This table lists the benchmark results for the high-res multi-view scenario. The following metrics are evaluated:

(*) For exact definitions, detailing how potentially incomplete ground truth is taken into account, see our paper.

The datasets are grouped into different categories, and result averages are computed for a category and method if results of the method are available for all datasets within the category. Note that the category "all" includes both the high-res multi-view and the low-res many-view scenarios.

Methods with suffix _ROB may participate in the Robust Vision Challenge.

Click a dataset result cell to show a visualization of the reconstruction. For training datasets, ground truth and accuracy / completeness visualizations are also available. The visualizations may not work with mobile browsers.




Method Infoallhigh-res
multi-view
indooroutdoorbotani.boulde.bridgedoorexhibi.lectur.living.loungeobserv.old co.statueterrac.
sort bysorted bysort bysort bysort bysort bysort bysort bysort bysort bysort bysort bysort bysort bysort bysort by
AdaColmapbinary93.82 12493.06 13296.10 11699.88 189.07 17098.33 20097.55 12386.81 23990.39 19298.65 10075.09 23799.98 993.32 14697.53 12599.26 102
DP-MVS Recon95.85 6295.15 7797.95 3199.87 294.38 5399.60 3997.48 13986.58 24394.42 12799.13 4687.36 9099.98 993.64 13898.33 10899.48 80
MCST-MVS98.18 297.95 998.86 599.85 396.60 1099.70 2797.98 5397.18 395.96 9599.33 1992.62 25100.00 198.99 2599.93 199.98 6
CNVR-MVS98.46 198.38 198.72 999.80 496.19 1599.80 1697.99 5297.05 699.41 499.59 292.89 24100.00 198.99 2599.90 799.96 10
MG-MVS97.24 2096.83 3198.47 1599.79 595.71 1999.07 11499.06 1094.45 4296.42 8998.70 9788.81 6499.74 8895.35 10499.86 1299.97 7
NCCC98.12 598.11 398.13 2599.76 694.46 4999.81 1297.88 5796.54 1398.84 2599.46 1092.55 2699.98 998.25 4699.93 199.94 18
region2R96.30 4696.17 4896.70 8299.70 790.31 13799.46 6097.66 9590.55 12797.07 7299.07 5386.85 10299.97 2195.43 10299.74 2999.81 33
HFP-MVS96.42 4296.26 4296.90 7099.69 890.96 12399.47 5697.81 6890.54 12896.88 7499.05 5687.57 8299.96 2895.65 9599.72 3199.78 38
ACMMPR96.28 4796.14 5296.73 7999.68 990.47 13599.47 5697.80 7090.54 12896.83 7999.03 5886.51 11399.95 3195.65 9599.72 3199.75 46
ZD-MVS99.67 1093.28 7297.61 11087.78 21597.41 6199.16 3890.15 5299.56 10598.35 4199.70 35
CP-MVS96.22 4896.15 5196.42 9999.67 1089.62 16199.70 2797.61 11090.07 14396.00 9499.16 3887.43 8599.92 4096.03 9199.72 3199.70 52
DVP-MVScopyleft98.07 798.00 698.29 1999.66 1295.20 3199.72 2497.47 14193.95 5099.07 1699.46 1093.18 2199.97 2199.64 799.82 1999.69 55
Zhenlong Yuan, Jinguo Luo, Fei Shen, Zhaoxin Li, Cong Liu, Tianlu Mao, Zhaoqi Wang: DVP-MVS: Synergize Depth-Edge and Visibility Prior for Multi-View Stereo. AAAI2025
test_0728_SECOND98.77 899.66 1296.37 1499.72 2497.68 9099.98 999.64 799.82 1999.96 10
test072699.66 1295.20 3199.77 1897.70 8693.95 5099.35 799.54 393.18 21
CPTT-MVS94.60 10294.43 9195.09 15499.66 1286.85 22699.44 6397.47 14183.22 29994.34 13098.96 6882.50 17999.55 10694.81 11799.50 5498.88 136
MSLP-MVS++97.50 1797.45 1797.63 3999.65 1693.21 7399.70 2798.13 4294.61 3797.78 5699.46 1089.85 5499.81 7997.97 5299.91 699.88 26
OPU-MVS99.49 499.64 1798.51 499.77 1899.19 3295.12 899.97 2199.90 199.92 399.99 1
SED-MVS98.18 298.10 498.41 1899.63 1895.24 2699.77 1897.72 8194.17 4599.30 999.54 393.32 1899.98 999.70 499.81 2399.99 1
IU-MVS99.63 1895.38 2397.73 8095.54 2899.54 399.69 699.81 2399.99 1
test_241102_ONE99.63 1895.24 2697.72 8194.16 4799.30 999.49 993.32 1899.98 9
PAPR96.35 4395.82 5897.94 3299.63 1894.19 5799.42 6897.55 12392.43 8493.82 14099.12 4887.30 9299.91 4594.02 13099.06 7699.74 47
XVS96.47 4196.37 4096.77 7599.62 2290.66 13199.43 6697.58 11892.41 8796.86 7598.96 6887.37 8799.87 5895.65 9599.43 6099.78 38
X-MVStestdata90.69 19788.66 22096.77 7599.62 2290.66 13199.43 6697.58 11892.41 8796.86 7529.59 40887.37 8799.87 5895.65 9599.43 6099.78 38
DVP-MVS++98.18 298.09 598.44 1699.61 2495.38 2399.55 4597.68 9093.01 7299.23 1199.45 1495.12 899.98 999.25 1899.92 399.97 7
MSC_two_6792asdad99.51 299.61 2498.60 297.69 8899.98 999.55 1299.83 1599.96 10
No_MVS99.51 299.61 2498.60 297.69 8899.98 999.55 1299.83 1599.96 10
DeepC-MVS_fast93.52 297.16 2496.84 2998.13 2599.61 2494.45 5098.85 13697.64 10396.51 1695.88 9899.39 1887.35 9199.99 596.61 7999.69 3699.96 10
Andreas Kuhn, Christian Sormann, Mattia Rossi, Oliver Erdler, Friedrich Fraundorfer: DeepC-MVS: Deep Confidence Prediction for Multi-View Stereo Reconstruction. 3DV 2020
test_one_060199.59 2894.89 3597.64 10393.14 7198.93 2299.45 1493.45 17
CDPH-MVS96.56 3996.18 4597.70 3799.59 2893.92 6199.13 10997.44 14789.02 17297.90 5499.22 2788.90 6399.49 11294.63 12399.79 2799.68 56
test_prior97.01 6199.58 3091.77 10097.57 12199.49 11299.79 36
APDe-MVScopyleft97.53 1497.47 1597.70 3799.58 3093.63 6599.56 4497.52 13193.59 6598.01 5199.12 4890.80 4099.55 10699.26 1799.79 2799.93 20
Zhaojie Zeng, Yuesong Wang, Tao Guan: Matching Ambiguity-Resilient Multi-View Stereo via Adaptive Patch Deformation. Pattern Recognition
mPP-MVS95.90 6195.75 6396.38 10299.58 3089.41 16599.26 8697.41 15190.66 12194.82 11998.95 7186.15 12199.98 995.24 10899.64 4099.74 47
TEST999.57 3393.17 7499.38 7297.66 9589.57 15798.39 3699.18 3590.88 3899.66 94
train_agg97.20 2397.08 2397.57 4399.57 3393.17 7499.38 7297.66 9590.18 13798.39 3699.18 3590.94 3599.66 9498.58 3699.85 1399.88 26
test_899.55 3593.07 7799.37 7597.64 10390.18 13798.36 3899.19 3290.94 3599.64 100
test_part299.54 3695.42 2198.13 43
MSP-MVS97.77 998.18 296.53 9399.54 3690.14 14399.41 6997.70 8695.46 3098.60 3099.19 3295.71 499.49 11298.15 4899.85 1399.95 15
Zhenlong Yuan, Cong Liu, Fei Shen, Zhaoxin Li, Jingguo luo, Tianlu Mao and Zhaoqi Wang: MSP-MVS: Multi-granularity Segmentation Prior Guided Multi-View Stereo. AAAI2025
agg_prior99.54 3692.66 8797.64 10397.98 5299.61 102
CSCG94.87 9194.71 8595.36 14399.54 3686.49 23199.34 7898.15 4082.71 31090.15 19599.25 2389.48 5799.86 6394.97 11598.82 9199.72 50
HPM-MVS++copyleft97.72 1197.59 1398.14 2499.53 4094.76 4399.19 9197.75 7695.66 2498.21 4199.29 2091.10 3299.99 597.68 5799.87 999.68 56
APD-MVScopyleft96.95 2996.72 3297.63 3999.51 4193.58 6699.16 9797.44 14790.08 14298.59 3199.07 5389.06 6099.42 12397.92 5399.66 3799.88 26
Yuesong Wang, Zhaojie Zeng and etc.: Adaptive Patch Deformation for Textureless-Resilient Multi-View Stereo. CVPR2023
FOURS199.50 4288.94 17799.55 4597.47 14191.32 11098.12 45
DPE-MVScopyleft98.11 698.00 698.44 1699.50 4295.39 2299.29 8297.72 8194.50 3998.64 2999.54 393.32 1899.97 2199.58 1099.90 799.95 15
Kehua Chen, Zhenlong Yuan, Tianlu Mao, Zhaoqi Wang: Dual-Level Precision Edges Guided Multi-View Stereo with Accurate Planarization. AAAI2025
PGM-MVS95.85 6295.65 6896.45 9799.50 4289.77 15898.22 20898.90 1389.19 16796.74 8298.95 7185.91 12599.92 4093.94 13199.46 5699.66 60
GST-MVS95.97 5695.66 6696.90 7099.49 4591.22 11099.45 6297.48 13989.69 15195.89 9798.72 9386.37 11699.95 3194.62 12499.22 7199.52 76
MP-MVScopyleft96.00 5395.82 5896.54 9299.47 4690.13 14599.36 7697.41 15190.64 12495.49 10998.95 7185.51 13099.98 996.00 9299.59 5099.52 76
Rongxuan Tan, Qing Wang, et al.: MP-MVS: Multi-Scale Windows PatchMatch and Planar Prior Multi-View Stereo.
ZNCC-MVS96.09 5195.81 6096.95 6999.42 4791.19 11299.55 4597.53 12789.72 15095.86 10098.94 7486.59 10999.97 2195.13 10999.56 5199.68 56
SR-MVS96.13 5096.16 5096.07 11799.42 4789.04 17198.59 16997.33 15890.44 13196.84 7799.12 4886.75 10499.41 12697.47 6099.44 5999.76 45
PAPM_NR95.43 7495.05 8196.57 9199.42 4790.14 14398.58 17197.51 13390.65 12392.44 15798.90 7887.77 8199.90 5090.88 17199.32 6599.68 56
9.1496.87 2799.34 5099.50 5297.49 13889.41 16398.59 3199.43 1689.78 5599.69 9198.69 3099.62 45
save fliter99.34 5093.85 6399.65 3697.63 10795.69 22
PHI-MVS96.65 3796.46 3897.21 5599.34 5091.77 10099.70 2798.05 4686.48 24898.05 4899.20 3089.33 5899.96 2898.38 3999.62 4599.90 22
test1297.83 3499.33 5394.45 5097.55 12397.56 5788.60 6699.50 11199.71 3499.55 73
SMA-MVScopyleft97.24 2096.99 2498.00 3099.30 5494.20 5699.16 9797.65 10289.55 15999.22 1399.52 890.34 4999.99 598.32 4399.83 1599.82 32
Yufeng Yin; Xiaoyan Liu; Zichao Zhang: SMA-MVS: Segmentation-Guided Multi-Scale Anchor Deformation Patch Multi-View Stereo. IEEE Transactions on Circuits and Systems for Video Technology
MTAPA96.09 5195.80 6196.96 6899.29 5591.19 11297.23 26897.45 14492.58 8194.39 12999.24 2586.43 11599.99 596.22 8599.40 6399.71 51
HPM-MVScopyleft95.41 7695.22 7595.99 12299.29 5589.14 16899.17 9697.09 18387.28 22895.40 11098.48 11584.93 14099.38 12895.64 9999.65 3899.47 81
Chunlin Ren, Qingshan Xu, Shikun Zhang, Jiaqi Yang: Hierarchical Prior Mining for Non-local Multi-View Stereo. ICCV 2023
ACMMPcopyleft94.67 10094.30 9295.79 12999.25 5788.13 19598.41 18998.67 2290.38 13391.43 17398.72 9382.22 18899.95 3193.83 13595.76 15899.29 99
Qingshan Xu, Weihang Kong, Wenbing Tao, Marc Pollefeys: Multi-Scale Geometric Consistency Guided and Planar Prior Assisted Multi-View Stereo. IEEE Transactions on Pattern Analysis and Machine Intelligence
APD-MVS_3200maxsize95.64 7195.65 6895.62 13699.24 5887.80 20198.42 18797.22 16688.93 17796.64 8798.98 6385.49 13199.36 13096.68 7699.27 6999.70 52
SR-MVS-dyc-post95.75 6895.86 5795.41 14299.22 5987.26 22198.40 19297.21 16789.63 15396.67 8598.97 6486.73 10699.36 13096.62 7799.31 6699.60 68
RE-MVS-def95.70 6499.22 5987.26 22198.40 19297.21 16789.63 15396.67 8598.97 6485.24 13796.62 7799.31 6699.60 68
patch_mono-297.10 2697.97 894.49 17699.21 6183.73 29199.62 3898.25 3295.28 3299.38 698.91 7792.28 2799.94 3499.61 999.22 7199.78 38
API-MVS94.78 9494.18 9896.59 8899.21 6190.06 15098.80 14297.78 7383.59 29493.85 13899.21 2983.79 15399.97 2192.37 15899.00 8099.74 47
PLCcopyleft91.07 394.23 11194.01 10294.87 16299.17 6387.49 21099.25 8796.55 21388.43 19291.26 17798.21 12785.92 12399.86 6389.77 18797.57 12297.24 208
Jie Liao, Yanping Fu, Qingan Yan, Chunxia xiao: Pyramid Multi-View Stereo with Local Consistency. Pacific Graphics 2019
EI-MVSNet-Vis-set95.76 6795.63 7096.17 11399.14 6490.33 13698.49 18097.82 6591.92 9694.75 12198.88 8287.06 9799.48 11695.40 10397.17 13598.70 153
TSAR-MVS + MP.97.44 1897.46 1697.39 4999.12 6593.49 7098.52 17497.50 13694.46 4098.99 1898.64 10191.58 2999.08 14898.49 3799.83 1599.60 68
Zhenlong Yuan, Jiakai Cao, Zhaoqi Wang, Zhaoxin Li: TSAR-MVS: Textureless-aware Segmentation and Correlative Refinement Guided Multi-View Stereo. Pattern Recognition
SF-MVS97.22 2296.92 2598.12 2799.11 6694.88 3699.44 6397.45 14489.60 15598.70 2799.42 1790.42 4699.72 8998.47 3899.65 3899.77 43
HPM-MVS_fast94.89 8894.62 8695.70 13299.11 6688.44 19199.14 10697.11 17985.82 25695.69 10598.47 11683.46 15899.32 13593.16 14899.63 4499.35 93
MAR-MVS94.43 10894.09 10095.45 14099.10 6887.47 21198.39 19697.79 7288.37 19494.02 13599.17 3778.64 22299.91 4592.48 15798.85 9098.96 126
Zhenyu Xu, Yiguang Liu, Xuelei Shi, Ying Wang, Yunan Zheng: MARMVS: Matching Ambiguity Reduced Multiple View Stereo for Efficient Large Scale Scene Reconstruction. CVPR 2020
114514_t94.06 11493.05 13397.06 5999.08 6992.26 9598.97 12897.01 19182.58 31292.57 15598.22 12580.68 20499.30 13689.34 19399.02 7999.63 65
EI-MVSNet-UG-set95.43 7495.29 7395.86 12799.07 7089.87 15598.43 18697.80 7091.78 9894.11 13398.77 8786.25 11999.48 11694.95 11696.45 14498.22 180
原ACMM196.18 11199.03 7190.08 14697.63 10788.98 17397.00 7398.97 6488.14 7599.71 9088.23 20499.62 4598.76 150
SD-MVS97.51 1697.40 1897.81 3599.01 7293.79 6499.33 7997.38 15493.73 6198.83 2699.02 6090.87 3999.88 5498.69 3099.74 2999.77 43
Zhenlong Yuan, Jiakai Cao, Zhaoxin Li, Hao Jiang and Zhaoqi Wang: SD-MVS: Segmentation-driven Deformation Multi-View Stereo with Spherical Refinement and EM optimization. AAAI2024
旧先验198.97 7392.90 8597.74 7799.15 4191.05 3499.33 6499.60 68
LS3D90.19 20688.72 21894.59 17598.97 7386.33 23996.90 28096.60 20774.96 36284.06 25298.74 9075.78 23499.83 7374.93 32597.57 12297.62 198
CNLPA93.64 13192.74 14096.36 10498.96 7590.01 15399.19 9195.89 26886.22 25189.40 20398.85 8380.66 20599.84 6988.57 20096.92 13899.24 103
MP-MVS-pluss95.80 6495.30 7297.29 5198.95 7692.66 8798.59 16997.14 17588.95 17593.12 14999.25 2385.62 12799.94 3496.56 8199.48 5599.28 100
MP-MVS-pluss: MP-MVS-pluss. MP-MVS-pluss
新几何197.40 4898.92 7792.51 9297.77 7585.52 26196.69 8499.06 5588.08 7699.89 5384.88 24299.62 4599.79 36
DP-MVS88.75 23686.56 25595.34 14498.92 7787.45 21297.64 25393.52 35070.55 37481.49 29397.25 16474.43 24399.88 5471.14 34894.09 17498.67 155
TSAR-MVS + GP.96.95 2996.91 2697.07 5898.88 7991.62 10399.58 4296.54 21495.09 3496.84 7798.63 10391.16 3099.77 8599.04 2496.42 14599.81 33
CANet97.00 2896.49 3698.55 1298.86 8096.10 1699.83 1097.52 13195.90 1997.21 6798.90 7882.66 17899.93 3898.71 2998.80 9299.63 65
dcpmvs_295.67 7096.18 4594.12 19398.82 8184.22 28497.37 26195.45 29490.70 12095.77 10398.63 10390.47 4498.68 16599.20 2099.22 7199.45 84
ACMMP_NAP96.59 3896.18 4597.81 3598.82 8193.55 6798.88 13597.59 11690.66 12197.98 5299.14 4486.59 109100.00 196.47 8399.46 5699.89 25
PVSNet_BlendedMVS93.36 13993.20 12993.84 20498.77 8391.61 10499.47 5698.04 4891.44 10694.21 13192.63 27983.50 15699.87 5897.41 6183.37 27690.05 338
PVSNet_Blended95.94 5995.66 6696.75 7798.77 8391.61 10499.88 498.04 4893.64 6494.21 13197.76 13883.50 15699.87 5897.41 6197.75 12098.79 146
DeepPCF-MVS93.56 196.55 4097.84 1092.68 22798.71 8578.11 34999.70 2797.71 8598.18 197.36 6399.76 190.37 4899.94 3499.27 1699.54 5399.99 1
EPNet96.82 3296.68 3497.25 5498.65 8693.10 7699.48 5498.76 1596.54 1397.84 5598.22 12587.49 8499.66 9495.35 10497.78 11999.00 122
Wanjuan Su, Wenbing Tao: Efficient Edge-Preserving Multi-View Stereo Network for Depth Estimation. AAAI 2023
OMC-MVS93.90 12193.62 11794.73 16998.63 8787.00 22498.04 22896.56 21292.19 9292.46 15698.73 9179.49 21499.14 14592.16 16094.34 17398.03 187
MVS_111021_HR96.69 3596.69 3396.72 8198.58 8891.00 12299.14 10699.45 193.86 5695.15 11598.73 9188.48 6799.76 8697.23 6599.56 5199.40 88
test_yl95.27 8094.60 8797.28 5298.53 8992.98 8099.05 11898.70 1986.76 24094.65 12497.74 14087.78 7999.44 11995.57 10092.61 18999.44 85
DCV-MVSNet95.27 8094.60 8797.28 5298.53 8992.98 8099.05 11898.70 1986.76 24094.65 12497.74 14087.78 7999.44 11995.57 10092.61 18999.44 85
TAPA-MVS87.50 990.35 20189.05 21194.25 18898.48 9185.17 27198.42 18796.58 21182.44 31787.24 22198.53 10782.77 17398.84 15659.09 38397.88 11598.72 151
Andrea Romanoni, Matteo Matteucci: TAPA-MVS: Textureless-Aware PAtchMatch Multi-View Stereo. ICCV 2019
test22298.32 9291.21 11198.08 22597.58 11883.74 29095.87 9999.02 6086.74 10599.64 4099.81 33
MM97.76 1097.39 1998.86 598.30 9396.83 799.81 1299.13 997.66 298.29 4098.96 6885.84 12699.90 5099.72 398.80 9299.85 30
DPM-MVS97.86 897.25 2199.68 198.25 9499.10 199.76 2197.78 7396.61 1298.15 4299.53 793.62 16100.00 191.79 16399.80 2699.94 18
LFMVS92.23 16790.84 18096.42 9998.24 9591.08 11998.24 20796.22 23383.39 29794.74 12298.31 12161.12 33698.85 15594.45 12692.82 18599.32 96
testdata95.26 14998.20 9687.28 21897.60 11285.21 26598.48 3499.15 4188.15 7498.72 16390.29 18099.45 5899.78 38
PatchMatch-RL91.47 17890.54 18794.26 18798.20 9686.36 23796.94 27897.14 17587.75 21788.98 20695.75 22171.80 27099.40 12780.92 28497.39 12997.02 216
MVS_111021_LR95.78 6595.94 5495.28 14898.19 9887.69 20298.80 14299.26 793.39 6795.04 11798.69 9884.09 15099.76 8696.96 7199.06 7698.38 169
F-COLMAP92.07 17191.75 16293.02 21798.16 9982.89 30398.79 14695.97 25186.54 24587.92 21397.80 13578.69 22199.65 9885.97 22895.93 15796.53 230
Anonymous20240521188.84 23087.03 24994.27 18698.14 10084.18 28598.44 18595.58 28776.79 35689.34 20496.88 18853.42 36599.54 10887.53 21287.12 24299.09 117
VNet95.08 8594.26 9397.55 4498.07 10193.88 6298.68 15598.73 1890.33 13497.16 7197.43 15679.19 21699.53 10996.91 7391.85 20599.24 103
CS-MVS-test95.98 5596.34 4194.90 16198.06 10287.66 20599.69 3496.10 24393.66 6298.35 3999.05 5686.28 11797.66 22196.96 7198.90 8899.37 91
DELS-MVS97.12 2596.60 3598.68 1098.03 10396.57 1199.84 997.84 6196.36 1895.20 11498.24 12488.17 7299.83 7396.11 8999.60 4999.64 63
Christian Sormann, Emanuele Santellani, Mattia Rossi, Andreas Kuhn, Friedrich Fraundorfer: DELS-MVS: Deep Epipolar Line Search for Multi-View Stereo. Winter Conference on Applications of Computer Vision (WACV), 2023
PVSNet87.13 1293.69 12792.83 13996.28 10797.99 10490.22 14199.38 7298.93 1291.42 10893.66 14297.68 14371.29 27599.64 10087.94 20897.20 13298.98 124
test_fmvsm_n_192097.08 2797.55 1495.67 13497.94 10589.61 16299.93 298.48 2497.08 599.08 1599.13 4688.17 7299.93 3899.11 2399.06 7697.47 201
cl2289.57 21888.79 21791.91 24197.94 10587.62 20697.98 23196.51 21585.03 27082.37 27691.79 29183.65 15496.50 27685.96 22977.89 30391.61 291
CS-MVS95.75 6896.19 4394.40 18097.88 10786.22 24299.66 3596.12 24292.69 8098.07 4798.89 8087.09 9597.59 22796.71 7498.62 10099.39 90
CHOSEN 280x42096.80 3396.85 2896.66 8597.85 10894.42 5294.76 32998.36 2992.50 8395.62 10797.52 15197.92 197.38 23998.31 4498.80 9298.20 182
thres20093.69 12792.59 14496.97 6797.76 10994.74 4499.35 7799.36 289.23 16591.21 17996.97 18183.42 15998.77 15885.08 23890.96 22397.39 203
HY-MVS88.56 795.29 7994.23 9498.48 1497.72 11096.41 1394.03 33798.74 1692.42 8695.65 10694.76 23986.52 11299.49 11295.29 10692.97 18499.53 75
Anonymous2023121184.72 29882.65 30990.91 26397.71 11184.55 28097.28 26496.67 20266.88 38779.18 31990.87 30958.47 34496.60 26782.61 27174.20 33091.59 293
tfpn200view993.43 13692.27 14996.90 7097.68 11294.84 3999.18 9399.36 288.45 18990.79 18296.90 18583.31 16098.75 16084.11 25490.69 22597.12 210
thres40093.39 13892.27 14996.73 7997.68 11294.84 3999.18 9399.36 288.45 18990.79 18296.90 18583.31 16098.75 16084.11 25490.69 22596.61 225
thres100view90093.34 14092.15 15296.90 7097.62 11494.84 3999.06 11799.36 287.96 21090.47 19096.78 19383.29 16298.75 16084.11 25490.69 22597.12 210
thres600view793.18 14592.00 15596.75 7797.62 11494.92 3499.07 11499.36 287.96 21090.47 19096.78 19383.29 16298.71 16482.93 26890.47 22996.61 225
WTY-MVS95.97 5695.11 7998.54 1397.62 11496.65 999.44 6398.74 1692.25 9195.21 11398.46 11886.56 11199.46 11895.00 11492.69 18899.50 79
fmvsm_l_conf0.5_n_a97.70 1297.80 1197.42 4697.59 11792.91 8499.86 598.04 4896.70 1099.58 299.26 2190.90 3799.94 3499.57 1198.66 9999.40 88
Anonymous2024052987.66 25685.58 26993.92 20197.59 11785.01 27498.13 21697.13 17766.69 38888.47 21096.01 21755.09 35999.51 11087.00 21584.12 26797.23 209
HyFIR lowres test93.68 12993.29 12794.87 16297.57 11988.04 19798.18 21298.47 2587.57 22391.24 17895.05 23385.49 13197.46 23493.22 14792.82 18599.10 116
sasdasda95.02 8693.96 10798.20 2197.53 12095.92 1798.71 15096.19 23691.78 9895.86 10098.49 11279.53 21299.03 14996.12 8791.42 21999.66 60
canonicalmvs95.02 8693.96 10798.20 2197.53 12095.92 1798.71 15096.19 23691.78 9895.86 10098.49 11279.53 21299.03 14996.12 8791.42 21999.66 60
fmvsm_l_conf0.5_n97.65 1397.72 1297.41 4797.51 12292.78 8699.85 898.05 4696.78 899.60 199.23 2690.42 4699.92 4099.55 1298.50 10499.55 73
iter_conf05_1194.23 11193.49 12096.46 9597.51 12291.32 10999.96 194.31 33695.62 2699.32 899.22 2757.79 34698.59 17198.00 5099.64 4099.46 82
bld_raw_dy_0_6491.37 18289.75 19696.23 10897.51 12290.58 13399.16 9788.98 38895.64 2587.18 22399.20 3057.19 35098.66 16698.00 5084.86 25999.46 82
ETVMVS94.50 10693.90 11196.31 10697.48 12592.98 8099.07 11497.86 5988.09 20594.40 12896.90 18588.35 6997.28 24390.72 17692.25 19998.66 158
CHOSEN 1792x268894.35 10993.82 11395.95 12497.40 12688.74 18598.41 18998.27 3192.18 9391.43 17396.40 20478.88 21799.81 7993.59 13997.81 11699.30 98
SteuartSystems-ACMMP97.25 1997.34 2097.01 6197.38 12791.46 10799.75 2297.66 9594.14 4998.13 4399.26 2192.16 2899.66 9497.91 5499.64 4099.90 22
Skip Steuart: Steuart Systems R&D Blog.
fmvsm_s_conf0.5_n96.19 4996.49 3695.30 14797.37 12889.16 16799.86 598.47 2595.68 2398.87 2399.15 4182.44 18599.92 4099.14 2197.43 12896.83 221
alignmvs95.77 6695.00 8298.06 2997.35 12995.68 2099.71 2697.50 13691.50 10496.16 9398.61 10586.28 11799.00 15196.19 8691.74 20799.51 78
PS-MVSNAJ96.87 3196.40 3998.29 1997.35 12997.29 599.03 12097.11 17995.83 2098.97 2099.14 4482.48 18199.60 10398.60 3399.08 7498.00 188
testing22294.48 10794.00 10395.95 12497.30 13192.27 9498.82 13997.92 5589.20 16694.82 11997.26 16287.13 9497.32 24291.95 16191.56 21198.25 176
MVS_030497.53 1497.15 2298.67 1197.30 13196.52 1299.60 3998.88 1497.14 497.21 6798.94 7486.89 10199.91 4599.43 1598.91 8799.59 72
EPNet_dtu92.28 16592.15 15292.70 22697.29 13384.84 27698.64 16197.82 6592.91 7793.02 15197.02 17985.48 13395.70 32172.25 34594.89 16897.55 200
Wanjuan Su, Wenbing Tao: Efficient Edge-Preserving Multi-View Stereo Network for Depth Estimation. AAAI 2023
MVSTER92.71 15392.32 14793.86 20397.29 13392.95 8399.01 12396.59 20890.09 14185.51 23894.00 24994.61 1596.56 27190.77 17583.03 27892.08 279
EPMVS92.59 15891.59 16495.59 13897.22 13590.03 15191.78 35798.04 4890.42 13291.66 16790.65 31786.49 11497.46 23481.78 27996.31 14899.28 100
testing1195.33 7894.98 8396.37 10397.20 13692.31 9399.29 8297.68 9090.59 12594.43 12697.20 16790.79 4198.60 16995.25 10792.38 19398.18 183
testing9994.88 8994.45 8996.17 11397.20 13691.91 9899.20 9097.66 9589.95 14593.68 14197.06 17690.28 5098.50 17293.52 14091.54 21398.12 185
testing9194.88 8994.44 9096.21 10997.19 13891.90 9999.23 8897.66 9589.91 14693.66 14297.05 17890.21 5198.50 17293.52 14091.53 21698.25 176
test_fmvs192.35 16292.94 13790.57 27397.19 13875.43 35899.55 4594.97 31495.20 3396.82 8097.57 15059.59 34199.84 6997.30 6398.29 11196.46 232
tpmvs89.16 22287.76 23693.35 21197.19 13884.75 27890.58 37297.36 15681.99 32284.56 24589.31 34583.98 15298.17 18674.85 32790.00 23297.12 210
DeepC-MVS91.02 494.56 10593.92 11096.46 9597.16 14190.76 12798.39 19697.11 17993.92 5288.66 20898.33 12078.14 22499.85 6795.02 11298.57 10298.78 148
Andreas Kuhn, Christian Sormann, Mattia Rossi, Oliver Erdler, Friedrich Fraundorfer: DeepC-MVS: Deep Confidence Prediction for Multi-View Stereo Reconstruction. 3DV 2020
iter_conf0593.48 13393.18 13094.39 18397.15 14294.17 5899.30 8192.97 35492.38 9086.70 23095.42 22795.67 596.59 26894.67 12284.32 26592.39 262
PVSNet_Blended_VisFu94.67 10094.11 9996.34 10597.14 14391.10 11799.32 8097.43 14992.10 9591.53 17296.38 20783.29 16299.68 9293.42 14596.37 14698.25 176
h-mvs3392.47 16191.95 15794.05 19797.13 14485.01 27498.36 19898.08 4493.85 5796.27 9196.73 19583.19 16599.43 12295.81 9368.09 36297.70 194
miper_enhance_ethall90.33 20289.70 19792.22 23397.12 14588.93 17998.35 19995.96 25388.60 18483.14 26192.33 28187.38 8696.18 29986.49 22377.89 30391.55 294
xiu_mvs_v2_base96.66 3696.17 4898.11 2897.11 14696.96 699.01 12397.04 18695.51 2998.86 2499.11 5282.19 18999.36 13098.59 3598.14 11298.00 188
VDD-MVS91.24 18690.18 19194.45 17997.08 14785.84 25898.40 19296.10 24386.99 23193.36 14698.16 12854.27 36299.20 13896.59 8090.63 22898.31 175
UGNet91.91 17390.85 17995.10 15397.06 14888.69 18698.01 22998.24 3492.41 8792.39 15893.61 26060.52 33899.68 9288.14 20597.25 13196.92 219
Wanjuan Su, Qingshan Xu, Wenbing Tao: Uncertainty-guided Multi-view Stereo Network for Depth Estimation. IEEE Transactions on Circuits and Systems for Video Technology, 2022
baseline192.61 15791.28 17096.58 8997.05 14994.63 4797.72 24796.20 23489.82 14888.56 20996.85 18986.85 10297.82 20788.42 20180.10 29497.30 205
CANet_DTU94.31 11093.35 12497.20 5697.03 15094.71 4598.62 16395.54 28995.61 2797.21 6798.47 11671.88 26899.84 6988.38 20297.46 12797.04 215
MSDG88.29 24586.37 25794.04 19896.90 15186.15 24696.52 29394.36 33577.89 35279.22 31896.95 18269.72 28299.59 10473.20 34092.58 19196.37 235
BH-w/o92.32 16391.79 16093.91 20296.85 15286.18 24499.11 11195.74 27788.13 20384.81 24297.00 18077.26 22997.91 20089.16 19898.03 11397.64 195
AllTest84.97 29683.12 30190.52 27696.82 15378.84 34195.89 31392.17 36577.96 35075.94 33795.50 22455.48 35599.18 13971.15 34687.14 24093.55 252
TestCases90.52 27696.82 15378.84 34192.17 36577.96 35075.94 33795.50 22455.48 35599.18 13971.15 34687.14 24093.55 252
SDMVSNet91.09 18789.91 19494.65 17196.80 15590.54 13497.78 24197.81 6888.34 19685.73 23495.26 23066.44 31098.26 18394.25 12986.75 24395.14 243
sd_testset89.23 22188.05 23592.74 22596.80 15585.33 26795.85 31897.03 18888.34 19685.73 23495.26 23061.12 33697.76 21685.61 23486.75 24395.14 243
PMMVS93.62 13293.90 11192.79 22296.79 15781.40 32098.85 13696.81 19891.25 11196.82 8098.15 12977.02 23098.13 18893.15 14996.30 14998.83 142
BH-RMVSNet91.25 18589.99 19395.03 15896.75 15888.55 18898.65 15994.95 31587.74 21887.74 21597.80 13568.27 29298.14 18780.53 28997.49 12698.41 166
MVS_Test93.67 13092.67 14296.69 8396.72 15992.66 8797.22 26996.03 24887.69 22195.12 11694.03 24781.55 19598.28 18289.17 19796.46 14399.14 111
COLMAP_ROBcopyleft82.69 1884.54 30282.82 30389.70 30096.72 15978.85 34095.89 31392.83 35771.55 37177.54 33295.89 21959.40 34299.14 14567.26 36288.26 23691.11 311
Johannes L. Schönberger, Enliang Zheng, Marc Pollefeys, Jan-Michael Frahm: Pixelwise View Selection for Unstructured Multi-View Stereo. ECCV 2016
mvs_anonymous92.50 16091.65 16395.06 15596.60 16189.64 16097.06 27496.44 22086.64 24284.14 25093.93 25182.49 18096.17 30091.47 16496.08 15499.35 93
UWE-MVS93.18 14593.40 12392.50 23096.56 16283.55 29398.09 22497.84 6189.50 16091.72 16596.23 21091.08 3396.70 26486.28 22593.33 18097.26 207
ETV-MVS96.00 5396.00 5396.00 12196.56 16291.05 12099.63 3796.61 20693.26 7097.39 6298.30 12286.62 10898.13 18898.07 4997.57 12298.82 143
GG-mvs-BLEND96.98 6696.53 16494.81 4287.20 37797.74 7793.91 13796.40 20496.56 296.94 25595.08 11098.95 8599.20 107
FMVSNet388.81 23487.08 24893.99 20096.52 16594.59 4898.08 22596.20 23485.85 25582.12 28091.60 29574.05 24895.40 33079.04 29680.24 29191.99 282
fmvsm_s_conf0.5_n_a95.97 5696.19 4395.31 14696.51 16689.01 17399.81 1298.39 2795.46 3099.19 1499.16 3881.44 19999.91 4598.83 2896.97 13797.01 217
BH-untuned91.46 17990.84 18093.33 21296.51 16684.83 27798.84 13895.50 29186.44 25083.50 25496.70 19675.49 23697.77 21186.78 22197.81 11697.40 202
FE-MVS91.38 18190.16 19295.05 15796.46 16887.53 20989.69 37497.84 6182.97 30492.18 16092.00 28884.07 15198.93 15480.71 28695.52 16298.68 154
sss94.85 9293.94 10997.58 4196.43 16994.09 6098.93 13099.16 889.50 16095.27 11297.85 13281.50 19699.65 9892.79 15594.02 17598.99 123
test250694.80 9394.21 9596.58 8996.41 17092.18 9698.01 22998.96 1190.82 11893.46 14597.28 16085.92 12398.45 17589.82 18597.19 13399.12 114
ECVR-MVScopyleft92.29 16491.33 16995.15 15296.41 17087.84 20098.10 22194.84 31890.82 11891.42 17597.28 16065.61 31598.49 17490.33 17997.19 13399.12 114
ET-MVSNet_ETH3D92.56 15991.45 16795.88 12696.39 17294.13 5999.46 6096.97 19492.18 9366.94 37798.29 12394.65 1494.28 35094.34 12783.82 27299.24 103
dp90.16 20888.83 21694.14 19296.38 17386.42 23391.57 36197.06 18584.76 27688.81 20790.19 33584.29 14897.43 23775.05 32491.35 22298.56 160
EIA-MVS95.11 8395.27 7494.64 17396.34 17486.51 23099.59 4196.62 20592.51 8294.08 13498.64 10186.05 12298.24 18595.07 11198.50 10499.18 108
test_vis1_n_192093.08 14993.42 12292.04 24096.31 17579.36 33799.83 1096.06 24796.72 998.53 3398.10 13058.57 34399.91 4597.86 5598.79 9596.85 220
TR-MVS90.77 19489.44 20294.76 16696.31 17588.02 19897.92 23395.96 25385.52 26188.22 21297.23 16566.80 30698.09 19184.58 24692.38 19398.17 184
UA-Net93.30 14192.62 14395.34 14496.27 17788.53 19095.88 31596.97 19490.90 11695.37 11197.07 17582.38 18699.10 14783.91 25894.86 16998.38 169
tpmrst92.78 15292.16 15194.65 17196.27 17787.45 21291.83 35697.10 18289.10 17194.68 12390.69 31488.22 7197.73 21989.78 18691.80 20698.77 149
hse-mvs291.67 17691.51 16692.15 23796.22 17982.61 30997.74 24697.53 12793.85 5796.27 9196.15 21183.19 16597.44 23695.81 9366.86 36996.40 234
AUN-MVS90.17 20789.50 20092.19 23596.21 18082.67 30797.76 24597.53 12788.05 20691.67 16696.15 21183.10 16797.47 23388.11 20666.91 36896.43 233
ADS-MVSNet287.62 25786.88 25189.86 29496.21 18079.14 33987.15 37892.99 35383.01 30289.91 19887.27 35878.87 21892.80 36374.20 33292.27 19797.64 195
ADS-MVSNet88.99 22487.30 24494.07 19596.21 18087.56 20887.15 37896.78 20083.01 30289.91 19887.27 35878.87 21897.01 25274.20 33292.27 19797.64 195
PatchmatchNetpermissive92.05 17291.04 17595.06 15596.17 18389.04 17191.26 36597.26 16089.56 15890.64 18690.56 32388.35 6997.11 24779.53 29296.07 15599.03 121
Fangjinhua Wang, Silvano Galliani, Christoph Vogel, Pablo Speciale, Marc Pollefeys: PatchmatchNet: Learned Multi-View Patchmatch Stereo.
test111192.12 16991.19 17294.94 16096.15 18487.36 21598.12 21894.84 31890.85 11790.97 18097.26 16265.60 31698.37 17789.74 18897.14 13699.07 120
gg-mvs-nofinetune90.00 21187.71 23896.89 7496.15 18494.69 4685.15 38397.74 7768.32 38392.97 15260.16 39696.10 396.84 25893.89 13298.87 8999.14 111
MDTV_nov1_ep1390.47 18996.14 18688.55 18891.34 36497.51 13389.58 15692.24 15990.50 32786.99 10097.61 22677.64 30792.34 195
IS-MVSNet93.00 15092.51 14594.49 17696.14 18687.36 21598.31 20395.70 27988.58 18590.17 19497.50 15283.02 16997.22 24487.06 21396.07 15598.90 135
Vis-MVSNet (Re-imp)93.26 14493.00 13694.06 19696.14 18686.71 22998.68 15596.70 20188.30 19889.71 20297.64 14685.43 13496.39 28388.06 20796.32 14799.08 118
thisisatest051594.75 9594.19 9696.43 9896.13 18992.64 9099.47 5697.60 11287.55 22493.17 14897.59 14894.71 1298.42 17688.28 20393.20 18198.24 179
FA-MVS(test-final)92.22 16891.08 17495.64 13596.05 19088.98 17491.60 36097.25 16186.99 23191.84 16292.12 28283.03 16899.00 15186.91 21893.91 17698.93 132
test_fmvsmconf_n96.78 3496.84 2996.61 8695.99 19190.25 13899.90 398.13 4296.68 1198.42 3598.92 7685.34 13699.88 5499.12 2299.08 7499.70 52
ab-mvs91.05 19089.17 20896.69 8395.96 19291.72 10292.62 35197.23 16585.61 26089.74 20093.89 25368.55 28999.42 12391.09 16787.84 23898.92 134
Fast-Effi-MVS+91.72 17590.79 18394.49 17695.89 19387.40 21499.54 5095.70 27985.01 27289.28 20595.68 22277.75 22697.57 23183.22 26395.06 16798.51 162
EPP-MVSNet93.75 12693.67 11694.01 19995.86 19485.70 26098.67 15797.66 9584.46 27991.36 17697.18 17091.16 3097.79 20992.93 15193.75 17798.53 161
mvsany_test194.57 10495.09 8092.98 21895.84 19582.07 31398.76 14895.24 30792.87 7996.45 8898.71 9684.81 14399.15 14197.68 5795.49 16397.73 193
Effi-MVS+93.87 12293.15 13196.02 12095.79 19690.76 12796.70 29095.78 27486.98 23495.71 10497.17 17179.58 21098.01 19894.57 12596.09 15399.31 97
tpm cat188.89 22887.27 24593.76 20695.79 19685.32 26890.76 37097.09 18376.14 35885.72 23688.59 34882.92 17098.04 19676.96 31191.43 21897.90 191
thisisatest053094.00 11693.52 11895.43 14195.76 19890.02 15298.99 12597.60 11286.58 24391.74 16497.36 15994.78 1198.34 17886.37 22492.48 19297.94 190
3Dnovator+87.72 893.43 13691.84 15998.17 2395.73 19995.08 3398.92 13297.04 18691.42 10881.48 29497.60 14774.60 24099.79 8290.84 17298.97 8299.64 63
MVS93.92 11992.28 14898.83 795.69 20096.82 896.22 30598.17 3784.89 27484.34 24998.61 10579.32 21599.83 7393.88 13399.43 6099.86 29
cascas90.93 19289.33 20695.76 13095.69 20093.03 7998.99 12596.59 20880.49 33786.79 22994.45 24265.23 31998.60 16993.52 14092.18 20095.66 242
QAPM91.41 18089.49 20197.17 5795.66 20293.42 7198.60 16797.51 13380.92 33581.39 29597.41 15772.89 26099.87 5882.33 27398.68 9798.21 181
tttt051793.30 14193.01 13594.17 19195.57 20386.47 23298.51 17797.60 11285.99 25490.55 18797.19 16994.80 1098.31 17985.06 23991.86 20497.74 192
1112_ss92.71 15391.55 16596.20 11095.56 20491.12 11598.48 18294.69 32588.29 19986.89 22798.50 11087.02 9898.66 16684.75 24389.77 23398.81 144
diffmvspermissive94.59 10394.19 9695.81 12895.54 20590.69 12998.70 15395.68 28191.61 10195.96 9597.81 13480.11 20698.06 19396.52 8295.76 15898.67 155
Fangjinhua Wang, Qingshan Xu, Yew-Soon Ong, Marc Pollefeys: Lightweight and Accurate Multi-View Stereo With Confidence-Aware Diffusion Model. IEEE T-PAMI 2025
LCM-MVSNet-Re88.59 24188.61 22188.51 32095.53 20672.68 37096.85 28288.43 38988.45 18973.14 35490.63 31875.82 23394.38 34992.95 15095.71 16098.48 164
Test_1112_low_res92.27 16690.97 17696.18 11195.53 20691.10 11798.47 18494.66 32688.28 20086.83 22893.50 26487.00 9998.65 16884.69 24489.74 23498.80 145
PCF-MVS89.78 591.26 18389.63 19896.16 11595.44 20891.58 10695.29 32596.10 24385.07 26982.75 26397.45 15578.28 22399.78 8480.60 28895.65 16197.12 210
Andreas Kuhn, Shan Lin, Oliver Erdler: Plane Completion and Filtering for Multi-View Stereo Reconstruction. GCPR 2019
EC-MVSNet95.09 8495.17 7694.84 16495.42 20988.17 19399.48 5495.92 26091.47 10597.34 6498.36 11982.77 17397.41 23897.24 6498.58 10198.94 131
3Dnovator87.35 1193.17 14791.77 16197.37 5095.41 21093.07 7798.82 13997.85 6091.53 10382.56 26997.58 14971.97 26799.82 7691.01 16999.23 7099.22 106
IB-MVS89.43 692.12 16990.83 18295.98 12395.40 21190.78 12699.81 1298.06 4591.23 11285.63 23793.66 25990.63 4298.78 15791.22 16671.85 35298.36 172
Christian Sormann, Mattia Rossi, Andreas Kuhn and Friedrich Fraundorfer: IB-MVS: An Iterative Algorithm for Deep Multi-View Stereo based on Binary Decisions. BMVC 2021
test_cas_vis1_n_192093.86 12393.74 11594.22 18995.39 21286.08 24899.73 2396.07 24696.38 1797.19 7097.78 13765.46 31899.86 6396.71 7498.92 8696.73 222
miper_ehance_all_eth88.94 22688.12 23391.40 25395.32 21386.93 22597.85 23895.55 28884.19 28281.97 28591.50 29784.16 14995.91 31484.69 24477.89 30391.36 302
131493.44 13591.98 15697.84 3395.24 21494.38 5396.22 30597.92 5590.18 13782.28 27797.71 14277.63 22799.80 8191.94 16298.67 9899.34 95
XVG-OURS90.83 19390.49 18891.86 24295.23 21581.25 32495.79 32095.92 26088.96 17490.02 19798.03 13171.60 27299.35 13391.06 16887.78 23994.98 246
casdiffmvs_mvgpermissive94.00 11693.33 12596.03 11995.22 21690.90 12599.09 11295.99 24990.58 12691.55 17197.37 15879.91 20898.06 19395.01 11395.22 16599.13 113
Fangjinhua Wang, Qingshan Xu, Yew-Soon Ong, Marc Pollefeys: Lightweight and Accurate Multi-View Stereo With Confidence-Aware Diffusion Model. IEEE T-PAMI 2025
TESTMET0.1,193.82 12493.26 12895.49 13995.21 21790.25 13899.15 10397.54 12689.18 16891.79 16394.87 23689.13 5997.63 22486.21 22696.29 15098.60 159
xiu_mvs_v1_base_debu94.73 9693.98 10496.99 6395.19 21895.24 2698.62 16396.50 21692.99 7497.52 5898.83 8472.37 26399.15 14197.03 6796.74 14096.58 227
xiu_mvs_v1_base94.73 9693.98 10496.99 6395.19 21895.24 2698.62 16396.50 21692.99 7497.52 5898.83 8472.37 26399.15 14197.03 6796.74 14096.58 227
xiu_mvs_v1_base_debi94.73 9693.98 10496.99 6395.19 21895.24 2698.62 16396.50 21692.99 7497.52 5898.83 8472.37 26399.15 14197.03 6796.74 14096.58 227
XVG-OURS-SEG-HR90.95 19190.66 18691.83 24395.18 22181.14 32795.92 31295.92 26088.40 19390.33 19397.85 13270.66 27899.38 12892.83 15388.83 23594.98 246
Effi-MVS+-dtu89.97 21390.68 18587.81 32595.15 22271.98 37297.87 23795.40 29891.92 9687.57 21691.44 29874.27 24696.84 25889.45 19093.10 18394.60 248
Syy-MVS84.10 31084.53 28982.83 35695.14 22365.71 38497.68 25096.66 20386.52 24682.63 26696.84 19068.15 29389.89 38045.62 39491.54 21392.87 255
myMVS_eth3d88.68 24089.07 21087.50 32895.14 22379.74 33597.68 25096.66 20386.52 24682.63 26696.84 19085.22 13889.89 38069.43 35491.54 21392.87 255
Vis-MVSNetpermissive92.64 15591.85 15895.03 15895.12 22588.23 19298.48 18296.81 19891.61 10192.16 16197.22 16671.58 27398.00 19985.85 23397.81 11698.88 136
Jingyang Zhang, Yao Yao, Shiwei Li, Zixin Luo, Tian Fang: Visibility-aware Multiview Stereo Network. BMVC 2020
GBi-Net86.67 26984.96 27791.80 24595.11 22688.81 18296.77 28495.25 30482.94 30582.12 28090.25 33062.89 32894.97 33779.04 29680.24 29191.62 288
test186.67 26984.96 27791.80 24595.11 22688.81 18296.77 28495.25 30482.94 30582.12 28090.25 33062.89 32894.97 33779.04 29680.24 29191.62 288
FMVSNet286.90 26484.79 28393.24 21395.11 22692.54 9197.67 25295.86 27282.94 30580.55 30191.17 30462.89 32895.29 33277.23 30879.71 29791.90 283
GeoE90.60 19989.56 19993.72 20895.10 22985.43 26499.41 6994.94 31683.96 28787.21 22296.83 19274.37 24497.05 25180.50 29093.73 17898.67 155
baseline93.91 12093.30 12695.72 13195.10 22990.07 14797.48 25795.91 26591.03 11393.54 14497.68 14379.58 21098.02 19794.27 12895.14 16699.08 118
casdiffmvspermissive93.98 11893.43 12195.61 13795.07 23189.86 15698.80 14295.84 27390.98 11592.74 15497.66 14579.71 20998.10 19094.72 12095.37 16498.87 138
Fangjinhua Wang, Qingshan Xu, Yew-Soon Ong, Marc Pollefeys: Lightweight and Accurate Multi-View Stereo With Confidence-Aware Diffusion Model. IEEE T-PAMI 2025
MVSFormer94.71 9994.08 10196.61 8695.05 23294.87 3797.77 24396.17 23986.84 23798.04 4998.52 10885.52 12895.99 30789.83 18398.97 8298.96 126
lupinMVS96.32 4595.94 5497.44 4595.05 23294.87 3799.86 596.50 21693.82 5998.04 4998.77 8785.52 12898.09 19196.98 7098.97 8299.37 91
CostFormer92.89 15192.48 14694.12 19394.99 23485.89 25592.89 34797.00 19286.98 23495.00 11890.78 31090.05 5397.51 23292.92 15291.73 20898.96 126
c3_l88.19 24787.23 24691.06 25994.97 23586.17 24597.72 24795.38 29983.43 29681.68 29291.37 29982.81 17295.72 32084.04 25773.70 33491.29 306
SCA90.64 19889.25 20794.83 16594.95 23688.83 18196.26 30297.21 16790.06 14490.03 19690.62 31966.61 30796.81 26083.16 26494.36 17298.84 139
test-LLR93.11 14892.68 14194.40 18094.94 23787.27 21999.15 10397.25 16190.21 13591.57 16894.04 24584.89 14197.58 22885.94 23096.13 15198.36 172
test-mter93.27 14392.89 13894.40 18094.94 23787.27 21999.15 10397.25 16188.95 17591.57 16894.04 24588.03 7797.58 22885.94 23096.13 15198.36 172
cl____87.82 24986.79 25390.89 26594.88 23985.43 26497.81 23995.24 30782.91 30980.71 30091.22 30281.97 19295.84 31681.34 28175.06 31891.40 301
DIV-MVS_self_test87.82 24986.81 25290.87 26694.87 24085.39 26697.81 23995.22 31282.92 30880.76 29991.31 30181.99 19095.81 31881.36 28075.04 31991.42 300
tpm291.77 17491.09 17393.82 20594.83 24185.56 26392.51 35297.16 17484.00 28593.83 13990.66 31687.54 8397.17 24587.73 21091.55 21298.72 151
PVSNet_083.28 1687.31 26085.16 27593.74 20794.78 24284.59 27998.91 13398.69 2189.81 14978.59 32593.23 26961.95 33299.34 13494.75 11855.72 38997.30 205
CDS-MVSNet93.47 13493.04 13494.76 16694.75 24389.45 16498.82 13997.03 18887.91 21290.97 18096.48 20289.06 6096.36 28589.50 18992.81 18798.49 163
Khang Truong Giang, Soohwan Song, Sungho Jo: Curvature-guided dynamic scale networks for Multi-view Stereo. ICLR 2022
gm-plane-assit94.69 24488.14 19488.22 20197.20 16798.29 18190.79 174
eth_miper_zixun_eth87.76 25187.00 25090.06 28794.67 24582.65 30897.02 27795.37 30084.19 28281.86 29091.58 29681.47 19795.90 31583.24 26273.61 33591.61 291
testing387.75 25288.22 23186.36 33694.66 24677.41 35299.52 5197.95 5486.05 25381.12 29696.69 19786.18 12089.31 38461.65 37890.12 23192.35 267
RPSCF85.33 29285.55 27084.67 34894.63 24762.28 38793.73 33993.76 34474.38 36585.23 24197.06 17664.09 32298.31 17980.98 28286.08 25193.41 254
miper_lstm_enhance86.90 26486.20 26089.00 31594.53 24881.19 32596.74 28895.24 30782.33 31880.15 30690.51 32681.99 19094.68 34680.71 28673.58 33691.12 310
Patchmatch-test86.25 27884.06 29592.82 22194.42 24982.88 30482.88 39294.23 33871.58 37079.39 31690.62 31989.00 6296.42 28263.03 37491.37 22199.16 109
VDDNet90.08 21088.54 22694.69 17094.41 25087.68 20398.21 21096.40 22176.21 35793.33 14797.75 13954.93 36098.77 15894.71 12190.96 22397.61 199
fmvsm_s_conf0.1_n95.56 7295.68 6595.20 15094.35 25189.10 16999.50 5297.67 9494.76 3698.68 2899.03 5881.13 20299.86 6398.63 3297.36 13096.63 224
test_fmvsmvis_n_192095.47 7395.40 7195.70 13294.33 25290.22 14199.70 2796.98 19396.80 792.75 15398.89 8082.46 18499.92 4098.36 4098.33 10896.97 218
KD-MVS_2432*160082.98 31580.52 32390.38 28094.32 25388.98 17492.87 34895.87 27080.46 33873.79 34987.49 35582.76 17593.29 35770.56 35046.53 39888.87 355
miper_refine_blended82.98 31580.52 32390.38 28094.32 25388.98 17492.87 34895.87 27080.46 33873.79 34987.49 35582.76 17593.29 35770.56 35046.53 39888.87 355
EI-MVSNet89.87 21489.38 20591.36 25594.32 25385.87 25697.61 25496.59 20885.10 26785.51 23897.10 17381.30 20196.56 27183.85 26083.03 27891.64 286
CVMVSNet90.30 20390.91 17888.46 32194.32 25373.58 36697.61 25497.59 11690.16 14088.43 21197.10 17376.83 23192.86 36082.64 27093.54 17998.93 132
WB-MVSnew88.69 23888.34 22889.77 29894.30 25785.99 25398.14 21597.31 15987.15 23087.85 21496.07 21569.91 27995.52 32572.83 34391.47 21787.80 362
test_fmvs1_n91.07 18891.41 16890.06 28794.10 25874.31 36299.18 9394.84 31894.81 3596.37 9097.46 15450.86 37399.82 7697.14 6697.90 11496.04 239
IterMVS-LS88.34 24387.44 24191.04 26094.10 25885.85 25798.10 22195.48 29285.12 26682.03 28491.21 30381.35 20095.63 32383.86 25975.73 31591.63 287
Fangjinhua Wang, Silvano Galliani, Christoph Vogel, Marc Pollefeys: IterMVS: Iterative Probability Estimation for Efficient Multi-View Stereo.
TAMVS92.62 15692.09 15494.20 19094.10 25887.68 20398.41 18996.97 19487.53 22589.74 20096.04 21684.77 14596.49 27888.97 19992.31 19698.42 165
PAPM96.35 4395.94 5497.58 4194.10 25895.25 2598.93 13098.17 3794.26 4493.94 13698.72 9389.68 5697.88 20396.36 8499.29 6899.62 67
CLD-MVS91.06 18990.71 18492.10 23894.05 26286.10 24799.55 4596.29 23094.16 4784.70 24497.17 17169.62 28497.82 20794.74 11986.08 25192.39 262
Zhaoxin Li, Wangmeng Zuo, Zhaoqi Wang, Lei Zhang: Confidence-based Large-scale Dense Multi-view Stereo. IEEE Transaction on Image Processing, 2020
HQP-NCC93.95 26399.16 9793.92 5287.57 216
ACMP_Plane93.95 26399.16 9793.92 5287.57 216
HQP-MVS91.50 17791.23 17192.29 23293.95 26386.39 23599.16 9796.37 22393.92 5287.57 21696.67 19873.34 25297.77 21193.82 13686.29 24692.72 257
NP-MVS93.94 26686.22 24296.67 198
plane_prior693.92 26786.02 25272.92 258
ACMP87.39 1088.71 23788.24 23090.12 28693.91 26881.06 32898.50 17895.67 28289.43 16280.37 30395.55 22365.67 31397.83 20690.55 17784.51 26191.47 296
Qingshan Xu and Wenbing Tao: Planar Prior Assisted PatchMatch Multi-View Stereo. AAAI 2020
plane_prior193.90 269
HQP_MVS91.26 18390.95 17792.16 23693.84 27086.07 25099.02 12196.30 22793.38 6886.99 22496.52 20072.92 25897.75 21793.46 14386.17 24992.67 259
plane_prior793.84 27085.73 259
dmvs_re88.69 23888.06 23490.59 27293.83 27278.68 34395.75 32196.18 23887.99 20984.48 24896.32 20867.52 30096.94 25584.98 24185.49 25596.14 237
MVS-HIRNet79.01 33475.13 34690.66 27193.82 27381.69 31685.16 38293.75 34554.54 39274.17 34759.15 39857.46 34896.58 27063.74 37194.38 17193.72 251
FMVSNet582.29 31880.54 32287.52 32793.79 27484.01 28793.73 33992.47 36176.92 35574.27 34686.15 36663.69 32689.24 38569.07 35574.79 32289.29 350
ACMH+83.78 1584.21 30682.56 31189.15 31293.73 27579.16 33896.43 29594.28 33781.09 33274.00 34894.03 24754.58 36197.67 22076.10 31878.81 29990.63 326
ACMM86.95 1388.77 23588.22 23190.43 27893.61 27681.34 32298.50 17895.92 26087.88 21383.85 25395.20 23267.20 30397.89 20286.90 21984.90 25892.06 280
Qingshan Xu and Wenbing Tao: Multi-Scale Geometric Consistency Guided Multi-View Stereo. CVPR 2019
OpenMVScopyleft85.28 1490.75 19588.84 21596.48 9493.58 27793.51 6998.80 14297.41 15182.59 31178.62 32397.49 15368.00 29699.82 7684.52 24898.55 10396.11 238
IterMVS85.81 28584.67 28689.22 31093.51 27883.67 29296.32 29994.80 32185.09 26878.69 32190.17 33666.57 30993.17 35979.48 29477.42 30990.81 317
Fangjinhua Wang, Silvano Galliani, Christoph Vogel, Marc Pollefeys: IterMVS: Iterative Probability Estimation for Efficient Multi-View Stereo.
CR-MVSNet88.83 23287.38 24393.16 21593.47 27986.24 24084.97 38594.20 33988.92 17890.76 18486.88 36284.43 14694.82 34270.64 34992.17 20198.41 166
RPMNet85.07 29581.88 31294.64 17393.47 27986.24 24084.97 38597.21 16764.85 39090.76 18478.80 38780.95 20399.27 13753.76 38992.17 20198.41 166
IterMVS-SCA-FT85.73 28884.64 28789.00 31593.46 28182.90 30296.27 30094.70 32485.02 27178.62 32390.35 32866.61 30793.33 35679.38 29577.36 31090.76 321
Fast-Effi-MVS+-dtu88.84 23088.59 22389.58 30393.44 28278.18 34798.65 15994.62 32788.46 18884.12 25195.37 22968.91 28696.52 27482.06 27691.70 20994.06 249
Patchmtry83.61 31481.64 31489.50 30593.36 28382.84 30584.10 38894.20 33969.47 38079.57 31486.88 36284.43 14694.78 34368.48 35874.30 32890.88 316
LPG-MVS_test88.86 22988.47 22790.06 28793.35 28480.95 32998.22 20895.94 25687.73 21983.17 25996.11 21366.28 31197.77 21190.19 18185.19 25691.46 297
LGP-MVS_train90.06 28793.35 28480.95 32995.94 25687.73 21983.17 25996.11 21366.28 31197.77 21190.19 18185.19 25691.46 297
JIA-IIPM85.97 28184.85 28189.33 30993.23 28673.68 36585.05 38497.13 17769.62 37991.56 17068.03 39488.03 7796.96 25377.89 30693.12 18297.34 204
ACMH83.09 1784.60 30082.61 31090.57 27393.18 28782.94 30096.27 30094.92 31781.01 33372.61 36093.61 26056.54 35197.79 20974.31 33081.07 28990.99 313
Qingshan Xu and Wenbing Tao: Multi-Scale Geometric Consistency Guided Multi-View Stereo. CVPR 2019
PatchT85.44 29183.19 30092.22 23393.13 28883.00 29983.80 39196.37 22370.62 37390.55 18779.63 38684.81 14394.87 34058.18 38591.59 21098.79 146
baseline294.04 11593.80 11494.74 16893.07 28990.25 13898.12 21898.16 3989.86 14786.53 23196.95 18295.56 698.05 19591.44 16594.53 17095.93 240
jason95.40 7794.86 8497.03 6092.91 29094.23 5599.70 2796.30 22793.56 6696.73 8398.52 10881.46 19897.91 20096.08 9098.47 10698.96 126
jason: jason.
LTVRE_ROB81.71 1984.59 30182.72 30890.18 28492.89 29183.18 29893.15 34494.74 32278.99 34375.14 34492.69 27765.64 31497.63 22469.46 35381.82 28789.74 343
Andreas Kuhn, Heiko Hirschmüller, Daniel Scharstein, Helmut Mayer: A TV Prior for High-Quality Scalable Multi-View Stereo Reconstruction. International Journal of Computer Vision 2016
VPA-MVSNet89.10 22387.66 23993.45 21092.56 29291.02 12197.97 23298.32 3086.92 23686.03 23392.01 28668.84 28897.10 24990.92 17075.34 31692.23 270
tpm89.67 21688.95 21391.82 24492.54 29381.43 31992.95 34695.92 26087.81 21490.50 18989.44 34284.99 13995.65 32283.67 26182.71 28198.38 169
GA-MVS90.10 20988.69 21994.33 18492.44 29487.97 19999.08 11396.26 23189.65 15286.92 22693.11 27268.09 29496.96 25382.54 27290.15 23098.05 186
test_fmvsmconf0.1_n95.94 5995.79 6296.40 10192.42 29589.92 15499.79 1796.85 19796.53 1597.22 6698.67 9982.71 17799.84 6998.92 2798.98 8199.43 87
FIs90.70 19689.87 19593.18 21492.29 29691.12 11598.17 21498.25 3289.11 17083.44 25594.82 23882.26 18796.17 30087.76 20982.76 28092.25 268
ITE_SJBPF87.93 32392.26 29776.44 35593.47 35187.67 22279.95 30995.49 22656.50 35297.38 23975.24 32382.33 28489.98 340
UniMVSNet (Re)89.50 22088.32 22993.03 21692.21 29890.96 12398.90 13498.39 2789.13 16983.22 25692.03 28481.69 19496.34 29186.79 22072.53 34591.81 284
UniMVSNet_NR-MVSNet89.60 21788.55 22592.75 22492.17 29990.07 14798.74 14998.15 4088.37 19483.21 25793.98 25082.86 17195.93 31186.95 21672.47 34692.25 268
TinyColmap80.42 32877.94 33387.85 32492.09 30078.58 34493.74 33889.94 38274.99 36169.77 36591.78 29246.09 38097.58 22865.17 37077.89 30387.38 364
fmvsm_s_conf0.1_n_a95.16 8295.15 7795.18 15192.06 30188.94 17799.29 8297.53 12794.46 4098.98 1998.99 6279.99 20799.85 6798.24 4796.86 13996.73 222
tt080586.50 27484.79 28391.63 25191.97 30281.49 31896.49 29497.38 15482.24 31982.44 27195.82 22051.22 37098.25 18484.55 24780.96 29095.13 245
MS-PatchMatch86.75 26785.92 26489.22 31091.97 30282.47 31096.91 27996.14 24183.74 29077.73 33093.53 26358.19 34597.37 24176.75 31498.35 10787.84 360
VPNet88.30 24486.57 25493.49 20991.95 30491.35 10898.18 21297.20 17188.61 18384.52 24794.89 23562.21 33196.76 26389.34 19372.26 34992.36 264
FMVSNet183.94 31181.32 31991.80 24591.94 30588.81 18296.77 28495.25 30477.98 34878.25 32890.25 33050.37 37494.97 33773.27 33977.81 30791.62 288
WR-MVS88.54 24287.22 24792.52 22991.93 30689.50 16398.56 17297.84 6186.99 23181.87 28893.81 25474.25 24795.92 31385.29 23674.43 32692.12 277
D2MVS87.96 24887.39 24289.70 30091.84 30783.40 29598.31 20398.49 2388.04 20778.23 32990.26 32973.57 25096.79 26284.21 25183.53 27488.90 354
FC-MVSNet-test90.22 20589.40 20492.67 22891.78 30889.86 15697.89 23498.22 3588.81 18082.96 26294.66 24081.90 19395.96 30985.89 23282.52 28392.20 274
MIMVSNet84.48 30381.83 31392.42 23191.73 30987.36 21585.52 38194.42 33381.40 32881.91 28687.58 35251.92 36892.81 36273.84 33588.15 23797.08 214
USDC84.74 29782.93 30290.16 28591.73 30983.54 29495.00 32793.30 35288.77 18173.19 35393.30 26753.62 36497.65 22375.88 32081.54 28889.30 349
test_vis1_n90.40 20090.27 19090.79 26891.55 31176.48 35499.12 11094.44 33094.31 4397.34 6496.95 18243.60 38499.42 12397.57 5997.60 12196.47 231
nrg03090.23 20488.87 21494.32 18591.53 31293.54 6898.79 14695.89 26888.12 20484.55 24694.61 24178.80 22096.88 25792.35 15975.21 31792.53 261
DU-MVS88.83 23287.51 24092.79 22291.46 31390.07 14798.71 15097.62 10988.87 17983.21 25793.68 25774.63 23895.93 31186.95 21672.47 34692.36 264
NR-MVSNet87.74 25586.00 26392.96 21991.46 31390.68 13096.65 29197.42 15088.02 20873.42 35193.68 25777.31 22895.83 31784.26 25071.82 35392.36 264
tfpnnormal83.65 31281.35 31890.56 27591.37 31588.06 19697.29 26397.87 5878.51 34776.20 33490.91 30764.78 32096.47 27961.71 37773.50 33787.13 369
test_vis1_rt81.31 32480.05 32785.11 34391.29 31670.66 37698.98 12777.39 40485.76 25868.80 36882.40 37536.56 39199.44 11992.67 15686.55 24585.24 379
test_040278.81 33676.33 34186.26 33791.18 31778.44 34695.88 31591.34 37668.55 38170.51 36489.91 33752.65 36794.99 33647.14 39379.78 29685.34 378
test0.0.03 188.96 22588.61 22190.03 29191.09 31884.43 28198.97 12897.02 19090.21 13580.29 30496.31 20984.89 14191.93 37472.98 34185.70 25493.73 250
WR-MVS_H86.53 27385.49 27189.66 30291.04 31983.31 29797.53 25698.20 3684.95 27379.64 31290.90 30878.01 22595.33 33176.29 31772.81 34290.35 330
CP-MVSNet86.54 27285.45 27289.79 29791.02 32082.78 30697.38 26097.56 12285.37 26379.53 31593.03 27371.86 26995.25 33379.92 29173.43 34091.34 303
TranMVSNet+NR-MVSNet87.75 25286.31 25892.07 23990.81 32188.56 18798.33 20097.18 17287.76 21681.87 28893.90 25272.45 26295.43 32883.13 26671.30 35692.23 270
PS-CasMVS85.81 28584.58 28889.49 30790.77 32282.11 31297.20 27097.36 15684.83 27579.12 32092.84 27667.42 30295.16 33578.39 30473.25 34191.21 308
DeepMVS_CXcopyleft76.08 36790.74 32351.65 40090.84 37886.47 24957.89 38887.98 34935.88 39292.60 36465.77 36865.06 37383.97 383
mvsmamba89.99 21289.42 20391.69 25090.64 32486.34 23898.40 19292.27 36391.01 11484.80 24394.93 23476.12 23296.51 27592.81 15483.84 26992.21 272
OPM-MVS89.76 21589.15 20991.57 25290.53 32585.58 26298.11 22095.93 25992.88 7886.05 23296.47 20367.06 30597.87 20489.29 19686.08 25191.26 307
Ray L. Khuboni, Hongjun Xu: Octagram Propagation Matching for Multi-Scale View Stereopsis (OPM-MVS).
XXY-MVS87.75 25286.02 26292.95 22090.46 32689.70 15997.71 24995.90 26684.02 28480.95 29794.05 24467.51 30197.10 24985.16 23778.41 30092.04 281
UniMVSNet_ETH3D85.65 29083.79 29891.21 25690.41 32780.75 33195.36 32495.78 27478.76 34681.83 29194.33 24349.86 37596.66 26584.30 24983.52 27596.22 236
RRT_MVS88.91 22788.56 22489.93 29290.31 32881.61 31798.08 22596.38 22289.30 16482.41 27494.84 23773.15 25696.04 30690.38 17882.23 28592.15 275
v1085.73 28884.01 29690.87 26690.03 32986.73 22897.20 27095.22 31281.25 33079.85 31189.75 33973.30 25496.28 29776.87 31272.64 34489.61 346
v886.11 27984.45 29091.10 25889.99 33086.85 22697.24 26795.36 30181.99 32279.89 31089.86 33874.53 24296.39 28378.83 30072.32 34890.05 338
V4287.00 26385.68 26890.98 26289.91 33186.08 24898.32 20295.61 28583.67 29382.72 26490.67 31574.00 24996.53 27381.94 27874.28 32990.32 331
XVG-ACMP-BASELINE85.86 28384.95 27988.57 31989.90 33277.12 35394.30 33395.60 28687.40 22782.12 28092.99 27553.42 36597.66 22185.02 24083.83 27090.92 315
PEN-MVS85.21 29383.93 29789.07 31489.89 33381.31 32397.09 27397.24 16484.45 28078.66 32292.68 27868.44 29194.87 34075.98 31970.92 35791.04 312
test_fmvs285.10 29485.45 27284.02 35189.85 33465.63 38598.49 18092.59 35990.45 13085.43 24093.32 26543.94 38296.59 26890.81 17384.19 26689.85 342
v114486.83 26685.31 27491.40 25389.75 33587.21 22398.31 20395.45 29483.22 29982.70 26590.78 31073.36 25196.36 28579.49 29374.69 32390.63 326
TransMVSNet (Re)81.97 32079.61 32989.08 31389.70 33684.01 28797.26 26591.85 37178.84 34473.07 35791.62 29467.17 30495.21 33467.50 36159.46 38388.02 359
v2v48287.27 26185.76 26691.78 24989.59 33787.58 20798.56 17295.54 28984.53 27882.51 27091.78 29273.11 25796.47 27982.07 27574.14 33291.30 305
pm-mvs184.68 29982.78 30690.40 27989.58 33885.18 27097.31 26294.73 32381.93 32476.05 33692.01 28665.48 31796.11 30378.75 30169.14 35989.91 341
pmmvs487.58 25886.17 26191.80 24589.58 33888.92 18097.25 26695.28 30382.54 31380.49 30293.17 27175.62 23596.05 30582.75 26978.90 29890.42 329
v119286.32 27784.71 28591.17 25789.53 34086.40 23498.13 21695.44 29682.52 31482.42 27390.62 31971.58 27396.33 29277.23 30874.88 32090.79 319
v14419286.40 27584.89 28090.91 26389.48 34185.59 26198.21 21095.43 29782.45 31682.62 26890.58 32272.79 26196.36 28578.45 30374.04 33390.79 319
v14886.38 27685.06 27690.37 28289.47 34284.10 28698.52 17495.48 29283.80 28980.93 29890.22 33374.60 24096.31 29380.92 28471.55 35490.69 324
v192192086.02 28084.44 29190.77 26989.32 34385.20 26998.10 22195.35 30282.19 32082.25 27890.71 31270.73 27696.30 29676.85 31374.49 32590.80 318
v124085.77 28784.11 29490.73 27089.26 34485.15 27297.88 23695.23 31181.89 32582.16 27990.55 32469.60 28596.31 29375.59 32274.87 32190.72 323
our_test_384.47 30482.80 30489.50 30589.01 34583.90 28997.03 27594.56 32881.33 32975.36 34390.52 32571.69 27194.54 34868.81 35676.84 31190.07 336
ppachtmachnet_test83.63 31381.57 31689.80 29689.01 34585.09 27397.13 27294.50 32978.84 34476.14 33591.00 30669.78 28194.61 34763.40 37274.36 32789.71 345
DTE-MVSNet84.14 30882.80 30488.14 32288.95 34779.87 33496.81 28396.24 23283.50 29577.60 33192.52 28067.89 29894.24 35172.64 34469.05 36090.32 331
PS-MVSNAJss89.54 21989.05 21191.00 26188.77 34884.36 28297.39 25895.97 25188.47 18681.88 28793.80 25582.48 18196.50 27689.34 19383.34 27792.15 275
Baseline_NR-MVSNet85.83 28484.82 28288.87 31888.73 34983.34 29698.63 16291.66 37280.41 34082.44 27191.35 30074.63 23895.42 32984.13 25371.39 35587.84 360
MVP-Stereo86.61 27185.83 26588.93 31788.70 35083.85 29096.07 30994.41 33482.15 32175.64 34191.96 28967.65 29996.45 28177.20 31098.72 9686.51 372
Qingsong Yan: MVP-Stereo: A Parallel Multi-View Patchmatch Stereo Method with Dilation Matching for Photogrammetric Application.
EU-MVSNet84.19 30784.42 29283.52 35488.64 35167.37 38396.04 31095.76 27685.29 26478.44 32693.18 27070.67 27791.48 37675.79 32175.98 31391.70 285
pmmvs585.87 28284.40 29390.30 28388.53 35284.23 28398.60 16793.71 34681.53 32780.29 30492.02 28564.51 32195.52 32582.04 27778.34 30191.15 309
MDA-MVSNet-bldmvs77.82 34274.75 34887.03 33288.33 35378.52 34596.34 29892.85 35675.57 35948.87 39487.89 35057.32 34992.49 36860.79 37964.80 37490.08 335
N_pmnet70.19 35469.87 35671.12 37488.24 35430.63 41395.85 31828.70 41270.18 37668.73 36986.55 36464.04 32393.81 35253.12 39073.46 33888.94 353
v7n84.42 30582.75 30789.43 30888.15 35581.86 31496.75 28795.67 28280.53 33678.38 32789.43 34369.89 28096.35 29073.83 33672.13 35090.07 336
SixPastTwentyTwo82.63 31781.58 31585.79 34088.12 35671.01 37595.17 32692.54 36084.33 28172.93 35892.08 28360.41 33995.61 32474.47 32974.15 33190.75 322
test_djsdf88.26 24687.73 23789.84 29588.05 35782.21 31197.77 24396.17 23986.84 23782.41 27491.95 29072.07 26695.99 30789.83 18384.50 26291.32 304
mvs_tets87.09 26286.22 25989.71 29987.87 35881.39 32196.73 28995.90 26688.19 20279.99 30893.61 26059.96 34096.31 29389.40 19284.34 26491.43 299
OurMVSNet-221017-084.13 30983.59 29985.77 34187.81 35970.24 37794.89 32893.65 34886.08 25276.53 33393.28 26861.41 33496.14 30280.95 28377.69 30890.93 314
YYNet179.64 33377.04 33887.43 33087.80 36079.98 33396.23 30494.44 33073.83 36751.83 39187.53 35367.96 29792.07 37366.00 36767.75 36690.23 333
MDA-MVSNet_test_wron79.65 33277.05 33787.45 32987.79 36180.13 33296.25 30394.44 33073.87 36651.80 39287.47 35768.04 29592.12 37266.02 36667.79 36590.09 334
jajsoiax87.35 25986.51 25689.87 29387.75 36281.74 31597.03 27595.98 25088.47 18680.15 30693.80 25561.47 33396.36 28589.44 19184.47 26391.50 295
K. test v381.04 32579.77 32884.83 34687.41 36370.23 37895.60 32393.93 34383.70 29267.51 37589.35 34455.76 35393.58 35576.67 31568.03 36390.67 325
dmvs_testset77.17 34478.99 33171.71 37287.25 36438.55 40991.44 36281.76 40085.77 25769.49 36695.94 21869.71 28384.37 39252.71 39176.82 31292.21 272
testgi82.29 31881.00 32186.17 33887.24 36574.84 36197.39 25891.62 37388.63 18275.85 34095.42 22746.07 38191.55 37566.87 36579.94 29592.12 277
LF4IMVS81.94 32181.17 32084.25 35087.23 36668.87 38293.35 34391.93 37083.35 29875.40 34293.00 27449.25 37896.65 26678.88 29978.11 30287.22 368
EG-PatchMatch MVS79.92 32977.59 33486.90 33387.06 36777.90 35196.20 30794.06 34174.61 36366.53 37988.76 34740.40 38996.20 29867.02 36383.66 27386.61 370
test_fmvsmconf0.01_n94.14 11393.51 11996.04 11886.79 36889.19 16699.28 8595.94 25695.70 2195.50 10898.49 11273.27 25599.79 8298.28 4598.32 11099.15 110
Gipumacopyleft54.77 36652.22 37062.40 38386.50 36959.37 39150.20 40190.35 38136.52 39941.20 40049.49 40118.33 40281.29 39432.10 40065.34 37246.54 401
S. Galliani, K. Lasinger, K. Schindler: Massively Parallel Multiview Stereopsis by Surface Normal Diffusion. ICCV 2015
anonymousdsp86.69 26885.75 26789.53 30486.46 37082.94 30096.39 29695.71 27883.97 28679.63 31390.70 31368.85 28795.94 31086.01 22784.02 26889.72 344
EGC-MVSNET60.70 36155.37 36576.72 36686.35 37171.08 37389.96 37384.44 3970.38 4091.50 41084.09 37137.30 39088.10 38840.85 39873.44 33970.97 394
test_method70.10 35568.66 35874.41 37186.30 37255.84 39394.47 33089.82 38335.18 40066.15 38084.75 37030.54 39477.96 40170.40 35260.33 38189.44 348
lessismore_v085.08 34485.59 37369.28 38090.56 38067.68 37490.21 33454.21 36395.46 32773.88 33462.64 37790.50 328
CMPMVSbinary58.40 2180.48 32780.11 32681.59 36285.10 37459.56 39094.14 33695.95 25568.54 38260.71 38693.31 26655.35 35897.87 20483.06 26784.85 26087.33 366
M. Jancosek, T. Pajdla: Multi-View Reconstruction Preserving Weakly-Supported Surfaces. CVPR 2011
Anonymous2023120680.76 32679.42 33084.79 34784.78 37572.98 36796.53 29292.97 35479.56 34174.33 34588.83 34661.27 33592.15 37160.59 38075.92 31489.24 351
DSMNet-mixed81.60 32381.43 31782.10 35984.36 37660.79 38893.63 34186.74 39279.00 34279.32 31787.15 36063.87 32489.78 38266.89 36491.92 20395.73 241
pmmvs679.90 33077.31 33687.67 32684.17 37778.13 34895.86 31793.68 34767.94 38472.67 35989.62 34150.98 37295.75 31974.80 32866.04 37089.14 352
new_pmnet76.02 34573.71 35082.95 35583.88 37872.85 36991.26 36592.26 36470.44 37562.60 38481.37 37947.64 37992.32 36961.85 37672.10 35183.68 384
OpenMVS_ROBcopyleft73.86 2077.99 34175.06 34786.77 33483.81 37977.94 35096.38 29791.53 37567.54 38568.38 37087.13 36143.94 38296.08 30455.03 38881.83 28686.29 373
test20.0378.51 33977.48 33581.62 36183.07 38071.03 37496.11 30892.83 35781.66 32669.31 36789.68 34057.53 34787.29 39058.65 38468.47 36186.53 371
Anonymous2024052178.63 33876.90 33983.82 35282.82 38172.86 36895.72 32293.57 34973.55 36872.17 36184.79 36949.69 37692.51 36765.29 36974.50 32486.09 374
UnsupCasMVSNet_eth78.90 33576.67 34085.58 34282.81 38274.94 36091.98 35596.31 22684.64 27765.84 38187.71 35151.33 36992.23 37072.89 34256.50 38889.56 347
KD-MVS_self_test77.47 34375.88 34382.24 35781.59 38368.93 38192.83 35094.02 34277.03 35473.14 35483.39 37255.44 35790.42 37767.95 35957.53 38687.38 364
CL-MVSNet_self_test79.89 33178.34 33284.54 34981.56 38475.01 35996.88 28195.62 28481.10 33175.86 33985.81 36768.49 29090.26 37863.21 37356.51 38788.35 357
MIMVSNet175.92 34673.30 35183.81 35381.29 38575.57 35792.26 35392.05 36873.09 36967.48 37686.18 36540.87 38887.64 38955.78 38770.68 35888.21 358
Patchmatch-RL test81.90 32280.13 32587.23 33180.71 38670.12 37984.07 38988.19 39083.16 30170.57 36282.18 37787.18 9392.59 36582.28 27462.78 37698.98 124
APD_test168.93 35666.98 35974.77 37080.62 38753.15 39787.97 37685.01 39553.76 39359.26 38787.52 35425.19 39689.95 37956.20 38667.33 36781.19 388
pmmvs-eth3d78.71 33776.16 34286.38 33580.25 38881.19 32594.17 33592.13 36777.97 34966.90 37882.31 37655.76 35392.56 36673.63 33862.31 37985.38 376
UnsupCasMVSNet_bld73.85 35170.14 35584.99 34579.44 38975.73 35688.53 37595.24 30770.12 37761.94 38574.81 39141.41 38793.62 35468.65 35751.13 39585.62 375
PM-MVS74.88 34972.85 35280.98 36378.98 39064.75 38690.81 36985.77 39380.95 33468.23 37282.81 37329.08 39592.84 36176.54 31662.46 37885.36 377
new-patchmatchnet74.80 35072.40 35381.99 36078.36 39172.20 37194.44 33192.36 36277.06 35363.47 38379.98 38551.04 37188.85 38660.53 38154.35 39084.92 381
test_fmvs375.09 34875.19 34574.81 36977.45 39254.08 39595.93 31190.64 37982.51 31573.29 35281.19 38022.29 39886.29 39185.50 23567.89 36484.06 382
WB-MVS66.44 35766.29 36066.89 37774.84 39344.93 40493.00 34584.09 39871.15 37255.82 38981.63 37863.79 32580.31 39921.85 40350.47 39675.43 390
SSC-MVS65.42 35865.20 36166.06 37873.96 39443.83 40592.08 35483.54 39969.77 37854.73 39080.92 38263.30 32779.92 40020.48 40448.02 39774.44 391
pmmvs372.86 35269.76 35782.17 35873.86 39574.19 36394.20 33489.01 38764.23 39167.72 37380.91 38341.48 38688.65 38762.40 37554.02 39183.68 384
mvsany_test375.85 34774.52 34979.83 36473.53 39660.64 38991.73 35887.87 39183.91 28870.55 36382.52 37431.12 39393.66 35386.66 22262.83 37585.19 380
test_f71.94 35370.82 35475.30 36872.77 39753.28 39691.62 35989.66 38575.44 36064.47 38278.31 38820.48 39989.56 38378.63 30266.02 37183.05 387
ambc79.60 36572.76 39856.61 39276.20 39692.01 36968.25 37180.23 38423.34 39794.73 34473.78 33760.81 38087.48 363
TDRefinement78.01 34075.31 34486.10 33970.06 39973.84 36493.59 34291.58 37474.51 36473.08 35691.04 30549.63 37797.12 24674.88 32659.47 38287.33 366
test_vis3_rt61.29 36058.75 36368.92 37667.41 40052.84 39891.18 36759.23 41166.96 38641.96 39958.44 39911.37 40794.72 34574.25 33157.97 38559.20 398
testf156.38 36453.73 36764.31 38164.84 40145.11 40280.50 39475.94 40638.87 39642.74 39675.07 38911.26 40881.19 39541.11 39653.27 39266.63 395
APD_test256.38 36453.73 36764.31 38164.84 40145.11 40280.50 39475.94 40638.87 39642.74 39675.07 38911.26 40881.19 39541.11 39653.27 39266.63 395
PMMVS258.97 36355.07 36670.69 37562.72 40355.37 39485.97 38080.52 40149.48 39445.94 39568.31 39315.73 40480.78 39749.79 39237.12 40075.91 389
E-PMN41.02 37140.93 37341.29 38761.97 40433.83 41084.00 39065.17 40927.17 40227.56 40246.72 40317.63 40360.41 40619.32 40518.82 40229.61 402
wuyk23d16.71 37516.73 37916.65 38960.15 40525.22 41441.24 4025.17 4136.56 4065.48 4093.61 4093.64 41122.72 40815.20 4079.52 4061.99 406
FPMVS61.57 35960.32 36265.34 37960.14 40642.44 40791.02 36889.72 38444.15 39542.63 39880.93 38119.02 40080.59 39842.50 39572.76 34373.00 392
EMVS39.96 37239.88 37440.18 38859.57 40732.12 41284.79 38764.57 41026.27 40326.14 40444.18 40618.73 40159.29 40717.03 40617.67 40429.12 403
LCM-MVSNet60.07 36256.37 36471.18 37354.81 40848.67 40182.17 39389.48 38637.95 39849.13 39369.12 39213.75 40681.76 39359.28 38251.63 39483.10 386
MVEpermissive44.00 2241.70 37037.64 37553.90 38649.46 40943.37 40665.09 40066.66 40826.19 40425.77 40548.53 4023.58 41263.35 40526.15 40227.28 40154.97 400
Simon Fuhrmann, Fabian Langguth, Michael Goesele: MVE - A Multi-View Reconstruction Environment. EUROGRAPHICS Workshops on Graphics and Cultural Heritage (2014)
ANet_high50.71 36846.17 37164.33 38044.27 41052.30 39976.13 39778.73 40264.95 38927.37 40355.23 40014.61 40567.74 40336.01 39918.23 40372.95 393
PMVScopyleft41.42 2345.67 36942.50 37255.17 38534.28 41132.37 41166.24 39978.71 40330.72 40122.04 40659.59 3974.59 41077.85 40227.49 40158.84 38455.29 399
Y. Furukawa, J. Ponce: Accurate, dense, and robust multiview stereopsis. PAMI (2010)
tmp_tt53.66 36752.86 36956.05 38432.75 41241.97 40873.42 39876.12 40521.91 40539.68 40196.39 20642.59 38565.10 40478.00 30514.92 40561.08 397
testmvs18.81 37423.05 3776.10 3914.48 4132.29 41697.78 2413.00 4143.27 40718.60 40762.71 3951.53 4142.49 41014.26 4081.80 40713.50 405
test12316.58 37619.47 3787.91 3903.59 4145.37 41594.32 3321.39 4152.49 40813.98 40844.60 4052.91 4132.65 40911.35 4090.57 40815.70 404
test_blank0.00 3790.00 3820.00 3920.00 4150.00 4170.00 4030.00 4160.00 4100.00 4110.00 4100.00 4150.00 4110.00 4100.00 4090.00 407
eth-test20.00 415
eth-test0.00 415
uanet_test0.00 3790.00 3820.00 3920.00 4150.00 4170.00 4030.00 4160.00 4100.00 4110.00 4100.00 4150.00 4110.00 4100.00 4090.00 407
DCPMVS0.00 3790.00 3820.00 3920.00 4150.00 4170.00 4030.00 4160.00 4100.00 4110.00 4100.00 4150.00 4110.00 4100.00 4090.00 407
cdsmvs_eth3d_5k22.52 37330.03 3760.00 3920.00 4150.00 4170.00 40397.17 1730.00 4100.00 41198.77 8774.35 2450.00 4110.00 4100.00 4090.00 407
pcd_1.5k_mvsjas6.87 3789.16 3810.00 3920.00 4150.00 4170.00 4030.00 4160.00 4100.00 4110.00 41082.48 1810.00 4110.00 4100.00 4090.00 407
sosnet-low-res0.00 3790.00 3820.00 3920.00 4150.00 4170.00 4030.00 4160.00 4100.00 4110.00 4100.00 4150.00 4110.00 4100.00 4090.00 407
sosnet0.00 3790.00 3820.00 3920.00 4150.00 4170.00 4030.00 4160.00 4100.00 4110.00 4100.00 4150.00 4110.00 4100.00 4090.00 407
uncertanet0.00 3790.00 3820.00 3920.00 4150.00 4170.00 4030.00 4160.00 4100.00 4110.00 4100.00 4150.00 4110.00 4100.00 4090.00 407
Regformer0.00 3790.00 3820.00 3920.00 4150.00 4170.00 4030.00 4160.00 4100.00 4110.00 4100.00 4150.00 4110.00 4100.00 4090.00 407
ab-mvs-re8.21 37710.94 3800.00 3920.00 4150.00 4170.00 4030.00 4160.00 4100.00 41198.50 1100.00 4150.00 4110.00 4100.00 4090.00 407
uanet0.00 3790.00 3820.00 3920.00 4150.00 4170.00 4030.00 4160.00 4100.00 4110.00 4100.00 4150.00 4110.00 4100.00 4090.00 407
WAC-MVS79.74 33567.75 360
PC_three_145294.60 3899.41 499.12 4895.50 799.96 2899.84 299.92 399.97 7
test_241102_TWO97.72 8194.17 4599.23 1199.54 393.14 2399.98 999.70 499.82 1999.99 1
test_0728_THIRD93.01 7299.07 1699.46 1094.66 1399.97 2199.25 1899.82 1999.95 15
GSMVS98.84 139
sam_mvs188.39 6898.84 139
sam_mvs87.08 96
MTGPAbinary97.45 144
test_post190.74 37141.37 40785.38 13596.36 28583.16 264
test_post46.00 40487.37 8797.11 247
patchmatchnet-post84.86 36888.73 6596.81 260
MTMP99.21 8991.09 377
test9_res98.60 3399.87 999.90 22
agg_prior297.84 5699.87 999.91 21
test_prior492.00 9799.41 69
test_prior299.57 4391.43 10798.12 4598.97 6490.43 4598.33 4299.81 23
旧先验298.67 15785.75 25998.96 2198.97 15393.84 134
新几何298.26 206
无先验98.52 17497.82 6587.20 22999.90 5087.64 21199.85 30
原ACMM298.69 154
testdata299.88 5484.16 252
segment_acmp90.56 43
testdata197.89 23492.43 84
plane_prior596.30 22797.75 21793.46 14386.17 24992.67 259
plane_prior496.52 200
plane_prior385.91 25493.65 6386.99 224
plane_prior299.02 12193.38 68
plane_prior86.07 25099.14 10693.81 6086.26 248
n20.00 416
nn0.00 416
door-mid84.90 396
test1197.68 90
door85.30 394
HQP5-MVS86.39 235
BP-MVS93.82 136
HQP4-MVS87.57 21697.77 21192.72 257
HQP3-MVS96.37 22386.29 246
HQP2-MVS73.34 252
MDTV_nov1_ep13_2view91.17 11491.38 36387.45 22693.08 15086.67 10787.02 21498.95 130
ACMMP++_ref82.64 282
ACMMP++83.83 270
Test By Simon83.62 155