This table lists the benchmark results for the high-res multi-view scenario. The following metrics are evaluated:

(*) For exact definitions, detailing how potentially incomplete ground truth is taken into account, see our paper.

The datasets are grouped into different categories, and result averages are computed for a category and method if results of the method are available for all datasets within the category. Note that the category "all" includes both the high-res multi-view and the low-res many-view scenarios.

Methods with suffix _ROB may participate in the Robust Vision Challenge.

Click a dataset result cell to show a visualization of the reconstruction. For training datasets, ground truth and accuracy / completeness visualizations are also available. The visualizations may not work with mobile browsers.




Method Infoallhigh-res
multi-view
indooroutdoorbotani.boulde.bridgedoorexhibi.lectur.living.loungeobserv.old co.statueterrac.
sort bysorted bysort bysort bysort bysort bysort bysort bysort bysort bysort bysort bysort bysort bysort bysort by
AdaColmapbinary93.82 11693.06 12196.10 11799.88 189.07 16898.33 18397.55 11586.81 21990.39 17898.65 9775.09 22799.98 1093.32 13197.53 12499.26 105
DP-MVS Recon95.85 6695.15 7897.95 3199.87 294.38 5499.60 2897.48 13186.58 22394.42 11899.13 4787.36 9599.98 1093.64 12598.33 11199.48 89
MCST-MVS98.18 297.95 898.86 599.85 396.60 999.70 1797.98 4597.18 295.96 9099.33 2392.62 25100.00 198.99 1799.93 199.98 6
CNVR-MVS98.46 198.38 198.72 899.80 496.19 1499.80 797.99 4497.05 399.41 299.59 292.89 24100.00 198.99 1799.90 799.96 10
MG-MVS97.24 1996.83 3098.47 1499.79 595.71 1799.07 9699.06 994.45 2396.42 8398.70 9588.81 6699.74 7495.35 9499.86 1299.97 7
NCCC98.12 598.11 398.13 2399.76 694.46 5099.81 597.88 5096.54 598.84 1799.46 1192.55 2699.98 1098.25 3899.93 199.94 18
testtj97.23 2197.05 2197.75 3899.75 793.34 7399.16 8097.74 6991.28 9598.40 2999.29 2489.95 5299.98 1098.20 3999.70 3999.94 18
region2R96.30 5196.17 4896.70 9199.70 890.31 14099.46 4997.66 8790.55 11197.07 6399.07 5486.85 10499.97 2395.43 9299.74 3299.81 35
ETH3 D test640097.67 1197.33 1798.69 999.69 996.43 1199.63 2597.73 7391.05 9898.66 2299.53 790.59 4199.71 7799.32 1199.80 2799.91 22
HFP-MVS96.42 4796.26 4596.90 7799.69 990.96 12799.47 4497.81 5990.54 11296.88 6699.05 5787.57 8699.96 3095.65 8599.72 3499.78 42
#test#96.48 4496.34 4396.90 7799.69 990.96 12799.53 3997.81 5990.94 10296.88 6699.05 5787.57 8699.96 3095.87 8199.72 3499.78 42
ACMMPR96.28 5296.14 5296.73 8899.68 1290.47 13899.47 4497.80 6190.54 11296.83 7499.03 5986.51 11699.95 3495.65 8599.72 3499.75 52
ZD-MVS99.67 1393.28 7497.61 10187.78 19797.41 5699.16 4190.15 5099.56 9798.35 3399.70 39
CP-MVS96.22 5396.15 5196.42 10699.67 1389.62 16299.70 1797.61 10190.07 12896.00 8799.16 4187.43 9099.92 4096.03 7999.72 3499.70 61
DVP-MVScopyleft98.07 798.00 698.29 1899.66 1595.20 2999.72 1497.47 13393.95 3099.07 1099.46 1193.18 2199.97 2399.64 699.82 1999.69 64
Zhenlong Yuan, Jinguo Luo, Fei Shen, Zhaoxin Li, Cong Liu, Tianlu Mao, Zhaoqi Wang: DVP-MVS: Synergize Depth-Edge and Visibility Prior for Multi-View Stereo. AAAI2025
test_0728_SECOND98.77 799.66 1596.37 1399.72 1497.68 8499.98 1099.64 699.82 1999.96 10
test072699.66 1595.20 2999.77 997.70 8093.95 3099.35 499.54 393.18 21
CPTT-MVS94.60 10094.43 8995.09 14899.66 1586.85 22299.44 5297.47 13383.22 27494.34 12198.96 7182.50 17699.55 9894.81 10599.50 6298.88 138
MSLP-MVS++97.50 1597.45 1397.63 4199.65 1993.21 7599.70 1798.13 3794.61 1997.78 5099.46 1189.85 5399.81 6697.97 4299.91 699.88 28
OPU-MVS99.49 499.64 2098.51 499.77 999.19 3495.12 799.97 2399.90 199.92 399.99 1
SED-MVS98.18 298.10 498.41 1799.63 2195.24 2499.77 997.72 7594.17 2599.30 599.54 393.32 1899.98 1099.70 399.81 2399.99 1
IU-MVS99.63 2195.38 2197.73 7395.54 1599.54 199.69 599.81 2399.99 1
test_241102_ONE99.63 2195.24 2497.72 7594.16 2799.30 599.49 1093.32 1899.98 10
PAPR96.35 4895.82 6097.94 3299.63 2194.19 5899.42 5797.55 11592.43 6593.82 13199.12 4887.30 9799.91 4294.02 11799.06 8599.74 55
XVS96.47 4596.37 4196.77 8499.62 2590.66 13599.43 5597.58 10992.41 6996.86 6998.96 7187.37 9299.87 5195.65 8599.43 6899.78 42
X-MVStestdata90.69 18388.66 20396.77 8499.62 2590.66 13599.43 5597.58 10992.41 6996.86 6929.59 37587.37 9299.87 5195.65 8599.43 6899.78 42
DVP-MVS++98.18 298.09 598.44 1599.61 2795.38 2199.55 3497.68 8493.01 5199.23 799.45 1695.12 799.98 1099.25 1499.92 399.97 7
MSC_two_6792asdad99.51 299.61 2798.60 297.69 8299.98 1099.55 999.83 1599.96 10
No_MVS99.51 299.61 2798.60 297.69 8299.98 1099.55 999.83 1599.96 10
DeepC-MVS_fast93.52 297.16 2496.84 2998.13 2399.61 2794.45 5198.85 11997.64 9396.51 795.88 9399.39 2187.35 9699.99 596.61 6599.69 4199.96 10
Andreas Kuhn, Christian Sormann, Mattia Rossi, Oliver Erdler, Friedrich Fraundorfer: DeepC-MVS: Deep Confidence Prediction for Multi-View Stereo Reconstruction. 3DV 2020
test_one_060199.59 3194.89 3597.64 9393.14 5098.93 1599.45 1693.45 17
CDPH-MVS96.56 4196.18 4697.70 3999.59 3193.92 6199.13 9297.44 14089.02 15697.90 4899.22 3188.90 6599.49 10894.63 11099.79 2999.68 65
test_prior397.07 2797.09 1997.01 6599.58 3391.77 10099.57 3197.57 11291.43 9098.12 3798.97 6690.43 4399.49 10898.33 3499.81 2399.79 38
test_prior97.01 6599.58 3391.77 10097.57 11299.49 10899.79 38
APDe-MVS97.53 1297.47 1197.70 3999.58 3393.63 6699.56 3397.52 12293.59 4498.01 4399.12 4890.80 3899.55 9899.26 1399.79 2999.93 21
mPP-MVS95.90 6495.75 6596.38 10899.58 3389.41 16699.26 7297.41 14490.66 10794.82 11298.95 7386.15 12399.98 1095.24 9799.64 4799.74 55
TEST999.57 3793.17 7699.38 6197.66 8789.57 14298.39 3099.18 3790.88 3599.66 84
train_agg97.20 2397.08 2097.57 4599.57 3793.17 7699.38 6197.66 8790.18 12298.39 3099.18 3790.94 3399.66 8498.58 2699.85 1399.88 28
test_899.55 3993.07 8099.37 6497.64 9390.18 12298.36 3299.19 3490.94 3399.64 90
test_part299.54 4095.42 1998.13 35
MSP-MVS97.77 998.18 296.53 10199.54 4090.14 14499.41 5897.70 8095.46 1798.60 2499.19 3495.71 499.49 10898.15 4099.85 1399.95 15
Zhenlong Yuan, Cong Liu, Fei Shen, Zhaoxin Li, Jingguo luo, Tianlu Mao and Zhaoqi Wang: MSP-MVS: Multi-granularity Segmentation Prior Guided Multi-View Stereo. AAAI2025
agg_prior197.12 2597.03 2297.38 5399.54 4092.66 8899.35 6697.64 9390.38 11697.98 4499.17 3990.84 3799.61 9398.57 2799.78 3199.87 31
agg_prior99.54 4092.66 8897.64 9397.98 4499.61 93
CSCG94.87 8894.71 8395.36 14199.54 4086.49 22799.34 6898.15 3582.71 28490.15 18199.25 2789.48 5999.86 5694.97 10398.82 9799.72 58
HPM-MVS++copyleft97.72 1097.59 1098.14 2299.53 4594.76 4399.19 7597.75 6795.66 1398.21 3399.29 2491.10 3199.99 597.68 4699.87 999.68 65
APD-MVScopyleft96.95 3096.72 3397.63 4199.51 4693.58 6799.16 8097.44 14090.08 12798.59 2599.07 5489.06 6299.42 11997.92 4399.66 4399.88 28
Yuesong Wang, Zhaojie Zeng and etc.: Adaptive Patch Deformation for Textureless-Resilient Multi-View Stereo. CVPR2023
FOURS199.50 4788.94 17399.55 3497.47 13391.32 9498.12 37
DPE-MVScopyleft98.11 698.00 698.44 1599.50 4795.39 2099.29 7197.72 7594.50 2198.64 2399.54 393.32 1899.97 2399.58 899.90 799.95 15
Kehua Chen, Zhenlong Yuan, Tianlu Mao, Zhaoqi Wang: Dual-Level Precision Edges Guided Multi-View Stereo with Accurate Planarization. AAAI2025
PGM-MVS95.85 6695.65 6996.45 10499.50 4789.77 15898.22 19198.90 1289.19 15096.74 7698.95 7385.91 12799.92 4093.94 11899.46 6499.66 69
GST-MVS95.97 6095.66 6796.90 7799.49 5091.22 11399.45 5197.48 13189.69 13695.89 9298.72 9286.37 12099.95 3494.62 11199.22 8399.52 83
MP-MVScopyleft96.00 5895.82 6096.54 10099.47 5190.13 14699.36 6597.41 14490.64 11095.49 10298.95 7385.51 13299.98 1096.00 8099.59 5899.52 83
Rongxuan Tan, Qing Wang, et al.: MP-MVS: Multi-Scale Windows PatchMatch and Planar Prior Multi-View Stereo.
Regformer-196.97 2996.80 3197.47 4799.46 5293.11 7898.89 11697.94 4692.89 5796.90 6599.02 6089.78 5499.53 10197.06 5499.26 8099.75 52
Regformer-296.94 3296.78 3297.42 4999.46 5292.97 8598.89 11697.93 4792.86 5996.88 6699.02 6089.74 5699.53 10197.03 5599.26 8099.75 52
test117295.92 6396.07 5395.46 13799.42 5487.24 21798.51 16197.24 15690.29 11996.56 8299.12 4886.73 10899.36 12597.33 5199.42 7199.78 42
ZNCC-MVS96.09 5695.81 6296.95 7599.42 5491.19 11599.55 3497.53 11989.72 13595.86 9598.94 7886.59 11299.97 2395.13 9899.56 5999.68 65
SR-MVS96.13 5596.16 5096.07 11899.42 5489.04 16998.59 15397.33 15290.44 11496.84 7299.12 4886.75 10699.41 12197.47 4899.44 6799.76 51
PAPM_NR95.43 7495.05 8096.57 9999.42 5490.14 14498.58 15597.51 12590.65 10992.44 14698.90 7987.77 8499.90 4490.88 15499.32 7599.68 65
xxxxxxxxxxxxxcwj97.51 1397.42 1497.78 3799.34 5893.85 6399.65 2395.45 28095.69 1198.70 2099.42 1990.42 4599.72 7598.47 2999.65 4499.77 48
9.1496.87 2799.34 5899.50 4197.49 13089.41 14798.59 2599.43 1889.78 5499.69 7998.69 2199.62 51
save fliter99.34 5893.85 6399.65 2397.63 9895.69 11
Regformer-396.50 4396.36 4296.91 7699.34 5891.72 10398.71 13197.90 4992.48 6496.00 8798.95 7388.60 6899.52 10496.44 7098.83 9599.49 87
Regformer-496.45 4696.33 4496.81 8399.34 5891.44 11098.71 13197.88 5092.43 6595.97 8998.95 7388.42 7299.51 10596.40 7198.83 9599.49 87
PHI-MVS96.65 3996.46 3997.21 5999.34 5891.77 10099.70 1798.05 4086.48 22698.05 4099.20 3389.33 6099.96 3098.38 3299.62 5199.90 24
test1297.83 3499.33 6494.45 5197.55 11597.56 5188.60 6899.50 10799.71 3899.55 81
SMA-MVScopyleft97.24 1996.99 2498.00 3099.30 6594.20 5799.16 8097.65 9289.55 14499.22 999.52 990.34 4999.99 598.32 3699.83 1599.82 34
Yufeng Yin; Xiaoyan Liu; Zichao Zhang: SMA-MVS: Segmentation-Guided Multi-Scale Anchor Deformation Patch Multi-View Stereo. IEEE Transactions on Circuits and Systems for Video Technology
zzz-MVS96.21 5495.96 5596.96 7399.29 6691.19 11598.69 13697.45 13692.58 6094.39 11999.24 2986.43 11899.99 596.22 7399.40 7299.71 59
MTAPA96.09 5695.80 6496.96 7399.29 6691.19 11597.23 24797.45 13692.58 6094.39 11999.24 2986.43 11899.99 596.22 7399.40 7299.71 59
HPM-MVScopyleft95.41 7695.22 7695.99 12199.29 6689.14 16799.17 7997.09 17687.28 21095.40 10398.48 11084.93 14199.38 12395.64 8999.65 4499.47 90
Chunlin Ren, Qingshan Xu, Shikun Zhang, Jiaqi Yang: Hierarchical Prior Mining for Non-local Multi-View Stereo. ICCV 2023
ACMMPcopyleft94.67 9794.30 9095.79 12899.25 6988.13 19198.41 17398.67 2090.38 11691.43 15898.72 9282.22 18399.95 3493.83 12295.76 15499.29 101
Qingshan Xu, Weihang Kong, Wenbing Tao, Marc Pollefeys: Multi-Scale Geometric Consistency Guided and Planar Prior Assisted Multi-View Stereo. IEEE Transactions on Pattern Analysis and Machine Intelligence
APD-MVS_3200maxsize95.64 7395.65 6995.62 13299.24 7087.80 19798.42 17197.22 15988.93 16196.64 8198.98 6585.49 13399.36 12596.68 6299.27 7999.70 61
SR-MVS-dyc-post95.75 7295.86 5995.41 14099.22 7187.26 21598.40 17697.21 16089.63 13896.67 7998.97 6686.73 10899.36 12596.62 6399.31 7699.60 77
RE-MVS-def95.70 6699.22 7187.26 21598.40 17697.21 16089.63 13896.67 7998.97 6685.24 13896.62 6399.31 7699.60 77
API-MVS94.78 9194.18 9696.59 9699.21 7390.06 15198.80 12497.78 6483.59 26993.85 12999.21 3283.79 15299.97 2392.37 14199.00 8899.74 55
ETH3D-3000-0.197.29 1797.01 2398.12 2599.18 7494.97 3399.47 4497.52 12289.85 13198.79 1999.46 1190.41 4799.69 7998.78 1999.67 4299.70 61
PLCcopyleft91.07 394.23 10794.01 10094.87 15699.17 7587.49 20499.25 7396.55 20288.43 17891.26 16298.21 12485.92 12599.86 5689.77 16897.57 12197.24 202
Jie Liao, Yanping Fu, Qingan Yan, Chunxia xiao: Pyramid Multi-View Stereo with Local Consistency. Pacific Graphics 2019
EI-MVSNet-Vis-set95.76 7195.63 7196.17 11599.14 7690.33 13998.49 16597.82 5691.92 7894.75 11398.88 8187.06 10099.48 11395.40 9397.17 13298.70 155
TSAR-MVS + MP.97.44 1697.46 1297.39 5299.12 7793.49 7198.52 15897.50 12894.46 2298.99 1298.64 9891.58 2899.08 14398.49 2899.83 1599.60 77
Zhenlong Yuan, Jiakai Cao, Zhaoqi Wang, Zhaoxin Li: TSAR-MVS: Textureless-aware Segmentation and Correlative Refinement Guided Multi-View Stereo. Pattern Recognition
SF-MVS97.22 2296.92 2598.12 2599.11 7894.88 3699.44 5297.45 13689.60 14098.70 2099.42 1990.42 4599.72 7598.47 2999.65 4499.77 48
HPM-MVS_fast94.89 8794.62 8495.70 13199.11 7888.44 18699.14 8997.11 17285.82 23395.69 9998.47 11183.46 15799.32 13193.16 13399.63 5099.35 95
MAR-MVS94.43 10394.09 9895.45 13899.10 8087.47 20598.39 17997.79 6388.37 18094.02 12699.17 3978.64 21399.91 4292.48 14098.85 9498.96 129
Zhenyu Xu, Yiguang Liu, Xuelei Shi, Ying Wang, Yunan Zheng: MARMVS: Matching Ambiguity Reduced Multiple View Stereo for Efficient Large Scale Scene Reconstruction. CVPR 2020
114514_t94.06 10893.05 12297.06 6399.08 8192.26 9798.97 10897.01 18382.58 28692.57 14498.22 12280.68 19799.30 13289.34 17599.02 8799.63 73
EI-MVSNet-UG-set95.43 7495.29 7395.86 12699.07 8289.87 15598.43 17097.80 6191.78 8194.11 12498.77 8686.25 12299.48 11394.95 10496.45 13998.22 179
原ACMM196.18 11399.03 8390.08 14797.63 9888.98 15797.00 6498.97 6688.14 7899.71 7788.23 18799.62 5198.76 152
SD-MVS97.51 1397.40 1597.81 3599.01 8493.79 6599.33 6997.38 14793.73 4198.83 1899.02 6090.87 3699.88 4898.69 2199.74 3299.77 48
Zhenlong Yuan, Jiakai Cao, Zhaoxin Li, Hao Jiang and Zhaoqi Wang: SD-MVS: Segmentation-driven Deformation Multi-View Stereo with Spherical Refinement and EM optimization. AAAI2024
旧先验198.97 8592.90 8797.74 6999.15 4391.05 3299.33 7499.60 77
LS3D90.19 19188.72 20194.59 16898.97 8586.33 23496.90 25996.60 19674.96 33584.06 23298.74 8975.78 22499.83 6174.93 30397.57 12197.62 194
CNLPA93.64 12392.74 12896.36 10998.96 8790.01 15499.19 7595.89 25286.22 22989.40 18998.85 8280.66 19899.84 5988.57 18396.92 13499.24 107
MP-MVS-pluss95.80 6895.30 7297.29 5598.95 8892.66 8898.59 15397.14 16888.95 15993.12 13899.25 2785.62 12999.94 3796.56 6799.48 6399.28 103
MP-MVS-pluss: MP-MVS-pluss. MP-MVS-pluss
新几何197.40 5198.92 8992.51 9597.77 6685.52 23696.69 7899.06 5688.08 7999.89 4784.88 22299.62 5199.79 38
DP-MVS88.75 21986.56 23595.34 14298.92 8987.45 20697.64 23293.52 33270.55 34681.49 27197.25 15674.43 23599.88 4871.14 32494.09 16798.67 156
112195.19 8294.45 8897.42 4998.88 9192.58 9396.22 28497.75 6785.50 23896.86 6999.01 6488.59 7099.90 4487.64 19499.60 5699.79 38
TSAR-MVS + GP.96.95 3096.91 2697.07 6298.88 9191.62 10599.58 3096.54 20495.09 1896.84 7298.63 10091.16 2999.77 7199.04 1696.42 14099.81 35
CANet97.00 2896.49 3898.55 1198.86 9396.10 1599.83 497.52 12295.90 997.21 6098.90 7982.66 17599.93 3998.71 2098.80 9899.63 73
ACMMP_NAP96.59 4096.18 4697.81 3598.82 9493.55 6898.88 11897.59 10790.66 10797.98 4499.14 4586.59 112100.00 196.47 6999.46 6499.89 27
PVSNet_BlendedMVS93.36 13093.20 11993.84 19398.77 9591.61 10699.47 4498.04 4191.44 8994.21 12292.63 25783.50 15599.87 5197.41 4983.37 25190.05 317
PVSNet_Blended95.94 6295.66 6796.75 8698.77 9591.61 10699.88 198.04 4193.64 4394.21 12297.76 13383.50 15599.87 5197.41 4997.75 12098.79 148
DeepPCF-MVS93.56 196.55 4297.84 992.68 21798.71 9778.11 33199.70 1797.71 7998.18 197.36 5899.76 190.37 4899.94 3799.27 1299.54 6199.99 1
EPNet96.82 3596.68 3597.25 5898.65 9893.10 7999.48 4298.76 1396.54 597.84 4998.22 12287.49 8999.66 8495.35 9497.78 11999.00 125
Wanjuan Su, Wenbing Tao: Efficient Edge-Preserving Multi-View Stereo Network for Depth Estimation. AAAI 2023
OMC-MVS93.90 11493.62 11294.73 16398.63 9987.00 21998.04 21096.56 20192.19 7392.46 14598.73 9079.49 20599.14 14092.16 14394.34 16698.03 184
ETH3D cwj APD-0.1696.94 3296.58 3798.01 2998.62 10094.73 4599.13 9297.38 14788.44 17798.53 2799.39 2189.66 5899.69 7998.43 3199.61 5599.61 76
abl_694.63 9994.48 8795.09 14898.61 10186.96 22098.06 20996.97 18589.31 14895.86 9598.56 10379.82 20099.64 9094.53 11398.65 10498.66 159
MVS_111021_HR96.69 3796.69 3496.72 9098.58 10291.00 12699.14 8999.45 193.86 3695.15 10898.73 9088.48 7199.76 7297.23 5399.56 5999.40 93
test_yl95.27 7994.60 8597.28 5698.53 10392.98 8399.05 9998.70 1786.76 22094.65 11697.74 13587.78 8299.44 11695.57 9092.61 18199.44 91
DCV-MVSNet95.27 7994.60 8597.28 5698.53 10392.98 8399.05 9998.70 1786.76 22094.65 11697.74 13587.78 8299.44 11695.57 9092.61 18199.44 91
TAPA-MVS87.50 990.35 18689.05 19494.25 17998.48 10585.17 26298.42 17196.58 20082.44 29087.24 20698.53 10482.77 17198.84 14859.09 35697.88 11598.72 153
Andrea Romanoni, Matteo Matteucci: TAPA-MVS: Textureless-Aware PAtchMatch Multi-View Stereo. ICCV 2019
test22298.32 10691.21 11498.08 20797.58 10983.74 26595.87 9499.02 6086.74 10799.64 4799.81 35
DPM-MVS97.86 897.25 1899.68 198.25 10799.10 199.76 1297.78 6496.61 498.15 3499.53 793.62 16100.00 191.79 14599.80 2799.94 18
LFMVS92.23 15590.84 16896.42 10698.24 10891.08 12398.24 19096.22 22483.39 27294.74 11498.31 11761.12 31998.85 14794.45 11492.82 17799.32 98
testdata95.26 14598.20 10987.28 21297.60 10385.21 24198.48 2899.15 4388.15 7798.72 15590.29 16199.45 6699.78 42
PatchMatch-RL91.47 16790.54 17594.26 17898.20 10986.36 23396.94 25797.14 16887.75 19988.98 19295.75 20171.80 26199.40 12280.92 26397.39 12797.02 210
MVS_111021_LR95.78 6995.94 5695.28 14498.19 11187.69 19898.80 12499.26 793.39 4695.04 11098.69 9684.09 15099.76 7296.96 6099.06 8598.38 170
F-COLMAP92.07 15891.75 15193.02 20798.16 11282.89 29198.79 12895.97 23686.54 22587.92 19997.80 13178.69 21299.65 8885.97 20995.93 15296.53 218
Anonymous20240521188.84 21387.03 22894.27 17798.14 11384.18 27598.44 16995.58 27376.79 33089.34 19096.88 17653.42 34399.54 10087.53 19687.12 22499.09 120
VNet95.08 8594.26 9197.55 4698.07 11493.88 6298.68 13898.73 1690.33 11897.16 6297.43 14979.19 20799.53 10196.91 6191.85 19599.24 107
DELS-MVS97.12 2596.60 3698.68 1098.03 11596.57 1099.84 397.84 5496.36 895.20 10798.24 12188.17 7699.83 6196.11 7799.60 5699.64 71
Christian Sormann, Emanuele Santellani, Mattia Rossi, Andreas Kuhn, Friedrich Fraundorfer: DELS-MVS: Deep Epipolar Line Search for Multi-View Stereo. Winter Conference on Applications of Computer Vision (WACV), 2023
PVSNet87.13 1293.69 11992.83 12796.28 11197.99 11690.22 14399.38 6198.93 1191.42 9293.66 13297.68 13871.29 26699.64 9087.94 19197.20 12998.98 127
cl2289.57 20288.79 20091.91 22997.94 11787.62 20197.98 21396.51 20585.03 24682.37 25391.79 26783.65 15396.50 25585.96 21077.89 27891.61 269
CHOSEN 280x42096.80 3696.85 2896.66 9497.85 11894.42 5394.76 30798.36 2492.50 6395.62 10197.52 14597.92 197.38 22398.31 3798.80 9898.20 181
thres20093.69 11992.59 13296.97 7297.76 11994.74 4499.35 6699.36 289.23 14991.21 16496.97 17183.42 15898.77 15085.08 21890.96 20697.39 198
HY-MVS88.56 795.29 7894.23 9298.48 1397.72 12096.41 1294.03 31598.74 1492.42 6895.65 10094.76 21586.52 11599.49 10895.29 9692.97 17699.53 82
Anonymous2023121184.72 27682.65 28790.91 24997.71 12184.55 27197.28 24396.67 19366.88 35779.18 29790.87 28558.47 32496.60 24982.61 25074.20 30591.59 271
tfpn200view993.43 12792.27 13796.90 7797.68 12294.84 3999.18 7799.36 288.45 17490.79 16896.90 17483.31 15998.75 15284.11 23390.69 20897.12 204
thres40093.39 12992.27 13796.73 8897.68 12294.84 3999.18 7799.36 288.45 17490.79 16896.90 17483.31 15998.75 15284.11 23390.69 20896.61 213
thres100view90093.34 13192.15 14196.90 7797.62 12494.84 3999.06 9899.36 287.96 19290.47 17696.78 17983.29 16198.75 15284.11 23390.69 20897.12 204
thres600view793.18 13692.00 14496.75 8697.62 12494.92 3499.07 9699.36 287.96 19290.47 17696.78 17983.29 16198.71 15682.93 24790.47 21296.61 213
WTY-MVS95.97 6095.11 7998.54 1297.62 12496.65 899.44 5298.74 1492.25 7295.21 10698.46 11386.56 11499.46 11595.00 10292.69 18099.50 86
Anonymous2024052987.66 23685.58 24993.92 19097.59 12785.01 26598.13 19897.13 17066.69 35888.47 19696.01 19955.09 33799.51 10587.00 19984.12 24397.23 203
HyFIR lowres test93.68 12193.29 11794.87 15697.57 12888.04 19398.18 19598.47 2287.57 20591.24 16395.05 21185.49 13397.46 21893.22 13292.82 17799.10 119
test_part188.43 22386.68 23393.67 19897.56 12992.40 9698.12 20096.55 20282.26 29280.31 28193.16 24874.59 23396.62 24885.00 22172.61 32091.99 258
canonicalmvs95.02 8693.96 10498.20 2097.53 13095.92 1698.71 13196.19 22791.78 8195.86 9598.49 10979.53 20499.03 14496.12 7691.42 20399.66 69
CHOSEN 1792x268894.35 10593.82 10995.95 12497.40 13188.74 18098.41 17398.27 2692.18 7491.43 15896.40 18978.88 20899.81 6693.59 12697.81 11699.30 100
SteuartSystems-ACMMP97.25 1897.34 1697.01 6597.38 13291.46 10999.75 1397.66 8794.14 2998.13 3599.26 2692.16 2799.66 8497.91 4499.64 4799.90 24
Skip Steuart: Steuart Systems R&D Blog.
alignmvs95.77 7095.00 8198.06 2897.35 13395.68 1899.71 1697.50 12891.50 8796.16 8698.61 10186.28 12199.00 14596.19 7591.74 19799.51 85
PS-MVSNAJ96.87 3496.40 4098.29 1897.35 13397.29 599.03 10197.11 17295.83 1098.97 1399.14 4582.48 17899.60 9598.60 2399.08 8498.00 185
EPNet_dtu92.28 15392.15 14192.70 21697.29 13584.84 26798.64 14497.82 5692.91 5693.02 14197.02 16985.48 13595.70 30172.25 32194.89 16197.55 196
Wanjuan Su, Wenbing Tao: Efficient Edge-Preserving Multi-View Stereo Network for Depth Estimation. AAAI 2023
MVSTER92.71 14292.32 13593.86 19297.29 13592.95 8699.01 10496.59 19790.09 12685.51 22094.00 22594.61 1496.56 25190.77 15783.03 25392.08 254
EPMVS92.59 14791.59 15395.59 13597.22 13790.03 15291.78 33398.04 4190.42 11591.66 15390.65 29386.49 11797.46 21881.78 25896.31 14399.28 103
tpmvs89.16 20587.76 21593.35 20197.19 13884.75 26990.58 34397.36 15081.99 29584.56 22689.31 32183.98 15198.17 17074.85 30590.00 21497.12 204
DeepC-MVS91.02 494.56 10293.92 10796.46 10397.16 13990.76 13198.39 17997.11 17293.92 3288.66 19498.33 11678.14 21599.85 5895.02 10198.57 10698.78 150
Andreas Kuhn, Christian Sormann, Mattia Rossi, Oliver Erdler, Friedrich Fraundorfer: DeepC-MVS: Deep Confidence Prediction for Multi-View Stereo Reconstruction. 3DV 2020
PVSNet_Blended_VisFu94.67 9794.11 9796.34 11097.14 14091.10 12199.32 7097.43 14292.10 7791.53 15796.38 19283.29 16199.68 8293.42 13096.37 14198.25 177
h-mvs3392.47 15091.95 14694.05 18697.13 14185.01 26598.36 18198.08 3893.85 3796.27 8496.73 18183.19 16499.43 11895.81 8268.09 33897.70 190
miper_enhance_ethall90.33 18789.70 18292.22 22297.12 14288.93 17498.35 18295.96 23888.60 16883.14 24292.33 25987.38 9196.18 27986.49 20577.89 27891.55 272
xiu_mvs_v2_base96.66 3896.17 4898.11 2797.11 14396.96 699.01 10497.04 17995.51 1698.86 1699.11 5382.19 18499.36 12598.59 2598.14 11398.00 185
VDD-MVS91.24 17390.18 17994.45 17297.08 14485.84 25098.40 17696.10 23286.99 21293.36 13598.16 12554.27 34099.20 13496.59 6690.63 21198.31 176
UGNet91.91 16190.85 16795.10 14797.06 14588.69 18198.01 21198.24 2892.41 6992.39 14793.61 23660.52 32099.68 8288.14 18897.25 12896.92 211
Wanjuan Su, Qingshan Xu, Wenbing Tao: Uncertainty-guided Multi-view Stereo Network for Depth Estimation. IEEE Transactions on Circuits and Systems for Video Technology, 2022
baseline192.61 14691.28 15896.58 9797.05 14694.63 4897.72 22896.20 22589.82 13288.56 19596.85 17786.85 10497.82 19288.42 18480.10 26897.30 200
CANet_DTU94.31 10693.35 11597.20 6097.03 14794.71 4698.62 14795.54 27595.61 1497.21 6098.47 11171.88 25999.84 5988.38 18597.46 12697.04 209
DWT-MVSNet_test94.36 10493.95 10595.62 13296.99 14889.47 16496.62 27197.38 14790.96 10193.07 14097.27 15493.73 1598.09 17585.86 21493.65 17199.29 101
MSDG88.29 22686.37 23794.04 18796.90 14986.15 24096.52 27394.36 31877.89 32679.22 29696.95 17269.72 27299.59 9673.20 31792.58 18396.37 221
BH-w/o92.32 15191.79 14993.91 19196.85 15086.18 23899.11 9495.74 26288.13 18784.81 22497.00 17077.26 22097.91 18589.16 18098.03 11497.64 191
AllTest84.97 27483.12 27890.52 25996.82 15178.84 32495.89 29292.17 34477.96 32475.94 31595.50 20455.48 33399.18 13571.15 32287.14 22293.55 233
TestCases90.52 25996.82 15178.84 32492.17 34477.96 32475.94 31595.50 20455.48 33399.18 13571.15 32287.14 22293.55 233
PMMVS93.62 12493.90 10892.79 21296.79 15381.40 30598.85 11996.81 18991.25 9696.82 7598.15 12677.02 22198.13 17293.15 13496.30 14498.83 144
BH-RMVSNet91.25 17289.99 18095.03 15296.75 15488.55 18398.65 14294.95 30087.74 20087.74 20097.80 13168.27 28198.14 17180.53 26797.49 12598.41 167
MVS_Test93.67 12292.67 13096.69 9296.72 15592.66 8897.22 24896.03 23487.69 20395.12 10994.03 22381.55 19098.28 16889.17 17996.46 13899.14 114
COLMAP_ROBcopyleft82.69 1884.54 28082.82 28089.70 28096.72 15578.85 32395.89 29292.83 33871.55 34477.54 31095.89 20059.40 32399.14 14067.26 33688.26 21891.11 289
Johannes L. Schönberger, Enliang Zheng, Marc Pollefeys, Jan-Michael Frahm: Pixelwise View Selection for Unstructured Multi-View Stereo. ECCV 2016
RRT_MVS91.95 16091.09 16194.53 16996.71 15795.12 3198.64 14496.23 22389.04 15585.24 22295.06 21087.71 8596.43 26189.10 18182.06 26092.05 256
mvs_anonymous92.50 14991.65 15295.06 15096.60 15889.64 16197.06 25396.44 21086.64 22284.14 23093.93 22782.49 17796.17 28091.47 14696.08 14999.35 95
ETV-MVS96.00 5896.00 5496.00 12096.56 15991.05 12499.63 2596.61 19593.26 4997.39 5798.30 11886.62 11198.13 17298.07 4197.57 12198.82 145
GG-mvs-BLEND96.98 7196.53 16094.81 4287.20 34697.74 6993.91 12896.40 18996.56 296.94 23795.08 9998.95 9299.20 111
FMVSNet388.81 21787.08 22793.99 18996.52 16194.59 4998.08 20796.20 22585.85 23282.12 25791.60 27174.05 24195.40 30979.04 27480.24 26591.99 258
BH-untuned91.46 16890.84 16893.33 20296.51 16284.83 26898.84 12195.50 27786.44 22883.50 23596.70 18275.49 22697.77 19686.78 20497.81 11697.40 197
sss94.85 8993.94 10697.58 4396.43 16394.09 6098.93 11199.16 889.50 14595.27 10597.85 12881.50 19199.65 8892.79 13994.02 16898.99 126
test250694.80 9094.21 9396.58 9796.41 16492.18 9898.01 21198.96 1090.82 10593.46 13497.28 15285.92 12598.45 16189.82 16697.19 13099.12 117
ECVR-MVScopyleft92.29 15291.33 15795.15 14696.41 16487.84 19698.10 20494.84 30390.82 10591.42 16097.28 15265.61 30198.49 16090.33 16097.19 13099.12 117
ET-MVSNet_ETH3D92.56 14891.45 15695.88 12596.39 16694.13 5999.46 4996.97 18592.18 7466.94 35198.29 12094.65 1394.28 32994.34 11583.82 24799.24 107
dp90.16 19388.83 19994.14 18296.38 16786.42 22991.57 33497.06 17884.76 25288.81 19390.19 31184.29 14897.43 22175.05 30291.35 20598.56 161
EIA-MVS95.11 8395.27 7494.64 16696.34 16886.51 22699.59 2996.62 19492.51 6294.08 12598.64 9886.05 12498.24 16995.07 10098.50 10899.18 112
TR-MVS90.77 18089.44 18794.76 16096.31 16988.02 19497.92 21595.96 23885.52 23688.22 19897.23 15866.80 29398.09 17584.58 22692.38 18598.17 182
UA-Net93.30 13292.62 13195.34 14296.27 17088.53 18595.88 29496.97 18590.90 10395.37 10497.07 16782.38 18199.10 14283.91 23794.86 16298.38 170
tpmrst92.78 14192.16 14094.65 16596.27 17087.45 20691.83 33297.10 17589.10 15494.68 11590.69 29088.22 7597.73 20389.78 16791.80 19698.77 151
hse-mvs291.67 16491.51 15592.15 22696.22 17282.61 29797.74 22797.53 11993.85 3796.27 8496.15 19483.19 16497.44 22095.81 8266.86 34396.40 220
AUN-MVS90.17 19289.50 18592.19 22496.21 17382.67 29597.76 22697.53 11988.05 18991.67 15296.15 19483.10 16697.47 21788.11 18966.91 34296.43 219
ADS-MVSNet287.62 23786.88 23089.86 27596.21 17379.14 32287.15 34792.99 33583.01 27789.91 18487.27 33378.87 20992.80 34174.20 30992.27 18897.64 191
ADS-MVSNet88.99 20887.30 22394.07 18496.21 17387.56 20387.15 34796.78 19183.01 27789.91 18487.27 33378.87 20997.01 23474.20 30992.27 18897.64 191
RRT_test8_iter0591.04 17690.40 17892.95 20996.20 17689.75 15998.97 10896.38 21288.52 17082.00 26293.51 24090.69 3996.73 24590.43 15976.91 28692.38 242
PatchmatchNetpermissive92.05 15991.04 16395.06 15096.17 17789.04 16991.26 33797.26 15389.56 14390.64 17290.56 29988.35 7497.11 22979.53 27096.07 15099.03 124
Fangjinhua Wang, Silvano Galliani, Christoph Vogel, Pablo Speciale, Marc Pollefeys: PatchmatchNet: Learned Multi-View Patchmatch Stereo.
test111192.12 15691.19 16094.94 15596.15 17887.36 20998.12 20094.84 30390.85 10490.97 16697.26 15565.60 30298.37 16389.74 16997.14 13399.07 123
gg-mvs-nofinetune90.00 19687.71 21796.89 8296.15 17894.69 4785.15 35297.74 6968.32 35492.97 14260.16 36496.10 396.84 23993.89 11998.87 9399.14 114
MDTV_nov1_ep1390.47 17796.14 18088.55 18391.34 33697.51 12589.58 14192.24 14890.50 30386.99 10397.61 20977.64 28492.34 186
IS-MVSNet93.00 13992.51 13394.49 17096.14 18087.36 20998.31 18695.70 26488.58 16990.17 18097.50 14683.02 16797.22 22687.06 19796.07 15098.90 137
Vis-MVSNet (Re-imp)93.26 13593.00 12594.06 18596.14 18086.71 22598.68 13896.70 19288.30 18289.71 18897.64 14185.43 13696.39 26388.06 19096.32 14299.08 121
thisisatest051594.75 9294.19 9496.43 10596.13 18392.64 9299.47 4497.60 10387.55 20693.17 13797.59 14394.71 1198.42 16288.28 18693.20 17398.24 178
ab-mvs91.05 17589.17 19296.69 9295.96 18491.72 10392.62 32897.23 15885.61 23589.74 18693.89 22968.55 27899.42 11991.09 15087.84 22098.92 136
Fast-Effi-MVS+91.72 16390.79 17194.49 17095.89 18587.40 20899.54 3895.70 26485.01 24889.28 19195.68 20277.75 21797.57 21383.22 24295.06 16098.51 163
EPP-MVSNet93.75 11893.67 11194.01 18895.86 18685.70 25298.67 14097.66 8784.46 25591.36 16197.18 16291.16 2997.79 19492.93 13693.75 16998.53 162
Effi-MVS+93.87 11593.15 12096.02 11995.79 18790.76 13196.70 26995.78 25986.98 21495.71 9897.17 16379.58 20298.01 18394.57 11296.09 14899.31 99
tpm cat188.89 21187.27 22493.76 19595.79 18785.32 25990.76 34197.09 17676.14 33285.72 21888.59 32482.92 16898.04 18176.96 28891.43 20297.90 188
thisisatest053094.00 11093.52 11395.43 13995.76 18990.02 15398.99 10697.60 10386.58 22391.74 15197.36 15194.78 1098.34 16486.37 20692.48 18497.94 187
3Dnovator+87.72 893.43 12791.84 14898.17 2195.73 19095.08 3298.92 11397.04 17991.42 9281.48 27297.60 14274.60 23199.79 6990.84 15598.97 8999.64 71
MVS93.92 11292.28 13698.83 695.69 19196.82 796.22 28498.17 3284.89 25084.34 22998.61 10179.32 20699.83 6193.88 12099.43 6899.86 32
cascas90.93 17889.33 19095.76 12995.69 19193.03 8298.99 10696.59 19780.49 31086.79 21494.45 21865.23 30498.60 15993.52 12792.18 19095.66 226
CS-MVS-test95.20 8195.27 7494.98 15495.67 19388.17 18899.62 2795.84 25791.52 8697.42 5598.30 11885.07 13997.51 21595.81 8298.20 11299.26 105
QAPM91.41 16989.49 18697.17 6195.66 19493.42 7298.60 15197.51 12580.92 30881.39 27397.41 15072.89 25199.87 5182.33 25298.68 10298.21 180
CS-MVS95.86 6595.81 6295.98 12295.62 19591.26 11299.80 796.12 23192.15 7697.93 4798.45 11485.88 12897.55 21497.56 4798.80 9899.14 114
tttt051793.30 13293.01 12494.17 18195.57 19686.47 22898.51 16197.60 10385.99 23190.55 17397.19 16194.80 998.31 16585.06 21991.86 19497.74 189
1112_ss92.71 14291.55 15496.20 11295.56 19791.12 11998.48 16694.69 30988.29 18386.89 21198.50 10787.02 10198.66 15784.75 22389.77 21598.81 146
diffmvs94.59 10194.19 9495.81 12795.54 19890.69 13398.70 13595.68 26691.61 8395.96 9097.81 13080.11 19998.06 17996.52 6895.76 15498.67 156
LCM-MVSNet-Re88.59 22188.61 20488.51 30295.53 19972.68 34996.85 26188.43 36588.45 17473.14 33190.63 29475.82 22394.38 32892.95 13595.71 15698.48 165
Test_1112_low_res92.27 15490.97 16496.18 11395.53 19991.10 12198.47 16894.66 31088.28 18486.83 21393.50 24187.00 10298.65 15884.69 22489.74 21698.80 147
PCF-MVS89.78 591.26 17089.63 18396.16 11695.44 20191.58 10895.29 30396.10 23285.07 24582.75 24497.45 14878.28 21499.78 7080.60 26695.65 15797.12 204
Andreas Kuhn, Shan Lin, Oliver Erdler: Plane Completion and Filtering for Multi-View Stereo Reconstruction. GCPR 2019
DROMVSNet95.09 8495.17 7794.84 15895.42 20288.17 18899.48 4295.92 24491.47 8897.34 5998.36 11582.77 17197.41 22297.24 5298.58 10598.94 134
3Dnovator87.35 1193.17 13791.77 15097.37 5495.41 20393.07 8098.82 12297.85 5391.53 8582.56 24897.58 14471.97 25899.82 6491.01 15299.23 8299.22 110
IB-MVS89.43 692.12 15690.83 17095.98 12295.40 20490.78 13099.81 598.06 3991.23 9785.63 21993.66 23590.63 4098.78 14991.22 14971.85 32898.36 173
Christian Sormann, Mattia Rossi, Andreas Kuhn and Friedrich Fraundorfer: IB-MVS: An Iterative Algorithm for Deep Multi-View Stereo based on Binary Decisions. BMVC 2021
miper_ehance_all_eth88.94 21088.12 21391.40 23995.32 20586.93 22197.85 22095.55 27484.19 25881.97 26391.50 27384.16 14995.91 29384.69 22477.89 27891.36 280
131493.44 12691.98 14597.84 3395.24 20694.38 5496.22 28497.92 4890.18 12282.28 25497.71 13777.63 21899.80 6891.94 14498.67 10399.34 97
XVG-OURS90.83 17990.49 17691.86 23095.23 20781.25 30995.79 29995.92 24488.96 15890.02 18398.03 12771.60 26399.35 12991.06 15187.78 22194.98 227
TESTMET0.1,193.82 11693.26 11895.49 13695.21 20890.25 14199.15 8697.54 11889.18 15191.79 15094.87 21389.13 6197.63 20786.21 20796.29 14598.60 160
xiu_mvs_v1_base_debu94.73 9393.98 10196.99 6895.19 20995.24 2498.62 14796.50 20692.99 5397.52 5298.83 8372.37 25499.15 13797.03 5596.74 13596.58 215
xiu_mvs_v1_base94.73 9393.98 10196.99 6895.19 20995.24 2498.62 14796.50 20692.99 5397.52 5298.83 8372.37 25499.15 13797.03 5596.74 13596.58 215
xiu_mvs_v1_base_debi94.73 9393.98 10196.99 6895.19 20995.24 2498.62 14796.50 20692.99 5397.52 5298.83 8372.37 25499.15 13797.03 5596.74 13596.58 215
XVG-OURS-SEG-HR90.95 17790.66 17491.83 23195.18 21281.14 31295.92 29195.92 24488.40 17990.33 17997.85 12870.66 26999.38 12392.83 13888.83 21794.98 227
Effi-MVS+-dtu89.97 19790.68 17387.81 30795.15 21371.98 35197.87 21995.40 28491.92 7887.57 20191.44 27474.27 23896.84 23989.45 17193.10 17594.60 229
mvs-test191.57 16592.20 13989.70 28095.15 21374.34 34199.51 4095.40 28491.92 7891.02 16597.25 15674.27 23898.08 17889.45 17195.83 15396.67 212
Vis-MVSNetpermissive92.64 14491.85 14795.03 15295.12 21588.23 18798.48 16696.81 18991.61 8392.16 14997.22 15971.58 26498.00 18485.85 21597.81 11698.88 138
Jingyang Zhang, Yao Yao, Shiwei Li, Zixin Luo, Tian Fang: Visibility-aware Multiview Stereo Network. BMVC 2020
GBi-Net86.67 24984.96 25691.80 23395.11 21688.81 17796.77 26395.25 29182.94 27982.12 25790.25 30662.89 31194.97 31679.04 27480.24 26591.62 266
test186.67 24984.96 25691.80 23395.11 21688.81 17796.77 26395.25 29182.94 27982.12 25790.25 30662.89 31194.97 31679.04 27480.24 26591.62 266
FMVSNet286.90 24484.79 26293.24 20395.11 21692.54 9497.67 23195.86 25682.94 27980.55 27891.17 28062.89 31195.29 31177.23 28579.71 27191.90 260
GeoE90.60 18589.56 18493.72 19795.10 21985.43 25699.41 5894.94 30183.96 26387.21 20796.83 17874.37 23697.05 23380.50 26893.73 17098.67 156
baseline93.91 11393.30 11695.72 13095.10 21990.07 14897.48 23695.91 24991.03 9993.54 13397.68 13879.58 20298.02 18294.27 11695.14 15999.08 121
casdiffmvs93.98 11193.43 11495.61 13495.07 22189.86 15698.80 12495.84 25790.98 10092.74 14397.66 14079.71 20198.10 17494.72 10895.37 15898.87 140
MVSFormer94.71 9694.08 9996.61 9595.05 22294.87 3797.77 22496.17 22886.84 21798.04 4198.52 10585.52 13095.99 28689.83 16498.97 8998.96 129
lupinMVS96.32 5095.94 5697.44 4895.05 22294.87 3799.86 296.50 20693.82 3998.04 4198.77 8685.52 13098.09 17596.98 5998.97 8999.37 94
CostFormer92.89 14092.48 13494.12 18394.99 22485.89 24792.89 32497.00 18486.98 21495.00 11190.78 28690.05 5197.51 21592.92 13791.73 19898.96 129
c3_l88.19 22887.23 22591.06 24594.97 22586.17 23997.72 22895.38 28683.43 27181.68 27091.37 27582.81 17095.72 30084.04 23673.70 30991.29 284
SCA90.64 18489.25 19194.83 15994.95 22688.83 17696.26 28197.21 16090.06 12990.03 18290.62 29566.61 29496.81 24183.16 24394.36 16598.84 141
test-LLR93.11 13892.68 12994.40 17394.94 22787.27 21399.15 8697.25 15490.21 12091.57 15494.04 22184.89 14297.58 21085.94 21196.13 14698.36 173
test-mter93.27 13492.89 12694.40 17394.94 22787.27 21399.15 8697.25 15488.95 15991.57 15494.04 22188.03 8097.58 21085.94 21196.13 14698.36 173
cl____87.82 23086.79 23290.89 25194.88 22985.43 25697.81 22195.24 29482.91 28380.71 27791.22 27881.97 18795.84 29681.34 26075.06 29391.40 279
DIV-MVS_self_test87.82 23086.81 23190.87 25294.87 23085.39 25897.81 22195.22 29882.92 28280.76 27691.31 27781.99 18595.81 29881.36 25975.04 29491.42 278
tpm291.77 16291.09 16193.82 19494.83 23185.56 25592.51 32997.16 16784.00 26193.83 13090.66 29287.54 8897.17 22787.73 19391.55 20198.72 153
PVSNet_083.28 1687.31 24085.16 25493.74 19694.78 23284.59 27098.91 11498.69 1989.81 13378.59 30393.23 24561.95 31599.34 13094.75 10655.72 36097.30 200
CDS-MVSNet93.47 12593.04 12394.76 16094.75 23389.45 16598.82 12297.03 18187.91 19490.97 16696.48 18789.06 6296.36 26589.50 17092.81 17998.49 164
Khang Truong Giang, Soohwan Song, Sungho Jo: Curvature-guided dynamic scale networks for Multi-view Stereo. ICLR 2022
gm-plane-assit94.69 23488.14 19088.22 18597.20 16098.29 16790.79 156
eth_miper_zixun_eth87.76 23287.00 22990.06 27094.67 23582.65 29697.02 25695.37 28784.19 25881.86 26891.58 27281.47 19295.90 29483.24 24173.61 31091.61 269
RPSCF85.33 27185.55 25084.67 32794.63 23662.28 36393.73 31793.76 32674.38 33885.23 22397.06 16864.09 30798.31 16580.98 26186.08 23193.41 235
miper_lstm_enhance86.90 24486.20 24089.00 29694.53 23781.19 31096.74 26795.24 29482.33 29180.15 28490.51 30281.99 18594.68 32580.71 26573.58 31191.12 288
Patchmatch-test86.25 25784.06 27292.82 21194.42 23882.88 29282.88 36194.23 32071.58 34379.39 29490.62 29589.00 6496.42 26263.03 34891.37 20499.16 113
VDDNet90.08 19588.54 20894.69 16494.41 23987.68 19998.21 19396.40 21176.21 33193.33 13697.75 13454.93 33898.77 15094.71 10990.96 20697.61 195
KD-MVS_2432*160082.98 29380.52 30190.38 26394.32 24088.98 17192.87 32595.87 25480.46 31173.79 32787.49 33082.76 17393.29 33570.56 32646.53 36588.87 333
miper_refine_blended82.98 29380.52 30190.38 26394.32 24088.98 17192.87 32595.87 25480.46 31173.79 32787.49 33082.76 17393.29 33570.56 32646.53 36588.87 333
EI-MVSNet89.87 19889.38 18991.36 24194.32 24085.87 24897.61 23396.59 19785.10 24385.51 22097.10 16581.30 19596.56 25183.85 23983.03 25391.64 264
CVMVSNet90.30 18890.91 16688.46 30394.32 24073.58 34597.61 23397.59 10790.16 12588.43 19797.10 16576.83 22292.86 33882.64 24993.54 17298.93 135
IterMVS-LS88.34 22487.44 22091.04 24694.10 24485.85 24998.10 20495.48 27885.12 24282.03 26191.21 27981.35 19495.63 30383.86 23875.73 29091.63 265
Fangjinhua Wang, Silvano Galliani, Christoph Vogel, Marc Pollefeys: IterMVS: Iterative Probability Estimation for Efficient Multi-View Stereo.
TAMVS92.62 14592.09 14394.20 18094.10 24487.68 19998.41 17396.97 18587.53 20789.74 18696.04 19884.77 14596.49 25788.97 18292.31 18798.42 166
PAPM96.35 4895.94 5697.58 4394.10 24495.25 2398.93 11198.17 3294.26 2493.94 12798.72 9289.68 5797.88 18896.36 7299.29 7899.62 75
CLD-MVS91.06 17490.71 17292.10 22794.05 24786.10 24199.55 3496.29 22094.16 2784.70 22597.17 16369.62 27397.82 19294.74 10786.08 23192.39 241
Zhaoxin Li, Wangmeng Zuo, Zhaoqi Wang, Lei Zhang: Confidence-based Large-scale Dense Multi-view Stereo. IEEE Transaction on Image Processing, 2020
HQP-NCC93.95 24899.16 8093.92 3287.57 201
ACMP_Plane93.95 24899.16 8093.92 3287.57 201
HQP-MVS91.50 16691.23 15992.29 22193.95 24886.39 23199.16 8096.37 21393.92 3287.57 20196.67 18373.34 24597.77 19693.82 12386.29 22692.72 236
NP-MVS93.94 25186.22 23796.67 183
plane_prior693.92 25286.02 24572.92 249
ACMP87.39 1088.71 22088.24 21190.12 26993.91 25381.06 31398.50 16395.67 26789.43 14680.37 28095.55 20365.67 29997.83 19190.55 15884.51 23991.47 274
Qingshan Xu and Wenbing Tao: Planar Prior Assisted PatchMatch Multi-View Stereo. AAAI 2020
plane_prior193.90 254
HQP_MVS91.26 17090.95 16592.16 22593.84 25586.07 24399.02 10296.30 21793.38 4786.99 20896.52 18572.92 24997.75 20193.46 12886.17 22992.67 238
plane_prior793.84 25585.73 251
MVS-HIRNet79.01 31175.13 32190.66 25693.82 25781.69 30385.16 35193.75 32754.54 36274.17 32559.15 36657.46 32796.58 25063.74 34594.38 16493.72 232
FMVSNet582.29 29680.54 30087.52 30993.79 25884.01 27793.73 31792.47 34176.92 32974.27 32486.15 34263.69 31089.24 35869.07 33074.79 29789.29 328
ACMH+83.78 1584.21 28482.56 28989.15 29393.73 25979.16 32196.43 27494.28 31981.09 30574.00 32694.03 22354.58 33997.67 20476.10 29678.81 27390.63 305
ACMM86.95 1388.77 21888.22 21290.43 26193.61 26081.34 30798.50 16395.92 24487.88 19583.85 23495.20 20967.20 29097.89 18786.90 20284.90 23792.06 255
Qingshan Xu and Wenbing Tao: Multi-Scale Geometric Consistency Guided Multi-View Stereo. CVPR 2019
OpenMVScopyleft85.28 1490.75 18188.84 19896.48 10293.58 26193.51 7098.80 12497.41 14482.59 28578.62 30197.49 14768.00 28499.82 6484.52 22798.55 10796.11 223
IterMVS85.81 26484.67 26489.22 29193.51 26283.67 28196.32 27894.80 30585.09 24478.69 29990.17 31266.57 29693.17 33779.48 27277.42 28490.81 295
Fangjinhua Wang, Silvano Galliani, Christoph Vogel, Marc Pollefeys: IterMVS: Iterative Probability Estimation for Efficient Multi-View Stereo.
CR-MVSNet88.83 21587.38 22293.16 20593.47 26386.24 23584.97 35494.20 32188.92 16290.76 17086.88 33784.43 14694.82 32170.64 32592.17 19198.41 167
RPMNet85.07 27381.88 29094.64 16693.47 26386.24 23584.97 35497.21 16064.85 36090.76 17078.80 35880.95 19699.27 13353.76 36192.17 19198.41 167
IterMVS-SCA-FT85.73 26784.64 26589.00 29693.46 26582.90 29096.27 27994.70 30885.02 24778.62 30190.35 30466.61 29493.33 33479.38 27377.36 28590.76 299
Fast-Effi-MVS+-dtu88.84 21388.59 20689.58 28493.44 26678.18 32998.65 14294.62 31188.46 17384.12 23195.37 20868.91 27596.52 25482.06 25591.70 19994.06 230
Patchmtry83.61 29281.64 29289.50 28693.36 26782.84 29384.10 35794.20 32169.47 35179.57 29286.88 33784.43 14694.78 32268.48 33374.30 30390.88 294
LPG-MVS_test88.86 21288.47 20990.06 27093.35 26880.95 31498.22 19195.94 24187.73 20183.17 24096.11 19666.28 29797.77 19690.19 16285.19 23591.46 275
LGP-MVS_train90.06 27093.35 26880.95 31495.94 24187.73 20183.17 24096.11 19666.28 29797.77 19690.19 16285.19 23591.46 275
JIA-IIPM85.97 26084.85 26089.33 29093.23 27073.68 34485.05 35397.13 17069.62 35091.56 15668.03 36288.03 8096.96 23577.89 28393.12 17497.34 199
ACMH83.09 1784.60 27882.61 28890.57 25793.18 27182.94 28896.27 27994.92 30281.01 30672.61 33793.61 23656.54 32997.79 19474.31 30881.07 26490.99 291
Qingshan Xu and Wenbing Tao: Multi-Scale Geometric Consistency Guided Multi-View Stereo. CVPR 2019
PatchT85.44 27083.19 27792.22 22293.13 27283.00 28783.80 36096.37 21370.62 34590.55 17379.63 35784.81 14494.87 31958.18 35891.59 20098.79 148
MVS_030484.13 28782.66 28688.52 30193.07 27380.15 31795.81 29898.21 3079.27 31586.85 21286.40 34041.33 36294.69 32476.36 29486.69 22590.73 301
baseline294.04 10993.80 11094.74 16293.07 27390.25 14198.12 20098.16 3489.86 13086.53 21596.95 17295.56 598.05 18091.44 14794.53 16395.93 224
jason95.40 7794.86 8297.03 6492.91 27594.23 5699.70 1796.30 21793.56 4596.73 7798.52 10581.46 19397.91 18596.08 7898.47 10998.96 129
jason: jason.
LTVRE_ROB81.71 1984.59 27982.72 28590.18 26792.89 27683.18 28693.15 32294.74 30678.99 31775.14 32292.69 25565.64 30097.63 20769.46 32981.82 26289.74 321
Andreas Kuhn, Heiko Hirschmüller, Daniel Scharstein, Helmut Mayer: A TV Prior for High-Quality Scalable Multi-View Stereo Reconstruction. International Journal of Computer Vision 2016
VPA-MVSNet89.10 20687.66 21893.45 20092.56 27791.02 12597.97 21498.32 2586.92 21686.03 21792.01 26368.84 27797.10 23190.92 15375.34 29192.23 248
tpm89.67 20088.95 19691.82 23292.54 27881.43 30492.95 32395.92 24487.81 19690.50 17589.44 31884.99 14095.65 30283.67 24082.71 25698.38 170
GA-MVS90.10 19488.69 20294.33 17592.44 27987.97 19599.08 9596.26 22189.65 13786.92 21093.11 25068.09 28296.96 23582.54 25190.15 21398.05 183
FIs90.70 18289.87 18193.18 20492.29 28091.12 11998.17 19798.25 2789.11 15383.44 23694.82 21482.26 18296.17 28087.76 19282.76 25592.25 246
ITE_SJBPF87.93 30592.26 28176.44 33593.47 33387.67 20479.95 28795.49 20656.50 33097.38 22375.24 30182.33 25989.98 319
UniMVSNet (Re)89.50 20488.32 21093.03 20692.21 28290.96 12798.90 11598.39 2389.13 15283.22 23792.03 26181.69 18996.34 27186.79 20372.53 32191.81 261
UniMVSNet_NR-MVSNet89.60 20188.55 20792.75 21592.17 28390.07 14898.74 13098.15 3588.37 18083.21 23893.98 22682.86 16995.93 29086.95 20072.47 32292.25 246
TinyColmap80.42 30577.94 30987.85 30692.09 28478.58 32693.74 31689.94 36074.99 33469.77 34191.78 26846.09 35697.58 21065.17 34477.89 27887.38 341
MS-PatchMatch86.75 24785.92 24489.22 29191.97 28582.47 29896.91 25896.14 23083.74 26577.73 30893.53 23958.19 32597.37 22576.75 29198.35 11087.84 338
VPNet88.30 22586.57 23493.49 19991.95 28691.35 11198.18 19597.20 16488.61 16784.52 22894.89 21262.21 31496.76 24489.34 17572.26 32592.36 243
FMVSNet183.94 28981.32 29791.80 23391.94 28788.81 17796.77 26395.25 29177.98 32278.25 30690.25 30650.37 35094.97 31673.27 31677.81 28291.62 266
WR-MVS88.54 22287.22 22692.52 21991.93 28889.50 16398.56 15697.84 5486.99 21281.87 26693.81 23074.25 24095.92 29285.29 21674.43 30192.12 252
D2MVS87.96 22987.39 22189.70 28091.84 28983.40 28398.31 18698.49 2188.04 19078.23 30790.26 30573.57 24396.79 24384.21 23083.53 24988.90 332
FC-MVSNet-test90.22 19089.40 18892.67 21891.78 29089.86 15697.89 21698.22 2988.81 16482.96 24394.66 21681.90 18895.96 28885.89 21382.52 25892.20 250
MIMVSNet84.48 28181.83 29192.42 22091.73 29187.36 20985.52 35094.42 31681.40 30181.91 26487.58 32851.92 34692.81 34073.84 31288.15 21997.08 208
USDC84.74 27582.93 27990.16 26891.73 29183.54 28295.00 30593.30 33488.77 16573.19 33093.30 24353.62 34297.65 20675.88 29881.54 26389.30 327
nrg03090.23 18988.87 19794.32 17691.53 29393.54 6998.79 12895.89 25288.12 18884.55 22794.61 21778.80 21196.88 23892.35 14275.21 29292.53 240
DU-MVS88.83 21587.51 21992.79 21291.46 29490.07 14898.71 13197.62 10088.87 16383.21 23893.68 23374.63 22995.93 29086.95 20072.47 32292.36 243
NR-MVSNet87.74 23586.00 24392.96 20891.46 29490.68 13496.65 27097.42 14388.02 19173.42 32993.68 23377.31 21995.83 29784.26 22971.82 32992.36 243
tfpnnormal83.65 29081.35 29690.56 25891.37 29688.06 19297.29 24297.87 5278.51 32176.20 31290.91 28364.78 30596.47 25861.71 35173.50 31287.13 346
test_040278.81 31376.33 31786.26 31791.18 29778.44 32895.88 29491.34 35568.55 35270.51 34089.91 31352.65 34594.99 31547.14 36479.78 27085.34 355
test0.0.03 188.96 20988.61 20490.03 27391.09 29884.43 27298.97 10897.02 18290.21 12080.29 28296.31 19384.89 14291.93 35272.98 31885.70 23493.73 231
WR-MVS_H86.53 25385.49 25189.66 28391.04 29983.31 28597.53 23598.20 3184.95 24979.64 29090.90 28478.01 21695.33 31076.29 29572.81 31790.35 309
CP-MVSNet86.54 25285.45 25289.79 27891.02 30082.78 29497.38 23997.56 11485.37 23979.53 29393.03 25171.86 26095.25 31279.92 26973.43 31591.34 281
TranMVSNet+NR-MVSNet87.75 23386.31 23892.07 22890.81 30188.56 18298.33 18397.18 16587.76 19881.87 26693.90 22872.45 25395.43 30783.13 24571.30 33292.23 248
PS-CasMVS85.81 26484.58 26689.49 28890.77 30282.11 30097.20 24997.36 15084.83 25179.12 29892.84 25467.42 28995.16 31478.39 28173.25 31691.21 286
DeepMVS_CXcopyleft76.08 34390.74 30351.65 37190.84 35786.47 22757.89 36087.98 32535.88 36692.60 34265.77 34265.06 34683.97 357
OPM-MVS89.76 19989.15 19391.57 23890.53 30485.58 25498.11 20395.93 24392.88 5886.05 21696.47 18867.06 29297.87 18989.29 17886.08 23191.26 285
Ray L. Khuboni, Hongjun Xu: Octagram Propagation Matching for Multi-Scale View Stereopsis (OPM-MVS).
XXY-MVS87.75 23386.02 24292.95 20990.46 30589.70 16097.71 23095.90 25084.02 26080.95 27494.05 22067.51 28897.10 23185.16 21778.41 27592.04 257
UniMVSNet_ETH3D85.65 26983.79 27591.21 24290.41 30680.75 31695.36 30295.78 25978.76 32081.83 26994.33 21949.86 35196.66 24684.30 22883.52 25096.22 222
v1085.73 26784.01 27390.87 25290.03 30786.73 22497.20 24995.22 29881.25 30379.85 28989.75 31573.30 24796.28 27776.87 28972.64 31989.61 324
v886.11 25884.45 26791.10 24489.99 30886.85 22297.24 24695.36 28881.99 29579.89 28889.86 31474.53 23496.39 26378.83 27872.32 32490.05 317
V4287.00 24385.68 24890.98 24889.91 30986.08 24298.32 18595.61 27183.67 26882.72 24590.67 29174.00 24296.53 25381.94 25774.28 30490.32 310
XVG-ACMP-BASELINE85.86 26284.95 25888.57 30089.90 31077.12 33494.30 31195.60 27287.40 20982.12 25792.99 25353.42 34397.66 20585.02 22083.83 24590.92 293
PEN-MVS85.21 27283.93 27489.07 29589.89 31181.31 30897.09 25297.24 15684.45 25678.66 30092.68 25668.44 28094.87 31975.98 29770.92 33391.04 290
v114486.83 24685.31 25391.40 23989.75 31287.21 21898.31 18695.45 28083.22 27482.70 24690.78 28673.36 24496.36 26579.49 27174.69 29890.63 305
TransMVSNet (Re)81.97 29879.61 30689.08 29489.70 31384.01 27797.26 24491.85 35078.84 31873.07 33491.62 27067.17 29195.21 31367.50 33559.46 35588.02 337
v2v48287.27 24185.76 24691.78 23789.59 31487.58 20298.56 15695.54 27584.53 25482.51 24991.78 26873.11 24896.47 25882.07 25474.14 30791.30 283
pm-mvs184.68 27782.78 28390.40 26289.58 31585.18 26197.31 24094.73 30781.93 29776.05 31492.01 26365.48 30396.11 28378.75 27969.14 33589.91 320
pmmvs487.58 23886.17 24191.80 23389.58 31588.92 17597.25 24595.28 29082.54 28780.49 27993.17 24775.62 22596.05 28582.75 24878.90 27290.42 308
v119286.32 25684.71 26391.17 24389.53 31786.40 23098.13 19895.44 28282.52 28882.42 25190.62 29571.58 26496.33 27277.23 28574.88 29590.79 297
v14419286.40 25484.89 25990.91 24989.48 31885.59 25398.21 19395.43 28382.45 28982.62 24790.58 29872.79 25296.36 26578.45 28074.04 30890.79 297
v14886.38 25585.06 25590.37 26589.47 31984.10 27698.52 15895.48 27883.80 26480.93 27590.22 30974.60 23196.31 27380.92 26371.55 33090.69 303
v192192086.02 25984.44 26890.77 25489.32 32085.20 26098.10 20495.35 28982.19 29382.25 25590.71 28870.73 26796.30 27676.85 29074.49 30090.80 296
v124085.77 26684.11 27190.73 25589.26 32185.15 26397.88 21895.23 29781.89 29882.16 25690.55 30069.60 27496.31 27375.59 30074.87 29690.72 302
our_test_384.47 28282.80 28189.50 28689.01 32283.90 27997.03 25494.56 31281.33 30275.36 32190.52 30171.69 26294.54 32768.81 33176.84 28790.07 315
ppachtmachnet_test83.63 29181.57 29489.80 27789.01 32285.09 26497.13 25194.50 31378.84 31876.14 31391.00 28269.78 27194.61 32663.40 34674.36 30289.71 323
DTE-MVSNet84.14 28682.80 28188.14 30488.95 32479.87 32096.81 26296.24 22283.50 27077.60 30992.52 25867.89 28694.24 33072.64 32069.05 33690.32 310
PS-MVSNAJss89.54 20389.05 19491.00 24788.77 32584.36 27397.39 23795.97 23688.47 17181.88 26593.80 23182.48 17896.50 25589.34 17583.34 25292.15 251
Baseline_NR-MVSNet85.83 26384.82 26188.87 29988.73 32683.34 28498.63 14691.66 35180.41 31382.44 25091.35 27674.63 22995.42 30884.13 23271.39 33187.84 338
MVP-Stereo86.61 25185.83 24588.93 29888.70 32783.85 28096.07 28994.41 31782.15 29475.64 31991.96 26567.65 28796.45 26077.20 28798.72 10186.51 349
Qingsong Yan: MVP-Stereo: A Parallel Multi-View Patchmatch Stereo Method with Dilation Matching for Photogrammetric Application.
EU-MVSNet84.19 28584.42 26983.52 33288.64 32867.37 36196.04 29095.76 26185.29 24078.44 30493.18 24670.67 26891.48 35475.79 29975.98 28891.70 263
pmmvs585.87 26184.40 27090.30 26688.53 32984.23 27498.60 15193.71 32881.53 30080.29 28292.02 26264.51 30695.52 30582.04 25678.34 27691.15 287
MDA-MVSNet-bldmvs77.82 31974.75 32387.03 31388.33 33078.52 32796.34 27792.85 33775.57 33348.87 36487.89 32657.32 32892.49 34660.79 35264.80 34790.08 314
N_pmnet70.19 32769.87 32971.12 34688.24 33130.63 37995.85 29728.70 37970.18 34868.73 34386.55 33964.04 30893.81 33153.12 36273.46 31388.94 331
v7n84.42 28382.75 28489.43 28988.15 33281.86 30196.75 26695.67 26780.53 30978.38 30589.43 31969.89 27096.35 27073.83 31372.13 32690.07 315
SixPastTwentyTwo82.63 29581.58 29385.79 32088.12 33371.01 35495.17 30492.54 34084.33 25772.93 33592.08 26060.41 32195.61 30474.47 30774.15 30690.75 300
test_djsdf88.26 22787.73 21689.84 27688.05 33482.21 29997.77 22496.17 22886.84 21782.41 25291.95 26672.07 25795.99 28689.83 16484.50 24091.32 282
mvs_tets87.09 24286.22 23989.71 27987.87 33581.39 30696.73 26895.90 25088.19 18679.99 28693.61 23659.96 32296.31 27389.40 17484.34 24291.43 277
OurMVSNet-221017-084.13 28783.59 27685.77 32187.81 33670.24 35594.89 30693.65 33086.08 23076.53 31193.28 24461.41 31796.14 28280.95 26277.69 28390.93 292
YYNet179.64 31077.04 31487.43 31187.80 33779.98 31996.23 28394.44 31473.83 34051.83 36187.53 32967.96 28592.07 35166.00 34167.75 34190.23 312
MDA-MVSNet_test_wron79.65 30977.05 31387.45 31087.79 33880.13 31896.25 28294.44 31473.87 33951.80 36287.47 33268.04 28392.12 35066.02 34067.79 34090.09 313
jajsoiax87.35 23986.51 23689.87 27487.75 33981.74 30297.03 25495.98 23588.47 17180.15 28493.80 23161.47 31696.36 26589.44 17384.47 24191.50 273
K. test v381.04 30279.77 30584.83 32587.41 34070.23 35695.60 30193.93 32583.70 26767.51 34989.35 32055.76 33193.58 33376.67 29268.03 33990.67 304
testgi82.29 29681.00 29986.17 31887.24 34174.84 34097.39 23791.62 35288.63 16675.85 31895.42 20746.07 35791.55 35366.87 33979.94 26992.12 252
LF4IMVS81.94 29981.17 29884.25 32987.23 34268.87 36093.35 32191.93 34983.35 27375.40 32093.00 25249.25 35496.65 24778.88 27778.11 27787.22 345
EG-PatchMatch MVS79.92 30677.59 31086.90 31487.06 34377.90 33396.20 28794.06 32374.61 33666.53 35388.76 32340.40 36496.20 27867.02 33783.66 24886.61 347
Gipumacopyleft54.77 33352.22 33762.40 35086.50 34459.37 36650.20 36890.35 35936.52 36641.20 36749.49 36818.33 37281.29 36532.10 36865.34 34546.54 368
S. Galliani, K. Lasinger, K. Schindler: Massively Parallel Multiview Stereopsis by Surface Normal Diffusion. ICCV 2015
anonymousdsp86.69 24885.75 24789.53 28586.46 34582.94 28896.39 27595.71 26383.97 26279.63 29190.70 28968.85 27695.94 28986.01 20884.02 24489.72 322
EGC-MVSNET60.70 33055.37 33476.72 34286.35 34671.08 35289.96 34484.44 3710.38 3761.50 37784.09 34737.30 36588.10 36140.85 36673.44 31470.97 364
test_method70.10 32868.66 33174.41 34486.30 34755.84 36894.47 30889.82 36135.18 36766.15 35484.75 34630.54 36777.96 36870.40 32860.33 35389.44 326
bset_n11_16_dypcd89.07 20787.85 21492.76 21486.16 34890.66 13597.30 24195.62 26989.78 13483.94 23393.15 24974.85 22895.89 29591.34 14878.48 27491.74 262
lessismore_v085.08 32385.59 34969.28 35890.56 35867.68 34890.21 31054.21 34195.46 30673.88 31162.64 34990.50 307
CMPMVSbinary58.40 2180.48 30480.11 30481.59 33985.10 35059.56 36594.14 31495.95 24068.54 35360.71 35993.31 24255.35 33697.87 18983.06 24684.85 23887.33 343
M. Jancosek, T. Pajdla: Multi-View Reconstruction Preserving Weakly-Supported Surfaces. CVPR 2011
Anonymous2023120680.76 30379.42 30784.79 32684.78 35172.98 34696.53 27292.97 33679.56 31474.33 32388.83 32261.27 31892.15 34960.59 35375.92 28989.24 329
DSMNet-mixed81.60 30181.43 29582.10 33684.36 35260.79 36493.63 31986.74 36779.00 31679.32 29587.15 33563.87 30989.78 35766.89 33891.92 19395.73 225
pmmvs679.90 30777.31 31287.67 30884.17 35378.13 33095.86 29693.68 32967.94 35572.67 33689.62 31750.98 34995.75 29974.80 30666.04 34489.14 330
new_pmnet76.02 32173.71 32482.95 33383.88 35472.85 34891.26 33792.26 34370.44 34762.60 35781.37 35247.64 35592.32 34761.85 35072.10 32783.68 358
OpenMVS_ROBcopyleft73.86 2077.99 31875.06 32286.77 31583.81 35577.94 33296.38 27691.53 35467.54 35668.38 34487.13 33643.94 35896.08 28455.03 36081.83 26186.29 350
test20.0378.51 31677.48 31181.62 33883.07 35671.03 35396.11 28892.83 33881.66 29969.31 34289.68 31657.53 32687.29 36358.65 35768.47 33786.53 348
Anonymous2024052178.63 31576.90 31583.82 33082.82 35772.86 34795.72 30093.57 33173.55 34172.17 33884.79 34549.69 35292.51 34565.29 34374.50 29986.09 351
UnsupCasMVSNet_eth78.90 31276.67 31685.58 32282.81 35874.94 33991.98 33196.31 21684.64 25365.84 35587.71 32751.33 34792.23 34872.89 31956.50 35989.56 325
KD-MVS_self_test77.47 32075.88 31982.24 33481.59 35968.93 35992.83 32794.02 32477.03 32873.14 33183.39 34855.44 33590.42 35567.95 33457.53 35787.38 341
CL-MVSNet_self_test79.89 30878.34 30884.54 32881.56 36075.01 33896.88 26095.62 26981.10 30475.86 31785.81 34368.49 27990.26 35663.21 34756.51 35888.35 335
MIMVSNet175.92 32273.30 32583.81 33181.29 36175.57 33792.26 33092.05 34773.09 34267.48 35086.18 34140.87 36387.64 36255.78 35970.68 33488.21 336
Patchmatch-RL test81.90 30080.13 30387.23 31280.71 36270.12 35784.07 35888.19 36683.16 27670.57 33982.18 35187.18 9892.59 34382.28 25362.78 34898.98 127
pmmvs-eth3d78.71 31476.16 31886.38 31680.25 36381.19 31094.17 31392.13 34677.97 32366.90 35282.31 35055.76 33192.56 34473.63 31562.31 35185.38 353
UnsupCasMVSNet_bld73.85 32570.14 32884.99 32479.44 36475.73 33688.53 34595.24 29470.12 34961.94 35874.81 35941.41 36193.62 33268.65 33251.13 36485.62 352
PM-MVS74.88 32372.85 32680.98 34078.98 36564.75 36290.81 34085.77 36880.95 30768.23 34682.81 34929.08 36892.84 33976.54 29362.46 35085.36 354
new-patchmatchnet74.80 32472.40 32781.99 33778.36 36672.20 35094.44 30992.36 34277.06 32763.47 35679.98 35651.04 34888.85 35960.53 35454.35 36184.92 356
pmmvs372.86 32669.76 33082.17 33573.86 36774.19 34294.20 31289.01 36464.23 36167.72 34780.91 35441.48 36088.65 36062.40 34954.02 36283.68 358
ambc79.60 34172.76 36856.61 36776.20 36392.01 34868.25 34580.23 35523.34 36994.73 32373.78 31460.81 35287.48 340
TDRefinement78.01 31775.31 32086.10 31970.06 36973.84 34393.59 32091.58 35374.51 33773.08 33391.04 28149.63 35397.12 22874.88 30459.47 35487.33 343
PMMVS258.97 33255.07 33570.69 34762.72 37055.37 36985.97 34980.52 37249.48 36345.94 36568.31 36115.73 37480.78 36649.79 36337.12 36775.91 361
E-PMN41.02 33840.93 34041.29 35461.97 37133.83 37684.00 35965.17 37727.17 36927.56 36946.72 37017.63 37360.41 37319.32 37118.82 36929.61 369
wuyk23d16.71 34216.73 34616.65 35660.15 37225.22 38041.24 3695.17 3806.56 3735.48 3763.61 3763.64 37822.72 37515.20 3739.52 3731.99 373
FPMVS61.57 32960.32 33265.34 34860.14 37342.44 37491.02 33989.72 36244.15 36442.63 36680.93 35319.02 37080.59 36742.50 36572.76 31873.00 362
EMVS39.96 33939.88 34140.18 35559.57 37432.12 37884.79 35664.57 37826.27 37026.14 37144.18 37318.73 37159.29 37417.03 37217.67 37129.12 370
LCM-MVSNet60.07 33156.37 33371.18 34554.81 37548.67 37282.17 36289.48 36337.95 36549.13 36369.12 36013.75 37681.76 36459.28 35551.63 36383.10 360
MVEpermissive44.00 2241.70 33737.64 34253.90 35349.46 37643.37 37365.09 36766.66 37626.19 37125.77 37248.53 3693.58 37963.35 37226.15 37027.28 36854.97 367
Simon Fuhrmann, Fabian Langguth, Michael Goesele: MVE - A Multi-View Reconstruction Environment. EUROGRAPHICS Workshops on Graphics and Cultural Heritage (2014)
ANet_high50.71 33546.17 33864.33 34944.27 37752.30 37076.13 36478.73 37364.95 35927.37 37055.23 36714.61 37567.74 37036.01 36718.23 37072.95 363
PMVScopyleft41.42 2345.67 33642.50 33955.17 35234.28 37832.37 37766.24 36678.71 37430.72 36822.04 37359.59 3654.59 37777.85 36927.49 36958.84 35655.29 366
Y. Furukawa, J. Ponce: Accurate, dense, and robust multiview stereopsis. PAMI (2010)
tmp_tt53.66 33452.86 33656.05 35132.75 37941.97 37573.42 36576.12 37521.91 37239.68 36896.39 19142.59 35965.10 37178.00 28214.92 37261.08 365
testmvs18.81 34123.05 3446.10 3584.48 3802.29 38297.78 2233.00 3813.27 37418.60 37462.71 3631.53 3812.49 37714.26 3741.80 37413.50 372
test12316.58 34319.47 3457.91 3573.59 3815.37 38194.32 3101.39 3822.49 37513.98 37544.60 3722.91 3802.65 37611.35 3750.57 37515.70 371
test_blank0.00 3460.00 3490.00 3590.00 3820.00 3830.00 3700.00 3830.00 3770.00 3780.00 3770.00 3820.00 3780.00 3760.00 3760.00 374
eth-test20.00 382
eth-test0.00 382
uanet_test0.00 3460.00 3490.00 3590.00 3820.00 3830.00 3700.00 3830.00 3770.00 3780.00 3770.00 3820.00 3780.00 3760.00 3760.00 374
cdsmvs_eth3d_5k22.52 34030.03 3430.00 3590.00 3820.00 3830.00 37097.17 1660.00 3770.00 37898.77 8674.35 2370.00 3780.00 3760.00 3760.00 374
pcd_1.5k_mvsjas6.87 3459.16 3480.00 3590.00 3820.00 3830.00 3700.00 3830.00 3770.00 3780.00 37782.48 1780.00 3780.00 3760.00 3760.00 374
sosnet-low-res0.00 3460.00 3490.00 3590.00 3820.00 3830.00 3700.00 3830.00 3770.00 3780.00 3770.00 3820.00 3780.00 3760.00 3760.00 374
sosnet0.00 3460.00 3490.00 3590.00 3820.00 3830.00 3700.00 3830.00 3770.00 3780.00 3770.00 3820.00 3780.00 3760.00 3760.00 374
uncertanet0.00 3460.00 3490.00 3590.00 3820.00 3830.00 3700.00 3830.00 3770.00 3780.00 3770.00 3820.00 3780.00 3760.00 3760.00 374
Regformer0.00 3460.00 3490.00 3590.00 3820.00 3830.00 3700.00 3830.00 3770.00 3780.00 3770.00 3820.00 3780.00 3760.00 3760.00 374
ab-mvs-re8.21 34410.94 3470.00 3590.00 3820.00 3830.00 3700.00 3830.00 3770.00 37898.50 1070.00 3820.00 3780.00 3760.00 3760.00 374
uanet0.00 3460.00 3490.00 3590.00 3820.00 3830.00 3700.00 3830.00 3770.00 3780.00 3770.00 3820.00 3780.00 3760.00 3760.00 374
PC_three_145294.60 2099.41 299.12 4895.50 699.96 3099.84 299.92 399.97 7
test_241102_TWO97.72 7594.17 2599.23 799.54 393.14 2399.98 1099.70 399.82 1999.99 1
test_0728_THIRD93.01 5199.07 1099.46 1194.66 1299.97 2399.25 1499.82 1999.95 15
GSMVS98.84 141
sam_mvs188.39 7398.84 141
sam_mvs87.08 99
MTGPAbinary97.45 136
test_post190.74 34241.37 37485.38 13796.36 26583.16 243
test_post46.00 37187.37 9297.11 229
patchmatchnet-post84.86 34488.73 6796.81 241
MTMP99.21 7491.09 356
test9_res98.60 2399.87 999.90 24
agg_prior297.84 4599.87 999.91 22
test_prior492.00 9999.41 58
test_prior299.57 3191.43 9098.12 3798.97 6690.43 4398.33 3499.81 23
旧先验298.67 14085.75 23498.96 1498.97 14693.84 121
新几何298.26 189
无先验98.52 15897.82 5687.20 21199.90 4487.64 19499.85 33
原ACMM298.69 136
testdata299.88 4884.16 231
segment_acmp90.56 42
testdata197.89 21692.43 65
plane_prior596.30 21797.75 20193.46 12886.17 22992.67 238
plane_prior496.52 185
plane_prior385.91 24693.65 4286.99 208
plane_prior299.02 10293.38 47
plane_prior86.07 24399.14 8993.81 4086.26 228
n20.00 383
nn0.00 383
door-mid84.90 370
test1197.68 84
door85.30 369
HQP5-MVS86.39 231
BP-MVS93.82 123
HQP4-MVS87.57 20197.77 19692.72 236
HQP3-MVS96.37 21386.29 226
HQP2-MVS73.34 245
MDTV_nov1_ep13_2view91.17 11891.38 33587.45 20893.08 13986.67 11087.02 19898.95 133
ACMMP++_ref82.64 257
ACMMP++83.83 245
Test By Simon83.62 154