This table lists the benchmark results for the high-res multi-view scenario. The following metrics are evaluated:

(*) For exact definitions, detailing how potentially incomplete ground truth is taken into account, see our paper.

The datasets are grouped into different categories, and result averages are computed for a category and method if results of the method are available for all datasets within the category. Note that the category "all" includes both the high-res multi-view and the low-res many-view scenarios.

Methods with suffix _ROB may participate in the Robust Vision Challenge.

Click a dataset result cell to show a visualization of the reconstruction. For training datasets, ground truth and accuracy / completeness visualizations are also available. The visualizations may not work with mobile browsers.




Method Infoallhigh-res
multi-view
indooroutdoorbotani.boulde.bridgedoorexhibi.lectur.living.loungeobserv.old co.statueterrac.
sort bysorted bysort bysort bysort bysort bysort bysort bysort bysort bysort bysort bysort bysort bysort bysort by
AdaColmapbinary97.23 10196.80 10898.51 10799.99 195.60 16599.09 25298.84 5893.32 16796.74 17099.72 8386.04 222100.00 198.01 11899.43 11199.94 74
CNVR-MVS99.40 199.26 199.84 699.98 299.51 699.98 1598.69 6898.20 799.93 199.98 296.82 22100.00 199.75 28100.00 199.99 23
MCST-MVS99.32 399.14 499.86 599.97 399.59 599.97 2898.64 7698.47 299.13 8699.92 1396.38 30100.00 199.74 30100.00 1100.00 1
mPP-MVS98.39 4798.20 4698.97 7599.97 396.92 11399.95 5398.38 15995.04 9998.61 11399.80 5193.39 101100.00 198.64 91100.00 199.98 48
CPTT-MVS97.64 8497.32 8798.58 9999.97 395.77 15499.96 3598.35 16589.90 27398.36 12399.79 5791.18 15799.99 3698.37 10299.99 2199.99 23
DP-MVS Recon98.41 4598.02 5799.56 2599.97 398.70 4799.92 7998.44 12392.06 21898.40 12299.84 4195.68 40100.00 198.19 10899.71 8499.97 58
PAPR98.52 3598.16 4999.58 2499.97 398.77 4199.95 5398.43 13195.35 9398.03 13599.75 7194.03 8799.98 4398.11 11399.83 7399.99 23
HFP-MVS98.56 3298.37 3699.14 6099.96 897.43 9599.95 5398.61 8294.77 10799.31 7799.85 3094.22 80100.00 198.70 8699.98 3299.98 48
region2R98.54 3398.37 3699.05 6799.96 897.18 10299.96 3598.55 9894.87 10599.45 6599.85 3094.07 86100.00 198.67 88100.00 199.98 48
ACMMPR98.50 3698.32 4099.05 6799.96 897.18 10299.95 5398.60 8494.77 10799.31 7799.84 4193.73 96100.00 198.70 8699.98 3299.98 48
NCCC99.37 299.25 299.71 1499.96 899.15 2199.97 2898.62 8198.02 1399.90 399.95 397.33 16100.00 199.54 39100.00 1100.00 1
CP-MVS98.45 4098.32 4098.87 8099.96 896.62 12299.97 2898.39 15594.43 12098.90 9599.87 2494.30 78100.00 199.04 6399.99 2199.99 23
test_one_060199.94 1399.30 1298.41 14896.63 5699.75 3099.93 1197.49 9
test_0728_SECOND99.82 799.94 1399.47 799.95 5398.43 131100.00 199.99 5100.00 1100.00 1
XVS98.70 2698.55 2599.15 5899.94 1397.50 9199.94 6998.42 14396.22 7399.41 6999.78 6194.34 7699.96 6198.92 7099.95 4999.99 23
X-MVStestdata93.83 21292.06 24599.15 5899.94 1397.50 9199.94 6998.42 14396.22 7399.41 6941.37 40894.34 7699.96 6198.92 7099.95 4999.99 23
test_prior99.43 3599.94 1398.49 5998.65 7499.80 12199.99 23
MSLP-MVS++99.13 899.01 1199.49 3299.94 1398.46 6099.98 1598.86 5397.10 4099.80 1899.94 495.92 36100.00 199.51 40100.00 1100.00 1
APDe-MVScopyleft99.06 1198.91 1499.51 2999.94 1398.76 4499.91 8498.39 15597.20 3899.46 6499.85 3095.53 4499.79 12399.86 21100.00 199.99 23
Zhaojie Zeng, Yuesong Wang, Tao Guan: Matching Ambiguity-Resilient Multi-View Stereo via Adaptive Patch Deformation. Pattern Recognition
MP-MVScopyleft98.23 5797.97 5999.03 6999.94 1397.17 10599.95 5398.39 15594.70 11198.26 12999.81 5091.84 148100.00 198.85 7899.97 4299.93 76
Rongxuan Tan, Qing Wang, et al.: MP-MVS: Multi-Scale Windows PatchMatch and Planar Prior Multi-View Stereo.
CDPH-MVS98.65 2898.36 3899.49 3299.94 1398.73 4599.87 10698.33 17093.97 14599.76 2999.87 2494.99 5899.75 13298.55 95100.00 199.98 48
PAPM_NR98.12 6097.93 6498.70 8899.94 1396.13 14499.82 13698.43 13194.56 11597.52 14899.70 8794.40 7199.98 4397.00 15299.98 3299.99 23
MG-MVS98.91 1898.65 2099.68 1599.94 1399.07 2499.64 18699.44 2097.33 3199.00 9199.72 8394.03 8799.98 4398.73 85100.00 1100.00 1
SED-MVS99.28 599.11 799.77 899.93 2499.30 1299.96 3598.43 13197.27 3499.80 1899.94 496.71 23100.00 1100.00 1100.00 1100.00 1
IU-MVS99.93 2499.31 1098.41 14897.71 1999.84 12100.00 1100.00 1100.00 1
test_241102_ONE99.93 2499.30 1298.43 13197.26 3699.80 1899.88 2196.71 23100.00 1
DVP-MVScopyleft99.30 499.16 399.73 1299.93 2499.29 1599.95 5398.32 17297.28 3299.83 1399.91 1497.22 18100.00 199.99 5100.00 199.89 84
Zhenlong Yuan, Jinguo Luo, Fei Shen, Zhaoxin Li, Cong Liu, Tianlu Mao, Zhaoqi Wang: DVP-MVS: Synergize Depth-Edge and Visibility Prior for Multi-View Stereo. AAAI2025
test072699.93 2499.29 1599.96 3598.42 14397.28 3299.86 799.94 497.22 18
MSP-MVS99.09 999.12 598.98 7499.93 2497.24 9999.95 5398.42 14397.50 2699.52 6099.88 2197.43 1599.71 13899.50 4199.98 32100.00 1
Zhenlong Yuan, Cong Liu, Fei Shen, Zhaoxin Li, Jingguo luo, Tianlu Mao and Zhaoqi Wang: MSP-MVS: Multi-granularity Segmentation Prior Guided Multi-View Stereo. AAAI2025
agg_prior99.93 2498.77 4198.43 13199.63 4499.85 108
FOURS199.92 3197.66 8499.95 5398.36 16395.58 8799.52 60
ZD-MVS99.92 3198.57 5598.52 10492.34 21099.31 7799.83 4395.06 5399.80 12199.70 3499.97 42
GST-MVS98.27 5297.97 5999.17 5499.92 3197.57 8699.93 7698.39 15594.04 14398.80 10099.74 7892.98 116100.00 198.16 11099.76 8199.93 76
TEST999.92 3198.92 2999.96 3598.43 13193.90 15099.71 3599.86 2695.88 3799.85 108
train_agg98.88 1998.65 2099.59 2399.92 3198.92 2999.96 3598.43 13194.35 12599.71 3599.86 2695.94 3499.85 10899.69 3599.98 3299.99 23
test_899.92 3198.88 3299.96 3598.43 13194.35 12599.69 3799.85 3095.94 3499.85 108
PGM-MVS98.34 4898.13 5198.99 7399.92 3197.00 10999.75 15699.50 1893.90 15099.37 7499.76 6593.24 110100.00 197.75 13699.96 4699.98 48
ACMMPcopyleft97.74 7997.44 8198.66 9199.92 3196.13 14499.18 24799.45 1994.84 10696.41 18099.71 8591.40 15199.99 3697.99 12098.03 15899.87 87
Qingshan Xu, Weihang Kong, Wenbing Tao, Marc Pollefeys: Multi-Scale Geometric Consistency Guided and Planar Prior Assisted Multi-View Stereo. IEEE Transactions on Pattern Analysis and Machine Intelligence
DVP-MVS++99.26 699.09 999.77 899.91 3999.31 1099.95 5398.43 13196.48 6199.80 1899.93 1197.44 13100.00 199.92 1299.98 32100.00 1
MSC_two_6792asdad99.93 299.91 3999.80 298.41 148100.00 199.96 9100.00 1100.00 1
No_MVS99.93 299.91 3999.80 298.41 148100.00 199.96 9100.00 1100.00 1
HPM-MVS++copyleft99.07 1098.88 1699.63 1799.90 4299.02 2599.95 5398.56 9297.56 2599.44 6699.85 3095.38 47100.00 199.31 5199.99 2199.87 87
APD-MVScopyleft98.62 2998.35 3999.41 3899.90 4298.51 5899.87 10698.36 16394.08 13899.74 3299.73 8094.08 8599.74 13499.42 4799.99 2199.99 23
Yuesong Wang, Zhaojie Zeng and etc.: Adaptive Patch Deformation for Textureless-Resilient Multi-View Stereo. CVPR2023
DeepC-MVS_fast96.59 198.81 2398.54 2699.62 2099.90 4298.85 3599.24 24298.47 11598.14 1099.08 8799.91 1493.09 113100.00 199.04 6399.99 21100.00 1
Andreas Kuhn, Christian Sormann, Mattia Rossi, Oliver Erdler, Friedrich Fraundorfer: DeepC-MVS: Deep Confidence Prediction for Multi-View Stereo Reconstruction. 3DV 2020
OPU-MVS99.93 299.89 4599.80 299.96 3599.80 5197.44 13100.00 1100.00 199.98 32100.00 1
DPE-MVScopyleft99.26 699.10 899.74 1199.89 4599.24 1999.87 10698.44 12397.48 2799.64 4399.94 496.68 2599.99 3699.99 5100.00 199.99 23
Kehua Chen, Zhenlong Yuan, Tianlu Mao, Zhaoqi Wang: Dual-Level Precision Edges Guided Multi-View Stereo with Accurate Planarization. AAAI2025
test_part299.89 4599.25 1899.49 63
CSCG97.10 10697.04 9897.27 18299.89 4591.92 26699.90 9199.07 3488.67 29695.26 20299.82 4693.17 11299.98 4398.15 11199.47 10599.90 83
ZNCC-MVS98.31 4998.03 5699.17 5499.88 4997.59 8599.94 6998.44 12394.31 12898.50 11799.82 4693.06 11499.99 3698.30 10699.99 2199.93 76
SR-MVS98.46 3998.30 4398.93 7899.88 4997.04 10899.84 12698.35 16594.92 10399.32 7699.80 5193.35 10399.78 12599.30 5299.95 4999.96 64
9.1498.38 3499.87 5199.91 8498.33 17093.22 17099.78 2799.89 1994.57 6899.85 10899.84 2299.97 42
SMA-MVScopyleft98.76 2498.48 2999.62 2099.87 5198.87 3399.86 11898.38 15993.19 17199.77 2899.94 495.54 42100.00 199.74 3099.99 21100.00 1
Yufeng Yin; Xiaoyan Liu; Zichao Zhang: SMA-MVS: Segmentation-Guided Multi-Scale Anchor Deformation Patch Multi-View Stereo. IEEE Transactions on Circuits and Systems for Video Technology
PHI-MVS98.41 4598.21 4599.03 6999.86 5397.10 10799.98 1598.80 6290.78 25999.62 4799.78 6195.30 48100.00 199.80 2599.93 6099.99 23
MTAPA98.29 5197.96 6299.30 4399.85 5497.93 7499.39 22398.28 17995.76 8297.18 15899.88 2192.74 124100.00 198.67 8899.88 6999.99 23
LS3D95.84 15995.11 16998.02 13699.85 5495.10 18698.74 29498.50 11287.22 31793.66 22099.86 2687.45 20599.95 6990.94 25999.81 7999.02 202
HPM-MVScopyleft97.96 6397.72 7198.68 8999.84 5696.39 13199.90 9198.17 19192.61 19598.62 11299.57 10991.87 14799.67 14598.87 7799.99 2199.99 23
Chunlin Ren, Qingshan Xu, Shikun Zhang, Jiaqi Yang: Hierarchical Prior Mining for Non-local Multi-View Stereo. ICCV 2023
EI-MVSNet-Vis-set98.27 5298.11 5398.75 8699.83 5796.59 12499.40 21998.51 10795.29 9598.51 11699.76 6593.60 10099.71 13898.53 9699.52 10099.95 71
save fliter99.82 5898.79 3999.96 3598.40 15297.66 21
PLCcopyleft95.54 397.93 6597.89 6798.05 13599.82 5894.77 19699.92 7998.46 11793.93 14897.20 15799.27 13595.44 4699.97 5397.41 14199.51 10399.41 165
Jie Liao, Yanping Fu, Qingan Yan, Chunxia xiao: Pyramid Multi-View Stereo with Local Consistency. Pacific Graphics 2019
APD-MVS_3200maxsize98.25 5598.08 5598.78 8399.81 6096.60 12399.82 13698.30 17793.95 14799.37 7499.77 6392.84 12099.76 13198.95 6799.92 6399.97 58
EI-MVSNet-UG-set98.14 5997.99 5898.60 9699.80 6196.27 13499.36 22898.50 11295.21 9798.30 12699.75 7193.29 10799.73 13798.37 10299.30 11799.81 94
SR-MVS-dyc-post98.31 4998.17 4898.71 8799.79 6296.37 13299.76 15398.31 17494.43 12099.40 7199.75 7193.28 10899.78 12598.90 7599.92 6399.97 58
RE-MVS-def98.13 5199.79 6296.37 13299.76 15398.31 17494.43 12099.40 7199.75 7192.95 11798.90 7599.92 6399.97 58
HPM-MVS_fast97.80 7497.50 7998.68 8999.79 6296.42 12799.88 10398.16 19591.75 22898.94 9399.54 11291.82 14999.65 14797.62 13999.99 2199.99 23
SF-MVS98.67 2798.40 3299.50 3099.77 6598.67 4899.90 9198.21 18693.53 16099.81 1599.89 1994.70 6699.86 10799.84 2299.93 6099.96 64
旧先验199.76 6697.52 8898.64 7699.85 3095.63 4199.94 5499.99 23
OMC-MVS97.28 9897.23 9097.41 17399.76 6693.36 23599.65 18297.95 21496.03 7797.41 15299.70 8789.61 18199.51 15396.73 16198.25 15099.38 167
新几何199.42 3799.75 6898.27 6298.63 8092.69 19099.55 5599.82 4694.40 71100.00 191.21 25199.94 5499.99 23
MP-MVS-pluss98.07 6297.64 7499.38 4299.74 6998.41 6199.74 15998.18 19093.35 16596.45 17799.85 3092.64 12699.97 5398.91 7499.89 6799.77 101
MP-MVS-pluss: MP-MVS-pluss. MP-MVS-pluss
TSAR-MVS + MP.98.93 1698.77 1899.41 3899.74 6998.67 4899.77 14898.38 15996.73 5399.88 699.74 7894.89 6099.59 14999.80 2599.98 3299.97 58
Zhenlong Yuan, Jiakai Cao, Zhaoqi Wang, Zhaoxin Li: TSAR-MVS: Textureless-aware Segmentation and Correlative Refinement Guided Multi-View Stereo. Pattern Recognition
test1299.43 3599.74 6998.56 5698.40 15299.65 4194.76 6399.75 13299.98 3299.99 23
原ACMM198.96 7699.73 7296.99 11098.51 10794.06 14199.62 4799.85 3094.97 5999.96 6195.11 18199.95 4999.92 81
TSAR-MVS + GP.98.60 3098.51 2898.86 8199.73 7296.63 12199.97 2897.92 21998.07 1198.76 10499.55 11095.00 5799.94 7799.91 1597.68 16399.99 23
CANet98.27 5297.82 6999.63 1799.72 7499.10 2399.98 1598.51 10797.00 4398.52 11599.71 8587.80 20099.95 6999.75 2899.38 11399.83 91
F-COLMAP96.93 11696.95 10196.87 19299.71 7591.74 27199.85 12197.95 21493.11 17495.72 19599.16 14692.35 13699.94 7795.32 17999.35 11598.92 205
SD-MVS98.92 1798.70 1999.56 2599.70 7698.73 4599.94 6998.34 16996.38 6799.81 1599.76 6594.59 6799.98 4399.84 2299.96 4699.97 58
Zhenlong Yuan, Jiakai Cao, Zhaoxin Li, Hao Jiang and Zhaoqi Wang: SD-MVS: Segmentation-driven Deformation Multi-View Stereo with Spherical Refinement and EM optimization. AAAI2024
patch_mono-298.24 5699.12 595.59 22599.67 7786.91 34499.95 5398.89 4997.60 2299.90 399.76 6596.54 2899.98 4399.94 1199.82 7799.88 85
ACMMP_NAP98.49 3798.14 5099.54 2799.66 7898.62 5499.85 12198.37 16294.68 11299.53 5899.83 4392.87 119100.00 198.66 9099.84 7299.99 23
DeepPCF-MVS95.94 297.71 8298.98 1293.92 28899.63 7981.76 37199.96 3598.56 9299.47 199.19 8499.99 194.16 84100.00 199.92 1299.93 60100.00 1
EPNet98.49 3798.40 3298.77 8599.62 8096.80 11899.90 9199.51 1797.60 2299.20 8299.36 12993.71 9799.91 8997.99 12098.71 13899.61 130
Wanjuan Su, Wenbing Tao: Efficient Edge-Preserving Multi-View Stereo Network for Depth Estimation. AAAI 2023
MM98.83 2198.53 2799.76 1099.59 8199.33 899.99 599.76 698.39 399.39 7399.80 5190.49 17199.96 6199.89 1699.43 11199.98 48
PVSNet_BlendedMVS96.05 15395.82 14896.72 19799.59 8196.99 11099.95 5399.10 3194.06 14198.27 12795.80 29289.00 19299.95 6999.12 5887.53 28593.24 343
PVSNet_Blended97.94 6497.64 7498.83 8299.59 8196.99 110100.00 199.10 3195.38 9298.27 12799.08 14989.00 19299.95 6999.12 5899.25 11999.57 140
PatchMatch-RL96.04 15495.40 15897.95 13999.59 8195.22 18299.52 20499.07 3493.96 14696.49 17698.35 21782.28 25199.82 12090.15 27599.22 12298.81 212
dcpmvs_297.42 9398.09 5495.42 23099.58 8587.24 34099.23 24396.95 31394.28 13098.93 9499.73 8094.39 7499.16 17599.89 1699.82 7799.86 89
test22299.55 8697.41 9799.34 22998.55 9891.86 22399.27 8199.83 4393.84 9499.95 4999.99 23
CNLPA97.76 7897.38 8398.92 7999.53 8796.84 11599.87 10698.14 19993.78 15396.55 17599.69 8992.28 13899.98 4397.13 14899.44 10999.93 76
API-MVS97.86 6897.66 7398.47 10999.52 8895.41 17399.47 21398.87 5291.68 22998.84 9799.85 3092.34 13799.99 3698.44 9999.96 46100.00 1
PVSNet91.05 1397.13 10596.69 11398.45 11199.52 8895.81 15299.95 5399.65 1294.73 10999.04 8999.21 14284.48 23799.95 6994.92 18798.74 13799.58 139
114514_t97.41 9496.83 10699.14 6099.51 9097.83 7699.89 9998.27 18188.48 30099.06 8899.66 9890.30 17399.64 14896.32 16599.97 4299.96 64
cl2293.77 21693.25 21995.33 23499.49 9194.43 20099.61 19098.09 20190.38 26489.16 28895.61 29990.56 16997.34 27891.93 24384.45 30694.21 289
testdata98.42 11499.47 9295.33 17698.56 9293.78 15399.79 2699.85 3093.64 9999.94 7794.97 18599.94 54100.00 1
MAR-MVS97.43 8997.19 9298.15 12899.47 9294.79 19599.05 26398.76 6392.65 19398.66 11099.82 4688.52 19799.98 4398.12 11299.63 8999.67 116
Zhenyu Xu, Yiguang Liu, Xuelei Shi, Ying Wang, Yunan Zheng: MARMVS: Matching Ambiguity Reduced Multiple View Stereo for Efficient Large Scale Scene Reconstruction. CVPR 2020
DP-MVS94.54 19393.42 21297.91 14499.46 9494.04 21398.93 27597.48 25981.15 36790.04 26199.55 11087.02 21199.95 6988.97 28598.11 15499.73 105
MVS_111021_LR98.42 4498.38 3498.53 10699.39 9595.79 15399.87 10699.86 296.70 5498.78 10199.79 5792.03 14499.90 9199.17 5799.86 7199.88 85
CHOSEN 280x42099.01 1399.03 1098.95 7799.38 9698.87 3398.46 31199.42 2297.03 4299.02 9099.09 14899.35 198.21 24299.73 3299.78 8099.77 101
MVS_111021_HR98.72 2598.62 2299.01 7299.36 9797.18 10299.93 7699.90 196.81 5198.67 10999.77 6393.92 8999.89 9699.27 5399.94 5499.96 64
DPM-MVS98.83 2198.46 3099.97 199.33 9899.92 199.96 3598.44 12397.96 1499.55 5599.94 497.18 20100.00 193.81 21599.94 5499.98 48
TAPA-MVS92.12 894.42 19893.60 20596.90 19199.33 9891.78 27099.78 14598.00 20889.89 27494.52 20899.47 11691.97 14599.18 17369.90 38199.52 10099.73 105
Andrea Romanoni, Matteo Matteucci: TAPA-MVS: Textureless-Aware PAtchMatch Multi-View Stereo. ICCV 2019
CS-MVS-test97.88 6797.94 6397.70 15799.28 10095.20 18399.98 1597.15 29295.53 8999.62 4799.79 5792.08 14398.38 22598.75 8499.28 11899.52 150
test_fmvsm_n_192098.44 4198.61 2397.92 14299.27 10195.18 184100.00 198.90 4798.05 1299.80 1899.73 8092.64 12699.99 3699.58 3899.51 10398.59 222
fmvsm_l_conf0.5_n_a99.00 1498.91 1499.28 4499.21 10297.91 7599.98 1598.85 5698.25 499.92 299.75 7194.72 6499.97 5399.87 1999.64 8899.95 71
test_yl97.83 7097.37 8499.21 4899.18 10397.98 7199.64 18699.27 2791.43 23897.88 14198.99 15895.84 3899.84 11698.82 7995.32 21699.79 97
DCV-MVSNet97.83 7097.37 8499.21 4899.18 10397.98 7199.64 18699.27 2791.43 23897.88 14198.99 15895.84 3899.84 11698.82 7995.32 21699.79 97
MVS_030498.87 2098.61 2399.67 1699.18 10399.13 2299.87 10699.65 1298.17 898.75 10699.75 7192.76 12399.94 7799.88 1899.44 10999.94 74
fmvsm_l_conf0.5_n98.94 1598.84 1799.25 4599.17 10697.81 7899.98 1598.86 5398.25 499.90 399.76 6594.21 8299.97 5399.87 1999.52 10099.98 48
DeepC-MVS94.51 496.92 11796.40 12398.45 11199.16 10795.90 15099.66 18098.06 20496.37 7094.37 21199.49 11583.29 24799.90 9197.63 13899.61 9499.55 142
Andreas Kuhn, Christian Sormann, Mattia Rossi, Oliver Erdler, Friedrich Fraundorfer: DeepC-MVS: Deep Confidence Prediction for Multi-View Stereo Reconstruction. 3DV 2020
DELS-MVS98.54 3398.22 4499.50 3099.15 10898.65 52100.00 198.58 8797.70 2098.21 13199.24 14092.58 12999.94 7798.63 9399.94 5499.92 81
Christian Sormann, Emanuele Santellani, Mattia Rossi, Andreas Kuhn, Friedrich Fraundorfer: DELS-MVS: Deep Epipolar Line Search for Multi-View Stereo. Winter Conference on Applications of Computer Vision (WACV), 2023
CS-MVS97.79 7697.91 6597.43 17299.10 10994.42 20199.99 597.10 29795.07 9899.68 3899.75 7192.95 11798.34 22998.38 10199.14 12499.54 146
Anonymous20240521193.10 23491.99 24696.40 20799.10 10989.65 31598.88 28097.93 21683.71 35494.00 21798.75 18768.79 34899.88 10295.08 18391.71 24599.68 112
fmvsm_s_conf0.5_n97.80 7497.85 6897.67 15899.06 11194.41 20299.98 1598.97 4097.34 2999.63 4499.69 8987.27 20799.97 5399.62 3799.06 12898.62 221
HyFIR lowres test96.66 13196.43 12297.36 17899.05 11293.91 21899.70 17499.80 390.54 26296.26 18398.08 22492.15 14198.23 24196.84 16095.46 21199.93 76
LFMVS94.75 18793.56 20898.30 12099.03 11395.70 15998.74 29497.98 21187.81 31098.47 11899.39 12667.43 35799.53 15098.01 11895.20 21999.67 116
AllTest92.48 24891.64 25195.00 24499.01 11488.43 32998.94 27496.82 32886.50 32688.71 29498.47 21374.73 32499.88 10285.39 32396.18 19396.71 249
TestCases95.00 24499.01 11488.43 32996.82 32886.50 32688.71 29498.47 21374.73 32499.88 10285.39 32396.18 19396.71 249
COLMAP_ROBcopyleft90.47 1492.18 25591.49 25794.25 27699.00 11688.04 33598.42 31696.70 33582.30 36388.43 30199.01 15576.97 30099.85 10886.11 31996.50 18894.86 260
Johannes L. Schönberger, Enliang Zheng, Marc Pollefeys, Jan-Michael Frahm: Pixelwise View Selection for Unstructured Multi-View Stereo. ECCV 2016
test_fmvs195.35 17395.68 15394.36 27398.99 11784.98 35399.96 3596.65 33797.60 2299.73 3398.96 16471.58 33799.93 8598.31 10599.37 11498.17 229
HY-MVS92.50 797.79 7697.17 9499.63 1798.98 11899.32 997.49 34099.52 1595.69 8498.32 12597.41 24393.32 10599.77 12898.08 11695.75 20799.81 94
VNet97.21 10296.57 11899.13 6498.97 11997.82 7799.03 26699.21 2994.31 12899.18 8598.88 17586.26 22199.89 9698.93 6994.32 22899.69 111
thres20096.96 11496.21 12899.22 4798.97 11998.84 3699.85 12199.71 793.17 17296.26 18398.88 17589.87 17899.51 15394.26 20594.91 22199.31 177
tfpn200view996.79 12195.99 13399.19 5098.94 12198.82 3799.78 14599.71 792.86 18096.02 18898.87 17889.33 18599.50 15593.84 21294.57 22499.27 183
thres40096.78 12395.99 13399.16 5698.94 12198.82 3799.78 14599.71 792.86 18096.02 18898.87 17889.33 18599.50 15593.84 21294.57 22499.16 190
sasdasda97.09 10896.32 12499.39 4098.93 12398.95 2799.72 16797.35 27094.45 11797.88 14199.42 12086.71 21499.52 15198.48 9793.97 23499.72 107
Anonymous2023121189.86 30488.44 31194.13 27998.93 12390.68 29398.54 30898.26 18276.28 37986.73 32295.54 30370.60 34397.56 27190.82 26280.27 34194.15 297
canonicalmvs97.09 10896.32 12499.39 4098.93 12398.95 2799.72 16797.35 27094.45 11797.88 14199.42 12086.71 21499.52 15198.48 9793.97 23499.72 107
SDMVSNet94.80 18393.96 19697.33 18098.92 12695.42 17299.59 19298.99 3792.41 20792.55 23597.85 23375.81 31498.93 18497.90 12691.62 24697.64 240
sd_testset93.55 22392.83 22795.74 22398.92 12690.89 29098.24 32298.85 5692.41 20792.55 23597.85 23371.07 34298.68 20193.93 20991.62 24697.64 240
EPNet_dtu95.71 16395.39 15996.66 19998.92 12693.41 23299.57 19698.90 4796.19 7597.52 14898.56 20592.65 12597.36 27677.89 36498.33 14599.20 188
Wanjuan Su, Wenbing Tao: Efficient Edge-Preserving Multi-View Stereo Network for Depth Estimation. AAAI 2023
WTY-MVS98.10 6197.60 7699.60 2298.92 12699.28 1799.89 9999.52 1595.58 8798.24 13099.39 12693.33 10499.74 13497.98 12295.58 21099.78 100
CHOSEN 1792x268896.81 12096.53 11997.64 16098.91 13093.07 23799.65 18299.80 395.64 8595.39 19998.86 18084.35 24099.90 9196.98 15499.16 12399.95 71
thres100view90096.74 12695.92 14499.18 5198.90 13198.77 4199.74 15999.71 792.59 19795.84 19198.86 18089.25 18799.50 15593.84 21294.57 22499.27 183
thres600view796.69 12995.87 14799.14 6098.90 13198.78 4099.74 15999.71 792.59 19795.84 19198.86 18089.25 18799.50 15593.44 22494.50 22799.16 190
MSDG94.37 20093.36 21697.40 17498.88 13393.95 21799.37 22697.38 26885.75 33790.80 25499.17 14584.11 24299.88 10286.35 31698.43 14398.36 227
h-mvs3394.92 18194.36 18596.59 20198.85 13491.29 28298.93 27598.94 4195.90 7898.77 10298.42 21690.89 16599.77 12897.80 12970.76 37598.72 218
Anonymous2024052992.10 25690.65 26796.47 20298.82 13590.61 29598.72 29698.67 7375.54 38393.90 21998.58 20366.23 36199.90 9194.70 19690.67 24898.90 208
PVSNet_Blended_VisFu97.27 9996.81 10798.66 9198.81 13696.67 12099.92 7998.64 7694.51 11696.38 18198.49 20989.05 19199.88 10297.10 15098.34 14499.43 163
PS-MVSNAJ98.44 4198.20 4699.16 5698.80 13798.92 2999.54 20298.17 19197.34 2999.85 999.85 3091.20 15499.89 9699.41 4899.67 8698.69 219
CANet_DTU96.76 12496.15 12998.60 9698.78 13897.53 8799.84 12697.63 23897.25 3799.20 8299.64 10181.36 26099.98 4392.77 23598.89 13198.28 228
mvsany_test197.82 7297.90 6697.55 16598.77 13993.04 24099.80 14297.93 21696.95 4599.61 5399.68 9590.92 16299.83 11899.18 5698.29 14999.80 96
alignmvs97.81 7397.33 8699.25 4598.77 13998.66 5099.99 598.44 12394.40 12498.41 12099.47 11693.65 9899.42 16398.57 9494.26 23099.67 116
SteuartSystems-ACMMP99.02 1298.97 1399.18 5198.72 14197.71 8099.98 1598.44 12396.85 4699.80 1899.91 1497.57 799.85 10899.44 4699.99 2199.99 23
Skip Steuart: Steuart Systems R&D Blog.
xiu_mvs_v2_base98.23 5797.97 5999.02 7198.69 14298.66 5099.52 20498.08 20397.05 4199.86 799.86 2690.65 16799.71 13899.39 5098.63 13998.69 219
miper_enhance_ethall94.36 20293.98 19595.49 22698.68 14395.24 18099.73 16497.29 27993.28 16989.86 26695.97 29094.37 7597.05 29992.20 23984.45 30694.19 290
ETVMVS97.03 11296.64 11498.20 12498.67 14497.12 10699.89 9998.57 8991.10 24998.17 13298.59 20093.86 9398.19 24395.64 17695.24 21899.28 182
test250697.53 8697.19 9298.58 9998.66 14596.90 11498.81 28999.77 594.93 10197.95 13798.96 16492.51 13199.20 17094.93 18698.15 15199.64 122
ECVR-MVScopyleft95.66 16695.05 17197.51 16898.66 14593.71 22298.85 28698.45 11894.93 10196.86 16698.96 16475.22 32099.20 17095.34 17898.15 15199.64 122
fmvsm_s_conf0.5_n_a97.73 8197.72 7197.77 15298.63 14794.26 20799.96 3598.92 4697.18 3999.75 3099.69 8987.00 21299.97 5399.46 4498.89 13199.08 198
iter_conf05_1196.12 15095.46 15698.10 13098.62 14895.52 168100.00 196.30 34996.54 6099.81 1599.80 5169.19 34799.10 17798.92 7099.91 6699.68 112
bld_raw_dy_0_6494.22 20692.97 22397.98 13798.62 14895.09 18799.89 9993.09 39096.55 5992.59 23399.80 5168.57 35199.19 17298.92 7088.69 26599.68 112
testing22297.08 11196.75 11098.06 13498.56 15096.82 11699.85 12198.61 8292.53 20198.84 9798.84 18493.36 10298.30 23395.84 17394.30 22999.05 200
test111195.57 16894.98 17497.37 17698.56 15093.37 23498.86 28498.45 11894.95 10096.63 17298.95 16975.21 32199.11 17695.02 18498.14 15399.64 122
MVSTER95.53 16995.22 16596.45 20498.56 15097.72 7999.91 8497.67 23692.38 20991.39 24697.14 25097.24 1797.30 28294.80 19287.85 28094.34 281
VDD-MVS93.77 21692.94 22496.27 21198.55 15390.22 30498.77 29397.79 23090.85 25596.82 16899.42 12061.18 37899.77 12898.95 6794.13 23198.82 211
tpmvs94.28 20493.57 20796.40 20798.55 15391.50 28095.70 37498.55 9887.47 31292.15 23994.26 34991.42 15098.95 18388.15 29595.85 20398.76 214
UGNet95.33 17494.57 18297.62 16398.55 15394.85 19198.67 30299.32 2695.75 8396.80 16996.27 28172.18 33499.96 6194.58 19999.05 12998.04 233
Wanjuan Su, Qingshan Xu, Wenbing Tao: Uncertainty-guided Multi-view Stereo Network for Depth Estimation. IEEE Transactions on Circuits and Systems for Video Technology, 2022
PCF-MVS94.20 595.18 17594.10 19298.43 11398.55 15395.99 14897.91 33597.31 27690.35 26689.48 27799.22 14185.19 23099.89 9690.40 27298.47 14299.41 165
Andreas Kuhn, Shan Lin, Oliver Erdler: Plane Completion and Filtering for Multi-View Stereo Reconstruction. GCPR 2019
UWE-MVS96.79 12196.72 11197.00 18798.51 15793.70 22399.71 17098.60 8492.96 17697.09 15998.34 21896.67 2798.85 18792.11 24196.50 18898.44 224
test_vis1_n_192095.44 17195.31 16295.82 22198.50 15888.74 32399.98 1597.30 27797.84 1699.85 999.19 14366.82 35999.97 5398.82 7999.46 10798.76 214
BH-w/o95.71 16395.38 16096.68 19898.49 15992.28 25799.84 12697.50 25792.12 21592.06 24298.79 18584.69 23598.67 20295.29 18099.66 8799.09 196
baseline195.78 16094.86 17698.54 10498.47 16098.07 6699.06 25997.99 20992.68 19194.13 21698.62 19993.28 10898.69 20093.79 21785.76 29498.84 210
iter_conf0596.07 15295.95 14196.44 20698.43 16197.52 8899.91 8496.85 32494.16 13492.49 23797.98 23098.20 497.34 27897.26 14588.29 27394.45 271
EPMVS96.53 13596.01 13298.09 13298.43 16196.12 14696.36 36199.43 2193.53 16097.64 14695.04 32794.41 7098.38 22591.13 25398.11 15499.75 103
sss97.57 8597.03 9999.18 5198.37 16398.04 6899.73 16499.38 2393.46 16298.76 10499.06 15191.21 15399.89 9696.33 16497.01 18099.62 127
testing1197.48 8897.27 8898.10 13098.36 16496.02 14799.92 7998.45 11893.45 16498.15 13398.70 19095.48 4599.22 16697.85 12895.05 22099.07 199
BH-untuned95.18 17594.83 17796.22 21298.36 16491.22 28399.80 14297.32 27590.91 25391.08 25098.67 19283.51 24498.54 20894.23 20699.61 9498.92 205
testing9197.16 10496.90 10397.97 13898.35 16695.67 16299.91 8498.42 14392.91 17997.33 15498.72 18894.81 6299.21 16796.98 15494.63 22399.03 201
testing9997.17 10396.91 10297.95 13998.35 16695.70 15999.91 8498.43 13192.94 17797.36 15398.72 18894.83 6199.21 16797.00 15294.64 22298.95 204
ET-MVSNet_ETH3D94.37 20093.28 21897.64 16098.30 16897.99 7099.99 597.61 24394.35 12571.57 38699.45 11996.23 3195.34 35696.91 15985.14 30199.59 133
AUN-MVS93.28 22892.60 23395.34 23398.29 16990.09 30799.31 23398.56 9291.80 22796.35 18298.00 22789.38 18498.28 23692.46 23669.22 38097.64 240
FMVSNet392.69 24491.58 25395.99 21698.29 16997.42 9699.26 24197.62 24089.80 27589.68 27095.32 31781.62 25896.27 33687.01 31285.65 29594.29 283
PMMVS96.76 12496.76 10996.76 19598.28 17192.10 26199.91 8497.98 21194.12 13699.53 5899.39 12686.93 21398.73 19596.95 15797.73 16199.45 160
hse-mvs294.38 19994.08 19395.31 23598.27 17290.02 30999.29 23898.56 9295.90 7898.77 10298.00 22790.89 16598.26 24097.80 12969.20 38197.64 240
PVSNet_088.03 1991.80 26390.27 27696.38 20998.27 17290.46 29999.94 6999.61 1493.99 14486.26 33297.39 24571.13 34199.89 9698.77 8267.05 38698.79 213
UA-Net96.54 13495.96 13998.27 12198.23 17495.71 15898.00 33398.45 11893.72 15698.41 12099.27 13588.71 19699.66 14691.19 25297.69 16299.44 162
test_cas_vis1_n_192096.59 13396.23 12797.65 15998.22 17594.23 20899.99 597.25 28397.77 1799.58 5499.08 14977.10 29799.97 5397.64 13799.45 10898.74 216
FE-MVS95.70 16595.01 17397.79 14998.21 17694.57 19795.03 37598.69 6888.90 29197.50 15096.19 28392.60 12899.49 15989.99 27797.94 16099.31 177
GG-mvs-BLEND98.54 10498.21 17698.01 6993.87 38098.52 10497.92 13897.92 23299.02 297.94 25998.17 10999.58 9799.67 116
mvs_anonymous95.65 16795.03 17297.53 16698.19 17895.74 15699.33 23097.49 25890.87 25490.47 25797.10 25288.23 19897.16 29095.92 17197.66 16499.68 112
MVS_Test96.46 13795.74 14998.61 9598.18 17997.23 10099.31 23397.15 29291.07 25098.84 9797.05 25688.17 19998.97 18194.39 20197.50 16699.61 130
BH-RMVSNet95.18 17594.31 18897.80 14798.17 18095.23 18199.76 15397.53 25392.52 20394.27 21499.25 13976.84 30298.80 18990.89 26199.54 9999.35 172
RPSCF91.80 26392.79 22988.83 35198.15 18169.87 38998.11 32996.60 33983.93 35294.33 21299.27 13579.60 28099.46 16291.99 24293.16 24297.18 247
ETV-MVS97.92 6697.80 7098.25 12298.14 18296.48 12599.98 1597.63 23895.61 8699.29 8099.46 11892.55 13098.82 18899.02 6698.54 14099.46 158
IS-MVSNet96.29 14795.90 14597.45 17098.13 18394.80 19499.08 25497.61 24392.02 22095.54 19898.96 16490.64 16898.08 24893.73 22097.41 17099.47 157
test_fmvsmconf_n98.43 4398.32 4098.78 8398.12 18496.41 12899.99 598.83 5998.22 699.67 3999.64 10191.11 15899.94 7799.67 3699.62 9099.98 48
ab-mvs94.69 18893.42 21298.51 10798.07 18596.26 13596.49 35998.68 7090.31 26794.54 20797.00 25876.30 30999.71 13895.98 17093.38 24099.56 141
XVG-OURS-SEG-HR94.79 18494.70 18195.08 24198.05 18689.19 31899.08 25497.54 25193.66 15794.87 20599.58 10878.78 28899.79 12397.31 14393.40 23996.25 253
EIA-MVS97.53 8697.46 8097.76 15498.04 18794.84 19299.98 1597.61 24394.41 12397.90 13999.59 10692.40 13598.87 18598.04 11799.13 12599.59 133
XVG-OURS94.82 18294.74 18095.06 24298.00 18889.19 31899.08 25497.55 24994.10 13794.71 20699.62 10480.51 27299.74 13496.04 16993.06 24496.25 253
dp95.05 17894.43 18496.91 19097.99 18992.73 24796.29 36497.98 21189.70 27695.93 19094.67 34093.83 9598.45 21486.91 31596.53 18799.54 146
tpmrst96.27 14995.98 13597.13 18497.96 19093.15 23696.34 36298.17 19192.07 21698.71 10895.12 32593.91 9098.73 19594.91 18996.62 18599.50 154
TR-MVS94.54 19393.56 20897.49 16997.96 19094.34 20598.71 29797.51 25690.30 26894.51 20998.69 19175.56 31598.77 19292.82 23495.99 19799.35 172
Vis-MVSNet (Re-imp)96.32 14495.98 13597.35 17997.93 19294.82 19399.47 21398.15 19891.83 22495.09 20399.11 14791.37 15297.47 27493.47 22397.43 16799.74 104
MDTV_nov1_ep1395.69 15197.90 19394.15 21095.98 37098.44 12393.12 17397.98 13695.74 29495.10 5198.58 20590.02 27696.92 182
Fast-Effi-MVS+95.02 17994.19 19097.52 16797.88 19494.55 19899.97 2897.08 30088.85 29394.47 21097.96 23184.59 23698.41 21789.84 27997.10 17599.59 133
ADS-MVSNet293.80 21593.88 19993.55 30297.87 19585.94 34794.24 37696.84 32590.07 27096.43 17894.48 34590.29 17495.37 35587.44 30297.23 17299.36 170
ADS-MVSNet94.79 18494.02 19497.11 18697.87 19593.79 21994.24 37698.16 19590.07 27096.43 17894.48 34590.29 17498.19 24387.44 30297.23 17299.36 170
Effi-MVS+96.30 14695.69 15198.16 12597.85 19796.26 13597.41 34297.21 28590.37 26598.65 11198.58 20386.61 21798.70 19997.11 14997.37 17199.52 150
PatchmatchNetpermissive95.94 15695.45 15797.39 17597.83 19894.41 20296.05 36898.40 15292.86 18097.09 15995.28 32294.21 8298.07 25089.26 28398.11 15499.70 109
Fangjinhua Wang, Silvano Galliani, Christoph Vogel, Pablo Speciale, Marc Pollefeys: PatchmatchNet: Learned Multi-View Patchmatch Stereo.
cascas94.64 19193.61 20397.74 15697.82 19996.26 13599.96 3597.78 23185.76 33594.00 21797.54 24076.95 30199.21 16797.23 14695.43 21397.76 239
1112_ss96.01 15595.20 16698.42 11497.80 20096.41 12899.65 18296.66 33692.71 18892.88 23099.40 12492.16 14099.30 16491.92 24493.66 23699.55 142
Test_1112_low_res95.72 16194.83 17798.42 11497.79 20196.41 12899.65 18296.65 33792.70 18992.86 23196.13 28692.15 14199.30 16491.88 24593.64 23799.55 142
Effi-MVS+-dtu94.53 19595.30 16392.22 32497.77 20282.54 36499.59 19297.06 30294.92 10395.29 20195.37 31585.81 22397.89 26094.80 19297.07 17696.23 255
tpm cat193.51 22492.52 23896.47 20297.77 20291.47 28196.13 36698.06 20480.98 36892.91 22993.78 35389.66 17998.87 18587.03 31196.39 19199.09 196
FA-MVS(test-final)95.86 15795.09 17098.15 12897.74 20495.62 16496.31 36398.17 19191.42 24096.26 18396.13 28690.56 16999.47 16192.18 24097.07 17699.35 172
xiu_mvs_v1_base_debu97.43 8997.06 9598.55 10197.74 20498.14 6399.31 23397.86 22596.43 6499.62 4799.69 8985.56 22599.68 14299.05 6098.31 14697.83 235
xiu_mvs_v1_base97.43 8997.06 9598.55 10197.74 20498.14 6399.31 23397.86 22596.43 6499.62 4799.69 8985.56 22599.68 14299.05 6098.31 14697.83 235
xiu_mvs_v1_base_debi97.43 8997.06 9598.55 10197.74 20498.14 6399.31 23397.86 22596.43 6499.62 4799.69 8985.56 22599.68 14299.05 6098.31 14697.83 235
EPP-MVSNet96.69 12996.60 11696.96 18997.74 20493.05 23999.37 22698.56 9288.75 29495.83 19399.01 15596.01 3298.56 20696.92 15897.20 17499.25 185
gg-mvs-nofinetune93.51 22491.86 25098.47 10997.72 20997.96 7392.62 38498.51 10774.70 38697.33 15469.59 39998.91 397.79 26397.77 13499.56 9899.67 116
IB-MVS92.85 694.99 18093.94 19798.16 12597.72 20995.69 16199.99 598.81 6094.28 13092.70 23296.90 26095.08 5299.17 17496.07 16873.88 37099.60 132
Christian Sormann, Mattia Rossi, Andreas Kuhn and Friedrich Fraundorfer: IB-MVS: An Iterative Algorithm for Deep Multi-View Stereo based on Binary Decisions. BMVC 2021
thisisatest051597.41 9497.02 10098.59 9897.71 21197.52 8899.97 2898.54 10191.83 22497.45 15199.04 15297.50 899.10 17794.75 19496.37 19299.16 190
Syy-MVS90.00 30290.63 26888.11 35897.68 21274.66 38699.71 17098.35 16590.79 25792.10 24098.67 19279.10 28693.09 37863.35 39295.95 20096.59 251
myMVS_eth3d94.46 19794.76 17993.55 30297.68 21290.97 28599.71 17098.35 16590.79 25792.10 24098.67 19292.46 13493.09 37887.13 30895.95 20096.59 251
test_fmvs1_n94.25 20594.36 18593.92 28897.68 21283.70 35999.90 9196.57 34097.40 2899.67 3998.88 17561.82 37599.92 8898.23 10799.13 12598.14 232
diffmvspermissive97.00 11396.64 11498.09 13297.64 21596.17 14399.81 13897.19 28694.67 11398.95 9299.28 13286.43 21898.76 19398.37 10297.42 16999.33 175
Fangjinhua Wang, Qingshan Xu, Yew-Soon Ong, Marc Pollefeys: Lightweight and Accurate Multi-View Stereo With Confidence-Aware Diffusion Model. IEEE T-PAMI 2025
Vis-MVSNetpermissive95.72 16195.15 16897.45 17097.62 21694.28 20699.28 23998.24 18394.27 13296.84 16798.94 17179.39 28198.76 19393.25 22598.49 14199.30 179
Jingyang Zhang, Yao Yao, Shiwei Li, Zixin Luo, Tian Fang: Visibility-aware Multiview Stereo Network. BMVC 2020
thisisatest053097.10 10696.72 11198.22 12397.60 21796.70 11999.92 7998.54 10191.11 24897.07 16198.97 16297.47 1199.03 17993.73 22096.09 19598.92 205
miper_ehance_all_eth93.16 23192.60 23394.82 25197.57 21893.56 22799.50 20897.07 30188.75 29488.85 29395.52 30590.97 16196.74 31790.77 26384.45 30694.17 291
testing393.92 21094.23 18992.99 31697.54 21990.23 30399.99 599.16 3090.57 26191.33 24998.63 19892.99 11592.52 38282.46 34195.39 21496.22 256
LCM-MVSNet-Re92.31 25292.60 23391.43 33197.53 22079.27 38199.02 26791.83 39592.07 21680.31 36194.38 34883.50 24595.48 35397.22 14797.58 16599.54 146
GBi-Net90.88 27989.82 28594.08 28097.53 22091.97 26298.43 31396.95 31387.05 31889.68 27094.72 33671.34 33896.11 34187.01 31285.65 29594.17 291
test190.88 27989.82 28594.08 28097.53 22091.97 26298.43 31396.95 31387.05 31889.68 27094.72 33671.34 33896.11 34187.01 31285.65 29594.17 291
FMVSNet291.02 27689.56 29095.41 23197.53 22095.74 15698.98 26997.41 26687.05 31888.43 30195.00 33071.34 33896.24 33885.12 32585.21 30094.25 286
tttt051796.85 11896.49 12097.92 14297.48 22495.89 15199.85 12198.54 10190.72 26096.63 17298.93 17397.47 1199.02 18093.03 23295.76 20698.85 209
casdiffmvs_mvgpermissive96.43 13895.94 14297.89 14697.44 22595.47 16999.86 11897.29 27993.35 16596.03 18799.19 14385.39 22898.72 19797.89 12797.04 17899.49 156
Fangjinhua Wang, Qingshan Xu, Yew-Soon Ong, Marc Pollefeys: Lightweight and Accurate Multi-View Stereo With Confidence-Aware Diffusion Model. IEEE T-PAMI 2025
EC-MVSNet97.38 9697.24 8997.80 14797.41 22695.64 16399.99 597.06 30294.59 11499.63 4499.32 13189.20 19098.14 24598.76 8399.23 12199.62 127
c3_l92.53 24791.87 24994.52 26397.40 22792.99 24199.40 21996.93 31887.86 30888.69 29695.44 30989.95 17796.44 32990.45 26980.69 33794.14 300
fmvsm_s_conf0.1_n97.30 9797.21 9197.60 16497.38 22894.40 20499.90 9198.64 7696.47 6399.51 6299.65 10084.99 23399.93 8599.22 5599.09 12798.46 223
CDS-MVSNet96.34 14396.07 13097.13 18497.37 22994.96 18999.53 20397.91 22091.55 23295.37 20098.32 21995.05 5497.13 29393.80 21695.75 20799.30 179
Khang Truong Giang, Soohwan Song, Sungho Jo: Curvature-guided dynamic scale networks for Multi-view Stereo. ICLR 2022
TESTMET0.1,196.74 12696.26 12698.16 12597.36 23096.48 12599.96 3598.29 17891.93 22195.77 19498.07 22595.54 4298.29 23490.55 26798.89 13199.70 109
miper_lstm_enhance91.81 26091.39 25993.06 31597.34 23189.18 32099.38 22496.79 33086.70 32587.47 31495.22 32390.00 17695.86 35088.26 29381.37 32794.15 297
baseline96.43 13895.98 13597.76 15497.34 23195.17 18599.51 20697.17 28993.92 14996.90 16599.28 13285.37 22998.64 20397.50 14096.86 18499.46 158
cl____92.31 25291.58 25394.52 26397.33 23392.77 24399.57 19696.78 33186.97 32287.56 31295.51 30689.43 18396.62 32288.60 28882.44 31994.16 296
DIV-MVS_self_test92.32 25191.60 25294.47 26797.31 23492.74 24599.58 19496.75 33286.99 32187.64 31095.54 30389.55 18296.50 32688.58 28982.44 31994.17 291
casdiffmvspermissive96.42 14095.97 13897.77 15297.30 23594.98 18899.84 12697.09 29993.75 15596.58 17499.26 13885.07 23198.78 19197.77 13497.04 17899.54 146
Fangjinhua Wang, Qingshan Xu, Yew-Soon Ong, Marc Pollefeys: Lightweight and Accurate Multi-View Stereo With Confidence-Aware Diffusion Model. IEEE T-PAMI 2025
GeoE94.36 20293.48 21096.99 18897.29 23693.54 22899.96 3596.72 33488.35 30393.43 22198.94 17182.05 25298.05 25188.12 29796.48 19099.37 169
eth_miper_zixun_eth92.41 25091.93 24793.84 29297.28 23790.68 29398.83 28796.97 31288.57 29989.19 28795.73 29689.24 18996.69 32089.97 27881.55 32594.15 297
MVSFormer96.94 11596.60 11697.95 13997.28 23797.70 8299.55 20097.27 28191.17 24599.43 6799.54 11290.92 16296.89 31094.67 19799.62 9099.25 185
lupinMVS97.85 6997.60 7698.62 9497.28 23797.70 8299.99 597.55 24995.50 9199.43 6799.67 9690.92 16298.71 19898.40 10099.62 9099.45 160
SCA94.69 18893.81 20197.33 18097.10 24094.44 19998.86 28498.32 17293.30 16896.17 18695.59 30176.48 30797.95 25791.06 25597.43 16799.59 133
TAMVS95.85 15895.58 15496.65 20097.07 24193.50 22999.17 24897.82 22991.39 24295.02 20498.01 22692.20 13997.30 28293.75 21995.83 20499.14 193
Fast-Effi-MVS+-dtu93.72 21993.86 20093.29 30797.06 24286.16 34599.80 14296.83 32692.66 19292.58 23497.83 23581.39 25997.67 26889.75 28096.87 18396.05 258
CostFormer96.10 15195.88 14696.78 19497.03 24392.55 25397.08 35097.83 22890.04 27298.72 10794.89 33495.01 5698.29 23496.54 16395.77 20599.50 154
test_fmvsmvis_n_192097.67 8397.59 7897.91 14497.02 24495.34 17599.95 5398.45 11897.87 1597.02 16299.59 10689.64 18099.98 4399.41 4899.34 11698.42 225
test-LLR96.47 13696.04 13197.78 15097.02 24495.44 17099.96 3598.21 18694.07 13995.55 19696.38 27793.90 9198.27 23890.42 27098.83 13599.64 122
test-mter96.39 14195.93 14397.78 15097.02 24495.44 17099.96 3598.21 18691.81 22695.55 19696.38 27795.17 4998.27 23890.42 27098.83 13599.64 122
gm-plane-assit96.97 24793.76 22191.47 23698.96 16498.79 19094.92 187
WB-MVSnew92.90 23892.77 23093.26 30996.95 24893.63 22599.71 17098.16 19591.49 23394.28 21398.14 22281.33 26196.48 32779.47 35695.46 21189.68 379
QAPM95.40 17294.17 19199.10 6596.92 24997.71 8099.40 21998.68 7089.31 27988.94 29198.89 17482.48 25099.96 6193.12 23199.83 7399.62 127
KD-MVS_2432*160088.00 32186.10 32593.70 29896.91 25094.04 21397.17 34797.12 29584.93 34581.96 35292.41 36492.48 13294.51 36679.23 35752.68 39892.56 353
miper_refine_blended88.00 32186.10 32593.70 29896.91 25094.04 21397.17 34797.12 29584.93 34581.96 35292.41 36492.48 13294.51 36679.23 35752.68 39892.56 353
tpm295.47 17095.18 16796.35 21096.91 25091.70 27596.96 35397.93 21688.04 30798.44 11995.40 31193.32 10597.97 25494.00 20895.61 20999.38 167
FMVSNet588.32 31887.47 32090.88 33496.90 25388.39 33197.28 34495.68 36182.60 36284.67 34192.40 36679.83 27891.16 38776.39 37181.51 32693.09 345
3Dnovator+91.53 1196.31 14595.24 16499.52 2896.88 25498.64 5399.72 16798.24 18395.27 9688.42 30398.98 16082.76 24999.94 7797.10 15099.83 7399.96 64
Patchmatch-test92.65 24691.50 25696.10 21596.85 25590.49 29891.50 38997.19 28682.76 36190.23 25895.59 30195.02 5598.00 25377.41 36696.98 18199.82 92
MVS96.60 13295.56 15599.72 1396.85 25599.22 2098.31 31998.94 4191.57 23190.90 25399.61 10586.66 21699.96 6197.36 14299.88 6999.99 23
3Dnovator91.47 1296.28 14895.34 16199.08 6696.82 25797.47 9499.45 21698.81 6095.52 9089.39 27899.00 15781.97 25399.95 6997.27 14499.83 7399.84 90
EI-MVSNet93.73 21893.40 21594.74 25296.80 25892.69 24899.06 25997.67 23688.96 28891.39 24699.02 15388.75 19597.30 28291.07 25487.85 28094.22 287
CVMVSNet94.68 19094.94 17593.89 29196.80 25886.92 34399.06 25998.98 3894.45 11794.23 21599.02 15385.60 22495.31 35790.91 26095.39 21499.43 163
IterMVS-LS92.69 24492.11 24394.43 27196.80 25892.74 24599.45 21696.89 32188.98 28689.65 27395.38 31488.77 19496.34 33390.98 25882.04 32294.22 287
Fangjinhua Wang, Silvano Galliani, Christoph Vogel, Marc Pollefeys: IterMVS: Iterative Probability Estimation for Efficient Multi-View Stereo.
IterMVS90.91 27890.17 28093.12 31296.78 26190.42 30198.89 27897.05 30489.03 28386.49 32795.42 31076.59 30595.02 35987.22 30784.09 30993.93 317
Fangjinhua Wang, Silvano Galliani, Christoph Vogel, Marc Pollefeys: IterMVS: Iterative Probability Estimation for Efficient Multi-View Stereo.
131496.84 11995.96 13999.48 3496.74 26298.52 5798.31 31998.86 5395.82 8089.91 26498.98 16087.49 20499.96 6197.80 12999.73 8399.96 64
IterMVS-SCA-FT90.85 28190.16 28192.93 31796.72 26389.96 31098.89 27896.99 30888.95 28986.63 32495.67 29776.48 30795.00 36087.04 31084.04 31293.84 324
MVS-HIRNet86.22 32883.19 34195.31 23596.71 26490.29 30292.12 38697.33 27462.85 39386.82 32170.37 39869.37 34697.49 27375.12 37397.99 15998.15 230
VDDNet93.12 23391.91 24896.76 19596.67 26592.65 25198.69 30098.21 18682.81 36097.75 14599.28 13261.57 37699.48 16098.09 11594.09 23298.15 230
dmvs_re93.20 23093.15 22093.34 30596.54 26683.81 35898.71 29798.51 10791.39 24292.37 23898.56 20578.66 29097.83 26293.89 21089.74 24998.38 226
MIMVSNet90.30 29488.67 30895.17 24096.45 26791.64 27792.39 38597.15 29285.99 33290.50 25693.19 36066.95 35894.86 36382.01 34593.43 23899.01 203
CR-MVSNet93.45 22792.62 23295.94 21796.29 26892.66 24992.01 38796.23 35092.62 19496.94 16393.31 35891.04 15996.03 34679.23 35795.96 19899.13 194
RPMNet89.76 30687.28 32197.19 18396.29 26892.66 24992.01 38798.31 17470.19 39296.94 16385.87 39187.25 20899.78 12562.69 39395.96 19899.13 194
tt080591.28 27190.18 27994.60 25896.26 27087.55 33798.39 31798.72 6589.00 28589.22 28498.47 21362.98 37298.96 18290.57 26688.00 27997.28 246
Patchmtry89.70 30788.49 31093.33 30696.24 27189.94 31391.37 39096.23 35078.22 37687.69 30993.31 35891.04 15996.03 34680.18 35582.10 32194.02 307
test_vis1_rt86.87 32686.05 32889.34 34796.12 27278.07 38299.87 10683.54 40692.03 21978.21 37189.51 37745.80 39299.91 8996.25 16693.11 24390.03 376
JIA-IIPM91.76 26690.70 26694.94 24696.11 27387.51 33893.16 38398.13 20075.79 38297.58 14777.68 39692.84 12097.97 25488.47 29296.54 18699.33 175
OpenMVScopyleft90.15 1594.77 18693.59 20698.33 11896.07 27497.48 9399.56 19898.57 8990.46 26386.51 32698.95 16978.57 29199.94 7793.86 21199.74 8297.57 244
PAPM98.60 3098.42 3199.14 6096.05 27598.96 2699.90 9199.35 2596.68 5598.35 12499.66 9896.45 2998.51 20999.45 4599.89 6799.96 64
CLD-MVS94.06 20993.90 19894.55 26296.02 27690.69 29299.98 1597.72 23296.62 5891.05 25298.85 18377.21 29698.47 21098.11 11389.51 25594.48 265
Zhaoxin Li, Wangmeng Zuo, Zhaoqi Wang, Lei Zhang: Confidence-based Large-scale Dense Multi-view Stereo. IEEE Transaction on Image Processing, 2020
PatchT90.38 29188.75 30795.25 23795.99 27790.16 30591.22 39197.54 25176.80 37897.26 15686.01 39091.88 14696.07 34566.16 38995.91 20299.51 152
ACMH+89.98 1690.35 29289.54 29192.78 32095.99 27786.12 34698.81 28997.18 28889.38 27883.14 34897.76 23768.42 35398.43 21589.11 28486.05 29393.78 327
DeepMVS_CXcopyleft82.92 36895.98 27958.66 39996.01 35592.72 18778.34 37095.51 30658.29 38198.08 24882.57 34085.29 29892.03 361
ACMP92.05 992.74 24292.42 24093.73 29495.91 28088.72 32499.81 13897.53 25394.13 13587.00 32098.23 22074.07 32898.47 21096.22 16788.86 26293.99 312
Qingshan Xu and Wenbing Tao: Planar Prior Assisted PatchMatch Multi-View Stereo. AAAI 2020
test_vis1_n93.61 22293.03 22295.35 23295.86 28186.94 34299.87 10696.36 34796.85 4699.54 5798.79 18552.41 38899.83 11898.64 9198.97 13099.29 181
HQP-NCC95.78 28299.87 10696.82 4893.37 222
ACMP_Plane95.78 28299.87 10696.82 4893.37 222
HQP-MVS94.61 19294.50 18394.92 24795.78 28291.85 26799.87 10697.89 22196.82 4893.37 22298.65 19580.65 27098.39 22197.92 12489.60 25094.53 261
NP-MVS95.77 28591.79 26998.65 195
test_fmvsmconf0.1_n97.74 7997.44 8198.64 9395.76 28696.20 14099.94 6998.05 20698.17 898.89 9699.42 12087.65 20299.90 9199.50 4199.60 9699.82 92
plane_prior695.76 28691.72 27480.47 274
ACMM91.95 1092.88 23992.52 23893.98 28795.75 28889.08 32199.77 14897.52 25593.00 17589.95 26397.99 22976.17 31198.46 21393.63 22288.87 26194.39 275
Qingshan Xu and Wenbing Tao: Multi-Scale Geometric Consistency Guided Multi-View Stereo. CVPR 2019
GA-MVS93.83 21292.84 22696.80 19395.73 28993.57 22699.88 10397.24 28492.57 19992.92 22896.66 26978.73 28997.67 26887.75 30094.06 23399.17 189
plane_prior195.73 289
jason97.24 10096.86 10598.38 11795.73 28997.32 9899.97 2897.40 26795.34 9498.60 11499.54 11287.70 20198.56 20697.94 12399.47 10599.25 185
jason: jason.
HQP_MVS94.49 19694.36 18594.87 24895.71 29291.74 27199.84 12697.87 22396.38 6793.01 22698.59 20080.47 27498.37 22797.79 13289.55 25394.52 263
plane_prior795.71 29291.59 279
ITE_SJBPF92.38 32295.69 29485.14 35195.71 36092.81 18389.33 28198.11 22370.23 34498.42 21685.91 32188.16 27693.59 335
fmvsm_s_conf0.1_n_a97.09 10896.90 10397.63 16295.65 29594.21 20999.83 13398.50 11296.27 7299.65 4199.64 10184.72 23499.93 8599.04 6398.84 13498.74 216
ACMH89.72 1790.64 28589.63 28893.66 30095.64 29688.64 32798.55 30697.45 26089.03 28381.62 35597.61 23969.75 34598.41 21789.37 28187.62 28493.92 318
Qingshan Xu and Wenbing Tao: Multi-Scale Geometric Consistency Guided Multi-View Stereo. CVPR 2019
baseline296.71 12896.49 12097.37 17695.63 29795.96 14999.74 15998.88 5192.94 17791.61 24498.97 16297.72 698.62 20494.83 19198.08 15797.53 245
FMVSNet188.50 31786.64 32394.08 28095.62 29891.97 26298.43 31396.95 31383.00 35886.08 33494.72 33659.09 38096.11 34181.82 34784.07 31094.17 291
LPG-MVS_test92.96 23692.71 23193.71 29695.43 29988.67 32599.75 15697.62 24092.81 18390.05 25998.49 20975.24 31898.40 21995.84 17389.12 25794.07 304
LGP-MVS_train93.71 29695.43 29988.67 32597.62 24092.81 18390.05 25998.49 20975.24 31898.40 21995.84 17389.12 25794.07 304
tpm93.70 22093.41 21494.58 26095.36 30187.41 33997.01 35196.90 32090.85 25596.72 17194.14 35090.40 17296.84 31390.75 26488.54 27099.51 152
D2MVS92.76 24192.59 23693.27 30895.13 30289.54 31799.69 17599.38 2392.26 21287.59 31194.61 34285.05 23297.79 26391.59 24888.01 27892.47 356
VPA-MVSNet92.70 24391.55 25596.16 21395.09 30396.20 14098.88 28099.00 3691.02 25291.82 24395.29 32176.05 31397.96 25695.62 17781.19 32894.30 282
LTVRE_ROB88.28 1890.29 29589.05 30294.02 28395.08 30490.15 30697.19 34697.43 26284.91 34783.99 34497.06 25574.00 32998.28 23684.08 33087.71 28293.62 334
Andreas Kuhn, Heiko Hirschmüller, Daniel Scharstein, Helmut Mayer: A TV Prior for High-Quality Scalable Multi-View Stereo Reconstruction. International Journal of Computer Vision 2016
TinyColmap87.87 32386.51 32491.94 32795.05 30585.57 34997.65 33994.08 38284.40 35081.82 35496.85 26462.14 37498.33 23080.25 35486.37 29291.91 363
test0.0.03 193.86 21193.61 20394.64 25695.02 30692.18 26099.93 7698.58 8794.07 13987.96 30798.50 20893.90 9194.96 36181.33 34893.17 24196.78 248
UniMVSNet (Re)93.07 23592.13 24295.88 21894.84 30796.24 13999.88 10398.98 3892.49 20589.25 28295.40 31187.09 21097.14 29293.13 23078.16 35194.26 284
USDC90.00 30288.96 30393.10 31494.81 30888.16 33398.71 29795.54 36593.66 15783.75 34697.20 24965.58 36398.31 23283.96 33387.49 28692.85 350
VPNet91.81 26090.46 27095.85 22094.74 30995.54 16798.98 26998.59 8692.14 21490.77 25597.44 24268.73 35097.54 27294.89 19077.89 35394.46 266
FIs94.10 20793.43 21196.11 21494.70 31096.82 11699.58 19498.93 4592.54 20089.34 28097.31 24687.62 20397.10 29694.22 20786.58 29094.40 273
UniMVSNet_ETH3D90.06 30188.58 30994.49 26694.67 31188.09 33497.81 33897.57 24883.91 35388.44 29997.41 24357.44 38297.62 27091.41 24988.59 26997.77 238
UniMVSNet_NR-MVSNet92.95 23792.11 24395.49 22694.61 31295.28 17899.83 13399.08 3391.49 23389.21 28596.86 26387.14 20996.73 31893.20 22677.52 35694.46 266
test_fmvs289.47 31089.70 28788.77 35494.54 31375.74 38399.83 13394.70 37894.71 11091.08 25096.82 26854.46 38597.78 26592.87 23388.27 27492.80 351
WR-MVS92.31 25291.25 26095.48 22994.45 31495.29 17799.60 19198.68 7090.10 26988.07 30696.89 26180.68 26996.80 31693.14 22979.67 34494.36 277
nrg03093.51 22492.53 23796.45 20494.36 31597.20 10199.81 13897.16 29191.60 23089.86 26697.46 24186.37 21997.68 26795.88 17280.31 34094.46 266
tfpnnormal89.29 31387.61 31994.34 27494.35 31694.13 21198.95 27398.94 4183.94 35184.47 34295.51 30674.84 32397.39 27577.05 36980.41 33891.48 366
FC-MVSNet-test93.81 21493.15 22095.80 22294.30 31796.20 14099.42 21898.89 4992.33 21189.03 29097.27 24887.39 20696.83 31493.20 22686.48 29194.36 277
MS-PatchMatch90.65 28490.30 27591.71 33094.22 31885.50 35098.24 32297.70 23388.67 29686.42 32996.37 27967.82 35598.03 25283.62 33599.62 9091.60 364
WR-MVS_H91.30 26990.35 27394.15 27794.17 31992.62 25299.17 24898.94 4188.87 29286.48 32894.46 34784.36 23896.61 32388.19 29478.51 34993.21 344
DU-MVS92.46 24991.45 25895.49 22694.05 32095.28 17899.81 13898.74 6492.25 21389.21 28596.64 27181.66 25696.73 31893.20 22677.52 35694.46 266
NR-MVSNet91.56 26890.22 27795.60 22494.05 32095.76 15598.25 32198.70 6791.16 24780.78 36096.64 27183.23 24896.57 32491.41 24977.73 35594.46 266
CP-MVSNet91.23 27390.22 27794.26 27593.96 32292.39 25699.09 25298.57 8988.95 28986.42 32996.57 27479.19 28496.37 33190.29 27378.95 34694.02 307
XXY-MVS91.82 25990.46 27095.88 21893.91 32395.40 17498.87 28397.69 23488.63 29887.87 30897.08 25374.38 32797.89 26091.66 24784.07 31094.35 280
PS-CasMVS90.63 28689.51 29393.99 28693.83 32491.70 27598.98 26998.52 10488.48 30086.15 33396.53 27675.46 31696.31 33588.83 28678.86 34893.95 315
test_040285.58 33083.94 33590.50 33893.81 32585.04 35298.55 30695.20 37276.01 38079.72 36595.13 32464.15 36996.26 33766.04 39086.88 28990.21 375
XVG-ACMP-BASELINE91.22 27490.75 26592.63 32193.73 32685.61 34898.52 31097.44 26192.77 18689.90 26596.85 26466.64 36098.39 22192.29 23888.61 26793.89 320
TranMVSNet+NR-MVSNet91.68 26790.61 26994.87 24893.69 32793.98 21699.69 17598.65 7491.03 25188.44 29996.83 26780.05 27796.18 33990.26 27476.89 36494.45 271
mvsmamba94.10 20793.72 20295.25 23793.57 32894.13 21199.67 17996.45 34593.63 15991.34 24897.77 23686.29 22097.22 28896.65 16288.10 27794.40 273
TransMVSNet (Re)87.25 32485.28 33193.16 31193.56 32991.03 28498.54 30894.05 38483.69 35581.09 35896.16 28475.32 31796.40 33076.69 37068.41 38292.06 360
v1090.25 29688.82 30594.57 26193.53 33093.43 23199.08 25496.87 32385.00 34487.34 31894.51 34380.93 26697.02 30582.85 33979.23 34593.26 342
testgi89.01 31588.04 31691.90 32893.49 33184.89 35499.73 16495.66 36293.89 15285.14 33998.17 22159.68 37994.66 36577.73 36588.88 26096.16 257
v890.54 28889.17 29894.66 25593.43 33293.40 23399.20 24596.94 31785.76 33587.56 31294.51 34381.96 25497.19 28984.94 32778.25 35093.38 340
V4291.28 27190.12 28294.74 25293.42 33393.46 23099.68 17797.02 30587.36 31489.85 26895.05 32681.31 26297.34 27887.34 30580.07 34293.40 338
pm-mvs189.36 31287.81 31894.01 28493.40 33491.93 26598.62 30596.48 34486.25 33083.86 34596.14 28573.68 33097.04 30186.16 31875.73 36893.04 347
RRT_MVS93.14 23292.92 22593.78 29393.31 33590.04 30899.66 18097.69 23492.53 20188.91 29297.76 23784.36 23896.93 30895.10 18286.99 28894.37 276
v114491.09 27589.83 28494.87 24893.25 33693.69 22499.62 18996.98 31086.83 32489.64 27494.99 33180.94 26597.05 29985.08 32681.16 32993.87 322
v119290.62 28789.25 29794.72 25493.13 33793.07 23799.50 20897.02 30586.33 32989.56 27695.01 32879.22 28397.09 29882.34 34381.16 32994.01 309
v2v48291.30 26990.07 28395.01 24393.13 33793.79 21999.77 14897.02 30588.05 30689.25 28295.37 31580.73 26897.15 29187.28 30680.04 34394.09 303
OPM-MVS93.21 22992.80 22894.44 26993.12 33990.85 29199.77 14897.61 24396.19 7591.56 24598.65 19575.16 32298.47 21093.78 21889.39 25693.99 312
Ray L. Khuboni, Hongjun Xu: Octagram Propagation Matching for Multi-Scale View Stereopsis (OPM-MVS).
v14419290.79 28289.52 29294.59 25993.11 34092.77 24399.56 19896.99 30886.38 32889.82 26994.95 33380.50 27397.10 29683.98 33280.41 33893.90 319
PEN-MVS90.19 29889.06 30193.57 30193.06 34190.90 28999.06 25998.47 11588.11 30585.91 33596.30 28076.67 30395.94 34987.07 30976.91 36393.89 320
v124090.20 29788.79 30694.44 26993.05 34292.27 25899.38 22496.92 31985.89 33389.36 27994.87 33577.89 29597.03 30380.66 35181.08 33294.01 309
v14890.70 28389.63 28893.92 28892.97 34390.97 28599.75 15696.89 32187.51 31188.27 30495.01 32881.67 25597.04 30187.40 30477.17 36193.75 328
v192192090.46 28989.12 29994.50 26592.96 34492.46 25499.49 21096.98 31086.10 33189.61 27595.30 31878.55 29297.03 30382.17 34480.89 33694.01 309
Baseline_NR-MVSNet90.33 29389.51 29392.81 31992.84 34589.95 31199.77 14893.94 38584.69 34989.04 28995.66 29881.66 25696.52 32590.99 25776.98 36291.97 362
test_method80.79 35079.70 35484.08 36592.83 34667.06 39199.51 20695.42 36654.34 39781.07 35993.53 35544.48 39392.22 38478.90 36177.23 36092.94 348
pmmvs492.10 25691.07 26395.18 23992.82 34794.96 18999.48 21296.83 32687.45 31388.66 29796.56 27583.78 24396.83 31489.29 28284.77 30493.75 328
LF4IMVS89.25 31488.85 30490.45 34092.81 34881.19 37498.12 32894.79 37591.44 23786.29 33197.11 25165.30 36698.11 24788.53 29185.25 29992.07 359
DTE-MVSNet89.40 31188.24 31492.88 31892.66 34989.95 31199.10 25198.22 18587.29 31585.12 34096.22 28276.27 31095.30 35883.56 33675.74 36793.41 337
EU-MVSNet90.14 30090.34 27489.54 34692.55 35081.06 37598.69 30098.04 20791.41 24186.59 32596.84 26680.83 26793.31 37786.20 31781.91 32394.26 284
APD_test181.15 34980.92 35081.86 36992.45 35159.76 39896.04 36993.61 38873.29 38977.06 37496.64 27144.28 39496.16 34072.35 37782.52 31789.67 380
our_test_390.39 29089.48 29593.12 31292.40 35289.57 31699.33 23096.35 34887.84 30985.30 33894.99 33184.14 24196.09 34480.38 35284.56 30593.71 333
ppachtmachnet_test89.58 30988.35 31293.25 31092.40 35290.44 30099.33 23096.73 33385.49 34085.90 33695.77 29381.09 26496.00 34876.00 37282.49 31893.30 341
v7n89.65 30888.29 31393.72 29592.22 35490.56 29799.07 25897.10 29785.42 34286.73 32294.72 33680.06 27697.13 29381.14 34978.12 35293.49 336
dmvs_testset83.79 34386.07 32776.94 37392.14 35548.60 40896.75 35690.27 39889.48 27778.65 36898.55 20779.25 28286.65 39666.85 38782.69 31695.57 259
PS-MVSNAJss93.64 22193.31 21794.61 25792.11 35692.19 25999.12 25097.38 26892.51 20488.45 29896.99 25991.20 15497.29 28594.36 20287.71 28294.36 277
pmmvs590.17 29989.09 30093.40 30492.10 35789.77 31499.74 15995.58 36485.88 33487.24 31995.74 29473.41 33196.48 32788.54 29083.56 31393.95 315
N_pmnet80.06 35380.78 35177.89 37291.94 35845.28 41098.80 29156.82 41278.10 37780.08 36393.33 35677.03 29895.76 35168.14 38582.81 31592.64 352
test_djsdf92.83 24092.29 24194.47 26791.90 35992.46 25499.55 20097.27 28191.17 24589.96 26296.07 28981.10 26396.89 31094.67 19788.91 25994.05 306
SixPastTwentyTwo88.73 31688.01 31790.88 33491.85 36082.24 36698.22 32595.18 37388.97 28782.26 35196.89 26171.75 33696.67 32184.00 33182.98 31493.72 332
K. test v388.05 32087.24 32290.47 33991.82 36182.23 36798.96 27297.42 26489.05 28276.93 37695.60 30068.49 35295.42 35485.87 32281.01 33493.75 328
OurMVSNet-221017-089.81 30589.48 29590.83 33691.64 36281.21 37398.17 32795.38 36891.48 23585.65 33797.31 24672.66 33297.29 28588.15 29584.83 30393.97 314
mvs_tets91.81 26091.08 26294.00 28591.63 36390.58 29698.67 30297.43 26292.43 20687.37 31797.05 25671.76 33597.32 28194.75 19488.68 26694.11 302
Gipumacopyleft66.95 36665.00 36672.79 37891.52 36467.96 39066.16 40195.15 37447.89 39958.54 39667.99 40129.74 39887.54 39550.20 40077.83 35462.87 401
S. Galliani, K. Lasinger, K. Schindler: Massively Parallel Multiview Stereopsis by Surface Normal Diffusion. ICCV 2015
test_fmvsmconf0.01_n96.39 14195.74 14998.32 11991.47 36595.56 16699.84 12697.30 27797.74 1897.89 14099.35 13079.62 27999.85 10899.25 5499.24 12099.55 142
jajsoiax91.92 25891.18 26194.15 27791.35 36690.95 28899.00 26897.42 26492.61 19587.38 31697.08 25372.46 33397.36 27694.53 20088.77 26394.13 301
MDA-MVSNet-bldmvs84.09 34181.52 34891.81 32991.32 36788.00 33698.67 30295.92 35780.22 37155.60 39993.32 35768.29 35493.60 37573.76 37476.61 36593.82 326
MVP-Stereo90.93 27790.45 27292.37 32391.25 36888.76 32298.05 33296.17 35287.27 31684.04 34395.30 31878.46 29397.27 28783.78 33499.70 8591.09 367
Qingsong Yan: MVP-Stereo: A Parallel Multi-View Patchmatch Stereo Method with Dilation Matching for Photogrammetric Application.
MDA-MVSNet_test_wron85.51 33283.32 34092.10 32590.96 36988.58 32899.20 24596.52 34279.70 37357.12 39892.69 36279.11 28593.86 37277.10 36877.46 35893.86 323
YYNet185.50 33383.33 33992.00 32690.89 37088.38 33299.22 24496.55 34179.60 37457.26 39792.72 36179.09 28793.78 37377.25 36777.37 35993.84 324
anonymousdsp91.79 26590.92 26494.41 27290.76 37192.93 24298.93 27597.17 28989.08 28187.46 31595.30 31878.43 29496.92 30992.38 23788.73 26493.39 339
lessismore_v090.53 33790.58 37280.90 37695.80 35877.01 37595.84 29166.15 36296.95 30683.03 33875.05 36993.74 331
EG-PatchMatch MVS85.35 33483.81 33789.99 34490.39 37381.89 36998.21 32696.09 35481.78 36574.73 38293.72 35451.56 39097.12 29579.16 36088.61 26790.96 369
EGC-MVSNET69.38 35963.76 36986.26 36290.32 37481.66 37296.24 36593.85 3860.99 4093.22 41092.33 36752.44 38792.92 38059.53 39684.90 30284.21 390
CMPMVSbinary61.59 2184.75 33785.14 33283.57 36690.32 37462.54 39496.98 35297.59 24774.33 38769.95 38896.66 26964.17 36898.32 23187.88 29988.41 27289.84 378
M. Jancosek, T. Pajdla: Multi-View Reconstruction Preserving Weakly-Supported Surfaces. CVPR 2011
new_pmnet84.49 34082.92 34389.21 34890.03 37682.60 36396.89 35595.62 36380.59 36975.77 38189.17 37865.04 36794.79 36472.12 37881.02 33390.23 374
pmmvs685.69 32983.84 33691.26 33390.00 37784.41 35697.82 33796.15 35375.86 38181.29 35795.39 31361.21 37796.87 31283.52 33773.29 37192.50 355
DSMNet-mixed88.28 31988.24 31488.42 35689.64 37875.38 38598.06 33189.86 39985.59 33988.20 30592.14 36876.15 31291.95 38578.46 36296.05 19697.92 234
UnsupCasMVSNet_eth85.52 33183.99 33390.10 34289.36 37983.51 36096.65 35797.99 20989.14 28075.89 38093.83 35263.25 37193.92 37081.92 34667.90 38592.88 349
Anonymous2023120686.32 32785.42 33089.02 35089.11 38080.53 37999.05 26395.28 36985.43 34182.82 34993.92 35174.40 32693.44 37666.99 38681.83 32493.08 346
Anonymous2024052185.15 33583.81 33789.16 34988.32 38182.69 36298.80 29195.74 35979.72 37281.53 35690.99 37165.38 36594.16 36872.69 37681.11 33190.63 372
OpenMVS_ROBcopyleft79.82 2083.77 34481.68 34790.03 34388.30 38282.82 36198.46 31195.22 37173.92 38876.00 37991.29 37055.00 38496.94 30768.40 38488.51 27190.34 373
test20.0384.72 33883.99 33386.91 36088.19 38380.62 37898.88 28095.94 35688.36 30278.87 36694.62 34168.75 34989.11 39166.52 38875.82 36691.00 368
KD-MVS_self_test83.59 34582.06 34588.20 35786.93 38480.70 37797.21 34596.38 34682.87 35982.49 35088.97 37967.63 35692.32 38373.75 37562.30 39491.58 365
MIMVSNet182.58 34680.51 35288.78 35286.68 38584.20 35796.65 35795.41 36778.75 37578.59 36992.44 36351.88 38989.76 39065.26 39178.95 34692.38 358
CL-MVSNet_self_test84.50 33983.15 34288.53 35586.00 38681.79 37098.82 28897.35 27085.12 34383.62 34790.91 37376.66 30491.40 38669.53 38260.36 39592.40 357
UnsupCasMVSNet_bld79.97 35577.03 36088.78 35285.62 38781.98 36893.66 38197.35 27075.51 38470.79 38783.05 39348.70 39194.91 36278.31 36360.29 39689.46 383
Patchmatch-RL test86.90 32585.98 32989.67 34584.45 38875.59 38489.71 39492.43 39286.89 32377.83 37390.94 37294.22 8093.63 37487.75 30069.61 37799.79 97
pmmvs-eth3d84.03 34281.97 34690.20 34184.15 38987.09 34198.10 33094.73 37783.05 35774.10 38487.77 38565.56 36494.01 36981.08 35069.24 37989.49 382
test_fmvs379.99 35480.17 35379.45 37184.02 39062.83 39299.05 26393.49 38988.29 30480.06 36486.65 38828.09 40088.00 39288.63 28773.27 37287.54 388
PM-MVS80.47 35178.88 35685.26 36383.79 39172.22 38795.89 37291.08 39685.71 33876.56 37888.30 38136.64 39693.90 37182.39 34269.57 37889.66 381
new-patchmatchnet81.19 34879.34 35586.76 36182.86 39280.36 38097.92 33495.27 37082.09 36472.02 38586.87 38762.81 37390.74 38971.10 37963.08 39289.19 385
mvsany_test382.12 34781.14 34985.06 36481.87 39370.41 38897.09 34992.14 39391.27 24477.84 37288.73 38039.31 39595.49 35290.75 26471.24 37489.29 384
WB-MVS76.28 35777.28 35973.29 37781.18 39454.68 40297.87 33694.19 38181.30 36669.43 38990.70 37477.02 29982.06 40035.71 40568.11 38483.13 391
test_f78.40 35677.59 35880.81 37080.82 39562.48 39596.96 35393.08 39183.44 35674.57 38384.57 39227.95 40192.63 38184.15 32972.79 37387.32 389
SSC-MVS75.42 35876.40 36172.49 38180.68 39653.62 40397.42 34194.06 38380.42 37068.75 39090.14 37676.54 30681.66 40133.25 40666.34 38882.19 392
pmmvs380.27 35277.77 35787.76 35980.32 39782.43 36598.23 32491.97 39472.74 39078.75 36787.97 38457.30 38390.99 38870.31 38062.37 39389.87 377
testf168.38 36266.92 36372.78 37978.80 39850.36 40590.95 39287.35 40455.47 39558.95 39488.14 38220.64 40587.60 39357.28 39764.69 38980.39 394
APD_test268.38 36266.92 36372.78 37978.80 39850.36 40590.95 39287.35 40455.47 39558.95 39488.14 38220.64 40587.60 39357.28 39764.69 38980.39 394
ambc83.23 36777.17 40062.61 39387.38 39694.55 38076.72 37786.65 38830.16 39796.36 33284.85 32869.86 37690.73 371
test_vis3_rt68.82 36066.69 36575.21 37676.24 40160.41 39796.44 36068.71 41175.13 38550.54 40269.52 40016.42 41096.32 33480.27 35366.92 38768.89 398
TDRefinement84.76 33682.56 34491.38 33274.58 40284.80 35597.36 34394.56 37984.73 34880.21 36296.12 28863.56 37098.39 22187.92 29863.97 39190.95 370
E-PMN52.30 37052.18 37252.67 38771.51 40345.40 40993.62 38276.60 40936.01 40343.50 40464.13 40327.11 40267.31 40631.06 40726.06 40245.30 405
EMVS51.44 37251.22 37452.11 38870.71 40444.97 41194.04 37875.66 41035.34 40542.40 40561.56 40628.93 39965.87 40727.64 40824.73 40345.49 404
PMMVS267.15 36564.15 36876.14 37570.56 40562.07 39693.89 37987.52 40358.09 39460.02 39378.32 39522.38 40484.54 39859.56 39547.03 40081.80 393
FPMVS68.72 36168.72 36268.71 38365.95 40644.27 41295.97 37194.74 37651.13 39853.26 40090.50 37525.11 40383.00 39960.80 39480.97 33578.87 396
wuyk23d20.37 37620.84 37918.99 39165.34 40727.73 41450.43 4027.67 4159.50 4088.01 4096.34 4096.13 41326.24 40823.40 40910.69 4072.99 406
LCM-MVSNet67.77 36464.73 36776.87 37462.95 40856.25 40189.37 39593.74 38744.53 40061.99 39280.74 39420.42 40786.53 39769.37 38359.50 39787.84 386
MVEpermissive53.74 2251.54 37147.86 37562.60 38559.56 40950.93 40479.41 39977.69 40835.69 40436.27 40661.76 4055.79 41469.63 40437.97 40436.61 40167.24 399
Simon Fuhrmann, Fabian Langguth, Michael Goesele: MVE - A Multi-View Reconstruction Environment. EUROGRAPHICS Workshops on Graphics and Cultural Heritage (2014)
ANet_high56.10 36852.24 37167.66 38449.27 41056.82 40083.94 39782.02 40770.47 39133.28 40764.54 40217.23 40969.16 40545.59 40223.85 40477.02 397
tmp_tt65.23 36762.94 37072.13 38244.90 41150.03 40781.05 39889.42 40238.45 40148.51 40399.90 1854.09 38678.70 40391.84 24618.26 40587.64 387
PMVScopyleft49.05 2353.75 36951.34 37360.97 38640.80 41234.68 41374.82 40089.62 40137.55 40228.67 40872.12 3977.09 41281.63 40243.17 40368.21 38366.59 400
Y. Furukawa, J. Ponce: Accurate, dense, and robust multiview stereopsis. PAMI (2010)
test12337.68 37439.14 37733.31 38919.94 41324.83 41598.36 3189.75 41415.53 40751.31 40187.14 38619.62 40817.74 40947.10 4013.47 40857.36 402
testmvs40.60 37344.45 37629.05 39019.49 41414.11 41699.68 17718.47 41320.74 40664.59 39198.48 21210.95 41117.09 41056.66 39911.01 40655.94 403
test_blank0.00 3790.00 3820.00 3920.00 4150.00 4170.00 4030.00 4160.00 4100.00 4110.02 4100.00 4150.00 4110.00 4100.00 4090.00 407
eth-test20.00 415
eth-test0.00 415
uanet_test0.00 3790.00 3820.00 3920.00 4150.00 4170.00 4030.00 4160.00 4100.00 4110.00 4110.00 4150.00 4110.00 4100.00 4090.00 407
DCPMVS0.00 3790.00 3820.00 3920.00 4150.00 4170.00 4030.00 4160.00 4100.00 4110.00 4110.00 4150.00 4110.00 4100.00 4090.00 407
cdsmvs_eth3d_5k23.43 37531.24 3780.00 3920.00 4150.00 4170.00 40398.09 2010.00 4100.00 41199.67 9683.37 2460.00 4110.00 4100.00 4090.00 407
pcd_1.5k_mvsjas7.60 37810.13 3810.00 3920.00 4150.00 4170.00 4030.00 4160.00 4100.00 4110.00 41191.20 1540.00 4110.00 4100.00 4090.00 407
sosnet-low-res0.00 3790.00 3820.00 3920.00 4150.00 4170.00 4030.00 4160.00 4100.00 4110.00 4110.00 4150.00 4110.00 4100.00 4090.00 407
sosnet0.00 3790.00 3820.00 3920.00 4150.00 4170.00 4030.00 4160.00 4100.00 4110.00 4110.00 4150.00 4110.00 4100.00 4090.00 407
uncertanet0.00 3790.00 3820.00 3920.00 4150.00 4170.00 4030.00 4160.00 4100.00 4110.00 4110.00 4150.00 4110.00 4100.00 4090.00 407
Regformer0.00 3790.00 3820.00 3920.00 4150.00 4170.00 4030.00 4160.00 4100.00 4110.00 4110.00 4150.00 4110.00 4100.00 4090.00 407
ab-mvs-re8.28 37711.04 3800.00 3920.00 4150.00 4170.00 4030.00 4160.00 4100.00 41199.40 1240.00 4150.00 4110.00 4100.00 4090.00 407
uanet0.00 3790.00 3820.00 3920.00 4150.00 4170.00 4030.00 4160.00 4100.00 4110.00 4110.00 4150.00 4110.00 4100.00 4090.00 407
WAC-MVS90.97 28586.10 320
PC_three_145296.96 4499.80 1899.79 5797.49 9100.00 199.99 599.98 32100.00 1
test_241102_TWO98.43 13197.27 3499.80 1899.94 497.18 20100.00 1100.00 1100.00 1100.00 1
test_0728_THIRD96.48 6199.83 1399.91 1497.87 5100.00 199.92 12100.00 1100.00 1
GSMVS99.59 133
sam_mvs194.72 6499.59 133
sam_mvs94.25 79
MTGPAbinary98.28 179
test_post195.78 37359.23 40793.20 11197.74 26691.06 255
test_post63.35 40494.43 6998.13 246
patchmatchnet-post91.70 36995.12 5097.95 257
MTMP99.87 10696.49 343
test9_res99.71 3399.99 21100.00 1
agg_prior299.48 43100.00 1100.00 1
test_prior498.05 6799.94 69
test_prior299.95 5395.78 8199.73 3399.76 6596.00 3399.78 27100.00 1
旧先验299.46 21594.21 13399.85 999.95 6996.96 156
新几何299.40 219
无先验99.49 21098.71 6693.46 162100.00 194.36 20299.99 23
原ACMM299.90 91
testdata299.99 3690.54 268
segment_acmp96.68 25
testdata199.28 23996.35 71
plane_prior597.87 22398.37 22797.79 13289.55 25394.52 263
plane_prior498.59 200
plane_prior391.64 27796.63 5693.01 226
plane_prior299.84 12696.38 67
plane_prior91.74 27199.86 11896.76 5289.59 252
n20.00 416
nn0.00 416
door-mid89.69 400
test1198.44 123
door90.31 397
HQP5-MVS91.85 267
BP-MVS97.92 124
HQP4-MVS93.37 22298.39 22194.53 261
HQP3-MVS97.89 22189.60 250
HQP2-MVS80.65 270
MDTV_nov1_ep13_2view96.26 13596.11 36791.89 22298.06 13494.40 7194.30 20499.67 116
ACMMP++_ref87.04 287
ACMMP++88.23 275
Test By Simon92.82 122