This table lists the benchmark results for the high-res multi-view scenario. The following metrics are evaluated:

(*) For exact definitions, detailing how potentially incomplete ground truth is taken into account, see our paper.

The datasets are grouped into different categories, and result averages are computed for a category and method if results of the method are available for all datasets within the category. Note that the category "all" includes both the high-res multi-view and the low-res many-view scenarios.

Methods with suffix _ROB may participate in the Robust Vision Challenge.

Click a dataset result cell to show a visualization of the reconstruction. For training datasets, ground truth and accuracy / completeness visualizations are also available. The visualizations may not work with mobile browsers.




Method Infoallhigh-res
multi-view
indooroutdoorbotani.boulde.bridgedoorexhibi.lectur.living.loungeobserv.old co.statueterrac.
sorted bysort bysort bysort bysort bysort bysort bysort bysort bysort bysort bysort bysort bysort bysort bysort by
DeepPCF-MVS89.82 194.61 2296.17 589.91 19997.09 9070.21 33398.99 2296.69 7395.57 295.08 4099.23 186.40 3099.87 897.84 2098.66 3199.65 6
DeepC-MVS_fast89.06 294.48 2494.30 2995.02 2098.86 2185.68 4698.06 5596.64 8193.64 1291.74 8498.54 2080.17 7499.90 592.28 8498.75 2899.49 8
Andreas Kuhn, Christian Sormann, Mattia Rossi, Oliver Erdler, Friedrich Fraundorfer: DeepC-MVS: Deep Confidence Prediction for Multi-View Stereo Reconstruction. 3DV 2020
DeepC-MVS86.58 391.53 8491.06 8792.94 8994.52 15481.89 12495.95 20495.98 14690.76 3983.76 18596.76 11773.24 18799.71 4591.67 9296.96 8397.22 140
Andreas Kuhn, Christian Sormann, Mattia Rossi, Oliver Erdler, Friedrich Fraundorfer: DeepC-MVS: Deep Confidence Prediction for Multi-View Stereo Reconstruction. 3DV 2020
IB-MVS85.34 488.67 14687.14 16793.26 7593.12 20184.32 7998.76 2697.27 2187.19 10479.36 23790.45 24983.92 4798.53 12984.41 16669.79 31896.93 153
Christian Sormann, Mattia Rossi, Andreas Kuhn and Friedrich Fraundorfer: IB-MVS: An Iterative Algorithm for Deep Multi-View Stereo based on Binary Decisions. BMVC 2021
PCF-MVS84.09 586.77 18585.00 19692.08 12892.06 24083.07 10392.14 30894.47 23179.63 26776.90 25994.78 17371.15 20899.20 9272.87 27991.05 16293.98 226
Andreas Kuhn, Shan Lin, Oliver Erdler: Plane Completion and Filtering for Multi-View Stereo Reconstruction. GCPR 2019
HY-MVS84.06 691.63 8190.37 10195.39 1796.12 10388.25 1590.22 32797.58 1688.33 7590.50 10391.96 22479.26 8299.06 10490.29 11289.07 17498.88 31
PLCcopyleft83.97 788.00 16587.38 16189.83 20298.02 5976.46 26697.16 12294.43 23479.26 27681.98 20796.28 12669.36 22099.27 8477.71 23292.25 15393.77 230
Jie Liao, Yanping Fu, Qingan Yan, Chunxia xiao: Pyramid Multi-View Stereo with Local Consistency. Pacific Graphics 2019
3Dnovator+82.88 889.63 12587.85 14694.99 2194.49 15986.76 3197.84 6795.74 16186.10 12175.47 28596.02 13165.00 24699.51 7182.91 19097.07 8298.72 40
PVSNet82.34 989.02 13587.79 14892.71 9995.49 12381.50 13897.70 7897.29 1987.76 8785.47 16295.12 16356.90 30598.90 11580.33 20594.02 12797.71 107
3Dnovator82.32 1089.33 13087.64 15194.42 3393.73 18185.70 4497.73 7696.75 6586.73 11676.21 27395.93 13262.17 26099.68 5181.67 19797.81 6197.88 91
ACMP81.66 1184.00 22983.22 22686.33 27391.53 25272.95 30995.91 20893.79 27283.70 18873.79 29592.22 21854.31 32496.89 21583.98 17079.74 25689.16 285
Qingshan Xu and Wenbing Tao: Planar Prior Assisted PatchMatch Multi-View Stereo. AAAI 2020
TAPA-MVS81.61 1285.02 21283.67 21589.06 21396.79 9273.27 30595.92 20694.79 21174.81 32080.47 22396.83 11371.07 20998.19 14649.82 37792.57 14795.71 189
Andrea Romanoni, Matteo Matteucci: TAPA-MVS: Textureless-Aware PAtchMatch Multi-View Stereo. ICCV 2019
ACMM80.70 1383.72 23582.85 23286.31 27691.19 25772.12 31595.88 20994.29 24280.44 24877.02 25791.96 22455.24 31797.14 20479.30 21880.38 25289.67 273
Qingshan Xu and Wenbing Tao: Multi-Scale Geometric Consistency Guided Multi-View Stereo. CVPR 2019
OpenMVScopyleft79.58 1486.09 19483.62 21893.50 6890.95 26286.71 3297.44 9995.83 15675.35 31472.64 30995.72 13757.42 30299.64 5571.41 28895.85 10894.13 223
PVSNet_077.72 1581.70 26878.95 28589.94 19890.77 26976.72 26395.96 20396.95 4285.01 14770.24 32688.53 27452.32 32798.20 14586.68 15344.08 39194.89 208
ACMH+76.62 1677.47 30974.94 31185.05 29891.07 26171.58 32593.26 29390.01 34471.80 34364.76 35088.55 27241.62 36596.48 23262.35 33671.00 30687.09 334
ACMH75.40 1777.99 30274.96 31087.10 26390.67 27076.41 26793.19 29691.64 32472.47 34063.44 35587.61 28743.34 35897.16 20058.34 34973.94 29187.72 320
Qingshan Xu and Wenbing Tao: Multi-Scale Geometric Consistency Guided Multi-View Stereo. CVPR 2019
LTVRE_ROB73.68 1877.99 30275.74 30784.74 30190.45 27472.02 31786.41 35691.12 33172.57 33966.63 34287.27 29154.95 32096.98 20956.29 35975.98 28085.21 356
Andreas Kuhn, Heiko Hirschmüller, Daniel Scharstein, Helmut Mayer: A TV Prior for High-Quality Scalable Multi-View Stereo Reconstruction. International Journal of Computer Vision 2016
COLMAP_ROBcopyleft73.24 1975.74 32073.00 32783.94 31492.38 21969.08 34191.85 31286.93 36761.48 37465.32 34890.27 25242.27 36396.93 21450.91 37375.63 28485.80 353
Johannes L. Schönberger, Enliang Zheng, Marc Pollefeys, Jan-Michael Frahm: Pixelwise View Selection for Unstructured Multi-View Stereo. ECCV 2016
OpenMVS_ROBcopyleft68.52 2073.02 33369.57 34083.37 32380.54 37071.82 32193.60 28388.22 36162.37 36961.98 36383.15 34635.31 38095.47 28345.08 38575.88 28282.82 368
CMPMVSbinary54.94 2175.71 32174.56 31679.17 34879.69 37255.98 38289.59 32993.30 29560.28 37953.85 38389.07 26547.68 34896.33 23876.55 24681.02 24685.22 355
M. Jancosek, T. Pajdla: Multi-View Reconstruction Preserving Weakly-Supported Surfaces. CVPR 2011
MVEpermissive35.65 2233.85 36929.49 37446.92 38441.86 40836.28 40450.45 39956.52 40718.75 40318.28 40237.84 3992.41 41058.41 40318.71 40020.62 40046.06 398
Simon Fuhrmann, Fabian Langguth, Michael Goesele: MVE - A Multi-View Reconstruction Environment. EUROGRAPHICS Workshops on Graphics and Cultural Heritage (2014)
PMVScopyleft34.80 2339.19 36835.53 37150.18 38329.72 41030.30 40859.60 39866.20 40326.06 39917.91 40349.53 3963.12 40974.09 39818.19 40149.40 38346.14 397
Y. Furukawa, J. Ponce: Accurate, dense, and robust multiview stereopsis. PAMI (2010)
testing9191.90 7491.31 8293.66 5895.99 10785.68 4697.39 10696.89 4786.75 11588.85 12795.23 15483.93 4697.90 15888.91 12787.89 19197.41 129
testing1192.48 6392.04 7093.78 5195.94 11086.00 3797.56 8897.08 3387.52 9389.32 11995.40 14884.60 3698.02 14991.93 9089.04 17597.32 134
testing9991.91 7391.35 8093.60 6295.98 10885.70 4497.31 11096.92 4686.82 11188.91 12595.25 15184.26 4397.89 15988.80 13087.94 19097.21 142
UWE-MVS88.56 15188.91 13187.50 25294.17 16772.19 31395.82 21497.05 3584.96 14984.78 17093.51 20281.33 6194.75 31179.43 21689.17 17295.57 192
ETVMVS90.99 9890.26 10293.19 7995.81 11585.64 4896.97 14197.18 2685.43 13488.77 13094.86 17182.00 5996.37 23682.70 19188.60 18197.57 117
testing22291.09 9590.49 9792.87 9195.82 11485.04 6596.51 17297.28 2086.05 12389.13 12195.34 15080.16 7596.62 22985.82 15588.31 18696.96 151
WB-MVSnew84.08 22883.51 22185.80 28391.34 25576.69 26495.62 22296.27 12281.77 22681.81 21192.81 21058.23 28994.70 31366.66 31487.06 19785.99 349
fmvsm_l_conf0.5_n_a94.91 1595.30 1593.72 5694.50 15884.30 8099.14 996.00 14491.94 2897.91 598.60 1884.78 3599.77 2998.84 496.03 10497.08 148
fmvsm_l_conf0.5_n94.89 1695.24 1693.86 4894.42 16084.61 7499.13 1096.15 13392.06 2597.92 398.52 2384.52 3799.74 3898.76 595.67 11097.22 140
fmvsm_s_conf0.1_n_a92.38 6692.49 5892.06 13088.08 30881.62 13697.97 6196.01 14390.62 4196.58 2198.33 3274.09 17699.71 4597.23 2793.46 13894.86 209
fmvsm_s_conf0.1_n92.93 4893.16 4792.24 12090.52 27281.92 12298.42 3796.24 12591.17 3496.02 2998.35 3175.34 15799.74 3897.84 2094.58 12195.05 205
fmvsm_s_conf0.5_n_a93.34 4193.71 3592.22 12293.38 19381.71 13398.86 2496.98 3891.64 2996.85 1598.55 1975.58 14699.77 2997.88 1993.68 13395.18 204
fmvsm_s_conf0.5_n93.69 3694.13 3292.34 11394.56 15182.01 11899.07 1597.13 2892.09 2396.25 2598.53 2276.47 12899.80 2598.39 894.71 11995.22 203
MM95.85 695.74 1096.15 896.34 9689.50 999.18 598.10 895.68 196.64 2097.92 5880.72 6699.80 2599.16 197.96 5699.15 24
WAC-MVS67.18 34949.00 379
Syy-MVS77.97 30478.05 29077.74 35392.13 23456.85 38093.97 27494.23 24482.43 21473.39 29893.57 20057.95 29587.86 37532.40 39382.34 24088.51 303
test_fmvsmconf0.1_n93.08 4593.22 4692.65 10188.45 30480.81 15399.00 2195.11 19393.21 1594.00 5697.91 6076.84 12199.59 6097.91 1696.55 9597.54 118
test_fmvsmconf0.01_n91.08 9690.68 9292.29 11882.43 36480.12 17397.94 6293.93 25992.07 2491.97 7997.60 7967.56 22699.53 6897.09 2995.56 11297.21 142
myMVS_eth3d81.93 26582.18 24081.18 33792.13 23467.18 34993.97 27494.23 24482.43 21473.39 29893.57 20076.98 11987.86 37550.53 37582.34 24088.51 303
testing380.74 28181.17 25679.44 34691.15 25963.48 36497.16 12295.76 15980.83 23771.36 31693.15 20778.22 9887.30 38043.19 38779.67 25787.55 328
SSC-MVS56.01 35754.96 35859.17 37968.42 39234.13 40684.98 36569.23 39958.08 38745.36 38971.67 38750.30 33777.46 39314.28 40332.33 39865.91 392
test_fmvsmconf_n93.99 3394.36 2892.86 9292.82 21081.12 14399.26 396.37 11693.47 1395.16 3598.21 3679.00 8699.64 5598.21 1096.73 9297.83 97
WB-MVS57.26 35456.22 35760.39 37869.29 39035.91 40586.39 35770.06 39859.84 38346.46 38872.71 38151.18 33178.11 39215.19 40234.89 39767.14 391
test_fmvsmvis_n_192092.12 6992.10 6892.17 12590.87 26581.04 14598.34 4093.90 26392.71 1887.24 14897.90 6174.83 16499.72 4396.96 3196.20 9895.76 188
dmvs_re84.10 22782.90 23087.70 24391.41 25473.28 30390.59 32593.19 29885.02 14677.96 24993.68 19757.92 29796.18 24475.50 25880.87 24893.63 232
SDMVSNet87.02 17885.61 18391.24 15894.14 16983.30 9993.88 27795.98 14684.30 16879.63 23492.01 22058.23 28997.68 16590.28 11482.02 24392.75 239
dmvs_testset72.00 33973.36 32567.91 36783.83 35931.90 40785.30 36377.12 39282.80 20763.05 35992.46 21661.54 26882.55 39042.22 38971.89 30389.29 281
sd_testset84.62 21883.11 22789.17 21194.14 16977.78 24291.54 31894.38 23784.30 16879.63 23492.01 22052.28 32896.98 20977.67 23382.02 24392.75 239
test_fmvsm_n_192094.81 1995.60 1192.45 10895.29 12980.96 14999.29 297.21 2394.50 797.29 1398.44 2782.15 5799.78 2898.56 797.68 6596.61 166
test_cas_vis1_n_192089.90 12090.02 11089.54 20790.14 28174.63 29198.71 2794.43 23493.04 1792.40 7296.35 12553.41 32699.08 10395.59 4696.16 9994.90 207
test_vis1_n_192089.95 11990.59 9388.03 23892.36 22068.98 34299.12 1194.34 23993.86 1193.64 6097.01 10751.54 33099.59 6096.76 3496.71 9395.53 194
test_vis1_n85.60 20385.70 18285.33 29484.79 34864.98 35696.83 15191.61 32587.36 9891.00 9794.84 17236.14 37697.18 19995.66 4493.03 14393.82 229
test_fmvs1_n86.34 19086.72 17485.17 29787.54 31663.64 36396.91 14792.37 31487.49 9491.33 9095.58 14440.81 37098.46 13495.00 5293.49 13693.41 238
mvsany_test187.58 17388.22 13985.67 28889.78 28567.18 34995.25 23687.93 36283.96 17888.79 12897.06 10672.52 19294.53 31992.21 8586.45 20395.30 201
APD_test156.56 35653.58 36065.50 36967.93 39446.51 39477.24 38672.95 39538.09 39342.75 39175.17 37313.38 39982.78 38940.19 39054.53 37367.23 390
test_vis1_rt73.96 32672.40 32978.64 35083.91 35861.16 37395.63 22168.18 40076.32 30860.09 37174.77 37429.01 38997.54 17687.74 14175.94 28177.22 384
test_vis3_rt54.10 35951.04 36263.27 37558.16 39946.08 39684.17 36749.32 41056.48 38936.56 39449.48 3978.03 40691.91 35367.29 31149.87 38251.82 396
test_fmvs279.59 29079.90 27778.67 34982.86 36355.82 38495.20 23989.55 34781.09 23380.12 23089.80 25834.31 38193.51 33787.82 14078.36 27386.69 338
test_fmvs187.79 16988.52 13685.62 29092.98 20764.31 35897.88 6592.42 31287.95 8292.24 7595.82 13547.94 34598.44 13795.31 5094.09 12594.09 224
test_fmvs369.56 34369.19 34370.67 36569.01 39147.05 39190.87 32386.81 36871.31 34766.79 34177.15 36916.40 39683.17 38881.84 19662.51 36281.79 378
mvsany_test367.19 34965.34 35172.72 36463.08 39748.57 39083.12 37178.09 39172.07 34161.21 36677.11 37022.94 39187.78 37778.59 22451.88 38181.80 377
testf145.70 36442.41 36655.58 38053.29 40440.02 40268.96 39462.67 40427.45 39729.85 39761.58 3895.98 40773.83 39928.49 39743.46 39252.90 394
APD_test245.70 36442.41 36655.58 38053.29 40440.02 40268.96 39462.67 40427.45 39729.85 39761.58 3895.98 40773.83 39928.49 39743.46 39252.90 394
test_f64.01 35262.13 35569.65 36663.00 39845.30 39783.66 37080.68 38761.30 37555.70 38072.62 38214.23 39884.64 38669.84 30058.11 36879.00 381
FE-MVS86.06 19584.15 21091.78 14294.33 16379.81 17884.58 36696.61 8476.69 30785.00 16687.38 28970.71 21498.37 13970.39 29891.70 15997.17 145
FA-MVS(test-final)87.71 17186.23 17892.17 12594.19 16680.55 16087.16 35096.07 14082.12 22185.98 15988.35 27672.04 20098.49 13180.26 20789.87 16797.48 126
iter_conf_final89.51 12689.21 12390.39 18395.60 12084.44 7797.22 11289.09 35389.11 6282.07 20692.80 21187.03 2596.03 24789.10 12680.89 24790.70 252
bld_raw_dy_0_6482.13 26280.76 26186.24 27885.78 33775.03 28894.40 26382.62 38483.12 19776.46 26590.96 24253.83 32594.55 31781.04 20078.60 27089.14 286
patch_mono-295.14 1396.08 792.33 11598.44 4377.84 24098.43 3697.21 2392.58 1997.68 1097.65 7686.88 2699.83 1698.25 997.60 6799.33 17
EGC-MVSNET52.46 36147.56 36467.15 36881.98 36560.11 37582.54 37372.44 3960.11 4080.70 40974.59 37525.11 39083.26 38729.04 39561.51 36458.09 393
test250690.96 10090.39 9992.65 10193.54 18582.46 11396.37 18297.35 1886.78 11387.55 14395.25 15177.83 10697.50 18084.07 16994.80 11797.98 86
test111188.11 16287.04 16991.35 15393.15 19878.79 20996.57 16790.78 33986.88 11085.04 16595.20 15757.23 30497.39 18783.88 17294.59 12097.87 93
ECVR-MVScopyleft88.35 15787.25 16391.65 14593.54 18579.40 19196.56 16990.78 33986.78 11385.57 16195.25 15157.25 30397.56 17284.73 16594.80 11797.98 86
test_blank0.00 3780.00 3810.00 3910.00 4140.00 4160.00 4020.00 4150.00 4090.00 4100.00 4090.00 4140.00 4100.00 4090.00 4080.00 406
tt080581.20 27679.06 28487.61 24686.50 32372.97 30893.66 28095.48 17474.11 32476.23 27291.99 22241.36 36797.40 18677.44 23874.78 28892.45 242
DVP-MVS++96.05 496.41 394.96 2299.05 985.34 5398.13 4996.77 6188.38 7397.70 898.77 1092.06 399.84 1297.47 2499.37 199.70 3
FOURS198.51 3978.01 23298.13 4996.21 12883.04 20094.39 51
MSC_two_6792asdad97.14 399.05 992.19 496.83 5299.81 2198.08 1498.81 2499.43 11
PC_three_145291.12 3598.33 298.42 2892.51 299.81 2198.96 399.37 199.70 3
No_MVS97.14 399.05 992.19 496.83 5299.81 2198.08 1498.81 2499.43 11
test_one_060198.91 1884.56 7696.70 7188.06 7996.57 2298.77 1088.04 20
eth-test20.00 414
eth-test0.00 414
GeoE86.36 18985.20 19089.83 20293.17 19776.13 27197.53 9192.11 31679.58 26880.99 21794.01 19066.60 23696.17 24573.48 27789.30 17197.20 144
test_method56.77 35554.53 35963.49 37476.49 38240.70 40075.68 38774.24 39419.47 40248.73 38571.89 38519.31 39365.80 40257.46 35447.51 38883.97 364
Anonymous2024052172.06 33869.91 33978.50 35177.11 38161.67 37191.62 31790.97 33665.52 36462.37 36179.05 36436.32 37590.96 36257.75 35268.52 32982.87 367
h-mvs3389.30 13188.95 12990.36 18595.07 13776.04 27396.96 14397.11 3190.39 4692.22 7695.10 16474.70 16698.86 11693.14 7565.89 35096.16 179
hse-mvs288.22 16188.21 14088.25 23293.54 18573.41 29995.41 23095.89 15290.39 4692.22 7694.22 18474.70 16696.66 22893.14 7564.37 35594.69 217
CL-MVSNet_self_test75.81 31974.14 32180.83 34078.33 37667.79 34694.22 27093.52 28577.28 30169.82 32781.54 35361.47 26989.22 37057.59 35353.51 37685.48 354
KD-MVS_2432*160077.63 30774.92 31285.77 28490.86 26679.44 18988.08 34193.92 26176.26 30967.05 33882.78 34772.15 19891.92 35161.53 33741.62 39485.94 350
KD-MVS_self_test70.97 34269.31 34275.95 36176.24 38655.39 38687.45 34690.94 33770.20 35162.96 36077.48 36844.01 35488.09 37361.25 34153.26 37784.37 361
AUN-MVS86.25 19385.57 18488.26 23193.57 18473.38 30095.45 22895.88 15383.94 17985.47 16294.21 18573.70 18396.67 22783.54 18264.41 35494.73 216
ZD-MVS99.09 883.22 10196.60 8782.88 20593.61 6198.06 5082.93 5399.14 9795.51 4898.49 37
SR-MVS-dyc-post91.29 9091.45 7990.80 17297.76 6776.03 27496.20 19495.44 17880.56 24590.72 10097.84 6475.76 14298.61 12491.99 8896.79 8997.75 103
RE-MVS-def91.18 8697.76 6776.03 27496.20 19495.44 17880.56 24590.72 10097.84 6473.36 18691.99 8896.79 8997.75 103
SED-MVS95.88 596.22 494.87 2399.03 1585.03 6699.12 1196.78 5588.72 6697.79 698.91 288.48 1799.82 1898.15 1198.97 1799.74 1
IU-MVS99.03 1585.34 5396.86 5192.05 2798.74 198.15 1198.97 1799.42 13
OPU-MVS97.30 299.19 792.31 399.12 1198.54 2092.06 399.84 1299.11 299.37 199.74 1
test_241102_TWO96.78 5588.72 6697.70 898.91 287.86 2199.82 1898.15 1199.00 1599.47 9
test_241102_ONE99.03 1585.03 6696.78 5588.72 6697.79 698.90 588.48 1799.82 18
SF-MVS94.17 2994.05 3394.55 3197.56 7485.95 3897.73 7696.43 10684.02 17595.07 4198.74 1482.93 5399.38 7895.42 4998.51 3498.32 60
cl2285.11 21184.17 20987.92 23995.06 13978.82 20695.51 22594.22 24679.74 26576.77 26087.92 28375.96 13895.68 27179.93 21272.42 29989.27 282
miper_ehance_all_eth84.57 22083.60 21987.50 25292.64 21678.25 22395.40 23193.47 28679.28 27576.41 26787.64 28676.53 12795.24 29478.58 22572.42 29989.01 293
miper_enhance_ethall85.95 19785.20 19088.19 23594.85 14579.76 18096.00 20194.06 25682.98 20377.74 25088.76 26979.42 7995.46 28480.58 20372.42 29989.36 280
ZNCC-MVS92.75 5192.60 5693.23 7798.24 5181.82 12897.63 8296.50 9885.00 14891.05 9597.74 6978.38 9599.80 2590.48 10598.34 4698.07 77
dcpmvs_293.10 4493.46 4292.02 13397.77 6579.73 18494.82 25393.86 26686.91 10891.33 9096.76 11785.20 3298.06 14896.90 3297.60 6798.27 66
cl____83.27 24182.12 24186.74 26792.20 22975.95 27895.11 24593.27 29678.44 28974.82 29087.02 29774.19 17495.19 29674.67 26669.32 32289.09 288
DIV-MVS_self_test83.27 24182.12 24186.74 26792.19 23075.92 28095.11 24593.26 29778.44 28974.81 29187.08 29674.19 17495.19 29674.66 26769.30 32389.11 287
eth_miper_zixun_eth83.12 24582.01 24386.47 27291.85 24874.80 28994.33 26493.18 30079.11 27875.74 28387.25 29372.71 19095.32 29076.78 24467.13 34489.27 282
9.1494.26 3098.10 5798.14 4696.52 9584.74 15394.83 4698.80 782.80 5599.37 8095.95 4098.42 40
uanet_test0.00 3780.00 3810.00 3910.00 4140.00 4160.00 4020.00 4150.00 4090.00 4100.00 4090.00 4140.00 4100.00 4090.00 4080.00 406
DCPMVS0.00 3780.00 3810.00 3910.00 4140.00 4160.00 4020.00 4150.00 4090.00 4100.00 4090.00 4140.00 4100.00 4090.00 4080.00 406
save fliter98.24 5183.34 9898.61 3396.57 9091.32 32
ET-MVSNet_ETH3D90.01 11889.03 12592.95 8894.38 16186.77 3098.14 4696.31 12089.30 5963.33 35696.72 12090.09 1193.63 33590.70 10382.29 24298.46 53
UniMVSNet_ETH3D80.86 28078.75 28687.22 26186.31 32672.02 31791.95 30993.76 27673.51 32975.06 28990.16 25543.04 36195.66 27276.37 25078.55 27193.98 226
EIA-MVS91.73 7792.05 6990.78 17494.52 15476.40 26898.06 5595.34 18689.19 6088.90 12697.28 9677.56 10997.73 16490.77 10196.86 8898.20 68
miper_refine_blended77.63 30774.92 31285.77 28490.86 26679.44 18988.08 34193.92 26176.26 30967.05 33882.78 34772.15 19891.92 35161.53 33741.62 39485.94 350
miper_lstm_enhance81.66 27080.66 26484.67 30491.19 25771.97 31991.94 31093.19 29877.86 29372.27 31285.26 32473.46 18493.42 33873.71 27667.05 34588.61 301
ETV-MVS92.72 5592.87 5092.28 11994.54 15381.89 12497.98 5995.21 19189.77 5593.11 6696.83 11377.23 11797.50 18095.74 4395.38 11397.44 127
CS-MVS92.73 5393.48 4190.48 18196.27 9875.93 27998.55 3494.93 20089.32 5894.54 5097.67 7178.91 8897.02 20793.80 6497.32 7798.49 51
D2MVS82.67 25381.55 25086.04 28187.77 31276.47 26595.21 23896.58 8982.66 21170.26 32585.46 32360.39 27395.80 26476.40 24979.18 26285.83 352
DVP-MVScopyleft95.58 995.91 994.57 3099.05 985.18 5899.06 1696.46 10288.75 6496.69 1798.76 1287.69 2299.76 3197.90 1798.85 2198.77 34
Zhenlong Yuan, Jinguo Luo, Fei Shen, Zhaoxin Li, Cong Liu, Tianlu Mao, Zhaoqi Wang: DVP-MVS: Synergize Depth-Edge and Visibility Prior for Multi-View Stereo. AAAI2025
test_0728_THIRD88.38 7396.69 1798.76 1289.64 1399.76 3197.47 2498.84 2399.38 14
test_0728_SECOND95.14 1899.04 1486.14 3599.06 1696.77 6199.84 1297.90 1798.85 2199.45 10
test072699.05 985.18 5899.11 1496.78 5588.75 6497.65 1198.91 287.69 22
SR-MVS92.16 6892.27 6291.83 14198.37 4578.41 21896.67 16495.76 15982.19 22091.97 7998.07 4976.44 12998.64 12393.71 6697.27 7898.45 54
DPM-MVS96.21 295.53 1398.26 196.26 9995.09 199.15 796.98 3893.39 1496.45 2498.79 890.17 1099.99 189.33 12499.25 699.70 3
GST-MVS92.43 6592.22 6593.04 8598.17 5481.64 13597.40 10596.38 11384.71 15590.90 9897.40 9077.55 11099.76 3189.75 11897.74 6397.72 105
test_yl91.46 8590.53 9594.24 3897.41 8085.18 5898.08 5297.72 1280.94 23589.85 10896.14 12875.61 14398.81 11990.42 11088.56 18398.74 35
thisisatest053089.65 12489.02 12691.53 15093.46 19180.78 15496.52 17096.67 7581.69 22883.79 18494.90 17088.85 1597.68 16577.80 22887.49 19696.14 180
Anonymous2024052983.15 24480.60 26590.80 17295.74 11778.27 22296.81 15494.92 20160.10 38181.89 20992.54 21545.82 35298.82 11879.25 21978.32 27495.31 200
Anonymous20240521184.41 22381.93 24591.85 14096.78 9378.41 21897.44 9991.34 32970.29 35084.06 17794.26 18341.09 36898.96 10979.46 21582.65 23898.17 70
DCV-MVSNet91.46 8590.53 9594.24 3897.41 8085.18 5898.08 5297.72 1280.94 23589.85 10896.14 12875.61 14398.81 11990.42 11088.56 18398.74 35
tttt051788.57 15088.19 14189.71 20693.00 20375.99 27795.67 21896.67 7580.78 23981.82 21094.40 18088.97 1497.58 17176.05 25386.31 20495.57 192
our_test_377.90 30575.37 30985.48 29385.39 34176.74 26293.63 28191.67 32273.39 33265.72 34784.65 33558.20 29193.13 34157.82 35167.87 33686.57 340
thisisatest051590.95 10190.26 10293.01 8694.03 17684.27 8297.91 6396.67 7583.18 19586.87 15295.51 14688.66 1697.85 16080.46 20489.01 17696.92 155
ppachtmachnet_test77.19 31174.22 31986.13 28085.39 34178.22 22493.98 27391.36 32871.74 34467.11 33784.87 33356.67 30793.37 34052.21 36964.59 35386.80 336
SMA-MVScopyleft94.70 2194.68 2194.76 2698.02 5985.94 4097.47 9696.77 6185.32 13797.92 398.70 1583.09 5299.84 1295.79 4299.08 1098.49 51
Yufeng Yin; Xiaoyan Liu; Zichao Zhang: SMA-MVS: Segmentation-Guided Multi-Scale Anchor Deformation Patch Multi-View Stereo. IEEE Transactions on Circuits and Systems for Video Technology
GSMVS97.54 118
DPE-MVScopyleft95.32 1195.55 1294.64 2998.79 2384.87 7197.77 7296.74 6686.11 12096.54 2398.89 688.39 1999.74 3897.67 2299.05 1299.31 18
Kehua Chen, Zhenlong Yuan, Tianlu Mao, Zhaoqi Wang: Dual-Level Precision Edges Guided Multi-View Stereo with Accurate Planarization. AAAI2025
test_part298.90 1985.14 6496.07 28
thres100view90088.30 15886.95 17192.33 11596.10 10484.90 7097.14 12598.85 282.69 21083.41 18793.66 19875.43 15197.93 15269.04 30386.24 20794.17 220
tfpnnormal78.14 30175.42 30886.31 27688.33 30679.24 19594.41 26096.22 12773.51 32969.81 32885.52 32255.43 31595.75 26747.65 38267.86 33783.95 365
tfpn200view988.48 15287.15 16592.47 10796.21 10085.30 5697.44 9998.85 283.37 19283.99 17993.82 19475.36 15497.93 15269.04 30386.24 20794.17 220
c3_l83.80 23382.65 23587.25 26092.10 23677.74 24595.25 23693.04 30578.58 28676.01 27587.21 29475.25 15995.11 30177.54 23668.89 32688.91 299
CHOSEN 280x42091.71 8091.85 7191.29 15694.94 14182.69 10787.89 34496.17 13285.94 12587.27 14794.31 18190.27 995.65 27494.04 6395.86 10795.53 194
CANet94.89 1694.64 2295.63 1397.55 7588.12 1699.06 1696.39 11294.07 1095.34 3497.80 6776.83 12399.87 897.08 3097.64 6698.89 30
Fast-Effi-MVS+-dtu83.33 24082.60 23685.50 29289.55 29169.38 34096.09 20091.38 32682.30 21775.96 27791.41 23156.71 30695.58 28075.13 26284.90 22091.54 245
Effi-MVS+-dtu84.61 21984.90 19983.72 31991.96 24363.14 36694.95 25093.34 29485.57 13179.79 23287.12 29561.99 26495.61 27883.55 18185.83 21292.41 243
CANet_DTU90.98 9990.04 10993.83 4994.76 14786.23 3496.32 18693.12 30393.11 1693.71 5896.82 11563.08 25699.48 7384.29 16795.12 11595.77 187
MVS_030495.36 1095.20 1795.85 1194.89 14489.22 1298.83 2597.88 1194.68 495.14 3897.99 5280.80 6599.81 2198.60 697.95 5798.50 50
MP-MVS-pluss92.58 6192.35 6093.29 7497.30 8682.53 11096.44 17796.04 14284.68 15689.12 12298.37 2977.48 11199.74 3893.31 7398.38 4397.59 116
MP-MVS-pluss: MP-MVS-pluss. MP-MVS-pluss
MSP-MVS95.62 896.54 192.86 9298.31 4880.10 17497.42 10396.78 5592.20 2297.11 1498.29 3393.46 199.10 10196.01 3899.30 599.38 14
Zhenlong Yuan, Cong Liu, Fei Shen, Zhaoxin Li, Jingguo luo, Tianlu Mao and Zhaoqi Wang: MSP-MVS: Multi-granularity Segmentation Prior Guided Multi-View Stereo. AAAI2025
sam_mvs177.59 10897.54 118
sam_mvs75.35 156
IterMVS-SCA-FT80.51 28479.10 28384.73 30289.63 29074.66 29092.98 29891.81 32180.05 25971.06 32085.18 32758.04 29291.40 35772.48 28370.70 31088.12 315
TSAR-MVS + MP.94.79 2095.17 1893.64 5997.66 6984.10 8395.85 21296.42 10791.26 3397.49 1296.80 11686.50 2898.49 13195.54 4799.03 1398.33 59
Zhenlong Yuan, Jiakai Cao, Zhaoqi Wang, Zhaoxin Li: TSAR-MVS: Textureless-aware Segmentation and Correlative Refinement Guided Multi-View Stereo. Pattern Recognition
xiu_mvs_v1_base_debu90.54 10889.54 11993.55 6592.31 22187.58 2396.99 13694.87 20487.23 10193.27 6297.56 8157.43 29998.32 14092.72 8093.46 13894.74 213
OPM-MVS85.84 19885.10 19588.06 23688.34 30577.83 24195.72 21694.20 24787.89 8580.45 22494.05 18958.57 28697.26 19683.88 17282.76 23789.09 288
Ray L. Khuboni, Hongjun Xu: Octagram Propagation Matching for Multi-Scale View Stereopsis (OPM-MVS).
ACMMP_NAP93.46 3993.23 4594.17 4197.16 8884.28 8196.82 15396.65 7886.24 11894.27 5297.99 5277.94 10299.83 1693.39 6998.57 3398.39 57
ambc76.02 35968.11 39351.43 38864.97 39689.59 34660.49 36974.49 37617.17 39592.46 34461.50 33952.85 37984.17 363
MTGPAbinary96.33 118
CS-MVS-test92.98 4693.67 3690.90 16996.52 9476.87 25998.68 2894.73 21390.36 4894.84 4597.89 6277.94 10297.15 20394.28 6197.80 6298.70 41
Effi-MVS+90.70 10589.90 11593.09 8393.61 18283.48 9595.20 23992.79 30883.22 19491.82 8295.70 13871.82 20197.48 18291.25 9493.67 13498.32 60
xiu_mvs_v2_base93.92 3493.26 4495.91 1095.07 13792.02 698.19 4595.68 16492.06 2596.01 3098.14 4270.83 21398.96 10996.74 3596.57 9496.76 162
xiu_mvs_v1_base90.54 10889.54 11993.55 6592.31 22187.58 2396.99 13694.87 20487.23 10193.27 6297.56 8157.43 29998.32 14092.72 8093.46 13894.74 213
new-patchmatchnet68.85 34765.93 34977.61 35473.57 38963.94 36290.11 32888.73 35871.62 34555.08 38173.60 37840.84 36987.22 38151.35 37248.49 38681.67 379
pmmvs674.65 32571.67 33183.60 32179.13 37469.94 33493.31 29290.88 33861.05 37865.83 34684.15 33943.43 35794.83 31066.62 31560.63 36586.02 348
pmmvs581.34 27379.54 27986.73 27085.02 34676.91 25896.22 19191.65 32377.65 29573.55 29688.61 27155.70 31494.43 32174.12 27273.35 29688.86 300
test_post185.88 36030.24 40473.77 17995.07 30573.89 273
test_post33.80 40176.17 13595.97 252
Fast-Effi-MVS+87.93 16786.94 17290.92 16894.04 17479.16 19898.26 4293.72 27781.29 23183.94 18292.90 20969.83 21996.68 22676.70 24591.74 15896.93 153
patchmatchnet-post77.09 37177.78 10795.39 285
Anonymous2023121179.72 28977.19 29787.33 25695.59 12177.16 25795.18 24294.18 24959.31 38472.57 31086.20 31347.89 34695.66 27274.53 26969.24 32489.18 284
pmmvs-eth3d73.59 32870.66 33582.38 33076.40 38473.38 30089.39 33389.43 34972.69 33860.34 37077.79 36746.43 35191.26 36066.42 31957.06 37082.51 371
GG-mvs-BLEND93.49 6994.94 14186.26 3381.62 37497.00 3788.32 13794.30 18291.23 596.21 24388.49 13497.43 7398.00 84
xiu_mvs_v1_base_debi90.54 10889.54 11993.55 6592.31 22187.58 2396.99 13694.87 20487.23 10193.27 6297.56 8157.43 29998.32 14092.72 8093.46 13894.74 213
Anonymous2023120675.29 32273.64 32380.22 34280.75 36763.38 36593.36 28890.71 34173.09 33467.12 33683.70 34250.33 33690.85 36353.63 36770.10 31586.44 341
MTAPA92.45 6492.31 6192.86 9297.90 6180.85 15292.88 30096.33 11887.92 8390.20 10798.18 3876.71 12699.76 3192.57 8398.09 5197.96 89
MTMP97.53 9168.16 401
gm-plane-assit92.27 22579.64 18784.47 16395.15 16197.93 15285.81 156
test9_res96.00 3999.03 1398.31 62
MVP-Stereo82.65 25481.67 24985.59 29186.10 33278.29 22193.33 28992.82 30777.75 29469.17 33287.98 28259.28 28295.76 26671.77 28596.88 8682.73 370
Qingsong Yan: MVP-Stereo: A Parallel Multi-View Patchmatch Stereo Method with Dilation Matching for Photogrammetric Application.
TEST998.64 3183.71 8997.82 6896.65 7884.29 17095.16 3598.09 4584.39 3899.36 81
train_agg94.28 2694.45 2593.74 5398.64 3183.71 8997.82 6896.65 7884.50 16195.16 3598.09 4584.33 3999.36 8195.91 4198.96 1998.16 71
gg-mvs-nofinetune85.48 20682.90 23093.24 7694.51 15785.82 4279.22 37896.97 4061.19 37687.33 14653.01 39490.58 696.07 24686.07 15497.23 7997.81 100
SCA85.63 20283.64 21791.60 14992.30 22481.86 12692.88 30095.56 16984.85 15082.52 19585.12 33058.04 29295.39 28573.89 27387.58 19597.54 118
Patchmatch-test78.25 30074.72 31488.83 21991.20 25674.10 29773.91 39188.70 35959.89 38266.82 34085.12 33078.38 9594.54 31848.84 38079.58 25997.86 94
test_898.63 3383.64 9297.81 7096.63 8384.50 16195.10 3998.11 4484.33 3999.23 86
MS-PatchMatch83.05 24681.82 24786.72 27189.64 28979.10 20194.88 25294.59 22579.70 26670.67 32289.65 26050.43 33596.82 22070.82 29795.99 10684.25 362
Patchmatch-RL test76.65 31574.01 32284.55 30777.37 38064.23 35978.49 38282.84 38378.48 28764.63 35173.40 37976.05 13791.70 35676.99 24157.84 36997.72 105
cdsmvs_eth3d_5k21.43 37228.57 3750.00 3910.00 4140.00 4160.00 40295.93 1510.00 4090.00 41097.66 7263.57 2530.00 4100.00 4090.00 4080.00 406
pcd_1.5k_mvsjas5.92 3777.89 3800.00 3910.00 4140.00 4160.00 4020.00 4150.00 4090.00 4100.00 40971.04 2100.00 4100.00 4090.00 4080.00 406
agg_prior294.30 5899.00 1598.57 46
agg_prior98.59 3583.13 10296.56 9294.19 5399.16 96
tmp_tt41.54 36741.93 36940.38 38520.10 41126.84 40961.93 39759.09 40614.81 40428.51 39980.58 35735.53 37848.33 40663.70 33113.11 40345.96 399
canonicalmvs92.27 6791.22 8395.41 1695.80 11688.31 1497.09 13294.64 22188.49 7192.99 6997.31 9272.68 19198.57 12793.38 7188.58 18299.36 16
anonymousdsp80.98 27979.97 27584.01 31381.73 36670.44 33192.49 30493.58 28477.10 30472.98 30686.31 31157.58 29894.90 30779.32 21778.63 26986.69 338
alignmvs92.97 4792.26 6395.12 1995.54 12287.77 2098.67 2996.38 11388.04 8093.01 6897.45 8579.20 8498.60 12593.25 7488.76 17998.99 29
nrg03086.79 18485.43 18690.87 17188.76 29885.34 5397.06 13494.33 24084.31 16680.45 22491.98 22372.36 19496.36 23788.48 13571.13 30590.93 251
v14419282.43 25680.73 26287.54 25185.81 33678.22 22495.98 20293.78 27379.09 27977.11 25686.49 30564.66 25095.91 25874.20 27169.42 32188.49 305
FIs86.73 18686.10 17988.61 22390.05 28280.21 17096.14 19796.95 4285.56 13378.37 24592.30 21776.73 12595.28 29279.51 21479.27 26190.35 258
v192192082.02 26480.23 27087.41 25585.62 33877.92 23795.79 21593.69 27878.86 28376.67 26186.44 30762.50 25895.83 26272.69 28069.77 31988.47 306
UA-Net88.92 13888.48 13790.24 18894.06 17377.18 25693.04 29794.66 21887.39 9791.09 9493.89 19374.92 16398.18 14775.83 25591.43 16095.35 199
v119282.31 26080.55 26687.60 24785.94 33378.47 21795.85 21293.80 27179.33 27276.97 25886.51 30463.33 25595.87 26073.11 27870.13 31388.46 307
FC-MVSNet-test85.96 19685.39 18787.66 24589.38 29578.02 23195.65 22096.87 4985.12 14477.34 25291.94 22676.28 13494.74 31277.09 24078.82 26590.21 261
v114482.90 25081.27 25587.78 24286.29 32779.07 20396.14 19793.93 25980.05 25977.38 25186.80 30065.50 24095.93 25775.21 26170.13 31388.33 311
sosnet-low-res0.00 3780.00 3810.00 3910.00 4140.00 4160.00 4020.00 4150.00 4090.00 4100.00 4090.00 4140.00 4100.00 4090.00 4080.00 406
HFP-MVS92.89 4992.86 5192.98 8798.71 2581.12 14397.58 8696.70 7185.20 14291.75 8397.97 5778.47 9499.71 4590.95 9698.41 4198.12 75
v14882.41 25980.89 25886.99 26586.18 33076.81 26196.27 18893.82 26880.49 24775.28 28786.11 31567.32 23095.75 26775.48 25967.03 34688.42 309
sosnet0.00 3780.00 3810.00 3910.00 4140.00 4160.00 4020.00 4150.00 4090.00 4100.00 4090.00 4140.00 4100.00 4090.00 4080.00 406
uncertanet0.00 3780.00 3810.00 3910.00 4140.00 4160.00 4020.00 4150.00 4090.00 4100.00 4090.00 4140.00 4100.00 4090.00 4080.00 406
AllTest75.92 31873.06 32684.47 30892.18 23167.29 34791.07 32184.43 37767.63 35763.48 35390.18 25338.20 37397.16 20057.04 35573.37 29488.97 296
TestCases84.47 30892.18 23167.29 34784.43 37767.63 35763.48 35390.18 25338.20 37397.16 20057.04 35573.37 29488.97 296
v7n79.32 29577.34 29585.28 29584.05 35772.89 31093.38 28793.87 26575.02 31970.68 32184.37 33659.58 27895.62 27767.60 30867.50 34187.32 332
region2R92.72 5592.70 5392.79 9598.68 2680.53 16397.53 9196.51 9685.22 14091.94 8197.98 5577.26 11399.67 5390.83 10098.37 4498.18 69
iter_conf0590.14 11689.79 11791.17 16195.85 11386.93 2897.68 8088.67 36089.93 5281.73 21392.80 21190.37 896.03 24790.44 10880.65 25190.56 254
RRT_MVS83.88 23183.27 22585.71 28687.53 31772.12 31595.35 23294.33 24083.81 18475.86 27991.28 23560.55 27295.09 30483.93 17176.76 27989.90 271
PS-MVSNAJss84.91 21484.30 20786.74 26785.89 33574.40 29594.95 25094.16 25083.93 18076.45 26690.11 25771.04 21095.77 26583.16 18779.02 26490.06 268
PS-MVSNAJ94.17 2993.52 4096.10 995.65 11992.35 298.21 4495.79 15892.42 2196.24 2698.18 3871.04 21099.17 9596.77 3397.39 7596.79 159
jajsoiax82.12 26381.15 25785.03 29984.19 35470.70 32994.22 27093.95 25883.07 19973.48 29789.75 25949.66 33995.37 28782.24 19479.76 25489.02 292
mvs_tets81.74 26780.71 26384.84 30084.22 35370.29 33293.91 27693.78 27382.77 20873.37 30089.46 26247.36 34995.31 29181.99 19579.55 26088.92 298
EI-MVSNet-UG-set91.35 8991.22 8391.73 14397.39 8280.68 15696.47 17496.83 5287.92 8388.30 13897.36 9177.84 10599.13 9989.43 12389.45 17095.37 198
EI-MVSNet-Vis-set91.84 7691.77 7492.04 13297.60 7181.17 14296.61 16596.87 4988.20 7789.19 12097.55 8478.69 9399.14 9790.29 11290.94 16395.80 186
HPM-MVS++copyleft95.32 1195.48 1494.85 2498.62 3486.04 3697.81 7096.93 4492.45 2095.69 3198.50 2485.38 3199.85 1094.75 5499.18 798.65 43
test_prior482.34 11597.75 75
XVS92.69 5792.71 5292.63 10398.52 3780.29 16697.37 10796.44 10487.04 10691.38 8797.83 6677.24 11599.59 6090.46 10698.07 5298.02 79
v124081.70 26879.83 27887.30 25985.50 33977.70 24695.48 22693.44 28778.46 28876.53 26486.44 30760.85 27195.84 26171.59 28770.17 31188.35 310
pm-mvs180.05 28678.02 29186.15 27985.42 34075.81 28195.11 24592.69 31077.13 30270.36 32487.43 28858.44 28895.27 29371.36 28964.25 35687.36 331
test_prior298.37 3986.08 12294.57 4998.02 5183.14 5195.05 5198.79 26
X-MVStestdata86.26 19284.14 21192.63 10398.52 3780.29 16697.37 10796.44 10487.04 10691.38 8720.73 40577.24 11599.59 6090.46 10698.07 5298.02 79
test_prior93.09 8398.68 2681.91 12396.40 11099.06 10498.29 64
旧先验296.97 14174.06 32696.10 2797.76 16388.38 136
新几何296.42 180
新几何193.12 8197.44 7881.60 13796.71 7074.54 32291.22 9397.57 8079.13 8599.51 7177.40 23998.46 3898.26 67
旧先验197.39 8279.58 18896.54 9398.08 4884.00 4497.42 7497.62 114
无先验96.87 14996.78 5577.39 29899.52 6979.95 21198.43 55
原ACMM296.84 150
原ACMM191.22 16097.77 6578.10 23096.61 8481.05 23491.28 9297.42 8977.92 10498.98 10879.85 21398.51 3496.59 167
test22296.15 10278.41 21895.87 21096.46 10271.97 34289.66 11397.45 8576.33 13398.24 4998.30 63
testdata299.48 7376.45 248
segment_acmp82.69 56
testdata90.13 19195.92 11174.17 29696.49 10173.49 33194.82 4797.99 5278.80 9197.93 15283.53 18397.52 6998.29 64
testdata195.57 22487.44 95
v881.88 26680.06 27487.32 25786.63 32279.04 20494.41 26093.65 28078.77 28473.19 30485.57 32066.87 23395.81 26373.84 27567.61 34087.11 333
131488.94 13787.20 16494.17 4193.21 19585.73 4393.33 28996.64 8182.89 20475.98 27696.36 12466.83 23499.39 7783.52 18496.02 10597.39 132
LFMVS89.27 13287.64 15194.16 4397.16 8885.52 5197.18 11894.66 21879.17 27789.63 11496.57 12255.35 31698.22 14489.52 12289.54 16998.74 35
VDD-MVS88.28 15987.02 17092.06 13095.09 13580.18 17297.55 9094.45 23383.09 19889.10 12395.92 13447.97 34498.49 13193.08 7886.91 19997.52 123
VDDNet86.44 18884.51 20292.22 12291.56 24981.83 12797.10 13194.64 22169.50 35487.84 14195.19 15848.01 34397.92 15789.82 11786.92 19896.89 156
v1081.43 27279.53 28087.11 26286.38 32478.87 20594.31 26593.43 28877.88 29273.24 30385.26 32465.44 24195.75 26772.14 28467.71 33986.72 337
VPNet84.69 21782.92 22990.01 19389.01 29783.45 9696.71 16195.46 17685.71 12979.65 23392.18 21956.66 30896.01 25183.05 18967.84 33890.56 254
MVS90.60 10788.64 13396.50 594.25 16490.53 893.33 28997.21 2377.59 29678.88 24097.31 9271.52 20599.69 4989.60 11998.03 5499.27 20
v2v48283.46 23881.86 24688.25 23286.19 32979.65 18696.34 18594.02 25781.56 22977.32 25388.23 27865.62 23996.03 24777.77 22969.72 32089.09 288
V4283.04 24781.53 25187.57 25086.27 32879.09 20295.87 21094.11 25380.35 25277.22 25586.79 30165.32 24496.02 25077.74 23070.14 31287.61 324
SD-MVS94.84 1895.02 1994.29 3697.87 6484.61 7497.76 7496.19 13189.59 5696.66 1998.17 4184.33 3999.60 5996.09 3798.50 3698.66 42
Zhenlong Yuan, Jiakai Cao, Zhaoxin Li, Hao Jiang and Zhaoqi Wang: SD-MVS: Segmentation-driven Deformation Multi-View Stereo with Spherical Refinement and EM optimization. AAAI2024
GA-MVS85.79 20084.04 21291.02 16689.47 29380.27 16896.90 14894.84 20785.57 13180.88 21889.08 26456.56 30996.47 23377.72 23185.35 21796.34 174
MSLP-MVS++94.28 2694.39 2793.97 4598.30 4984.06 8498.64 3196.93 4490.71 4093.08 6798.70 1579.98 7699.21 8894.12 6299.07 1198.63 44
APDe-MVScopyleft94.56 2394.75 2093.96 4698.84 2283.40 9798.04 5796.41 10885.79 12895.00 4298.28 3484.32 4299.18 9497.35 2698.77 2799.28 19
Zhaojie Zeng, Yuesong Wang, Tao Guan: Matching Ambiguity-Resilient Multi-View Stereo via Adaptive Patch Deformation. Pattern Recognition
APD-MVS_3200maxsize91.23 9291.35 8090.89 17097.89 6276.35 26996.30 18795.52 17279.82 26391.03 9697.88 6374.70 16698.54 12892.11 8796.89 8597.77 102
ADS-MVSNet279.57 29177.53 29485.71 28693.78 17872.13 31479.48 37686.11 37273.09 33480.14 22879.99 36162.15 26190.14 36959.49 34583.52 22594.85 210
EI-MVSNet85.80 19985.20 19087.59 24891.55 25077.41 25095.13 24395.36 18380.43 25080.33 22694.71 17473.72 18195.97 25276.96 24378.64 26789.39 275
Regformer0.00 3780.00 3810.00 3910.00 4140.00 4160.00 4020.00 4150.00 4090.00 4100.00 4090.00 4140.00 4100.00 4090.00 4080.00 406
CVMVSNet84.83 21585.57 18482.63 32991.55 25060.38 37495.13 24395.03 19780.60 24382.10 20594.71 17466.40 23790.19 36874.30 27090.32 16597.31 136
pmmvs482.54 25580.79 25987.79 24186.11 33180.49 16493.55 28493.18 30077.29 30073.35 30189.40 26365.26 24595.05 30675.32 26073.61 29387.83 319
EU-MVSNet76.92 31476.95 29976.83 35684.10 35554.73 38791.77 31392.71 30972.74 33769.57 32988.69 27058.03 29487.43 37964.91 32570.00 31788.33 311
VNet92.11 7091.22 8394.79 2596.91 9186.98 2797.91 6397.96 1086.38 11793.65 5995.74 13670.16 21898.95 11193.39 6988.87 17898.43 55
test-LLR88.48 15287.98 14489.98 19592.26 22677.23 25497.11 12895.96 14883.76 18686.30 15691.38 23272.30 19696.78 22380.82 20191.92 15695.94 183
TESTMET0.1,189.83 12189.34 12291.31 15492.54 21880.19 17197.11 12896.57 9086.15 11986.85 15391.83 22879.32 8096.95 21181.30 19892.35 15296.77 161
test-mter88.95 13688.60 13489.98 19592.26 22677.23 25497.11 12895.96 14885.32 13786.30 15691.38 23276.37 13296.78 22380.82 20191.92 15695.94 183
VPA-MVSNet85.32 20783.83 21389.77 20590.25 27682.63 10896.36 18397.07 3483.03 20181.21 21689.02 26661.58 26796.31 23985.02 16370.95 30790.36 257
ACMMPR92.69 5792.67 5492.75 9698.66 2880.57 15997.58 8696.69 7385.20 14291.57 8597.92 5877.01 11899.67 5390.95 9698.41 4198.00 84
testgi74.88 32473.40 32479.32 34780.13 37161.75 36993.21 29486.64 37079.49 27066.56 34491.06 23835.51 37988.67 37256.79 35871.25 30487.56 326
test20.0372.36 33671.15 33375.98 36077.79 37759.16 37892.40 30689.35 35074.09 32561.50 36584.32 33748.09 34285.54 38550.63 37462.15 36383.24 366
thres600view788.06 16386.70 17592.15 12796.10 10485.17 6297.14 12598.85 282.70 20983.41 18793.66 19875.43 15197.82 16167.13 31285.88 21193.45 236
ADS-MVSNet81.26 27478.36 28789.96 19793.78 17879.78 17979.48 37693.60 28273.09 33480.14 22879.99 36162.15 26195.24 29459.49 34583.52 22594.85 210
MP-MVScopyleft92.61 6092.67 5492.42 11198.13 5679.73 18497.33 10996.20 12985.63 13090.53 10297.66 7278.14 10099.70 4892.12 8698.30 4897.85 95
Rongxuan Tan, Qing Wang, et al.: MP-MVS: Multi-Scale Windows PatchMatch and Planar Prior Multi-View Stereo.
testmvs9.92 37412.94 3770.84 3900.65 4120.29 41593.78 2790.39 4130.42 4062.85 40715.84 4060.17 4130.30 4092.18 4070.21 4061.91 404
thres40088.42 15587.15 16592.23 12196.21 10085.30 5697.44 9998.85 283.37 19283.99 17993.82 19475.36 15497.93 15269.04 30386.24 20793.45 236
test1239.07 37511.73 3781.11 3890.50 4130.77 41489.44 3320.20 4140.34 4072.15 40810.72 4070.34 4120.32 4081.79 4080.08 4072.23 403
thres20088.92 13887.65 15092.73 9896.30 9785.62 4997.85 6698.86 184.38 16584.82 16993.99 19175.12 16198.01 15070.86 29586.67 20094.56 218
test0.0.03 182.79 25182.48 23783.74 31886.81 32172.22 31196.52 17095.03 19783.76 18673.00 30593.20 20472.30 19688.88 37164.15 32877.52 27790.12 263
pmmvs365.75 35162.18 35476.45 35867.12 39564.54 35788.68 33785.05 37554.77 39057.54 37973.79 37729.40 38886.21 38355.49 36347.77 38778.62 382
EMVS31.70 37131.45 37332.48 38750.72 40623.95 41174.78 38952.30 40920.36 40116.08 40531.48 40312.80 40053.60 40511.39 40513.10 40419.88 402
E-PMN32.70 37032.39 37233.65 38653.35 40325.70 41074.07 39053.33 40821.08 40017.17 40433.63 40211.85 40254.84 40412.98 40414.04 40120.42 401
PGM-MVS91.93 7291.80 7392.32 11798.27 5079.74 18395.28 23397.27 2183.83 18390.89 9997.78 6876.12 13699.56 6688.82 12997.93 6097.66 110
LCM-MVSNet-Re83.75 23483.54 22084.39 31293.54 18564.14 36092.51 30384.03 37983.90 18166.14 34586.59 30367.36 22992.68 34284.89 16492.87 14496.35 173
LCM-MVSNet52.52 36048.24 36365.35 37047.63 40741.45 39972.55 39283.62 38131.75 39537.66 39357.92 3939.19 40576.76 39549.26 37844.60 39077.84 383
MCST-MVS96.17 396.12 696.32 799.42 289.36 1098.94 2397.10 3295.17 392.11 7898.46 2687.33 2499.97 297.21 2899.31 499.63 7
mvs_anonymous88.68 14587.62 15391.86 13894.80 14681.69 13493.53 28594.92 20182.03 22378.87 24190.43 25075.77 14195.34 28885.04 16293.16 14298.55 49
MVS_Test90.29 11489.18 12493.62 6195.23 13084.93 6994.41 26094.66 21884.31 16690.37 10691.02 23975.13 16097.82 16183.11 18894.42 12398.12 75
MDA-MVSNet-bldmvs71.45 34067.94 34581.98 33485.33 34368.50 34492.35 30788.76 35770.40 34942.99 39081.96 35046.57 35091.31 35948.75 38154.39 37486.11 346
CDPH-MVS93.12 4392.91 4993.74 5398.65 3083.88 8597.67 8196.26 12383.00 20293.22 6598.24 3581.31 6299.21 8889.12 12598.74 2998.14 73
test1294.25 3798.34 4685.55 5096.35 11792.36 7380.84 6499.22 8798.31 4797.98 86
casdiffmvspermissive90.95 10190.39 9992.63 10392.82 21082.53 11096.83 15194.47 23187.69 8988.47 13395.56 14574.04 17797.54 17690.90 9992.74 14697.83 97
Fangjinhua Wang, Qingshan Xu, Yew-Soon Ong, Marc Pollefeys: Lightweight and Accurate Multi-View Stereo With Confidence-Aware Diffusion Model. IEEE T-PAMI 2025
diffmvspermissive91.17 9390.74 9192.44 11093.11 20282.50 11296.25 19093.62 28187.79 8690.40 10595.93 13273.44 18597.42 18493.62 6892.55 14897.41 129
Fangjinhua Wang, Qingshan Xu, Yew-Soon Ong, Marc Pollefeys: Lightweight and Accurate Multi-View Stereo With Confidence-Aware Diffusion Model. IEEE T-PAMI 2025
baseline290.39 11190.21 10590.93 16790.86 26680.99 14795.20 23997.41 1786.03 12480.07 23194.61 17690.58 697.47 18387.29 14689.86 16894.35 219
baseline188.85 14187.49 15792.93 9095.21 13286.85 2995.47 22794.61 22387.29 9983.11 19294.99 16880.70 6796.89 21582.28 19373.72 29295.05 205
YYNet173.53 33070.43 33782.85 32784.52 35171.73 32391.69 31591.37 32767.63 35746.79 38681.21 35555.04 31990.43 36655.93 36059.70 36786.38 342
PMMVS250.90 36246.31 36564.67 37155.53 40146.67 39377.30 38571.02 39740.89 39234.16 39659.32 3919.83 40476.14 39740.09 39128.63 39971.21 386
MDA-MVSNet_test_wron73.54 32970.43 33782.86 32684.55 34971.85 32091.74 31491.32 33067.63 35746.73 38781.09 35655.11 31890.42 36755.91 36159.76 36686.31 343
tpmvs83.04 24780.77 26089.84 20195.43 12477.96 23485.59 36195.32 18775.31 31676.27 27183.70 34273.89 17897.41 18559.53 34481.93 24594.14 222
PM-MVS69.32 34566.93 34776.49 35773.60 38855.84 38385.91 35979.32 39074.72 32161.09 36778.18 36621.76 39291.10 36170.86 29556.90 37182.51 371
HQP_MVS87.50 17487.09 16888.74 22191.86 24677.96 23497.18 11894.69 21489.89 5381.33 21494.15 18764.77 24897.30 19287.08 14782.82 23590.96 249
plane_prior791.86 24677.55 248
plane_prior691.98 24277.92 23764.77 248
plane_prior594.69 21497.30 19287.08 14782.82 23590.96 249
plane_prior494.15 187
plane_prior377.75 24490.17 5081.33 214
plane_prior297.18 11889.89 53
plane_prior191.95 244
plane_prior77.96 23497.52 9490.36 4882.96 233
PS-CasMVS80.27 28579.18 28183.52 32287.56 31569.88 33594.08 27295.29 18880.27 25572.08 31388.51 27559.22 28392.23 34867.49 30968.15 33488.45 308
UniMVSNet_NR-MVSNet85.49 20584.59 20088.21 23489.44 29479.36 19296.71 16196.41 10885.22 14078.11 24790.98 24176.97 12095.14 29979.14 22068.30 33290.12 263
PEN-MVS79.47 29378.26 28983.08 32586.36 32568.58 34393.85 27894.77 21279.76 26471.37 31588.55 27259.79 27592.46 34464.50 32665.40 35188.19 313
TransMVSNet (Re)76.94 31374.38 31784.62 30685.92 33475.25 28595.28 23389.18 35273.88 32767.22 33586.46 30659.64 27694.10 32659.24 34852.57 38084.50 360
DTE-MVSNet78.37 29977.06 29882.32 33285.22 34567.17 35293.40 28693.66 27978.71 28570.53 32388.29 27759.06 28492.23 34861.38 34063.28 36087.56 326
DU-MVS84.57 22083.33 22488.28 23088.76 29879.36 19296.43 17995.41 18285.42 13578.11 24790.82 24367.61 22495.14 29979.14 22068.30 33290.33 259
UniMVSNet (Re)85.31 20884.23 20888.55 22489.75 28680.55 16096.72 15996.89 4785.42 13578.40 24488.93 26775.38 15395.52 28278.58 22568.02 33589.57 274
CP-MVSNet81.01 27880.08 27283.79 31687.91 31170.51 33094.29 26995.65 16580.83 23772.54 31188.84 26863.71 25292.32 34668.58 30768.36 33188.55 302
WR-MVS_H81.02 27780.09 27183.79 31688.08 30871.26 32894.46 25896.54 9380.08 25872.81 30886.82 29970.36 21692.65 34364.18 32767.50 34187.46 330
WR-MVS84.32 22482.96 22888.41 22689.38 29580.32 16596.59 16696.25 12483.97 17776.63 26290.36 25167.53 22794.86 30975.82 25670.09 31690.06 268
NR-MVSNet83.35 23981.52 25288.84 21888.76 29881.31 14194.45 25995.16 19284.65 15767.81 33490.82 24370.36 21694.87 30874.75 26466.89 34790.33 259
Baseline_NR-MVSNet81.22 27580.07 27384.68 30385.32 34475.12 28696.48 17388.80 35676.24 31177.28 25486.40 31067.61 22494.39 32275.73 25766.73 34884.54 359
TranMVSNet+NR-MVSNet83.24 24381.71 24887.83 24087.71 31378.81 20896.13 19994.82 20884.52 16076.18 27490.78 24564.07 25194.60 31674.60 26866.59 34990.09 266
TSAR-MVS + GP.94.35 2594.50 2393.89 4797.38 8483.04 10498.10 5195.29 18891.57 3093.81 5797.45 8586.64 2799.43 7696.28 3694.01 12899.20 22
n20.00 415
nn0.00 415
mPP-MVS91.88 7591.82 7292.07 12998.38 4478.63 21297.29 11196.09 13785.12 14488.45 13497.66 7275.53 14799.68 5189.83 11698.02 5597.88 91
door-mid79.75 389
XVG-OURS-SEG-HR85.74 20185.16 19387.49 25490.22 27771.45 32691.29 31994.09 25481.37 23083.90 18395.22 15560.30 27497.53 17885.58 15884.42 22293.50 234
mvsmamba85.17 21084.54 20187.05 26487.94 31075.11 28796.22 19187.79 36486.91 10878.55 24291.77 22964.93 24795.91 25886.94 15179.80 25390.12 263
MVSFormer91.36 8890.57 9493.73 5593.00 20388.08 1794.80 25594.48 22980.74 24094.90 4397.13 10178.84 8995.10 30283.77 17597.46 7098.02 79
jason92.73 5392.23 6494.21 4090.50 27387.30 2698.65 3095.09 19490.61 4292.76 7197.13 10175.28 15897.30 19293.32 7296.75 9198.02 79
jason: jason.
lupinMVS93.87 3593.58 3994.75 2793.00 20388.08 1799.15 795.50 17391.03 3794.90 4397.66 7278.84 8997.56 17294.64 5797.46 7098.62 45
test_djsdf83.00 24982.45 23884.64 30584.07 35669.78 33694.80 25594.48 22980.74 24075.41 28687.70 28561.32 27095.10 30283.77 17579.76 25489.04 291
HPM-MVS_fast90.38 11390.17 10791.03 16597.61 7077.35 25297.15 12495.48 17479.51 26988.79 12896.90 10971.64 20498.81 11987.01 15097.44 7296.94 152
K. test v373.62 32771.59 33279.69 34482.98 36259.85 37790.85 32488.83 35577.13 30258.90 37282.11 34943.62 35691.72 35565.83 32154.10 37587.50 329
lessismore_v079.98 34380.59 36958.34 37980.87 38658.49 37483.46 34443.10 36093.89 32963.11 33448.68 38487.72 320
SixPastTwentyTwo76.04 31774.32 31881.22 33684.54 35061.43 37291.16 32089.30 35177.89 29164.04 35286.31 31148.23 34194.29 32463.54 33263.84 35887.93 318
OurMVSNet-221017-077.18 31276.06 30480.55 34183.78 36060.00 37690.35 32691.05 33477.01 30666.62 34387.92 28347.73 34794.03 32771.63 28668.44 33087.62 323
HPM-MVScopyleft91.62 8291.53 7891.89 13797.88 6379.22 19696.99 13695.73 16282.07 22289.50 11897.19 9975.59 14598.93 11490.91 9897.94 5897.54 118
Chunlin Ren, Qingshan Xu, Shikun Zhang, Jiaqi Yang: Hierarchical Prior Mining for Non-local Multi-View Stereo. ICCV 2023
XVG-OURS85.18 20984.38 20687.59 24890.42 27571.73 32391.06 32294.07 25582.00 22483.29 18995.08 16556.42 31097.55 17483.70 17983.42 22793.49 235
XVG-ACMP-BASELINE79.38 29477.90 29283.81 31584.98 34767.14 35389.03 33493.18 30080.26 25672.87 30788.15 28038.55 37296.26 24076.05 25378.05 27588.02 316
casdiffmvs_mvgpermissive91.13 9490.45 9893.17 8092.99 20683.58 9397.46 9894.56 22687.69 8987.19 14994.98 16974.50 17197.60 16991.88 9192.79 14598.34 58
Fangjinhua Wang, Qingshan Xu, Yew-Soon Ong, Marc Pollefeys: Lightweight and Accurate Multi-View Stereo With Confidence-Aware Diffusion Model. IEEE T-PAMI 2025
LPG-MVS_test84.20 22683.49 22286.33 27390.88 26373.06 30695.28 23394.13 25182.20 21876.31 26893.20 20454.83 32196.95 21183.72 17780.83 24988.98 294
LGP-MVS_train86.33 27390.88 26373.06 30694.13 25182.20 21876.31 26893.20 20454.83 32196.95 21183.72 17780.83 24988.98 294
baseline90.76 10490.10 10892.74 9792.90 20982.56 10994.60 25794.56 22687.69 8989.06 12495.67 14073.76 18097.51 17990.43 10992.23 15498.16 71
test1196.50 98
door80.13 388
EPNet_dtu87.65 17287.89 14586.93 26694.57 15071.37 32796.72 15996.50 9888.56 7087.12 15095.02 16675.91 14094.01 32866.62 31590.00 16695.42 197
Wanjuan Su, Wenbing Tao: Efficient Edge-Preserving Multi-View Stereo Network for Depth Estimation. AAAI 2023
CHOSEN 1792x268891.07 9790.21 10593.64 5995.18 13383.53 9496.26 18996.13 13488.92 6384.90 16893.10 20872.86 18999.62 5888.86 12895.67 11097.79 101
EPNet94.06 3294.15 3193.76 5297.27 8784.35 7898.29 4197.64 1594.57 695.36 3396.88 11179.96 7799.12 10091.30 9396.11 10197.82 99
Wanjuan Su, Wenbing Tao: Efficient Edge-Preserving Multi-View Stereo Network for Depth Estimation. AAAI 2023
HQP5-MVS78.48 214
HQP-NCC92.08 23797.63 8290.52 4382.30 199
ACMP_Plane92.08 23797.63 8290.52 4382.30 199
APD-MVScopyleft93.61 3793.59 3893.69 5798.76 2483.26 10097.21 11496.09 13782.41 21694.65 4898.21 3681.96 6098.81 11994.65 5698.36 4599.01 26
Yuesong Wang, Zhaojie Zeng and etc.: Adaptive Patch Deformation for Textureless-Resilient Multi-View Stereo. CVPR2023
BP-MVS87.67 143
HQP4-MVS82.30 19997.32 19091.13 247
HQP3-MVS94.80 20983.01 231
HQP2-MVS65.40 242
CNVR-MVS96.30 196.54 195.55 1599.31 587.69 2299.06 1697.12 3094.66 596.79 1698.78 986.42 2999.95 397.59 2399.18 799.00 27
NCCC95.63 795.94 894.69 2899.21 685.15 6399.16 696.96 4194.11 995.59 3298.64 1785.07 3399.91 495.61 4599.10 999.00 27
114514_t88.79 14487.57 15592.45 10898.21 5381.74 13196.99 13695.45 17775.16 31782.48 19695.69 13968.59 22398.50 13080.33 20595.18 11497.10 147
CP-MVS92.54 6292.60 5692.34 11398.50 4079.90 17798.40 3896.40 11084.75 15290.48 10498.09 4577.40 11299.21 8891.15 9598.23 5097.92 90
DSMNet-mixed73.13 33272.45 32875.19 36277.51 37946.82 39285.09 36482.01 38567.61 36169.27 33181.33 35450.89 33286.28 38254.54 36483.80 22492.46 241
tpm287.35 17686.26 17790.62 17792.93 20878.67 21188.06 34395.99 14579.33 27287.40 14486.43 30980.28 7196.40 23480.23 20885.73 21496.79 159
NP-MVS92.04 24178.22 22494.56 177
EG-PatchMatch MVS74.92 32372.02 33083.62 32083.76 36173.28 30393.62 28292.04 31868.57 35658.88 37383.80 34131.87 38595.57 28156.97 35778.67 26682.00 376
tpm cat183.63 23681.38 25390.39 18393.53 19078.19 22985.56 36295.09 19470.78 34878.51 24383.28 34574.80 16597.03 20666.77 31384.05 22395.95 182
SteuartSystems-ACMMP94.13 3194.44 2693.20 7895.41 12581.35 14099.02 2096.59 8889.50 5794.18 5498.36 3083.68 4999.45 7594.77 5398.45 3998.81 33
Skip Steuart: Steuart Systems R&D Blog.
CostFormer89.08 13488.39 13891.15 16293.13 20079.15 19988.61 33896.11 13683.14 19689.58 11586.93 29883.83 4896.87 21788.22 13885.92 21097.42 128
CR-MVSNet83.53 23781.36 25490.06 19290.16 27979.75 18179.02 38091.12 33184.24 17282.27 20380.35 35975.45 14993.67 33463.37 33386.25 20596.75 163
JIA-IIPM79.00 29777.20 29684.40 31189.74 28864.06 36175.30 38895.44 17862.15 37081.90 20859.08 39278.92 8795.59 27966.51 31885.78 21393.54 233
Patchmtry77.36 31074.59 31585.67 28889.75 28675.75 28277.85 38391.12 33160.28 37971.23 31780.35 35975.45 14993.56 33657.94 35067.34 34387.68 322
PatchT79.75 28876.85 30088.42 22589.55 29175.49 28377.37 38494.61 22363.07 36782.46 19773.32 38075.52 14893.41 33951.36 37184.43 22196.36 172
tpmrst88.36 15687.38 16191.31 15494.36 16279.92 17687.32 34895.26 19085.32 13788.34 13686.13 31480.60 6896.70 22583.78 17485.34 21897.30 137
BH-w/o88.24 16087.47 15990.54 18095.03 14078.54 21397.41 10493.82 26884.08 17378.23 24694.51 17969.34 22197.21 19780.21 20994.58 12195.87 185
tpm85.55 20484.47 20588.80 22090.19 27875.39 28488.79 33694.69 21484.83 15183.96 18185.21 32678.22 9894.68 31576.32 25178.02 27696.34 174
DELS-MVS94.98 1494.49 2496.44 696.42 9590.59 799.21 497.02 3694.40 891.46 8697.08 10483.32 5099.69 4992.83 7998.70 3099.04 25
Christian Sormann, Emanuele Santellani, Mattia Rossi, Andreas Kuhn, Friedrich Fraundorfer: DELS-MVS: Deep Epipolar Line Search for Multi-View Stereo. Winter Conference on Applications of Computer Vision (WACV), 2023
BH-untuned86.95 18085.94 18089.99 19494.52 15477.46 24996.78 15693.37 29381.80 22576.62 26393.81 19666.64 23597.02 20776.06 25293.88 13195.48 196
RPMNet79.85 28775.92 30691.64 14690.16 27979.75 18179.02 38095.44 17858.43 38682.27 20372.55 38373.03 18898.41 13846.10 38486.25 20596.75 163
MVSTER89.25 13388.92 13090.24 18895.98 10884.66 7396.79 15595.36 18387.19 10480.33 22690.61 24790.02 1295.97 25285.38 16078.64 26790.09 266
CPTT-MVS89.72 12389.87 11689.29 21098.33 4773.30 30297.70 7895.35 18575.68 31387.40 14497.44 8870.43 21598.25 14389.56 12196.90 8496.33 176
GBi-Net82.42 25780.43 26888.39 22792.66 21381.95 11994.30 26693.38 29079.06 28075.82 28085.66 31656.38 31193.84 33071.23 29075.38 28589.38 277
PVSNet_Blended_VisFu91.24 9190.77 9092.66 10095.09 13582.40 11497.77 7295.87 15588.26 7686.39 15493.94 19276.77 12499.27 8488.80 13094.00 12996.31 177
PVSNet_BlendedMVS90.05 11789.96 11290.33 18697.47 7683.86 8698.02 5896.73 6787.98 8189.53 11689.61 26176.42 13099.57 6494.29 5979.59 25887.57 325
UnsupCasMVSNet_eth73.25 33170.57 33681.30 33577.53 37866.33 35487.24 34993.89 26480.38 25157.90 37781.59 35242.91 36290.56 36565.18 32448.51 38587.01 335
UnsupCasMVSNet_bld68.60 34864.50 35280.92 33974.63 38767.80 34583.97 36892.94 30665.12 36554.63 38268.23 38835.97 37792.17 35060.13 34344.83 38982.78 369
PVSNet_Blended93.13 4292.98 4893.57 6497.47 7683.86 8699.32 196.73 6791.02 3889.53 11696.21 12776.42 13099.57 6494.29 5995.81 10997.29 138
FMVSNet576.46 31674.16 32083.35 32490.05 28276.17 27089.58 33089.85 34571.39 34665.29 34980.42 35850.61 33487.70 37861.05 34269.24 32486.18 345
test182.42 25780.43 26888.39 22792.66 21381.95 11994.30 26693.38 29079.06 28075.82 28085.66 31656.38 31193.84 33071.23 29075.38 28589.38 277
new_pmnet66.18 35063.18 35375.18 36376.27 38561.74 37083.79 36984.66 37656.64 38851.57 38471.85 38631.29 38687.93 37449.98 37662.55 36175.86 385
FMVSNet384.71 21682.71 23490.70 17694.55 15287.71 2195.92 20694.67 21781.73 22775.82 28088.08 28166.99 23294.47 32071.23 29075.38 28589.91 270
dp84.30 22582.31 23990.28 18794.24 16577.97 23386.57 35495.53 17079.94 26280.75 22085.16 32871.49 20696.39 23563.73 33083.36 22896.48 170
FMVSNet282.79 25180.44 26789.83 20292.66 21385.43 5295.42 22994.35 23879.06 28074.46 29287.28 29056.38 31194.31 32369.72 30274.68 28989.76 272
FMVSNet179.50 29276.54 30288.39 22788.47 30381.95 11994.30 26693.38 29073.14 33372.04 31485.66 31643.86 35593.84 33065.48 32272.53 29889.38 277
N_pmnet61.30 35360.20 35664.60 37284.32 35217.00 41391.67 31610.98 41161.77 37258.45 37578.55 36549.89 33891.83 35442.27 38863.94 35784.97 357
cascas86.50 18784.48 20492.55 10692.64 21685.95 3897.04 13595.07 19675.32 31580.50 22291.02 23954.33 32397.98 15186.79 15287.62 19393.71 231
BH-RMVSNet86.84 18285.28 18991.49 15195.35 12780.26 16996.95 14492.21 31582.86 20681.77 21295.46 14759.34 28197.64 16769.79 30193.81 13296.57 168
UGNet87.73 17086.55 17691.27 15795.16 13479.11 20096.35 18496.23 12688.14 7887.83 14290.48 24850.65 33399.09 10280.13 21094.03 12695.60 191
Wanjuan Su, Qingshan Xu, Wenbing Tao: Uncertainty-guided Multi-view Stereo Network for Depth Estimation. IEEE Transactions on Circuits and Systems for Video Technology, 2022
WTY-MVS92.65 5991.68 7595.56 1496.00 10688.90 1398.23 4397.65 1488.57 6989.82 11097.22 9879.29 8199.06 10489.57 12088.73 18098.73 39
XXY-MVS83.84 23282.00 24489.35 20987.13 31981.38 13995.72 21694.26 24380.15 25775.92 27890.63 24661.96 26596.52 23178.98 22273.28 29790.14 262
EC-MVSNet91.73 7792.11 6790.58 17893.54 18577.77 24398.07 5494.40 23687.44 9592.99 6997.11 10374.59 17096.87 21793.75 6597.08 8197.11 146
sss90.87 10389.96 11293.60 6294.15 16883.84 8897.14 12598.13 785.93 12689.68 11296.09 13071.67 20299.30 8387.69 14289.16 17397.66 110
Test_1112_low_res88.03 16486.73 17391.94 13693.15 19880.88 15196.44 17792.41 31383.59 19180.74 22191.16 23780.18 7397.59 17077.48 23785.40 21697.36 133
1112_ss88.60 14987.47 15992.00 13493.21 19580.97 14896.47 17492.46 31183.64 18980.86 21997.30 9480.24 7297.62 16877.60 23485.49 21597.40 131
ab-mvs-re8.11 37610.81 3790.00 3910.00 4140.00 4160.00 4020.00 4150.00 4090.00 41097.30 940.00 4140.00 4100.00 4090.00 4080.00 406
ab-mvs87.08 17784.94 19793.48 7093.34 19483.67 9188.82 33595.70 16381.18 23284.55 17590.14 25662.72 25798.94 11385.49 15982.54 23997.85 95
TR-MVS86.30 19184.93 19890.42 18294.63 14977.58 24796.57 16793.82 26880.30 25382.42 19895.16 16058.74 28597.55 17474.88 26387.82 19296.13 181
MDTV_nov1_ep13_2view81.74 13186.80 35280.65 24285.65 16074.26 17376.52 24796.98 150
MDTV_nov1_ep1383.69 21494.09 17281.01 14686.78 35396.09 13783.81 18484.75 17184.32 33774.44 17296.54 23063.88 32985.07 219
MIMVSNet169.44 34466.65 34877.84 35276.48 38362.84 36787.42 34788.97 35466.96 36257.75 37879.72 36332.77 38485.83 38446.32 38363.42 35984.85 358
MIMVSNet79.18 29675.99 30588.72 22287.37 31880.66 15779.96 37591.82 32077.38 29974.33 29381.87 35141.78 36490.74 36466.36 32083.10 23094.76 212
IterMVS-LS83.93 23082.80 23387.31 25891.46 25377.39 25195.66 21993.43 28880.44 24875.51 28487.26 29273.72 18195.16 29876.99 24170.72 30989.39 275
Fangjinhua Wang, Silvano Galliani, Christoph Vogel, Marc Pollefeys: IterMVS: Iterative Probability Estimation for Efficient Multi-View Stereo.
CDS-MVSNet89.50 12788.96 12891.14 16391.94 24580.93 15097.09 13295.81 15784.26 17184.72 17294.20 18680.31 7095.64 27583.37 18588.96 17796.85 158
Khang Truong Giang, Soohwan Song, Sungho Jo: Curvature-guided dynamic scale networks for Multi-view Stereo. ICLR 2022
ACMMP++_ref78.45 272
IterMVS80.67 28279.16 28285.20 29689.79 28476.08 27292.97 29991.86 31980.28 25471.20 31885.14 32957.93 29691.34 35872.52 28270.74 30888.18 314
Fangjinhua Wang, Silvano Galliani, Christoph Vogel, Marc Pollefeys: IterMVS: Iterative Probability Estimation for Efficient Multi-View Stereo.
DP-MVS Recon91.72 7990.85 8894.34 3499.50 185.00 6898.51 3595.96 14880.57 24488.08 14097.63 7876.84 12199.89 785.67 15794.88 11698.13 74
MVS_111021_LR91.60 8391.64 7791.47 15295.74 11778.79 20996.15 19696.77 6188.49 7188.64 13297.07 10572.33 19599.19 9393.13 7796.48 9696.43 171
DP-MVS81.47 27178.28 28891.04 16498.14 5578.48 21495.09 24886.97 36661.14 37771.12 31992.78 21459.59 27799.38 7853.11 36886.61 20195.27 202
ACMMP++79.05 263
HQP-MVS87.91 16887.55 15688.98 21692.08 23778.48 21497.63 8294.80 20990.52 4382.30 19994.56 17765.40 24297.32 19087.67 14383.01 23191.13 247
QAPM86.88 18184.51 20293.98 4494.04 17485.89 4197.19 11796.05 14173.62 32875.12 28895.62 14262.02 26399.74 3870.88 29496.06 10396.30 178
Vis-MVSNetpermissive88.67 14687.82 14791.24 15892.68 21278.82 20696.95 14493.85 26787.55 9287.07 15195.13 16263.43 25497.21 19777.58 23596.15 10097.70 108
Jingyang Zhang, Yao Yao, Shiwei Li, Zixin Luo, Tian Fang: Visibility-aware Multiview Stereo Network. BMVC 2020
MVS-HIRNet71.36 34167.00 34684.46 31090.58 27169.74 33779.15 37987.74 36546.09 39161.96 36450.50 39545.14 35395.64 27553.74 36688.11 18988.00 317
IS-MVSNet88.67 14688.16 14290.20 19093.61 18276.86 26096.77 15893.07 30484.02 17583.62 18695.60 14374.69 16996.24 24278.43 22793.66 13597.49 125
HyFIR lowres test89.36 12988.60 13491.63 14894.91 14380.76 15595.60 22395.53 17082.56 21384.03 17891.24 23678.03 10196.81 22187.07 14988.41 18597.32 134
EPMVS87.47 17585.90 18192.18 12495.41 12582.26 11787.00 35196.28 12185.88 12784.23 17685.57 32075.07 16296.26 24071.14 29392.50 14998.03 78
PAPM_NR91.46 8590.82 8993.37 7398.50 4081.81 12995.03 24996.13 13484.65 15786.10 15897.65 7679.24 8399.75 3683.20 18696.88 8698.56 47
TAMVS88.48 15287.79 14890.56 17991.09 26079.18 19796.45 17695.88 15383.64 18983.12 19193.33 20375.94 13995.74 27082.40 19288.27 18796.75 163
PAPR92.74 5292.17 6694.45 3298.89 2084.87 7197.20 11696.20 12987.73 8888.40 13598.12 4378.71 9299.76 3187.99 13996.28 9798.74 35
RPSCF77.73 30676.63 30181.06 33888.66 30255.76 38587.77 34587.88 36364.82 36674.14 29492.79 21349.22 34096.81 22167.47 31076.88 27890.62 253
Vis-MVSNet (Re-imp)88.88 14088.87 13288.91 21793.89 17774.43 29496.93 14694.19 24884.39 16483.22 19095.67 14078.24 9794.70 31378.88 22394.40 12497.61 115
test_040272.68 33469.54 34182.09 33388.67 30171.81 32292.72 30286.77 36961.52 37362.21 36283.91 34043.22 35993.76 33334.60 39272.23 30280.72 380
MVS_111021_HR93.41 4093.39 4393.47 7297.34 8582.83 10697.56 8898.27 689.16 6189.71 11197.14 10079.77 7899.56 6693.65 6797.94 5898.02 79
CSCG92.02 7191.65 7693.12 8198.53 3680.59 15897.47 9697.18 2677.06 30584.64 17497.98 5583.98 4599.52 6990.72 10297.33 7699.23 21
PatchMatch-RL85.00 21383.66 21689.02 21595.86 11274.55 29392.49 30493.60 28279.30 27479.29 23891.47 23058.53 28798.45 13570.22 29992.17 15594.07 225
API-MVS90.18 11588.97 12793.80 5098.66 2882.95 10597.50 9595.63 16775.16 31786.31 15597.69 7072.49 19399.90 581.26 19996.07 10298.56 47
Test By Simon71.65 203
TDRefinement69.20 34665.78 35079.48 34566.04 39662.21 36888.21 34086.12 37162.92 36861.03 36885.61 31933.23 38294.16 32555.82 36253.02 37882.08 375
USDC78.65 29876.25 30385.85 28287.58 31474.60 29289.58 33090.58 34284.05 17463.13 35788.23 27840.69 37196.86 21966.57 31775.81 28386.09 347
EPP-MVSNet89.76 12289.72 11889.87 20093.78 17876.02 27697.22 11296.51 9679.35 27185.11 16495.01 16784.82 3497.10 20587.46 14588.21 18896.50 169
PMMVS89.46 12889.92 11488.06 23694.64 14869.57 33996.22 19194.95 19987.27 10091.37 8996.54 12365.88 23897.39 18788.54 13293.89 13097.23 139
PAPM92.87 5092.40 5994.30 3592.25 22887.85 1996.40 18196.38 11391.07 3688.72 13196.90 10982.11 5897.37 18990.05 11597.70 6497.67 109
ACMMPcopyleft90.39 11189.97 11191.64 14697.58 7378.21 22796.78 15696.72 6984.73 15484.72 17297.23 9771.22 20799.63 5788.37 13792.41 15197.08 148
Qingshan Xu, Weihang Kong, Wenbing Tao, Marc Pollefeys: Multi-Scale Geometric Consistency Guided and Planar Prior Assisted Multi-View Stereo. IEEE Transactions on Pattern Analysis and Machine Intelligence
CNLPA86.96 17985.37 18891.72 14497.59 7279.34 19497.21 11491.05 33474.22 32378.90 23996.75 11967.21 23198.95 11174.68 26590.77 16496.88 157
PatchmatchNetpermissive86.83 18385.12 19491.95 13594.12 17182.27 11686.55 35595.64 16684.59 15982.98 19484.99 33277.26 11395.96 25568.61 30691.34 16197.64 112
Fangjinhua Wang, Silvano Galliani, Christoph Vogel, Pablo Speciale, Marc Pollefeys: PatchmatchNet: Learned Multi-View Patchmatch Stereo.
PHI-MVS93.59 3893.63 3793.48 7098.05 5881.76 13098.64 3197.13 2882.60 21294.09 5598.49 2580.35 6999.85 1094.74 5598.62 3298.83 32
F-COLMAP84.50 22283.44 22387.67 24495.22 13172.22 31195.95 20493.78 27375.74 31276.30 27095.18 15959.50 27998.45 13572.67 28186.59 20292.35 244
ANet_high46.22 36341.28 37061.04 37739.91 40946.25 39570.59 39376.18 39358.87 38523.09 40148.00 39812.58 40166.54 40128.65 39613.62 40270.35 387
wuyk23d14.10 37313.89 37614.72 38855.23 40222.91 41233.83 4013.56 4124.94 4054.11 4062.28 4082.06 41119.66 40710.23 4068.74 4051.59 405
OMC-MVS88.80 14388.16 14290.72 17595.30 12877.92 23794.81 25494.51 22886.80 11284.97 16796.85 11267.53 22798.60 12585.08 16187.62 19395.63 190
MG-MVS94.25 2893.72 3495.85 1199.38 389.35 1197.98 5998.09 989.99 5192.34 7496.97 10881.30 6398.99 10788.54 13298.88 2099.20 22
AdaColmapbinary88.81 14287.61 15492.39 11299.33 479.95 17596.70 16395.58 16877.51 29783.05 19396.69 12161.90 26699.72 4384.29 16793.47 13797.50 124
uanet0.00 3780.00 3810.00 3910.00 4140.00 4160.00 4020.00 4150.00 4090.00 4100.00 4090.00 4140.00 4100.00 4090.00 4080.00 406
ITE_SJBPF82.38 33087.00 32065.59 35589.55 34779.99 26169.37 33091.30 23441.60 36695.33 28962.86 33574.63 29086.24 344
DeepMVS_CXcopyleft64.06 37378.53 37543.26 39868.11 40269.94 35238.55 39276.14 37218.53 39479.34 39143.72 38641.62 39469.57 388
TinyColmap72.41 33568.99 34482.68 32888.11 30769.59 33888.41 33985.20 37465.55 36357.91 37684.82 33430.80 38795.94 25651.38 37068.70 32782.49 373
MAR-MVS90.63 10690.22 10491.86 13898.47 4278.20 22897.18 11896.61 8483.87 18288.18 13998.18 3868.71 22299.75 3683.66 18097.15 8097.63 113
Zhenyu Xu, Yiguang Liu, Xuelei Shi, Ying Wang, Yunan Zheng: MARMVS: Matching Ambiguity Reduced Multiple View Stereo for Efficient Large Scale Scene Reconstruction. CVPR 2020
LF4IMVS72.36 33670.82 33476.95 35579.18 37356.33 38186.12 35886.11 37269.30 35563.06 35886.66 30233.03 38392.25 34765.33 32368.64 32882.28 374
MSDG80.62 28377.77 29389.14 21293.43 19277.24 25391.89 31190.18 34369.86 35368.02 33391.94 22652.21 32998.84 11759.32 34783.12 22991.35 246
LS3D82.22 26179.94 27689.06 21397.43 7974.06 29893.20 29592.05 31761.90 37173.33 30295.21 15659.35 28099.21 8854.54 36492.48 15093.90 228
CLD-MVS87.97 16687.48 15889.44 20892.16 23380.54 16298.14 4694.92 20191.41 3179.43 23695.40 14862.34 25997.27 19590.60 10482.90 23490.50 256
Zhaoxin Li, Wangmeng Zuo, Zhaoqi Wang, Lei Zhang: Confidence-based Large-scale Dense Multi-view Stereo. IEEE Transaction on Image Processing, 2020
FPMVS55.09 35852.93 36161.57 37655.98 40040.51 40183.11 37283.41 38237.61 39434.95 39571.95 38414.40 39776.95 39429.81 39465.16 35267.25 389
Gipumacopyleft45.11 36642.05 36854.30 38280.69 36851.30 38935.80 40083.81 38028.13 39627.94 40034.53 40011.41 40376.70 39621.45 39954.65 37234.90 400
S. Galliani, K. Lasinger, K. Schindler: Massively Parallel Multiview Stereopsis by Surface Normal Diffusion. ICCV 2015