This table lists the benchmark results for the high-res multi-view scenario. The following metrics are evaluated:

(*) For exact definitions, detailing how potentially incomplete ground truth is taken into account, see our paper.

The datasets are grouped into different categories, and result averages are computed for a category and method if results of the method are available for all datasets within the category. Note that the category "all" includes both the high-res multi-view and the low-res many-view scenarios.

Methods with suffix _ROB may participate in the Robust Vision Challenge.

Click a dataset result cell to show a visualization of the reconstruction. For training datasets, ground truth and accuracy / completeness visualizations are also available. The visualizations may not work with mobile browsers.




Method Infoallhigh-res
multi-view
indooroutdoorbotani.boulde.bridgedoorexhibi.lectur.living.loungeobserv.old co.statueterrac.
sort bysorted bysort bysort bysort bysort bysort bysort bysort bysort bysort bysort bysort bysort bysort bysort by
DP-MVS Recon91.72 8790.85 9694.34 3899.50 185.00 7398.51 3595.96 15080.57 25188.08 14897.63 8176.84 12899.89 785.67 16894.88 12298.13 83
MCST-MVS96.17 396.12 696.32 799.42 289.36 1098.94 2497.10 3195.17 392.11 8598.46 2687.33 2499.97 297.21 2999.31 499.63 7
MG-MVS94.25 2993.72 3595.85 1299.38 389.35 1197.98 5998.09 989.99 5392.34 8196.97 11381.30 6698.99 11088.54 14498.88 2099.20 25
AdaColmapbinary88.81 15087.61 16292.39 11899.33 479.95 18296.70 16595.58 17377.51 30483.05 20496.69 12661.90 27999.72 4384.29 17893.47 14497.50 133
CNVR-MVS96.30 196.54 195.55 1599.31 587.69 2499.06 1797.12 2994.66 596.79 1798.78 986.42 2899.95 397.59 2399.18 799.00 31
NCCC95.63 795.94 894.69 3299.21 685.15 6899.16 796.96 4194.11 995.59 3498.64 1785.07 3499.91 495.61 4699.10 999.00 31
OPU-MVS97.30 299.19 792.31 399.12 1298.54 2092.06 399.84 1399.11 399.37 199.74 1
ZD-MVS99.09 883.22 10596.60 8782.88 21293.61 6398.06 5382.93 5699.14 10095.51 4998.49 39
DVP-MVS++96.05 496.41 394.96 2499.05 985.34 5898.13 4996.77 6188.38 7497.70 898.77 1092.06 399.84 1397.47 2499.37 199.70 3
MSC_two_6792asdad97.14 399.05 992.19 496.83 5299.81 2298.08 1498.81 2499.43 11
No_MVS97.14 399.05 992.19 496.83 5299.81 2298.08 1498.81 2499.43 11
DVP-MVScopyleft95.58 995.91 994.57 3499.05 985.18 6399.06 1796.46 10388.75 6496.69 1898.76 1287.69 2299.76 3197.90 1798.85 2198.77 40
Zhenlong Yuan, Jinguo Luo, Fei Shen, Zhaoxin Li, Cong Liu, Tianlu Mao, Zhaoqi Wang: DVP-MVS: Synergize Depth-Edge and Visibility Prior for Multi-View Stereo. AAAI2025
test072699.05 985.18 6399.11 1596.78 5588.75 6497.65 1198.91 287.69 22
test_0728_SECOND95.14 2099.04 1486.14 3899.06 1796.77 6199.84 1397.90 1798.85 2199.45 10
SED-MVS95.88 596.22 494.87 2599.03 1585.03 7199.12 1296.78 5588.72 6697.79 698.91 288.48 1799.82 1998.15 1198.97 1799.74 1
IU-MVS99.03 1585.34 5896.86 5192.05 2798.74 198.15 1198.97 1799.42 13
test_241102_ONE99.03 1585.03 7196.78 5588.72 6697.79 698.90 588.48 1799.82 19
test_one_060198.91 1884.56 8196.70 7188.06 8296.57 2398.77 1088.04 20
test_part298.90 1985.14 6996.07 29
PAPR92.74 5392.17 7194.45 3698.89 2084.87 7697.20 11696.20 13187.73 9288.40 14398.12 4678.71 9899.76 3187.99 15196.28 10398.74 42
DeepC-MVS_fast89.06 294.48 2594.30 2995.02 2298.86 2185.68 4998.06 5596.64 8193.64 1291.74 9198.54 2080.17 7799.90 592.28 9398.75 2999.49 8
Andreas Kuhn, Christian Sormann, Mattia Rossi, Oliver Erdler, Friedrich Fraundorfer: DeepC-MVS: Deep Confidence Prediction for Multi-View Stereo Reconstruction. 3DV 2020
APDe-MVScopyleft94.56 2494.75 2093.96 5098.84 2283.40 10198.04 5796.41 10985.79 13395.00 4398.28 3784.32 4399.18 9797.35 2698.77 2899.28 21
Zhaojie Zeng, Yuesong Wang, Tao Guan: Matching Ambiguity-Resilient Multi-View Stereo via Adaptive Patch Deformation. Pattern Recognition
DPE-MVScopyleft95.32 1195.55 1294.64 3398.79 2384.87 7697.77 7296.74 6686.11 12496.54 2498.89 688.39 1999.74 3897.67 2299.05 1299.31 20
Kehua Chen, Zhenlong Yuan, Tianlu Mao, Zhaoqi Wang: Dual-Level Precision Edges Guided Multi-View Stereo with Accurate Planarization. AAAI2025
APD-MVScopyleft93.61 3893.59 3993.69 6298.76 2483.26 10497.21 11496.09 13982.41 22394.65 4998.21 3981.96 6398.81 12294.65 6198.36 4799.01 30
Yuesong Wang, Zhaojie Zeng and etc.: Adaptive Patch Deformation for Textureless-Resilient Multi-View Stereo. CVPR2023
HFP-MVS92.89 5092.86 5592.98 9298.71 2581.12 14797.58 8696.70 7185.20 14791.75 9097.97 6078.47 10199.71 4590.95 10798.41 4398.12 84
region2R92.72 5692.70 5792.79 10098.68 2680.53 16997.53 9196.51 9785.22 14591.94 8897.98 5877.26 12099.67 5390.83 11298.37 4698.18 77
test_prior93.09 8898.68 2681.91 12796.40 11199.06 10798.29 70
ACMMPR92.69 6092.67 5892.75 10198.66 2880.57 16597.58 8696.69 7385.20 14791.57 9297.92 6177.01 12599.67 5390.95 10798.41 4398.00 93
API-MVS90.18 12488.97 13493.80 5498.66 2882.95 10997.50 9595.63 17275.16 32586.31 16497.69 7372.49 20199.90 581.26 21096.07 10898.56 54
CDPH-MVS93.12 4492.91 5293.74 5798.65 3083.88 8997.67 8096.26 12583.00 20993.22 6798.24 3881.31 6599.21 9089.12 13898.74 3098.14 81
TEST998.64 3183.71 9397.82 6896.65 7884.29 17595.16 3798.09 4884.39 3999.36 81
train_agg94.28 2794.45 2593.74 5798.64 3183.71 9397.82 6896.65 7884.50 16695.16 3798.09 4884.33 4099.36 8195.91 4298.96 1998.16 79
test_898.63 3383.64 9697.81 7096.63 8384.50 16695.10 4098.11 4784.33 4099.23 88
HPM-MVS++copyleft95.32 1195.48 1494.85 2698.62 3486.04 3997.81 7096.93 4492.45 2095.69 3398.50 2485.38 3299.85 1194.75 5999.18 798.65 50
agg_prior98.59 3583.13 10696.56 9394.19 5499.16 99
CSCG92.02 7891.65 8193.12 8698.53 3680.59 16497.47 9697.18 2577.06 31284.64 18597.98 5883.98 4699.52 6990.72 11497.33 7899.23 24
XVS92.69 6092.71 5692.63 10998.52 3780.29 17297.37 10796.44 10587.04 11191.38 9497.83 6977.24 12299.59 6090.46 12098.07 5498.02 88
X-MVStestdata86.26 20284.14 22292.63 10998.52 3780.29 17297.37 10796.44 10587.04 11191.38 9420.73 42077.24 12299.59 6090.46 12098.07 5498.02 88
FOURS198.51 3978.01 23998.13 4996.21 13083.04 20794.39 52
CP-MVS92.54 6692.60 6092.34 11998.50 4079.90 18498.40 3896.40 11184.75 15790.48 11198.09 4877.40 11999.21 9091.15 10698.23 5297.92 99
PAPM_NR91.46 9390.82 9793.37 7898.50 4081.81 13395.03 25596.13 13684.65 16286.10 16797.65 7979.24 8999.75 3683.20 19696.88 9298.56 54
MAR-MVS90.63 11490.22 11291.86 14598.47 4278.20 23597.18 11896.61 8483.87 18988.18 14798.18 4168.71 23399.75 3683.66 19097.15 8497.63 122
Zhenyu Xu, Yiguang Liu, Xuelei Shi, Ying Wang, Yunan Zheng: MARMVS: Matching Ambiguity Reduced Multiple View Stereo for Efficient Large Scale Scene Reconstruction. CVPR 2020
patch_mono-295.14 1396.08 792.33 12198.44 4377.84 24798.43 3697.21 2292.58 1997.68 1097.65 7986.88 2599.83 1798.25 997.60 6999.33 18
mPP-MVS91.88 8391.82 7792.07 13598.38 4478.63 21997.29 11196.09 13985.12 14988.45 14297.66 7575.53 15499.68 5189.83 12998.02 5797.88 100
SR-MVS92.16 7592.27 6791.83 14898.37 4578.41 22596.67 16695.76 16482.19 22791.97 8698.07 5276.44 13698.64 12693.71 7297.27 8098.45 60
test1294.25 4198.34 4685.55 5596.35 11892.36 8080.84 6799.22 8998.31 4997.98 95
CPTT-MVS89.72 13189.87 12589.29 22098.33 4773.30 31197.70 7895.35 19375.68 32187.40 15297.44 9170.43 22698.25 14989.56 13496.90 9096.33 187
MSP-MVS95.62 896.54 192.86 9798.31 4880.10 18197.42 10396.78 5592.20 2297.11 1498.29 3693.46 199.10 10496.01 3999.30 599.38 14
Zhenlong Yuan, Cong Liu, Fei Shen, Zhaoxin Li, Jingguo luo, Tianlu Mao and Zhaoqi Wang: MSP-MVS: Multi-granularity Segmentation Prior Guided Multi-View Stereo. AAAI2025
MSLP-MVS++94.28 2794.39 2793.97 4998.30 4984.06 8898.64 3196.93 4490.71 4293.08 6998.70 1579.98 8199.21 9094.12 6899.07 1198.63 51
PGM-MVS91.93 8091.80 7892.32 12398.27 5079.74 19095.28 23997.27 2083.83 19090.89 10697.78 7176.12 14399.56 6688.82 14197.93 6197.66 119
ZNCC-MVS92.75 5292.60 6093.23 8298.24 5181.82 13297.63 8196.50 9985.00 15391.05 10297.74 7278.38 10299.80 2590.48 11898.34 4898.07 86
save fliter98.24 5183.34 10298.61 3396.57 9191.32 33
114514_t88.79 15287.57 16492.45 11498.21 5381.74 13596.99 13795.45 18475.16 32582.48 20795.69 14468.59 23498.50 13480.33 21595.18 12097.10 158
GST-MVS92.43 7092.22 7093.04 9098.17 5481.64 13997.40 10596.38 11484.71 16090.90 10597.40 9377.55 11799.76 3189.75 13197.74 6597.72 114
DP-MVS81.47 28078.28 29791.04 17398.14 5578.48 22195.09 25486.97 37961.14 39171.12 33092.78 22059.59 28999.38 7853.11 38086.61 21295.27 214
MP-MVScopyleft92.61 6492.67 5892.42 11798.13 5679.73 19197.33 10996.20 13185.63 13590.53 10997.66 7578.14 10799.70 4892.12 9698.30 5097.85 104
Rongxuan Tan, Qing Wang, et al.: MP-MVS: Multi-Scale Windows PatchMatch and Planar Prior Multi-View Stereo.
9.1494.26 3198.10 5798.14 4696.52 9684.74 15894.83 4798.80 782.80 5899.37 8095.95 4198.42 42
PHI-MVS93.59 3993.63 3893.48 7598.05 5881.76 13498.64 3197.13 2782.60 21994.09 5698.49 2580.35 7299.85 1194.74 6098.62 3398.83 38
SMA-MVScopyleft94.70 2194.68 2194.76 2998.02 5985.94 4397.47 9696.77 6185.32 14297.92 398.70 1583.09 5599.84 1395.79 4399.08 1098.49 57
Yufeng Yin; Xiaoyan Liu; Zichao Zhang: SMA-MVS: Segmentation-Guided Multi-Scale Anchor Deformation Patch Multi-View Stereo. IEEE Transactions on Circuits and Systems for Video Technology
PLCcopyleft83.97 788.00 17387.38 17089.83 21298.02 5976.46 27797.16 12294.43 24679.26 28381.98 21796.28 13169.36 23199.27 8477.71 24292.25 16093.77 242
Jie Liao, Yanping Fu, Qingan Yan, Chunxia xiao: Pyramid Multi-View Stereo with Local Consistency. Pacific Graphics 2019
MTAPA92.45 6992.31 6692.86 9797.90 6180.85 15892.88 30896.33 11987.92 8690.20 11498.18 4176.71 13399.76 3192.57 9298.09 5397.96 98
APD-MVS_3200maxsize91.23 10091.35 8690.89 17997.89 6276.35 28096.30 19095.52 17879.82 27091.03 10397.88 6674.70 17398.54 13292.11 9796.89 9197.77 111
HPM-MVScopyleft91.62 9091.53 8491.89 14397.88 6379.22 20396.99 13795.73 16782.07 22989.50 12597.19 10475.59 15298.93 11790.91 10997.94 5997.54 127
Chunlin Ren, Qingshan Xu, Shikun Zhang, Jiaqi Yang: Hierarchical Prior Mining for Non-local Multi-View Stereo. ICCV 2023
SD-MVS94.84 1895.02 1994.29 4097.87 6484.61 7997.76 7496.19 13389.59 5796.66 2098.17 4484.33 4099.60 5996.09 3898.50 3898.66 49
Zhenlong Yuan, Jiakai Cao, Zhaoxin Li, Hao Jiang and Zhaoqi Wang: SD-MVS: Segmentation-driven Deformation Multi-View Stereo with Spherical Refinement and EM optimization. AAAI2024
dcpmvs_293.10 4593.46 4392.02 13997.77 6579.73 19194.82 25993.86 27786.91 11391.33 9796.76 12285.20 3398.06 15696.90 3397.60 6998.27 72
原ACMM191.22 17097.77 6578.10 23796.61 8481.05 24191.28 9997.42 9277.92 11198.98 11179.85 22398.51 3696.59 178
SR-MVS-dyc-post91.29 9891.45 8590.80 18197.76 6776.03 28596.20 19695.44 18580.56 25290.72 10797.84 6775.76 14998.61 12791.99 9996.79 9597.75 112
RE-MVS-def91.18 9397.76 6776.03 28596.20 19695.44 18580.56 25290.72 10797.84 6773.36 19391.99 9996.79 9597.75 112
TSAR-MVS + MP.94.79 2095.17 1893.64 6497.66 6984.10 8795.85 21796.42 10891.26 3497.49 1296.80 12186.50 2798.49 13595.54 4899.03 1398.33 65
Zhenlong Yuan, Jiakai Cao, Zhaoqi Wang, Zhaoxin Li: TSAR-MVS: Textureless-aware Segmentation and Correlative Refinement Guided Multi-View Stereo. Pattern Recognition
MVS_030495.58 995.44 1596.01 1097.63 7089.26 1299.27 396.59 8894.71 497.08 1597.99 5578.69 9999.86 1099.15 297.85 6298.91 35
HPM-MVS_fast90.38 12290.17 11591.03 17497.61 7177.35 26297.15 12495.48 18179.51 27688.79 13696.90 11471.64 21498.81 12287.01 16297.44 7496.94 163
EI-MVSNet-Vis-set91.84 8491.77 7992.04 13897.60 7281.17 14696.61 16796.87 4988.20 8089.19 12897.55 8778.69 9999.14 10090.29 12590.94 17095.80 198
CNLPA86.96 18985.37 19991.72 15397.59 7379.34 20197.21 11491.05 34974.22 33278.90 24996.75 12467.21 24398.95 11474.68 27590.77 17196.88 168
ACMMPcopyleft90.39 12089.97 12091.64 15597.58 7478.21 23496.78 15896.72 6984.73 15984.72 18397.23 10271.22 21799.63 5788.37 14992.41 15897.08 159
Qingshan Xu, Weihang Kong, Wenbing Tao, Marc Pollefeys: Multi-Scale Geometric Consistency Guided and Planar Prior Assisted Multi-View Stereo. IEEE Transactions on Pattern Analysis and Machine Intelligence
SF-MVS94.17 3094.05 3494.55 3597.56 7585.95 4197.73 7696.43 10784.02 18295.07 4298.74 1482.93 5699.38 7895.42 5098.51 3698.32 66
CANet94.89 1694.64 2295.63 1397.55 7688.12 1899.06 1796.39 11394.07 1095.34 3697.80 7076.83 13099.87 897.08 3197.64 6898.89 36
PVSNet_BlendedMVS90.05 12589.96 12190.33 19597.47 7783.86 9098.02 5896.73 6787.98 8489.53 12389.61 26776.42 13799.57 6494.29 6579.59 26687.57 334
PVSNet_Blended93.13 4392.98 5193.57 6997.47 7783.86 9099.32 196.73 6791.02 4089.53 12396.21 13276.42 13799.57 6494.29 6595.81 11597.29 149
reproduce-ours92.70 5893.02 4991.75 15097.45 7977.77 25196.16 19895.94 15384.12 17892.45 7698.43 2880.06 7999.24 8695.35 5197.18 8298.24 74
our_new_method92.70 5893.02 4991.75 15097.45 7977.77 25196.16 19895.94 15384.12 17892.45 7698.43 2880.06 7999.24 8695.35 5197.18 8298.24 74
新几何193.12 8697.44 8181.60 14196.71 7074.54 33191.22 10097.57 8379.13 9199.51 7177.40 24998.46 4098.26 73
LS3D82.22 27179.94 28589.06 22397.43 8274.06 30793.20 30292.05 33161.90 38573.33 31295.21 16159.35 29299.21 9054.54 37692.48 15793.90 240
reproduce_model92.53 6792.87 5391.50 16097.41 8377.14 26896.02 20595.91 15683.65 19692.45 7698.39 3179.75 8499.21 9095.27 5496.98 8898.14 81
test_yl91.46 9390.53 10394.24 4297.41 8385.18 6398.08 5297.72 1180.94 24289.85 11596.14 13375.61 15098.81 12290.42 12388.56 19398.74 42
DCV-MVSNet91.46 9390.53 10394.24 4297.41 8385.18 6398.08 5297.72 1180.94 24289.85 11596.14 13375.61 15098.81 12290.42 12388.56 19398.74 42
EI-MVSNet-UG-set91.35 9791.22 8991.73 15297.39 8680.68 16296.47 17696.83 5287.92 8688.30 14697.36 9477.84 11299.13 10289.43 13689.45 17995.37 210
旧先验197.39 8679.58 19596.54 9498.08 5184.00 4597.42 7697.62 123
TSAR-MVS + GP.94.35 2694.50 2393.89 5197.38 8883.04 10898.10 5195.29 19691.57 3093.81 5997.45 8886.64 2699.43 7696.28 3794.01 13499.20 25
MVS_111021_HR93.41 4193.39 4493.47 7797.34 8982.83 11097.56 8898.27 689.16 6289.71 11897.14 10579.77 8399.56 6693.65 7397.94 5998.02 88
MP-MVS-pluss92.58 6592.35 6493.29 7997.30 9082.53 11496.44 17996.04 14484.68 16189.12 13098.37 3277.48 11899.74 3893.31 8098.38 4597.59 125
MP-MVS-pluss: MP-MVS-pluss. MP-MVS-pluss
EPNet94.06 3394.15 3293.76 5697.27 9184.35 8298.29 4197.64 1494.57 695.36 3596.88 11679.96 8299.12 10391.30 10496.11 10797.82 108
Wanjuan Su, Wenbing Tao: Efficient Edge-Preserving Multi-View Stereo Network for Depth Estimation. AAAI 2023
ACMMP_NAP93.46 4093.23 4694.17 4597.16 9284.28 8596.82 15596.65 7886.24 12294.27 5397.99 5577.94 10999.83 1793.39 7598.57 3498.39 63
LFMVS89.27 14087.64 15994.16 4797.16 9285.52 5697.18 11894.66 22679.17 28489.63 12196.57 12755.35 32898.22 15089.52 13589.54 17898.74 42
DeepPCF-MVS89.82 194.61 2296.17 589.91 20997.09 9470.21 34298.99 2396.69 7395.57 295.08 4199.23 186.40 2999.87 897.84 2098.66 3299.65 6
VNet92.11 7791.22 8994.79 2896.91 9586.98 3097.91 6397.96 1086.38 12193.65 6195.74 14170.16 22998.95 11493.39 7588.87 18798.43 61
TAPA-MVS81.61 1285.02 22383.67 22689.06 22396.79 9673.27 31495.92 21194.79 21974.81 32880.47 23296.83 11871.07 21998.19 15249.82 38992.57 15495.71 201
Andrea Romanoni, Matteo Matteucci: TAPA-MVS: Textureless-Aware PAtchMatch Multi-View Stereo. ICCV 2019
Anonymous20240521184.41 23481.93 25591.85 14796.78 9778.41 22597.44 9991.34 34470.29 35984.06 18894.26 18941.09 38198.96 11279.46 22582.65 24998.17 78
reproduce_monomvs87.80 17787.60 16388.40 23796.56 9880.26 17595.80 22096.32 12191.56 3173.60 30588.36 28388.53 1696.25 25290.47 11967.23 35288.67 309
CS-MVS-test92.98 4793.67 3790.90 17896.52 9976.87 27098.68 2894.73 22190.36 5094.84 4697.89 6577.94 10997.15 21294.28 6797.80 6498.70 48
balanced_conf0394.60 2394.30 2995.48 1696.45 10088.82 1496.33 18895.58 17391.12 3695.84 3293.87 20083.47 5198.37 14497.26 2798.81 2499.24 23
DELS-MVS94.98 1494.49 2496.44 696.42 10190.59 799.21 597.02 3694.40 891.46 9397.08 10983.32 5299.69 4992.83 8898.70 3199.04 29
Christian Sormann, Emanuele Santellani, Mattia Rossi, Andreas Kuhn, Friedrich Fraundorfer: DELS-MVS: Deep Epipolar Line Search for Multi-View Stereo. Winter Conference on Applications of Computer Vision (WACV), 2023
MM95.85 695.74 1096.15 896.34 10289.50 999.18 698.10 895.68 196.64 2197.92 6180.72 6899.80 2599.16 197.96 5899.15 27
thres20088.92 14687.65 15892.73 10396.30 10385.62 5497.85 6698.86 184.38 17084.82 18093.99 19775.12 16898.01 15870.86 30586.67 21194.56 230
CS-MVS92.73 5493.48 4290.48 19196.27 10475.93 29098.55 3494.93 20889.32 5994.54 5197.67 7478.91 9497.02 21693.80 7097.32 7998.49 57
DPM-MVS96.21 295.53 1398.26 196.26 10595.09 199.15 896.98 3893.39 1496.45 2598.79 890.17 999.99 189.33 13799.25 699.70 3
tfpn200view988.48 16087.15 17492.47 11396.21 10685.30 6197.44 9998.85 283.37 20083.99 19093.82 20175.36 16197.93 16069.04 31386.24 21894.17 232
thres40088.42 16387.15 17492.23 12796.21 10685.30 6197.44 9998.85 283.37 20083.99 19093.82 20175.36 16197.93 16069.04 31386.24 21893.45 248
test22296.15 10878.41 22595.87 21596.46 10371.97 35189.66 12097.45 8876.33 14098.24 5198.30 69
HY-MVS84.06 691.63 8990.37 10995.39 1996.12 10988.25 1790.22 33697.58 1588.33 7690.50 11091.96 23379.26 8899.06 10790.29 12589.07 18398.88 37
thres100view90088.30 16686.95 18092.33 12196.10 11084.90 7597.14 12598.85 282.69 21783.41 19893.66 20575.43 15897.93 16069.04 31386.24 21894.17 232
thres600view788.06 17186.70 18692.15 13396.10 11085.17 6797.14 12598.85 282.70 21683.41 19893.66 20575.43 15897.82 16967.13 32285.88 22293.45 248
WTY-MVS92.65 6391.68 8095.56 1496.00 11288.90 1398.23 4397.65 1388.57 6989.82 11797.22 10379.29 8799.06 10789.57 13388.73 18998.73 46
testing9191.90 8291.31 8893.66 6395.99 11385.68 4997.39 10696.89 4786.75 11988.85 13595.23 15983.93 4797.90 16688.91 13987.89 20297.41 139
testing9991.91 8191.35 8693.60 6795.98 11485.70 4797.31 11096.92 4686.82 11588.91 13395.25 15684.26 4497.89 16788.80 14287.94 20197.21 153
MVSTER89.25 14188.92 13790.24 19795.98 11484.66 7896.79 15795.36 19187.19 10980.33 23590.61 25390.02 1195.97 26185.38 17178.64 27590.09 276
testing1192.48 6892.04 7593.78 5595.94 11686.00 4097.56 8897.08 3287.52 9789.32 12695.40 15384.60 3798.02 15791.93 10189.04 18497.32 145
testdata90.13 20095.92 11774.17 30596.49 10273.49 34094.82 4897.99 5578.80 9797.93 16083.53 19397.52 7198.29 70
PatchMatch-RL85.00 22483.66 22789.02 22595.86 11874.55 30292.49 31293.60 29379.30 28179.29 24791.47 23858.53 29998.45 14070.22 30992.17 16294.07 237
testing22291.09 10390.49 10592.87 9695.82 11985.04 7096.51 17497.28 1986.05 12789.13 12995.34 15580.16 7896.62 23985.82 16688.31 19796.96 162
ETVMVS90.99 10690.26 11093.19 8495.81 12085.64 5396.97 14297.18 2585.43 13988.77 13894.86 17782.00 6296.37 24682.70 20188.60 19097.57 126
sasdasda92.27 7391.22 8995.41 1795.80 12188.31 1597.09 13294.64 22988.49 7192.99 7197.31 9572.68 19898.57 13093.38 7788.58 19199.36 16
canonicalmvs92.27 7391.22 8995.41 1795.80 12188.31 1597.09 13294.64 22988.49 7192.99 7197.31 9572.68 19898.57 13093.38 7788.58 19199.36 16
Anonymous2024052983.15 25480.60 27490.80 18195.74 12378.27 22996.81 15694.92 20960.10 39581.89 21992.54 22145.82 36598.82 12179.25 22978.32 28195.31 212
MVS_111021_LR91.60 9191.64 8291.47 16295.74 12378.79 21696.15 20096.77 6188.49 7188.64 14097.07 11072.33 20499.19 9693.13 8596.48 10296.43 182
MGCFI-Net91.95 7991.03 9594.72 3195.68 12586.38 3596.93 14794.48 23888.25 7892.78 7497.24 10172.34 20398.46 13893.13 8588.43 19599.32 19
PS-MVSNAJ94.17 3093.52 4196.10 995.65 12692.35 298.21 4495.79 16392.42 2196.24 2798.18 4171.04 22099.17 9896.77 3497.39 7796.79 170
WBMVS87.73 17986.79 18290.56 18895.61 12785.68 4997.63 8195.52 17883.77 19278.30 25588.44 28286.14 3095.78 27482.54 20273.15 30590.21 271
UBG92.68 6292.35 6493.70 6195.61 12785.65 5297.25 11297.06 3487.92 8689.28 12795.03 17186.06 3198.07 15592.24 9490.69 17397.37 143
Anonymous2023121179.72 29877.19 30687.33 26795.59 12977.16 26795.18 24894.18 26059.31 39872.57 32086.20 32247.89 35895.66 28274.53 27969.24 33289.18 293
alignmvs92.97 4892.26 6895.12 2195.54 13087.77 2298.67 2996.38 11488.04 8393.01 7097.45 8879.20 9098.60 12893.25 8188.76 18898.99 33
PVSNet82.34 989.02 14387.79 15692.71 10495.49 13181.50 14297.70 7897.29 1887.76 9185.47 17395.12 16856.90 31798.90 11880.33 21594.02 13397.71 116
tpmvs83.04 25780.77 27089.84 21195.43 13277.96 24185.59 37395.32 19575.31 32476.27 28183.70 35373.89 18597.41 19459.53 35581.93 25694.14 234
SteuartSystems-ACMMP94.13 3294.44 2693.20 8395.41 13381.35 14499.02 2196.59 8889.50 5894.18 5598.36 3383.68 5099.45 7594.77 5898.45 4198.81 39
Skip Steuart: Steuart Systems R&D Blog.
EPMVS87.47 18585.90 19292.18 13095.41 13382.26 12187.00 36396.28 12385.88 13284.23 18785.57 33075.07 16996.26 25071.14 30392.50 15698.03 87
MVSMamba_PlusPlus92.37 7291.55 8394.83 2795.37 13587.69 2495.60 22995.42 18974.65 33093.95 5892.81 21783.11 5497.70 17394.49 6398.53 3599.11 28
BH-RMVSNet86.84 19285.28 20091.49 16195.35 13680.26 17596.95 14592.21 32982.86 21381.77 22295.46 15259.34 29397.64 17669.79 31193.81 13996.57 179
OMC-MVS88.80 15188.16 15090.72 18495.30 13777.92 24494.81 26094.51 23786.80 11684.97 17896.85 11767.53 23998.60 12885.08 17287.62 20495.63 202
test_fmvsm_n_192094.81 1995.60 1192.45 11495.29 13880.96 15499.29 297.21 2294.50 797.29 1398.44 2782.15 6099.78 2898.56 797.68 6796.61 177
MVS_Test90.29 12389.18 13193.62 6695.23 13984.93 7494.41 26694.66 22684.31 17190.37 11391.02 24675.13 16797.82 16983.11 19894.42 12998.12 84
F-COLMAP84.50 23383.44 23487.67 25595.22 14072.22 32095.95 20993.78 28475.74 32076.30 28095.18 16459.50 29198.45 14072.67 29186.59 21392.35 256
baseline188.85 14987.49 16692.93 9595.21 14186.85 3195.47 23494.61 23287.29 10383.11 20394.99 17480.70 6996.89 22582.28 20473.72 29995.05 217
CHOSEN 1792x268891.07 10590.21 11393.64 6495.18 14283.53 9896.26 19296.13 13688.92 6384.90 17993.10 21572.86 19699.62 5888.86 14095.67 11697.79 110
UGNet87.73 17986.55 18791.27 16795.16 14379.11 20796.35 18696.23 12888.14 8187.83 15090.48 25450.65 34599.09 10580.13 22094.03 13295.60 203
Wanjuan Su, Qingshan Xu, Wenbing Tao: Uncertainty-guided Multi-view Stereo Network for Depth Estimation. IEEE Transactions on Circuits and Systems for Video Technology, 2022
VDD-MVS88.28 16787.02 17992.06 13695.09 14480.18 17997.55 9094.45 24383.09 20589.10 13195.92 13947.97 35698.49 13593.08 8786.91 21097.52 132
PVSNet_Blended_VisFu91.24 9990.77 9892.66 10695.09 14482.40 11897.77 7295.87 16088.26 7786.39 16393.94 19876.77 13199.27 8488.80 14294.00 13596.31 188
h-mvs3389.30 13988.95 13690.36 19495.07 14676.04 28496.96 14497.11 3090.39 4892.22 8395.10 16974.70 17398.86 11993.14 8365.89 35996.16 190
xiu_mvs_v2_base93.92 3593.26 4595.91 1195.07 14692.02 698.19 4595.68 16992.06 2596.01 3198.14 4570.83 22498.96 11296.74 3696.57 10096.76 173
cl2285.11 22284.17 22087.92 25095.06 14878.82 21395.51 23294.22 25779.74 27276.77 27187.92 29175.96 14595.68 28179.93 22272.42 30789.27 291
BH-w/o88.24 16887.47 16890.54 19095.03 14978.54 22097.41 10493.82 27984.08 18078.23 25694.51 18569.34 23297.21 20680.21 21994.58 12795.87 197
CHOSEN 280x42091.71 8891.85 7691.29 16694.94 15082.69 11187.89 35696.17 13485.94 13087.27 15594.31 18790.27 895.65 28494.04 6995.86 11395.53 206
GG-mvs-BLEND93.49 7494.94 15086.26 3681.62 38897.00 3788.32 14594.30 18891.23 596.21 25488.49 14697.43 7598.00 93
HyFIR lowres test89.36 13788.60 14291.63 15794.91 15280.76 16195.60 22995.53 17682.56 22084.03 18991.24 24378.03 10896.81 23187.07 16188.41 19697.32 145
miper_enhance_ethall85.95 20785.20 20188.19 24694.85 15379.76 18796.00 20694.06 26782.98 21077.74 26188.76 27579.42 8595.46 29480.58 21372.42 30789.36 289
mvsmamba90.53 11990.08 11791.88 14494.81 15480.93 15593.94 28294.45 24388.24 7987.02 16092.35 22468.04 23595.80 27294.86 5797.03 8798.92 34
mvs_anonymous88.68 15387.62 16191.86 14594.80 15581.69 13893.53 29294.92 20982.03 23078.87 25190.43 25675.77 14895.34 29885.04 17393.16 14998.55 56
CANet_DTU90.98 10790.04 11893.83 5394.76 15686.23 3796.32 18993.12 31693.11 1693.71 6096.82 12063.08 26999.48 7384.29 17895.12 12195.77 199
PMMVS89.46 13689.92 12388.06 24794.64 15769.57 34896.22 19494.95 20787.27 10591.37 9696.54 12865.88 25197.39 19688.54 14493.89 13797.23 150
TR-MVS86.30 20184.93 20990.42 19294.63 15877.58 25796.57 16993.82 27980.30 26082.42 20995.16 16558.74 29797.55 18374.88 27387.82 20396.13 192
EPNet_dtu87.65 18287.89 15386.93 27694.57 15971.37 33696.72 16196.50 9988.56 7087.12 15895.02 17275.91 14794.01 33866.62 32590.00 17595.42 209
Wanjuan Su, Wenbing Tao: Efficient Edge-Preserving Multi-View Stereo Network for Depth Estimation. AAAI 2023
fmvsm_s_conf0.5_n93.69 3794.13 3392.34 11994.56 16082.01 12299.07 1697.13 2792.09 2396.25 2698.53 2276.47 13599.80 2598.39 894.71 12595.22 215
FMVSNet384.71 22782.71 24490.70 18594.55 16187.71 2395.92 21194.67 22581.73 23475.82 28988.08 28966.99 24494.47 32971.23 30075.38 29289.91 280
ETV-MVS92.72 5692.87 5392.28 12594.54 16281.89 12897.98 5995.21 19989.77 5693.11 6896.83 11877.23 12497.50 18995.74 4495.38 11997.44 137
EIA-MVS91.73 8592.05 7490.78 18394.52 16376.40 27998.06 5595.34 19489.19 6188.90 13497.28 10077.56 11697.73 17290.77 11396.86 9498.20 76
BH-untuned86.95 19085.94 19189.99 20494.52 16377.46 25996.78 15893.37 30581.80 23276.62 27493.81 20366.64 24797.02 21676.06 26293.88 13895.48 208
DeepC-MVS86.58 391.53 9291.06 9492.94 9494.52 16381.89 12895.95 20995.98 14890.76 4183.76 19696.76 12273.24 19499.71 4591.67 10396.96 8997.22 151
Andreas Kuhn, Christian Sormann, Mattia Rossi, Oliver Erdler, Friedrich Fraundorfer: DeepC-MVS: Deep Confidence Prediction for Multi-View Stereo Reconstruction. 3DV 2020
gg-mvs-nofinetune85.48 21882.90 24093.24 8194.51 16685.82 4579.22 39396.97 4061.19 39087.33 15453.01 40990.58 696.07 25786.07 16597.23 8197.81 109
fmvsm_l_conf0.5_n_a94.91 1595.30 1693.72 6094.50 16784.30 8499.14 1096.00 14691.94 2897.91 598.60 1884.78 3699.77 2998.84 596.03 11097.08 159
3Dnovator+82.88 889.63 13487.85 15494.99 2394.49 16886.76 3397.84 6795.74 16686.10 12575.47 29496.02 13665.00 25999.51 7182.91 20097.07 8698.72 47
RRT-MVS89.67 13288.67 14092.67 10594.44 16981.08 14994.34 26994.45 24386.05 12785.79 16992.39 22363.39 26798.16 15493.22 8293.95 13698.76 41
fmvsm_l_conf0.5_n94.89 1695.24 1793.86 5294.42 17084.61 7999.13 1196.15 13592.06 2597.92 398.52 2384.52 3899.74 3898.76 695.67 11697.22 151
ET-MVSNet_ETH3D90.01 12689.03 13292.95 9394.38 17186.77 3298.14 4696.31 12289.30 6063.33 36896.72 12590.09 1093.63 34690.70 11682.29 25398.46 59
tpmrst88.36 16487.38 17091.31 16494.36 17279.92 18387.32 36095.26 19885.32 14288.34 14486.13 32380.60 7196.70 23583.78 18485.34 22997.30 148
FE-MVS86.06 20584.15 22191.78 14994.33 17379.81 18584.58 38096.61 8476.69 31585.00 17787.38 29770.71 22598.37 14470.39 30891.70 16697.17 156
MVS90.60 11588.64 14196.50 594.25 17490.53 893.33 29697.21 2277.59 30378.88 25097.31 9571.52 21599.69 4989.60 13298.03 5699.27 22
dp84.30 23682.31 24990.28 19694.24 17577.97 24086.57 36695.53 17679.94 26980.75 22985.16 33871.49 21696.39 24563.73 34083.36 23996.48 181
FA-MVS(test-final)87.71 18186.23 18992.17 13194.19 17680.55 16687.16 36296.07 14282.12 22885.98 16888.35 28472.04 20998.49 13580.26 21789.87 17697.48 135
UWE-MVS88.56 15988.91 13887.50 26394.17 17772.19 32295.82 21997.05 3584.96 15484.78 18193.51 20981.33 6494.75 32179.43 22689.17 18195.57 204
sss90.87 11189.96 12193.60 6794.15 17883.84 9297.14 12598.13 785.93 13189.68 11996.09 13571.67 21299.30 8387.69 15489.16 18297.66 119
SDMVSNet87.02 18885.61 19491.24 16894.14 17983.30 10393.88 28495.98 14884.30 17379.63 24392.01 22958.23 30197.68 17490.28 12782.02 25492.75 251
sd_testset84.62 22983.11 23789.17 22194.14 17977.78 25091.54 32794.38 24984.30 17379.63 24392.01 22952.28 34096.98 21977.67 24382.02 25492.75 251
PatchmatchNetpermissive86.83 19385.12 20591.95 14194.12 18182.27 12086.55 36795.64 17184.59 16482.98 20584.99 34277.26 12095.96 26468.61 31691.34 16897.64 121
Fangjinhua Wang, Silvano Galliani, Christoph Vogel, Pablo Speciale, Marc Pollefeys: PatchmatchNet: Learned Multi-View Patchmatch Stereo.
MDTV_nov1_ep1383.69 22594.09 18281.01 15186.78 36596.09 13983.81 19184.75 18284.32 34774.44 17996.54 24063.88 33985.07 230
UA-Net88.92 14688.48 14590.24 19794.06 18377.18 26693.04 30494.66 22687.39 10191.09 10193.89 19974.92 17098.18 15375.83 26591.43 16795.35 211
Fast-Effi-MVS+87.93 17586.94 18190.92 17794.04 18479.16 20598.26 4293.72 28881.29 23883.94 19392.90 21669.83 23096.68 23676.70 25591.74 16596.93 164
QAPM86.88 19184.51 21293.98 4894.04 18485.89 4497.19 11796.05 14373.62 33775.12 29795.62 14762.02 27699.74 3870.88 30496.06 10996.30 189
thisisatest051590.95 10990.26 11093.01 9194.03 18684.27 8697.91 6396.67 7583.18 20386.87 16195.51 15188.66 1597.85 16880.46 21489.01 18596.92 166
Vis-MVSNet (Re-imp)88.88 14888.87 13988.91 22793.89 18774.43 30396.93 14794.19 25984.39 16983.22 20195.67 14578.24 10494.70 32378.88 23394.40 13097.61 124
ADS-MVSNet279.57 30077.53 30385.71 29593.78 18872.13 32379.48 39186.11 38673.09 34380.14 23779.99 37562.15 27490.14 38059.49 35683.52 23694.85 222
ADS-MVSNet81.26 28378.36 29689.96 20793.78 18879.78 18679.48 39193.60 29373.09 34380.14 23779.99 37562.15 27495.24 30459.49 35683.52 23694.85 222
EPP-MVSNet89.76 13089.72 12689.87 21093.78 18876.02 28797.22 11396.51 9779.35 27885.11 17595.01 17384.82 3597.10 21487.46 15788.21 19996.50 180
3Dnovator82.32 1089.33 13887.64 15994.42 3793.73 19185.70 4797.73 7696.75 6586.73 12076.21 28395.93 13762.17 27399.68 5181.67 20897.81 6397.88 100
Effi-MVS+90.70 11389.90 12493.09 8893.61 19283.48 9995.20 24592.79 32283.22 20291.82 8995.70 14371.82 21197.48 19191.25 10593.67 14198.32 66
IS-MVSNet88.67 15488.16 15090.20 19993.61 19276.86 27196.77 16093.07 31784.02 18283.62 19795.60 14874.69 17696.24 25378.43 23793.66 14297.49 134
AUN-MVS86.25 20385.57 19588.26 24293.57 19473.38 30995.45 23595.88 15883.94 18685.47 17394.21 19173.70 19096.67 23783.54 19264.41 36394.73 228
test250690.96 10890.39 10792.65 10793.54 19582.46 11796.37 18497.35 1786.78 11787.55 15195.25 15677.83 11397.50 18984.07 18094.80 12397.98 95
ECVR-MVScopyleft88.35 16587.25 17291.65 15493.54 19579.40 19896.56 17190.78 35486.78 11785.57 17195.25 15657.25 31597.56 18184.73 17694.80 12397.98 95
hse-mvs288.22 16988.21 14888.25 24393.54 19573.41 30895.41 23795.89 15790.39 4892.22 8394.22 19074.70 17396.66 23893.14 8364.37 36494.69 229
LCM-MVSNet-Re83.75 24483.54 23184.39 32093.54 19564.14 37292.51 31184.03 39583.90 18866.14 35686.59 31167.36 24192.68 35384.89 17592.87 15196.35 184
EC-MVSNet91.73 8592.11 7290.58 18793.54 19577.77 25198.07 5494.40 24887.44 9992.99 7197.11 10874.59 17796.87 22793.75 7197.08 8597.11 157
tpm cat183.63 24681.38 26390.39 19393.53 20078.19 23685.56 37495.09 20270.78 35778.51 25283.28 35774.80 17297.03 21566.77 32384.05 23495.95 194
thisisatest053089.65 13389.02 13391.53 15993.46 20180.78 16096.52 17296.67 7581.69 23583.79 19594.90 17688.85 1497.68 17477.80 23887.49 20796.14 191
MSDG80.62 29277.77 30289.14 22293.43 20277.24 26391.89 32090.18 35869.86 36368.02 34491.94 23552.21 34198.84 12059.32 35883.12 24091.35 258
fmvsm_s_conf0.5_n_a93.34 4293.71 3692.22 12893.38 20381.71 13798.86 2596.98 3891.64 2996.85 1698.55 1975.58 15399.77 2997.88 1993.68 14095.18 216
ab-mvs87.08 18784.94 20893.48 7593.34 20483.67 9588.82 34595.70 16881.18 23984.55 18690.14 26262.72 27098.94 11685.49 17082.54 25097.85 104
mamv485.50 21686.76 18381.72 34493.23 20554.93 40189.95 33892.94 31969.96 36179.00 24892.20 22780.69 7094.22 33492.06 9890.77 17196.01 193
131488.94 14587.20 17394.17 4593.21 20685.73 4693.33 29696.64 8182.89 21175.98 28696.36 12966.83 24699.39 7783.52 19496.02 11197.39 142
1112_ss88.60 15787.47 16892.00 14093.21 20680.97 15396.47 17692.46 32583.64 19780.86 22897.30 9880.24 7597.62 17777.60 24485.49 22697.40 141
GeoE86.36 19985.20 20189.83 21293.17 20876.13 28297.53 9192.11 33079.58 27580.99 22694.01 19666.60 24896.17 25673.48 28789.30 18097.20 155
test111188.11 17087.04 17891.35 16393.15 20978.79 21696.57 16990.78 35486.88 11485.04 17695.20 16257.23 31697.39 19683.88 18294.59 12697.87 102
Test_1112_low_res88.03 17286.73 18491.94 14293.15 20980.88 15796.44 17992.41 32783.59 19980.74 23091.16 24480.18 7697.59 17977.48 24785.40 22797.36 144
CostFormer89.08 14288.39 14691.15 17193.13 21179.15 20688.61 34896.11 13883.14 20489.58 12286.93 30683.83 4996.87 22788.22 15085.92 22197.42 138
IB-MVS85.34 488.67 15487.14 17693.26 8093.12 21284.32 8398.76 2697.27 2087.19 10979.36 24690.45 25583.92 4898.53 13384.41 17769.79 32696.93 164
Christian Sormann, Mattia Rossi, Andreas Kuhn and Friedrich Fraundorfer: IB-MVS: An Iterative Algorithm for Deep Multi-View Stereo based on Binary Decisions. BMVC 2021
diffmvspermissive91.17 10190.74 9992.44 11693.11 21382.50 11696.25 19393.62 29287.79 9090.40 11295.93 13773.44 19297.42 19393.62 7492.55 15597.41 139
Fangjinhua Wang, Qingshan Xu, Yew-Soon Ong, Marc Pollefeys: Lightweight and Accurate Multi-View Stereo With Confidence-Aware Diffusion Model. IEEE T-PAMI 2025
tttt051788.57 15888.19 14989.71 21693.00 21475.99 28895.67 22496.67 7580.78 24681.82 22094.40 18688.97 1397.58 18076.05 26386.31 21595.57 204
MVSFormer91.36 9690.57 10293.73 5993.00 21488.08 1994.80 26194.48 23880.74 24794.90 4497.13 10678.84 9595.10 31283.77 18597.46 7298.02 88
lupinMVS93.87 3693.58 4094.75 3093.00 21488.08 1999.15 895.50 18091.03 3994.90 4497.66 7578.84 9597.56 18194.64 6297.46 7298.62 52
casdiffmvs_mvgpermissive91.13 10290.45 10693.17 8592.99 21783.58 9797.46 9894.56 23587.69 9387.19 15794.98 17574.50 17897.60 17891.88 10292.79 15298.34 64
Fangjinhua Wang, Qingshan Xu, Yew-Soon Ong, Marc Pollefeys: Lightweight and Accurate Multi-View Stereo With Confidence-Aware Diffusion Model. IEEE T-PAMI 2025
test_fmvs187.79 17888.52 14485.62 29892.98 21864.31 37097.88 6592.42 32687.95 8592.24 8295.82 14047.94 35798.44 14295.31 5394.09 13194.09 236
tpm287.35 18686.26 18890.62 18692.93 21978.67 21888.06 35595.99 14779.33 27987.40 15286.43 31780.28 7496.40 24480.23 21885.73 22596.79 170
baseline90.76 11290.10 11692.74 10292.90 22082.56 11394.60 26394.56 23587.69 9389.06 13295.67 14573.76 18797.51 18890.43 12292.23 16198.16 79
test_fmvsmconf_n93.99 3494.36 2892.86 9792.82 22181.12 14799.26 496.37 11793.47 1395.16 3798.21 3979.00 9299.64 5598.21 1096.73 9897.83 106
casdiffmvspermissive90.95 10990.39 10792.63 10992.82 22182.53 11496.83 15394.47 24187.69 9388.47 14195.56 15074.04 18497.54 18590.90 11092.74 15397.83 106
Fangjinhua Wang, Qingshan Xu, Yew-Soon Ong, Marc Pollefeys: Lightweight and Accurate Multi-View Stereo With Confidence-Aware Diffusion Model. IEEE T-PAMI 2025
Vis-MVSNetpermissive88.67 15487.82 15591.24 16892.68 22378.82 21396.95 14593.85 27887.55 9687.07 15995.13 16763.43 26697.21 20677.58 24596.15 10697.70 117
Jingyang Zhang, Yao Yao, Shiwei Li, Zixin Luo, Tian Fang: Visibility-aware Multiview Stereo Network. BMVC 2020
GBi-Net82.42 26780.43 27788.39 23892.66 22481.95 12394.30 27293.38 30279.06 28775.82 28985.66 32656.38 32393.84 34171.23 30075.38 29289.38 286
test182.42 26780.43 27788.39 23892.66 22481.95 12394.30 27293.38 30279.06 28775.82 28985.66 32656.38 32393.84 34171.23 30075.38 29289.38 286
FMVSNet282.79 26180.44 27689.83 21292.66 22485.43 5795.42 23694.35 25079.06 28774.46 30187.28 29856.38 32394.31 33269.72 31274.68 29689.76 281
miper_ehance_all_eth84.57 23183.60 23087.50 26392.64 22778.25 23095.40 23893.47 29779.28 28276.41 27787.64 29476.53 13495.24 30478.58 23572.42 30789.01 301
cascas86.50 19784.48 21492.55 11292.64 22785.95 4197.04 13695.07 20475.32 32380.50 23191.02 24654.33 33597.98 15986.79 16387.62 20493.71 243
TESTMET0.1,189.83 12989.34 13091.31 16492.54 22980.19 17897.11 12896.57 9186.15 12386.85 16291.83 23779.32 8696.95 22181.30 20992.35 15996.77 172
COLMAP_ROBcopyleft73.24 1975.74 33073.00 33783.94 32292.38 23069.08 35091.85 32186.93 38061.48 38865.32 36090.27 25842.27 37696.93 22450.91 38575.63 29185.80 362
Johannes L. Schönberger, Enliang Zheng, Marc Pollefeys, Jan-Michael Frahm: Pixelwise View Selection for Unstructured Multi-View Stereo. ECCV 2016
test_vis1_n_192089.95 12790.59 10188.03 24992.36 23168.98 35199.12 1294.34 25193.86 1193.64 6297.01 11251.54 34299.59 6096.76 3596.71 9995.53 206
xiu_mvs_v1_base_debu90.54 11689.54 12793.55 7092.31 23287.58 2696.99 13794.87 21287.23 10693.27 6497.56 8457.43 31198.32 14692.72 8993.46 14594.74 225
xiu_mvs_v1_base90.54 11689.54 12793.55 7092.31 23287.58 2696.99 13794.87 21287.23 10693.27 6497.56 8457.43 31198.32 14692.72 8993.46 14594.74 225
xiu_mvs_v1_base_debi90.54 11689.54 12793.55 7092.31 23287.58 2696.99 13794.87 21287.23 10693.27 6497.56 8457.43 31198.32 14692.72 8993.46 14594.74 225
SCA85.63 21383.64 22891.60 15892.30 23581.86 13092.88 30895.56 17584.85 15582.52 20685.12 34058.04 30495.39 29573.89 28387.58 20697.54 127
gm-plane-assit92.27 23679.64 19484.47 16895.15 16697.93 16085.81 167
test-LLR88.48 16087.98 15289.98 20592.26 23777.23 26497.11 12895.96 15083.76 19386.30 16591.38 24072.30 20596.78 23380.82 21191.92 16395.94 195
test-mter88.95 14488.60 14289.98 20592.26 23777.23 26497.11 12895.96 15085.32 14286.30 16591.38 24076.37 13996.78 23380.82 21191.92 16395.94 195
PAPM92.87 5192.40 6394.30 3992.25 23987.85 2196.40 18396.38 11491.07 3888.72 13996.90 11482.11 6197.37 19890.05 12897.70 6697.67 118
cl____83.27 25182.12 25186.74 27792.20 24075.95 28995.11 25193.27 30878.44 29674.82 29987.02 30574.19 18195.19 30674.67 27669.32 33089.09 296
DIV-MVS_self_test83.27 25182.12 25186.74 27792.19 24175.92 29195.11 25193.26 30978.44 29674.81 30087.08 30474.19 18195.19 30674.66 27769.30 33189.11 295
AllTest75.92 32873.06 33684.47 31692.18 24267.29 35691.07 33084.43 39267.63 36963.48 36590.18 25938.20 38797.16 20957.04 36673.37 30188.97 304
TestCases84.47 31692.18 24267.29 35684.43 39267.63 36963.48 36590.18 25938.20 38797.16 20957.04 36673.37 30188.97 304
CLD-MVS87.97 17487.48 16789.44 21892.16 24480.54 16898.14 4694.92 20991.41 3279.43 24595.40 15362.34 27297.27 20490.60 11782.90 24590.50 266
Zhaoxin Li, Wangmeng Zuo, Zhaoqi Wang, Lei Zhang: Confidence-based Large-scale Dense Multi-view Stereo. IEEE Transaction on Image Processing, 2020
Syy-MVS77.97 31478.05 29977.74 36592.13 24556.85 39493.97 28094.23 25582.43 22173.39 30893.57 20757.95 30787.86 38732.40 40882.34 25188.51 312
myMVS_eth3d81.93 27482.18 25081.18 34792.13 24567.18 35893.97 28094.23 25582.43 22173.39 30893.57 20776.98 12687.86 38750.53 38782.34 25188.51 312
c3_l83.80 24382.65 24587.25 27192.10 24777.74 25595.25 24293.04 31878.58 29376.01 28587.21 30275.25 16695.11 31177.54 24668.89 33488.91 307
HQP-NCC92.08 24897.63 8190.52 4582.30 210
ACMP_Plane92.08 24897.63 8190.52 4582.30 210
HQP-MVS87.91 17687.55 16588.98 22692.08 24878.48 22197.63 8194.80 21790.52 4582.30 21094.56 18365.40 25597.32 19987.67 15583.01 24291.13 259
PCF-MVS84.09 586.77 19585.00 20792.08 13492.06 25183.07 10792.14 31794.47 24179.63 27476.90 27094.78 17971.15 21899.20 9572.87 28991.05 16993.98 238
Andreas Kuhn, Shan Lin, Oliver Erdler: Plane Completion and Filtering for Multi-View Stereo Reconstruction. GCPR 2019
NP-MVS92.04 25278.22 23194.56 183
plane_prior691.98 25377.92 24464.77 260
Effi-MVS+-dtu84.61 23084.90 21083.72 32791.96 25463.14 37894.95 25693.34 30685.57 13679.79 24187.12 30361.99 27795.61 28883.55 19185.83 22392.41 255
plane_prior191.95 255
CDS-MVSNet89.50 13588.96 13591.14 17291.94 25680.93 15597.09 13295.81 16284.26 17684.72 18394.20 19280.31 7395.64 28583.37 19588.96 18696.85 169
Khang Truong Giang, Soohwan Song, Sungho Jo: Curvature-guided dynamic scale networks for Multi-view Stereo. ICLR 2022
HQP_MVS87.50 18487.09 17788.74 23191.86 25777.96 24197.18 11894.69 22289.89 5481.33 22394.15 19364.77 26097.30 20187.08 15982.82 24690.96 261
plane_prior791.86 25777.55 258
eth_miper_zixun_eth83.12 25582.01 25386.47 28291.85 25974.80 29894.33 27093.18 31279.11 28575.74 29287.25 30172.71 19795.32 30076.78 25467.13 35389.27 291
VDDNet86.44 19884.51 21292.22 12891.56 26081.83 13197.10 13194.64 22969.50 36487.84 14995.19 16348.01 35597.92 16589.82 13086.92 20996.89 167
EI-MVSNet85.80 20985.20 20187.59 25991.55 26177.41 26095.13 24995.36 19180.43 25780.33 23594.71 18073.72 18895.97 26176.96 25378.64 27589.39 284
CVMVSNet84.83 22685.57 19582.63 33791.55 26160.38 38795.13 24995.03 20580.60 25082.10 21694.71 18066.40 24990.19 37974.30 28090.32 17497.31 147
ACMP81.66 1184.00 24083.22 23686.33 28391.53 26372.95 31895.91 21393.79 28383.70 19573.79 30492.22 22654.31 33696.89 22583.98 18179.74 26489.16 294
Qingshan Xu and Wenbing Tao: Planar Prior Assisted PatchMatch Multi-View Stereo. AAAI 2020
IterMVS-LS83.93 24182.80 24387.31 26991.46 26477.39 26195.66 22593.43 30080.44 25575.51 29387.26 30073.72 18895.16 30876.99 25170.72 31789.39 284
Fangjinhua Wang, Silvano Galliani, Christoph Vogel, Marc Pollefeys: IterMVS: Iterative Probability Estimation for Efficient Multi-View Stereo.
dmvs_re84.10 23882.90 24087.70 25491.41 26573.28 31290.59 33493.19 31085.02 15177.96 26093.68 20457.92 30996.18 25575.50 26880.87 25893.63 244
WB-MVSnew84.08 23983.51 23285.80 29291.34 26676.69 27595.62 22896.27 12481.77 23381.81 22192.81 21758.23 30194.70 32366.66 32487.06 20885.99 358
Patchmatch-test78.25 30974.72 32488.83 22991.20 26774.10 30673.91 40688.70 37359.89 39666.82 35185.12 34078.38 10294.54 32748.84 39279.58 26797.86 103
miper_lstm_enhance81.66 27980.66 27384.67 31291.19 26871.97 32791.94 31993.19 31077.86 30072.27 32285.26 33473.46 19193.42 34973.71 28667.05 35488.61 310
ACMM80.70 1383.72 24582.85 24286.31 28691.19 26872.12 32495.88 21494.29 25380.44 25577.02 26891.96 23355.24 32997.14 21379.30 22880.38 26189.67 282
Qingshan Xu and Wenbing Tao: Multi-Scale Geometric Consistency Guided Multi-View Stereo. CVPR 2019
testing380.74 29081.17 26679.44 35791.15 27063.48 37697.16 12295.76 16480.83 24471.36 32793.15 21478.22 10587.30 39243.19 40079.67 26587.55 337
TAMVS88.48 16087.79 15690.56 18891.09 27179.18 20496.45 17895.88 15883.64 19783.12 20293.33 21075.94 14695.74 28082.40 20388.27 19896.75 174
ACMH+76.62 1677.47 31974.94 32185.05 30691.07 27271.58 33393.26 30090.01 35971.80 35264.76 36288.55 27841.62 37896.48 24262.35 34671.00 31487.09 343
OpenMVScopyleft79.58 1486.09 20483.62 22993.50 7390.95 27386.71 3497.44 9995.83 16175.35 32272.64 31995.72 14257.42 31499.64 5571.41 29895.85 11494.13 235
LPG-MVS_test84.20 23783.49 23386.33 28390.88 27473.06 31595.28 23994.13 26282.20 22576.31 27893.20 21154.83 33396.95 22183.72 18780.83 25988.98 302
LGP-MVS_train86.33 28390.88 27473.06 31594.13 26282.20 22576.31 27893.20 21154.83 33396.95 22183.72 18780.83 25988.98 302
test_fmvsmvis_n_192092.12 7692.10 7392.17 13190.87 27681.04 15098.34 4093.90 27492.71 1887.24 15697.90 6474.83 17199.72 4396.96 3296.20 10495.76 200
KD-MVS_2432*160077.63 31774.92 32285.77 29390.86 27779.44 19688.08 35393.92 27276.26 31767.05 34982.78 35972.15 20791.92 36261.53 34741.62 40885.94 359
miper_refine_blended77.63 31774.92 32285.77 29390.86 27779.44 19688.08 35393.92 27276.26 31767.05 34982.78 35972.15 20791.92 36261.53 34741.62 40885.94 359
baseline290.39 12090.21 11390.93 17690.86 27780.99 15295.20 24597.41 1686.03 12980.07 24094.61 18290.58 697.47 19287.29 15889.86 17794.35 231
PVSNet_077.72 1581.70 27778.95 29489.94 20890.77 28076.72 27495.96 20896.95 4285.01 15270.24 33788.53 28052.32 33998.20 15186.68 16444.08 40594.89 220
ACMH75.40 1777.99 31274.96 32087.10 27490.67 28176.41 27893.19 30391.64 33872.47 34963.44 36787.61 29543.34 37197.16 20958.34 36073.94 29887.72 329
Qingshan Xu and Wenbing Tao: Multi-Scale Geometric Consistency Guided Multi-View Stereo. CVPR 2019
MVS-HIRNet71.36 35367.00 35984.46 31890.58 28269.74 34679.15 39487.74 37746.09 40661.96 37650.50 41045.14 36695.64 28553.74 37888.11 20088.00 326
fmvsm_s_conf0.1_n92.93 4993.16 4892.24 12690.52 28381.92 12698.42 3796.24 12791.17 3596.02 3098.35 3475.34 16499.74 3897.84 2094.58 12795.05 217
jason92.73 5492.23 6994.21 4490.50 28487.30 2998.65 3095.09 20290.61 4492.76 7597.13 10675.28 16597.30 20193.32 7996.75 9798.02 88
jason: jason.
LTVRE_ROB73.68 1877.99 31275.74 31784.74 30990.45 28572.02 32586.41 36891.12 34672.57 34866.63 35387.27 29954.95 33296.98 21956.29 37075.98 28785.21 365
Andreas Kuhn, Heiko Hirschmüller, Daniel Scharstein, Helmut Mayer: A TV Prior for High-Quality Scalable Multi-View Stereo Reconstruction. International Journal of Computer Vision 2016
XVG-OURS85.18 22184.38 21687.59 25990.42 28671.73 33191.06 33194.07 26682.00 23183.29 20095.08 17056.42 32297.55 18383.70 18983.42 23893.49 247
VPA-MVSNet85.32 21983.83 22489.77 21590.25 28782.63 11296.36 18597.07 3383.03 20881.21 22589.02 27261.58 28096.31 24985.02 17470.95 31590.36 267
XVG-OURS-SEG-HR85.74 21185.16 20487.49 26590.22 28871.45 33491.29 32894.09 26581.37 23783.90 19495.22 16060.30 28697.53 18785.58 16984.42 23393.50 246
tpm85.55 21584.47 21588.80 23090.19 28975.39 29588.79 34694.69 22284.83 15683.96 19285.21 33678.22 10594.68 32576.32 26178.02 28396.34 185
CR-MVSNet83.53 24781.36 26490.06 20190.16 29079.75 18879.02 39591.12 34684.24 17782.27 21480.35 37275.45 15693.67 34563.37 34386.25 21696.75 174
RPMNet79.85 29675.92 31691.64 15590.16 29079.75 18879.02 39595.44 18558.43 40082.27 21472.55 39873.03 19598.41 14346.10 39686.25 21696.75 174
test_cas_vis1_n_192089.90 12890.02 11989.54 21790.14 29274.63 30098.71 2794.43 24693.04 1792.40 7996.35 13053.41 33899.08 10695.59 4796.16 10594.90 219
FIs86.73 19686.10 19088.61 23390.05 29380.21 17796.14 20196.95 4285.56 13878.37 25492.30 22576.73 13295.28 30279.51 22479.27 26990.35 268
FMVSNet576.46 32674.16 33083.35 33290.05 29376.17 28189.58 34089.85 36071.39 35565.29 36180.42 37150.61 34687.70 39061.05 35269.24 33286.18 354
IterMVS80.67 29179.16 29185.20 30489.79 29576.08 28392.97 30691.86 33380.28 26171.20 32985.14 33957.93 30891.34 36972.52 29270.74 31688.18 323
Fangjinhua Wang, Silvano Galliani, Christoph Vogel, Marc Pollefeys: IterMVS: Iterative Probability Estimation for Efficient Multi-View Stereo.
mvsany_test187.58 18388.22 14785.67 29689.78 29667.18 35895.25 24287.93 37583.96 18588.79 13697.06 11172.52 20094.53 32892.21 9586.45 21495.30 213
UniMVSNet (Re)85.31 22084.23 21888.55 23489.75 29780.55 16696.72 16196.89 4785.42 14078.40 25388.93 27375.38 16095.52 29278.58 23568.02 34389.57 283
Patchmtry77.36 32074.59 32585.67 29689.75 29775.75 29377.85 39891.12 34660.28 39371.23 32880.35 37275.45 15693.56 34757.94 36167.34 35187.68 331
JIA-IIPM79.00 30677.20 30584.40 31989.74 29964.06 37375.30 40395.44 18562.15 38481.90 21859.08 40778.92 9395.59 28966.51 32885.78 22493.54 245
kuosan73.55 33972.39 34077.01 36889.68 30066.72 36385.24 37793.44 29867.76 36860.04 38483.40 35671.90 21084.25 39945.34 39754.75 38180.06 394
MS-PatchMatch83.05 25681.82 25786.72 28189.64 30179.10 20894.88 25894.59 23479.70 27370.67 33389.65 26650.43 34796.82 23070.82 30795.99 11284.25 371
IterMVS-SCA-FT80.51 29379.10 29284.73 31089.63 30274.66 29992.98 30591.81 33580.05 26671.06 33185.18 33758.04 30491.40 36872.48 29370.70 31888.12 324
mmtdpeth78.04 31176.76 31081.86 34389.60 30366.12 36592.34 31687.18 37876.83 31485.55 17276.49 38646.77 36297.02 21690.85 11145.24 40282.43 383
Fast-Effi-MVS+-dtu83.33 25082.60 24685.50 30089.55 30469.38 34996.09 20491.38 34182.30 22475.96 28791.41 23956.71 31895.58 29075.13 27284.90 23191.54 257
PatchT79.75 29776.85 30988.42 23589.55 30475.49 29477.37 39994.61 23263.07 38082.46 20873.32 39575.52 15593.41 35051.36 38384.43 23296.36 183
GA-MVS85.79 21084.04 22391.02 17589.47 30680.27 17496.90 15094.84 21585.57 13680.88 22789.08 27056.56 32196.47 24377.72 24185.35 22896.34 185
UniMVSNet_NR-MVSNet85.49 21784.59 21188.21 24589.44 30779.36 19996.71 16396.41 10985.22 14578.11 25790.98 24876.97 12795.14 30979.14 23068.30 34090.12 274
FC-MVSNet-test85.96 20685.39 19887.66 25689.38 30878.02 23895.65 22696.87 4985.12 14977.34 26391.94 23576.28 14194.74 32277.09 25078.82 27390.21 271
WR-MVS84.32 23582.96 23888.41 23689.38 30880.32 17196.59 16896.25 12683.97 18476.63 27390.36 25767.53 23994.86 31875.82 26670.09 32490.06 278
VPNet84.69 22882.92 23990.01 20389.01 31083.45 10096.71 16395.46 18385.71 13479.65 24292.18 22856.66 32096.01 26083.05 19967.84 34690.56 265
nrg03086.79 19485.43 19790.87 18088.76 31185.34 5897.06 13594.33 25284.31 17180.45 23391.98 23272.36 20296.36 24788.48 14771.13 31390.93 263
DU-MVS84.57 23183.33 23588.28 24188.76 31179.36 19996.43 18195.41 19085.42 14078.11 25790.82 24967.61 23695.14 30979.14 23068.30 34090.33 269
NR-MVSNet83.35 24981.52 26288.84 22888.76 31181.31 14594.45 26595.16 20084.65 16267.81 34590.82 24970.36 22794.87 31774.75 27466.89 35690.33 269
test_040272.68 34569.54 35282.09 34188.67 31471.81 33092.72 31086.77 38361.52 38762.21 37483.91 35143.22 37293.76 34434.60 40672.23 31080.72 393
RPSCF77.73 31676.63 31181.06 34888.66 31555.76 39987.77 35787.88 37664.82 37874.14 30392.79 21949.22 35296.81 23167.47 32076.88 28590.62 264
FMVSNet179.50 30176.54 31288.39 23888.47 31681.95 12394.30 27293.38 30273.14 34272.04 32485.66 32643.86 36893.84 34165.48 33272.53 30689.38 286
test_fmvsmconf0.1_n93.08 4693.22 4792.65 10788.45 31780.81 15999.00 2295.11 20193.21 1594.00 5797.91 6376.84 12899.59 6097.91 1696.55 10197.54 127
MonoMVSNet85.68 21284.22 21990.03 20288.43 31877.83 24892.95 30791.46 34087.28 10478.11 25785.96 32566.31 25094.81 32090.71 11576.81 28697.46 136
OPM-MVS85.84 20885.10 20688.06 24788.34 31977.83 24895.72 22294.20 25887.89 8980.45 23394.05 19558.57 29897.26 20583.88 18282.76 24889.09 296
Ray L. Khuboni, Hongjun Xu: Octagram Propagation Matching for Multi-Scale View Stereopsis (OPM-MVS).
tfpnnormal78.14 31075.42 31886.31 28688.33 32079.24 20294.41 26696.22 12973.51 33869.81 33985.52 33255.43 32795.75 27747.65 39467.86 34583.95 374
TinyColmap72.41 34668.99 35582.68 33688.11 32169.59 34788.41 34985.20 38865.55 37557.91 38984.82 34430.80 40295.94 26551.38 38268.70 33582.49 382
fmvsm_s_conf0.1_n_a92.38 7192.49 6292.06 13688.08 32281.62 14097.97 6196.01 14590.62 4396.58 2298.33 3574.09 18399.71 4597.23 2893.46 14594.86 221
WR-MVS_H81.02 28680.09 28083.79 32488.08 32271.26 33794.46 26496.54 9480.08 26572.81 31886.82 30770.36 22792.65 35464.18 33767.50 34987.46 339
CP-MVSNet81.01 28780.08 28183.79 32487.91 32470.51 33994.29 27595.65 17080.83 24472.54 32188.84 27463.71 26492.32 35768.58 31768.36 33988.55 311
D2MVS82.67 26381.55 26086.04 29087.77 32576.47 27695.21 24496.58 9082.66 21870.26 33685.46 33360.39 28595.80 27276.40 25979.18 27085.83 361
TranMVSNet+NR-MVSNet83.24 25381.71 25887.83 25187.71 32678.81 21596.13 20394.82 21684.52 16576.18 28490.78 25164.07 26394.60 32674.60 27866.59 35890.09 276
USDC78.65 30776.25 31385.85 29187.58 32774.60 30189.58 34090.58 35784.05 18163.13 36988.23 28640.69 38596.86 22966.57 32775.81 29086.09 356
PS-CasMVS80.27 29479.18 29083.52 33087.56 32869.88 34494.08 27895.29 19680.27 26272.08 32388.51 28159.22 29592.23 35967.49 31968.15 34288.45 317
test_fmvs1_n86.34 20086.72 18585.17 30587.54 32963.64 37596.91 14992.37 32887.49 9891.33 9795.58 14940.81 38498.46 13895.00 5693.49 14393.41 250
MIMVSNet79.18 30575.99 31588.72 23287.37 33080.66 16379.96 38991.82 33477.38 30674.33 30281.87 36341.78 37790.74 37566.36 33083.10 24194.76 224
XXY-MVS83.84 24282.00 25489.35 21987.13 33181.38 14395.72 22294.26 25480.15 26475.92 28890.63 25261.96 27896.52 24178.98 23273.28 30490.14 273
ITE_SJBPF82.38 33887.00 33265.59 36689.55 36279.99 26869.37 34191.30 24241.60 37995.33 29962.86 34574.63 29786.24 353
dongtai69.47 35768.98 35670.93 37986.87 33358.45 39288.19 35193.18 31263.98 37956.04 39380.17 37470.97 22379.24 40633.46 40747.94 39875.09 400
test0.0.03 182.79 26182.48 24783.74 32686.81 33472.22 32096.52 17295.03 20583.76 19373.00 31593.20 21172.30 20588.88 38264.15 33877.52 28490.12 274
v881.88 27580.06 28387.32 26886.63 33579.04 21194.41 26693.65 29178.77 29173.19 31485.57 33066.87 24595.81 27173.84 28567.61 34887.11 342
tt080581.20 28579.06 29387.61 25786.50 33672.97 31793.66 28795.48 18174.11 33376.23 28291.99 23141.36 38097.40 19577.44 24874.78 29592.45 254
v1081.43 28179.53 28987.11 27386.38 33778.87 21294.31 27193.43 30077.88 29973.24 31385.26 33465.44 25495.75 27772.14 29467.71 34786.72 346
PEN-MVS79.47 30278.26 29883.08 33386.36 33868.58 35293.85 28594.77 22079.76 27171.37 32688.55 27859.79 28792.46 35564.50 33665.40 36088.19 322
UniMVSNet_ETH3D80.86 28978.75 29587.22 27286.31 33972.02 32591.95 31893.76 28773.51 33875.06 29890.16 26143.04 37495.66 28276.37 26078.55 27893.98 238
v114482.90 26081.27 26587.78 25386.29 34079.07 21096.14 20193.93 27080.05 26677.38 26286.80 30865.50 25395.93 26675.21 27170.13 32188.33 320
V4283.04 25781.53 26187.57 26186.27 34179.09 20995.87 21594.11 26480.35 25977.22 26686.79 30965.32 25796.02 25977.74 24070.14 32087.61 333
v2v48283.46 24881.86 25688.25 24386.19 34279.65 19396.34 18794.02 26881.56 23677.32 26488.23 28665.62 25296.03 25877.77 23969.72 32889.09 296
v14882.41 26980.89 26886.99 27586.18 34376.81 27296.27 19193.82 27980.49 25475.28 29686.11 32467.32 24295.75 27775.48 26967.03 35588.42 318
pmmvs482.54 26580.79 26987.79 25286.11 34480.49 17093.55 29193.18 31277.29 30773.35 31189.40 26965.26 25895.05 31575.32 27073.61 30087.83 328
MVP-Stereo82.65 26481.67 25985.59 29986.10 34578.29 22893.33 29692.82 32177.75 30169.17 34387.98 29059.28 29495.76 27671.77 29596.88 9282.73 379
Qingsong Yan: MVP-Stereo: A Parallel Multi-View Patchmatch Stereo Method with Dilation Matching for Photogrammetric Application.
v119282.31 27080.55 27587.60 25885.94 34678.47 22495.85 21793.80 28279.33 27976.97 26986.51 31263.33 26895.87 26873.11 28870.13 32188.46 316
TransMVSNet (Re)76.94 32374.38 32784.62 31485.92 34775.25 29695.28 23989.18 36773.88 33667.22 34686.46 31459.64 28894.10 33659.24 35952.57 39084.50 369
PS-MVSNAJss84.91 22584.30 21786.74 27785.89 34874.40 30494.95 25694.16 26183.93 18776.45 27690.11 26371.04 22095.77 27583.16 19779.02 27290.06 278
v14419282.43 26680.73 27187.54 26285.81 34978.22 23195.98 20793.78 28479.09 28677.11 26786.49 31364.66 26295.91 26774.20 28169.42 32988.49 314
v192192082.02 27380.23 27987.41 26685.62 35077.92 24495.79 22193.69 28978.86 29076.67 27286.44 31562.50 27195.83 27072.69 29069.77 32788.47 315
v124081.70 27779.83 28787.30 27085.50 35177.70 25695.48 23393.44 29878.46 29576.53 27586.44 31560.85 28495.84 26971.59 29770.17 31988.35 319
pm-mvs180.05 29578.02 30086.15 28885.42 35275.81 29295.11 25192.69 32477.13 30970.36 33587.43 29658.44 30095.27 30371.36 29964.25 36587.36 340
our_test_377.90 31575.37 31985.48 30185.39 35376.74 27393.63 28891.67 33673.39 34165.72 35884.65 34558.20 30393.13 35257.82 36267.87 34486.57 349
ppachtmachnet_test77.19 32174.22 32986.13 28985.39 35378.22 23193.98 27991.36 34371.74 35367.11 34884.87 34356.67 31993.37 35152.21 38164.59 36286.80 345
MDA-MVSNet-bldmvs71.45 35167.94 35881.98 34285.33 35568.50 35392.35 31588.76 37170.40 35842.99 40581.96 36246.57 36391.31 37048.75 39354.39 38486.11 355
Baseline_NR-MVSNet81.22 28480.07 28284.68 31185.32 35675.12 29796.48 17588.80 37076.24 31977.28 26586.40 31867.61 23694.39 33175.73 26766.73 35784.54 368
DTE-MVSNet78.37 30877.06 30782.32 34085.22 35767.17 36193.40 29393.66 29078.71 29270.53 33488.29 28559.06 29692.23 35961.38 35063.28 36987.56 335
pmmvs581.34 28279.54 28886.73 28085.02 35876.91 26996.22 19491.65 33777.65 30273.55 30688.61 27755.70 32694.43 33074.12 28273.35 30388.86 308
XVG-ACMP-BASELINE79.38 30377.90 30183.81 32384.98 35967.14 36289.03 34493.18 31280.26 26372.87 31788.15 28838.55 38696.26 25076.05 26378.05 28288.02 325
test_vis1_n85.60 21485.70 19385.33 30284.79 36064.98 36896.83 15391.61 33987.36 10291.00 10494.84 17836.14 39197.18 20895.66 4593.03 15093.82 241
MDA-MVSNet_test_wron73.54 34070.43 34882.86 33484.55 36171.85 32891.74 32391.32 34567.63 36946.73 40281.09 36955.11 33090.42 37855.91 37259.76 37586.31 352
SixPastTwentyTwo76.04 32774.32 32881.22 34684.54 36261.43 38591.16 32989.30 36677.89 29864.04 36486.31 31948.23 35394.29 33363.54 34263.84 36787.93 327
YYNet173.53 34170.43 34882.85 33584.52 36371.73 33191.69 32491.37 34267.63 36946.79 40181.21 36855.04 33190.43 37755.93 37159.70 37686.38 351
N_pmnet61.30 36860.20 37164.60 38784.32 36417.00 42891.67 32510.98 42661.77 38658.45 38878.55 37949.89 35091.83 36542.27 40263.94 36684.97 366
mvs_tets81.74 27680.71 27284.84 30884.22 36570.29 34193.91 28393.78 28482.77 21573.37 31089.46 26847.36 36195.31 30181.99 20679.55 26888.92 306
jajsoiax82.12 27281.15 26785.03 30784.19 36670.70 33894.22 27693.95 26983.07 20673.48 30789.75 26549.66 35195.37 29782.24 20579.76 26289.02 300
EU-MVSNet76.92 32476.95 30876.83 37084.10 36754.73 40291.77 32292.71 32372.74 34669.57 34088.69 27658.03 30687.43 39164.91 33570.00 32588.33 320
test_djsdf83.00 25982.45 24884.64 31384.07 36869.78 34594.80 26194.48 23880.74 24775.41 29587.70 29361.32 28395.10 31283.77 18579.76 26289.04 299
v7n79.32 30477.34 30485.28 30384.05 36972.89 31993.38 29493.87 27675.02 32770.68 33284.37 34659.58 29095.62 28767.60 31867.50 34987.32 341
test_vis1_rt73.96 33672.40 33978.64 36283.91 37061.16 38695.63 22768.18 41576.32 31660.09 38374.77 38929.01 40497.54 18587.74 15375.94 28877.22 398
dmvs_testset72.00 35073.36 33567.91 38283.83 37131.90 42285.30 37677.12 40782.80 21463.05 37192.46 22261.54 28182.55 40442.22 40371.89 31189.29 290
OurMVSNet-221017-077.18 32276.06 31480.55 35183.78 37260.00 38990.35 33591.05 34977.01 31366.62 35487.92 29147.73 35994.03 33771.63 29668.44 33887.62 332
EG-PatchMatch MVS74.92 33372.02 34183.62 32883.76 37373.28 31293.62 28992.04 33268.57 36758.88 38683.80 35231.87 40095.57 29156.97 36878.67 27482.00 387
K. test v373.62 33771.59 34379.69 35582.98 37459.85 39090.85 33388.83 36977.13 30958.90 38582.11 36143.62 36991.72 36665.83 33154.10 38587.50 338
test_fmvs279.59 29979.90 28678.67 36182.86 37555.82 39895.20 24589.55 36281.09 24080.12 23989.80 26434.31 39693.51 34887.82 15278.36 28086.69 347
test_fmvsmconf0.01_n91.08 10490.68 10092.29 12482.43 37680.12 18097.94 6293.93 27092.07 2491.97 8697.60 8267.56 23899.53 6897.09 3095.56 11897.21 153
EGC-MVSNET52.46 37647.56 37967.15 38381.98 37760.11 38882.54 38772.44 4110.11 4230.70 42474.59 39025.11 40583.26 40129.04 41061.51 37358.09 408
anonymousdsp80.98 28879.97 28484.01 32181.73 37870.44 34092.49 31293.58 29577.10 31172.98 31686.31 31957.58 31094.90 31679.32 22778.63 27786.69 347
Anonymous2023120675.29 33273.64 33380.22 35380.75 37963.38 37793.36 29590.71 35673.09 34367.12 34783.70 35350.33 34890.85 37453.63 37970.10 32386.44 350
Gipumacopyleft45.11 38142.05 38354.30 39780.69 38051.30 40435.80 41583.81 39628.13 41127.94 41534.53 41511.41 41876.70 41121.45 41454.65 38234.90 415
S. Galliani, K. Lasinger, K. Schindler: Massively Parallel Multiview Stereopsis by Surface Normal Diffusion. ICCV 2015
lessismore_v079.98 35480.59 38158.34 39380.87 40158.49 38783.46 35543.10 37393.89 34063.11 34448.68 39587.72 329
OpenMVS_ROBcopyleft68.52 2073.02 34469.57 35183.37 33180.54 38271.82 32993.60 29088.22 37462.37 38361.98 37583.15 35835.31 39595.47 29345.08 39875.88 28982.82 377
testgi74.88 33473.40 33479.32 35880.13 38361.75 38293.21 30186.64 38479.49 27766.56 35591.06 24535.51 39488.67 38356.79 36971.25 31287.56 335
CMPMVSbinary54.94 2175.71 33174.56 32679.17 35979.69 38455.98 39689.59 33993.30 30760.28 39353.85 39789.07 27147.68 36096.33 24876.55 25681.02 25785.22 364
M. Jancosek, T. Pajdla: Multi-View Reconstruction Preserving Weakly-Supported Surfaces. CVPR 2011
LF4IMVS72.36 34770.82 34576.95 36979.18 38556.33 39586.12 37086.11 38669.30 36563.06 37086.66 31033.03 39892.25 35865.33 33368.64 33682.28 384
pmmvs674.65 33571.67 34283.60 32979.13 38669.94 34393.31 29990.88 35361.05 39265.83 35784.15 34943.43 37094.83 31966.62 32560.63 37486.02 357
MVStest166.93 36463.01 36878.69 36078.56 38771.43 33585.51 37586.81 38149.79 40548.57 40084.15 34953.46 33783.31 40043.14 40137.15 41181.34 392
DeepMVS_CXcopyleft64.06 38878.53 38843.26 41368.11 41769.94 36238.55 40776.14 38718.53 40979.34 40543.72 39941.62 40869.57 403
CL-MVSNet_self_test75.81 32974.14 33180.83 35078.33 38967.79 35594.22 27693.52 29677.28 30869.82 33881.54 36661.47 28289.22 38157.59 36453.51 38685.48 363
test20.0372.36 34771.15 34475.98 37477.79 39059.16 39192.40 31489.35 36574.09 33461.50 37784.32 34748.09 35485.54 39750.63 38662.15 37283.24 375
UnsupCasMVSNet_eth73.25 34270.57 34781.30 34577.53 39166.33 36487.24 36193.89 27580.38 25857.90 39081.59 36442.91 37590.56 37665.18 33448.51 39687.01 344
DSMNet-mixed73.13 34372.45 33875.19 37677.51 39246.82 40785.09 37882.01 40067.61 37369.27 34281.33 36750.89 34486.28 39454.54 37683.80 23592.46 253
Patchmatch-RL test76.65 32574.01 33284.55 31577.37 39364.23 37178.49 39782.84 39978.48 29464.63 36373.40 39476.05 14491.70 36776.99 25157.84 37897.72 114
Anonymous2024052172.06 34969.91 35078.50 36377.11 39461.67 38491.62 32690.97 35165.52 37662.37 37379.05 37836.32 39090.96 37357.75 36368.52 33782.87 376
test_method56.77 37054.53 37463.49 38976.49 39540.70 41575.68 40274.24 40919.47 41748.73 39971.89 40019.31 40865.80 41757.46 36547.51 40083.97 373
MIMVSNet169.44 35866.65 36277.84 36476.48 39662.84 37987.42 35988.97 36866.96 37457.75 39179.72 37732.77 39985.83 39646.32 39563.42 36884.85 367
pmmvs-eth3d73.59 33870.66 34682.38 33876.40 39773.38 30989.39 34389.43 36472.69 34760.34 38277.79 38146.43 36491.26 37166.42 32957.06 37982.51 380
new_pmnet66.18 36563.18 36775.18 37776.27 39861.74 38383.79 38384.66 39156.64 40251.57 39871.85 40131.29 40187.93 38649.98 38862.55 37075.86 399
KD-MVS_self_test70.97 35469.31 35375.95 37576.24 39955.39 40087.45 35890.94 35270.20 36062.96 37277.48 38244.01 36788.09 38561.25 35153.26 38784.37 370
ttmdpeth69.58 35566.92 36177.54 36775.95 40062.40 38088.09 35284.32 39462.87 38265.70 35986.25 32136.53 38988.53 38455.65 37446.96 40181.70 390
mvs5depth71.40 35268.36 35780.54 35275.31 40165.56 36779.94 39085.14 38969.11 36671.75 32581.59 36441.02 38293.94 33960.90 35350.46 39282.10 385
UnsupCasMVSNet_bld68.60 36264.50 36680.92 34974.63 40267.80 35483.97 38292.94 31965.12 37754.63 39668.23 40335.97 39292.17 36160.13 35444.83 40382.78 378
PM-MVS69.32 35966.93 36076.49 37173.60 40355.84 39785.91 37179.32 40574.72 32961.09 37978.18 38021.76 40791.10 37270.86 30556.90 38082.51 380
new-patchmatchnet68.85 36165.93 36377.61 36673.57 40463.94 37490.11 33788.73 37271.62 35455.08 39573.60 39340.84 38387.22 39351.35 38448.49 39781.67 391
WB-MVS57.26 36956.22 37260.39 39369.29 40535.91 42086.39 36970.06 41359.84 39746.46 40372.71 39651.18 34378.11 40715.19 41734.89 41267.14 406
test_fmvs369.56 35669.19 35470.67 38069.01 40647.05 40690.87 33286.81 38171.31 35666.79 35277.15 38316.40 41183.17 40281.84 20762.51 37181.79 389
SSC-MVS56.01 37254.96 37359.17 39468.42 40734.13 42184.98 37969.23 41458.08 40145.36 40471.67 40250.30 34977.46 40814.28 41832.33 41365.91 407
ambc76.02 37368.11 40851.43 40364.97 41189.59 36160.49 38174.49 39117.17 41092.46 35561.50 34952.85 38984.17 372
APD_test156.56 37153.58 37565.50 38467.93 40946.51 40977.24 40172.95 41038.09 40842.75 40675.17 38813.38 41482.78 40340.19 40454.53 38367.23 405
pmmvs365.75 36662.18 36976.45 37267.12 41064.54 36988.68 34785.05 39054.77 40457.54 39273.79 39229.40 40386.21 39555.49 37547.77 39978.62 396
TDRefinement69.20 36065.78 36479.48 35666.04 41162.21 38188.21 35086.12 38562.92 38161.03 38085.61 32933.23 39794.16 33555.82 37353.02 38882.08 386
mvsany_test367.19 36365.34 36572.72 37863.08 41248.57 40583.12 38578.09 40672.07 35061.21 37877.11 38422.94 40687.78 38978.59 23451.88 39181.80 388
test_f64.01 36762.13 37069.65 38163.00 41345.30 41283.66 38480.68 40261.30 38955.70 39472.62 39714.23 41384.64 39869.84 31058.11 37779.00 395
test_vis3_rt54.10 37451.04 37763.27 39058.16 41446.08 41184.17 38149.32 42556.48 40336.56 40949.48 4128.03 42191.91 36467.29 32149.87 39351.82 411
FPMVS55.09 37352.93 37661.57 39155.98 41540.51 41683.11 38683.41 39837.61 40934.95 41071.95 39914.40 41276.95 40929.81 40965.16 36167.25 404
PMMVS250.90 37746.31 38064.67 38655.53 41646.67 40877.30 40071.02 41240.89 40734.16 41159.32 4069.83 41976.14 41240.09 40528.63 41471.21 401
wuyk23d14.10 38813.89 39114.72 40355.23 41722.91 42733.83 4163.56 4274.94 4204.11 4212.28 4232.06 42619.66 42210.23 4218.74 4201.59 420
E-PMN32.70 38532.39 38733.65 40153.35 41825.70 42574.07 40553.33 42321.08 41517.17 41933.63 41711.85 41754.84 41912.98 41914.04 41620.42 416
testf145.70 37942.41 38155.58 39553.29 41940.02 41768.96 40962.67 41927.45 41229.85 41261.58 4045.98 42273.83 41428.49 41243.46 40652.90 409
APD_test245.70 37942.41 38155.58 39553.29 41940.02 41768.96 40962.67 41927.45 41229.85 41261.58 4045.98 42273.83 41428.49 41243.46 40652.90 409
EMVS31.70 38631.45 38832.48 40250.72 42123.95 42674.78 40452.30 42420.36 41616.08 42031.48 41812.80 41553.60 42011.39 42013.10 41919.88 417
LCM-MVSNet52.52 37548.24 37865.35 38547.63 42241.45 41472.55 40783.62 39731.75 41037.66 40857.92 4089.19 42076.76 41049.26 39044.60 40477.84 397
MVEpermissive35.65 2233.85 38429.49 38946.92 39941.86 42336.28 41950.45 41456.52 42218.75 41818.28 41737.84 4142.41 42558.41 41818.71 41520.62 41546.06 413
Simon Fuhrmann, Fabian Langguth, Michael Goesele: MVE - A Multi-View Reconstruction Environment. EUROGRAPHICS Workshops on Graphics and Cultural Heritage (2014)
ANet_high46.22 37841.28 38561.04 39239.91 42446.25 41070.59 40876.18 40858.87 39923.09 41648.00 41312.58 41666.54 41628.65 41113.62 41770.35 402
PMVScopyleft34.80 2339.19 38335.53 38650.18 39829.72 42530.30 42359.60 41366.20 41826.06 41417.91 41849.53 4113.12 42474.09 41318.19 41649.40 39446.14 412
Y. Furukawa, J. Ponce: Accurate, dense, and robust multiview stereopsis. PAMI (2010)
tmp_tt41.54 38241.93 38440.38 40020.10 42626.84 42461.93 41259.09 42114.81 41928.51 41480.58 37035.53 39348.33 42163.70 34113.11 41845.96 414
testmvs9.92 38912.94 3920.84 4050.65 4270.29 43093.78 2860.39 4280.42 4212.85 42215.84 4210.17 4280.30 4242.18 4220.21 4211.91 419
test1239.07 39011.73 3931.11 4040.50 4280.77 42989.44 3420.20 4290.34 4222.15 42310.72 4220.34 4270.32 4231.79 4230.08 4222.23 418
mmdepth0.00 3930.00 3960.00 4060.00 4290.00 4310.00 4170.00 4300.00 4240.00 4250.00 4240.00 4290.00 4250.00 4240.00 4230.00 421
monomultidepth0.00 3930.00 3960.00 4060.00 4290.00 4310.00 4170.00 4300.00 4240.00 4250.00 4240.00 4290.00 4250.00 4240.00 4230.00 421
test_blank0.00 3930.00 3960.00 4060.00 4290.00 4310.00 4170.00 4300.00 4240.00 4250.00 4240.00 4290.00 4250.00 4240.00 4230.00 421
eth-test20.00 429
eth-test0.00 429
uanet_test0.00 3930.00 3960.00 4060.00 4290.00 4310.00 4170.00 4300.00 4240.00 4250.00 4240.00 4290.00 4250.00 4240.00 4230.00 421
DCPMVS0.00 3930.00 3960.00 4060.00 4290.00 4310.00 4170.00 4300.00 4240.00 4250.00 4240.00 4290.00 4250.00 4240.00 4230.00 421
cdsmvs_eth3d_5k21.43 38728.57 3900.00 4060.00 4290.00 4310.00 41795.93 1550.00 4240.00 42597.66 7563.57 2650.00 4250.00 4240.00 4230.00 421
pcd_1.5k_mvsjas5.92 3927.89 3950.00 4060.00 4290.00 4310.00 4170.00 4300.00 4240.00 4250.00 42471.04 2200.00 4250.00 4240.00 4230.00 421
sosnet-low-res0.00 3930.00 3960.00 4060.00 4290.00 4310.00 4170.00 4300.00 4240.00 4250.00 4240.00 4290.00 4250.00 4240.00 4230.00 421
sosnet0.00 3930.00 3960.00 4060.00 4290.00 4310.00 4170.00 4300.00 4240.00 4250.00 4240.00 4290.00 4250.00 4240.00 4230.00 421
uncertanet0.00 3930.00 3960.00 4060.00 4290.00 4310.00 4170.00 4300.00 4240.00 4250.00 4240.00 4290.00 4250.00 4240.00 4230.00 421
Regformer0.00 3930.00 3960.00 4060.00 4290.00 4310.00 4170.00 4300.00 4240.00 4250.00 4240.00 4290.00 4250.00 4240.00 4230.00 421
ab-mvs-re8.11 39110.81 3940.00 4060.00 4290.00 4310.00 4170.00 4300.00 4240.00 42597.30 980.00 4290.00 4250.00 4240.00 4230.00 421
uanet0.00 3930.00 3960.00 4060.00 4290.00 4310.00 4170.00 4300.00 4240.00 4250.00 4240.00 4290.00 4250.00 4240.00 4230.00 421
WAC-MVS67.18 35849.00 391
PC_three_145291.12 3698.33 298.42 3092.51 299.81 2298.96 499.37 199.70 3
test_241102_TWO96.78 5588.72 6697.70 898.91 287.86 2199.82 1998.15 1199.00 1599.47 9
test_0728_THIRD88.38 7496.69 1898.76 1289.64 1299.76 3197.47 2498.84 2399.38 14
GSMVS97.54 127
sam_mvs177.59 11597.54 127
sam_mvs75.35 163
MTGPAbinary96.33 119
test_post185.88 37230.24 41973.77 18695.07 31473.89 283
test_post33.80 41676.17 14295.97 261
patchmatchnet-post77.09 38577.78 11495.39 295
MTMP97.53 9168.16 416
test9_res96.00 4099.03 1398.31 68
agg_prior294.30 6499.00 1598.57 53
test_prior482.34 11997.75 75
test_prior298.37 3986.08 12694.57 5098.02 5483.14 5395.05 5598.79 27
旧先验296.97 14274.06 33596.10 2897.76 17188.38 148
新几何296.42 182
无先验96.87 15196.78 5577.39 30599.52 6979.95 22198.43 61
原ACMM296.84 152
testdata299.48 7376.45 258
segment_acmp82.69 59
testdata195.57 23187.44 99
plane_prior594.69 22297.30 20187.08 15982.82 24690.96 261
plane_prior494.15 193
plane_prior377.75 25490.17 5281.33 223
plane_prior297.18 11889.89 54
plane_prior77.96 24197.52 9490.36 5082.96 244
n20.00 430
nn0.00 430
door-mid79.75 404
test1196.50 99
door80.13 403
HQP5-MVS78.48 221
BP-MVS87.67 155
HQP4-MVS82.30 21097.32 19991.13 259
HQP3-MVS94.80 21783.01 242
HQP2-MVS65.40 255
MDTV_nov1_ep13_2view81.74 13586.80 36480.65 24985.65 17074.26 18076.52 25796.98 161
ACMMP++_ref78.45 279
ACMMP++79.05 271
Test By Simon71.65 213