This table lists the benchmark results for the high-res multi-view scenario. The following metrics are evaluated:

(*) For exact definitions, detailing how potentially incomplete ground truth is taken into account, see our paper.

The datasets are grouped into different categories, and result averages are computed for a category and method if results of the method are available for all datasets within the category. Note that the category "all" includes both the high-res multi-view and the low-res many-view scenarios.

Methods with suffix _ROB may participate in the Robust Vision Challenge.

Click a dataset result cell to show a visualization of the reconstruction. For training datasets, ground truth and accuracy / completeness visualizations are also available. The visualizations may not work with mobile browsers.




Method Infoallhigh-res
multi-view
indooroutdoorbotani.boulde.bridgedoorexhibi.lectur.living.loungeobserv.old co.statueterrac.
sorted bysort bysort bysort bysort bysort bysort bysort bysort bysort bysort bysort bysort bysort bysort bysort by
DeepPCF-MVS89.82 194.61 2296.17 589.91 20497.09 9170.21 33598.99 2396.69 7295.57 295.08 4199.23 186.40 2899.87 897.84 2098.66 3299.65 6
DeepC-MVS_fast89.06 294.48 2594.30 2995.02 2298.86 2185.68 5198.06 5596.64 8093.64 1291.74 8998.54 2080.17 7599.90 592.28 9198.75 2999.49 8
Andreas Kuhn, Christian Sormann, Mattia Rossi, Oliver Erdler, Friedrich Fraundorfer: DeepC-MVS: Deep Confidence Prediction for Multi-View Stereo Reconstruction. 3DV 2020
DeepC-MVS86.58 391.53 8991.06 9192.94 9594.52 15981.89 12895.95 20495.98 14690.76 4083.76 19196.76 11973.24 19099.71 4591.67 10096.96 8897.22 146
Andreas Kuhn, Christian Sormann, Mattia Rossi, Oliver Erdler, Friedrich Fraundorfer: DeepC-MVS: Deep Confidence Prediction for Multi-View Stereo Reconstruction. 3DV 2020
IB-MVS85.34 488.67 15187.14 17293.26 8193.12 20784.32 8398.76 2697.27 2087.19 10779.36 24290.45 25283.92 4598.53 13084.41 17169.79 32196.93 159
Christian Sormann, Mattia Rossi, Andreas Kuhn and Friedrich Fraundorfer: IB-MVS: An Iterative Algorithm for Deep Multi-View Stereo based on Binary Decisions. BMVC 2021
PCF-MVS84.09 586.77 19085.00 20292.08 13492.06 24683.07 10792.14 30994.47 23679.63 26776.90 26494.78 17571.15 21499.20 9272.87 28291.05 16793.98 234
Andreas Kuhn, Shan Lin, Oliver Erdler: Plane Completion and Filtering for Multi-View Stereo Reconstruction. GCPR 2019
HY-MVS84.06 691.63 8690.37 10695.39 1996.12 10588.25 1790.22 32997.58 1588.33 7690.50 10891.96 23079.26 8499.06 10490.29 11989.07 18098.88 38
PLCcopyleft83.97 788.00 17087.38 16689.83 20798.02 5976.46 27197.16 12094.43 24079.26 27681.98 21396.28 12869.36 22799.27 8477.71 23592.25 15893.77 238
Jie Liao, Yanping Fu, Qingan Yan, Chunxia xiao: Pyramid Multi-View Stereo with Local Consistency. Pacific Graphics 2019
3Dnovator+82.88 889.63 13187.85 15194.99 2394.49 16486.76 3597.84 6795.74 16186.10 12375.47 28896.02 13365.00 25499.51 7182.91 19497.07 8698.72 47
PVSNet82.34 989.02 14087.79 15392.71 10595.49 12681.50 14297.70 7897.29 1887.76 9085.47 16895.12 16556.90 31198.90 11580.33 20894.02 13297.71 113
3Dnovator82.32 1089.33 13587.64 15694.42 3893.73 18685.70 4997.73 7696.75 6486.73 11876.21 27795.93 13462.17 26799.68 5181.67 20197.81 6497.88 97
ACMP81.66 1184.00 23483.22 23086.33 27791.53 25872.95 31295.91 20893.79 27783.70 18973.79 29892.22 22354.31 33096.89 22183.98 17579.74 26189.16 289
Qingshan Xu and Wenbing Tao: Planar Prior Assisted PatchMatch Multi-View Stereo. AAAI 2020
TAPA-MVS81.61 1285.02 21783.67 22089.06 21896.79 9373.27 30895.92 20694.79 21474.81 32080.47 22896.83 11571.07 21598.19 14949.82 38092.57 15295.71 197
Andrea Romanoni, Matteo Matteucci: TAPA-MVS: Textureless-Aware PAtchMatch Multi-View Stereo. ICCV 2019
ACMM80.70 1383.72 23982.85 23686.31 28091.19 26372.12 31895.88 20994.29 24780.44 24877.02 26291.96 23055.24 32397.14 21079.30 22180.38 25889.67 277
Qingshan Xu and Wenbing Tao: Multi-Scale Geometric Consistency Guided Multi-View Stereo. CVPR 2019
OpenMVScopyleft79.58 1486.09 19983.62 22393.50 7490.95 26886.71 3697.44 9895.83 15675.35 31472.64 31295.72 13957.42 30899.64 5571.41 29195.85 11394.13 231
PVSNet_077.72 1581.70 27178.95 28889.94 20390.77 27576.72 26895.96 20396.95 4185.01 14970.24 32988.53 27752.32 33298.20 14886.68 15844.08 39694.89 216
ACMH+76.62 1677.47 31274.94 31485.05 30091.07 26771.58 32793.26 29490.01 35371.80 34564.76 35388.55 27541.62 37096.48 23862.35 33971.00 30987.09 337
ACMH75.40 1777.99 30574.96 31387.10 26890.67 27676.41 27293.19 29791.64 33372.47 34263.44 35887.61 29043.34 36397.16 20658.34 35273.94 29487.72 323
Qingshan Xu and Wenbing Tao: Multi-Scale Geometric Consistency Guided Multi-View Stereo. CVPR 2019
LTVRE_ROB73.68 1877.99 30575.74 31084.74 30390.45 28072.02 31986.41 36091.12 34072.57 34166.63 34587.27 29454.95 32696.98 21556.29 36275.98 28385.21 359
Andreas Kuhn, Heiko Hirschmüller, Daniel Scharstein, Helmut Mayer: A TV Prior for High-Quality Scalable Multi-View Stereo Reconstruction. International Journal of Computer Vision 2016
COLMAP_ROBcopyleft73.24 1975.74 32373.00 33083.94 31692.38 22569.08 34391.85 31386.93 37361.48 37965.32 35190.27 25542.27 36896.93 22050.91 37675.63 28785.80 356
Johannes L. Schönberger, Enliang Zheng, Marc Pollefeys, Jan-Michael Frahm: Pixelwise View Selection for Unstructured Multi-View Stereo. ECCV 2016
OpenMVS_ROBcopyleft68.52 2073.02 33769.57 34483.37 32580.54 37571.82 32393.60 28488.22 36862.37 37461.98 36683.15 35035.31 38595.47 28745.08 38975.88 28582.82 371
CMPMVSbinary54.94 2175.71 32474.56 31979.17 35179.69 37755.98 38689.59 33293.30 30260.28 38453.85 38889.07 26847.68 35396.33 24476.55 24981.02 25485.22 358
M. Jancosek, T. Pajdla: Multi-View Reconstruction Preserving Weakly-Supported Surfaces. CVPR 2011
MVEpermissive35.65 2233.85 37429.49 37946.92 38941.86 41336.28 40950.45 40456.52 41218.75 40818.28 40737.84 4042.41 41558.41 40818.71 40520.62 40546.06 403
Simon Fuhrmann, Fabian Langguth, Michael Goesele: MVE - A Multi-View Reconstruction Environment. EUROGRAPHICS Workshops on Graphics and Cultural Heritage (2014)
PMVScopyleft34.80 2339.19 37335.53 37650.18 38829.72 41530.30 41359.60 40366.20 40826.06 40417.91 40849.53 4013.12 41474.09 40318.19 40649.40 38746.14 402
Y. Furukawa, J. Ponce: Accurate, dense, and robust multiview stereopsis. PAMI (2010)
dongtai69.47 34868.98 34970.93 36986.87 32658.45 38288.19 34493.18 30763.98 37156.04 38480.17 36570.97 21979.24 39633.46 39747.94 39175.09 390
kuosan73.55 33272.39 33377.01 35889.68 29566.72 35685.24 36893.44 29367.76 36060.04 37583.40 34871.90 20684.25 39045.34 38854.75 37580.06 384
MVSMamba_PlusPlus92.37 6991.55 8094.83 2895.37 13087.69 2595.60 22395.42 18374.65 32293.95 5892.81 21483.11 5197.70 16994.49 6198.53 3599.11 28
MGCFI-Net91.95 7691.03 9294.72 3295.68 12286.38 3796.93 14594.48 23388.25 7892.78 7597.24 9872.34 19998.46 13593.13 8388.43 19299.32 19
testing9191.90 7991.31 8593.66 6495.99 10985.68 5197.39 10596.89 4686.75 11788.85 13295.23 15683.93 4497.90 16288.91 13387.89 19997.41 135
testing1192.48 6592.04 7293.78 5795.94 11386.00 4297.56 8797.08 3287.52 9689.32 12495.40 15084.60 3498.02 15391.93 9889.04 18197.32 140
testing9991.91 7891.35 8393.60 6895.98 11085.70 4997.31 10996.92 4586.82 11388.91 13095.25 15384.26 4197.89 16388.80 13687.94 19897.21 148
UWE-MVS88.56 15688.91 13687.50 25794.17 17272.19 31695.82 21497.05 3484.96 15184.78 17693.51 20681.33 6294.75 31479.43 21989.17 17895.57 200
ETVMVS90.99 10390.26 10793.19 8595.81 11785.64 5396.97 14097.18 2585.43 13688.77 13594.86 17382.00 6096.37 24282.70 19588.60 18797.57 123
sasdasda92.27 7091.22 8695.41 1795.80 11888.31 1597.09 13094.64 22488.49 7192.99 7297.31 9272.68 19498.57 12793.38 7688.58 18899.36 16
testing22291.09 10090.49 10292.87 9795.82 11685.04 7096.51 17297.28 1986.05 12589.13 12695.34 15280.16 7696.62 23585.82 16088.31 19496.96 157
WB-MVSnew84.08 23383.51 22685.80 28691.34 26176.69 26995.62 22296.27 12281.77 22681.81 21792.81 21458.23 29594.70 31666.66 31787.06 20585.99 352
fmvsm_l_conf0.5_n_a94.91 1595.30 1693.72 6294.50 16384.30 8499.14 1096.00 14491.94 2897.91 598.60 1884.78 3399.77 2998.84 596.03 10997.08 154
fmvsm_l_conf0.5_n94.89 1695.24 1793.86 5394.42 16584.61 7999.13 1196.15 13392.06 2597.92 398.52 2384.52 3599.74 3898.76 695.67 11597.22 146
fmvsm_s_conf0.1_n_a92.38 6892.49 6092.06 13688.08 31581.62 14097.97 6196.01 14390.62 4296.58 2298.33 3274.09 17999.71 4597.23 2893.46 14394.86 217
fmvsm_s_conf0.1_n92.93 5093.16 4892.24 12690.52 27881.92 12698.42 3796.24 12591.17 3496.02 3098.35 3175.34 16099.74 3897.84 2094.58 12695.05 213
fmvsm_s_conf0.5_n_a93.34 4393.71 3692.22 12893.38 19881.71 13798.86 2596.98 3791.64 2996.85 1698.55 1975.58 14999.77 2997.88 1993.68 13895.18 212
fmvsm_s_conf0.5_n93.69 3794.13 3392.34 11994.56 15682.01 12299.07 1697.13 2792.09 2396.25 2698.53 2276.47 13199.80 2598.39 894.71 12495.22 211
MM95.85 695.74 1096.15 896.34 9889.50 999.18 698.10 895.68 196.64 2197.92 5880.72 6699.80 2599.16 197.96 5999.15 27
WAC-MVS67.18 35149.00 382
Syy-MVS77.97 30778.05 29377.74 35692.13 24056.85 38493.97 27494.23 24982.43 21473.39 30193.57 20457.95 30187.86 37832.40 39882.34 24888.51 306
test_fmvsmconf0.1_n93.08 4793.22 4792.65 10788.45 31180.81 15899.00 2295.11 19693.21 1594.00 5797.91 6076.84 12499.59 6097.91 1696.55 10097.54 124
test_fmvsmconf0.01_n91.08 10190.68 9792.29 12482.43 36980.12 17897.94 6293.93 26492.07 2491.97 8497.60 7967.56 23499.53 6897.09 3095.56 11797.21 148
myMVS_eth3d81.93 26882.18 24481.18 34092.13 24067.18 35193.97 27494.23 24982.43 21473.39 30193.57 20476.98 12287.86 37850.53 37882.34 24888.51 306
testing380.74 28481.17 26079.44 34991.15 26563.48 36797.16 12095.76 15980.83 23771.36 31993.15 21178.22 10187.30 38343.19 39179.67 26287.55 331
SSC-MVS56.01 36254.96 36359.17 38468.42 39734.13 41184.98 37069.23 40458.08 39245.36 39471.67 39250.30 34277.46 39814.28 40832.33 40365.91 397
test_fmvsmconf_n93.99 3494.36 2892.86 9892.82 21681.12 14799.26 496.37 11693.47 1395.16 3798.21 3679.00 8899.64 5598.21 1096.73 9797.83 103
WB-MVS57.26 35956.22 36260.39 38369.29 39535.91 41086.39 36170.06 40359.84 38846.46 39372.71 38651.18 33678.11 39715.19 40734.89 40267.14 396
test_fmvsmvis_n_192092.12 7392.10 7092.17 13190.87 27181.04 14998.34 4093.90 26892.71 1887.24 15397.90 6174.83 16799.72 4396.96 3296.20 10395.76 196
dmvs_re84.10 23282.90 23487.70 24891.41 26073.28 30690.59 32793.19 30585.02 14877.96 25493.68 20057.92 30396.18 25075.50 26180.87 25593.63 240
SDMVSNet87.02 18385.61 18991.24 16594.14 17483.30 10393.88 27895.98 14684.30 17079.63 23992.01 22658.23 29597.68 17190.28 12182.02 25192.75 247
dmvs_testset72.00 34373.36 32867.91 37283.83 36431.90 41285.30 36777.12 39782.80 20763.05 36292.46 22061.54 27582.55 39442.22 39371.89 30689.29 285
sd_testset84.62 22383.11 23189.17 21694.14 17477.78 24791.54 31994.38 24384.30 17079.63 23992.01 22652.28 33396.98 21577.67 23682.02 25192.75 247
test_fmvsm_n_192094.81 1995.60 1192.45 11495.29 13480.96 15399.29 297.21 2294.50 797.29 1398.44 2782.15 5899.78 2898.56 797.68 6896.61 172
test_cas_vis1_n_192089.90 12690.02 11689.54 21290.14 28774.63 29498.71 2794.43 24093.04 1792.40 7796.35 12753.41 33199.08 10395.59 4896.16 10494.90 215
test_vis1_n_192089.95 12590.59 9888.03 24392.36 22668.98 34499.12 1294.34 24593.86 1193.64 6397.01 10951.54 33599.59 6096.76 3596.71 9895.53 202
test_vis1_n85.60 20885.70 18885.33 29684.79 35364.98 35996.83 15191.61 33487.36 10191.00 10294.84 17436.14 38197.18 20595.66 4593.03 14893.82 237
test_fmvs1_n86.34 19586.72 18085.17 29987.54 32263.64 36696.91 14792.37 32387.49 9791.33 9595.58 14640.81 37598.46 13595.00 5493.49 14193.41 246
mvsany_test187.58 17888.22 14485.67 29089.78 29167.18 35195.25 23787.93 36983.96 18088.79 13397.06 10872.52 19694.53 32192.21 9286.45 21195.30 209
APD_test156.56 36153.58 36565.50 37467.93 39946.51 39977.24 39172.95 40038.09 39842.75 39675.17 37813.38 40482.78 39340.19 39454.53 37767.23 395
test_vis1_rt73.96 32972.40 33278.64 35383.91 36361.16 37695.63 22168.18 40576.32 30860.09 37474.77 37929.01 39497.54 18287.74 14775.94 28477.22 388
test_vis3_rt54.10 36451.04 36763.27 38058.16 40446.08 40184.17 37249.32 41556.48 39436.56 39949.48 4028.03 41191.91 35667.29 31449.87 38651.82 401
test_fmvs279.59 29379.90 28078.67 35282.86 36855.82 38895.20 24089.55 35681.09 23380.12 23589.80 26134.31 38693.51 34087.82 14678.36 27786.69 341
test_fmvs187.79 17488.52 14185.62 29292.98 21364.31 36197.88 6592.42 32187.95 8592.24 8095.82 13747.94 35098.44 13995.31 5294.09 13094.09 232
test_fmvs369.56 34769.19 34770.67 37069.01 39647.05 39690.87 32586.81 37471.31 34966.79 34477.15 37416.40 40183.17 39281.84 20062.51 36581.79 381
mvsany_test367.19 35465.34 35672.72 36863.08 40248.57 39583.12 37678.09 39672.07 34361.21 36977.11 37522.94 39687.78 38078.59 22751.88 38581.80 380
testf145.70 36942.41 37155.58 38553.29 40940.02 40768.96 39962.67 40927.45 40229.85 40261.58 3945.98 41273.83 40428.49 40243.46 39752.90 399
APD_test245.70 36942.41 37155.58 38553.29 40940.02 40768.96 39962.67 40927.45 40229.85 40261.58 3945.98 41273.83 40428.49 40243.46 39752.90 399
test_f64.01 35762.13 36069.65 37163.00 40345.30 40283.66 37580.68 39261.30 38055.70 38572.62 38714.23 40384.64 38969.84 30358.11 37179.00 385
FE-MVS86.06 20084.15 21591.78 14994.33 16879.81 18384.58 37196.61 8376.69 30785.00 17287.38 29270.71 22198.37 14170.39 30191.70 16497.17 151
FA-MVS(test-final)87.71 17686.23 18492.17 13194.19 17180.55 16587.16 35496.07 14082.12 22185.98 16588.35 27972.04 20598.49 13280.26 21089.87 17397.48 132
balanced_conf0394.60 2394.30 2995.48 1696.45 9688.82 1496.33 18695.58 16891.12 3595.84 3293.87 19683.47 4898.37 14197.26 2798.81 2499.24 23
bld_raw_conf0393.57 4093.09 4994.98 2495.96 11287.69 2595.60 22395.42 18389.51 5793.95 5893.63 20379.64 8098.15 15195.61 4698.53 3599.11 28
patch_mono-295.14 1396.08 792.33 12198.44 4377.84 24598.43 3697.21 2292.58 1997.68 1097.65 7686.88 2499.83 1798.25 997.60 7099.33 18
EGC-MVSNET52.46 36647.56 36967.15 37381.98 37060.11 37882.54 37872.44 4010.11 4130.70 41474.59 38025.11 39583.26 39129.04 40061.51 36758.09 398
test250690.96 10590.39 10492.65 10793.54 19082.46 11796.37 18297.35 1786.78 11587.55 14895.25 15377.83 10997.50 18684.07 17494.80 12297.98 92
test111188.11 16787.04 17491.35 16093.15 20478.79 21496.57 16790.78 34886.88 11285.04 17195.20 15957.23 31097.39 19383.88 17694.59 12597.87 99
ECVR-MVScopyleft88.35 16287.25 16891.65 15293.54 19079.40 19696.56 16990.78 34886.78 11585.57 16795.25 15357.25 30997.56 17884.73 17094.80 12297.98 92
test_blank0.00 3830.00 3860.00 3960.00 4190.00 4210.00 4070.00 4200.00 4140.00 4150.00 4140.00 4190.00 4150.00 4140.00 4130.00 411
tt080581.20 27979.06 28787.61 25186.50 32972.97 31193.66 28195.48 17574.11 32676.23 27691.99 22841.36 37297.40 19277.44 24174.78 29192.45 250
DVP-MVS++96.05 496.41 394.96 2599.05 985.34 5898.13 4996.77 6088.38 7497.70 898.77 1092.06 399.84 1397.47 2499.37 199.70 3
FOURS198.51 3978.01 23798.13 4996.21 12883.04 20094.39 52
MSC_two_6792asdad97.14 399.05 992.19 496.83 5199.81 2298.08 1498.81 2499.43 11
PC_three_145291.12 3598.33 298.42 2892.51 299.81 2298.96 499.37 199.70 3
No_MVS97.14 399.05 992.19 496.83 5199.81 2298.08 1498.81 2499.43 11
test_one_060198.91 1884.56 8196.70 7088.06 8296.57 2398.77 1088.04 19
eth-test20.00 419
eth-test0.00 419
GeoE86.36 19485.20 19689.83 20793.17 20376.13 27697.53 9092.11 32579.58 26880.99 22294.01 19266.60 24496.17 25173.48 28089.30 17797.20 150
test_method56.77 36054.53 36463.49 37976.49 38740.70 40575.68 39274.24 39919.47 40748.73 39071.89 39019.31 39865.80 40757.46 35747.51 39383.97 367
Anonymous2024052172.06 34269.91 34378.50 35477.11 38661.67 37491.62 31890.97 34565.52 36862.37 36479.05 36936.32 38090.96 36557.75 35568.52 33282.87 370
h-mvs3389.30 13688.95 13490.36 19095.07 14276.04 27896.96 14297.11 3090.39 4792.22 8195.10 16674.70 16998.86 11693.14 8165.89 35396.16 185
hse-mvs288.22 16688.21 14588.25 23793.54 19073.41 30295.41 23295.89 15290.39 4792.22 8194.22 18674.70 16996.66 23493.14 8164.37 35894.69 225
CL-MVSNet_self_test75.81 32274.14 32480.83 34378.33 38167.79 34894.22 27093.52 29177.28 30169.82 33081.54 35761.47 27689.22 37357.59 35653.51 38085.48 357
KD-MVS_2432*160077.63 31074.92 31585.77 28790.86 27279.44 19488.08 34593.92 26676.26 30967.05 34182.78 35172.15 20391.92 35461.53 34041.62 39985.94 353
KD-MVS_self_test70.97 34669.31 34675.95 36576.24 39155.39 39087.45 35090.94 34670.20 35362.96 36377.48 37344.01 35988.09 37661.25 34453.26 38184.37 364
AUN-MVS86.25 19885.57 19088.26 23693.57 18973.38 30395.45 23095.88 15383.94 18185.47 16894.21 18773.70 18696.67 23383.54 18664.41 35794.73 224
ZD-MVS99.09 883.22 10596.60 8682.88 20593.61 6498.06 5082.93 5499.14 9795.51 5098.49 40
SR-MVS-dyc-post91.29 9591.45 8290.80 17897.76 6776.03 27996.20 19495.44 17980.56 24590.72 10597.84 6475.76 14598.61 12491.99 9696.79 9497.75 109
RE-MVS-def91.18 9097.76 6776.03 27996.20 19495.44 17980.56 24590.72 10597.84 6473.36 18991.99 9696.79 9497.75 109
SED-MVS95.88 596.22 494.87 2699.03 1585.03 7199.12 1296.78 5488.72 6697.79 698.91 288.48 1699.82 1998.15 1198.97 1799.74 1
IU-MVS99.03 1585.34 5896.86 5092.05 2798.74 198.15 1198.97 1799.42 13
OPU-MVS97.30 299.19 792.31 399.12 1298.54 2092.06 399.84 1399.11 399.37 199.74 1
test_241102_TWO96.78 5488.72 6697.70 898.91 287.86 2099.82 1998.15 1199.00 1599.47 9
test_241102_ONE99.03 1585.03 7196.78 5488.72 6697.79 698.90 588.48 1699.82 19
SF-MVS94.17 3094.05 3494.55 3697.56 7585.95 4397.73 7696.43 10684.02 17795.07 4298.74 1482.93 5499.38 7895.42 5198.51 3798.32 66
cl2285.11 21684.17 21487.92 24495.06 14478.82 21195.51 22794.22 25179.74 26576.77 26587.92 28675.96 14195.68 27579.93 21572.42 30289.27 286
miper_ehance_all_eth84.57 22583.60 22487.50 25792.64 22278.25 22895.40 23393.47 29279.28 27576.41 27187.64 28976.53 13095.24 29878.58 22872.42 30289.01 296
miper_enhance_ethall85.95 20285.20 19688.19 24094.85 14979.76 18596.00 20194.06 26182.98 20377.74 25588.76 27279.42 8195.46 28880.58 20672.42 30289.36 284
ZNCC-MVS92.75 5392.60 5893.23 8398.24 5181.82 13297.63 8196.50 9885.00 15091.05 10097.74 6978.38 9899.80 2590.48 11398.34 4998.07 83
dcpmvs_293.10 4693.46 4392.02 13997.77 6579.73 18994.82 25493.86 27186.91 11191.33 9596.76 11985.20 3098.06 15296.90 3397.60 7098.27 72
cl____83.27 24582.12 24586.74 27192.20 23575.95 28395.11 24693.27 30378.44 28974.82 29387.02 30074.19 17795.19 30074.67 26969.32 32589.09 291
DIV-MVS_self_test83.27 24582.12 24586.74 27192.19 23675.92 28595.11 24693.26 30478.44 28974.81 29487.08 29974.19 17795.19 30074.66 27069.30 32689.11 290
eth_miper_zixun_eth83.12 24982.01 24786.47 27691.85 25474.80 29294.33 26493.18 30779.11 27875.74 28687.25 29672.71 19395.32 29476.78 24767.13 34789.27 286
9.1494.26 3198.10 5798.14 4696.52 9584.74 15594.83 4798.80 782.80 5699.37 8095.95 4198.42 43
uanet_test0.00 3830.00 3860.00 3960.00 4190.00 4210.00 4070.00 4200.00 4140.00 4150.00 4140.00 4190.00 4150.00 4140.00 4130.00 411
DCPMVS0.00 3830.00 3860.00 3960.00 4190.00 4210.00 4070.00 4200.00 4140.00 4150.00 4140.00 4190.00 4150.00 4140.00 4130.00 411
save fliter98.24 5183.34 10298.61 3396.57 9091.32 32
ET-MVSNet_ETH3D90.01 12489.03 13092.95 9494.38 16686.77 3498.14 4696.31 12089.30 6063.33 35996.72 12290.09 1093.63 33890.70 11182.29 25098.46 59
UniMVSNet_ETH3D80.86 28378.75 28987.22 26686.31 33272.02 31991.95 31093.76 28173.51 33175.06 29290.16 25843.04 36695.66 27676.37 25378.55 27593.98 234
EIA-MVS91.73 8292.05 7190.78 18094.52 15976.40 27398.06 5595.34 18989.19 6188.90 13197.28 9777.56 11297.73 16890.77 10996.86 9398.20 74
miper_refine_blended77.63 31074.92 31585.77 28790.86 27279.44 19488.08 34593.92 26676.26 30967.05 34182.78 35172.15 20391.92 35461.53 34041.62 39985.94 353
miper_lstm_enhance81.66 27380.66 26784.67 30691.19 26371.97 32191.94 31193.19 30577.86 29372.27 31585.26 32773.46 18793.42 34173.71 27967.05 34888.61 304
ETV-MVS92.72 5792.87 5292.28 12594.54 15881.89 12897.98 5995.21 19489.77 5593.11 6996.83 11577.23 12097.50 18695.74 4495.38 11897.44 133
CS-MVS92.73 5593.48 4290.48 18796.27 10075.93 28498.55 3494.93 20389.32 5994.54 5197.67 7178.91 9097.02 21393.80 6997.32 8198.49 57
D2MVS82.67 25781.55 25486.04 28487.77 31876.47 27095.21 23996.58 8982.66 21170.26 32885.46 32660.39 27995.80 26776.40 25279.18 26785.83 355
DVP-MVScopyleft95.58 995.91 994.57 3599.05 985.18 6399.06 1796.46 10288.75 6496.69 1898.76 1287.69 2199.76 3197.90 1798.85 2198.77 41
Zhenlong Yuan, Jinguo Luo, Fei Shen, Zhaoxin Li, Cong Liu, Tianlu Mao, Zhaoqi Wang: DVP-MVS: Synergize Depth-Edge and Visibility Prior for Multi-View Stereo. AAAI2025
test_0728_THIRD88.38 7496.69 1898.76 1289.64 1299.76 3197.47 2498.84 2399.38 14
test_0728_SECOND95.14 2099.04 1486.14 4099.06 1796.77 6099.84 1397.90 1798.85 2199.45 10
test072699.05 985.18 6399.11 1596.78 5488.75 6497.65 1198.91 287.69 21
SR-MVS92.16 7292.27 6491.83 14898.37 4578.41 22396.67 16495.76 15982.19 22091.97 8498.07 4976.44 13298.64 12393.71 7197.27 8298.45 60
DPM-MVS96.21 295.53 1398.26 196.26 10195.09 199.15 896.98 3793.39 1496.45 2598.79 890.17 999.99 189.33 13199.25 699.70 3
GST-MVS92.43 6792.22 6793.04 9198.17 5481.64 13997.40 10496.38 11384.71 15790.90 10397.40 9077.55 11399.76 3189.75 12597.74 6697.72 111
test_yl91.46 9090.53 10094.24 4397.41 8185.18 6398.08 5297.72 1180.94 23589.85 11396.14 13075.61 14698.81 11990.42 11788.56 19098.74 42
thisisatest053089.65 13089.02 13191.53 15793.46 19680.78 15996.52 17096.67 7481.69 22883.79 19094.90 17288.85 1497.68 17177.80 23187.49 20496.14 186
Anonymous2024052983.15 24880.60 26890.80 17895.74 12078.27 22796.81 15494.92 20460.10 38681.89 21592.54 21945.82 35798.82 11879.25 22278.32 27895.31 208
Anonymous20240521184.41 22881.93 24991.85 14796.78 9478.41 22397.44 9891.34 33870.29 35284.06 18394.26 18541.09 37398.96 10979.46 21882.65 24698.17 76
DCV-MVSNet91.46 9090.53 10094.24 4397.41 8185.18 6398.08 5297.72 1180.94 23589.85 11396.14 13075.61 14698.81 11990.42 11788.56 19098.74 42
tttt051788.57 15588.19 14689.71 21193.00 20975.99 28295.67 21896.67 7480.78 23981.82 21694.40 18288.97 1397.58 17776.05 25686.31 21295.57 200
our_test_377.90 30875.37 31285.48 29585.39 34676.74 26793.63 28291.67 33173.39 33465.72 35084.65 33858.20 29793.13 34457.82 35467.87 33986.57 343
thisisatest051590.95 10690.26 10793.01 9294.03 18184.27 8697.91 6396.67 7483.18 19686.87 15895.51 14888.66 1597.85 16480.46 20789.01 18296.92 161
ppachtmachnet_test77.19 31474.22 32286.13 28385.39 34678.22 22993.98 27391.36 33771.74 34667.11 34084.87 33656.67 31393.37 34352.21 37264.59 35686.80 339
SMA-MVScopyleft94.70 2194.68 2194.76 3098.02 5985.94 4597.47 9596.77 6085.32 13997.92 398.70 1583.09 5399.84 1395.79 4399.08 1098.49 57
Yufeng Yin; Xiaoyan Liu; Zichao Zhang: SMA-MVS: Segmentation-Guided Multi-Scale Anchor Deformation Patch Multi-View Stereo. IEEE Transactions on Circuits and Systems for Video Technology
GSMVS97.54 124
DPE-MVScopyleft95.32 1195.55 1294.64 3498.79 2384.87 7697.77 7296.74 6586.11 12296.54 2498.89 688.39 1899.74 3897.67 2299.05 1299.31 20
Kehua Chen, Zhenlong Yuan, Tianlu Mao, Zhaoqi Wang: Dual-Level Precision Edges Guided Multi-View Stereo with Accurate Planarization. AAAI2025
test_part298.90 1985.14 6996.07 29
thres100view90088.30 16386.95 17692.33 12196.10 10684.90 7597.14 12398.85 282.69 21083.41 19493.66 20175.43 15497.93 15669.04 30686.24 21594.17 228
tfpnnormal78.14 30475.42 31186.31 28088.33 31379.24 20094.41 26196.22 12773.51 33169.81 33185.52 32555.43 32195.75 27147.65 38567.86 34083.95 368
tfpn200view988.48 15787.15 17092.47 11396.21 10285.30 6197.44 9898.85 283.37 19383.99 18593.82 19775.36 15797.93 15669.04 30686.24 21594.17 228
c3_l83.80 23782.65 23987.25 26592.10 24277.74 25095.25 23793.04 31378.58 28676.01 27987.21 29775.25 16295.11 30577.54 23968.89 32988.91 302
CHOSEN 280x42091.71 8591.85 7391.29 16394.94 14682.69 11187.89 34896.17 13285.94 12787.27 15294.31 18390.27 895.65 27894.04 6895.86 11295.53 202
CANet94.89 1694.64 2295.63 1397.55 7688.12 1899.06 1796.39 11294.07 1095.34 3697.80 6776.83 12699.87 897.08 3197.64 6998.89 37
Fast-Effi-MVS+-dtu83.33 24482.60 24085.50 29489.55 29869.38 34296.09 20091.38 33582.30 21775.96 28191.41 23656.71 31295.58 28475.13 26584.90 22891.54 253
Effi-MVS+-dtu84.61 22484.90 20583.72 32191.96 24963.14 36994.95 25193.34 30185.57 13379.79 23787.12 29861.99 27195.61 28283.55 18585.83 22092.41 251
CANet_DTU90.98 10490.04 11593.83 5494.76 15286.23 3996.32 18793.12 31193.11 1693.71 6196.82 11763.08 26399.48 7384.29 17295.12 12095.77 195
MVS_030495.58 995.44 1596.01 1097.63 7089.26 1299.27 396.59 8794.71 497.08 1597.99 5278.69 9599.86 1099.15 297.85 6398.91 36
MP-MVS-pluss92.58 6392.35 6293.29 8097.30 8782.53 11496.44 17796.04 14284.68 15889.12 12798.37 2977.48 11499.74 3893.31 7998.38 4697.59 122
MP-MVS-pluss: MP-MVS-pluss. MP-MVS-pluss
MSP-MVS95.62 896.54 192.86 9898.31 4880.10 17997.42 10296.78 5492.20 2297.11 1498.29 3393.46 199.10 10196.01 3999.30 599.38 14
Zhenlong Yuan, Cong Liu, Fei Shen, Zhaoxin Li, Jingguo luo, Tianlu Mao and Zhaoqi Wang: MSP-MVS: Multi-granularity Segmentation Prior Guided Multi-View Stereo. AAAI2025
sam_mvs177.59 11197.54 124
sam_mvs75.35 159
IterMVS-SCA-FT80.51 28779.10 28684.73 30489.63 29774.66 29392.98 29991.81 33080.05 25971.06 32385.18 33058.04 29891.40 36072.48 28670.70 31388.12 318
TSAR-MVS + MP.94.79 2095.17 1893.64 6597.66 6984.10 8795.85 21296.42 10791.26 3397.49 1296.80 11886.50 2698.49 13295.54 4999.03 1398.33 65
Zhenlong Yuan, Jiakai Cao, Zhaoqi Wang, Zhaoxin Li: TSAR-MVS: Textureless-aware Segmentation and Correlative Refinement Guided Multi-View Stereo. Pattern Recognition
xiu_mvs_v1_base_debu90.54 11489.54 12593.55 7192.31 22787.58 2896.99 13594.87 20787.23 10493.27 6597.56 8157.43 30598.32 14392.72 8793.46 14394.74 221
OPM-MVS85.84 20385.10 20188.06 24188.34 31277.83 24695.72 21694.20 25287.89 8880.45 22994.05 19158.57 29297.26 20283.88 17682.76 24589.09 291
Ray L. Khuboni, Hongjun Xu: Octagram Propagation Matching for Multi-Scale View Stereopsis (OPM-MVS).
ACMMP_NAP93.46 4193.23 4694.17 4697.16 8984.28 8596.82 15396.65 7786.24 12094.27 5397.99 5277.94 10599.83 1793.39 7498.57 3498.39 63
ambc76.02 36368.11 39851.43 39364.97 40189.59 35560.49 37274.49 38117.17 40092.46 34761.50 34252.85 38384.17 366
MTGPAbinary96.33 118
CS-MVS-test92.98 4893.67 3790.90 17596.52 9576.87 26498.68 2894.73 21690.36 4994.84 4697.89 6277.94 10597.15 20994.28 6697.80 6598.70 48
Effi-MVS+90.70 11089.90 12193.09 8993.61 18783.48 9995.20 24092.79 31783.22 19591.82 8795.70 14071.82 20797.48 18891.25 10293.67 13998.32 66
xiu_mvs_v2_base93.92 3593.26 4595.91 1195.07 14292.02 698.19 4595.68 16492.06 2596.01 3198.14 4270.83 22098.96 10996.74 3696.57 9996.76 168
xiu_mvs_v1_base90.54 11489.54 12593.55 7192.31 22787.58 2896.99 13594.87 20787.23 10493.27 6597.56 8157.43 30598.32 14392.72 8793.46 14394.74 221
new-patchmatchnet68.85 35265.93 35477.61 35773.57 39463.94 36590.11 33088.73 36671.62 34755.08 38673.60 38340.84 37487.22 38451.35 37548.49 39081.67 382
pmmvs674.65 32871.67 33583.60 32379.13 37969.94 33693.31 29390.88 34761.05 38365.83 34984.15 34243.43 36294.83 31366.62 31860.63 36886.02 351
pmmvs581.34 27679.54 28286.73 27485.02 35176.91 26396.22 19291.65 33277.65 29573.55 29988.61 27455.70 32094.43 32374.12 27573.35 29988.86 303
test_post185.88 36430.24 40973.77 18295.07 30873.89 276
test_post33.80 40676.17 13895.97 256
Fast-Effi-MVS+87.93 17286.94 17790.92 17494.04 17979.16 20398.26 4293.72 28281.29 23183.94 18892.90 21369.83 22696.68 23276.70 24891.74 16396.93 159
patchmatchnet-post77.09 37677.78 11095.39 289
Anonymous2023121179.72 29277.19 30087.33 26195.59 12477.16 26295.18 24394.18 25459.31 38972.57 31386.20 31647.89 35195.66 27674.53 27269.24 32789.18 288
pmmvs-eth3d73.59 33170.66 33982.38 33276.40 38973.38 30389.39 33689.43 35872.69 34060.34 37377.79 37246.43 35691.26 36366.42 32257.06 37382.51 374
GG-mvs-BLEND93.49 7594.94 14686.26 3881.62 37997.00 3688.32 14294.30 18491.23 596.21 24988.49 14097.43 7798.00 90
xiu_mvs_v1_base_debi90.54 11489.54 12593.55 7192.31 22787.58 2896.99 13594.87 20787.23 10493.27 6597.56 8157.43 30598.32 14392.72 8793.46 14394.74 221
Anonymous2023120675.29 32573.64 32680.22 34580.75 37263.38 36893.36 28990.71 35073.09 33667.12 33983.70 34550.33 34190.85 36653.63 37070.10 31886.44 344
MTAPA92.45 6692.31 6392.86 9897.90 6180.85 15792.88 30196.33 11887.92 8690.20 11298.18 3876.71 12999.76 3192.57 9098.09 5497.96 95
MTMP97.53 9068.16 406
gm-plane-assit92.27 23179.64 19284.47 16595.15 16397.93 15685.81 161
test9_res96.00 4099.03 1398.31 68
MVP-Stereo82.65 25881.67 25385.59 29386.10 33878.29 22693.33 29092.82 31677.75 29469.17 33587.98 28559.28 28895.76 27071.77 28896.88 9182.73 373
Qingsong Yan: MVP-Stereo: A Parallel Multi-View Patchmatch Stereo Method with Dilation Matching for Photogrammetric Application.
TEST998.64 3183.71 9397.82 6896.65 7784.29 17295.16 3798.09 4584.39 3699.36 81
train_agg94.28 2794.45 2593.74 5998.64 3183.71 9397.82 6896.65 7784.50 16395.16 3798.09 4584.33 3799.36 8195.91 4298.96 1998.16 77
gg-mvs-nofinetune85.48 21282.90 23493.24 8294.51 16285.82 4779.22 38396.97 3961.19 38187.33 15153.01 39990.58 696.07 25286.07 15997.23 8397.81 106
SCA85.63 20783.64 22291.60 15692.30 23081.86 13092.88 30195.56 17084.85 15282.52 20285.12 33358.04 29895.39 28973.89 27687.58 20397.54 124
Patchmatch-test78.25 30374.72 31788.83 22491.20 26274.10 30073.91 39688.70 36759.89 38766.82 34385.12 33378.38 9894.54 32048.84 38379.58 26497.86 100
test_898.63 3383.64 9697.81 7096.63 8284.50 16395.10 4098.11 4484.33 3799.23 86
MS-PatchMatch83.05 25081.82 25186.72 27589.64 29679.10 20694.88 25394.59 22979.70 26670.67 32589.65 26350.43 34096.82 22670.82 30095.99 11184.25 365
Patchmatch-RL test76.65 31874.01 32584.55 30977.37 38564.23 36278.49 38782.84 38978.48 28764.63 35473.40 38476.05 14091.70 35976.99 24457.84 37297.72 111
cdsmvs_eth3d_5k21.43 37728.57 3800.00 3960.00 4190.00 4210.00 40795.93 1510.00 4140.00 41597.66 7263.57 2600.00 4150.00 4140.00 4130.00 411
pcd_1.5k_mvsjas5.92 3827.89 3850.00 3960.00 4190.00 4210.00 4070.00 4200.00 4140.00 4150.00 41471.04 2160.00 4150.00 4140.00 4130.00 411
agg_prior294.30 6399.00 1598.57 53
agg_prior98.59 3583.13 10696.56 9294.19 5499.16 96
tmp_tt41.54 37241.93 37440.38 39020.10 41626.84 41461.93 40259.09 41114.81 40928.51 40480.58 36135.53 38348.33 41163.70 33413.11 40845.96 404
canonicalmvs92.27 7091.22 8695.41 1795.80 11888.31 1597.09 13094.64 22488.49 7192.99 7297.31 9272.68 19498.57 12793.38 7688.58 18899.36 16
anonymousdsp80.98 28279.97 27884.01 31581.73 37170.44 33392.49 30593.58 28977.10 30472.98 30986.31 31457.58 30494.90 31079.32 22078.63 27486.69 341
alignmvs92.97 4992.26 6595.12 2195.54 12587.77 2398.67 2996.38 11388.04 8393.01 7197.45 8579.20 8698.60 12593.25 8088.76 18598.99 34
nrg03086.79 18985.43 19290.87 17788.76 30585.34 5897.06 13394.33 24684.31 16880.45 22991.98 22972.36 19896.36 24388.48 14171.13 30890.93 259
v14419282.43 26080.73 26587.54 25685.81 34278.22 22995.98 20293.78 27879.09 27977.11 26186.49 30864.66 25795.91 26274.20 27469.42 32488.49 308
FIs86.73 19186.10 18588.61 22890.05 28880.21 17596.14 19796.95 4185.56 13578.37 25092.30 22276.73 12895.28 29679.51 21779.27 26690.35 264
v192192082.02 26780.23 27387.41 26085.62 34377.92 24295.79 21593.69 28378.86 28376.67 26686.44 31062.50 26595.83 26572.69 28369.77 32288.47 309
UA-Net88.92 14388.48 14290.24 19394.06 17877.18 26193.04 29894.66 22187.39 10091.09 9993.89 19574.92 16698.18 15075.83 25891.43 16595.35 207
v119282.31 26480.55 26987.60 25285.94 33978.47 22295.85 21293.80 27679.33 27276.97 26386.51 30763.33 26295.87 26373.11 28170.13 31688.46 310
FC-MVSNet-test85.96 20185.39 19387.66 25089.38 30278.02 23695.65 22096.87 4885.12 14677.34 25791.94 23276.28 13794.74 31577.09 24378.82 27090.21 267
v114482.90 25481.27 25987.78 24786.29 33379.07 20896.14 19793.93 26480.05 25977.38 25686.80 30365.50 24895.93 26175.21 26470.13 31688.33 314
sosnet-low-res0.00 3830.00 3860.00 3960.00 4190.00 4210.00 4070.00 4200.00 4140.00 4150.00 4140.00 4190.00 4150.00 4140.00 4130.00 411
HFP-MVS92.89 5192.86 5392.98 9398.71 2581.12 14797.58 8596.70 7085.20 14491.75 8897.97 5778.47 9799.71 4590.95 10498.41 4498.12 81
v14882.41 26380.89 26286.99 26986.18 33676.81 26696.27 18993.82 27380.49 24775.28 29086.11 31867.32 23895.75 27175.48 26267.03 34988.42 312
sosnet0.00 3830.00 3860.00 3960.00 4190.00 4210.00 4070.00 4200.00 4140.00 4150.00 4140.00 4190.00 4150.00 4140.00 4130.00 411
uncertanet0.00 3830.00 3860.00 3960.00 4190.00 4210.00 4070.00 4200.00 4140.00 4150.00 4140.00 4190.00 4150.00 4140.00 4130.00 411
AllTest75.92 32173.06 32984.47 31092.18 23767.29 34991.07 32384.43 38367.63 36163.48 35690.18 25638.20 37897.16 20657.04 35873.37 29788.97 299
TestCases84.47 31092.18 23767.29 34984.43 38367.63 36163.48 35690.18 25638.20 37897.16 20657.04 35873.37 29788.97 299
v7n79.32 29877.34 29885.28 29784.05 36272.89 31393.38 28893.87 27075.02 31970.68 32484.37 33959.58 28495.62 28167.60 31167.50 34487.32 335
region2R92.72 5792.70 5592.79 10198.68 2680.53 16897.53 9096.51 9685.22 14291.94 8697.98 5577.26 11699.67 5390.83 10898.37 4798.18 75
iter_conf0590.65 11189.59 12493.82 5595.37 13087.90 2191.32 32093.55 29074.65 32283.45 19392.81 21483.11 5197.70 16994.49 6197.57 7295.85 193
mamv485.50 21086.76 17881.72 33793.23 20054.93 39189.95 33192.94 31469.96 35479.00 24492.20 22480.69 6894.22 32792.06 9590.77 16996.01 188
PS-MVSNAJss84.91 21984.30 21286.74 27185.89 34174.40 29894.95 25194.16 25583.93 18276.45 27090.11 26071.04 21695.77 26983.16 19179.02 26990.06 273
PS-MVSNAJ94.17 3093.52 4196.10 995.65 12392.35 298.21 4495.79 15892.42 2196.24 2798.18 3871.04 21699.17 9596.77 3497.39 7996.79 165
jajsoiax82.12 26681.15 26185.03 30184.19 35970.70 33194.22 27093.95 26383.07 19973.48 30089.75 26249.66 34495.37 29182.24 19879.76 25989.02 295
mvs_tets81.74 27080.71 26684.84 30284.22 35870.29 33493.91 27793.78 27882.77 20873.37 30389.46 26547.36 35495.31 29581.99 19979.55 26588.92 301
EI-MVSNet-UG-set91.35 9491.22 8691.73 15097.39 8380.68 16196.47 17496.83 5187.92 8688.30 14397.36 9177.84 10899.13 9989.43 13089.45 17695.37 206
EI-MVSNet-Vis-set91.84 8191.77 7692.04 13897.60 7281.17 14696.61 16596.87 4888.20 8089.19 12597.55 8478.69 9599.14 9790.29 11990.94 16895.80 194
HPM-MVS++copyleft95.32 1195.48 1494.85 2798.62 3486.04 4197.81 7096.93 4392.45 2095.69 3398.50 2485.38 2999.85 1194.75 5799.18 798.65 50
test_prior482.34 11997.75 75
XVS92.69 5992.71 5492.63 10998.52 3780.29 17197.37 10696.44 10487.04 10991.38 9297.83 6677.24 11899.59 6090.46 11498.07 5598.02 85
v124081.70 27179.83 28187.30 26485.50 34477.70 25195.48 22893.44 29378.46 28876.53 26986.44 31060.85 27895.84 26471.59 29070.17 31488.35 313
pm-mvs180.05 28978.02 29486.15 28285.42 34575.81 28695.11 24692.69 31977.13 30270.36 32787.43 29158.44 29495.27 29771.36 29264.25 35987.36 334
test_prior298.37 3986.08 12494.57 5098.02 5183.14 5095.05 5398.79 27
X-MVStestdata86.26 19784.14 21692.63 10998.52 3780.29 17197.37 10696.44 10487.04 10991.38 9220.73 41077.24 11899.59 6090.46 11498.07 5598.02 85
test_prior93.09 8998.68 2681.91 12796.40 11099.06 10498.29 70
旧先验296.97 14074.06 32896.10 2897.76 16788.38 142
新几何296.42 180
新几何193.12 8797.44 7981.60 14196.71 6974.54 32491.22 9897.57 8079.13 8799.51 7177.40 24298.46 4198.26 73
旧先验197.39 8379.58 19396.54 9398.08 4884.00 4297.42 7897.62 120
无先验96.87 14996.78 5477.39 29899.52 6979.95 21498.43 61
原ACMM296.84 150
原ACMM191.22 16797.77 6578.10 23596.61 8381.05 23491.28 9797.42 8977.92 10798.98 10879.85 21698.51 3796.59 173
test22296.15 10478.41 22395.87 21096.46 10271.97 34489.66 11897.45 8576.33 13698.24 5298.30 69
testdata299.48 7376.45 251
segment_acmp82.69 57
testdata90.13 19695.92 11474.17 29996.49 10173.49 33394.82 4897.99 5278.80 9397.93 15683.53 18797.52 7398.29 70
testdata195.57 22687.44 98
v881.88 26980.06 27787.32 26286.63 32879.04 20994.41 26193.65 28578.77 28473.19 30785.57 32366.87 24195.81 26673.84 27867.61 34387.11 336
131488.94 14287.20 16994.17 4693.21 20185.73 4893.33 29096.64 8082.89 20475.98 28096.36 12666.83 24299.39 7783.52 18896.02 11097.39 138
LFMVS89.27 13787.64 15694.16 4897.16 8985.52 5697.18 11694.66 22179.17 27789.63 11996.57 12455.35 32298.22 14789.52 12989.54 17598.74 42
VDD-MVS88.28 16487.02 17592.06 13695.09 14080.18 17797.55 8994.45 23883.09 19889.10 12895.92 13647.97 34998.49 13293.08 8586.91 20797.52 129
VDDNet86.44 19384.51 20792.22 12891.56 25581.83 13197.10 12994.64 22469.50 35787.84 14695.19 16048.01 34897.92 16189.82 12486.92 20696.89 162
v1081.43 27579.53 28387.11 26786.38 33078.87 21094.31 26593.43 29577.88 29273.24 30685.26 32765.44 24995.75 27172.14 28767.71 34286.72 340
VPNet84.69 22282.92 23390.01 19889.01 30483.45 10096.71 16195.46 17785.71 13179.65 23892.18 22556.66 31496.01 25583.05 19367.84 34190.56 261
MVS90.60 11388.64 13896.50 594.25 16990.53 893.33 29097.21 2277.59 29678.88 24697.31 9271.52 21199.69 4989.60 12698.03 5799.27 22
v2v48283.46 24281.86 25088.25 23786.19 33579.65 19196.34 18594.02 26281.56 22977.32 25888.23 28165.62 24796.03 25377.77 23269.72 32389.09 291
V4283.04 25181.53 25587.57 25586.27 33479.09 20795.87 21094.11 25880.35 25277.22 26086.79 30465.32 25296.02 25477.74 23370.14 31587.61 327
SD-MVS94.84 1895.02 1994.29 4197.87 6484.61 7997.76 7496.19 13189.59 5696.66 2098.17 4184.33 3799.60 5996.09 3898.50 3998.66 49
Zhenlong Yuan, Jiakai Cao, Zhaoxin Li, Hao Jiang and Zhaoqi Wang: SD-MVS: Segmentation-driven Deformation Multi-View Stereo with Spherical Refinement and EM optimization. AAAI2024
GA-MVS85.79 20584.04 21791.02 17289.47 30080.27 17396.90 14894.84 21085.57 13380.88 22389.08 26756.56 31596.47 23977.72 23485.35 22596.34 180
MSLP-MVS++94.28 2794.39 2793.97 5098.30 4984.06 8898.64 3196.93 4390.71 4193.08 7098.70 1579.98 7799.21 8894.12 6799.07 1198.63 51
APDe-MVScopyleft94.56 2494.75 2093.96 5198.84 2283.40 10198.04 5796.41 10885.79 13095.00 4398.28 3484.32 4099.18 9497.35 2698.77 2899.28 21
Zhaojie Zeng, Yuesong Wang, Tao Guan: Matching Ambiguity-Resilient Multi-View Stereo via Adaptive Patch Deformation. Pattern Recognition
APD-MVS_3200maxsize91.23 9791.35 8390.89 17697.89 6276.35 27496.30 18895.52 17379.82 26391.03 10197.88 6374.70 16998.54 12992.11 9496.89 9097.77 108
ADS-MVSNet279.57 29477.53 29785.71 28993.78 18372.13 31779.48 38186.11 37873.09 33680.14 23379.99 36662.15 26890.14 37259.49 34883.52 23394.85 218
EI-MVSNet85.80 20485.20 19687.59 25391.55 25677.41 25595.13 24495.36 18680.43 25080.33 23194.71 17673.72 18495.97 25676.96 24678.64 27289.39 279
Regformer0.00 3830.00 3860.00 3960.00 4190.00 4210.00 4070.00 4200.00 4140.00 4150.00 4140.00 4190.00 4150.00 4140.00 4130.00 411
CVMVSNet84.83 22085.57 19082.63 33191.55 25660.38 37795.13 24495.03 20080.60 24382.10 21294.71 17666.40 24590.19 37174.30 27390.32 17197.31 142
pmmvs482.54 25980.79 26387.79 24686.11 33780.49 16993.55 28593.18 30777.29 30073.35 30489.40 26665.26 25395.05 30975.32 26373.61 29687.83 322
EU-MVSNet76.92 31776.95 30276.83 36084.10 36054.73 39291.77 31492.71 31872.74 33969.57 33288.69 27358.03 30087.43 38264.91 32870.00 32088.33 314
VNet92.11 7491.22 8694.79 2996.91 9286.98 3297.91 6397.96 1086.38 11993.65 6295.74 13870.16 22598.95 11193.39 7488.87 18498.43 61
test-LLR88.48 15787.98 14989.98 20092.26 23277.23 25997.11 12695.96 14883.76 18786.30 16291.38 23772.30 20196.78 22980.82 20491.92 16195.94 190
TESTMET0.1,189.83 12789.34 12891.31 16192.54 22480.19 17697.11 12696.57 9086.15 12186.85 15991.83 23479.32 8296.95 21781.30 20292.35 15796.77 167
test-mter88.95 14188.60 13989.98 20092.26 23277.23 25997.11 12695.96 14885.32 13986.30 16291.38 23776.37 13596.78 22980.82 20491.92 16195.94 190
VPA-MVSNet85.32 21383.83 21889.77 21090.25 28282.63 11296.36 18397.07 3383.03 20181.21 22189.02 26961.58 27496.31 24585.02 16870.95 31090.36 263
ACMMPR92.69 5992.67 5692.75 10298.66 2880.57 16497.58 8596.69 7285.20 14491.57 9097.92 5877.01 12199.67 5390.95 10498.41 4498.00 90
testgi74.88 32773.40 32779.32 35080.13 37661.75 37293.21 29586.64 37679.49 27066.56 34791.06 24235.51 38488.67 37556.79 36171.25 30787.56 329
test20.0372.36 34071.15 33775.98 36477.79 38259.16 38192.40 30789.35 35974.09 32761.50 36884.32 34048.09 34785.54 38850.63 37762.15 36683.24 369
thres600view788.06 16886.70 18192.15 13396.10 10685.17 6797.14 12398.85 282.70 20983.41 19493.66 20175.43 15497.82 16567.13 31585.88 21993.45 244
ADS-MVSNet81.26 27778.36 29089.96 20293.78 18379.78 18479.48 38193.60 28773.09 33680.14 23379.99 36662.15 26895.24 29859.49 34883.52 23394.85 218
MP-MVScopyleft92.61 6292.67 5692.42 11798.13 5679.73 18997.33 10896.20 12985.63 13290.53 10797.66 7278.14 10399.70 4892.12 9398.30 5197.85 101
Rongxuan Tan, Qing Wang, et al.: MP-MVS: Multi-Scale Windows PatchMatch and Planar Prior Multi-View Stereo.
testmvs9.92 37912.94 3820.84 3950.65 4170.29 42093.78 2800.39 4180.42 4112.85 41215.84 4110.17 4180.30 4142.18 4120.21 4111.91 409
thres40088.42 16087.15 17092.23 12796.21 10285.30 6197.44 9898.85 283.37 19383.99 18593.82 19775.36 15797.93 15669.04 30686.24 21593.45 244
test1239.07 38011.73 3831.11 3940.50 4180.77 41989.44 3350.20 4190.34 4122.15 41310.72 4120.34 4170.32 4131.79 4130.08 4122.23 408
thres20088.92 14387.65 15592.73 10496.30 9985.62 5497.85 6698.86 184.38 16784.82 17593.99 19375.12 16498.01 15470.86 29886.67 20894.56 226
test0.0.03 182.79 25582.48 24183.74 32086.81 32772.22 31496.52 17095.03 20083.76 18773.00 30893.20 20872.30 20188.88 37464.15 33177.52 28190.12 269
pmmvs365.75 35662.18 35976.45 36267.12 40064.54 36088.68 34085.05 38154.77 39557.54 38373.79 38229.40 39386.21 38655.49 36647.77 39278.62 386
EMVS31.70 37631.45 37832.48 39250.72 41123.95 41674.78 39452.30 41420.36 40616.08 41031.48 40812.80 40553.60 41011.39 41013.10 40919.88 407
E-PMN32.70 37532.39 37733.65 39153.35 40825.70 41574.07 39553.33 41321.08 40517.17 40933.63 40711.85 40754.84 40912.98 40914.04 40620.42 406
PGM-MVS91.93 7791.80 7592.32 12398.27 5079.74 18895.28 23497.27 2083.83 18590.89 10497.78 6876.12 13999.56 6688.82 13597.93 6297.66 116
LCM-MVSNet-Re83.75 23883.54 22584.39 31493.54 19064.14 36392.51 30484.03 38583.90 18366.14 34886.59 30667.36 23792.68 34584.89 16992.87 14996.35 179
LCM-MVSNet52.52 36548.24 36865.35 37547.63 41241.45 40472.55 39783.62 38731.75 40037.66 39857.92 3989.19 41076.76 40049.26 38144.60 39577.84 387
MCST-MVS96.17 396.12 696.32 799.42 289.36 1098.94 2497.10 3195.17 392.11 8398.46 2687.33 2399.97 297.21 2999.31 499.63 7
mvs_anonymous88.68 15087.62 15891.86 14594.80 15181.69 13893.53 28694.92 20482.03 22378.87 24790.43 25375.77 14495.34 29285.04 16793.16 14798.55 56
MVS_Test90.29 12189.18 12993.62 6795.23 13584.93 7494.41 26194.66 22184.31 16890.37 11191.02 24375.13 16397.82 16583.11 19294.42 12898.12 81
MDA-MVSNet-bldmvs71.45 34467.94 35081.98 33685.33 34868.50 34692.35 30888.76 36570.40 35142.99 39581.96 35446.57 35591.31 36248.75 38454.39 37886.11 349
CDPH-MVS93.12 4592.91 5193.74 5998.65 3083.88 8997.67 8096.26 12383.00 20293.22 6898.24 3581.31 6399.21 8889.12 13298.74 3098.14 79
test1294.25 4298.34 4685.55 5596.35 11792.36 7880.84 6599.22 8798.31 5097.98 92
casdiffmvspermissive90.95 10690.39 10492.63 10992.82 21682.53 11496.83 15194.47 23687.69 9288.47 13895.56 14774.04 18097.54 18290.90 10792.74 15197.83 103
Fangjinhua Wang, Qingshan Xu, Yew-Soon Ong, Marc Pollefeys: Lightweight and Accurate Multi-View Stereo With Confidence-Aware Diffusion Model. IEEE T-PAMI 2025
diffmvspermissive91.17 9890.74 9692.44 11693.11 20882.50 11696.25 19193.62 28687.79 8990.40 11095.93 13473.44 18897.42 19093.62 7392.55 15397.41 135
Fangjinhua Wang, Qingshan Xu, Yew-Soon Ong, Marc Pollefeys: Lightweight and Accurate Multi-View Stereo With Confidence-Aware Diffusion Model. IEEE T-PAMI 2025
baseline290.39 11890.21 11090.93 17390.86 27280.99 15195.20 24097.41 1686.03 12680.07 23694.61 17890.58 697.47 18987.29 15289.86 17494.35 227
baseline188.85 14687.49 16292.93 9695.21 13786.85 3395.47 22994.61 22787.29 10283.11 19994.99 17080.70 6796.89 22182.28 19773.72 29595.05 213
YYNet173.53 33470.43 34182.85 32984.52 35671.73 32591.69 31691.37 33667.63 36146.79 39181.21 35955.04 32590.43 36955.93 36359.70 37086.38 345
PMMVS250.90 36746.31 37064.67 37655.53 40646.67 39877.30 39071.02 40240.89 39734.16 40159.32 3969.83 40976.14 40240.09 39528.63 40471.21 391
MDA-MVSNet_test_wron73.54 33370.43 34182.86 32884.55 35471.85 32291.74 31591.32 33967.63 36146.73 39281.09 36055.11 32490.42 37055.91 36459.76 36986.31 346
tpmvs83.04 25180.77 26489.84 20695.43 12777.96 23985.59 36595.32 19075.31 31676.27 27583.70 34573.89 18197.41 19159.53 34781.93 25394.14 230
PM-MVS69.32 35066.93 35276.49 36173.60 39355.84 38785.91 36379.32 39574.72 32161.09 37078.18 37121.76 39791.10 36470.86 29856.90 37482.51 374
HQP_MVS87.50 17987.09 17388.74 22691.86 25277.96 23997.18 11694.69 21789.89 5381.33 21994.15 18964.77 25597.30 19887.08 15382.82 24390.96 257
plane_prior791.86 25277.55 253
plane_prior691.98 24877.92 24264.77 255
plane_prior594.69 21797.30 19887.08 15382.82 24390.96 257
plane_prior494.15 189
plane_prior377.75 24990.17 5181.33 219
plane_prior297.18 11689.89 53
plane_prior191.95 250
plane_prior77.96 23997.52 9390.36 4982.96 241
PS-CasMVS80.27 28879.18 28483.52 32487.56 32169.88 33794.08 27295.29 19180.27 25572.08 31688.51 27859.22 28992.23 35167.49 31268.15 33788.45 311
UniMVSNet_NR-MVSNet85.49 21184.59 20688.21 23989.44 30179.36 19796.71 16196.41 10885.22 14278.11 25290.98 24576.97 12395.14 30379.14 22368.30 33590.12 269
PEN-MVS79.47 29678.26 29283.08 32786.36 33168.58 34593.85 27994.77 21579.76 26471.37 31888.55 27559.79 28192.46 34764.50 32965.40 35488.19 316
TransMVSNet (Re)76.94 31674.38 32084.62 30885.92 34075.25 29095.28 23489.18 36173.88 32967.22 33886.46 30959.64 28294.10 32959.24 35152.57 38484.50 363
DTE-MVSNet78.37 30277.06 30182.32 33485.22 35067.17 35493.40 28793.66 28478.71 28570.53 32688.29 28059.06 29092.23 35161.38 34363.28 36387.56 329
DU-MVS84.57 22583.33 22988.28 23588.76 30579.36 19796.43 17995.41 18585.42 13778.11 25290.82 24667.61 23295.14 30379.14 22368.30 33590.33 265
UniMVSNet (Re)85.31 21484.23 21388.55 22989.75 29280.55 16596.72 15996.89 4685.42 13778.40 24988.93 27075.38 15695.52 28678.58 22868.02 33889.57 278
CP-MVSNet81.01 28180.08 27583.79 31887.91 31770.51 33294.29 26995.65 16580.83 23772.54 31488.84 27163.71 25992.32 34968.58 31068.36 33488.55 305
WR-MVS_H81.02 28080.09 27483.79 31888.08 31571.26 33094.46 25996.54 9380.08 25872.81 31186.82 30270.36 22392.65 34664.18 33067.50 34487.46 333
WR-MVS84.32 22982.96 23288.41 23189.38 30280.32 17096.59 16696.25 12483.97 17976.63 26790.36 25467.53 23594.86 31275.82 25970.09 31990.06 273
NR-MVSNet83.35 24381.52 25688.84 22388.76 30581.31 14594.45 26095.16 19584.65 15967.81 33790.82 24670.36 22394.87 31174.75 26766.89 35090.33 265
Baseline_NR-MVSNet81.22 27880.07 27684.68 30585.32 34975.12 29196.48 17388.80 36476.24 31177.28 25986.40 31367.61 23294.39 32475.73 26066.73 35184.54 362
TranMVSNet+NR-MVSNet83.24 24781.71 25287.83 24587.71 31978.81 21396.13 19994.82 21184.52 16276.18 27890.78 24864.07 25894.60 31974.60 27166.59 35290.09 271
TSAR-MVS + GP.94.35 2694.50 2393.89 5297.38 8583.04 10898.10 5195.29 19191.57 3093.81 6097.45 8586.64 2599.43 7696.28 3794.01 13399.20 25
n20.00 420
nn0.00 420
mPP-MVS91.88 8091.82 7492.07 13598.38 4478.63 21797.29 11096.09 13785.12 14688.45 13997.66 7275.53 15099.68 5189.83 12398.02 5897.88 97
door-mid79.75 394
XVG-OURS-SEG-HR85.74 20685.16 19987.49 25990.22 28371.45 32891.29 32194.09 25981.37 23083.90 18995.22 15760.30 28097.53 18485.58 16384.42 23093.50 242
mvsmamba90.53 11790.08 11491.88 14494.81 15080.93 15493.94 27694.45 23888.24 7987.02 15792.35 22168.04 23195.80 26794.86 5597.03 8798.92 35
MVSFormer91.36 9390.57 9993.73 6193.00 20988.08 1994.80 25694.48 23380.74 24094.90 4497.13 10378.84 9195.10 30683.77 17997.46 7498.02 85
jason92.73 5592.23 6694.21 4590.50 27987.30 3198.65 3095.09 19790.61 4392.76 7697.13 10375.28 16197.30 19893.32 7896.75 9698.02 85
jason: jason.
lupinMVS93.87 3693.58 4094.75 3193.00 20988.08 1999.15 895.50 17491.03 3894.90 4497.66 7278.84 9197.56 17894.64 6097.46 7498.62 52
test_djsdf83.00 25382.45 24284.64 30784.07 36169.78 33894.80 25694.48 23380.74 24075.41 28987.70 28861.32 27795.10 30683.77 17979.76 25989.04 294
HPM-MVS_fast90.38 12090.17 11291.03 17197.61 7177.35 25797.15 12295.48 17579.51 26988.79 13396.90 11171.64 21098.81 11987.01 15697.44 7696.94 158
K. test v373.62 33071.59 33679.69 34782.98 36759.85 38090.85 32688.83 36377.13 30258.90 37682.11 35343.62 36191.72 35865.83 32454.10 37987.50 332
lessismore_v079.98 34680.59 37458.34 38380.87 39158.49 37883.46 34743.10 36593.89 33263.11 33748.68 38887.72 323
SixPastTwentyTwo76.04 32074.32 32181.22 33984.54 35561.43 37591.16 32289.30 36077.89 29164.04 35586.31 31448.23 34694.29 32663.54 33563.84 36187.93 321
OurMVSNet-221017-077.18 31576.06 30780.55 34483.78 36560.00 37990.35 32891.05 34377.01 30666.62 34687.92 28647.73 35294.03 33071.63 28968.44 33387.62 326
HPM-MVScopyleft91.62 8791.53 8191.89 14397.88 6379.22 20196.99 13595.73 16282.07 22289.50 12397.19 10175.59 14898.93 11490.91 10697.94 6097.54 124
Chunlin Ren, Qingshan Xu, Shikun Zhang, Jiaqi Yang: Hierarchical Prior Mining for Non-local Multi-View Stereo. ICCV 2023
XVG-OURS85.18 21584.38 21187.59 25390.42 28171.73 32591.06 32494.07 26082.00 22483.29 19695.08 16756.42 31697.55 18083.70 18383.42 23593.49 243
XVG-ACMP-BASELINE79.38 29777.90 29583.81 31784.98 35267.14 35589.03 33793.18 30780.26 25672.87 31088.15 28338.55 37796.26 24676.05 25678.05 27988.02 319
casdiffmvs_mvgpermissive91.13 9990.45 10393.17 8692.99 21283.58 9797.46 9794.56 23087.69 9287.19 15494.98 17174.50 17497.60 17591.88 9992.79 15098.34 64
Fangjinhua Wang, Qingshan Xu, Yew-Soon Ong, Marc Pollefeys: Lightweight and Accurate Multi-View Stereo With Confidence-Aware Diffusion Model. IEEE T-PAMI 2025
LPG-MVS_test84.20 23183.49 22786.33 27790.88 26973.06 30995.28 23494.13 25682.20 21876.31 27293.20 20854.83 32796.95 21783.72 18180.83 25688.98 297
LGP-MVS_train86.33 27790.88 26973.06 30994.13 25682.20 21876.31 27293.20 20854.83 32796.95 21783.72 18180.83 25688.98 297
baseline90.76 10990.10 11392.74 10392.90 21582.56 11394.60 25894.56 23087.69 9289.06 12995.67 14273.76 18397.51 18590.43 11692.23 15998.16 77
test1196.50 98
door80.13 393
EPNet_dtu87.65 17787.89 15086.93 27094.57 15571.37 32996.72 15996.50 9888.56 7087.12 15595.02 16875.91 14394.01 33166.62 31890.00 17295.42 205
Wanjuan Su, Wenbing Tao: Efficient Edge-Preserving Multi-View Stereo Network for Depth Estimation. AAAI 2023
CHOSEN 1792x268891.07 10290.21 11093.64 6595.18 13883.53 9896.26 19096.13 13488.92 6384.90 17493.10 21272.86 19299.62 5888.86 13495.67 11597.79 107
EPNet94.06 3394.15 3293.76 5897.27 8884.35 8298.29 4197.64 1494.57 695.36 3596.88 11379.96 7899.12 10091.30 10196.11 10697.82 105
Wanjuan Su, Wenbing Tao: Efficient Edge-Preserving Multi-View Stereo Network for Depth Estimation. AAAI 2023
HQP5-MVS78.48 219
HQP-NCC92.08 24397.63 8190.52 4482.30 206
ACMP_Plane92.08 24397.63 8190.52 4482.30 206
APD-MVScopyleft93.61 3893.59 3993.69 6398.76 2483.26 10497.21 11296.09 13782.41 21694.65 4998.21 3681.96 6198.81 11994.65 5998.36 4899.01 31
Yuesong Wang, Zhaojie Zeng and etc.: Adaptive Patch Deformation for Textureless-Resilient Multi-View Stereo. CVPR2023
BP-MVS87.67 149
HQP4-MVS82.30 20697.32 19691.13 255
HQP3-MVS94.80 21283.01 239
HQP2-MVS65.40 250
CNVR-MVS96.30 196.54 195.55 1599.31 587.69 2599.06 1797.12 2994.66 596.79 1798.78 986.42 2799.95 397.59 2399.18 799.00 32
NCCC95.63 795.94 894.69 3399.21 685.15 6899.16 796.96 4094.11 995.59 3498.64 1785.07 3199.91 495.61 4699.10 999.00 32
114514_t88.79 14987.57 16092.45 11498.21 5381.74 13596.99 13595.45 17875.16 31782.48 20395.69 14168.59 23098.50 13180.33 20895.18 11997.10 153
CP-MVS92.54 6492.60 5892.34 11998.50 4079.90 18298.40 3896.40 11084.75 15490.48 10998.09 4577.40 11599.21 8891.15 10398.23 5397.92 96
DSMNet-mixed73.13 33672.45 33175.19 36677.51 38446.82 39785.09 36982.01 39067.61 36569.27 33481.33 35850.89 33786.28 38554.54 36783.80 23292.46 249
tpm287.35 18186.26 18390.62 18392.93 21478.67 21688.06 34795.99 14579.33 27287.40 14986.43 31280.28 7296.40 24080.23 21185.73 22296.79 165
NP-MVS92.04 24778.22 22994.56 179
EG-PatchMatch MVS74.92 32672.02 33483.62 32283.76 36673.28 30693.62 28392.04 32768.57 35958.88 37783.80 34431.87 39095.57 28556.97 36078.67 27182.00 379
tpm cat183.63 24081.38 25790.39 18993.53 19578.19 23485.56 36695.09 19770.78 35078.51 24883.28 34974.80 16897.03 21266.77 31684.05 23195.95 189
SteuartSystems-ACMMP94.13 3294.44 2693.20 8495.41 12881.35 14499.02 2196.59 8789.50 5894.18 5598.36 3083.68 4799.45 7594.77 5698.45 4298.81 40
Skip Steuart: Steuart Systems R&D Blog.
CostFormer89.08 13988.39 14391.15 16893.13 20679.15 20488.61 34196.11 13683.14 19789.58 12086.93 30183.83 4696.87 22388.22 14485.92 21897.42 134
CR-MVSNet83.53 24181.36 25890.06 19790.16 28579.75 18679.02 38591.12 34084.24 17482.27 21080.35 36375.45 15293.67 33763.37 33686.25 21396.75 169
JIA-IIPM79.00 30077.20 29984.40 31389.74 29464.06 36475.30 39395.44 17962.15 37581.90 21459.08 39778.92 8995.59 28366.51 32185.78 22193.54 241
Patchmtry77.36 31374.59 31885.67 29089.75 29275.75 28777.85 38891.12 34060.28 38471.23 32080.35 36375.45 15293.56 33957.94 35367.34 34687.68 325
PatchT79.75 29176.85 30388.42 23089.55 29875.49 28877.37 38994.61 22763.07 37282.46 20473.32 38575.52 15193.41 34251.36 37484.43 22996.36 178
tpmrst88.36 16187.38 16691.31 16194.36 16779.92 18187.32 35295.26 19385.32 13988.34 14186.13 31780.60 6996.70 23183.78 17885.34 22697.30 143
BH-w/o88.24 16587.47 16490.54 18695.03 14578.54 21897.41 10393.82 27384.08 17578.23 25194.51 18169.34 22897.21 20380.21 21294.58 12695.87 192
tpm85.55 20984.47 21088.80 22590.19 28475.39 28988.79 33994.69 21784.83 15383.96 18785.21 32978.22 10194.68 31876.32 25478.02 28096.34 180
DELS-MVS94.98 1494.49 2496.44 696.42 9790.59 799.21 597.02 3594.40 891.46 9197.08 10683.32 4999.69 4992.83 8698.70 3199.04 30
Christian Sormann, Emanuele Santellani, Mattia Rossi, Andreas Kuhn, Friedrich Fraundorfer: DELS-MVS: Deep Epipolar Line Search for Multi-View Stereo. Winter Conference on Applications of Computer Vision (WACV), 2023
BH-untuned86.95 18585.94 18689.99 19994.52 15977.46 25496.78 15693.37 30081.80 22576.62 26893.81 19966.64 24397.02 21376.06 25593.88 13695.48 204
RPMNet79.85 29075.92 30991.64 15390.16 28579.75 18679.02 38595.44 17958.43 39182.27 21072.55 38873.03 19198.41 14046.10 38786.25 21396.75 169
MVSTER89.25 13888.92 13590.24 19395.98 11084.66 7896.79 15595.36 18687.19 10780.33 23190.61 25090.02 1195.97 25685.38 16578.64 27290.09 271
CPTT-MVS89.72 12989.87 12289.29 21598.33 4773.30 30597.70 7895.35 18875.68 31387.40 14997.44 8870.43 22298.25 14689.56 12896.90 8996.33 182
GBi-Net82.42 26180.43 27188.39 23292.66 21981.95 12394.30 26693.38 29779.06 28075.82 28385.66 31956.38 31793.84 33371.23 29375.38 28889.38 281
PVSNet_Blended_VisFu91.24 9690.77 9592.66 10695.09 14082.40 11897.77 7295.87 15588.26 7786.39 16093.94 19476.77 12799.27 8488.80 13694.00 13496.31 183
PVSNet_BlendedMVS90.05 12389.96 11890.33 19197.47 7783.86 9098.02 5896.73 6687.98 8489.53 12189.61 26476.42 13399.57 6494.29 6479.59 26387.57 328
UnsupCasMVSNet_eth73.25 33570.57 34081.30 33877.53 38366.33 35787.24 35393.89 26980.38 25157.90 38181.59 35642.91 36790.56 36865.18 32748.51 38987.01 338
UnsupCasMVSNet_bld68.60 35364.50 35780.92 34274.63 39267.80 34783.97 37392.94 31465.12 36954.63 38768.23 39335.97 38292.17 35360.13 34644.83 39482.78 372
PVSNet_Blended93.13 4492.98 5093.57 7097.47 7783.86 9099.32 196.73 6691.02 3989.53 12196.21 12976.42 13399.57 6494.29 6495.81 11497.29 144
FMVSNet576.46 31974.16 32383.35 32690.05 28876.17 27589.58 33389.85 35471.39 34865.29 35280.42 36250.61 33987.70 38161.05 34569.24 32786.18 348
test182.42 26180.43 27188.39 23292.66 21981.95 12394.30 26693.38 29779.06 28075.82 28385.66 31956.38 31793.84 33371.23 29375.38 28889.38 281
new_pmnet66.18 35563.18 35875.18 36776.27 39061.74 37383.79 37484.66 38256.64 39351.57 38971.85 39131.29 39187.93 37749.98 37962.55 36475.86 389
FMVSNet384.71 22182.71 23890.70 18294.55 15787.71 2495.92 20694.67 22081.73 22775.82 28388.08 28466.99 24094.47 32271.23 29375.38 28889.91 275
dp84.30 23082.31 24390.28 19294.24 17077.97 23886.57 35895.53 17179.94 26280.75 22585.16 33171.49 21296.39 24163.73 33383.36 23696.48 176
FMVSNet282.79 25580.44 27089.83 20792.66 21985.43 5795.42 23194.35 24479.06 28074.46 29587.28 29356.38 31794.31 32569.72 30574.68 29289.76 276
FMVSNet179.50 29576.54 30588.39 23288.47 31081.95 12394.30 26693.38 29773.14 33572.04 31785.66 31943.86 36093.84 33365.48 32572.53 30189.38 281
N_pmnet61.30 35860.20 36164.60 37784.32 35717.00 41891.67 31710.98 41661.77 37758.45 37978.55 37049.89 34391.83 35742.27 39263.94 36084.97 360
cascas86.50 19284.48 20992.55 11292.64 22285.95 4397.04 13495.07 19975.32 31580.50 22791.02 24354.33 32997.98 15586.79 15787.62 20193.71 239
BH-RMVSNet86.84 18785.28 19591.49 15895.35 13280.26 17496.95 14392.21 32482.86 20681.77 21895.46 14959.34 28797.64 17369.79 30493.81 13796.57 174
UGNet87.73 17586.55 18291.27 16495.16 13979.11 20596.35 18496.23 12688.14 8187.83 14790.48 25150.65 33899.09 10280.13 21394.03 13195.60 199
Wanjuan Su, Qingshan Xu, Wenbing Tao: Uncertainty-guided Multi-view Stereo Network for Depth Estimation. IEEE Transactions on Circuits and Systems for Video Technology, 2022
WTY-MVS92.65 6191.68 7795.56 1496.00 10888.90 1398.23 4397.65 1388.57 6989.82 11597.22 10079.29 8399.06 10489.57 12788.73 18698.73 46
XXY-MVS83.84 23682.00 24889.35 21487.13 32481.38 14395.72 21694.26 24880.15 25775.92 28290.63 24961.96 27296.52 23778.98 22573.28 30090.14 268
EC-MVSNet91.73 8292.11 6990.58 18493.54 19077.77 24898.07 5494.40 24287.44 9892.99 7297.11 10574.59 17396.87 22393.75 7097.08 8597.11 152
sss90.87 10889.96 11893.60 6894.15 17383.84 9297.14 12398.13 785.93 12889.68 11796.09 13271.67 20899.30 8387.69 14889.16 17997.66 116
Test_1112_low_res88.03 16986.73 17991.94 14293.15 20480.88 15696.44 17792.41 32283.59 19280.74 22691.16 24180.18 7497.59 17677.48 24085.40 22497.36 139
1112_ss88.60 15487.47 16492.00 14093.21 20180.97 15296.47 17492.46 32083.64 19080.86 22497.30 9580.24 7397.62 17477.60 23785.49 22397.40 137
ab-mvs-re8.11 38110.81 3840.00 3960.00 4190.00 4210.00 4070.00 4200.00 4140.00 41597.30 950.00 4190.00 4150.00 4140.00 4130.00 411
ab-mvs87.08 18284.94 20393.48 7693.34 19983.67 9588.82 33895.70 16381.18 23284.55 18190.14 25962.72 26498.94 11385.49 16482.54 24797.85 101
TR-MVS86.30 19684.93 20490.42 18894.63 15477.58 25296.57 16793.82 27380.30 25382.42 20595.16 16258.74 29197.55 18074.88 26687.82 20096.13 187
MDTV_nov1_ep13_2view81.74 13586.80 35680.65 24285.65 16674.26 17676.52 25096.98 156
MDTV_nov1_ep1383.69 21994.09 17781.01 15086.78 35796.09 13783.81 18684.75 17784.32 34074.44 17596.54 23663.88 33285.07 227
MIMVSNet169.44 34966.65 35377.84 35576.48 38862.84 37087.42 35188.97 36266.96 36657.75 38279.72 36832.77 38985.83 38746.32 38663.42 36284.85 361
MIMVSNet79.18 29975.99 30888.72 22787.37 32380.66 16279.96 38091.82 32977.38 29974.33 29681.87 35541.78 36990.74 36766.36 32383.10 23894.76 220
IterMVS-LS83.93 23582.80 23787.31 26391.46 25977.39 25695.66 21993.43 29580.44 24875.51 28787.26 29573.72 18495.16 30276.99 24470.72 31289.39 279
Fangjinhua Wang, Silvano Galliani, Christoph Vogel, Marc Pollefeys: IterMVS: Iterative Probability Estimation for Efficient Multi-View Stereo.
CDS-MVSNet89.50 13288.96 13391.14 16991.94 25180.93 15497.09 13095.81 15784.26 17384.72 17894.20 18880.31 7195.64 27983.37 18988.96 18396.85 164
Khang Truong Giang, Soohwan Song, Sungho Jo: Curvature-guided dynamic scale networks for Multi-view Stereo. ICLR 2022
ACMMP++_ref78.45 276
IterMVS80.67 28579.16 28585.20 29889.79 29076.08 27792.97 30091.86 32880.28 25471.20 32185.14 33257.93 30291.34 36172.52 28570.74 31188.18 317
Fangjinhua Wang, Silvano Galliani, Christoph Vogel, Marc Pollefeys: IterMVS: Iterative Probability Estimation for Efficient Multi-View Stereo.
DP-MVS Recon91.72 8490.85 9394.34 3999.50 185.00 7398.51 3595.96 14880.57 24488.08 14597.63 7876.84 12499.89 785.67 16294.88 12198.13 80
MVS_111021_LR91.60 8891.64 7991.47 15995.74 12078.79 21496.15 19696.77 6088.49 7188.64 13797.07 10772.33 20099.19 9393.13 8396.48 10196.43 177
DP-MVS81.47 27478.28 29191.04 17098.14 5578.48 21995.09 24986.97 37261.14 38271.12 32292.78 21859.59 28399.38 7853.11 37186.61 20995.27 210
ACMMP++79.05 268
HQP-MVS87.91 17387.55 16188.98 22192.08 24378.48 21997.63 8194.80 21290.52 4482.30 20694.56 17965.40 25097.32 19687.67 14983.01 23991.13 255
QAPM86.88 18684.51 20793.98 4994.04 17985.89 4697.19 11596.05 14173.62 33075.12 29195.62 14462.02 27099.74 3870.88 29796.06 10896.30 184
Vis-MVSNetpermissive88.67 15187.82 15291.24 16592.68 21878.82 21196.95 14393.85 27287.55 9587.07 15695.13 16463.43 26197.21 20377.58 23896.15 10597.70 114
Jingyang Zhang, Yao Yao, Shiwei Li, Zixin Luo, Tian Fang: Visibility-aware Multiview Stereo Network. BMVC 2020
MVS-HIRNet71.36 34567.00 35184.46 31290.58 27769.74 33979.15 38487.74 37146.09 39661.96 36750.50 40045.14 35895.64 27953.74 36988.11 19788.00 320
IS-MVSNet88.67 15188.16 14790.20 19593.61 18776.86 26596.77 15893.07 31284.02 17783.62 19295.60 14574.69 17296.24 24878.43 23093.66 14097.49 131
HyFIR lowres test89.36 13488.60 13991.63 15594.91 14880.76 16095.60 22395.53 17182.56 21384.03 18491.24 24078.03 10496.81 22787.07 15588.41 19397.32 140
EPMVS87.47 18085.90 18792.18 13095.41 12882.26 12187.00 35596.28 12185.88 12984.23 18285.57 32375.07 16596.26 24671.14 29692.50 15498.03 84
PAPM_NR91.46 9090.82 9493.37 7998.50 4081.81 13395.03 25096.13 13484.65 15986.10 16497.65 7679.24 8599.75 3683.20 19096.88 9198.56 54
TAMVS88.48 15787.79 15390.56 18591.09 26679.18 20296.45 17695.88 15383.64 19083.12 19893.33 20775.94 14295.74 27482.40 19688.27 19596.75 169
PAPR92.74 5492.17 6894.45 3798.89 2084.87 7697.20 11496.20 12987.73 9188.40 14098.12 4378.71 9499.76 3187.99 14596.28 10298.74 42
RPSCF77.73 30976.63 30481.06 34188.66 30955.76 38987.77 34987.88 37064.82 37074.14 29792.79 21749.22 34596.81 22767.47 31376.88 28290.62 260
Vis-MVSNet (Re-imp)88.88 14588.87 13788.91 22293.89 18274.43 29796.93 14594.19 25384.39 16683.22 19795.67 14278.24 10094.70 31678.88 22694.40 12997.61 121
test_040272.68 33869.54 34582.09 33588.67 30871.81 32492.72 30386.77 37561.52 37862.21 36583.91 34343.22 36493.76 33634.60 39672.23 30580.72 383
MVS_111021_HR93.41 4293.39 4493.47 7897.34 8682.83 11097.56 8798.27 689.16 6289.71 11697.14 10279.77 7999.56 6693.65 7297.94 6098.02 85
CSCG92.02 7591.65 7893.12 8798.53 3680.59 16397.47 9597.18 2577.06 30584.64 18097.98 5583.98 4399.52 6990.72 11097.33 8099.23 24
PatchMatch-RL85.00 21883.66 22189.02 22095.86 11574.55 29692.49 30593.60 28779.30 27479.29 24391.47 23558.53 29398.45 13770.22 30292.17 16094.07 233
API-MVS90.18 12288.97 13293.80 5698.66 2882.95 10997.50 9495.63 16775.16 31786.31 16197.69 7072.49 19799.90 581.26 20396.07 10798.56 54
Test By Simon71.65 209
TDRefinement69.20 35165.78 35579.48 34866.04 40162.21 37188.21 34386.12 37762.92 37361.03 37185.61 32233.23 38794.16 32855.82 36553.02 38282.08 378
USDC78.65 30176.25 30685.85 28587.58 32074.60 29589.58 33390.58 35184.05 17663.13 36088.23 28140.69 37696.86 22566.57 32075.81 28686.09 350
EPP-MVSNet89.76 12889.72 12389.87 20593.78 18376.02 28197.22 11196.51 9679.35 27185.11 17095.01 16984.82 3297.10 21187.46 15188.21 19696.50 175
PMMVS89.46 13389.92 12088.06 24194.64 15369.57 34196.22 19294.95 20287.27 10391.37 9496.54 12565.88 24697.39 19388.54 13893.89 13597.23 145
PAPM92.87 5292.40 6194.30 4092.25 23487.85 2296.40 18196.38 11391.07 3788.72 13696.90 11182.11 5997.37 19590.05 12297.70 6797.67 115
ACMMPcopyleft90.39 11889.97 11791.64 15397.58 7478.21 23296.78 15696.72 6884.73 15684.72 17897.23 9971.22 21399.63 5788.37 14392.41 15697.08 154
Qingshan Xu, Weihang Kong, Wenbing Tao, Marc Pollefeys: Multi-Scale Geometric Consistency Guided and Planar Prior Assisted Multi-View Stereo. IEEE Transactions on Pattern Analysis and Machine Intelligence
CNLPA86.96 18485.37 19491.72 15197.59 7379.34 19997.21 11291.05 34374.22 32578.90 24596.75 12167.21 23998.95 11174.68 26890.77 16996.88 163
PatchmatchNetpermissive86.83 18885.12 20091.95 14194.12 17682.27 12086.55 35995.64 16684.59 16182.98 20184.99 33577.26 11695.96 25968.61 30991.34 16697.64 118
Fangjinhua Wang, Silvano Galliani, Christoph Vogel, Pablo Speciale, Marc Pollefeys: PatchmatchNet: Learned Multi-View Patchmatch Stereo.
PHI-MVS93.59 3993.63 3893.48 7698.05 5881.76 13498.64 3197.13 2782.60 21294.09 5698.49 2580.35 7099.85 1194.74 5898.62 3398.83 39
F-COLMAP84.50 22783.44 22887.67 24995.22 13672.22 31495.95 20493.78 27875.74 31276.30 27495.18 16159.50 28598.45 13772.67 28486.59 21092.35 252
ANet_high46.22 36841.28 37561.04 38239.91 41446.25 40070.59 39876.18 39858.87 39023.09 40648.00 40312.58 40666.54 40628.65 40113.62 40770.35 392
wuyk23d14.10 37813.89 38114.72 39355.23 40722.91 41733.83 4063.56 4174.94 4104.11 4112.28 4132.06 41619.66 41210.23 4118.74 4101.59 410
OMC-MVS88.80 14888.16 14790.72 18195.30 13377.92 24294.81 25594.51 23286.80 11484.97 17396.85 11467.53 23598.60 12585.08 16687.62 20195.63 198
MG-MVS94.25 2993.72 3595.85 1299.38 389.35 1197.98 5998.09 989.99 5292.34 7996.97 11081.30 6498.99 10788.54 13898.88 2099.20 25
AdaColmapbinary88.81 14787.61 15992.39 11899.33 479.95 18096.70 16395.58 16877.51 29783.05 20096.69 12361.90 27399.72 4384.29 17293.47 14297.50 130
uanet0.00 3830.00 3860.00 3960.00 4190.00 4210.00 4070.00 4200.00 4140.00 4150.00 4140.00 4190.00 4150.00 4140.00 4130.00 411
ITE_SJBPF82.38 33287.00 32565.59 35889.55 35679.99 26169.37 33391.30 23941.60 37195.33 29362.86 33874.63 29386.24 347
DeepMVS_CXcopyleft64.06 37878.53 38043.26 40368.11 40769.94 35538.55 39776.14 37718.53 39979.34 39543.72 39041.62 39969.57 393
TinyColmap72.41 33968.99 34882.68 33088.11 31469.59 34088.41 34285.20 38065.55 36757.91 38084.82 33730.80 39295.94 26051.38 37368.70 33082.49 376
MAR-MVS90.63 11290.22 10991.86 14598.47 4278.20 23397.18 11696.61 8383.87 18488.18 14498.18 3868.71 22999.75 3683.66 18497.15 8497.63 119
Zhenyu Xu, Yiguang Liu, Xuelei Shi, Ying Wang, Yunan Zheng: MARMVS: Matching Ambiguity Reduced Multiple View Stereo for Efficient Large Scale Scene Reconstruction. CVPR 2020
LF4IMVS72.36 34070.82 33876.95 35979.18 37856.33 38586.12 36286.11 37869.30 35863.06 36186.66 30533.03 38892.25 35065.33 32668.64 33182.28 377
MSDG80.62 28677.77 29689.14 21793.43 19777.24 25891.89 31290.18 35269.86 35668.02 33691.94 23252.21 33498.84 11759.32 35083.12 23791.35 254
LS3D82.22 26579.94 27989.06 21897.43 8074.06 30193.20 29692.05 32661.90 37673.33 30595.21 15859.35 28699.21 8854.54 36792.48 15593.90 236
CLD-MVS87.97 17187.48 16389.44 21392.16 23980.54 16798.14 4694.92 20491.41 3179.43 24195.40 15062.34 26697.27 20190.60 11282.90 24290.50 262
Zhaoxin Li, Wangmeng Zuo, Zhaoqi Wang, Lei Zhang: Confidence-based Large-scale Dense Multi-view Stereo. IEEE Transaction on Image Processing, 2020
FPMVS55.09 36352.93 36661.57 38155.98 40540.51 40683.11 37783.41 38837.61 39934.95 40071.95 38914.40 40276.95 39929.81 39965.16 35567.25 394
Gipumacopyleft45.11 37142.05 37354.30 38780.69 37351.30 39435.80 40583.81 38628.13 40127.94 40534.53 40511.41 40876.70 40121.45 40454.65 37634.90 405
S. Galliani, K. Lasinger, K. Schindler: Massively Parallel Multiview Stereopsis by Surface Normal Diffusion. ICCV 2015