This table lists the benchmark results for the high-res multi-view scenario. The following metrics are evaluated:

(*) For exact definitions, detailing how potentially incomplete ground truth is taken into account, see our paper.

The datasets are grouped into different categories, and result averages are computed for a category and method if results of the method are available for all datasets within the category. Note that the category "all" includes both the high-res multi-view and the low-res many-view scenarios.

Methods with suffix _ROB may participate in the Robust Vision Challenge.

Click a dataset result cell to show a visualization of the reconstruction. For training datasets, ground truth and accuracy / completeness visualizations are also available. The visualizations may not work with mobile browsers.




Method Infoallhigh-res
multi-view
indooroutdoorbotani.boulde.bridgedoorexhibi.lectur.living.loungeobserv.old co.statueterrac.
sort bysorted bysort bysort bysort bysort bysort bysort bysort bysort bysort bysort bysort bysort bysort bysort by
AdaColmapbinary93.82 10393.06 11096.10 10399.88 189.07 15198.33 17897.55 10786.81 21490.39 17098.65 8675.09 21799.98 993.32 12697.53 11499.26 93
DP-MVS Recon95.85 5395.15 6697.95 2899.87 294.38 5099.60 2897.48 12286.58 21894.42 11099.13 4087.36 8399.98 993.64 12098.33 9999.48 75
MCST-MVS98.18 297.95 998.86 599.85 396.60 999.70 1797.98 4697.18 295.96 8299.33 1992.62 26100.00 198.99 1899.93 199.98 6
CNVR-MVS98.46 198.38 198.72 899.80 496.19 1399.80 897.99 4597.05 399.41 299.59 292.89 25100.00 198.99 1899.90 799.96 10
MG-MVS97.24 1696.83 2598.47 1399.79 595.71 1699.07 9499.06 994.45 2696.42 7698.70 8488.81 5999.74 7495.35 8799.86 1299.97 7
NCCC98.12 598.11 398.13 2299.76 694.46 4699.81 697.88 4896.54 698.84 1899.46 1092.55 2799.98 998.25 3499.93 199.94 18
region2R96.30 4096.17 4096.70 7799.70 790.31 12599.46 4697.66 8190.55 11097.07 5999.07 4686.85 9399.97 2195.43 8599.74 2999.81 32
HFP-MVS96.42 3696.26 3596.90 6599.69 890.96 11399.47 4297.81 5790.54 11196.88 6199.05 4987.57 7599.96 2895.65 7899.72 3199.78 37
ACMMPR96.28 4196.14 4496.73 7499.68 990.47 12399.47 4297.80 5890.54 11196.83 6699.03 5186.51 10499.95 3195.65 7899.72 3199.75 45
ZD-MVS99.67 1093.28 6997.61 9487.78 19197.41 5199.16 3490.15 4799.56 9198.35 3099.70 35
CP-MVS96.22 4296.15 4396.42 9299.67 1089.62 14699.70 1797.61 9490.07 12696.00 8199.16 3487.43 7899.92 3896.03 7499.72 3199.70 51
DVP-MVScopyleft98.07 798.00 698.29 1799.66 1295.20 2899.72 1497.47 12493.95 3499.07 1199.46 1093.18 2299.97 2199.64 699.82 1999.69 53
Zhenlong Yuan, Jinguo Luo, Fei Shen, Zhaoxin Li, Cong Liu, Tianlu Mao, Zhaoqi Wang: DVP-MVS: Synergize Depth-Edge and Visibility Prior for Multi-View Stereo. AAAI2025
test_0728_SECOND98.77 799.66 1296.37 1299.72 1497.68 7899.98 999.64 699.82 1999.96 10
test072699.66 1295.20 2899.77 997.70 7493.95 3499.35 599.54 393.18 22
CPTT-MVS94.60 8694.43 7695.09 13399.66 1286.85 20599.44 4997.47 12483.22 27094.34 11298.96 5982.50 16599.55 9294.81 9999.50 5398.88 126
MSLP-MVS++97.50 1397.45 1497.63 3699.65 1693.21 7099.70 1798.13 3894.61 2297.78 4699.46 1089.85 4999.81 6697.97 3799.91 699.88 26
OPU-MVS99.49 499.64 1798.51 499.77 999.19 2895.12 899.97 2199.90 199.92 399.99 1
SED-MVS98.18 298.10 498.41 1699.63 1895.24 2399.77 997.72 6994.17 2999.30 699.54 393.32 1999.98 999.70 399.81 2399.99 1
IU-MVS99.63 1895.38 2097.73 6895.54 1599.54 199.69 599.81 2399.99 1
test_241102_ONE99.63 1895.24 2397.72 6994.16 3199.30 699.49 993.32 1999.98 9
PAPR96.35 3795.82 5097.94 2999.63 1894.19 5499.42 5497.55 10792.43 6893.82 12299.12 4187.30 8599.91 4094.02 11199.06 7499.74 46
XVS96.47 3596.37 3396.77 7099.62 2290.66 12199.43 5297.58 10292.41 7196.86 6298.96 5987.37 8099.87 4995.65 7899.43 5999.78 37
X-MVStestdata90.69 17488.66 19696.77 7099.62 2290.66 12199.43 5297.58 10292.41 7196.86 6229.59 37887.37 8099.87 4995.65 7899.43 5999.78 37
DVP-MVS++98.18 298.09 598.44 1499.61 2495.38 2099.55 3397.68 7893.01 5699.23 899.45 1495.12 899.98 999.25 1499.92 399.97 7
MSC_two_6792asdad99.51 299.61 2498.60 297.69 7699.98 999.55 1099.83 1599.96 10
No_MVS99.51 299.61 2498.60 297.69 7699.98 999.55 1099.83 1599.96 10
DeepC-MVS_fast93.52 297.16 2096.84 2498.13 2299.61 2494.45 4798.85 11697.64 8796.51 895.88 8599.39 1887.35 8499.99 596.61 6399.69 3699.96 10
Andreas Kuhn, Christian Sormann, Mattia Rossi, Oliver Erdler, Friedrich Fraundorfer: DeepC-MVS: Deep Confidence Prediction for Multi-View Stereo Reconstruction. 3DV 2020
test_one_060199.59 2894.89 3297.64 8793.14 5598.93 1699.45 1493.45 18
CDPH-MVS96.56 3396.18 3797.70 3499.59 2893.92 5899.13 8997.44 13089.02 15297.90 4499.22 2588.90 5899.49 9894.63 10599.79 2799.68 54
test_prior97.01 5699.58 3091.77 9197.57 10599.49 9899.79 35
APDe-MVS97.53 1197.47 1297.70 3499.58 3093.63 6299.56 3297.52 11493.59 4998.01 4199.12 4190.80 3999.55 9299.26 1399.79 2799.93 20
mPP-MVS95.90 5295.75 5496.38 9499.58 3089.41 14999.26 6997.41 13490.66 10594.82 10498.95 6186.15 11199.98 995.24 9099.64 4099.74 46
TEST999.57 3393.17 7199.38 5897.66 8189.57 13898.39 2799.18 3190.88 3799.66 80
train_agg97.20 1997.08 1897.57 4099.57 3393.17 7199.38 5897.66 8190.18 12098.39 2799.18 3190.94 3599.66 8098.58 2699.85 1399.88 26
test_899.55 3593.07 7499.37 6197.64 8790.18 12098.36 2999.19 2890.94 3599.64 86
test_part299.54 3695.42 1898.13 33
MSP-MVS97.77 998.18 296.53 8799.54 3690.14 12999.41 5597.70 7495.46 1798.60 2299.19 2895.71 499.49 9898.15 3599.85 1399.95 15
Zhenlong Yuan, Cong Liu, Fei Shen, Zhaoxin Li, Jingguo luo, Tianlu Mao and Zhaoqi Wang: MSP-MVS: Multi-granularity Segmentation Prior Guided Multi-View Stereo. AAAI2025
agg_prior99.54 3692.66 8197.64 8797.98 4299.61 88
CSCG94.87 7594.71 7295.36 12699.54 3686.49 21099.34 6498.15 3682.71 28190.15 17399.25 2289.48 5299.86 5494.97 9798.82 8599.72 49
HPM-MVS++copyleft97.72 1097.59 1198.14 2199.53 4094.76 4099.19 7297.75 6495.66 1398.21 3199.29 2091.10 3399.99 597.68 4299.87 999.68 54
APD-MVScopyleft96.95 2496.72 2697.63 3699.51 4193.58 6399.16 7897.44 13090.08 12598.59 2399.07 4689.06 5599.42 10997.92 3899.66 3799.88 26
Yuesong Wang, Zhaojie Zeng and etc.: Adaptive Patch Deformation for Textureless-Resilient Multi-View Stereo. CVPR2023
FOURS199.50 4288.94 15799.55 3397.47 12491.32 9498.12 35
DPE-MVScopyleft98.11 698.00 698.44 1499.50 4295.39 1999.29 6897.72 6994.50 2498.64 2199.54 393.32 1999.97 2199.58 999.90 799.95 15
Kehua Chen, Zhenlong Yuan, Tianlu Mao, Zhaoqi Wang: Dual-Level Precision Edges Guided Multi-View Stereo with Accurate Planarization. AAAI2025
PGM-MVS95.85 5395.65 5896.45 9099.50 4289.77 14398.22 18698.90 1289.19 14796.74 6998.95 6185.91 11599.92 3893.94 11399.46 5599.66 58
GST-MVS95.97 4995.66 5696.90 6599.49 4591.22 10099.45 4897.48 12289.69 13295.89 8498.72 8086.37 10799.95 3194.62 10699.22 7099.52 71
MP-MVScopyleft96.00 4695.82 5096.54 8699.47 4690.13 13199.36 6297.41 13490.64 10895.49 9498.95 6185.51 11999.98 996.00 7599.59 4999.52 71
Rongxuan Tan, Qing Wang, et al.: MP-MVS: Multi-Scale Windows PatchMatch and Planar Prior Multi-View Stereo.
ZNCC-MVS96.09 4495.81 5296.95 6499.42 4791.19 10299.55 3397.53 11189.72 13195.86 8798.94 6486.59 10099.97 2195.13 9199.56 5099.68 54
SR-MVS96.13 4396.16 4296.07 10499.42 4789.04 15298.59 14797.33 14190.44 11496.84 6499.12 4186.75 9599.41 11297.47 4599.44 5899.76 44
PAPM_NR95.43 6395.05 6996.57 8599.42 4790.14 12998.58 14997.51 11690.65 10792.44 13698.90 6687.77 7499.90 4390.88 15099.32 6499.68 54
9.1496.87 2299.34 5099.50 3997.49 12189.41 14398.59 2399.43 1689.78 5099.69 7798.69 2199.62 44
save fliter99.34 5093.85 6099.65 2597.63 9195.69 12
PHI-MVS96.65 3196.46 3197.21 5099.34 5091.77 9199.70 1798.05 4186.48 22198.05 3899.20 2789.33 5399.96 2898.38 2999.62 4499.90 22
test1297.83 3199.33 5394.45 4797.55 10797.56 4788.60 6199.50 9799.71 3499.55 69
SMA-MVScopyleft97.24 1696.99 1998.00 2799.30 5494.20 5399.16 7897.65 8689.55 14099.22 1099.52 890.34 4699.99 598.32 3299.83 1599.82 31
Yufeng Yin; Xiaoyan Liu; Zichao Zhang: SMA-MVS: Segmentation-Guided Multi-Scale Anchor Deformation Patch Multi-View Stereo. IEEE Transactions on Circuits and Systems for Video Technology
MTAPA96.09 4495.80 5396.96 6399.29 5591.19 10297.23 24297.45 12792.58 6594.39 11199.24 2486.43 10699.99 596.22 6999.40 6299.71 50
HPM-MVScopyleft95.41 6595.22 6495.99 10899.29 5589.14 15099.17 7797.09 16587.28 20495.40 9598.48 9984.93 12799.38 11495.64 8299.65 3899.47 76
Chunlin Ren, Qingshan Xu, Shikun Zhang, Jiaqi Yang: Hierarchical Prior Mining for Non-local Multi-View Stereo. ICCV 2023
ACMMPcopyleft94.67 8494.30 7795.79 11499.25 5788.13 17498.41 16798.67 2090.38 11691.43 15198.72 8082.22 17299.95 3193.83 11795.76 14399.29 90
Qingshan Xu, Weihang Kong, Wenbing Tao, Marc Pollefeys: Multi-Scale Geometric Consistency Guided and Planar Prior Assisted Multi-View Stereo. IEEE Transactions on Pattern Analysis and Machine Intelligence
APD-MVS_3200maxsize95.64 6295.65 5895.62 11999.24 5887.80 18098.42 16597.22 14888.93 15796.64 7498.98 5485.49 12099.36 11696.68 6099.27 6899.70 51
SR-MVS-dyc-post95.75 5995.86 4995.41 12599.22 5987.26 20098.40 17097.21 14989.63 13496.67 7298.97 5586.73 9799.36 11696.62 6199.31 6599.60 65
RE-MVS-def95.70 5599.22 5987.26 20098.40 17097.21 14989.63 13496.67 7298.97 5585.24 12596.62 6199.31 6599.60 65
patch_mono-297.10 2297.97 894.49 15499.21 6183.73 26899.62 2798.25 2795.28 1899.38 498.91 6592.28 2899.94 3499.61 899.22 7099.78 37
API-MVS94.78 7894.18 8396.59 8299.21 6190.06 13698.80 12197.78 6183.59 26593.85 12099.21 2683.79 14099.97 2192.37 13899.00 7799.74 46
PLCcopyleft91.07 394.23 9394.01 8794.87 14199.17 6387.49 18999.25 7096.55 19088.43 17291.26 15598.21 11185.92 11399.86 5489.77 16597.57 11197.24 191
Jie Liao, Yanping Fu, Qingan Yan, Chunxia xiao: Pyramid Multi-View Stereo with Local Consistency. Pacific Graphics 2019
EI-MVSNet-Vis-set95.76 5895.63 6096.17 10199.14 6490.33 12498.49 15897.82 5491.92 8194.75 10598.88 6987.06 8999.48 10295.40 8697.17 12298.70 143
TSAR-MVS + MP.97.44 1497.46 1397.39 4499.12 6593.49 6798.52 15297.50 11994.46 2598.99 1398.64 8791.58 3099.08 13498.49 2799.83 1599.60 65
Zhenlong Yuan, Jiakai Cao, Zhaoqi Wang, Zhaoxin Li: TSAR-MVS: Textureless-aware Segmentation and Correlative Refinement Guided Multi-View Stereo. Pattern Recognition
SF-MVS97.22 1896.92 2098.12 2499.11 6694.88 3399.44 4997.45 12789.60 13698.70 2099.42 1790.42 4499.72 7598.47 2899.65 3899.77 42
HPM-MVS_fast94.89 7494.62 7395.70 11799.11 6688.44 17099.14 8697.11 16185.82 22895.69 9198.47 10083.46 14599.32 12193.16 12899.63 4399.35 84
MAR-MVS94.43 9094.09 8595.45 12399.10 6887.47 19098.39 17497.79 6088.37 17494.02 11799.17 3378.64 20299.91 4092.48 13798.85 8498.96 116
Zhenyu Xu, Yiguang Liu, Xuelei Shi, Ying Wang, Yunan Zheng: MARMVS: Matching Ambiguity Reduced Multiple View Stereo for Efficient Large Scale Scene Reconstruction. CVPR 2020
114514_t94.06 9493.05 11197.06 5499.08 6992.26 8798.97 10897.01 17282.58 28392.57 13498.22 10980.68 18699.30 12289.34 17199.02 7699.63 62
EI-MVSNet-UG-set95.43 6395.29 6295.86 11299.07 7089.87 14098.43 16497.80 5891.78 8394.11 11598.77 7486.25 11099.48 10294.95 9896.45 12998.22 167
原ACMM196.18 9999.03 7190.08 13297.63 9188.98 15397.00 6098.97 5588.14 6899.71 7688.23 18299.62 4498.76 140
SD-MVS97.51 1297.40 1597.81 3299.01 7293.79 6199.33 6597.38 13793.73 4598.83 1999.02 5290.87 3899.88 4698.69 2199.74 2999.77 42
Zhenlong Yuan, Jiakai Cao, Zhaoxin Li, Hao Jiang and Zhaoqi Wang: SD-MVS: Segmentation-driven Deformation Multi-View Stereo with Spherical Refinement and EM optimization. AAAI2024
旧先验198.97 7392.90 8097.74 6599.15 3691.05 3499.33 6399.60 65
LS3D90.19 18388.72 19494.59 15398.97 7386.33 21896.90 25496.60 18474.96 33484.06 22798.74 7775.78 21499.83 6074.93 30297.57 11197.62 183
CNLPA93.64 11092.74 11996.36 9598.96 7590.01 13999.19 7295.89 24186.22 22489.40 18198.85 7080.66 18799.84 5788.57 17896.92 12499.24 94
MP-MVS-pluss95.80 5595.30 6197.29 4698.95 7692.66 8198.59 14797.14 15788.95 15593.12 12999.25 2285.62 11699.94 3496.56 6599.48 5499.28 91
MP-MVS-pluss: MP-MVS-pluss. MP-MVS-pluss
新几何197.40 4398.92 7792.51 8697.77 6385.52 23296.69 7199.06 4888.08 6999.89 4584.88 21899.62 4499.79 35
DP-MVS88.75 21286.56 22895.34 12798.92 7787.45 19197.64 22693.52 32270.55 34581.49 26797.25 14674.43 22399.88 4671.14 32494.09 15998.67 145
TSAR-MVS + GP.96.95 2496.91 2197.07 5398.88 7991.62 9499.58 3096.54 19195.09 2096.84 6498.63 8991.16 3199.77 7199.04 1796.42 13099.81 32
CANet97.00 2396.49 3098.55 1098.86 8096.10 1499.83 497.52 11495.90 1097.21 5698.90 6682.66 16499.93 3798.71 2098.80 8699.63 62
dcpmvs_295.67 6196.18 3794.12 17098.82 8184.22 26197.37 23495.45 26790.70 10495.77 8998.63 8990.47 4298.68 15099.20 1699.22 7099.45 77
ACMMP_NAP96.59 3296.18 3797.81 3298.82 8193.55 6498.88 11597.59 10090.66 10597.98 4299.14 3886.59 100100.00 196.47 6799.46 5599.89 25
PVSNet_BlendedMVS93.36 11893.20 10793.84 18198.77 8391.61 9599.47 4298.04 4291.44 9094.21 11392.63 25083.50 14399.87 4997.41 4683.37 24890.05 311
PVSNet_Blended95.94 5195.66 5696.75 7298.77 8391.61 9599.88 198.04 4293.64 4894.21 11397.76 12183.50 14399.87 4997.41 4697.75 10998.79 136
DeepPCF-MVS93.56 196.55 3497.84 1092.68 20498.71 8578.11 32399.70 1797.71 7398.18 197.36 5399.76 190.37 4599.94 3499.27 1299.54 5299.99 1
EPNet96.82 2796.68 2897.25 4998.65 8693.10 7399.48 4098.76 1396.54 697.84 4598.22 10987.49 7799.66 8095.35 8797.78 10899.00 112
Wanjuan Su, Wenbing Tao: Efficient Edge-Preserving Multi-View Stereo Network for Depth Estimation. AAAI 2023
OMC-MVS93.90 10193.62 9894.73 14898.63 8787.00 20398.04 20496.56 18992.19 7692.46 13598.73 7879.49 19499.14 13192.16 14094.34 15898.03 172
MVS_111021_HR96.69 2996.69 2796.72 7698.58 8891.00 11299.14 8699.45 193.86 4095.15 10098.73 7888.48 6299.76 7297.23 5099.56 5099.40 80
test_yl95.27 6894.60 7497.28 4798.53 8992.98 7799.05 9798.70 1786.76 21594.65 10897.74 12387.78 7299.44 10595.57 8392.61 17399.44 78
DCV-MVSNet95.27 6894.60 7497.28 4798.53 8992.98 7799.05 9798.70 1786.76 21594.65 10897.74 12387.78 7299.44 10595.57 8392.61 17399.44 78
TAPA-MVS87.50 990.35 17889.05 18794.25 16698.48 9185.17 24898.42 16596.58 18882.44 28887.24 19898.53 9382.77 16098.84 14159.09 35697.88 10498.72 141
Andrea Romanoni, Matteo Matteucci: TAPA-MVS: Textureless-Aware PAtchMatch Multi-View Stereo. ICCV 2019
test22298.32 9291.21 10198.08 20197.58 10283.74 26195.87 8699.02 5286.74 9699.64 4099.81 32
DPM-MVS97.86 897.25 1799.68 198.25 9399.10 199.76 1297.78 6196.61 598.15 3299.53 793.62 17100.00 191.79 14299.80 2699.94 18
LFMVS92.23 14690.84 15996.42 9298.24 9491.08 10998.24 18596.22 21083.39 26894.74 10698.31 10561.12 30898.85 14094.45 10892.82 16999.32 87
testdata95.26 13098.20 9587.28 19797.60 9685.21 23698.48 2699.15 3688.15 6798.72 14890.29 15899.45 5799.78 37
PatchMatch-RL91.47 15790.54 16694.26 16598.20 9586.36 21696.94 25297.14 15787.75 19388.98 18495.75 19271.80 24999.40 11380.92 26097.39 11797.02 199
MVS_111021_LR95.78 5695.94 4695.28 12998.19 9787.69 18198.80 12199.26 793.39 5195.04 10298.69 8584.09 13799.76 7296.96 5699.06 7498.38 158
F-COLMAP92.07 15091.75 14193.02 19598.16 9882.89 27998.79 12595.97 22586.54 22087.92 19197.80 11978.69 20199.65 8485.97 20695.93 14296.53 207
Anonymous20240521188.84 20687.03 22194.27 16498.14 9984.18 26298.44 16395.58 26076.79 32889.34 18296.88 16653.42 33499.54 9487.53 19187.12 21699.09 107
VNet95.08 7294.26 7897.55 4198.07 10093.88 5998.68 13398.73 1690.33 11797.16 5897.43 13979.19 19699.53 9596.91 5891.85 18799.24 94
CS-MVS-test95.98 4896.34 3494.90 14098.06 10187.66 18499.69 2396.10 21893.66 4698.35 3099.05 4986.28 10897.66 19996.96 5698.90 8299.37 82
DELS-MVS97.12 2196.60 2998.68 998.03 10296.57 1099.84 397.84 5196.36 995.20 9998.24 10888.17 6699.83 6096.11 7299.60 4899.64 60
Christian Sormann, Emanuele Santellani, Mattia Rossi, Andreas Kuhn, Friedrich Fraundorfer: DELS-MVS: Deep Epipolar Line Search for Multi-View Stereo. Winter Conference on Applications of Computer Vision (WACV), 2023
PVSNet87.13 1293.69 10692.83 11896.28 9797.99 10390.22 12899.38 5898.93 1191.42 9293.66 12397.68 12671.29 25499.64 8687.94 18797.20 11998.98 114
cl2289.57 19588.79 19391.91 21797.94 10487.62 18597.98 20796.51 19285.03 24182.37 25091.79 26283.65 14196.50 25185.96 20777.89 27691.61 263
CS-MVS95.75 5996.19 3694.40 15897.88 10586.22 22199.66 2496.12 21792.69 6498.07 3798.89 6887.09 8797.59 20596.71 5998.62 9299.39 81
CHOSEN 280x42096.80 2896.85 2396.66 8097.85 10694.42 4994.76 30298.36 2492.50 6795.62 9397.52 13497.92 197.38 21798.31 3398.80 8698.20 169
thres20093.69 10692.59 12396.97 6297.76 10794.74 4199.35 6399.36 289.23 14691.21 15796.97 16083.42 14698.77 14385.08 21590.96 19897.39 187
HY-MVS88.56 795.29 6794.23 7998.48 1297.72 10896.41 1194.03 31098.74 1492.42 7095.65 9294.76 20986.52 10399.49 9895.29 8992.97 16899.53 70
Anonymous2023121184.72 27182.65 28290.91 24097.71 10984.55 25797.28 23896.67 18166.88 35779.18 29290.87 28058.47 31596.60 24182.61 24774.20 30291.59 265
tfpn200view993.43 11592.27 12896.90 6597.68 11094.84 3699.18 7499.36 288.45 16990.79 16096.90 16483.31 14798.75 14584.11 23090.69 20097.12 193
thres40093.39 11792.27 12896.73 7497.68 11094.84 3699.18 7499.36 288.45 16990.79 16096.90 16483.31 14798.75 14584.11 23090.69 20096.61 202
thres100view90093.34 11992.15 13196.90 6597.62 11294.84 3699.06 9699.36 287.96 18690.47 16896.78 16983.29 14998.75 14584.11 23090.69 20097.12 193
thres600view793.18 12592.00 13496.75 7297.62 11294.92 3199.07 9499.36 287.96 18690.47 16896.78 16983.29 14998.71 14982.93 24490.47 20496.61 202
WTY-MVS95.97 4995.11 6798.54 1197.62 11296.65 899.44 4998.74 1492.25 7595.21 9898.46 10286.56 10299.46 10495.00 9692.69 17299.50 74
Anonymous2024052987.66 22985.58 24293.92 17897.59 11585.01 25198.13 19397.13 15966.69 35888.47 18896.01 18955.09 32899.51 9687.00 19484.12 23997.23 192
HyFIR lowres test93.68 10893.29 10594.87 14197.57 11688.04 17698.18 19098.47 2287.57 19991.24 15695.05 20385.49 12097.46 21293.22 12792.82 16999.10 106
canonicalmvs95.02 7393.96 9198.20 1997.53 11795.92 1598.71 12996.19 21391.78 8395.86 8798.49 9879.53 19399.03 13596.12 7191.42 19599.66 58
CHOSEN 1792x268894.35 9193.82 9595.95 11097.40 11888.74 16498.41 16798.27 2692.18 7791.43 15196.40 17978.88 19799.81 6693.59 12197.81 10599.30 89
SteuartSystems-ACMMP97.25 1597.34 1697.01 5697.38 11991.46 9899.75 1397.66 8194.14 3398.13 3399.26 2192.16 2999.66 8097.91 3999.64 4099.90 22
Skip Steuart: Steuart Systems R&D Blog.
alignmvs95.77 5795.00 7098.06 2697.35 12095.68 1799.71 1697.50 11991.50 8896.16 8098.61 9186.28 10899.00 13696.19 7091.74 18999.51 73
PS-MVSNAJ96.87 2696.40 3298.29 1797.35 12097.29 599.03 10097.11 16195.83 1198.97 1499.14 3882.48 16799.60 8998.60 2399.08 7398.00 173
EPNet_dtu92.28 14492.15 13192.70 20397.29 12284.84 25398.64 13997.82 5492.91 6193.02 13197.02 15885.48 12295.70 29772.25 32194.89 15397.55 185
Wanjuan Su, Wenbing Tao: Efficient Edge-Preserving Multi-View Stereo Network for Depth Estimation. AAAI 2023
MVSTER92.71 13292.32 12693.86 18097.29 12292.95 7999.01 10396.59 18590.09 12485.51 21494.00 22094.61 1696.56 24690.77 15483.03 25192.08 250
EPMVS92.59 13791.59 14395.59 12197.22 12490.03 13791.78 32898.04 4290.42 11591.66 14590.65 28886.49 10597.46 21281.78 25596.31 13399.28 91
test_fmvs192.35 14192.94 11690.57 24997.19 12575.43 33199.55 3394.97 28795.20 1996.82 6797.57 13359.59 31299.84 5797.30 4898.29 10096.46 209
tpmvs89.16 19887.76 20893.35 18997.19 12584.75 25590.58 34297.36 13981.99 29384.56 22189.31 31683.98 13998.17 16574.85 30490.00 20697.12 193
DeepC-MVS91.02 494.56 8993.92 9396.46 8997.16 12790.76 11798.39 17497.11 16193.92 3688.66 18698.33 10478.14 20499.85 5695.02 9498.57 9498.78 138
Andreas Kuhn, Christian Sormann, Mattia Rossi, Oliver Erdler, Friedrich Fraundorfer: DeepC-MVS: Deep Confidence Prediction for Multi-View Stereo Reconstruction. 3DV 2020
iter_conf0593.48 11293.18 10894.39 16197.15 12894.17 5599.30 6792.97 32792.38 7486.70 20895.42 19895.67 596.59 24294.67 10484.32 23792.39 235
PVSNet_Blended_VisFu94.67 8494.11 8496.34 9697.14 12991.10 10799.32 6697.43 13292.10 8091.53 15096.38 18283.29 14999.68 7893.42 12596.37 13198.25 165
h-mvs3392.47 14091.95 13694.05 17497.13 13085.01 25198.36 17698.08 3993.85 4196.27 7896.73 17183.19 15299.43 10895.81 7668.09 33497.70 179
miper_enhance_ethall90.33 17989.70 17492.22 20997.12 13188.93 15898.35 17795.96 22788.60 16483.14 23792.33 25287.38 7996.18 27486.49 20277.89 27691.55 266
xiu_mvs_v2_base96.66 3096.17 4098.11 2597.11 13296.96 699.01 10397.04 16895.51 1698.86 1799.11 4582.19 17399.36 11698.59 2598.14 10198.00 173
VDD-MVS91.24 16490.18 17094.45 15797.08 13385.84 23598.40 17096.10 21886.99 20693.36 12698.16 11254.27 33199.20 12496.59 6490.63 20398.31 164
UGNet91.91 15290.85 15895.10 13297.06 13488.69 16598.01 20598.24 2992.41 7192.39 13793.61 23160.52 30999.68 7888.14 18397.25 11896.92 200
Wanjuan Su, Qingshan Xu, Wenbing Tao: Uncertainty-guided Multi-view Stereo Network for Depth Estimation. IEEE Transactions on Circuits and Systems for Video Technology, 2022
baseline192.61 13691.28 14996.58 8397.05 13594.63 4497.72 22296.20 21189.82 12988.56 18796.85 16786.85 9397.82 18688.42 17980.10 26797.30 189
iter_conf_final93.22 12493.04 11293.76 18397.03 13692.22 8899.05 9793.31 32492.11 7986.93 20295.42 19895.01 1096.59 24293.98 11284.48 23492.46 234
CANet_DTU94.31 9293.35 10297.20 5197.03 13694.71 4298.62 14195.54 26295.61 1497.21 5698.47 10071.88 24799.84 5788.38 18097.46 11697.04 198
MSDG88.29 21886.37 23094.04 17596.90 13886.15 22596.52 26794.36 30877.89 32479.22 29196.95 16169.72 26099.59 9073.20 31792.58 17596.37 212
BH-w/o92.32 14291.79 13993.91 17996.85 13986.18 22399.11 9195.74 25088.13 18184.81 21897.00 15977.26 20997.91 17989.16 17698.03 10297.64 180
AllTest84.97 26983.12 27390.52 25296.82 14078.84 31695.89 28792.17 33877.96 32275.94 31095.50 19555.48 32499.18 12571.15 32287.14 21493.55 226
TestCases90.52 25296.82 14078.84 31692.17 33877.96 32275.94 31095.50 19555.48 32499.18 12571.15 32287.14 21493.55 226
PMMVS93.62 11193.90 9492.79 20096.79 14281.40 29698.85 11696.81 17791.25 9596.82 6798.15 11377.02 21098.13 16793.15 12996.30 13498.83 132
BH-RMVSNet91.25 16389.99 17295.03 13796.75 14388.55 16798.65 13794.95 28887.74 19487.74 19297.80 11968.27 26998.14 16680.53 26597.49 11598.41 155
MVS_Test93.67 10992.67 12196.69 7896.72 14492.66 8197.22 24396.03 22287.69 19795.12 10194.03 21881.55 17998.28 16289.17 17596.46 12899.14 101
COLMAP_ROBcopyleft82.69 1884.54 27582.82 27589.70 27596.72 14478.85 31595.89 28792.83 33071.55 34377.54 30595.89 19059.40 31399.14 13167.26 33688.26 21091.11 283
Johannes L. Schönberger, Enliang Zheng, Marc Pollefeys, Jan-Michael Frahm: Pixelwise View Selection for Unstructured Multi-View Stereo. ECCV 2016
mvs_anonymous92.50 13991.65 14295.06 13496.60 14689.64 14597.06 24896.44 19786.64 21784.14 22593.93 22282.49 16696.17 27691.47 14396.08 13999.35 84
ETV-MVS96.00 4696.00 4596.00 10796.56 14791.05 11099.63 2696.61 18393.26 5497.39 5298.30 10686.62 9998.13 16798.07 3697.57 11198.82 133
GG-mvs-BLEND96.98 6196.53 14894.81 3987.20 34797.74 6593.91 11996.40 17996.56 296.94 23195.08 9298.95 8199.20 98
FMVSNet388.81 21087.08 22093.99 17796.52 14994.59 4598.08 20196.20 21185.85 22782.12 25491.60 26674.05 22895.40 30579.04 27280.24 26491.99 253
BH-untuned91.46 15890.84 15993.33 19096.51 15084.83 25498.84 11895.50 26486.44 22383.50 22996.70 17275.49 21697.77 19086.78 20097.81 10597.40 186
FE-MVS91.38 16090.16 17195.05 13696.46 15187.53 18889.69 34497.84 5182.97 27592.18 13992.00 25984.07 13898.93 13980.71 26295.52 14798.68 144
sss94.85 7693.94 9297.58 3896.43 15294.09 5798.93 11099.16 889.50 14195.27 9797.85 11681.50 18099.65 8492.79 13594.02 16098.99 113
test250694.80 7794.21 8096.58 8396.41 15392.18 8998.01 20598.96 1090.82 10293.46 12597.28 14385.92 11398.45 15589.82 16397.19 12099.12 104
ECVR-MVScopyleft92.29 14391.33 14895.15 13196.41 15387.84 17998.10 19894.84 29190.82 10291.42 15397.28 14365.61 29098.49 15490.33 15797.19 12099.12 104
ET-MVSNet_ETH3D92.56 13891.45 14695.88 11196.39 15594.13 5699.46 4696.97 17492.18 7766.94 34998.29 10794.65 1594.28 32694.34 10983.82 24499.24 94
dp90.16 18588.83 19294.14 16996.38 15686.42 21291.57 33297.06 16784.76 24788.81 18590.19 30684.29 13597.43 21575.05 30191.35 19798.56 149
EIA-MVS95.11 7095.27 6394.64 15196.34 15786.51 20999.59 2996.62 18292.51 6694.08 11698.64 8786.05 11298.24 16495.07 9398.50 9699.18 99
test_vis1_n_192093.08 12893.42 10192.04 21696.31 15879.36 31299.83 496.06 22196.72 498.53 2598.10 11458.57 31499.91 4097.86 4098.79 8896.85 201
TR-MVS90.77 17189.44 17994.76 14596.31 15888.02 17797.92 20995.96 22785.52 23288.22 19097.23 14766.80 28198.09 17084.58 22292.38 17798.17 170
UA-Net93.30 12092.62 12295.34 12796.27 16088.53 16995.88 28996.97 17490.90 10095.37 9697.07 15682.38 17099.10 13383.91 23494.86 15498.38 158
tpmrst92.78 13192.16 13094.65 15096.27 16087.45 19191.83 32797.10 16489.10 15194.68 10790.69 28588.22 6597.73 19789.78 16491.80 18898.77 139
hse-mvs291.67 15591.51 14592.15 21396.22 16282.61 28597.74 22197.53 11193.85 4196.27 7896.15 18483.19 15297.44 21495.81 7666.86 34196.40 211
AUN-MVS90.17 18489.50 17792.19 21196.21 16382.67 28397.76 22097.53 11188.05 18391.67 14496.15 18483.10 15497.47 21188.11 18466.91 34096.43 210
ADS-MVSNet287.62 23086.88 22389.86 27096.21 16379.14 31487.15 34892.99 32683.01 27389.91 17687.27 32978.87 19892.80 33974.20 30992.27 18097.64 180
ADS-MVSNet88.99 20087.30 21694.07 17296.21 16387.56 18787.15 34896.78 17983.01 27389.91 17687.27 32978.87 19897.01 22874.20 30992.27 18097.64 180
PatchmatchNetpermissive92.05 15191.04 15495.06 13496.17 16689.04 15291.26 33597.26 14289.56 13990.64 16490.56 29488.35 6497.11 22379.53 26896.07 14099.03 111
Fangjinhua Wang, Silvano Galliani, Christoph Vogel, Pablo Speciale, Marc Pollefeys: PatchmatchNet: Learned Multi-View Patchmatch Stereo.
test111192.12 14891.19 15194.94 13996.15 16787.36 19498.12 19594.84 29190.85 10190.97 15897.26 14565.60 29198.37 15789.74 16697.14 12399.07 110
gg-mvs-nofinetune90.00 18887.71 21096.89 6996.15 16794.69 4385.15 35397.74 6568.32 35392.97 13260.16 36696.10 396.84 23393.89 11498.87 8399.14 101
MDTV_nov1_ep1390.47 16896.14 16988.55 16791.34 33497.51 11689.58 13792.24 13890.50 29886.99 9297.61 20477.64 28392.34 178
IS-MVSNet93.00 12992.51 12494.49 15496.14 16987.36 19498.31 18195.70 25288.58 16590.17 17297.50 13583.02 15697.22 22087.06 19296.07 14098.90 125
Vis-MVSNet (Re-imp)93.26 12393.00 11594.06 17396.14 16986.71 20898.68 13396.70 18088.30 17689.71 18097.64 12985.43 12396.39 25888.06 18596.32 13299.08 108
thisisatest051594.75 7994.19 8196.43 9196.13 17292.64 8499.47 4297.60 9687.55 20093.17 12897.59 13194.71 1398.42 15688.28 18193.20 16598.24 166
FA-MVS(test-final)92.22 14791.08 15395.64 11896.05 17388.98 15491.60 33197.25 14386.99 20691.84 14192.12 25383.03 15599.00 13686.91 19793.91 16198.93 122
ab-mvs91.05 16789.17 18596.69 7895.96 17491.72 9392.62 32397.23 14785.61 23189.74 17893.89 22468.55 26699.42 10991.09 14687.84 21298.92 124
Fast-Effi-MVS+91.72 15490.79 16294.49 15495.89 17587.40 19399.54 3895.70 25285.01 24389.28 18395.68 19377.75 20697.57 20983.22 23995.06 15298.51 151
EPP-MVSNet93.75 10593.67 9794.01 17695.86 17685.70 23798.67 13597.66 8184.46 25091.36 15497.18 15191.16 3197.79 18892.93 13193.75 16298.53 150
mvsany_test194.57 8895.09 6892.98 19695.84 17782.07 28998.76 12795.24 28092.87 6396.45 7598.71 8384.81 13099.15 12797.68 4295.49 14897.73 178
Effi-MVS+93.87 10293.15 10996.02 10695.79 17890.76 11796.70 26495.78 24786.98 20995.71 9097.17 15279.58 19198.01 17794.57 10796.09 13899.31 88
tpm cat188.89 20487.27 21793.76 18395.79 17885.32 24590.76 34097.09 16576.14 33085.72 21288.59 31982.92 15798.04 17576.96 28791.43 19497.90 176
thisisatest053094.00 9693.52 9995.43 12495.76 18090.02 13898.99 10597.60 9686.58 21891.74 14397.36 14294.78 1298.34 15886.37 20392.48 17697.94 175
3Dnovator+87.72 893.43 11591.84 13898.17 2095.73 18195.08 3098.92 11297.04 16891.42 9281.48 26897.60 13074.60 22099.79 6990.84 15198.97 7899.64 60
MVS93.92 9992.28 12798.83 695.69 18296.82 796.22 27998.17 3384.89 24584.34 22498.61 9179.32 19599.83 6093.88 11599.43 5999.86 29
cascas90.93 16989.33 18395.76 11595.69 18293.03 7698.99 10596.59 18580.49 30886.79 20794.45 21365.23 29398.60 15393.52 12292.18 18295.66 218
QAPM91.41 15989.49 17897.17 5295.66 18493.42 6898.60 14597.51 11680.92 30681.39 26997.41 14072.89 23999.87 4982.33 24998.68 9098.21 168
tttt051793.30 12093.01 11494.17 16895.57 18586.47 21198.51 15597.60 9685.99 22690.55 16597.19 15094.80 1198.31 15985.06 21691.86 18697.74 177
1112_ss92.71 13291.55 14496.20 9895.56 18691.12 10598.48 16094.69 29888.29 17786.89 20498.50 9687.02 9098.66 15184.75 21989.77 20798.81 134
diffmvspermissive94.59 8794.19 8195.81 11395.54 18790.69 11998.70 13195.68 25491.61 8595.96 8297.81 11880.11 18898.06 17296.52 6695.76 14398.67 145
Fangjinhua Wang, Qingshan Xu, Yew-Soon Ong, Marc Pollefeys: Lightweight and Accurate Multi-View Stereo With Confidence-Aware Diffusion Model. IEEE T-PAMI 2025
LCM-MVSNet-Re88.59 21488.61 19788.51 29695.53 18872.68 34396.85 25688.43 36288.45 16973.14 32790.63 28975.82 21394.38 32592.95 13095.71 14598.48 153
Test_1112_low_res92.27 14590.97 15596.18 9995.53 18891.10 10798.47 16294.66 29988.28 17886.83 20693.50 23587.00 9198.65 15284.69 22089.74 20898.80 135
PCF-MVS89.78 591.26 16189.63 17596.16 10295.44 19091.58 9795.29 29896.10 21885.07 24082.75 23997.45 13878.28 20399.78 7080.60 26495.65 14697.12 193
Andreas Kuhn, Shan Lin, Oliver Erdler: Plane Completion and Filtering for Multi-View Stereo Reconstruction. GCPR 2019
DROMVSNet95.09 7195.17 6594.84 14395.42 19188.17 17299.48 4095.92 23391.47 8997.34 5498.36 10382.77 16097.41 21697.24 4998.58 9398.94 121
3Dnovator87.35 1193.17 12691.77 14097.37 4595.41 19293.07 7498.82 11997.85 5091.53 8782.56 24397.58 13271.97 24699.82 6391.01 14899.23 6999.22 97
IB-MVS89.43 692.12 14890.83 16195.98 10995.40 19390.78 11699.81 698.06 4091.23 9685.63 21393.66 23090.63 4098.78 14291.22 14571.85 32498.36 161
Christian Sormann, Mattia Rossi, Andreas Kuhn and Friedrich Fraundorfer: IB-MVS: An Iterative Algorithm for Deep Multi-View Stereo based on Binary Decisions. BMVC 2021
miper_ehance_all_eth88.94 20288.12 20791.40 22995.32 19486.93 20497.85 21495.55 26184.19 25381.97 25991.50 26884.16 13695.91 29084.69 22077.89 27691.36 274
131493.44 11491.98 13597.84 3095.24 19594.38 5096.22 27997.92 4790.18 12082.28 25197.71 12577.63 20799.80 6891.94 14198.67 9199.34 86
XVG-OURS90.83 17090.49 16791.86 21895.23 19681.25 30095.79 29495.92 23388.96 15490.02 17598.03 11571.60 25199.35 11991.06 14787.78 21394.98 220
casdiffmvs_mvgpermissive94.00 9693.33 10396.03 10595.22 19790.90 11599.09 9295.99 22390.58 10991.55 14997.37 14179.91 18998.06 17295.01 9595.22 15099.13 103
Fangjinhua Wang, Qingshan Xu, Yew-Soon Ong, Marc Pollefeys: Lightweight and Accurate Multi-View Stereo With Confidence-Aware Diffusion Model. IEEE T-PAMI 2025
TESTMET0.1,193.82 10393.26 10695.49 12295.21 19890.25 12699.15 8397.54 11089.18 14891.79 14294.87 20689.13 5497.63 20286.21 20496.29 13598.60 148
xiu_mvs_v1_base_debu94.73 8093.98 8896.99 5895.19 19995.24 2398.62 14196.50 19392.99 5897.52 4898.83 7172.37 24299.15 12797.03 5296.74 12596.58 204
xiu_mvs_v1_base94.73 8093.98 8896.99 5895.19 19995.24 2398.62 14196.50 19392.99 5897.52 4898.83 7172.37 24299.15 12797.03 5296.74 12596.58 204
xiu_mvs_v1_base_debi94.73 8093.98 8896.99 5895.19 19995.24 2398.62 14196.50 19392.99 5897.52 4898.83 7172.37 24299.15 12797.03 5296.74 12596.58 204
XVG-OURS-SEG-HR90.95 16890.66 16591.83 21995.18 20281.14 30395.92 28695.92 23388.40 17390.33 17197.85 11670.66 25799.38 11492.83 13388.83 20994.98 220
Effi-MVS+-dtu89.97 19090.68 16487.81 30195.15 20371.98 34597.87 21395.40 27191.92 8187.57 19391.44 26974.27 22696.84 23389.45 16893.10 16794.60 222
Vis-MVSNetpermissive92.64 13491.85 13795.03 13795.12 20488.23 17198.48 16096.81 17791.61 8592.16 14097.22 14871.58 25298.00 17885.85 21197.81 10598.88 126
Jingyang Zhang, Yao Yao, Shiwei Li, Zixin Luo, Tian Fang: Visibility-aware Multiview Stereo Network. BMVC 2020
GBi-Net86.67 24284.96 25091.80 22195.11 20588.81 16196.77 25895.25 27782.94 27682.12 25490.25 30162.89 30094.97 31279.04 27280.24 26491.62 260
test186.67 24284.96 25091.80 22195.11 20588.81 16196.77 25895.25 27782.94 27682.12 25490.25 30162.89 30094.97 31279.04 27280.24 26491.62 260
FMVSNet286.90 23784.79 25693.24 19195.11 20592.54 8597.67 22595.86 24582.94 27680.55 27491.17 27562.89 30095.29 30777.23 28479.71 27091.90 254
GeoE90.60 17689.56 17693.72 18695.10 20885.43 24299.41 5594.94 28983.96 25887.21 19996.83 16874.37 22497.05 22780.50 26693.73 16398.67 145
baseline93.91 10093.30 10495.72 11695.10 20890.07 13397.48 23095.91 23891.03 9793.54 12497.68 12679.58 19198.02 17694.27 11095.14 15199.08 108
casdiffmvspermissive93.98 9893.43 10095.61 12095.07 21089.86 14198.80 12195.84 24690.98 9992.74 13397.66 12879.71 19098.10 16994.72 10295.37 14998.87 128
Fangjinhua Wang, Qingshan Xu, Yew-Soon Ong, Marc Pollefeys: Lightweight and Accurate Multi-View Stereo With Confidence-Aware Diffusion Model. IEEE T-PAMI 2025
MVSFormer94.71 8394.08 8696.61 8195.05 21194.87 3497.77 21896.17 21486.84 21298.04 3998.52 9485.52 11795.99 28389.83 16198.97 7898.96 116
lupinMVS96.32 3995.94 4697.44 4295.05 21194.87 3499.86 296.50 19393.82 4398.04 3998.77 7485.52 11798.09 17096.98 5598.97 7899.37 82
CostFormer92.89 13092.48 12594.12 17094.99 21385.89 23292.89 31997.00 17386.98 20995.00 10390.78 28190.05 4897.51 21092.92 13291.73 19098.96 116
c3_l88.19 22087.23 21891.06 23694.97 21486.17 22497.72 22295.38 27283.43 26781.68 26691.37 27082.81 15995.72 29684.04 23373.70 30691.29 278
SCA90.64 17589.25 18494.83 14494.95 21588.83 16096.26 27697.21 14990.06 12790.03 17490.62 29066.61 28296.81 23583.16 24094.36 15798.84 129
test-LLR93.11 12792.68 12094.40 15894.94 21687.27 19899.15 8397.25 14390.21 11891.57 14694.04 21684.89 12897.58 20685.94 20896.13 13698.36 161
test-mter93.27 12292.89 11794.40 15894.94 21687.27 19899.15 8397.25 14388.95 15591.57 14694.04 21688.03 7097.58 20685.94 20896.13 13698.36 161
cl____87.82 22286.79 22590.89 24294.88 21885.43 24297.81 21595.24 28082.91 28080.71 27391.22 27381.97 17695.84 29281.34 25775.06 29091.40 273
DIV-MVS_self_test87.82 22286.81 22490.87 24394.87 21985.39 24497.81 21595.22 28582.92 27980.76 27291.31 27281.99 17495.81 29481.36 25675.04 29191.42 272
tpm291.77 15391.09 15293.82 18294.83 22085.56 24192.51 32497.16 15684.00 25693.83 12190.66 28787.54 7697.17 22187.73 18991.55 19398.72 141
PVSNet_083.28 1687.31 23385.16 24893.74 18594.78 22184.59 25698.91 11398.69 1989.81 13078.59 29893.23 24061.95 30499.34 12094.75 10055.72 36197.30 189
CDS-MVSNet93.47 11393.04 11294.76 14594.75 22289.45 14898.82 11997.03 17087.91 18890.97 15896.48 17789.06 5596.36 26089.50 16792.81 17198.49 152
Khang Truong Giang, Soohwan Song, Sungho Jo: Curvature-guided dynamic scale networks for Multi-view Stereo. ICLR 2022
gm-plane-assit94.69 22388.14 17388.22 17997.20 14998.29 16190.79 153
eth_miper_zixun_eth87.76 22587.00 22290.06 26394.67 22482.65 28497.02 25195.37 27384.19 25381.86 26491.58 26781.47 18195.90 29183.24 23873.61 30791.61 263
RPSCF85.33 26585.55 24384.67 32294.63 22562.28 35993.73 31293.76 31674.38 33785.23 21797.06 15764.09 29698.31 15980.98 25886.08 22493.41 228
miper_lstm_enhance86.90 23786.20 23389.00 29094.53 22681.19 30196.74 26295.24 28082.33 28980.15 27990.51 29781.99 17494.68 32280.71 26273.58 30891.12 282
Patchmatch-test86.25 25184.06 26792.82 19994.42 22782.88 28082.88 36294.23 31071.58 34279.39 28990.62 29089.00 5796.42 25763.03 34891.37 19699.16 100
VDDNet90.08 18788.54 20294.69 14994.41 22887.68 18298.21 18896.40 19876.21 32993.33 12797.75 12254.93 32998.77 14394.71 10390.96 19897.61 184
KD-MVS_2432*160082.98 28880.52 29690.38 25694.32 22988.98 15492.87 32095.87 24380.46 30973.79 32287.49 32682.76 16293.29 33370.56 32646.53 36888.87 328
miper_refine_blended82.98 28880.52 29690.38 25694.32 22988.98 15492.87 32095.87 24380.46 30973.79 32287.49 32682.76 16293.29 33370.56 32646.53 36888.87 328
EI-MVSNet89.87 19189.38 18291.36 23194.32 22985.87 23397.61 22796.59 18585.10 23885.51 21497.10 15481.30 18496.56 24683.85 23683.03 25191.64 258
CVMVSNet90.30 18090.91 15788.46 29794.32 22973.58 33997.61 22797.59 10090.16 12388.43 18997.10 15476.83 21192.86 33682.64 24693.54 16498.93 122
test_fmvs1_n91.07 16591.41 14790.06 26394.10 23374.31 33599.18 7494.84 29194.81 2196.37 7797.46 13750.86 34299.82 6397.14 5197.90 10396.04 215
IterMVS-LS88.34 21687.44 21391.04 23794.10 23385.85 23498.10 19895.48 26585.12 23782.03 25891.21 27481.35 18395.63 29983.86 23575.73 28791.63 259
Fangjinhua Wang, Silvano Galliani, Christoph Vogel, Marc Pollefeys: IterMVS: Iterative Probability Estimation for Efficient Multi-View Stereo.
TAMVS92.62 13592.09 13394.20 16794.10 23387.68 18298.41 16796.97 17487.53 20189.74 17896.04 18884.77 13296.49 25388.97 17792.31 17998.42 154
PAPM96.35 3795.94 4697.58 3894.10 23395.25 2298.93 11098.17 3394.26 2893.94 11898.72 8089.68 5197.88 18296.36 6899.29 6799.62 64
CLD-MVS91.06 16690.71 16392.10 21494.05 23786.10 22699.55 3396.29 20794.16 3184.70 22097.17 15269.62 26197.82 18694.74 10186.08 22492.39 235
Zhaoxin Li, Wangmeng Zuo, Zhaoqi Wang, Lei Zhang: Confidence-based Large-scale Dense Multi-view Stereo. IEEE Transaction on Image Processing, 2020
HQP-NCC93.95 23899.16 7893.92 3687.57 193
ACMP_Plane93.95 23899.16 7893.92 3687.57 193
HQP-MVS91.50 15691.23 15092.29 20893.95 23886.39 21499.16 7896.37 20093.92 3687.57 19396.67 17373.34 23297.77 19093.82 11886.29 21992.72 229
NP-MVS93.94 24186.22 22196.67 173
plane_prior693.92 24286.02 23072.92 237
ACMP87.39 1088.71 21388.24 20590.12 26293.91 24381.06 30498.50 15695.67 25589.43 14280.37 27695.55 19465.67 28897.83 18590.55 15584.51 23291.47 268
Qingshan Xu and Wenbing Tao: Planar Prior Assisted PatchMatch Multi-View Stereo. AAAI 2020
plane_prior193.90 244
HQP_MVS91.26 16190.95 15692.16 21293.84 24586.07 22899.02 10196.30 20493.38 5286.99 20096.52 17572.92 23797.75 19593.46 12386.17 22292.67 231
plane_prior793.84 24585.73 236
MVS-HIRNet79.01 30775.13 31890.66 24893.82 24781.69 29285.16 35293.75 31754.54 36274.17 32059.15 36857.46 31896.58 24563.74 34594.38 15693.72 225
FMVSNet582.29 29180.54 29587.52 30393.79 24884.01 26493.73 31292.47 33476.92 32774.27 31986.15 33863.69 29989.24 35869.07 33074.79 29489.29 323
ACMH+83.78 1584.21 27982.56 28489.15 28793.73 24979.16 31396.43 26994.28 30981.09 30374.00 32194.03 21854.58 33097.67 19876.10 29578.81 27290.63 299
ACMM86.95 1388.77 21188.22 20690.43 25493.61 25081.34 29898.50 15695.92 23387.88 18983.85 22895.20 20267.20 27897.89 18186.90 19884.90 23092.06 251
Qingshan Xu and Wenbing Tao: Multi-Scale Geometric Consistency Guided Multi-View Stereo. CVPR 2019
OpenMVScopyleft85.28 1490.75 17288.84 19196.48 8893.58 25193.51 6698.80 12197.41 13482.59 28278.62 29697.49 13668.00 27299.82 6384.52 22498.55 9596.11 214
IterMVS85.81 25884.67 25989.22 28593.51 25283.67 26996.32 27394.80 29485.09 23978.69 29490.17 30766.57 28493.17 33579.48 27077.42 28290.81 289
Fangjinhua Wang, Silvano Galliani, Christoph Vogel, Marc Pollefeys: IterMVS: Iterative Probability Estimation for Efficient Multi-View Stereo.
CR-MVSNet88.83 20887.38 21593.16 19393.47 25386.24 21984.97 35594.20 31188.92 15890.76 16286.88 33384.43 13394.82 31770.64 32592.17 18398.41 155
RPMNet85.07 26881.88 28594.64 15193.47 25386.24 21984.97 35597.21 14964.85 36090.76 16278.80 35780.95 18599.27 12353.76 36292.17 18398.41 155
IterMVS-SCA-FT85.73 26184.64 26089.00 29093.46 25582.90 27896.27 27494.70 29785.02 24278.62 29690.35 29966.61 28293.33 33279.38 27177.36 28390.76 293
Fast-Effi-MVS+-dtu88.84 20688.59 19989.58 27893.44 25678.18 32198.65 13794.62 30088.46 16884.12 22695.37 20168.91 26396.52 24982.06 25291.70 19194.06 223
Patchmtry83.61 28781.64 28789.50 28093.36 25782.84 28184.10 35894.20 31169.47 35079.57 28786.88 33384.43 13394.78 31868.48 33374.30 30090.88 288
LPG-MVS_test88.86 20588.47 20390.06 26393.35 25880.95 30598.22 18695.94 23087.73 19583.17 23596.11 18666.28 28597.77 19090.19 15985.19 22891.46 269
LGP-MVS_train90.06 26393.35 25880.95 30595.94 23087.73 19583.17 23596.11 18666.28 28597.77 19090.19 15985.19 22891.46 269
JIA-IIPM85.97 25484.85 25489.33 28493.23 26073.68 33885.05 35497.13 15969.62 34991.56 14868.03 36488.03 7096.96 22977.89 28293.12 16697.34 188
ACMH83.09 1784.60 27382.61 28390.57 24993.18 26182.94 27696.27 27494.92 29081.01 30472.61 33393.61 23156.54 32097.79 18874.31 30781.07 26290.99 285
Qingshan Xu and Wenbing Tao: Multi-Scale Geometric Consistency Guided Multi-View Stereo. CVPR 2019
PatchT85.44 26483.19 27292.22 20993.13 26283.00 27583.80 36196.37 20070.62 34490.55 16579.63 35684.81 13094.87 31558.18 35891.59 19298.79 136
MVS_030484.13 28282.66 28188.52 29593.07 26380.15 30895.81 29398.21 3179.27 31386.85 20586.40 33641.33 35794.69 32176.36 29386.69 21790.73 295
baseline294.04 9593.80 9694.74 14793.07 26390.25 12698.12 19598.16 3589.86 12886.53 20996.95 16195.56 698.05 17491.44 14494.53 15595.93 216
jason95.40 6694.86 7197.03 5592.91 26594.23 5299.70 1796.30 20493.56 5096.73 7098.52 9481.46 18297.91 17996.08 7398.47 9798.96 116
jason: jason.
LTVRE_ROB81.71 1984.59 27482.72 28090.18 26092.89 26683.18 27493.15 31794.74 29578.99 31575.14 31792.69 24865.64 28997.63 20269.46 32981.82 26089.74 316
Andreas Kuhn, Heiko Hirschmüller, Daniel Scharstein, Helmut Mayer: A TV Prior for High-Quality Scalable Multi-View Stereo Reconstruction. International Journal of Computer Vision 2016
VPA-MVSNet89.10 19987.66 21193.45 18892.56 26791.02 11197.97 20898.32 2586.92 21186.03 21192.01 25768.84 26597.10 22590.92 14975.34 28892.23 242
tpm89.67 19388.95 18991.82 22092.54 26881.43 29592.95 31895.92 23387.81 19090.50 16789.44 31384.99 12695.65 29883.67 23782.71 25498.38 158
GA-MVS90.10 18688.69 19594.33 16292.44 26987.97 17899.08 9396.26 20889.65 13386.92 20393.11 24368.09 27096.96 22982.54 24890.15 20598.05 171
FIs90.70 17389.87 17393.18 19292.29 27091.12 10598.17 19298.25 2789.11 15083.44 23094.82 20882.26 17196.17 27687.76 18882.76 25392.25 240
ITE_SJBPF87.93 29992.26 27176.44 32893.47 32387.67 19879.95 28295.49 19756.50 32197.38 21775.24 30082.33 25789.98 313
UniMVSNet (Re)89.50 19788.32 20493.03 19492.21 27290.96 11398.90 11498.39 2389.13 14983.22 23292.03 25581.69 17896.34 26686.79 19972.53 31791.81 255
UniMVSNet_NR-MVSNet89.60 19488.55 20192.75 20292.17 27390.07 13398.74 12898.15 3688.37 17483.21 23393.98 22182.86 15895.93 28786.95 19572.47 31892.25 240
TinyColmap80.42 30177.94 30587.85 30092.09 27478.58 31893.74 31189.94 35574.99 33369.77 33891.78 26346.09 34997.58 20665.17 34477.89 27687.38 336
tt080586.50 24784.79 25691.63 22791.97 27581.49 29496.49 26897.38 13782.24 29082.44 24595.82 19151.22 33998.25 16384.55 22380.96 26395.13 219
MS-PatchMatch86.75 24085.92 23789.22 28591.97 27582.47 28696.91 25396.14 21683.74 26177.73 30393.53 23458.19 31697.37 21976.75 29098.35 9887.84 333
VPNet88.30 21786.57 22793.49 18791.95 27791.35 9998.18 19097.20 15388.61 16384.52 22394.89 20562.21 30396.76 23889.34 17172.26 32192.36 237
FMVSNet183.94 28481.32 29291.80 22191.94 27888.81 16196.77 25895.25 27777.98 32078.25 30190.25 30150.37 34394.97 31273.27 31677.81 28091.62 260
WR-MVS88.54 21587.22 21992.52 20691.93 27989.50 14798.56 15097.84 5186.99 20681.87 26293.81 22574.25 22795.92 28985.29 21374.43 29892.12 248
D2MVS87.96 22187.39 21489.70 27591.84 28083.40 27198.31 18198.49 2188.04 18478.23 30290.26 30073.57 23096.79 23784.21 22783.53 24688.90 327
FC-MVSNet-test90.22 18289.40 18192.67 20591.78 28189.86 14197.89 21098.22 3088.81 16082.96 23894.66 21081.90 17795.96 28585.89 21082.52 25692.20 245
MIMVSNet84.48 27681.83 28692.42 20791.73 28287.36 19485.52 35194.42 30681.40 29981.91 26087.58 32351.92 33792.81 33873.84 31288.15 21197.08 197
USDC84.74 27082.93 27490.16 26191.73 28283.54 27095.00 30093.30 32588.77 16173.19 32693.30 23853.62 33397.65 20175.88 29781.54 26189.30 322
test_vis1_n90.40 17790.27 16990.79 24591.55 28476.48 32799.12 9094.44 30394.31 2797.34 5496.95 16143.60 35399.42 10997.57 4497.60 11096.47 208
nrg03090.23 18188.87 19094.32 16391.53 28593.54 6598.79 12595.89 24188.12 18284.55 22294.61 21178.80 20096.88 23292.35 13975.21 28992.53 233
DU-MVS88.83 20887.51 21292.79 20091.46 28690.07 13398.71 12997.62 9388.87 15983.21 23393.68 22874.63 21895.93 28786.95 19572.47 31892.36 237
NR-MVSNet87.74 22886.00 23692.96 19791.46 28690.68 12096.65 26597.42 13388.02 18573.42 32493.68 22877.31 20895.83 29384.26 22671.82 32592.36 237
tfpnnormal83.65 28581.35 29190.56 25191.37 28888.06 17597.29 23797.87 4978.51 31976.20 30790.91 27864.78 29496.47 25461.71 35173.50 30987.13 341
test_vis1_rt81.31 29780.05 30085.11 31791.29 28970.66 34998.98 10777.39 37485.76 22968.80 34082.40 34736.56 36199.44 10592.67 13686.55 21885.24 351
test_040278.81 30976.33 31386.26 31191.18 29078.44 32095.88 28991.34 34968.55 35170.51 33789.91 30852.65 33694.99 31147.14 36579.78 26985.34 350
test0.0.03 188.96 20188.61 19790.03 26791.09 29184.43 25898.97 10897.02 17190.21 11880.29 27796.31 18384.89 12891.93 35072.98 31885.70 22793.73 224
WR-MVS_H86.53 24685.49 24489.66 27791.04 29283.31 27397.53 22998.20 3284.95 24479.64 28590.90 27978.01 20595.33 30676.29 29472.81 31490.35 303
CP-MVSNet86.54 24585.45 24589.79 27391.02 29382.78 28297.38 23397.56 10685.37 23479.53 28893.03 24471.86 24895.25 30879.92 26773.43 31291.34 275
TranMVSNet+NR-MVSNet87.75 22686.31 23192.07 21590.81 29488.56 16698.33 17897.18 15487.76 19281.87 26293.90 22372.45 24195.43 30383.13 24271.30 32892.23 242
PS-CasMVS85.81 25884.58 26189.49 28290.77 29582.11 28897.20 24497.36 13984.83 24679.12 29392.84 24767.42 27795.16 31078.39 28073.25 31391.21 280
DeepMVS_CXcopyleft76.08 34090.74 29651.65 37290.84 35186.47 22257.89 36087.98 32035.88 36292.60 34065.77 34265.06 34583.97 355
mvsmamba89.99 18989.42 18091.69 22690.64 29786.34 21798.40 17092.27 33691.01 9884.80 21994.93 20476.12 21296.51 25092.81 13483.84 24192.21 244
OPM-MVS89.76 19289.15 18691.57 22890.53 29885.58 24098.11 19795.93 23292.88 6286.05 21096.47 17867.06 28097.87 18389.29 17486.08 22491.26 279
Ray L. Khuboni, Hongjun Xu: Octagram Propagation Matching for Multi-Scale View Stereopsis (OPM-MVS).
XXY-MVS87.75 22686.02 23592.95 19890.46 29989.70 14497.71 22495.90 23984.02 25580.95 27094.05 21567.51 27697.10 22585.16 21478.41 27392.04 252
UniMVSNet_ETH3D85.65 26383.79 27091.21 23290.41 30080.75 30795.36 29795.78 24778.76 31881.83 26594.33 21449.86 34496.66 23984.30 22583.52 24796.22 213
RRT_MVS88.91 20388.56 20089.93 26890.31 30181.61 29398.08 20196.38 19989.30 14482.41 24894.84 20773.15 23596.04 28290.38 15682.23 25892.15 246
v1085.73 26184.01 26890.87 24390.03 30286.73 20797.20 24495.22 28581.25 30179.85 28489.75 31073.30 23496.28 27276.87 28872.64 31689.61 319
v886.11 25284.45 26291.10 23589.99 30386.85 20597.24 24195.36 27481.99 29379.89 28389.86 30974.53 22296.39 25878.83 27672.32 32090.05 311
V4287.00 23685.68 24190.98 23989.91 30486.08 22798.32 18095.61 25883.67 26482.72 24090.67 28674.00 22996.53 24881.94 25474.28 30190.32 304
XVG-ACMP-BASELINE85.86 25684.95 25288.57 29489.90 30577.12 32694.30 30695.60 25987.40 20382.12 25492.99 24653.42 33497.66 19985.02 21783.83 24290.92 287
PEN-MVS85.21 26683.93 26989.07 28989.89 30681.31 29997.09 24797.24 14684.45 25178.66 29592.68 24968.44 26894.87 31575.98 29670.92 32991.04 284
test_fmvs285.10 26785.45 24584.02 32589.85 30765.63 35798.49 15892.59 33290.45 11385.43 21693.32 23643.94 35196.59 24290.81 15284.19 23889.85 315
v114486.83 23985.31 24791.40 22989.75 30887.21 20298.31 18195.45 26783.22 27082.70 24190.78 28173.36 23196.36 26079.49 26974.69 29590.63 299
TransMVSNet (Re)81.97 29379.61 30289.08 28889.70 30984.01 26497.26 23991.85 34478.84 31673.07 33091.62 26567.17 27995.21 30967.50 33559.46 35588.02 332
v2v48287.27 23485.76 23991.78 22589.59 31087.58 18698.56 15095.54 26284.53 24982.51 24491.78 26373.11 23696.47 25482.07 25174.14 30491.30 277
pm-mvs184.68 27282.78 27890.40 25589.58 31185.18 24797.31 23694.73 29681.93 29576.05 30992.01 25765.48 29296.11 27978.75 27769.14 33189.91 314
pmmvs487.58 23186.17 23491.80 22189.58 31188.92 15997.25 24095.28 27682.54 28480.49 27593.17 24275.62 21596.05 28182.75 24578.90 27190.42 302
bld_raw_dy_0_6487.82 22286.71 22691.15 23489.54 31385.61 23897.37 23489.16 36089.26 14583.42 23194.50 21265.79 28796.18 27488.00 18683.37 24891.67 257
v119286.32 25084.71 25891.17 23389.53 31486.40 21398.13 19395.44 26982.52 28582.42 24790.62 29071.58 25296.33 26777.23 28474.88 29290.79 291
v14419286.40 24884.89 25390.91 24089.48 31585.59 23998.21 18895.43 27082.45 28782.62 24290.58 29372.79 24096.36 26078.45 27974.04 30590.79 291
v14886.38 24985.06 24990.37 25889.47 31684.10 26398.52 15295.48 26583.80 26080.93 27190.22 30474.60 22096.31 26880.92 26071.55 32690.69 297
v192192086.02 25384.44 26390.77 24689.32 31785.20 24698.10 19895.35 27582.19 29182.25 25290.71 28370.73 25596.30 27176.85 28974.49 29790.80 290
v124085.77 26084.11 26690.73 24789.26 31885.15 24997.88 21295.23 28481.89 29682.16 25390.55 29569.60 26296.31 26875.59 29974.87 29390.72 296
our_test_384.47 27782.80 27689.50 28089.01 31983.90 26697.03 24994.56 30181.33 30075.36 31690.52 29671.69 25094.54 32468.81 33176.84 28490.07 309
ppachtmachnet_test83.63 28681.57 28989.80 27289.01 31985.09 25097.13 24694.50 30278.84 31676.14 30891.00 27769.78 25994.61 32363.40 34674.36 29989.71 318
DTE-MVSNet84.14 28182.80 27688.14 29888.95 32179.87 31196.81 25796.24 20983.50 26677.60 30492.52 25167.89 27494.24 32772.64 32069.05 33290.32 304
PS-MVSNAJss89.54 19689.05 18791.00 23888.77 32284.36 25997.39 23195.97 22588.47 16681.88 26193.80 22682.48 16796.50 25189.34 17183.34 25092.15 246
Baseline_NR-MVSNet85.83 25784.82 25588.87 29388.73 32383.34 27298.63 14091.66 34580.41 31182.44 24591.35 27174.63 21895.42 30484.13 22971.39 32787.84 333
MVP-Stereo86.61 24485.83 23888.93 29288.70 32483.85 26796.07 28394.41 30782.15 29275.64 31491.96 26067.65 27596.45 25677.20 28698.72 8986.51 344
Qingsong Yan: MVP-Stereo: A Parallel Multi-View Patchmatch Stereo Method with Dilation Matching for Photogrammetric Application.
EU-MVSNet84.19 28084.42 26483.52 32888.64 32567.37 35696.04 28495.76 24985.29 23578.44 29993.18 24170.67 25691.48 35275.79 29875.98 28591.70 256
pmmvs585.87 25584.40 26590.30 25988.53 32684.23 26098.60 14593.71 31881.53 29880.29 27792.02 25664.51 29595.52 30182.04 25378.34 27491.15 281
MDA-MVSNet-bldmvs77.82 31574.75 32087.03 30788.33 32778.52 31996.34 27292.85 32975.57 33148.87 36487.89 32157.32 31992.49 34460.79 35264.80 34690.08 308
N_pmnet70.19 32669.87 32871.12 34688.24 32830.63 38295.85 29228.70 38270.18 34768.73 34186.55 33564.04 29793.81 32853.12 36373.46 31088.94 326
v7n84.42 27882.75 27989.43 28388.15 32981.86 29096.75 26195.67 25580.53 30778.38 30089.43 31469.89 25896.35 26573.83 31372.13 32290.07 309
SixPastTwentyTwo82.63 29081.58 28885.79 31488.12 33071.01 34895.17 29992.54 33384.33 25272.93 33192.08 25460.41 31095.61 30074.47 30674.15 30390.75 294
test_djsdf88.26 21987.73 20989.84 27188.05 33182.21 28797.77 21896.17 21486.84 21282.41 24891.95 26172.07 24595.99 28389.83 16184.50 23391.32 276
mvs_tets87.09 23586.22 23289.71 27487.87 33281.39 29796.73 26395.90 23988.19 18079.99 28193.61 23159.96 31196.31 26889.40 17084.34 23691.43 271
OurMVSNet-221017-084.13 28283.59 27185.77 31587.81 33370.24 35094.89 30193.65 32086.08 22576.53 30693.28 23961.41 30696.14 27880.95 25977.69 28190.93 286
YYNet179.64 30677.04 31087.43 30587.80 33479.98 31096.23 27894.44 30373.83 33951.83 36187.53 32467.96 27392.07 34966.00 34167.75 33890.23 306
MDA-MVSNet_test_wron79.65 30577.05 30987.45 30487.79 33580.13 30996.25 27794.44 30373.87 33851.80 36287.47 32868.04 27192.12 34866.02 34067.79 33790.09 307
jajsoiax87.35 23286.51 22989.87 26987.75 33681.74 29197.03 24995.98 22488.47 16680.15 27993.80 22661.47 30596.36 26089.44 16984.47 23591.50 267
K. test v381.04 29879.77 30184.83 32087.41 33770.23 35195.60 29693.93 31583.70 26367.51 34789.35 31555.76 32293.58 33176.67 29168.03 33590.67 298
testgi82.29 29181.00 29486.17 31287.24 33874.84 33497.39 23191.62 34688.63 16275.85 31395.42 19846.07 35091.55 35166.87 33979.94 26892.12 248
LF4IMVS81.94 29481.17 29384.25 32487.23 33968.87 35593.35 31691.93 34383.35 26975.40 31593.00 24549.25 34796.65 24078.88 27578.11 27587.22 340
EG-PatchMatch MVS79.92 30277.59 30686.90 30887.06 34077.90 32596.20 28194.06 31374.61 33566.53 35188.76 31840.40 35996.20 27367.02 33783.66 24586.61 342
Gipumacopyleft54.77 33652.22 34062.40 35386.50 34159.37 36350.20 37190.35 35436.52 36941.20 37049.49 37118.33 37281.29 36632.10 37165.34 34446.54 371
S. Galliani, K. Lasinger, K. Schindler: Massively Parallel Multiview Stereopsis by Surface Normal Diffusion. ICCV 2015
anonymousdsp86.69 24185.75 24089.53 27986.46 34282.94 27696.39 27095.71 25183.97 25779.63 28690.70 28468.85 26495.94 28686.01 20584.02 24089.72 317
EGC-MVSNET60.70 33155.37 33576.72 33986.35 34371.08 34689.96 34384.44 3700.38 3791.50 38084.09 34337.30 36088.10 36140.85 36973.44 31170.97 364
test_method70.10 32768.66 33074.41 34486.30 34455.84 36594.47 30389.82 35635.18 37066.15 35284.75 34230.54 36477.96 37170.40 32860.33 35389.44 321
lessismore_v085.08 31885.59 34569.28 35390.56 35367.68 34690.21 30554.21 33295.46 30273.88 31162.64 34990.50 301
CMPMVSbinary58.40 2180.48 30080.11 29981.59 33585.10 34659.56 36294.14 30995.95 22968.54 35260.71 35893.31 23755.35 32797.87 18383.06 24384.85 23187.33 338
M. Jancosek, T. Pajdla: Multi-View Reconstruction Preserving Weakly-Supported Surfaces. CVPR 2011
Anonymous2023120680.76 29979.42 30384.79 32184.78 34772.98 34096.53 26692.97 32779.56 31274.33 31888.83 31761.27 30792.15 34760.59 35375.92 28689.24 324
DSMNet-mixed81.60 29681.43 29082.10 33284.36 34860.79 36093.63 31486.74 36579.00 31479.32 29087.15 33163.87 29889.78 35666.89 33891.92 18595.73 217
pmmvs679.90 30377.31 30887.67 30284.17 34978.13 32295.86 29193.68 31967.94 35472.67 33289.62 31250.98 34195.75 29574.80 30566.04 34289.14 325
new_pmnet76.02 31773.71 32282.95 32983.88 35072.85 34291.26 33592.26 33770.44 34662.60 35681.37 35047.64 34892.32 34561.85 35072.10 32383.68 356
OpenMVS_ROBcopyleft73.86 2077.99 31475.06 31986.77 30983.81 35177.94 32496.38 27191.53 34867.54 35568.38 34287.13 33243.94 35196.08 28055.03 36181.83 25986.29 345
test20.0378.51 31277.48 30781.62 33483.07 35271.03 34796.11 28292.83 33081.66 29769.31 33989.68 31157.53 31787.29 36358.65 35768.47 33386.53 343
Anonymous2024052178.63 31176.90 31183.82 32682.82 35372.86 34195.72 29593.57 32173.55 34072.17 33484.79 34149.69 34592.51 34365.29 34374.50 29686.09 346
UnsupCasMVSNet_eth78.90 30876.67 31285.58 31682.81 35474.94 33391.98 32696.31 20384.64 24865.84 35387.71 32251.33 33892.23 34672.89 31956.50 36089.56 320
KD-MVS_self_test77.47 31675.88 31582.24 33081.59 35568.93 35492.83 32294.02 31477.03 32673.14 32783.39 34455.44 32690.42 35367.95 33457.53 35887.38 336
CL-MVSNet_self_test79.89 30478.34 30484.54 32381.56 35675.01 33296.88 25595.62 25781.10 30275.86 31285.81 33968.49 26790.26 35463.21 34756.51 35988.35 330
MIMVSNet175.92 31873.30 32383.81 32781.29 35775.57 33092.26 32592.05 34173.09 34167.48 34886.18 33740.87 35887.64 36255.78 36070.68 33088.21 331
Patchmatch-RL test81.90 29580.13 29887.23 30680.71 35870.12 35284.07 35988.19 36383.16 27270.57 33582.18 34987.18 8692.59 34182.28 25062.78 34898.98 114
APD_test168.93 32866.98 33174.77 34380.62 35953.15 36987.97 34685.01 36853.76 36359.26 35987.52 32525.19 36689.95 35556.20 35967.33 33981.19 360
pmmvs-eth3d78.71 31076.16 31486.38 31080.25 36081.19 30194.17 30892.13 34077.97 32166.90 35082.31 34855.76 32292.56 34273.63 31562.31 35185.38 348
UnsupCasMVSNet_bld73.85 32370.14 32784.99 31979.44 36175.73 32988.53 34595.24 28070.12 34861.94 35774.81 36141.41 35693.62 33068.65 33251.13 36785.62 347
PM-MVS74.88 32172.85 32480.98 33678.98 36264.75 35890.81 33985.77 36680.95 30568.23 34482.81 34529.08 36592.84 33776.54 29262.46 35085.36 349
new-patchmatchnet74.80 32272.40 32581.99 33378.36 36372.20 34494.44 30492.36 33577.06 32563.47 35579.98 35551.04 34088.85 35960.53 35454.35 36284.92 353
test_fmvs375.09 32075.19 31774.81 34277.45 36454.08 36795.93 28590.64 35282.51 28673.29 32581.19 35122.29 36886.29 36485.50 21267.89 33684.06 354
pmmvs372.86 32469.76 32982.17 33173.86 36574.19 33694.20 30789.01 36164.23 36167.72 34580.91 35341.48 35588.65 36062.40 34954.02 36383.68 356
mvsany_test375.85 31974.52 32179.83 33773.53 36660.64 36191.73 32987.87 36483.91 25970.55 33682.52 34631.12 36393.66 32986.66 20162.83 34785.19 352
test_f71.94 32570.82 32675.30 34172.77 36753.28 36891.62 33089.66 35875.44 33264.47 35478.31 35820.48 36989.56 35778.63 27866.02 34383.05 359
ambc79.60 33872.76 36856.61 36476.20 36692.01 34268.25 34380.23 35423.34 36794.73 31973.78 31460.81 35287.48 335
TDRefinement78.01 31375.31 31686.10 31370.06 36973.84 33793.59 31591.58 34774.51 33673.08 32991.04 27649.63 34697.12 22274.88 30359.47 35487.33 338
test_vis3_rt61.29 33058.75 33368.92 34867.41 37052.84 37091.18 33759.23 38166.96 35641.96 36958.44 36911.37 37794.72 32074.25 30857.97 35759.20 368
testf156.38 33453.73 33764.31 35164.84 37145.11 37480.50 36475.94 37638.87 36642.74 36675.07 35911.26 37881.19 36741.11 36753.27 36466.63 365
APD_test256.38 33453.73 33764.31 35164.84 37145.11 37480.50 36475.94 37638.87 36642.74 36675.07 35911.26 37881.19 36741.11 36753.27 36466.63 365
PMMVS258.97 33355.07 33670.69 34762.72 37355.37 36685.97 35080.52 37149.48 36445.94 36568.31 36315.73 37480.78 36949.79 36437.12 37075.91 361
E-PMN41.02 34140.93 34341.29 35761.97 37433.83 37984.00 36065.17 37927.17 37227.56 37246.72 37317.63 37360.41 37619.32 37418.82 37229.61 372
wuyk23d16.71 34516.73 34916.65 35960.15 37525.22 38341.24 3725.17 3836.56 3765.48 3793.61 3793.64 38122.72 37815.20 3769.52 3761.99 376
FPMVS61.57 32960.32 33265.34 34960.14 37642.44 37791.02 33889.72 35744.15 36542.63 36880.93 35219.02 37080.59 37042.50 36672.76 31573.00 362
EMVS39.96 34239.88 34440.18 35859.57 37732.12 38184.79 35764.57 38026.27 37326.14 37444.18 37618.73 37159.29 37717.03 37517.67 37429.12 373
LCM-MVSNet60.07 33256.37 33471.18 34554.81 37848.67 37382.17 36389.48 35937.95 36849.13 36369.12 36213.75 37681.76 36559.28 35551.63 36683.10 358
MVEpermissive44.00 2241.70 34037.64 34553.90 35649.46 37943.37 37665.09 37066.66 37826.19 37425.77 37548.53 3723.58 38263.35 37526.15 37327.28 37154.97 370
Simon Fuhrmann, Fabian Langguth, Michael Goesele: MVE - A Multi-View Reconstruction Environment. EUROGRAPHICS Workshops on Graphics and Cultural Heritage (2014)
ANet_high50.71 33846.17 34164.33 35044.27 38052.30 37176.13 36778.73 37264.95 35927.37 37355.23 37014.61 37567.74 37336.01 37018.23 37372.95 363
PMVScopyleft41.42 2345.67 33942.50 34255.17 35534.28 38132.37 38066.24 36978.71 37330.72 37122.04 37659.59 3674.59 38077.85 37227.49 37258.84 35655.29 369
Y. Furukawa, J. Ponce: Accurate, dense, and robust multiview stereopsis. PAMI (2010)
tmp_tt53.66 33752.86 33956.05 35432.75 38241.97 37873.42 36876.12 37521.91 37539.68 37196.39 18142.59 35465.10 37478.00 28114.92 37561.08 367
testmvs18.81 34423.05 3476.10 3614.48 3832.29 38597.78 2173.00 3843.27 37718.60 37762.71 3651.53 3842.49 38014.26 3771.80 37713.50 375
test12316.58 34619.47 3487.91 3603.59 3845.37 38494.32 3051.39 3852.49 37813.98 37844.60 3752.91 3832.65 37911.35 3780.57 37815.70 374
test_blank0.00 3490.00 3520.00 3620.00 3850.00 3860.00 3730.00 3860.00 3800.00 3810.00 3800.00 3850.00 3810.00 3790.00 3790.00 377
eth-test20.00 385
eth-test0.00 385
uanet_test0.00 3490.00 3520.00 3620.00 3850.00 3860.00 3730.00 3860.00 3800.00 3810.00 3800.00 3850.00 3810.00 3790.00 3790.00 377
DCPMVS0.00 3490.00 3520.00 3620.00 3850.00 3860.00 3730.00 3860.00 3800.00 3810.00 3800.00 3850.00 3810.00 3790.00 3790.00 377
cdsmvs_eth3d_5k22.52 34330.03 3460.00 3620.00 3850.00 3860.00 37397.17 1550.00 3800.00 38198.77 7474.35 2250.00 3810.00 3790.00 3790.00 377
pcd_1.5k_mvsjas6.87 3489.16 3510.00 3620.00 3850.00 3860.00 3730.00 3860.00 3800.00 3810.00 38082.48 1670.00 3810.00 3790.00 3790.00 377
sosnet-low-res0.00 3490.00 3520.00 3620.00 3850.00 3860.00 3730.00 3860.00 3800.00 3810.00 3800.00 3850.00 3810.00 3790.00 3790.00 377
sosnet0.00 3490.00 3520.00 3620.00 3850.00 3860.00 3730.00 3860.00 3800.00 3810.00 3800.00 3850.00 3810.00 3790.00 3790.00 377
uncertanet0.00 3490.00 3520.00 3620.00 3850.00 3860.00 3730.00 3860.00 3800.00 3810.00 3800.00 3850.00 3810.00 3790.00 3790.00 377
Regformer0.00 3490.00 3520.00 3620.00 3850.00 3860.00 3730.00 3860.00 3800.00 3810.00 3800.00 3850.00 3810.00 3790.00 3790.00 377
ab-mvs-re8.21 34710.94 3500.00 3620.00 3850.00 3860.00 3730.00 3860.00 3800.00 38198.50 960.00 3850.00 3810.00 3790.00 3790.00 377
uanet0.00 3490.00 3520.00 3620.00 3850.00 3860.00 3730.00 3860.00 3800.00 3810.00 3800.00 3850.00 3810.00 3790.00 3790.00 377
PC_three_145294.60 2399.41 299.12 4195.50 799.96 2899.84 299.92 399.97 7
test_241102_TWO97.72 6994.17 2999.23 899.54 393.14 2499.98 999.70 399.82 1999.99 1
test_0728_THIRD93.01 5699.07 1199.46 1094.66 1499.97 2199.25 1499.82 1999.95 15
GSMVS98.84 129
sam_mvs188.39 6398.84 129
sam_mvs87.08 88
MTGPAbinary97.45 127
test_post190.74 34141.37 37785.38 12496.36 26083.16 240
test_post46.00 37487.37 8097.11 223
patchmatchnet-post84.86 34088.73 6096.81 235
MTMP99.21 7191.09 350
test9_res98.60 2399.87 999.90 22
agg_prior297.84 4199.87 999.91 21
test_prior492.00 9099.41 55
test_prior299.57 3191.43 9198.12 3598.97 5590.43 4398.33 3199.81 23
旧先验298.67 13585.75 23098.96 1598.97 13893.84 116
新几何298.26 184
无先验98.52 15297.82 5487.20 20599.90 4387.64 19099.85 30
原ACMM298.69 132
testdata299.88 4684.16 228
segment_acmp90.56 41
testdata197.89 21092.43 68
plane_prior596.30 20497.75 19593.46 12386.17 22292.67 231
plane_prior496.52 175
plane_prior385.91 23193.65 4786.99 200
plane_prior299.02 10193.38 52
plane_prior86.07 22899.14 8693.81 4486.26 221
n20.00 386
nn0.00 386
door-mid84.90 369
test1197.68 78
door85.30 367
HQP5-MVS86.39 214
BP-MVS93.82 118
HQP4-MVS87.57 19397.77 19092.72 229
HQP3-MVS96.37 20086.29 219
HQP2-MVS73.34 232
MDTV_nov1_ep13_2view91.17 10491.38 33387.45 20293.08 13086.67 9887.02 19398.95 120
ACMMP++_ref82.64 255
ACMMP++83.83 242
Test By Simon83.62 142