This table lists the benchmark results for the high-res multi-view scenario. The following metrics are evaluated:

(*) For exact definitions, detailing how potentially incomplete ground truth is taken into account, see our paper.

The datasets are grouped into different categories, and result averages are computed for a category and method if results of the method are available for all datasets within the category. Note that the category "all" includes both the high-res multi-view and the low-res many-view scenarios.

Methods with suffix _ROB may participate in the Robust Vision Challenge.

Click a dataset result cell to show a visualization of the reconstruction. For training datasets, ground truth and accuracy / completeness visualizations are also available. The visualizations may not work with mobile browsers.




Method Infoallhigh-res
multi-view
indooroutdoorbotani.boulde.bridgedoorexhibi.lectur.living.loungeobserv.old co.statueterrac.
sort bysort bysort bysort bysort bysort bysort bysort bysort bysorted bysort bysort bysort bysort bysort bysort by
IU-MVS99.03 1585.34 5396.86 5192.05 2798.74 198.15 1198.97 1799.42 13
PC_three_145291.12 3598.33 298.42 2892.51 299.81 2198.96 399.37 199.70 3
fmvsm_l_conf0.5_n94.89 1695.24 1693.86 4894.42 16084.61 7499.13 1096.15 13392.06 2597.92 398.52 2384.52 3799.74 3898.76 595.67 11097.22 140
SMA-MVScopyleft94.70 2194.68 2194.76 2698.02 5985.94 4097.47 9696.77 6185.32 13797.92 398.70 1583.09 5299.84 1295.79 4299.08 1098.49 51
Yufeng Yin; Xiaoyan Liu; Zichao Zhang: SMA-MVS: Segmentation-Guided Multi-Scale Anchor Deformation Patch Multi-View Stereo. IEEE Transactions on Circuits and Systems for Video Technology
fmvsm_l_conf0.5_n_a94.91 1595.30 1593.72 5694.50 15884.30 8099.14 996.00 14491.94 2897.91 598.60 1884.78 3599.77 2998.84 496.03 10497.08 148
SED-MVS95.88 596.22 494.87 2399.03 1585.03 6699.12 1196.78 5588.72 6697.79 698.91 288.48 1799.82 1898.15 1198.97 1799.74 1
test_241102_ONE99.03 1585.03 6696.78 5588.72 6697.79 698.90 588.48 1799.82 18
DVP-MVS++96.05 496.41 394.96 2299.05 985.34 5398.13 4996.77 6188.38 7397.70 898.77 1092.06 399.84 1297.47 2499.37 199.70 3
test_241102_TWO96.78 5588.72 6697.70 898.91 287.86 2199.82 1898.15 1199.00 1599.47 9
patch_mono-295.14 1396.08 792.33 11598.44 4377.84 24098.43 3697.21 2392.58 1997.68 1097.65 7686.88 2699.83 1698.25 997.60 6799.33 17
test072699.05 985.18 5899.11 1496.78 5588.75 6497.65 1198.91 287.69 22
TSAR-MVS + MP.94.79 2095.17 1893.64 5997.66 6984.10 8395.85 21296.42 10791.26 3397.49 1296.80 11686.50 2898.49 13195.54 4799.03 1398.33 59
Zhenlong Yuan, Jiakai Cao, Zhaoqi Wang, Zhaoxin Li: TSAR-MVS: Textureless-aware Segmentation and Correlative Refinement Guided Multi-View Stereo. Pattern Recognition
test_fmvsm_n_192094.81 1995.60 1192.45 10895.29 12980.96 14999.29 297.21 2394.50 797.29 1398.44 2782.15 5799.78 2898.56 797.68 6596.61 166
MSP-MVS95.62 896.54 192.86 9298.31 4880.10 17497.42 10396.78 5592.20 2297.11 1498.29 3393.46 199.10 10196.01 3899.30 599.38 14
Zhenlong Yuan, Cong Liu, Fei Shen, Zhaoxin Li, Jingguo luo, Tianlu Mao and Zhaoqi Wang: MSP-MVS: Multi-granularity Segmentation Prior Guided Multi-View Stereo. AAAI2025
fmvsm_s_conf0.5_n_a93.34 4193.71 3592.22 12293.38 19381.71 13398.86 2496.98 3891.64 2996.85 1598.55 1975.58 14699.77 2997.88 1993.68 13395.18 204
CNVR-MVS96.30 196.54 195.55 1599.31 587.69 2299.06 1697.12 3094.66 596.79 1698.78 986.42 2999.95 397.59 2399.18 799.00 27
DVP-MVScopyleft95.58 995.91 994.57 3099.05 985.18 5899.06 1696.46 10288.75 6496.69 1798.76 1287.69 2299.76 3197.90 1798.85 2198.77 34
Zhenlong Yuan, Jinguo Luo, Fei Shen, Zhaoxin Li, Cong Liu, Tianlu Mao, Zhaoqi Wang: DVP-MVS: Synergize Depth-Edge and Visibility Prior for Multi-View Stereo. AAAI2025
test_0728_THIRD88.38 7396.69 1798.76 1289.64 1399.76 3197.47 2498.84 2399.38 14
SD-MVS94.84 1895.02 1994.29 3697.87 6484.61 7497.76 7496.19 13189.59 5696.66 1998.17 4184.33 3999.60 5996.09 3798.50 3698.66 42
Zhenlong Yuan, Jiakai Cao, Zhaoxin Li, Hao Jiang and Zhaoqi Wang: SD-MVS: Segmentation-driven Deformation Multi-View Stereo with Spherical Refinement and EM optimization. AAAI2024
MM95.85 695.74 1096.15 896.34 9689.50 999.18 598.10 895.68 196.64 2097.92 5880.72 6699.80 2599.16 197.96 5699.15 24
fmvsm_s_conf0.1_n_a92.38 6692.49 5892.06 13088.08 30881.62 13697.97 6196.01 14390.62 4196.58 2198.33 3274.09 17699.71 4597.23 2793.46 13894.86 209
test_one_060198.91 1884.56 7696.70 7188.06 7996.57 2298.77 1088.04 20
DPE-MVScopyleft95.32 1195.55 1294.64 2998.79 2384.87 7197.77 7296.74 6686.11 12096.54 2398.89 688.39 1999.74 3897.67 2299.05 1299.31 18
Kehua Chen, Zhenlong Yuan, Tianlu Mao, Zhaoqi Wang: Dual-Level Precision Edges Guided Multi-View Stereo with Accurate Planarization. AAAI2025
DPM-MVS96.21 295.53 1398.26 196.26 9995.09 199.15 796.98 3893.39 1496.45 2498.79 890.17 1099.99 189.33 12499.25 699.70 3
fmvsm_s_conf0.5_n93.69 3694.13 3292.34 11394.56 15182.01 11899.07 1597.13 2892.09 2396.25 2598.53 2276.47 12899.80 2598.39 894.71 11995.22 203
PS-MVSNAJ94.17 2993.52 4096.10 995.65 11992.35 298.21 4495.79 15892.42 2196.24 2698.18 3871.04 21099.17 9596.77 3397.39 7596.79 159
旧先验296.97 14174.06 32696.10 2797.76 16388.38 136
test_part298.90 1985.14 6496.07 28
fmvsm_s_conf0.1_n92.93 4893.16 4792.24 12090.52 27281.92 12298.42 3796.24 12591.17 3496.02 2998.35 3175.34 15799.74 3897.84 2094.58 12195.05 205
xiu_mvs_v2_base93.92 3493.26 4495.91 1095.07 13792.02 698.19 4595.68 16492.06 2596.01 3098.14 4270.83 21398.96 10996.74 3596.57 9496.76 162
HPM-MVS++copyleft95.32 1195.48 1494.85 2498.62 3486.04 3697.81 7096.93 4492.45 2095.69 3198.50 2485.38 3199.85 1094.75 5499.18 798.65 43
NCCC95.63 795.94 894.69 2899.21 685.15 6399.16 696.96 4194.11 995.59 3298.64 1785.07 3399.91 495.61 4599.10 999.00 27
EPNet94.06 3294.15 3193.76 5297.27 8784.35 7898.29 4197.64 1594.57 695.36 3396.88 11179.96 7799.12 10091.30 9396.11 10197.82 99
Wanjuan Su, Wenbing Tao: Efficient Edge-Preserving Multi-View Stereo Network for Depth Estimation. AAAI 2023
CANet94.89 1694.64 2295.63 1397.55 7588.12 1699.06 1696.39 11294.07 1095.34 3497.80 6776.83 12399.87 897.08 3097.64 6698.89 30
test_fmvsmconf_n93.99 3394.36 2892.86 9292.82 21081.12 14399.26 396.37 11693.47 1395.16 3598.21 3679.00 8699.64 5598.21 1096.73 9297.83 97
TEST998.64 3183.71 8997.82 6896.65 7884.29 17095.16 3598.09 4584.39 3899.36 81
train_agg94.28 2694.45 2593.74 5398.64 3183.71 8997.82 6896.65 7884.50 16195.16 3598.09 4584.33 3999.36 8195.91 4198.96 1998.16 71
MVS_030495.36 1095.20 1795.85 1194.89 14489.22 1298.83 2597.88 1194.68 495.14 3897.99 5280.80 6599.81 2198.60 697.95 5798.50 50
test_898.63 3383.64 9297.81 7096.63 8384.50 16195.10 3998.11 4484.33 3999.23 86
DeepPCF-MVS89.82 194.61 2296.17 589.91 19997.09 9070.21 33398.99 2296.69 7395.57 295.08 4099.23 186.40 3099.87 897.84 2098.66 3199.65 6
SF-MVS94.17 2994.05 3394.55 3197.56 7485.95 3897.73 7696.43 10684.02 17595.07 4198.74 1482.93 5399.38 7895.42 4998.51 3498.32 60
APDe-MVScopyleft94.56 2394.75 2093.96 4698.84 2283.40 9798.04 5796.41 10885.79 12895.00 4298.28 3484.32 4299.18 9497.35 2698.77 2799.28 19
Zhaojie Zeng, Yuesong Wang, Tao Guan: Matching Ambiguity-Resilient Multi-View Stereo via Adaptive Patch Deformation. Pattern Recognition
MVSFormer91.36 8890.57 9493.73 5593.00 20388.08 1794.80 25594.48 22980.74 24094.90 4397.13 10178.84 8995.10 30283.77 17597.46 7098.02 79
lupinMVS93.87 3593.58 3994.75 2793.00 20388.08 1799.15 795.50 17391.03 3794.90 4397.66 7278.84 8997.56 17294.64 5797.46 7098.62 45
CS-MVS-test92.98 4693.67 3690.90 16996.52 9476.87 25998.68 2894.73 21390.36 4894.84 4597.89 6277.94 10297.15 20394.28 6197.80 6298.70 41
9.1494.26 3098.10 5798.14 4696.52 9584.74 15394.83 4698.80 782.80 5599.37 8095.95 4098.42 40
testdata90.13 19195.92 11174.17 29696.49 10173.49 33194.82 4797.99 5278.80 9197.93 15283.53 18397.52 6998.29 64
APD-MVScopyleft93.61 3793.59 3893.69 5798.76 2483.26 10097.21 11496.09 13782.41 21694.65 4898.21 3681.96 6098.81 11994.65 5698.36 4599.01 26
Yuesong Wang, Zhaojie Zeng and etc.: Adaptive Patch Deformation for Textureless-Resilient Multi-View Stereo. CVPR2023
test_prior298.37 3986.08 12294.57 4998.02 5183.14 5195.05 5198.79 26
CS-MVS92.73 5393.48 4190.48 18196.27 9875.93 27998.55 3494.93 20089.32 5894.54 5097.67 7178.91 8897.02 20793.80 6497.32 7798.49 51
FOURS198.51 3978.01 23298.13 4996.21 12883.04 20094.39 51
ACMMP_NAP93.46 3993.23 4594.17 4197.16 8884.28 8196.82 15396.65 7886.24 11894.27 5297.99 5277.94 10299.83 1693.39 6998.57 3398.39 57
agg_prior98.59 3583.13 10296.56 9294.19 5399.16 96
SteuartSystems-ACMMP94.13 3194.44 2693.20 7895.41 12581.35 14099.02 2096.59 8889.50 5794.18 5498.36 3083.68 4999.45 7594.77 5398.45 3998.81 33
Skip Steuart: Steuart Systems R&D Blog.
PHI-MVS93.59 3893.63 3793.48 7098.05 5881.76 13098.64 3197.13 2882.60 21294.09 5598.49 2580.35 6999.85 1094.74 5598.62 3298.83 32
test_fmvsmconf0.1_n93.08 4593.22 4692.65 10188.45 30480.81 15399.00 2195.11 19393.21 1594.00 5697.91 6076.84 12199.59 6097.91 1696.55 9597.54 118
TSAR-MVS + GP.94.35 2594.50 2393.89 4797.38 8483.04 10498.10 5195.29 18891.57 3093.81 5797.45 8586.64 2799.43 7696.28 3694.01 12899.20 22
CANet_DTU90.98 9990.04 10993.83 4994.76 14786.23 3496.32 18693.12 30393.11 1693.71 5896.82 11563.08 25699.48 7384.29 16795.12 11595.77 187
VNet92.11 7091.22 8394.79 2596.91 9186.98 2797.91 6397.96 1086.38 11793.65 5995.74 13670.16 21898.95 11193.39 6988.87 17898.43 55
test_vis1_n_192089.95 11990.59 9388.03 23892.36 22068.98 34299.12 1194.34 23993.86 1193.64 6097.01 10751.54 33099.59 6096.76 3496.71 9395.53 194
ZD-MVS99.09 883.22 10196.60 8782.88 20593.61 6198.06 5082.93 5399.14 9795.51 4898.49 37
xiu_mvs_v1_base_debu90.54 10889.54 11993.55 6592.31 22187.58 2396.99 13694.87 20487.23 10193.27 6297.56 8157.43 29998.32 14092.72 8093.46 13894.74 213
xiu_mvs_v1_base90.54 10889.54 11993.55 6592.31 22187.58 2396.99 13694.87 20487.23 10193.27 6297.56 8157.43 29998.32 14092.72 8093.46 13894.74 213
xiu_mvs_v1_base_debi90.54 10889.54 11993.55 6592.31 22187.58 2396.99 13694.87 20487.23 10193.27 6297.56 8157.43 29998.32 14092.72 8093.46 13894.74 213
CDPH-MVS93.12 4392.91 4993.74 5398.65 3083.88 8597.67 8196.26 12383.00 20293.22 6598.24 3581.31 6299.21 8889.12 12598.74 2998.14 73
ETV-MVS92.72 5592.87 5092.28 11994.54 15381.89 12497.98 5995.21 19189.77 5593.11 6696.83 11377.23 11797.50 18095.74 4395.38 11397.44 127
MSLP-MVS++94.28 2694.39 2793.97 4598.30 4984.06 8498.64 3196.93 4490.71 4093.08 6798.70 1579.98 7699.21 8894.12 6299.07 1198.63 44
alignmvs92.97 4792.26 6395.12 1995.54 12287.77 2098.67 2996.38 11388.04 8093.01 6897.45 8579.20 8498.60 12593.25 7488.76 17998.99 29
canonicalmvs92.27 6791.22 8395.41 1695.80 11688.31 1497.09 13294.64 22188.49 7192.99 6997.31 9272.68 19198.57 12793.38 7188.58 18299.36 16
EC-MVSNet91.73 7792.11 6790.58 17893.54 18577.77 24398.07 5494.40 23687.44 9592.99 6997.11 10374.59 17096.87 21793.75 6597.08 8197.11 146
jason92.73 5392.23 6494.21 4090.50 27387.30 2698.65 3095.09 19490.61 4292.76 7197.13 10175.28 15897.30 19293.32 7296.75 9198.02 79
jason: jason.
test_cas_vis1_n_192089.90 12090.02 11089.54 20790.14 28174.63 29198.71 2794.43 23493.04 1792.40 7296.35 12553.41 32699.08 10395.59 4696.16 9994.90 207
test1294.25 3798.34 4685.55 5096.35 11792.36 7380.84 6499.22 8798.31 4797.98 86
MG-MVS94.25 2893.72 3495.85 1199.38 389.35 1197.98 5998.09 989.99 5192.34 7496.97 10881.30 6398.99 10788.54 13298.88 2099.20 22
test_fmvs187.79 16988.52 13685.62 29092.98 20764.31 35897.88 6592.42 31287.95 8292.24 7595.82 13547.94 34598.44 13795.31 5094.09 12594.09 224
h-mvs3389.30 13188.95 12990.36 18595.07 13776.04 27396.96 14397.11 3190.39 4692.22 7695.10 16474.70 16698.86 11693.14 7565.89 35096.16 179
hse-mvs288.22 16188.21 14088.25 23293.54 18573.41 29995.41 23095.89 15290.39 4692.22 7694.22 18474.70 16696.66 22893.14 7564.37 35594.69 217
MCST-MVS96.17 396.12 696.32 799.42 289.36 1098.94 2397.10 3295.17 392.11 7898.46 2687.33 2499.97 297.21 2899.31 499.63 7
test_fmvsmconf0.01_n91.08 9690.68 9292.29 11882.43 36480.12 17397.94 6293.93 25992.07 2491.97 7997.60 7967.56 22699.53 6897.09 2995.56 11297.21 142
SR-MVS92.16 6892.27 6291.83 14198.37 4578.41 21896.67 16495.76 15982.19 22091.97 7998.07 4976.44 12998.64 12393.71 6697.27 7898.45 54
region2R92.72 5592.70 5392.79 9598.68 2680.53 16397.53 9196.51 9685.22 14091.94 8197.98 5577.26 11399.67 5390.83 10098.37 4498.18 69
Effi-MVS+90.70 10589.90 11593.09 8393.61 18283.48 9595.20 23992.79 30883.22 19491.82 8295.70 13871.82 20197.48 18291.25 9493.67 13498.32 60
HFP-MVS92.89 4992.86 5192.98 8798.71 2581.12 14397.58 8696.70 7185.20 14291.75 8397.97 5778.47 9499.71 4590.95 9698.41 4198.12 75
DeepC-MVS_fast89.06 294.48 2494.30 2995.02 2098.86 2185.68 4698.06 5596.64 8193.64 1291.74 8498.54 2080.17 7499.90 592.28 8498.75 2899.49 8
Andreas Kuhn, Christian Sormann, Mattia Rossi, Oliver Erdler, Friedrich Fraundorfer: DeepC-MVS: Deep Confidence Prediction for Multi-View Stereo Reconstruction. 3DV 2020
ACMMPR92.69 5792.67 5492.75 9698.66 2880.57 15997.58 8696.69 7385.20 14291.57 8597.92 5877.01 11899.67 5390.95 9698.41 4198.00 84
DELS-MVS94.98 1494.49 2496.44 696.42 9590.59 799.21 497.02 3694.40 891.46 8697.08 10483.32 5099.69 4992.83 7998.70 3099.04 25
Christian Sormann, Emanuele Santellani, Mattia Rossi, Andreas Kuhn, Friedrich Fraundorfer: DELS-MVS: Deep Epipolar Line Search for Multi-View Stereo. Winter Conference on Applications of Computer Vision (WACV), 2023
XVS92.69 5792.71 5292.63 10398.52 3780.29 16697.37 10796.44 10487.04 10691.38 8797.83 6677.24 11599.59 6090.46 10698.07 5298.02 79
X-MVStestdata86.26 19284.14 21192.63 10398.52 3780.29 16697.37 10796.44 10487.04 10691.38 8720.73 40577.24 11599.59 6090.46 10698.07 5298.02 79
PMMVS89.46 12889.92 11488.06 23694.64 14869.57 33996.22 19194.95 19987.27 10091.37 8996.54 12365.88 23897.39 18788.54 13293.89 13097.23 139
test_fmvs1_n86.34 19086.72 17485.17 29787.54 31663.64 36396.91 14792.37 31487.49 9491.33 9095.58 14440.81 37098.46 13495.00 5293.49 13693.41 238
dcpmvs_293.10 4493.46 4292.02 13397.77 6579.73 18494.82 25393.86 26686.91 10891.33 9096.76 11785.20 3298.06 14896.90 3297.60 6798.27 66
原ACMM191.22 16097.77 6578.10 23096.61 8481.05 23491.28 9297.42 8977.92 10498.98 10879.85 21398.51 3496.59 167
新几何193.12 8197.44 7881.60 13796.71 7074.54 32291.22 9397.57 8079.13 8599.51 7177.40 23998.46 3898.26 67
UA-Net88.92 13888.48 13790.24 18894.06 17377.18 25693.04 29794.66 21887.39 9791.09 9493.89 19374.92 16398.18 14775.83 25591.43 16095.35 199
ZNCC-MVS92.75 5192.60 5693.23 7798.24 5181.82 12897.63 8296.50 9885.00 14891.05 9597.74 6978.38 9599.80 2590.48 10598.34 4698.07 77
APD-MVS_3200maxsize91.23 9291.35 8090.89 17097.89 6276.35 26996.30 18795.52 17279.82 26391.03 9697.88 6374.70 16698.54 12892.11 8796.89 8597.77 102
test_vis1_n85.60 20385.70 18285.33 29484.79 34864.98 35696.83 15191.61 32587.36 9891.00 9794.84 17236.14 37697.18 19995.66 4493.03 14393.82 229
GST-MVS92.43 6592.22 6593.04 8598.17 5481.64 13597.40 10596.38 11384.71 15590.90 9897.40 9077.55 11099.76 3189.75 11897.74 6397.72 105
PGM-MVS91.93 7291.80 7392.32 11798.27 5079.74 18395.28 23397.27 2183.83 18390.89 9997.78 6876.12 13699.56 6688.82 12997.93 6097.66 110
SR-MVS-dyc-post91.29 9091.45 7990.80 17297.76 6776.03 27496.20 19495.44 17880.56 24590.72 10097.84 6475.76 14298.61 12491.99 8896.79 8997.75 103
RE-MVS-def91.18 8697.76 6776.03 27496.20 19495.44 17880.56 24590.72 10097.84 6473.36 18691.99 8896.79 8997.75 103
MP-MVScopyleft92.61 6092.67 5492.42 11198.13 5679.73 18497.33 10996.20 12985.63 13090.53 10297.66 7278.14 10099.70 4892.12 8698.30 4897.85 95
Rongxuan Tan, Qing Wang, et al.: MP-MVS: Multi-Scale Windows PatchMatch and Planar Prior Multi-View Stereo.
HY-MVS84.06 691.63 8190.37 10195.39 1796.12 10388.25 1590.22 32797.58 1688.33 7590.50 10391.96 22479.26 8299.06 10490.29 11289.07 17498.88 31
CP-MVS92.54 6292.60 5692.34 11398.50 4079.90 17798.40 3896.40 11084.75 15290.48 10498.09 4577.40 11299.21 8891.15 9598.23 5097.92 90
diffmvspermissive91.17 9390.74 9192.44 11093.11 20282.50 11296.25 19093.62 28187.79 8690.40 10595.93 13273.44 18597.42 18493.62 6892.55 14897.41 129
Fangjinhua Wang, Qingshan Xu, Yew-Soon Ong, Marc Pollefeys: Lightweight and Accurate Multi-View Stereo With Confidence-Aware Diffusion Model. IEEE T-PAMI 2025
MVS_Test90.29 11489.18 12493.62 6195.23 13084.93 6994.41 26094.66 21884.31 16690.37 10691.02 23975.13 16097.82 16183.11 18894.42 12398.12 75
MTAPA92.45 6492.31 6192.86 9297.90 6180.85 15292.88 30096.33 11887.92 8390.20 10798.18 3876.71 12699.76 3192.57 8398.09 5197.96 89
test_yl91.46 8590.53 9594.24 3897.41 8085.18 5898.08 5297.72 1280.94 23589.85 10896.14 12875.61 14398.81 11990.42 11088.56 18398.74 35
DCV-MVSNet91.46 8590.53 9594.24 3897.41 8085.18 5898.08 5297.72 1280.94 23589.85 10896.14 12875.61 14398.81 11990.42 11088.56 18398.74 35
WTY-MVS92.65 5991.68 7595.56 1496.00 10688.90 1398.23 4397.65 1488.57 6989.82 11097.22 9879.29 8199.06 10489.57 12088.73 18098.73 39
MVS_111021_HR93.41 4093.39 4393.47 7297.34 8582.83 10697.56 8898.27 689.16 6189.71 11197.14 10079.77 7899.56 6693.65 6797.94 5898.02 79
sss90.87 10389.96 11293.60 6294.15 16883.84 8897.14 12598.13 785.93 12689.68 11296.09 13071.67 20299.30 8387.69 14289.16 17397.66 110
test22296.15 10278.41 21895.87 21096.46 10271.97 34289.66 11397.45 8576.33 13398.24 4998.30 63
LFMVS89.27 13287.64 15194.16 4397.16 8885.52 5197.18 11894.66 21879.17 27789.63 11496.57 12255.35 31698.22 14489.52 12289.54 16998.74 35
CostFormer89.08 13488.39 13891.15 16293.13 20079.15 19988.61 33896.11 13683.14 19689.58 11586.93 29883.83 4896.87 21788.22 13885.92 21097.42 128
PVSNet_BlendedMVS90.05 11789.96 11290.33 18697.47 7683.86 8698.02 5896.73 6787.98 8189.53 11689.61 26176.42 13099.57 6494.29 5979.59 25887.57 325
PVSNet_Blended93.13 4292.98 4893.57 6497.47 7683.86 8699.32 196.73 6791.02 3889.53 11696.21 12776.42 13099.57 6494.29 5995.81 10997.29 138
HPM-MVScopyleft91.62 8291.53 7891.89 13797.88 6379.22 19696.99 13695.73 16282.07 22289.50 11897.19 9975.59 14598.93 11490.91 9897.94 5897.54 118
Chunlin Ren, Qingshan Xu, Shikun Zhang, Jiaqi Yang: Hierarchical Prior Mining for Non-local Multi-View Stereo. ICCV 2023
testing1192.48 6392.04 7093.78 5195.94 11086.00 3797.56 8897.08 3387.52 9389.32 11995.40 14884.60 3698.02 14991.93 9089.04 17597.32 134
EI-MVSNet-Vis-set91.84 7691.77 7492.04 13297.60 7181.17 14296.61 16596.87 4988.20 7789.19 12097.55 8478.69 9399.14 9790.29 11290.94 16395.80 186
testing22291.09 9590.49 9792.87 9195.82 11485.04 6596.51 17297.28 2086.05 12389.13 12195.34 15080.16 7596.62 22985.82 15588.31 18696.96 151
MP-MVS-pluss92.58 6192.35 6093.29 7497.30 8682.53 11096.44 17796.04 14284.68 15689.12 12298.37 2977.48 11199.74 3893.31 7398.38 4397.59 116
MP-MVS-pluss: MP-MVS-pluss. MP-MVS-pluss
VDD-MVS88.28 15987.02 17092.06 13095.09 13580.18 17297.55 9094.45 23383.09 19889.10 12395.92 13447.97 34498.49 13193.08 7886.91 19997.52 123
baseline90.76 10490.10 10892.74 9792.90 20982.56 10994.60 25794.56 22687.69 8989.06 12495.67 14073.76 18097.51 17990.43 10992.23 15498.16 71
testing9991.91 7391.35 8093.60 6295.98 10885.70 4497.31 11096.92 4686.82 11188.91 12595.25 15184.26 4397.89 15988.80 13087.94 19097.21 142
EIA-MVS91.73 7792.05 6990.78 17494.52 15476.40 26898.06 5595.34 18689.19 6088.90 12697.28 9677.56 10997.73 16490.77 10196.86 8898.20 68
testing9191.90 7491.31 8293.66 5895.99 10785.68 4697.39 10696.89 4786.75 11588.85 12795.23 15483.93 4697.90 15888.91 12787.89 19197.41 129
mvsany_test187.58 17388.22 13985.67 28889.78 28567.18 34995.25 23687.93 36283.96 17888.79 12897.06 10672.52 19294.53 31992.21 8586.45 20395.30 201
HPM-MVS_fast90.38 11390.17 10791.03 16597.61 7077.35 25297.15 12495.48 17479.51 26988.79 12896.90 10971.64 20498.81 11987.01 15097.44 7296.94 152
ETVMVS90.99 9890.26 10293.19 7995.81 11585.64 4896.97 14197.18 2685.43 13488.77 13094.86 17182.00 5996.37 23682.70 19188.60 18197.57 117
PAPM92.87 5092.40 5994.30 3592.25 22887.85 1996.40 18196.38 11391.07 3688.72 13196.90 10982.11 5897.37 18990.05 11597.70 6497.67 109
MVS_111021_LR91.60 8391.64 7791.47 15295.74 11778.79 20996.15 19696.77 6188.49 7188.64 13297.07 10572.33 19599.19 9393.13 7796.48 9696.43 171
casdiffmvspermissive90.95 10190.39 9992.63 10392.82 21082.53 11096.83 15194.47 23187.69 8988.47 13395.56 14574.04 17797.54 17690.90 9992.74 14697.83 97
Fangjinhua Wang, Qingshan Xu, Yew-Soon Ong, Marc Pollefeys: Lightweight and Accurate Multi-View Stereo With Confidence-Aware Diffusion Model. IEEE T-PAMI 2025
mPP-MVS91.88 7591.82 7292.07 12998.38 4478.63 21297.29 11196.09 13785.12 14488.45 13497.66 7275.53 14799.68 5189.83 11698.02 5597.88 91
PAPR92.74 5292.17 6694.45 3298.89 2084.87 7197.20 11696.20 12987.73 8888.40 13598.12 4378.71 9299.76 3187.99 13996.28 9798.74 35
tpmrst88.36 15687.38 16191.31 15494.36 16279.92 17687.32 34895.26 19085.32 13788.34 13686.13 31480.60 6896.70 22583.78 17485.34 21897.30 137
GG-mvs-BLEND93.49 6994.94 14186.26 3381.62 37497.00 3788.32 13794.30 18291.23 596.21 24388.49 13497.43 7398.00 84
EI-MVSNet-UG-set91.35 8991.22 8391.73 14397.39 8280.68 15696.47 17496.83 5287.92 8388.30 13897.36 9177.84 10599.13 9989.43 12389.45 17095.37 198
MAR-MVS90.63 10690.22 10491.86 13898.47 4278.20 22897.18 11896.61 8483.87 18288.18 13998.18 3868.71 22299.75 3683.66 18097.15 8097.63 113
Zhenyu Xu, Yiguang Liu, Xuelei Shi, Ying Wang, Yunan Zheng: MARMVS: Matching Ambiguity Reduced Multiple View Stereo for Efficient Large Scale Scene Reconstruction. CVPR 2020
DP-MVS Recon91.72 7990.85 8894.34 3499.50 185.00 6898.51 3595.96 14880.57 24488.08 14097.63 7876.84 12199.89 785.67 15794.88 11698.13 74
VDDNet86.44 18884.51 20292.22 12291.56 24981.83 12797.10 13194.64 22169.50 35487.84 14195.19 15848.01 34397.92 15789.82 11786.92 19896.89 156
UGNet87.73 17086.55 17691.27 15795.16 13479.11 20096.35 18496.23 12688.14 7887.83 14290.48 24850.65 33399.09 10280.13 21094.03 12695.60 191
Wanjuan Su, Qingshan Xu, Wenbing Tao: Uncertainty-guided Multi-view Stereo Network for Depth Estimation. IEEE Transactions on Circuits and Systems for Video Technology, 2022
test250690.96 10090.39 9992.65 10193.54 18582.46 11396.37 18297.35 1886.78 11387.55 14395.25 15177.83 10697.50 18084.07 16994.80 11797.98 86
tpm287.35 17686.26 17790.62 17792.93 20878.67 21188.06 34395.99 14579.33 27287.40 14486.43 30980.28 7196.40 23480.23 20885.73 21496.79 159
CPTT-MVS89.72 12389.87 11689.29 21098.33 4773.30 30297.70 7895.35 18575.68 31387.40 14497.44 8870.43 21598.25 14389.56 12196.90 8496.33 176
gg-mvs-nofinetune85.48 20682.90 23093.24 7694.51 15785.82 4279.22 37896.97 4061.19 37687.33 14653.01 39490.58 696.07 24686.07 15497.23 7997.81 100
CHOSEN 280x42091.71 8091.85 7191.29 15694.94 14182.69 10787.89 34496.17 13285.94 12587.27 14794.31 18190.27 995.65 27494.04 6395.86 10795.53 194
test_fmvsmvis_n_192092.12 6992.10 6892.17 12590.87 26581.04 14598.34 4093.90 26392.71 1887.24 14897.90 6174.83 16499.72 4396.96 3196.20 9895.76 188
casdiffmvs_mvgpermissive91.13 9490.45 9893.17 8092.99 20683.58 9397.46 9894.56 22687.69 8987.19 14994.98 16974.50 17197.60 16991.88 9192.79 14598.34 58
Fangjinhua Wang, Qingshan Xu, Yew-Soon Ong, Marc Pollefeys: Lightweight and Accurate Multi-View Stereo With Confidence-Aware Diffusion Model. IEEE T-PAMI 2025
EPNet_dtu87.65 17287.89 14586.93 26694.57 15071.37 32796.72 15996.50 9888.56 7087.12 15095.02 16675.91 14094.01 32866.62 31590.00 16695.42 197
Wanjuan Su, Wenbing Tao: Efficient Edge-Preserving Multi-View Stereo Network for Depth Estimation. AAAI 2023
Vis-MVSNetpermissive88.67 14687.82 14791.24 15892.68 21278.82 20696.95 14493.85 26787.55 9287.07 15195.13 16263.43 25497.21 19777.58 23596.15 10097.70 108
Jingyang Zhang, Yao Yao, Shiwei Li, Zixin Luo, Tian Fang: Visibility-aware Multiview Stereo Network. BMVC 2020
thisisatest051590.95 10190.26 10293.01 8694.03 17684.27 8297.91 6396.67 7583.18 19586.87 15295.51 14688.66 1697.85 16080.46 20489.01 17696.92 155
TESTMET0.1,189.83 12189.34 12291.31 15492.54 21880.19 17197.11 12896.57 9086.15 11986.85 15391.83 22879.32 8096.95 21181.30 19892.35 15296.77 161
PVSNet_Blended_VisFu91.24 9190.77 9092.66 10095.09 13582.40 11497.77 7295.87 15588.26 7686.39 15493.94 19276.77 12499.27 8488.80 13094.00 12996.31 177
API-MVS90.18 11588.97 12793.80 5098.66 2882.95 10597.50 9595.63 16775.16 31786.31 15597.69 7072.49 19399.90 581.26 19996.07 10298.56 47
test-LLR88.48 15287.98 14489.98 19592.26 22677.23 25497.11 12895.96 14883.76 18686.30 15691.38 23272.30 19696.78 22380.82 20191.92 15695.94 183
test-mter88.95 13688.60 13489.98 19592.26 22677.23 25497.11 12895.96 14885.32 13786.30 15691.38 23276.37 13296.78 22380.82 20191.92 15695.94 183
PAPM_NR91.46 8590.82 8993.37 7398.50 4081.81 12995.03 24996.13 13484.65 15786.10 15897.65 7679.24 8399.75 3683.20 18696.88 8698.56 47
FA-MVS(test-final)87.71 17186.23 17892.17 12594.19 16680.55 16087.16 35096.07 14082.12 22185.98 15988.35 27672.04 20098.49 13180.26 20789.87 16797.48 126
MDTV_nov1_ep13_2view81.74 13186.80 35280.65 24285.65 16074.26 17376.52 24796.98 150
ECVR-MVScopyleft88.35 15787.25 16391.65 14593.54 18579.40 19196.56 16990.78 33986.78 11385.57 16195.25 15157.25 30397.56 17284.73 16594.80 11797.98 86
AUN-MVS86.25 19385.57 18488.26 23193.57 18473.38 30095.45 22895.88 15383.94 17985.47 16294.21 18573.70 18396.67 22783.54 18264.41 35494.73 216
PVSNet82.34 989.02 13587.79 14892.71 9995.49 12381.50 13897.70 7897.29 1987.76 8785.47 16295.12 16356.90 30598.90 11580.33 20594.02 12797.71 107
EPP-MVSNet89.76 12289.72 11889.87 20093.78 17876.02 27697.22 11296.51 9679.35 27185.11 16495.01 16784.82 3497.10 20587.46 14588.21 18896.50 169
test111188.11 16287.04 16991.35 15393.15 19878.79 20996.57 16790.78 33986.88 11085.04 16595.20 15757.23 30497.39 18783.88 17294.59 12097.87 93
FE-MVS86.06 19584.15 21091.78 14294.33 16379.81 17884.58 36696.61 8476.69 30785.00 16687.38 28970.71 21498.37 13970.39 29891.70 15997.17 145
OMC-MVS88.80 14388.16 14290.72 17595.30 12877.92 23794.81 25494.51 22886.80 11284.97 16796.85 11267.53 22798.60 12585.08 16187.62 19395.63 190
CHOSEN 1792x268891.07 9790.21 10593.64 5995.18 13383.53 9496.26 18996.13 13488.92 6384.90 16893.10 20872.86 18999.62 5888.86 12895.67 11097.79 101
thres20088.92 13887.65 15092.73 9896.30 9785.62 4997.85 6698.86 184.38 16584.82 16993.99 19175.12 16198.01 15070.86 29586.67 20094.56 218
UWE-MVS88.56 15188.91 13187.50 25294.17 16772.19 31395.82 21497.05 3584.96 14984.78 17093.51 20281.33 6194.75 31179.43 21689.17 17295.57 192
MDTV_nov1_ep1383.69 21494.09 17281.01 14686.78 35396.09 13783.81 18484.75 17184.32 33774.44 17296.54 23063.88 32985.07 219
CDS-MVSNet89.50 12788.96 12891.14 16391.94 24580.93 15097.09 13295.81 15784.26 17184.72 17294.20 18680.31 7095.64 27583.37 18588.96 17796.85 158
Khang Truong Giang, Soohwan Song, Sungho Jo: Curvature-guided dynamic scale networks for Multi-view Stereo. ICLR 2022
ACMMPcopyleft90.39 11189.97 11191.64 14697.58 7378.21 22796.78 15696.72 6984.73 15484.72 17297.23 9771.22 20799.63 5788.37 13792.41 15197.08 148
Qingshan Xu, Weihang Kong, Wenbing Tao, Marc Pollefeys: Multi-Scale Geometric Consistency Guided and Planar Prior Assisted Multi-View Stereo. IEEE Transactions on Pattern Analysis and Machine Intelligence
CSCG92.02 7191.65 7693.12 8198.53 3680.59 15897.47 9697.18 2677.06 30584.64 17497.98 5583.98 4599.52 6990.72 10297.33 7699.23 21
ab-mvs87.08 17784.94 19793.48 7093.34 19483.67 9188.82 33595.70 16381.18 23284.55 17590.14 25662.72 25798.94 11385.49 15982.54 23997.85 95
EPMVS87.47 17585.90 18192.18 12495.41 12582.26 11787.00 35196.28 12185.88 12784.23 17685.57 32075.07 16296.26 24071.14 29392.50 14998.03 78
Anonymous20240521184.41 22381.93 24591.85 14096.78 9378.41 21897.44 9991.34 32970.29 35084.06 17794.26 18341.09 36898.96 10979.46 21582.65 23898.17 70
HyFIR lowres test89.36 12988.60 13491.63 14894.91 14380.76 15595.60 22395.53 17082.56 21384.03 17891.24 23678.03 10196.81 22187.07 14988.41 18597.32 134
tfpn200view988.48 15287.15 16592.47 10796.21 10085.30 5697.44 9998.85 283.37 19283.99 17993.82 19475.36 15497.93 15269.04 30386.24 20794.17 220
thres40088.42 15587.15 16592.23 12196.21 10085.30 5697.44 9998.85 283.37 19283.99 17993.82 19475.36 15497.93 15269.04 30386.24 20793.45 236
tpm85.55 20484.47 20588.80 22090.19 27875.39 28488.79 33694.69 21484.83 15183.96 18185.21 32678.22 9894.68 31576.32 25178.02 27696.34 174
Fast-Effi-MVS+87.93 16786.94 17290.92 16894.04 17479.16 19898.26 4293.72 27781.29 23183.94 18292.90 20969.83 21996.68 22676.70 24591.74 15896.93 153
XVG-OURS-SEG-HR85.74 20185.16 19387.49 25490.22 27771.45 32691.29 31994.09 25481.37 23083.90 18395.22 15560.30 27497.53 17885.58 15884.42 22293.50 234
thisisatest053089.65 12489.02 12691.53 15093.46 19180.78 15496.52 17096.67 7581.69 22883.79 18494.90 17088.85 1597.68 16577.80 22887.49 19696.14 180
DeepC-MVS86.58 391.53 8491.06 8792.94 8994.52 15481.89 12495.95 20495.98 14690.76 3983.76 18596.76 11773.24 18799.71 4591.67 9296.96 8397.22 140
Andreas Kuhn, Christian Sormann, Mattia Rossi, Oliver Erdler, Friedrich Fraundorfer: DeepC-MVS: Deep Confidence Prediction for Multi-View Stereo Reconstruction. 3DV 2020
IS-MVSNet88.67 14688.16 14290.20 19093.61 18276.86 26096.77 15893.07 30484.02 17583.62 18695.60 14374.69 16996.24 24278.43 22793.66 13597.49 125
thres100view90088.30 15886.95 17192.33 11596.10 10484.90 7097.14 12598.85 282.69 21083.41 18793.66 19875.43 15197.93 15269.04 30386.24 20794.17 220
thres600view788.06 16386.70 17592.15 12796.10 10485.17 6297.14 12598.85 282.70 20983.41 18793.66 19875.43 15197.82 16167.13 31285.88 21193.45 236
XVG-OURS85.18 20984.38 20687.59 24890.42 27571.73 32391.06 32294.07 25582.00 22483.29 18995.08 16556.42 31097.55 17483.70 17983.42 22793.49 235
Vis-MVSNet (Re-imp)88.88 14088.87 13288.91 21793.89 17774.43 29496.93 14694.19 24884.39 16483.22 19095.67 14078.24 9794.70 31378.88 22394.40 12497.61 115
TAMVS88.48 15287.79 14890.56 17991.09 26079.18 19796.45 17695.88 15383.64 18983.12 19193.33 20375.94 13995.74 27082.40 19288.27 18796.75 163
baseline188.85 14187.49 15792.93 9095.21 13286.85 2995.47 22794.61 22387.29 9983.11 19294.99 16880.70 6796.89 21582.28 19373.72 29295.05 205
AdaColmapbinary88.81 14287.61 15492.39 11299.33 479.95 17596.70 16395.58 16877.51 29783.05 19396.69 12161.90 26699.72 4384.29 16793.47 13797.50 124
PatchmatchNetpermissive86.83 18385.12 19491.95 13594.12 17182.27 11686.55 35595.64 16684.59 15982.98 19484.99 33277.26 11395.96 25568.61 30691.34 16197.64 112
Fangjinhua Wang, Silvano Galliani, Christoph Vogel, Pablo Speciale, Marc Pollefeys: PatchmatchNet: Learned Multi-View Patchmatch Stereo.
SCA85.63 20283.64 21791.60 14992.30 22481.86 12692.88 30095.56 16984.85 15082.52 19585.12 33058.04 29295.39 28573.89 27387.58 19597.54 118
114514_t88.79 14487.57 15592.45 10898.21 5381.74 13196.99 13695.45 17775.16 31782.48 19695.69 13968.59 22398.50 13080.33 20595.18 11497.10 147
PatchT79.75 28876.85 30088.42 22589.55 29175.49 28377.37 38494.61 22363.07 36782.46 19773.32 38075.52 14893.41 33951.36 37184.43 22196.36 172
TR-MVS86.30 19184.93 19890.42 18294.63 14977.58 24796.57 16793.82 26880.30 25382.42 19895.16 16058.74 28597.55 17474.88 26387.82 19296.13 181
HQP-NCC92.08 23797.63 8290.52 4382.30 199
ACMP_Plane92.08 23797.63 8290.52 4382.30 199
HQP4-MVS82.30 19997.32 19091.13 247
HQP-MVS87.91 16887.55 15688.98 21692.08 23778.48 21497.63 8294.80 20990.52 4382.30 19994.56 17765.40 24297.32 19087.67 14383.01 23191.13 247
CR-MVSNet83.53 23781.36 25490.06 19290.16 27979.75 18179.02 38091.12 33184.24 17282.27 20380.35 35975.45 14993.67 33463.37 33386.25 20596.75 163
RPMNet79.85 28775.92 30691.64 14690.16 27979.75 18179.02 38095.44 17858.43 38682.27 20372.55 38373.03 18898.41 13846.10 38486.25 20596.75 163
CVMVSNet84.83 21585.57 18482.63 32991.55 25060.38 37495.13 24395.03 19780.60 24382.10 20594.71 17466.40 23790.19 36874.30 27090.32 16597.31 136
iter_conf_final89.51 12689.21 12390.39 18395.60 12084.44 7797.22 11289.09 35389.11 6282.07 20692.80 21187.03 2596.03 24789.10 12680.89 24790.70 252
PLCcopyleft83.97 788.00 16587.38 16189.83 20298.02 5976.46 26697.16 12294.43 23479.26 27681.98 20796.28 12669.36 22099.27 8477.71 23292.25 15393.77 230
Jie Liao, Yanping Fu, Qingan Yan, Chunxia xiao: Pyramid Multi-View Stereo with Local Consistency. Pacific Graphics 2019
JIA-IIPM79.00 29777.20 29684.40 31189.74 28864.06 36175.30 38895.44 17862.15 37081.90 20859.08 39278.92 8795.59 27966.51 31885.78 21393.54 233
Anonymous2024052983.15 24480.60 26590.80 17295.74 11778.27 22296.81 15494.92 20160.10 38181.89 20992.54 21545.82 35298.82 11879.25 21978.32 27495.31 200
tttt051788.57 15088.19 14189.71 20693.00 20375.99 27795.67 21896.67 7580.78 23981.82 21094.40 18088.97 1497.58 17176.05 25386.31 20495.57 192
WB-MVSnew84.08 22883.51 22185.80 28391.34 25576.69 26495.62 22296.27 12281.77 22681.81 21192.81 21058.23 28994.70 31366.66 31487.06 19785.99 349
BH-RMVSNet86.84 18285.28 18991.49 15195.35 12780.26 16996.95 14492.21 31582.86 20681.77 21295.46 14759.34 28197.64 16769.79 30193.81 13296.57 168
iter_conf0590.14 11689.79 11791.17 16195.85 11386.93 2897.68 8088.67 36089.93 5281.73 21392.80 21190.37 896.03 24790.44 10880.65 25190.56 254
HQP_MVS87.50 17487.09 16888.74 22191.86 24677.96 23497.18 11894.69 21489.89 5381.33 21494.15 18764.77 24897.30 19287.08 14782.82 23590.96 249
plane_prior377.75 24490.17 5081.33 214
VPA-MVSNet85.32 20783.83 21389.77 20590.25 27682.63 10896.36 18397.07 3483.03 20181.21 21689.02 26661.58 26796.31 23985.02 16370.95 30790.36 257
GeoE86.36 18985.20 19089.83 20293.17 19776.13 27197.53 9192.11 31679.58 26880.99 21794.01 19066.60 23696.17 24573.48 27789.30 17197.20 144
GA-MVS85.79 20084.04 21291.02 16689.47 29380.27 16896.90 14894.84 20785.57 13180.88 21889.08 26456.56 30996.47 23377.72 23185.35 21796.34 174
1112_ss88.60 14987.47 15992.00 13493.21 19580.97 14896.47 17492.46 31183.64 18980.86 21997.30 9480.24 7297.62 16877.60 23485.49 21597.40 131
dp84.30 22582.31 23990.28 18794.24 16577.97 23386.57 35495.53 17079.94 26280.75 22085.16 32871.49 20696.39 23563.73 33083.36 22896.48 170
Test_1112_low_res88.03 16486.73 17391.94 13693.15 19880.88 15196.44 17792.41 31383.59 19180.74 22191.16 23780.18 7397.59 17077.48 23785.40 21697.36 133
cascas86.50 18784.48 20492.55 10692.64 21685.95 3897.04 13595.07 19675.32 31580.50 22291.02 23954.33 32397.98 15186.79 15287.62 19393.71 231
TAPA-MVS81.61 1285.02 21283.67 21589.06 21396.79 9273.27 30595.92 20694.79 21174.81 32080.47 22396.83 11371.07 20998.19 14649.82 37792.57 14795.71 189
Andrea Romanoni, Matteo Matteucci: TAPA-MVS: Textureless-Aware PAtchMatch Multi-View Stereo. ICCV 2019
OPM-MVS85.84 19885.10 19588.06 23688.34 30577.83 24195.72 21694.20 24787.89 8580.45 22494.05 18958.57 28697.26 19683.88 17282.76 23789.09 288
Ray L. Khuboni, Hongjun Xu: Octagram Propagation Matching for Multi-Scale View Stereopsis (OPM-MVS).
nrg03086.79 18485.43 18690.87 17188.76 29885.34 5397.06 13494.33 24084.31 16680.45 22491.98 22372.36 19496.36 23788.48 13571.13 30590.93 251
EI-MVSNet85.80 19985.20 19087.59 24891.55 25077.41 25095.13 24395.36 18380.43 25080.33 22694.71 17473.72 18195.97 25276.96 24378.64 26789.39 275
MVSTER89.25 13388.92 13090.24 18895.98 10884.66 7396.79 15595.36 18387.19 10480.33 22690.61 24790.02 1295.97 25285.38 16078.64 26790.09 266
ADS-MVSNet279.57 29177.53 29485.71 28693.78 17872.13 31479.48 37686.11 37273.09 33480.14 22879.99 36162.15 26190.14 36959.49 34583.52 22594.85 210
ADS-MVSNet81.26 27478.36 28789.96 19793.78 17879.78 17979.48 37693.60 28273.09 33480.14 22879.99 36162.15 26195.24 29459.49 34583.52 22594.85 210
test_fmvs279.59 29079.90 27778.67 34982.86 36355.82 38495.20 23989.55 34781.09 23380.12 23089.80 25834.31 38193.51 33787.82 14078.36 27386.69 338
baseline290.39 11190.21 10590.93 16790.86 26680.99 14795.20 23997.41 1786.03 12480.07 23194.61 17690.58 697.47 18387.29 14689.86 16894.35 219
Effi-MVS+-dtu84.61 21984.90 19983.72 31991.96 24363.14 36694.95 25093.34 29485.57 13179.79 23287.12 29561.99 26495.61 27883.55 18185.83 21292.41 243
VPNet84.69 21782.92 22990.01 19389.01 29783.45 9696.71 16195.46 17685.71 12979.65 23392.18 21956.66 30896.01 25183.05 18967.84 33890.56 254
SDMVSNet87.02 17885.61 18391.24 15894.14 16983.30 9993.88 27795.98 14684.30 16879.63 23492.01 22058.23 28997.68 16590.28 11482.02 24392.75 239
sd_testset84.62 21883.11 22789.17 21194.14 16977.78 24291.54 31894.38 23784.30 16879.63 23492.01 22052.28 32896.98 20977.67 23382.02 24392.75 239
CLD-MVS87.97 16687.48 15889.44 20892.16 23380.54 16298.14 4694.92 20191.41 3179.43 23695.40 14862.34 25997.27 19590.60 10482.90 23490.50 256
Zhaoxin Li, Wangmeng Zuo, Zhaoqi Wang, Lei Zhang: Confidence-based Large-scale Dense Multi-view Stereo. IEEE Transaction on Image Processing, 2020
IB-MVS85.34 488.67 14687.14 16793.26 7593.12 20184.32 7998.76 2697.27 2187.19 10479.36 23790.45 24983.92 4798.53 12984.41 16669.79 31896.93 153
Christian Sormann, Mattia Rossi, Andreas Kuhn and Friedrich Fraundorfer: IB-MVS: An Iterative Algorithm for Deep Multi-View Stereo based on Binary Decisions. BMVC 2021
PatchMatch-RL85.00 21383.66 21689.02 21595.86 11274.55 29392.49 30493.60 28279.30 27479.29 23891.47 23058.53 28798.45 13570.22 29992.17 15594.07 225
CNLPA86.96 17985.37 18891.72 14497.59 7279.34 19497.21 11491.05 33474.22 32378.90 23996.75 11967.21 23198.95 11174.68 26590.77 16496.88 157
MVS90.60 10788.64 13396.50 594.25 16490.53 893.33 28997.21 2377.59 29678.88 24097.31 9271.52 20599.69 4989.60 11998.03 5499.27 20
mvs_anonymous88.68 14587.62 15391.86 13894.80 14681.69 13493.53 28594.92 20182.03 22378.87 24190.43 25075.77 14195.34 28885.04 16293.16 14298.55 49
mvsmamba85.17 21084.54 20187.05 26487.94 31075.11 28796.22 19187.79 36486.91 10878.55 24291.77 22964.93 24795.91 25886.94 15179.80 25390.12 263
tpm cat183.63 23681.38 25390.39 18393.53 19078.19 22985.56 36295.09 19470.78 34878.51 24383.28 34574.80 16597.03 20666.77 31384.05 22395.95 182
UniMVSNet (Re)85.31 20884.23 20888.55 22489.75 28680.55 16096.72 15996.89 4785.42 13578.40 24488.93 26775.38 15395.52 28278.58 22568.02 33589.57 274
FIs86.73 18686.10 17988.61 22390.05 28280.21 17096.14 19796.95 4285.56 13378.37 24592.30 21776.73 12595.28 29279.51 21479.27 26190.35 258
BH-w/o88.24 16087.47 15990.54 18095.03 14078.54 21397.41 10493.82 26884.08 17378.23 24694.51 17969.34 22197.21 19780.21 20994.58 12195.87 185
UniMVSNet_NR-MVSNet85.49 20584.59 20088.21 23489.44 29479.36 19296.71 16196.41 10885.22 14078.11 24790.98 24176.97 12095.14 29979.14 22068.30 33290.12 263
DU-MVS84.57 22083.33 22488.28 23088.76 29879.36 19296.43 17995.41 18285.42 13578.11 24790.82 24367.61 22495.14 29979.14 22068.30 33290.33 259
dmvs_re84.10 22782.90 23087.70 24391.41 25473.28 30390.59 32593.19 29885.02 14677.96 24993.68 19757.92 29796.18 24475.50 25880.87 24893.63 232
miper_enhance_ethall85.95 19785.20 19088.19 23594.85 14579.76 18096.00 20194.06 25682.98 20377.74 25088.76 26979.42 7995.46 28480.58 20372.42 29989.36 280
v114482.90 25081.27 25587.78 24286.29 32779.07 20396.14 19793.93 25980.05 25977.38 25186.80 30065.50 24095.93 25775.21 26170.13 31388.33 311
FC-MVSNet-test85.96 19685.39 18787.66 24589.38 29578.02 23195.65 22096.87 4985.12 14477.34 25291.94 22676.28 13494.74 31277.09 24078.82 26590.21 261
v2v48283.46 23881.86 24688.25 23286.19 32979.65 18696.34 18594.02 25781.56 22977.32 25388.23 27865.62 23996.03 24777.77 22969.72 32089.09 288
Baseline_NR-MVSNet81.22 27580.07 27384.68 30385.32 34475.12 28696.48 17388.80 35676.24 31177.28 25486.40 31067.61 22494.39 32275.73 25766.73 34884.54 359
V4283.04 24781.53 25187.57 25086.27 32879.09 20295.87 21094.11 25380.35 25277.22 25586.79 30165.32 24496.02 25077.74 23070.14 31287.61 324
v14419282.43 25680.73 26287.54 25185.81 33678.22 22495.98 20293.78 27379.09 27977.11 25686.49 30564.66 25095.91 25874.20 27169.42 32188.49 305
ACMM80.70 1383.72 23582.85 23286.31 27691.19 25772.12 31595.88 20994.29 24280.44 24877.02 25791.96 22455.24 31797.14 20479.30 21880.38 25289.67 273
Qingshan Xu and Wenbing Tao: Multi-Scale Geometric Consistency Guided Multi-View Stereo. CVPR 2019
v119282.31 26080.55 26687.60 24785.94 33378.47 21795.85 21293.80 27179.33 27276.97 25886.51 30463.33 25595.87 26073.11 27870.13 31388.46 307
PCF-MVS84.09 586.77 18585.00 19692.08 12892.06 24083.07 10392.14 30894.47 23179.63 26776.90 25994.78 17371.15 20899.20 9272.87 27991.05 16293.98 226
Andreas Kuhn, Shan Lin, Oliver Erdler: Plane Completion and Filtering for Multi-View Stereo Reconstruction. GCPR 2019
cl2285.11 21184.17 20987.92 23995.06 13978.82 20695.51 22594.22 24679.74 26576.77 26087.92 28375.96 13895.68 27179.93 21272.42 29989.27 282
v192192082.02 26480.23 27087.41 25585.62 33877.92 23795.79 21593.69 27878.86 28376.67 26186.44 30762.50 25895.83 26272.69 28069.77 31988.47 306
WR-MVS84.32 22482.96 22888.41 22689.38 29580.32 16596.59 16696.25 12483.97 17776.63 26290.36 25167.53 22794.86 30975.82 25670.09 31690.06 268
BH-untuned86.95 18085.94 18089.99 19494.52 15477.46 24996.78 15693.37 29381.80 22576.62 26393.81 19666.64 23597.02 20776.06 25293.88 13195.48 196
v124081.70 26879.83 27887.30 25985.50 33977.70 24695.48 22693.44 28778.46 28876.53 26486.44 30760.85 27195.84 26171.59 28770.17 31188.35 310
bld_raw_dy_0_6482.13 26280.76 26186.24 27885.78 33775.03 28894.40 26382.62 38483.12 19776.46 26590.96 24253.83 32594.55 31781.04 20078.60 27089.14 286
PS-MVSNAJss84.91 21484.30 20786.74 26785.89 33574.40 29594.95 25094.16 25083.93 18076.45 26690.11 25771.04 21095.77 26583.16 18779.02 26490.06 268
miper_ehance_all_eth84.57 22083.60 21987.50 25292.64 21678.25 22395.40 23193.47 28679.28 27576.41 26787.64 28676.53 12795.24 29478.58 22572.42 29989.01 293
LPG-MVS_test84.20 22683.49 22286.33 27390.88 26373.06 30695.28 23394.13 25182.20 21876.31 26893.20 20454.83 32196.95 21183.72 17780.83 24988.98 294
LGP-MVS_train86.33 27390.88 26373.06 30694.13 25182.20 21876.31 26893.20 20454.83 32196.95 21183.72 17780.83 24988.98 294
F-COLMAP84.50 22283.44 22387.67 24495.22 13172.22 31195.95 20493.78 27375.74 31276.30 27095.18 15959.50 27998.45 13572.67 28186.59 20292.35 244
tpmvs83.04 24780.77 26089.84 20195.43 12477.96 23485.59 36195.32 18775.31 31676.27 27183.70 34273.89 17897.41 18559.53 34481.93 24594.14 222
tt080581.20 27679.06 28487.61 24686.50 32372.97 30893.66 28095.48 17474.11 32476.23 27291.99 22241.36 36797.40 18677.44 23874.78 28892.45 242
3Dnovator82.32 1089.33 13087.64 15194.42 3393.73 18185.70 4497.73 7696.75 6586.73 11676.21 27395.93 13262.17 26099.68 5181.67 19797.81 6197.88 91
TranMVSNet+NR-MVSNet83.24 24381.71 24887.83 24087.71 31378.81 20896.13 19994.82 20884.52 16076.18 27490.78 24564.07 25194.60 31674.60 26866.59 34990.09 266
c3_l83.80 23382.65 23587.25 26092.10 23677.74 24595.25 23693.04 30578.58 28676.01 27587.21 29475.25 15995.11 30177.54 23668.89 32688.91 299
131488.94 13787.20 16494.17 4193.21 19585.73 4393.33 28996.64 8182.89 20475.98 27696.36 12466.83 23499.39 7783.52 18496.02 10597.39 132
Fast-Effi-MVS+-dtu83.33 24082.60 23685.50 29289.55 29169.38 34096.09 20091.38 32682.30 21775.96 27791.41 23156.71 30695.58 28075.13 26284.90 22091.54 245
XXY-MVS83.84 23282.00 24489.35 20987.13 31981.38 13995.72 21694.26 24380.15 25775.92 27890.63 24661.96 26596.52 23178.98 22273.28 29790.14 262
RRT_MVS83.88 23183.27 22585.71 28687.53 31772.12 31595.35 23294.33 24083.81 18475.86 27991.28 23560.55 27295.09 30483.93 17176.76 27989.90 271
GBi-Net82.42 25780.43 26888.39 22792.66 21381.95 11994.30 26693.38 29079.06 28075.82 28085.66 31656.38 31193.84 33071.23 29075.38 28589.38 277
test182.42 25780.43 26888.39 22792.66 21381.95 11994.30 26693.38 29079.06 28075.82 28085.66 31656.38 31193.84 33071.23 29075.38 28589.38 277
FMVSNet384.71 21682.71 23490.70 17694.55 15287.71 2195.92 20694.67 21781.73 22775.82 28088.08 28166.99 23294.47 32071.23 29075.38 28589.91 270
eth_miper_zixun_eth83.12 24582.01 24386.47 27291.85 24874.80 28994.33 26493.18 30079.11 27875.74 28387.25 29372.71 19095.32 29076.78 24467.13 34489.27 282
IterMVS-LS83.93 23082.80 23387.31 25891.46 25377.39 25195.66 21993.43 28880.44 24875.51 28487.26 29273.72 18195.16 29876.99 24170.72 30989.39 275
Fangjinhua Wang, Silvano Galliani, Christoph Vogel, Marc Pollefeys: IterMVS: Iterative Probability Estimation for Efficient Multi-View Stereo.
3Dnovator+82.88 889.63 12587.85 14694.99 2194.49 15986.76 3197.84 6795.74 16186.10 12175.47 28596.02 13165.00 24699.51 7182.91 19097.07 8298.72 40
test_djsdf83.00 24982.45 23884.64 30584.07 35669.78 33694.80 25594.48 22980.74 24075.41 28687.70 28561.32 27095.10 30283.77 17579.76 25489.04 291
v14882.41 25980.89 25886.99 26586.18 33076.81 26196.27 18893.82 26880.49 24775.28 28786.11 31567.32 23095.75 26775.48 25967.03 34688.42 309
QAPM86.88 18184.51 20293.98 4494.04 17485.89 4197.19 11796.05 14173.62 32875.12 28895.62 14262.02 26399.74 3870.88 29496.06 10396.30 178
UniMVSNet_ETH3D80.86 28078.75 28687.22 26186.31 32672.02 31791.95 30993.76 27673.51 32975.06 28990.16 25543.04 36195.66 27276.37 25078.55 27193.98 226
cl____83.27 24182.12 24186.74 26792.20 22975.95 27895.11 24593.27 29678.44 28974.82 29087.02 29774.19 17495.19 29674.67 26669.32 32289.09 288
DIV-MVS_self_test83.27 24182.12 24186.74 26792.19 23075.92 28095.11 24593.26 29778.44 28974.81 29187.08 29674.19 17495.19 29674.66 26769.30 32389.11 287
FMVSNet282.79 25180.44 26789.83 20292.66 21385.43 5295.42 22994.35 23879.06 28074.46 29287.28 29056.38 31194.31 32369.72 30274.68 28989.76 272
MIMVSNet79.18 29675.99 30588.72 22287.37 31880.66 15779.96 37591.82 32077.38 29974.33 29381.87 35141.78 36490.74 36466.36 32083.10 23094.76 212
RPSCF77.73 30676.63 30181.06 33888.66 30255.76 38587.77 34587.88 36364.82 36674.14 29492.79 21349.22 34096.81 22167.47 31076.88 27890.62 253
ACMP81.66 1184.00 22983.22 22686.33 27391.53 25272.95 30995.91 20893.79 27283.70 18873.79 29592.22 21854.31 32496.89 21583.98 17079.74 25689.16 285
Qingshan Xu and Wenbing Tao: Planar Prior Assisted PatchMatch Multi-View Stereo. AAAI 2020
pmmvs581.34 27379.54 27986.73 27085.02 34676.91 25896.22 19191.65 32377.65 29573.55 29688.61 27155.70 31494.43 32174.12 27273.35 29688.86 300
jajsoiax82.12 26381.15 25785.03 29984.19 35470.70 32994.22 27093.95 25883.07 19973.48 29789.75 25949.66 33995.37 28782.24 19479.76 25489.02 292
Syy-MVS77.97 30478.05 29077.74 35392.13 23456.85 38093.97 27494.23 24482.43 21473.39 29893.57 20057.95 29587.86 37532.40 39382.34 24088.51 303
myMVS_eth3d81.93 26582.18 24081.18 33792.13 23467.18 34993.97 27494.23 24482.43 21473.39 29893.57 20076.98 11987.86 37550.53 37582.34 24088.51 303
mvs_tets81.74 26780.71 26384.84 30084.22 35370.29 33293.91 27693.78 27382.77 20873.37 30089.46 26247.36 34995.31 29181.99 19579.55 26088.92 298
pmmvs482.54 25580.79 25987.79 24186.11 33180.49 16493.55 28493.18 30077.29 30073.35 30189.40 26365.26 24595.05 30675.32 26073.61 29387.83 319
LS3D82.22 26179.94 27689.06 21397.43 7974.06 29893.20 29592.05 31761.90 37173.33 30295.21 15659.35 28099.21 8854.54 36492.48 15093.90 228
v1081.43 27279.53 28087.11 26286.38 32478.87 20594.31 26593.43 28877.88 29273.24 30385.26 32465.44 24195.75 26772.14 28467.71 33986.72 337
v881.88 26680.06 27487.32 25786.63 32279.04 20494.41 26093.65 28078.77 28473.19 30485.57 32066.87 23395.81 26373.84 27567.61 34087.11 333
test0.0.03 182.79 25182.48 23783.74 31886.81 32172.22 31196.52 17095.03 19783.76 18673.00 30593.20 20472.30 19688.88 37164.15 32877.52 27790.12 263
anonymousdsp80.98 27979.97 27584.01 31381.73 36670.44 33192.49 30493.58 28477.10 30472.98 30686.31 31157.58 29894.90 30779.32 21778.63 26986.69 338
XVG-ACMP-BASELINE79.38 29477.90 29283.81 31584.98 34767.14 35389.03 33493.18 30080.26 25672.87 30788.15 28038.55 37296.26 24076.05 25378.05 27588.02 316
WR-MVS_H81.02 27780.09 27183.79 31688.08 30871.26 32894.46 25896.54 9380.08 25872.81 30886.82 29970.36 21692.65 34364.18 32767.50 34187.46 330
OpenMVScopyleft79.58 1486.09 19483.62 21893.50 6890.95 26286.71 3297.44 9995.83 15675.35 31472.64 30995.72 13757.42 30299.64 5571.41 28895.85 10894.13 223
Anonymous2023121179.72 28977.19 29787.33 25695.59 12177.16 25795.18 24294.18 24959.31 38472.57 31086.20 31347.89 34695.66 27274.53 26969.24 32489.18 284
CP-MVSNet81.01 27880.08 27283.79 31687.91 31170.51 33094.29 26995.65 16580.83 23772.54 31188.84 26863.71 25292.32 34668.58 30768.36 33188.55 302
miper_lstm_enhance81.66 27080.66 26484.67 30491.19 25771.97 31991.94 31093.19 29877.86 29372.27 31285.26 32473.46 18493.42 33873.71 27667.05 34588.61 301
PS-CasMVS80.27 28579.18 28183.52 32287.56 31569.88 33594.08 27295.29 18880.27 25572.08 31388.51 27559.22 28392.23 34867.49 30968.15 33488.45 308
FMVSNet179.50 29276.54 30288.39 22788.47 30381.95 11994.30 26693.38 29073.14 33372.04 31485.66 31643.86 35593.84 33065.48 32272.53 29889.38 277
PEN-MVS79.47 29378.26 28983.08 32586.36 32568.58 34393.85 27894.77 21279.76 26471.37 31588.55 27259.79 27592.46 34464.50 32665.40 35188.19 313
testing380.74 28181.17 25679.44 34691.15 25963.48 36497.16 12295.76 15980.83 23771.36 31693.15 20778.22 9887.30 38043.19 38779.67 25787.55 328
Patchmtry77.36 31074.59 31585.67 28889.75 28675.75 28277.85 38391.12 33160.28 37971.23 31780.35 35975.45 14993.56 33657.94 35067.34 34387.68 322
IterMVS80.67 28279.16 28285.20 29689.79 28476.08 27292.97 29991.86 31980.28 25471.20 31885.14 32957.93 29691.34 35872.52 28270.74 30888.18 314
Fangjinhua Wang, Silvano Galliani, Christoph Vogel, Marc Pollefeys: IterMVS: Iterative Probability Estimation for Efficient Multi-View Stereo.
DP-MVS81.47 27178.28 28891.04 16498.14 5578.48 21495.09 24886.97 36661.14 37771.12 31992.78 21459.59 27799.38 7853.11 36886.61 20195.27 202
IterMVS-SCA-FT80.51 28479.10 28384.73 30289.63 29074.66 29092.98 29891.81 32180.05 25971.06 32085.18 32758.04 29291.40 35772.48 28370.70 31088.12 315
v7n79.32 29577.34 29585.28 29584.05 35772.89 31093.38 28793.87 26575.02 31970.68 32184.37 33659.58 27895.62 27767.60 30867.50 34187.32 332
MS-PatchMatch83.05 24681.82 24786.72 27189.64 28979.10 20194.88 25294.59 22579.70 26670.67 32289.65 26050.43 33596.82 22070.82 29795.99 10684.25 362
DTE-MVSNet78.37 29977.06 29882.32 33285.22 34567.17 35293.40 28693.66 27978.71 28570.53 32388.29 27759.06 28492.23 34861.38 34063.28 36087.56 326
pm-mvs180.05 28678.02 29186.15 27985.42 34075.81 28195.11 24592.69 31077.13 30270.36 32487.43 28858.44 28895.27 29371.36 28964.25 35687.36 331
D2MVS82.67 25381.55 25086.04 28187.77 31276.47 26595.21 23896.58 8982.66 21170.26 32585.46 32360.39 27395.80 26476.40 24979.18 26285.83 352
PVSNet_077.72 1581.70 26878.95 28589.94 19890.77 26976.72 26395.96 20396.95 4285.01 14770.24 32688.53 27452.32 32798.20 14586.68 15344.08 39194.89 208
CL-MVSNet_self_test75.81 31974.14 32180.83 34078.33 37667.79 34694.22 27093.52 28577.28 30169.82 32781.54 35361.47 26989.22 37057.59 35353.51 37685.48 354
tfpnnormal78.14 30175.42 30886.31 27688.33 30679.24 19594.41 26096.22 12773.51 32969.81 32885.52 32255.43 31595.75 26747.65 38267.86 33783.95 365
EU-MVSNet76.92 31476.95 29976.83 35684.10 35554.73 38791.77 31392.71 30972.74 33769.57 32988.69 27058.03 29487.43 37964.91 32570.00 31788.33 311
ITE_SJBPF82.38 33087.00 32065.59 35589.55 34779.99 26169.37 33091.30 23441.60 36695.33 28962.86 33574.63 29086.24 344
DSMNet-mixed73.13 33272.45 32875.19 36277.51 37946.82 39285.09 36482.01 38567.61 36169.27 33181.33 35450.89 33286.28 38254.54 36483.80 22492.46 241
MVP-Stereo82.65 25481.67 24985.59 29186.10 33278.29 22193.33 28992.82 30777.75 29469.17 33287.98 28259.28 28295.76 26671.77 28596.88 8682.73 370
Qingsong Yan: MVP-Stereo: A Parallel Multi-View Patchmatch Stereo Method with Dilation Matching for Photogrammetric Application.
MSDG80.62 28377.77 29389.14 21293.43 19277.24 25391.89 31190.18 34369.86 35368.02 33391.94 22652.21 32998.84 11759.32 34783.12 22991.35 246
NR-MVSNet83.35 23981.52 25288.84 21888.76 29881.31 14194.45 25995.16 19284.65 15767.81 33490.82 24370.36 21694.87 30874.75 26466.89 34790.33 259
TransMVSNet (Re)76.94 31374.38 31784.62 30685.92 33475.25 28595.28 23389.18 35273.88 32767.22 33586.46 30659.64 27694.10 32659.24 34852.57 38084.50 360
Anonymous2023120675.29 32273.64 32380.22 34280.75 36763.38 36593.36 28890.71 34173.09 33467.12 33683.70 34250.33 33690.85 36353.63 36770.10 31586.44 341
ppachtmachnet_test77.19 31174.22 31986.13 28085.39 34178.22 22493.98 27391.36 32871.74 34467.11 33784.87 33356.67 30793.37 34052.21 36964.59 35386.80 336
KD-MVS_2432*160077.63 30774.92 31285.77 28490.86 26679.44 18988.08 34193.92 26176.26 30967.05 33882.78 34772.15 19891.92 35161.53 33741.62 39485.94 350
miper_refine_blended77.63 30774.92 31285.77 28490.86 26679.44 18988.08 34193.92 26176.26 30967.05 33882.78 34772.15 19891.92 35161.53 33741.62 39485.94 350
Patchmatch-test78.25 30074.72 31488.83 21991.20 25674.10 29773.91 39188.70 35959.89 38266.82 34085.12 33078.38 9594.54 31848.84 38079.58 25997.86 94
test_fmvs369.56 34369.19 34370.67 36569.01 39147.05 39190.87 32386.81 36871.31 34766.79 34177.15 36916.40 39683.17 38881.84 19662.51 36281.79 378
LTVRE_ROB73.68 1877.99 30275.74 30784.74 30190.45 27472.02 31786.41 35691.12 33172.57 33966.63 34287.27 29154.95 32096.98 20956.29 35975.98 28085.21 356
Andreas Kuhn, Heiko Hirschmüller, Daniel Scharstein, Helmut Mayer: A TV Prior for High-Quality Scalable Multi-View Stereo Reconstruction. International Journal of Computer Vision 2016
OurMVSNet-221017-077.18 31276.06 30480.55 34183.78 36060.00 37690.35 32691.05 33477.01 30666.62 34387.92 28347.73 34794.03 32771.63 28668.44 33087.62 323
testgi74.88 32473.40 32479.32 34780.13 37161.75 36993.21 29486.64 37079.49 27066.56 34491.06 23835.51 37988.67 37256.79 35871.25 30487.56 326
LCM-MVSNet-Re83.75 23483.54 22084.39 31293.54 18564.14 36092.51 30384.03 37983.90 18166.14 34586.59 30367.36 22992.68 34284.89 16492.87 14496.35 173
pmmvs674.65 32571.67 33183.60 32179.13 37469.94 33493.31 29290.88 33861.05 37865.83 34684.15 33943.43 35794.83 31066.62 31560.63 36586.02 348
our_test_377.90 30575.37 30985.48 29385.39 34176.74 26293.63 28191.67 32273.39 33265.72 34784.65 33558.20 29193.13 34157.82 35167.87 33686.57 340
COLMAP_ROBcopyleft73.24 1975.74 32073.00 32783.94 31492.38 21969.08 34191.85 31286.93 36761.48 37465.32 34890.27 25242.27 36396.93 21450.91 37375.63 28485.80 353
Johannes L. Schönberger, Enliang Zheng, Marc Pollefeys, Jan-Michael Frahm: Pixelwise View Selection for Unstructured Multi-View Stereo. ECCV 2016
FMVSNet576.46 31674.16 32083.35 32490.05 28276.17 27089.58 33089.85 34571.39 34665.29 34980.42 35850.61 33487.70 37861.05 34269.24 32486.18 345
ACMH+76.62 1677.47 30974.94 31185.05 29891.07 26171.58 32593.26 29390.01 34471.80 34364.76 35088.55 27241.62 36596.48 23262.35 33671.00 30687.09 334
Patchmatch-RL test76.65 31574.01 32284.55 30777.37 38064.23 35978.49 38282.84 38378.48 28764.63 35173.40 37976.05 13791.70 35676.99 24157.84 36997.72 105
SixPastTwentyTwo76.04 31774.32 31881.22 33684.54 35061.43 37291.16 32089.30 35177.89 29164.04 35286.31 31148.23 34194.29 32463.54 33263.84 35887.93 318
AllTest75.92 31873.06 32684.47 30892.18 23167.29 34791.07 32184.43 37767.63 35763.48 35390.18 25338.20 37397.16 20057.04 35573.37 29488.97 296
TestCases84.47 30892.18 23167.29 34784.43 37767.63 35763.48 35390.18 25338.20 37397.16 20057.04 35573.37 29488.97 296
ACMH75.40 1777.99 30274.96 31087.10 26390.67 27076.41 26793.19 29691.64 32472.47 34063.44 35587.61 28743.34 35897.16 20058.34 34973.94 29187.72 320
Qingshan Xu and Wenbing Tao: Multi-Scale Geometric Consistency Guided Multi-View Stereo. CVPR 2019
ET-MVSNet_ETH3D90.01 11889.03 12592.95 8894.38 16186.77 3098.14 4696.31 12089.30 5963.33 35696.72 12090.09 1193.63 33590.70 10382.29 24298.46 53
USDC78.65 29876.25 30385.85 28287.58 31474.60 29289.58 33090.58 34284.05 17463.13 35788.23 27840.69 37196.86 21966.57 31775.81 28386.09 347
LF4IMVS72.36 33670.82 33476.95 35579.18 37356.33 38186.12 35886.11 37269.30 35563.06 35886.66 30233.03 38392.25 34765.33 32368.64 32882.28 374
dmvs_testset72.00 33973.36 32567.91 36783.83 35931.90 40785.30 36377.12 39282.80 20763.05 35992.46 21661.54 26882.55 39042.22 38971.89 30389.29 281
KD-MVS_self_test70.97 34269.31 34275.95 36176.24 38655.39 38687.45 34690.94 33770.20 35162.96 36077.48 36844.01 35488.09 37361.25 34153.26 37784.37 361
Anonymous2024052172.06 33869.91 33978.50 35177.11 38161.67 37191.62 31790.97 33665.52 36462.37 36179.05 36436.32 37590.96 36257.75 35268.52 32982.87 367
test_040272.68 33469.54 34182.09 33388.67 30171.81 32292.72 30286.77 36961.52 37362.21 36283.91 34043.22 35993.76 33334.60 39272.23 30280.72 380
OpenMVS_ROBcopyleft68.52 2073.02 33369.57 34083.37 32380.54 37071.82 32193.60 28388.22 36162.37 36961.98 36383.15 34635.31 38095.47 28345.08 38575.88 28282.82 368
MVS-HIRNet71.36 34167.00 34684.46 31090.58 27169.74 33779.15 37987.74 36546.09 39161.96 36450.50 39545.14 35395.64 27553.74 36688.11 18988.00 317
test20.0372.36 33671.15 33375.98 36077.79 37759.16 37892.40 30689.35 35074.09 32561.50 36584.32 33748.09 34285.54 38550.63 37462.15 36383.24 366
mvsany_test367.19 34965.34 35172.72 36463.08 39748.57 39083.12 37178.09 39172.07 34161.21 36677.11 37022.94 39187.78 37778.59 22451.88 38181.80 377
PM-MVS69.32 34566.93 34776.49 35773.60 38855.84 38385.91 35979.32 39074.72 32161.09 36778.18 36621.76 39291.10 36170.86 29556.90 37182.51 371
TDRefinement69.20 34665.78 35079.48 34566.04 39662.21 36888.21 34086.12 37162.92 36861.03 36885.61 31933.23 38294.16 32555.82 36253.02 37882.08 375
ambc76.02 35968.11 39351.43 38864.97 39689.59 34660.49 36974.49 37617.17 39592.46 34461.50 33952.85 37984.17 363
pmmvs-eth3d73.59 32870.66 33582.38 33076.40 38473.38 30089.39 33389.43 34972.69 33860.34 37077.79 36746.43 35191.26 36066.42 31957.06 37082.51 371
test_vis1_rt73.96 32672.40 32978.64 35083.91 35861.16 37395.63 22168.18 40076.32 30860.09 37174.77 37429.01 38997.54 17687.74 14175.94 28177.22 384
K. test v373.62 32771.59 33279.69 34482.98 36259.85 37790.85 32488.83 35577.13 30258.90 37282.11 34943.62 35691.72 35565.83 32154.10 37587.50 329
EG-PatchMatch MVS74.92 32372.02 33083.62 32083.76 36173.28 30393.62 28292.04 31868.57 35658.88 37383.80 34131.87 38595.57 28156.97 35778.67 26682.00 376
lessismore_v079.98 34380.59 36958.34 37980.87 38658.49 37483.46 34443.10 36093.89 32963.11 33448.68 38487.72 320
N_pmnet61.30 35360.20 35664.60 37284.32 35217.00 41391.67 31610.98 41161.77 37258.45 37578.55 36549.89 33891.83 35442.27 38863.94 35784.97 357
TinyColmap72.41 33568.99 34482.68 32888.11 30769.59 33888.41 33985.20 37465.55 36357.91 37684.82 33430.80 38795.94 25651.38 37068.70 32782.49 373
UnsupCasMVSNet_eth73.25 33170.57 33681.30 33577.53 37866.33 35487.24 34993.89 26480.38 25157.90 37781.59 35242.91 36290.56 36565.18 32448.51 38587.01 335
MIMVSNet169.44 34466.65 34877.84 35276.48 38362.84 36787.42 34788.97 35466.96 36257.75 37879.72 36332.77 38485.83 38446.32 38363.42 35984.85 358
pmmvs365.75 35162.18 35476.45 35867.12 39564.54 35788.68 33785.05 37554.77 39057.54 37973.79 37729.40 38886.21 38355.49 36347.77 38778.62 382
test_f64.01 35262.13 35569.65 36663.00 39845.30 39783.66 37080.68 38761.30 37555.70 38072.62 38214.23 39884.64 38669.84 30058.11 36879.00 381
new-patchmatchnet68.85 34765.93 34977.61 35473.57 38963.94 36290.11 32888.73 35871.62 34555.08 38173.60 37840.84 36987.22 38151.35 37248.49 38681.67 379
UnsupCasMVSNet_bld68.60 34864.50 35280.92 33974.63 38767.80 34583.97 36892.94 30665.12 36554.63 38268.23 38835.97 37792.17 35060.13 34344.83 38982.78 369
CMPMVSbinary54.94 2175.71 32174.56 31679.17 34879.69 37255.98 38289.59 32993.30 29560.28 37953.85 38389.07 26547.68 34896.33 23876.55 24681.02 24685.22 355
M. Jancosek, T. Pajdla: Multi-View Reconstruction Preserving Weakly-Supported Surfaces. CVPR 2011
new_pmnet66.18 35063.18 35375.18 36376.27 38561.74 37083.79 36984.66 37656.64 38851.57 38471.85 38631.29 38687.93 37449.98 37662.55 36175.86 385
test_method56.77 35554.53 35963.49 37476.49 38240.70 40075.68 38774.24 39419.47 40248.73 38571.89 38519.31 39365.80 40257.46 35447.51 38883.97 364
YYNet173.53 33070.43 33782.85 32784.52 35171.73 32391.69 31591.37 32767.63 35746.79 38681.21 35555.04 31990.43 36655.93 36059.70 36786.38 342
MDA-MVSNet_test_wron73.54 32970.43 33782.86 32684.55 34971.85 32091.74 31491.32 33067.63 35746.73 38781.09 35655.11 31890.42 36755.91 36159.76 36686.31 343
WB-MVS57.26 35456.22 35760.39 37869.29 39035.91 40586.39 35770.06 39859.84 38346.46 38872.71 38151.18 33178.11 39215.19 40234.89 39767.14 391
SSC-MVS56.01 35754.96 35859.17 37968.42 39234.13 40684.98 36569.23 39958.08 38745.36 38971.67 38750.30 33777.46 39314.28 40332.33 39865.91 392
MDA-MVSNet-bldmvs71.45 34067.94 34581.98 33485.33 34368.50 34492.35 30788.76 35770.40 34942.99 39081.96 35046.57 35091.31 35948.75 38154.39 37486.11 346
APD_test156.56 35653.58 36065.50 36967.93 39446.51 39477.24 38672.95 39538.09 39342.75 39175.17 37313.38 39982.78 38940.19 39054.53 37367.23 390
DeepMVS_CXcopyleft64.06 37378.53 37543.26 39868.11 40269.94 35238.55 39276.14 37218.53 39479.34 39143.72 38641.62 39469.57 388
LCM-MVSNet52.52 36048.24 36365.35 37047.63 40741.45 39972.55 39283.62 38131.75 39537.66 39357.92 3939.19 40576.76 39549.26 37844.60 39077.84 383
test_vis3_rt54.10 35951.04 36263.27 37558.16 39946.08 39684.17 36749.32 41056.48 38936.56 39449.48 3978.03 40691.91 35367.29 31149.87 38251.82 396
FPMVS55.09 35852.93 36161.57 37655.98 40040.51 40183.11 37283.41 38237.61 39434.95 39571.95 38414.40 39776.95 39429.81 39465.16 35267.25 389
PMMVS250.90 36246.31 36564.67 37155.53 40146.67 39377.30 38571.02 39740.89 39234.16 39659.32 3919.83 40476.14 39740.09 39128.63 39971.21 386
testf145.70 36442.41 36655.58 38053.29 40440.02 40268.96 39462.67 40427.45 39729.85 39761.58 3895.98 40773.83 39928.49 39743.46 39252.90 394
APD_test245.70 36442.41 36655.58 38053.29 40440.02 40268.96 39462.67 40427.45 39729.85 39761.58 3895.98 40773.83 39928.49 39743.46 39252.90 394
tmp_tt41.54 36741.93 36940.38 38520.10 41126.84 40961.93 39759.09 40614.81 40428.51 39980.58 35735.53 37848.33 40663.70 33113.11 40345.96 399
Gipumacopyleft45.11 36642.05 36854.30 38280.69 36851.30 38935.80 40083.81 38028.13 39627.94 40034.53 40011.41 40376.70 39621.45 39954.65 37234.90 400
S. Galliani, K. Lasinger, K. Schindler: Massively Parallel Multiview Stereopsis by Surface Normal Diffusion. ICCV 2015
ANet_high46.22 36341.28 37061.04 37739.91 40946.25 39570.59 39376.18 39358.87 38523.09 40148.00 39812.58 40166.54 40128.65 39613.62 40270.35 387
MVEpermissive35.65 2233.85 36929.49 37446.92 38441.86 40836.28 40450.45 39956.52 40718.75 40318.28 40237.84 3992.41 41058.41 40318.71 40020.62 40046.06 398
Simon Fuhrmann, Fabian Langguth, Michael Goesele: MVE - A Multi-View Reconstruction Environment. EUROGRAPHICS Workshops on Graphics and Cultural Heritage (2014)
PMVScopyleft34.80 2339.19 36835.53 37150.18 38329.72 41030.30 40859.60 39866.20 40326.06 39917.91 40349.53 3963.12 40974.09 39818.19 40149.40 38346.14 397
Y. Furukawa, J. Ponce: Accurate, dense, and robust multiview stereopsis. PAMI (2010)
E-PMN32.70 37032.39 37233.65 38653.35 40325.70 41074.07 39053.33 40821.08 40017.17 40433.63 40211.85 40254.84 40412.98 40414.04 40120.42 401
EMVS31.70 37131.45 37332.48 38750.72 40623.95 41174.78 38952.30 40920.36 40116.08 40531.48 40312.80 40053.60 40511.39 40513.10 40419.88 402
wuyk23d14.10 37313.89 37614.72 38855.23 40222.91 41233.83 4013.56 4124.94 4054.11 4062.28 4082.06 41119.66 40710.23 4068.74 4051.59 405
testmvs9.92 37412.94 3770.84 3900.65 4120.29 41593.78 2790.39 4130.42 4062.85 40715.84 4060.17 4130.30 4092.18 4070.21 4061.91 404
test1239.07 37511.73 3781.11 3890.50 4130.77 41489.44 3320.20 4140.34 4072.15 40810.72 4070.34 4120.32 4081.79 4080.08 4072.23 403
EGC-MVSNET52.46 36147.56 36467.15 36881.98 36560.11 37582.54 37372.44 3960.11 4080.70 40974.59 37525.11 39083.26 38729.04 39561.51 36458.09 393
test_blank0.00 3780.00 3810.00 3910.00 4140.00 4160.00 4020.00 4150.00 4090.00 4100.00 4090.00 4140.00 4100.00 4090.00 4080.00 406
uanet_test0.00 3780.00 3810.00 3910.00 4140.00 4160.00 4020.00 4150.00 4090.00 4100.00 4090.00 4140.00 4100.00 4090.00 4080.00 406
DCPMVS0.00 3780.00 3810.00 3910.00 4140.00 4160.00 4020.00 4150.00 4090.00 4100.00 4090.00 4140.00 4100.00 4090.00 4080.00 406
cdsmvs_eth3d_5k21.43 37228.57 3750.00 3910.00 4140.00 4160.00 40295.93 1510.00 4090.00 41097.66 7263.57 2530.00 4100.00 4090.00 4080.00 406
pcd_1.5k_mvsjas5.92 3777.89 3800.00 3910.00 4140.00 4160.00 4020.00 4150.00 4090.00 4100.00 40971.04 2100.00 4100.00 4090.00 4080.00 406
sosnet-low-res0.00 3780.00 3810.00 3910.00 4140.00 4160.00 4020.00 4150.00 4090.00 4100.00 4090.00 4140.00 4100.00 4090.00 4080.00 406
sosnet0.00 3780.00 3810.00 3910.00 4140.00 4160.00 4020.00 4150.00 4090.00 4100.00 4090.00 4140.00 4100.00 4090.00 4080.00 406
uncertanet0.00 3780.00 3810.00 3910.00 4140.00 4160.00 4020.00 4150.00 4090.00 4100.00 4090.00 4140.00 4100.00 4090.00 4080.00 406
Regformer0.00 3780.00 3810.00 3910.00 4140.00 4160.00 4020.00 4150.00 4090.00 4100.00 4090.00 4140.00 4100.00 4090.00 4080.00 406
ab-mvs-re8.11 37610.81 3790.00 3910.00 4140.00 4160.00 4020.00 4150.00 4090.00 41097.30 940.00 4140.00 4100.00 4090.00 4080.00 406
uanet0.00 3780.00 3810.00 3910.00 4140.00 4160.00 4020.00 4150.00 4090.00 4100.00 4090.00 4140.00 4100.00 4090.00 4080.00 406
WAC-MVS67.18 34949.00 379
MSC_two_6792asdad97.14 399.05 992.19 496.83 5299.81 2198.08 1498.81 2499.43 11
No_MVS97.14 399.05 992.19 496.83 5299.81 2198.08 1498.81 2499.43 11
eth-test20.00 414
eth-test0.00 414
OPU-MVS97.30 299.19 792.31 399.12 1198.54 2092.06 399.84 1299.11 299.37 199.74 1
save fliter98.24 5183.34 9898.61 3396.57 9091.32 32
test_0728_SECOND95.14 1899.04 1486.14 3599.06 1696.77 6199.84 1297.90 1798.85 2199.45 10
GSMVS97.54 118
sam_mvs177.59 10897.54 118
sam_mvs75.35 156
MTGPAbinary96.33 118
test_post185.88 36030.24 40473.77 17995.07 30573.89 273
test_post33.80 40176.17 13595.97 252
patchmatchnet-post77.09 37177.78 10795.39 285
MTMP97.53 9168.16 401
gm-plane-assit92.27 22579.64 18784.47 16395.15 16197.93 15285.81 156
test9_res96.00 3999.03 1398.31 62
agg_prior294.30 5899.00 1598.57 46
test_prior482.34 11597.75 75
test_prior93.09 8398.68 2681.91 12396.40 11099.06 10498.29 64
新几何296.42 180
旧先验197.39 8279.58 18896.54 9398.08 4884.00 4497.42 7497.62 114
无先验96.87 14996.78 5577.39 29899.52 6979.95 21198.43 55
原ACMM296.84 150
testdata299.48 7376.45 248
segment_acmp82.69 56
testdata195.57 22487.44 95
plane_prior791.86 24677.55 248
plane_prior691.98 24277.92 23764.77 248
plane_prior594.69 21497.30 19287.08 14782.82 23590.96 249
plane_prior494.15 187
plane_prior297.18 11889.89 53
plane_prior191.95 244
plane_prior77.96 23497.52 9490.36 4882.96 233
n20.00 415
nn0.00 415
door-mid79.75 389
test1196.50 98
door80.13 388
HQP5-MVS78.48 214
BP-MVS87.67 143
HQP3-MVS94.80 20983.01 231
HQP2-MVS65.40 242
NP-MVS92.04 24178.22 22494.56 177
ACMMP++_ref78.45 272
ACMMP++79.05 263
Test By Simon71.65 203