| AdaColmap |  | | 93.82 114 | 93.06 121 | 96.10 107 | 99.88 1 | 89.07 161 | 98.33 191 | 97.55 115 | 86.81 229 | 90.39 182 | 98.65 96 | 75.09 229 | 99.98 9 | 93.32 139 | 97.53 122 | 99.26 97 |
|
| DP-MVS Recon | | | 95.85 59 | 95.15 74 | 97.95 30 | 99.87 2 | 94.38 52 | 99.60 36 | 97.48 131 | 86.58 233 | 94.42 121 | 99.13 42 | 87.36 84 | 99.98 9 | 93.64 133 | 98.33 105 | 99.48 78 |
|
| MCST-MVS | | | 98.18 2 | 97.95 9 | 98.86 5 | 99.85 3 | 96.60 10 | 99.70 24 | 97.98 51 | 97.18 3 | 95.96 92 | 99.33 19 | 92.62 26 | 100.00 1 | 98.99 23 | 99.93 1 | 99.98 6 |
|
| CNVR-MVS | | | 98.46 1 | 98.38 1 | 98.72 9 | 99.80 4 | 96.19 15 | 99.80 13 | 97.99 50 | 97.05 6 | 99.41 2 | 99.59 2 | 92.89 25 | 100.00 1 | 98.99 23 | 99.90 7 | 99.96 10 |
|
| MG-MVS | | | 97.24 17 | 96.83 28 | 98.47 15 | 99.79 5 | 95.71 18 | 99.07 107 | 99.06 10 | 94.45 38 | 96.42 86 | 98.70 93 | 88.81 59 | 99.74 86 | 95.35 99 | 99.86 12 | 99.97 7 |
|
| NCCC | | | 98.12 5 | 98.11 3 | 98.13 24 | 99.76 6 | 94.46 48 | 99.81 9 | 97.88 54 | 96.54 11 | 98.84 22 | 99.46 10 | 92.55 27 | 99.98 9 | 98.25 44 | 99.93 1 | 99.94 18 |
|
| region2R | | | 96.30 43 | 96.17 45 | 96.70 79 | 99.70 7 | 90.31 128 | 99.46 57 | 97.66 89 | 90.55 122 | 97.07 69 | 99.07 49 | 86.85 95 | 99.97 21 | 95.43 97 | 99.74 29 | 99.81 33 |
|
| HFP-MVS | | | 96.42 39 | 96.26 39 | 96.90 67 | 99.69 8 | 90.96 115 | 99.47 53 | 97.81 63 | 90.54 123 | 96.88 71 | 99.05 52 | 87.57 76 | 99.96 28 | 95.65 90 | 99.72 31 | 99.78 38 |
|
| ACMMPR | | | 96.28 44 | 96.14 49 | 96.73 76 | 99.68 9 | 90.47 126 | 99.47 53 | 97.80 65 | 90.54 123 | 96.83 76 | 99.03 54 | 86.51 106 | 99.95 31 | 95.65 90 | 99.72 31 | 99.75 46 |
|
| ZD-MVS | | | | | | 99.67 10 | 93.28 71 | | 97.61 102 | 87.78 206 | 97.41 58 | 99.16 34 | 90.15 47 | 99.56 103 | 98.35 39 | 99.70 35 | |
|
| CP-MVS | | | 96.22 45 | 96.15 48 | 96.42 95 | 99.67 10 | 89.62 152 | 99.70 24 | 97.61 102 | 90.07 138 | 96.00 91 | 99.16 34 | 87.43 79 | 99.92 39 | 96.03 86 | 99.72 31 | 99.70 52 |
|
| DVP-MVS |  | | 98.07 7 | 98.00 6 | 98.29 19 | 99.66 12 | 95.20 30 | 99.72 21 | 97.47 133 | 93.95 46 | 99.07 13 | 99.46 10 | 93.18 22 | 99.97 21 | 99.64 7 | 99.82 19 | 99.69 55 |
| Zhenlong Yuan, Jinguo Luo, Fei Shen, Zhaoxin Li, Cong Liu, Tianlu Mao, Zhaoqi Wang: DVP-MVS: Synergize Depth-Edge and Visibility Prior for Multi-View Stereo. AAAI2025 |
| test_0728_SECOND | | | | | 98.77 8 | 99.66 12 | 96.37 14 | 99.72 21 | 97.68 85 | | | | | 99.98 9 | 99.64 7 | 99.82 19 | 99.96 10 |
|
| test0726 | | | | | | 99.66 12 | 95.20 30 | 99.77 15 | 97.70 81 | 93.95 46 | 99.35 5 | 99.54 3 | 93.18 22 | | | | |
|
| CPTT-MVS | | | 94.60 95 | 94.43 85 | 95.09 144 | 99.66 12 | 86.85 217 | 99.44 60 | 97.47 133 | 83.22 289 | 94.34 123 | 98.96 64 | 82.50 172 | 99.55 104 | 94.81 111 | 99.50 53 | 98.88 131 |
|
| MSLP-MVS++ | | | 97.50 14 | 97.45 15 | 97.63 38 | 99.65 16 | 93.21 72 | 99.70 24 | 98.13 42 | 94.61 33 | 97.78 53 | 99.46 10 | 89.85 49 | 99.81 77 | 97.97 48 | 99.91 6 | 99.88 26 |
|
| OPU-MVS | | | | | 99.49 4 | 99.64 17 | 98.51 4 | 99.77 15 | | | | 99.19 28 | 95.12 8 | 99.97 21 | 99.90 1 | 99.92 3 | 99.99 1 |
|
| SED-MVS | | | 98.18 2 | 98.10 4 | 98.41 18 | 99.63 18 | 95.24 25 | 99.77 15 | 97.72 76 | 94.17 41 | 99.30 6 | 99.54 3 | 93.32 19 | 99.98 9 | 99.70 4 | 99.81 23 | 99.99 1 |
|
| IU-MVS | | | | | | 99.63 18 | 95.38 22 | | 97.73 75 | 95.54 24 | 99.54 1 | | | | 99.69 6 | 99.81 23 | 99.99 1 |
|
| test_241102_ONE | | | | | | 99.63 18 | 95.24 25 | | 97.72 76 | 94.16 43 | 99.30 6 | 99.49 9 | 93.32 19 | 99.98 9 | | | |
|
| PAPR | | | 96.35 40 | 95.82 55 | 97.94 31 | 99.63 18 | 94.19 56 | 99.42 65 | 97.55 115 | 92.43 80 | 93.82 133 | 99.12 44 | 87.30 86 | 99.91 43 | 94.02 124 | 99.06 75 | 99.74 47 |
|
| XVS | | | 96.47 38 | 96.37 37 | 96.77 72 | 99.62 22 | 90.66 123 | 99.43 63 | 97.58 110 | 92.41 83 | 96.86 72 | 98.96 64 | 87.37 81 | 99.87 56 | 95.65 90 | 99.43 59 | 99.78 38 |
|
| X-MVStestdata | | | 90.69 186 | 88.66 209 | 96.77 72 | 99.62 22 | 90.66 123 | 99.43 63 | 97.58 110 | 92.41 83 | 96.86 72 | 29.59 398 | 87.37 81 | 99.87 56 | 95.65 90 | 99.43 59 | 99.78 38 |
|
| DVP-MVS++ | | | 98.18 2 | 98.09 5 | 98.44 16 | 99.61 24 | 95.38 22 | 99.55 42 | 97.68 85 | 93.01 68 | 99.23 8 | 99.45 14 | 95.12 8 | 99.98 9 | 99.25 16 | 99.92 3 | 99.97 7 |
|
| MSC_two_6792asdad | | | | | 99.51 2 | 99.61 24 | 98.60 2 | | 97.69 83 | | | | | 99.98 9 | 99.55 11 | 99.83 15 | 99.96 10 |
|
| No_MVS | | | | | 99.51 2 | 99.61 24 | 98.60 2 | | 97.69 83 | | | | | 99.98 9 | 99.55 11 | 99.83 15 | 99.96 10 |
|
| DeepC-MVS_fast | | 93.52 2 | 97.16 21 | 96.84 26 | 98.13 24 | 99.61 24 | 94.45 49 | 98.85 129 | 97.64 95 | 96.51 14 | 95.88 95 | 99.39 18 | 87.35 85 | 99.99 5 | 96.61 75 | 99.69 36 | 99.96 10 |
| Andreas Kuhn, Christian Sormann, Mattia Rossi, Oliver Erdler, Friedrich Fraundorfer: DeepC-MVS: Deep Confidence Prediction for Multi-View Stereo Reconstruction. 3DV 2020 |
| test_one_0601 | | | | | | 99.59 28 | 94.89 34 | | 97.64 95 | 93.14 67 | 98.93 19 | 99.45 14 | 93.45 18 | | | | |
|
| CDPH-MVS | | | 96.56 36 | 96.18 42 | 97.70 36 | 99.59 28 | 93.92 60 | 99.13 102 | 97.44 139 | 89.02 164 | 97.90 51 | 99.22 25 | 88.90 58 | 99.49 110 | 94.63 117 | 99.79 27 | 99.68 56 |
|
| test_prior | | | | | 97.01 58 | 99.58 30 | 91.77 93 | | 97.57 113 | | | | | 99.49 110 | | | 99.79 36 |
|
| APDe-MVS |  | | 97.53 11 | 97.47 13 | 97.70 36 | 99.58 30 | 93.63 64 | 99.56 41 | 97.52 123 | 93.59 61 | 98.01 48 | 99.12 44 | 90.80 39 | 99.55 104 | 99.26 15 | 99.79 27 | 99.93 20 |
| Zhaojie Zeng, Yuesong Wang, Tao Guan: Matching Ambiguity-Resilient Multi-View Stereo via Adaptive Patch Deformation. Pattern Recognition |
| mPP-MVS | | | 95.90 58 | 95.75 60 | 96.38 98 | 99.58 30 | 89.41 156 | 99.26 82 | 97.41 143 | 90.66 117 | 94.82 115 | 98.95 67 | 86.15 114 | 99.98 9 | 95.24 102 | 99.64 40 | 99.74 47 |
|
| TEST9 | | | | | | 99.57 33 | 93.17 73 | 99.38 69 | 97.66 89 | 89.57 150 | 98.39 33 | 99.18 31 | 90.88 37 | 99.66 92 | | | |
|
| train_agg | | | 97.20 20 | 97.08 20 | 97.57 42 | 99.57 33 | 93.17 73 | 99.38 69 | 97.66 89 | 90.18 132 | 98.39 33 | 99.18 31 | 90.94 35 | 99.66 92 | 98.58 34 | 99.85 13 | 99.88 26 |
|
| test_8 | | | | | | 99.55 35 | 93.07 76 | 99.37 72 | 97.64 95 | 90.18 132 | 98.36 35 | 99.19 28 | 90.94 35 | 99.64 98 | | | |
|
| test_part2 | | | | | | 99.54 36 | 95.42 20 | | | | 98.13 40 | | | | | | |
|
| MSP-MVS | | | 97.77 9 | 98.18 2 | 96.53 90 | 99.54 36 | 90.14 134 | 99.41 66 | 97.70 81 | 95.46 26 | 98.60 27 | 99.19 28 | 95.71 4 | 99.49 110 | 98.15 46 | 99.85 13 | 99.95 15 |
| Zhenlong Yuan, Cong Liu, Fei Shen, Zhaoxin Li, Jingguo luo, Tianlu Mao and Zhaoqi Wang: MSP-MVS: Multi-granularity Segmentation Prior Guided Multi-View Stereo. AAAI2025 |
| agg_prior | | | | | | 99.54 36 | 92.66 83 | | 97.64 95 | | 97.98 49 | | | 99.61 100 | | | |
|
| CSCG | | | 94.87 84 | 94.71 81 | 95.36 133 | 99.54 36 | 86.49 222 | 99.34 75 | 98.15 40 | 82.71 300 | 90.15 185 | 99.25 22 | 89.48 52 | 99.86 61 | 94.97 109 | 98.82 90 | 99.72 50 |
|
| HPM-MVS++ |  | | 97.72 10 | 97.59 11 | 98.14 23 | 99.53 40 | 94.76 42 | 99.19 85 | 97.75 71 | 95.66 22 | 98.21 38 | 99.29 20 | 91.10 33 | 99.99 5 | 97.68 53 | 99.87 9 | 99.68 56 |
|
| APD-MVS |  | | 96.95 26 | 96.72 29 | 97.63 38 | 99.51 41 | 93.58 65 | 99.16 91 | 97.44 139 | 90.08 137 | 98.59 28 | 99.07 49 | 89.06 55 | 99.42 121 | 97.92 49 | 99.66 37 | 99.88 26 |
| Yuesong Wang, Zhaojie Zeng and etc.: Adaptive Patch Deformation for Textureless-Resilient Multi-View Stereo. CVPR2023 |
| FOURS1 | | | | | | 99.50 42 | 88.94 168 | 99.55 42 | 97.47 133 | 91.32 106 | 98.12 42 | | | | | | |
|
| DPE-MVS |  | | 98.11 6 | 98.00 6 | 98.44 16 | 99.50 42 | 95.39 21 | 99.29 79 | 97.72 76 | 94.50 35 | 98.64 26 | 99.54 3 | 93.32 19 | 99.97 21 | 99.58 10 | 99.90 7 | 99.95 15 |
| Kehua Chen, Zhenlong Yuan, Tianlu Mao, Zhaoqi Wang: Dual-Level Precision Edges Guided Multi-View Stereo with Accurate Planarization. AAAI2025 |
| PGM-MVS | | | 95.85 59 | 95.65 65 | 96.45 93 | 99.50 42 | 89.77 149 | 98.22 199 | 98.90 13 | 89.19 159 | 96.74 79 | 98.95 67 | 85.91 118 | 99.92 39 | 93.94 126 | 99.46 55 | 99.66 60 |
|
| GST-MVS | | | 95.97 53 | 95.66 63 | 96.90 67 | 99.49 45 | 91.22 102 | 99.45 59 | 97.48 131 | 89.69 144 | 95.89 94 | 98.72 89 | 86.37 109 | 99.95 31 | 94.62 118 | 99.22 70 | 99.52 74 |
|
| MP-MVS |  | | 96.00 50 | 95.82 55 | 96.54 89 | 99.47 46 | 90.13 136 | 99.36 73 | 97.41 143 | 90.64 120 | 95.49 105 | 98.95 67 | 85.51 123 | 99.98 9 | 96.00 87 | 99.59 49 | 99.52 74 |
| Rongxuan Tan, Qing Wang, et al.: MP-MVS: Multi-Scale Windows PatchMatch and Planar Prior Multi-View Stereo. |
| ZNCC-MVS | | | 96.09 48 | 95.81 57 | 96.95 66 | 99.42 47 | 91.19 104 | 99.55 42 | 97.53 119 | 89.72 143 | 95.86 97 | 98.94 70 | 86.59 102 | 99.97 21 | 95.13 103 | 99.56 50 | 99.68 56 |
|
| SR-MVS | | | 96.13 47 | 96.16 47 | 96.07 108 | 99.42 47 | 89.04 162 | 98.59 160 | 97.33 150 | 90.44 126 | 96.84 74 | 99.12 44 | 86.75 97 | 99.41 124 | 97.47 56 | 99.44 58 | 99.76 45 |
|
| PAPM_NR | | | 95.43 71 | 95.05 78 | 96.57 88 | 99.42 47 | 90.14 134 | 98.58 162 | 97.51 125 | 90.65 119 | 92.44 148 | 98.90 74 | 87.77 75 | 99.90 48 | 90.88 163 | 99.32 64 | 99.68 56 |
|
| 9.14 | | | | 96.87 24 | | 99.34 50 | | 99.50 49 | 97.49 130 | 89.41 155 | 98.59 28 | 99.43 16 | 89.78 50 | 99.69 89 | 98.69 28 | 99.62 44 | |
|
| save fliter | | | | | | 99.34 50 | 93.85 62 | 99.65 33 | 97.63 99 | 95.69 20 | | | | | | | |
|
| PHI-MVS | | | 96.65 34 | 96.46 35 | 97.21 52 | 99.34 50 | 91.77 93 | 99.70 24 | 98.05 46 | 86.48 238 | 98.05 45 | 99.20 27 | 89.33 53 | 99.96 28 | 98.38 37 | 99.62 44 | 99.90 22 |
|
| test12 | | | | | 97.83 33 | 99.33 53 | 94.45 49 | | 97.55 115 | | 97.56 54 | | 88.60 61 | 99.50 109 | | 99.71 34 | 99.55 72 |
|
| SMA-MVS |  | | 97.24 17 | 96.99 21 | 98.00 29 | 99.30 54 | 94.20 55 | 99.16 91 | 97.65 94 | 89.55 152 | 99.22 10 | 99.52 8 | 90.34 46 | 99.99 5 | 98.32 41 | 99.83 15 | 99.82 32 |
| Yufeng Yin; Xiaoyan Liu; Zichao Zhang: SMA-MVS: Segmentation-Guided Multi-Scale Anchor Deformation Patch Multi-View Stereo. IEEE Transactions on Circuits and Systems for Video Technology |
| MTAPA | | | 96.09 48 | 95.80 58 | 96.96 65 | 99.29 55 | 91.19 104 | 97.23 258 | 97.45 136 | 92.58 77 | 94.39 122 | 99.24 24 | 86.43 108 | 99.99 5 | 96.22 81 | 99.40 62 | 99.71 51 |
|
| HPM-MVS |  | | 95.41 73 | 95.22 72 | 95.99 113 | 99.29 55 | 89.14 159 | 99.17 90 | 97.09 174 | 87.28 219 | 95.40 106 | 98.48 110 | 84.93 133 | 99.38 126 | 95.64 94 | 99.65 38 | 99.47 79 |
| Chunlin Ren, Qingshan Xu, Shikun Zhang, Jiaqi Yang: Hierarchical Prior Mining for Non-local Multi-View Stereo. ICCV 2023 |
| ACMMP |  | | 94.67 93 | 94.30 86 | 95.79 119 | 99.25 57 | 88.13 186 | 98.41 180 | 98.67 22 | 90.38 128 | 91.43 163 | 98.72 89 | 82.22 181 | 99.95 31 | 93.83 130 | 95.76 155 | 99.29 94 |
| Qingshan Xu, Weihang Kong, Wenbing Tao, Marc Pollefeys: Multi-Scale Geometric Consistency Guided and Planar Prior Assisted Multi-View Stereo. IEEE Transactions on Pattern Analysis and Machine Intelligence |
| APD-MVS_3200maxsize | | | 95.64 68 | 95.65 65 | 95.62 126 | 99.24 58 | 87.80 192 | 98.42 178 | 97.22 157 | 88.93 169 | 96.64 84 | 98.98 59 | 85.49 124 | 99.36 128 | 96.68 72 | 99.27 68 | 99.70 52 |
|
| SR-MVS-dyc-post | | | 95.75 65 | 95.86 54 | 95.41 132 | 99.22 59 | 87.26 212 | 98.40 183 | 97.21 158 | 89.63 146 | 96.67 82 | 98.97 60 | 86.73 99 | 99.36 128 | 96.62 73 | 99.31 65 | 99.60 67 |
|
| RE-MVS-def | | | | 95.70 61 | | 99.22 59 | 87.26 212 | 98.40 183 | 97.21 158 | 89.63 146 | 96.67 82 | 98.97 60 | 85.24 130 | | 96.62 73 | 99.31 65 | 99.60 67 |
|
| patch_mono-2 | | | 97.10 23 | 97.97 8 | 94.49 166 | 99.21 61 | 83.73 282 | 99.62 35 | 98.25 32 | 95.28 28 | 99.38 4 | 98.91 73 | 92.28 28 | 99.94 34 | 99.61 9 | 99.22 70 | 99.78 38 |
|
| API-MVS | | | 94.78 87 | 94.18 92 | 96.59 85 | 99.21 61 | 90.06 141 | 98.80 134 | 97.78 68 | 83.59 284 | 93.85 131 | 99.21 26 | 83.79 146 | 99.97 21 | 92.37 151 | 99.00 79 | 99.74 47 |
|
| PLC |  | 91.07 3 | 94.23 102 | 94.01 96 | 94.87 152 | 99.17 63 | 87.49 201 | 99.25 83 | 96.55 204 | 88.43 184 | 91.26 167 | 98.21 122 | 85.92 116 | 99.86 61 | 89.77 178 | 97.57 119 | 97.24 197 |
| Jie Liao, Yanping Fu, Qingan Yan, Chunxia xiao: Pyramid Multi-View Stereo with Local Consistency. Pacific Graphics 2019 |
| EI-MVSNet-Vis-set | | | 95.76 64 | 95.63 67 | 96.17 105 | 99.14 64 | 90.33 127 | 98.49 171 | 97.82 60 | 91.92 93 | 94.75 116 | 98.88 78 | 87.06 90 | 99.48 114 | 95.40 98 | 97.17 132 | 98.70 148 |
|
| TSAR-MVS + MP. | | | 97.44 15 | 97.46 14 | 97.39 46 | 99.12 65 | 93.49 69 | 98.52 165 | 97.50 128 | 94.46 36 | 98.99 15 | 98.64 97 | 91.58 30 | 99.08 146 | 98.49 35 | 99.83 15 | 99.60 67 |
| Zhenlong Yuan, Jiakai Cao, Zhaoqi Wang, Zhaoxin Li: TSAR-MVS: Textureless-aware Segmentation and Correlative Refinement Guided Multi-View Stereo. Pattern Recognition |
| SF-MVS | | | 97.22 19 | 96.92 22 | 98.12 26 | 99.11 66 | 94.88 35 | 99.44 60 | 97.45 136 | 89.60 148 | 98.70 24 | 99.42 17 | 90.42 44 | 99.72 87 | 98.47 36 | 99.65 38 | 99.77 43 |
|
| HPM-MVS_fast | | | 94.89 83 | 94.62 82 | 95.70 122 | 99.11 66 | 88.44 182 | 99.14 99 | 97.11 170 | 85.82 246 | 95.69 101 | 98.47 111 | 83.46 151 | 99.32 133 | 93.16 141 | 99.63 43 | 99.35 88 |
|
| MAR-MVS | | | 94.43 99 | 94.09 94 | 95.45 130 | 99.10 68 | 87.47 202 | 98.39 187 | 97.79 67 | 88.37 186 | 94.02 128 | 99.17 33 | 78.64 214 | 99.91 43 | 92.48 150 | 98.85 89 | 98.96 121 |
| Zhenyu Xu, Yiguang Liu, Xuelei Shi, Ying Wang, Yunan Zheng: MARMVS: Matching Ambiguity Reduced Multiple View Stereo for Efficient Large Scale Scene Reconstruction. CVPR 2020 |
| 114514_t | | | 94.06 104 | 93.05 122 | 97.06 56 | 99.08 69 | 92.26 89 | 98.97 121 | 97.01 182 | 82.58 302 | 92.57 146 | 98.22 120 | 80.68 197 | 99.30 134 | 89.34 184 | 99.02 78 | 99.63 64 |
|
| EI-MVSNet-UG-set | | | 95.43 71 | 95.29 70 | 95.86 117 | 99.07 70 | 89.87 146 | 98.43 177 | 97.80 65 | 91.78 95 | 94.11 126 | 98.77 83 | 86.25 112 | 99.48 114 | 94.95 110 | 96.45 141 | 98.22 172 |
|
| 原ACMM1 | | | | | 96.18 103 | 99.03 71 | 90.08 137 | | 97.63 99 | 88.98 165 | 97.00 70 | 98.97 60 | 88.14 69 | 99.71 88 | 88.23 195 | 99.62 44 | 98.76 145 |
|
| SD-MVS | | | 97.51 13 | 97.40 16 | 97.81 34 | 99.01 72 | 93.79 63 | 99.33 76 | 97.38 146 | 93.73 57 | 98.83 23 | 99.02 56 | 90.87 38 | 99.88 52 | 98.69 28 | 99.74 29 | 99.77 43 |
| Zhenlong Yuan, Jiakai Cao, Zhaoxin Li, Hao Jiang and Zhaoqi Wang: SD-MVS: Segmentation-driven Deformation Multi-View Stereo with Spherical Refinement and EM optimization. AAAI2024 |
| 旧先验1 | | | | | | 98.97 73 | 92.90 82 | | 97.74 72 | | | 99.15 37 | 91.05 34 | | | 99.33 63 | 99.60 67 |
|
| LS3D | | | 90.19 195 | 88.72 207 | 94.59 165 | 98.97 73 | 86.33 230 | 96.90 270 | 96.60 198 | 74.96 352 | 84.06 241 | 98.74 86 | 75.78 226 | 99.83 71 | 74.93 316 | 97.57 119 | 97.62 188 |
|
| CNLPA | | | 93.64 121 | 92.74 130 | 96.36 99 | 98.96 75 | 90.01 144 | 99.19 85 | 95.89 258 | 86.22 241 | 89.40 193 | 98.85 79 | 80.66 198 | 99.84 67 | 88.57 191 | 96.92 135 | 99.24 98 |
|
| MP-MVS-pluss | | | 95.80 61 | 95.30 69 | 97.29 48 | 98.95 76 | 92.66 83 | 98.59 160 | 97.14 166 | 88.95 167 | 93.12 140 | 99.25 22 | 85.62 120 | 99.94 34 | 96.56 77 | 99.48 54 | 99.28 95 |
| MP-MVS-pluss: MP-MVS-pluss. MP-MVS-pluss |
| 新几何1 | | | | | 97.40 45 | 98.92 77 | 92.51 88 | | 97.77 70 | 85.52 251 | 96.69 81 | 99.06 51 | 88.08 70 | 99.89 51 | 84.88 233 | 99.62 44 | 99.79 36 |
|
| DP-MVS | | | 88.75 225 | 86.56 244 | 95.34 134 | 98.92 77 | 87.45 203 | 97.64 242 | 93.52 339 | 70.55 364 | 81.49 283 | 97.25 158 | 74.43 235 | 99.88 52 | 71.14 338 | 94.09 171 | 98.67 150 |
|
| TSAR-MVS + GP. | | | 96.95 26 | 96.91 23 | 97.07 55 | 98.88 79 | 91.62 96 | 99.58 39 | 96.54 205 | 95.09 30 | 96.84 74 | 98.63 99 | 91.16 31 | 99.77 83 | 99.04 22 | 96.42 142 | 99.81 33 |
|
| CANet | | | 97.00 25 | 96.49 33 | 98.55 12 | 98.86 80 | 96.10 16 | 99.83 7 | 97.52 123 | 95.90 17 | 97.21 64 | 98.90 74 | 82.66 171 | 99.93 37 | 98.71 27 | 98.80 91 | 99.63 64 |
|
| dcpmvs_2 | | | 95.67 67 | 96.18 42 | 94.12 183 | 98.82 81 | 84.22 275 | 97.37 250 | 95.45 284 | 90.70 116 | 95.77 99 | 98.63 99 | 90.47 42 | 98.68 162 | 99.20 18 | 99.22 70 | 99.45 80 |
|
| ACMMP_NAP | | | 96.59 35 | 96.18 42 | 97.81 34 | 98.82 81 | 93.55 66 | 98.88 128 | 97.59 108 | 90.66 117 | 97.98 49 | 99.14 40 | 86.59 102 | 100.00 1 | 96.47 79 | 99.46 55 | 99.89 25 |
|
| PVSNet_BlendedMVS | | | 93.36 129 | 93.20 118 | 93.84 194 | 98.77 83 | 91.61 97 | 99.47 53 | 98.04 47 | 91.44 102 | 94.21 124 | 92.63 269 | 83.50 149 | 99.87 56 | 97.41 57 | 83.37 265 | 90.05 329 |
|
| PVSNet_Blended | | | 95.94 56 | 95.66 63 | 96.75 74 | 98.77 83 | 91.61 97 | 99.88 3 | 98.04 47 | 93.64 60 | 94.21 124 | 97.76 133 | 83.50 149 | 99.87 56 | 97.41 57 | 97.75 117 | 98.79 141 |
|
| DeepPCF-MVS | | 93.56 1 | 96.55 37 | 97.84 10 | 92.68 218 | 98.71 85 | 78.11 339 | 99.70 24 | 97.71 80 | 98.18 1 | 97.36 60 | 99.76 1 | 90.37 45 | 99.94 34 | 99.27 14 | 99.54 52 | 99.99 1 |
|
| EPNet | | | 96.82 29 | 96.68 31 | 97.25 51 | 98.65 86 | 93.10 75 | 99.48 51 | 98.76 15 | 96.54 11 | 97.84 52 | 98.22 120 | 87.49 78 | 99.66 92 | 95.35 99 | 97.78 116 | 99.00 117 |
| Wanjuan Su, Wenbing Tao: Efficient Edge-Preserving Multi-View Stereo Network for Depth Estimation. AAAI 2023 |
| OMC-MVS | | | 93.90 111 | 93.62 108 | 94.73 159 | 98.63 87 | 87.00 215 | 98.04 217 | 96.56 203 | 92.19 88 | 92.46 147 | 98.73 87 | 79.49 206 | 99.14 143 | 92.16 153 | 94.34 170 | 98.03 177 |
|
| MVS_111021_HR | | | 96.69 32 | 96.69 30 | 96.72 78 | 98.58 88 | 91.00 114 | 99.14 99 | 99.45 1 | 93.86 52 | 95.15 111 | 98.73 87 | 88.48 62 | 99.76 84 | 97.23 61 | 99.56 50 | 99.40 84 |
|
| test_yl | | | 95.27 76 | 94.60 83 | 97.28 49 | 98.53 89 | 92.98 79 | 99.05 110 | 98.70 19 | 86.76 230 | 94.65 119 | 97.74 135 | 87.78 73 | 99.44 117 | 95.57 95 | 92.61 185 | 99.44 81 |
|
| DCV-MVSNet | | | 95.27 76 | 94.60 83 | 97.28 49 | 98.53 89 | 92.98 79 | 99.05 110 | 98.70 19 | 86.76 230 | 94.65 119 | 97.74 135 | 87.78 73 | 99.44 117 | 95.57 95 | 92.61 185 | 99.44 81 |
|
| TAPA-MVS | | 87.50 9 | 90.35 190 | 89.05 200 | 94.25 178 | 98.48 91 | 85.17 262 | 98.42 178 | 96.58 202 | 82.44 307 | 87.24 210 | 98.53 103 | 82.77 166 | 98.84 153 | 59.09 373 | 97.88 112 | 98.72 146 |
| Andrea Romanoni, Matteo Matteucci: TAPA-MVS: Textureless-Aware PAtchMatch Multi-View Stereo. ICCV 2019 |
| test222 | | | | | | 98.32 92 | 91.21 103 | 98.08 214 | 97.58 110 | 83.74 280 | 95.87 96 | 99.02 56 | 86.74 98 | | | 99.64 40 | 99.81 33 |
|
| DPM-MVS | | | 97.86 8 | 97.25 18 | 99.68 1 | 98.25 93 | 99.10 1 | 99.76 18 | 97.78 68 | 96.61 10 | 98.15 39 | 99.53 7 | 93.62 17 | 100.00 1 | 91.79 155 | 99.80 26 | 99.94 18 |
|
| LFMVS | | | 92.23 157 | 90.84 170 | 96.42 95 | 98.24 94 | 91.08 111 | 98.24 198 | 96.22 224 | 83.39 287 | 94.74 117 | 98.31 116 | 61.12 328 | 98.85 152 | 94.45 120 | 92.82 181 | 99.32 91 |
|
| testdata | | | | | 95.26 139 | 98.20 95 | 87.28 209 | | 97.60 104 | 85.21 255 | 98.48 31 | 99.15 37 | 88.15 68 | 98.72 160 | 90.29 171 | 99.45 57 | 99.78 38 |
|
| PatchMatch-RL | | | 91.47 168 | 90.54 177 | 94.26 177 | 98.20 95 | 86.36 228 | 96.94 268 | 97.14 166 | 87.75 208 | 88.98 196 | 95.75 209 | 71.80 262 | 99.40 125 | 80.92 275 | 97.39 126 | 97.02 205 |
|
| MVS_111021_LR | | | 95.78 62 | 95.94 51 | 95.28 138 | 98.19 97 | 87.69 193 | 98.80 134 | 99.26 7 | 93.39 63 | 95.04 113 | 98.69 94 | 84.09 143 | 99.76 84 | 96.96 67 | 99.06 75 | 98.38 163 |
|
| F-COLMAP | | | 92.07 161 | 91.75 152 | 93.02 208 | 98.16 98 | 82.89 293 | 98.79 138 | 95.97 241 | 86.54 235 | 87.92 203 | 97.80 130 | 78.69 213 | 99.65 96 | 85.97 219 | 95.93 154 | 96.53 219 |
|
| Anonymous202405211 | | | 88.84 219 | 87.03 237 | 94.27 176 | 98.14 99 | 84.18 276 | 98.44 176 | 95.58 277 | 76.79 346 | 89.34 194 | 96.88 178 | 53.42 355 | 99.54 106 | 87.53 204 | 87.12 231 | 99.09 112 |
|
| VNet | | | 95.08 81 | 94.26 87 | 97.55 43 | 98.07 100 | 93.88 61 | 98.68 146 | 98.73 18 | 90.33 129 | 97.16 68 | 97.43 151 | 79.19 208 | 99.53 107 | 96.91 69 | 91.85 199 | 99.24 98 |
|
| CS-MVS-test | | | 95.98 52 | 96.34 38 | 94.90 151 | 98.06 101 | 87.66 196 | 99.69 31 | 96.10 233 | 93.66 58 | 98.35 36 | 99.05 52 | 86.28 110 | 97.66 213 | 96.96 67 | 98.90 87 | 99.37 86 |
|
| DELS-MVS | | | 97.12 22 | 96.60 32 | 98.68 10 | 98.03 102 | 96.57 11 | 99.84 6 | 97.84 57 | 96.36 16 | 95.20 110 | 98.24 119 | 88.17 66 | 99.83 71 | 96.11 84 | 99.60 48 | 99.64 62 |
| Christian Sormann, Emanuele Santellani, Mattia Rossi, Andreas Kuhn, Friedrich Fraundorfer: DELS-MVS: Deep Epipolar Line Search for Multi-View Stereo. Winter Conference on Applications of Computer Vision (WACV), 2023 |
| PVSNet | | 87.13 12 | 93.69 117 | 92.83 129 | 96.28 101 | 97.99 103 | 90.22 132 | 99.38 69 | 98.93 12 | 91.42 104 | 93.66 134 | 97.68 138 | 71.29 267 | 99.64 98 | 87.94 200 | 97.20 129 | 98.98 119 |
|
| test_fmvsm_n_1920 | | | 97.08 24 | 97.55 12 | 95.67 124 | 97.94 104 | 89.61 153 | 99.93 1 | 98.48 24 | 97.08 5 | 99.08 12 | 99.13 42 | 88.17 66 | 99.93 37 | 99.11 21 | 99.06 75 | 97.47 191 |
|
| cl22 | | | 89.57 207 | 88.79 206 | 91.91 231 | 97.94 104 | 87.62 197 | 97.98 220 | 96.51 206 | 85.03 260 | 82.37 266 | 91.79 281 | 83.65 147 | 96.50 266 | 85.96 220 | 77.89 293 | 91.61 282 |
|
| CS-MVS | | | 95.75 65 | 96.19 40 | 94.40 170 | 97.88 106 | 86.22 233 | 99.66 32 | 96.12 232 | 92.69 76 | 98.07 44 | 98.89 76 | 87.09 88 | 97.59 219 | 96.71 70 | 98.62 98 | 99.39 85 |
|
| CHOSEN 280x420 | | | 96.80 30 | 96.85 25 | 96.66 82 | 97.85 107 | 94.42 51 | 94.76 319 | 98.36 29 | 92.50 79 | 95.62 103 | 97.52 146 | 97.92 1 | 97.38 231 | 98.31 42 | 98.80 91 | 98.20 174 |
|
| thres200 | | | 93.69 117 | 92.59 134 | 96.97 64 | 97.76 108 | 94.74 43 | 99.35 74 | 99.36 2 | 89.23 158 | 91.21 169 | 96.97 172 | 83.42 152 | 98.77 155 | 85.08 229 | 90.96 212 | 97.39 193 |
|
| HY-MVS | | 88.56 7 | 95.29 75 | 94.23 88 | 98.48 14 | 97.72 109 | 96.41 13 | 94.03 327 | 98.74 16 | 92.42 82 | 95.65 102 | 94.76 228 | 86.52 105 | 99.49 110 | 95.29 101 | 92.97 180 | 99.53 73 |
|
| Anonymous20231211 | | | 84.72 287 | 82.65 298 | 90.91 254 | 97.71 110 | 84.55 271 | 97.28 254 | 96.67 193 | 66.88 377 | 79.18 309 | 90.87 299 | 58.47 336 | 96.60 256 | 82.61 262 | 74.20 320 | 91.59 284 |
|
| tfpn200view9 | | | 93.43 126 | 92.27 139 | 96.90 67 | 97.68 111 | 94.84 38 | 99.18 87 | 99.36 2 | 88.45 181 | 90.79 172 | 96.90 176 | 83.31 153 | 98.75 157 | 84.11 245 | 90.69 214 | 97.12 199 |
|
| thres400 | | | 93.39 128 | 92.27 139 | 96.73 76 | 97.68 111 | 94.84 38 | 99.18 87 | 99.36 2 | 88.45 181 | 90.79 172 | 96.90 176 | 83.31 153 | 98.75 157 | 84.11 245 | 90.69 214 | 96.61 214 |
|
| thres100view900 | | | 93.34 130 | 92.15 142 | 96.90 67 | 97.62 113 | 94.84 38 | 99.06 109 | 99.36 2 | 87.96 201 | 90.47 180 | 96.78 183 | 83.29 155 | 98.75 157 | 84.11 245 | 90.69 214 | 97.12 199 |
|
| thres600view7 | | | 93.18 136 | 92.00 145 | 96.75 74 | 97.62 113 | 94.92 33 | 99.07 107 | 99.36 2 | 87.96 201 | 90.47 180 | 96.78 183 | 83.29 155 | 98.71 161 | 82.93 259 | 90.47 218 | 96.61 214 |
|
| WTY-MVS | | | 95.97 53 | 95.11 76 | 98.54 13 | 97.62 113 | 96.65 9 | 99.44 60 | 98.74 16 | 92.25 87 | 95.21 109 | 98.46 113 | 86.56 104 | 99.46 116 | 95.00 108 | 92.69 184 | 99.50 77 |
|
| Anonymous20240529 | | | 87.66 245 | 85.58 258 | 93.92 191 | 97.59 116 | 85.01 265 | 98.13 206 | 97.13 168 | 66.69 378 | 88.47 200 | 96.01 205 | 55.09 349 | 99.51 108 | 87.00 207 | 84.12 256 | 97.23 198 |
|
| HyFIR lowres test | | | 93.68 119 | 93.29 116 | 94.87 152 | 97.57 117 | 88.04 188 | 98.18 203 | 98.47 25 | 87.57 214 | 91.24 168 | 95.05 222 | 85.49 124 | 97.46 226 | 93.22 140 | 92.82 181 | 99.10 111 |
|
| canonicalmvs | | | 95.02 82 | 93.96 100 | 98.20 21 | 97.53 118 | 95.92 17 | 98.71 142 | 96.19 227 | 91.78 95 | 95.86 97 | 98.49 108 | 79.53 205 | 99.03 147 | 96.12 83 | 91.42 209 | 99.66 60 |
|
| CHOSEN 1792x2688 | | | 94.35 100 | 93.82 104 | 95.95 115 | 97.40 119 | 88.74 176 | 98.41 180 | 98.27 31 | 92.18 89 | 91.43 163 | 96.40 194 | 78.88 209 | 99.81 77 | 93.59 134 | 97.81 113 | 99.30 93 |
|
| SteuartSystems-ACMMP | | | 97.25 16 | 97.34 17 | 97.01 58 | 97.38 120 | 91.46 100 | 99.75 19 | 97.66 89 | 94.14 45 | 98.13 40 | 99.26 21 | 92.16 29 | 99.66 92 | 97.91 50 | 99.64 40 | 99.90 22 |
| Skip Steuart: Steuart Systems R&D Blog. |
| fmvsm_s_conf0.5_n | | | 96.19 46 | 96.49 33 | 95.30 137 | 97.37 121 | 89.16 158 | 99.86 4 | 98.47 25 | 95.68 21 | 98.87 20 | 99.15 37 | 82.44 178 | 99.92 39 | 99.14 19 | 97.43 125 | 96.83 210 |
|
| alignmvs | | | 95.77 63 | 95.00 79 | 98.06 28 | 97.35 122 | 95.68 19 | 99.71 23 | 97.50 128 | 91.50 100 | 96.16 90 | 98.61 101 | 86.28 110 | 99.00 148 | 96.19 82 | 91.74 201 | 99.51 76 |
|
| PS-MVSNAJ | | | 96.87 28 | 96.40 36 | 98.29 19 | 97.35 122 | 97.29 5 | 99.03 113 | 97.11 170 | 95.83 18 | 98.97 17 | 99.14 40 | 82.48 174 | 99.60 101 | 98.60 31 | 99.08 73 | 98.00 178 |
|
| MVS_0304 | | | 97.53 11 | 97.15 19 | 98.67 11 | 97.30 124 | 96.52 12 | 99.60 36 | 98.88 14 | 97.14 4 | 97.21 64 | 98.94 70 | 86.89 94 | 99.91 43 | 99.43 13 | 98.91 86 | 99.59 71 |
|
| EPNet_dtu | | | 92.28 155 | 92.15 142 | 92.70 217 | 97.29 125 | 84.84 267 | 98.64 152 | 97.82 60 | 92.91 73 | 93.02 142 | 97.02 170 | 85.48 126 | 95.70 312 | 72.25 335 | 94.89 165 | 97.55 190 |
| Wanjuan Su, Wenbing Tao: Efficient Edge-Preserving Multi-View Stereo Network for Depth Estimation. AAAI 2023 |
| MVSTER | | | 92.71 143 | 92.32 137 | 93.86 193 | 97.29 125 | 92.95 81 | 99.01 116 | 96.59 199 | 90.09 136 | 85.51 227 | 94.00 239 | 94.61 16 | 96.56 261 | 90.77 167 | 83.03 268 | 92.08 269 |
|
| EPMVS | | | 92.59 148 | 91.59 154 | 95.59 128 | 97.22 127 | 90.03 142 | 91.78 347 | 98.04 47 | 90.42 127 | 91.66 157 | 90.65 307 | 86.49 107 | 97.46 226 | 81.78 270 | 96.31 145 | 99.28 95 |
|
| test_fmvs1 | | | 92.35 152 | 92.94 127 | 90.57 264 | 97.19 128 | 75.43 348 | 99.55 42 | 94.97 304 | 95.20 29 | 96.82 77 | 97.57 145 | 59.59 333 | 99.84 67 | 97.30 59 | 98.29 108 | 96.46 221 |
|
| tpmvs | | | 89.16 211 | 87.76 224 | 93.35 202 | 97.19 128 | 84.75 269 | 90.58 362 | 97.36 148 | 81.99 312 | 84.56 234 | 89.31 335 | 83.98 145 | 98.17 178 | 74.85 318 | 90.00 221 | 97.12 199 |
|
| DeepC-MVS | | 91.02 4 | 94.56 98 | 93.92 102 | 96.46 92 | 97.16 130 | 90.76 119 | 98.39 187 | 97.11 170 | 93.92 48 | 88.66 198 | 98.33 115 | 78.14 216 | 99.85 65 | 95.02 106 | 98.57 100 | 98.78 143 |
| Andreas Kuhn, Christian Sormann, Mattia Rossi, Oliver Erdler, Friedrich Fraundorfer: DeepC-MVS: Deep Confidence Prediction for Multi-View Stereo Reconstruction. 3DV 2020 |
| iter_conf05 | | | 93.48 123 | 93.18 119 | 94.39 173 | 97.15 131 | 94.17 57 | 99.30 78 | 92.97 344 | 92.38 86 | 86.70 219 | 95.42 215 | 95.67 5 | 96.59 257 | 94.67 116 | 84.32 254 | 92.39 252 |
|
| PVSNet_Blended_VisFu | | | 94.67 93 | 94.11 93 | 96.34 100 | 97.14 132 | 91.10 109 | 99.32 77 | 97.43 141 | 92.10 92 | 91.53 162 | 96.38 197 | 83.29 155 | 99.68 90 | 93.42 138 | 96.37 143 | 98.25 170 |
|
| h-mvs33 | | | 92.47 151 | 91.95 147 | 94.05 187 | 97.13 133 | 85.01 265 | 98.36 189 | 98.08 44 | 93.85 53 | 96.27 88 | 96.73 185 | 83.19 158 | 99.43 120 | 95.81 88 | 68.09 352 | 97.70 184 |
|
| miper_enhance_ethall | | | 90.33 191 | 89.70 186 | 92.22 223 | 97.12 134 | 88.93 170 | 98.35 190 | 95.96 243 | 88.60 176 | 83.14 251 | 92.33 271 | 87.38 80 | 96.18 289 | 86.49 215 | 77.89 293 | 91.55 285 |
|
| xiu_mvs_v2_base | | | 96.66 33 | 96.17 45 | 98.11 27 | 97.11 135 | 96.96 6 | 99.01 116 | 97.04 177 | 95.51 25 | 98.86 21 | 99.11 48 | 82.19 182 | 99.36 128 | 98.59 33 | 98.14 109 | 98.00 178 |
|
| VDD-MVS | | | 91.24 175 | 90.18 181 | 94.45 169 | 97.08 136 | 85.84 248 | 98.40 183 | 96.10 233 | 86.99 221 | 93.36 137 | 98.16 123 | 54.27 352 | 99.20 136 | 96.59 76 | 90.63 217 | 98.31 169 |
|
| UGNet | | | 91.91 163 | 90.85 169 | 95.10 143 | 97.06 137 | 88.69 177 | 98.01 218 | 98.24 34 | 92.41 83 | 92.39 149 | 93.61 250 | 60.52 330 | 99.68 90 | 88.14 196 | 97.25 128 | 96.92 208 |
| Wanjuan Su, Qingshan Xu, Wenbing Tao: Uncertainty-guided Multi-view Stereo Network for Depth Estimation. IEEE Transactions on Circuits and Systems for Video Technology, 2022 |
| baseline1 | | | 92.61 147 | 91.28 160 | 96.58 86 | 97.05 138 | 94.63 46 | 97.72 236 | 96.20 225 | 89.82 141 | 88.56 199 | 96.85 179 | 86.85 95 | 97.82 199 | 88.42 192 | 80.10 284 | 97.30 195 |
|
| iter_conf_final | | | 93.22 135 | 93.04 123 | 93.76 196 | 97.03 139 | 92.22 90 | 99.05 110 | 93.31 341 | 92.11 91 | 86.93 214 | 95.42 215 | 95.01 10 | 96.59 257 | 93.98 125 | 84.48 251 | 92.46 251 |
|
| CANet_DTU | | | 94.31 101 | 93.35 113 | 97.20 53 | 97.03 139 | 94.71 44 | 98.62 154 | 95.54 279 | 95.61 23 | 97.21 64 | 98.47 111 | 71.88 260 | 99.84 67 | 88.38 193 | 97.46 124 | 97.04 204 |
|
| MSDG | | | 88.29 233 | 86.37 246 | 94.04 188 | 96.90 141 | 86.15 237 | 96.52 283 | 94.36 325 | 77.89 342 | 79.22 308 | 96.95 173 | 69.72 273 | 99.59 102 | 73.20 331 | 92.58 187 | 96.37 224 |
|
| BH-w/o | | | 92.32 153 | 91.79 150 | 93.91 192 | 96.85 142 | 86.18 235 | 99.11 104 | 95.74 267 | 88.13 195 | 84.81 231 | 97.00 171 | 77.26 221 | 97.91 192 | 89.16 189 | 98.03 110 | 97.64 185 |
|
| AllTest | | | 84.97 285 | 83.12 290 | 90.52 267 | 96.82 143 | 78.84 331 | 95.89 303 | 92.17 355 | 77.96 340 | 75.94 327 | 95.50 212 | 55.48 345 | 99.18 137 | 71.15 336 | 87.14 229 | 93.55 241 |
|
| TestCases | | | | | 90.52 267 | 96.82 143 | 78.84 331 | | 92.17 355 | 77.96 340 | 75.94 327 | 95.50 212 | 55.48 345 | 99.18 137 | 71.15 336 | 87.14 229 | 93.55 241 |
|
| SDMVSNet | | | 91.09 176 | 89.91 184 | 94.65 161 | 96.80 145 | 90.54 125 | 97.78 230 | 97.81 63 | 88.34 188 | 85.73 223 | 95.26 219 | 66.44 301 | 98.26 175 | 94.25 123 | 86.75 232 | 95.14 232 |
|
| sd_testset | | | 89.23 210 | 88.05 223 | 92.74 216 | 96.80 145 | 85.33 258 | 95.85 308 | 97.03 179 | 88.34 188 | 85.73 223 | 95.26 219 | 61.12 328 | 97.76 208 | 85.61 225 | 86.75 232 | 95.14 232 |
|
| PMMVS | | | 93.62 122 | 93.90 103 | 92.79 213 | 96.79 147 | 81.40 310 | 98.85 129 | 96.81 189 | 91.25 107 | 96.82 77 | 98.15 124 | 77.02 222 | 98.13 180 | 93.15 142 | 96.30 146 | 98.83 137 |
|
| BH-RMVSNet | | | 91.25 174 | 89.99 183 | 95.03 148 | 96.75 148 | 88.55 179 | 98.65 150 | 94.95 305 | 87.74 209 | 87.74 204 | 97.80 130 | 68.27 283 | 98.14 179 | 80.53 280 | 97.49 123 | 98.41 160 |
|
| MVS_Test | | | 93.67 120 | 92.67 132 | 96.69 80 | 96.72 149 | 92.66 83 | 97.22 259 | 96.03 238 | 87.69 212 | 95.12 112 | 94.03 237 | 81.55 188 | 98.28 174 | 89.17 188 | 96.46 140 | 99.14 106 |
|
| COLMAP_ROB |  | 82.69 18 | 84.54 291 | 82.82 292 | 89.70 290 | 96.72 149 | 78.85 330 | 95.89 303 | 92.83 347 | 71.55 361 | 77.54 322 | 95.89 207 | 59.40 334 | 99.14 143 | 67.26 352 | 88.26 225 | 91.11 302 |
| Johannes L. Schönberger, Enliang Zheng, Marc Pollefeys, Jan-Michael Frahm: Pixelwise View Selection for Unstructured Multi-View Stereo. ECCV 2016 |
| mvs_anonymous | | | 92.50 150 | 91.65 153 | 95.06 145 | 96.60 151 | 89.64 151 | 97.06 264 | 96.44 211 | 86.64 232 | 84.14 239 | 93.93 241 | 82.49 173 | 96.17 291 | 91.47 156 | 96.08 151 | 99.35 88 |
|
| ETV-MVS | | | 96.00 50 | 96.00 50 | 96.00 112 | 96.56 152 | 91.05 112 | 99.63 34 | 96.61 197 | 93.26 66 | 97.39 59 | 98.30 117 | 86.62 101 | 98.13 180 | 98.07 47 | 97.57 119 | 98.82 138 |
|
| GG-mvs-BLEND | | | | | 96.98 63 | 96.53 153 | 94.81 41 | 87.20 367 | 97.74 72 | | 93.91 130 | 96.40 194 | 96.56 2 | 96.94 245 | 95.08 104 | 98.95 84 | 99.20 102 |
|
| FMVSNet3 | | | 88.81 223 | 87.08 236 | 93.99 190 | 96.52 154 | 94.59 47 | 98.08 214 | 96.20 225 | 85.85 245 | 82.12 270 | 91.60 285 | 74.05 240 | 95.40 320 | 79.04 287 | 80.24 281 | 91.99 272 |
|
| fmvsm_s_conf0.5_n_a | | | 95.97 53 | 96.19 40 | 95.31 136 | 96.51 155 | 89.01 164 | 99.81 9 | 98.39 27 | 95.46 26 | 99.19 11 | 99.16 34 | 81.44 192 | 99.91 43 | 98.83 26 | 96.97 134 | 97.01 206 |
|
| BH-untuned | | | 91.46 169 | 90.84 170 | 93.33 203 | 96.51 155 | 84.83 268 | 98.84 131 | 95.50 281 | 86.44 240 | 83.50 243 | 96.70 186 | 75.49 228 | 97.77 203 | 86.78 213 | 97.81 113 | 97.40 192 |
|
| FE-MVS | | | 91.38 171 | 90.16 182 | 95.05 147 | 96.46 157 | 87.53 200 | 89.69 364 | 97.84 57 | 82.97 294 | 92.18 151 | 92.00 278 | 84.07 144 | 98.93 151 | 80.71 277 | 95.52 159 | 98.68 149 |
|
| sss | | | 94.85 85 | 93.94 101 | 97.58 40 | 96.43 158 | 94.09 59 | 98.93 123 | 99.16 8 | 89.50 153 | 95.27 108 | 97.85 127 | 81.50 189 | 99.65 96 | 92.79 148 | 94.02 172 | 98.99 118 |
|
| test2506 | | | 94.80 86 | 94.21 89 | 96.58 86 | 96.41 159 | 92.18 91 | 98.01 218 | 98.96 11 | 90.82 114 | 93.46 136 | 97.28 155 | 85.92 116 | 98.45 167 | 89.82 176 | 97.19 130 | 99.12 109 |
|
| ECVR-MVS |  | | 92.29 154 | 91.33 159 | 95.15 142 | 96.41 159 | 87.84 191 | 98.10 211 | 94.84 308 | 90.82 114 | 91.42 165 | 97.28 155 | 65.61 307 | 98.49 166 | 90.33 170 | 97.19 130 | 99.12 109 |
|
| ET-MVSNet_ETH3D | | | 92.56 149 | 91.45 157 | 95.88 116 | 96.39 161 | 94.13 58 | 99.46 57 | 96.97 185 | 92.18 89 | 66.94 367 | 98.29 118 | 94.65 15 | 94.28 340 | 94.34 121 | 83.82 261 | 99.24 98 |
|
| dp | | | 90.16 197 | 88.83 205 | 94.14 182 | 96.38 162 | 86.42 224 | 91.57 351 | 97.06 176 | 84.76 266 | 88.81 197 | 90.19 325 | 84.29 141 | 97.43 229 | 75.05 315 | 91.35 211 | 98.56 154 |
|
| EIA-MVS | | | 95.11 79 | 95.27 71 | 94.64 163 | 96.34 163 | 86.51 221 | 99.59 38 | 96.62 196 | 92.51 78 | 94.08 127 | 98.64 97 | 86.05 115 | 98.24 177 | 95.07 105 | 98.50 102 | 99.18 103 |
|
| test_vis1_n_1920 | | | 93.08 139 | 93.42 112 | 92.04 230 | 96.31 164 | 79.36 327 | 99.83 7 | 96.06 237 | 96.72 8 | 98.53 30 | 98.10 125 | 58.57 335 | 99.91 43 | 97.86 51 | 98.79 94 | 96.85 209 |
|
| TR-MVS | | | 90.77 183 | 89.44 191 | 94.76 156 | 96.31 164 | 88.02 189 | 97.92 222 | 95.96 243 | 85.52 251 | 88.22 202 | 97.23 159 | 66.80 297 | 98.09 183 | 84.58 237 | 92.38 189 | 98.17 175 |
|
| UA-Net | | | 93.30 131 | 92.62 133 | 95.34 134 | 96.27 166 | 88.53 181 | 95.88 305 | 96.97 185 | 90.90 112 | 95.37 107 | 97.07 168 | 82.38 179 | 99.10 145 | 83.91 249 | 94.86 166 | 98.38 163 |
|
| tpmrst | | | 92.78 142 | 92.16 141 | 94.65 161 | 96.27 166 | 87.45 203 | 91.83 346 | 97.10 173 | 89.10 163 | 94.68 118 | 90.69 304 | 88.22 65 | 97.73 211 | 89.78 177 | 91.80 200 | 98.77 144 |
|
| hse-mvs2 | | | 91.67 166 | 91.51 156 | 92.15 227 | 96.22 168 | 82.61 299 | 97.74 235 | 97.53 119 | 93.85 53 | 96.27 88 | 96.15 200 | 83.19 158 | 97.44 228 | 95.81 88 | 66.86 359 | 96.40 223 |
|
| AUN-MVS | | | 90.17 196 | 89.50 189 | 92.19 225 | 96.21 169 | 82.67 297 | 97.76 234 | 97.53 119 | 88.05 197 | 91.67 156 | 96.15 200 | 83.10 160 | 97.47 225 | 88.11 197 | 66.91 358 | 96.43 222 |
|
| ADS-MVSNet2 | | | 87.62 246 | 86.88 239 | 89.86 285 | 96.21 169 | 79.14 329 | 87.15 368 | 92.99 343 | 83.01 292 | 89.91 188 | 87.27 348 | 78.87 210 | 92.80 353 | 74.20 323 | 92.27 192 | 97.64 185 |
|
| ADS-MVSNet | | | 88.99 213 | 87.30 232 | 94.07 185 | 96.21 169 | 87.56 199 | 87.15 368 | 96.78 191 | 83.01 292 | 89.91 188 | 87.27 348 | 78.87 210 | 97.01 242 | 74.20 323 | 92.27 192 | 97.64 185 |
|
| PatchmatchNet |  | | 92.05 162 | 91.04 165 | 95.06 145 | 96.17 172 | 89.04 162 | 91.26 355 | 97.26 151 | 89.56 151 | 90.64 176 | 90.56 313 | 88.35 64 | 97.11 237 | 79.53 283 | 96.07 152 | 99.03 116 |
| Fangjinhua Wang, Silvano Galliani, Christoph Vogel, Pablo Speciale, Marc Pollefeys: PatchmatchNet: Learned Multi-View Patchmatch Stereo. |
| test1111 | | | 92.12 159 | 91.19 162 | 94.94 150 | 96.15 173 | 87.36 206 | 98.12 208 | 94.84 308 | 90.85 113 | 90.97 170 | 97.26 157 | 65.60 308 | 98.37 169 | 89.74 179 | 97.14 133 | 99.07 115 |
|
| gg-mvs-nofinetune | | | 90.00 200 | 87.71 226 | 96.89 71 | 96.15 173 | 94.69 45 | 85.15 373 | 97.74 72 | 68.32 373 | 92.97 143 | 60.16 386 | 96.10 3 | 96.84 248 | 93.89 127 | 98.87 88 | 99.14 106 |
|
| MDTV_nov1_ep13 | | | | 90.47 179 | | 96.14 175 | 88.55 179 | 91.34 354 | 97.51 125 | 89.58 149 | 92.24 150 | 90.50 317 | 86.99 93 | 97.61 218 | 77.64 298 | 92.34 190 | |
|
| IS-MVSNet | | | 93.00 140 | 92.51 135 | 94.49 166 | 96.14 175 | 87.36 206 | 98.31 194 | 95.70 269 | 88.58 177 | 90.17 184 | 97.50 147 | 83.02 162 | 97.22 234 | 87.06 205 | 96.07 152 | 98.90 130 |
|
| Vis-MVSNet (Re-imp) | | | 93.26 134 | 93.00 126 | 94.06 186 | 96.14 175 | 86.71 220 | 98.68 146 | 96.70 192 | 88.30 190 | 89.71 192 | 97.64 141 | 85.43 127 | 96.39 273 | 88.06 198 | 96.32 144 | 99.08 113 |
|
| thisisatest0515 | | | 94.75 88 | 94.19 90 | 96.43 94 | 96.13 178 | 92.64 86 | 99.47 53 | 97.60 104 | 87.55 215 | 93.17 139 | 97.59 143 | 94.71 13 | 98.42 168 | 88.28 194 | 93.20 177 | 98.24 171 |
|
| FA-MVS(test-final) | | | 92.22 158 | 91.08 164 | 95.64 125 | 96.05 179 | 88.98 165 | 91.60 350 | 97.25 152 | 86.99 221 | 91.84 153 | 92.12 272 | 83.03 161 | 99.00 148 | 86.91 210 | 93.91 173 | 98.93 127 |
|
| test_fmvsmconf_n | | | 96.78 31 | 96.84 26 | 96.61 83 | 95.99 180 | 90.25 129 | 99.90 2 | 98.13 42 | 96.68 9 | 98.42 32 | 98.92 72 | 85.34 129 | 99.88 52 | 99.12 20 | 99.08 73 | 99.70 52 |
|
| ab-mvs | | | 91.05 179 | 89.17 197 | 96.69 80 | 95.96 181 | 91.72 95 | 92.62 341 | 97.23 156 | 85.61 250 | 89.74 190 | 93.89 243 | 68.55 280 | 99.42 121 | 91.09 159 | 87.84 227 | 98.92 129 |
|
| Fast-Effi-MVS+ | | | 91.72 165 | 90.79 173 | 94.49 166 | 95.89 182 | 87.40 205 | 99.54 47 | 95.70 269 | 85.01 262 | 89.28 195 | 95.68 210 | 77.75 218 | 97.57 223 | 83.22 254 | 95.06 164 | 98.51 156 |
|
| EPP-MVSNet | | | 93.75 116 | 93.67 107 | 94.01 189 | 95.86 183 | 85.70 250 | 98.67 148 | 97.66 89 | 84.46 269 | 91.36 166 | 97.18 163 | 91.16 31 | 97.79 201 | 92.93 144 | 93.75 174 | 98.53 155 |
|
| mvsany_test1 | | | 94.57 97 | 95.09 77 | 92.98 209 | 95.84 184 | 82.07 303 | 98.76 140 | 95.24 297 | 92.87 75 | 96.45 85 | 98.71 92 | 84.81 136 | 99.15 139 | 97.68 53 | 95.49 160 | 97.73 183 |
|
| Effi-MVS+ | | | 93.87 112 | 93.15 120 | 96.02 111 | 95.79 185 | 90.76 119 | 96.70 280 | 95.78 264 | 86.98 224 | 95.71 100 | 97.17 164 | 79.58 203 | 98.01 190 | 94.57 119 | 96.09 150 | 99.31 92 |
|
| tpm cat1 | | | 88.89 217 | 87.27 233 | 93.76 196 | 95.79 185 | 85.32 259 | 90.76 360 | 97.09 174 | 76.14 348 | 85.72 225 | 88.59 338 | 82.92 163 | 98.04 188 | 76.96 302 | 91.43 208 | 97.90 181 |
|
| thisisatest0530 | | | 94.00 106 | 93.52 109 | 95.43 131 | 95.76 187 | 90.02 143 | 98.99 118 | 97.60 104 | 86.58 233 | 91.74 155 | 97.36 154 | 94.78 12 | 98.34 170 | 86.37 216 | 92.48 188 | 97.94 180 |
|
| 3Dnovator+ | | 87.72 8 | 93.43 126 | 91.84 149 | 98.17 22 | 95.73 188 | 95.08 32 | 98.92 125 | 97.04 177 | 91.42 104 | 81.48 284 | 97.60 142 | 74.60 232 | 99.79 80 | 90.84 164 | 98.97 81 | 99.64 62 |
|
| MVS | | | 93.92 109 | 92.28 138 | 98.83 7 | 95.69 189 | 96.82 8 | 96.22 295 | 98.17 37 | 84.89 264 | 84.34 238 | 98.61 101 | 79.32 207 | 99.83 71 | 93.88 128 | 99.43 59 | 99.86 29 |
|
| cascas | | | 90.93 181 | 89.33 195 | 95.76 120 | 95.69 189 | 93.03 78 | 98.99 118 | 96.59 199 | 80.49 327 | 86.79 218 | 94.45 232 | 65.23 311 | 98.60 165 | 93.52 135 | 92.18 194 | 95.66 231 |
|
| QAPM | | | 91.41 170 | 89.49 190 | 97.17 54 | 95.66 191 | 93.42 70 | 98.60 158 | 97.51 125 | 80.92 325 | 81.39 285 | 97.41 152 | 72.89 252 | 99.87 56 | 82.33 264 | 98.68 96 | 98.21 173 |
|
| tttt0517 | | | 93.30 131 | 93.01 125 | 94.17 181 | 95.57 192 | 86.47 223 | 98.51 168 | 97.60 104 | 85.99 244 | 90.55 177 | 97.19 162 | 94.80 11 | 98.31 171 | 85.06 230 | 91.86 198 | 97.74 182 |
|
| 1112_ss | | | 92.71 143 | 91.55 155 | 96.20 102 | 95.56 193 | 91.12 107 | 98.48 173 | 94.69 315 | 88.29 191 | 86.89 216 | 98.50 106 | 87.02 91 | 98.66 163 | 84.75 234 | 89.77 222 | 98.81 139 |
|
| diffmvs |  | | 94.59 96 | 94.19 90 | 95.81 118 | 95.54 194 | 90.69 121 | 98.70 144 | 95.68 271 | 91.61 97 | 95.96 92 | 97.81 129 | 80.11 199 | 98.06 185 | 96.52 78 | 95.76 155 | 98.67 150 |
| Fangjinhua Wang, Qingshan Xu, Yew-Soon Ong, Marc Pollefeys: Lightweight and Accurate Multi-View Stereo With Confidence-Aware Diffusion Model. IEEE T-PAMI 2025 |
| LCM-MVSNet-Re | | | 88.59 229 | 88.61 210 | 88.51 310 | 95.53 195 | 72.68 360 | 96.85 272 | 88.43 379 | 88.45 181 | 73.14 344 | 90.63 308 | 75.82 225 | 94.38 339 | 92.95 143 | 95.71 157 | 98.48 158 |
|
| Test_1112_low_res | | | 92.27 156 | 90.97 166 | 96.18 103 | 95.53 195 | 91.10 109 | 98.47 175 | 94.66 316 | 88.28 192 | 86.83 217 | 93.50 254 | 87.00 92 | 98.65 164 | 84.69 235 | 89.74 223 | 98.80 140 |
|
| PCF-MVS | | 89.78 5 | 91.26 172 | 89.63 187 | 96.16 106 | 95.44 197 | 91.58 99 | 95.29 315 | 96.10 233 | 85.07 259 | 82.75 253 | 97.45 150 | 78.28 215 | 99.78 82 | 80.60 279 | 95.65 158 | 97.12 199 |
| Andreas Kuhn, Shan Lin, Oliver Erdler: Plane Completion and Filtering for Multi-View Stereo Reconstruction. GCPR 2019 |
| EC-MVSNet | | | 95.09 80 | 95.17 73 | 94.84 154 | 95.42 198 | 88.17 184 | 99.48 51 | 95.92 250 | 91.47 101 | 97.34 61 | 98.36 114 | 82.77 166 | 97.41 230 | 97.24 60 | 98.58 99 | 98.94 126 |
|
| 3Dnovator | | 87.35 11 | 93.17 137 | 91.77 151 | 97.37 47 | 95.41 199 | 93.07 76 | 98.82 132 | 97.85 56 | 91.53 99 | 82.56 259 | 97.58 144 | 71.97 259 | 99.82 74 | 91.01 161 | 99.23 69 | 99.22 101 |
|
| IB-MVS | | 89.43 6 | 92.12 159 | 90.83 172 | 95.98 114 | 95.40 200 | 90.78 118 | 99.81 9 | 98.06 45 | 91.23 108 | 85.63 226 | 93.66 249 | 90.63 40 | 98.78 154 | 91.22 158 | 71.85 342 | 98.36 166 |
| Christian Sormann, Mattia Rossi, Andreas Kuhn and Friedrich Fraundorfer: IB-MVS: An Iterative Algorithm for Deep Multi-View Stereo based on Binary Decisions. BMVC 2021 |
| test_cas_vis1_n_1920 | | | 93.86 113 | 93.74 106 | 94.22 179 | 95.39 201 | 86.08 239 | 99.73 20 | 96.07 236 | 96.38 15 | 97.19 67 | 97.78 132 | 65.46 310 | 99.86 61 | 96.71 70 | 98.92 85 | 96.73 211 |
|
| miper_ehance_all_eth | | | 88.94 215 | 88.12 221 | 91.40 243 | 95.32 202 | 86.93 216 | 97.85 227 | 95.55 278 | 84.19 272 | 81.97 275 | 91.50 287 | 84.16 142 | 95.91 305 | 84.69 235 | 77.89 293 | 91.36 293 |
|
| 1314 | | | 93.44 125 | 91.98 146 | 97.84 32 | 95.24 203 | 94.38 52 | 96.22 295 | 97.92 53 | 90.18 132 | 82.28 267 | 97.71 137 | 77.63 219 | 99.80 79 | 91.94 154 | 98.67 97 | 99.34 90 |
|
| XVG-OURS | | | 90.83 182 | 90.49 178 | 91.86 232 | 95.23 204 | 81.25 314 | 95.79 310 | 95.92 250 | 88.96 166 | 90.02 187 | 98.03 126 | 71.60 264 | 99.35 131 | 91.06 160 | 87.78 228 | 94.98 235 |
|
| casdiffmvs_mvg |  | | 94.00 106 | 93.33 114 | 96.03 110 | 95.22 205 | 90.90 117 | 99.09 105 | 95.99 239 | 90.58 121 | 91.55 161 | 97.37 153 | 79.91 201 | 98.06 185 | 95.01 107 | 95.22 162 | 99.13 108 |
| Fangjinhua Wang, Qingshan Xu, Yew-Soon Ong, Marc Pollefeys: Lightweight and Accurate Multi-View Stereo With Confidence-Aware Diffusion Model. IEEE T-PAMI 2025 |
| TESTMET0.1,1 | | | 93.82 114 | 93.26 117 | 95.49 129 | 95.21 206 | 90.25 129 | 99.15 96 | 97.54 118 | 89.18 160 | 91.79 154 | 94.87 225 | 89.13 54 | 97.63 216 | 86.21 217 | 96.29 147 | 98.60 153 |
|
| xiu_mvs_v1_base_debu | | | 94.73 89 | 93.98 97 | 96.99 60 | 95.19 207 | 95.24 25 | 98.62 154 | 96.50 207 | 92.99 70 | 97.52 55 | 98.83 80 | 72.37 255 | 99.15 139 | 97.03 63 | 96.74 137 | 96.58 216 |
|
| xiu_mvs_v1_base | | | 94.73 89 | 93.98 97 | 96.99 60 | 95.19 207 | 95.24 25 | 98.62 154 | 96.50 207 | 92.99 70 | 97.52 55 | 98.83 80 | 72.37 255 | 99.15 139 | 97.03 63 | 96.74 137 | 96.58 216 |
|
| xiu_mvs_v1_base_debi | | | 94.73 89 | 93.98 97 | 96.99 60 | 95.19 207 | 95.24 25 | 98.62 154 | 96.50 207 | 92.99 70 | 97.52 55 | 98.83 80 | 72.37 255 | 99.15 139 | 97.03 63 | 96.74 137 | 96.58 216 |
|
| XVG-OURS-SEG-HR | | | 90.95 180 | 90.66 176 | 91.83 233 | 95.18 210 | 81.14 317 | 95.92 302 | 95.92 250 | 88.40 185 | 90.33 183 | 97.85 127 | 70.66 270 | 99.38 126 | 92.83 146 | 88.83 224 | 94.98 235 |
|
| Effi-MVS+-dtu | | | 89.97 202 | 90.68 175 | 87.81 315 | 95.15 211 | 71.98 362 | 97.87 226 | 95.40 288 | 91.92 93 | 87.57 205 | 91.44 288 | 74.27 238 | 96.84 248 | 89.45 181 | 93.10 179 | 94.60 237 |
|
| Syy-MVS | | | 84.10 299 | 84.53 278 | 82.83 346 | 95.14 212 | 65.71 374 | 97.68 239 | 96.66 194 | 86.52 236 | 82.63 256 | 96.84 180 | 68.15 284 | 89.89 370 | 45.62 384 | 91.54 206 | 92.87 244 |
|
| myMVS_eth3d | | | 88.68 228 | 89.07 199 | 87.50 318 | 95.14 212 | 79.74 325 | 97.68 239 | 96.66 194 | 86.52 236 | 82.63 256 | 96.84 180 | 85.22 131 | 89.89 370 | 69.43 344 | 91.54 206 | 92.87 244 |
|
| Vis-MVSNet |  | | 92.64 145 | 91.85 148 | 95.03 148 | 95.12 214 | 88.23 183 | 98.48 173 | 96.81 189 | 91.61 97 | 92.16 152 | 97.22 160 | 71.58 265 | 98.00 191 | 85.85 224 | 97.81 113 | 98.88 131 |
| Jingyang Zhang, Yao Yao, Shiwei Li, Zixin Luo, Tian Fang: Visibility-aware Multiview Stereo Network. BMVC 2020 |
| GBi-Net | | | 86.67 258 | 84.96 266 | 91.80 235 | 95.11 215 | 88.81 173 | 96.77 274 | 95.25 294 | 82.94 295 | 82.12 270 | 90.25 320 | 62.89 320 | 94.97 327 | 79.04 287 | 80.24 281 | 91.62 279 |
|
| test1 | | | 86.67 258 | 84.96 266 | 91.80 235 | 95.11 215 | 88.81 173 | 96.77 274 | 95.25 294 | 82.94 295 | 82.12 270 | 90.25 320 | 62.89 320 | 94.97 327 | 79.04 287 | 80.24 281 | 91.62 279 |
|
| FMVSNet2 | | | 86.90 253 | 84.79 272 | 93.24 204 | 95.11 215 | 92.54 87 | 97.67 241 | 95.86 262 | 82.94 295 | 80.55 291 | 91.17 294 | 62.89 320 | 95.29 322 | 77.23 299 | 79.71 287 | 91.90 273 |
|
| GeoE | | | 90.60 188 | 89.56 188 | 93.72 199 | 95.10 218 | 85.43 255 | 99.41 66 | 94.94 306 | 83.96 277 | 87.21 211 | 96.83 182 | 74.37 236 | 97.05 241 | 80.50 281 | 93.73 175 | 98.67 150 |
|
| baseline | | | 93.91 110 | 93.30 115 | 95.72 121 | 95.10 218 | 90.07 138 | 97.48 246 | 95.91 255 | 91.03 109 | 93.54 135 | 97.68 138 | 79.58 203 | 98.02 189 | 94.27 122 | 95.14 163 | 99.08 113 |
|
| casdiffmvs |  | | 93.98 108 | 93.43 111 | 95.61 127 | 95.07 220 | 89.86 147 | 98.80 134 | 95.84 263 | 90.98 111 | 92.74 145 | 97.66 140 | 79.71 202 | 98.10 182 | 94.72 114 | 95.37 161 | 98.87 133 |
| Fangjinhua Wang, Qingshan Xu, Yew-Soon Ong, Marc Pollefeys: Lightweight and Accurate Multi-View Stereo With Confidence-Aware Diffusion Model. IEEE T-PAMI 2025 |
| MVSFormer | | | 94.71 92 | 94.08 95 | 96.61 83 | 95.05 221 | 94.87 36 | 97.77 232 | 96.17 229 | 86.84 227 | 98.04 46 | 98.52 104 | 85.52 121 | 95.99 298 | 89.83 174 | 98.97 81 | 98.96 121 |
|
| lupinMVS | | | 96.32 42 | 95.94 51 | 97.44 44 | 95.05 221 | 94.87 36 | 99.86 4 | 96.50 207 | 93.82 55 | 98.04 46 | 98.77 83 | 85.52 121 | 98.09 183 | 96.98 66 | 98.97 81 | 99.37 86 |
|
| CostFormer | | | 92.89 141 | 92.48 136 | 94.12 183 | 94.99 223 | 85.89 245 | 92.89 337 | 97.00 183 | 86.98 224 | 95.00 114 | 90.78 300 | 90.05 48 | 97.51 224 | 92.92 145 | 91.73 202 | 98.96 121 |
|
| c3_l | | | 88.19 235 | 87.23 234 | 91.06 250 | 94.97 224 | 86.17 236 | 97.72 236 | 95.38 289 | 83.43 286 | 81.68 282 | 91.37 289 | 82.81 165 | 95.72 311 | 84.04 248 | 73.70 324 | 91.29 297 |
|
| SCA | | | 90.64 187 | 89.25 196 | 94.83 155 | 94.95 225 | 88.83 172 | 96.26 292 | 97.21 158 | 90.06 139 | 90.03 186 | 90.62 309 | 66.61 298 | 96.81 250 | 83.16 255 | 94.36 169 | 98.84 134 |
|
| test-LLR | | | 93.11 138 | 92.68 131 | 94.40 170 | 94.94 226 | 87.27 210 | 99.15 96 | 97.25 152 | 90.21 130 | 91.57 158 | 94.04 235 | 84.89 134 | 97.58 220 | 85.94 221 | 96.13 148 | 98.36 166 |
|
| test-mter | | | 93.27 133 | 92.89 128 | 94.40 170 | 94.94 226 | 87.27 210 | 99.15 96 | 97.25 152 | 88.95 167 | 91.57 158 | 94.04 235 | 88.03 71 | 97.58 220 | 85.94 221 | 96.13 148 | 98.36 166 |
|
| cl____ | | | 87.82 237 | 86.79 241 | 90.89 256 | 94.88 228 | 85.43 255 | 97.81 228 | 95.24 297 | 82.91 299 | 80.71 290 | 91.22 292 | 81.97 185 | 95.84 307 | 81.34 272 | 75.06 308 | 91.40 292 |
|
| DIV-MVS_self_test | | | 87.82 237 | 86.81 240 | 90.87 257 | 94.87 229 | 85.39 257 | 97.81 228 | 95.22 302 | 82.92 298 | 80.76 289 | 91.31 291 | 81.99 183 | 95.81 309 | 81.36 271 | 75.04 309 | 91.42 291 |
|
| tpm2 | | | 91.77 164 | 91.09 163 | 93.82 195 | 94.83 230 | 85.56 254 | 92.51 342 | 97.16 165 | 84.00 275 | 93.83 132 | 90.66 306 | 87.54 77 | 97.17 235 | 87.73 202 | 91.55 205 | 98.72 146 |
|
| PVSNet_0 | | 83.28 16 | 87.31 249 | 85.16 264 | 93.74 198 | 94.78 231 | 84.59 270 | 98.91 126 | 98.69 21 | 89.81 142 | 78.59 315 | 93.23 259 | 61.95 324 | 99.34 132 | 94.75 112 | 55.72 379 | 97.30 195 |
|
| CDS-MVSNet | | | 93.47 124 | 93.04 123 | 94.76 156 | 94.75 232 | 89.45 155 | 98.82 132 | 97.03 179 | 87.91 203 | 90.97 170 | 96.48 192 | 89.06 55 | 96.36 275 | 89.50 180 | 92.81 183 | 98.49 157 |
| Khang Truong Giang, Soohwan Song, Sungho Jo: Curvature-guided dynamic scale networks for Multi-view Stereo. ICLR 2022 |
| gm-plane-assit | | | | | | 94.69 233 | 88.14 185 | | | 88.22 193 | | 97.20 161 | | 98.29 173 | 90.79 166 | | |
|
| eth_miper_zixun_eth | | | 87.76 240 | 87.00 238 | 90.06 278 | 94.67 234 | 82.65 298 | 97.02 267 | 95.37 290 | 84.19 272 | 81.86 280 | 91.58 286 | 81.47 190 | 95.90 306 | 83.24 253 | 73.61 325 | 91.61 282 |
|
| testing3 | | | 87.75 241 | 88.22 219 | 86.36 326 | 94.66 235 | 77.41 342 | 99.52 48 | 97.95 52 | 86.05 243 | 81.12 286 | 96.69 187 | 86.18 113 | 89.31 374 | 61.65 368 | 90.12 220 | 92.35 257 |
|
| RPSCF | | | 85.33 281 | 85.55 259 | 84.67 338 | 94.63 236 | 62.28 377 | 93.73 329 | 93.76 333 | 74.38 355 | 85.23 230 | 97.06 169 | 64.09 314 | 98.31 171 | 80.98 273 | 86.08 240 | 93.41 243 |
|
| miper_lstm_enhance | | | 86.90 253 | 86.20 249 | 89.00 305 | 94.53 237 | 81.19 315 | 96.74 278 | 95.24 297 | 82.33 308 | 80.15 296 | 90.51 316 | 81.99 183 | 94.68 336 | 80.71 277 | 73.58 326 | 91.12 301 |
|
| Patchmatch-test | | | 86.25 267 | 84.06 284 | 92.82 212 | 94.42 238 | 82.88 294 | 82.88 382 | 94.23 327 | 71.58 360 | 79.39 306 | 90.62 309 | 89.00 57 | 96.42 272 | 63.03 364 | 91.37 210 | 99.16 104 |
|
| VDDNet | | | 90.08 199 | 88.54 215 | 94.69 160 | 94.41 239 | 87.68 194 | 98.21 201 | 96.40 212 | 76.21 347 | 93.33 138 | 97.75 134 | 54.93 350 | 98.77 155 | 94.71 115 | 90.96 212 | 97.61 189 |
|
| fmvsm_s_conf0.1_n | | | 95.56 69 | 95.68 62 | 95.20 140 | 94.35 240 | 89.10 160 | 99.50 49 | 97.67 88 | 94.76 32 | 98.68 25 | 99.03 54 | 81.13 195 | 99.86 61 | 98.63 30 | 97.36 127 | 96.63 213 |
|
| test_fmvsmvis_n_1920 | | | 95.47 70 | 95.40 68 | 95.70 122 | 94.33 241 | 90.22 132 | 99.70 24 | 96.98 184 | 96.80 7 | 92.75 144 | 98.89 76 | 82.46 177 | 99.92 39 | 98.36 38 | 98.33 105 | 96.97 207 |
|
| KD-MVS_2432*1600 | | | 82.98 304 | 80.52 312 | 90.38 271 | 94.32 242 | 88.98 165 | 92.87 338 | 95.87 260 | 80.46 328 | 73.79 339 | 87.49 345 | 82.76 168 | 93.29 347 | 70.56 340 | 46.53 388 | 88.87 346 |
|
| miper_refine_blended | | | 82.98 304 | 80.52 312 | 90.38 271 | 94.32 242 | 88.98 165 | 92.87 338 | 95.87 260 | 80.46 328 | 73.79 339 | 87.49 345 | 82.76 168 | 93.29 347 | 70.56 340 | 46.53 388 | 88.87 346 |
|
| EI-MVSNet | | | 89.87 203 | 89.38 194 | 91.36 245 | 94.32 242 | 85.87 246 | 97.61 243 | 96.59 199 | 85.10 257 | 85.51 227 | 97.10 166 | 81.30 194 | 96.56 261 | 83.85 251 | 83.03 268 | 91.64 277 |
|
| CVMVSNet | | | 90.30 192 | 90.91 168 | 88.46 311 | 94.32 242 | 73.58 356 | 97.61 243 | 97.59 108 | 90.16 135 | 88.43 201 | 97.10 166 | 76.83 223 | 92.86 350 | 82.64 261 | 93.54 176 | 98.93 127 |
|
| test_fmvs1_n | | | 91.07 177 | 91.41 158 | 90.06 278 | 94.10 246 | 74.31 352 | 99.18 87 | 94.84 308 | 94.81 31 | 96.37 87 | 97.46 149 | 50.86 363 | 99.82 74 | 97.14 62 | 97.90 111 | 96.04 228 |
|
| IterMVS-LS | | | 88.34 231 | 87.44 229 | 91.04 251 | 94.10 246 | 85.85 247 | 98.10 211 | 95.48 282 | 85.12 256 | 82.03 274 | 91.21 293 | 81.35 193 | 95.63 314 | 83.86 250 | 75.73 305 | 91.63 278 |
| Fangjinhua Wang, Silvano Galliani, Christoph Vogel, Marc Pollefeys: IterMVS: Iterative Probability Estimation for Efficient Multi-View Stereo. |
| TAMVS | | | 92.62 146 | 92.09 144 | 94.20 180 | 94.10 246 | 87.68 194 | 98.41 180 | 96.97 185 | 87.53 216 | 89.74 190 | 96.04 204 | 84.77 138 | 96.49 268 | 88.97 190 | 92.31 191 | 98.42 159 |
|
| PAPM | | | 96.35 40 | 95.94 51 | 97.58 40 | 94.10 246 | 95.25 24 | 98.93 123 | 98.17 37 | 94.26 40 | 93.94 129 | 98.72 89 | 89.68 51 | 97.88 195 | 96.36 80 | 99.29 67 | 99.62 66 |
|
| CLD-MVS | | | 91.06 178 | 90.71 174 | 92.10 228 | 94.05 250 | 86.10 238 | 99.55 42 | 96.29 221 | 94.16 43 | 84.70 233 | 97.17 164 | 69.62 275 | 97.82 199 | 94.74 113 | 86.08 240 | 92.39 252 |
| Zhaoxin Li, Wangmeng Zuo, Zhaoqi Wang, Lei Zhang: Confidence-based Large-scale Dense Multi-view Stereo. IEEE Transaction on Image Processing, 2020 |
| HQP-NCC | | | | | | 93.95 251 | | 99.16 91 | | 93.92 48 | 87.57 205 | | | | | | |
|
| ACMP_Plane | | | | | | 93.95 251 | | 99.16 91 | | 93.92 48 | 87.57 205 | | | | | | |
|
| HQP-MVS | | | 91.50 167 | 91.23 161 | 92.29 222 | 93.95 251 | 86.39 226 | 99.16 91 | 96.37 214 | 93.92 48 | 87.57 205 | 96.67 188 | 73.34 244 | 97.77 203 | 93.82 131 | 86.29 235 | 92.72 246 |
|
| NP-MVS | | | | | | 93.94 254 | 86.22 233 | | | | | 96.67 188 | | | | | |
|
| plane_prior6 | | | | | | 93.92 255 | 86.02 243 | | | | | | 72.92 250 | | | | |
|
| ACMP | | 87.39 10 | 88.71 226 | 88.24 218 | 90.12 277 | 93.91 256 | 81.06 318 | 98.50 169 | 95.67 272 | 89.43 154 | 80.37 293 | 95.55 211 | 65.67 305 | 97.83 198 | 90.55 168 | 84.51 249 | 91.47 287 |
| Qingshan Xu and Wenbing Tao: Planar Prior Assisted PatchMatch Multi-View Stereo. AAAI 2020 |
| plane_prior1 | | | | | | 93.90 257 | | | | | | | | | | | |
|
| HQP_MVS | | | 91.26 172 | 90.95 167 | 92.16 226 | 93.84 258 | 86.07 241 | 99.02 114 | 96.30 218 | 93.38 64 | 86.99 212 | 96.52 190 | 72.92 250 | 97.75 209 | 93.46 136 | 86.17 238 | 92.67 248 |
|
| plane_prior7 | | | | | | 93.84 258 | 85.73 249 | | | | | | | | | | |
|
| dmvs_re | | | 88.69 227 | 88.06 222 | 90.59 263 | 93.83 260 | 78.68 333 | 95.75 311 | 96.18 228 | 87.99 200 | 84.48 237 | 96.32 198 | 67.52 291 | 96.94 245 | 84.98 232 | 85.49 244 | 96.14 226 |
|
| MVS-HIRNet | | | 79.01 323 | 75.13 335 | 90.66 262 | 93.82 261 | 81.69 306 | 85.16 372 | 93.75 334 | 54.54 382 | 74.17 337 | 59.15 388 | 57.46 339 | 96.58 260 | 63.74 361 | 94.38 168 | 93.72 240 |
|
| FMVSNet5 | | | 82.29 307 | 80.54 311 | 87.52 317 | 93.79 262 | 84.01 278 | 93.73 329 | 92.47 351 | 76.92 345 | 74.27 336 | 86.15 356 | 63.69 318 | 89.24 375 | 69.07 345 | 74.79 312 | 89.29 341 |
|
| ACMH+ | | 83.78 15 | 84.21 295 | 82.56 300 | 89.15 302 | 93.73 263 | 79.16 328 | 96.43 285 | 94.28 326 | 81.09 322 | 74.00 338 | 94.03 237 | 54.58 351 | 97.67 212 | 76.10 309 | 78.81 289 | 90.63 317 |
|
| ACMM | | 86.95 13 | 88.77 224 | 88.22 219 | 90.43 269 | 93.61 264 | 81.34 312 | 98.50 169 | 95.92 250 | 87.88 204 | 83.85 242 | 95.20 221 | 67.20 294 | 97.89 194 | 86.90 211 | 84.90 247 | 92.06 270 |
| Qingshan Xu and Wenbing Tao: Multi-Scale Geometric Consistency Guided Multi-View Stereo. CVPR 2019 |
| OpenMVS |  | 85.28 14 | 90.75 184 | 88.84 204 | 96.48 91 | 93.58 265 | 93.51 68 | 98.80 134 | 97.41 143 | 82.59 301 | 78.62 313 | 97.49 148 | 68.00 287 | 99.82 74 | 84.52 239 | 98.55 101 | 96.11 227 |
|
| IterMVS | | | 85.81 274 | 84.67 275 | 89.22 300 | 93.51 266 | 83.67 283 | 96.32 289 | 94.80 311 | 85.09 258 | 78.69 311 | 90.17 326 | 66.57 300 | 93.17 349 | 79.48 285 | 77.42 299 | 90.81 308 |
| Fangjinhua Wang, Silvano Galliani, Christoph Vogel, Marc Pollefeys: IterMVS: Iterative Probability Estimation for Efficient Multi-View Stereo. |
| CR-MVSNet | | | 88.83 221 | 87.38 231 | 93.16 206 | 93.47 267 | 86.24 231 | 84.97 375 | 94.20 328 | 88.92 170 | 90.76 174 | 86.88 352 | 84.43 139 | 94.82 332 | 70.64 339 | 92.17 195 | 98.41 160 |
|
| RPMNet | | | 85.07 284 | 81.88 301 | 94.64 163 | 93.47 267 | 86.24 231 | 84.97 375 | 97.21 158 | 64.85 380 | 90.76 174 | 78.80 377 | 80.95 196 | 99.27 135 | 53.76 379 | 92.17 195 | 98.41 160 |
|
| IterMVS-SCA-FT | | | 85.73 277 | 84.64 276 | 89.00 305 | 93.46 269 | 82.90 292 | 96.27 290 | 94.70 314 | 85.02 261 | 78.62 313 | 90.35 318 | 66.61 298 | 93.33 346 | 79.38 286 | 77.36 300 | 90.76 312 |
|
| Fast-Effi-MVS+-dtu | | | 88.84 219 | 88.59 212 | 89.58 293 | 93.44 270 | 78.18 337 | 98.65 150 | 94.62 317 | 88.46 180 | 84.12 240 | 95.37 218 | 68.91 277 | 96.52 264 | 82.06 267 | 91.70 203 | 94.06 238 |
|
| Patchmtry | | | 83.61 303 | 81.64 303 | 89.50 295 | 93.36 271 | 82.84 295 | 84.10 378 | 94.20 328 | 69.47 370 | 79.57 304 | 86.88 352 | 84.43 139 | 94.78 333 | 68.48 348 | 74.30 318 | 90.88 307 |
|
| LPG-MVS_test | | | 88.86 218 | 88.47 216 | 90.06 278 | 93.35 272 | 80.95 319 | 98.22 199 | 95.94 246 | 87.73 210 | 83.17 249 | 96.11 202 | 66.28 302 | 97.77 203 | 90.19 172 | 85.19 245 | 91.46 288 |
|
| LGP-MVS_train | | | | | 90.06 278 | 93.35 272 | 80.95 319 | | 95.94 246 | 87.73 210 | 83.17 249 | 96.11 202 | 66.28 302 | 97.77 203 | 90.19 172 | 85.19 245 | 91.46 288 |
|
| JIA-IIPM | | | 85.97 270 | 84.85 270 | 89.33 299 | 93.23 274 | 73.68 355 | 85.05 374 | 97.13 168 | 69.62 369 | 91.56 160 | 68.03 384 | 88.03 71 | 96.96 243 | 77.89 297 | 93.12 178 | 97.34 194 |
|
| ACMH | | 83.09 17 | 84.60 289 | 82.61 299 | 90.57 264 | 93.18 275 | 82.94 290 | 96.27 290 | 94.92 307 | 81.01 323 | 72.61 350 | 93.61 250 | 56.54 341 | 97.79 201 | 74.31 321 | 81.07 279 | 90.99 304 |
| Qingshan Xu and Wenbing Tao: Multi-Scale Geometric Consistency Guided Multi-View Stereo. CVPR 2019 |
| PatchT | | | 85.44 280 | 83.19 289 | 92.22 223 | 93.13 276 | 83.00 289 | 83.80 381 | 96.37 214 | 70.62 363 | 90.55 177 | 79.63 376 | 84.81 136 | 94.87 330 | 58.18 375 | 91.59 204 | 98.79 141 |
|
| baseline2 | | | 94.04 105 | 93.80 105 | 94.74 158 | 93.07 277 | 90.25 129 | 98.12 208 | 98.16 39 | 89.86 140 | 86.53 220 | 96.95 173 | 95.56 6 | 98.05 187 | 91.44 157 | 94.53 167 | 95.93 229 |
|
| jason | | | 95.40 74 | 94.86 80 | 97.03 57 | 92.91 278 | 94.23 54 | 99.70 24 | 96.30 218 | 93.56 62 | 96.73 80 | 98.52 104 | 81.46 191 | 97.91 192 | 96.08 85 | 98.47 103 | 98.96 121 |
| jason: jason. |
| LTVRE_ROB | | 81.71 19 | 84.59 290 | 82.72 297 | 90.18 275 | 92.89 279 | 83.18 288 | 93.15 334 | 94.74 312 | 78.99 333 | 75.14 334 | 92.69 267 | 65.64 306 | 97.63 216 | 69.46 343 | 81.82 277 | 89.74 334 |
| Andreas Kuhn, Heiko Hirschmüller, Daniel Scharstein, Helmut Mayer: A TV Prior for High-Quality Scalable Multi-View Stereo Reconstruction. International Journal of Computer Vision 2016 |
| VPA-MVSNet | | | 89.10 212 | 87.66 227 | 93.45 201 | 92.56 280 | 91.02 113 | 97.97 221 | 98.32 30 | 86.92 226 | 86.03 222 | 92.01 276 | 68.84 279 | 97.10 239 | 90.92 162 | 75.34 306 | 92.23 260 |
|
| tpm | | | 89.67 205 | 88.95 202 | 91.82 234 | 92.54 281 | 81.43 309 | 92.95 336 | 95.92 250 | 87.81 205 | 90.50 179 | 89.44 332 | 84.99 132 | 95.65 313 | 83.67 252 | 82.71 271 | 98.38 163 |
|
| GA-MVS | | | 90.10 198 | 88.69 208 | 94.33 174 | 92.44 282 | 87.97 190 | 99.08 106 | 96.26 222 | 89.65 145 | 86.92 215 | 93.11 262 | 68.09 285 | 96.96 243 | 82.54 263 | 90.15 219 | 98.05 176 |
|
| test_fmvsmconf0.1_n | | | 95.94 56 | 95.79 59 | 96.40 97 | 92.42 283 | 89.92 145 | 99.79 14 | 96.85 188 | 96.53 13 | 97.22 63 | 98.67 95 | 82.71 170 | 99.84 67 | 98.92 25 | 98.98 80 | 99.43 83 |
|
| FIs | | | 90.70 185 | 89.87 185 | 93.18 205 | 92.29 284 | 91.12 107 | 98.17 205 | 98.25 32 | 89.11 162 | 83.44 244 | 94.82 227 | 82.26 180 | 96.17 291 | 87.76 201 | 82.76 270 | 92.25 258 |
|
| ITE_SJBPF | | | | | 87.93 313 | 92.26 285 | 76.44 345 | | 93.47 340 | 87.67 213 | 79.95 299 | 95.49 214 | 56.50 342 | 97.38 231 | 75.24 314 | 82.33 274 | 89.98 331 |
|
| UniMVSNet (Re) | | | 89.50 209 | 88.32 217 | 93.03 207 | 92.21 286 | 90.96 115 | 98.90 127 | 98.39 27 | 89.13 161 | 83.22 246 | 92.03 274 | 81.69 187 | 96.34 281 | 86.79 212 | 72.53 335 | 91.81 274 |
|
| UniMVSNet_NR-MVSNet | | | 89.60 206 | 88.55 214 | 92.75 215 | 92.17 287 | 90.07 138 | 98.74 141 | 98.15 40 | 88.37 186 | 83.21 247 | 93.98 240 | 82.86 164 | 95.93 302 | 86.95 208 | 72.47 336 | 92.25 258 |
|
| TinyColmap | | | 80.42 317 | 77.94 322 | 87.85 314 | 92.09 288 | 78.58 334 | 93.74 328 | 89.94 372 | 74.99 351 | 69.77 355 | 91.78 282 | 46.09 370 | 97.58 220 | 65.17 360 | 77.89 293 | 87.38 354 |
|
| fmvsm_s_conf0.1_n_a | | | 95.16 78 | 95.15 74 | 95.18 141 | 92.06 289 | 88.94 168 | 99.29 79 | 97.53 119 | 94.46 36 | 98.98 16 | 98.99 58 | 79.99 200 | 99.85 65 | 98.24 45 | 96.86 136 | 96.73 211 |
|
| tt0805 | | | 86.50 263 | 84.79 272 | 91.63 241 | 91.97 290 | 81.49 308 | 96.49 284 | 97.38 146 | 82.24 309 | 82.44 261 | 95.82 208 | 51.22 360 | 98.25 176 | 84.55 238 | 80.96 280 | 95.13 234 |
|
| MS-PatchMatch | | | 86.75 256 | 85.92 253 | 89.22 300 | 91.97 290 | 82.47 300 | 96.91 269 | 96.14 231 | 83.74 280 | 77.73 320 | 93.53 253 | 58.19 337 | 97.37 233 | 76.75 305 | 98.35 104 | 87.84 351 |
|
| VPNet | | | 88.30 232 | 86.57 243 | 93.49 200 | 91.95 292 | 91.35 101 | 98.18 203 | 97.20 162 | 88.61 175 | 84.52 236 | 94.89 224 | 62.21 323 | 96.76 253 | 89.34 184 | 72.26 339 | 92.36 254 |
|
| FMVSNet1 | | | 83.94 300 | 81.32 308 | 91.80 235 | 91.94 293 | 88.81 173 | 96.77 274 | 95.25 294 | 77.98 338 | 78.25 318 | 90.25 320 | 50.37 364 | 94.97 327 | 73.27 330 | 77.81 297 | 91.62 279 |
|
| WR-MVS | | | 88.54 230 | 87.22 235 | 92.52 220 | 91.93 294 | 89.50 154 | 98.56 163 | 97.84 57 | 86.99 221 | 81.87 278 | 93.81 244 | 74.25 239 | 95.92 304 | 85.29 227 | 74.43 316 | 92.12 267 |
|
| D2MVS | | | 87.96 236 | 87.39 230 | 89.70 290 | 91.84 295 | 83.40 285 | 98.31 194 | 98.49 23 | 88.04 198 | 78.23 319 | 90.26 319 | 73.57 242 | 96.79 252 | 84.21 242 | 83.53 263 | 88.90 345 |
|
| FC-MVSNet-test | | | 90.22 194 | 89.40 193 | 92.67 219 | 91.78 296 | 89.86 147 | 97.89 223 | 98.22 35 | 88.81 172 | 82.96 252 | 94.66 229 | 81.90 186 | 95.96 300 | 85.89 223 | 82.52 273 | 92.20 264 |
|
| MIMVSNet | | | 84.48 292 | 81.83 302 | 92.42 221 | 91.73 297 | 87.36 206 | 85.52 371 | 94.42 323 | 81.40 318 | 81.91 276 | 87.58 342 | 51.92 358 | 92.81 352 | 73.84 326 | 88.15 226 | 97.08 203 |
|
| USDC | | | 84.74 286 | 82.93 291 | 90.16 276 | 91.73 297 | 83.54 284 | 95.00 317 | 93.30 342 | 88.77 173 | 73.19 343 | 93.30 257 | 53.62 354 | 97.65 215 | 75.88 311 | 81.54 278 | 89.30 340 |
|
| test_vis1_n | | | 90.40 189 | 90.27 180 | 90.79 259 | 91.55 299 | 76.48 344 | 99.12 103 | 94.44 320 | 94.31 39 | 97.34 61 | 96.95 173 | 43.60 374 | 99.42 121 | 97.57 55 | 97.60 118 | 96.47 220 |
|
| nrg030 | | | 90.23 193 | 88.87 203 | 94.32 175 | 91.53 300 | 93.54 67 | 98.79 138 | 95.89 258 | 88.12 196 | 84.55 235 | 94.61 230 | 78.80 212 | 96.88 247 | 92.35 152 | 75.21 307 | 92.53 250 |
|
| DU-MVS | | | 88.83 221 | 87.51 228 | 92.79 213 | 91.46 301 | 90.07 138 | 98.71 142 | 97.62 101 | 88.87 171 | 83.21 247 | 93.68 247 | 74.63 230 | 95.93 302 | 86.95 208 | 72.47 336 | 92.36 254 |
|
| NR-MVSNet | | | 87.74 244 | 86.00 252 | 92.96 210 | 91.46 301 | 90.68 122 | 96.65 281 | 97.42 142 | 88.02 199 | 73.42 341 | 93.68 247 | 77.31 220 | 95.83 308 | 84.26 241 | 71.82 343 | 92.36 254 |
|
| tfpnnormal | | | 83.65 301 | 81.35 307 | 90.56 266 | 91.37 303 | 88.06 187 | 97.29 253 | 97.87 55 | 78.51 337 | 76.20 324 | 90.91 297 | 64.78 312 | 96.47 269 | 61.71 367 | 73.50 327 | 87.13 359 |
|
| test_vis1_rt | | | 81.31 313 | 80.05 316 | 85.11 333 | 91.29 304 | 70.66 366 | 98.98 120 | 77.39 394 | 85.76 248 | 68.80 358 | 82.40 365 | 36.56 381 | 99.44 117 | 92.67 149 | 86.55 234 | 85.24 369 |
|
| test_0402 | | | 78.81 325 | 76.33 330 | 86.26 327 | 91.18 305 | 78.44 336 | 95.88 305 | 91.34 366 | 68.55 371 | 70.51 354 | 89.91 327 | 52.65 357 | 94.99 326 | 47.14 383 | 79.78 286 | 85.34 368 |
|
| test0.0.03 1 | | | 88.96 214 | 88.61 210 | 90.03 282 | 91.09 306 | 84.43 272 | 98.97 121 | 97.02 181 | 90.21 130 | 80.29 294 | 96.31 199 | 84.89 134 | 91.93 364 | 72.98 332 | 85.70 243 | 93.73 239 |
|
| WR-MVS_H | | | 86.53 262 | 85.49 260 | 89.66 292 | 91.04 307 | 83.31 287 | 97.53 245 | 98.20 36 | 84.95 263 | 79.64 302 | 90.90 298 | 78.01 217 | 95.33 321 | 76.29 308 | 72.81 332 | 90.35 321 |
|
| CP-MVSNet | | | 86.54 261 | 85.45 261 | 89.79 288 | 91.02 308 | 82.78 296 | 97.38 249 | 97.56 114 | 85.37 253 | 79.53 305 | 93.03 263 | 71.86 261 | 95.25 323 | 79.92 282 | 73.43 330 | 91.34 294 |
|
| TranMVSNet+NR-MVSNet | | | 87.75 241 | 86.31 247 | 92.07 229 | 90.81 309 | 88.56 178 | 98.33 191 | 97.18 163 | 87.76 207 | 81.87 278 | 93.90 242 | 72.45 254 | 95.43 318 | 83.13 257 | 71.30 346 | 92.23 260 |
|
| PS-CasMVS | | | 85.81 274 | 84.58 277 | 89.49 297 | 90.77 310 | 82.11 302 | 97.20 260 | 97.36 148 | 84.83 265 | 79.12 310 | 92.84 266 | 67.42 293 | 95.16 325 | 78.39 295 | 73.25 331 | 91.21 299 |
|
| DeepMVS_CX |  | | | | 76.08 357 | 90.74 311 | 51.65 390 | | 90.84 368 | 86.47 239 | 57.89 378 | 87.98 339 | 35.88 382 | 92.60 354 | 65.77 358 | 65.06 363 | 83.97 373 |
|
| mvsmamba | | | 89.99 201 | 89.42 192 | 91.69 240 | 90.64 312 | 86.34 229 | 98.40 183 | 92.27 353 | 91.01 110 | 84.80 232 | 94.93 223 | 76.12 224 | 96.51 265 | 92.81 147 | 83.84 258 | 92.21 262 |
|
| OPM-MVS | | | 89.76 204 | 89.15 198 | 91.57 242 | 90.53 313 | 85.58 253 | 98.11 210 | 95.93 249 | 92.88 74 | 86.05 221 | 96.47 193 | 67.06 296 | 97.87 196 | 89.29 187 | 86.08 240 | 91.26 298 |
| Ray L. Khuboni, Hongjun Xu: Octagram Propagation Matching for Multi-Scale View Stereopsis (OPM-MVS). |
| XXY-MVS | | | 87.75 241 | 86.02 251 | 92.95 211 | 90.46 314 | 89.70 150 | 97.71 238 | 95.90 256 | 84.02 274 | 80.95 287 | 94.05 234 | 67.51 292 | 97.10 239 | 85.16 228 | 78.41 290 | 92.04 271 |
|
| UniMVSNet_ETH3D | | | 85.65 279 | 83.79 287 | 91.21 246 | 90.41 315 | 80.75 321 | 95.36 314 | 95.78 264 | 78.76 336 | 81.83 281 | 94.33 233 | 49.86 365 | 96.66 254 | 84.30 240 | 83.52 264 | 96.22 225 |
|
| RRT_MVS | | | 88.91 216 | 88.56 213 | 89.93 283 | 90.31 316 | 81.61 307 | 98.08 214 | 96.38 213 | 89.30 156 | 82.41 264 | 94.84 226 | 73.15 248 | 96.04 297 | 90.38 169 | 82.23 275 | 92.15 265 |
|
| v10 | | | 85.73 277 | 84.01 285 | 90.87 257 | 90.03 317 | 86.73 219 | 97.20 260 | 95.22 302 | 81.25 320 | 79.85 301 | 89.75 329 | 73.30 246 | 96.28 287 | 76.87 303 | 72.64 334 | 89.61 337 |
|
| v8 | | | 86.11 268 | 84.45 279 | 91.10 249 | 89.99 318 | 86.85 217 | 97.24 257 | 95.36 291 | 81.99 312 | 79.89 300 | 89.86 328 | 74.53 234 | 96.39 273 | 78.83 291 | 72.32 338 | 90.05 329 |
|
| V42 | | | 87.00 252 | 85.68 257 | 90.98 253 | 89.91 319 | 86.08 239 | 98.32 193 | 95.61 275 | 83.67 283 | 82.72 254 | 90.67 305 | 74.00 241 | 96.53 263 | 81.94 269 | 74.28 319 | 90.32 322 |
|
| XVG-ACMP-BASELINE | | | 85.86 272 | 84.95 268 | 88.57 309 | 89.90 320 | 77.12 343 | 94.30 323 | 95.60 276 | 87.40 218 | 82.12 270 | 92.99 265 | 53.42 355 | 97.66 213 | 85.02 231 | 83.83 259 | 90.92 306 |
|
| PEN-MVS | | | 85.21 282 | 83.93 286 | 89.07 304 | 89.89 321 | 81.31 313 | 97.09 263 | 97.24 155 | 84.45 270 | 78.66 312 | 92.68 268 | 68.44 282 | 94.87 330 | 75.98 310 | 70.92 347 | 91.04 303 |
|
| test_fmvs2 | | | 85.10 283 | 85.45 261 | 84.02 341 | 89.85 322 | 65.63 375 | 98.49 171 | 92.59 349 | 90.45 125 | 85.43 229 | 93.32 255 | 43.94 372 | 96.59 257 | 90.81 165 | 84.19 255 | 89.85 333 |
|
| v1144 | | | 86.83 255 | 85.31 263 | 91.40 243 | 89.75 323 | 87.21 214 | 98.31 194 | 95.45 284 | 83.22 289 | 82.70 255 | 90.78 300 | 73.36 243 | 96.36 275 | 79.49 284 | 74.69 313 | 90.63 317 |
|
| TransMVSNet (Re) | | | 81.97 309 | 79.61 318 | 89.08 303 | 89.70 324 | 84.01 278 | 97.26 255 | 91.85 361 | 78.84 334 | 73.07 347 | 91.62 284 | 67.17 295 | 95.21 324 | 67.50 351 | 59.46 373 | 88.02 350 |
|
| v2v482 | | | 87.27 250 | 85.76 255 | 91.78 239 | 89.59 325 | 87.58 198 | 98.56 163 | 95.54 279 | 84.53 268 | 82.51 260 | 91.78 282 | 73.11 249 | 96.47 269 | 82.07 266 | 74.14 322 | 91.30 296 |
|
| pm-mvs1 | | | 84.68 288 | 82.78 295 | 90.40 270 | 89.58 326 | 85.18 261 | 97.31 252 | 94.73 313 | 81.93 314 | 76.05 326 | 92.01 276 | 65.48 309 | 96.11 294 | 78.75 292 | 69.14 349 | 89.91 332 |
|
| pmmvs4 | | | 87.58 247 | 86.17 250 | 91.80 235 | 89.58 326 | 88.92 171 | 97.25 256 | 95.28 293 | 82.54 303 | 80.49 292 | 93.17 261 | 75.62 227 | 96.05 296 | 82.75 260 | 78.90 288 | 90.42 320 |
|
| bld_raw_dy_0_64 | | | 87.82 237 | 86.71 242 | 91.15 248 | 89.54 328 | 85.61 251 | 97.37 250 | 89.16 377 | 89.26 157 | 83.42 245 | 94.50 231 | 65.79 304 | 96.18 289 | 88.00 199 | 83.37 265 | 91.67 276 |
|
| v1192 | | | 86.32 266 | 84.71 274 | 91.17 247 | 89.53 329 | 86.40 225 | 98.13 206 | 95.44 286 | 82.52 304 | 82.42 263 | 90.62 309 | 71.58 265 | 96.33 282 | 77.23 299 | 74.88 310 | 90.79 310 |
|
| v144192 | | | 86.40 264 | 84.89 269 | 90.91 254 | 89.48 330 | 85.59 252 | 98.21 201 | 95.43 287 | 82.45 306 | 82.62 258 | 90.58 312 | 72.79 253 | 96.36 275 | 78.45 294 | 74.04 323 | 90.79 310 |
|
| v148 | | | 86.38 265 | 85.06 265 | 90.37 273 | 89.47 331 | 84.10 277 | 98.52 165 | 95.48 282 | 83.80 279 | 80.93 288 | 90.22 323 | 74.60 232 | 96.31 283 | 80.92 275 | 71.55 344 | 90.69 315 |
|
| v1921920 | | | 86.02 269 | 84.44 280 | 90.77 260 | 89.32 332 | 85.20 260 | 98.10 211 | 95.35 292 | 82.19 310 | 82.25 268 | 90.71 302 | 70.73 268 | 96.30 286 | 76.85 304 | 74.49 315 | 90.80 309 |
|
| v1240 | | | 85.77 276 | 84.11 283 | 90.73 261 | 89.26 333 | 85.15 263 | 97.88 225 | 95.23 301 | 81.89 315 | 82.16 269 | 90.55 314 | 69.60 276 | 96.31 283 | 75.59 313 | 74.87 311 | 90.72 314 |
|
| our_test_3 | | | 84.47 293 | 82.80 293 | 89.50 295 | 89.01 334 | 83.90 280 | 97.03 265 | 94.56 318 | 81.33 319 | 75.36 333 | 90.52 315 | 71.69 263 | 94.54 338 | 68.81 346 | 76.84 301 | 90.07 327 |
|
| ppachtmachnet_test | | | 83.63 302 | 81.57 305 | 89.80 287 | 89.01 334 | 85.09 264 | 97.13 262 | 94.50 319 | 78.84 334 | 76.14 325 | 91.00 296 | 69.78 272 | 94.61 337 | 63.40 362 | 74.36 317 | 89.71 336 |
|
| DTE-MVSNet | | | 84.14 297 | 82.80 293 | 88.14 312 | 88.95 336 | 79.87 324 | 96.81 273 | 96.24 223 | 83.50 285 | 77.60 321 | 92.52 270 | 67.89 289 | 94.24 341 | 72.64 334 | 69.05 350 | 90.32 322 |
|
| PS-MVSNAJss | | | 89.54 208 | 89.05 200 | 91.00 252 | 88.77 337 | 84.36 273 | 97.39 247 | 95.97 241 | 88.47 178 | 81.88 277 | 93.80 245 | 82.48 174 | 96.50 266 | 89.34 184 | 83.34 267 | 92.15 265 |
|
| Baseline_NR-MVSNet | | | 85.83 273 | 84.82 271 | 88.87 308 | 88.73 338 | 83.34 286 | 98.63 153 | 91.66 362 | 80.41 330 | 82.44 261 | 91.35 290 | 74.63 230 | 95.42 319 | 84.13 244 | 71.39 345 | 87.84 351 |
|
| MVP-Stereo | | | 86.61 260 | 85.83 254 | 88.93 307 | 88.70 339 | 83.85 281 | 96.07 299 | 94.41 324 | 82.15 311 | 75.64 331 | 91.96 279 | 67.65 290 | 96.45 271 | 77.20 301 | 98.72 95 | 86.51 362 |
| Qingsong Yan: MVP-Stereo: A Parallel Multi-View Patchmatch Stereo Method with Dilation Matching for Photogrammetric Application. |
| EU-MVSNet | | | 84.19 296 | 84.42 281 | 83.52 344 | 88.64 340 | 67.37 373 | 96.04 300 | 95.76 266 | 85.29 254 | 78.44 316 | 93.18 260 | 70.67 269 | 91.48 366 | 75.79 312 | 75.98 303 | 91.70 275 |
|
| pmmvs5 | | | 85.87 271 | 84.40 282 | 90.30 274 | 88.53 341 | 84.23 274 | 98.60 158 | 93.71 335 | 81.53 317 | 80.29 294 | 92.02 275 | 64.51 313 | 95.52 316 | 82.04 268 | 78.34 291 | 91.15 300 |
|
| MDA-MVSNet-bldmvs | | | 77.82 331 | 74.75 337 | 87.03 322 | 88.33 342 | 78.52 335 | 96.34 288 | 92.85 346 | 75.57 349 | 48.87 384 | 87.89 340 | 57.32 340 | 92.49 358 | 60.79 369 | 64.80 364 | 90.08 326 |
|
| N_pmnet | | | 70.19 343 | 69.87 345 | 71.12 364 | 88.24 343 | 30.63 403 | 95.85 308 | 28.70 402 | 70.18 366 | 68.73 359 | 86.55 354 | 64.04 315 | 93.81 342 | 53.12 380 | 73.46 328 | 88.94 344 |
|
| v7n | | | 84.42 294 | 82.75 296 | 89.43 298 | 88.15 344 | 81.86 304 | 96.75 277 | 95.67 272 | 80.53 326 | 78.38 317 | 89.43 333 | 69.89 271 | 96.35 280 | 73.83 327 | 72.13 340 | 90.07 327 |
|
| SixPastTwentyTwo | | | 82.63 306 | 81.58 304 | 85.79 330 | 88.12 345 | 71.01 365 | 95.17 316 | 92.54 350 | 84.33 271 | 72.93 348 | 92.08 273 | 60.41 331 | 95.61 315 | 74.47 320 | 74.15 321 | 90.75 313 |
|
| test_djsdf | | | 88.26 234 | 87.73 225 | 89.84 286 | 88.05 346 | 82.21 301 | 97.77 232 | 96.17 229 | 86.84 227 | 82.41 264 | 91.95 280 | 72.07 258 | 95.99 298 | 89.83 174 | 84.50 250 | 91.32 295 |
|
| mvs_tets | | | 87.09 251 | 86.22 248 | 89.71 289 | 87.87 347 | 81.39 311 | 96.73 279 | 95.90 256 | 88.19 194 | 79.99 298 | 93.61 250 | 59.96 332 | 96.31 283 | 89.40 183 | 84.34 253 | 91.43 290 |
|
| OurMVSNet-221017-0 | | | 84.13 298 | 83.59 288 | 85.77 331 | 87.81 348 | 70.24 367 | 94.89 318 | 93.65 337 | 86.08 242 | 76.53 323 | 93.28 258 | 61.41 326 | 96.14 293 | 80.95 274 | 77.69 298 | 90.93 305 |
|
| YYNet1 | | | 79.64 322 | 77.04 327 | 87.43 320 | 87.80 349 | 79.98 323 | 96.23 294 | 94.44 320 | 73.83 357 | 51.83 381 | 87.53 343 | 67.96 288 | 92.07 363 | 66.00 357 | 67.75 356 | 90.23 324 |
|
| MDA-MVSNet_test_wron | | | 79.65 321 | 77.05 326 | 87.45 319 | 87.79 350 | 80.13 322 | 96.25 293 | 94.44 320 | 73.87 356 | 51.80 382 | 87.47 347 | 68.04 286 | 92.12 362 | 66.02 356 | 67.79 355 | 90.09 325 |
|
| jajsoiax | | | 87.35 248 | 86.51 245 | 89.87 284 | 87.75 351 | 81.74 305 | 97.03 265 | 95.98 240 | 88.47 178 | 80.15 296 | 93.80 245 | 61.47 325 | 96.36 275 | 89.44 182 | 84.47 252 | 91.50 286 |
|
| K. test v3 | | | 81.04 314 | 79.77 317 | 84.83 336 | 87.41 352 | 70.23 368 | 95.60 313 | 93.93 332 | 83.70 282 | 67.51 365 | 89.35 334 | 55.76 343 | 93.58 345 | 76.67 306 | 68.03 353 | 90.67 316 |
|
| dmvs_testset | | | 77.17 333 | 78.99 320 | 71.71 362 | 87.25 353 | 38.55 399 | 91.44 352 | 81.76 390 | 85.77 247 | 69.49 356 | 95.94 206 | 69.71 274 | 84.37 382 | 52.71 381 | 76.82 302 | 92.21 262 |
|
| testgi | | | 82.29 307 | 81.00 310 | 86.17 328 | 87.24 354 | 74.84 351 | 97.39 247 | 91.62 363 | 88.63 174 | 75.85 330 | 95.42 215 | 46.07 371 | 91.55 365 | 66.87 355 | 79.94 285 | 92.12 267 |
|
| LF4IMVS | | | 81.94 310 | 81.17 309 | 84.25 340 | 87.23 355 | 68.87 372 | 93.35 333 | 91.93 360 | 83.35 288 | 75.40 332 | 93.00 264 | 49.25 368 | 96.65 255 | 78.88 290 | 78.11 292 | 87.22 358 |
|
| EG-PatchMatch MVS | | | 79.92 318 | 77.59 323 | 86.90 323 | 87.06 356 | 77.90 341 | 96.20 297 | 94.06 330 | 74.61 353 | 66.53 369 | 88.76 337 | 40.40 379 | 96.20 288 | 67.02 353 | 83.66 262 | 86.61 360 |
|
| test_fmvsmconf0.01_n | | | 94.14 103 | 93.51 110 | 96.04 109 | 86.79 357 | 89.19 157 | 99.28 81 | 95.94 246 | 95.70 19 | 95.50 104 | 98.49 108 | 73.27 247 | 99.79 80 | 98.28 43 | 98.32 107 | 99.15 105 |
|
| Gipuma |  | | 54.77 355 | 52.22 359 | 62.40 373 | 86.50 358 | 59.37 381 | 50.20 391 | 90.35 371 | 36.52 389 | 41.20 390 | 49.49 391 | 18.33 392 | 81.29 384 | 32.10 390 | 65.34 362 | 46.54 391 |
| S. Galliani, K. Lasinger, K. Schindler: Massively Parallel Multiview Stereopsis by Surface Normal Diffusion. ICCV 2015 |
| anonymousdsp | | | 86.69 257 | 85.75 256 | 89.53 294 | 86.46 359 | 82.94 290 | 96.39 286 | 95.71 268 | 83.97 276 | 79.63 303 | 90.70 303 | 68.85 278 | 95.94 301 | 86.01 218 | 84.02 257 | 89.72 335 |
|
| EGC-MVSNET | | | 60.70 350 | 55.37 354 | 76.72 356 | 86.35 360 | 71.08 363 | 89.96 363 | 84.44 387 | 0.38 399 | 1.50 400 | 84.09 361 | 37.30 380 | 88.10 378 | 40.85 388 | 73.44 329 | 70.97 384 |
|
| test_method | | | 70.10 344 | 68.66 347 | 74.41 361 | 86.30 361 | 55.84 383 | 94.47 320 | 89.82 373 | 35.18 390 | 66.15 370 | 84.75 360 | 30.54 384 | 77.96 391 | 70.40 342 | 60.33 371 | 89.44 339 |
|
| lessismore_v0 | | | | | 85.08 334 | 85.59 362 | 69.28 370 | | 90.56 370 | | 67.68 364 | 90.21 324 | 54.21 353 | 95.46 317 | 73.88 325 | 62.64 367 | 90.50 319 |
|
| CMPMVS |  | 58.40 21 | 80.48 316 | 80.11 315 | 81.59 352 | 85.10 363 | 59.56 380 | 94.14 326 | 95.95 245 | 68.54 372 | 60.71 376 | 93.31 256 | 55.35 348 | 97.87 196 | 83.06 258 | 84.85 248 | 87.33 356 |
| M. Jancosek, T. Pajdla: Multi-View Reconstruction Preserving Weakly-Supported Surfaces. CVPR 2011 |
| Anonymous20231206 | | | 80.76 315 | 79.42 319 | 84.79 337 | 84.78 364 | 72.98 357 | 96.53 282 | 92.97 344 | 79.56 331 | 74.33 335 | 88.83 336 | 61.27 327 | 92.15 361 | 60.59 370 | 75.92 304 | 89.24 342 |
|
| DSMNet-mixed | | | 81.60 312 | 81.43 306 | 82.10 349 | 84.36 365 | 60.79 378 | 93.63 331 | 86.74 382 | 79.00 332 | 79.32 307 | 87.15 350 | 63.87 316 | 89.78 372 | 66.89 354 | 91.92 197 | 95.73 230 |
|
| pmmvs6 | | | 79.90 319 | 77.31 325 | 87.67 316 | 84.17 366 | 78.13 338 | 95.86 307 | 93.68 336 | 67.94 374 | 72.67 349 | 89.62 331 | 50.98 362 | 95.75 310 | 74.80 319 | 66.04 360 | 89.14 343 |
|
| new_pmnet | | | 76.02 334 | 73.71 339 | 82.95 345 | 83.88 367 | 72.85 359 | 91.26 355 | 92.26 354 | 70.44 365 | 62.60 374 | 81.37 369 | 47.64 369 | 92.32 359 | 61.85 366 | 72.10 341 | 83.68 374 |
|
| OpenMVS_ROB |  | 73.86 20 | 77.99 330 | 75.06 336 | 86.77 324 | 83.81 368 | 77.94 340 | 96.38 287 | 91.53 365 | 67.54 375 | 68.38 360 | 87.13 351 | 43.94 372 | 96.08 295 | 55.03 378 | 81.83 276 | 86.29 363 |
|
| test20.03 | | | 78.51 328 | 77.48 324 | 81.62 351 | 83.07 369 | 71.03 364 | 96.11 298 | 92.83 347 | 81.66 316 | 69.31 357 | 89.68 330 | 57.53 338 | 87.29 380 | 58.65 374 | 68.47 351 | 86.53 361 |
|
| Anonymous20240521 | | | 78.63 327 | 76.90 328 | 83.82 342 | 82.82 370 | 72.86 358 | 95.72 312 | 93.57 338 | 73.55 358 | 72.17 351 | 84.79 359 | 49.69 366 | 92.51 357 | 65.29 359 | 74.50 314 | 86.09 364 |
|
| UnsupCasMVSNet_eth | | | 78.90 324 | 76.67 329 | 85.58 332 | 82.81 371 | 74.94 350 | 91.98 345 | 96.31 217 | 84.64 267 | 65.84 371 | 87.71 341 | 51.33 359 | 92.23 360 | 72.89 333 | 56.50 378 | 89.56 338 |
|
| KD-MVS_self_test | | | 77.47 332 | 75.88 332 | 82.24 347 | 81.59 372 | 68.93 371 | 92.83 340 | 94.02 331 | 77.03 344 | 73.14 344 | 83.39 362 | 55.44 347 | 90.42 367 | 67.95 349 | 57.53 376 | 87.38 354 |
|
| CL-MVSNet_self_test | | | 79.89 320 | 78.34 321 | 84.54 339 | 81.56 373 | 75.01 349 | 96.88 271 | 95.62 274 | 81.10 321 | 75.86 329 | 85.81 357 | 68.49 281 | 90.26 368 | 63.21 363 | 56.51 377 | 88.35 348 |
|
| MIMVSNet1 | | | 75.92 335 | 73.30 340 | 83.81 343 | 81.29 374 | 75.57 347 | 92.26 343 | 92.05 358 | 73.09 359 | 67.48 366 | 86.18 355 | 40.87 378 | 87.64 379 | 55.78 377 | 70.68 348 | 88.21 349 |
|
| Patchmatch-RL test | | | 81.90 311 | 80.13 314 | 87.23 321 | 80.71 375 | 70.12 369 | 84.07 379 | 88.19 380 | 83.16 291 | 70.57 352 | 82.18 367 | 87.18 87 | 92.59 355 | 82.28 265 | 62.78 366 | 98.98 119 |
|
| APD_test1 | | | 68.93 345 | 66.98 348 | 74.77 360 | 80.62 376 | 53.15 387 | 87.97 366 | 85.01 385 | 53.76 383 | 59.26 377 | 87.52 344 | 25.19 386 | 89.95 369 | 56.20 376 | 67.33 357 | 81.19 378 |
|
| pmmvs-eth3d | | | 78.71 326 | 76.16 331 | 86.38 325 | 80.25 377 | 81.19 315 | 94.17 325 | 92.13 357 | 77.97 339 | 66.90 368 | 82.31 366 | 55.76 343 | 92.56 356 | 73.63 329 | 62.31 369 | 85.38 366 |
|
| UnsupCasMVSNet_bld | | | 73.85 340 | 70.14 344 | 84.99 335 | 79.44 378 | 75.73 346 | 88.53 365 | 95.24 297 | 70.12 367 | 61.94 375 | 74.81 381 | 41.41 377 | 93.62 344 | 68.65 347 | 51.13 385 | 85.62 365 |
|
| PM-MVS | | | 74.88 338 | 72.85 341 | 80.98 353 | 78.98 379 | 64.75 376 | 90.81 359 | 85.77 383 | 80.95 324 | 68.23 362 | 82.81 363 | 29.08 385 | 92.84 351 | 76.54 307 | 62.46 368 | 85.36 367 |
|
| new-patchmatchnet | | | 74.80 339 | 72.40 342 | 81.99 350 | 78.36 380 | 72.20 361 | 94.44 321 | 92.36 352 | 77.06 343 | 63.47 373 | 79.98 375 | 51.04 361 | 88.85 376 | 60.53 371 | 54.35 380 | 84.92 371 |
|
| test_fmvs3 | | | 75.09 337 | 75.19 334 | 74.81 359 | 77.45 381 | 54.08 385 | 95.93 301 | 90.64 369 | 82.51 305 | 73.29 342 | 81.19 370 | 22.29 388 | 86.29 381 | 85.50 226 | 67.89 354 | 84.06 372 |
|
| WB-MVS | | | 66.44 346 | 66.29 349 | 66.89 367 | 74.84 382 | 44.93 394 | 93.00 335 | 84.09 388 | 71.15 362 | 55.82 379 | 81.63 368 | 63.79 317 | 80.31 389 | 21.85 393 | 50.47 386 | 75.43 380 |
|
| SSC-MVS | | | 65.42 347 | 65.20 350 | 66.06 368 | 73.96 383 | 43.83 395 | 92.08 344 | 83.54 389 | 69.77 368 | 54.73 380 | 80.92 372 | 63.30 319 | 79.92 390 | 20.48 394 | 48.02 387 | 74.44 381 |
|
| pmmvs3 | | | 72.86 341 | 69.76 346 | 82.17 348 | 73.86 384 | 74.19 353 | 94.20 324 | 89.01 378 | 64.23 381 | 67.72 363 | 80.91 373 | 41.48 376 | 88.65 377 | 62.40 365 | 54.02 381 | 83.68 374 |
|
| mvsany_test3 | | | 75.85 336 | 74.52 338 | 79.83 354 | 73.53 385 | 60.64 379 | 91.73 348 | 87.87 381 | 83.91 278 | 70.55 353 | 82.52 364 | 31.12 383 | 93.66 343 | 86.66 214 | 62.83 365 | 85.19 370 |
|
| test_f | | | 71.94 342 | 70.82 343 | 75.30 358 | 72.77 386 | 53.28 386 | 91.62 349 | 89.66 375 | 75.44 350 | 64.47 372 | 78.31 378 | 20.48 389 | 89.56 373 | 78.63 293 | 66.02 361 | 83.05 377 |
|
| ambc | | | | | 79.60 355 | 72.76 387 | 56.61 382 | 76.20 386 | 92.01 359 | | 68.25 361 | 80.23 374 | 23.34 387 | 94.73 334 | 73.78 328 | 60.81 370 | 87.48 353 |
|
| TDRefinement | | | 78.01 329 | 75.31 333 | 86.10 329 | 70.06 388 | 73.84 354 | 93.59 332 | 91.58 364 | 74.51 354 | 73.08 346 | 91.04 295 | 49.63 367 | 97.12 236 | 74.88 317 | 59.47 372 | 87.33 356 |
|
| test_vis3_rt | | | 61.29 349 | 58.75 352 | 68.92 366 | 67.41 389 | 52.84 388 | 91.18 357 | 59.23 401 | 66.96 376 | 41.96 389 | 58.44 389 | 11.37 397 | 94.72 335 | 74.25 322 | 57.97 375 | 59.20 388 |
|
| testf1 | | | 56.38 353 | 53.73 356 | 64.31 371 | 64.84 390 | 45.11 392 | 80.50 384 | 75.94 396 | 38.87 386 | 42.74 386 | 75.07 379 | 11.26 398 | 81.19 385 | 41.11 386 | 53.27 382 | 66.63 385 |
|
| APD_test2 | | | 56.38 353 | 53.73 356 | 64.31 371 | 64.84 390 | 45.11 392 | 80.50 384 | 75.94 396 | 38.87 386 | 42.74 386 | 75.07 379 | 11.26 398 | 81.19 385 | 41.11 386 | 53.27 382 | 66.63 385 |
|
| PMMVS2 | | | 58.97 352 | 55.07 355 | 70.69 365 | 62.72 392 | 55.37 384 | 85.97 370 | 80.52 391 | 49.48 384 | 45.94 385 | 68.31 383 | 15.73 394 | 80.78 387 | 49.79 382 | 37.12 390 | 75.91 379 |
|
| E-PMN | | | 41.02 360 | 40.93 362 | 41.29 377 | 61.97 393 | 33.83 400 | 84.00 380 | 65.17 399 | 27.17 392 | 27.56 392 | 46.72 393 | 17.63 393 | 60.41 396 | 19.32 395 | 18.82 392 | 29.61 392 |
|
| wuyk23d | | | 16.71 364 | 16.73 368 | 16.65 379 | 60.15 394 | 25.22 404 | 41.24 392 | 5.17 403 | 6.56 396 | 5.48 399 | 3.61 399 | 3.64 401 | 22.72 398 | 15.20 397 | 9.52 396 | 1.99 396 |
|
| FPMVS | | | 61.57 348 | 60.32 351 | 65.34 369 | 60.14 395 | 42.44 397 | 91.02 358 | 89.72 374 | 44.15 385 | 42.63 388 | 80.93 371 | 19.02 390 | 80.59 388 | 42.50 385 | 72.76 333 | 73.00 382 |
|
| EMVS | | | 39.96 361 | 39.88 363 | 40.18 378 | 59.57 396 | 32.12 402 | 84.79 377 | 64.57 400 | 26.27 393 | 26.14 394 | 44.18 396 | 18.73 391 | 59.29 397 | 17.03 396 | 17.67 394 | 29.12 393 |
|
| LCM-MVSNet | | | 60.07 351 | 56.37 353 | 71.18 363 | 54.81 397 | 48.67 391 | 82.17 383 | 89.48 376 | 37.95 388 | 49.13 383 | 69.12 382 | 13.75 396 | 81.76 383 | 59.28 372 | 51.63 384 | 83.10 376 |
|
| MVE |  | 44.00 22 | 41.70 359 | 37.64 364 | 53.90 376 | 49.46 398 | 43.37 396 | 65.09 390 | 66.66 398 | 26.19 394 | 25.77 395 | 48.53 392 | 3.58 402 | 63.35 395 | 26.15 392 | 27.28 391 | 54.97 390 |
| Simon Fuhrmann, Fabian Langguth, Michael Goesele: MVE - A Multi-View Reconstruction Environment. EUROGRAPHICS Workshops on Graphics and Cultural Heritage (2014) |
| ANet_high | | | 50.71 357 | 46.17 360 | 64.33 370 | 44.27 399 | 52.30 389 | 76.13 387 | 78.73 392 | 64.95 379 | 27.37 393 | 55.23 390 | 14.61 395 | 67.74 393 | 36.01 389 | 18.23 393 | 72.95 383 |
|
| PMVS |  | 41.42 23 | 45.67 358 | 42.50 361 | 55.17 375 | 34.28 400 | 32.37 401 | 66.24 389 | 78.71 393 | 30.72 391 | 22.04 396 | 59.59 387 | 4.59 400 | 77.85 392 | 27.49 391 | 58.84 374 | 55.29 389 |
| Y. Furukawa, J. Ponce: Accurate, dense, and robust multiview stereopsis. PAMI (2010) |
| tmp_tt | | | 53.66 356 | 52.86 358 | 56.05 374 | 32.75 401 | 41.97 398 | 73.42 388 | 76.12 395 | 21.91 395 | 39.68 391 | 96.39 196 | 42.59 375 | 65.10 394 | 78.00 296 | 14.92 395 | 61.08 387 |
|
| testmvs | | | 18.81 363 | 23.05 366 | 6.10 381 | 4.48 402 | 2.29 406 | 97.78 230 | 3.00 404 | 3.27 397 | 18.60 397 | 62.71 385 | 1.53 404 | 2.49 400 | 14.26 398 | 1.80 397 | 13.50 395 |
|
| test123 | | | 16.58 365 | 19.47 367 | 7.91 380 | 3.59 403 | 5.37 405 | 94.32 322 | 1.39 405 | 2.49 398 | 13.98 398 | 44.60 395 | 2.91 403 | 2.65 399 | 11.35 399 | 0.57 398 | 15.70 394 |
|
| test_blank | | | 0.00 368 | 0.00 371 | 0.00 382 | 0.00 404 | 0.00 407 | 0.00 393 | 0.00 406 | 0.00 400 | 0.00 401 | 0.00 400 | 0.00 405 | 0.00 401 | 0.00 400 | 0.00 399 | 0.00 397 |
|
| eth-test2 | | | | | | 0.00 404 | | | | | | | | | | | |
|
| eth-test | | | | | | 0.00 404 | | | | | | | | | | | |
|
| uanet_test | | | 0.00 368 | 0.00 371 | 0.00 382 | 0.00 404 | 0.00 407 | 0.00 393 | 0.00 406 | 0.00 400 | 0.00 401 | 0.00 400 | 0.00 405 | 0.00 401 | 0.00 400 | 0.00 399 | 0.00 397 |
|
| DCPMVS | | | 0.00 368 | 0.00 371 | 0.00 382 | 0.00 404 | 0.00 407 | 0.00 393 | 0.00 406 | 0.00 400 | 0.00 401 | 0.00 400 | 0.00 405 | 0.00 401 | 0.00 400 | 0.00 399 | 0.00 397 |
|
| cdsmvs_eth3d_5k | | | 22.52 362 | 30.03 365 | 0.00 382 | 0.00 404 | 0.00 407 | 0.00 393 | 97.17 164 | 0.00 400 | 0.00 401 | 98.77 83 | 74.35 237 | 0.00 401 | 0.00 400 | 0.00 399 | 0.00 397 |
|
| pcd_1.5k_mvsjas | | | 6.87 367 | 9.16 370 | 0.00 382 | 0.00 404 | 0.00 407 | 0.00 393 | 0.00 406 | 0.00 400 | 0.00 401 | 0.00 400 | 82.48 174 | 0.00 401 | 0.00 400 | 0.00 399 | 0.00 397 |
|
| sosnet-low-res | | | 0.00 368 | 0.00 371 | 0.00 382 | 0.00 404 | 0.00 407 | 0.00 393 | 0.00 406 | 0.00 400 | 0.00 401 | 0.00 400 | 0.00 405 | 0.00 401 | 0.00 400 | 0.00 399 | 0.00 397 |
|
| sosnet | | | 0.00 368 | 0.00 371 | 0.00 382 | 0.00 404 | 0.00 407 | 0.00 393 | 0.00 406 | 0.00 400 | 0.00 401 | 0.00 400 | 0.00 405 | 0.00 401 | 0.00 400 | 0.00 399 | 0.00 397 |
|
| uncertanet | | | 0.00 368 | 0.00 371 | 0.00 382 | 0.00 404 | 0.00 407 | 0.00 393 | 0.00 406 | 0.00 400 | 0.00 401 | 0.00 400 | 0.00 405 | 0.00 401 | 0.00 400 | 0.00 399 | 0.00 397 |
|
| Regformer | | | 0.00 368 | 0.00 371 | 0.00 382 | 0.00 404 | 0.00 407 | 0.00 393 | 0.00 406 | 0.00 400 | 0.00 401 | 0.00 400 | 0.00 405 | 0.00 401 | 0.00 400 | 0.00 399 | 0.00 397 |
|
| ab-mvs-re | | | 8.21 366 | 10.94 369 | 0.00 382 | 0.00 404 | 0.00 407 | 0.00 393 | 0.00 406 | 0.00 400 | 0.00 401 | 98.50 106 | 0.00 405 | 0.00 401 | 0.00 400 | 0.00 399 | 0.00 397 |
|
| uanet | | | 0.00 368 | 0.00 371 | 0.00 382 | 0.00 404 | 0.00 407 | 0.00 393 | 0.00 406 | 0.00 400 | 0.00 401 | 0.00 400 | 0.00 405 | 0.00 401 | 0.00 400 | 0.00 399 | 0.00 397 |
|
| MM | | | | | 98.86 5 | | 96.83 7 | 99.81 9 | 99.13 9 | 97.66 2 | 98.29 37 | 98.96 64 | 85.84 119 | 99.90 48 | 99.72 3 | 98.80 91 | 99.85 30 |
|
| WAC-MVS | | | | | | | 79.74 325 | | | | | | | | 67.75 350 | | |
|
| PC_three_1452 | | | | | | | | | | 94.60 34 | 99.41 2 | 99.12 44 | 95.50 7 | 99.96 28 | 99.84 2 | 99.92 3 | 99.97 7 |
|
| test_241102_TWO | | | | | | | | | 97.72 76 | 94.17 41 | 99.23 8 | 99.54 3 | 93.14 24 | 99.98 9 | 99.70 4 | 99.82 19 | 99.99 1 |
|
| test_0728_THIRD | | | | | | | | | | 93.01 68 | 99.07 13 | 99.46 10 | 94.66 14 | 99.97 21 | 99.25 16 | 99.82 19 | 99.95 15 |
|
| GSMVS | | | | | | | | | | | | | | | | | 98.84 134 |
|
| sam_mvs1 | | | | | | | | | | | | | 88.39 63 | | | | 98.84 134 |
|
| sam_mvs | | | | | | | | | | | | | 87.08 89 | | | | |
|
| MTGPA |  | | | | | | | | 97.45 136 | | | | | | | | |
|
| test_post1 | | | | | | | | 90.74 361 | | | | 41.37 397 | 85.38 128 | 96.36 275 | 83.16 255 | | |
|
| test_post | | | | | | | | | | | | 46.00 394 | 87.37 81 | 97.11 237 | | | |
|
| patchmatchnet-post | | | | | | | | | | | | 84.86 358 | 88.73 60 | 96.81 250 | | | |
|
| MTMP | | | | | | | | 99.21 84 | 91.09 367 | | | | | | | | |
|
| test9_res | | | | | | | | | | | | | | | 98.60 31 | 99.87 9 | 99.90 22 |
|
| agg_prior2 | | | | | | | | | | | | | | | 97.84 52 | 99.87 9 | 99.91 21 |
|
| test_prior4 | | | | | | | 92.00 92 | 99.41 66 | | | | | | | | | |
|
| test_prior2 | | | | | | | | 99.57 40 | | 91.43 103 | 98.12 42 | 98.97 60 | 90.43 43 | | 98.33 40 | 99.81 23 | |
|
| 旧先验2 | | | | | | | | 98.67 148 | | 85.75 249 | 98.96 18 | | | 98.97 150 | 93.84 129 | | |
|
| 新几何2 | | | | | | | | 98.26 197 | | | | | | | | | |
|
| 无先验 | | | | | | | | 98.52 165 | 97.82 60 | 87.20 220 | | | | 99.90 48 | 87.64 203 | | 99.85 30 |
|
| 原ACMM2 | | | | | | | | 98.69 145 | | | | | | | | | |
|
| testdata2 | | | | | | | | | | | | | | 99.88 52 | 84.16 243 | | |
|
| segment_acmp | | | | | | | | | | | | | 90.56 41 | | | | |
|
| testdata1 | | | | | | | | 97.89 223 | | 92.43 80 | | | | | | | |
|
| plane_prior5 | | | | | | | | | 96.30 218 | | | | | 97.75 209 | 93.46 136 | 86.17 238 | 92.67 248 |
|
| plane_prior4 | | | | | | | | | | | | 96.52 190 | | | | | |
|
| plane_prior3 | | | | | | | 85.91 244 | | | 93.65 59 | 86.99 212 | | | | | | |
|
| plane_prior2 | | | | | | | | 99.02 114 | | 93.38 64 | | | | | | | |
|
| plane_prior | | | | | | | 86.07 241 | 99.14 99 | | 93.81 56 | | | | | | 86.26 237 | |
|
| n2 | | | | | | | | | 0.00 406 | | | | | | | | |
|
| nn | | | | | | | | | 0.00 406 | | | | | | | | |
|
| door-mid | | | | | | | | | 84.90 386 | | | | | | | | |
|
| test11 | | | | | | | | | 97.68 85 | | | | | | | | |
|
| door | | | | | | | | | 85.30 384 | | | | | | | | |
|
| HQP5-MVS | | | | | | | 86.39 226 | | | | | | | | | | |
|
| BP-MVS | | | | | | | | | | | | | | | 93.82 131 | | |
|
| HQP4-MVS | | | | | | | | | | | 87.57 205 | | | 97.77 203 | | | 92.72 246 |
|
| HQP3-MVS | | | | | | | | | 96.37 214 | | | | | | | 86.29 235 | |
|
| HQP2-MVS | | | | | | | | | | | | | 73.34 244 | | | | |
|
| MDTV_nov1_ep13_2view | | | | | | | 91.17 106 | 91.38 353 | | 87.45 217 | 93.08 141 | | 86.67 100 | | 87.02 206 | | 98.95 125 |
|
| ACMMP++_ref | | | | | | | | | | | | | | | | 82.64 272 | |
|
| ACMMP++ | | | | | | | | | | | | | | | | 83.83 259 | |
|
| Test By Simon | | | | | | | | | | | | | 83.62 148 | | | | |
|