This table lists the benchmark results for the high-res multi-view scenario. The following metrics are evaluated:

(*) For exact definitions, detailing how potentially incomplete ground truth is taken into account, see our paper.

The datasets are grouped into different categories, and result averages are computed for a category and method if results of the method are available for all datasets within the category. Note that the category "all" includes both the high-res multi-view and the low-res many-view scenarios.

Methods with suffix _ROB may participate in the Robust Vision Challenge.

Click a dataset result cell to show a visualization of the reconstruction. For training datasets, ground truth and accuracy / completeness visualizations are also available. The visualizations may not work with mobile browsers.




Method Infoallhigh-res
multi-view
indooroutdoorbotani.boulde.bridgedoorexhibi.lectur.living.loungeobserv.old co.statueterrac.
sort bysort bysort bysort bysort bysort bysort bysort bysort bysorted bysort bysort bysort bysort bysort bysort by
IU-MVS99.03 1385.34 4796.86 4292.05 1598.74 198.15 298.97 1599.42 9
SMA-MVScopyleft94.70 1594.68 1594.76 2298.02 6485.94 3597.47 8196.77 5185.32 11297.92 298.70 1683.09 4799.84 1295.79 2499.08 898.49 46
Yufeng Yin; Xiaoyan Liu; Zichao Zhang: SMA-MVS: Segmentation-Guided Multi-Scale Anchor Deformation Patch Multi-View Stereo. IEEE Transactions on Circuits and Systems for Video Technology
SED-MVS95.88 496.22 394.87 1999.03 1385.03 5899.12 696.78 4588.72 5097.79 398.91 388.48 1499.82 1698.15 298.97 1599.74 1
test_241102_ONE99.03 1385.03 5896.78 4588.72 5097.79 398.90 688.48 1499.82 16
test_241102_TWO96.78 4588.72 5097.70 598.91 387.86 1799.82 1698.15 299.00 1399.47 7
test072699.05 1085.18 5199.11 896.78 4588.75 4897.65 698.91 387.69 18
TSAR-MVS + MP.94.79 1495.17 1293.64 5797.66 7584.10 7495.85 19496.42 10091.26 2097.49 796.80 11186.50 2398.49 12795.54 2899.03 1198.33 53
Zhenlong Yuan, Jiakai Cao, Zhaoqi Wang, Zhaoxin Li: TSAR-MVS: Textureless-aware Segmentation and Correlative Refinement Guided Multi-View Stereo. Pattern Recognition
MSP-MVS95.62 696.54 192.86 9298.31 4980.10 16697.42 8996.78 4592.20 1397.11 898.29 2893.46 199.10 9596.01 2099.30 399.38 10
Zhenlong Yuan, Cong Liu, Fei Shen, Zhaoxin Li, Jingguo luo, Tianlu Mao and Zhaoqi Wang: MSP-MVS: Multi-granularity Segmentation Prior Guided Multi-View Stereo. AAAI2025
CNVR-MVS96.30 196.54 195.55 1299.31 587.69 1999.06 997.12 2294.66 396.79 998.78 1186.42 2499.95 397.59 999.18 599.00 23
DVP-MVS95.58 795.91 794.57 2699.05 1085.18 5199.06 996.46 9588.75 4896.69 1098.76 1287.69 1899.76 2097.90 598.85 2098.77 30
Zhenlong Yuan, Jinguo Luo, Fei Shen, Zhaoxin Li, Cong Liu, Tianlu Mao, Zhaoqi Wang: DVP-MVS: Synergize Depth-Edge and Visibility Prior for Multi-View Stereo. AAAI2025
test_0728_THIRD88.38 5796.69 1098.76 1289.64 1099.76 2097.47 1098.84 2299.38 10
SD-MVS94.84 1395.02 1394.29 3497.87 7084.61 6797.76 6096.19 12389.59 3896.66 1298.17 3684.33 3299.60 4696.09 1898.50 3798.66 37
Zhenlong Yuan, Jiakai Cao, Zhaoxin Li, Hao Jiang and Zhaoqi Wang: SD-MVS: Segmentation-driven Deformation Multi-View Stereo with Spherical Refinement and EM optimization. AAAI2024
DPE-MVScopyleft95.32 995.55 894.64 2598.79 2184.87 6397.77 5696.74 5586.11 9396.54 1398.89 788.39 1699.74 2897.67 899.05 1099.31 14
Kehua Chen, Zhenlong Yuan, Tianlu Mao, Zhaoqi Wang: Dual-Level Precision Edges Guided Multi-View Stereo with Accurate Planarization. AAAI2025
DPM-MVS96.21 295.53 998.26 196.26 10595.09 199.15 496.98 3093.39 996.45 1498.79 1090.17 799.99 189.33 10899.25 499.70 3
PS-MVSNAJ94.17 2593.52 3896.10 695.65 12192.35 298.21 3295.79 14592.42 1296.24 1598.18 3271.04 19499.17 8896.77 1597.39 7596.79 149
旧先验296.97 12774.06 29396.10 1697.76 15188.38 117
test_part298.90 1785.14 5796.07 17
xiu_mvs_v2_base93.92 3393.26 4095.91 895.07 13792.02 498.19 3395.68 15092.06 1496.01 1898.14 3770.83 19798.96 10396.74 1696.57 9496.76 152
ETH3 D test640095.56 895.41 1196.00 799.02 1689.42 798.75 1796.80 4487.28 7995.88 1998.95 285.92 2699.41 6297.15 1398.95 1899.18 20
HPM-MVS++copyleft95.32 995.48 1094.85 2098.62 3486.04 3297.81 5496.93 3692.45 1195.69 2098.50 2285.38 2799.85 1094.75 3799.18 598.65 38
NCCC95.63 595.94 694.69 2499.21 785.15 5699.16 396.96 3394.11 695.59 2198.64 1985.07 2899.91 495.61 2799.10 799.00 23
ETH3D-3000-0.194.43 1994.42 2294.45 2897.78 7185.78 3897.98 4496.53 8785.29 11595.45 2298.81 883.36 4299.38 6496.07 1998.53 3398.19 65
EPNet94.06 3094.15 2893.76 5097.27 9484.35 6898.29 2997.64 1394.57 495.36 2396.88 10679.96 7299.12 9491.30 7896.11 9897.82 98
Wanjuan Su, Wenbing Tao: Efficient Edge-Preserving Multi-View Stereo Network for Depth Estimation. AAAI 2023
CANet94.89 1294.64 1695.63 1097.55 8188.12 1399.06 996.39 10794.07 795.34 2497.80 6576.83 11399.87 897.08 1497.64 6898.89 26
TEST998.64 3183.71 8197.82 5296.65 6884.29 14495.16 2598.09 4384.39 3199.36 70
train_agg94.28 2294.45 2093.74 5198.64 3183.71 8197.82 5296.65 6884.50 13695.16 2598.09 4384.33 3299.36 7095.91 2398.96 1798.16 68
test_898.63 3383.64 8497.81 5496.63 7384.50 13695.10 2798.11 4284.33 3299.23 76
DeepPCF-MVS89.82 194.61 1696.17 489.91 18397.09 9770.21 30998.99 1496.69 6295.57 195.08 2899.23 186.40 2599.87 897.84 798.66 3099.65 4
xxxxxxxxxxxxxcwj94.38 2094.62 1793.68 5598.24 5283.34 8998.61 2292.69 28991.32 1895.07 2998.74 1482.93 4899.38 6495.42 3098.51 3498.32 54
SF-MVS94.17 2594.05 3094.55 2797.56 8085.95 3397.73 6296.43 9984.02 15095.07 2998.74 1482.93 4899.38 6495.42 3098.51 3498.32 54
APDe-MVS94.56 1794.75 1493.96 4598.84 2083.40 8898.04 4296.41 10185.79 10195.00 3198.28 2984.32 3599.18 8797.35 1198.77 2599.28 15
MVSFormer91.36 8290.57 8693.73 5393.00 19288.08 1494.80 23094.48 21680.74 20894.90 3297.13 9878.84 8395.10 27883.77 15097.46 7098.02 80
lupinMVS93.87 3693.58 3794.75 2393.00 19288.08 1499.15 495.50 16091.03 2294.90 3297.66 6978.84 8397.56 15894.64 4097.46 7098.62 40
9.1494.26 2798.10 6098.14 3496.52 8884.74 12794.83 3498.80 982.80 5199.37 6895.95 2298.42 42
testdata90.13 17495.92 11474.17 27696.49 9473.49 29894.82 3597.99 5278.80 8597.93 14283.53 15997.52 6998.29 59
testtj94.09 2994.08 2994.09 4299.28 683.32 9197.59 7196.61 7483.60 16594.77 3698.46 2482.72 5299.64 4295.29 3298.42 4299.32 13
APD-MVScopyleft93.61 3793.59 3693.69 5498.76 2283.26 9297.21 9896.09 12882.41 18694.65 3798.21 3181.96 5798.81 11494.65 3998.36 5099.01 22
Yuesong Wang, Zhaojie Zeng and etc.: Adaptive Patch Deformation for Textureless-Resilient Multi-View Stereo. CVPR2023
test_prior394.03 3194.34 2493.09 8198.68 2581.91 11798.37 2696.40 10486.08 9594.57 3898.02 4983.14 4499.06 9795.05 3498.79 2398.29 59
test_prior298.37 2686.08 9594.57 3898.02 4983.14 4495.05 3498.79 23
ACMMP_NAP93.46 3993.23 4194.17 3997.16 9584.28 7196.82 13696.65 6886.24 9194.27 4097.99 5277.94 9699.83 1593.39 5298.57 3298.39 51
agg_prior194.10 2894.31 2593.48 6798.59 3583.13 9497.77 5696.56 8284.38 14094.19 4198.13 3884.66 3099.16 8995.74 2598.74 2798.15 70
agg_prior98.59 3583.13 9496.56 8294.19 4199.16 89
SteuartSystems-ACMMP94.13 2794.44 2193.20 7695.41 12681.35 13499.02 1396.59 7889.50 3994.18 4398.36 2783.68 4099.45 6094.77 3698.45 4098.81 29
Skip Steuart: Steuart Systems R&D Blog.
ETH3D cwj APD-0.1693.91 3593.76 3394.36 3196.70 10185.74 3997.22 9696.41 10183.94 15394.13 4498.69 1883.13 4699.37 6895.25 3398.39 4797.97 88
PHI-MVS93.59 3893.63 3593.48 6798.05 6381.76 12598.64 2097.13 2182.60 18494.09 4598.49 2380.35 6599.85 1094.74 3898.62 3198.83 28
TSAR-MVS + GP.94.35 2194.50 1893.89 4697.38 9183.04 9798.10 3795.29 17591.57 1693.81 4697.45 8186.64 2199.43 6196.28 1794.01 11999.20 18
CANet_DTU90.98 8990.04 9793.83 4894.76 14786.23 3096.32 16993.12 28293.11 1093.71 4796.82 11063.08 24099.48 5884.29 14595.12 11295.77 176
VNet92.11 6691.22 7794.79 2196.91 9886.98 2497.91 4797.96 986.38 9093.65 4895.74 12870.16 20298.95 10693.39 5288.87 16198.43 49
ZD-MVS99.09 983.22 9396.60 7782.88 17893.61 4998.06 4882.93 4899.14 9195.51 2998.49 38
CS-MVS92.29 6392.54 5691.51 13893.78 17180.14 16598.36 2894.53 21487.91 6893.39 5097.23 9376.09 12796.96 19094.36 4197.26 7897.43 124
xiu_mvs_v1_base_debu90.54 9889.54 10893.55 6292.31 20687.58 2096.99 12294.87 19287.23 8193.27 5197.56 7657.43 27998.32 13292.72 6493.46 12794.74 195
xiu_mvs_v1_base90.54 9889.54 10893.55 6292.31 20687.58 2096.99 12294.87 19287.23 8193.27 5197.56 7657.43 27998.32 13292.72 6493.46 12794.74 195
xiu_mvs_v1_base_debi90.54 9889.54 10893.55 6292.31 20687.58 2096.99 12294.87 19287.23 8193.27 5197.56 7657.43 27998.32 13292.72 6493.46 12794.74 195
CDPH-MVS93.12 4392.91 4693.74 5198.65 3083.88 7697.67 6696.26 11783.00 17593.22 5498.24 3081.31 5899.21 8089.12 10998.74 2798.14 71
ETV-MVS92.72 5392.87 4792.28 11494.54 15281.89 11997.98 4495.21 17889.77 3793.11 5596.83 10877.23 10997.50 16595.74 2595.38 10797.44 123
MSLP-MVS++94.28 2294.39 2393.97 4498.30 5084.06 7598.64 2096.93 3690.71 2593.08 5698.70 1679.98 7199.21 8094.12 4599.07 998.63 39
alignmvs92.97 4692.26 6195.12 1695.54 12387.77 1798.67 1896.38 10888.04 6393.01 5797.45 8179.20 8098.60 12193.25 5788.76 16298.99 25
canonicalmvs92.27 6491.22 7795.41 1395.80 11688.31 1197.09 11594.64 20888.49 5592.99 5897.31 8872.68 17798.57 12393.38 5488.58 16599.36 12
jason92.73 5292.23 6294.21 3890.50 25287.30 2398.65 1995.09 18190.61 2692.76 5997.13 9875.28 14897.30 17493.32 5596.75 9398.02 80
jason: jason.
Regformer-194.00 3294.04 3193.87 4798.41 4384.29 7097.43 8797.04 2689.50 3992.75 6098.13 3882.60 5499.26 7593.55 5096.99 8398.06 77
Regformer-293.92 3394.01 3293.67 5698.41 4383.75 8097.43 8797.00 2889.43 4192.69 6198.13 3882.48 5599.22 7893.51 5196.99 8398.04 78
test1294.25 3598.34 4785.55 4496.35 11192.36 6280.84 6099.22 7898.31 5297.98 87
MG-MVS94.25 2493.72 3495.85 999.38 389.35 997.98 4498.09 889.99 3492.34 6396.97 10381.30 5998.99 10188.54 11398.88 1999.20 18
hse-mvs389.30 11988.95 11790.36 16795.07 13776.04 25596.96 12897.11 2390.39 3092.22 6495.10 15074.70 15598.86 11193.14 5965.89 31896.16 168
hse-mvs288.22 14788.21 12588.25 21793.54 17973.41 27995.41 20995.89 13990.39 3092.22 6494.22 16774.70 15596.66 20793.14 5964.37 32394.69 199
MCST-MVS96.17 396.12 596.32 599.42 289.36 898.94 1597.10 2495.17 292.11 6698.46 2487.33 2099.97 297.21 1299.31 299.63 5
SR-MVS92.16 6592.27 6091.83 13098.37 4678.41 20696.67 14895.76 14682.19 19091.97 6798.07 4776.44 11998.64 11893.71 4797.27 7798.45 48
region2R92.72 5392.70 5192.79 9598.68 2580.53 15597.53 7696.51 8985.22 11691.94 6897.98 5477.26 10599.67 4090.83 8598.37 4998.18 66
Effi-MVS+90.70 9489.90 10293.09 8193.61 17683.48 8695.20 21692.79 28783.22 16991.82 6995.70 13071.82 18597.48 16691.25 7993.67 12498.32 54
HFP-MVS92.89 4792.86 4892.98 8698.71 2381.12 13797.58 7296.70 6085.20 11891.75 7097.97 5678.47 8899.71 3290.95 8198.41 4498.12 73
#test#92.99 4592.99 4492.98 8698.71 2381.12 13797.77 5696.70 6085.75 10291.75 7097.97 5678.47 8899.71 3291.36 7798.41 4498.12 73
DeepC-MVS_fast89.06 294.48 1894.30 2695.02 1798.86 1985.68 4298.06 4096.64 7193.64 891.74 7298.54 2080.17 7099.90 592.28 7098.75 2699.49 6
Andreas Kuhn, Christian Sormann, Mattia Rossi, Oliver Erdler, Friedrich Fraundorfer: DeepC-MVS: Deep Confidence Prediction for Multi-View Stereo Reconstruction. 3DV 2020
test117291.64 7492.00 6690.54 16398.20 5674.48 27396.45 15895.65 15181.97 19491.63 7398.02 4975.76 13398.61 11993.16 5897.17 8098.52 45
ACMMPR92.69 5592.67 5292.75 9698.66 2880.57 15297.58 7296.69 6285.20 11891.57 7497.92 5877.01 11099.67 4090.95 8198.41 4498.00 85
DELS-MVS94.98 1194.49 1996.44 496.42 10390.59 599.21 297.02 2794.40 591.46 7597.08 10083.32 4399.69 3692.83 6398.70 2999.04 21
Christian Sormann, Emanuele Santellani, Mattia Rossi, Andreas Kuhn, Friedrich Fraundorfer: DELS-MVS: Deep Epipolar Line Search for Multi-View Stereo. Winter Conference on Applications of Computer Vision (WACV), 2023
XVS92.69 5592.71 4992.63 10298.52 3880.29 15897.37 9296.44 9787.04 8691.38 7697.83 6477.24 10799.59 4790.46 9198.07 5898.02 80
X-MVStestdata86.26 17584.14 19192.63 10298.52 3880.29 15897.37 9296.44 9787.04 8691.38 7620.73 36477.24 10799.59 4790.46 9198.07 5898.02 80
112190.66 9589.82 10493.16 7897.39 8881.71 12893.33 26296.66 6774.45 29091.38 7697.55 7979.27 7799.52 5379.95 18498.43 4198.26 62
PMMVS89.46 11689.92 10188.06 22194.64 14869.57 31696.22 17494.95 18887.27 8091.37 7996.54 11765.88 22397.39 17088.54 11393.89 12197.23 136
Regformer-393.19 4193.19 4293.19 7798.10 6083.01 9897.08 11796.98 3088.98 4591.35 8097.89 5980.80 6199.23 7692.30 6995.20 10997.32 130
原ACMM191.22 14697.77 7278.10 21896.61 7481.05 20391.28 8197.42 8577.92 9798.98 10279.85 18798.51 3496.59 156
Regformer-493.06 4493.12 4392.89 9198.10 6082.20 11197.08 11796.92 3888.87 4791.23 8297.89 5980.57 6499.19 8592.21 7195.20 10997.29 134
新几何193.12 7997.44 8481.60 13196.71 5974.54 28991.22 8397.57 7579.13 8199.51 5677.40 21098.46 3998.26 62
UA-Net88.92 12688.48 12390.24 17194.06 16677.18 24093.04 27194.66 20587.39 7791.09 8493.89 17674.92 15398.18 13975.83 22791.43 14595.35 186
ZNCC-MVS92.75 4992.60 5493.23 7598.24 5281.82 12397.63 6796.50 9185.00 12391.05 8597.74 6778.38 9099.80 1990.48 9098.34 5198.07 76
APD-MVS_3200maxsize91.23 8691.35 7690.89 15497.89 6876.35 25196.30 17095.52 15979.82 23191.03 8697.88 6174.70 15598.54 12492.11 7396.89 8797.77 101
GST-MVS92.43 6292.22 6393.04 8498.17 5781.64 13097.40 9196.38 10884.71 12990.90 8797.40 8677.55 10299.76 2089.75 10297.74 6697.72 104
PGM-MVS91.93 6891.80 6992.32 11398.27 5179.74 17495.28 21197.27 1783.83 15890.89 8897.78 6676.12 12699.56 5188.82 11197.93 6497.66 109
SR-MVS-dyc-post91.29 8491.45 7590.80 15697.76 7376.03 25696.20 17695.44 16480.56 21390.72 8997.84 6275.76 13398.61 11991.99 7496.79 9197.75 102
RE-MVS-def91.18 8097.76 7376.03 25696.20 17695.44 16480.56 21390.72 8997.84 6273.36 17291.99 7496.79 9197.75 102
MP-MVScopyleft92.61 5892.67 5292.42 10998.13 5979.73 17597.33 9496.20 12185.63 10490.53 9197.66 6978.14 9499.70 3592.12 7298.30 5397.85 95
Rongxuan Tan, Qing Wang, et al.: MP-MVS: Multi-Scale Windows PatchMatch and Planar Prior Multi-View Stereo.
HY-MVS84.06 691.63 7590.37 9095.39 1496.12 10988.25 1290.22 29997.58 1488.33 5990.50 9291.96 19679.26 7899.06 9790.29 9689.07 15898.88 27
CP-MVS92.54 6092.60 5492.34 11198.50 4079.90 16998.40 2596.40 10484.75 12690.48 9398.09 4377.40 10499.21 8091.15 8098.23 5597.92 91
diffmvs91.17 8790.74 8592.44 10893.11 19182.50 10696.25 17393.62 25987.79 7090.40 9495.93 12573.44 17197.42 16893.62 4992.55 13497.41 126
MVS_Test90.29 10589.18 11293.62 5995.23 13084.93 6194.41 23694.66 20584.31 14290.37 9591.02 20975.13 15097.82 14983.11 16594.42 11598.12 73
zzz-MVS92.74 5092.71 4992.86 9297.90 6680.85 14596.47 15596.33 11287.92 6590.20 9698.18 3276.71 11699.76 2092.57 6798.09 5697.96 89
MTAPA92.45 6192.31 5992.86 9297.90 6680.85 14592.88 27596.33 11287.92 6590.20 9698.18 3276.71 11699.76 2092.57 6798.09 5697.96 89
test_yl91.46 7990.53 8794.24 3697.41 8685.18 5198.08 3897.72 1080.94 20489.85 9896.14 12175.61 13598.81 11490.42 9488.56 16698.74 31
DCV-MVSNet91.46 7990.53 8794.24 3697.41 8685.18 5198.08 3897.72 1080.94 20489.85 9896.14 12175.61 13598.81 11490.42 9488.56 16698.74 31
WTY-MVS92.65 5791.68 7195.56 1196.00 11288.90 1098.23 3197.65 1288.57 5389.82 10097.22 9579.29 7699.06 9789.57 10488.73 16398.73 35
MVS_111021_HR93.41 4093.39 3993.47 7097.34 9282.83 10097.56 7498.27 689.16 4489.71 10197.14 9779.77 7399.56 5193.65 4897.94 6298.02 80
sss90.87 9289.96 9993.60 6094.15 16383.84 7997.14 10898.13 785.93 9989.68 10296.09 12371.67 18699.30 7287.69 12189.16 15797.66 109
test22296.15 10878.41 20695.87 19296.46 9571.97 30989.66 10397.45 8176.33 12398.24 5498.30 58
LFMVS89.27 12087.64 13694.16 4197.16 9585.52 4597.18 10294.66 20579.17 24589.63 10496.57 11655.35 29498.22 13689.52 10689.54 15498.74 31
CostFormer89.08 12288.39 12491.15 14793.13 18979.15 18888.61 31096.11 12783.14 17189.58 10586.93 26783.83 3996.87 19788.22 11985.92 18897.42 125
PVSNet_BlendedMVS90.05 10789.96 9990.33 16997.47 8283.86 7798.02 4396.73 5687.98 6489.53 10689.61 23076.42 12099.57 4994.29 4379.59 22887.57 297
PVSNet_Blended93.13 4292.98 4593.57 6197.47 8283.86 7799.32 196.73 5691.02 2389.53 10696.21 12076.42 12099.57 4994.29 4395.81 10597.29 134
HPM-MVScopyleft91.62 7691.53 7491.89 12697.88 6979.22 18596.99 12295.73 14882.07 19189.50 10897.19 9675.59 13798.93 10990.91 8397.94 6297.54 116
Chunlin Ren, Qingshan Xu, Shikun Zhang, Jiaqi Yang: Hierarchical Prior Mining for Non-local Multi-View Stereo. ICCV 2023
abl_689.80 11089.71 10790.07 17596.53 10275.52 26494.48 23395.04 18481.12 20289.22 10997.00 10268.83 20698.96 10389.86 9995.27 10895.73 177
EI-MVSNet-Vis-set91.84 7091.77 7092.04 12297.60 7781.17 13696.61 14996.87 4088.20 6189.19 11097.55 7978.69 8799.14 9190.29 9690.94 14895.80 175
MP-MVS-pluss92.58 5992.35 5893.29 7297.30 9382.53 10496.44 16096.04 13284.68 13089.12 11198.37 2677.48 10399.74 2893.31 5698.38 4897.59 115
MP-MVS-pluss: MP-MVS-pluss. MP-MVS-pluss
VDD-MVS88.28 14587.02 15492.06 12195.09 13580.18 16497.55 7594.45 22083.09 17289.10 11295.92 12747.97 31698.49 12793.08 6286.91 17897.52 120
baseline90.76 9390.10 9692.74 9792.90 19682.56 10394.60 23294.56 21387.69 7389.06 11395.67 13273.76 16697.51 16490.43 9392.23 14098.16 68
EIA-MVS91.73 7192.05 6590.78 15894.52 15376.40 25098.06 4095.34 17289.19 4388.90 11497.28 9277.56 10197.73 15290.77 8696.86 9098.20 64
HPM-MVS_fast90.38 10490.17 9591.03 15097.61 7677.35 23697.15 10795.48 16179.51 23788.79 11596.90 10471.64 18898.81 11487.01 12997.44 7296.94 142
PAPM92.87 4892.40 5794.30 3392.25 21387.85 1696.40 16496.38 10891.07 2188.72 11696.90 10482.11 5697.37 17190.05 9897.70 6797.67 108
MVS_111021_LR91.60 7791.64 7391.47 14095.74 11778.79 19896.15 17896.77 5188.49 5588.64 11797.07 10172.33 18099.19 8593.13 6196.48 9596.43 160
casdiffmvs90.95 9090.39 8992.63 10292.82 19782.53 10496.83 13594.47 21887.69 7388.47 11895.56 13674.04 16397.54 16290.90 8492.74 13297.83 97
mPP-MVS91.88 6991.82 6892.07 12098.38 4578.63 20097.29 9596.09 12885.12 12088.45 11997.66 6975.53 13899.68 3889.83 10098.02 6197.88 92
PAPR92.74 5092.17 6494.45 2898.89 1884.87 6397.20 10096.20 12187.73 7288.40 12098.12 4178.71 8699.76 2087.99 12096.28 9698.74 31
tpmrst88.36 14387.38 14691.31 14194.36 16079.92 16887.32 32095.26 17785.32 11288.34 12186.13 28380.60 6396.70 20483.78 14985.34 19697.30 133
GG-mvs-BLEND93.49 6694.94 14286.26 2981.62 33797.00 2888.32 12294.30 16591.23 396.21 22188.49 11597.43 7398.00 85
EI-MVSNet-UG-set91.35 8391.22 7791.73 13197.39 8880.68 14996.47 15596.83 4387.92 6588.30 12397.36 8777.84 9899.13 9389.43 10789.45 15595.37 185
MAR-MVS90.63 9690.22 9291.86 12798.47 4278.20 21697.18 10296.61 7483.87 15788.18 12498.18 3268.71 20799.75 2683.66 15597.15 8197.63 112
Zhenyu Xu, Yiguang Liu, Xuelei Shi, Ying Wang, Yunan Zheng: MARMVS: Matching Ambiguity Reduced Multiple View Stereo for Efficient Large Scale Scene Reconstruction. CVPR 2020
DP-MVS Recon91.72 7290.85 8294.34 3299.50 185.00 6098.51 2495.96 13580.57 21288.08 12597.63 7476.84 11299.89 785.67 13594.88 11398.13 72
VDDNet86.44 17284.51 18392.22 11691.56 23381.83 12297.10 11494.64 20869.50 32087.84 12695.19 14348.01 31597.92 14789.82 10186.92 17796.89 146
UGNet87.73 15486.55 15991.27 14495.16 13479.11 18996.35 16696.23 11988.14 6287.83 12790.48 21750.65 30699.09 9680.13 18394.03 11795.60 180
Wanjuan Su, Qingshan Xu, Wenbing Tao: Uncertainty-guided Multi-view Stereo Network for Depth Estimation. IEEE Transactions on Circuits and Systems for Video Technology, 2022
tpm287.35 15886.26 16190.62 16192.93 19578.67 19988.06 31595.99 13379.33 24087.40 12886.43 27880.28 6796.40 21280.23 18185.73 19296.79 149
CPTT-MVS89.72 11289.87 10389.29 19598.33 4873.30 28297.70 6495.35 17175.68 28087.40 12897.44 8470.43 19998.25 13589.56 10596.90 8696.33 165
gg-mvs-nofinetune85.48 18782.90 20793.24 7494.51 15685.82 3779.22 34196.97 3261.19 34187.33 13053.01 35490.58 496.07 22386.07 13397.23 7997.81 99
CHOSEN 280x42091.71 7391.85 6791.29 14394.94 14282.69 10187.89 31696.17 12485.94 9887.27 13194.31 16490.27 695.65 24994.04 4695.86 10395.53 182
EPNet_dtu87.65 15587.89 13086.93 24694.57 15071.37 30396.72 14396.50 9188.56 5487.12 13295.02 15275.91 13194.01 30066.62 28390.00 15295.42 184
Wanjuan Su, Wenbing Tao: Efficient Edge-Preserving Multi-View Stereo Network for Depth Estimation. AAAI 2023
Vis-MVSNetpermissive88.67 13487.82 13291.24 14592.68 19878.82 19596.95 12993.85 24587.55 7587.07 13395.13 14863.43 23897.21 17977.58 20796.15 9797.70 107
Jingyang Zhang, Yao Yao, Shiwei Li, Zixin Luo, Tian Fang: Visibility-aware Multiview Stereo Network. BMVC 2020
DWT-MVSNet_test90.52 10189.80 10592.70 10095.73 11982.20 11193.69 25396.55 8488.34 5887.04 13495.34 14086.53 2297.55 15976.32 22288.66 16498.34 52
thisisatest051590.95 9090.26 9193.01 8594.03 16984.27 7297.91 4796.67 6483.18 17086.87 13595.51 13788.66 1397.85 14880.46 17889.01 15996.92 145
TESTMET0.1,189.83 10989.34 11191.31 14192.54 20480.19 16397.11 11196.57 8086.15 9286.85 13691.83 20079.32 7596.95 19181.30 17392.35 13896.77 151
PVSNet_Blended_VisFu91.24 8590.77 8492.66 10195.09 13582.40 10797.77 5695.87 14288.26 6086.39 13793.94 17576.77 11499.27 7388.80 11294.00 12096.31 166
API-MVS90.18 10688.97 11593.80 4998.66 2882.95 9997.50 8095.63 15475.16 28486.31 13897.69 6872.49 17899.90 581.26 17496.07 9998.56 42
test-LLR88.48 13987.98 12989.98 17992.26 21177.23 23897.11 11195.96 13583.76 16086.30 13991.38 20372.30 18196.78 20280.82 17591.92 14295.94 172
test-mter88.95 12488.60 12189.98 17992.26 21177.23 23897.11 11195.96 13585.32 11286.30 13991.38 20376.37 12296.78 20280.82 17591.92 14295.94 172
PAPM_NR91.46 7990.82 8393.37 7198.50 4081.81 12495.03 22596.13 12584.65 13286.10 14197.65 7379.24 7999.75 2683.20 16396.88 8898.56 42
MDTV_nov1_ep13_2view81.74 12686.80 32380.65 21085.65 14274.26 16076.52 21896.98 141
AUN-MVS86.25 17685.57 16688.26 21693.57 17873.38 28095.45 20795.88 14083.94 15385.47 14394.21 16873.70 16996.67 20683.54 15864.41 32294.73 198
PVSNet82.34 989.02 12387.79 13392.71 9995.49 12481.50 13297.70 6497.29 1687.76 7185.47 14395.12 14956.90 28398.90 11080.33 17994.02 11897.71 106
EPP-MVSNet89.76 11189.72 10689.87 18493.78 17176.02 25897.22 9696.51 8979.35 23985.11 14595.01 15384.82 2997.10 18687.46 12488.21 17096.50 158
OMC-MVS88.80 13188.16 12790.72 15995.30 12977.92 22494.81 22994.51 21586.80 8884.97 14696.85 10767.53 21298.60 12185.08 14087.62 17395.63 179
CHOSEN 1792x268891.07 8890.21 9393.64 5795.18 13383.53 8596.26 17296.13 12588.92 4684.90 14793.10 18672.86 17599.62 4588.86 11095.67 10697.79 100
thres20088.92 12687.65 13592.73 9896.30 10485.62 4397.85 5098.86 184.38 14084.82 14893.99 17475.12 15198.01 14070.86 26686.67 17994.56 200
MDTV_nov1_ep1383.69 19494.09 16581.01 14086.78 32496.09 12883.81 15984.75 14984.32 30674.44 15996.54 20863.88 29785.07 197
CDS-MVSNet89.50 11588.96 11691.14 14891.94 22980.93 14397.09 11595.81 14484.26 14584.72 15094.20 16980.31 6695.64 25083.37 16188.96 16096.85 148
Khang Truong Giang, Soohwan Song, Sungho Jo: Curvature-guided dynamic scale networks for Multi-view Stereo. ICLR 2022
ACMMPcopyleft90.39 10289.97 9891.64 13397.58 7978.21 21596.78 13996.72 5884.73 12884.72 15097.23 9371.22 19199.63 4488.37 11892.41 13797.08 140
Qingshan Xu, Weihang Kong, Wenbing Tao, Marc Pollefeys: Multi-Scale Geometric Consistency Guided and Planar Prior Assisted Multi-View Stereo. IEEE Transactions on Pattern Analysis and Machine Intelligence
CSCG92.02 6791.65 7293.12 7998.53 3780.59 15197.47 8197.18 2077.06 27484.64 15297.98 5483.98 3799.52 5390.72 8797.33 7699.23 17
ab-mvs87.08 16084.94 17993.48 6793.34 18483.67 8388.82 30795.70 14981.18 20184.55 15390.14 22662.72 24198.94 10885.49 13782.54 21797.85 95
mvs-test186.83 16687.17 14985.81 26291.96 22665.24 32997.90 4993.34 27385.57 10584.51 15495.14 14761.99 24997.19 18183.55 15690.55 15095.00 190
EPMVS87.47 15785.90 16592.18 11795.41 12682.26 11087.00 32296.28 11685.88 10084.23 15585.57 28975.07 15296.26 21871.14 26492.50 13598.03 79
Anonymous20240521184.41 20381.93 22291.85 12996.78 10078.41 20697.44 8391.34 30670.29 31684.06 15694.26 16641.09 33898.96 10379.46 18982.65 21698.17 67
HyFIR lowres test89.36 11788.60 12191.63 13594.91 14480.76 14895.60 20295.53 15782.56 18584.03 15791.24 20678.03 9596.81 20087.07 12888.41 16897.32 130
tfpn200view988.48 13987.15 15092.47 10696.21 10685.30 4997.44 8398.85 283.37 16783.99 15893.82 17775.36 14597.93 14269.04 27286.24 18594.17 202
thres40088.42 14287.15 15092.23 11596.21 10685.30 4997.44 8398.85 283.37 16783.99 15893.82 17775.36 14597.93 14269.04 27286.24 18593.45 215
tpm85.55 18584.47 18688.80 20590.19 25775.39 26688.79 30894.69 20184.83 12583.96 16085.21 29578.22 9394.68 28976.32 22278.02 24496.34 163
Fast-Effi-MVS+87.93 15286.94 15690.92 15394.04 16779.16 18798.26 3093.72 25581.29 20083.94 16192.90 18769.83 20396.68 20576.70 21691.74 14496.93 143
XVG-OURS-SEG-HR85.74 18385.16 17587.49 23590.22 25671.45 30291.29 29394.09 23581.37 19983.90 16295.22 14160.30 25897.53 16385.58 13684.42 20093.50 213
thisisatest053089.65 11389.02 11491.53 13793.46 18280.78 14796.52 15296.67 6481.69 19783.79 16394.90 15588.85 1297.68 15377.80 20187.49 17696.14 169
DeepC-MVS86.58 391.53 7891.06 8192.94 8994.52 15381.89 11995.95 18695.98 13490.76 2483.76 16496.76 11273.24 17399.71 3291.67 7696.96 8597.22 137
Andreas Kuhn, Christian Sormann, Mattia Rossi, Oliver Erdler, Friedrich Fraundorfer: DeepC-MVS: Deep Confidence Prediction for Multi-View Stereo Reconstruction. 3DV 2020
IS-MVSNet88.67 13488.16 12790.20 17393.61 17676.86 24396.77 14193.07 28384.02 15083.62 16595.60 13574.69 15896.24 22078.43 20093.66 12597.49 122
thres100view90088.30 14486.95 15592.33 11296.10 11084.90 6297.14 10898.85 282.69 18283.41 16693.66 18075.43 14297.93 14269.04 27286.24 18594.17 202
thres600view788.06 14886.70 15892.15 11896.10 11085.17 5597.14 10898.85 282.70 18183.41 16693.66 18075.43 14297.82 14967.13 28185.88 18993.45 215
XVG-OURS85.18 19084.38 18787.59 23090.42 25471.73 29991.06 29694.07 23682.00 19383.29 16895.08 15156.42 28897.55 15983.70 15483.42 20593.49 214
Vis-MVSNet (Re-imp)88.88 12888.87 11988.91 20193.89 17074.43 27496.93 13194.19 22884.39 13983.22 16995.67 13278.24 9294.70 28878.88 19794.40 11697.61 114
TAMVS88.48 13987.79 13390.56 16291.09 24179.18 18696.45 15895.88 14083.64 16383.12 17093.33 18275.94 13095.74 24582.40 16888.27 16996.75 153
baseline188.85 12987.49 14292.93 9095.21 13286.85 2595.47 20694.61 21087.29 7883.11 17194.99 15480.70 6296.89 19582.28 16973.72 25895.05 189
AdaColmapbinary88.81 13087.61 13992.39 11099.33 479.95 16796.70 14795.58 15577.51 26683.05 17296.69 11561.90 25299.72 3184.29 14593.47 12697.50 121
PatchmatchNetpermissive86.83 16685.12 17691.95 12494.12 16482.27 10986.55 32695.64 15384.59 13482.98 17384.99 30177.26 10595.96 23068.61 27691.34 14697.64 111
Fangjinhua Wang, Silvano Galliani, Christoph Vogel, Pablo Speciale, Marc Pollefeys: PatchmatchNet: Learned Multi-View Patchmatch Stereo.
SCA85.63 18483.64 19791.60 13692.30 20981.86 12192.88 27595.56 15684.85 12482.52 17485.12 29958.04 27495.39 26073.89 24487.58 17597.54 116
114514_t88.79 13287.57 14092.45 10798.21 5581.74 12696.99 12295.45 16375.16 28482.48 17595.69 13168.59 20898.50 12680.33 17995.18 11197.10 139
PatchT79.75 26276.85 27288.42 21089.55 26875.49 26577.37 34794.61 21063.07 33382.46 17673.32 34575.52 13993.41 31051.36 33984.43 19996.36 161
TR-MVS86.30 17484.93 18090.42 16594.63 14977.58 23196.57 15193.82 24680.30 22182.42 17795.16 14558.74 26997.55 15974.88 23487.82 17296.13 170
HQP-NCC92.08 22097.63 6790.52 2782.30 178
ACMP_Plane92.08 22097.63 6790.52 2782.30 178
HQP4-MVS82.30 17897.32 17291.13 222
HQP-MVS87.91 15387.55 14188.98 20092.08 22078.48 20297.63 6794.80 19790.52 2782.30 17894.56 16065.40 22797.32 17287.67 12283.01 20991.13 222
CR-MVSNet83.53 21581.36 23190.06 17690.16 25879.75 17279.02 34391.12 30884.24 14682.27 18280.35 32875.45 14093.67 30663.37 30186.25 18396.75 153
RPMNet79.85 26175.92 27991.64 13390.16 25879.75 17279.02 34395.44 16458.43 35082.27 18272.55 34673.03 17498.41 13146.10 35086.25 18396.75 153
CVMVSNet84.83 19585.57 16682.63 30491.55 23460.38 34395.13 21995.03 18580.60 21182.10 18494.71 15766.40 22290.19 33974.30 24190.32 15197.31 132
PLCcopyleft83.97 788.00 15087.38 14689.83 18698.02 6476.46 24897.16 10694.43 22179.26 24481.98 18596.28 11969.36 20499.27 7377.71 20592.25 13993.77 210
Jie Liao, Yanping Fu, Qingan Yan, Chunxia xiao: Pyramid Multi-View Stereo with Local Consistency. Pacific Graphics 2019
JIA-IIPM79.00 27077.20 26884.40 28589.74 26564.06 33375.30 35095.44 16462.15 33681.90 18659.08 35278.92 8295.59 25466.51 28685.78 19193.54 212
Anonymous2024052983.15 22280.60 24090.80 15695.74 11778.27 21096.81 13794.92 18960.10 34681.89 18792.54 19045.82 32398.82 11379.25 19378.32 24295.31 187
tttt051788.57 13888.19 12689.71 19093.00 19275.99 25995.67 19996.67 6480.78 20781.82 18894.40 16388.97 1197.58 15776.05 22586.31 18295.57 181
BH-RMVSNet86.84 16585.28 17191.49 13995.35 12880.26 16196.95 12992.21 29382.86 17981.77 18995.46 13859.34 26597.64 15469.79 27093.81 12396.57 157
HQP_MVS87.50 15687.09 15388.74 20691.86 23077.96 22197.18 10294.69 20189.89 3581.33 19094.15 17064.77 23297.30 17487.08 12682.82 21390.96 224
plane_prior377.75 22890.17 3381.33 190
VPA-MVSNet85.32 18883.83 19389.77 18990.25 25582.63 10296.36 16597.07 2583.03 17481.21 19289.02 23661.58 25396.31 21785.02 14270.95 27390.36 231
GeoE86.36 17385.20 17289.83 18693.17 18776.13 25397.53 7692.11 29479.58 23680.99 19394.01 17366.60 22196.17 22273.48 24889.30 15697.20 138
GA-MVS85.79 18284.04 19291.02 15189.47 27080.27 16096.90 13294.84 19585.57 10580.88 19489.08 23456.56 28796.47 21177.72 20485.35 19596.34 163
1112_ss88.60 13787.47 14492.00 12393.21 18580.97 14296.47 15592.46 29183.64 16380.86 19597.30 9080.24 6897.62 15577.60 20685.49 19397.40 127
dp84.30 20682.31 21790.28 17094.24 16277.97 22086.57 32595.53 15779.94 23080.75 19685.16 29771.49 19096.39 21363.73 29883.36 20696.48 159
Test_1112_low_res88.03 14986.73 15791.94 12593.15 18880.88 14496.44 16092.41 29283.59 16680.74 19791.16 20780.18 6997.59 15677.48 20985.40 19497.36 129
cascas86.50 17184.48 18592.55 10592.64 20285.95 3397.04 12195.07 18375.32 28280.50 19891.02 20954.33 30197.98 14186.79 13087.62 17393.71 211
TAPA-MVS81.61 1285.02 19283.67 19589.06 19796.79 9973.27 28495.92 18894.79 19974.81 28780.47 19996.83 10871.07 19398.19 13849.82 34492.57 13395.71 178
Andrea Romanoni, Matteo Matteucci: TAPA-MVS: Textureless-Aware PAtchMatch Multi-View Stereo. ICCV 2019
OPM-MVS85.84 18085.10 17788.06 22188.34 28177.83 22795.72 19794.20 22787.89 6980.45 20094.05 17258.57 27097.26 17883.88 14882.76 21589.09 261
nrg03086.79 16885.43 16890.87 15588.76 27585.34 4797.06 11994.33 22384.31 14280.45 20091.98 19572.36 17996.36 21488.48 11671.13 27190.93 226
EI-MVSNet85.80 18185.20 17287.59 23091.55 23477.41 23495.13 21995.36 16980.43 21880.33 20294.71 15773.72 16795.97 22776.96 21478.64 23789.39 250
MVSTER89.25 12188.92 11890.24 17195.98 11384.66 6696.79 13895.36 16987.19 8480.33 20290.61 21690.02 995.97 22785.38 13878.64 23790.09 240
ADS-MVSNet279.57 26477.53 26685.71 26593.78 17172.13 29179.48 33986.11 34173.09 30180.14 20479.99 33162.15 24690.14 34059.49 31383.52 20394.85 192
ADS-MVSNet81.26 25078.36 26089.96 18193.78 17179.78 17079.48 33993.60 26073.09 30180.14 20479.99 33162.15 24695.24 26959.49 31383.52 20394.85 192
RRT_MVS86.89 16385.96 16389.68 19195.01 14184.13 7396.33 16894.98 18784.20 14780.10 20692.07 19470.52 19895.01 28283.30 16277.14 24689.91 244
baseline290.39 10290.21 9390.93 15290.86 24680.99 14195.20 21697.41 1586.03 9780.07 20794.61 15990.58 497.47 16787.29 12589.86 15394.35 201
Effi-MVS+-dtu84.61 19984.90 18183.72 29391.96 22663.14 33694.95 22693.34 27385.57 10579.79 20887.12 26461.99 24995.61 25383.55 15685.83 19092.41 218
VPNet84.69 19882.92 20690.01 17789.01 27483.45 8796.71 14595.46 16285.71 10379.65 20992.18 19356.66 28696.01 22683.05 16667.84 30590.56 228
CLD-MVS87.97 15187.48 14389.44 19292.16 21880.54 15498.14 3494.92 18991.41 1779.43 21095.40 13962.34 24397.27 17790.60 8982.90 21290.50 230
Zhaoxin Li, Wangmeng Zuo, Zhaoqi Wang, Lei Zhang: Confidence-based Large-scale Dense Multi-view Stereo. IEEE Transaction on Image Processing, 2020
IB-MVS85.34 488.67 13487.14 15293.26 7393.12 19084.32 6998.76 1697.27 1787.19 8479.36 21190.45 21983.92 3898.53 12584.41 14469.79 28596.93 143
Christian Sormann, Mattia Rossi, Andreas Kuhn and Friedrich Fraundorfer: IB-MVS: An Iterative Algorithm for Deep Multi-View Stereo based on Binary Decisions. BMVC 2021
PatchMatch-RL85.00 19383.66 19689.02 19995.86 11574.55 27292.49 27993.60 26079.30 24279.29 21291.47 20158.53 27198.45 12970.22 26992.17 14194.07 206
CNLPA86.96 16185.37 17091.72 13297.59 7879.34 18397.21 9891.05 31174.22 29178.90 21396.75 11367.21 21698.95 10674.68 23690.77 14996.88 147
MVS90.60 9788.64 12096.50 394.25 16190.53 693.33 26297.21 1977.59 26578.88 21497.31 8871.52 18999.69 3689.60 10398.03 6099.27 16
mvs_anonymous88.68 13387.62 13891.86 12794.80 14681.69 12993.53 25894.92 18982.03 19278.87 21590.43 22075.77 13295.34 26385.04 14193.16 13098.55 44
MVS_030478.43 27276.70 27383.60 29588.22 28369.81 31292.91 27495.10 18072.32 30878.71 21680.29 33033.78 34993.37 31168.77 27580.23 22487.63 294
bset_n11_16_dypcd84.35 20482.83 21088.91 20182.54 33182.07 11394.12 24793.47 26485.39 11178.55 21788.98 23762.23 24495.11 27686.75 13173.42 26089.55 249
tpm cat183.63 21481.38 23090.39 16693.53 18178.19 21785.56 33295.09 18170.78 31478.51 21883.28 31474.80 15497.03 18766.77 28284.05 20195.95 171
UniMVSNet (Re)85.31 18984.23 18988.55 20989.75 26380.55 15396.72 14396.89 3985.42 10978.40 21988.93 23875.38 14495.52 25778.58 19868.02 30289.57 248
FIs86.73 17086.10 16288.61 20890.05 26080.21 16296.14 17996.95 3485.56 10878.37 22092.30 19176.73 11595.28 26779.51 18879.27 23190.35 232
BH-w/o88.24 14687.47 14490.54 16395.03 14078.54 20197.41 9093.82 24684.08 14878.23 22194.51 16269.34 20597.21 17980.21 18294.58 11495.87 174
UniMVSNet_NR-MVSNet85.49 18684.59 18288.21 21989.44 27179.36 18196.71 14596.41 10185.22 11678.11 22290.98 21176.97 11195.14 27479.14 19468.30 29990.12 238
DU-MVS84.57 20083.33 20388.28 21588.76 27579.36 18196.43 16295.41 16885.42 10978.11 22290.82 21267.61 21095.14 27479.14 19468.30 29990.33 233
miper_enhance_ethall85.95 17985.20 17288.19 22094.85 14579.76 17196.00 18394.06 23782.98 17677.74 22488.76 24079.42 7495.46 25980.58 17772.42 26689.36 255
v114482.90 22881.27 23287.78 22686.29 29979.07 19296.14 17993.93 24080.05 22777.38 22586.80 26965.50 22595.93 23375.21 23270.13 28088.33 282
FC-MVSNet-test85.96 17885.39 16987.66 22889.38 27278.02 21995.65 20196.87 4085.12 12077.34 22691.94 19876.28 12494.74 28777.09 21178.82 23590.21 236
v2v48283.46 21681.86 22388.25 21786.19 30179.65 17696.34 16794.02 23881.56 19877.32 22788.23 24865.62 22496.03 22477.77 20269.72 28789.09 261
Baseline_NR-MVSNet81.22 25180.07 24884.68 27785.32 31575.12 26896.48 15488.80 32976.24 27877.28 22886.40 27967.61 21094.39 29475.73 22966.73 31684.54 328
V4283.04 22581.53 22887.57 23286.27 30079.09 19195.87 19294.11 23380.35 22077.22 22986.79 27065.32 22996.02 22577.74 20370.14 27987.61 296
v14419282.43 23480.73 23787.54 23385.81 30878.22 21295.98 18493.78 25179.09 24777.11 23086.49 27464.66 23495.91 23474.20 24269.42 28888.49 276
ACMM80.70 1383.72 21382.85 20886.31 25691.19 23972.12 29295.88 19194.29 22480.44 21677.02 23191.96 19655.24 29597.14 18579.30 19280.38 22389.67 247
Qingshan Xu and Wenbing Tao: Multi-Scale Geometric Consistency Guided Multi-View Stereo. CVPR 2019
v119282.31 23880.55 24187.60 22985.94 30578.47 20595.85 19493.80 24979.33 24076.97 23286.51 27363.33 23995.87 23573.11 24970.13 28088.46 278
PCF-MVS84.09 586.77 16985.00 17892.08 11992.06 22383.07 9692.14 28394.47 21879.63 23576.90 23394.78 15671.15 19299.20 8472.87 25091.05 14793.98 207
Andreas Kuhn, Shan Lin, Oliver Erdler: Plane Completion and Filtering for Multi-View Stereo Reconstruction. GCPR 2019
cl-mvsnet285.11 19184.17 19087.92 22395.06 13978.82 19595.51 20494.22 22679.74 23376.77 23487.92 25375.96 12995.68 24679.93 18672.42 26689.27 256
v192192082.02 24180.23 24587.41 23685.62 30977.92 22495.79 19693.69 25678.86 25276.67 23586.44 27662.50 24295.83 23772.69 25169.77 28688.47 277
WR-MVS84.32 20582.96 20588.41 21189.38 27280.32 15796.59 15096.25 11883.97 15276.63 23690.36 22167.53 21294.86 28575.82 22870.09 28390.06 242
BH-untuned86.95 16285.94 16489.99 17894.52 15377.46 23396.78 13993.37 27281.80 19576.62 23793.81 17966.64 22097.02 18876.06 22493.88 12295.48 183
v124081.70 24479.83 25287.30 24085.50 31077.70 23095.48 20593.44 26678.46 25776.53 23886.44 27660.85 25695.84 23671.59 25870.17 27888.35 281
PS-MVSNAJss84.91 19484.30 18886.74 24785.89 30774.40 27594.95 22694.16 23083.93 15576.45 23990.11 22771.04 19495.77 24083.16 16479.02 23490.06 242
miper_ehance_all_eth84.57 20083.60 19987.50 23492.64 20278.25 21195.40 21093.47 26479.28 24376.41 24087.64 25676.53 11895.24 26978.58 19872.42 26689.01 266
LPG-MVS_test84.20 20783.49 20186.33 25390.88 24473.06 28595.28 21194.13 23182.20 18876.31 24193.20 18354.83 29996.95 19183.72 15280.83 22188.98 267
LGP-MVS_train86.33 25390.88 24473.06 28594.13 23182.20 18876.31 24193.20 18354.83 29996.95 19183.72 15280.83 22188.98 267
F-COLMAP84.50 20283.44 20287.67 22795.22 13172.22 28995.95 18693.78 25175.74 27976.30 24395.18 14459.50 26398.45 12972.67 25286.59 18192.35 219
tpmvs83.04 22580.77 23689.84 18595.43 12577.96 22185.59 33195.32 17475.31 28376.27 24483.70 31173.89 16497.41 16959.53 31281.93 21994.14 204
RRT_test8_iter0587.14 15986.41 16089.32 19494.41 15881.10 13997.06 11995.33 17384.67 13176.27 24490.48 21783.60 4196.33 21585.10 13970.78 27490.53 229
3Dnovator82.32 1089.33 11887.64 13694.42 3093.73 17585.70 4197.73 6296.75 5486.73 8976.21 24695.93 12562.17 24599.68 3881.67 17297.81 6597.88 92
TranMVSNet+NR-MVSNet83.24 22181.71 22587.83 22487.71 28878.81 19796.13 18194.82 19684.52 13576.18 24790.78 21464.07 23594.60 29074.60 23966.59 31790.09 240
cl_fuxian83.80 21182.65 21387.25 24192.10 21977.74 22995.25 21493.04 28478.58 25576.01 24887.21 26375.25 14995.11 27677.54 20868.89 29388.91 272
131488.94 12587.20 14894.17 3993.21 18585.73 4093.33 26296.64 7182.89 17775.98 24996.36 11866.83 21999.39 6383.52 16096.02 10197.39 128
test_part184.72 19682.85 20890.34 16895.73 11984.79 6596.75 14294.10 23479.05 25175.97 25089.51 23167.69 20995.94 23179.34 19067.50 30890.30 235
Fast-Effi-MVS+-dtu83.33 21882.60 21485.50 26889.55 26869.38 31796.09 18291.38 30382.30 18775.96 25191.41 20256.71 28495.58 25575.13 23384.90 19891.54 220
XXY-MVS83.84 21082.00 22189.35 19387.13 29281.38 13395.72 19794.26 22580.15 22575.92 25290.63 21561.96 25196.52 20978.98 19673.28 26490.14 237
GBi-Net82.42 23580.43 24388.39 21292.66 19981.95 11494.30 24193.38 26979.06 24875.82 25385.66 28556.38 28993.84 30271.23 26175.38 25289.38 252
test182.42 23580.43 24388.39 21292.66 19981.95 11494.30 24193.38 26979.06 24875.82 25385.66 28556.38 28993.84 30271.23 26175.38 25289.38 252
FMVSNet384.71 19782.71 21290.70 16094.55 15187.71 1895.92 18894.67 20481.73 19675.82 25388.08 25166.99 21794.47 29271.23 26175.38 25289.91 244
eth_miper_zixun_eth83.12 22382.01 22086.47 25291.85 23274.80 26994.33 23993.18 27979.11 24675.74 25687.25 26272.71 17695.32 26576.78 21567.13 31289.27 256
IterMVS-LS83.93 20982.80 21187.31 23991.46 23777.39 23595.66 20093.43 26780.44 21675.51 25787.26 26173.72 16795.16 27376.99 21270.72 27689.39 250
Fangjinhua Wang, Silvano Galliani, Christoph Vogel, Marc Pollefeys: IterMVS: Iterative Probability Estimation for Efficient Multi-View Stereo.
3Dnovator+82.88 889.63 11487.85 13194.99 1894.49 15786.76 2797.84 5195.74 14786.10 9475.47 25896.02 12465.00 23199.51 5682.91 16797.07 8298.72 36
test_djsdf83.00 22782.45 21684.64 27984.07 32669.78 31394.80 23094.48 21680.74 20875.41 25987.70 25561.32 25595.10 27883.77 15079.76 22589.04 264
v14882.41 23780.89 23486.99 24586.18 30276.81 24496.27 17193.82 24680.49 21575.28 26086.11 28467.32 21595.75 24275.48 23067.03 31488.42 280
QAPM86.88 16484.51 18393.98 4394.04 16785.89 3697.19 10196.05 13173.62 29575.12 26195.62 13462.02 24899.74 2870.88 26596.06 10096.30 167
UniMVSNet_ETH3D80.86 25578.75 25987.22 24286.31 29872.02 29391.95 28493.76 25473.51 29675.06 26290.16 22543.04 33295.66 24776.37 22178.55 24093.98 207
cl-mvsnet____83.27 21982.12 21886.74 24792.20 21475.95 26095.11 22193.27 27678.44 25874.82 26387.02 26674.19 16195.19 27174.67 23769.32 28989.09 261
cl-mvsnet183.27 21982.12 21886.74 24792.19 21575.92 26195.11 22193.26 27778.44 25874.81 26487.08 26574.19 16195.19 27174.66 23869.30 29089.11 260
FMVSNet282.79 22980.44 24289.83 18692.66 19985.43 4695.42 20894.35 22279.06 24874.46 26587.28 25956.38 28994.31 29569.72 27174.68 25589.76 246
MIMVSNet79.18 26975.99 27888.72 20787.37 29180.66 15079.96 33891.82 29877.38 26874.33 26681.87 32041.78 33590.74 33566.36 28883.10 20894.76 194
RPSCF77.73 27976.63 27481.06 31288.66 27955.76 35187.77 31787.88 33464.82 33274.14 26792.79 18849.22 31296.81 20067.47 28076.88 24790.62 227
ACMP81.66 1184.00 20883.22 20486.33 25391.53 23672.95 28795.91 19093.79 25083.70 16273.79 26892.22 19254.31 30296.89 19583.98 14779.74 22789.16 259
Qingshan Xu and Wenbing Tao: Planar Prior Assisted PatchMatch Multi-View Stereo. AAAI 2020
pmmvs581.34 24979.54 25386.73 25085.02 31776.91 24296.22 17491.65 30177.65 26473.55 26988.61 24255.70 29294.43 29374.12 24373.35 26388.86 273
jajsoiax82.12 24081.15 23385.03 27384.19 32470.70 30594.22 24593.95 23983.07 17373.48 27089.75 22849.66 31195.37 26282.24 17079.76 22589.02 265
mvs_tets81.74 24380.71 23884.84 27484.22 32370.29 30893.91 25093.78 25182.77 18073.37 27189.46 23247.36 32095.31 26681.99 17179.55 23088.92 271
pmmvs482.54 23380.79 23587.79 22586.11 30380.49 15693.55 25793.18 27977.29 26973.35 27289.40 23365.26 23095.05 28175.32 23173.61 25987.83 290
LS3D82.22 23979.94 25189.06 19797.43 8574.06 27893.20 26992.05 29561.90 33773.33 27395.21 14259.35 26499.21 8054.54 33292.48 13693.90 209
v1081.43 24879.53 25487.11 24386.38 29678.87 19494.31 24093.43 26777.88 26173.24 27485.26 29365.44 22695.75 24272.14 25567.71 30686.72 308
v881.88 24280.06 24987.32 23886.63 29579.04 19394.41 23693.65 25878.77 25373.19 27585.57 28966.87 21895.81 23873.84 24667.61 30787.11 304
test0.0.03 182.79 22982.48 21583.74 29286.81 29472.22 28996.52 15295.03 18583.76 16073.00 27693.20 18372.30 18188.88 34264.15 29677.52 24590.12 238
anonymousdsp80.98 25479.97 25084.01 28781.73 33270.44 30792.49 27993.58 26277.10 27372.98 27786.31 28057.58 27894.90 28379.32 19178.63 23986.69 309
XVG-ACMP-BASELINE79.38 26777.90 26483.81 28984.98 31867.14 32689.03 30693.18 27980.26 22472.87 27888.15 25038.55 34196.26 21876.05 22578.05 24388.02 287
WR-MVS_H81.02 25280.09 24683.79 29088.08 28571.26 30494.46 23496.54 8580.08 22672.81 27986.82 26870.36 20092.65 31564.18 29567.50 30887.46 301
OpenMVScopyleft79.58 1486.09 17783.62 19893.50 6590.95 24386.71 2897.44 8395.83 14375.35 28172.64 28095.72 12957.42 28299.64 4271.41 25995.85 10494.13 205
Anonymous2023121179.72 26377.19 26987.33 23795.59 12277.16 24195.18 21894.18 22959.31 34872.57 28186.20 28247.89 31795.66 24774.53 24069.24 29189.18 258
CP-MVSNet81.01 25380.08 24783.79 29087.91 28670.51 30694.29 24495.65 15180.83 20672.54 28288.84 23963.71 23692.32 31868.58 27768.36 29888.55 275
miper_lstm_enhance81.66 24680.66 23984.67 27891.19 23971.97 29591.94 28593.19 27877.86 26272.27 28385.26 29373.46 17093.42 30973.71 24767.05 31388.61 274
PS-CasMVS80.27 25979.18 25583.52 29787.56 29069.88 31194.08 24895.29 17580.27 22372.08 28488.51 24659.22 26792.23 32067.49 27968.15 30188.45 279
FMVSNet179.50 26576.54 27588.39 21288.47 28081.95 11494.30 24193.38 26973.14 30072.04 28585.66 28543.86 32693.84 30265.48 29072.53 26589.38 252
PEN-MVS79.47 26678.26 26283.08 30086.36 29768.58 31993.85 25194.77 20079.76 23271.37 28688.55 24359.79 25992.46 31664.50 29465.40 31988.19 284
Patchmtry77.36 28374.59 28885.67 26689.75 26375.75 26377.85 34691.12 30860.28 34471.23 28780.35 32875.45 14093.56 30857.94 31867.34 31187.68 293
IterMVS80.67 25679.16 25685.20 27189.79 26276.08 25492.97 27391.86 29780.28 22271.20 28885.14 29857.93 27791.34 32972.52 25370.74 27588.18 285
Fangjinhua Wang, Silvano Galliani, Christoph Vogel, Marc Pollefeys: IterMVS: Iterative Probability Estimation for Efficient Multi-View Stereo.
DP-MVS81.47 24778.28 26191.04 14998.14 5878.48 20295.09 22486.97 33661.14 34271.12 28992.78 18959.59 26199.38 6453.11 33686.61 18095.27 188
IterMVS-SCA-FT80.51 25879.10 25784.73 27689.63 26774.66 27092.98 27291.81 29980.05 22771.06 29085.18 29658.04 27491.40 32872.48 25470.70 27788.12 286
v7n79.32 26877.34 26785.28 27084.05 32772.89 28893.38 26093.87 24475.02 28670.68 29184.37 30559.58 26295.62 25267.60 27867.50 30887.32 303
MS-PatchMatch83.05 22481.82 22486.72 25189.64 26679.10 19094.88 22894.59 21279.70 23470.67 29289.65 22950.43 30896.82 19970.82 26895.99 10284.25 331
DTE-MVSNet78.37 27377.06 27082.32 30785.22 31667.17 32593.40 25993.66 25778.71 25470.53 29388.29 24759.06 26892.23 32061.38 30863.28 32887.56 298
pm-mvs180.05 26078.02 26386.15 25885.42 31175.81 26295.11 22192.69 28977.13 27170.36 29487.43 25858.44 27295.27 26871.36 26064.25 32487.36 302
D2MVS82.67 23181.55 22786.04 26087.77 28776.47 24795.21 21596.58 7982.66 18370.26 29585.46 29260.39 25795.80 23976.40 22079.18 23285.83 321
PVSNet_077.72 1581.70 24478.95 25889.94 18290.77 24976.72 24695.96 18596.95 3485.01 12270.24 29688.53 24552.32 30398.20 13786.68 13244.08 35394.89 191
CL-MVSNet_2432*160075.81 29274.14 29480.83 31478.33 34267.79 32294.22 24593.52 26377.28 27069.82 29781.54 32261.47 25489.22 34157.59 32153.51 34085.48 323
tfpnnormal78.14 27575.42 28186.31 25688.33 28279.24 18494.41 23696.22 12073.51 29669.81 29885.52 29155.43 29395.75 24247.65 34867.86 30483.95 334
EU-MVSNet76.92 28776.95 27176.83 32684.10 32554.73 35391.77 28892.71 28872.74 30469.57 29988.69 24158.03 27687.43 34764.91 29370.00 28488.33 282
ITE_SJBPF82.38 30587.00 29365.59 32889.55 32279.99 22969.37 30091.30 20541.60 33795.33 26462.86 30374.63 25686.24 314
DSMNet-mixed73.13 30472.45 30075.19 33277.51 34546.82 35685.09 33382.01 35367.61 32769.27 30181.33 32350.89 30586.28 34954.54 33283.80 20292.46 217
MVP-Stereo82.65 23281.67 22685.59 26786.10 30478.29 20993.33 26292.82 28677.75 26369.17 30287.98 25259.28 26695.76 24171.77 25696.88 8882.73 339
Qingsong Yan: MVP-Stereo: A Parallel Multi-View Patchmatch Stereo Method with Dilation Matching for Photogrammetric Application.
MSDG80.62 25777.77 26589.14 19693.43 18377.24 23791.89 28690.18 31869.86 31968.02 30391.94 19852.21 30498.84 11259.32 31583.12 20791.35 221
NR-MVSNet83.35 21781.52 22988.84 20388.76 27581.31 13594.45 23595.16 17984.65 13267.81 30490.82 21270.36 20094.87 28474.75 23566.89 31590.33 233
TransMVSNet (Re)76.94 28674.38 29084.62 28085.92 30675.25 26795.28 21189.18 32673.88 29467.22 30586.46 27559.64 26094.10 29859.24 31652.57 34484.50 329
Anonymous2023120675.29 29573.64 29680.22 31680.75 33363.38 33593.36 26190.71 31673.09 30167.12 30683.70 31150.33 30990.85 33453.63 33570.10 28286.44 311
ppachtmachnet_test77.19 28474.22 29286.13 25985.39 31278.22 21293.98 24991.36 30571.74 31167.11 30784.87 30256.67 28593.37 31152.21 33764.59 32186.80 307
KD-MVS_2432*160077.63 28074.92 28585.77 26390.86 24679.44 17988.08 31393.92 24176.26 27667.05 30882.78 31672.15 18391.92 32361.53 30541.62 35485.94 319
miper_refine_blended77.63 28074.92 28585.77 26390.86 24679.44 17988.08 31393.92 24176.26 27667.05 30882.78 31672.15 18391.92 32361.53 30541.62 35485.94 319
Patchmatch-test78.25 27474.72 28788.83 20491.20 23874.10 27773.91 35388.70 33259.89 34766.82 31085.12 29978.38 9094.54 29148.84 34679.58 22997.86 94
LTVRE_ROB73.68 1877.99 27675.74 28084.74 27590.45 25372.02 29386.41 32791.12 30872.57 30666.63 31187.27 26054.95 29896.98 18956.29 32775.98 24885.21 325
Andreas Kuhn, Heiko Hirschmüller, Daniel Scharstein, Helmut Mayer: A TV Prior for High-Quality Scalable Multi-View Stereo Reconstruction. International Journal of Computer Vision 2016
OurMVSNet-221017-077.18 28576.06 27780.55 31583.78 32860.00 34490.35 29891.05 31177.01 27566.62 31287.92 25347.73 31894.03 29971.63 25768.44 29787.62 295
testgi74.88 29773.40 29779.32 32080.13 33761.75 33993.21 26886.64 33979.49 23866.56 31391.06 20835.51 34788.67 34356.79 32671.25 27087.56 298
LCM-MVSNet-Re83.75 21283.54 20084.39 28693.54 17964.14 33292.51 27884.03 34883.90 15666.14 31486.59 27267.36 21492.68 31484.89 14392.87 13196.35 162
pmmvs674.65 29871.67 30283.60 29579.13 34069.94 31093.31 26690.88 31561.05 34365.83 31584.15 30843.43 32894.83 28666.62 28360.63 33186.02 318
our_test_377.90 27875.37 28285.48 26985.39 31276.74 24593.63 25491.67 30073.39 29965.72 31684.65 30458.20 27393.13 31357.82 31967.87 30386.57 310
COLMAP_ROBcopyleft73.24 1975.74 29373.00 29983.94 28892.38 20569.08 31891.85 28786.93 33761.48 34065.32 31790.27 22242.27 33496.93 19450.91 34175.63 25185.80 322
Johannes L. Schönberger, Enliang Zheng, Marc Pollefeys, Jan-Michael Frahm: Pixelwise View Selection for Unstructured Multi-View Stereo. ECCV 2016
FMVSNet576.46 28974.16 29383.35 29990.05 26076.17 25289.58 30289.85 32071.39 31365.29 31880.42 32750.61 30787.70 34661.05 31069.24 29186.18 315
ACMH+76.62 1677.47 28274.94 28485.05 27291.07 24271.58 30193.26 26790.01 31971.80 31064.76 31988.55 24341.62 33696.48 21062.35 30471.00 27287.09 305
Patchmatch-RL test76.65 28874.01 29584.55 28177.37 34664.23 33178.49 34582.84 35278.48 25664.63 32073.40 34476.05 12891.70 32776.99 21257.84 33497.72 104
SixPastTwentyTwo76.04 29074.32 29181.22 31184.54 32061.43 34291.16 29489.30 32577.89 26064.04 32186.31 28048.23 31394.29 29663.54 30063.84 32687.93 289
AllTest75.92 29173.06 29884.47 28292.18 21667.29 32391.07 29584.43 34667.63 32363.48 32290.18 22338.20 34297.16 18257.04 32373.37 26188.97 269
TestCases84.47 28292.18 21667.29 32384.43 34667.63 32363.48 32290.18 22338.20 34297.16 18257.04 32373.37 26188.97 269
ACMH75.40 1777.99 27674.96 28387.10 24490.67 25076.41 24993.19 27091.64 30272.47 30763.44 32487.61 25743.34 32997.16 18258.34 31773.94 25787.72 291
Qingshan Xu and Wenbing Tao: Multi-Scale Geometric Consistency Guided Multi-View Stereo. CVPR 2019
ET-MVSNet_ETH3D90.01 10889.03 11392.95 8894.38 15986.77 2698.14 3496.31 11589.30 4263.33 32596.72 11490.09 893.63 30790.70 8882.29 21898.46 47
USDC78.65 27176.25 27685.85 26187.58 28974.60 27189.58 30290.58 31784.05 14963.13 32688.23 24840.69 34096.86 19866.57 28575.81 25086.09 317
LF4IMVS72.36 30870.82 30576.95 32579.18 33956.33 34886.12 32886.11 34169.30 32163.06 32786.66 27133.03 35192.25 31965.33 29168.64 29582.28 343
DIV-MVS_2432*160070.97 31369.31 31375.95 33176.24 35255.39 35287.45 31890.94 31470.20 31762.96 32877.48 33844.01 32588.09 34461.25 30953.26 34184.37 330
Anonymous2024052172.06 31069.91 31078.50 32277.11 34761.67 34191.62 29290.97 31365.52 33062.37 32979.05 33436.32 34490.96 33357.75 32068.52 29682.87 336
test_040272.68 30669.54 31282.09 30888.67 27871.81 29892.72 27786.77 33861.52 33962.21 33083.91 30943.22 33093.76 30534.60 35572.23 26980.72 347
OpenMVS_ROBcopyleft68.52 2073.02 30569.57 31183.37 29880.54 33671.82 29793.60 25688.22 33362.37 33561.98 33183.15 31535.31 34895.47 25845.08 35175.88 24982.82 337
MVS-HIRNet71.36 31267.00 31684.46 28490.58 25169.74 31479.15 34287.74 33546.09 35361.96 33250.50 35545.14 32495.64 25053.74 33488.11 17188.00 288
test20.0372.36 30871.15 30475.98 33077.79 34359.16 34692.40 28189.35 32474.09 29261.50 33384.32 30648.09 31485.54 35250.63 34262.15 33083.24 335
PM-MVS69.32 31566.93 31776.49 32773.60 35455.84 35085.91 32979.32 35774.72 28861.09 33478.18 33621.76 35791.10 33270.86 26656.90 33682.51 340
TDRefinement69.20 31665.78 32079.48 31966.04 35862.21 33888.21 31286.12 34062.92 33461.03 33585.61 28833.23 35094.16 29755.82 33053.02 34282.08 344
ambc76.02 32968.11 35651.43 35464.97 35689.59 32160.49 33674.49 34117.17 36092.46 31661.50 30752.85 34384.17 332
pmmvs-eth3d73.59 30070.66 30682.38 30576.40 35073.38 28089.39 30589.43 32372.69 30560.34 33777.79 33746.43 32291.26 33166.42 28757.06 33582.51 340
K. test v373.62 29971.59 30379.69 31882.98 33059.85 34590.85 29788.83 32877.13 27158.90 33882.11 31843.62 32791.72 32665.83 28954.10 33987.50 300
EG-PatchMatch MVS74.92 29672.02 30183.62 29483.76 32973.28 28393.62 25592.04 29668.57 32258.88 33983.80 31031.87 35395.57 25656.97 32578.67 23682.00 345
lessismore_v079.98 31780.59 33558.34 34780.87 35458.49 34083.46 31343.10 33193.89 30163.11 30248.68 34687.72 291
N_pmnet61.30 32160.20 32464.60 33684.32 32217.00 36991.67 29110.98 36861.77 33858.45 34178.55 33549.89 31091.83 32542.27 35363.94 32584.97 326
TinyColmap72.41 30768.99 31482.68 30388.11 28469.59 31588.41 31185.20 34365.55 32957.91 34284.82 30330.80 35595.94 23151.38 33868.70 29482.49 342
UnsupCasMVSNet_eth73.25 30370.57 30781.30 31077.53 34466.33 32787.24 32193.89 24380.38 21957.90 34381.59 32142.91 33390.56 33665.18 29248.51 34787.01 306
MIMVSNet169.44 31466.65 31877.84 32376.48 34962.84 33787.42 31988.97 32766.96 32857.75 34479.72 33332.77 35285.83 35146.32 34963.42 32784.85 327
pmmvs365.75 32062.18 32376.45 32867.12 35764.54 33088.68 30985.05 34454.77 35257.54 34573.79 34229.40 35686.21 35055.49 33147.77 34978.62 348
new-patchmatchnet68.85 31765.93 31977.61 32473.57 35563.94 33490.11 30088.73 33171.62 31255.08 34673.60 34340.84 33987.22 34851.35 34048.49 34881.67 346
UnsupCasMVSNet_bld68.60 31864.50 32180.92 31374.63 35367.80 32183.97 33492.94 28565.12 33154.63 34768.23 35035.97 34592.17 32260.13 31144.83 35182.78 338
CMPMVSbinary54.94 2175.71 29474.56 28979.17 32179.69 33855.98 34989.59 30193.30 27560.28 34453.85 34889.07 23547.68 31996.33 21576.55 21781.02 22085.22 324
M. Jancosek, T. Pajdla: Multi-View Reconstruction Preserving Weakly-Supported Surfaces. CVPR 2011
new_pmnet66.18 31963.18 32275.18 33376.27 35161.74 34083.79 33584.66 34556.64 35151.57 34971.85 34931.29 35487.93 34549.98 34362.55 32975.86 350
test_method56.77 32254.53 32563.49 33876.49 34840.70 36175.68 34974.24 35919.47 36148.73 35071.89 34819.31 35865.80 36057.46 32247.51 35083.97 333
YYNet173.53 30270.43 30882.85 30284.52 32171.73 29991.69 29091.37 30467.63 32346.79 35181.21 32455.04 29790.43 33755.93 32859.70 33386.38 312
MDA-MVSNet_test_wron73.54 30170.43 30882.86 30184.55 31971.85 29691.74 28991.32 30767.63 32346.73 35281.09 32555.11 29690.42 33855.91 32959.76 33286.31 313
MDA-MVSNet-bldmvs71.45 31167.94 31581.98 30985.33 31468.50 32092.35 28288.76 33070.40 31542.99 35381.96 31946.57 32191.31 33048.75 34754.39 33886.11 316
DeepMVS_CXcopyleft64.06 33778.53 34143.26 35968.11 36269.94 31838.55 35476.14 34018.53 35979.34 35343.72 35241.62 35469.57 353
LCM-MVSNet52.52 32448.24 32765.35 33447.63 36441.45 36072.55 35483.62 35031.75 35637.66 35557.92 3539.19 36776.76 35549.26 34544.60 35277.84 349
FPMVS55.09 32352.93 32661.57 33955.98 35940.51 36283.11 33683.41 35137.61 35534.95 35671.95 34714.40 36176.95 35429.81 35665.16 32067.25 354
PMMVS250.90 32546.31 32864.67 33555.53 36046.67 35777.30 34871.02 36040.89 35434.16 35759.32 3519.83 36676.14 35740.09 35428.63 35771.21 351
tmp_tt41.54 32841.93 33040.38 34420.10 36826.84 36561.93 35759.09 36414.81 36328.51 35880.58 32635.53 34648.33 36463.70 29913.11 36145.96 357
Gipumacopyleft45.11 32742.05 32954.30 34180.69 33451.30 35535.80 36083.81 34928.13 35727.94 35934.53 35911.41 36576.70 35621.45 35854.65 33734.90 358
S. Galliani, K. Lasinger, K. Schindler: Massively Parallel Multiview Stereopsis by Surface Normal Diffusion. ICCV 2015
ANet_high46.22 32641.28 33161.04 34039.91 36646.25 35870.59 35576.18 35858.87 34923.09 36048.00 35712.58 36366.54 35928.65 35713.62 36070.35 352
MVEpermissive35.65 2233.85 33029.49 33546.92 34341.86 36536.28 36350.45 35956.52 36518.75 36218.28 36137.84 3582.41 36958.41 36118.71 35920.62 35846.06 356
Simon Fuhrmann, Fabian Langguth, Michael Goesele: MVE - A Multi-View Reconstruction Environment. EUROGRAPHICS Workshops on Graphics and Cultural Heritage (2014)
PMVScopyleft34.80 2339.19 32935.53 33250.18 34229.72 36730.30 36459.60 35866.20 36326.06 35817.91 36249.53 3563.12 36874.09 35818.19 36049.40 34546.14 355
Y. Furukawa, J. Ponce: Accurate, dense, and robust multiview stereopsis. PAMI (2010)
E-PMN32.70 33132.39 33333.65 34553.35 36225.70 36674.07 35253.33 36621.08 35917.17 36333.63 36111.85 36454.84 36212.98 36114.04 35920.42 359
EMVS31.70 33231.45 33432.48 34650.72 36323.95 36774.78 35152.30 36720.36 36016.08 36431.48 36212.80 36253.60 36311.39 36213.10 36219.88 360
wuyk23d14.10 33413.89 33714.72 34755.23 36122.91 36833.83 3613.56 3694.94 3644.11 3652.28 3672.06 37019.66 36510.23 3638.74 3631.59 363
testmvs9.92 33512.94 3380.84 3490.65 3690.29 37193.78 2520.39 3700.42 3652.85 36615.84 3650.17 3720.30 3672.18 3640.21 3641.91 362
test1239.07 33611.73 3391.11 3480.50 3700.77 37089.44 3040.20 3710.34 3662.15 36710.72 3660.34 3710.32 3661.79 3650.08 3652.23 361
uanet_test0.00 3390.00 3420.00 3500.00 3710.00 3720.00 3620.00 3720.00 3670.00 3680.00 3680.00 3730.00 3680.00 3660.00 3660.00 364
cdsmvs_eth3d_5k21.43 33328.57 3360.00 3500.00 3710.00 3720.00 36295.93 1380.00 3670.00 36897.66 6963.57 2370.00 3680.00 3660.00 3660.00 364
pcd_1.5k_mvsjas5.92 3387.89 3410.00 3500.00 3710.00 3720.00 3620.00 3720.00 3670.00 3680.00 36871.04 1940.00 3680.00 3660.00 3660.00 364
sosnet-low-res0.00 3390.00 3420.00 3500.00 3710.00 3720.00 3620.00 3720.00 3670.00 3680.00 3680.00 3730.00 3680.00 3660.00 3660.00 364
sosnet0.00 3390.00 3420.00 3500.00 3710.00 3720.00 3620.00 3720.00 3670.00 3680.00 3680.00 3730.00 3680.00 3660.00 3660.00 364
uncertanet0.00 3390.00 3420.00 3500.00 3710.00 3720.00 3620.00 3720.00 3670.00 3680.00 3680.00 3730.00 3680.00 3660.00 3660.00 364
Regformer0.00 3390.00 3420.00 3500.00 3710.00 3720.00 3620.00 3720.00 3670.00 3680.00 3680.00 3730.00 3680.00 3660.00 3660.00 364
ab-mvs-re8.11 33710.81 3400.00 3500.00 3710.00 3720.00 3620.00 3720.00 3670.00 36897.30 900.00 3730.00 3680.00 3660.00 3660.00 364
uanet0.00 3390.00 3420.00 3500.00 3710.00 3720.00 3620.00 3720.00 3670.00 3680.00 3680.00 3730.00 3680.00 3660.00 3660.00 364
OPU-MVS97.30 299.19 892.31 399.12 698.54 2092.06 299.84 1299.11 199.37 199.74 1
save fliter98.24 5283.34 8998.61 2296.57 8091.32 18
test_0728_SECOND95.14 1599.04 1286.14 3199.06 996.77 5199.84 1297.90 598.85 2099.45 8
GSMVS97.54 116
sam_mvs177.59 10097.54 116
sam_mvs75.35 147
MTGPAbinary96.33 112
test_post185.88 33030.24 36373.77 16595.07 28073.89 244
test_post33.80 36076.17 12595.97 227
patchmatchnet-post77.09 33977.78 9995.39 260
MTMP97.53 7668.16 361
gm-plane-assit92.27 21079.64 17784.47 13895.15 14697.93 14285.81 134
test9_res96.00 2199.03 1198.31 57
agg_prior294.30 4299.00 1398.57 41
test_prior482.34 10897.75 61
test_prior93.09 8198.68 2581.91 11796.40 10499.06 9798.29 59
新几何296.42 163
旧先验197.39 8879.58 17896.54 8598.08 4684.00 3697.42 7497.62 113
无先验96.87 13396.78 4577.39 26799.52 5379.95 18498.43 49
原ACMM296.84 134
testdata299.48 5876.45 219
segment_acmp82.69 53
testdata195.57 20387.44 76
plane_prior791.86 23077.55 232
plane_prior691.98 22577.92 22464.77 232
plane_prior594.69 20197.30 17487.08 12682.82 21390.96 224
plane_prior494.15 170
plane_prior297.18 10289.89 35
plane_prior191.95 228
plane_prior77.96 22197.52 7990.36 3282.96 211
n20.00 372
nn0.00 372
door-mid79.75 356
test1196.50 91
door80.13 355
HQP5-MVS78.48 202
BP-MVS87.67 122
HQP3-MVS94.80 19783.01 209
HQP2-MVS65.40 227
NP-MVS92.04 22478.22 21294.56 160
ACMMP++_ref78.45 241
ACMMP++79.05 233
Test By Simon71.65 187