This table lists the benchmark results for the high-res multi-view scenario. The following metrics are evaluated:

(*) For exact definitions, detailing how potentially incomplete ground truth is taken into account, see our paper.

The datasets are grouped into different categories, and result averages are computed for a category and method if results of the method are available for all datasets within the category. Note that the category "all" includes both the high-res multi-view and the low-res many-view scenarios.

Methods with suffix _ROB may participate in the Robust Vision Challenge.

Click a dataset result cell to show a visualization of the reconstruction. For training datasets, ground truth and accuracy / completeness visualizations are also available. The visualizations may not work with mobile browsers.




Method Infoallhigh-res
multi-view
indooroutdoorbotani.boulde.bridgedoorexhibi.lectur.living.loungeobserv.old co.statueterrac.
sort bysort bysort bysort bysort bysort bysort bysort bysort bysorted bysort bysort bysort bysort bysort bysort by
IU-MVS99.03 1585.34 5896.86 5092.05 2798.74 198.15 1198.97 1799.42 13
PC_three_145291.12 3598.33 298.42 2892.51 299.81 2298.96 499.37 199.70 3
fmvsm_l_conf0.5_n94.89 1695.24 1793.86 5394.42 16584.61 7999.13 1196.15 13392.06 2597.92 398.52 2384.52 3599.74 3898.76 695.67 11597.22 146
SMA-MVScopyleft94.70 2194.68 2194.76 3098.02 5985.94 4597.47 9596.77 6085.32 13997.92 398.70 1583.09 5399.84 1395.79 4399.08 1098.49 57
Yufeng Yin; Xiaoyan Liu; Zichao Zhang: SMA-MVS: Segmentation-Guided Multi-Scale Anchor Deformation Patch Multi-View Stereo. IEEE Transactions on Circuits and Systems for Video Technology
fmvsm_l_conf0.5_n_a94.91 1595.30 1693.72 6294.50 16384.30 8499.14 1096.00 14491.94 2897.91 598.60 1884.78 3399.77 2998.84 596.03 10997.08 154
SED-MVS95.88 596.22 494.87 2699.03 1585.03 7199.12 1296.78 5488.72 6697.79 698.91 288.48 1699.82 1998.15 1198.97 1799.74 1
test_241102_ONE99.03 1585.03 7196.78 5488.72 6697.79 698.90 588.48 1699.82 19
DVP-MVS++96.05 496.41 394.96 2599.05 985.34 5898.13 4996.77 6088.38 7497.70 898.77 1092.06 399.84 1397.47 2499.37 199.70 3
test_241102_TWO96.78 5488.72 6697.70 898.91 287.86 2099.82 1998.15 1199.00 1599.47 9
patch_mono-295.14 1396.08 792.33 12198.44 4377.84 24598.43 3697.21 2292.58 1997.68 1097.65 7686.88 2499.83 1798.25 997.60 7099.33 18
test072699.05 985.18 6399.11 1596.78 5488.75 6497.65 1198.91 287.69 21
TSAR-MVS + MP.94.79 2095.17 1893.64 6597.66 6984.10 8795.85 21296.42 10791.26 3397.49 1296.80 11886.50 2698.49 13295.54 4999.03 1398.33 65
Zhenlong Yuan, Jiakai Cao, Zhaoqi Wang, Zhaoxin Li: TSAR-MVS: Textureless-aware Segmentation and Correlative Refinement Guided Multi-View Stereo. Pattern Recognition
test_fmvsm_n_192094.81 1995.60 1192.45 11495.29 13480.96 15399.29 297.21 2294.50 797.29 1398.44 2782.15 5899.78 2898.56 797.68 6896.61 172
MSP-MVS95.62 896.54 192.86 9898.31 4880.10 17997.42 10296.78 5492.20 2297.11 1498.29 3393.46 199.10 10196.01 3999.30 599.38 14
Zhenlong Yuan, Cong Liu, Fei Shen, Zhaoxin Li, Jingguo luo, Tianlu Mao and Zhaoqi Wang: MSP-MVS: Multi-granularity Segmentation Prior Guided Multi-View Stereo. AAAI2025
MVS_030495.58 995.44 1596.01 1097.63 7089.26 1299.27 396.59 8794.71 497.08 1597.99 5278.69 9599.86 1099.15 297.85 6398.91 36
fmvsm_s_conf0.5_n_a93.34 4393.71 3692.22 12893.38 19881.71 13798.86 2596.98 3791.64 2996.85 1698.55 1975.58 14999.77 2997.88 1993.68 13895.18 212
CNVR-MVS96.30 196.54 195.55 1599.31 587.69 2599.06 1797.12 2994.66 596.79 1798.78 986.42 2799.95 397.59 2399.18 799.00 32
DVP-MVScopyleft95.58 995.91 994.57 3599.05 985.18 6399.06 1796.46 10288.75 6496.69 1898.76 1287.69 2199.76 3197.90 1798.85 2198.77 41
Zhenlong Yuan, Jinguo Luo, Fei Shen, Zhaoxin Li, Cong Liu, Tianlu Mao, Zhaoqi Wang: DVP-MVS: Synergize Depth-Edge and Visibility Prior for Multi-View Stereo. AAAI2025
test_0728_THIRD88.38 7496.69 1898.76 1289.64 1299.76 3197.47 2498.84 2399.38 14
SD-MVS94.84 1895.02 1994.29 4197.87 6484.61 7997.76 7496.19 13189.59 5696.66 2098.17 4184.33 3799.60 5996.09 3898.50 3998.66 49
Zhenlong Yuan, Jiakai Cao, Zhaoxin Li, Hao Jiang and Zhaoqi Wang: SD-MVS: Segmentation-driven Deformation Multi-View Stereo with Spherical Refinement and EM optimization. AAAI2024
MM95.85 695.74 1096.15 896.34 9889.50 999.18 698.10 895.68 196.64 2197.92 5880.72 6699.80 2599.16 197.96 5999.15 27
fmvsm_s_conf0.1_n_a92.38 6892.49 6092.06 13688.08 31581.62 14097.97 6196.01 14390.62 4296.58 2298.33 3274.09 17999.71 4597.23 2893.46 14394.86 217
test_one_060198.91 1884.56 8196.70 7088.06 8296.57 2398.77 1088.04 19
DPE-MVScopyleft95.32 1195.55 1294.64 3498.79 2384.87 7697.77 7296.74 6586.11 12296.54 2498.89 688.39 1899.74 3897.67 2299.05 1299.31 20
Kehua Chen, Zhenlong Yuan, Tianlu Mao, Zhaoqi Wang: Dual-Level Precision Edges Guided Multi-View Stereo with Accurate Planarization. AAAI2025
DPM-MVS96.21 295.53 1398.26 196.26 10195.09 199.15 896.98 3793.39 1496.45 2598.79 890.17 999.99 189.33 13199.25 699.70 3
fmvsm_s_conf0.5_n93.69 3794.13 3392.34 11994.56 15682.01 12299.07 1697.13 2792.09 2396.25 2698.53 2276.47 13199.80 2598.39 894.71 12495.22 211
PS-MVSNAJ94.17 3093.52 4196.10 995.65 12392.35 298.21 4495.79 15892.42 2196.24 2798.18 3871.04 21699.17 9596.77 3497.39 7996.79 165
旧先验296.97 14074.06 32896.10 2897.76 16788.38 142
test_part298.90 1985.14 6996.07 29
fmvsm_s_conf0.1_n92.93 5093.16 4892.24 12690.52 27881.92 12698.42 3796.24 12591.17 3496.02 3098.35 3175.34 16099.74 3897.84 2094.58 12695.05 213
xiu_mvs_v2_base93.92 3593.26 4595.91 1195.07 14292.02 698.19 4595.68 16492.06 2596.01 3198.14 4270.83 22098.96 10996.74 3696.57 9996.76 168
balanced_conf0394.60 2394.30 2995.48 1696.45 9688.82 1496.33 18695.58 16891.12 3595.84 3293.87 19683.47 4898.37 14197.26 2798.81 2499.24 23
HPM-MVS++copyleft95.32 1195.48 1494.85 2798.62 3486.04 4197.81 7096.93 4392.45 2095.69 3398.50 2485.38 2999.85 1194.75 5799.18 798.65 50
NCCC95.63 795.94 894.69 3399.21 685.15 6899.16 796.96 4094.11 995.59 3498.64 1785.07 3199.91 495.61 4699.10 999.00 32
EPNet94.06 3394.15 3293.76 5897.27 8884.35 8298.29 4197.64 1494.57 695.36 3596.88 11379.96 7899.12 10091.30 10196.11 10697.82 105
Wanjuan Su, Wenbing Tao: Efficient Edge-Preserving Multi-View Stereo Network for Depth Estimation. AAAI 2023
CANet94.89 1694.64 2295.63 1397.55 7688.12 1899.06 1796.39 11294.07 1095.34 3697.80 6776.83 12699.87 897.08 3197.64 6998.89 37
test_fmvsmconf_n93.99 3494.36 2892.86 9892.82 21681.12 14799.26 496.37 11693.47 1395.16 3798.21 3679.00 8899.64 5598.21 1096.73 9797.83 103
TEST998.64 3183.71 9397.82 6896.65 7784.29 17295.16 3798.09 4584.39 3699.36 81
train_agg94.28 2794.45 2593.74 5998.64 3183.71 9397.82 6896.65 7784.50 16395.16 3798.09 4584.33 3799.36 8195.91 4298.96 1998.16 77
test_898.63 3383.64 9697.81 7096.63 8284.50 16395.10 4098.11 4484.33 3799.23 86
DeepPCF-MVS89.82 194.61 2296.17 589.91 20497.09 9170.21 33598.99 2396.69 7295.57 295.08 4199.23 186.40 2899.87 897.84 2098.66 3299.65 6
SF-MVS94.17 3094.05 3494.55 3697.56 7585.95 4397.73 7696.43 10684.02 17795.07 4298.74 1482.93 5499.38 7895.42 5198.51 3798.32 66
APDe-MVScopyleft94.56 2494.75 2093.96 5198.84 2283.40 10198.04 5796.41 10885.79 13095.00 4398.28 3484.32 4099.18 9497.35 2698.77 2899.28 21
Zhaojie Zeng, Yuesong Wang, Tao Guan: Matching Ambiguity-Resilient Multi-View Stereo via Adaptive Patch Deformation. Pattern Recognition
MVSFormer91.36 9390.57 9993.73 6193.00 20988.08 1994.80 25694.48 23380.74 24094.90 4497.13 10378.84 9195.10 30683.77 17997.46 7498.02 85
lupinMVS93.87 3693.58 4094.75 3193.00 20988.08 1999.15 895.50 17491.03 3894.90 4497.66 7278.84 9197.56 17894.64 6097.46 7498.62 52
CS-MVS-test92.98 4893.67 3790.90 17596.52 9576.87 26498.68 2894.73 21690.36 4994.84 4697.89 6277.94 10597.15 20994.28 6697.80 6598.70 48
9.1494.26 3198.10 5798.14 4696.52 9584.74 15594.83 4798.80 782.80 5699.37 8095.95 4198.42 43
testdata90.13 19695.92 11474.17 29996.49 10173.49 33394.82 4897.99 5278.80 9397.93 15683.53 18797.52 7398.29 70
APD-MVScopyleft93.61 3893.59 3993.69 6398.76 2483.26 10497.21 11296.09 13782.41 21694.65 4998.21 3681.96 6198.81 11994.65 5998.36 4899.01 31
Yuesong Wang, Zhaojie Zeng and etc.: Adaptive Patch Deformation for Textureless-Resilient Multi-View Stereo. CVPR2023
test_prior298.37 3986.08 12494.57 5098.02 5183.14 5095.05 5398.79 27
CS-MVS92.73 5593.48 4290.48 18796.27 10075.93 28498.55 3494.93 20389.32 5994.54 5197.67 7178.91 9097.02 21393.80 6997.32 8198.49 57
FOURS198.51 3978.01 23798.13 4996.21 12883.04 20094.39 52
ACMMP_NAP93.46 4193.23 4694.17 4697.16 8984.28 8596.82 15396.65 7786.24 12094.27 5397.99 5277.94 10599.83 1793.39 7498.57 3498.39 63
agg_prior98.59 3583.13 10696.56 9294.19 5499.16 96
SteuartSystems-ACMMP94.13 3294.44 2693.20 8495.41 12881.35 14499.02 2196.59 8789.50 5894.18 5598.36 3083.68 4799.45 7594.77 5698.45 4298.81 40
Skip Steuart: Steuart Systems R&D Blog.
PHI-MVS93.59 3993.63 3893.48 7698.05 5881.76 13498.64 3197.13 2782.60 21294.09 5698.49 2580.35 7099.85 1194.74 5898.62 3398.83 39
test_fmvsmconf0.1_n93.08 4793.22 4792.65 10788.45 31180.81 15899.00 2295.11 19693.21 1594.00 5797.91 6076.84 12499.59 6097.91 1696.55 10097.54 124
MVSMamba_PlusPlus92.37 6991.55 8094.83 2895.37 13087.69 2595.60 22395.42 18374.65 32293.95 5892.81 21483.11 5197.70 16994.49 6198.53 3599.11 28
bld_raw_conf0393.57 4093.09 4994.98 2495.96 11287.69 2595.60 22395.42 18389.51 5793.95 5893.63 20379.64 8098.15 15195.61 4698.53 3599.11 28
TSAR-MVS + GP.94.35 2694.50 2393.89 5297.38 8583.04 10898.10 5195.29 19191.57 3093.81 6097.45 8586.64 2599.43 7696.28 3794.01 13399.20 25
CANet_DTU90.98 10490.04 11593.83 5494.76 15286.23 3996.32 18793.12 31193.11 1693.71 6196.82 11763.08 26399.48 7384.29 17295.12 12095.77 195
VNet92.11 7491.22 8694.79 2996.91 9286.98 3297.91 6397.96 1086.38 11993.65 6295.74 13870.16 22598.95 11193.39 7488.87 18498.43 61
test_vis1_n_192089.95 12590.59 9888.03 24392.36 22668.98 34499.12 1294.34 24593.86 1193.64 6397.01 10951.54 33599.59 6096.76 3596.71 9895.53 202
ZD-MVS99.09 883.22 10596.60 8682.88 20593.61 6498.06 5082.93 5499.14 9795.51 5098.49 40
xiu_mvs_v1_base_debu90.54 11489.54 12593.55 7192.31 22787.58 2896.99 13594.87 20787.23 10493.27 6597.56 8157.43 30598.32 14392.72 8793.46 14394.74 221
xiu_mvs_v1_base90.54 11489.54 12593.55 7192.31 22787.58 2896.99 13594.87 20787.23 10493.27 6597.56 8157.43 30598.32 14392.72 8793.46 14394.74 221
xiu_mvs_v1_base_debi90.54 11489.54 12593.55 7192.31 22787.58 2896.99 13594.87 20787.23 10493.27 6597.56 8157.43 30598.32 14392.72 8793.46 14394.74 221
CDPH-MVS93.12 4592.91 5193.74 5998.65 3083.88 8997.67 8096.26 12383.00 20293.22 6898.24 3581.31 6399.21 8889.12 13298.74 3098.14 79
ETV-MVS92.72 5792.87 5292.28 12594.54 15881.89 12897.98 5995.21 19489.77 5593.11 6996.83 11577.23 12097.50 18695.74 4495.38 11897.44 133
MSLP-MVS++94.28 2794.39 2793.97 5098.30 4984.06 8898.64 3196.93 4390.71 4193.08 7098.70 1579.98 7799.21 8894.12 6799.07 1198.63 51
alignmvs92.97 4992.26 6595.12 2195.54 12587.77 2398.67 2996.38 11388.04 8393.01 7197.45 8579.20 8698.60 12593.25 8088.76 18598.99 34
sasdasda92.27 7091.22 8695.41 1795.80 11888.31 1597.09 13094.64 22488.49 7192.99 7297.31 9272.68 19498.57 12793.38 7688.58 18899.36 16
canonicalmvs92.27 7091.22 8695.41 1795.80 11888.31 1597.09 13094.64 22488.49 7192.99 7297.31 9272.68 19498.57 12793.38 7688.58 18899.36 16
EC-MVSNet91.73 8292.11 6990.58 18493.54 19077.77 24898.07 5494.40 24287.44 9892.99 7297.11 10574.59 17396.87 22393.75 7097.08 8597.11 152
MGCFI-Net91.95 7691.03 9294.72 3295.68 12286.38 3796.93 14594.48 23388.25 7892.78 7597.24 9872.34 19998.46 13593.13 8388.43 19299.32 19
jason92.73 5592.23 6694.21 4590.50 27987.30 3198.65 3095.09 19790.61 4392.76 7697.13 10375.28 16197.30 19893.32 7896.75 9698.02 85
jason: jason.
test_cas_vis1_n_192089.90 12690.02 11689.54 21290.14 28774.63 29498.71 2794.43 24093.04 1792.40 7796.35 12753.41 33199.08 10395.59 4896.16 10494.90 215
test1294.25 4298.34 4685.55 5596.35 11792.36 7880.84 6599.22 8798.31 5097.98 92
MG-MVS94.25 2993.72 3595.85 1299.38 389.35 1197.98 5998.09 989.99 5292.34 7996.97 11081.30 6498.99 10788.54 13898.88 2099.20 25
test_fmvs187.79 17488.52 14185.62 29292.98 21364.31 36197.88 6592.42 32187.95 8592.24 8095.82 13747.94 35098.44 13995.31 5294.09 13094.09 232
h-mvs3389.30 13688.95 13490.36 19095.07 14276.04 27896.96 14297.11 3090.39 4792.22 8195.10 16674.70 16998.86 11693.14 8165.89 35396.16 185
hse-mvs288.22 16688.21 14588.25 23793.54 19073.41 30295.41 23295.89 15290.39 4792.22 8194.22 18674.70 16996.66 23493.14 8164.37 35894.69 225
MCST-MVS96.17 396.12 696.32 799.42 289.36 1098.94 2497.10 3195.17 392.11 8398.46 2687.33 2399.97 297.21 2999.31 499.63 7
test_fmvsmconf0.01_n91.08 10190.68 9792.29 12482.43 36980.12 17897.94 6293.93 26492.07 2491.97 8497.60 7967.56 23499.53 6897.09 3095.56 11797.21 148
SR-MVS92.16 7292.27 6491.83 14898.37 4578.41 22396.67 16495.76 15982.19 22091.97 8498.07 4976.44 13298.64 12393.71 7197.27 8298.45 60
region2R92.72 5792.70 5592.79 10198.68 2680.53 16897.53 9096.51 9685.22 14291.94 8697.98 5577.26 11699.67 5390.83 10898.37 4798.18 75
Effi-MVS+90.70 11089.90 12193.09 8993.61 18783.48 9995.20 24092.79 31783.22 19591.82 8795.70 14071.82 20797.48 18891.25 10293.67 13998.32 66
HFP-MVS92.89 5192.86 5392.98 9398.71 2581.12 14797.58 8596.70 7085.20 14491.75 8897.97 5778.47 9799.71 4590.95 10498.41 4498.12 81
DeepC-MVS_fast89.06 294.48 2594.30 2995.02 2298.86 2185.68 5198.06 5596.64 8093.64 1291.74 8998.54 2080.17 7599.90 592.28 9198.75 2999.49 8
Andreas Kuhn, Christian Sormann, Mattia Rossi, Oliver Erdler, Friedrich Fraundorfer: DeepC-MVS: Deep Confidence Prediction for Multi-View Stereo Reconstruction. 3DV 2020
ACMMPR92.69 5992.67 5692.75 10298.66 2880.57 16497.58 8596.69 7285.20 14491.57 9097.92 5877.01 12199.67 5390.95 10498.41 4498.00 90
DELS-MVS94.98 1494.49 2496.44 696.42 9790.59 799.21 597.02 3594.40 891.46 9197.08 10683.32 4999.69 4992.83 8698.70 3199.04 30
Christian Sormann, Emanuele Santellani, Mattia Rossi, Andreas Kuhn, Friedrich Fraundorfer: DELS-MVS: Deep Epipolar Line Search for Multi-View Stereo. Winter Conference on Applications of Computer Vision (WACV), 2023
XVS92.69 5992.71 5492.63 10998.52 3780.29 17197.37 10696.44 10487.04 10991.38 9297.83 6677.24 11899.59 6090.46 11498.07 5598.02 85
X-MVStestdata86.26 19784.14 21692.63 10998.52 3780.29 17197.37 10696.44 10487.04 10991.38 9220.73 41077.24 11899.59 6090.46 11498.07 5598.02 85
PMMVS89.46 13389.92 12088.06 24194.64 15369.57 34196.22 19294.95 20287.27 10391.37 9496.54 12565.88 24697.39 19388.54 13893.89 13597.23 145
test_fmvs1_n86.34 19586.72 18085.17 29987.54 32263.64 36696.91 14792.37 32387.49 9791.33 9595.58 14640.81 37598.46 13595.00 5493.49 14193.41 246
dcpmvs_293.10 4693.46 4392.02 13997.77 6579.73 18994.82 25493.86 27186.91 11191.33 9596.76 11985.20 3098.06 15296.90 3397.60 7098.27 72
原ACMM191.22 16797.77 6578.10 23596.61 8381.05 23491.28 9797.42 8977.92 10798.98 10879.85 21698.51 3796.59 173
新几何193.12 8797.44 7981.60 14196.71 6974.54 32491.22 9897.57 8079.13 8799.51 7177.40 24298.46 4198.26 73
UA-Net88.92 14388.48 14290.24 19394.06 17877.18 26193.04 29894.66 22187.39 10091.09 9993.89 19574.92 16698.18 15075.83 25891.43 16595.35 207
ZNCC-MVS92.75 5392.60 5893.23 8398.24 5181.82 13297.63 8196.50 9885.00 15091.05 10097.74 6978.38 9899.80 2590.48 11398.34 4998.07 83
APD-MVS_3200maxsize91.23 9791.35 8390.89 17697.89 6276.35 27496.30 18895.52 17379.82 26391.03 10197.88 6374.70 16998.54 12992.11 9496.89 9097.77 108
test_vis1_n85.60 20885.70 18885.33 29684.79 35364.98 35996.83 15191.61 33487.36 10191.00 10294.84 17436.14 38197.18 20595.66 4593.03 14893.82 237
GST-MVS92.43 6792.22 6793.04 9198.17 5481.64 13997.40 10496.38 11384.71 15790.90 10397.40 9077.55 11399.76 3189.75 12597.74 6697.72 111
PGM-MVS91.93 7791.80 7592.32 12398.27 5079.74 18895.28 23497.27 2083.83 18590.89 10497.78 6876.12 13999.56 6688.82 13597.93 6297.66 116
SR-MVS-dyc-post91.29 9591.45 8290.80 17897.76 6776.03 27996.20 19495.44 17980.56 24590.72 10597.84 6475.76 14598.61 12491.99 9696.79 9497.75 109
RE-MVS-def91.18 9097.76 6776.03 27996.20 19495.44 17980.56 24590.72 10597.84 6473.36 18991.99 9696.79 9497.75 109
MP-MVScopyleft92.61 6292.67 5692.42 11798.13 5679.73 18997.33 10896.20 12985.63 13290.53 10797.66 7278.14 10399.70 4892.12 9398.30 5197.85 101
Rongxuan Tan, Qing Wang, et al.: MP-MVS: Multi-Scale Windows PatchMatch and Planar Prior Multi-View Stereo.
HY-MVS84.06 691.63 8690.37 10695.39 1996.12 10588.25 1790.22 32997.58 1588.33 7690.50 10891.96 23079.26 8499.06 10490.29 11989.07 18098.88 38
CP-MVS92.54 6492.60 5892.34 11998.50 4079.90 18298.40 3896.40 11084.75 15490.48 10998.09 4577.40 11599.21 8891.15 10398.23 5397.92 96
diffmvspermissive91.17 9890.74 9692.44 11693.11 20882.50 11696.25 19193.62 28687.79 8990.40 11095.93 13473.44 18897.42 19093.62 7392.55 15397.41 135
Fangjinhua Wang, Qingshan Xu, Yew-Soon Ong, Marc Pollefeys: Lightweight and Accurate Multi-View Stereo With Confidence-Aware Diffusion Model. IEEE T-PAMI 2025
MVS_Test90.29 12189.18 12993.62 6795.23 13584.93 7494.41 26194.66 22184.31 16890.37 11191.02 24375.13 16397.82 16583.11 19294.42 12898.12 81
MTAPA92.45 6692.31 6392.86 9897.90 6180.85 15792.88 30196.33 11887.92 8690.20 11298.18 3876.71 12999.76 3192.57 9098.09 5497.96 95
test_yl91.46 9090.53 10094.24 4397.41 8185.18 6398.08 5297.72 1180.94 23589.85 11396.14 13075.61 14698.81 11990.42 11788.56 19098.74 42
DCV-MVSNet91.46 9090.53 10094.24 4397.41 8185.18 6398.08 5297.72 1180.94 23589.85 11396.14 13075.61 14698.81 11990.42 11788.56 19098.74 42
WTY-MVS92.65 6191.68 7795.56 1496.00 10888.90 1398.23 4397.65 1388.57 6989.82 11597.22 10079.29 8399.06 10489.57 12788.73 18698.73 46
MVS_111021_HR93.41 4293.39 4493.47 7897.34 8682.83 11097.56 8798.27 689.16 6289.71 11697.14 10279.77 7999.56 6693.65 7297.94 6098.02 85
sss90.87 10889.96 11893.60 6894.15 17383.84 9297.14 12398.13 785.93 12889.68 11796.09 13271.67 20899.30 8387.69 14889.16 17997.66 116
test22296.15 10478.41 22395.87 21096.46 10271.97 34489.66 11897.45 8576.33 13698.24 5298.30 69
LFMVS89.27 13787.64 15694.16 4897.16 8985.52 5697.18 11694.66 22179.17 27789.63 11996.57 12455.35 32298.22 14789.52 12989.54 17598.74 42
CostFormer89.08 13988.39 14391.15 16893.13 20679.15 20488.61 34196.11 13683.14 19789.58 12086.93 30183.83 4696.87 22388.22 14485.92 21897.42 134
PVSNet_BlendedMVS90.05 12389.96 11890.33 19197.47 7783.86 9098.02 5896.73 6687.98 8489.53 12189.61 26476.42 13399.57 6494.29 6479.59 26387.57 328
PVSNet_Blended93.13 4492.98 5093.57 7097.47 7783.86 9099.32 196.73 6691.02 3989.53 12196.21 12976.42 13399.57 6494.29 6495.81 11497.29 144
HPM-MVScopyleft91.62 8791.53 8191.89 14397.88 6379.22 20196.99 13595.73 16282.07 22289.50 12397.19 10175.59 14898.93 11490.91 10697.94 6097.54 124
Chunlin Ren, Qingshan Xu, Shikun Zhang, Jiaqi Yang: Hierarchical Prior Mining for Non-local Multi-View Stereo. ICCV 2023
testing1192.48 6592.04 7293.78 5795.94 11386.00 4297.56 8797.08 3287.52 9689.32 12495.40 15084.60 3498.02 15391.93 9889.04 18197.32 140
EI-MVSNet-Vis-set91.84 8191.77 7692.04 13897.60 7281.17 14696.61 16596.87 4888.20 8089.19 12597.55 8478.69 9599.14 9790.29 11990.94 16895.80 194
testing22291.09 10090.49 10292.87 9795.82 11685.04 7096.51 17297.28 1986.05 12589.13 12695.34 15280.16 7696.62 23585.82 16088.31 19496.96 157
MP-MVS-pluss92.58 6392.35 6293.29 8097.30 8782.53 11496.44 17796.04 14284.68 15889.12 12798.37 2977.48 11499.74 3893.31 7998.38 4697.59 122
MP-MVS-pluss: MP-MVS-pluss. MP-MVS-pluss
VDD-MVS88.28 16487.02 17592.06 13695.09 14080.18 17797.55 8994.45 23883.09 19889.10 12895.92 13647.97 34998.49 13293.08 8586.91 20797.52 129
baseline90.76 10990.10 11392.74 10392.90 21582.56 11394.60 25894.56 23087.69 9289.06 12995.67 14273.76 18397.51 18590.43 11692.23 15998.16 77
testing9991.91 7891.35 8393.60 6895.98 11085.70 4997.31 10996.92 4586.82 11388.91 13095.25 15384.26 4197.89 16388.80 13687.94 19897.21 148
EIA-MVS91.73 8292.05 7190.78 18094.52 15976.40 27398.06 5595.34 18989.19 6188.90 13197.28 9777.56 11297.73 16890.77 10996.86 9398.20 74
testing9191.90 7991.31 8593.66 6495.99 10985.68 5197.39 10596.89 4686.75 11788.85 13295.23 15683.93 4497.90 16288.91 13387.89 19997.41 135
mvsany_test187.58 17888.22 14485.67 29089.78 29167.18 35195.25 23787.93 36983.96 18088.79 13397.06 10872.52 19694.53 32192.21 9286.45 21195.30 209
HPM-MVS_fast90.38 12090.17 11291.03 17197.61 7177.35 25797.15 12295.48 17579.51 26988.79 13396.90 11171.64 21098.81 11987.01 15697.44 7696.94 158
ETVMVS90.99 10390.26 10793.19 8595.81 11785.64 5396.97 14097.18 2585.43 13688.77 13594.86 17382.00 6096.37 24282.70 19588.60 18797.57 123
PAPM92.87 5292.40 6194.30 4092.25 23487.85 2296.40 18196.38 11391.07 3788.72 13696.90 11182.11 5997.37 19590.05 12297.70 6797.67 115
MVS_111021_LR91.60 8891.64 7991.47 15995.74 12078.79 21496.15 19696.77 6088.49 7188.64 13797.07 10772.33 20099.19 9393.13 8396.48 10196.43 177
casdiffmvspermissive90.95 10690.39 10492.63 10992.82 21682.53 11496.83 15194.47 23687.69 9288.47 13895.56 14774.04 18097.54 18290.90 10792.74 15197.83 103
Fangjinhua Wang, Qingshan Xu, Yew-Soon Ong, Marc Pollefeys: Lightweight and Accurate Multi-View Stereo With Confidence-Aware Diffusion Model. IEEE T-PAMI 2025
mPP-MVS91.88 8091.82 7492.07 13598.38 4478.63 21797.29 11096.09 13785.12 14688.45 13997.66 7275.53 15099.68 5189.83 12398.02 5897.88 97
PAPR92.74 5492.17 6894.45 3798.89 2084.87 7697.20 11496.20 12987.73 9188.40 14098.12 4378.71 9499.76 3187.99 14596.28 10298.74 42
tpmrst88.36 16187.38 16691.31 16194.36 16779.92 18187.32 35295.26 19385.32 13988.34 14186.13 31780.60 6996.70 23183.78 17885.34 22697.30 143
GG-mvs-BLEND93.49 7594.94 14686.26 3881.62 37997.00 3688.32 14294.30 18491.23 596.21 24988.49 14097.43 7798.00 90
EI-MVSNet-UG-set91.35 9491.22 8691.73 15097.39 8380.68 16196.47 17496.83 5187.92 8688.30 14397.36 9177.84 10899.13 9989.43 13089.45 17695.37 206
MAR-MVS90.63 11290.22 10991.86 14598.47 4278.20 23397.18 11696.61 8383.87 18488.18 14498.18 3868.71 22999.75 3683.66 18497.15 8497.63 119
Zhenyu Xu, Yiguang Liu, Xuelei Shi, Ying Wang, Yunan Zheng: MARMVS: Matching Ambiguity Reduced Multiple View Stereo for Efficient Large Scale Scene Reconstruction. CVPR 2020
DP-MVS Recon91.72 8490.85 9394.34 3999.50 185.00 7398.51 3595.96 14880.57 24488.08 14597.63 7876.84 12499.89 785.67 16294.88 12198.13 80
VDDNet86.44 19384.51 20792.22 12891.56 25581.83 13197.10 12994.64 22469.50 35787.84 14695.19 16048.01 34897.92 16189.82 12486.92 20696.89 162
UGNet87.73 17586.55 18291.27 16495.16 13979.11 20596.35 18496.23 12688.14 8187.83 14790.48 25150.65 33899.09 10280.13 21394.03 13195.60 199
Wanjuan Su, Qingshan Xu, Wenbing Tao: Uncertainty-guided Multi-view Stereo Network for Depth Estimation. IEEE Transactions on Circuits and Systems for Video Technology, 2022
test250690.96 10590.39 10492.65 10793.54 19082.46 11796.37 18297.35 1786.78 11587.55 14895.25 15377.83 10997.50 18684.07 17494.80 12297.98 92
tpm287.35 18186.26 18390.62 18392.93 21478.67 21688.06 34795.99 14579.33 27287.40 14986.43 31280.28 7296.40 24080.23 21185.73 22296.79 165
CPTT-MVS89.72 12989.87 12289.29 21598.33 4773.30 30597.70 7895.35 18875.68 31387.40 14997.44 8870.43 22298.25 14689.56 12896.90 8996.33 182
gg-mvs-nofinetune85.48 21282.90 23493.24 8294.51 16285.82 4779.22 38396.97 3961.19 38187.33 15153.01 39990.58 696.07 25286.07 15997.23 8397.81 106
CHOSEN 280x42091.71 8591.85 7391.29 16394.94 14682.69 11187.89 34896.17 13285.94 12787.27 15294.31 18390.27 895.65 27894.04 6895.86 11295.53 202
test_fmvsmvis_n_192092.12 7392.10 7092.17 13190.87 27181.04 14998.34 4093.90 26892.71 1887.24 15397.90 6174.83 16799.72 4396.96 3296.20 10395.76 196
casdiffmvs_mvgpermissive91.13 9990.45 10393.17 8692.99 21283.58 9797.46 9794.56 23087.69 9287.19 15494.98 17174.50 17497.60 17591.88 9992.79 15098.34 64
Fangjinhua Wang, Qingshan Xu, Yew-Soon Ong, Marc Pollefeys: Lightweight and Accurate Multi-View Stereo With Confidence-Aware Diffusion Model. IEEE T-PAMI 2025
EPNet_dtu87.65 17787.89 15086.93 27094.57 15571.37 32996.72 15996.50 9888.56 7087.12 15595.02 16875.91 14394.01 33166.62 31890.00 17295.42 205
Wanjuan Su, Wenbing Tao: Efficient Edge-Preserving Multi-View Stereo Network for Depth Estimation. AAAI 2023
Vis-MVSNetpermissive88.67 15187.82 15291.24 16592.68 21878.82 21196.95 14393.85 27287.55 9587.07 15695.13 16463.43 26197.21 20377.58 23896.15 10597.70 114
Jingyang Zhang, Yao Yao, Shiwei Li, Zixin Luo, Tian Fang: Visibility-aware Multiview Stereo Network. BMVC 2020
mvsmamba90.53 11790.08 11491.88 14494.81 15080.93 15493.94 27694.45 23888.24 7987.02 15792.35 22168.04 23195.80 26794.86 5597.03 8798.92 35
thisisatest051590.95 10690.26 10793.01 9294.03 18184.27 8697.91 6396.67 7483.18 19686.87 15895.51 14888.66 1597.85 16480.46 20789.01 18296.92 161
TESTMET0.1,189.83 12789.34 12891.31 16192.54 22480.19 17697.11 12696.57 9086.15 12186.85 15991.83 23479.32 8296.95 21781.30 20292.35 15796.77 167
PVSNet_Blended_VisFu91.24 9690.77 9592.66 10695.09 14082.40 11897.77 7295.87 15588.26 7786.39 16093.94 19476.77 12799.27 8488.80 13694.00 13496.31 183
API-MVS90.18 12288.97 13293.80 5698.66 2882.95 10997.50 9495.63 16775.16 31786.31 16197.69 7072.49 19799.90 581.26 20396.07 10798.56 54
test-LLR88.48 15787.98 14989.98 20092.26 23277.23 25997.11 12695.96 14883.76 18786.30 16291.38 23772.30 20196.78 22980.82 20491.92 16195.94 190
test-mter88.95 14188.60 13989.98 20092.26 23277.23 25997.11 12695.96 14885.32 13986.30 16291.38 23776.37 13596.78 22980.82 20491.92 16195.94 190
PAPM_NR91.46 9090.82 9493.37 7998.50 4081.81 13395.03 25096.13 13484.65 15986.10 16497.65 7679.24 8599.75 3683.20 19096.88 9198.56 54
FA-MVS(test-final)87.71 17686.23 18492.17 13194.19 17180.55 16587.16 35496.07 14082.12 22185.98 16588.35 27972.04 20598.49 13280.26 21089.87 17397.48 132
MDTV_nov1_ep13_2view81.74 13586.80 35680.65 24285.65 16674.26 17676.52 25096.98 156
ECVR-MVScopyleft88.35 16287.25 16891.65 15293.54 19079.40 19696.56 16990.78 34886.78 11585.57 16795.25 15357.25 30997.56 17884.73 17094.80 12297.98 92
AUN-MVS86.25 19885.57 19088.26 23693.57 18973.38 30395.45 23095.88 15383.94 18185.47 16894.21 18773.70 18696.67 23383.54 18664.41 35794.73 224
PVSNet82.34 989.02 14087.79 15392.71 10595.49 12681.50 14297.70 7897.29 1887.76 9085.47 16895.12 16556.90 31198.90 11580.33 20894.02 13297.71 113
EPP-MVSNet89.76 12889.72 12389.87 20593.78 18376.02 28197.22 11196.51 9679.35 27185.11 17095.01 16984.82 3297.10 21187.46 15188.21 19696.50 175
test111188.11 16787.04 17491.35 16093.15 20478.79 21496.57 16790.78 34886.88 11285.04 17195.20 15957.23 31097.39 19383.88 17694.59 12597.87 99
FE-MVS86.06 20084.15 21591.78 14994.33 16879.81 18384.58 37196.61 8376.69 30785.00 17287.38 29270.71 22198.37 14170.39 30191.70 16497.17 151
OMC-MVS88.80 14888.16 14790.72 18195.30 13377.92 24294.81 25594.51 23286.80 11484.97 17396.85 11467.53 23598.60 12585.08 16687.62 20195.63 198
CHOSEN 1792x268891.07 10290.21 11093.64 6595.18 13883.53 9896.26 19096.13 13488.92 6384.90 17493.10 21272.86 19299.62 5888.86 13495.67 11597.79 107
thres20088.92 14387.65 15592.73 10496.30 9985.62 5497.85 6698.86 184.38 16784.82 17593.99 19375.12 16498.01 15470.86 29886.67 20894.56 226
UWE-MVS88.56 15688.91 13687.50 25794.17 17272.19 31695.82 21497.05 3484.96 15184.78 17693.51 20681.33 6294.75 31479.43 21989.17 17895.57 200
MDTV_nov1_ep1383.69 21994.09 17781.01 15086.78 35796.09 13783.81 18684.75 17784.32 34074.44 17596.54 23663.88 33285.07 227
CDS-MVSNet89.50 13288.96 13391.14 16991.94 25180.93 15497.09 13095.81 15784.26 17384.72 17894.20 18880.31 7195.64 27983.37 18988.96 18396.85 164
Khang Truong Giang, Soohwan Song, Sungho Jo: Curvature-guided dynamic scale networks for Multi-view Stereo. ICLR 2022
ACMMPcopyleft90.39 11889.97 11791.64 15397.58 7478.21 23296.78 15696.72 6884.73 15684.72 17897.23 9971.22 21399.63 5788.37 14392.41 15697.08 154
Qingshan Xu, Weihang Kong, Wenbing Tao, Marc Pollefeys: Multi-Scale Geometric Consistency Guided and Planar Prior Assisted Multi-View Stereo. IEEE Transactions on Pattern Analysis and Machine Intelligence
CSCG92.02 7591.65 7893.12 8798.53 3680.59 16397.47 9597.18 2577.06 30584.64 18097.98 5583.98 4399.52 6990.72 11097.33 8099.23 24
ab-mvs87.08 18284.94 20393.48 7693.34 19983.67 9588.82 33895.70 16381.18 23284.55 18190.14 25962.72 26498.94 11385.49 16482.54 24797.85 101
EPMVS87.47 18085.90 18792.18 13095.41 12882.26 12187.00 35596.28 12185.88 12984.23 18285.57 32375.07 16596.26 24671.14 29692.50 15498.03 84
Anonymous20240521184.41 22881.93 24991.85 14796.78 9478.41 22397.44 9891.34 33870.29 35284.06 18394.26 18541.09 37398.96 10979.46 21882.65 24698.17 76
HyFIR lowres test89.36 13488.60 13991.63 15594.91 14880.76 16095.60 22395.53 17182.56 21384.03 18491.24 24078.03 10496.81 22787.07 15588.41 19397.32 140
tfpn200view988.48 15787.15 17092.47 11396.21 10285.30 6197.44 9898.85 283.37 19383.99 18593.82 19775.36 15797.93 15669.04 30686.24 21594.17 228
thres40088.42 16087.15 17092.23 12796.21 10285.30 6197.44 9898.85 283.37 19383.99 18593.82 19775.36 15797.93 15669.04 30686.24 21593.45 244
tpm85.55 20984.47 21088.80 22590.19 28475.39 28988.79 33994.69 21784.83 15383.96 18785.21 32978.22 10194.68 31876.32 25478.02 28096.34 180
Fast-Effi-MVS+87.93 17286.94 17790.92 17494.04 17979.16 20398.26 4293.72 28281.29 23183.94 18892.90 21369.83 22696.68 23276.70 24891.74 16396.93 159
XVG-OURS-SEG-HR85.74 20685.16 19987.49 25990.22 28371.45 32891.29 32194.09 25981.37 23083.90 18995.22 15760.30 28097.53 18485.58 16384.42 23093.50 242
thisisatest053089.65 13089.02 13191.53 15793.46 19680.78 15996.52 17096.67 7481.69 22883.79 19094.90 17288.85 1497.68 17177.80 23187.49 20496.14 186
DeepC-MVS86.58 391.53 8991.06 9192.94 9594.52 15981.89 12895.95 20495.98 14690.76 4083.76 19196.76 11973.24 19099.71 4591.67 10096.96 8897.22 146
Andreas Kuhn, Christian Sormann, Mattia Rossi, Oliver Erdler, Friedrich Fraundorfer: DeepC-MVS: Deep Confidence Prediction for Multi-View Stereo Reconstruction. 3DV 2020
IS-MVSNet88.67 15188.16 14790.20 19593.61 18776.86 26596.77 15893.07 31284.02 17783.62 19295.60 14574.69 17296.24 24878.43 23093.66 14097.49 131
iter_conf0590.65 11189.59 12493.82 5595.37 13087.90 2191.32 32093.55 29074.65 32283.45 19392.81 21483.11 5197.70 16994.49 6197.57 7295.85 193
thres100view90088.30 16386.95 17692.33 12196.10 10684.90 7597.14 12398.85 282.69 21083.41 19493.66 20175.43 15497.93 15669.04 30686.24 21594.17 228
thres600view788.06 16886.70 18192.15 13396.10 10685.17 6797.14 12398.85 282.70 20983.41 19493.66 20175.43 15497.82 16567.13 31585.88 21993.45 244
XVG-OURS85.18 21584.38 21187.59 25390.42 28171.73 32591.06 32494.07 26082.00 22483.29 19695.08 16756.42 31697.55 18083.70 18383.42 23593.49 243
Vis-MVSNet (Re-imp)88.88 14588.87 13788.91 22293.89 18274.43 29796.93 14594.19 25384.39 16683.22 19795.67 14278.24 10094.70 31678.88 22694.40 12997.61 121
TAMVS88.48 15787.79 15390.56 18591.09 26679.18 20296.45 17695.88 15383.64 19083.12 19893.33 20775.94 14295.74 27482.40 19688.27 19596.75 169
baseline188.85 14687.49 16292.93 9695.21 13786.85 3395.47 22994.61 22787.29 10283.11 19994.99 17080.70 6796.89 22182.28 19773.72 29595.05 213
AdaColmapbinary88.81 14787.61 15992.39 11899.33 479.95 18096.70 16395.58 16877.51 29783.05 20096.69 12361.90 27399.72 4384.29 17293.47 14297.50 130
PatchmatchNetpermissive86.83 18885.12 20091.95 14194.12 17682.27 12086.55 35995.64 16684.59 16182.98 20184.99 33577.26 11695.96 25968.61 30991.34 16697.64 118
Fangjinhua Wang, Silvano Galliani, Christoph Vogel, Pablo Speciale, Marc Pollefeys: PatchmatchNet: Learned Multi-View Patchmatch Stereo.
SCA85.63 20783.64 22291.60 15692.30 23081.86 13092.88 30195.56 17084.85 15282.52 20285.12 33358.04 29895.39 28973.89 27687.58 20397.54 124
114514_t88.79 14987.57 16092.45 11498.21 5381.74 13596.99 13595.45 17875.16 31782.48 20395.69 14168.59 23098.50 13180.33 20895.18 11997.10 153
PatchT79.75 29176.85 30388.42 23089.55 29875.49 28877.37 38994.61 22763.07 37282.46 20473.32 38575.52 15193.41 34251.36 37484.43 22996.36 178
TR-MVS86.30 19684.93 20490.42 18894.63 15477.58 25296.57 16793.82 27380.30 25382.42 20595.16 16258.74 29197.55 18074.88 26687.82 20096.13 187
HQP-NCC92.08 24397.63 8190.52 4482.30 206
ACMP_Plane92.08 24397.63 8190.52 4482.30 206
HQP4-MVS82.30 20697.32 19691.13 255
HQP-MVS87.91 17387.55 16188.98 22192.08 24378.48 21997.63 8194.80 21290.52 4482.30 20694.56 17965.40 25097.32 19687.67 14983.01 23991.13 255
CR-MVSNet83.53 24181.36 25890.06 19790.16 28579.75 18679.02 38591.12 34084.24 17482.27 21080.35 36375.45 15293.67 33763.37 33686.25 21396.75 169
RPMNet79.85 29075.92 30991.64 15390.16 28579.75 18679.02 38595.44 17958.43 39182.27 21072.55 38873.03 19198.41 14046.10 38786.25 21396.75 169
CVMVSNet84.83 22085.57 19082.63 33191.55 25660.38 37795.13 24495.03 20080.60 24382.10 21294.71 17666.40 24590.19 37174.30 27390.32 17197.31 142
PLCcopyleft83.97 788.00 17087.38 16689.83 20798.02 5976.46 27197.16 12094.43 24079.26 27681.98 21396.28 12869.36 22799.27 8477.71 23592.25 15893.77 238
Jie Liao, Yanping Fu, Qingan Yan, Chunxia xiao: Pyramid Multi-View Stereo with Local Consistency. Pacific Graphics 2019
JIA-IIPM79.00 30077.20 29984.40 31389.74 29464.06 36475.30 39395.44 17962.15 37581.90 21459.08 39778.92 8995.59 28366.51 32185.78 22193.54 241
Anonymous2024052983.15 24880.60 26890.80 17895.74 12078.27 22796.81 15494.92 20460.10 38681.89 21592.54 21945.82 35798.82 11879.25 22278.32 27895.31 208
tttt051788.57 15588.19 14689.71 21193.00 20975.99 28295.67 21896.67 7480.78 23981.82 21694.40 18288.97 1397.58 17776.05 25686.31 21295.57 200
WB-MVSnew84.08 23383.51 22685.80 28691.34 26176.69 26995.62 22296.27 12281.77 22681.81 21792.81 21458.23 29594.70 31666.66 31787.06 20585.99 352
BH-RMVSNet86.84 18785.28 19591.49 15895.35 13280.26 17496.95 14392.21 32482.86 20681.77 21895.46 14959.34 28797.64 17369.79 30493.81 13796.57 174
HQP_MVS87.50 17987.09 17388.74 22691.86 25277.96 23997.18 11694.69 21789.89 5381.33 21994.15 18964.77 25597.30 19887.08 15382.82 24390.96 257
plane_prior377.75 24990.17 5181.33 219
VPA-MVSNet85.32 21383.83 21889.77 21090.25 28282.63 11296.36 18397.07 3383.03 20181.21 22189.02 26961.58 27496.31 24585.02 16870.95 31090.36 263
GeoE86.36 19485.20 19689.83 20793.17 20376.13 27697.53 9092.11 32579.58 26880.99 22294.01 19266.60 24496.17 25173.48 28089.30 17797.20 150
GA-MVS85.79 20584.04 21791.02 17289.47 30080.27 17396.90 14894.84 21085.57 13380.88 22389.08 26756.56 31596.47 23977.72 23485.35 22596.34 180
1112_ss88.60 15487.47 16492.00 14093.21 20180.97 15296.47 17492.46 32083.64 19080.86 22497.30 9580.24 7397.62 17477.60 23785.49 22397.40 137
dp84.30 23082.31 24390.28 19294.24 17077.97 23886.57 35895.53 17179.94 26280.75 22585.16 33171.49 21296.39 24163.73 33383.36 23696.48 176
Test_1112_low_res88.03 16986.73 17991.94 14293.15 20480.88 15696.44 17792.41 32283.59 19280.74 22691.16 24180.18 7497.59 17677.48 24085.40 22497.36 139
cascas86.50 19284.48 20992.55 11292.64 22285.95 4397.04 13495.07 19975.32 31580.50 22791.02 24354.33 32997.98 15586.79 15787.62 20193.71 239
TAPA-MVS81.61 1285.02 21783.67 22089.06 21896.79 9373.27 30895.92 20694.79 21474.81 32080.47 22896.83 11571.07 21598.19 14949.82 38092.57 15295.71 197
Andrea Romanoni, Matteo Matteucci: TAPA-MVS: Textureless-Aware PAtchMatch Multi-View Stereo. ICCV 2019
OPM-MVS85.84 20385.10 20188.06 24188.34 31277.83 24695.72 21694.20 25287.89 8880.45 22994.05 19158.57 29297.26 20283.88 17682.76 24589.09 291
Ray L. Khuboni, Hongjun Xu: Octagram Propagation Matching for Multi-Scale View Stereopsis (OPM-MVS).
nrg03086.79 18985.43 19290.87 17788.76 30585.34 5897.06 13394.33 24684.31 16880.45 22991.98 22972.36 19896.36 24388.48 14171.13 30890.93 259
EI-MVSNet85.80 20485.20 19687.59 25391.55 25677.41 25595.13 24495.36 18680.43 25080.33 23194.71 17673.72 18495.97 25676.96 24678.64 27289.39 279
MVSTER89.25 13888.92 13590.24 19395.98 11084.66 7896.79 15595.36 18687.19 10780.33 23190.61 25090.02 1195.97 25685.38 16578.64 27290.09 271
ADS-MVSNet279.57 29477.53 29785.71 28993.78 18372.13 31779.48 38186.11 37873.09 33680.14 23379.99 36662.15 26890.14 37259.49 34883.52 23394.85 218
ADS-MVSNet81.26 27778.36 29089.96 20293.78 18379.78 18479.48 38193.60 28773.09 33680.14 23379.99 36662.15 26895.24 29859.49 34883.52 23394.85 218
test_fmvs279.59 29379.90 28078.67 35282.86 36855.82 38895.20 24089.55 35681.09 23380.12 23589.80 26134.31 38693.51 34087.82 14678.36 27786.69 341
baseline290.39 11890.21 11090.93 17390.86 27280.99 15195.20 24097.41 1686.03 12680.07 23694.61 17890.58 697.47 18987.29 15289.86 17494.35 227
Effi-MVS+-dtu84.61 22484.90 20583.72 32191.96 24963.14 36994.95 25193.34 30185.57 13379.79 23787.12 29861.99 27195.61 28283.55 18585.83 22092.41 251
VPNet84.69 22282.92 23390.01 19889.01 30483.45 10096.71 16195.46 17785.71 13179.65 23892.18 22556.66 31496.01 25583.05 19367.84 34190.56 261
SDMVSNet87.02 18385.61 18991.24 16594.14 17483.30 10393.88 27895.98 14684.30 17079.63 23992.01 22658.23 29597.68 17190.28 12182.02 25192.75 247
sd_testset84.62 22383.11 23189.17 21694.14 17477.78 24791.54 31994.38 24384.30 17079.63 23992.01 22652.28 33396.98 21577.67 23682.02 25192.75 247
CLD-MVS87.97 17187.48 16389.44 21392.16 23980.54 16798.14 4694.92 20491.41 3179.43 24195.40 15062.34 26697.27 20190.60 11282.90 24290.50 262
Zhaoxin Li, Wangmeng Zuo, Zhaoqi Wang, Lei Zhang: Confidence-based Large-scale Dense Multi-view Stereo. IEEE Transaction on Image Processing, 2020
IB-MVS85.34 488.67 15187.14 17293.26 8193.12 20784.32 8398.76 2697.27 2087.19 10779.36 24290.45 25283.92 4598.53 13084.41 17169.79 32196.93 159
Christian Sormann, Mattia Rossi, Andreas Kuhn and Friedrich Fraundorfer: IB-MVS: An Iterative Algorithm for Deep Multi-View Stereo based on Binary Decisions. BMVC 2021
PatchMatch-RL85.00 21883.66 22189.02 22095.86 11574.55 29692.49 30593.60 28779.30 27479.29 24391.47 23558.53 29398.45 13770.22 30292.17 16094.07 233
mamv485.50 21086.76 17881.72 33793.23 20054.93 39189.95 33192.94 31469.96 35479.00 24492.20 22480.69 6894.22 32792.06 9590.77 16996.01 188
CNLPA86.96 18485.37 19491.72 15197.59 7379.34 19997.21 11291.05 34374.22 32578.90 24596.75 12167.21 23998.95 11174.68 26890.77 16996.88 163
MVS90.60 11388.64 13896.50 594.25 16990.53 893.33 29097.21 2277.59 29678.88 24697.31 9271.52 21199.69 4989.60 12698.03 5799.27 22
mvs_anonymous88.68 15087.62 15891.86 14594.80 15181.69 13893.53 28694.92 20482.03 22378.87 24790.43 25375.77 14495.34 29285.04 16793.16 14798.55 56
tpm cat183.63 24081.38 25790.39 18993.53 19578.19 23485.56 36695.09 19770.78 35078.51 24883.28 34974.80 16897.03 21266.77 31684.05 23195.95 189
UniMVSNet (Re)85.31 21484.23 21388.55 22989.75 29280.55 16596.72 15996.89 4685.42 13778.40 24988.93 27075.38 15695.52 28678.58 22868.02 33889.57 278
FIs86.73 19186.10 18588.61 22890.05 28880.21 17596.14 19796.95 4185.56 13578.37 25092.30 22276.73 12895.28 29679.51 21779.27 26690.35 264
BH-w/o88.24 16587.47 16490.54 18695.03 14578.54 21897.41 10393.82 27384.08 17578.23 25194.51 18169.34 22897.21 20380.21 21294.58 12695.87 192
UniMVSNet_NR-MVSNet85.49 21184.59 20688.21 23989.44 30179.36 19796.71 16196.41 10885.22 14278.11 25290.98 24576.97 12395.14 30379.14 22368.30 33590.12 269
DU-MVS84.57 22583.33 22988.28 23588.76 30579.36 19796.43 17995.41 18585.42 13778.11 25290.82 24667.61 23295.14 30379.14 22368.30 33590.33 265
dmvs_re84.10 23282.90 23487.70 24891.41 26073.28 30690.59 32793.19 30585.02 14877.96 25493.68 20057.92 30396.18 25075.50 26180.87 25593.63 240
miper_enhance_ethall85.95 20285.20 19688.19 24094.85 14979.76 18596.00 20194.06 26182.98 20377.74 25588.76 27279.42 8195.46 28880.58 20672.42 30289.36 284
v114482.90 25481.27 25987.78 24786.29 33379.07 20896.14 19793.93 26480.05 25977.38 25686.80 30365.50 24895.93 26175.21 26470.13 31688.33 314
FC-MVSNet-test85.96 20185.39 19387.66 25089.38 30278.02 23695.65 22096.87 4885.12 14677.34 25791.94 23276.28 13794.74 31577.09 24378.82 27090.21 267
v2v48283.46 24281.86 25088.25 23786.19 33579.65 19196.34 18594.02 26281.56 22977.32 25888.23 28165.62 24796.03 25377.77 23269.72 32389.09 291
Baseline_NR-MVSNet81.22 27880.07 27684.68 30585.32 34975.12 29196.48 17388.80 36476.24 31177.28 25986.40 31367.61 23294.39 32475.73 26066.73 35184.54 362
V4283.04 25181.53 25587.57 25586.27 33479.09 20795.87 21094.11 25880.35 25277.22 26086.79 30465.32 25296.02 25477.74 23370.14 31587.61 327
v14419282.43 26080.73 26587.54 25685.81 34278.22 22995.98 20293.78 27879.09 27977.11 26186.49 30864.66 25795.91 26274.20 27469.42 32488.49 308
ACMM80.70 1383.72 23982.85 23686.31 28091.19 26372.12 31895.88 20994.29 24780.44 24877.02 26291.96 23055.24 32397.14 21079.30 22180.38 25889.67 277
Qingshan Xu and Wenbing Tao: Multi-Scale Geometric Consistency Guided Multi-View Stereo. CVPR 2019
v119282.31 26480.55 26987.60 25285.94 33978.47 22295.85 21293.80 27679.33 27276.97 26386.51 30763.33 26295.87 26373.11 28170.13 31688.46 310
PCF-MVS84.09 586.77 19085.00 20292.08 13492.06 24683.07 10792.14 30994.47 23679.63 26776.90 26494.78 17571.15 21499.20 9272.87 28291.05 16793.98 234
Andreas Kuhn, Shan Lin, Oliver Erdler: Plane Completion and Filtering for Multi-View Stereo Reconstruction. GCPR 2019
cl2285.11 21684.17 21487.92 24495.06 14478.82 21195.51 22794.22 25179.74 26576.77 26587.92 28675.96 14195.68 27579.93 21572.42 30289.27 286
v192192082.02 26780.23 27387.41 26085.62 34377.92 24295.79 21593.69 28378.86 28376.67 26686.44 31062.50 26595.83 26572.69 28369.77 32288.47 309
WR-MVS84.32 22982.96 23288.41 23189.38 30280.32 17096.59 16696.25 12483.97 17976.63 26790.36 25467.53 23594.86 31275.82 25970.09 31990.06 273
BH-untuned86.95 18585.94 18689.99 19994.52 15977.46 25496.78 15693.37 30081.80 22576.62 26893.81 19966.64 24397.02 21376.06 25593.88 13695.48 204
v124081.70 27179.83 28187.30 26485.50 34477.70 25195.48 22893.44 29378.46 28876.53 26986.44 31060.85 27895.84 26471.59 29070.17 31488.35 313
PS-MVSNAJss84.91 21984.30 21286.74 27185.89 34174.40 29894.95 25194.16 25583.93 18276.45 27090.11 26071.04 21695.77 26983.16 19179.02 26990.06 273
miper_ehance_all_eth84.57 22583.60 22487.50 25792.64 22278.25 22895.40 23393.47 29279.28 27576.41 27187.64 28976.53 13095.24 29878.58 22872.42 30289.01 296
LPG-MVS_test84.20 23183.49 22786.33 27790.88 26973.06 30995.28 23494.13 25682.20 21876.31 27293.20 20854.83 32796.95 21783.72 18180.83 25688.98 297
LGP-MVS_train86.33 27790.88 26973.06 30994.13 25682.20 21876.31 27293.20 20854.83 32796.95 21783.72 18180.83 25688.98 297
F-COLMAP84.50 22783.44 22887.67 24995.22 13672.22 31495.95 20493.78 27875.74 31276.30 27495.18 16159.50 28598.45 13772.67 28486.59 21092.35 252
tpmvs83.04 25180.77 26489.84 20695.43 12777.96 23985.59 36595.32 19075.31 31676.27 27583.70 34573.89 18197.41 19159.53 34781.93 25394.14 230
tt080581.20 27979.06 28787.61 25186.50 32972.97 31193.66 28195.48 17574.11 32676.23 27691.99 22841.36 37297.40 19277.44 24174.78 29192.45 250
3Dnovator82.32 1089.33 13587.64 15694.42 3893.73 18685.70 4997.73 7696.75 6486.73 11876.21 27795.93 13462.17 26799.68 5181.67 20197.81 6497.88 97
TranMVSNet+NR-MVSNet83.24 24781.71 25287.83 24587.71 31978.81 21396.13 19994.82 21184.52 16276.18 27890.78 24864.07 25894.60 31974.60 27166.59 35290.09 271
c3_l83.80 23782.65 23987.25 26592.10 24277.74 25095.25 23793.04 31378.58 28676.01 27987.21 29775.25 16295.11 30577.54 23968.89 32988.91 302
131488.94 14287.20 16994.17 4693.21 20185.73 4893.33 29096.64 8082.89 20475.98 28096.36 12666.83 24299.39 7783.52 18896.02 11097.39 138
Fast-Effi-MVS+-dtu83.33 24482.60 24085.50 29489.55 29869.38 34296.09 20091.38 33582.30 21775.96 28191.41 23656.71 31295.58 28475.13 26584.90 22891.54 253
XXY-MVS83.84 23682.00 24889.35 21487.13 32481.38 14395.72 21694.26 24880.15 25775.92 28290.63 24961.96 27296.52 23778.98 22573.28 30090.14 268
GBi-Net82.42 26180.43 27188.39 23292.66 21981.95 12394.30 26693.38 29779.06 28075.82 28385.66 31956.38 31793.84 33371.23 29375.38 28889.38 281
test182.42 26180.43 27188.39 23292.66 21981.95 12394.30 26693.38 29779.06 28075.82 28385.66 31956.38 31793.84 33371.23 29375.38 28889.38 281
FMVSNet384.71 22182.71 23890.70 18294.55 15787.71 2495.92 20694.67 22081.73 22775.82 28388.08 28466.99 24094.47 32271.23 29375.38 28889.91 275
eth_miper_zixun_eth83.12 24982.01 24786.47 27691.85 25474.80 29294.33 26493.18 30779.11 27875.74 28687.25 29672.71 19395.32 29476.78 24767.13 34789.27 286
IterMVS-LS83.93 23582.80 23787.31 26391.46 25977.39 25695.66 21993.43 29580.44 24875.51 28787.26 29573.72 18495.16 30276.99 24470.72 31289.39 279
Fangjinhua Wang, Silvano Galliani, Christoph Vogel, Marc Pollefeys: IterMVS: Iterative Probability Estimation for Efficient Multi-View Stereo.
3Dnovator+82.88 889.63 13187.85 15194.99 2394.49 16486.76 3597.84 6795.74 16186.10 12375.47 28896.02 13365.00 25499.51 7182.91 19497.07 8698.72 47
test_djsdf83.00 25382.45 24284.64 30784.07 36169.78 33894.80 25694.48 23380.74 24075.41 28987.70 28861.32 27795.10 30683.77 17979.76 25989.04 294
v14882.41 26380.89 26286.99 26986.18 33676.81 26696.27 18993.82 27380.49 24775.28 29086.11 31867.32 23895.75 27175.48 26267.03 34988.42 312
QAPM86.88 18684.51 20793.98 4994.04 17985.89 4697.19 11596.05 14173.62 33075.12 29195.62 14462.02 27099.74 3870.88 29796.06 10896.30 184
UniMVSNet_ETH3D80.86 28378.75 28987.22 26686.31 33272.02 31991.95 31093.76 28173.51 33175.06 29290.16 25843.04 36695.66 27676.37 25378.55 27593.98 234
cl____83.27 24582.12 24586.74 27192.20 23575.95 28395.11 24693.27 30378.44 28974.82 29387.02 30074.19 17795.19 30074.67 26969.32 32589.09 291
DIV-MVS_self_test83.27 24582.12 24586.74 27192.19 23675.92 28595.11 24693.26 30478.44 28974.81 29487.08 29974.19 17795.19 30074.66 27069.30 32689.11 290
FMVSNet282.79 25580.44 27089.83 20792.66 21985.43 5795.42 23194.35 24479.06 28074.46 29587.28 29356.38 31794.31 32569.72 30574.68 29289.76 276
MIMVSNet79.18 29975.99 30888.72 22787.37 32380.66 16279.96 38091.82 32977.38 29974.33 29681.87 35541.78 36990.74 36766.36 32383.10 23894.76 220
RPSCF77.73 30976.63 30481.06 34188.66 30955.76 38987.77 34987.88 37064.82 37074.14 29792.79 21749.22 34596.81 22767.47 31376.88 28290.62 260
ACMP81.66 1184.00 23483.22 23086.33 27791.53 25872.95 31295.91 20893.79 27783.70 18973.79 29892.22 22354.31 33096.89 22183.98 17579.74 26189.16 289
Qingshan Xu and Wenbing Tao: Planar Prior Assisted PatchMatch Multi-View Stereo. AAAI 2020
pmmvs581.34 27679.54 28286.73 27485.02 35176.91 26396.22 19291.65 33277.65 29573.55 29988.61 27455.70 32094.43 32374.12 27573.35 29988.86 303
jajsoiax82.12 26681.15 26185.03 30184.19 35970.70 33194.22 27093.95 26383.07 19973.48 30089.75 26249.66 34495.37 29182.24 19879.76 25989.02 295
Syy-MVS77.97 30778.05 29377.74 35692.13 24056.85 38493.97 27494.23 24982.43 21473.39 30193.57 20457.95 30187.86 37832.40 39882.34 24888.51 306
myMVS_eth3d81.93 26882.18 24481.18 34092.13 24067.18 35193.97 27494.23 24982.43 21473.39 30193.57 20476.98 12287.86 37850.53 37882.34 24888.51 306
mvs_tets81.74 27080.71 26684.84 30284.22 35870.29 33493.91 27793.78 27882.77 20873.37 30389.46 26547.36 35495.31 29581.99 19979.55 26588.92 301
pmmvs482.54 25980.79 26387.79 24686.11 33780.49 16993.55 28593.18 30777.29 30073.35 30489.40 26665.26 25395.05 30975.32 26373.61 29687.83 322
LS3D82.22 26579.94 27989.06 21897.43 8074.06 30193.20 29692.05 32661.90 37673.33 30595.21 15859.35 28699.21 8854.54 36792.48 15593.90 236
v1081.43 27579.53 28387.11 26786.38 33078.87 21094.31 26593.43 29577.88 29273.24 30685.26 32765.44 24995.75 27172.14 28767.71 34286.72 340
v881.88 26980.06 27787.32 26286.63 32879.04 20994.41 26193.65 28578.77 28473.19 30785.57 32366.87 24195.81 26673.84 27867.61 34387.11 336
test0.0.03 182.79 25582.48 24183.74 32086.81 32772.22 31496.52 17095.03 20083.76 18773.00 30893.20 20872.30 20188.88 37464.15 33177.52 28190.12 269
anonymousdsp80.98 28279.97 27884.01 31581.73 37170.44 33392.49 30593.58 28977.10 30472.98 30986.31 31457.58 30494.90 31079.32 22078.63 27486.69 341
XVG-ACMP-BASELINE79.38 29777.90 29583.81 31784.98 35267.14 35589.03 33793.18 30780.26 25672.87 31088.15 28338.55 37796.26 24676.05 25678.05 27988.02 319
WR-MVS_H81.02 28080.09 27483.79 31888.08 31571.26 33094.46 25996.54 9380.08 25872.81 31186.82 30270.36 22392.65 34664.18 33067.50 34487.46 333
OpenMVScopyleft79.58 1486.09 19983.62 22393.50 7490.95 26886.71 3697.44 9895.83 15675.35 31472.64 31295.72 13957.42 30899.64 5571.41 29195.85 11394.13 231
Anonymous2023121179.72 29277.19 30087.33 26195.59 12477.16 26295.18 24394.18 25459.31 38972.57 31386.20 31647.89 35195.66 27674.53 27269.24 32789.18 288
CP-MVSNet81.01 28180.08 27583.79 31887.91 31770.51 33294.29 26995.65 16580.83 23772.54 31488.84 27163.71 25992.32 34968.58 31068.36 33488.55 305
miper_lstm_enhance81.66 27380.66 26784.67 30691.19 26371.97 32191.94 31193.19 30577.86 29372.27 31585.26 32773.46 18793.42 34173.71 27967.05 34888.61 304
PS-CasMVS80.27 28879.18 28483.52 32487.56 32169.88 33794.08 27295.29 19180.27 25572.08 31688.51 27859.22 28992.23 35167.49 31268.15 33788.45 311
FMVSNet179.50 29576.54 30588.39 23288.47 31081.95 12394.30 26693.38 29773.14 33572.04 31785.66 31943.86 36093.84 33365.48 32572.53 30189.38 281
PEN-MVS79.47 29678.26 29283.08 32786.36 33168.58 34593.85 27994.77 21579.76 26471.37 31888.55 27559.79 28192.46 34764.50 32965.40 35488.19 316
testing380.74 28481.17 26079.44 34991.15 26563.48 36797.16 12095.76 15980.83 23771.36 31993.15 21178.22 10187.30 38343.19 39179.67 26287.55 331
Patchmtry77.36 31374.59 31885.67 29089.75 29275.75 28777.85 38891.12 34060.28 38471.23 32080.35 36375.45 15293.56 33957.94 35367.34 34687.68 325
IterMVS80.67 28579.16 28585.20 29889.79 29076.08 27792.97 30091.86 32880.28 25471.20 32185.14 33257.93 30291.34 36172.52 28570.74 31188.18 317
Fangjinhua Wang, Silvano Galliani, Christoph Vogel, Marc Pollefeys: IterMVS: Iterative Probability Estimation for Efficient Multi-View Stereo.
DP-MVS81.47 27478.28 29191.04 17098.14 5578.48 21995.09 24986.97 37261.14 38271.12 32292.78 21859.59 28399.38 7853.11 37186.61 20995.27 210
IterMVS-SCA-FT80.51 28779.10 28684.73 30489.63 29774.66 29392.98 29991.81 33080.05 25971.06 32385.18 33058.04 29891.40 36072.48 28670.70 31388.12 318
v7n79.32 29877.34 29885.28 29784.05 36272.89 31393.38 28893.87 27075.02 31970.68 32484.37 33959.58 28495.62 28167.60 31167.50 34487.32 335
MS-PatchMatch83.05 25081.82 25186.72 27589.64 29679.10 20694.88 25394.59 22979.70 26670.67 32589.65 26350.43 34096.82 22670.82 30095.99 11184.25 365
DTE-MVSNet78.37 30277.06 30182.32 33485.22 35067.17 35493.40 28793.66 28478.71 28570.53 32688.29 28059.06 29092.23 35161.38 34363.28 36387.56 329
pm-mvs180.05 28978.02 29486.15 28285.42 34575.81 28695.11 24692.69 31977.13 30270.36 32787.43 29158.44 29495.27 29771.36 29264.25 35987.36 334
D2MVS82.67 25781.55 25486.04 28487.77 31876.47 27095.21 23996.58 8982.66 21170.26 32885.46 32660.39 27995.80 26776.40 25279.18 26785.83 355
PVSNet_077.72 1581.70 27178.95 28889.94 20390.77 27576.72 26895.96 20396.95 4185.01 14970.24 32988.53 27752.32 33298.20 14886.68 15844.08 39694.89 216
CL-MVSNet_self_test75.81 32274.14 32480.83 34378.33 38167.79 34894.22 27093.52 29177.28 30169.82 33081.54 35761.47 27689.22 37357.59 35653.51 38085.48 357
tfpnnormal78.14 30475.42 31186.31 28088.33 31379.24 20094.41 26196.22 12773.51 33169.81 33185.52 32555.43 32195.75 27147.65 38567.86 34083.95 368
EU-MVSNet76.92 31776.95 30276.83 36084.10 36054.73 39291.77 31492.71 31872.74 33969.57 33288.69 27358.03 30087.43 38264.91 32870.00 32088.33 314
ITE_SJBPF82.38 33287.00 32565.59 35889.55 35679.99 26169.37 33391.30 23941.60 37195.33 29362.86 33874.63 29386.24 347
DSMNet-mixed73.13 33672.45 33175.19 36677.51 38446.82 39785.09 36982.01 39067.61 36569.27 33481.33 35850.89 33786.28 38554.54 36783.80 23292.46 249
MVP-Stereo82.65 25881.67 25385.59 29386.10 33878.29 22693.33 29092.82 31677.75 29469.17 33587.98 28559.28 28895.76 27071.77 28896.88 9182.73 373
Qingsong Yan: MVP-Stereo: A Parallel Multi-View Patchmatch Stereo Method with Dilation Matching for Photogrammetric Application.
MSDG80.62 28677.77 29689.14 21793.43 19777.24 25891.89 31290.18 35269.86 35668.02 33691.94 23252.21 33498.84 11759.32 35083.12 23791.35 254
NR-MVSNet83.35 24381.52 25688.84 22388.76 30581.31 14594.45 26095.16 19584.65 15967.81 33790.82 24670.36 22394.87 31174.75 26766.89 35090.33 265
TransMVSNet (Re)76.94 31674.38 32084.62 30885.92 34075.25 29095.28 23489.18 36173.88 32967.22 33886.46 30959.64 28294.10 32959.24 35152.57 38484.50 363
Anonymous2023120675.29 32573.64 32680.22 34580.75 37263.38 36893.36 28990.71 35073.09 33667.12 33983.70 34550.33 34190.85 36653.63 37070.10 31886.44 344
ppachtmachnet_test77.19 31474.22 32286.13 28385.39 34678.22 22993.98 27391.36 33771.74 34667.11 34084.87 33656.67 31393.37 34352.21 37264.59 35686.80 339
KD-MVS_2432*160077.63 31074.92 31585.77 28790.86 27279.44 19488.08 34593.92 26676.26 30967.05 34182.78 35172.15 20391.92 35461.53 34041.62 39985.94 353
miper_refine_blended77.63 31074.92 31585.77 28790.86 27279.44 19488.08 34593.92 26676.26 30967.05 34182.78 35172.15 20391.92 35461.53 34041.62 39985.94 353
Patchmatch-test78.25 30374.72 31788.83 22491.20 26274.10 30073.91 39688.70 36759.89 38766.82 34385.12 33378.38 9894.54 32048.84 38379.58 26497.86 100
test_fmvs369.56 34769.19 34770.67 37069.01 39647.05 39690.87 32586.81 37471.31 34966.79 34477.15 37416.40 40183.17 39281.84 20062.51 36581.79 381
LTVRE_ROB73.68 1877.99 30575.74 31084.74 30390.45 28072.02 31986.41 36091.12 34072.57 34166.63 34587.27 29454.95 32696.98 21556.29 36275.98 28385.21 359
Andreas Kuhn, Heiko Hirschmüller, Daniel Scharstein, Helmut Mayer: A TV Prior for High-Quality Scalable Multi-View Stereo Reconstruction. International Journal of Computer Vision 2016
OurMVSNet-221017-077.18 31576.06 30780.55 34483.78 36560.00 37990.35 32891.05 34377.01 30666.62 34687.92 28647.73 35294.03 33071.63 28968.44 33387.62 326
testgi74.88 32773.40 32779.32 35080.13 37661.75 37293.21 29586.64 37679.49 27066.56 34791.06 24235.51 38488.67 37556.79 36171.25 30787.56 329
LCM-MVSNet-Re83.75 23883.54 22584.39 31493.54 19064.14 36392.51 30484.03 38583.90 18366.14 34886.59 30667.36 23792.68 34584.89 16992.87 14996.35 179
pmmvs674.65 32871.67 33583.60 32379.13 37969.94 33693.31 29390.88 34761.05 38365.83 34984.15 34243.43 36294.83 31366.62 31860.63 36886.02 351
our_test_377.90 30875.37 31285.48 29585.39 34676.74 26793.63 28291.67 33173.39 33465.72 35084.65 33858.20 29793.13 34457.82 35467.87 33986.57 343
COLMAP_ROBcopyleft73.24 1975.74 32373.00 33083.94 31692.38 22569.08 34391.85 31386.93 37361.48 37965.32 35190.27 25542.27 36896.93 22050.91 37675.63 28785.80 356
Johannes L. Schönberger, Enliang Zheng, Marc Pollefeys, Jan-Michael Frahm: Pixelwise View Selection for Unstructured Multi-View Stereo. ECCV 2016
FMVSNet576.46 31974.16 32383.35 32690.05 28876.17 27589.58 33389.85 35471.39 34865.29 35280.42 36250.61 33987.70 38161.05 34569.24 32786.18 348
ACMH+76.62 1677.47 31274.94 31485.05 30091.07 26771.58 32793.26 29490.01 35371.80 34564.76 35388.55 27541.62 37096.48 23862.35 33971.00 30987.09 337
Patchmatch-RL test76.65 31874.01 32584.55 30977.37 38564.23 36278.49 38782.84 38978.48 28764.63 35473.40 38476.05 14091.70 35976.99 24457.84 37297.72 111
SixPastTwentyTwo76.04 32074.32 32181.22 33984.54 35561.43 37591.16 32289.30 36077.89 29164.04 35586.31 31448.23 34694.29 32663.54 33563.84 36187.93 321
AllTest75.92 32173.06 32984.47 31092.18 23767.29 34991.07 32384.43 38367.63 36163.48 35690.18 25638.20 37897.16 20657.04 35873.37 29788.97 299
TestCases84.47 31092.18 23767.29 34984.43 38367.63 36163.48 35690.18 25638.20 37897.16 20657.04 35873.37 29788.97 299
ACMH75.40 1777.99 30574.96 31387.10 26890.67 27676.41 27293.19 29791.64 33372.47 34263.44 35887.61 29043.34 36397.16 20658.34 35273.94 29487.72 323
Qingshan Xu and Wenbing Tao: Multi-Scale Geometric Consistency Guided Multi-View Stereo. CVPR 2019
ET-MVSNet_ETH3D90.01 12489.03 13092.95 9494.38 16686.77 3498.14 4696.31 12089.30 6063.33 35996.72 12290.09 1093.63 33890.70 11182.29 25098.46 59
USDC78.65 30176.25 30685.85 28587.58 32074.60 29589.58 33390.58 35184.05 17663.13 36088.23 28140.69 37696.86 22566.57 32075.81 28686.09 350
LF4IMVS72.36 34070.82 33876.95 35979.18 37856.33 38586.12 36286.11 37869.30 35863.06 36186.66 30533.03 38892.25 35065.33 32668.64 33182.28 377
dmvs_testset72.00 34373.36 32867.91 37283.83 36431.90 41285.30 36777.12 39782.80 20763.05 36292.46 22061.54 27582.55 39442.22 39371.89 30689.29 285
KD-MVS_self_test70.97 34669.31 34675.95 36576.24 39155.39 39087.45 35090.94 34670.20 35362.96 36377.48 37344.01 35988.09 37661.25 34453.26 38184.37 364
Anonymous2024052172.06 34269.91 34378.50 35477.11 38661.67 37491.62 31890.97 34565.52 36862.37 36479.05 36936.32 38090.96 36557.75 35568.52 33282.87 370
test_040272.68 33869.54 34582.09 33588.67 30871.81 32492.72 30386.77 37561.52 37862.21 36583.91 34343.22 36493.76 33634.60 39672.23 30580.72 383
OpenMVS_ROBcopyleft68.52 2073.02 33769.57 34483.37 32580.54 37571.82 32393.60 28488.22 36862.37 37461.98 36683.15 35035.31 38595.47 28745.08 38975.88 28582.82 371
MVS-HIRNet71.36 34567.00 35184.46 31290.58 27769.74 33979.15 38487.74 37146.09 39661.96 36750.50 40045.14 35895.64 27953.74 36988.11 19788.00 320
test20.0372.36 34071.15 33775.98 36477.79 38259.16 38192.40 30789.35 35974.09 32761.50 36884.32 34048.09 34785.54 38850.63 37762.15 36683.24 369
mvsany_test367.19 35465.34 35672.72 36863.08 40248.57 39583.12 37678.09 39672.07 34361.21 36977.11 37522.94 39687.78 38078.59 22751.88 38581.80 380
PM-MVS69.32 35066.93 35276.49 36173.60 39355.84 38785.91 36379.32 39574.72 32161.09 37078.18 37121.76 39791.10 36470.86 29856.90 37482.51 374
TDRefinement69.20 35165.78 35579.48 34866.04 40162.21 37188.21 34386.12 37762.92 37361.03 37185.61 32233.23 38794.16 32855.82 36553.02 38282.08 378
ambc76.02 36368.11 39851.43 39364.97 40189.59 35560.49 37274.49 38117.17 40092.46 34761.50 34252.85 38384.17 366
pmmvs-eth3d73.59 33170.66 33982.38 33276.40 38973.38 30389.39 33689.43 35872.69 34060.34 37377.79 37246.43 35691.26 36366.42 32257.06 37382.51 374
test_vis1_rt73.96 32972.40 33278.64 35383.91 36361.16 37695.63 22168.18 40576.32 30860.09 37474.77 37929.01 39497.54 18287.74 14775.94 28477.22 388
kuosan73.55 33272.39 33377.01 35889.68 29566.72 35685.24 36893.44 29367.76 36060.04 37583.40 34871.90 20684.25 39045.34 38854.75 37580.06 384
K. test v373.62 33071.59 33679.69 34782.98 36759.85 38090.85 32688.83 36377.13 30258.90 37682.11 35343.62 36191.72 35865.83 32454.10 37987.50 332
EG-PatchMatch MVS74.92 32672.02 33483.62 32283.76 36673.28 30693.62 28392.04 32768.57 35958.88 37783.80 34431.87 39095.57 28556.97 36078.67 27182.00 379
lessismore_v079.98 34680.59 37458.34 38380.87 39158.49 37883.46 34743.10 36593.89 33263.11 33748.68 38887.72 323
N_pmnet61.30 35860.20 36164.60 37784.32 35717.00 41891.67 31710.98 41661.77 37758.45 37978.55 37049.89 34391.83 35742.27 39263.94 36084.97 360
TinyColmap72.41 33968.99 34882.68 33088.11 31469.59 34088.41 34285.20 38065.55 36757.91 38084.82 33730.80 39295.94 26051.38 37368.70 33082.49 376
UnsupCasMVSNet_eth73.25 33570.57 34081.30 33877.53 38366.33 35787.24 35393.89 26980.38 25157.90 38181.59 35642.91 36790.56 36865.18 32748.51 38987.01 338
MIMVSNet169.44 34966.65 35377.84 35576.48 38862.84 37087.42 35188.97 36266.96 36657.75 38279.72 36832.77 38985.83 38746.32 38663.42 36284.85 361
pmmvs365.75 35662.18 35976.45 36267.12 40064.54 36088.68 34085.05 38154.77 39557.54 38373.79 38229.40 39386.21 38655.49 36647.77 39278.62 386
dongtai69.47 34868.98 34970.93 36986.87 32658.45 38288.19 34493.18 30763.98 37156.04 38480.17 36570.97 21979.24 39633.46 39747.94 39175.09 390
test_f64.01 35762.13 36069.65 37163.00 40345.30 40283.66 37580.68 39261.30 38055.70 38572.62 38714.23 40384.64 38969.84 30358.11 37179.00 385
new-patchmatchnet68.85 35265.93 35477.61 35773.57 39463.94 36590.11 33088.73 36671.62 34755.08 38673.60 38340.84 37487.22 38451.35 37548.49 39081.67 382
UnsupCasMVSNet_bld68.60 35364.50 35780.92 34274.63 39267.80 34783.97 37392.94 31465.12 36954.63 38768.23 39335.97 38292.17 35360.13 34644.83 39482.78 372
CMPMVSbinary54.94 2175.71 32474.56 31979.17 35179.69 37755.98 38689.59 33293.30 30260.28 38453.85 38889.07 26847.68 35396.33 24476.55 24981.02 25485.22 358
M. Jancosek, T. Pajdla: Multi-View Reconstruction Preserving Weakly-Supported Surfaces. CVPR 2011
new_pmnet66.18 35563.18 35875.18 36776.27 39061.74 37383.79 37484.66 38256.64 39351.57 38971.85 39131.29 39187.93 37749.98 37962.55 36475.86 389
test_method56.77 36054.53 36463.49 37976.49 38740.70 40575.68 39274.24 39919.47 40748.73 39071.89 39019.31 39865.80 40757.46 35747.51 39383.97 367
YYNet173.53 33470.43 34182.85 32984.52 35671.73 32591.69 31691.37 33667.63 36146.79 39181.21 35955.04 32590.43 36955.93 36359.70 37086.38 345
MDA-MVSNet_test_wron73.54 33370.43 34182.86 32884.55 35471.85 32291.74 31591.32 33967.63 36146.73 39281.09 36055.11 32490.42 37055.91 36459.76 36986.31 346
WB-MVS57.26 35956.22 36260.39 38369.29 39535.91 41086.39 36170.06 40359.84 38846.46 39372.71 38651.18 33678.11 39715.19 40734.89 40267.14 396
SSC-MVS56.01 36254.96 36359.17 38468.42 39734.13 41184.98 37069.23 40458.08 39245.36 39471.67 39250.30 34277.46 39814.28 40832.33 40365.91 397
MDA-MVSNet-bldmvs71.45 34467.94 35081.98 33685.33 34868.50 34692.35 30888.76 36570.40 35142.99 39581.96 35446.57 35591.31 36248.75 38454.39 37886.11 349
APD_test156.56 36153.58 36565.50 37467.93 39946.51 39977.24 39172.95 40038.09 39842.75 39675.17 37813.38 40482.78 39340.19 39454.53 37767.23 395
DeepMVS_CXcopyleft64.06 37878.53 38043.26 40368.11 40769.94 35538.55 39776.14 37718.53 39979.34 39543.72 39041.62 39969.57 393
LCM-MVSNet52.52 36548.24 36865.35 37547.63 41241.45 40472.55 39783.62 38731.75 40037.66 39857.92 3989.19 41076.76 40049.26 38144.60 39577.84 387
test_vis3_rt54.10 36451.04 36763.27 38058.16 40446.08 40184.17 37249.32 41556.48 39436.56 39949.48 4028.03 41191.91 35667.29 31449.87 38651.82 401
FPMVS55.09 36352.93 36661.57 38155.98 40540.51 40683.11 37783.41 38837.61 39934.95 40071.95 38914.40 40276.95 39929.81 39965.16 35567.25 394
PMMVS250.90 36746.31 37064.67 37655.53 40646.67 39877.30 39071.02 40240.89 39734.16 40159.32 3969.83 40976.14 40240.09 39528.63 40471.21 391
testf145.70 36942.41 37155.58 38553.29 40940.02 40768.96 39962.67 40927.45 40229.85 40261.58 3945.98 41273.83 40428.49 40243.46 39752.90 399
APD_test245.70 36942.41 37155.58 38553.29 40940.02 40768.96 39962.67 40927.45 40229.85 40261.58 3945.98 41273.83 40428.49 40243.46 39752.90 399
tmp_tt41.54 37241.93 37440.38 39020.10 41626.84 41461.93 40259.09 41114.81 40928.51 40480.58 36135.53 38348.33 41163.70 33413.11 40845.96 404
Gipumacopyleft45.11 37142.05 37354.30 38780.69 37351.30 39435.80 40583.81 38628.13 40127.94 40534.53 40511.41 40876.70 40121.45 40454.65 37634.90 405
S. Galliani, K. Lasinger, K. Schindler: Massively Parallel Multiview Stereopsis by Surface Normal Diffusion. ICCV 2015
ANet_high46.22 36841.28 37561.04 38239.91 41446.25 40070.59 39876.18 39858.87 39023.09 40648.00 40312.58 40666.54 40628.65 40113.62 40770.35 392
MVEpermissive35.65 2233.85 37429.49 37946.92 38941.86 41336.28 40950.45 40456.52 41218.75 40818.28 40737.84 4042.41 41558.41 40818.71 40520.62 40546.06 403
Simon Fuhrmann, Fabian Langguth, Michael Goesele: MVE - A Multi-View Reconstruction Environment. EUROGRAPHICS Workshops on Graphics and Cultural Heritage (2014)
PMVScopyleft34.80 2339.19 37335.53 37650.18 38829.72 41530.30 41359.60 40366.20 40826.06 40417.91 40849.53 4013.12 41474.09 40318.19 40649.40 38746.14 402
Y. Furukawa, J. Ponce: Accurate, dense, and robust multiview stereopsis. PAMI (2010)
E-PMN32.70 37532.39 37733.65 39153.35 40825.70 41574.07 39553.33 41321.08 40517.17 40933.63 40711.85 40754.84 40912.98 40914.04 40620.42 406
EMVS31.70 37631.45 37832.48 39250.72 41123.95 41674.78 39452.30 41420.36 40616.08 41031.48 40812.80 40553.60 41011.39 41013.10 40919.88 407
wuyk23d14.10 37813.89 38114.72 39355.23 40722.91 41733.83 4063.56 4174.94 4104.11 4112.28 4132.06 41619.66 41210.23 4118.74 4101.59 410
testmvs9.92 37912.94 3820.84 3950.65 4170.29 42093.78 2800.39 4180.42 4112.85 41215.84 4110.17 4180.30 4142.18 4120.21 4111.91 409
test1239.07 38011.73 3831.11 3940.50 4180.77 41989.44 3350.20 4190.34 4122.15 41310.72 4120.34 4170.32 4131.79 4130.08 4122.23 408
EGC-MVSNET52.46 36647.56 36967.15 37381.98 37060.11 37882.54 37872.44 4010.11 4130.70 41474.59 38025.11 39583.26 39129.04 40061.51 36758.09 398
test_blank0.00 3830.00 3860.00 3960.00 4190.00 4210.00 4070.00 4200.00 4140.00 4150.00 4140.00 4190.00 4150.00 4140.00 4130.00 411
uanet_test0.00 3830.00 3860.00 3960.00 4190.00 4210.00 4070.00 4200.00 4140.00 4150.00 4140.00 4190.00 4150.00 4140.00 4130.00 411
DCPMVS0.00 3830.00 3860.00 3960.00 4190.00 4210.00 4070.00 4200.00 4140.00 4150.00 4140.00 4190.00 4150.00 4140.00 4130.00 411
cdsmvs_eth3d_5k21.43 37728.57 3800.00 3960.00 4190.00 4210.00 40795.93 1510.00 4140.00 41597.66 7263.57 2600.00 4150.00 4140.00 4130.00 411
pcd_1.5k_mvsjas5.92 3827.89 3850.00 3960.00 4190.00 4210.00 4070.00 4200.00 4140.00 4150.00 41471.04 2160.00 4150.00 4140.00 4130.00 411
sosnet-low-res0.00 3830.00 3860.00 3960.00 4190.00 4210.00 4070.00 4200.00 4140.00 4150.00 4140.00 4190.00 4150.00 4140.00 4130.00 411
sosnet0.00 3830.00 3860.00 3960.00 4190.00 4210.00 4070.00 4200.00 4140.00 4150.00 4140.00 4190.00 4150.00 4140.00 4130.00 411
uncertanet0.00 3830.00 3860.00 3960.00 4190.00 4210.00 4070.00 4200.00 4140.00 4150.00 4140.00 4190.00 4150.00 4140.00 4130.00 411
Regformer0.00 3830.00 3860.00 3960.00 4190.00 4210.00 4070.00 4200.00 4140.00 4150.00 4140.00 4190.00 4150.00 4140.00 4130.00 411
ab-mvs-re8.11 38110.81 3840.00 3960.00 4190.00 4210.00 4070.00 4200.00 4140.00 41597.30 950.00 4190.00 4150.00 4140.00 4130.00 411
uanet0.00 3830.00 3860.00 3960.00 4190.00 4210.00 4070.00 4200.00 4140.00 4150.00 4140.00 4190.00 4150.00 4140.00 4130.00 411
WAC-MVS67.18 35149.00 382
MSC_two_6792asdad97.14 399.05 992.19 496.83 5199.81 2298.08 1498.81 2499.43 11
No_MVS97.14 399.05 992.19 496.83 5199.81 2298.08 1498.81 2499.43 11
eth-test20.00 419
eth-test0.00 419
OPU-MVS97.30 299.19 792.31 399.12 1298.54 2092.06 399.84 1399.11 399.37 199.74 1
save fliter98.24 5183.34 10298.61 3396.57 9091.32 32
test_0728_SECOND95.14 2099.04 1486.14 4099.06 1796.77 6099.84 1397.90 1798.85 2199.45 10
GSMVS97.54 124
sam_mvs177.59 11197.54 124
sam_mvs75.35 159
MTGPAbinary96.33 118
test_post185.88 36430.24 40973.77 18295.07 30873.89 276
test_post33.80 40676.17 13895.97 256
patchmatchnet-post77.09 37677.78 11095.39 289
MTMP97.53 9068.16 406
gm-plane-assit92.27 23179.64 19284.47 16595.15 16397.93 15685.81 161
test9_res96.00 4099.03 1398.31 68
agg_prior294.30 6399.00 1598.57 53
test_prior482.34 11997.75 75
test_prior93.09 8998.68 2681.91 12796.40 11099.06 10498.29 70
新几何296.42 180
旧先验197.39 8379.58 19396.54 9398.08 4884.00 4297.42 7897.62 120
无先验96.87 14996.78 5477.39 29899.52 6979.95 21498.43 61
原ACMM296.84 150
testdata299.48 7376.45 251
segment_acmp82.69 57
testdata195.57 22687.44 98
plane_prior791.86 25277.55 253
plane_prior691.98 24877.92 24264.77 255
plane_prior594.69 21797.30 19887.08 15382.82 24390.96 257
plane_prior494.15 189
plane_prior297.18 11689.89 53
plane_prior191.95 250
plane_prior77.96 23997.52 9390.36 4982.96 241
n20.00 420
nn0.00 420
door-mid79.75 394
test1196.50 98
door80.13 393
HQP5-MVS78.48 219
BP-MVS87.67 149
HQP3-MVS94.80 21283.01 239
HQP2-MVS65.40 250
NP-MVS92.04 24778.22 22994.56 179
ACMMP++_ref78.45 276
ACMMP++79.05 268
Test By Simon71.65 209