| DP-MVS Recon | | | 91.72 80 | 90.85 89 | 94.34 34 | 99.50 1 | 85.00 69 | 98.51 36 | 95.96 148 | 80.57 244 | 88.08 141 | 97.63 80 | 76.84 120 | 99.89 7 | 85.67 158 | 94.88 117 | 98.13 76 |
|
| MCST-MVS | | | 96.17 3 | 96.12 6 | 96.32 7 | 99.42 2 | 89.36 10 | 98.94 24 | 97.10 32 | 95.17 3 | 92.11 79 | 98.46 28 | 87.33 24 | 99.97 2 | 97.21 28 | 99.31 4 | 99.63 7 |
|
| MG-MVS | | | 94.25 28 | 93.72 34 | 95.85 11 | 99.38 3 | 89.35 11 | 97.98 60 | 98.09 9 | 89.99 53 | 92.34 75 | 96.97 110 | 81.30 62 | 98.99 107 | 88.54 133 | 98.88 20 | 99.20 22 |
|
| AdaColmap |  | | 88.81 142 | 87.61 154 | 92.39 114 | 99.33 4 | 79.95 176 | 96.70 164 | 95.58 168 | 77.51 297 | 83.05 194 | 96.69 123 | 61.90 265 | 99.72 43 | 84.29 168 | 93.47 138 | 97.50 126 |
|
| CNVR-MVS | | | 96.30 1 | 96.54 1 | 95.55 15 | 99.31 5 | 87.69 22 | 99.06 17 | 97.12 30 | 94.66 5 | 96.79 17 | 98.78 9 | 86.42 28 | 99.95 3 | 97.59 23 | 99.18 7 | 99.00 29 |
|
| NCCC | | | 95.63 7 | 95.94 8 | 94.69 28 | 99.21 6 | 85.15 64 | 99.16 7 | 96.96 41 | 94.11 11 | 95.59 33 | 98.64 17 | 85.07 32 | 99.91 4 | 95.61 47 | 99.10 9 | 99.00 29 |
|
| OPU-MVS | | | | | 97.30 2 | 99.19 7 | 92.31 3 | 99.12 12 | | | | 98.54 20 | 92.06 3 | 99.84 12 | 99.11 2 | 99.37 1 | 99.74 1 |
|
| ZD-MVS | | | | | | 99.09 8 | 83.22 102 | | 96.60 87 | 82.88 205 | 93.61 62 | 98.06 52 | 82.93 52 | 99.14 97 | 95.51 50 | 98.49 38 | |
|
| DVP-MVS++ | | | 96.05 4 | 96.41 3 | 94.96 22 | 99.05 9 | 85.34 54 | 98.13 50 | 96.77 61 | 88.38 74 | 97.70 9 | 98.77 10 | 92.06 3 | 99.84 12 | 97.47 24 | 99.37 1 | 99.70 3 |
|
| MSC_two_6792asdad | | | | | 97.14 3 | 99.05 9 | 92.19 4 | | 96.83 52 | | | | | 99.81 21 | 98.08 14 | 98.81 24 | 99.43 11 |
|
| No_MVS | | | | | 97.14 3 | 99.05 9 | 92.19 4 | | 96.83 52 | | | | | 99.81 21 | 98.08 14 | 98.81 24 | 99.43 11 |
|
| DVP-MVS |  | | 95.58 9 | 95.91 9 | 94.57 30 | 99.05 9 | 85.18 59 | 99.06 17 | 96.46 102 | 88.75 65 | 96.69 18 | 98.76 12 | 87.69 22 | 99.76 31 | 97.90 17 | 98.85 21 | 98.77 36 |
| Zhenlong Yuan, Jinguo Luo, Fei Shen, Zhaoxin Li, Cong Liu, Tianlu Mao, Zhaoqi Wang: DVP-MVS: Synergize Depth-Edge and Visibility Prior for Multi-View Stereo. AAAI2025 |
| test0726 | | | | | | 99.05 9 | 85.18 59 | 99.11 15 | 96.78 55 | 88.75 65 | 97.65 12 | 98.91 2 | 87.69 22 | | | | |
|
| test_0728_SECOND | | | | | 95.14 18 | 99.04 14 | 86.14 35 | 99.06 17 | 96.77 61 | | | | | 99.84 12 | 97.90 17 | 98.85 21 | 99.45 10 |
|
| SED-MVS | | | 95.88 5 | 96.22 4 | 94.87 23 | 99.03 15 | 85.03 67 | 99.12 12 | 96.78 55 | 88.72 67 | 97.79 7 | 98.91 2 | 88.48 17 | 99.82 18 | 98.15 11 | 98.97 17 | 99.74 1 |
|
| IU-MVS | | | | | | 99.03 15 | 85.34 54 | | 96.86 51 | 92.05 29 | 98.74 1 | | | | 98.15 11 | 98.97 17 | 99.42 13 |
|
| test_241102_ONE | | | | | | 99.03 15 | 85.03 67 | | 96.78 55 | 88.72 67 | 97.79 7 | 98.90 5 | 88.48 17 | 99.82 18 | | | |
|
| test_one_0601 | | | | | | 98.91 18 | 84.56 78 | | 96.70 71 | 88.06 80 | 96.57 23 | 98.77 10 | 88.04 20 | | | | |
|
| test_part2 | | | | | | 98.90 19 | 85.14 65 | | | | 96.07 29 | | | | | | |
|
| PAPR | | | 92.74 52 | 92.17 66 | 94.45 32 | 98.89 20 | 84.87 72 | 97.20 116 | 96.20 129 | 87.73 89 | 88.40 136 | 98.12 45 | 78.71 91 | 99.76 31 | 87.99 140 | 96.28 98 | 98.74 37 |
|
| DeepC-MVS_fast | | 89.06 2 | 94.48 24 | 94.30 29 | 95.02 20 | 98.86 21 | 85.68 46 | 98.06 56 | 96.64 81 | 93.64 14 | 91.74 85 | 98.54 20 | 80.17 73 | 99.90 5 | 92.28 86 | 98.75 28 | 99.49 8 |
| Andreas Kuhn, Christian Sormann, Mattia Rossi, Oliver Erdler, Friedrich Fraundorfer: DeepC-MVS: Deep Confidence Prediction for Multi-View Stereo Reconstruction. 3DV 2020 |
| APDe-MVS |  | | 94.56 23 | 94.75 20 | 93.96 48 | 98.84 22 | 83.40 98 | 98.04 58 | 96.41 108 | 85.79 129 | 95.00 43 | 98.28 36 | 84.32 41 | 99.18 94 | 97.35 26 | 98.77 27 | 99.28 19 |
| Zhaojie Zeng, Yuesong Wang, Tao Guan: Matching Ambiguity-Resilient Multi-View Stereo via Adaptive Patch Deformation. Pattern Recognition |
| DPE-MVS |  | | 95.32 11 | 95.55 12 | 94.64 29 | 98.79 23 | 84.87 72 | 97.77 73 | 96.74 66 | 86.11 121 | 96.54 24 | 98.89 6 | 88.39 19 | 99.74 38 | 97.67 22 | 99.05 12 | 99.31 18 |
| Kehua Chen, Zhenlong Yuan, Tianlu Mao, Zhaoqi Wang: Dual-Level Precision Edges Guided Multi-View Stereo with Accurate Planarization. AAAI2025 |
| APD-MVS |  | | 93.61 37 | 93.59 38 | 93.69 59 | 98.76 24 | 83.26 101 | 97.21 114 | 96.09 137 | 82.41 216 | 94.65 49 | 98.21 38 | 81.96 59 | 98.81 119 | 94.65 58 | 98.36 46 | 99.01 28 |
| Yuesong Wang, Zhaojie Zeng and etc.: Adaptive Patch Deformation for Textureless-Resilient Multi-View Stereo. CVPR2023 |
| HFP-MVS | | | 92.89 49 | 92.86 51 | 92.98 89 | 98.71 25 | 81.12 144 | 97.58 87 | 96.70 71 | 85.20 143 | 91.75 84 | 97.97 59 | 78.47 93 | 99.71 45 | 90.95 98 | 98.41 42 | 98.12 77 |
|
| region2R | | | 92.72 55 | 92.70 53 | 92.79 97 | 98.68 26 | 80.53 164 | 97.53 92 | 96.51 96 | 85.22 141 | 91.94 82 | 97.98 57 | 77.26 112 | 99.67 53 | 90.83 102 | 98.37 45 | 98.18 71 |
|
| test_prior | | | | | 93.09 85 | 98.68 26 | 81.91 124 | | 96.40 110 | | | | | 99.06 104 | | | 98.29 66 |
|
| ACMMPR | | | 92.69 57 | 92.67 54 | 92.75 98 | 98.66 28 | 80.57 160 | 97.58 87 | 96.69 73 | 85.20 143 | 91.57 86 | 97.92 60 | 77.01 117 | 99.67 53 | 90.95 98 | 98.41 42 | 98.00 86 |
|
| API-MVS | | | 90.18 116 | 88.97 127 | 93.80 52 | 98.66 28 | 82.95 106 | 97.50 96 | 95.63 167 | 75.16 317 | 86.31 156 | 97.69 72 | 72.49 192 | 99.90 5 | 81.26 200 | 96.07 103 | 98.56 49 |
|
| CDPH-MVS | | | 93.12 43 | 92.91 49 | 93.74 55 | 98.65 30 | 83.88 86 | 97.67 82 | 96.26 123 | 83.00 202 | 93.22 66 | 98.24 37 | 81.31 61 | 99.21 88 | 89.12 127 | 98.74 30 | 98.14 75 |
|
| TEST9 | | | | | | 98.64 31 | 83.71 90 | 97.82 69 | 96.65 78 | 84.29 171 | 95.16 36 | 98.09 47 | 84.39 37 | 99.36 81 | | | |
|
| train_agg | | | 94.28 26 | 94.45 25 | 93.74 55 | 98.64 31 | 83.71 90 | 97.82 69 | 96.65 78 | 84.50 162 | 95.16 36 | 98.09 47 | 84.33 38 | 99.36 81 | 95.91 43 | 98.96 19 | 98.16 73 |
|
| test_8 | | | | | | 98.63 33 | 83.64 93 | 97.81 71 | 96.63 83 | 84.50 162 | 95.10 40 | 98.11 46 | 84.33 38 | 99.23 86 | | | |
|
| HPM-MVS++ |  | | 95.32 11 | 95.48 14 | 94.85 24 | 98.62 34 | 86.04 36 | 97.81 71 | 96.93 44 | 92.45 22 | 95.69 32 | 98.50 25 | 85.38 30 | 99.85 10 | 94.75 56 | 99.18 7 | 98.65 45 |
|
| agg_prior | | | | | | 98.59 35 | 83.13 103 | | 96.56 92 | | 94.19 54 | | | 99.16 96 | | | |
|
| CSCG | | | 92.02 71 | 91.65 76 | 93.12 83 | 98.53 36 | 80.59 159 | 97.47 97 | 97.18 26 | 77.06 305 | 84.64 175 | 97.98 57 | 83.98 44 | 99.52 69 | 90.72 104 | 97.33 77 | 99.23 21 |
|
| XVS | | | 92.69 57 | 92.71 52 | 92.63 105 | 98.52 37 | 80.29 167 | 97.37 108 | 96.44 104 | 87.04 107 | 91.38 88 | 97.83 68 | 77.24 114 | 99.59 60 | 90.46 108 | 98.07 53 | 98.02 81 |
|
| X-MVStestdata | | | 86.26 193 | 84.14 212 | 92.63 105 | 98.52 37 | 80.29 167 | 97.37 108 | 96.44 104 | 87.04 107 | 91.38 88 | 20.73 405 | 77.24 114 | 99.59 60 | 90.46 108 | 98.07 53 | 98.02 81 |
|
| FOURS1 | | | | | | 98.51 39 | 78.01 233 | 98.13 50 | 96.21 128 | 83.04 200 | 94.39 52 | | | | | | |
|
| CP-MVS | | | 92.54 62 | 92.60 56 | 92.34 115 | 98.50 40 | 79.90 178 | 98.40 39 | 96.40 110 | 84.75 153 | 90.48 105 | 98.09 47 | 77.40 111 | 99.21 88 | 91.15 97 | 98.23 51 | 97.92 92 |
|
| PAPM_NR | | | 91.46 86 | 90.82 90 | 93.37 75 | 98.50 40 | 81.81 130 | 95.03 250 | 96.13 134 | 84.65 158 | 86.10 159 | 97.65 78 | 79.24 82 | 99.75 36 | 83.20 187 | 96.88 87 | 98.56 49 |
|
| MAR-MVS | | | 90.63 107 | 90.22 105 | 91.86 140 | 98.47 42 | 78.20 229 | 97.18 119 | 96.61 84 | 83.87 183 | 88.18 140 | 98.18 40 | 68.71 221 | 99.75 36 | 83.66 181 | 97.15 81 | 97.63 115 |
| Zhenyu Xu, Yiguang Liu, Xuelei Shi, Ying Wang, Yunan Zheng: MARMVS: Matching Ambiguity Reduced Multiple View Stereo for Efficient Large Scale Scene Reconstruction. CVPR 2020 |
| patch_mono-2 | | | 95.14 13 | 96.08 7 | 92.33 117 | 98.44 43 | 77.84 241 | 98.43 37 | 97.21 23 | 92.58 21 | 97.68 11 | 97.65 78 | 86.88 25 | 99.83 16 | 98.25 9 | 97.60 68 | 99.33 17 |
|
| mPP-MVS | | | 91.88 76 | 91.82 72 | 92.07 131 | 98.38 44 | 78.63 213 | 97.29 112 | 96.09 137 | 85.12 145 | 88.45 135 | 97.66 74 | 75.53 146 | 99.68 51 | 89.83 118 | 98.02 56 | 97.88 93 |
|
| SR-MVS | | | 92.16 68 | 92.27 62 | 91.83 143 | 98.37 45 | 78.41 219 | 96.67 165 | 95.76 159 | 82.19 220 | 91.97 80 | 98.07 51 | 76.44 128 | 98.64 123 | 93.71 68 | 97.27 79 | 98.45 56 |
|
| test12 | | | | | 94.25 38 | 98.34 46 | 85.55 50 | | 96.35 117 | | 92.36 74 | | 80.84 63 | 99.22 87 | | 98.31 48 | 97.98 88 |
|
| CPTT-MVS | | | 89.72 124 | 89.87 117 | 89.29 211 | 98.33 47 | 73.30 302 | 97.70 79 | 95.35 185 | 75.68 313 | 87.40 145 | 97.44 90 | 70.43 214 | 98.25 144 | 89.56 123 | 96.90 85 | 96.33 178 |
|
| MSP-MVS | | | 95.62 8 | 96.54 1 | 92.86 94 | 98.31 48 | 80.10 175 | 97.42 104 | 96.78 55 | 92.20 24 | 97.11 15 | 98.29 35 | 93.46 1 | 99.10 101 | 96.01 40 | 99.30 5 | 99.38 14 |
| Zhenlong Yuan, Cong Liu, Fei Shen, Zhaoxin Li, Jingguo luo, Tianlu Mao and Zhaoqi Wang: MSP-MVS: Multi-granularity Segmentation Prior Guided Multi-View Stereo. AAAI2025 |
| MSLP-MVS++ | | | 94.28 26 | 94.39 27 | 93.97 47 | 98.30 49 | 84.06 85 | 98.64 32 | 96.93 44 | 90.71 42 | 93.08 68 | 98.70 15 | 79.98 75 | 99.21 88 | 94.12 64 | 99.07 11 | 98.63 46 |
|
| PGM-MVS | | | 91.93 73 | 91.80 73 | 92.32 119 | 98.27 50 | 79.74 184 | 95.28 234 | 97.27 21 | 83.83 184 | 90.89 100 | 97.78 70 | 76.12 135 | 99.56 66 | 88.82 130 | 97.93 61 | 97.66 112 |
|
| ZNCC-MVS | | | 92.75 51 | 92.60 56 | 93.23 79 | 98.24 51 | 81.82 129 | 97.63 83 | 96.50 98 | 85.00 149 | 91.05 96 | 97.74 71 | 78.38 94 | 99.80 25 | 90.48 107 | 98.34 47 | 98.07 79 |
|
| save fliter | | | | | | 98.24 51 | 83.34 99 | 98.61 34 | 96.57 90 | 91.32 34 | | | | | | | |
|
| 114514_t | | | 88.79 144 | 87.57 155 | 92.45 110 | 98.21 53 | 81.74 132 | 96.99 137 | 95.45 177 | 75.16 317 | 82.48 197 | 95.69 141 | 68.59 222 | 98.50 130 | 80.33 205 | 95.18 115 | 97.10 149 |
|
| GST-MVS | | | 92.43 65 | 92.22 65 | 93.04 87 | 98.17 54 | 81.64 136 | 97.40 106 | 96.38 113 | 84.71 156 | 90.90 99 | 97.40 92 | 77.55 109 | 99.76 31 | 89.75 120 | 97.74 64 | 97.72 107 |
|
| DP-MVS | | | 81.47 271 | 78.28 288 | 91.04 166 | 98.14 55 | 78.48 215 | 95.09 249 | 86.97 366 | 61.14 377 | 71.12 319 | 92.78 215 | 59.59 276 | 99.38 78 | 53.11 368 | 86.61 202 | 95.27 204 |
|
| MP-MVS |  | | 92.61 60 | 92.67 54 | 92.42 113 | 98.13 56 | 79.73 185 | 97.33 110 | 96.20 129 | 85.63 131 | 90.53 103 | 97.66 74 | 78.14 99 | 99.70 48 | 92.12 88 | 98.30 49 | 97.85 97 |
| Rongxuan Tan, Qing Wang, et al.: MP-MVS: Multi-Scale Windows PatchMatch and Planar Prior Multi-View Stereo. |
| 9.14 | | | | 94.26 30 | | 98.10 57 | | 98.14 47 | 96.52 95 | 84.74 154 | 94.83 47 | 98.80 7 | 82.80 54 | 99.37 80 | 95.95 42 | 98.42 41 | |
|
| PHI-MVS | | | 93.59 38 | 93.63 37 | 93.48 72 | 98.05 58 | 81.76 131 | 98.64 32 | 97.13 28 | 82.60 212 | 94.09 56 | 98.49 26 | 80.35 68 | 99.85 10 | 94.74 57 | 98.62 33 | 98.83 34 |
|
| SMA-MVS |  | | 94.70 21 | 94.68 21 | 94.76 26 | 98.02 59 | 85.94 40 | 97.47 97 | 96.77 61 | 85.32 138 | 97.92 3 | 98.70 15 | 83.09 51 | 99.84 12 | 95.79 44 | 99.08 10 | 98.49 53 |
| Yufeng Yin; Xiaoyan Liu; Zichao Zhang: SMA-MVS: Segmentation-Guided Multi-Scale Anchor Deformation Patch Multi-View Stereo. IEEE Transactions on Circuits and Systems for Video Technology |
| PLC |  | 83.97 7 | 88.00 166 | 87.38 161 | 89.83 203 | 98.02 59 | 76.46 267 | 97.16 123 | 94.43 234 | 79.26 276 | 81.98 208 | 96.28 128 | 69.36 219 | 99.27 84 | 77.71 232 | 92.25 154 | 93.77 232 |
| Jie Liao, Yanping Fu, Qingan Yan, Chunxia xiao: Pyramid Multi-View Stereo with Local Consistency. Pacific Graphics 2019 |
| MTAPA | | | 92.45 64 | 92.31 61 | 92.86 94 | 97.90 61 | 80.85 153 | 92.88 300 | 96.33 118 | 87.92 84 | 90.20 108 | 98.18 40 | 76.71 125 | 99.76 31 | 92.57 85 | 98.09 52 | 97.96 91 |
|
| APD-MVS_3200maxsize | | | 91.23 93 | 91.35 80 | 90.89 172 | 97.89 62 | 76.35 270 | 96.30 188 | 95.52 172 | 79.82 263 | 91.03 97 | 97.88 65 | 74.70 165 | 98.54 128 | 92.11 89 | 96.89 86 | 97.77 104 |
|
| HPM-MVS |  | | 91.62 83 | 91.53 78 | 91.89 139 | 97.88 63 | 79.22 197 | 96.99 137 | 95.73 162 | 82.07 222 | 89.50 119 | 97.19 101 | 75.59 144 | 98.93 114 | 90.91 100 | 97.94 59 | 97.54 120 |
| Chunlin Ren, Qingshan Xu, Shikun Zhang, Jiaqi Yang: Hierarchical Prior Mining for Non-local Multi-View Stereo. ICCV 2023 |
| SD-MVS | | | 94.84 18 | 95.02 19 | 94.29 36 | 97.87 64 | 84.61 76 | 97.76 75 | 96.19 131 | 89.59 58 | 96.66 20 | 98.17 43 | 84.33 38 | 99.60 59 | 96.09 39 | 98.50 37 | 98.66 44 |
| Zhenlong Yuan, Jiakai Cao, Zhaoxin Li, Hao Jiang and Zhaoqi Wang: SD-MVS: Segmentation-driven Deformation Multi-View Stereo with Spherical Refinement and EM optimization. AAAI2024 |
| dcpmvs_2 | | | 93.10 44 | 93.46 42 | 92.02 135 | 97.77 65 | 79.73 185 | 94.82 254 | 93.86 266 | 86.91 109 | 91.33 91 | 96.76 119 | 85.20 31 | 98.06 150 | 96.90 32 | 97.60 68 | 98.27 68 |
|
| 原ACMM1 | | | | | 91.22 162 | 97.77 65 | 78.10 231 | | 96.61 84 | 81.05 234 | 91.28 93 | 97.42 91 | 77.92 103 | 98.98 108 | 79.85 213 | 98.51 35 | 96.59 169 |
|
| SR-MVS-dyc-post | | | 91.29 91 | 91.45 79 | 90.80 174 | 97.76 67 | 76.03 275 | 96.20 195 | 95.44 178 | 80.56 245 | 90.72 101 | 97.84 66 | 75.76 141 | 98.61 124 | 91.99 90 | 96.79 90 | 97.75 105 |
|
| RE-MVS-def | | | | 91.18 86 | | 97.76 67 | 76.03 275 | 96.20 195 | 95.44 178 | 80.56 245 | 90.72 101 | 97.84 66 | 73.36 185 | | 91.99 90 | 96.79 90 | 97.75 105 |
|
| TSAR-MVS + MP. | | | 94.79 20 | 95.17 18 | 93.64 61 | 97.66 69 | 84.10 84 | 95.85 213 | 96.42 107 | 91.26 35 | 97.49 13 | 96.80 118 | 86.50 27 | 98.49 131 | 95.54 49 | 99.03 13 | 98.33 61 |
| Zhenlong Yuan, Jiakai Cao, Zhaoqi Wang, Zhaoxin Li: TSAR-MVS: Textureless-aware Segmentation and Correlative Refinement Guided Multi-View Stereo. Pattern Recognition |
| HPM-MVS_fast | | | 90.38 114 | 90.17 108 | 91.03 167 | 97.61 70 | 77.35 253 | 97.15 125 | 95.48 174 | 79.51 269 | 88.79 129 | 96.90 111 | 71.64 203 | 98.81 119 | 87.01 151 | 97.44 73 | 96.94 154 |
|
| EI-MVSNet-Vis-set | | | 91.84 77 | 91.77 74 | 92.04 134 | 97.60 71 | 81.17 143 | 96.61 166 | 96.87 49 | 88.20 78 | 89.19 121 | 97.55 86 | 78.69 92 | 99.14 97 | 90.29 114 | 90.94 164 | 95.80 188 |
|
| CNLPA | | | 86.96 180 | 85.37 189 | 91.72 146 | 97.59 72 | 79.34 195 | 97.21 114 | 91.05 335 | 74.22 323 | 78.90 240 | 96.75 121 | 67.21 230 | 98.95 111 | 74.68 265 | 90.77 165 | 96.88 159 |
|
| ACMMP |  | | 90.39 112 | 89.97 112 | 91.64 148 | 97.58 73 | 78.21 228 | 96.78 157 | 96.72 69 | 84.73 155 | 84.72 173 | 97.23 99 | 71.22 206 | 99.63 57 | 88.37 138 | 92.41 152 | 97.08 150 |
| Qingshan Xu, Weihang Kong, Wenbing Tao, Marc Pollefeys: Multi-Scale Geometric Consistency Guided and Planar Prior Assisted Multi-View Stereo. IEEE Transactions on Pattern Analysis and Machine Intelligence |
| SF-MVS | | | 94.17 29 | 94.05 33 | 94.55 31 | 97.56 74 | 85.95 38 | 97.73 77 | 96.43 106 | 84.02 176 | 95.07 42 | 98.74 14 | 82.93 52 | 99.38 78 | 95.42 51 | 98.51 35 | 98.32 62 |
|
| CANet | | | 94.89 16 | 94.64 22 | 95.63 13 | 97.55 75 | 88.12 16 | 99.06 17 | 96.39 112 | 94.07 12 | 95.34 35 | 97.80 69 | 76.83 122 | 99.87 8 | 97.08 30 | 97.64 67 | 98.89 32 |
|
| PVSNet_BlendedMVS | | | 90.05 118 | 89.96 113 | 90.33 187 | 97.47 76 | 83.86 87 | 98.02 59 | 96.73 67 | 87.98 82 | 89.53 117 | 89.61 261 | 76.42 129 | 99.57 64 | 94.29 61 | 79.59 259 | 87.57 325 |
|
| PVSNet_Blended | | | 93.13 42 | 92.98 48 | 93.57 66 | 97.47 76 | 83.86 87 | 99.32 2 | 96.73 67 | 91.02 40 | 89.53 117 | 96.21 129 | 76.42 129 | 99.57 64 | 94.29 61 | 95.81 110 | 97.29 140 |
|
| 新几何1 | | | | | 93.12 83 | 97.44 78 | 81.60 138 | | 96.71 70 | 74.54 322 | 91.22 94 | 97.57 82 | 79.13 84 | 99.51 71 | 77.40 239 | 98.46 39 | 98.26 69 |
|
| LS3D | | | 82.22 262 | 79.94 276 | 89.06 214 | 97.43 79 | 74.06 298 | 93.20 295 | 92.05 317 | 61.90 371 | 73.33 302 | 95.21 158 | 59.35 279 | 99.21 88 | 54.54 364 | 92.48 151 | 93.90 230 |
|
| test_yl | | | 91.46 86 | 90.53 96 | 94.24 39 | 97.41 80 | 85.18 59 | 98.08 53 | 97.72 12 | 80.94 235 | 89.85 109 | 96.14 130 | 75.61 142 | 98.81 119 | 90.42 112 | 88.56 184 | 98.74 37 |
|
| DCV-MVSNet | | | 91.46 86 | 90.53 96 | 94.24 39 | 97.41 80 | 85.18 59 | 98.08 53 | 97.72 12 | 80.94 235 | 89.85 109 | 96.14 130 | 75.61 142 | 98.81 119 | 90.42 112 | 88.56 184 | 98.74 37 |
|
| EI-MVSNet-UG-set | | | 91.35 90 | 91.22 83 | 91.73 145 | 97.39 82 | 80.68 157 | 96.47 175 | 96.83 52 | 87.92 84 | 88.30 139 | 97.36 93 | 77.84 104 | 99.13 99 | 89.43 125 | 89.45 171 | 95.37 200 |
|
| 旧先验1 | | | | | | 97.39 82 | 79.58 189 | | 96.54 93 | | | 98.08 50 | 84.00 43 | | | 97.42 75 | 97.62 116 |
|
| TSAR-MVS + GP. | | | 94.35 25 | 94.50 23 | 93.89 49 | 97.38 84 | 83.04 105 | 98.10 52 | 95.29 188 | 91.57 32 | 93.81 58 | 97.45 87 | 86.64 26 | 99.43 76 | 96.28 38 | 94.01 129 | 99.20 22 |
|
| MVS_111021_HR | | | 93.41 40 | 93.39 43 | 93.47 74 | 97.34 85 | 82.83 107 | 97.56 89 | 98.27 6 | 89.16 63 | 89.71 112 | 97.14 102 | 79.77 77 | 99.56 66 | 93.65 69 | 97.94 59 | 98.02 81 |
|
| MP-MVS-pluss | | | 92.58 61 | 92.35 60 | 93.29 76 | 97.30 86 | 82.53 111 | 96.44 178 | 96.04 142 | 84.68 157 | 89.12 123 | 98.37 31 | 77.48 110 | 99.74 38 | 93.31 75 | 98.38 44 | 97.59 118 |
| MP-MVS-pluss: MP-MVS-pluss. MP-MVS-pluss |
| EPNet | | | 94.06 32 | 94.15 31 | 93.76 54 | 97.27 87 | 84.35 79 | 98.29 42 | 97.64 15 | 94.57 6 | 95.36 34 | 96.88 113 | 79.96 76 | 99.12 100 | 91.30 95 | 96.11 102 | 97.82 101 |
| Wanjuan Su, Wenbing Tao: Efficient Edge-Preserving Multi-View Stereo Network for Depth Estimation. AAAI 2023 |
| ACMMP_NAP | | | 93.46 39 | 93.23 45 | 94.17 42 | 97.16 88 | 84.28 82 | 96.82 154 | 96.65 78 | 86.24 119 | 94.27 53 | 97.99 54 | 77.94 101 | 99.83 16 | 93.39 71 | 98.57 34 | 98.39 59 |
|
| LFMVS | | | 89.27 132 | 87.64 151 | 94.16 44 | 97.16 88 | 85.52 51 | 97.18 119 | 94.66 218 | 79.17 277 | 89.63 115 | 96.57 124 | 55.35 315 | 98.22 146 | 89.52 124 | 89.54 170 | 98.74 37 |
|
| DeepPCF-MVS | | 89.82 1 | 94.61 22 | 96.17 5 | 89.91 200 | 97.09 90 | 70.21 333 | 98.99 23 | 96.69 73 | 95.57 2 | 95.08 41 | 99.23 1 | 86.40 29 | 99.87 8 | 97.84 20 | 98.66 32 | 99.65 6 |
|
| VNet | | | 92.11 70 | 91.22 83 | 94.79 25 | 96.91 91 | 86.98 27 | 97.91 64 | 97.96 10 | 86.38 118 | 93.65 60 | 95.74 138 | 70.16 217 | 98.95 111 | 93.39 71 | 88.87 179 | 98.43 57 |
|
| TAPA-MVS | | 81.61 12 | 85.02 213 | 83.67 216 | 89.06 214 | 96.79 92 | 73.27 305 | 95.92 207 | 94.79 211 | 74.81 320 | 80.47 224 | 96.83 115 | 71.07 208 | 98.19 148 | 49.82 377 | 92.57 148 | 95.71 191 |
| Andrea Romanoni, Matteo Matteucci: TAPA-MVS: Textureless-Aware PAtchMatch Multi-View Stereo. ICCV 2019 |
| Anonymous202405211 | | | 84.41 224 | 81.93 246 | 91.85 142 | 96.78 93 | 78.41 219 | 97.44 100 | 91.34 330 | 70.29 350 | 84.06 178 | 94.26 185 | 41.09 368 | 98.96 109 | 79.46 215 | 82.65 239 | 98.17 72 |
|
| CS-MVS-test | | | 92.98 46 | 93.67 36 | 90.90 171 | 96.52 94 | 76.87 260 | 98.68 29 | 94.73 213 | 90.36 50 | 94.84 46 | 97.89 64 | 77.94 101 | 97.15 205 | 94.28 63 | 97.80 63 | 98.70 43 |
|
| DELS-MVS | | | 94.98 14 | 94.49 24 | 96.44 6 | 96.42 95 | 90.59 7 | 99.21 5 | 97.02 36 | 94.40 9 | 91.46 87 | 97.08 106 | 83.32 49 | 99.69 49 | 92.83 81 | 98.70 31 | 99.04 27 |
| Christian Sormann, Emanuele Santellani, Mattia Rossi, Andreas Kuhn, Friedrich Fraundorfer: DELS-MVS: Deep Epipolar Line Search for Multi-View Stereo. Winter Conference on Applications of Computer Vision (WACV), 2023 |
| MM | | | 95.85 6 | 95.74 10 | 96.15 8 | 96.34 96 | 89.50 9 | 99.18 6 | 98.10 8 | 95.68 1 | 96.64 21 | 97.92 60 | 80.72 65 | 99.80 25 | 99.16 1 | 97.96 57 | 99.15 24 |
|
| iter_conf05_11 | | | 91.95 72 | 91.17 87 | 94.29 36 | 96.33 97 | 85.50 52 | 99.61 1 | 91.84 320 | 94.36 10 | 97.89 6 | 98.51 24 | 46.72 348 | 98.24 145 | 96.54 36 | 98.75 28 | 99.13 25 |
|
| bld_raw_dy_0_64 | | | 88.31 158 | 86.38 177 | 94.07 45 | 96.33 97 | 84.79 74 | 97.19 117 | 84.75 376 | 94.48 8 | 82.36 200 | 98.47 27 | 46.18 351 | 98.30 143 | 96.54 36 | 81.13 247 | 99.13 25 |
|
| thres200 | | | 88.92 138 | 87.65 150 | 92.73 100 | 96.30 99 | 85.62 49 | 97.85 67 | 98.86 1 | 84.38 166 | 84.82 170 | 93.99 193 | 75.12 160 | 98.01 152 | 70.86 295 | 86.67 201 | 94.56 220 |
|
| CS-MVS | | | 92.73 53 | 93.48 41 | 90.48 183 | 96.27 100 | 75.93 280 | 98.55 35 | 94.93 200 | 89.32 60 | 94.54 51 | 97.67 73 | 78.91 87 | 97.02 209 | 93.80 66 | 97.32 78 | 98.49 53 |
|
| DPM-MVS | | | 96.21 2 | 95.53 13 | 98.26 1 | 96.26 101 | 95.09 1 | 99.15 8 | 96.98 38 | 93.39 16 | 96.45 25 | 98.79 8 | 90.17 10 | 99.99 1 | 89.33 126 | 99.25 6 | 99.70 3 |
|
| tfpn200view9 | | | 88.48 152 | 87.15 165 | 92.47 109 | 96.21 102 | 85.30 57 | 97.44 100 | 98.85 2 | 83.37 193 | 83.99 180 | 93.82 196 | 75.36 153 | 97.93 154 | 69.04 303 | 86.24 208 | 94.17 222 |
|
| thres400 | | | 88.42 155 | 87.15 165 | 92.23 123 | 96.21 102 | 85.30 57 | 97.44 100 | 98.85 2 | 83.37 193 | 83.99 180 | 93.82 196 | 75.36 153 | 97.93 154 | 69.04 303 | 86.24 208 | 93.45 238 |
|
| test222 | | | | | | 96.15 104 | 78.41 219 | 95.87 211 | 96.46 102 | 71.97 342 | 89.66 114 | 97.45 87 | 76.33 132 | | | 98.24 50 | 98.30 65 |
|
| HY-MVS | | 84.06 6 | 91.63 82 | 90.37 102 | 95.39 17 | 96.12 105 | 88.25 15 | 90.22 327 | 97.58 16 | 88.33 76 | 90.50 104 | 91.96 225 | 79.26 81 | 99.06 104 | 90.29 114 | 89.07 175 | 98.88 33 |
|
| thres100view900 | | | 88.30 159 | 86.95 171 | 92.33 117 | 96.10 106 | 84.90 71 | 97.14 126 | 98.85 2 | 82.69 210 | 83.41 188 | 93.66 200 | 75.43 150 | 97.93 154 | 69.04 303 | 86.24 208 | 94.17 222 |
|
| thres600view7 | | | 88.06 164 | 86.70 175 | 92.15 129 | 96.10 106 | 85.17 63 | 97.14 126 | 98.85 2 | 82.70 209 | 83.41 188 | 93.66 200 | 75.43 150 | 97.82 163 | 67.13 312 | 85.88 212 | 93.45 238 |
|
| WTY-MVS | | | 92.65 59 | 91.68 75 | 95.56 14 | 96.00 108 | 88.90 13 | 98.23 44 | 97.65 14 | 88.57 70 | 89.82 111 | 97.22 100 | 79.29 80 | 99.06 104 | 89.57 122 | 88.73 181 | 98.73 41 |
|
| testing91 | | | 91.90 75 | 91.31 82 | 93.66 60 | 95.99 109 | 85.68 46 | 97.39 107 | 96.89 47 | 86.75 116 | 88.85 128 | 95.23 156 | 83.93 45 | 97.90 160 | 88.91 128 | 87.89 192 | 97.41 131 |
|
| testing99 | | | 91.91 74 | 91.35 80 | 93.60 64 | 95.98 110 | 85.70 44 | 97.31 111 | 96.92 46 | 86.82 112 | 88.91 126 | 95.25 153 | 84.26 42 | 97.89 161 | 88.80 131 | 87.94 191 | 97.21 144 |
|
| MVSTER | | | 89.25 133 | 88.92 130 | 90.24 189 | 95.98 110 | 84.66 75 | 96.79 156 | 95.36 183 | 87.19 105 | 80.33 227 | 90.61 247 | 90.02 12 | 95.97 253 | 85.38 161 | 78.64 268 | 90.09 267 |
|
| testing11 | | | 92.48 63 | 92.04 70 | 93.78 53 | 95.94 112 | 86.00 37 | 97.56 89 | 97.08 33 | 87.52 94 | 89.32 120 | 95.40 150 | 84.60 35 | 98.02 151 | 91.93 92 | 89.04 176 | 97.32 136 |
|
| testdata | | | | | 90.13 192 | 95.92 113 | 74.17 296 | | 96.49 101 | 73.49 331 | 94.82 48 | 97.99 54 | 78.80 90 | 97.93 154 | 83.53 184 | 97.52 70 | 98.29 66 |
|
| PatchMatch-RL | | | 85.00 214 | 83.66 217 | 89.02 216 | 95.86 114 | 74.55 293 | 92.49 304 | 93.60 282 | 79.30 274 | 79.29 239 | 91.47 231 | 58.53 286 | 98.45 135 | 70.22 299 | 92.17 156 | 94.07 227 |
|
| iter_conf05 | | | 90.14 117 | 89.79 118 | 91.17 163 | 95.85 115 | 86.93 28 | 97.68 81 | 88.67 360 | 89.93 54 | 81.73 214 | 92.80 213 | 90.37 8 | 96.03 249 | 90.44 110 | 80.65 252 | 90.56 255 |
|
| testing222 | | | 91.09 96 | 90.49 98 | 92.87 93 | 95.82 116 | 85.04 66 | 96.51 173 | 97.28 20 | 86.05 124 | 89.13 122 | 95.34 152 | 80.16 74 | 96.62 231 | 85.82 156 | 88.31 187 | 96.96 153 |
|
| ETVMVS | | | 90.99 99 | 90.26 103 | 93.19 81 | 95.81 117 | 85.64 48 | 96.97 142 | 97.18 26 | 85.43 135 | 88.77 131 | 94.86 173 | 82.00 58 | 96.37 238 | 82.70 192 | 88.60 182 | 97.57 119 |
|
| canonicalmvs | | | 92.27 67 | 91.22 83 | 95.41 16 | 95.80 118 | 88.31 14 | 97.09 133 | 94.64 221 | 88.49 72 | 92.99 70 | 97.31 94 | 72.68 190 | 98.57 127 | 93.38 73 | 88.58 183 | 99.36 16 |
|
| Anonymous20240529 | | | 83.15 245 | 80.60 265 | 90.80 174 | 95.74 119 | 78.27 223 | 96.81 155 | 94.92 201 | 60.10 381 | 81.89 210 | 92.54 216 | 45.82 352 | 98.82 118 | 79.25 219 | 78.32 274 | 95.31 202 |
|
| MVS_111021_LR | | | 91.60 84 | 91.64 77 | 91.47 154 | 95.74 119 | 78.79 210 | 96.15 197 | 96.77 61 | 88.49 72 | 88.64 133 | 97.07 107 | 72.33 194 | 99.19 93 | 93.13 79 | 96.48 97 | 96.43 173 |
|
| PS-MVSNAJ | | | 94.17 29 | 93.52 40 | 96.10 9 | 95.65 121 | 92.35 2 | 98.21 45 | 95.79 158 | 92.42 23 | 96.24 27 | 98.18 40 | 71.04 209 | 99.17 95 | 96.77 33 | 97.39 76 | 96.79 161 |
|
| Anonymous20231211 | | | 79.72 289 | 77.19 297 | 87.33 257 | 95.59 122 | 77.16 258 | 95.18 243 | 94.18 249 | 59.31 384 | 72.57 310 | 86.20 313 | 47.89 344 | 95.66 273 | 74.53 269 | 69.24 324 | 89.18 285 |
|
| alignmvs | | | 92.97 47 | 92.26 63 | 95.12 19 | 95.54 123 | 87.77 20 | 98.67 30 | 96.38 113 | 88.04 81 | 93.01 69 | 97.45 87 | 79.20 83 | 98.60 125 | 93.25 76 | 88.76 180 | 98.99 31 |
|
| PVSNet | | 82.34 9 | 89.02 135 | 87.79 148 | 92.71 101 | 95.49 124 | 81.50 139 | 97.70 79 | 97.29 19 | 87.76 88 | 85.47 163 | 95.12 165 | 56.90 304 | 98.90 115 | 80.33 205 | 94.02 128 | 97.71 109 |
|
| tpmvs | | | 83.04 248 | 80.77 261 | 89.84 202 | 95.43 125 | 77.96 235 | 85.59 361 | 95.32 187 | 75.31 316 | 76.27 271 | 83.70 342 | 73.89 177 | 97.41 187 | 59.53 344 | 81.93 246 | 94.14 224 |
|
| SteuartSystems-ACMMP | | | 94.13 31 | 94.44 26 | 93.20 80 | 95.41 126 | 81.35 141 | 99.02 21 | 96.59 88 | 89.50 59 | 94.18 55 | 98.36 32 | 83.68 48 | 99.45 75 | 94.77 55 | 98.45 40 | 98.81 35 |
| Skip Steuart: Steuart Systems R&D Blog. |
| EPMVS | | | 87.47 176 | 85.90 182 | 92.18 126 | 95.41 126 | 82.26 118 | 87.00 351 | 96.28 121 | 85.88 128 | 84.23 177 | 85.57 320 | 75.07 161 | 96.26 242 | 71.14 293 | 92.50 150 | 98.03 80 |
|
| BH-RMVSNet | | | 86.84 183 | 85.28 190 | 91.49 153 | 95.35 128 | 80.26 170 | 96.95 145 | 92.21 315 | 82.86 206 | 81.77 213 | 95.46 149 | 59.34 280 | 97.64 169 | 69.79 301 | 93.81 133 | 96.57 170 |
|
| OMC-MVS | | | 88.80 143 | 88.16 142 | 90.72 177 | 95.30 129 | 77.92 238 | 94.81 255 | 94.51 228 | 86.80 113 | 84.97 168 | 96.85 114 | 67.53 226 | 98.60 125 | 85.08 162 | 87.62 194 | 95.63 192 |
|
| test_fmvsm_n_1920 | | | 94.81 19 | 95.60 11 | 92.45 110 | 95.29 130 | 80.96 150 | 99.29 3 | 97.21 23 | 94.50 7 | 97.29 14 | 98.44 29 | 82.15 56 | 99.78 28 | 98.56 7 | 97.68 66 | 96.61 168 |
|
| MVS_Test | | | 90.29 115 | 89.18 124 | 93.62 63 | 95.23 131 | 84.93 70 | 94.41 261 | 94.66 218 | 84.31 167 | 90.37 107 | 91.02 240 | 75.13 159 | 97.82 163 | 83.11 189 | 94.42 124 | 98.12 77 |
|
| F-COLMAP | | | 84.50 223 | 83.44 224 | 87.67 245 | 95.22 132 | 72.22 311 | 95.95 205 | 93.78 273 | 75.74 312 | 76.30 270 | 95.18 161 | 59.50 278 | 98.45 135 | 72.67 281 | 86.59 203 | 92.35 246 |
|
| baseline1 | | | 88.85 141 | 87.49 157 | 92.93 92 | 95.21 133 | 86.85 29 | 95.47 228 | 94.61 223 | 87.29 100 | 83.11 193 | 94.99 170 | 80.70 66 | 96.89 217 | 82.28 194 | 73.72 292 | 95.05 207 |
|
| CHOSEN 1792x2688 | | | 91.07 98 | 90.21 106 | 93.64 61 | 95.18 134 | 83.53 95 | 96.26 190 | 96.13 134 | 88.92 64 | 84.90 169 | 93.10 210 | 72.86 188 | 99.62 58 | 88.86 129 | 95.67 111 | 97.79 103 |
|
| UGNet | | | 87.73 171 | 86.55 176 | 91.27 159 | 95.16 135 | 79.11 201 | 96.35 185 | 96.23 126 | 88.14 79 | 87.83 143 | 90.48 248 | 50.65 331 | 99.09 102 | 80.13 210 | 94.03 127 | 95.60 193 |
| Wanjuan Su, Qingshan Xu, Wenbing Tao: Uncertainty-guided Multi-view Stereo Network for Depth Estimation. IEEE Transactions on Circuits and Systems for Video Technology, 2022 |
| VDD-MVS | | | 88.28 160 | 87.02 170 | 92.06 132 | 95.09 136 | 80.18 173 | 97.55 91 | 94.45 233 | 83.09 198 | 89.10 124 | 95.92 136 | 47.97 342 | 98.49 131 | 93.08 80 | 86.91 200 | 97.52 125 |
|
| PVSNet_Blended_VisFu | | | 91.24 92 | 90.77 91 | 92.66 102 | 95.09 136 | 82.40 115 | 97.77 73 | 95.87 155 | 88.26 77 | 86.39 155 | 93.94 194 | 76.77 123 | 99.27 84 | 88.80 131 | 94.00 130 | 96.31 179 |
|
| h-mvs33 | | | 89.30 131 | 88.95 129 | 90.36 186 | 95.07 138 | 76.04 274 | 96.96 144 | 97.11 31 | 90.39 48 | 92.22 77 | 95.10 166 | 74.70 165 | 98.86 116 | 93.14 77 | 65.89 350 | 96.16 181 |
|
| xiu_mvs_v2_base | | | 93.92 34 | 93.26 44 | 95.91 10 | 95.07 138 | 92.02 6 | 98.19 46 | 95.68 164 | 92.06 27 | 96.01 31 | 98.14 44 | 70.83 212 | 98.96 109 | 96.74 35 | 96.57 95 | 96.76 164 |
|
| cl22 | | | 85.11 212 | 84.17 210 | 87.92 240 | 95.06 140 | 78.82 207 | 95.51 226 | 94.22 246 | 79.74 265 | 76.77 261 | 87.92 283 | 75.96 137 | 95.68 272 | 79.93 212 | 72.42 299 | 89.27 283 |
|
| BH-w/o | | | 88.24 161 | 87.47 159 | 90.54 182 | 95.03 141 | 78.54 214 | 97.41 105 | 93.82 268 | 84.08 174 | 78.23 247 | 94.51 181 | 69.34 220 | 97.21 199 | 80.21 209 | 94.58 122 | 95.87 187 |
|
| CHOSEN 280x420 | | | 91.71 81 | 91.85 71 | 91.29 158 | 94.94 142 | 82.69 108 | 87.89 344 | 96.17 132 | 85.94 126 | 87.27 148 | 94.31 183 | 90.27 9 | 95.65 275 | 94.04 65 | 95.86 108 | 95.53 196 |
|
| GG-mvs-BLEND | | | | | 93.49 71 | 94.94 142 | 86.26 33 | 81.62 374 | 97.00 37 | | 88.32 138 | 94.30 184 | 91.23 5 | 96.21 245 | 88.49 135 | 97.43 74 | 98.00 86 |
|
| HyFIR lowres test | | | 89.36 129 | 88.60 134 | 91.63 150 | 94.91 144 | 80.76 156 | 95.60 224 | 95.53 170 | 82.56 213 | 84.03 179 | 91.24 237 | 78.03 100 | 96.81 223 | 87.07 150 | 88.41 186 | 97.32 136 |
|
| MVS_0304 | | | 95.36 10 | 95.20 17 | 95.85 11 | 94.89 145 | 89.22 12 | 98.83 26 | 97.88 11 | 94.68 4 | 95.14 39 | 97.99 54 | 80.80 64 | 99.81 21 | 98.60 6 | 97.95 58 | 98.50 52 |
|
| miper_enhance_ethall | | | 85.95 198 | 85.20 191 | 88.19 236 | 94.85 146 | 79.76 181 | 96.00 202 | 94.06 256 | 82.98 203 | 77.74 251 | 88.76 269 | 79.42 78 | 95.46 285 | 80.58 203 | 72.42 299 | 89.36 281 |
|
| mvs_anonymous | | | 88.68 145 | 87.62 153 | 91.86 140 | 94.80 147 | 81.69 135 | 93.53 285 | 94.92 201 | 82.03 223 | 78.87 242 | 90.43 250 | 75.77 140 | 95.34 289 | 85.04 163 | 93.16 143 | 98.55 51 |
|
| CANet_DTU | | | 90.98 100 | 90.04 110 | 93.83 51 | 94.76 148 | 86.23 34 | 96.32 187 | 93.12 303 | 93.11 18 | 93.71 59 | 96.82 117 | 63.08 255 | 99.48 73 | 84.29 168 | 95.12 116 | 95.77 189 |
|
| PMMVS | | | 89.46 128 | 89.92 115 | 88.06 237 | 94.64 149 | 69.57 339 | 96.22 192 | 94.95 199 | 87.27 101 | 91.37 90 | 96.54 125 | 65.88 237 | 97.39 189 | 88.54 133 | 93.89 131 | 97.23 141 |
|
| TR-MVS | | | 86.30 192 | 84.93 199 | 90.42 184 | 94.63 150 | 77.58 248 | 96.57 168 | 93.82 268 | 80.30 253 | 82.42 199 | 95.16 162 | 58.74 284 | 97.55 176 | 74.88 263 | 87.82 193 | 96.13 183 |
|
| EPNet_dtu | | | 87.65 173 | 87.89 145 | 86.93 267 | 94.57 151 | 71.37 327 | 96.72 160 | 96.50 98 | 88.56 71 | 87.12 151 | 95.02 168 | 75.91 139 | 94.01 328 | 66.62 315 | 90.00 167 | 95.42 199 |
| Wanjuan Su, Wenbing Tao: Efficient Edge-Preserving Multi-View Stereo Network for Depth Estimation. AAAI 2023 |
| fmvsm_s_conf0.5_n | | | 93.69 36 | 94.13 32 | 92.34 115 | 94.56 152 | 82.01 119 | 99.07 16 | 97.13 28 | 92.09 25 | 96.25 26 | 98.53 22 | 76.47 127 | 99.80 25 | 98.39 8 | 94.71 120 | 95.22 205 |
|
| FMVSNet3 | | | 84.71 217 | 82.71 235 | 90.70 178 | 94.55 153 | 87.71 21 | 95.92 207 | 94.67 217 | 81.73 227 | 75.82 280 | 88.08 281 | 66.99 231 | 94.47 320 | 71.23 290 | 75.38 285 | 89.91 271 |
|
| ETV-MVS | | | 92.72 55 | 92.87 50 | 92.28 121 | 94.54 154 | 81.89 125 | 97.98 60 | 95.21 191 | 89.77 57 | 93.11 67 | 96.83 115 | 77.23 116 | 97.50 182 | 95.74 45 | 95.38 114 | 97.44 129 |
|
| EIA-MVS | | | 91.73 78 | 92.05 69 | 90.78 176 | 94.52 155 | 76.40 269 | 98.06 56 | 95.34 186 | 89.19 62 | 88.90 127 | 97.28 98 | 77.56 108 | 97.73 166 | 90.77 103 | 96.86 89 | 98.20 70 |
|
| BH-untuned | | | 86.95 181 | 85.94 181 | 89.99 195 | 94.52 155 | 77.46 250 | 96.78 157 | 93.37 293 | 81.80 225 | 76.62 264 | 93.81 198 | 66.64 234 | 97.02 209 | 76.06 252 | 93.88 132 | 95.48 198 |
|
| DeepC-MVS | | 86.58 3 | 91.53 85 | 91.06 88 | 92.94 91 | 94.52 155 | 81.89 125 | 95.95 205 | 95.98 146 | 90.76 41 | 83.76 186 | 96.76 119 | 73.24 186 | 99.71 45 | 91.67 94 | 96.96 84 | 97.22 142 |
| Andreas Kuhn, Christian Sormann, Mattia Rossi, Oliver Erdler, Friedrich Fraundorfer: DeepC-MVS: Deep Confidence Prediction for Multi-View Stereo Reconstruction. 3DV 2020 |
| gg-mvs-nofinetune | | | 85.48 207 | 82.90 231 | 93.24 78 | 94.51 158 | 85.82 42 | 79.22 378 | 96.97 40 | 61.19 376 | 87.33 147 | 53.01 394 | 90.58 6 | 96.07 248 | 86.07 155 | 97.23 80 | 97.81 102 |
|
| fmvsm_l_conf0.5_n_a | | | 94.91 15 | 95.30 15 | 93.72 58 | 94.50 159 | 84.30 81 | 99.14 10 | 96.00 144 | 91.94 30 | 97.91 5 | 98.60 18 | 84.78 34 | 99.77 29 | 98.84 4 | 96.03 105 | 97.08 150 |
|
| 3Dnovator+ | | 82.88 8 | 89.63 126 | 87.85 146 | 94.99 21 | 94.49 160 | 86.76 31 | 97.84 68 | 95.74 161 | 86.10 122 | 75.47 285 | 96.02 133 | 65.00 245 | 99.51 71 | 82.91 191 | 97.07 83 | 98.72 42 |
|
| fmvsm_l_conf0.5_n | | | 94.89 16 | 95.24 16 | 93.86 50 | 94.42 161 | 84.61 76 | 99.13 11 | 96.15 133 | 92.06 27 | 97.92 3 | 98.52 23 | 84.52 36 | 99.74 38 | 98.76 5 | 95.67 111 | 97.22 142 |
|
| ET-MVSNet_ETH3D | | | 90.01 119 | 89.03 125 | 92.95 90 | 94.38 162 | 86.77 30 | 98.14 47 | 96.31 120 | 89.30 61 | 63.33 356 | 96.72 122 | 90.09 11 | 93.63 335 | 90.70 105 | 82.29 243 | 98.46 55 |
|
| tpmrst | | | 88.36 156 | 87.38 161 | 91.31 156 | 94.36 163 | 79.92 177 | 87.32 348 | 95.26 190 | 85.32 138 | 88.34 137 | 86.13 314 | 80.60 67 | 96.70 227 | 83.78 175 | 85.34 219 | 97.30 139 |
|
| FE-MVS | | | 86.06 196 | 84.15 211 | 91.78 144 | 94.33 164 | 79.81 179 | 84.58 366 | 96.61 84 | 76.69 307 | 85.00 167 | 87.38 289 | 70.71 213 | 98.37 139 | 70.39 298 | 91.70 160 | 97.17 147 |
|
| MVS | | | 90.60 108 | 88.64 133 | 96.50 5 | 94.25 165 | 90.53 8 | 93.33 289 | 97.21 23 | 77.59 296 | 78.88 241 | 97.31 94 | 71.52 204 | 99.69 49 | 89.60 121 | 98.03 55 | 99.27 20 |
|
| dp | | | 84.30 226 | 82.31 240 | 90.28 188 | 94.24 166 | 77.97 234 | 86.57 354 | 95.53 170 | 79.94 262 | 80.75 221 | 85.16 328 | 71.49 205 | 96.39 237 | 63.73 330 | 83.36 229 | 96.48 172 |
|
| FA-MVS(test-final) | | | 87.71 172 | 86.23 179 | 92.17 127 | 94.19 167 | 80.55 161 | 87.16 350 | 96.07 140 | 82.12 221 | 85.98 160 | 88.35 276 | 72.04 199 | 98.49 131 | 80.26 207 | 89.87 168 | 97.48 128 |
|
| UWE-MVS | | | 88.56 151 | 88.91 131 | 87.50 253 | 94.17 168 | 72.19 313 | 95.82 215 | 97.05 35 | 84.96 150 | 84.78 171 | 93.51 204 | 81.33 60 | 94.75 312 | 79.43 216 | 89.17 173 | 95.57 194 |
|
| sss | | | 90.87 104 | 89.96 113 | 93.60 64 | 94.15 169 | 83.84 89 | 97.14 126 | 98.13 7 | 85.93 127 | 89.68 113 | 96.09 132 | 71.67 201 | 99.30 83 | 87.69 143 | 89.16 174 | 97.66 112 |
|
| SDMVSNet | | | 87.02 179 | 85.61 184 | 91.24 160 | 94.14 170 | 83.30 100 | 93.88 277 | 95.98 146 | 84.30 169 | 79.63 235 | 92.01 221 | 58.23 288 | 97.68 167 | 90.28 116 | 82.02 244 | 92.75 241 |
|
| sd_testset | | | 84.62 219 | 83.11 228 | 89.17 212 | 94.14 170 | 77.78 243 | 91.54 318 | 94.38 237 | 84.30 169 | 79.63 235 | 92.01 221 | 52.28 326 | 96.98 211 | 77.67 233 | 82.02 244 | 92.75 241 |
|
| PatchmatchNet |  | | 86.83 184 | 85.12 195 | 91.95 137 | 94.12 172 | 82.27 117 | 86.55 355 | 95.64 166 | 84.59 160 | 82.98 195 | 84.99 332 | 77.26 112 | 95.96 256 | 68.61 306 | 91.34 162 | 97.64 114 |
| Fangjinhua Wang, Silvano Galliani, Christoph Vogel, Pablo Speciale, Marc Pollefeys: PatchmatchNet: Learned Multi-View Patchmatch Stereo. |
| MDTV_nov1_ep13 | | | | 83.69 215 | | 94.09 173 | 81.01 147 | 86.78 353 | 96.09 137 | 83.81 185 | 84.75 172 | 84.32 337 | 74.44 171 | 96.54 232 | 63.88 329 | 85.07 220 | |
|
| UA-Net | | | 88.92 138 | 88.48 137 | 90.24 189 | 94.06 174 | 77.18 257 | 93.04 297 | 94.66 218 | 87.39 98 | 91.09 95 | 93.89 195 | 74.92 162 | 98.18 149 | 75.83 255 | 91.43 161 | 95.35 201 |
|
| Fast-Effi-MVS+ | | | 87.93 168 | 86.94 172 | 90.92 170 | 94.04 175 | 79.16 199 | 98.26 43 | 93.72 277 | 81.29 231 | 83.94 183 | 92.90 211 | 69.83 218 | 96.68 228 | 76.70 245 | 91.74 159 | 96.93 155 |
|
| QAPM | | | 86.88 182 | 84.51 203 | 93.98 46 | 94.04 175 | 85.89 41 | 97.19 117 | 96.05 141 | 73.62 328 | 75.12 288 | 95.62 144 | 62.02 262 | 99.74 38 | 70.88 294 | 96.06 104 | 96.30 180 |
|
| thisisatest0515 | | | 90.95 102 | 90.26 103 | 93.01 88 | 94.03 177 | 84.27 83 | 97.91 64 | 96.67 75 | 83.18 196 | 86.87 153 | 95.51 148 | 88.66 16 | 97.85 162 | 80.46 204 | 89.01 177 | 96.92 157 |
|
| Vis-MVSNet (Re-imp) | | | 88.88 140 | 88.87 132 | 88.91 218 | 93.89 178 | 74.43 294 | 96.93 147 | 94.19 248 | 84.39 165 | 83.22 191 | 95.67 142 | 78.24 96 | 94.70 314 | 78.88 223 | 94.40 125 | 97.61 117 |
|
| ADS-MVSNet2 | | | 79.57 291 | 77.53 294 | 85.71 286 | 93.78 179 | 72.13 314 | 79.48 376 | 86.11 372 | 73.09 334 | 80.14 229 | 79.99 361 | 62.15 260 | 90.14 369 | 59.49 345 | 83.52 226 | 94.85 212 |
|
| ADS-MVSNet | | | 81.26 274 | 78.36 287 | 89.96 198 | 93.78 179 | 79.78 180 | 79.48 376 | 93.60 282 | 73.09 334 | 80.14 229 | 79.99 361 | 62.15 260 | 95.24 295 | 59.49 345 | 83.52 226 | 94.85 212 |
|
| EPP-MVSNet | | | 89.76 123 | 89.72 119 | 89.87 201 | 93.78 179 | 76.02 277 | 97.22 113 | 96.51 96 | 79.35 271 | 85.11 165 | 95.01 169 | 84.82 33 | 97.10 207 | 87.46 146 | 88.21 189 | 96.50 171 |
|
| 3Dnovator | | 82.32 10 | 89.33 130 | 87.64 151 | 94.42 33 | 93.73 182 | 85.70 44 | 97.73 77 | 96.75 65 | 86.73 117 | 76.21 273 | 95.93 134 | 62.17 259 | 99.68 51 | 81.67 198 | 97.81 62 | 97.88 93 |
|
| Effi-MVS+ | | | 90.70 106 | 89.90 116 | 93.09 85 | 93.61 183 | 83.48 96 | 95.20 240 | 92.79 308 | 83.22 195 | 91.82 83 | 95.70 140 | 71.82 200 | 97.48 184 | 91.25 96 | 93.67 135 | 98.32 62 |
|
| IS-MVSNet | | | 88.67 146 | 88.16 142 | 90.20 191 | 93.61 183 | 76.86 261 | 96.77 159 | 93.07 304 | 84.02 176 | 83.62 187 | 95.60 145 | 74.69 168 | 96.24 244 | 78.43 227 | 93.66 136 | 97.49 127 |
|
| AUN-MVS | | | 86.25 194 | 85.57 185 | 88.26 232 | 93.57 185 | 73.38 300 | 95.45 229 | 95.88 153 | 83.94 180 | 85.47 163 | 94.21 187 | 73.70 182 | 96.67 229 | 83.54 183 | 64.41 354 | 94.73 218 |
|
| test2506 | | | 90.96 101 | 90.39 100 | 92.65 103 | 93.54 186 | 82.46 114 | 96.37 183 | 97.35 18 | 86.78 114 | 87.55 144 | 95.25 153 | 77.83 105 | 97.50 182 | 84.07 170 | 94.80 118 | 97.98 88 |
|
| ECVR-MVS |  | | 88.35 157 | 87.25 163 | 91.65 147 | 93.54 186 | 79.40 192 | 96.56 170 | 90.78 340 | 86.78 114 | 85.57 162 | 95.25 153 | 57.25 302 | 97.56 174 | 84.73 166 | 94.80 118 | 97.98 88 |
|
| hse-mvs2 | | | 88.22 162 | 88.21 140 | 88.25 233 | 93.54 186 | 73.41 299 | 95.41 231 | 95.89 152 | 90.39 48 | 92.22 77 | 94.22 186 | 74.70 165 | 96.66 230 | 93.14 77 | 64.37 355 | 94.69 219 |
|
| LCM-MVSNet-Re | | | 83.75 235 | 83.54 221 | 84.39 312 | 93.54 186 | 64.14 360 | 92.51 303 | 84.03 380 | 83.90 182 | 66.14 345 | 86.59 303 | 67.36 228 | 92.68 342 | 84.89 165 | 92.87 145 | 96.35 175 |
|
| EC-MVSNet | | | 91.73 78 | 92.11 67 | 90.58 180 | 93.54 186 | 77.77 244 | 98.07 55 | 94.40 236 | 87.44 96 | 92.99 70 | 97.11 105 | 74.59 169 | 96.87 219 | 93.75 67 | 97.08 82 | 97.11 148 |
|
| tpm cat1 | | | 83.63 237 | 81.38 254 | 90.39 185 | 93.53 191 | 78.19 230 | 85.56 362 | 95.09 194 | 70.78 348 | 78.51 244 | 83.28 345 | 74.80 164 | 97.03 208 | 66.77 313 | 84.05 224 | 95.95 184 |
|
| thisisatest0530 | | | 89.65 125 | 89.02 126 | 91.53 152 | 93.46 192 | 80.78 155 | 96.52 171 | 96.67 75 | 81.69 228 | 83.79 185 | 94.90 172 | 88.85 15 | 97.68 167 | 77.80 228 | 87.49 197 | 96.14 182 |
|
| MSDG | | | 80.62 283 | 77.77 293 | 89.14 213 | 93.43 193 | 77.24 254 | 91.89 311 | 90.18 344 | 69.86 353 | 68.02 333 | 91.94 227 | 52.21 327 | 98.84 117 | 59.32 347 | 83.12 230 | 91.35 248 |
|
| fmvsm_s_conf0.5_n_a | | | 93.34 41 | 93.71 35 | 92.22 124 | 93.38 194 | 81.71 134 | 98.86 25 | 96.98 38 | 91.64 31 | 96.85 16 | 98.55 19 | 75.58 145 | 99.77 29 | 97.88 19 | 93.68 134 | 95.18 206 |
|
| ab-mvs | | | 87.08 178 | 84.94 198 | 93.48 72 | 93.34 195 | 83.67 92 | 88.82 335 | 95.70 163 | 81.18 232 | 84.55 176 | 90.14 256 | 62.72 256 | 98.94 113 | 85.49 160 | 82.54 240 | 97.85 97 |
|
| 1314 | | | 88.94 137 | 87.20 164 | 94.17 42 | 93.21 196 | 85.73 43 | 93.33 289 | 96.64 81 | 82.89 204 | 75.98 276 | 96.36 126 | 66.83 233 | 99.39 77 | 83.52 185 | 96.02 106 | 97.39 134 |
|
| 1112_ss | | | 88.60 149 | 87.47 159 | 92.00 136 | 93.21 196 | 80.97 149 | 96.47 175 | 92.46 311 | 83.64 190 | 80.86 220 | 97.30 96 | 80.24 71 | 97.62 170 | 77.60 234 | 85.49 216 | 97.40 133 |
|
| GeoE | | | 86.36 190 | 85.20 191 | 89.83 203 | 93.17 198 | 76.13 272 | 97.53 92 | 92.11 316 | 79.58 268 | 80.99 218 | 94.01 192 | 66.60 235 | 96.17 247 | 73.48 277 | 89.30 172 | 97.20 146 |
|
| test1111 | | | 88.11 163 | 87.04 169 | 91.35 155 | 93.15 199 | 78.79 210 | 96.57 168 | 90.78 340 | 86.88 111 | 85.04 166 | 95.20 159 | 57.23 303 | 97.39 189 | 83.88 173 | 94.59 121 | 97.87 95 |
|
| Test_1112_low_res | | | 88.03 165 | 86.73 173 | 91.94 138 | 93.15 199 | 80.88 152 | 96.44 178 | 92.41 313 | 83.59 192 | 80.74 222 | 91.16 238 | 80.18 72 | 97.59 172 | 77.48 237 | 85.40 217 | 97.36 135 |
|
| CostFormer | | | 89.08 134 | 88.39 138 | 91.15 164 | 93.13 201 | 79.15 200 | 88.61 338 | 96.11 136 | 83.14 197 | 89.58 116 | 86.93 298 | 83.83 47 | 96.87 219 | 88.22 139 | 85.92 211 | 97.42 130 |
|
| IB-MVS | | 85.34 4 | 88.67 146 | 87.14 167 | 93.26 77 | 93.12 202 | 84.32 80 | 98.76 27 | 97.27 21 | 87.19 105 | 79.36 238 | 90.45 249 | 83.92 46 | 98.53 129 | 84.41 167 | 69.79 318 | 96.93 155 |
| Christian Sormann, Mattia Rossi, Andreas Kuhn and Friedrich Fraundorfer: IB-MVS: An Iterative Algorithm for Deep Multi-View Stereo based on Binary Decisions. BMVC 2021 |
| diffmvs |  | | 91.17 94 | 90.74 92 | 92.44 112 | 93.11 203 | 82.50 113 | 96.25 191 | 93.62 281 | 87.79 87 | 90.40 106 | 95.93 134 | 73.44 184 | 97.42 186 | 93.62 70 | 92.55 149 | 97.41 131 |
| Fangjinhua Wang, Qingshan Xu, Yew-Soon Ong, Marc Pollefeys: Lightweight and Accurate Multi-View Stereo With Confidence-Aware Diffusion Model. IEEE T-PAMI 2025 |
| tttt0517 | | | 88.57 150 | 88.19 141 | 89.71 207 | 93.00 204 | 75.99 278 | 95.67 219 | 96.67 75 | 80.78 239 | 81.82 211 | 94.40 182 | 88.97 14 | 97.58 173 | 76.05 253 | 86.31 205 | 95.57 194 |
|
| MVSFormer | | | 91.36 89 | 90.57 95 | 93.73 57 | 93.00 204 | 88.08 17 | 94.80 256 | 94.48 229 | 80.74 240 | 94.90 44 | 97.13 103 | 78.84 88 | 95.10 303 | 83.77 176 | 97.46 71 | 98.02 81 |
|
| lupinMVS | | | 93.87 35 | 93.58 39 | 94.75 27 | 93.00 204 | 88.08 17 | 99.15 8 | 95.50 173 | 91.03 39 | 94.90 44 | 97.66 74 | 78.84 88 | 97.56 174 | 94.64 59 | 97.46 71 | 98.62 47 |
|
| casdiffmvs_mvg |  | | 91.13 95 | 90.45 99 | 93.17 82 | 92.99 207 | 83.58 94 | 97.46 99 | 94.56 226 | 87.69 90 | 87.19 150 | 94.98 171 | 74.50 170 | 97.60 171 | 91.88 93 | 92.79 146 | 98.34 60 |
| Fangjinhua Wang, Qingshan Xu, Yew-Soon Ong, Marc Pollefeys: Lightweight and Accurate Multi-View Stereo With Confidence-Aware Diffusion Model. IEEE T-PAMI 2025 |
| test_fmvs1 | | | 87.79 170 | 88.52 136 | 85.62 290 | 92.98 208 | 64.31 358 | 97.88 66 | 92.42 312 | 87.95 83 | 92.24 76 | 95.82 137 | 47.94 343 | 98.44 137 | 95.31 52 | 94.09 126 | 94.09 226 |
|
| tpm2 | | | 87.35 177 | 86.26 178 | 90.62 179 | 92.93 209 | 78.67 212 | 88.06 343 | 95.99 145 | 79.33 272 | 87.40 145 | 86.43 309 | 80.28 70 | 96.40 236 | 80.23 208 | 85.73 215 | 96.79 161 |
|
| baseline | | | 90.76 105 | 90.10 109 | 92.74 99 | 92.90 210 | 82.56 110 | 94.60 258 | 94.56 226 | 87.69 90 | 89.06 125 | 95.67 142 | 73.76 179 | 97.51 181 | 90.43 111 | 92.23 155 | 98.16 73 |
|
| test_fmvsmconf_n | | | 93.99 33 | 94.36 28 | 92.86 94 | 92.82 211 | 81.12 144 | 99.26 4 | 96.37 116 | 93.47 15 | 95.16 36 | 98.21 38 | 79.00 85 | 99.64 55 | 98.21 10 | 96.73 93 | 97.83 99 |
|
| casdiffmvs |  | | 90.95 102 | 90.39 100 | 92.63 105 | 92.82 211 | 82.53 111 | 96.83 152 | 94.47 231 | 87.69 90 | 88.47 134 | 95.56 147 | 74.04 176 | 97.54 178 | 90.90 101 | 92.74 147 | 97.83 99 |
| Fangjinhua Wang, Qingshan Xu, Yew-Soon Ong, Marc Pollefeys: Lightweight and Accurate Multi-View Stereo With Confidence-Aware Diffusion Model. IEEE T-PAMI 2025 |
| Vis-MVSNet |  | | 88.67 146 | 87.82 147 | 91.24 160 | 92.68 213 | 78.82 207 | 96.95 145 | 93.85 267 | 87.55 93 | 87.07 152 | 95.13 164 | 63.43 253 | 97.21 199 | 77.58 235 | 96.15 101 | 97.70 110 |
| Jingyang Zhang, Yao Yao, Shiwei Li, Zixin Luo, Tian Fang: Visibility-aware Multiview Stereo Network. BMVC 2020 |
| GBi-Net | | | 82.42 258 | 80.43 268 | 88.39 228 | 92.66 214 | 81.95 120 | 94.30 266 | 93.38 290 | 79.06 280 | 75.82 280 | 85.66 316 | 56.38 310 | 93.84 330 | 71.23 290 | 75.38 285 | 89.38 278 |
|
| test1 | | | 82.42 258 | 80.43 268 | 88.39 228 | 92.66 214 | 81.95 120 | 94.30 266 | 93.38 290 | 79.06 280 | 75.82 280 | 85.66 316 | 56.38 310 | 93.84 330 | 71.23 290 | 75.38 285 | 89.38 278 |
|
| FMVSNet2 | | | 82.79 252 | 80.44 267 | 89.83 203 | 92.66 214 | 85.43 53 | 95.42 230 | 94.35 238 | 79.06 280 | 74.46 292 | 87.28 290 | 56.38 310 | 94.31 323 | 69.72 302 | 74.68 289 | 89.76 273 |
|
| miper_ehance_all_eth | | | 84.57 221 | 83.60 220 | 87.50 253 | 92.64 217 | 78.25 224 | 95.40 232 | 93.47 286 | 79.28 275 | 76.41 267 | 87.64 286 | 76.53 126 | 95.24 295 | 78.58 225 | 72.42 299 | 89.01 293 |
|
| cascas | | | 86.50 188 | 84.48 205 | 92.55 108 | 92.64 217 | 85.95 38 | 97.04 136 | 95.07 196 | 75.32 315 | 80.50 223 | 91.02 240 | 54.33 322 | 97.98 153 | 86.79 153 | 87.62 194 | 93.71 233 |
|
| TESTMET0.1,1 | | | 89.83 122 | 89.34 123 | 91.31 156 | 92.54 219 | 80.19 172 | 97.11 129 | 96.57 90 | 86.15 120 | 86.85 154 | 91.83 229 | 79.32 79 | 96.95 213 | 81.30 199 | 92.35 153 | 96.77 163 |
|
| COLMAP_ROB |  | 73.24 19 | 75.74 320 | 73.00 327 | 83.94 314 | 92.38 220 | 69.08 341 | 91.85 312 | 86.93 367 | 61.48 374 | 65.32 348 | 90.27 252 | 42.27 363 | 96.93 216 | 50.91 373 | 75.63 284 | 85.80 353 |
| Johannes L. Schönberger, Enliang Zheng, Marc Pollefeys, Jan-Michael Frahm: Pixelwise View Selection for Unstructured Multi-View Stereo. ECCV 2016 |
| test_vis1_n_1920 | | | 89.95 120 | 90.59 94 | 88.03 239 | 92.36 221 | 68.98 342 | 99.12 12 | 94.34 239 | 93.86 13 | 93.64 61 | 97.01 109 | 51.54 328 | 99.59 60 | 96.76 34 | 96.71 94 | 95.53 196 |
|
| xiu_mvs_v1_base_debu | | | 90.54 109 | 89.54 120 | 93.55 67 | 92.31 222 | 87.58 23 | 96.99 137 | 94.87 204 | 87.23 102 | 93.27 63 | 97.56 83 | 57.43 298 | 98.32 140 | 92.72 82 | 93.46 139 | 94.74 215 |
|
| xiu_mvs_v1_base | | | 90.54 109 | 89.54 120 | 93.55 67 | 92.31 222 | 87.58 23 | 96.99 137 | 94.87 204 | 87.23 102 | 93.27 63 | 97.56 83 | 57.43 298 | 98.32 140 | 92.72 82 | 93.46 139 | 94.74 215 |
|
| xiu_mvs_v1_base_debi | | | 90.54 109 | 89.54 120 | 93.55 67 | 92.31 222 | 87.58 23 | 96.99 137 | 94.87 204 | 87.23 102 | 93.27 63 | 97.56 83 | 57.43 298 | 98.32 140 | 92.72 82 | 93.46 139 | 94.74 215 |
|
| SCA | | | 85.63 203 | 83.64 218 | 91.60 151 | 92.30 225 | 81.86 127 | 92.88 300 | 95.56 169 | 84.85 151 | 82.52 196 | 85.12 330 | 58.04 291 | 95.39 286 | 73.89 273 | 87.58 196 | 97.54 120 |
|
| gm-plane-assit | | | | | | 92.27 226 | 79.64 188 | | | 84.47 164 | | 95.15 163 | | 97.93 154 | 85.81 157 | | |
|
| test-LLR | | | 88.48 152 | 87.98 144 | 89.98 196 | 92.26 227 | 77.23 255 | 97.11 129 | 95.96 148 | 83.76 187 | 86.30 157 | 91.38 233 | 72.30 195 | 96.78 225 | 80.82 201 | 91.92 157 | 95.94 185 |
|
| test-mter | | | 88.95 136 | 88.60 134 | 89.98 196 | 92.26 227 | 77.23 255 | 97.11 129 | 95.96 148 | 85.32 138 | 86.30 157 | 91.38 233 | 76.37 131 | 96.78 225 | 80.82 201 | 91.92 157 | 95.94 185 |
|
| PAPM | | | 92.87 50 | 92.40 59 | 94.30 35 | 92.25 229 | 87.85 19 | 96.40 182 | 96.38 113 | 91.07 38 | 88.72 132 | 96.90 111 | 82.11 57 | 97.37 191 | 90.05 117 | 97.70 65 | 97.67 111 |
|
| cl____ | | | 83.27 242 | 82.12 242 | 86.74 268 | 92.20 230 | 75.95 279 | 95.11 246 | 93.27 296 | 78.44 289 | 74.82 290 | 87.02 297 | 74.19 173 | 95.19 297 | 74.67 266 | 69.32 322 | 89.09 288 |
|
| DIV-MVS_self_test | | | 83.27 242 | 82.12 242 | 86.74 268 | 92.19 231 | 75.92 281 | 95.11 246 | 93.26 297 | 78.44 289 | 74.81 291 | 87.08 296 | 74.19 173 | 95.19 297 | 74.66 267 | 69.30 323 | 89.11 287 |
|
| AllTest | | | 75.92 318 | 73.06 326 | 84.47 308 | 92.18 232 | 67.29 347 | 91.07 321 | 84.43 378 | 67.63 357 | 63.48 353 | 90.18 253 | 38.20 373 | 97.16 202 | 57.04 355 | 73.37 294 | 88.97 296 |
|
| TestCases | | | | | 84.47 308 | 92.18 232 | 67.29 347 | | 84.43 378 | 67.63 357 | 63.48 353 | 90.18 253 | 38.20 373 | 97.16 202 | 57.04 355 | 73.37 294 | 88.97 296 |
|
| CLD-MVS | | | 87.97 167 | 87.48 158 | 89.44 209 | 92.16 234 | 80.54 163 | 98.14 47 | 94.92 201 | 91.41 33 | 79.43 237 | 95.40 150 | 62.34 258 | 97.27 197 | 90.60 106 | 82.90 235 | 90.50 257 |
| Zhaoxin Li, Wangmeng Zuo, Zhaoqi Wang, Lei Zhang: Confidence-based Large-scale Dense Multi-view Stereo. IEEE Transaction on Image Processing, 2020 |
| Syy-MVS | | | 77.97 304 | 78.05 290 | 77.74 353 | 92.13 235 | 56.85 380 | 93.97 274 | 94.23 244 | 82.43 214 | 73.39 298 | 93.57 202 | 57.95 294 | 87.86 375 | 32.40 393 | 82.34 241 | 88.51 303 |
|
| myMVS_eth3d | | | 81.93 265 | 82.18 241 | 81.18 337 | 92.13 235 | 67.18 349 | 93.97 274 | 94.23 244 | 82.43 214 | 73.39 298 | 93.57 202 | 76.98 118 | 87.86 375 | 50.53 375 | 82.34 241 | 88.51 303 |
|
| c3_l | | | 83.80 234 | 82.65 236 | 87.25 261 | 92.10 237 | 77.74 246 | 95.25 237 | 93.04 305 | 78.58 286 | 76.01 275 | 87.21 294 | 75.25 158 | 95.11 302 | 77.54 236 | 68.89 326 | 88.91 299 |
|
| HQP-NCC | | | | | | 92.08 238 | | 97.63 83 | | 90.52 45 | 82.30 201 | | | | | | |
|
| ACMP_Plane | | | | | | 92.08 238 | | 97.63 83 | | 90.52 45 | 82.30 201 | | | | | | |
|
| HQP-MVS | | | 87.91 169 | 87.55 156 | 88.98 217 | 92.08 238 | 78.48 215 | 97.63 83 | 94.80 209 | 90.52 45 | 82.30 201 | 94.56 179 | 65.40 241 | 97.32 192 | 87.67 144 | 83.01 232 | 91.13 249 |
|
| PCF-MVS | | 84.09 5 | 86.77 186 | 85.00 197 | 92.08 130 | 92.06 241 | 83.07 104 | 92.14 308 | 94.47 231 | 79.63 267 | 76.90 260 | 94.78 175 | 71.15 207 | 99.20 92 | 72.87 279 | 91.05 163 | 93.98 228 |
| Andreas Kuhn, Shan Lin, Oliver Erdler: Plane Completion and Filtering for Multi-View Stereo Reconstruction. GCPR 2019 |
| NP-MVS | | | | | | 92.04 242 | 78.22 225 | | | | | 94.56 179 | | | | | |
|
| plane_prior6 | | | | | | 91.98 243 | 77.92 238 | | | | | | 64.77 247 | | | | |
|
| Effi-MVS+-dtu | | | 84.61 220 | 84.90 200 | 83.72 319 | 91.96 244 | 63.14 366 | 94.95 251 | 93.34 294 | 85.57 132 | 79.79 233 | 87.12 295 | 61.99 263 | 95.61 279 | 83.55 182 | 85.83 213 | 92.41 245 |
|
| plane_prior1 | | | | | | 91.95 245 | | | | | | | | | | | |
|
| CDS-MVSNet | | | 89.50 127 | 88.96 128 | 91.14 165 | 91.94 246 | 80.93 151 | 97.09 133 | 95.81 157 | 84.26 172 | 84.72 173 | 94.20 188 | 80.31 69 | 95.64 276 | 83.37 186 | 88.96 178 | 96.85 160 |
| Khang Truong Giang, Soohwan Song, Sungho Jo: Curvature-guided dynamic scale networks for Multi-view Stereo. ICLR 2022 |
| HQP_MVS | | | 87.50 175 | 87.09 168 | 88.74 222 | 91.86 247 | 77.96 235 | 97.18 119 | 94.69 214 | 89.89 55 | 81.33 215 | 94.15 189 | 64.77 247 | 97.30 194 | 87.08 148 | 82.82 236 | 90.96 251 |
|
| plane_prior7 | | | | | | 91.86 247 | 77.55 249 | | | | | | | | | | |
|
| eth_miper_zixun_eth | | | 83.12 246 | 82.01 244 | 86.47 273 | 91.85 249 | 74.80 289 | 94.33 264 | 93.18 300 | 79.11 278 | 75.74 283 | 87.25 293 | 72.71 189 | 95.32 291 | 76.78 244 | 67.13 344 | 89.27 283 |
|
| VDDNet | | | 86.44 189 | 84.51 203 | 92.22 124 | 91.56 250 | 81.83 128 | 97.10 132 | 94.64 221 | 69.50 354 | 87.84 142 | 95.19 160 | 48.01 341 | 97.92 159 | 89.82 119 | 86.92 199 | 96.89 158 |
|
| EI-MVSNet | | | 85.80 200 | 85.20 191 | 87.59 249 | 91.55 251 | 77.41 251 | 95.13 244 | 95.36 183 | 80.43 250 | 80.33 227 | 94.71 176 | 73.72 180 | 95.97 253 | 76.96 243 | 78.64 268 | 89.39 276 |
|
| CVMVSNet | | | 84.83 216 | 85.57 185 | 82.63 329 | 91.55 251 | 60.38 374 | 95.13 244 | 95.03 197 | 80.60 243 | 82.10 207 | 94.71 176 | 66.40 236 | 90.19 368 | 74.30 270 | 90.32 166 | 97.31 138 |
|
| ACMP | | 81.66 11 | 84.00 230 | 83.22 227 | 86.33 274 | 91.53 253 | 72.95 309 | 95.91 209 | 93.79 272 | 83.70 189 | 73.79 295 | 92.22 219 | 54.31 323 | 96.89 217 | 83.98 171 | 79.74 257 | 89.16 286 |
| Qingshan Xu and Wenbing Tao: Planar Prior Assisted PatchMatch Multi-View Stereo. AAAI 2020 |
| IterMVS-LS | | | 83.93 231 | 82.80 234 | 87.31 259 | 91.46 254 | 77.39 252 | 95.66 220 | 93.43 288 | 80.44 248 | 75.51 284 | 87.26 292 | 73.72 180 | 95.16 299 | 76.99 241 | 70.72 309 | 89.39 276 |
| Fangjinhua Wang, Silvano Galliani, Christoph Vogel, Marc Pollefeys: IterMVS: Iterative Probability Estimation for Efficient Multi-View Stereo. |
| dmvs_re | | | 84.10 228 | 82.90 231 | 87.70 244 | 91.41 255 | 73.28 303 | 90.59 325 | 93.19 298 | 85.02 147 | 77.96 250 | 93.68 199 | 57.92 296 | 96.18 246 | 75.50 258 | 80.87 249 | 93.63 234 |
|
| WB-MVSnew | | | 84.08 229 | 83.51 222 | 85.80 283 | 91.34 256 | 76.69 265 | 95.62 223 | 96.27 122 | 81.77 226 | 81.81 212 | 92.81 212 | 58.23 288 | 94.70 314 | 66.66 314 | 87.06 198 | 85.99 349 |
|
| Patchmatch-test | | | 78.25 300 | 74.72 314 | 88.83 220 | 91.20 257 | 74.10 297 | 73.91 391 | 88.70 359 | 59.89 382 | 66.82 340 | 85.12 330 | 78.38 94 | 94.54 318 | 48.84 380 | 79.58 260 | 97.86 96 |
|
| miper_lstm_enhance | | | 81.66 270 | 80.66 264 | 84.67 304 | 91.19 258 | 71.97 319 | 91.94 310 | 93.19 298 | 77.86 293 | 72.27 312 | 85.26 324 | 73.46 183 | 93.42 338 | 73.71 276 | 67.05 345 | 88.61 301 |
|
| ACMM | | 80.70 13 | 83.72 236 | 82.85 233 | 86.31 277 | 91.19 258 | 72.12 315 | 95.88 210 | 94.29 242 | 80.44 248 | 77.02 258 | 91.96 225 | 55.24 316 | 97.14 206 | 79.30 218 | 80.38 253 | 89.67 274 |
| Qingshan Xu and Wenbing Tao: Multi-Scale Geometric Consistency Guided Multi-View Stereo. CVPR 2019 |
| testing3 | | | 80.74 281 | 81.17 257 | 79.44 346 | 91.15 260 | 63.48 364 | 97.16 123 | 95.76 159 | 80.83 237 | 71.36 316 | 93.15 209 | 78.22 97 | 87.30 380 | 43.19 387 | 79.67 258 | 87.55 328 |
|
| TAMVS | | | 88.48 152 | 87.79 148 | 90.56 181 | 91.09 261 | 79.18 198 | 96.45 177 | 95.88 153 | 83.64 190 | 83.12 192 | 93.33 205 | 75.94 138 | 95.74 271 | 82.40 193 | 88.27 188 | 96.75 165 |
|
| ACMH+ | | 76.62 16 | 77.47 309 | 74.94 311 | 85.05 298 | 91.07 262 | 71.58 325 | 93.26 293 | 90.01 345 | 71.80 343 | 64.76 350 | 88.55 272 | 41.62 365 | 96.48 234 | 62.35 336 | 71.00 306 | 87.09 334 |
|
| OpenMVS |  | 79.58 14 | 86.09 195 | 83.62 219 | 93.50 70 | 90.95 263 | 86.71 32 | 97.44 100 | 95.83 156 | 75.35 314 | 72.64 309 | 95.72 139 | 57.42 301 | 99.64 55 | 71.41 288 | 95.85 109 | 94.13 225 |
|
| LPG-MVS_test | | | 84.20 227 | 83.49 223 | 86.33 274 | 90.88 264 | 73.06 306 | 95.28 234 | 94.13 251 | 82.20 218 | 76.31 268 | 93.20 206 | 54.83 320 | 96.95 213 | 83.72 178 | 80.83 250 | 88.98 294 |
|
| LGP-MVS_train | | | | | 86.33 274 | 90.88 264 | 73.06 306 | | 94.13 251 | 82.20 218 | 76.31 268 | 93.20 206 | 54.83 320 | 96.95 213 | 83.72 178 | 80.83 250 | 88.98 294 |
|
| test_fmvsmvis_n_1920 | | | 92.12 69 | 92.10 68 | 92.17 127 | 90.87 266 | 81.04 146 | 98.34 41 | 93.90 263 | 92.71 20 | 87.24 149 | 97.90 63 | 74.83 163 | 99.72 43 | 96.96 31 | 96.20 99 | 95.76 190 |
|
| KD-MVS_2432*1600 | | | 77.63 307 | 74.92 312 | 85.77 284 | 90.86 267 | 79.44 190 | 88.08 341 | 93.92 261 | 76.26 309 | 67.05 338 | 82.78 347 | 72.15 197 | 91.92 351 | 61.53 337 | 41.62 394 | 85.94 350 |
|
| miper_refine_blended | | | 77.63 307 | 74.92 312 | 85.77 284 | 90.86 267 | 79.44 190 | 88.08 341 | 93.92 261 | 76.26 309 | 67.05 338 | 82.78 347 | 72.15 197 | 91.92 351 | 61.53 337 | 41.62 394 | 85.94 350 |
|
| baseline2 | | | 90.39 112 | 90.21 106 | 90.93 169 | 90.86 267 | 80.99 148 | 95.20 240 | 97.41 17 | 86.03 125 | 80.07 232 | 94.61 178 | 90.58 6 | 97.47 185 | 87.29 147 | 89.86 169 | 94.35 221 |
|
| PVSNet_0 | | 77.72 15 | 81.70 268 | 78.95 285 | 89.94 199 | 90.77 270 | 76.72 264 | 95.96 204 | 96.95 42 | 85.01 148 | 70.24 326 | 88.53 274 | 52.32 325 | 98.20 147 | 86.68 154 | 44.08 391 | 94.89 210 |
|
| ACMH | | 75.40 17 | 77.99 302 | 74.96 310 | 87.10 264 | 90.67 271 | 76.41 268 | 93.19 296 | 91.64 325 | 72.47 340 | 63.44 355 | 87.61 287 | 43.34 358 | 97.16 202 | 58.34 349 | 73.94 291 | 87.72 320 |
| Qingshan Xu and Wenbing Tao: Multi-Scale Geometric Consistency Guided Multi-View Stereo. CVPR 2019 |
| MVS-HIRNet | | | 71.36 341 | 67.00 346 | 84.46 310 | 90.58 272 | 69.74 337 | 79.15 379 | 87.74 365 | 46.09 391 | 61.96 364 | 50.50 395 | 45.14 353 | 95.64 276 | 53.74 366 | 88.11 190 | 88.00 317 |
|
| fmvsm_s_conf0.1_n | | | 92.93 48 | 93.16 47 | 92.24 122 | 90.52 273 | 81.92 123 | 98.42 38 | 96.24 125 | 91.17 36 | 96.02 30 | 98.35 33 | 75.34 156 | 99.74 38 | 97.84 20 | 94.58 122 | 95.05 207 |
|
| jason | | | 92.73 53 | 92.23 64 | 94.21 41 | 90.50 274 | 87.30 26 | 98.65 31 | 95.09 194 | 90.61 44 | 92.76 72 | 97.13 103 | 75.28 157 | 97.30 194 | 93.32 74 | 96.75 92 | 98.02 81 |
| jason: jason. |
| LTVRE_ROB | | 73.68 18 | 77.99 302 | 75.74 307 | 84.74 301 | 90.45 275 | 72.02 317 | 86.41 356 | 91.12 332 | 72.57 339 | 66.63 342 | 87.27 291 | 54.95 319 | 96.98 211 | 56.29 359 | 75.98 280 | 85.21 356 |
| Andreas Kuhn, Heiko Hirschmüller, Daniel Scharstein, Helmut Mayer: A TV Prior for High-Quality Scalable Multi-View Stereo Reconstruction. International Journal of Computer Vision 2016 |
| XVG-OURS | | | 85.18 210 | 84.38 207 | 87.59 249 | 90.42 276 | 71.73 323 | 91.06 322 | 94.07 255 | 82.00 224 | 83.29 190 | 95.08 167 | 56.42 309 | 97.55 176 | 83.70 180 | 83.42 228 | 93.49 237 |
|
| VPA-MVSNet | | | 85.32 208 | 83.83 214 | 89.77 206 | 90.25 277 | 82.63 109 | 96.36 184 | 97.07 34 | 83.03 201 | 81.21 217 | 89.02 266 | 61.58 266 | 96.31 241 | 85.02 164 | 70.95 307 | 90.36 258 |
|
| XVG-OURS-SEG-HR | | | 85.74 202 | 85.16 194 | 87.49 255 | 90.22 278 | 71.45 326 | 91.29 319 | 94.09 254 | 81.37 230 | 83.90 184 | 95.22 157 | 60.30 273 | 97.53 180 | 85.58 159 | 84.42 223 | 93.50 236 |
|
| tpm | | | 85.55 205 | 84.47 206 | 88.80 221 | 90.19 279 | 75.39 285 | 88.79 336 | 94.69 214 | 84.83 152 | 83.96 182 | 85.21 326 | 78.22 97 | 94.68 316 | 76.32 251 | 78.02 276 | 96.34 176 |
|
| CR-MVSNet | | | 83.53 238 | 81.36 255 | 90.06 193 | 90.16 280 | 79.75 182 | 79.02 380 | 91.12 332 | 84.24 173 | 82.27 205 | 80.35 359 | 75.45 148 | 93.67 334 | 63.37 333 | 86.25 206 | 96.75 165 |
|
| RPMNet | | | 79.85 287 | 75.92 306 | 91.64 148 | 90.16 280 | 79.75 182 | 79.02 380 | 95.44 178 | 58.43 386 | 82.27 205 | 72.55 383 | 73.03 187 | 98.41 138 | 46.10 384 | 86.25 206 | 96.75 165 |
|
| test_cas_vis1_n_1920 | | | 89.90 121 | 90.02 111 | 89.54 208 | 90.14 282 | 74.63 291 | 98.71 28 | 94.43 234 | 93.04 19 | 92.40 73 | 96.35 127 | 53.41 324 | 99.08 103 | 95.59 48 | 96.16 100 | 94.90 209 |
|
| FIs | | | 86.73 187 | 86.10 180 | 88.61 224 | 90.05 283 | 80.21 171 | 96.14 198 | 96.95 42 | 85.56 134 | 78.37 246 | 92.30 218 | 76.73 124 | 95.28 293 | 79.51 214 | 79.27 262 | 90.35 259 |
|
| FMVSNet5 | | | 76.46 316 | 74.16 320 | 83.35 324 | 90.05 283 | 76.17 271 | 89.58 330 | 89.85 346 | 71.39 346 | 65.29 349 | 80.42 358 | 50.61 332 | 87.70 378 | 61.05 342 | 69.24 324 | 86.18 345 |
|
| IterMVS | | | 80.67 282 | 79.16 282 | 85.20 296 | 89.79 285 | 76.08 273 | 92.97 299 | 91.86 319 | 80.28 254 | 71.20 318 | 85.14 329 | 57.93 295 | 91.34 358 | 72.52 282 | 70.74 308 | 88.18 314 |
| Fangjinhua Wang, Silvano Galliani, Christoph Vogel, Marc Pollefeys: IterMVS: Iterative Probability Estimation for Efficient Multi-View Stereo. |
| mvsany_test1 | | | 87.58 174 | 88.22 139 | 85.67 288 | 89.78 286 | 67.18 349 | 95.25 237 | 87.93 362 | 83.96 179 | 88.79 129 | 97.06 108 | 72.52 191 | 94.53 319 | 92.21 87 | 86.45 204 | 95.30 203 |
|
| UniMVSNet (Re) | | | 85.31 209 | 84.23 209 | 88.55 225 | 89.75 287 | 80.55 161 | 96.72 160 | 96.89 47 | 85.42 136 | 78.40 245 | 88.93 267 | 75.38 152 | 95.52 283 | 78.58 225 | 68.02 335 | 89.57 275 |
|
| Patchmtry | | | 77.36 310 | 74.59 315 | 85.67 288 | 89.75 287 | 75.75 283 | 77.85 383 | 91.12 332 | 60.28 379 | 71.23 317 | 80.35 359 | 75.45 148 | 93.56 336 | 57.94 350 | 67.34 343 | 87.68 322 |
|
| JIA-IIPM | | | 79.00 297 | 77.20 296 | 84.40 311 | 89.74 289 | 64.06 361 | 75.30 388 | 95.44 178 | 62.15 370 | 81.90 209 | 59.08 392 | 78.92 86 | 95.59 280 | 66.51 318 | 85.78 214 | 93.54 235 |
|
| MS-PatchMatch | | | 83.05 247 | 81.82 248 | 86.72 272 | 89.64 290 | 79.10 202 | 94.88 253 | 94.59 225 | 79.70 266 | 70.67 322 | 89.65 260 | 50.43 333 | 96.82 222 | 70.82 297 | 95.99 107 | 84.25 362 |
|
| IterMVS-SCA-FT | | | 80.51 284 | 79.10 283 | 84.73 302 | 89.63 291 | 74.66 290 | 92.98 298 | 91.81 322 | 80.05 259 | 71.06 320 | 85.18 327 | 58.04 291 | 91.40 357 | 72.48 283 | 70.70 310 | 88.12 315 |
|
| Fast-Effi-MVS+-dtu | | | 83.33 241 | 82.60 237 | 85.50 292 | 89.55 292 | 69.38 340 | 96.09 201 | 91.38 327 | 82.30 217 | 75.96 277 | 91.41 232 | 56.71 305 | 95.58 281 | 75.13 262 | 84.90 221 | 91.54 247 |
|
| PatchT | | | 79.75 288 | 76.85 300 | 88.42 226 | 89.55 292 | 75.49 284 | 77.37 384 | 94.61 223 | 63.07 367 | 82.46 198 | 73.32 380 | 75.52 147 | 93.41 339 | 51.36 371 | 84.43 222 | 96.36 174 |
|
| GA-MVS | | | 85.79 201 | 84.04 213 | 91.02 168 | 89.47 294 | 80.27 169 | 96.90 149 | 94.84 207 | 85.57 132 | 80.88 219 | 89.08 264 | 56.56 308 | 96.47 235 | 77.72 231 | 85.35 218 | 96.34 176 |
|
| UniMVSNet_NR-MVSNet | | | 85.49 206 | 84.59 201 | 88.21 235 | 89.44 295 | 79.36 193 | 96.71 162 | 96.41 108 | 85.22 141 | 78.11 248 | 90.98 242 | 76.97 119 | 95.14 300 | 79.14 220 | 68.30 332 | 90.12 264 |
|
| FC-MVSNet-test | | | 85.96 197 | 85.39 188 | 87.66 246 | 89.38 296 | 78.02 232 | 95.65 221 | 96.87 49 | 85.12 145 | 77.34 253 | 91.94 227 | 76.28 133 | 94.74 313 | 77.09 240 | 78.82 266 | 90.21 262 |
|
| WR-MVS | | | 84.32 225 | 82.96 229 | 88.41 227 | 89.38 296 | 80.32 166 | 96.59 167 | 96.25 124 | 83.97 178 | 76.63 263 | 90.36 251 | 67.53 226 | 94.86 310 | 75.82 256 | 70.09 316 | 90.06 269 |
|
| VPNet | | | 84.69 218 | 82.92 230 | 90.01 194 | 89.01 298 | 83.45 97 | 96.71 162 | 95.46 176 | 85.71 130 | 79.65 234 | 92.18 220 | 56.66 307 | 96.01 252 | 83.05 190 | 67.84 338 | 90.56 255 |
|
| nrg030 | | | 86.79 185 | 85.43 187 | 90.87 173 | 88.76 299 | 85.34 54 | 97.06 135 | 94.33 240 | 84.31 167 | 80.45 225 | 91.98 224 | 72.36 193 | 96.36 239 | 88.48 136 | 71.13 305 | 90.93 253 |
|
| DU-MVS | | | 84.57 221 | 83.33 225 | 88.28 231 | 88.76 299 | 79.36 193 | 96.43 180 | 95.41 182 | 85.42 136 | 78.11 248 | 90.82 243 | 67.61 223 | 95.14 300 | 79.14 220 | 68.30 332 | 90.33 260 |
|
| NR-MVSNet | | | 83.35 240 | 81.52 253 | 88.84 219 | 88.76 299 | 81.31 142 | 94.45 260 | 95.16 192 | 84.65 158 | 67.81 334 | 90.82 243 | 70.36 215 | 94.87 309 | 74.75 264 | 66.89 347 | 90.33 260 |
|
| test_0402 | | | 72.68 334 | 69.54 341 | 82.09 333 | 88.67 302 | 71.81 322 | 92.72 302 | 86.77 369 | 61.52 373 | 62.21 362 | 83.91 340 | 43.22 359 | 93.76 333 | 34.60 392 | 72.23 302 | 80.72 380 |
|
| RPSCF | | | 77.73 306 | 76.63 301 | 81.06 338 | 88.66 303 | 55.76 385 | 87.77 345 | 87.88 363 | 64.82 366 | 74.14 294 | 92.79 214 | 49.22 338 | 96.81 223 | 67.47 310 | 76.88 278 | 90.62 254 |
|
| FMVSNet1 | | | 79.50 292 | 76.54 302 | 88.39 228 | 88.47 304 | 81.95 120 | 94.30 266 | 93.38 290 | 73.14 333 | 72.04 314 | 85.66 316 | 43.86 355 | 93.84 330 | 65.48 322 | 72.53 298 | 89.38 278 |
|
| test_fmvsmconf0.1_n | | | 93.08 45 | 93.22 46 | 92.65 103 | 88.45 305 | 80.81 154 | 99.00 22 | 95.11 193 | 93.21 17 | 94.00 57 | 97.91 62 | 76.84 120 | 99.59 60 | 97.91 16 | 96.55 96 | 97.54 120 |
|
| OPM-MVS | | | 85.84 199 | 85.10 196 | 88.06 237 | 88.34 306 | 77.83 242 | 95.72 217 | 94.20 247 | 87.89 86 | 80.45 225 | 94.05 191 | 58.57 285 | 97.26 198 | 83.88 173 | 82.76 238 | 89.09 288 |
| Ray L. Khuboni, Hongjun Xu: Octagram Propagation Matching for Multi-Scale View Stereopsis (OPM-MVS). |
| tfpnnormal | | | 78.14 301 | 75.42 308 | 86.31 277 | 88.33 307 | 79.24 196 | 94.41 261 | 96.22 127 | 73.51 329 | 69.81 328 | 85.52 322 | 55.43 314 | 95.75 268 | 47.65 382 | 67.86 337 | 83.95 365 |
|
| TinyColmap | | | 72.41 335 | 68.99 344 | 82.68 328 | 88.11 308 | 69.59 338 | 88.41 339 | 85.20 374 | 65.55 363 | 57.91 376 | 84.82 334 | 30.80 387 | 95.94 257 | 51.38 370 | 68.70 327 | 82.49 373 |
|
| fmvsm_s_conf0.1_n_a | | | 92.38 66 | 92.49 58 | 92.06 132 | 88.08 309 | 81.62 137 | 97.97 62 | 96.01 143 | 90.62 43 | 96.58 22 | 98.33 34 | 74.09 175 | 99.71 45 | 97.23 27 | 93.46 139 | 94.86 211 |
|
| WR-MVS_H | | | 81.02 277 | 80.09 271 | 83.79 316 | 88.08 309 | 71.26 328 | 94.46 259 | 96.54 93 | 80.08 258 | 72.81 308 | 86.82 299 | 70.36 215 | 92.65 343 | 64.18 327 | 67.50 341 | 87.46 330 |
|
| mvsmamba | | | 85.17 211 | 84.54 202 | 87.05 265 | 87.94 311 | 75.11 288 | 96.22 192 | 87.79 364 | 86.91 109 | 78.55 243 | 91.77 230 | 64.93 246 | 95.91 259 | 86.94 152 | 79.80 254 | 90.12 264 |
|
| CP-MVSNet | | | 81.01 278 | 80.08 272 | 83.79 316 | 87.91 312 | 70.51 330 | 94.29 269 | 95.65 165 | 80.83 237 | 72.54 311 | 88.84 268 | 63.71 251 | 92.32 346 | 68.58 307 | 68.36 331 | 88.55 302 |
|
| D2MVS | | | 82.67 254 | 81.55 251 | 86.04 281 | 87.77 313 | 76.47 266 | 95.21 239 | 96.58 89 | 82.66 211 | 70.26 325 | 85.46 323 | 60.39 272 | 95.80 265 | 76.40 249 | 79.18 263 | 85.83 352 |
|
| TranMVSNet+NR-MVSNet | | | 83.24 244 | 81.71 249 | 87.83 241 | 87.71 314 | 78.81 209 | 96.13 200 | 94.82 208 | 84.52 161 | 76.18 274 | 90.78 245 | 64.07 250 | 94.60 317 | 74.60 268 | 66.59 349 | 90.09 267 |
|
| USDC | | | 78.65 298 | 76.25 303 | 85.85 282 | 87.58 315 | 74.60 292 | 89.58 330 | 90.58 343 | 84.05 175 | 63.13 357 | 88.23 278 | 40.69 371 | 96.86 221 | 66.57 317 | 75.81 283 | 86.09 347 |
|
| PS-CasMVS | | | 80.27 285 | 79.18 281 | 83.52 322 | 87.56 316 | 69.88 335 | 94.08 272 | 95.29 188 | 80.27 255 | 72.08 313 | 88.51 275 | 59.22 282 | 92.23 348 | 67.49 309 | 68.15 334 | 88.45 308 |
|
| test_fmvs1_n | | | 86.34 191 | 86.72 174 | 85.17 297 | 87.54 317 | 63.64 363 | 96.91 148 | 92.37 314 | 87.49 95 | 91.33 91 | 95.58 146 | 40.81 370 | 98.46 134 | 95.00 54 | 93.49 137 | 93.41 240 |
|
| RRT_MVS | | | 83.88 232 | 83.27 226 | 85.71 286 | 87.53 318 | 72.12 315 | 95.35 233 | 94.33 240 | 83.81 185 | 75.86 279 | 91.28 236 | 60.55 271 | 95.09 305 | 83.93 172 | 76.76 279 | 89.90 272 |
|
| MIMVSNet | | | 79.18 296 | 75.99 305 | 88.72 223 | 87.37 319 | 80.66 158 | 79.96 375 | 91.82 321 | 77.38 299 | 74.33 293 | 81.87 351 | 41.78 364 | 90.74 364 | 66.36 320 | 83.10 231 | 94.76 214 |
|
| XXY-MVS | | | 83.84 233 | 82.00 245 | 89.35 210 | 87.13 320 | 81.38 140 | 95.72 217 | 94.26 243 | 80.15 257 | 75.92 278 | 90.63 246 | 61.96 264 | 96.52 233 | 78.98 222 | 73.28 297 | 90.14 263 |
|
| ITE_SJBPF | | | | | 82.38 330 | 87.00 321 | 65.59 355 | | 89.55 348 | 79.99 261 | 69.37 330 | 91.30 235 | 41.60 366 | 95.33 290 | 62.86 335 | 74.63 290 | 86.24 344 |
|
| test0.0.03 1 | | | 82.79 252 | 82.48 238 | 83.74 318 | 86.81 322 | 72.22 311 | 96.52 171 | 95.03 197 | 83.76 187 | 73.00 305 | 93.20 206 | 72.30 195 | 88.88 371 | 64.15 328 | 77.52 277 | 90.12 264 |
|
| v8 | | | 81.88 266 | 80.06 274 | 87.32 258 | 86.63 323 | 79.04 205 | 94.41 261 | 93.65 280 | 78.77 284 | 73.19 304 | 85.57 320 | 66.87 232 | 95.81 264 | 73.84 275 | 67.61 340 | 87.11 333 |
|
| tt0805 | | | 81.20 276 | 79.06 284 | 87.61 247 | 86.50 324 | 72.97 308 | 93.66 280 | 95.48 174 | 74.11 324 | 76.23 272 | 91.99 223 | 41.36 367 | 97.40 188 | 77.44 238 | 74.78 288 | 92.45 244 |
|
| v10 | | | 81.43 272 | 79.53 280 | 87.11 263 | 86.38 325 | 78.87 206 | 94.31 265 | 93.43 288 | 77.88 292 | 73.24 303 | 85.26 324 | 65.44 240 | 95.75 268 | 72.14 284 | 67.71 339 | 86.72 337 |
|
| PEN-MVS | | | 79.47 293 | 78.26 289 | 83.08 325 | 86.36 326 | 68.58 343 | 93.85 278 | 94.77 212 | 79.76 264 | 71.37 315 | 88.55 272 | 59.79 274 | 92.46 344 | 64.50 326 | 65.40 351 | 88.19 313 |
|
| UniMVSNet_ETH3D | | | 80.86 280 | 78.75 286 | 87.22 262 | 86.31 327 | 72.02 317 | 91.95 309 | 93.76 276 | 73.51 329 | 75.06 289 | 90.16 255 | 43.04 361 | 95.66 273 | 76.37 250 | 78.55 271 | 93.98 228 |
|
| v1144 | | | 82.90 251 | 81.27 256 | 87.78 243 | 86.29 328 | 79.07 204 | 96.14 198 | 93.93 259 | 80.05 259 | 77.38 252 | 86.80 300 | 65.50 239 | 95.93 258 | 75.21 261 | 70.13 313 | 88.33 311 |
|
| V42 | | | 83.04 248 | 81.53 252 | 87.57 251 | 86.27 329 | 79.09 203 | 95.87 211 | 94.11 253 | 80.35 252 | 77.22 256 | 86.79 301 | 65.32 243 | 96.02 251 | 77.74 230 | 70.14 312 | 87.61 324 |
|
| v2v482 | | | 83.46 239 | 81.86 247 | 88.25 233 | 86.19 330 | 79.65 187 | 96.34 186 | 94.02 257 | 81.56 229 | 77.32 254 | 88.23 278 | 65.62 238 | 96.03 249 | 77.77 229 | 69.72 320 | 89.09 288 |
|
| v148 | | | 82.41 260 | 80.89 259 | 86.99 266 | 86.18 331 | 76.81 262 | 96.27 189 | 93.82 268 | 80.49 247 | 75.28 287 | 86.11 315 | 67.32 229 | 95.75 268 | 75.48 259 | 67.03 346 | 88.42 309 |
|
| pmmvs4 | | | 82.54 256 | 80.79 260 | 87.79 242 | 86.11 332 | 80.49 165 | 93.55 284 | 93.18 300 | 77.29 300 | 73.35 301 | 89.40 263 | 65.26 244 | 95.05 307 | 75.32 260 | 73.61 293 | 87.83 319 |
|
| MVP-Stereo | | | 82.65 255 | 81.67 250 | 85.59 291 | 86.10 333 | 78.29 222 | 93.33 289 | 92.82 307 | 77.75 294 | 69.17 332 | 87.98 282 | 59.28 281 | 95.76 267 | 71.77 285 | 96.88 87 | 82.73 370 |
| Qingsong Yan: MVP-Stereo: A Parallel Multi-View Patchmatch Stereo Method with Dilation Matching for Photogrammetric Application. |
| v1192 | | | 82.31 261 | 80.55 266 | 87.60 248 | 85.94 334 | 78.47 218 | 95.85 213 | 93.80 271 | 79.33 272 | 76.97 259 | 86.51 304 | 63.33 254 | 95.87 261 | 73.11 278 | 70.13 313 | 88.46 307 |
|
| TransMVSNet (Re) | | | 76.94 313 | 74.38 317 | 84.62 306 | 85.92 335 | 75.25 286 | 95.28 234 | 89.18 353 | 73.88 327 | 67.22 335 | 86.46 306 | 59.64 275 | 94.10 326 | 59.24 348 | 52.57 380 | 84.50 360 |
|
| PS-MVSNAJss | | | 84.91 215 | 84.30 208 | 86.74 268 | 85.89 336 | 74.40 295 | 94.95 251 | 94.16 250 | 83.93 181 | 76.45 266 | 90.11 257 | 71.04 209 | 95.77 266 | 83.16 188 | 79.02 265 | 90.06 269 |
|
| v144192 | | | 82.43 257 | 80.73 262 | 87.54 252 | 85.81 337 | 78.22 225 | 95.98 203 | 93.78 273 | 79.09 279 | 77.11 257 | 86.49 305 | 64.66 249 | 95.91 259 | 74.20 271 | 69.42 321 | 88.49 305 |
|
| v1921920 | | | 82.02 264 | 80.23 270 | 87.41 256 | 85.62 338 | 77.92 238 | 95.79 216 | 93.69 278 | 78.86 283 | 76.67 262 | 86.44 307 | 62.50 257 | 95.83 263 | 72.69 280 | 69.77 319 | 88.47 306 |
|
| v1240 | | | 81.70 268 | 79.83 278 | 87.30 260 | 85.50 339 | 77.70 247 | 95.48 227 | 93.44 287 | 78.46 288 | 76.53 265 | 86.44 307 | 60.85 270 | 95.84 262 | 71.59 287 | 70.17 311 | 88.35 310 |
|
| pm-mvs1 | | | 80.05 286 | 78.02 291 | 86.15 279 | 85.42 340 | 75.81 282 | 95.11 246 | 92.69 310 | 77.13 302 | 70.36 324 | 87.43 288 | 58.44 287 | 95.27 294 | 71.36 289 | 64.25 356 | 87.36 331 |
|
| our_test_3 | | | 77.90 305 | 75.37 309 | 85.48 293 | 85.39 341 | 76.74 263 | 93.63 281 | 91.67 323 | 73.39 332 | 65.72 347 | 84.65 335 | 58.20 290 | 93.13 341 | 57.82 351 | 67.87 336 | 86.57 340 |
|
| ppachtmachnet_test | | | 77.19 311 | 74.22 319 | 86.13 280 | 85.39 341 | 78.22 225 | 93.98 273 | 91.36 329 | 71.74 344 | 67.11 337 | 84.87 333 | 56.67 306 | 93.37 340 | 52.21 369 | 64.59 353 | 86.80 336 |
|
| MDA-MVSNet-bldmvs | | | 71.45 340 | 67.94 345 | 81.98 334 | 85.33 343 | 68.50 344 | 92.35 307 | 88.76 357 | 70.40 349 | 42.99 390 | 81.96 350 | 46.57 349 | 91.31 359 | 48.75 381 | 54.39 374 | 86.11 346 |
|
| Baseline_NR-MVSNet | | | 81.22 275 | 80.07 273 | 84.68 303 | 85.32 344 | 75.12 287 | 96.48 174 | 88.80 356 | 76.24 311 | 77.28 255 | 86.40 310 | 67.61 223 | 94.39 322 | 75.73 257 | 66.73 348 | 84.54 359 |
|
| DTE-MVSNet | | | 78.37 299 | 77.06 298 | 82.32 332 | 85.22 345 | 67.17 352 | 93.40 286 | 93.66 279 | 78.71 285 | 70.53 323 | 88.29 277 | 59.06 283 | 92.23 348 | 61.38 340 | 63.28 360 | 87.56 326 |
|
| pmmvs5 | | | 81.34 273 | 79.54 279 | 86.73 271 | 85.02 346 | 76.91 259 | 96.22 192 | 91.65 324 | 77.65 295 | 73.55 296 | 88.61 271 | 55.70 313 | 94.43 321 | 74.12 272 | 73.35 296 | 88.86 300 |
|
| XVG-ACMP-BASELINE | | | 79.38 294 | 77.90 292 | 83.81 315 | 84.98 347 | 67.14 353 | 89.03 334 | 93.18 300 | 80.26 256 | 72.87 307 | 88.15 280 | 38.55 372 | 96.26 242 | 76.05 253 | 78.05 275 | 88.02 316 |
|
| test_vis1_n | | | 85.60 204 | 85.70 183 | 85.33 294 | 84.79 348 | 64.98 356 | 96.83 152 | 91.61 326 | 87.36 99 | 91.00 98 | 94.84 174 | 36.14 376 | 97.18 201 | 95.66 46 | 93.03 144 | 93.82 231 |
|
| MDA-MVSNet_test_wron | | | 73.54 329 | 70.43 337 | 82.86 326 | 84.55 349 | 71.85 320 | 91.74 314 | 91.32 331 | 67.63 357 | 46.73 387 | 81.09 356 | 55.11 317 | 90.42 367 | 55.91 361 | 59.76 366 | 86.31 343 |
|
| SixPastTwentyTwo | | | 76.04 317 | 74.32 318 | 81.22 336 | 84.54 350 | 61.43 372 | 91.16 320 | 89.30 352 | 77.89 291 | 64.04 352 | 86.31 311 | 48.23 339 | 94.29 324 | 63.54 332 | 63.84 358 | 87.93 318 |
|
| YYNet1 | | | 73.53 330 | 70.43 337 | 82.85 327 | 84.52 351 | 71.73 323 | 91.69 315 | 91.37 328 | 67.63 357 | 46.79 386 | 81.21 355 | 55.04 318 | 90.43 366 | 55.93 360 | 59.70 367 | 86.38 342 |
|
| N_pmnet | | | 61.30 353 | 60.20 356 | 64.60 372 | 84.32 352 | 17.00 413 | 91.67 316 | 10.98 411 | 61.77 372 | 58.45 375 | 78.55 365 | 49.89 336 | 91.83 354 | 42.27 388 | 63.94 357 | 84.97 357 |
|
| mvs_tets | | | 81.74 267 | 80.71 263 | 84.84 300 | 84.22 353 | 70.29 332 | 93.91 276 | 93.78 273 | 82.77 208 | 73.37 300 | 89.46 262 | 47.36 347 | 95.31 292 | 81.99 196 | 79.55 261 | 88.92 298 |
|
| jajsoiax | | | 82.12 263 | 81.15 258 | 85.03 299 | 84.19 354 | 70.70 329 | 94.22 270 | 93.95 258 | 83.07 199 | 73.48 297 | 89.75 259 | 49.66 337 | 95.37 288 | 82.24 195 | 79.76 255 | 89.02 292 |
|
| EU-MVSNet | | | 76.92 314 | 76.95 299 | 76.83 356 | 84.10 355 | 54.73 387 | 91.77 313 | 92.71 309 | 72.74 337 | 69.57 329 | 88.69 270 | 58.03 293 | 87.43 379 | 64.91 325 | 70.00 317 | 88.33 311 |
|
| test_djsdf | | | 83.00 250 | 82.45 239 | 84.64 305 | 84.07 356 | 69.78 336 | 94.80 256 | 94.48 229 | 80.74 240 | 75.41 286 | 87.70 285 | 61.32 269 | 95.10 303 | 83.77 176 | 79.76 255 | 89.04 291 |
|
| v7n | | | 79.32 295 | 77.34 295 | 85.28 295 | 84.05 357 | 72.89 310 | 93.38 287 | 93.87 265 | 75.02 319 | 70.68 321 | 84.37 336 | 59.58 277 | 95.62 278 | 67.60 308 | 67.50 341 | 87.32 332 |
|
| test_vis1_rt | | | 73.96 326 | 72.40 329 | 78.64 350 | 83.91 358 | 61.16 373 | 95.63 222 | 68.18 400 | 76.32 308 | 60.09 371 | 74.77 374 | 29.01 389 | 97.54 178 | 87.74 142 | 75.94 281 | 77.22 384 |
|
| dmvs_testset | | | 72.00 339 | 73.36 325 | 67.91 367 | 83.83 359 | 31.90 407 | 85.30 363 | 77.12 392 | 82.80 207 | 63.05 359 | 92.46 217 | 61.54 267 | 82.55 390 | 42.22 389 | 71.89 303 | 89.29 282 |
|
| OurMVSNet-221017-0 | | | 77.18 312 | 76.06 304 | 80.55 341 | 83.78 360 | 60.00 376 | 90.35 326 | 91.05 335 | 77.01 306 | 66.62 343 | 87.92 283 | 47.73 345 | 94.03 327 | 71.63 286 | 68.44 330 | 87.62 323 |
|
| EG-PatchMatch MVS | | | 74.92 323 | 72.02 330 | 83.62 320 | 83.76 361 | 73.28 303 | 93.62 282 | 92.04 318 | 68.57 356 | 58.88 373 | 83.80 341 | 31.87 385 | 95.57 282 | 56.97 357 | 78.67 267 | 82.00 376 |
|
| K. test v3 | | | 73.62 327 | 71.59 332 | 79.69 344 | 82.98 362 | 59.85 377 | 90.85 324 | 88.83 355 | 77.13 302 | 58.90 372 | 82.11 349 | 43.62 356 | 91.72 355 | 65.83 321 | 54.10 375 | 87.50 329 |
|
| test_fmvs2 | | | 79.59 290 | 79.90 277 | 78.67 349 | 82.86 363 | 55.82 384 | 95.20 240 | 89.55 348 | 81.09 233 | 80.12 231 | 89.80 258 | 34.31 381 | 93.51 337 | 87.82 141 | 78.36 273 | 86.69 338 |
|
| test_fmvsmconf0.01_n | | | 91.08 97 | 90.68 93 | 92.29 120 | 82.43 364 | 80.12 174 | 97.94 63 | 93.93 259 | 92.07 26 | 91.97 80 | 97.60 81 | 67.56 225 | 99.53 68 | 97.09 29 | 95.56 113 | 97.21 144 |
|
| EGC-MVSNET | | | 52.46 361 | 47.56 364 | 67.15 368 | 81.98 365 | 60.11 375 | 82.54 373 | 72.44 396 | 0.11 408 | 0.70 409 | 74.59 375 | 25.11 390 | 83.26 387 | 29.04 395 | 61.51 364 | 58.09 393 |
|
| anonymousdsp | | | 80.98 279 | 79.97 275 | 84.01 313 | 81.73 366 | 70.44 331 | 92.49 304 | 93.58 284 | 77.10 304 | 72.98 306 | 86.31 311 | 57.58 297 | 94.90 308 | 79.32 217 | 78.63 270 | 86.69 338 |
|
| Anonymous20231206 | | | 75.29 322 | 73.64 323 | 80.22 342 | 80.75 367 | 63.38 365 | 93.36 288 | 90.71 342 | 73.09 334 | 67.12 336 | 83.70 342 | 50.33 334 | 90.85 363 | 53.63 367 | 70.10 315 | 86.44 341 |
|
| Gipuma |  | | 45.11 366 | 42.05 368 | 54.30 382 | 80.69 368 | 51.30 389 | 35.80 400 | 83.81 381 | 28.13 396 | 27.94 400 | 34.53 400 | 11.41 403 | 76.70 396 | 21.45 399 | 54.65 372 | 34.90 400 |
| S. Galliani, K. Lasinger, K. Schindler: Massively Parallel Multiview Stereopsis by Surface Normal Diffusion. ICCV 2015 |
| lessismore_v0 | | | | | 79.98 343 | 80.59 369 | 58.34 379 | | 80.87 386 | | 58.49 374 | 83.46 344 | 43.10 360 | 93.89 329 | 63.11 334 | 48.68 384 | 87.72 320 |
|
| OpenMVS_ROB |  | 68.52 20 | 73.02 333 | 69.57 340 | 83.37 323 | 80.54 370 | 71.82 321 | 93.60 283 | 88.22 361 | 62.37 369 | 61.98 363 | 83.15 346 | 35.31 380 | 95.47 284 | 45.08 385 | 75.88 282 | 82.82 368 |
|
| testgi | | | 74.88 324 | 73.40 324 | 79.32 347 | 80.13 371 | 61.75 369 | 93.21 294 | 86.64 370 | 79.49 270 | 66.56 344 | 91.06 239 | 35.51 379 | 88.67 372 | 56.79 358 | 71.25 304 | 87.56 326 |
|
| CMPMVS |  | 54.94 21 | 75.71 321 | 74.56 316 | 79.17 348 | 79.69 372 | 55.98 382 | 89.59 329 | 93.30 295 | 60.28 379 | 53.85 383 | 89.07 265 | 47.68 346 | 96.33 240 | 76.55 246 | 81.02 248 | 85.22 355 |
| M. Jancosek, T. Pajdla: Multi-View Reconstruction Preserving Weakly-Supported Surfaces. CVPR 2011 |
| LF4IMVS | | | 72.36 336 | 70.82 334 | 76.95 355 | 79.18 373 | 56.33 381 | 86.12 358 | 86.11 372 | 69.30 355 | 63.06 358 | 86.66 302 | 33.03 383 | 92.25 347 | 65.33 323 | 68.64 328 | 82.28 374 |
|
| pmmvs6 | | | 74.65 325 | 71.67 331 | 83.60 321 | 79.13 374 | 69.94 334 | 93.31 292 | 90.88 339 | 61.05 378 | 65.83 346 | 84.15 339 | 43.43 357 | 94.83 311 | 66.62 315 | 60.63 365 | 86.02 348 |
|
| DeepMVS_CX |  | | | | 64.06 373 | 78.53 375 | 43.26 398 | | 68.11 402 | 69.94 352 | 38.55 392 | 76.14 372 | 18.53 394 | 79.34 391 | 43.72 386 | 41.62 394 | 69.57 388 |
|
| CL-MVSNet_self_test | | | 75.81 319 | 74.14 321 | 80.83 340 | 78.33 376 | 67.79 346 | 94.22 270 | 93.52 285 | 77.28 301 | 69.82 327 | 81.54 353 | 61.47 268 | 89.22 370 | 57.59 353 | 53.51 376 | 85.48 354 |
|
| test20.03 | | | 72.36 336 | 71.15 333 | 75.98 360 | 77.79 377 | 59.16 378 | 92.40 306 | 89.35 351 | 74.09 325 | 61.50 365 | 84.32 337 | 48.09 340 | 85.54 385 | 50.63 374 | 62.15 363 | 83.24 366 |
|
| UnsupCasMVSNet_eth | | | 73.25 331 | 70.57 336 | 81.30 335 | 77.53 378 | 66.33 354 | 87.24 349 | 93.89 264 | 80.38 251 | 57.90 377 | 81.59 352 | 42.91 362 | 90.56 365 | 65.18 324 | 48.51 385 | 87.01 335 |
|
| DSMNet-mixed | | | 73.13 332 | 72.45 328 | 75.19 362 | 77.51 379 | 46.82 392 | 85.09 364 | 82.01 385 | 67.61 361 | 69.27 331 | 81.33 354 | 50.89 330 | 86.28 382 | 54.54 364 | 83.80 225 | 92.46 243 |
|
| Patchmatch-RL test | | | 76.65 315 | 74.01 322 | 84.55 307 | 77.37 380 | 64.23 359 | 78.49 382 | 82.84 384 | 78.48 287 | 64.63 351 | 73.40 379 | 76.05 136 | 91.70 356 | 76.99 241 | 57.84 369 | 97.72 107 |
|
| Anonymous20240521 | | | 72.06 338 | 69.91 339 | 78.50 351 | 77.11 381 | 61.67 371 | 91.62 317 | 90.97 337 | 65.52 364 | 62.37 361 | 79.05 364 | 36.32 375 | 90.96 362 | 57.75 352 | 68.52 329 | 82.87 367 |
|
| test_method | | | 56.77 355 | 54.53 359 | 63.49 374 | 76.49 382 | 40.70 400 | 75.68 387 | 74.24 394 | 19.47 402 | 48.73 385 | 71.89 385 | 19.31 393 | 65.80 402 | 57.46 354 | 47.51 388 | 83.97 364 |
|
| MIMVSNet1 | | | 69.44 344 | 66.65 348 | 77.84 352 | 76.48 383 | 62.84 367 | 87.42 347 | 88.97 354 | 66.96 362 | 57.75 378 | 79.72 363 | 32.77 384 | 85.83 384 | 46.32 383 | 63.42 359 | 84.85 358 |
|
| pmmvs-eth3d | | | 73.59 328 | 70.66 335 | 82.38 330 | 76.40 384 | 73.38 300 | 89.39 333 | 89.43 350 | 72.69 338 | 60.34 370 | 77.79 367 | 46.43 350 | 91.26 360 | 66.42 319 | 57.06 370 | 82.51 371 |
|
| new_pmnet | | | 66.18 350 | 63.18 353 | 75.18 363 | 76.27 385 | 61.74 370 | 83.79 369 | 84.66 377 | 56.64 388 | 51.57 384 | 71.85 386 | 31.29 386 | 87.93 374 | 49.98 376 | 62.55 361 | 75.86 385 |
|
| KD-MVS_self_test | | | 70.97 342 | 69.31 342 | 75.95 361 | 76.24 386 | 55.39 386 | 87.45 346 | 90.94 338 | 70.20 351 | 62.96 360 | 77.48 368 | 44.01 354 | 88.09 373 | 61.25 341 | 53.26 377 | 84.37 361 |
|
| UnsupCasMVSNet_bld | | | 68.60 348 | 64.50 352 | 80.92 339 | 74.63 387 | 67.80 345 | 83.97 368 | 92.94 306 | 65.12 365 | 54.63 382 | 68.23 388 | 35.97 377 | 92.17 350 | 60.13 343 | 44.83 389 | 82.78 369 |
|
| PM-MVS | | | 69.32 345 | 66.93 347 | 76.49 357 | 73.60 388 | 55.84 383 | 85.91 359 | 79.32 390 | 74.72 321 | 61.09 367 | 78.18 366 | 21.76 392 | 91.10 361 | 70.86 295 | 56.90 371 | 82.51 371 |
|
| new-patchmatchnet | | | 68.85 347 | 65.93 349 | 77.61 354 | 73.57 389 | 63.94 362 | 90.11 328 | 88.73 358 | 71.62 345 | 55.08 381 | 73.60 378 | 40.84 369 | 87.22 381 | 51.35 372 | 48.49 386 | 81.67 379 |
|
| WB-MVS | | | 57.26 354 | 56.22 357 | 60.39 378 | 69.29 390 | 35.91 405 | 86.39 357 | 70.06 398 | 59.84 383 | 46.46 388 | 72.71 381 | 51.18 329 | 78.11 392 | 15.19 402 | 34.89 397 | 67.14 391 |
|
| test_fmvs3 | | | 69.56 343 | 69.19 343 | 70.67 365 | 69.01 391 | 47.05 391 | 90.87 323 | 86.81 368 | 71.31 347 | 66.79 341 | 77.15 369 | 16.40 396 | 83.17 388 | 81.84 197 | 62.51 362 | 81.79 378 |
|
| SSC-MVS | | | 56.01 357 | 54.96 358 | 59.17 379 | 68.42 392 | 34.13 406 | 84.98 365 | 69.23 399 | 58.08 387 | 45.36 389 | 71.67 387 | 50.30 335 | 77.46 393 | 14.28 403 | 32.33 398 | 65.91 392 |
|
| ambc | | | | | 76.02 359 | 68.11 393 | 51.43 388 | 64.97 396 | 89.59 347 | | 60.49 369 | 74.49 376 | 17.17 395 | 92.46 344 | 61.50 339 | 52.85 379 | 84.17 363 |
|
| APD_test1 | | | 56.56 356 | 53.58 360 | 65.50 369 | 67.93 394 | 46.51 394 | 77.24 386 | 72.95 395 | 38.09 393 | 42.75 391 | 75.17 373 | 13.38 399 | 82.78 389 | 40.19 390 | 54.53 373 | 67.23 390 |
|
| pmmvs3 | | | 65.75 351 | 62.18 354 | 76.45 358 | 67.12 395 | 64.54 357 | 88.68 337 | 85.05 375 | 54.77 390 | 57.54 379 | 73.79 377 | 29.40 388 | 86.21 383 | 55.49 363 | 47.77 387 | 78.62 382 |
|
| TDRefinement | | | 69.20 346 | 65.78 350 | 79.48 345 | 66.04 396 | 62.21 368 | 88.21 340 | 86.12 371 | 62.92 368 | 61.03 368 | 85.61 319 | 33.23 382 | 94.16 325 | 55.82 362 | 53.02 378 | 82.08 375 |
|
| mvsany_test3 | | | 67.19 349 | 65.34 351 | 72.72 364 | 63.08 397 | 48.57 390 | 83.12 371 | 78.09 391 | 72.07 341 | 61.21 366 | 77.11 370 | 22.94 391 | 87.78 377 | 78.59 224 | 51.88 381 | 81.80 377 |
|
| test_f | | | 64.01 352 | 62.13 355 | 69.65 366 | 63.00 398 | 45.30 397 | 83.66 370 | 80.68 387 | 61.30 375 | 55.70 380 | 72.62 382 | 14.23 398 | 84.64 386 | 69.84 300 | 58.11 368 | 79.00 381 |
|
| test_vis3_rt | | | 54.10 359 | 51.04 362 | 63.27 375 | 58.16 399 | 46.08 396 | 84.17 367 | 49.32 410 | 56.48 389 | 36.56 394 | 49.48 397 | 8.03 406 | 91.91 353 | 67.29 311 | 49.87 382 | 51.82 396 |
|
| FPMVS | | | 55.09 358 | 52.93 361 | 61.57 376 | 55.98 400 | 40.51 401 | 83.11 372 | 83.41 383 | 37.61 394 | 34.95 395 | 71.95 384 | 14.40 397 | 76.95 394 | 29.81 394 | 65.16 352 | 67.25 389 |
|
| PMMVS2 | | | 50.90 362 | 46.31 365 | 64.67 371 | 55.53 401 | 46.67 393 | 77.30 385 | 71.02 397 | 40.89 392 | 34.16 396 | 59.32 391 | 9.83 404 | 76.14 397 | 40.09 391 | 28.63 399 | 71.21 386 |
|
| wuyk23d | | | 14.10 373 | 13.89 376 | 14.72 388 | 55.23 402 | 22.91 412 | 33.83 401 | 3.56 412 | 4.94 405 | 4.11 406 | 2.28 408 | 2.06 411 | 19.66 407 | 10.23 406 | 8.74 405 | 1.59 405 |
|
| E-PMN | | | 32.70 370 | 32.39 372 | 33.65 386 | 53.35 403 | 25.70 410 | 74.07 390 | 53.33 408 | 21.08 400 | 17.17 404 | 33.63 402 | 11.85 402 | 54.84 404 | 12.98 404 | 14.04 401 | 20.42 401 |
|
| testf1 | | | 45.70 364 | 42.41 366 | 55.58 380 | 53.29 404 | 40.02 402 | 68.96 394 | 62.67 404 | 27.45 397 | 29.85 397 | 61.58 389 | 5.98 407 | 73.83 399 | 28.49 397 | 43.46 392 | 52.90 394 |
|
| APD_test2 | | | 45.70 364 | 42.41 366 | 55.58 380 | 53.29 404 | 40.02 402 | 68.96 394 | 62.67 404 | 27.45 397 | 29.85 397 | 61.58 389 | 5.98 407 | 73.83 399 | 28.49 397 | 43.46 392 | 52.90 394 |
|
| EMVS | | | 31.70 371 | 31.45 373 | 32.48 387 | 50.72 406 | 23.95 411 | 74.78 389 | 52.30 409 | 20.36 401 | 16.08 405 | 31.48 403 | 12.80 400 | 53.60 405 | 11.39 405 | 13.10 404 | 19.88 402 |
|
| LCM-MVSNet | | | 52.52 360 | 48.24 363 | 65.35 370 | 47.63 407 | 41.45 399 | 72.55 392 | 83.62 382 | 31.75 395 | 37.66 393 | 57.92 393 | 9.19 405 | 76.76 395 | 49.26 378 | 44.60 390 | 77.84 383 |
|
| MVE |  | 35.65 22 | 33.85 369 | 29.49 374 | 46.92 384 | 41.86 408 | 36.28 404 | 50.45 399 | 56.52 407 | 18.75 403 | 18.28 402 | 37.84 399 | 2.41 410 | 58.41 403 | 18.71 400 | 20.62 400 | 46.06 398 |
| Simon Fuhrmann, Fabian Langguth, Michael Goesele: MVE - A Multi-View Reconstruction Environment. EUROGRAPHICS Workshops on Graphics and Cultural Heritage (2014) |
| ANet_high | | | 46.22 363 | 41.28 370 | 61.04 377 | 39.91 409 | 46.25 395 | 70.59 393 | 76.18 393 | 58.87 385 | 23.09 401 | 48.00 398 | 12.58 401 | 66.54 401 | 28.65 396 | 13.62 402 | 70.35 387 |
|
| PMVS |  | 34.80 23 | 39.19 368 | 35.53 371 | 50.18 383 | 29.72 410 | 30.30 408 | 59.60 398 | 66.20 403 | 26.06 399 | 17.91 403 | 49.53 396 | 3.12 409 | 74.09 398 | 18.19 401 | 49.40 383 | 46.14 397 |
| Y. Furukawa, J. Ponce: Accurate, dense, and robust multiview stereopsis. PAMI (2010) |
| tmp_tt | | | 41.54 367 | 41.93 369 | 40.38 385 | 20.10 411 | 26.84 409 | 61.93 397 | 59.09 406 | 14.81 404 | 28.51 399 | 80.58 357 | 35.53 378 | 48.33 406 | 63.70 331 | 13.11 403 | 45.96 399 |
|
| testmvs | | | 9.92 374 | 12.94 377 | 0.84 390 | 0.65 412 | 0.29 415 | 93.78 279 | 0.39 413 | 0.42 406 | 2.85 407 | 15.84 406 | 0.17 413 | 0.30 409 | 2.18 407 | 0.21 406 | 1.91 404 |
|
| test123 | | | 9.07 375 | 11.73 378 | 1.11 389 | 0.50 413 | 0.77 414 | 89.44 332 | 0.20 414 | 0.34 407 | 2.15 408 | 10.72 407 | 0.34 412 | 0.32 408 | 1.79 408 | 0.08 407 | 2.23 403 |
|
| test_blank | | | 0.00 378 | 0.00 381 | 0.00 391 | 0.00 414 | 0.00 416 | 0.00 402 | 0.00 415 | 0.00 409 | 0.00 410 | 0.00 409 | 0.00 414 | 0.00 410 | 0.00 409 | 0.00 408 | 0.00 406 |
|
| eth-test2 | | | | | | 0.00 414 | | | | | | | | | | | |
|
| eth-test | | | | | | 0.00 414 | | | | | | | | | | | |
|
| uanet_test | | | 0.00 378 | 0.00 381 | 0.00 391 | 0.00 414 | 0.00 416 | 0.00 402 | 0.00 415 | 0.00 409 | 0.00 410 | 0.00 409 | 0.00 414 | 0.00 410 | 0.00 409 | 0.00 408 | 0.00 406 |
|
| DCPMVS | | | 0.00 378 | 0.00 381 | 0.00 391 | 0.00 414 | 0.00 416 | 0.00 402 | 0.00 415 | 0.00 409 | 0.00 410 | 0.00 409 | 0.00 414 | 0.00 410 | 0.00 409 | 0.00 408 | 0.00 406 |
|
| cdsmvs_eth3d_5k | | | 21.43 372 | 28.57 375 | 0.00 391 | 0.00 414 | 0.00 416 | 0.00 402 | 95.93 151 | 0.00 409 | 0.00 410 | 97.66 74 | 63.57 252 | 0.00 410 | 0.00 409 | 0.00 408 | 0.00 406 |
|
| pcd_1.5k_mvsjas | | | 5.92 377 | 7.89 380 | 0.00 391 | 0.00 414 | 0.00 416 | 0.00 402 | 0.00 415 | 0.00 409 | 0.00 410 | 0.00 409 | 71.04 209 | 0.00 410 | 0.00 409 | 0.00 408 | 0.00 406 |
|
| sosnet-low-res | | | 0.00 378 | 0.00 381 | 0.00 391 | 0.00 414 | 0.00 416 | 0.00 402 | 0.00 415 | 0.00 409 | 0.00 410 | 0.00 409 | 0.00 414 | 0.00 410 | 0.00 409 | 0.00 408 | 0.00 406 |
|
| sosnet | | | 0.00 378 | 0.00 381 | 0.00 391 | 0.00 414 | 0.00 416 | 0.00 402 | 0.00 415 | 0.00 409 | 0.00 410 | 0.00 409 | 0.00 414 | 0.00 410 | 0.00 409 | 0.00 408 | 0.00 406 |
|
| uncertanet | | | 0.00 378 | 0.00 381 | 0.00 391 | 0.00 414 | 0.00 416 | 0.00 402 | 0.00 415 | 0.00 409 | 0.00 410 | 0.00 409 | 0.00 414 | 0.00 410 | 0.00 409 | 0.00 408 | 0.00 406 |
|
| Regformer | | | 0.00 378 | 0.00 381 | 0.00 391 | 0.00 414 | 0.00 416 | 0.00 402 | 0.00 415 | 0.00 409 | 0.00 410 | 0.00 409 | 0.00 414 | 0.00 410 | 0.00 409 | 0.00 408 | 0.00 406 |
|
| ab-mvs-re | | | 8.11 376 | 10.81 379 | 0.00 391 | 0.00 414 | 0.00 416 | 0.00 402 | 0.00 415 | 0.00 409 | 0.00 410 | 97.30 96 | 0.00 414 | 0.00 410 | 0.00 409 | 0.00 408 | 0.00 406 |
|
| uanet | | | 0.00 378 | 0.00 381 | 0.00 391 | 0.00 414 | 0.00 416 | 0.00 402 | 0.00 415 | 0.00 409 | 0.00 410 | 0.00 409 | 0.00 414 | 0.00 410 | 0.00 409 | 0.00 408 | 0.00 406 |
|
| WAC-MVS | | | | | | | 67.18 349 | | | | | | | | 49.00 379 | | |
|
| PC_three_1452 | | | | | | | | | | 91.12 37 | 98.33 2 | 98.42 30 | 92.51 2 | 99.81 21 | 98.96 3 | 99.37 1 | 99.70 3 |
|
| test_241102_TWO | | | | | | | | | 96.78 55 | 88.72 67 | 97.70 9 | 98.91 2 | 87.86 21 | 99.82 18 | 98.15 11 | 99.00 15 | 99.47 9 |
|
| test_0728_THIRD | | | | | | | | | | 88.38 74 | 96.69 18 | 98.76 12 | 89.64 13 | 99.76 31 | 97.47 24 | 98.84 23 | 99.38 14 |
|
| GSMVS | | | | | | | | | | | | | | | | | 97.54 120 |
|
| sam_mvs1 | | | | | | | | | | | | | 77.59 107 | | | | 97.54 120 |
|
| sam_mvs | | | | | | | | | | | | | 75.35 155 | | | | |
|
| MTGPA |  | | | | | | | | 96.33 118 | | | | | | | | |
|
| test_post1 | | | | | | | | 85.88 360 | | | | 30.24 404 | 73.77 178 | 95.07 306 | 73.89 273 | | |
|
| test_post | | | | | | | | | | | | 33.80 401 | 76.17 134 | 95.97 253 | | | |
|
| patchmatchnet-post | | | | | | | | | | | | 77.09 371 | 77.78 106 | 95.39 286 | | | |
|
| MTMP | | | | | | | | 97.53 92 | 68.16 401 | | | | | | | | |
|
| test9_res | | | | | | | | | | | | | | | 96.00 41 | 99.03 13 | 98.31 64 |
|
| agg_prior2 | | | | | | | | | | | | | | | 94.30 60 | 99.00 15 | 98.57 48 |
|
| test_prior4 | | | | | | | 82.34 116 | 97.75 76 | | | | | | | | | |
|
| test_prior2 | | | | | | | | 98.37 40 | | 86.08 123 | 94.57 50 | 98.02 53 | 83.14 50 | | 95.05 53 | 98.79 26 | |
|
| 旧先验2 | | | | | | | | 96.97 142 | | 74.06 326 | 96.10 28 | | | 97.76 165 | 88.38 137 | | |
|
| 新几何2 | | | | | | | | 96.42 181 | | | | | | | | | |
|
| 无先验 | | | | | | | | 96.87 150 | 96.78 55 | 77.39 298 | | | | 99.52 69 | 79.95 211 | | 98.43 57 |
|
| 原ACMM2 | | | | | | | | 96.84 151 | | | | | | | | | |
|
| testdata2 | | | | | | | | | | | | | | 99.48 73 | 76.45 248 | | |
|
| segment_acmp | | | | | | | | | | | | | 82.69 55 | | | | |
|
| testdata1 | | | | | | | | 95.57 225 | | 87.44 96 | | | | | | | |
|
| plane_prior5 | | | | | | | | | 94.69 214 | | | | | 97.30 194 | 87.08 148 | 82.82 236 | 90.96 251 |
|
| plane_prior4 | | | | | | | | | | | | 94.15 189 | | | | | |
|
| plane_prior3 | | | | | | | 77.75 245 | | | 90.17 52 | 81.33 215 | | | | | | |
|
| plane_prior2 | | | | | | | | 97.18 119 | | 89.89 55 | | | | | | | |
|
| plane_prior | | | | | | | 77.96 235 | 97.52 95 | | 90.36 50 | | | | | | 82.96 234 | |
|
| n2 | | | | | | | | | 0.00 415 | | | | | | | | |
|
| nn | | | | | | | | | 0.00 415 | | | | | | | | |
|
| door-mid | | | | | | | | | 79.75 389 | | | | | | | | |
|
| test11 | | | | | | | | | 96.50 98 | | | | | | | | |
|
| door | | | | | | | | | 80.13 388 | | | | | | | | |
|
| HQP5-MVS | | | | | | | 78.48 215 | | | | | | | | | | |
|
| BP-MVS | | | | | | | | | | | | | | | 87.67 144 | | |
|
| HQP4-MVS | | | | | | | | | | | 82.30 201 | | | 97.32 192 | | | 91.13 249 |
|
| HQP3-MVS | | | | | | | | | 94.80 209 | | | | | | | 83.01 232 | |
|
| HQP2-MVS | | | | | | | | | | | | | 65.40 241 | | | | |
|
| MDTV_nov1_ep13_2view | | | | | | | 81.74 132 | 86.80 352 | | 80.65 242 | 85.65 161 | | 74.26 172 | | 76.52 247 | | 96.98 152 |
|
| ACMMP++_ref | | | | | | | | | | | | | | | | 78.45 272 | |
|
| ACMMP++ | | | | | | | | | | | | | | | | 79.05 264 | |
|
| Test By Simon | | | | | | | | | | | | | 71.65 202 | | | | |
|