This table lists the benchmark results for the high-res multi-view scenario. The following metrics are evaluated:

(*) For exact definitions, detailing how potentially incomplete ground truth is taken into account, see our paper.

The datasets are grouped into different categories, and result averages are computed for a category and method if results of the method are available for all datasets within the category. Note that the category "all" includes both the high-res multi-view and the low-res many-view scenarios.

Methods with suffix _ROB may participate in the Robust Vision Challenge.

Click a dataset result cell to show a visualization of the reconstruction. For training datasets, ground truth and accuracy / completeness visualizations are also available. The visualizations may not work with mobile browsers.




Method Infoallhigh-res
multi-view
indooroutdoorbotani.boulde.bridgedoorexhibi.lectur.living.loungeobserv.old co.statueterrac.
sort bysort bysort bysort bysort bysort bysort bysort bysort bysorted bysort bysort bysort bysort bysort bysort by
IU-MVS99.03 1685.34 5096.86 4492.05 1698.74 198.15 498.97 1799.42 13
PC_three_145291.12 2298.33 298.42 2892.51 299.81 2198.96 299.37 199.70 3
SMA-MVScopyleft94.70 1794.68 1794.76 2598.02 7085.94 3897.47 8796.77 5585.32 12397.92 398.70 1883.09 5299.84 1295.79 3099.08 1098.49 52
Yufeng Yin; Xiaoyan Liu; Zichao Zhang: SMA-MVS: Segmentation-Guided Multi-Scale Anchor Deformation Patch Multi-View Stereo. IEEE Transactions on Circuits and Systems for Video Technology
SED-MVS95.88 596.22 494.87 2299.03 1685.03 6299.12 696.78 4988.72 5697.79 498.91 388.48 1799.82 1898.15 498.97 1799.74 1
test_241102_ONE99.03 1685.03 6296.78 4988.72 5697.79 498.90 688.48 1799.82 18
DVP-MVS++96.05 496.41 394.96 2199.05 1085.34 5098.13 3996.77 5588.38 6397.70 698.77 1292.06 399.84 1297.47 1499.37 199.70 3
test_241102_TWO96.78 4988.72 5697.70 698.91 387.86 2199.82 1898.15 499.00 1599.47 9
patch_mono-295.14 1296.08 792.33 11598.44 4877.84 23598.43 2797.21 2092.58 1197.68 897.65 7886.88 2699.83 1698.25 397.60 7499.33 17
test072699.05 1085.18 5599.11 896.78 4988.75 5497.65 998.91 387.69 22
TSAR-MVS + MP.94.79 1695.17 1493.64 6097.66 8284.10 7995.85 20396.42 10691.26 2197.49 1096.80 11786.50 2898.49 13295.54 3499.03 1398.33 59
Zhenlong Yuan, Jiakai Cao, Zhaoqi Wang, Zhaoxin Li: TSAR-MVS: Textureless-aware Segmentation and Correlative Refinement Guided Multi-View Stereo. Pattern Recognition
MSP-MVS95.62 796.54 192.86 9598.31 5580.10 16997.42 9596.78 4992.20 1497.11 1198.29 3193.46 199.10 10096.01 2699.30 599.38 14
Zhenlong Yuan, Cong Liu, Fei Shen, Zhaoxin Li, Jingguo luo, Tianlu Mao and Zhaoqi Wang: MSP-MVS: Multi-granularity Segmentation Prior Guided Multi-View Stereo. AAAI2025
CNVR-MVS96.30 196.54 195.55 1499.31 587.69 2199.06 997.12 2494.66 396.79 1298.78 1186.42 2999.95 397.59 1399.18 799.00 28
DVP-MVScopyleft95.58 895.91 994.57 2999.05 1085.18 5599.06 996.46 10188.75 5496.69 1398.76 1487.69 2299.76 2597.90 998.85 2298.77 35
Zhenlong Yuan, Jinguo Luo, Fei Shen, Zhaoxin Li, Cong Liu, Tianlu Mao, Zhaoqi Wang: DVP-MVS: Synergize Depth-Edge and Visibility Prior for Multi-View Stereo. AAAI2025
test_0728_THIRD88.38 6396.69 1398.76 1489.64 1399.76 2597.47 1498.84 2499.38 14
SD-MVS94.84 1595.02 1594.29 3797.87 7684.61 7197.76 6596.19 13089.59 4296.66 1598.17 3984.33 3899.60 5196.09 2498.50 4198.66 43
Zhenlong Yuan, Jiakai Cao, Zhaoxin Li, Hao Jiang and Zhaoqi Wang: SD-MVS: Segmentation-driven Deformation Multi-View Stereo with Spherical Refinement and EM optimization. AAAI2024
test_one_060198.91 2084.56 7296.70 6588.06 6996.57 1698.77 1288.04 20
DPE-MVScopyleft95.32 1095.55 1094.64 2898.79 2584.87 6797.77 6196.74 6086.11 10596.54 1798.89 788.39 1999.74 3397.67 1299.05 1299.31 19
Kehua Chen, Zhenlong Yuan, Tianlu Mao, Zhaoqi Wang: Dual-Level Precision Edges Guided Multi-View Stereo with Accurate Planarization. AAAI2025
DPM-MVS96.21 295.53 1198.26 196.26 11495.09 199.15 496.98 3293.39 996.45 1898.79 1090.17 1099.99 189.33 11799.25 699.70 3
PS-MVSNAJ94.17 2793.52 4196.10 895.65 13092.35 298.21 3495.79 15392.42 1396.24 1998.18 3571.04 20399.17 9396.77 2197.39 8296.79 161
旧先验296.97 13374.06 30796.10 2097.76 15988.38 127
test_part298.90 2185.14 6196.07 21
xiu_mvs_v2_base93.92 3593.26 4595.91 1095.07 14792.02 698.19 3595.68 15892.06 1596.01 2298.14 4070.83 20698.96 10896.74 2296.57 10296.76 164
ETH3 D test640095.56 995.41 1396.00 999.02 1989.42 998.75 1796.80 4887.28 8695.88 2398.95 285.92 3199.41 6797.15 1898.95 2099.18 25
HPM-MVS++copyleft95.32 1095.48 1294.85 2398.62 3886.04 3597.81 5996.93 3892.45 1295.69 2498.50 2485.38 3299.85 1094.75 4399.18 798.65 44
NCCC95.63 695.94 894.69 2799.21 785.15 6099.16 396.96 3594.11 695.59 2598.64 2185.07 3499.91 495.61 3399.10 999.00 28
ETH3D-3000-0.194.43 2194.42 2494.45 3197.78 7785.78 4197.98 4996.53 9385.29 12695.45 2698.81 883.36 4799.38 6996.07 2598.53 3798.19 72
EPNet94.06 3294.15 3093.76 5397.27 10184.35 7498.29 3197.64 1394.57 495.36 2796.88 11279.96 7799.12 9991.30 8696.11 10697.82 108
Wanjuan Su, Wenbing Tao: Efficient Edge-Preserving Multi-View Stereo Network for Depth Estimation. AAAI 2023
CANet94.89 1494.64 1895.63 1297.55 8888.12 1599.06 996.39 11394.07 795.34 2897.80 6976.83 12199.87 897.08 1997.64 7398.89 31
TEST998.64 3583.71 8697.82 5796.65 7484.29 15495.16 2998.09 4684.39 3799.36 75
train_agg94.28 2494.45 2293.74 5498.64 3583.71 8697.82 5796.65 7484.50 14695.16 2998.09 4684.33 3899.36 7595.91 2998.96 1998.16 75
test_898.63 3783.64 8997.81 5996.63 7984.50 14695.10 3198.11 4584.33 3899.23 81
DeepPCF-MVS89.82 194.61 1896.17 589.91 19697.09 10470.21 32498.99 1496.69 6895.57 195.08 3299.23 186.40 3099.87 897.84 1198.66 3499.65 6
xxxxxxxxxxxxxcwj94.38 2294.62 1993.68 5898.24 5883.34 9498.61 2392.69 29891.32 1995.07 3398.74 1682.93 5399.38 6995.42 3698.51 3898.32 60
SF-MVS94.17 2794.05 3294.55 3097.56 8785.95 3697.73 6796.43 10584.02 15995.07 3398.74 1682.93 5399.38 6995.42 3698.51 3898.32 60
APDe-MVS94.56 1994.75 1693.96 4898.84 2483.40 9398.04 4796.41 10785.79 11395.00 3598.28 3284.32 4199.18 9297.35 1698.77 2999.28 20
MVSFormer91.36 8790.57 9193.73 5693.00 20588.08 1694.80 24194.48 22380.74 22194.90 3697.13 10378.84 8995.10 29183.77 16397.46 7798.02 87
lupinMVS93.87 3893.58 4094.75 2693.00 20588.08 1699.15 495.50 16891.03 2494.90 3697.66 7478.84 8997.56 16694.64 4697.46 7798.62 46
CS-MVS-test92.98 4993.67 3790.90 16396.52 11076.87 25398.68 1894.73 20890.36 3494.84 3897.89 6277.94 10297.15 19594.28 5097.80 7098.70 42
9.1494.26 2998.10 6698.14 3696.52 9484.74 13894.83 3998.80 982.80 5699.37 7395.95 2898.42 46
testdata90.13 18795.92 12374.17 29096.49 10073.49 31294.82 4097.99 5578.80 9197.93 15083.53 17297.52 7698.29 65
testtj94.09 3194.08 3194.09 4599.28 683.32 9697.59 7796.61 8083.60 17594.77 4198.46 2682.72 5799.64 4795.29 3898.42 4699.32 18
APD-MVScopyleft93.61 3993.59 3993.69 5798.76 2683.26 9797.21 10596.09 13582.41 19894.65 4298.21 3481.96 6298.81 11994.65 4598.36 5499.01 27
Yuesong Wang, Zhaojie Zeng and etc.: Adaptive Patch Deformation for Textureless-Resilient Multi-View Stereo. CVPR2023
test_prior394.03 3394.34 2693.09 8498.68 2981.91 12198.37 2996.40 11086.08 10794.57 4398.02 5283.14 4999.06 10295.05 4098.79 2798.29 65
test_prior298.37 2986.08 10794.57 4398.02 5283.14 4995.05 4098.79 27
CS-MVS92.73 5693.48 4290.48 17696.27 11375.93 27298.55 2594.93 19589.32 4694.54 4597.67 7378.91 8897.02 19993.80 5397.32 8498.49 52
FOURS198.51 4478.01 22798.13 3996.21 12783.04 18594.39 46
ACMMP_NAP93.46 4193.23 4694.17 4297.16 10284.28 7796.82 14296.65 7486.24 10394.27 4797.99 5577.94 10299.83 1693.39 6098.57 3698.39 58
agg_prior194.10 3094.31 2793.48 7098.59 3983.13 9997.77 6196.56 8984.38 15094.19 4898.13 4184.66 3699.16 9495.74 3198.74 3198.15 77
agg_prior98.59 3983.13 9996.56 8994.19 4899.16 94
SteuartSystems-ACMMP94.13 2994.44 2393.20 7995.41 13681.35 13899.02 1396.59 8589.50 4394.18 5098.36 3083.68 4699.45 6594.77 4298.45 4498.81 34
Skip Steuart: Steuart Systems R&D Blog.
ETH3D cwj APD-0.1693.91 3793.76 3594.36 3496.70 10885.74 4297.22 10296.41 10783.94 16294.13 5198.69 2083.13 5199.37 7395.25 3998.39 5197.97 97
PHI-MVS93.59 4093.63 3893.48 7098.05 6981.76 12998.64 2197.13 2382.60 19694.09 5298.49 2580.35 7099.85 1094.74 4498.62 3598.83 33
TSAR-MVS + GP.94.35 2394.50 2093.89 4997.38 9883.04 10298.10 4195.29 18291.57 1793.81 5397.45 8786.64 2799.43 6696.28 2394.01 13099.20 23
CANet_DTU90.98 9490.04 10393.83 5194.76 15686.23 3396.32 17793.12 29193.11 1093.71 5496.82 11663.08 25099.48 6384.29 15595.12 12095.77 188
VNet92.11 7091.22 8294.79 2496.91 10586.98 2697.91 5297.96 986.38 10293.65 5595.74 13570.16 21198.95 11193.39 6088.87 17498.43 56
ZD-MVS99.09 983.22 9896.60 8482.88 19093.61 5698.06 5182.93 5399.14 9695.51 3598.49 42
xiu_mvs_v1_base_debu90.54 10489.54 11493.55 6592.31 21987.58 2296.99 12894.87 19987.23 8893.27 5797.56 8257.43 28998.32 13992.72 7293.46 13894.74 207
xiu_mvs_v1_base90.54 10489.54 11493.55 6592.31 21987.58 2296.99 12894.87 19987.23 8893.27 5797.56 8257.43 28998.32 13992.72 7293.46 13894.74 207
xiu_mvs_v1_base_debi90.54 10489.54 11493.55 6592.31 21987.58 2296.99 12894.87 19987.23 8893.27 5797.56 8257.43 28998.32 13992.72 7293.46 13894.74 207
CDPH-MVS93.12 4592.91 5193.74 5498.65 3483.88 8197.67 7296.26 12383.00 18793.22 6098.24 3381.31 6399.21 8589.12 11898.74 3198.14 78
ETV-MVS92.72 5892.87 5292.28 11894.54 16181.89 12397.98 4995.21 18589.77 4193.11 6196.83 11477.23 11797.50 17395.74 3195.38 11597.44 134
MSLP-MVS++94.28 2494.39 2593.97 4798.30 5684.06 8098.64 2196.93 3890.71 2793.08 6298.70 1879.98 7699.21 8594.12 5199.07 1198.63 45
alignmvs92.97 5092.26 6595.12 1895.54 13387.77 1998.67 1996.38 11488.04 7093.01 6397.45 8779.20 8598.60 12693.25 6588.76 17598.99 30
canonicalmvs92.27 6891.22 8295.41 1595.80 12688.31 1397.09 12294.64 21688.49 6192.99 6497.31 9472.68 18598.57 12893.38 6288.58 17799.36 16
DROMVSNet91.73 7592.11 6990.58 17293.54 18877.77 23798.07 4494.40 22987.44 8292.99 6497.11 10574.59 16696.87 20893.75 5497.08 8997.11 150
jason92.73 5692.23 6694.21 4190.50 26587.30 2598.65 2095.09 18890.61 2892.76 6697.13 10375.28 15597.30 18493.32 6396.75 10198.02 87
jason: jason.
Regformer-194.00 3494.04 3393.87 5098.41 4984.29 7697.43 9397.04 2889.50 4392.75 6798.13 4182.60 5999.26 8093.55 5896.99 9198.06 84
Regformer-293.92 3594.01 3493.67 5998.41 4983.75 8597.43 9397.00 3089.43 4592.69 6898.13 4182.48 6099.22 8393.51 5996.99 9198.04 85
test1294.25 3898.34 5385.55 4796.35 11792.36 6980.84 6599.22 8398.31 5697.98 94
MG-MVS94.25 2693.72 3695.85 1199.38 389.35 1197.98 4998.09 889.99 3792.34 7096.97 10981.30 6498.99 10688.54 12398.88 2199.20 23
h-mvs3389.30 12688.95 12490.36 18095.07 14776.04 26696.96 13497.11 2590.39 3292.22 7195.10 15974.70 16298.86 11693.14 6765.89 33296.16 180
hse-mvs288.22 15588.21 13288.25 22793.54 18873.41 29395.41 21895.89 14790.39 3292.22 7194.22 17674.70 16296.66 21993.14 6764.37 33794.69 211
MCST-MVS96.17 396.12 696.32 799.42 289.36 1098.94 1597.10 2695.17 292.11 7398.46 2687.33 2499.97 297.21 1799.31 499.63 7
SR-MVS92.16 6992.27 6491.83 13698.37 5278.41 21396.67 15495.76 15482.19 20291.97 7498.07 5076.44 12798.64 12393.71 5597.27 8598.45 55
region2R92.72 5892.70 5692.79 9898.68 2980.53 15997.53 8296.51 9585.22 12791.94 7597.98 5777.26 11399.67 4590.83 9398.37 5398.18 73
Effi-MVS+90.70 10089.90 10893.09 8493.61 18583.48 9195.20 22692.79 29683.22 17991.82 7695.70 13771.82 19497.48 17591.25 8793.67 13598.32 60
HFP-MVS92.89 5192.86 5392.98 8998.71 2781.12 14197.58 7896.70 6585.20 12991.75 7797.97 5978.47 9499.71 3790.95 8998.41 4898.12 80
#test#92.99 4892.99 4992.98 8998.71 2781.12 14197.77 6196.70 6585.75 11491.75 7797.97 5978.47 9499.71 3791.36 8598.41 4898.12 80
DeepC-MVS_fast89.06 294.48 2094.30 2895.02 1998.86 2385.68 4598.06 4596.64 7793.64 891.74 7998.54 2280.17 7599.90 592.28 7898.75 3099.49 8
Andreas Kuhn, Christian Sormann, Mattia Rossi, Oliver Erdler, Friedrich Fraundorfer: DeepC-MVS: Deep Confidence Prediction for Multi-View Stereo Reconstruction. 3DV 2020
test117291.64 7992.00 7190.54 17498.20 6274.48 28796.45 16695.65 15981.97 20791.63 8098.02 5275.76 14098.61 12493.16 6697.17 8798.52 51
ACMMPR92.69 6092.67 5792.75 9998.66 3280.57 15597.58 7896.69 6885.20 12991.57 8197.92 6177.01 11899.67 4590.95 8998.41 4898.00 92
DELS-MVS94.98 1394.49 2196.44 696.42 11190.59 799.21 297.02 2994.40 591.46 8297.08 10683.32 4899.69 4192.83 7198.70 3399.04 26
Christian Sormann, Emanuele Santellani, Mattia Rossi, Andreas Kuhn, Friedrich Fraundorfer: DELS-MVS: Deep Epipolar Line Search for Multi-View Stereo. Winter Conference on Applications of Computer Vision (WACV), 2023
XVS92.69 6092.71 5492.63 10598.52 4280.29 16297.37 9896.44 10387.04 9391.38 8397.83 6877.24 11599.59 5290.46 9998.07 6298.02 87
X-MVStestdata86.26 18384.14 20192.63 10598.52 4280.29 16297.37 9896.44 10387.04 9391.38 8320.73 38377.24 11599.59 5290.46 9998.07 6298.02 87
112190.66 10189.82 11093.16 8197.39 9581.71 13293.33 27296.66 7374.45 30491.38 8397.55 8579.27 8299.52 5879.95 19998.43 4598.26 69
PMMVS89.46 12389.92 10788.06 23194.64 15769.57 33196.22 18294.95 19487.27 8791.37 8696.54 12465.88 23297.39 17988.54 12393.89 13297.23 146
Regformer-393.19 4393.19 4793.19 8098.10 6683.01 10397.08 12496.98 3288.98 5191.35 8797.89 6280.80 6699.23 8192.30 7795.20 11797.32 140
dcpmvs_293.10 4693.46 4392.02 12897.77 7879.73 17994.82 23993.86 25486.91 9591.33 8896.76 11885.20 3398.06 14796.90 2097.60 7498.27 68
原ACMM191.22 15497.77 7878.10 22596.61 8081.05 21691.28 8997.42 9177.92 10498.98 10779.85 20298.51 3896.59 168
Regformer-493.06 4793.12 4892.89 9498.10 6682.20 11797.08 12496.92 4088.87 5391.23 9097.89 6280.57 6999.19 9092.21 7995.20 11797.29 144
新几何193.12 8297.44 9181.60 13596.71 6474.54 30391.22 9197.57 8179.13 8699.51 6177.40 22698.46 4398.26 69
UA-Net88.92 13388.48 13090.24 18494.06 17677.18 25093.04 28194.66 21387.39 8491.09 9293.89 18574.92 16098.18 14675.83 24291.43 15795.35 198
ZNCC-MVS92.75 5392.60 5993.23 7898.24 5881.82 12797.63 7396.50 9785.00 13491.05 9397.74 7178.38 9699.80 2490.48 9898.34 5598.07 83
APD-MVS_3200maxsize91.23 9191.35 8190.89 16497.89 7476.35 26296.30 17895.52 16779.82 24491.03 9497.88 6574.70 16298.54 12992.11 8196.89 9597.77 111
GST-MVS92.43 6792.22 6793.04 8798.17 6381.64 13497.40 9796.38 11484.71 14090.90 9597.40 9277.55 11099.76 2589.75 11197.74 7197.72 114
PGM-MVS91.93 7291.80 7492.32 11798.27 5779.74 17895.28 22197.27 1883.83 16790.89 9697.78 7076.12 13499.56 5688.82 12197.93 6897.66 119
SR-MVS-dyc-post91.29 8991.45 8090.80 16697.76 8076.03 26796.20 18595.44 17280.56 22690.72 9797.84 6675.76 14098.61 12491.99 8296.79 9997.75 112
RE-MVS-def91.18 8597.76 8076.03 26796.20 18595.44 17280.56 22690.72 9797.84 6673.36 18091.99 8296.79 9997.75 112
MP-MVScopyleft92.61 6392.67 5792.42 11298.13 6579.73 17997.33 10096.20 12885.63 11690.53 9997.66 7478.14 10099.70 4092.12 8098.30 5797.85 105
Rongxuan Tan, Qing Wang, et al.: MP-MVS: Multi-Scale Windows PatchMatch and Planar Prior Multi-View Stereo.
HY-MVS84.06 691.63 8090.37 9695.39 1696.12 11888.25 1490.22 31097.58 1488.33 6590.50 10091.96 20679.26 8399.06 10290.29 10589.07 17198.88 32
CP-MVS92.54 6592.60 5992.34 11498.50 4579.90 17298.40 2896.40 11084.75 13790.48 10198.09 4677.40 11299.21 8591.15 8898.23 5997.92 100
diffmvs91.17 9290.74 9092.44 11193.11 20482.50 11196.25 18193.62 26987.79 7690.40 10295.93 13273.44 17997.42 17793.62 5792.55 14597.41 136
MVS_Test90.29 11089.18 11993.62 6295.23 14084.93 6594.41 24794.66 21384.31 15290.37 10391.02 22175.13 15797.82 15783.11 17794.42 12698.12 80
zzz-MVS92.74 5492.71 5492.86 9597.90 7280.85 14896.47 16396.33 11887.92 7290.20 10498.18 3576.71 12499.76 2592.57 7598.09 6097.96 98
MTAPA92.45 6692.31 6392.86 9597.90 7280.85 14892.88 28596.33 11887.92 7290.20 10498.18 3576.71 12499.76 2592.57 7598.09 6097.96 98
test_yl91.46 8490.53 9294.24 3997.41 9385.18 5598.08 4297.72 1080.94 21789.85 10696.14 12875.61 14298.81 11990.42 10388.56 17898.74 36
DCV-MVSNet91.46 8490.53 9294.24 3997.41 9385.18 5598.08 4297.72 1080.94 21789.85 10696.14 12875.61 14298.81 11990.42 10388.56 17898.74 36
WTY-MVS92.65 6291.68 7695.56 1396.00 12188.90 1298.23 3397.65 1288.57 5989.82 10897.22 10079.29 8199.06 10289.57 11388.73 17698.73 40
MVS_111021_HR93.41 4293.39 4493.47 7397.34 9982.83 10597.56 8098.27 689.16 4989.71 10997.14 10279.77 7899.56 5693.65 5697.94 6698.02 87
sss90.87 9889.96 10593.60 6394.15 17383.84 8497.14 11598.13 785.93 11189.68 11096.09 13071.67 19599.30 7787.69 13189.16 17097.66 119
test22296.15 11778.41 21395.87 20196.46 10171.97 32489.66 11197.45 8776.33 13198.24 5898.30 64
LFMVS89.27 12787.64 14394.16 4497.16 10285.52 4897.18 10994.66 21379.17 25889.63 11296.57 12355.35 30698.22 14389.52 11589.54 16798.74 36
CostFormer89.08 12988.39 13191.15 15693.13 20279.15 19488.61 32196.11 13483.14 18189.58 11386.93 28083.83 4596.87 20888.22 12985.92 20097.42 135
PVSNet_BlendedMVS90.05 11389.96 10590.33 18297.47 8983.86 8298.02 4896.73 6187.98 7189.53 11489.61 24276.42 12899.57 5494.29 4879.59 24387.57 311
PVSNet_Blended93.13 4492.98 5093.57 6497.47 8983.86 8299.32 196.73 6191.02 2589.53 11496.21 12776.42 12899.57 5494.29 4895.81 11397.29 144
HPM-MVScopyleft91.62 8191.53 7991.89 13297.88 7579.22 19196.99 12895.73 15682.07 20489.50 11697.19 10175.59 14498.93 11490.91 9197.94 6697.54 126
Chunlin Ren, Qingshan Xu, Shikun Zhang, Jiaqi Yang: Hierarchical Prior Mining for Non-local Multi-View Stereo. ICCV 2023
abl_689.80 11689.71 11390.07 18896.53 10975.52 27694.48 24495.04 19181.12 21589.22 11797.00 10868.83 21598.96 10889.86 10895.27 11695.73 189
EI-MVSNet-Vis-set91.84 7491.77 7592.04 12797.60 8481.17 14096.61 15596.87 4288.20 6789.19 11897.55 8578.69 9399.14 9690.29 10590.94 16095.80 187
MP-MVS-pluss92.58 6492.35 6293.29 7597.30 10082.53 10996.44 16896.04 14084.68 14189.12 11998.37 2977.48 11199.74 3393.31 6498.38 5297.59 125
MP-MVS-pluss: MP-MVS-pluss. MP-MVS-pluss
VDD-MVS88.28 15387.02 16392.06 12695.09 14580.18 16897.55 8194.45 22783.09 18389.10 12095.92 13447.97 32998.49 13293.08 7086.91 19097.52 130
baseline90.76 9990.10 10292.74 10092.90 20982.56 10894.60 24394.56 22187.69 7989.06 12195.67 13973.76 17497.51 17290.43 10292.23 15198.16 75
EIA-MVS91.73 7592.05 7090.78 16894.52 16276.40 26198.06 4595.34 18089.19 4888.90 12297.28 9877.56 10997.73 16090.77 9496.86 9898.20 71
HPM-MVS_fast90.38 10990.17 10191.03 15997.61 8377.35 24697.15 11495.48 16979.51 25088.79 12396.90 11071.64 19798.81 11987.01 13997.44 7996.94 154
PAPM92.87 5292.40 6194.30 3692.25 22687.85 1896.40 17296.38 11491.07 2388.72 12496.90 11082.11 6197.37 18190.05 10797.70 7297.67 118
MVS_111021_LR91.60 8291.64 7891.47 14795.74 12778.79 20496.15 18796.77 5588.49 6188.64 12597.07 10772.33 18899.19 9093.13 6996.48 10396.43 172
casdiffmvs90.95 9690.39 9492.63 10592.82 21082.53 10996.83 14194.47 22587.69 7988.47 12695.56 14374.04 17197.54 17090.90 9292.74 14397.83 107
mPP-MVS91.88 7391.82 7392.07 12598.38 5178.63 20797.29 10196.09 13585.12 13188.45 12797.66 7475.53 14599.68 4389.83 10998.02 6597.88 101
PAPR92.74 5492.17 6894.45 3198.89 2284.87 6797.20 10796.20 12887.73 7888.40 12898.12 4478.71 9299.76 2587.99 13096.28 10498.74 36
tpmrst88.36 15087.38 15391.31 14994.36 16879.92 17187.32 33195.26 18485.32 12388.34 12986.13 29680.60 6896.70 21683.78 16285.34 20897.30 143
GG-mvs-BLEND93.49 6994.94 15186.26 3281.62 35397.00 3088.32 13094.30 17491.23 596.21 23288.49 12597.43 8098.00 92
EI-MVSNet-UG-set91.35 8891.22 8291.73 13897.39 9580.68 15296.47 16396.83 4587.92 7288.30 13197.36 9377.84 10599.13 9889.43 11689.45 16895.37 197
MAR-MVS90.63 10290.22 9891.86 13398.47 4778.20 22397.18 10996.61 8083.87 16688.18 13298.18 3568.71 21699.75 3183.66 16897.15 8897.63 122
Zhenyu Xu, Yiguang Liu, Xuelei Shi, Ying Wang, Yunan Zheng: MARMVS: Matching Ambiguity Reduced Multiple View Stereo for Efficient Large Scale Scene Reconstruction. CVPR 2020
DP-MVS Recon91.72 7790.85 8794.34 3599.50 185.00 6498.51 2695.96 14380.57 22588.08 13397.63 8076.84 12099.89 785.67 14594.88 12198.13 79
VDDNet86.44 18084.51 19292.22 12091.56 24681.83 12697.10 12194.64 21669.50 33687.84 13495.19 15248.01 32897.92 15589.82 11086.92 18996.89 158
UGNet87.73 16386.55 16891.27 15295.16 14479.11 19596.35 17596.23 12588.14 6887.83 13590.48 23050.65 31999.09 10180.13 19894.03 12895.60 192
Wanjuan Su, Qingshan Xu, Wenbing Tao: Uncertainty-guided Multi-view Stereo Network for Depth Estimation. IEEE Transactions on Circuits and Systems for Video Technology, 2022
test250690.96 9590.39 9492.65 10493.54 18882.46 11296.37 17397.35 1686.78 9987.55 13695.25 14777.83 10697.50 17384.07 15794.80 12297.98 94
tpm287.35 16886.26 16990.62 17192.93 20878.67 20688.06 32695.99 14179.33 25387.40 13786.43 29180.28 7296.40 22480.23 19685.73 20496.79 161
CPTT-MVS89.72 11889.87 10989.29 20698.33 5473.30 29697.70 6995.35 17975.68 29487.40 13797.44 9070.43 20898.25 14289.56 11496.90 9496.33 177
gg-mvs-nofinetune85.48 19682.90 21893.24 7794.51 16585.82 4079.22 35796.97 3461.19 35887.33 13953.01 37390.58 696.07 23486.07 14397.23 8697.81 109
CHOSEN 280x42091.71 7891.85 7291.29 15194.94 15182.69 10687.89 32796.17 13185.94 11087.27 14094.31 17390.27 995.65 26394.04 5295.86 11195.53 194
EPNet_dtu87.65 16587.89 13786.93 25794.57 15971.37 31896.72 14996.50 9788.56 6087.12 14195.02 16175.91 13894.01 31466.62 30090.00 16495.42 196
Wanjuan Su, Wenbing Tao: Efficient Edge-Preserving Multi-View Stereo Network for Depth Estimation. AAAI 2023
Vis-MVSNetpermissive88.67 14187.82 13991.24 15392.68 21178.82 20196.95 13593.85 25587.55 8187.07 14295.13 15763.43 24897.21 18977.58 22396.15 10597.70 117
Jingyang Zhang, Yao Yao, Shiwei Li, Zixin Luo, Tian Fang: Visibility-aware Multiview Stereo Network. BMVC 2020
thisisatest051590.95 9690.26 9793.01 8894.03 17984.27 7897.91 5296.67 7083.18 18086.87 14395.51 14488.66 1697.85 15680.46 19289.01 17296.92 157
TESTMET0.1,189.83 11589.34 11791.31 14992.54 21780.19 16797.11 11896.57 8786.15 10486.85 14491.83 21079.32 8096.95 20281.30 18692.35 14996.77 163
PVSNet_Blended_VisFu91.24 9090.77 8992.66 10395.09 14582.40 11397.77 6195.87 15088.26 6686.39 14593.94 18476.77 12299.27 7888.80 12294.00 13196.31 178
API-MVS90.18 11188.97 12293.80 5298.66 3282.95 10497.50 8695.63 16275.16 29886.31 14697.69 7272.49 18699.90 581.26 18796.07 10798.56 48
test-LLR88.48 14687.98 13689.98 19292.26 22477.23 24897.11 11895.96 14383.76 17086.30 14791.38 21472.30 18996.78 21480.82 18991.92 15395.94 184
test-mter88.95 13188.60 12889.98 19292.26 22477.23 24897.11 11895.96 14385.32 12386.30 14791.38 21476.37 13096.78 21480.82 18991.92 15395.94 184
PAPM_NR91.46 8490.82 8893.37 7498.50 4581.81 12895.03 23596.13 13284.65 14286.10 14997.65 7879.24 8499.75 3183.20 17596.88 9698.56 48
FA-MVS(test-final)87.71 16486.23 17092.17 12294.19 17280.55 15687.16 33396.07 13882.12 20385.98 15088.35 25872.04 19398.49 13280.26 19589.87 16597.48 133
MDTV_nov1_ep13_2view81.74 13086.80 33580.65 22385.65 15174.26 16876.52 23496.98 153
ECVR-MVScopyleft88.35 15187.25 15591.65 14093.54 18879.40 18696.56 15990.78 32586.78 9985.57 15295.25 14757.25 29397.56 16684.73 15394.80 12297.98 94
AUN-MVS86.25 18485.57 17488.26 22693.57 18773.38 29495.45 21695.88 14883.94 16285.47 15394.21 17773.70 17796.67 21883.54 17164.41 33694.73 210
PVSNet82.34 989.02 13087.79 14092.71 10295.49 13481.50 13697.70 6997.29 1787.76 7785.47 15395.12 15856.90 29598.90 11580.33 19394.02 12997.71 116
EPP-MVSNet89.76 11789.72 11289.87 19793.78 18176.02 26997.22 10296.51 9579.35 25285.11 15595.01 16284.82 3597.10 19787.46 13488.21 18296.50 170
test111188.11 15687.04 16291.35 14893.15 20078.79 20496.57 15790.78 32586.88 9785.04 15695.20 15157.23 29497.39 17983.88 16094.59 12497.87 103
FE-MVS86.06 18684.15 20091.78 13794.33 16979.81 17384.58 34696.61 8076.69 28985.00 15787.38 27170.71 20798.37 13870.39 28491.70 15697.17 149
OMC-MVS88.80 13888.16 13490.72 16995.30 13977.92 23294.81 24094.51 22286.80 9884.97 15896.85 11367.53 22198.60 12685.08 14987.62 18595.63 191
CHOSEN 1792x268891.07 9390.21 9993.64 6095.18 14383.53 9096.26 18096.13 13288.92 5284.90 15993.10 19572.86 18399.62 5088.86 12095.67 11497.79 110
thres20088.92 13387.65 14292.73 10196.30 11285.62 4697.85 5598.86 184.38 15084.82 16093.99 18375.12 15898.01 14870.86 28186.67 19194.56 212
MDTV_nov1_ep1383.69 20494.09 17581.01 14386.78 33696.09 13583.81 16884.75 16184.32 31974.44 16796.54 22063.88 31485.07 209
CDS-MVSNet89.50 12288.96 12391.14 15791.94 24280.93 14697.09 12295.81 15284.26 15584.72 16294.20 17880.31 7195.64 26483.37 17488.96 17396.85 160
Khang Truong Giang, Soohwan Song, Sungho Jo: Curvature-guided dynamic scale networks for Multi-view Stereo. ICLR 2022
ACMMPcopyleft90.39 10789.97 10491.64 14197.58 8678.21 22296.78 14596.72 6384.73 13984.72 16297.23 9971.22 20099.63 4988.37 12892.41 14897.08 152
Qingshan Xu, Weihang Kong, Wenbing Tao, Marc Pollefeys: Multi-Scale Geometric Consistency Guided and Planar Prior Assisted Multi-View Stereo. IEEE Transactions on Pattern Analysis and Machine Intelligence
CSCG92.02 7191.65 7793.12 8298.53 4180.59 15497.47 8797.18 2277.06 28784.64 16497.98 5783.98 4399.52 5890.72 9597.33 8399.23 22
ab-mvs87.08 16984.94 18793.48 7093.34 19683.67 8888.82 31895.70 15781.18 21484.55 16590.14 23862.72 25198.94 11385.49 14782.54 22997.85 105
mvs-test186.83 17487.17 15785.81 27491.96 23965.24 34497.90 5493.34 28285.57 11784.51 16695.14 15661.99 25897.19 19183.55 16990.55 16295.00 202
EPMVS87.47 16785.90 17392.18 12195.41 13682.26 11687.00 33496.28 12285.88 11284.23 16785.57 30275.07 15996.26 22971.14 27992.50 14698.03 86
Anonymous20240521184.41 21381.93 23291.85 13596.78 10778.41 21397.44 8991.34 31570.29 33284.06 16894.26 17541.09 35198.96 10879.46 20482.65 22898.17 74
HyFIR lowres test89.36 12488.60 12891.63 14394.91 15380.76 15195.60 21195.53 16582.56 19784.03 16991.24 21878.03 10196.81 21287.07 13888.41 18097.32 140
tfpn200view988.48 14687.15 15892.47 10996.21 11585.30 5397.44 8998.85 283.37 17783.99 17093.82 18675.36 15297.93 15069.04 28986.24 19794.17 214
thres40088.42 14987.15 15892.23 11996.21 11585.30 5397.44 8998.85 283.37 17783.99 17093.82 18675.36 15297.93 15069.04 28986.24 19793.45 227
tpm85.55 19484.47 19588.80 21590.19 27075.39 27888.79 31994.69 20984.83 13683.96 17285.21 30878.22 9994.68 30276.32 23878.02 26096.34 175
Fast-Effi-MVS+87.93 16186.94 16590.92 16294.04 17779.16 19398.26 3293.72 26581.29 21383.94 17392.90 19669.83 21296.68 21776.70 23291.74 15596.93 155
XVG-OURS-SEG-HR85.74 19285.16 18387.49 24590.22 26971.45 31791.29 30394.09 24481.37 21283.90 17495.22 14960.30 26897.53 17185.58 14684.42 21293.50 225
thisisatest053089.65 11989.02 12191.53 14593.46 19480.78 15096.52 16096.67 7081.69 21083.79 17594.90 16488.85 1597.68 16177.80 21787.49 18896.14 181
DeepC-MVS86.58 391.53 8391.06 8692.94 9294.52 16281.89 12395.95 19595.98 14290.76 2683.76 17696.76 11873.24 18199.71 3791.67 8496.96 9397.22 147
Andreas Kuhn, Christian Sormann, Mattia Rossi, Oliver Erdler, Friedrich Fraundorfer: DeepC-MVS: Deep Confidence Prediction for Multi-View Stereo Reconstruction. 3DV 2020
IS-MVSNet88.67 14188.16 13490.20 18693.61 18576.86 25496.77 14793.07 29284.02 15983.62 17795.60 14274.69 16596.24 23178.43 21693.66 13697.49 132
thres100view90088.30 15286.95 16492.33 11596.10 11984.90 6697.14 11598.85 282.69 19483.41 17893.66 18975.43 14997.93 15069.04 28986.24 19794.17 214
thres600view788.06 15786.70 16792.15 12396.10 11985.17 5997.14 11598.85 282.70 19383.41 17893.66 18975.43 14997.82 15767.13 29885.88 20193.45 227
XVG-OURS85.18 19984.38 19687.59 24090.42 26771.73 31491.06 30694.07 24582.00 20683.29 18095.08 16056.42 30097.55 16883.70 16783.42 21793.49 226
Vis-MVSNet (Re-imp)88.88 13588.87 12688.91 21293.89 18074.43 28896.93 13794.19 23784.39 14983.22 18195.67 13978.24 9894.70 30178.88 21294.40 12797.61 124
TAMVS88.48 14687.79 14090.56 17391.09 25479.18 19296.45 16695.88 14883.64 17383.12 18293.33 19175.94 13795.74 25982.40 18088.27 18196.75 165
baseline188.85 13687.49 14992.93 9395.21 14286.85 2895.47 21594.61 21887.29 8583.11 18394.99 16380.70 6796.89 20682.28 18173.72 27495.05 201
AdaColmapbinary88.81 13787.61 14692.39 11399.33 479.95 17096.70 15395.58 16377.51 27983.05 18496.69 12261.90 26199.72 3684.29 15593.47 13797.50 131
PatchmatchNetpermissive86.83 17485.12 18491.95 13094.12 17482.27 11586.55 33895.64 16184.59 14482.98 18584.99 31477.26 11395.96 24368.61 29391.34 15897.64 121
Fangjinhua Wang, Silvano Galliani, Christoph Vogel, Pablo Speciale, Marc Pollefeys: PatchmatchNet: Learned Multi-View Patchmatch Stereo.
SCA85.63 19383.64 20791.60 14492.30 22281.86 12592.88 28595.56 16484.85 13582.52 18685.12 31258.04 28495.39 27473.89 25987.58 18797.54 126
114514_t88.79 13987.57 14792.45 11098.21 6181.74 13096.99 12895.45 17175.16 29882.48 18795.69 13868.59 21798.50 13180.33 19395.18 11997.10 151
PatchT79.75 27376.85 28388.42 22089.55 28175.49 27777.37 36394.61 21863.07 34982.46 18873.32 36175.52 14693.41 32451.36 35684.43 21196.36 173
TR-MVS86.30 18284.93 18890.42 17794.63 15877.58 24196.57 15793.82 25680.30 23482.42 18995.16 15458.74 27997.55 16874.88 24987.82 18496.13 182
HQP-NCC92.08 23397.63 7390.52 2982.30 190
ACMP_Plane92.08 23397.63 7390.52 2982.30 190
HQP4-MVS82.30 19097.32 18291.13 234
HQP-MVS87.91 16287.55 14888.98 21192.08 23378.48 20997.63 7394.80 20490.52 2982.30 19094.56 16965.40 23697.32 18287.67 13283.01 22191.13 234
CR-MVSNet83.53 22581.36 24190.06 18990.16 27179.75 17679.02 35991.12 31784.24 15682.27 19480.35 34175.45 14793.67 32063.37 31886.25 19596.75 165
RPMNet79.85 27275.92 29091.64 14190.16 27179.75 17679.02 35995.44 17258.43 36782.27 19472.55 36373.03 18298.41 13746.10 36786.25 19596.75 165
CVMVSNet84.83 20585.57 17482.63 31791.55 24760.38 35895.13 22995.03 19280.60 22482.10 19694.71 16666.40 23190.19 35374.30 25690.32 16397.31 142
iter_conf_final89.51 12189.21 11890.39 17895.60 13184.44 7397.22 10289.09 33889.11 5082.07 19792.80 19787.03 2596.03 23589.10 11980.89 23390.70 239
PLCcopyleft83.97 788.00 15987.38 15389.83 19998.02 7076.46 25997.16 11394.43 22879.26 25781.98 19896.28 12669.36 21399.27 7877.71 22192.25 15093.77 222
Jie Liao, Yanping Fu, Qingan Yan, Chunxia xiao: Pyramid Multi-View Stereo with Local Consistency. Pacific Graphics 2019
JIA-IIPM79.00 28177.20 27984.40 29889.74 27864.06 34875.30 36695.44 17262.15 35281.90 19959.08 37178.92 8795.59 26866.51 30385.78 20393.54 224
Anonymous2024052983.15 23280.60 25190.80 16695.74 12778.27 21796.81 14394.92 19660.10 36381.89 20092.54 20145.82 33698.82 11879.25 20878.32 25895.31 199
tttt051788.57 14588.19 13389.71 20393.00 20575.99 27095.67 20896.67 7080.78 22081.82 20194.40 17288.97 1497.58 16576.05 24086.31 19495.57 193
BH-RMVSNet86.84 17385.28 17991.49 14695.35 13880.26 16596.95 13592.21 30282.86 19181.77 20295.46 14559.34 27597.64 16269.79 28793.81 13496.57 169
iter_conf0590.14 11289.79 11191.17 15595.85 12586.93 2797.68 7188.67 34589.93 3881.73 20392.80 19790.37 896.03 23590.44 10180.65 23690.56 241
HQP_MVS87.50 16687.09 16188.74 21691.86 24377.96 22997.18 10994.69 20989.89 3981.33 20494.15 17964.77 24297.30 18487.08 13682.82 22590.96 236
plane_prior377.75 23890.17 3681.33 204
VPA-MVSNet85.32 19783.83 20389.77 20290.25 26882.63 10796.36 17497.07 2783.03 18681.21 20689.02 24861.58 26296.31 22885.02 15170.95 28890.36 244
GeoE86.36 18185.20 18089.83 19993.17 19976.13 26497.53 8292.11 30379.58 24980.99 20794.01 18266.60 23096.17 23373.48 26389.30 16997.20 148
GA-MVS85.79 19184.04 20291.02 16089.47 28380.27 16496.90 13894.84 20285.57 11780.88 20889.08 24656.56 29996.47 22377.72 22085.35 20796.34 175
1112_ss88.60 14487.47 15192.00 12993.21 19780.97 14596.47 16392.46 30083.64 17380.86 20997.30 9680.24 7397.62 16377.60 22285.49 20597.40 137
dp84.30 21582.31 22790.28 18394.24 17177.97 22886.57 33795.53 16579.94 24380.75 21085.16 31071.49 19996.39 22563.73 31583.36 21896.48 171
Test_1112_low_res88.03 15886.73 16691.94 13193.15 20080.88 14796.44 16892.41 30183.59 17680.74 21191.16 21980.18 7497.59 16477.48 22585.40 20697.36 139
cascas86.50 17984.48 19492.55 10892.64 21585.95 3697.04 12795.07 19075.32 29680.50 21291.02 22154.33 31397.98 14986.79 14187.62 18593.71 223
TAPA-MVS81.61 1285.02 20283.67 20589.06 20896.79 10673.27 29895.92 19794.79 20674.81 30180.47 21396.83 11471.07 20298.19 14549.82 36192.57 14495.71 190
Andrea Romanoni, Matteo Matteucci: TAPA-MVS: Textureless-Aware PAtchMatch Multi-View Stereo. ICCV 2019
OPM-MVS85.84 18985.10 18588.06 23188.34 29477.83 23695.72 20694.20 23687.89 7580.45 21494.05 18158.57 28097.26 18883.88 16082.76 22789.09 275
Ray L. Khuboni, Hongjun Xu: Octagram Propagation Matching for Multi-Scale View Stereopsis (OPM-MVS).
nrg03086.79 17685.43 17690.87 16588.76 28885.34 5097.06 12694.33 23184.31 15280.45 21491.98 20572.36 18796.36 22688.48 12671.13 28690.93 238
EI-MVSNet85.80 19085.20 18087.59 24091.55 24777.41 24495.13 22995.36 17780.43 23180.33 21694.71 16673.72 17595.97 24076.96 23078.64 25289.39 263
MVSTER89.25 12888.92 12590.24 18495.98 12284.66 7096.79 14495.36 17787.19 9180.33 21690.61 22990.02 1295.97 24085.38 14878.64 25290.09 254
ADS-MVSNet279.57 27577.53 27785.71 27793.78 18172.13 30579.48 35586.11 35673.09 31580.14 21879.99 34462.15 25590.14 35459.49 33083.52 21594.85 204
ADS-MVSNet81.26 26178.36 27189.96 19493.78 18179.78 17479.48 35593.60 27073.09 31580.14 21879.99 34462.15 25595.24 28359.49 33083.52 21594.85 204
baseline290.39 10790.21 9990.93 16190.86 25980.99 14495.20 22697.41 1586.03 10980.07 22094.61 16890.58 697.47 17687.29 13589.86 16694.35 213
Effi-MVS+-dtu84.61 20984.90 18983.72 30691.96 23963.14 35194.95 23693.34 28285.57 11779.79 22187.12 27761.99 25895.61 26783.55 16985.83 20292.41 230
VPNet84.69 20882.92 21790.01 19089.01 28783.45 9296.71 15195.46 17085.71 11579.65 22292.18 20456.66 29896.01 23983.05 17867.84 31990.56 241
CLD-MVS87.97 16087.48 15089.44 20492.16 23180.54 15898.14 3694.92 19691.41 1879.43 22395.40 14662.34 25397.27 18790.60 9782.90 22490.50 243
Zhaoxin Li, Wangmeng Zuo, Zhaoqi Wang, Lei Zhang: Confidence-based Large-scale Dense Multi-view Stereo. IEEE Transaction on Image Processing, 2020
IB-MVS85.34 488.67 14187.14 16093.26 7693.12 20384.32 7598.76 1697.27 1887.19 9179.36 22490.45 23183.92 4498.53 13084.41 15469.79 29996.93 155
Christian Sormann, Mattia Rossi, Andreas Kuhn and Friedrich Fraundorfer: IB-MVS: An Iterative Algorithm for Deep Multi-View Stereo based on Binary Decisions. BMVC 2021
PatchMatch-RL85.00 20383.66 20689.02 21095.86 12474.55 28692.49 28993.60 27079.30 25579.29 22591.47 21258.53 28198.45 13570.22 28592.17 15294.07 218
CNLPA86.96 17085.37 17891.72 13997.59 8579.34 18997.21 10591.05 32074.22 30578.90 22696.75 12067.21 22598.95 11174.68 25190.77 16196.88 159
MVS90.60 10388.64 12796.50 594.25 17090.53 893.33 27297.21 2077.59 27878.88 22797.31 9471.52 19899.69 4189.60 11298.03 6499.27 21
mvs_anonymous88.68 14087.62 14591.86 13394.80 15581.69 13393.53 26894.92 19682.03 20578.87 22890.43 23275.77 13995.34 27785.04 15093.16 14198.55 50
MVS_030478.43 28376.70 28483.60 30888.22 29669.81 32792.91 28495.10 18772.32 32278.71 22980.29 34333.78 36293.37 32568.77 29280.23 23887.63 308
mvsmamba85.17 20084.54 19187.05 25587.94 29975.11 28196.22 18287.79 34886.91 9578.55 23091.77 21164.93 24195.91 24786.94 14079.80 23990.12 251
tpm cat183.63 22481.38 24090.39 17893.53 19378.19 22485.56 34495.09 18870.78 33078.51 23183.28 32774.80 16197.03 19866.77 29984.05 21395.95 183
UniMVSNet (Re)85.31 19884.23 19888.55 21989.75 27680.55 15696.72 14996.89 4185.42 12178.40 23288.93 24975.38 15195.52 27178.58 21468.02 31689.57 262
FIs86.73 17886.10 17188.61 21890.05 27380.21 16696.14 18896.95 3685.56 12078.37 23392.30 20276.73 12395.28 28179.51 20379.27 24690.35 245
BH-w/o88.24 15487.47 15190.54 17495.03 15078.54 20897.41 9693.82 25684.08 15778.23 23494.51 17169.34 21497.21 18980.21 19794.58 12595.87 186
UniMVSNet_NR-MVSNet85.49 19584.59 19088.21 22989.44 28479.36 18796.71 15196.41 10785.22 12778.11 23590.98 22376.97 11995.14 28879.14 20968.30 31390.12 251
DU-MVS84.57 21083.33 21388.28 22588.76 28879.36 18796.43 17095.41 17685.42 12178.11 23590.82 22567.61 21995.14 28879.14 20968.30 31390.33 246
miper_enhance_ethall85.95 18885.20 18088.19 23094.85 15479.76 17596.00 19294.06 24682.98 18877.74 23788.76 25179.42 7995.46 27380.58 19172.42 28189.36 268
v114482.90 23881.27 24287.78 23686.29 31479.07 19896.14 18893.93 24980.05 24077.38 23886.80 28265.50 23495.93 24675.21 24770.13 29488.33 296
FC-MVSNet-test85.96 18785.39 17787.66 23889.38 28578.02 22695.65 21096.87 4285.12 13177.34 23991.94 20876.28 13294.74 30077.09 22778.82 25090.21 249
v2v48283.46 22681.86 23388.25 22786.19 31679.65 18196.34 17694.02 24781.56 21177.32 24088.23 26065.62 23396.03 23577.77 21869.72 30189.09 275
Baseline_NR-MVSNet81.22 26280.07 25984.68 29085.32 33175.12 28096.48 16288.80 34176.24 29277.28 24186.40 29267.61 21994.39 30875.73 24466.73 33084.54 342
V4283.04 23581.53 23887.57 24286.27 31579.09 19795.87 20194.11 24280.35 23377.22 24286.79 28365.32 23896.02 23877.74 21970.14 29387.61 310
v14419282.43 24480.73 24887.54 24385.81 32378.22 21995.98 19393.78 26179.09 26077.11 24386.49 28764.66 24495.91 24774.20 25769.42 30288.49 290
ACMM80.70 1383.72 22382.85 21986.31 26791.19 25272.12 30695.88 20094.29 23380.44 22977.02 24491.96 20655.24 30797.14 19679.30 20780.38 23789.67 261
Qingshan Xu and Wenbing Tao: Multi-Scale Geometric Consistency Guided Multi-View Stereo. CVPR 2019
v119282.31 24880.55 25287.60 23985.94 32078.47 21295.85 20393.80 25979.33 25376.97 24586.51 28663.33 24995.87 24973.11 26470.13 29488.46 292
PCF-MVS84.09 586.77 17785.00 18692.08 12492.06 23683.07 10192.14 29394.47 22579.63 24876.90 24694.78 16571.15 20199.20 8972.87 26591.05 15993.98 219
Andreas Kuhn, Shan Lin, Oliver Erdler: Plane Completion and Filtering for Multi-View Stereo Reconstruction. GCPR 2019
cl2285.11 20184.17 19987.92 23395.06 14978.82 20195.51 21394.22 23579.74 24676.77 24787.92 26575.96 13695.68 26079.93 20172.42 28189.27 269
v192192082.02 25280.23 25687.41 24685.62 32577.92 23295.79 20593.69 26678.86 26576.67 24886.44 28962.50 25295.83 25172.69 26669.77 30088.47 291
WR-MVS84.32 21482.96 21688.41 22189.38 28580.32 16196.59 15696.25 12483.97 16176.63 24990.36 23367.53 22194.86 29875.82 24370.09 29790.06 256
BH-untuned86.95 17185.94 17289.99 19194.52 16277.46 24396.78 14593.37 28181.80 20876.62 25093.81 18866.64 22997.02 19976.06 23993.88 13395.48 195
v124081.70 25579.83 26387.30 25085.50 32677.70 24095.48 21493.44 27578.46 27076.53 25186.44 28960.85 26595.84 25071.59 27370.17 29288.35 295
bld_raw_dy_0_6482.13 25080.76 24786.24 26985.78 32475.03 28294.40 25082.62 36883.12 18276.46 25290.96 22453.83 31594.55 30481.04 18878.60 25589.14 273
PS-MVSNAJss84.91 20484.30 19786.74 25885.89 32274.40 28994.95 23694.16 23983.93 16476.45 25390.11 23971.04 20395.77 25483.16 17679.02 24990.06 256
miper_ehance_all_eth84.57 21083.60 20987.50 24492.64 21578.25 21895.40 21993.47 27479.28 25676.41 25487.64 26876.53 12695.24 28378.58 21472.42 28189.01 280
LPG-MVS_test84.20 21683.49 21186.33 26490.88 25773.06 29995.28 22194.13 24082.20 20076.31 25593.20 19254.83 31196.95 20283.72 16580.83 23488.98 281
LGP-MVS_train86.33 26490.88 25773.06 29994.13 24082.20 20076.31 25593.20 19254.83 31196.95 20283.72 16580.83 23488.98 281
F-COLMAP84.50 21283.44 21287.67 23795.22 14172.22 30395.95 19593.78 26175.74 29376.30 25795.18 15359.50 27398.45 13572.67 26786.59 19392.35 231
tpmvs83.04 23580.77 24689.84 19895.43 13577.96 22985.59 34395.32 18175.31 29776.27 25883.70 32473.89 17297.41 17859.53 32981.93 23194.14 216
3Dnovator82.32 1089.33 12587.64 14394.42 3393.73 18485.70 4497.73 6796.75 5986.73 10176.21 25995.93 13262.17 25499.68 4381.67 18597.81 6997.88 101
TranMVSNet+NR-MVSNet83.24 23181.71 23587.83 23487.71 30278.81 20396.13 19094.82 20384.52 14576.18 26090.78 22764.07 24594.60 30374.60 25466.59 33190.09 254
c3_l83.80 22182.65 22387.25 25192.10 23277.74 23995.25 22493.04 29378.58 26876.01 26187.21 27675.25 15695.11 29077.54 22468.89 30788.91 286
131488.94 13287.20 15694.17 4293.21 19785.73 4393.33 27296.64 7782.89 18975.98 26296.36 12566.83 22899.39 6883.52 17396.02 10997.39 138
test_part184.72 20682.85 21990.34 18195.73 12984.79 6996.75 14894.10 24379.05 26475.97 26389.51 24367.69 21895.94 24479.34 20567.50 32290.30 248
Fast-Effi-MVS+-dtu83.33 22882.60 22485.50 28189.55 28169.38 33296.09 19191.38 31282.30 19975.96 26491.41 21356.71 29695.58 26975.13 24884.90 21091.54 232
XXY-MVS83.84 22082.00 23189.35 20587.13 30781.38 13795.72 20694.26 23480.15 23875.92 26590.63 22861.96 26096.52 22178.98 21173.28 27990.14 250
RRT_MVS83.88 21983.27 21485.71 27787.53 30572.12 30695.35 22094.33 23183.81 16875.86 26691.28 21760.55 26695.09 29383.93 15976.76 26389.90 259
GBi-Net82.42 24580.43 25488.39 22292.66 21281.95 11894.30 25393.38 27879.06 26175.82 26785.66 29856.38 30193.84 31671.23 27675.38 26889.38 265
test182.42 24580.43 25488.39 22292.66 21281.95 11894.30 25393.38 27879.06 26175.82 26785.66 29856.38 30193.84 31671.23 27675.38 26889.38 265
FMVSNet384.71 20782.71 22290.70 17094.55 16087.71 2095.92 19794.67 21281.73 20975.82 26788.08 26366.99 22694.47 30671.23 27675.38 26889.91 258
eth_miper_zixun_eth83.12 23382.01 23086.47 26391.85 24574.80 28394.33 25193.18 28879.11 25975.74 27087.25 27572.71 18495.32 27976.78 23167.13 32689.27 269
IterMVS-LS83.93 21882.80 22187.31 24991.46 25077.39 24595.66 20993.43 27680.44 22975.51 27187.26 27473.72 17595.16 28776.99 22870.72 29089.39 263
Fangjinhua Wang, Silvano Galliani, Christoph Vogel, Marc Pollefeys: IterMVS: Iterative Probability Estimation for Efficient Multi-View Stereo.
3Dnovator+82.88 889.63 12087.85 13894.99 2094.49 16686.76 3097.84 5695.74 15586.10 10675.47 27296.02 13165.00 24099.51 6182.91 17997.07 9098.72 41
test_djsdf83.00 23782.45 22684.64 29284.07 34269.78 32894.80 24194.48 22380.74 22175.41 27387.70 26761.32 26495.10 29183.77 16379.76 24089.04 278
v14882.41 24780.89 24486.99 25686.18 31776.81 25596.27 17993.82 25680.49 22875.28 27486.11 29767.32 22495.75 25675.48 24567.03 32888.42 294
QAPM86.88 17284.51 19293.98 4694.04 17785.89 3997.19 10896.05 13973.62 30975.12 27595.62 14162.02 25799.74 3370.88 28096.06 10896.30 179
UniMVSNet_ETH3D80.86 26678.75 27087.22 25286.31 31372.02 30891.95 29493.76 26473.51 31075.06 27690.16 23743.04 34595.66 26176.37 23778.55 25693.98 219
cl____83.27 22982.12 22886.74 25892.20 22775.95 27195.11 23193.27 28578.44 27174.82 27787.02 27974.19 16995.19 28574.67 25269.32 30389.09 275
DIV-MVS_self_test83.27 22982.12 22886.74 25892.19 22875.92 27395.11 23193.26 28678.44 27174.81 27887.08 27874.19 16995.19 28574.66 25369.30 30489.11 274
FMVSNet282.79 23980.44 25389.83 19992.66 21285.43 4995.42 21794.35 23079.06 26174.46 27987.28 27256.38 30194.31 30969.72 28874.68 27189.76 260
MIMVSNet79.18 28075.99 28988.72 21787.37 30680.66 15379.96 35491.82 30777.38 28174.33 28081.87 33341.78 34890.74 34966.36 30583.10 22094.76 206
RPSCF77.73 29076.63 28581.06 32588.66 29255.76 36787.77 32887.88 34764.82 34874.14 28192.79 19949.22 32596.81 21267.47 29776.88 26290.62 240
ACMP81.66 1184.00 21783.22 21586.33 26491.53 24972.95 30195.91 19993.79 26083.70 17273.79 28292.22 20354.31 31496.89 20683.98 15879.74 24289.16 272
Qingshan Xu and Wenbing Tao: Planar Prior Assisted PatchMatch Multi-View Stereo. AAAI 2020
pmmvs581.34 26079.54 26486.73 26185.02 33376.91 25296.22 18291.65 31077.65 27773.55 28388.61 25355.70 30494.43 30774.12 25873.35 27888.86 287
jajsoiax82.12 25181.15 24385.03 28684.19 34070.70 32094.22 25793.95 24883.07 18473.48 28489.75 24049.66 32495.37 27682.24 18279.76 24089.02 279
mvs_tets81.74 25480.71 24984.84 28784.22 33970.29 32393.91 26193.78 26182.77 19273.37 28589.46 24447.36 33395.31 28081.99 18379.55 24588.92 285
pmmvs482.54 24380.79 24587.79 23586.11 31880.49 16093.55 26793.18 28877.29 28273.35 28689.40 24565.26 23995.05 29575.32 24673.61 27587.83 304
LS3D82.22 24979.94 26289.06 20897.43 9274.06 29293.20 27992.05 30461.90 35373.33 28795.21 15059.35 27499.21 8554.54 34992.48 14793.90 221
v1081.43 25979.53 26587.11 25386.38 31178.87 20094.31 25293.43 27677.88 27473.24 28885.26 30665.44 23595.75 25672.14 27067.71 32086.72 322
v881.88 25380.06 26087.32 24886.63 31079.04 19994.41 24793.65 26878.77 26673.19 28985.57 30266.87 22795.81 25273.84 26167.61 32187.11 318
test0.0.03 182.79 23982.48 22583.74 30586.81 30972.22 30396.52 16095.03 19283.76 17073.00 29093.20 19272.30 18988.88 35664.15 31377.52 26190.12 251
anonymousdsp80.98 26579.97 26184.01 30081.73 34870.44 32292.49 28993.58 27277.10 28672.98 29186.31 29357.58 28894.90 29679.32 20678.63 25486.69 323
XVG-ACMP-BASELINE79.38 27877.90 27583.81 30284.98 33467.14 34189.03 31793.18 28880.26 23772.87 29288.15 26238.55 35496.26 22976.05 24078.05 25988.02 301
WR-MVS_H81.02 26380.09 25783.79 30388.08 29871.26 31994.46 24596.54 9180.08 23972.81 29386.82 28170.36 20992.65 32964.18 31267.50 32287.46 315
OpenMVScopyleft79.58 1486.09 18583.62 20893.50 6890.95 25686.71 3197.44 8995.83 15175.35 29572.64 29495.72 13657.42 29299.64 4771.41 27495.85 11294.13 217
Anonymous2023121179.72 27477.19 28087.33 24795.59 13277.16 25195.18 22894.18 23859.31 36572.57 29586.20 29547.89 33095.66 26174.53 25569.24 30589.18 271
CP-MVSNet81.01 26480.08 25883.79 30387.91 30070.51 32194.29 25695.65 15980.83 21972.54 29688.84 25063.71 24692.32 33268.58 29468.36 31288.55 289
miper_lstm_enhance81.66 25780.66 25084.67 29191.19 25271.97 31091.94 29593.19 28777.86 27572.27 29785.26 30673.46 17893.42 32373.71 26267.05 32788.61 288
PS-CasMVS80.27 27079.18 26683.52 31087.56 30469.88 32694.08 25995.29 18280.27 23672.08 29888.51 25759.22 27792.23 33467.49 29668.15 31588.45 293
FMVSNet179.50 27676.54 28688.39 22288.47 29381.95 11894.30 25393.38 27873.14 31472.04 29985.66 29843.86 33993.84 31665.48 30772.53 28089.38 265
PEN-MVS79.47 27778.26 27383.08 31386.36 31268.58 33493.85 26294.77 20779.76 24571.37 30088.55 25459.79 26992.46 33064.50 31165.40 33388.19 298
Patchmtry77.36 29474.59 29985.67 27989.75 27675.75 27577.85 36291.12 31760.28 36171.23 30180.35 34175.45 14793.56 32257.94 33567.34 32587.68 307
IterMVS80.67 26779.16 26785.20 28489.79 27576.08 26592.97 28391.86 30680.28 23571.20 30285.14 31157.93 28791.34 34372.52 26870.74 28988.18 299
Fangjinhua Wang, Silvano Galliani, Christoph Vogel, Marc Pollefeys: IterMVS: Iterative Probability Estimation for Efficient Multi-View Stereo.
DP-MVS81.47 25878.28 27291.04 15898.14 6478.48 20995.09 23486.97 35061.14 35971.12 30392.78 20059.59 27199.38 6953.11 35386.61 19295.27 200
IterMVS-SCA-FT80.51 26979.10 26884.73 28989.63 28074.66 28492.98 28291.81 30880.05 24071.06 30485.18 30958.04 28491.40 34272.48 26970.70 29188.12 300
v7n79.32 27977.34 27885.28 28384.05 34372.89 30293.38 27093.87 25375.02 30070.68 30584.37 31859.58 27295.62 26667.60 29567.50 32287.32 317
MS-PatchMatch83.05 23481.82 23486.72 26289.64 27979.10 19694.88 23894.59 22079.70 24770.67 30689.65 24150.43 32196.82 21170.82 28395.99 11084.25 345
DTE-MVSNet78.37 28477.06 28182.32 32085.22 33267.17 34093.40 26993.66 26778.71 26770.53 30788.29 25959.06 27892.23 33461.38 32563.28 34287.56 312
pm-mvs180.05 27178.02 27486.15 27085.42 32775.81 27495.11 23192.69 29877.13 28470.36 30887.43 27058.44 28295.27 28271.36 27564.25 33887.36 316
D2MVS82.67 24181.55 23786.04 27287.77 30176.47 25895.21 22596.58 8682.66 19570.26 30985.46 30560.39 26795.80 25376.40 23679.18 24785.83 335
PVSNet_077.72 1581.70 25578.95 26989.94 19590.77 26276.72 25795.96 19496.95 3685.01 13370.24 31088.53 25652.32 31698.20 14486.68 14244.08 37194.89 203
CL-MVSNet_self_test75.81 30374.14 30580.83 32778.33 35867.79 33794.22 25793.52 27377.28 28369.82 31181.54 33561.47 26389.22 35557.59 33853.51 35785.48 337
tfpnnormal78.14 28675.42 29286.31 26788.33 29579.24 19094.41 24796.22 12673.51 31069.81 31285.52 30455.43 30595.75 25647.65 36567.86 31883.95 348
EU-MVSNet76.92 29876.95 28276.83 33984.10 34154.73 36991.77 29892.71 29772.74 31869.57 31388.69 25258.03 28687.43 36264.91 31070.00 29888.33 296
ITE_SJBPF82.38 31887.00 30865.59 34389.55 33379.99 24269.37 31491.30 21641.60 35095.33 27862.86 32074.63 27286.24 328
DSMNet-mixed73.13 31572.45 31175.19 34577.51 36146.82 37485.09 34582.01 36967.61 34369.27 31581.33 33650.89 31886.28 36454.54 34983.80 21492.46 229
MVP-Stereo82.65 24281.67 23685.59 28086.10 31978.29 21693.33 27292.82 29577.75 27669.17 31687.98 26459.28 27695.76 25571.77 27196.88 9682.73 353
Qingsong Yan: MVP-Stereo: A Parallel Multi-View Patchmatch Stereo Method with Dilation Matching for Photogrammetric Application.
MSDG80.62 26877.77 27689.14 20793.43 19577.24 24791.89 29690.18 32969.86 33568.02 31791.94 20852.21 31798.84 11759.32 33283.12 21991.35 233
NR-MVSNet83.35 22781.52 23988.84 21388.76 28881.31 13994.45 24695.16 18684.65 14267.81 31890.82 22570.36 20994.87 29774.75 25066.89 32990.33 246
TransMVSNet (Re)76.94 29774.38 30184.62 29385.92 32175.25 27995.28 22189.18 33773.88 30867.22 31986.46 28859.64 27094.10 31259.24 33352.57 36184.50 343
Anonymous2023120675.29 30673.64 30780.22 32980.75 34963.38 35093.36 27190.71 32773.09 31567.12 32083.70 32450.33 32290.85 34853.63 35270.10 29686.44 325
ppachtmachnet_test77.19 29574.22 30386.13 27185.39 32878.22 21993.98 26091.36 31471.74 32667.11 32184.87 31556.67 29793.37 32552.21 35464.59 33586.80 321
KD-MVS_2432*160077.63 29174.92 29685.77 27590.86 25979.44 18488.08 32493.92 25076.26 29067.05 32282.78 32972.15 19191.92 33761.53 32241.62 37485.94 333
miper_refine_blended77.63 29174.92 29685.77 27590.86 25979.44 18488.08 32493.92 25076.26 29067.05 32282.78 32972.15 19191.92 33761.53 32241.62 37485.94 333
Patchmatch-test78.25 28574.72 29888.83 21491.20 25174.10 29173.91 36988.70 34459.89 36466.82 32485.12 31278.38 9694.54 30548.84 36379.58 24497.86 104
FMVS269.56 32569.19 32570.67 34869.01 37247.05 37390.87 30786.81 35271.31 32966.79 32577.15 35216.40 37683.17 37081.84 18462.51 34481.79 361
LTVRE_ROB73.68 1877.99 28775.74 29184.74 28890.45 26672.02 30886.41 33991.12 31772.57 32066.63 32687.27 27354.95 31096.98 20156.29 34475.98 26485.21 339
Andreas Kuhn, Heiko Hirschmüller, Daniel Scharstein, Helmut Mayer: A TV Prior for High-Quality Scalable Multi-View Stereo Reconstruction. International Journal of Computer Vision 2016
OurMVSNet-221017-077.18 29676.06 28880.55 32883.78 34460.00 36090.35 30991.05 32077.01 28866.62 32787.92 26547.73 33194.03 31371.63 27268.44 31187.62 309
testgi74.88 30873.40 30879.32 33380.13 35361.75 35493.21 27886.64 35479.49 25166.56 32891.06 22035.51 36088.67 35756.79 34371.25 28587.56 312
LCM-MVSNet-Re83.75 22283.54 21084.39 29993.54 18864.14 34792.51 28884.03 36383.90 16566.14 32986.59 28567.36 22392.68 32884.89 15292.87 14296.35 174
pmmvs674.65 30971.67 31383.60 30879.13 35669.94 32593.31 27690.88 32461.05 36065.83 33084.15 32143.43 34194.83 29966.62 30060.63 34786.02 332
our_test_377.90 28975.37 29385.48 28285.39 32876.74 25693.63 26491.67 30973.39 31365.72 33184.65 31758.20 28393.13 32757.82 33667.87 31786.57 324
COLMAP_ROBcopyleft73.24 1975.74 30473.00 31083.94 30192.38 21869.08 33391.85 29786.93 35161.48 35665.32 33290.27 23442.27 34796.93 20550.91 35875.63 26785.80 336
Johannes L. Schönberger, Enliang Zheng, Marc Pollefeys, Jan-Michael Frahm: Pixelwise View Selection for Unstructured Multi-View Stereo. ECCV 2016
FMVSNet576.46 30074.16 30483.35 31290.05 27376.17 26389.58 31389.85 33171.39 32865.29 33380.42 34050.61 32087.70 36161.05 32769.24 30586.18 329
ACMH+76.62 1677.47 29374.94 29585.05 28591.07 25571.58 31693.26 27790.01 33071.80 32564.76 33488.55 25441.62 34996.48 22262.35 32171.00 28787.09 319
Patchmatch-RL test76.65 29974.01 30684.55 29477.37 36264.23 34678.49 36182.84 36778.48 26964.63 33573.40 36076.05 13591.70 34176.99 22857.84 35197.72 114
SixPastTwentyTwo76.04 30174.32 30281.22 32484.54 33661.43 35791.16 30489.30 33677.89 27364.04 33686.31 29348.23 32694.29 31063.54 31763.84 34087.93 303
AllTest75.92 30273.06 30984.47 29592.18 22967.29 33891.07 30584.43 36167.63 33963.48 33790.18 23538.20 35597.16 19257.04 34073.37 27688.97 283
TestCases84.47 29592.18 22967.29 33884.43 36167.63 33963.48 33790.18 23538.20 35597.16 19257.04 34073.37 27688.97 283
ACMH75.40 1777.99 28774.96 29487.10 25490.67 26376.41 26093.19 28091.64 31172.47 32163.44 33987.61 26943.34 34297.16 19258.34 33473.94 27387.72 305
Qingshan Xu and Wenbing Tao: Multi-Scale Geometric Consistency Guided Multi-View Stereo. CVPR 2019
ET-MVSNet_ETH3D90.01 11489.03 12092.95 9194.38 16786.77 2998.14 3696.31 12189.30 4763.33 34096.72 12190.09 1193.63 32190.70 9682.29 23098.46 54
USDC78.65 28276.25 28785.85 27387.58 30374.60 28589.58 31390.58 32884.05 15863.13 34188.23 26040.69 35396.86 21066.57 30275.81 26686.09 331
LF4IMVS72.36 31970.82 31676.95 33879.18 35556.33 36486.12 34086.11 35669.30 33763.06 34286.66 28433.03 36492.25 33365.33 30868.64 30982.28 357
KD-MVS_self_test70.97 32469.31 32475.95 34476.24 36855.39 36887.45 32990.94 32370.20 33362.96 34377.48 35144.01 33888.09 35861.25 32653.26 35884.37 344
Anonymous2024052172.06 32169.91 32178.50 33577.11 36361.67 35691.62 30290.97 32265.52 34662.37 34479.05 34736.32 35790.96 34757.75 33768.52 31082.87 350
test_040272.68 31769.54 32382.09 32188.67 29171.81 31392.72 28786.77 35361.52 35562.21 34583.91 32243.22 34393.76 31934.60 37272.23 28480.72 363
OpenMVS_ROBcopyleft68.52 2073.02 31669.57 32283.37 31180.54 35271.82 31293.60 26688.22 34662.37 35161.98 34683.15 32835.31 36195.47 27245.08 36875.88 26582.82 351
MVS-HIRNet71.36 32367.00 32884.46 29790.58 26469.74 32979.15 35887.74 34946.09 37061.96 34750.50 37445.14 33795.64 26453.74 35188.11 18388.00 302
test20.0372.36 31971.15 31575.98 34377.79 35959.16 36292.40 29189.35 33574.09 30661.50 34884.32 31948.09 32785.54 36750.63 35962.15 34583.24 349
mvsany_test67.19 33165.34 33372.72 34763.08 37648.57 37283.12 35078.09 37572.07 32361.21 34977.11 35322.94 37187.78 36078.59 21351.88 36281.80 360
PM-MVS69.32 32766.93 32976.49 34073.60 37055.84 36685.91 34179.32 37474.72 30261.09 35078.18 34921.76 37291.10 34670.86 28156.90 35382.51 354
TDRefinement69.20 32865.78 33279.48 33266.04 37562.21 35388.21 32386.12 35562.92 35061.03 35185.61 30133.23 36394.16 31155.82 34753.02 35982.08 358
ambc76.02 34268.11 37351.43 37064.97 37489.59 33260.49 35274.49 35717.17 37592.46 33061.50 32452.85 36084.17 346
pmmvs-eth3d73.59 31170.66 31782.38 31876.40 36673.38 29489.39 31689.43 33472.69 31960.34 35377.79 35046.43 33591.26 34566.42 30457.06 35282.51 354
K. test v373.62 31071.59 31479.69 33182.98 34659.85 36190.85 30888.83 34077.13 28458.90 35482.11 33143.62 34091.72 34065.83 30654.10 35687.50 314
EG-PatchMatch MVS74.92 30772.02 31283.62 30783.76 34573.28 29793.62 26592.04 30568.57 33858.88 35583.80 32331.87 36695.57 27056.97 34278.67 25182.00 359
lessismore_v079.98 33080.59 35158.34 36380.87 37058.49 35683.46 32643.10 34493.89 31563.11 31948.68 36487.72 305
N_pmnet61.30 33560.20 33864.60 35384.32 33817.00 39091.67 30110.98 38961.77 35458.45 35778.55 34849.89 32391.83 33942.27 37063.94 33984.97 340
TinyColmap72.41 31868.99 32682.68 31688.11 29769.59 33088.41 32285.20 35865.55 34557.91 35884.82 31630.80 36895.94 24451.38 35568.70 30882.49 356
UnsupCasMVSNet_eth73.25 31470.57 31881.30 32377.53 36066.33 34287.24 33293.89 25280.38 23257.90 35981.59 33442.91 34690.56 35065.18 30948.51 36587.01 320
MIMVSNet169.44 32666.65 33077.84 33676.48 36562.84 35287.42 33088.97 33966.96 34457.75 36079.72 34632.77 36585.83 36646.32 36663.42 34184.85 341
pmmvs365.75 33362.18 33676.45 34167.12 37464.54 34588.68 32085.05 35954.77 36957.54 36173.79 35829.40 36986.21 36555.49 34847.77 36778.62 365
FMVS64.01 33462.13 33769.65 34963.00 37745.30 37783.66 34980.68 37161.30 35755.70 36272.62 36214.23 37884.64 36869.84 28658.11 35079.00 364
new-patchmatchnet68.85 32965.93 33177.61 33773.57 37163.94 34990.11 31188.73 34371.62 32755.08 36373.60 35940.84 35287.22 36351.35 35748.49 36681.67 362
UnsupCasMVSNet_bld68.60 33064.50 33480.92 32674.63 36967.80 33683.97 34792.94 29465.12 34754.63 36468.23 36735.97 35892.17 33660.13 32844.83 36982.78 352
CMPMVSbinary54.94 2175.71 30574.56 30079.17 33479.69 35455.98 36589.59 31293.30 28460.28 36153.85 36589.07 24747.68 33296.33 22776.55 23381.02 23285.22 338
M. Jancosek, T. Pajdla: Multi-View Reconstruction Preserving Weakly-Supported Surfaces. CVPR 2011
new_pmnet66.18 33263.18 33575.18 34676.27 36761.74 35583.79 34884.66 36056.64 36851.57 36671.85 36631.29 36787.93 35949.98 36062.55 34375.86 367
test_method56.77 33654.53 33963.49 35576.49 36440.70 38075.68 36574.24 37719.47 38048.73 36771.89 36519.31 37365.80 38057.46 33947.51 36883.97 347
YYNet173.53 31370.43 31982.85 31584.52 33771.73 31491.69 30091.37 31367.63 33946.79 36881.21 33755.04 30990.43 35155.93 34559.70 34986.38 326
MDA-MVSNet_test_wron73.54 31270.43 31982.86 31484.55 33571.85 31191.74 29991.32 31667.63 33946.73 36981.09 33855.11 30890.42 35255.91 34659.76 34886.31 327
MDA-MVSNet-bldmvs71.45 32267.94 32781.98 32285.33 33068.50 33592.35 29288.76 34270.40 33142.99 37081.96 33246.57 33491.31 34448.75 36454.39 35586.11 330
DeepMVS_CXcopyleft64.06 35478.53 35743.26 37868.11 38169.94 33438.55 37176.14 35518.53 37479.34 37143.72 36941.62 37469.57 370
LCM-MVSNet52.52 33848.24 34165.35 35147.63 38541.45 37972.55 37083.62 36531.75 37337.66 37257.92 3729.19 38476.76 37349.26 36244.60 37077.84 366
FPMVS55.09 33752.93 34061.57 35655.98 37840.51 38183.11 35183.41 36637.61 37234.95 37371.95 36414.40 37776.95 37229.81 37365.16 33467.25 371
PMMVS250.90 34046.31 34364.67 35255.53 37946.67 37577.30 36471.02 37940.89 37134.16 37459.32 3709.83 38376.14 37540.09 37128.63 37771.21 368
FMVS145.70 34242.41 34455.58 35853.29 38240.02 38268.96 37262.67 38327.45 37529.85 37561.58 3685.98 38573.83 37728.49 37643.46 37252.90 373
APD_test45.70 34242.41 34455.58 35853.29 38240.02 38268.96 37262.67 38327.45 37529.85 37561.58 3685.98 38573.83 37728.49 37643.46 37252.90 373
tmp_tt41.54 34541.93 34740.38 36320.10 38926.84 38661.93 37559.09 38514.81 38228.51 37780.58 33935.53 35948.33 38463.70 31613.11 38145.96 377
Gipumacopyleft45.11 34442.05 34654.30 36080.69 35051.30 37135.80 37883.81 36428.13 37427.94 37834.53 37811.41 38276.70 37421.45 37854.65 35434.90 378
S. Galliani, K. Lasinger, K. Schindler: Massively Parallel Multiview Stereopsis by Surface Normal Diffusion. ICCV 2015
ANet_high46.22 34141.28 34861.04 35739.91 38746.25 37670.59 37176.18 37658.87 36623.09 37948.00 37612.58 38066.54 37928.65 37513.62 38070.35 369
MVEpermissive35.65 2233.85 34729.49 35246.92 36241.86 38636.28 38450.45 37756.52 38618.75 38118.28 38037.84 3772.41 38858.41 38118.71 37920.62 37846.06 376
Simon Fuhrmann, Fabian Langguth, Michael Goesele: MVE - A Multi-View Reconstruction Environment. EUROGRAPHICS Workshops on Graphics and Cultural Heritage (2014)
PMVScopyleft34.80 2339.19 34635.53 34950.18 36129.72 38830.30 38559.60 37666.20 38226.06 37717.91 38149.53 3753.12 38774.09 37618.19 38049.40 36346.14 375
Y. Furukawa, J. Ponce: Accurate, dense, and robust multiview stereopsis. PAMI (2010)
E-PMN32.70 34832.39 35033.65 36453.35 38125.70 38774.07 36853.33 38721.08 37817.17 38233.63 38011.85 38154.84 38212.98 38114.04 37920.42 379
EMVS31.70 34931.45 35132.48 36550.72 38423.95 38874.78 36752.30 38820.36 37916.08 38331.48 38112.80 37953.60 38311.39 38213.10 38219.88 380
wuyk23d14.10 35113.89 35414.72 36655.23 38022.91 38933.83 3793.56 3904.94 3834.11 3842.28 3862.06 38919.66 38510.23 3838.74 3831.59 383
testmvs9.92 35212.94 3550.84 3680.65 3900.29 39293.78 2630.39 3910.42 3842.85 38515.84 3840.17 3910.30 3872.18 3840.21 3841.91 382
test1239.07 35311.73 3561.11 3670.50 3910.77 39189.44 3150.20 3920.34 3852.15 38610.72 3850.34 3900.32 3861.79 3850.08 3852.23 381
EGC-MVSNET52.46 33947.56 34267.15 35081.98 34760.11 35982.54 35272.44 3780.11 3860.70 38774.59 35625.11 37083.26 36929.04 37461.51 34658.09 372
test_blank0.00 3560.00 3590.00 3690.00 3920.00 3930.00 3800.00 3930.00 3870.00 3880.00 3870.00 3920.00 3880.00 3860.00 3860.00 384
uanet_test0.00 3560.00 3590.00 3690.00 3920.00 3930.00 3800.00 3930.00 3870.00 3880.00 3870.00 3920.00 3880.00 3860.00 3860.00 384
DCPMVS0.00 3560.00 3590.00 3690.00 3920.00 3930.00 3800.00 3930.00 3870.00 3880.00 3870.00 3920.00 3880.00 3860.00 3860.00 384
cdsmvs_eth3d_5k21.43 35028.57 3530.00 3690.00 3920.00 3930.00 38095.93 1460.00 3870.00 38897.66 7463.57 2470.00 3880.00 3860.00 3860.00 384
pcd_1.5k_mvsjas5.92 3557.89 3580.00 3690.00 3920.00 3930.00 3800.00 3930.00 3870.00 3880.00 38771.04 2030.00 3880.00 3860.00 3860.00 384
sosnet-low-res0.00 3560.00 3590.00 3690.00 3920.00 3930.00 3800.00 3930.00 3870.00 3880.00 3870.00 3920.00 3880.00 3860.00 3860.00 384
sosnet0.00 3560.00 3590.00 3690.00 3920.00 3930.00 3800.00 3930.00 3870.00 3880.00 3870.00 3920.00 3880.00 3860.00 3860.00 384
uncertanet0.00 3560.00 3590.00 3690.00 3920.00 3930.00 3800.00 3930.00 3870.00 3880.00 3870.00 3920.00 3880.00 3860.00 3860.00 384
Regformer0.00 3560.00 3590.00 3690.00 3920.00 3930.00 3800.00 3930.00 3870.00 3880.00 3870.00 3920.00 3880.00 3860.00 3860.00 384
ab-mvs-re8.11 35410.81 3570.00 3690.00 3920.00 3930.00 3800.00 3930.00 3870.00 38897.30 960.00 3920.00 3880.00 3860.00 3860.00 384
uanet0.00 3560.00 3590.00 3690.00 3920.00 3930.00 3800.00 3930.00 3870.00 3880.00 3870.00 3920.00 3880.00 3860.00 3860.00 384
MSC_two_6792asdad97.14 399.05 1092.19 496.83 4599.81 2198.08 798.81 2599.43 11
No_MVS97.14 399.05 1092.19 496.83 4599.81 2198.08 798.81 2599.43 11
eth-test20.00 392
eth-test0.00 392
OPU-MVS97.30 299.19 892.31 399.12 698.54 2292.06 399.84 1299.11 199.37 199.74 1
save fliter98.24 5883.34 9498.61 2396.57 8791.32 19
test_0728_SECOND95.14 1799.04 1586.14 3499.06 996.77 5599.84 1297.90 998.85 2299.45 10
GSMVS97.54 126
sam_mvs177.59 10897.54 126
sam_mvs75.35 154
MTGPAbinary96.33 118
test_post185.88 34230.24 38273.77 17395.07 29473.89 259
test_post33.80 37976.17 13395.97 240
patchmatchnet-post77.09 35477.78 10795.39 274
MTMP97.53 8268.16 380
gm-plane-assit92.27 22379.64 18284.47 14895.15 15597.93 15085.81 144
test9_res96.00 2799.03 1398.31 63
agg_prior294.30 4799.00 1598.57 47
test_prior482.34 11497.75 66
test_prior93.09 8498.68 2981.91 12196.40 11099.06 10298.29 65
新几何296.42 171
旧先验197.39 9579.58 18396.54 9198.08 4984.00 4297.42 8197.62 123
无先验96.87 13996.78 4977.39 28099.52 5879.95 19998.43 56
原ACMM296.84 140
testdata299.48 6376.45 235
segment_acmp82.69 58
testdata195.57 21287.44 82
plane_prior791.86 24377.55 242
plane_prior691.98 23877.92 23264.77 242
plane_prior594.69 20997.30 18487.08 13682.82 22590.96 236
plane_prior494.15 179
plane_prior297.18 10989.89 39
plane_prior191.95 241
plane_prior77.96 22997.52 8590.36 3482.96 223
n20.00 393
nn0.00 393
door-mid79.75 373
test1196.50 97
door80.13 372
HQP5-MVS78.48 209
BP-MVS87.67 132
HQP3-MVS94.80 20483.01 221
HQP2-MVS65.40 236
NP-MVS92.04 23778.22 21994.56 169
ACMMP++_ref78.45 257
ACMMP++79.05 248
Test By Simon71.65 196