This table lists the benchmark results for the high-res multi-view scenario. The following metrics are evaluated:

(*) For exact definitions, detailing how potentially incomplete ground truth is taken into account, see our paper.

The datasets are grouped into different categories, and result averages are computed for a category and method if results of the method are available for all datasets within the category. Note that the category "all" includes both the high-res multi-view and the low-res many-view scenarios.

Methods with suffix _ROB may participate in the Robust Vision Challenge.

Click a dataset result cell to show a visualization of the reconstruction. For training datasets, ground truth and accuracy / completeness visualizations are also available. The visualizations may not work with mobile browsers.




Method Infoallhigh-res
multi-view
indooroutdoorbotani.boulde.bridgedoorexhibi.lectur.living.loungeobserv.old co.statueterrac.
sorted bysort bysort bysort bysort bysort bysort bysort bysort bysort bysort bysort bysort bysort bysort bysort by
DeepPCF-MVS89.82 194.61 1996.17 589.91 18497.09 9070.21 31698.99 1696.69 6495.57 195.08 3299.23 186.40 3099.87 897.84 1398.66 3199.65 6
DeepC-MVS_fast89.06 294.48 2194.30 2595.02 1998.86 2185.68 4398.06 4796.64 7293.64 1191.74 7498.54 1880.17 6699.90 592.28 7498.75 2899.49 8
Andreas Kuhn, Christian Sormann, Mattia Rossi, Oliver Erdler, Friedrich Fraundorfer: DeepC-MVS: Deep Confidence Prediction for Multi-View Stereo Reconstruction. 3DV 2020
DeepC-MVS86.58 391.53 7291.06 7592.94 8294.52 14781.89 11495.95 18895.98 13190.76 3083.76 16996.76 10773.24 17099.71 3991.67 8196.96 8297.22 134
Andreas Kuhn, Christian Sormann, Mattia Rossi, Oliver Erdler, Friedrich Fraundorfer: DeepC-MVS: Deep Confidence Prediction for Multi-View Stereo Reconstruction. 3DV 2020
IB-MVS85.34 488.67 13187.14 15193.26 6993.12 19084.32 7298.76 1997.27 1987.19 9379.36 22090.45 22983.92 4298.53 11984.41 15269.79 29896.93 142
Christian Sormann, Mattia Rossi, Andreas Kuhn and Friedrich Fraundorfer: IB-MVS: An Iterative Algorithm for Deep Multi-View Stereo based on Binary Decisions. BMVC 2021
PCF-MVS84.09 586.77 16985.00 18092.08 11492.06 22683.07 9592.14 28894.47 21479.63 24776.90 24294.78 15871.15 19199.20 8272.87 26391.05 15293.98 210
Andreas Kuhn, Shan Lin, Oliver Erdler: Plane Completion and Filtering for Multi-View Stereo Reconstruction. GCPR 2019
HY-MVS84.06 691.63 6990.37 8795.39 1696.12 10288.25 1490.22 30797.58 1588.33 6590.50 9391.96 20479.26 7399.06 9490.29 10189.07 16398.88 30
PLCcopyleft83.97 788.00 14987.38 14589.83 18798.02 5976.46 25097.16 10994.43 21779.26 25681.98 19196.28 11669.36 20399.27 7477.71 21692.25 14393.77 214
Jie Liao, Yanping Fu, Qingan Yan, Chunxia xiao: Pyramid Multi-View Stereo with Local Consistency. Pacific Graphics 2019
3Dnovator+82.88 889.63 11087.85 13094.99 2094.49 15186.76 3097.84 5795.74 14586.10 10875.47 26896.02 12165.00 22899.51 6182.91 17697.07 8198.72 39
PVSNet82.34 989.02 12087.79 13292.71 9095.49 11781.50 12697.70 6897.29 1887.76 7785.47 14795.12 14956.90 28598.90 10580.33 19094.02 11997.71 105
3Dnovator82.32 1089.33 11587.64 13594.42 3293.73 17185.70 4297.73 6696.75 5686.73 10376.21 25695.93 12262.17 24299.68 4481.67 18297.81 6097.88 90
ACMP81.66 1184.00 21283.22 20986.33 25791.53 23872.95 29395.91 19293.79 25283.70 17273.79 27892.22 19854.31 30496.89 20283.98 15679.74 23789.16 269
Qingshan Xu and Wenbing Tao: Planar Prior Assisted PatchMatch Multi-View Stereo. AAAI 2020
TAPA-MVS81.61 1285.02 19683.67 19989.06 19896.79 9273.27 28995.92 19094.79 19474.81 30080.47 20696.83 10371.07 19298.19 13649.82 35992.57 13795.71 178
Andrea Romanoni, Matteo Matteucci: TAPA-MVS: Textureless-Aware PAtchMatch Multi-View Stereo. ICCV 2019
ACMM80.70 1383.72 21882.85 21586.31 26091.19 24272.12 29895.88 19394.29 22580.44 22877.02 24091.96 20455.24 29797.14 19179.30 20280.38 23389.67 257
Qingshan Xu and Wenbing Tao: Multi-Scale Geometric Consistency Guided Multi-View Stereo. CVPR 2019
OpenMVScopyleft79.58 1486.09 17883.62 20293.50 6290.95 24686.71 3197.44 8895.83 14175.35 29472.64 29095.72 12757.42 28299.64 4871.41 27295.85 10494.13 207
PVSNet_077.72 1581.70 25078.95 26689.94 18390.77 25376.72 24895.96 18796.95 3585.01 13270.24 30688.53 25452.32 30798.20 13586.68 14044.08 37194.89 193
ACMH+76.62 1677.47 28974.94 29185.05 28191.07 24571.58 30893.26 27390.01 32471.80 32364.76 33088.55 25241.62 34396.48 21862.35 31971.00 28687.09 315
ACMH75.40 1777.99 28374.96 29087.10 24790.67 25476.41 25193.19 27691.64 30472.47 32063.44 33587.61 26743.34 33697.16 18758.34 33273.94 27187.72 302
Qingshan Xu and Wenbing Tao: Multi-Scale Geometric Consistency Guided Multi-View Stereo. CVPR 2019
LTVRE_ROB73.68 1877.99 28375.74 28784.74 28490.45 25772.02 30086.41 33691.12 31172.57 31966.63 32287.27 27154.95 30096.98 19656.29 34275.98 26085.21 336
Andreas Kuhn, Heiko Hirschmüller, Daniel Scharstein, Helmut Mayer: A TV Prior for High-Quality Scalable Multi-View Stereo Reconstruction. International Journal of Computer Vision 2016
COLMAP_ROBcopyleft73.24 1975.74 30073.00 30783.94 29792.38 20769.08 32491.85 29286.93 34761.48 35465.32 32890.27 23242.27 34196.93 20150.91 35675.63 26485.80 333
Johannes L. Schönberger, Enliang Zheng, Marc Pollefeys, Jan-Michael Frahm: Pixelwise View Selection for Unstructured Multi-View Stereo. ECCV 2016
OpenMVS_ROBcopyleft68.52 2073.02 31369.57 32083.37 30680.54 35071.82 30493.60 26388.22 34162.37 34961.98 34383.15 32635.31 35895.47 26845.08 36675.88 26282.82 348
CMPMVSbinary54.94 2175.71 30174.56 29679.17 32979.69 35255.98 36189.59 30993.30 27560.28 35953.85 36389.07 24547.68 32696.33 22376.55 23081.02 22785.22 335
M. Jancosek, T. Pajdla: Multi-View Reconstruction Preserving Weakly-Supported Surfaces. CVPR 2011
MVEpermissive35.65 2233.85 34729.49 35246.92 36241.86 38636.28 38350.45 37756.52 38518.75 38118.28 38037.84 3772.41 38858.41 38118.71 37920.62 37846.06 376
Simon Fuhrmann, Fabian Langguth, Michael Goesele: MVE - A Multi-View Reconstruction Environment. EUROGRAPHICS Workshops on Graphics and Cultural Heritage (2014)
PMVScopyleft34.80 2339.19 34635.53 34950.18 36129.72 38830.30 38559.60 37666.20 38126.06 37717.91 38149.53 3743.12 38774.09 37618.19 38049.40 36346.14 375
Y. Furukawa, J. Ponce: Accurate, dense, and robust multiview stereopsis. PAMI (2010)
test_fmvsmvis_n_192092.12 5992.10 5992.17 11190.87 24981.04 13298.34 3293.90 24392.71 1587.24 13397.90 5274.83 14899.72 3796.96 2196.20 9595.76 177
dmvs_re84.10 21182.90 21387.70 22891.41 24073.28 28790.59 30593.19 27885.02 13177.96 23293.68 18257.92 27796.18 22975.50 24280.87 22993.63 216
SDMVSNet87.02 16285.61 16791.24 14394.14 15983.30 9193.88 25795.98 13184.30 15279.63 21792.01 20058.23 27197.68 15290.28 10382.02 22492.75 223
dmvs_testset72.00 31973.36 30567.91 34783.83 34031.90 38485.30 34277.12 37282.80 19163.05 33992.46 19661.54 25082.55 37042.22 36971.89 28389.29 265
sd_testset84.62 20283.11 21089.17 19694.14 15977.78 22791.54 29894.38 22084.30 15279.63 21792.01 20052.28 30896.98 19677.67 21782.02 22492.75 223
test_fmvsm_n_192094.81 1695.60 1092.45 9895.29 12380.96 13699.29 297.21 2194.50 697.29 1198.44 2382.15 5299.78 2698.56 497.68 6496.61 155
test_cas_vis1_n_192089.90 10590.02 9589.54 19290.14 26474.63 27598.71 2094.43 21793.04 1492.40 6396.35 11553.41 30699.08 9395.59 3696.16 9694.90 192
test_vis1_n_192089.95 10490.59 8088.03 22392.36 20868.98 32599.12 794.34 22293.86 1093.64 5197.01 9751.54 31099.59 5296.76 2496.71 9195.53 182
test_vis1_n85.60 18785.70 16685.33 27784.79 32964.98 33796.83 13691.61 30587.36 8791.00 8794.84 15736.14 35497.18 18695.66 3493.03 13393.82 213
test_fmvs1_n86.34 17486.72 15885.17 28087.54 29763.64 34496.91 13292.37 29487.49 8391.33 8095.58 13440.81 34898.46 12495.00 4293.49 12793.41 222
mvsany_test187.58 15788.22 12385.67 27189.78 26867.18 33295.25 21887.93 34283.96 16288.79 11497.06 9672.52 17594.53 30292.21 7586.45 18695.30 189
APD_test156.56 33553.58 33865.50 34967.93 37246.51 37377.24 36472.95 37538.09 37142.75 36975.17 35313.38 37782.78 36940.19 37054.53 35367.23 370
test_vis1_rt73.96 30672.40 30978.64 33183.91 33961.16 35395.63 20468.18 37876.32 28860.09 35174.77 35429.01 36797.54 16387.74 12875.94 26177.22 364
test_vis3_rt54.10 33751.04 34063.27 35558.16 37746.08 37584.17 34549.32 38856.48 36736.56 37249.48 3758.03 38491.91 33667.29 29549.87 36251.82 374
test_fmvs279.59 27179.90 25878.67 33082.86 34455.82 36395.20 22189.55 32781.09 21480.12 21389.80 23834.31 35993.51 32087.82 12778.36 25386.69 319
test_fmvs187.79 15388.52 12085.62 27392.98 19664.31 33997.88 5592.42 29287.95 7292.24 6695.82 12547.94 32398.44 12795.31 4094.09 11794.09 208
test_fmvs369.56 32369.19 32370.67 34569.01 37047.05 37090.87 30386.81 34871.31 32766.79 32177.15 34916.40 37483.17 36881.84 18162.51 34281.79 358
mvsany_test367.19 32965.34 33172.72 34463.08 37548.57 36983.12 34978.09 37172.07 32161.21 34677.11 35022.94 36987.78 35878.59 20851.88 36181.80 357
testf145.70 34242.41 34455.58 35853.29 38240.02 38168.96 37262.67 38227.45 37529.85 37561.58 3675.98 38573.83 37728.49 37643.46 37252.90 372
APD_test245.70 34242.41 34455.58 35853.29 38240.02 38168.96 37262.67 38227.45 37529.85 37561.58 3675.98 38573.83 37728.49 37643.46 37252.90 372
test_f64.01 33262.13 33569.65 34663.00 37645.30 37683.66 34880.68 36761.30 35555.70 36072.62 36114.23 37684.64 36669.84 28458.11 34879.00 361
FE-MVS86.06 17984.15 19491.78 12794.33 15479.81 16384.58 34496.61 7576.69 28785.00 15187.38 26970.71 19798.37 12970.39 28291.70 14997.17 136
FA-MVS(test-final)87.71 15586.23 16292.17 11194.19 15780.55 14687.16 33096.07 12782.12 20385.98 14488.35 25672.04 18398.49 12180.26 19289.87 15797.48 122
iter_conf_final89.51 11189.21 10890.39 16895.60 11484.44 7097.22 9989.09 33389.11 5282.07 19092.80 19187.03 2596.03 23289.10 11580.89 22890.70 236
bld_raw_dy_0_6482.13 24580.76 24286.24 26285.78 31875.03 27294.40 24582.62 36483.12 18176.46 24890.96 22253.83 30594.55 30081.04 18578.60 25089.14 270
patch_mono-295.14 1296.08 792.33 10498.44 4377.84 22598.43 2997.21 2192.58 1697.68 897.65 6786.88 2699.83 1698.25 597.60 6699.33 17
EGC-MVSNET52.46 33947.56 34267.15 34881.98 34560.11 35582.54 35172.44 3760.11 3860.70 38774.59 35525.11 36883.26 36729.04 37461.51 34458.09 371
test250690.96 8590.39 8592.65 9293.54 17582.46 10596.37 16697.35 1786.78 10187.55 12895.25 13977.83 9597.50 16784.07 15594.80 11197.98 85
test111188.11 14687.04 15391.35 13893.15 18778.79 19496.57 15290.78 31986.88 9985.04 15095.20 14357.23 28497.39 17483.88 15894.59 11397.87 92
ECVR-MVScopyleft88.35 14187.25 14791.65 13093.54 17579.40 17696.56 15490.78 31986.78 10185.57 14695.25 13957.25 28397.56 15984.73 15194.80 11197.98 85
test_blank0.00 3560.00 3590.00 3690.00 3920.00 3930.00 3800.00 3930.00 3870.00 3880.00 3870.00 3920.00 3880.00 3860.00 3860.00 384
tt080581.20 25879.06 26587.61 23186.50 30472.97 29293.66 26095.48 15874.11 30476.23 25591.99 20241.36 34597.40 17377.44 22274.78 26892.45 226
DVP-MVS++96.05 496.41 394.96 2199.05 985.34 4898.13 4196.77 5288.38 6397.70 698.77 1092.06 399.84 1297.47 1699.37 199.70 3
FOURS198.51 3978.01 21798.13 4196.21 11683.04 18494.39 43
MSC_two_6792asdad97.14 399.05 992.19 496.83 4399.81 2198.08 998.81 2499.43 11
PC_three_145291.12 2698.33 298.42 2492.51 299.81 2198.96 299.37 199.70 3
No_MVS97.14 399.05 992.19 496.83 4399.81 2198.08 998.81 2499.43 11
test_one_060198.91 1884.56 6996.70 6288.06 6996.57 1798.77 1088.04 20
eth-test20.00 392
eth-test0.00 392
GeoE86.36 17385.20 17489.83 18793.17 18676.13 25597.53 8092.11 29679.58 24880.99 20094.01 17566.60 21896.17 23073.48 26189.30 16197.20 135
test_method56.77 33454.53 33763.49 35476.49 36240.70 37975.68 36574.24 37419.47 38048.73 36571.89 36419.31 37165.80 38057.46 33747.51 36883.97 344
Anonymous2024052172.06 31869.91 31978.50 33277.11 36161.67 35191.62 29790.97 31665.52 34462.37 34179.05 34436.32 35390.96 34557.75 33568.52 30982.87 347
h-mvs3389.30 11688.95 11490.36 17095.07 13176.04 25796.96 12897.11 2790.39 3692.22 6795.10 15074.70 15098.86 10693.14 6565.89 33096.16 168
hse-mvs288.22 14588.21 12488.25 21793.54 17573.41 28395.41 21295.89 13790.39 3692.22 6794.22 16974.70 15096.66 21593.14 6564.37 33594.69 201
CL-MVSNet_self_test75.81 29974.14 30180.83 32278.33 35667.79 32994.22 25293.52 26577.28 28169.82 30781.54 33361.47 25189.22 35357.59 33653.51 35685.48 334
KD-MVS_2432*160077.63 28774.92 29285.77 26790.86 25079.44 17488.08 32193.92 24176.26 28967.05 31882.78 32772.15 18191.92 33461.53 32041.62 37485.94 330
KD-MVS_self_test70.97 32269.31 32275.95 34176.24 36655.39 36587.45 32690.94 31770.20 33162.96 34077.48 34844.01 33288.09 35661.25 32453.26 35784.37 341
AUN-MVS86.25 17785.57 16888.26 21693.57 17473.38 28495.45 21095.88 13883.94 16385.47 14794.21 17073.70 16696.67 21483.54 16864.41 33494.73 200
ZD-MVS99.09 883.22 9396.60 7882.88 18993.61 5298.06 4382.93 4899.14 8795.51 3898.49 37
SR-MVS-dyc-post91.29 7891.45 6990.80 15797.76 6776.03 25896.20 17895.44 16280.56 22590.72 9097.84 5575.76 12898.61 11491.99 7896.79 8897.75 101
RE-MVS-def91.18 7497.76 6776.03 25896.20 17895.44 16280.56 22590.72 9097.84 5573.36 16991.99 7896.79 8897.75 101
SED-MVS95.88 596.22 494.87 2299.03 1585.03 6099.12 796.78 4688.72 5697.79 498.91 288.48 1799.82 1898.15 698.97 1799.74 1
IU-MVS99.03 1585.34 4896.86 4292.05 2198.74 198.15 698.97 1799.42 13
OPU-MVS97.30 299.19 792.31 399.12 798.54 1892.06 399.84 1299.11 199.37 199.74 1
test_241102_TWO96.78 4688.72 5697.70 698.91 287.86 2199.82 1898.15 699.00 1599.47 9
test_241102_ONE99.03 1585.03 6096.78 4688.72 5697.79 498.90 588.48 1799.82 18
SF-MVS94.17 2694.05 2894.55 3097.56 7485.95 3697.73 6696.43 9784.02 15995.07 3398.74 1482.93 4899.38 6895.42 3998.51 3498.32 59
cl2285.11 19584.17 19387.92 22495.06 13378.82 19195.51 20794.22 22779.74 24576.77 24387.92 26375.96 12495.68 25679.93 19772.42 27989.27 266
miper_ehance_all_eth84.57 20483.60 20387.50 23792.64 20478.25 20895.40 21393.47 26679.28 25576.41 25087.64 26676.53 11495.24 27978.58 20972.42 27989.01 277
miper_enhance_ethall85.95 18185.20 17488.19 22094.85 13979.76 16596.00 18594.06 23782.98 18777.74 23388.76 24979.42 7095.46 26980.58 18872.42 27989.36 264
ZNCC-MVS92.75 4392.60 4893.23 7198.24 5181.82 11897.63 7296.50 8985.00 13391.05 8597.74 6078.38 8599.80 2590.48 9498.34 4698.07 76
dcpmvs_293.10 3893.46 3692.02 11897.77 6579.73 16994.82 23593.86 24686.91 9791.33 8096.76 10785.20 3298.06 13896.90 2297.60 6698.27 65
cl____83.27 22482.12 22386.74 25192.20 21775.95 26295.11 22793.27 27678.44 26974.82 27387.02 27774.19 15895.19 28174.67 25069.32 30289.09 272
DIV-MVS_self_test83.27 22482.12 22386.74 25192.19 21875.92 26495.11 22793.26 27778.44 26974.81 27487.08 27674.19 15895.19 28174.66 25169.30 30389.11 271
eth_miper_zixun_eth83.12 22882.01 22586.47 25691.85 23474.80 27394.33 24693.18 28079.11 25875.74 26687.25 27372.71 17395.32 27576.78 22867.13 32489.27 266
9.1494.26 2698.10 5798.14 3896.52 8684.74 13794.83 3898.80 782.80 5099.37 7095.95 3098.42 40
uanet_test0.00 3560.00 3590.00 3690.00 3920.00 3930.00 3800.00 3930.00 3870.00 3880.00 3870.00 3920.00 3880.00 3860.00 3860.00 384
DCPMVS0.00 3560.00 3590.00 3690.00 3920.00 3930.00 3800.00 3930.00 3870.00 3880.00 3870.00 3920.00 3880.00 3860.00 3860.00 384
save fliter98.24 5183.34 9098.61 2696.57 8191.32 24
ET-MVSNet_ETH3D90.01 10389.03 11092.95 8194.38 15286.77 2998.14 3896.31 11089.30 4963.33 33696.72 11090.09 1193.63 31890.70 9282.29 22398.46 52
UniMVSNet_ETH3D80.86 26278.75 26787.22 24586.31 30772.02 30091.95 28993.76 25673.51 30975.06 27290.16 23543.04 33995.66 25776.37 23478.55 25193.98 210
EIA-MVS91.73 6592.05 6090.78 15994.52 14776.40 25298.06 4795.34 17089.19 5088.90 11397.28 8677.56 9897.73 15190.77 9096.86 8798.20 67
miper_refine_blended77.63 28774.92 29285.77 26790.86 25079.44 17488.08 32193.92 24176.26 28967.05 31882.78 32772.15 18191.92 33461.53 32041.62 37485.94 330
miper_lstm_enhance81.66 25280.66 24584.67 28791.19 24271.97 30291.94 29093.19 27877.86 27372.27 29385.26 30473.46 16793.42 32173.71 26067.05 32588.61 285
ETV-MVS92.72 4792.87 4292.28 10794.54 14681.89 11497.98 5195.21 17589.77 4593.11 5796.83 10377.23 10697.50 16795.74 3395.38 10797.44 123
CS-MVS92.73 4593.48 3590.48 16696.27 9775.93 26398.55 2794.93 18389.32 4894.54 4297.67 6278.91 7897.02 19493.80 5497.32 7698.49 50
D2MVS82.67 23681.55 23286.04 26587.77 29376.47 24995.21 22096.58 8082.66 19570.26 30585.46 30360.39 25595.80 24976.40 23379.18 24285.83 332
DVP-MVScopyleft95.58 895.91 994.57 2999.05 985.18 5399.06 1196.46 9388.75 5496.69 1498.76 1287.69 2299.76 2797.90 1198.85 2198.77 33
Zhenlong Yuan, Jinguo Luo, Fei Shen, Zhaoxin Li, Cong Liu, Tianlu Mao, Zhaoqi Wang: DVP-MVS: Synergize Depth-Edge and Visibility Prior for Multi-View Stereo. AAAI2025
test_0728_THIRD88.38 6396.69 1498.76 1289.64 1399.76 2797.47 1698.84 2399.38 14
test_0728_SECOND95.14 1799.04 1486.14 3499.06 1196.77 5299.84 1297.90 1198.85 2199.45 10
test072699.05 985.18 5399.11 1096.78 4688.75 5497.65 998.91 287.69 22
SR-MVS92.16 5892.27 5391.83 12698.37 4578.41 20396.67 14995.76 14482.19 20291.97 7098.07 4276.44 11598.64 11393.71 5697.27 7798.45 53
DPM-MVS96.21 295.53 1298.26 196.26 9895.09 199.15 596.98 3293.39 1296.45 1998.79 890.17 1099.99 189.33 11399.25 699.70 3
GST-MVS92.43 5692.22 5693.04 7898.17 5481.64 12497.40 9496.38 10484.71 13990.90 8897.40 8077.55 9999.76 2789.75 10797.74 6297.72 103
test_yl91.46 7390.53 8294.24 3797.41 8085.18 5398.08 4497.72 1180.94 21689.85 9896.14 11875.61 12998.81 10990.42 9988.56 17098.74 34
thisisatest053089.65 10989.02 11191.53 13593.46 18180.78 14096.52 15596.67 6681.69 20983.79 16894.90 15688.85 1597.68 15277.80 21287.49 18096.14 169
Anonymous2024052983.15 22780.60 24690.80 15795.74 11178.27 20796.81 13994.92 18460.10 36181.89 19392.54 19545.82 33098.82 10879.25 20378.32 25495.31 188
Anonymous20240521184.41 20781.93 22791.85 12596.78 9378.41 20397.44 8891.34 30970.29 33084.06 16194.26 16841.09 34698.96 9979.46 20082.65 22198.17 69
DCV-MVSNet91.46 7390.53 8294.24 3797.41 8085.18 5398.08 4497.72 1180.94 21689.85 9896.14 11875.61 12998.81 10990.42 9988.56 17098.74 34
tttt051788.57 13588.19 12589.71 19193.00 19275.99 26195.67 20196.67 6680.78 21981.82 19494.40 16588.97 1497.58 15876.05 23786.31 18795.57 181
our_test_377.90 28575.37 28985.48 27685.39 32276.74 24793.63 26191.67 30273.39 31265.72 32784.65 31558.20 27293.13 32457.82 33467.87 31686.57 321
thisisatest051590.95 8690.26 8893.01 7994.03 16684.27 7497.91 5396.67 6683.18 17986.87 13795.51 13688.66 1697.85 14780.46 18989.01 16496.92 144
ppachtmachnet_test77.19 29174.22 29986.13 26485.39 32278.22 20993.98 25591.36 30871.74 32467.11 31784.87 31356.67 28793.37 32352.21 35264.59 33386.80 317
SMA-MVScopyleft94.70 1894.68 1894.76 2598.02 5985.94 3897.47 8596.77 5285.32 12297.92 398.70 1583.09 4799.84 1295.79 3299.08 1098.49 50
Yufeng Yin; Xiaoyan Liu; Zichao Zhang: SMA-MVS: Segmentation-Guided Multi-Scale Anchor Deformation Patch Multi-View Stereo. IEEE Transactions on Circuits and Systems for Video Technology
GSMVS97.54 115
DPE-MVScopyleft95.32 1095.55 1194.64 2898.79 2384.87 6597.77 6296.74 5786.11 10796.54 1898.89 688.39 1999.74 3497.67 1499.05 1299.31 18
Kehua Chen, Zhenlong Yuan, Tianlu Mao, Zhaoqi Wang: Dual-Level Precision Edges Guided Multi-View Stereo with Accurate Planarization. AAAI2025
test_part298.90 1985.14 5996.07 22
thres100view90088.30 14286.95 15592.33 10496.10 10384.90 6497.14 11198.85 282.69 19483.41 17193.66 18375.43 13697.93 14169.04 28786.24 19094.17 204
tfpnnormal78.14 28275.42 28886.31 26088.33 28879.24 18094.41 24296.22 11573.51 30969.81 30885.52 30255.43 29595.75 25247.65 36367.86 31783.95 345
tfpn200view988.48 13687.15 14992.47 9796.21 9985.30 5197.44 8898.85 283.37 17683.99 16393.82 17975.36 13997.93 14169.04 28786.24 19094.17 204
c3_l83.80 21682.65 21887.25 24492.10 22277.74 23095.25 21893.04 28578.58 26676.01 25887.21 27475.25 14395.11 28677.54 22068.89 30688.91 283
CHOSEN 280x42091.71 6891.85 6191.29 14194.94 13582.69 9987.89 32496.17 12085.94 11187.27 13294.31 16690.27 995.65 25994.04 5395.86 10395.53 182
CANet94.89 1494.64 1995.63 1297.55 7588.12 1599.06 1196.39 10394.07 995.34 2797.80 5876.83 11099.87 897.08 2097.64 6598.89 29
Fast-Effi-MVS+-dtu83.33 22382.60 21985.50 27589.55 27469.38 32396.09 18491.38 30682.30 19975.96 26091.41 21156.71 28695.58 26575.13 24684.90 20391.54 229
Effi-MVS+-dtu84.61 20384.90 18383.72 30291.96 22963.14 34694.95 23293.34 27485.57 11779.79 21587.12 27561.99 24695.61 26383.55 16785.83 19592.41 227
CANet_DTU90.98 8490.04 9493.83 4794.76 14186.23 3396.32 17093.12 28393.11 1393.71 4996.82 10563.08 23899.48 6384.29 15395.12 10995.77 176
MVS_030495.36 995.20 1495.85 1094.89 13889.22 1198.83 1897.88 1094.68 395.14 3097.99 4580.80 5899.81 2198.60 397.95 5698.50 49
MP-MVS-pluss92.58 5392.35 5193.29 6897.30 8682.53 10296.44 16196.04 12984.68 14089.12 11098.37 2577.48 10099.74 3493.31 6398.38 4397.59 114
MP-MVS-pluss: MP-MVS-pluss. MP-MVS-pluss
MSP-MVS95.62 796.54 192.86 8498.31 4880.10 15997.42 9296.78 4692.20 1997.11 1298.29 2793.46 199.10 9196.01 2899.30 599.38 14
Zhenlong Yuan, Cong Liu, Fei Shen, Zhaoxin Li, Jingguo luo, Tianlu Mao and Zhaoqi Wang: MSP-MVS: Multi-granularity Segmentation Prior Guided Multi-View Stereo. AAAI2025
sam_mvs177.59 9797.54 115
sam_mvs75.35 141
IterMVS-SCA-FT80.51 26579.10 26484.73 28589.63 27374.66 27492.98 27891.81 30180.05 23971.06 30085.18 30758.04 27391.40 34072.48 26770.70 29088.12 297
TSAR-MVS + MP.94.79 1795.17 1593.64 5497.66 6984.10 7595.85 19696.42 9891.26 2597.49 1096.80 10686.50 2898.49 12195.54 3799.03 1398.33 58
Zhenlong Yuan, Jiakai Cao, Zhaoqi Wang, Zhaoxin Li: TSAR-MVS: Textureless-aware Segmentation and Correlative Refinement Guided Multi-View Stereo. Pattern Recognition
xiu_mvs_v1_base_debu90.54 9389.54 10493.55 5992.31 20987.58 2296.99 12294.87 18787.23 9093.27 5397.56 7157.43 27998.32 13092.72 7093.46 12994.74 197
OPM-MVS85.84 18285.10 17988.06 22188.34 28777.83 22695.72 19994.20 22887.89 7580.45 20794.05 17458.57 26897.26 18383.88 15882.76 22089.09 272
Ray L. Khuboni, Hongjun Xu: Octagram Propagation Matching for Multi-Scale View Stereopsis (OPM-MVS).
ACMMP_NAP93.46 3493.23 3994.17 4097.16 8884.28 7396.82 13896.65 6986.24 10594.27 4497.99 4577.94 9199.83 1693.39 5998.57 3398.39 56
ambc76.02 33968.11 37151.43 36764.97 37489.59 32660.49 34974.49 35617.17 37392.46 32761.50 32252.85 35984.17 343
MTGPAbinary96.33 108
CS-MVS-test92.98 3993.67 3090.90 15496.52 9476.87 24498.68 2194.73 19690.36 3894.84 3797.89 5377.94 9197.15 19094.28 5197.80 6198.70 40
Effi-MVS+90.70 9089.90 10093.09 7693.61 17283.48 8795.20 22192.79 28883.22 17891.82 7295.70 12871.82 18497.48 16991.25 8393.67 12598.32 59
xiu_mvs_v2_base93.92 3093.26 3895.91 995.07 13192.02 698.19 3795.68 14892.06 2096.01 2398.14 3570.83 19698.96 9996.74 2596.57 9296.76 151
xiu_mvs_v1_base90.54 9389.54 10493.55 5992.31 20987.58 2296.99 12294.87 18787.23 9093.27 5397.56 7157.43 27998.32 13092.72 7093.46 12994.74 197
new-patchmatchnet68.85 32765.93 32977.61 33473.57 36963.94 34390.11 30888.73 33871.62 32555.08 36173.60 35840.84 34787.22 36151.35 35548.49 36681.67 359
pmmvs674.65 30571.67 31183.60 30479.13 35469.94 31793.31 27290.88 31861.05 35865.83 32684.15 31943.43 33594.83 29566.62 29860.63 34586.02 329
pmmvs581.34 25579.54 26086.73 25485.02 32776.91 24396.22 17591.65 30377.65 27573.55 27988.61 25155.70 29494.43 30474.12 25673.35 27688.86 284
test_post185.88 33930.24 38273.77 16295.07 29073.89 257
test_post33.80 37976.17 12195.97 237
Fast-Effi-MVS+87.93 15186.94 15690.92 15394.04 16479.16 18398.26 3493.72 25781.29 21283.94 16692.90 19069.83 20296.68 21376.70 22991.74 14896.93 142
patchmatchnet-post77.09 35177.78 9695.39 270
Anonymous2023121179.72 27077.19 27787.33 24095.59 11577.16 24295.18 22494.18 23059.31 36372.57 29186.20 29347.89 32495.66 25774.53 25369.24 30489.18 268
pmmvs-eth3d73.59 30870.66 31582.38 31376.40 36473.38 28489.39 31389.43 32972.69 31860.34 35077.79 34746.43 32991.26 34366.42 30257.06 35082.51 351
GG-mvs-BLEND93.49 6394.94 13586.26 3281.62 35297.00 3188.32 12294.30 16791.23 596.21 22888.49 12197.43 7298.00 83
xiu_mvs_v1_base_debi90.54 9389.54 10493.55 5992.31 20987.58 2296.99 12294.87 18787.23 9093.27 5397.56 7157.43 27998.32 13092.72 7093.46 12994.74 197
Anonymous2023120675.29 30273.64 30380.22 32480.75 34763.38 34593.36 26890.71 32173.09 31467.12 31683.70 32250.33 31590.85 34653.63 35070.10 29586.44 322
MTAPA92.45 5592.31 5292.86 8497.90 6180.85 13992.88 28096.33 10887.92 7390.20 9798.18 3176.71 11399.76 2792.57 7398.09 5197.96 88
MTMP97.53 8068.16 379
gm-plane-assit92.27 21379.64 17284.47 14795.15 14797.93 14185.81 142
test9_res96.00 2999.03 1398.31 61
MVP-Stereo82.65 23781.67 23185.59 27486.10 31378.29 20693.33 26992.82 28777.75 27469.17 31287.98 26259.28 26495.76 25171.77 26996.88 8582.73 350
Qingsong Yan: MVP-Stereo: A Parallel Multi-View Patchmatch Stereo Method with Dilation Matching for Photogrammetric Application.
TEST998.64 3183.71 8197.82 5896.65 6984.29 15495.16 2898.09 3884.39 3599.36 71
train_agg94.28 2394.45 2293.74 5098.64 3183.71 8197.82 5896.65 6984.50 14595.16 2898.09 3884.33 3699.36 7195.91 3198.96 1998.16 70
gg-mvs-nofinetune85.48 19082.90 21393.24 7094.51 15085.82 4079.22 35696.97 3361.19 35687.33 13153.01 37290.58 696.07 23186.07 14197.23 7897.81 98
SCA85.63 18683.64 20191.60 13492.30 21281.86 11692.88 28095.56 15384.85 13482.52 17985.12 31058.04 27395.39 27073.89 25787.58 17997.54 115
Patchmatch-test78.25 28174.72 29488.83 20491.20 24174.10 28173.91 36988.70 33959.89 36266.82 32085.12 31078.38 8594.54 30148.84 36179.58 23997.86 93
test_898.63 3383.64 8497.81 6096.63 7484.50 14595.10 3198.11 3784.33 3699.23 76
MS-PatchMatch83.05 22981.82 22986.72 25589.64 27279.10 18694.88 23494.59 20879.70 24670.67 30289.65 24050.43 31496.82 20770.82 28195.99 10284.25 342
Patchmatch-RL test76.65 29574.01 30284.55 29077.37 36064.23 34078.49 36082.84 36378.48 26764.63 33173.40 35976.05 12391.70 33976.99 22557.84 34997.72 103
cdsmvs_eth3d_5k21.43 35028.57 3530.00 3690.00 3920.00 3930.00 38095.93 1360.00 3870.00 38897.66 6363.57 2350.00 3880.00 3860.00 3860.00 384
pcd_1.5k_mvsjas5.92 3557.89 3580.00 3690.00 3920.00 3930.00 3800.00 3930.00 3870.00 3880.00 38771.04 1930.00 3880.00 3860.00 3860.00 384
agg_prior294.30 4899.00 1598.57 45
agg_prior98.59 3583.13 9496.56 8394.19 4599.16 86
tmp_tt41.54 34541.93 34740.38 36320.10 38926.84 38661.93 37559.09 38414.81 38228.51 37780.58 33735.53 35648.33 38463.70 31413.11 38145.96 377
canonicalmvs92.27 5791.22 7195.41 1595.80 11088.31 1397.09 11894.64 20488.49 6192.99 6097.31 8272.68 17498.57 11793.38 6188.58 16999.36 16
anonymousdsp80.98 26179.97 25684.01 29681.73 34670.44 31492.49 28493.58 26477.10 28472.98 28786.31 29157.58 27894.90 29279.32 20178.63 24986.69 319
alignmvs92.97 4092.26 5495.12 1895.54 11687.77 1998.67 2296.38 10488.04 7093.01 5997.45 7579.20 7598.60 11593.25 6488.76 16798.99 28
nrg03086.79 16885.43 17090.87 15688.76 28185.34 4897.06 12094.33 22384.31 15080.45 20791.98 20372.36 17796.36 22288.48 12271.13 28590.93 235
v14419282.43 23980.73 24387.54 23685.81 31778.22 20995.98 18693.78 25379.09 25977.11 23986.49 28564.66 23295.91 24374.20 25569.42 30188.49 287
FIs86.73 17086.10 16388.61 20890.05 26580.21 15696.14 18196.95 3585.56 11978.37 22892.30 19776.73 11295.28 27779.51 19979.27 24190.35 242
v192192082.02 24780.23 25187.41 23985.62 31977.92 22295.79 19893.69 25878.86 26376.67 24486.44 28762.50 24095.83 24772.69 26469.77 29988.47 288
UA-Net88.92 12388.48 12190.24 17394.06 16377.18 24193.04 27794.66 20187.39 8691.09 8493.89 17874.92 14798.18 13775.83 23991.43 15095.35 187
v119282.31 24380.55 24787.60 23285.94 31478.47 20295.85 19693.80 25179.33 25276.97 24186.51 28463.33 23795.87 24573.11 26270.13 29388.46 289
FC-MVSNet-test85.96 18085.39 17187.66 23089.38 27878.02 21695.65 20396.87 4085.12 12977.34 23591.94 20676.28 12094.74 29677.09 22478.82 24590.21 245
v114482.90 23381.27 23787.78 22786.29 30879.07 18896.14 18193.93 24080.05 23977.38 23486.80 28065.50 22295.93 24275.21 24570.13 29388.33 293
sosnet-low-res0.00 3560.00 3590.00 3690.00 3920.00 3930.00 3800.00 3930.00 3870.00 3880.00 3870.00 3920.00 3880.00 3860.00 3860.00 384
HFP-MVS92.89 4192.86 4392.98 8098.71 2581.12 13197.58 7696.70 6285.20 12791.75 7397.97 5078.47 8499.71 3990.95 8598.41 4198.12 74
v14882.41 24280.89 23986.99 24986.18 31176.81 24696.27 17293.82 24880.49 22775.28 27086.11 29567.32 21295.75 25275.48 24367.03 32688.42 291
sosnet0.00 3560.00 3590.00 3690.00 3920.00 3930.00 3800.00 3930.00 3870.00 3880.00 3870.00 3920.00 3880.00 3860.00 3860.00 384
uncertanet0.00 3560.00 3590.00 3690.00 3920.00 3930.00 3800.00 3930.00 3870.00 3880.00 3870.00 3920.00 3880.00 3860.00 3860.00 384
AllTest75.92 29873.06 30684.47 29192.18 21967.29 33091.07 30184.43 35767.63 33763.48 33390.18 23338.20 35197.16 18757.04 33873.37 27488.97 280
TestCases84.47 29192.18 21967.29 33084.43 35767.63 33763.48 33390.18 23338.20 35197.16 18757.04 33873.37 27488.97 280
v7n79.32 27677.34 27585.28 27884.05 33872.89 29493.38 26793.87 24575.02 29970.68 30184.37 31659.58 26095.62 26267.60 29267.50 32187.32 313
region2R92.72 4792.70 4592.79 8698.68 2680.53 14997.53 8096.51 8785.22 12591.94 7197.98 4877.26 10299.67 4690.83 8998.37 4498.18 68
iter_conf0590.14 10189.79 10291.17 14695.85 10986.93 2797.68 7088.67 34089.93 4281.73 19692.80 19190.37 896.03 23290.44 9780.65 23290.56 238
RRT_MVS83.88 21483.27 20885.71 26987.53 29872.12 29895.35 21494.33 22383.81 16875.86 26291.28 21560.55 25495.09 28983.93 15776.76 25989.90 255
PS-MVSNAJss84.91 19884.30 19186.74 25185.89 31674.40 27994.95 23294.16 23183.93 16476.45 24990.11 23771.04 19395.77 25083.16 17379.02 24490.06 252
PS-MVSNAJ94.17 2693.52 3496.10 895.65 11392.35 298.21 3695.79 14392.42 1896.24 2098.18 3171.04 19399.17 8596.77 2397.39 7496.79 148
jajsoiax82.12 24681.15 23885.03 28284.19 33570.70 31294.22 25293.95 23983.07 18373.48 28089.75 23949.66 31795.37 27282.24 17979.76 23589.02 276
mvs_tets81.74 24980.71 24484.84 28384.22 33470.29 31593.91 25693.78 25382.77 19273.37 28189.46 24247.36 32795.31 27681.99 18079.55 24088.92 282
EI-MVSNet-UG-set91.35 7791.22 7191.73 12897.39 8280.68 14296.47 15896.83 4387.92 7388.30 12397.36 8177.84 9499.13 8989.43 11289.45 16095.37 186
EI-MVSNet-Vis-set91.84 6491.77 6492.04 11797.60 7181.17 13096.61 15096.87 4088.20 6789.19 10997.55 7478.69 8399.14 8790.29 10190.94 15395.80 175
HPM-MVS++copyleft95.32 1095.48 1394.85 2398.62 3486.04 3597.81 6096.93 3792.45 1795.69 2498.50 2085.38 3199.85 1094.75 4499.18 798.65 42
test_prior482.34 10797.75 65
XVS92.69 4992.71 4492.63 9398.52 3780.29 15297.37 9596.44 9587.04 9591.38 7797.83 5777.24 10499.59 5290.46 9598.07 5298.02 78
v124081.70 25079.83 25987.30 24385.50 32077.70 23195.48 20893.44 26778.46 26876.53 24786.44 28760.85 25395.84 24671.59 27170.17 29188.35 292
pm-mvs180.05 26778.02 27186.15 26385.42 32175.81 26595.11 22792.69 29077.13 28270.36 30487.43 26858.44 27095.27 27871.36 27364.25 33687.36 312
test_prior298.37 3186.08 10994.57 4198.02 4483.14 4695.05 4198.79 26
X-MVStestdata86.26 17684.14 19592.63 9398.52 3780.29 15297.37 9596.44 9587.04 9591.38 7720.73 38377.24 10499.59 5290.46 9598.07 5298.02 78
test_prior93.09 7698.68 2681.91 11396.40 10199.06 9498.29 63
旧先验296.97 12774.06 30696.10 2197.76 15088.38 123
新几何296.42 164
新几何193.12 7497.44 7881.60 12596.71 6174.54 30291.22 8397.57 7079.13 7699.51 6177.40 22398.46 3898.26 66
旧先验197.39 8279.58 17396.54 8498.08 4184.00 4097.42 7397.62 112
无先验96.87 13496.78 4677.39 27899.52 5979.95 19698.43 54
原ACMM296.84 135
原ACMM191.22 14597.77 6578.10 21596.61 7581.05 21591.28 8297.42 7977.92 9398.98 9879.85 19898.51 3496.59 156
test22296.15 10178.41 20395.87 19496.46 9371.97 32289.66 10397.45 7576.33 11998.24 4998.30 62
testdata299.48 6376.45 232
segment_acmp82.69 51
testdata90.13 17695.92 10774.17 28096.49 9273.49 31194.82 3997.99 4578.80 8197.93 14183.53 16997.52 6898.29 63
testdata195.57 20687.44 84
v881.88 24880.06 25587.32 24186.63 30379.04 18994.41 24293.65 26078.77 26473.19 28585.57 30066.87 21595.81 24873.84 25967.61 32087.11 314
131488.94 12287.20 14894.17 4093.21 18485.73 4193.33 26996.64 7282.89 18875.98 25996.36 11466.83 21699.39 6783.52 17096.02 10197.39 127
LFMVS89.27 11787.64 13594.16 4297.16 8885.52 4697.18 10594.66 20179.17 25789.63 10496.57 11255.35 29698.22 13489.52 11189.54 15998.74 34
VDD-MVS88.28 14387.02 15492.06 11695.09 12980.18 15897.55 7994.45 21683.09 18289.10 11195.92 12447.97 32298.49 12193.08 6886.91 18297.52 119
VDDNet86.44 17284.51 18692.22 10991.56 23581.83 11797.10 11794.64 20469.50 33487.84 12695.19 14448.01 32197.92 14689.82 10686.92 18196.89 145
v1081.43 25479.53 26187.11 24686.38 30578.87 19094.31 24793.43 26877.88 27273.24 28485.26 30465.44 22395.75 25272.14 26867.71 31986.72 318
VPNet84.69 20182.92 21290.01 17889.01 28083.45 8896.71 14695.46 16085.71 11579.65 21692.18 19956.66 28896.01 23683.05 17567.84 31890.56 238
MVS90.60 9288.64 11796.50 594.25 15590.53 893.33 26997.21 2177.59 27678.88 22397.31 8271.52 18899.69 4289.60 10898.03 5499.27 20
v2v48283.46 22181.86 22888.25 21786.19 31079.65 17196.34 16994.02 23881.56 21077.32 23688.23 25865.62 22196.03 23277.77 21369.72 30089.09 272
V4283.04 23081.53 23387.57 23586.27 30979.09 18795.87 19494.11 23480.35 23277.22 23886.79 28165.32 22696.02 23577.74 21470.14 29287.61 306
SD-MVS94.84 1595.02 1694.29 3597.87 6484.61 6897.76 6496.19 11989.59 4696.66 1698.17 3484.33 3699.60 5196.09 2798.50 3698.66 41
Zhenlong Yuan, Jiakai Cao, Zhaoxin Li, Hao Jiang and Zhaoqi Wang: SD-MVS: Segmentation-driven Deformation Multi-View Stereo with Spherical Refinement and EM optimization. AAAI2024
GA-MVS85.79 18484.04 19691.02 15189.47 27680.27 15496.90 13394.84 19085.57 11780.88 20189.08 24456.56 28996.47 21977.72 21585.35 20096.34 163
MSLP-MVS++94.28 2394.39 2493.97 4498.30 4984.06 7698.64 2496.93 3790.71 3193.08 5898.70 1579.98 6799.21 7894.12 5299.07 1198.63 43
APDe-MVS94.56 2094.75 1793.96 4598.84 2283.40 8998.04 4996.41 9985.79 11495.00 3498.28 2884.32 3999.18 8497.35 1898.77 2799.28 19
APD-MVS_3200maxsize91.23 8091.35 7090.89 15597.89 6276.35 25396.30 17195.52 15679.82 24391.03 8697.88 5474.70 15098.54 11892.11 7796.89 8497.77 100
ADS-MVSNet279.57 27277.53 27485.71 26993.78 16872.13 29779.48 35486.11 35273.09 31480.14 21179.99 34162.15 24390.14 35259.49 32883.52 20894.85 194
EI-MVSNet85.80 18385.20 17487.59 23391.55 23677.41 23595.13 22595.36 16780.43 23080.33 20994.71 15973.72 16495.97 23776.96 22778.64 24789.39 259
Regformer0.00 3560.00 3590.00 3690.00 3920.00 3930.00 3800.00 3930.00 3870.00 3880.00 3870.00 3920.00 3880.00 3860.00 3860.00 384
CVMVSNet84.83 19985.57 16882.63 31291.55 23660.38 35495.13 22595.03 18080.60 22382.10 18994.71 15966.40 21990.19 35174.30 25490.32 15597.31 130
pmmvs482.54 23880.79 24087.79 22686.11 31280.49 15093.55 26493.18 28077.29 28073.35 28289.40 24365.26 22795.05 29175.32 24473.61 27387.83 301
EU-MVSNet76.92 29476.95 27976.83 33684.10 33654.73 36691.77 29392.71 28972.74 31769.57 30988.69 25058.03 27587.43 36064.91 30870.00 29788.33 293
VNet92.11 6091.22 7194.79 2496.91 9186.98 2697.91 5397.96 986.38 10493.65 5095.74 12670.16 20198.95 10193.39 5988.87 16698.43 54
test-LLR88.48 13687.98 12889.98 18092.26 21477.23 23997.11 11495.96 13383.76 17086.30 14191.38 21272.30 17996.78 21080.82 18691.92 14695.94 172
TESTMET0.1,189.83 10689.34 10791.31 13992.54 20680.19 15797.11 11496.57 8186.15 10686.85 13891.83 20879.32 7196.95 19881.30 18392.35 14296.77 150
test-mter88.95 12188.60 11889.98 18092.26 21477.23 23997.11 11495.96 13385.32 12286.30 14191.38 21276.37 11896.78 21080.82 18691.92 14695.94 172
VPA-MVSNet85.32 19183.83 19789.77 19090.25 25982.63 10096.36 16797.07 2983.03 18581.21 19989.02 24661.58 24996.31 22485.02 14970.95 28790.36 241
ACMMPR92.69 4992.67 4692.75 8798.66 2880.57 14597.58 7696.69 6485.20 12791.57 7597.92 5177.01 10799.67 4690.95 8598.41 4198.00 83
testgi74.88 30473.40 30479.32 32880.13 35161.75 34993.21 27486.64 35079.49 25066.56 32491.06 21835.51 35788.67 35556.79 34171.25 28487.56 308
test20.0372.36 31671.15 31375.98 34077.79 35759.16 35892.40 28689.35 33074.09 30561.50 34584.32 31748.09 32085.54 36550.63 35762.15 34383.24 346
thres600view788.06 14786.70 15992.15 11396.10 10385.17 5797.14 11198.85 282.70 19383.41 17193.66 18375.43 13697.82 14867.13 29685.88 19493.45 220
ADS-MVSNet81.26 25678.36 26889.96 18293.78 16879.78 16479.48 35493.60 26273.09 31480.14 21179.99 34162.15 24395.24 27959.49 32883.52 20894.85 194
MP-MVScopyleft92.61 5292.67 4692.42 10198.13 5679.73 16997.33 9796.20 11785.63 11690.53 9297.66 6378.14 8999.70 4192.12 7698.30 4897.85 94
Rongxuan Tan, Qing Wang, et al.: MP-MVS: Multi-Scale Windows PatchMatch and Planar Prior Multi-View Stereo.
testmvs9.92 35212.94 3550.84 3680.65 3900.29 39293.78 2590.39 3910.42 3842.85 38515.84 3840.17 3910.30 3872.18 3840.21 3841.91 382
thres40088.42 13987.15 14992.23 10896.21 9985.30 5197.44 8898.85 283.37 17683.99 16393.82 17975.36 13997.93 14169.04 28786.24 19093.45 220
test1239.07 35311.73 3561.11 3670.50 3910.77 39189.44 3120.20 3920.34 3852.15 38610.72 3850.34 3900.32 3861.79 3850.08 3852.23 381
thres20088.92 12387.65 13492.73 8996.30 9685.62 4497.85 5698.86 184.38 14984.82 15493.99 17675.12 14598.01 13970.86 27986.67 18394.56 202
test0.0.03 182.79 23482.48 22083.74 30186.81 30272.22 29596.52 15595.03 18083.76 17073.00 28693.20 18672.30 17988.88 35464.15 31177.52 25790.12 247
pmmvs365.75 33162.18 33476.45 33867.12 37364.54 33888.68 31785.05 35554.77 36857.54 35973.79 35729.40 36686.21 36355.49 34647.77 36778.62 362
EMVS31.70 34931.45 35132.48 36550.72 38423.95 38874.78 36752.30 38720.36 37916.08 38331.48 38112.80 37853.60 38311.39 38213.10 38219.88 380
E-PMN32.70 34832.39 35033.65 36453.35 38125.70 38774.07 36853.33 38621.08 37817.17 38233.63 38011.85 38054.84 38212.98 38114.04 37920.42 379
PGM-MVS91.93 6291.80 6392.32 10698.27 5079.74 16895.28 21597.27 1983.83 16790.89 8997.78 5976.12 12299.56 5788.82 11797.93 5997.66 108
LCM-MVSNet-Re83.75 21783.54 20484.39 29593.54 17564.14 34192.51 28384.03 35983.90 16566.14 32586.59 28367.36 21192.68 32584.89 15092.87 13496.35 162
LCM-MVSNet52.52 33848.24 34165.35 35047.63 38541.45 37872.55 37083.62 36131.75 37337.66 37157.92 3719.19 38376.76 37349.26 36044.60 37077.84 363
MCST-MVS96.17 396.12 696.32 799.42 289.36 998.94 1797.10 2895.17 292.11 6998.46 2287.33 2499.97 297.21 1999.31 499.63 7
mvs_anonymous88.68 13087.62 13791.86 12394.80 14081.69 12393.53 26594.92 18482.03 20578.87 22490.43 23075.77 12795.34 27385.04 14893.16 13298.55 48
MVS_Test90.29 9989.18 10993.62 5695.23 12484.93 6394.41 24294.66 20184.31 15090.37 9691.02 21975.13 14497.82 14883.11 17494.42 11598.12 74
MDA-MVSNet-bldmvs71.45 32067.94 32581.98 31785.33 32468.50 32792.35 28788.76 33770.40 32942.99 36881.96 33046.57 32891.31 34248.75 36254.39 35486.11 327
CDPH-MVS93.12 3792.91 4193.74 5098.65 3083.88 7797.67 7196.26 11283.00 18693.22 5698.24 2981.31 5599.21 7889.12 11498.74 2998.14 72
test1294.25 3698.34 4685.55 4596.35 10792.36 6480.84 5799.22 7798.31 4797.98 85
casdiffmvspermissive90.95 8690.39 8592.63 9392.82 19982.53 10296.83 13694.47 21487.69 7988.47 11895.56 13574.04 16097.54 16390.90 8892.74 13697.83 96
Fangjinhua Wang, Qingshan Xu, Yew-Soon Ong, Marc Pollefeys: Lightweight and Accurate Multi-View Stereo With Confidence-Aware Diffusion Model. IEEE T-PAMI 2025
diffmvspermissive91.17 8190.74 7992.44 10093.11 19182.50 10496.25 17493.62 26187.79 7690.40 9595.93 12273.44 16897.42 17193.62 5892.55 13897.41 125
Fangjinhua Wang, Qingshan Xu, Yew-Soon Ong, Marc Pollefeys: Lightweight and Accurate Multi-View Stereo With Confidence-Aware Diffusion Model. IEEE T-PAMI 2025
baseline290.39 9690.21 9090.93 15290.86 25080.99 13495.20 22197.41 1686.03 11080.07 21494.61 16190.58 697.47 17087.29 13389.86 15894.35 203
baseline188.85 12687.49 14192.93 8395.21 12686.85 2895.47 20994.61 20687.29 8883.11 17694.99 15480.70 5996.89 20282.28 17873.72 27295.05 191
YYNet173.53 31070.43 31782.85 31084.52 33271.73 30691.69 29591.37 30767.63 33746.79 36681.21 33555.04 29990.43 34955.93 34359.70 34786.38 323
PMMVS250.90 34046.31 34364.67 35155.53 37946.67 37277.30 36371.02 37740.89 37034.16 37459.32 3699.83 38276.14 37540.09 37128.63 37771.21 366
MDA-MVSNet_test_wron73.54 30970.43 31782.86 30984.55 33071.85 30391.74 29491.32 31067.63 33746.73 36781.09 33655.11 29890.42 35055.91 34459.76 34686.31 324
tpmvs83.04 23080.77 24189.84 18695.43 11877.96 21985.59 34095.32 17175.31 29676.27 25483.70 32273.89 16197.41 17259.53 32781.93 22694.14 206
PM-MVS69.32 32566.93 32776.49 33773.60 36855.84 36285.91 33879.32 37074.72 30161.09 34778.18 34621.76 37091.10 34470.86 27956.90 35182.51 351
HQP_MVS87.50 15887.09 15288.74 20691.86 23277.96 21997.18 10594.69 19789.89 4381.33 19794.15 17264.77 23097.30 17987.08 13482.82 21890.96 233
plane_prior791.86 23277.55 233
plane_prior691.98 22877.92 22264.77 230
plane_prior594.69 19797.30 17987.08 13482.82 21890.96 233
plane_prior494.15 172
plane_prior377.75 22990.17 4081.33 197
plane_prior297.18 10589.89 43
plane_prior191.95 230
plane_prior77.96 21997.52 8390.36 3882.96 216
PS-CasMVS80.27 26679.18 26283.52 30587.56 29669.88 31894.08 25495.29 17280.27 23572.08 29488.51 25559.22 26592.23 33167.49 29368.15 31488.45 290
UniMVSNet_NR-MVSNet85.49 18984.59 18488.21 21989.44 27779.36 17796.71 14696.41 9985.22 12578.11 23090.98 22176.97 10895.14 28479.14 20468.30 31290.12 247
PEN-MVS79.47 27478.26 27083.08 30886.36 30668.58 32693.85 25894.77 19579.76 24471.37 29688.55 25259.79 25792.46 32764.50 30965.40 33188.19 295
TransMVSNet (Re)76.94 29374.38 29784.62 28985.92 31575.25 26995.28 21589.18 33273.88 30767.22 31586.46 28659.64 25894.10 30959.24 33152.57 36084.50 340
DTE-MVSNet78.37 28077.06 27882.32 31585.22 32667.17 33393.40 26693.66 25978.71 26570.53 30388.29 25759.06 26692.23 33161.38 32363.28 34087.56 308
DU-MVS84.57 20483.33 20788.28 21588.76 28179.36 17796.43 16395.41 16685.42 12078.11 23090.82 22367.61 20795.14 28479.14 20468.30 31290.33 243
UniMVSNet (Re)85.31 19284.23 19288.55 20989.75 26980.55 14696.72 14496.89 3985.42 12078.40 22788.93 24775.38 13895.52 26778.58 20968.02 31589.57 258
CP-MVSNet81.01 26080.08 25383.79 29987.91 29270.51 31394.29 25195.65 14980.83 21872.54 29288.84 24863.71 23492.32 32968.58 29168.36 31188.55 286
WR-MVS_H81.02 25980.09 25283.79 29988.08 29071.26 31194.46 24096.54 8480.08 23872.81 28986.82 27970.36 19992.65 32664.18 31067.50 32187.46 311
WR-MVS84.32 20882.96 21188.41 21189.38 27880.32 15196.59 15196.25 11383.97 16176.63 24590.36 23167.53 20994.86 29475.82 24070.09 29690.06 252
NR-MVSNet83.35 22281.52 23488.84 20388.76 28181.31 12994.45 24195.16 17684.65 14167.81 31490.82 22370.36 19994.87 29374.75 24866.89 32790.33 243
Baseline_NR-MVSNet81.22 25780.07 25484.68 28685.32 32575.12 27096.48 15788.80 33676.24 29177.28 23786.40 29067.61 20794.39 30575.73 24166.73 32884.54 339
TranMVSNet+NR-MVSNet83.24 22681.71 23087.83 22587.71 29478.81 19396.13 18394.82 19184.52 14476.18 25790.78 22564.07 23394.60 29974.60 25266.59 32990.09 250
TSAR-MVS + GP.94.35 2294.50 2093.89 4697.38 8483.04 9698.10 4395.29 17291.57 2293.81 4897.45 7586.64 2799.43 6696.28 2694.01 12099.20 22
n20.00 393
nn0.00 393
mPP-MVS91.88 6391.82 6292.07 11598.38 4478.63 19797.29 9896.09 12485.12 12988.45 11997.66 6375.53 13299.68 4489.83 10598.02 5597.88 90
door-mid79.75 369
XVG-OURS-SEG-HR85.74 18585.16 17787.49 23890.22 26071.45 30991.29 29994.09 23581.37 21183.90 16795.22 14160.30 25697.53 16585.58 14484.42 20593.50 218
mvsmamba85.17 19484.54 18587.05 24887.94 29175.11 27196.22 17587.79 34486.91 9778.55 22591.77 20964.93 22995.91 24386.94 13879.80 23490.12 247
MVSFormer91.36 7690.57 8193.73 5293.00 19288.08 1694.80 23794.48 21280.74 22094.90 3597.13 9178.84 7995.10 28783.77 16197.46 6998.02 78
jason92.73 4592.23 5594.21 3990.50 25687.30 2598.65 2395.09 17790.61 3292.76 6297.13 9175.28 14297.30 17993.32 6296.75 9098.02 78
jason: jason.
lupinMVS93.87 3193.58 3394.75 2693.00 19288.08 1699.15 595.50 15791.03 2894.90 3597.66 6378.84 7997.56 15994.64 4797.46 6998.62 44
test_djsdf83.00 23282.45 22184.64 28884.07 33769.78 31994.80 23794.48 21280.74 22075.41 26987.70 26561.32 25295.10 28783.77 16179.76 23589.04 275
HPM-MVS_fast90.38 9890.17 9291.03 15097.61 7077.35 23797.15 11095.48 15879.51 24988.79 11496.90 9971.64 18798.81 10987.01 13797.44 7196.94 141
K. test v373.62 30771.59 31279.69 32682.98 34359.85 35790.85 30488.83 33577.13 28258.90 35282.11 32943.62 33491.72 33865.83 30454.10 35587.50 310
lessismore_v079.98 32580.59 34958.34 35980.87 36658.49 35483.46 32443.10 33893.89 31263.11 31748.68 36487.72 302
SixPastTwentyTwo76.04 29774.32 29881.22 31984.54 33161.43 35291.16 30089.30 33177.89 27164.04 33286.31 29148.23 31994.29 30763.54 31563.84 33887.93 300
OurMVSNet-221017-077.18 29276.06 28480.55 32383.78 34160.00 35690.35 30691.05 31477.01 28666.62 32387.92 26347.73 32594.03 31071.63 27068.44 31087.62 305
HPM-MVScopyleft91.62 7091.53 6891.89 12297.88 6379.22 18196.99 12295.73 14682.07 20489.50 10897.19 8975.59 13198.93 10490.91 8797.94 5797.54 115
Chunlin Ren, Qingshan Xu, Shikun Zhang, Jiaqi Yang: Hierarchical Prior Mining for Non-local Multi-View Stereo. ICCV 2023
XVG-OURS85.18 19384.38 19087.59 23390.42 25871.73 30691.06 30294.07 23682.00 20683.29 17395.08 15156.42 29097.55 16183.70 16583.42 21093.49 219
XVG-ACMP-BASELINE79.38 27577.90 27283.81 29884.98 32867.14 33489.03 31493.18 28080.26 23672.87 28888.15 26038.55 35096.26 22576.05 23778.05 25588.02 298
casdiffmvs_mvgpermissive91.13 8290.45 8493.17 7392.99 19583.58 8597.46 8794.56 20987.69 7987.19 13494.98 15574.50 15597.60 15691.88 8092.79 13598.34 57
Fangjinhua Wang, Qingshan Xu, Yew-Soon Ong, Marc Pollefeys: Lightweight and Accurate Multi-View Stereo With Confidence-Aware Diffusion Model. IEEE T-PAMI 2025
LPG-MVS_test84.20 21083.49 20586.33 25790.88 24773.06 29095.28 21594.13 23282.20 20076.31 25193.20 18654.83 30196.95 19883.72 16380.83 23088.98 278
LGP-MVS_train86.33 25790.88 24773.06 29094.13 23282.20 20076.31 25193.20 18654.83 30196.95 19883.72 16380.83 23088.98 278
baseline90.76 8990.10 9392.74 8892.90 19882.56 10194.60 23994.56 20987.69 7989.06 11295.67 13073.76 16397.51 16690.43 9892.23 14498.16 70
test1196.50 89
door80.13 368
EPNet_dtu87.65 15687.89 12986.93 25094.57 14471.37 31096.72 14496.50 8988.56 6087.12 13595.02 15275.91 12694.01 31166.62 29890.00 15695.42 185
Wanjuan Su, Wenbing Tao: Efficient Edge-Preserving Multi-View Stereo Network for Depth Estimation. AAAI 2023
CHOSEN 1792x268891.07 8390.21 9093.64 5495.18 12783.53 8696.26 17396.13 12188.92 5384.90 15393.10 18972.86 17299.62 5088.86 11695.67 10697.79 99
EPNet94.06 2994.15 2793.76 4997.27 8784.35 7198.29 3397.64 1494.57 595.36 2696.88 10179.96 6899.12 9091.30 8296.11 9897.82 97
Wanjuan Su, Wenbing Tao: Efficient Edge-Preserving Multi-View Stereo Network for Depth Estimation. AAAI 2023
HQP5-MVS78.48 199
HQP-NCC92.08 22397.63 7290.52 3382.30 183
ACMP_Plane92.08 22397.63 7290.52 3382.30 183
APD-MVScopyleft93.61 3293.59 3293.69 5398.76 2483.26 9297.21 10196.09 12482.41 19894.65 4098.21 3081.96 5498.81 10994.65 4698.36 4599.01 25
Yuesong Wang, Zhaojie Zeng and etc.: Adaptive Patch Deformation for Textureless-Resilient Multi-View Stereo. CVPR2023
BP-MVS87.67 130
HQP4-MVS82.30 18397.32 17791.13 231
HQP3-MVS94.80 19283.01 214
HQP2-MVS65.40 224
CNVR-MVS96.30 196.54 195.55 1499.31 587.69 2199.06 1197.12 2694.66 496.79 1398.78 986.42 2999.95 397.59 1599.18 799.00 26
NCCC95.63 695.94 894.69 2799.21 685.15 5899.16 496.96 3494.11 895.59 2598.64 1785.07 3399.91 495.61 3599.10 999.00 26
114514_t88.79 12987.57 13992.45 9898.21 5381.74 12196.99 12295.45 16175.16 29782.48 18095.69 12968.59 20698.50 12080.33 19095.18 10897.10 138
CP-MVS92.54 5492.60 4892.34 10398.50 4079.90 16298.40 3096.40 10184.75 13690.48 9498.09 3877.40 10199.21 7891.15 8498.23 5097.92 89
DSMNet-mixed73.13 31272.45 30875.19 34277.51 35946.82 37185.09 34382.01 36567.61 34169.27 31181.33 33450.89 31186.28 36254.54 34783.80 20792.46 225
tpm287.35 16086.26 16190.62 16292.93 19778.67 19688.06 32395.99 13079.33 25287.40 12986.43 28980.28 6396.40 22080.23 19385.73 19796.79 148
NP-MVS92.04 22778.22 20994.56 162
EG-PatchMatch MVS74.92 30372.02 31083.62 30383.76 34273.28 28793.62 26292.04 29868.57 33658.88 35383.80 32131.87 36395.57 26656.97 34078.67 24682.00 356
tpm cat183.63 21981.38 23590.39 16893.53 18078.19 21485.56 34195.09 17770.78 32878.51 22683.28 32574.80 14997.03 19366.77 29784.05 20695.95 171
SteuartSystems-ACMMP94.13 2894.44 2393.20 7295.41 11981.35 12899.02 1596.59 7989.50 4794.18 4698.36 2683.68 4499.45 6594.77 4398.45 3998.81 32
Skip Steuart: Steuart Systems R&D Blog.
CostFormer89.08 11988.39 12291.15 14793.13 18979.15 18488.61 31896.11 12383.14 18089.58 10586.93 27883.83 4396.87 20488.22 12585.92 19397.42 124
CR-MVSNet83.53 22081.36 23690.06 17790.16 26279.75 16679.02 35891.12 31184.24 15682.27 18780.35 33975.45 13493.67 31763.37 31686.25 18896.75 152
JIA-IIPM79.00 27877.20 27684.40 29489.74 27164.06 34275.30 36695.44 16262.15 35081.90 19259.08 37078.92 7795.59 26466.51 30185.78 19693.54 217
Patchmtry77.36 29074.59 29585.67 27189.75 26975.75 26677.85 36191.12 31160.28 35971.23 29780.35 33975.45 13493.56 31957.94 33367.34 32387.68 304
PatchT79.75 26976.85 28088.42 21089.55 27475.49 26777.37 36294.61 20663.07 34782.46 18173.32 36075.52 13393.41 32251.36 35484.43 20496.36 161
tpmrst88.36 14087.38 14591.31 13994.36 15379.92 16187.32 32895.26 17485.32 12288.34 12186.13 29480.60 6096.70 21283.78 16085.34 20197.30 131
BH-w/o88.24 14487.47 14390.54 16595.03 13478.54 19897.41 9393.82 24884.08 15778.23 22994.51 16469.34 20497.21 18480.21 19494.58 11495.87 174
tpm85.55 18884.47 18988.80 20590.19 26175.39 26888.79 31694.69 19784.83 13583.96 16585.21 30678.22 8894.68 29876.32 23578.02 25696.34 163
DELS-MVS94.98 1394.49 2196.44 696.42 9590.59 799.21 397.02 3094.40 791.46 7697.08 9483.32 4599.69 4292.83 6998.70 3099.04 24
Christian Sormann, Emanuele Santellani, Mattia Rossi, Andreas Kuhn, Friedrich Fraundorfer: DELS-MVS: Deep Epipolar Line Search for Multi-View Stereo. Winter Conference on Applications of Computer Vision (WACV), 2023
BH-untuned86.95 16485.94 16489.99 17994.52 14777.46 23496.78 14193.37 27381.80 20776.62 24693.81 18166.64 21797.02 19476.06 23693.88 12395.48 184
RPMNet79.85 26875.92 28691.64 13190.16 26279.75 16679.02 35895.44 16258.43 36582.27 18772.55 36273.03 17198.41 12846.10 36586.25 18896.75 152
MVSTER89.25 11888.92 11590.24 17395.98 10684.66 6796.79 14095.36 16787.19 9380.33 20990.61 22790.02 1295.97 23785.38 14678.64 24790.09 250
CPTT-MVS89.72 10889.87 10189.29 19598.33 4773.30 28697.70 6895.35 16975.68 29387.40 12997.44 7870.43 19898.25 13389.56 11096.90 8396.33 165
GBi-Net82.42 24080.43 24988.39 21292.66 20181.95 11094.30 24893.38 27079.06 26075.82 26385.66 29656.38 29193.84 31371.23 27475.38 26589.38 261
PVSNet_Blended_VisFu91.24 7990.77 7892.66 9195.09 12982.40 10697.77 6295.87 14088.26 6686.39 13993.94 17776.77 11199.27 7488.80 11894.00 12196.31 166
PVSNet_BlendedMVS90.05 10289.96 9790.33 17197.47 7683.86 7898.02 5096.73 5887.98 7189.53 10689.61 24176.42 11699.57 5594.29 4979.59 23887.57 307
UnsupCasMVSNet_eth73.25 31170.57 31681.30 31877.53 35866.33 33587.24 32993.89 24480.38 23157.90 35781.59 33242.91 34090.56 34865.18 30748.51 36587.01 316
UnsupCasMVSNet_bld68.60 32864.50 33280.92 32174.63 36767.80 32883.97 34692.94 28665.12 34554.63 36268.23 36635.97 35592.17 33360.13 32644.83 36982.78 349
PVSNet_Blended93.13 3692.98 4093.57 5897.47 7683.86 7899.32 196.73 5891.02 2989.53 10696.21 11776.42 11699.57 5594.29 4995.81 10597.29 132
FMVSNet576.46 29674.16 30083.35 30790.05 26576.17 25489.58 31089.85 32571.39 32665.29 32980.42 33850.61 31387.70 35961.05 32569.24 30486.18 326
test182.42 24080.43 24988.39 21292.66 20181.95 11094.30 24893.38 27079.06 26075.82 26385.66 29656.38 29193.84 31371.23 27475.38 26589.38 261
new_pmnet66.18 33063.18 33375.18 34376.27 36561.74 35083.79 34784.66 35656.64 36651.57 36471.85 36531.29 36487.93 35749.98 35862.55 34175.86 365
FMVSNet384.71 20082.71 21790.70 16194.55 14587.71 2095.92 19094.67 20081.73 20875.82 26388.08 26166.99 21494.47 30371.23 27475.38 26589.91 254
dp84.30 20982.31 22290.28 17294.24 15677.97 21886.57 33495.53 15479.94 24280.75 20385.16 30871.49 18996.39 22163.73 31383.36 21196.48 159
FMVSNet282.79 23480.44 24889.83 18792.66 20185.43 4795.42 21194.35 22179.06 26074.46 27587.28 27056.38 29194.31 30669.72 28674.68 26989.76 256
FMVSNet179.50 27376.54 28288.39 21288.47 28681.95 11094.30 24893.38 27073.14 31372.04 29585.66 29643.86 33393.84 31365.48 30572.53 27889.38 261
N_pmnet61.30 33360.20 33664.60 35284.32 33317.00 39091.67 29610.98 38961.77 35258.45 35578.55 34549.89 31691.83 33742.27 36863.94 33784.97 337
cascas86.50 17184.48 18892.55 9692.64 20485.95 3697.04 12195.07 17975.32 29580.50 20591.02 21954.33 30397.98 14086.79 13987.62 17793.71 215
BH-RMVSNet86.84 16685.28 17391.49 13695.35 12180.26 15596.95 12992.21 29582.86 19081.77 19595.46 13759.34 26397.64 15469.79 28593.81 12496.57 157
UGNet87.73 15486.55 16091.27 14295.16 12879.11 18596.35 16896.23 11488.14 6887.83 12790.48 22850.65 31299.09 9280.13 19594.03 11895.60 180
Wanjuan Su, Qingshan Xu, Wenbing Tao: Uncertainty-guided Multi-view Stereo Network for Depth Estimation. IEEE Transactions on Circuits and Systems for Video Technology, 2022
WTY-MVS92.65 5191.68 6595.56 1396.00 10588.90 1298.23 3597.65 1388.57 5989.82 10097.22 8879.29 7299.06 9489.57 10988.73 16898.73 38
XXY-MVS83.84 21582.00 22689.35 19487.13 30081.38 12795.72 19994.26 22680.15 23775.92 26190.63 22661.96 24796.52 21778.98 20673.28 27790.14 246
EC-MVSNet91.73 6592.11 5890.58 16393.54 17577.77 22898.07 4694.40 21987.44 8492.99 6097.11 9374.59 15496.87 20493.75 5597.08 8097.11 137
sss90.87 8889.96 9793.60 5794.15 15883.84 8097.14 11198.13 785.93 11289.68 10296.09 12071.67 18599.30 7387.69 12989.16 16297.66 108
Test_1112_low_res88.03 14886.73 15791.94 12193.15 18780.88 13896.44 16192.41 29383.59 17580.74 20491.16 21780.18 6597.59 15777.48 22185.40 19997.36 128
1112_ss88.60 13487.47 14392.00 11993.21 18480.97 13596.47 15892.46 29183.64 17380.86 20297.30 8480.24 6497.62 15577.60 21885.49 19897.40 126
ab-mvs-re8.11 35410.81 3570.00 3690.00 3920.00 3930.00 3800.00 3930.00 3870.00 38897.30 840.00 3920.00 3880.00 3860.00 3860.00 384
ab-mvs87.08 16184.94 18193.48 6493.34 18383.67 8388.82 31595.70 14781.18 21384.55 15990.14 23662.72 23998.94 10385.49 14582.54 22297.85 94
TR-MVS86.30 17584.93 18290.42 16794.63 14377.58 23296.57 15293.82 24880.30 23382.42 18295.16 14658.74 26797.55 16174.88 24787.82 17696.13 170
MDTV_nov1_ep13_2view81.74 12186.80 33280.65 22285.65 14574.26 15776.52 23196.98 140
MDTV_nov1_ep1383.69 19894.09 16281.01 13386.78 33396.09 12483.81 16884.75 15584.32 31774.44 15696.54 21663.88 31285.07 202
MIMVSNet169.44 32466.65 32877.84 33376.48 36362.84 34787.42 32788.97 33466.96 34257.75 35879.72 34332.77 36285.83 36446.32 36463.42 33984.85 338
MIMVSNet79.18 27775.99 28588.72 20787.37 29980.66 14379.96 35391.82 30077.38 27974.33 27681.87 33141.78 34290.74 34766.36 30383.10 21394.76 196
IterMVS-LS83.93 21382.80 21687.31 24291.46 23977.39 23695.66 20293.43 26880.44 22875.51 26787.26 27273.72 16495.16 28376.99 22570.72 28989.39 259
Fangjinhua Wang, Silvano Galliani, Christoph Vogel, Marc Pollefeys: IterMVS: Iterative Probability Estimation for Efficient Multi-View Stereo.
CDS-MVSNet89.50 11288.96 11391.14 14891.94 23180.93 13797.09 11895.81 14284.26 15584.72 15694.20 17180.31 6295.64 26083.37 17188.96 16596.85 147
Khang Truong Giang, Soohwan Song, Sungho Jo: Curvature-guided dynamic scale networks for Multi-view Stereo. ICLR 2022
ACMMP++_ref78.45 252
IterMVS80.67 26379.16 26385.20 27989.79 26776.08 25692.97 27991.86 29980.28 23471.20 29885.14 30957.93 27691.34 34172.52 26670.74 28888.18 296
Fangjinhua Wang, Silvano Galliani, Christoph Vogel, Marc Pollefeys: IterMVS: Iterative Probability Estimation for Efficient Multi-View Stereo.
DP-MVS Recon91.72 6790.85 7694.34 3399.50 185.00 6298.51 2895.96 13380.57 22488.08 12597.63 6976.84 10999.89 785.67 14394.88 11098.13 73
MVS_111021_LR91.60 7191.64 6791.47 13795.74 11178.79 19496.15 18096.77 5288.49 6188.64 11797.07 9572.33 17899.19 8393.13 6796.48 9396.43 160
DP-MVS81.47 25378.28 26991.04 14998.14 5578.48 19995.09 23086.97 34661.14 35771.12 29992.78 19459.59 25999.38 6853.11 35186.61 18495.27 190
ACMMP++79.05 243
HQP-MVS87.91 15287.55 14088.98 20192.08 22378.48 19997.63 7294.80 19290.52 3382.30 18394.56 16265.40 22497.32 17787.67 13083.01 21491.13 231
QAPM86.88 16584.51 18693.98 4394.04 16485.89 3997.19 10496.05 12873.62 30875.12 27195.62 13262.02 24599.74 3470.88 27896.06 10096.30 167
Vis-MVSNetpermissive88.67 13187.82 13191.24 14392.68 20078.82 19196.95 12993.85 24787.55 8287.07 13695.13 14863.43 23697.21 18477.58 21996.15 9797.70 106
Jingyang Zhang, Yao Yao, Shiwei Li, Zixin Luo, Tian Fang: Visibility-aware Multiview Stereo Network. BMVC 2020
MVS-HIRNet71.36 32167.00 32684.46 29390.58 25569.74 32079.15 35787.74 34546.09 36961.96 34450.50 37345.14 33195.64 26053.74 34988.11 17588.00 299
IS-MVSNet88.67 13188.16 12690.20 17593.61 17276.86 24596.77 14393.07 28484.02 15983.62 17095.60 13374.69 15396.24 22778.43 21193.66 12697.49 121
HyFIR lowres test89.36 11488.60 11891.63 13394.91 13780.76 14195.60 20595.53 15482.56 19784.03 16291.24 21678.03 9096.81 20887.07 13688.41 17297.32 129
EPMVS87.47 15985.90 16592.18 11095.41 11982.26 10987.00 33196.28 11185.88 11384.23 16085.57 30075.07 14696.26 22571.14 27792.50 13998.03 77
PAPM_NR91.46 7390.82 7793.37 6798.50 4081.81 11995.03 23196.13 12184.65 14186.10 14397.65 6779.24 7499.75 3283.20 17296.88 8598.56 46
TAMVS88.48 13687.79 13290.56 16491.09 24479.18 18296.45 16095.88 13883.64 17383.12 17593.33 18575.94 12595.74 25582.40 17788.27 17396.75 152
PAPR92.74 4492.17 5794.45 3198.89 2084.87 6597.20 10396.20 11787.73 7888.40 12098.12 3678.71 8299.76 2787.99 12696.28 9498.74 34
RPSCF77.73 28676.63 28181.06 32088.66 28555.76 36487.77 32587.88 34364.82 34674.14 27792.79 19349.22 31896.81 20867.47 29476.88 25890.62 237
Vis-MVSNet (Re-imp)88.88 12588.87 11688.91 20293.89 16774.43 27896.93 13194.19 22984.39 14883.22 17495.67 13078.24 8794.70 29778.88 20794.40 11697.61 113
test_040272.68 31469.54 32182.09 31688.67 28471.81 30592.72 28286.77 34961.52 35362.21 34283.91 32043.22 33793.76 31634.60 37272.23 28280.72 360
MVS_111021_HR93.41 3593.39 3793.47 6697.34 8582.83 9897.56 7898.27 689.16 5189.71 10197.14 9079.77 6999.56 5793.65 5797.94 5798.02 78
CSCG92.02 6191.65 6693.12 7498.53 3680.59 14497.47 8597.18 2477.06 28584.64 15897.98 4883.98 4199.52 5990.72 9197.33 7599.23 21
PatchMatch-RL85.00 19783.66 20089.02 20095.86 10874.55 27792.49 28493.60 26279.30 25479.29 22191.47 21058.53 26998.45 12570.22 28392.17 14594.07 209
API-MVS90.18 10088.97 11293.80 4898.66 2882.95 9797.50 8495.63 15175.16 29786.31 14097.69 6172.49 17699.90 581.26 18496.07 9998.56 46
Test By Simon71.65 186
TDRefinement69.20 32665.78 33079.48 32766.04 37462.21 34888.21 32086.12 35162.92 34861.03 34885.61 29933.23 36094.16 30855.82 34553.02 35882.08 355
USDC78.65 27976.25 28385.85 26687.58 29574.60 27689.58 31090.58 32284.05 15863.13 33788.23 25840.69 34996.86 20666.57 30075.81 26386.09 328
EPP-MVSNet89.76 10789.72 10389.87 18593.78 16876.02 26097.22 9996.51 8779.35 25185.11 14995.01 15384.82 3497.10 19287.46 13288.21 17496.50 158
PMMVS89.46 11389.92 9988.06 22194.64 14269.57 32296.22 17594.95 18287.27 8991.37 7996.54 11365.88 22097.39 17488.54 11993.89 12297.23 133
PAPM92.87 4292.40 5094.30 3492.25 21687.85 1896.40 16596.38 10491.07 2788.72 11696.90 9982.11 5397.37 17690.05 10497.70 6397.67 107
ACMMPcopyleft90.39 9689.97 9691.64 13197.58 7378.21 21296.78 14196.72 6084.73 13884.72 15697.23 8771.22 19099.63 4988.37 12492.41 14197.08 139
Qingshan Xu, Weihang Kong, Wenbing Tao, Marc Pollefeys: Multi-Scale Geometric Consistency Guided and Planar Prior Assisted Multi-View Stereo. IEEE Transactions on Pattern Analysis and Machine Intelligence
CNLPA86.96 16385.37 17291.72 12997.59 7279.34 17997.21 10191.05 31474.22 30378.90 22296.75 10967.21 21398.95 10174.68 24990.77 15496.88 146
PatchmatchNetpermissive86.83 16785.12 17891.95 12094.12 16182.27 10886.55 33595.64 15084.59 14382.98 17884.99 31277.26 10295.96 24068.61 29091.34 15197.64 110
Fangjinhua Wang, Silvano Galliani, Christoph Vogel, Pablo Speciale, Marc Pollefeys: PatchmatchNet: Learned Multi-View Patchmatch Stereo.
PHI-MVS93.59 3393.63 3193.48 6498.05 5881.76 12098.64 2497.13 2582.60 19694.09 4798.49 2180.35 6199.85 1094.74 4598.62 3298.83 31
F-COLMAP84.50 20683.44 20687.67 22995.22 12572.22 29595.95 18893.78 25375.74 29276.30 25395.18 14559.50 26198.45 12572.67 26586.59 18592.35 228
ANet_high46.22 34141.28 34861.04 35739.91 38746.25 37470.59 37176.18 37358.87 36423.09 37948.00 37612.58 37966.54 37928.65 37513.62 38070.35 367
wuyk23d14.10 35113.89 35414.72 36655.23 38022.91 38933.83 3793.56 3904.94 3834.11 3842.28 3862.06 38919.66 38510.23 3838.74 3831.59 383
OMC-MVS88.80 12888.16 12690.72 16095.30 12277.92 22294.81 23694.51 21186.80 10084.97 15296.85 10267.53 20998.60 11585.08 14787.62 17795.63 179
MG-MVS94.25 2593.72 2995.85 1099.38 389.35 1097.98 5198.09 889.99 4192.34 6596.97 9881.30 5698.99 9788.54 11998.88 2099.20 22
AdaColmapbinary88.81 12787.61 13892.39 10299.33 479.95 16096.70 14895.58 15277.51 27783.05 17796.69 11161.90 24899.72 3784.29 15393.47 12897.50 120
uanet0.00 3560.00 3590.00 3690.00 3920.00 3930.00 3800.00 3930.00 3870.00 3880.00 3870.00 3920.00 3880.00 3860.00 3860.00 384
ITE_SJBPF82.38 31387.00 30165.59 33689.55 32779.99 24169.37 31091.30 21441.60 34495.33 27462.86 31874.63 27086.24 325
DeepMVS_CXcopyleft64.06 35378.53 35543.26 37768.11 38069.94 33238.55 37076.14 35218.53 37279.34 37143.72 36741.62 37469.57 368
TinyColmap72.41 31568.99 32482.68 31188.11 28969.59 32188.41 31985.20 35465.55 34357.91 35684.82 31430.80 36595.94 24151.38 35368.70 30782.49 353
MAR-MVS90.63 9190.22 8991.86 12398.47 4278.20 21397.18 10596.61 7583.87 16688.18 12498.18 3168.71 20599.75 3283.66 16697.15 7997.63 111
Zhenyu Xu, Yiguang Liu, Xuelei Shi, Ying Wang, Yunan Zheng: MARMVS: Matching Ambiguity Reduced Multiple View Stereo for Efficient Large Scale Scene Reconstruction. CVPR 2020
LF4IMVS72.36 31670.82 31476.95 33579.18 35356.33 36086.12 33786.11 35269.30 33563.06 33886.66 28233.03 36192.25 33065.33 30668.64 30882.28 354
MSDG80.62 26477.77 27389.14 19793.43 18277.24 23891.89 29190.18 32369.86 33368.02 31391.94 20652.21 30998.84 10759.32 33083.12 21291.35 230
LS3D82.22 24479.94 25789.06 19897.43 7974.06 28293.20 27592.05 29761.90 35173.33 28395.21 14259.35 26299.21 7854.54 34792.48 14093.90 212
CLD-MVS87.97 15087.48 14289.44 19392.16 22180.54 14898.14 3894.92 18491.41 2379.43 21995.40 13862.34 24197.27 18290.60 9382.90 21790.50 240
Zhaoxin Li, Wangmeng Zuo, Zhaoqi Wang, Lei Zhang: Confidence-based Large-scale Dense Multi-view Stereo. IEEE Transaction on Image Processing, 2020
FPMVS55.09 33652.93 33961.57 35655.98 37840.51 38083.11 35083.41 36237.61 37234.95 37371.95 36314.40 37576.95 37229.81 37365.16 33267.25 369
Gipumacopyleft45.11 34442.05 34654.30 36080.69 34851.30 36835.80 37883.81 36028.13 37427.94 37834.53 37811.41 38176.70 37421.45 37854.65 35234.90 378
S. Galliani, K. Lasinger, K. Schindler: Massively Parallel Multiview Stereopsis by Surface Normal Diffusion. ICCV 2015