| DeepPCF-MVS | | 69.37 1 | 80.65 13 | 81.56 11 | 77.94 81 | 85.46 64 | 49.56 199 | 90.99 22 | 86.66 78 | 70.58 24 | 80.07 24 | 95.30 1 | 56.18 20 | 90.97 84 | 82.57 26 | 86.22 35 | 93.28 15 |
|
| IB-MVS | | 68.87 2 | 74.01 89 | 72.03 112 | 79.94 38 | 83.04 115 | 55.50 54 | 90.24 26 | 88.65 41 | 67.14 53 | 61.38 192 | 81.74 228 | 53.21 36 | 94.28 23 | 60.45 173 | 62.41 248 | 90.03 101 |
| Christian Sormann, Mattia Rossi, Andreas Kuhn and Friedrich Fraundorfer: IB-MVS: An Iterative Algorithm for Deep Multi-View Stereo based on Binary Decisions. BMVC 2021 |
| DeepC-MVS_fast | | 67.50 3 | 78.00 34 | 77.63 33 | 79.13 49 | 88.52 27 | 55.12 68 | 89.95 29 | 85.98 89 | 68.31 37 | 71.33 87 | 92.75 34 | 45.52 102 | 90.37 98 | 71.15 97 | 85.14 45 | 91.91 47 |
| Andreas Kuhn, Christian Sormann, Mattia Rossi, Oliver Erdler, Friedrich Fraundorfer: DeepC-MVS: Deep Confidence Prediction for Multi-View Stereo Reconstruction. 3DV 2020 |
| DeepC-MVS | | 67.15 4 | 76.90 49 | 76.27 51 | 78.80 56 | 80.70 178 | 55.02 72 | 86.39 94 | 86.71 76 | 66.96 56 | 67.91 112 | 89.97 94 | 48.03 72 | 91.41 69 | 75.60 69 | 84.14 53 | 89.96 103 |
| Andreas Kuhn, Christian Sormann, Mattia Rossi, Oliver Erdler, Friedrich Fraundorfer: DeepC-MVS: Deep Confidence Prediction for Multi-View Stereo Reconstruction. 3DV 2020 |
| HY-MVS | | 67.03 5 | 73.90 91 | 73.14 89 | 76.18 123 | 84.70 77 | 47.36 259 | 75.56 291 | 86.36 83 | 66.27 66 | 70.66 97 | 83.91 187 | 51.05 50 | 89.31 125 | 67.10 120 | 72.61 157 | 91.88 49 |
|
| 3Dnovator | | 64.70 6 | 74.46 83 | 72.48 96 | 80.41 28 | 82.84 124 | 55.40 59 | 83.08 197 | 88.61 45 | 67.61 50 | 59.85 204 | 88.66 118 | 34.57 245 | 93.97 26 | 58.42 188 | 88.70 12 | 91.85 50 |
|
| 3Dnovator+ | | 62.71 7 | 72.29 120 | 70.50 130 | 77.65 85 | 83.40 104 | 51.29 163 | 87.32 72 | 86.40 82 | 59.01 197 | 58.49 234 | 88.32 127 | 32.40 265 | 91.27 71 | 57.04 207 | 82.15 66 | 90.38 88 |
|
| PVSNet | | 62.49 8 | 69.27 173 | 67.81 174 | 73.64 192 | 84.41 82 | 51.85 148 | 84.63 151 | 77.80 261 | 66.42 63 | 59.80 205 | 84.95 177 | 22.14 341 | 80.44 302 | 55.03 220 | 75.11 136 | 88.62 135 |
|
| ACMP | | 61.11 9 | 66.24 236 | 64.33 237 | 72.00 228 | 74.89 275 | 49.12 208 | 83.18 195 | 79.83 218 | 55.41 260 | 52.29 300 | 82.68 209 | 25.83 311 | 86.10 237 | 60.89 164 | 63.94 229 | 80.78 279 |
| Qingshan Xu and Wenbing Tao: Planar Prior Assisted PatchMatch Multi-View Stereo. AAAI 2020 |
| PCF-MVS | | 61.03 10 | 70.10 155 | 68.40 161 | 75.22 154 | 77.15 243 | 51.99 144 | 79.30 272 | 82.12 176 | 56.47 249 | 61.88 188 | 86.48 161 | 43.98 123 | 87.24 204 | 55.37 219 | 72.79 156 | 86.43 181 |
| Andreas Kuhn, Shan Lin, Oliver Erdler: Plane Completion and Filtering for Multi-View Stereo Reconstruction. GCPR 2019 |
| OpenMVS |  | 61.00 11 | 69.99 160 | 67.55 179 | 77.30 93 | 78.37 223 | 54.07 98 | 84.36 156 | 85.76 93 | 57.22 233 | 56.71 262 | 87.67 142 | 30.79 280 | 92.83 37 | 43.04 297 | 84.06 55 | 85.01 206 |
|
| ACMM | | 58.35 12 | 64.35 245 | 62.01 250 | 71.38 243 | 74.21 284 | 48.51 228 | 82.25 216 | 79.66 222 | 47.61 315 | 54.54 282 | 80.11 241 | 25.26 316 | 86.00 241 | 51.26 248 | 63.16 241 | 79.64 292 |
| Qingshan Xu and Wenbing Tao: Multi-Scale Geometric Consistency Guided Multi-View Stereo. CVPR 2019 |
| PVSNet_0 | | 57.04 13 | 61.19 274 | 57.24 287 | 73.02 202 | 77.45 236 | 50.31 184 | 79.43 271 | 77.36 271 | 63.96 102 | 47.51 329 | 72.45 325 | 25.03 318 | 83.78 273 | 52.76 241 | 19.22 395 | 84.96 207 |
|
| TAPA-MVS | | 56.12 14 | 61.82 271 | 60.18 270 | 66.71 300 | 78.48 221 | 37.97 345 | 75.19 296 | 76.41 287 | 46.82 320 | 57.04 258 | 86.52 160 | 27.67 300 | 77.03 332 | 26.50 365 | 67.02 203 | 85.14 203 |
| Andrea Romanoni, Matteo Matteucci: TAPA-MVS: Textureless-Aware PAtchMatch Multi-View Stereo. ICCV 2019 |
| ACMH+ | | 54.58 15 | 58.55 296 | 55.24 300 | 68.50 287 | 74.68 277 | 45.80 284 | 80.27 259 | 70.21 336 | 47.15 318 | 42.77 347 | 75.48 297 | 16.73 365 | 85.98 242 | 35.10 330 | 54.78 313 | 73.72 347 |
|
| ACMH | | 53.70 16 | 59.78 280 | 55.94 298 | 71.28 244 | 76.59 248 | 48.35 234 | 80.15 263 | 76.11 288 | 49.74 304 | 41.91 350 | 73.45 316 | 16.50 366 | 90.31 101 | 31.42 343 | 57.63 289 | 75.17 336 |
| Qingshan Xu and Wenbing Tao: Multi-Scale Geometric Consistency Guided Multi-View Stereo. CVPR 2019 |
| OpenMVS_ROB |  | 53.19 17 | 59.20 285 | 56.00 297 | 68.83 278 | 71.13 319 | 44.30 298 | 83.64 176 | 75.02 298 | 46.42 324 | 46.48 335 | 73.03 318 | 18.69 355 | 88.14 171 | 27.74 360 | 61.80 251 | 74.05 345 |
|
| PLC |  | 52.38 18 | 60.89 275 | 58.97 279 | 66.68 302 | 81.77 145 | 45.70 285 | 78.96 274 | 74.04 306 | 43.66 342 | 47.63 326 | 83.19 201 | 23.52 329 | 77.78 329 | 37.47 311 | 60.46 257 | 76.55 327 |
| Jie Liao, Yanping Fu, Qingan Yan, Chunxia xiao: Pyramid Multi-View Stereo with Local Consistency. Pacific Graphics 2019 |
| LTVRE_ROB | | 45.45 19 | 52.73 325 | 49.74 328 | 61.69 331 | 69.78 329 | 34.99 351 | 44.52 381 | 67.60 351 | 43.11 345 | 43.79 341 | 74.03 306 | 18.54 357 | 81.45 289 | 28.39 357 | 57.94 283 | 68.62 366 |
| Andreas Kuhn, Heiko Hirschmüller, Daniel Scharstein, Helmut Mayer: A TV Prior for High-Quality Scalable Multi-View Stereo Reconstruction. International Journal of Computer Vision 2016 |
| COLMAP_ROB |  | 43.60 20 | 50.90 333 | 48.05 334 | 59.47 339 | 67.81 344 | 40.57 335 | 71.25 325 | 62.72 363 | 36.49 363 | 36.19 368 | 73.51 314 | 13.48 371 | 73.92 348 | 20.71 380 | 50.26 334 | 63.92 376 |
| Johannes L. Schönberger, Enliang Zheng, Marc Pollefeys, Jan-Michael Frahm: Pixelwise View Selection for Unstructured Multi-View Stereo. ECCV 2016 |
| CMPMVS |  | 40.41 21 | 55.34 313 | 52.64 316 | 63.46 320 | 60.88 371 | 43.84 304 | 61.58 360 | 71.06 330 | 30.43 376 | 36.33 367 | 74.63 302 | 24.14 325 | 75.44 341 | 48.05 270 | 66.62 206 | 71.12 362 |
| M. Jancosek, T. Pajdla: Multi-View Reconstruction Preserving Weakly-Supported Surfaces. CVPR 2011 |
| PMVS |  | 19.57 22 | 25.07 363 | 22.43 368 | 32.99 378 | 23.12 409 | 22.98 386 | 40.98 386 | 35.19 393 | 15.99 391 | 11.95 400 | 35.87 392 | 1.47 406 | 49.29 387 | 5.41 404 | 31.90 381 | 26.70 397 |
| Y. Furukawa, J. Ponce: Accurate, dense, and robust multiview stereopsis. PAMI (2010) |
| MVE |  | 16.60 23 | 17.34 371 | 13.39 374 | 29.16 381 | 28.43 405 | 19.72 393 | 13.73 399 | 23.63 404 | 7.23 402 | 7.96 402 | 21.41 398 | 0.80 408 | 36.08 398 | 6.97 399 | 10.39 399 | 31.69 394 |
| Simon Fuhrmann, Fabian Langguth, Michael Goesele: MVE - A Multi-View Reconstruction Environment. EUROGRAPHICS Workshops on Graphics and Cultural Heritage (2014) |
| testing91 | | | 78.30 31 | 77.54 35 | 80.61 23 | 88.16 35 | 57.12 23 | 87.94 60 | 91.07 13 | 71.43 18 | 70.75 94 | 88.04 135 | 55.82 22 | 92.65 42 | 69.61 104 | 75.00 139 | 92.05 42 |
|
| testing11 | | | 79.18 22 | 78.85 21 | 80.16 33 | 88.33 30 | 56.99 26 | 88.31 52 | 92.06 1 | 72.82 11 | 70.62 98 | 88.37 123 | 57.69 14 | 92.30 50 | 75.25 74 | 76.24 122 | 91.20 70 |
|
| testing99 | | | 78.45 25 | 77.78 32 | 80.45 27 | 88.28 33 | 56.81 32 | 87.95 59 | 91.49 6 | 71.72 15 | 70.84 93 | 88.09 131 | 57.29 15 | 92.63 44 | 69.24 107 | 75.13 135 | 91.91 47 |
|
| UWE-MVS | | | 72.17 123 | 72.15 106 | 72.21 221 | 82.26 137 | 44.29 299 | 86.83 88 | 89.58 21 | 65.58 77 | 65.82 133 | 85.06 174 | 45.02 109 | 84.35 268 | 54.07 227 | 75.18 132 | 87.99 149 |
|
| ETVMVS | | | 75.80 69 | 75.44 61 | 76.89 108 | 86.23 52 | 50.38 179 | 85.55 118 | 91.42 7 | 71.30 21 | 68.80 106 | 87.94 137 | 56.42 19 | 89.24 127 | 56.54 210 | 74.75 141 | 91.07 74 |
|
| testing222 | | | 77.70 38 | 77.22 40 | 79.14 48 | 86.95 46 | 54.89 77 | 87.18 78 | 91.96 2 | 72.29 13 | 71.17 91 | 88.70 117 | 55.19 24 | 91.24 73 | 65.18 139 | 76.32 121 | 91.29 68 |
|
| WB-MVSnew | | | 69.36 172 | 68.24 164 | 72.72 209 | 79.26 201 | 49.40 204 | 85.72 112 | 88.85 35 | 61.33 149 | 64.59 151 | 82.38 218 | 34.57 245 | 87.53 198 | 46.82 279 | 70.63 175 | 81.22 275 |
|
| fmvsm_l_conf0.5_n_a | | | 75.88 64 | 76.07 54 | 75.31 147 | 76.08 256 | 48.34 235 | 85.24 125 | 70.62 333 | 63.13 120 | 81.45 18 | 93.62 16 | 49.98 61 | 87.40 201 | 87.76 6 | 76.77 114 | 90.20 95 |
|
| fmvsm_l_conf0.5_n | | | 75.95 62 | 76.16 53 | 75.31 147 | 76.01 260 | 48.44 232 | 84.98 137 | 71.08 329 | 63.50 112 | 81.70 17 | 93.52 17 | 50.00 59 | 87.18 205 | 87.80 5 | 76.87 113 | 90.32 90 |
|
| fmvsm_s_conf0.1_n_a | | | 72.82 110 | 72.05 110 | 75.12 155 | 70.95 321 | 47.97 248 | 82.72 204 | 68.43 347 | 62.52 131 | 78.17 33 | 93.08 30 | 44.21 122 | 88.86 145 | 84.82 13 | 63.54 232 | 88.54 138 |
|
| fmvsm_s_conf0.1_n | | | 73.80 93 | 73.26 85 | 75.43 142 | 73.28 294 | 47.80 253 | 84.57 153 | 69.43 342 | 63.34 115 | 78.40 32 | 93.29 24 | 44.73 119 | 89.22 129 | 85.99 9 | 66.28 213 | 89.26 116 |
|
| fmvsm_s_conf0.5_n_a | | | 73.68 98 | 73.15 87 | 75.29 150 | 75.45 267 | 48.05 245 | 83.88 171 | 68.84 345 | 63.43 114 | 78.60 30 | 93.37 22 | 45.32 104 | 88.92 144 | 85.39 11 | 64.04 226 | 88.89 127 |
|
| fmvsm_s_conf0.5_n | | | 74.48 82 | 74.12 78 | 75.56 137 | 76.96 245 | 47.85 252 | 85.32 123 | 69.80 340 | 64.16 96 | 78.74 29 | 93.48 18 | 45.51 103 | 89.29 126 | 86.48 8 | 66.62 206 | 89.55 111 |
|
| MM | | | 82.69 2 | 83.29 3 | 80.89 22 | 84.38 83 | 55.40 59 | 92.16 10 | 89.85 20 | 75.28 5 | 82.41 11 | 93.86 10 | 54.30 30 | 93.98 25 | 90.29 1 | 87.13 21 | 93.30 14 |
|
| WAC-MVS | | | | | | | 34.28 354 | | | | | | | | 22.56 375 | | |
|
| Syy-MVS | | | 61.51 272 | 61.35 256 | 62.00 328 | 81.73 146 | 30.09 371 | 80.97 248 | 81.02 197 | 60.93 159 | 55.06 276 | 82.64 210 | 35.09 239 | 80.81 295 | 16.40 389 | 58.32 274 | 75.10 338 |
|
| test_fmvsmconf0.1_n | | | 73.69 97 | 73.15 87 | 75.34 145 | 70.71 322 | 48.26 238 | 82.15 217 | 71.83 321 | 66.75 58 | 74.47 51 | 92.59 38 | 44.89 113 | 87.78 186 | 83.59 20 | 71.35 169 | 89.97 102 |
|
| test_fmvsmconf0.01_n | | | 71.97 126 | 70.95 125 | 75.04 156 | 66.21 347 | 47.87 251 | 80.35 258 | 70.08 337 | 65.85 76 | 72.69 69 | 91.68 56 | 39.99 177 | 87.67 190 | 82.03 29 | 69.66 184 | 89.58 110 |
|
| myMVS_eth3d | | | 63.52 253 | 63.56 243 | 63.40 321 | 81.73 146 | 34.28 354 | 80.97 248 | 81.02 197 | 60.93 159 | 55.06 276 | 82.64 210 | 48.00 74 | 80.81 295 | 23.42 374 | 58.32 274 | 75.10 338 |
|
| testing3 | | | 59.97 279 | 60.19 269 | 59.32 340 | 77.60 232 | 30.01 373 | 81.75 229 | 81.79 184 | 53.54 277 | 50.34 313 | 79.94 242 | 48.99 68 | 76.91 333 | 17.19 387 | 50.59 333 | 71.03 363 |
|
| SSC-MVS | | | 35.20 352 | 34.30 354 | 37.90 371 | 52.58 381 | 8.65 409 | 61.86 357 | 41.64 384 | 31.81 374 | 25.54 388 | 52.94 381 | 23.39 330 | 59.28 377 | 6.10 402 | 12.86 397 | 45.78 390 |
|
| test_fmvsmconf_n | | | 74.41 84 | 74.05 80 | 75.49 141 | 74.16 285 | 48.38 233 | 82.66 205 | 72.57 317 | 67.05 55 | 75.11 44 | 92.88 33 | 46.35 90 | 87.81 181 | 83.93 19 | 71.71 165 | 90.28 91 |
|
| WB-MVS | | | 37.41 350 | 36.37 351 | 40.54 369 | 54.23 379 | 10.43 406 | 65.29 344 | 43.75 380 | 34.86 369 | 27.81 386 | 54.63 376 | 24.94 319 | 63.21 369 | 6.81 401 | 15.00 396 | 47.98 388 |
|
| test_fmvsmvis_n_1920 | | | 71.29 136 | 70.38 133 | 74.00 180 | 71.04 320 | 48.79 220 | 79.19 273 | 64.62 356 | 62.75 125 | 66.73 118 | 91.99 49 | 40.94 164 | 88.35 163 | 83.00 22 | 73.18 150 | 84.85 210 |
|
| dmvs_re | | | 67.61 204 | 66.00 208 | 72.42 217 | 81.86 143 | 43.45 308 | 64.67 348 | 80.00 213 | 69.56 32 | 60.07 202 | 85.00 176 | 34.71 243 | 87.63 193 | 51.48 247 | 66.68 204 | 86.17 185 |
|
| SDMVSNet | | | 71.89 127 | 70.62 129 | 75.70 133 | 81.70 148 | 51.61 153 | 73.89 303 | 88.72 40 | 66.58 59 | 61.64 190 | 82.38 218 | 37.63 200 | 89.48 122 | 77.44 59 | 65.60 216 | 86.01 186 |
|
| dmvs_testset | | | 57.65 300 | 58.21 282 | 55.97 351 | 74.62 278 | 9.82 407 | 63.75 350 | 63.34 360 | 67.23 52 | 48.89 319 | 83.68 194 | 39.12 184 | 76.14 338 | 23.43 373 | 59.80 261 | 81.96 255 |
|
| sd_testset | | | 67.79 201 | 65.95 210 | 73.32 197 | 81.70 148 | 46.33 275 | 68.99 335 | 80.30 209 | 66.58 59 | 61.64 190 | 82.38 218 | 30.45 282 | 87.63 193 | 55.86 216 | 65.60 216 | 86.01 186 |
|
| test_fmvsm_n_1920 | | | 75.56 71 | 75.54 59 | 75.61 135 | 74.60 279 | 49.51 202 | 81.82 227 | 74.08 304 | 66.52 62 | 80.40 22 | 93.46 19 | 46.95 83 | 89.72 117 | 86.69 7 | 75.30 130 | 87.61 157 |
|
| test_cas_vis1_n_1920 | | | 67.10 219 | 66.60 196 | 68.59 285 | 65.17 355 | 43.23 311 | 83.23 193 | 69.84 339 | 55.34 261 | 70.67 96 | 87.71 141 | 24.70 322 | 76.66 337 | 78.57 50 | 64.20 225 | 85.89 192 |
|
| test_vis1_n_1920 | | | 68.59 187 | 68.31 162 | 69.44 272 | 69.16 333 | 41.51 327 | 84.63 151 | 68.58 346 | 58.80 201 | 73.26 62 | 88.37 123 | 25.30 315 | 80.60 299 | 79.10 43 | 67.55 199 | 86.23 184 |
|
| test_vis1_n | | | 51.19 332 | 49.66 329 | 55.76 352 | 51.26 384 | 29.85 374 | 67.20 342 | 38.86 387 | 32.12 373 | 59.50 212 | 79.86 244 | 8.78 382 | 58.23 379 | 56.95 208 | 52.46 328 | 79.19 294 |
|
| test_fmvs1_n | | | 52.55 327 | 51.19 322 | 56.65 348 | 51.90 383 | 30.14 370 | 67.66 340 | 42.84 382 | 32.27 372 | 62.30 183 | 82.02 226 | 9.12 381 | 60.84 371 | 57.82 199 | 54.75 315 | 78.99 295 |
|
| mvsany_test1 | | | 43.38 344 | 42.57 346 | 45.82 362 | 50.96 385 | 26.10 383 | 55.80 371 | 27.74 400 | 27.15 379 | 47.41 330 | 74.39 304 | 18.67 356 | 44.95 392 | 44.66 289 | 36.31 370 | 66.40 371 |
|
| APD_test1 | | | 26.46 362 | 24.41 363 | 32.62 379 | 37.58 395 | 21.74 390 | 40.50 387 | 30.39 397 | 11.45 396 | 16.33 393 | 43.76 385 | 1.63 405 | 41.62 394 | 11.24 393 | 26.82 387 | 34.51 393 |
|
| test_vis1_rt | | | 40.29 347 | 38.64 349 | 45.25 364 | 48.91 389 | 30.09 371 | 59.44 365 | 27.07 401 | 24.52 383 | 38.48 363 | 51.67 382 | 6.71 388 | 49.44 386 | 44.33 291 | 46.59 351 | 56.23 380 |
|
| test_vis3_rt | | | 24.79 364 | 22.95 367 | 30.31 380 | 28.59 404 | 18.92 395 | 37.43 390 | 17.27 408 | 12.90 393 | 21.28 391 | 29.92 397 | 1.02 407 | 36.35 397 | 28.28 358 | 29.82 385 | 35.65 391 |
|
| test_fmvs2 | | | 45.89 341 | 44.32 343 | 50.62 358 | 45.85 392 | 24.70 385 | 58.87 368 | 37.84 390 | 25.22 381 | 52.46 299 | 74.56 303 | 7.07 385 | 54.69 381 | 49.28 261 | 47.70 341 | 72.48 354 |
|
| test_fmvs1 | | | 53.60 323 | 52.54 318 | 56.78 347 | 58.07 373 | 30.26 369 | 68.95 336 | 42.19 383 | 32.46 371 | 63.59 169 | 82.56 214 | 11.55 373 | 60.81 372 | 58.25 191 | 55.27 309 | 79.28 293 |
|
| test_fmvs3 | | | 37.95 349 | 35.75 352 | 44.55 365 | 35.50 398 | 18.92 395 | 48.32 377 | 34.00 395 | 18.36 389 | 41.31 354 | 61.58 363 | 2.29 400 | 48.06 390 | 42.72 300 | 37.71 369 | 66.66 370 |
|
| mvsany_test3 | | | 28.00 358 | 25.98 360 | 34.05 375 | 28.97 403 | 15.31 401 | 34.54 392 | 18.17 406 | 16.24 390 | 29.30 383 | 53.37 380 | 2.79 398 | 33.38 403 | 30.01 348 | 20.41 394 | 53.45 383 |
|
| testf1 | | | 21.11 366 | 19.08 370 | 27.18 382 | 30.56 400 | 18.28 397 | 33.43 393 | 24.48 402 | 8.02 400 | 12.02 398 | 33.50 394 | 0.75 409 | 35.09 400 | 7.68 397 | 21.32 391 | 28.17 395 |
|
| APD_test2 | | | 21.11 366 | 19.08 370 | 27.18 382 | 30.56 400 | 18.28 397 | 33.43 393 | 24.48 402 | 8.02 400 | 12.02 398 | 33.50 394 | 0.75 409 | 35.09 400 | 7.68 397 | 21.32 391 | 28.17 395 |
|
| test_f | | | 27.12 360 | 24.85 361 | 33.93 376 | 26.17 408 | 15.25 402 | 30.24 396 | 22.38 405 | 12.53 395 | 28.23 384 | 49.43 383 | 2.59 399 | 34.34 402 | 25.12 368 | 26.99 386 | 52.20 384 |
|
| FE-MVS | | | 64.15 246 | 60.43 267 | 75.30 149 | 80.85 175 | 49.86 193 | 68.28 339 | 78.37 254 | 50.26 302 | 59.31 216 | 73.79 308 | 26.19 309 | 91.92 60 | 40.19 305 | 66.67 205 | 84.12 217 |
|
| FA-MVS(test-final) | | | 69.00 177 | 66.60 196 | 76.19 122 | 83.48 100 | 47.96 250 | 74.73 298 | 82.07 177 | 57.27 232 | 62.18 184 | 78.47 259 | 36.09 228 | 92.89 35 | 53.76 231 | 71.32 170 | 87.73 154 |
|
| iter_conf05_11 | | | 79.47 20 | 78.68 23 | 81.84 12 | 87.91 40 | 57.01 24 | 93.27 2 | 79.49 227 | 74.74 6 | 83.40 8 | 94.00 6 | 21.51 344 | 94.70 21 | 84.07 17 | 89.68 7 | 93.82 7 |
|
| bld_raw_dy_0_64 | | | 75.36 73 | 73.18 86 | 81.89 11 | 87.91 40 | 57.01 24 | 86.77 89 | 67.69 350 | 78.56 1 | 65.01 143 | 93.99 7 | 22.18 339 | 94.84 19 | 84.07 17 | 72.45 158 | 93.82 7 |
|
| patch_mono-2 | | | 80.84 12 | 81.59 10 | 78.62 63 | 90.34 9 | 53.77 101 | 88.08 54 | 88.36 50 | 76.17 3 | 79.40 28 | 91.09 64 | 55.43 23 | 90.09 108 | 85.01 12 | 80.40 81 | 91.99 46 |
|
| EGC-MVSNET | | | 33.75 354 | 30.42 358 | 43.75 366 | 64.94 358 | 36.21 350 | 60.47 364 | 40.70 386 | 0.02 406 | 0.10 407 | 53.79 378 | 7.39 384 | 60.26 373 | 11.09 394 | 35.23 374 | 34.79 392 |
|
| test2506 | | | 72.91 108 | 72.43 98 | 74.32 171 | 80.12 189 | 44.18 302 | 83.19 194 | 84.77 125 | 64.02 98 | 65.97 130 | 87.43 146 | 47.67 76 | 88.72 148 | 59.08 179 | 79.66 93 | 90.08 99 |
|
| test1111 | | | 71.06 140 | 70.42 132 | 72.97 204 | 79.48 196 | 41.49 328 | 84.82 145 | 82.74 169 | 64.20 95 | 62.98 175 | 87.43 146 | 35.20 237 | 87.92 178 | 58.54 185 | 78.42 103 | 89.49 113 |
|
| ECVR-MVS |  | | 71.81 129 | 71.00 124 | 74.26 173 | 80.12 189 | 43.49 307 | 84.69 147 | 82.16 174 | 64.02 98 | 64.64 148 | 87.43 146 | 35.04 240 | 89.21 130 | 61.24 162 | 79.66 93 | 90.08 99 |
|
| test_blank | | | 0.00 378 | 0.00 381 | 0.00 391 | 0.00 413 | 0.00 415 | 0.00 402 | 0.00 413 | 0.00 407 | 0.00 410 | 0.00 409 | 0.00 412 | 0.00 408 | 0.00 409 | 0.00 406 | 0.00 406 |
|
| tt0805 | | | 63.39 255 | 61.31 257 | 69.64 269 | 69.36 331 | 38.87 340 | 78.00 279 | 85.48 95 | 48.82 310 | 55.66 275 | 81.66 229 | 24.38 323 | 86.37 230 | 49.04 263 | 59.36 266 | 83.68 231 |
|
| DVP-MVS++ | | | 82.44 3 | 82.38 5 | 82.62 4 | 91.77 4 | 57.49 15 | 84.98 137 | 88.88 32 | 58.00 214 | 83.60 6 | 93.39 20 | 67.21 2 | 96.39 4 | 81.64 32 | 91.98 4 | 93.98 5 |
|
| FOURS1 | | | | | | 83.24 108 | 49.90 192 | 84.98 137 | 78.76 244 | 47.71 314 | 73.42 59 | | | | | | |
|
| MSC_two_6792asdad | | | | | 81.53 16 | 91.77 4 | 56.03 46 | | 91.10 10 | | | | | 96.22 8 | 81.46 34 | 86.80 27 | 92.34 34 |
|
| PC_three_1452 | | | | | | | | | | 66.58 59 | 87.27 2 | 93.70 11 | 66.82 4 | 94.95 17 | 89.74 3 | 91.98 4 | 93.98 5 |
|
| No_MVS | | | | | 81.53 16 | 91.77 4 | 56.03 46 | | 91.10 10 | | | | | 96.22 8 | 81.46 34 | 86.80 27 | 92.34 34 |
|
| test_one_0601 | | | | | | 89.39 22 | 57.29 20 | | 88.09 53 | 57.21 234 | 82.06 13 | 93.39 20 | 54.94 29 | | | | |
|
| eth-test2 | | | | | | 0.00 413 | | | | | | | | | | | |
|
| eth-test | | | | | | 0.00 413 | | | | | | | | | | | |
|
| GeoE | | | 69.96 161 | 67.88 170 | 76.22 119 | 81.11 167 | 51.71 152 | 84.15 162 | 76.74 281 | 59.83 174 | 60.91 195 | 84.38 180 | 41.56 160 | 88.10 174 | 51.67 246 | 70.57 177 | 88.84 129 |
|
| test_method | | | 24.09 365 | 21.07 369 | 33.16 377 | 27.67 406 | 8.35 411 | 26.63 397 | 35.11 394 | 3.40 403 | 14.35 395 | 36.98 389 | 3.46 397 | 35.31 399 | 19.08 385 | 22.95 390 | 55.81 381 |
|
| Anonymous20240521 | | | 51.65 330 | 48.42 332 | 61.34 335 | 56.43 377 | 39.65 338 | 73.57 306 | 73.47 315 | 36.64 362 | 36.59 366 | 63.98 358 | 10.75 376 | 72.25 358 | 35.35 324 | 49.01 336 | 72.11 356 |
|
| h-mvs33 | | | 73.95 90 | 72.89 92 | 77.15 98 | 80.17 188 | 50.37 180 | 84.68 148 | 83.33 155 | 68.08 40 | 71.97 78 | 88.65 121 | 42.50 144 | 91.15 77 | 78.82 46 | 57.78 288 | 89.91 105 |
|
| hse-mvs2 | | | 71.44 135 | 70.68 127 | 73.73 190 | 76.34 250 | 47.44 258 | 79.45 270 | 79.47 228 | 68.08 40 | 71.97 78 | 86.01 165 | 42.50 144 | 86.93 214 | 78.82 46 | 53.46 325 | 86.83 174 |
|
| CL-MVSNet_self_test | | | 62.98 259 | 61.14 259 | 68.50 287 | 65.86 350 | 42.96 313 | 84.37 155 | 82.98 165 | 60.98 157 | 53.95 288 | 72.70 322 | 40.43 170 | 83.71 274 | 41.10 303 | 47.93 340 | 78.83 298 |
|
| KD-MVS_2432*1600 | | | 59.04 289 | 56.44 293 | 66.86 298 | 79.07 204 | 45.87 282 | 72.13 319 | 80.42 207 | 55.03 264 | 48.15 322 | 71.01 334 | 36.73 219 | 78.05 322 | 35.21 326 | 30.18 383 | 76.67 322 |
|
| KD-MVS_self_test | | | 49.24 335 | 46.85 338 | 56.44 349 | 54.32 378 | 22.87 387 | 57.39 369 | 73.36 316 | 44.36 338 | 37.98 364 | 59.30 371 | 18.97 354 | 71.17 360 | 33.48 334 | 42.44 360 | 75.26 335 |
|
| AUN-MVS | | | 68.20 195 | 66.35 199 | 73.76 188 | 76.37 249 | 47.45 257 | 79.52 269 | 79.52 225 | 60.98 157 | 62.34 181 | 86.02 163 | 36.59 224 | 86.94 213 | 62.32 153 | 53.47 324 | 86.89 168 |
|
| ZD-MVS | | | | | | 89.55 14 | 53.46 107 | | 84.38 133 | 57.02 236 | 73.97 54 | 91.03 65 | 44.57 120 | 91.17 76 | 75.41 73 | 81.78 70 | |
|
| SR-MVS-dyc-post | | | 68.27 193 | 66.87 188 | 72.48 216 | 80.96 170 | 48.14 242 | 81.54 236 | 76.98 276 | 46.42 324 | 62.75 178 | 89.42 103 | 31.17 278 | 86.09 239 | 60.52 171 | 72.06 163 | 83.19 240 |
|
| RE-MVS-def | | | | 66.66 194 | | 80.96 170 | 48.14 242 | 81.54 236 | 76.98 276 | 46.42 324 | 62.75 178 | 89.42 103 | 29.28 290 | | 60.52 171 | 72.06 163 | 83.19 240 |
|
| SED-MVS | | | 81.92 7 | 81.75 9 | 82.44 7 | 89.48 17 | 56.89 29 | 92.48 4 | 88.94 30 | 57.50 228 | 84.61 4 | 94.09 3 | 58.81 11 | 96.37 6 | 82.28 27 | 87.60 18 | 94.06 3 |
|
| IU-MVS | | | | | | 89.48 17 | 57.49 15 | | 91.38 9 | 66.22 67 | 88.26 1 | | | | 82.83 23 | 87.60 18 | 92.44 31 |
|
| OPU-MVS | | | | | 81.71 14 | 92.05 3 | 55.97 48 | 92.48 4 | | | | 94.01 5 | 67.21 2 | 95.10 15 | 89.82 2 | 92.55 3 | 94.06 3 |
|
| test_241102_TWO | | | | | | | | | 88.76 39 | 57.50 228 | 83.60 6 | 94.09 3 | 56.14 21 | 96.37 6 | 82.28 27 | 87.43 20 | 92.55 29 |
|
| test_241102_ONE | | | | | | 89.48 17 | 56.89 29 | | 88.94 30 | 57.53 226 | 84.61 4 | 93.29 24 | 58.81 11 | 96.45 1 | | | |
|
| SF-MVS | | | 77.64 39 | 77.42 37 | 78.32 73 | 83.75 96 | 52.47 136 | 86.63 92 | 87.80 57 | 58.78 202 | 74.63 47 | 92.38 40 | 47.75 75 | 91.35 70 | 78.18 55 | 86.85 26 | 91.15 72 |
|
| cl22 | | | 68.85 178 | 67.69 175 | 72.35 219 | 78.07 226 | 49.98 190 | 82.45 213 | 78.48 252 | 62.50 132 | 58.46 235 | 77.95 261 | 49.99 60 | 85.17 257 | 62.55 151 | 58.72 270 | 81.90 256 |
|
| miper_ehance_all_eth | | | 68.70 186 | 67.58 177 | 72.08 224 | 76.91 246 | 49.48 203 | 82.47 212 | 78.45 253 | 62.68 127 | 58.28 239 | 77.88 263 | 50.90 52 | 85.01 261 | 61.91 157 | 58.72 270 | 81.75 258 |
|
| miper_enhance_ethall | | | 69.77 164 | 68.90 156 | 72.38 218 | 78.93 209 | 49.91 191 | 83.29 191 | 78.85 240 | 64.90 88 | 59.37 214 | 79.46 247 | 52.77 38 | 85.16 258 | 63.78 143 | 58.72 270 | 82.08 253 |
|
| ZNCC-MVS | | | 75.82 68 | 75.02 68 | 78.23 74 | 83.88 94 | 53.80 100 | 86.91 86 | 86.05 88 | 59.71 176 | 67.85 113 | 90.55 76 | 42.23 148 | 91.02 80 | 72.66 93 | 85.29 44 | 89.87 106 |
|
| dcpmvs_2 | | | 79.33 21 | 78.94 20 | 80.49 25 | 89.75 12 | 56.54 36 | 84.83 144 | 83.68 149 | 67.85 45 | 69.36 102 | 90.24 84 | 60.20 7 | 92.10 57 | 84.14 15 | 80.40 81 | 92.82 23 |
|
| cl____ | | | 67.43 210 | 65.93 211 | 71.95 232 | 76.33 251 | 48.02 246 | 82.58 207 | 79.12 237 | 61.30 151 | 56.72 261 | 76.92 278 | 46.12 92 | 86.44 228 | 57.98 195 | 56.31 296 | 81.38 270 |
|
| DIV-MVS_self_test | | | 67.43 210 | 65.93 211 | 71.94 233 | 76.33 251 | 48.01 247 | 82.57 208 | 79.11 238 | 61.31 150 | 56.73 260 | 76.92 278 | 46.09 93 | 86.43 229 | 57.98 195 | 56.31 296 | 81.39 269 |
|
| eth_miper_zixun_eth | | | 66.98 224 | 65.28 227 | 72.06 225 | 75.61 265 | 50.40 177 | 81.00 247 | 76.97 279 | 62.00 137 | 56.99 259 | 76.97 276 | 44.84 115 | 85.58 248 | 58.75 183 | 54.42 316 | 80.21 287 |
|
| 9.14 | | | | 78.19 27 | | 85.67 59 | | 88.32 51 | 88.84 36 | 59.89 173 | 74.58 49 | 92.62 37 | 46.80 85 | 92.66 41 | 81.40 36 | 85.62 40 | |
|
| uanet_test | | | 0.00 378 | 0.00 381 | 0.00 391 | 0.00 413 | 0.00 415 | 0.00 402 | 0.00 413 | 0.00 407 | 0.00 410 | 0.00 409 | 0.00 412 | 0.00 408 | 0.00 409 | 0.00 406 | 0.00 406 |
|
| DCPMVS | | | 0.00 378 | 0.00 381 | 0.00 391 | 0.00 413 | 0.00 415 | 0.00 402 | 0.00 413 | 0.00 407 | 0.00 410 | 0.00 409 | 0.00 412 | 0.00 408 | 0.00 409 | 0.00 406 | 0.00 406 |
|
| save fliter | | | | | | 85.35 66 | 56.34 41 | 89.31 40 | 81.46 189 | 61.55 145 | | | | | | | |
|
| ET-MVSNet_ETH3D | | | 75.23 76 | 74.08 79 | 78.67 61 | 84.52 80 | 55.59 52 | 88.92 44 | 89.21 25 | 68.06 43 | 53.13 294 | 90.22 86 | 49.71 64 | 87.62 195 | 72.12 94 | 70.82 174 | 92.82 23 |
|
| UniMVSNet_ETH3D | | | 62.51 264 | 60.49 265 | 68.57 286 | 68.30 341 | 40.88 334 | 73.89 303 | 79.93 216 | 51.81 293 | 54.77 279 | 79.61 246 | 24.80 320 | 81.10 291 | 49.93 255 | 61.35 253 | 83.73 230 |
|
| EIA-MVS | | | 75.92 63 | 75.18 66 | 78.13 76 | 85.14 70 | 51.60 154 | 87.17 79 | 85.32 104 | 64.69 90 | 68.56 108 | 90.53 77 | 45.79 98 | 91.58 65 | 67.21 119 | 82.18 65 | 91.20 70 |
|
| miper_refine_blended | | | 59.04 289 | 56.44 293 | 66.86 298 | 79.07 204 | 45.87 282 | 72.13 319 | 80.42 207 | 55.03 264 | 48.15 322 | 71.01 334 | 36.73 219 | 78.05 322 | 35.21 326 | 30.18 383 | 76.67 322 |
|
| miper_lstm_enhance | | | 63.91 248 | 62.30 247 | 68.75 281 | 75.06 271 | 46.78 266 | 69.02 334 | 81.14 195 | 59.68 178 | 52.76 297 | 72.39 326 | 40.71 168 | 77.99 324 | 56.81 209 | 53.09 326 | 81.48 264 |
|
| ETV-MVS | | | 77.17 44 | 76.74 45 | 78.48 67 | 81.80 144 | 54.55 88 | 86.13 100 | 85.33 103 | 68.20 39 | 73.10 63 | 90.52 78 | 45.23 106 | 90.66 91 | 79.37 41 | 80.95 73 | 90.22 93 |
|
| CS-MVS | | | 76.77 51 | 76.70 46 | 76.99 104 | 83.55 98 | 48.75 221 | 88.60 48 | 85.18 111 | 66.38 64 | 72.47 74 | 91.62 58 | 45.53 101 | 90.99 83 | 74.48 79 | 82.51 61 | 91.23 69 |
|
| D2MVS | | | 63.49 254 | 61.39 255 | 69.77 268 | 69.29 332 | 48.93 216 | 78.89 275 | 77.71 264 | 60.64 166 | 49.70 315 | 72.10 331 | 27.08 303 | 83.48 277 | 54.48 224 | 62.65 246 | 76.90 320 |
|
| DVP-MVS |  | | 81.30 10 | 81.00 13 | 82.20 8 | 89.40 20 | 57.45 17 | 92.34 6 | 89.99 18 | 57.71 222 | 81.91 14 | 93.64 13 | 55.17 25 | 96.44 2 | 81.68 30 | 87.13 21 | 92.72 26 |
| Zhenlong Yuan, Jinguo Luo, Fei Shen, Zhaoxin Li, Cong Liu, Tianlu Mao, Zhaoqi Wang: DVP-MVS: Synergize Depth-Edge and Visibility Prior for Multi-View Stereo. AAAI2025 |
| test_0728_THIRD | | | | | | | | | | 58.00 214 | 81.91 14 | 93.64 13 | 56.54 17 | 96.44 2 | 81.64 32 | 86.86 25 | 92.23 36 |
|
| test_0728_SECOND | | | | | 82.20 8 | 89.50 15 | 57.73 11 | 92.34 6 | 88.88 32 | | | | | 96.39 4 | 81.68 30 | 87.13 21 | 92.47 30 |
|
| test0726 | | | | | | 89.40 20 | 57.45 17 | 92.32 8 | 88.63 43 | 57.71 222 | 83.14 10 | 93.96 8 | 55.17 25 | | | | |
|
| SR-MVS | | | 70.92 144 | 69.73 145 | 74.50 164 | 83.38 105 | 50.48 175 | 84.27 159 | 79.35 233 | 48.96 309 | 66.57 124 | 90.45 79 | 33.65 255 | 87.11 207 | 66.42 123 | 74.56 142 | 85.91 191 |
|
| DPM-MVS | | | 82.39 4 | 82.36 6 | 82.49 5 | 80.12 189 | 59.50 5 | 92.24 9 | 90.72 14 | 69.37 33 | 83.22 9 | 94.47 2 | 63.81 5 | 93.18 33 | 74.02 84 | 93.25 2 | 94.80 1 |
|
| GST-MVS | | | 74.87 81 | 73.90 82 | 77.77 82 | 83.30 106 | 53.45 109 | 85.75 109 | 85.29 106 | 59.22 189 | 66.50 125 | 89.85 96 | 40.94 164 | 90.76 88 | 70.94 99 | 83.35 57 | 89.10 123 |
|
| test_yl | | | 75.85 65 | 74.83 72 | 78.91 52 | 88.08 37 | 51.94 145 | 91.30 17 | 89.28 23 | 57.91 216 | 71.19 89 | 89.20 108 | 42.03 153 | 92.77 38 | 69.41 105 | 75.07 137 | 92.01 44 |
|
| thisisatest0530 | | | 70.47 152 | 68.56 158 | 76.20 121 | 79.78 193 | 51.52 157 | 83.49 183 | 88.58 47 | 57.62 225 | 58.60 230 | 82.79 204 | 51.03 51 | 91.48 67 | 52.84 237 | 62.36 250 | 85.59 199 |
|
| Anonymous20240529 | | | 69.71 165 | 67.28 184 | 77.00 103 | 83.78 95 | 50.36 181 | 88.87 46 | 85.10 116 | 47.22 317 | 64.03 161 | 83.37 197 | 27.93 296 | 92.10 57 | 57.78 201 | 67.44 200 | 88.53 139 |
|
| Anonymous202405211 | | | 70.11 154 | 67.88 170 | 76.79 112 | 87.20 45 | 47.24 263 | 89.49 36 | 77.38 270 | 54.88 267 | 66.14 127 | 86.84 154 | 20.93 347 | 91.54 66 | 56.45 214 | 71.62 166 | 91.59 55 |
|
| DCV-MVSNet | | | 75.85 65 | 74.83 72 | 78.91 52 | 88.08 37 | 51.94 145 | 91.30 17 | 89.28 23 | 57.91 216 | 71.19 89 | 89.20 108 | 42.03 153 | 92.77 38 | 69.41 105 | 75.07 137 | 92.01 44 |
|
| tttt0517 | | | 68.33 191 | 66.29 201 | 74.46 165 | 78.08 225 | 49.06 209 | 80.88 251 | 89.08 27 | 54.40 272 | 54.75 280 | 80.77 238 | 51.31 48 | 90.33 100 | 49.35 260 | 58.01 282 | 83.99 222 |
|
| our_test_3 | | | 59.11 287 | 55.08 303 | 71.18 248 | 71.42 315 | 53.29 118 | 81.96 221 | 74.52 300 | 48.32 311 | 42.08 348 | 69.28 345 | 28.14 293 | 82.15 284 | 34.35 332 | 45.68 354 | 78.11 311 |
|
| thisisatest0515 | | | 73.64 99 | 72.20 104 | 77.97 79 | 81.63 152 | 53.01 126 | 86.69 91 | 88.81 37 | 62.53 130 | 64.06 159 | 85.65 167 | 52.15 44 | 92.50 46 | 58.43 186 | 69.84 182 | 88.39 141 |
|
| ppachtmachnet_test | | | 58.56 295 | 54.34 304 | 71.24 245 | 71.42 315 | 54.74 79 | 81.84 226 | 72.27 319 | 49.02 308 | 45.86 338 | 68.99 346 | 26.27 307 | 83.30 279 | 30.12 347 | 43.23 359 | 75.69 331 |
|
| SMA-MVS |  | | 79.10 23 | 78.76 22 | 80.12 35 | 84.42 81 | 55.87 50 | 87.58 68 | 86.76 75 | 61.48 148 | 80.26 23 | 93.10 27 | 46.53 89 | 92.41 48 | 79.97 39 | 88.77 11 | 92.08 40 |
| Yufeng Yin; Xiaoyan Liu; Zichao Zhang: SMA-MVS: Segmentation-Guided Multi-Scale Anchor Deformation Patch Multi-View Stereo. IEEE Transactions on Circuits and Systems for Video Technology |
| GSMVS | | | | | | | | | | | | | | | | | 88.13 145 |
|
| DPE-MVS |  | | 79.82 18 | 79.66 16 | 80.29 29 | 89.27 24 | 55.08 71 | 88.70 47 | 87.92 56 | 55.55 258 | 81.21 19 | 93.69 12 | 56.51 18 | 94.27 24 | 78.36 52 | 85.70 39 | 91.51 60 |
| Kehua Chen, Zhenlong Yuan, Tianlu Mao, Zhaoqi Wang: Dual-Level Precision Edges Guided Multi-View Stereo with Accurate Planarization. AAAI2025 |
| test_part2 | | | | | | 89.33 23 | 55.48 55 | | | | 82.27 12 | | | | | | |
|
| thres100view900 | | | 66.87 227 | 65.42 225 | 71.24 245 | 83.29 107 | 43.15 312 | 81.67 231 | 87.78 58 | 59.04 196 | 55.92 270 | 82.18 223 | 43.73 128 | 87.80 183 | 28.80 352 | 66.36 210 | 82.78 249 |
|
| tfpnnormal | | | 61.47 273 | 59.09 277 | 68.62 284 | 76.29 254 | 41.69 324 | 81.14 245 | 85.16 113 | 54.48 271 | 51.32 306 | 73.63 313 | 32.32 266 | 86.89 216 | 21.78 378 | 55.71 306 | 77.29 318 |
|
| tfpn200view9 | | | 67.57 206 | 66.13 205 | 71.89 236 | 84.05 89 | 45.07 290 | 83.40 186 | 87.71 63 | 60.79 162 | 57.79 244 | 82.76 205 | 43.53 133 | 87.80 183 | 28.80 352 | 66.36 210 | 82.78 249 |
|
| c3_l | | | 67.97 196 | 66.66 194 | 71.91 235 | 76.20 255 | 49.31 206 | 82.13 219 | 78.00 259 | 61.99 138 | 57.64 248 | 76.94 277 | 49.41 65 | 84.93 262 | 60.62 168 | 57.01 292 | 81.49 262 |
|
| CHOSEN 280x420 | | | 57.53 302 | 56.38 295 | 60.97 336 | 74.01 286 | 48.10 244 | 46.30 380 | 54.31 371 | 48.18 313 | 50.88 311 | 77.43 270 | 38.37 191 | 59.16 378 | 54.83 221 | 63.14 242 | 75.66 332 |
|
| CANet | | | 80.90 11 | 81.17 12 | 80.09 37 | 87.62 42 | 54.21 94 | 91.60 14 | 86.47 80 | 73.13 10 | 79.89 26 | 93.10 27 | 49.88 63 | 92.98 34 | 84.09 16 | 84.75 49 | 93.08 19 |
|
| Fast-Effi-MVS+-dtu | | | 66.53 231 | 64.10 240 | 73.84 185 | 72.41 305 | 52.30 141 | 84.73 146 | 75.66 292 | 59.51 180 | 56.34 267 | 79.11 254 | 28.11 294 | 85.85 247 | 57.74 202 | 63.29 238 | 83.35 234 |
|
| Effi-MVS+-dtu | | | 66.24 236 | 64.96 232 | 70.08 264 | 75.17 268 | 49.64 196 | 82.01 220 | 74.48 301 | 62.15 135 | 57.83 242 | 76.08 293 | 30.59 281 | 83.79 272 | 65.40 137 | 60.93 256 | 76.81 321 |
|
| CANet_DTU | | | 73.71 96 | 73.14 89 | 75.40 143 | 82.61 131 | 50.05 188 | 84.67 150 | 79.36 232 | 69.72 30 | 75.39 42 | 90.03 93 | 29.41 288 | 85.93 246 | 67.99 115 | 79.11 97 | 90.22 93 |
|
| MVS_0304 | | | 81.58 9 | 82.05 7 | 80.20 31 | 82.36 135 | 54.70 82 | 91.13 20 | 88.95 29 | 74.49 7 | 80.04 25 | 93.64 13 | 52.40 41 | 93.27 32 | 88.85 4 | 86.56 31 | 92.61 28 |
|
| MP-MVS-pluss | | | 75.54 72 | 75.03 67 | 77.04 100 | 81.37 163 | 52.65 133 | 84.34 157 | 84.46 132 | 61.16 152 | 69.14 103 | 91.76 53 | 39.98 178 | 88.99 139 | 78.19 53 | 84.89 48 | 89.48 114 |
| MP-MVS-pluss: MP-MVS-pluss. MP-MVS-pluss |
| MSP-MVS | | | 82.30 6 | 83.47 1 | 78.80 56 | 82.99 118 | 52.71 131 | 85.04 134 | 88.63 43 | 66.08 71 | 86.77 3 | 92.75 34 | 72.05 1 | 91.46 68 | 83.35 21 | 93.53 1 | 92.23 36 |
| Zhenlong Yuan, Cong Liu, Fei Shen, Zhaoxin Li, Jingguo luo, Tianlu Mao and Zhaoqi Wang: MSP-MVS: Multi-granularity Segmentation Prior Guided Multi-View Stereo. AAAI2025 |
| sam_mvs1 | | | | | | | | | | | | | 38.86 187 | | | | 88.13 145 |
|
| sam_mvs | | | | | | | | | | | | | 35.99 232 | | | | |
|
| IterMVS-SCA-FT | | | 59.12 286 | 58.81 280 | 60.08 338 | 70.68 325 | 45.07 290 | 80.42 257 | 74.25 302 | 43.54 343 | 50.02 314 | 73.73 309 | 31.97 270 | 56.74 380 | 51.06 251 | 53.60 322 | 78.42 305 |
|
| TSAR-MVS + MP. | | | 78.31 30 | 78.26 25 | 78.48 67 | 81.33 164 | 56.31 42 | 81.59 235 | 86.41 81 | 69.61 31 | 81.72 16 | 88.16 130 | 55.09 27 | 88.04 176 | 74.12 83 | 86.31 33 | 91.09 73 |
| Zhenlong Yuan, Jiakai Cao, Zhaoqi Wang, Zhaoxin Li: TSAR-MVS: Textureless-aware Segmentation and Correlative Refinement Guided Multi-View Stereo. Pattern Recognition |
| xiu_mvs_v1_base_debu | | | 71.60 132 | 70.29 136 | 75.55 138 | 77.26 239 | 53.15 120 | 85.34 120 | 79.37 229 | 55.83 254 | 72.54 70 | 90.19 87 | 22.38 335 | 86.66 221 | 73.28 89 | 76.39 117 | 86.85 171 |
|
| OPM-MVS | | | 70.75 147 | 69.58 146 | 74.26 173 | 75.55 266 | 51.34 161 | 86.05 102 | 83.29 159 | 61.94 140 | 62.95 176 | 85.77 166 | 34.15 249 | 88.44 159 | 65.44 136 | 71.07 171 | 82.99 244 |
| Ray L. Khuboni, Hongjun Xu: Octagram Propagation Matching for Multi-Scale View Stereopsis (OPM-MVS). |
| ACMMP_NAP | | | 76.43 55 | 75.66 57 | 78.73 58 | 81.92 141 | 54.67 85 | 84.06 166 | 85.35 102 | 61.10 154 | 72.99 64 | 91.50 61 | 40.25 171 | 91.00 81 | 76.84 62 | 86.98 24 | 90.51 86 |
|
| ambc | | | | | 62.06 327 | 53.98 380 | 29.38 377 | 35.08 391 | 79.65 223 | | 41.37 352 | 59.96 368 | 6.27 391 | 82.15 284 | 35.34 325 | 38.22 368 | 74.65 341 |
|
| MTGPA |  | | | | | | | | 81.31 192 | | | | | | | | |
|
| CS-MVS-test | | | 77.20 43 | 77.25 39 | 77.05 99 | 84.60 78 | 49.04 212 | 89.42 37 | 85.83 92 | 65.90 75 | 72.85 67 | 91.98 51 | 45.10 107 | 91.27 71 | 75.02 76 | 84.56 50 | 90.84 79 |
|
| Effi-MVS+ | | | 75.24 75 | 73.61 83 | 80.16 33 | 81.92 141 | 57.42 19 | 85.21 126 | 76.71 282 | 60.68 165 | 73.32 61 | 89.34 105 | 47.30 79 | 91.63 64 | 68.28 113 | 79.72 92 | 91.42 62 |
|
| xiu_mvs_v2_base | | | 79.86 17 | 79.31 18 | 81.53 16 | 85.03 73 | 60.73 4 | 91.65 13 | 86.86 73 | 70.30 27 | 80.77 20 | 93.07 31 | 37.63 200 | 92.28 52 | 82.73 25 | 85.71 38 | 91.57 57 |
|
| xiu_mvs_v1_base | | | 71.60 132 | 70.29 136 | 75.55 138 | 77.26 239 | 53.15 120 | 85.34 120 | 79.37 229 | 55.83 254 | 72.54 70 | 90.19 87 | 22.38 335 | 86.66 221 | 73.28 89 | 76.39 117 | 86.85 171 |
|
| new-patchmatchnet | | | 48.21 337 | 46.55 339 | 53.18 355 | 57.73 375 | 18.19 399 | 70.24 328 | 71.02 331 | 45.70 328 | 33.70 374 | 60.23 367 | 18.00 359 | 69.86 364 | 27.97 359 | 34.35 376 | 71.49 361 |
|
| pmmvs6 | | | 59.64 281 | 57.15 288 | 67.09 295 | 66.01 348 | 36.86 349 | 80.50 255 | 78.64 247 | 45.05 333 | 49.05 318 | 73.94 307 | 27.28 301 | 86.10 237 | 43.96 294 | 49.94 335 | 78.31 307 |
|
| pmmvs5 | | | 62.80 262 | 61.18 258 | 67.66 291 | 69.53 330 | 42.37 323 | 82.65 206 | 75.19 297 | 54.30 274 | 52.03 303 | 78.51 258 | 31.64 275 | 80.67 297 | 48.60 266 | 58.15 278 | 79.95 290 |
|
| test_post1 | | | | | | | | 70.84 327 | | | | 14.72 404 | 34.33 248 | 83.86 270 | 48.80 264 | | |
|
| test_post | | | | | | | | | | | | 16.22 401 | 37.52 204 | 84.72 264 | | | |
|
| Fast-Effi-MVS+ | | | 72.73 111 | 71.15 123 | 77.48 88 | 82.75 126 | 54.76 78 | 86.77 89 | 80.64 203 | 63.05 121 | 65.93 131 | 84.01 185 | 44.42 121 | 89.03 135 | 56.45 214 | 76.36 120 | 88.64 134 |
|
| patchmatchnet-post | | | | | | | | | | | | 59.74 369 | 38.41 190 | 79.91 310 | | | |
|
| Anonymous20231211 | | | 66.08 238 | 63.67 241 | 73.31 198 | 83.07 114 | 48.75 221 | 86.01 104 | 84.67 129 | 45.27 331 | 56.54 264 | 76.67 283 | 28.06 295 | 88.95 141 | 52.78 239 | 59.95 258 | 82.23 252 |
|
| pmmvs-eth3d | | | 55.97 311 | 52.78 315 | 65.54 308 | 61.02 370 | 46.44 271 | 75.36 295 | 67.72 349 | 49.61 305 | 43.65 342 | 67.58 349 | 21.63 343 | 77.04 331 | 44.11 293 | 44.33 356 | 73.15 353 |
|
| GG-mvs-BLEND | | | | | 77.77 82 | 86.68 49 | 50.61 170 | 68.67 337 | 88.45 49 | | 68.73 107 | 87.45 145 | 59.15 10 | 90.67 90 | 54.83 221 | 87.67 17 | 92.03 43 |
|
| xiu_mvs_v1_base_debi | | | 71.60 132 | 70.29 136 | 75.55 138 | 77.26 239 | 53.15 120 | 85.34 120 | 79.37 229 | 55.83 254 | 72.54 70 | 90.19 87 | 22.38 335 | 86.66 221 | 73.28 89 | 76.39 117 | 86.85 171 |
|
| Anonymous20231206 | | | 59.08 288 | 57.59 285 | 63.55 319 | 68.77 336 | 32.14 366 | 80.26 260 | 79.78 219 | 50.00 303 | 49.39 316 | 72.39 326 | 26.64 306 | 78.36 317 | 33.12 338 | 57.94 283 | 80.14 288 |
|
| MTAPA | | | 72.73 111 | 71.22 121 | 77.27 95 | 81.54 158 | 53.57 105 | 67.06 343 | 81.31 192 | 59.41 183 | 68.39 109 | 90.96 69 | 36.07 229 | 89.01 136 | 73.80 86 | 82.45 63 | 89.23 118 |
|
| MTMP | | | | | | | | 87.27 76 | 15.34 409 | | | | | | | | |
|
| gm-plane-assit | | | | | | 83.24 108 | 54.21 94 | | | 70.91 22 | | 88.23 129 | | 95.25 14 | 66.37 124 | | |
|
| test9_res | | | | | | | | | | | | | | | 78.72 49 | 85.44 42 | 91.39 63 |
|
| MVP-Stereo | | | 70.97 142 | 70.44 131 | 72.59 212 | 76.03 259 | 51.36 160 | 85.02 136 | 86.99 71 | 60.31 169 | 56.53 265 | 78.92 255 | 40.11 175 | 90.00 109 | 60.00 177 | 90.01 6 | 76.41 328 |
| Qingsong Yan: MVP-Stereo: A Parallel Multi-View Patchmatch Stereo Method with Dilation Matching for Photogrammetric Application. |
| TEST9 | | | | | | 85.68 57 | 55.42 56 | 87.59 66 | 84.00 143 | 57.72 221 | 72.99 64 | 90.98 67 | 44.87 114 | 88.58 153 | | | |
|
| train_agg | | | 76.91 47 | 76.40 49 | 78.45 69 | 85.68 57 | 55.42 56 | 87.59 66 | 84.00 143 | 57.84 219 | 72.99 64 | 90.98 67 | 44.99 110 | 88.58 153 | 78.19 53 | 85.32 43 | 91.34 67 |
|
| gg-mvs-nofinetune | | | 67.43 210 | 64.53 236 | 76.13 124 | 85.95 53 | 47.79 254 | 64.38 349 | 88.28 51 | 39.34 352 | 66.62 121 | 41.27 386 | 58.69 13 | 89.00 137 | 49.64 258 | 86.62 30 | 91.59 55 |
|
| SCA | | | 63.84 249 | 60.01 271 | 75.32 146 | 78.58 218 | 57.92 10 | 61.61 359 | 77.53 266 | 56.71 243 | 57.75 246 | 70.77 337 | 31.97 270 | 79.91 310 | 48.80 264 | 56.36 294 | 88.13 145 |
|
| Patchmatch-test | | | 53.33 324 | 48.17 333 | 68.81 279 | 73.31 292 | 42.38 322 | 42.98 383 | 58.23 366 | 32.53 370 | 38.79 362 | 70.77 337 | 39.66 180 | 73.51 351 | 25.18 367 | 52.06 330 | 90.55 83 |
|
| test_8 | | | | | | 85.72 56 | 55.31 61 | 87.60 65 | 83.88 146 | 57.84 219 | 72.84 68 | 90.99 66 | 44.99 110 | 88.34 164 | | | |
|
| MS-PatchMatch | | | 72.34 118 | 71.26 120 | 75.61 135 | 82.38 134 | 55.55 53 | 88.00 55 | 89.95 19 | 65.38 82 | 56.51 266 | 80.74 239 | 32.28 267 | 92.89 35 | 57.95 197 | 88.10 15 | 78.39 306 |
|
| Patchmatch-RL test | | | 58.72 293 | 54.32 305 | 71.92 234 | 63.91 362 | 44.25 300 | 61.73 358 | 55.19 369 | 57.38 230 | 49.31 317 | 54.24 377 | 37.60 202 | 80.89 293 | 62.19 155 | 47.28 345 | 90.63 82 |
|
| cdsmvs_eth3d_5k | | | 18.33 370 | 24.44 362 | 0.00 391 | 0.00 413 | 0.00 415 | 0.00 402 | 89.40 22 | 0.00 407 | 0.00 410 | 92.02 47 | 38.55 189 | 0.00 408 | 0.00 409 | 0.00 406 | 0.00 406 |
|
| pcd_1.5k_mvsjas | | | 3.15 377 | 4.20 380 | 0.00 391 | 0.00 413 | 0.00 415 | 0.00 402 | 0.00 413 | 0.00 407 | 0.00 410 | 0.00 409 | 37.77 195 | 0.00 408 | 0.00 409 | 0.00 406 | 0.00 406 |
|
| agg_prior2 | | | | | | | | | | | | | | | 75.65 68 | 85.11 46 | 91.01 75 |
|
| agg_prior | | | | | | 85.64 60 | 54.92 75 | | 83.61 153 | | 72.53 73 | | | 88.10 174 | | | |
|
| tmp_tt | | | 9.44 372 | 10.68 375 | 5.73 388 | 2.49 411 | 4.21 412 | 10.48 401 | 18.04 407 | 0.34 405 | 12.59 397 | 20.49 399 | 11.39 374 | 7.03 407 | 13.84 392 | 6.46 404 | 5.95 402 |
|
| canonicalmvs | | | 78.17 32 | 77.86 31 | 79.12 50 | 84.30 84 | 54.22 93 | 87.71 63 | 84.57 131 | 67.70 49 | 77.70 35 | 92.11 46 | 50.90 52 | 89.95 111 | 78.18 55 | 77.54 108 | 93.20 17 |
|
| anonymousdsp | | | 60.46 278 | 57.65 284 | 68.88 276 | 63.63 363 | 45.09 289 | 72.93 311 | 78.63 248 | 46.52 322 | 51.12 307 | 72.80 321 | 21.46 345 | 83.07 281 | 57.79 200 | 53.97 318 | 78.47 303 |
|
| alignmvs | | | 78.08 33 | 77.98 29 | 78.39 71 | 83.53 99 | 53.22 119 | 89.77 33 | 85.45 98 | 66.11 69 | 76.59 41 | 91.99 49 | 54.07 34 | 89.05 134 | 77.34 60 | 77.00 111 | 92.89 22 |
|
| nrg030 | | | 72.27 122 | 71.56 115 | 74.42 167 | 75.93 261 | 50.60 171 | 86.97 83 | 83.21 160 | 62.75 125 | 67.15 117 | 84.38 180 | 50.07 58 | 86.66 221 | 71.19 96 | 62.37 249 | 85.99 188 |
|
| v144192 | | | 67.86 198 | 65.76 215 | 74.16 175 | 71.68 311 | 53.09 123 | 84.14 163 | 80.83 201 | 62.85 124 | 59.21 219 | 77.28 272 | 39.30 182 | 88.00 177 | 58.67 184 | 57.88 286 | 81.40 268 |
|
| FIs | | | 70.00 159 | 70.24 139 | 69.30 273 | 77.93 229 | 38.55 342 | 83.99 168 | 87.72 62 | 66.86 57 | 57.66 247 | 84.17 184 | 52.28 42 | 85.31 253 | 52.72 242 | 68.80 189 | 84.02 220 |
|
| v1921920 | | | 67.45 209 | 65.23 228 | 74.10 177 | 71.51 314 | 52.90 129 | 83.75 175 | 80.44 206 | 62.48 133 | 59.12 220 | 77.13 273 | 36.98 214 | 87.90 179 | 57.53 203 | 58.14 280 | 81.49 262 |
|
| UA-Net | | | 67.32 214 | 66.23 203 | 70.59 255 | 78.85 210 | 41.23 331 | 73.60 305 | 75.45 295 | 61.54 146 | 66.61 122 | 84.53 179 | 38.73 188 | 86.57 226 | 42.48 302 | 74.24 143 | 83.98 224 |
|
| v1192 | | | 67.96 197 | 65.74 216 | 74.63 162 | 71.79 309 | 53.43 112 | 84.06 166 | 80.99 199 | 63.19 119 | 59.56 210 | 77.46 269 | 37.50 206 | 88.65 150 | 58.20 192 | 58.93 269 | 81.79 257 |
|
| FC-MVSNet-test | | | 67.49 208 | 67.91 168 | 66.21 304 | 76.06 257 | 33.06 361 | 80.82 252 | 87.18 67 | 64.44 92 | 54.81 278 | 82.87 202 | 50.40 57 | 82.60 282 | 48.05 270 | 66.55 208 | 82.98 245 |
|
| v1144 | | | 68.81 181 | 66.82 189 | 74.80 161 | 72.34 306 | 53.46 107 | 84.68 148 | 81.77 186 | 64.25 94 | 60.28 201 | 77.91 262 | 40.23 172 | 88.95 141 | 60.37 174 | 59.52 262 | 81.97 254 |
|
| sosnet-low-res | | | 0.00 378 | 0.00 381 | 0.00 391 | 0.00 413 | 0.00 415 | 0.00 402 | 0.00 413 | 0.00 407 | 0.00 410 | 0.00 409 | 0.00 412 | 0.00 408 | 0.00 409 | 0.00 406 | 0.00 406 |
|
| HFP-MVS | | | 74.37 85 | 73.13 91 | 78.10 77 | 84.30 84 | 53.68 103 | 85.58 115 | 84.36 134 | 56.82 240 | 65.78 134 | 90.56 75 | 40.70 169 | 90.90 85 | 69.18 108 | 80.88 74 | 89.71 107 |
|
| v148 | | | 68.24 194 | 66.35 199 | 73.88 183 | 71.76 310 | 51.47 158 | 84.23 160 | 81.90 183 | 63.69 107 | 58.94 222 | 76.44 285 | 43.72 130 | 87.78 186 | 60.63 167 | 55.86 304 | 82.39 251 |
|
| sosnet | | | 0.00 378 | 0.00 381 | 0.00 391 | 0.00 413 | 0.00 415 | 0.00 402 | 0.00 413 | 0.00 407 | 0.00 410 | 0.00 409 | 0.00 412 | 0.00 408 | 0.00 409 | 0.00 406 | 0.00 406 |
|
| uncertanet | | | 0.00 378 | 0.00 381 | 0.00 391 | 0.00 413 | 0.00 415 | 0.00 402 | 0.00 413 | 0.00 407 | 0.00 410 | 0.00 409 | 0.00 412 | 0.00 408 | 0.00 409 | 0.00 406 | 0.00 406 |
|
| AllTest | | | 47.32 339 | 44.66 341 | 55.32 353 | 65.08 356 | 37.50 347 | 62.96 355 | 54.25 372 | 35.45 366 | 33.42 376 | 72.82 319 | 9.98 377 | 59.33 375 | 24.13 370 | 43.84 357 | 69.13 364 |
|
| TestCases | | | | | 55.32 353 | 65.08 356 | 37.50 347 | | 54.25 372 | 35.45 366 | 33.42 376 | 72.82 319 | 9.98 377 | 59.33 375 | 24.13 370 | 43.84 357 | 69.13 364 |
|
| v7n | | | 62.50 265 | 59.27 276 | 72.20 222 | 67.25 346 | 49.83 194 | 77.87 281 | 80.12 211 | 52.50 286 | 48.80 320 | 73.07 317 | 32.10 268 | 87.90 179 | 46.83 278 | 54.92 311 | 78.86 297 |
|
| region2R | | | 73.75 95 | 72.55 95 | 77.33 91 | 83.90 93 | 52.98 127 | 85.54 119 | 84.09 141 | 56.83 239 | 65.10 140 | 90.45 79 | 37.34 209 | 90.24 104 | 68.89 110 | 80.83 76 | 88.77 132 |
|
| iter_conf05 | | | 73.51 101 | 72.24 103 | 77.33 91 | 87.93 39 | 55.97 48 | 87.90 61 | 70.81 332 | 68.72 35 | 64.04 160 | 84.36 182 | 47.54 77 | 90.87 86 | 71.11 98 | 67.75 198 | 85.13 204 |
|
| RRT_MVS | | | 63.68 252 | 61.01 261 | 71.70 237 | 73.48 290 | 45.98 280 | 81.19 243 | 76.08 289 | 54.33 273 | 52.84 296 | 79.27 250 | 22.21 338 | 87.65 191 | 54.13 226 | 55.54 308 | 81.46 265 |
|
| PS-MVSNAJss | | | 68.78 183 | 67.17 186 | 73.62 194 | 73.01 297 | 48.33 237 | 84.95 140 | 84.81 123 | 59.30 188 | 58.91 225 | 79.84 245 | 37.77 195 | 88.86 145 | 62.83 150 | 63.12 243 | 83.67 232 |
|
| PS-MVSNAJ | | | 80.06 16 | 79.52 17 | 81.68 15 | 85.58 61 | 60.97 3 | 91.69 12 | 87.02 70 | 70.62 23 | 80.75 21 | 93.22 26 | 37.77 195 | 92.50 46 | 82.75 24 | 86.25 34 | 91.57 57 |
|
| jajsoiax | | | 63.21 257 | 60.84 262 | 70.32 260 | 68.33 340 | 44.45 296 | 81.23 242 | 81.05 196 | 53.37 280 | 50.96 310 | 77.81 265 | 17.49 361 | 85.49 251 | 59.31 178 | 58.05 281 | 81.02 277 |
|
| mvs_tets | | | 62.96 260 | 60.55 264 | 70.19 261 | 68.22 343 | 44.24 301 | 80.90 250 | 80.74 202 | 52.99 283 | 50.82 312 | 77.56 266 | 16.74 364 | 85.44 252 | 59.04 181 | 57.94 283 | 80.89 278 |
|
| EI-MVSNet-UG-set | | | 72.37 117 | 71.73 113 | 74.29 172 | 81.60 154 | 49.29 207 | 81.85 225 | 88.64 42 | 65.29 86 | 65.05 141 | 88.29 128 | 43.18 137 | 91.83 61 | 63.74 144 | 67.97 195 | 81.75 258 |
|
| EI-MVSNet-Vis-set | | | 73.19 105 | 72.60 94 | 74.99 159 | 82.56 132 | 49.80 195 | 82.55 210 | 89.00 28 | 66.17 68 | 65.89 132 | 88.98 111 | 43.83 125 | 92.29 51 | 65.38 138 | 69.01 188 | 82.87 247 |
|
| HPM-MVS++ |  | | 80.50 14 | 80.71 14 | 79.88 39 | 87.34 44 | 55.20 66 | 89.93 30 | 87.55 65 | 66.04 74 | 79.46 27 | 93.00 32 | 53.10 37 | 91.76 62 | 80.40 38 | 89.56 9 | 92.68 27 |
|
| test_prior4 | | | | | | | 56.39 40 | 87.15 80 | | | | | | | | | |
|
| XVS | | | 72.92 107 | 71.62 114 | 76.81 109 | 83.41 101 | 52.48 134 | 84.88 142 | 83.20 161 | 58.03 212 | 63.91 163 | 89.63 100 | 35.50 234 | 89.78 114 | 65.50 130 | 80.50 79 | 88.16 142 |
|
| v1240 | | | 66.99 223 | 64.68 234 | 73.93 181 | 71.38 317 | 52.66 132 | 83.39 188 | 79.98 214 | 61.97 139 | 58.44 237 | 77.11 274 | 35.25 236 | 87.81 181 | 56.46 213 | 58.15 278 | 81.33 271 |
|
| pm-mvs1 | | | 64.12 247 | 62.56 245 | 68.78 280 | 71.68 311 | 38.87 340 | 82.89 202 | 81.57 187 | 55.54 259 | 53.89 289 | 77.82 264 | 37.73 198 | 86.74 218 | 48.46 268 | 53.49 323 | 80.72 280 |
|
| test_prior2 | | | | | | | | 89.04 43 | | 61.88 141 | 73.55 57 | 91.46 63 | 48.01 73 | | 74.73 77 | 85.46 41 | |
|
| X-MVStestdata | | | 65.85 240 | 62.20 248 | 76.81 109 | 83.41 101 | 52.48 134 | 84.88 142 | 83.20 161 | 58.03 212 | 63.91 163 | 4.82 405 | 35.50 234 | 89.78 114 | 65.50 130 | 80.50 79 | 88.16 142 |
|
| test_prior | | | | | 78.39 71 | 86.35 51 | 54.91 76 | | 85.45 98 | | | | | 89.70 118 | | | 90.55 83 |
|
| 旧先验2 | | | | | | | | 81.73 230 | | 45.53 330 | 74.66 46 | | | 70.48 363 | 58.31 190 | | |
|
| æ–°å‡ ä½•2 | | | | | | | | 81.61 234 | | | | | | | | | |
|
| æ–°å‡ ä½•1 | | | | | 73.30 199 | 83.10 111 | 53.48 106 | | 71.43 327 | 45.55 329 | 66.14 127 | 87.17 150 | 33.88 253 | 80.54 300 | 48.50 267 | 80.33 83 | 85.88 193 |
|
| 旧先验1 | | | | | | 81.57 157 | 47.48 256 | | 71.83 321 | | | 88.66 118 | 36.94 215 | | | 78.34 104 | 88.67 133 |
|
| æ— å…ˆéªŒ | | | | | | | | 85.19 127 | 78.00 259 | 49.08 307 | | | | 85.13 259 | 52.78 239 | | 87.45 161 |
|
| 原ACMM2 | | | | | | | | 83.77 174 | | | | | | | | | |
|
| 原ACMM1 | | | | | 76.13 124 | 84.89 75 | 54.59 87 | | 85.26 108 | 51.98 289 | 66.70 119 | 87.07 152 | 40.15 174 | 89.70 118 | 51.23 249 | 85.06 47 | 84.10 218 |
|
| test222 | | | | | | 79.36 197 | 50.97 166 | 77.99 280 | 67.84 348 | 42.54 347 | 62.84 177 | 86.53 159 | 30.26 283 | | | 76.91 112 | 85.23 202 |
|
| testdata2 | | | | | | | | | | | | | | 77.81 328 | 45.64 285 | | |
|
| segment_acmp | | | | | | | | | | | | | 44.97 112 | | | | |
|
| testdata | | | | | 67.08 296 | 77.59 233 | 45.46 287 | | 69.20 344 | 44.47 336 | 71.50 85 | 88.34 126 | 31.21 277 | 70.76 362 | 52.20 244 | 75.88 124 | 85.03 205 |
|
| testdata1 | | | | | | | | 77.55 283 | | 64.14 97 | | | | | | | |
|
| v8 | | | 67.25 215 | 64.99 231 | 74.04 178 | 72.89 300 | 53.31 117 | 82.37 215 | 80.11 212 | 61.54 146 | 54.29 285 | 76.02 294 | 42.89 142 | 88.41 160 | 58.43 186 | 56.36 294 | 80.39 285 |
|
| 1314 | | | 71.11 139 | 69.41 148 | 76.22 119 | 79.32 199 | 50.49 174 | 80.23 261 | 85.14 115 | 59.44 182 | 58.93 223 | 88.89 114 | 33.83 254 | 89.60 121 | 61.49 160 | 77.42 109 | 88.57 137 |
|
| LFMVS | | | 78.52 24 | 77.14 41 | 82.67 3 | 89.58 13 | 58.90 7 | 91.27 19 | 88.05 54 | 63.22 118 | 74.63 47 | 90.83 73 | 41.38 162 | 94.40 22 | 75.42 72 | 79.90 90 | 94.72 2 |
|
| VDD-MVS | | | 76.08 60 | 74.97 69 | 79.44 41 | 84.27 86 | 53.33 116 | 91.13 20 | 85.88 90 | 65.33 84 | 72.37 75 | 89.34 105 | 32.52 264 | 92.76 40 | 77.90 57 | 75.96 123 | 92.22 38 |
|
| VDDNet | | | 74.37 85 | 72.13 107 | 81.09 21 | 79.58 195 | 56.52 37 | 90.02 27 | 86.70 77 | 52.61 285 | 71.23 88 | 87.20 149 | 31.75 274 | 93.96 27 | 74.30 82 | 75.77 126 | 92.79 25 |
|
| v10 | | | 66.61 230 | 64.20 239 | 73.83 186 | 72.59 303 | 53.37 113 | 81.88 224 | 79.91 217 | 61.11 153 | 54.09 287 | 75.60 296 | 40.06 176 | 88.26 170 | 56.47 212 | 56.10 300 | 79.86 291 |
|
| VPNet | | | 72.07 124 | 71.42 119 | 74.04 178 | 78.64 217 | 47.17 264 | 89.91 32 | 87.97 55 | 72.56 12 | 64.66 147 | 85.04 175 | 41.83 157 | 88.33 165 | 61.17 163 | 60.97 255 | 86.62 177 |
|
| MVS | | | 76.91 47 | 75.48 60 | 81.23 20 | 84.56 79 | 55.21 65 | 80.23 261 | 91.64 4 | 58.65 204 | 65.37 138 | 91.48 62 | 45.72 99 | 95.05 16 | 72.11 95 | 89.52 10 | 93.44 11 |
|
| v2v482 | | | 69.55 170 | 67.64 176 | 75.26 153 | 72.32 307 | 53.83 99 | 84.93 141 | 81.94 179 | 65.37 83 | 60.80 197 | 79.25 251 | 41.62 158 | 88.98 140 | 63.03 149 | 59.51 263 | 82.98 245 |
|
| V42 | | | 67.66 203 | 65.60 220 | 73.86 184 | 70.69 324 | 53.63 104 | 81.50 238 | 78.61 249 | 63.85 103 | 59.49 213 | 77.49 268 | 37.98 192 | 87.65 191 | 62.33 152 | 58.43 273 | 80.29 286 |
|
| SD-MVS | | | 76.18 58 | 74.85 71 | 80.18 32 | 85.39 65 | 56.90 28 | 85.75 109 | 82.45 173 | 56.79 242 | 74.48 50 | 91.81 52 | 43.72 130 | 90.75 89 | 74.61 78 | 78.65 100 | 92.91 21 |
| Zhenlong Yuan, Jiakai Cao, Zhaoxin Li, Hao Jiang and Zhaoqi Wang: SD-MVS: Segmentation-driven Deformation Multi-View Stereo with Spherical Refinement and EM optimization. AAAI2024 |
| GA-MVS | | | 69.04 175 | 66.70 193 | 76.06 126 | 75.11 269 | 52.36 138 | 83.12 196 | 80.23 210 | 63.32 116 | 60.65 199 | 79.22 252 | 30.98 279 | 88.37 161 | 61.25 161 | 66.41 209 | 87.46 160 |
|
| MSLP-MVS++ | | | 74.21 87 | 72.25 102 | 80.11 36 | 81.45 161 | 56.47 38 | 86.32 96 | 79.65 223 | 58.19 210 | 66.36 126 | 92.29 42 | 36.11 227 | 90.66 91 | 67.39 117 | 82.49 62 | 93.18 18 |
|
| APDe-MVS |  | | 78.44 26 | 78.20 26 | 79.19 45 | 88.56 26 | 54.55 88 | 89.76 34 | 87.77 60 | 55.91 253 | 78.56 31 | 92.49 39 | 48.20 70 | 92.65 42 | 79.49 40 | 83.04 58 | 90.39 87 |
| Zhaojie Zeng, Yuesong Wang, Tao Guan: Matching Ambiguity-Resilient Multi-View Stereo via Adaptive Patch Deformation. Pattern Recognition |
| APD-MVS_3200maxsize | | | 69.62 169 | 68.23 165 | 73.80 187 | 81.58 156 | 48.22 239 | 81.91 223 | 79.50 226 | 48.21 312 | 64.24 158 | 89.75 98 | 31.91 273 | 87.55 197 | 63.08 148 | 73.85 147 | 85.64 197 |
|
| ADS-MVSNet2 | | | 55.21 315 | 51.44 320 | 66.51 303 | 80.60 181 | 49.56 199 | 55.03 373 | 65.44 353 | 44.72 334 | 51.00 308 | 61.19 365 | 22.83 331 | 75.41 342 | 28.54 355 | 53.63 320 | 74.57 342 |
|
| EI-MVSNet | | | 69.70 167 | 68.70 157 | 72.68 210 | 75.00 273 | 48.90 217 | 79.54 267 | 87.16 68 | 61.05 155 | 63.88 165 | 83.74 190 | 45.87 96 | 90.44 96 | 57.42 205 | 64.68 223 | 78.70 299 |
|
| Regformer | | | 0.00 378 | 0.00 381 | 0.00 391 | 0.00 413 | 0.00 415 | 0.00 402 | 0.00 413 | 0.00 407 | 0.00 410 | 0.00 409 | 0.00 412 | 0.00 408 | 0.00 409 | 0.00 406 | 0.00 406 |
|
| CVMVSNet | | | 60.85 276 | 60.44 266 | 62.07 326 | 75.00 273 | 32.73 363 | 79.54 267 | 73.49 312 | 36.98 360 | 56.28 268 | 83.74 190 | 29.28 290 | 69.53 365 | 46.48 280 | 63.23 239 | 83.94 227 |
|
| pmmvs4 | | | 63.34 256 | 61.07 260 | 70.16 262 | 70.14 326 | 50.53 173 | 79.97 264 | 71.41 328 | 55.08 263 | 54.12 286 | 78.58 257 | 32.79 262 | 82.09 286 | 50.33 253 | 57.22 291 | 77.86 312 |
|
| EU-MVSNet | | | 52.63 326 | 50.72 323 | 58.37 344 | 62.69 367 | 28.13 381 | 72.60 312 | 75.97 290 | 30.94 375 | 40.76 357 | 72.11 330 | 20.16 349 | 70.80 361 | 35.11 329 | 46.11 352 | 76.19 330 |
|
| VNet | | | 77.99 35 | 77.92 30 | 78.19 75 | 87.43 43 | 50.12 187 | 90.93 23 | 91.41 8 | 67.48 51 | 75.12 43 | 90.15 90 | 46.77 86 | 91.00 81 | 73.52 87 | 78.46 102 | 93.44 11 |
|
| test-LLR | | | 69.65 168 | 69.01 155 | 71.60 239 | 78.67 214 | 48.17 240 | 85.13 129 | 79.72 220 | 59.18 192 | 63.13 173 | 82.58 212 | 36.91 216 | 80.24 304 | 60.56 169 | 75.17 133 | 86.39 182 |
|
| TESTMET0.1,1 | | | 72.86 109 | 72.33 99 | 74.46 165 | 81.98 140 | 50.77 167 | 85.13 129 | 85.47 96 | 66.09 70 | 67.30 115 | 83.69 192 | 37.27 210 | 83.57 276 | 65.06 140 | 78.97 99 | 89.05 124 |
|
| test-mter | | | 68.36 189 | 67.29 183 | 71.60 239 | 78.67 214 | 48.17 240 | 85.13 129 | 79.72 220 | 53.38 279 | 63.13 173 | 82.58 212 | 27.23 302 | 80.24 304 | 60.56 169 | 75.17 133 | 86.39 182 |
|
| VPA-MVSNet | | | 71.12 138 | 70.66 128 | 72.49 215 | 78.75 212 | 44.43 297 | 87.64 64 | 90.02 17 | 63.97 101 | 65.02 142 | 81.58 231 | 42.14 150 | 87.42 200 | 63.42 146 | 63.38 237 | 85.63 198 |
|
| ACMMPR | | | 73.76 94 | 72.61 93 | 77.24 97 | 83.92 92 | 52.96 128 | 85.58 115 | 84.29 135 | 56.82 240 | 65.12 139 | 90.45 79 | 37.24 211 | 90.18 106 | 69.18 108 | 80.84 75 | 88.58 136 |
|
| testgi | | | 54.25 318 | 52.57 317 | 59.29 341 | 62.76 366 | 21.65 391 | 72.21 318 | 70.47 334 | 53.25 281 | 41.94 349 | 77.33 271 | 14.28 370 | 77.95 325 | 29.18 351 | 51.72 331 | 78.28 308 |
|
| test20.03 | | | 55.22 314 | 54.07 307 | 58.68 343 | 63.14 365 | 25.00 384 | 77.69 282 | 74.78 299 | 52.64 284 | 43.43 343 | 72.39 326 | 26.21 308 | 74.76 344 | 29.31 350 | 47.05 348 | 76.28 329 |
|
| thres600view7 | | | 66.46 232 | 65.12 229 | 70.47 256 | 83.41 101 | 43.80 305 | 82.15 217 | 87.78 58 | 59.37 184 | 56.02 269 | 82.21 222 | 43.73 128 | 86.90 215 | 26.51 364 | 64.94 219 | 80.71 281 |
|
| ADS-MVSNet | | | 56.17 309 | 51.95 319 | 68.84 277 | 80.60 181 | 53.07 124 | 55.03 373 | 70.02 338 | 44.72 334 | 51.00 308 | 61.19 365 | 22.83 331 | 78.88 315 | 28.54 355 | 53.63 320 | 74.57 342 |
|
| MP-MVS |  | | 74.99 80 | 74.33 76 | 76.95 106 | 82.89 122 | 53.05 125 | 85.63 114 | 83.50 154 | 57.86 218 | 67.25 116 | 90.24 84 | 43.38 136 | 88.85 147 | 76.03 64 | 82.23 64 | 88.96 125 |
| Rongxuan Tan, Qing Wang, et al.: MP-MVS: Multi-Scale Windows PatchMatch and Planar Prior Multi-View Stereo. |
| testmvs | | | 6.14 375 | 8.18 378 | 0.01 389 | 0.01 412 | 0.00 415 | 73.40 309 | 0.00 413 | 0.00 407 | 0.02 408 | 0.15 407 | 0.00 412 | 0.00 408 | 0.02 407 | 0.00 406 | 0.02 404 |
|
| thres400 | | | 67.40 213 | 66.13 205 | 71.19 247 | 84.05 89 | 45.07 290 | 83.40 186 | 87.71 63 | 60.79 162 | 57.79 244 | 82.76 205 | 43.53 133 | 87.80 183 | 28.80 352 | 66.36 210 | 80.71 281 |
|
| test123 | | | 6.01 376 | 8.01 379 | 0.01 389 | 0.00 413 | 0.01 414 | 71.93 322 | 0.00 413 | 0.00 407 | 0.02 408 | 0.11 408 | 0.00 412 | 0.00 408 | 0.02 407 | 0.00 406 | 0.02 404 |
|
| thres200 | | | 68.71 184 | 67.27 185 | 73.02 202 | 84.73 76 | 46.76 267 | 85.03 135 | 87.73 61 | 62.34 134 | 59.87 203 | 83.45 196 | 43.15 138 | 88.32 166 | 31.25 345 | 67.91 196 | 83.98 224 |
|
| test0.0.03 1 | | | 62.54 263 | 62.44 246 | 62.86 325 | 72.28 308 | 29.51 376 | 82.93 201 | 78.78 243 | 59.18 192 | 53.07 295 | 82.41 216 | 36.91 216 | 77.39 330 | 37.45 312 | 58.96 268 | 81.66 260 |
|
| pmmvs3 | | | 45.53 343 | 41.55 347 | 57.44 346 | 48.97 388 | 39.68 337 | 70.06 329 | 57.66 367 | 28.32 378 | 34.06 373 | 57.29 374 | 8.50 383 | 66.85 367 | 34.86 331 | 34.26 377 | 65.80 373 |
|
| EMVS | | | 18.42 369 | 17.66 373 | 20.71 385 | 34.13 399 | 12.64 405 | 46.94 379 | 29.94 398 | 10.46 399 | 5.58 405 | 14.93 403 | 4.23 395 | 38.83 396 | 5.24 405 | 7.51 402 | 10.67 401 |
|
| E-PMN | | | 19.16 368 | 18.40 372 | 21.44 384 | 36.19 397 | 13.63 404 | 47.59 378 | 30.89 396 | 10.73 397 | 5.91 404 | 16.59 400 | 3.66 396 | 39.77 395 | 5.95 403 | 8.14 400 | 10.92 400 |
|
| PGM-MVS | | | 72.60 113 | 71.20 122 | 76.80 111 | 82.95 119 | 52.82 130 | 83.07 198 | 82.14 175 | 56.51 248 | 63.18 172 | 89.81 97 | 35.68 233 | 89.76 116 | 67.30 118 | 80.19 84 | 87.83 151 |
|
| LCM-MVSNet-Re | | | 58.82 292 | 56.54 291 | 65.68 306 | 79.31 200 | 29.09 379 | 61.39 361 | 45.79 377 | 60.73 164 | 37.65 365 | 72.47 324 | 31.42 276 | 81.08 292 | 49.66 257 | 70.41 178 | 86.87 169 |
|
| LCM-MVSNet | | | 28.07 357 | 23.85 365 | 40.71 367 | 27.46 407 | 18.93 394 | 30.82 395 | 46.19 376 | 12.76 394 | 16.40 392 | 34.70 393 | 1.90 403 | 48.69 389 | 20.25 381 | 24.22 389 | 54.51 382 |
|
| MCST-MVS | | | 83.01 1 | 83.30 2 | 82.15 10 | 92.84 2 | 57.58 14 | 93.77 1 | 91.10 10 | 75.95 4 | 77.10 37 | 93.09 29 | 54.15 33 | 95.57 12 | 85.80 10 | 85.87 37 | 93.31 13 |
|
| mvs_anonymous | | | 72.29 120 | 70.74 126 | 76.94 107 | 82.85 123 | 54.72 81 | 78.43 278 | 81.54 188 | 63.77 104 | 61.69 189 | 79.32 249 | 51.11 49 | 85.31 253 | 62.15 156 | 75.79 125 | 90.79 80 |
|
| MVS_Test | | | 75.85 65 | 74.93 70 | 78.62 63 | 84.08 88 | 55.20 66 | 83.99 168 | 85.17 112 | 68.07 42 | 73.38 60 | 82.76 205 | 50.44 56 | 89.00 137 | 65.90 128 | 80.61 77 | 91.64 53 |
|
| MDA-MVSNet-bldmvs | | | 51.56 331 | 47.75 337 | 63.00 323 | 71.60 313 | 47.32 260 | 69.70 333 | 72.12 320 | 43.81 341 | 27.65 387 | 63.38 359 | 21.97 342 | 75.96 339 | 27.30 362 | 32.19 380 | 65.70 374 |
|
| CDPH-MVS | | | 76.05 61 | 75.19 65 | 78.62 63 | 86.51 50 | 54.98 74 | 87.32 72 | 84.59 130 | 58.62 205 | 70.75 94 | 90.85 72 | 43.10 141 | 90.63 93 | 70.50 101 | 84.51 52 | 90.24 92 |
|
| test12 | | | | | 79.24 44 | 86.89 47 | 56.08 45 | | 85.16 113 | | 72.27 77 | | 47.15 81 | 91.10 79 | | 85.93 36 | 90.54 85 |
|
| casdiffmvs |  | | 77.36 42 | 76.85 44 | 78.88 54 | 80.40 186 | 54.66 86 | 87.06 81 | 85.88 90 | 72.11 14 | 71.57 83 | 88.63 122 | 50.89 54 | 90.35 99 | 76.00 65 | 79.11 97 | 91.63 54 |
| Fangjinhua Wang, Qingshan Xu, Yew-Soon Ong, Marc Pollefeys: Lightweight and Accurate Multi-View Stereo With Confidence-Aware Diffusion Model. IEEE T-PAMI 2025 |
| diffmvs |  | | 75.11 79 | 74.65 74 | 76.46 115 | 78.52 219 | 53.35 114 | 83.28 192 | 79.94 215 | 70.51 25 | 71.64 82 | 88.72 116 | 46.02 95 | 86.08 240 | 77.52 58 | 75.75 127 | 89.96 103 |
| Fangjinhua Wang, Qingshan Xu, Yew-Soon Ong, Marc Pollefeys: Lightweight and Accurate Multi-View Stereo With Confidence-Aware Diffusion Model. IEEE T-PAMI 2025 |
| baseline2 | | | 75.15 78 | 74.54 75 | 76.98 105 | 81.67 151 | 51.74 151 | 83.84 172 | 91.94 3 | 69.97 28 | 58.98 221 | 86.02 163 | 59.73 8 | 91.73 63 | 68.37 112 | 70.40 179 | 87.48 159 |
|
| baseline1 | | | 72.51 116 | 72.12 108 | 73.69 191 | 85.05 71 | 44.46 295 | 83.51 181 | 86.13 87 | 71.61 17 | 64.64 148 | 87.97 136 | 55.00 28 | 89.48 122 | 59.07 180 | 56.05 301 | 87.13 166 |
|
| YYNet1 | | | 53.82 321 | 49.96 326 | 65.41 310 | 70.09 328 | 48.95 214 | 72.30 316 | 71.66 325 | 44.25 339 | 31.89 379 | 63.07 361 | 23.73 327 | 73.95 347 | 33.26 336 | 39.40 366 | 73.34 350 |
|
| PMMVS2 | | | 26.71 361 | 22.98 366 | 37.87 372 | 36.89 396 | 8.51 410 | 42.51 384 | 29.32 399 | 19.09 388 | 13.01 396 | 37.54 387 | 2.23 401 | 53.11 383 | 14.54 390 | 11.71 398 | 51.99 385 |
|
| MDA-MVSNet_test_wron | | | 53.82 321 | 49.95 327 | 65.43 309 | 70.13 327 | 49.05 210 | 72.30 316 | 71.65 326 | 44.23 340 | 31.85 380 | 63.13 360 | 23.68 328 | 74.01 346 | 33.25 337 | 39.35 367 | 73.23 352 |
|
| tpmvs | | | 62.45 267 | 59.42 274 | 71.53 242 | 83.93 91 | 54.32 91 | 70.03 330 | 77.61 265 | 51.91 290 | 53.48 293 | 68.29 347 | 37.91 193 | 86.66 221 | 33.36 335 | 58.27 276 | 73.62 348 |
|
| PM-MVS | | | 46.92 340 | 43.76 345 | 56.41 350 | 52.18 382 | 32.26 365 | 63.21 354 | 38.18 388 | 37.99 357 | 40.78 356 | 66.20 352 | 5.09 393 | 65.42 368 | 48.19 269 | 41.99 361 | 71.54 360 |
|
| HQP_MVS | | | 70.96 143 | 69.91 143 | 74.12 176 | 77.95 227 | 49.57 197 | 85.76 107 | 82.59 170 | 63.60 109 | 62.15 185 | 83.28 199 | 36.04 230 | 88.30 167 | 65.46 133 | 72.34 160 | 84.49 212 |
|
| plane_prior7 | | | | | | 77.95 227 | 48.46 231 | | | | | | | | | | |
|
| plane_prior6 | | | | | | 78.42 222 | 49.39 205 | | | | | | 36.04 230 | | | | |
|
| plane_prior5 | | | | | | | | | 82.59 170 | | | | | 88.30 167 | 65.46 133 | 72.34 160 | 84.49 212 |
|
| plane_prior4 | | | | | | | | | | | | 83.28 199 | | | | | |
|
| plane_prior3 | | | | | | | 48.95 214 | | | 64.01 100 | 62.15 185 | | | | | | |
|
| plane_prior2 | | | | | | | | 85.76 107 | | 63.60 109 | | | | | | | |
|
| plane_prior1 | | | | | | 78.31 224 | | | | | | | | | | | |
|
| plane_prior | | | | | | | 49.57 197 | 87.43 69 | | 64.57 91 | | | | | | 72.84 155 | |
|
| PS-CasMVS | | | 58.12 299 | 57.03 290 | 61.37 334 | 68.24 342 | 33.80 359 | 76.73 287 | 78.01 258 | 51.20 296 | 47.54 328 | 76.20 292 | 32.85 260 | 72.76 355 | 35.17 328 | 47.37 344 | 77.55 317 |
|
| UniMVSNet_NR-MVSNet | | | 68.82 180 | 68.29 163 | 70.40 259 | 75.71 264 | 42.59 318 | 84.23 160 | 86.78 74 | 66.31 65 | 58.51 231 | 82.45 215 | 51.57 46 | 84.64 266 | 53.11 233 | 55.96 302 | 83.96 226 |
|
| PEN-MVS | | | 58.35 298 | 57.15 288 | 61.94 329 | 67.55 345 | 34.39 353 | 77.01 284 | 78.35 255 | 51.87 291 | 47.72 325 | 76.73 282 | 33.91 251 | 73.75 349 | 34.03 333 | 47.17 346 | 77.68 314 |
|
| TransMVSNet (Re) | | | 62.82 261 | 60.76 263 | 69.02 275 | 73.98 287 | 41.61 326 | 86.36 95 | 79.30 236 | 56.90 237 | 52.53 298 | 76.44 285 | 41.85 156 | 87.60 196 | 38.83 309 | 40.61 364 | 77.86 312 |
|
| DTE-MVSNet | | | 57.03 303 | 55.73 299 | 60.95 337 | 65.94 349 | 32.57 364 | 75.71 289 | 77.09 275 | 51.16 297 | 46.65 334 | 76.34 287 | 32.84 261 | 73.22 353 | 30.94 346 | 44.87 355 | 77.06 319 |
|
| DU-MVS | | | 66.84 228 | 65.74 216 | 70.16 262 | 73.27 295 | 42.59 318 | 81.50 238 | 82.92 167 | 63.53 111 | 58.51 231 | 82.11 224 | 40.75 166 | 84.64 266 | 53.11 233 | 55.96 302 | 83.24 238 |
|
| UniMVSNet (Re) | | | 67.71 202 | 66.80 190 | 70.45 257 | 74.44 280 | 42.93 314 | 82.42 214 | 84.90 120 | 63.69 107 | 59.63 208 | 80.99 235 | 47.18 80 | 85.23 256 | 51.17 250 | 56.75 293 | 83.19 240 |
|
| CP-MVSNet | | | 58.54 297 | 57.57 286 | 61.46 333 | 68.50 338 | 33.96 357 | 76.90 286 | 78.60 250 | 51.67 294 | 47.83 324 | 76.60 284 | 34.99 242 | 72.79 354 | 35.45 323 | 47.58 342 | 77.64 316 |
|
| WR-MVS_H | | | 58.91 291 | 58.04 283 | 61.54 332 | 69.07 334 | 33.83 358 | 76.91 285 | 81.99 178 | 51.40 295 | 48.17 321 | 74.67 301 | 40.23 172 | 74.15 345 | 31.78 342 | 48.10 338 | 76.64 325 |
|
| WR-MVS | | | 67.58 205 | 66.76 191 | 70.04 266 | 75.92 262 | 45.06 293 | 86.23 98 | 85.28 107 | 64.31 93 | 58.50 233 | 81.00 234 | 44.80 118 | 82.00 287 | 49.21 262 | 55.57 307 | 83.06 243 |
|
| NR-MVSNet | | | 67.25 215 | 65.99 209 | 71.04 250 | 73.27 295 | 43.91 303 | 85.32 123 | 84.75 126 | 66.05 73 | 53.65 292 | 82.11 224 | 45.05 108 | 85.97 244 | 47.55 272 | 56.18 299 | 83.24 238 |
|
| Baseline_NR-MVSNet | | | 65.49 242 | 64.27 238 | 69.13 274 | 74.37 283 | 41.65 325 | 83.39 188 | 78.85 240 | 59.56 179 | 59.62 209 | 76.88 280 | 40.75 166 | 87.44 199 | 49.99 254 | 55.05 310 | 78.28 308 |
|
| TranMVSNet+NR-MVSNet | | | 66.94 225 | 65.61 219 | 70.93 252 | 73.45 291 | 43.38 310 | 83.02 200 | 84.25 137 | 65.31 85 | 58.33 238 | 81.90 227 | 39.92 179 | 85.52 249 | 49.43 259 | 54.89 312 | 83.89 228 |
|
| TSAR-MVS + GP. | | | 77.82 36 | 77.59 34 | 78.49 66 | 85.25 69 | 50.27 186 | 90.02 27 | 90.57 15 | 56.58 247 | 74.26 52 | 91.60 59 | 54.26 31 | 92.16 54 | 75.87 66 | 79.91 89 | 93.05 20 |
|
| n2 | | | | | | | | | 0.00 413 | | | | | | | | |
|
| nn | | | | | | | | | 0.00 413 | | | | | | | | |
|
| mPP-MVS | | | 71.79 131 | 70.38 133 | 76.04 127 | 82.65 130 | 52.06 142 | 84.45 154 | 81.78 185 | 55.59 257 | 62.05 187 | 89.68 99 | 33.48 256 | 88.28 169 | 65.45 135 | 78.24 105 | 87.77 153 |
|
| door-mid | | | | | | | | | 41.31 385 | | | | | | | | |
|
| XVG-OURS-SEG-HR | | | 62.02 269 | 59.54 273 | 69.46 271 | 65.30 353 | 45.88 281 | 65.06 346 | 73.57 311 | 46.45 323 | 57.42 255 | 83.35 198 | 26.95 304 | 78.09 320 | 53.77 230 | 64.03 227 | 84.42 214 |
|
| mvsmamba | | | 66.93 226 | 64.88 233 | 73.09 201 | 75.06 271 | 47.26 261 | 83.36 190 | 69.21 343 | 62.64 128 | 55.68 272 | 81.43 232 | 29.72 286 | 89.20 131 | 63.35 147 | 63.50 233 | 82.79 248 |
|
| MVSFormer | | | 73.53 100 | 72.19 105 | 77.57 86 | 83.02 116 | 55.24 63 | 81.63 232 | 81.44 190 | 50.28 299 | 76.67 39 | 90.91 70 | 44.82 116 | 86.11 235 | 60.83 165 | 80.09 85 | 91.36 65 |
|
| jason | | | 77.01 46 | 76.45 48 | 78.69 60 | 79.69 194 | 54.74 79 | 90.56 25 | 83.99 145 | 68.26 38 | 74.10 53 | 90.91 70 | 42.14 150 | 89.99 110 | 79.30 42 | 79.12 96 | 91.36 65 |
| jason: jason. |
| lupinMVS | | | 78.38 28 | 78.11 28 | 79.19 45 | 83.02 116 | 55.24 63 | 91.57 15 | 84.82 122 | 69.12 34 | 76.67 39 | 92.02 47 | 44.82 116 | 90.23 105 | 80.83 37 | 80.09 85 | 92.08 40 |
|
| test_djsdf | | | 63.84 249 | 61.56 253 | 70.70 254 | 68.78 335 | 44.69 294 | 81.63 232 | 81.44 190 | 50.28 299 | 52.27 301 | 76.26 288 | 26.72 305 | 86.11 235 | 60.83 165 | 55.84 305 | 81.29 274 |
|
| HPM-MVS_fast | | | 67.86 198 | 66.28 202 | 72.61 211 | 80.67 180 | 48.34 235 | 81.18 244 | 75.95 291 | 50.81 298 | 59.55 211 | 88.05 134 | 27.86 297 | 85.98 242 | 58.83 182 | 73.58 148 | 83.51 233 |
|
| K. test v3 | | | 54.04 319 | 49.42 330 | 67.92 290 | 68.55 337 | 42.57 321 | 75.51 293 | 63.07 361 | 52.07 288 | 39.21 359 | 64.59 357 | 19.34 352 | 82.21 283 | 37.11 315 | 25.31 388 | 78.97 296 |
|
| lessismore_v0 | | | | | 67.98 289 | 64.76 359 | 41.25 330 | | 45.75 378 | | 36.03 369 | 65.63 355 | 19.29 353 | 84.11 269 | 35.67 322 | 21.24 393 | 78.59 302 |
|
| SixPastTwentyTwo | | | 54.37 316 | 50.10 325 | 67.21 294 | 70.70 323 | 41.46 329 | 74.73 298 | 64.69 355 | 47.56 316 | 39.12 360 | 69.49 342 | 18.49 358 | 84.69 265 | 31.87 341 | 34.20 378 | 75.48 333 |
|
| OurMVSNet-221017-0 | | | 52.39 328 | 48.73 331 | 63.35 322 | 65.21 354 | 38.42 343 | 68.54 338 | 64.95 354 | 38.19 355 | 39.57 358 | 71.43 333 | 13.23 372 | 79.92 308 | 37.16 313 | 40.32 365 | 71.72 358 |
|
| HPM-MVS |  | | 72.60 113 | 71.50 116 | 75.89 130 | 82.02 139 | 51.42 159 | 80.70 254 | 83.05 163 | 56.12 252 | 64.03 161 | 89.53 101 | 37.55 203 | 88.37 161 | 70.48 102 | 80.04 87 | 87.88 150 |
| Chunlin Ren, Qingshan Xu, Shikun Zhang, Jiaqi Yang: Hierarchical Prior Mining for Non-local Multi-View Stereo. ICCV 2023 |
| XVG-OURS | | | 61.88 270 | 59.34 275 | 69.49 270 | 65.37 352 | 46.27 276 | 64.80 347 | 73.49 312 | 47.04 319 | 57.41 256 | 82.85 203 | 25.15 317 | 78.18 318 | 53.00 236 | 64.98 218 | 84.01 221 |
|
| XVG-ACMP-BASELINE | | | 56.03 310 | 52.85 314 | 65.58 307 | 61.91 368 | 40.95 333 | 63.36 351 | 72.43 318 | 45.20 332 | 46.02 336 | 74.09 305 | 9.20 380 | 78.12 319 | 45.13 286 | 58.27 276 | 77.66 315 |
|
| casdiffmvs_mvg |  | | 77.75 37 | 77.28 38 | 79.16 47 | 80.42 185 | 54.44 90 | 87.76 62 | 85.46 97 | 71.67 16 | 71.38 86 | 88.35 125 | 51.58 45 | 91.22 74 | 79.02 44 | 79.89 91 | 91.83 51 |
| Fangjinhua Wang, Qingshan Xu, Yew-Soon Ong, Marc Pollefeys: Lightweight and Accurate Multi-View Stereo With Confidence-Aware Diffusion Model. IEEE T-PAMI 2025 |
| LPG-MVS_test | | | 66.44 233 | 64.58 235 | 72.02 226 | 74.42 281 | 48.60 224 | 83.07 198 | 80.64 203 | 54.69 269 | 53.75 290 | 83.83 188 | 25.73 313 | 86.98 210 | 60.33 175 | 64.71 220 | 80.48 283 |
|
| LGP-MVS_train | | | | | 72.02 226 | 74.42 281 | 48.60 224 | | 80.64 203 | 54.69 269 | 53.75 290 | 83.83 188 | 25.73 313 | 86.98 210 | 60.33 175 | 64.71 220 | 80.48 283 |
|
| baseline | | | 76.86 50 | 76.24 52 | 78.71 59 | 80.47 184 | 54.20 96 | 83.90 170 | 84.88 121 | 71.38 20 | 71.51 84 | 89.15 110 | 50.51 55 | 90.55 95 | 75.71 67 | 78.65 100 | 91.39 63 |
|
| test11 | | | | | | | | | 84.25 137 | | | | | | | | |
|
| door | | | | | | | | | 43.27 381 | | | | | | | | |
|
| EPNet_dtu | | | 66.25 235 | 66.71 192 | 64.87 314 | 78.66 216 | 34.12 356 | 82.80 203 | 75.51 293 | 61.75 142 | 64.47 156 | 86.90 153 | 37.06 213 | 72.46 356 | 43.65 295 | 69.63 186 | 88.02 148 |
| Wanjuan Su, Wenbing Tao: Efficient Edge-Preserving Multi-View Stereo Network for Depth Estimation. AAAI 2023 |
| CHOSEN 1792x2688 | | | 76.24 57 | 74.03 81 | 82.88 1 | 83.09 113 | 62.84 2 | 85.73 111 | 85.39 100 | 69.79 29 | 64.87 146 | 83.49 195 | 41.52 161 | 93.69 30 | 70.55 100 | 81.82 68 | 92.12 39 |
|
| EPNet | | | 78.36 29 | 78.49 24 | 77.97 79 | 85.49 63 | 52.04 143 | 89.36 39 | 84.07 142 | 73.22 9 | 77.03 38 | 91.72 54 | 49.32 67 | 90.17 107 | 73.46 88 | 82.77 59 | 91.69 52 |
| Wanjuan Su, Wenbing Tao: Efficient Edge-Preserving Multi-View Stereo Network for Depth Estimation. AAAI 2023 |
| HQP5-MVS | | | | | | | 51.56 155 | | | | | | | | | | |
|
| HQP-NCC | | | | | | 79.02 206 | | 88.00 55 | | 65.45 78 | 64.48 153 | | | | | | |
|
| ACMP_Plane | | | | | | 79.02 206 | | 88.00 55 | | 65.45 78 | 64.48 153 | | | | | | |
|
| APD-MVS |  | | 76.15 59 | 75.68 56 | 77.54 87 | 88.52 27 | 53.44 110 | 87.26 77 | 85.03 117 | 53.79 275 | 74.91 45 | 91.68 56 | 43.80 126 | 90.31 101 | 74.36 80 | 81.82 68 | 88.87 128 |
| Yuesong Wang, Zhaojie Zeng and etc.: Adaptive Patch Deformation for Textureless-Resilient Multi-View Stereo. CVPR2023 |
| BP-MVS | | | | | | | | | | | | | | | 66.70 121 | | |
|
| HQP4-MVS | | | | | | | | | | | 64.47 156 | | | 88.61 152 | | | 84.91 208 |
|
| HQP3-MVS | | | | | | | | | 83.68 149 | | | | | | | 73.12 151 | |
|
| HQP2-MVS | | | | | | | | | | | | | 37.35 207 | | | | |
|
| CNVR-MVS | | | 81.76 8 | 81.90 8 | 81.33 19 | 90.04 10 | 57.70 12 | 91.71 11 | 88.87 34 | 70.31 26 | 77.64 36 | 93.87 9 | 52.58 40 | 93.91 28 | 84.17 14 | 87.92 16 | 92.39 32 |
|
| NCCC | | | 79.57 19 | 79.23 19 | 80.59 24 | 89.50 15 | 56.99 26 | 91.38 16 | 88.17 52 | 67.71 48 | 73.81 55 | 92.75 34 | 46.88 84 | 93.28 31 | 78.79 48 | 84.07 54 | 91.50 61 |
|
| 114514_t | | | 69.87 163 | 67.88 170 | 75.85 131 | 88.38 29 | 52.35 139 | 86.94 84 | 83.68 149 | 53.70 276 | 55.68 272 | 85.60 168 | 30.07 285 | 91.20 75 | 55.84 217 | 71.02 172 | 83.99 222 |
|
| CP-MVS | | | 72.59 115 | 71.46 117 | 76.00 129 | 82.93 121 | 52.32 140 | 86.93 85 | 82.48 172 | 55.15 262 | 63.65 167 | 90.44 82 | 35.03 241 | 88.53 157 | 68.69 111 | 77.83 106 | 87.15 165 |
|
| DSMNet-mixed | | | 38.35 348 | 35.36 353 | 47.33 361 | 48.11 390 | 14.91 403 | 37.87 389 | 36.60 391 | 19.18 387 | 34.37 372 | 59.56 370 | 15.53 368 | 53.01 384 | 20.14 382 | 46.89 349 | 74.07 344 |
|
| tpm2 | | | 70.82 145 | 68.44 160 | 77.98 78 | 80.78 176 | 56.11 44 | 74.21 302 | 81.28 194 | 60.24 170 | 68.04 111 | 75.27 298 | 52.26 43 | 88.50 158 | 55.82 218 | 68.03 194 | 89.33 115 |
|
| NP-MVS | | | | | | 78.76 211 | 50.43 176 | | | | | 85.12 173 | | | | | |
|
| EG-PatchMatch MVS | | | 62.40 268 | 59.59 272 | 70.81 253 | 73.29 293 | 49.05 210 | 85.81 105 | 84.78 124 | 51.85 292 | 44.19 339 | 73.48 315 | 15.52 369 | 89.85 112 | 40.16 306 | 67.24 201 | 73.54 349 |
|
| tpm cat1 | | | 66.28 234 | 62.78 244 | 76.77 113 | 81.40 162 | 57.14 22 | 70.03 330 | 77.19 272 | 53.00 282 | 58.76 229 | 70.73 339 | 46.17 91 | 86.73 219 | 43.27 296 | 64.46 224 | 86.44 180 |
|
| SteuartSystems-ACMMP | | | 77.08 45 | 76.33 50 | 79.34 43 | 80.98 168 | 55.31 61 | 89.76 34 | 86.91 72 | 62.94 123 | 71.65 81 | 91.56 60 | 42.33 146 | 92.56 45 | 77.14 61 | 83.69 56 | 90.15 97 |
| Skip Steuart: Steuart Systems R&D Blog. |
| CostFormer | | | 73.89 92 | 72.30 101 | 78.66 62 | 82.36 135 | 56.58 33 | 75.56 291 | 85.30 105 | 66.06 72 | 70.50 100 | 76.88 280 | 57.02 16 | 89.06 133 | 68.27 114 | 68.74 190 | 90.33 89 |
|
| CR-MVSNet | | | 62.47 266 | 59.04 278 | 72.77 208 | 73.97 288 | 56.57 34 | 60.52 362 | 71.72 323 | 60.04 171 | 57.49 252 | 65.86 353 | 38.94 185 | 80.31 303 | 42.86 299 | 59.93 259 | 81.42 266 |
|
| JIA-IIPM | | | 52.33 329 | 47.77 336 | 66.03 305 | 71.20 318 | 46.92 265 | 40.00 388 | 76.48 286 | 37.10 359 | 46.73 332 | 37.02 388 | 32.96 259 | 77.88 326 | 35.97 321 | 52.45 329 | 73.29 351 |
|
| Patchmtry | | | 56.56 306 | 52.95 313 | 67.42 293 | 72.53 304 | 50.59 172 | 59.05 366 | 71.72 323 | 37.86 358 | 46.92 331 | 65.86 353 | 38.94 185 | 80.06 307 | 36.94 318 | 46.72 350 | 71.60 359 |
|
| PatchT | | | 56.60 305 | 52.97 312 | 67.48 292 | 72.94 299 | 46.16 279 | 57.30 370 | 73.78 308 | 38.77 354 | 54.37 284 | 57.26 375 | 37.52 204 | 78.06 321 | 32.02 340 | 52.79 327 | 78.23 310 |
|
| tpmrst | | | 71.04 141 | 69.77 144 | 74.86 160 | 83.19 110 | 55.86 51 | 75.64 290 | 78.73 246 | 67.88 44 | 64.99 145 | 73.73 309 | 49.96 62 | 79.56 313 | 65.92 127 | 67.85 197 | 89.14 122 |
|
| BH-w/o | | | 70.02 158 | 68.51 159 | 74.56 163 | 82.77 125 | 50.39 178 | 86.60 93 | 78.14 257 | 59.77 175 | 59.65 207 | 85.57 169 | 39.27 183 | 87.30 203 | 49.86 256 | 74.94 140 | 85.99 188 |
|
| tpm | | | 68.36 189 | 67.48 181 | 70.97 251 | 79.93 192 | 51.34 161 | 76.58 288 | 78.75 245 | 67.73 47 | 63.54 171 | 74.86 300 | 48.33 69 | 72.36 357 | 53.93 229 | 63.71 230 | 89.21 119 |
|
| DELS-MVS | | | 82.32 5 | 82.50 4 | 81.79 13 | 86.80 48 | 56.89 29 | 92.77 3 | 86.30 84 | 77.83 2 | 77.88 34 | 92.13 43 | 60.24 6 | 94.78 20 | 78.97 45 | 89.61 8 | 93.69 10 |
| Christian Sormann, Emanuele Santellani, Mattia Rossi, Andreas Kuhn, Friedrich Fraundorfer: DELS-MVS: Deep Epipolar Line Search for Multi-View Stereo. Winter Conference on Applications of Computer Vision (WACV), 2023 |
| BH-untuned | | | 68.28 192 | 66.40 198 | 73.91 182 | 81.62 153 | 50.01 189 | 85.56 117 | 77.39 269 | 57.63 224 | 57.47 254 | 83.69 192 | 36.36 225 | 87.08 208 | 44.81 288 | 73.08 154 | 84.65 211 |
|
| RPMNet | | | 59.29 283 | 54.25 306 | 74.42 167 | 73.97 288 | 56.57 34 | 60.52 362 | 76.98 276 | 35.72 364 | 57.49 252 | 58.87 372 | 37.73 198 | 85.26 255 | 27.01 363 | 59.93 259 | 81.42 266 |
|
| MVSTER | | | 73.25 104 | 72.33 99 | 76.01 128 | 85.54 62 | 53.76 102 | 83.52 177 | 87.16 68 | 67.06 54 | 63.88 165 | 81.66 229 | 52.77 38 | 90.44 96 | 64.66 141 | 64.69 222 | 83.84 229 |
|
| CPTT-MVS | | | 67.15 218 | 65.84 213 | 71.07 249 | 80.96 170 | 50.32 183 | 81.94 222 | 74.10 303 | 46.18 327 | 57.91 241 | 87.64 143 | 29.57 287 | 81.31 290 | 64.10 142 | 70.18 181 | 81.56 261 |
|
| GBi-Net | | | 67.09 220 | 65.47 222 | 71.96 229 | 82.71 127 | 46.36 272 | 83.52 177 | 83.31 156 | 58.55 206 | 57.58 249 | 76.23 289 | 36.72 221 | 86.20 231 | 47.25 275 | 63.40 234 | 83.32 235 |
|
| PVSNet_Blended_VisFu | | | 73.40 103 | 72.44 97 | 76.30 116 | 81.32 165 | 54.70 82 | 85.81 105 | 78.82 242 | 63.70 106 | 64.53 152 | 85.38 171 | 47.11 82 | 87.38 202 | 67.75 116 | 77.55 107 | 86.81 175 |
|
| PVSNet_BlendedMVS | | | 73.42 102 | 73.30 84 | 73.76 188 | 85.91 54 | 51.83 149 | 86.18 99 | 84.24 139 | 65.40 81 | 69.09 104 | 80.86 237 | 46.70 87 | 88.13 172 | 75.43 70 | 65.92 215 | 81.33 271 |
|
| UnsupCasMVSNet_eth | | | 57.56 301 | 55.15 301 | 64.79 315 | 64.57 360 | 33.12 360 | 73.17 310 | 83.87 147 | 58.98 198 | 41.75 351 | 70.03 341 | 22.54 334 | 79.92 308 | 46.12 284 | 35.31 372 | 81.32 273 |
|
| UnsupCasMVSNet_bld | | | 53.86 320 | 50.53 324 | 63.84 317 | 63.52 364 | 34.75 352 | 71.38 324 | 81.92 181 | 46.53 321 | 38.95 361 | 57.93 373 | 20.55 348 | 80.20 306 | 39.91 307 | 34.09 379 | 76.57 326 |
|
| PVSNet_Blended | | | 76.53 54 | 76.54 47 | 76.50 114 | 85.91 54 | 51.83 149 | 88.89 45 | 84.24 139 | 67.82 46 | 69.09 104 | 89.33 107 | 46.70 87 | 88.13 172 | 75.43 70 | 81.48 72 | 89.55 111 |
|
| FMVSNet5 | | | 58.61 294 | 56.45 292 | 65.10 313 | 77.20 242 | 39.74 336 | 74.77 297 | 77.12 274 | 50.27 301 | 43.28 345 | 67.71 348 | 26.15 310 | 76.90 335 | 36.78 319 | 54.78 313 | 78.65 301 |
|
| test1 | | | 67.09 220 | 65.47 222 | 71.96 229 | 82.71 127 | 46.36 272 | 83.52 177 | 83.31 156 | 58.55 206 | 57.58 249 | 76.23 289 | 36.72 221 | 86.20 231 | 47.25 275 | 63.40 234 | 83.32 235 |
|
| new_pmnet | | | 33.56 355 | 31.89 357 | 38.59 370 | 49.01 387 | 20.42 392 | 51.01 376 | 37.92 389 | 20.58 384 | 23.45 389 | 46.79 384 | 6.66 389 | 49.28 388 | 20.00 383 | 31.57 382 | 46.09 389 |
|
| FMVSNet3 | | | 68.84 179 | 67.40 182 | 73.19 200 | 85.05 71 | 48.53 227 | 85.71 113 | 85.36 101 | 60.90 161 | 57.58 249 | 79.15 253 | 42.16 149 | 86.77 217 | 47.25 275 | 63.40 234 | 84.27 216 |
|
| dp | | | 64.41 244 | 61.58 252 | 72.90 205 | 82.40 133 | 54.09 97 | 72.53 313 | 76.59 285 | 60.39 168 | 55.68 272 | 70.39 340 | 35.18 238 | 76.90 335 | 39.34 308 | 61.71 252 | 87.73 154 |
|
| FMVSNet2 | | | 67.57 206 | 65.79 214 | 72.90 205 | 82.71 127 | 47.97 248 | 85.15 128 | 84.93 119 | 58.55 206 | 56.71 262 | 78.26 260 | 36.72 221 | 86.67 220 | 46.15 283 | 62.94 245 | 84.07 219 |
|
| FMVSNet1 | | | 64.57 243 | 62.11 249 | 71.96 229 | 77.32 237 | 46.36 272 | 83.52 177 | 83.31 156 | 52.43 287 | 54.42 283 | 76.23 289 | 27.80 298 | 86.20 231 | 42.59 301 | 61.34 254 | 83.32 235 |
|
| N_pmnet | | | 41.25 345 | 39.77 348 | 45.66 363 | 68.50 338 | 0.82 413 | 72.51 314 | 0.38 412 | 35.61 365 | 35.26 371 | 61.51 364 | 20.07 350 | 67.74 366 | 23.51 372 | 40.63 363 | 68.42 367 |
|
| cascas | | | 69.01 176 | 66.13 205 | 77.66 84 | 79.36 197 | 55.41 58 | 86.99 82 | 83.75 148 | 56.69 244 | 58.92 224 | 81.35 233 | 24.31 324 | 92.10 57 | 53.23 232 | 70.61 176 | 85.46 200 |
|
| BH-RMVSNet | | | 70.08 156 | 68.01 167 | 76.27 117 | 84.21 87 | 51.22 165 | 87.29 75 | 79.33 235 | 58.96 199 | 63.63 168 | 86.77 155 | 33.29 258 | 90.30 103 | 44.63 290 | 73.96 145 | 87.30 164 |
|
| UGNet | | | 68.71 184 | 67.11 187 | 73.50 196 | 80.55 183 | 47.61 255 | 84.08 164 | 78.51 251 | 59.45 181 | 65.68 136 | 82.73 208 | 23.78 326 | 85.08 260 | 52.80 238 | 76.40 116 | 87.80 152 |
| Wanjuan Su, Qingshan Xu, Wenbing Tao: Uncertainty-guided Multi-view Stereo Network for Depth Estimation. IEEE Transactions on Circuits and Systems for Video Technology, 2022 |
| WTY-MVS | | | 77.47 41 | 77.52 36 | 77.30 93 | 88.33 30 | 46.25 277 | 88.46 50 | 90.32 16 | 71.40 19 | 72.32 76 | 91.72 54 | 53.44 35 | 92.37 49 | 66.28 126 | 75.42 129 | 93.28 15 |
|
| XXY-MVS | | | 70.18 153 | 69.28 153 | 72.89 207 | 77.64 231 | 42.88 315 | 85.06 133 | 87.50 66 | 62.58 129 | 62.66 180 | 82.34 221 | 43.64 132 | 89.83 113 | 58.42 188 | 63.70 231 | 85.96 190 |
|
| EC-MVSNet | | | 75.30 74 | 75.20 64 | 75.62 134 | 80.98 168 | 49.00 213 | 87.43 69 | 84.68 128 | 63.49 113 | 70.97 92 | 90.15 90 | 42.86 143 | 91.14 78 | 74.33 81 | 81.90 67 | 86.71 176 |
|
| sss | | | 70.49 150 | 70.13 140 | 71.58 241 | 81.59 155 | 39.02 339 | 80.78 253 | 84.71 127 | 59.34 185 | 66.61 122 | 88.09 131 | 37.17 212 | 85.52 249 | 61.82 159 | 71.02 172 | 90.20 95 |
|
| Test_1112_low_res | | | 67.18 217 | 66.23 203 | 70.02 267 | 78.75 212 | 41.02 332 | 83.43 184 | 73.69 309 | 57.29 231 | 58.45 236 | 82.39 217 | 45.30 105 | 80.88 294 | 50.50 252 | 66.26 214 | 88.16 142 |
|
| 1112_ss | | | 70.05 157 | 69.37 149 | 72.10 223 | 80.77 177 | 42.78 316 | 85.12 132 | 76.75 280 | 59.69 177 | 61.19 194 | 92.12 44 | 47.48 78 | 83.84 271 | 53.04 235 | 68.21 192 | 89.66 108 |
|
| ab-mvs-re | | | 7.68 374 | 10.24 376 | 0.00 391 | 0.00 413 | 0.00 415 | 0.00 402 | 0.00 413 | 0.00 407 | 0.00 410 | 92.12 44 | 0.00 412 | 0.00 408 | 0.00 409 | 0.00 406 | 0.00 406 |
|
| ab-mvs | | | 70.65 148 | 69.11 154 | 75.29 150 | 80.87 174 | 46.23 278 | 73.48 307 | 85.24 110 | 59.99 172 | 66.65 120 | 80.94 236 | 43.13 140 | 88.69 149 | 63.58 145 | 68.07 193 | 90.95 77 |
|
| TR-MVS | | | 69.71 165 | 67.85 173 | 75.27 152 | 82.94 120 | 48.48 230 | 87.40 71 | 80.86 200 | 57.15 235 | 64.61 150 | 87.08 151 | 32.67 263 | 89.64 120 | 46.38 281 | 71.55 168 | 87.68 156 |
|
| MDTV_nov1_ep13_2view | | | | | | | 43.62 306 | 71.13 326 | | 54.95 266 | 59.29 218 | | 36.76 218 | | 46.33 282 | | 87.32 163 |
|
| MDTV_nov1_ep13 | | | | 61.56 253 | | 81.68 150 | 55.12 68 | 72.41 315 | 78.18 256 | 59.19 190 | 58.85 227 | 69.29 344 | 34.69 244 | 86.16 234 | 36.76 320 | 62.96 244 | |
|
| MIMVSNet1 | | | 50.35 334 | 47.81 335 | 57.96 345 | 61.53 369 | 27.80 382 | 67.40 341 | 74.06 305 | 43.25 344 | 33.31 378 | 65.38 356 | 16.03 367 | 71.34 359 | 21.80 377 | 47.55 343 | 74.75 340 |
|
| MIMVSNet | | | 63.12 258 | 60.29 268 | 71.61 238 | 75.92 262 | 46.65 268 | 65.15 345 | 81.94 179 | 59.14 194 | 54.65 281 | 69.47 343 | 25.74 312 | 80.63 298 | 41.03 304 | 69.56 187 | 87.55 158 |
|
| IterMVS-LS | | | 66.63 229 | 65.36 226 | 70.42 258 | 75.10 270 | 48.90 217 | 81.45 241 | 76.69 283 | 61.05 155 | 55.71 271 | 77.10 275 | 45.86 97 | 83.65 275 | 57.44 204 | 57.88 286 | 78.70 299 |
| Fangjinhua Wang, Silvano Galliani, Christoph Vogel, Marc Pollefeys: IterMVS: Iterative Probability Estimation for Efficient Multi-View Stereo. |
| CDS-MVSNet | | | 70.48 151 | 69.43 147 | 73.64 192 | 77.56 234 | 48.83 219 | 83.51 181 | 77.45 268 | 63.27 117 | 62.33 182 | 85.54 170 | 43.85 124 | 83.29 280 | 57.38 206 | 74.00 144 | 88.79 131 |
| Khang Truong Giang, Soohwan Song, Sungho Jo: Curvature-guided dynamic scale networks for Multi-view Stereo. ICLR 2022 |
| ACMMP++_ref | | | | | | | | | | | | | | | | 63.20 240 | |
|
| IterMVS | | | 63.77 251 | 61.67 251 | 70.08 264 | 72.68 302 | 51.24 164 | 80.44 256 | 75.51 293 | 60.51 167 | 51.41 305 | 73.70 312 | 32.08 269 | 78.91 314 | 54.30 225 | 54.35 317 | 80.08 289 |
| Fangjinhua Wang, Silvano Galliani, Christoph Vogel, Marc Pollefeys: IterMVS: Iterative Probability Estimation for Efficient Multi-View Stereo. |
| DP-MVS Recon | | | 71.99 125 | 70.31 135 | 77.01 102 | 90.65 8 | 53.44 110 | 89.37 38 | 82.97 166 | 56.33 250 | 63.56 170 | 89.47 102 | 34.02 250 | 92.15 56 | 54.05 228 | 72.41 159 | 85.43 201 |
|
| MVS_111021_LR | | | 69.07 174 | 67.91 168 | 72.54 213 | 77.27 238 | 49.56 199 | 79.77 265 | 73.96 307 | 59.33 187 | 60.73 198 | 87.82 138 | 30.19 284 | 81.53 288 | 69.94 103 | 72.19 162 | 86.53 178 |
|
| DP-MVS | | | 59.24 284 | 56.12 296 | 68.63 283 | 88.24 34 | 50.35 182 | 82.51 211 | 64.43 357 | 41.10 350 | 46.70 333 | 78.77 256 | 24.75 321 | 88.57 156 | 22.26 376 | 56.29 298 | 66.96 369 |
|
| ACMMP++ | | | | | | | | | | | | | | | | 59.38 265 | |
|
| HQP-MVS | | | 72.34 118 | 71.44 118 | 75.03 157 | 79.02 206 | 51.56 155 | 88.00 55 | 83.68 149 | 65.45 78 | 64.48 153 | 85.13 172 | 37.35 207 | 88.62 151 | 66.70 121 | 73.12 151 | 84.91 208 |
|
| QAPM | | | 71.88 128 | 69.33 151 | 79.52 40 | 82.20 138 | 54.30 92 | 86.30 97 | 88.77 38 | 56.61 246 | 59.72 206 | 87.48 144 | 33.90 252 | 95.36 13 | 47.48 273 | 81.49 71 | 88.90 126 |
|
| Vis-MVSNet |  | | 70.61 149 | 69.34 150 | 74.42 167 | 80.95 173 | 48.49 229 | 86.03 103 | 77.51 267 | 58.74 203 | 65.55 137 | 87.78 139 | 34.37 247 | 85.95 245 | 52.53 243 | 80.61 77 | 88.80 130 |
| Jingyang Zhang, Yao Yao, Shiwei Li, Zixin Luo, Tian Fang: Visibility-aware Multiview Stereo Network. BMVC 2020 |
| MVS-HIRNet | | | 49.01 336 | 44.71 340 | 61.92 330 | 76.06 257 | 46.61 269 | 63.23 353 | 54.90 370 | 24.77 382 | 33.56 375 | 36.60 390 | 21.28 346 | 75.88 340 | 29.49 349 | 62.54 247 | 63.26 378 |
|
| IS-MVSNet | | | 68.80 182 | 67.55 179 | 72.54 213 | 78.50 220 | 43.43 309 | 81.03 246 | 79.35 233 | 59.12 195 | 57.27 257 | 86.71 156 | 46.05 94 | 87.70 189 | 44.32 292 | 75.60 128 | 86.49 179 |
|
| HyFIR lowres test | | | 69.94 162 | 67.58 177 | 77.04 100 | 77.11 244 | 57.29 20 | 81.49 240 | 79.11 238 | 58.27 209 | 58.86 226 | 80.41 240 | 42.33 146 | 86.96 212 | 61.91 157 | 68.68 191 | 86.87 169 |
|
| EPMVS | | | 68.45 188 | 65.44 224 | 77.47 89 | 84.91 74 | 56.17 43 | 71.89 323 | 81.91 182 | 61.72 143 | 60.85 196 | 72.49 323 | 36.21 226 | 87.06 209 | 47.32 274 | 71.62 166 | 89.17 121 |
|
| PAPM_NR | | | 71.80 130 | 69.98 142 | 77.26 96 | 81.54 158 | 53.34 115 | 78.60 277 | 85.25 109 | 53.46 278 | 60.53 200 | 88.66 118 | 45.69 100 | 89.24 127 | 56.49 211 | 79.62 95 | 89.19 120 |
|
| TAMVS | | | 69.51 171 | 68.16 166 | 73.56 195 | 76.30 253 | 48.71 223 | 82.57 208 | 77.17 273 | 62.10 136 | 61.32 193 | 84.23 183 | 41.90 155 | 83.46 278 | 54.80 223 | 73.09 153 | 88.50 140 |
|
| PAPR | | | 75.20 77 | 74.13 77 | 78.41 70 | 88.31 32 | 55.10 70 | 84.31 158 | 85.66 94 | 63.76 105 | 67.55 114 | 90.73 74 | 43.48 135 | 89.40 124 | 66.36 125 | 77.03 110 | 90.73 81 |
|
| RPSCF | | | 45.77 342 | 44.13 344 | 50.68 357 | 57.67 376 | 29.66 375 | 54.92 375 | 45.25 379 | 26.69 380 | 45.92 337 | 75.92 295 | 17.43 362 | 45.70 391 | 27.44 361 | 45.95 353 | 76.67 322 |
|
| Vis-MVSNet (Re-imp) | | | 65.52 241 | 65.63 218 | 65.17 312 | 77.49 235 | 30.54 368 | 75.49 294 | 77.73 263 | 59.34 185 | 52.26 302 | 86.69 157 | 49.38 66 | 80.53 301 | 37.07 316 | 75.28 131 | 84.42 214 |
|
| test_0402 | | | 56.45 307 | 53.03 311 | 66.69 301 | 76.78 247 | 50.31 184 | 81.76 228 | 69.61 341 | 42.79 346 | 43.88 340 | 72.13 329 | 22.82 333 | 86.46 227 | 16.57 388 | 50.94 332 | 63.31 377 |
|
| MVS_111021_HR | | | 76.39 56 | 75.38 63 | 79.42 42 | 85.33 67 | 56.47 38 | 88.15 53 | 84.97 118 | 65.15 87 | 66.06 129 | 89.88 95 | 43.79 127 | 92.16 54 | 75.03 75 | 80.03 88 | 89.64 109 |
|
| CSCG | | | 80.41 15 | 79.72 15 | 82.49 5 | 89.12 25 | 57.67 13 | 89.29 41 | 91.54 5 | 59.19 190 | 71.82 80 | 90.05 92 | 59.72 9 | 96.04 10 | 78.37 51 | 88.40 14 | 93.75 9 |
|
| PatchMatch-RL | | | 56.66 304 | 53.75 309 | 65.37 311 | 77.91 230 | 45.28 288 | 69.78 332 | 60.38 364 | 41.35 349 | 47.57 327 | 73.73 309 | 16.83 363 | 76.91 333 | 36.99 317 | 59.21 267 | 73.92 346 |
|
| API-MVS | | | 74.17 88 | 72.07 109 | 80.49 25 | 90.02 11 | 58.55 8 | 87.30 74 | 84.27 136 | 57.51 227 | 65.77 135 | 87.77 140 | 41.61 159 | 95.97 11 | 51.71 245 | 82.63 60 | 86.94 167 |
|
| Test By Simon | | | | | | | | | | | | | 39.38 181 | | | | |
|
| TDRefinement | | | 40.91 346 | 38.37 350 | 48.55 360 | 50.45 386 | 33.03 362 | 58.98 367 | 50.97 375 | 28.50 377 | 29.89 381 | 67.39 350 | 6.21 392 | 54.51 382 | 17.67 386 | 35.25 373 | 58.11 379 |
|
| USDC | | | 54.36 317 | 51.23 321 | 63.76 318 | 64.29 361 | 37.71 346 | 62.84 356 | 73.48 314 | 56.85 238 | 35.47 370 | 71.94 332 | 9.23 379 | 78.43 316 | 38.43 310 | 48.57 337 | 75.13 337 |
|
| EPP-MVSNet | | | 71.14 137 | 70.07 141 | 74.33 170 | 79.18 203 | 46.52 270 | 83.81 173 | 86.49 79 | 56.32 251 | 57.95 240 | 84.90 178 | 54.23 32 | 89.14 132 | 58.14 193 | 69.65 185 | 87.33 162 |
|
| PMMVS | | | 72.98 106 | 72.05 110 | 75.78 132 | 83.57 97 | 48.60 224 | 84.08 164 | 82.85 168 | 61.62 144 | 68.24 110 | 90.33 83 | 28.35 292 | 87.78 186 | 72.71 92 | 76.69 115 | 90.95 77 |
|
| PAPM | | | 76.76 52 | 76.07 54 | 78.81 55 | 80.20 187 | 59.11 6 | 86.86 87 | 86.23 85 | 68.60 36 | 70.18 101 | 88.84 115 | 51.57 46 | 87.16 206 | 65.48 132 | 86.68 29 | 90.15 97 |
|
| ACMMP |  | | 70.81 146 | 69.29 152 | 75.39 144 | 81.52 160 | 51.92 147 | 83.43 184 | 83.03 164 | 56.67 245 | 58.80 228 | 88.91 113 | 31.92 272 | 88.58 153 | 65.89 129 | 73.39 149 | 85.67 195 |
| Qingshan Xu, Weihang Kong, Wenbing Tao, Marc Pollefeys: Multi-Scale Geometric Consistency Guided and Planar Prior Assisted Multi-View Stereo. IEEE Transactions on Pattern Analysis and Machine Intelligence |
| CNLPA | | | 60.59 277 | 58.44 281 | 67.05 297 | 79.21 202 | 47.26 261 | 79.75 266 | 64.34 358 | 42.46 348 | 51.90 304 | 83.94 186 | 27.79 299 | 75.41 342 | 37.12 314 | 59.49 264 | 78.47 303 |
|
| PatchmatchNet |  | | 67.07 222 | 63.63 242 | 77.40 90 | 83.10 111 | 58.03 9 | 72.11 321 | 77.77 262 | 58.85 200 | 59.37 214 | 70.83 336 | 37.84 194 | 84.93 262 | 42.96 298 | 69.83 183 | 89.26 116 |
| Fangjinhua Wang, Silvano Galliani, Christoph Vogel, Pablo Speciale, Marc Pollefeys: PatchmatchNet: Learned Multi-View Patchmatch Stereo. |
| PHI-MVS | | | 77.49 40 | 77.00 42 | 78.95 51 | 85.33 67 | 50.69 169 | 88.57 49 | 88.59 46 | 58.14 211 | 73.60 56 | 93.31 23 | 43.14 139 | 93.79 29 | 73.81 85 | 88.53 13 | 92.37 33 |
|
| F-COLMAP | | | 55.96 312 | 53.65 310 | 62.87 324 | 72.76 301 | 42.77 317 | 74.70 300 | 70.37 335 | 40.03 351 | 41.11 355 | 79.36 248 | 17.77 360 | 73.70 350 | 32.80 339 | 53.96 319 | 72.15 355 |
|
| ANet_high | | | 34.39 353 | 29.59 359 | 48.78 359 | 30.34 402 | 22.28 388 | 55.53 372 | 63.79 359 | 38.11 356 | 15.47 394 | 36.56 391 | 6.94 386 | 59.98 374 | 13.93 391 | 5.64 405 | 64.08 375 |
|
| wuyk23d | | | 9.11 373 | 8.77 377 | 10.15 387 | 40.18 394 | 16.76 400 | 20.28 398 | 1.01 411 | 2.58 404 | 2.66 406 | 0.98 406 | 0.23 411 | 12.49 406 | 4.08 406 | 6.90 403 | 1.19 403 |
|
| OMC-MVS | | | 65.97 239 | 65.06 230 | 68.71 282 | 72.97 298 | 42.58 320 | 78.61 276 | 75.35 296 | 54.72 268 | 59.31 216 | 86.25 162 | 33.30 257 | 77.88 326 | 57.99 194 | 67.05 202 | 85.66 196 |
|
| MG-MVS | | | 78.42 27 | 76.99 43 | 82.73 2 | 93.17 1 | 64.46 1 | 89.93 30 | 88.51 48 | 64.83 89 | 73.52 58 | 88.09 131 | 48.07 71 | 92.19 53 | 62.24 154 | 84.53 51 | 91.53 59 |
|
| AdaColmap |  | | 67.86 198 | 65.48 221 | 75.00 158 | 88.15 36 | 54.99 73 | 86.10 101 | 76.63 284 | 49.30 306 | 57.80 243 | 86.65 158 | 29.39 289 | 88.94 143 | 45.10 287 | 70.21 180 | 81.06 276 |
|
| uanet | | | 0.00 378 | 0.00 381 | 0.00 391 | 0.00 413 | 0.00 415 | 0.00 402 | 0.00 413 | 0.00 407 | 0.00 410 | 0.00 409 | 0.00 412 | 0.00 408 | 0.00 409 | 0.00 406 | 0.00 406 |
|
| ITE_SJBPF | | | | | 51.84 356 | 58.03 374 | 31.94 367 | | 53.57 374 | 36.67 361 | 41.32 353 | 75.23 299 | 11.17 375 | 51.57 385 | 25.81 366 | 48.04 339 | 72.02 357 |
|
| DeepMVS_CX |  | | | | 13.10 386 | 21.34 410 | 8.99 408 | | 10.02 410 | 10.59 398 | 7.53 403 | 30.55 396 | 1.82 404 | 14.55 405 | 6.83 400 | 7.52 401 | 15.75 399 |
|
| TinyColmap | | | 48.15 338 | 44.49 342 | 59.13 342 | 65.73 351 | 38.04 344 | 63.34 352 | 62.86 362 | 38.78 353 | 29.48 382 | 67.23 351 | 6.46 390 | 73.30 352 | 24.59 369 | 41.90 362 | 66.04 372 |
|
| MAR-MVS | | | 76.76 52 | 75.60 58 | 80.21 30 | 90.87 7 | 54.68 84 | 89.14 42 | 89.11 26 | 62.95 122 | 70.54 99 | 92.33 41 | 41.05 163 | 94.95 17 | 57.90 198 | 86.55 32 | 91.00 76 |
| Zhenyu Xu, Yiguang Liu, Xuelei Shi, Ying Wang, Yunan Zheng: MARMVS: Matching Ambiguity Reduced Multiple View Stereo for Efficient Large Scale Scene Reconstruction. CVPR 2020 |
| LF4IMVS | | | 33.04 356 | 32.55 356 | 34.52 374 | 40.96 393 | 22.03 389 | 44.45 382 | 35.62 392 | 20.42 385 | 28.12 385 | 62.35 362 | 5.03 394 | 31.88 404 | 21.61 379 | 34.42 375 | 49.63 386 |
|
| MSDG | | | 59.44 282 | 55.14 302 | 72.32 220 | 74.69 276 | 50.71 168 | 74.39 301 | 73.58 310 | 44.44 337 | 43.40 344 | 77.52 267 | 19.45 351 | 90.87 86 | 31.31 344 | 57.49 290 | 75.38 334 |
|
| LS3D | | | 56.40 308 | 53.82 308 | 64.12 316 | 81.12 166 | 45.69 286 | 73.42 308 | 66.14 352 | 35.30 368 | 43.24 346 | 79.88 243 | 22.18 339 | 79.62 312 | 19.10 384 | 64.00 228 | 67.05 368 |
|
| CLD-MVS | | | 75.60 70 | 75.39 62 | 76.24 118 | 80.69 179 | 52.40 137 | 90.69 24 | 86.20 86 | 74.40 8 | 65.01 143 | 88.93 112 | 42.05 152 | 90.58 94 | 76.57 63 | 73.96 145 | 85.73 194 |
| Zhaoxin Li, Wangmeng Zuo, Zhaoqi Wang, Lei Zhang: Confidence-based Large-scale Dense Multi-view Stereo. IEEE Transaction on Image Processing, 2020 |
| FPMVS | | | 35.40 351 | 33.67 355 | 40.57 368 | 46.34 391 | 28.74 380 | 41.05 385 | 57.05 368 | 20.37 386 | 22.27 390 | 53.38 379 | 6.87 387 | 44.94 393 | 8.62 395 | 47.11 347 | 48.01 387 |
|
| Gipuma |  | | 27.47 359 | 24.26 364 | 37.12 373 | 60.55 372 | 29.17 378 | 11.68 400 | 60.00 365 | 14.18 392 | 10.52 401 | 15.12 402 | 2.20 402 | 63.01 370 | 8.39 396 | 35.65 371 | 19.18 398 |
| S. Galliani, K. Lasinger, K. Schindler: Massively Parallel Multiview Stereopsis by Surface Normal Diffusion. ICCV 2015 |