This table lists the benchmark results for the high-res multi-view scenario. The following metrics are evaluated:

(*) For exact definitions, detailing how potentially incomplete ground truth is taken into account, see our paper.

The datasets are grouped into different categories, and result averages are computed for a category and method if results of the method are available for all datasets within the category. Note that the category "all" includes both the high-res multi-view and the low-res many-view scenarios.

Methods with suffix _ROB may participate in the Robust Vision Challenge.

Click a dataset result cell to show a visualization of the reconstruction. For training datasets, ground truth and accuracy / completeness visualizations are also available. The visualizations may not work with mobile browsers.




Method Infoallhigh-res
multi-view
indooroutdoorbotani.boulde.bridgedoorexhibi.lectur.living.loungeobserv.old co.statueterrac.
sorted bysort bysort bysort bysort bysort bysort bysort bysort bysort bysort bysort bysort bysort bysort bysort by
DeepC-MVS_fast96.59 198.81 2398.54 2699.62 2099.90 4298.85 3599.24 24398.47 11798.14 1099.08 9099.91 1493.09 117100.00 199.04 6499.99 21100.00 1
Andreas Kuhn, Christian Sormann, Mattia Rossi, Oliver Erdler, Friedrich Fraundorfer: DeepC-MVS: Deep Confidence Prediction for Multi-View Stereo Reconstruction. 3DV 2020
DeepPCF-MVS95.94 297.71 8598.98 1293.92 29199.63 8081.76 37499.96 3598.56 9299.47 199.19 8799.99 194.16 87100.00 199.92 1399.93 61100.00 1
PLCcopyleft95.54 397.93 6697.89 6898.05 13999.82 5894.77 19899.92 7998.46 11993.93 14897.20 16199.27 13495.44 4599.97 5497.41 14699.51 10799.41 169
Jie Liao, Yanping Fu, Qingan Yan, Chunxia xiao: Pyramid Multi-View Stereo with Local Consistency. Pacific Graphics 2019
DeepC-MVS94.51 496.92 12396.40 12998.45 11699.16 10795.90 15499.66 17798.06 20696.37 6894.37 21799.49 11383.29 25399.90 9197.63 14399.61 9899.55 144
Andreas Kuhn, Christian Sormann, Mattia Rossi, Oliver Erdler, Friedrich Fraundorfer: DeepC-MVS: Deep Confidence Prediction for Multi-View Stereo Reconstruction. 3DV 2020
PCF-MVS94.20 595.18 18094.10 19798.43 11898.55 15695.99 15297.91 33997.31 28390.35 26589.48 28099.22 14085.19 23799.89 9690.40 27498.47 14799.41 169
Andreas Kuhn, Shan Lin, Oliver Erdler: Plane Completion and Filtering for Multi-View Stereo Reconstruction. GCPR 2019
IB-MVS92.85 694.99 18593.94 20298.16 13097.72 21595.69 16599.99 498.81 6094.28 13092.70 23896.90 26495.08 5199.17 17796.07 17173.88 37499.60 132
Christian Sormann, Mattia Rossi, Andreas Kuhn and Friedrich Fraundorfer: IB-MVS: An Iterative Algorithm for Deep Multi-View Stereo based on Binary Decisions. BMVC 2021
HY-MVS92.50 797.79 7997.17 9799.63 1798.98 11899.32 997.49 34499.52 1495.69 8298.32 12897.41 24793.32 10899.77 12898.08 12195.75 21299.81 94
TAPA-MVS92.12 894.42 20393.60 20996.90 19599.33 9991.78 27299.78 14298.00 21089.89 27694.52 21499.47 11491.97 14899.18 17669.90 38599.52 10499.73 105
Andrea Romanoni, Matteo Matteucci: TAPA-MVS: Textureless-Aware PAtchMatch Multi-View Stereo. ICCV 2019
ACMP92.05 992.74 24592.42 24393.73 29695.91 28688.72 32699.81 13597.53 25994.13 13487.00 32398.23 22474.07 33498.47 21596.22 17088.86 27093.99 316
Qingshan Xu and Wenbing Tao: Planar Prior Assisted PatchMatch Multi-View Stereo. AAAI 2020
ACMM91.95 1092.88 24292.52 24193.98 29095.75 29489.08 32399.77 14597.52 26193.00 17589.95 26697.99 23376.17 31798.46 21893.63 22488.87 26994.39 280
Qingshan Xu and Wenbing Tao: Multi-Scale Geometric Consistency Guided Multi-View Stereo. CVPR 2019
3Dnovator+91.53 1196.31 15195.24 16999.52 2896.88 26098.64 5499.72 16498.24 18595.27 9488.42 30698.98 15982.76 25599.94 7897.10 15499.83 7599.96 64
3Dnovator91.47 1296.28 15495.34 16699.08 6896.82 26397.47 9899.45 21798.81 6095.52 8889.39 28199.00 15681.97 25999.95 7097.27 14999.83 7599.84 90
PVSNet91.05 1397.13 10996.69 11998.45 11699.52 8995.81 15699.95 5399.65 1294.73 10799.04 9299.21 14184.48 24499.95 7094.92 18998.74 14299.58 139
COLMAP_ROBcopyleft90.47 1492.18 25891.49 26094.25 27999.00 11688.04 33798.42 31896.70 34282.30 36788.43 30499.01 15476.97 30699.85 10886.11 32196.50 19394.86 267
Johannes L. Schönberger, Enliang Zheng, Marc Pollefeys, Jan-Michael Frahm: Pixelwise View Selection for Unstructured Multi-View Stereo. ECCV 2016
OpenMVScopyleft90.15 1594.77 19193.59 21098.33 12396.07 28097.48 9799.56 19798.57 8990.46 26286.51 32998.95 16878.57 29799.94 7893.86 21399.74 8597.57 250
ACMH+89.98 1690.35 29689.54 29592.78 32395.99 28386.12 34998.81 29097.18 29689.38 28083.14 35297.76 24168.42 35798.43 22089.11 28686.05 29793.78 331
ACMH89.72 1790.64 28989.63 29293.66 30295.64 30288.64 32998.55 30797.45 26789.03 28581.62 35997.61 24269.75 35198.41 22289.37 28387.62 28993.92 322
Qingshan Xu and Wenbing Tao: Multi-Scale Geometric Consistency Guided Multi-View Stereo. CVPR 2019
LTVRE_ROB88.28 1890.29 29989.05 30694.02 28695.08 31090.15 30897.19 35097.43 26984.91 34983.99 34897.06 25974.00 33598.28 24184.08 33287.71 28793.62 338
Andreas Kuhn, Heiko Hirschmüller, Daniel Scharstein, Helmut Mayer: A TV Prior for High-Quality Scalable Multi-View Stereo Reconstruction. International Journal of Computer Vision 2016
PVSNet_088.03 1991.80 26690.27 28096.38 21298.27 17690.46 30199.94 6999.61 1393.99 14486.26 33597.39 24971.13 34799.89 9698.77 8667.05 39098.79 218
OpenMVS_ROBcopyleft79.82 2083.77 34881.68 35190.03 34788.30 38682.82 36498.46 31295.22 37673.92 39276.00 38391.29 37455.00 38896.94 31168.40 38888.51 27890.34 377
CMPMVSbinary61.59 2184.75 34185.14 33683.57 37090.32 37862.54 39896.98 35697.59 25374.33 39169.95 39296.66 27364.17 37298.32 23687.88 30188.41 27989.84 382
M. Jancosek, T. Pajdla: Multi-View Reconstruction Preserving Weakly-Supported Surfaces. CVPR 2011
MVEpermissive53.74 2251.54 37547.86 37962.60 38959.56 41350.93 40879.41 40377.69 41235.69 40836.27 41061.76 4095.79 41869.63 40837.97 40836.61 40567.24 403
Simon Fuhrmann, Fabian Langguth, Michael Goesele: MVE - A Multi-View Reconstruction Environment. EUROGRAPHICS Workshops on Graphics and Cultural Heritage (2014)
PMVScopyleft49.05 2353.75 37351.34 37760.97 39040.80 41634.68 41774.82 40489.62 40537.55 40628.67 41272.12 4017.09 41681.63 40643.17 40768.21 38766.59 404
Y. Furukawa, J. Ponce: Accurate, dense, and robust multiview stereopsis. PAMI (2010)
dongtai91.55 27291.13 26592.82 32198.16 18586.35 34799.47 21298.51 10883.24 36085.07 34497.56 24390.33 17894.94 36576.09 37591.73 25297.18 253
kuosan93.17 23492.60 23594.86 25398.40 16689.54 31898.44 31498.53 10484.46 35288.49 30097.92 23590.57 17397.05 30283.10 34093.49 24497.99 239
MVSMamba_PlusPlus97.83 7197.45 8298.99 7598.60 15198.15 6599.58 19197.74 23590.34 26699.26 8398.32 22094.29 8099.23 16899.03 6799.89 6799.58 139
MGCFI-Net97.00 11796.22 13499.34 4398.86 13498.80 3999.67 17697.30 28494.31 12797.77 14899.41 12286.36 22799.50 15598.38 10593.90 24199.72 107
testing9197.16 10896.90 10697.97 14198.35 17095.67 16699.91 8498.42 14592.91 17997.33 15898.72 18794.81 6199.21 17196.98 15894.63 22899.03 206
testing1197.48 9197.27 9198.10 13598.36 16896.02 15199.92 7998.45 12093.45 16398.15 13698.70 18995.48 4499.22 17097.85 13395.05 22599.07 204
testing9997.17 10796.91 10597.95 14298.35 17095.70 16399.91 8498.43 13392.94 17797.36 15798.72 18794.83 6099.21 17197.00 15694.64 22798.95 209
UWE-MVS96.79 12796.72 11797.00 19198.51 16093.70 22599.71 16798.60 8492.96 17697.09 16398.34 21996.67 2698.85 19192.11 24396.50 19398.44 229
ETVMVS97.03 11696.64 12098.20 12998.67 14597.12 11099.89 9898.57 8991.10 24898.17 13598.59 19993.86 9698.19 24895.64 17995.24 22399.28 187
sasdasda97.09 11296.32 13099.39 4098.93 12398.95 2799.72 16497.35 27794.45 11697.88 14499.42 11886.71 22199.52 15198.48 10193.97 23999.72 107
testing22297.08 11596.75 11598.06 13898.56 15396.82 12099.85 11898.61 8292.53 20198.84 10098.84 18393.36 10598.30 23895.84 17694.30 23499.05 205
WB-MVSnew92.90 24192.77 23293.26 31196.95 25493.63 22799.71 16798.16 19791.49 23294.28 21998.14 22681.33 26796.48 33079.47 35995.46 21689.68 383
fmvsm_l_conf0.5_n_a99.00 1598.91 1499.28 4599.21 10397.91 7999.98 1598.85 5698.25 599.92 299.75 6994.72 6499.97 5499.87 1999.64 9199.95 71
fmvsm_l_conf0.5_n98.94 1698.84 1799.25 4699.17 10697.81 8299.98 1598.86 5398.25 599.90 399.76 6394.21 8599.97 5499.87 1999.52 10499.98 48
fmvsm_s_conf0.1_n_a97.09 11296.90 10697.63 16595.65 30194.21 21299.83 13098.50 11496.27 7099.65 4199.64 9984.72 24199.93 8599.04 6498.84 13998.74 221
fmvsm_s_conf0.1_n97.30 10197.21 9497.60 16797.38 23494.40 20699.90 9098.64 7696.47 6199.51 6299.65 9884.99 24099.93 8599.22 5599.09 13198.46 228
fmvsm_s_conf0.5_n_a97.73 8497.72 7297.77 15598.63 15094.26 21099.96 3598.92 4697.18 3999.75 2999.69 8787.00 21999.97 5499.46 4498.89 13699.08 203
fmvsm_s_conf0.5_n97.80 7797.85 6997.67 16199.06 11194.41 20499.98 1598.97 4097.34 2999.63 4499.69 8787.27 21499.97 5499.62 3799.06 13298.62 226
MM98.83 2198.53 2799.76 1099.59 8299.33 899.99 499.76 698.39 499.39 7499.80 5190.49 17699.96 6299.89 1799.43 11499.98 48
WAC-MVS90.97 28786.10 322
Syy-MVS90.00 30690.63 27288.11 36297.68 21874.66 38999.71 16798.35 16790.79 25692.10 24498.67 19179.10 29293.09 38263.35 39695.95 20596.59 258
test_fmvsmconf0.1_n97.74 8297.44 8498.64 9895.76 29296.20 14499.94 6998.05 20898.17 998.89 9999.42 11887.65 20999.90 9199.50 4199.60 10099.82 92
test_fmvsmconf0.01_n96.39 14795.74 15598.32 12491.47 36995.56 17099.84 12397.30 28497.74 1897.89 14399.35 12979.62 28599.85 10899.25 5499.24 12499.55 144
myMVS_eth3d94.46 20294.76 18493.55 30497.68 21890.97 28799.71 16798.35 16790.79 25692.10 24498.67 19192.46 13793.09 38287.13 31095.95 20596.59 258
testing393.92 21394.23 19492.99 31897.54 22590.23 30599.99 499.16 3090.57 26091.33 25298.63 19792.99 11992.52 38682.46 34495.39 21996.22 263
SSC-MVS75.42 36276.40 36572.49 38580.68 40053.62 40797.42 34594.06 38880.42 37468.75 39490.14 38076.54 31281.66 40533.25 41066.34 39282.19 396
test_fmvsmconf_n98.43 4398.32 4098.78 8798.12 18996.41 13299.99 498.83 5998.22 799.67 3999.64 9991.11 16199.94 7899.67 3699.62 9499.98 48
WB-MVS76.28 36177.28 36373.29 38181.18 39854.68 40697.87 34094.19 38681.30 37069.43 39390.70 37877.02 30582.06 40435.71 40968.11 38883.13 395
test_fmvsmvis_n_192097.67 8697.59 7997.91 14797.02 25095.34 17899.95 5398.45 12097.87 1597.02 16699.59 10489.64 18699.98 4499.41 4899.34 12098.42 230
dmvs_re93.20 23393.15 22493.34 30796.54 27283.81 36198.71 29898.51 10891.39 24192.37 24298.56 20478.66 29697.83 26793.89 21289.74 25798.38 231
SDMVSNet94.80 18893.96 20197.33 18498.92 12695.42 17599.59 18998.99 3792.41 20692.55 24097.85 23875.81 32098.93 18897.90 13191.62 25497.64 246
dmvs_testset83.79 34786.07 33176.94 37792.14 35948.60 41296.75 36090.27 40289.48 27978.65 37298.55 20679.25 28886.65 40066.85 39182.69 32095.57 266
sd_testset93.55 22692.83 22995.74 22698.92 12690.89 29298.24 32698.85 5692.41 20692.55 24097.85 23871.07 34898.68 20693.93 21191.62 25497.64 246
test_fmvsm_n_192098.44 4198.61 2497.92 14599.27 10295.18 187100.00 198.90 4798.05 1299.80 1799.73 7892.64 12999.99 3699.58 3899.51 10798.59 227
test_cas_vis1_n_192096.59 13996.23 13397.65 16298.22 17994.23 21199.99 497.25 29197.77 1799.58 5499.08 14877.10 30399.97 5497.64 14299.45 11298.74 221
test_vis1_n_192095.44 17595.31 16795.82 22498.50 16288.74 32599.98 1597.30 28497.84 1699.85 999.19 14266.82 36399.97 5498.82 8299.46 11198.76 219
test_vis1_n93.61 22593.03 22695.35 23595.86 28786.94 34499.87 10496.36 35396.85 4699.54 5798.79 18452.41 39299.83 11898.64 9598.97 13599.29 186
test_fmvs1_n94.25 21094.36 19093.92 29197.68 21883.70 36299.90 9096.57 34797.40 2899.67 3998.88 17461.82 37999.92 8898.23 11299.13 12998.14 237
mvsany_test197.82 7497.90 6797.55 16898.77 14093.04 24299.80 13997.93 21896.95 4599.61 5399.68 9390.92 16599.83 11899.18 5698.29 15499.80 96
APD_test181.15 35380.92 35481.86 37392.45 35559.76 40296.04 37393.61 39373.29 39377.06 37896.64 27544.28 39896.16 34372.35 38182.52 32189.67 384
test_vis1_rt86.87 33086.05 33289.34 35196.12 27878.07 38599.87 10483.54 41092.03 21878.21 37589.51 38145.80 39699.91 8996.25 16993.11 25090.03 380
test_vis3_rt68.82 36466.69 36975.21 38076.24 40560.41 40196.44 36468.71 41575.13 38950.54 40669.52 40416.42 41496.32 33780.27 35666.92 39168.89 402
test_fmvs289.47 31489.70 29188.77 35894.54 31975.74 38699.83 13094.70 38394.71 10891.08 25396.82 27254.46 38997.78 27092.87 23588.27 28092.80 355
test_fmvs195.35 17795.68 15994.36 27698.99 11784.98 35699.96 3596.65 34497.60 2299.73 3398.96 16371.58 34399.93 8598.31 11099.37 11898.17 234
test_fmvs379.99 35880.17 35779.45 37584.02 39462.83 39699.05 26493.49 39488.29 30680.06 36886.65 39228.09 40488.00 39688.63 28973.27 37687.54 392
mvsany_test382.12 35181.14 35385.06 36881.87 39770.41 39297.09 35392.14 39791.27 24377.84 37688.73 38439.31 39995.49 35590.75 26671.24 37889.29 388
testf168.38 36666.92 36772.78 38378.80 40250.36 40990.95 39687.35 40855.47 39958.95 39888.14 38620.64 40987.60 39757.28 40164.69 39380.39 398
APD_test268.38 36666.92 36772.78 38378.80 40250.36 40990.95 39687.35 40855.47 39958.95 39888.14 38620.64 40987.60 39757.28 40164.69 39380.39 398
test_f78.40 36077.59 36280.81 37480.82 39962.48 39996.96 35793.08 39583.44 35974.57 38784.57 39627.95 40592.63 38584.15 33172.79 37787.32 393
FE-MVS95.70 16995.01 17897.79 15298.21 18094.57 19995.03 37998.69 6888.90 29397.50 15496.19 28792.60 13199.49 16089.99 27997.94 16599.31 182
FA-MVS(test-final)95.86 16195.09 17598.15 13397.74 21095.62 16896.31 36798.17 19391.42 23996.26 18796.13 29090.56 17499.47 16292.18 24297.07 18199.35 177
balanced_conf0398.27 5297.99 5899.11 6698.64 14998.43 6299.47 21297.79 23294.56 11399.74 3198.35 21794.33 7899.25 16799.12 5899.96 4699.64 121
bld_raw_conf0397.82 7497.45 8298.94 8198.51 16098.15 6599.58 19197.74 23594.01 14399.26 8398.38 21690.66 17099.09 18298.99 7199.89 6799.58 139
patch_mono-298.24 5799.12 595.59 22899.67 7886.91 34699.95 5398.89 4997.60 2299.90 399.76 6396.54 2799.98 4499.94 1199.82 7999.88 85
EGC-MVSNET69.38 36363.76 37386.26 36690.32 37881.66 37596.24 36993.85 3910.99 4133.22 41492.33 37152.44 39192.92 38459.53 40084.90 30684.21 394
test250697.53 8997.19 9598.58 10498.66 14696.90 11898.81 29099.77 594.93 9997.95 14098.96 16392.51 13499.20 17494.93 18898.15 15699.64 121
test111195.57 17294.98 17997.37 18098.56 15393.37 23698.86 28598.45 12094.95 9896.63 17698.95 16875.21 32799.11 17995.02 18698.14 15899.64 121
ECVR-MVScopyleft95.66 17095.05 17697.51 17298.66 14693.71 22498.85 28798.45 12094.93 9996.86 17098.96 16375.22 32699.20 17495.34 18198.15 15699.64 121
test_blank0.00 3830.00 3860.00 3960.00 4190.00 4210.00 4070.00 4200.00 4140.00 4150.02 4140.00 4190.00 4150.00 4140.00 4130.00 411
tt080591.28 27590.18 28394.60 26196.26 27687.55 33998.39 31998.72 6589.00 28789.22 28798.47 21262.98 37698.96 18690.57 26888.00 28497.28 252
DVP-MVS++99.26 699.09 999.77 899.91 3999.31 1099.95 5398.43 13396.48 5999.80 1799.93 1197.44 12100.00 199.92 1399.98 32100.00 1
FOURS199.92 3197.66 8899.95 5398.36 16595.58 8599.52 60
MSC_two_6792asdad99.93 299.91 3999.80 298.41 150100.00 199.96 9100.00 1100.00 1
PC_three_145296.96 4499.80 1799.79 5597.49 8100.00 199.99 599.98 32100.00 1
No_MVS99.93 299.91 3999.80 298.41 150100.00 199.96 9100.00 1100.00 1
test_one_060199.94 1399.30 1298.41 15096.63 5699.75 2999.93 1197.49 8
eth-test20.00 419
eth-test0.00 419
GeoE94.36 20793.48 21496.99 19297.29 24293.54 23099.96 3596.72 34188.35 30593.43 22798.94 17082.05 25898.05 25688.12 29996.48 19599.37 173
test_method80.79 35479.70 35884.08 36992.83 35067.06 39599.51 20595.42 37154.34 40181.07 36393.53 35944.48 39792.22 38878.90 36477.23 36492.94 352
Anonymous2024052185.15 33983.81 34189.16 35388.32 38582.69 36598.80 29295.74 36479.72 37681.53 36090.99 37565.38 36994.16 37272.69 38081.11 33590.63 376
h-mvs3394.92 18694.36 19096.59 20598.85 13591.29 28498.93 27698.94 4195.90 7698.77 10598.42 21590.89 16899.77 12897.80 13470.76 37998.72 223
hse-mvs294.38 20494.08 19895.31 23898.27 17690.02 31099.29 23998.56 9295.90 7698.77 10598.00 23190.89 16898.26 24597.80 13469.20 38597.64 246
CL-MVSNet_self_test84.50 34383.15 34688.53 35986.00 39081.79 37398.82 28997.35 27785.12 34583.62 35190.91 37776.66 31091.40 39069.53 38660.36 39992.40 361
KD-MVS_2432*160088.00 32586.10 32993.70 30096.91 25694.04 21597.17 35197.12 30384.93 34781.96 35692.41 36892.48 13594.51 37079.23 36052.68 40292.56 357
KD-MVS_self_test83.59 34982.06 34988.20 36186.93 38880.70 38097.21 34996.38 35282.87 36382.49 35488.97 38367.63 36092.32 38773.75 37962.30 39891.58 369
AUN-MVS93.28 23192.60 23595.34 23698.29 17390.09 30999.31 23498.56 9291.80 22696.35 18698.00 23189.38 19098.28 24192.46 23869.22 38497.64 246
ZD-MVS99.92 3198.57 5698.52 10592.34 20999.31 7899.83 4395.06 5299.80 12199.70 3499.97 42
SR-MVS-dyc-post98.31 4998.17 4898.71 9299.79 6296.37 13699.76 15098.31 17694.43 11999.40 7299.75 6993.28 11199.78 12598.90 7899.92 6499.97 58
RE-MVS-def98.13 5199.79 6296.37 13699.76 15098.31 17694.43 11999.40 7299.75 6992.95 12198.90 7899.92 6499.97 58
SED-MVS99.28 599.11 799.77 899.93 2499.30 1299.96 3598.43 13397.27 3499.80 1799.94 496.71 22100.00 1100.00 1100.00 1100.00 1
IU-MVS99.93 2499.31 1098.41 15097.71 1999.84 12100.00 1100.00 1100.00 1
OPU-MVS99.93 299.89 4599.80 299.96 3599.80 5197.44 12100.00 1100.00 199.98 32100.00 1
test_241102_TWO98.43 13397.27 3499.80 1799.94 497.18 19100.00 1100.00 1100.00 1100.00 1
test_241102_ONE99.93 2499.30 1298.43 13397.26 3699.80 1799.88 2196.71 22100.00 1
SF-MVS98.67 2798.40 3299.50 3099.77 6598.67 4999.90 9098.21 18893.53 15999.81 1599.89 1994.70 6699.86 10799.84 2299.93 6199.96 64
cl2293.77 21993.25 22395.33 23799.49 9294.43 20299.61 18798.09 20390.38 26389.16 29195.61 30390.56 17497.34 28391.93 24584.45 31094.21 293
miper_ehance_all_eth93.16 23592.60 23594.82 25497.57 22493.56 22999.50 20797.07 30988.75 29688.85 29595.52 30990.97 16496.74 32090.77 26584.45 31094.17 295
miper_enhance_ethall94.36 20793.98 20095.49 22998.68 14495.24 18399.73 16197.29 28793.28 16889.86 26995.97 29494.37 7597.05 30292.20 24184.45 31094.19 294
ZNCC-MVS98.31 4998.03 5699.17 5599.88 4997.59 8999.94 6998.44 12594.31 12798.50 11999.82 4693.06 11899.99 3698.30 11199.99 2199.93 76
dcpmvs_297.42 9698.09 5495.42 23399.58 8687.24 34299.23 24496.95 32194.28 13098.93 9799.73 7894.39 7499.16 17899.89 1799.82 7999.86 89
cl____92.31 25591.58 25694.52 26697.33 23992.77 24599.57 19596.78 33886.97 32487.56 31595.51 31089.43 18996.62 32588.60 29082.44 32394.16 300
DIV-MVS_self_test92.32 25491.60 25594.47 27097.31 24092.74 24799.58 19196.75 33986.99 32387.64 31395.54 30789.55 18896.50 32988.58 29182.44 32394.17 295
eth_miper_zixun_eth92.41 25391.93 25093.84 29597.28 24390.68 29598.83 28896.97 32088.57 30189.19 29095.73 30089.24 19596.69 32389.97 28081.55 32994.15 301
9.1498.38 3499.87 5199.91 8498.33 17293.22 16999.78 2699.89 1994.57 6899.85 10899.84 2299.97 42
uanet_test0.00 3830.00 3860.00 3960.00 4190.00 4210.00 4070.00 4200.00 4140.00 4150.00 4150.00 4190.00 4150.00 4140.00 4130.00 411
DCPMVS0.00 3830.00 3860.00 3960.00 4190.00 4210.00 4070.00 4200.00 4140.00 4150.00 4150.00 4190.00 4150.00 4140.00 4130.00 411
save fliter99.82 5898.79 4099.96 3598.40 15497.66 21
ET-MVSNet_ETH3D94.37 20593.28 22297.64 16398.30 17297.99 7499.99 497.61 24994.35 12471.57 39099.45 11796.23 3095.34 35996.91 16385.14 30599.59 133
UniMVSNet_ETH3D90.06 30588.58 31394.49 26994.67 31788.09 33697.81 34297.57 25483.91 35688.44 30297.41 24757.44 38697.62 27591.41 25188.59 27697.77 244
EIA-MVS97.53 8997.46 8197.76 15798.04 19294.84 19499.98 1597.61 24994.41 12297.90 14299.59 10492.40 13898.87 18998.04 12299.13 12999.59 133
miper_refine_blended88.00 32586.10 32993.70 30096.91 25694.04 21597.17 35197.12 30384.93 34781.96 35692.41 36892.48 13594.51 37079.23 36052.68 40292.56 357
miper_lstm_enhance91.81 26391.39 26293.06 31797.34 23789.18 32299.38 22596.79 33786.70 32787.47 31795.22 32790.00 18295.86 35388.26 29581.37 33194.15 301
ETV-MVS97.92 6797.80 7198.25 12798.14 18796.48 12999.98 1597.63 24495.61 8499.29 8199.46 11692.55 13398.82 19299.02 6998.54 14599.46 162
CS-MVS97.79 7997.91 6697.43 17699.10 10994.42 20399.99 497.10 30595.07 9699.68 3899.75 6992.95 12198.34 23498.38 10599.14 12899.54 148
D2MVS92.76 24492.59 23993.27 31095.13 30889.54 31899.69 17299.38 2292.26 21187.59 31494.61 34685.05 23997.79 26891.59 25088.01 28392.47 360
DVP-MVScopyleft99.30 499.16 399.73 1299.93 2499.29 1599.95 5398.32 17497.28 3299.83 1399.91 1497.22 17100.00 199.99 5100.00 199.89 84
Zhenlong Yuan, Jinguo Luo, Fei Shen, Zhaoxin Li, Cong Liu, Tianlu Mao, Zhaoqi Wang: DVP-MVS: Synergize Depth-Edge and Visibility Prior for Multi-View Stereo. AAAI2025
test_0728_THIRD96.48 5999.83 1399.91 1497.87 4100.00 199.92 13100.00 1100.00 1
test_0728_SECOND99.82 799.94 1399.47 799.95 5398.43 133100.00 199.99 5100.00 1100.00 1
test072699.93 2499.29 1599.96 3598.42 14597.28 3299.86 799.94 497.22 17
SR-MVS98.46 3998.30 4398.93 8299.88 4997.04 11299.84 12398.35 16794.92 10199.32 7799.80 5193.35 10699.78 12599.30 5299.95 5099.96 64
DPM-MVS98.83 2198.46 3099.97 199.33 9999.92 199.96 3598.44 12597.96 1499.55 5599.94 497.18 19100.00 193.81 21799.94 5599.98 48
GST-MVS98.27 5297.97 6099.17 5599.92 3197.57 9199.93 7698.39 15794.04 14298.80 10399.74 7692.98 120100.00 198.16 11599.76 8499.93 76
test_yl97.83 7197.37 8799.21 4999.18 10497.98 7599.64 18299.27 2791.43 23797.88 14498.99 15795.84 3799.84 11698.82 8295.32 22199.79 97
thisisatest053097.10 11096.72 11798.22 12897.60 22396.70 12399.92 7998.54 10191.11 24797.07 16598.97 16197.47 1099.03 18393.73 22296.09 20098.92 210
Anonymous2024052992.10 25990.65 27196.47 20698.82 13690.61 29798.72 29798.67 7375.54 38793.90 22598.58 20266.23 36599.90 9194.70 19890.67 25698.90 213
Anonymous20240521193.10 23791.99 24996.40 21099.10 10989.65 31698.88 28197.93 21883.71 35794.00 22398.75 18668.79 35399.88 10295.08 18591.71 25399.68 113
DCV-MVSNet97.83 7197.37 8799.21 4999.18 10497.98 7599.64 18299.27 2791.43 23797.88 14498.99 15795.84 3799.84 11698.82 8295.32 22199.79 97
tttt051796.85 12496.49 12697.92 14597.48 23095.89 15599.85 11898.54 10190.72 25996.63 17698.93 17297.47 1099.02 18493.03 23495.76 21198.85 214
our_test_390.39 29489.48 29993.12 31492.40 35689.57 31799.33 23196.35 35487.84 31185.30 34194.99 33584.14 24796.09 34780.38 35584.56 30993.71 337
thisisatest051597.41 9797.02 10398.59 10397.71 21797.52 9399.97 2898.54 10191.83 22397.45 15599.04 15197.50 799.10 18194.75 19696.37 19799.16 195
ppachtmachnet_test89.58 31388.35 31693.25 31292.40 35690.44 30299.33 23196.73 34085.49 34285.90 33995.77 29781.09 27096.00 35176.00 37682.49 32293.30 345
SMA-MVScopyleft98.76 2498.48 2999.62 2099.87 5198.87 3399.86 11598.38 16193.19 17099.77 2799.94 495.54 41100.00 199.74 3099.99 21100.00 1
Yufeng Yin; Xiaoyan Liu; Zichao Zhang: SMA-MVS: Segmentation-Guided Multi-Scale Anchor Deformation Patch Multi-View Stereo. IEEE Transactions on Circuits and Systems for Video Technology
GSMVS99.59 133
DPE-MVScopyleft99.26 699.10 899.74 1199.89 4599.24 1999.87 10498.44 12597.48 2799.64 4399.94 496.68 2499.99 3699.99 5100.00 199.99 23
Kehua Chen, Zhenlong Yuan, Tianlu Mao, Zhaoqi Wang: Dual-Level Precision Edges Guided Multi-View Stereo with Accurate Planarization. AAAI2025
test_part299.89 4599.25 1899.49 63
thres100view90096.74 13295.92 15099.18 5298.90 13198.77 4299.74 15699.71 792.59 19795.84 19798.86 17989.25 19399.50 15593.84 21494.57 22999.27 188
tfpnnormal89.29 31787.61 32394.34 27794.35 32294.13 21498.95 27498.94 4183.94 35484.47 34695.51 31074.84 32997.39 28077.05 37280.41 34291.48 370
tfpn200view996.79 12795.99 14099.19 5198.94 12198.82 3799.78 14299.71 792.86 18096.02 19298.87 17789.33 19199.50 15593.84 21494.57 22999.27 188
c3_l92.53 25091.87 25294.52 26697.40 23392.99 24399.40 22096.93 32687.86 31088.69 29895.44 31389.95 18396.44 33290.45 27180.69 34194.14 304
CHOSEN 280x42099.01 1499.03 1098.95 8099.38 9798.87 3398.46 31299.42 2197.03 4299.02 9399.09 14799.35 198.21 24799.73 3299.78 8399.77 101
CANet98.27 5297.82 7099.63 1799.72 7599.10 2399.98 1598.51 10897.00 4398.52 11799.71 8387.80 20799.95 7099.75 2899.38 11799.83 91
Fast-Effi-MVS+-dtu93.72 22293.86 20593.29 30997.06 24886.16 34899.80 13996.83 33392.66 19292.58 23997.83 24081.39 26597.67 27389.75 28296.87 18896.05 265
Effi-MVS+-dtu94.53 20095.30 16892.22 32797.77 20882.54 36799.59 18997.06 31094.92 10195.29 20795.37 31985.81 23097.89 26594.80 19497.07 18196.23 262
CANet_DTU96.76 13096.15 13698.60 10198.78 13997.53 9299.84 12397.63 24497.25 3799.20 8599.64 9981.36 26699.98 4492.77 23798.89 13698.28 233
MVS_030499.06 1198.84 1799.72 1399.76 6699.21 2199.99 499.34 2598.70 299.44 6699.75 6993.24 11399.99 3699.94 1199.41 11699.95 71
MP-MVS-pluss98.07 6397.64 7599.38 4299.74 7098.41 6399.74 15698.18 19293.35 16496.45 18199.85 3092.64 12999.97 5498.91 7799.89 6799.77 101
MP-MVS-pluss: MP-MVS-pluss. MP-MVS-pluss
MSP-MVS99.09 999.12 598.98 7799.93 2497.24 10399.95 5398.42 14597.50 2699.52 6099.88 2197.43 1499.71 13899.50 4199.98 32100.00 1
Zhenlong Yuan, Cong Liu, Fei Shen, Zhaoxin Li, Jingguo luo, Tianlu Mao and Zhaoqi Wang: MSP-MVS: Multi-granularity Segmentation Prior Guided Multi-View Stereo. AAAI2025
sam_mvs194.72 6499.59 133
sam_mvs94.25 82
IterMVS-SCA-FT90.85 28590.16 28592.93 31996.72 26989.96 31198.89 27996.99 31688.95 29186.63 32795.67 30176.48 31395.00 36387.04 31284.04 31693.84 328
TSAR-MVS + MP.98.93 1798.77 1999.41 3899.74 7098.67 4999.77 14598.38 16196.73 5399.88 699.74 7694.89 5999.59 14999.80 2599.98 3299.97 58
Zhenlong Yuan, Jiakai Cao, Zhaoqi Wang, Zhaoxin Li: TSAR-MVS: Textureless-aware Segmentation and Correlative Refinement Guided Multi-View Stereo. Pattern Recognition
xiu_mvs_v1_base_debu97.43 9297.06 9898.55 10697.74 21098.14 6799.31 23497.86 22796.43 6299.62 4799.69 8785.56 23299.68 14299.05 6198.31 15197.83 241
OPM-MVS93.21 23292.80 23094.44 27293.12 34390.85 29399.77 14597.61 24996.19 7391.56 24998.65 19475.16 32898.47 21593.78 22089.39 26493.99 316
Ray L. Khuboni, Hongjun Xu: Octagram Propagation Matching for Multi-Scale View Stereopsis (OPM-MVS).
ACMMP_NAP98.49 3798.14 5099.54 2799.66 7998.62 5599.85 11898.37 16494.68 11099.53 5899.83 4392.87 123100.00 198.66 9499.84 7499.99 23
ambc83.23 37177.17 40462.61 39787.38 40094.55 38576.72 38186.65 39230.16 40196.36 33584.85 33069.86 38090.73 375
MTGPAbinary98.28 181
CS-MVS-test97.88 6897.94 6497.70 16099.28 10195.20 18699.98 1597.15 30095.53 8799.62 4799.79 5592.08 14698.38 23098.75 8899.28 12299.52 153
Effi-MVS+96.30 15295.69 15798.16 13097.85 20396.26 13997.41 34697.21 29390.37 26498.65 11398.58 20286.61 22498.70 20497.11 15397.37 17699.52 153
xiu_mvs_v2_base98.23 5897.97 6099.02 7398.69 14398.66 5199.52 20398.08 20597.05 4199.86 799.86 2690.65 17199.71 13899.39 5098.63 14498.69 224
xiu_mvs_v1_base97.43 9297.06 9898.55 10697.74 21098.14 6799.31 23497.86 22796.43 6299.62 4799.69 8785.56 23299.68 14299.05 6198.31 15197.83 241
new-patchmatchnet81.19 35279.34 35986.76 36582.86 39680.36 38397.92 33895.27 37582.09 36872.02 38986.87 39162.81 37790.74 39371.10 38363.08 39689.19 389
pmmvs685.69 33383.84 34091.26 33690.00 38184.41 35997.82 34196.15 35875.86 38581.29 36195.39 31761.21 38196.87 31583.52 33973.29 37592.50 359
pmmvs590.17 30389.09 30493.40 30692.10 36189.77 31599.74 15695.58 36985.88 33687.24 32295.74 29873.41 33796.48 33088.54 29283.56 31793.95 319
test_post195.78 37759.23 41193.20 11597.74 27191.06 257
test_post63.35 40894.43 6998.13 251
Fast-Effi-MVS+95.02 18494.19 19597.52 17197.88 20094.55 20099.97 2897.08 30888.85 29594.47 21697.96 23484.59 24398.41 22289.84 28197.10 18099.59 133
patchmatchnet-post91.70 37395.12 4997.95 262
Anonymous2023121189.86 30888.44 31594.13 28298.93 12390.68 29598.54 30998.26 18476.28 38386.73 32595.54 30770.60 34997.56 27690.82 26480.27 34594.15 301
pmmvs-eth3d84.03 34681.97 35090.20 34584.15 39387.09 34398.10 33494.73 38283.05 36174.10 38887.77 38965.56 36894.01 37381.08 35369.24 38389.49 386
GG-mvs-BLEND98.54 10998.21 18098.01 7393.87 38498.52 10597.92 14197.92 23599.02 297.94 26498.17 11499.58 10199.67 115
xiu_mvs_v1_base_debi97.43 9297.06 9898.55 10697.74 21098.14 6799.31 23497.86 22796.43 6299.62 4799.69 8785.56 23299.68 14299.05 6198.31 15197.83 241
Anonymous2023120686.32 33185.42 33489.02 35489.11 38480.53 38299.05 26495.28 37485.43 34382.82 35393.92 35574.40 33293.44 38066.99 39081.83 32893.08 350
MTAPA98.29 5197.96 6399.30 4499.85 5497.93 7899.39 22498.28 18195.76 8097.18 16299.88 2192.74 127100.00 198.67 9299.88 7199.99 23
MTMP99.87 10496.49 350
gm-plane-assit96.97 25393.76 22391.47 23598.96 16398.79 19494.92 189
test9_res99.71 3399.99 21100.00 1
MVP-Stereo90.93 28190.45 27692.37 32691.25 37288.76 32498.05 33696.17 35787.27 31884.04 34795.30 32278.46 29997.27 29183.78 33699.70 8891.09 371
Qingsong Yan: MVP-Stereo: A Parallel Multi-View Patchmatch Stereo Method with Dilation Matching for Photogrammetric Application.
TEST999.92 3198.92 2999.96 3598.43 13393.90 15099.71 3599.86 2695.88 3699.85 108
train_agg98.88 2098.65 2199.59 2399.92 3198.92 2999.96 3598.43 13394.35 12499.71 3599.86 2695.94 3399.85 10899.69 3599.98 3299.99 23
gg-mvs-nofinetune93.51 22791.86 25398.47 11497.72 21597.96 7792.62 38898.51 10874.70 39097.33 15869.59 40398.91 397.79 26897.77 13999.56 10299.67 115
SCA94.69 19393.81 20697.33 18497.10 24694.44 20198.86 28598.32 17493.30 16796.17 19095.59 30576.48 31397.95 26291.06 25797.43 17299.59 133
Patchmatch-test92.65 24991.50 25996.10 21896.85 26190.49 30091.50 39397.19 29482.76 36590.23 26195.59 30595.02 5498.00 25877.41 36996.98 18699.82 92
test_899.92 3198.88 3299.96 3598.43 13394.35 12499.69 3799.85 3095.94 3399.85 108
MS-PatchMatch90.65 28890.30 27991.71 33394.22 32485.50 35398.24 32697.70 23888.67 29886.42 33296.37 28367.82 35998.03 25783.62 33799.62 9491.60 368
Patchmatch-RL test86.90 32985.98 33389.67 34984.45 39275.59 38789.71 39892.43 39686.89 32577.83 37790.94 37694.22 8393.63 37887.75 30269.61 38199.79 97
cdsmvs_eth3d_5k23.43 37931.24 3820.00 3960.00 4190.00 4210.00 40798.09 2030.00 4140.00 41599.67 9483.37 2520.00 4150.00 4140.00 4130.00 411
pcd_1.5k_mvsjas7.60 38210.13 3850.00 3960.00 4190.00 4210.00 4070.00 4200.00 4140.00 4150.00 41591.20 1570.00 4150.00 4140.00 4130.00 411
agg_prior299.48 43100.00 1100.00 1
agg_prior99.93 2498.77 4298.43 13399.63 4499.85 108
tmp_tt65.23 37162.94 37472.13 38644.90 41550.03 41181.05 40289.42 40638.45 40548.51 40799.90 1854.09 39078.70 40791.84 24818.26 40987.64 391
canonicalmvs97.09 11296.32 13099.39 4098.93 12398.95 2799.72 16497.35 27794.45 11697.88 14499.42 11886.71 22199.52 15198.48 10193.97 23999.72 107
anonymousdsp91.79 26890.92 26894.41 27590.76 37592.93 24498.93 27697.17 29789.08 28387.46 31895.30 32278.43 30096.92 31292.38 23988.73 27293.39 343
alignmvs97.81 7697.33 8999.25 4698.77 14098.66 5199.99 498.44 12594.40 12398.41 12399.47 11493.65 10199.42 16498.57 9894.26 23599.67 115
nrg03093.51 22792.53 24096.45 20894.36 32197.20 10599.81 13597.16 29991.60 22989.86 26997.46 24586.37 22697.68 27295.88 17580.31 34494.46 273
v14419290.79 28689.52 29694.59 26293.11 34492.77 24599.56 19796.99 31686.38 33089.82 27294.95 33780.50 27997.10 29983.98 33480.41 34293.90 323
FIs94.10 21193.43 21596.11 21794.70 31696.82 12099.58 19198.93 4592.54 20089.34 28397.31 25087.62 21097.10 29994.22 20986.58 29494.40 279
v192192090.46 29389.12 30394.50 26892.96 34892.46 25699.49 20996.98 31886.10 33389.61 27895.30 32278.55 29897.03 30782.17 34780.89 34094.01 313
UA-Net96.54 14095.96 14698.27 12698.23 17895.71 16298.00 33798.45 12093.72 15698.41 12399.27 13488.71 20299.66 14691.19 25497.69 16799.44 166
v119290.62 29189.25 30194.72 25793.13 34193.07 23999.50 20797.02 31386.33 33189.56 27995.01 33279.22 28997.09 30182.34 34681.16 33394.01 313
FC-MVSNet-test93.81 21793.15 22495.80 22594.30 32396.20 14499.42 21998.89 4992.33 21089.03 29397.27 25287.39 21396.83 31793.20 22886.48 29594.36 281
v114491.09 27989.83 28894.87 25093.25 34093.69 22699.62 18596.98 31886.83 32689.64 27794.99 33580.94 27197.05 30285.08 32881.16 33393.87 326
sosnet-low-res0.00 3830.00 3860.00 3960.00 4190.00 4210.00 4070.00 4200.00 4140.00 4150.00 4150.00 4190.00 4150.00 4140.00 4130.00 411
HFP-MVS98.56 3298.37 3699.14 6199.96 897.43 9999.95 5398.61 8294.77 10599.31 7899.85 3094.22 83100.00 198.70 9099.98 3299.98 48
v14890.70 28789.63 29293.92 29192.97 34790.97 28799.75 15396.89 32987.51 31388.27 30795.01 33281.67 26197.04 30587.40 30677.17 36593.75 332
sosnet0.00 3830.00 3860.00 3960.00 4190.00 4210.00 4070.00 4200.00 4140.00 4150.00 4150.00 4190.00 4150.00 4140.00 4130.00 411
uncertanet0.00 3830.00 3860.00 3960.00 4190.00 4210.00 4070.00 4200.00 4140.00 4150.00 4150.00 4190.00 4150.00 4140.00 4130.00 411
AllTest92.48 25191.64 25495.00 24699.01 11488.43 33198.94 27596.82 33586.50 32888.71 29698.47 21274.73 33099.88 10285.39 32596.18 19896.71 256
TestCases95.00 24699.01 11488.43 33196.82 33586.50 32888.71 29698.47 21274.73 33099.88 10285.39 32596.18 19896.71 256
v7n89.65 31288.29 31793.72 29792.22 35890.56 29999.07 25997.10 30585.42 34486.73 32594.72 34080.06 28297.13 29681.14 35278.12 35693.49 340
region2R98.54 3398.37 3699.05 6999.96 897.18 10699.96 3598.55 9894.87 10399.45 6599.85 3094.07 89100.00 198.67 92100.00 199.98 48
iter_conf0597.35 10096.89 10998.73 9198.60 15197.59 8998.26 32497.46 26690.34 26695.94 19498.32 22094.29 8099.23 16899.03 6799.82 7999.36 174
mamv495.24 17996.90 10690.25 34498.65 14872.11 39198.28 32397.64 24389.99 27495.93 19598.25 22394.74 6399.11 17999.01 7099.64 9199.53 152
PS-MVSNAJss93.64 22493.31 22194.61 26092.11 36092.19 26199.12 25197.38 27592.51 20388.45 30196.99 26391.20 15797.29 28994.36 20487.71 28794.36 281
PS-MVSNAJ98.44 4198.20 4699.16 5798.80 13898.92 2999.54 20198.17 19397.34 2999.85 999.85 3091.20 15799.89 9699.41 4899.67 8998.69 224
jajsoiax91.92 26191.18 26494.15 28091.35 37090.95 29099.00 26997.42 27192.61 19587.38 31997.08 25772.46 33997.36 28194.53 20288.77 27194.13 305
mvs_tets91.81 26391.08 26694.00 28891.63 36790.58 29898.67 30397.43 26992.43 20587.37 32097.05 26071.76 34197.32 28594.75 19688.68 27394.11 306
EI-MVSNet-UG-set98.14 6097.99 5898.60 10199.80 6196.27 13899.36 22998.50 11495.21 9598.30 12999.75 6993.29 11099.73 13798.37 10799.30 12199.81 94
EI-MVSNet-Vis-set98.27 5298.11 5398.75 9099.83 5796.59 12899.40 22098.51 10895.29 9398.51 11899.76 6393.60 10399.71 13898.53 10099.52 10499.95 71
HPM-MVS++copyleft99.07 1098.88 1699.63 1799.90 4299.02 2599.95 5398.56 9297.56 2599.44 6699.85 3095.38 46100.00 199.31 5199.99 2199.87 87
test_prior498.05 7199.94 69
XVS98.70 2698.55 2599.15 5999.94 1397.50 9599.94 6998.42 14596.22 7199.41 7099.78 5994.34 7699.96 6298.92 7599.95 5099.99 23
v124090.20 30188.79 31094.44 27293.05 34692.27 26099.38 22596.92 32785.89 33589.36 28294.87 33977.89 30197.03 30780.66 35481.08 33694.01 313
pm-mvs189.36 31687.81 32294.01 28793.40 33991.93 26798.62 30696.48 35186.25 33283.86 34996.14 28973.68 33697.04 30586.16 32075.73 37293.04 351
test_prior299.95 5395.78 7999.73 3399.76 6396.00 3299.78 27100.00 1
X-MVStestdata93.83 21592.06 24899.15 5999.94 1397.50 9599.94 6998.42 14596.22 7199.41 7041.37 41294.34 7699.96 6298.92 7599.95 5099.99 23
test_prior99.43 3599.94 1398.49 6098.65 7499.80 12199.99 23
旧先验299.46 21694.21 13399.85 999.95 7096.96 160
新几何299.40 220
新几何199.42 3799.75 6998.27 6498.63 8092.69 19099.55 5599.82 4694.40 71100.00 191.21 25399.94 5599.99 23
旧先验199.76 6697.52 9398.64 7699.85 3095.63 4099.94 5599.99 23
无先验99.49 20998.71 6693.46 161100.00 194.36 20499.99 23
原ACMM299.90 90
原ACMM198.96 7999.73 7396.99 11498.51 10894.06 14099.62 4799.85 3094.97 5899.96 6295.11 18499.95 5099.92 81
test22299.55 8797.41 10199.34 23098.55 9891.86 22299.27 8299.83 4393.84 9799.95 5099.99 23
testdata299.99 3690.54 270
segment_acmp96.68 24
testdata98.42 11999.47 9395.33 17998.56 9293.78 15399.79 2599.85 3093.64 10299.94 7894.97 18799.94 55100.00 1
testdata199.28 24096.35 69
v890.54 29289.17 30294.66 25893.43 33793.40 23599.20 24696.94 32585.76 33787.56 31594.51 34781.96 26097.19 29284.94 32978.25 35493.38 344
131496.84 12595.96 14699.48 3496.74 26898.52 5898.31 32198.86 5395.82 7889.91 26798.98 15987.49 21199.96 6297.80 13499.73 8699.96 64
LFMVS94.75 19293.56 21298.30 12599.03 11395.70 16398.74 29597.98 21387.81 31298.47 12099.39 12567.43 36199.53 15098.01 12395.20 22499.67 115
VDD-MVS93.77 21992.94 22796.27 21498.55 15690.22 30698.77 29497.79 23290.85 25496.82 17299.42 11861.18 38299.77 12898.95 7294.13 23698.82 216
VDDNet93.12 23691.91 25196.76 19996.67 27192.65 25398.69 30198.21 18882.81 36497.75 14999.28 13161.57 38099.48 16198.09 12094.09 23798.15 235
v1090.25 30088.82 30994.57 26493.53 33593.43 23399.08 25596.87 33185.00 34687.34 32194.51 34780.93 27297.02 30982.85 34279.23 34993.26 346
VPNet91.81 26390.46 27495.85 22394.74 31595.54 17198.98 27098.59 8692.14 21390.77 25897.44 24668.73 35597.54 27794.89 19277.89 35794.46 273
MVS96.60 13895.56 16199.72 1396.85 26199.22 2098.31 32198.94 4191.57 23090.90 25699.61 10386.66 22399.96 6297.36 14799.88 7199.99 23
v2v48291.30 27390.07 28795.01 24593.13 34193.79 22199.77 14597.02 31388.05 30889.25 28595.37 31980.73 27497.15 29487.28 30880.04 34794.09 307
V4291.28 27590.12 28694.74 25593.42 33893.46 23299.68 17497.02 31387.36 31689.85 27195.05 33081.31 26897.34 28387.34 30780.07 34693.40 342
SD-MVS98.92 1898.70 2099.56 2599.70 7798.73 4699.94 6998.34 17196.38 6599.81 1599.76 6394.59 6799.98 4499.84 2299.96 4699.97 58
Zhenlong Yuan, Jiakai Cao, Zhaoxin Li, Hao Jiang and Zhaoqi Wang: SD-MVS: Segmentation-driven Deformation Multi-View Stereo with Spherical Refinement and EM optimization. AAAI2024
GA-MVS93.83 21592.84 22896.80 19795.73 29593.57 22899.88 10197.24 29292.57 19992.92 23496.66 27378.73 29597.67 27387.75 30294.06 23899.17 194
MSLP-MVS++99.13 899.01 1199.49 3299.94 1398.46 6199.98 1598.86 5397.10 4099.80 1799.94 495.92 35100.00 199.51 40100.00 1100.00 1
APDe-MVScopyleft99.06 1198.91 1499.51 2999.94 1398.76 4599.91 8498.39 15797.20 3899.46 6499.85 3095.53 4399.79 12399.86 21100.00 199.99 23
Zhaojie Zeng, Yuesong Wang, Tao Guan: Matching Ambiguity-Resilient Multi-View Stereo via Adaptive Patch Deformation. Pattern Recognition
APD-MVS_3200maxsize98.25 5698.08 5598.78 8799.81 6096.60 12799.82 13398.30 17993.95 14799.37 7599.77 6192.84 12499.76 13198.95 7299.92 6499.97 58
ADS-MVSNet293.80 21893.88 20493.55 30497.87 20185.94 35094.24 38096.84 33290.07 27196.43 18294.48 34990.29 18095.37 35887.44 30497.23 17799.36 174
EI-MVSNet93.73 22193.40 21994.74 25596.80 26492.69 25099.06 26097.67 24188.96 29091.39 25099.02 15288.75 20197.30 28691.07 25687.85 28594.22 291
Regformer0.00 3830.00 3860.00 3960.00 4190.00 4210.00 4070.00 4200.00 4140.00 4150.00 4150.00 4190.00 4150.00 4140.00 4130.00 411
CVMVSNet94.68 19594.94 18093.89 29496.80 26486.92 34599.06 26098.98 3894.45 11694.23 22199.02 15285.60 23195.31 36090.91 26295.39 21999.43 167
pmmvs492.10 25991.07 26795.18 24192.82 35194.96 19199.48 21196.83 33387.45 31588.66 29996.56 27983.78 24996.83 31789.29 28484.77 30893.75 332
EU-MVSNet90.14 30490.34 27889.54 35092.55 35481.06 37898.69 30198.04 20991.41 24086.59 32896.84 27080.83 27393.31 38186.20 31981.91 32794.26 288
VNet97.21 10696.57 12499.13 6598.97 11997.82 8199.03 26799.21 2994.31 12799.18 8898.88 17486.26 22899.89 9698.93 7494.32 23399.69 112
test-LLR96.47 14296.04 13897.78 15397.02 25095.44 17399.96 3598.21 18894.07 13895.55 20296.38 28193.90 9498.27 24390.42 27298.83 14099.64 121
TESTMET0.1,196.74 13296.26 13298.16 13097.36 23696.48 12999.96 3598.29 18091.93 22095.77 20098.07 22995.54 4198.29 23990.55 26998.89 13699.70 110
test-mter96.39 14795.93 14997.78 15397.02 25095.44 17399.96 3598.21 18891.81 22595.55 20296.38 28195.17 4898.27 24390.42 27298.83 14099.64 121
VPA-MVSNet92.70 24691.55 25896.16 21695.09 30996.20 14498.88 28199.00 3691.02 25191.82 24795.29 32576.05 31997.96 26195.62 18081.19 33294.30 286
ACMMPR98.50 3698.32 4099.05 6999.96 897.18 10699.95 5398.60 8494.77 10599.31 7899.84 4193.73 99100.00 198.70 9099.98 3299.98 48
testgi89.01 31988.04 32091.90 33193.49 33684.89 35799.73 16195.66 36793.89 15285.14 34298.17 22559.68 38394.66 36977.73 36888.88 26896.16 264
test20.0384.72 34283.99 33786.91 36488.19 38780.62 38198.88 28195.94 36188.36 30478.87 37094.62 34568.75 35489.11 39566.52 39275.82 37091.00 372
thres600view796.69 13595.87 15399.14 6198.90 13198.78 4199.74 15699.71 792.59 19795.84 19798.86 17989.25 19399.50 15593.44 22694.50 23299.16 195
ADS-MVSNet94.79 18994.02 19997.11 19097.87 20193.79 22194.24 38098.16 19790.07 27196.43 18294.48 34990.29 18098.19 24887.44 30497.23 17799.36 174
MP-MVScopyleft98.23 5897.97 6099.03 7199.94 1397.17 10999.95 5398.39 15794.70 10998.26 13299.81 5091.84 151100.00 198.85 8199.97 4299.93 76
Rongxuan Tan, Qing Wang, et al.: MP-MVS: Multi-Scale Windows PatchMatch and Planar Prior Multi-View Stereo.
testmvs40.60 37744.45 38029.05 39419.49 41814.11 42099.68 17418.47 41720.74 41064.59 39598.48 21110.95 41517.09 41456.66 40311.01 41055.94 407
thres40096.78 12995.99 14099.16 5798.94 12198.82 3799.78 14299.71 792.86 18096.02 19298.87 17789.33 19199.50 15593.84 21494.57 22999.16 195
test12337.68 37839.14 38133.31 39319.94 41724.83 41998.36 3209.75 41815.53 41151.31 40587.14 39019.62 41217.74 41347.10 4053.47 41257.36 406
thres20096.96 11996.21 13599.22 4898.97 11998.84 3699.85 11899.71 793.17 17196.26 18798.88 17489.87 18499.51 15394.26 20794.91 22699.31 182
test0.0.03 193.86 21493.61 20794.64 25995.02 31292.18 26299.93 7698.58 8794.07 13887.96 31098.50 20793.90 9494.96 36481.33 35193.17 24896.78 255
pmmvs380.27 35677.77 36187.76 36380.32 40182.43 36898.23 32891.97 39872.74 39478.75 37187.97 38857.30 38790.99 39270.31 38462.37 39789.87 381
EMVS51.44 37651.22 37852.11 39270.71 40844.97 41594.04 38275.66 41435.34 40942.40 40961.56 41028.93 40365.87 41127.64 41224.73 40745.49 408
E-PMN52.30 37452.18 37652.67 39171.51 40745.40 41393.62 38676.60 41336.01 40743.50 40864.13 40727.11 40667.31 41031.06 41126.06 40645.30 409
PGM-MVS98.34 4898.13 5198.99 7599.92 3197.00 11399.75 15399.50 1793.90 15099.37 7599.76 6393.24 113100.00 197.75 14199.96 4699.98 48
LCM-MVSNet-Re92.31 25592.60 23591.43 33497.53 22679.27 38499.02 26891.83 39992.07 21580.31 36594.38 35283.50 25195.48 35697.22 15197.58 17099.54 148
LCM-MVSNet67.77 36864.73 37176.87 37862.95 41256.25 40589.37 39993.74 39244.53 40461.99 39680.74 39820.42 41186.53 40169.37 38759.50 40187.84 390
MCST-MVS99.32 399.14 499.86 599.97 399.59 599.97 2898.64 7698.47 399.13 8999.92 1396.38 29100.00 199.74 30100.00 1100.00 1
mvs_anonymous95.65 17195.03 17797.53 17098.19 18295.74 16099.33 23197.49 26490.87 25390.47 26097.10 25688.23 20497.16 29395.92 17497.66 16999.68 113
MVS_Test96.46 14395.74 15598.61 10098.18 18397.23 10499.31 23497.15 30091.07 24998.84 10097.05 26088.17 20598.97 18594.39 20397.50 17199.61 130
MDA-MVSNet-bldmvs84.09 34581.52 35291.81 33291.32 37188.00 33898.67 30395.92 36280.22 37555.60 40393.32 36168.29 35893.60 37973.76 37876.61 36993.82 330
CDPH-MVS98.65 2898.36 3899.49 3299.94 1398.73 4699.87 10498.33 17293.97 14599.76 2899.87 2494.99 5799.75 13298.55 99100.00 199.98 48
test1299.43 3599.74 7098.56 5798.40 15499.65 4194.76 6299.75 13299.98 3299.99 23
casdiffmvspermissive96.42 14695.97 14597.77 15597.30 24194.98 19099.84 12397.09 30793.75 15596.58 17899.26 13785.07 23898.78 19597.77 13997.04 18399.54 148
Fangjinhua Wang, Qingshan Xu, Yew-Soon Ong, Marc Pollefeys: Lightweight and Accurate Multi-View Stereo With Confidence-Aware Diffusion Model. IEEE T-PAMI 2025
diffmvspermissive97.00 11796.64 12098.09 13697.64 22196.17 14799.81 13597.19 29494.67 11198.95 9599.28 13186.43 22598.76 19798.37 10797.42 17499.33 180
Fangjinhua Wang, Qingshan Xu, Yew-Soon Ong, Marc Pollefeys: Lightweight and Accurate Multi-View Stereo With Confidence-Aware Diffusion Model. IEEE T-PAMI 2025
baseline296.71 13496.49 12697.37 18095.63 30395.96 15399.74 15698.88 5192.94 17791.61 24898.97 16197.72 598.62 20994.83 19398.08 16297.53 251
baseline195.78 16494.86 18198.54 10998.47 16498.07 7099.06 26097.99 21192.68 19194.13 22298.62 19893.28 11198.69 20593.79 21985.76 29898.84 215
YYNet185.50 33783.33 34392.00 32990.89 37488.38 33499.22 24596.55 34879.60 37857.26 40192.72 36579.09 29393.78 37777.25 37077.37 36393.84 328
PMMVS267.15 36964.15 37276.14 37970.56 40962.07 40093.89 38387.52 40758.09 39860.02 39778.32 39922.38 40884.54 40259.56 39947.03 40481.80 397
MDA-MVSNet_test_wron85.51 33683.32 34492.10 32890.96 37388.58 33099.20 24696.52 34979.70 37757.12 40292.69 36679.11 29193.86 37677.10 37177.46 36293.86 327
tpmvs94.28 20993.57 21196.40 21098.55 15691.50 28295.70 37898.55 9887.47 31492.15 24394.26 35391.42 15398.95 18788.15 29795.85 20898.76 219
PM-MVS80.47 35578.88 36085.26 36783.79 39572.22 39095.89 37691.08 40085.71 34076.56 38288.30 38536.64 40093.90 37582.39 34569.57 38289.66 385
HQP_MVS94.49 20194.36 19094.87 25095.71 29891.74 27399.84 12397.87 22596.38 6593.01 23298.59 19980.47 28098.37 23297.79 13789.55 26194.52 270
plane_prior795.71 29891.59 281
plane_prior695.76 29291.72 27680.47 280
plane_prior597.87 22598.37 23297.79 13789.55 26194.52 270
plane_prior498.59 199
plane_prior391.64 27996.63 5693.01 232
plane_prior299.84 12396.38 65
plane_prior195.73 295
plane_prior91.74 27399.86 11596.76 5289.59 260
PS-CasMVS90.63 29089.51 29793.99 28993.83 33091.70 27798.98 27098.52 10588.48 30286.15 33696.53 28075.46 32296.31 33888.83 28878.86 35293.95 319
UniMVSNet_NR-MVSNet92.95 24092.11 24695.49 22994.61 31895.28 18199.83 13099.08 3391.49 23289.21 28896.86 26787.14 21696.73 32193.20 22877.52 36094.46 273
PEN-MVS90.19 30289.06 30593.57 30393.06 34590.90 29199.06 26098.47 11788.11 30785.91 33896.30 28476.67 30995.94 35287.07 31176.91 36793.89 324
TransMVSNet (Re)87.25 32885.28 33593.16 31393.56 33491.03 28698.54 30994.05 38983.69 35881.09 36296.16 28875.32 32396.40 33376.69 37368.41 38692.06 364
DTE-MVSNet89.40 31588.24 31892.88 32092.66 35389.95 31299.10 25298.22 18787.29 31785.12 34396.22 28676.27 31695.30 36183.56 33875.74 37193.41 341
DU-MVS92.46 25291.45 26195.49 22994.05 32695.28 18199.81 13598.74 6492.25 21289.21 28896.64 27581.66 26296.73 32193.20 22877.52 36094.46 273
UniMVSNet (Re)93.07 23892.13 24595.88 22194.84 31396.24 14399.88 10198.98 3892.49 20489.25 28595.40 31587.09 21797.14 29593.13 23278.16 35594.26 288
CP-MVSNet91.23 27790.22 28194.26 27893.96 32892.39 25899.09 25398.57 8988.95 29186.42 33296.57 27879.19 29096.37 33490.29 27578.95 35094.02 311
WR-MVS_H91.30 27390.35 27794.15 28094.17 32592.62 25499.17 24998.94 4188.87 29486.48 33194.46 35184.36 24596.61 32688.19 29678.51 35393.21 348
WR-MVS92.31 25591.25 26395.48 23294.45 32095.29 18099.60 18898.68 7090.10 27088.07 30996.89 26580.68 27596.80 31993.14 23179.67 34894.36 281
NR-MVSNet91.56 27190.22 28195.60 22794.05 32695.76 15998.25 32598.70 6791.16 24680.78 36496.64 27583.23 25496.57 32791.41 25177.73 35994.46 273
Baseline_NR-MVSNet90.33 29789.51 29792.81 32292.84 34989.95 31299.77 14593.94 39084.69 35189.04 29295.66 30281.66 26296.52 32890.99 25976.98 36691.97 366
TranMVSNet+NR-MVSNet91.68 27090.61 27394.87 25093.69 33393.98 21899.69 17298.65 7491.03 25088.44 30296.83 27180.05 28396.18 34290.26 27676.89 36894.45 278
TSAR-MVS + GP.98.60 3098.51 2898.86 8599.73 7396.63 12599.97 2897.92 22198.07 1198.76 10799.55 10895.00 5699.94 7899.91 1697.68 16899.99 23
n20.00 420
nn0.00 420
mPP-MVS98.39 4798.20 4698.97 7899.97 396.92 11799.95 5398.38 16195.04 9798.61 11599.80 5193.39 104100.00 198.64 95100.00 199.98 48
door-mid89.69 404
XVG-OURS-SEG-HR94.79 18994.70 18695.08 24398.05 19189.19 32099.08 25597.54 25793.66 15794.87 21199.58 10678.78 29499.79 12397.31 14893.40 24696.25 260
mvsmamba96.94 12096.73 11697.55 16897.99 19494.37 20799.62 18597.70 23893.13 17298.42 12297.92 23588.02 20698.75 19998.78 8599.01 13499.52 153
MVSFormer96.94 12096.60 12297.95 14297.28 24397.70 8699.55 19997.27 28991.17 24499.43 6899.54 11090.92 16596.89 31394.67 19999.62 9499.25 190
jason97.24 10496.86 11098.38 12295.73 29597.32 10299.97 2897.40 27495.34 9298.60 11699.54 11087.70 20898.56 21197.94 12899.47 10999.25 190
jason: jason.
lupinMVS97.85 7097.60 7798.62 9997.28 24397.70 8699.99 497.55 25595.50 8999.43 6899.67 9490.92 16598.71 20398.40 10499.62 9499.45 164
test_djsdf92.83 24392.29 24494.47 27091.90 36392.46 25699.55 19997.27 28991.17 24489.96 26596.07 29381.10 26996.89 31394.67 19988.91 26794.05 310
HPM-MVS_fast97.80 7797.50 8098.68 9499.79 6296.42 13199.88 10198.16 19791.75 22798.94 9699.54 11091.82 15299.65 14797.62 14499.99 2199.99 23
K. test v388.05 32487.24 32690.47 34291.82 36582.23 37098.96 27397.42 27189.05 28476.93 38095.60 30468.49 35695.42 35785.87 32481.01 33893.75 332
lessismore_v090.53 34090.58 37680.90 37995.80 36377.01 37995.84 29566.15 36696.95 31083.03 34175.05 37393.74 335
SixPastTwentyTwo88.73 32088.01 32190.88 33791.85 36482.24 36998.22 32995.18 37888.97 28982.26 35596.89 26571.75 34296.67 32484.00 33382.98 31893.72 336
OurMVSNet-221017-089.81 30989.48 29990.83 33991.64 36681.21 37698.17 33195.38 37391.48 23485.65 34097.31 25072.66 33897.29 28988.15 29784.83 30793.97 318
HPM-MVScopyleft97.96 6497.72 7298.68 9499.84 5696.39 13599.90 9098.17 19392.61 19598.62 11499.57 10791.87 15099.67 14598.87 8099.99 2199.99 23
Chunlin Ren, Qingshan Xu, Shikun Zhang, Jiaqi Yang: Hierarchical Prior Mining for Non-local Multi-View Stereo. ICCV 2023
XVG-OURS94.82 18794.74 18595.06 24498.00 19389.19 32099.08 25597.55 25594.10 13694.71 21299.62 10280.51 27899.74 13496.04 17293.06 25196.25 260
XVG-ACMP-BASELINE91.22 27890.75 26992.63 32493.73 33285.61 35198.52 31197.44 26892.77 18689.90 26896.85 26866.64 36498.39 22692.29 24088.61 27493.89 324
casdiffmvs_mvgpermissive96.43 14495.94 14897.89 14997.44 23195.47 17299.86 11597.29 28793.35 16496.03 19199.19 14285.39 23598.72 20297.89 13297.04 18399.49 160
Fangjinhua Wang, Qingshan Xu, Yew-Soon Ong, Marc Pollefeys: Lightweight and Accurate Multi-View Stereo With Confidence-Aware Diffusion Model. IEEE T-PAMI 2025
LPG-MVS_test92.96 23992.71 23393.71 29895.43 30588.67 32799.75 15397.62 24692.81 18390.05 26298.49 20875.24 32498.40 22495.84 17689.12 26594.07 308
LGP-MVS_train93.71 29895.43 30588.67 32797.62 24692.81 18390.05 26298.49 20875.24 32498.40 22495.84 17689.12 26594.07 308
baseline96.43 14495.98 14297.76 15797.34 23795.17 18899.51 20597.17 29793.92 14996.90 16999.28 13185.37 23698.64 20897.50 14596.86 18999.46 162
test1198.44 125
door90.31 401
EPNet_dtu95.71 16795.39 16496.66 20398.92 12693.41 23499.57 19598.90 4796.19 7397.52 15298.56 20492.65 12897.36 28177.89 36798.33 15099.20 193
Wanjuan Su, Wenbing Tao: Efficient Edge-Preserving Multi-View Stereo Network for Depth Estimation. AAAI 2023
CHOSEN 1792x268896.81 12696.53 12597.64 16398.91 13093.07 23999.65 17899.80 395.64 8395.39 20598.86 17984.35 24699.90 9196.98 15899.16 12799.95 71
EPNet98.49 3798.40 3298.77 8999.62 8196.80 12299.90 9099.51 1697.60 2299.20 8599.36 12893.71 10099.91 8997.99 12598.71 14399.61 130
Wanjuan Su, Wenbing Tao: Efficient Edge-Preserving Multi-View Stereo Network for Depth Estimation. AAAI 2023
HQP5-MVS91.85 269
HQP-NCC95.78 28899.87 10496.82 4893.37 228
ACMP_Plane95.78 28899.87 10496.82 4893.37 228
APD-MVScopyleft98.62 2998.35 3999.41 3899.90 4298.51 5999.87 10498.36 16594.08 13799.74 3199.73 7894.08 8899.74 13499.42 4799.99 2199.99 23
Yuesong Wang, Zhaojie Zeng and etc.: Adaptive Patch Deformation for Textureless-Resilient Multi-View Stereo. CVPR2023
BP-MVS97.92 129
HQP4-MVS93.37 22898.39 22694.53 268
HQP3-MVS97.89 22389.60 258
HQP2-MVS80.65 276
CNVR-MVS99.40 199.26 199.84 699.98 299.51 699.98 1598.69 6898.20 899.93 199.98 296.82 21100.00 199.75 28100.00 199.99 23
NCCC99.37 299.25 299.71 1599.96 899.15 2299.97 2898.62 8198.02 1399.90 399.95 397.33 15100.00 199.54 39100.00 1100.00 1
114514_t97.41 9796.83 11199.14 6199.51 9197.83 8099.89 9898.27 18388.48 30299.06 9199.66 9690.30 17999.64 14896.32 16899.97 4299.96 64
CP-MVS98.45 4098.32 4098.87 8499.96 896.62 12699.97 2898.39 15794.43 11998.90 9899.87 2494.30 79100.00 199.04 6499.99 2199.99 23
DSMNet-mixed88.28 32388.24 31888.42 36089.64 38275.38 38898.06 33589.86 40385.59 34188.20 30892.14 37276.15 31891.95 38978.46 36596.05 20197.92 240
tpm295.47 17495.18 17296.35 21396.91 25691.70 27796.96 35797.93 21888.04 30998.44 12195.40 31593.32 10897.97 25994.00 21095.61 21499.38 171
NP-MVS95.77 29191.79 27198.65 194
EG-PatchMatch MVS85.35 33883.81 34189.99 34890.39 37781.89 37298.21 33096.09 35981.78 36974.73 38693.72 35851.56 39497.12 29879.16 36388.61 27490.96 373
tpm cat193.51 22792.52 24196.47 20697.77 20891.47 28396.13 37098.06 20680.98 37292.91 23593.78 35789.66 18598.87 18987.03 31396.39 19699.09 201
SteuartSystems-ACMMP99.02 1398.97 1399.18 5298.72 14297.71 8499.98 1598.44 12596.85 4699.80 1799.91 1497.57 699.85 10899.44 4699.99 2199.99 23
Skip Steuart: Steuart Systems R&D Blog.
CostFormer96.10 15695.88 15296.78 19897.03 24992.55 25597.08 35497.83 23090.04 27398.72 10994.89 33895.01 5598.29 23996.54 16695.77 21099.50 158
CR-MVSNet93.45 23092.62 23495.94 22096.29 27492.66 25192.01 39196.23 35592.62 19496.94 16793.31 36291.04 16296.03 34979.23 36095.96 20399.13 199
JIA-IIPM91.76 26990.70 27094.94 24896.11 27987.51 34093.16 38798.13 20275.79 38697.58 15177.68 40092.84 12497.97 25988.47 29496.54 19199.33 180
Patchmtry89.70 31188.49 31493.33 30896.24 27789.94 31491.37 39496.23 35578.22 38087.69 31293.31 36291.04 16296.03 34980.18 35882.10 32594.02 311
PatchT90.38 29588.75 31195.25 24095.99 28390.16 30791.22 39597.54 25776.80 38297.26 16086.01 39491.88 14996.07 34866.16 39395.91 20799.51 156
tpmrst96.27 15595.98 14297.13 18897.96 19693.15 23896.34 36698.17 19392.07 21598.71 11095.12 32993.91 9398.73 20094.91 19196.62 19099.50 158
BH-w/o95.71 16795.38 16596.68 20298.49 16392.28 25999.84 12397.50 26392.12 21492.06 24698.79 18484.69 24298.67 20795.29 18399.66 9099.09 201
tpm93.70 22393.41 21894.58 26395.36 30787.41 34197.01 35596.90 32890.85 25496.72 17594.14 35490.40 17796.84 31690.75 26688.54 27799.51 156
DELS-MVS98.54 3398.22 4499.50 3099.15 10898.65 53100.00 198.58 8797.70 2098.21 13499.24 13992.58 13299.94 7898.63 9799.94 5599.92 81
Christian Sormann, Emanuele Santellani, Mattia Rossi, Andreas Kuhn, Friedrich Fraundorfer: DELS-MVS: Deep Epipolar Line Search for Multi-View Stereo. Winter Conference on Applications of Computer Vision (WACV), 2023
BH-untuned95.18 18094.83 18296.22 21598.36 16891.22 28599.80 13997.32 28290.91 25291.08 25398.67 19183.51 25098.54 21394.23 20899.61 9898.92 210
RPMNet89.76 31087.28 32597.19 18796.29 27492.66 25192.01 39198.31 17670.19 39696.94 16785.87 39587.25 21599.78 12562.69 39795.96 20399.13 199
MVSTER95.53 17395.22 17096.45 20898.56 15397.72 8399.91 8497.67 24192.38 20891.39 25097.14 25497.24 1697.30 28694.80 19487.85 28594.34 285
CPTT-MVS97.64 8797.32 9098.58 10499.97 395.77 15899.96 3598.35 16789.90 27598.36 12699.79 5591.18 16099.99 3698.37 10799.99 2199.99 23
GBi-Net90.88 28389.82 28994.08 28397.53 22691.97 26498.43 31596.95 32187.05 32089.68 27394.72 34071.34 34496.11 34487.01 31485.65 29994.17 295
PVSNet_Blended_VisFu97.27 10396.81 11298.66 9698.81 13796.67 12499.92 7998.64 7694.51 11596.38 18598.49 20889.05 19799.88 10297.10 15498.34 14999.43 167
PVSNet_BlendedMVS96.05 15795.82 15496.72 20199.59 8296.99 11499.95 5399.10 3194.06 14098.27 13095.80 29689.00 19899.95 7099.12 5887.53 29093.24 347
UnsupCasMVSNet_eth85.52 33583.99 33790.10 34689.36 38383.51 36396.65 36197.99 21189.14 28275.89 38493.83 35663.25 37593.92 37481.92 34967.90 38992.88 353
UnsupCasMVSNet_bld79.97 35977.03 36488.78 35685.62 39181.98 37193.66 38597.35 27775.51 38870.79 39183.05 39748.70 39594.91 36678.31 36660.29 40089.46 387
PVSNet_Blended97.94 6597.64 7598.83 8699.59 8296.99 114100.00 199.10 3195.38 9098.27 13099.08 14889.00 19899.95 7099.12 5899.25 12399.57 142
FMVSNet588.32 32287.47 32490.88 33796.90 25988.39 33397.28 34895.68 36682.60 36684.67 34592.40 37079.83 28491.16 39176.39 37481.51 33093.09 349
test190.88 28389.82 28994.08 28397.53 22691.97 26498.43 31596.95 32187.05 32089.68 27394.72 34071.34 34496.11 34487.01 31485.65 29994.17 295
new_pmnet84.49 34482.92 34789.21 35290.03 38082.60 36696.89 35995.62 36880.59 37375.77 38589.17 38265.04 37194.79 36872.12 38281.02 33790.23 378
FMVSNet392.69 24791.58 25695.99 21998.29 17397.42 10099.26 24297.62 24689.80 27789.68 27395.32 32181.62 26496.27 33987.01 31485.65 29994.29 287
dp95.05 18394.43 18996.91 19497.99 19492.73 24996.29 36897.98 21389.70 27895.93 19594.67 34493.83 9898.45 21986.91 31796.53 19299.54 148
FMVSNet291.02 28089.56 29495.41 23497.53 22695.74 16098.98 27097.41 27387.05 32088.43 30495.00 33471.34 34496.24 34185.12 32785.21 30494.25 290
FMVSNet188.50 32186.64 32794.08 28395.62 30491.97 26498.43 31596.95 32183.00 36286.08 33794.72 34059.09 38496.11 34481.82 35084.07 31494.17 295
N_pmnet80.06 35780.78 35577.89 37691.94 36245.28 41498.80 29256.82 41678.10 38180.08 36793.33 36077.03 30495.76 35468.14 38982.81 31992.64 356
cascas94.64 19693.61 20797.74 15997.82 20596.26 13999.96 3597.78 23485.76 33794.00 22397.54 24476.95 30799.21 17197.23 15095.43 21897.76 245
BH-RMVSNet95.18 18094.31 19397.80 15098.17 18495.23 18499.76 15097.53 25992.52 20294.27 22099.25 13876.84 30898.80 19390.89 26399.54 10399.35 177
UGNet95.33 17894.57 18797.62 16698.55 15694.85 19398.67 30399.32 2695.75 8196.80 17396.27 28572.18 34099.96 6294.58 20199.05 13398.04 238
Wanjuan Su, Qingshan Xu, Wenbing Tao: Uncertainty-guided Multi-view Stereo Network for Depth Estimation. IEEE Transactions on Circuits and Systems for Video Technology, 2022
WTY-MVS98.10 6297.60 7799.60 2298.92 12699.28 1799.89 9899.52 1495.58 8598.24 13399.39 12593.33 10799.74 13497.98 12795.58 21599.78 100
XXY-MVS91.82 26290.46 27495.88 22193.91 32995.40 17798.87 28497.69 24088.63 30087.87 31197.08 25774.38 33397.89 26591.66 24984.07 31494.35 284
EC-MVSNet97.38 9997.24 9297.80 15097.41 23295.64 16799.99 497.06 31094.59 11299.63 4499.32 13089.20 19698.14 25098.76 8799.23 12599.62 127
sss97.57 8897.03 10299.18 5298.37 16798.04 7299.73 16199.38 2293.46 16198.76 10799.06 15091.21 15699.89 9696.33 16797.01 18599.62 127
Test_1112_low_res95.72 16594.83 18298.42 11997.79 20796.41 13299.65 17896.65 34492.70 18992.86 23796.13 29092.15 14499.30 16591.88 24793.64 24399.55 144
1112_ss96.01 15995.20 17198.42 11997.80 20696.41 13299.65 17896.66 34392.71 18892.88 23699.40 12392.16 14399.30 16591.92 24693.66 24299.55 144
ab-mvs-re8.28 38111.04 3840.00 3960.00 4190.00 4210.00 4070.00 4200.00 4140.00 41599.40 1230.00 4190.00 4150.00 4140.00 4130.00 411
ab-mvs94.69 19393.42 21698.51 11298.07 19096.26 13996.49 36398.68 7090.31 26894.54 21397.00 26276.30 31599.71 13895.98 17393.38 24799.56 143
TR-MVS94.54 19893.56 21297.49 17397.96 19694.34 20898.71 29897.51 26290.30 26994.51 21598.69 19075.56 32198.77 19692.82 23695.99 20299.35 177
MDTV_nov1_ep13_2view96.26 13996.11 37191.89 22198.06 13794.40 7194.30 20699.67 115
MDTV_nov1_ep1395.69 15797.90 19994.15 21395.98 37498.44 12593.12 17397.98 13995.74 29895.10 5098.58 21090.02 27896.92 187
MIMVSNet182.58 35080.51 35688.78 35686.68 38984.20 36096.65 36195.41 37278.75 37978.59 37392.44 36751.88 39389.76 39465.26 39578.95 35092.38 362
MIMVSNet90.30 29888.67 31295.17 24296.45 27391.64 27992.39 38997.15 30085.99 33490.50 25993.19 36466.95 36294.86 36782.01 34893.43 24599.01 208
IterMVS-LS92.69 24792.11 24694.43 27496.80 26492.74 24799.45 21796.89 32988.98 28889.65 27695.38 31888.77 20096.34 33690.98 26082.04 32694.22 291
Fangjinhua Wang, Silvano Galliani, Christoph Vogel, Marc Pollefeys: IterMVS: Iterative Probability Estimation for Efficient Multi-View Stereo.
CDS-MVSNet96.34 14996.07 13797.13 18897.37 23594.96 19199.53 20297.91 22291.55 23195.37 20698.32 22095.05 5397.13 29693.80 21895.75 21299.30 184
Khang Truong Giang, Soohwan Song, Sungho Jo: Curvature-guided dynamic scale networks for Multi-view Stereo. ICLR 2022
ACMMP++_ref87.04 292
IterMVS90.91 28290.17 28493.12 31496.78 26790.42 30398.89 27997.05 31289.03 28586.49 33095.42 31476.59 31195.02 36287.22 30984.09 31393.93 321
Fangjinhua Wang, Silvano Galliani, Christoph Vogel, Marc Pollefeys: IterMVS: Iterative Probability Estimation for Efficient Multi-View Stereo.
DP-MVS Recon98.41 4598.02 5799.56 2599.97 398.70 4899.92 7998.44 12592.06 21798.40 12599.84 4195.68 39100.00 198.19 11399.71 8799.97 58
MVS_111021_LR98.42 4498.38 3498.53 11199.39 9695.79 15799.87 10499.86 296.70 5498.78 10499.79 5592.03 14799.90 9199.17 5799.86 7399.88 85
DP-MVS94.54 19893.42 21697.91 14799.46 9594.04 21598.93 27697.48 26581.15 37190.04 26499.55 10887.02 21899.95 7088.97 28798.11 15999.73 105
ACMMP++88.23 281
HQP-MVS94.61 19794.50 18894.92 24995.78 28891.85 26999.87 10497.89 22396.82 4893.37 22898.65 19480.65 27698.39 22697.92 12989.60 25894.53 268
QAPM95.40 17694.17 19699.10 6796.92 25597.71 8499.40 22098.68 7089.31 28188.94 29498.89 17382.48 25699.96 6293.12 23399.83 7599.62 127
Vis-MVSNetpermissive95.72 16595.15 17397.45 17497.62 22294.28 20999.28 24098.24 18594.27 13296.84 17198.94 17079.39 28798.76 19793.25 22798.49 14699.30 184
Jingyang Zhang, Yao Yao, Shiwei Li, Zixin Luo, Tian Fang: Visibility-aware Multiview Stereo Network. BMVC 2020
MVS-HIRNet86.22 33283.19 34595.31 23896.71 27090.29 30492.12 39097.33 28162.85 39786.82 32470.37 40269.37 35297.49 27875.12 37797.99 16498.15 235
IS-MVSNet96.29 15395.90 15197.45 17498.13 18894.80 19699.08 25597.61 24992.02 21995.54 20498.96 16390.64 17298.08 25393.73 22297.41 17599.47 161
HyFIR lowres test96.66 13796.43 12897.36 18299.05 11293.91 22099.70 17199.80 390.54 26196.26 18798.08 22892.15 14498.23 24696.84 16495.46 21699.93 76
EPMVS96.53 14196.01 13998.09 13698.43 16596.12 15096.36 36599.43 2093.53 15997.64 15095.04 33194.41 7098.38 23091.13 25598.11 15999.75 103
PAPM_NR98.12 6197.93 6598.70 9399.94 1396.13 14899.82 13398.43 13394.56 11397.52 15299.70 8594.40 7199.98 4497.00 15699.98 3299.99 23
TAMVS95.85 16295.58 16096.65 20497.07 24793.50 23199.17 24997.82 23191.39 24195.02 21098.01 23092.20 14297.30 28693.75 22195.83 20999.14 198
PAPR98.52 3598.16 4999.58 2499.97 398.77 4299.95 5398.43 13395.35 9198.03 13899.75 6994.03 9099.98 4498.11 11899.83 7599.99 23
RPSCF91.80 26692.79 23188.83 35598.15 18669.87 39398.11 33396.60 34683.93 35594.33 21899.27 13479.60 28699.46 16391.99 24493.16 24997.18 253
Vis-MVSNet (Re-imp)96.32 15095.98 14297.35 18397.93 19894.82 19599.47 21298.15 20091.83 22395.09 20999.11 14691.37 15597.47 27993.47 22597.43 17299.74 104
test_040285.58 33483.94 33990.50 34193.81 33185.04 35598.55 30795.20 37776.01 38479.72 36995.13 32864.15 37396.26 34066.04 39486.88 29390.21 379
MVS_111021_HR98.72 2598.62 2399.01 7499.36 9897.18 10699.93 7699.90 196.81 5198.67 11199.77 6193.92 9299.89 9699.27 5399.94 5599.96 64
CSCG97.10 11097.04 10197.27 18699.89 4591.92 26899.90 9099.07 3488.67 29895.26 20899.82 4693.17 11699.98 4498.15 11699.47 10999.90 83
PatchMatch-RL96.04 15895.40 16397.95 14299.59 8295.22 18599.52 20399.07 3493.96 14696.49 18098.35 21782.28 25799.82 12090.15 27799.22 12698.81 217
API-MVS97.86 6997.66 7498.47 11499.52 8995.41 17699.47 21298.87 5291.68 22898.84 10099.85 3092.34 14099.99 3698.44 10399.96 46100.00 1
Test By Simon92.82 126
TDRefinement84.76 34082.56 34891.38 33574.58 40684.80 35897.36 34794.56 38484.73 35080.21 36696.12 29263.56 37498.39 22687.92 30063.97 39590.95 374
USDC90.00 30688.96 30793.10 31694.81 31488.16 33598.71 29895.54 37093.66 15783.75 35097.20 25365.58 36798.31 23783.96 33587.49 29192.85 354
EPP-MVSNet96.69 13596.60 12296.96 19397.74 21093.05 24199.37 22798.56 9288.75 29695.83 19999.01 15496.01 3198.56 21196.92 16297.20 17999.25 190
PMMVS96.76 13096.76 11496.76 19998.28 17592.10 26399.91 8497.98 21394.12 13599.53 5899.39 12586.93 22098.73 20096.95 16197.73 16699.45 164
PAPM98.60 3098.42 3199.14 6196.05 28198.96 2699.90 9099.35 2496.68 5598.35 12799.66 9696.45 2898.51 21499.45 4599.89 6799.96 64
ACMMPcopyleft97.74 8297.44 8498.66 9699.92 3196.13 14899.18 24899.45 1894.84 10496.41 18499.71 8391.40 15499.99 3697.99 12598.03 16399.87 87
Qingshan Xu, Weihang Kong, Wenbing Tao, Marc Pollefeys: Multi-Scale Geometric Consistency Guided and Planar Prior Assisted Multi-View Stereo. IEEE Transactions on Pattern Analysis and Machine Intelligence
CNLPA97.76 8197.38 8698.92 8399.53 8896.84 11999.87 10498.14 20193.78 15396.55 17999.69 8792.28 14199.98 4497.13 15299.44 11399.93 76
PatchmatchNetpermissive95.94 16095.45 16297.39 17997.83 20494.41 20496.05 37298.40 15492.86 18097.09 16395.28 32694.21 8598.07 25589.26 28598.11 15999.70 110
Fangjinhua Wang, Silvano Galliani, Christoph Vogel, Pablo Speciale, Marc Pollefeys: PatchmatchNet: Learned Multi-View Patchmatch Stereo.
PHI-MVS98.41 4598.21 4599.03 7199.86 5397.10 11199.98 1598.80 6290.78 25899.62 4799.78 5995.30 47100.00 199.80 2599.93 6199.99 23
F-COLMAP96.93 12296.95 10496.87 19699.71 7691.74 27399.85 11897.95 21693.11 17495.72 20199.16 14592.35 13999.94 7895.32 18299.35 11998.92 210
ANet_high56.10 37252.24 37567.66 38849.27 41456.82 40483.94 40182.02 41170.47 39533.28 41164.54 40617.23 41369.16 40945.59 40623.85 40877.02 401
wuyk23d20.37 38020.84 38318.99 39565.34 41127.73 41850.43 4067.67 4199.50 4128.01 4136.34 4136.13 41726.24 41223.40 41310.69 4112.99 410
OMC-MVS97.28 10297.23 9397.41 17799.76 6693.36 23799.65 17897.95 21696.03 7597.41 15699.70 8589.61 18799.51 15396.73 16598.25 15599.38 171
MG-MVS98.91 1998.65 2199.68 1699.94 1399.07 2499.64 18299.44 1997.33 3199.00 9499.72 8194.03 9099.98 4498.73 89100.00 1100.00 1
AdaColmapbinary97.23 10596.80 11398.51 11299.99 195.60 16999.09 25398.84 5893.32 16696.74 17499.72 8186.04 229100.00 198.01 12399.43 11499.94 75
uanet0.00 3830.00 3860.00 3960.00 4190.00 4210.00 4070.00 4200.00 4140.00 4150.00 4150.00 4190.00 4150.00 4140.00 4130.00 411
ITE_SJBPF92.38 32595.69 30085.14 35495.71 36592.81 18389.33 28498.11 22770.23 35098.42 22185.91 32388.16 28293.59 339
DeepMVS_CXcopyleft82.92 37295.98 28558.66 40396.01 36092.72 18778.34 37495.51 31058.29 38598.08 25382.57 34385.29 30292.03 365
TinyColmap87.87 32786.51 32891.94 33095.05 31185.57 35297.65 34394.08 38784.40 35381.82 35896.85 26862.14 37898.33 23580.25 35786.37 29691.91 367
MAR-MVS97.43 9297.19 9598.15 13399.47 9394.79 19799.05 26498.76 6392.65 19398.66 11299.82 4688.52 20399.98 4498.12 11799.63 9399.67 115
Zhenyu Xu, Yiguang Liu, Xuelei Shi, Ying Wang, Yunan Zheng: MARMVS: Matching Ambiguity Reduced Multiple View Stereo for Efficient Large Scale Scene Reconstruction. CVPR 2020
LF4IMVS89.25 31888.85 30890.45 34392.81 35281.19 37798.12 33294.79 38091.44 23686.29 33497.11 25565.30 37098.11 25288.53 29385.25 30392.07 363
MSDG94.37 20593.36 22097.40 17898.88 13393.95 21999.37 22797.38 27585.75 33990.80 25799.17 14484.11 24899.88 10286.35 31898.43 14898.36 232
LS3D95.84 16395.11 17498.02 14099.85 5495.10 18998.74 29598.50 11487.22 31993.66 22699.86 2687.45 21299.95 7090.94 26199.81 8299.02 207
CLD-MVS94.06 21293.90 20394.55 26596.02 28290.69 29499.98 1597.72 23796.62 5891.05 25598.85 18277.21 30298.47 21598.11 11889.51 26394.48 272
Zhaoxin Li, Wangmeng Zuo, Zhaoqi Wang, Lei Zhang: Confidence-based Large-scale Dense Multi-view Stereo. IEEE Transaction on Image Processing, 2020
FPMVS68.72 36568.72 36668.71 38765.95 41044.27 41695.97 37594.74 38151.13 40253.26 40490.50 37925.11 40783.00 40360.80 39880.97 33978.87 400
Gipumacopyleft66.95 37065.00 37072.79 38291.52 36867.96 39466.16 40595.15 37947.89 40358.54 40067.99 40529.74 40287.54 39950.20 40477.83 35862.87 405
S. Galliani, K. Lasinger, K. Schindler: Massively Parallel Multiview Stereopsis by Surface Normal Diffusion. ICCV 2015