This table lists the benchmark results for the high-res multi-view scenario. The following metrics are evaluated:

(*) For exact definitions, detailing how potentially incomplete ground truth is taken into account, see our paper.

The datasets are grouped into different categories, and result averages are computed for a category and method if results of the method are available for all datasets within the category. Note that the category "all" includes both the high-res multi-view and the low-res many-view scenarios.

Methods with suffix _ROB may participate in the Robust Vision Challenge.

Click a dataset result cell to show a visualization of the reconstruction. For training datasets, ground truth and accuracy / completeness visualizations are also available. The visualizations may not work with mobile browsers.




Method Infoallhigh-res
multi-view
indooroutdoorbotani.boulde.bridgedoorexhibi.lectur.living.loungeobserv.old co.statueterrac.
sort bysort bysort bysort bysort bysort bysort bysort bysort bysorted bysort bysort bysort bysort bysort bysort by
IU-MVS99.63 2195.38 1997.73 7295.54 1599.54 199.69 499.81 1999.99 1
CNVR-MVS98.46 198.38 198.72 699.80 496.19 1299.80 797.99 4397.05 399.41 299.59 292.89 21100.00 198.99 1399.90 599.96 8
test072699.66 1595.20 2699.77 897.70 7993.95 2999.35 399.54 393.18 18
SED-MVS98.18 298.10 498.41 1499.63 2195.24 2199.77 897.72 7494.17 2499.30 499.54 393.32 1599.98 1099.70 299.81 1999.99 1
test_241102_ONE99.63 2195.24 2197.72 7494.16 2699.30 499.49 1093.32 1599.98 10
test_241102_TWO97.72 7494.17 2499.23 699.54 393.14 2099.98 1099.70 299.82 1599.99 1
SMA-MVScopyleft97.24 1896.99 2398.00 2799.30 6094.20 5399.16 7697.65 8889.55 13599.22 799.52 990.34 4699.99 598.32 3299.83 1399.82 30
Yufeng Yin; Xiaoyan Liu; Zichao Zhang: SMA-MVS: Segmentation-Guided Multi-Scale Anchor Deformation Patch Multi-View Stereo. IEEE Transactions on Circuits and Systems for Video Technology
DVP-MVS98.07 698.00 598.29 1599.66 1595.20 2699.72 1397.47 12893.95 2999.07 899.46 1193.18 1899.97 2099.64 599.82 1599.69 60
Zhenlong Yuan, Jinguo Luo, Fei Shen, Zhaoxin Li, Cong Liu, Tianlu Mao, Zhaoqi Wang: DVP-MVS: Synergize Depth-Edge and Visibility Prior for Multi-View Stereo. AAAI2025
test_0728_THIRD93.01 4999.07 899.46 1194.66 1099.97 2099.25 1199.82 1599.95 11
TSAR-MVS + MP.97.44 1597.46 1197.39 4999.12 7293.49 6798.52 15497.50 12394.46 2198.99 1098.64 9591.58 2599.08 13998.49 2499.83 1399.60 73
Zhenlong Yuan, Jiakai Cao, Zhaoqi Wang, Zhaoxin Li: TSAR-MVS: Textureless-aware Segmentation and Correlative Refinement Guided Multi-View Stereo. Pattern Recognition
PS-MVSNAJ96.87 3396.40 3998.29 1597.35 12897.29 399.03 9797.11 16695.83 1098.97 1199.14 4382.48 17299.60 9198.60 1999.08 8098.00 176
旧先验298.67 13685.75 22598.96 1298.97 14293.84 115
xiu_mvs_v2_base96.66 3796.17 4798.11 2497.11 13896.96 499.01 10097.04 17395.51 1698.86 1399.11 5082.19 17899.36 12198.59 2198.14 10798.00 176
NCCC98.12 498.11 398.13 2099.76 694.46 4699.81 597.88 4996.54 598.84 1499.46 1192.55 2399.98 1098.25 3499.93 199.94 14
SD-MVS97.51 1297.40 1497.81 3299.01 7993.79 6199.33 6597.38 14193.73 4098.83 1599.02 5790.87 3399.88 4498.69 1799.74 2899.77 44
Zhenlong Yuan, Jiakai Cao, Zhaoxin Li, Hao Jiang and Zhaoqi Wang: SD-MVS: Segmentation-driven Deformation Multi-View Stereo with Spherical Refinement and EM optimization. AAAI2024
ETH3D-3000-0.197.29 1697.01 2298.12 2299.18 6994.97 3099.47 4097.52 11789.85 12298.79 1699.46 1190.41 4499.69 7598.78 1599.67 3899.70 57
xxxxxxxxxxxxxcwj97.51 1297.42 1397.78 3499.34 5393.85 5999.65 2295.45 27295.69 1198.70 1799.42 1790.42 4299.72 7198.47 2599.65 4099.77 44
SF-MVS97.22 2196.92 2498.12 2299.11 7394.88 3299.44 4897.45 13089.60 13198.70 1799.42 1790.42 4299.72 7198.47 2599.65 4099.77 44
ETH3 D test640097.67 1097.33 1698.69 799.69 996.43 999.63 2497.73 7291.05 9298.66 1999.53 790.59 3899.71 7399.32 899.80 2399.91 18
DPE-MVScopyleft98.11 598.00 598.44 1399.50 4395.39 1899.29 6797.72 7494.50 2098.64 2099.54 393.32 1599.97 2099.58 799.90 599.95 11
Kehua Chen, Zhenlong Yuan, Tianlu Mao, Zhaoqi Wang: Dual-Level Precision Edges Guided Multi-View Stereo with Accurate Planarization. AAAI2025
MSP-MVS97.77 898.18 296.53 9799.54 3690.14 13899.41 5497.70 7995.46 1798.60 2199.19 3295.71 499.49 10498.15 3699.85 1199.95 11
Zhenlong Yuan, Cong Liu, Fei Shen, Zhaoxin Li, Jingguo luo, Tianlu Mao and Zhaoqi Wang: MSP-MVS: Multi-granularity Segmentation Prior Guided Multi-View Stereo. AAAI2025
9.1496.87 2699.34 5399.50 3897.49 12589.41 13898.59 2299.43 1689.78 5199.69 7598.69 1799.62 47
APD-MVScopyleft96.95 2996.72 3297.63 3899.51 4293.58 6399.16 7697.44 13490.08 11898.59 2299.07 5189.06 5999.42 11597.92 3999.66 3999.88 24
Yuesong Wang, Zhaojie Zeng and etc.: Adaptive Patch Deformation for Textureless-Resilient Multi-View Stereo. CVPR2023
ETH3D cwj APD-0.1696.94 3196.58 3698.01 2698.62 9594.73 4199.13 8897.38 14188.44 16898.53 2499.39 1989.66 5599.69 7598.43 2799.61 5199.61 72
testdata95.26 14198.20 10487.28 20297.60 9885.21 23298.48 2599.15 4188.15 7498.72 15190.29 15499.45 6299.78 38
testtj97.23 2097.05 2097.75 3599.75 793.34 6999.16 7697.74 6891.28 8998.40 2699.29 2289.95 4999.98 1098.20 3599.70 3599.94 14
TEST999.57 3393.17 7299.38 5797.66 8389.57 13398.39 2799.18 3590.88 3299.66 80
train_agg97.20 2297.08 1997.57 4299.57 3393.17 7299.38 5797.66 8390.18 11398.39 2799.18 3590.94 3099.66 8098.58 2299.85 1199.88 24
test_899.55 3593.07 7699.37 6097.64 8990.18 11398.36 2999.19 3290.94 3099.64 86
HPM-MVS++copyleft97.72 997.59 998.14 1999.53 4194.76 3999.19 7197.75 6695.66 1398.21 3099.29 2291.10 2899.99 597.68 4299.87 799.68 61
DPM-MVS97.86 797.25 1799.68 198.25 10299.10 199.76 1197.78 6396.61 498.15 3199.53 793.62 14100.00 191.79 13999.80 2399.94 14
test_part299.54 3695.42 1798.13 32
SteuartSystems-ACMMP97.25 1797.34 1597.01 6297.38 12791.46 10499.75 1297.66 8394.14 2898.13 3299.26 2492.16 2499.66 8097.91 4099.64 4399.90 20
Skip Steuart: Steuart Systems R&D Blog.
test_prior397.07 2697.09 1897.01 6299.58 2991.77 9599.57 3097.57 10791.43 8598.12 3498.97 6390.43 4099.49 10498.33 3099.81 1999.79 34
test_prior299.57 3091.43 8598.12 3498.97 6390.43 4098.33 3099.81 19
PHI-MVS96.65 3896.46 3897.21 5699.34 5391.77 9599.70 1698.05 3986.48 21798.05 3699.20 3189.33 5799.96 2798.38 2899.62 4799.90 20
MVSFormer94.71 9294.08 9596.61 9295.05 21294.87 3397.77 21796.17 22286.84 20898.04 3798.52 10285.52 12595.99 27789.83 15798.97 8598.96 121
lupinMVS96.32 4995.94 5597.44 4595.05 21294.87 3399.86 296.50 20093.82 3898.04 3798.77 8385.52 12598.09 16896.98 5498.97 8599.37 90
APDe-MVS97.53 1197.47 1097.70 3699.58 2993.63 6299.56 3297.52 11793.59 4398.01 3999.12 4690.80 3599.55 9499.26 1099.79 2599.93 17
ACMMP_NAP96.59 3996.18 4597.81 3298.82 8993.55 6498.88 11497.59 10290.66 9897.98 4099.14 4386.59 109100.00 196.47 6499.46 6099.89 23
agg_prior197.12 2497.03 2197.38 5099.54 3692.66 8499.35 6297.64 8990.38 10797.98 4099.17 3790.84 3499.61 8998.57 2399.78 2799.87 27
agg_prior99.54 3692.66 8497.64 8997.98 4099.61 89
CDPH-MVS96.56 4096.18 4597.70 3699.59 2893.92 5799.13 8897.44 13489.02 14797.90 4399.22 2988.90 6299.49 10494.63 10499.79 2599.68 61
EPNet96.82 3496.68 3497.25 5598.65 9393.10 7599.48 3998.76 1296.54 597.84 4498.22 11787.49 8699.66 8095.35 8897.78 11399.00 117
Wanjuan Su, Wenbing Tao: Efficient Edge-Preserving Multi-View Stereo Network for Depth Estimation. AAAI 2023
MSLP-MVS++97.50 1497.45 1297.63 3899.65 1993.21 7199.70 1698.13 3694.61 1997.78 4599.46 1189.85 5099.81 6297.97 3899.91 499.88 24
test1297.83 3199.33 5994.45 4797.55 11097.56 4688.60 6599.50 10399.71 3499.55 77
xiu_mvs_v1_base_debu94.73 8993.98 9796.99 6595.19 19995.24 2198.62 14396.50 20092.99 5097.52 4798.83 8072.37 24899.15 13397.03 5096.74 12696.58 206
xiu_mvs_v1_base94.73 8993.98 9796.99 6595.19 19995.24 2198.62 14396.50 20092.99 5097.52 4798.83 8072.37 24899.15 13397.03 5096.74 12696.58 206
xiu_mvs_v1_base_debi94.73 8993.98 9796.99 6595.19 19995.24 2198.62 14396.50 20092.99 5097.52 4798.83 8072.37 24899.15 13397.03 5096.74 12696.58 206
CS-MVS95.39 7695.39 7095.40 13695.54 18889.66 15599.62 2695.98 22891.72 7997.48 5098.41 11183.64 14897.46 20997.46 4498.64 10099.06 115
ZD-MVS99.67 1393.28 7097.61 9687.78 18897.41 5199.16 3990.15 4799.56 9398.35 2999.70 35
ETV-MVS96.00 5796.00 5396.00 11696.56 15491.05 11899.63 2496.61 18993.26 4897.39 5298.30 11486.62 10898.13 16598.07 3797.57 11598.82 136
DeepPCF-MVS93.56 196.55 4197.84 892.68 20998.71 9278.11 32199.70 1697.71 7898.18 197.36 5399.76 190.37 4599.94 3399.27 999.54 5799.99 1
CANet97.00 2796.49 3798.55 998.86 8896.10 1399.83 497.52 11795.90 997.21 5498.90 7682.66 16999.93 3598.71 1698.80 9499.63 69
CANet_DTU94.31 10293.35 11197.20 5797.03 14294.71 4298.62 14395.54 26795.61 1497.21 5498.47 10871.88 25399.84 5588.38 17697.46 12097.04 200
VNet95.08 8294.26 8897.55 4398.07 10993.88 5898.68 13498.73 1590.33 10997.16 5697.43 14479.19 20199.53 9796.91 5691.85 18699.24 102
region2R96.30 5096.17 4796.70 8899.70 890.31 13499.46 4597.66 8390.55 10297.07 5799.07 5186.85 10199.97 2095.43 8699.74 2899.81 31
原ACMM196.18 10999.03 7890.08 14197.63 9388.98 14897.00 5898.97 6388.14 7599.71 7388.23 17899.62 4798.76 143
Regformer-196.97 2896.80 3097.47 4499.46 4793.11 7498.89 11297.94 4592.89 5496.90 5999.02 5789.78 5199.53 9797.06 4999.26 7699.75 48
HFP-MVS96.42 4696.26 4496.90 7499.69 990.96 12199.47 4097.81 5890.54 10396.88 6099.05 5487.57 8399.96 2795.65 7999.72 3099.78 38
#test#96.48 4396.34 4296.90 7499.69 990.96 12199.53 3697.81 5890.94 9696.88 6099.05 5487.57 8399.96 2795.87 7699.72 3099.78 38
Regformer-296.94 3196.78 3197.42 4699.46 4792.97 8198.89 11297.93 4692.86 5696.88 6099.02 5789.74 5399.53 9797.03 5099.26 7699.75 48
XVS96.47 4496.37 4096.77 8199.62 2590.66 12999.43 5197.58 10492.41 6696.86 6398.96 6887.37 8999.87 4795.65 7999.43 6499.78 38
X-MVStestdata90.69 17788.66 19796.77 8199.62 2590.66 12999.43 5197.58 10492.41 6696.86 6329.59 36687.37 8999.87 4795.65 7999.43 6499.78 38
112195.19 8094.45 8597.42 4698.88 8692.58 8996.22 27797.75 6685.50 22996.86 6399.01 6188.59 6799.90 4087.64 18599.60 5299.79 34
SR-MVS96.13 5496.16 4996.07 11499.42 4989.04 16498.59 14997.33 14690.44 10596.84 6699.12 4686.75 10399.41 11797.47 4399.44 6399.76 47
TSAR-MVS + GP.96.95 2996.91 2597.07 5998.88 8691.62 10099.58 2996.54 19895.09 1896.84 6698.63 9791.16 2699.77 6799.04 1296.42 13199.81 31
ACMMPR96.28 5196.14 5196.73 8599.68 1290.47 13299.47 4097.80 6090.54 10396.83 6899.03 5686.51 11399.95 3095.65 7999.72 3099.75 48
PMMVS93.62 12093.90 10492.79 20496.79 14881.40 29598.85 11596.81 18391.25 9096.82 6998.15 12177.02 21598.13 16593.15 12896.30 13598.83 135
PGM-MVS95.85 6495.65 6796.45 10099.50 4389.77 15298.22 18798.90 1189.19 14196.74 7098.95 7085.91 12399.92 3693.94 11299.46 6099.66 65
jason95.40 7594.86 7997.03 6192.91 26594.23 5299.70 1696.30 21193.56 4496.73 7198.52 10281.46 18797.91 17896.08 7398.47 10498.96 121
jason: jason.
新几何197.40 4898.92 8492.51 9197.77 6585.52 22796.69 7299.06 5388.08 7699.89 4384.88 21399.62 4799.79 34
SR-MVS-dyc-post95.75 7095.86 5895.41 13599.22 6687.26 20598.40 17297.21 15489.63 12996.67 7398.97 6386.73 10599.36 12196.62 5899.31 7299.60 73
RE-MVS-def95.70 6499.22 6687.26 20598.40 17297.21 15489.63 12996.67 7398.97 6385.24 13396.62 5899.31 7299.60 73
APD-MVS_3200maxsize95.64 7195.65 6795.62 12799.24 6587.80 18898.42 16797.22 15388.93 15296.64 7598.98 6285.49 12899.36 12196.68 5799.27 7599.70 57
test117295.92 6296.07 5295.46 13299.42 4987.24 20798.51 15797.24 15090.29 11096.56 7699.12 4686.73 10599.36 12197.33 4799.42 6799.78 38
MG-MVS97.24 1896.83 2998.47 1299.79 595.71 1599.07 9299.06 994.45 2296.42 7798.70 9288.81 6399.74 7095.35 8899.86 1099.97 7
hse-mvs392.47 14691.95 14294.05 17897.13 13685.01 25598.36 17798.08 3793.85 3696.27 7896.73 17383.19 15999.43 11495.81 7768.09 32897.70 181
hse-mvs291.67 15891.51 15192.15 21896.22 16582.61 28797.74 22097.53 11493.85 3696.27 7896.15 18683.19 15997.44 21295.81 7766.86 33396.40 211
alignmvs95.77 6895.00 7898.06 2597.35 12895.68 1699.71 1597.50 12391.50 8396.16 8098.61 9886.28 11899.00 14196.19 7091.74 18899.51 81
Regformer-396.50 4296.36 4196.91 7399.34 5391.72 9898.71 12797.90 4892.48 6196.00 8198.95 7088.60 6599.52 10096.44 6598.83 9199.49 83
CP-MVS96.22 5296.15 5096.42 10299.67 1389.62 15799.70 1697.61 9690.07 11996.00 8199.16 3987.43 8799.92 3696.03 7499.72 3099.70 57
Regformer-496.45 4596.33 4396.81 8099.34 5391.44 10598.71 12797.88 4992.43 6295.97 8398.95 7088.42 6999.51 10196.40 6698.83 9199.49 83
MCST-MVS98.18 297.95 798.86 399.85 396.60 799.70 1697.98 4497.18 295.96 8499.33 2192.62 22100.00 198.99 1399.93 199.98 6
diffmvs94.59 9794.19 9095.81 12295.54 18890.69 12798.70 13195.68 25891.61 8095.96 8497.81 12580.11 19398.06 17296.52 6395.76 14598.67 147
GST-MVS95.97 5995.66 6596.90 7499.49 4591.22 10799.45 4797.48 12689.69 12795.89 8698.72 8986.37 11799.95 3094.62 10599.22 7999.52 79
DeepC-MVS_fast93.52 297.16 2396.84 2898.13 2099.61 2794.45 4798.85 11597.64 8996.51 795.88 8799.39 1987.35 9399.99 596.61 6099.69 3799.96 8
Andreas Kuhn, Christian Sormann, Mattia Rossi, Oliver Erdler, Friedrich Fraundorfer: DeepC-MVS: Deep Confidence Prediction for Multi-View Stereo Reconstruction. 3DV 2020
test22298.32 10191.21 10898.08 20197.58 10483.74 25695.87 8899.02 5786.74 10499.64 4399.81 31
ZNCC-MVS96.09 5595.81 6196.95 7299.42 4991.19 10999.55 3397.53 11489.72 12695.86 8998.94 7586.59 10999.97 2095.13 9299.56 5599.68 61
canonicalmvs95.02 8393.96 10098.20 1797.53 12595.92 1498.71 12796.19 22191.78 7795.86 8998.49 10679.53 19899.03 14096.12 7191.42 19499.66 65
abl_694.63 9594.48 8495.09 14398.61 9686.96 21098.06 20396.97 17989.31 13995.86 8998.56 10079.82 19499.64 8694.53 10798.65 9998.66 150
Effi-MVS+93.87 11193.15 11696.02 11595.79 17990.76 12596.70 26295.78 25186.98 20595.71 9297.17 15579.58 19698.01 17694.57 10696.09 13999.31 95
HPM-MVS_fast94.89 8494.62 8195.70 12699.11 7388.44 18099.14 8597.11 16685.82 22495.69 9398.47 10883.46 15299.32 12793.16 12799.63 4699.35 91
HY-MVS88.56 795.29 7794.23 8998.48 1197.72 11596.41 1094.03 30898.74 1392.42 6595.65 9494.76 20786.52 11299.49 10495.29 9092.97 16799.53 78
CHOSEN 280x42096.80 3596.85 2796.66 9197.85 11394.42 4994.76 30098.36 2392.50 6095.62 9597.52 14097.92 197.38 21498.31 3398.80 9498.20 172
MP-MVScopyleft96.00 5795.82 5996.54 9699.47 4690.13 14099.36 6197.41 13890.64 10195.49 9698.95 7085.51 12799.98 1096.00 7599.59 5499.52 79
Rongxuan Tan, Qing Wang, et al.: MP-MVS: Multi-Scale Windows PatchMatch and Planar Prior Multi-View Stereo.
HPM-MVScopyleft95.41 7495.22 7495.99 11799.29 6189.14 16299.17 7597.09 17087.28 20195.40 9798.48 10784.93 13599.38 11995.64 8399.65 4099.47 86
Chunlin Ren, Qingshan Xu, Shikun Zhang, Jiaqi Yang: Hierarchical Prior Mining for Non-local Multi-View Stereo. ICCV 2023
UA-Net93.30 12892.62 12795.34 13896.27 16388.53 17995.88 28796.97 17990.90 9795.37 9897.07 15982.38 17599.10 13883.91 22894.86 15398.38 161
sss94.85 8693.94 10297.58 4096.43 15894.09 5698.93 10799.16 889.50 13695.27 9997.85 12381.50 18599.65 8492.79 13394.02 15998.99 118
WTY-MVS95.97 5995.11 7698.54 1097.62 11996.65 699.44 4898.74 1392.25 6995.21 10098.46 11086.56 11199.46 11195.00 9692.69 17199.50 82
DELS-MVS97.12 2496.60 3598.68 898.03 11096.57 899.84 397.84 5396.36 895.20 10198.24 11688.17 7399.83 5796.11 7299.60 5299.64 67
Christian Sormann, Emanuele Santellani, Mattia Rossi, Andreas Kuhn, Friedrich Fraundorfer: DELS-MVS: Deep Epipolar Line Search for Multi-View Stereo. Winter Conference on Applications of Computer Vision (WACV), 2023
MVS_111021_HR96.69 3696.69 3396.72 8798.58 9791.00 12099.14 8599.45 193.86 3595.15 10298.73 8788.48 6899.76 6897.23 4899.56 5599.40 89
MVS_Test93.67 11892.67 12696.69 8996.72 15092.66 8497.22 24196.03 22787.69 19495.12 10394.03 21581.55 18498.28 16189.17 17096.46 12999.14 109
MVS_111021_LR95.78 6795.94 5595.28 14098.19 10687.69 18998.80 12099.26 793.39 4595.04 10498.69 9384.09 14499.76 6896.96 5599.06 8198.38 161
CostFormer92.89 13692.48 13094.12 17594.99 21485.89 23792.89 31797.00 17886.98 20595.00 10590.78 27890.05 4897.51 20792.92 13191.73 18998.96 121
mPP-MVS95.90 6395.75 6396.38 10499.58 2989.41 16199.26 6897.41 13890.66 9894.82 10698.95 7086.15 12099.98 1095.24 9199.64 4399.74 51
EI-MVSNet-Vis-set95.76 6995.63 6996.17 11199.14 7190.33 13398.49 16197.82 5591.92 7494.75 10798.88 7887.06 9799.48 10995.40 8797.17 12498.70 146
LFMVS92.23 15090.84 16296.42 10298.24 10391.08 11798.24 18696.22 21883.39 26394.74 10898.31 11361.12 31198.85 14394.45 10892.82 16899.32 94
tpmrst92.78 13792.16 13694.65 15796.27 16387.45 19791.83 32597.10 16989.10 14594.68 10990.69 28288.22 7297.73 19689.78 15991.80 18798.77 142
test_yl95.27 7894.60 8297.28 5398.53 9892.98 7999.05 9598.70 1686.76 21194.65 11097.74 13087.78 7999.44 11295.57 8492.61 17299.44 87
DCV-MVSNet95.27 7894.60 8297.28 5398.53 9892.98 7999.05 9598.70 1686.76 21194.65 11097.74 13087.78 7999.44 11295.57 8492.61 17299.44 87
DP-MVS Recon95.85 6495.15 7597.95 2899.87 294.38 5099.60 2797.48 12686.58 21494.42 11299.13 4587.36 9299.98 1093.64 11998.33 10699.48 85
zzz-MVS96.21 5395.96 5496.96 7099.29 6191.19 10998.69 13297.45 13092.58 5794.39 11399.24 2786.43 11599.99 596.22 6899.40 6899.71 55
MTAPA96.09 5595.80 6296.96 7099.29 6191.19 10997.23 24097.45 13092.58 5794.39 11399.24 2786.43 11599.99 596.22 6899.40 6899.71 55
CPTT-MVS94.60 9694.43 8695.09 14399.66 1586.85 21299.44 4897.47 12883.22 26594.34 11598.96 6882.50 17099.55 9494.81 9999.50 5898.88 129
PVSNet_BlendedMVS93.36 12693.20 11593.84 18598.77 9091.61 10199.47 4098.04 4091.44 8494.21 11692.63 24983.50 15099.87 4797.41 4583.37 24290.05 308
PVSNet_Blended95.94 6195.66 6596.75 8398.77 9091.61 10199.88 198.04 4093.64 4294.21 11697.76 12883.50 15099.87 4797.41 4597.75 11498.79 139
EI-MVSNet-UG-set95.43 7295.29 7295.86 12199.07 7789.87 14998.43 16697.80 6091.78 7794.11 11898.77 8386.25 11999.48 10994.95 9896.45 13098.22 170
EIA-MVS95.11 8195.27 7394.64 15896.34 16186.51 21699.59 2896.62 18892.51 5994.08 11998.64 9586.05 12198.24 16295.07 9498.50 10399.18 107
MAR-MVS94.43 9994.09 9495.45 13399.10 7587.47 19698.39 17597.79 6288.37 17194.02 12099.17 3778.64 20799.91 3892.48 13498.85 9098.96 121
Zhenyu Xu, Yiguang Liu, Xuelei Shi, Ying Wang, Yunan Zheng: MARMVS: Matching Ambiguity Reduced Multiple View Stereo for Efficient Large Scale Scene Reconstruction. CVPR 2020
PAPM96.35 4795.94 5597.58 4094.10 23495.25 2098.93 10798.17 3194.26 2393.94 12198.72 8989.68 5497.88 18196.36 6799.29 7499.62 71
GG-mvs-BLEND96.98 6896.53 15594.81 3887.20 33897.74 6893.91 12296.40 18196.56 296.94 22895.08 9398.95 8899.20 106
API-MVS94.78 8794.18 9296.59 9399.21 6890.06 14598.80 12097.78 6383.59 26093.85 12399.21 3083.79 14699.97 2092.37 13599.00 8499.74 51
tpm291.77 15691.09 15593.82 18694.83 22185.56 24592.51 32297.16 16184.00 25293.83 12490.66 28487.54 8597.17 21887.73 18491.55 19298.72 144
PAPR96.35 4795.82 5997.94 2999.63 2194.19 5499.42 5397.55 11092.43 6293.82 12599.12 4687.30 9499.91 3894.02 11199.06 8199.74 51
PVSNet87.13 1293.69 11592.83 12396.28 10797.99 11190.22 13799.38 5798.93 1091.42 8793.66 12697.68 13371.29 26099.64 8687.94 18297.20 12398.98 119
baseline93.91 10993.30 11295.72 12595.10 20990.07 14297.48 22995.91 24291.03 9393.54 12797.68 13379.58 19698.02 17594.27 11095.14 15099.08 113
VDD-MVS91.24 16790.18 17394.45 16497.08 13985.84 24098.40 17296.10 22586.99 20393.36 12898.16 12054.27 33299.20 13096.59 6190.63 20298.31 167
VDDNet90.08 18988.54 20294.69 15694.41 22987.68 19098.21 18996.40 20576.21 32293.33 12997.75 12954.93 33098.77 14694.71 10390.96 19797.61 186
thisisatest051594.75 8894.19 9096.43 10196.13 17592.64 8899.47 4097.60 9887.55 19793.17 13097.59 13894.71 998.42 15688.28 17793.20 16498.24 169
MP-MVS-pluss95.80 6695.30 7197.29 5298.95 8392.66 8498.59 14997.14 16288.95 15093.12 13199.25 2585.62 12499.94 3396.56 6299.48 5999.28 99
MP-MVS-pluss: MP-MVS-pluss. MP-MVS-pluss
MDTV_nov1_ep13_2view91.17 11291.38 32887.45 19993.08 13286.67 10787.02 18998.95 125
DWT-MVSNet_test94.36 10093.95 10195.62 12796.99 14389.47 15996.62 26497.38 14190.96 9593.07 13397.27 14793.73 1398.09 16885.86 20593.65 16299.29 97
EPNet_dtu92.28 14892.15 13792.70 20897.29 13084.84 25798.64 14097.82 5592.91 5393.02 13497.02 16185.48 13095.70 29272.25 31294.89 15297.55 187
Wanjuan Su, Wenbing Tao: Efficient Edge-Preserving Multi-View Stereo Network for Depth Estimation. AAAI 2023
gg-mvs-nofinetune90.00 19087.71 21196.89 7996.15 17194.69 4385.15 34497.74 6868.32 34592.97 13560.16 35596.10 396.84 23093.89 11398.87 8999.14 109
casdiffmvs93.98 10793.43 11095.61 12995.07 21189.86 15098.80 12095.84 25090.98 9492.74 13697.66 13579.71 19598.10 16794.72 10295.37 14998.87 131
114514_t94.06 10493.05 11897.06 6099.08 7692.26 9398.97 10497.01 17782.58 27792.57 13798.22 11780.68 19199.30 12889.34 16699.02 8399.63 69
OMC-MVS93.90 11093.62 10894.73 15598.63 9487.00 20998.04 20496.56 19592.19 7092.46 13898.73 8779.49 19999.14 13692.16 13794.34 15798.03 175
PAPM_NR95.43 7295.05 7796.57 9599.42 4990.14 13898.58 15197.51 12090.65 10092.44 13998.90 7687.77 8199.90 4090.88 14899.32 7199.68 61
UGNet91.91 15590.85 16195.10 14297.06 14088.69 17598.01 20598.24 2792.41 6692.39 14093.61 22860.52 31299.68 7888.14 17997.25 12296.92 202
Wanjuan Su, Qingshan Xu, Wenbing Tao: Uncertainty-guided Multi-view Stereo Network for Depth Estimation. IEEE Transactions on Circuits and Systems for Video Technology, 2022
MDTV_nov1_ep1390.47 17196.14 17288.55 17791.34 32997.51 12089.58 13292.24 14190.50 29586.99 10097.61 20277.64 27592.34 177
Vis-MVSNetpermissive92.64 14091.85 14395.03 14795.12 20588.23 18198.48 16296.81 18391.61 8092.16 14297.22 15171.58 25898.00 17785.85 20697.81 11098.88 129
Jingyang Zhang, Yao Yao, Shiwei Li, Zixin Luo, Tian Fang: Visibility-aware Multiview Stereo Network. BMVC 2020
TESTMET0.1,193.82 11293.26 11495.49 13195.21 19890.25 13599.15 8297.54 11389.18 14291.79 14394.87 20589.13 5897.63 20086.21 19896.29 13698.60 151
thisisatest053094.00 10693.52 10995.43 13495.76 18190.02 14798.99 10297.60 9886.58 21491.74 14497.36 14694.78 898.34 15786.37 19792.48 17597.94 178
AUN-MVS90.17 18689.50 17992.19 21696.21 16682.67 28597.76 21997.53 11488.05 18091.67 14596.15 18683.10 16197.47 20888.11 18066.91 33296.43 210
EPMVS92.59 14391.59 14995.59 13097.22 13290.03 14691.78 32698.04 4090.42 10691.66 14690.65 28586.49 11497.46 20981.78 24996.31 13499.28 99
test-LLR93.11 13492.68 12594.40 16594.94 21787.27 20399.15 8297.25 14890.21 11191.57 14794.04 21384.89 13697.58 20385.94 20296.13 13798.36 164
test-mter93.27 13092.89 12294.40 16594.94 21787.27 20399.15 8297.25 14888.95 15091.57 14794.04 21388.03 7797.58 20385.94 20296.13 13798.36 164
JIA-IIPM85.97 25484.85 25489.33 28293.23 26073.68 33485.05 34597.13 16469.62 34191.56 14968.03 35388.03 7796.96 22677.89 27493.12 16597.34 190
PVSNet_Blended_VisFu94.67 9394.11 9396.34 10697.14 13591.10 11599.32 6697.43 13692.10 7391.53 15096.38 18483.29 15699.68 7893.42 12496.37 13298.25 168
CHOSEN 1792x268894.35 10193.82 10595.95 11997.40 12688.74 17498.41 16998.27 2592.18 7191.43 15196.40 18178.88 20299.81 6293.59 12097.81 11099.30 96
ACMMPcopyleft94.67 9394.30 8795.79 12399.25 6488.13 18398.41 16998.67 1990.38 10791.43 15198.72 8982.22 17799.95 3093.83 11695.76 14599.29 97
Qingshan Xu, Weihang Kong, Wenbing Tao, Marc Pollefeys: Multi-Scale Geometric Consistency Guided and Planar Prior Assisted Multi-View Stereo. IEEE Transactions on Pattern Analysis and Machine Intelligence
EPP-MVSNet93.75 11493.67 10794.01 18095.86 17885.70 24298.67 13697.66 8384.46 24691.36 15397.18 15491.16 2697.79 18792.93 13093.75 16098.53 153
PLCcopyleft91.07 394.23 10394.01 9694.87 14999.17 7087.49 19599.25 6996.55 19688.43 16991.26 15498.21 11985.92 12299.86 5289.77 16097.57 11597.24 193
Jie Liao, Yanping Fu, Qingan Yan, Chunxia xiao: Pyramid Multi-View Stereo with Local Consistency. Pacific Graphics 2019
HyFIR lowres test93.68 11793.29 11394.87 14997.57 12388.04 18598.18 19198.47 2187.57 19691.24 15595.05 20385.49 12897.46 20993.22 12692.82 16899.10 111
thres20093.69 11592.59 12896.97 6997.76 11494.74 4099.35 6299.36 289.23 14091.21 15696.97 16383.42 15398.77 14685.08 20990.96 19797.39 189
mvs-test191.57 15992.20 13589.70 27295.15 20374.34 33199.51 3795.40 27691.92 7491.02 15797.25 14874.27 23298.08 17189.45 16295.83 14496.67 203
CDS-MVSNet93.47 12193.04 11994.76 15294.75 22389.45 16098.82 11897.03 17587.91 18590.97 15896.48 17989.06 5996.36 25689.50 16192.81 17098.49 155
Khang Truong Giang, Soohwan Song, Sungho Jo: Curvature-guided dynamic scale networks for Multi-view Stereo. ICLR 2022
tfpn200view993.43 12392.27 13396.90 7497.68 11794.84 3599.18 7399.36 288.45 16590.79 15996.90 16683.31 15498.75 14884.11 22490.69 19997.12 195
thres40093.39 12592.27 13396.73 8597.68 11794.84 3599.18 7399.36 288.45 16590.79 15996.90 16683.31 15498.75 14884.11 22490.69 19996.61 204
CR-MVSNet88.83 20987.38 21693.16 19793.47 25386.24 22584.97 34694.20 31188.92 15390.76 16186.88 32984.43 14094.82 31270.64 31692.17 18298.41 158
RPMNet85.07 26781.88 28494.64 15893.47 25386.24 22584.97 34697.21 15464.85 35190.76 16178.80 34980.95 19099.27 12953.76 35292.17 18298.41 158
PatchmatchNetpermissive92.05 15391.04 15795.06 14596.17 17089.04 16491.26 33097.26 14789.56 13490.64 16390.56 29188.35 7197.11 22079.53 26196.07 14199.03 116
Fangjinhua Wang, Silvano Galliani, Christoph Vogel, Pablo Speciale, Marc Pollefeys: PatchmatchNet: Learned Multi-View Patchmatch Stereo.
tttt051793.30 12893.01 12094.17 17395.57 18686.47 21898.51 15797.60 9885.99 22290.55 16497.19 15394.80 798.31 15885.06 21091.86 18597.74 180
PatchT85.44 26483.19 27192.22 21493.13 26283.00 27783.80 35296.37 20770.62 33690.55 16479.63 34884.81 13894.87 31058.18 34991.59 19198.79 139
tpm89.67 19488.95 19091.82 22492.54 26881.43 29492.95 31695.92 23887.81 18790.50 16689.44 31084.99 13495.65 29383.67 23182.71 24798.38 161
thres100view90093.34 12792.15 13796.90 7497.62 11994.84 3599.06 9499.36 287.96 18390.47 16796.78 17183.29 15698.75 14884.11 22490.69 19997.12 195
thres600view793.18 13292.00 14096.75 8397.62 11994.92 3199.07 9299.36 287.96 18390.47 16796.78 17183.29 15698.71 15282.93 23890.47 20396.61 204
AdaColmapbinary93.82 11293.06 11796.10 11399.88 189.07 16398.33 17997.55 11086.81 21090.39 16998.65 9475.09 22199.98 1093.32 12597.53 11899.26 101
XVG-OURS-SEG-HR90.95 17190.66 16891.83 22395.18 20281.14 30295.92 28495.92 23888.40 17090.33 17097.85 12370.66 26399.38 11992.83 13288.83 20894.98 218
IS-MVSNet93.00 13592.51 12994.49 16296.14 17287.36 20098.31 18295.70 25688.58 16090.17 17197.50 14183.02 16297.22 21787.06 18896.07 14198.90 128
CSCG94.87 8594.71 8095.36 13799.54 3686.49 21799.34 6498.15 3482.71 27590.15 17299.25 2589.48 5699.86 5294.97 9798.82 9399.72 54
SCA90.64 17889.25 18594.83 15194.95 21688.83 17096.26 27497.21 15490.06 12090.03 17390.62 28766.61 28896.81 23283.16 23494.36 15698.84 132
XVG-OURS90.83 17390.49 17091.86 22295.23 19781.25 29995.79 29295.92 23888.96 14990.02 17498.03 12271.60 25799.35 12591.06 14587.78 21294.98 218
ADS-MVSNet287.62 23186.88 22489.86 26796.21 16679.14 31287.15 33992.99 32583.01 26889.91 17587.27 32578.87 20392.80 33274.20 30092.27 17997.64 182
ADS-MVSNet88.99 20287.30 21794.07 17696.21 16687.56 19487.15 33996.78 18583.01 26889.91 17587.27 32578.87 20397.01 22574.20 30092.27 17997.64 182
ab-mvs91.05 16989.17 18696.69 8995.96 17691.72 9892.62 32197.23 15285.61 22689.74 17793.89 22168.55 27299.42 11591.09 14487.84 21198.92 127
TAMVS92.62 14192.09 13994.20 17294.10 23487.68 19098.41 16996.97 17987.53 19889.74 17796.04 19084.77 13996.49 24888.97 17392.31 17898.42 157
Vis-MVSNet (Re-imp)93.26 13193.00 12194.06 17796.14 17286.71 21598.68 13496.70 18688.30 17389.71 17997.64 13685.43 13196.39 25488.06 18196.32 13399.08 113
CNLPA93.64 11992.74 12496.36 10598.96 8290.01 14899.19 7195.89 24586.22 22089.40 18098.85 7980.66 19299.84 5588.57 17496.92 12599.24 102
Anonymous20240521188.84 20787.03 22294.27 16998.14 10884.18 26598.44 16595.58 26576.79 32189.34 18196.88 16853.42 33599.54 9687.53 18787.12 21599.09 112
Fast-Effi-MVS+91.72 15790.79 16594.49 16295.89 17787.40 19999.54 3595.70 25685.01 23989.28 18295.68 19477.75 21197.57 20683.22 23395.06 15198.51 154
PatchMatch-RL91.47 16190.54 16994.26 17098.20 10486.36 22396.94 25097.14 16287.75 19088.98 18395.75 19371.80 25599.40 11880.92 25497.39 12197.02 201
dp90.16 18788.83 19394.14 17496.38 16086.42 21991.57 32797.06 17284.76 24388.81 18490.19 30384.29 14297.43 21375.05 29391.35 19698.56 152
DeepC-MVS91.02 494.56 9893.92 10396.46 9997.16 13490.76 12598.39 17597.11 16693.92 3188.66 18598.33 11278.14 20999.85 5495.02 9598.57 10198.78 141
Andreas Kuhn, Christian Sormann, Mattia Rossi, Oliver Erdler, Friedrich Fraundorfer: DeepC-MVS: Deep Confidence Prediction for Multi-View Stereo Reconstruction. 3DV 2020
baseline192.61 14291.28 15396.58 9497.05 14194.63 4497.72 22196.20 21989.82 12388.56 18696.85 16986.85 10197.82 18588.42 17580.10 25997.30 191
Anonymous2024052987.66 23085.58 24393.92 18297.59 12285.01 25598.13 19497.13 16466.69 34988.47 18796.01 19155.09 32999.51 10187.00 19084.12 23497.23 194
CVMVSNet90.30 18290.91 16088.46 29594.32 23073.58 33597.61 22697.59 10290.16 11688.43 18897.10 15776.83 21692.86 32982.64 24093.54 16398.93 126
TR-MVS90.77 17489.44 18194.76 15296.31 16288.02 18697.92 20895.96 23285.52 22788.22 18997.23 15066.80 28798.09 16884.58 21792.38 17698.17 173
F-COLMAP92.07 15291.75 14793.02 19998.16 10782.89 28198.79 12495.97 23086.54 21687.92 19097.80 12678.69 20699.65 8485.97 20095.93 14396.53 209
BH-RMVSNet91.25 16689.99 17495.03 14796.75 14988.55 17798.65 13894.95 29287.74 19187.74 19197.80 12668.27 27598.14 16480.53 25897.49 11998.41 158
Effi-MVS+-dtu89.97 19190.68 16787.81 29995.15 20371.98 34197.87 21295.40 27691.92 7487.57 19291.44 26674.27 23296.84 23089.45 16293.10 16694.60 220
HQP-NCC93.95 23899.16 7693.92 3187.57 192
ACMP_Plane93.95 23899.16 7693.92 3187.57 192
HQP4-MVS87.57 19297.77 18992.72 227
HQP-MVS91.50 16091.23 15492.29 21393.95 23886.39 22199.16 7696.37 20793.92 3187.57 19296.67 17573.34 23997.77 18993.82 11786.29 21792.72 227
TAPA-MVS87.50 990.35 18089.05 18894.25 17198.48 10085.17 25298.42 16796.58 19482.44 28187.24 19798.53 10182.77 16698.84 14459.09 34797.88 10998.72 144
Andrea Romanoni, Matteo Matteucci: TAPA-MVS: Textureless-Aware PAtchMatch Multi-View Stereo. ICCV 2019
GeoE90.60 17989.56 17893.72 18995.10 20985.43 24699.41 5494.94 29383.96 25487.21 19896.83 17074.37 23097.05 22480.50 25993.73 16198.67 147
HQP_MVS91.26 16490.95 15992.16 21793.84 24586.07 23399.02 9896.30 21193.38 4686.99 19996.52 17772.92 24397.75 19493.46 12286.17 22092.67 229
plane_prior385.91 23693.65 4186.99 199
GA-MVS90.10 18888.69 19694.33 16792.44 26987.97 18799.08 9196.26 21589.65 12886.92 20193.11 24268.09 27696.96 22682.54 24290.15 20498.05 174
1112_ss92.71 13891.55 15096.20 10895.56 18791.12 11398.48 16294.69 29988.29 17486.89 20298.50 10487.02 9898.66 15384.75 21489.77 20698.81 137
MVS_030484.13 28182.66 28088.52 29393.07 26380.15 30795.81 29198.21 2979.27 30686.85 20386.40 33241.33 35494.69 31576.36 28586.69 21690.73 292
Test_1112_low_res92.27 14990.97 15896.18 10995.53 19091.10 11598.47 16494.66 30088.28 17586.83 20493.50 23387.00 9998.65 15484.69 21589.74 20798.80 138
cascas90.93 17289.33 18495.76 12495.69 18393.03 7898.99 10296.59 19180.49 30186.79 20594.45 21065.23 29698.60 15593.52 12192.18 18195.66 217
baseline294.04 10593.80 10694.74 15493.07 26390.25 13598.12 19698.16 3389.86 12186.53 20696.95 16495.56 598.05 17391.44 14194.53 15495.93 215
OPM-MVS89.76 19389.15 18791.57 23090.53 29485.58 24498.11 19895.93 23792.88 5586.05 20796.47 18067.06 28697.87 18289.29 16986.08 22291.26 276
VPA-MVSNet89.10 20087.66 21293.45 19292.56 26791.02 11997.97 20798.32 2486.92 20786.03 20892.01 25568.84 27197.10 22290.92 14775.34 28292.23 239
tpm cat188.89 20587.27 21893.76 18795.79 17985.32 24990.76 33497.09 17076.14 32385.72 20988.59 31682.92 16398.04 17476.96 27991.43 19397.90 179
IB-MVS89.43 692.12 15190.83 16495.98 11895.40 19490.78 12499.81 598.06 3891.23 9185.63 21093.66 22790.63 3798.78 14591.22 14371.85 31898.36 164
Christian Sormann, Mattia Rossi, Andreas Kuhn and Friedrich Fraundorfer: IB-MVS: An Iterative Algorithm for Deep Multi-View Stereo based on Binary Decisions. BMVC 2021
EI-MVSNet89.87 19289.38 18391.36 23394.32 23085.87 23897.61 22696.59 19185.10 23485.51 21197.10 15781.30 18996.56 24283.85 23083.03 24491.64 255
MVSTER92.71 13892.32 13193.86 18497.29 13092.95 8299.01 10096.59 19190.09 11785.51 21194.00 21794.61 1296.56 24290.77 15183.03 24492.08 245
RRT_MVS91.95 15491.09 15594.53 16196.71 15295.12 2898.64 14096.23 21789.04 14685.24 21395.06 20287.71 8296.43 25289.10 17282.06 25192.05 247
RPSCF85.33 26585.55 24484.67 31994.63 22662.28 35293.73 31093.76 31674.38 32985.23 21497.06 16064.09 29998.31 15880.98 25286.08 22293.41 226
BH-w/o92.32 14791.79 14593.91 18396.85 14586.18 22899.11 9095.74 25488.13 17884.81 21597.00 16277.26 21497.91 17889.16 17198.03 10897.64 182
CLD-MVS91.06 16890.71 16692.10 21994.05 23786.10 23199.55 3396.29 21494.16 2684.70 21697.17 15569.62 26797.82 18594.74 10186.08 22292.39 232
Zhaoxin Li, Wangmeng Zuo, Zhaoqi Wang, Lei Zhang: Confidence-based Large-scale Dense Multi-view Stereo. IEEE Transaction on Image Processing, 2020
tpmvs89.16 19987.76 20993.35 19397.19 13384.75 25990.58 33697.36 14481.99 28684.56 21789.31 31383.98 14598.17 16374.85 29690.00 20597.12 195
nrg03090.23 18388.87 19194.32 16891.53 28393.54 6598.79 12495.89 24588.12 17984.55 21894.61 20978.80 20596.88 22992.35 13675.21 28392.53 231
VPNet88.30 21986.57 22893.49 19191.95 27691.35 10698.18 19197.20 15888.61 15884.52 21994.89 20462.21 30696.76 23589.34 16672.26 31592.36 234
MVS93.92 10892.28 13298.83 495.69 18396.82 596.22 27798.17 3184.89 24184.34 22098.61 9879.32 20099.83 5793.88 11499.43 6499.86 28
mvs_anonymous92.50 14591.65 14895.06 14596.60 15389.64 15697.06 24696.44 20486.64 21384.14 22193.93 21982.49 17196.17 27191.47 14096.08 14099.35 91
Fast-Effi-MVS+-dtu88.84 20788.59 20089.58 27693.44 25678.18 31998.65 13894.62 30188.46 16484.12 22295.37 20068.91 26996.52 24582.06 24691.70 19094.06 221
LS3D90.19 18588.72 19594.59 16098.97 8086.33 22496.90 25296.60 19074.96 32684.06 22398.74 8675.78 21899.83 5774.93 29497.57 11597.62 185
bset_n11_16_dypcd89.07 20187.85 20892.76 20686.16 33790.66 12997.30 23495.62 26189.78 12583.94 22493.15 24174.85 22295.89 28691.34 14278.48 26591.74 253
ACMM86.95 1388.77 21288.22 20690.43 25393.61 25081.34 29798.50 15995.92 23887.88 18683.85 22595.20 20167.20 28497.89 18086.90 19384.90 22892.06 246
Qingshan Xu and Wenbing Tao: Multi-Scale Geometric Consistency Guided Multi-View Stereo. CVPR 2019
BH-untuned91.46 16290.84 16293.33 19496.51 15784.83 25898.84 11795.50 26986.44 21983.50 22696.70 17475.49 22097.77 18986.78 19597.81 11097.40 188
FIs90.70 17689.87 17593.18 19692.29 27091.12 11398.17 19398.25 2689.11 14483.44 22794.82 20682.26 17696.17 27187.76 18382.76 24692.25 237
UniMVSNet (Re)89.50 19888.32 20493.03 19892.21 27290.96 12198.90 11198.39 2289.13 14383.22 22892.03 25381.69 18396.34 26286.79 19472.53 31191.81 252
UniMVSNet_NR-MVSNet89.60 19588.55 20192.75 20792.17 27390.07 14298.74 12698.15 3488.37 17183.21 22993.98 21882.86 16495.93 28186.95 19172.47 31292.25 237
DU-MVS88.83 20987.51 21392.79 20491.46 28490.07 14298.71 12797.62 9588.87 15483.21 22993.68 22574.63 22395.93 28186.95 19172.47 31292.36 234
LPG-MVS_test88.86 20688.47 20390.06 26293.35 25880.95 30498.22 18795.94 23587.73 19283.17 23196.11 18866.28 29197.77 18990.19 15585.19 22691.46 266
LGP-MVS_train90.06 26293.35 25880.95 30495.94 23587.73 19283.17 23196.11 18866.28 29197.77 18990.19 15585.19 22691.46 266
miper_enhance_ethall90.33 18189.70 17692.22 21497.12 13788.93 16898.35 17895.96 23288.60 15983.14 23392.33 25187.38 8896.18 27086.49 19677.89 26991.55 263
FC-MVSNet-test90.22 18489.40 18292.67 21091.78 28089.86 15097.89 20998.22 2888.81 15582.96 23494.66 20881.90 18295.96 27985.89 20482.52 24992.20 241
PCF-MVS89.78 591.26 16489.63 17796.16 11295.44 19291.58 10395.29 29696.10 22585.07 23682.75 23597.45 14378.28 20899.78 6680.60 25795.65 14897.12 195
Andreas Kuhn, Shan Lin, Oliver Erdler: Plane Completion and Filtering for Multi-View Stereo Reconstruction. GCPR 2019
V4287.00 23785.68 24290.98 24089.91 29986.08 23298.32 18195.61 26383.67 25982.72 23690.67 28374.00 23696.53 24481.94 24874.28 29590.32 301
v114486.83 24085.31 24791.40 23189.75 30287.21 20898.31 18295.45 27283.22 26582.70 23790.78 27873.36 23896.36 25679.49 26274.69 28990.63 296
v14419286.40 24884.89 25390.91 24189.48 30885.59 24398.21 18995.43 27582.45 28082.62 23890.58 29072.79 24696.36 25678.45 27174.04 29990.79 288
3Dnovator87.35 1193.17 13391.77 14697.37 5195.41 19393.07 7698.82 11897.85 5291.53 8282.56 23997.58 13971.97 25299.82 6091.01 14699.23 7899.22 105
v2v48287.27 23585.76 24091.78 22989.59 30487.58 19398.56 15295.54 26784.53 24582.51 24091.78 26073.11 24296.47 24982.07 24574.14 29891.30 274
Baseline_NR-MVSNet85.83 25784.82 25588.87 29188.73 31683.34 27498.63 14291.66 34180.41 30482.44 24191.35 26874.63 22395.42 29984.13 22371.39 32187.84 329
v119286.32 25084.71 25791.17 23589.53 30786.40 22098.13 19495.44 27482.52 27982.42 24290.62 28771.58 25896.33 26377.23 27674.88 28690.79 288
test_djsdf88.26 22187.73 21089.84 26888.05 32482.21 28997.77 21796.17 22286.84 20882.41 24391.95 25872.07 25195.99 27789.83 15784.50 23191.32 273
cl-mvsnet289.57 19688.79 19491.91 22197.94 11287.62 19297.98 20696.51 19985.03 23782.37 24491.79 25983.65 14796.50 24685.96 20177.89 26991.61 260
131493.44 12291.98 14197.84 3095.24 19694.38 5096.22 27797.92 4790.18 11382.28 24597.71 13277.63 21299.80 6491.94 13898.67 9899.34 93
v192192086.02 25384.44 26290.77 24689.32 31085.20 25098.10 19995.35 28182.19 28482.25 24690.71 28070.73 26196.30 26776.85 28174.49 29190.80 287
v124085.77 26084.11 26590.73 24789.26 31185.15 25397.88 21195.23 28981.89 28982.16 24790.55 29269.60 26896.31 26475.59 29174.87 28790.72 293
XVG-ACMP-BASELINE85.86 25684.95 25288.57 29289.90 30077.12 32494.30 30495.60 26487.40 20082.12 24892.99 24553.42 33597.66 19885.02 21183.83 23690.92 284
GBi-Net86.67 24384.96 25091.80 22595.11 20688.81 17196.77 25695.25 28382.94 27082.12 24890.25 29862.89 30394.97 30779.04 26580.24 25691.62 257
test186.67 24384.96 25091.80 22595.11 20688.81 17196.77 25695.25 28382.94 27082.12 24890.25 29862.89 30394.97 30779.04 26580.24 25691.62 257
FMVSNet388.81 21187.08 22193.99 18196.52 15694.59 4598.08 20196.20 21985.85 22382.12 24891.60 26374.05 23595.40 30079.04 26580.24 25691.99 249
IterMVS-LS88.34 21887.44 21491.04 23894.10 23485.85 23998.10 19995.48 27085.12 23382.03 25291.21 27181.35 18895.63 29483.86 22975.73 28191.63 256
Fangjinhua Wang, Silvano Galliani, Christoph Vogel, Marc Pollefeys: IterMVS: Iterative Probability Estimation for Efficient Multi-View Stereo.
RRT_test8_iter0591.04 17090.40 17292.95 20196.20 16989.75 15398.97 10496.38 20688.52 16182.00 25393.51 23290.69 3696.73 23690.43 15376.91 27792.38 233
miper_ehance_all_eth88.94 20488.12 20791.40 23195.32 19586.93 21197.85 21395.55 26684.19 24981.97 25491.50 26584.16 14395.91 28484.69 21577.89 26991.36 271
MIMVSNet84.48 27581.83 28592.42 21291.73 28187.36 20085.52 34294.42 30681.40 29281.91 25587.58 32051.92 33892.81 33173.84 30388.15 21097.08 199
PS-MVSNAJss89.54 19789.05 18891.00 23988.77 31584.36 26397.39 23095.97 23088.47 16281.88 25693.80 22382.48 17296.50 24689.34 16683.34 24392.15 242
WR-MVS88.54 21687.22 22092.52 21191.93 27889.50 15898.56 15297.84 5386.99 20381.87 25793.81 22274.25 23495.92 28385.29 20774.43 29292.12 243
TranMVSNet+NR-MVSNet87.75 22786.31 23292.07 22090.81 29188.56 17698.33 17997.18 15987.76 18981.87 25793.90 22072.45 24795.43 29883.13 23671.30 32292.23 239
eth_miper_zixun_eth87.76 22687.00 22390.06 26294.67 22582.65 28697.02 24995.37 27984.19 24981.86 25991.58 26481.47 18695.90 28583.24 23273.61 30191.61 260
UniMVSNet_ETH3D85.65 26383.79 26991.21 23490.41 29680.75 30695.36 29595.78 25178.76 31181.83 26094.33 21149.86 34396.66 23784.30 21983.52 24196.22 213
cl_fuxian88.19 22287.23 21991.06 23794.97 21586.17 22997.72 22195.38 27883.43 26281.68 26191.37 26782.81 16595.72 29184.04 22773.70 30091.29 275
DP-MVS88.75 21386.56 22995.34 13898.92 8487.45 19797.64 22593.52 32270.55 33781.49 26297.25 14874.43 22999.88 4471.14 31594.09 15898.67 147
3Dnovator+87.72 893.43 12391.84 14498.17 1895.73 18295.08 2998.92 10997.04 17391.42 8781.48 26397.60 13774.60 22599.79 6590.84 14998.97 8599.64 67
QAPM91.41 16389.49 18097.17 5895.66 18593.42 6898.60 14797.51 12080.92 29981.39 26497.41 14572.89 24599.87 4782.33 24398.68 9798.21 171
XXY-MVS87.75 22786.02 23692.95 20190.46 29589.70 15497.71 22395.90 24384.02 25180.95 26594.05 21267.51 28297.10 22285.16 20878.41 26692.04 248
v14886.38 24985.06 24990.37 25789.47 30984.10 26698.52 15495.48 27083.80 25580.93 26690.22 30174.60 22596.31 26480.92 25471.55 32090.69 294
cl-mvsnet187.82 22486.81 22590.87 24494.87 22085.39 24897.81 21495.22 29082.92 27380.76 26791.31 26981.99 17995.81 28981.36 25075.04 28591.42 269
cl-mvsnet____87.82 22486.79 22690.89 24394.88 21985.43 24697.81 21495.24 28682.91 27480.71 26891.22 27081.97 18195.84 28781.34 25175.06 28491.40 270
FMVSNet286.90 23884.79 25693.24 19595.11 20692.54 9097.67 22495.86 24982.94 27080.55 26991.17 27262.89 30395.29 30277.23 27679.71 26291.90 251
pmmvs487.58 23286.17 23591.80 22589.58 30588.92 16997.25 23895.28 28282.54 27880.49 27093.17 23975.62 21996.05 27682.75 23978.90 26390.42 299
ACMP87.39 1088.71 21488.24 20590.12 26193.91 24381.06 30398.50 15995.67 25989.43 13780.37 27195.55 19565.67 29397.83 18490.55 15284.51 23091.47 265
Qingshan Xu and Wenbing Tao: Planar Prior Assisted PatchMatch Multi-View Stereo. AAAI 2020
test_part188.43 21786.68 22793.67 19097.56 12492.40 9298.12 19696.55 19682.26 28380.31 27293.16 24074.59 22796.62 23985.00 21272.61 31091.99 249
pmmvs585.87 25584.40 26490.30 25888.53 31984.23 26498.60 14793.71 31881.53 29180.29 27392.02 25464.51 29895.52 29682.04 24778.34 26791.15 278
test0.0.03 188.96 20388.61 19890.03 26591.09 28884.43 26298.97 10497.02 17690.21 11180.29 27396.31 18584.89 13691.93 34372.98 30985.70 22593.73 222
miper_lstm_enhance86.90 23886.20 23489.00 28894.53 22781.19 30096.74 26095.24 28682.33 28280.15 27590.51 29481.99 17994.68 31680.71 25673.58 30291.12 279
jajsoiax87.35 23386.51 23089.87 26687.75 32981.74 29297.03 24795.98 22888.47 16280.15 27593.80 22361.47 30896.36 25689.44 16484.47 23291.50 264
mvs_tets87.09 23686.22 23389.71 27187.87 32581.39 29696.73 26195.90 24388.19 17779.99 27793.61 22859.96 31496.31 26489.40 16584.34 23391.43 268
ITE_SJBPF87.93 29792.26 27176.44 32593.47 32387.67 19579.95 27895.49 19856.50 32297.38 21475.24 29282.33 25089.98 310
v886.11 25284.45 26191.10 23689.99 29886.85 21297.24 23995.36 28081.99 28679.89 27989.86 30674.53 22896.39 25478.83 26972.32 31490.05 308
v1085.73 26184.01 26790.87 24490.03 29786.73 21497.20 24295.22 29081.25 29479.85 28089.75 30773.30 24196.28 26876.87 28072.64 30989.61 315
WR-MVS_H86.53 24785.49 24589.66 27591.04 28983.31 27597.53 22898.20 3084.95 24079.64 28190.90 27678.01 21095.33 30176.29 28672.81 30790.35 300
anonymousdsp86.69 24285.75 24189.53 27786.46 33582.94 27896.39 26895.71 25583.97 25379.63 28290.70 28168.85 27095.94 28086.01 19984.02 23589.72 313
Patchmtry83.61 28681.64 28689.50 27893.36 25782.84 28384.10 34994.20 31169.47 34279.57 28386.88 32984.43 14094.78 31368.48 32474.30 29490.88 285
CP-MVSNet86.54 24685.45 24689.79 27091.02 29082.78 28497.38 23297.56 10985.37 23079.53 28493.03 24371.86 25495.25 30379.92 26073.43 30591.34 272
Patchmatch-test86.25 25184.06 26692.82 20394.42 22882.88 28282.88 35394.23 31071.58 33479.39 28590.62 28789.00 6196.42 25363.03 33991.37 19599.16 108
DSMNet-mixed81.60 29581.43 28982.10 32884.36 34160.79 35393.63 31286.74 35779.00 30779.32 28687.15 32763.87 30189.78 34866.89 32991.92 18495.73 216
MSDG88.29 22086.37 23194.04 17996.90 14486.15 23096.52 26694.36 30877.89 31779.22 28796.95 16469.72 26699.59 9273.20 30892.58 17496.37 212
Anonymous2023121184.72 27082.65 28190.91 24197.71 11684.55 26197.28 23696.67 18766.88 34879.18 28890.87 27758.47 31696.60 24082.61 24174.20 29691.59 262
PS-CasMVS85.81 25884.58 26089.49 28090.77 29282.11 29097.20 24297.36 14484.83 24279.12 28992.84 24667.42 28395.16 30578.39 27273.25 30691.21 277
IterMVS85.81 25884.67 25889.22 28393.51 25283.67 27196.32 27194.80 29585.09 23578.69 29090.17 30466.57 29093.17 32879.48 26377.42 27590.81 286
Fangjinhua Wang, Silvano Galliani, Christoph Vogel, Marc Pollefeys: IterMVS: Iterative Probability Estimation for Efficient Multi-View Stereo.
PEN-MVS85.21 26683.93 26889.07 28789.89 30181.31 29897.09 24597.24 15084.45 24778.66 29192.68 24868.44 27494.87 31075.98 28870.92 32391.04 281
IterMVS-SCA-FT85.73 26184.64 25989.00 28893.46 25582.90 28096.27 27294.70 29885.02 23878.62 29290.35 29666.61 28893.33 32579.38 26477.36 27690.76 290
OpenMVScopyleft85.28 1490.75 17588.84 19296.48 9893.58 25193.51 6698.80 12097.41 13882.59 27678.62 29297.49 14268.00 27899.82 6084.52 21898.55 10296.11 214
PVSNet_083.28 1687.31 23485.16 24893.74 18894.78 22284.59 26098.91 11098.69 1889.81 12478.59 29493.23 23761.95 30799.34 12694.75 10055.72 35097.30 191
EU-MVSNet84.19 27984.42 26383.52 32488.64 31867.37 35096.04 28395.76 25385.29 23178.44 29593.18 23870.67 26291.48 34575.79 29075.98 27991.70 254
v7n84.42 27782.75 27889.43 28188.15 32281.86 29196.75 25995.67 25980.53 30078.38 29689.43 31169.89 26496.35 26173.83 30472.13 31690.07 306
FMVSNet183.94 28381.32 29191.80 22591.94 27788.81 17196.77 25695.25 28377.98 31378.25 29790.25 29850.37 34294.97 30773.27 30777.81 27391.62 257
D2MVS87.96 22387.39 21589.70 27291.84 27983.40 27398.31 18298.49 2088.04 18178.23 29890.26 29773.57 23796.79 23484.21 22183.53 24088.90 323
MS-PatchMatch86.75 24185.92 23889.22 28391.97 27582.47 28896.91 25196.14 22483.74 25677.73 29993.53 23158.19 31797.37 21676.75 28298.35 10587.84 329
DTE-MVSNet84.14 28082.80 27588.14 29688.95 31479.87 31096.81 25596.24 21683.50 26177.60 30092.52 25067.89 28094.24 32172.64 31169.05 32690.32 301
COLMAP_ROBcopyleft82.69 1884.54 27482.82 27489.70 27296.72 15078.85 31395.89 28592.83 32871.55 33577.54 30195.89 19259.40 31599.14 13667.26 32788.26 20991.11 280
Johannes L. Schönberger, Enliang Zheng, Marc Pollefeys, Jan-Michael Frahm: Pixelwise View Selection for Unstructured Multi-View Stereo. ECCV 2016
OurMVSNet-221017-084.13 28183.59 27085.77 31387.81 32670.24 34494.89 29993.65 32086.08 22176.53 30293.28 23661.41 30996.14 27380.95 25377.69 27490.93 283
tfpnnormal83.65 28481.35 29090.56 25091.37 28688.06 18497.29 23597.87 5178.51 31276.20 30390.91 27564.78 29796.47 24961.71 34273.50 30387.13 337
ppachtmachnet_test83.63 28581.57 28889.80 26989.01 31285.09 25497.13 24494.50 30378.84 30976.14 30491.00 27469.78 26594.61 31763.40 33774.36 29389.71 314
pm-mvs184.68 27182.78 27790.40 25489.58 30585.18 25197.31 23394.73 29781.93 28876.05 30592.01 25565.48 29596.11 27478.75 27069.14 32589.91 311
AllTest84.97 26883.12 27290.52 25196.82 14678.84 31495.89 28592.17 33477.96 31575.94 30695.50 19655.48 32599.18 13171.15 31387.14 21393.55 224
TestCases90.52 25196.82 14678.84 31492.17 33477.96 31575.94 30695.50 19655.48 32599.18 13171.15 31387.14 21393.55 224
CL-MVSNet_2432*160079.89 30278.34 30284.54 32081.56 34975.01 32896.88 25395.62 26181.10 29575.86 30885.81 33568.49 27390.26 34763.21 33856.51 34888.35 326
testgi82.29 29081.00 29386.17 31087.24 33174.84 33097.39 23091.62 34288.63 15775.85 30995.42 19946.07 34991.55 34466.87 33079.94 26092.12 243
MVP-Stereo86.61 24585.83 23988.93 29088.70 31783.85 27096.07 28294.41 30782.15 28575.64 31091.96 25767.65 28196.45 25177.20 27898.72 9686.51 340
Qingsong Yan: MVP-Stereo: A Parallel Multi-View Patchmatch Stereo Method with Dilation Matching for Photogrammetric Application.
LF4IMVS81.94 29381.17 29284.25 32187.23 33268.87 34993.35 31491.93 33983.35 26475.40 31193.00 24449.25 34696.65 23878.88 26878.11 26887.22 336
our_test_384.47 27682.80 27589.50 27889.01 31283.90 26997.03 24794.56 30281.33 29375.36 31290.52 29371.69 25694.54 31868.81 32276.84 27890.07 306
LTVRE_ROB81.71 1984.59 27382.72 27990.18 25992.89 26683.18 27693.15 31594.74 29678.99 30875.14 31392.69 24765.64 29497.63 20069.46 32081.82 25389.74 312
Andreas Kuhn, Heiko Hirschmüller, Daniel Scharstein, Helmut Mayer: A TV Prior for High-Quality Scalable Multi-View Stereo Reconstruction. International Journal of Computer Vision 2016
Anonymous2023120680.76 29779.42 30184.79 31884.78 34072.98 33696.53 26592.97 32679.56 30574.33 31488.83 31461.27 31092.15 34060.59 34475.92 28089.24 320
FMVSNet582.29 29080.54 29487.52 30193.79 24884.01 26793.73 31092.47 33176.92 32074.27 31586.15 33463.69 30289.24 34969.07 32174.79 28889.29 319
MVS-HIRNet79.01 30575.13 31590.66 24893.82 24781.69 29385.16 34393.75 31754.54 35374.17 31659.15 35757.46 31996.58 24163.74 33694.38 15593.72 223
ACMH+83.78 1584.21 27882.56 28389.15 28593.73 24979.16 31196.43 26794.28 30981.09 29674.00 31794.03 21554.58 33197.67 19776.10 28778.81 26490.63 296
KD-MVS_2432*160082.98 28780.52 29590.38 25594.32 23088.98 16692.87 31895.87 24780.46 30273.79 31887.49 32282.76 16793.29 32670.56 31746.53 35588.87 324
miper_refine_blended82.98 28780.52 29590.38 25594.32 23088.98 16692.87 31895.87 24780.46 30273.79 31887.49 32282.76 16793.29 32670.56 31746.53 35588.87 324
NR-MVSNet87.74 22986.00 23792.96 20091.46 28490.68 12896.65 26397.42 13788.02 18273.42 32093.68 22577.31 21395.83 28884.26 22071.82 31992.36 234
USDC84.74 26982.93 27390.16 26091.73 28183.54 27295.00 29893.30 32488.77 15673.19 32193.30 23553.62 33497.65 19975.88 28981.54 25489.30 318
DIV-MVS_2432*160077.47 31475.88 31382.24 32681.59 34868.93 34892.83 32094.02 31477.03 31973.14 32283.39 33955.44 32790.42 34667.95 32557.53 34787.38 332
LCM-MVSNet-Re88.59 21588.61 19888.51 29495.53 19072.68 33996.85 25488.43 35588.45 16573.14 32290.63 28675.82 21794.38 31992.95 12995.71 14798.48 156
TDRefinement78.01 31175.31 31486.10 31170.06 35873.84 33393.59 31391.58 34374.51 32873.08 32491.04 27349.63 34597.12 21974.88 29559.47 34487.33 334
TransMVSNet (Re)81.97 29279.61 30089.08 28689.70 30384.01 26797.26 23791.85 34078.84 30973.07 32591.62 26267.17 28595.21 30467.50 32659.46 34588.02 328
SixPastTwentyTwo82.63 28981.58 28785.79 31288.12 32371.01 34395.17 29792.54 33084.33 24872.93 32692.08 25260.41 31395.61 29574.47 29874.15 29790.75 291
pmmvs679.90 30177.31 30687.67 30084.17 34278.13 32095.86 28993.68 31967.94 34672.67 32789.62 30950.98 34195.75 29074.80 29766.04 33489.14 321
ACMH83.09 1784.60 27282.61 28290.57 24993.18 26182.94 27896.27 27294.92 29481.01 29772.61 32893.61 22856.54 32197.79 18774.31 29981.07 25590.99 282
Qingshan Xu and Wenbing Tao: Multi-Scale Geometric Consistency Guided Multi-View Stereo. CVPR 2019
Anonymous2024052178.63 30976.90 30983.82 32282.82 34672.86 33795.72 29393.57 32173.55 33272.17 32984.79 33749.69 34492.51 33665.29 33474.50 29086.09 342
Patchmatch-RL test81.90 29480.13 29787.23 30480.71 35170.12 34684.07 35088.19 35683.16 26770.57 33082.18 34287.18 9592.59 33482.28 24462.78 33898.98 119
test_040278.81 30776.33 31186.26 30991.18 28778.44 31895.88 28791.34 34568.55 34370.51 33189.91 30552.65 33794.99 30647.14 35579.78 26185.34 346
TinyColmap80.42 29977.94 30387.85 29892.09 27478.58 31693.74 30989.94 35074.99 32569.77 33291.78 26046.09 34897.58 20365.17 33577.89 26987.38 332
test20.0378.51 31077.48 30581.62 33083.07 34571.03 34296.11 28192.83 32881.66 29069.31 33389.68 30857.53 31887.29 35358.65 34868.47 32786.53 339
N_pmnet70.19 32169.87 32371.12 33788.24 32130.63 36895.85 29028.70 36870.18 33968.73 33486.55 33164.04 30093.81 32253.12 35373.46 30488.94 322
OpenMVS_ROBcopyleft73.86 2077.99 31275.06 31686.77 30783.81 34477.94 32296.38 26991.53 34467.54 34768.38 33587.13 32843.94 35096.08 27555.03 35181.83 25286.29 341
ambc79.60 33372.76 35756.61 35676.20 35592.01 33868.25 33680.23 34623.34 36094.73 31473.78 30560.81 34287.48 331
PM-MVS74.88 31772.85 32080.98 33278.98 35464.75 35190.81 33385.77 35880.95 29868.23 33782.81 34029.08 35992.84 33076.54 28462.46 34085.36 345
pmmvs372.86 32069.76 32482.17 32773.86 35674.19 33294.20 30589.01 35464.23 35267.72 33880.91 34541.48 35288.65 35162.40 34054.02 35283.68 349
lessismore_v085.08 31585.59 33869.28 34790.56 34867.68 33990.21 30254.21 33395.46 29773.88 30262.64 33990.50 298
K. test v381.04 29679.77 29984.83 31787.41 33070.23 34595.60 29493.93 31583.70 25867.51 34089.35 31255.76 32393.58 32476.67 28368.03 32990.67 295
MIMVSNet175.92 31673.30 31983.81 32381.29 35075.57 32792.26 32392.05 33773.09 33367.48 34186.18 33340.87 35587.64 35255.78 35070.68 32488.21 327
ET-MVSNet_ETH3D92.56 14491.45 15295.88 12096.39 15994.13 5599.46 4596.97 17992.18 7166.94 34298.29 11594.65 1194.28 32094.34 10983.82 23899.24 102
pmmvs-eth3d78.71 30876.16 31286.38 30880.25 35281.19 30094.17 30692.13 33677.97 31466.90 34382.31 34155.76 32392.56 33573.63 30662.31 34185.38 344
EG-PatchMatch MVS79.92 30077.59 30486.90 30687.06 33377.90 32396.20 28094.06 31374.61 32766.53 34488.76 31540.40 35696.20 26967.02 32883.66 23986.61 338
test_method70.10 32268.66 32574.41 33586.30 33655.84 35794.47 30189.82 35135.18 35866.15 34584.75 33830.54 35877.96 35870.40 31960.33 34389.44 317
UnsupCasMVSNet_eth78.90 30676.67 31085.58 31482.81 34774.94 32991.98 32496.31 21084.64 24465.84 34687.71 31951.33 33992.23 33972.89 31056.50 34989.56 316
new-patchmatchnet74.80 31872.40 32181.99 32978.36 35572.20 34094.44 30292.36 33277.06 31863.47 34779.98 34751.04 34088.85 35060.53 34554.35 35184.92 347
new_pmnet76.02 31573.71 31882.95 32583.88 34372.85 33891.26 33092.26 33370.44 33862.60 34881.37 34347.64 34792.32 33861.85 34172.10 31783.68 349
UnsupCasMVSNet_bld73.85 31970.14 32284.99 31679.44 35375.73 32688.53 33795.24 28670.12 34061.94 34974.81 35041.41 35393.62 32368.65 32351.13 35485.62 343
CMPMVSbinary58.40 2180.48 29880.11 29881.59 33185.10 33959.56 35494.14 30795.95 23468.54 34460.71 35093.31 23455.35 32897.87 18283.06 23784.85 22987.33 334
M. Jancosek, T. Pajdla: Multi-View Reconstruction Preserving Weakly-Supported Surfaces. CVPR 2011
DeepMVS_CXcopyleft76.08 33490.74 29351.65 36090.84 34786.47 21857.89 35187.98 31735.88 35792.60 33365.77 33365.06 33683.97 348
YYNet179.64 30477.04 30887.43 30387.80 32779.98 30996.23 27694.44 30473.83 33151.83 35287.53 32167.96 27992.07 34266.00 33267.75 33190.23 303
MDA-MVSNet_test_wron79.65 30377.05 30787.45 30287.79 32880.13 30896.25 27594.44 30473.87 33051.80 35387.47 32468.04 27792.12 34166.02 33167.79 33090.09 304
LCM-MVSNet60.07 32456.37 32771.18 33654.81 36448.67 36182.17 35489.48 35337.95 35649.13 35469.12 35113.75 36781.76 35459.28 34651.63 35383.10 351
MDA-MVSNet-bldmvs77.82 31374.75 31787.03 30588.33 32078.52 31796.34 27092.85 32775.57 32448.87 35587.89 31857.32 32092.49 33760.79 34364.80 33790.08 305
PMMVS258.97 32555.07 32870.69 33862.72 35955.37 35885.97 34180.52 36149.48 35445.94 35668.31 35215.73 36580.78 35649.79 35437.12 35775.91 352
FPMVS61.57 32360.32 32665.34 33960.14 36242.44 36391.02 33289.72 35244.15 35542.63 35780.93 34419.02 36180.59 35742.50 35672.76 30873.00 353
Gipumacopyleft54.77 32652.22 33062.40 34186.50 33459.37 35550.20 36090.35 34936.52 35741.20 35849.49 35918.33 36381.29 35532.10 35865.34 33546.54 358
S. Galliani, K. Lasinger, K. Schindler: Massively Parallel Multiview Stereopsis by Surface Normal Diffusion. ICCV 2015
tmp_tt53.66 32752.86 32956.05 34232.75 36841.97 36473.42 35776.12 36421.91 36339.68 35996.39 18342.59 35165.10 36178.00 27314.92 36261.08 355
E-PMN41.02 33140.93 33341.29 34561.97 36033.83 36584.00 35165.17 36627.17 36027.56 36046.72 36117.63 36460.41 36319.32 36118.82 35929.61 359
ANet_high50.71 32846.17 33164.33 34044.27 36652.30 35976.13 35678.73 36264.95 35027.37 36155.23 35814.61 36667.74 36036.01 35718.23 36072.95 354
EMVS39.96 33239.88 33440.18 34659.57 36332.12 36784.79 34864.57 36726.27 36126.14 36244.18 36418.73 36259.29 36417.03 36217.67 36129.12 360
MVEpermissive44.00 2241.70 33037.64 33553.90 34449.46 36543.37 36265.09 35966.66 36526.19 36225.77 36348.53 3603.58 37063.35 36226.15 36027.28 35854.97 357
Simon Fuhrmann, Fabian Langguth, Michael Goesele: MVE - A Multi-View Reconstruction Environment. EUROGRAPHICS Workshops on Graphics and Cultural Heritage (2014)
PMVScopyleft41.42 2345.67 32942.50 33255.17 34334.28 36732.37 36666.24 35878.71 36330.72 35922.04 36459.59 3564.59 36877.85 35927.49 35958.84 34655.29 356
Y. Furukawa, J. Ponce: Accurate, dense, and robust multiview stereopsis. PAMI (2010)
testmvs18.81 33423.05 3376.10 3494.48 3692.29 37197.78 2163.00 3703.27 36518.60 36562.71 3541.53 3722.49 36714.26 3641.80 36413.50 362
test12316.58 33619.47 3387.91 3483.59 3705.37 37094.32 3031.39 3712.49 36613.98 36644.60 3632.91 3712.65 36611.35 3650.57 36515.70 361
wuyk23d16.71 33516.73 33916.65 34760.15 36125.22 36941.24 3615.17 3696.56 3645.48 3673.61 3673.64 36922.72 36515.20 3639.52 3631.99 363
uanet_test0.00 3390.00 3420.00 3500.00 3710.00 3720.00 3620.00 3720.00 3670.00 3680.00 3680.00 3730.00 3680.00 3660.00 3660.00 364
cdsmvs_eth3d_5k22.52 33330.03 3360.00 3500.00 3710.00 3720.00 36297.17 1600.00 3670.00 36898.77 8374.35 2310.00 3680.00 3660.00 3660.00 364
pcd_1.5k_mvsjas6.87 3389.16 3410.00 3500.00 3710.00 3720.00 3620.00 3720.00 3670.00 3680.00 36882.48 1720.00 3680.00 3660.00 3660.00 364
sosnet-low-res0.00 3390.00 3420.00 3500.00 3710.00 3720.00 3620.00 3720.00 3670.00 3680.00 3680.00 3730.00 3680.00 3660.00 3660.00 364
sosnet0.00 3390.00 3420.00 3500.00 3710.00 3720.00 3620.00 3720.00 3670.00 3680.00 3680.00 3730.00 3680.00 3660.00 3660.00 364
uncertanet0.00 3390.00 3420.00 3500.00 3710.00 3720.00 3620.00 3720.00 3670.00 3680.00 3680.00 3730.00 3680.00 3660.00 3660.00 364
Regformer0.00 3390.00 3420.00 3500.00 3710.00 3720.00 3620.00 3720.00 3670.00 3680.00 3680.00 3730.00 3680.00 3660.00 3660.00 364
ab-mvs-re8.21 33710.94 3400.00 3500.00 3710.00 3720.00 3620.00 3720.00 3670.00 36898.50 1040.00 3730.00 3680.00 3660.00 3660.00 364
uanet0.00 3390.00 3420.00 3500.00 3710.00 3720.00 3620.00 3720.00 3670.00 3680.00 3680.00 3730.00 3680.00 3660.00 3660.00 364
OPU-MVS99.49 299.64 2098.51 299.77 899.19 3295.12 699.97 2099.90 199.92 399.99 1
save fliter99.34 5393.85 5999.65 2297.63 9395.69 11
test_0728_SECOND98.77 599.66 1596.37 1199.72 1397.68 8199.98 1099.64 599.82 1599.96 8
GSMVS98.84 132
sam_mvs188.39 7098.84 132
sam_mvs87.08 96
MTGPAbinary97.45 130
test_post190.74 33541.37 36585.38 13296.36 25683.16 234
test_post46.00 36287.37 8997.11 220
patchmatchnet-post84.86 33688.73 6496.81 232
MTMP99.21 7091.09 346
gm-plane-assit94.69 22488.14 18288.22 17697.20 15298.29 16090.79 150
test9_res98.60 1999.87 799.90 20
agg_prior297.84 4199.87 799.91 18
test_prior492.00 9499.41 54
test_prior97.01 6299.58 2991.77 9597.57 10799.49 10499.79 34
新几何298.26 185
旧先验198.97 8092.90 8397.74 6899.15 4191.05 2999.33 7099.60 73
无先验98.52 15497.82 5587.20 20299.90 4087.64 18599.85 29
原ACMM298.69 132
testdata299.88 4484.16 222
segment_acmp90.56 39
testdata197.89 20992.43 62
plane_prior793.84 24585.73 241
plane_prior693.92 24286.02 23572.92 243
plane_prior596.30 21197.75 19493.46 12286.17 22092.67 229
plane_prior496.52 177
plane_prior299.02 9893.38 46
plane_prior193.90 244
plane_prior86.07 23399.14 8593.81 3986.26 219
n20.00 372
nn0.00 372
door-mid84.90 360
test1197.68 81
door85.30 359
HQP5-MVS86.39 221
BP-MVS93.82 117
HQP3-MVS96.37 20786.29 217
HQP2-MVS73.34 239
NP-MVS93.94 24186.22 22796.67 175
ACMMP++_ref82.64 248
ACMMP++83.83 236
Test By Simon83.62 149