| AdaColmap |  | | 97.23 101 | 96.80 108 | 98.51 107 | 99.99 1 | 95.60 165 | 99.09 252 | 98.84 58 | 93.32 167 | 96.74 170 | 99.72 83 | 86.04 222 | 100.00 1 | 98.01 118 | 99.43 111 | 99.94 74 |
|
| CNVR-MVS | | | 99.40 1 | 99.26 1 | 99.84 6 | 99.98 2 | 99.51 6 | 99.98 15 | 98.69 68 | 98.20 7 | 99.93 1 | 99.98 2 | 96.82 22 | 100.00 1 | 99.75 28 | 100.00 1 | 99.99 23 |
|
| MCST-MVS | | | 99.32 3 | 99.14 4 | 99.86 5 | 99.97 3 | 99.59 5 | 99.97 28 | 98.64 76 | 98.47 2 | 99.13 86 | 99.92 13 | 96.38 30 | 100.00 1 | 99.74 30 | 100.00 1 | 100.00 1 |
|
| mPP-MVS | | | 98.39 47 | 98.20 46 | 98.97 75 | 99.97 3 | 96.92 113 | 99.95 53 | 98.38 159 | 95.04 99 | 98.61 113 | 99.80 51 | 93.39 101 | 100.00 1 | 98.64 91 | 100.00 1 | 99.98 48 |
|
| CPTT-MVS | | | 97.64 84 | 97.32 87 | 98.58 99 | 99.97 3 | 95.77 154 | 99.96 35 | 98.35 165 | 89.90 273 | 98.36 123 | 99.79 57 | 91.18 157 | 99.99 36 | 98.37 102 | 99.99 21 | 99.99 23 |
|
| DP-MVS Recon | | | 98.41 45 | 98.02 57 | 99.56 25 | 99.97 3 | 98.70 47 | 99.92 79 | 98.44 123 | 92.06 218 | 98.40 122 | 99.84 41 | 95.68 40 | 100.00 1 | 98.19 108 | 99.71 84 | 99.97 58 |
|
| PAPR | | | 98.52 35 | 98.16 49 | 99.58 24 | 99.97 3 | 98.77 41 | 99.95 53 | 98.43 131 | 95.35 93 | 98.03 135 | 99.75 71 | 94.03 87 | 99.98 43 | 98.11 113 | 99.83 73 | 99.99 23 |
|
| HFP-MVS | | | 98.56 32 | 98.37 36 | 99.14 60 | 99.96 8 | 97.43 95 | 99.95 53 | 98.61 82 | 94.77 107 | 99.31 77 | 99.85 30 | 94.22 80 | 100.00 1 | 98.70 86 | 99.98 32 | 99.98 48 |
|
| region2R | | | 98.54 33 | 98.37 36 | 99.05 67 | 99.96 8 | 97.18 102 | 99.96 35 | 98.55 98 | 94.87 105 | 99.45 65 | 99.85 30 | 94.07 86 | 100.00 1 | 98.67 88 | 100.00 1 | 99.98 48 |
|
| ACMMPR | | | 98.50 36 | 98.32 40 | 99.05 67 | 99.96 8 | 97.18 102 | 99.95 53 | 98.60 84 | 94.77 107 | 99.31 77 | 99.84 41 | 93.73 96 | 100.00 1 | 98.70 86 | 99.98 32 | 99.98 48 |
|
| NCCC | | | 99.37 2 | 99.25 2 | 99.71 14 | 99.96 8 | 99.15 21 | 99.97 28 | 98.62 81 | 98.02 13 | 99.90 3 | 99.95 3 | 97.33 16 | 100.00 1 | 99.54 39 | 100.00 1 | 100.00 1 |
|
| CP-MVS | | | 98.45 40 | 98.32 40 | 98.87 80 | 99.96 8 | 96.62 122 | 99.97 28 | 98.39 155 | 94.43 120 | 98.90 95 | 99.87 24 | 94.30 78 | 100.00 1 | 99.04 63 | 99.99 21 | 99.99 23 |
|
| test_one_0601 | | | | | | 99.94 13 | 99.30 12 | | 98.41 148 | 96.63 56 | 99.75 30 | 99.93 11 | 97.49 9 | | | | |
|
| test_0728_SECOND | | | | | 99.82 7 | 99.94 13 | 99.47 7 | 99.95 53 | 98.43 131 | | | | | 100.00 1 | 99.99 5 | 100.00 1 | 100.00 1 |
|
| XVS | | | 98.70 26 | 98.55 25 | 99.15 58 | 99.94 13 | 97.50 91 | 99.94 69 | 98.42 143 | 96.22 73 | 99.41 69 | 99.78 61 | 94.34 76 | 99.96 61 | 98.92 70 | 99.95 49 | 99.99 23 |
|
| X-MVStestdata | | | 93.83 212 | 92.06 245 | 99.15 58 | 99.94 13 | 97.50 91 | 99.94 69 | 98.42 143 | 96.22 73 | 99.41 69 | 41.37 408 | 94.34 76 | 99.96 61 | 98.92 70 | 99.95 49 | 99.99 23 |
|
| test_prior | | | | | 99.43 35 | 99.94 13 | 98.49 59 | | 98.65 74 | | | | | 99.80 121 | | | 99.99 23 |
|
| MSLP-MVS++ | | | 99.13 8 | 99.01 11 | 99.49 32 | 99.94 13 | 98.46 60 | 99.98 15 | 98.86 53 | 97.10 40 | 99.80 18 | 99.94 4 | 95.92 36 | 100.00 1 | 99.51 40 | 100.00 1 | 100.00 1 |
|
| APDe-MVS |  | | 99.06 11 | 98.91 14 | 99.51 29 | 99.94 13 | 98.76 44 | 99.91 84 | 98.39 155 | 97.20 38 | 99.46 64 | 99.85 30 | 95.53 44 | 99.79 123 | 99.86 21 | 100.00 1 | 99.99 23 |
| Zhaojie Zeng, Yuesong Wang, Tao Guan: Matching Ambiguity-Resilient Multi-View Stereo via Adaptive Patch Deformation. Pattern Recognition |
| MP-MVS |  | | 98.23 57 | 97.97 59 | 99.03 69 | 99.94 13 | 97.17 105 | 99.95 53 | 98.39 155 | 94.70 111 | 98.26 129 | 99.81 50 | 91.84 148 | 100.00 1 | 98.85 78 | 99.97 42 | 99.93 76 |
| Rongxuan Tan, Qing Wang, et al.: MP-MVS: Multi-Scale Windows PatchMatch and Planar Prior Multi-View Stereo. |
| CDPH-MVS | | | 98.65 28 | 98.36 38 | 99.49 32 | 99.94 13 | 98.73 45 | 99.87 106 | 98.33 170 | 93.97 145 | 99.76 29 | 99.87 24 | 94.99 58 | 99.75 132 | 98.55 95 | 100.00 1 | 99.98 48 |
|
| PAPM_NR | | | 98.12 60 | 97.93 64 | 98.70 88 | 99.94 13 | 96.13 144 | 99.82 136 | 98.43 131 | 94.56 115 | 97.52 148 | 99.70 87 | 94.40 71 | 99.98 43 | 97.00 152 | 99.98 32 | 99.99 23 |
|
| MG-MVS | | | 98.91 18 | 98.65 20 | 99.68 15 | 99.94 13 | 99.07 24 | 99.64 186 | 99.44 20 | 97.33 31 | 99.00 91 | 99.72 83 | 94.03 87 | 99.98 43 | 98.73 85 | 100.00 1 | 100.00 1 |
|
| SED-MVS | | | 99.28 5 | 99.11 7 | 99.77 8 | 99.93 24 | 99.30 12 | 99.96 35 | 98.43 131 | 97.27 34 | 99.80 18 | 99.94 4 | 96.71 23 | 100.00 1 | 100.00 1 | 100.00 1 | 100.00 1 |
|
| IU-MVS | | | | | | 99.93 24 | 99.31 10 | | 98.41 148 | 97.71 19 | 99.84 12 | | | | 100.00 1 | 100.00 1 | 100.00 1 |
|
| test_241102_ONE | | | | | | 99.93 24 | 99.30 12 | | 98.43 131 | 97.26 36 | 99.80 18 | 99.88 21 | 96.71 23 | 100.00 1 | | | |
|
| DVP-MVS |  | | 99.30 4 | 99.16 3 | 99.73 12 | 99.93 24 | 99.29 15 | 99.95 53 | 98.32 172 | 97.28 32 | 99.83 13 | 99.91 14 | 97.22 18 | 100.00 1 | 99.99 5 | 100.00 1 | 99.89 84 |
| Zhenlong Yuan, Jinguo Luo, Fei Shen, Zhaoxin Li, Cong Liu, Tianlu Mao, Zhaoqi Wang: DVP-MVS: Synergize Depth-Edge and Visibility Prior for Multi-View Stereo. AAAI2025 |
| test0726 | | | | | | 99.93 24 | 99.29 15 | 99.96 35 | 98.42 143 | 97.28 32 | 99.86 7 | 99.94 4 | 97.22 18 | | | | |
|
| MSP-MVS | | | 99.09 9 | 99.12 5 | 98.98 74 | 99.93 24 | 97.24 99 | 99.95 53 | 98.42 143 | 97.50 26 | 99.52 60 | 99.88 21 | 97.43 15 | 99.71 138 | 99.50 41 | 99.98 32 | 100.00 1 |
| Zhenlong Yuan, Cong Liu, Fei Shen, Zhaoxin Li, Jingguo luo, Tianlu Mao and Zhaoqi Wang: MSP-MVS: Multi-granularity Segmentation Prior Guided Multi-View Stereo. AAAI2025 |
| agg_prior | | | | | | 99.93 24 | 98.77 41 | | 98.43 131 | | 99.63 44 | | | 99.85 108 | | | |
|
| FOURS1 | | | | | | 99.92 31 | 97.66 84 | 99.95 53 | 98.36 163 | 95.58 87 | 99.52 60 | | | | | | |
|
| ZD-MVS | | | | | | 99.92 31 | 98.57 55 | | 98.52 104 | 92.34 210 | 99.31 77 | 99.83 43 | 95.06 53 | 99.80 121 | 99.70 34 | 99.97 42 | |
|
| GST-MVS | | | 98.27 52 | 97.97 59 | 99.17 54 | 99.92 31 | 97.57 86 | 99.93 76 | 98.39 155 | 94.04 143 | 98.80 100 | 99.74 78 | 92.98 116 | 100.00 1 | 98.16 110 | 99.76 81 | 99.93 76 |
|
| TEST9 | | | | | | 99.92 31 | 98.92 29 | 99.96 35 | 98.43 131 | 93.90 150 | 99.71 35 | 99.86 26 | 95.88 37 | 99.85 108 | | | |
|
| train_agg | | | 98.88 19 | 98.65 20 | 99.59 23 | 99.92 31 | 98.92 29 | 99.96 35 | 98.43 131 | 94.35 125 | 99.71 35 | 99.86 26 | 95.94 34 | 99.85 108 | 99.69 35 | 99.98 32 | 99.99 23 |
|
| test_8 | | | | | | 99.92 31 | 98.88 32 | 99.96 35 | 98.43 131 | 94.35 125 | 99.69 37 | 99.85 30 | 95.94 34 | 99.85 108 | | | |
|
| PGM-MVS | | | 98.34 48 | 98.13 51 | 98.99 73 | 99.92 31 | 97.00 109 | 99.75 156 | 99.50 18 | 93.90 150 | 99.37 74 | 99.76 65 | 93.24 110 | 100.00 1 | 97.75 136 | 99.96 46 | 99.98 48 |
|
| ACMMP |  | | 97.74 79 | 97.44 81 | 98.66 91 | 99.92 31 | 96.13 144 | 99.18 247 | 99.45 19 | 94.84 106 | 96.41 180 | 99.71 85 | 91.40 151 | 99.99 36 | 97.99 120 | 98.03 158 | 99.87 87 |
| Qingshan Xu, Weihang Kong, Wenbing Tao, Marc Pollefeys: Multi-Scale Geometric Consistency Guided and Planar Prior Assisted Multi-View Stereo. IEEE Transactions on Pattern Analysis and Machine Intelligence |
| DVP-MVS++ | | | 99.26 6 | 99.09 9 | 99.77 8 | 99.91 39 | 99.31 10 | 99.95 53 | 98.43 131 | 96.48 61 | 99.80 18 | 99.93 11 | 97.44 13 | 100.00 1 | 99.92 12 | 99.98 32 | 100.00 1 |
|
| MSC_two_6792asdad | | | | | 99.93 2 | 99.91 39 | 99.80 2 | | 98.41 148 | | | | | 100.00 1 | 99.96 9 | 100.00 1 | 100.00 1 |
|
| No_MVS | | | | | 99.93 2 | 99.91 39 | 99.80 2 | | 98.41 148 | | | | | 100.00 1 | 99.96 9 | 100.00 1 | 100.00 1 |
|
| HPM-MVS++ |  | | 99.07 10 | 98.88 16 | 99.63 17 | 99.90 42 | 99.02 25 | 99.95 53 | 98.56 92 | 97.56 25 | 99.44 66 | 99.85 30 | 95.38 47 | 100.00 1 | 99.31 51 | 99.99 21 | 99.87 87 |
|
| APD-MVS |  | | 98.62 29 | 98.35 39 | 99.41 38 | 99.90 42 | 98.51 58 | 99.87 106 | 98.36 163 | 94.08 138 | 99.74 32 | 99.73 80 | 94.08 85 | 99.74 134 | 99.42 47 | 99.99 21 | 99.99 23 |
| Yuesong Wang, Zhaojie Zeng and etc.: Adaptive Patch Deformation for Textureless-Resilient Multi-View Stereo. CVPR2023 |
| DeepC-MVS_fast | | 96.59 1 | 98.81 23 | 98.54 26 | 99.62 20 | 99.90 42 | 98.85 35 | 99.24 242 | 98.47 115 | 98.14 10 | 99.08 87 | 99.91 14 | 93.09 113 | 100.00 1 | 99.04 63 | 99.99 21 | 100.00 1 |
| Andreas Kuhn, Christian Sormann, Mattia Rossi, Oliver Erdler, Friedrich Fraundorfer: DeepC-MVS: Deep Confidence Prediction for Multi-View Stereo Reconstruction. 3DV 2020 |
| OPU-MVS | | | | | 99.93 2 | 99.89 45 | 99.80 2 | 99.96 35 | | | | 99.80 51 | 97.44 13 | 100.00 1 | 100.00 1 | 99.98 32 | 100.00 1 |
|
| DPE-MVS |  | | 99.26 6 | 99.10 8 | 99.74 11 | 99.89 45 | 99.24 19 | 99.87 106 | 98.44 123 | 97.48 27 | 99.64 43 | 99.94 4 | 96.68 25 | 99.99 36 | 99.99 5 | 100.00 1 | 99.99 23 |
| Kehua Chen, Zhenlong Yuan, Tianlu Mao, Zhaoqi Wang: Dual-Level Precision Edges Guided Multi-View Stereo with Accurate Planarization. AAAI2025 |
| test_part2 | | | | | | 99.89 45 | 99.25 18 | | | | 99.49 63 | | | | | | |
|
| CSCG | | | 97.10 106 | 97.04 98 | 97.27 182 | 99.89 45 | 91.92 266 | 99.90 91 | 99.07 34 | 88.67 296 | 95.26 202 | 99.82 46 | 93.17 112 | 99.98 43 | 98.15 111 | 99.47 105 | 99.90 83 |
|
| ZNCC-MVS | | | 98.31 49 | 98.03 56 | 99.17 54 | 99.88 49 | 97.59 85 | 99.94 69 | 98.44 123 | 94.31 128 | 98.50 117 | 99.82 46 | 93.06 114 | 99.99 36 | 98.30 106 | 99.99 21 | 99.93 76 |
|
| SR-MVS | | | 98.46 39 | 98.30 43 | 98.93 78 | 99.88 49 | 97.04 108 | 99.84 126 | 98.35 165 | 94.92 103 | 99.32 76 | 99.80 51 | 93.35 103 | 99.78 125 | 99.30 52 | 99.95 49 | 99.96 64 |
|
| 9.14 | | | | 98.38 34 | | 99.87 51 | | 99.91 84 | 98.33 170 | 93.22 170 | 99.78 27 | 99.89 19 | 94.57 68 | 99.85 108 | 99.84 22 | 99.97 42 | |
|
| SMA-MVS |  | | 98.76 24 | 98.48 29 | 99.62 20 | 99.87 51 | 98.87 33 | 99.86 118 | 98.38 159 | 93.19 171 | 99.77 28 | 99.94 4 | 95.54 42 | 100.00 1 | 99.74 30 | 99.99 21 | 100.00 1 |
| Yufeng Yin; Xiaoyan Liu; Zichao Zhang: SMA-MVS: Segmentation-Guided Multi-Scale Anchor Deformation Patch Multi-View Stereo. IEEE Transactions on Circuits and Systems for Video Technology |
| PHI-MVS | | | 98.41 45 | 98.21 45 | 99.03 69 | 99.86 53 | 97.10 107 | 99.98 15 | 98.80 62 | 90.78 259 | 99.62 47 | 99.78 61 | 95.30 48 | 100.00 1 | 99.80 25 | 99.93 60 | 99.99 23 |
|
| MTAPA | | | 98.29 51 | 97.96 62 | 99.30 43 | 99.85 54 | 97.93 74 | 99.39 223 | 98.28 179 | 95.76 82 | 97.18 158 | 99.88 21 | 92.74 124 | 100.00 1 | 98.67 88 | 99.88 69 | 99.99 23 |
|
| LS3D | | | 95.84 159 | 95.11 169 | 98.02 136 | 99.85 54 | 95.10 186 | 98.74 294 | 98.50 112 | 87.22 317 | 93.66 220 | 99.86 26 | 87.45 205 | 99.95 69 | 90.94 259 | 99.81 79 | 99.02 202 |
|
| HPM-MVS |  | | 97.96 63 | 97.72 71 | 98.68 89 | 99.84 56 | 96.39 131 | 99.90 91 | 98.17 191 | 92.61 195 | 98.62 112 | 99.57 109 | 91.87 147 | 99.67 145 | 98.87 77 | 99.99 21 | 99.99 23 |
| Chunlin Ren, Qingshan Xu, Shikun Zhang, Jiaqi Yang: Hierarchical Prior Mining for Non-local Multi-View Stereo. ICCV 2023 |
| EI-MVSNet-Vis-set | | | 98.27 52 | 98.11 53 | 98.75 86 | 99.83 57 | 96.59 124 | 99.40 219 | 98.51 107 | 95.29 95 | 98.51 116 | 99.76 65 | 93.60 100 | 99.71 138 | 98.53 96 | 99.52 100 | 99.95 71 |
|
| save fliter | | | | | | 99.82 58 | 98.79 39 | 99.96 35 | 98.40 152 | 97.66 21 | | | | | | | |
|
| PLC |  | 95.54 3 | 97.93 65 | 97.89 67 | 98.05 135 | 99.82 58 | 94.77 196 | 99.92 79 | 98.46 117 | 93.93 148 | 97.20 157 | 99.27 135 | 95.44 46 | 99.97 53 | 97.41 141 | 99.51 103 | 99.41 165 |
| Jie Liao, Yanping Fu, Qingan Yan, Chunxia xiao: Pyramid Multi-View Stereo with Local Consistency. Pacific Graphics 2019 |
| APD-MVS_3200maxsize | | | 98.25 55 | 98.08 55 | 98.78 83 | 99.81 60 | 96.60 123 | 99.82 136 | 98.30 177 | 93.95 147 | 99.37 74 | 99.77 63 | 92.84 120 | 99.76 131 | 98.95 67 | 99.92 63 | 99.97 58 |
|
| EI-MVSNet-UG-set | | | 98.14 59 | 97.99 58 | 98.60 96 | 99.80 61 | 96.27 134 | 99.36 228 | 98.50 112 | 95.21 97 | 98.30 126 | 99.75 71 | 93.29 107 | 99.73 137 | 98.37 102 | 99.30 117 | 99.81 94 |
|
| SR-MVS-dyc-post | | | 98.31 49 | 98.17 48 | 98.71 87 | 99.79 62 | 96.37 132 | 99.76 153 | 98.31 174 | 94.43 120 | 99.40 71 | 99.75 71 | 93.28 108 | 99.78 125 | 98.90 75 | 99.92 63 | 99.97 58 |
|
| RE-MVS-def | | | | 98.13 51 | | 99.79 62 | 96.37 132 | 99.76 153 | 98.31 174 | 94.43 120 | 99.40 71 | 99.75 71 | 92.95 117 | | 98.90 75 | 99.92 63 | 99.97 58 |
|
| HPM-MVS_fast | | | 97.80 74 | 97.50 79 | 98.68 89 | 99.79 62 | 96.42 127 | 99.88 103 | 98.16 195 | 91.75 228 | 98.94 93 | 99.54 112 | 91.82 149 | 99.65 147 | 97.62 139 | 99.99 21 | 99.99 23 |
|
| SF-MVS | | | 98.67 27 | 98.40 32 | 99.50 30 | 99.77 65 | 98.67 48 | 99.90 91 | 98.21 186 | 93.53 160 | 99.81 15 | 99.89 19 | 94.70 66 | 99.86 107 | 99.84 22 | 99.93 60 | 99.96 64 |
|
| 旧先验1 | | | | | | 99.76 66 | 97.52 88 | | 98.64 76 | | | 99.85 30 | 95.63 41 | | | 99.94 54 | 99.99 23 |
|
| OMC-MVS | | | 97.28 98 | 97.23 90 | 97.41 173 | 99.76 66 | 93.36 235 | 99.65 182 | 97.95 214 | 96.03 77 | 97.41 152 | 99.70 87 | 89.61 181 | 99.51 153 | 96.73 161 | 98.25 150 | 99.38 167 |
|
| 新几何1 | | | | | 99.42 37 | 99.75 68 | 98.27 62 | | 98.63 80 | 92.69 190 | 99.55 55 | 99.82 46 | 94.40 71 | 100.00 1 | 91.21 251 | 99.94 54 | 99.99 23 |
|
| MP-MVS-pluss | | | 98.07 62 | 97.64 74 | 99.38 42 | 99.74 69 | 98.41 61 | 99.74 159 | 98.18 190 | 93.35 165 | 96.45 177 | 99.85 30 | 92.64 126 | 99.97 53 | 98.91 74 | 99.89 67 | 99.77 101 |
| MP-MVS-pluss: MP-MVS-pluss. MP-MVS-pluss |
| TSAR-MVS + MP. | | | 98.93 16 | 98.77 18 | 99.41 38 | 99.74 69 | 98.67 48 | 99.77 148 | 98.38 159 | 96.73 53 | 99.88 6 | 99.74 78 | 94.89 60 | 99.59 149 | 99.80 25 | 99.98 32 | 99.97 58 |
| Zhenlong Yuan, Jiakai Cao, Zhaoqi Wang, Zhaoxin Li: TSAR-MVS: Textureless-aware Segmentation and Correlative Refinement Guided Multi-View Stereo. Pattern Recognition |
| test12 | | | | | 99.43 35 | 99.74 69 | 98.56 56 | | 98.40 152 | | 99.65 41 | | 94.76 63 | 99.75 132 | | 99.98 32 | 99.99 23 |
|
| 原ACMM1 | | | | | 98.96 76 | 99.73 72 | 96.99 110 | | 98.51 107 | 94.06 141 | 99.62 47 | 99.85 30 | 94.97 59 | 99.96 61 | 95.11 181 | 99.95 49 | 99.92 81 |
|
| TSAR-MVS + GP. | | | 98.60 30 | 98.51 28 | 98.86 81 | 99.73 72 | 96.63 121 | 99.97 28 | 97.92 219 | 98.07 11 | 98.76 104 | 99.55 110 | 95.00 57 | 99.94 77 | 99.91 15 | 97.68 163 | 99.99 23 |
|
| CANet | | | 98.27 52 | 97.82 69 | 99.63 17 | 99.72 74 | 99.10 23 | 99.98 15 | 98.51 107 | 97.00 43 | 98.52 115 | 99.71 85 | 87.80 200 | 99.95 69 | 99.75 28 | 99.38 113 | 99.83 91 |
|
| F-COLMAP | | | 96.93 116 | 96.95 101 | 96.87 192 | 99.71 75 | 91.74 271 | 99.85 121 | 97.95 214 | 93.11 174 | 95.72 195 | 99.16 146 | 92.35 136 | 99.94 77 | 95.32 179 | 99.35 115 | 98.92 205 |
|
| SD-MVS | | | 98.92 17 | 98.70 19 | 99.56 25 | 99.70 76 | 98.73 45 | 99.94 69 | 98.34 169 | 96.38 67 | 99.81 15 | 99.76 65 | 94.59 67 | 99.98 43 | 99.84 22 | 99.96 46 | 99.97 58 |
| Zhenlong Yuan, Jiakai Cao, Zhaoxin Li, Hao Jiang and Zhaoqi Wang: SD-MVS: Segmentation-driven Deformation Multi-View Stereo with Spherical Refinement and EM optimization. AAAI2024 |
| patch_mono-2 | | | 98.24 56 | 99.12 5 | 95.59 225 | 99.67 77 | 86.91 344 | 99.95 53 | 98.89 49 | 97.60 22 | 99.90 3 | 99.76 65 | 96.54 28 | 99.98 43 | 99.94 11 | 99.82 77 | 99.88 85 |
|
| ACMMP_NAP | | | 98.49 37 | 98.14 50 | 99.54 27 | 99.66 78 | 98.62 54 | 99.85 121 | 98.37 162 | 94.68 112 | 99.53 58 | 99.83 43 | 92.87 119 | 100.00 1 | 98.66 90 | 99.84 72 | 99.99 23 |
|
| DeepPCF-MVS | | 95.94 2 | 97.71 82 | 98.98 12 | 93.92 288 | 99.63 79 | 81.76 371 | 99.96 35 | 98.56 92 | 99.47 1 | 99.19 84 | 99.99 1 | 94.16 84 | 100.00 1 | 99.92 12 | 99.93 60 | 100.00 1 |
|
| EPNet | | | 98.49 37 | 98.40 32 | 98.77 85 | 99.62 80 | 96.80 118 | 99.90 91 | 99.51 17 | 97.60 22 | 99.20 82 | 99.36 129 | 93.71 97 | 99.91 89 | 97.99 120 | 98.71 138 | 99.61 130 |
| Wanjuan Su, Wenbing Tao: Efficient Edge-Preserving Multi-View Stereo Network for Depth Estimation. AAAI 2023 |
| MM | | | 98.83 21 | 98.53 27 | 99.76 10 | 99.59 81 | 99.33 8 | 99.99 5 | 99.76 6 | 98.39 3 | 99.39 73 | 99.80 51 | 90.49 171 | 99.96 61 | 99.89 16 | 99.43 111 | 99.98 48 |
|
| PVSNet_BlendedMVS | | | 96.05 153 | 95.82 148 | 96.72 197 | 99.59 81 | 96.99 110 | 99.95 53 | 99.10 31 | 94.06 141 | 98.27 127 | 95.80 292 | 89.00 192 | 99.95 69 | 99.12 58 | 87.53 285 | 93.24 343 |
|
| PVSNet_Blended | | | 97.94 64 | 97.64 74 | 98.83 82 | 99.59 81 | 96.99 110 | 100.00 1 | 99.10 31 | 95.38 92 | 98.27 127 | 99.08 149 | 89.00 192 | 99.95 69 | 99.12 58 | 99.25 119 | 99.57 140 |
|
| PatchMatch-RL | | | 96.04 154 | 95.40 158 | 97.95 139 | 99.59 81 | 95.22 182 | 99.52 204 | 99.07 34 | 93.96 146 | 96.49 176 | 98.35 217 | 82.28 251 | 99.82 120 | 90.15 275 | 99.22 122 | 98.81 212 |
|
| dcpmvs_2 | | | 97.42 93 | 98.09 54 | 95.42 230 | 99.58 85 | 87.24 340 | 99.23 243 | 96.95 313 | 94.28 130 | 98.93 94 | 99.73 80 | 94.39 74 | 99.16 175 | 99.89 16 | 99.82 77 | 99.86 89 |
|
| test222 | | | | | | 99.55 86 | 97.41 97 | 99.34 229 | 98.55 98 | 91.86 223 | 99.27 81 | 99.83 43 | 93.84 94 | | | 99.95 49 | 99.99 23 |
|
| CNLPA | | | 97.76 78 | 97.38 83 | 98.92 79 | 99.53 87 | 96.84 115 | 99.87 106 | 98.14 199 | 93.78 153 | 96.55 175 | 99.69 89 | 92.28 138 | 99.98 43 | 97.13 148 | 99.44 109 | 99.93 76 |
|
| API-MVS | | | 97.86 68 | 97.66 73 | 98.47 109 | 99.52 88 | 95.41 173 | 99.47 213 | 98.87 52 | 91.68 229 | 98.84 97 | 99.85 30 | 92.34 137 | 99.99 36 | 98.44 99 | 99.96 46 | 100.00 1 |
|
| PVSNet | | 91.05 13 | 97.13 105 | 96.69 113 | 98.45 111 | 99.52 88 | 95.81 152 | 99.95 53 | 99.65 12 | 94.73 109 | 99.04 89 | 99.21 142 | 84.48 237 | 99.95 69 | 94.92 187 | 98.74 137 | 99.58 139 |
|
| 114514_t | | | 97.41 94 | 96.83 106 | 99.14 60 | 99.51 90 | 97.83 76 | 99.89 99 | 98.27 181 | 88.48 300 | 99.06 88 | 99.66 98 | 90.30 173 | 99.64 148 | 96.32 165 | 99.97 42 | 99.96 64 |
|
| cl22 | | | 93.77 216 | 93.25 219 | 95.33 234 | 99.49 91 | 94.43 200 | 99.61 190 | 98.09 201 | 90.38 264 | 89.16 288 | 95.61 299 | 90.56 169 | 97.34 278 | 91.93 243 | 84.45 306 | 94.21 289 |
|
| testdata | | | | | 98.42 114 | 99.47 92 | 95.33 176 | | 98.56 92 | 93.78 153 | 99.79 26 | 99.85 30 | 93.64 99 | 99.94 77 | 94.97 185 | 99.94 54 | 100.00 1 |
|
| MAR-MVS | | | 97.43 89 | 97.19 92 | 98.15 128 | 99.47 92 | 94.79 195 | 99.05 263 | 98.76 63 | 92.65 193 | 98.66 110 | 99.82 46 | 88.52 197 | 99.98 43 | 98.12 112 | 99.63 89 | 99.67 116 |
| Zhenyu Xu, Yiguang Liu, Xuelei Shi, Ying Wang, Yunan Zheng: MARMVS: Matching Ambiguity Reduced Multiple View Stereo for Efficient Large Scale Scene Reconstruction. CVPR 2020 |
| DP-MVS | | | 94.54 193 | 93.42 212 | 97.91 144 | 99.46 94 | 94.04 213 | 98.93 275 | 97.48 259 | 81.15 367 | 90.04 261 | 99.55 110 | 87.02 211 | 99.95 69 | 88.97 285 | 98.11 154 | 99.73 105 |
|
| MVS_111021_LR | | | 98.42 44 | 98.38 34 | 98.53 106 | 99.39 95 | 95.79 153 | 99.87 106 | 99.86 2 | 96.70 54 | 98.78 101 | 99.79 57 | 92.03 144 | 99.90 91 | 99.17 57 | 99.86 71 | 99.88 85 |
|
| CHOSEN 280x420 | | | 99.01 13 | 99.03 10 | 98.95 77 | 99.38 96 | 98.87 33 | 98.46 311 | 99.42 22 | 97.03 42 | 99.02 90 | 99.09 148 | 99.35 1 | 98.21 242 | 99.73 32 | 99.78 80 | 99.77 101 |
|
| MVS_111021_HR | | | 98.72 25 | 98.62 22 | 99.01 72 | 99.36 97 | 97.18 102 | 99.93 76 | 99.90 1 | 96.81 51 | 98.67 109 | 99.77 63 | 93.92 89 | 99.89 96 | 99.27 53 | 99.94 54 | 99.96 64 |
|
| DPM-MVS | | | 98.83 21 | 98.46 30 | 99.97 1 | 99.33 98 | 99.92 1 | 99.96 35 | 98.44 123 | 97.96 14 | 99.55 55 | 99.94 4 | 97.18 20 | 100.00 1 | 93.81 215 | 99.94 54 | 99.98 48 |
|
| TAPA-MVS | | 92.12 8 | 94.42 198 | 93.60 205 | 96.90 191 | 99.33 98 | 91.78 270 | 99.78 145 | 98.00 208 | 89.89 274 | 94.52 208 | 99.47 116 | 91.97 145 | 99.18 173 | 69.90 381 | 99.52 100 | 99.73 105 |
| Andrea Romanoni, Matteo Matteucci: TAPA-MVS: Textureless-Aware PAtchMatch Multi-View Stereo. ICCV 2019 |
| CS-MVS-test | | | 97.88 67 | 97.94 63 | 97.70 157 | 99.28 100 | 95.20 183 | 99.98 15 | 97.15 292 | 95.53 89 | 99.62 47 | 99.79 57 | 92.08 143 | 98.38 225 | 98.75 84 | 99.28 118 | 99.52 150 |
|
| test_fmvsm_n_1920 | | | 98.44 41 | 98.61 23 | 97.92 142 | 99.27 101 | 95.18 184 | 100.00 1 | 98.90 47 | 98.05 12 | 99.80 18 | 99.73 80 | 92.64 126 | 99.99 36 | 99.58 38 | 99.51 103 | 98.59 222 |
|
| fmvsm_l_conf0.5_n_a | | | 99.00 14 | 98.91 14 | 99.28 44 | 99.21 102 | 97.91 75 | 99.98 15 | 98.85 56 | 98.25 4 | 99.92 2 | 99.75 71 | 94.72 64 | 99.97 53 | 99.87 19 | 99.64 88 | 99.95 71 |
|
| test_yl | | | 97.83 70 | 97.37 84 | 99.21 48 | 99.18 103 | 97.98 71 | 99.64 186 | 99.27 27 | 91.43 238 | 97.88 141 | 98.99 158 | 95.84 38 | 99.84 116 | 98.82 79 | 95.32 216 | 99.79 97 |
|
| DCV-MVSNet | | | 97.83 70 | 97.37 84 | 99.21 48 | 99.18 103 | 97.98 71 | 99.64 186 | 99.27 27 | 91.43 238 | 97.88 141 | 98.99 158 | 95.84 38 | 99.84 116 | 98.82 79 | 95.32 216 | 99.79 97 |
|
| MVS_0304 | | | 98.87 20 | 98.61 23 | 99.67 16 | 99.18 103 | 99.13 22 | 99.87 106 | 99.65 12 | 98.17 8 | 98.75 106 | 99.75 71 | 92.76 123 | 99.94 77 | 99.88 18 | 99.44 109 | 99.94 74 |
|
| fmvsm_l_conf0.5_n | | | 98.94 15 | 98.84 17 | 99.25 45 | 99.17 106 | 97.81 78 | 99.98 15 | 98.86 53 | 98.25 4 | 99.90 3 | 99.76 65 | 94.21 82 | 99.97 53 | 99.87 19 | 99.52 100 | 99.98 48 |
|
| DeepC-MVS | | 94.51 4 | 96.92 117 | 96.40 123 | 98.45 111 | 99.16 107 | 95.90 150 | 99.66 180 | 98.06 204 | 96.37 70 | 94.37 211 | 99.49 115 | 83.29 247 | 99.90 91 | 97.63 138 | 99.61 94 | 99.55 142 |
| Andreas Kuhn, Christian Sormann, Mattia Rossi, Oliver Erdler, Friedrich Fraundorfer: DeepC-MVS: Deep Confidence Prediction for Multi-View Stereo Reconstruction. 3DV 2020 |
| DELS-MVS | | | 98.54 33 | 98.22 44 | 99.50 30 | 99.15 108 | 98.65 52 | 100.00 1 | 98.58 87 | 97.70 20 | 98.21 131 | 99.24 140 | 92.58 129 | 99.94 77 | 98.63 93 | 99.94 54 | 99.92 81 |
| Christian Sormann, Emanuele Santellani, Mattia Rossi, Andreas Kuhn, Friedrich Fraundorfer: DELS-MVS: Deep Epipolar Line Search for Multi-View Stereo. Winter Conference on Applications of Computer Vision (WACV), 2023 |
| CS-MVS | | | 97.79 76 | 97.91 65 | 97.43 172 | 99.10 109 | 94.42 201 | 99.99 5 | 97.10 297 | 95.07 98 | 99.68 38 | 99.75 71 | 92.95 117 | 98.34 229 | 98.38 101 | 99.14 124 | 99.54 146 |
|
| Anonymous202405211 | | | 93.10 234 | 91.99 246 | 96.40 207 | 99.10 109 | 89.65 315 | 98.88 280 | 97.93 216 | 83.71 354 | 94.00 217 | 98.75 187 | 68.79 348 | 99.88 102 | 95.08 183 | 91.71 245 | 99.68 112 |
|
| fmvsm_s_conf0.5_n | | | 97.80 74 | 97.85 68 | 97.67 158 | 99.06 111 | 94.41 202 | 99.98 15 | 98.97 40 | 97.34 29 | 99.63 44 | 99.69 89 | 87.27 207 | 99.97 53 | 99.62 37 | 99.06 128 | 98.62 221 |
|
| HyFIR lowres test | | | 96.66 131 | 96.43 122 | 97.36 178 | 99.05 112 | 93.91 218 | 99.70 174 | 99.80 3 | 90.54 262 | 96.26 183 | 98.08 224 | 92.15 141 | 98.23 241 | 96.84 160 | 95.46 211 | 99.93 76 |
|
| LFMVS | | | 94.75 187 | 93.56 208 | 98.30 120 | 99.03 113 | 95.70 159 | 98.74 294 | 97.98 211 | 87.81 310 | 98.47 118 | 99.39 126 | 67.43 357 | 99.53 150 | 98.01 118 | 95.20 219 | 99.67 116 |
|
| AllTest | | | 92.48 248 | 91.64 251 | 95.00 244 | 99.01 114 | 88.43 329 | 98.94 274 | 96.82 328 | 86.50 326 | 88.71 294 | 98.47 213 | 74.73 324 | 99.88 102 | 85.39 323 | 96.18 193 | 96.71 249 |
|
| TestCases | | | | | 95.00 244 | 99.01 114 | 88.43 329 | | 96.82 328 | 86.50 326 | 88.71 294 | 98.47 213 | 74.73 324 | 99.88 102 | 85.39 323 | 96.18 193 | 96.71 249 |
|
| COLMAP_ROB |  | 90.47 14 | 92.18 255 | 91.49 257 | 94.25 276 | 99.00 116 | 88.04 335 | 98.42 316 | 96.70 335 | 82.30 363 | 88.43 301 | 99.01 155 | 76.97 300 | 99.85 108 | 86.11 319 | 96.50 188 | 94.86 260 |
| Johannes L. Schönberger, Enliang Zheng, Marc Pollefeys, Jan-Michael Frahm: Pixelwise View Selection for Unstructured Multi-View Stereo. ECCV 2016 |
| test_fmvs1 | | | 95.35 173 | 95.68 153 | 94.36 273 | 98.99 117 | 84.98 353 | 99.96 35 | 96.65 337 | 97.60 22 | 99.73 33 | 98.96 164 | 71.58 337 | 99.93 85 | 98.31 105 | 99.37 114 | 98.17 229 |
|
| HY-MVS | | 92.50 7 | 97.79 76 | 97.17 94 | 99.63 17 | 98.98 118 | 99.32 9 | 97.49 340 | 99.52 15 | 95.69 84 | 98.32 125 | 97.41 243 | 93.32 105 | 99.77 128 | 98.08 116 | 95.75 207 | 99.81 94 |
|
| VNet | | | 97.21 102 | 96.57 118 | 99.13 64 | 98.97 119 | 97.82 77 | 99.03 266 | 99.21 29 | 94.31 128 | 99.18 85 | 98.88 175 | 86.26 221 | 99.89 96 | 98.93 69 | 94.32 228 | 99.69 111 |
|
| thres200 | | | 96.96 114 | 96.21 128 | 99.22 47 | 98.97 119 | 98.84 36 | 99.85 121 | 99.71 7 | 93.17 172 | 96.26 183 | 98.88 175 | 89.87 178 | 99.51 153 | 94.26 205 | 94.91 221 | 99.31 177 |
|
| tfpn200view9 | | | 96.79 121 | 95.99 133 | 99.19 50 | 98.94 121 | 98.82 37 | 99.78 145 | 99.71 7 | 92.86 180 | 96.02 188 | 98.87 178 | 89.33 185 | 99.50 155 | 93.84 212 | 94.57 224 | 99.27 183 |
|
| thres400 | | | 96.78 123 | 95.99 133 | 99.16 56 | 98.94 121 | 98.82 37 | 99.78 145 | 99.71 7 | 92.86 180 | 96.02 188 | 98.87 178 | 89.33 185 | 99.50 155 | 93.84 212 | 94.57 224 | 99.16 190 |
|
| sasdasda | | | 97.09 108 | 96.32 124 | 99.39 40 | 98.93 123 | 98.95 27 | 99.72 167 | 97.35 270 | 94.45 117 | 97.88 141 | 99.42 120 | 86.71 214 | 99.52 151 | 98.48 97 | 93.97 234 | 99.72 107 |
|
| Anonymous20231211 | | | 89.86 304 | 88.44 311 | 94.13 279 | 98.93 123 | 90.68 293 | 98.54 308 | 98.26 182 | 76.28 379 | 86.73 322 | 95.54 303 | 70.60 343 | 97.56 271 | 90.82 262 | 80.27 341 | 94.15 297 |
|
| canonicalmvs | | | 97.09 108 | 96.32 124 | 99.39 40 | 98.93 123 | 98.95 27 | 99.72 167 | 97.35 270 | 94.45 117 | 97.88 141 | 99.42 120 | 86.71 214 | 99.52 151 | 98.48 97 | 93.97 234 | 99.72 107 |
|
| SDMVSNet | | | 94.80 183 | 93.96 196 | 97.33 180 | 98.92 126 | 95.42 172 | 99.59 192 | 98.99 37 | 92.41 207 | 92.55 235 | 97.85 233 | 75.81 314 | 98.93 184 | 97.90 126 | 91.62 246 | 97.64 240 |
|
| sd_testset | | | 93.55 223 | 92.83 227 | 95.74 223 | 98.92 126 | 90.89 290 | 98.24 322 | 98.85 56 | 92.41 207 | 92.55 235 | 97.85 233 | 71.07 342 | 98.68 201 | 93.93 209 | 91.62 246 | 97.64 240 |
|
| EPNet_dtu | | | 95.71 163 | 95.39 159 | 96.66 199 | 98.92 126 | 93.41 232 | 99.57 196 | 98.90 47 | 96.19 75 | 97.52 148 | 98.56 205 | 92.65 125 | 97.36 276 | 77.89 364 | 98.33 145 | 99.20 188 |
| Wanjuan Su, Wenbing Tao: Efficient Edge-Preserving Multi-View Stereo Network for Depth Estimation. AAAI 2023 |
| WTY-MVS | | | 98.10 61 | 97.60 76 | 99.60 22 | 98.92 126 | 99.28 17 | 99.89 99 | 99.52 15 | 95.58 87 | 98.24 130 | 99.39 126 | 93.33 104 | 99.74 134 | 97.98 122 | 95.58 210 | 99.78 100 |
|
| CHOSEN 1792x2688 | | | 96.81 120 | 96.53 119 | 97.64 160 | 98.91 130 | 93.07 237 | 99.65 182 | 99.80 3 | 95.64 85 | 95.39 199 | 98.86 180 | 84.35 240 | 99.90 91 | 96.98 154 | 99.16 123 | 99.95 71 |
|
| thres100view900 | | | 96.74 126 | 95.92 144 | 99.18 51 | 98.90 131 | 98.77 41 | 99.74 159 | 99.71 7 | 92.59 197 | 95.84 191 | 98.86 180 | 89.25 187 | 99.50 155 | 93.84 212 | 94.57 224 | 99.27 183 |
|
| thres600view7 | | | 96.69 129 | 95.87 147 | 99.14 60 | 98.90 131 | 98.78 40 | 99.74 159 | 99.71 7 | 92.59 197 | 95.84 191 | 98.86 180 | 89.25 187 | 99.50 155 | 93.44 224 | 94.50 227 | 99.16 190 |
|
| MSDG | | | 94.37 200 | 93.36 216 | 97.40 174 | 98.88 133 | 93.95 217 | 99.37 226 | 97.38 268 | 85.75 337 | 90.80 254 | 99.17 145 | 84.11 242 | 99.88 102 | 86.35 316 | 98.43 143 | 98.36 227 |
|
| h-mvs33 | | | 94.92 181 | 94.36 185 | 96.59 201 | 98.85 134 | 91.29 282 | 98.93 275 | 98.94 41 | 95.90 78 | 98.77 102 | 98.42 216 | 90.89 165 | 99.77 128 | 97.80 129 | 70.76 375 | 98.72 218 |
|
| Anonymous20240529 | | | 92.10 256 | 90.65 267 | 96.47 202 | 98.82 135 | 90.61 295 | 98.72 296 | 98.67 73 | 75.54 383 | 93.90 219 | 98.58 203 | 66.23 361 | 99.90 91 | 94.70 196 | 90.67 248 | 98.90 208 |
|
| PVSNet_Blended_VisFu | | | 97.27 99 | 96.81 107 | 98.66 91 | 98.81 136 | 96.67 120 | 99.92 79 | 98.64 76 | 94.51 116 | 96.38 181 | 98.49 209 | 89.05 191 | 99.88 102 | 97.10 150 | 98.34 144 | 99.43 163 |
|
| PS-MVSNAJ | | | 98.44 41 | 98.20 46 | 99.16 56 | 98.80 137 | 98.92 29 | 99.54 202 | 98.17 191 | 97.34 29 | 99.85 9 | 99.85 30 | 91.20 154 | 99.89 96 | 99.41 48 | 99.67 86 | 98.69 219 |
|
| CANet_DTU | | | 96.76 124 | 96.15 129 | 98.60 96 | 98.78 138 | 97.53 87 | 99.84 126 | 97.63 238 | 97.25 37 | 99.20 82 | 99.64 101 | 81.36 260 | 99.98 43 | 92.77 235 | 98.89 131 | 98.28 228 |
|
| mvsany_test1 | | | 97.82 72 | 97.90 66 | 97.55 165 | 98.77 139 | 93.04 240 | 99.80 142 | 97.93 216 | 96.95 45 | 99.61 53 | 99.68 95 | 90.92 162 | 99.83 118 | 99.18 56 | 98.29 149 | 99.80 96 |
|
| alignmvs | | | 97.81 73 | 97.33 86 | 99.25 45 | 98.77 139 | 98.66 50 | 99.99 5 | 98.44 123 | 94.40 124 | 98.41 120 | 99.47 116 | 93.65 98 | 99.42 163 | 98.57 94 | 94.26 230 | 99.67 116 |
|
| SteuartSystems-ACMMP | | | 99.02 12 | 98.97 13 | 99.18 51 | 98.72 141 | 97.71 80 | 99.98 15 | 98.44 123 | 96.85 46 | 99.80 18 | 99.91 14 | 97.57 7 | 99.85 108 | 99.44 46 | 99.99 21 | 99.99 23 |
| Skip Steuart: Steuart Systems R&D Blog. |
| xiu_mvs_v2_base | | | 98.23 57 | 97.97 59 | 99.02 71 | 98.69 142 | 98.66 50 | 99.52 204 | 98.08 203 | 97.05 41 | 99.86 7 | 99.86 26 | 90.65 167 | 99.71 138 | 99.39 50 | 98.63 139 | 98.69 219 |
|
| miper_enhance_ethall | | | 94.36 202 | 93.98 195 | 95.49 226 | 98.68 143 | 95.24 180 | 99.73 164 | 97.29 279 | 93.28 169 | 89.86 266 | 95.97 290 | 94.37 75 | 97.05 299 | 92.20 239 | 84.45 306 | 94.19 290 |
|
| ETVMVS | | | 97.03 112 | 96.64 114 | 98.20 124 | 98.67 144 | 97.12 106 | 99.89 99 | 98.57 89 | 91.10 249 | 98.17 132 | 98.59 200 | 93.86 93 | 98.19 243 | 95.64 176 | 95.24 218 | 99.28 182 |
|
| test2506 | | | 97.53 86 | 97.19 92 | 98.58 99 | 98.66 145 | 96.90 114 | 98.81 289 | 99.77 5 | 94.93 101 | 97.95 137 | 98.96 164 | 92.51 131 | 99.20 170 | 94.93 186 | 98.15 151 | 99.64 122 |
|
| ECVR-MVS |  | | 95.66 166 | 95.05 171 | 97.51 168 | 98.66 145 | 93.71 222 | 98.85 286 | 98.45 118 | 94.93 101 | 96.86 166 | 98.96 164 | 75.22 320 | 99.20 170 | 95.34 178 | 98.15 151 | 99.64 122 |
|
| fmvsm_s_conf0.5_n_a | | | 97.73 81 | 97.72 71 | 97.77 152 | 98.63 147 | 94.26 207 | 99.96 35 | 98.92 46 | 97.18 39 | 99.75 30 | 99.69 89 | 87.00 212 | 99.97 53 | 99.46 44 | 98.89 131 | 99.08 198 |
|
| iter_conf05_11 | | | 96.12 150 | 95.46 156 | 98.10 130 | 98.62 148 | 95.52 168 | 100.00 1 | 96.30 349 | 96.54 60 | 99.81 15 | 99.80 51 | 69.19 347 | 99.10 177 | 98.92 70 | 99.91 66 | 99.68 112 |
|
| bld_raw_dy_0_64 | | | 94.22 206 | 92.97 223 | 97.98 137 | 98.62 148 | 95.09 187 | 99.89 99 | 93.09 390 | 96.55 59 | 92.59 233 | 99.80 51 | 68.57 351 | 99.19 172 | 98.92 70 | 88.69 265 | 99.68 112 |
|
| testing222 | | | 97.08 111 | 96.75 110 | 98.06 134 | 98.56 150 | 96.82 116 | 99.85 121 | 98.61 82 | 92.53 201 | 98.84 97 | 98.84 184 | 93.36 102 | 98.30 233 | 95.84 173 | 94.30 229 | 99.05 200 |
|
| test1111 | | | 95.57 168 | 94.98 174 | 97.37 176 | 98.56 150 | 93.37 234 | 98.86 284 | 98.45 118 | 94.95 100 | 96.63 172 | 98.95 169 | 75.21 321 | 99.11 176 | 95.02 184 | 98.14 153 | 99.64 122 |
|
| MVSTER | | | 95.53 169 | 95.22 165 | 96.45 204 | 98.56 150 | 97.72 79 | 99.91 84 | 97.67 236 | 92.38 209 | 91.39 246 | 97.14 250 | 97.24 17 | 97.30 282 | 94.80 192 | 87.85 280 | 94.34 281 |
|
| VDD-MVS | | | 93.77 216 | 92.94 224 | 96.27 211 | 98.55 153 | 90.22 304 | 98.77 293 | 97.79 230 | 90.85 255 | 96.82 168 | 99.42 120 | 61.18 378 | 99.77 128 | 98.95 67 | 94.13 231 | 98.82 211 |
|
| tpmvs | | | 94.28 204 | 93.57 207 | 96.40 207 | 98.55 153 | 91.50 280 | 95.70 374 | 98.55 98 | 87.47 312 | 92.15 239 | 94.26 349 | 91.42 150 | 98.95 183 | 88.15 295 | 95.85 203 | 98.76 214 |
|
| UGNet | | | 95.33 174 | 94.57 182 | 97.62 163 | 98.55 153 | 94.85 191 | 98.67 302 | 99.32 26 | 95.75 83 | 96.80 169 | 96.27 281 | 72.18 334 | 99.96 61 | 94.58 199 | 99.05 129 | 98.04 233 |
| Wanjuan Su, Qingshan Xu, Wenbing Tao: Uncertainty-guided Multi-view Stereo Network for Depth Estimation. IEEE Transactions on Circuits and Systems for Video Technology, 2022 |
| PCF-MVS | | 94.20 5 | 95.18 175 | 94.10 192 | 98.43 113 | 98.55 153 | 95.99 148 | 97.91 335 | 97.31 276 | 90.35 266 | 89.48 277 | 99.22 141 | 85.19 230 | 99.89 96 | 90.40 272 | 98.47 142 | 99.41 165 |
| Andreas Kuhn, Shan Lin, Oliver Erdler: Plane Completion and Filtering for Multi-View Stereo Reconstruction. GCPR 2019 |
| UWE-MVS | | | 96.79 121 | 96.72 111 | 97.00 187 | 98.51 157 | 93.70 223 | 99.71 170 | 98.60 84 | 92.96 176 | 97.09 159 | 98.34 218 | 96.67 27 | 98.85 187 | 92.11 241 | 96.50 188 | 98.44 224 |
|
| test_vis1_n_1920 | | | 95.44 171 | 95.31 162 | 95.82 221 | 98.50 158 | 88.74 323 | 99.98 15 | 97.30 277 | 97.84 16 | 99.85 9 | 99.19 143 | 66.82 359 | 99.97 53 | 98.82 79 | 99.46 107 | 98.76 214 |
|
| BH-w/o | | | 95.71 163 | 95.38 160 | 96.68 198 | 98.49 159 | 92.28 257 | 99.84 126 | 97.50 257 | 92.12 215 | 92.06 242 | 98.79 185 | 84.69 235 | 98.67 202 | 95.29 180 | 99.66 87 | 99.09 196 |
|
| baseline1 | | | 95.78 160 | 94.86 176 | 98.54 104 | 98.47 160 | 98.07 66 | 99.06 259 | 97.99 209 | 92.68 191 | 94.13 216 | 98.62 199 | 93.28 108 | 98.69 200 | 93.79 217 | 85.76 294 | 98.84 210 |
|
| iter_conf05 | | | 96.07 152 | 95.95 141 | 96.44 206 | 98.43 161 | 97.52 88 | 99.91 84 | 96.85 324 | 94.16 134 | 92.49 237 | 97.98 230 | 98.20 4 | 97.34 278 | 97.26 145 | 88.29 273 | 94.45 271 |
|
| EPMVS | | | 96.53 135 | 96.01 132 | 98.09 132 | 98.43 161 | 96.12 146 | 96.36 361 | 99.43 21 | 93.53 160 | 97.64 146 | 95.04 327 | 94.41 70 | 98.38 225 | 91.13 253 | 98.11 154 | 99.75 103 |
|
| sss | | | 97.57 85 | 97.03 99 | 99.18 51 | 98.37 163 | 98.04 68 | 99.73 164 | 99.38 23 | 93.46 162 | 98.76 104 | 99.06 151 | 91.21 153 | 99.89 96 | 96.33 164 | 97.01 180 | 99.62 127 |
|
| testing11 | | | 97.48 88 | 97.27 88 | 98.10 130 | 98.36 164 | 96.02 147 | 99.92 79 | 98.45 118 | 93.45 164 | 98.15 133 | 98.70 190 | 95.48 45 | 99.22 166 | 97.85 128 | 95.05 220 | 99.07 199 |
|
| BH-untuned | | | 95.18 175 | 94.83 177 | 96.22 212 | 98.36 164 | 91.22 283 | 99.80 142 | 97.32 275 | 90.91 253 | 91.08 250 | 98.67 192 | 83.51 244 | 98.54 208 | 94.23 206 | 99.61 94 | 98.92 205 |
|
| testing91 | | | 97.16 104 | 96.90 103 | 97.97 138 | 98.35 166 | 95.67 162 | 99.91 84 | 98.42 143 | 92.91 179 | 97.33 154 | 98.72 188 | 94.81 62 | 99.21 167 | 96.98 154 | 94.63 223 | 99.03 201 |
|
| testing99 | | | 97.17 103 | 96.91 102 | 97.95 139 | 98.35 166 | 95.70 159 | 99.91 84 | 98.43 131 | 92.94 177 | 97.36 153 | 98.72 188 | 94.83 61 | 99.21 167 | 97.00 152 | 94.64 222 | 98.95 204 |
|
| ET-MVSNet_ETH3D | | | 94.37 200 | 93.28 218 | 97.64 160 | 98.30 168 | 97.99 70 | 99.99 5 | 97.61 243 | 94.35 125 | 71.57 386 | 99.45 119 | 96.23 31 | 95.34 356 | 96.91 159 | 85.14 301 | 99.59 133 |
|
| AUN-MVS | | | 93.28 228 | 92.60 233 | 95.34 233 | 98.29 169 | 90.09 307 | 99.31 233 | 98.56 92 | 91.80 227 | 96.35 182 | 98.00 227 | 89.38 184 | 98.28 236 | 92.46 236 | 69.22 380 | 97.64 240 |
|
| FMVSNet3 | | | 92.69 244 | 91.58 253 | 95.99 216 | 98.29 169 | 97.42 96 | 99.26 241 | 97.62 240 | 89.80 275 | 89.68 270 | 95.32 317 | 81.62 258 | 96.27 336 | 87.01 312 | 85.65 295 | 94.29 283 |
|
| PMMVS | | | 96.76 124 | 96.76 109 | 96.76 195 | 98.28 171 | 92.10 261 | 99.91 84 | 97.98 211 | 94.12 136 | 99.53 58 | 99.39 126 | 86.93 213 | 98.73 195 | 96.95 157 | 97.73 161 | 99.45 160 |
|
| hse-mvs2 | | | 94.38 199 | 94.08 193 | 95.31 235 | 98.27 172 | 90.02 309 | 99.29 238 | 98.56 92 | 95.90 78 | 98.77 102 | 98.00 227 | 90.89 165 | 98.26 240 | 97.80 129 | 69.20 381 | 97.64 240 |
|
| PVSNet_0 | | 88.03 19 | 91.80 263 | 90.27 276 | 96.38 209 | 98.27 172 | 90.46 299 | 99.94 69 | 99.61 14 | 93.99 144 | 86.26 332 | 97.39 245 | 71.13 341 | 99.89 96 | 98.77 82 | 67.05 386 | 98.79 213 |
|
| UA-Net | | | 96.54 134 | 95.96 139 | 98.27 121 | 98.23 174 | 95.71 158 | 98.00 333 | 98.45 118 | 93.72 156 | 98.41 120 | 99.27 135 | 88.71 196 | 99.66 146 | 91.19 252 | 97.69 162 | 99.44 162 |
|
| test_cas_vis1_n_1920 | | | 96.59 133 | 96.23 127 | 97.65 159 | 98.22 175 | 94.23 208 | 99.99 5 | 97.25 283 | 97.77 17 | 99.58 54 | 99.08 149 | 77.10 297 | 99.97 53 | 97.64 137 | 99.45 108 | 98.74 216 |
|
| FE-MVS | | | 95.70 165 | 95.01 173 | 97.79 149 | 98.21 176 | 94.57 197 | 95.03 375 | 98.69 68 | 88.90 291 | 97.50 150 | 96.19 283 | 92.60 128 | 99.49 159 | 89.99 277 | 97.94 160 | 99.31 177 |
|
| GG-mvs-BLEND | | | | | 98.54 104 | 98.21 176 | 98.01 69 | 93.87 380 | 98.52 104 | | 97.92 138 | 97.92 232 | 99.02 2 | 97.94 259 | 98.17 109 | 99.58 97 | 99.67 116 |
|
| mvs_anonymous | | | 95.65 167 | 95.03 172 | 97.53 166 | 98.19 178 | 95.74 156 | 99.33 230 | 97.49 258 | 90.87 254 | 90.47 257 | 97.10 252 | 88.23 198 | 97.16 290 | 95.92 171 | 97.66 164 | 99.68 112 |
|
| MVS_Test | | | 96.46 137 | 95.74 149 | 98.61 95 | 98.18 179 | 97.23 100 | 99.31 233 | 97.15 292 | 91.07 250 | 98.84 97 | 97.05 256 | 88.17 199 | 98.97 181 | 94.39 201 | 97.50 166 | 99.61 130 |
|
| BH-RMVSNet | | | 95.18 175 | 94.31 188 | 97.80 147 | 98.17 180 | 95.23 181 | 99.76 153 | 97.53 253 | 92.52 203 | 94.27 214 | 99.25 139 | 76.84 302 | 98.80 189 | 90.89 261 | 99.54 99 | 99.35 172 |
|
| RPSCF | | | 91.80 263 | 92.79 229 | 88.83 351 | 98.15 181 | 69.87 389 | 98.11 329 | 96.60 339 | 83.93 352 | 94.33 212 | 99.27 135 | 79.60 280 | 99.46 162 | 91.99 242 | 93.16 242 | 97.18 247 |
|
| ETV-MVS | | | 97.92 66 | 97.80 70 | 98.25 122 | 98.14 182 | 96.48 125 | 99.98 15 | 97.63 238 | 95.61 86 | 99.29 80 | 99.46 118 | 92.55 130 | 98.82 188 | 99.02 66 | 98.54 140 | 99.46 158 |
|
| IS-MVSNet | | | 96.29 147 | 95.90 145 | 97.45 170 | 98.13 183 | 94.80 194 | 99.08 254 | 97.61 243 | 92.02 220 | 95.54 198 | 98.96 164 | 90.64 168 | 98.08 248 | 93.73 220 | 97.41 170 | 99.47 157 |
|
| test_fmvsmconf_n | | | 98.43 43 | 98.32 40 | 98.78 83 | 98.12 184 | 96.41 128 | 99.99 5 | 98.83 59 | 98.22 6 | 99.67 39 | 99.64 101 | 91.11 158 | 99.94 77 | 99.67 36 | 99.62 90 | 99.98 48 |
|
| ab-mvs | | | 94.69 188 | 93.42 212 | 98.51 107 | 98.07 185 | 96.26 135 | 96.49 359 | 98.68 70 | 90.31 267 | 94.54 207 | 97.00 258 | 76.30 309 | 99.71 138 | 95.98 170 | 93.38 240 | 99.56 141 |
|
| XVG-OURS-SEG-HR | | | 94.79 184 | 94.70 181 | 95.08 241 | 98.05 186 | 89.19 318 | 99.08 254 | 97.54 251 | 93.66 157 | 94.87 205 | 99.58 108 | 78.78 288 | 99.79 123 | 97.31 143 | 93.40 239 | 96.25 253 |
|
| EIA-MVS | | | 97.53 86 | 97.46 80 | 97.76 154 | 98.04 187 | 94.84 192 | 99.98 15 | 97.61 243 | 94.41 123 | 97.90 139 | 99.59 106 | 92.40 135 | 98.87 185 | 98.04 117 | 99.13 125 | 99.59 133 |
|
| XVG-OURS | | | 94.82 182 | 94.74 180 | 95.06 242 | 98.00 188 | 89.19 318 | 99.08 254 | 97.55 249 | 94.10 137 | 94.71 206 | 99.62 104 | 80.51 272 | 99.74 134 | 96.04 169 | 93.06 244 | 96.25 253 |
|
| dp | | | 95.05 178 | 94.43 184 | 96.91 190 | 97.99 189 | 92.73 247 | 96.29 364 | 97.98 211 | 89.70 276 | 95.93 190 | 94.67 340 | 93.83 95 | 98.45 214 | 86.91 315 | 96.53 187 | 99.54 146 |
|
| tpmrst | | | 96.27 149 | 95.98 135 | 97.13 184 | 97.96 190 | 93.15 236 | 96.34 362 | 98.17 191 | 92.07 216 | 98.71 108 | 95.12 325 | 93.91 90 | 98.73 195 | 94.91 189 | 96.62 185 | 99.50 154 |
|
| TR-MVS | | | 94.54 193 | 93.56 208 | 97.49 169 | 97.96 190 | 94.34 205 | 98.71 297 | 97.51 256 | 90.30 268 | 94.51 209 | 98.69 191 | 75.56 315 | 98.77 192 | 92.82 234 | 95.99 197 | 99.35 172 |
|
| Vis-MVSNet (Re-imp) | | | 96.32 144 | 95.98 135 | 97.35 179 | 97.93 192 | 94.82 193 | 99.47 213 | 98.15 198 | 91.83 224 | 95.09 203 | 99.11 147 | 91.37 152 | 97.47 274 | 93.47 223 | 97.43 167 | 99.74 104 |
|
| MDTV_nov1_ep13 | | | | 95.69 151 | | 97.90 193 | 94.15 210 | 95.98 370 | 98.44 123 | 93.12 173 | 97.98 136 | 95.74 294 | 95.10 51 | 98.58 205 | 90.02 276 | 96.92 182 | |
|
| Fast-Effi-MVS+ | | | 95.02 179 | 94.19 190 | 97.52 167 | 97.88 194 | 94.55 198 | 99.97 28 | 97.08 300 | 88.85 293 | 94.47 210 | 97.96 231 | 84.59 236 | 98.41 217 | 89.84 279 | 97.10 175 | 99.59 133 |
|
| ADS-MVSNet2 | | | 93.80 215 | 93.88 199 | 93.55 302 | 97.87 195 | 85.94 347 | 94.24 376 | 96.84 325 | 90.07 270 | 96.43 178 | 94.48 345 | 90.29 174 | 95.37 355 | 87.44 302 | 97.23 172 | 99.36 170 |
|
| ADS-MVSNet | | | 94.79 184 | 94.02 194 | 97.11 186 | 97.87 195 | 93.79 219 | 94.24 376 | 98.16 195 | 90.07 270 | 96.43 178 | 94.48 345 | 90.29 174 | 98.19 243 | 87.44 302 | 97.23 172 | 99.36 170 |
|
| Effi-MVS+ | | | 96.30 146 | 95.69 151 | 98.16 125 | 97.85 197 | 96.26 135 | 97.41 342 | 97.21 285 | 90.37 265 | 98.65 111 | 98.58 203 | 86.61 217 | 98.70 199 | 97.11 149 | 97.37 171 | 99.52 150 |
|
| PatchmatchNet |  | | 95.94 156 | 95.45 157 | 97.39 175 | 97.83 198 | 94.41 202 | 96.05 368 | 98.40 152 | 92.86 180 | 97.09 159 | 95.28 322 | 94.21 82 | 98.07 250 | 89.26 283 | 98.11 154 | 99.70 109 |
| Fangjinhua Wang, Silvano Galliani, Christoph Vogel, Pablo Speciale, Marc Pollefeys: PatchmatchNet: Learned Multi-View Patchmatch Stereo. |
| cascas | | | 94.64 191 | 93.61 203 | 97.74 156 | 97.82 199 | 96.26 135 | 99.96 35 | 97.78 231 | 85.76 335 | 94.00 217 | 97.54 240 | 76.95 301 | 99.21 167 | 97.23 146 | 95.43 213 | 97.76 239 |
|
| 1112_ss | | | 96.01 155 | 95.20 166 | 98.42 114 | 97.80 200 | 96.41 128 | 99.65 182 | 96.66 336 | 92.71 188 | 92.88 230 | 99.40 124 | 92.16 140 | 99.30 164 | 91.92 244 | 93.66 236 | 99.55 142 |
|
| Test_1112_low_res | | | 95.72 161 | 94.83 177 | 98.42 114 | 97.79 201 | 96.41 128 | 99.65 182 | 96.65 337 | 92.70 189 | 92.86 231 | 96.13 286 | 92.15 141 | 99.30 164 | 91.88 245 | 93.64 237 | 99.55 142 |
|
| Effi-MVS+-dtu | | | 94.53 195 | 95.30 163 | 92.22 324 | 97.77 202 | 82.54 364 | 99.59 192 | 97.06 302 | 94.92 103 | 95.29 201 | 95.37 315 | 85.81 223 | 97.89 260 | 94.80 192 | 97.07 176 | 96.23 255 |
|
| tpm cat1 | | | 93.51 224 | 92.52 238 | 96.47 202 | 97.77 202 | 91.47 281 | 96.13 366 | 98.06 204 | 80.98 368 | 92.91 229 | 93.78 353 | 89.66 179 | 98.87 185 | 87.03 311 | 96.39 191 | 99.09 196 |
|
| FA-MVS(test-final) | | | 95.86 157 | 95.09 170 | 98.15 128 | 97.74 204 | 95.62 164 | 96.31 363 | 98.17 191 | 91.42 240 | 96.26 183 | 96.13 286 | 90.56 169 | 99.47 161 | 92.18 240 | 97.07 176 | 99.35 172 |
|
| xiu_mvs_v1_base_debu | | | 97.43 89 | 97.06 95 | 98.55 101 | 97.74 204 | 98.14 63 | 99.31 233 | 97.86 225 | 96.43 64 | 99.62 47 | 99.69 89 | 85.56 225 | 99.68 142 | 99.05 60 | 98.31 146 | 97.83 235 |
|
| xiu_mvs_v1_base | | | 97.43 89 | 97.06 95 | 98.55 101 | 97.74 204 | 98.14 63 | 99.31 233 | 97.86 225 | 96.43 64 | 99.62 47 | 99.69 89 | 85.56 225 | 99.68 142 | 99.05 60 | 98.31 146 | 97.83 235 |
|
| xiu_mvs_v1_base_debi | | | 97.43 89 | 97.06 95 | 98.55 101 | 97.74 204 | 98.14 63 | 99.31 233 | 97.86 225 | 96.43 64 | 99.62 47 | 99.69 89 | 85.56 225 | 99.68 142 | 99.05 60 | 98.31 146 | 97.83 235 |
|
| EPP-MVSNet | | | 96.69 129 | 96.60 116 | 96.96 189 | 97.74 204 | 93.05 239 | 99.37 226 | 98.56 92 | 88.75 294 | 95.83 193 | 99.01 155 | 96.01 32 | 98.56 206 | 96.92 158 | 97.20 174 | 99.25 185 |
|
| gg-mvs-nofinetune | | | 93.51 224 | 91.86 250 | 98.47 109 | 97.72 209 | 97.96 73 | 92.62 384 | 98.51 107 | 74.70 386 | 97.33 154 | 69.59 399 | 98.91 3 | 97.79 263 | 97.77 134 | 99.56 98 | 99.67 116 |
|
| IB-MVS | | 92.85 6 | 94.99 180 | 93.94 197 | 98.16 125 | 97.72 209 | 95.69 161 | 99.99 5 | 98.81 60 | 94.28 130 | 92.70 232 | 96.90 260 | 95.08 52 | 99.17 174 | 96.07 168 | 73.88 370 | 99.60 132 |
| Christian Sormann, Mattia Rossi, Andreas Kuhn and Friedrich Fraundorfer: IB-MVS: An Iterative Algorithm for Deep Multi-View Stereo based on Binary Decisions. BMVC 2021 |
| thisisatest0515 | | | 97.41 94 | 97.02 100 | 98.59 98 | 97.71 211 | 97.52 88 | 99.97 28 | 98.54 101 | 91.83 224 | 97.45 151 | 99.04 152 | 97.50 8 | 99.10 177 | 94.75 194 | 96.37 192 | 99.16 190 |
|
| Syy-MVS | | | 90.00 302 | 90.63 268 | 88.11 358 | 97.68 212 | 74.66 386 | 99.71 170 | 98.35 165 | 90.79 257 | 92.10 240 | 98.67 192 | 79.10 286 | 93.09 378 | 63.35 392 | 95.95 200 | 96.59 251 |
|
| myMVS_eth3d | | | 94.46 197 | 94.76 179 | 93.55 302 | 97.68 212 | 90.97 285 | 99.71 170 | 98.35 165 | 90.79 257 | 92.10 240 | 98.67 192 | 92.46 134 | 93.09 378 | 87.13 308 | 95.95 200 | 96.59 251 |
|
| test_fmvs1_n | | | 94.25 205 | 94.36 185 | 93.92 288 | 97.68 212 | 83.70 359 | 99.90 91 | 96.57 340 | 97.40 28 | 99.67 39 | 98.88 175 | 61.82 375 | 99.92 88 | 98.23 107 | 99.13 125 | 98.14 232 |
|
| diffmvs |  | | 97.00 113 | 96.64 114 | 98.09 132 | 97.64 215 | 96.17 143 | 99.81 138 | 97.19 286 | 94.67 113 | 98.95 92 | 99.28 132 | 86.43 218 | 98.76 193 | 98.37 102 | 97.42 169 | 99.33 175 |
| Fangjinhua Wang, Qingshan Xu, Yew-Soon Ong, Marc Pollefeys: Lightweight and Accurate Multi-View Stereo With Confidence-Aware Diffusion Model. IEEE T-PAMI 2025 |
| Vis-MVSNet |  | | 95.72 161 | 95.15 168 | 97.45 170 | 97.62 216 | 94.28 206 | 99.28 239 | 98.24 183 | 94.27 132 | 96.84 167 | 98.94 171 | 79.39 281 | 98.76 193 | 93.25 225 | 98.49 141 | 99.30 179 |
| Jingyang Zhang, Yao Yao, Shiwei Li, Zixin Luo, Tian Fang: Visibility-aware Multiview Stereo Network. BMVC 2020 |
| thisisatest0530 | | | 97.10 106 | 96.72 111 | 98.22 123 | 97.60 217 | 96.70 119 | 99.92 79 | 98.54 101 | 91.11 248 | 97.07 161 | 98.97 162 | 97.47 11 | 99.03 179 | 93.73 220 | 96.09 195 | 98.92 205 |
|
| miper_ehance_all_eth | | | 93.16 231 | 92.60 233 | 94.82 251 | 97.57 218 | 93.56 227 | 99.50 208 | 97.07 301 | 88.75 294 | 88.85 293 | 95.52 305 | 90.97 161 | 96.74 317 | 90.77 263 | 84.45 306 | 94.17 291 |
|
| testing3 | | | 93.92 210 | 94.23 189 | 92.99 316 | 97.54 219 | 90.23 303 | 99.99 5 | 99.16 30 | 90.57 261 | 91.33 249 | 98.63 198 | 92.99 115 | 92.52 382 | 82.46 341 | 95.39 214 | 96.22 256 |
|
| LCM-MVSNet-Re | | | 92.31 252 | 92.60 233 | 91.43 331 | 97.53 220 | 79.27 381 | 99.02 267 | 91.83 395 | 92.07 216 | 80.31 361 | 94.38 348 | 83.50 245 | 95.48 353 | 97.22 147 | 97.58 165 | 99.54 146 |
|
| GBi-Net | | | 90.88 279 | 89.82 285 | 94.08 280 | 97.53 220 | 91.97 262 | 98.43 313 | 96.95 313 | 87.05 318 | 89.68 270 | 94.72 336 | 71.34 338 | 96.11 341 | 87.01 312 | 85.65 295 | 94.17 291 |
|
| test1 | | | 90.88 279 | 89.82 285 | 94.08 280 | 97.53 220 | 91.97 262 | 98.43 313 | 96.95 313 | 87.05 318 | 89.68 270 | 94.72 336 | 71.34 338 | 96.11 341 | 87.01 312 | 85.65 295 | 94.17 291 |
|
| FMVSNet2 | | | 91.02 276 | 89.56 290 | 95.41 231 | 97.53 220 | 95.74 156 | 98.98 269 | 97.41 266 | 87.05 318 | 88.43 301 | 95.00 330 | 71.34 338 | 96.24 338 | 85.12 325 | 85.21 300 | 94.25 286 |
|
| tttt0517 | | | 96.85 118 | 96.49 120 | 97.92 142 | 97.48 224 | 95.89 151 | 99.85 121 | 98.54 101 | 90.72 260 | 96.63 172 | 98.93 173 | 97.47 11 | 99.02 180 | 93.03 232 | 95.76 206 | 98.85 209 |
|
| casdiffmvs_mvg |  | | 96.43 138 | 95.94 142 | 97.89 146 | 97.44 225 | 95.47 169 | 99.86 118 | 97.29 279 | 93.35 165 | 96.03 187 | 99.19 143 | 85.39 228 | 98.72 197 | 97.89 127 | 97.04 178 | 99.49 156 |
| Fangjinhua Wang, Qingshan Xu, Yew-Soon Ong, Marc Pollefeys: Lightweight and Accurate Multi-View Stereo With Confidence-Aware Diffusion Model. IEEE T-PAMI 2025 |
| EC-MVSNet | | | 97.38 96 | 97.24 89 | 97.80 147 | 97.41 226 | 95.64 163 | 99.99 5 | 97.06 302 | 94.59 114 | 99.63 44 | 99.32 131 | 89.20 190 | 98.14 245 | 98.76 83 | 99.23 121 | 99.62 127 |
|
| c3_l | | | 92.53 247 | 91.87 249 | 94.52 263 | 97.40 227 | 92.99 241 | 99.40 219 | 96.93 318 | 87.86 308 | 88.69 296 | 95.44 309 | 89.95 177 | 96.44 329 | 90.45 269 | 80.69 337 | 94.14 300 |
|
| fmvsm_s_conf0.1_n | | | 97.30 97 | 97.21 91 | 97.60 164 | 97.38 228 | 94.40 204 | 99.90 91 | 98.64 76 | 96.47 63 | 99.51 62 | 99.65 100 | 84.99 233 | 99.93 85 | 99.22 55 | 99.09 127 | 98.46 223 |
|
| CDS-MVSNet | | | 96.34 143 | 96.07 130 | 97.13 184 | 97.37 229 | 94.96 189 | 99.53 203 | 97.91 220 | 91.55 232 | 95.37 200 | 98.32 219 | 95.05 54 | 97.13 293 | 93.80 216 | 95.75 207 | 99.30 179 |
| Khang Truong Giang, Soohwan Song, Sungho Jo: Curvature-guided dynamic scale networks for Multi-view Stereo. ICLR 2022 |
| TESTMET0.1,1 | | | 96.74 126 | 96.26 126 | 98.16 125 | 97.36 230 | 96.48 125 | 99.96 35 | 98.29 178 | 91.93 221 | 95.77 194 | 98.07 225 | 95.54 42 | 98.29 234 | 90.55 267 | 98.89 131 | 99.70 109 |
|
| miper_lstm_enhance | | | 91.81 260 | 91.39 259 | 93.06 315 | 97.34 231 | 89.18 320 | 99.38 224 | 96.79 330 | 86.70 325 | 87.47 314 | 95.22 323 | 90.00 176 | 95.86 350 | 88.26 293 | 81.37 327 | 94.15 297 |
|
| baseline | | | 96.43 138 | 95.98 135 | 97.76 154 | 97.34 231 | 95.17 185 | 99.51 206 | 97.17 289 | 93.92 149 | 96.90 165 | 99.28 132 | 85.37 229 | 98.64 203 | 97.50 140 | 96.86 184 | 99.46 158 |
|
| cl____ | | | 92.31 252 | 91.58 253 | 94.52 263 | 97.33 233 | 92.77 243 | 99.57 196 | 96.78 331 | 86.97 322 | 87.56 312 | 95.51 306 | 89.43 183 | 96.62 322 | 88.60 288 | 82.44 319 | 94.16 296 |
|
| DIV-MVS_self_test | | | 92.32 251 | 91.60 252 | 94.47 267 | 97.31 234 | 92.74 245 | 99.58 194 | 96.75 332 | 86.99 321 | 87.64 310 | 95.54 303 | 89.55 182 | 96.50 326 | 88.58 289 | 82.44 319 | 94.17 291 |
|
| casdiffmvs |  | | 96.42 140 | 95.97 138 | 97.77 152 | 97.30 235 | 94.98 188 | 99.84 126 | 97.09 299 | 93.75 155 | 96.58 174 | 99.26 138 | 85.07 231 | 98.78 191 | 97.77 134 | 97.04 178 | 99.54 146 |
| Fangjinhua Wang, Qingshan Xu, Yew-Soon Ong, Marc Pollefeys: Lightweight and Accurate Multi-View Stereo With Confidence-Aware Diffusion Model. IEEE T-PAMI 2025 |
| GeoE | | | 94.36 202 | 93.48 210 | 96.99 188 | 97.29 236 | 93.54 228 | 99.96 35 | 96.72 334 | 88.35 303 | 93.43 221 | 98.94 171 | 82.05 252 | 98.05 251 | 88.12 297 | 96.48 190 | 99.37 169 |
|
| eth_miper_zixun_eth | | | 92.41 250 | 91.93 247 | 93.84 292 | 97.28 237 | 90.68 293 | 98.83 287 | 96.97 312 | 88.57 299 | 89.19 287 | 95.73 296 | 89.24 189 | 96.69 320 | 89.97 278 | 81.55 325 | 94.15 297 |
|
| MVSFormer | | | 96.94 115 | 96.60 116 | 97.95 139 | 97.28 237 | 97.70 82 | 99.55 200 | 97.27 281 | 91.17 245 | 99.43 67 | 99.54 112 | 90.92 162 | 96.89 310 | 94.67 197 | 99.62 90 | 99.25 185 |
|
| lupinMVS | | | 97.85 69 | 97.60 76 | 98.62 94 | 97.28 237 | 97.70 82 | 99.99 5 | 97.55 249 | 95.50 91 | 99.43 67 | 99.67 96 | 90.92 162 | 98.71 198 | 98.40 100 | 99.62 90 | 99.45 160 |
|
| SCA | | | 94.69 188 | 93.81 201 | 97.33 180 | 97.10 240 | 94.44 199 | 98.86 284 | 98.32 172 | 93.30 168 | 96.17 186 | 95.59 301 | 76.48 307 | 97.95 257 | 91.06 255 | 97.43 167 | 99.59 133 |
|
| TAMVS | | | 95.85 158 | 95.58 154 | 96.65 200 | 97.07 241 | 93.50 229 | 99.17 248 | 97.82 229 | 91.39 242 | 95.02 204 | 98.01 226 | 92.20 139 | 97.30 282 | 93.75 219 | 95.83 204 | 99.14 193 |
|
| Fast-Effi-MVS+-dtu | | | 93.72 219 | 93.86 200 | 93.29 307 | 97.06 242 | 86.16 345 | 99.80 142 | 96.83 326 | 92.66 192 | 92.58 234 | 97.83 235 | 81.39 259 | 97.67 268 | 89.75 280 | 96.87 183 | 96.05 258 |
|
| CostFormer | | | 96.10 151 | 95.88 146 | 96.78 194 | 97.03 243 | 92.55 253 | 97.08 350 | 97.83 228 | 90.04 272 | 98.72 107 | 94.89 334 | 95.01 56 | 98.29 234 | 96.54 163 | 95.77 205 | 99.50 154 |
|
| test_fmvsmvis_n_1920 | | | 97.67 83 | 97.59 78 | 97.91 144 | 97.02 244 | 95.34 175 | 99.95 53 | 98.45 118 | 97.87 15 | 97.02 162 | 99.59 106 | 89.64 180 | 99.98 43 | 99.41 48 | 99.34 116 | 98.42 225 |
|
| test-LLR | | | 96.47 136 | 96.04 131 | 97.78 150 | 97.02 244 | 95.44 170 | 99.96 35 | 98.21 186 | 94.07 139 | 95.55 196 | 96.38 277 | 93.90 91 | 98.27 238 | 90.42 270 | 98.83 135 | 99.64 122 |
|
| test-mter | | | 96.39 141 | 95.93 143 | 97.78 150 | 97.02 244 | 95.44 170 | 99.96 35 | 98.21 186 | 91.81 226 | 95.55 196 | 96.38 277 | 95.17 49 | 98.27 238 | 90.42 270 | 98.83 135 | 99.64 122 |
|
| gm-plane-assit | | | | | | 96.97 247 | 93.76 221 | | | 91.47 236 | | 98.96 164 | | 98.79 190 | 94.92 187 | | |
|
| WB-MVSnew | | | 92.90 238 | 92.77 230 | 93.26 309 | 96.95 248 | 93.63 225 | 99.71 170 | 98.16 195 | 91.49 233 | 94.28 213 | 98.14 222 | 81.33 261 | 96.48 327 | 79.47 356 | 95.46 211 | 89.68 379 |
|
| QAPM | | | 95.40 172 | 94.17 191 | 99.10 65 | 96.92 249 | 97.71 80 | 99.40 219 | 98.68 70 | 89.31 279 | 88.94 291 | 98.89 174 | 82.48 250 | 99.96 61 | 93.12 231 | 99.83 73 | 99.62 127 |
|
| KD-MVS_2432*1600 | | | 88.00 321 | 86.10 325 | 93.70 298 | 96.91 250 | 94.04 213 | 97.17 347 | 97.12 295 | 84.93 345 | 81.96 352 | 92.41 364 | 92.48 132 | 94.51 366 | 79.23 357 | 52.68 398 | 92.56 353 |
|
| miper_refine_blended | | | 88.00 321 | 86.10 325 | 93.70 298 | 96.91 250 | 94.04 213 | 97.17 347 | 97.12 295 | 84.93 345 | 81.96 352 | 92.41 364 | 92.48 132 | 94.51 366 | 79.23 357 | 52.68 398 | 92.56 353 |
|
| tpm2 | | | 95.47 170 | 95.18 167 | 96.35 210 | 96.91 250 | 91.70 275 | 96.96 353 | 97.93 216 | 88.04 307 | 98.44 119 | 95.40 311 | 93.32 105 | 97.97 254 | 94.00 208 | 95.61 209 | 99.38 167 |
|
| FMVSNet5 | | | 88.32 318 | 87.47 320 | 90.88 334 | 96.90 253 | 88.39 331 | 97.28 344 | 95.68 361 | 82.60 362 | 84.67 341 | 92.40 366 | 79.83 278 | 91.16 387 | 76.39 371 | 81.51 326 | 93.09 345 |
|
| 3Dnovator+ | | 91.53 11 | 96.31 145 | 95.24 164 | 99.52 28 | 96.88 254 | 98.64 53 | 99.72 167 | 98.24 183 | 95.27 96 | 88.42 303 | 98.98 160 | 82.76 249 | 99.94 77 | 97.10 150 | 99.83 73 | 99.96 64 |
|
| Patchmatch-test | | | 92.65 246 | 91.50 256 | 96.10 215 | 96.85 255 | 90.49 298 | 91.50 389 | 97.19 286 | 82.76 361 | 90.23 258 | 95.59 301 | 95.02 55 | 98.00 253 | 77.41 366 | 96.98 181 | 99.82 92 |
|
| MVS | | | 96.60 132 | 95.56 155 | 99.72 13 | 96.85 255 | 99.22 20 | 98.31 319 | 98.94 41 | 91.57 231 | 90.90 253 | 99.61 105 | 86.66 216 | 99.96 61 | 97.36 142 | 99.88 69 | 99.99 23 |
|
| 3Dnovator | | 91.47 12 | 96.28 148 | 95.34 161 | 99.08 66 | 96.82 257 | 97.47 94 | 99.45 216 | 98.81 60 | 95.52 90 | 89.39 278 | 99.00 157 | 81.97 253 | 99.95 69 | 97.27 144 | 99.83 73 | 99.84 90 |
|
| EI-MVSNet | | | 93.73 218 | 93.40 215 | 94.74 252 | 96.80 258 | 92.69 248 | 99.06 259 | 97.67 236 | 88.96 288 | 91.39 246 | 99.02 153 | 88.75 195 | 97.30 282 | 91.07 254 | 87.85 280 | 94.22 287 |
|
| CVMVSNet | | | 94.68 190 | 94.94 175 | 93.89 291 | 96.80 258 | 86.92 343 | 99.06 259 | 98.98 38 | 94.45 117 | 94.23 215 | 99.02 153 | 85.60 224 | 95.31 357 | 90.91 260 | 95.39 214 | 99.43 163 |
|
| IterMVS-LS | | | 92.69 244 | 92.11 243 | 94.43 271 | 96.80 258 | 92.74 245 | 99.45 216 | 96.89 321 | 88.98 286 | 89.65 273 | 95.38 314 | 88.77 194 | 96.34 333 | 90.98 258 | 82.04 322 | 94.22 287 |
| Fangjinhua Wang, Silvano Galliani, Christoph Vogel, Marc Pollefeys: IterMVS: Iterative Probability Estimation for Efficient Multi-View Stereo. |
| IterMVS | | | 90.91 278 | 90.17 280 | 93.12 312 | 96.78 261 | 90.42 301 | 98.89 278 | 97.05 304 | 89.03 283 | 86.49 327 | 95.42 310 | 76.59 305 | 95.02 359 | 87.22 307 | 84.09 309 | 93.93 317 |
| Fangjinhua Wang, Silvano Galliani, Christoph Vogel, Marc Pollefeys: IterMVS: Iterative Probability Estimation for Efficient Multi-View Stereo. |
| 1314 | | | 96.84 119 | 95.96 139 | 99.48 34 | 96.74 262 | 98.52 57 | 98.31 319 | 98.86 53 | 95.82 80 | 89.91 264 | 98.98 160 | 87.49 204 | 99.96 61 | 97.80 129 | 99.73 83 | 99.96 64 |
|
| IterMVS-SCA-FT | | | 90.85 281 | 90.16 281 | 92.93 317 | 96.72 263 | 89.96 310 | 98.89 278 | 96.99 308 | 88.95 289 | 86.63 324 | 95.67 297 | 76.48 307 | 95.00 360 | 87.04 310 | 84.04 312 | 93.84 324 |
|
| MVS-HIRNet | | | 86.22 328 | 83.19 341 | 95.31 235 | 96.71 264 | 90.29 302 | 92.12 386 | 97.33 274 | 62.85 393 | 86.82 321 | 70.37 398 | 69.37 346 | 97.49 273 | 75.12 373 | 97.99 159 | 98.15 230 |
|
| VDDNet | | | 93.12 233 | 91.91 248 | 96.76 195 | 96.67 265 | 92.65 251 | 98.69 300 | 98.21 186 | 82.81 360 | 97.75 145 | 99.28 132 | 61.57 376 | 99.48 160 | 98.09 115 | 94.09 232 | 98.15 230 |
|
| dmvs_re | | | 93.20 230 | 93.15 220 | 93.34 305 | 96.54 266 | 83.81 358 | 98.71 297 | 98.51 107 | 91.39 242 | 92.37 238 | 98.56 205 | 78.66 290 | 97.83 262 | 93.89 210 | 89.74 249 | 98.38 226 |
|
| MIMVSNet | | | 90.30 294 | 88.67 308 | 95.17 240 | 96.45 267 | 91.64 277 | 92.39 385 | 97.15 292 | 85.99 332 | 90.50 256 | 93.19 360 | 66.95 358 | 94.86 363 | 82.01 345 | 93.43 238 | 99.01 203 |
|
| CR-MVSNet | | | 93.45 227 | 92.62 232 | 95.94 217 | 96.29 268 | 92.66 249 | 92.01 387 | 96.23 350 | 92.62 194 | 96.94 163 | 93.31 358 | 91.04 159 | 96.03 346 | 79.23 357 | 95.96 198 | 99.13 194 |
|
| RPMNet | | | 89.76 306 | 87.28 321 | 97.19 183 | 96.29 268 | 92.66 249 | 92.01 387 | 98.31 174 | 70.19 392 | 96.94 163 | 85.87 391 | 87.25 208 | 99.78 125 | 62.69 393 | 95.96 198 | 99.13 194 |
|
| tt0805 | | | 91.28 271 | 90.18 279 | 94.60 258 | 96.26 270 | 87.55 337 | 98.39 317 | 98.72 65 | 89.00 285 | 89.22 284 | 98.47 213 | 62.98 372 | 98.96 182 | 90.57 266 | 88.00 279 | 97.28 246 |
|
| Patchmtry | | | 89.70 307 | 88.49 310 | 93.33 306 | 96.24 271 | 89.94 313 | 91.37 390 | 96.23 350 | 78.22 376 | 87.69 309 | 93.31 358 | 91.04 159 | 96.03 346 | 80.18 355 | 82.10 321 | 94.02 307 |
|
| test_vis1_rt | | | 86.87 326 | 86.05 328 | 89.34 347 | 96.12 272 | 78.07 382 | 99.87 106 | 83.54 406 | 92.03 219 | 78.21 371 | 89.51 377 | 45.80 392 | 99.91 89 | 96.25 166 | 93.11 243 | 90.03 376 |
|
| JIA-IIPM | | | 91.76 266 | 90.70 266 | 94.94 246 | 96.11 273 | 87.51 338 | 93.16 383 | 98.13 200 | 75.79 382 | 97.58 147 | 77.68 396 | 92.84 120 | 97.97 254 | 88.47 292 | 96.54 186 | 99.33 175 |
|
| OpenMVS |  | 90.15 15 | 94.77 186 | 93.59 206 | 98.33 118 | 96.07 274 | 97.48 93 | 99.56 198 | 98.57 89 | 90.46 263 | 86.51 326 | 98.95 169 | 78.57 291 | 99.94 77 | 93.86 211 | 99.74 82 | 97.57 244 |
|
| PAPM | | | 98.60 30 | 98.42 31 | 99.14 60 | 96.05 275 | 98.96 26 | 99.90 91 | 99.35 25 | 96.68 55 | 98.35 124 | 99.66 98 | 96.45 29 | 98.51 209 | 99.45 45 | 99.89 67 | 99.96 64 |
|
| CLD-MVS | | | 94.06 209 | 93.90 198 | 94.55 262 | 96.02 276 | 90.69 292 | 99.98 15 | 97.72 232 | 96.62 58 | 91.05 252 | 98.85 183 | 77.21 296 | 98.47 210 | 98.11 113 | 89.51 255 | 94.48 265 |
| Zhaoxin Li, Wangmeng Zuo, Zhaoqi Wang, Lei Zhang: Confidence-based Large-scale Dense Multi-view Stereo. IEEE Transaction on Image Processing, 2020 |
| PatchT | | | 90.38 291 | 88.75 307 | 95.25 237 | 95.99 277 | 90.16 305 | 91.22 391 | 97.54 251 | 76.80 378 | 97.26 156 | 86.01 390 | 91.88 146 | 96.07 345 | 66.16 389 | 95.91 202 | 99.51 152 |
|
| ACMH+ | | 89.98 16 | 90.35 292 | 89.54 291 | 92.78 320 | 95.99 277 | 86.12 346 | 98.81 289 | 97.18 288 | 89.38 278 | 83.14 348 | 97.76 237 | 68.42 353 | 98.43 215 | 89.11 284 | 86.05 293 | 93.78 327 |
|
| DeepMVS_CX |  | | | | 82.92 368 | 95.98 279 | 58.66 399 | | 96.01 355 | 92.72 187 | 78.34 370 | 95.51 306 | 58.29 381 | 98.08 248 | 82.57 340 | 85.29 298 | 92.03 361 |
|
| ACMP | | 92.05 9 | 92.74 242 | 92.42 240 | 93.73 294 | 95.91 280 | 88.72 324 | 99.81 138 | 97.53 253 | 94.13 135 | 87.00 320 | 98.23 220 | 74.07 328 | 98.47 210 | 96.22 167 | 88.86 262 | 93.99 312 |
| Qingshan Xu and Wenbing Tao: Planar Prior Assisted PatchMatch Multi-View Stereo. AAAI 2020 |
| test_vis1_n | | | 93.61 222 | 93.03 222 | 95.35 232 | 95.86 281 | 86.94 342 | 99.87 106 | 96.36 347 | 96.85 46 | 99.54 57 | 98.79 185 | 52.41 388 | 99.83 118 | 98.64 91 | 98.97 130 | 99.29 181 |
|
| HQP-NCC | | | | | | 95.78 282 | | 99.87 106 | | 96.82 48 | 93.37 222 | | | | | | |
|
| ACMP_Plane | | | | | | 95.78 282 | | 99.87 106 | | 96.82 48 | 93.37 222 | | | | | | |
|
| HQP-MVS | | | 94.61 192 | 94.50 183 | 94.92 247 | 95.78 282 | 91.85 267 | 99.87 106 | 97.89 221 | 96.82 48 | 93.37 222 | 98.65 195 | 80.65 270 | 98.39 221 | 97.92 124 | 89.60 250 | 94.53 261 |
|
| NP-MVS | | | | | | 95.77 285 | 91.79 269 | | | | | 98.65 195 | | | | | |
|
| test_fmvsmconf0.1_n | | | 97.74 79 | 97.44 81 | 98.64 93 | 95.76 286 | 96.20 140 | 99.94 69 | 98.05 206 | 98.17 8 | 98.89 96 | 99.42 120 | 87.65 202 | 99.90 91 | 99.50 41 | 99.60 96 | 99.82 92 |
|
| plane_prior6 | | | | | | 95.76 286 | 91.72 274 | | | | | | 80.47 274 | | | | |
|
| ACMM | | 91.95 10 | 92.88 239 | 92.52 238 | 93.98 287 | 95.75 288 | 89.08 321 | 99.77 148 | 97.52 255 | 93.00 175 | 89.95 263 | 97.99 229 | 76.17 311 | 98.46 213 | 93.63 222 | 88.87 261 | 94.39 275 |
| Qingshan Xu and Wenbing Tao: Multi-Scale Geometric Consistency Guided Multi-View Stereo. CVPR 2019 |
| GA-MVS | | | 93.83 212 | 92.84 226 | 96.80 193 | 95.73 289 | 93.57 226 | 99.88 103 | 97.24 284 | 92.57 199 | 92.92 228 | 96.66 269 | 78.73 289 | 97.67 268 | 87.75 300 | 94.06 233 | 99.17 189 |
|
| plane_prior1 | | | | | | 95.73 289 | | | | | | | | | | | |
|
| jason | | | 97.24 100 | 96.86 105 | 98.38 117 | 95.73 289 | 97.32 98 | 99.97 28 | 97.40 267 | 95.34 94 | 98.60 114 | 99.54 112 | 87.70 201 | 98.56 206 | 97.94 123 | 99.47 105 | 99.25 185 |
| jason: jason. |
| HQP_MVS | | | 94.49 196 | 94.36 185 | 94.87 248 | 95.71 292 | 91.74 271 | 99.84 126 | 97.87 223 | 96.38 67 | 93.01 226 | 98.59 200 | 80.47 274 | 98.37 227 | 97.79 132 | 89.55 253 | 94.52 263 |
|
| plane_prior7 | | | | | | 95.71 292 | 91.59 279 | | | | | | | | | | |
|
| ITE_SJBPF | | | | | 92.38 322 | 95.69 294 | 85.14 351 | | 95.71 360 | 92.81 183 | 89.33 281 | 98.11 223 | 70.23 344 | 98.42 216 | 85.91 321 | 88.16 276 | 93.59 335 |
|
| fmvsm_s_conf0.1_n_a | | | 97.09 108 | 96.90 103 | 97.63 162 | 95.65 295 | 94.21 209 | 99.83 133 | 98.50 112 | 96.27 72 | 99.65 41 | 99.64 101 | 84.72 234 | 99.93 85 | 99.04 63 | 98.84 134 | 98.74 216 |
|
| ACMH | | 89.72 17 | 90.64 285 | 89.63 288 | 93.66 300 | 95.64 296 | 88.64 327 | 98.55 306 | 97.45 260 | 89.03 283 | 81.62 355 | 97.61 239 | 69.75 345 | 98.41 217 | 89.37 281 | 87.62 284 | 93.92 318 |
| Qingshan Xu and Wenbing Tao: Multi-Scale Geometric Consistency Guided Multi-View Stereo. CVPR 2019 |
| baseline2 | | | 96.71 128 | 96.49 120 | 97.37 176 | 95.63 297 | 95.96 149 | 99.74 159 | 98.88 51 | 92.94 177 | 91.61 244 | 98.97 162 | 97.72 6 | 98.62 204 | 94.83 191 | 98.08 157 | 97.53 245 |
|
| FMVSNet1 | | | 88.50 317 | 86.64 323 | 94.08 280 | 95.62 298 | 91.97 262 | 98.43 313 | 96.95 313 | 83.00 358 | 86.08 334 | 94.72 336 | 59.09 380 | 96.11 341 | 81.82 347 | 84.07 310 | 94.17 291 |
|
| LPG-MVS_test | | | 92.96 236 | 92.71 231 | 93.71 296 | 95.43 299 | 88.67 325 | 99.75 156 | 97.62 240 | 92.81 183 | 90.05 259 | 98.49 209 | 75.24 318 | 98.40 219 | 95.84 173 | 89.12 257 | 94.07 304 |
|
| LGP-MVS_train | | | | | 93.71 296 | 95.43 299 | 88.67 325 | | 97.62 240 | 92.81 183 | 90.05 259 | 98.49 209 | 75.24 318 | 98.40 219 | 95.84 173 | 89.12 257 | 94.07 304 |
|
| tpm | | | 93.70 220 | 93.41 214 | 94.58 260 | 95.36 301 | 87.41 339 | 97.01 351 | 96.90 320 | 90.85 255 | 96.72 171 | 94.14 350 | 90.40 172 | 96.84 313 | 90.75 264 | 88.54 270 | 99.51 152 |
|
| D2MVS | | | 92.76 241 | 92.59 236 | 93.27 308 | 95.13 302 | 89.54 317 | 99.69 175 | 99.38 23 | 92.26 212 | 87.59 311 | 94.61 342 | 85.05 232 | 97.79 263 | 91.59 248 | 88.01 278 | 92.47 356 |
|
| VPA-MVSNet | | | 92.70 243 | 91.55 255 | 96.16 213 | 95.09 303 | 96.20 140 | 98.88 280 | 99.00 36 | 91.02 252 | 91.82 243 | 95.29 321 | 76.05 313 | 97.96 256 | 95.62 177 | 81.19 328 | 94.30 282 |
|
| LTVRE_ROB | | 88.28 18 | 90.29 295 | 89.05 302 | 94.02 283 | 95.08 304 | 90.15 306 | 97.19 346 | 97.43 262 | 84.91 347 | 83.99 344 | 97.06 255 | 74.00 329 | 98.28 236 | 84.08 330 | 87.71 282 | 93.62 334 |
| Andreas Kuhn, Heiko Hirschmüller, Daniel Scharstein, Helmut Mayer: A TV Prior for High-Quality Scalable Multi-View Stereo Reconstruction. International Journal of Computer Vision 2016 |
| TinyColmap | | | 87.87 323 | 86.51 324 | 91.94 327 | 95.05 305 | 85.57 349 | 97.65 339 | 94.08 382 | 84.40 350 | 81.82 354 | 96.85 264 | 62.14 374 | 98.33 230 | 80.25 354 | 86.37 292 | 91.91 363 |
|
| test0.0.03 1 | | | 93.86 211 | 93.61 203 | 94.64 256 | 95.02 306 | 92.18 260 | 99.93 76 | 98.58 87 | 94.07 139 | 87.96 307 | 98.50 208 | 93.90 91 | 94.96 361 | 81.33 348 | 93.17 241 | 96.78 248 |
|
| UniMVSNet (Re) | | | 93.07 235 | 92.13 242 | 95.88 218 | 94.84 307 | 96.24 139 | 99.88 103 | 98.98 38 | 92.49 205 | 89.25 282 | 95.40 311 | 87.09 210 | 97.14 292 | 93.13 230 | 78.16 351 | 94.26 284 |
|
| USDC | | | 90.00 302 | 88.96 303 | 93.10 314 | 94.81 308 | 88.16 333 | 98.71 297 | 95.54 365 | 93.66 157 | 83.75 346 | 97.20 249 | 65.58 363 | 98.31 232 | 83.96 333 | 87.49 286 | 92.85 350 |
|
| VPNet | | | 91.81 260 | 90.46 270 | 95.85 220 | 94.74 309 | 95.54 167 | 98.98 269 | 98.59 86 | 92.14 214 | 90.77 255 | 97.44 242 | 68.73 350 | 97.54 272 | 94.89 190 | 77.89 353 | 94.46 266 |
|
| FIs | | | 94.10 207 | 93.43 211 | 96.11 214 | 94.70 310 | 96.82 116 | 99.58 194 | 98.93 45 | 92.54 200 | 89.34 280 | 97.31 246 | 87.62 203 | 97.10 296 | 94.22 207 | 86.58 290 | 94.40 273 |
|
| UniMVSNet_ETH3D | | | 90.06 301 | 88.58 309 | 94.49 266 | 94.67 311 | 88.09 334 | 97.81 338 | 97.57 248 | 83.91 353 | 88.44 299 | 97.41 243 | 57.44 382 | 97.62 270 | 91.41 249 | 88.59 269 | 97.77 238 |
|
| UniMVSNet_NR-MVSNet | | | 92.95 237 | 92.11 243 | 95.49 226 | 94.61 312 | 95.28 178 | 99.83 133 | 99.08 33 | 91.49 233 | 89.21 285 | 96.86 263 | 87.14 209 | 96.73 318 | 93.20 226 | 77.52 356 | 94.46 266 |
|
| test_fmvs2 | | | 89.47 310 | 89.70 287 | 88.77 354 | 94.54 313 | 75.74 383 | 99.83 133 | 94.70 378 | 94.71 110 | 91.08 250 | 96.82 268 | 54.46 385 | 97.78 265 | 92.87 233 | 88.27 274 | 92.80 351 |
|
| WR-MVS | | | 92.31 252 | 91.25 260 | 95.48 229 | 94.45 314 | 95.29 177 | 99.60 191 | 98.68 70 | 90.10 269 | 88.07 306 | 96.89 261 | 80.68 269 | 96.80 316 | 93.14 229 | 79.67 344 | 94.36 277 |
|
| nrg030 | | | 93.51 224 | 92.53 237 | 96.45 204 | 94.36 315 | 97.20 101 | 99.81 138 | 97.16 291 | 91.60 230 | 89.86 266 | 97.46 241 | 86.37 219 | 97.68 267 | 95.88 172 | 80.31 340 | 94.46 266 |
|
| tfpnnormal | | | 89.29 313 | 87.61 319 | 94.34 274 | 94.35 316 | 94.13 211 | 98.95 273 | 98.94 41 | 83.94 351 | 84.47 342 | 95.51 306 | 74.84 323 | 97.39 275 | 77.05 369 | 80.41 338 | 91.48 366 |
|
| FC-MVSNet-test | | | 93.81 214 | 93.15 220 | 95.80 222 | 94.30 317 | 96.20 140 | 99.42 218 | 98.89 49 | 92.33 211 | 89.03 290 | 97.27 248 | 87.39 206 | 96.83 314 | 93.20 226 | 86.48 291 | 94.36 277 |
|
| MS-PatchMatch | | | 90.65 284 | 90.30 275 | 91.71 330 | 94.22 318 | 85.50 350 | 98.24 322 | 97.70 233 | 88.67 296 | 86.42 329 | 96.37 279 | 67.82 355 | 98.03 252 | 83.62 335 | 99.62 90 | 91.60 364 |
|
| WR-MVS_H | | | 91.30 269 | 90.35 273 | 94.15 277 | 94.17 319 | 92.62 252 | 99.17 248 | 98.94 41 | 88.87 292 | 86.48 328 | 94.46 347 | 84.36 238 | 96.61 323 | 88.19 294 | 78.51 349 | 93.21 344 |
|
| DU-MVS | | | 92.46 249 | 91.45 258 | 95.49 226 | 94.05 320 | 95.28 178 | 99.81 138 | 98.74 64 | 92.25 213 | 89.21 285 | 96.64 271 | 81.66 256 | 96.73 318 | 93.20 226 | 77.52 356 | 94.46 266 |
|
| NR-MVSNet | | | 91.56 268 | 90.22 277 | 95.60 224 | 94.05 320 | 95.76 155 | 98.25 321 | 98.70 67 | 91.16 247 | 80.78 360 | 96.64 271 | 83.23 248 | 96.57 324 | 91.41 249 | 77.73 355 | 94.46 266 |
|
| CP-MVSNet | | | 91.23 273 | 90.22 277 | 94.26 275 | 93.96 322 | 92.39 256 | 99.09 252 | 98.57 89 | 88.95 289 | 86.42 329 | 96.57 274 | 79.19 284 | 96.37 331 | 90.29 273 | 78.95 346 | 94.02 307 |
|
| XXY-MVS | | | 91.82 259 | 90.46 270 | 95.88 218 | 93.91 323 | 95.40 174 | 98.87 283 | 97.69 234 | 88.63 298 | 87.87 308 | 97.08 253 | 74.38 327 | 97.89 260 | 91.66 247 | 84.07 310 | 94.35 280 |
|
| PS-CasMVS | | | 90.63 286 | 89.51 293 | 93.99 286 | 93.83 324 | 91.70 275 | 98.98 269 | 98.52 104 | 88.48 300 | 86.15 333 | 96.53 276 | 75.46 316 | 96.31 335 | 88.83 286 | 78.86 348 | 93.95 315 |
|
| test_0402 | | | 85.58 330 | 83.94 335 | 90.50 338 | 93.81 325 | 85.04 352 | 98.55 306 | 95.20 372 | 76.01 380 | 79.72 365 | 95.13 324 | 64.15 369 | 96.26 337 | 66.04 390 | 86.88 289 | 90.21 375 |
|
| XVG-ACMP-BASELINE | | | 91.22 274 | 90.75 265 | 92.63 321 | 93.73 326 | 85.61 348 | 98.52 310 | 97.44 261 | 92.77 186 | 89.90 265 | 96.85 264 | 66.64 360 | 98.39 221 | 92.29 238 | 88.61 267 | 93.89 320 |
|
| TranMVSNet+NR-MVSNet | | | 91.68 267 | 90.61 269 | 94.87 248 | 93.69 327 | 93.98 216 | 99.69 175 | 98.65 74 | 91.03 251 | 88.44 299 | 96.83 267 | 80.05 277 | 96.18 339 | 90.26 274 | 76.89 364 | 94.45 271 |
|
| mvsmamba | | | 94.10 207 | 93.72 202 | 95.25 237 | 93.57 328 | 94.13 211 | 99.67 179 | 96.45 345 | 93.63 159 | 91.34 248 | 97.77 236 | 86.29 220 | 97.22 288 | 96.65 162 | 88.10 277 | 94.40 273 |
|
| TransMVSNet (Re) | | | 87.25 324 | 85.28 331 | 93.16 311 | 93.56 329 | 91.03 284 | 98.54 308 | 94.05 384 | 83.69 355 | 81.09 358 | 96.16 284 | 75.32 317 | 96.40 330 | 76.69 370 | 68.41 382 | 92.06 360 |
|
| v10 | | | 90.25 296 | 88.82 305 | 94.57 261 | 93.53 330 | 93.43 231 | 99.08 254 | 96.87 323 | 85.00 344 | 87.34 318 | 94.51 343 | 80.93 266 | 97.02 305 | 82.85 339 | 79.23 345 | 93.26 342 |
|
| testgi | | | 89.01 315 | 88.04 316 | 91.90 328 | 93.49 331 | 84.89 354 | 99.73 164 | 95.66 362 | 93.89 152 | 85.14 339 | 98.17 221 | 59.68 379 | 94.66 365 | 77.73 365 | 88.88 260 | 96.16 257 |
|
| v8 | | | 90.54 288 | 89.17 298 | 94.66 255 | 93.43 332 | 93.40 233 | 99.20 245 | 96.94 317 | 85.76 335 | 87.56 312 | 94.51 343 | 81.96 254 | 97.19 289 | 84.94 327 | 78.25 350 | 93.38 340 |
|
| V42 | | | 91.28 271 | 90.12 282 | 94.74 252 | 93.42 333 | 93.46 230 | 99.68 177 | 97.02 305 | 87.36 314 | 89.85 268 | 95.05 326 | 81.31 262 | 97.34 278 | 87.34 305 | 80.07 342 | 93.40 338 |
|
| pm-mvs1 | | | 89.36 312 | 87.81 318 | 94.01 284 | 93.40 334 | 91.93 265 | 98.62 305 | 96.48 344 | 86.25 330 | 83.86 345 | 96.14 285 | 73.68 330 | 97.04 301 | 86.16 318 | 75.73 368 | 93.04 347 |
|
| RRT_MVS | | | 93.14 232 | 92.92 225 | 93.78 293 | 93.31 335 | 90.04 308 | 99.66 180 | 97.69 234 | 92.53 201 | 88.91 292 | 97.76 237 | 84.36 238 | 96.93 308 | 95.10 182 | 86.99 288 | 94.37 276 |
|
| v1144 | | | 91.09 275 | 89.83 284 | 94.87 248 | 93.25 336 | 93.69 224 | 99.62 189 | 96.98 310 | 86.83 324 | 89.64 274 | 94.99 331 | 80.94 265 | 97.05 299 | 85.08 326 | 81.16 329 | 93.87 322 |
|
| v1192 | | | 90.62 287 | 89.25 297 | 94.72 254 | 93.13 337 | 93.07 237 | 99.50 208 | 97.02 305 | 86.33 329 | 89.56 276 | 95.01 328 | 79.22 283 | 97.09 298 | 82.34 343 | 81.16 329 | 94.01 309 |
|
| v2v482 | | | 91.30 269 | 90.07 283 | 95.01 243 | 93.13 337 | 93.79 219 | 99.77 148 | 97.02 305 | 88.05 306 | 89.25 282 | 95.37 315 | 80.73 268 | 97.15 291 | 87.28 306 | 80.04 343 | 94.09 303 |
|
| OPM-MVS | | | 93.21 229 | 92.80 228 | 94.44 269 | 93.12 339 | 90.85 291 | 99.77 148 | 97.61 243 | 96.19 75 | 91.56 245 | 98.65 195 | 75.16 322 | 98.47 210 | 93.78 218 | 89.39 256 | 93.99 312 |
| Ray L. Khuboni, Hongjun Xu: Octagram Propagation Matching for Multi-Scale View Stereopsis (OPM-MVS). |
| v144192 | | | 90.79 282 | 89.52 292 | 94.59 259 | 93.11 340 | 92.77 243 | 99.56 198 | 96.99 308 | 86.38 328 | 89.82 269 | 94.95 333 | 80.50 273 | 97.10 296 | 83.98 332 | 80.41 338 | 93.90 319 |
|
| PEN-MVS | | | 90.19 298 | 89.06 301 | 93.57 301 | 93.06 341 | 90.90 289 | 99.06 259 | 98.47 115 | 88.11 305 | 85.91 335 | 96.30 280 | 76.67 303 | 95.94 349 | 87.07 309 | 76.91 363 | 93.89 320 |
|
| v1240 | | | 90.20 297 | 88.79 306 | 94.44 269 | 93.05 342 | 92.27 258 | 99.38 224 | 96.92 319 | 85.89 333 | 89.36 279 | 94.87 335 | 77.89 295 | 97.03 303 | 80.66 351 | 81.08 332 | 94.01 309 |
|
| v148 | | | 90.70 283 | 89.63 288 | 93.92 288 | 92.97 343 | 90.97 285 | 99.75 156 | 96.89 321 | 87.51 311 | 88.27 304 | 95.01 328 | 81.67 255 | 97.04 301 | 87.40 304 | 77.17 361 | 93.75 328 |
|
| v1921920 | | | 90.46 289 | 89.12 299 | 94.50 265 | 92.96 344 | 92.46 254 | 99.49 210 | 96.98 310 | 86.10 331 | 89.61 275 | 95.30 318 | 78.55 292 | 97.03 303 | 82.17 344 | 80.89 336 | 94.01 309 |
|
| Baseline_NR-MVSNet | | | 90.33 293 | 89.51 293 | 92.81 319 | 92.84 345 | 89.95 311 | 99.77 148 | 93.94 385 | 84.69 349 | 89.04 289 | 95.66 298 | 81.66 256 | 96.52 325 | 90.99 257 | 76.98 362 | 91.97 362 |
|
| test_method | | | 80.79 350 | 79.70 354 | 84.08 365 | 92.83 346 | 67.06 391 | 99.51 206 | 95.42 366 | 54.34 397 | 81.07 359 | 93.53 355 | 44.48 393 | 92.22 384 | 78.90 361 | 77.23 360 | 92.94 348 |
|
| pmmvs4 | | | 92.10 256 | 91.07 263 | 95.18 239 | 92.82 347 | 94.96 189 | 99.48 212 | 96.83 326 | 87.45 313 | 88.66 297 | 96.56 275 | 83.78 243 | 96.83 314 | 89.29 282 | 84.77 304 | 93.75 328 |
|
| LF4IMVS | | | 89.25 314 | 88.85 304 | 90.45 340 | 92.81 348 | 81.19 374 | 98.12 328 | 94.79 375 | 91.44 237 | 86.29 331 | 97.11 251 | 65.30 366 | 98.11 247 | 88.53 291 | 85.25 299 | 92.07 359 |
|
| DTE-MVSNet | | | 89.40 311 | 88.24 314 | 92.88 318 | 92.66 349 | 89.95 311 | 99.10 251 | 98.22 185 | 87.29 315 | 85.12 340 | 96.22 282 | 76.27 310 | 95.30 358 | 83.56 336 | 75.74 367 | 93.41 337 |
|
| EU-MVSNet | | | 90.14 300 | 90.34 274 | 89.54 346 | 92.55 350 | 81.06 375 | 98.69 300 | 98.04 207 | 91.41 241 | 86.59 325 | 96.84 266 | 80.83 267 | 93.31 377 | 86.20 317 | 81.91 323 | 94.26 284 |
|
| APD_test1 | | | 81.15 349 | 80.92 350 | 81.86 369 | 92.45 351 | 59.76 398 | 96.04 369 | 93.61 388 | 73.29 389 | 77.06 374 | 96.64 271 | 44.28 394 | 96.16 340 | 72.35 377 | 82.52 317 | 89.67 380 |
|
| our_test_3 | | | 90.39 290 | 89.48 295 | 93.12 312 | 92.40 352 | 89.57 316 | 99.33 230 | 96.35 348 | 87.84 309 | 85.30 338 | 94.99 331 | 84.14 241 | 96.09 344 | 80.38 352 | 84.56 305 | 93.71 333 |
|
| ppachtmachnet_test | | | 89.58 309 | 88.35 312 | 93.25 310 | 92.40 352 | 90.44 300 | 99.33 230 | 96.73 333 | 85.49 340 | 85.90 336 | 95.77 293 | 81.09 264 | 96.00 348 | 76.00 372 | 82.49 318 | 93.30 341 |
|
| v7n | | | 89.65 308 | 88.29 313 | 93.72 295 | 92.22 354 | 90.56 297 | 99.07 258 | 97.10 297 | 85.42 342 | 86.73 322 | 94.72 336 | 80.06 276 | 97.13 293 | 81.14 349 | 78.12 352 | 93.49 336 |
|
| dmvs_testset | | | 83.79 343 | 86.07 327 | 76.94 373 | 92.14 355 | 48.60 408 | 96.75 356 | 90.27 398 | 89.48 277 | 78.65 368 | 98.55 207 | 79.25 282 | 86.65 396 | 66.85 387 | 82.69 316 | 95.57 259 |
|
| PS-MVSNAJss | | | 93.64 221 | 93.31 217 | 94.61 257 | 92.11 356 | 92.19 259 | 99.12 250 | 97.38 268 | 92.51 204 | 88.45 298 | 96.99 259 | 91.20 154 | 97.29 285 | 94.36 202 | 87.71 282 | 94.36 277 |
|
| pmmvs5 | | | 90.17 299 | 89.09 300 | 93.40 304 | 92.10 357 | 89.77 314 | 99.74 159 | 95.58 364 | 85.88 334 | 87.24 319 | 95.74 294 | 73.41 331 | 96.48 327 | 88.54 290 | 83.56 313 | 93.95 315 |
|
| N_pmnet | | | 80.06 353 | 80.78 351 | 77.89 372 | 91.94 358 | 45.28 410 | 98.80 291 | 56.82 412 | 78.10 377 | 80.08 363 | 93.33 356 | 77.03 298 | 95.76 351 | 68.14 385 | 82.81 315 | 92.64 352 |
|
| test_djsdf | | | 92.83 240 | 92.29 241 | 94.47 267 | 91.90 359 | 92.46 254 | 99.55 200 | 97.27 281 | 91.17 245 | 89.96 262 | 96.07 289 | 81.10 263 | 96.89 310 | 94.67 197 | 88.91 259 | 94.05 306 |
|
| SixPastTwentyTwo | | | 88.73 316 | 88.01 317 | 90.88 334 | 91.85 360 | 82.24 366 | 98.22 325 | 95.18 373 | 88.97 287 | 82.26 351 | 96.89 261 | 71.75 336 | 96.67 321 | 84.00 331 | 82.98 314 | 93.72 332 |
|
| K. test v3 | | | 88.05 320 | 87.24 322 | 90.47 339 | 91.82 361 | 82.23 367 | 98.96 272 | 97.42 264 | 89.05 282 | 76.93 376 | 95.60 300 | 68.49 352 | 95.42 354 | 85.87 322 | 81.01 334 | 93.75 328 |
|
| OurMVSNet-221017-0 | | | 89.81 305 | 89.48 295 | 90.83 336 | 91.64 362 | 81.21 373 | 98.17 327 | 95.38 368 | 91.48 235 | 85.65 337 | 97.31 246 | 72.66 332 | 97.29 285 | 88.15 295 | 84.83 303 | 93.97 314 |
|
| mvs_tets | | | 91.81 260 | 91.08 262 | 94.00 285 | 91.63 363 | 90.58 296 | 98.67 302 | 97.43 262 | 92.43 206 | 87.37 317 | 97.05 256 | 71.76 335 | 97.32 281 | 94.75 194 | 88.68 266 | 94.11 302 |
|
| Gipuma |  | | 66.95 366 | 65.00 366 | 72.79 378 | 91.52 364 | 67.96 390 | 66.16 401 | 95.15 374 | 47.89 399 | 58.54 396 | 67.99 401 | 29.74 398 | 87.54 395 | 50.20 400 | 77.83 354 | 62.87 401 |
| S. Galliani, K. Lasinger, K. Schindler: Massively Parallel Multiview Stereopsis by Surface Normal Diffusion. ICCV 2015 |
| test_fmvsmconf0.01_n | | | 96.39 141 | 95.74 149 | 98.32 119 | 91.47 365 | 95.56 166 | 99.84 126 | 97.30 277 | 97.74 18 | 97.89 140 | 99.35 130 | 79.62 279 | 99.85 108 | 99.25 54 | 99.24 120 | 99.55 142 |
|
| jajsoiax | | | 91.92 258 | 91.18 261 | 94.15 277 | 91.35 366 | 90.95 288 | 99.00 268 | 97.42 264 | 92.61 195 | 87.38 316 | 97.08 253 | 72.46 333 | 97.36 276 | 94.53 200 | 88.77 263 | 94.13 301 |
|
| MDA-MVSNet-bldmvs | | | 84.09 341 | 81.52 348 | 91.81 329 | 91.32 367 | 88.00 336 | 98.67 302 | 95.92 357 | 80.22 371 | 55.60 399 | 93.32 357 | 68.29 354 | 93.60 375 | 73.76 374 | 76.61 365 | 93.82 326 |
|
| MVP-Stereo | | | 90.93 277 | 90.45 272 | 92.37 323 | 91.25 368 | 88.76 322 | 98.05 332 | 96.17 352 | 87.27 316 | 84.04 343 | 95.30 318 | 78.46 293 | 97.27 287 | 83.78 334 | 99.70 85 | 91.09 367 |
| Qingsong Yan: MVP-Stereo: A Parallel Multi-View Patchmatch Stereo Method with Dilation Matching for Photogrammetric Application. |
| MDA-MVSNet_test_wron | | | 85.51 332 | 83.32 340 | 92.10 325 | 90.96 369 | 88.58 328 | 99.20 245 | 96.52 342 | 79.70 373 | 57.12 398 | 92.69 362 | 79.11 285 | 93.86 372 | 77.10 368 | 77.46 358 | 93.86 323 |
|
| YYNet1 | | | 85.50 333 | 83.33 339 | 92.00 326 | 90.89 370 | 88.38 332 | 99.22 244 | 96.55 341 | 79.60 374 | 57.26 397 | 92.72 361 | 79.09 287 | 93.78 373 | 77.25 367 | 77.37 359 | 93.84 324 |
|
| anonymousdsp | | | 91.79 265 | 90.92 264 | 94.41 272 | 90.76 371 | 92.93 242 | 98.93 275 | 97.17 289 | 89.08 281 | 87.46 315 | 95.30 318 | 78.43 294 | 96.92 309 | 92.38 237 | 88.73 264 | 93.39 339 |
|
| lessismore_v0 | | | | | 90.53 337 | 90.58 372 | 80.90 376 | | 95.80 358 | | 77.01 375 | 95.84 291 | 66.15 362 | 96.95 306 | 83.03 338 | 75.05 369 | 93.74 331 |
|
| EG-PatchMatch MVS | | | 85.35 334 | 83.81 337 | 89.99 344 | 90.39 373 | 81.89 369 | 98.21 326 | 96.09 354 | 81.78 365 | 74.73 382 | 93.72 354 | 51.56 390 | 97.12 295 | 79.16 360 | 88.61 267 | 90.96 369 |
|
| EGC-MVSNET | | | 69.38 359 | 63.76 369 | 86.26 362 | 90.32 374 | 81.66 372 | 96.24 365 | 93.85 386 | 0.99 409 | 3.22 410 | 92.33 367 | 52.44 387 | 92.92 380 | 59.53 396 | 84.90 302 | 84.21 390 |
|
| CMPMVS |  | 61.59 21 | 84.75 337 | 85.14 332 | 83.57 366 | 90.32 374 | 62.54 394 | 96.98 352 | 97.59 247 | 74.33 387 | 69.95 388 | 96.66 269 | 64.17 368 | 98.32 231 | 87.88 299 | 88.41 272 | 89.84 378 |
| M. Jancosek, T. Pajdla: Multi-View Reconstruction Preserving Weakly-Supported Surfaces. CVPR 2011 |
| new_pmnet | | | 84.49 340 | 82.92 343 | 89.21 348 | 90.03 376 | 82.60 363 | 96.89 355 | 95.62 363 | 80.59 369 | 75.77 381 | 89.17 378 | 65.04 367 | 94.79 364 | 72.12 378 | 81.02 333 | 90.23 374 |
|
| pmmvs6 | | | 85.69 329 | 83.84 336 | 91.26 333 | 90.00 377 | 84.41 356 | 97.82 337 | 96.15 353 | 75.86 381 | 81.29 357 | 95.39 313 | 61.21 377 | 96.87 312 | 83.52 337 | 73.29 371 | 92.50 355 |
|
| DSMNet-mixed | | | 88.28 319 | 88.24 314 | 88.42 356 | 89.64 378 | 75.38 385 | 98.06 331 | 89.86 399 | 85.59 339 | 88.20 305 | 92.14 368 | 76.15 312 | 91.95 385 | 78.46 362 | 96.05 196 | 97.92 234 |
|
| UnsupCasMVSNet_eth | | | 85.52 331 | 83.99 333 | 90.10 342 | 89.36 379 | 83.51 360 | 96.65 357 | 97.99 209 | 89.14 280 | 75.89 380 | 93.83 352 | 63.25 371 | 93.92 370 | 81.92 346 | 67.90 385 | 92.88 349 |
|
| Anonymous20231206 | | | 86.32 327 | 85.42 330 | 89.02 350 | 89.11 380 | 80.53 379 | 99.05 263 | 95.28 369 | 85.43 341 | 82.82 349 | 93.92 351 | 74.40 326 | 93.44 376 | 66.99 386 | 81.83 324 | 93.08 346 |
|
| Anonymous20240521 | | | 85.15 335 | 83.81 337 | 89.16 349 | 88.32 381 | 82.69 362 | 98.80 291 | 95.74 359 | 79.72 372 | 81.53 356 | 90.99 371 | 65.38 365 | 94.16 368 | 72.69 376 | 81.11 331 | 90.63 372 |
|
| OpenMVS_ROB |  | 79.82 20 | 83.77 344 | 81.68 347 | 90.03 343 | 88.30 382 | 82.82 361 | 98.46 311 | 95.22 371 | 73.92 388 | 76.00 379 | 91.29 370 | 55.00 384 | 96.94 307 | 68.40 384 | 88.51 271 | 90.34 373 |
|
| test20.03 | | | 84.72 338 | 83.99 333 | 86.91 360 | 88.19 383 | 80.62 378 | 98.88 280 | 95.94 356 | 88.36 302 | 78.87 366 | 94.62 341 | 68.75 349 | 89.11 391 | 66.52 388 | 75.82 366 | 91.00 368 |
|
| KD-MVS_self_test | | | 83.59 345 | 82.06 345 | 88.20 357 | 86.93 384 | 80.70 377 | 97.21 345 | 96.38 346 | 82.87 359 | 82.49 350 | 88.97 379 | 67.63 356 | 92.32 383 | 73.75 375 | 62.30 394 | 91.58 365 |
|
| MIMVSNet1 | | | 82.58 346 | 80.51 352 | 88.78 352 | 86.68 385 | 84.20 357 | 96.65 357 | 95.41 367 | 78.75 375 | 78.59 369 | 92.44 363 | 51.88 389 | 89.76 390 | 65.26 391 | 78.95 346 | 92.38 358 |
|
| CL-MVSNet_self_test | | | 84.50 339 | 83.15 342 | 88.53 355 | 86.00 386 | 81.79 370 | 98.82 288 | 97.35 270 | 85.12 343 | 83.62 347 | 90.91 373 | 76.66 304 | 91.40 386 | 69.53 382 | 60.36 395 | 92.40 357 |
|
| UnsupCasMVSNet_bld | | | 79.97 355 | 77.03 360 | 88.78 352 | 85.62 387 | 81.98 368 | 93.66 381 | 97.35 270 | 75.51 384 | 70.79 387 | 83.05 393 | 48.70 391 | 94.91 362 | 78.31 363 | 60.29 396 | 89.46 383 |
|
| Patchmatch-RL test | | | 86.90 325 | 85.98 329 | 89.67 345 | 84.45 388 | 75.59 384 | 89.71 394 | 92.43 392 | 86.89 323 | 77.83 373 | 90.94 372 | 94.22 80 | 93.63 374 | 87.75 300 | 69.61 377 | 99.79 97 |
|
| pmmvs-eth3d | | | 84.03 342 | 81.97 346 | 90.20 341 | 84.15 389 | 87.09 341 | 98.10 330 | 94.73 377 | 83.05 357 | 74.10 384 | 87.77 385 | 65.56 364 | 94.01 369 | 81.08 350 | 69.24 379 | 89.49 382 |
|
| test_fmvs3 | | | 79.99 354 | 80.17 353 | 79.45 371 | 84.02 390 | 62.83 392 | 99.05 263 | 93.49 389 | 88.29 304 | 80.06 364 | 86.65 388 | 28.09 400 | 88.00 392 | 88.63 287 | 73.27 372 | 87.54 388 |
|
| PM-MVS | | | 80.47 351 | 78.88 356 | 85.26 363 | 83.79 391 | 72.22 387 | 95.89 372 | 91.08 396 | 85.71 338 | 76.56 378 | 88.30 381 | 36.64 396 | 93.90 371 | 82.39 342 | 69.57 378 | 89.66 381 |
|
| new-patchmatchnet | | | 81.19 348 | 79.34 355 | 86.76 361 | 82.86 392 | 80.36 380 | 97.92 334 | 95.27 370 | 82.09 364 | 72.02 385 | 86.87 387 | 62.81 373 | 90.74 389 | 71.10 379 | 63.08 392 | 89.19 385 |
|
| mvsany_test3 | | | 82.12 347 | 81.14 349 | 85.06 364 | 81.87 393 | 70.41 388 | 97.09 349 | 92.14 393 | 91.27 244 | 77.84 372 | 88.73 380 | 39.31 395 | 95.49 352 | 90.75 264 | 71.24 374 | 89.29 384 |
|
| WB-MVS | | | 76.28 357 | 77.28 359 | 73.29 377 | 81.18 394 | 54.68 402 | 97.87 336 | 94.19 381 | 81.30 366 | 69.43 389 | 90.70 374 | 77.02 299 | 82.06 400 | 35.71 405 | 68.11 384 | 83.13 391 |
|
| test_f | | | 78.40 356 | 77.59 358 | 80.81 370 | 80.82 395 | 62.48 395 | 96.96 353 | 93.08 391 | 83.44 356 | 74.57 383 | 84.57 392 | 27.95 401 | 92.63 381 | 84.15 329 | 72.79 373 | 87.32 389 |
|
| SSC-MVS | | | 75.42 358 | 76.40 361 | 72.49 381 | 80.68 396 | 53.62 403 | 97.42 341 | 94.06 383 | 80.42 370 | 68.75 390 | 90.14 376 | 76.54 306 | 81.66 401 | 33.25 406 | 66.34 388 | 82.19 392 |
|
| pmmvs3 | | | 80.27 352 | 77.77 357 | 87.76 359 | 80.32 397 | 82.43 365 | 98.23 324 | 91.97 394 | 72.74 390 | 78.75 367 | 87.97 384 | 57.30 383 | 90.99 388 | 70.31 380 | 62.37 393 | 89.87 377 |
|
| testf1 | | | 68.38 362 | 66.92 363 | 72.78 379 | 78.80 398 | 50.36 405 | 90.95 392 | 87.35 404 | 55.47 395 | 58.95 394 | 88.14 382 | 20.64 405 | 87.60 393 | 57.28 397 | 64.69 389 | 80.39 394 |
|
| APD_test2 | | | 68.38 362 | 66.92 363 | 72.78 379 | 78.80 398 | 50.36 405 | 90.95 392 | 87.35 404 | 55.47 395 | 58.95 394 | 88.14 382 | 20.64 405 | 87.60 393 | 57.28 397 | 64.69 389 | 80.39 394 |
|
| ambc | | | | | 83.23 367 | 77.17 400 | 62.61 393 | 87.38 396 | 94.55 380 | | 76.72 377 | 86.65 388 | 30.16 397 | 96.36 332 | 84.85 328 | 69.86 376 | 90.73 371 |
|
| test_vis3_rt | | | 68.82 360 | 66.69 365 | 75.21 376 | 76.24 401 | 60.41 397 | 96.44 360 | 68.71 411 | 75.13 385 | 50.54 402 | 69.52 400 | 16.42 410 | 96.32 334 | 80.27 353 | 66.92 387 | 68.89 398 |
|
| TDRefinement | | | 84.76 336 | 82.56 344 | 91.38 332 | 74.58 402 | 84.80 355 | 97.36 343 | 94.56 379 | 84.73 348 | 80.21 362 | 96.12 288 | 63.56 370 | 98.39 221 | 87.92 298 | 63.97 391 | 90.95 370 |
|
| E-PMN | | | 52.30 370 | 52.18 372 | 52.67 387 | 71.51 403 | 45.40 409 | 93.62 382 | 76.60 409 | 36.01 403 | 43.50 404 | 64.13 403 | 27.11 402 | 67.31 406 | 31.06 407 | 26.06 402 | 45.30 405 |
|
| EMVS | | | 51.44 372 | 51.22 374 | 52.11 388 | 70.71 404 | 44.97 411 | 94.04 378 | 75.66 410 | 35.34 405 | 42.40 405 | 61.56 406 | 28.93 399 | 65.87 407 | 27.64 408 | 24.73 403 | 45.49 404 |
|
| PMMVS2 | | | 67.15 365 | 64.15 368 | 76.14 375 | 70.56 405 | 62.07 396 | 93.89 379 | 87.52 403 | 58.09 394 | 60.02 393 | 78.32 395 | 22.38 404 | 84.54 398 | 59.56 395 | 47.03 400 | 81.80 393 |
|
| FPMVS | | | 68.72 361 | 68.72 362 | 68.71 383 | 65.95 406 | 44.27 412 | 95.97 371 | 94.74 376 | 51.13 398 | 53.26 400 | 90.50 375 | 25.11 403 | 83.00 399 | 60.80 394 | 80.97 335 | 78.87 396 |
|
| wuyk23d | | | 20.37 376 | 20.84 379 | 18.99 391 | 65.34 407 | 27.73 414 | 50.43 402 | 7.67 415 | 9.50 408 | 8.01 409 | 6.34 409 | 6.13 413 | 26.24 408 | 23.40 409 | 10.69 407 | 2.99 406 |
|
| LCM-MVSNet | | | 67.77 364 | 64.73 367 | 76.87 374 | 62.95 408 | 56.25 401 | 89.37 395 | 93.74 387 | 44.53 400 | 61.99 392 | 80.74 394 | 20.42 407 | 86.53 397 | 69.37 383 | 59.50 397 | 87.84 386 |
|
| MVE |  | 53.74 22 | 51.54 371 | 47.86 375 | 62.60 385 | 59.56 409 | 50.93 404 | 79.41 399 | 77.69 408 | 35.69 404 | 36.27 406 | 61.76 405 | 5.79 414 | 69.63 404 | 37.97 404 | 36.61 401 | 67.24 399 |
| Simon Fuhrmann, Fabian Langguth, Michael Goesele: MVE - A Multi-View Reconstruction Environment. EUROGRAPHICS Workshops on Graphics and Cultural Heritage (2014) |
| ANet_high | | | 56.10 368 | 52.24 371 | 67.66 384 | 49.27 410 | 56.82 400 | 83.94 397 | 82.02 407 | 70.47 391 | 33.28 407 | 64.54 402 | 17.23 409 | 69.16 405 | 45.59 402 | 23.85 404 | 77.02 397 |
|
| tmp_tt | | | 65.23 367 | 62.94 370 | 72.13 382 | 44.90 411 | 50.03 407 | 81.05 398 | 89.42 402 | 38.45 401 | 48.51 403 | 99.90 18 | 54.09 386 | 78.70 403 | 91.84 246 | 18.26 405 | 87.64 387 |
|
| PMVS |  | 49.05 23 | 53.75 369 | 51.34 373 | 60.97 386 | 40.80 412 | 34.68 413 | 74.82 400 | 89.62 401 | 37.55 402 | 28.67 408 | 72.12 397 | 7.09 412 | 81.63 402 | 43.17 403 | 68.21 383 | 66.59 400 |
| Y. Furukawa, J. Ponce: Accurate, dense, and robust multiview stereopsis. PAMI (2010) |
| test123 | | | 37.68 374 | 39.14 377 | 33.31 389 | 19.94 413 | 24.83 415 | 98.36 318 | 9.75 414 | 15.53 407 | 51.31 401 | 87.14 386 | 19.62 408 | 17.74 409 | 47.10 401 | 3.47 408 | 57.36 402 |
|
| testmvs | | | 40.60 373 | 44.45 376 | 29.05 390 | 19.49 414 | 14.11 416 | 99.68 177 | 18.47 413 | 20.74 406 | 64.59 391 | 98.48 212 | 10.95 411 | 17.09 410 | 56.66 399 | 11.01 406 | 55.94 403 |
|
| test_blank | | | 0.00 379 | 0.00 382 | 0.00 392 | 0.00 415 | 0.00 417 | 0.00 403 | 0.00 416 | 0.00 410 | 0.00 411 | 0.02 410 | 0.00 415 | 0.00 411 | 0.00 410 | 0.00 409 | 0.00 407 |
|
| eth-test2 | | | | | | 0.00 415 | | | | | | | | | | | |
|
| eth-test | | | | | | 0.00 415 | | | | | | | | | | | |
|
| uanet_test | | | 0.00 379 | 0.00 382 | 0.00 392 | 0.00 415 | 0.00 417 | 0.00 403 | 0.00 416 | 0.00 410 | 0.00 411 | 0.00 411 | 0.00 415 | 0.00 411 | 0.00 410 | 0.00 409 | 0.00 407 |
|
| DCPMVS | | | 0.00 379 | 0.00 382 | 0.00 392 | 0.00 415 | 0.00 417 | 0.00 403 | 0.00 416 | 0.00 410 | 0.00 411 | 0.00 411 | 0.00 415 | 0.00 411 | 0.00 410 | 0.00 409 | 0.00 407 |
|
| cdsmvs_eth3d_5k | | | 23.43 375 | 31.24 378 | 0.00 392 | 0.00 415 | 0.00 417 | 0.00 403 | 98.09 201 | 0.00 410 | 0.00 411 | 99.67 96 | 83.37 246 | 0.00 411 | 0.00 410 | 0.00 409 | 0.00 407 |
|
| pcd_1.5k_mvsjas | | | 7.60 378 | 10.13 381 | 0.00 392 | 0.00 415 | 0.00 417 | 0.00 403 | 0.00 416 | 0.00 410 | 0.00 411 | 0.00 411 | 91.20 154 | 0.00 411 | 0.00 410 | 0.00 409 | 0.00 407 |
|
| sosnet-low-res | | | 0.00 379 | 0.00 382 | 0.00 392 | 0.00 415 | 0.00 417 | 0.00 403 | 0.00 416 | 0.00 410 | 0.00 411 | 0.00 411 | 0.00 415 | 0.00 411 | 0.00 410 | 0.00 409 | 0.00 407 |
|
| sosnet | | | 0.00 379 | 0.00 382 | 0.00 392 | 0.00 415 | 0.00 417 | 0.00 403 | 0.00 416 | 0.00 410 | 0.00 411 | 0.00 411 | 0.00 415 | 0.00 411 | 0.00 410 | 0.00 409 | 0.00 407 |
|
| uncertanet | | | 0.00 379 | 0.00 382 | 0.00 392 | 0.00 415 | 0.00 417 | 0.00 403 | 0.00 416 | 0.00 410 | 0.00 411 | 0.00 411 | 0.00 415 | 0.00 411 | 0.00 410 | 0.00 409 | 0.00 407 |
|
| Regformer | | | 0.00 379 | 0.00 382 | 0.00 392 | 0.00 415 | 0.00 417 | 0.00 403 | 0.00 416 | 0.00 410 | 0.00 411 | 0.00 411 | 0.00 415 | 0.00 411 | 0.00 410 | 0.00 409 | 0.00 407 |
|
| ab-mvs-re | | | 8.28 377 | 11.04 380 | 0.00 392 | 0.00 415 | 0.00 417 | 0.00 403 | 0.00 416 | 0.00 410 | 0.00 411 | 99.40 124 | 0.00 415 | 0.00 411 | 0.00 410 | 0.00 409 | 0.00 407 |
|
| uanet | | | 0.00 379 | 0.00 382 | 0.00 392 | 0.00 415 | 0.00 417 | 0.00 403 | 0.00 416 | 0.00 410 | 0.00 411 | 0.00 411 | 0.00 415 | 0.00 411 | 0.00 410 | 0.00 409 | 0.00 407 |
|
| WAC-MVS | | | | | | | 90.97 285 | | | | | | | | 86.10 320 | | |
|
| PC_three_1452 | | | | | | | | | | 96.96 44 | 99.80 18 | 99.79 57 | 97.49 9 | 100.00 1 | 99.99 5 | 99.98 32 | 100.00 1 |
|
| test_241102_TWO | | | | | | | | | 98.43 131 | 97.27 34 | 99.80 18 | 99.94 4 | 97.18 20 | 100.00 1 | 100.00 1 | 100.00 1 | 100.00 1 |
|
| test_0728_THIRD | | | | | | | | | | 96.48 61 | 99.83 13 | 99.91 14 | 97.87 5 | 100.00 1 | 99.92 12 | 100.00 1 | 100.00 1 |
|
| GSMVS | | | | | | | | | | | | | | | | | 99.59 133 |
|
| sam_mvs1 | | | | | | | | | | | | | 94.72 64 | | | | 99.59 133 |
|
| sam_mvs | | | | | | | | | | | | | 94.25 79 | | | | |
|
| MTGPA |  | | | | | | | | 98.28 179 | | | | | | | | |
|
| test_post1 | | | | | | | | 95.78 373 | | | | 59.23 407 | 93.20 111 | 97.74 266 | 91.06 255 | | |
|
| test_post | | | | | | | | | | | | 63.35 404 | 94.43 69 | 98.13 246 | | | |
|
| patchmatchnet-post | | | | | | | | | | | | 91.70 369 | 95.12 50 | 97.95 257 | | | |
|
| MTMP | | | | | | | | 99.87 106 | 96.49 343 | | | | | | | | |
|
| test9_res | | | | | | | | | | | | | | | 99.71 33 | 99.99 21 | 100.00 1 |
|
| agg_prior2 | | | | | | | | | | | | | | | 99.48 43 | 100.00 1 | 100.00 1 |
|
| test_prior4 | | | | | | | 98.05 67 | 99.94 69 | | | | | | | | | |
|
| test_prior2 | | | | | | | | 99.95 53 | | 95.78 81 | 99.73 33 | 99.76 65 | 96.00 33 | | 99.78 27 | 100.00 1 | |
|
| 旧先验2 | | | | | | | | 99.46 215 | | 94.21 133 | 99.85 9 | | | 99.95 69 | 96.96 156 | | |
|
| 新几何2 | | | | | | | | 99.40 219 | | | | | | | | | |
|
| 无先验 | | | | | | | | 99.49 210 | 98.71 66 | 93.46 162 | | | | 100.00 1 | 94.36 202 | | 99.99 23 |
|
| 原ACMM2 | | | | | | | | 99.90 91 | | | | | | | | | |
|
| testdata2 | | | | | | | | | | | | | | 99.99 36 | 90.54 268 | | |
|
| segment_acmp | | | | | | | | | | | | | 96.68 25 | | | | |
|
| testdata1 | | | | | | | | 99.28 239 | | 96.35 71 | | | | | | | |
|
| plane_prior5 | | | | | | | | | 97.87 223 | | | | | 98.37 227 | 97.79 132 | 89.55 253 | 94.52 263 |
|
| plane_prior4 | | | | | | | | | | | | 98.59 200 | | | | | |
|
| plane_prior3 | | | | | | | 91.64 277 | | | 96.63 56 | 93.01 226 | | | | | | |
|
| plane_prior2 | | | | | | | | 99.84 126 | | 96.38 67 | | | | | | | |
|
| plane_prior | | | | | | | 91.74 271 | 99.86 118 | | 96.76 52 | | | | | | 89.59 252 | |
|
| n2 | | | | | | | | | 0.00 416 | | | | | | | | |
|
| nn | | | | | | | | | 0.00 416 | | | | | | | | |
|
| door-mid | | | | | | | | | 89.69 400 | | | | | | | | |
|
| test11 | | | | | | | | | 98.44 123 | | | | | | | | |
|
| door | | | | | | | | | 90.31 397 | | | | | | | | |
|
| HQP5-MVS | | | | | | | 91.85 267 | | | | | | | | | | |
|
| BP-MVS | | | | | | | | | | | | | | | 97.92 124 | | |
|
| HQP4-MVS | | | | | | | | | | | 93.37 222 | | | 98.39 221 | | | 94.53 261 |
|
| HQP3-MVS | | | | | | | | | 97.89 221 | | | | | | | 89.60 250 | |
|
| HQP2-MVS | | | | | | | | | | | | | 80.65 270 | | | | |
|
| MDTV_nov1_ep13_2view | | | | | | | 96.26 135 | 96.11 367 | | 91.89 222 | 98.06 134 | | 94.40 71 | | 94.30 204 | | 99.67 116 |
|
| ACMMP++_ref | | | | | | | | | | | | | | | | 87.04 287 | |
|
| ACMMP++ | | | | | | | | | | | | | | | | 88.23 275 | |
|
| Test By Simon | | | | | | | | | | | | | 92.82 122 | | | | |
|