This table lists the benchmark results for the high-res multi-view scenario. The following metrics are evaluated:

(*) For exact definitions, detailing how potentially incomplete ground truth is taken into account, see our paper.

The datasets are grouped into different categories, and result averages are computed for a category and method if results of the method are available for all datasets within the category. Note that the category "all" includes both the high-res multi-view and the low-res many-view scenarios.

Methods with suffix _ROB may participate in the Robust Vision Challenge.

Click a dataset result cell to show a visualization of the reconstruction. For training datasets, ground truth and accuracy / completeness visualizations are also available. The visualizations may not work with mobile browsers.




Method Infoallhigh-res
multi-view
indooroutdoorbotani.boulde.bridgedoorexhibi.lectur.living.loungeobserv.old co.statueterrac.
sort bysort bysort bysorted bysort bysort bysort bysort bysort bysort bysort bysort bysort bysort bysort bysort by
MSP-MVS81.06 381.40 480.02 186.21 3162.73 986.09 1886.83 865.51 1283.81 1090.51 2363.71 1289.23 2081.51 388.44 2788.09 21
Zhenlong Yuan, Cong Liu, Fei Shen, Zhaoxin Li, Jingguo luo, Tianlu Mao and Zhaoqi Wang: MSP-MVS: Multi-granularity Segmentation Prior Guided Multi-View Stereo. AAAI2025
MM80.20 780.28 879.99 282.19 7960.01 4686.19 1783.93 5173.19 177.08 3091.21 1557.23 3190.73 1083.35 188.12 3589.22 5
SteuartSystems-ACMMP79.48 1179.31 1179.98 383.01 7262.18 1687.60 985.83 1966.69 978.03 2690.98 1654.26 5390.06 1378.42 1989.02 2387.69 33
Skip Steuart: Steuart Systems R&D Blog.
MSC_two_6792asdad79.95 487.24 1461.04 3185.62 2390.96 179.31 990.65 887.85 27
No_MVS79.95 487.24 1461.04 3185.62 2390.96 179.31 990.65 887.85 27
SMA-MVScopyleft80.28 680.39 779.95 486.60 2361.95 1986.33 1385.75 2162.49 6282.20 1592.28 156.53 3489.70 1679.85 591.48 188.19 18
Yufeng Yin; Xiaoyan Liu; Zichao Zhang: SMA-MVS: Segmentation-Guided Multi-Scale Anchor Deformation Patch Multi-View Stereo. IEEE Transactions on Circuits and Systems for Video Technology
OPU-MVS79.83 787.54 1160.93 3587.82 789.89 4267.01 190.33 1273.16 5491.15 488.23 16
DeepC-MVS69.38 278.56 1878.14 2279.83 783.60 6361.62 2384.17 4286.85 663.23 4673.84 6390.25 3257.68 2789.96 1474.62 4389.03 2287.89 24
Andreas Kuhn, Christian Sormann, Mattia Rossi, Oliver Erdler, Friedrich Fraundorfer: DeepC-MVS: Deep Confidence Prediction for Multi-View Stereo Reconstruction. 3DV 2020
3Dnovator+66.72 475.84 4574.57 5379.66 982.40 7659.92 4885.83 2286.32 1666.92 767.80 15789.24 5142.03 19789.38 1964.07 11686.50 5589.69 2
DVP-MVS++81.67 182.40 179.47 1087.24 1459.15 6088.18 187.15 365.04 1684.26 591.86 667.01 190.84 379.48 691.38 288.42 11
CNVR-MVS79.84 1079.97 1079.45 1187.90 262.17 1784.37 3685.03 3466.96 577.58 2790.06 3659.47 2089.13 2278.67 1489.73 1687.03 53
NCCC78.58 1778.31 1979.39 1287.51 1262.61 1385.20 3184.42 4266.73 874.67 5189.38 4955.30 4289.18 2174.19 4687.34 4386.38 72
SED-MVS81.56 282.30 279.32 1387.77 458.90 6987.82 786.78 1064.18 3285.97 191.84 866.87 390.83 578.63 1790.87 588.23 16
ZNCC-MVS78.82 1378.67 1779.30 1486.43 2862.05 1886.62 1186.01 1863.32 4375.08 4090.47 2653.96 5788.68 2776.48 2889.63 2087.16 51
DPE-MVScopyleft80.56 580.98 579.29 1587.27 1360.56 4185.71 2686.42 1463.28 4483.27 1391.83 1064.96 790.47 1176.41 2989.67 1886.84 59
Kehua Chen, Zhenlong Yuan, Tianlu Mao, Zhaoqi Wang: Dual-Level Precision Edges Guided Multi-View Stereo with Accurate Planarization. AAAI2025
test_0728_SECOND79.19 1687.82 359.11 6387.85 587.15 390.84 378.66 1590.61 1187.62 37
ACMMPR77.71 2577.23 2879.16 1786.75 1862.93 786.29 1484.24 4562.82 5573.55 6690.56 2249.80 10988.24 3374.02 4887.03 4586.32 80
region2R77.67 2777.18 2979.15 1886.76 1762.95 686.29 1484.16 4762.81 5773.30 6890.58 2149.90 10788.21 3473.78 5087.03 4586.29 83
DeepPCF-MVS69.58 179.03 1279.00 1379.13 1984.92 5660.32 4483.03 5785.33 2762.86 5480.17 1790.03 3861.76 1488.95 2474.21 4588.67 2688.12 20
DeepC-MVS_fast68.24 377.25 3076.63 3379.12 2086.15 3460.86 3684.71 3384.85 3861.98 7473.06 7888.88 5553.72 6289.06 2368.27 7888.04 3887.42 43
Andreas Kuhn, Christian Sormann, Mattia Rossi, Oliver Erdler, Friedrich Fraundorfer: DeepC-MVS: Deep Confidence Prediction for Multi-View Stereo Reconstruction. 3DV 2020
HFP-MVS78.01 2477.65 2579.10 2186.71 1962.81 886.29 1484.32 4462.82 5573.96 6190.50 2453.20 6888.35 3174.02 4887.05 4486.13 87
HPM-MVS++copyleft79.88 980.14 979.10 2188.17 164.80 186.59 1283.70 6165.37 1378.78 2290.64 1958.63 2487.24 5179.00 1290.37 1485.26 127
XVS77.17 3176.56 3479.00 2386.32 2962.62 1185.83 2283.92 5264.55 2372.17 9290.01 4047.95 12988.01 3871.55 6586.74 5286.37 74
X-MVStestdata70.21 11967.28 17179.00 2386.32 2962.62 1185.83 2283.92 5264.55 2372.17 926.49 40347.95 12988.01 3871.55 6586.74 5286.37 74
GST-MVS78.14 2277.85 2478.99 2586.05 3861.82 2285.84 2185.21 2963.56 4174.29 5790.03 3852.56 7488.53 2974.79 4288.34 2986.63 68
TSAR-MVS + MP.78.44 1978.28 2078.90 2684.96 5261.41 2684.03 4583.82 5959.34 11779.37 1989.76 4559.84 1687.62 4776.69 2786.74 5287.68 34
Zhenlong Yuan, Jiakai Cao, Zhaoqi Wang, Zhaoxin Li: TSAR-MVS: Textureless-aware Segmentation and Correlative Refinement Guided Multi-View Stereo. Pattern Recognition
PGM-MVS76.77 3576.06 3878.88 2786.14 3562.73 982.55 6783.74 6061.71 7672.45 9190.34 2948.48 12588.13 3572.32 5886.85 5085.78 99
APDe-MVScopyleft80.16 880.59 678.86 2886.64 2160.02 4588.12 386.42 1462.94 5182.40 1492.12 259.64 1889.76 1578.70 1388.32 3186.79 61
Zhaojie Zeng, Yuesong Wang, Tao Guan: Matching Ambiguity-Resilient Multi-View Stereo via Adaptive Patch Deformation. Pattern Recognition
ACMMP_NAP78.77 1578.78 1478.74 2985.44 4561.04 3183.84 4985.16 3062.88 5378.10 2491.26 1352.51 7588.39 3079.34 890.52 1386.78 62
MVS_030478.73 1678.75 1578.66 3080.82 10157.62 8385.31 3081.31 11270.51 274.17 5891.24 1454.99 4589.56 1782.29 288.13 3488.80 7
MP-MVScopyleft78.35 2078.26 2178.64 3186.54 2563.47 486.02 2083.55 6563.89 3773.60 6590.60 2054.85 4886.72 6877.20 2588.06 3785.74 105
Rongxuan Tan, Qing Wang, et al.: MP-MVS: Multi-Scale Windows PatchMatch and Planar Prior Multi-View Stereo.
HPM-MVScopyleft77.28 2976.85 3078.54 3285.00 5160.81 3882.91 6085.08 3162.57 6073.09 7789.97 4150.90 10287.48 4975.30 3686.85 5087.33 49
Chunlin Ren, Qingshan Xu, Shikun Zhang, Jiaqi Yang: Hierarchical Prior Mining for Non-local Multi-View Stereo. ICCV 2023
CP-MVS77.12 3276.68 3278.43 3386.05 3863.18 587.55 1083.45 6862.44 6472.68 8590.50 2448.18 12787.34 5073.59 5285.71 5884.76 143
DVP-MVScopyleft80.84 481.64 378.42 3487.75 759.07 6487.85 585.03 3464.26 2983.82 892.00 364.82 890.75 878.66 1590.61 1185.45 116
Zhenlong Yuan, Jinguo Luo, Fei Shen, Zhaoxin Li, Cong Liu, Tianlu Mao, Zhaoqi Wang: DVP-MVS: Synergize Depth-Edge and Visibility Prior for Multi-View Stereo. AAAI2025
MTAPA76.90 3476.42 3578.35 3586.08 3763.57 274.92 20880.97 12365.13 1575.77 3590.88 1748.63 12286.66 7077.23 2488.17 3384.81 140
mPP-MVS76.54 3675.93 4078.34 3686.47 2663.50 385.74 2582.28 9062.90 5271.77 9590.26 3146.61 15386.55 7471.71 6385.66 5984.97 136
CDPH-MVS76.31 3875.67 4478.22 3785.35 4859.14 6281.31 8784.02 4856.32 17274.05 5988.98 5453.34 6787.92 4169.23 7688.42 2887.59 38
ACMMPcopyleft76.02 4375.33 4678.07 3885.20 4961.91 2085.49 2984.44 4163.04 4969.80 11989.74 4645.43 16687.16 5572.01 6082.87 8385.14 129
Qingshan Xu, Weihang Kong, Wenbing Tao, Marc Pollefeys: Multi-Scale Geometric Consistency Guided and Planar Prior Assisted Multi-View Stereo. IEEE Transactions on Pattern Analysis and Machine Intelligence
CANet76.46 3775.93 4078.06 3981.29 9357.53 8582.35 6983.31 7467.78 370.09 10986.34 10154.92 4788.90 2572.68 5784.55 6587.76 32
MP-MVS-pluss78.35 2078.46 1878.03 4084.96 5259.52 5382.93 5985.39 2662.15 6776.41 3391.51 1152.47 7786.78 6780.66 489.64 1987.80 30
MP-MVS-pluss: MP-MVS-pluss. MP-MVS-pluss
APD-MVScopyleft78.02 2378.04 2377.98 4186.44 2760.81 3885.52 2784.36 4360.61 8979.05 2190.30 3055.54 4188.32 3273.48 5387.03 4584.83 139
Yuesong Wang, Zhaojie Zeng and etc.: Adaptive Patch Deformation for Textureless-Resilient Multi-View Stereo. CVPR2023
SD-MVS77.70 2677.62 2677.93 4284.47 5961.88 2184.55 3483.87 5760.37 9679.89 1889.38 4954.97 4685.58 9776.12 3184.94 6286.33 78
Zhenlong Yuan, Jiakai Cao, Zhaoxin Li, Hao Jiang and Zhaoqi Wang: SD-MVS: Segmentation-driven Deformation Multi-View Stereo with Spherical Refinement and EM optimization. AAAI2024
test1277.76 4384.52 5858.41 7583.36 7272.93 8154.61 5188.05 3788.12 3586.81 60
SF-MVS78.82 1379.22 1277.60 4482.88 7457.83 8084.99 3288.13 261.86 7579.16 2090.75 1857.96 2587.09 6077.08 2690.18 1587.87 26
MCST-MVS77.48 2877.45 2777.54 4586.67 2058.36 7683.22 5586.93 556.91 15974.91 4588.19 6259.15 2287.68 4673.67 5187.45 4286.57 69
CSCG76.92 3376.75 3177.41 4683.96 6259.60 5182.95 5886.50 1360.78 8775.27 3784.83 13360.76 1586.56 7367.86 8487.87 4186.06 89
PHI-MVS75.87 4475.36 4577.41 4680.62 10755.91 11384.28 3985.78 2056.08 17873.41 6786.58 9450.94 10188.54 2870.79 6889.71 1787.79 31
SR-MVS76.13 4275.70 4377.40 4885.87 4061.20 2985.52 2782.19 9159.99 10575.10 3990.35 2847.66 13486.52 7571.64 6482.99 7884.47 149
TSAR-MVS + GP.74.90 5074.15 5777.17 4982.00 8158.77 7281.80 7978.57 16258.58 13074.32 5684.51 14355.94 3987.22 5267.11 9284.48 6785.52 112
CS-MVS76.25 4075.98 3977.06 5080.15 11655.63 12084.51 3583.90 5463.24 4573.30 6887.27 7955.06 4486.30 8371.78 6284.58 6489.25 4
DPM-MVS75.47 4875.00 4976.88 5181.38 9259.16 5979.94 10285.71 2256.59 16772.46 8986.76 8556.89 3287.86 4366.36 9788.91 2583.64 181
HPM-MVS_fast74.30 6073.46 6576.80 5284.45 6059.04 6683.65 5281.05 12060.15 10270.43 10589.84 4341.09 21385.59 9667.61 8882.90 8285.77 102
test_prior76.69 5384.20 6157.27 8884.88 3786.43 7886.38 72
APD-MVS_3200maxsize74.96 4974.39 5576.67 5482.20 7858.24 7783.67 5183.29 7558.41 13373.71 6490.14 3345.62 15985.99 8769.64 7282.85 8485.78 99
train_agg76.27 3976.15 3776.64 5585.58 4361.59 2481.62 8281.26 11555.86 18074.93 4388.81 5653.70 6384.68 11875.24 3888.33 3083.65 180
SR-MVS-dyc-post74.57 5673.90 5976.58 5683.49 6559.87 4984.29 3781.36 10758.07 13973.14 7490.07 3444.74 17385.84 9168.20 7981.76 9484.03 159
CS-MVS-test75.62 4775.31 4776.56 5780.63 10655.13 13083.88 4885.22 2862.05 7171.49 9986.03 11153.83 5986.36 8167.74 8586.91 4988.19 18
h-mvs3372.71 7571.49 8376.40 5881.99 8259.58 5276.92 16676.74 20060.40 9374.81 4785.95 11545.54 16285.76 9370.41 7070.61 23783.86 168
DP-MVS Recon72.15 8770.73 9976.40 5886.57 2457.99 7981.15 8982.96 8157.03 15666.78 17585.56 12344.50 17688.11 3651.77 21580.23 11083.10 195
ETV-MVS74.46 5873.84 6176.33 6079.27 13255.24 12979.22 11585.00 3664.97 2172.65 8679.46 24853.65 6687.87 4267.45 9082.91 8185.89 96
OPM-MVS74.73 5374.25 5676.19 6180.81 10259.01 6782.60 6683.64 6263.74 3972.52 8887.49 7447.18 14485.88 9069.47 7480.78 9983.66 179
Ray L. Khuboni, Hongjun Xu: Octagram Propagation Matching for Multi-Scale View Stereopsis (OPM-MVS).
HQP_MVS74.31 5973.73 6276.06 6281.41 9056.31 10284.22 4084.01 4964.52 2569.27 12786.10 10845.26 17087.21 5368.16 8180.58 10384.65 144
mvsmamba71.15 9969.54 11875.99 6377.61 18953.46 15281.95 7875.11 22557.73 14966.95 17385.96 11437.14 25287.56 4867.94 8375.49 17686.97 54
Effi-MVS+-dtu69.64 13567.53 16075.95 6476.10 22162.29 1580.20 9876.06 20859.83 11065.26 20977.09 28441.56 20584.02 13060.60 14971.09 23381.53 222
EPNet73.09 6972.16 7575.90 6575.95 22356.28 10483.05 5672.39 25666.53 1065.27 20687.00 8150.40 10485.47 10262.48 13386.32 5685.94 92
Wanjuan Su, Wenbing Tao: Efficient Edge-Preserving Multi-View Stereo Network for Depth Estimation. AAAI 2023
3Dnovator64.47 572.49 7871.39 8675.79 6677.70 18058.99 6880.66 9483.15 7962.24 6665.46 20286.59 9342.38 19585.52 9859.59 15884.72 6382.85 200
LPG-MVS_test72.74 7471.74 7975.76 6780.22 11157.51 8682.55 6783.40 7061.32 7966.67 17987.33 7739.15 22986.59 7167.70 8677.30 15383.19 191
LGP-MVS_train75.76 6780.22 11157.51 8683.40 7061.32 7966.67 17987.33 7739.15 22986.59 7167.70 8677.30 15383.19 191
EC-MVSNet75.84 4575.87 4275.74 6978.86 14252.65 16883.73 5086.08 1763.47 4272.77 8487.25 8053.13 6987.93 4071.97 6185.57 6086.66 66
MVS_111021_HR74.02 6173.46 6575.69 7083.01 7260.63 4077.29 15678.40 17361.18 8270.58 10485.97 11354.18 5584.00 13167.52 8982.98 8082.45 207
casdiffmvs_mvgpermissive76.14 4176.30 3675.66 7176.46 21751.83 18679.67 10985.08 3165.02 1975.84 3488.58 6059.42 2185.08 10872.75 5683.93 7290.08 1
Fangjinhua Wang, Qingshan Xu, Yew-Soon Ong, Marc Pollefeys: Lightweight and Accurate Multi-View Stereo With Confidence-Aware Diffusion Model. IEEE T-PAMI 2025
DELS-MVS74.76 5274.46 5475.65 7277.84 17752.25 17875.59 19284.17 4663.76 3873.15 7382.79 17459.58 1986.80 6667.24 9186.04 5787.89 24
Christian Sormann, Emanuele Santellani, Mattia Rossi, Andreas Kuhn, Friedrich Fraundorfer: DELS-MVS: Deep Epipolar Line Search for Multi-View Stereo. Winter Conference on Applications of Computer Vision (WACV), 2023
Effi-MVS+73.31 6772.54 7275.62 7377.87 17553.64 14779.62 11179.61 14161.63 7772.02 9482.61 17956.44 3585.97 8863.99 11979.07 12787.25 50
MAR-MVS71.51 9570.15 11075.60 7481.84 8459.39 5581.38 8682.90 8354.90 20968.08 14878.70 25747.73 13285.51 9951.68 21784.17 7081.88 219
Zhenyu Xu, Yiguang Liu, Xuelei Shi, Ying Wang, Yunan Zheng: MARMVS: Matching Ambiguity Reduced Multiple View Stereo for Efficient Large Scale Scene Reconstruction. CVPR 2020
ACMP63.53 672.30 8171.20 9175.59 7580.28 10957.54 8482.74 6382.84 8560.58 9065.24 21086.18 10539.25 22786.03 8666.95 9576.79 16183.22 189
Qingshan Xu and Wenbing Tao: Planar Prior Assisted PatchMatch Multi-View Stereo. AAAI 2020
HQP-MVS73.45 6572.80 6975.40 7680.66 10354.94 13182.31 7183.90 5462.10 6867.85 15285.54 12645.46 16486.93 6267.04 9380.35 10784.32 151
PCF-MVS61.88 870.95 10469.49 12075.35 7777.63 18455.71 11776.04 18581.81 9750.30 26669.66 12085.40 12952.51 7584.89 11451.82 21480.24 10985.45 116
Andreas Kuhn, Shan Lin, Oliver Erdler: Plane Completion and Filtering for Multi-View Stereo Reconstruction. GCPR 2019
PS-MVSNAJss72.24 8271.21 9075.31 7878.50 15155.93 11281.63 8182.12 9256.24 17570.02 11385.68 12247.05 14684.34 12465.27 10974.41 18385.67 106
EIA-MVS71.78 9070.60 10075.30 7979.85 12053.54 15077.27 15783.26 7757.92 14566.49 18179.39 24952.07 8486.69 6960.05 15279.14 12685.66 107
CLD-MVS73.33 6672.68 7075.29 8078.82 14453.33 15678.23 12884.79 3961.30 8170.41 10681.04 21652.41 7887.12 5864.61 11582.49 8885.41 120
Zhaoxin Li, Wangmeng Zuo, Zhaoqi Wang, Lei Zhang: Confidence-based Large-scale Dense Multi-view Stereo. IEEE Transaction on Image Processing, 2020
iter_conf_final69.82 12768.02 15075.23 8179.38 12952.91 16380.11 9973.96 24354.99 20768.04 14983.59 16129.05 32887.16 5565.41 10877.62 14585.63 109
RRT_MVS69.42 14367.49 16375.21 8278.01 17252.56 17282.23 7578.15 17655.84 18265.65 19885.07 13030.86 31386.83 6561.56 14470.00 25086.24 85
PAPM_NR72.63 7671.80 7875.13 8381.72 8553.42 15479.91 10483.28 7659.14 11966.31 18685.90 11651.86 8786.06 8457.45 16780.62 10185.91 94
EI-MVSNet-Vis-set72.42 8071.59 8074.91 8478.47 15354.02 14177.05 16279.33 14765.03 1871.68 9779.35 25152.75 7284.89 11466.46 9674.23 18485.83 98
MVSFormer71.50 9670.38 10574.88 8578.76 14557.15 9482.79 6178.48 16651.26 25469.49 12283.22 16843.99 18183.24 14466.06 9979.37 11984.23 154
CPTT-MVS72.78 7372.08 7774.87 8684.88 5761.41 2684.15 4377.86 18055.27 19667.51 16388.08 6541.93 19981.85 17669.04 7780.01 11181.35 229
iter_conf0569.40 14567.62 15674.73 8777.84 17751.13 19079.28 11473.71 24654.62 21268.17 14483.59 16128.68 33387.16 5565.74 10576.95 15885.91 94
EPP-MVSNet72.16 8671.31 8974.71 8878.68 14849.70 21582.10 7681.65 9960.40 9365.94 19185.84 11851.74 9086.37 8055.93 17679.55 11888.07 23
原ACMM174.69 8985.39 4759.40 5483.42 6951.47 25070.27 10886.61 9248.61 12386.51 7653.85 19787.96 3978.16 273
ET-MVSNet_ETH3D67.96 17565.72 20274.68 9076.67 21155.62 12275.11 20274.74 23052.91 23460.03 27680.12 23433.68 28582.64 16361.86 13976.34 16585.78 99
MSLP-MVS++73.77 6473.47 6474.66 9183.02 7159.29 5882.30 7481.88 9559.34 11771.59 9886.83 8345.94 15783.65 13765.09 11085.22 6181.06 236
PVSNet_Blended_VisFu71.45 9770.39 10474.65 9282.01 8058.82 7179.93 10380.35 13355.09 20165.82 19782.16 19449.17 11682.64 16360.34 15078.62 13582.50 206
114514_t70.83 10669.56 11774.64 9386.21 3154.63 13682.34 7081.81 9748.22 29163.01 24385.83 11940.92 21487.10 5957.91 16479.79 11282.18 212
Vis-MVSNetpermissive72.18 8371.37 8774.61 9481.29 9355.41 12680.90 9078.28 17560.73 8869.23 13088.09 6444.36 17882.65 16257.68 16581.75 9685.77 102
Jingyang Zhang, Yao Yao, Shiwei Li, Zixin Luo, Tian Fang: Visibility-aware Multiview Stereo Network. BMVC 2020
hse-mvs271.04 10169.86 11374.60 9579.58 12457.12 9673.96 22475.25 22060.40 9374.81 4781.95 19945.54 16282.90 15170.41 7066.83 28983.77 173
test_djsdf69.45 14267.74 15274.58 9674.57 24954.92 13382.79 6178.48 16651.26 25465.41 20383.49 16638.37 23683.24 14466.06 9969.25 26685.56 111
AUN-MVS68.45 16566.41 18874.57 9779.53 12657.08 9773.93 22775.23 22154.44 21866.69 17881.85 20137.10 25482.89 15262.07 13666.84 28883.75 174
casdiffmvspermissive74.80 5174.89 5174.53 9875.59 22950.37 20478.17 13185.06 3362.80 5874.40 5487.86 7057.88 2683.61 13869.46 7582.79 8589.59 3
Fangjinhua Wang, Qingshan Xu, Yew-Soon Ong, Marc Pollefeys: Lightweight and Accurate Multi-View Stereo With Confidence-Aware Diffusion Model. IEEE T-PAMI 2025
EI-MVSNet-UG-set71.92 8871.06 9474.52 9977.98 17353.56 14976.62 17179.16 14864.40 2771.18 10078.95 25652.19 8284.66 12065.47 10773.57 19585.32 123
API-MVS72.17 8471.41 8574.45 10081.95 8357.22 8984.03 4580.38 13259.89 10968.40 13982.33 18849.64 11087.83 4451.87 21384.16 7178.30 271
PAPR71.72 9370.82 9774.41 10181.20 9751.17 18979.55 11283.33 7355.81 18466.93 17484.61 13950.95 10086.06 8455.79 17979.20 12486.00 90
baseline74.61 5574.70 5274.34 10275.70 22549.99 21277.54 14884.63 4062.73 5973.98 6087.79 7357.67 2883.82 13469.49 7382.74 8689.20 6
thisisatest053067.92 17665.78 20174.33 10376.29 21851.03 19176.89 16774.25 23953.67 22865.59 20081.76 20335.15 26885.50 10055.94 17572.47 21486.47 71
tttt051767.83 17865.66 20374.33 10376.69 21050.82 19677.86 13973.99 24254.54 21664.64 22282.53 18435.06 26985.50 10055.71 18069.91 25386.67 65
test_fmvsmconf_n73.01 7072.59 7174.27 10571.28 30055.88 11478.21 13075.56 21454.31 22074.86 4687.80 7254.72 4980.23 21478.07 2178.48 13686.70 63
test_fmvsmconf0.1_n72.81 7272.33 7474.24 10669.89 32055.81 11578.22 12975.40 21754.17 22275.00 4288.03 6853.82 6080.23 21478.08 2078.34 13986.69 64
test_fmvsmconf0.01_n72.17 8471.50 8274.16 10767.96 33755.58 12378.06 13574.67 23254.19 22174.54 5288.23 6150.35 10680.24 21378.07 2177.46 14986.65 67
MG-MVS73.96 6273.89 6074.16 10785.65 4249.69 21781.59 8481.29 11461.45 7871.05 10188.11 6351.77 8987.73 4561.05 14683.09 7685.05 133
ACMM61.98 770.80 10869.73 11574.02 10980.59 10858.59 7482.68 6482.02 9455.46 19367.18 16884.39 14538.51 23483.17 14660.65 14876.10 16880.30 248
Qingshan Xu and Wenbing Tao: Multi-Scale Geometric Consistency Guided Multi-View Stereo. CVPR 2019
v7n69.01 15267.36 16873.98 11072.51 27852.65 16878.54 12581.30 11360.26 10162.67 24781.62 20543.61 18384.49 12157.01 16968.70 27584.79 141
AdaColmapbinary69.99 12368.66 13673.97 11184.94 5457.83 8082.63 6578.71 15856.28 17464.34 22484.14 14841.57 20487.06 6146.45 25878.88 12877.02 290
v119269.97 12468.68 13573.85 11273.19 26350.94 19277.68 14481.36 10757.51 15168.95 13380.85 22345.28 16985.33 10662.97 12970.37 24185.27 126
FA-MVS(test-final)69.82 12768.48 13973.84 11378.44 15450.04 21075.58 19478.99 15258.16 13767.59 16182.14 19542.66 19085.63 9456.60 17176.19 16785.84 97
v1070.21 11969.02 12873.81 11473.51 26150.92 19478.74 11981.39 10560.05 10466.39 18481.83 20247.58 13685.41 10562.80 13068.86 27385.09 132
QAPM70.05 12168.81 13273.78 11576.54 21553.43 15383.23 5483.48 6652.89 23565.90 19386.29 10241.55 20686.49 7751.01 22078.40 13881.42 223
OMC-MVS71.40 9870.60 10073.78 11576.60 21353.15 15979.74 10879.78 13758.37 13468.75 13486.45 9945.43 16680.60 20462.58 13177.73 14487.58 39
UA-Net73.13 6872.93 6873.76 11783.58 6451.66 18778.75 11877.66 18467.75 472.61 8789.42 4749.82 10883.29 14353.61 19983.14 7586.32 80
v114470.42 11569.31 12373.76 11773.22 26250.64 19977.83 14181.43 10458.58 13069.40 12581.16 21347.53 13785.29 10764.01 11870.64 23585.34 122
VDD-MVS72.50 7772.09 7673.75 11981.58 8649.69 21777.76 14377.63 18563.21 4773.21 7189.02 5342.14 19683.32 14261.72 14082.50 8788.25 15
Fast-Effi-MVS+70.28 11869.12 12773.73 12078.50 15151.50 18875.01 20579.46 14556.16 17768.59 13579.55 24653.97 5684.05 12753.34 20177.53 14785.65 108
canonicalmvs74.67 5474.98 5073.71 12178.94 14150.56 20280.23 9683.87 5760.30 10077.15 2986.56 9559.65 1782.00 17466.01 10182.12 8988.58 10
HyFIR lowres test65.67 21563.01 23573.67 12279.97 11955.65 11969.07 29075.52 21542.68 34663.53 23577.95 26840.43 21681.64 17946.01 26271.91 22383.73 175
jajsoiax68.25 16866.45 18473.66 12375.62 22755.49 12580.82 9178.51 16552.33 24064.33 22584.11 14928.28 33681.81 17863.48 12570.62 23683.67 177
v2v48270.50 11369.45 12273.66 12372.62 27450.03 21177.58 14580.51 13059.90 10669.52 12182.14 19547.53 13784.88 11665.07 11170.17 24686.09 88
cascas65.98 21163.42 22873.64 12577.26 19952.58 17172.26 25277.21 19348.56 28561.21 26774.60 31632.57 30485.82 9250.38 22576.75 16282.52 205
FE-MVS65.91 21263.33 23073.63 12677.36 19751.95 18572.62 24575.81 20953.70 22765.31 20478.96 25528.81 33286.39 7943.93 28273.48 19882.55 203
mvs_tets68.18 17066.36 19073.63 12675.61 22855.35 12880.77 9278.56 16352.48 23964.27 22784.10 15027.45 34281.84 17763.45 12670.56 23883.69 176
GeoE71.01 10270.15 11073.60 12879.57 12552.17 17978.93 11778.12 17758.02 14167.76 16083.87 15552.36 7982.72 16056.90 17075.79 17185.92 93
anonymousdsp67.00 19664.82 21373.57 12970.09 31656.13 10776.35 17677.35 19148.43 28964.99 21880.84 22433.01 29280.34 20964.66 11367.64 28384.23 154
test_fmvsm_n_192071.73 9271.14 9273.50 13072.52 27756.53 10175.60 19176.16 20448.11 29377.22 2885.56 12353.10 7077.43 25574.86 4077.14 15586.55 70
v870.33 11769.28 12473.49 13173.15 26450.22 20678.62 12280.78 12660.79 8666.45 18382.11 19749.35 11284.98 11163.58 12468.71 27485.28 125
Fast-Effi-MVS+-dtu67.37 18565.33 20873.48 13272.94 26957.78 8277.47 15076.88 19657.60 15061.97 25876.85 28839.31 22580.49 20854.72 18970.28 24482.17 214
alignmvs73.86 6373.99 5873.45 13378.20 16350.50 20378.57 12382.43 8859.40 11576.57 3186.71 8956.42 3681.23 19065.84 10381.79 9388.62 8
lupinMVS69.57 13768.28 14673.44 13478.76 14557.15 9476.57 17273.29 25046.19 31569.49 12282.18 19143.99 18179.23 22664.66 11379.37 11983.93 163
jason69.65 13468.39 14573.43 13578.27 16256.88 9877.12 16073.71 24646.53 31269.34 12683.22 16843.37 18579.18 22764.77 11279.20 12484.23 154
jason: jason.
IB-MVS56.42 1265.40 22062.73 23973.40 13674.89 23752.78 16773.09 23975.13 22455.69 18758.48 29873.73 32132.86 29486.32 8250.63 22370.11 24781.10 235
Christian Sormann, Mattia Rossi, Andreas Kuhn and Friedrich Fraundorfer: IB-MVS: An Iterative Algorithm for Deep Multi-View Stereo based on Binary Decisions. BMVC 2021
v192192069.47 14168.17 14773.36 13773.06 26650.10 20977.39 15180.56 12856.58 16868.59 13580.37 22844.72 17484.98 11162.47 13469.82 25585.00 134
v14419269.71 13068.51 13873.33 13873.10 26550.13 20877.54 14880.64 12756.65 16168.57 13780.55 22646.87 15184.96 11362.98 12869.66 26084.89 138
IS-MVSNet71.57 9471.00 9573.27 13978.86 14245.63 26580.22 9778.69 15964.14 3566.46 18287.36 7649.30 11385.60 9550.26 22683.71 7488.59 9
VDDNet71.81 8971.33 8873.26 14082.80 7547.60 24578.74 11975.27 21959.59 11472.94 8089.40 4841.51 20783.91 13258.75 16282.99 7888.26 14
v124069.24 14967.91 15173.25 14173.02 26849.82 21377.21 15880.54 12956.43 17068.34 14180.51 22743.33 18684.99 10962.03 13869.77 25884.95 137
UGNet68.81 15467.39 16673.06 14278.33 16054.47 13779.77 10675.40 21760.45 9263.22 23784.40 14432.71 29980.91 19951.71 21680.56 10583.81 169
Wanjuan Su, Qingshan Xu, Wenbing Tao: Uncertainty-guided Multi-view Stereo Network for Depth Estimation. IEEE Transactions on Circuits and Systems for Video Technology, 2022
BH-RMVSNet68.81 15467.42 16572.97 14380.11 11752.53 17374.26 21976.29 20358.48 13268.38 14084.20 14642.59 19183.83 13346.53 25775.91 16982.56 202
PS-MVSNAJ70.51 11269.70 11672.93 14481.52 8755.79 11674.92 20879.00 15155.04 20669.88 11778.66 25847.05 14682.19 17161.61 14179.58 11680.83 240
XVG-OURS68.76 15767.37 16772.90 14574.32 25557.22 8970.09 28178.81 15555.24 19767.79 15885.81 12136.54 25978.28 24362.04 13775.74 17283.19 191
xiu_mvs_v2_base70.52 11169.75 11472.84 14681.21 9655.63 12075.11 20278.92 15354.92 20869.96 11679.68 24347.00 15082.09 17361.60 14279.37 11980.81 241
nrg03072.96 7173.01 6772.84 14675.41 23250.24 20580.02 10082.89 8458.36 13574.44 5386.73 8758.90 2380.83 20065.84 10374.46 18087.44 42
thisisatest051565.83 21363.50 22772.82 14873.75 25949.50 22071.32 26373.12 25249.39 27563.82 23276.50 29734.95 27184.84 11753.20 20375.49 17684.13 158
XVG-OURS-SEG-HR68.81 15467.47 16472.82 14874.40 25356.87 9970.59 27479.04 15054.77 21066.99 17186.01 11239.57 22378.21 24462.54 13273.33 20183.37 185
OpenMVScopyleft61.03 968.85 15367.56 15772.70 15074.26 25653.99 14281.21 8881.34 11152.70 23662.75 24685.55 12538.86 23284.14 12648.41 24283.01 7779.97 253
Anonymous2024052969.91 12569.02 12872.56 15180.19 11447.65 24377.56 14780.99 12255.45 19469.88 11786.76 8539.24 22882.18 17254.04 19477.10 15787.85 27
V4268.65 15867.35 16972.56 15168.93 33150.18 20772.90 24179.47 14456.92 15869.45 12480.26 23246.29 15582.99 14864.07 11667.82 28184.53 146
dcpmvs_274.55 5775.23 4872.48 15382.34 7753.34 15577.87 13881.46 10357.80 14875.49 3686.81 8462.22 1377.75 25171.09 6782.02 9186.34 76
xiu_mvs_v1_base_debu68.58 16067.28 17172.48 15378.19 16457.19 9175.28 19775.09 22651.61 24570.04 11081.41 21032.79 29579.02 23463.81 12177.31 15081.22 231
xiu_mvs_v1_base68.58 16067.28 17172.48 15378.19 16457.19 9175.28 19775.09 22651.61 24570.04 11081.41 21032.79 29579.02 23463.81 12177.31 15081.22 231
xiu_mvs_v1_base_debi68.58 16067.28 17172.48 15378.19 16457.19 9175.28 19775.09 22651.61 24570.04 11081.41 21032.79 29579.02 23463.81 12177.31 15081.22 231
MVS_Test72.45 7972.46 7372.42 15774.88 23848.50 23376.28 17883.14 8059.40 11572.46 8984.68 13555.66 4081.12 19165.98 10279.66 11587.63 36
LFMVS71.78 9071.59 8072.32 15883.40 6746.38 25479.75 10771.08 26564.18 3272.80 8388.64 5942.58 19283.72 13557.41 16884.49 6686.86 58
ACMH+57.40 1166.12 21064.06 21772.30 15977.79 17952.83 16680.39 9578.03 17857.30 15257.47 30482.55 18127.68 34084.17 12545.54 26869.78 25679.90 254
test_fmvsmvis_n_192070.84 10570.38 10572.22 16071.16 30155.39 12775.86 18872.21 25849.03 28073.28 7086.17 10651.83 8877.29 25875.80 3278.05 14183.98 162
fmvsm_s_conf0.1_n_a69.32 14668.44 14371.96 16170.91 30453.78 14578.12 13362.30 33349.35 27673.20 7286.55 9651.99 8576.79 26874.83 4168.68 27685.32 123
fmvsm_s_conf0.5_n_a69.54 13868.74 13471.93 16272.47 27953.82 14478.25 12762.26 33449.78 27273.12 7686.21 10452.66 7376.79 26875.02 3968.88 27185.18 128
UniMVSNet (Re)70.63 11070.20 10871.89 16378.55 15045.29 26875.94 18782.92 8263.68 4068.16 14583.59 16153.89 5883.49 14153.97 19571.12 23286.89 57
MVSTER67.16 19265.58 20571.88 16470.37 31249.70 21570.25 28078.45 16951.52 24869.16 13180.37 22838.45 23582.50 16660.19 15171.46 22883.44 184
fmvsm_s_conf0.1_n69.41 14468.60 13771.83 16571.07 30252.88 16577.85 14062.44 33149.58 27472.97 7986.22 10351.68 9176.48 27575.53 3470.10 24886.14 86
CHOSEN 1792x268865.08 22562.84 23771.82 16681.49 8956.26 10566.32 30774.20 24040.53 35763.16 24078.65 25941.30 20877.80 25045.80 26474.09 18581.40 226
fmvsm_s_conf0.5_n69.58 13668.84 13171.79 16772.31 28352.90 16477.90 13762.43 33249.97 27072.85 8285.90 11652.21 8176.49 27475.75 3370.26 24585.97 91
DP-MVS65.68 21463.66 22571.75 16884.93 5556.87 9980.74 9373.16 25153.06 23259.09 29082.35 18736.79 25885.94 8932.82 35069.96 25272.45 334
Anonymous2023121169.28 14768.47 14171.73 16980.28 10947.18 24979.98 10182.37 8954.61 21367.24 16684.01 15239.43 22482.41 16955.45 18472.83 20985.62 110
EI-MVSNet69.27 14868.44 14371.73 16974.47 25049.39 22275.20 20078.45 16959.60 11169.16 13176.51 29551.29 9482.50 16659.86 15771.45 22983.30 186
eth_miper_zixun_eth67.63 18166.28 19471.67 17171.60 29148.33 23573.68 23377.88 17955.80 18565.91 19278.62 26147.35 14382.88 15359.45 15966.25 29383.81 169
MVS_111021_LR69.50 14068.78 13371.65 17278.38 15659.33 5674.82 21070.11 27358.08 13867.83 15684.68 13541.96 19876.34 27865.62 10677.54 14679.30 264
PAPM67.92 17666.69 18171.63 17378.09 16849.02 22577.09 16181.24 11751.04 25860.91 26983.98 15347.71 13384.99 10940.81 30579.32 12280.90 239
NR-MVSNet69.54 13868.85 13071.59 17478.05 17043.81 28174.20 22080.86 12565.18 1462.76 24584.52 14152.35 8083.59 13950.96 22270.78 23487.37 46
fmvsm_l_conf0.5_n70.99 10370.82 9771.48 17571.45 29354.40 13877.18 15970.46 27148.67 28475.17 3886.86 8253.77 6176.86 26676.33 3077.51 14883.17 194
diffmvspermissive70.69 10970.43 10371.46 17669.45 32548.95 22772.93 24078.46 16857.27 15371.69 9683.97 15451.48 9377.92 24870.70 6977.95 14387.53 40
Fangjinhua Wang, Qingshan Xu, Yew-Soon Ong, Marc Pollefeys: Lightweight and Accurate Multi-View Stereo With Confidence-Aware Diffusion Model. IEEE T-PAMI 2025
UniMVSNet_NR-MVSNet71.11 10071.00 9571.44 17779.20 13444.13 27776.02 18682.60 8766.48 1168.20 14284.60 14056.82 3382.82 15854.62 19070.43 23987.36 48
DU-MVS70.01 12269.53 11971.44 17778.05 17044.13 27775.01 20581.51 10264.37 2868.20 14284.52 14149.12 11982.82 15854.62 19070.43 23987.37 46
IterMVS-LS69.22 15068.48 13971.43 17974.44 25249.40 22176.23 17977.55 18659.60 11165.85 19681.59 20851.28 9581.58 18259.87 15669.90 25483.30 186
Fangjinhua Wang, Silvano Galliani, Christoph Vogel, Marc Pollefeys: IterMVS: Iterative Probability Estimation for Efficient Multi-View Stereo.
v14868.24 16967.19 17771.40 18070.43 31047.77 24275.76 19077.03 19558.91 12267.36 16480.10 23548.60 12481.89 17560.01 15366.52 29284.53 146
test_yl69.69 13169.13 12571.36 18178.37 15845.74 26174.71 21280.20 13457.91 14670.01 11483.83 15642.44 19382.87 15454.97 18679.72 11385.48 114
DCV-MVSNet69.69 13169.13 12571.36 18178.37 15845.74 26174.71 21280.20 13457.91 14670.01 11483.83 15642.44 19382.87 15454.97 18679.72 11385.48 114
LS3D64.71 22862.50 24171.34 18379.72 12355.71 11779.82 10574.72 23148.50 28856.62 30984.62 13833.59 28782.34 17029.65 37175.23 17875.97 298
TAMVS66.78 20165.27 20971.33 18479.16 13753.67 14673.84 23169.59 27852.32 24165.28 20581.72 20444.49 17777.40 25742.32 29778.66 13482.92 197
BH-untuned68.27 16767.29 17071.21 18579.74 12153.22 15876.06 18377.46 18957.19 15466.10 18881.61 20645.37 16883.50 14045.42 27376.68 16376.91 294
PVSNet_Blended68.59 15967.72 15371.19 18677.03 20550.57 20072.51 24881.52 10051.91 24364.22 23077.77 27749.13 11782.87 15455.82 17779.58 11680.14 251
fmvsm_l_conf0.5_n_a70.50 11370.27 10771.18 18771.30 29954.09 14076.89 16769.87 27447.90 29774.37 5586.49 9753.07 7176.69 27175.41 3577.11 15682.76 201
TranMVSNet+NR-MVSNet70.36 11670.10 11271.17 18878.64 14942.97 28976.53 17381.16 11966.95 668.53 13885.42 12851.61 9283.07 14752.32 20769.70 25987.46 41
TR-MVS66.59 20665.07 21171.17 18879.18 13549.63 21973.48 23475.20 22352.95 23367.90 15080.33 23139.81 22183.68 13643.20 29073.56 19680.20 249
CDS-MVSNet66.80 20065.37 20671.10 19078.98 14053.13 16173.27 23771.07 26652.15 24264.72 22080.23 23343.56 18477.10 26045.48 27178.88 12883.05 196
Khang Truong Giang, Soohwan Song, Sungho Jo: Curvature-guided dynamic scale networks for Multi-view Stereo. ICLR 2022
PVSNet_BlendedMVS68.56 16367.72 15371.07 19177.03 20550.57 20074.50 21681.52 10053.66 22964.22 23079.72 24249.13 11782.87 15455.82 17773.92 18879.77 259
GA-MVS65.53 21763.70 22471.02 19270.87 30548.10 23770.48 27674.40 23556.69 16064.70 22176.77 28933.66 28681.10 19255.42 18570.32 24383.87 167
RPMNet61.53 26458.42 27870.86 19369.96 31852.07 18165.31 31981.36 10743.20 34259.36 28670.15 34735.37 26685.47 10236.42 33464.65 30575.06 308
TAPA-MVS59.36 1066.60 20465.20 21070.81 19476.63 21248.75 22976.52 17480.04 13650.64 26365.24 21084.93 13239.15 22978.54 24036.77 32776.88 16085.14 129
Andrea Romanoni, Matteo Matteucci: TAPA-MVS: Textureless-Aware PAtchMatch Multi-View Stereo. ICCV 2019
新几何170.76 19585.66 4161.13 3066.43 30244.68 32770.29 10786.64 9041.29 20975.23 28349.72 23081.75 9675.93 299
XVG-ACMP-BASELINE64.36 23462.23 24470.74 19672.35 28152.45 17670.80 27378.45 16953.84 22659.87 27981.10 21516.24 37879.32 22555.64 18371.76 22480.47 244
PLCcopyleft56.13 1465.09 22463.21 23370.72 19781.04 9954.87 13478.57 12377.47 18748.51 28755.71 31681.89 20033.71 28479.71 21841.66 30270.37 24177.58 282
Jie Liao, Yanping Fu, Qingan Yan, Chunxia xiao: Pyramid Multi-View Stereo with Local Consistency. Pacific Graphics 2019
c3_l68.33 16667.56 15770.62 19870.87 30546.21 25774.47 21778.80 15656.22 17666.19 18778.53 26351.88 8681.40 18462.08 13569.04 26984.25 153
K. test v360.47 27157.11 28670.56 19973.74 26048.22 23675.10 20462.55 32958.27 13653.62 34176.31 29827.81 33981.59 18147.42 24839.18 38681.88 219
cl2267.47 18466.45 18470.54 20069.85 32146.49 25373.85 23077.35 19155.07 20465.51 20177.92 27047.64 13581.10 19261.58 14369.32 26384.01 161
MVS67.37 18566.33 19170.51 20175.46 23150.94 19273.95 22581.85 9641.57 35262.54 25178.57 26247.98 12885.47 10252.97 20482.05 9075.14 307
miper_ehance_all_eth68.03 17267.24 17570.40 20270.54 30846.21 25773.98 22378.68 16055.07 20466.05 18977.80 27452.16 8381.31 18761.53 14569.32 26383.67 177
MVP-Stereo65.41 21963.80 22270.22 20377.62 18855.53 12476.30 17778.53 16450.59 26456.47 31378.65 25939.84 22082.68 16144.10 28172.12 22272.44 335
Qingsong Yan: MVP-Stereo: A Parallel Multi-View Patchmatch Stereo Method with Dilation Matching for Photogrammetric Application.
EG-PatchMatch MVS64.71 22862.87 23670.22 20377.68 18153.48 15177.99 13678.82 15453.37 23156.03 31577.41 28224.75 36084.04 12846.37 25973.42 20073.14 326
SixPastTwentyTwo61.65 26358.80 27570.20 20575.80 22447.22 24875.59 19269.68 27654.61 21354.11 33579.26 25227.07 34682.96 14943.27 28849.79 37380.41 246
miper_enhance_ethall67.11 19366.09 19770.17 20669.21 32845.98 25972.85 24278.41 17251.38 25165.65 19875.98 30351.17 9781.25 18860.82 14769.32 26383.29 188
ACMH55.70 1565.20 22363.57 22670.07 20778.07 16952.01 18479.48 11379.69 13855.75 18656.59 31080.98 21827.12 34580.94 19642.90 29471.58 22777.25 288
Qingshan Xu and Wenbing Tao: Multi-Scale Geometric Consistency Guided Multi-View Stereo. CVPR 2019
test_040263.25 24561.01 26069.96 20880.00 11854.37 13976.86 16972.02 26054.58 21558.71 29380.79 22535.00 27084.36 12326.41 38264.71 30471.15 352
cl____67.18 19066.26 19569.94 20970.20 31345.74 26173.30 23576.83 19855.10 19965.27 20679.57 24547.39 14180.53 20559.41 16169.22 26783.53 183
DIV-MVS_self_test67.18 19066.26 19569.94 20970.20 31345.74 26173.29 23676.83 19855.10 19965.27 20679.58 24447.38 14280.53 20559.43 16069.22 26783.54 182
lessismore_v069.91 21171.42 29647.80 24050.90 37650.39 35775.56 30727.43 34381.33 18645.91 26334.10 39280.59 243
BH-w/o66.85 19865.83 20069.90 21279.29 13052.46 17574.66 21476.65 20154.51 21764.85 21978.12 26445.59 16182.95 15043.26 28975.54 17574.27 320
baseline263.42 24161.26 25769.89 21372.55 27647.62 24471.54 26068.38 28950.11 26754.82 32775.55 30843.06 18880.96 19548.13 24567.16 28781.11 234
bld_raw_dy_0_6464.87 22663.22 23269.83 21474.79 24253.32 15778.15 13262.02 33751.20 25660.17 27383.12 17224.15 36274.20 29063.08 12772.33 21781.96 216
CNLPA65.43 21864.02 21869.68 21578.73 14758.07 7877.82 14270.71 26951.49 24961.57 26583.58 16438.23 23970.82 30443.90 28370.10 24880.16 250
OurMVSNet-221017-061.37 26758.63 27769.61 21672.05 28648.06 23873.93 22772.51 25547.23 30754.74 32880.92 22021.49 37181.24 18948.57 24156.22 35579.53 261
CANet_DTU68.18 17067.71 15569.59 21774.83 24046.24 25678.66 12176.85 19759.60 11163.45 23682.09 19835.25 26777.41 25659.88 15578.76 13285.14 129
mvs_anonymous68.03 17267.51 16169.59 21772.08 28544.57 27571.99 25575.23 22151.67 24467.06 17082.57 18054.68 5077.94 24756.56 17275.71 17386.26 84
F-COLMAP63.05 24860.87 26369.58 21976.99 20753.63 14878.12 13376.16 20447.97 29652.41 34681.61 20627.87 33878.11 24540.07 30866.66 29077.00 291
MSDG61.81 26259.23 27069.55 22072.64 27352.63 17070.45 27775.81 20951.38 25153.70 33876.11 29929.52 32481.08 19437.70 32065.79 29774.93 312
Anonymous20240521166.84 19965.99 19869.40 22180.19 11442.21 29571.11 26971.31 26458.80 12467.90 15086.39 10029.83 32279.65 21949.60 23378.78 13186.33 78
tt080567.77 17967.24 17569.34 22274.87 23940.08 31077.36 15281.37 10655.31 19566.33 18584.65 13737.35 24782.55 16555.65 18272.28 22085.39 121
GBi-Net67.21 18766.55 18269.19 22377.63 18443.33 28477.31 15377.83 18156.62 16465.04 21582.70 17541.85 20080.33 21047.18 25272.76 21083.92 164
test167.21 18766.55 18269.19 22377.63 18443.33 28477.31 15377.83 18156.62 16465.04 21582.70 17541.85 20080.33 21047.18 25272.76 21083.92 164
FMVSNet166.70 20265.87 19969.19 22377.49 19343.33 28477.31 15377.83 18156.45 16964.60 22382.70 17538.08 24180.33 21046.08 26172.31 21983.92 164
UniMVSNet_ETH3D67.60 18267.07 17969.18 22677.39 19642.29 29374.18 22175.59 21360.37 9666.77 17686.06 11037.64 24378.93 23952.16 20973.49 19786.32 80
FIs70.82 10771.43 8468.98 22778.33 16038.14 32976.96 16483.59 6461.02 8367.33 16586.73 8755.07 4381.64 17954.61 19279.22 12387.14 52
LTVRE_ROB55.42 1663.15 24761.23 25868.92 22876.57 21447.80 24059.92 34876.39 20254.35 21958.67 29482.46 18629.44 32681.49 18342.12 29871.14 23177.46 283
Andreas Kuhn, Heiko Hirschmüller, Daniel Scharstein, Helmut Mayer: A TV Prior for High-Quality Scalable Multi-View Stereo Reconstruction. International Journal of Computer Vision 2016
131464.61 23063.21 23368.80 22971.87 28947.46 24673.95 22578.39 17442.88 34559.97 27776.60 29438.11 24079.39 22454.84 18872.32 21879.55 260
FMVSNet266.93 19766.31 19368.79 23077.63 18442.98 28876.11 18177.47 18756.62 16465.22 21282.17 19341.85 20080.18 21647.05 25572.72 21383.20 190
COLMAP_ROBcopyleft52.97 1761.27 26858.81 27368.64 23174.63 24752.51 17478.42 12673.30 24949.92 27150.96 35181.51 20923.06 36479.40 22331.63 36065.85 29574.01 323
Johannes L. Schönberger, Enliang Zheng, Marc Pollefeys, Jan-Michael Frahm: Pixelwise View Selection for Unstructured Multi-View Stereo. ECCV 2016
CostFormer64.04 23662.51 24068.61 23271.88 28845.77 26071.30 26470.60 27047.55 30164.31 22676.61 29341.63 20379.62 22149.74 22969.00 27080.42 245
FMVSNet366.32 20965.61 20468.46 23376.48 21642.34 29274.98 20777.15 19455.83 18365.04 21581.16 21339.91 21880.14 21747.18 25272.76 21082.90 199
WR-MVS68.47 16468.47 14168.44 23480.20 11339.84 31373.75 23276.07 20764.68 2268.11 14783.63 16050.39 10579.14 23249.78 22769.66 26086.34 76
ECVR-MVScopyleft67.72 18067.51 16168.35 23579.46 12736.29 35274.79 21166.93 29858.72 12567.19 16788.05 6636.10 26081.38 18552.07 21084.25 6887.39 44
D2MVS62.30 25560.29 26568.34 23666.46 34848.42 23465.70 31073.42 24847.71 29958.16 30075.02 31230.51 31577.71 25253.96 19671.68 22678.90 269
VNet69.68 13370.19 10968.16 23779.73 12241.63 30270.53 27577.38 19060.37 9670.69 10386.63 9151.08 9877.09 26153.61 19981.69 9885.75 104
tpm262.07 25860.10 26667.99 23872.79 27143.86 28071.05 27166.85 29943.14 34362.77 24475.39 31038.32 23780.80 20141.69 30168.88 27179.32 263
SDMVSNet68.03 17268.10 14967.84 23977.13 20148.72 23165.32 31879.10 14958.02 14165.08 21382.55 18147.83 13173.40 29163.92 12073.92 18881.41 224
pmmvs461.48 26659.39 26967.76 24071.57 29253.86 14371.42 26165.34 30944.20 33259.46 28577.92 27035.90 26274.71 28543.87 28464.87 30374.71 316
VPA-MVSNet69.02 15169.47 12167.69 24177.42 19541.00 30774.04 22279.68 13960.06 10369.26 12984.81 13451.06 9977.58 25354.44 19374.43 18284.48 148
test250665.33 22164.61 21467.50 24279.46 12734.19 36474.43 21851.92 37158.72 12566.75 17788.05 6625.99 35380.92 19851.94 21284.25 6887.39 44
FC-MVSNet-test69.80 12970.58 10267.46 24377.61 18934.73 36076.05 18483.19 7860.84 8565.88 19586.46 9854.52 5280.76 20352.52 20678.12 14086.91 56
test111167.21 18767.14 17867.42 24479.24 13334.76 35973.89 22965.65 30758.71 12766.96 17287.95 6936.09 26180.53 20552.03 21183.79 7386.97 54
ab-mvs66.65 20366.42 18767.37 24576.17 22041.73 29970.41 27876.14 20653.99 22465.98 19083.51 16549.48 11176.24 27948.60 24073.46 19984.14 157
IterMVS62.79 25061.27 25667.35 24669.37 32652.04 18371.17 26668.24 29052.63 23859.82 28076.91 28737.32 24872.36 29552.80 20563.19 31977.66 281
Fangjinhua Wang, Silvano Galliani, Christoph Vogel, Marc Pollefeys: IterMVS: Iterative Probability Estimation for Efficient Multi-View Stereo.
WR-MVS_H67.02 19566.92 18067.33 24777.95 17437.75 33377.57 14682.11 9362.03 7362.65 24882.48 18550.57 10379.46 22242.91 29364.01 31084.79 141
PEN-MVS66.60 20466.45 18467.04 24877.11 20336.56 34677.03 16380.42 13162.95 5062.51 25384.03 15146.69 15279.07 23344.22 27763.08 32085.51 113
SCA60.49 27058.38 27966.80 24974.14 25848.06 23863.35 32963.23 32549.13 27959.33 28972.10 33037.45 24574.27 28844.17 27862.57 32378.05 275
thres40063.31 24262.18 24566.72 25076.85 20839.62 31671.96 25769.44 28156.63 16262.61 24979.83 23837.18 24979.17 22831.84 35673.25 20381.36 227
CP-MVSNet66.49 20766.41 18866.72 25077.67 18236.33 34976.83 17079.52 14362.45 6362.54 25183.47 16746.32 15478.37 24145.47 27263.43 31785.45 116
PS-CasMVS66.42 20866.32 19266.70 25277.60 19136.30 35176.94 16579.61 14162.36 6562.43 25583.66 15945.69 15878.37 24145.35 27463.26 31885.42 119
HY-MVS56.14 1364.55 23163.89 21966.55 25374.73 24441.02 30469.96 28274.43 23449.29 27761.66 26380.92 22047.43 14076.68 27244.91 27671.69 22581.94 217
testing9164.46 23263.80 22266.47 25478.43 15540.06 31167.63 29869.59 27859.06 12063.18 23978.05 26634.05 27976.99 26348.30 24375.87 17082.37 209
thres600view763.30 24362.27 24366.41 25577.18 20038.87 32272.35 25069.11 28556.98 15762.37 25680.96 21937.01 25679.00 23731.43 36373.05 20781.36 227
testing9964.05 23563.29 23166.34 25678.17 16739.76 31567.33 30368.00 29158.60 12963.03 24278.10 26532.57 30476.94 26548.22 24475.58 17482.34 210
DTE-MVSNet65.58 21665.34 20766.31 25776.06 22234.79 35776.43 17579.38 14662.55 6161.66 26383.83 15645.60 16079.15 23141.64 30460.88 33585.00 134
pmmvs-eth3d58.81 28256.31 29666.30 25867.61 33952.42 17772.30 25164.76 31343.55 33854.94 32674.19 31928.95 32972.60 29443.31 28757.21 35073.88 324
pmmvs663.69 23962.82 23866.27 25970.63 30739.27 32073.13 23875.47 21652.69 23759.75 28382.30 18939.71 22277.03 26247.40 24964.35 30982.53 204
tfpn200view963.18 24662.18 24566.21 26076.85 20839.62 31671.96 25769.44 28156.63 16262.61 24979.83 23837.18 24979.17 22831.84 35673.25 20379.83 256
patch_mono-269.85 12671.09 9366.16 26179.11 13854.80 13571.97 25674.31 23753.50 23070.90 10284.17 14757.63 2963.31 34066.17 9882.02 9180.38 247
Patchmatch-RL test58.16 28655.49 30266.15 26267.92 33848.89 22860.66 34651.07 37547.86 29859.36 28662.71 37734.02 28172.27 29756.41 17359.40 34277.30 285
tpm cat159.25 28056.95 28966.15 26272.19 28446.96 25068.09 29565.76 30640.03 36157.81 30270.56 34238.32 23774.51 28638.26 31861.50 33277.00 291
ppachtmachnet_test58.06 28855.38 30366.10 26469.51 32348.99 22668.01 29666.13 30544.50 32954.05 33670.74 34132.09 30872.34 29636.68 33056.71 35476.99 293
pm-mvs165.24 22264.97 21266.04 26572.38 28039.40 31972.62 24575.63 21255.53 19162.35 25783.18 17047.45 13976.47 27649.06 23766.54 29182.24 211
CR-MVSNet59.91 27457.90 28465.96 26669.96 31852.07 18165.31 31963.15 32642.48 34759.36 28674.84 31335.83 26370.75 30545.50 27064.65 30575.06 308
1112_ss64.00 23763.36 22965.93 26779.28 13142.58 29171.35 26272.36 25746.41 31360.55 27177.89 27246.27 15673.28 29246.18 26069.97 25181.92 218
thres100view90063.28 24462.41 24265.89 26877.31 19838.66 32472.65 24369.11 28557.07 15562.45 25481.03 21737.01 25679.17 22831.84 35673.25 20379.83 256
TransMVSNet (Re)64.72 22764.33 21665.87 26975.22 23438.56 32574.66 21475.08 22958.90 12361.79 26182.63 17851.18 9678.07 24643.63 28655.87 35680.99 238
VPNet67.52 18368.11 14865.74 27079.18 13536.80 34472.17 25372.83 25362.04 7267.79 15885.83 11948.88 12176.60 27351.30 21872.97 20883.81 169
OpenMVS_ROBcopyleft52.78 1860.03 27358.14 28265.69 27170.47 30944.82 27075.33 19670.86 26845.04 32456.06 31476.00 30026.89 34879.65 21935.36 33967.29 28572.60 331
testing1162.81 24961.90 24865.54 27278.38 15640.76 30867.59 30066.78 30055.48 19260.13 27477.11 28331.67 31076.79 26845.53 26974.45 18179.06 265
Baseline_NR-MVSNet67.05 19467.56 15765.50 27375.65 22637.70 33575.42 19574.65 23359.90 10668.14 14683.15 17149.12 11977.20 25952.23 20869.78 25681.60 221
miper_lstm_enhance62.03 25960.88 26265.49 27466.71 34546.25 25556.29 36475.70 21150.68 26161.27 26675.48 30940.21 21768.03 32156.31 17465.25 30082.18 212
IterMVS-SCA-FT62.49 25161.52 25265.40 27571.99 28750.80 19771.15 26869.63 27745.71 32160.61 27077.93 26937.45 24565.99 33255.67 18163.50 31679.42 262
thres20062.20 25761.16 25965.34 27675.38 23339.99 31269.60 28569.29 28355.64 19061.87 26076.99 28537.07 25578.96 23831.28 36473.28 20277.06 289
MS-PatchMatch62.42 25361.46 25365.31 27775.21 23552.10 18072.05 25474.05 24146.41 31357.42 30674.36 31734.35 27777.57 25445.62 26773.67 19266.26 369
testing22262.29 25661.31 25565.25 27877.87 17538.53 32668.34 29366.31 30456.37 17163.15 24177.58 28028.47 33476.18 28137.04 32576.65 16481.05 237
ambc65.13 27963.72 36237.07 34147.66 38278.78 15754.37 33471.42 33611.24 38980.94 19645.64 26653.85 36377.38 284
tfpnnormal62.47 25261.63 25164.99 28074.81 24139.01 32171.22 26573.72 24555.22 19860.21 27280.09 23641.26 21176.98 26430.02 36968.09 27978.97 268
testdata64.66 28181.52 8752.93 16265.29 31046.09 31673.88 6287.46 7538.08 24166.26 33153.31 20278.48 13674.78 315
PatchmatchNetpermissive59.84 27558.24 28064.65 28273.05 26746.70 25269.42 28762.18 33547.55 30158.88 29271.96 33234.49 27569.16 31442.99 29263.60 31478.07 274
Fangjinhua Wang, Silvano Galliani, Christoph Vogel, Pablo Speciale, Marc Pollefeys: PatchmatchNet: Learned Multi-View Patchmatch Stereo.
sd_testset64.46 23264.45 21564.51 28377.13 20142.25 29462.67 33272.11 25958.02 14165.08 21382.55 18141.22 21269.88 31247.32 25073.92 18881.41 224
AllTest57.08 29454.65 30764.39 28471.44 29449.03 22369.92 28367.30 29345.97 31847.16 36579.77 24017.47 37467.56 32333.65 34459.16 34376.57 295
TestCases64.39 28471.44 29449.03 22367.30 29345.97 31847.16 36579.77 24017.47 37467.56 32333.65 34459.16 34376.57 295
Test_1112_low_res62.32 25461.77 24964.00 28679.08 13939.53 31868.17 29470.17 27243.25 34159.03 29179.90 23744.08 17971.24 30343.79 28568.42 27781.25 230
baseline163.81 23863.87 22163.62 28776.29 21836.36 34771.78 25967.29 29556.05 17964.23 22982.95 17347.11 14574.41 28747.30 25161.85 32980.10 252
LCM-MVSNet-Re61.88 26161.35 25463.46 28874.58 24831.48 37761.42 33958.14 35058.71 12753.02 34579.55 24643.07 18776.80 26745.69 26577.96 14282.11 215
CMPMVSbinary42.80 2157.81 29055.97 29863.32 28960.98 37547.38 24764.66 32469.50 28032.06 37346.83 36777.80 27429.50 32571.36 30248.68 23973.75 19171.21 351
M. Jancosek, T. Pajdla: Multi-View Reconstruction Preserving Weakly-Supported Surfaces. CVPR 2011
CL-MVSNet_self_test61.53 26460.94 26163.30 29068.95 33036.93 34367.60 29972.80 25455.67 18859.95 27876.63 29145.01 17272.22 29839.74 31262.09 32880.74 242
JIA-IIPM51.56 32847.68 34263.21 29164.61 35750.73 19847.71 38158.77 34842.90 34448.46 36251.72 38724.97 35870.24 31136.06 33653.89 36268.64 367
Vis-MVSNet (Re-imp)63.69 23963.88 22063.14 29274.75 24331.04 37871.16 26763.64 32256.32 17259.80 28184.99 13144.51 17575.46 28239.12 31480.62 10182.92 197
MDA-MVSNet-bldmvs53.87 31750.81 32963.05 29366.25 34948.58 23256.93 36263.82 32048.09 29441.22 38070.48 34530.34 31768.00 32234.24 34245.92 37872.57 332
tpmvs58.47 28356.95 28963.03 29470.20 31341.21 30367.90 29767.23 29649.62 27354.73 32970.84 34034.14 27876.24 27936.64 33161.29 33371.64 344
USDC56.35 30154.24 31462.69 29564.74 35640.31 30965.05 32173.83 24443.93 33647.58 36377.71 27815.36 38075.05 28438.19 31961.81 33072.70 330
our_test_356.49 29854.42 31062.68 29669.51 32345.48 26666.08 30861.49 33944.11 33550.73 35569.60 35233.05 29168.15 31838.38 31756.86 35174.40 318
GG-mvs-BLEND62.34 29771.36 29837.04 34269.20 28957.33 35654.73 32965.48 37130.37 31677.82 24934.82 34074.93 17972.17 340
gg-mvs-nofinetune57.86 28956.43 29562.18 29872.62 27435.35 35566.57 30456.33 36050.65 26257.64 30357.10 38330.65 31476.36 27737.38 32278.88 12874.82 314
ITE_SJBPF62.09 29966.16 35044.55 27664.32 31647.36 30455.31 32180.34 23019.27 37362.68 34336.29 33562.39 32579.04 266
EPNet_dtu61.90 26061.97 24761.68 30072.89 27039.78 31475.85 18965.62 30855.09 20154.56 33179.36 25037.59 24467.02 32639.80 31176.95 15878.25 272
Wanjuan Su, Wenbing Tao: Efficient Edge-Preserving Multi-View Stereo Network for Depth Estimation. AAAI 2023
TDRefinement53.44 32150.72 33061.60 30164.31 35946.96 25070.89 27265.27 31141.78 34844.61 37477.98 26711.52 38866.36 33028.57 37551.59 36771.49 347
ETVMVS59.51 27958.81 27361.58 30277.46 19434.87 35664.94 32359.35 34554.06 22361.08 26876.67 29029.54 32371.87 30032.16 35274.07 18678.01 279
PVSNet50.76 1958.40 28457.39 28561.42 30375.53 23044.04 27961.43 33863.45 32347.04 30956.91 30773.61 32227.00 34764.76 33639.12 31472.40 21575.47 305
TinyColmap54.14 31451.72 32561.40 30466.84 34441.97 29666.52 30568.51 28844.81 32542.69 37975.77 30511.66 38672.94 29331.96 35456.77 35369.27 365
UWE-MVS60.18 27259.78 26761.39 30577.67 18233.92 36769.04 29163.82 32048.56 28564.27 22777.64 27927.20 34470.40 30933.56 34776.24 16679.83 256
PatchMatch-RL56.25 30254.55 30961.32 30677.06 20456.07 10965.57 31254.10 36844.13 33453.49 34471.27 33925.20 35766.78 32736.52 33363.66 31361.12 373
CVMVSNet59.63 27859.14 27161.08 30774.47 25038.84 32375.20 20068.74 28731.15 37458.24 29976.51 29532.39 30668.58 31749.77 22865.84 29675.81 300
RPSCF55.80 30654.22 31560.53 30865.13 35542.91 29064.30 32557.62 35336.84 36758.05 30182.28 19028.01 33756.24 37237.14 32458.61 34582.44 208
WB-MVSnew59.66 27759.69 26859.56 30975.19 23635.78 35469.34 28864.28 31746.88 31061.76 26275.79 30440.61 21565.20 33532.16 35271.21 23077.70 280
KD-MVS_2432*160053.45 31951.50 32759.30 31062.82 36437.14 33955.33 36571.79 26247.34 30555.09 32470.52 34321.91 36870.45 30735.72 33742.97 38170.31 357
miper_refine_blended53.45 31951.50 32759.30 31062.82 36437.14 33955.33 36571.79 26247.34 30555.09 32470.52 34321.91 36870.45 30735.72 33742.97 38170.31 357
Patchmtry57.16 29356.47 29459.23 31269.17 32934.58 36162.98 33063.15 32644.53 32856.83 30874.84 31335.83 26368.71 31640.03 30960.91 33474.39 319
KD-MVS_self_test55.22 31053.89 31759.21 31357.80 38327.47 38857.75 35874.32 23647.38 30350.90 35270.00 34828.45 33570.30 31040.44 30757.92 34779.87 255
EU-MVSNet55.61 30754.41 31159.19 31465.41 35433.42 36972.44 24971.91 26128.81 37651.27 34973.87 32024.76 35969.08 31543.04 29158.20 34675.06 308
ADS-MVSNet251.33 33048.76 33759.07 31566.02 35244.60 27450.90 37559.76 34436.90 36550.74 35366.18 36926.38 34963.11 34127.17 37854.76 35969.50 363
pmmvs556.47 29955.68 30158.86 31661.41 37236.71 34566.37 30662.75 32840.38 35853.70 33876.62 29234.56 27367.05 32540.02 31065.27 29972.83 329
PM-MVS52.33 32550.19 33358.75 31762.10 36945.14 26965.75 30940.38 39443.60 33753.52 34272.65 3259.16 39465.87 33350.41 22454.18 36165.24 371
FMVSNet555.86 30554.93 30558.66 31871.05 30336.35 34864.18 32762.48 33046.76 31150.66 35674.73 31525.80 35464.04 33833.11 34865.57 29875.59 303
testing356.54 29755.92 29958.41 31977.52 19227.93 38669.72 28456.36 35954.75 21158.63 29677.80 27420.88 37271.75 30125.31 38462.25 32675.53 304
test_vis1_n_192058.86 28159.06 27258.25 32063.76 36043.14 28767.49 30166.36 30340.22 35965.89 19471.95 33331.04 31159.75 35459.94 15464.90 30271.85 343
test-LLR58.15 28758.13 28358.22 32168.57 33244.80 27165.46 31557.92 35150.08 26855.44 31969.82 34932.62 30157.44 36449.66 23173.62 19372.41 336
test-mter56.42 30055.82 30058.22 32168.57 33244.80 27165.46 31557.92 35139.94 36255.44 31969.82 34921.92 36757.44 36449.66 23173.62 19372.41 336
MIMVSNet57.35 29157.07 28758.22 32174.21 25737.18 33862.46 33360.88 34248.88 28255.29 32275.99 30231.68 30962.04 34531.87 35572.35 21675.43 306
Anonymous2024052155.30 30854.41 31157.96 32460.92 37741.73 29971.09 27071.06 26741.18 35348.65 36173.31 32316.93 37659.25 35642.54 29564.01 31072.90 328
WTY-MVS59.75 27660.39 26457.85 32572.32 28237.83 33261.05 34464.18 31845.95 32061.91 25979.11 25447.01 14960.88 34842.50 29669.49 26274.83 313
MIMVSNet155.17 31154.31 31357.77 32670.03 31732.01 37565.68 31164.81 31249.19 27846.75 36876.00 30025.53 35664.04 33828.65 37462.13 32777.26 287
XXY-MVS60.68 26961.67 25057.70 32770.43 31038.45 32764.19 32666.47 30148.05 29563.22 23780.86 22249.28 11460.47 34945.25 27567.28 28674.19 321
test_cas_vis1_n_192056.91 29556.71 29257.51 32859.13 38045.40 26763.58 32861.29 34036.24 36867.14 16971.85 33429.89 32156.69 36857.65 16663.58 31570.46 356
tpmrst58.24 28558.70 27656.84 32966.97 34234.32 36269.57 28661.14 34147.17 30858.58 29771.60 33541.28 21060.41 35049.20 23562.84 32175.78 301
dmvs_re56.77 29656.83 29156.61 33069.23 32741.02 30458.37 35364.18 31850.59 26457.45 30571.42 33635.54 26558.94 35837.23 32367.45 28469.87 361
TESTMET0.1,155.28 30954.90 30656.42 33166.56 34643.67 28265.46 31556.27 36139.18 36453.83 33767.44 36124.21 36155.46 37548.04 24673.11 20670.13 359
PMMVS53.96 31553.26 32156.04 33262.60 36750.92 19461.17 34256.09 36232.81 37253.51 34366.84 36634.04 28059.93 35344.14 28068.18 27857.27 381
YYNet150.73 33248.96 33456.03 33361.10 37441.78 29851.94 37356.44 35840.94 35644.84 37267.80 35930.08 31955.08 37636.77 32750.71 36971.22 350
MDA-MVSNet_test_wron50.71 33348.95 33556.00 33461.17 37341.84 29751.90 37456.45 35740.96 35544.79 37367.84 35830.04 32055.07 37736.71 32950.69 37071.11 353
myMVS_eth3d54.86 31354.61 30855.61 33574.69 24527.31 38965.52 31357.49 35450.97 25956.52 31172.18 32821.87 37068.09 31927.70 37764.59 30771.44 348
Syy-MVS56.00 30456.23 29755.32 33674.69 24526.44 39265.52 31357.49 35450.97 25956.52 31172.18 32839.89 21968.09 31924.20 38564.59 30771.44 348
UnsupCasMVSNet_eth53.16 32452.47 32255.23 33759.45 37933.39 37059.43 35069.13 28445.98 31750.35 35872.32 32729.30 32758.26 36242.02 30044.30 37974.05 322
sss56.17 30356.57 29354.96 33866.93 34336.32 35057.94 35661.69 33841.67 35058.64 29575.32 31138.72 23356.25 37142.04 29966.19 29472.31 339
tpm57.34 29258.16 28154.86 33971.80 29034.77 35867.47 30256.04 36348.20 29260.10 27576.92 28637.17 25153.41 38040.76 30665.01 30176.40 297
EPMVS53.96 31553.69 31854.79 34066.12 35131.96 37662.34 33549.05 37844.42 33155.54 31771.33 33830.22 31856.70 36741.65 30362.54 32475.71 302
Anonymous2023120655.10 31255.30 30454.48 34169.81 32233.94 36662.91 33162.13 33641.08 35455.18 32375.65 30632.75 29856.59 37030.32 36867.86 28072.91 327
EGC-MVSNET42.47 34838.48 35654.46 34274.33 25448.73 23070.33 27951.10 3740.03 4060.18 40767.78 36013.28 38366.49 32918.91 39150.36 37148.15 388
test_fmvs1_n51.37 32950.35 33254.42 34352.85 38637.71 33461.16 34351.93 37028.15 37863.81 23369.73 35113.72 38153.95 37851.16 21960.65 33871.59 345
pmmvs344.92 34441.95 35153.86 34452.58 38843.55 28362.11 33646.90 38626.05 38340.63 38160.19 37911.08 39157.91 36331.83 35946.15 37760.11 374
test_fmvs151.32 33150.48 33153.81 34553.57 38537.51 33660.63 34751.16 37328.02 38063.62 23469.23 35416.41 37753.93 37951.01 22060.70 33769.99 360
UnsupCasMVSNet_bld50.07 33548.87 33653.66 34660.97 37633.67 36857.62 35964.56 31539.47 36347.38 36464.02 37527.47 34159.32 35534.69 34143.68 38067.98 368
LCM-MVSNet40.30 35335.88 35953.57 34742.24 39729.15 38245.21 38760.53 34322.23 39028.02 39250.98 3903.72 40361.78 34631.22 36538.76 38769.78 362
test_vis1_n49.89 33648.69 33853.50 34853.97 38437.38 33761.53 33747.33 38428.54 37759.62 28467.10 36513.52 38252.27 38349.07 23657.52 34870.84 354
test20.0353.87 31754.02 31653.41 34961.47 37128.11 38561.30 34059.21 34651.34 25352.09 34777.43 28133.29 29058.55 36029.76 37060.27 34073.58 325
ANet_high41.38 35137.47 35853.11 35039.73 40224.45 39756.94 36169.69 27547.65 30026.04 39452.32 38612.44 38462.38 34421.80 38810.61 40372.49 333
PVSNet_043.31 2047.46 34245.64 34552.92 35167.60 34044.65 27354.06 36954.64 36441.59 35146.15 37058.75 38030.99 31258.66 35932.18 35124.81 39555.46 383
dp51.89 32751.60 32652.77 35268.44 33532.45 37462.36 33454.57 36544.16 33349.31 36067.91 35728.87 33156.61 36933.89 34354.89 35869.24 366
test0.0.03 153.32 32253.59 31952.50 35362.81 36629.45 38159.51 34954.11 36750.08 26854.40 33374.31 31832.62 30155.92 37330.50 36763.95 31272.15 341
PatchT53.17 32353.44 32052.33 35468.29 33625.34 39658.21 35454.41 36644.46 33054.56 33169.05 35533.32 28960.94 34736.93 32661.76 33170.73 355
test_fmvs248.69 33847.49 34352.29 35548.63 39233.06 37257.76 35748.05 38225.71 38459.76 28269.60 35211.57 38752.23 38449.45 23456.86 35171.58 346
CHOSEN 280x42047.83 34046.36 34452.24 35667.37 34149.78 21438.91 39343.11 39235.00 37043.27 37863.30 37628.95 32949.19 38736.53 33260.80 33657.76 380
Patchmatch-test49.08 33748.28 33951.50 35764.40 35830.85 37945.68 38548.46 38135.60 36946.10 37172.10 33034.47 27646.37 39027.08 38060.65 33877.27 286
ADS-MVSNet48.48 33947.77 34050.63 35866.02 35229.92 38050.90 37550.87 37736.90 36550.74 35366.18 36926.38 34952.47 38227.17 37854.76 35969.50 363
testgi51.90 32652.37 32350.51 35960.39 37823.55 39958.42 35258.15 34949.03 28051.83 34879.21 25322.39 36555.59 37429.24 37362.64 32272.40 338
test_fmvs344.30 34542.55 34849.55 36042.83 39627.15 39153.03 37144.93 38822.03 39153.69 34064.94 3724.21 40149.63 38647.47 24749.82 37271.88 342
MVS-HIRNet45.52 34344.48 34648.65 36168.49 33434.05 36559.41 35144.50 38927.03 38137.96 38850.47 39126.16 35264.10 33726.74 38159.52 34147.82 390
new-patchmatchnet47.56 34147.73 34147.06 36258.81 3819.37 40848.78 37959.21 34643.28 34044.22 37568.66 35625.67 35557.20 36631.57 36249.35 37474.62 317
test_vis1_rt41.35 35239.45 35447.03 36346.65 39537.86 33147.76 38038.65 39523.10 38744.21 37651.22 38911.20 39044.08 39239.27 31353.02 36459.14 376
FPMVS42.18 34941.11 35245.39 36458.03 38241.01 30649.50 37753.81 36930.07 37533.71 38964.03 37311.69 38552.08 38514.01 39555.11 35743.09 392
LF4IMVS42.95 34742.26 34945.04 36548.30 39332.50 37354.80 36748.49 38028.03 37940.51 38270.16 3469.24 39343.89 39331.63 36049.18 37558.72 377
PMVScopyleft28.69 2236.22 35833.29 36245.02 36636.82 40435.98 35354.68 36848.74 37926.31 38221.02 39751.61 3882.88 40660.10 3529.99 40347.58 37638.99 397
Y. Furukawa, J. Ponce: Accurate, dense, and robust multiview stereopsis. PAMI (2010)
dmvs_testset50.16 33451.90 32444.94 36766.49 34711.78 40561.01 34551.50 37251.17 25750.30 35967.44 36139.28 22660.29 35122.38 38757.49 34962.76 372
APD_test137.39 35734.94 36044.72 36848.88 39133.19 37152.95 37244.00 39119.49 39227.28 39358.59 3813.18 40552.84 38118.92 39041.17 38448.14 389
Gipumacopyleft34.77 35931.91 36343.33 36962.05 37037.87 33020.39 39867.03 29723.23 38618.41 39925.84 3994.24 40062.73 34214.71 39451.32 36829.38 398
S. Galliani, K. Lasinger, K. Schindler: Massively Parallel Multiview Stereopsis by Surface Normal Diffusion. ICCV 2015
mvsany_test139.38 35438.16 35743.02 37049.05 39034.28 36344.16 38925.94 40522.74 38946.57 36962.21 37823.85 36341.16 39733.01 34935.91 38953.63 384
WB-MVS43.26 34643.41 34742.83 37163.32 36310.32 40758.17 35545.20 38745.42 32240.44 38367.26 36434.01 28258.98 35711.96 39924.88 39459.20 375
SSC-MVS41.96 35041.99 35041.90 37262.46 3689.28 40957.41 36044.32 39043.38 33938.30 38766.45 36732.67 30058.42 36110.98 40021.91 39757.99 379
DSMNet-mixed39.30 35638.72 35541.03 37351.22 38919.66 40245.53 38631.35 40115.83 39839.80 38567.42 36322.19 36645.13 39122.43 38652.69 36558.31 378
testf131.46 36428.89 36739.16 37441.99 39928.78 38346.45 38337.56 39614.28 39921.10 39548.96 3921.48 40947.11 38813.63 39634.56 39041.60 393
APD_test231.46 36428.89 36739.16 37441.99 39928.78 38346.45 38337.56 39614.28 39921.10 39548.96 3921.48 40947.11 38813.63 39634.56 39041.60 393
mvsany_test332.62 36130.57 36538.77 37636.16 40524.20 39838.10 39420.63 40719.14 39340.36 38457.43 3825.06 39836.63 40029.59 37228.66 39355.49 382
test_vis3_rt32.09 36230.20 36637.76 37735.36 40627.48 38740.60 39228.29 40416.69 39632.52 39040.53 3951.96 40737.40 39933.64 34642.21 38348.39 387
N_pmnet39.35 35540.28 35336.54 37863.76 3601.62 41349.37 3780.76 41234.62 37143.61 37766.38 36826.25 35142.57 39426.02 38351.77 36665.44 370
test_f31.86 36331.05 36434.28 37932.33 40821.86 40032.34 39530.46 40216.02 39739.78 38655.45 3844.80 39932.36 40230.61 36637.66 38848.64 386
new_pmnet34.13 36034.29 36133.64 38052.63 38718.23 40444.43 38833.90 40022.81 38830.89 39153.18 38510.48 39235.72 40120.77 38939.51 38546.98 391
MVEpermissive17.77 2321.41 36917.77 37432.34 38134.34 40725.44 39516.11 39924.11 40611.19 40113.22 40131.92 3971.58 40830.95 40310.47 40117.03 39940.62 396
Simon Fuhrmann, Fabian Langguth, Michael Goesele: MVE - A Multi-View Reconstruction Environment. EUROGRAPHICS Workshops on Graphics and Cultural Heritage (2014)
PMMVS227.40 36625.91 36931.87 38239.46 4036.57 41031.17 39628.52 40323.96 38520.45 39848.94 3944.20 40237.94 39816.51 39219.97 39851.09 385
E-PMN23.77 36722.73 37126.90 38342.02 39820.67 40142.66 39035.70 39817.43 39410.28 40425.05 4006.42 39642.39 39510.28 40214.71 40017.63 399
EMVS22.97 36821.84 37226.36 38440.20 40119.53 40341.95 39134.64 39917.09 3959.73 40522.83 4017.29 39542.22 3969.18 40413.66 40117.32 400
test_method19.68 37018.10 37324.41 38513.68 4103.11 41212.06 40142.37 3932.00 40411.97 40236.38 3965.77 39729.35 40415.06 39323.65 39640.76 395
wuyk23d13.32 37212.52 37515.71 38647.54 39426.27 39331.06 3971.98 4114.93 4035.18 4061.94 4060.45 41118.54 4056.81 40612.83 4022.33 403
DeepMVS_CXcopyleft12.03 38717.97 40910.91 40610.60 4107.46 40211.07 40328.36 3983.28 40411.29 4068.01 4059.74 40513.89 401
tmp_tt9.43 37311.14 3764.30 3882.38 4114.40 41113.62 40016.08 4090.39 40515.89 40013.06 40215.80 3795.54 40712.63 39810.46 4042.95 402
test1234.73 3756.30 3780.02 3890.01 4120.01 41456.36 3630.00 4130.01 4070.04 4080.21 4080.01 4120.00 4080.03 4080.00 4060.04 404
testmvs4.52 3766.03 3790.01 3900.01 4120.00 41553.86 3700.00 4130.01 4070.04 4080.27 4070.00 4130.00 4080.04 4070.00 4060.03 405
test_blank0.00 3780.00 3810.00 3910.00 4140.00 4150.00 4020.00 4130.00 4090.00 4100.00 4090.00 4130.00 4080.00 4090.00 4060.00 406
uanet_test0.00 3780.00 3810.00 3910.00 4140.00 4150.00 4020.00 4130.00 4090.00 4100.00 4090.00 4130.00 4080.00 4090.00 4060.00 406
DCPMVS0.00 3780.00 3810.00 3910.00 4140.00 4150.00 4020.00 4130.00 4090.00 4100.00 4090.00 4130.00 4080.00 4090.00 4060.00 406
cdsmvs_eth3d_5k17.50 37123.34 3700.00 3910.00 4140.00 4150.00 40278.63 1610.00 4090.00 41082.18 19149.25 1150.00 4080.00 4090.00 4060.00 406
pcd_1.5k_mvsjas3.92 3775.23 3800.00 3910.00 4140.00 4150.00 4020.00 4130.00 4090.00 4100.00 40947.05 1460.00 4080.00 4090.00 4060.00 406
sosnet-low-res0.00 3780.00 3810.00 3910.00 4140.00 4150.00 4020.00 4130.00 4090.00 4100.00 4090.00 4130.00 4080.00 4090.00 4060.00 406
sosnet0.00 3780.00 3810.00 3910.00 4140.00 4150.00 4020.00 4130.00 4090.00 4100.00 4090.00 4130.00 4080.00 4090.00 4060.00 406
uncertanet0.00 3780.00 3810.00 3910.00 4140.00 4150.00 4020.00 4130.00 4090.00 4100.00 4090.00 4130.00 4080.00 4090.00 4060.00 406
Regformer0.00 3780.00 3810.00 3910.00 4140.00 4150.00 4020.00 4130.00 4090.00 4100.00 4090.00 4130.00 4080.00 4090.00 4060.00 406
ab-mvs-re6.49 3748.65 3770.00 3910.00 4140.00 4150.00 4020.00 4130.00 4090.00 41077.89 2720.00 4130.00 4080.00 4090.00 4060.00 406
uanet0.00 3780.00 3810.00 3910.00 4140.00 4150.00 4020.00 4130.00 4090.00 4100.00 4090.00 4130.00 4080.00 4090.00 4060.00 406
WAC-MVS27.31 38927.77 376
FOURS186.12 3660.82 3788.18 183.61 6360.87 8481.50 16
PC_three_145255.09 20184.46 489.84 4366.68 589.41 1874.24 4491.38 288.42 11
test_one_060187.58 959.30 5786.84 765.01 2083.80 1191.86 664.03 11
eth-test20.00 414
eth-test0.00 414
ZD-MVS86.64 2160.38 4382.70 8657.95 14478.10 2490.06 3656.12 3888.84 2674.05 4787.00 48
RE-MVS-def73.71 6383.49 6559.87 4984.29 3781.36 10758.07 13973.14 7490.07 3443.06 18868.20 7981.76 9484.03 159
IU-MVS87.77 459.15 6085.53 2553.93 22584.64 379.07 1190.87 588.37 13
test_241102_TWO86.73 1264.18 3284.26 591.84 865.19 690.83 578.63 1790.70 787.65 35
test_241102_ONE87.77 458.90 6986.78 1064.20 3185.97 191.34 1266.87 390.78 7
9.1478.75 1583.10 6984.15 4388.26 159.90 10678.57 2390.36 2757.51 3086.86 6477.39 2389.52 21
save fliter86.17 3361.30 2883.98 4779.66 14059.00 121
test_0728_THIRD65.04 1683.82 892.00 364.69 1090.75 879.48 690.63 1088.09 21
test072687.75 759.07 6487.86 486.83 864.26 2984.19 791.92 564.82 8
GSMVS78.05 275
test_part287.58 960.47 4283.42 12
sam_mvs134.74 27278.05 275
sam_mvs33.43 288
MTGPAbinary80.97 123
test_post168.67 2923.64 40432.39 30669.49 31344.17 278
test_post3.55 40533.90 28366.52 328
patchmatchnet-post64.03 37334.50 27474.27 288
MTMP86.03 1917.08 408
gm-plane-assit71.40 29741.72 30148.85 28373.31 32382.48 16848.90 238
test9_res75.28 3788.31 3283.81 169
TEST985.58 4361.59 2481.62 8281.26 11555.65 18974.93 4388.81 5653.70 6384.68 118
test_885.40 4660.96 3481.54 8581.18 11855.86 18074.81 4788.80 5853.70 6384.45 122
agg_prior273.09 5587.93 4084.33 150
agg_prior85.04 5059.96 4781.04 12174.68 5084.04 128
test_prior462.51 1482.08 77
test_prior281.75 8060.37 9675.01 4189.06 5256.22 3772.19 5988.96 24
旧先验276.08 18245.32 32376.55 3265.56 33458.75 162
新几何276.12 180
旧先验183.04 7053.15 15967.52 29287.85 7144.08 17980.76 10078.03 278
无先验79.66 11074.30 23848.40 29080.78 20253.62 19879.03 267
原ACMM279.02 116
test22283.14 6858.68 7372.57 24763.45 32341.78 34867.56 16286.12 10737.13 25378.73 13374.98 311
testdata272.18 29946.95 256
segment_acmp54.23 54
testdata172.65 24360.50 91
plane_prior781.41 9055.96 111
plane_prior681.20 9756.24 10645.26 170
plane_prior584.01 4987.21 5368.16 8180.58 10384.65 144
plane_prior486.10 108
plane_prior356.09 10863.92 3669.27 127
plane_prior284.22 4064.52 25
plane_prior181.27 95
plane_prior56.31 10283.58 5363.19 4880.48 106
n20.00 413
nn0.00 413
door-mid47.19 385
test1183.47 67
door47.60 383
HQP5-MVS54.94 131
HQP-NCC80.66 10382.31 7162.10 6867.85 152
ACMP_Plane80.66 10382.31 7162.10 6867.85 152
BP-MVS67.04 93
HQP4-MVS67.85 15286.93 6284.32 151
HQP3-MVS83.90 5480.35 107
HQP2-MVS45.46 164
NP-MVS80.98 10056.05 11085.54 126
MDTV_nov1_ep13_2view25.89 39461.22 34140.10 36051.10 35032.97 29338.49 31678.61 270
MDTV_nov1_ep1357.00 28872.73 27238.26 32865.02 32264.73 31444.74 32655.46 31872.48 32632.61 30370.47 30637.47 32167.75 282
ACMMP++_ref74.07 186
ACMMP++72.16 221
Test By Simon48.33 126