This table lists the benchmark results for the high-res multi-view scenario. The following metrics are evaluated:

(*) For exact definitions, detailing how potentially incomplete ground truth is taken into account, see our paper.

The datasets are grouped into different categories, and result averages are computed for a category and method if results of the method are available for all datasets within the category. Note that the category "all" includes both the high-res multi-view and the low-res many-view scenarios.

Methods with suffix _ROB may participate in the Robust Vision Challenge.

Click a dataset result cell to show a visualization of the reconstruction. For training datasets, ground truth and accuracy / completeness visualizations are also available. The visualizations may not work with mobile browsers.




Method Infoallhigh-res
multi-view
indooroutdoorbotani.boulde.bridgedoorexhibi.lectur.living.loungeobserv.old co.statueterrac.
sort bysorted bysort bysort bysort bysort bysort bysort bysort bysort bysort bysort bysort bysort bysort bysort by
AdaColmapbinary93.82 11493.06 12196.10 10799.88 189.07 16198.33 19197.55 11586.81 22990.39 18298.65 9675.09 22999.98 993.32 13997.53 12299.26 97
DP-MVS Recon95.85 5995.15 7497.95 3099.87 294.38 5299.60 3697.48 13186.58 23394.42 12199.13 4287.36 8499.98 993.64 13398.33 10599.48 78
MCST-MVS98.18 297.95 998.86 599.85 396.60 1099.70 2497.98 5197.18 395.96 9299.33 1992.62 26100.00 198.99 2399.93 199.98 6
CNVR-MVS98.46 198.38 198.72 999.80 496.19 1599.80 1397.99 5097.05 699.41 299.59 292.89 25100.00 198.99 2399.90 799.96 10
MG-MVS97.24 1796.83 2898.47 1599.79 595.71 1899.07 10799.06 1094.45 3896.42 8698.70 9388.81 5999.74 8695.35 9999.86 1299.97 7
NCCC98.12 598.11 398.13 2499.76 694.46 4899.81 997.88 5496.54 1198.84 2299.46 1092.55 2799.98 998.25 4499.93 199.94 18
region2R96.30 4396.17 4596.70 7999.70 790.31 12899.46 5797.66 8990.55 12297.07 6999.07 4986.85 9599.97 2195.43 9799.74 2999.81 33
HFP-MVS96.42 3996.26 3996.90 6799.69 890.96 11599.47 5397.81 6390.54 12396.88 7199.05 5287.57 7699.96 2895.65 9099.72 3199.78 38
ACMMPR96.28 4496.14 4996.73 7699.68 990.47 12699.47 5397.80 6590.54 12396.83 7699.03 5486.51 10699.95 3195.65 9099.72 3199.75 46
ZD-MVS99.67 1093.28 7197.61 10287.78 20697.41 5899.16 3490.15 4799.56 10398.35 3999.70 35
CP-MVS96.22 4596.15 4896.42 9599.67 1089.62 15299.70 2497.61 10290.07 13896.00 9199.16 3487.43 7999.92 3996.03 8699.72 3199.70 52
DVP-MVScopyleft98.07 798.00 698.29 1999.66 1295.20 3099.72 2197.47 13393.95 4699.07 1399.46 1093.18 2299.97 2199.64 799.82 1999.69 55
Zhenlong Yuan, Jinguo Luo, Fei Shen, Zhaoxin Li, Cong Liu, Tianlu Mao, Zhaoqi Wang: DVP-MVS: Synergize Depth-Edge and Visibility Prior for Multi-View Stereo. AAAI2025
test_0728_SECOND98.77 899.66 1296.37 1499.72 2197.68 8599.98 999.64 799.82 1999.96 10
test072699.66 1295.20 3099.77 1597.70 8193.95 4699.35 599.54 393.18 22
CPTT-MVS94.60 9594.43 8595.09 14499.66 1286.85 21799.44 6097.47 13383.22 28994.34 12398.96 6482.50 17299.55 10494.81 11199.50 5398.88 131
MSLP-MVS++97.50 1497.45 1597.63 3899.65 1693.21 7299.70 2498.13 4294.61 3397.78 5399.46 1089.85 4999.81 7797.97 4899.91 699.88 26
OPU-MVS99.49 499.64 1798.51 499.77 1599.19 2895.12 899.97 2199.90 199.92 399.99 1
SED-MVS98.18 298.10 498.41 1899.63 1895.24 2599.77 1597.72 7694.17 4199.30 699.54 393.32 1999.98 999.70 499.81 2399.99 1
IU-MVS99.63 1895.38 2297.73 7595.54 2499.54 199.69 699.81 2399.99 1
test_241102_ONE99.63 1895.24 2597.72 7694.16 4399.30 699.49 993.32 1999.98 9
PAPR96.35 4095.82 5597.94 3199.63 1894.19 5699.42 6597.55 11592.43 8093.82 13399.12 4487.30 8699.91 4394.02 12499.06 7599.74 47
XVS96.47 3896.37 3796.77 7299.62 2290.66 12399.43 6397.58 11092.41 8396.86 7298.96 6487.37 8199.87 5695.65 9099.43 5999.78 38
X-MVStestdata90.69 18688.66 20996.77 7299.62 2290.66 12399.43 6397.58 11092.41 8396.86 7229.59 39887.37 8199.87 5695.65 9099.43 5999.78 38
DVP-MVS++98.18 298.09 598.44 1699.61 2495.38 2299.55 4297.68 8593.01 6899.23 899.45 1495.12 899.98 999.25 1699.92 399.97 7
MSC_two_6792asdad99.51 299.61 2498.60 297.69 8399.98 999.55 1199.83 1599.96 10
No_MVS99.51 299.61 2498.60 297.69 8399.98 999.55 1199.83 1599.96 10
DeepC-MVS_fast93.52 297.16 2196.84 2698.13 2499.61 2494.45 4998.85 12997.64 9596.51 1495.88 9599.39 1887.35 8599.99 596.61 7599.69 3699.96 10
Andreas Kuhn, Christian Sormann, Mattia Rossi, Oliver Erdler, Friedrich Fraundorfer: DeepC-MVS: Deep Confidence Prediction for Multi-View Stereo Reconstruction. 3DV 2020
test_one_060199.59 2894.89 3497.64 9593.14 6798.93 1999.45 1493.45 18
CDPH-MVS96.56 3696.18 4297.70 3699.59 2893.92 6099.13 10297.44 13989.02 16497.90 5199.22 2588.90 5899.49 11094.63 11799.79 2799.68 56
test_prior97.01 5899.58 3091.77 9397.57 11399.49 11099.79 36
APDe-MVScopyleft97.53 1197.47 1397.70 3699.58 3093.63 6499.56 4197.52 12393.59 6198.01 4899.12 4490.80 3999.55 10499.26 1599.79 2799.93 20
Zhaojie Zeng, Yuesong Wang, Tao Guan: Matching Ambiguity-Resilient Multi-View Stereo via Adaptive Patch Deformation. Pattern Recognition
mPP-MVS95.90 5895.75 6096.38 9899.58 3089.41 15699.26 8297.41 14390.66 11794.82 11598.95 6786.15 11499.98 995.24 10299.64 4099.74 47
TEST999.57 3393.17 7399.38 6997.66 8989.57 15098.39 3399.18 3190.88 3799.66 92
train_agg97.20 2097.08 2097.57 4299.57 3393.17 7399.38 6997.66 8990.18 13298.39 3399.18 3190.94 3599.66 9298.58 3499.85 1399.88 26
test_899.55 3593.07 7699.37 7297.64 9590.18 13298.36 3599.19 2890.94 3599.64 98
test_part299.54 3695.42 2098.13 40
MSP-MVS97.77 998.18 296.53 9099.54 3690.14 13499.41 6697.70 8195.46 2698.60 2799.19 2895.71 499.49 11098.15 4699.85 1399.95 15
Zhenlong Yuan, Cong Liu, Fei Shen, Zhaoxin Li, Jingguo luo, Tianlu Mao and Zhaoqi Wang: MSP-MVS: Multi-granularity Segmentation Prior Guided Multi-View Stereo. AAAI2025
agg_prior99.54 3692.66 8397.64 9597.98 4999.61 100
CSCG94.87 8494.71 8195.36 13399.54 3686.49 22299.34 7598.15 4082.71 30090.15 18599.25 2289.48 5299.86 6194.97 10998.82 9099.72 50
HPM-MVS++copyleft97.72 1097.59 1198.14 2399.53 4094.76 4299.19 8597.75 7195.66 2298.21 3899.29 2091.10 3399.99 597.68 5399.87 999.68 56
APD-MVScopyleft96.95 2696.72 2997.63 3899.51 4193.58 6599.16 9197.44 13990.08 13798.59 2899.07 4989.06 5599.42 12197.92 4999.66 3799.88 26
Yuesong Wang, Zhaojie Zeng and etc.: Adaptive Patch Deformation for Textureless-Resilient Multi-View Stereo. CVPR2023
FOURS199.50 4288.94 16899.55 4297.47 13391.32 10698.12 42
DPE-MVScopyleft98.11 698.00 698.44 1699.50 4295.39 2199.29 7997.72 7694.50 3598.64 2699.54 393.32 1999.97 2199.58 1099.90 799.95 15
Kehua Chen, Zhenlong Yuan, Tianlu Mao, Zhaoqi Wang: Dual-Level Precision Edges Guided Multi-View Stereo with Accurate Planarization. AAAI2025
PGM-MVS95.85 5995.65 6596.45 9399.50 4289.77 14998.22 19998.90 1389.19 15996.74 7998.95 6785.91 11899.92 3993.94 12699.46 5599.66 60
GST-MVS95.97 5395.66 6396.90 6799.49 4591.22 10299.45 5997.48 13189.69 14495.89 9498.72 8986.37 10999.95 3194.62 11899.22 7099.52 74
MP-MVScopyleft96.00 5095.82 5596.54 8999.47 4690.13 13699.36 7397.41 14390.64 12095.49 10598.95 6785.51 12399.98 996.00 8799.59 4999.52 74
Rongxuan Tan, Qing Wang, et al.: MP-MVS: Multi-Scale Windows PatchMatch and Planar Prior Multi-View Stereo.
ZNCC-MVS96.09 4895.81 5796.95 6699.42 4791.19 10499.55 4297.53 11989.72 14395.86 9798.94 7086.59 10299.97 2195.13 10399.56 5099.68 56
SR-MVS96.13 4796.16 4796.07 10899.42 4789.04 16298.59 16097.33 15090.44 12696.84 7499.12 4486.75 9799.41 12497.47 5699.44 5899.76 45
PAPM_NR95.43 7195.05 7896.57 8899.42 4790.14 13498.58 16297.51 12590.65 11992.44 14898.90 7487.77 7599.90 4890.88 16399.32 6499.68 56
9.1496.87 2499.34 5099.50 4997.49 13089.41 15598.59 2899.43 1689.78 5099.69 8998.69 2899.62 44
save fliter99.34 5093.85 6299.65 3397.63 9995.69 20
PHI-MVS96.65 3496.46 3597.21 5299.34 5091.77 9399.70 2498.05 4686.48 23898.05 4599.20 2789.33 5399.96 2898.38 3799.62 4499.90 22
test1297.83 3399.33 5394.45 4997.55 11597.56 5488.60 6199.50 10999.71 3499.55 72
SMA-MVScopyleft97.24 1796.99 2198.00 2999.30 5494.20 5599.16 9197.65 9489.55 15299.22 1099.52 890.34 4699.99 598.32 4199.83 1599.82 32
Yufeng Yin; Xiaoyan Liu; Zichao Zhang: SMA-MVS: Segmentation-Guided Multi-Scale Anchor Deformation Patch Multi-View Stereo. IEEE Transactions on Circuits and Systems for Video Technology
MTAPA96.09 4895.80 5896.96 6599.29 5591.19 10497.23 25897.45 13692.58 7794.39 12299.24 2486.43 10899.99 596.22 8199.40 6299.71 51
HPM-MVScopyleft95.41 7395.22 7295.99 11399.29 5589.14 15999.17 9097.09 17487.28 21995.40 10698.48 11084.93 13399.38 12695.64 9499.65 3899.47 79
Chunlin Ren, Qingshan Xu, Shikun Zhang, Jiaqi Yang: Hierarchical Prior Mining for Non-local Multi-View Stereo. ICCV 2023
ACMMPcopyleft94.67 9394.30 8695.79 11999.25 5788.13 18698.41 18098.67 2290.38 12891.43 16398.72 8982.22 18199.95 3193.83 13095.76 15599.29 94
Qingshan Xu, Weihang Kong, Wenbing Tao, Marc Pollefeys: Multi-Scale Geometric Consistency Guided and Planar Prior Assisted Multi-View Stereo. IEEE Transactions on Pattern Analysis and Machine Intelligence
APD-MVS_3200maxsize95.64 6895.65 6595.62 12699.24 5887.80 19298.42 17897.22 15788.93 16996.64 8498.98 5985.49 12499.36 12896.68 7299.27 6899.70 52
SR-MVS-dyc-post95.75 6595.86 5495.41 13299.22 5987.26 21298.40 18397.21 15889.63 14696.67 8298.97 6086.73 9999.36 12896.62 7399.31 6599.60 67
RE-MVS-def95.70 6199.22 5987.26 21298.40 18397.21 15889.63 14696.67 8298.97 6085.24 13096.62 7399.31 6599.60 67
patch_mono-297.10 2397.97 894.49 16699.21 6183.73 28299.62 3598.25 3295.28 2899.38 498.91 7392.28 2899.94 3499.61 999.22 7099.78 38
API-MVS94.78 8794.18 9296.59 8599.21 6190.06 14198.80 13497.78 6883.59 28493.85 13199.21 2683.79 14699.97 2192.37 15199.00 7999.74 47
PLCcopyleft91.07 394.23 10294.01 9694.87 15299.17 6387.49 20199.25 8396.55 20488.43 18491.26 16798.21 12285.92 11699.86 6189.77 17897.57 11997.24 197
Jie Liao, Yanping Fu, Qingan Yan, Chunxia xiao: Pyramid Multi-View Stereo with Local Consistency. Pacific Graphics 2019
EI-MVSNet-Vis-set95.76 6495.63 6796.17 10599.14 6490.33 12798.49 17197.82 6091.92 9394.75 11698.88 7887.06 9099.48 11495.40 9897.17 13298.70 148
TSAR-MVS + MP.97.44 1597.46 1497.39 4699.12 6593.49 6998.52 16597.50 12894.46 3698.99 1598.64 9791.58 3099.08 14698.49 3599.83 1599.60 67
Zhenlong Yuan, Jiakai Cao, Zhaoqi Wang, Zhaoxin Li: TSAR-MVS: Textureless-aware Segmentation and Correlative Refinement Guided Multi-View Stereo. Pattern Recognition
SF-MVS97.22 1996.92 2298.12 2699.11 6694.88 3599.44 6097.45 13689.60 14898.70 2499.42 1790.42 4499.72 8798.47 3699.65 3899.77 43
HPM-MVS_fast94.89 8394.62 8295.70 12299.11 6688.44 18299.14 9997.11 17085.82 24695.69 10198.47 11183.46 15199.32 13393.16 14199.63 4399.35 88
MAR-MVS94.43 9994.09 9495.45 13099.10 6887.47 20298.39 18797.79 6788.37 18694.02 12899.17 3378.64 21499.91 4392.48 15098.85 8998.96 121
Zhenyu Xu, Yiguang Liu, Xuelei Shi, Ying Wang, Yunan Zheng: MARMVS: Matching Ambiguity Reduced Multiple View Stereo for Efficient Large Scale Scene Reconstruction. CVPR 2020
114514_t94.06 10493.05 12297.06 5699.08 6992.26 8998.97 12197.01 18282.58 30292.57 14698.22 12080.68 19799.30 13489.34 18499.02 7899.63 64
EI-MVSNet-UG-set95.43 7195.29 7095.86 11799.07 7089.87 14698.43 17797.80 6591.78 9594.11 12698.77 8386.25 11299.48 11494.95 11096.45 14198.22 172
原ACMM196.18 10399.03 7190.08 13797.63 9988.98 16597.00 7098.97 6088.14 6999.71 8888.23 19599.62 4498.76 145
SD-MVS97.51 1397.40 1697.81 3499.01 7293.79 6399.33 7697.38 14693.73 5798.83 2399.02 5690.87 3899.88 5298.69 2899.74 2999.77 43
Zhenlong Yuan, Jiakai Cao, Zhaoxin Li, Hao Jiang and Zhaoqi Wang: SD-MVS: Segmentation-driven Deformation Multi-View Stereo with Spherical Refinement and EM optimization. AAAI2024
旧先验198.97 7392.90 8297.74 7299.15 3791.05 3499.33 6399.60 67
LS3D90.19 19588.72 20794.59 16598.97 7386.33 23096.90 27096.60 19874.96 35284.06 24198.74 8675.78 22699.83 7174.93 31697.57 11997.62 188
CNLPA93.64 12192.74 13096.36 9998.96 7590.01 14499.19 8595.89 25886.22 24189.40 19398.85 7980.66 19899.84 6788.57 19196.92 13599.24 98
MP-MVS-pluss95.80 6195.30 6997.29 4898.95 7692.66 8398.59 16097.14 16688.95 16793.12 14099.25 2285.62 12099.94 3496.56 7799.48 5499.28 95
MP-MVS-pluss: MP-MVS-pluss. MP-MVS-pluss
新几何197.40 4598.92 7792.51 8897.77 7085.52 25196.69 8199.06 5188.08 7099.89 5184.88 23399.62 4499.79 36
DP-MVS88.75 22586.56 24495.34 13498.92 7787.45 20397.64 24293.52 33970.55 36481.49 28397.25 15874.43 23599.88 5271.14 33894.09 17198.67 150
TSAR-MVS + GP.96.95 2696.91 2397.07 5598.88 7991.62 9699.58 3996.54 20595.09 3096.84 7498.63 9991.16 3199.77 8399.04 2296.42 14299.81 33
CANet97.00 2596.49 3398.55 1298.86 8096.10 1699.83 797.52 12395.90 1797.21 6498.90 7482.66 17199.93 3798.71 2798.80 9199.63 64
dcpmvs_295.67 6796.18 4294.12 18398.82 8184.22 27597.37 25095.45 28490.70 11695.77 9998.63 9990.47 4298.68 16299.20 1899.22 7099.45 80
ACMMP_NAP96.59 3596.18 4297.81 3498.82 8193.55 6698.88 12897.59 10890.66 11797.98 4999.14 4086.59 102100.00 196.47 7999.46 5599.89 25
PVSNet_BlendedMVS93.36 12993.20 11893.84 19498.77 8391.61 9799.47 5398.04 4791.44 10294.21 12492.63 26983.50 14999.87 5697.41 5783.37 26590.05 329
PVSNet_Blended95.94 5695.66 6396.75 7498.77 8391.61 9799.88 398.04 4793.64 6094.21 12497.76 13383.50 14999.87 5697.41 5797.75 11798.79 141
DeepPCF-MVS93.56 196.55 3797.84 1092.68 21898.71 8578.11 33999.70 2497.71 8098.18 197.36 6099.76 190.37 4599.94 3499.27 1499.54 5299.99 1
EPNet96.82 2996.68 3197.25 5198.65 8693.10 7599.48 5198.76 1596.54 1197.84 5298.22 12087.49 7899.66 9295.35 9997.78 11699.00 117
Wanjuan Su, Wenbing Tao: Efficient Edge-Preserving Multi-View Stereo Network for Depth Estimation. AAAI 2023
OMC-MVS93.90 11193.62 10894.73 15998.63 8787.00 21598.04 21796.56 20392.19 8892.46 14798.73 8779.49 20699.14 14392.16 15394.34 17098.03 177
MVS_111021_HR96.69 3296.69 3096.72 7898.58 8891.00 11499.14 9999.45 193.86 5295.15 11198.73 8788.48 6299.76 8497.23 6199.56 5099.40 84
test_yl95.27 7694.60 8397.28 4998.53 8992.98 7999.05 11098.70 1986.76 23094.65 11997.74 13587.78 7399.44 11795.57 9592.61 18599.44 81
DCV-MVSNet95.27 7694.60 8397.28 4998.53 8992.98 7999.05 11098.70 1986.76 23094.65 11997.74 13587.78 7399.44 11795.57 9592.61 18599.44 81
TAPA-MVS87.50 990.35 19089.05 20094.25 17898.48 9185.17 26298.42 17896.58 20282.44 30787.24 21098.53 10382.77 16698.84 15359.09 37397.88 11298.72 146
Andrea Romanoni, Matteo Matteucci: TAPA-MVS: Textureless-Aware PAtchMatch Multi-View Stereo. ICCV 2019
test22298.32 9291.21 10398.08 21497.58 11083.74 28095.87 9699.02 5686.74 9899.64 4099.81 33
DPM-MVS97.86 897.25 1899.68 198.25 9399.10 199.76 1897.78 6896.61 1098.15 3999.53 793.62 17100.00 191.79 15599.80 2699.94 18
LFMVS92.23 15790.84 17096.42 9598.24 9491.08 11198.24 19896.22 22483.39 28794.74 11798.31 11661.12 32898.85 15294.45 12092.82 18199.32 91
testdata95.26 13998.20 9587.28 20997.60 10485.21 25598.48 3199.15 3788.15 6898.72 16090.29 17199.45 5799.78 38
PatchMatch-RL91.47 16890.54 17794.26 17798.20 9586.36 22896.94 26897.14 16687.75 20888.98 19695.75 20971.80 26299.40 12580.92 27597.39 12697.02 205
MVS_111021_LR95.78 6295.94 5195.28 13898.19 9787.69 19398.80 13499.26 793.39 6395.04 11398.69 9484.09 14399.76 8496.96 6799.06 7598.38 163
F-COLMAP92.07 16191.75 15293.02 20898.16 9882.89 29398.79 13895.97 24186.54 23587.92 20397.80 13078.69 21399.65 9685.97 21995.93 15496.53 219
Anonymous20240521188.84 21987.03 23794.27 17698.14 9984.18 27698.44 17695.58 27776.79 34689.34 19496.88 17853.42 35599.54 10687.53 20487.12 23199.09 112
VNet95.08 8194.26 8797.55 4398.07 10093.88 6198.68 14698.73 1890.33 12997.16 6897.43 15179.19 20899.53 10796.91 6991.85 19999.24 98
CS-MVS-test95.98 5296.34 3894.90 15198.06 10187.66 19699.69 3196.10 23393.66 5898.35 3699.05 5286.28 11097.66 21396.96 6798.90 8799.37 86
DELS-MVS97.12 2296.60 3298.68 1098.03 10296.57 1199.84 697.84 5796.36 1695.20 11098.24 11988.17 6699.83 7196.11 8499.60 4899.64 62
Christian Sormann, Emanuele Santellani, Mattia Rossi, Andreas Kuhn, Friedrich Fraundorfer: DELS-MVS: Deep Epipolar Line Search for Multi-View Stereo. Winter Conference on Applications of Computer Vision (WACV), 2023
PVSNet87.13 1293.69 11792.83 12996.28 10197.99 10390.22 13299.38 6998.93 1291.42 10493.66 13497.68 13871.29 26799.64 9887.94 20097.20 12998.98 119
test_fmvsm_n_192097.08 2497.55 1295.67 12497.94 10489.61 15399.93 198.48 2497.08 599.08 1299.13 4288.17 6699.93 3799.11 2199.06 7597.47 191
cl2289.57 20788.79 20691.91 23197.94 10487.62 19797.98 22096.51 20685.03 26082.37 26691.79 28183.65 14796.50 26685.96 22077.89 29391.61 282
CS-MVS95.75 6596.19 4094.40 17097.88 10686.22 23399.66 3296.12 23292.69 7698.07 4498.89 7687.09 8897.59 21996.71 7098.62 9899.39 85
CHOSEN 280x42096.80 3096.85 2596.66 8297.85 10794.42 5194.76 31998.36 2992.50 7995.62 10397.52 14697.92 197.38 23198.31 4298.80 9198.20 174
thres20093.69 11792.59 13496.97 6497.76 10894.74 4399.35 7499.36 289.23 15891.21 16996.97 17283.42 15298.77 15585.08 22990.96 21297.39 193
HY-MVS88.56 795.29 7594.23 8898.48 1497.72 10996.41 1394.03 32798.74 1692.42 8295.65 10294.76 22886.52 10599.49 11095.29 10192.97 18099.53 73
Anonymous2023121184.72 28782.65 29890.91 25497.71 11084.55 27197.28 25496.67 19366.88 37779.18 30990.87 29958.47 33696.60 25682.61 26274.20 32091.59 284
tfpn200view993.43 12692.27 13996.90 6797.68 11194.84 3899.18 8799.36 288.45 18190.79 17296.90 17683.31 15398.75 15784.11 24590.69 21497.12 199
thres40093.39 12892.27 13996.73 7697.68 11194.84 3899.18 8799.36 288.45 18190.79 17296.90 17683.31 15398.75 15784.11 24590.69 21496.61 214
thres100view90093.34 13092.15 14296.90 6797.62 11394.84 3899.06 10999.36 287.96 20190.47 18096.78 18383.29 15598.75 15784.11 24590.69 21497.12 199
thres600view793.18 13692.00 14596.75 7497.62 11394.92 3399.07 10799.36 287.96 20190.47 18096.78 18383.29 15598.71 16182.93 25990.47 21896.61 214
WTY-MVS95.97 5395.11 7698.54 1397.62 11396.65 999.44 6098.74 1692.25 8795.21 10998.46 11386.56 10499.46 11695.00 10892.69 18499.50 77
Anonymous2024052987.66 24585.58 25893.92 19197.59 11685.01 26598.13 20697.13 16866.69 37888.47 20096.01 20555.09 34999.51 10887.00 20784.12 25697.23 198
HyFIR lowres test93.68 11993.29 11694.87 15297.57 11788.04 18898.18 20398.47 2587.57 21491.24 16895.05 22285.49 12497.46 22693.22 14092.82 18199.10 111
canonicalmvs95.02 8293.96 10098.20 2197.53 11895.92 1798.71 14296.19 22791.78 9595.86 9798.49 10879.53 20599.03 14796.12 8391.42 20999.66 60
CHOSEN 1792x268894.35 10093.82 10495.95 11597.40 11988.74 17698.41 18098.27 3192.18 8991.43 16396.40 19478.88 20999.81 7793.59 13497.81 11399.30 93
SteuartSystems-ACMMP97.25 1697.34 1797.01 5897.38 12091.46 10099.75 1997.66 8994.14 4598.13 4099.26 2192.16 2999.66 9297.91 5099.64 4099.90 22
Skip Steuart: Steuart Systems R&D Blog.
fmvsm_s_conf0.5_n96.19 4696.49 3395.30 13797.37 12189.16 15899.86 498.47 2595.68 2198.87 2099.15 3782.44 17899.92 3999.14 1997.43 12596.83 210
alignmvs95.77 6395.00 7998.06 2897.35 12295.68 1999.71 2397.50 12891.50 10096.16 9098.61 10186.28 11099.00 14896.19 8291.74 20199.51 76
PS-MVSNAJ96.87 2896.40 3698.29 1997.35 12297.29 599.03 11397.11 17095.83 1898.97 1799.14 4082.48 17499.60 10198.60 3199.08 7398.00 178
MVS_030497.53 1197.15 1998.67 1197.30 12496.52 1299.60 3698.88 1497.14 497.21 6498.94 7086.89 9499.91 4399.43 1398.91 8699.59 71
EPNet_dtu92.28 15592.15 14292.70 21797.29 12584.84 26798.64 15297.82 6092.91 7393.02 14297.02 17085.48 12695.70 31272.25 33594.89 16597.55 190
Wanjuan Su, Wenbing Tao: Efficient Edge-Preserving Multi-View Stereo Network for Depth Estimation. AAAI 2023
MVSTER92.71 14392.32 13793.86 19397.29 12592.95 8199.01 11696.59 19990.09 13685.51 22794.00 23994.61 1696.56 26190.77 16783.03 26892.08 269
EPMVS92.59 14891.59 15495.59 12897.22 12790.03 14291.78 34798.04 4790.42 12791.66 15790.65 30786.49 10797.46 22681.78 27096.31 14599.28 95
test_fmvs192.35 15292.94 12790.57 26497.19 12875.43 34899.55 4294.97 30495.20 2996.82 7797.57 14559.59 33399.84 6797.30 5998.29 10896.46 221
tpmvs89.16 21187.76 22493.35 20297.19 12884.75 26990.58 36297.36 14881.99 31284.56 23489.31 33583.98 14598.17 17874.85 31890.00 22197.12 199
DeepC-MVS91.02 494.56 9893.92 10296.46 9297.16 13090.76 11998.39 18797.11 17093.92 4888.66 19898.33 11578.14 21699.85 6595.02 10698.57 10098.78 143
Andreas Kuhn, Christian Sormann, Mattia Rossi, Oliver Erdler, Friedrich Fraundorfer: DeepC-MVS: Deep Confidence Prediction for Multi-View Stereo Reconstruction. 3DV 2020
iter_conf0593.48 12393.18 11994.39 17397.15 13194.17 5799.30 7892.97 34492.38 8686.70 21995.42 21595.67 596.59 25794.67 11684.32 25492.39 252
PVSNet_Blended_VisFu94.67 9394.11 9396.34 10097.14 13291.10 10999.32 7797.43 14192.10 9291.53 16296.38 19783.29 15599.68 9093.42 13896.37 14398.25 170
h-mvs3392.47 15191.95 14794.05 18797.13 13385.01 26598.36 18998.08 4493.85 5396.27 8896.73 18583.19 15899.43 12095.81 8868.09 35297.70 184
miper_enhance_ethall90.33 19189.70 18692.22 22397.12 13488.93 17098.35 19095.96 24388.60 17683.14 25192.33 27187.38 8096.18 28986.49 21577.89 29391.55 285
xiu_mvs_v2_base96.66 3396.17 4598.11 2797.11 13596.96 699.01 11697.04 17795.51 2598.86 2199.11 4882.19 18299.36 12898.59 3398.14 10998.00 178
VDD-MVS91.24 17590.18 18194.45 16997.08 13685.84 24898.40 18396.10 23386.99 22193.36 13798.16 12354.27 35299.20 13696.59 7690.63 21798.31 169
UGNet91.91 16390.85 16995.10 14397.06 13788.69 17798.01 21898.24 3492.41 8392.39 14993.61 25060.52 33099.68 9088.14 19697.25 12896.92 208
Wanjuan Su, Qingshan Xu, Wenbing Tao: Uncertainty-guided Multi-view Stereo Network for Depth Estimation. IEEE Transactions on Circuits and Systems for Video Technology, 2022
baseline192.61 14791.28 16096.58 8697.05 13894.63 4697.72 23696.20 22589.82 14188.56 19996.85 17986.85 9597.82 19988.42 19280.10 28497.30 195
iter_conf_final93.22 13593.04 12393.76 19697.03 13992.22 9099.05 11093.31 34192.11 9186.93 21495.42 21595.01 1096.59 25793.98 12584.48 25192.46 251
CANet_DTU94.31 10193.35 11397.20 5397.03 13994.71 4498.62 15495.54 27995.61 2397.21 6498.47 11171.88 26099.84 6788.38 19397.46 12497.04 204
MSDG88.29 23386.37 24694.04 18896.90 14186.15 23796.52 28394.36 32577.89 34279.22 30896.95 17369.72 27399.59 10273.20 33192.58 18796.37 224
BH-w/o92.32 15391.79 15093.91 19296.85 14286.18 23599.11 10495.74 26788.13 19584.81 23197.00 17177.26 22197.91 19289.16 18998.03 11097.64 185
AllTest84.97 28583.12 29090.52 26796.82 14378.84 33195.89 30392.17 35577.96 34075.94 32795.50 21255.48 34599.18 13771.15 33687.14 22993.55 241
TestCases90.52 26796.82 14378.84 33192.17 35577.96 34075.94 32795.50 21255.48 34599.18 13771.15 33687.14 22993.55 241
SDMVSNet91.09 17689.91 18494.65 16196.80 14590.54 12597.78 23097.81 6388.34 18885.73 22395.26 21966.44 30198.26 17594.25 12386.75 23295.14 232
sd_testset89.23 21088.05 22392.74 21696.80 14585.33 25895.85 30897.03 17988.34 18885.73 22395.26 21961.12 32897.76 20885.61 22586.75 23295.14 232
PMMVS93.62 12293.90 10392.79 21396.79 14781.40 31098.85 12996.81 18991.25 10796.82 7798.15 12477.02 22298.13 18093.15 14296.30 14698.83 137
BH-RMVSNet91.25 17489.99 18395.03 14896.75 14888.55 17998.65 15094.95 30587.74 20987.74 20497.80 13068.27 28398.14 17980.53 28097.49 12398.41 160
MVS_Test93.67 12092.67 13296.69 8096.72 14992.66 8397.22 25996.03 23887.69 21295.12 11294.03 23781.55 18898.28 17489.17 18896.46 14099.14 106
COLMAP_ROBcopyleft82.69 1884.54 29182.82 29289.70 29096.72 14978.85 33095.89 30392.83 34771.55 36177.54 32295.89 20759.40 33499.14 14367.26 35288.26 22591.11 302
Johannes L. Schönberger, Enliang Zheng, Marc Pollefeys, Jan-Michael Frahm: Pixelwise View Selection for Unstructured Multi-View Stereo. ECCV 2016
mvs_anonymous92.50 15091.65 15395.06 14596.60 15189.64 15197.06 26496.44 21186.64 23284.14 23993.93 24182.49 17396.17 29191.47 15696.08 15199.35 88
ETV-MVS96.00 5096.00 5096.00 11296.56 15291.05 11299.63 3496.61 19793.26 6697.39 5998.30 11786.62 10198.13 18098.07 4797.57 11998.82 138
GG-mvs-BLEND96.98 6396.53 15394.81 4187.20 36797.74 7293.91 13096.40 19496.56 296.94 24595.08 10498.95 8499.20 102
FMVSNet388.81 22387.08 23693.99 19096.52 15494.59 4798.08 21496.20 22585.85 24582.12 27091.60 28574.05 24095.40 32079.04 28780.24 28191.99 272
fmvsm_s_conf0.5_n_a95.97 5396.19 4095.31 13696.51 15589.01 16499.81 998.39 2795.46 2699.19 1199.16 3481.44 19299.91 4398.83 2696.97 13497.01 206
BH-untuned91.46 16990.84 17093.33 20396.51 15584.83 26898.84 13195.50 28186.44 24083.50 24396.70 18675.49 22897.77 20386.78 21397.81 11397.40 192
FE-MVS91.38 17190.16 18295.05 14796.46 15787.53 20089.69 36497.84 5782.97 29492.18 15192.00 27884.07 14498.93 15180.71 27795.52 15998.68 149
sss94.85 8593.94 10197.58 4096.43 15894.09 5998.93 12399.16 889.50 15395.27 10897.85 12781.50 18999.65 9692.79 14894.02 17298.99 118
test250694.80 8694.21 8996.58 8696.41 15992.18 9198.01 21898.96 1190.82 11493.46 13697.28 15585.92 11698.45 16789.82 17697.19 13099.12 109
ECVR-MVScopyleft92.29 15491.33 15995.15 14296.41 15987.84 19198.10 21194.84 30890.82 11491.42 16597.28 15565.61 30798.49 16690.33 17097.19 13099.12 109
ET-MVSNet_ETH3D92.56 14991.45 15795.88 11696.39 16194.13 5899.46 5796.97 18592.18 8966.94 36798.29 11894.65 1594.28 34094.34 12183.82 26199.24 98
dp90.16 19788.83 20594.14 18296.38 16286.42 22491.57 35197.06 17684.76 26688.81 19790.19 32584.29 14197.43 22975.05 31591.35 21198.56 154
EIA-MVS95.11 7995.27 7194.64 16396.34 16386.51 22199.59 3896.62 19692.51 7894.08 12798.64 9786.05 11598.24 17795.07 10598.50 10299.18 103
test_vis1_n_192093.08 13993.42 11292.04 23096.31 16479.36 32799.83 796.06 23796.72 898.53 3098.10 12558.57 33599.91 4397.86 5198.79 9496.85 209
TR-MVS90.77 18389.44 19194.76 15696.31 16488.02 18997.92 22295.96 24385.52 25188.22 20297.23 15966.80 29798.09 18384.58 23792.38 18998.17 175
UA-Net93.30 13192.62 13395.34 13496.27 16688.53 18195.88 30596.97 18590.90 11295.37 10797.07 16882.38 17999.10 14583.91 24994.86 16698.38 163
tpmrst92.78 14292.16 14194.65 16196.27 16687.45 20391.83 34697.10 17389.10 16394.68 11890.69 30488.22 6597.73 21189.78 17791.80 20098.77 144
hse-mvs291.67 16691.51 15692.15 22796.22 16882.61 29997.74 23597.53 11993.85 5396.27 8896.15 20083.19 15897.44 22895.81 8866.86 35996.40 223
AUN-MVS90.17 19689.50 18992.19 22596.21 16982.67 29797.76 23497.53 11988.05 19791.67 15696.15 20083.10 16097.47 22588.11 19766.91 35896.43 222
ADS-MVSNet287.62 24686.88 23989.86 28596.21 16979.14 32987.15 36892.99 34383.01 29289.91 18887.27 34878.87 21092.80 35374.20 32392.27 19297.64 185
ADS-MVSNet88.99 21387.30 23294.07 18596.21 16987.56 19987.15 36896.78 19183.01 29289.91 18887.27 34878.87 21097.01 24274.20 32392.27 19297.64 185
PatchmatchNetpermissive92.05 16291.04 16595.06 14596.17 17289.04 16291.26 35597.26 15189.56 15190.64 17690.56 31388.35 6497.11 23779.53 28396.07 15299.03 116
Fangjinhua Wang, Silvano Galliani, Christoph Vogel, Pablo Speciale, Marc Pollefeys: PatchmatchNet: Learned Multi-View Patchmatch Stereo.
test111192.12 15991.19 16294.94 15096.15 17387.36 20698.12 20894.84 30890.85 11390.97 17097.26 15765.60 30898.37 16989.74 17997.14 13399.07 115
gg-mvs-nofinetune90.00 20087.71 22696.89 7196.15 17394.69 4585.15 37397.74 7268.32 37392.97 14360.16 38696.10 396.84 24893.89 12798.87 8899.14 106
MDTV_nov1_ep1390.47 17996.14 17588.55 17991.34 35497.51 12589.58 14992.24 15090.50 31786.99 9397.61 21877.64 29892.34 190
IS-MVSNet93.00 14092.51 13594.49 16696.14 17587.36 20698.31 19495.70 26988.58 17790.17 18497.50 14783.02 16297.22 23487.06 20596.07 15298.90 130
Vis-MVSNet (Re-imp)93.26 13493.00 12694.06 18696.14 17586.71 22098.68 14696.70 19288.30 19089.71 19297.64 14185.43 12796.39 27388.06 19896.32 14499.08 113
thisisatest051594.75 8894.19 9096.43 9496.13 17892.64 8699.47 5397.60 10487.55 21593.17 13997.59 14394.71 1398.42 16888.28 19493.20 17798.24 171
FA-MVS(test-final)92.22 15891.08 16495.64 12596.05 17988.98 16591.60 35097.25 15286.99 22191.84 15392.12 27283.03 16199.00 14886.91 21093.91 17398.93 127
test_fmvsmconf_n96.78 3196.84 2696.61 8395.99 18090.25 12999.90 298.13 4296.68 998.42 3298.92 7285.34 12999.88 5299.12 2099.08 7399.70 52
ab-mvs91.05 17989.17 19796.69 8095.96 18191.72 9592.62 34197.23 15685.61 25089.74 19093.89 24368.55 28099.42 12191.09 15987.84 22798.92 129
Fast-Effi-MVS+91.72 16590.79 17394.49 16695.89 18287.40 20599.54 4795.70 26985.01 26289.28 19595.68 21077.75 21897.57 22383.22 25495.06 16498.51 156
EPP-MVSNet93.75 11693.67 10794.01 18995.86 18385.70 25098.67 14897.66 8984.46 26991.36 16697.18 16391.16 3197.79 20192.93 14493.75 17498.53 155
mvsany_test194.57 9795.09 7792.98 20995.84 18482.07 30398.76 14095.24 29792.87 7596.45 8598.71 9284.81 13699.15 13997.68 5395.49 16097.73 183
Effi-MVS+93.87 11293.15 12096.02 11195.79 18590.76 11996.70 28095.78 26486.98 22495.71 10097.17 16479.58 20398.01 19094.57 11996.09 15099.31 92
tpm cat188.89 21787.27 23393.76 19695.79 18585.32 25990.76 36097.09 17476.14 34885.72 22588.59 33882.92 16398.04 18876.96 30291.43 20897.90 181
thisisatest053094.00 10693.52 10995.43 13195.76 18790.02 14398.99 11897.60 10486.58 23391.74 15597.36 15494.78 1298.34 17086.37 21692.48 18897.94 180
3Dnovator+87.72 893.43 12691.84 14998.17 2295.73 18895.08 3298.92 12597.04 17791.42 10481.48 28497.60 14274.60 23299.79 8090.84 16498.97 8199.64 62
MVS93.92 10992.28 13898.83 795.69 18996.82 896.22 29598.17 3784.89 26484.34 23898.61 10179.32 20799.83 7193.88 12899.43 5999.86 29
cascas90.93 18189.33 19595.76 12095.69 18993.03 7898.99 11896.59 19980.49 32786.79 21894.45 23265.23 31198.60 16593.52 13592.18 19495.66 231
QAPM91.41 17089.49 19097.17 5495.66 19193.42 7098.60 15897.51 12580.92 32581.39 28597.41 15272.89 25299.87 5682.33 26498.68 9698.21 173
tttt051793.30 13193.01 12594.17 18195.57 19286.47 22398.51 16897.60 10485.99 24490.55 17797.19 16294.80 1198.31 17185.06 23091.86 19897.74 182
1112_ss92.71 14391.55 15596.20 10295.56 19391.12 10798.48 17394.69 31588.29 19186.89 21698.50 10687.02 9198.66 16384.75 23489.77 22298.81 139
diffmvspermissive94.59 9694.19 9095.81 11895.54 19490.69 12198.70 14495.68 27191.61 9795.96 9297.81 12980.11 19998.06 18596.52 7895.76 15598.67 150
Fangjinhua Wang, Qingshan Xu, Yew-Soon Ong, Marc Pollefeys: Lightweight and Accurate Multi-View Stereo With Confidence-Aware Diffusion Model. IEEE T-PAMI 2025
LCM-MVSNet-Re88.59 22988.61 21088.51 31095.53 19572.68 36096.85 27288.43 37988.45 18173.14 34490.63 30875.82 22594.38 33992.95 14395.71 15798.48 158
Test_1112_low_res92.27 15690.97 16696.18 10395.53 19591.10 10998.47 17594.66 31688.28 19286.83 21793.50 25487.00 9298.65 16484.69 23589.74 22398.80 140
PCF-MVS89.78 591.26 17289.63 18796.16 10695.44 19791.58 9995.29 31596.10 23385.07 25982.75 25397.45 15078.28 21599.78 8280.60 27995.65 15897.12 199
Andreas Kuhn, Shan Lin, Oliver Erdler: Plane Completion and Filtering for Multi-View Stereo Reconstruction. GCPR 2019
EC-MVSNet95.09 8095.17 7394.84 15495.42 19888.17 18499.48 5195.92 25091.47 10197.34 6198.36 11482.77 16697.41 23097.24 6098.58 9998.94 126
3Dnovator87.35 1193.17 13791.77 15197.37 4795.41 19993.07 7698.82 13297.85 5691.53 9982.56 25997.58 14471.97 25999.82 7491.01 16199.23 6999.22 101
IB-MVS89.43 692.12 15990.83 17295.98 11495.40 20090.78 11899.81 998.06 4591.23 10885.63 22693.66 24990.63 4098.78 15491.22 15871.85 34298.36 166
Christian Sormann, Mattia Rossi, Andreas Kuhn and Friedrich Fraundorfer: IB-MVS: An Iterative Algorithm for Deep Multi-View Stereo based on Binary Decisions. BMVC 2021
test_cas_vis1_n_192093.86 11393.74 10694.22 17995.39 20186.08 23999.73 2096.07 23696.38 1597.19 6797.78 13265.46 31099.86 6196.71 7098.92 8596.73 211
miper_ehance_all_eth88.94 21588.12 22191.40 24395.32 20286.93 21697.85 22795.55 27884.19 27281.97 27591.50 28784.16 14295.91 30584.69 23577.89 29391.36 293
131493.44 12591.98 14697.84 3295.24 20394.38 5296.22 29597.92 5390.18 13282.28 26797.71 13777.63 21999.80 7991.94 15498.67 9799.34 90
XVG-OURS90.83 18290.49 17891.86 23295.23 20481.25 31495.79 31095.92 25088.96 16690.02 18798.03 12671.60 26499.35 13191.06 16087.78 22894.98 235
casdiffmvs_mvgpermissive94.00 10693.33 11496.03 11095.22 20590.90 11799.09 10595.99 23990.58 12191.55 16197.37 15379.91 20198.06 18595.01 10795.22 16299.13 108
Fangjinhua Wang, Qingshan Xu, Yew-Soon Ong, Marc Pollefeys: Lightweight and Accurate Multi-View Stereo With Confidence-Aware Diffusion Model. IEEE T-PAMI 2025
TESTMET0.1,193.82 11493.26 11795.49 12995.21 20690.25 12999.15 9697.54 11889.18 16091.79 15494.87 22589.13 5497.63 21686.21 21796.29 14798.60 153
xiu_mvs_v1_base_debu94.73 8993.98 9796.99 6095.19 20795.24 2598.62 15496.50 20792.99 7097.52 5598.83 8072.37 25599.15 13997.03 6396.74 13796.58 216
xiu_mvs_v1_base94.73 8993.98 9796.99 6095.19 20795.24 2598.62 15496.50 20792.99 7097.52 5598.83 8072.37 25599.15 13997.03 6396.74 13796.58 216
xiu_mvs_v1_base_debi94.73 8993.98 9796.99 6095.19 20795.24 2598.62 15496.50 20792.99 7097.52 5598.83 8072.37 25599.15 13997.03 6396.74 13796.58 216
XVG-OURS-SEG-HR90.95 18090.66 17691.83 23395.18 21081.14 31795.92 30295.92 25088.40 18590.33 18397.85 12770.66 27099.38 12692.83 14688.83 22494.98 235
Effi-MVS+-dtu89.97 20290.68 17587.81 31595.15 21171.98 36297.87 22695.40 28891.92 9387.57 20591.44 28874.27 23896.84 24889.45 18193.10 17994.60 237
Syy-MVS84.10 29984.53 27882.83 34695.14 21265.71 37497.68 23996.66 19486.52 23682.63 25696.84 18068.15 28489.89 37045.62 38491.54 20692.87 244
myMVS_eth3d88.68 22889.07 19987.50 31895.14 21279.74 32597.68 23996.66 19486.52 23682.63 25696.84 18085.22 13189.89 37069.43 34491.54 20692.87 244
Vis-MVSNetpermissive92.64 14591.85 14895.03 14895.12 21488.23 18398.48 17396.81 18991.61 9792.16 15297.22 16071.58 26598.00 19185.85 22497.81 11398.88 131
Jingyang Zhang, Yao Yao, Shiwei Li, Zixin Luo, Tian Fang: Visibility-aware Multiview Stereo Network. BMVC 2020
GBi-Net86.67 25884.96 26691.80 23595.11 21588.81 17396.77 27495.25 29482.94 29582.12 27090.25 32062.89 32094.97 32779.04 28780.24 28191.62 279
test186.67 25884.96 26691.80 23595.11 21588.81 17396.77 27495.25 29482.94 29582.12 27090.25 32062.89 32094.97 32779.04 28780.24 28191.62 279
FMVSNet286.90 25384.79 27293.24 20495.11 21592.54 8797.67 24195.86 26282.94 29580.55 29191.17 29462.89 32095.29 32277.23 29979.71 28791.90 273
GeoE90.60 18889.56 18893.72 19995.10 21885.43 25599.41 6694.94 30683.96 27787.21 21196.83 18274.37 23697.05 24180.50 28193.73 17598.67 150
baseline93.91 11093.30 11595.72 12195.10 21890.07 13897.48 24695.91 25591.03 10993.54 13597.68 13879.58 20398.02 18994.27 12295.14 16399.08 113
casdiffmvspermissive93.98 10893.43 11195.61 12795.07 22089.86 14798.80 13495.84 26390.98 11192.74 14597.66 14079.71 20298.10 18294.72 11495.37 16198.87 133
Fangjinhua Wang, Qingshan Xu, Yew-Soon Ong, Marc Pollefeys: Lightweight and Accurate Multi-View Stereo With Confidence-Aware Diffusion Model. IEEE T-PAMI 2025
MVSFormer94.71 9294.08 9596.61 8395.05 22194.87 3697.77 23296.17 22986.84 22798.04 4698.52 10485.52 12195.99 29889.83 17498.97 8198.96 121
lupinMVS96.32 4295.94 5197.44 4495.05 22194.87 3699.86 496.50 20793.82 5598.04 4698.77 8385.52 12198.09 18396.98 6698.97 8199.37 86
CostFormer92.89 14192.48 13694.12 18394.99 22385.89 24592.89 33797.00 18386.98 22495.00 11490.78 30090.05 4897.51 22492.92 14591.73 20298.96 121
c3_l88.19 23587.23 23491.06 25094.97 22486.17 23697.72 23695.38 28983.43 28681.68 28291.37 28982.81 16595.72 31184.04 24873.70 32491.29 297
SCA90.64 18789.25 19694.83 15594.95 22588.83 17296.26 29297.21 15890.06 13990.03 18690.62 30966.61 29896.81 25083.16 25594.36 16998.84 134
test-LLR93.11 13892.68 13194.40 17094.94 22687.27 21099.15 9697.25 15290.21 13091.57 15894.04 23584.89 13497.58 22085.94 22196.13 14898.36 166
test-mter93.27 13392.89 12894.40 17094.94 22687.27 21099.15 9697.25 15288.95 16791.57 15894.04 23588.03 7197.58 22085.94 22196.13 14898.36 166
cl____87.82 23786.79 24190.89 25694.88 22885.43 25597.81 22895.24 29782.91 29980.71 29091.22 29281.97 18595.84 30781.34 27275.06 30891.40 292
DIV-MVS_self_test87.82 23786.81 24090.87 25794.87 22985.39 25797.81 22895.22 30282.92 29880.76 28991.31 29181.99 18395.81 30981.36 27175.04 30991.42 291
tpm291.77 16491.09 16393.82 19594.83 23085.56 25492.51 34297.16 16584.00 27593.83 13290.66 30687.54 7797.17 23587.73 20291.55 20598.72 146
PVSNet_083.28 1687.31 24985.16 26493.74 19894.78 23184.59 27098.91 12698.69 2189.81 14278.59 31593.23 25961.95 32499.34 13294.75 11255.72 37997.30 195
CDS-MVSNet93.47 12493.04 12394.76 15694.75 23289.45 15598.82 13297.03 17987.91 20390.97 17096.48 19289.06 5596.36 27589.50 18092.81 18398.49 157
Khang Truong Giang, Soohwan Song, Sungho Jo: Curvature-guided dynamic scale networks for Multi-view Stereo. ICLR 2022
gm-plane-assit94.69 23388.14 18588.22 19397.20 16198.29 17390.79 166
eth_miper_zixun_eth87.76 24087.00 23890.06 27894.67 23482.65 29897.02 26795.37 29084.19 27281.86 28091.58 28681.47 19095.90 30683.24 25373.61 32591.61 282
testing387.75 24188.22 21986.36 32694.66 23577.41 34299.52 4897.95 5286.05 24381.12 28696.69 18786.18 11389.31 37461.65 36890.12 22092.35 257
RPSCF85.33 28185.55 25984.67 33894.63 23662.28 37793.73 32993.76 33374.38 35585.23 23097.06 16964.09 31498.31 17180.98 27386.08 24093.41 243
miper_lstm_enhance86.90 25386.20 24989.00 30594.53 23781.19 31596.74 27895.24 29782.33 30880.15 29690.51 31681.99 18394.68 33680.71 27773.58 32691.12 301
Patchmatch-test86.25 26784.06 28492.82 21294.42 23882.88 29482.88 38294.23 32771.58 36079.39 30690.62 30989.00 5796.42 27263.03 36491.37 21099.16 104
VDDNet90.08 19988.54 21594.69 16094.41 23987.68 19498.21 20196.40 21276.21 34793.33 13897.75 13454.93 35098.77 15594.71 11590.96 21297.61 189
fmvsm_s_conf0.1_n95.56 6995.68 6295.20 14094.35 24089.10 16099.50 4997.67 8894.76 3298.68 2599.03 5481.13 19599.86 6198.63 3097.36 12796.63 213
test_fmvsmvis_n_192095.47 7095.40 6895.70 12294.33 24190.22 13299.70 2496.98 18496.80 792.75 14498.89 7682.46 17799.92 3998.36 3898.33 10596.97 207
KD-MVS_2432*160082.98 30480.52 31290.38 27194.32 24288.98 16592.87 33895.87 26080.46 32873.79 33987.49 34582.76 16893.29 34770.56 34046.53 38888.87 346
miper_refine_blended82.98 30480.52 31290.38 27194.32 24288.98 16592.87 33895.87 26080.46 32873.79 33987.49 34582.76 16893.29 34770.56 34046.53 38888.87 346
EI-MVSNet89.87 20389.38 19491.36 24594.32 24285.87 24697.61 24396.59 19985.10 25785.51 22797.10 16681.30 19496.56 26183.85 25183.03 26891.64 277
CVMVSNet90.30 19290.91 16888.46 31194.32 24273.58 35697.61 24397.59 10890.16 13588.43 20197.10 16676.83 22392.86 35082.64 26193.54 17698.93 127
test_fmvs1_n91.07 17791.41 15890.06 27894.10 24674.31 35299.18 8794.84 30894.81 3196.37 8797.46 14950.86 36399.82 7497.14 6297.90 11196.04 228
IterMVS-LS88.34 23187.44 22991.04 25194.10 24685.85 24798.10 21195.48 28285.12 25682.03 27491.21 29381.35 19395.63 31483.86 25075.73 30591.63 278
Fangjinhua Wang, Silvano Galliani, Christoph Vogel, Marc Pollefeys: IterMVS: Iterative Probability Estimation for Efficient Multi-View Stereo.
TAMVS92.62 14692.09 14494.20 18094.10 24687.68 19498.41 18096.97 18587.53 21689.74 19096.04 20484.77 13896.49 26888.97 19092.31 19198.42 159
PAPM96.35 4095.94 5197.58 4094.10 24695.25 2498.93 12398.17 3794.26 4093.94 12998.72 8989.68 5197.88 19596.36 8099.29 6799.62 66
CLD-MVS91.06 17890.71 17492.10 22894.05 25086.10 23899.55 4296.29 22194.16 4384.70 23397.17 16469.62 27597.82 19994.74 11386.08 24092.39 252
Zhaoxin Li, Wangmeng Zuo, Zhaoqi Wang, Lei Zhang: Confidence-based Large-scale Dense Multi-view Stereo. IEEE Transaction on Image Processing, 2020
HQP-NCC93.95 25199.16 9193.92 4887.57 205
ACMP_Plane93.95 25199.16 9193.92 4887.57 205
HQP-MVS91.50 16791.23 16192.29 22293.95 25186.39 22699.16 9196.37 21493.92 4887.57 20596.67 18873.34 24497.77 20393.82 13186.29 23592.72 246
NP-MVS93.94 25486.22 23396.67 188
plane_prior693.92 25586.02 24372.92 250
ACMP87.39 1088.71 22688.24 21890.12 27793.91 25681.06 31898.50 16995.67 27289.43 15480.37 29395.55 21165.67 30597.83 19890.55 16884.51 24991.47 287
Qingshan Xu and Wenbing Tao: Planar Prior Assisted PatchMatch Multi-View Stereo. AAAI 2020
plane_prior193.90 257
HQP_MVS91.26 17290.95 16792.16 22693.84 25886.07 24199.02 11496.30 21893.38 6486.99 21296.52 19072.92 25097.75 20993.46 13686.17 23892.67 248
plane_prior793.84 25885.73 249
dmvs_re88.69 22788.06 22290.59 26393.83 26078.68 33395.75 31196.18 22887.99 20084.48 23796.32 19867.52 29196.94 24584.98 23285.49 24496.14 226
MVS-HIRNet79.01 32375.13 33590.66 26293.82 26181.69 30685.16 37293.75 33454.54 38274.17 33759.15 38857.46 33996.58 26063.74 36194.38 16893.72 240
FMVSNet582.29 30780.54 31187.52 31793.79 26284.01 27893.73 32992.47 35176.92 34574.27 33686.15 35663.69 31889.24 37569.07 34574.79 31289.29 341
ACMH+83.78 1584.21 29582.56 30089.15 30293.73 26379.16 32896.43 28594.28 32681.09 32274.00 33894.03 23754.58 35197.67 21276.10 30978.81 28990.63 317
ACMM86.95 1388.77 22488.22 21990.43 26993.61 26481.34 31298.50 16995.92 25087.88 20483.85 24295.20 22167.20 29497.89 19486.90 21184.90 24792.06 270
Qingshan Xu and Wenbing Tao: Multi-Scale Geometric Consistency Guided Multi-View Stereo. CVPR 2019
OpenMVScopyleft85.28 1490.75 18488.84 20496.48 9193.58 26593.51 6898.80 13497.41 14382.59 30178.62 31397.49 14868.00 28799.82 7484.52 23998.55 10196.11 227
IterMVS85.81 27484.67 27589.22 30093.51 26683.67 28396.32 28994.80 31185.09 25878.69 31190.17 32666.57 30093.17 34979.48 28577.42 29990.81 308
Fangjinhua Wang, Silvano Galliani, Christoph Vogel, Marc Pollefeys: IterMVS: Iterative Probability Estimation for Efficient Multi-View Stereo.
CR-MVSNet88.83 22187.38 23193.16 20693.47 26786.24 23184.97 37594.20 32888.92 17090.76 17486.88 35284.43 13994.82 33270.64 33992.17 19598.41 160
RPMNet85.07 28481.88 30194.64 16393.47 26786.24 23184.97 37597.21 15864.85 38090.76 17478.80 37780.95 19699.27 13553.76 37992.17 19598.41 160
IterMVS-SCA-FT85.73 27784.64 27689.00 30593.46 26982.90 29296.27 29094.70 31485.02 26178.62 31390.35 31866.61 29893.33 34679.38 28677.36 30090.76 312
Fast-Effi-MVS+-dtu88.84 21988.59 21289.58 29393.44 27078.18 33798.65 15094.62 31788.46 18084.12 24095.37 21868.91 27796.52 26482.06 26791.70 20394.06 238
Patchmtry83.61 30381.64 30389.50 29593.36 27182.84 29584.10 37894.20 32869.47 37079.57 30486.88 35284.43 13994.78 33368.48 34874.30 31890.88 307
LPG-MVS_test88.86 21888.47 21690.06 27893.35 27280.95 31998.22 19995.94 24687.73 21083.17 24996.11 20266.28 30297.77 20390.19 17285.19 24591.46 288
LGP-MVS_train90.06 27893.35 27280.95 31995.94 24687.73 21083.17 24996.11 20266.28 30297.77 20390.19 17285.19 24591.46 288
JIA-IIPM85.97 27084.85 27089.33 29993.23 27473.68 35585.05 37497.13 16869.62 36991.56 16068.03 38488.03 7196.96 24377.89 29793.12 17897.34 194
ACMH83.09 1784.60 28982.61 29990.57 26493.18 27582.94 29096.27 29094.92 30781.01 32372.61 35093.61 25056.54 34197.79 20174.31 32181.07 27990.99 304
Qingshan Xu and Wenbing Tao: Multi-Scale Geometric Consistency Guided Multi-View Stereo. CVPR 2019
PatchT85.44 28083.19 28992.22 22393.13 27683.00 28983.80 38196.37 21470.62 36390.55 17779.63 37684.81 13694.87 33058.18 37591.59 20498.79 141
baseline294.04 10593.80 10594.74 15893.07 27790.25 12998.12 20898.16 3989.86 14086.53 22096.95 17395.56 698.05 18791.44 15794.53 16795.93 229
jason95.40 7494.86 8097.03 5792.91 27894.23 5499.70 2496.30 21893.56 6296.73 8098.52 10481.46 19197.91 19296.08 8598.47 10398.96 121
jason: jason.
LTVRE_ROB81.71 1984.59 29082.72 29790.18 27592.89 27983.18 28893.15 33494.74 31278.99 33375.14 33492.69 26765.64 30697.63 21669.46 34381.82 27789.74 334
Andreas Kuhn, Heiko Hirschmüller, Daniel Scharstein, Helmut Mayer: A TV Prior for High-Quality Scalable Multi-View Stereo Reconstruction. International Journal of Computer Vision 2016
VPA-MVSNet89.10 21287.66 22793.45 20192.56 28091.02 11397.97 22198.32 3086.92 22686.03 22292.01 27668.84 27997.10 23990.92 16275.34 30692.23 260
tpm89.67 20588.95 20291.82 23492.54 28181.43 30992.95 33695.92 25087.81 20590.50 17989.44 33284.99 13295.65 31383.67 25282.71 27198.38 163
GA-MVS90.10 19888.69 20894.33 17492.44 28287.97 19099.08 10696.26 22289.65 14586.92 21593.11 26268.09 28596.96 24382.54 26390.15 21998.05 176
test_fmvsmconf0.1_n95.94 5695.79 5996.40 9792.42 28389.92 14599.79 1496.85 18896.53 1397.22 6398.67 9582.71 17099.84 6798.92 2598.98 8099.43 83
FIs90.70 18589.87 18593.18 20592.29 28491.12 10798.17 20598.25 3289.11 16283.44 24494.82 22782.26 18096.17 29187.76 20182.76 27092.25 258
ITE_SJBPF87.93 31392.26 28576.44 34593.47 34087.67 21379.95 29995.49 21456.50 34297.38 23175.24 31482.33 27489.98 331
UniMVSNet (Re)89.50 20988.32 21793.03 20792.21 28690.96 11598.90 12798.39 2789.13 16183.22 24692.03 27481.69 18796.34 28186.79 21272.53 33591.81 274
UniMVSNet_NR-MVSNet89.60 20688.55 21492.75 21592.17 28790.07 13898.74 14198.15 4088.37 18683.21 24793.98 24082.86 16495.93 30286.95 20872.47 33692.25 258
TinyColmap80.42 31777.94 32287.85 31492.09 28878.58 33493.74 32889.94 37274.99 35169.77 35591.78 28246.09 37097.58 22065.17 36077.89 29387.38 354
fmvsm_s_conf0.1_n_a95.16 7895.15 7495.18 14192.06 28988.94 16899.29 7997.53 11994.46 3698.98 1698.99 5879.99 20099.85 6598.24 4596.86 13696.73 211
tt080586.50 26384.79 27291.63 24191.97 29081.49 30896.49 28497.38 14682.24 30982.44 26195.82 20851.22 36098.25 17684.55 23880.96 28095.13 234
MS-PatchMatch86.75 25685.92 25389.22 30091.97 29082.47 30096.91 26996.14 23183.74 28077.73 32093.53 25358.19 33797.37 23376.75 30598.35 10487.84 351
VPNet88.30 23286.57 24393.49 20091.95 29291.35 10198.18 20397.20 16288.61 17584.52 23694.89 22462.21 32396.76 25389.34 18472.26 33992.36 254
FMVSNet183.94 30081.32 30891.80 23591.94 29388.81 17396.77 27495.25 29477.98 33878.25 31890.25 32050.37 36494.97 32773.27 33077.81 29791.62 279
WR-MVS88.54 23087.22 23592.52 22091.93 29489.50 15498.56 16397.84 5786.99 22181.87 27893.81 24474.25 23995.92 30485.29 22774.43 31692.12 267
D2MVS87.96 23687.39 23089.70 29091.84 29583.40 28598.31 19498.49 2388.04 19878.23 31990.26 31973.57 24296.79 25284.21 24283.53 26388.90 345
FC-MVSNet-test90.22 19489.40 19392.67 21991.78 29689.86 14797.89 22398.22 3588.81 17282.96 25294.66 22981.90 18695.96 30085.89 22382.52 27392.20 264
MIMVSNet84.48 29281.83 30292.42 22191.73 29787.36 20685.52 37194.42 32381.40 31881.91 27687.58 34251.92 35892.81 35273.84 32688.15 22697.08 203
USDC84.74 28682.93 29190.16 27691.73 29783.54 28495.00 31793.30 34288.77 17373.19 34393.30 25753.62 35497.65 21575.88 31181.54 27889.30 340
test_vis1_n90.40 18990.27 18090.79 25991.55 29976.48 34499.12 10394.44 32094.31 3997.34 6196.95 17343.60 37499.42 12197.57 5597.60 11896.47 220
nrg03090.23 19388.87 20394.32 17591.53 30093.54 6798.79 13895.89 25888.12 19684.55 23594.61 23078.80 21296.88 24792.35 15275.21 30792.53 250
DU-MVS88.83 22187.51 22892.79 21391.46 30190.07 13898.71 14297.62 10188.87 17183.21 24793.68 24774.63 23095.93 30286.95 20872.47 33692.36 254
NR-MVSNet87.74 24486.00 25292.96 21091.46 30190.68 12296.65 28197.42 14288.02 19973.42 34193.68 24777.31 22095.83 30884.26 24171.82 34392.36 254
tfpnnormal83.65 30181.35 30790.56 26691.37 30388.06 18797.29 25397.87 5578.51 33776.20 32490.91 29764.78 31296.47 26961.71 36773.50 32787.13 359
test_vis1_rt81.31 31380.05 31685.11 33391.29 30470.66 36698.98 12077.39 39485.76 24868.80 35882.40 36536.56 38199.44 11792.67 14986.55 23485.24 369
test_040278.81 32576.33 33086.26 32791.18 30578.44 33695.88 30591.34 36668.55 37170.51 35489.91 32752.65 35794.99 32647.14 38379.78 28685.34 368
test0.0.03 188.96 21488.61 21090.03 28291.09 30684.43 27298.97 12197.02 18190.21 13080.29 29496.31 19984.89 13491.93 36472.98 33285.70 24393.73 239
WR-MVS_H86.53 26285.49 26089.66 29291.04 30783.31 28797.53 24598.20 3684.95 26379.64 30290.90 29878.01 21795.33 32176.29 30872.81 33290.35 321
CP-MVSNet86.54 26185.45 26189.79 28891.02 30882.78 29697.38 24997.56 11485.37 25379.53 30593.03 26371.86 26195.25 32379.92 28273.43 33091.34 294
TranMVSNet+NR-MVSNet87.75 24186.31 24792.07 22990.81 30988.56 17898.33 19197.18 16387.76 20781.87 27893.90 24272.45 25495.43 31883.13 25771.30 34692.23 260
PS-CasMVS85.81 27484.58 27789.49 29790.77 31082.11 30297.20 26097.36 14884.83 26579.12 31092.84 26667.42 29395.16 32578.39 29573.25 33191.21 299
DeepMVS_CXcopyleft76.08 35790.74 31151.65 39090.84 36886.47 23957.89 37887.98 33935.88 38292.60 35465.77 35865.06 36383.97 373
mvsmamba89.99 20189.42 19291.69 24090.64 31286.34 22998.40 18392.27 35391.01 11084.80 23294.93 22376.12 22496.51 26592.81 14783.84 25892.21 262
OPM-MVS89.76 20489.15 19891.57 24290.53 31385.58 25398.11 21095.93 24992.88 7486.05 22196.47 19367.06 29697.87 19689.29 18786.08 24091.26 298
Ray L. Khuboni, Hongjun Xu: Octagram Propagation Matching for Multi-Scale View Stereopsis (OPM-MVS).
XXY-MVS87.75 24186.02 25192.95 21190.46 31489.70 15097.71 23895.90 25684.02 27480.95 28794.05 23467.51 29297.10 23985.16 22878.41 29092.04 271
UniMVSNet_ETH3D85.65 27983.79 28791.21 24690.41 31580.75 32195.36 31495.78 26478.76 33681.83 28194.33 23349.86 36596.66 25484.30 24083.52 26496.22 225
RRT_MVS88.91 21688.56 21389.93 28390.31 31681.61 30798.08 21496.38 21389.30 15682.41 26494.84 22673.15 24896.04 29790.38 16982.23 27592.15 265
v1085.73 27784.01 28590.87 25790.03 31786.73 21997.20 26095.22 30281.25 32079.85 30189.75 32973.30 24696.28 28776.87 30372.64 33489.61 337
v886.11 26884.45 27991.10 24989.99 31886.85 21797.24 25795.36 29181.99 31279.89 30089.86 32874.53 23496.39 27378.83 29172.32 33890.05 329
V4287.00 25285.68 25790.98 25389.91 31986.08 23998.32 19395.61 27583.67 28382.72 25490.67 30574.00 24196.53 26381.94 26974.28 31990.32 322
XVG-ACMP-BASELINE85.86 27284.95 26888.57 30989.90 32077.12 34394.30 32395.60 27687.40 21882.12 27092.99 26553.42 35597.66 21385.02 23183.83 25990.92 306
PEN-MVS85.21 28283.93 28689.07 30489.89 32181.31 31397.09 26397.24 15584.45 27078.66 31292.68 26868.44 28294.87 33075.98 31070.92 34791.04 303
test_fmvs285.10 28385.45 26184.02 34189.85 32265.63 37598.49 17192.59 34990.45 12585.43 22993.32 25543.94 37296.59 25790.81 16584.19 25589.85 333
v114486.83 25585.31 26391.40 24389.75 32387.21 21498.31 19495.45 28483.22 28982.70 25590.78 30073.36 24396.36 27579.49 28474.69 31390.63 317
TransMVSNet (Re)81.97 30979.61 31889.08 30389.70 32484.01 27897.26 25591.85 36178.84 33473.07 34791.62 28467.17 29595.21 32467.50 35159.46 37388.02 350
v2v48287.27 25085.76 25591.78 23989.59 32587.58 19898.56 16395.54 27984.53 26882.51 26091.78 28273.11 24996.47 26982.07 26674.14 32291.30 296
pm-mvs184.68 28882.78 29590.40 27089.58 32685.18 26197.31 25294.73 31381.93 31476.05 32692.01 27665.48 30996.11 29478.75 29269.14 34989.91 332
pmmvs487.58 24786.17 25091.80 23589.58 32688.92 17197.25 25695.28 29382.54 30380.49 29293.17 26175.62 22796.05 29682.75 26078.90 28890.42 320
bld_raw_dy_0_6487.82 23786.71 24291.15 24889.54 32885.61 25197.37 25089.16 37789.26 15783.42 24594.50 23165.79 30496.18 28988.00 19983.37 26591.67 276
v119286.32 26684.71 27491.17 24789.53 32986.40 22598.13 20695.44 28682.52 30482.42 26390.62 30971.58 26596.33 28277.23 29974.88 31090.79 310
v14419286.40 26484.89 26990.91 25489.48 33085.59 25298.21 20195.43 28782.45 30682.62 25890.58 31272.79 25396.36 27578.45 29474.04 32390.79 310
v14886.38 26585.06 26590.37 27389.47 33184.10 27798.52 16595.48 28283.80 27980.93 28890.22 32374.60 23296.31 28380.92 27571.55 34490.69 315
v192192086.02 26984.44 28090.77 26089.32 33285.20 26098.10 21195.35 29282.19 31082.25 26890.71 30270.73 26896.30 28676.85 30474.49 31590.80 309
v124085.77 27684.11 28390.73 26189.26 33385.15 26397.88 22595.23 30181.89 31582.16 26990.55 31469.60 27696.31 28375.59 31374.87 31190.72 314
our_test_384.47 29382.80 29389.50 29589.01 33483.90 28097.03 26594.56 31881.33 31975.36 33390.52 31571.69 26394.54 33868.81 34676.84 30190.07 327
ppachtmachnet_test83.63 30281.57 30589.80 28789.01 33485.09 26497.13 26294.50 31978.84 33476.14 32591.00 29669.78 27294.61 33763.40 36274.36 31789.71 336
DTE-MVSNet84.14 29782.80 29388.14 31288.95 33679.87 32496.81 27396.24 22383.50 28577.60 32192.52 27067.89 28994.24 34172.64 33469.05 35090.32 322
PS-MVSNAJss89.54 20889.05 20091.00 25288.77 33784.36 27397.39 24795.97 24188.47 17881.88 27793.80 24582.48 17496.50 26689.34 18483.34 26792.15 265
Baseline_NR-MVSNet85.83 27384.82 27188.87 30888.73 33883.34 28698.63 15391.66 36280.41 33082.44 26191.35 29074.63 23095.42 31984.13 24471.39 34587.84 351
MVP-Stereo86.61 26085.83 25488.93 30788.70 33983.85 28196.07 29994.41 32482.15 31175.64 33191.96 27967.65 29096.45 27177.20 30198.72 9586.51 362
Qingsong Yan: MVP-Stereo: A Parallel Multi-View Patchmatch Stereo Method with Dilation Matching for Photogrammetric Application.
EU-MVSNet84.19 29684.42 28183.52 34488.64 34067.37 37396.04 30095.76 26685.29 25478.44 31693.18 26070.67 26991.48 36675.79 31275.98 30391.70 275
pmmvs585.87 27184.40 28290.30 27488.53 34184.23 27498.60 15893.71 33581.53 31780.29 29492.02 27564.51 31395.52 31682.04 26878.34 29191.15 300
MDA-MVSNet-bldmvs77.82 33174.75 33787.03 32288.33 34278.52 33596.34 28892.85 34675.57 34948.87 38487.89 34057.32 34092.49 35860.79 36964.80 36490.08 326
N_pmnet70.19 34369.87 34571.12 36488.24 34330.63 40395.85 30828.70 40270.18 36668.73 35986.55 35464.04 31593.81 34253.12 38073.46 32888.94 344
v7n84.42 29482.75 29689.43 29888.15 34481.86 30496.75 27795.67 27280.53 32678.38 31789.43 33369.89 27196.35 28073.83 32772.13 34090.07 327
SixPastTwentyTwo82.63 30681.58 30485.79 33088.12 34571.01 36595.17 31692.54 35084.33 27172.93 34892.08 27360.41 33195.61 31574.47 32074.15 32190.75 313
test_djsdf88.26 23487.73 22589.84 28688.05 34682.21 30197.77 23296.17 22986.84 22782.41 26491.95 28072.07 25895.99 29889.83 17484.50 25091.32 295
mvs_tets87.09 25186.22 24889.71 28987.87 34781.39 31196.73 27995.90 25688.19 19479.99 29893.61 25059.96 33296.31 28389.40 18384.34 25391.43 290
OurMVSNet-221017-084.13 29883.59 28885.77 33187.81 34870.24 36794.89 31893.65 33786.08 24276.53 32393.28 25861.41 32696.14 29380.95 27477.69 29890.93 305
YYNet179.64 32277.04 32787.43 32087.80 34979.98 32396.23 29494.44 32073.83 35751.83 38187.53 34367.96 28892.07 36366.00 35767.75 35690.23 324
MDA-MVSNet_test_wron79.65 32177.05 32687.45 31987.79 35080.13 32296.25 29394.44 32073.87 35651.80 38287.47 34768.04 28692.12 36266.02 35667.79 35590.09 325
jajsoiax87.35 24886.51 24589.87 28487.75 35181.74 30597.03 26595.98 24088.47 17880.15 29693.80 24561.47 32596.36 27589.44 18284.47 25291.50 286
K. test v381.04 31479.77 31784.83 33687.41 35270.23 36895.60 31393.93 33283.70 28267.51 36589.35 33455.76 34393.58 34576.67 30668.03 35390.67 316
dmvs_testset77.17 33378.99 32071.71 36287.25 35338.55 39991.44 35281.76 39085.77 24769.49 35695.94 20669.71 27484.37 38252.71 38176.82 30292.21 262
testgi82.29 30781.00 31086.17 32887.24 35474.84 35197.39 24791.62 36388.63 17475.85 33095.42 21546.07 37191.55 36566.87 35579.94 28592.12 267
LF4IMVS81.94 31081.17 30984.25 34087.23 35568.87 37293.35 33391.93 36083.35 28875.40 33293.00 26449.25 36896.65 25578.88 29078.11 29287.22 358
EG-PatchMatch MVS79.92 31877.59 32386.90 32387.06 35677.90 34196.20 29794.06 33074.61 35366.53 36988.76 33740.40 37996.20 28867.02 35383.66 26286.61 360
test_fmvsmconf0.01_n94.14 10393.51 11096.04 10986.79 35789.19 15799.28 8195.94 24695.70 1995.50 10498.49 10873.27 24799.79 8098.28 4398.32 10799.15 105
Gipumacopyleft54.77 35552.22 35962.40 37386.50 35859.37 38150.20 39190.35 37136.52 38941.20 39049.49 39118.33 39281.29 38432.10 39065.34 36246.54 391
S. Galliani, K. Lasinger, K. Schindler: Massively Parallel Multiview Stereopsis by Surface Normal Diffusion. ICCV 2015
anonymousdsp86.69 25785.75 25689.53 29486.46 35982.94 29096.39 28695.71 26883.97 27679.63 30390.70 30368.85 27895.94 30186.01 21884.02 25789.72 335
EGC-MVSNET60.70 35055.37 35476.72 35686.35 36071.08 36389.96 36384.44 3870.38 3991.50 40084.09 36137.30 38088.10 37840.85 38873.44 32970.97 384
test_method70.10 34468.66 34774.41 36186.30 36155.84 38394.47 32089.82 37335.18 39066.15 37084.75 36030.54 38477.96 39170.40 34260.33 37189.44 339
lessismore_v085.08 33485.59 36269.28 37090.56 37067.68 36490.21 32454.21 35395.46 31773.88 32562.64 36790.50 319
CMPMVSbinary58.40 2180.48 31680.11 31581.59 35285.10 36359.56 38094.14 32695.95 24568.54 37260.71 37693.31 25655.35 34897.87 19683.06 25884.85 24887.33 356
M. Jancosek, T. Pajdla: Multi-View Reconstruction Preserving Weakly-Supported Surfaces. CVPR 2011
Anonymous2023120680.76 31579.42 31984.79 33784.78 36472.98 35796.53 28292.97 34479.56 33174.33 33588.83 33661.27 32792.15 36160.59 37075.92 30489.24 342
DSMNet-mixed81.60 31281.43 30682.10 34984.36 36560.79 37893.63 33186.74 38279.00 33279.32 30787.15 35063.87 31689.78 37266.89 35491.92 19795.73 230
pmmvs679.90 31977.31 32587.67 31684.17 36678.13 33895.86 30793.68 33667.94 37472.67 34989.62 33150.98 36295.75 31074.80 31966.04 36089.14 343
new_pmnet76.02 33473.71 33982.95 34583.88 36772.85 35991.26 35592.26 35470.44 36562.60 37481.37 36947.64 36992.32 35961.85 36672.10 34183.68 374
OpenMVS_ROBcopyleft73.86 2077.99 33075.06 33686.77 32483.81 36877.94 34096.38 28791.53 36567.54 37568.38 36087.13 35143.94 37296.08 29555.03 37881.83 27686.29 363
test20.0378.51 32877.48 32481.62 35183.07 36971.03 36496.11 29892.83 34781.66 31669.31 35789.68 33057.53 33887.29 38058.65 37468.47 35186.53 361
Anonymous2024052178.63 32776.90 32883.82 34282.82 37072.86 35895.72 31293.57 33873.55 35872.17 35184.79 35949.69 36692.51 35765.29 35974.50 31486.09 364
UnsupCasMVSNet_eth78.90 32476.67 32985.58 33282.81 37174.94 35091.98 34596.31 21784.64 26765.84 37187.71 34151.33 35992.23 36072.89 33356.50 37889.56 338
KD-MVS_self_test77.47 33275.88 33282.24 34781.59 37268.93 37192.83 34094.02 33177.03 34473.14 34483.39 36255.44 34790.42 36767.95 34957.53 37687.38 354
CL-MVSNet_self_test79.89 32078.34 32184.54 33981.56 37375.01 34996.88 27195.62 27481.10 32175.86 32985.81 35768.49 28190.26 36863.21 36356.51 37788.35 348
MIMVSNet175.92 33573.30 34083.81 34381.29 37475.57 34792.26 34392.05 35873.09 35967.48 36686.18 35540.87 37887.64 37955.78 37770.68 34888.21 349
Patchmatch-RL test81.90 31180.13 31487.23 32180.71 37570.12 36984.07 37988.19 38083.16 29170.57 35282.18 36787.18 8792.59 35582.28 26562.78 36698.98 119
APD_test168.93 34566.98 34874.77 36080.62 37653.15 38787.97 36685.01 38553.76 38359.26 37787.52 34425.19 38689.95 36956.20 37667.33 35781.19 378
pmmvs-eth3d78.71 32676.16 33186.38 32580.25 37781.19 31594.17 32592.13 35777.97 33966.90 36882.31 36655.76 34392.56 35673.63 32962.31 36985.38 366
UnsupCasMVSNet_bld73.85 34070.14 34484.99 33579.44 37875.73 34688.53 36595.24 29770.12 36761.94 37574.81 38141.41 37793.62 34468.65 34751.13 38585.62 365
PM-MVS74.88 33872.85 34180.98 35378.98 37964.75 37690.81 35985.77 38380.95 32468.23 36282.81 36329.08 38592.84 35176.54 30762.46 36885.36 367
new-patchmatchnet74.80 33972.40 34281.99 35078.36 38072.20 36194.44 32192.36 35277.06 34363.47 37379.98 37551.04 36188.85 37660.53 37154.35 38084.92 371
test_fmvs375.09 33775.19 33474.81 35977.45 38154.08 38595.93 30190.64 36982.51 30573.29 34281.19 37022.29 38886.29 38185.50 22667.89 35484.06 372
WB-MVS66.44 34666.29 34966.89 36774.84 38244.93 39493.00 33584.09 38871.15 36255.82 37981.63 36863.79 31780.31 38921.85 39350.47 38675.43 380
SSC-MVS65.42 34765.20 35066.06 36873.96 38343.83 39592.08 34483.54 38969.77 36854.73 38080.92 37263.30 31979.92 39020.48 39448.02 38774.44 381
pmmvs372.86 34169.76 34682.17 34873.86 38474.19 35394.20 32489.01 37864.23 38167.72 36380.91 37341.48 37688.65 37762.40 36554.02 38183.68 374
mvsany_test375.85 33674.52 33879.83 35473.53 38560.64 37991.73 34887.87 38183.91 27870.55 35382.52 36431.12 38393.66 34386.66 21462.83 36585.19 370
test_f71.94 34270.82 34375.30 35872.77 38653.28 38691.62 34989.66 37575.44 35064.47 37278.31 37820.48 38989.56 37378.63 29366.02 36183.05 377
ambc79.60 35572.76 38756.61 38276.20 38692.01 35968.25 36180.23 37423.34 38794.73 33473.78 32860.81 37087.48 353
TDRefinement78.01 32975.31 33386.10 32970.06 38873.84 35493.59 33291.58 36474.51 35473.08 34691.04 29549.63 36797.12 23674.88 31759.47 37287.33 356
test_vis3_rt61.29 34958.75 35268.92 36667.41 38952.84 38891.18 35759.23 40166.96 37641.96 38958.44 38911.37 39794.72 33574.25 32257.97 37559.20 388
testf156.38 35353.73 35664.31 37164.84 39045.11 39280.50 38475.94 39638.87 38642.74 38675.07 37911.26 39881.19 38541.11 38653.27 38266.63 385
APD_test256.38 35353.73 35664.31 37164.84 39045.11 39280.50 38475.94 39638.87 38642.74 38675.07 37911.26 39881.19 38541.11 38653.27 38266.63 385
PMMVS258.97 35255.07 35570.69 36562.72 39255.37 38485.97 37080.52 39149.48 38445.94 38568.31 38315.73 39480.78 38749.79 38237.12 39075.91 379
E-PMN41.02 36040.93 36241.29 37761.97 39333.83 40084.00 38065.17 39927.17 39227.56 39246.72 39317.63 39360.41 39619.32 39518.82 39229.61 392
wuyk23d16.71 36416.73 36816.65 37960.15 39425.22 40441.24 3925.17 4036.56 3965.48 3993.61 3993.64 40122.72 39815.20 3979.52 3961.99 396
FPMVS61.57 34860.32 35165.34 36960.14 39542.44 39791.02 35889.72 37444.15 38542.63 38880.93 37119.02 39080.59 38842.50 38572.76 33373.00 382
EMVS39.96 36139.88 36340.18 37859.57 39632.12 40284.79 37764.57 40026.27 39326.14 39444.18 39618.73 39159.29 39717.03 39617.67 39429.12 393
LCM-MVSNet60.07 35156.37 35371.18 36354.81 39748.67 39182.17 38389.48 37637.95 38849.13 38369.12 38213.75 39681.76 38359.28 37251.63 38483.10 376
MVEpermissive44.00 2241.70 35937.64 36453.90 37649.46 39843.37 39665.09 39066.66 39826.19 39425.77 39548.53 3923.58 40263.35 39526.15 39227.28 39154.97 390
Simon Fuhrmann, Fabian Langguth, Michael Goesele: MVE - A Multi-View Reconstruction Environment. EUROGRAPHICS Workshops on Graphics and Cultural Heritage (2014)
ANet_high50.71 35746.17 36064.33 37044.27 39952.30 38976.13 38778.73 39264.95 37927.37 39355.23 39014.61 39567.74 39336.01 38918.23 39372.95 383
PMVScopyleft41.42 2345.67 35842.50 36155.17 37534.28 40032.37 40166.24 38978.71 39330.72 39122.04 39659.59 3874.59 40077.85 39227.49 39158.84 37455.29 389
Y. Furukawa, J. Ponce: Accurate, dense, and robust multiview stereopsis. PAMI (2010)
tmp_tt53.66 35652.86 35856.05 37432.75 40141.97 39873.42 38876.12 39521.91 39539.68 39196.39 19642.59 37565.10 39478.00 29614.92 39561.08 387
testmvs18.81 36323.05 3666.10 3814.48 4022.29 40697.78 2303.00 4043.27 39718.60 39762.71 3851.53 4042.49 40014.26 3981.80 39713.50 395
test12316.58 36519.47 3677.91 3803.59 4035.37 40594.32 3221.39 4052.49 39813.98 39844.60 3952.91 4032.65 39911.35 3990.57 39815.70 394
test_blank0.00 3680.00 3710.00 3820.00 4040.00 4070.00 3930.00 4060.00 4000.00 4010.00 4000.00 4050.00 4010.00 4000.00 3990.00 397
eth-test20.00 404
eth-test0.00 404
uanet_test0.00 3680.00 3710.00 3820.00 4040.00 4070.00 3930.00 4060.00 4000.00 4010.00 4000.00 4050.00 4010.00 4000.00 3990.00 397
DCPMVS0.00 3680.00 3710.00 3820.00 4040.00 4070.00 3930.00 4060.00 4000.00 4010.00 4000.00 4050.00 4010.00 4000.00 3990.00 397
cdsmvs_eth3d_5k22.52 36230.03 3650.00 3820.00 4040.00 4070.00 39397.17 1640.00 4000.00 40198.77 8374.35 2370.00 4010.00 4000.00 3990.00 397
pcd_1.5k_mvsjas6.87 3679.16 3700.00 3820.00 4040.00 4070.00 3930.00 4060.00 4000.00 4010.00 40082.48 1740.00 4010.00 4000.00 3990.00 397
sosnet-low-res0.00 3680.00 3710.00 3820.00 4040.00 4070.00 3930.00 4060.00 4000.00 4010.00 4000.00 4050.00 4010.00 4000.00 3990.00 397
sosnet0.00 3680.00 3710.00 3820.00 4040.00 4070.00 3930.00 4060.00 4000.00 4010.00 4000.00 4050.00 4010.00 4000.00 3990.00 397
uncertanet0.00 3680.00 3710.00 3820.00 4040.00 4070.00 3930.00 4060.00 4000.00 4010.00 4000.00 4050.00 4010.00 4000.00 3990.00 397
Regformer0.00 3680.00 3710.00 3820.00 4040.00 4070.00 3930.00 4060.00 4000.00 4010.00 4000.00 4050.00 4010.00 4000.00 3990.00 397
ab-mvs-re8.21 36610.94 3690.00 3820.00 4040.00 4070.00 3930.00 4060.00 4000.00 40198.50 1060.00 4050.00 4010.00 4000.00 3990.00 397
uanet0.00 3680.00 3710.00 3820.00 4040.00 4070.00 3930.00 4060.00 4000.00 4010.00 4000.00 4050.00 4010.00 4000.00 3990.00 397
MM98.86 596.83 799.81 999.13 997.66 298.29 3798.96 6485.84 11999.90 4899.72 398.80 9199.85 30
WAC-MVS79.74 32567.75 350
PC_three_145294.60 3499.41 299.12 4495.50 799.96 2899.84 299.92 399.97 7
test_241102_TWO97.72 7694.17 4199.23 899.54 393.14 2499.98 999.70 499.82 1999.99 1
test_0728_THIRD93.01 6899.07 1399.46 1094.66 1499.97 2199.25 1699.82 1999.95 15
GSMVS98.84 134
sam_mvs188.39 6398.84 134
sam_mvs87.08 89
MTGPAbinary97.45 136
test_post190.74 36141.37 39785.38 12896.36 27583.16 255
test_post46.00 39487.37 8197.11 237
patchmatchnet-post84.86 35888.73 6096.81 250
MTMP99.21 8491.09 367
test9_res98.60 3199.87 999.90 22
agg_prior297.84 5299.87 999.91 21
test_prior492.00 9299.41 66
test_prior299.57 4091.43 10398.12 4298.97 6090.43 4398.33 4099.81 23
旧先验298.67 14885.75 24998.96 1898.97 15093.84 129
新几何298.26 197
无先验98.52 16597.82 6087.20 22099.90 4887.64 20399.85 30
原ACMM298.69 145
testdata299.88 5284.16 243
segment_acmp90.56 41
testdata197.89 22392.43 80
plane_prior596.30 21897.75 20993.46 13686.17 23892.67 248
plane_prior496.52 190
plane_prior385.91 24493.65 5986.99 212
plane_prior299.02 11493.38 64
plane_prior86.07 24199.14 9993.81 5686.26 237
n20.00 406
nn0.00 406
door-mid84.90 386
test1197.68 85
door85.30 384
HQP5-MVS86.39 226
BP-MVS93.82 131
HQP4-MVS87.57 20597.77 20392.72 246
HQP3-MVS96.37 21486.29 235
HQP2-MVS73.34 244
MDTV_nov1_ep13_2view91.17 10691.38 35387.45 21793.08 14186.67 10087.02 20698.95 125
ACMMP++_ref82.64 272
ACMMP++83.83 259
Test By Simon83.62 148