49 31098.51 19397.07 33491.47 31088.83 36497.84 22777.31 35799.09 21492.79 26477.98 39495.04 369
USDC93.33 30592.71 30695.21 30996.83 30490.83 32296.91 34697.50 30593.84 21490.72 34698.14 20177.69 35398.82 25589.51 33293.21 28695.97 352
pmmvs691.77 32490.63 32995.17 31194.69 37591.24 31498.67 16697.92 27586.14 37589.62 35597.56 25575.79 36898.34 30590.75 31184.56 37195.94 353
tpm94.13 28493.80 27095.12 31296.50 32287.91 37197.44 30595.89 37392.62 27596.37 19996.30 33684.13 30698.30 31193.24 24991.66 30399.14 154
miper_lstm_enhance94.33 26994.07 24895.11 31397.75 23390.97 31797.22 32498.03 26691.67 30792.76 31496.97 30590.03 17897.78 34892.51 27489.64 32696.56 318
ADS-MVSNet294.58 25194.40 23195.11 31398.00 21488.74 35896.04 37097.30 32090.15 34196.47 19496.64 32787.89 23197.56 35690.08 31997.06 20199.02 171
tpm cat193.36 30292.80 30495.07 31597.58 24887.97 37096.76 35897.86 27882.17 39093.53 28796.04 34786.13 26399.13 20589.24 33695.87 24498.10 234
PVSNet_088.72 1991.28 32990.03 33595.00 31697.99 21687.29 37594.84 38598.50 17492.06 29689.86 35395.19 36679.81 33899.39 17992.27 27869.79 40198.33 225
ppachtmachnet_test93.22 30892.63 30894.97 31795.45 36190.84 32196.88 35297.88 27790.60 33292.08 33397.26 27388.08 22697.86 34685.12 36790.33 31696.22 345
LCM-MVSNet-Re95.22 21195.32 18494.91 31898.18 20087.85 37298.75 14395.66 37495.11 15488.96 36096.85 31690.26 17697.65 35195.65 17598.44 16099.22 138
dp94.15 28393.90 26294.90 31997.31 27286.82 37796.97 34197.19 32791.22 32496.02 20796.61 32985.51 27499.02 22490.00 32394.30 25398.85 185
myMVS_eth3d92.73 31692.01 31894.89 32097.39 26890.94 31897.91 26697.46 30893.16 25593.42 29495.37 36468.09 38696.12 38088.34 34596.99 20397.60 249
testgi93.06 31392.45 31394.88 32196.43 32689.90 33698.75 14397.54 30195.60 12791.63 33997.91 21974.46 37597.02 36586.10 35993.67 27297.72 245
IterMVS-SCA-FT94.11 28793.87 26594.85 32297.98 21890.56 32897.18 32998.11 24993.75 21992.58 32097.48 25883.97 30997.41 36092.48 27691.30 30696.58 314
OurMVSNet-221017-094.21 27794.00 25494.85 32295.60 35489.22 34998.89 10497.43 31495.29 14492.18 33198.52 16482.86 31798.59 27493.46 24491.76 30096.74 294
MDA-MVSNet-bldmvs89.97 34188.35 34794.83 32495.21 36591.34 31197.64 29497.51 30488.36 36571.17 40296.13 34479.22 34196.63 37583.65 37586.27 36696.52 326
IterMVS94.09 28993.85 26794.80 32597.99 21690.35 33197.18 32998.12 24693.68 23092.46 32697.34 26884.05 30797.41 36092.51 27491.33 30596.62 310
Fangjinhua Wang, Silvano Galliani, Christoph Vogel, Marc Pollefeys: IterMVS: Iterative Probability Estimation for Efficient Multi-View Stereo.
SixPastTwentyTwo93.34 30492.86 30394.75 32695.67 35289.41 34798.75 14396.67 35893.89 21190.15 35298.25 19480.87 33098.27 31690.90 30990.64 31496.57 316
our_test_393.65 29993.30 29594.69 32795.45 36189.68 34296.91 34697.65 28791.97 29891.66 33896.88 31389.67 18497.93 34088.02 34991.49 30496.48 334
MDA-MVSNet_test_wron90.71 33589.38 34094.68 32894.83 37190.78 32397.19 32897.46 30887.60 36772.41 40195.72 35886.51 25596.71 37385.92 36186.80 36496.56 318
WB-MVSnew94.19 27994.04 24994.66 32996.82 30592.14 29597.86 27595.96 37093.50 23995.64 21696.77 32088.06 22797.99 33584.87 36896.86 20793.85 385
TinyColmap92.31 32191.53 32294.65 33096.92 29789.75 33896.92 34496.68 35790.45 33689.62 35597.85 22676.06 36798.81 25686.74 35592.51 29395.41 361
YYNet190.70 33689.39 33994.62 33194.79 37390.65 32697.20 32697.46 30887.54 36872.54 40095.74 35486.51 25596.66 37486.00 36086.76 36596.54 321
KD-MVS_2432*160089.61 34487.96 35194.54 33294.06 37991.59 30895.59 37897.63 28989.87 34688.95 36194.38 37678.28 34896.82 36884.83 36968.05 40295.21 364
miper_refine_blended89.61 34487.96 35194.54 33294.06 37991.59 30895.59 37897.63 28989.87 34688.95 36194.38 37678.28 34896.82 36884.83 36968.05 40295.21 364
FMVSNet591.81 32390.92 32694.49 33497.21 27892.09 29798.00 25797.55 30089.31 35790.86 34595.61 36174.48 37495.32 38885.57 36389.70 32596.07 350
K. test v392.55 31891.91 32194.48 33595.64 35389.24 34899.07 6294.88 38294.04 20186.78 37497.59 25177.64 35697.64 35292.08 28189.43 33296.57 316
test_040291.32 32790.27 33394.48 33596.60 31691.12 31598.50 19497.22 32686.10 37688.30 36696.98 30477.65 35597.99 33578.13 39192.94 28894.34 374
MS-PatchMatch93.84 29693.63 28294.46 33796.18 33489.45 34597.76 28498.27 21992.23 29192.13 33297.49 25779.50 33998.69 26489.75 32699.38 11695.25 363
lessismore_v094.45 33894.93 37088.44 36491.03 40386.77 37597.64 24776.23 36698.42 29190.31 31685.64 37096.51 329
pmmvs-eth3d90.36 33889.05 34394.32 33991.10 39392.12 29697.63 29796.95 34488.86 36184.91 38593.13 38778.32 34796.74 37088.70 34181.81 38094.09 380
LF4IMVS93.14 31292.79 30594.20 34095.88 34788.67 35997.66 29297.07 33493.81 21791.71 33797.65 24577.96 35298.81 25691.47 29791.92 29995.12 366
UnsupCasMVSNet_eth90.99 33389.92 33694.19 34194.08 37889.83 33797.13 33598.67 12993.69 22885.83 38096.19 34275.15 37096.74 37089.14 33779.41 39096.00 351
mamv497.13 11998.11 5694.17 34298.97 12183.70 38398.66 16898.71 11694.63 18097.83 12898.90 11896.25 2699.55 15399.27 1599.76 4099.27 129
EG-PatchMatch MVS91.13 33190.12 33494.17 34294.73 37489.00 35398.13 24197.81 28089.22 35885.32 38496.46 33267.71 38898.42 29187.89 35193.82 27095.08 368
MIMVSNet189.67 34388.28 34893.82 34492.81 38791.08 31698.01 25597.45 31287.95 36687.90 36895.87 35267.63 38994.56 39278.73 39088.18 34795.83 355
OpenMVS_ROBcopyleft86.42 2089.00 34787.43 35593.69 34593.08 38589.42 34697.91 26696.89 34978.58 39385.86 37994.69 37169.48 38498.29 31477.13 39293.29 28593.36 387
CVMVSNet95.43 19696.04 15193.57 34697.93 22383.62 38498.12 24298.59 14595.68 12496.56 18799.02 9887.51 23997.51 35893.56 24397.44 19599.60 77
Anonymous2024052191.18 33090.44 33193.42 34793.70 38288.47 36398.94 9397.56 29588.46 36489.56 35795.08 36977.15 36196.97 36683.92 37489.55 32994.82 372
Patchmatch-RL test91.49 32690.85 32793.41 34891.37 39184.40 38092.81 39695.93 37291.87 30187.25 37094.87 37088.99 20196.53 37692.54 27382.00 37899.30 125
KD-MVS_self_test90.38 33789.38 34093.40 34992.85 38688.94 35697.95 26197.94 27390.35 33990.25 35093.96 37979.82 33795.94 38384.62 37376.69 39695.33 362
Anonymous2023120691.66 32591.10 32593.33 35094.02 38187.35 37498.58 18097.26 32490.48 33490.16 35196.31 33583.83 31396.53 37679.36 38789.90 32396.12 348
UnsupCasMVSNet_bld87.17 35385.12 36093.31 35191.94 38988.77 35794.92 38498.30 21684.30 38582.30 38890.04 39563.96 39497.25 36285.85 36274.47 40093.93 384
RPSCF94.87 23495.40 17593.26 35298.89 12782.06 39098.33 21098.06 26490.30 34096.56 18799.26 5787.09 24699.49 16193.82 23496.32 22598.24 227
new_pmnet90.06 34089.00 34493.22 35394.18 37688.32 36696.42 36896.89 34986.19 37485.67 38193.62 38177.18 36097.10 36481.61 38189.29 33494.23 376
test_vis1_rt91.29 32890.65 32893.19 35497.45 26286.25 37898.57 18590.90 40493.30 24986.94 37393.59 38262.07 39699.11 20997.48 10595.58 24894.22 377
CL-MVSNet_self_test90.11 33989.14 34293.02 35591.86 39088.23 36896.51 36698.07 25990.49 33390.49 34994.41 37484.75 29095.34 38780.79 38374.95 39895.50 360
test_fmvs293.43 30193.58 28492.95 35696.97 29483.91 38299.19 4497.24 32595.74 12095.20 22498.27 19169.65 38398.72 26396.26 15193.73 27196.24 344
MVS-HIRNet89.46 34688.40 34692.64 35797.58 24882.15 38994.16 39593.05 39875.73 39790.90 34482.52 40079.42 34098.33 30683.53 37698.68 14597.43 252
test20.0390.89 33490.38 33292.43 35893.48 38388.14 36998.33 21097.56 29593.40 24487.96 36796.71 32380.69 33394.13 39379.15 38886.17 36795.01 371
Syy-MVS92.55 31892.61 30992.38 35997.39 26883.41 38597.91 26697.46 30893.16 25593.42 29495.37 36484.75 29096.12 38077.00 39396.99 20397.60 249
DSMNet-mixed92.52 32092.58 31092.33 36094.15 37782.65 38898.30 21794.26 38989.08 35992.65 31895.73 35685.01 28495.76 38486.24 35897.76 18698.59 211
EGC-MVSNET75.22 37069.54 37392.28 36194.81 37289.58 34397.64 29496.50 3621.82 4135.57 41495.74 35468.21 38596.26 37973.80 39691.71 30190.99 391
EU-MVSNet93.66 29794.14 24492.25 36295.96 34583.38 38698.52 18998.12 24694.69 17692.61 31998.13 20287.36 24496.39 37891.82 29090.00 32296.98 267
pmmvs386.67 35684.86 36192.11 36388.16 40087.19 37696.63 36294.75 38479.88 39287.22 37192.75 39066.56 39195.20 38981.24 38276.56 39793.96 383
new-patchmatchnet88.50 34987.45 35491.67 36490.31 39585.89 37997.16 33397.33 31989.47 35383.63 38792.77 38976.38 36495.06 39082.70 37877.29 39594.06 382
PM-MVS87.77 35186.55 35791.40 36591.03 39483.36 38796.92 34495.18 38091.28 32186.48 37893.42 38353.27 40096.74 37089.43 33481.97 37994.11 379
mvsany_test388.80 34888.04 34991.09 36689.78 39681.57 39197.83 28095.49 37593.81 21787.53 36993.95 38056.14 39997.43 35994.68 20283.13 37594.26 375
CMPMVSbinary66.06 2189.70 34289.67 33889.78 36793.19 38476.56 39397.00 34098.35 20480.97 39181.57 39097.75 23574.75 37298.61 27189.85 32493.63 27594.17 378
M. Jancosek, T. Pajdla: Multi-View Reconstruction Preserving Weakly-Supported Surfaces. CVPR 2011
ambc89.49 36886.66 40375.78 39592.66 39796.72 35586.55 37792.50 39146.01 40197.90 34190.32 31582.09 37794.80 373
APD_test188.22 35088.01 35088.86 36995.98 34374.66 40197.21 32596.44 36383.96 38686.66 37697.90 22060.95 39797.84 34782.73 37790.23 31994.09 380
test_f86.07 35785.39 35888.10 37089.28 39875.57 39797.73 28796.33 36589.41 35685.35 38391.56 39443.31 40595.53 38591.32 29984.23 37393.21 389
test_fmvs387.17 35387.06 35687.50 37191.21 39275.66 39699.05 6596.61 36192.79 27188.85 36392.78 38843.72 40393.49 39493.95 22984.56 37193.34 388
DeepMVS_CXcopyleft86.78 37297.09 28972.30 40295.17 38175.92 39684.34 38695.19 36670.58 38295.35 38679.98 38689.04 33892.68 390
LCM-MVSNet78.70 36576.24 37186.08 37377.26 41271.99 40394.34 39396.72 35561.62 40376.53 39589.33 39633.91 41192.78 39881.85 38074.60 39993.46 386
PMMVS277.95 36875.44 37285.46 37482.54 40774.95 39994.23 39493.08 39772.80 39874.68 39687.38 39736.36 40891.56 39973.95 39563.94 40489.87 394
N_pmnet87.12 35587.77 35385.17 37595.46 36061.92 41197.37 31270.66 41685.83 37888.73 36596.04 34785.33 27997.76 34980.02 38490.48 31595.84 354
test_vis3_rt79.22 36177.40 36884.67 37686.44 40474.85 40097.66 29281.43 41184.98 38267.12 40481.91 40228.09 41397.60 35388.96 33980.04 38881.55 402
dongtai82.47 36081.88 36384.22 37795.19 36676.03 39494.59 39174.14 41582.63 38787.19 37296.09 34564.10 39387.85 40558.91 40384.11 37488.78 397
dmvs_testset87.64 35288.93 34583.79 37895.25 36463.36 41097.20 32691.17 40293.07 25985.64 38295.98 35185.30 28191.52 40069.42 39987.33 35696.49 332
WB-MVS84.86 35885.33 35983.46 37989.48 39769.56 40598.19 23196.42 36489.55 35281.79 38994.67 37284.80 28890.12 40152.44 40580.64 38790.69 392
Gipumacopyleft78.40 36776.75 37083.38 38095.54 35680.43 39279.42 40597.40 31664.67 40273.46 39980.82 40345.65 40293.14 39766.32 40187.43 35476.56 405
S. Galliani, K. Lasinger, K. Schindler: Massively Parallel Multiview Stereopsis by Surface Normal Diffusion. ICCV 2015
testf179.02 36377.70 36582.99 38188.10 40166.90 40794.67 38793.11 39571.08 39974.02 39793.41 38434.15 40993.25 39572.25 39778.50 39288.82 395
APD_test279.02 36377.70 36582.99 38188.10 40166.90 40794.67 38793.11 39571.08 39974.02 39793.41 38434.15 40993.25 39572.25 39778.50 39288.82 395
SSC-MVS84.27 35984.71 36282.96 38389.19 39968.83 40698.08 24896.30 36689.04 36081.37 39194.47 37384.60 29589.89 40249.80 40779.52 38990.15 393
test_method79.03 36278.17 36481.63 38486.06 40554.40 41682.75 40496.89 34939.54 40880.98 39295.57 36258.37 39894.73 39184.74 37278.61 39195.75 356
kuosan78.45 36677.69 36780.72 38592.73 38875.32 39894.63 39074.51 41475.96 39580.87 39393.19 38663.23 39579.99 40942.56 40981.56 38286.85 401
ANet_high69.08 37165.37 37580.22 38665.99 41471.96 40490.91 40090.09 40582.62 38849.93 40978.39 40429.36 41281.75 40662.49 40238.52 40886.95 400
FPMVS77.62 36977.14 36979.05 38779.25 41060.97 41295.79 37595.94 37165.96 40167.93 40394.40 37537.73 40788.88 40468.83 40088.46 34487.29 398
MVEpermissive62.14 2263.28 37659.38 37974.99 38874.33 41365.47 40985.55 40280.50 41252.02 40651.10 40875.00 40710.91 41780.50 40751.60 40653.40 40578.99 403
Simon Fuhrmann, Fabian Langguth, Michael Goesele: MVE - A Multi-View Reconstruction Environment. EUROGRAPHICS Workshops on Graphics and Cultural Heritage (2014)
tmp_tt68.90 37266.97 37474.68 38950.78 41659.95 41387.13 40183.47 41038.80 40962.21 40596.23 33964.70 39276.91 41188.91 34030.49 40987.19 399
PMVScopyleft61.03 2365.95 37363.57 37773.09 39057.90 41551.22 41785.05 40393.93 39354.45 40444.32 41083.57 39913.22 41489.15 40358.68 40481.00 38478.91 404
Y. Furukawa, J. Ponce: Accurate, dense, and robust multiview stereopsis. PAMI (2010)
E-PMN64.94 37464.25 37667.02 39182.28 40859.36 41491.83 39985.63 40852.69 40560.22 40677.28 40541.06 40680.12 40846.15 40841.14 40661.57 407
EMVS64.07 37563.26 37866.53 39281.73 40958.81 41591.85 39884.75 40951.93 40759.09 40775.13 40643.32 40479.09 41042.03 41039.47 40761.69 406
wuyk23d30.17 37730.18 38130.16 39378.61 41143.29 41866.79 40614.21 41717.31 41014.82 41311.93 41311.55 41641.43 41237.08 41119.30 4105.76 410
test12320.95 38023.72 38312.64 39413.54 4188.19 41996.55 3656.13 4197.48 41216.74 41237.98 41012.97 4156.05 41316.69 4125.43 41223.68 408
testmvs21.48 37924.95 38211.09 39514.89 4176.47 42096.56 3649.87 4187.55 41117.93 41139.02 4099.43 4185.90 41416.56 41312.72 41120.91 409
test_blank0.00 3830.00 3860.00 3960.00 4190.00 4210.00 4070.00 4200.00 4140.00 4150.00 4140.00 4190.00 4150.00 4140.00 4130.00 411
uanet_test0.00 3830.00 3860.00 3960.00 4190.00 4210.00 4070.00 4200.00 4140.00 4150.00 4140.00 4190.00 4150.00 4140.00 4130.00 411
DCPMVS0.00 3830.00 3860.00 3960.00 4190.00 4210.00 4070.00 4200.00 4140.00 4150.00 4140.00 4190.00 4150.00 4140.00 4130.00 411
cdsmvs_eth3d_5k23.98 37831.98 3800.00 3960.00 4190.00 4210.00 40798.59 1450.00 4140.00 41598.61 15290.60 1690.00 4150.00 4140.00 4130.00 411
pcd_1.5k_mvsjas7.88 38210.50 3850.00 3960.00 4190.00 4210.00 4070.00 4200.00 4140.00 4150.00 41494.51 830.00 4150.00 4140.00 4130.00 411
sosnet-low-res0.00 3830.00 3860.00 3960.00 4190.00 4210.00 4070.00 4200.00 4140.00 4150.00 4140.00 4190.00 4150.00 4140.00 4130.00 411
sosnet0.00 3830.00 3860.00 3960.00 4190.00 4210.00 4070.00 4200.00 4140.00 4150.00 4140.00 4190.00 4150.00 4140.00 4130.00 411
uncertanet0.00 3830.00 3860.00 3960.00 4190.00 4210.00 4070.00 4200.00 4140.00 4150.00 4140.00 4190.00 4150.00 4140.00 4130.00 411
Regformer0.00 3830.00 3860.00 3960.00 4190.00 4210.00 4070.00 4200.00 4140.00 4150.00 4140.00 4190.00 4150.00 4140.00 4130.00 411
ab-mvs-re8.20 38110.94 3840.00 3960.00 4190.00 4210.00 4070.00 4200.00 4140.00 41598.43 1690.00 4190.00 4150.00 4140.00 4130.00 411
uanet0.00 3830.00 3860.00 3960.00 4190.00 4210.00 4070.00 4200.00 4140.00 4150.00 4140.00 4190.00 4150.00 4140.00 4130.00 411
WAC-MVS90.94 31888.66 342
FOURS199.82 198.66 2499.69 198.95 4697.46 3499.39 30
PC_three_145295.08 15899.60 1999.16 7797.86 298.47 28597.52 10399.72 5699.74 37
test_one_060199.66 2699.25 298.86 7597.55 2899.20 3899.47 2097.57 6
eth-test20.00 419
eth-test0.00 419
ZD-MVS99.46 4998.70 2398.79 9893.21 25298.67 7598.97 10595.70 4699.83 6996.07 15599.58 84
RE-MVS-def98.34 3599.49 4597.86 6499.11 5698.80 9396.49 8899.17 4199.35 4495.29 6297.72 8599.65 6999.71 49
IU-MVS99.71 1999.23 798.64 13795.28 14599.63 1898.35 5299.81 1599.83 13
test_241102_TWO98.87 6997.65 2299.53 2399.48 1897.34 1199.94 898.43 4699.80 2299.83 13
test_241102_ONE99.71 1999.24 598.87 6997.62 2499.73 1099.39 3297.53 799.74 111
9.1498.06 5999.47 4798.71 15698.82 8194.36 19399.16 4499.29 5396.05 3499.81 8197.00 11899.71 58
save fliter99.46 4998.38 3598.21 22698.71 11697.95 13
test_0728_THIRD97.32 4299.45 2599.46 2497.88 199.94 898.47 4299.86 199.85 10
test072699.72 1299.25 299.06 6398.88 6297.62 2499.56 2099.50 1597.42 9
GSMVS99.20 140
test_part299.63 2999.18 1099.27 35
sam_mvs189.45 18899.20 140
sam_mvs88.99 201
MTGPAbinary98.74 108
test_post196.68 36130.43 41287.85 23498.69 26492.59 269
test_post31.83 41188.83 20898.91 241
patchmatchnet-post95.10 36889.42 18998.89 245
MTMP98.89 10494.14 391
gm-plane-assit95.88 34787.47 37389.74 34996.94 31099.19 19793.32 248
test9_res96.39 14999.57 8599.69 56
TEST999.31 6498.50 2997.92 26498.73 11192.63 27497.74 13498.68 14696.20 2999.80 88
test_899.29 7398.44 3197.89 27298.72 11392.98 26397.70 13898.66 14996.20 2999.80 88
agg_prior295.87 16599.57 8599.68 61
agg_prior99.30 6898.38 3598.72 11397.57 15099.81 81
test_prior498.01 6197.86 275
test_prior297.80 28196.12 10697.89 12698.69 14595.96 3896.89 12799.60 79
旧先验297.57 30091.30 31998.67 7599.80 8895.70 174
新几何297.64 294
旧先验199.29 7397.48 7898.70 12099.09 9295.56 4999.47 10499.61 75
无先验97.58 29998.72 11391.38 31399.87 5893.36 24799.60 77
原ACMM297.67 291
test22299.23 8897.17 9597.40 30898.66 13288.68 36398.05 10898.96 11094.14 9599.53 9699.61 75
testdata299.89 4791.65 295
segment_acmp96.85 14
testdata197.32 31896.34 97
plane_prior797.42 26494.63 222
plane_prior697.35 27194.61 22587.09 246
plane_prior598.56 15699.03 22196.07 15594.27 25496.92 272
plane_prior498.28 188
plane_prior394.61 22597.02 6495.34 219
plane_prior298.80 13597.28 45
plane_prior197.37 270
plane_prior94.60 22798.44 20196.74 7894.22 256
n20.00 420
nn0.00 420
door-mid94.37 387
test1198.66 132
door94.64 385
HQP5-MVS94.25 242
HQP-NCC97.20 27998.05 25196.43 9194.45 243
ACMP_Plane97.20 27998.05 25196.43 9194.45 243
BP-MVS95.30 184
HQP4-MVS94.45 24398.96 23296.87 283
HQP3-MVS98.46 18194.18 258
HQP2-MVS86.75 252
NP-MVS97.28 27394.51 23097.73 236
MDTV_nov1_ep13_2view84.26 38196.89 35190.97 32897.90 12589.89 18093.91 23199.18 149
MDTV_nov1_ep1395.40 17597.48 25788.34 36596.85 35497.29 32193.74 22197.48 15297.26 27389.18 19599.05 21791.92 28997.43 196
ACMMP++_ref92.97 287
ACMMP++93.61 276
Test By Simon94.64 80