| AdaColmap |  | | 93.82 124 | 93.06 132 | 96.10 116 | 99.88 1 | 89.07 170 | 98.33 200 | 97.55 123 | 86.81 239 | 90.39 192 | 98.65 100 | 75.09 237 | 99.98 9 | 93.32 146 | 97.53 125 | 99.26 102 |
|
| DP-MVS Recon | | | 95.85 62 | 95.15 77 | 97.95 31 | 99.87 2 | 94.38 53 | 99.60 39 | 97.48 139 | 86.58 243 | 94.42 127 | 99.13 46 | 87.36 90 | 99.98 9 | 93.64 138 | 98.33 108 | 99.48 80 |
|
| MCST-MVS | | | 98.18 2 | 97.95 9 | 98.86 5 | 99.85 3 | 96.60 10 | 99.70 27 | 97.98 53 | 97.18 3 | 95.96 95 | 99.33 19 | 92.62 25 | 100.00 1 | 98.99 25 | 99.93 1 | 99.98 6 |
|
| CNVR-MVS | | | 98.46 1 | 98.38 1 | 98.72 9 | 99.80 4 | 96.19 15 | 99.80 16 | 97.99 52 | 97.05 6 | 99.41 4 | 99.59 2 | 92.89 24 | 100.00 1 | 98.99 25 | 99.90 7 | 99.96 10 |
|
| MG-MVS | | | 97.24 20 | 96.83 31 | 98.47 15 | 99.79 5 | 95.71 19 | 99.07 114 | 99.06 10 | 94.45 42 | 96.42 89 | 98.70 97 | 88.81 64 | 99.74 88 | 95.35 104 | 99.86 12 | 99.97 7 |
|
| NCCC | | | 98.12 5 | 98.11 3 | 98.13 25 | 99.76 6 | 94.46 49 | 99.81 12 | 97.88 57 | 96.54 13 | 98.84 25 | 99.46 10 | 92.55 26 | 99.98 9 | 98.25 46 | 99.93 1 | 99.94 18 |
|
| region2R | | | 96.30 46 | 96.17 48 | 96.70 82 | 99.70 7 | 90.31 137 | 99.46 60 | 97.66 95 | 90.55 127 | 97.07 72 | 99.07 53 | 86.85 102 | 99.97 21 | 95.43 102 | 99.74 29 | 99.81 33 |
|
| HFP-MVS | | | 96.42 42 | 96.26 42 | 96.90 70 | 99.69 8 | 90.96 123 | 99.47 56 | 97.81 68 | 90.54 128 | 96.88 74 | 99.05 56 | 87.57 82 | 99.96 28 | 95.65 95 | 99.72 31 | 99.78 38 |
|
| ACMMPR | | | 96.28 47 | 96.14 52 | 96.73 79 | 99.68 9 | 90.47 135 | 99.47 56 | 97.80 70 | 90.54 128 | 96.83 79 | 99.03 58 | 86.51 113 | 99.95 31 | 95.65 95 | 99.72 31 | 99.75 46 |
|
| ZD-MVS | | | | | | 99.67 10 | 93.28 72 | | 97.61 110 | 87.78 215 | 97.41 61 | 99.16 38 | 90.15 52 | 99.56 105 | 98.35 41 | 99.70 35 | |
|
| CP-MVS | | | 96.22 48 | 96.15 51 | 96.42 99 | 99.67 10 | 89.62 161 | 99.70 27 | 97.61 110 | 90.07 143 | 96.00 94 | 99.16 38 | 87.43 85 | 99.92 40 | 96.03 91 | 99.72 31 | 99.70 52 |
|
| DVP-MVS |  | | 98.07 7 | 98.00 6 | 98.29 19 | 99.66 12 | 95.20 31 | 99.72 24 | 97.47 141 | 93.95 50 | 99.07 16 | 99.46 10 | 93.18 21 | 99.97 21 | 99.64 7 | 99.82 19 | 99.69 55 |
| Zhenlong Yuan, Jinguo Luo, Fei Shen, Zhaoxin Li, Cong Liu, Tianlu Mao, Zhaoqi Wang: DVP-MVS: Synergize Depth-Edge and Visibility Prior for Multi-View Stereo. AAAI2025 |
| test_0728_SECOND | | | | | 98.77 8 | 99.66 12 | 96.37 14 | 99.72 24 | 97.68 90 | | | | | 99.98 9 | 99.64 7 | 99.82 19 | 99.96 10 |
|
| test0726 | | | | | | 99.66 12 | 95.20 31 | 99.77 18 | 97.70 86 | 93.95 50 | 99.35 7 | 99.54 3 | 93.18 21 | | | | |
|
| CPTT-MVS | | | 94.60 102 | 94.43 91 | 95.09 154 | 99.66 12 | 86.85 226 | 99.44 63 | 97.47 141 | 83.22 299 | 94.34 130 | 98.96 68 | 82.50 179 | 99.55 106 | 94.81 117 | 99.50 54 | 98.88 136 |
|
| MSLP-MVS++ | | | 97.50 17 | 97.45 17 | 97.63 39 | 99.65 16 | 93.21 73 | 99.70 27 | 98.13 42 | 94.61 37 | 97.78 56 | 99.46 10 | 89.85 54 | 99.81 79 | 97.97 52 | 99.91 6 | 99.88 26 |
|
| OPU-MVS | | | | | 99.49 4 | 99.64 17 | 98.51 4 | 99.77 18 | | | | 99.19 32 | 95.12 8 | 99.97 21 | 99.90 1 | 99.92 3 | 99.99 1 |
|
| SED-MVS | | | 98.18 2 | 98.10 4 | 98.41 18 | 99.63 18 | 95.24 26 | 99.77 18 | 97.72 81 | 94.17 45 | 99.30 9 | 99.54 3 | 93.32 18 | 99.98 9 | 99.70 4 | 99.81 23 | 99.99 1 |
|
| IU-MVS | | | | | | 99.63 18 | 95.38 23 | | 97.73 80 | 95.54 28 | 99.54 3 | | | | 99.69 6 | 99.81 23 | 99.99 1 |
|
| test_241102_ONE | | | | | | 99.63 18 | 95.24 26 | | 97.72 81 | 94.16 47 | 99.30 9 | 99.49 9 | 93.32 18 | 99.98 9 | | | |
|
| PAPR | | | 96.35 43 | 95.82 58 | 97.94 32 | 99.63 18 | 94.19 57 | 99.42 68 | 97.55 123 | 92.43 84 | 93.82 140 | 99.12 48 | 87.30 92 | 99.91 45 | 94.02 130 | 99.06 76 | 99.74 47 |
|
| XVS | | | 96.47 41 | 96.37 40 | 96.77 75 | 99.62 22 | 90.66 131 | 99.43 66 | 97.58 118 | 92.41 87 | 96.86 75 | 98.96 68 | 87.37 87 | 99.87 58 | 95.65 95 | 99.43 60 | 99.78 38 |
|
| X-MVStestdata | | | 90.69 197 | 88.66 220 | 96.77 75 | 99.62 22 | 90.66 131 | 99.43 66 | 97.58 118 | 92.41 87 | 96.86 75 | 29.59 408 | 87.37 87 | 99.87 58 | 95.65 95 | 99.43 60 | 99.78 38 |
|
| DVP-MVS++ | | | 98.18 2 | 98.09 5 | 98.44 16 | 99.61 24 | 95.38 23 | 99.55 45 | 97.68 90 | 93.01 72 | 99.23 11 | 99.45 14 | 95.12 8 | 99.98 9 | 99.25 18 | 99.92 3 | 99.97 7 |
|
| MSC_two_6792asdad | | | | | 99.51 2 | 99.61 24 | 98.60 2 | | 97.69 88 | | | | | 99.98 9 | 99.55 12 | 99.83 15 | 99.96 10 |
|
| No_MVS | | | | | 99.51 2 | 99.61 24 | 98.60 2 | | 97.69 88 | | | | | 99.98 9 | 99.55 12 | 99.83 15 | 99.96 10 |
|
| DeepC-MVS_fast | | 93.52 2 | 97.16 24 | 96.84 29 | 98.13 25 | 99.61 24 | 94.45 50 | 98.85 136 | 97.64 103 | 96.51 16 | 95.88 98 | 99.39 18 | 87.35 91 | 99.99 5 | 96.61 79 | 99.69 36 | 99.96 10 |
| Andreas Kuhn, Christian Sormann, Mattia Rossi, Oliver Erdler, Friedrich Fraundorfer: DeepC-MVS: Deep Confidence Prediction for Multi-View Stereo Reconstruction. 3DV 2020 |
| test_one_0601 | | | | | | 99.59 28 | 94.89 35 | | 97.64 103 | 93.14 71 | 98.93 22 | 99.45 14 | 93.45 17 | | | | |
|
| CDPH-MVS | | | 96.56 39 | 96.18 45 | 97.70 37 | 99.59 28 | 93.92 61 | 99.13 109 | 97.44 147 | 89.02 172 | 97.90 54 | 99.22 27 | 88.90 63 | 99.49 112 | 94.63 123 | 99.79 27 | 99.68 56 |
|
| test_prior | | | | | 97.01 61 | 99.58 30 | 91.77 100 | | 97.57 121 | | | | | 99.49 112 | | | 99.79 36 |
|
| APDe-MVS |  | | 97.53 14 | 97.47 15 | 97.70 37 | 99.58 30 | 93.63 65 | 99.56 44 | 97.52 131 | 93.59 65 | 98.01 51 | 99.12 48 | 90.80 40 | 99.55 106 | 99.26 17 | 99.79 27 | 99.93 20 |
| Zhaojie Zeng, Yuesong Wang, Tao Guan: Matching Ambiguity-Resilient Multi-View Stereo via Adaptive Patch Deformation. Pattern Recognition |
| mPP-MVS | | | 95.90 61 | 95.75 63 | 96.38 102 | 99.58 30 | 89.41 165 | 99.26 86 | 97.41 151 | 90.66 121 | 94.82 119 | 98.95 71 | 86.15 121 | 99.98 9 | 95.24 108 | 99.64 40 | 99.74 47 |
|
| TEST9 | | | | | | 99.57 33 | 93.17 74 | 99.38 72 | 97.66 95 | 89.57 157 | 98.39 36 | 99.18 35 | 90.88 38 | 99.66 94 | | | |
|
| train_agg | | | 97.20 23 | 97.08 23 | 97.57 43 | 99.57 33 | 93.17 74 | 99.38 72 | 97.66 95 | 90.18 137 | 98.39 36 | 99.18 35 | 90.94 35 | 99.66 94 | 98.58 36 | 99.85 13 | 99.88 26 |
|
| test_8 | | | | | | 99.55 35 | 93.07 77 | 99.37 75 | 97.64 103 | 90.18 137 | 98.36 38 | 99.19 32 | 90.94 35 | 99.64 100 | | | |
|
| test_part2 | | | | | | 99.54 36 | 95.42 21 | | | | 98.13 43 | | | | | | |
|
| MSP-MVS | | | 97.77 9 | 98.18 2 | 96.53 93 | 99.54 36 | 90.14 143 | 99.41 69 | 97.70 86 | 95.46 30 | 98.60 30 | 99.19 32 | 95.71 4 | 99.49 112 | 98.15 48 | 99.85 13 | 99.95 15 |
| Zhenlong Yuan, Cong Liu, Fei Shen, Zhaoxin Li, Jingguo luo, Tianlu Mao and Zhaoqi Wang: MSP-MVS: Multi-granularity Segmentation Prior Guided Multi-View Stereo. AAAI2025 |
| agg_prior | | | | | | 99.54 36 | 92.66 87 | | 97.64 103 | | 97.98 52 | | | 99.61 102 | | | |
|
| CSCG | | | 94.87 91 | 94.71 85 | 95.36 143 | 99.54 36 | 86.49 231 | 99.34 78 | 98.15 40 | 82.71 310 | 90.15 195 | 99.25 23 | 89.48 57 | 99.86 63 | 94.97 115 | 98.82 91 | 99.72 50 |
|
| HPM-MVS++ |  | | 97.72 11 | 97.59 13 | 98.14 24 | 99.53 40 | 94.76 43 | 99.19 91 | 97.75 76 | 95.66 24 | 98.21 41 | 99.29 20 | 91.10 32 | 99.99 5 | 97.68 57 | 99.87 9 | 99.68 56 |
|
| APD-MVS |  | | 96.95 29 | 96.72 32 | 97.63 39 | 99.51 41 | 93.58 66 | 99.16 97 | 97.44 147 | 90.08 142 | 98.59 31 | 99.07 53 | 89.06 60 | 99.42 123 | 97.92 53 | 99.66 37 | 99.88 26 |
| Yuesong Wang, Zhaojie Zeng and etc.: Adaptive Patch Deformation for Textureless-Resilient Multi-View Stereo. CVPR2023 |
| FOURS1 | | | | | | 99.50 42 | 88.94 177 | 99.55 45 | 97.47 141 | 91.32 110 | 98.12 45 | | | | | | |
|
| DPE-MVS |  | | 98.11 6 | 98.00 6 | 98.44 16 | 99.50 42 | 95.39 22 | 99.29 82 | 97.72 81 | 94.50 39 | 98.64 29 | 99.54 3 | 93.32 18 | 99.97 21 | 99.58 10 | 99.90 7 | 99.95 15 |
| Kehua Chen, Zhenlong Yuan, Tianlu Mao, Zhaoqi Wang: Dual-Level Precision Edges Guided Multi-View Stereo with Accurate Planarization. AAAI2025 |
| PGM-MVS | | | 95.85 62 | 95.65 68 | 96.45 97 | 99.50 42 | 89.77 158 | 98.22 208 | 98.90 13 | 89.19 167 | 96.74 82 | 98.95 71 | 85.91 125 | 99.92 40 | 93.94 131 | 99.46 56 | 99.66 60 |
|
| GST-MVS | | | 95.97 56 | 95.66 66 | 96.90 70 | 99.49 45 | 91.22 110 | 99.45 62 | 97.48 139 | 89.69 151 | 95.89 97 | 98.72 93 | 86.37 116 | 99.95 31 | 94.62 124 | 99.22 71 | 99.52 76 |
|
| MP-MVS |  | | 96.00 53 | 95.82 58 | 96.54 92 | 99.47 46 | 90.13 145 | 99.36 76 | 97.41 151 | 90.64 124 | 95.49 109 | 98.95 71 | 85.51 130 | 99.98 9 | 96.00 92 | 99.59 50 | 99.52 76 |
| Rongxuan Tan, Qing Wang, et al.: MP-MVS: Multi-Scale Windows PatchMatch and Planar Prior Multi-View Stereo. |
| ZNCC-MVS | | | 96.09 51 | 95.81 60 | 96.95 69 | 99.42 47 | 91.19 112 | 99.55 45 | 97.53 127 | 89.72 150 | 95.86 100 | 98.94 74 | 86.59 109 | 99.97 21 | 95.13 109 | 99.56 51 | 99.68 56 |
|
| SR-MVS | | | 96.13 50 | 96.16 50 | 96.07 117 | 99.42 47 | 89.04 171 | 98.59 169 | 97.33 158 | 90.44 131 | 96.84 77 | 99.12 48 | 86.75 104 | 99.41 126 | 97.47 60 | 99.44 59 | 99.76 45 |
|
| PAPM_NR | | | 95.43 74 | 95.05 81 | 96.57 91 | 99.42 47 | 90.14 143 | 98.58 171 | 97.51 133 | 90.65 123 | 92.44 157 | 98.90 78 | 87.77 81 | 99.90 50 | 90.88 171 | 99.32 65 | 99.68 56 |
|
| 9.14 | | | | 96.87 27 | | 99.34 50 | | 99.50 52 | 97.49 138 | 89.41 163 | 98.59 31 | 99.43 16 | 89.78 55 | 99.69 91 | 98.69 30 | 99.62 45 | |
|
| save fliter | | | | | | 99.34 50 | 93.85 63 | 99.65 36 | 97.63 107 | 95.69 22 | | | | | | | |
|
| PHI-MVS | | | 96.65 37 | 96.46 38 | 97.21 55 | 99.34 50 | 91.77 100 | 99.70 27 | 98.05 46 | 86.48 248 | 98.05 48 | 99.20 30 | 89.33 58 | 99.96 28 | 98.38 39 | 99.62 45 | 99.90 22 |
|
| test12 | | | | | 97.83 34 | 99.33 53 | 94.45 50 | | 97.55 123 | | 97.56 57 | | 88.60 66 | 99.50 111 | | 99.71 34 | 99.55 73 |
|
| SMA-MVS |  | | 97.24 20 | 96.99 24 | 98.00 30 | 99.30 54 | 94.20 56 | 99.16 97 | 97.65 102 | 89.55 159 | 99.22 13 | 99.52 8 | 90.34 49 | 99.99 5 | 98.32 43 | 99.83 15 | 99.82 32 |
| Yufeng Yin; Xiaoyan Liu; Zichao Zhang: SMA-MVS: Segmentation-Guided Multi-Scale Anchor Deformation Patch Multi-View Stereo. IEEE Transactions on Circuits and Systems for Video Technology |
| MTAPA | | | 96.09 51 | 95.80 61 | 96.96 68 | 99.29 55 | 91.19 112 | 97.23 268 | 97.45 144 | 92.58 81 | 94.39 129 | 99.24 25 | 86.43 115 | 99.99 5 | 96.22 85 | 99.40 63 | 99.71 51 |
|
| HPM-MVS |  | | 95.41 76 | 95.22 75 | 95.99 122 | 99.29 55 | 89.14 168 | 99.17 96 | 97.09 183 | 87.28 228 | 95.40 110 | 98.48 115 | 84.93 140 | 99.38 128 | 95.64 99 | 99.65 38 | 99.47 81 |
| Chunlin Ren, Qingshan Xu, Shikun Zhang, Jiaqi Yang: Hierarchical Prior Mining for Non-local Multi-View Stereo. ICCV 2023 |
| ACMMP |  | | 94.67 100 | 94.30 92 | 95.79 129 | 99.25 57 | 88.13 195 | 98.41 189 | 98.67 22 | 90.38 133 | 91.43 173 | 98.72 93 | 82.22 188 | 99.95 31 | 93.83 135 | 95.76 158 | 99.29 99 |
| Qingshan Xu, Weihang Kong, Wenbing Tao, Marc Pollefeys: Multi-Scale Geometric Consistency Guided and Planar Prior Assisted Multi-View Stereo. IEEE Transactions on Pattern Analysis and Machine Intelligence |
| APD-MVS_3200maxsize | | | 95.64 71 | 95.65 68 | 95.62 136 | 99.24 58 | 87.80 201 | 98.42 187 | 97.22 166 | 88.93 177 | 96.64 87 | 98.98 63 | 85.49 131 | 99.36 130 | 96.68 76 | 99.27 69 | 99.70 52 |
|
| SR-MVS-dyc-post | | | 95.75 68 | 95.86 57 | 95.41 142 | 99.22 59 | 87.26 221 | 98.40 192 | 97.21 167 | 89.63 153 | 96.67 85 | 98.97 64 | 86.73 106 | 99.36 130 | 96.62 77 | 99.31 66 | 99.60 68 |
|
| RE-MVS-def | | | | 95.70 64 | | 99.22 59 | 87.26 221 | 98.40 192 | 97.21 167 | 89.63 153 | 96.67 85 | 98.97 64 | 85.24 137 | | 96.62 77 | 99.31 66 | 99.60 68 |
|
| patch_mono-2 | | | 97.10 26 | 97.97 8 | 94.49 176 | 99.21 61 | 83.73 291 | 99.62 38 | 98.25 32 | 95.28 32 | 99.38 6 | 98.91 77 | 92.28 27 | 99.94 34 | 99.61 9 | 99.22 71 | 99.78 38 |
|
| API-MVS | | | 94.78 94 | 94.18 98 | 96.59 88 | 99.21 61 | 90.06 150 | 98.80 142 | 97.78 73 | 83.59 294 | 93.85 138 | 99.21 29 | 83.79 153 | 99.97 21 | 92.37 158 | 99.00 80 | 99.74 47 |
|
| PLC |  | 91.07 3 | 94.23 111 | 94.01 102 | 94.87 162 | 99.17 63 | 87.49 210 | 99.25 87 | 96.55 213 | 88.43 192 | 91.26 177 | 98.21 127 | 85.92 123 | 99.86 63 | 89.77 187 | 97.57 122 | 97.24 208 |
| Jie Liao, Yanping Fu, Qingan Yan, Chunxia xiao: Pyramid Multi-View Stereo with Local Consistency. Pacific Graphics 2019 |
| EI-MVSNet-Vis-set | | | 95.76 67 | 95.63 70 | 96.17 113 | 99.14 64 | 90.33 136 | 98.49 180 | 97.82 65 | 91.92 96 | 94.75 121 | 98.88 82 | 87.06 97 | 99.48 116 | 95.40 103 | 97.17 135 | 98.70 153 |
|
| TSAR-MVS + MP. | | | 97.44 18 | 97.46 16 | 97.39 49 | 99.12 65 | 93.49 70 | 98.52 174 | 97.50 136 | 94.46 40 | 98.99 18 | 98.64 101 | 91.58 29 | 99.08 148 | 98.49 37 | 99.83 15 | 99.60 68 |
| Zhenlong Yuan, Jiakai Cao, Zhaoqi Wang, Zhaoxin Li: TSAR-MVS: Textureless-aware Segmentation and Correlative Refinement Guided Multi-View Stereo. Pattern Recognition |
| SF-MVS | | | 97.22 22 | 96.92 25 | 98.12 27 | 99.11 66 | 94.88 36 | 99.44 63 | 97.45 144 | 89.60 155 | 98.70 27 | 99.42 17 | 90.42 46 | 99.72 89 | 98.47 38 | 99.65 38 | 99.77 43 |
|
| HPM-MVS_fast | | | 94.89 88 | 94.62 86 | 95.70 132 | 99.11 66 | 88.44 191 | 99.14 106 | 97.11 179 | 85.82 256 | 95.69 105 | 98.47 116 | 83.46 158 | 99.32 135 | 93.16 148 | 99.63 44 | 99.35 93 |
|
| MAR-MVS | | | 94.43 108 | 94.09 100 | 95.45 140 | 99.10 68 | 87.47 211 | 98.39 196 | 97.79 72 | 88.37 194 | 94.02 135 | 99.17 37 | 78.64 222 | 99.91 45 | 92.48 157 | 98.85 90 | 98.96 126 |
| Zhenyu Xu, Yiguang Liu, Xuelei Shi, Ying Wang, Yunan Zheng: MARMVS: Matching Ambiguity Reduced Multiple View Stereo for Efficient Large Scale Scene Reconstruction. CVPR 2020 |
| 114514_t | | | 94.06 114 | 93.05 133 | 97.06 59 | 99.08 69 | 92.26 95 | 98.97 128 | 97.01 191 | 82.58 312 | 92.57 155 | 98.22 125 | 80.68 204 | 99.30 136 | 89.34 193 | 99.02 79 | 99.63 65 |
|
| EI-MVSNet-UG-set | | | 95.43 74 | 95.29 73 | 95.86 127 | 99.07 70 | 89.87 155 | 98.43 186 | 97.80 70 | 91.78 98 | 94.11 133 | 98.77 87 | 86.25 119 | 99.48 116 | 94.95 116 | 96.45 144 | 98.22 180 |
|
| 原ACMM1 | | | | | 96.18 111 | 99.03 71 | 90.08 146 | | 97.63 107 | 88.98 173 | 97.00 73 | 98.97 64 | 88.14 75 | 99.71 90 | 88.23 204 | 99.62 45 | 98.76 150 |
|
| SD-MVS | | | 97.51 16 | 97.40 18 | 97.81 35 | 99.01 72 | 93.79 64 | 99.33 79 | 97.38 154 | 93.73 61 | 98.83 26 | 99.02 60 | 90.87 39 | 99.88 54 | 98.69 30 | 99.74 29 | 99.77 43 |
| Zhenlong Yuan, Jiakai Cao, Zhaoxin Li, Hao Jiang and Zhaoqi Wang: SD-MVS: Segmentation-driven Deformation Multi-View Stereo with Spherical Refinement and EM optimization. AAAI2024 |
| 旧先验1 | | | | | | 98.97 73 | 92.90 85 | | 97.74 77 | | | 99.15 41 | 91.05 34 | | | 99.33 64 | 99.60 68 |
|
| LS3D | | | 90.19 206 | 88.72 218 | 94.59 175 | 98.97 73 | 86.33 239 | 96.90 280 | 96.60 207 | 74.96 362 | 84.06 252 | 98.74 90 | 75.78 234 | 99.83 73 | 74.93 325 | 97.57 122 | 97.62 198 |
|
| CNLPA | | | 93.64 131 | 92.74 140 | 96.36 104 | 98.96 75 | 90.01 153 | 99.19 91 | 95.89 268 | 86.22 251 | 89.40 203 | 98.85 83 | 80.66 205 | 99.84 69 | 88.57 200 | 96.92 138 | 99.24 103 |
|
| MP-MVS-pluss | | | 95.80 64 | 95.30 72 | 97.29 51 | 98.95 76 | 92.66 87 | 98.59 169 | 97.14 175 | 88.95 175 | 93.12 149 | 99.25 23 | 85.62 127 | 99.94 34 | 96.56 81 | 99.48 55 | 99.28 100 |
| MP-MVS-pluss: MP-MVS-pluss. MP-MVS-pluss |
| 新几何1 | | | | | 97.40 48 | 98.92 77 | 92.51 92 | | 97.77 75 | 85.52 261 | 96.69 84 | 99.06 55 | 88.08 76 | 99.89 53 | 84.88 242 | 99.62 45 | 99.79 36 |
|
| DP-MVS | | | 88.75 236 | 86.56 255 | 95.34 144 | 98.92 77 | 87.45 212 | 97.64 253 | 93.52 350 | 70.55 374 | 81.49 293 | 97.25 164 | 74.43 243 | 99.88 54 | 71.14 348 | 94.09 174 | 98.67 155 |
|
| TSAR-MVS + GP. | | | 96.95 29 | 96.91 26 | 97.07 58 | 98.88 79 | 91.62 103 | 99.58 42 | 96.54 214 | 95.09 34 | 96.84 77 | 98.63 103 | 91.16 30 | 99.77 85 | 99.04 24 | 96.42 145 | 99.81 33 |
|
| CANet | | | 97.00 28 | 96.49 36 | 98.55 12 | 98.86 80 | 96.10 16 | 99.83 10 | 97.52 131 | 95.90 19 | 97.21 67 | 98.90 78 | 82.66 178 | 99.93 38 | 98.71 29 | 98.80 92 | 99.63 65 |
|
| dcpmvs_2 | | | 95.67 70 | 96.18 45 | 94.12 193 | 98.82 81 | 84.22 284 | 97.37 261 | 95.45 294 | 90.70 120 | 95.77 103 | 98.63 103 | 90.47 44 | 98.68 165 | 99.20 20 | 99.22 71 | 99.45 84 |
|
| ACMMP_NAP | | | 96.59 38 | 96.18 45 | 97.81 35 | 98.82 81 | 93.55 67 | 98.88 135 | 97.59 116 | 90.66 121 | 97.98 52 | 99.14 44 | 86.59 109 | 100.00 1 | 96.47 83 | 99.46 56 | 99.89 25 |
|
| PVSNet_BlendedMVS | | | 93.36 139 | 93.20 129 | 93.84 204 | 98.77 83 | 91.61 104 | 99.47 56 | 98.04 48 | 91.44 106 | 94.21 131 | 92.63 279 | 83.50 156 | 99.87 58 | 97.41 61 | 83.37 276 | 90.05 338 |
|
| PVSNet_Blended | | | 95.94 59 | 95.66 66 | 96.75 77 | 98.77 83 | 91.61 104 | 99.88 4 | 98.04 48 | 93.64 64 | 94.21 131 | 97.76 138 | 83.50 156 | 99.87 58 | 97.41 61 | 97.75 120 | 98.79 146 |
|
| DeepPCF-MVS | | 93.56 1 | 96.55 40 | 97.84 10 | 92.68 227 | 98.71 85 | 78.11 349 | 99.70 27 | 97.71 85 | 98.18 1 | 97.36 63 | 99.76 1 | 90.37 48 | 99.94 34 | 99.27 16 | 99.54 53 | 99.99 1 |
|
| EPNet | | | 96.82 32 | 96.68 34 | 97.25 54 | 98.65 86 | 93.10 76 | 99.48 54 | 98.76 15 | 96.54 13 | 97.84 55 | 98.22 125 | 87.49 84 | 99.66 94 | 95.35 104 | 97.78 119 | 99.00 122 |
| Wanjuan Su, Wenbing Tao: Efficient Edge-Preserving Multi-View Stereo Network for Depth Estimation. AAAI 2023 |
| OMC-MVS | | | 93.90 121 | 93.62 117 | 94.73 169 | 98.63 87 | 87.00 224 | 98.04 228 | 96.56 212 | 92.19 92 | 92.46 156 | 98.73 91 | 79.49 214 | 99.14 145 | 92.16 160 | 94.34 173 | 98.03 187 |
|
| MVS_111021_HR | | | 96.69 35 | 96.69 33 | 96.72 81 | 98.58 88 | 91.00 122 | 99.14 106 | 99.45 1 | 93.86 56 | 95.15 115 | 98.73 91 | 88.48 67 | 99.76 86 | 97.23 65 | 99.56 51 | 99.40 88 |
|
| test_yl | | | 95.27 80 | 94.60 87 | 97.28 52 | 98.53 89 | 92.98 80 | 99.05 118 | 98.70 19 | 86.76 240 | 94.65 124 | 97.74 140 | 87.78 79 | 99.44 119 | 95.57 100 | 92.61 189 | 99.44 85 |
|
| DCV-MVSNet | | | 95.27 80 | 94.60 87 | 97.28 52 | 98.53 89 | 92.98 80 | 99.05 118 | 98.70 19 | 86.76 240 | 94.65 124 | 97.74 140 | 87.78 79 | 99.44 119 | 95.57 100 | 92.61 189 | 99.44 85 |
|
| TAPA-MVS | | 87.50 9 | 90.35 201 | 89.05 211 | 94.25 188 | 98.48 91 | 85.17 271 | 98.42 187 | 96.58 211 | 82.44 317 | 87.24 221 | 98.53 107 | 82.77 173 | 98.84 156 | 59.09 383 | 97.88 115 | 98.72 151 |
| Andrea Romanoni, Matteo Matteucci: TAPA-MVS: Textureless-Aware PAtchMatch Multi-View Stereo. ICCV 2019 |
| test222 | | | | | | 98.32 92 | 91.21 111 | 98.08 225 | 97.58 118 | 83.74 290 | 95.87 99 | 99.02 60 | 86.74 105 | | | 99.64 40 | 99.81 33 |
|
| MM | | | 97.76 10 | 97.39 19 | 98.86 5 | 98.30 93 | 96.83 7 | 99.81 12 | 99.13 9 | 97.66 2 | 98.29 40 | 98.96 68 | 85.84 126 | 99.90 50 | 99.72 3 | 98.80 92 | 99.85 30 |
|
| DPM-MVS | | | 97.86 8 | 97.25 21 | 99.68 1 | 98.25 94 | 99.10 1 | 99.76 21 | 97.78 73 | 96.61 12 | 98.15 42 | 99.53 7 | 93.62 16 | 100.00 1 | 91.79 163 | 99.80 26 | 99.94 18 |
|
| LFMVS | | | 92.23 167 | 90.84 180 | 96.42 99 | 98.24 95 | 91.08 119 | 98.24 207 | 96.22 233 | 83.39 297 | 94.74 122 | 98.31 121 | 61.12 336 | 98.85 155 | 94.45 126 | 92.82 185 | 99.32 96 |
|
| testdata | | | | | 95.26 149 | 98.20 96 | 87.28 218 | | 97.60 112 | 85.21 265 | 98.48 34 | 99.15 41 | 88.15 74 | 98.72 163 | 90.29 180 | 99.45 58 | 99.78 38 |
|
| PatchMatch-RL | | | 91.47 178 | 90.54 187 | 94.26 187 | 98.20 96 | 86.36 237 | 96.94 278 | 97.14 175 | 87.75 217 | 88.98 206 | 95.75 221 | 71.80 270 | 99.40 127 | 80.92 284 | 97.39 129 | 97.02 216 |
|
| MVS_111021_LR | | | 95.78 65 | 95.94 54 | 95.28 148 | 98.19 98 | 87.69 202 | 98.80 142 | 99.26 7 | 93.39 67 | 95.04 117 | 98.69 98 | 84.09 150 | 99.76 86 | 96.96 71 | 99.06 76 | 98.38 169 |
|
| F-COLMAP | | | 92.07 171 | 91.75 162 | 93.02 217 | 98.16 99 | 82.89 303 | 98.79 146 | 95.97 251 | 86.54 245 | 87.92 213 | 97.80 135 | 78.69 221 | 99.65 98 | 85.97 228 | 95.93 157 | 96.53 230 |
|
| Anonymous202405211 | | | 88.84 230 | 87.03 249 | 94.27 186 | 98.14 100 | 84.18 285 | 98.44 185 | 95.58 287 | 76.79 356 | 89.34 204 | 96.88 188 | 53.42 365 | 99.54 108 | 87.53 212 | 87.12 242 | 99.09 117 |
|
| VNet | | | 95.08 85 | 94.26 93 | 97.55 44 | 98.07 101 | 93.88 62 | 98.68 155 | 98.73 18 | 90.33 134 | 97.16 71 | 97.43 156 | 79.19 216 | 99.53 109 | 96.91 73 | 91.85 205 | 99.24 103 |
|
| CS-MVS-test | | | 95.98 55 | 96.34 41 | 94.90 161 | 98.06 102 | 87.66 205 | 99.69 34 | 96.10 243 | 93.66 62 | 98.35 39 | 99.05 56 | 86.28 117 | 97.66 221 | 96.96 71 | 98.90 88 | 99.37 91 |
|
| DELS-MVS | | | 97.12 25 | 96.60 35 | 98.68 10 | 98.03 103 | 96.57 11 | 99.84 9 | 97.84 61 | 96.36 18 | 95.20 114 | 98.24 124 | 88.17 72 | 99.83 73 | 96.11 89 | 99.60 49 | 99.64 63 |
| Christian Sormann, Emanuele Santellani, Mattia Rossi, Andreas Kuhn, Friedrich Fraundorfer: DELS-MVS: Deep Epipolar Line Search for Multi-View Stereo. Winter Conference on Applications of Computer Vision (WACV), 2023 |
| PVSNet | | 87.13 12 | 93.69 127 | 92.83 139 | 96.28 107 | 97.99 104 | 90.22 141 | 99.38 72 | 98.93 12 | 91.42 108 | 93.66 142 | 97.68 143 | 71.29 275 | 99.64 100 | 87.94 208 | 97.20 132 | 98.98 124 |
|
| test_fmvsm_n_1920 | | | 97.08 27 | 97.55 14 | 95.67 134 | 97.94 105 | 89.61 162 | 99.93 2 | 98.48 24 | 97.08 5 | 99.08 15 | 99.13 46 | 88.17 72 | 99.93 38 | 99.11 23 | 99.06 76 | 97.47 201 |
|
| cl22 | | | 89.57 218 | 88.79 217 | 91.91 241 | 97.94 105 | 87.62 206 | 97.98 231 | 96.51 215 | 85.03 270 | 82.37 276 | 91.79 291 | 83.65 154 | 96.50 276 | 85.96 229 | 77.89 303 | 91.61 291 |
|
| CS-MVS | | | 95.75 68 | 96.19 43 | 94.40 180 | 97.88 107 | 86.22 242 | 99.66 35 | 96.12 242 | 92.69 80 | 98.07 47 | 98.89 80 | 87.09 95 | 97.59 227 | 96.71 74 | 98.62 100 | 99.39 90 |
|
| CHOSEN 280x420 | | | 96.80 33 | 96.85 28 | 96.66 85 | 97.85 108 | 94.42 52 | 94.76 329 | 98.36 29 | 92.50 83 | 95.62 107 | 97.52 151 | 97.92 1 | 97.38 239 | 98.31 44 | 98.80 92 | 98.20 182 |
|
| thres200 | | | 93.69 127 | 92.59 144 | 96.97 67 | 97.76 109 | 94.74 44 | 99.35 77 | 99.36 2 | 89.23 165 | 91.21 179 | 96.97 181 | 83.42 159 | 98.77 158 | 85.08 238 | 90.96 223 | 97.39 203 |
|
| HY-MVS | | 88.56 7 | 95.29 79 | 94.23 94 | 98.48 14 | 97.72 110 | 96.41 13 | 94.03 337 | 98.74 16 | 92.42 86 | 95.65 106 | 94.76 239 | 86.52 112 | 99.49 112 | 95.29 106 | 92.97 184 | 99.53 75 |
|
| Anonymous20231211 | | | 84.72 298 | 82.65 309 | 90.91 263 | 97.71 111 | 84.55 280 | 97.28 264 | 96.67 202 | 66.88 387 | 79.18 319 | 90.87 309 | 58.47 344 | 96.60 267 | 82.61 271 | 74.20 330 | 91.59 293 |
|
| tfpn200view9 | | | 93.43 136 | 92.27 149 | 96.90 70 | 97.68 112 | 94.84 39 | 99.18 93 | 99.36 2 | 88.45 189 | 90.79 182 | 96.90 185 | 83.31 160 | 98.75 160 | 84.11 254 | 90.69 225 | 97.12 210 |
|
| thres400 | | | 93.39 138 | 92.27 149 | 96.73 79 | 97.68 112 | 94.84 39 | 99.18 93 | 99.36 2 | 88.45 189 | 90.79 182 | 96.90 185 | 83.31 160 | 98.75 160 | 84.11 254 | 90.69 225 | 96.61 225 |
|
| thres100view900 | | | 93.34 140 | 92.15 152 | 96.90 70 | 97.62 114 | 94.84 39 | 99.06 117 | 99.36 2 | 87.96 210 | 90.47 190 | 96.78 193 | 83.29 162 | 98.75 160 | 84.11 254 | 90.69 225 | 97.12 210 |
|
| thres600view7 | | | 93.18 145 | 92.00 155 | 96.75 77 | 97.62 114 | 94.92 34 | 99.07 114 | 99.36 2 | 87.96 210 | 90.47 190 | 96.78 193 | 83.29 162 | 98.71 164 | 82.93 268 | 90.47 229 | 96.61 225 |
|
| WTY-MVS | | | 95.97 56 | 95.11 79 | 98.54 13 | 97.62 114 | 96.65 9 | 99.44 63 | 98.74 16 | 92.25 91 | 95.21 113 | 98.46 118 | 86.56 111 | 99.46 118 | 95.00 114 | 92.69 188 | 99.50 79 |
|
| fmvsm_l_conf0.5_n_a | | | 97.70 12 | 97.80 11 | 97.42 46 | 97.59 117 | 92.91 84 | 99.86 5 | 98.04 48 | 96.70 10 | 99.58 2 | 99.26 21 | 90.90 37 | 99.94 34 | 99.57 11 | 98.66 99 | 99.40 88 |
|
| Anonymous20240529 | | | 87.66 256 | 85.58 269 | 93.92 201 | 97.59 117 | 85.01 274 | 98.13 216 | 97.13 177 | 66.69 388 | 88.47 210 | 96.01 217 | 55.09 359 | 99.51 110 | 87.00 215 | 84.12 267 | 97.23 209 |
|
| HyFIR lowres test | | | 93.68 129 | 93.29 127 | 94.87 162 | 97.57 119 | 88.04 197 | 98.18 212 | 98.47 25 | 87.57 223 | 91.24 178 | 95.05 233 | 85.49 131 | 97.46 234 | 93.22 147 | 92.82 185 | 99.10 116 |
|
| sasdasda | | | 95.02 86 | 93.96 107 | 98.20 21 | 97.53 120 | 95.92 17 | 98.71 150 | 96.19 236 | 91.78 98 | 95.86 100 | 98.49 112 | 79.53 212 | 99.03 149 | 96.12 87 | 91.42 219 | 99.66 60 |
|
| canonicalmvs | | | 95.02 86 | 93.96 107 | 98.20 21 | 97.53 120 | 95.92 17 | 98.71 150 | 96.19 236 | 91.78 98 | 95.86 100 | 98.49 112 | 79.53 212 | 99.03 149 | 96.12 87 | 91.42 219 | 99.66 60 |
|
| fmvsm_l_conf0.5_n | | | 97.65 13 | 97.72 12 | 97.41 47 | 97.51 122 | 92.78 86 | 99.85 8 | 98.05 46 | 96.78 8 | 99.60 1 | 99.23 26 | 90.42 46 | 99.92 40 | 99.55 12 | 98.50 104 | 99.55 73 |
|
| iter_conf05_11 | | | 94.23 111 | 93.49 120 | 96.46 95 | 97.51 122 | 91.32 109 | 99.96 1 | 94.31 336 | 95.62 26 | 99.32 8 | 99.22 27 | 57.79 346 | 98.59 171 | 98.00 50 | 99.64 40 | 99.46 82 |
|
| bld_raw_dy_0_64 | | | 91.37 182 | 89.75 196 | 96.23 108 | 97.51 122 | 90.58 133 | 99.16 97 | 88.98 388 | 95.64 25 | 87.18 223 | 99.20 30 | 57.19 350 | 98.66 166 | 98.00 50 | 84.86 259 | 99.46 82 |
|
| ETVMVS | | | 94.50 106 | 93.90 111 | 96.31 106 | 97.48 125 | 92.98 80 | 99.07 114 | 97.86 59 | 88.09 205 | 94.40 128 | 96.90 185 | 88.35 69 | 97.28 243 | 90.72 176 | 92.25 199 | 98.66 158 |
|
| CHOSEN 1792x2688 | | | 94.35 109 | 93.82 113 | 95.95 124 | 97.40 126 | 88.74 185 | 98.41 189 | 98.27 31 | 92.18 93 | 91.43 173 | 96.40 204 | 78.88 217 | 99.81 79 | 93.59 139 | 97.81 116 | 99.30 98 |
|
| SteuartSystems-ACMMP | | | 97.25 19 | 97.34 20 | 97.01 61 | 97.38 127 | 91.46 107 | 99.75 22 | 97.66 95 | 94.14 49 | 98.13 43 | 99.26 21 | 92.16 28 | 99.66 94 | 97.91 54 | 99.64 40 | 99.90 22 |
| Skip Steuart: Steuart Systems R&D Blog. |
| fmvsm_s_conf0.5_n | | | 96.19 49 | 96.49 36 | 95.30 147 | 97.37 128 | 89.16 167 | 99.86 5 | 98.47 25 | 95.68 23 | 98.87 23 | 99.15 41 | 82.44 185 | 99.92 40 | 99.14 21 | 97.43 128 | 96.83 221 |
|
| alignmvs | | | 95.77 66 | 95.00 82 | 98.06 29 | 97.35 129 | 95.68 20 | 99.71 26 | 97.50 136 | 91.50 104 | 96.16 93 | 98.61 105 | 86.28 117 | 99.00 151 | 96.19 86 | 91.74 207 | 99.51 78 |
|
| PS-MVSNAJ | | | 96.87 31 | 96.40 39 | 98.29 19 | 97.35 129 | 97.29 5 | 99.03 120 | 97.11 179 | 95.83 20 | 98.97 20 | 99.14 44 | 82.48 181 | 99.60 103 | 98.60 33 | 99.08 74 | 98.00 188 |
|
| testing222 | | | 94.48 107 | 94.00 103 | 95.95 124 | 97.30 131 | 92.27 94 | 98.82 139 | 97.92 55 | 89.20 166 | 94.82 119 | 97.26 162 | 87.13 94 | 97.32 242 | 91.95 161 | 91.56 211 | 98.25 176 |
|
| MVS_0304 | | | 97.53 14 | 97.15 22 | 98.67 11 | 97.30 131 | 96.52 12 | 99.60 39 | 98.88 14 | 97.14 4 | 97.21 67 | 98.94 74 | 86.89 101 | 99.91 45 | 99.43 15 | 98.91 87 | 99.59 72 |
|
| EPNet_dtu | | | 92.28 165 | 92.15 152 | 92.70 226 | 97.29 133 | 84.84 276 | 98.64 161 | 97.82 65 | 92.91 77 | 93.02 151 | 97.02 179 | 85.48 133 | 95.70 321 | 72.25 345 | 94.89 168 | 97.55 200 |
| Wanjuan Su, Wenbing Tao: Efficient Edge-Preserving Multi-View Stereo Network for Depth Estimation. AAAI 2023 |
| MVSTER | | | 92.71 153 | 92.32 147 | 93.86 203 | 97.29 133 | 92.95 83 | 99.01 123 | 96.59 208 | 90.09 141 | 85.51 238 | 94.00 249 | 94.61 15 | 96.56 271 | 90.77 175 | 83.03 278 | 92.08 279 |
|
| EPMVS | | | 92.59 158 | 91.59 164 | 95.59 138 | 97.22 135 | 90.03 151 | 91.78 357 | 98.04 48 | 90.42 132 | 91.66 167 | 90.65 317 | 86.49 114 | 97.46 234 | 81.78 279 | 96.31 148 | 99.28 100 |
|
| testing11 | | | 95.33 78 | 94.98 83 | 96.37 103 | 97.20 136 | 92.31 93 | 99.29 82 | 97.68 90 | 90.59 125 | 94.43 126 | 97.20 167 | 90.79 41 | 98.60 169 | 95.25 107 | 92.38 193 | 98.18 183 |
|
| testing99 | | | 94.88 89 | 94.45 89 | 96.17 113 | 97.20 136 | 91.91 98 | 99.20 90 | 97.66 95 | 89.95 145 | 93.68 141 | 97.06 176 | 90.28 50 | 98.50 172 | 93.52 140 | 91.54 213 | 98.12 185 |
|
| testing91 | | | 94.88 89 | 94.44 90 | 96.21 109 | 97.19 138 | 91.90 99 | 99.23 88 | 97.66 95 | 89.91 146 | 93.66 142 | 97.05 178 | 90.21 51 | 98.50 172 | 93.52 140 | 91.53 216 | 98.25 176 |
|
| test_fmvs1 | | | 92.35 162 | 92.94 137 | 90.57 273 | 97.19 138 | 75.43 358 | 99.55 45 | 94.97 314 | 95.20 33 | 96.82 80 | 97.57 150 | 59.59 341 | 99.84 69 | 97.30 63 | 98.29 111 | 96.46 232 |
|
| tpmvs | | | 89.16 222 | 87.76 236 | 93.35 211 | 97.19 138 | 84.75 278 | 90.58 372 | 97.36 156 | 81.99 322 | 84.56 245 | 89.31 345 | 83.98 152 | 98.17 186 | 74.85 327 | 90.00 232 | 97.12 210 |
|
| DeepC-MVS | | 91.02 4 | 94.56 105 | 93.92 110 | 96.46 95 | 97.16 141 | 90.76 127 | 98.39 196 | 97.11 179 | 93.92 52 | 88.66 208 | 98.33 120 | 78.14 224 | 99.85 67 | 95.02 112 | 98.57 102 | 98.78 148 |
| Andreas Kuhn, Christian Sormann, Mattia Rossi, Oliver Erdler, Friedrich Fraundorfer: DeepC-MVS: Deep Confidence Prediction for Multi-View Stereo Reconstruction. 3DV 2020 |
| iter_conf05 | | | 93.48 133 | 93.18 130 | 94.39 183 | 97.15 142 | 94.17 58 | 99.30 81 | 92.97 354 | 92.38 90 | 86.70 230 | 95.42 227 | 95.67 5 | 96.59 268 | 94.67 122 | 84.32 265 | 92.39 262 |
|
| PVSNet_Blended_VisFu | | | 94.67 100 | 94.11 99 | 96.34 105 | 97.14 143 | 91.10 117 | 99.32 80 | 97.43 149 | 92.10 95 | 91.53 172 | 96.38 207 | 83.29 162 | 99.68 92 | 93.42 145 | 96.37 146 | 98.25 176 |
|
| h-mvs33 | | | 92.47 161 | 91.95 157 | 94.05 197 | 97.13 144 | 85.01 274 | 98.36 198 | 98.08 44 | 93.85 57 | 96.27 91 | 96.73 195 | 83.19 165 | 99.43 122 | 95.81 93 | 68.09 362 | 97.70 194 |
|
| miper_enhance_ethall | | | 90.33 202 | 89.70 197 | 92.22 233 | 97.12 145 | 88.93 179 | 98.35 199 | 95.96 253 | 88.60 184 | 83.14 261 | 92.33 281 | 87.38 86 | 96.18 299 | 86.49 223 | 77.89 303 | 91.55 294 |
|
| xiu_mvs_v2_base | | | 96.66 36 | 96.17 48 | 98.11 28 | 97.11 146 | 96.96 6 | 99.01 123 | 97.04 186 | 95.51 29 | 98.86 24 | 99.11 52 | 82.19 189 | 99.36 130 | 98.59 35 | 98.14 112 | 98.00 188 |
|
| VDD-MVS | | | 91.24 186 | 90.18 191 | 94.45 179 | 97.08 147 | 85.84 258 | 98.40 192 | 96.10 243 | 86.99 231 | 93.36 146 | 98.16 128 | 54.27 362 | 99.20 138 | 96.59 80 | 90.63 228 | 98.31 175 |
|
| UGNet | | | 91.91 173 | 90.85 179 | 95.10 153 | 97.06 148 | 88.69 186 | 98.01 229 | 98.24 34 | 92.41 87 | 92.39 158 | 93.61 260 | 60.52 338 | 99.68 92 | 88.14 205 | 97.25 131 | 96.92 219 |
| Wanjuan Su, Qingshan Xu, Wenbing Tao: Uncertainty-guided Multi-view Stereo Network for Depth Estimation. IEEE Transactions on Circuits and Systems for Video Technology, 2022 |
| baseline1 | | | 92.61 157 | 91.28 170 | 96.58 89 | 97.05 149 | 94.63 47 | 97.72 247 | 96.20 234 | 89.82 148 | 88.56 209 | 96.85 189 | 86.85 102 | 97.82 207 | 88.42 201 | 80.10 294 | 97.30 205 |
|
| CANet_DTU | | | 94.31 110 | 93.35 124 | 97.20 56 | 97.03 150 | 94.71 45 | 98.62 163 | 95.54 289 | 95.61 27 | 97.21 67 | 98.47 116 | 71.88 268 | 99.84 69 | 88.38 202 | 97.46 127 | 97.04 215 |
|
| MSDG | | | 88.29 245 | 86.37 257 | 94.04 198 | 96.90 151 | 86.15 246 | 96.52 293 | 94.36 335 | 77.89 352 | 79.22 318 | 96.95 182 | 69.72 282 | 99.59 104 | 73.20 340 | 92.58 191 | 96.37 235 |
|
| BH-w/o | | | 92.32 163 | 91.79 160 | 93.91 202 | 96.85 152 | 86.18 244 | 99.11 111 | 95.74 277 | 88.13 203 | 84.81 242 | 97.00 180 | 77.26 229 | 97.91 200 | 89.16 198 | 98.03 113 | 97.64 195 |
|
| AllTest | | | 84.97 296 | 83.12 301 | 90.52 276 | 96.82 153 | 78.84 341 | 95.89 313 | 92.17 365 | 77.96 350 | 75.94 337 | 95.50 224 | 55.48 355 | 99.18 139 | 71.15 346 | 87.14 240 | 93.55 252 |
|
| TestCases | | | | | 90.52 276 | 96.82 153 | 78.84 341 | | 92.17 365 | 77.96 350 | 75.94 337 | 95.50 224 | 55.48 355 | 99.18 139 | 71.15 346 | 87.14 240 | 93.55 252 |
|
| SDMVSNet | | | 91.09 187 | 89.91 194 | 94.65 171 | 96.80 155 | 90.54 134 | 97.78 241 | 97.81 68 | 88.34 196 | 85.73 234 | 95.26 230 | 66.44 310 | 98.26 183 | 94.25 129 | 86.75 243 | 95.14 243 |
|
| sd_testset | | | 89.23 221 | 88.05 235 | 92.74 225 | 96.80 155 | 85.33 267 | 95.85 318 | 97.03 188 | 88.34 196 | 85.73 234 | 95.26 230 | 61.12 336 | 97.76 216 | 85.61 234 | 86.75 243 | 95.14 243 |
|
| PMMVS | | | 93.62 132 | 93.90 111 | 92.79 222 | 96.79 157 | 81.40 320 | 98.85 136 | 96.81 198 | 91.25 111 | 96.82 80 | 98.15 129 | 77.02 230 | 98.13 188 | 93.15 149 | 96.30 149 | 98.83 142 |
|
| BH-RMVSNet | | | 91.25 185 | 89.99 193 | 95.03 158 | 96.75 158 | 88.55 188 | 98.65 159 | 94.95 315 | 87.74 218 | 87.74 215 | 97.80 135 | 68.27 292 | 98.14 187 | 80.53 289 | 97.49 126 | 98.41 166 |
|
| MVS_Test | | | 93.67 130 | 92.67 142 | 96.69 83 | 96.72 159 | 92.66 87 | 97.22 269 | 96.03 248 | 87.69 221 | 95.12 116 | 94.03 247 | 81.55 195 | 98.28 182 | 89.17 197 | 96.46 143 | 99.14 111 |
|
| COLMAP_ROB |  | 82.69 18 | 84.54 302 | 82.82 303 | 89.70 300 | 96.72 159 | 78.85 340 | 95.89 313 | 92.83 357 | 71.55 371 | 77.54 332 | 95.89 219 | 59.40 342 | 99.14 145 | 67.26 362 | 88.26 236 | 91.11 311 |
| Johannes L. Schönberger, Enliang Zheng, Marc Pollefeys, Jan-Michael Frahm: Pixelwise View Selection for Unstructured Multi-View Stereo. ECCV 2016 |
| mvs_anonymous | | | 92.50 160 | 91.65 163 | 95.06 155 | 96.60 161 | 89.64 160 | 97.06 274 | 96.44 220 | 86.64 242 | 84.14 250 | 93.93 251 | 82.49 180 | 96.17 300 | 91.47 164 | 96.08 154 | 99.35 93 |
|
| UWE-MVS | | | 93.18 145 | 93.40 123 | 92.50 230 | 96.56 162 | 83.55 293 | 98.09 224 | 97.84 61 | 89.50 160 | 91.72 165 | 96.23 210 | 91.08 33 | 96.70 264 | 86.28 225 | 93.33 180 | 97.26 207 |
|
| ETV-MVS | | | 96.00 53 | 96.00 53 | 96.00 121 | 96.56 162 | 91.05 120 | 99.63 37 | 96.61 206 | 93.26 70 | 97.39 62 | 98.30 122 | 86.62 108 | 98.13 188 | 98.07 49 | 97.57 122 | 98.82 143 |
|
| GG-mvs-BLEND | | | | | 96.98 66 | 96.53 164 | 94.81 42 | 87.20 377 | 97.74 77 | | 93.91 137 | 96.40 204 | 96.56 2 | 96.94 255 | 95.08 110 | 98.95 85 | 99.20 107 |
|
| FMVSNet3 | | | 88.81 234 | 87.08 248 | 93.99 200 | 96.52 165 | 94.59 48 | 98.08 225 | 96.20 234 | 85.85 255 | 82.12 280 | 91.60 295 | 74.05 248 | 95.40 330 | 79.04 296 | 80.24 291 | 91.99 282 |
|
| fmvsm_s_conf0.5_n_a | | | 95.97 56 | 96.19 43 | 95.31 146 | 96.51 166 | 89.01 173 | 99.81 12 | 98.39 27 | 95.46 30 | 99.19 14 | 99.16 38 | 81.44 199 | 99.91 45 | 98.83 28 | 96.97 137 | 97.01 217 |
|
| BH-untuned | | | 91.46 179 | 90.84 180 | 93.33 212 | 96.51 166 | 84.83 277 | 98.84 138 | 95.50 291 | 86.44 250 | 83.50 254 | 96.70 196 | 75.49 236 | 97.77 211 | 86.78 221 | 97.81 116 | 97.40 202 |
|
| FE-MVS | | | 91.38 181 | 90.16 192 | 95.05 157 | 96.46 168 | 87.53 209 | 89.69 374 | 97.84 61 | 82.97 304 | 92.18 160 | 92.00 288 | 84.07 151 | 98.93 154 | 80.71 286 | 95.52 162 | 98.68 154 |
|
| sss | | | 94.85 92 | 93.94 109 | 97.58 41 | 96.43 169 | 94.09 60 | 98.93 130 | 99.16 8 | 89.50 160 | 95.27 112 | 97.85 132 | 81.50 196 | 99.65 98 | 92.79 155 | 94.02 175 | 98.99 123 |
|
| test2506 | | | 94.80 93 | 94.21 95 | 96.58 89 | 96.41 170 | 92.18 96 | 98.01 229 | 98.96 11 | 90.82 118 | 93.46 145 | 97.28 160 | 85.92 123 | 98.45 175 | 89.82 185 | 97.19 133 | 99.12 114 |
|
| ECVR-MVS |  | | 92.29 164 | 91.33 169 | 95.15 152 | 96.41 170 | 87.84 200 | 98.10 221 | 94.84 318 | 90.82 118 | 91.42 175 | 97.28 160 | 65.61 315 | 98.49 174 | 90.33 179 | 97.19 133 | 99.12 114 |
|
| ET-MVSNet_ETH3D | | | 92.56 159 | 91.45 167 | 95.88 126 | 96.39 172 | 94.13 59 | 99.46 60 | 96.97 194 | 92.18 93 | 66.94 377 | 98.29 123 | 94.65 14 | 94.28 350 | 94.34 127 | 83.82 272 | 99.24 103 |
|
| dp | | | 90.16 208 | 88.83 216 | 94.14 192 | 96.38 173 | 86.42 233 | 91.57 361 | 97.06 185 | 84.76 276 | 88.81 207 | 90.19 335 | 84.29 148 | 97.43 237 | 75.05 324 | 91.35 222 | 98.56 160 |
|
| EIA-MVS | | | 95.11 83 | 95.27 74 | 94.64 173 | 96.34 174 | 86.51 230 | 99.59 41 | 96.62 205 | 92.51 82 | 94.08 134 | 98.64 101 | 86.05 122 | 98.24 185 | 95.07 111 | 98.50 104 | 99.18 108 |
|
| test_vis1_n_1920 | | | 93.08 149 | 93.42 122 | 92.04 240 | 96.31 175 | 79.36 337 | 99.83 10 | 96.06 247 | 96.72 9 | 98.53 33 | 98.10 130 | 58.57 343 | 99.91 45 | 97.86 55 | 98.79 95 | 96.85 220 |
|
| TR-MVS | | | 90.77 194 | 89.44 202 | 94.76 166 | 96.31 175 | 88.02 198 | 97.92 233 | 95.96 253 | 85.52 261 | 88.22 212 | 97.23 165 | 66.80 306 | 98.09 191 | 84.58 246 | 92.38 193 | 98.17 184 |
|
| UA-Net | | | 93.30 141 | 92.62 143 | 95.34 144 | 96.27 177 | 88.53 190 | 95.88 315 | 96.97 194 | 90.90 116 | 95.37 111 | 97.07 175 | 82.38 186 | 99.10 147 | 83.91 258 | 94.86 169 | 98.38 169 |
|
| tpmrst | | | 92.78 152 | 92.16 151 | 94.65 171 | 96.27 177 | 87.45 212 | 91.83 356 | 97.10 182 | 89.10 171 | 94.68 123 | 90.69 314 | 88.22 71 | 97.73 219 | 89.78 186 | 91.80 206 | 98.77 149 |
|
| hse-mvs2 | | | 91.67 176 | 91.51 166 | 92.15 237 | 96.22 179 | 82.61 309 | 97.74 246 | 97.53 127 | 93.85 57 | 96.27 91 | 96.15 211 | 83.19 165 | 97.44 236 | 95.81 93 | 66.86 369 | 96.40 234 |
|
| AUN-MVS | | | 90.17 207 | 89.50 200 | 92.19 235 | 96.21 180 | 82.67 307 | 97.76 245 | 97.53 127 | 88.05 206 | 91.67 166 | 96.15 211 | 83.10 167 | 97.47 233 | 88.11 206 | 66.91 368 | 96.43 233 |
|
| ADS-MVSNet2 | | | 87.62 257 | 86.88 251 | 89.86 294 | 96.21 180 | 79.14 339 | 87.15 378 | 92.99 353 | 83.01 302 | 89.91 198 | 87.27 358 | 78.87 218 | 92.80 363 | 74.20 332 | 92.27 197 | 97.64 195 |
|
| ADS-MVSNet | | | 88.99 224 | 87.30 244 | 94.07 195 | 96.21 180 | 87.56 208 | 87.15 378 | 96.78 200 | 83.01 302 | 89.91 198 | 87.27 358 | 78.87 218 | 97.01 252 | 74.20 332 | 92.27 197 | 97.64 195 |
|
| PatchmatchNet |  | | 92.05 172 | 91.04 175 | 95.06 155 | 96.17 183 | 89.04 171 | 91.26 365 | 97.26 160 | 89.56 158 | 90.64 186 | 90.56 323 | 88.35 69 | 97.11 247 | 79.53 292 | 96.07 155 | 99.03 121 |
| Fangjinhua Wang, Silvano Galliani, Christoph Vogel, Pablo Speciale, Marc Pollefeys: PatchmatchNet: Learned Multi-View Patchmatch Stereo. |
| test1111 | | | 92.12 169 | 91.19 172 | 94.94 160 | 96.15 184 | 87.36 215 | 98.12 218 | 94.84 318 | 90.85 117 | 90.97 180 | 97.26 162 | 65.60 316 | 98.37 177 | 89.74 188 | 97.14 136 | 99.07 120 |
|
| gg-mvs-nofinetune | | | 90.00 211 | 87.71 238 | 96.89 74 | 96.15 184 | 94.69 46 | 85.15 383 | 97.74 77 | 68.32 383 | 92.97 152 | 60.16 396 | 96.10 3 | 96.84 258 | 93.89 132 | 98.87 89 | 99.14 111 |
|
| MDTV_nov1_ep13 | | | | 90.47 189 | | 96.14 186 | 88.55 188 | 91.34 364 | 97.51 133 | 89.58 156 | 92.24 159 | 90.50 327 | 86.99 100 | 97.61 226 | 77.64 307 | 92.34 195 | |
|
| IS-MVSNet | | | 93.00 150 | 92.51 145 | 94.49 176 | 96.14 186 | 87.36 215 | 98.31 203 | 95.70 279 | 88.58 185 | 90.17 194 | 97.50 152 | 83.02 169 | 97.22 244 | 87.06 213 | 96.07 155 | 98.90 135 |
|
| Vis-MVSNet (Re-imp) | | | 93.26 144 | 93.00 136 | 94.06 196 | 96.14 186 | 86.71 229 | 98.68 155 | 96.70 201 | 88.30 198 | 89.71 202 | 97.64 146 | 85.43 134 | 96.39 283 | 88.06 207 | 96.32 147 | 99.08 118 |
|
| thisisatest0515 | | | 94.75 95 | 94.19 96 | 96.43 98 | 96.13 189 | 92.64 90 | 99.47 56 | 97.60 112 | 87.55 224 | 93.17 148 | 97.59 148 | 94.71 12 | 98.42 176 | 88.28 203 | 93.20 181 | 98.24 179 |
|
| FA-MVS(test-final) | | | 92.22 168 | 91.08 174 | 95.64 135 | 96.05 190 | 88.98 174 | 91.60 360 | 97.25 161 | 86.99 231 | 91.84 162 | 92.12 282 | 83.03 168 | 99.00 151 | 86.91 218 | 93.91 176 | 98.93 132 |
|
| test_fmvsmconf_n | | | 96.78 34 | 96.84 29 | 96.61 86 | 95.99 191 | 90.25 138 | 99.90 3 | 98.13 42 | 96.68 11 | 98.42 35 | 98.92 76 | 85.34 136 | 99.88 54 | 99.12 22 | 99.08 74 | 99.70 52 |
|
| ab-mvs | | | 91.05 190 | 89.17 208 | 96.69 83 | 95.96 192 | 91.72 102 | 92.62 351 | 97.23 165 | 85.61 260 | 89.74 200 | 93.89 253 | 68.55 289 | 99.42 123 | 91.09 167 | 87.84 238 | 98.92 134 |
|
| Fast-Effi-MVS+ | | | 91.72 175 | 90.79 183 | 94.49 176 | 95.89 193 | 87.40 214 | 99.54 50 | 95.70 279 | 85.01 272 | 89.28 205 | 95.68 222 | 77.75 226 | 97.57 231 | 83.22 263 | 95.06 167 | 98.51 162 |
|
| EPP-MVSNet | | | 93.75 126 | 93.67 116 | 94.01 199 | 95.86 194 | 85.70 260 | 98.67 157 | 97.66 95 | 84.46 279 | 91.36 176 | 97.18 170 | 91.16 30 | 97.79 209 | 92.93 151 | 93.75 177 | 98.53 161 |
|
| mvsany_test1 | | | 94.57 104 | 95.09 80 | 92.98 218 | 95.84 195 | 82.07 313 | 98.76 148 | 95.24 307 | 92.87 79 | 96.45 88 | 98.71 96 | 84.81 143 | 99.15 141 | 97.68 57 | 95.49 163 | 97.73 193 |
|
| Effi-MVS+ | | | 93.87 122 | 93.15 131 | 96.02 120 | 95.79 196 | 90.76 127 | 96.70 290 | 95.78 274 | 86.98 234 | 95.71 104 | 97.17 171 | 79.58 210 | 98.01 198 | 94.57 125 | 96.09 153 | 99.31 97 |
|
| tpm cat1 | | | 88.89 228 | 87.27 245 | 93.76 206 | 95.79 196 | 85.32 268 | 90.76 370 | 97.09 183 | 76.14 358 | 85.72 236 | 88.59 348 | 82.92 170 | 98.04 196 | 76.96 311 | 91.43 218 | 97.90 191 |
|
| thisisatest0530 | | | 94.00 116 | 93.52 118 | 95.43 141 | 95.76 198 | 90.02 152 | 98.99 125 | 97.60 112 | 86.58 243 | 91.74 164 | 97.36 159 | 94.78 11 | 98.34 178 | 86.37 224 | 92.48 192 | 97.94 190 |
|
| 3Dnovator+ | | 87.72 8 | 93.43 136 | 91.84 159 | 98.17 23 | 95.73 199 | 95.08 33 | 98.92 132 | 97.04 186 | 91.42 108 | 81.48 294 | 97.60 147 | 74.60 240 | 99.79 82 | 90.84 172 | 98.97 82 | 99.64 63 |
|
| MVS | | | 93.92 119 | 92.28 148 | 98.83 7 | 95.69 200 | 96.82 8 | 96.22 305 | 98.17 37 | 84.89 274 | 84.34 249 | 98.61 105 | 79.32 215 | 99.83 73 | 93.88 133 | 99.43 60 | 99.86 29 |
|
| cascas | | | 90.93 192 | 89.33 206 | 95.76 130 | 95.69 200 | 93.03 79 | 98.99 125 | 96.59 208 | 80.49 337 | 86.79 229 | 94.45 242 | 65.23 319 | 98.60 169 | 93.52 140 | 92.18 200 | 95.66 242 |
|
| QAPM | | | 91.41 180 | 89.49 201 | 97.17 57 | 95.66 202 | 93.42 71 | 98.60 167 | 97.51 133 | 80.92 335 | 81.39 295 | 97.41 157 | 72.89 260 | 99.87 58 | 82.33 273 | 98.68 97 | 98.21 181 |
|
| tttt0517 | | | 93.30 141 | 93.01 135 | 94.17 191 | 95.57 203 | 86.47 232 | 98.51 177 | 97.60 112 | 85.99 254 | 90.55 187 | 97.19 169 | 94.80 10 | 98.31 179 | 85.06 239 | 91.86 204 | 97.74 192 |
|
| 1112_ss | | | 92.71 153 | 91.55 165 | 96.20 110 | 95.56 204 | 91.12 115 | 98.48 182 | 94.69 325 | 88.29 199 | 86.89 227 | 98.50 110 | 87.02 98 | 98.66 166 | 84.75 243 | 89.77 233 | 98.81 144 |
|
| diffmvs |  | | 94.59 103 | 94.19 96 | 95.81 128 | 95.54 205 | 90.69 129 | 98.70 153 | 95.68 281 | 91.61 101 | 95.96 95 | 97.81 134 | 80.11 206 | 98.06 193 | 96.52 82 | 95.76 158 | 98.67 155 |
| Fangjinhua Wang, Qingshan Xu, Yew-Soon Ong, Marc Pollefeys: Lightweight and Accurate Multi-View Stereo With Confidence-Aware Diffusion Model. IEEE T-PAMI 2025 |
| LCM-MVSNet-Re | | | 88.59 241 | 88.61 221 | 88.51 320 | 95.53 206 | 72.68 370 | 96.85 282 | 88.43 389 | 88.45 189 | 73.14 354 | 90.63 318 | 75.82 233 | 94.38 349 | 92.95 150 | 95.71 160 | 98.48 164 |
|
| Test_1112_low_res | | | 92.27 166 | 90.97 176 | 96.18 111 | 95.53 206 | 91.10 117 | 98.47 184 | 94.66 326 | 88.28 200 | 86.83 228 | 93.50 264 | 87.00 99 | 98.65 168 | 84.69 244 | 89.74 234 | 98.80 145 |
|
| PCF-MVS | | 89.78 5 | 91.26 183 | 89.63 198 | 96.16 115 | 95.44 208 | 91.58 106 | 95.29 325 | 96.10 243 | 85.07 269 | 82.75 263 | 97.45 155 | 78.28 223 | 99.78 84 | 80.60 288 | 95.65 161 | 97.12 210 |
| Andreas Kuhn, Shan Lin, Oliver Erdler: Plane Completion and Filtering for Multi-View Stereo Reconstruction. GCPR 2019 |
| EC-MVSNet | | | 95.09 84 | 95.17 76 | 94.84 164 | 95.42 209 | 88.17 193 | 99.48 54 | 95.92 260 | 91.47 105 | 97.34 64 | 98.36 119 | 82.77 173 | 97.41 238 | 97.24 64 | 98.58 101 | 98.94 131 |
|
| 3Dnovator | | 87.35 11 | 93.17 147 | 91.77 161 | 97.37 50 | 95.41 210 | 93.07 77 | 98.82 139 | 97.85 60 | 91.53 103 | 82.56 269 | 97.58 149 | 71.97 267 | 99.82 76 | 91.01 169 | 99.23 70 | 99.22 106 |
|
| IB-MVS | | 89.43 6 | 92.12 169 | 90.83 182 | 95.98 123 | 95.40 211 | 90.78 126 | 99.81 12 | 98.06 45 | 91.23 112 | 85.63 237 | 93.66 259 | 90.63 42 | 98.78 157 | 91.22 166 | 71.85 352 | 98.36 172 |
| Christian Sormann, Mattia Rossi, Andreas Kuhn and Friedrich Fraundorfer: IB-MVS: An Iterative Algorithm for Deep Multi-View Stereo based on Binary Decisions. BMVC 2021 |
| test_cas_vis1_n_1920 | | | 93.86 123 | 93.74 115 | 94.22 189 | 95.39 212 | 86.08 248 | 99.73 23 | 96.07 246 | 96.38 17 | 97.19 70 | 97.78 137 | 65.46 318 | 99.86 63 | 96.71 74 | 98.92 86 | 96.73 222 |
|
| miper_ehance_all_eth | | | 88.94 226 | 88.12 233 | 91.40 253 | 95.32 213 | 86.93 225 | 97.85 238 | 95.55 288 | 84.19 282 | 81.97 285 | 91.50 297 | 84.16 149 | 95.91 314 | 84.69 244 | 77.89 303 | 91.36 302 |
|
| 1314 | | | 93.44 135 | 91.98 156 | 97.84 33 | 95.24 214 | 94.38 53 | 96.22 305 | 97.92 55 | 90.18 137 | 82.28 277 | 97.71 142 | 77.63 227 | 99.80 81 | 91.94 162 | 98.67 98 | 99.34 95 |
|
| XVG-OURS | | | 90.83 193 | 90.49 188 | 91.86 242 | 95.23 215 | 81.25 324 | 95.79 320 | 95.92 260 | 88.96 174 | 90.02 197 | 98.03 131 | 71.60 272 | 99.35 133 | 91.06 168 | 87.78 239 | 94.98 246 |
|
| casdiffmvs_mvg |  | | 94.00 116 | 93.33 125 | 96.03 119 | 95.22 216 | 90.90 125 | 99.09 112 | 95.99 249 | 90.58 126 | 91.55 171 | 97.37 158 | 79.91 208 | 98.06 193 | 95.01 113 | 95.22 165 | 99.13 113 |
| Fangjinhua Wang, Qingshan Xu, Yew-Soon Ong, Marc Pollefeys: Lightweight and Accurate Multi-View Stereo With Confidence-Aware Diffusion Model. IEEE T-PAMI 2025 |
| TESTMET0.1,1 | | | 93.82 124 | 93.26 128 | 95.49 139 | 95.21 217 | 90.25 138 | 99.15 103 | 97.54 126 | 89.18 168 | 91.79 163 | 94.87 236 | 89.13 59 | 97.63 224 | 86.21 226 | 96.29 150 | 98.60 159 |
|
| xiu_mvs_v1_base_debu | | | 94.73 96 | 93.98 104 | 96.99 63 | 95.19 218 | 95.24 26 | 98.62 163 | 96.50 216 | 92.99 74 | 97.52 58 | 98.83 84 | 72.37 263 | 99.15 141 | 97.03 67 | 96.74 140 | 96.58 227 |
|
| xiu_mvs_v1_base | | | 94.73 96 | 93.98 104 | 96.99 63 | 95.19 218 | 95.24 26 | 98.62 163 | 96.50 216 | 92.99 74 | 97.52 58 | 98.83 84 | 72.37 263 | 99.15 141 | 97.03 67 | 96.74 140 | 96.58 227 |
|
| xiu_mvs_v1_base_debi | | | 94.73 96 | 93.98 104 | 96.99 63 | 95.19 218 | 95.24 26 | 98.62 163 | 96.50 216 | 92.99 74 | 97.52 58 | 98.83 84 | 72.37 263 | 99.15 141 | 97.03 67 | 96.74 140 | 96.58 227 |
|
| XVG-OURS-SEG-HR | | | 90.95 191 | 90.66 186 | 91.83 243 | 95.18 221 | 81.14 327 | 95.92 312 | 95.92 260 | 88.40 193 | 90.33 193 | 97.85 132 | 70.66 278 | 99.38 128 | 92.83 153 | 88.83 235 | 94.98 246 |
|
| Effi-MVS+-dtu | | | 89.97 213 | 90.68 185 | 87.81 325 | 95.15 222 | 71.98 372 | 97.87 237 | 95.40 298 | 91.92 96 | 87.57 216 | 91.44 298 | 74.27 246 | 96.84 258 | 89.45 190 | 93.10 183 | 94.60 248 |
|
| Syy-MVS | | | 84.10 310 | 84.53 289 | 82.83 356 | 95.14 223 | 65.71 384 | 97.68 250 | 96.66 203 | 86.52 246 | 82.63 266 | 96.84 190 | 68.15 293 | 89.89 380 | 45.62 394 | 91.54 213 | 92.87 255 |
|
| myMVS_eth3d | | | 88.68 240 | 89.07 210 | 87.50 328 | 95.14 223 | 79.74 335 | 97.68 250 | 96.66 203 | 86.52 246 | 82.63 266 | 96.84 190 | 85.22 138 | 89.89 380 | 69.43 354 | 91.54 213 | 92.87 255 |
|
| Vis-MVSNet |  | | 92.64 155 | 91.85 158 | 95.03 158 | 95.12 225 | 88.23 192 | 98.48 182 | 96.81 198 | 91.61 101 | 92.16 161 | 97.22 166 | 71.58 273 | 98.00 199 | 85.85 233 | 97.81 116 | 98.88 136 |
| Jingyang Zhang, Yao Yao, Shiwei Li, Zixin Luo, Tian Fang: Visibility-aware Multiview Stereo Network. BMVC 2020 |
| GBi-Net | | | 86.67 269 | 84.96 277 | 91.80 245 | 95.11 226 | 88.81 182 | 96.77 284 | 95.25 304 | 82.94 305 | 82.12 280 | 90.25 330 | 62.89 328 | 94.97 337 | 79.04 296 | 80.24 291 | 91.62 288 |
|
| test1 | | | 86.67 269 | 84.96 277 | 91.80 245 | 95.11 226 | 88.81 182 | 96.77 284 | 95.25 304 | 82.94 305 | 82.12 280 | 90.25 330 | 62.89 328 | 94.97 337 | 79.04 296 | 80.24 291 | 91.62 288 |
|
| FMVSNet2 | | | 86.90 264 | 84.79 283 | 93.24 213 | 95.11 226 | 92.54 91 | 97.67 252 | 95.86 272 | 82.94 305 | 80.55 301 | 91.17 304 | 62.89 328 | 95.29 332 | 77.23 308 | 79.71 297 | 91.90 283 |
|
| GeoE | | | 90.60 199 | 89.56 199 | 93.72 208 | 95.10 229 | 85.43 264 | 99.41 69 | 94.94 316 | 83.96 287 | 87.21 222 | 96.83 192 | 74.37 244 | 97.05 251 | 80.50 290 | 93.73 178 | 98.67 155 |
|
| baseline | | | 93.91 120 | 93.30 126 | 95.72 131 | 95.10 229 | 90.07 147 | 97.48 257 | 95.91 265 | 91.03 113 | 93.54 144 | 97.68 143 | 79.58 210 | 98.02 197 | 94.27 128 | 95.14 166 | 99.08 118 |
|
| casdiffmvs |  | | 93.98 118 | 93.43 121 | 95.61 137 | 95.07 231 | 89.86 156 | 98.80 142 | 95.84 273 | 90.98 115 | 92.74 154 | 97.66 145 | 79.71 209 | 98.10 190 | 94.72 120 | 95.37 164 | 98.87 138 |
| Fangjinhua Wang, Qingshan Xu, Yew-Soon Ong, Marc Pollefeys: Lightweight and Accurate Multi-View Stereo With Confidence-Aware Diffusion Model. IEEE T-PAMI 2025 |
| MVSFormer | | | 94.71 99 | 94.08 101 | 96.61 86 | 95.05 232 | 94.87 37 | 97.77 243 | 96.17 239 | 86.84 237 | 98.04 49 | 98.52 108 | 85.52 128 | 95.99 307 | 89.83 183 | 98.97 82 | 98.96 126 |
|
| lupinMVS | | | 96.32 45 | 95.94 54 | 97.44 45 | 95.05 232 | 94.87 37 | 99.86 5 | 96.50 216 | 93.82 59 | 98.04 49 | 98.77 87 | 85.52 128 | 98.09 191 | 96.98 70 | 98.97 82 | 99.37 91 |
|
| CostFormer | | | 92.89 151 | 92.48 146 | 94.12 193 | 94.99 234 | 85.89 255 | 92.89 347 | 97.00 192 | 86.98 234 | 95.00 118 | 90.78 310 | 90.05 53 | 97.51 232 | 92.92 152 | 91.73 208 | 98.96 126 |
|
| c3_l | | | 88.19 247 | 87.23 246 | 91.06 259 | 94.97 235 | 86.17 245 | 97.72 247 | 95.38 299 | 83.43 296 | 81.68 292 | 91.37 299 | 82.81 172 | 95.72 320 | 84.04 257 | 73.70 334 | 91.29 306 |
|
| SCA | | | 90.64 198 | 89.25 207 | 94.83 165 | 94.95 236 | 88.83 181 | 96.26 302 | 97.21 167 | 90.06 144 | 90.03 196 | 90.62 319 | 66.61 307 | 96.81 260 | 83.16 264 | 94.36 172 | 98.84 139 |
|
| test-LLR | | | 93.11 148 | 92.68 141 | 94.40 180 | 94.94 237 | 87.27 219 | 99.15 103 | 97.25 161 | 90.21 135 | 91.57 168 | 94.04 245 | 84.89 141 | 97.58 228 | 85.94 230 | 96.13 151 | 98.36 172 |
|
| test-mter | | | 93.27 143 | 92.89 138 | 94.40 180 | 94.94 237 | 87.27 219 | 99.15 103 | 97.25 161 | 88.95 175 | 91.57 168 | 94.04 245 | 88.03 77 | 97.58 228 | 85.94 230 | 96.13 151 | 98.36 172 |
|
| cl____ | | | 87.82 249 | 86.79 253 | 90.89 265 | 94.88 239 | 85.43 264 | 97.81 239 | 95.24 307 | 82.91 309 | 80.71 300 | 91.22 302 | 81.97 192 | 95.84 316 | 81.34 281 | 75.06 318 | 91.40 301 |
|
| DIV-MVS_self_test | | | 87.82 249 | 86.81 252 | 90.87 266 | 94.87 240 | 85.39 266 | 97.81 239 | 95.22 312 | 82.92 308 | 80.76 299 | 91.31 301 | 81.99 190 | 95.81 318 | 81.36 280 | 75.04 319 | 91.42 300 |
|
| tpm2 | | | 91.77 174 | 91.09 173 | 93.82 205 | 94.83 241 | 85.56 263 | 92.51 352 | 97.16 174 | 84.00 285 | 93.83 139 | 90.66 316 | 87.54 83 | 97.17 245 | 87.73 210 | 91.55 212 | 98.72 151 |
|
| PVSNet_0 | | 83.28 16 | 87.31 260 | 85.16 275 | 93.74 207 | 94.78 242 | 84.59 279 | 98.91 133 | 98.69 21 | 89.81 149 | 78.59 325 | 93.23 269 | 61.95 332 | 99.34 134 | 94.75 118 | 55.72 389 | 97.30 205 |
|
| CDS-MVSNet | | | 93.47 134 | 93.04 134 | 94.76 166 | 94.75 243 | 89.45 164 | 98.82 139 | 97.03 188 | 87.91 212 | 90.97 180 | 96.48 202 | 89.06 60 | 96.36 285 | 89.50 189 | 92.81 187 | 98.49 163 |
| Khang Truong Giang, Soohwan Song, Sungho Jo: Curvature-guided dynamic scale networks for Multi-view Stereo. ICLR 2022 |
| gm-plane-assit | | | | | | 94.69 244 | 88.14 194 | | | 88.22 201 | | 97.20 167 | | 98.29 181 | 90.79 174 | | |
|
| eth_miper_zixun_eth | | | 87.76 251 | 87.00 250 | 90.06 287 | 94.67 245 | 82.65 308 | 97.02 277 | 95.37 300 | 84.19 282 | 81.86 290 | 91.58 296 | 81.47 197 | 95.90 315 | 83.24 262 | 73.61 335 | 91.61 291 |
|
| testing3 | | | 87.75 252 | 88.22 231 | 86.36 336 | 94.66 246 | 77.41 352 | 99.52 51 | 97.95 54 | 86.05 253 | 81.12 296 | 96.69 197 | 86.18 120 | 89.31 384 | 61.65 378 | 90.12 231 | 92.35 267 |
|
| RPSCF | | | 85.33 292 | 85.55 270 | 84.67 348 | 94.63 247 | 62.28 387 | 93.73 339 | 93.76 344 | 74.38 365 | 85.23 241 | 97.06 176 | 64.09 322 | 98.31 179 | 80.98 282 | 86.08 251 | 93.41 254 |
|
| miper_lstm_enhance | | | 86.90 264 | 86.20 260 | 89.00 315 | 94.53 248 | 81.19 325 | 96.74 288 | 95.24 307 | 82.33 318 | 80.15 306 | 90.51 326 | 81.99 190 | 94.68 346 | 80.71 286 | 73.58 336 | 91.12 310 |
|
| Patchmatch-test | | | 86.25 278 | 84.06 295 | 92.82 221 | 94.42 249 | 82.88 304 | 82.88 392 | 94.23 338 | 71.58 370 | 79.39 316 | 90.62 319 | 89.00 62 | 96.42 282 | 63.03 374 | 91.37 221 | 99.16 109 |
|
| VDDNet | | | 90.08 210 | 88.54 226 | 94.69 170 | 94.41 250 | 87.68 203 | 98.21 210 | 96.40 221 | 76.21 357 | 93.33 147 | 97.75 139 | 54.93 360 | 98.77 158 | 94.71 121 | 90.96 223 | 97.61 199 |
|
| fmvsm_s_conf0.1_n | | | 95.56 72 | 95.68 65 | 95.20 150 | 94.35 251 | 89.10 169 | 99.50 52 | 97.67 94 | 94.76 36 | 98.68 28 | 99.03 58 | 81.13 202 | 99.86 63 | 98.63 32 | 97.36 130 | 96.63 224 |
|
| test_fmvsmvis_n_1920 | | | 95.47 73 | 95.40 71 | 95.70 132 | 94.33 252 | 90.22 141 | 99.70 27 | 96.98 193 | 96.80 7 | 92.75 153 | 98.89 80 | 82.46 184 | 99.92 40 | 98.36 40 | 98.33 108 | 96.97 218 |
|
| KD-MVS_2432*1600 | | | 82.98 315 | 80.52 323 | 90.38 280 | 94.32 253 | 88.98 174 | 92.87 348 | 95.87 270 | 80.46 338 | 73.79 349 | 87.49 355 | 82.76 175 | 93.29 357 | 70.56 350 | 46.53 398 | 88.87 355 |
|
| miper_refine_blended | | | 82.98 315 | 80.52 323 | 90.38 280 | 94.32 253 | 88.98 174 | 92.87 348 | 95.87 270 | 80.46 338 | 73.79 349 | 87.49 355 | 82.76 175 | 93.29 357 | 70.56 350 | 46.53 398 | 88.87 355 |
|
| EI-MVSNet | | | 89.87 214 | 89.38 205 | 91.36 255 | 94.32 253 | 85.87 256 | 97.61 254 | 96.59 208 | 85.10 267 | 85.51 238 | 97.10 173 | 81.30 201 | 96.56 271 | 83.85 260 | 83.03 278 | 91.64 286 |
|
| CVMVSNet | | | 90.30 203 | 90.91 178 | 88.46 321 | 94.32 253 | 73.58 366 | 97.61 254 | 97.59 116 | 90.16 140 | 88.43 211 | 97.10 173 | 76.83 231 | 92.86 360 | 82.64 270 | 93.54 179 | 98.93 132 |
|
| WB-MVSnew | | | 88.69 238 | 88.34 228 | 89.77 298 | 94.30 257 | 85.99 253 | 98.14 215 | 97.31 159 | 87.15 230 | 87.85 214 | 96.07 215 | 69.91 279 | 95.52 325 | 72.83 343 | 91.47 217 | 87.80 362 |
|
| test_fmvs1_n | | | 91.07 188 | 91.41 168 | 90.06 287 | 94.10 258 | 74.31 362 | 99.18 93 | 94.84 318 | 94.81 35 | 96.37 90 | 97.46 154 | 50.86 373 | 99.82 76 | 97.14 66 | 97.90 114 | 96.04 239 |
|
| IterMVS-LS | | | 88.34 243 | 87.44 241 | 91.04 260 | 94.10 258 | 85.85 257 | 98.10 221 | 95.48 292 | 85.12 266 | 82.03 284 | 91.21 303 | 81.35 200 | 95.63 323 | 83.86 259 | 75.73 315 | 91.63 287 |
| Fangjinhua Wang, Silvano Galliani, Christoph Vogel, Marc Pollefeys: IterMVS: Iterative Probability Estimation for Efficient Multi-View Stereo. |
| TAMVS | | | 92.62 156 | 92.09 154 | 94.20 190 | 94.10 258 | 87.68 203 | 98.41 189 | 96.97 194 | 87.53 225 | 89.74 200 | 96.04 216 | 84.77 145 | 96.49 278 | 88.97 199 | 92.31 196 | 98.42 165 |
|
| PAPM | | | 96.35 43 | 95.94 54 | 97.58 41 | 94.10 258 | 95.25 25 | 98.93 130 | 98.17 37 | 94.26 44 | 93.94 136 | 98.72 93 | 89.68 56 | 97.88 203 | 96.36 84 | 99.29 68 | 99.62 67 |
|
| CLD-MVS | | | 91.06 189 | 90.71 184 | 92.10 238 | 94.05 262 | 86.10 247 | 99.55 45 | 96.29 230 | 94.16 47 | 84.70 244 | 97.17 171 | 69.62 284 | 97.82 207 | 94.74 119 | 86.08 251 | 92.39 262 |
| Zhaoxin Li, Wangmeng Zuo, Zhaoqi Wang, Lei Zhang: Confidence-based Large-scale Dense Multi-view Stereo. IEEE Transaction on Image Processing, 2020 |
| HQP-NCC | | | | | | 93.95 263 | | 99.16 97 | | 93.92 52 | 87.57 216 | | | | | | |
|
| ACMP_Plane | | | | | | 93.95 263 | | 99.16 97 | | 93.92 52 | 87.57 216 | | | | | | |
|
| HQP-MVS | | | 91.50 177 | 91.23 171 | 92.29 232 | 93.95 263 | 86.39 235 | 99.16 97 | 96.37 223 | 93.92 52 | 87.57 216 | 96.67 198 | 73.34 252 | 97.77 211 | 93.82 136 | 86.29 246 | 92.72 257 |
|
| NP-MVS | | | | | | 93.94 266 | 86.22 242 | | | | | 96.67 198 | | | | | |
|
| plane_prior6 | | | | | | 93.92 267 | 86.02 252 | | | | | | 72.92 258 | | | | |
|
| ACMP | | 87.39 10 | 88.71 237 | 88.24 230 | 90.12 286 | 93.91 268 | 81.06 328 | 98.50 178 | 95.67 282 | 89.43 162 | 80.37 303 | 95.55 223 | 65.67 313 | 97.83 206 | 90.55 177 | 84.51 261 | 91.47 296 |
| Qingshan Xu and Wenbing Tao: Planar Prior Assisted PatchMatch Multi-View Stereo. AAAI 2020 |
| plane_prior1 | | | | | | 93.90 269 | | | | | | | | | | | |
|
| HQP_MVS | | | 91.26 183 | 90.95 177 | 92.16 236 | 93.84 270 | 86.07 250 | 99.02 121 | 96.30 227 | 93.38 68 | 86.99 224 | 96.52 200 | 72.92 258 | 97.75 217 | 93.46 143 | 86.17 249 | 92.67 259 |
|
| plane_prior7 | | | | | | 93.84 270 | 85.73 259 | | | | | | | | | | |
|
| dmvs_re | | | 88.69 238 | 88.06 234 | 90.59 272 | 93.83 272 | 78.68 343 | 95.75 321 | 96.18 238 | 87.99 209 | 84.48 248 | 96.32 208 | 67.52 300 | 96.94 255 | 84.98 241 | 85.49 255 | 96.14 237 |
|
| MVS-HIRNet | | | 79.01 334 | 75.13 346 | 90.66 271 | 93.82 273 | 81.69 316 | 85.16 382 | 93.75 345 | 54.54 392 | 74.17 347 | 59.15 398 | 57.46 348 | 96.58 270 | 63.74 371 | 94.38 171 | 93.72 251 |
|
| FMVSNet5 | | | 82.29 318 | 80.54 322 | 87.52 327 | 93.79 274 | 84.01 287 | 93.73 339 | 92.47 361 | 76.92 355 | 74.27 346 | 86.15 366 | 63.69 326 | 89.24 385 | 69.07 355 | 74.79 322 | 89.29 350 |
|
| ACMH+ | | 83.78 15 | 84.21 306 | 82.56 311 | 89.15 312 | 93.73 275 | 79.16 338 | 96.43 295 | 94.28 337 | 81.09 332 | 74.00 348 | 94.03 247 | 54.58 361 | 97.67 220 | 76.10 318 | 78.81 299 | 90.63 326 |
|
| ACMM | | 86.95 13 | 88.77 235 | 88.22 231 | 90.43 278 | 93.61 276 | 81.34 322 | 98.50 178 | 95.92 260 | 87.88 213 | 83.85 253 | 95.20 232 | 67.20 303 | 97.89 202 | 86.90 219 | 84.90 258 | 92.06 280 |
| Qingshan Xu and Wenbing Tao: Multi-Scale Geometric Consistency Guided Multi-View Stereo. CVPR 2019 |
| OpenMVS |  | 85.28 14 | 90.75 195 | 88.84 215 | 96.48 94 | 93.58 277 | 93.51 69 | 98.80 142 | 97.41 151 | 82.59 311 | 78.62 323 | 97.49 153 | 68.00 296 | 99.82 76 | 84.52 248 | 98.55 103 | 96.11 238 |
|
| IterMVS | | | 85.81 285 | 84.67 286 | 89.22 310 | 93.51 278 | 83.67 292 | 96.32 299 | 94.80 321 | 85.09 268 | 78.69 321 | 90.17 336 | 66.57 309 | 93.17 359 | 79.48 294 | 77.42 309 | 90.81 317 |
| Fangjinhua Wang, Silvano Galliani, Christoph Vogel, Marc Pollefeys: IterMVS: Iterative Probability Estimation for Efficient Multi-View Stereo. |
| CR-MVSNet | | | 88.83 232 | 87.38 243 | 93.16 215 | 93.47 279 | 86.24 240 | 84.97 385 | 94.20 339 | 88.92 178 | 90.76 184 | 86.88 362 | 84.43 146 | 94.82 342 | 70.64 349 | 92.17 201 | 98.41 166 |
|
| RPMNet | | | 85.07 295 | 81.88 312 | 94.64 173 | 93.47 279 | 86.24 240 | 84.97 385 | 97.21 167 | 64.85 390 | 90.76 184 | 78.80 387 | 80.95 203 | 99.27 137 | 53.76 389 | 92.17 201 | 98.41 166 |
|
| IterMVS-SCA-FT | | | 85.73 288 | 84.64 287 | 89.00 315 | 93.46 281 | 82.90 302 | 96.27 300 | 94.70 324 | 85.02 271 | 78.62 323 | 90.35 328 | 66.61 307 | 93.33 356 | 79.38 295 | 77.36 310 | 90.76 321 |
|
| Fast-Effi-MVS+-dtu | | | 88.84 230 | 88.59 223 | 89.58 303 | 93.44 282 | 78.18 347 | 98.65 159 | 94.62 327 | 88.46 188 | 84.12 251 | 95.37 229 | 68.91 286 | 96.52 274 | 82.06 276 | 91.70 209 | 94.06 249 |
|
| Patchmtry | | | 83.61 314 | 81.64 314 | 89.50 305 | 93.36 283 | 82.84 305 | 84.10 388 | 94.20 339 | 69.47 380 | 79.57 314 | 86.88 362 | 84.43 146 | 94.78 343 | 68.48 358 | 74.30 328 | 90.88 316 |
|
| LPG-MVS_test | | | 88.86 229 | 88.47 227 | 90.06 287 | 93.35 284 | 80.95 329 | 98.22 208 | 95.94 256 | 87.73 219 | 83.17 259 | 96.11 213 | 66.28 311 | 97.77 211 | 90.19 181 | 85.19 256 | 91.46 297 |
|
| LGP-MVS_train | | | | | 90.06 287 | 93.35 284 | 80.95 329 | | 95.94 256 | 87.73 219 | 83.17 259 | 96.11 213 | 66.28 311 | 97.77 211 | 90.19 181 | 85.19 256 | 91.46 297 |
|
| JIA-IIPM | | | 85.97 281 | 84.85 281 | 89.33 309 | 93.23 286 | 73.68 365 | 85.05 384 | 97.13 177 | 69.62 379 | 91.56 170 | 68.03 394 | 88.03 77 | 96.96 253 | 77.89 306 | 93.12 182 | 97.34 204 |
|
| ACMH | | 83.09 17 | 84.60 300 | 82.61 310 | 90.57 273 | 93.18 287 | 82.94 300 | 96.27 300 | 94.92 317 | 81.01 333 | 72.61 360 | 93.61 260 | 56.54 351 | 97.79 209 | 74.31 330 | 81.07 289 | 90.99 313 |
| Qingshan Xu and Wenbing Tao: Multi-Scale Geometric Consistency Guided Multi-View Stereo. CVPR 2019 |
| PatchT | | | 85.44 291 | 83.19 300 | 92.22 233 | 93.13 288 | 83.00 299 | 83.80 391 | 96.37 223 | 70.62 373 | 90.55 187 | 79.63 386 | 84.81 143 | 94.87 340 | 58.18 385 | 91.59 210 | 98.79 146 |
|
| baseline2 | | | 94.04 115 | 93.80 114 | 94.74 168 | 93.07 289 | 90.25 138 | 98.12 218 | 98.16 39 | 89.86 147 | 86.53 231 | 96.95 182 | 95.56 6 | 98.05 195 | 91.44 165 | 94.53 170 | 95.93 240 |
|
| jason | | | 95.40 77 | 94.86 84 | 97.03 60 | 92.91 290 | 94.23 55 | 99.70 27 | 96.30 227 | 93.56 66 | 96.73 83 | 98.52 108 | 81.46 198 | 97.91 200 | 96.08 90 | 98.47 106 | 98.96 126 |
| jason: jason. |
| LTVRE_ROB | | 81.71 19 | 84.59 301 | 82.72 308 | 90.18 284 | 92.89 291 | 83.18 298 | 93.15 344 | 94.74 322 | 78.99 343 | 75.14 344 | 92.69 277 | 65.64 314 | 97.63 224 | 69.46 353 | 81.82 287 | 89.74 343 |
| Andreas Kuhn, Heiko Hirschmüller, Daniel Scharstein, Helmut Mayer: A TV Prior for High-Quality Scalable Multi-View Stereo Reconstruction. International Journal of Computer Vision 2016 |
| VPA-MVSNet | | | 89.10 223 | 87.66 239 | 93.45 210 | 92.56 292 | 91.02 121 | 97.97 232 | 98.32 30 | 86.92 236 | 86.03 233 | 92.01 286 | 68.84 288 | 97.10 249 | 90.92 170 | 75.34 316 | 92.23 270 |
|
| tpm | | | 89.67 216 | 88.95 213 | 91.82 244 | 92.54 293 | 81.43 319 | 92.95 346 | 95.92 260 | 87.81 214 | 90.50 189 | 89.44 342 | 84.99 139 | 95.65 322 | 83.67 261 | 82.71 281 | 98.38 169 |
|
| GA-MVS | | | 90.10 209 | 88.69 219 | 94.33 184 | 92.44 294 | 87.97 199 | 99.08 113 | 96.26 231 | 89.65 152 | 86.92 226 | 93.11 272 | 68.09 294 | 96.96 253 | 82.54 272 | 90.15 230 | 98.05 186 |
|
| test_fmvsmconf0.1_n | | | 95.94 59 | 95.79 62 | 96.40 101 | 92.42 295 | 89.92 154 | 99.79 17 | 96.85 197 | 96.53 15 | 97.22 66 | 98.67 99 | 82.71 177 | 99.84 69 | 98.92 27 | 98.98 81 | 99.43 87 |
|
| FIs | | | 90.70 196 | 89.87 195 | 93.18 214 | 92.29 296 | 91.12 115 | 98.17 214 | 98.25 32 | 89.11 170 | 83.44 255 | 94.82 238 | 82.26 187 | 96.17 300 | 87.76 209 | 82.76 280 | 92.25 268 |
|
| ITE_SJBPF | | | | | 87.93 323 | 92.26 297 | 76.44 355 | | 93.47 351 | 87.67 222 | 79.95 309 | 95.49 226 | 56.50 352 | 97.38 239 | 75.24 323 | 82.33 284 | 89.98 340 |
|
| UniMVSNet (Re) | | | 89.50 220 | 88.32 229 | 93.03 216 | 92.21 298 | 90.96 123 | 98.90 134 | 98.39 27 | 89.13 169 | 83.22 256 | 92.03 284 | 81.69 194 | 96.34 291 | 86.79 220 | 72.53 345 | 91.81 284 |
|
| UniMVSNet_NR-MVSNet | | | 89.60 217 | 88.55 225 | 92.75 224 | 92.17 299 | 90.07 147 | 98.74 149 | 98.15 40 | 88.37 194 | 83.21 257 | 93.98 250 | 82.86 171 | 95.93 311 | 86.95 216 | 72.47 346 | 92.25 268 |
|
| TinyColmap | | | 80.42 328 | 77.94 333 | 87.85 324 | 92.09 300 | 78.58 344 | 93.74 338 | 89.94 382 | 74.99 361 | 69.77 365 | 91.78 292 | 46.09 380 | 97.58 228 | 65.17 370 | 77.89 303 | 87.38 364 |
|
| fmvsm_s_conf0.1_n_a | | | 95.16 82 | 95.15 77 | 95.18 151 | 92.06 301 | 88.94 177 | 99.29 82 | 97.53 127 | 94.46 40 | 98.98 19 | 98.99 62 | 79.99 207 | 99.85 67 | 98.24 47 | 96.86 139 | 96.73 222 |
|
| tt0805 | | | 86.50 274 | 84.79 283 | 91.63 251 | 91.97 302 | 81.49 318 | 96.49 294 | 97.38 154 | 82.24 319 | 82.44 271 | 95.82 220 | 51.22 370 | 98.25 184 | 84.55 247 | 80.96 290 | 95.13 245 |
|
| MS-PatchMatch | | | 86.75 267 | 85.92 264 | 89.22 310 | 91.97 302 | 82.47 310 | 96.91 279 | 96.14 241 | 83.74 290 | 77.73 330 | 93.53 263 | 58.19 345 | 97.37 241 | 76.75 314 | 98.35 107 | 87.84 360 |
|
| VPNet | | | 88.30 244 | 86.57 254 | 93.49 209 | 91.95 304 | 91.35 108 | 98.18 212 | 97.20 171 | 88.61 183 | 84.52 247 | 94.89 235 | 62.21 331 | 96.76 263 | 89.34 193 | 72.26 349 | 92.36 264 |
|
| FMVSNet1 | | | 83.94 311 | 81.32 319 | 91.80 245 | 91.94 305 | 88.81 182 | 96.77 284 | 95.25 304 | 77.98 348 | 78.25 328 | 90.25 330 | 50.37 374 | 94.97 337 | 73.27 339 | 77.81 307 | 91.62 288 |
|
| WR-MVS | | | 88.54 242 | 87.22 247 | 92.52 229 | 91.93 306 | 89.50 163 | 98.56 172 | 97.84 61 | 86.99 231 | 81.87 288 | 93.81 254 | 74.25 247 | 95.92 313 | 85.29 236 | 74.43 326 | 92.12 277 |
|
| D2MVS | | | 87.96 248 | 87.39 242 | 89.70 300 | 91.84 307 | 83.40 295 | 98.31 203 | 98.49 23 | 88.04 207 | 78.23 329 | 90.26 329 | 73.57 250 | 96.79 262 | 84.21 251 | 83.53 274 | 88.90 354 |
|
| FC-MVSNet-test | | | 90.22 205 | 89.40 204 | 92.67 228 | 91.78 308 | 89.86 156 | 97.89 234 | 98.22 35 | 88.81 180 | 82.96 262 | 94.66 240 | 81.90 193 | 95.96 309 | 85.89 232 | 82.52 283 | 92.20 274 |
|
| MIMVSNet | | | 84.48 303 | 81.83 313 | 92.42 231 | 91.73 309 | 87.36 215 | 85.52 381 | 94.42 333 | 81.40 328 | 81.91 286 | 87.58 352 | 51.92 368 | 92.81 362 | 73.84 335 | 88.15 237 | 97.08 214 |
|
| USDC | | | 84.74 297 | 82.93 302 | 90.16 285 | 91.73 309 | 83.54 294 | 95.00 327 | 93.30 352 | 88.77 181 | 73.19 353 | 93.30 267 | 53.62 364 | 97.65 223 | 75.88 320 | 81.54 288 | 89.30 349 |
|
| test_vis1_n | | | 90.40 200 | 90.27 190 | 90.79 268 | 91.55 311 | 76.48 354 | 99.12 110 | 94.44 330 | 94.31 43 | 97.34 64 | 96.95 182 | 43.60 384 | 99.42 123 | 97.57 59 | 97.60 121 | 96.47 231 |
|
| nrg030 | | | 90.23 204 | 88.87 214 | 94.32 185 | 91.53 312 | 93.54 68 | 98.79 146 | 95.89 268 | 88.12 204 | 84.55 246 | 94.61 241 | 78.80 220 | 96.88 257 | 92.35 159 | 75.21 317 | 92.53 261 |
|
| DU-MVS | | | 88.83 232 | 87.51 240 | 92.79 222 | 91.46 313 | 90.07 147 | 98.71 150 | 97.62 109 | 88.87 179 | 83.21 257 | 93.68 257 | 74.63 238 | 95.93 311 | 86.95 216 | 72.47 346 | 92.36 264 |
|
| NR-MVSNet | | | 87.74 255 | 86.00 263 | 92.96 219 | 91.46 313 | 90.68 130 | 96.65 291 | 97.42 150 | 88.02 208 | 73.42 351 | 93.68 257 | 77.31 228 | 95.83 317 | 84.26 250 | 71.82 353 | 92.36 264 |
|
| tfpnnormal | | | 83.65 312 | 81.35 318 | 90.56 275 | 91.37 315 | 88.06 196 | 97.29 263 | 97.87 58 | 78.51 347 | 76.20 334 | 90.91 307 | 64.78 320 | 96.47 279 | 61.71 377 | 73.50 337 | 87.13 369 |
|
| test_vis1_rt | | | 81.31 324 | 80.05 327 | 85.11 343 | 91.29 316 | 70.66 376 | 98.98 127 | 77.39 404 | 85.76 258 | 68.80 368 | 82.40 375 | 36.56 391 | 99.44 119 | 92.67 156 | 86.55 245 | 85.24 379 |
|
| test_0402 | | | 78.81 336 | 76.33 341 | 86.26 337 | 91.18 317 | 78.44 346 | 95.88 315 | 91.34 376 | 68.55 381 | 70.51 364 | 89.91 337 | 52.65 367 | 94.99 336 | 47.14 393 | 79.78 296 | 85.34 378 |
|
| test0.0.03 1 | | | 88.96 225 | 88.61 221 | 90.03 291 | 91.09 318 | 84.43 281 | 98.97 128 | 97.02 190 | 90.21 135 | 80.29 304 | 96.31 209 | 84.89 141 | 91.93 374 | 72.98 341 | 85.70 254 | 93.73 250 |
|
| WR-MVS_H | | | 86.53 273 | 85.49 271 | 89.66 302 | 91.04 319 | 83.31 297 | 97.53 256 | 98.20 36 | 84.95 273 | 79.64 312 | 90.90 308 | 78.01 225 | 95.33 331 | 76.29 317 | 72.81 342 | 90.35 330 |
|
| CP-MVSNet | | | 86.54 272 | 85.45 272 | 89.79 297 | 91.02 320 | 82.78 306 | 97.38 260 | 97.56 122 | 85.37 263 | 79.53 315 | 93.03 273 | 71.86 269 | 95.25 333 | 79.92 291 | 73.43 340 | 91.34 303 |
|
| TranMVSNet+NR-MVSNet | | | 87.75 252 | 86.31 258 | 92.07 239 | 90.81 321 | 88.56 187 | 98.33 200 | 97.18 172 | 87.76 216 | 81.87 288 | 93.90 252 | 72.45 262 | 95.43 328 | 83.13 266 | 71.30 356 | 92.23 270 |
|
| PS-CasMVS | | | 85.81 285 | 84.58 288 | 89.49 307 | 90.77 322 | 82.11 312 | 97.20 270 | 97.36 156 | 84.83 275 | 79.12 320 | 92.84 276 | 67.42 302 | 95.16 335 | 78.39 304 | 73.25 341 | 91.21 308 |
|
| DeepMVS_CX |  | | | | 76.08 367 | 90.74 323 | 51.65 400 | | 90.84 378 | 86.47 249 | 57.89 388 | 87.98 349 | 35.88 392 | 92.60 364 | 65.77 368 | 65.06 373 | 83.97 383 |
|
| mvsmamba | | | 89.99 212 | 89.42 203 | 91.69 250 | 90.64 324 | 86.34 238 | 98.40 192 | 92.27 363 | 91.01 114 | 84.80 243 | 94.93 234 | 76.12 232 | 96.51 275 | 92.81 154 | 83.84 269 | 92.21 272 |
|
| OPM-MVS | | | 89.76 215 | 89.15 209 | 91.57 252 | 90.53 325 | 85.58 262 | 98.11 220 | 95.93 259 | 92.88 78 | 86.05 232 | 96.47 203 | 67.06 305 | 97.87 204 | 89.29 196 | 86.08 251 | 91.26 307 |
| Ray L. Khuboni, Hongjun Xu: Octagram Propagation Matching for Multi-Scale View Stereopsis (OPM-MVS). |
| XXY-MVS | | | 87.75 252 | 86.02 262 | 92.95 220 | 90.46 326 | 89.70 159 | 97.71 249 | 95.90 266 | 84.02 284 | 80.95 297 | 94.05 244 | 67.51 301 | 97.10 249 | 85.16 237 | 78.41 300 | 92.04 281 |
|
| UniMVSNet_ETH3D | | | 85.65 290 | 83.79 298 | 91.21 256 | 90.41 327 | 80.75 331 | 95.36 324 | 95.78 274 | 78.76 346 | 81.83 291 | 94.33 243 | 49.86 375 | 96.66 265 | 84.30 249 | 83.52 275 | 96.22 236 |
|
| RRT_MVS | | | 88.91 227 | 88.56 224 | 89.93 292 | 90.31 328 | 81.61 317 | 98.08 225 | 96.38 222 | 89.30 164 | 82.41 274 | 94.84 237 | 73.15 256 | 96.04 306 | 90.38 178 | 82.23 285 | 92.15 275 |
|
| v10 | | | 85.73 288 | 84.01 296 | 90.87 266 | 90.03 329 | 86.73 228 | 97.20 270 | 95.22 312 | 81.25 330 | 79.85 311 | 89.75 339 | 73.30 254 | 96.28 297 | 76.87 312 | 72.64 344 | 89.61 346 |
|
| v8 | | | 86.11 279 | 84.45 290 | 91.10 258 | 89.99 330 | 86.85 226 | 97.24 267 | 95.36 301 | 81.99 322 | 79.89 310 | 89.86 338 | 74.53 242 | 96.39 283 | 78.83 300 | 72.32 348 | 90.05 338 |
|
| V42 | | | 87.00 263 | 85.68 268 | 90.98 262 | 89.91 331 | 86.08 248 | 98.32 202 | 95.61 285 | 83.67 293 | 82.72 264 | 90.67 315 | 74.00 249 | 96.53 273 | 81.94 278 | 74.28 329 | 90.32 331 |
|
| XVG-ACMP-BASELINE | | | 85.86 283 | 84.95 279 | 88.57 319 | 89.90 332 | 77.12 353 | 94.30 333 | 95.60 286 | 87.40 227 | 82.12 280 | 92.99 275 | 53.42 365 | 97.66 221 | 85.02 240 | 83.83 270 | 90.92 315 |
|
| PEN-MVS | | | 85.21 293 | 83.93 297 | 89.07 314 | 89.89 333 | 81.31 323 | 97.09 273 | 97.24 164 | 84.45 280 | 78.66 322 | 92.68 278 | 68.44 291 | 94.87 340 | 75.98 319 | 70.92 357 | 91.04 312 |
|
| test_fmvs2 | | | 85.10 294 | 85.45 272 | 84.02 351 | 89.85 334 | 65.63 385 | 98.49 180 | 92.59 359 | 90.45 130 | 85.43 240 | 93.32 265 | 43.94 382 | 96.59 268 | 90.81 173 | 84.19 266 | 89.85 342 |
|
| v1144 | | | 86.83 266 | 85.31 274 | 91.40 253 | 89.75 335 | 87.21 223 | 98.31 203 | 95.45 294 | 83.22 299 | 82.70 265 | 90.78 310 | 73.36 251 | 96.36 285 | 79.49 293 | 74.69 323 | 90.63 326 |
|
| TransMVSNet (Re) | | | 81.97 320 | 79.61 329 | 89.08 313 | 89.70 336 | 84.01 287 | 97.26 265 | 91.85 371 | 78.84 344 | 73.07 357 | 91.62 294 | 67.17 304 | 95.21 334 | 67.50 361 | 59.46 383 | 88.02 359 |
|
| v2v482 | | | 87.27 261 | 85.76 266 | 91.78 249 | 89.59 337 | 87.58 207 | 98.56 172 | 95.54 289 | 84.53 278 | 82.51 270 | 91.78 292 | 73.11 257 | 96.47 279 | 82.07 275 | 74.14 332 | 91.30 305 |
|
| pm-mvs1 | | | 84.68 299 | 82.78 306 | 90.40 279 | 89.58 338 | 85.18 270 | 97.31 262 | 94.73 323 | 81.93 324 | 76.05 336 | 92.01 286 | 65.48 317 | 96.11 303 | 78.75 301 | 69.14 359 | 89.91 341 |
|
| pmmvs4 | | | 87.58 258 | 86.17 261 | 91.80 245 | 89.58 338 | 88.92 180 | 97.25 266 | 95.28 303 | 82.54 313 | 80.49 302 | 93.17 271 | 75.62 235 | 96.05 305 | 82.75 269 | 78.90 298 | 90.42 329 |
|
| v1192 | | | 86.32 277 | 84.71 285 | 91.17 257 | 89.53 340 | 86.40 234 | 98.13 216 | 95.44 296 | 82.52 314 | 82.42 273 | 90.62 319 | 71.58 273 | 96.33 292 | 77.23 308 | 74.88 320 | 90.79 319 |
|
| v144192 | | | 86.40 275 | 84.89 280 | 90.91 263 | 89.48 341 | 85.59 261 | 98.21 210 | 95.43 297 | 82.45 316 | 82.62 268 | 90.58 322 | 72.79 261 | 96.36 285 | 78.45 303 | 74.04 333 | 90.79 319 |
|
| v148 | | | 86.38 276 | 85.06 276 | 90.37 282 | 89.47 342 | 84.10 286 | 98.52 174 | 95.48 292 | 83.80 289 | 80.93 298 | 90.22 333 | 74.60 240 | 96.31 293 | 80.92 284 | 71.55 354 | 90.69 324 |
|
| v1921920 | | | 86.02 280 | 84.44 291 | 90.77 269 | 89.32 343 | 85.20 269 | 98.10 221 | 95.35 302 | 82.19 320 | 82.25 278 | 90.71 312 | 70.73 276 | 96.30 296 | 76.85 313 | 74.49 325 | 90.80 318 |
|
| v1240 | | | 85.77 287 | 84.11 294 | 90.73 270 | 89.26 344 | 85.15 272 | 97.88 236 | 95.23 311 | 81.89 325 | 82.16 279 | 90.55 324 | 69.60 285 | 96.31 293 | 75.59 322 | 74.87 321 | 90.72 323 |
|
| our_test_3 | | | 84.47 304 | 82.80 304 | 89.50 305 | 89.01 345 | 83.90 289 | 97.03 275 | 94.56 328 | 81.33 329 | 75.36 343 | 90.52 325 | 71.69 271 | 94.54 348 | 68.81 356 | 76.84 311 | 90.07 336 |
|
| ppachtmachnet_test | | | 83.63 313 | 81.57 316 | 89.80 296 | 89.01 345 | 85.09 273 | 97.13 272 | 94.50 329 | 78.84 344 | 76.14 335 | 91.00 306 | 69.78 281 | 94.61 347 | 63.40 372 | 74.36 327 | 89.71 345 |
|
| DTE-MVSNet | | | 84.14 308 | 82.80 304 | 88.14 322 | 88.95 347 | 79.87 334 | 96.81 283 | 96.24 232 | 83.50 295 | 77.60 331 | 92.52 280 | 67.89 298 | 94.24 351 | 72.64 344 | 69.05 360 | 90.32 331 |
|
| PS-MVSNAJss | | | 89.54 219 | 89.05 211 | 91.00 261 | 88.77 348 | 84.36 282 | 97.39 258 | 95.97 251 | 88.47 186 | 81.88 287 | 93.80 255 | 82.48 181 | 96.50 276 | 89.34 193 | 83.34 277 | 92.15 275 |
|
| Baseline_NR-MVSNet | | | 85.83 284 | 84.82 282 | 88.87 318 | 88.73 349 | 83.34 296 | 98.63 162 | 91.66 372 | 80.41 340 | 82.44 271 | 91.35 300 | 74.63 238 | 95.42 329 | 84.13 253 | 71.39 355 | 87.84 360 |
|
| MVP-Stereo | | | 86.61 271 | 85.83 265 | 88.93 317 | 88.70 350 | 83.85 290 | 96.07 309 | 94.41 334 | 82.15 321 | 75.64 341 | 91.96 289 | 67.65 299 | 96.45 281 | 77.20 310 | 98.72 96 | 86.51 372 |
| Qingsong Yan: MVP-Stereo: A Parallel Multi-View Patchmatch Stereo Method with Dilation Matching for Photogrammetric Application. |
| EU-MVSNet | | | 84.19 307 | 84.42 292 | 83.52 354 | 88.64 351 | 67.37 383 | 96.04 310 | 95.76 276 | 85.29 264 | 78.44 326 | 93.18 270 | 70.67 277 | 91.48 376 | 75.79 321 | 75.98 313 | 91.70 285 |
|
| pmmvs5 | | | 85.87 282 | 84.40 293 | 90.30 283 | 88.53 352 | 84.23 283 | 98.60 167 | 93.71 346 | 81.53 327 | 80.29 304 | 92.02 285 | 64.51 321 | 95.52 325 | 82.04 277 | 78.34 301 | 91.15 309 |
|
| MDA-MVSNet-bldmvs | | | 77.82 342 | 74.75 348 | 87.03 332 | 88.33 353 | 78.52 345 | 96.34 298 | 92.85 356 | 75.57 359 | 48.87 394 | 87.89 350 | 57.32 349 | 92.49 368 | 60.79 379 | 64.80 374 | 90.08 335 |
|
| N_pmnet | | | 70.19 354 | 69.87 356 | 71.12 374 | 88.24 354 | 30.63 413 | 95.85 318 | 28.70 412 | 70.18 376 | 68.73 369 | 86.55 364 | 64.04 323 | 93.81 352 | 53.12 390 | 73.46 338 | 88.94 353 |
|
| v7n | | | 84.42 305 | 82.75 307 | 89.43 308 | 88.15 355 | 81.86 314 | 96.75 287 | 95.67 282 | 80.53 336 | 78.38 327 | 89.43 343 | 69.89 280 | 96.35 290 | 73.83 336 | 72.13 350 | 90.07 336 |
|
| SixPastTwentyTwo | | | 82.63 317 | 81.58 315 | 85.79 340 | 88.12 356 | 71.01 375 | 95.17 326 | 92.54 360 | 84.33 281 | 72.93 358 | 92.08 283 | 60.41 339 | 95.61 324 | 74.47 329 | 74.15 331 | 90.75 322 |
|
| test_djsdf | | | 88.26 246 | 87.73 237 | 89.84 295 | 88.05 357 | 82.21 311 | 97.77 243 | 96.17 239 | 86.84 237 | 82.41 274 | 91.95 290 | 72.07 266 | 95.99 307 | 89.83 183 | 84.50 262 | 91.32 304 |
|
| mvs_tets | | | 87.09 262 | 86.22 259 | 89.71 299 | 87.87 358 | 81.39 321 | 96.73 289 | 95.90 266 | 88.19 202 | 79.99 308 | 93.61 260 | 59.96 340 | 96.31 293 | 89.40 192 | 84.34 264 | 91.43 299 |
|
| OurMVSNet-221017-0 | | | 84.13 309 | 83.59 299 | 85.77 341 | 87.81 359 | 70.24 377 | 94.89 328 | 93.65 348 | 86.08 252 | 76.53 333 | 93.28 268 | 61.41 334 | 96.14 302 | 80.95 283 | 77.69 308 | 90.93 314 |
|
| YYNet1 | | | 79.64 333 | 77.04 338 | 87.43 330 | 87.80 360 | 79.98 333 | 96.23 304 | 94.44 330 | 73.83 367 | 51.83 391 | 87.53 353 | 67.96 297 | 92.07 373 | 66.00 367 | 67.75 366 | 90.23 333 |
|
| MDA-MVSNet_test_wron | | | 79.65 332 | 77.05 337 | 87.45 329 | 87.79 361 | 80.13 332 | 96.25 303 | 94.44 330 | 73.87 366 | 51.80 392 | 87.47 357 | 68.04 295 | 92.12 372 | 66.02 366 | 67.79 365 | 90.09 334 |
|
| jajsoiax | | | 87.35 259 | 86.51 256 | 89.87 293 | 87.75 362 | 81.74 315 | 97.03 275 | 95.98 250 | 88.47 186 | 80.15 306 | 93.80 255 | 61.47 333 | 96.36 285 | 89.44 191 | 84.47 263 | 91.50 295 |
|
| K. test v3 | | | 81.04 325 | 79.77 328 | 84.83 346 | 87.41 363 | 70.23 378 | 95.60 323 | 93.93 343 | 83.70 292 | 67.51 375 | 89.35 344 | 55.76 353 | 93.58 355 | 76.67 315 | 68.03 363 | 90.67 325 |
|
| dmvs_testset | | | 77.17 344 | 78.99 331 | 71.71 372 | 87.25 364 | 38.55 409 | 91.44 362 | 81.76 400 | 85.77 257 | 69.49 366 | 95.94 218 | 69.71 283 | 84.37 392 | 52.71 391 | 76.82 312 | 92.21 272 |
|
| testgi | | | 82.29 318 | 81.00 321 | 86.17 338 | 87.24 365 | 74.84 361 | 97.39 258 | 91.62 373 | 88.63 182 | 75.85 340 | 95.42 227 | 46.07 381 | 91.55 375 | 66.87 365 | 79.94 295 | 92.12 277 |
|
| LF4IMVS | | | 81.94 321 | 81.17 320 | 84.25 350 | 87.23 366 | 68.87 382 | 93.35 343 | 91.93 370 | 83.35 298 | 75.40 342 | 93.00 274 | 49.25 378 | 96.65 266 | 78.88 299 | 78.11 302 | 87.22 368 |
|
| EG-PatchMatch MVS | | | 79.92 329 | 77.59 334 | 86.90 333 | 87.06 367 | 77.90 351 | 96.20 307 | 94.06 341 | 74.61 363 | 66.53 379 | 88.76 347 | 40.40 389 | 96.20 298 | 67.02 363 | 83.66 273 | 86.61 370 |
|
| test_fmvsmconf0.01_n | | | 94.14 113 | 93.51 119 | 96.04 118 | 86.79 368 | 89.19 166 | 99.28 85 | 95.94 256 | 95.70 21 | 95.50 108 | 98.49 112 | 73.27 255 | 99.79 82 | 98.28 45 | 98.32 110 | 99.15 110 |
|
| Gipuma |  | | 54.77 366 | 52.22 370 | 62.40 383 | 86.50 369 | 59.37 391 | 50.20 401 | 90.35 381 | 36.52 399 | 41.20 400 | 49.49 401 | 18.33 402 | 81.29 394 | 32.10 400 | 65.34 372 | 46.54 401 |
| S. Galliani, K. Lasinger, K. Schindler: Massively Parallel Multiview Stereopsis by Surface Normal Diffusion. ICCV 2015 |
| anonymousdsp | | | 86.69 268 | 85.75 267 | 89.53 304 | 86.46 370 | 82.94 300 | 96.39 296 | 95.71 278 | 83.97 286 | 79.63 313 | 90.70 313 | 68.85 287 | 95.94 310 | 86.01 227 | 84.02 268 | 89.72 344 |
|
| EGC-MVSNET | | | 60.70 361 | 55.37 365 | 76.72 366 | 86.35 371 | 71.08 373 | 89.96 373 | 84.44 397 | 0.38 409 | 1.50 410 | 84.09 371 | 37.30 390 | 88.10 388 | 40.85 398 | 73.44 339 | 70.97 394 |
|
| test_method | | | 70.10 355 | 68.66 358 | 74.41 371 | 86.30 372 | 55.84 393 | 94.47 330 | 89.82 383 | 35.18 400 | 66.15 380 | 84.75 370 | 30.54 394 | 77.96 401 | 70.40 352 | 60.33 381 | 89.44 348 |
|
| lessismore_v0 | | | | | 85.08 344 | 85.59 373 | 69.28 380 | | 90.56 380 | | 67.68 374 | 90.21 334 | 54.21 363 | 95.46 327 | 73.88 334 | 62.64 377 | 90.50 328 |
|
| CMPMVS |  | 58.40 21 | 80.48 327 | 80.11 326 | 81.59 362 | 85.10 374 | 59.56 390 | 94.14 336 | 95.95 255 | 68.54 382 | 60.71 386 | 93.31 266 | 55.35 358 | 97.87 204 | 83.06 267 | 84.85 260 | 87.33 366 |
| M. Jancosek, T. Pajdla: Multi-View Reconstruction Preserving Weakly-Supported Surfaces. CVPR 2011 |
| Anonymous20231206 | | | 80.76 326 | 79.42 330 | 84.79 347 | 84.78 375 | 72.98 367 | 96.53 292 | 92.97 354 | 79.56 341 | 74.33 345 | 88.83 346 | 61.27 335 | 92.15 371 | 60.59 380 | 75.92 314 | 89.24 351 |
|
| DSMNet-mixed | | | 81.60 323 | 81.43 317 | 82.10 359 | 84.36 376 | 60.79 388 | 93.63 341 | 86.74 392 | 79.00 342 | 79.32 317 | 87.15 360 | 63.87 324 | 89.78 382 | 66.89 364 | 91.92 203 | 95.73 241 |
|
| pmmvs6 | | | 79.90 330 | 77.31 336 | 87.67 326 | 84.17 377 | 78.13 348 | 95.86 317 | 93.68 347 | 67.94 384 | 72.67 359 | 89.62 341 | 50.98 372 | 95.75 319 | 74.80 328 | 66.04 370 | 89.14 352 |
|
| new_pmnet | | | 76.02 345 | 73.71 350 | 82.95 355 | 83.88 378 | 72.85 369 | 91.26 365 | 92.26 364 | 70.44 375 | 62.60 384 | 81.37 379 | 47.64 379 | 92.32 369 | 61.85 376 | 72.10 351 | 83.68 384 |
|
| OpenMVS_ROB |  | 73.86 20 | 77.99 341 | 75.06 347 | 86.77 334 | 83.81 379 | 77.94 350 | 96.38 297 | 91.53 375 | 67.54 385 | 68.38 370 | 87.13 361 | 43.94 382 | 96.08 304 | 55.03 388 | 81.83 286 | 86.29 373 |
|
| test20.03 | | | 78.51 339 | 77.48 335 | 81.62 361 | 83.07 380 | 71.03 374 | 96.11 308 | 92.83 357 | 81.66 326 | 69.31 367 | 89.68 340 | 57.53 347 | 87.29 390 | 58.65 384 | 68.47 361 | 86.53 371 |
|
| Anonymous20240521 | | | 78.63 338 | 76.90 339 | 83.82 352 | 82.82 381 | 72.86 368 | 95.72 322 | 93.57 349 | 73.55 368 | 72.17 361 | 84.79 369 | 49.69 376 | 92.51 367 | 65.29 369 | 74.50 324 | 86.09 374 |
|
| UnsupCasMVSNet_eth | | | 78.90 335 | 76.67 340 | 85.58 342 | 82.81 382 | 74.94 360 | 91.98 355 | 96.31 226 | 84.64 277 | 65.84 381 | 87.71 351 | 51.33 369 | 92.23 370 | 72.89 342 | 56.50 388 | 89.56 347 |
|
| KD-MVS_self_test | | | 77.47 343 | 75.88 343 | 82.24 357 | 81.59 383 | 68.93 381 | 92.83 350 | 94.02 342 | 77.03 354 | 73.14 354 | 83.39 372 | 55.44 357 | 90.42 377 | 67.95 359 | 57.53 386 | 87.38 364 |
|
| CL-MVSNet_self_test | | | 79.89 331 | 78.34 332 | 84.54 349 | 81.56 384 | 75.01 359 | 96.88 281 | 95.62 284 | 81.10 331 | 75.86 339 | 85.81 367 | 68.49 290 | 90.26 378 | 63.21 373 | 56.51 387 | 88.35 357 |
|
| MIMVSNet1 | | | 75.92 346 | 73.30 351 | 83.81 353 | 81.29 385 | 75.57 357 | 92.26 353 | 92.05 368 | 73.09 369 | 67.48 376 | 86.18 365 | 40.87 388 | 87.64 389 | 55.78 387 | 70.68 358 | 88.21 358 |
|
| Patchmatch-RL test | | | 81.90 322 | 80.13 325 | 87.23 331 | 80.71 386 | 70.12 379 | 84.07 389 | 88.19 390 | 83.16 301 | 70.57 362 | 82.18 377 | 87.18 93 | 92.59 365 | 82.28 274 | 62.78 376 | 98.98 124 |
|
| APD_test1 | | | 68.93 356 | 66.98 359 | 74.77 370 | 80.62 387 | 53.15 397 | 87.97 376 | 85.01 395 | 53.76 393 | 59.26 387 | 87.52 354 | 25.19 396 | 89.95 379 | 56.20 386 | 67.33 367 | 81.19 388 |
|
| pmmvs-eth3d | | | 78.71 337 | 76.16 342 | 86.38 335 | 80.25 388 | 81.19 325 | 94.17 335 | 92.13 367 | 77.97 349 | 66.90 378 | 82.31 376 | 55.76 353 | 92.56 366 | 73.63 338 | 62.31 379 | 85.38 376 |
|
| UnsupCasMVSNet_bld | | | 73.85 351 | 70.14 355 | 84.99 345 | 79.44 389 | 75.73 356 | 88.53 375 | 95.24 307 | 70.12 377 | 61.94 385 | 74.81 391 | 41.41 387 | 93.62 354 | 68.65 357 | 51.13 395 | 85.62 375 |
|
| PM-MVS | | | 74.88 349 | 72.85 352 | 80.98 363 | 78.98 390 | 64.75 386 | 90.81 369 | 85.77 393 | 80.95 334 | 68.23 372 | 82.81 373 | 29.08 395 | 92.84 361 | 76.54 316 | 62.46 378 | 85.36 377 |
|
| new-patchmatchnet | | | 74.80 350 | 72.40 353 | 81.99 360 | 78.36 391 | 72.20 371 | 94.44 331 | 92.36 362 | 77.06 353 | 63.47 383 | 79.98 385 | 51.04 371 | 88.85 386 | 60.53 381 | 54.35 390 | 84.92 381 |
|
| test_fmvs3 | | | 75.09 348 | 75.19 345 | 74.81 369 | 77.45 392 | 54.08 395 | 95.93 311 | 90.64 379 | 82.51 315 | 73.29 352 | 81.19 380 | 22.29 398 | 86.29 391 | 85.50 235 | 67.89 364 | 84.06 382 |
|
| WB-MVS | | | 66.44 357 | 66.29 360 | 66.89 377 | 74.84 393 | 44.93 404 | 93.00 345 | 84.09 398 | 71.15 372 | 55.82 389 | 81.63 378 | 63.79 325 | 80.31 399 | 21.85 403 | 50.47 396 | 75.43 390 |
|
| SSC-MVS | | | 65.42 358 | 65.20 361 | 66.06 378 | 73.96 394 | 43.83 405 | 92.08 354 | 83.54 399 | 69.77 378 | 54.73 390 | 80.92 382 | 63.30 327 | 79.92 400 | 20.48 404 | 48.02 397 | 74.44 391 |
|
| pmmvs3 | | | 72.86 352 | 69.76 357 | 82.17 358 | 73.86 395 | 74.19 363 | 94.20 334 | 89.01 387 | 64.23 391 | 67.72 373 | 80.91 383 | 41.48 386 | 88.65 387 | 62.40 375 | 54.02 391 | 83.68 384 |
|
| mvsany_test3 | | | 75.85 347 | 74.52 349 | 79.83 364 | 73.53 396 | 60.64 389 | 91.73 358 | 87.87 391 | 83.91 288 | 70.55 363 | 82.52 374 | 31.12 393 | 93.66 353 | 86.66 222 | 62.83 375 | 85.19 380 |
|
| test_f | | | 71.94 353 | 70.82 354 | 75.30 368 | 72.77 397 | 53.28 396 | 91.62 359 | 89.66 385 | 75.44 360 | 64.47 382 | 78.31 388 | 20.48 399 | 89.56 383 | 78.63 302 | 66.02 371 | 83.05 387 |
|
| ambc | | | | | 79.60 365 | 72.76 398 | 56.61 392 | 76.20 396 | 92.01 369 | | 68.25 371 | 80.23 384 | 23.34 397 | 94.73 344 | 73.78 337 | 60.81 380 | 87.48 363 |
|
| TDRefinement | | | 78.01 340 | 75.31 344 | 86.10 339 | 70.06 399 | 73.84 364 | 93.59 342 | 91.58 374 | 74.51 364 | 73.08 356 | 91.04 305 | 49.63 377 | 97.12 246 | 74.88 326 | 59.47 382 | 87.33 366 |
|
| test_vis3_rt | | | 61.29 360 | 58.75 363 | 68.92 376 | 67.41 400 | 52.84 398 | 91.18 367 | 59.23 411 | 66.96 386 | 41.96 399 | 58.44 399 | 11.37 407 | 94.72 345 | 74.25 331 | 57.97 385 | 59.20 398 |
|
| testf1 | | | 56.38 364 | 53.73 367 | 64.31 381 | 64.84 401 | 45.11 402 | 80.50 394 | 75.94 406 | 38.87 396 | 42.74 396 | 75.07 389 | 11.26 408 | 81.19 395 | 41.11 396 | 53.27 392 | 66.63 395 |
|
| APD_test2 | | | 56.38 364 | 53.73 367 | 64.31 381 | 64.84 401 | 45.11 402 | 80.50 394 | 75.94 406 | 38.87 396 | 42.74 396 | 75.07 389 | 11.26 408 | 81.19 395 | 41.11 396 | 53.27 392 | 66.63 395 |
|
| PMMVS2 | | | 58.97 363 | 55.07 366 | 70.69 375 | 62.72 403 | 55.37 394 | 85.97 380 | 80.52 401 | 49.48 394 | 45.94 395 | 68.31 393 | 15.73 404 | 80.78 397 | 49.79 392 | 37.12 400 | 75.91 389 |
|
| E-PMN | | | 41.02 371 | 40.93 373 | 41.29 387 | 61.97 404 | 33.83 410 | 84.00 390 | 65.17 409 | 27.17 402 | 27.56 402 | 46.72 403 | 17.63 403 | 60.41 406 | 19.32 405 | 18.82 402 | 29.61 402 |
|
| wuyk23d | | | 16.71 375 | 16.73 379 | 16.65 389 | 60.15 405 | 25.22 414 | 41.24 402 | 5.17 413 | 6.56 406 | 5.48 409 | 3.61 409 | 3.64 411 | 22.72 408 | 15.20 407 | 9.52 406 | 1.99 406 |
|
| FPMVS | | | 61.57 359 | 60.32 362 | 65.34 379 | 60.14 406 | 42.44 407 | 91.02 368 | 89.72 384 | 44.15 395 | 42.63 398 | 80.93 381 | 19.02 400 | 80.59 398 | 42.50 395 | 72.76 343 | 73.00 392 |
|
| EMVS | | | 39.96 372 | 39.88 374 | 40.18 388 | 59.57 407 | 32.12 412 | 84.79 387 | 64.57 410 | 26.27 403 | 26.14 404 | 44.18 406 | 18.73 401 | 59.29 407 | 17.03 406 | 17.67 404 | 29.12 403 |
|
| LCM-MVSNet | | | 60.07 362 | 56.37 364 | 71.18 373 | 54.81 408 | 48.67 401 | 82.17 393 | 89.48 386 | 37.95 398 | 49.13 393 | 69.12 392 | 13.75 406 | 81.76 393 | 59.28 382 | 51.63 394 | 83.10 386 |
|
| MVE |  | 44.00 22 | 41.70 370 | 37.64 375 | 53.90 386 | 49.46 409 | 43.37 406 | 65.09 400 | 66.66 408 | 26.19 404 | 25.77 405 | 48.53 402 | 3.58 412 | 63.35 405 | 26.15 402 | 27.28 401 | 54.97 400 |
| Simon Fuhrmann, Fabian Langguth, Michael Goesele: MVE - A Multi-View Reconstruction Environment. EUROGRAPHICS Workshops on Graphics and Cultural Heritage (2014) |
| ANet_high | | | 50.71 368 | 46.17 371 | 64.33 380 | 44.27 410 | 52.30 399 | 76.13 397 | 78.73 402 | 64.95 389 | 27.37 403 | 55.23 400 | 14.61 405 | 67.74 403 | 36.01 399 | 18.23 403 | 72.95 393 |
|
| PMVS |  | 41.42 23 | 45.67 369 | 42.50 372 | 55.17 385 | 34.28 411 | 32.37 411 | 66.24 399 | 78.71 403 | 30.72 401 | 22.04 406 | 59.59 397 | 4.59 410 | 77.85 402 | 27.49 401 | 58.84 384 | 55.29 399 |
| Y. Furukawa, J. Ponce: Accurate, dense, and robust multiview stereopsis. PAMI (2010) |
| tmp_tt | | | 53.66 367 | 52.86 369 | 56.05 384 | 32.75 412 | 41.97 408 | 73.42 398 | 76.12 405 | 21.91 405 | 39.68 401 | 96.39 206 | 42.59 385 | 65.10 404 | 78.00 305 | 14.92 405 | 61.08 397 |
|
| testmvs | | | 18.81 374 | 23.05 377 | 6.10 391 | 4.48 413 | 2.29 416 | 97.78 241 | 3.00 414 | 3.27 407 | 18.60 407 | 62.71 395 | 1.53 414 | 2.49 410 | 14.26 408 | 1.80 407 | 13.50 405 |
|
| test123 | | | 16.58 376 | 19.47 378 | 7.91 390 | 3.59 414 | 5.37 415 | 94.32 332 | 1.39 415 | 2.49 408 | 13.98 408 | 44.60 405 | 2.91 413 | 2.65 409 | 11.35 409 | 0.57 408 | 15.70 404 |
|
| test_blank | | | 0.00 379 | 0.00 382 | 0.00 392 | 0.00 415 | 0.00 417 | 0.00 403 | 0.00 416 | 0.00 410 | 0.00 411 | 0.00 410 | 0.00 415 | 0.00 411 | 0.00 410 | 0.00 409 | 0.00 407 |
|
| eth-test2 | | | | | | 0.00 415 | | | | | | | | | | | |
|
| eth-test | | | | | | 0.00 415 | | | | | | | | | | | |
|
| uanet_test | | | 0.00 379 | 0.00 382 | 0.00 392 | 0.00 415 | 0.00 417 | 0.00 403 | 0.00 416 | 0.00 410 | 0.00 411 | 0.00 410 | 0.00 415 | 0.00 411 | 0.00 410 | 0.00 409 | 0.00 407 |
|
| DCPMVS | | | 0.00 379 | 0.00 382 | 0.00 392 | 0.00 415 | 0.00 417 | 0.00 403 | 0.00 416 | 0.00 410 | 0.00 411 | 0.00 410 | 0.00 415 | 0.00 411 | 0.00 410 | 0.00 409 | 0.00 407 |
|
| cdsmvs_eth3d_5k | | | 22.52 373 | 30.03 376 | 0.00 392 | 0.00 415 | 0.00 417 | 0.00 403 | 97.17 173 | 0.00 410 | 0.00 411 | 98.77 87 | 74.35 245 | 0.00 411 | 0.00 410 | 0.00 409 | 0.00 407 |
|
| pcd_1.5k_mvsjas | | | 6.87 378 | 9.16 381 | 0.00 392 | 0.00 415 | 0.00 417 | 0.00 403 | 0.00 416 | 0.00 410 | 0.00 411 | 0.00 410 | 82.48 181 | 0.00 411 | 0.00 410 | 0.00 409 | 0.00 407 |
|
| sosnet-low-res | | | 0.00 379 | 0.00 382 | 0.00 392 | 0.00 415 | 0.00 417 | 0.00 403 | 0.00 416 | 0.00 410 | 0.00 411 | 0.00 410 | 0.00 415 | 0.00 411 | 0.00 410 | 0.00 409 | 0.00 407 |
|
| sosnet | | | 0.00 379 | 0.00 382 | 0.00 392 | 0.00 415 | 0.00 417 | 0.00 403 | 0.00 416 | 0.00 410 | 0.00 411 | 0.00 410 | 0.00 415 | 0.00 411 | 0.00 410 | 0.00 409 | 0.00 407 |
|
| uncertanet | | | 0.00 379 | 0.00 382 | 0.00 392 | 0.00 415 | 0.00 417 | 0.00 403 | 0.00 416 | 0.00 410 | 0.00 411 | 0.00 410 | 0.00 415 | 0.00 411 | 0.00 410 | 0.00 409 | 0.00 407 |
|
| Regformer | | | 0.00 379 | 0.00 382 | 0.00 392 | 0.00 415 | 0.00 417 | 0.00 403 | 0.00 416 | 0.00 410 | 0.00 411 | 0.00 410 | 0.00 415 | 0.00 411 | 0.00 410 | 0.00 409 | 0.00 407 |
|
| ab-mvs-re | | | 8.21 377 | 10.94 380 | 0.00 392 | 0.00 415 | 0.00 417 | 0.00 403 | 0.00 416 | 0.00 410 | 0.00 411 | 98.50 110 | 0.00 415 | 0.00 411 | 0.00 410 | 0.00 409 | 0.00 407 |
|
| uanet | | | 0.00 379 | 0.00 382 | 0.00 392 | 0.00 415 | 0.00 417 | 0.00 403 | 0.00 416 | 0.00 410 | 0.00 411 | 0.00 410 | 0.00 415 | 0.00 411 | 0.00 410 | 0.00 409 | 0.00 407 |
|
| WAC-MVS | | | | | | | 79.74 335 | | | | | | | | 67.75 360 | | |
|
| PC_three_1452 | | | | | | | | | | 94.60 38 | 99.41 4 | 99.12 48 | 95.50 7 | 99.96 28 | 99.84 2 | 99.92 3 | 99.97 7 |
|
| test_241102_TWO | | | | | | | | | 97.72 81 | 94.17 45 | 99.23 11 | 99.54 3 | 93.14 23 | 99.98 9 | 99.70 4 | 99.82 19 | 99.99 1 |
|
| test_0728_THIRD | | | | | | | | | | 93.01 72 | 99.07 16 | 99.46 10 | 94.66 13 | 99.97 21 | 99.25 18 | 99.82 19 | 99.95 15 |
|
| GSMVS | | | | | | | | | | | | | | | | | 98.84 139 |
|
| sam_mvs1 | | | | | | | | | | | | | 88.39 68 | | | | 98.84 139 |
|
| sam_mvs | | | | | | | | | | | | | 87.08 96 | | | | |
|
| MTGPA |  | | | | | | | | 97.45 144 | | | | | | | | |
|
| test_post1 | | | | | | | | 90.74 371 | | | | 41.37 407 | 85.38 135 | 96.36 285 | 83.16 264 | | |
|
| test_post | | | | | | | | | | | | 46.00 404 | 87.37 87 | 97.11 247 | | | |
|
| patchmatchnet-post | | | | | | | | | | | | 84.86 368 | 88.73 65 | 96.81 260 | | | |
|
| MTMP | | | | | | | | 99.21 89 | 91.09 377 | | | | | | | | |
|
| test9_res | | | | | | | | | | | | | | | 98.60 33 | 99.87 9 | 99.90 22 |
|
| agg_prior2 | | | | | | | | | | | | | | | 97.84 56 | 99.87 9 | 99.91 21 |
|
| test_prior4 | | | | | | | 92.00 97 | 99.41 69 | | | | | | | | | |
|
| test_prior2 | | | | | | | | 99.57 43 | | 91.43 107 | 98.12 45 | 98.97 64 | 90.43 45 | | 98.33 42 | 99.81 23 | |
|
| 旧先验2 | | | | | | | | 98.67 157 | | 85.75 259 | 98.96 21 | | | 98.97 153 | 93.84 134 | | |
|
| 新几何2 | | | | | | | | 98.26 206 | | | | | | | | | |
|
| 无先验 | | | | | | | | 98.52 174 | 97.82 65 | 87.20 229 | | | | 99.90 50 | 87.64 211 | | 99.85 30 |
|
| 原ACMM2 | | | | | | | | 98.69 154 | | | | | | | | | |
|
| testdata2 | | | | | | | | | | | | | | 99.88 54 | 84.16 252 | | |
|
| segment_acmp | | | | | | | | | | | | | 90.56 43 | | | | |
|
| testdata1 | | | | | | | | 97.89 234 | | 92.43 84 | | | | | | | |
|
| plane_prior5 | | | | | | | | | 96.30 227 | | | | | 97.75 217 | 93.46 143 | 86.17 249 | 92.67 259 |
|
| plane_prior4 | | | | | | | | | | | | 96.52 200 | | | | | |
|
| plane_prior3 | | | | | | | 85.91 254 | | | 93.65 63 | 86.99 224 | | | | | | |
|
| plane_prior2 | | | | | | | | 99.02 121 | | 93.38 68 | | | | | | | |
|
| plane_prior | | | | | | | 86.07 250 | 99.14 106 | | 93.81 60 | | | | | | 86.26 248 | |
|
| n2 | | | | | | | | | 0.00 416 | | | | | | | | |
|
| nn | | | | | | | | | 0.00 416 | | | | | | | | |
|
| door-mid | | | | | | | | | 84.90 396 | | | | | | | | |
|
| test11 | | | | | | | | | 97.68 90 | | | | | | | | |
|
| door | | | | | | | | | 85.30 394 | | | | | | | | |
|
| HQP5-MVS | | | | | | | 86.39 235 | | | | | | | | | | |
|
| BP-MVS | | | | | | | | | | | | | | | 93.82 136 | | |
|
| HQP4-MVS | | | | | | | | | | | 87.57 216 | | | 97.77 211 | | | 92.72 257 |
|
| HQP3-MVS | | | | | | | | | 96.37 223 | | | | | | | 86.29 246 | |
|
| HQP2-MVS | | | | | | | | | | | | | 73.34 252 | | | | |
|
| MDTV_nov1_ep13_2view | | | | | | | 91.17 114 | 91.38 363 | | 87.45 226 | 93.08 150 | | 86.67 107 | | 87.02 214 | | 98.95 130 |
|
| ACMMP++_ref | | | | | | | | | | | | | | | | 82.64 282 | |
|
| ACMMP++ | | | | | | | | | | | | | | | | 83.83 270 | |
|
| Test By Simon | | | | | | | | | | | | | 83.62 155 | | | | |
|