This table lists the benchmark results for the high-res multi-view scenario. The following metrics are evaluated:

(*) For exact definitions, detailing how potentially incomplete ground truth is taken into account, see our paper.

The datasets are grouped into different categories, and result averages are computed for a category and method if results of the method are available for all datasets within the category. Note that the category "all" includes both the high-res multi-view and the low-res many-view scenarios.

Methods with suffix _ROB may participate in the Robust Vision Challenge.

Click a dataset result cell to show a visualization of the reconstruction. For training datasets, ground truth and accuracy / completeness visualizations are also available. The visualizations may not work with mobile browsers.




Method Infoallhigh-res
multi-view
indooroutdoorbotani.boulde.bridgedoorexhibi.lectur.living.loungeobserv.old co.statueterrac.
sort bysort bysort bysort bysort bysort bysort bysort bysort bysorted bysort bysort bysort bysort bysort bysort by
IU-MVS99.03 1585.34 4896.86 4292.05 2198.74 198.15 698.97 1799.42 13
PC_three_145291.12 2698.33 298.42 2492.51 299.81 2198.96 299.37 199.70 3
SMA-MVScopyleft94.70 1894.68 1894.76 2598.02 5985.94 3897.47 8596.77 5285.32 12297.92 398.70 1583.09 4799.84 1295.79 3299.08 1098.49 50
Yufeng Yin; Xiaoyan Liu; Zichao Zhang: SMA-MVS: Segmentation-Guided Multi-Scale Anchor Deformation Patch Multi-View Stereo. IEEE Transactions on Circuits and Systems for Video Technology
SED-MVS95.88 596.22 494.87 2299.03 1585.03 6099.12 796.78 4688.72 5697.79 498.91 288.48 1799.82 1898.15 698.97 1799.74 1
test_241102_ONE99.03 1585.03 6096.78 4688.72 5697.79 498.90 588.48 1799.82 18
DVP-MVS++96.05 496.41 394.96 2199.05 985.34 4898.13 4196.77 5288.38 6397.70 698.77 1092.06 399.84 1297.47 1699.37 199.70 3
test_241102_TWO96.78 4688.72 5697.70 698.91 287.86 2199.82 1898.15 699.00 1599.47 9
patch_mono-295.14 1296.08 792.33 10498.44 4377.84 22598.43 2997.21 2192.58 1697.68 897.65 6786.88 2699.83 1698.25 597.60 6699.33 17
test072699.05 985.18 5399.11 1096.78 4688.75 5497.65 998.91 287.69 22
TSAR-MVS + MP.94.79 1795.17 1593.64 5497.66 6984.10 7595.85 19696.42 9891.26 2597.49 1096.80 10686.50 2898.49 12195.54 3799.03 1398.33 58
Zhenlong Yuan, Jiakai Cao, Zhaoqi Wang, Zhaoxin Li: TSAR-MVS: Textureless-aware Segmentation and Correlative Refinement Guided Multi-View Stereo. Pattern Recognition
test_fmvsm_n_192094.81 1695.60 1092.45 9895.29 12380.96 13699.29 297.21 2194.50 697.29 1198.44 2382.15 5299.78 2698.56 497.68 6496.61 155
MSP-MVS95.62 796.54 192.86 8498.31 4880.10 15997.42 9296.78 4692.20 1997.11 1298.29 2793.46 199.10 9196.01 2899.30 599.38 14
Zhenlong Yuan, Cong Liu, Fei Shen, Zhaoxin Li, Jingguo luo, Tianlu Mao and Zhaoqi Wang: MSP-MVS: Multi-granularity Segmentation Prior Guided Multi-View Stereo. AAAI2025
CNVR-MVS96.30 196.54 195.55 1499.31 587.69 2199.06 1197.12 2694.66 496.79 1398.78 986.42 2999.95 397.59 1599.18 799.00 26
DVP-MVScopyleft95.58 895.91 994.57 2999.05 985.18 5399.06 1196.46 9388.75 5496.69 1498.76 1287.69 2299.76 2797.90 1198.85 2198.77 33
Zhenlong Yuan, Jinguo Luo, Fei Shen, Zhaoxin Li, Cong Liu, Tianlu Mao, Zhaoqi Wang: DVP-MVS: Synergize Depth-Edge and Visibility Prior for Multi-View Stereo. AAAI2025
test_0728_THIRD88.38 6396.69 1498.76 1289.64 1399.76 2797.47 1698.84 2399.38 14
SD-MVS94.84 1595.02 1694.29 3597.87 6484.61 6897.76 6496.19 11989.59 4696.66 1698.17 3484.33 3699.60 5196.09 2798.50 3698.66 41
Zhenlong Yuan, Jiakai Cao, Zhaoxin Li, Hao Jiang and Zhaoqi Wang: SD-MVS: Segmentation-driven Deformation Multi-View Stereo with Spherical Refinement and EM optimization. AAAI2024
test_one_060198.91 1884.56 6996.70 6288.06 6996.57 1798.77 1088.04 20
DPE-MVScopyleft95.32 1095.55 1194.64 2898.79 2384.87 6597.77 6296.74 5786.11 10796.54 1898.89 688.39 1999.74 3497.67 1499.05 1299.31 18
Kehua Chen, Zhenlong Yuan, Tianlu Mao, Zhaoqi Wang: Dual-Level Precision Edges Guided Multi-View Stereo with Accurate Planarization. AAAI2025
DPM-MVS96.21 295.53 1298.26 196.26 9895.09 199.15 596.98 3293.39 1296.45 1998.79 890.17 1099.99 189.33 11399.25 699.70 3
PS-MVSNAJ94.17 2693.52 3496.10 895.65 11392.35 298.21 3695.79 14392.42 1896.24 2098.18 3171.04 19399.17 8596.77 2397.39 7496.79 148
旧先验296.97 12774.06 30696.10 2197.76 15088.38 123
test_part298.90 1985.14 5996.07 22
xiu_mvs_v2_base93.92 3093.26 3895.91 995.07 13192.02 698.19 3795.68 14892.06 2096.01 2398.14 3570.83 19698.96 9996.74 2596.57 9296.76 151
HPM-MVS++copyleft95.32 1095.48 1394.85 2398.62 3486.04 3597.81 6096.93 3792.45 1795.69 2498.50 2085.38 3199.85 1094.75 4499.18 798.65 42
NCCC95.63 695.94 894.69 2799.21 685.15 5899.16 496.96 3494.11 895.59 2598.64 1785.07 3399.91 495.61 3599.10 999.00 26
EPNet94.06 2994.15 2793.76 4997.27 8784.35 7198.29 3397.64 1494.57 595.36 2696.88 10179.96 6899.12 9091.30 8296.11 9897.82 97
Wanjuan Su, Wenbing Tao: Efficient Edge-Preserving Multi-View Stereo Network for Depth Estimation. AAAI 2023
CANet94.89 1494.64 1995.63 1297.55 7588.12 1599.06 1196.39 10394.07 995.34 2797.80 5876.83 11099.87 897.08 2097.64 6598.89 29
TEST998.64 3183.71 8197.82 5896.65 6984.29 15495.16 2898.09 3884.39 3599.36 71
train_agg94.28 2394.45 2293.74 5098.64 3183.71 8197.82 5896.65 6984.50 14595.16 2898.09 3884.33 3699.36 7195.91 3198.96 1998.16 70
MVS_030495.36 995.20 1495.85 1094.89 13889.22 1198.83 1897.88 1094.68 395.14 3097.99 4580.80 5899.81 2198.60 397.95 5698.50 49
test_898.63 3383.64 8497.81 6096.63 7484.50 14595.10 3198.11 3784.33 3699.23 76
DeepPCF-MVS89.82 194.61 1996.17 589.91 18497.09 9070.21 31698.99 1696.69 6495.57 195.08 3299.23 186.40 3099.87 897.84 1398.66 3199.65 6
SF-MVS94.17 2694.05 2894.55 3097.56 7485.95 3697.73 6696.43 9784.02 15995.07 3398.74 1482.93 4899.38 6895.42 3998.51 3498.32 59
APDe-MVS94.56 2094.75 1793.96 4598.84 2283.40 8998.04 4996.41 9985.79 11495.00 3498.28 2884.32 3999.18 8497.35 1898.77 2799.28 19
MVSFormer91.36 7690.57 8193.73 5293.00 19288.08 1694.80 23794.48 21280.74 22094.90 3597.13 9178.84 7995.10 28783.77 16197.46 6998.02 78
lupinMVS93.87 3193.58 3394.75 2693.00 19288.08 1699.15 595.50 15791.03 2894.90 3597.66 6378.84 7997.56 15994.64 4797.46 6998.62 44
CS-MVS-test92.98 3993.67 3090.90 15496.52 9476.87 24498.68 2194.73 19690.36 3894.84 3797.89 5377.94 9197.15 19094.28 5197.80 6198.70 40
9.1494.26 2698.10 5798.14 3896.52 8684.74 13794.83 3898.80 782.80 5099.37 7095.95 3098.42 40
testdata90.13 17695.92 10774.17 28096.49 9273.49 31194.82 3997.99 4578.80 8197.93 14183.53 16997.52 6898.29 63
APD-MVScopyleft93.61 3293.59 3293.69 5398.76 2483.26 9297.21 10196.09 12482.41 19894.65 4098.21 3081.96 5498.81 10994.65 4698.36 4599.01 25
Yuesong Wang, Zhaojie Zeng and etc.: Adaptive Patch Deformation for Textureless-Resilient Multi-View Stereo. CVPR2023
test_prior298.37 3186.08 10994.57 4198.02 4483.14 4695.05 4198.79 26
CS-MVS92.73 4593.48 3590.48 16696.27 9775.93 26398.55 2794.93 18389.32 4894.54 4297.67 6278.91 7897.02 19493.80 5497.32 7698.49 50
FOURS198.51 3978.01 21798.13 4196.21 11683.04 18494.39 43
ACMMP_NAP93.46 3493.23 3994.17 4097.16 8884.28 7396.82 13896.65 6986.24 10594.27 4497.99 4577.94 9199.83 1693.39 5998.57 3398.39 56
agg_prior98.59 3583.13 9496.56 8394.19 4599.16 86
SteuartSystems-ACMMP94.13 2894.44 2393.20 7295.41 11981.35 12899.02 1596.59 7989.50 4794.18 4698.36 2683.68 4499.45 6594.77 4398.45 3998.81 32
Skip Steuart: Steuart Systems R&D Blog.
PHI-MVS93.59 3393.63 3193.48 6498.05 5881.76 12098.64 2497.13 2582.60 19694.09 4798.49 2180.35 6199.85 1094.74 4598.62 3298.83 31
TSAR-MVS + GP.94.35 2294.50 2093.89 4697.38 8483.04 9698.10 4395.29 17291.57 2293.81 4897.45 7586.64 2799.43 6696.28 2694.01 12099.20 22
CANet_DTU90.98 8490.04 9493.83 4794.76 14186.23 3396.32 17093.12 28393.11 1393.71 4996.82 10563.08 23899.48 6384.29 15395.12 10995.77 176
VNet92.11 6091.22 7194.79 2496.91 9186.98 2697.91 5397.96 986.38 10493.65 5095.74 12670.16 20198.95 10193.39 5988.87 16698.43 54
test_vis1_n_192089.95 10490.59 8088.03 22392.36 20868.98 32599.12 794.34 22293.86 1093.64 5197.01 9751.54 31099.59 5296.76 2496.71 9195.53 182
ZD-MVS99.09 883.22 9396.60 7882.88 18993.61 5298.06 4382.93 4899.14 8795.51 3898.49 37
xiu_mvs_v1_base_debu90.54 9389.54 10493.55 5992.31 20987.58 2296.99 12294.87 18787.23 9093.27 5397.56 7157.43 27998.32 13092.72 7093.46 12994.74 197
xiu_mvs_v1_base90.54 9389.54 10493.55 5992.31 20987.58 2296.99 12294.87 18787.23 9093.27 5397.56 7157.43 27998.32 13092.72 7093.46 12994.74 197
xiu_mvs_v1_base_debi90.54 9389.54 10493.55 5992.31 20987.58 2296.99 12294.87 18787.23 9093.27 5397.56 7157.43 27998.32 13092.72 7093.46 12994.74 197
CDPH-MVS93.12 3792.91 4193.74 5098.65 3083.88 7797.67 7196.26 11283.00 18693.22 5698.24 2981.31 5599.21 7889.12 11498.74 2998.14 72
ETV-MVS92.72 4792.87 4292.28 10794.54 14681.89 11497.98 5195.21 17589.77 4593.11 5796.83 10377.23 10697.50 16795.74 3395.38 10797.44 123
MSLP-MVS++94.28 2394.39 2493.97 4498.30 4984.06 7698.64 2496.93 3790.71 3193.08 5898.70 1579.98 6799.21 7894.12 5299.07 1198.63 43
alignmvs92.97 4092.26 5495.12 1895.54 11687.77 1998.67 2296.38 10488.04 7093.01 5997.45 7579.20 7598.60 11593.25 6488.76 16798.99 28
canonicalmvs92.27 5791.22 7195.41 1595.80 11088.31 1397.09 11894.64 20488.49 6192.99 6097.31 8272.68 17498.57 11793.38 6188.58 16999.36 16
EC-MVSNet91.73 6592.11 5890.58 16393.54 17577.77 22898.07 4694.40 21987.44 8492.99 6097.11 9374.59 15496.87 20493.75 5597.08 8097.11 137
jason92.73 4592.23 5594.21 3990.50 25687.30 2598.65 2395.09 17790.61 3292.76 6297.13 9175.28 14297.30 17993.32 6296.75 9098.02 78
jason: jason.
test_cas_vis1_n_192089.90 10590.02 9589.54 19290.14 26474.63 27598.71 2094.43 21793.04 1492.40 6396.35 11553.41 30699.08 9395.59 3696.16 9694.90 192
test1294.25 3698.34 4685.55 4596.35 10792.36 6480.84 5799.22 7798.31 4797.98 85
MG-MVS94.25 2593.72 2995.85 1099.38 389.35 1097.98 5198.09 889.99 4192.34 6596.97 9881.30 5698.99 9788.54 11998.88 2099.20 22
test_fmvs187.79 15388.52 12085.62 27392.98 19664.31 33997.88 5592.42 29287.95 7292.24 6695.82 12547.94 32398.44 12795.31 4094.09 11794.09 208
h-mvs3389.30 11688.95 11490.36 17095.07 13176.04 25796.96 12897.11 2790.39 3692.22 6795.10 15074.70 15098.86 10693.14 6565.89 33096.16 168
hse-mvs288.22 14588.21 12488.25 21793.54 17573.41 28395.41 21295.89 13790.39 3692.22 6794.22 16974.70 15096.66 21593.14 6564.37 33594.69 201
MCST-MVS96.17 396.12 696.32 799.42 289.36 998.94 1797.10 2895.17 292.11 6998.46 2287.33 2499.97 297.21 1999.31 499.63 7
SR-MVS92.16 5892.27 5391.83 12698.37 4578.41 20396.67 14995.76 14482.19 20291.97 7098.07 4276.44 11598.64 11393.71 5697.27 7798.45 53
region2R92.72 4792.70 4592.79 8698.68 2680.53 14997.53 8096.51 8785.22 12591.94 7197.98 4877.26 10299.67 4690.83 8998.37 4498.18 68
Effi-MVS+90.70 9089.90 10093.09 7693.61 17283.48 8795.20 22192.79 28883.22 17891.82 7295.70 12871.82 18497.48 16991.25 8393.67 12598.32 59
HFP-MVS92.89 4192.86 4392.98 8098.71 2581.12 13197.58 7696.70 6285.20 12791.75 7397.97 5078.47 8499.71 3990.95 8598.41 4198.12 74
DeepC-MVS_fast89.06 294.48 2194.30 2595.02 1998.86 2185.68 4398.06 4796.64 7293.64 1191.74 7498.54 1880.17 6699.90 592.28 7498.75 2899.49 8
Andreas Kuhn, Christian Sormann, Mattia Rossi, Oliver Erdler, Friedrich Fraundorfer: DeepC-MVS: Deep Confidence Prediction for Multi-View Stereo Reconstruction. 3DV 2020
ACMMPR92.69 4992.67 4692.75 8798.66 2880.57 14597.58 7696.69 6485.20 12791.57 7597.92 5177.01 10799.67 4690.95 8598.41 4198.00 83
DELS-MVS94.98 1394.49 2196.44 696.42 9590.59 799.21 397.02 3094.40 791.46 7697.08 9483.32 4599.69 4292.83 6998.70 3099.04 24
Christian Sormann, Emanuele Santellani, Mattia Rossi, Andreas Kuhn, Friedrich Fraundorfer: DELS-MVS: Deep Epipolar Line Search for Multi-View Stereo. Winter Conference on Applications of Computer Vision (WACV), 2023
XVS92.69 4992.71 4492.63 9398.52 3780.29 15297.37 9596.44 9587.04 9591.38 7797.83 5777.24 10499.59 5290.46 9598.07 5298.02 78
X-MVStestdata86.26 17684.14 19592.63 9398.52 3780.29 15297.37 9596.44 9587.04 9591.38 7720.73 38377.24 10499.59 5290.46 9598.07 5298.02 78
PMMVS89.46 11389.92 9988.06 22194.64 14269.57 32296.22 17594.95 18287.27 8991.37 7996.54 11365.88 22097.39 17488.54 11993.89 12297.23 133
test_fmvs1_n86.34 17486.72 15885.17 28087.54 29763.64 34496.91 13292.37 29487.49 8391.33 8095.58 13440.81 34898.46 12495.00 4293.49 12793.41 222
dcpmvs_293.10 3893.46 3692.02 11897.77 6579.73 16994.82 23593.86 24686.91 9791.33 8096.76 10785.20 3298.06 13896.90 2297.60 6698.27 65
原ACMM191.22 14597.77 6578.10 21596.61 7581.05 21591.28 8297.42 7977.92 9398.98 9879.85 19898.51 3496.59 156
新几何193.12 7497.44 7881.60 12596.71 6174.54 30291.22 8397.57 7079.13 7699.51 6177.40 22398.46 3898.26 66
UA-Net88.92 12388.48 12190.24 17394.06 16377.18 24193.04 27794.66 20187.39 8691.09 8493.89 17874.92 14798.18 13775.83 23991.43 15095.35 187
ZNCC-MVS92.75 4392.60 4893.23 7198.24 5181.82 11897.63 7296.50 8985.00 13391.05 8597.74 6078.38 8599.80 2590.48 9498.34 4698.07 76
APD-MVS_3200maxsize91.23 8091.35 7090.89 15597.89 6276.35 25396.30 17195.52 15679.82 24391.03 8697.88 5474.70 15098.54 11892.11 7796.89 8497.77 100
test_vis1_n85.60 18785.70 16685.33 27784.79 32964.98 33796.83 13691.61 30587.36 8791.00 8794.84 15736.14 35497.18 18695.66 3493.03 13393.82 213
GST-MVS92.43 5692.22 5693.04 7898.17 5481.64 12497.40 9496.38 10484.71 13990.90 8897.40 8077.55 9999.76 2789.75 10797.74 6297.72 103
PGM-MVS91.93 6291.80 6392.32 10698.27 5079.74 16895.28 21597.27 1983.83 16790.89 8997.78 5976.12 12299.56 5788.82 11797.93 5997.66 108
SR-MVS-dyc-post91.29 7891.45 6990.80 15797.76 6776.03 25896.20 17895.44 16280.56 22590.72 9097.84 5575.76 12898.61 11491.99 7896.79 8897.75 101
RE-MVS-def91.18 7497.76 6776.03 25896.20 17895.44 16280.56 22590.72 9097.84 5573.36 16991.99 7896.79 8897.75 101
MP-MVScopyleft92.61 5292.67 4692.42 10198.13 5679.73 16997.33 9796.20 11785.63 11690.53 9297.66 6378.14 8999.70 4192.12 7698.30 4897.85 94
Rongxuan Tan, Qing Wang, et al.: MP-MVS: Multi-Scale Windows PatchMatch and Planar Prior Multi-View Stereo.
HY-MVS84.06 691.63 6990.37 8795.39 1696.12 10288.25 1490.22 30797.58 1588.33 6590.50 9391.96 20479.26 7399.06 9490.29 10189.07 16398.88 30
CP-MVS92.54 5492.60 4892.34 10398.50 4079.90 16298.40 3096.40 10184.75 13690.48 9498.09 3877.40 10199.21 7891.15 8498.23 5097.92 89
diffmvspermissive91.17 8190.74 7992.44 10093.11 19182.50 10496.25 17493.62 26187.79 7690.40 9595.93 12273.44 16897.42 17193.62 5892.55 13897.41 125
Fangjinhua Wang, Qingshan Xu, Yew-Soon Ong, Marc Pollefeys: Lightweight and Accurate Multi-View Stereo With Confidence-Aware Diffusion Model. IEEE T-PAMI 2025
MVS_Test90.29 9989.18 10993.62 5695.23 12484.93 6394.41 24294.66 20184.31 15090.37 9691.02 21975.13 14497.82 14883.11 17494.42 11598.12 74
MTAPA92.45 5592.31 5292.86 8497.90 6180.85 13992.88 28096.33 10887.92 7390.20 9798.18 3176.71 11399.76 2792.57 7398.09 5197.96 88
test_yl91.46 7390.53 8294.24 3797.41 8085.18 5398.08 4497.72 1180.94 21689.85 9896.14 11875.61 12998.81 10990.42 9988.56 17098.74 34
DCV-MVSNet91.46 7390.53 8294.24 3797.41 8085.18 5398.08 4497.72 1180.94 21689.85 9896.14 11875.61 12998.81 10990.42 9988.56 17098.74 34
WTY-MVS92.65 5191.68 6595.56 1396.00 10588.90 1298.23 3597.65 1388.57 5989.82 10097.22 8879.29 7299.06 9489.57 10988.73 16898.73 38
MVS_111021_HR93.41 3593.39 3793.47 6697.34 8582.83 9897.56 7898.27 689.16 5189.71 10197.14 9079.77 6999.56 5793.65 5797.94 5798.02 78
sss90.87 8889.96 9793.60 5794.15 15883.84 8097.14 11198.13 785.93 11289.68 10296.09 12071.67 18599.30 7387.69 12989.16 16297.66 108
test22296.15 10178.41 20395.87 19496.46 9371.97 32289.66 10397.45 7576.33 11998.24 4998.30 62
LFMVS89.27 11787.64 13594.16 4297.16 8885.52 4697.18 10594.66 20179.17 25789.63 10496.57 11255.35 29698.22 13489.52 11189.54 15998.74 34
CostFormer89.08 11988.39 12291.15 14793.13 18979.15 18488.61 31896.11 12383.14 18089.58 10586.93 27883.83 4396.87 20488.22 12585.92 19397.42 124
PVSNet_BlendedMVS90.05 10289.96 9790.33 17197.47 7683.86 7898.02 5096.73 5887.98 7189.53 10689.61 24176.42 11699.57 5594.29 4979.59 23887.57 307
PVSNet_Blended93.13 3692.98 4093.57 5897.47 7683.86 7899.32 196.73 5891.02 2989.53 10696.21 11776.42 11699.57 5594.29 4995.81 10597.29 132
HPM-MVScopyleft91.62 7091.53 6891.89 12297.88 6379.22 18196.99 12295.73 14682.07 20489.50 10897.19 8975.59 13198.93 10490.91 8797.94 5797.54 115
Chunlin Ren, Qingshan Xu, Shikun Zhang, Jiaqi Yang: Hierarchical Prior Mining for Non-local Multi-View Stereo. ICCV 2023
EI-MVSNet-Vis-set91.84 6491.77 6492.04 11797.60 7181.17 13096.61 15096.87 4088.20 6789.19 10997.55 7478.69 8399.14 8790.29 10190.94 15395.80 175
MP-MVS-pluss92.58 5392.35 5193.29 6897.30 8682.53 10296.44 16196.04 12984.68 14089.12 11098.37 2577.48 10099.74 3493.31 6398.38 4397.59 114
MP-MVS-pluss: MP-MVS-pluss. MP-MVS-pluss
VDD-MVS88.28 14387.02 15492.06 11695.09 12980.18 15897.55 7994.45 21683.09 18289.10 11195.92 12447.97 32298.49 12193.08 6886.91 18297.52 119
baseline90.76 8990.10 9392.74 8892.90 19882.56 10194.60 23994.56 20987.69 7989.06 11295.67 13073.76 16397.51 16690.43 9892.23 14498.16 70
EIA-MVS91.73 6592.05 6090.78 15994.52 14776.40 25298.06 4795.34 17089.19 5088.90 11397.28 8677.56 9897.73 15190.77 9096.86 8798.20 67
mvsany_test187.58 15788.22 12385.67 27189.78 26867.18 33295.25 21887.93 34283.96 16288.79 11497.06 9672.52 17594.53 30292.21 7586.45 18695.30 189
HPM-MVS_fast90.38 9890.17 9291.03 15097.61 7077.35 23797.15 11095.48 15879.51 24988.79 11496.90 9971.64 18798.81 10987.01 13797.44 7196.94 141
PAPM92.87 4292.40 5094.30 3492.25 21687.85 1896.40 16596.38 10491.07 2788.72 11696.90 9982.11 5397.37 17690.05 10497.70 6397.67 107
MVS_111021_LR91.60 7191.64 6791.47 13795.74 11178.79 19496.15 18096.77 5288.49 6188.64 11797.07 9572.33 17899.19 8393.13 6796.48 9396.43 160
casdiffmvspermissive90.95 8690.39 8592.63 9392.82 19982.53 10296.83 13694.47 21487.69 7988.47 11895.56 13574.04 16097.54 16390.90 8892.74 13697.83 96
Fangjinhua Wang, Qingshan Xu, Yew-Soon Ong, Marc Pollefeys: Lightweight and Accurate Multi-View Stereo With Confidence-Aware Diffusion Model. IEEE T-PAMI 2025
mPP-MVS91.88 6391.82 6292.07 11598.38 4478.63 19797.29 9896.09 12485.12 12988.45 11997.66 6375.53 13299.68 4489.83 10598.02 5597.88 90
PAPR92.74 4492.17 5794.45 3198.89 2084.87 6597.20 10396.20 11787.73 7888.40 12098.12 3678.71 8299.76 2787.99 12696.28 9498.74 34
tpmrst88.36 14087.38 14591.31 13994.36 15379.92 16187.32 32895.26 17485.32 12288.34 12186.13 29480.60 6096.70 21283.78 16085.34 20197.30 131
GG-mvs-BLEND93.49 6394.94 13586.26 3281.62 35297.00 3188.32 12294.30 16791.23 596.21 22888.49 12197.43 7298.00 83
EI-MVSNet-UG-set91.35 7791.22 7191.73 12897.39 8280.68 14296.47 15896.83 4387.92 7388.30 12397.36 8177.84 9499.13 8989.43 11289.45 16095.37 186
MAR-MVS90.63 9190.22 8991.86 12398.47 4278.20 21397.18 10596.61 7583.87 16688.18 12498.18 3168.71 20599.75 3283.66 16697.15 7997.63 111
Zhenyu Xu, Yiguang Liu, Xuelei Shi, Ying Wang, Yunan Zheng: MARMVS: Matching Ambiguity Reduced Multiple View Stereo for Efficient Large Scale Scene Reconstruction. CVPR 2020
DP-MVS Recon91.72 6790.85 7694.34 3399.50 185.00 6298.51 2895.96 13380.57 22488.08 12597.63 6976.84 10999.89 785.67 14394.88 11098.13 73
VDDNet86.44 17284.51 18692.22 10991.56 23581.83 11797.10 11794.64 20469.50 33487.84 12695.19 14448.01 32197.92 14689.82 10686.92 18196.89 145
UGNet87.73 15486.55 16091.27 14295.16 12879.11 18596.35 16896.23 11488.14 6887.83 12790.48 22850.65 31299.09 9280.13 19594.03 11895.60 180
Wanjuan Su, Qingshan Xu, Wenbing Tao: Uncertainty-guided Multi-view Stereo Network for Depth Estimation. IEEE Transactions on Circuits and Systems for Video Technology, 2022
test250690.96 8590.39 8592.65 9293.54 17582.46 10596.37 16697.35 1786.78 10187.55 12895.25 13977.83 9597.50 16784.07 15594.80 11197.98 85
tpm287.35 16086.26 16190.62 16292.93 19778.67 19688.06 32395.99 13079.33 25287.40 12986.43 28980.28 6396.40 22080.23 19385.73 19796.79 148
CPTT-MVS89.72 10889.87 10189.29 19598.33 4773.30 28697.70 6895.35 16975.68 29387.40 12997.44 7870.43 19898.25 13389.56 11096.90 8396.33 165
gg-mvs-nofinetune85.48 19082.90 21393.24 7094.51 15085.82 4079.22 35696.97 3361.19 35687.33 13153.01 37290.58 696.07 23186.07 14197.23 7897.81 98
CHOSEN 280x42091.71 6891.85 6191.29 14194.94 13582.69 9987.89 32496.17 12085.94 11187.27 13294.31 16690.27 995.65 25994.04 5395.86 10395.53 182
test_fmvsmvis_n_192092.12 5992.10 5992.17 11190.87 24981.04 13298.34 3293.90 24392.71 1587.24 13397.90 5274.83 14899.72 3796.96 2196.20 9595.76 177
casdiffmvs_mvgpermissive91.13 8290.45 8493.17 7392.99 19583.58 8597.46 8794.56 20987.69 7987.19 13494.98 15574.50 15597.60 15691.88 8092.79 13598.34 57
Fangjinhua Wang, Qingshan Xu, Yew-Soon Ong, Marc Pollefeys: Lightweight and Accurate Multi-View Stereo With Confidence-Aware Diffusion Model. IEEE T-PAMI 2025
EPNet_dtu87.65 15687.89 12986.93 25094.57 14471.37 31096.72 14496.50 8988.56 6087.12 13595.02 15275.91 12694.01 31166.62 29890.00 15695.42 185
Wanjuan Su, Wenbing Tao: Efficient Edge-Preserving Multi-View Stereo Network for Depth Estimation. AAAI 2023
Vis-MVSNetpermissive88.67 13187.82 13191.24 14392.68 20078.82 19196.95 12993.85 24787.55 8287.07 13695.13 14863.43 23697.21 18477.58 21996.15 9797.70 106
Jingyang Zhang, Yao Yao, Shiwei Li, Zixin Luo, Tian Fang: Visibility-aware Multiview Stereo Network. BMVC 2020
thisisatest051590.95 8690.26 8893.01 7994.03 16684.27 7497.91 5396.67 6683.18 17986.87 13795.51 13688.66 1697.85 14780.46 18989.01 16496.92 144
TESTMET0.1,189.83 10689.34 10791.31 13992.54 20680.19 15797.11 11496.57 8186.15 10686.85 13891.83 20879.32 7196.95 19881.30 18392.35 14296.77 150
PVSNet_Blended_VisFu91.24 7990.77 7892.66 9195.09 12982.40 10697.77 6295.87 14088.26 6686.39 13993.94 17776.77 11199.27 7488.80 11894.00 12196.31 166
API-MVS90.18 10088.97 11293.80 4898.66 2882.95 9797.50 8495.63 15175.16 29786.31 14097.69 6172.49 17699.90 581.26 18496.07 9998.56 46
test-LLR88.48 13687.98 12889.98 18092.26 21477.23 23997.11 11495.96 13383.76 17086.30 14191.38 21272.30 17996.78 21080.82 18691.92 14695.94 172
test-mter88.95 12188.60 11889.98 18092.26 21477.23 23997.11 11495.96 13385.32 12286.30 14191.38 21276.37 11896.78 21080.82 18691.92 14695.94 172
PAPM_NR91.46 7390.82 7793.37 6798.50 4081.81 11995.03 23196.13 12184.65 14186.10 14397.65 6779.24 7499.75 3283.20 17296.88 8598.56 46
FA-MVS(test-final)87.71 15586.23 16292.17 11194.19 15780.55 14687.16 33096.07 12782.12 20385.98 14488.35 25672.04 18398.49 12180.26 19289.87 15797.48 122
MDTV_nov1_ep13_2view81.74 12186.80 33280.65 22285.65 14574.26 15776.52 23196.98 140
ECVR-MVScopyleft88.35 14187.25 14791.65 13093.54 17579.40 17696.56 15490.78 31986.78 10185.57 14695.25 13957.25 28397.56 15984.73 15194.80 11197.98 85
AUN-MVS86.25 17785.57 16888.26 21693.57 17473.38 28495.45 21095.88 13883.94 16385.47 14794.21 17073.70 16696.67 21483.54 16864.41 33494.73 200
PVSNet82.34 989.02 12087.79 13292.71 9095.49 11781.50 12697.70 6897.29 1887.76 7785.47 14795.12 14956.90 28598.90 10580.33 19094.02 11997.71 105
EPP-MVSNet89.76 10789.72 10389.87 18593.78 16876.02 26097.22 9996.51 8779.35 25185.11 14995.01 15384.82 3497.10 19287.46 13288.21 17496.50 158
test111188.11 14687.04 15391.35 13893.15 18778.79 19496.57 15290.78 31986.88 9985.04 15095.20 14357.23 28497.39 17483.88 15894.59 11397.87 92
FE-MVS86.06 17984.15 19491.78 12794.33 15479.81 16384.58 34496.61 7576.69 28785.00 15187.38 26970.71 19798.37 12970.39 28291.70 14997.17 136
OMC-MVS88.80 12888.16 12690.72 16095.30 12277.92 22294.81 23694.51 21186.80 10084.97 15296.85 10267.53 20998.60 11585.08 14787.62 17795.63 179
CHOSEN 1792x268891.07 8390.21 9093.64 5495.18 12783.53 8696.26 17396.13 12188.92 5384.90 15393.10 18972.86 17299.62 5088.86 11695.67 10697.79 99
thres20088.92 12387.65 13492.73 8996.30 9685.62 4497.85 5698.86 184.38 14984.82 15493.99 17675.12 14598.01 13970.86 27986.67 18394.56 202
MDTV_nov1_ep1383.69 19894.09 16281.01 13386.78 33396.09 12483.81 16884.75 15584.32 31774.44 15696.54 21663.88 31285.07 202
CDS-MVSNet89.50 11288.96 11391.14 14891.94 23180.93 13797.09 11895.81 14284.26 15584.72 15694.20 17180.31 6295.64 26083.37 17188.96 16596.85 147
Khang Truong Giang, Soohwan Song, Sungho Jo: Curvature-guided dynamic scale networks for Multi-view Stereo. ICLR 2022
ACMMPcopyleft90.39 9689.97 9691.64 13197.58 7378.21 21296.78 14196.72 6084.73 13884.72 15697.23 8771.22 19099.63 4988.37 12492.41 14197.08 139
Qingshan Xu, Weihang Kong, Wenbing Tao, Marc Pollefeys: Multi-Scale Geometric Consistency Guided and Planar Prior Assisted Multi-View Stereo. IEEE Transactions on Pattern Analysis and Machine Intelligence
CSCG92.02 6191.65 6693.12 7498.53 3680.59 14497.47 8597.18 2477.06 28584.64 15897.98 4883.98 4199.52 5990.72 9197.33 7599.23 21
ab-mvs87.08 16184.94 18193.48 6493.34 18383.67 8388.82 31595.70 14781.18 21384.55 15990.14 23662.72 23998.94 10385.49 14582.54 22297.85 94
EPMVS87.47 15985.90 16592.18 11095.41 11982.26 10987.00 33196.28 11185.88 11384.23 16085.57 30075.07 14696.26 22571.14 27792.50 13998.03 77
Anonymous20240521184.41 20781.93 22791.85 12596.78 9378.41 20397.44 8891.34 30970.29 33084.06 16194.26 16841.09 34698.96 9979.46 20082.65 22198.17 69
HyFIR lowres test89.36 11488.60 11891.63 13394.91 13780.76 14195.60 20595.53 15482.56 19784.03 16291.24 21678.03 9096.81 20887.07 13688.41 17297.32 129
tfpn200view988.48 13687.15 14992.47 9796.21 9985.30 5197.44 8898.85 283.37 17683.99 16393.82 17975.36 13997.93 14169.04 28786.24 19094.17 204
thres40088.42 13987.15 14992.23 10896.21 9985.30 5197.44 8898.85 283.37 17683.99 16393.82 17975.36 13997.93 14169.04 28786.24 19093.45 220
tpm85.55 18884.47 18988.80 20590.19 26175.39 26888.79 31694.69 19784.83 13583.96 16585.21 30678.22 8894.68 29876.32 23578.02 25696.34 163
Fast-Effi-MVS+87.93 15186.94 15690.92 15394.04 16479.16 18398.26 3493.72 25781.29 21283.94 16692.90 19069.83 20296.68 21376.70 22991.74 14896.93 142
XVG-OURS-SEG-HR85.74 18585.16 17787.49 23890.22 26071.45 30991.29 29994.09 23581.37 21183.90 16795.22 14160.30 25697.53 16585.58 14484.42 20593.50 218
thisisatest053089.65 10989.02 11191.53 13593.46 18180.78 14096.52 15596.67 6681.69 20983.79 16894.90 15688.85 1597.68 15277.80 21287.49 18096.14 169
DeepC-MVS86.58 391.53 7291.06 7592.94 8294.52 14781.89 11495.95 18895.98 13190.76 3083.76 16996.76 10773.24 17099.71 3991.67 8196.96 8297.22 134
Andreas Kuhn, Christian Sormann, Mattia Rossi, Oliver Erdler, Friedrich Fraundorfer: DeepC-MVS: Deep Confidence Prediction for Multi-View Stereo Reconstruction. 3DV 2020
IS-MVSNet88.67 13188.16 12690.20 17593.61 17276.86 24596.77 14393.07 28484.02 15983.62 17095.60 13374.69 15396.24 22778.43 21193.66 12697.49 121
thres100view90088.30 14286.95 15592.33 10496.10 10384.90 6497.14 11198.85 282.69 19483.41 17193.66 18375.43 13697.93 14169.04 28786.24 19094.17 204
thres600view788.06 14786.70 15992.15 11396.10 10385.17 5797.14 11198.85 282.70 19383.41 17193.66 18375.43 13697.82 14867.13 29685.88 19493.45 220
XVG-OURS85.18 19384.38 19087.59 23390.42 25871.73 30691.06 30294.07 23682.00 20683.29 17395.08 15156.42 29097.55 16183.70 16583.42 21093.49 219
Vis-MVSNet (Re-imp)88.88 12588.87 11688.91 20293.89 16774.43 27896.93 13194.19 22984.39 14883.22 17495.67 13078.24 8794.70 29778.88 20794.40 11697.61 113
TAMVS88.48 13687.79 13290.56 16491.09 24479.18 18296.45 16095.88 13883.64 17383.12 17593.33 18575.94 12595.74 25582.40 17788.27 17396.75 152
baseline188.85 12687.49 14192.93 8395.21 12686.85 2895.47 20994.61 20687.29 8883.11 17694.99 15480.70 5996.89 20282.28 17873.72 27295.05 191
AdaColmapbinary88.81 12787.61 13892.39 10299.33 479.95 16096.70 14895.58 15277.51 27783.05 17796.69 11161.90 24899.72 3784.29 15393.47 12897.50 120
PatchmatchNetpermissive86.83 16785.12 17891.95 12094.12 16182.27 10886.55 33595.64 15084.59 14382.98 17884.99 31277.26 10295.96 24068.61 29091.34 15197.64 110
Fangjinhua Wang, Silvano Galliani, Christoph Vogel, Pablo Speciale, Marc Pollefeys: PatchmatchNet: Learned Multi-View Patchmatch Stereo.
SCA85.63 18683.64 20191.60 13492.30 21281.86 11692.88 28095.56 15384.85 13482.52 17985.12 31058.04 27395.39 27073.89 25787.58 17997.54 115
114514_t88.79 12987.57 13992.45 9898.21 5381.74 12196.99 12295.45 16175.16 29782.48 18095.69 12968.59 20698.50 12080.33 19095.18 10897.10 138
PatchT79.75 26976.85 28088.42 21089.55 27475.49 26777.37 36294.61 20663.07 34782.46 18173.32 36075.52 13393.41 32251.36 35484.43 20496.36 161
TR-MVS86.30 17584.93 18290.42 16794.63 14377.58 23296.57 15293.82 24880.30 23382.42 18295.16 14658.74 26797.55 16174.88 24787.82 17696.13 170
HQP-NCC92.08 22397.63 7290.52 3382.30 183
ACMP_Plane92.08 22397.63 7290.52 3382.30 183
HQP4-MVS82.30 18397.32 17791.13 231
HQP-MVS87.91 15287.55 14088.98 20192.08 22378.48 19997.63 7294.80 19290.52 3382.30 18394.56 16265.40 22497.32 17787.67 13083.01 21491.13 231
CR-MVSNet83.53 22081.36 23690.06 17790.16 26279.75 16679.02 35891.12 31184.24 15682.27 18780.35 33975.45 13493.67 31763.37 31686.25 18896.75 152
RPMNet79.85 26875.92 28691.64 13190.16 26279.75 16679.02 35895.44 16258.43 36582.27 18772.55 36273.03 17198.41 12846.10 36586.25 18896.75 152
CVMVSNet84.83 19985.57 16882.63 31291.55 23660.38 35495.13 22595.03 18080.60 22382.10 18994.71 15966.40 21990.19 35174.30 25490.32 15597.31 130
iter_conf_final89.51 11189.21 10890.39 16895.60 11484.44 7097.22 9989.09 33389.11 5282.07 19092.80 19187.03 2596.03 23289.10 11580.89 22890.70 236
PLCcopyleft83.97 788.00 14987.38 14589.83 18798.02 5976.46 25097.16 10994.43 21779.26 25681.98 19196.28 11669.36 20399.27 7477.71 21692.25 14393.77 214
Jie Liao, Yanping Fu, Qingan Yan, Chunxia xiao: Pyramid Multi-View Stereo with Local Consistency. Pacific Graphics 2019
JIA-IIPM79.00 27877.20 27684.40 29489.74 27164.06 34275.30 36695.44 16262.15 35081.90 19259.08 37078.92 7795.59 26466.51 30185.78 19693.54 217
Anonymous2024052983.15 22780.60 24690.80 15795.74 11178.27 20796.81 13994.92 18460.10 36181.89 19392.54 19545.82 33098.82 10879.25 20378.32 25495.31 188
tttt051788.57 13588.19 12589.71 19193.00 19275.99 26195.67 20196.67 6680.78 21981.82 19494.40 16588.97 1497.58 15876.05 23786.31 18795.57 181
BH-RMVSNet86.84 16685.28 17391.49 13695.35 12180.26 15596.95 12992.21 29582.86 19081.77 19595.46 13759.34 26397.64 15469.79 28593.81 12496.57 157
iter_conf0590.14 10189.79 10291.17 14695.85 10986.93 2797.68 7088.67 34089.93 4281.73 19692.80 19190.37 896.03 23290.44 9780.65 23290.56 238
HQP_MVS87.50 15887.09 15288.74 20691.86 23277.96 21997.18 10594.69 19789.89 4381.33 19794.15 17264.77 23097.30 17987.08 13482.82 21890.96 233
plane_prior377.75 22990.17 4081.33 197
VPA-MVSNet85.32 19183.83 19789.77 19090.25 25982.63 10096.36 16797.07 2983.03 18581.21 19989.02 24661.58 24996.31 22485.02 14970.95 28790.36 241
GeoE86.36 17385.20 17489.83 18793.17 18676.13 25597.53 8092.11 29679.58 24880.99 20094.01 17566.60 21896.17 23073.48 26189.30 16197.20 135
GA-MVS85.79 18484.04 19691.02 15189.47 27680.27 15496.90 13394.84 19085.57 11780.88 20189.08 24456.56 28996.47 21977.72 21585.35 20096.34 163
1112_ss88.60 13487.47 14392.00 11993.21 18480.97 13596.47 15892.46 29183.64 17380.86 20297.30 8480.24 6497.62 15577.60 21885.49 19897.40 126
dp84.30 20982.31 22290.28 17294.24 15677.97 21886.57 33495.53 15479.94 24280.75 20385.16 30871.49 18996.39 22163.73 31383.36 21196.48 159
Test_1112_low_res88.03 14886.73 15791.94 12193.15 18780.88 13896.44 16192.41 29383.59 17580.74 20491.16 21780.18 6597.59 15777.48 22185.40 19997.36 128
cascas86.50 17184.48 18892.55 9692.64 20485.95 3697.04 12195.07 17975.32 29580.50 20591.02 21954.33 30397.98 14086.79 13987.62 17793.71 215
TAPA-MVS81.61 1285.02 19683.67 19989.06 19896.79 9273.27 28995.92 19094.79 19474.81 30080.47 20696.83 10371.07 19298.19 13649.82 35992.57 13795.71 178
Andrea Romanoni, Matteo Matteucci: TAPA-MVS: Textureless-Aware PAtchMatch Multi-View Stereo. ICCV 2019
OPM-MVS85.84 18285.10 17988.06 22188.34 28777.83 22695.72 19994.20 22887.89 7580.45 20794.05 17458.57 26897.26 18383.88 15882.76 22089.09 272
Ray L. Khuboni, Hongjun Xu: Octagram Propagation Matching for Multi-Scale View Stereopsis (OPM-MVS).
nrg03086.79 16885.43 17090.87 15688.76 28185.34 4897.06 12094.33 22384.31 15080.45 20791.98 20372.36 17796.36 22288.48 12271.13 28590.93 235
EI-MVSNet85.80 18385.20 17487.59 23391.55 23677.41 23595.13 22595.36 16780.43 23080.33 20994.71 15973.72 16495.97 23776.96 22778.64 24789.39 259
MVSTER89.25 11888.92 11590.24 17395.98 10684.66 6796.79 14095.36 16787.19 9380.33 20990.61 22790.02 1295.97 23785.38 14678.64 24790.09 250
ADS-MVSNet279.57 27277.53 27485.71 26993.78 16872.13 29779.48 35486.11 35273.09 31480.14 21179.99 34162.15 24390.14 35259.49 32883.52 20894.85 194
ADS-MVSNet81.26 25678.36 26889.96 18293.78 16879.78 16479.48 35493.60 26273.09 31480.14 21179.99 34162.15 24395.24 27959.49 32883.52 20894.85 194
test_fmvs279.59 27179.90 25878.67 33082.86 34455.82 36395.20 22189.55 32781.09 21480.12 21389.80 23834.31 35993.51 32087.82 12778.36 25386.69 319
baseline290.39 9690.21 9090.93 15290.86 25080.99 13495.20 22197.41 1686.03 11080.07 21494.61 16190.58 697.47 17087.29 13389.86 15894.35 203
Effi-MVS+-dtu84.61 20384.90 18383.72 30291.96 22963.14 34694.95 23293.34 27485.57 11779.79 21587.12 27561.99 24695.61 26383.55 16785.83 19592.41 227
VPNet84.69 20182.92 21290.01 17889.01 28083.45 8896.71 14695.46 16085.71 11579.65 21692.18 19956.66 28896.01 23683.05 17567.84 31890.56 238
SDMVSNet87.02 16285.61 16791.24 14394.14 15983.30 9193.88 25795.98 13184.30 15279.63 21792.01 20058.23 27197.68 15290.28 10382.02 22492.75 223
sd_testset84.62 20283.11 21089.17 19694.14 15977.78 22791.54 29894.38 22084.30 15279.63 21792.01 20052.28 30896.98 19677.67 21782.02 22492.75 223
CLD-MVS87.97 15087.48 14289.44 19392.16 22180.54 14898.14 3894.92 18491.41 2379.43 21995.40 13862.34 24197.27 18290.60 9382.90 21790.50 240
Zhaoxin Li, Wangmeng Zuo, Zhaoqi Wang, Lei Zhang: Confidence-based Large-scale Dense Multi-view Stereo. IEEE Transaction on Image Processing, 2020
IB-MVS85.34 488.67 13187.14 15193.26 6993.12 19084.32 7298.76 1997.27 1987.19 9379.36 22090.45 22983.92 4298.53 11984.41 15269.79 29896.93 142
Christian Sormann, Mattia Rossi, Andreas Kuhn and Friedrich Fraundorfer: IB-MVS: An Iterative Algorithm for Deep Multi-View Stereo based on Binary Decisions. BMVC 2021
PatchMatch-RL85.00 19783.66 20089.02 20095.86 10874.55 27792.49 28493.60 26279.30 25479.29 22191.47 21058.53 26998.45 12570.22 28392.17 14594.07 209
CNLPA86.96 16385.37 17291.72 12997.59 7279.34 17997.21 10191.05 31474.22 30378.90 22296.75 10967.21 21398.95 10174.68 24990.77 15496.88 146
MVS90.60 9288.64 11796.50 594.25 15590.53 893.33 26997.21 2177.59 27678.88 22397.31 8271.52 18899.69 4289.60 10898.03 5499.27 20
mvs_anonymous88.68 13087.62 13791.86 12394.80 14081.69 12393.53 26594.92 18482.03 20578.87 22490.43 23075.77 12795.34 27385.04 14893.16 13298.55 48
mvsmamba85.17 19484.54 18587.05 24887.94 29175.11 27196.22 17587.79 34486.91 9778.55 22591.77 20964.93 22995.91 24386.94 13879.80 23490.12 247
tpm cat183.63 21981.38 23590.39 16893.53 18078.19 21485.56 34195.09 17770.78 32878.51 22683.28 32574.80 14997.03 19366.77 29784.05 20695.95 171
UniMVSNet (Re)85.31 19284.23 19288.55 20989.75 26980.55 14696.72 14496.89 3985.42 12078.40 22788.93 24775.38 13895.52 26778.58 20968.02 31589.57 258
FIs86.73 17086.10 16388.61 20890.05 26580.21 15696.14 18196.95 3585.56 11978.37 22892.30 19776.73 11295.28 27779.51 19979.27 24190.35 242
BH-w/o88.24 14487.47 14390.54 16595.03 13478.54 19897.41 9393.82 24884.08 15778.23 22994.51 16469.34 20497.21 18480.21 19494.58 11495.87 174
UniMVSNet_NR-MVSNet85.49 18984.59 18488.21 21989.44 27779.36 17796.71 14696.41 9985.22 12578.11 23090.98 22176.97 10895.14 28479.14 20468.30 31290.12 247
DU-MVS84.57 20483.33 20788.28 21588.76 28179.36 17796.43 16395.41 16685.42 12078.11 23090.82 22367.61 20795.14 28479.14 20468.30 31290.33 243
dmvs_re84.10 21182.90 21387.70 22891.41 24073.28 28790.59 30593.19 27885.02 13177.96 23293.68 18257.92 27796.18 22975.50 24280.87 22993.63 216
miper_enhance_ethall85.95 18185.20 17488.19 22094.85 13979.76 16596.00 18594.06 23782.98 18777.74 23388.76 24979.42 7095.46 26980.58 18872.42 27989.36 264
v114482.90 23381.27 23787.78 22786.29 30879.07 18896.14 18193.93 24080.05 23977.38 23486.80 28065.50 22295.93 24275.21 24570.13 29388.33 293
FC-MVSNet-test85.96 18085.39 17187.66 23089.38 27878.02 21695.65 20396.87 4085.12 12977.34 23591.94 20676.28 12094.74 29677.09 22478.82 24590.21 245
v2v48283.46 22181.86 22888.25 21786.19 31079.65 17196.34 16994.02 23881.56 21077.32 23688.23 25865.62 22196.03 23277.77 21369.72 30089.09 272
Baseline_NR-MVSNet81.22 25780.07 25484.68 28685.32 32575.12 27096.48 15788.80 33676.24 29177.28 23786.40 29067.61 20794.39 30575.73 24166.73 32884.54 339
V4283.04 23081.53 23387.57 23586.27 30979.09 18795.87 19494.11 23480.35 23277.22 23886.79 28165.32 22696.02 23577.74 21470.14 29287.61 306
v14419282.43 23980.73 24387.54 23685.81 31778.22 20995.98 18693.78 25379.09 25977.11 23986.49 28564.66 23295.91 24374.20 25569.42 30188.49 287
ACMM80.70 1383.72 21882.85 21586.31 26091.19 24272.12 29895.88 19394.29 22580.44 22877.02 24091.96 20455.24 29797.14 19179.30 20280.38 23389.67 257
Qingshan Xu and Wenbing Tao: Multi-Scale Geometric Consistency Guided Multi-View Stereo. CVPR 2019
v119282.31 24380.55 24787.60 23285.94 31478.47 20295.85 19693.80 25179.33 25276.97 24186.51 28463.33 23795.87 24573.11 26270.13 29388.46 289
PCF-MVS84.09 586.77 16985.00 18092.08 11492.06 22683.07 9592.14 28894.47 21479.63 24776.90 24294.78 15871.15 19199.20 8272.87 26391.05 15293.98 210
Andreas Kuhn, Shan Lin, Oliver Erdler: Plane Completion and Filtering for Multi-View Stereo Reconstruction. GCPR 2019
cl2285.11 19584.17 19387.92 22495.06 13378.82 19195.51 20794.22 22779.74 24576.77 24387.92 26375.96 12495.68 25679.93 19772.42 27989.27 266
v192192082.02 24780.23 25187.41 23985.62 31977.92 22295.79 19893.69 25878.86 26376.67 24486.44 28762.50 24095.83 24772.69 26469.77 29988.47 288
WR-MVS84.32 20882.96 21188.41 21189.38 27880.32 15196.59 15196.25 11383.97 16176.63 24590.36 23167.53 20994.86 29475.82 24070.09 29690.06 252
BH-untuned86.95 16485.94 16489.99 17994.52 14777.46 23496.78 14193.37 27381.80 20776.62 24693.81 18166.64 21797.02 19476.06 23693.88 12395.48 184
v124081.70 25079.83 25987.30 24385.50 32077.70 23195.48 20893.44 26778.46 26876.53 24786.44 28760.85 25395.84 24671.59 27170.17 29188.35 292
bld_raw_dy_0_6482.13 24580.76 24286.24 26285.78 31875.03 27294.40 24582.62 36483.12 18176.46 24890.96 22253.83 30594.55 30081.04 18578.60 25089.14 270
PS-MVSNAJss84.91 19884.30 19186.74 25185.89 31674.40 27994.95 23294.16 23183.93 16476.45 24990.11 23771.04 19395.77 25083.16 17379.02 24490.06 252
miper_ehance_all_eth84.57 20483.60 20387.50 23792.64 20478.25 20895.40 21393.47 26679.28 25576.41 25087.64 26676.53 11495.24 27978.58 20972.42 27989.01 277
LPG-MVS_test84.20 21083.49 20586.33 25790.88 24773.06 29095.28 21594.13 23282.20 20076.31 25193.20 18654.83 30196.95 19883.72 16380.83 23088.98 278
LGP-MVS_train86.33 25790.88 24773.06 29094.13 23282.20 20076.31 25193.20 18654.83 30196.95 19883.72 16380.83 23088.98 278
F-COLMAP84.50 20683.44 20687.67 22995.22 12572.22 29595.95 18893.78 25375.74 29276.30 25395.18 14559.50 26198.45 12572.67 26586.59 18592.35 228
tpmvs83.04 23080.77 24189.84 18695.43 11877.96 21985.59 34095.32 17175.31 29676.27 25483.70 32273.89 16197.41 17259.53 32781.93 22694.14 206
tt080581.20 25879.06 26587.61 23186.50 30472.97 29293.66 26095.48 15874.11 30476.23 25591.99 20241.36 34597.40 17377.44 22274.78 26892.45 226
3Dnovator82.32 1089.33 11587.64 13594.42 3293.73 17185.70 4297.73 6696.75 5686.73 10376.21 25695.93 12262.17 24299.68 4481.67 18297.81 6097.88 90
TranMVSNet+NR-MVSNet83.24 22681.71 23087.83 22587.71 29478.81 19396.13 18394.82 19184.52 14476.18 25790.78 22564.07 23394.60 29974.60 25266.59 32990.09 250
c3_l83.80 21682.65 21887.25 24492.10 22277.74 23095.25 21893.04 28578.58 26676.01 25887.21 27475.25 14395.11 28677.54 22068.89 30688.91 283
131488.94 12287.20 14894.17 4093.21 18485.73 4193.33 26996.64 7282.89 18875.98 25996.36 11466.83 21699.39 6783.52 17096.02 10197.39 127
Fast-Effi-MVS+-dtu83.33 22382.60 21985.50 27589.55 27469.38 32396.09 18491.38 30682.30 19975.96 26091.41 21156.71 28695.58 26575.13 24684.90 20391.54 229
XXY-MVS83.84 21582.00 22689.35 19487.13 30081.38 12795.72 19994.26 22680.15 23775.92 26190.63 22661.96 24796.52 21778.98 20673.28 27790.14 246
RRT_MVS83.88 21483.27 20885.71 26987.53 29872.12 29895.35 21494.33 22383.81 16875.86 26291.28 21560.55 25495.09 28983.93 15776.76 25989.90 255
GBi-Net82.42 24080.43 24988.39 21292.66 20181.95 11094.30 24893.38 27079.06 26075.82 26385.66 29656.38 29193.84 31371.23 27475.38 26589.38 261
test182.42 24080.43 24988.39 21292.66 20181.95 11094.30 24893.38 27079.06 26075.82 26385.66 29656.38 29193.84 31371.23 27475.38 26589.38 261
FMVSNet384.71 20082.71 21790.70 16194.55 14587.71 2095.92 19094.67 20081.73 20875.82 26388.08 26166.99 21494.47 30371.23 27475.38 26589.91 254
eth_miper_zixun_eth83.12 22882.01 22586.47 25691.85 23474.80 27394.33 24693.18 28079.11 25875.74 26687.25 27372.71 17395.32 27576.78 22867.13 32489.27 266
IterMVS-LS83.93 21382.80 21687.31 24291.46 23977.39 23695.66 20293.43 26880.44 22875.51 26787.26 27273.72 16495.16 28376.99 22570.72 28989.39 259
Fangjinhua Wang, Silvano Galliani, Christoph Vogel, Marc Pollefeys: IterMVS: Iterative Probability Estimation for Efficient Multi-View Stereo.
3Dnovator+82.88 889.63 11087.85 13094.99 2094.49 15186.76 3097.84 5795.74 14586.10 10875.47 26896.02 12165.00 22899.51 6182.91 17697.07 8198.72 39
test_djsdf83.00 23282.45 22184.64 28884.07 33769.78 31994.80 23794.48 21280.74 22075.41 26987.70 26561.32 25295.10 28783.77 16179.76 23589.04 275
v14882.41 24280.89 23986.99 24986.18 31176.81 24696.27 17293.82 24880.49 22775.28 27086.11 29567.32 21295.75 25275.48 24367.03 32688.42 291
QAPM86.88 16584.51 18693.98 4394.04 16485.89 3997.19 10496.05 12873.62 30875.12 27195.62 13262.02 24599.74 3470.88 27896.06 10096.30 167
UniMVSNet_ETH3D80.86 26278.75 26787.22 24586.31 30772.02 30091.95 28993.76 25673.51 30975.06 27290.16 23543.04 33995.66 25776.37 23478.55 25193.98 210
cl____83.27 22482.12 22386.74 25192.20 21775.95 26295.11 22793.27 27678.44 26974.82 27387.02 27774.19 15895.19 28174.67 25069.32 30289.09 272
DIV-MVS_self_test83.27 22482.12 22386.74 25192.19 21875.92 26495.11 22793.26 27778.44 26974.81 27487.08 27674.19 15895.19 28174.66 25169.30 30389.11 271
FMVSNet282.79 23480.44 24889.83 18792.66 20185.43 4795.42 21194.35 22179.06 26074.46 27587.28 27056.38 29194.31 30669.72 28674.68 26989.76 256
MIMVSNet79.18 27775.99 28588.72 20787.37 29980.66 14379.96 35391.82 30077.38 27974.33 27681.87 33141.78 34290.74 34766.36 30383.10 21394.76 196
RPSCF77.73 28676.63 28181.06 32088.66 28555.76 36487.77 32587.88 34364.82 34674.14 27792.79 19349.22 31896.81 20867.47 29476.88 25890.62 237
ACMP81.66 1184.00 21283.22 20986.33 25791.53 23872.95 29395.91 19293.79 25283.70 17273.79 27892.22 19854.31 30496.89 20283.98 15679.74 23789.16 269
Qingshan Xu and Wenbing Tao: Planar Prior Assisted PatchMatch Multi-View Stereo. AAAI 2020
pmmvs581.34 25579.54 26086.73 25485.02 32776.91 24396.22 17591.65 30377.65 27573.55 27988.61 25155.70 29494.43 30474.12 25673.35 27688.86 284
jajsoiax82.12 24681.15 23885.03 28284.19 33570.70 31294.22 25293.95 23983.07 18373.48 28089.75 23949.66 31795.37 27282.24 17979.76 23589.02 276
mvs_tets81.74 24980.71 24484.84 28384.22 33470.29 31593.91 25693.78 25382.77 19273.37 28189.46 24247.36 32795.31 27681.99 18079.55 24088.92 282
pmmvs482.54 23880.79 24087.79 22686.11 31280.49 15093.55 26493.18 28077.29 28073.35 28289.40 24365.26 22795.05 29175.32 24473.61 27387.83 301
LS3D82.22 24479.94 25789.06 19897.43 7974.06 28293.20 27592.05 29761.90 35173.33 28395.21 14259.35 26299.21 7854.54 34792.48 14093.90 212
v1081.43 25479.53 26187.11 24686.38 30578.87 19094.31 24793.43 26877.88 27273.24 28485.26 30465.44 22395.75 25272.14 26867.71 31986.72 318
v881.88 24880.06 25587.32 24186.63 30379.04 18994.41 24293.65 26078.77 26473.19 28585.57 30066.87 21595.81 24873.84 25967.61 32087.11 314
test0.0.03 182.79 23482.48 22083.74 30186.81 30272.22 29596.52 15595.03 18083.76 17073.00 28693.20 18672.30 17988.88 35464.15 31177.52 25790.12 247
anonymousdsp80.98 26179.97 25684.01 29681.73 34670.44 31492.49 28493.58 26477.10 28472.98 28786.31 29157.58 27894.90 29279.32 20178.63 24986.69 319
XVG-ACMP-BASELINE79.38 27577.90 27283.81 29884.98 32867.14 33489.03 31493.18 28080.26 23672.87 28888.15 26038.55 35096.26 22576.05 23778.05 25588.02 298
WR-MVS_H81.02 25980.09 25283.79 29988.08 29071.26 31194.46 24096.54 8480.08 23872.81 28986.82 27970.36 19992.65 32664.18 31067.50 32187.46 311
OpenMVScopyleft79.58 1486.09 17883.62 20293.50 6290.95 24686.71 3197.44 8895.83 14175.35 29472.64 29095.72 12757.42 28299.64 4871.41 27295.85 10494.13 207
Anonymous2023121179.72 27077.19 27787.33 24095.59 11577.16 24295.18 22494.18 23059.31 36372.57 29186.20 29347.89 32495.66 25774.53 25369.24 30489.18 268
CP-MVSNet81.01 26080.08 25383.79 29987.91 29270.51 31394.29 25195.65 14980.83 21872.54 29288.84 24863.71 23492.32 32968.58 29168.36 31188.55 286
miper_lstm_enhance81.66 25280.66 24584.67 28791.19 24271.97 30291.94 29093.19 27877.86 27372.27 29385.26 30473.46 16793.42 32173.71 26067.05 32588.61 285
PS-CasMVS80.27 26679.18 26283.52 30587.56 29669.88 31894.08 25495.29 17280.27 23572.08 29488.51 25559.22 26592.23 33167.49 29368.15 31488.45 290
FMVSNet179.50 27376.54 28288.39 21288.47 28681.95 11094.30 24893.38 27073.14 31372.04 29585.66 29643.86 33393.84 31365.48 30572.53 27889.38 261
PEN-MVS79.47 27478.26 27083.08 30886.36 30668.58 32693.85 25894.77 19579.76 24471.37 29688.55 25259.79 25792.46 32764.50 30965.40 33188.19 295
Patchmtry77.36 29074.59 29585.67 27189.75 26975.75 26677.85 36191.12 31160.28 35971.23 29780.35 33975.45 13493.56 31957.94 33367.34 32387.68 304
IterMVS80.67 26379.16 26385.20 27989.79 26776.08 25692.97 27991.86 29980.28 23471.20 29885.14 30957.93 27691.34 34172.52 26670.74 28888.18 296
Fangjinhua Wang, Silvano Galliani, Christoph Vogel, Marc Pollefeys: IterMVS: Iterative Probability Estimation for Efficient Multi-View Stereo.
DP-MVS81.47 25378.28 26991.04 14998.14 5578.48 19995.09 23086.97 34661.14 35771.12 29992.78 19459.59 25999.38 6853.11 35186.61 18495.27 190
IterMVS-SCA-FT80.51 26579.10 26484.73 28589.63 27374.66 27492.98 27891.81 30180.05 23971.06 30085.18 30758.04 27391.40 34072.48 26770.70 29088.12 297
v7n79.32 27677.34 27585.28 27884.05 33872.89 29493.38 26793.87 24575.02 29970.68 30184.37 31659.58 26095.62 26267.60 29267.50 32187.32 313
MS-PatchMatch83.05 22981.82 22986.72 25589.64 27279.10 18694.88 23494.59 20879.70 24670.67 30289.65 24050.43 31496.82 20770.82 28195.99 10284.25 342
DTE-MVSNet78.37 28077.06 27882.32 31585.22 32667.17 33393.40 26693.66 25978.71 26570.53 30388.29 25759.06 26692.23 33161.38 32363.28 34087.56 308
pm-mvs180.05 26778.02 27186.15 26385.42 32175.81 26595.11 22792.69 29077.13 28270.36 30487.43 26858.44 27095.27 27871.36 27364.25 33687.36 312
D2MVS82.67 23681.55 23286.04 26587.77 29376.47 24995.21 22096.58 8082.66 19570.26 30585.46 30360.39 25595.80 24976.40 23379.18 24285.83 332
PVSNet_077.72 1581.70 25078.95 26689.94 18390.77 25376.72 24895.96 18796.95 3585.01 13270.24 30688.53 25452.32 30798.20 13586.68 14044.08 37194.89 193
CL-MVSNet_self_test75.81 29974.14 30180.83 32278.33 35667.79 32994.22 25293.52 26577.28 28169.82 30781.54 33361.47 25189.22 35357.59 33653.51 35685.48 334
tfpnnormal78.14 28275.42 28886.31 26088.33 28879.24 18094.41 24296.22 11573.51 30969.81 30885.52 30255.43 29595.75 25247.65 36367.86 31783.95 345
EU-MVSNet76.92 29476.95 27976.83 33684.10 33654.73 36691.77 29392.71 28972.74 31769.57 30988.69 25058.03 27587.43 36064.91 30870.00 29788.33 293
ITE_SJBPF82.38 31387.00 30165.59 33689.55 32779.99 24169.37 31091.30 21441.60 34495.33 27462.86 31874.63 27086.24 325
DSMNet-mixed73.13 31272.45 30875.19 34277.51 35946.82 37185.09 34382.01 36567.61 34169.27 31181.33 33450.89 31186.28 36254.54 34783.80 20792.46 225
MVP-Stereo82.65 23781.67 23185.59 27486.10 31378.29 20693.33 26992.82 28777.75 27469.17 31287.98 26259.28 26495.76 25171.77 26996.88 8582.73 350
Qingsong Yan: MVP-Stereo: A Parallel Multi-View Patchmatch Stereo Method with Dilation Matching for Photogrammetric Application.
MSDG80.62 26477.77 27389.14 19793.43 18277.24 23891.89 29190.18 32369.86 33368.02 31391.94 20652.21 30998.84 10759.32 33083.12 21291.35 230
NR-MVSNet83.35 22281.52 23488.84 20388.76 28181.31 12994.45 24195.16 17684.65 14167.81 31490.82 22370.36 19994.87 29374.75 24866.89 32790.33 243
TransMVSNet (Re)76.94 29374.38 29784.62 28985.92 31575.25 26995.28 21589.18 33273.88 30767.22 31586.46 28659.64 25894.10 30959.24 33152.57 36084.50 340
Anonymous2023120675.29 30273.64 30380.22 32480.75 34763.38 34593.36 26890.71 32173.09 31467.12 31683.70 32250.33 31590.85 34653.63 35070.10 29586.44 322
ppachtmachnet_test77.19 29174.22 29986.13 26485.39 32278.22 20993.98 25591.36 30871.74 32467.11 31784.87 31356.67 28793.37 32352.21 35264.59 33386.80 317
KD-MVS_2432*160077.63 28774.92 29285.77 26790.86 25079.44 17488.08 32193.92 24176.26 28967.05 31882.78 32772.15 18191.92 33461.53 32041.62 37485.94 330
miper_refine_blended77.63 28774.92 29285.77 26790.86 25079.44 17488.08 32193.92 24176.26 28967.05 31882.78 32772.15 18191.92 33461.53 32041.62 37485.94 330
Patchmatch-test78.25 28174.72 29488.83 20491.20 24174.10 28173.91 36988.70 33959.89 36266.82 32085.12 31078.38 8594.54 30148.84 36179.58 23997.86 93
test_fmvs369.56 32369.19 32370.67 34569.01 37047.05 37090.87 30386.81 34871.31 32766.79 32177.15 34916.40 37483.17 36881.84 18162.51 34281.79 358
LTVRE_ROB73.68 1877.99 28375.74 28784.74 28490.45 25772.02 30086.41 33691.12 31172.57 31966.63 32287.27 27154.95 30096.98 19656.29 34275.98 26085.21 336
Andreas Kuhn, Heiko Hirschmüller, Daniel Scharstein, Helmut Mayer: A TV Prior for High-Quality Scalable Multi-View Stereo Reconstruction. International Journal of Computer Vision 2016
OurMVSNet-221017-077.18 29276.06 28480.55 32383.78 34160.00 35690.35 30691.05 31477.01 28666.62 32387.92 26347.73 32594.03 31071.63 27068.44 31087.62 305
testgi74.88 30473.40 30479.32 32880.13 35161.75 34993.21 27486.64 35079.49 25066.56 32491.06 21835.51 35788.67 35556.79 34171.25 28487.56 308
LCM-MVSNet-Re83.75 21783.54 20484.39 29593.54 17564.14 34192.51 28384.03 35983.90 16566.14 32586.59 28367.36 21192.68 32584.89 15092.87 13496.35 162
pmmvs674.65 30571.67 31183.60 30479.13 35469.94 31793.31 27290.88 31861.05 35865.83 32684.15 31943.43 33594.83 29566.62 29860.63 34586.02 329
our_test_377.90 28575.37 28985.48 27685.39 32276.74 24793.63 26191.67 30273.39 31265.72 32784.65 31558.20 27293.13 32457.82 33467.87 31686.57 321
COLMAP_ROBcopyleft73.24 1975.74 30073.00 30783.94 29792.38 20769.08 32491.85 29286.93 34761.48 35465.32 32890.27 23242.27 34196.93 20150.91 35675.63 26485.80 333
Johannes L. Schönberger, Enliang Zheng, Marc Pollefeys, Jan-Michael Frahm: Pixelwise View Selection for Unstructured Multi-View Stereo. ECCV 2016
FMVSNet576.46 29674.16 30083.35 30790.05 26576.17 25489.58 31089.85 32571.39 32665.29 32980.42 33850.61 31387.70 35961.05 32569.24 30486.18 326
ACMH+76.62 1677.47 28974.94 29185.05 28191.07 24571.58 30893.26 27390.01 32471.80 32364.76 33088.55 25241.62 34396.48 21862.35 31971.00 28687.09 315
Patchmatch-RL test76.65 29574.01 30284.55 29077.37 36064.23 34078.49 36082.84 36378.48 26764.63 33173.40 35976.05 12391.70 33976.99 22557.84 34997.72 103
SixPastTwentyTwo76.04 29774.32 29881.22 31984.54 33161.43 35291.16 30089.30 33177.89 27164.04 33286.31 29148.23 31994.29 30763.54 31563.84 33887.93 300
AllTest75.92 29873.06 30684.47 29192.18 21967.29 33091.07 30184.43 35767.63 33763.48 33390.18 23338.20 35197.16 18757.04 33873.37 27488.97 280
TestCases84.47 29192.18 21967.29 33084.43 35767.63 33763.48 33390.18 23338.20 35197.16 18757.04 33873.37 27488.97 280
ACMH75.40 1777.99 28374.96 29087.10 24790.67 25476.41 25193.19 27691.64 30472.47 32063.44 33587.61 26743.34 33697.16 18758.34 33273.94 27187.72 302
Qingshan Xu and Wenbing Tao: Multi-Scale Geometric Consistency Guided Multi-View Stereo. CVPR 2019
ET-MVSNet_ETH3D90.01 10389.03 11092.95 8194.38 15286.77 2998.14 3896.31 11089.30 4963.33 33696.72 11090.09 1193.63 31890.70 9282.29 22398.46 52
USDC78.65 27976.25 28385.85 26687.58 29574.60 27689.58 31090.58 32284.05 15863.13 33788.23 25840.69 34996.86 20666.57 30075.81 26386.09 328
LF4IMVS72.36 31670.82 31476.95 33579.18 35356.33 36086.12 33786.11 35269.30 33563.06 33886.66 28233.03 36192.25 33065.33 30668.64 30882.28 354
dmvs_testset72.00 31973.36 30567.91 34783.83 34031.90 38485.30 34277.12 37282.80 19163.05 33992.46 19661.54 25082.55 37042.22 36971.89 28389.29 265
KD-MVS_self_test70.97 32269.31 32275.95 34176.24 36655.39 36587.45 32690.94 31770.20 33162.96 34077.48 34844.01 33288.09 35661.25 32453.26 35784.37 341
Anonymous2024052172.06 31869.91 31978.50 33277.11 36161.67 35191.62 29790.97 31665.52 34462.37 34179.05 34436.32 35390.96 34557.75 33568.52 30982.87 347
test_040272.68 31469.54 32182.09 31688.67 28471.81 30592.72 28286.77 34961.52 35362.21 34283.91 32043.22 33793.76 31634.60 37272.23 28280.72 360
OpenMVS_ROBcopyleft68.52 2073.02 31369.57 32083.37 30680.54 35071.82 30493.60 26388.22 34162.37 34961.98 34383.15 32635.31 35895.47 26845.08 36675.88 26282.82 348
MVS-HIRNet71.36 32167.00 32684.46 29390.58 25569.74 32079.15 35787.74 34546.09 36961.96 34450.50 37345.14 33195.64 26053.74 34988.11 17588.00 299
test20.0372.36 31671.15 31375.98 34077.79 35759.16 35892.40 28689.35 33074.09 30561.50 34584.32 31748.09 32085.54 36550.63 35762.15 34383.24 346
mvsany_test367.19 32965.34 33172.72 34463.08 37548.57 36983.12 34978.09 37172.07 32161.21 34677.11 35022.94 36987.78 35878.59 20851.88 36181.80 357
PM-MVS69.32 32566.93 32776.49 33773.60 36855.84 36285.91 33879.32 37074.72 30161.09 34778.18 34621.76 37091.10 34470.86 27956.90 35182.51 351
TDRefinement69.20 32665.78 33079.48 32766.04 37462.21 34888.21 32086.12 35162.92 34861.03 34885.61 29933.23 36094.16 30855.82 34553.02 35882.08 355
ambc76.02 33968.11 37151.43 36764.97 37489.59 32660.49 34974.49 35617.17 37392.46 32761.50 32252.85 35984.17 343
pmmvs-eth3d73.59 30870.66 31582.38 31376.40 36473.38 28489.39 31389.43 32972.69 31860.34 35077.79 34746.43 32991.26 34366.42 30257.06 35082.51 351
test_vis1_rt73.96 30672.40 30978.64 33183.91 33961.16 35395.63 20468.18 37876.32 28860.09 35174.77 35429.01 36797.54 16387.74 12875.94 26177.22 364
K. test v373.62 30771.59 31279.69 32682.98 34359.85 35790.85 30488.83 33577.13 28258.90 35282.11 32943.62 33491.72 33865.83 30454.10 35587.50 310
EG-PatchMatch MVS74.92 30372.02 31083.62 30383.76 34273.28 28793.62 26292.04 29868.57 33658.88 35383.80 32131.87 36395.57 26656.97 34078.67 24682.00 356
lessismore_v079.98 32580.59 34958.34 35980.87 36658.49 35483.46 32443.10 33893.89 31263.11 31748.68 36487.72 302
N_pmnet61.30 33360.20 33664.60 35284.32 33317.00 39091.67 29610.98 38961.77 35258.45 35578.55 34549.89 31691.83 33742.27 36863.94 33784.97 337
TinyColmap72.41 31568.99 32482.68 31188.11 28969.59 32188.41 31985.20 35465.55 34357.91 35684.82 31430.80 36595.94 24151.38 35368.70 30782.49 353
UnsupCasMVSNet_eth73.25 31170.57 31681.30 31877.53 35866.33 33587.24 32993.89 24480.38 23157.90 35781.59 33242.91 34090.56 34865.18 30748.51 36587.01 316
MIMVSNet169.44 32466.65 32877.84 33376.48 36362.84 34787.42 32788.97 33466.96 34257.75 35879.72 34332.77 36285.83 36446.32 36463.42 33984.85 338
pmmvs365.75 33162.18 33476.45 33867.12 37364.54 33888.68 31785.05 35554.77 36857.54 35973.79 35729.40 36686.21 36355.49 34647.77 36778.62 362
test_f64.01 33262.13 33569.65 34663.00 37645.30 37683.66 34880.68 36761.30 35555.70 36072.62 36114.23 37684.64 36669.84 28458.11 34879.00 361
new-patchmatchnet68.85 32765.93 32977.61 33473.57 36963.94 34390.11 30888.73 33871.62 32555.08 36173.60 35840.84 34787.22 36151.35 35548.49 36681.67 359
UnsupCasMVSNet_bld68.60 32864.50 33280.92 32174.63 36767.80 32883.97 34692.94 28665.12 34554.63 36268.23 36635.97 35592.17 33360.13 32644.83 36982.78 349
CMPMVSbinary54.94 2175.71 30174.56 29679.17 32979.69 35255.98 36189.59 30993.30 27560.28 35953.85 36389.07 24547.68 32696.33 22376.55 23081.02 22785.22 335
M. Jancosek, T. Pajdla: Multi-View Reconstruction Preserving Weakly-Supported Surfaces. CVPR 2011
new_pmnet66.18 33063.18 33375.18 34376.27 36561.74 35083.79 34784.66 35656.64 36651.57 36471.85 36531.29 36487.93 35749.98 35862.55 34175.86 365
test_method56.77 33454.53 33763.49 35476.49 36240.70 37975.68 36574.24 37419.47 38048.73 36571.89 36419.31 37165.80 38057.46 33747.51 36883.97 344
YYNet173.53 31070.43 31782.85 31084.52 33271.73 30691.69 29591.37 30767.63 33746.79 36681.21 33555.04 29990.43 34955.93 34359.70 34786.38 323
MDA-MVSNet_test_wron73.54 30970.43 31782.86 30984.55 33071.85 30391.74 29491.32 31067.63 33746.73 36781.09 33655.11 29890.42 35055.91 34459.76 34686.31 324
MDA-MVSNet-bldmvs71.45 32067.94 32581.98 31785.33 32468.50 32792.35 28788.76 33770.40 32942.99 36881.96 33046.57 32891.31 34248.75 36254.39 35486.11 327
APD_test156.56 33553.58 33865.50 34967.93 37246.51 37377.24 36472.95 37538.09 37142.75 36975.17 35313.38 37782.78 36940.19 37054.53 35367.23 370
DeepMVS_CXcopyleft64.06 35378.53 35543.26 37768.11 38069.94 33238.55 37076.14 35218.53 37279.34 37143.72 36741.62 37469.57 368
LCM-MVSNet52.52 33848.24 34165.35 35047.63 38541.45 37872.55 37083.62 36131.75 37337.66 37157.92 3719.19 38376.76 37349.26 36044.60 37077.84 363
test_vis3_rt54.10 33751.04 34063.27 35558.16 37746.08 37584.17 34549.32 38856.48 36736.56 37249.48 3758.03 38491.91 33667.29 29549.87 36251.82 374
FPMVS55.09 33652.93 33961.57 35655.98 37840.51 38083.11 35083.41 36237.61 37234.95 37371.95 36314.40 37576.95 37229.81 37365.16 33267.25 369
PMMVS250.90 34046.31 34364.67 35155.53 37946.67 37277.30 36371.02 37740.89 37034.16 37459.32 3699.83 38276.14 37540.09 37128.63 37771.21 366
testf145.70 34242.41 34455.58 35853.29 38240.02 38168.96 37262.67 38227.45 37529.85 37561.58 3675.98 38573.83 37728.49 37643.46 37252.90 372
APD_test245.70 34242.41 34455.58 35853.29 38240.02 38168.96 37262.67 38227.45 37529.85 37561.58 3675.98 38573.83 37728.49 37643.46 37252.90 372
tmp_tt41.54 34541.93 34740.38 36320.10 38926.84 38661.93 37559.09 38414.81 38228.51 37780.58 33735.53 35648.33 38463.70 31413.11 38145.96 377
Gipumacopyleft45.11 34442.05 34654.30 36080.69 34851.30 36835.80 37883.81 36028.13 37427.94 37834.53 37811.41 38176.70 37421.45 37854.65 35234.90 378
S. Galliani, K. Lasinger, K. Schindler: Massively Parallel Multiview Stereopsis by Surface Normal Diffusion. ICCV 2015
ANet_high46.22 34141.28 34861.04 35739.91 38746.25 37470.59 37176.18 37358.87 36423.09 37948.00 37612.58 37966.54 37928.65 37513.62 38070.35 367
MVEpermissive35.65 2233.85 34729.49 35246.92 36241.86 38636.28 38350.45 37756.52 38518.75 38118.28 38037.84 3772.41 38858.41 38118.71 37920.62 37846.06 376
Simon Fuhrmann, Fabian Langguth, Michael Goesele: MVE - A Multi-View Reconstruction Environment. EUROGRAPHICS Workshops on Graphics and Cultural Heritage (2014)
PMVScopyleft34.80 2339.19 34635.53 34950.18 36129.72 38830.30 38559.60 37666.20 38126.06 37717.91 38149.53 3743.12 38774.09 37618.19 38049.40 36346.14 375
Y. Furukawa, J. Ponce: Accurate, dense, and robust multiview stereopsis. PAMI (2010)
E-PMN32.70 34832.39 35033.65 36453.35 38125.70 38774.07 36853.33 38621.08 37817.17 38233.63 38011.85 38054.84 38212.98 38114.04 37920.42 379
EMVS31.70 34931.45 35132.48 36550.72 38423.95 38874.78 36752.30 38720.36 37916.08 38331.48 38112.80 37853.60 38311.39 38213.10 38219.88 380
wuyk23d14.10 35113.89 35414.72 36655.23 38022.91 38933.83 3793.56 3904.94 3834.11 3842.28 3862.06 38919.66 38510.23 3838.74 3831.59 383
testmvs9.92 35212.94 3550.84 3680.65 3900.29 39293.78 2590.39 3910.42 3842.85 38515.84 3840.17 3910.30 3872.18 3840.21 3841.91 382
test1239.07 35311.73 3561.11 3670.50 3910.77 39189.44 3120.20 3920.34 3852.15 38610.72 3850.34 3900.32 3861.79 3850.08 3852.23 381
EGC-MVSNET52.46 33947.56 34267.15 34881.98 34560.11 35582.54 35172.44 3760.11 3860.70 38774.59 35525.11 36883.26 36729.04 37461.51 34458.09 371
test_blank0.00 3560.00 3590.00 3690.00 3920.00 3930.00 3800.00 3930.00 3870.00 3880.00 3870.00 3920.00 3880.00 3860.00 3860.00 384
uanet_test0.00 3560.00 3590.00 3690.00 3920.00 3930.00 3800.00 3930.00 3870.00 3880.00 3870.00 3920.00 3880.00 3860.00 3860.00 384
DCPMVS0.00 3560.00 3590.00 3690.00 3920.00 3930.00 3800.00 3930.00 3870.00 3880.00 3870.00 3920.00 3880.00 3860.00 3860.00 384
cdsmvs_eth3d_5k21.43 35028.57 3530.00 3690.00 3920.00 3930.00 38095.93 1360.00 3870.00 38897.66 6363.57 2350.00 3880.00 3860.00 3860.00 384
pcd_1.5k_mvsjas5.92 3557.89 3580.00 3690.00 3920.00 3930.00 3800.00 3930.00 3870.00 3880.00 38771.04 1930.00 3880.00 3860.00 3860.00 384
sosnet-low-res0.00 3560.00 3590.00 3690.00 3920.00 3930.00 3800.00 3930.00 3870.00 3880.00 3870.00 3920.00 3880.00 3860.00 3860.00 384
sosnet0.00 3560.00 3590.00 3690.00 3920.00 3930.00 3800.00 3930.00 3870.00 3880.00 3870.00 3920.00 3880.00 3860.00 3860.00 384
uncertanet0.00 3560.00 3590.00 3690.00 3920.00 3930.00 3800.00 3930.00 3870.00 3880.00 3870.00 3920.00 3880.00 3860.00 3860.00 384
Regformer0.00 3560.00 3590.00 3690.00 3920.00 3930.00 3800.00 3930.00 3870.00 3880.00 3870.00 3920.00 3880.00 3860.00 3860.00 384
ab-mvs-re8.11 35410.81 3570.00 3690.00 3920.00 3930.00 3800.00 3930.00 3870.00 38897.30 840.00 3920.00 3880.00 3860.00 3860.00 384
uanet0.00 3560.00 3590.00 3690.00 3920.00 3930.00 3800.00 3930.00 3870.00 3880.00 3870.00 3920.00 3880.00 3860.00 3860.00 384
MSC_two_6792asdad97.14 399.05 992.19 496.83 4399.81 2198.08 998.81 2499.43 11
No_MVS97.14 399.05 992.19 496.83 4399.81 2198.08 998.81 2499.43 11
eth-test20.00 392
eth-test0.00 392
OPU-MVS97.30 299.19 792.31 399.12 798.54 1892.06 399.84 1299.11 199.37 199.74 1
save fliter98.24 5183.34 9098.61 2696.57 8191.32 24
test_0728_SECOND95.14 1799.04 1486.14 3499.06 1196.77 5299.84 1297.90 1198.85 2199.45 10
GSMVS97.54 115
sam_mvs177.59 9797.54 115
sam_mvs75.35 141
MTGPAbinary96.33 108
test_post185.88 33930.24 38273.77 16295.07 29073.89 257
test_post33.80 37976.17 12195.97 237
patchmatchnet-post77.09 35177.78 9695.39 270
MTMP97.53 8068.16 379
gm-plane-assit92.27 21379.64 17284.47 14795.15 14797.93 14185.81 142
test9_res96.00 2999.03 1398.31 61
agg_prior294.30 4899.00 1598.57 45
test_prior482.34 10797.75 65
test_prior93.09 7698.68 2681.91 11396.40 10199.06 9498.29 63
新几何296.42 164
旧先验197.39 8279.58 17396.54 8498.08 4184.00 4097.42 7397.62 112
无先验96.87 13496.78 4677.39 27899.52 5979.95 19698.43 54
原ACMM296.84 135
testdata299.48 6376.45 232
segment_acmp82.69 51
testdata195.57 20687.44 84
plane_prior791.86 23277.55 233
plane_prior691.98 22877.92 22264.77 230
plane_prior594.69 19797.30 17987.08 13482.82 21890.96 233
plane_prior494.15 172
plane_prior297.18 10589.89 43
plane_prior191.95 230
plane_prior77.96 21997.52 8390.36 3882.96 216
n20.00 393
nn0.00 393
door-mid79.75 369
test1196.50 89
door80.13 368
HQP5-MVS78.48 199
BP-MVS87.67 130
HQP3-MVS94.80 19283.01 214
HQP2-MVS65.40 224
NP-MVS92.04 22778.22 20994.56 162
ACMMP++_ref78.45 252
ACMMP++79.05 243
Test By Simon71.65 186