| AdaColmap |  | | 97.23 97 | 96.80 102 | 98.51 104 | 99.99 1 | 95.60 158 | 99.09 242 | 98.84 56 | 93.32 162 | 96.74 160 | 99.72 79 | 86.04 214 | 100.00 1 | 98.01 113 | 99.43 108 | 99.94 72 |
|
| CNVR-MVS | | | 99.40 1 | 99.26 1 | 99.84 6 | 99.98 2 | 99.51 6 | 99.98 14 | 98.69 66 | 98.20 5 | 99.93 1 | 99.98 2 | 96.82 23 | 100.00 1 | 99.75 26 | 100.00 1 | 99.99 23 |
|
| MCST-MVS | | | 99.32 3 | 99.14 4 | 99.86 5 | 99.97 3 | 99.59 5 | 99.97 25 | 98.64 74 | 98.47 2 | 99.13 83 | 99.92 13 | 96.38 30 | 100.00 1 | 99.74 28 | 100.00 1 | 100.00 1 |
|
| mPP-MVS | | | 98.39 44 | 98.20 43 | 98.97 72 | 99.97 3 | 96.92 110 | 99.95 50 | 98.38 151 | 95.04 95 | 98.61 109 | 99.80 51 | 93.39 95 | 100.00 1 | 98.64 87 | 100.00 1 | 99.98 48 |
|
| CPTT-MVS | | | 97.64 81 | 97.32 84 | 98.58 96 | 99.97 3 | 95.77 149 | 99.96 32 | 98.35 157 | 89.90 263 | 98.36 119 | 99.79 55 | 91.18 150 | 99.99 36 | 98.37 97 | 99.99 21 | 99.99 23 |
|
| DP-MVS Recon | | | 98.41 42 | 98.02 54 | 99.56 25 | 99.97 3 | 98.70 46 | 99.92 76 | 98.44 117 | 92.06 210 | 98.40 118 | 99.84 41 | 95.68 40 | 100.00 1 | 98.19 103 | 99.71 83 | 99.97 57 |
|
| PAPR | | | 98.52 32 | 98.16 46 | 99.58 24 | 99.97 3 | 98.77 40 | 99.95 50 | 98.43 125 | 95.35 89 | 98.03 129 | 99.75 68 | 94.03 82 | 99.98 43 | 98.11 108 | 99.83 72 | 99.99 23 |
|
| HFP-MVS | | | 98.56 29 | 98.37 33 | 99.14 57 | 99.96 8 | 97.43 92 | 99.95 50 | 98.61 80 | 94.77 103 | 99.31 74 | 99.85 30 | 94.22 76 | 100.00 1 | 98.70 82 | 99.98 32 | 99.98 48 |
|
| region2R | | | 98.54 30 | 98.37 33 | 99.05 64 | 99.96 8 | 97.18 99 | 99.96 32 | 98.55 93 | 94.87 101 | 99.45 62 | 99.85 30 | 94.07 81 | 100.00 1 | 98.67 84 | 100.00 1 | 99.98 48 |
|
| ACMMPR | | | 98.50 33 | 98.32 37 | 99.05 64 | 99.96 8 | 97.18 99 | 99.95 50 | 98.60 81 | 94.77 103 | 99.31 74 | 99.84 41 | 93.73 90 | 100.00 1 | 98.70 82 | 99.98 32 | 99.98 48 |
|
| NCCC | | | 99.37 2 | 99.25 2 | 99.71 14 | 99.96 8 | 99.15 21 | 99.97 25 | 98.62 79 | 98.02 11 | 99.90 2 | 99.95 3 | 97.33 17 | 100.00 1 | 99.54 37 | 100.00 1 | 100.00 1 |
|
| CP-MVS | | | 98.45 37 | 98.32 37 | 98.87 77 | 99.96 8 | 96.62 118 | 99.97 25 | 98.39 147 | 94.43 115 | 98.90 92 | 99.87 24 | 94.30 74 | 100.00 1 | 99.04 61 | 99.99 21 | 99.99 23 |
|
| test_one_0601 | | | | | | 99.94 13 | 99.30 12 | | 98.41 140 | 96.63 54 | 99.75 27 | 99.93 11 | 97.49 10 | | | | |
|
| test_0728_SECOND | | | | | 99.82 7 | 99.94 13 | 99.47 7 | 99.95 50 | 98.43 125 | | | | | 100.00 1 | 99.99 5 | 100.00 1 | 100.00 1 |
|
| XVS | | | 98.70 23 | 98.55 23 | 99.15 55 | 99.94 13 | 97.50 88 | 99.94 66 | 98.42 136 | 96.22 69 | 99.41 66 | 99.78 59 | 94.34 72 | 99.96 59 | 98.92 68 | 99.95 49 | 99.99 23 |
|
| X-MVStestdata | | | 93.83 201 | 92.06 233 | 99.15 55 | 99.94 13 | 97.50 88 | 99.94 66 | 98.42 136 | 96.22 69 | 99.41 66 | 41.37 398 | 94.34 72 | 99.96 59 | 98.92 68 | 99.95 49 | 99.99 23 |
|
| test_prior | | | | | 99.43 35 | 99.94 13 | 98.49 58 | | 98.65 72 | | | | | 99.80 119 | | | 99.99 23 |
|
| MSLP-MVS++ | | | 99.13 8 | 99.01 11 | 99.49 32 | 99.94 13 | 98.46 59 | 99.98 14 | 98.86 53 | 97.10 38 | 99.80 15 | 99.94 4 | 95.92 36 | 100.00 1 | 99.51 38 | 100.00 1 | 100.00 1 |
|
| APDe-MVS |  | | 99.06 11 | 98.91 14 | 99.51 29 | 99.94 13 | 98.76 43 | 99.91 80 | 98.39 147 | 97.20 36 | 99.46 61 | 99.85 30 | 95.53 44 | 99.79 121 | 99.86 19 | 100.00 1 | 99.99 23 |
| Zhaojie Zeng, Yuesong Wang, Tao Guan: Matching Ambiguity-Resilient Multi-View Stereo via Adaptive Patch Deformation. Pattern Recognition |
| MP-MVS |  | | 98.23 54 | 97.97 56 | 99.03 66 | 99.94 13 | 97.17 102 | 99.95 50 | 98.39 147 | 94.70 107 | 98.26 125 | 99.81 50 | 91.84 141 | 100.00 1 | 98.85 74 | 99.97 42 | 99.93 74 |
| Rongxuan Tan, Qing Wang, et al.: MP-MVS: Multi-Scale Windows PatchMatch and Planar Prior Multi-View Stereo. |
| CDPH-MVS | | | 98.65 25 | 98.36 35 | 99.49 32 | 99.94 13 | 98.73 44 | 99.87 98 | 98.33 162 | 93.97 141 | 99.76 26 | 99.87 24 | 94.99 57 | 99.75 130 | 98.55 91 | 100.00 1 | 99.98 48 |
|
| PAPM_NR | | | 98.12 57 | 97.93 61 | 98.70 85 | 99.94 13 | 96.13 140 | 99.82 128 | 98.43 125 | 94.56 111 | 97.52 141 | 99.70 83 | 94.40 67 | 99.98 43 | 97.00 147 | 99.98 32 | 99.99 23 |
|
| MG-MVS | | | 98.91 16 | 98.65 18 | 99.68 15 | 99.94 13 | 99.07 24 | 99.64 175 | 99.44 20 | 97.33 29 | 99.00 88 | 99.72 79 | 94.03 82 | 99.98 43 | 98.73 81 | 100.00 1 | 100.00 1 |
|
| SED-MVS | | | 99.28 5 | 99.11 7 | 99.77 8 | 99.93 24 | 99.30 12 | 99.96 32 | 98.43 125 | 97.27 32 | 99.80 15 | 99.94 4 | 96.71 24 | 100.00 1 | 100.00 1 | 100.00 1 | 100.00 1 |
|
| IU-MVS | | | | | | 99.93 24 | 99.31 10 | | 98.41 140 | 97.71 17 | 99.84 10 | | | | 100.00 1 | 100.00 1 | 100.00 1 |
|
| test_241102_ONE | | | | | | 99.93 24 | 99.30 12 | | 98.43 125 | 97.26 34 | 99.80 15 | 99.88 21 | 96.71 24 | 100.00 1 | | | |
|
| DVP-MVS |  | | 99.30 4 | 99.16 3 | 99.73 12 | 99.93 24 | 99.29 15 | 99.95 50 | 98.32 164 | 97.28 30 | 99.83 11 | 99.91 14 | 97.22 19 | 100.00 1 | 99.99 5 | 100.00 1 | 99.89 82 |
| Zhenlong Yuan, Jinguo Luo, Fei Shen, Zhaoxin Li, Cong Liu, Tianlu Mao, Zhaoqi Wang: DVP-MVS: Synergize Depth-Edge and Visibility Prior for Multi-View Stereo. AAAI2025 |
| test0726 | | | | | | 99.93 24 | 99.29 15 | 99.96 32 | 98.42 136 | 97.28 30 | 99.86 5 | 99.94 4 | 97.22 19 | | | | |
|
| MSP-MVS | | | 99.09 9 | 99.12 5 | 98.98 71 | 99.93 24 | 97.24 96 | 99.95 50 | 98.42 136 | 97.50 24 | 99.52 57 | 99.88 21 | 97.43 16 | 99.71 136 | 99.50 39 | 99.98 32 | 100.00 1 |
| Zhenlong Yuan, Cong Liu, Fei Shen, Zhaoxin Li, Jingguo luo, Tianlu Mao and Zhaoqi Wang: MSP-MVS: Multi-granularity Segmentation Prior Guided Multi-View Stereo. AAAI2025 |
| agg_prior | | | | | | 99.93 24 | 98.77 40 | | 98.43 125 | | 99.63 41 | | | 99.85 106 | | | |
|
| FOURS1 | | | | | | 99.92 31 | 97.66 81 | 99.95 50 | 98.36 155 | 95.58 83 | 99.52 57 | | | | | | |
|
| ZD-MVS | | | | | | 99.92 31 | 98.57 54 | | 98.52 99 | 92.34 202 | 99.31 74 | 99.83 43 | 95.06 52 | 99.80 119 | 99.70 32 | 99.97 42 | |
|
| GST-MVS | | | 98.27 49 | 97.97 56 | 99.17 51 | 99.92 31 | 97.57 83 | 99.93 73 | 98.39 147 | 94.04 139 | 98.80 96 | 99.74 74 | 92.98 109 | 100.00 1 | 98.16 105 | 99.76 80 | 99.93 74 |
|
| TEST9 | | | | | | 99.92 31 | 98.92 28 | 99.96 32 | 98.43 125 | 93.90 146 | 99.71 32 | 99.86 26 | 95.88 37 | 99.85 106 | | | |
|
| train_agg | | | 98.88 17 | 98.65 18 | 99.59 23 | 99.92 31 | 98.92 28 | 99.96 32 | 98.43 125 | 94.35 120 | 99.71 32 | 99.86 26 | 95.94 34 | 99.85 106 | 99.69 33 | 99.98 32 | 99.99 23 |
|
| test_8 | | | | | | 99.92 31 | 98.88 31 | 99.96 32 | 98.43 125 | 94.35 120 | 99.69 34 | 99.85 30 | 95.94 34 | 99.85 106 | | | |
|
| PGM-MVS | | | 98.34 45 | 98.13 48 | 98.99 70 | 99.92 31 | 97.00 106 | 99.75 148 | 99.50 18 | 93.90 146 | 99.37 71 | 99.76 63 | 93.24 103 | 100.00 1 | 97.75 130 | 99.96 46 | 99.98 48 |
|
| ACMMP |  | | 97.74 76 | 97.44 78 | 98.66 88 | 99.92 31 | 96.13 140 | 99.18 236 | 99.45 19 | 94.84 102 | 96.41 170 | 99.71 81 | 91.40 144 | 99.99 36 | 97.99 115 | 98.03 155 | 99.87 85 |
| Qingshan Xu, Weihang Kong, Wenbing Tao, Marc Pollefeys: Multi-Scale Geometric Consistency Guided and Planar Prior Assisted Multi-View Stereo. IEEE Transactions on Pattern Analysis and Machine Intelligence |
| DVP-MVS++ | | | 99.26 6 | 99.09 9 | 99.77 8 | 99.91 39 | 99.31 10 | 99.95 50 | 98.43 125 | 96.48 57 | 99.80 15 | 99.93 11 | 97.44 14 | 100.00 1 | 99.92 12 | 99.98 32 | 100.00 1 |
|
| MSC_two_6792asdad | | | | | 99.93 2 | 99.91 39 | 99.80 2 | | 98.41 140 | | | | | 100.00 1 | 99.96 9 | 100.00 1 | 100.00 1 |
|
| No_MVS | | | | | 99.93 2 | 99.91 39 | 99.80 2 | | 98.41 140 | | | | | 100.00 1 | 99.96 9 | 100.00 1 | 100.00 1 |
|
| HPM-MVS++ |  | | 99.07 10 | 98.88 15 | 99.63 17 | 99.90 42 | 99.02 25 | 99.95 50 | 98.56 87 | 97.56 23 | 99.44 63 | 99.85 30 | 95.38 46 | 100.00 1 | 99.31 49 | 99.99 21 | 99.87 85 |
|
| APD-MVS |  | | 98.62 26 | 98.35 36 | 99.41 38 | 99.90 42 | 98.51 57 | 99.87 98 | 98.36 155 | 94.08 133 | 99.74 29 | 99.73 76 | 94.08 80 | 99.74 132 | 99.42 45 | 99.99 21 | 99.99 23 |
| Yuesong Wang, Zhaojie Zeng and etc.: Adaptive Patch Deformation for Textureless-Resilient Multi-View Stereo. CVPR2023 |
| DeepC-MVS_fast | | 96.59 1 | 98.81 20 | 98.54 24 | 99.62 20 | 99.90 42 | 98.85 34 | 99.24 231 | 98.47 110 | 98.14 8 | 99.08 84 | 99.91 14 | 93.09 106 | 100.00 1 | 99.04 61 | 99.99 21 | 100.00 1 |
| Andreas Kuhn, Christian Sormann, Mattia Rossi, Oliver Erdler, Friedrich Fraundorfer: DeepC-MVS: Deep Confidence Prediction for Multi-View Stereo Reconstruction. 3DV 2020 |
| OPU-MVS | | | | | 99.93 2 | 99.89 45 | 99.80 2 | 99.96 32 | | | | 99.80 51 | 97.44 14 | 100.00 1 | 100.00 1 | 99.98 32 | 100.00 1 |
|
| DPE-MVS |  | | 99.26 6 | 99.10 8 | 99.74 11 | 99.89 45 | 99.24 19 | 99.87 98 | 98.44 117 | 97.48 25 | 99.64 40 | 99.94 4 | 96.68 26 | 99.99 36 | 99.99 5 | 100.00 1 | 99.99 23 |
| Kehua Chen, Zhenlong Yuan, Tianlu Mao, Zhaoqi Wang: Dual-Level Precision Edges Guided Multi-View Stereo with Accurate Planarization. AAAI2025 |
| test_part2 | | | | | | 99.89 45 | 99.25 18 | | | | 99.49 60 | | | | | | |
|
| CSCG | | | 97.10 100 | 97.04 94 | 97.27 172 | 99.89 45 | 91.92 256 | 99.90 85 | 99.07 34 | 88.67 286 | 95.26 192 | 99.82 46 | 93.17 105 | 99.98 43 | 98.15 106 | 99.47 102 | 99.90 81 |
|
| ZNCC-MVS | | | 98.31 46 | 98.03 53 | 99.17 51 | 99.88 49 | 97.59 82 | 99.94 66 | 98.44 117 | 94.31 123 | 98.50 113 | 99.82 46 | 93.06 107 | 99.99 36 | 98.30 101 | 99.99 21 | 99.93 74 |
|
| SR-MVS | | | 98.46 36 | 98.30 40 | 98.93 75 | 99.88 49 | 97.04 104 | 99.84 118 | 98.35 157 | 94.92 99 | 99.32 73 | 99.80 51 | 93.35 96 | 99.78 123 | 99.30 50 | 99.95 49 | 99.96 63 |
|
| 9.14 | | | | 98.38 31 | | 99.87 51 | | 99.91 80 | 98.33 162 | 93.22 165 | 99.78 24 | 99.89 19 | 94.57 64 | 99.85 106 | 99.84 20 | 99.97 42 | |
|
| SMA-MVS |  | | 98.76 21 | 98.48 26 | 99.62 20 | 99.87 51 | 98.87 32 | 99.86 111 | 98.38 151 | 93.19 166 | 99.77 25 | 99.94 4 | 95.54 42 | 100.00 1 | 99.74 28 | 99.99 21 | 100.00 1 |
| Yufeng Yin; Xiaoyan Liu; Zichao Zhang: SMA-MVS: Segmentation-Guided Multi-Scale Anchor Deformation Patch Multi-View Stereo. IEEE Transactions on Circuits and Systems for Video Technology |
| PHI-MVS | | | 98.41 42 | 98.21 42 | 99.03 66 | 99.86 53 | 97.10 103 | 99.98 14 | 98.80 60 | 90.78 249 | 99.62 44 | 99.78 59 | 95.30 47 | 100.00 1 | 99.80 23 | 99.93 60 | 99.99 23 |
|
| MTAPA | | | 98.29 48 | 97.96 59 | 99.30 42 | 99.85 54 | 97.93 73 | 99.39 212 | 98.28 171 | 95.76 78 | 97.18 149 | 99.88 21 | 92.74 117 | 100.00 1 | 98.67 84 | 99.88 68 | 99.99 23 |
|
| LS3D | | | 95.84 149 | 95.11 159 | 98.02 129 | 99.85 54 | 95.10 178 | 98.74 284 | 98.50 107 | 87.22 307 | 93.66 209 | 99.86 26 | 87.45 198 | 99.95 67 | 90.94 250 | 99.81 78 | 99.02 193 |
|
| HPM-MVS |  | | 97.96 60 | 97.72 68 | 98.68 86 | 99.84 56 | 96.39 127 | 99.90 85 | 98.17 183 | 92.61 188 | 98.62 108 | 99.57 105 | 91.87 140 | 99.67 143 | 98.87 73 | 99.99 21 | 99.99 23 |
| Chunlin Ren, Qingshan Xu, Shikun Zhang, Jiaqi Yang: Hierarchical Prior Mining for Non-local Multi-View Stereo. ICCV 2023 |
| EI-MVSNet-Vis-set | | | 98.27 49 | 98.11 50 | 98.75 83 | 99.83 57 | 96.59 120 | 99.40 208 | 98.51 102 | 95.29 91 | 98.51 112 | 99.76 63 | 93.60 94 | 99.71 136 | 98.53 92 | 99.52 98 | 99.95 70 |
|
| save fliter | | | | | | 99.82 58 | 98.79 38 | 99.96 32 | 98.40 144 | 97.66 19 | | | | | | | |
|
| PLC |  | 95.54 3 | 97.93 62 | 97.89 64 | 98.05 128 | 99.82 58 | 94.77 187 | 99.92 76 | 98.46 112 | 93.93 144 | 97.20 148 | 99.27 130 | 95.44 45 | 99.97 53 | 97.41 135 | 99.51 100 | 99.41 160 |
| Jie Liao, Yanping Fu, Qingan Yan, Chunxia xiao: Pyramid Multi-View Stereo with Local Consistency. Pacific Graphics 2019 |
| APD-MVS_3200maxsize | | | 98.25 52 | 98.08 52 | 98.78 80 | 99.81 60 | 96.60 119 | 99.82 128 | 98.30 169 | 93.95 143 | 99.37 71 | 99.77 61 | 92.84 113 | 99.76 129 | 98.95 65 | 99.92 63 | 99.97 57 |
|
| EI-MVSNet-UG-set | | | 98.14 56 | 97.99 55 | 98.60 93 | 99.80 61 | 96.27 130 | 99.36 217 | 98.50 107 | 95.21 93 | 98.30 122 | 99.75 68 | 93.29 100 | 99.73 135 | 98.37 97 | 99.30 114 | 99.81 92 |
|
| SR-MVS-dyc-post | | | 98.31 46 | 98.17 45 | 98.71 84 | 99.79 62 | 96.37 128 | 99.76 145 | 98.31 166 | 94.43 115 | 99.40 68 | 99.75 68 | 93.28 101 | 99.78 123 | 98.90 71 | 99.92 63 | 99.97 57 |
|
| RE-MVS-def | | | | 98.13 48 | | 99.79 62 | 96.37 128 | 99.76 145 | 98.31 166 | 94.43 115 | 99.40 68 | 99.75 68 | 92.95 110 | | 98.90 71 | 99.92 63 | 99.97 57 |
|
| HPM-MVS_fast | | | 97.80 71 | 97.50 76 | 98.68 86 | 99.79 62 | 96.42 123 | 99.88 95 | 98.16 187 | 91.75 220 | 98.94 90 | 99.54 108 | 91.82 142 | 99.65 145 | 97.62 133 | 99.99 21 | 99.99 23 |
|
| SF-MVS | | | 98.67 24 | 98.40 29 | 99.50 30 | 99.77 65 | 98.67 47 | 99.90 85 | 98.21 178 | 93.53 156 | 99.81 13 | 99.89 19 | 94.70 62 | 99.86 105 | 99.84 20 | 99.93 60 | 99.96 63 |
|
| 旧先验1 | | | | | | 99.76 66 | 97.52 85 | | 98.64 74 | | | 99.85 30 | 95.63 41 | | | 99.94 54 | 99.99 23 |
|
| OMC-MVS | | | 97.28 94 | 97.23 86 | 97.41 163 | 99.76 66 | 93.36 225 | 99.65 171 | 97.95 205 | 96.03 73 | 97.41 145 | 99.70 83 | 89.61 174 | 99.51 150 | 96.73 154 | 98.25 147 | 99.38 162 |
|
| 新几何1 | | | | | 99.42 37 | 99.75 68 | 98.27 61 | | 98.63 78 | 92.69 183 | 99.55 52 | 99.82 46 | 94.40 67 | 100.00 1 | 91.21 242 | 99.94 54 | 99.99 23 |
|
| MP-MVS-pluss | | | 98.07 59 | 97.64 71 | 99.38 41 | 99.74 69 | 98.41 60 | 99.74 151 | 98.18 182 | 93.35 160 | 96.45 167 | 99.85 30 | 92.64 119 | 99.97 53 | 98.91 70 | 99.89 66 | 99.77 99 |
| MP-MVS-pluss: MP-MVS-pluss. MP-MVS-pluss |
| TSAR-MVS + MP. | | | 98.93 14 | 98.77 16 | 99.41 38 | 99.74 69 | 98.67 47 | 99.77 140 | 98.38 151 | 96.73 51 | 99.88 4 | 99.74 74 | 94.89 59 | 99.59 147 | 99.80 23 | 99.98 32 | 99.97 57 |
| Zhenlong Yuan, Jiakai Cao, Zhaoqi Wang, Zhaoxin Li: TSAR-MVS: Textureless-aware Segmentation and Correlative Refinement Guided Multi-View Stereo. Pattern Recognition |
| test12 | | | | | 99.43 35 | 99.74 69 | 98.56 55 | | 98.40 144 | | 99.65 38 | | 94.76 60 | 99.75 130 | | 99.98 32 | 99.99 23 |
|
| 原ACMM1 | | | | | 98.96 73 | 99.73 72 | 96.99 107 | | 98.51 102 | 94.06 136 | 99.62 44 | 99.85 30 | 94.97 58 | 99.96 59 | 95.11 172 | 99.95 49 | 99.92 79 |
|
| TSAR-MVS + GP. | | | 98.60 27 | 98.51 25 | 98.86 78 | 99.73 72 | 96.63 117 | 99.97 25 | 97.92 210 | 98.07 9 | 98.76 100 | 99.55 106 | 95.00 56 | 99.94 75 | 99.91 15 | 97.68 160 | 99.99 23 |
|
| CANet | | | 98.27 49 | 97.82 66 | 99.63 17 | 99.72 74 | 99.10 23 | 99.98 14 | 98.51 102 | 97.00 41 | 98.52 111 | 99.71 81 | 87.80 193 | 99.95 67 | 99.75 26 | 99.38 110 | 99.83 89 |
|
| F-COLMAP | | | 96.93 107 | 96.95 97 | 96.87 181 | 99.71 75 | 91.74 261 | 99.85 114 | 97.95 205 | 93.11 169 | 95.72 185 | 99.16 141 | 92.35 129 | 99.94 75 | 95.32 170 | 99.35 112 | 98.92 195 |
|
| SD-MVS | | | 98.92 15 | 98.70 17 | 99.56 25 | 99.70 76 | 98.73 44 | 99.94 66 | 98.34 161 | 96.38 63 | 99.81 13 | 99.76 63 | 94.59 63 | 99.98 43 | 99.84 20 | 99.96 46 | 99.97 57 |
| Zhenlong Yuan, Jiakai Cao, Zhaoxin Li, Hao Jiang and Zhaoqi Wang: SD-MVS: Segmentation-driven Deformation Multi-View Stereo with Spherical Refinement and EM optimization. AAAI2024 |
| patch_mono-2 | | | 98.24 53 | 99.12 5 | 95.59 215 | 99.67 77 | 86.91 334 | 99.95 50 | 98.89 49 | 97.60 20 | 99.90 2 | 99.76 63 | 96.54 28 | 99.98 43 | 99.94 11 | 99.82 76 | 99.88 83 |
|
| ACMMP_NAP | | | 98.49 34 | 98.14 47 | 99.54 27 | 99.66 78 | 98.62 53 | 99.85 114 | 98.37 154 | 94.68 108 | 99.53 55 | 99.83 43 | 92.87 112 | 100.00 1 | 98.66 86 | 99.84 71 | 99.99 23 |
|
| DeepPCF-MVS | | 95.94 2 | 97.71 79 | 98.98 12 | 93.92 279 | 99.63 79 | 81.76 361 | 99.96 32 | 98.56 87 | 99.47 1 | 99.19 81 | 99.99 1 | 94.16 79 | 100.00 1 | 99.92 12 | 99.93 60 | 100.00 1 |
|
| EPNet | | | 98.49 34 | 98.40 29 | 98.77 82 | 99.62 80 | 96.80 114 | 99.90 85 | 99.51 17 | 97.60 20 | 99.20 79 | 99.36 124 | 93.71 91 | 99.91 87 | 97.99 115 | 98.71 135 | 99.61 125 |
| Wanjuan Su, Wenbing Tao: Efficient Edge-Preserving Multi-View Stereo Network for Depth Estimation. AAAI 2023 |
| PVSNet_BlendedMVS | | | 96.05 142 | 95.82 139 | 96.72 186 | 99.59 81 | 96.99 107 | 99.95 50 | 99.10 31 | 94.06 136 | 98.27 123 | 95.80 282 | 89.00 185 | 99.95 67 | 99.12 56 | 87.53 275 | 93.24 334 |
|
| PVSNet_Blended | | | 97.94 61 | 97.64 71 | 98.83 79 | 99.59 81 | 96.99 107 | 100.00 1 | 99.10 31 | 95.38 88 | 98.27 123 | 99.08 144 | 89.00 185 | 99.95 67 | 99.12 56 | 99.25 116 | 99.57 135 |
|
| PatchMatch-RL | | | 96.04 143 | 95.40 148 | 97.95 130 | 99.59 81 | 95.22 174 | 99.52 193 | 99.07 34 | 93.96 142 | 96.49 166 | 98.35 207 | 82.28 243 | 99.82 118 | 90.15 266 | 99.22 119 | 98.81 202 |
|
| dcpmvs_2 | | | 97.42 89 | 98.09 51 | 95.42 220 | 99.58 84 | 87.24 330 | 99.23 232 | 96.95 304 | 94.28 125 | 98.93 91 | 99.73 76 | 94.39 70 | 99.16 168 | 99.89 16 | 99.82 76 | 99.86 87 |
|
| test222 | | | | | | 99.55 85 | 97.41 94 | 99.34 218 | 98.55 93 | 91.86 215 | 99.27 78 | 99.83 43 | 93.84 88 | | | 99.95 49 | 99.99 23 |
|
| CNLPA | | | 97.76 75 | 97.38 80 | 98.92 76 | 99.53 86 | 96.84 112 | 99.87 98 | 98.14 190 | 93.78 149 | 96.55 165 | 99.69 85 | 92.28 131 | 99.98 43 | 97.13 142 | 99.44 106 | 99.93 74 |
|
| API-MVS | | | 97.86 65 | 97.66 70 | 98.47 106 | 99.52 87 | 95.41 165 | 99.47 202 | 98.87 52 | 91.68 221 | 98.84 94 | 99.85 30 | 92.34 130 | 99.99 36 | 98.44 94 | 99.96 46 | 100.00 1 |
|
| PVSNet | | 91.05 13 | 97.13 99 | 96.69 105 | 98.45 108 | 99.52 87 | 95.81 147 | 99.95 50 | 99.65 12 | 94.73 105 | 99.04 86 | 99.21 137 | 84.48 229 | 99.95 67 | 94.92 178 | 98.74 134 | 99.58 134 |
|
| 114514_t | | | 97.41 90 | 96.83 100 | 99.14 57 | 99.51 89 | 97.83 74 | 99.89 93 | 98.27 173 | 88.48 290 | 99.06 85 | 99.66 94 | 90.30 166 | 99.64 146 | 96.32 158 | 99.97 42 | 99.96 63 |
|
| cl22 | | | 93.77 205 | 93.25 209 | 95.33 224 | 99.49 90 | 94.43 191 | 99.61 179 | 98.09 192 | 90.38 254 | 89.16 278 | 95.61 289 | 90.56 162 | 97.34 267 | 91.93 234 | 84.45 296 | 94.21 279 |
|
| testdata | | | | | 98.42 111 | 99.47 91 | 95.33 168 | | 98.56 87 | 93.78 149 | 99.79 23 | 99.85 30 | 93.64 93 | 99.94 75 | 94.97 176 | 99.94 54 | 100.00 1 |
|
| MAR-MVS | | | 97.43 85 | 97.19 88 | 98.15 124 | 99.47 91 | 94.79 186 | 99.05 253 | 98.76 61 | 92.65 186 | 98.66 106 | 99.82 46 | 88.52 190 | 99.98 43 | 98.12 107 | 99.63 87 | 99.67 111 |
| Zhenyu Xu, Yiguang Liu, Xuelei Shi, Ying Wang, Yunan Zheng: MARMVS: Matching Ambiguity Reduced Multiple View Stereo for Efficient Large Scale Scene Reconstruction. CVPR 2020 |
| DP-MVS | | | 94.54 183 | 93.42 202 | 97.91 134 | 99.46 93 | 94.04 204 | 98.93 265 | 97.48 250 | 81.15 357 | 90.04 251 | 99.55 106 | 87.02 204 | 99.95 67 | 88.97 276 | 98.11 151 | 99.73 103 |
|
| MVS_111021_LR | | | 98.42 41 | 98.38 31 | 98.53 103 | 99.39 94 | 95.79 148 | 99.87 98 | 99.86 2 | 96.70 52 | 98.78 97 | 99.79 55 | 92.03 137 | 99.90 89 | 99.17 55 | 99.86 70 | 99.88 83 |
|
| CHOSEN 280x420 | | | 99.01 13 | 99.03 10 | 98.95 74 | 99.38 95 | 98.87 32 | 98.46 301 | 99.42 22 | 97.03 40 | 99.02 87 | 99.09 143 | 99.35 1 | 98.21 232 | 99.73 30 | 99.78 79 | 99.77 99 |
|
| MVS_111021_HR | | | 98.72 22 | 98.62 20 | 99.01 69 | 99.36 96 | 97.18 99 | 99.93 73 | 99.90 1 | 96.81 49 | 98.67 105 | 99.77 61 | 93.92 84 | 99.89 94 | 99.27 51 | 99.94 54 | 99.96 63 |
|
| DPM-MVS | | | 98.83 19 | 98.46 27 | 99.97 1 | 99.33 97 | 99.92 1 | 99.96 32 | 98.44 117 | 97.96 12 | 99.55 52 | 99.94 4 | 97.18 21 | 100.00 1 | 93.81 207 | 99.94 54 | 99.98 48 |
|
| TAPA-MVS | | 92.12 8 | 94.42 188 | 93.60 195 | 96.90 180 | 99.33 97 | 91.78 260 | 99.78 137 | 98.00 199 | 89.89 264 | 94.52 198 | 99.47 112 | 91.97 138 | 99.18 166 | 69.90 371 | 99.52 98 | 99.73 103 |
| Andrea Romanoni, Matteo Matteucci: TAPA-MVS: Textureless-Aware PAtchMatch Multi-View Stereo. ICCV 2019 |
| CS-MVS-test | | | 97.88 64 | 97.94 60 | 97.70 147 | 99.28 99 | 95.20 175 | 99.98 14 | 97.15 282 | 95.53 85 | 99.62 44 | 99.79 55 | 92.08 136 | 98.38 216 | 98.75 80 | 99.28 115 | 99.52 145 |
|
| test_fmvsm_n_1920 | | | 98.44 38 | 98.61 21 | 97.92 132 | 99.27 100 | 95.18 176 | 100.00 1 | 98.90 47 | 98.05 10 | 99.80 15 | 99.73 76 | 92.64 119 | 99.99 36 | 99.58 36 | 99.51 100 | 98.59 212 |
|
| test_yl | | | 97.83 67 | 97.37 81 | 99.21 45 | 99.18 101 | 97.98 70 | 99.64 175 | 99.27 27 | 91.43 229 | 97.88 135 | 98.99 153 | 95.84 38 | 99.84 114 | 98.82 75 | 95.32 211 | 99.79 95 |
|
| DCV-MVSNet | | | 97.83 67 | 97.37 81 | 99.21 45 | 99.18 101 | 97.98 70 | 99.64 175 | 99.27 27 | 91.43 229 | 97.88 135 | 98.99 153 | 95.84 38 | 99.84 114 | 98.82 75 | 95.32 211 | 99.79 95 |
|
| MVS_0304 | | | 98.87 18 | 98.61 21 | 99.67 16 | 99.18 101 | 99.13 22 | 99.87 98 | 99.65 12 | 98.17 6 | 98.75 102 | 99.75 68 | 92.76 116 | 99.94 75 | 99.88 18 | 99.44 106 | 99.94 72 |
|
| DeepC-MVS | | 94.51 4 | 96.92 108 | 96.40 114 | 98.45 108 | 99.16 104 | 95.90 145 | 99.66 169 | 98.06 195 | 96.37 66 | 94.37 201 | 99.49 111 | 83.29 239 | 99.90 89 | 97.63 132 | 99.61 92 | 99.55 137 |
| Andreas Kuhn, Christian Sormann, Mattia Rossi, Oliver Erdler, Friedrich Fraundorfer: DeepC-MVS: Deep Confidence Prediction for Multi-View Stereo Reconstruction. 3DV 2020 |
| DELS-MVS | | | 98.54 30 | 98.22 41 | 99.50 30 | 99.15 105 | 98.65 51 | 100.00 1 | 98.58 83 | 97.70 18 | 98.21 127 | 99.24 135 | 92.58 122 | 99.94 75 | 98.63 89 | 99.94 54 | 99.92 79 |
| Christian Sormann, Emanuele Santellani, Mattia Rossi, Andreas Kuhn, Friedrich Fraundorfer: DELS-MVS: Deep Epipolar Line Search for Multi-View Stereo. Winter Conference on Applications of Computer Vision (WACV), 2023 |
| CS-MVS | | | 97.79 73 | 97.91 62 | 97.43 162 | 99.10 106 | 94.42 192 | 99.99 4 | 97.10 287 | 95.07 94 | 99.68 35 | 99.75 68 | 92.95 110 | 98.34 220 | 98.38 96 | 99.14 121 | 99.54 141 |
|
| Anonymous202405211 | | | 93.10 223 | 91.99 235 | 96.40 196 | 99.10 106 | 89.65 305 | 98.88 270 | 97.93 207 | 83.71 344 | 94.00 206 | 98.75 181 | 68.79 339 | 99.88 100 | 95.08 174 | 91.71 234 | 99.68 109 |
|
| fmvsm_s_conf0.5_n | | | 97.80 71 | 97.85 65 | 97.67 148 | 99.06 108 | 94.41 193 | 99.98 14 | 98.97 40 | 97.34 27 | 99.63 41 | 99.69 85 | 87.27 200 | 99.97 53 | 99.62 35 | 99.06 125 | 98.62 211 |
|
| HyFIR lowres test | | | 96.66 121 | 96.43 113 | 97.36 168 | 99.05 109 | 93.91 209 | 99.70 163 | 99.80 3 | 90.54 252 | 96.26 173 | 98.08 212 | 92.15 134 | 98.23 231 | 96.84 153 | 95.46 207 | 99.93 74 |
|
| LFMVS | | | 94.75 177 | 93.56 198 | 98.30 117 | 99.03 110 | 95.70 154 | 98.74 284 | 97.98 202 | 87.81 300 | 98.47 114 | 99.39 121 | 67.43 347 | 99.53 148 | 98.01 113 | 95.20 213 | 99.67 111 |
|
| AllTest | | | 92.48 237 | 91.64 240 | 95.00 234 | 99.01 111 | 88.43 319 | 98.94 264 | 96.82 319 | 86.50 316 | 88.71 284 | 98.47 203 | 74.73 316 | 99.88 100 | 85.39 314 | 96.18 189 | 96.71 238 |
|
| TestCases | | | | | 95.00 234 | 99.01 111 | 88.43 319 | | 96.82 319 | 86.50 316 | 88.71 284 | 98.47 203 | 74.73 316 | 99.88 100 | 85.39 314 | 96.18 189 | 96.71 238 |
|
| COLMAP_ROB |  | 90.47 14 | 92.18 244 | 91.49 246 | 94.25 267 | 99.00 113 | 88.04 325 | 98.42 306 | 96.70 326 | 82.30 353 | 88.43 291 | 99.01 150 | 76.97 292 | 99.85 106 | 86.11 310 | 96.50 185 | 94.86 249 |
| Johannes L. Schönberger, Enliang Zheng, Marc Pollefeys, Jan-Michael Frahm: Pixelwise View Selection for Unstructured Multi-View Stereo. ECCV 2016 |
| test_fmvs1 | | | 95.35 163 | 95.68 144 | 94.36 264 | 98.99 114 | 84.98 343 | 99.96 32 | 96.65 328 | 97.60 20 | 99.73 30 | 98.96 159 | 71.58 329 | 99.93 83 | 98.31 100 | 99.37 111 | 98.17 218 |
|
| HY-MVS | | 92.50 7 | 97.79 73 | 97.17 90 | 99.63 17 | 98.98 115 | 99.32 9 | 97.49 330 | 99.52 15 | 95.69 80 | 98.32 121 | 97.41 233 | 93.32 98 | 99.77 126 | 98.08 111 | 95.75 203 | 99.81 92 |
|
| VNet | | | 97.21 98 | 96.57 109 | 99.13 61 | 98.97 116 | 97.82 75 | 99.03 256 | 99.21 29 | 94.31 123 | 99.18 82 | 98.88 170 | 86.26 213 | 99.89 94 | 98.93 67 | 94.32 219 | 99.69 108 |
|
| thres200 | | | 96.96 105 | 96.21 118 | 99.22 44 | 98.97 116 | 98.84 35 | 99.85 114 | 99.71 7 | 93.17 167 | 96.26 173 | 98.88 170 | 89.87 171 | 99.51 150 | 94.26 196 | 94.91 214 | 99.31 172 |
|
| tfpn200view9 | | | 96.79 112 | 95.99 123 | 99.19 47 | 98.94 118 | 98.82 36 | 99.78 137 | 99.71 7 | 92.86 172 | 96.02 178 | 98.87 173 | 89.33 178 | 99.50 152 | 93.84 204 | 94.57 215 | 99.27 177 |
|
| thres400 | | | 96.78 113 | 95.99 123 | 99.16 53 | 98.94 118 | 98.82 36 | 99.78 137 | 99.71 7 | 92.86 172 | 96.02 178 | 98.87 173 | 89.33 178 | 99.50 152 | 93.84 204 | 94.57 215 | 99.16 184 |
|
| Anonymous20231211 | | | 89.86 293 | 88.44 300 | 94.13 270 | 98.93 120 | 90.68 283 | 98.54 298 | 98.26 174 | 76.28 369 | 86.73 312 | 95.54 293 | 70.60 335 | 97.56 260 | 90.82 253 | 80.27 331 | 94.15 287 |
|
| canonicalmvs | | | 97.09 102 | 96.32 115 | 99.39 40 | 98.93 120 | 98.95 27 | 99.72 159 | 97.35 261 | 94.45 113 | 97.88 135 | 99.42 116 | 86.71 207 | 99.52 149 | 98.48 93 | 93.97 224 | 99.72 105 |
|
| SDMVSNet | | | 94.80 173 | 93.96 186 | 97.33 170 | 98.92 122 | 95.42 164 | 99.59 181 | 98.99 37 | 92.41 199 | 92.55 224 | 97.85 222 | 75.81 306 | 98.93 176 | 97.90 121 | 91.62 235 | 97.64 229 |
|
| sd_testset | | | 93.55 212 | 92.83 216 | 95.74 213 | 98.92 122 | 90.89 280 | 98.24 312 | 98.85 55 | 92.41 199 | 92.55 224 | 97.85 222 | 71.07 334 | 98.68 192 | 93.93 201 | 91.62 235 | 97.64 229 |
|
| EPNet_dtu | | | 95.71 153 | 95.39 149 | 96.66 188 | 98.92 122 | 93.41 222 | 99.57 185 | 98.90 47 | 96.19 71 | 97.52 141 | 98.56 195 | 92.65 118 | 97.36 265 | 77.89 354 | 98.33 142 | 99.20 182 |
| Wanjuan Su, Wenbing Tao: Efficient Edge-Preserving Multi-View Stereo Network for Depth Estimation. AAAI 2023 |
| WTY-MVS | | | 98.10 58 | 97.60 73 | 99.60 22 | 98.92 122 | 99.28 17 | 99.89 93 | 99.52 15 | 95.58 83 | 98.24 126 | 99.39 121 | 93.33 97 | 99.74 132 | 97.98 117 | 95.58 206 | 99.78 98 |
|
| CHOSEN 1792x2688 | | | 96.81 111 | 96.53 110 | 97.64 150 | 98.91 126 | 93.07 227 | 99.65 171 | 99.80 3 | 95.64 81 | 95.39 189 | 98.86 175 | 84.35 232 | 99.90 89 | 96.98 148 | 99.16 120 | 99.95 70 |
|
| thres100view900 | | | 96.74 116 | 95.92 135 | 99.18 48 | 98.90 127 | 98.77 40 | 99.74 151 | 99.71 7 | 92.59 190 | 95.84 181 | 98.86 175 | 89.25 180 | 99.50 152 | 93.84 204 | 94.57 215 | 99.27 177 |
|
| thres600view7 | | | 96.69 119 | 95.87 138 | 99.14 57 | 98.90 127 | 98.78 39 | 99.74 151 | 99.71 7 | 92.59 190 | 95.84 181 | 98.86 175 | 89.25 180 | 99.50 152 | 93.44 216 | 94.50 218 | 99.16 184 |
|
| MSDG | | | 94.37 190 | 93.36 206 | 97.40 164 | 98.88 129 | 93.95 208 | 99.37 215 | 97.38 259 | 85.75 327 | 90.80 243 | 99.17 140 | 84.11 234 | 99.88 100 | 86.35 307 | 98.43 140 | 98.36 216 |
|
| h-mvs33 | | | 94.92 171 | 94.36 175 | 96.59 190 | 98.85 130 | 91.29 272 | 98.93 265 | 98.94 41 | 95.90 74 | 98.77 98 | 98.42 206 | 90.89 158 | 99.77 126 | 97.80 123 | 70.76 365 | 98.72 208 |
|
| Anonymous20240529 | | | 92.10 245 | 90.65 256 | 96.47 191 | 98.82 131 | 90.61 285 | 98.72 286 | 98.67 71 | 75.54 373 | 93.90 208 | 98.58 193 | 66.23 351 | 99.90 89 | 94.70 187 | 90.67 237 | 98.90 198 |
|
| PVSNet_Blended_VisFu | | | 97.27 95 | 96.81 101 | 98.66 88 | 98.81 132 | 96.67 116 | 99.92 76 | 98.64 74 | 94.51 112 | 96.38 171 | 98.49 199 | 89.05 184 | 99.88 100 | 97.10 144 | 98.34 141 | 99.43 158 |
|
| PS-MVSNAJ | | | 98.44 38 | 98.20 43 | 99.16 53 | 98.80 133 | 98.92 28 | 99.54 191 | 98.17 183 | 97.34 27 | 99.85 7 | 99.85 30 | 91.20 147 | 99.89 94 | 99.41 46 | 99.67 85 | 98.69 209 |
|
| CANet_DTU | | | 96.76 114 | 96.15 119 | 98.60 93 | 98.78 134 | 97.53 84 | 99.84 118 | 97.63 229 | 97.25 35 | 99.20 79 | 99.64 97 | 81.36 252 | 99.98 43 | 92.77 227 | 98.89 128 | 98.28 217 |
|
| mvsany_test1 | | | 97.82 69 | 97.90 63 | 97.55 155 | 98.77 135 | 93.04 230 | 99.80 134 | 97.93 207 | 96.95 43 | 99.61 50 | 99.68 91 | 90.92 155 | 99.83 116 | 99.18 54 | 98.29 146 | 99.80 94 |
|
| alignmvs | | | 97.81 70 | 97.33 83 | 99.25 43 | 98.77 135 | 98.66 49 | 99.99 4 | 98.44 117 | 94.40 119 | 98.41 116 | 99.47 112 | 93.65 92 | 99.42 160 | 98.57 90 | 94.26 220 | 99.67 111 |
|
| SteuartSystems-ACMMP | | | 99.02 12 | 98.97 13 | 99.18 48 | 98.72 137 | 97.71 77 | 99.98 14 | 98.44 117 | 96.85 44 | 99.80 15 | 99.91 14 | 97.57 8 | 99.85 106 | 99.44 44 | 99.99 21 | 99.99 23 |
| Skip Steuart: Steuart Systems R&D Blog. |
| xiu_mvs_v2_base | | | 98.23 54 | 97.97 56 | 99.02 68 | 98.69 138 | 98.66 49 | 99.52 193 | 98.08 194 | 97.05 39 | 99.86 5 | 99.86 26 | 90.65 160 | 99.71 136 | 99.39 48 | 98.63 136 | 98.69 209 |
|
| miper_enhance_ethall | | | 94.36 192 | 93.98 185 | 95.49 216 | 98.68 139 | 95.24 172 | 99.73 156 | 97.29 269 | 93.28 164 | 89.86 256 | 95.97 280 | 94.37 71 | 97.05 289 | 92.20 231 | 84.45 296 | 94.19 280 |
|
| test2506 | | | 97.53 83 | 97.19 88 | 98.58 96 | 98.66 140 | 96.90 111 | 98.81 279 | 99.77 5 | 94.93 97 | 97.95 131 | 98.96 159 | 92.51 124 | 99.20 164 | 94.93 177 | 98.15 148 | 99.64 117 |
|
| ECVR-MVS |  | | 95.66 156 | 95.05 161 | 97.51 158 | 98.66 140 | 93.71 213 | 98.85 276 | 98.45 113 | 94.93 97 | 96.86 156 | 98.96 159 | 75.22 312 | 99.20 164 | 95.34 169 | 98.15 148 | 99.64 117 |
|
| fmvsm_s_conf0.5_n_a | | | 97.73 78 | 97.72 68 | 97.77 142 | 98.63 142 | 94.26 198 | 99.96 32 | 98.92 46 | 97.18 37 | 99.75 27 | 99.69 85 | 87.00 205 | 99.97 53 | 99.46 42 | 98.89 128 | 99.08 192 |
|
| test1111 | | | 95.57 158 | 94.98 164 | 97.37 166 | 98.56 143 | 93.37 224 | 98.86 274 | 98.45 113 | 94.95 96 | 96.63 162 | 98.95 164 | 75.21 313 | 99.11 169 | 95.02 175 | 98.14 150 | 99.64 117 |
|
| MVSTER | | | 95.53 159 | 95.22 155 | 96.45 193 | 98.56 143 | 97.72 76 | 99.91 80 | 97.67 227 | 92.38 201 | 91.39 235 | 97.14 240 | 97.24 18 | 97.30 272 | 94.80 183 | 87.85 269 | 94.34 271 |
|
| VDD-MVS | | | 93.77 205 | 92.94 213 | 96.27 201 | 98.55 145 | 90.22 294 | 98.77 283 | 97.79 221 | 90.85 245 | 96.82 158 | 99.42 116 | 61.18 368 | 99.77 126 | 98.95 65 | 94.13 221 | 98.82 201 |
|
| tpmvs | | | 94.28 194 | 93.57 197 | 96.40 196 | 98.55 145 | 91.50 270 | 95.70 364 | 98.55 93 | 87.47 302 | 92.15 228 | 94.26 339 | 91.42 143 | 98.95 175 | 88.15 286 | 95.85 199 | 98.76 204 |
|
| UGNet | | | 95.33 164 | 94.57 172 | 97.62 153 | 98.55 145 | 94.85 182 | 98.67 292 | 99.32 26 | 95.75 79 | 96.80 159 | 96.27 271 | 72.18 326 | 99.96 59 | 94.58 190 | 99.05 126 | 98.04 222 |
| Wanjuan Su, Qingshan Xu, Wenbing Tao: Uncertainty-guided Multi-view Stereo Network for Depth Estimation. IEEE Transactions on Circuits and Systems for Video Technology, 2022 |
| PCF-MVS | | 94.20 5 | 95.18 165 | 94.10 182 | 98.43 110 | 98.55 145 | 95.99 143 | 97.91 325 | 97.31 266 | 90.35 256 | 89.48 267 | 99.22 136 | 85.19 222 | 99.89 94 | 90.40 263 | 98.47 139 | 99.41 160 |
| Andreas Kuhn, Shan Lin, Oliver Erdler: Plane Completion and Filtering for Multi-View Stereo Reconstruction. GCPR 2019 |
| test_vis1_n_1920 | | | 95.44 161 | 95.31 152 | 95.82 211 | 98.50 149 | 88.74 313 | 99.98 14 | 97.30 267 | 97.84 14 | 99.85 7 | 99.19 138 | 66.82 349 | 99.97 53 | 98.82 75 | 99.46 104 | 98.76 204 |
|
| BH-w/o | | | 95.71 153 | 95.38 150 | 96.68 187 | 98.49 150 | 92.28 247 | 99.84 118 | 97.50 248 | 92.12 207 | 92.06 231 | 98.79 179 | 84.69 227 | 98.67 193 | 95.29 171 | 99.66 86 | 99.09 190 |
|
| baseline1 | | | 95.78 150 | 94.86 166 | 98.54 101 | 98.47 151 | 98.07 65 | 99.06 249 | 97.99 200 | 92.68 184 | 94.13 205 | 98.62 190 | 93.28 101 | 98.69 191 | 93.79 209 | 85.76 284 | 98.84 200 |
|
| iter_conf05 | | | 96.07 141 | 95.95 131 | 96.44 195 | 98.43 152 | 97.52 85 | 99.91 80 | 96.85 315 | 94.16 129 | 92.49 226 | 97.98 218 | 98.20 4 | 97.34 267 | 97.26 139 | 88.29 262 | 94.45 261 |
|
| EPMVS | | | 96.53 125 | 96.01 122 | 98.09 126 | 98.43 152 | 96.12 142 | 96.36 351 | 99.43 21 | 93.53 156 | 97.64 139 | 95.04 317 | 94.41 66 | 98.38 216 | 91.13 244 | 98.11 151 | 99.75 101 |
|
| iter_conf_final | | | 96.01 144 | 95.93 133 | 96.28 200 | 98.38 154 | 97.03 105 | 99.87 98 | 97.03 295 | 94.05 138 | 92.61 222 | 97.98 218 | 98.01 5 | 97.34 267 | 97.02 146 | 88.39 261 | 94.47 255 |
|
| sss | | | 97.57 82 | 97.03 95 | 99.18 48 | 98.37 155 | 98.04 67 | 99.73 156 | 99.38 23 | 93.46 158 | 98.76 100 | 99.06 146 | 91.21 146 | 99.89 94 | 96.33 157 | 97.01 177 | 99.62 122 |
|
| BH-untuned | | | 95.18 165 | 94.83 167 | 96.22 202 | 98.36 156 | 91.22 273 | 99.80 134 | 97.32 265 | 90.91 243 | 91.08 239 | 98.67 183 | 83.51 236 | 98.54 199 | 94.23 197 | 99.61 92 | 98.92 195 |
|
| ET-MVSNet_ETH3D | | | 94.37 190 | 93.28 208 | 97.64 150 | 98.30 157 | 97.99 69 | 99.99 4 | 97.61 234 | 94.35 120 | 71.57 376 | 99.45 115 | 96.23 31 | 95.34 346 | 96.91 152 | 85.14 291 | 99.59 128 |
|
| AUN-MVS | | | 93.28 217 | 92.60 221 | 95.34 223 | 98.29 158 | 90.09 297 | 99.31 222 | 98.56 87 | 91.80 219 | 96.35 172 | 98.00 215 | 89.38 177 | 98.28 226 | 92.46 228 | 69.22 370 | 97.64 229 |
|
| FMVSNet3 | | | 92.69 233 | 91.58 242 | 95.99 206 | 98.29 158 | 97.42 93 | 99.26 230 | 97.62 231 | 89.80 265 | 89.68 260 | 95.32 307 | 81.62 250 | 96.27 326 | 87.01 303 | 85.65 285 | 94.29 273 |
|
| PMMVS | | | 96.76 114 | 96.76 103 | 96.76 184 | 98.28 160 | 92.10 251 | 99.91 80 | 97.98 202 | 94.12 131 | 99.53 55 | 99.39 121 | 86.93 206 | 98.73 186 | 96.95 150 | 97.73 158 | 99.45 155 |
|
| hse-mvs2 | | | 94.38 189 | 94.08 183 | 95.31 225 | 98.27 161 | 90.02 299 | 99.29 227 | 98.56 87 | 95.90 74 | 98.77 98 | 98.00 215 | 90.89 158 | 98.26 230 | 97.80 123 | 69.20 371 | 97.64 229 |
|
| PVSNet_0 | | 88.03 19 | 91.80 252 | 90.27 265 | 96.38 198 | 98.27 161 | 90.46 289 | 99.94 66 | 99.61 14 | 93.99 140 | 86.26 322 | 97.39 235 | 71.13 333 | 99.89 94 | 98.77 78 | 67.05 376 | 98.79 203 |
|
| UA-Net | | | 96.54 124 | 95.96 129 | 98.27 118 | 98.23 163 | 95.71 153 | 98.00 323 | 98.45 113 | 93.72 152 | 98.41 116 | 99.27 130 | 88.71 189 | 99.66 144 | 91.19 243 | 97.69 159 | 99.44 157 |
|
| test_cas_vis1_n_1920 | | | 96.59 123 | 96.23 117 | 97.65 149 | 98.22 164 | 94.23 199 | 99.99 4 | 97.25 273 | 97.77 15 | 99.58 51 | 99.08 144 | 77.10 289 | 99.97 53 | 97.64 131 | 99.45 105 | 98.74 206 |
|
| FE-MVS | | | 95.70 155 | 95.01 163 | 97.79 139 | 98.21 165 | 94.57 188 | 95.03 365 | 98.69 66 | 88.90 281 | 97.50 143 | 96.19 273 | 92.60 121 | 99.49 156 | 89.99 268 | 97.94 157 | 99.31 172 |
|
| GG-mvs-BLEND | | | | | 98.54 101 | 98.21 165 | 98.01 68 | 93.87 370 | 98.52 99 | | 97.92 132 | 97.92 221 | 99.02 2 | 97.94 248 | 98.17 104 | 99.58 95 | 99.67 111 |
|
| mvs_anonymous | | | 95.65 157 | 95.03 162 | 97.53 156 | 98.19 167 | 95.74 151 | 99.33 219 | 97.49 249 | 90.87 244 | 90.47 246 | 97.10 242 | 88.23 191 | 97.16 280 | 95.92 164 | 97.66 161 | 99.68 109 |
|
| MVS_Test | | | 96.46 127 | 95.74 140 | 98.61 92 | 98.18 168 | 97.23 97 | 99.31 222 | 97.15 282 | 91.07 240 | 98.84 94 | 97.05 246 | 88.17 192 | 98.97 173 | 94.39 192 | 97.50 163 | 99.61 125 |
|
| BH-RMVSNet | | | 95.18 165 | 94.31 178 | 97.80 137 | 98.17 169 | 95.23 173 | 99.76 145 | 97.53 244 | 92.52 195 | 94.27 203 | 99.25 134 | 76.84 294 | 98.80 180 | 90.89 252 | 99.54 97 | 99.35 167 |
|
| RPSCF | | | 91.80 252 | 92.79 218 | 88.83 341 | 98.15 170 | 69.87 379 | 98.11 319 | 96.60 330 | 83.93 342 | 94.33 202 | 99.27 130 | 79.60 271 | 99.46 159 | 91.99 233 | 93.16 231 | 97.18 236 |
|
| ETV-MVS | | | 97.92 63 | 97.80 67 | 98.25 119 | 98.14 171 | 96.48 121 | 99.98 14 | 97.63 229 | 95.61 82 | 99.29 77 | 99.46 114 | 92.55 123 | 98.82 179 | 99.02 64 | 98.54 137 | 99.46 153 |
|
| IS-MVSNet | | | 96.29 137 | 95.90 136 | 97.45 160 | 98.13 172 | 94.80 185 | 99.08 244 | 97.61 234 | 92.02 212 | 95.54 188 | 98.96 159 | 90.64 161 | 98.08 237 | 93.73 212 | 97.41 167 | 99.47 152 |
|
| test_fmvsmconf_n | | | 98.43 40 | 98.32 37 | 98.78 80 | 98.12 173 | 96.41 124 | 99.99 4 | 98.83 57 | 98.22 4 | 99.67 36 | 99.64 97 | 91.11 151 | 99.94 75 | 99.67 34 | 99.62 88 | 99.98 48 |
|
| ab-mvs | | | 94.69 178 | 93.42 202 | 98.51 104 | 98.07 174 | 96.26 131 | 96.49 349 | 98.68 68 | 90.31 257 | 94.54 197 | 97.00 248 | 76.30 301 | 99.71 136 | 95.98 163 | 93.38 229 | 99.56 136 |
|
| XVG-OURS-SEG-HR | | | 94.79 174 | 94.70 171 | 95.08 231 | 98.05 175 | 89.19 308 | 99.08 244 | 97.54 242 | 93.66 153 | 94.87 195 | 99.58 104 | 78.78 279 | 99.79 121 | 97.31 137 | 93.40 228 | 96.25 242 |
|
| EIA-MVS | | | 97.53 83 | 97.46 77 | 97.76 144 | 98.04 176 | 94.84 183 | 99.98 14 | 97.61 234 | 94.41 118 | 97.90 133 | 99.59 102 | 92.40 128 | 98.87 177 | 98.04 112 | 99.13 122 | 99.59 128 |
|
| XVG-OURS | | | 94.82 172 | 94.74 170 | 95.06 232 | 98.00 177 | 89.19 308 | 99.08 244 | 97.55 240 | 94.10 132 | 94.71 196 | 99.62 100 | 80.51 263 | 99.74 132 | 96.04 162 | 93.06 233 | 96.25 242 |
|
| dp | | | 95.05 168 | 94.43 174 | 96.91 179 | 97.99 178 | 92.73 237 | 96.29 354 | 97.98 202 | 89.70 266 | 95.93 180 | 94.67 330 | 93.83 89 | 98.45 205 | 86.91 306 | 96.53 184 | 99.54 141 |
|
| tpmrst | | | 96.27 139 | 95.98 125 | 97.13 174 | 97.96 179 | 93.15 226 | 96.34 352 | 98.17 183 | 92.07 208 | 98.71 104 | 95.12 315 | 93.91 85 | 98.73 186 | 94.91 180 | 96.62 182 | 99.50 149 |
|
| TR-MVS | | | 94.54 183 | 93.56 198 | 97.49 159 | 97.96 179 | 94.34 196 | 98.71 287 | 97.51 247 | 90.30 258 | 94.51 199 | 98.69 182 | 75.56 307 | 98.77 183 | 92.82 226 | 95.99 193 | 99.35 167 |
|
| Vis-MVSNet (Re-imp) | | | 96.32 134 | 95.98 125 | 97.35 169 | 97.93 181 | 94.82 184 | 99.47 202 | 98.15 189 | 91.83 216 | 95.09 193 | 99.11 142 | 91.37 145 | 97.47 263 | 93.47 215 | 97.43 164 | 99.74 102 |
|
| MDTV_nov1_ep13 | | | | 95.69 142 | | 97.90 182 | 94.15 201 | 95.98 360 | 98.44 117 | 93.12 168 | 97.98 130 | 95.74 284 | 95.10 50 | 98.58 196 | 90.02 267 | 96.92 179 | |
|
| Fast-Effi-MVS+ | | | 95.02 169 | 94.19 180 | 97.52 157 | 97.88 183 | 94.55 189 | 99.97 25 | 97.08 290 | 88.85 283 | 94.47 200 | 97.96 220 | 84.59 228 | 98.41 208 | 89.84 270 | 97.10 172 | 99.59 128 |
|
| ADS-MVSNet2 | | | 93.80 204 | 93.88 189 | 93.55 293 | 97.87 184 | 85.94 337 | 94.24 366 | 96.84 316 | 90.07 260 | 96.43 168 | 94.48 335 | 90.29 167 | 95.37 345 | 87.44 293 | 97.23 169 | 99.36 165 |
|
| ADS-MVSNet | | | 94.79 174 | 94.02 184 | 97.11 176 | 97.87 184 | 93.79 210 | 94.24 366 | 98.16 187 | 90.07 260 | 96.43 168 | 94.48 335 | 90.29 167 | 98.19 233 | 87.44 293 | 97.23 169 | 99.36 165 |
|
| Effi-MVS+ | | | 96.30 136 | 95.69 142 | 98.16 121 | 97.85 186 | 96.26 131 | 97.41 332 | 97.21 275 | 90.37 255 | 98.65 107 | 98.58 193 | 86.61 209 | 98.70 190 | 97.11 143 | 97.37 168 | 99.52 145 |
|
| PatchmatchNet |  | | 95.94 146 | 95.45 147 | 97.39 165 | 97.83 187 | 94.41 193 | 96.05 358 | 98.40 144 | 92.86 172 | 97.09 150 | 95.28 312 | 94.21 78 | 98.07 239 | 89.26 274 | 98.11 151 | 99.70 106 |
| Fangjinhua Wang, Silvano Galliani, Christoph Vogel, Pablo Speciale, Marc Pollefeys: PatchmatchNet: Learned Multi-View Patchmatch Stereo. |
| cascas | | | 94.64 181 | 93.61 193 | 97.74 146 | 97.82 188 | 96.26 131 | 99.96 32 | 97.78 222 | 85.76 325 | 94.00 206 | 97.54 229 | 76.95 293 | 99.21 163 | 97.23 140 | 95.43 208 | 97.76 228 |
|
| 1112_ss | | | 96.01 144 | 95.20 156 | 98.42 111 | 97.80 189 | 96.41 124 | 99.65 171 | 96.66 327 | 92.71 181 | 92.88 219 | 99.40 119 | 92.16 133 | 99.30 161 | 91.92 235 | 93.66 225 | 99.55 137 |
|
| Test_1112_low_res | | | 95.72 151 | 94.83 167 | 98.42 111 | 97.79 190 | 96.41 124 | 99.65 171 | 96.65 328 | 92.70 182 | 92.86 220 | 96.13 276 | 92.15 134 | 99.30 161 | 91.88 236 | 93.64 226 | 99.55 137 |
|
| Effi-MVS+-dtu | | | 94.53 185 | 95.30 153 | 92.22 314 | 97.77 191 | 82.54 354 | 99.59 181 | 97.06 292 | 94.92 99 | 95.29 191 | 95.37 305 | 85.81 215 | 97.89 249 | 94.80 183 | 97.07 173 | 96.23 244 |
|
| tpm cat1 | | | 93.51 213 | 92.52 226 | 96.47 191 | 97.77 191 | 91.47 271 | 96.13 356 | 98.06 195 | 80.98 358 | 92.91 218 | 93.78 343 | 89.66 172 | 98.87 177 | 87.03 302 | 96.39 187 | 99.09 190 |
|
| FA-MVS(test-final) | | | 95.86 147 | 95.09 160 | 98.15 124 | 97.74 193 | 95.62 157 | 96.31 353 | 98.17 183 | 91.42 231 | 96.26 173 | 96.13 276 | 90.56 162 | 99.47 158 | 92.18 232 | 97.07 173 | 99.35 167 |
|
| xiu_mvs_v1_base_debu | | | 97.43 85 | 97.06 91 | 98.55 98 | 97.74 193 | 98.14 62 | 99.31 222 | 97.86 216 | 96.43 60 | 99.62 44 | 99.69 85 | 85.56 217 | 99.68 140 | 99.05 58 | 98.31 143 | 97.83 224 |
|
| xiu_mvs_v1_base | | | 97.43 85 | 97.06 91 | 98.55 98 | 97.74 193 | 98.14 62 | 99.31 222 | 97.86 216 | 96.43 60 | 99.62 44 | 99.69 85 | 85.56 217 | 99.68 140 | 99.05 58 | 98.31 143 | 97.83 224 |
|
| xiu_mvs_v1_base_debi | | | 97.43 85 | 97.06 91 | 98.55 98 | 97.74 193 | 98.14 62 | 99.31 222 | 97.86 216 | 96.43 60 | 99.62 44 | 99.69 85 | 85.56 217 | 99.68 140 | 99.05 58 | 98.31 143 | 97.83 224 |
|
| EPP-MVSNet | | | 96.69 119 | 96.60 107 | 96.96 178 | 97.74 193 | 93.05 229 | 99.37 215 | 98.56 87 | 88.75 284 | 95.83 183 | 99.01 150 | 96.01 32 | 98.56 197 | 96.92 151 | 97.20 171 | 99.25 179 |
|
| gg-mvs-nofinetune | | | 93.51 213 | 91.86 239 | 98.47 106 | 97.72 198 | 97.96 72 | 92.62 374 | 98.51 102 | 74.70 376 | 97.33 146 | 69.59 389 | 98.91 3 | 97.79 252 | 97.77 128 | 99.56 96 | 99.67 111 |
|
| IB-MVS | | 92.85 6 | 94.99 170 | 93.94 187 | 98.16 121 | 97.72 198 | 95.69 155 | 99.99 4 | 98.81 58 | 94.28 125 | 92.70 221 | 96.90 250 | 95.08 51 | 99.17 167 | 96.07 161 | 73.88 360 | 99.60 127 |
| Christian Sormann, Mattia Rossi, Andreas Kuhn and Friedrich Fraundorfer: IB-MVS: An Iterative Algorithm for Deep Multi-View Stereo based on Binary Decisions. BMVC 2021 |
| thisisatest0515 | | | 97.41 90 | 97.02 96 | 98.59 95 | 97.71 200 | 97.52 85 | 99.97 25 | 98.54 96 | 91.83 216 | 97.45 144 | 99.04 147 | 97.50 9 | 99.10 170 | 94.75 185 | 96.37 188 | 99.16 184 |
|
| Syy-MVS | | | 90.00 291 | 90.63 257 | 88.11 348 | 97.68 201 | 74.66 376 | 99.71 161 | 98.35 157 | 90.79 247 | 92.10 229 | 98.67 183 | 79.10 277 | 93.09 368 | 63.35 382 | 95.95 196 | 96.59 240 |
|
| myMVS_eth3d | | | 94.46 187 | 94.76 169 | 93.55 293 | 97.68 201 | 90.97 275 | 99.71 161 | 98.35 157 | 90.79 247 | 92.10 229 | 98.67 183 | 92.46 127 | 93.09 368 | 87.13 299 | 95.95 196 | 96.59 240 |
|
| test_fmvs1_n | | | 94.25 195 | 94.36 175 | 93.92 279 | 97.68 201 | 83.70 349 | 99.90 85 | 96.57 331 | 97.40 26 | 99.67 36 | 98.88 170 | 61.82 365 | 99.92 86 | 98.23 102 | 99.13 122 | 98.14 221 |
|
| diffmvs |  | | 97.00 104 | 96.64 106 | 98.09 126 | 97.64 204 | 96.17 139 | 99.81 130 | 97.19 276 | 94.67 109 | 98.95 89 | 99.28 127 | 86.43 210 | 98.76 184 | 98.37 97 | 97.42 166 | 99.33 170 |
| Fangjinhua Wang, Qingshan Xu, Yew-Soon Ong, Marc Pollefeys: Lightweight and Accurate Multi-View Stereo With Confidence-Aware Diffusion Model. IEEE T-PAMI 2025 |
| Vis-MVSNet |  | | 95.72 151 | 95.15 158 | 97.45 160 | 97.62 205 | 94.28 197 | 99.28 228 | 98.24 175 | 94.27 127 | 96.84 157 | 98.94 166 | 79.39 272 | 98.76 184 | 93.25 217 | 98.49 138 | 99.30 174 |
| Jingyang Zhang, Yao Yao, Shiwei Li, Zixin Luo, Tian Fang: Visibility-aware Multiview Stereo Network. BMVC 2020 |
| thisisatest0530 | | | 97.10 100 | 96.72 104 | 98.22 120 | 97.60 206 | 96.70 115 | 99.92 76 | 98.54 96 | 91.11 239 | 97.07 151 | 98.97 157 | 97.47 12 | 99.03 171 | 93.73 212 | 96.09 191 | 98.92 195 |
|
| miper_ehance_all_eth | | | 93.16 220 | 92.60 221 | 94.82 242 | 97.57 207 | 93.56 216 | 99.50 197 | 97.07 291 | 88.75 284 | 88.85 283 | 95.52 295 | 90.97 154 | 96.74 308 | 90.77 254 | 84.45 296 | 94.17 281 |
|
| testing3 | | | 93.92 199 | 94.23 179 | 92.99 306 | 97.54 208 | 90.23 293 | 99.99 4 | 99.16 30 | 90.57 251 | 91.33 238 | 98.63 189 | 92.99 108 | 92.52 372 | 82.46 332 | 95.39 209 | 96.22 245 |
|
| LCM-MVSNet-Re | | | 92.31 241 | 92.60 221 | 91.43 321 | 97.53 209 | 79.27 371 | 99.02 257 | 91.83 385 | 92.07 208 | 80.31 351 | 94.38 338 | 83.50 237 | 95.48 343 | 97.22 141 | 97.58 162 | 99.54 141 |
|
| GBi-Net | | | 90.88 268 | 89.82 274 | 94.08 271 | 97.53 209 | 91.97 252 | 98.43 303 | 96.95 304 | 87.05 308 | 89.68 260 | 94.72 326 | 71.34 330 | 96.11 331 | 87.01 303 | 85.65 285 | 94.17 281 |
|
| test1 | | | 90.88 268 | 89.82 274 | 94.08 271 | 97.53 209 | 91.97 252 | 98.43 303 | 96.95 304 | 87.05 308 | 89.68 260 | 94.72 326 | 71.34 330 | 96.11 331 | 87.01 303 | 85.65 285 | 94.17 281 |
|
| FMVSNet2 | | | 91.02 265 | 89.56 279 | 95.41 221 | 97.53 209 | 95.74 151 | 98.98 259 | 97.41 257 | 87.05 308 | 88.43 291 | 95.00 320 | 71.34 330 | 96.24 328 | 85.12 316 | 85.21 290 | 94.25 276 |
|
| tttt0517 | | | 96.85 109 | 96.49 111 | 97.92 132 | 97.48 213 | 95.89 146 | 99.85 114 | 98.54 96 | 90.72 250 | 96.63 162 | 98.93 168 | 97.47 12 | 99.02 172 | 93.03 224 | 95.76 202 | 98.85 199 |
|
| casdiffmvs_mvg |  | | 96.43 128 | 95.94 132 | 97.89 136 | 97.44 214 | 95.47 161 | 99.86 111 | 97.29 269 | 93.35 160 | 96.03 177 | 99.19 138 | 85.39 220 | 98.72 188 | 97.89 122 | 97.04 175 | 99.49 151 |
| Fangjinhua Wang, Qingshan Xu, Yew-Soon Ong, Marc Pollefeys: Lightweight and Accurate Multi-View Stereo With Confidence-Aware Diffusion Model. IEEE T-PAMI 2025 |
| EC-MVSNet | | | 97.38 92 | 97.24 85 | 97.80 137 | 97.41 215 | 95.64 156 | 99.99 4 | 97.06 292 | 94.59 110 | 99.63 41 | 99.32 126 | 89.20 183 | 98.14 234 | 98.76 79 | 99.23 118 | 99.62 122 |
|
| c3_l | | | 92.53 236 | 91.87 238 | 94.52 254 | 97.40 216 | 92.99 231 | 99.40 208 | 96.93 309 | 87.86 298 | 88.69 286 | 95.44 299 | 89.95 170 | 96.44 319 | 90.45 260 | 80.69 327 | 94.14 290 |
|
| fmvsm_s_conf0.1_n | | | 97.30 93 | 97.21 87 | 97.60 154 | 97.38 217 | 94.40 195 | 99.90 85 | 98.64 74 | 96.47 59 | 99.51 59 | 99.65 96 | 84.99 225 | 99.93 83 | 99.22 53 | 99.09 124 | 98.46 213 |
|
| CDS-MVSNet | | | 96.34 133 | 96.07 120 | 97.13 174 | 97.37 218 | 94.96 180 | 99.53 192 | 97.91 211 | 91.55 224 | 95.37 190 | 98.32 208 | 95.05 53 | 97.13 283 | 93.80 208 | 95.75 203 | 99.30 174 |
| Khang Truong Giang, Soohwan Song, Sungho Jo: Curvature-guided dynamic scale networks for Multi-view Stereo. ICLR 2022 |
| TESTMET0.1,1 | | | 96.74 116 | 96.26 116 | 98.16 121 | 97.36 219 | 96.48 121 | 99.96 32 | 98.29 170 | 91.93 213 | 95.77 184 | 98.07 213 | 95.54 42 | 98.29 224 | 90.55 258 | 98.89 128 | 99.70 106 |
|
| miper_lstm_enhance | | | 91.81 249 | 91.39 248 | 93.06 305 | 97.34 220 | 89.18 310 | 99.38 213 | 96.79 321 | 86.70 315 | 87.47 304 | 95.22 313 | 90.00 169 | 95.86 340 | 88.26 284 | 81.37 317 | 94.15 287 |
|
| baseline | | | 96.43 128 | 95.98 125 | 97.76 144 | 97.34 220 | 95.17 177 | 99.51 195 | 97.17 279 | 93.92 145 | 96.90 155 | 99.28 127 | 85.37 221 | 98.64 194 | 97.50 134 | 96.86 181 | 99.46 153 |
|
| cl____ | | | 92.31 241 | 91.58 242 | 94.52 254 | 97.33 222 | 92.77 233 | 99.57 185 | 96.78 322 | 86.97 312 | 87.56 302 | 95.51 296 | 89.43 176 | 96.62 313 | 88.60 279 | 82.44 309 | 94.16 286 |
|
| DIV-MVS_self_test | | | 92.32 240 | 91.60 241 | 94.47 258 | 97.31 223 | 92.74 235 | 99.58 183 | 96.75 323 | 86.99 311 | 87.64 300 | 95.54 293 | 89.55 175 | 96.50 317 | 88.58 280 | 82.44 309 | 94.17 281 |
|
| casdiffmvs |  | | 96.42 130 | 95.97 128 | 97.77 142 | 97.30 224 | 94.98 179 | 99.84 118 | 97.09 289 | 93.75 151 | 96.58 164 | 99.26 133 | 85.07 223 | 98.78 182 | 97.77 128 | 97.04 175 | 99.54 141 |
| Fangjinhua Wang, Qingshan Xu, Yew-Soon Ong, Marc Pollefeys: Lightweight and Accurate Multi-View Stereo With Confidence-Aware Diffusion Model. IEEE T-PAMI 2025 |
| GeoE | | | 94.36 192 | 93.48 200 | 96.99 177 | 97.29 225 | 93.54 217 | 99.96 32 | 96.72 325 | 88.35 293 | 93.43 210 | 98.94 166 | 82.05 244 | 98.05 240 | 88.12 288 | 96.48 186 | 99.37 164 |
|
| eth_miper_zixun_eth | | | 92.41 239 | 91.93 236 | 93.84 283 | 97.28 226 | 90.68 283 | 98.83 277 | 96.97 303 | 88.57 289 | 89.19 277 | 95.73 286 | 89.24 182 | 96.69 311 | 89.97 269 | 81.55 315 | 94.15 287 |
|
| MVSFormer | | | 96.94 106 | 96.60 107 | 97.95 130 | 97.28 226 | 97.70 79 | 99.55 189 | 97.27 271 | 91.17 236 | 99.43 64 | 99.54 108 | 90.92 155 | 96.89 301 | 94.67 188 | 99.62 88 | 99.25 179 |
|
| lupinMVS | | | 97.85 66 | 97.60 73 | 98.62 91 | 97.28 226 | 97.70 79 | 99.99 4 | 97.55 240 | 95.50 87 | 99.43 64 | 99.67 92 | 90.92 155 | 98.71 189 | 98.40 95 | 99.62 88 | 99.45 155 |
|
| SCA | | | 94.69 178 | 93.81 191 | 97.33 170 | 97.10 229 | 94.44 190 | 98.86 274 | 98.32 164 | 93.30 163 | 96.17 176 | 95.59 291 | 76.48 299 | 97.95 246 | 91.06 246 | 97.43 164 | 99.59 128 |
|
| TAMVS | | | 95.85 148 | 95.58 145 | 96.65 189 | 97.07 230 | 93.50 218 | 99.17 237 | 97.82 220 | 91.39 233 | 95.02 194 | 98.01 214 | 92.20 132 | 97.30 272 | 93.75 211 | 95.83 200 | 99.14 187 |
|
| Fast-Effi-MVS+-dtu | | | 93.72 208 | 93.86 190 | 93.29 298 | 97.06 231 | 86.16 335 | 99.80 134 | 96.83 317 | 92.66 185 | 92.58 223 | 97.83 224 | 81.39 251 | 97.67 257 | 89.75 271 | 96.87 180 | 96.05 247 |
|
| CostFormer | | | 96.10 140 | 95.88 137 | 96.78 183 | 97.03 232 | 92.55 243 | 97.08 340 | 97.83 219 | 90.04 262 | 98.72 103 | 94.89 324 | 95.01 55 | 98.29 224 | 96.54 156 | 95.77 201 | 99.50 149 |
|
| test_fmvsmvis_n_1920 | | | 97.67 80 | 97.59 75 | 97.91 134 | 97.02 233 | 95.34 167 | 99.95 50 | 98.45 113 | 97.87 13 | 97.02 152 | 99.59 102 | 89.64 173 | 99.98 43 | 99.41 46 | 99.34 113 | 98.42 214 |
|
| test-LLR | | | 96.47 126 | 96.04 121 | 97.78 140 | 97.02 233 | 95.44 162 | 99.96 32 | 98.21 178 | 94.07 134 | 95.55 186 | 96.38 267 | 93.90 86 | 98.27 228 | 90.42 261 | 98.83 132 | 99.64 117 |
|
| test-mter | | | 96.39 131 | 95.93 133 | 97.78 140 | 97.02 233 | 95.44 162 | 99.96 32 | 98.21 178 | 91.81 218 | 95.55 186 | 96.38 267 | 95.17 48 | 98.27 228 | 90.42 261 | 98.83 132 | 99.64 117 |
|
| gm-plane-assit | | | | | | 96.97 236 | 93.76 212 | | | 91.47 227 | | 98.96 159 | | 98.79 181 | 94.92 178 | | |
|
| QAPM | | | 95.40 162 | 94.17 181 | 99.10 62 | 96.92 237 | 97.71 77 | 99.40 208 | 98.68 68 | 89.31 269 | 88.94 281 | 98.89 169 | 82.48 242 | 99.96 59 | 93.12 223 | 99.83 72 | 99.62 122 |
|
| KD-MVS_2432*1600 | | | 88.00 310 | 86.10 314 | 93.70 289 | 96.91 238 | 94.04 204 | 97.17 337 | 97.12 285 | 84.93 335 | 81.96 342 | 92.41 354 | 92.48 125 | 94.51 356 | 79.23 347 | 52.68 388 | 92.56 344 |
|
| miper_refine_blended | | | 88.00 310 | 86.10 314 | 93.70 289 | 96.91 238 | 94.04 204 | 97.17 337 | 97.12 285 | 84.93 335 | 81.96 342 | 92.41 354 | 92.48 125 | 94.51 356 | 79.23 347 | 52.68 388 | 92.56 344 |
|
| tpm2 | | | 95.47 160 | 95.18 157 | 96.35 199 | 96.91 238 | 91.70 265 | 96.96 343 | 97.93 207 | 88.04 297 | 98.44 115 | 95.40 301 | 93.32 98 | 97.97 243 | 94.00 199 | 95.61 205 | 99.38 162 |
|
| FMVSNet5 | | | 88.32 307 | 87.47 309 | 90.88 324 | 96.90 241 | 88.39 321 | 97.28 334 | 95.68 351 | 82.60 352 | 84.67 331 | 92.40 356 | 79.83 269 | 91.16 377 | 76.39 361 | 81.51 316 | 93.09 336 |
|
| 3Dnovator+ | | 91.53 11 | 96.31 135 | 95.24 154 | 99.52 28 | 96.88 242 | 98.64 52 | 99.72 159 | 98.24 175 | 95.27 92 | 88.42 293 | 98.98 155 | 82.76 241 | 99.94 75 | 97.10 144 | 99.83 72 | 99.96 63 |
|
| Patchmatch-test | | | 92.65 235 | 91.50 245 | 96.10 205 | 96.85 243 | 90.49 288 | 91.50 379 | 97.19 276 | 82.76 351 | 90.23 248 | 95.59 291 | 95.02 54 | 98.00 242 | 77.41 356 | 96.98 178 | 99.82 90 |
|
| MVS | | | 96.60 122 | 95.56 146 | 99.72 13 | 96.85 243 | 99.22 20 | 98.31 309 | 98.94 41 | 91.57 223 | 90.90 242 | 99.61 101 | 86.66 208 | 99.96 59 | 97.36 136 | 99.88 68 | 99.99 23 |
|
| 3Dnovator | | 91.47 12 | 96.28 138 | 95.34 151 | 99.08 63 | 96.82 245 | 97.47 91 | 99.45 205 | 98.81 58 | 95.52 86 | 89.39 268 | 99.00 152 | 81.97 245 | 99.95 67 | 97.27 138 | 99.83 72 | 99.84 88 |
|
| EI-MVSNet | | | 93.73 207 | 93.40 205 | 94.74 243 | 96.80 246 | 92.69 238 | 99.06 249 | 97.67 227 | 88.96 278 | 91.39 235 | 99.02 148 | 88.75 188 | 97.30 272 | 91.07 245 | 87.85 269 | 94.22 277 |
|
| CVMVSNet | | | 94.68 180 | 94.94 165 | 93.89 282 | 96.80 246 | 86.92 333 | 99.06 249 | 98.98 38 | 94.45 113 | 94.23 204 | 99.02 148 | 85.60 216 | 95.31 347 | 90.91 251 | 95.39 209 | 99.43 158 |
|
| IterMVS-LS | | | 92.69 233 | 92.11 231 | 94.43 262 | 96.80 246 | 92.74 235 | 99.45 205 | 96.89 312 | 88.98 276 | 89.65 263 | 95.38 304 | 88.77 187 | 96.34 323 | 90.98 249 | 82.04 312 | 94.22 277 |
| Fangjinhua Wang, Silvano Galliani, Christoph Vogel, Marc Pollefeys: IterMVS: Iterative Probability Estimation for Efficient Multi-View Stereo. |
| IterMVS | | | 90.91 267 | 90.17 269 | 93.12 302 | 96.78 249 | 90.42 291 | 98.89 268 | 97.05 294 | 89.03 273 | 86.49 317 | 95.42 300 | 76.59 297 | 95.02 349 | 87.22 298 | 84.09 299 | 93.93 308 |
| Fangjinhua Wang, Silvano Galliani, Christoph Vogel, Marc Pollefeys: IterMVS: Iterative Probability Estimation for Efficient Multi-View Stereo. |
| 1314 | | | 96.84 110 | 95.96 129 | 99.48 34 | 96.74 250 | 98.52 56 | 98.31 309 | 98.86 53 | 95.82 76 | 89.91 254 | 98.98 155 | 87.49 197 | 99.96 59 | 97.80 123 | 99.73 82 | 99.96 63 |
|
| IterMVS-SCA-FT | | | 90.85 270 | 90.16 270 | 92.93 307 | 96.72 251 | 89.96 300 | 98.89 268 | 96.99 299 | 88.95 279 | 86.63 314 | 95.67 287 | 76.48 299 | 95.00 350 | 87.04 301 | 84.04 302 | 93.84 315 |
|
| MVS-HIRNet | | | 86.22 317 | 83.19 330 | 95.31 225 | 96.71 252 | 90.29 292 | 92.12 376 | 97.33 264 | 62.85 383 | 86.82 311 | 70.37 388 | 69.37 338 | 97.49 262 | 75.12 363 | 97.99 156 | 98.15 219 |
|
| VDDNet | | | 93.12 222 | 91.91 237 | 96.76 184 | 96.67 253 | 92.65 241 | 98.69 290 | 98.21 178 | 82.81 350 | 97.75 138 | 99.28 127 | 61.57 366 | 99.48 157 | 98.09 110 | 94.09 222 | 98.15 219 |
|
| dmvs_re | | | 93.20 219 | 93.15 210 | 93.34 296 | 96.54 254 | 83.81 348 | 98.71 287 | 98.51 102 | 91.39 233 | 92.37 227 | 98.56 195 | 78.66 281 | 97.83 251 | 93.89 202 | 89.74 238 | 98.38 215 |
|
| MIMVSNet | | | 90.30 283 | 88.67 297 | 95.17 230 | 96.45 255 | 91.64 267 | 92.39 375 | 97.15 282 | 85.99 322 | 90.50 245 | 93.19 350 | 66.95 348 | 94.86 353 | 82.01 336 | 93.43 227 | 99.01 194 |
|
| CR-MVSNet | | | 93.45 216 | 92.62 220 | 95.94 207 | 96.29 256 | 92.66 239 | 92.01 377 | 96.23 340 | 92.62 187 | 96.94 153 | 93.31 348 | 91.04 152 | 96.03 336 | 79.23 347 | 95.96 194 | 99.13 188 |
|
| RPMNet | | | 89.76 295 | 87.28 310 | 97.19 173 | 96.29 256 | 92.66 239 | 92.01 377 | 98.31 166 | 70.19 382 | 96.94 153 | 85.87 381 | 87.25 201 | 99.78 123 | 62.69 383 | 95.96 194 | 99.13 188 |
|
| tt0805 | | | 91.28 260 | 90.18 268 | 94.60 249 | 96.26 258 | 87.55 327 | 98.39 307 | 98.72 63 | 89.00 275 | 89.22 274 | 98.47 203 | 62.98 362 | 98.96 174 | 90.57 257 | 88.00 268 | 97.28 235 |
|
| Patchmtry | | | 89.70 296 | 88.49 299 | 93.33 297 | 96.24 259 | 89.94 303 | 91.37 380 | 96.23 340 | 78.22 366 | 87.69 299 | 93.31 348 | 91.04 152 | 96.03 336 | 80.18 346 | 82.10 311 | 94.02 298 |
|
| test_vis1_rt | | | 86.87 315 | 86.05 317 | 89.34 337 | 96.12 260 | 78.07 372 | 99.87 98 | 83.54 396 | 92.03 211 | 78.21 361 | 89.51 367 | 45.80 382 | 99.91 87 | 96.25 159 | 93.11 232 | 90.03 367 |
|
| JIA-IIPM | | | 91.76 255 | 90.70 255 | 94.94 236 | 96.11 261 | 87.51 328 | 93.16 373 | 98.13 191 | 75.79 372 | 97.58 140 | 77.68 386 | 92.84 113 | 97.97 243 | 88.47 283 | 96.54 183 | 99.33 170 |
|
| OpenMVS |  | 90.15 15 | 94.77 176 | 93.59 196 | 98.33 115 | 96.07 262 | 97.48 90 | 99.56 187 | 98.57 85 | 90.46 253 | 86.51 316 | 98.95 164 | 78.57 282 | 99.94 75 | 93.86 203 | 99.74 81 | 97.57 233 |
|
| PAPM | | | 98.60 27 | 98.42 28 | 99.14 57 | 96.05 263 | 98.96 26 | 99.90 85 | 99.35 25 | 96.68 53 | 98.35 120 | 99.66 94 | 96.45 29 | 98.51 200 | 99.45 43 | 99.89 66 | 99.96 63 |
|
| CLD-MVS | | | 94.06 198 | 93.90 188 | 94.55 253 | 96.02 264 | 90.69 282 | 99.98 14 | 97.72 223 | 96.62 56 | 91.05 241 | 98.85 178 | 77.21 288 | 98.47 201 | 98.11 108 | 89.51 244 | 94.48 254 |
| Zhaoxin Li, Wangmeng Zuo, Zhaoqi Wang, Lei Zhang: Confidence-based Large-scale Dense Multi-view Stereo. IEEE Transaction on Image Processing, 2020 |
| PatchT | | | 90.38 280 | 88.75 296 | 95.25 227 | 95.99 265 | 90.16 295 | 91.22 381 | 97.54 242 | 76.80 368 | 97.26 147 | 86.01 380 | 91.88 139 | 96.07 335 | 66.16 379 | 95.91 198 | 99.51 147 |
|
| ACMH+ | | 89.98 16 | 90.35 281 | 89.54 280 | 92.78 310 | 95.99 265 | 86.12 336 | 98.81 279 | 97.18 278 | 89.38 268 | 83.14 338 | 97.76 226 | 68.42 343 | 98.43 206 | 89.11 275 | 86.05 283 | 93.78 318 |
|
| DeepMVS_CX |  | | | | 82.92 358 | 95.98 267 | 58.66 389 | | 96.01 345 | 92.72 180 | 78.34 360 | 95.51 296 | 58.29 371 | 98.08 237 | 82.57 331 | 85.29 288 | 92.03 352 |
|
| ACMP | | 92.05 9 | 92.74 230 | 92.42 228 | 93.73 285 | 95.91 268 | 88.72 314 | 99.81 130 | 97.53 244 | 94.13 130 | 87.00 310 | 98.23 209 | 74.07 320 | 98.47 201 | 96.22 160 | 88.86 251 | 93.99 303 |
| Qingshan Xu and Wenbing Tao: Planar Prior Assisted PatchMatch Multi-View Stereo. AAAI 2020 |
| test_vis1_n | | | 93.61 211 | 93.03 212 | 95.35 222 | 95.86 269 | 86.94 332 | 99.87 98 | 96.36 338 | 96.85 44 | 99.54 54 | 98.79 179 | 52.41 378 | 99.83 116 | 98.64 87 | 98.97 127 | 99.29 176 |
|
| HQP-NCC | | | | | | 95.78 270 | | 99.87 98 | | 96.82 46 | 93.37 211 | | | | | | |
|
| ACMP_Plane | | | | | | 95.78 270 | | 99.87 98 | | 96.82 46 | 93.37 211 | | | | | | |
|
| HQP-MVS | | | 94.61 182 | 94.50 173 | 94.92 237 | 95.78 270 | 91.85 257 | 99.87 98 | 97.89 212 | 96.82 46 | 93.37 211 | 98.65 186 | 80.65 261 | 98.39 212 | 97.92 119 | 89.60 239 | 94.53 250 |
|
| NP-MVS | | | | | | 95.77 273 | 91.79 259 | | | | | 98.65 186 | | | | | |
|
| test_fmvsmconf0.1_n | | | 97.74 76 | 97.44 78 | 98.64 90 | 95.76 274 | 96.20 136 | 99.94 66 | 98.05 197 | 98.17 6 | 98.89 93 | 99.42 116 | 87.65 195 | 99.90 89 | 99.50 39 | 99.60 94 | 99.82 90 |
|
| plane_prior6 | | | | | | 95.76 274 | 91.72 264 | | | | | | 80.47 265 | | | | |
|
| ACMM | | 91.95 10 | 92.88 227 | 92.52 226 | 93.98 278 | 95.75 276 | 89.08 311 | 99.77 140 | 97.52 246 | 93.00 170 | 89.95 253 | 97.99 217 | 76.17 303 | 98.46 204 | 93.63 214 | 88.87 250 | 94.39 265 |
| Qingshan Xu and Wenbing Tao: Multi-Scale Geometric Consistency Guided Multi-View Stereo. CVPR 2019 |
| GA-MVS | | | 93.83 201 | 92.84 215 | 96.80 182 | 95.73 277 | 93.57 215 | 99.88 95 | 97.24 274 | 92.57 192 | 92.92 217 | 96.66 259 | 78.73 280 | 97.67 257 | 87.75 291 | 94.06 223 | 99.17 183 |
|
| plane_prior1 | | | | | | 95.73 277 | | | | | | | | | | | |
|
| jason | | | 97.24 96 | 96.86 99 | 98.38 114 | 95.73 277 | 97.32 95 | 99.97 25 | 97.40 258 | 95.34 90 | 98.60 110 | 99.54 108 | 87.70 194 | 98.56 197 | 97.94 118 | 99.47 102 | 99.25 179 |
| jason: jason. |
| HQP_MVS | | | 94.49 186 | 94.36 175 | 94.87 238 | 95.71 280 | 91.74 261 | 99.84 118 | 97.87 214 | 96.38 63 | 93.01 215 | 98.59 191 | 80.47 265 | 98.37 218 | 97.79 126 | 89.55 242 | 94.52 252 |
|
| plane_prior7 | | | | | | 95.71 280 | 91.59 269 | | | | | | | | | | |
|
| ITE_SJBPF | | | | | 92.38 312 | 95.69 282 | 85.14 341 | | 95.71 350 | 92.81 176 | 89.33 271 | 98.11 211 | 70.23 336 | 98.42 207 | 85.91 312 | 88.16 265 | 93.59 326 |
|
| fmvsm_s_conf0.1_n_a | | | 97.09 102 | 96.90 98 | 97.63 152 | 95.65 283 | 94.21 200 | 99.83 125 | 98.50 107 | 96.27 68 | 99.65 38 | 99.64 97 | 84.72 226 | 99.93 83 | 99.04 61 | 98.84 131 | 98.74 206 |
|
| ACMH | | 89.72 17 | 90.64 274 | 89.63 277 | 93.66 291 | 95.64 284 | 88.64 317 | 98.55 296 | 97.45 251 | 89.03 273 | 81.62 345 | 97.61 228 | 69.75 337 | 98.41 208 | 89.37 272 | 87.62 274 | 93.92 309 |
| Qingshan Xu and Wenbing Tao: Multi-Scale Geometric Consistency Guided Multi-View Stereo. CVPR 2019 |
| baseline2 | | | 96.71 118 | 96.49 111 | 97.37 166 | 95.63 285 | 95.96 144 | 99.74 151 | 98.88 51 | 92.94 171 | 91.61 233 | 98.97 157 | 97.72 7 | 98.62 195 | 94.83 182 | 98.08 154 | 97.53 234 |
|
| FMVSNet1 | | | 88.50 306 | 86.64 312 | 94.08 271 | 95.62 286 | 91.97 252 | 98.43 303 | 96.95 304 | 83.00 348 | 86.08 324 | 94.72 326 | 59.09 370 | 96.11 331 | 81.82 338 | 84.07 300 | 94.17 281 |
|
| LPG-MVS_test | | | 92.96 225 | 92.71 219 | 93.71 287 | 95.43 287 | 88.67 315 | 99.75 148 | 97.62 231 | 92.81 176 | 90.05 249 | 98.49 199 | 75.24 310 | 98.40 210 | 95.84 166 | 89.12 246 | 94.07 295 |
|
| LGP-MVS_train | | | | | 93.71 287 | 95.43 287 | 88.67 315 | | 97.62 231 | 92.81 176 | 90.05 249 | 98.49 199 | 75.24 310 | 98.40 210 | 95.84 166 | 89.12 246 | 94.07 295 |
|
| tpm | | | 93.70 209 | 93.41 204 | 94.58 251 | 95.36 289 | 87.41 329 | 97.01 341 | 96.90 311 | 90.85 245 | 96.72 161 | 94.14 340 | 90.40 165 | 96.84 304 | 90.75 255 | 88.54 258 | 99.51 147 |
|
| D2MVS | | | 92.76 229 | 92.59 224 | 93.27 299 | 95.13 290 | 89.54 307 | 99.69 164 | 99.38 23 | 92.26 204 | 87.59 301 | 94.61 332 | 85.05 224 | 97.79 252 | 91.59 239 | 88.01 267 | 92.47 347 |
|
| VPA-MVSNet | | | 92.70 232 | 91.55 244 | 96.16 203 | 95.09 291 | 96.20 136 | 98.88 270 | 99.00 36 | 91.02 242 | 91.82 232 | 95.29 311 | 76.05 305 | 97.96 245 | 95.62 168 | 81.19 318 | 94.30 272 |
|
| LTVRE_ROB | | 88.28 18 | 90.29 284 | 89.05 291 | 94.02 274 | 95.08 292 | 90.15 296 | 97.19 336 | 97.43 253 | 84.91 337 | 83.99 334 | 97.06 245 | 74.00 321 | 98.28 226 | 84.08 321 | 87.71 272 | 93.62 325 |
| Andreas Kuhn, Heiko Hirschmüller, Daniel Scharstein, Helmut Mayer: A TV Prior for High-Quality Scalable Multi-View Stereo Reconstruction. International Journal of Computer Vision 2016 |
| TinyColmap | | | 87.87 312 | 86.51 313 | 91.94 317 | 95.05 293 | 85.57 339 | 97.65 329 | 94.08 373 | 84.40 340 | 81.82 344 | 96.85 254 | 62.14 364 | 98.33 221 | 80.25 345 | 86.37 282 | 91.91 354 |
|
| test0.0.03 1 | | | 93.86 200 | 93.61 193 | 94.64 247 | 95.02 294 | 92.18 250 | 99.93 73 | 98.58 83 | 94.07 134 | 87.96 297 | 98.50 198 | 93.90 86 | 94.96 351 | 81.33 339 | 93.17 230 | 96.78 237 |
|
| UniMVSNet (Re) | | | 93.07 224 | 92.13 230 | 95.88 208 | 94.84 295 | 96.24 135 | 99.88 95 | 98.98 38 | 92.49 197 | 89.25 272 | 95.40 301 | 87.09 203 | 97.14 282 | 93.13 222 | 78.16 341 | 94.26 274 |
|
| USDC | | | 90.00 291 | 88.96 292 | 93.10 304 | 94.81 296 | 88.16 323 | 98.71 287 | 95.54 355 | 93.66 153 | 83.75 336 | 97.20 239 | 65.58 353 | 98.31 223 | 83.96 324 | 87.49 276 | 92.85 341 |
|
| VPNet | | | 91.81 249 | 90.46 259 | 95.85 210 | 94.74 297 | 95.54 160 | 98.98 259 | 98.59 82 | 92.14 206 | 90.77 244 | 97.44 232 | 68.73 341 | 97.54 261 | 94.89 181 | 77.89 343 | 94.46 256 |
|
| FIs | | | 94.10 196 | 93.43 201 | 96.11 204 | 94.70 298 | 96.82 113 | 99.58 183 | 98.93 45 | 92.54 193 | 89.34 270 | 97.31 236 | 87.62 196 | 97.10 286 | 94.22 198 | 86.58 280 | 94.40 263 |
|
| UniMVSNet_ETH3D | | | 90.06 290 | 88.58 298 | 94.49 257 | 94.67 299 | 88.09 324 | 97.81 328 | 97.57 239 | 83.91 343 | 88.44 289 | 97.41 233 | 57.44 372 | 97.62 259 | 91.41 240 | 88.59 257 | 97.77 227 |
|
| UniMVSNet_NR-MVSNet | | | 92.95 226 | 92.11 231 | 95.49 216 | 94.61 300 | 95.28 170 | 99.83 125 | 99.08 33 | 91.49 225 | 89.21 275 | 96.86 253 | 87.14 202 | 96.73 309 | 93.20 218 | 77.52 346 | 94.46 256 |
|
| test_fmvs2 | | | 89.47 299 | 89.70 276 | 88.77 344 | 94.54 301 | 75.74 373 | 99.83 125 | 94.70 369 | 94.71 106 | 91.08 239 | 96.82 258 | 54.46 375 | 97.78 254 | 92.87 225 | 88.27 263 | 92.80 342 |
|
| WR-MVS | | | 92.31 241 | 91.25 249 | 95.48 219 | 94.45 302 | 95.29 169 | 99.60 180 | 98.68 68 | 90.10 259 | 88.07 296 | 96.89 251 | 80.68 260 | 96.80 307 | 93.14 221 | 79.67 334 | 94.36 267 |
|
| nrg030 | | | 93.51 213 | 92.53 225 | 96.45 193 | 94.36 303 | 97.20 98 | 99.81 130 | 97.16 281 | 91.60 222 | 89.86 256 | 97.46 231 | 86.37 211 | 97.68 256 | 95.88 165 | 80.31 330 | 94.46 256 |
|
| tfpnnormal | | | 89.29 302 | 87.61 308 | 94.34 265 | 94.35 304 | 94.13 202 | 98.95 263 | 98.94 41 | 83.94 341 | 84.47 332 | 95.51 296 | 74.84 315 | 97.39 264 | 77.05 359 | 80.41 328 | 91.48 357 |
|
| FC-MVSNet-test | | | 93.81 203 | 93.15 210 | 95.80 212 | 94.30 305 | 96.20 136 | 99.42 207 | 98.89 49 | 92.33 203 | 89.03 280 | 97.27 238 | 87.39 199 | 96.83 305 | 93.20 218 | 86.48 281 | 94.36 267 |
|
| MS-PatchMatch | | | 90.65 273 | 90.30 264 | 91.71 320 | 94.22 306 | 85.50 340 | 98.24 312 | 97.70 224 | 88.67 286 | 86.42 319 | 96.37 269 | 67.82 345 | 98.03 241 | 83.62 326 | 99.62 88 | 91.60 355 |
|
| WR-MVS_H | | | 91.30 258 | 90.35 262 | 94.15 268 | 94.17 307 | 92.62 242 | 99.17 237 | 98.94 41 | 88.87 282 | 86.48 318 | 94.46 337 | 84.36 230 | 96.61 314 | 88.19 285 | 78.51 339 | 93.21 335 |
|
| DU-MVS | | | 92.46 238 | 91.45 247 | 95.49 216 | 94.05 308 | 95.28 170 | 99.81 130 | 98.74 62 | 92.25 205 | 89.21 275 | 96.64 261 | 81.66 248 | 96.73 309 | 93.20 218 | 77.52 346 | 94.46 256 |
|
| NR-MVSNet | | | 91.56 257 | 90.22 266 | 95.60 214 | 94.05 308 | 95.76 150 | 98.25 311 | 98.70 65 | 91.16 238 | 80.78 350 | 96.64 261 | 83.23 240 | 96.57 315 | 91.41 240 | 77.73 345 | 94.46 256 |
|
| CP-MVSNet | | | 91.23 262 | 90.22 266 | 94.26 266 | 93.96 310 | 92.39 246 | 99.09 242 | 98.57 85 | 88.95 279 | 86.42 319 | 96.57 264 | 79.19 275 | 96.37 321 | 90.29 264 | 78.95 336 | 94.02 298 |
|
| XXY-MVS | | | 91.82 248 | 90.46 259 | 95.88 208 | 93.91 311 | 95.40 166 | 98.87 273 | 97.69 225 | 88.63 288 | 87.87 298 | 97.08 243 | 74.38 319 | 97.89 249 | 91.66 238 | 84.07 300 | 94.35 270 |
|
| PS-CasMVS | | | 90.63 275 | 89.51 282 | 93.99 277 | 93.83 312 | 91.70 265 | 98.98 259 | 98.52 99 | 88.48 290 | 86.15 323 | 96.53 266 | 75.46 308 | 96.31 325 | 88.83 277 | 78.86 338 | 93.95 306 |
|
| test_0402 | | | 85.58 319 | 83.94 324 | 90.50 328 | 93.81 313 | 85.04 342 | 98.55 296 | 95.20 363 | 76.01 370 | 79.72 355 | 95.13 314 | 64.15 359 | 96.26 327 | 66.04 380 | 86.88 279 | 90.21 366 |
|
| XVG-ACMP-BASELINE | | | 91.22 263 | 90.75 254 | 92.63 311 | 93.73 314 | 85.61 338 | 98.52 300 | 97.44 252 | 92.77 179 | 89.90 255 | 96.85 254 | 66.64 350 | 98.39 212 | 92.29 230 | 88.61 255 | 93.89 311 |
|
| TranMVSNet+NR-MVSNet | | | 91.68 256 | 90.61 258 | 94.87 238 | 93.69 315 | 93.98 207 | 99.69 164 | 98.65 72 | 91.03 241 | 88.44 289 | 96.83 257 | 80.05 268 | 96.18 329 | 90.26 265 | 76.89 354 | 94.45 261 |
|
| mvsmamba | | | 94.10 196 | 93.72 192 | 95.25 227 | 93.57 316 | 94.13 202 | 99.67 168 | 96.45 336 | 93.63 155 | 91.34 237 | 97.77 225 | 86.29 212 | 97.22 278 | 96.65 155 | 88.10 266 | 94.40 263 |
|
| TransMVSNet (Re) | | | 87.25 313 | 85.28 320 | 93.16 301 | 93.56 317 | 91.03 274 | 98.54 298 | 94.05 375 | 83.69 345 | 81.09 348 | 96.16 274 | 75.32 309 | 96.40 320 | 76.69 360 | 68.41 372 | 92.06 351 |
|
| v10 | | | 90.25 285 | 88.82 294 | 94.57 252 | 93.53 318 | 93.43 221 | 99.08 244 | 96.87 314 | 85.00 334 | 87.34 308 | 94.51 333 | 80.93 257 | 97.02 296 | 82.85 330 | 79.23 335 | 93.26 333 |
|
| testgi | | | 89.01 304 | 88.04 305 | 91.90 318 | 93.49 319 | 84.89 344 | 99.73 156 | 95.66 352 | 93.89 148 | 85.14 329 | 98.17 210 | 59.68 369 | 94.66 355 | 77.73 355 | 88.88 249 | 96.16 246 |
|
| v8 | | | 90.54 277 | 89.17 287 | 94.66 246 | 93.43 320 | 93.40 223 | 99.20 234 | 96.94 308 | 85.76 325 | 87.56 302 | 94.51 333 | 81.96 246 | 97.19 279 | 84.94 318 | 78.25 340 | 93.38 331 |
|
| V42 | | | 91.28 260 | 90.12 271 | 94.74 243 | 93.42 321 | 93.46 219 | 99.68 166 | 97.02 296 | 87.36 304 | 89.85 258 | 95.05 316 | 81.31 253 | 97.34 267 | 87.34 296 | 80.07 332 | 93.40 329 |
|
| pm-mvs1 | | | 89.36 301 | 87.81 307 | 94.01 275 | 93.40 322 | 91.93 255 | 98.62 295 | 96.48 335 | 86.25 320 | 83.86 335 | 96.14 275 | 73.68 322 | 97.04 291 | 86.16 309 | 75.73 358 | 93.04 338 |
|
| RRT_MVS | | | 93.14 221 | 92.92 214 | 93.78 284 | 93.31 323 | 90.04 298 | 99.66 169 | 97.69 225 | 92.53 194 | 88.91 282 | 97.76 226 | 84.36 230 | 96.93 299 | 95.10 173 | 86.99 278 | 94.37 266 |
|
| v1144 | | | 91.09 264 | 89.83 273 | 94.87 238 | 93.25 324 | 93.69 214 | 99.62 178 | 96.98 301 | 86.83 314 | 89.64 264 | 94.99 321 | 80.94 256 | 97.05 289 | 85.08 317 | 81.16 319 | 93.87 313 |
|
| v1192 | | | 90.62 276 | 89.25 286 | 94.72 245 | 93.13 325 | 93.07 227 | 99.50 197 | 97.02 296 | 86.33 319 | 89.56 266 | 95.01 318 | 79.22 274 | 97.09 288 | 82.34 334 | 81.16 319 | 94.01 300 |
|
| v2v482 | | | 91.30 258 | 90.07 272 | 95.01 233 | 93.13 325 | 93.79 210 | 99.77 140 | 97.02 296 | 88.05 296 | 89.25 272 | 95.37 305 | 80.73 259 | 97.15 281 | 87.28 297 | 80.04 333 | 94.09 294 |
|
| OPM-MVS | | | 93.21 218 | 92.80 217 | 94.44 260 | 93.12 327 | 90.85 281 | 99.77 140 | 97.61 234 | 96.19 71 | 91.56 234 | 98.65 186 | 75.16 314 | 98.47 201 | 93.78 210 | 89.39 245 | 93.99 303 |
| Ray L. Khuboni, Hongjun Xu: Octagram Propagation Matching for Multi-Scale View Stereopsis (OPM-MVS). |
| v144192 | | | 90.79 271 | 89.52 281 | 94.59 250 | 93.11 328 | 92.77 233 | 99.56 187 | 96.99 299 | 86.38 318 | 89.82 259 | 94.95 323 | 80.50 264 | 97.10 286 | 83.98 323 | 80.41 328 | 93.90 310 |
|
| bld_raw_dy_0_64 | | | 92.74 230 | 92.03 234 | 94.87 238 | 93.09 329 | 93.46 219 | 99.12 239 | 95.41 357 | 92.84 175 | 90.44 247 | 97.54 229 | 78.08 286 | 97.04 291 | 93.94 200 | 87.77 271 | 94.11 292 |
|
| PEN-MVS | | | 90.19 287 | 89.06 290 | 93.57 292 | 93.06 330 | 90.90 279 | 99.06 249 | 98.47 110 | 88.11 295 | 85.91 325 | 96.30 270 | 76.67 295 | 95.94 339 | 87.07 300 | 76.91 353 | 93.89 311 |
|
| v1240 | | | 90.20 286 | 88.79 295 | 94.44 260 | 93.05 331 | 92.27 248 | 99.38 213 | 96.92 310 | 85.89 323 | 89.36 269 | 94.87 325 | 77.89 287 | 97.03 294 | 80.66 342 | 81.08 322 | 94.01 300 |
|
| v148 | | | 90.70 272 | 89.63 277 | 93.92 279 | 92.97 332 | 90.97 275 | 99.75 148 | 96.89 312 | 87.51 301 | 88.27 294 | 95.01 318 | 81.67 247 | 97.04 291 | 87.40 295 | 77.17 351 | 93.75 319 |
|
| v1921920 | | | 90.46 278 | 89.12 288 | 94.50 256 | 92.96 333 | 92.46 244 | 99.49 199 | 96.98 301 | 86.10 321 | 89.61 265 | 95.30 308 | 78.55 283 | 97.03 294 | 82.17 335 | 80.89 326 | 94.01 300 |
|
| Baseline_NR-MVSNet | | | 90.33 282 | 89.51 282 | 92.81 309 | 92.84 334 | 89.95 301 | 99.77 140 | 93.94 376 | 84.69 339 | 89.04 279 | 95.66 288 | 81.66 248 | 96.52 316 | 90.99 248 | 76.98 352 | 91.97 353 |
|
| test_method | | | 80.79 339 | 79.70 343 | 84.08 355 | 92.83 335 | 67.06 381 | 99.51 195 | 95.42 356 | 54.34 387 | 81.07 349 | 93.53 345 | 44.48 383 | 92.22 374 | 78.90 351 | 77.23 350 | 92.94 339 |
|
| pmmvs4 | | | 92.10 245 | 91.07 252 | 95.18 229 | 92.82 336 | 94.96 180 | 99.48 201 | 96.83 317 | 87.45 303 | 88.66 287 | 96.56 265 | 83.78 235 | 96.83 305 | 89.29 273 | 84.77 294 | 93.75 319 |
|
| LF4IMVS | | | 89.25 303 | 88.85 293 | 90.45 330 | 92.81 337 | 81.19 364 | 98.12 318 | 94.79 366 | 91.44 228 | 86.29 321 | 97.11 241 | 65.30 356 | 98.11 236 | 88.53 282 | 85.25 289 | 92.07 350 |
|
| DTE-MVSNet | | | 89.40 300 | 88.24 303 | 92.88 308 | 92.66 338 | 89.95 301 | 99.10 241 | 98.22 177 | 87.29 305 | 85.12 330 | 96.22 272 | 76.27 302 | 95.30 348 | 83.56 327 | 75.74 357 | 93.41 328 |
|
| EU-MVSNet | | | 90.14 289 | 90.34 263 | 89.54 336 | 92.55 339 | 81.06 365 | 98.69 290 | 98.04 198 | 91.41 232 | 86.59 315 | 96.84 256 | 80.83 258 | 93.31 367 | 86.20 308 | 81.91 313 | 94.26 274 |
|
| APD_test1 | | | 81.15 338 | 80.92 339 | 81.86 359 | 92.45 340 | 59.76 388 | 96.04 359 | 93.61 379 | 73.29 379 | 77.06 364 | 96.64 261 | 44.28 384 | 96.16 330 | 72.35 367 | 82.52 307 | 89.67 370 |
|
| our_test_3 | | | 90.39 279 | 89.48 284 | 93.12 302 | 92.40 341 | 89.57 306 | 99.33 219 | 96.35 339 | 87.84 299 | 85.30 328 | 94.99 321 | 84.14 233 | 96.09 334 | 80.38 343 | 84.56 295 | 93.71 324 |
|
| ppachtmachnet_test | | | 89.58 298 | 88.35 301 | 93.25 300 | 92.40 341 | 90.44 290 | 99.33 219 | 96.73 324 | 85.49 330 | 85.90 326 | 95.77 283 | 81.09 255 | 96.00 338 | 76.00 362 | 82.49 308 | 93.30 332 |
|
| v7n | | | 89.65 297 | 88.29 302 | 93.72 286 | 92.22 343 | 90.56 287 | 99.07 248 | 97.10 287 | 85.42 332 | 86.73 312 | 94.72 326 | 80.06 267 | 97.13 283 | 81.14 340 | 78.12 342 | 93.49 327 |
|
| dmvs_testset | | | 83.79 332 | 86.07 316 | 76.94 363 | 92.14 344 | 48.60 398 | 96.75 346 | 90.27 388 | 89.48 267 | 78.65 358 | 98.55 197 | 79.25 273 | 86.65 386 | 66.85 377 | 82.69 306 | 95.57 248 |
|
| PS-MVSNAJss | | | 93.64 210 | 93.31 207 | 94.61 248 | 92.11 345 | 92.19 249 | 99.12 239 | 97.38 259 | 92.51 196 | 88.45 288 | 96.99 249 | 91.20 147 | 97.29 275 | 94.36 193 | 87.71 272 | 94.36 267 |
|
| pmmvs5 | | | 90.17 288 | 89.09 289 | 93.40 295 | 92.10 346 | 89.77 304 | 99.74 151 | 95.58 354 | 85.88 324 | 87.24 309 | 95.74 284 | 73.41 323 | 96.48 318 | 88.54 281 | 83.56 303 | 93.95 306 |
|
| N_pmnet | | | 80.06 342 | 80.78 340 | 77.89 362 | 91.94 347 | 45.28 400 | 98.80 281 | 56.82 402 | 78.10 367 | 80.08 353 | 93.33 346 | 77.03 290 | 95.76 341 | 68.14 375 | 82.81 305 | 92.64 343 |
|
| test_djsdf | | | 92.83 228 | 92.29 229 | 94.47 258 | 91.90 348 | 92.46 244 | 99.55 189 | 97.27 271 | 91.17 236 | 89.96 252 | 96.07 279 | 81.10 254 | 96.89 301 | 94.67 188 | 88.91 248 | 94.05 297 |
|
| SixPastTwentyTwo | | | 88.73 305 | 88.01 306 | 90.88 324 | 91.85 349 | 82.24 356 | 98.22 315 | 95.18 364 | 88.97 277 | 82.26 341 | 96.89 251 | 71.75 328 | 96.67 312 | 84.00 322 | 82.98 304 | 93.72 323 |
|
| K. test v3 | | | 88.05 309 | 87.24 311 | 90.47 329 | 91.82 350 | 82.23 357 | 98.96 262 | 97.42 255 | 89.05 272 | 76.93 366 | 95.60 290 | 68.49 342 | 95.42 344 | 85.87 313 | 81.01 324 | 93.75 319 |
|
| OurMVSNet-221017-0 | | | 89.81 294 | 89.48 284 | 90.83 326 | 91.64 351 | 81.21 363 | 98.17 317 | 95.38 359 | 91.48 226 | 85.65 327 | 97.31 236 | 72.66 324 | 97.29 275 | 88.15 286 | 84.83 293 | 93.97 305 |
|
| mvs_tets | | | 91.81 249 | 91.08 251 | 94.00 276 | 91.63 352 | 90.58 286 | 98.67 292 | 97.43 253 | 92.43 198 | 87.37 307 | 97.05 246 | 71.76 327 | 97.32 271 | 94.75 185 | 88.68 254 | 94.11 292 |
|
| Gipuma |  | | 66.95 355 | 65.00 355 | 72.79 368 | 91.52 353 | 67.96 380 | 66.16 391 | 95.15 365 | 47.89 389 | 58.54 386 | 67.99 391 | 29.74 388 | 87.54 385 | 50.20 390 | 77.83 344 | 62.87 391 |
| S. Galliani, K. Lasinger, K. Schindler: Massively Parallel Multiview Stereopsis by Surface Normal Diffusion. ICCV 2015 |
| test_fmvsmconf0.01_n | | | 96.39 131 | 95.74 140 | 98.32 116 | 91.47 354 | 95.56 159 | 99.84 118 | 97.30 267 | 97.74 16 | 97.89 134 | 99.35 125 | 79.62 270 | 99.85 106 | 99.25 52 | 99.24 117 | 99.55 137 |
|
| jajsoiax | | | 91.92 247 | 91.18 250 | 94.15 268 | 91.35 355 | 90.95 278 | 99.00 258 | 97.42 255 | 92.61 188 | 87.38 306 | 97.08 243 | 72.46 325 | 97.36 265 | 94.53 191 | 88.77 252 | 94.13 291 |
|
| MDA-MVSNet-bldmvs | | | 84.09 330 | 81.52 337 | 91.81 319 | 91.32 356 | 88.00 326 | 98.67 292 | 95.92 347 | 80.22 361 | 55.60 389 | 93.32 347 | 68.29 344 | 93.60 365 | 73.76 364 | 76.61 355 | 93.82 317 |
|
| MVP-Stereo | | | 90.93 266 | 90.45 261 | 92.37 313 | 91.25 357 | 88.76 312 | 98.05 322 | 96.17 342 | 87.27 306 | 84.04 333 | 95.30 308 | 78.46 284 | 97.27 277 | 83.78 325 | 99.70 84 | 91.09 358 |
| Qingsong Yan: MVP-Stereo: A Parallel Multi-View Patchmatch Stereo Method with Dilation Matching for Photogrammetric Application. |
| MDA-MVSNet_test_wron | | | 85.51 321 | 83.32 329 | 92.10 315 | 90.96 358 | 88.58 318 | 99.20 234 | 96.52 333 | 79.70 363 | 57.12 388 | 92.69 352 | 79.11 276 | 93.86 362 | 77.10 358 | 77.46 348 | 93.86 314 |
|
| YYNet1 | | | 85.50 322 | 83.33 328 | 92.00 316 | 90.89 359 | 88.38 322 | 99.22 233 | 96.55 332 | 79.60 364 | 57.26 387 | 92.72 351 | 79.09 278 | 93.78 363 | 77.25 357 | 77.37 349 | 93.84 315 |
|
| anonymousdsp | | | 91.79 254 | 90.92 253 | 94.41 263 | 90.76 360 | 92.93 232 | 98.93 265 | 97.17 279 | 89.08 271 | 87.46 305 | 95.30 308 | 78.43 285 | 96.92 300 | 92.38 229 | 88.73 253 | 93.39 330 |
|
| lessismore_v0 | | | | | 90.53 327 | 90.58 361 | 80.90 366 | | 95.80 348 | | 77.01 365 | 95.84 281 | 66.15 352 | 96.95 297 | 83.03 329 | 75.05 359 | 93.74 322 |
|
| EG-PatchMatch MVS | | | 85.35 323 | 83.81 326 | 89.99 334 | 90.39 362 | 81.89 359 | 98.21 316 | 96.09 344 | 81.78 355 | 74.73 372 | 93.72 344 | 51.56 380 | 97.12 285 | 79.16 350 | 88.61 255 | 90.96 360 |
|
| EGC-MVSNET | | | 69.38 348 | 63.76 358 | 86.26 352 | 90.32 363 | 81.66 362 | 96.24 355 | 93.85 377 | 0.99 399 | 3.22 400 | 92.33 357 | 52.44 377 | 92.92 370 | 59.53 386 | 84.90 292 | 84.21 380 |
|
| CMPMVS |  | 61.59 21 | 84.75 326 | 85.14 321 | 83.57 356 | 90.32 363 | 62.54 384 | 96.98 342 | 97.59 238 | 74.33 377 | 69.95 378 | 96.66 259 | 64.17 358 | 98.32 222 | 87.88 290 | 88.41 260 | 89.84 369 |
| M. Jancosek, T. Pajdla: Multi-View Reconstruction Preserving Weakly-Supported Surfaces. CVPR 2011 |
| new_pmnet | | | 84.49 329 | 82.92 332 | 89.21 338 | 90.03 365 | 82.60 353 | 96.89 345 | 95.62 353 | 80.59 359 | 75.77 371 | 89.17 368 | 65.04 357 | 94.79 354 | 72.12 368 | 81.02 323 | 90.23 365 |
|
| pmmvs6 | | | 85.69 318 | 83.84 325 | 91.26 323 | 90.00 366 | 84.41 346 | 97.82 327 | 96.15 343 | 75.86 371 | 81.29 347 | 95.39 303 | 61.21 367 | 96.87 303 | 83.52 328 | 73.29 361 | 92.50 346 |
|
| DSMNet-mixed | | | 88.28 308 | 88.24 303 | 88.42 346 | 89.64 367 | 75.38 375 | 98.06 321 | 89.86 389 | 85.59 329 | 88.20 295 | 92.14 358 | 76.15 304 | 91.95 375 | 78.46 352 | 96.05 192 | 97.92 223 |
|
| UnsupCasMVSNet_eth | | | 85.52 320 | 83.99 322 | 90.10 332 | 89.36 368 | 83.51 350 | 96.65 347 | 97.99 200 | 89.14 270 | 75.89 370 | 93.83 342 | 63.25 361 | 93.92 360 | 81.92 337 | 67.90 375 | 92.88 340 |
|
| Anonymous20231206 | | | 86.32 316 | 85.42 319 | 89.02 340 | 89.11 369 | 80.53 369 | 99.05 253 | 95.28 360 | 85.43 331 | 82.82 339 | 93.92 341 | 74.40 318 | 93.44 366 | 66.99 376 | 81.83 314 | 93.08 337 |
|
| Anonymous20240521 | | | 85.15 324 | 83.81 326 | 89.16 339 | 88.32 370 | 82.69 352 | 98.80 281 | 95.74 349 | 79.72 362 | 81.53 346 | 90.99 361 | 65.38 355 | 94.16 358 | 72.69 366 | 81.11 321 | 90.63 363 |
|
| OpenMVS_ROB |  | 79.82 20 | 83.77 333 | 81.68 336 | 90.03 333 | 88.30 371 | 82.82 351 | 98.46 301 | 95.22 362 | 73.92 378 | 76.00 369 | 91.29 360 | 55.00 374 | 96.94 298 | 68.40 374 | 88.51 259 | 90.34 364 |
|
| test20.03 | | | 84.72 327 | 83.99 322 | 86.91 350 | 88.19 372 | 80.62 368 | 98.88 270 | 95.94 346 | 88.36 292 | 78.87 356 | 94.62 331 | 68.75 340 | 89.11 381 | 66.52 378 | 75.82 356 | 91.00 359 |
|
| KD-MVS_self_test | | | 83.59 334 | 82.06 334 | 88.20 347 | 86.93 373 | 80.70 367 | 97.21 335 | 96.38 337 | 82.87 349 | 82.49 340 | 88.97 369 | 67.63 346 | 92.32 373 | 73.75 365 | 62.30 384 | 91.58 356 |
|
| MIMVSNet1 | | | 82.58 335 | 80.51 341 | 88.78 342 | 86.68 374 | 84.20 347 | 96.65 347 | 95.41 357 | 78.75 365 | 78.59 359 | 92.44 353 | 51.88 379 | 89.76 380 | 65.26 381 | 78.95 336 | 92.38 349 |
|
| CL-MVSNet_self_test | | | 84.50 328 | 83.15 331 | 88.53 345 | 86.00 375 | 81.79 360 | 98.82 278 | 97.35 261 | 85.12 333 | 83.62 337 | 90.91 363 | 76.66 296 | 91.40 376 | 69.53 372 | 60.36 385 | 92.40 348 |
|
| UnsupCasMVSNet_bld | | | 79.97 344 | 77.03 349 | 88.78 342 | 85.62 376 | 81.98 358 | 93.66 371 | 97.35 261 | 75.51 374 | 70.79 377 | 83.05 383 | 48.70 381 | 94.91 352 | 78.31 353 | 60.29 386 | 89.46 373 |
|
| Patchmatch-RL test | | | 86.90 314 | 85.98 318 | 89.67 335 | 84.45 377 | 75.59 374 | 89.71 384 | 92.43 382 | 86.89 313 | 77.83 363 | 90.94 362 | 94.22 76 | 93.63 364 | 87.75 291 | 69.61 367 | 99.79 95 |
|
| pmmvs-eth3d | | | 84.03 331 | 81.97 335 | 90.20 331 | 84.15 378 | 87.09 331 | 98.10 320 | 94.73 368 | 83.05 347 | 74.10 374 | 87.77 375 | 65.56 354 | 94.01 359 | 81.08 341 | 69.24 369 | 89.49 372 |
|
| test_fmvs3 | | | 79.99 343 | 80.17 342 | 79.45 361 | 84.02 379 | 62.83 382 | 99.05 253 | 93.49 380 | 88.29 294 | 80.06 354 | 86.65 378 | 28.09 390 | 88.00 382 | 88.63 278 | 73.27 362 | 87.54 378 |
|
| PM-MVS | | | 80.47 340 | 78.88 345 | 85.26 353 | 83.79 380 | 72.22 377 | 95.89 362 | 91.08 386 | 85.71 328 | 76.56 368 | 88.30 371 | 36.64 386 | 93.90 361 | 82.39 333 | 69.57 368 | 89.66 371 |
|
| new-patchmatchnet | | | 81.19 337 | 79.34 344 | 86.76 351 | 82.86 381 | 80.36 370 | 97.92 324 | 95.27 361 | 82.09 354 | 72.02 375 | 86.87 377 | 62.81 363 | 90.74 379 | 71.10 369 | 63.08 382 | 89.19 375 |
|
| mvsany_test3 | | | 82.12 336 | 81.14 338 | 85.06 354 | 81.87 382 | 70.41 378 | 97.09 339 | 92.14 383 | 91.27 235 | 77.84 362 | 88.73 370 | 39.31 385 | 95.49 342 | 90.75 255 | 71.24 364 | 89.29 374 |
|
| WB-MVS | | | 76.28 346 | 77.28 348 | 73.29 367 | 81.18 383 | 54.68 392 | 97.87 326 | 94.19 372 | 81.30 356 | 69.43 379 | 90.70 364 | 77.02 291 | 82.06 390 | 35.71 395 | 68.11 374 | 83.13 381 |
|
| test_f | | | 78.40 345 | 77.59 347 | 80.81 360 | 80.82 384 | 62.48 385 | 96.96 343 | 93.08 381 | 83.44 346 | 74.57 373 | 84.57 382 | 27.95 391 | 92.63 371 | 84.15 320 | 72.79 363 | 87.32 379 |
|
| SSC-MVS | | | 75.42 347 | 76.40 350 | 72.49 371 | 80.68 385 | 53.62 393 | 97.42 331 | 94.06 374 | 80.42 360 | 68.75 380 | 90.14 366 | 76.54 298 | 81.66 391 | 33.25 396 | 66.34 378 | 82.19 382 |
|
| pmmvs3 | | | 80.27 341 | 77.77 346 | 87.76 349 | 80.32 386 | 82.43 355 | 98.23 314 | 91.97 384 | 72.74 380 | 78.75 357 | 87.97 374 | 57.30 373 | 90.99 378 | 70.31 370 | 62.37 383 | 89.87 368 |
|
| testf1 | | | 68.38 351 | 66.92 352 | 72.78 369 | 78.80 387 | 50.36 395 | 90.95 382 | 87.35 394 | 55.47 385 | 58.95 384 | 88.14 372 | 20.64 395 | 87.60 383 | 57.28 387 | 64.69 379 | 80.39 384 |
|
| APD_test2 | | | 68.38 351 | 66.92 352 | 72.78 369 | 78.80 387 | 50.36 395 | 90.95 382 | 87.35 394 | 55.47 385 | 58.95 384 | 88.14 372 | 20.64 395 | 87.60 383 | 57.28 387 | 64.69 379 | 80.39 384 |
|
| ambc | | | | | 83.23 357 | 77.17 389 | 62.61 383 | 87.38 386 | 94.55 371 | | 76.72 367 | 86.65 378 | 30.16 387 | 96.36 322 | 84.85 319 | 69.86 366 | 90.73 362 |
|
| test_vis3_rt | | | 68.82 349 | 66.69 354 | 75.21 366 | 76.24 390 | 60.41 387 | 96.44 350 | 68.71 401 | 75.13 375 | 50.54 392 | 69.52 390 | 16.42 400 | 96.32 324 | 80.27 344 | 66.92 377 | 68.89 388 |
|
| TDRefinement | | | 84.76 325 | 82.56 333 | 91.38 322 | 74.58 391 | 84.80 345 | 97.36 333 | 94.56 370 | 84.73 338 | 80.21 352 | 96.12 278 | 63.56 360 | 98.39 212 | 87.92 289 | 63.97 381 | 90.95 361 |
|
| E-PMN | | | 52.30 359 | 52.18 361 | 52.67 377 | 71.51 392 | 45.40 399 | 93.62 372 | 76.60 399 | 36.01 393 | 43.50 394 | 64.13 393 | 27.11 392 | 67.31 396 | 31.06 397 | 26.06 392 | 45.30 395 |
|
| EMVS | | | 51.44 361 | 51.22 363 | 52.11 378 | 70.71 393 | 44.97 401 | 94.04 368 | 75.66 400 | 35.34 395 | 42.40 395 | 61.56 396 | 28.93 389 | 65.87 397 | 27.64 398 | 24.73 393 | 45.49 394 |
|
| PMMVS2 | | | 67.15 354 | 64.15 357 | 76.14 365 | 70.56 394 | 62.07 386 | 93.89 369 | 87.52 393 | 58.09 384 | 60.02 383 | 78.32 385 | 22.38 394 | 84.54 388 | 59.56 385 | 47.03 390 | 81.80 383 |
|
| FPMVS | | | 68.72 350 | 68.72 351 | 68.71 373 | 65.95 395 | 44.27 402 | 95.97 361 | 94.74 367 | 51.13 388 | 53.26 390 | 90.50 365 | 25.11 393 | 83.00 389 | 60.80 384 | 80.97 325 | 78.87 386 |
|
| wuyk23d | | | 20.37 365 | 20.84 368 | 18.99 381 | 65.34 396 | 27.73 404 | 50.43 392 | 7.67 405 | 9.50 398 | 8.01 399 | 6.34 399 | 6.13 403 | 26.24 398 | 23.40 399 | 10.69 397 | 2.99 396 |
|
| LCM-MVSNet | | | 67.77 353 | 64.73 356 | 76.87 364 | 62.95 397 | 56.25 391 | 89.37 385 | 93.74 378 | 44.53 390 | 61.99 382 | 80.74 384 | 20.42 397 | 86.53 387 | 69.37 373 | 59.50 387 | 87.84 376 |
|
| MVE |  | 53.74 22 | 51.54 360 | 47.86 364 | 62.60 375 | 59.56 398 | 50.93 394 | 79.41 389 | 77.69 398 | 35.69 394 | 36.27 396 | 61.76 395 | 5.79 404 | 69.63 394 | 37.97 394 | 36.61 391 | 67.24 389 |
| Simon Fuhrmann, Fabian Langguth, Michael Goesele: MVE - A Multi-View Reconstruction Environment. EUROGRAPHICS Workshops on Graphics and Cultural Heritage (2014) |
| ANet_high | | | 56.10 357 | 52.24 360 | 67.66 374 | 49.27 399 | 56.82 390 | 83.94 387 | 82.02 397 | 70.47 381 | 33.28 397 | 64.54 392 | 17.23 399 | 69.16 395 | 45.59 392 | 23.85 394 | 77.02 387 |
|
| tmp_tt | | | 65.23 356 | 62.94 359 | 72.13 372 | 44.90 400 | 50.03 397 | 81.05 388 | 89.42 392 | 38.45 391 | 48.51 393 | 99.90 18 | 54.09 376 | 78.70 393 | 91.84 237 | 18.26 395 | 87.64 377 |
|
| PMVS |  | 49.05 23 | 53.75 358 | 51.34 362 | 60.97 376 | 40.80 401 | 34.68 403 | 74.82 390 | 89.62 391 | 37.55 392 | 28.67 398 | 72.12 387 | 7.09 402 | 81.63 392 | 43.17 393 | 68.21 373 | 66.59 390 |
| Y. Furukawa, J. Ponce: Accurate, dense, and robust multiview stereopsis. PAMI (2010) |
| test123 | | | 37.68 363 | 39.14 366 | 33.31 379 | 19.94 402 | 24.83 405 | 98.36 308 | 9.75 404 | 15.53 397 | 51.31 391 | 87.14 376 | 19.62 398 | 17.74 399 | 47.10 391 | 3.47 398 | 57.36 392 |
|
| testmvs | | | 40.60 362 | 44.45 365 | 29.05 380 | 19.49 403 | 14.11 406 | 99.68 166 | 18.47 403 | 20.74 396 | 64.59 381 | 98.48 202 | 10.95 401 | 17.09 400 | 56.66 389 | 11.01 396 | 55.94 393 |
|
| test_blank | | | 0.00 368 | 0.00 371 | 0.00 382 | 0.00 404 | 0.00 407 | 0.00 393 | 0.00 406 | 0.00 400 | 0.00 401 | 0.02 400 | 0.00 405 | 0.00 401 | 0.00 400 | 0.00 399 | 0.00 397 |
|
| eth-test2 | | | | | | 0.00 404 | | | | | | | | | | | |
|
| eth-test | | | | | | 0.00 404 | | | | | | | | | | | |
|
| uanet_test | | | 0.00 368 | 0.00 371 | 0.00 382 | 0.00 404 | 0.00 407 | 0.00 393 | 0.00 406 | 0.00 400 | 0.00 401 | 0.00 401 | 0.00 405 | 0.00 401 | 0.00 400 | 0.00 399 | 0.00 397 |
|
| DCPMVS | | | 0.00 368 | 0.00 371 | 0.00 382 | 0.00 404 | 0.00 407 | 0.00 393 | 0.00 406 | 0.00 400 | 0.00 401 | 0.00 401 | 0.00 405 | 0.00 401 | 0.00 400 | 0.00 399 | 0.00 397 |
|
| cdsmvs_eth3d_5k | | | 23.43 364 | 31.24 367 | 0.00 382 | 0.00 404 | 0.00 407 | 0.00 393 | 98.09 192 | 0.00 400 | 0.00 401 | 99.67 92 | 83.37 238 | 0.00 401 | 0.00 400 | 0.00 399 | 0.00 397 |
|
| pcd_1.5k_mvsjas | | | 7.60 367 | 10.13 370 | 0.00 382 | 0.00 404 | 0.00 407 | 0.00 393 | 0.00 406 | 0.00 400 | 0.00 401 | 0.00 401 | 91.20 147 | 0.00 401 | 0.00 400 | 0.00 399 | 0.00 397 |
|
| sosnet-low-res | | | 0.00 368 | 0.00 371 | 0.00 382 | 0.00 404 | 0.00 407 | 0.00 393 | 0.00 406 | 0.00 400 | 0.00 401 | 0.00 401 | 0.00 405 | 0.00 401 | 0.00 400 | 0.00 399 | 0.00 397 |
|
| sosnet | | | 0.00 368 | 0.00 371 | 0.00 382 | 0.00 404 | 0.00 407 | 0.00 393 | 0.00 406 | 0.00 400 | 0.00 401 | 0.00 401 | 0.00 405 | 0.00 401 | 0.00 400 | 0.00 399 | 0.00 397 |
|
| uncertanet | | | 0.00 368 | 0.00 371 | 0.00 382 | 0.00 404 | 0.00 407 | 0.00 393 | 0.00 406 | 0.00 400 | 0.00 401 | 0.00 401 | 0.00 405 | 0.00 401 | 0.00 400 | 0.00 399 | 0.00 397 |
|
| Regformer | | | 0.00 368 | 0.00 371 | 0.00 382 | 0.00 404 | 0.00 407 | 0.00 393 | 0.00 406 | 0.00 400 | 0.00 401 | 0.00 401 | 0.00 405 | 0.00 401 | 0.00 400 | 0.00 399 | 0.00 397 |
|
| ab-mvs-re | | | 8.28 366 | 11.04 369 | 0.00 382 | 0.00 404 | 0.00 407 | 0.00 393 | 0.00 406 | 0.00 400 | 0.00 401 | 99.40 119 | 0.00 405 | 0.00 401 | 0.00 400 | 0.00 399 | 0.00 397 |
|
| uanet | | | 0.00 368 | 0.00 371 | 0.00 382 | 0.00 404 | 0.00 407 | 0.00 393 | 0.00 406 | 0.00 400 | 0.00 401 | 0.00 401 | 0.00 405 | 0.00 401 | 0.00 400 | 0.00 399 | 0.00 397 |
|
| MM | | | | | 99.76 10 | | 99.33 8 | 99.99 4 | 99.76 6 | 98.39 3 | 99.39 70 | 99.80 51 | 90.49 164 | 99.96 59 | 99.89 16 | 99.43 108 | 99.98 48 |
|
| WAC-MVS | | | | | | | 90.97 275 | | | | | | | | 86.10 311 | | |
|
| PC_three_1452 | | | | | | | | | | 96.96 42 | 99.80 15 | 99.79 55 | 97.49 10 | 100.00 1 | 99.99 5 | 99.98 32 | 100.00 1 |
|
| test_241102_TWO | | | | | | | | | 98.43 125 | 97.27 32 | 99.80 15 | 99.94 4 | 97.18 21 | 100.00 1 | 100.00 1 | 100.00 1 | 100.00 1 |
|
| test_0728_THIRD | | | | | | | | | | 96.48 57 | 99.83 11 | 99.91 14 | 97.87 6 | 100.00 1 | 99.92 12 | 100.00 1 | 100.00 1 |
|
| GSMVS | | | | | | | | | | | | | | | | | 99.59 128 |
|
| sam_mvs1 | | | | | | | | | | | | | 94.72 61 | | | | 99.59 128 |
|
| sam_mvs | | | | | | | | | | | | | 94.25 75 | | | | |
|
| MTGPA |  | | | | | | | | 98.28 171 | | | | | | | | |
|
| test_post1 | | | | | | | | 95.78 363 | | | | 59.23 397 | 93.20 104 | 97.74 255 | 91.06 246 | | |
|
| test_post | | | | | | | | | | | | 63.35 394 | 94.43 65 | 98.13 235 | | | |
|
| patchmatchnet-post | | | | | | | | | | | | 91.70 359 | 95.12 49 | 97.95 246 | | | |
|
| MTMP | | | | | | | | 99.87 98 | 96.49 334 | | | | | | | | |
|
| test9_res | | | | | | | | | | | | | | | 99.71 31 | 99.99 21 | 100.00 1 |
|
| agg_prior2 | | | | | | | | | | | | | | | 99.48 41 | 100.00 1 | 100.00 1 |
|
| test_prior4 | | | | | | | 98.05 66 | 99.94 66 | | | | | | | | | |
|
| test_prior2 | | | | | | | | 99.95 50 | | 95.78 77 | 99.73 30 | 99.76 63 | 96.00 33 | | 99.78 25 | 100.00 1 | |
|
| 旧先验2 | | | | | | | | 99.46 204 | | 94.21 128 | 99.85 7 | | | 99.95 67 | 96.96 149 | | |
|
| 新几何2 | | | | | | | | 99.40 208 | | | | | | | | | |
|
| 无先验 | | | | | | | | 99.49 199 | 98.71 64 | 93.46 158 | | | | 100.00 1 | 94.36 193 | | 99.99 23 |
|
| 原ACMM2 | | | | | | | | 99.90 85 | | | | | | | | | |
|
| testdata2 | | | | | | | | | | | | | | 99.99 36 | 90.54 259 | | |
|
| segment_acmp | | | | | | | | | | | | | 96.68 26 | | | | |
|
| testdata1 | | | | | | | | 99.28 228 | | 96.35 67 | | | | | | | |
|
| plane_prior5 | | | | | | | | | 97.87 214 | | | | | 98.37 218 | 97.79 126 | 89.55 242 | 94.52 252 |
|
| plane_prior4 | | | | | | | | | | | | 98.59 191 | | | | | |
|
| plane_prior3 | | | | | | | 91.64 267 | | | 96.63 54 | 93.01 215 | | | | | | |
|
| plane_prior2 | | | | | | | | 99.84 118 | | 96.38 63 | | | | | | | |
|
| plane_prior | | | | | | | 91.74 261 | 99.86 111 | | 96.76 50 | | | | | | 89.59 241 | |
|
| n2 | | | | | | | | | 0.00 406 | | | | | | | | |
|
| nn | | | | | | | | | 0.00 406 | | | | | | | | |
|
| door-mid | | | | | | | | | 89.69 390 | | | | | | | | |
|
| test11 | | | | | | | | | 98.44 117 | | | | | | | | |
|
| door | | | | | | | | | 90.31 387 | | | | | | | | |
|
| HQP5-MVS | | | | | | | 91.85 257 | | | | | | | | | | |
|
| BP-MVS | | | | | | | | | | | | | | | 97.92 119 | | |
|
| HQP4-MVS | | | | | | | | | | | 93.37 211 | | | 98.39 212 | | | 94.53 250 |
|
| HQP3-MVS | | | | | | | | | 97.89 212 | | | | | | | 89.60 239 | |
|
| HQP2-MVS | | | | | | | | | | | | | 80.65 261 | | | | |
|
| MDTV_nov1_ep13_2view | | | | | | | 96.26 131 | 96.11 357 | | 91.89 214 | 98.06 128 | | 94.40 67 | | 94.30 195 | | 99.67 111 |
|
| ACMMP++_ref | | | | | | | | | | | | | | | | 87.04 277 | |
|
| ACMMP++ | | | | | | | | | | | | | | | | 88.23 264 | |
|
| Test By Simon | | | | | | | | | | | | | 92.82 115 | | | | |
|