This table lists the benchmark results for the high-res multi-view scenario. The following metrics are evaluated:

(*) For exact definitions, detailing how potentially incomplete ground truth is taken into account, see our paper.

The datasets are grouped into different categories, and result averages are computed for a category and method if results of the method are available for all datasets within the category. Note that the category "all" includes both the high-res multi-view and the low-res many-view scenarios.

Methods with suffix _ROB may participate in the Robust Vision Challenge.

Click a dataset result cell to show a visualization of the reconstruction. For training datasets, ground truth and accuracy / completeness visualizations are also available. The visualizations may not work with mobile browsers.




Method Infoallhigh-res
multi-view
indooroutdoorbotani.boulde.bridgedoorexhibi.lectur.living.loungeobserv.old co.statueterrac.
sorted bysort bysort bysort bysort bysort bysort bysort bysort bysort bysort bysort bysort bysort bysort bysort by
DeepC-MVS_fast96.59 198.81 2098.54 2499.62 1999.90 4298.85 3399.24 22098.47 10398.14 599.08 7899.91 1493.09 106100.00 199.04 5499.99 21100.00 1
Andreas Kuhn, Christian Sormann, Mattia Rossi, Oliver Erdler, Friedrich Fraundorfer: DeepC-MVS: Deep Confidence Prediction for Multi-View Stereo Reconstruction. 3DV 2020
DeepPCF-MVS95.94 297.71 7598.98 1293.92 27199.63 7981.76 35099.96 2898.56 8199.47 199.19 7599.99 194.16 79100.00 199.92 1299.93 60100.00 1
PLCcopyleft95.54 397.93 6197.89 6398.05 12499.82 5894.77 18399.92 7098.46 10593.93 13697.20 14099.27 12295.44 4599.97 5397.41 12799.51 9899.41 156
Jie Liao, Yanping Fu, Qingan Yan, Chunxia xiao: Pyramid Multi-View Stereo with Local Consistency. Pacific Graphics 2019
DeepC-MVS94.51 496.92 10296.40 10898.45 10599.16 10495.90 14299.66 15898.06 18696.37 5994.37 19399.49 10583.29 23099.90 8397.63 12499.61 9199.55 134
Andreas Kuhn, Christian Sormann, Mattia Rossi, Oliver Erdler, Friedrich Fraundorfer: DeepC-MVS: Deep Confidence Prediction for Multi-View Stereo Reconstruction. 3DV 2020
PCF-MVS94.20 595.18 15894.10 17398.43 10798.55 14395.99 14097.91 31497.31 25690.35 24589.48 25699.22 12885.19 21599.89 8790.40 25598.47 13199.41 156
Andreas Kuhn, Shan Lin, Oliver Erdler: Plane Completion and Filtering for Multi-View Stereo Reconstruction. GCPR 2019
IB-MVS92.85 694.99 16393.94 17898.16 11797.72 19595.69 15299.99 498.81 5394.28 11792.70 21396.90 23995.08 5199.17 15996.07 15373.88 34999.60 124
Christian Sormann, Mattia Rossi, Andreas Kuhn and Friedrich Fraundorfer: IB-MVS: An Iterative Algorithm for Deep Multi-View Stereo based on Binary Decisions. BMVC 2021
HY-MVS92.50 797.79 7197.17 8599.63 1698.98 11499.32 897.49 31899.52 1495.69 7298.32 11497.41 22293.32 9899.77 11898.08 10395.75 19399.81 89
TAPA-MVS92.12 894.42 18093.60 18696.90 17299.33 9791.78 25299.78 12898.00 18989.89 25394.52 19099.47 10691.97 13699.18 15869.90 36099.52 9699.73 100
Andrea Romanoni, Matteo Matteucci: TAPA-MVS: Textureless-Aware PAtchMatch Multi-View Stereo. ICCV 2019
ACMP92.05 992.74 22192.42 21993.73 27795.91 26188.72 30399.81 12197.53 23494.13 12287.00 29998.23 19874.07 30798.47 19396.22 15288.86 24093.99 292
Qingshan Xu and Wenbing Tao: Planar Prior Assisted PatchMatch Multi-View Stereo. AAAI 2020
ACMM91.95 1092.88 21892.52 21793.98 27095.75 26889.08 30099.77 13197.52 23693.00 16289.95 24297.99 20676.17 29098.46 19693.63 20688.87 23994.39 254
Qingshan Xu and Wenbing Tao: Multi-Scale Geometric Consistency Guided Multi-View Stereo. CVPR 2019
3Dnovator+91.53 1196.31 12895.24 14799.52 2796.88 23598.64 5199.72 15098.24 16695.27 8488.42 28298.98 14782.76 23299.94 7297.10 13699.83 7299.96 61
3Dnovator91.47 1296.28 13195.34 14499.08 6296.82 23897.47 9099.45 19498.81 5395.52 7889.39 25799.00 14481.97 23699.95 6497.27 13099.83 7299.84 86
PVSNet91.05 1397.13 9496.69 9998.45 10599.52 8795.81 14499.95 4599.65 1194.73 9799.04 8099.21 12984.48 22099.95 6494.92 17098.74 12699.58 131
COLMAP_ROBcopyleft90.47 1492.18 23591.49 23794.25 25999.00 11288.04 31498.42 29596.70 31582.30 34288.43 28099.01 14276.97 28099.85 9986.11 30196.50 17794.86 238
Johannes L. Schönberger, Enliang Zheng, Marc Pollefeys, Jan-Michael Frahm: Pixelwise View Selection for Unstructured Multi-View Stereo. ECCV 2016
OpenMVScopyleft90.15 1594.77 16993.59 18798.33 11296.07 25597.48 8999.56 17698.57 7990.46 24286.51 30598.95 15678.57 27199.94 7293.86 19599.74 8197.57 225
ACMH+89.98 1690.35 27289.54 27092.78 30095.99 25886.12 32598.81 26897.18 26789.38 25783.14 32797.76 21568.42 33098.43 19889.11 26786.05 27293.78 307
ACMH89.72 1790.64 26589.63 26793.66 28395.64 27588.64 30698.55 28597.45 24189.03 26281.62 33497.61 21769.75 32498.41 20089.37 26487.62 26393.92 298
Qingshan Xu and Wenbing Tao: Multi-Scale Geometric Consistency Guided Multi-View Stereo. CVPR 2019
LTVRE_ROB88.28 1890.29 27589.05 28194.02 26695.08 28390.15 28597.19 32397.43 24384.91 32683.99 32397.06 23474.00 30898.28 21884.08 31187.71 26193.62 314
Andreas Kuhn, Heiko Hirschmüller, Daniel Scharstein, Helmut Mayer: A TV Prior for High-Quality Scalable Multi-View Stereo Reconstruction. International Journal of Computer Vision 2016
PVSNet_088.03 1991.80 24390.27 25596.38 19098.27 15990.46 27999.94 6199.61 1393.99 13286.26 31197.39 22471.13 32099.89 8798.77 7067.05 36498.79 198
OpenMVS_ROBcopyleft79.82 2083.77 32381.68 32690.03 32388.30 36182.82 34098.46 29095.22 35173.92 36576.00 35891.29 34955.00 36196.94 29068.40 36388.51 24890.34 353
CMPMVSbinary61.59 2184.75 31685.14 31183.57 34590.32 35362.54 37296.98 32997.59 22874.33 36469.95 36796.66 24864.17 34598.32 21487.88 28288.41 24989.84 358
M. Jancosek, T. Pajdla: Multi-View Reconstruction Preserving Weakly-Supported Surfaces. CVPR 2011
MVEpermissive53.74 2251.54 34847.86 35262.60 36259.56 38650.93 38079.41 37677.69 38535.69 38136.27 38361.76 3825.79 39169.63 38137.97 38236.61 37867.24 376
Simon Fuhrmann, Fabian Langguth, Michael Goesele: MVE - A Multi-View Reconstruction Environment. EUROGRAPHICS Workshops on Graphics and Cultural Heritage (2014)
PMVScopyleft49.05 2353.75 34651.34 35060.97 36340.80 38934.68 38974.82 37789.62 37837.55 37928.67 38572.12 3747.09 38981.63 37943.17 38168.21 36266.59 377
Y. Furukawa, J. Ponce: Accurate, dense, and robust multiview stereopsis. PAMI (2010)
test_fmvsmvis_n_192097.67 7697.59 7297.91 13097.02 22695.34 16399.95 4598.45 10697.87 1097.02 14499.59 9689.64 16999.98 4399.41 4199.34 11098.42 206
dmvs_re93.20 21093.15 20193.34 28796.54 24783.81 33798.71 27698.51 9691.39 22592.37 21998.56 18478.66 27097.83 24393.89 19489.74 22798.38 207
SDMVSNet94.80 16693.96 17797.33 16298.92 12195.42 16099.59 17098.99 3592.41 19192.55 21697.85 21175.81 29398.93 16897.90 11391.62 22497.64 221
dmvs_testset83.79 32286.07 30676.94 35292.14 33548.60 38496.75 33390.27 37589.48 25678.65 34798.55 18679.25 26386.65 37566.85 36682.69 29595.57 237
sd_testset93.55 20392.83 20795.74 20598.92 12190.89 27098.24 30198.85 5192.41 19192.55 21697.85 21171.07 32198.68 18493.93 19391.62 22497.64 221
test_fmvsm_n_192098.44 3898.61 2197.92 12899.27 10095.18 172100.00 198.90 4398.05 799.80 1599.73 7592.64 11899.99 3699.58 3399.51 9898.59 205
test_cas_vis1_n_192096.59 11796.23 11197.65 14398.22 16294.23 19299.99 497.25 26297.77 1299.58 4799.08 13677.10 27899.97 5397.64 12399.45 10398.74 201
test_vis1_n_192095.44 15495.31 14595.82 20398.50 14788.74 30299.98 1197.30 25797.84 1199.85 799.19 13066.82 33699.97 5398.82 6799.46 10298.76 199
test_vis1_n93.61 20293.03 20395.35 21495.86 26286.94 32199.87 9196.36 32796.85 3899.54 5098.79 17152.41 36599.83 10898.64 7998.97 12199.29 172
test_fmvs1_n94.25 18794.36 16793.92 27197.68 19883.70 33899.90 7996.57 32097.40 2299.67 3598.88 16261.82 35299.92 8098.23 9499.13 11898.14 213
mvsany_test197.82 6897.90 6297.55 14798.77 13493.04 22299.80 12597.93 19796.95 3799.61 4699.68 8890.92 15299.83 10899.18 4798.29 13899.80 91
APD_test181.15 32880.92 32981.86 34892.45 33159.76 37696.04 34693.61 36673.29 36677.06 35396.64 25044.28 37196.16 32272.35 35682.52 29689.67 359
test_vis1_rt86.87 30586.05 30789.34 32796.12 25378.07 36199.87 9183.54 38392.03 20378.21 35089.51 35445.80 36999.91 8196.25 15193.11 22190.03 356
test_vis3_rt68.82 33766.69 34275.21 35576.24 37860.41 37596.44 33768.71 38875.13 36250.54 37969.52 37716.42 38796.32 31680.27 33366.92 36568.89 375
test_fmvs289.47 28989.70 26688.77 33494.54 29275.74 36299.83 11794.70 35894.71 9891.08 22896.82 24754.46 36297.78 24692.87 21788.27 25292.80 331
test_fmvs195.35 15695.68 13794.36 25698.99 11384.98 33299.96 2896.65 31797.60 1699.73 2998.96 15171.58 31699.93 7998.31 9299.37 10898.17 210
test_fmvs379.99 33380.17 33279.45 35084.02 36962.83 37099.05 24293.49 36788.29 28380.06 34386.65 36528.09 37788.00 37188.63 27073.27 35187.54 367
mvsany_test382.12 32681.14 32885.06 34381.87 37270.41 36697.09 32692.14 37091.27 22777.84 35188.73 35739.31 37295.49 33490.75 24771.24 35389.29 363
testf168.38 33966.92 34072.78 35778.80 37550.36 38190.95 36987.35 38155.47 37258.95 37188.14 35920.64 38287.60 37257.28 37564.69 36680.39 371
APD_test268.38 33966.92 34072.78 35778.80 37550.36 38190.95 36987.35 38155.47 37258.95 37188.14 35920.64 38287.60 37257.28 37564.69 36680.39 371
test_f78.40 33577.59 33780.81 34980.82 37362.48 37396.96 33093.08 36883.44 33574.57 36284.57 36927.95 37892.63 36184.15 31072.79 35287.32 368
FE-MVS95.70 14895.01 15697.79 13598.21 16394.57 18495.03 35298.69 6188.90 27097.50 13596.19 26292.60 12099.49 14889.99 26097.94 14999.31 168
FA-MVS(test-final)95.86 14095.09 15398.15 12097.74 19095.62 15496.31 34098.17 17491.42 22396.26 16596.13 26590.56 15999.47 15092.18 22497.07 16599.35 163
iter_conf_final96.01 13795.93 12796.28 19298.38 15297.03 10499.87 9197.03 28494.05 13092.61 21497.98 20798.01 597.34 25997.02 13888.39 25094.47 244
bld_raw_dy_0_6492.74 22192.03 22594.87 23093.09 32093.46 21199.12 22895.41 34692.84 16790.44 23697.54 21878.08 27597.04 28393.94 19287.77 26094.11 281
patch_mono-298.24 5299.12 595.59 20799.67 7786.91 32399.95 4598.89 4597.60 1699.90 299.76 6296.54 2899.98 4399.94 1199.82 7699.88 81
EGC-MVSNET69.38 33663.76 34686.26 34190.32 35381.66 35196.24 34293.85 3640.99 3863.22 38792.33 34652.44 36492.92 36059.53 37484.90 28184.21 369
test250697.53 7997.19 8398.58 9398.66 13996.90 11098.81 26899.77 594.93 8997.95 12498.96 15192.51 12399.20 15694.93 16998.15 14099.64 114
test111195.57 15194.98 15797.37 15898.56 14193.37 21698.86 26398.45 10694.95 8896.63 15498.95 15675.21 30099.11 16195.02 16798.14 14299.64 114
ECVR-MVScopyleft95.66 14995.05 15497.51 15098.66 13993.71 20598.85 26598.45 10694.93 8996.86 14898.96 15175.22 29999.20 15695.34 16198.15 14099.64 114
test_blank0.00 3560.00 3590.00 3690.00 3920.00 3930.00 3800.00 3930.00 3870.00 3880.02 3870.00 3920.00 3880.00 3860.00 3860.00 384
tt080591.28 25190.18 25894.60 24196.26 25187.55 31698.39 29698.72 5889.00 26489.22 26398.47 19262.98 34998.96 16690.57 24988.00 25797.28 227
DVP-MVS++99.26 699.09 999.77 899.91 3999.31 999.95 4598.43 11896.48 5199.80 1599.93 1197.44 14100.00 199.92 1299.98 32100.00 1
FOURS199.92 3197.66 8099.95 4598.36 14895.58 7599.52 53
MSC_two_6792asdad99.93 299.91 3999.80 298.41 133100.00 199.96 9100.00 1100.00 1
PC_three_145296.96 3699.80 1599.79 5497.49 10100.00 199.99 599.98 32100.00 1
No_MVS99.93 299.91 3999.80 298.41 133100.00 199.96 9100.00 1100.00 1
test_one_060199.94 1399.30 1198.41 13396.63 4899.75 2799.93 1197.49 10
eth-test20.00 392
eth-test0.00 392
GeoE94.36 18493.48 19196.99 16997.29 21893.54 20999.96 2896.72 31488.35 28293.43 20298.94 15882.05 23598.05 23288.12 28096.48 17899.37 160
test_method80.79 32979.70 33384.08 34492.83 32667.06 36999.51 18495.42 34554.34 37481.07 33893.53 33444.48 37092.22 36378.90 34077.23 33992.94 328
Anonymous2024052185.15 31483.81 31689.16 32988.32 36082.69 34198.80 27095.74 33879.72 34981.53 33590.99 35065.38 34294.16 35072.69 35581.11 31090.63 352
h-mvs3394.92 16494.36 16796.59 18298.85 12991.29 26498.93 25498.94 3895.90 6698.77 9198.42 19590.89 15599.77 11897.80 11570.76 35498.72 202
hse-mvs294.38 18194.08 17495.31 21798.27 15990.02 28899.29 21698.56 8195.90 6698.77 9198.00 20490.89 15598.26 22297.80 11569.20 36097.64 221
CL-MVSNet_self_test84.50 31883.15 32188.53 33586.00 36581.79 34998.82 26797.35 25185.12 32283.62 32690.91 35276.66 28491.40 36569.53 36160.36 37292.40 337
KD-MVS_2432*160088.00 30086.10 30493.70 28196.91 23194.04 19697.17 32497.12 27484.93 32481.96 33192.41 34392.48 12494.51 34879.23 33652.68 37592.56 333
KD-MVS_self_test83.59 32482.06 32488.20 33786.93 36380.70 35697.21 32296.38 32682.87 33882.49 32988.97 35667.63 33392.32 36273.75 35462.30 37191.58 345
AUN-MVS93.28 20892.60 21295.34 21598.29 15690.09 28699.31 21198.56 8191.80 21196.35 16498.00 20489.38 17398.28 21892.46 22069.22 35997.64 221
ZD-MVS99.92 3198.57 5398.52 9392.34 19499.31 6899.83 4395.06 5299.80 11199.70 3199.97 42
SR-MVS-dyc-post98.31 4598.17 4498.71 8299.79 6296.37 12699.76 13698.31 15794.43 10799.40 6399.75 6793.28 10199.78 11598.90 6399.92 6399.97 55
RE-MVS-def98.13 4799.79 6296.37 12699.76 13698.31 15794.43 10799.40 6399.75 6792.95 10998.90 6399.92 6399.97 55
SED-MVS99.28 599.11 799.77 899.93 2499.30 1199.96 2898.43 11897.27 2799.80 1599.94 496.71 24100.00 1100.00 1100.00 1100.00 1
IU-MVS99.93 2499.31 998.41 13397.71 1399.84 10100.00 1100.00 1100.00 1
OPU-MVS99.93 299.89 4599.80 299.96 2899.80 5197.44 14100.00 1100.00 199.98 32100.00 1
test_241102_TWO98.43 11897.27 2799.80 1599.94 497.18 21100.00 1100.00 1100.00 1100.00 1
test_241102_ONE99.93 2499.30 1198.43 11897.26 2999.80 1599.88 2196.71 24100.00 1
SF-MVS98.67 2498.40 2999.50 2999.77 6598.67 4699.90 7998.21 16993.53 14899.81 1399.89 1994.70 6299.86 9899.84 1999.93 6099.96 61
cl2293.77 19693.25 20095.33 21699.49 9094.43 18799.61 16898.09 18390.38 24389.16 26795.61 27890.56 15997.34 25991.93 22684.45 28594.21 268
miper_ehance_all_eth93.16 21192.60 21294.82 23497.57 20293.56 20899.50 18697.07 28088.75 27388.85 27295.52 28490.97 15196.74 30090.77 24684.45 28594.17 270
miper_enhance_ethall94.36 18493.98 17695.49 20898.68 13895.24 16899.73 14797.29 25893.28 15689.86 24595.97 26994.37 7197.05 28192.20 22384.45 28594.19 269
ZNCC-MVS98.31 4598.03 5299.17 5099.88 4997.59 8199.94 6198.44 11094.31 11598.50 10699.82 4693.06 10799.99 3698.30 9399.99 2199.93 72
dcpmvs_297.42 8598.09 5095.42 21299.58 8487.24 31999.23 22196.95 29394.28 11798.93 8599.73 7594.39 7099.16 16099.89 1699.82 7699.86 85
cl____92.31 23291.58 23394.52 24697.33 21592.77 22599.57 17496.78 31186.97 30187.56 29195.51 28589.43 17296.62 30588.60 27182.44 29894.16 275
DIV-MVS_self_test92.32 23191.60 23294.47 25097.31 21692.74 22799.58 17296.75 31286.99 30087.64 28995.54 28289.55 17196.50 30988.58 27282.44 29894.17 270
eth_miper_zixun_eth92.41 23091.93 22793.84 27597.28 21990.68 27398.83 26696.97 29288.57 27889.19 26695.73 27589.24 17896.69 30389.97 26181.55 30494.15 276
9.1498.38 3199.87 5199.91 7498.33 15393.22 15799.78 2499.89 1994.57 6499.85 9999.84 1999.97 42
uanet_test0.00 3560.00 3590.00 3690.00 3920.00 3930.00 3800.00 3930.00 3870.00 3880.00 3880.00 3920.00 3880.00 3860.00 3860.00 384
DCPMVS0.00 3560.00 3590.00 3690.00 3920.00 3930.00 3800.00 3930.00 3870.00 3880.00 3880.00 3920.00 3880.00 3860.00 3860.00 384
save fliter99.82 5898.79 3799.96 2898.40 13797.66 15
ET-MVSNet_ETH3D94.37 18293.28 19997.64 14498.30 15597.99 6899.99 497.61 22494.35 11271.57 36599.45 10996.23 3195.34 33896.91 14485.14 28099.59 125
UniMVSNet_ETH3D90.06 28188.58 28894.49 24994.67 29088.09 31397.81 31697.57 22983.91 33288.44 27897.41 22257.44 35997.62 25191.41 23288.59 24697.77 219
EIA-MVS97.53 7997.46 7497.76 13998.04 17394.84 17999.98 1197.61 22494.41 11097.90 12699.59 9692.40 12698.87 16998.04 10499.13 11899.59 125
miper_refine_blended88.00 30086.10 30493.70 28196.91 23194.04 19697.17 32497.12 27484.93 32481.96 33192.41 34392.48 12494.51 34879.23 33652.68 37592.56 333
miper_lstm_enhance91.81 24091.39 23993.06 29697.34 21389.18 29999.38 20296.79 31086.70 30487.47 29395.22 30290.00 16595.86 33288.26 27681.37 30694.15 276
ETV-MVS97.92 6297.80 6598.25 11598.14 16996.48 12099.98 1197.63 21995.61 7499.29 7199.46 10892.55 12298.82 17199.02 5698.54 12999.46 149
CS-MVS97.79 7197.91 6197.43 15499.10 10694.42 18899.99 497.10 27695.07 8699.68 3499.75 6792.95 10998.34 21298.38 8899.14 11799.54 137
D2MVS92.76 22092.59 21593.27 29095.13 28189.54 29699.69 15399.38 2292.26 19687.59 29094.61 32185.05 21797.79 24491.59 23188.01 25692.47 336
DVP-MVScopyleft99.30 499.16 399.73 1199.93 2499.29 1499.95 4598.32 15597.28 2599.83 1199.91 1497.22 19100.00 199.99 5100.00 199.89 80
Zhenlong Yuan, Jinguo Luo, Fei Shen, Zhaoxin Li, Cong Liu, Tianlu Mao, Zhaoqi Wang: DVP-MVS: Synergize Depth-Edge and Visibility Prior for Multi-View Stereo. AAAI2025
test_0728_THIRD96.48 5199.83 1199.91 1497.87 6100.00 199.92 12100.00 1100.00 1
test_0728_SECOND99.82 799.94 1399.47 799.95 4598.43 118100.00 199.99 5100.00 1100.00 1
test072699.93 2499.29 1499.96 2898.42 12997.28 2599.86 599.94 497.22 19
SR-MVS98.46 3698.30 3998.93 7499.88 4997.04 10399.84 11198.35 15094.92 9199.32 6799.80 5193.35 9699.78 11599.30 4599.95 4999.96 61
DPM-MVS98.83 1998.46 2799.97 199.33 9799.92 199.96 2898.44 11097.96 999.55 4899.94 497.18 21100.00 193.81 19999.94 5499.98 48
GST-MVS98.27 4897.97 5599.17 5099.92 3197.57 8299.93 6798.39 14094.04 13198.80 8999.74 7392.98 108100.00 198.16 9799.76 8099.93 72
test_yl97.83 6697.37 7799.21 4499.18 10197.98 6999.64 16499.27 2691.43 22197.88 12798.99 14595.84 3899.84 10698.82 6795.32 20099.79 92
thisisatest053097.10 9596.72 9898.22 11697.60 20196.70 11499.92 7098.54 9091.11 23197.07 14398.97 14997.47 1299.03 16393.73 20496.09 18398.92 190
Anonymous2024052992.10 23690.65 24796.47 18398.82 13090.61 27598.72 27598.67 6675.54 36093.90 20098.58 18266.23 33899.90 8394.70 17990.67 22698.90 193
Anonymous20240521193.10 21491.99 22696.40 18899.10 10689.65 29498.88 25997.93 19783.71 33394.00 19898.75 17368.79 32699.88 9395.08 16691.71 22399.68 106
DCV-MVSNet97.83 6697.37 7799.21 4499.18 10197.98 6999.64 16499.27 2691.43 22197.88 12798.99 14595.84 3899.84 10698.82 6795.32 20099.79 92
tttt051796.85 10396.49 10597.92 12897.48 20795.89 14399.85 10798.54 9090.72 24096.63 15498.93 16097.47 1299.02 16493.03 21695.76 19298.85 194
our_test_390.39 27089.48 27493.12 29392.40 33289.57 29599.33 20896.35 32887.84 28885.30 31794.99 31084.14 22496.09 32680.38 33284.56 28493.71 313
thisisatest051597.41 8697.02 9198.59 9297.71 19797.52 8499.97 2198.54 9091.83 20897.45 13699.04 13997.50 999.10 16294.75 17796.37 18099.16 180
ppachtmachnet_test89.58 28888.35 29193.25 29192.40 33290.44 28099.33 20896.73 31385.49 31985.90 31595.77 27281.09 24696.00 33076.00 35182.49 29793.30 321
SMA-MVScopyleft98.76 2198.48 2699.62 1999.87 5198.87 3199.86 10498.38 14493.19 15899.77 2599.94 495.54 42100.00 199.74 2799.99 21100.00 1
Yufeng Yin; Xiaoyan Liu; Zichao Zhang: SMA-MVS: Segmentation-Guided Multi-Scale Anchor Deformation Patch Multi-View Stereo. IEEE Transactions on Circuits and Systems for Video Technology
GSMVS99.59 125
DPE-MVScopyleft99.26 699.10 899.74 1099.89 4599.24 1899.87 9198.44 11097.48 2199.64 3799.94 496.68 2699.99 3699.99 5100.00 199.99 23
Kehua Chen, Zhenlong Yuan, Tianlu Mao, Zhaoqi Wang: Dual-Level Precision Edges Guided Multi-View Stereo with Accurate Planarization. AAAI2025
test_part299.89 4599.25 1799.49 55
thres100view90096.74 11095.92 12999.18 4798.90 12698.77 3999.74 14299.71 692.59 18295.84 17398.86 16789.25 17699.50 14493.84 19694.57 20499.27 173
tfpnnormal89.29 29287.61 29894.34 25794.35 29594.13 19498.95 25298.94 3883.94 33084.47 32195.51 28574.84 30297.39 25677.05 34880.41 31791.48 346
tfpn200view996.79 10695.99 11799.19 4698.94 11798.82 3599.78 12899.71 692.86 16496.02 17098.87 16589.33 17499.50 14493.84 19694.57 20499.27 173
c3_l92.53 22791.87 22994.52 24697.40 21092.99 22399.40 19796.93 29887.86 28788.69 27595.44 28889.95 16696.44 31190.45 25280.69 31694.14 279
CHOSEN 280x42099.01 1399.03 1098.95 7399.38 9598.87 3198.46 29099.42 2197.03 3499.02 8199.09 13599.35 198.21 22499.73 2999.78 7999.77 96
CANet98.27 4897.82 6499.63 1699.72 7499.10 2299.98 1198.51 9697.00 3598.52 10499.71 8087.80 18999.95 6499.75 2599.38 10799.83 87
Fast-Effi-MVS+-dtu93.72 19993.86 18193.29 28997.06 22486.16 32499.80 12596.83 30692.66 17792.58 21597.83 21381.39 24297.67 24989.75 26396.87 17296.05 236
Effi-MVS+-dtu94.53 17895.30 14692.22 30497.77 18882.54 34399.59 17097.06 28194.92 9195.29 18395.37 29485.81 20897.89 24194.80 17597.07 16596.23 234
CANet_DTU96.76 10896.15 11398.60 9098.78 13397.53 8399.84 11197.63 21997.25 3099.20 7399.64 9381.36 24399.98 4392.77 21998.89 12298.28 209
MVS_030498.87 1898.61 2199.67 1599.18 10199.13 2199.87 9199.65 1198.17 498.75 9599.75 6792.76 11599.94 7299.88 1799.44 10499.94 70
MP-MVS-pluss98.07 5897.64 6899.38 4099.74 6998.41 5999.74 14298.18 17393.35 15296.45 15999.85 3092.64 11899.97 5398.91 6299.89 6699.77 96
MP-MVS-pluss: MP-MVS-pluss. MP-MVS-pluss
MSP-MVS99.09 999.12 598.98 7099.93 2497.24 9599.95 4598.42 12997.50 2099.52 5399.88 2197.43 1699.71 12899.50 3699.98 32100.00 1
Zhenlong Yuan, Cong Liu, Fei Shen, Zhaoxin Li, Jingguo luo, Tianlu Mao and Zhaoqi Wang: MSP-MVS: Multi-granularity Segmentation Prior Guided Multi-View Stereo. AAAI2025
sam_mvs194.72 6199.59 125
sam_mvs94.25 75
IterMVS-SCA-FT90.85 26190.16 26092.93 29796.72 24489.96 28998.89 25796.99 28888.95 26886.63 30395.67 27676.48 28695.00 34287.04 29284.04 29193.84 304
TSAR-MVS + MP.98.93 1498.77 1699.41 3799.74 6998.67 4699.77 13198.38 14496.73 4599.88 499.74 7394.89 5999.59 13999.80 2299.98 3299.97 55
Zhenlong Yuan, Jiakai Cao, Zhaoqi Wang, Zhaoxin Li: TSAR-MVS: Textureless-aware Segmentation and Correlative Refinement Guided Multi-View Stereo. Pattern Recognition
xiu_mvs_v1_base_debu97.43 8197.06 8698.55 9597.74 19098.14 6199.31 21197.86 20696.43 5399.62 4099.69 8485.56 21099.68 13299.05 5198.31 13597.83 216
OPM-MVS93.21 20992.80 20894.44 25293.12 31890.85 27199.77 13197.61 22496.19 6391.56 22498.65 17675.16 30198.47 19393.78 20289.39 23493.99 292
Ray L. Khuboni, Hongjun Xu: Octagram Propagation Matching for Multi-Scale View Stereopsis (OPM-MVS).
ACMMP_NAP98.49 3498.14 4699.54 2699.66 7898.62 5299.85 10798.37 14794.68 10099.53 5199.83 4392.87 111100.00 198.66 7899.84 7199.99 23
ambc83.23 34677.17 37762.61 37187.38 37394.55 36076.72 35686.65 36530.16 37496.36 31484.85 30969.86 35590.73 351
MTGPAbinary98.28 162
CS-MVS-test97.88 6397.94 5997.70 14299.28 9995.20 17199.98 1197.15 27195.53 7799.62 4099.79 5492.08 13498.38 20898.75 7299.28 11299.52 141
Effi-MVS+96.30 12995.69 13598.16 11797.85 18396.26 12997.41 31997.21 26490.37 24498.65 10098.58 18286.61 20298.70 18297.11 13597.37 16099.52 141
xiu_mvs_v2_base98.23 5397.97 5599.02 6798.69 13798.66 4899.52 18298.08 18597.05 3399.86 599.86 2690.65 15799.71 12899.39 4398.63 12898.69 203
xiu_mvs_v1_base97.43 8197.06 8698.55 9597.74 19098.14 6199.31 21197.86 20696.43 5399.62 4099.69 8485.56 21099.68 13299.05 5198.31 13597.83 216
new-patchmatchnet81.19 32779.34 33486.76 34082.86 37180.36 35997.92 31395.27 35082.09 34372.02 36486.87 36462.81 35090.74 36871.10 35863.08 36989.19 364
pmmvs685.69 30883.84 31591.26 31390.00 35684.41 33597.82 31596.15 33275.86 35881.29 33695.39 29261.21 35496.87 29583.52 31873.29 35092.50 335
pmmvs590.17 27989.09 27993.40 28692.10 33789.77 29399.74 14295.58 34385.88 31387.24 29895.74 27373.41 31096.48 31088.54 27383.56 29293.95 295
test_post195.78 35059.23 38493.20 10497.74 24791.06 238
test_post63.35 38194.43 6598.13 227
Fast-Effi-MVS+95.02 16294.19 17197.52 14997.88 18094.55 18599.97 2197.08 27988.85 27294.47 19297.96 20984.59 21998.41 20089.84 26297.10 16499.59 125
patchmatchnet-post91.70 34895.12 4997.95 238
Anonymous2023121189.86 28388.44 29094.13 26298.93 11990.68 27398.54 28798.26 16576.28 35686.73 30195.54 28270.60 32297.56 25290.82 24580.27 32094.15 276
pmmvs-eth3d84.03 32181.97 32590.20 32184.15 36887.09 32098.10 30994.73 35783.05 33674.10 36387.77 36265.56 34194.01 35181.08 33069.24 35889.49 361
GG-mvs-BLEND98.54 9898.21 16398.01 6793.87 35798.52 9397.92 12597.92 21099.02 297.94 24098.17 9699.58 9399.67 108
xiu_mvs_v1_base_debi97.43 8197.06 8698.55 9597.74 19098.14 6199.31 21197.86 20696.43 5399.62 4099.69 8485.56 21099.68 13299.05 5198.31 13597.83 216
Anonymous2023120686.32 30685.42 30989.02 33089.11 35980.53 35899.05 24295.28 34985.43 32082.82 32893.92 33074.40 30593.44 35866.99 36581.83 30393.08 326
MTAPA98.29 4797.96 5899.30 4199.85 5497.93 7299.39 20198.28 16295.76 7097.18 14199.88 2192.74 116100.00 198.67 7699.88 6899.99 23
MTMP99.87 9196.49 323
gm-plane-assit96.97 22993.76 20491.47 21998.96 15198.79 17394.92 170
test9_res99.71 3099.99 21100.00 1
MVP-Stereo90.93 25790.45 25192.37 30391.25 34788.76 30198.05 31196.17 33187.27 29584.04 32295.30 29778.46 27397.27 26983.78 31599.70 8491.09 347
Qingsong Yan: MVP-Stereo: A Parallel Multi-View Patchmatch Stereo Method with Dilation Matching for Photogrammetric Application.
TEST999.92 3198.92 2799.96 2898.43 11893.90 13899.71 3199.86 2695.88 3799.85 99
train_agg98.88 1798.65 1899.59 2299.92 3198.92 2799.96 2898.43 11894.35 11299.71 3199.86 2695.94 3499.85 9999.69 3299.98 3299.99 23
gg-mvs-nofinetune93.51 20491.86 23098.47 10397.72 19597.96 7192.62 36198.51 9674.70 36397.33 13869.59 37698.91 397.79 24497.77 12099.56 9499.67 108
SCA94.69 17193.81 18297.33 16297.10 22294.44 18698.86 26398.32 15593.30 15596.17 16895.59 28076.48 28697.95 23891.06 23897.43 15699.59 125
Patchmatch-test92.65 22691.50 23696.10 19796.85 23690.49 27891.50 36697.19 26582.76 34090.23 23795.59 28095.02 5498.00 23477.41 34596.98 17099.82 88
test_899.92 3198.88 3099.96 2898.43 11894.35 11299.69 3399.85 3095.94 3499.85 99
MS-PatchMatch90.65 26490.30 25491.71 31094.22 29785.50 32998.24 30197.70 21488.67 27586.42 30896.37 25867.82 33298.03 23383.62 31699.62 8891.60 344
Patchmatch-RL test86.90 30485.98 30889.67 32584.45 36775.59 36389.71 37192.43 36986.89 30277.83 35290.94 35194.22 7693.63 35687.75 28369.61 35699.79 92
cdsmvs_eth3d_5k23.43 35231.24 3550.00 3690.00 3920.00 3930.00 38098.09 1830.00 3870.00 38899.67 8983.37 2290.00 3880.00 3860.00 3860.00 384
pcd_1.5k_mvsjas7.60 35510.13 3580.00 3690.00 3920.00 3930.00 3800.00 3930.00 3870.00 3880.00 38891.20 1450.00 3880.00 3860.00 3860.00 384
agg_prior299.48 37100.00 1100.00 1
agg_prior99.93 2498.77 3998.43 11899.63 3899.85 99
tmp_tt65.23 34462.94 34772.13 35944.90 38850.03 38381.05 37589.42 37938.45 37848.51 38099.90 1854.09 36378.70 38091.84 22918.26 38287.64 366
canonicalmvs97.09 9796.32 10999.39 3998.93 11998.95 2699.72 15097.35 25194.45 10597.88 12799.42 11086.71 20099.52 14198.48 8593.97 21399.72 102
anonymousdsp91.79 24590.92 24494.41 25590.76 35092.93 22498.93 25497.17 26889.08 26087.46 29495.30 29778.43 27496.92 29292.38 22188.73 24293.39 319
alignmvs97.81 6997.33 7999.25 4298.77 13498.66 4899.99 498.44 11094.40 11198.41 10999.47 10693.65 9299.42 15298.57 8294.26 20999.67 108
nrg03093.51 20492.53 21696.45 18594.36 29497.20 9799.81 12197.16 27091.60 21489.86 24597.46 22086.37 20497.68 24895.88 15780.31 31994.46 245
v14419290.79 26289.52 27194.59 24293.11 31992.77 22599.56 17696.99 28886.38 30789.82 24894.95 31280.50 25597.10 27883.98 31380.41 31793.90 299
FIs94.10 18893.43 19296.11 19694.70 28996.82 11299.58 17298.93 4292.54 18589.34 25997.31 22587.62 19197.10 27894.22 19086.58 26994.40 252
v192192090.46 26989.12 27894.50 24892.96 32492.46 23699.49 18896.98 29086.10 31089.61 25495.30 29778.55 27297.03 28682.17 32480.89 31594.01 289
UA-Net96.54 11895.96 12398.27 11498.23 16195.71 15098.00 31298.45 10693.72 14498.41 10999.27 12288.71 18599.66 13691.19 23597.69 15199.44 153
v119290.62 26789.25 27694.72 23793.13 31693.07 21999.50 18697.02 28586.33 30889.56 25595.01 30779.22 26497.09 28082.34 32381.16 30894.01 289
FC-MVSNet-test93.81 19493.15 20195.80 20494.30 29696.20 13499.42 19698.89 4592.33 19589.03 26997.27 22787.39 19496.83 29793.20 21086.48 27094.36 256
v114491.09 25589.83 26394.87 23093.25 31593.69 20699.62 16796.98 29086.83 30389.64 25394.99 31080.94 24797.05 28185.08 30781.16 30893.87 302
sosnet-low-res0.00 3560.00 3590.00 3690.00 3920.00 3930.00 3800.00 3930.00 3870.00 3880.00 3880.00 3920.00 3880.00 3860.00 3860.00 384
HFP-MVS98.56 2998.37 3399.14 5699.96 897.43 9199.95 4598.61 7494.77 9599.31 6899.85 3094.22 76100.00 198.70 7499.98 3299.98 48
v14890.70 26389.63 26793.92 27192.97 32390.97 26799.75 13996.89 30187.51 29088.27 28395.01 30781.67 23897.04 28387.40 28777.17 34093.75 308
sosnet0.00 3560.00 3590.00 3690.00 3920.00 3930.00 3800.00 3930.00 3870.00 3880.00 3880.00 3920.00 3880.00 3860.00 3860.00 384
uncertanet0.00 3560.00 3590.00 3690.00 3920.00 3930.00 3800.00 3930.00 3870.00 3880.00 3880.00 3920.00 3880.00 3860.00 3860.00 384
AllTest92.48 22891.64 23195.00 22699.01 11088.43 30898.94 25396.82 30886.50 30588.71 27398.47 19274.73 30399.88 9385.39 30496.18 18196.71 230
TestCases95.00 22699.01 11088.43 30896.82 30886.50 30588.71 27398.47 19274.73 30399.88 9385.39 30496.18 18196.71 230
v7n89.65 28788.29 29293.72 27892.22 33490.56 27799.07 23797.10 27685.42 32186.73 30194.72 31580.06 25897.13 27581.14 32978.12 33193.49 316
region2R98.54 3098.37 3399.05 6399.96 897.18 9899.96 2898.55 8794.87 9399.45 5799.85 3094.07 81100.00 198.67 76100.00 199.98 48
iter_conf0596.07 13495.95 12596.44 18798.43 15097.52 8499.91 7496.85 30494.16 12192.49 21897.98 20798.20 497.34 25997.26 13188.29 25194.45 250
RRT_MVS93.14 21292.92 20593.78 27693.31 31490.04 28799.66 15897.69 21592.53 18688.91 27197.76 21584.36 22196.93 29195.10 16586.99 26794.37 255
PS-MVSNAJss93.64 20193.31 19894.61 24092.11 33692.19 24199.12 22897.38 24992.51 18888.45 27796.99 23891.20 14597.29 26794.36 18587.71 26194.36 256
PS-MVSNAJ98.44 3898.20 4299.16 5298.80 13298.92 2799.54 18098.17 17497.34 2399.85 799.85 3091.20 14599.89 8799.41 4199.67 8598.69 203
jajsoiax91.92 23891.18 24194.15 26091.35 34590.95 26899.00 24797.42 24592.61 18087.38 29597.08 23272.46 31297.36 25794.53 18388.77 24194.13 280
mvs_tets91.81 24091.08 24294.00 26891.63 34390.58 27698.67 28197.43 24392.43 19087.37 29697.05 23571.76 31497.32 26394.75 17788.68 24394.11 281
EI-MVSNet-UG-set98.14 5597.99 5498.60 9099.80 6196.27 12899.36 20698.50 10195.21 8598.30 11599.75 6793.29 10099.73 12798.37 8999.30 11199.81 89
EI-MVSNet-Vis-set98.27 4898.11 4998.75 8199.83 5796.59 11999.40 19798.51 9695.29 8398.51 10599.76 6293.60 9499.71 12898.53 8499.52 9699.95 68
HPM-MVS++copyleft99.07 1098.88 1599.63 1699.90 4299.02 2499.95 4598.56 8197.56 1999.44 5899.85 3095.38 46100.00 199.31 4499.99 2199.87 83
test_prior498.05 6599.94 61
XVS98.70 2398.55 2399.15 5499.94 1397.50 8799.94 6198.42 12996.22 6199.41 6199.78 5894.34 7299.96 5798.92 6099.95 4999.99 23
v124090.20 27788.79 28594.44 25293.05 32292.27 24099.38 20296.92 29985.89 31289.36 25894.87 31477.89 27697.03 28680.66 33181.08 31194.01 289
pm-mvs189.36 29187.81 29794.01 26793.40 31391.93 24798.62 28496.48 32486.25 30983.86 32496.14 26473.68 30997.04 28386.16 30075.73 34793.04 327
test_prior299.95 4595.78 6999.73 2999.76 6296.00 3399.78 24100.00 1
X-MVStestdata93.83 19292.06 22499.15 5499.94 1397.50 8799.94 6198.42 12996.22 6199.41 6141.37 38594.34 7299.96 5798.92 6099.95 4999.99 23
test_prior99.43 3499.94 1398.49 5798.65 6799.80 11199.99 23
旧先验299.46 19394.21 12099.85 799.95 6496.96 141
新几何299.40 197
新几何199.42 3699.75 6898.27 6098.63 7292.69 17599.55 4899.82 4694.40 67100.00 191.21 23499.94 5499.99 23
旧先验199.76 6697.52 8498.64 6999.85 3095.63 4199.94 5499.99 23
无先验99.49 18898.71 5993.46 150100.00 194.36 18599.99 23
原ACMM299.90 79
原ACMM198.96 7299.73 7296.99 10698.51 9694.06 12899.62 4099.85 3094.97 5899.96 5795.11 16499.95 4999.92 77
test22299.55 8597.41 9399.34 20798.55 8791.86 20799.27 7299.83 4393.84 8899.95 4999.99 23
testdata299.99 3690.54 251
segment_acmp96.68 26
testdata98.42 10899.47 9195.33 16498.56 8193.78 14199.79 2399.85 3093.64 9399.94 7294.97 16899.94 54100.00 1
testdata199.28 21796.35 60
v890.54 26889.17 27794.66 23893.43 31193.40 21599.20 22396.94 29785.76 31487.56 29194.51 32281.96 23797.19 27184.94 30878.25 32993.38 320
131496.84 10495.96 12399.48 3396.74 24398.52 5598.31 29898.86 4995.82 6889.91 24398.98 14787.49 19299.96 5797.80 11599.73 8299.96 61
LFMVS94.75 17093.56 18998.30 11399.03 10995.70 15198.74 27397.98 19287.81 28998.47 10799.39 11467.43 33499.53 14098.01 10595.20 20299.67 108
VDD-MVS93.77 19692.94 20496.27 19398.55 14390.22 28398.77 27297.79 21190.85 23796.82 15099.42 11061.18 35599.77 11898.95 5794.13 21098.82 196
VDDNet93.12 21391.91 22896.76 17696.67 24692.65 23398.69 27998.21 16982.81 33997.75 13099.28 11961.57 35399.48 14998.09 10294.09 21198.15 211
v1090.25 27688.82 28494.57 24493.53 30993.43 21399.08 23396.87 30385.00 32387.34 29794.51 32280.93 24897.02 28882.85 32079.23 32493.26 322
VPNet91.81 24090.46 24995.85 20294.74 28895.54 15698.98 24898.59 7692.14 19890.77 23397.44 22168.73 32897.54 25394.89 17377.89 33294.46 245
MVS96.60 11695.56 13999.72 1296.85 23699.22 1998.31 29898.94 3891.57 21590.90 23199.61 9586.66 20199.96 5797.36 12899.88 6899.99 23
v2v48291.30 24990.07 26295.01 22593.13 31693.79 20299.77 13197.02 28588.05 28589.25 26195.37 29480.73 25097.15 27387.28 28980.04 32294.09 283
V4291.28 25190.12 26194.74 23593.42 31293.46 21199.68 15597.02 28587.36 29389.85 24795.05 30581.31 24497.34 25987.34 28880.07 32193.40 318
SD-MVS98.92 1598.70 1799.56 2499.70 7698.73 4399.94 6198.34 15296.38 5699.81 1399.76 6294.59 6399.98 4399.84 1999.96 4699.97 55
Zhenlong Yuan, Jiakai Cao, Zhaoxin Li, Hao Jiang and Zhaoqi Wang: SD-MVS: Segmentation-driven Deformation Multi-View Stereo with Spherical Refinement and EM optimization. AAAI2024
GA-MVS93.83 19292.84 20696.80 17495.73 26993.57 20799.88 8897.24 26392.57 18492.92 20996.66 24878.73 26997.67 24987.75 28394.06 21299.17 179
MSLP-MVS++99.13 899.01 1199.49 3199.94 1398.46 5899.98 1198.86 4997.10 3299.80 1599.94 495.92 36100.00 199.51 35100.00 1100.00 1
APDe-MVS99.06 1198.91 1499.51 2899.94 1398.76 4299.91 7498.39 14097.20 3199.46 5699.85 3095.53 4499.79 11399.86 18100.00 199.99 23
APD-MVS_3200maxsize98.25 5198.08 5198.78 7999.81 6096.60 11899.82 11998.30 16093.95 13599.37 6599.77 6092.84 11299.76 12198.95 5799.92 6399.97 55
ADS-MVSNet293.80 19593.88 18093.55 28597.87 18185.94 32694.24 35396.84 30590.07 24996.43 16094.48 32490.29 16395.37 33787.44 28597.23 16199.36 161
EI-MVSNet93.73 19893.40 19694.74 23596.80 23992.69 23099.06 23897.67 21788.96 26791.39 22599.02 14088.75 18497.30 26491.07 23787.85 25894.22 266
Regformer0.00 3560.00 3590.00 3690.00 3920.00 3930.00 3800.00 3930.00 3870.00 3880.00 3880.00 3920.00 3880.00 3860.00 3860.00 384
CVMVSNet94.68 17394.94 15893.89 27496.80 23986.92 32299.06 23898.98 3694.45 10594.23 19699.02 14085.60 20995.31 33990.91 24395.39 19999.43 154
pmmvs492.10 23691.07 24395.18 22192.82 32794.96 17699.48 19096.83 30687.45 29288.66 27696.56 25483.78 22696.83 29789.29 26584.77 28393.75 308
EU-MVSNet90.14 28090.34 25389.54 32692.55 33081.06 35498.69 27998.04 18891.41 22486.59 30496.84 24580.83 24993.31 35986.20 29981.91 30294.26 263
VNet97.21 9396.57 10399.13 6098.97 11597.82 7499.03 24599.21 2894.31 11599.18 7698.88 16286.26 20699.89 8798.93 5994.32 20899.69 105
test-LLR96.47 12096.04 11597.78 13697.02 22695.44 15899.96 2898.21 16994.07 12695.55 17896.38 25693.90 8698.27 22090.42 25398.83 12499.64 114
TESTMET0.1,196.74 11096.26 11098.16 11797.36 21296.48 12099.96 2898.29 16191.93 20595.77 17698.07 20295.54 4298.29 21690.55 25098.89 12299.70 103
test-mter96.39 12595.93 12797.78 13697.02 22695.44 15899.96 2898.21 16991.81 21095.55 17896.38 25695.17 4898.27 22090.42 25398.83 12499.64 114
VPA-MVSNet92.70 22391.55 23596.16 19595.09 28296.20 13498.88 25999.00 3491.02 23491.82 22295.29 30076.05 29297.96 23795.62 16081.19 30794.30 261
ACMMPR98.50 3398.32 3799.05 6399.96 897.18 9899.95 4598.60 7594.77 9599.31 6899.84 4193.73 90100.00 198.70 7499.98 3299.98 48
testgi89.01 29488.04 29591.90 30893.49 31084.89 33399.73 14795.66 34193.89 14085.14 31898.17 19959.68 35694.66 34777.73 34488.88 23896.16 235
test20.0384.72 31783.99 31286.91 33988.19 36280.62 35798.88 25995.94 33588.36 28178.87 34594.62 32068.75 32789.11 37066.52 36775.82 34591.00 348
thres600view796.69 11395.87 13299.14 5698.90 12698.78 3899.74 14299.71 692.59 18295.84 17398.86 16789.25 17699.50 14493.44 20894.50 20799.16 180
ADS-MVSNet94.79 16794.02 17597.11 16897.87 18193.79 20294.24 35398.16 17890.07 24996.43 16094.48 32490.29 16398.19 22587.44 28597.23 16199.36 161
MP-MVScopyleft98.23 5397.97 5599.03 6599.94 1397.17 10199.95 4598.39 14094.70 9998.26 11899.81 5091.84 139100.00 198.85 6699.97 4299.93 72
Rongxuan Tan, Qing Wang, et al.: MP-MVS: Multi-Scale Windows PatchMatch and Planar Prior Multi-View Stereo.
testmvs40.60 35044.45 35329.05 36719.49 39114.11 39299.68 15518.47 39020.74 38364.59 36898.48 19110.95 38817.09 38756.66 37711.01 38355.94 380
thres40096.78 10795.99 11799.16 5298.94 11798.82 3599.78 12899.71 692.86 16496.02 17098.87 16589.33 17499.50 14493.84 19694.57 20499.16 180
test12337.68 35139.14 35433.31 36619.94 39024.83 39198.36 2979.75 39115.53 38451.31 37887.14 36319.62 38517.74 38647.10 3793.47 38557.36 379
thres20096.96 9996.21 11299.22 4398.97 11598.84 3499.85 10799.71 693.17 15996.26 16598.88 16289.87 16799.51 14294.26 18894.91 20399.31 168
test0.0.03 193.86 19193.61 18494.64 23995.02 28592.18 24299.93 6798.58 7794.07 12687.96 28698.50 18793.90 8694.96 34381.33 32893.17 21996.78 229
pmmvs380.27 33177.77 33687.76 33880.32 37482.43 34498.23 30391.97 37172.74 36778.75 34687.97 36157.30 36090.99 36770.31 35962.37 37089.87 357
EMVS51.44 34951.22 35152.11 36570.71 38144.97 38794.04 35575.66 38735.34 38242.40 38261.56 38328.93 37665.87 38427.64 38424.73 38045.49 381
E-PMN52.30 34752.18 34952.67 36471.51 38045.40 38593.62 35976.60 38636.01 38043.50 38164.13 38027.11 37967.31 38331.06 38326.06 37945.30 382
PGM-MVS98.34 4498.13 4798.99 6999.92 3197.00 10599.75 13999.50 1793.90 13899.37 6599.76 6293.24 103100.00 197.75 12299.96 4699.98 48
LCM-MVSNet-Re92.31 23292.60 21291.43 31197.53 20379.27 36099.02 24691.83 37292.07 20080.31 34094.38 32783.50 22895.48 33597.22 13397.58 15499.54 137
LCM-MVSNet67.77 34164.73 34476.87 35362.95 38556.25 37989.37 37293.74 36544.53 37761.99 36980.74 37120.42 38486.53 37669.37 36259.50 37487.84 365
MCST-MVS99.32 399.14 499.86 599.97 399.59 599.97 2198.64 6998.47 299.13 7799.92 1396.38 30100.00 199.74 27100.00 1100.00 1
mvs_anonymous95.65 15095.03 15597.53 14898.19 16595.74 14899.33 20897.49 23990.87 23690.47 23597.10 23188.23 18797.16 27295.92 15697.66 15399.68 106
MVS_Test96.46 12195.74 13498.61 8998.18 16697.23 9699.31 21197.15 27191.07 23298.84 8797.05 23588.17 18898.97 16594.39 18497.50 15599.61 122
MDA-MVSNet-bldmvs84.09 32081.52 32791.81 30991.32 34688.00 31598.67 28195.92 33680.22 34855.60 37693.32 33668.29 33193.60 35773.76 35376.61 34493.82 306
CDPH-MVS98.65 2598.36 3599.49 3199.94 1398.73 4399.87 9198.33 15393.97 13399.76 2699.87 2494.99 5799.75 12298.55 83100.00 199.98 48
test1299.43 3499.74 6998.56 5498.40 13799.65 3694.76 6099.75 12299.98 3299.99 23
casdiffmvspermissive96.42 12495.97 12297.77 13897.30 21794.98 17599.84 11197.09 27893.75 14396.58 15699.26 12585.07 21698.78 17497.77 12097.04 16799.54 137
Fangjinhua Wang, Qingshan Xu, Yew-Soon Ong, Marc Pollefeys: Lightweight and Accurate Multi-View Stereo With Confidence-Aware Diffusion Model. IEEE T-PAMI 2025
diffmvspermissive97.00 9896.64 10098.09 12297.64 19996.17 13699.81 12197.19 26594.67 10198.95 8399.28 11986.43 20398.76 17698.37 8997.42 15899.33 166
Fangjinhua Wang, Qingshan Xu, Yew-Soon Ong, Marc Pollefeys: Lightweight and Accurate Multi-View Stereo With Confidence-Aware Diffusion Model. IEEE T-PAMI 2025
baseline296.71 11296.49 10597.37 15895.63 27695.96 14199.74 14298.88 4792.94 16391.61 22398.97 14997.72 798.62 18794.83 17498.08 14697.53 226
baseline195.78 14394.86 15998.54 9898.47 14998.07 6499.06 23897.99 19092.68 17694.13 19798.62 17993.28 10198.69 18393.79 20185.76 27398.84 195
YYNet185.50 31283.33 31892.00 30690.89 34988.38 31199.22 22296.55 32179.60 35157.26 37492.72 34079.09 26793.78 35577.25 34677.37 33893.84 304
PMMVS267.15 34264.15 34576.14 35470.56 38262.07 37493.89 35687.52 38058.09 37160.02 37078.32 37222.38 38184.54 37759.56 37347.03 37781.80 370
MDA-MVSNet_test_wron85.51 31183.32 31992.10 30590.96 34888.58 30799.20 22396.52 32279.70 35057.12 37592.69 34179.11 26693.86 35477.10 34777.46 33793.86 303
tpmvs94.28 18693.57 18896.40 18898.55 14391.50 26295.70 35198.55 8787.47 29192.15 22094.26 32891.42 14198.95 16788.15 27895.85 18998.76 199
PM-MVS80.47 33078.88 33585.26 34283.79 37072.22 36595.89 34991.08 37385.71 31776.56 35788.30 35836.64 37393.90 35382.39 32269.57 35789.66 360
HQP_MVS94.49 17994.36 16794.87 23095.71 27291.74 25399.84 11197.87 20496.38 5693.01 20798.59 18080.47 25698.37 21097.79 11889.55 23194.52 241
plane_prior795.71 27291.59 261
plane_prior695.76 26791.72 25680.47 256
plane_prior597.87 20498.37 21097.79 11889.55 23194.52 241
plane_prior498.59 180
plane_prior391.64 25996.63 4893.01 207
plane_prior299.84 11196.38 56
plane_prior195.73 269
plane_prior91.74 25399.86 10496.76 4489.59 230
PS-CasMVS90.63 26689.51 27293.99 26993.83 30391.70 25798.98 24898.52 9388.48 27986.15 31296.53 25575.46 29596.31 31788.83 26978.86 32793.95 295
UniMVSNet_NR-MVSNet92.95 21792.11 22295.49 20894.61 29195.28 16699.83 11799.08 3191.49 21789.21 26496.86 24287.14 19696.73 30193.20 21077.52 33594.46 245
PEN-MVS90.19 27889.06 28093.57 28493.06 32190.90 26999.06 23898.47 10388.11 28485.91 31496.30 25976.67 28395.94 33187.07 29176.91 34293.89 300
TransMVSNet (Re)87.25 30385.28 31093.16 29293.56 30891.03 26698.54 28794.05 36283.69 33481.09 33796.16 26375.32 29696.40 31276.69 34968.41 36192.06 340
DTE-MVSNet89.40 29088.24 29392.88 29892.66 32989.95 29099.10 23098.22 16887.29 29485.12 31996.22 26176.27 28995.30 34083.56 31775.74 34693.41 317
DU-MVS92.46 22991.45 23895.49 20894.05 29995.28 16699.81 12198.74 5792.25 19789.21 26496.64 25081.66 23996.73 30193.20 21077.52 33594.46 245
UniMVSNet (Re)93.07 21592.13 22195.88 20094.84 28696.24 13399.88 8898.98 3692.49 18989.25 26195.40 29087.09 19797.14 27493.13 21478.16 33094.26 263
CP-MVSNet91.23 25390.22 25694.26 25893.96 30192.39 23899.09 23198.57 7988.95 26886.42 30896.57 25379.19 26596.37 31390.29 25678.95 32594.02 287
WR-MVS_H91.30 24990.35 25294.15 26094.17 29892.62 23499.17 22698.94 3888.87 27186.48 30794.46 32684.36 22196.61 30688.19 27778.51 32893.21 324
WR-MVS92.31 23291.25 24095.48 21194.45 29395.29 16599.60 16998.68 6390.10 24888.07 28596.89 24080.68 25196.80 29993.14 21379.67 32394.36 256
NR-MVSNet91.56 24890.22 25695.60 20694.05 29995.76 14798.25 30098.70 6091.16 23080.78 33996.64 25083.23 23196.57 30791.41 23277.73 33494.46 245
Baseline_NR-MVSNet90.33 27389.51 27292.81 29992.84 32589.95 29099.77 13193.94 36384.69 32889.04 26895.66 27781.66 23996.52 30890.99 24076.98 34191.97 342
TranMVSNet+NR-MVSNet91.68 24790.61 24894.87 23093.69 30693.98 19999.69 15398.65 6791.03 23388.44 27896.83 24680.05 25996.18 32190.26 25776.89 34394.45 250
TSAR-MVS + GP.98.60 2798.51 2598.86 7799.73 7296.63 11699.97 2197.92 20098.07 698.76 9399.55 10095.00 5699.94 7299.91 1597.68 15299.99 23
n20.00 393
nn0.00 393
mPP-MVS98.39 4398.20 4298.97 7199.97 396.92 10999.95 4598.38 14495.04 8798.61 10299.80 5193.39 95100.00 198.64 79100.00 199.98 48
door-mid89.69 377
XVG-OURS-SEG-HR94.79 16794.70 16395.08 22398.05 17289.19 29799.08 23397.54 23293.66 14594.87 18799.58 9878.78 26899.79 11397.31 12993.40 21796.25 232
mvsmamba94.10 18893.72 18395.25 21993.57 30794.13 19499.67 15796.45 32593.63 14791.34 22797.77 21486.29 20597.22 27096.65 14788.10 25594.40 252
MVSFormer96.94 10096.60 10197.95 12697.28 21997.70 7899.55 17897.27 26091.17 22899.43 5999.54 10290.92 15296.89 29394.67 18099.62 8899.25 175
jason97.24 9196.86 9398.38 11195.73 26997.32 9499.97 2197.40 24895.34 8298.60 10399.54 10287.70 19098.56 18997.94 11099.47 10099.25 175
jason: jason.
lupinMVS97.85 6597.60 7098.62 8897.28 21997.70 7899.99 497.55 23095.50 7999.43 5999.67 8990.92 15298.71 18198.40 8799.62 8899.45 151
test_djsdf92.83 21992.29 22094.47 25091.90 33992.46 23699.55 17897.27 26091.17 22889.96 24196.07 26881.10 24596.89 29394.67 18088.91 23794.05 286
HPM-MVS_fast97.80 7097.50 7398.68 8499.79 6296.42 12299.88 8898.16 17891.75 21298.94 8499.54 10291.82 14099.65 13797.62 12599.99 2199.99 23
K. test v388.05 29987.24 30190.47 31991.82 34182.23 34698.96 25197.42 24589.05 26176.93 35595.60 27968.49 32995.42 33685.87 30381.01 31393.75 308
lessismore_v090.53 31790.58 35180.90 35595.80 33777.01 35495.84 27066.15 33996.95 28983.03 31975.05 34893.74 311
SixPastTwentyTwo88.73 29588.01 29690.88 31491.85 34082.24 34598.22 30495.18 35388.97 26682.26 33096.89 24071.75 31596.67 30484.00 31282.98 29393.72 312
OurMVSNet-221017-089.81 28489.48 27490.83 31691.64 34281.21 35298.17 30695.38 34891.48 21885.65 31697.31 22572.66 31197.29 26788.15 27884.83 28293.97 294
HPM-MVScopyleft97.96 5997.72 6698.68 8499.84 5696.39 12599.90 7998.17 17492.61 18098.62 10199.57 9991.87 13899.67 13598.87 6599.99 2199.99 23
Chunlin Ren, Qingshan Xu, Shikun Zhang, Jiaqi Yang: Hierarchical Prior Mining for Non-local Multi-View Stereo. ICCV 2023
XVG-OURS94.82 16594.74 16295.06 22498.00 17489.19 29799.08 23397.55 23094.10 12494.71 18899.62 9480.51 25499.74 12496.04 15493.06 22296.25 232
XVG-ACMP-BASELINE91.22 25490.75 24592.63 30193.73 30585.61 32798.52 28997.44 24292.77 17189.90 24496.85 24366.64 33798.39 20492.29 22288.61 24493.89 300
casdiffmvs_mvgpermissive96.43 12295.94 12697.89 13297.44 20895.47 15799.86 10497.29 25893.35 15296.03 16999.19 13085.39 21398.72 18097.89 11497.04 16799.49 147
Fangjinhua Wang, Qingshan Xu, Yew-Soon Ong, Marc Pollefeys: Lightweight and Accurate Multi-View Stereo With Confidence-Aware Diffusion Model. IEEE T-PAMI 2025
LPG-MVS_test92.96 21692.71 21093.71 27995.43 27888.67 30499.75 13997.62 22192.81 16890.05 23898.49 18875.24 29798.40 20295.84 15889.12 23594.07 284
LGP-MVS_train93.71 27995.43 27888.67 30497.62 22192.81 16890.05 23898.49 18875.24 29798.40 20295.84 15889.12 23594.07 284
baseline96.43 12295.98 11997.76 13997.34 21395.17 17399.51 18497.17 26893.92 13796.90 14799.28 11985.37 21498.64 18697.50 12696.86 17399.46 149
test1198.44 110
door90.31 374
EPNet_dtu95.71 14695.39 14296.66 18098.92 12193.41 21499.57 17498.90 4396.19 6397.52 13398.56 18492.65 11797.36 25777.89 34398.33 13499.20 178
Wanjuan Su, Wenbing Tao: Efficient Edge-Preserving Multi-View Stereo Network for Depth Estimation. AAAI 2023
CHOSEN 1792x268896.81 10596.53 10497.64 14498.91 12593.07 21999.65 16099.80 395.64 7395.39 18198.86 16784.35 22399.90 8396.98 14099.16 11699.95 68
EPNet98.49 3498.40 2998.77 8099.62 8096.80 11399.90 7999.51 1697.60 1699.20 7399.36 11793.71 9199.91 8197.99 10798.71 12799.61 122
Wanjuan Su, Wenbing Tao: Efficient Edge-Preserving Multi-View Stereo Network for Depth Estimation. AAAI 2023
HQP5-MVS91.85 249
HQP-NCC95.78 26399.87 9196.82 4093.37 203
ACMP_Plane95.78 26399.87 9196.82 4093.37 203
APD-MVScopyleft98.62 2698.35 3699.41 3799.90 4298.51 5699.87 9198.36 14894.08 12599.74 2899.73 7594.08 8099.74 12499.42 4099.99 2199.99 23
Yuesong Wang, Zhaojie Zeng and etc.: Adaptive Patch Deformation for Textureless-Resilient Multi-View Stereo. CVPR2023
BP-MVS97.92 111
HQP4-MVS93.37 20398.39 20494.53 239
HQP3-MVS97.89 20289.60 228
HQP2-MVS80.65 252
CNVR-MVS99.40 199.26 199.84 699.98 299.51 699.98 1198.69 6198.20 399.93 199.98 296.82 23100.00 199.75 25100.00 199.99 23
NCCC99.37 299.25 299.71 1399.96 899.15 2099.97 2198.62 7398.02 899.90 299.95 397.33 17100.00 199.54 34100.00 1100.00 1
114514_t97.41 8696.83 9499.14 5699.51 8997.83 7399.89 8698.27 16488.48 27999.06 7999.66 9190.30 16299.64 13896.32 15099.97 4299.96 61
CP-MVS98.45 3798.32 3798.87 7699.96 896.62 11799.97 2198.39 14094.43 10798.90 8699.87 2494.30 74100.00 199.04 5499.99 2199.99 23
DSMNet-mixed88.28 29888.24 29388.42 33689.64 35775.38 36498.06 31089.86 37685.59 31888.20 28492.14 34776.15 29191.95 36478.46 34196.05 18497.92 215
tpm295.47 15395.18 15096.35 19196.91 23191.70 25796.96 33097.93 19788.04 28698.44 10895.40 29093.32 9897.97 23594.00 19195.61 19599.38 158
NP-MVS95.77 26691.79 25198.65 176
EG-PatchMatch MVS85.35 31383.81 31689.99 32490.39 35281.89 34898.21 30596.09 33381.78 34474.73 36193.72 33351.56 36797.12 27779.16 33988.61 24490.96 349
tpm cat193.51 20492.52 21796.47 18397.77 18891.47 26396.13 34398.06 18680.98 34692.91 21093.78 33289.66 16898.87 16987.03 29396.39 17999.09 186
SteuartSystems-ACMMP99.02 1298.97 1399.18 4798.72 13697.71 7699.98 1198.44 11096.85 3899.80 1599.91 1497.57 899.85 9999.44 3999.99 2199.99 23
Skip Steuart: Steuart Systems R&D Blog.
CostFormer96.10 13395.88 13196.78 17597.03 22592.55 23597.08 32797.83 20990.04 25198.72 9694.89 31395.01 5598.29 21696.54 14895.77 19199.50 145
CR-MVSNet93.45 20792.62 21195.94 19996.29 24992.66 23192.01 36496.23 32992.62 17996.94 14593.31 33791.04 14996.03 32879.23 33695.96 18699.13 184
JIA-IIPM91.76 24690.70 24694.94 22896.11 25487.51 31793.16 36098.13 18275.79 35997.58 13277.68 37392.84 11297.97 23588.47 27596.54 17599.33 166
Patchmtry89.70 28688.49 28993.33 28896.24 25289.94 29291.37 36796.23 32978.22 35387.69 28893.31 33791.04 14996.03 32880.18 33582.10 30094.02 287
PatchT90.38 27188.75 28695.25 21995.99 25890.16 28491.22 36897.54 23276.80 35597.26 13986.01 36791.88 13796.07 32766.16 36895.91 18899.51 143
tpmrst96.27 13295.98 11997.13 16697.96 17693.15 21896.34 33998.17 17492.07 20098.71 9795.12 30493.91 8598.73 17894.91 17296.62 17499.50 145
BH-w/o95.71 14695.38 14396.68 17998.49 14892.28 23999.84 11197.50 23892.12 19992.06 22198.79 17184.69 21898.67 18595.29 16399.66 8699.09 186
tpm93.70 20093.41 19594.58 24395.36 28087.41 31897.01 32896.90 30090.85 23796.72 15394.14 32990.40 16196.84 29690.75 24788.54 24799.51 143
DELS-MVS98.54 3098.22 4099.50 2999.15 10598.65 50100.00 198.58 7797.70 1498.21 12099.24 12792.58 12199.94 7298.63 8199.94 5499.92 77
Christian Sormann, Emanuele Santellani, Mattia Rossi, Andreas Kuhn, Friedrich Fraundorfer: DELS-MVS: Deep Epipolar Line Search for Multi-View Stereo. Winter Conference on Applications of Computer Vision (WACV), 2023
BH-untuned95.18 15894.83 16096.22 19498.36 15491.22 26599.80 12597.32 25590.91 23591.08 22898.67 17583.51 22798.54 19194.23 18999.61 9198.92 190
RPMNet89.76 28587.28 30097.19 16596.29 24992.66 23192.01 36498.31 15770.19 36996.94 14585.87 36887.25 19599.78 11562.69 37195.96 18699.13 184
MVSTER95.53 15295.22 14896.45 18598.56 14197.72 7599.91 7497.67 21792.38 19391.39 22597.14 22997.24 1897.30 26494.80 17587.85 25894.34 260
CPTT-MVS97.64 7797.32 8098.58 9399.97 395.77 14699.96 2898.35 15089.90 25298.36 11299.79 5491.18 14899.99 3698.37 8999.99 2199.99 23
GBi-Net90.88 25989.82 26494.08 26397.53 20391.97 24498.43 29296.95 29387.05 29789.68 24994.72 31571.34 31796.11 32387.01 29485.65 27494.17 270
PVSNet_Blended_VisFu97.27 9096.81 9598.66 8698.81 13196.67 11599.92 7098.64 6994.51 10496.38 16398.49 18889.05 18099.88 9397.10 13698.34 13399.43 154
PVSNet_BlendedMVS96.05 13595.82 13396.72 17899.59 8196.99 10699.95 4599.10 2994.06 12898.27 11695.80 27189.00 18199.95 6499.12 4987.53 26493.24 323
UnsupCasMVSNet_eth85.52 31083.99 31290.10 32289.36 35883.51 33996.65 33497.99 19089.14 25975.89 35993.83 33163.25 34893.92 35281.92 32667.90 36392.88 329
UnsupCasMVSNet_bld79.97 33477.03 33888.78 33285.62 36681.98 34793.66 35897.35 25175.51 36170.79 36683.05 37048.70 36894.91 34478.31 34260.29 37389.46 362
PVSNet_Blended97.94 6097.64 6898.83 7899.59 8196.99 106100.00 199.10 2995.38 8098.27 11699.08 13689.00 18199.95 6499.12 4999.25 11399.57 132
FMVSNet588.32 29787.47 29990.88 31496.90 23488.39 31097.28 32195.68 34082.60 34184.67 32092.40 34579.83 26091.16 36676.39 35081.51 30593.09 325
test190.88 25989.82 26494.08 26397.53 20391.97 24498.43 29296.95 29387.05 29789.68 24994.72 31571.34 31796.11 32387.01 29485.65 27494.17 270
new_pmnet84.49 31982.92 32289.21 32890.03 35582.60 34296.89 33295.62 34280.59 34775.77 36089.17 35565.04 34494.79 34672.12 35781.02 31290.23 354
FMVSNet392.69 22491.58 23395.99 19898.29 15697.42 9299.26 21997.62 22189.80 25489.68 24995.32 29681.62 24196.27 31887.01 29485.65 27494.29 262
dp95.05 16194.43 16696.91 17197.99 17592.73 22996.29 34197.98 19289.70 25595.93 17294.67 31993.83 8998.45 19786.91 29796.53 17699.54 137
FMVSNet291.02 25689.56 26995.41 21397.53 20395.74 14898.98 24897.41 24787.05 29788.43 28095.00 30971.34 31796.24 32085.12 30685.21 27994.25 265
FMVSNet188.50 29686.64 30294.08 26395.62 27791.97 24498.43 29296.95 29383.00 33786.08 31394.72 31559.09 35796.11 32381.82 32784.07 28994.17 270
N_pmnet80.06 33280.78 33077.89 35191.94 33845.28 38698.80 27056.82 38978.10 35480.08 34293.33 33577.03 27995.76 33368.14 36482.81 29492.64 332
cascas94.64 17493.61 18497.74 14197.82 18596.26 12999.96 2897.78 21285.76 31494.00 19897.54 21876.95 28199.21 15597.23 13295.43 19897.76 220
BH-RMVSNet95.18 15894.31 17097.80 13398.17 16795.23 16999.76 13697.53 23492.52 18794.27 19599.25 12676.84 28298.80 17290.89 24499.54 9599.35 163
UGNet95.33 15794.57 16497.62 14698.55 14394.85 17898.67 28199.32 2595.75 7196.80 15196.27 26072.18 31399.96 5794.58 18299.05 12098.04 214
Wanjuan Su, Qingshan Xu, Wenbing Tao: Uncertainty-guided Multi-view Stereo Network for Depth Estimation. IEEE Transactions on Circuits and Systems for Video Technology, 2022
WTY-MVS98.10 5797.60 7099.60 2198.92 12199.28 1699.89 8699.52 1495.58 7598.24 11999.39 11493.33 9799.74 12497.98 10995.58 19699.78 95
XXY-MVS91.82 23990.46 24995.88 20093.91 30295.40 16298.87 26297.69 21588.63 27787.87 28797.08 23274.38 30697.89 24191.66 23084.07 28994.35 259
EC-MVSNet97.38 8897.24 8197.80 13397.41 20995.64 15399.99 497.06 28194.59 10299.63 3899.32 11889.20 17998.14 22698.76 7199.23 11499.62 119
sss97.57 7897.03 9099.18 4798.37 15398.04 6699.73 14799.38 2293.46 15098.76 9399.06 13891.21 14499.89 8796.33 14997.01 16999.62 119
Test_1112_low_res95.72 14494.83 16098.42 10897.79 18796.41 12399.65 16096.65 31792.70 17492.86 21296.13 26592.15 13299.30 15391.88 22893.64 21599.55 134
1112_ss96.01 13795.20 14998.42 10897.80 18696.41 12399.65 16096.66 31692.71 17392.88 21199.40 11292.16 13199.30 15391.92 22793.66 21499.55 134
ab-mvs-re8.28 35411.04 3570.00 3690.00 3920.00 3930.00 3800.00 3930.00 3870.00 38899.40 1120.00 3920.00 3880.00 3860.00 3860.00 384
ab-mvs94.69 17193.42 19398.51 10198.07 17196.26 12996.49 33698.68 6390.31 24694.54 18997.00 23776.30 28899.71 12895.98 15593.38 21899.56 133
TR-MVS94.54 17693.56 18997.49 15197.96 17694.34 19098.71 27697.51 23790.30 24794.51 19198.69 17475.56 29498.77 17592.82 21895.99 18599.35 163
MDTV_nov1_ep13_2view96.26 12996.11 34491.89 20698.06 12194.40 6794.30 18799.67 108
MDTV_nov1_ep1395.69 13597.90 17994.15 19395.98 34798.44 11093.12 16097.98 12395.74 27395.10 5098.58 18890.02 25996.92 171
MIMVSNet182.58 32580.51 33188.78 33286.68 36484.20 33696.65 33495.41 34678.75 35278.59 34892.44 34251.88 36689.76 36965.26 37078.95 32592.38 338
MIMVSNet90.30 27488.67 28795.17 22296.45 24891.64 25992.39 36297.15 27185.99 31190.50 23493.19 33966.95 33594.86 34582.01 32593.43 21699.01 189
IterMVS-LS92.69 22492.11 22294.43 25496.80 23992.74 22799.45 19496.89 30188.98 26589.65 25295.38 29388.77 18396.34 31590.98 24182.04 30194.22 266
Fangjinhua Wang, Silvano Galliani, Christoph Vogel, Marc Pollefeys: IterMVS: Iterative Probability Estimation for Efficient Multi-View Stereo.
CDS-MVSNet96.34 12696.07 11497.13 16697.37 21194.96 17699.53 18197.91 20191.55 21695.37 18298.32 19795.05 5397.13 27593.80 20095.75 19399.30 170
Khang Truong Giang, Soohwan Song, Sungho Jo: Curvature-guided dynamic scale networks for Multi-view Stereo. ICLR 2022
ACMMP++_ref87.04 266
IterMVS90.91 25890.17 25993.12 29396.78 24290.42 28198.89 25797.05 28389.03 26286.49 30695.42 28976.59 28595.02 34187.22 29084.09 28893.93 297
Fangjinhua Wang, Silvano Galliani, Christoph Vogel, Marc Pollefeys: IterMVS: Iterative Probability Estimation for Efficient Multi-View Stereo.
DP-MVS Recon98.41 4198.02 5399.56 2499.97 398.70 4599.92 7098.44 11092.06 20298.40 11199.84 4195.68 40100.00 198.19 9599.71 8399.97 55
MVS_111021_LR98.42 4098.38 3198.53 10099.39 9495.79 14599.87 9199.86 296.70 4698.78 9099.79 5492.03 13599.90 8399.17 4899.86 7099.88 81
DP-MVS94.54 17693.42 19397.91 13099.46 9394.04 19698.93 25497.48 24081.15 34590.04 24099.55 10087.02 19899.95 6488.97 26898.11 14399.73 100
ACMMP++88.23 253
HQP-MVS94.61 17594.50 16594.92 22995.78 26391.85 24999.87 9197.89 20296.82 4093.37 20398.65 17680.65 25298.39 20497.92 11189.60 22894.53 239
QAPM95.40 15594.17 17299.10 6196.92 23097.71 7699.40 19798.68 6389.31 25888.94 27098.89 16182.48 23399.96 5793.12 21599.83 7299.62 119
Vis-MVSNetpermissive95.72 14495.15 15197.45 15297.62 20094.28 19199.28 21798.24 16694.27 11996.84 14998.94 15879.39 26298.76 17693.25 20998.49 13099.30 170
Jingyang Zhang, Yao Yao, Shiwei Li, Zixin Luo, Tian Fang: Visibility-aware Multiview Stereo Network. BMVC 2020
MVS-HIRNet86.22 30783.19 32095.31 21796.71 24590.29 28292.12 36397.33 25462.85 37086.82 30070.37 37569.37 32597.49 25475.12 35297.99 14898.15 211
IS-MVSNet96.29 13095.90 13097.45 15298.13 17094.80 18199.08 23397.61 22492.02 20495.54 18098.96 15190.64 15898.08 22993.73 20497.41 15999.47 148
HyFIR lowres test96.66 11596.43 10797.36 16099.05 10893.91 20199.70 15299.80 390.54 24196.26 16598.08 20192.15 13298.23 22396.84 14595.46 19799.93 72
EPMVS96.53 11996.01 11698.09 12298.43 15096.12 13996.36 33899.43 2093.53 14897.64 13195.04 30694.41 6698.38 20891.13 23698.11 14399.75 98
PAPM_NR98.12 5697.93 6098.70 8399.94 1396.13 13799.82 11998.43 11894.56 10397.52 13399.70 8294.40 6799.98 4397.00 13999.98 3299.99 23
TAMVS95.85 14195.58 13896.65 18197.07 22393.50 21099.17 22697.82 21091.39 22595.02 18698.01 20392.20 13097.30 26493.75 20395.83 19099.14 183
PAPR98.52 3298.16 4599.58 2399.97 398.77 3999.95 4598.43 11895.35 8198.03 12299.75 6794.03 8299.98 4398.11 10099.83 7299.99 23
RPSCF91.80 24392.79 20988.83 33198.15 16869.87 36798.11 30896.60 31983.93 33194.33 19499.27 12279.60 26199.46 15191.99 22593.16 22097.18 228
Vis-MVSNet (Re-imp)96.32 12795.98 11997.35 16197.93 17894.82 18099.47 19198.15 18091.83 20895.09 18599.11 13491.37 14397.47 25593.47 20797.43 15699.74 99
test_040285.58 30983.94 31490.50 31893.81 30485.04 33198.55 28595.20 35276.01 35779.72 34495.13 30364.15 34696.26 31966.04 36986.88 26890.21 355
MVS_111021_HR98.72 2298.62 2099.01 6899.36 9697.18 9899.93 6799.90 196.81 4398.67 9899.77 6093.92 8499.89 8799.27 4699.94 5499.96 61
CSCG97.10 9597.04 8997.27 16499.89 4591.92 24899.90 7999.07 3288.67 27595.26 18499.82 4693.17 10599.98 4398.15 9899.47 10099.90 79
PatchMatch-RL96.04 13695.40 14197.95 12699.59 8195.22 17099.52 18299.07 3293.96 13496.49 15898.35 19682.28 23499.82 11090.15 25899.22 11598.81 197
API-MVS97.86 6497.66 6798.47 10399.52 8795.41 16199.47 19198.87 4891.68 21398.84 8799.85 3092.34 12899.99 3698.44 8699.96 46100.00 1
Test By Simon92.82 114
TDRefinement84.76 31582.56 32391.38 31274.58 37984.80 33497.36 32094.56 35984.73 32780.21 34196.12 26763.56 34798.39 20487.92 28163.97 36890.95 350
USDC90.00 28288.96 28293.10 29594.81 28788.16 31298.71 27695.54 34493.66 14583.75 32597.20 22865.58 34098.31 21583.96 31487.49 26592.85 330
EPP-MVSNet96.69 11396.60 10196.96 17097.74 19093.05 22199.37 20498.56 8188.75 27395.83 17599.01 14296.01 3298.56 18996.92 14397.20 16399.25 175
PMMVS96.76 10896.76 9796.76 17698.28 15892.10 24399.91 7497.98 19294.12 12399.53 5199.39 11486.93 19998.73 17896.95 14297.73 15099.45 151
PAPM98.60 2798.42 2899.14 5696.05 25698.96 2599.90 7999.35 2496.68 4798.35 11399.66 9196.45 2998.51 19299.45 3899.89 6699.96 61
ACMMPcopyleft97.74 7497.44 7598.66 8699.92 3196.13 13799.18 22599.45 1894.84 9496.41 16299.71 8091.40 14299.99 3697.99 10798.03 14799.87 83
Qingshan Xu, Weihang Kong, Wenbing Tao, Marc Pollefeys: Multi-Scale Geometric Consistency Guided and Planar Prior Assisted Multi-View Stereo. IEEE Transactions on Pattern Analysis and Machine Intelligence
CNLPA97.76 7397.38 7698.92 7599.53 8696.84 11199.87 9198.14 18193.78 14196.55 15799.69 8492.28 12999.98 4397.13 13499.44 10499.93 72
PatchmatchNetpermissive95.94 13995.45 14097.39 15797.83 18494.41 18996.05 34598.40 13792.86 16497.09 14295.28 30194.21 7898.07 23189.26 26698.11 14399.70 103
Fangjinhua Wang, Silvano Galliani, Christoph Vogel, Pablo Speciale, Marc Pollefeys: PatchmatchNet: Learned Multi-View Patchmatch Stereo.
PHI-MVS98.41 4198.21 4199.03 6599.86 5397.10 10299.98 1198.80 5590.78 23999.62 4099.78 5895.30 47100.00 199.80 2299.93 6099.99 23
F-COLMAP96.93 10196.95 9296.87 17399.71 7591.74 25399.85 10797.95 19593.11 16195.72 17799.16 13392.35 12799.94 7295.32 16299.35 10998.92 190
ANet_high56.10 34552.24 34867.66 36149.27 38756.82 37883.94 37482.02 38470.47 36833.28 38464.54 37917.23 38669.16 38245.59 38023.85 38177.02 374
wuyk23d20.37 35320.84 35618.99 36865.34 38427.73 39050.43 3797.67 3929.50 3858.01 3866.34 3866.13 39026.24 38523.40 38510.69 3842.99 383
OMC-MVS97.28 8997.23 8297.41 15599.76 6693.36 21799.65 16097.95 19596.03 6597.41 13799.70 8289.61 17099.51 14296.73 14698.25 13999.38 158
MG-MVS98.91 1698.65 1899.68 1499.94 1399.07 2399.64 16499.44 1997.33 2499.00 8299.72 7894.03 8299.98 4398.73 73100.00 1100.00 1
AdaColmapbinary97.23 9296.80 9698.51 10199.99 195.60 15599.09 23198.84 5293.32 15496.74 15299.72 7886.04 207100.00 198.01 10599.43 10699.94 70
uanet0.00 3560.00 3590.00 3690.00 3920.00 3930.00 3800.00 3930.00 3870.00 3880.00 3880.00 3920.00 3880.00 3860.00 3860.00 384
ITE_SJBPF92.38 30295.69 27485.14 33095.71 33992.81 16889.33 26098.11 20070.23 32398.42 19985.91 30288.16 25493.59 315
DeepMVS_CXcopyleft82.92 34795.98 26058.66 37796.01 33492.72 17278.34 34995.51 28558.29 35898.08 22982.57 32185.29 27792.03 341
TinyColmap87.87 30286.51 30391.94 30795.05 28485.57 32897.65 31794.08 36184.40 32981.82 33396.85 24362.14 35198.33 21380.25 33486.37 27191.91 343
MAR-MVS97.43 8197.19 8398.15 12099.47 9194.79 18299.05 24298.76 5692.65 17898.66 9999.82 4688.52 18699.98 4398.12 9999.63 8799.67 108
Zhenyu Xu, Yiguang Liu, Xuelei Shi, Ying Wang, Yunan Zheng: MARMVS: Matching Ambiguity Reduced Multiple View Stereo for Efficient Large Scale Scene Reconstruction. CVPR 2020
LF4IMVS89.25 29388.85 28390.45 32092.81 32881.19 35398.12 30794.79 35591.44 22086.29 31097.11 23065.30 34398.11 22888.53 27485.25 27892.07 339
MSDG94.37 18293.36 19797.40 15698.88 12893.95 20099.37 20497.38 24985.75 31690.80 23299.17 13284.11 22599.88 9386.35 29898.43 13298.36 208
LS3D95.84 14295.11 15298.02 12599.85 5495.10 17498.74 27398.50 10187.22 29693.66 20199.86 2687.45 19399.95 6490.94 24299.81 7899.02 188
CLD-MVS94.06 19093.90 17994.55 24596.02 25790.69 27299.98 1197.72 21396.62 5091.05 23098.85 17077.21 27798.47 19398.11 10089.51 23394.48 243
Zhaoxin Li, Wangmeng Zuo, Zhaoqi Wang, Lei Zhang: Confidence-based Large-scale Dense Multi-view Stereo. IEEE Transaction on Image Processing, 2020
FPMVS68.72 33868.72 33968.71 36065.95 38344.27 38895.97 34894.74 35651.13 37553.26 37790.50 35325.11 38083.00 37860.80 37280.97 31478.87 373
Gipumacopyleft66.95 34365.00 34372.79 35691.52 34467.96 36866.16 37895.15 35447.89 37658.54 37367.99 37829.74 37587.54 37450.20 37877.83 33362.87 378
S. Galliani, K. Lasinger, K. Schindler: Massively Parallel Multiview Stereopsis by Surface Normal Diffusion. ICCV 2015