This table lists the benchmark results for the high-res multi-view scenario. The following metrics are evaluated:

(*) For exact definitions, detailing how potentially incomplete ground truth is taken into account, see our paper.

The datasets are grouped into different categories, and result averages are computed for a category and method if results of the method are available for all datasets within the category. Note that the category "all" includes both the high-res multi-view and the low-res many-view scenarios.

Methods with suffix _ROB may participate in the Robust Vision Challenge.

Click a dataset result cell to show a visualization of the reconstruction. For training datasets, ground truth and accuracy / completeness visualizations are also available. The visualizations may not work with mobile browsers.




Method Infoallhigh-res
multi-view
indooroutdoorbotani.boulde.bridgedoorexhibi.lectur.living.loungeobserv.old co.statueterrac.
sort bysorted bysort bysort bysort bysort bysort bysort bysort bysort bysort bysort bysort bysort bysort bysort by
DP-MVS Recon91.72 7590.85 8594.34 3599.50 185.00 6398.51 2595.96 14180.57 22188.08 13197.63 7776.84 11899.89 785.67 14194.88 11998.13 76
MCST-MVS96.17 396.12 696.32 799.42 289.36 1098.94 1597.10 2595.17 292.11 7298.46 2687.33 2399.97 297.21 1699.31 499.63 7
MG-MVS94.25 2593.72 3595.85 1199.38 389.35 1197.98 4898.09 889.99 3592.34 6996.97 10881.30 6298.99 10588.54 11998.88 2199.20 22
AdaColmapbinary88.81 13487.61 14392.39 11599.33 479.95 17296.70 15195.58 16177.51 27583.05 18196.69 12061.90 25899.72 3584.29 15293.47 13597.50 129
CNVR-MVS96.30 196.54 195.55 1499.31 587.69 2199.06 997.12 2394.66 396.79 1198.78 1186.42 2799.95 397.59 1299.18 799.00 27
testtj94.09 3094.08 3094.09 4599.28 683.32 9597.59 7596.61 7983.60 17394.77 3998.46 2682.72 5599.64 4695.29 3698.42 4699.32 17
NCCC95.63 695.94 794.69 2799.21 785.15 5999.16 396.96 3494.11 695.59 2498.64 2185.07 3199.91 495.61 3199.10 999.00 27
OPU-MVS97.30 299.19 892.31 399.12 698.54 2292.06 399.84 1299.11 199.37 199.74 1
ZD-MVS99.09 983.22 9796.60 8282.88 18793.61 5498.06 5182.93 5199.14 9595.51 3398.49 42
DVP-MVS++96.05 496.41 394.96 2199.05 1085.34 4998.13 3896.77 5488.38 5997.70 698.77 1292.06 399.84 1297.47 1399.37 199.70 3
MSC_two_6792asdad97.14 399.05 1092.19 496.83 4499.81 2098.08 698.81 2599.43 11
No_MVS97.14 399.05 1092.19 496.83 4499.81 2098.08 698.81 2599.43 11
DVP-MVScopyleft95.58 895.91 894.57 2999.05 1085.18 5499.06 996.46 10088.75 4996.69 1298.76 1487.69 2199.76 2497.90 898.85 2298.77 34
Zhenlong Yuan, Jinguo Luo, Fei Shen, Zhaoxin Li, Cong Liu, Tianlu Mao, Zhaoqi Wang: DVP-MVS: Synergize Depth-Edge and Visibility Prior for Multi-View Stereo. AAAI2025
test072699.05 1085.18 5499.11 896.78 4888.75 4997.65 898.91 387.69 21
test_0728_SECOND95.14 1799.04 1586.14 3399.06 996.77 5499.84 1297.90 898.85 2299.45 10
SED-MVS95.88 596.22 494.87 2299.03 1685.03 6199.12 696.78 4888.72 5197.79 498.91 388.48 1699.82 1798.15 398.97 1799.74 1
IU-MVS99.03 1685.34 4996.86 4392.05 1598.74 198.15 398.97 1799.42 13
test_241102_ONE99.03 1685.03 6196.78 4888.72 5197.79 498.90 688.48 1699.82 17
ETH3 D test640095.56 995.41 1296.00 999.02 1989.42 998.75 1896.80 4787.28 8395.88 2298.95 285.92 2999.41 6697.15 1798.95 2099.18 24
test_one_060198.91 2084.56 7196.70 6488.06 6696.57 1598.77 1288.04 19
test_part298.90 2185.14 6096.07 20
PAPR92.74 5292.17 6594.45 3198.89 2284.87 6697.20 10496.20 12787.73 7588.40 12698.12 4478.71 9099.76 2487.99 12696.28 10298.74 35
DeepC-MVS_fast89.06 294.48 1994.30 2795.02 1998.86 2385.68 4498.06 4496.64 7693.64 891.74 7898.54 2280.17 7399.90 592.28 7598.75 3099.49 8
Andreas Kuhn, Christian Sormann, Mattia Rossi, Oliver Erdler, Friedrich Fraundorfer: DeepC-MVS: Deep Confidence Prediction for Multi-View Stereo Reconstruction. 3DV 2020
APDe-MVS94.56 1894.75 1593.96 4898.84 2483.40 9298.04 4696.41 10685.79 10995.00 3498.28 3284.32 3899.18 9197.35 1598.77 2999.28 19
DPE-MVScopyleft95.32 1095.55 994.64 2898.79 2584.87 6697.77 6096.74 5986.11 10196.54 1698.89 788.39 1899.74 3297.67 1199.05 1299.31 18
Kehua Chen, Zhenlong Yuan, Tianlu Mao, Zhaoqi Wang: Dual-Level Precision Edges Guided Multi-View Stereo with Accurate Planarization. AAAI2025
APD-MVScopyleft93.61 3893.59 3793.69 5798.76 2683.26 9697.21 10296.09 13482.41 19594.65 4098.21 3481.96 6098.81 11894.65 4498.36 5499.01 26
Yuesong Wang, Zhaojie Zeng and etc.: Adaptive Patch Deformation for Textureless-Resilient Multi-View Stereo. CVPR2023
HFP-MVS92.89 4992.86 5092.98 8998.71 2781.12 14397.58 7696.70 6485.20 12691.75 7697.97 5978.47 9299.71 3690.95 8798.41 4898.12 77
#test#92.99 4792.99 4692.98 8998.71 2781.12 14397.77 6096.70 6485.75 11091.75 7697.97 5978.47 9299.71 3691.36 8398.41 4898.12 77
region2R92.72 5592.70 5392.79 9898.68 2980.53 16197.53 8096.51 9485.22 12491.94 7497.98 5777.26 11099.67 4490.83 9198.37 5398.18 70
test_prior394.03 3294.34 2593.09 8498.68 2981.91 12398.37 2896.40 10986.08 10394.57 4198.02 5283.14 4799.06 10195.05 3898.79 2798.29 63
test_prior93.09 8498.68 2981.91 12396.40 10999.06 10198.29 63
ACMMPR92.69 5792.67 5492.75 9998.66 3280.57 15897.58 7696.69 6785.20 12691.57 8097.92 6177.01 11699.67 4490.95 8798.41 4898.00 89
API-MVS90.18 11088.97 11993.80 5298.66 3282.95 10497.50 8495.63 16075.16 29386.31 14597.69 7172.49 18499.90 581.26 18396.07 10598.56 46
CDPH-MVS93.12 4492.91 4893.74 5498.65 3483.88 8097.67 7096.26 12283.00 18493.22 5898.24 3381.31 6199.21 8489.12 11598.74 3198.14 75
TEST998.64 3583.71 8597.82 5696.65 7384.29 15295.16 2898.09 4684.39 3499.36 74
train_agg94.28 2394.45 2193.74 5498.64 3583.71 8597.82 5696.65 7384.50 14495.16 2898.09 4684.33 3599.36 7495.91 2798.96 1998.16 72
test_898.63 3783.64 8897.81 5896.63 7884.50 14495.10 3098.11 4584.33 3599.23 80
HPM-MVS++copyleft95.32 1095.48 1194.85 2398.62 3886.04 3497.81 5896.93 3792.45 1195.69 2398.50 2485.38 3099.85 1094.75 4299.18 798.65 42
agg_prior194.10 2994.31 2693.48 7098.59 3983.13 9897.77 6096.56 8784.38 14894.19 4598.13 4184.66 3399.16 9395.74 2998.74 3198.15 74
agg_prior98.59 3983.13 9896.56 8794.19 4599.16 93
CSCG92.02 6891.65 7593.12 8298.53 4180.59 15797.47 8597.18 2177.06 28384.64 16197.98 5783.98 4099.52 5790.72 9397.33 8199.23 21
XVS92.69 5792.71 5192.63 10798.52 4280.29 16497.37 9696.44 10287.04 9191.38 8297.83 6777.24 11299.59 5190.46 9798.07 6298.02 84
X-MVStestdata86.26 18184.14 19792.63 10798.52 4280.29 16497.37 9696.44 10287.04 9191.38 8220.73 37377.24 11299.59 5190.46 9798.07 6298.02 84
FOURS198.51 4478.01 22898.13 3896.21 12683.04 18294.39 43
CP-MVS92.54 6292.60 5692.34 11698.50 4579.90 17498.40 2696.40 10984.75 13490.48 9998.09 4677.40 10999.21 8491.15 8698.23 5997.92 97
PAPM_NR91.46 8290.82 8693.37 7498.50 4581.81 13095.03 23296.13 13184.65 14086.10 14897.65 7679.24 8299.75 3083.20 17296.88 9398.56 46
MAR-MVS90.63 10090.22 9691.86 13298.47 4778.20 22497.18 10696.61 7983.87 16588.18 13098.18 3568.71 21399.75 3083.66 16497.15 8597.63 120
Zhenyu Xu, Yiguang Liu, Xuelei Shi, Ying Wang, Yunan Zheng: MARMVS: Matching Ambiguity Reduced Multiple View Stereo for Efficient Large Scale Scene Reconstruction. CVPR 2020
Regformer-194.00 3394.04 3293.87 5098.41 4884.29 7497.43 9197.04 2789.50 4092.75 6698.13 4182.60 5799.26 7993.55 5596.99 8898.06 81
Regformer-293.92 3494.01 3393.67 5998.41 4883.75 8497.43 9197.00 2989.43 4292.69 6798.13 4182.48 5899.22 8293.51 5696.99 8898.04 82
mPP-MVS91.88 7191.82 7192.07 12598.38 5078.63 20897.29 9996.09 13485.12 12888.45 12597.66 7275.53 14399.68 4289.83 10698.02 6597.88 98
SR-MVS92.16 6692.27 6191.83 13598.37 5178.41 21496.67 15295.76 15282.19 19991.97 7398.07 5076.44 12598.64 12293.71 5297.27 8298.45 52
test1294.25 3898.34 5285.55 4696.35 11692.36 6880.84 6399.22 8298.31 5697.98 91
CPTT-MVS89.72 11689.87 10789.29 20398.33 5373.30 29297.70 6895.35 17775.68 28987.40 13597.44 8770.43 20598.25 13989.56 11196.90 9196.33 174
MSP-MVS95.62 796.54 192.86 9598.31 5480.10 17197.42 9396.78 4892.20 1397.11 1098.29 3193.46 199.10 9996.01 2499.30 599.38 14
Zhenlong Yuan, Cong Liu, Fei Shen, Zhaoxin Li, Jingguo luo, Tianlu Mao and Zhaoqi Wang: MSP-MVS: Multi-granularity Segmentation Prior Guided Multi-View Stereo. AAAI2025
MSLP-MVS++94.28 2394.39 2493.97 4798.30 5584.06 7998.64 2196.93 3790.71 2693.08 6098.70 1879.98 7499.21 8494.12 4999.07 1198.63 43
PGM-MVS91.93 6991.80 7292.32 11898.27 5679.74 17995.28 21897.27 1883.83 16690.89 9497.78 6976.12 13299.56 5588.82 11797.93 6897.66 117
xxxxxxxxxxxxxcwj94.38 2194.62 1893.68 5898.24 5783.34 9398.61 2392.69 29791.32 1895.07 3298.74 1682.93 5199.38 6895.42 3498.51 3898.32 58
ZNCC-MVS92.75 5192.60 5693.23 7898.24 5781.82 12997.63 7196.50 9685.00 13191.05 9197.74 7078.38 9499.80 2390.48 9698.34 5598.07 80
save fliter98.24 5783.34 9398.61 2396.57 8591.32 18
114514_t88.79 13687.57 14492.45 11298.21 6081.74 13296.99 12695.45 16975.16 29382.48 18495.69 13668.59 21498.50 13080.33 18895.18 11797.10 148
test117291.64 7792.00 6990.54 17198.20 6174.48 28396.45 16495.65 15781.97 20391.63 7998.02 5275.76 13898.61 12393.16 6397.17 8498.52 49
GST-MVS92.43 6492.22 6493.04 8798.17 6281.64 13697.40 9596.38 11384.71 13790.90 9397.40 9077.55 10799.76 2489.75 10897.74 7197.72 112
DP-MVS81.47 25378.28 26791.04 15698.14 6378.48 21095.09 23186.97 34661.14 35171.12 29892.78 19759.59 26799.38 6853.11 34586.61 18995.27 197
MP-MVScopyleft92.61 6092.67 5492.42 11498.13 6479.73 18097.33 9896.20 12785.63 11290.53 9797.66 7278.14 9899.70 3992.12 7798.30 5797.85 102
Rongxuan Tan, Qing Wang, et al.: MP-MVS: Multi-Scale Windows PatchMatch and Planar Prior Multi-View Stereo.
9.1494.26 2898.10 6598.14 3596.52 9384.74 13594.83 3798.80 982.80 5499.37 7295.95 2698.42 46
Regformer-393.19 4293.19 4493.19 8098.10 6583.01 10397.08 12196.98 3188.98 4691.35 8697.89 6280.80 6499.23 8092.30 7495.20 11597.32 138
Regformer-493.06 4693.12 4592.89 9498.10 6582.20 11797.08 12196.92 3988.87 4891.23 8897.89 6280.57 6799.19 8992.21 7695.20 11597.29 142
PHI-MVS93.59 3993.63 3693.48 7098.05 6881.76 13198.64 2197.13 2282.60 19394.09 5098.49 2580.35 6899.85 1094.74 4398.62 3598.83 32
SMA-MVScopyleft94.70 1694.68 1694.76 2598.02 6985.94 3797.47 8596.77 5485.32 12097.92 398.70 1883.09 5099.84 1295.79 2899.08 1098.49 50
Yufeng Yin; Xiaoyan Liu; Zichao Zhang: SMA-MVS: Segmentation-Guided Multi-Scale Anchor Deformation Patch Multi-View Stereo. IEEE Transactions on Circuits and Systems for Video Technology
PLCcopyleft83.97 788.00 15687.38 15089.83 19498.02 6976.46 25897.16 11094.43 22779.26 25381.98 19496.28 12469.36 21099.27 7777.71 21492.25 14893.77 219
Jie Liao, Yanping Fu, Qingan Yan, Chunxia xiao: Pyramid Multi-View Stereo with Local Consistency. Pacific Graphics 2019
zzz-MVS92.74 5292.71 5192.86 9597.90 7180.85 15196.47 16196.33 11787.92 6990.20 10298.18 3576.71 12299.76 2492.57 7298.09 6097.96 95
MTAPA92.45 6392.31 6092.86 9597.90 7180.85 15192.88 28296.33 11787.92 6990.20 10298.18 3576.71 12299.76 2492.57 7298.09 6097.96 95
APD-MVS_3200maxsize91.23 8991.35 7990.89 16197.89 7376.35 26196.30 17795.52 16579.82 24091.03 9297.88 6474.70 16098.54 12892.11 7896.89 9297.77 109
HPM-MVScopyleft91.62 7991.53 7791.89 13197.88 7479.22 19296.99 12695.73 15482.07 20089.50 11497.19 9975.59 14298.93 11390.91 8997.94 6697.54 124
Chunlin Ren, Qingshan Xu, Shikun Zhang, Jiaqi Yang: Hierarchical Prior Mining for Non-local Multi-View Stereo. ICCV 2023
SD-MVS94.84 1495.02 1494.29 3797.87 7584.61 7097.76 6496.19 12989.59 3996.66 1498.17 3984.33 3599.60 5096.09 2298.50 4198.66 41
Zhenlong Yuan, Jiakai Cao, Zhaoxin Li, Hao Jiang and Zhaoqi Wang: SD-MVS: Segmentation-driven Deformation Multi-View Stereo with Spherical Refinement and EM optimization. AAAI2024
ETH3D-3000-0.194.43 2094.42 2394.45 3197.78 7685.78 4097.98 4896.53 9285.29 12395.45 2598.81 883.36 4599.38 6896.07 2398.53 3798.19 69
原ACMM191.22 15397.77 7778.10 22696.61 7981.05 21291.28 8797.42 8877.92 10198.98 10679.85 19698.51 3896.59 165
SR-MVS-dyc-post91.29 8791.45 7890.80 16397.76 7876.03 26696.20 18395.44 17080.56 22290.72 9597.84 6575.76 13898.61 12391.99 7996.79 9697.75 110
RE-MVS-def91.18 8397.76 7876.03 26696.20 18395.44 17080.56 22290.72 9597.84 6573.36 17891.99 7996.79 9697.75 110
TSAR-MVS + MP.94.79 1595.17 1393.64 6097.66 8084.10 7895.85 20196.42 10591.26 2097.49 996.80 11686.50 2698.49 13195.54 3299.03 1398.33 57
Zhenlong Yuan, Jiakai Cao, Zhaoqi Wang, Zhaoxin Li: TSAR-MVS: Textureless-aware Segmentation and Correlative Refinement Guided Multi-View Stereo. Pattern Recognition
HPM-MVS_fast90.38 10890.17 9991.03 15797.61 8177.35 24697.15 11195.48 16779.51 24688.79 12196.90 10971.64 19498.81 11887.01 13597.44 7796.94 151
EI-MVSNet-Vis-set91.84 7291.77 7392.04 12797.60 8281.17 14296.61 15396.87 4188.20 6489.19 11697.55 8278.69 9199.14 9590.29 10290.94 15795.80 184
CNLPA86.96 16785.37 17691.72 13797.59 8379.34 19097.21 10291.05 31974.22 30078.90 22296.75 11867.21 22298.95 11074.68 24590.77 15896.88 156
ACMMPcopyleft90.39 10689.97 10291.64 13997.58 8478.21 22396.78 14396.72 6284.73 13684.72 15997.23 9771.22 19799.63 4888.37 12492.41 14697.08 149
Qingshan Xu, Weihang Kong, Wenbing Tao, Marc Pollefeys: Multi-Scale Geometric Consistency Guided and Planar Prior Assisted Multi-View Stereo. IEEE Transactions on Pattern Analysis and Machine Intelligence
SF-MVS94.17 2694.05 3194.55 3097.56 8585.95 3597.73 6696.43 10484.02 15895.07 3298.74 1682.93 5199.38 6895.42 3498.51 3898.32 58
CANet94.89 1394.64 1795.63 1297.55 8688.12 1599.06 996.39 11294.07 795.34 2797.80 6876.83 11999.87 897.08 1897.64 7398.89 30
PVSNet_BlendedMVS90.05 11189.96 10390.33 17797.47 8783.86 8198.02 4796.73 6087.98 6889.53 11289.61 23876.42 12699.57 5394.29 4779.59 23787.57 306
PVSNet_Blended93.13 4392.98 4793.57 6497.47 8783.86 8199.32 196.73 6091.02 2489.53 11296.21 12576.42 12699.57 5394.29 4795.81 11197.29 142
新几何193.12 8297.44 8981.60 13796.71 6374.54 29891.22 8997.57 7879.13 8499.51 6077.40 21998.46 4398.26 66
LS3D82.22 24579.94 25789.06 20597.43 9074.06 28893.20 27692.05 30361.90 34673.33 28295.21 14959.35 27099.21 8454.54 34192.48 14593.90 218
test_yl91.46 8290.53 9094.24 3997.41 9185.18 5498.08 4197.72 1080.94 21389.85 10496.14 12675.61 14098.81 11890.42 10088.56 17598.74 35
DCV-MVSNet91.46 8290.53 9094.24 3997.41 9185.18 5498.08 4197.72 1080.94 21389.85 10496.14 12675.61 14098.81 11890.42 10088.56 17598.74 35
EI-MVSNet-UG-set91.35 8691.22 8091.73 13697.39 9380.68 15596.47 16196.83 4487.92 6988.30 12997.36 9177.84 10299.13 9789.43 11389.45 16495.37 194
旧先验197.39 9379.58 18496.54 9098.08 4984.00 3997.42 7997.62 121
112190.66 9989.82 10893.16 8197.39 9381.71 13493.33 26996.66 7274.45 29991.38 8297.55 8279.27 8099.52 5779.95 19398.43 4598.26 66
TSAR-MVS + GP.94.35 2294.50 1993.89 4997.38 9683.04 10298.10 4095.29 18191.57 1693.81 5197.45 8486.64 2499.43 6596.28 2194.01 12899.20 22
MVS_111021_HR93.41 4193.39 4093.47 7397.34 9782.83 10597.56 7898.27 689.16 4589.71 10797.14 10079.77 7699.56 5593.65 5397.94 6698.02 84
MP-MVS-pluss92.58 6192.35 5993.29 7597.30 9882.53 10996.44 16696.04 13884.68 13889.12 11798.37 2977.48 10899.74 3293.31 6198.38 5297.59 123
MP-MVS-pluss: MP-MVS-pluss. MP-MVS-pluss
EPNet94.06 3194.15 2993.76 5397.27 9984.35 7298.29 3097.64 1394.57 495.36 2696.88 11179.96 7599.12 9891.30 8496.11 10497.82 105
Wanjuan Su, Wenbing Tao: Efficient Edge-Preserving Multi-View Stereo Network for Depth Estimation. AAAI 2023
ACMMP_NAP93.46 4093.23 4394.17 4297.16 10084.28 7596.82 14096.65 7386.24 9994.27 4497.99 5577.94 10099.83 1693.39 5798.57 3698.39 55
LFMVS89.27 12487.64 14094.16 4497.16 10085.52 4797.18 10694.66 21279.17 25489.63 11096.57 12155.35 30298.22 14089.52 11289.54 16398.74 35
DeepPCF-MVS89.82 194.61 1796.17 589.91 19197.09 10270.21 31998.99 1496.69 6795.57 195.08 3199.23 186.40 2899.87 897.84 1098.66 3499.65 6
VNet92.11 6791.22 8094.79 2496.91 10386.98 2697.91 5197.96 986.38 9893.65 5395.74 13370.16 20898.95 11093.39 5788.87 17098.43 53
TAPA-MVS81.61 1285.02 19883.67 20189.06 20596.79 10473.27 29495.92 19594.79 20674.81 29680.47 20896.83 11371.07 19998.19 14249.82 35392.57 14295.71 187
Andrea Romanoni, Matteo Matteucci: TAPA-MVS: Textureless-Aware PAtchMatch Multi-View Stereo. ICCV 2019
Anonymous20240521184.41 20981.93 22891.85 13496.78 10578.41 21497.44 8791.34 31470.29 32584.06 16594.26 17441.09 34698.96 10779.46 19882.65 22598.17 71
ETH3D cwj APD-0.1693.91 3693.76 3494.36 3496.70 10685.74 4197.22 10096.41 10683.94 16194.13 4998.69 2083.13 4999.37 7295.25 3798.39 5197.97 94
abl_689.80 11489.71 11190.07 18396.53 10775.52 27494.48 24095.04 19081.12 21189.22 11597.00 10768.83 21298.96 10789.86 10595.27 11495.73 186
DELS-MVS94.98 1294.49 2096.44 696.42 10890.59 799.21 297.02 2894.40 591.46 8197.08 10483.32 4699.69 4092.83 6898.70 3399.04 25
Christian Sormann, Emanuele Santellani, Mattia Rossi, Andreas Kuhn, Friedrich Fraundorfer: DELS-MVS: Deep Epipolar Line Search for Multi-View Stereo. Winter Conference on Applications of Computer Vision (WACV), 2023
thres20088.92 13087.65 13992.73 10196.30 10985.62 4597.85 5498.86 184.38 14884.82 15793.99 18275.12 15698.01 14470.86 27586.67 18894.56 209
DPM-MVS96.21 295.53 1098.26 196.26 11095.09 199.15 496.98 3193.39 996.45 1798.79 1090.17 999.99 189.33 11499.25 699.70 3
tfpn200view988.48 14387.15 15592.47 11196.21 11185.30 5297.44 8798.85 283.37 17583.99 16793.82 18575.36 15097.93 14669.04 28186.24 19494.17 211
thres40088.42 14687.15 15592.23 12096.21 11185.30 5297.44 8798.85 283.37 17583.99 16793.82 18575.36 15097.93 14669.04 28186.24 19493.45 224
test22296.15 11378.41 21495.87 19996.46 10071.97 31889.66 10997.45 8476.33 12998.24 5898.30 62
HY-MVS84.06 691.63 7890.37 9495.39 1696.12 11488.25 1490.22 30697.58 1488.33 6290.50 9891.96 20479.26 8199.06 10190.29 10289.07 16798.88 31
thres100view90088.30 14986.95 16192.33 11796.10 11584.90 6597.14 11298.85 282.69 19183.41 17593.66 18875.43 14797.93 14669.04 28186.24 19494.17 211
thres600view788.06 15486.70 16492.15 12396.10 11585.17 5897.14 11298.85 282.70 19083.41 17593.66 18875.43 14797.82 15367.13 29085.88 19893.45 224
WTY-MVS92.65 5991.68 7495.56 1396.00 11788.90 1298.23 3297.65 1288.57 5589.82 10697.22 9879.29 7999.06 10189.57 11088.73 17298.73 39
MVSTER89.25 12588.92 12290.24 17995.98 11884.66 6996.79 14295.36 17587.19 8880.33 21190.61 22490.02 1195.97 23685.38 14478.64 24690.09 249
testdata90.13 18295.92 11974.17 28696.49 9973.49 30794.82 3897.99 5578.80 8997.93 14683.53 16897.52 7498.29 63
PatchMatch-RL85.00 19983.66 20289.02 20795.86 12074.55 28292.49 28693.60 26879.30 25179.29 22191.47 20958.53 27798.45 13370.22 27892.17 15094.07 215
canonicalmvs92.27 6591.22 8095.41 1595.80 12188.31 1397.09 11994.64 21588.49 5792.99 6297.31 9272.68 18398.57 12793.38 5988.58 17499.36 16
Anonymous2024052983.15 22880.60 24690.80 16395.74 12278.27 21896.81 14194.92 19560.10 35581.89 19692.54 19845.82 33198.82 11779.25 20278.32 25195.31 196
MVS_111021_LR91.60 8091.64 7691.47 14595.74 12278.79 20596.15 18596.77 5488.49 5788.64 12397.07 10572.33 18699.19 8993.13 6696.48 10196.43 169
test_part184.72 20282.85 21490.34 17695.73 12484.79 6896.75 14694.10 24279.05 26075.97 25989.51 23967.69 21595.94 24079.34 19967.50 31790.30 244
DWT-MVSNet_test90.52 10589.80 10992.70 10395.73 12482.20 11793.69 26096.55 8988.34 6187.04 14195.34 14586.53 2597.55 16476.32 23188.66 17398.34 56
PS-MVSNAJ94.17 2693.52 3996.10 895.65 12692.35 298.21 3395.79 15192.42 1296.24 1898.18 3571.04 20099.17 9296.77 1997.39 8096.79 158
Anonymous2023121179.72 26977.19 27587.33 24595.59 12777.16 25195.18 22594.18 23759.31 35772.57 29086.20 29047.89 32595.66 25674.53 24969.24 30089.18 267
alignmvs92.97 4892.26 6295.12 1895.54 12887.77 1998.67 1996.38 11388.04 6793.01 6197.45 8479.20 8398.60 12593.25 6288.76 17198.99 29
PVSNet82.34 989.02 12787.79 13792.71 10295.49 12981.50 13897.70 6897.29 1787.76 7485.47 15195.12 15756.90 29198.90 11480.33 18894.02 12797.71 114
tpmvs83.04 23180.77 24289.84 19395.43 13077.96 23085.59 33895.32 18075.31 29276.27 25383.70 31973.89 17097.41 17559.53 32181.93 22894.14 213
SteuartSystems-ACMMP94.13 2894.44 2293.20 7995.41 13181.35 14099.02 1396.59 8389.50 4094.18 4898.36 3083.68 4399.45 6494.77 4198.45 4498.81 33
Skip Steuart: Steuart Systems R&D Blog.
EPMVS87.47 16385.90 17192.18 12295.41 13182.26 11687.00 32996.28 12185.88 10884.23 16485.57 29775.07 15796.26 22771.14 27392.50 14498.03 83
BH-RMVSNet86.84 17185.28 17791.49 14495.35 13380.26 16796.95 13392.21 30182.86 18881.77 19895.46 14359.34 27197.64 15869.79 27993.81 13296.57 166
OMC-MVS88.80 13588.16 13190.72 16695.30 13477.92 23394.81 23694.51 22186.80 9484.97 15596.85 11267.53 21898.60 12585.08 14687.62 18295.63 188
MVS_Test90.29 10989.18 11693.62 6295.23 13584.93 6494.41 24394.66 21284.31 15090.37 10191.02 21775.13 15597.82 15383.11 17494.42 12498.12 77
F-COLMAP84.50 20883.44 20887.67 23595.22 13672.22 29995.95 19393.78 25975.74 28876.30 25295.18 15259.50 26998.45 13372.67 26186.59 19092.35 228
baseline188.85 13387.49 14692.93 9395.21 13786.85 2795.47 21394.61 21787.29 8283.11 18094.99 16280.70 6596.89 20382.28 17873.72 26795.05 198
CHOSEN 1792x268891.07 9190.21 9793.64 6095.18 13883.53 8996.26 17996.13 13188.92 4784.90 15693.10 19472.86 18199.62 4988.86 11695.67 11297.79 107
UGNet87.73 16086.55 16591.27 15195.16 13979.11 19696.35 17396.23 12488.14 6587.83 13390.48 22550.65 31499.09 10080.13 19294.03 12695.60 189
Wanjuan Su, Qingshan Xu, Wenbing Tao: Uncertainty-guided Multi-view Stereo Network for Depth Estimation. IEEE Transactions on Circuits and Systems for Video Technology, 2022
VDD-MVS88.28 15087.02 16092.06 12695.09 14080.18 17097.55 7994.45 22683.09 18089.10 11895.92 13247.97 32498.49 13193.08 6786.91 18797.52 128
PVSNet_Blended_VisFu91.24 8890.77 8792.66 10495.09 14082.40 11397.77 6095.87 14888.26 6386.39 14493.94 18376.77 12099.27 7788.80 11894.00 12996.31 175
h-mvs3389.30 12388.95 12190.36 17595.07 14276.04 26596.96 13297.11 2490.39 3192.22 7095.10 15874.70 16098.86 11593.14 6465.89 32796.16 177
xiu_mvs_v2_base93.92 3493.26 4295.91 1095.07 14292.02 698.19 3495.68 15692.06 1496.01 2198.14 4070.83 20398.96 10796.74 2096.57 9996.76 161
cl2285.11 19784.17 19687.92 23195.06 14478.82 20295.51 21194.22 23479.74 24276.77 24387.92 26175.96 13495.68 25579.93 19572.42 27589.27 265
BH-w/o88.24 15187.47 14890.54 17195.03 14578.54 20997.41 9493.82 25484.08 15678.23 23094.51 17069.34 21197.21 18680.21 19194.58 12395.87 183
RRT_MVS86.89 16985.96 16989.68 19995.01 14684.13 7796.33 17594.98 19384.20 15580.10 21592.07 20270.52 20495.01 29183.30 17177.14 25589.91 253
CHOSEN 280x42091.71 7691.85 7091.29 15094.94 14782.69 10687.89 32396.17 13085.94 10687.27 13894.31 17290.27 895.65 25894.04 5095.86 10995.53 191
GG-mvs-BLEND93.49 6994.94 14786.26 3181.62 34597.00 2988.32 12894.30 17391.23 596.21 23088.49 12197.43 7898.00 89
HyFIR lowres test89.36 12188.60 12591.63 14194.91 14980.76 15495.60 20995.53 16382.56 19484.03 16691.24 21478.03 9996.81 20987.07 13488.41 17797.32 138
miper_enhance_ethall85.95 18585.20 17888.19 22894.85 15079.76 17696.00 19094.06 24582.98 18577.74 23388.76 24879.42 7795.46 26880.58 18672.42 27589.36 264
mvs_anonymous88.68 13787.62 14291.86 13294.80 15181.69 13593.53 26594.92 19582.03 20178.87 22490.43 22875.77 13795.34 27285.04 14793.16 13998.55 48
CANet_DTU90.98 9290.04 10193.83 5194.76 15286.23 3296.32 17693.12 29093.11 1093.71 5296.82 11563.08 24699.48 6284.29 15295.12 11895.77 185
PMMVS89.46 12089.92 10588.06 22994.64 15369.57 32696.22 18194.95 19487.27 8491.37 8596.54 12265.88 22997.39 17688.54 11993.89 13097.23 144
TR-MVS86.30 18084.93 18690.42 17394.63 15477.58 24196.57 15593.82 25480.30 23082.42 18695.16 15358.74 27597.55 16474.88 24387.82 18196.13 179
EPNet_dtu87.65 16187.89 13486.93 25494.57 15571.37 31396.72 14796.50 9688.56 5687.12 13995.02 16075.91 13694.01 30966.62 29290.00 16195.42 193
Wanjuan Su, Wenbing Tao: Efficient Edge-Preserving Multi-View Stereo Network for Depth Estimation. AAAI 2023
FMVSNet384.71 20382.71 21890.70 16794.55 15687.71 2095.92 19594.67 21181.73 20575.82 26288.08 25966.99 22394.47 30171.23 27075.38 26189.91 253
ETV-MVS92.72 5592.87 4992.28 11994.54 15781.89 12597.98 4895.21 18489.77 3893.11 5996.83 11377.23 11497.50 17095.74 2995.38 11397.44 132
EIA-MVS91.73 7392.05 6890.78 16594.52 15876.40 26098.06 4495.34 17889.19 4488.90 12097.28 9677.56 10697.73 15690.77 9296.86 9598.20 68
BH-untuned86.95 16885.94 17089.99 18694.52 15877.46 24396.78 14393.37 28081.80 20476.62 24693.81 18766.64 22697.02 19576.06 23393.88 13195.48 192
DeepC-MVS86.58 391.53 8191.06 8492.94 9294.52 15881.89 12595.95 19395.98 14090.76 2583.76 17396.76 11773.24 17999.71 3691.67 8196.96 9097.22 145
Andreas Kuhn, Christian Sormann, Mattia Rossi, Oliver Erdler, Friedrich Fraundorfer: DeepC-MVS: Deep Confidence Prediction for Multi-View Stereo Reconstruction. 3DV 2020
gg-mvs-nofinetune85.48 19382.90 21393.24 7794.51 16185.82 3979.22 34996.97 3361.19 35087.33 13753.01 36390.58 696.07 23286.07 13997.23 8397.81 106
3Dnovator+82.88 889.63 11887.85 13594.99 2094.49 16286.76 2997.84 5595.74 15386.10 10275.47 26796.02 12965.00 23799.51 6082.91 17697.07 8798.72 40
RRT_test8_iter0587.14 16586.41 16689.32 20294.41 16381.10 14597.06 12395.33 17984.67 13976.27 25390.48 22583.60 4496.33 22485.10 14570.78 28390.53 238
ET-MVSNet_ETH3D90.01 11289.03 11792.95 9194.38 16486.77 2898.14 3596.31 12089.30 4363.33 33496.72 11990.09 1093.63 31690.70 9482.29 22798.46 51
tpmrst88.36 14787.38 15091.31 14894.36 16579.92 17387.32 32795.26 18385.32 12088.34 12786.13 29180.60 6696.70 21383.78 15885.34 20597.30 141
MVS90.60 10188.64 12496.50 594.25 16690.53 893.33 26997.21 2077.59 27478.88 22397.31 9271.52 19599.69 4089.60 10998.03 6499.27 20
dp84.30 21282.31 22390.28 17894.24 16777.97 22986.57 33295.53 16379.94 23980.75 20585.16 30571.49 19696.39 22263.73 30783.36 21596.48 168
sss90.87 9689.96 10393.60 6394.15 16883.84 8397.14 11298.13 785.93 10789.68 10896.09 12871.67 19299.30 7687.69 12789.16 16697.66 117
PatchmatchNetpermissive86.83 17285.12 18291.95 12994.12 16982.27 11586.55 33395.64 15984.59 14282.98 18284.99 30977.26 11095.96 23968.61 28591.34 15597.64 119
Fangjinhua Wang, Silvano Galliani, Christoph Vogel, Pablo Speciale, Marc Pollefeys: PatchmatchNet: Learned Multi-View Patchmatch Stereo.
MDTV_nov1_ep1383.69 20094.09 17081.01 14686.78 33196.09 13483.81 16784.75 15884.32 31474.44 16596.54 21763.88 30685.07 206
UA-Net88.92 13088.48 12790.24 17994.06 17177.18 25093.04 27894.66 21287.39 8191.09 9093.89 18474.92 15898.18 14375.83 23691.43 15495.35 195
Fast-Effi-MVS+87.93 15886.94 16290.92 16094.04 17279.16 19498.26 3193.72 26381.29 20983.94 17092.90 19569.83 20996.68 21476.70 22591.74 15396.93 152
QAPM86.88 17084.51 18993.98 4694.04 17285.89 3897.19 10596.05 13773.62 30475.12 27095.62 13962.02 25499.74 3270.88 27496.06 10696.30 176
thisisatest051590.95 9490.26 9593.01 8894.03 17484.27 7697.91 5196.67 6983.18 17886.87 14295.51 14288.66 1597.85 15280.46 18789.01 16896.92 154
CS-MVS-test91.92 7092.11 6691.37 14694.00 17579.66 18198.39 2794.38 22987.14 9092.87 6497.05 10677.17 11596.97 19891.44 8296.55 10097.47 131
Vis-MVSNet (Re-imp)88.88 13288.87 12388.91 20993.89 17674.43 28496.93 13594.19 23684.39 14783.22 17895.67 13778.24 9694.70 29778.88 20694.40 12597.61 122
CS-MVS93.12 4493.27 4192.64 10693.86 17783.12 10098.85 1694.85 20188.61 5494.19 4597.42 8879.02 8597.02 19594.89 4097.77 7097.78 108
ADS-MVSNet279.57 27077.53 27285.71 27393.78 17872.13 30179.48 34786.11 35173.09 31080.14 21379.99 33962.15 25290.14 34959.49 32283.52 21294.85 201
ADS-MVSNet81.26 25678.36 26689.96 18993.78 17879.78 17579.48 34793.60 26873.09 31080.14 21379.99 33962.15 25295.24 27859.49 32283.52 21294.85 201
EPP-MVSNet89.76 11589.72 11089.87 19293.78 17876.02 26897.22 10096.51 9479.35 24885.11 15395.01 16184.82 3297.10 19387.46 13088.21 17996.50 167
3Dnovator82.32 1089.33 12287.64 14094.42 3393.73 18185.70 4397.73 6696.75 5886.73 9776.21 25595.93 13062.17 25199.68 4281.67 18197.81 6997.88 98
Effi-MVS+90.70 9889.90 10693.09 8493.61 18283.48 9095.20 22392.79 29583.22 17791.82 7595.70 13571.82 19197.48 17291.25 8593.67 13398.32 58
IS-MVSNet88.67 13888.16 13190.20 18193.61 18276.86 25396.77 14593.07 29184.02 15883.62 17495.60 14074.69 16396.24 22978.43 20993.66 13497.49 130
AUN-MVS86.25 18285.57 17288.26 22493.57 18473.38 29095.45 21495.88 14683.94 16185.47 15194.21 17673.70 17596.67 21583.54 16764.41 33194.73 207
test250690.96 9390.39 9292.65 10593.54 18582.46 11296.37 17197.35 1686.78 9587.55 13495.25 14677.83 10397.50 17084.07 15494.80 12097.98 91
ECVR-MVScopyleft88.35 14887.25 15291.65 13893.54 18579.40 18796.56 15790.78 32486.78 9585.57 15095.25 14657.25 28997.56 16284.73 15094.80 12097.98 91
hse-mvs288.22 15288.21 12988.25 22593.54 18573.41 28995.41 21695.89 14590.39 3192.22 7094.22 17574.70 16096.66 21693.14 6464.37 33294.69 208
LCM-MVSNet-Re83.75 21883.54 20684.39 29493.54 18564.14 34292.51 28584.03 35883.90 16466.14 32386.59 28067.36 22092.68 32384.89 14992.87 14096.35 171
DROMVSNet91.73 7392.11 6690.58 16993.54 18577.77 23798.07 4394.40 22887.44 7992.99 6297.11 10374.59 16496.87 20593.75 5197.08 8697.11 147
tpm cat183.63 22081.38 23690.39 17493.53 19078.19 22585.56 33995.09 18770.78 32378.51 22783.28 32274.80 15997.03 19466.77 29184.05 21095.95 180
thisisatest053089.65 11789.02 11891.53 14393.46 19180.78 15396.52 15896.67 6981.69 20683.79 17294.90 16388.85 1497.68 15777.80 21087.49 18596.14 178
MSDG80.62 26377.77 27189.14 20493.43 19277.24 24791.89 29390.18 32869.86 32868.02 31291.94 20652.21 31298.84 11659.32 32483.12 21691.35 230
ab-mvs87.08 16684.94 18593.48 7093.34 19383.67 8788.82 31495.70 15581.18 21084.55 16290.14 23462.72 24798.94 11285.49 14382.54 22697.85 102
131488.94 12987.20 15394.17 4293.21 19485.73 4293.33 26996.64 7682.89 18675.98 25896.36 12366.83 22599.39 6783.52 16996.02 10797.39 136
1112_ss88.60 14187.47 14892.00 12893.21 19480.97 14896.47 16192.46 29983.64 17180.86 20497.30 9480.24 7197.62 15977.60 21585.49 20297.40 135
GeoE86.36 17985.20 17889.83 19493.17 19676.13 26397.53 8092.11 30279.58 24580.99 20294.01 18166.60 22796.17 23173.48 25789.30 16597.20 146
test111188.11 15387.04 15991.35 14793.15 19778.79 20596.57 15590.78 32486.88 9385.04 15495.20 15057.23 29097.39 17683.88 15694.59 12297.87 100
Test_1112_low_res88.03 15586.73 16391.94 13093.15 19780.88 15096.44 16692.41 30083.59 17480.74 20691.16 21580.18 7297.59 16077.48 21885.40 20397.36 137
CostFormer89.08 12688.39 12891.15 15493.13 19979.15 19588.61 31796.11 13383.14 17989.58 11186.93 27583.83 4296.87 20588.22 12585.92 19797.42 133
IB-MVS85.34 488.67 13887.14 15793.26 7693.12 20084.32 7398.76 1797.27 1887.19 8879.36 22090.45 22783.92 4198.53 12984.41 15169.79 29496.93 152
Christian Sormann, Mattia Rossi, Andreas Kuhn and Friedrich Fraundorfer: IB-MVS: An Iterative Algorithm for Deep Multi-View Stereo based on Binary Decisions. BMVC 2021
diffmvs91.17 9090.74 8892.44 11393.11 20182.50 11196.25 18093.62 26787.79 7390.40 10095.93 13073.44 17797.42 17493.62 5492.55 14397.41 134
tttt051788.57 14288.19 13089.71 19893.00 20275.99 26995.67 20696.67 6980.78 21681.82 19794.40 17188.97 1397.58 16176.05 23486.31 19195.57 190
MVSFormer91.36 8590.57 8993.73 5693.00 20288.08 1694.80 23794.48 22280.74 21794.90 3597.13 10178.84 8795.10 28783.77 15997.46 7598.02 84
lupinMVS93.87 3793.58 3894.75 2693.00 20288.08 1699.15 495.50 16691.03 2394.90 3597.66 7278.84 8797.56 16294.64 4597.46 7598.62 44
tpm287.35 16486.26 16790.62 16892.93 20578.67 20788.06 32295.99 13979.33 24987.40 13586.43 28680.28 7096.40 22180.23 19085.73 20196.79 158
baseline90.76 9790.10 10092.74 10092.90 20682.56 10894.60 23994.56 22087.69 7689.06 11995.67 13773.76 17297.51 16990.43 9992.23 14998.16 72
casdiffmvs90.95 9490.39 9292.63 10792.82 20782.53 10996.83 13994.47 22487.69 7688.47 12495.56 14174.04 16997.54 16790.90 9092.74 14197.83 104
Vis-MVSNetpermissive88.67 13887.82 13691.24 15292.68 20878.82 20296.95 13393.85 25387.55 7887.07 14095.13 15663.43 24497.21 18677.58 21696.15 10397.70 115
Jingyang Zhang, Yao Yao, Shiwei Li, Zixin Luo, Tian Fang: Visibility-aware Multiview Stereo Network. BMVC 2020
GBi-Net82.42 24180.43 24988.39 22092.66 20981.95 12094.30 24893.38 27779.06 25775.82 26285.66 29356.38 29793.84 31171.23 27075.38 26189.38 261
test182.42 24180.43 24988.39 22092.66 20981.95 12094.30 24893.38 27779.06 25775.82 26285.66 29356.38 29793.84 31171.23 27075.38 26189.38 261
FMVSNet282.79 23580.44 24889.83 19492.66 20985.43 4895.42 21594.35 23079.06 25774.46 27487.28 26756.38 29794.31 30469.72 28074.68 26489.76 255
miper_ehance_all_eth84.57 20683.60 20587.50 24292.64 21278.25 21995.40 21793.47 27279.28 25276.41 24987.64 26476.53 12495.24 27878.58 20772.42 27589.01 275
cascas86.50 17784.48 19192.55 11092.64 21285.95 3597.04 12595.07 18975.32 29180.50 20791.02 21754.33 30997.98 14586.79 13687.62 18293.71 220
TESTMET0.1,189.83 11389.34 11591.31 14892.54 21480.19 16997.11 11596.57 8586.15 10086.85 14391.83 20879.32 7896.95 19981.30 18292.35 14796.77 160
COLMAP_ROBcopyleft73.24 1975.74 29973.00 30583.94 29692.38 21569.08 32891.85 29486.93 34761.48 34965.32 32690.27 23042.27 34296.93 20250.91 35075.63 26085.80 331
Johannes L. Schönberger, Enliang Zheng, Marc Pollefeys, Jan-Michael Frahm: Pixelwise View Selection for Unstructured Multi-View Stereo. ECCV 2016
xiu_mvs_v1_base_debu90.54 10289.54 11293.55 6592.31 21687.58 2296.99 12694.87 19887.23 8593.27 5597.56 7957.43 28598.32 13692.72 6993.46 13694.74 204
xiu_mvs_v1_base90.54 10289.54 11293.55 6592.31 21687.58 2296.99 12694.87 19887.23 8593.27 5597.56 7957.43 28598.32 13692.72 6993.46 13694.74 204
xiu_mvs_v1_base_debi90.54 10289.54 11293.55 6592.31 21687.58 2296.99 12694.87 19887.23 8593.27 5597.56 7957.43 28598.32 13692.72 6993.46 13694.74 204
SCA85.63 19083.64 20391.60 14292.30 21981.86 12792.88 28295.56 16284.85 13282.52 18385.12 30758.04 28095.39 26973.89 25387.58 18497.54 124
gm-plane-assit92.27 22079.64 18384.47 14695.15 15497.93 14685.81 140
test-LLR88.48 14387.98 13389.98 18792.26 22177.23 24897.11 11595.96 14183.76 16886.30 14691.38 21172.30 18796.78 21180.82 18491.92 15195.94 181
test-mter88.95 12888.60 12589.98 18792.26 22177.23 24897.11 11595.96 14185.32 12086.30 14691.38 21176.37 12896.78 21180.82 18491.92 15195.94 181
PAPM92.87 5092.40 5894.30 3692.25 22387.85 1896.40 17096.38 11391.07 2288.72 12296.90 10982.11 5997.37 17890.05 10497.70 7297.67 116
cl____83.27 22582.12 22486.74 25592.20 22475.95 27095.11 22893.27 28478.44 26774.82 27287.02 27474.19 16795.19 28074.67 24669.32 29889.09 270
DIV-MVS_self_test83.27 22582.12 22486.74 25592.19 22575.92 27195.11 22893.26 28578.44 26774.81 27387.08 27374.19 16795.19 28074.66 24769.30 29989.11 269
AllTest75.92 29773.06 30484.47 29092.18 22667.29 33391.07 30284.43 35667.63 33263.48 33190.18 23138.20 35097.16 18957.04 33273.37 27088.97 278
TestCases84.47 29092.18 22667.29 33384.43 35667.63 33263.48 33190.18 23138.20 35097.16 18957.04 33273.37 27088.97 278
CLD-MVS87.97 15787.48 14789.44 20092.16 22880.54 16098.14 3594.92 19591.41 1779.43 21995.40 14462.34 24997.27 18490.60 9582.90 22190.50 239
Zhaoxin Li, Wangmeng Zuo, Zhaoqi Wang, Lei Zhang: Confidence-based Large-scale Dense Multi-view Stereo. IEEE Transaction on Image Processing, 2020
c3_l83.80 21782.65 21987.25 24992.10 22977.74 23995.25 22193.04 29278.58 26476.01 25787.21 27175.25 15495.11 28577.54 21768.89 30288.91 281
HQP-NCC92.08 23097.63 7190.52 2882.30 187
ACMP_Plane92.08 23097.63 7190.52 2882.30 187
HQP-MVS87.91 15987.55 14588.98 20892.08 23078.48 21097.63 7194.80 20490.52 2882.30 18794.56 16865.40 23397.32 17987.67 12883.01 21891.13 231
PCF-MVS84.09 586.77 17585.00 18492.08 12492.06 23383.07 10192.14 29094.47 22479.63 24476.90 24294.78 16471.15 19899.20 8872.87 25991.05 15693.98 216
Andreas Kuhn, Shan Lin, Oliver Erdler: Plane Completion and Filtering for Multi-View Stereo Reconstruction. GCPR 2019
NP-MVS92.04 23478.22 22094.56 168
plane_prior691.98 23577.92 23364.77 238
Effi-MVS+-dtu84.61 20584.90 18783.72 30191.96 23663.14 34694.95 23393.34 28185.57 11379.79 21787.12 27261.99 25595.61 26283.55 16585.83 19992.41 227
mvs-test186.83 17287.17 15485.81 27091.96 23665.24 33997.90 5393.34 28185.57 11384.51 16395.14 15561.99 25597.19 18883.55 16590.55 15995.00 199
plane_prior191.95 238
CDS-MVSNet89.50 11988.96 12091.14 15591.94 23980.93 14997.09 11995.81 15084.26 15384.72 15994.20 17780.31 6995.64 25983.37 17088.96 16996.85 157
Khang Truong Giang, Soohwan Song, Sungho Jo: Curvature-guided dynamic scale networks for Multi-view Stereo. ICLR 2022
HQP_MVS87.50 16287.09 15888.74 21491.86 24077.96 23097.18 10694.69 20889.89 3681.33 19994.15 17864.77 23897.30 18187.08 13282.82 22290.96 233
plane_prior791.86 24077.55 242
eth_miper_zixun_eth83.12 22982.01 22686.47 26091.85 24274.80 27994.33 24693.18 28779.11 25575.74 26587.25 27072.71 18295.32 27476.78 22467.13 32189.27 265
VDDNet86.44 17884.51 18992.22 12191.56 24381.83 12897.10 11894.64 21569.50 32987.84 13295.19 15148.01 32397.92 15189.82 10786.92 18696.89 155
EI-MVSNet85.80 18785.20 17887.59 23891.55 24477.41 24495.13 22695.36 17580.43 22780.33 21194.71 16573.72 17395.97 23676.96 22378.64 24689.39 259
CVMVSNet84.83 20185.57 17282.63 31291.55 24460.38 35395.13 22695.03 19180.60 22082.10 19394.71 16566.40 22890.19 34874.30 25090.32 16097.31 140
ACMP81.66 1184.00 21483.22 21086.33 26191.53 24672.95 29795.91 19793.79 25883.70 17073.79 27792.22 20054.31 31096.89 20383.98 15579.74 23689.16 268
Qingshan Xu and Wenbing Tao: Planar Prior Assisted PatchMatch Multi-View Stereo. AAAI 2020
IterMVS-LS83.93 21582.80 21787.31 24791.46 24777.39 24595.66 20793.43 27580.44 22575.51 26687.26 26973.72 17395.16 28276.99 22170.72 28589.39 259
Fangjinhua Wang, Silvano Galliani, Christoph Vogel, Marc Pollefeys: IterMVS: Iterative Probability Estimation for Efficient Multi-View Stereo.
Patchmatch-test78.25 28074.72 29388.83 21291.20 24874.10 28773.91 36188.70 34259.89 35666.82 31985.12 30778.38 9494.54 30048.84 35579.58 23897.86 101
miper_lstm_enhance81.66 25280.66 24584.67 28691.19 24971.97 30591.94 29293.19 28677.86 27172.27 29285.26 30173.46 17693.42 31873.71 25667.05 32288.61 283
ACMM80.70 1383.72 21982.85 21486.31 26491.19 24972.12 30295.88 19894.29 23280.44 22577.02 24091.96 20455.24 30397.14 19279.30 20180.38 23289.67 256
Qingshan Xu and Wenbing Tao: Multi-Scale Geometric Consistency Guided Multi-View Stereo. CVPR 2019
TAMVS88.48 14387.79 13790.56 17091.09 25179.18 19396.45 16495.88 14683.64 17183.12 17993.33 19075.94 13595.74 25482.40 17788.27 17896.75 162
ACMH+76.62 1677.47 28874.94 29085.05 28091.07 25271.58 31193.26 27490.01 32971.80 31964.76 32888.55 25141.62 34496.48 21962.35 31371.00 28187.09 314
OpenMVScopyleft79.58 1486.09 18383.62 20493.50 6890.95 25386.71 3097.44 8795.83 14975.35 29072.64 28995.72 13457.42 28899.64 4671.41 26895.85 11094.13 214
LPG-MVS_test84.20 21383.49 20786.33 26190.88 25473.06 29595.28 21894.13 23982.20 19776.31 25093.20 19154.83 30796.95 19983.72 16180.83 23088.98 276
LGP-MVS_train86.33 26190.88 25473.06 29594.13 23982.20 19776.31 25093.20 19154.83 30796.95 19983.72 16180.83 23088.98 276
KD-MVS_2432*160077.63 28674.92 29185.77 27190.86 25679.44 18588.08 32093.92 24976.26 28567.05 31782.78 32472.15 18991.92 33261.53 31441.62 36485.94 328
miper_refine_blended77.63 28674.92 29185.77 27190.86 25679.44 18588.08 32093.92 24976.26 28567.05 31782.78 32472.15 18991.92 33261.53 31441.62 36485.94 328
baseline290.39 10690.21 9790.93 15990.86 25680.99 14795.20 22397.41 1586.03 10580.07 21694.61 16790.58 697.47 17387.29 13189.86 16294.35 210
PVSNet_077.72 1581.70 25078.95 26489.94 19090.77 25976.72 25695.96 19296.95 3585.01 13070.24 30588.53 25352.32 31198.20 14186.68 13844.08 36394.89 200
ACMH75.40 1777.99 28274.96 28987.10 25290.67 26076.41 25993.19 27791.64 31072.47 31663.44 33387.61 26543.34 33797.16 18958.34 32673.94 26687.72 300
Qingshan Xu and Wenbing Tao: Multi-Scale Geometric Consistency Guided Multi-View Stereo. CVPR 2019
MVS-HIRNet71.36 31867.00 32284.46 29290.58 26169.74 32479.15 35087.74 34546.09 36261.96 34150.50 36445.14 33295.64 25953.74 34388.11 18088.00 297
jason92.73 5492.23 6394.21 4190.50 26287.30 2598.65 2095.09 18790.61 2792.76 6597.13 10175.28 15397.30 18193.32 6096.75 9898.02 84
jason: jason.
LTVRE_ROB73.68 1877.99 28275.74 28684.74 28390.45 26372.02 30386.41 33491.12 31672.57 31566.63 32087.27 26854.95 30696.98 19756.29 33675.98 25785.21 334
Andreas Kuhn, Heiko Hirschmüller, Daniel Scharstein, Helmut Mayer: A TV Prior for High-Quality Scalable Multi-View Stereo Reconstruction. International Journal of Computer Vision 2016
XVG-OURS85.18 19684.38 19387.59 23890.42 26471.73 30991.06 30394.07 24482.00 20283.29 17795.08 15956.42 29697.55 16483.70 16383.42 21493.49 223
VPA-MVSNet85.32 19483.83 19989.77 19790.25 26582.63 10796.36 17297.07 2683.03 18381.21 20189.02 24461.58 25996.31 22685.02 14870.95 28290.36 240
XVG-OURS-SEG-HR85.74 18985.16 18187.49 24390.22 26671.45 31291.29 30094.09 24381.37 20883.90 17195.22 14860.30 26497.53 16885.58 14284.42 20993.50 222
tpm85.55 19184.47 19288.80 21390.19 26775.39 27688.79 31594.69 20884.83 13383.96 16985.21 30378.22 9794.68 29876.32 23178.02 25396.34 172
CR-MVSNet83.53 22181.36 23790.06 18490.16 26879.75 17779.02 35191.12 31684.24 15482.27 19180.35 33675.45 14593.67 31563.37 31086.25 19296.75 162
RPMNet79.85 26775.92 28591.64 13990.16 26879.75 17779.02 35195.44 17058.43 35982.27 19172.55 35573.03 18098.41 13546.10 35986.25 19296.75 162
FIs86.73 17686.10 16888.61 21690.05 27080.21 16896.14 18696.95 3585.56 11678.37 22992.30 19976.73 12195.28 27679.51 19779.27 24090.35 241
FMVSNet576.46 29574.16 29983.35 30790.05 27076.17 26289.58 30989.85 33071.39 32265.29 32780.42 33550.61 31587.70 35561.05 31969.24 30086.18 324
IterMVS80.67 26279.16 26285.20 27989.79 27276.08 26492.97 28091.86 30580.28 23171.20 29785.14 30657.93 28391.34 33872.52 26270.74 28488.18 294
Fangjinhua Wang, Silvano Galliani, Christoph Vogel, Marc Pollefeys: IterMVS: Iterative Probability Estimation for Efficient Multi-View Stereo.
UniMVSNet (Re)85.31 19584.23 19588.55 21789.75 27380.55 15996.72 14796.89 4085.42 11778.40 22888.93 24675.38 14995.52 26678.58 20768.02 31189.57 257
Patchmtry77.36 28974.59 29485.67 27489.75 27375.75 27377.85 35491.12 31660.28 35371.23 29680.35 33675.45 14593.56 31757.94 32767.34 32087.68 302
JIA-IIPM79.00 27677.20 27484.40 29389.74 27564.06 34375.30 35895.44 17062.15 34581.90 19559.08 36178.92 8695.59 26366.51 29585.78 20093.54 221
MS-PatchMatch83.05 23081.82 23086.72 25989.64 27679.10 19794.88 23594.59 21979.70 24370.67 30189.65 23750.43 31696.82 20870.82 27795.99 10884.25 340
IterMVS-SCA-FT80.51 26479.10 26384.73 28489.63 27774.66 28092.98 27991.81 30780.05 23671.06 29985.18 30458.04 28091.40 33772.48 26370.70 28688.12 295
Fast-Effi-MVS+-dtu83.33 22482.60 22085.50 27689.55 27869.38 32796.09 18991.38 31182.30 19675.96 26091.41 21056.71 29295.58 26475.13 24284.90 20791.54 229
PatchT79.75 26876.85 27888.42 21889.55 27875.49 27577.37 35594.61 21763.07 34282.46 18573.32 35475.52 14493.41 31951.36 34884.43 20896.36 170
GA-MVS85.79 18884.04 19891.02 15889.47 28080.27 16696.90 13694.84 20285.57 11380.88 20389.08 24256.56 29596.47 22077.72 21385.35 20496.34 172
UniMVSNet_NR-MVSNet85.49 19284.59 18888.21 22789.44 28179.36 18896.71 14996.41 10685.22 12478.11 23190.98 21976.97 11795.14 28379.14 20368.30 30890.12 247
FC-MVSNet-test85.96 18485.39 17587.66 23689.38 28278.02 22795.65 20896.87 4185.12 12877.34 23591.94 20676.28 13094.74 29677.09 22078.82 24490.21 245
WR-MVS84.32 21182.96 21188.41 21989.38 28280.32 16396.59 15496.25 12383.97 16076.63 24590.36 22967.53 21894.86 29475.82 23770.09 29290.06 251
VPNet84.69 20482.92 21290.01 18589.01 28483.45 9196.71 14995.46 16885.71 11179.65 21892.18 20156.66 29496.01 23583.05 17567.84 31490.56 237
nrg03086.79 17485.43 17490.87 16288.76 28585.34 4997.06 12394.33 23184.31 15080.45 20991.98 20372.36 18596.36 22388.48 12271.13 28090.93 235
DU-MVS84.57 20683.33 20988.28 22388.76 28579.36 18896.43 16895.41 17485.42 11778.11 23190.82 22067.61 21695.14 28379.14 20368.30 30890.33 242
NR-MVSNet83.35 22381.52 23588.84 21188.76 28581.31 14194.45 24295.16 18584.65 14067.81 31390.82 22070.36 20694.87 29374.75 24466.89 32490.33 242
test_040272.68 31269.54 31882.09 31688.67 28871.81 30892.72 28486.77 34861.52 34862.21 33983.91 31743.22 33893.76 31434.60 36472.23 27880.72 356
RPSCF77.73 28576.63 28081.06 32088.66 28955.76 36287.77 32487.88 34464.82 34174.14 27692.79 19649.22 32096.81 20967.47 28976.88 25690.62 236
FMVSNet179.50 27176.54 28188.39 22088.47 29081.95 12094.30 24893.38 27773.14 30972.04 29485.66 29343.86 33493.84 31165.48 29972.53 27489.38 261
OPM-MVS85.84 18685.10 18388.06 22988.34 29177.83 23695.72 20494.20 23587.89 7280.45 20994.05 18058.57 27697.26 18583.88 15682.76 22489.09 270
Ray L. Khuboni, Hongjun Xu: Octagram Propagation Matching for Multi-Scale View Stereopsis (OPM-MVS).
tfpnnormal78.14 28175.42 28786.31 26488.33 29279.24 19194.41 24396.22 12573.51 30569.81 30785.52 29955.43 30195.75 25147.65 35767.86 31383.95 343
MVS_030478.43 27876.70 27983.60 30388.22 29369.81 32292.91 28195.10 18672.32 31778.71 22580.29 33833.78 35793.37 32068.77 28480.23 23387.63 303
TinyColmap72.41 31368.99 32082.68 31188.11 29469.59 32588.41 31885.20 35365.55 33857.91 35184.82 31130.80 36395.94 24051.38 34768.70 30382.49 351
WR-MVS_H81.02 25880.09 25283.79 29888.08 29571.26 31494.46 24196.54 9080.08 23572.81 28886.82 27670.36 20692.65 32464.18 30467.50 31787.46 310
CP-MVSNet81.01 25980.08 25383.79 29887.91 29670.51 31694.29 25195.65 15780.83 21572.54 29188.84 24763.71 24292.32 32768.58 28668.36 30788.55 284
D2MVS82.67 23781.55 23386.04 26887.77 29776.47 25795.21 22296.58 8482.66 19270.26 30485.46 30060.39 26395.80 24876.40 22979.18 24185.83 330
TranMVSNet+NR-MVSNet83.24 22781.71 23187.83 23287.71 29878.81 20496.13 18894.82 20384.52 14376.18 25690.78 22264.07 24194.60 29974.60 24866.59 32690.09 249
USDC78.65 27776.25 28285.85 26987.58 29974.60 28189.58 30990.58 32784.05 15763.13 33588.23 25640.69 34896.86 20766.57 29475.81 25986.09 326
PS-CasMVS80.27 26579.18 26183.52 30587.56 30069.88 32194.08 25595.29 18180.27 23272.08 29388.51 25459.22 27392.23 32967.49 28868.15 31088.45 288
MIMVSNet79.18 27575.99 28488.72 21587.37 30180.66 15679.96 34691.82 30677.38 27774.33 27581.87 32841.78 34390.74 34466.36 29783.10 21794.76 203
XXY-MVS83.84 21682.00 22789.35 20187.13 30281.38 13995.72 20494.26 23380.15 23475.92 26190.63 22361.96 25796.52 21878.98 20573.28 27390.14 246
ITE_SJBPF82.38 31387.00 30365.59 33889.55 33279.99 23869.37 30991.30 21341.60 34595.33 27362.86 31274.63 26586.24 323
test0.0.03 182.79 23582.48 22183.74 30086.81 30472.22 29996.52 15895.03 19183.76 16873.00 28593.20 19172.30 18788.88 35164.15 30577.52 25490.12 247
v881.88 24880.06 25587.32 24686.63 30579.04 20094.41 24393.65 26678.77 26273.19 28485.57 29766.87 22495.81 24773.84 25567.61 31687.11 313
v1081.43 25479.53 26087.11 25186.38 30678.87 20194.31 24793.43 27577.88 27073.24 28385.26 30165.44 23295.75 25172.14 26467.71 31586.72 317
PEN-MVS79.47 27278.26 26883.08 30886.36 30768.58 32993.85 25894.77 20779.76 24171.37 29588.55 25159.79 26592.46 32564.50 30365.40 32888.19 293
UniMVSNet_ETH3D80.86 26178.75 26587.22 25086.31 30872.02 30391.95 29193.76 26273.51 30575.06 27190.16 23343.04 34095.66 25676.37 23078.55 24993.98 216
v114482.90 23481.27 23887.78 23486.29 30979.07 19996.14 18693.93 24880.05 23677.38 23486.80 27765.50 23195.93 24275.21 24170.13 28988.33 291
V4283.04 23181.53 23487.57 24086.27 31079.09 19895.87 19994.11 24180.35 22977.22 23886.79 27865.32 23596.02 23477.74 21270.14 28887.61 305
v2v48283.46 22281.86 22988.25 22586.19 31179.65 18296.34 17494.02 24681.56 20777.32 23688.23 25665.62 23096.03 23377.77 21169.72 29689.09 270
v14882.41 24380.89 24086.99 25386.18 31276.81 25496.27 17893.82 25480.49 22475.28 26986.11 29267.32 22195.75 25175.48 23967.03 32388.42 289
pmmvs482.54 23980.79 24187.79 23386.11 31380.49 16293.55 26493.18 28777.29 27873.35 28189.40 24165.26 23695.05 29075.32 24073.61 26887.83 299
MVP-Stereo82.65 23881.67 23285.59 27586.10 31478.29 21793.33 26992.82 29477.75 27269.17 31187.98 26059.28 27295.76 25071.77 26596.88 9382.73 348
Qingsong Yan: MVP-Stereo: A Parallel Multi-View Patchmatch Stereo Method with Dilation Matching for Photogrammetric Application.
v119282.31 24480.55 24787.60 23785.94 31578.47 21395.85 20193.80 25779.33 24976.97 24186.51 28163.33 24595.87 24473.11 25870.13 28988.46 287
TransMVSNet (Re)76.94 29274.38 29684.62 28885.92 31675.25 27795.28 21889.18 33673.88 30367.22 31486.46 28359.64 26694.10 30759.24 32552.57 35484.50 338
PS-MVSNAJss84.91 20084.30 19486.74 25585.89 31774.40 28594.95 23394.16 23883.93 16376.45 24890.11 23571.04 20095.77 24983.16 17379.02 24390.06 251
v14419282.43 24080.73 24387.54 24185.81 31878.22 22095.98 19193.78 25979.09 25677.11 23986.49 28264.66 24095.91 24374.20 25169.42 29788.49 285
v192192082.02 24780.23 25187.41 24485.62 31977.92 23395.79 20393.69 26478.86 26176.67 24486.44 28462.50 24895.83 24672.69 26069.77 29588.47 286
v124081.70 25079.83 25887.30 24885.50 32077.70 24095.48 21293.44 27478.46 26676.53 24786.44 28460.85 26295.84 24571.59 26770.17 28788.35 290
pm-mvs180.05 26678.02 26986.15 26685.42 32175.81 27295.11 22892.69 29777.13 28070.36 30387.43 26658.44 27895.27 27771.36 26964.25 33387.36 311
our_test_377.90 28475.37 28885.48 27785.39 32276.74 25593.63 26191.67 30873.39 30865.72 32584.65 31258.20 27993.13 32257.82 32867.87 31286.57 319
ppachtmachnet_test77.19 29074.22 29886.13 26785.39 32278.22 22093.98 25691.36 31371.74 32067.11 31684.87 31056.67 29393.37 32052.21 34664.59 33086.80 316
MDA-MVSNet-bldmvs71.45 31767.94 32181.98 31785.33 32468.50 33092.35 28988.76 34070.40 32442.99 36281.96 32746.57 32991.31 33948.75 35654.39 34886.11 325
Baseline_NR-MVSNet81.22 25780.07 25484.68 28585.32 32575.12 27896.48 16088.80 33976.24 28777.28 23786.40 28767.61 21694.39 30375.73 23866.73 32584.54 337
DTE-MVSNet78.37 27977.06 27682.32 31585.22 32667.17 33593.40 26693.66 26578.71 26370.53 30288.29 25559.06 27492.23 32961.38 31763.28 33787.56 307
pmmvs581.34 25579.54 25986.73 25885.02 32776.91 25296.22 18191.65 30977.65 27373.55 27888.61 25055.70 30094.43 30274.12 25273.35 27288.86 282
XVG-ACMP-BASELINE79.38 27377.90 27083.81 29784.98 32867.14 33689.03 31393.18 28780.26 23372.87 28788.15 25838.55 34996.26 22776.05 23478.05 25288.02 296
MDA-MVSNet_test_wron73.54 30770.43 31482.86 30984.55 32971.85 30691.74 29691.32 31567.63 33246.73 36181.09 33355.11 30490.42 34755.91 33859.76 34286.31 322
SixPastTwentyTwo76.04 29674.32 29781.22 31984.54 33061.43 35291.16 30189.30 33577.89 26964.04 33086.31 28848.23 32194.29 30563.54 30963.84 33587.93 298
YYNet173.53 30870.43 31482.85 31084.52 33171.73 30991.69 29791.37 31267.63 33246.79 36081.21 33255.04 30590.43 34655.93 33759.70 34386.38 321
N_pmnet61.30 32760.20 33064.60 34584.32 33217.00 38091.67 29810.98 37961.77 34758.45 35078.55 34349.89 31891.83 33442.27 36263.94 33484.97 335
mvs_tets81.74 24980.71 24484.84 28284.22 33370.29 31893.91 25793.78 25982.77 18973.37 28089.46 24047.36 32895.31 27581.99 18079.55 23988.92 280
jajsoiax82.12 24681.15 23985.03 28184.19 33470.70 31594.22 25293.95 24783.07 18173.48 27989.75 23649.66 31995.37 27182.24 17979.76 23489.02 274
EU-MVSNet76.92 29376.95 27776.83 33484.10 33554.73 36491.77 29592.71 29672.74 31369.57 30888.69 24958.03 28287.43 35664.91 30270.00 29388.33 291
test_djsdf83.00 23382.45 22284.64 28784.07 33669.78 32394.80 23794.48 22280.74 21775.41 26887.70 26361.32 26195.10 28783.77 15979.76 23489.04 273
v7n79.32 27477.34 27385.28 27884.05 33772.89 29893.38 26793.87 25275.02 29570.68 30084.37 31359.58 26895.62 26167.60 28767.50 31787.32 312
OurMVSNet-221017-077.18 29176.06 28380.55 32383.78 33860.00 35590.35 30591.05 31977.01 28466.62 32187.92 26147.73 32694.03 30871.63 26668.44 30687.62 304
EG-PatchMatch MVS74.92 30272.02 30783.62 30283.76 33973.28 29393.62 26292.04 30468.57 33158.88 34883.80 31831.87 36195.57 26556.97 33478.67 24582.00 354
K. test v373.62 30571.59 30979.69 32682.98 34059.85 35690.85 30488.83 33877.13 28058.90 34782.11 32643.62 33591.72 33565.83 29854.10 34987.50 309
bset_n11_16_dypcd84.35 21082.83 21688.91 20982.54 34182.07 11994.12 25493.47 27285.39 11978.55 22688.98 24562.23 25095.11 28586.75 13773.42 26989.55 258
EGC-MVSNET52.46 33147.56 33467.15 34281.98 34260.11 35482.54 34472.44 3700.11 3760.70 37774.59 34925.11 36583.26 36229.04 36661.51 34058.09 364
anonymousdsp80.98 26079.97 25684.01 29581.73 34370.44 31792.49 28693.58 27077.10 28272.98 28686.31 28857.58 28494.90 29279.32 20078.63 24886.69 318
Anonymous2023120675.29 30173.64 30280.22 32480.75 34463.38 34593.36 26890.71 32673.09 31067.12 31583.70 31950.33 31790.85 34353.63 34470.10 29186.44 320
Gipumacopyleft45.11 33442.05 33654.30 35080.69 34551.30 36635.80 36883.81 35928.13 36627.94 36834.53 36811.41 37476.70 36621.45 36854.65 34734.90 368
S. Galliani, K. Lasinger, K. Schindler: Massively Parallel Multiview Stereopsis by Surface Normal Diffusion. ICCV 2015
lessismore_v079.98 32580.59 34658.34 35880.87 36458.49 34983.46 32143.10 33993.89 31063.11 31148.68 35687.72 300
OpenMVS_ROBcopyleft68.52 2073.02 31169.57 31783.37 30680.54 34771.82 30793.60 26388.22 34362.37 34461.98 34083.15 32335.31 35695.47 26745.08 36075.88 25882.82 346
testgi74.88 30373.40 30379.32 32880.13 34861.75 34993.21 27586.64 34979.49 24766.56 32291.06 21635.51 35588.67 35256.79 33571.25 27987.56 307
CMPMVSbinary54.94 2175.71 30074.56 29579.17 32979.69 34955.98 36089.59 30893.30 28360.28 35353.85 35789.07 24347.68 32796.33 22476.55 22681.02 22985.22 333
M. Jancosek, T. Pajdla: Multi-View Reconstruction Preserving Weakly-Supported Surfaces. CVPR 2011
LF4IMVS72.36 31470.82 31176.95 33379.18 35056.33 35986.12 33586.11 35169.30 33063.06 33686.66 27933.03 35992.25 32865.33 30068.64 30482.28 352
pmmvs674.65 30471.67 30883.60 30379.13 35169.94 32093.31 27390.88 32361.05 35265.83 32484.15 31643.43 33694.83 29566.62 29260.63 34186.02 327
DeepMVS_CXcopyleft64.06 34678.53 35243.26 37068.11 37369.94 32738.55 36376.14 34818.53 36879.34 36343.72 36141.62 36469.57 362
CL-MVSNet_self_test75.81 29874.14 30080.83 32278.33 35367.79 33294.22 25293.52 27177.28 27969.82 30681.54 33061.47 26089.22 35057.59 33053.51 35085.48 332
test20.0372.36 31471.15 31075.98 33877.79 35459.16 35792.40 28889.35 33474.09 30161.50 34284.32 31448.09 32285.54 36150.63 35162.15 33983.24 344
UnsupCasMVSNet_eth73.25 30970.57 31381.30 31877.53 35566.33 33787.24 32893.89 25180.38 22857.90 35281.59 32942.91 34190.56 34565.18 30148.51 35787.01 315
DSMNet-mixed73.13 31072.45 30675.19 34077.51 35646.82 36785.09 34082.01 36367.61 33669.27 31081.33 33150.89 31386.28 35854.54 34183.80 21192.46 226
Patchmatch-RL test76.65 29474.01 30184.55 28977.37 35764.23 34178.49 35382.84 36278.48 26564.63 32973.40 35376.05 13391.70 33676.99 22157.84 34497.72 112
Anonymous2024052172.06 31669.91 31678.50 33077.11 35861.67 35191.62 29990.97 32165.52 33962.37 33879.05 34236.32 35290.96 34257.75 32968.52 30582.87 345
test_method56.77 32854.53 33163.49 34776.49 35940.70 37275.68 35774.24 36919.47 37048.73 35971.89 35719.31 36765.80 37057.46 33147.51 36083.97 342
MIMVSNet169.44 32066.65 32477.84 33176.48 36062.84 34787.42 32688.97 33766.96 33757.75 35379.72 34132.77 36085.83 36046.32 35863.42 33684.85 336
pmmvs-eth3d73.59 30670.66 31282.38 31376.40 36173.38 29089.39 31289.43 33372.69 31460.34 34677.79 34546.43 33091.26 34066.42 29657.06 34582.51 349
new_pmnet66.18 32563.18 32875.18 34176.27 36261.74 35083.79 34284.66 35556.64 36051.57 35871.85 35831.29 36287.93 35449.98 35262.55 33875.86 359
KD-MVS_self_test70.97 31969.31 31975.95 33976.24 36355.39 36387.45 32590.94 32270.20 32662.96 33777.48 34644.01 33388.09 35361.25 31853.26 35184.37 339
UnsupCasMVSNet_bld68.60 32464.50 32780.92 32174.63 36467.80 33183.97 34192.94 29365.12 34054.63 35668.23 35935.97 35392.17 33160.13 32044.83 36182.78 347
PM-MVS69.32 32166.93 32376.49 33573.60 36555.84 36185.91 33679.32 36774.72 29761.09 34378.18 34421.76 36691.10 34170.86 27556.90 34682.51 349
new-patchmatchnet68.85 32365.93 32577.61 33273.57 36663.94 34490.11 30788.73 34171.62 32155.08 35573.60 35240.84 34787.22 35751.35 34948.49 35881.67 355
ambc76.02 33768.11 36751.43 36564.97 36489.59 33160.49 34574.49 35017.17 36992.46 32561.50 31652.85 35384.17 341
pmmvs365.75 32662.18 32976.45 33667.12 36864.54 34088.68 31685.05 35454.77 36157.54 35473.79 35129.40 36486.21 35955.49 34047.77 35978.62 357
TDRefinement69.20 32265.78 32679.48 32766.04 36962.21 34888.21 31986.12 35062.92 34361.03 34485.61 29633.23 35894.16 30655.82 33953.02 35282.08 353
FPMVS55.09 32952.93 33261.57 34855.98 37040.51 37383.11 34383.41 36137.61 36434.95 36571.95 35614.40 37076.95 36429.81 36565.16 32967.25 363
PMMVS250.90 33246.31 33564.67 34455.53 37146.67 36877.30 35671.02 37140.89 36334.16 36659.32 3609.83 37576.14 36740.09 36328.63 36771.21 360
wuyk23d14.10 34113.89 34414.72 35655.23 37222.91 37933.83 3693.56 3804.94 3734.11 3742.28 3762.06 37919.66 37510.23 3738.74 3731.59 373
E-PMN32.70 33832.39 34033.65 35453.35 37325.70 37774.07 36053.33 37721.08 36817.17 37233.63 37011.85 37354.84 37212.98 37114.04 36920.42 369
EMVS31.70 33931.45 34132.48 35550.72 37423.95 37874.78 35952.30 37820.36 36916.08 37331.48 37112.80 37153.60 37311.39 37213.10 37219.88 370
LCM-MVSNet52.52 33048.24 33365.35 34347.63 37541.45 37172.55 36283.62 36031.75 36537.66 36457.92 3629.19 37676.76 36549.26 35444.60 36277.84 358
MVEpermissive35.65 2233.85 33729.49 34246.92 35241.86 37636.28 37450.45 36756.52 37618.75 37118.28 37037.84 3672.41 37858.41 37118.71 36920.62 36846.06 366
Simon Fuhrmann, Fabian Langguth, Michael Goesele: MVE - A Multi-View Reconstruction Environment. EUROGRAPHICS Workshops on Graphics and Cultural Heritage (2014)
ANet_high46.22 33341.28 33861.04 34939.91 37746.25 36970.59 36376.18 36858.87 35823.09 36948.00 36612.58 37266.54 36928.65 36713.62 37070.35 361
PMVScopyleft34.80 2339.19 33635.53 33950.18 35129.72 37830.30 37559.60 36666.20 37426.06 36717.91 37149.53 3653.12 37774.09 36818.19 37049.40 35546.14 365
Y. Furukawa, J. Ponce: Accurate, dense, and robust multiview stereopsis. PAMI (2010)
tmp_tt41.54 33541.93 33740.38 35320.10 37926.84 37661.93 36559.09 37514.81 37228.51 36780.58 33435.53 35448.33 37463.70 30813.11 37145.96 367
testmvs9.92 34212.94 3450.84 3580.65 3800.29 38293.78 2590.39 3810.42 3742.85 37515.84 3740.17 3810.30 3772.18 3740.21 3741.91 372
test1239.07 34311.73 3461.11 3570.50 3810.77 38189.44 3110.20 3820.34 3752.15 37610.72 3750.34 3800.32 3761.79 3750.08 3752.23 371
test_blank0.00 3460.00 3490.00 3590.00 3820.00 3830.00 3700.00 3830.00 3770.00 3780.00 3770.00 3820.00 3780.00 3760.00 3760.00 374
eth-test20.00 382
eth-test0.00 382
uanet_test0.00 3460.00 3490.00 3590.00 3820.00 3830.00 3700.00 3830.00 3770.00 3780.00 3770.00 3820.00 3780.00 3760.00 3760.00 374
cdsmvs_eth3d_5k21.43 34028.57 3430.00 3590.00 3820.00 3830.00 37095.93 1440.00 3770.00 37897.66 7263.57 2430.00 3780.00 3760.00 3760.00 374
pcd_1.5k_mvsjas5.92 3457.89 3480.00 3590.00 3820.00 3830.00 3700.00 3830.00 3770.00 3780.00 37771.04 2000.00 3780.00 3760.00 3760.00 374
sosnet-low-res0.00 3460.00 3490.00 3590.00 3820.00 3830.00 3700.00 3830.00 3770.00 3780.00 3770.00 3820.00 3780.00 3760.00 3760.00 374
sosnet0.00 3460.00 3490.00 3590.00 3820.00 3830.00 3700.00 3830.00 3770.00 3780.00 3770.00 3820.00 3780.00 3760.00 3760.00 374
uncertanet0.00 3460.00 3490.00 3590.00 3820.00 3830.00 3700.00 3830.00 3770.00 3780.00 3770.00 3820.00 3780.00 3760.00 3760.00 374
Regformer0.00 3460.00 3490.00 3590.00 3820.00 3830.00 3700.00 3830.00 3770.00 3780.00 3770.00 3820.00 3780.00 3760.00 3760.00 374
ab-mvs-re8.11 34410.81 3470.00 3590.00 3820.00 3830.00 3700.00 3830.00 3770.00 37897.30 940.00 3820.00 3780.00 3760.00 3760.00 374
uanet0.00 3460.00 3490.00 3590.00 3820.00 3830.00 3700.00 3830.00 3770.00 3780.00 3770.00 3820.00 3780.00 3760.00 3760.00 374
PC_three_145291.12 2198.33 298.42 2892.51 299.81 2098.96 299.37 199.70 3
test_241102_TWO96.78 4888.72 5197.70 698.91 387.86 2099.82 1798.15 399.00 1599.47 9
test_0728_THIRD88.38 5996.69 1298.76 1489.64 1299.76 2497.47 1398.84 2499.38 14
GSMVS97.54 124
sam_mvs177.59 10597.54 124
sam_mvs75.35 152
MTGPAbinary96.33 117
test_post185.88 33730.24 37273.77 17195.07 28973.89 253
test_post33.80 36976.17 13195.97 236
patchmatchnet-post77.09 34777.78 10495.39 269
MTMP97.53 8068.16 372
test9_res96.00 2599.03 1398.31 61
agg_prior294.30 4699.00 1598.57 45
test_prior482.34 11497.75 65
test_prior298.37 2886.08 10394.57 4198.02 5283.14 4795.05 3898.79 27
旧先验296.97 13174.06 30296.10 1997.76 15588.38 123
新几何296.42 169
无先验96.87 13796.78 4877.39 27699.52 5779.95 19398.43 53
原ACMM296.84 138
testdata299.48 6276.45 228
segment_acmp82.69 56
testdata195.57 21087.44 79
plane_prior594.69 20897.30 18187.08 13282.82 22290.96 233
plane_prior494.15 178
plane_prior377.75 23890.17 3481.33 199
plane_prior297.18 10689.89 36
plane_prior77.96 23097.52 8390.36 3382.96 220
n20.00 383
nn0.00 383
door-mid79.75 366
test1196.50 96
door80.13 365
HQP5-MVS78.48 210
BP-MVS87.67 128
HQP4-MVS82.30 18797.32 17991.13 231
HQP3-MVS94.80 20483.01 218
HQP2-MVS65.40 233
MDTV_nov1_ep13_2view81.74 13286.80 33080.65 21985.65 14974.26 16676.52 22796.98 150
ACMMP++_ref78.45 250
ACMMP++79.05 242
Test By Simon71.65 193