This table lists the benchmark results for the high-res multi-view scenario. The following metrics are evaluated:

(*) For exact definitions, detailing how potentially incomplete ground truth is taken into account, see our paper.

The datasets are grouped into different categories, and result averages are computed for a category and method if results of the method are available for all datasets within the category. Note that the category "all" includes both the high-res multi-view and the low-res many-view scenarios.

Methods with suffix _ROB may participate in the Robust Vision Challenge.

Click a dataset result cell to show a visualization of the reconstruction. For training datasets, ground truth and accuracy / completeness visualizations are also available. The visualizations may not work with mobile browsers.




Method Infoallhigh-res
multi-view
indooroutdoorbotani.boulde.bridgedoorexhibi.lectur.living.loungeobserv.old co.statueterrac.
sort bysort bysort bysort bysort bysort bysort bysort bysort bysorted bysort bysort bysort bysort bysort bysort by
CNVR-MVS99.40 199.26 199.84 499.98 299.51 499.98 898.69 5598.20 399.93 199.98 296.82 19100.00 199.75 22100.00 199.99 20
NCCC99.37 299.25 299.71 1099.96 899.15 1699.97 1698.62 6798.02 699.90 299.95 397.33 13100.00 199.54 33100.00 1100.00 1
TSAR-MVS + MP.98.93 1598.77 1699.41 3999.74 7798.67 4499.77 12798.38 13996.73 3599.88 399.74 8194.89 6299.59 14099.80 1899.98 3399.97 63
Zhenlong Yuan, Jiakai Cao, Zhaoqi Wang, Zhaoxin Li: TSAR-MVS: Textureless-aware Segmentation and Correlative Refinement Guided Multi-View Stereo. Pattern Recognition
test072699.93 2699.29 1099.96 2398.42 12797.28 1899.86 499.94 497.22 15
xiu_mvs_v2_base98.23 6397.97 6499.02 7798.69 13998.66 4699.52 17898.08 18597.05 2699.86 499.86 2990.65 16199.71 12999.39 4198.63 12898.69 201
PS-MVSNAJ98.44 4798.20 5099.16 5998.80 13598.92 2399.54 17698.17 17497.34 1699.85 699.85 3391.20 15099.89 7999.41 4099.67 9598.69 201
旧先验299.46 18994.21 11299.85 699.95 6096.96 135
IU-MVS99.93 2699.31 798.41 13197.71 899.84 8100.00 1100.00 1100.00 1
ETH3 D test640098.81 2298.54 2699.59 1899.93 2698.93 2299.93 6298.46 10594.56 9599.84 899.92 1194.32 8099.86 9099.96 899.98 33100.00 1
DVP-MVS99.30 499.16 399.73 899.93 2699.29 1099.95 4198.32 15197.28 1899.83 1099.91 1397.22 15100.00 199.99 5100.00 199.89 90
Zhenlong Yuan, Jinguo Luo, Fei Shen, Zhaoxin Li, Cong Liu, Tianlu Mao, Zhaoqi Wang: DVP-MVS: Synergize Depth-Edge and Visibility Prior for Multi-View Stereo. AAAI2025
test_0728_THIRD96.48 4099.83 1099.91 1397.87 4100.00 199.92 9100.00 1100.00 1
xxxxxxxxxxxxxcwj98.98 1498.79 1599.54 2399.82 6598.79 3399.96 2397.52 23497.66 1099.81 1299.89 1994.70 6599.86 9099.84 1399.93 6399.96 70
SF-MVS98.67 3098.40 3599.50 2999.77 7398.67 4499.90 7498.21 16893.53 14099.81 1299.89 1994.70 6599.86 9099.84 1399.93 6399.96 70
ETH3D-3000-0.198.68 2998.42 3199.47 3499.83 6398.57 5199.90 7498.37 14293.81 13199.81 1299.90 1794.34 7699.86 9099.84 1399.98 3399.97 63
SD-MVS98.92 1698.70 1799.56 2199.70 8598.73 4199.94 5698.34 14896.38 4499.81 1299.76 7294.59 6799.98 4299.84 1399.96 4899.97 63
Zhenlong Yuan, Jiakai Cao, Zhaoxin Li, Hao Jiang and Zhaoqi Wang: SD-MVS: Segmentation-driven Deformation Multi-View Stereo with Spherical Refinement and EM optimization. AAAI2024
SED-MVS99.28 599.11 699.77 699.93 2699.30 899.96 2398.43 11697.27 2099.80 1699.94 496.71 20100.00 1100.00 1100.00 1100.00 1
test_241102_TWO98.43 11697.27 2099.80 1699.94 497.18 17100.00 1100.00 1100.00 1100.00 1
test_241102_ONE99.93 2699.30 898.43 11697.26 2299.80 1699.88 2296.71 20100.00 1
MSLP-MVS++99.13 799.01 999.49 3199.94 1498.46 5999.98 898.86 4597.10 2599.80 1699.94 495.92 33100.00 199.51 34100.00 1100.00 1
SteuartSystems-ACMMP99.02 1198.97 1199.18 5498.72 13897.71 8399.98 898.44 10896.85 2999.80 1699.91 1397.57 699.85 9499.44 3899.99 2099.99 20
Skip Steuart: Steuart Systems R&D Blog.
testdata98.42 11999.47 10095.33 17098.56 7793.78 13399.79 2199.85 3393.64 10199.94 6894.97 15799.94 57100.00 1
9.1498.38 3899.87 5299.91 7098.33 14993.22 14899.78 2299.89 1994.57 6899.85 9499.84 1399.97 44
SMA-MVScopyleft98.76 2698.48 2999.62 1599.87 5298.87 2799.86 9998.38 13993.19 14999.77 2399.94 495.54 40100.00 199.74 2499.99 20100.00 1
Yufeng Yin; Xiaoyan Liu; Zichao Zhang: SMA-MVS: Segmentation-Guided Multi-Scale Anchor Deformation Patch Multi-View Stereo. IEEE Transactions on Circuits and Systems for Video Technology
CDPH-MVS98.65 3198.36 4299.49 3199.94 1498.73 4199.87 8898.33 14993.97 12399.76 2499.87 2694.99 5899.75 12198.55 84100.00 199.98 51
APD-MVScopyleft98.62 3298.35 4399.41 3999.90 4298.51 5699.87 8898.36 14494.08 11699.74 2599.73 8394.08 8899.74 12599.42 3999.99 2099.99 20
Yuesong Wang, Zhaojie Zeng and etc.: Adaptive Patch Deformation for Textureless-Resilient Multi-View Stereo. CVPR2023
ETH3D cwj APD-0.1698.40 5198.07 5999.40 4199.59 9098.41 6099.86 9998.24 16492.18 18899.73 2699.87 2693.47 10399.85 9499.74 2499.95 5199.93 81
test_prior398.99 1398.84 1499.43 3599.94 1498.49 5799.95 4198.65 6095.78 6099.73 2699.76 7296.00 2999.80 10699.78 20100.00 199.99 20
test_prior299.95 4195.78 6099.73 2699.76 7296.00 2999.78 20100.00 1
testtj98.89 1898.69 1899.52 2699.94 1498.56 5399.90 7498.55 8395.14 7899.72 2999.84 4695.46 43100.00 199.65 3299.99 2099.99 20
TEST999.92 3598.92 2399.96 2398.43 11693.90 12899.71 3099.86 2995.88 3499.85 94
train_agg98.88 1998.65 2099.59 1899.92 3598.92 2399.96 2398.43 11694.35 10599.71 3099.86 2995.94 3199.85 9499.69 3199.98 3399.99 20
test_899.92 3598.88 2699.96 2398.43 11694.35 10599.69 3299.85 3395.94 3199.85 94
CS-MVS97.52 8897.36 8598.00 13697.47 20496.11 148100.00 197.08 27694.74 8899.65 3399.33 12389.89 17098.22 21598.79 7199.25 11699.68 114
test1299.43 3599.74 7798.56 5398.40 13299.65 3394.76 6399.75 12199.98 3399.99 20
DPE-MVScopyleft99.26 699.10 799.74 799.89 4599.24 1499.87 8898.44 10897.48 1599.64 3599.94 496.68 2299.99 3699.99 5100.00 199.99 20
Kehua Chen, Zhenlong Yuan, Tianlu Mao, Zhaoqi Wang: Dual-Level Precision Edges Guided Multi-View Stereo with Accurate Planarization. AAAI2025
agg_prior198.88 1998.66 1999.54 2399.93 2698.77 3699.96 2398.43 11694.63 9499.63 3699.85 3395.79 3799.85 9499.72 2899.99 2099.99 20
agg_prior99.93 2698.77 3698.43 11699.63 3699.85 94
xiu_mvs_v1_base_debu97.43 8997.06 9398.55 10697.74 18898.14 6799.31 20897.86 20596.43 4199.62 3899.69 9185.56 21399.68 13399.05 5098.31 13597.83 210
xiu_mvs_v1_base97.43 8997.06 9398.55 10697.74 18898.14 6799.31 20897.86 20596.43 4199.62 3899.69 9185.56 21399.68 13399.05 5098.31 13597.83 210
xiu_mvs_v1_base_debi97.43 8997.06 9398.55 10697.74 18898.14 6799.31 20897.86 20596.43 4199.62 3899.69 9185.56 21399.68 13399.05 5098.31 13597.83 210
原ACMM198.96 8299.73 8196.99 11498.51 9794.06 11999.62 3899.85 3394.97 5999.96 5395.11 15599.95 5199.92 87
PHI-MVS98.41 4998.21 4999.03 7599.86 5497.10 11199.98 898.80 5090.78 22799.62 3899.78 6695.30 46100.00 199.80 1899.93 6399.99 20
DPM-MVS98.83 2198.46 3099.97 199.33 10699.92 199.96 2398.44 10897.96 799.55 4399.94 497.18 17100.00 193.81 18999.94 5799.98 51
新几何199.42 3899.75 7698.27 6598.63 6692.69 16699.55 4399.82 5394.40 71100.00 191.21 22399.94 5799.99 20
ACMMP_NAP98.49 4398.14 5499.54 2399.66 8798.62 5099.85 10298.37 14294.68 9199.53 4599.83 4992.87 120100.00 198.66 8099.84 8099.99 20
112198.03 6997.57 7899.40 4199.74 7798.21 6698.31 28998.62 6792.78 16199.53 4599.83 4995.08 50100.00 194.36 17699.92 6799.99 20
PMMVS96.76 11596.76 10496.76 17698.28 15492.10 24199.91 7097.98 19294.12 11499.53 4599.39 11986.93 20298.73 17396.95 13697.73 14699.45 154
MSP-MVS99.09 899.12 598.98 8099.93 2697.24 10499.95 4198.42 12797.50 1499.52 4899.88 2297.43 1299.71 12999.50 3599.98 33100.00 1
Zhenlong Yuan, Cong Liu, Fei Shen, Zhaoxin Li, Jingguo luo, Tianlu Mao and Zhaoqi Wang: MSP-MVS: Multi-granularity Segmentation Prior Guided Multi-View Stereo. AAAI2025
test_part299.89 4599.25 1399.49 49
APDe-MVS99.06 1098.91 1299.51 2899.94 1498.76 4099.91 7098.39 13597.20 2499.46 5099.85 3395.53 4299.79 10999.86 12100.00 199.99 20
region2R98.54 3998.37 4099.05 7399.96 897.18 10799.96 2398.55 8394.87 8499.45 5199.85 3394.07 89100.00 198.67 77100.00 199.98 51
HPM-MVS++copyleft99.07 998.88 1399.63 1299.90 4299.02 1999.95 4198.56 7797.56 1399.44 5299.85 3395.38 45100.00 199.31 4399.99 2099.87 93
MVSFormer96.94 10796.60 10897.95 13797.28 21497.70 8599.55 17497.27 26091.17 21699.43 5399.54 10790.92 15796.89 28094.67 17099.62 9899.25 175
lupinMVS97.85 7597.60 7698.62 10097.28 21497.70 8599.99 497.55 22895.50 7199.43 5399.67 9590.92 15798.71 17598.40 8899.62 9899.45 154
Regformer-198.79 2498.60 2399.36 4599.85 5598.34 6299.87 8898.52 9096.05 5399.41 5599.79 6294.93 6099.76 11899.07 4999.90 7299.99 20
Regformer-298.78 2598.59 2499.36 4599.85 5598.32 6399.87 8898.52 9096.04 5499.41 5599.79 6294.92 6199.76 11899.05 5099.90 7299.98 51
XVS98.70 2898.55 2599.15 6199.94 1497.50 9499.94 5698.42 12796.22 4999.41 5599.78 6694.34 7699.96 5398.92 6099.95 5199.99 20
X-MVStestdata93.83 18992.06 21899.15 6199.94 1497.50 9499.94 5698.42 12796.22 4999.41 5541.37 36694.34 7699.96 5398.92 6099.95 5199.99 20
SR-MVS-dyc-post98.31 5698.17 5298.71 9399.79 7096.37 13499.76 13298.31 15394.43 10099.40 5999.75 7793.28 11099.78 11198.90 6399.92 6799.97 63
RE-MVS-def98.13 5599.79 7096.37 13499.76 13298.31 15394.43 10099.40 5999.75 7792.95 11998.90 6399.92 6799.97 63
APD-MVS_3200maxsize98.25 6298.08 5898.78 8999.81 6896.60 12599.82 11398.30 15693.95 12599.37 6199.77 6892.84 12199.76 11898.95 5799.92 6799.97 63
PGM-MVS98.34 5498.13 5598.99 7999.92 3597.00 11399.75 13599.50 1693.90 12899.37 6199.76 7293.24 113100.00 197.75 11899.96 4899.98 51
SR-MVS98.46 4598.30 4698.93 8499.88 4997.04 11299.84 10698.35 14694.92 8199.32 6399.80 5893.35 10599.78 11199.30 4499.95 5199.96 70
ZD-MVS99.92 3598.57 5198.52 9092.34 18499.31 6499.83 4995.06 5299.80 10699.70 3099.97 44
HFP-MVS98.56 3798.37 4099.14 6399.96 897.43 9999.95 4198.61 6994.77 8699.31 6499.85 3394.22 83100.00 198.70 7599.98 3399.98 51
#test#98.59 3598.41 3399.14 6399.96 897.43 9999.95 4198.61 6995.00 8099.31 6499.85 3394.22 83100.00 198.78 7299.98 3399.98 51
ACMMPR98.50 4298.32 4499.05 7399.96 897.18 10799.95 4198.60 7194.77 8699.31 6499.84 4693.73 98100.00 198.70 7599.98 3399.98 51
ETV-MVS97.92 7397.80 7198.25 12698.14 16596.48 12899.98 897.63 21795.61 6899.29 6899.46 11392.55 12998.82 16599.02 5698.54 12999.46 152
test22299.55 9497.41 10299.34 20498.55 8391.86 19799.27 6999.83 4993.84 9699.95 5199.99 20
abl_697.67 8497.34 8698.66 9799.68 8696.11 14899.68 15198.14 18093.80 13299.27 6999.70 8888.65 18899.98 4297.46 12299.72 9299.89 90
test117298.38 5398.25 4798.77 9099.88 4996.56 12799.80 12098.36 14494.68 9199.20 7199.80 5893.28 11099.78 11199.34 4299.92 6799.98 51
CANet_DTU96.76 11596.15 11998.60 10298.78 13697.53 9099.84 10697.63 21797.25 2399.20 7199.64 9981.36 24699.98 4292.77 20998.89 12298.28 204
EPNet98.49 4398.40 3598.77 9099.62 8996.80 12099.90 7499.51 1597.60 1299.20 7199.36 12293.71 9999.91 7497.99 10598.71 12799.61 127
Wanjuan Su, Wenbing Tao: Efficient Edge-Preserving Multi-View Stereo Network for Depth Estimation. AAAI 2023
DeepPCF-MVS95.94 297.71 8398.98 1093.92 26599.63 8881.76 34099.96 2398.56 7799.47 199.19 7499.99 194.16 87100.00 199.92 999.93 63100.00 1
VNet97.21 10096.57 11099.13 6898.97 11997.82 8199.03 23999.21 2794.31 10899.18 7598.88 16186.26 20899.89 7998.93 5994.32 20399.69 113
MCST-MVS99.32 399.14 499.86 399.97 399.59 399.97 1698.64 6398.47 299.13 7699.92 1196.38 26100.00 199.74 24100.00 1100.00 1
DeepC-MVS_fast96.59 198.81 2298.54 2699.62 1599.90 4298.85 2999.24 21798.47 10398.14 499.08 7799.91 1393.09 116100.00 199.04 5499.99 20100.00 1
Andreas Kuhn, Christian Sormann, Mattia Rossi, Oliver Erdler, Friedrich Fraundorfer: DeepC-MVS: Deep Confidence Prediction for Multi-View Stereo Reconstruction. 3DV 2020
114514_t97.41 9396.83 10199.14 6399.51 9897.83 8099.89 8298.27 16188.48 26499.06 7899.66 9790.30 16599.64 13996.32 14399.97 4499.96 70
PVSNet91.05 1397.13 10196.69 10698.45 11699.52 9695.81 15599.95 4199.65 1094.73 8999.04 7999.21 13484.48 22399.95 6094.92 15898.74 12699.58 136
CHOSEN 280x42099.01 1299.03 898.95 8399.38 10498.87 2798.46 28299.42 2097.03 2799.02 8099.09 13899.35 198.21 21699.73 2799.78 8899.77 104
Regformer-398.58 3698.41 3399.10 6999.84 6097.57 8899.66 15498.52 9095.79 5999.01 8199.77 6894.40 7199.75 12198.82 6799.83 8199.98 51
Regformer-498.56 3798.39 3799.08 7199.84 6097.52 9199.66 15498.52 9095.76 6299.01 8199.77 6894.33 7999.75 12198.80 7099.83 8199.98 51
MG-MVS98.91 1798.65 2099.68 1199.94 1499.07 1899.64 16199.44 1897.33 1799.00 8399.72 8494.03 9099.98 4298.73 74100.00 1100.00 1
diffmvs97.00 10596.64 10798.09 13297.64 19596.17 14499.81 11597.19 26494.67 9398.95 8499.28 12486.43 20698.76 17198.37 8997.42 15499.33 168
HPM-MVS_fast97.80 7997.50 7998.68 9599.79 7096.42 13099.88 8598.16 17791.75 20298.94 8599.54 10791.82 14599.65 13897.62 12099.99 2099.99 20
CP-MVS98.45 4698.32 4498.87 8699.96 896.62 12499.97 1698.39 13594.43 10098.90 8699.87 2694.30 81100.00 199.04 5499.99 2099.99 20
MVS_Test96.46 12795.74 13898.61 10198.18 16297.23 10599.31 20897.15 27091.07 22098.84 8797.05 22488.17 19198.97 16194.39 17597.50 15199.61 127
API-MVS97.86 7497.66 7398.47 11499.52 9695.41 16899.47 18798.87 4491.68 20398.84 8799.85 3392.34 13499.99 3698.44 8799.96 48100.00 1
GST-MVS98.27 5997.97 6499.17 5799.92 3597.57 8899.93 6298.39 13594.04 12198.80 8999.74 8192.98 118100.00 198.16 9599.76 8999.93 81
MVS_111021_LR98.42 4898.38 3898.53 11199.39 10395.79 15699.87 8899.86 296.70 3698.78 9099.79 6292.03 14099.90 7599.17 4699.86 7999.88 92
hse-mvs394.92 16394.36 16696.59 18398.85 13291.29 26298.93 24998.94 3695.90 5698.77 9198.42 19090.89 15999.77 11597.80 11170.76 33798.72 200
hse-mvs294.38 18094.08 17395.31 21398.27 15690.02 28499.29 21398.56 7795.90 5698.77 9198.00 19990.89 15998.26 21397.80 11169.20 34397.64 215
TSAR-MVS + GP.98.60 3398.51 2898.86 8799.73 8196.63 12399.97 1697.92 19998.07 598.76 9399.55 10595.00 5799.94 6899.91 1197.68 14899.99 20
sss97.57 8697.03 9799.18 5498.37 14998.04 7299.73 14399.38 2193.46 14298.76 9399.06 14091.21 14999.89 7996.33 14297.01 16499.62 125
CostFormer96.10 13895.88 13596.78 17597.03 22192.55 23397.08 31897.83 20890.04 23998.72 9594.89 30195.01 5698.29 20796.54 14195.77 18699.50 149
tpmrst96.27 13795.98 12597.13 16697.96 17293.15 21796.34 32798.17 17492.07 19198.71 9695.12 29293.91 9398.73 17394.91 16096.62 16999.50 149
MVS_111021_HR98.72 2798.62 2299.01 7899.36 10597.18 10799.93 6299.90 196.81 3398.67 9799.77 6893.92 9299.89 7999.27 4599.94 5799.96 70
MAR-MVS97.43 8997.19 9098.15 13199.47 10094.79 18799.05 23798.76 5192.65 16998.66 9899.82 5388.52 18999.98 4298.12 9799.63 9799.67 117
Zhenyu Xu, Yiguang Liu, Xuelei Shi, Ying Wang, Yunan Zheng: MARMVS: Matching Ambiguity Reduced Multiple View Stereo for Efficient Large Scale Scene Reconstruction. CVPR 2020
Effi-MVS+96.30 13495.69 13998.16 12897.85 18096.26 13797.41 31197.21 26390.37 23298.65 9998.58 18086.61 20598.70 17697.11 13097.37 15699.52 146
HPM-MVScopyleft97.96 7097.72 7298.68 9599.84 6096.39 13399.90 7498.17 17492.61 17198.62 10099.57 10491.87 14399.67 13698.87 6599.99 2099.99 20
Chunlin Ren, Qingshan Xu, Shikun Zhang, Jiaqi Yang: Hierarchical Prior Mining for Non-local Multi-View Stereo. ICCV 2023
mPP-MVS98.39 5298.20 5098.97 8199.97 396.92 11799.95 4198.38 13995.04 7998.61 10199.80 5893.39 104100.00 198.64 81100.00 199.98 51
jason97.24 9896.86 10098.38 12295.73 26097.32 10399.97 1697.40 24995.34 7498.60 10299.54 10787.70 19398.56 18297.94 10899.47 10999.25 175
jason: jason.
CANet98.27 5997.82 7099.63 1299.72 8399.10 1799.98 898.51 9797.00 2898.52 10399.71 8687.80 19299.95 6099.75 2299.38 11399.83 96
EI-MVSNet-Vis-set98.27 5998.11 5798.75 9299.83 6396.59 12699.40 19498.51 9795.29 7598.51 10499.76 7293.60 10299.71 12998.53 8599.52 10699.95 78
ZNCC-MVS98.31 5698.03 6099.17 5799.88 4997.59 8799.94 5698.44 10894.31 10898.50 10599.82 5393.06 11799.99 3698.30 9299.99 2099.93 81
LFMVS94.75 16893.56 18698.30 12499.03 11495.70 16298.74 26697.98 19287.81 27398.47 10699.39 11967.43 32899.53 14198.01 10395.20 19799.67 117
tpm295.47 15395.18 15296.35 19296.91 22691.70 25596.96 32197.93 19788.04 27098.44 10795.40 27893.32 10797.97 22694.00 18495.61 19099.38 161
alignmvs97.81 7897.33 8799.25 4998.77 13798.66 4699.99 498.44 10894.40 10498.41 10899.47 11193.65 10099.42 15198.57 8394.26 20499.67 117
UA-Net96.54 12495.96 13098.27 12598.23 15995.71 16198.00 30398.45 10793.72 13698.41 10899.27 12788.71 18799.66 13791.19 22497.69 14799.44 156
DP-MVS Recon98.41 4998.02 6199.56 2199.97 398.70 4399.92 6698.44 10892.06 19398.40 11099.84 4695.68 38100.00 198.19 9399.71 9399.97 63
CPTT-MVS97.64 8597.32 8898.58 10599.97 395.77 15799.96 2398.35 14689.90 24098.36 11199.79 6291.18 15399.99 3698.37 8999.99 2099.99 20
PAPM98.60 3398.42 3199.14 6396.05 24898.96 2099.90 7499.35 2396.68 3798.35 11299.66 9796.45 2598.51 18599.45 3799.89 7499.96 70
HY-MVS92.50 797.79 8097.17 9299.63 1298.98 11899.32 697.49 31099.52 1395.69 6698.32 11397.41 21193.32 10799.77 11598.08 10195.75 18899.81 98
EI-MVSNet-UG-set98.14 6597.99 6398.60 10299.80 6996.27 13699.36 20398.50 10195.21 7798.30 11499.75 7793.29 10999.73 12898.37 8999.30 11599.81 98
PVSNet_BlendedMVS96.05 13995.82 13796.72 17899.59 9096.99 11499.95 4199.10 2894.06 11998.27 11595.80 25989.00 18399.95 6099.12 4787.53 25093.24 313
PVSNet_Blended97.94 7197.64 7498.83 8899.59 9096.99 114100.00 199.10 2895.38 7298.27 11599.08 13989.00 18399.95 6099.12 4799.25 11699.57 137
MP-MVScopyleft98.23 6397.97 6499.03 7599.94 1497.17 11099.95 4198.39 13594.70 9098.26 11799.81 5791.84 144100.00 198.85 6699.97 4499.93 81
Rongxuan Tan, Qing Wang, et al.: MP-MVS: Multi-Scale Windows PatchMatch and Planar Prior Multi-View Stereo.
WTY-MVS98.10 6797.60 7699.60 1798.92 12599.28 1299.89 8299.52 1395.58 6998.24 11899.39 11993.33 10699.74 12597.98 10795.58 19199.78 103
DELS-MVS98.54 3998.22 4899.50 2999.15 11198.65 48100.00 198.58 7397.70 998.21 11999.24 13292.58 12899.94 6898.63 8299.94 5799.92 87
Christian Sormann, Emanuele Santellani, Mattia Rossi, Andreas Kuhn, Friedrich Fraundorfer: DELS-MVS: Deep Epipolar Line Search for Multi-View Stereo. Winter Conference on Applications of Computer Vision (WACV), 2023
DWT-MVSNet_test97.31 9597.19 9097.66 14898.24 15894.67 18998.86 25898.20 17293.60 13998.09 12098.89 15997.51 798.78 16894.04 18397.28 15799.55 139
MDTV_nov1_ep13_2view96.26 13796.11 33091.89 19698.06 12194.40 7194.30 17999.67 117
PAPR98.52 4198.16 5399.58 2099.97 398.77 3699.95 4198.43 11695.35 7398.03 12299.75 7794.03 9099.98 4298.11 9899.83 8199.99 20
MDTV_nov1_ep1395.69 13997.90 17594.15 19695.98 33298.44 10893.12 15197.98 12395.74 26195.10 4998.58 18190.02 24796.92 166
GG-mvs-BLEND98.54 10998.21 16098.01 7393.87 34198.52 9097.92 12497.92 20399.02 297.94 23198.17 9499.58 10399.67 117
EIA-MVS97.53 8797.46 8097.76 14598.04 16994.84 18499.98 897.61 22294.41 10397.90 12599.59 10292.40 13298.87 16398.04 10299.13 12099.59 130
test_yl97.83 7697.37 8399.21 5199.18 10897.98 7599.64 16199.27 2591.43 21297.88 12698.99 14795.84 3599.84 10398.82 6795.32 19599.79 100
DCV-MVSNet97.83 7697.37 8399.21 5199.18 10897.98 7599.64 16199.27 2591.43 21297.88 12698.99 14795.84 3599.84 10398.82 6795.32 19599.79 100
canonicalmvs97.09 10496.32 11699.39 4398.93 12398.95 2199.72 14697.35 25294.45 9897.88 12699.42 11586.71 20399.52 14298.48 8693.97 20899.72 110
VDDNet93.12 20691.91 22196.76 17696.67 24192.65 23198.69 27198.21 16882.81 32497.75 12999.28 12461.57 34499.48 14998.09 10094.09 20698.15 206
EPMVS96.53 12596.01 12298.09 13298.43 14896.12 14796.36 32699.43 1993.53 14097.64 13095.04 29494.41 7098.38 20191.13 22598.11 13999.75 106
JIA-IIPM91.76 24090.70 24094.94 22496.11 24687.51 31193.16 34498.13 18275.79 34497.58 13177.68 35592.84 12197.97 22688.47 26196.54 17099.33 168
EPNet_dtu95.71 14895.39 14596.66 18098.92 12593.41 21499.57 17098.90 4196.19 5197.52 13298.56 18292.65 12697.36 24877.89 32898.33 13499.20 178
Wanjuan Su, Wenbing Tao: Efficient Edge-Preserving Multi-View Stereo Network for Depth Estimation. AAAI 2023
PAPM_NR98.12 6697.93 6898.70 9499.94 1496.13 14599.82 11398.43 11694.56 9597.52 13299.70 8894.40 7199.98 4297.00 13399.98 3399.99 20
thisisatest051597.41 9397.02 9898.59 10497.71 19497.52 9199.97 1698.54 8791.83 19897.45 13499.04 14197.50 899.10 15794.75 16696.37 17599.16 180
OMC-MVS97.28 9697.23 8997.41 15799.76 7493.36 21699.65 15797.95 19596.03 5597.41 13599.70 8889.61 17399.51 14396.73 14098.25 13899.38 161
gg-mvs-nofinetune93.51 19991.86 22398.47 11497.72 19297.96 7792.62 34598.51 9774.70 34797.33 13669.59 35898.91 397.79 23497.77 11699.56 10499.67 117
PatchT90.38 26488.75 27895.25 21695.99 25090.16 28191.22 35297.54 23076.80 34097.26 13786.01 35091.88 14296.07 31466.16 35195.91 18399.51 147
PLCcopyleft95.54 397.93 7297.89 6998.05 13499.82 6594.77 18899.92 6698.46 10593.93 12697.20 13899.27 12795.44 4499.97 5197.41 12399.51 10899.41 159
Jie Liao, Yanping Fu, Qingan Yan, Chunxia xiao: Pyramid Multi-View Stereo with Local Consistency. Pacific Graphics 2019
zzz-MVS98.33 5598.00 6299.30 4799.85 5597.93 7899.80 12098.28 15895.76 6297.18 13999.88 2292.74 124100.00 198.67 7799.88 7699.99 20
MTAPA98.29 5897.96 6799.30 4799.85 5597.93 7899.39 19898.28 15895.76 6297.18 13999.88 2292.74 124100.00 198.67 7799.88 7699.99 20
PatchmatchNetpermissive95.94 14295.45 14397.39 15997.83 18194.41 19396.05 33198.40 13292.86 15597.09 14195.28 28994.21 8698.07 22289.26 25398.11 13999.70 111
Fangjinhua Wang, Silvano Galliani, Christoph Vogel, Pablo Speciale, Marc Pollefeys: PatchmatchNet: Learned Multi-View Patchmatch Stereo.
thisisatest053097.10 10296.72 10598.22 12797.60 19796.70 12199.92 6698.54 8791.11 21997.07 14298.97 15197.47 999.03 15893.73 19496.09 17898.92 190
CR-MVSNet93.45 20292.62 20495.94 20096.29 24392.66 22992.01 34896.23 32092.62 17096.94 14393.31 32591.04 15496.03 31579.23 32195.96 18199.13 184
RPMNet89.76 27887.28 29397.19 16596.29 24392.66 22992.01 34898.31 15370.19 35296.94 14385.87 35187.25 19899.78 11162.69 35495.96 18199.13 184
baseline96.43 12895.98 12597.76 14597.34 20895.17 17799.51 18097.17 26793.92 12796.90 14599.28 12485.37 21698.64 17997.50 12196.86 16899.46 152
Vis-MVSNetpermissive95.72 14695.15 15397.45 15597.62 19694.28 19599.28 21498.24 16494.27 11196.84 14698.94 15679.39 26598.76 17193.25 20098.49 13099.30 171
Jingyang Zhang, Yao Yao, Shiwei Li, Zixin Luo, Tian Fang: Visibility-aware Multiview Stereo Network. BMVC 2020
VDD-MVS93.77 19392.94 19996.27 19398.55 14290.22 28098.77 26597.79 21090.85 22596.82 14799.42 11561.18 34699.77 11598.95 5794.13 20598.82 196
UGNet95.33 15594.57 16397.62 15198.55 14294.85 18398.67 27399.32 2495.75 6596.80 14896.27 25072.18 30999.96 5394.58 17299.05 12198.04 208
Wanjuan Su, Qingshan Xu, Wenbing Tao: Uncertainty-guided Multi-view Stereo Network for Depth Estimation. IEEE Transactions on Circuits and Systems for Video Technology, 2022
AdaColmapbinary97.23 9996.80 10398.51 11299.99 195.60 16499.09 22698.84 4793.32 14596.74 14999.72 8486.04 209100.00 198.01 10399.43 11299.94 80
tpm93.70 19793.41 19294.58 23795.36 27187.41 31297.01 31996.90 29690.85 22596.72 15094.14 31790.40 16496.84 28390.75 23788.54 23999.51 147
tttt051796.85 11096.49 11297.92 13997.48 20395.89 15499.85 10298.54 8790.72 22896.63 15198.93 15897.47 999.02 15993.03 20795.76 18798.85 194
mvs-test195.53 15195.97 12894.20 25397.77 18585.44 32299.95 4197.06 27994.92 8196.58 15298.72 17185.81 21098.98 16094.80 16398.11 13998.18 205
casdiffmvs96.42 12995.97 12897.77 14497.30 21294.98 18099.84 10697.09 27593.75 13596.58 15299.26 13085.07 21998.78 16897.77 11697.04 16399.54 143
CNLPA97.76 8197.38 8298.92 8599.53 9596.84 11899.87 8898.14 18093.78 13396.55 15499.69 9192.28 13599.98 4297.13 12999.44 11199.93 81
PatchMatch-RL96.04 14095.40 14497.95 13799.59 9095.22 17699.52 17899.07 3193.96 12496.49 15598.35 19182.28 23699.82 10590.15 24699.22 11898.81 197
MP-MVS-pluss98.07 6897.64 7499.38 4499.74 7798.41 6099.74 13898.18 17393.35 14496.45 15699.85 3392.64 12799.97 5198.91 6299.89 7499.77 104
MP-MVS-pluss: MP-MVS-pluss. MP-MVS-pluss
ADS-MVSNet293.80 19293.88 17893.55 27797.87 17885.94 31894.24 33796.84 30090.07 23796.43 15794.48 31290.29 16695.37 32387.44 27197.23 15899.36 164
ADS-MVSNet94.79 16594.02 17497.11 16897.87 17893.79 20494.24 33798.16 17790.07 23796.43 15794.48 31290.29 16698.19 21787.44 27197.23 15899.36 164
ACMMPcopyleft97.74 8297.44 8198.66 9799.92 3596.13 14599.18 22199.45 1794.84 8596.41 15999.71 8691.40 14799.99 3697.99 10598.03 14499.87 93
Qingshan Xu, Weihang Kong, Wenbing Tao, Marc Pollefeys: Multi-Scale Geometric Consistency Guided and Planar Prior Assisted Multi-View Stereo. IEEE Transactions on Pattern Analysis and Machine Intelligence
PVSNet_Blended_VisFu97.27 9796.81 10298.66 9798.81 13496.67 12299.92 6698.64 6394.51 9796.38 16098.49 18489.05 18299.88 8597.10 13198.34 13399.43 157
AUN-MVS93.28 20392.60 20595.34 21198.29 15290.09 28399.31 20898.56 7791.80 20196.35 16198.00 19989.38 17698.28 20992.46 21069.22 34297.64 215
thres20096.96 10696.21 11899.22 5098.97 11998.84 3099.85 10299.71 593.17 15096.26 16298.88 16189.87 17199.51 14394.26 18094.91 19899.31 170
HyFIR lowres test96.66 12296.43 11497.36 16199.05 11393.91 20399.70 14899.80 390.54 22996.26 16298.08 19692.15 13898.23 21496.84 13995.46 19299.93 81
SCA94.69 16993.81 18097.33 16397.10 21794.44 19198.86 25898.32 15193.30 14696.17 16495.59 26876.48 28597.95 22991.06 22797.43 15299.59 130
tfpn200view996.79 11395.99 12399.19 5398.94 12198.82 3199.78 12499.71 592.86 15596.02 16598.87 16389.33 17799.50 14593.84 18694.57 19999.27 173
thres40096.78 11495.99 12399.16 5998.94 12198.82 3199.78 12499.71 592.86 15596.02 16598.87 16389.33 17799.50 14593.84 18694.57 19999.16 180
dp95.05 16094.43 16596.91 17197.99 17192.73 22796.29 32897.98 19289.70 24395.93 16794.67 30793.83 9798.45 19086.91 28396.53 17199.54 143
thres100view90096.74 11795.92 13399.18 5498.90 12898.77 3699.74 13899.71 592.59 17395.84 16898.86 16589.25 17999.50 14593.84 18694.57 19999.27 173
thres600view796.69 12095.87 13699.14 6398.90 12898.78 3599.74 13899.71 592.59 17395.84 16898.86 16589.25 17999.50 14593.44 19994.50 20299.16 180
EPP-MVSNet96.69 12096.60 10896.96 17097.74 18893.05 22099.37 20198.56 7788.75 25895.83 17099.01 14496.01 2898.56 18296.92 13797.20 16099.25 175
TESTMET0.1,196.74 11796.26 11798.16 12897.36 20796.48 12899.96 2398.29 15791.93 19595.77 17198.07 19795.54 4098.29 20790.55 23898.89 12299.70 111
F-COLMAP96.93 10896.95 9996.87 17399.71 8491.74 25199.85 10297.95 19593.11 15295.72 17299.16 13692.35 13399.94 6895.32 15399.35 11498.92 190
test-LLR96.47 12696.04 12197.78 14297.02 22295.44 16699.96 2398.21 16894.07 11795.55 17396.38 24593.90 9498.27 21190.42 24198.83 12499.64 123
test-mter96.39 13095.93 13297.78 14297.02 22295.44 16699.96 2398.21 16891.81 20095.55 17396.38 24595.17 4798.27 21190.42 24198.83 12499.64 123
IS-MVSNet96.29 13595.90 13497.45 15598.13 16694.80 18699.08 22897.61 22292.02 19495.54 17598.96 15390.64 16298.08 22093.73 19497.41 15599.47 151
CHOSEN 1792x268896.81 11296.53 11197.64 14998.91 12793.07 21899.65 15799.80 395.64 6795.39 17698.86 16584.35 22599.90 7596.98 13499.16 11999.95 78
CDS-MVSNet96.34 13196.07 12097.13 16697.37 20694.96 18199.53 17797.91 20091.55 20795.37 17798.32 19295.05 5397.13 26493.80 19095.75 18899.30 171
Khang Truong Giang, Soohwan Song, Sungho Jo: Curvature-guided dynamic scale networks for Multi-view Stereo. ICLR 2022
Effi-MVS+-dtu94.53 17795.30 14892.22 29597.77 18582.54 33399.59 16797.06 27994.92 8195.29 17895.37 28285.81 21097.89 23294.80 16397.07 16296.23 225
CSCG97.10 10297.04 9697.27 16499.89 4591.92 24699.90 7499.07 3188.67 26095.26 17999.82 5393.17 11599.98 4298.15 9699.47 10999.90 89
Vis-MVSNet (Re-imp)96.32 13295.98 12597.35 16297.93 17494.82 18599.47 18798.15 17991.83 19895.09 18099.11 13791.37 14897.47 24593.47 19897.43 15299.74 107
TAMVS95.85 14395.58 14196.65 18197.07 21893.50 21199.17 22297.82 20991.39 21595.02 18198.01 19892.20 13697.30 25393.75 19395.83 18599.14 183
XVG-OURS-SEG-HR94.79 16594.70 16295.08 21998.05 16889.19 29399.08 22897.54 23093.66 13794.87 18299.58 10378.78 27099.79 10997.31 12593.40 21296.25 223
XVG-OURS94.82 16494.74 16195.06 22098.00 17089.19 29399.08 22897.55 22894.10 11594.71 18399.62 10080.51 25799.74 12596.04 14693.06 21696.25 223
ab-mvs94.69 16993.42 19098.51 11298.07 16796.26 13796.49 32598.68 5690.31 23494.54 18497.00 22676.30 28799.71 12995.98 14793.38 21399.56 138
TAPA-MVS92.12 894.42 17993.60 18396.90 17299.33 10691.78 25099.78 12498.00 18989.89 24194.52 18599.47 11191.97 14199.18 15569.90 34499.52 10699.73 108
Andrea Romanoni, Matteo Matteucci: TAPA-MVS: Textureless-Aware PAtchMatch Multi-View Stereo. ICCV 2019
TR-MVS94.54 17593.56 18697.49 15497.96 17294.34 19498.71 26997.51 23690.30 23594.51 18698.69 17275.56 29298.77 17092.82 20895.99 18099.35 166
Fast-Effi-MVS+95.02 16194.19 16997.52 15397.88 17694.55 19099.97 1697.08 27688.85 25794.47 18797.96 20284.59 22298.41 19389.84 24997.10 16199.59 130
DeepC-MVS94.51 496.92 10996.40 11598.45 11699.16 11095.90 15399.66 15498.06 18696.37 4794.37 18899.49 11083.29 23299.90 7597.63 11999.61 10199.55 139
Andreas Kuhn, Christian Sormann, Mattia Rossi, Oliver Erdler, Friedrich Fraundorfer: DeepC-MVS: Deep Confidence Prediction for Multi-View Stereo Reconstruction. 3DV 2020
RPSCF91.80 23792.79 20288.83 32298.15 16469.87 35398.11 29996.60 31383.93 31794.33 18999.27 12779.60 26499.46 15091.99 21493.16 21597.18 219
BH-RMVSNet95.18 15794.31 16897.80 14198.17 16395.23 17599.76 13297.53 23292.52 17894.27 19099.25 13176.84 28198.80 16690.89 23499.54 10599.35 166
CVMVSNet94.68 17194.94 15693.89 26796.80 23486.92 31499.06 23398.98 3494.45 9894.23 19199.02 14285.60 21295.31 32590.91 23395.39 19499.43 157
baseline195.78 14594.86 15798.54 10998.47 14798.07 7099.06 23397.99 19092.68 16794.13 19298.62 17793.28 11098.69 17793.79 19185.76 25998.84 195
Anonymous20240521193.10 20791.99 21996.40 18999.10 11289.65 29098.88 25497.93 19783.71 31994.00 19398.75 17068.79 32099.88 8595.08 15691.71 21899.68 114
cascas94.64 17293.61 18197.74 14797.82 18296.26 13799.96 2397.78 21185.76 29994.00 19397.54 20876.95 28099.21 15497.23 12795.43 19397.76 214
Anonymous2024052992.10 23090.65 24196.47 18498.82 13390.61 27298.72 26898.67 5975.54 34593.90 19598.58 18066.23 33199.90 7594.70 16990.67 21998.90 193
MVS_030489.28 28588.31 28492.21 29697.05 22086.53 31597.76 30899.57 1285.58 30493.86 19692.71 32951.04 35696.30 30584.49 29692.72 21793.79 296
LS3D95.84 14495.11 15498.02 13599.85 5595.10 17898.74 26698.50 10187.22 28093.66 19799.86 2987.45 19699.95 6090.94 23299.81 8799.02 188
GeoE94.36 18393.48 18896.99 16997.29 21393.54 21099.96 2396.72 30988.35 26793.43 19898.94 15682.05 23798.05 22388.12 26696.48 17399.37 163
HQP-NCC95.78 25499.87 8896.82 3093.37 199
ACMP_Plane95.78 25499.87 8896.82 3093.37 199
HQP4-MVS93.37 19998.39 19794.53 229
HQP-MVS94.61 17394.50 16494.92 22595.78 25491.85 24799.87 8897.89 20196.82 3093.37 19998.65 17480.65 25598.39 19797.92 10989.60 22094.53 229
HQP_MVS94.49 17894.36 16694.87 22695.71 26391.74 25199.84 10697.87 20396.38 4493.01 20398.59 17880.47 25998.37 20297.79 11489.55 22394.52 231
plane_prior391.64 25796.63 3893.01 203
GA-MVS93.83 18992.84 20096.80 17495.73 26093.57 20899.88 8597.24 26292.57 17692.92 20596.66 23878.73 27197.67 23887.75 26994.06 20799.17 179
tpm cat193.51 19992.52 21096.47 18497.77 18591.47 26196.13 32998.06 18680.98 33192.91 20693.78 32089.66 17298.87 16387.03 27996.39 17499.09 186
1112_ss96.01 14195.20 15198.42 11997.80 18396.41 13199.65 15796.66 31192.71 16492.88 20799.40 11792.16 13799.30 15291.92 21693.66 20999.55 139
Test_1112_low_res95.72 14694.83 15898.42 11997.79 18496.41 13199.65 15796.65 31292.70 16592.86 20896.13 25492.15 13899.30 15291.88 21793.64 21099.55 139
IB-MVS92.85 694.99 16293.94 17698.16 12897.72 19295.69 16399.99 498.81 4894.28 11092.70 20996.90 22895.08 5099.17 15696.07 14573.88 33599.60 129
Christian Sormann, Mattia Rossi, Andreas Kuhn and Friedrich Fraundorfer: IB-MVS: An Iterative Algorithm for Deep Multi-View Stereo based on Binary Decisions. BMVC 2021
Fast-Effi-MVS+-dtu93.72 19693.86 17993.29 28097.06 21986.16 31699.80 12096.83 30192.66 16892.58 21097.83 20481.39 24597.67 23889.75 25096.87 16796.05 227
tpmvs94.28 18593.57 18596.40 18998.55 14291.50 26095.70 33698.55 8387.47 27592.15 21194.26 31691.42 14698.95 16288.15 26495.85 18498.76 199
BH-w/o95.71 14895.38 14696.68 17998.49 14692.28 23799.84 10697.50 23792.12 19092.06 21298.79 16984.69 22198.67 17895.29 15499.66 9699.09 186
VPA-MVSNet92.70 21691.55 22896.16 19595.09 27396.20 14298.88 25499.00 3391.02 22291.82 21395.29 28876.05 29197.96 22895.62 15281.19 29294.30 249
baseline296.71 11996.49 11297.37 16095.63 26795.96 15299.74 13898.88 4392.94 15491.61 21498.97 15197.72 598.62 18094.83 16298.08 14397.53 218
OPM-MVS93.21 20492.80 20194.44 24693.12 30690.85 26899.77 12797.61 22296.19 5191.56 21598.65 17475.16 29798.47 18693.78 19289.39 22693.99 281
EI-MVSNet93.73 19593.40 19394.74 23096.80 23492.69 22899.06 23397.67 21588.96 25391.39 21699.02 14288.75 18697.30 25391.07 22687.85 24594.22 255
MVSTER95.53 15195.22 15096.45 18698.56 14197.72 8299.91 7097.67 21592.38 18391.39 21697.14 21897.24 1497.30 25394.80 16387.85 24594.34 248
RRT_MVS95.23 15694.77 16096.61 18298.28 15498.32 6399.81 11597.41 24792.59 17391.28 21897.76 20595.02 5497.23 25993.65 19687.14 25294.28 251
BH-untuned95.18 15794.83 15896.22 19498.36 15091.22 26399.80 12097.32 25690.91 22391.08 21998.67 17383.51 22998.54 18494.23 18199.61 10198.92 190
CLD-MVS94.06 18793.90 17794.55 23996.02 24990.69 26999.98 897.72 21296.62 3991.05 22098.85 16877.21 27798.47 18698.11 9889.51 22594.48 233
Zhaoxin Li, Wangmeng Zuo, Zhaoqi Wang, Lei Zhang: Confidence-based Large-scale Dense Multi-view Stereo. IEEE Transaction on Image Processing, 2020
MVS96.60 12395.56 14299.72 996.85 23199.22 1598.31 28998.94 3691.57 20690.90 22199.61 10186.66 20499.96 5397.36 12499.88 7699.99 20
MSDG94.37 18193.36 19497.40 15898.88 13093.95 20299.37 20197.38 25085.75 30190.80 22299.17 13584.11 22799.88 8586.35 28498.43 13298.36 203
VPNet91.81 23490.46 24395.85 20394.74 27995.54 16598.98 24398.59 7292.14 18990.77 22397.44 21068.73 32297.54 24294.89 16177.89 31894.46 234
bset_n11_16_dypcd93.05 20992.30 21395.31 21390.23 33995.05 17999.44 19297.28 25992.51 17990.65 22496.68 23785.30 21796.71 29094.49 17484.14 27394.16 264
MIMVSNet90.30 26788.67 27995.17 21896.45 24291.64 25792.39 34697.15 27085.99 29590.50 22593.19 32766.95 32994.86 33182.01 31193.43 21199.01 189
mvs_anonymous95.65 15095.03 15597.53 15298.19 16195.74 15999.33 20597.49 23890.87 22490.47 22697.10 22088.23 19097.16 26195.92 14897.66 14999.68 114
Patchmatch-test92.65 21991.50 22996.10 19796.85 23190.49 27591.50 35097.19 26482.76 32590.23 22795.59 26895.02 5498.00 22577.41 33096.98 16599.82 97
LPG-MVS_test92.96 21092.71 20393.71 27195.43 26988.67 29999.75 13597.62 21992.81 15890.05 22898.49 18475.24 29598.40 19595.84 15089.12 22794.07 273
LGP-MVS_train93.71 27195.43 26988.67 29997.62 21992.81 15890.05 22898.49 18475.24 29598.40 19595.84 15089.12 22794.07 273
DP-MVS94.54 17593.42 19097.91 14099.46 10294.04 19898.93 24997.48 23981.15 33090.04 23099.55 10587.02 20199.95 6088.97 25598.11 13999.73 108
test_djsdf92.83 21392.29 21494.47 24491.90 32492.46 23499.55 17497.27 26091.17 21689.96 23196.07 25681.10 24896.89 28094.67 17088.91 22994.05 275
ACMM91.95 1092.88 21292.52 21093.98 26495.75 25989.08 29699.77 12797.52 23493.00 15389.95 23297.99 20176.17 28998.46 18993.63 19788.87 23194.39 242
Qingshan Xu and Wenbing Tao: Multi-Scale Geometric Consistency Guided Multi-View Stereo. CVPR 2019
131496.84 11195.96 13099.48 3396.74 23898.52 5598.31 28998.86 4595.82 5889.91 23398.98 14987.49 19599.96 5397.80 11199.73 9199.96 70
XVG-ACMP-BASELINE91.22 24790.75 23892.63 29293.73 29585.61 31998.52 28197.44 24292.77 16289.90 23496.85 23266.64 33098.39 19792.29 21288.61 23693.89 289
miper_enhance_ethall94.36 18393.98 17595.49 20698.68 14095.24 17499.73 14397.29 25893.28 14789.86 23595.97 25794.37 7597.05 27092.20 21384.45 27094.19 258
nrg03093.51 19992.53 20996.45 18694.36 28497.20 10699.81 11597.16 26991.60 20589.86 23597.46 20986.37 20797.68 23795.88 14980.31 30494.46 234
V4291.28 24590.12 25494.74 23093.42 30193.46 21299.68 15197.02 28287.36 27789.85 23795.05 29381.31 24797.34 25087.34 27480.07 30693.40 308
v14419290.79 25589.52 26394.59 23693.11 30792.77 22399.56 17296.99 28586.38 29189.82 23894.95 30080.50 25897.10 26783.98 29980.41 30293.90 288
GBi-Net90.88 25289.82 25794.08 25797.53 19991.97 24298.43 28496.95 29087.05 28189.68 23994.72 30371.34 31296.11 31087.01 28085.65 26094.17 259
test190.88 25289.82 25794.08 25797.53 19991.97 24298.43 28496.95 29087.05 28189.68 23994.72 30371.34 31296.11 31087.01 28085.65 26094.17 259
FMVSNet392.69 21791.58 22695.99 19898.29 15297.42 10199.26 21697.62 21989.80 24289.68 23995.32 28481.62 24496.27 30687.01 28085.65 26094.29 250
IterMVS-LS92.69 21792.11 21694.43 24896.80 23492.74 22599.45 19096.89 29788.98 25189.65 24295.38 28188.77 18596.34 30390.98 23182.04 28694.22 255
Fangjinhua Wang, Silvano Galliani, Christoph Vogel, Marc Pollefeys: IterMVS: Iterative Probability Estimation for Efficient Multi-View Stereo.
v114491.09 24889.83 25694.87 22693.25 30393.69 20799.62 16496.98 28786.83 28789.64 24394.99 29880.94 25097.05 27085.08 29381.16 29393.87 291
v192192090.46 26289.12 27094.50 24292.96 31192.46 23499.49 18496.98 28786.10 29489.61 24495.30 28578.55 27397.03 27482.17 31080.89 30094.01 278
v119290.62 26089.25 26894.72 23293.13 30493.07 21899.50 18297.02 28286.33 29289.56 24595.01 29579.22 26697.09 26982.34 30981.16 29394.01 278
PCF-MVS94.20 595.18 15794.10 17298.43 11898.55 14295.99 15197.91 30597.31 25790.35 23389.48 24699.22 13385.19 21899.89 7990.40 24398.47 13199.41 159
Andreas Kuhn, Shan Lin, Oliver Erdler: Plane Completion and Filtering for Multi-View Stereo Reconstruction. GCPR 2019
3Dnovator91.47 1296.28 13695.34 14799.08 7196.82 23397.47 9799.45 19098.81 4895.52 7089.39 24799.00 14681.97 23899.95 6097.27 12699.83 8199.84 95
v124090.20 27088.79 27794.44 24693.05 30992.27 23899.38 19996.92 29585.89 29689.36 24894.87 30277.89 27697.03 27480.66 31781.08 29694.01 278
FIs94.10 18693.43 18996.11 19694.70 28096.82 11999.58 16898.93 4092.54 17789.34 24997.31 21487.62 19497.10 26794.22 18286.58 25594.40 241
ITE_SJBPF92.38 29395.69 26585.14 32395.71 33092.81 15889.33 25098.11 19570.23 31798.42 19285.91 28888.16 24393.59 305
v2v48291.30 24390.07 25595.01 22193.13 30493.79 20499.77 12797.02 28288.05 26989.25 25195.37 28280.73 25397.15 26287.28 27580.04 30794.09 272
UniMVSNet (Re)93.07 20892.13 21595.88 20194.84 27796.24 14199.88 8598.98 3492.49 18189.25 25195.40 27887.09 20097.14 26393.13 20578.16 31694.26 252
UniMVSNet_NR-MVSNet92.95 21192.11 21695.49 20694.61 28295.28 17299.83 11299.08 3091.49 20889.21 25396.86 23187.14 19996.73 28893.20 20177.52 32194.46 234
DU-MVS92.46 22291.45 23195.49 20694.05 28995.28 17299.81 11598.74 5292.25 18789.21 25396.64 24081.66 24296.73 28893.20 20177.52 32194.46 234
eth_miper_zixun_eth92.41 22391.93 22093.84 26897.28 21490.68 27098.83 26096.97 28988.57 26389.19 25595.73 26389.24 18196.69 29189.97 24881.55 28994.15 266
cl-mvsnet293.77 19393.25 19795.33 21299.49 9994.43 19299.61 16598.09 18390.38 23189.16 25695.61 26690.56 16397.34 25091.93 21584.45 27094.21 257
Baseline_NR-MVSNet90.33 26689.51 26492.81 29092.84 31289.95 28699.77 12793.94 35284.69 31489.04 25795.66 26581.66 24296.52 29690.99 23076.98 32791.97 331
FC-MVSNet-test93.81 19193.15 19895.80 20494.30 28696.20 14299.42 19398.89 4292.33 18589.03 25897.27 21687.39 19796.83 28493.20 20186.48 25694.36 244
QAPM95.40 15494.17 17099.10 6996.92 22597.71 8399.40 19498.68 5689.31 24588.94 25998.89 15982.48 23599.96 5393.12 20699.83 8199.62 125
miper_ehance_all_eth93.16 20592.60 20594.82 22997.57 19893.56 20999.50 18297.07 27888.75 25888.85 26095.52 27290.97 15696.74 28790.77 23684.45 27094.17 259
AllTest92.48 22191.64 22495.00 22299.01 11588.43 30398.94 24896.82 30386.50 28988.71 26198.47 18874.73 29999.88 8585.39 29096.18 17696.71 221
TestCases95.00 22299.01 11588.43 30396.82 30386.50 28988.71 26198.47 18874.73 29999.88 8585.39 29096.18 17696.71 221
cl_fuxian92.53 22091.87 22294.52 24097.40 20592.99 22199.40 19496.93 29487.86 27188.69 26395.44 27689.95 16996.44 29990.45 24080.69 30194.14 269
pmmvs492.10 23091.07 23695.18 21792.82 31494.96 18199.48 18696.83 30187.45 27688.66 26496.56 24383.78 22896.83 28489.29 25284.77 26893.75 298
PS-MVSNAJss93.64 19893.31 19594.61 23592.11 32192.19 23999.12 22497.38 25092.51 17988.45 26596.99 22791.20 15097.29 25694.36 17687.71 24794.36 244
UniMVSNet_ETH3D90.06 27488.58 28094.49 24394.67 28188.09 30897.81 30797.57 22783.91 31888.44 26697.41 21157.44 35097.62 24091.41 22188.59 23897.77 213
TranMVSNet+NR-MVSNet91.68 24190.61 24294.87 22693.69 29693.98 20199.69 14998.65 6091.03 22188.44 26696.83 23580.05 26296.18 30990.26 24576.89 32994.45 239
FMVSNet291.02 24989.56 26195.41 21097.53 19995.74 15998.98 24397.41 24787.05 28188.43 26895.00 29771.34 31296.24 30885.12 29285.21 26594.25 254
COLMAP_ROBcopyleft90.47 1492.18 22891.49 23094.25 25299.00 11788.04 30998.42 28796.70 31082.30 32788.43 26899.01 14476.97 27999.85 9486.11 28796.50 17294.86 228
Johannes L. Schönberger, Enliang Zheng, Marc Pollefeys, Jan-Michael Frahm: Pixelwise View Selection for Unstructured Multi-View Stereo. ECCV 2016
3Dnovator+91.53 1196.31 13395.24 14999.52 2696.88 23098.64 4999.72 14698.24 16495.27 7688.42 27098.98 14982.76 23499.94 6897.10 13199.83 8199.96 70
RRT_test8_iter0594.58 17494.11 17195.98 19997.88 17696.11 14899.89 8297.45 24091.66 20488.28 27196.71 23696.53 2497.40 24694.73 16883.85 27894.45 239
v14890.70 25689.63 25993.92 26592.97 31090.97 26599.75 13596.89 29787.51 27488.27 27295.01 29581.67 24197.04 27287.40 27377.17 32693.75 298
DSMNet-mixed88.28 29188.24 28688.42 32689.64 34275.38 35198.06 30189.86 35985.59 30388.20 27392.14 33576.15 29091.95 34878.46 32696.05 17997.92 209
WR-MVS92.31 22591.25 23395.48 20994.45 28395.29 17199.60 16698.68 5690.10 23688.07 27496.89 22980.68 25496.80 28693.14 20479.67 30894.36 244
test0.0.03 193.86 18893.61 18194.64 23495.02 27692.18 24099.93 6298.58 7394.07 11787.96 27598.50 18393.90 9494.96 32981.33 31493.17 21496.78 220
XXY-MVS91.82 23390.46 24395.88 20193.91 29295.40 16998.87 25797.69 21488.63 26287.87 27697.08 22174.38 30297.89 23291.66 21984.07 27594.35 247
Patchmtry89.70 27988.49 28193.33 27996.24 24589.94 28891.37 35196.23 32078.22 33887.69 27793.31 32591.04 15496.03 31580.18 32082.10 28594.02 276
cl-mvsnet192.32 22491.60 22594.47 24497.31 21192.74 22599.58 16896.75 30786.99 28487.64 27895.54 27089.55 17496.50 29788.58 25882.44 28394.17 259
D2MVS92.76 21492.59 20893.27 28195.13 27289.54 29299.69 14999.38 2192.26 18687.59 27994.61 30985.05 22097.79 23491.59 22088.01 24492.47 325
cl-mvsnet____92.31 22591.58 22694.52 24097.33 21092.77 22399.57 17096.78 30686.97 28587.56 28095.51 27389.43 17596.62 29388.60 25782.44 28394.16 264
v890.54 26189.17 26994.66 23393.43 30093.40 21599.20 21996.94 29385.76 29987.56 28094.51 31081.96 23997.19 26084.94 29478.25 31593.38 310
miper_lstm_enhance91.81 23491.39 23293.06 28797.34 20889.18 29599.38 19996.79 30586.70 28887.47 28295.22 29090.00 16895.86 31988.26 26281.37 29194.15 266
anonymousdsp91.79 23990.92 23794.41 24990.76 33592.93 22298.93 24997.17 26789.08 24787.46 28395.30 28578.43 27596.92 27992.38 21188.73 23493.39 309
jajsoiax91.92 23291.18 23494.15 25491.35 33090.95 26699.00 24197.42 24592.61 17187.38 28497.08 22172.46 30897.36 24894.53 17388.77 23394.13 270
mvs_tets91.81 23491.08 23594.00 26291.63 32890.58 27398.67 27397.43 24392.43 18287.37 28597.05 22471.76 31097.32 25294.75 16688.68 23594.11 271
v1090.25 26988.82 27694.57 23893.53 29893.43 21399.08 22896.87 29985.00 30987.34 28694.51 31080.93 25197.02 27682.85 30679.23 30993.26 312
pmmvs590.17 27289.09 27193.40 27892.10 32289.77 28999.74 13895.58 33485.88 29887.24 28795.74 26173.41 30696.48 29888.54 25983.56 27993.95 284
ACMP92.05 992.74 21592.42 21293.73 26995.91 25388.72 29899.81 11597.53 23294.13 11387.00 28898.23 19374.07 30398.47 18696.22 14488.86 23293.99 281
Qingshan Xu and Wenbing Tao: Planar Prior Assisted PatchMatch Multi-View Stereo. AAAI 2020
MVS-HIRNet86.22 29983.19 31195.31 21396.71 24090.29 27992.12 34797.33 25562.85 35386.82 28970.37 35769.37 31997.49 24375.12 33797.99 14598.15 206
Anonymous2023121189.86 27688.44 28294.13 25698.93 12390.68 27098.54 27998.26 16276.28 34186.73 29095.54 27070.60 31697.56 24190.82 23580.27 30594.15 266
v7n89.65 28088.29 28593.72 27092.22 32090.56 27499.07 23297.10 27485.42 30786.73 29094.72 30380.06 26197.13 26481.14 31578.12 31793.49 306
IterMVS-SCA-FT90.85 25490.16 25392.93 28896.72 23989.96 28598.89 25296.99 28588.95 25486.63 29295.67 26476.48 28595.00 32887.04 27884.04 27793.84 293
EU-MVSNet90.14 27390.34 24789.54 31892.55 31781.06 34398.69 27198.04 18891.41 21486.59 29396.84 23480.83 25293.31 34586.20 28581.91 28794.26 252
OpenMVScopyleft90.15 1594.77 16793.59 18498.33 12396.07 24797.48 9699.56 17298.57 7590.46 23086.51 29498.95 15578.57 27299.94 6893.86 18599.74 9097.57 217
IterMVS90.91 25190.17 25293.12 28496.78 23790.42 27898.89 25297.05 28189.03 24986.49 29595.42 27776.59 28495.02 32787.22 27684.09 27493.93 286
Fangjinhua Wang, Silvano Galliani, Christoph Vogel, Marc Pollefeys: IterMVS: Iterative Probability Estimation for Efficient Multi-View Stereo.
WR-MVS_H91.30 24390.35 24694.15 25494.17 28892.62 23299.17 22298.94 3688.87 25686.48 29694.46 31484.36 22496.61 29488.19 26378.51 31493.21 314
MS-PatchMatch90.65 25790.30 24891.71 30294.22 28785.50 32198.24 29397.70 21388.67 26086.42 29796.37 24767.82 32698.03 22483.62 30299.62 9891.60 333
CP-MVSNet91.23 24690.22 25094.26 25193.96 29192.39 23699.09 22698.57 7588.95 25486.42 29796.57 24279.19 26796.37 30190.29 24478.95 31194.02 276
test_part192.15 22990.72 23996.44 18898.87 13197.46 9898.99 24298.26 16285.89 29686.34 29996.34 24881.71 24097.48 24491.06 22778.99 31094.37 243
LF4IMVS89.25 28688.85 27590.45 31292.81 31581.19 34298.12 29894.79 34591.44 21186.29 30097.11 21965.30 33698.11 21988.53 26085.25 26492.07 328
PVSNet_088.03 1991.80 23790.27 24996.38 19198.27 15690.46 27699.94 5699.61 1193.99 12286.26 30197.39 21371.13 31599.89 7998.77 7367.05 34798.79 198
PS-CasMVS90.63 25989.51 26493.99 26393.83 29391.70 25598.98 24398.52 9088.48 26486.15 30296.53 24475.46 29396.31 30488.83 25678.86 31393.95 284
FMVSNet188.50 28986.64 29594.08 25795.62 26891.97 24298.43 28496.95 29083.00 32286.08 30394.72 30359.09 34896.11 31081.82 31384.07 27594.17 259
PEN-MVS90.19 27189.06 27293.57 27693.06 30890.90 26799.06 23398.47 10388.11 26885.91 30496.30 24976.67 28295.94 31887.07 27776.91 32893.89 289
ppachtmachnet_test89.58 28188.35 28393.25 28292.40 31890.44 27799.33 20596.73 30885.49 30585.90 30595.77 26081.09 24996.00 31776.00 33682.49 28293.30 311
OurMVSNet-221017-089.81 27789.48 26690.83 30891.64 32781.21 34198.17 29795.38 33891.48 20985.65 30697.31 21472.66 30797.29 25688.15 26484.83 26793.97 283
our_test_390.39 26389.48 26693.12 28492.40 31889.57 29199.33 20596.35 31987.84 27285.30 30794.99 29884.14 22696.09 31380.38 31884.56 26993.71 303
testgi89.01 28788.04 28891.90 30093.49 29984.89 32599.73 14395.66 33293.89 13085.14 30898.17 19459.68 34794.66 33377.73 32988.88 23096.16 226
DTE-MVSNet89.40 28288.24 28692.88 28992.66 31689.95 28699.10 22598.22 16787.29 27885.12 30996.22 25176.27 28895.30 32683.56 30375.74 33293.41 307
FMVSNet588.32 29087.47 29290.88 30696.90 22988.39 30597.28 31395.68 33182.60 32684.67 31092.40 33479.83 26391.16 35076.39 33581.51 29093.09 315
tfpnnormal89.29 28487.61 29194.34 25094.35 28594.13 19798.95 24798.94 3683.94 31684.47 31195.51 27374.84 29897.39 24777.05 33380.41 30291.48 335
MVP-Stereo90.93 25090.45 24592.37 29491.25 33288.76 29798.05 30296.17 32287.27 27984.04 31295.30 28578.46 27497.27 25883.78 30199.70 9491.09 336
Qingsong Yan: MVP-Stereo: A Parallel Multi-View Patchmatch Stereo Method with Dilation Matching for Photogrammetric Application.
LTVRE_ROB88.28 1890.29 26889.05 27394.02 26095.08 27490.15 28297.19 31597.43 24384.91 31283.99 31397.06 22374.00 30498.28 20984.08 29787.71 24793.62 304
Andreas Kuhn, Heiko Hirschmüller, Daniel Scharstein, Helmut Mayer: A TV Prior for High-Quality Scalable Multi-View Stereo Reconstruction. International Journal of Computer Vision 2016
pm-mvs189.36 28387.81 29094.01 26193.40 30291.93 24598.62 27696.48 31786.25 29383.86 31496.14 25373.68 30597.04 27286.16 28675.73 33393.04 317
USDC90.00 27588.96 27493.10 28694.81 27888.16 30798.71 26995.54 33593.66 13783.75 31597.20 21765.58 33398.31 20683.96 30087.49 25192.85 320
CL-MVSNet_2432*160084.50 31083.15 31288.53 32586.00 35081.79 33998.82 26197.35 25285.12 30883.62 31690.91 34076.66 28391.40 34969.53 34560.36 35292.40 326
ACMH+89.98 1690.35 26589.54 26292.78 29195.99 25086.12 31798.81 26297.18 26689.38 24483.14 31797.76 20568.42 32498.43 19189.11 25486.05 25893.78 297
Anonymous2023120686.32 29885.42 30089.02 32189.11 34480.53 34799.05 23795.28 33985.43 30682.82 31893.92 31874.40 30193.44 34466.99 34981.83 28893.08 316
DIV-MVS_2432*160083.59 31582.06 31588.20 32786.93 34880.70 34597.21 31496.38 31882.87 32382.49 31988.97 34367.63 32792.32 34673.75 33962.30 35191.58 334
SixPastTwentyTwo88.73 28888.01 28990.88 30691.85 32582.24 33598.22 29595.18 34388.97 25282.26 32096.89 22971.75 31196.67 29284.00 29882.98 28093.72 302
KD-MVS_2432*160088.00 29386.10 29793.70 27396.91 22694.04 19897.17 31697.12 27284.93 31081.96 32192.41 33292.48 13094.51 33479.23 32152.68 35592.56 322
miper_refine_blended88.00 29386.10 29793.70 27396.91 22694.04 19897.17 31697.12 27284.93 31081.96 32192.41 33292.48 13094.51 33479.23 32152.68 35592.56 322
TinyColmap87.87 29586.51 29691.94 29995.05 27585.57 32097.65 30994.08 35084.40 31581.82 32396.85 23262.14 34398.33 20480.25 31986.37 25791.91 332
ACMH89.72 1790.64 25889.63 25993.66 27595.64 26688.64 30198.55 27797.45 24089.03 24981.62 32497.61 20769.75 31898.41 19389.37 25187.62 24993.92 287
Qingshan Xu and Wenbing Tao: Multi-Scale Geometric Consistency Guided Multi-View Stereo. CVPR 2019
Anonymous2024052185.15 30683.81 30789.16 32088.32 34582.69 33198.80 26395.74 32979.72 33481.53 32590.99 33865.38 33594.16 33672.69 34081.11 29590.63 341
pmmvs685.69 30083.84 30691.26 30590.00 34184.41 32797.82 30696.15 32375.86 34381.29 32695.39 28061.21 34596.87 28283.52 30473.29 33692.50 324
TransMVSNet (Re)87.25 29685.28 30193.16 28393.56 29791.03 26498.54 27994.05 35183.69 32081.09 32796.16 25275.32 29496.40 30076.69 33468.41 34492.06 329
test_method80.79 31879.70 32184.08 33292.83 31367.06 35599.51 18095.42 33654.34 35581.07 32893.53 32244.48 35892.22 34778.90 32577.23 32592.94 318
NR-MVSNet91.56 24290.22 25095.60 20594.05 28995.76 15898.25 29298.70 5491.16 21880.78 32996.64 24083.23 23396.57 29591.41 22177.73 32094.46 234
LCM-MVSNet-Re92.31 22592.60 20591.43 30397.53 19979.27 34999.02 24091.83 35692.07 19180.31 33094.38 31583.50 23095.48 32197.22 12897.58 15099.54 143
TDRefinement84.76 30782.56 31491.38 30474.58 35884.80 32697.36 31294.56 34884.73 31380.21 33196.12 25563.56 34098.39 19787.92 26763.97 34890.95 339
N_pmnet80.06 32180.78 31977.89 33691.94 32345.28 36598.80 26356.82 36878.10 33980.08 33293.33 32377.03 27895.76 32068.14 34882.81 28192.64 321
test_040285.58 30183.94 30590.50 31093.81 29485.04 32498.55 27795.20 34276.01 34279.72 33395.13 29164.15 33996.26 30766.04 35286.88 25490.21 344
test20.0384.72 30983.99 30386.91 32988.19 34780.62 34698.88 25495.94 32688.36 26678.87 33494.62 30868.75 32189.11 35466.52 35075.82 33191.00 337
pmmvs380.27 32077.77 32487.76 32880.32 35682.43 33498.23 29491.97 35572.74 35078.75 33587.97 34557.30 35190.99 35170.31 34362.37 35089.87 345
MIMVSNet182.58 31680.51 32088.78 32386.68 34984.20 32896.65 32395.41 33778.75 33778.59 33692.44 33151.88 35489.76 35365.26 35378.95 31192.38 327
DeepMVS_CXcopyleft82.92 33595.98 25258.66 35996.01 32592.72 16378.34 33795.51 27358.29 34998.08 22082.57 30785.29 26392.03 330
Patchmatch-RL test86.90 29785.98 29989.67 31784.45 35275.59 35089.71 35392.43 35486.89 28677.83 33890.94 33994.22 8393.63 34287.75 26969.61 33999.79 100
lessismore_v090.53 30990.58 33680.90 34495.80 32877.01 33995.84 25866.15 33296.95 27783.03 30575.05 33493.74 301
K. test v388.05 29287.24 29490.47 31191.82 32682.23 33698.96 24697.42 24589.05 24876.93 34095.60 26768.49 32395.42 32285.87 28981.01 29893.75 298
ambc83.23 33477.17 35762.61 35687.38 35594.55 34976.72 34186.65 34930.16 36096.36 30284.85 29569.86 33890.73 340
PM-MVS80.47 31978.88 32385.26 33183.79 35472.22 35295.89 33491.08 35785.71 30276.56 34288.30 34436.64 35993.90 33982.39 30869.57 34089.66 347
OpenMVS_ROBcopyleft79.82 2083.77 31481.68 31790.03 31588.30 34682.82 33098.46 28295.22 34173.92 34976.00 34391.29 33755.00 35296.94 27868.40 34788.51 24090.34 342
UnsupCasMVSNet_eth85.52 30283.99 30390.10 31489.36 34383.51 32996.65 32397.99 19089.14 24675.89 34493.83 31963.25 34193.92 33881.92 31267.90 34692.88 319
new_pmnet84.49 31182.92 31389.21 31990.03 34082.60 33296.89 32295.62 33380.59 33275.77 34589.17 34265.04 33794.79 33272.12 34181.02 29790.23 343
EG-PatchMatch MVS85.35 30583.81 30789.99 31690.39 33781.89 33898.21 29696.09 32481.78 32974.73 34693.72 32151.56 35597.12 26679.16 32488.61 23690.96 338
pmmvs-eth3d84.03 31381.97 31690.20 31384.15 35387.09 31398.10 30094.73 34783.05 32174.10 34787.77 34665.56 33494.01 33781.08 31669.24 34189.49 348
new-patchmatchnet81.19 31779.34 32286.76 33082.86 35580.36 34897.92 30495.27 34082.09 32872.02 34886.87 34862.81 34290.74 35271.10 34263.08 34989.19 350
ET-MVSNet_ETH3D94.37 18193.28 19697.64 14998.30 15197.99 7499.99 497.61 22294.35 10571.57 34999.45 11496.23 2795.34 32496.91 13885.14 26699.59 130
UnsupCasMVSNet_bld79.97 32277.03 32588.78 32385.62 35181.98 33793.66 34297.35 25275.51 34670.79 35083.05 35248.70 35794.91 33078.31 32760.29 35389.46 349
CMPMVSbinary61.59 2184.75 30885.14 30283.57 33390.32 33862.54 35796.98 32097.59 22674.33 34869.95 35196.66 23864.17 33898.32 20587.88 26888.41 24189.84 346
M. Jancosek, T. Pajdla: Multi-View Reconstruction Preserving Weakly-Supported Surfaces. CVPR 2011
testmvs40.60 33344.45 33629.05 34819.49 37014.11 37199.68 15118.47 36920.74 36464.59 35298.48 18710.95 36917.09 36756.66 35711.01 36355.94 360
LCM-MVSNet67.77 32464.73 32876.87 33762.95 36456.25 36189.37 35493.74 35344.53 35861.99 35380.74 35320.42 36686.53 35669.37 34659.50 35487.84 351
PMMVS267.15 32564.15 32976.14 33870.56 36162.07 35893.89 34087.52 36358.09 35460.02 35478.32 35422.38 36584.54 35759.56 35647.03 35781.80 353
Gipumacopyleft66.95 32665.00 32772.79 33991.52 32967.96 35466.16 36095.15 34447.89 35758.54 35567.99 35929.74 36187.54 35550.20 35877.83 31962.87 358
S. Galliani, K. Lasinger, K. Schindler: Massively Parallel Multiview Stereopsis by Surface Normal Diffusion. ICCV 2015
YYNet185.50 30483.33 30992.00 29890.89 33488.38 30699.22 21896.55 31479.60 33657.26 35692.72 32879.09 26993.78 34177.25 33177.37 32493.84 293
MDA-MVSNet_test_wron85.51 30383.32 31092.10 29790.96 33388.58 30299.20 21996.52 31579.70 33557.12 35792.69 33079.11 26893.86 34077.10 33277.46 32393.86 292
MDA-MVSNet-bldmvs84.09 31281.52 31891.81 30191.32 33188.00 31098.67 27395.92 32780.22 33355.60 35893.32 32468.29 32593.60 34373.76 33876.61 33093.82 295
FPMVS68.72 32368.72 32668.71 34165.95 36244.27 36795.97 33394.74 34651.13 35653.26 35990.50 34125.11 36483.00 35860.80 35580.97 29978.87 354
test12337.68 33439.14 33733.31 34719.94 36924.83 37098.36 2889.75 37015.53 36551.31 36087.14 34719.62 36717.74 36647.10 3593.47 36557.36 359
tmp_tt65.23 32762.94 33072.13 34044.90 36750.03 36381.05 35789.42 36238.45 35948.51 36199.90 1754.09 35378.70 36091.84 21818.26 36287.64 352
E-PMN52.30 33052.18 33252.67 34571.51 35945.40 36493.62 34376.60 36636.01 36143.50 36264.13 36127.11 36367.31 36331.06 36326.06 35945.30 362
EMVS51.44 33251.22 33452.11 34670.71 36044.97 36694.04 33975.66 36735.34 36342.40 36361.56 36428.93 36265.87 36427.64 36424.73 36045.49 361
MVEpermissive53.74 2251.54 33147.86 33562.60 34359.56 36550.93 36279.41 35877.69 36535.69 36236.27 36461.76 3635.79 37269.63 36137.97 36236.61 35867.24 356
Simon Fuhrmann, Fabian Langguth, Michael Goesele: MVE - A Multi-View Reconstruction Environment. EUROGRAPHICS Workshops on Graphics and Cultural Heritage (2014)
ANet_high56.10 32852.24 33167.66 34249.27 36656.82 36083.94 35682.02 36470.47 35133.28 36564.54 36017.23 36869.16 36245.59 36023.85 36177.02 355
PMVScopyleft49.05 2353.75 32951.34 33360.97 34440.80 36834.68 36874.82 35989.62 36137.55 36028.67 36672.12 3567.09 37081.63 35943.17 36168.21 34566.59 357
Y. Furukawa, J. Ponce: Accurate, dense, and robust multiview stereopsis. PAMI (2010)
wuyk23d20.37 33620.84 33918.99 34965.34 36327.73 36950.43 3617.67 3719.50 3668.01 3676.34 3676.13 37126.24 36523.40 36510.69 3642.99 363
uanet_test0.00 3390.00 3420.00 3500.00 3710.00 3720.00 3620.00 3720.00 3670.00 3680.00 3680.00 3730.00 3680.00 3660.00 3660.00 364
cdsmvs_eth3d_5k23.43 33531.24 3380.00 3500.00 3710.00 3720.00 36298.09 1830.00 3670.00 36899.67 9583.37 2310.00 3680.00 3660.00 3660.00 364
pcd_1.5k_mvsjas7.60 33810.13 3410.00 3500.00 3710.00 3720.00 3620.00 3720.00 3670.00 3680.00 36891.20 1500.00 3680.00 3660.00 3660.00 364
sosnet-low-res0.00 3390.00 3420.00 3500.00 3710.00 3720.00 3620.00 3720.00 3670.00 3680.00 3680.00 3730.00 3680.00 3660.00 3660.00 364
sosnet0.00 3390.00 3420.00 3500.00 3710.00 3720.00 3620.00 3720.00 3670.00 3680.00 3680.00 3730.00 3680.00 3660.00 3660.00 364
uncertanet0.00 3390.00 3420.00 3500.00 3710.00 3720.00 3620.00 3720.00 3670.00 3680.00 3680.00 3730.00 3680.00 3660.00 3660.00 364
Regformer0.00 3390.00 3420.00 3500.00 3710.00 3720.00 3620.00 3720.00 3670.00 3680.00 3680.00 3730.00 3680.00 3660.00 3660.00 364
ab-mvs-re8.28 33711.04 3400.00 3500.00 3710.00 3720.00 3620.00 3720.00 3670.00 36899.40 1170.00 3730.00 3680.00 3660.00 3660.00 364
uanet0.00 3390.00 3420.00 3500.00 3710.00 3720.00 3620.00 3720.00 3670.00 3680.00 3680.00 3730.00 3680.00 3660.00 3660.00 364
OPU-MVS99.93 299.89 4599.80 299.96 2399.80 5897.44 11100.00 1100.00 199.98 33100.00 1
save fliter99.82 6598.79 3399.96 2398.40 13297.66 10
test_0728_SECOND99.82 599.94 1499.47 599.95 4198.43 116100.00 199.99 5100.00 1100.00 1
GSMVS99.59 130
sam_mvs194.72 6499.59 130
sam_mvs94.25 82
MTGPAbinary98.28 158
test_post195.78 33559.23 36593.20 11497.74 23691.06 227
test_post63.35 36294.43 6998.13 218
patchmatchnet-post91.70 33695.12 4897.95 229
MTMP99.87 8896.49 316
gm-plane-assit96.97 22493.76 20691.47 21098.96 15398.79 16794.92 158
test9_res99.71 2999.99 20100.00 1
agg_prior299.48 36100.00 1100.00 1
test_prior498.05 7199.94 56
test_prior99.43 3599.94 1498.49 5798.65 6099.80 10699.99 20
新几何299.40 194
旧先验199.76 7497.52 9198.64 6399.85 3395.63 3999.94 5799.99 20
无先验99.49 18498.71 5393.46 142100.00 194.36 17699.99 20
原ACMM299.90 74
testdata299.99 3690.54 239
segment_acmp96.68 22
testdata199.28 21496.35 48
plane_prior795.71 26391.59 259
plane_prior695.76 25891.72 25480.47 259
plane_prior597.87 20398.37 20297.79 11489.55 22394.52 231
plane_prior498.59 178
plane_prior299.84 10696.38 44
plane_prior195.73 260
plane_prior91.74 25199.86 9996.76 3489.59 222
n20.00 372
nn0.00 372
door-mid89.69 360
test1198.44 108
door90.31 358
HQP5-MVS91.85 247
BP-MVS97.92 109
HQP3-MVS97.89 20189.60 220
HQP2-MVS80.65 255
NP-MVS95.77 25791.79 24998.65 174
ACMMP++_ref87.04 253
ACMMP++88.23 242
Test By Simon92.82 123