This table lists the benchmark results for the high-res multi-view scenario. The following metrics are evaluated:

(*) For exact definitions, detailing how potentially incomplete ground truth is taken into account, see our paper.

The datasets are grouped into different categories, and result averages are computed for a category and method if results of the method are available for all datasets within the category. Note that the category "all" includes both the high-res multi-view and the low-res many-view scenarios.

Methods with suffix _ROB may participate in the Robust Vision Challenge.

Click a dataset result cell to show a visualization of the reconstruction. For training datasets, ground truth and accuracy / completeness visualizations are also available. The visualizations may not work with mobile browsers.




Method Infoallhigh-res
multi-view
indooroutdoorbotani.boulde.bridgedoorexhibi.lectur.living.loungeobserv.old co.statueterrac.
sort bysort bysort bysort bysort bysort bysort bysort bysort bysorted bysort bysort bysort bysort bysort bysort by
IU-MVS99.63 2195.38 2197.73 7595.54 1599.54 199.69 599.81 2399.99 1
PC_three_145294.60 2199.41 299.12 4895.50 799.96 3099.84 299.92 399.97 7
CNVR-MVS98.46 198.38 198.72 899.80 496.19 1499.80 797.99 4597.05 399.41 299.59 292.89 25100.00 198.99 1999.90 799.96 10
patch_mono-297.10 2797.97 894.49 16999.21 7383.73 28499.62 2898.25 2795.28 1899.38 498.91 8092.28 2899.94 3799.61 899.22 8399.78 42
test072699.66 1595.20 2999.77 897.70 8293.95 3199.35 599.54 393.18 22
SED-MVS98.18 298.10 498.41 1799.63 2195.24 2499.77 897.72 7794.17 2699.30 699.54 393.32 1999.98 1099.70 399.81 2399.99 1
test_241102_ONE99.63 2195.24 2497.72 7794.16 2899.30 699.49 1093.32 1999.98 10
DVP-MVS++98.18 298.09 598.44 1599.61 2795.38 2199.55 3597.68 8693.01 5399.23 899.45 1695.12 899.98 1099.25 1599.92 399.97 7
test_241102_TWO97.72 7794.17 2699.23 899.54 393.14 2499.98 1099.70 399.82 1999.99 1
SMA-MVScopyleft97.24 1996.99 2598.00 3099.30 6594.20 5699.16 8297.65 9489.55 14799.22 1099.52 990.34 5199.99 598.32 3899.83 1599.82 34
Yufeng Yin; Xiaoyan Liu; Zichao Zhang: SMA-MVS: Segmentation-Guided Multi-Scale Anchor Deformation Patch Multi-View Stereo. IEEE Transactions on Circuits and Systems for Video Technology
DVP-MVScopyleft98.07 798.00 698.29 1899.66 1595.20 2999.72 1397.47 13593.95 3199.07 1199.46 1193.18 2299.97 2399.64 699.82 1999.69 65
Zhenlong Yuan, Jinguo Luo, Fei Shen, Zhaoxin Li, Cong Liu, Tianlu Mao, Zhaoqi Wang: DVP-MVS: Synergize Depth-Edge and Visibility Prior for Multi-View Stereo. AAAI2025
test_0728_THIRD93.01 5399.07 1199.46 1194.66 1499.97 2399.25 1599.82 1999.95 15
TSAR-MVS + MP.97.44 1697.46 1397.39 5299.12 7893.49 7198.52 15997.50 13094.46 2398.99 1398.64 10191.58 3099.08 14498.49 3099.83 1599.60 78
Zhenlong Yuan, Jiakai Cao, Zhaoqi Wang, Zhaoxin Li: TSAR-MVS: Textureless-aware Segmentation and Correlative Refinement Guided Multi-View Stereo. Pattern Recognition
PS-MVSNAJ96.87 3596.40 4198.29 1897.35 13797.29 599.03 10497.11 17495.83 1098.97 1499.14 4582.48 18199.60 9698.60 2599.08 8698.00 188
旧先验298.67 14285.75 23898.96 1598.97 14893.84 125
test_one_060199.59 3194.89 3497.64 9593.14 5298.93 1699.45 1693.45 18
xiu_mvs_v2_base96.66 3996.17 5298.11 2797.11 14896.96 699.01 10797.04 18195.51 1698.86 1799.11 5382.19 18799.36 12698.59 2798.14 11598.00 188
NCCC98.12 598.11 398.13 2399.76 694.46 4999.81 597.88 5196.54 598.84 1899.46 1192.55 2799.98 1098.25 4099.93 199.94 18
SD-MVS97.51 1397.40 1697.81 3599.01 8593.79 6599.33 7097.38 14993.73 4298.83 1999.02 6190.87 3899.88 4998.69 2399.74 3299.77 49
Zhenlong Yuan, Jiakai Cao, Zhaoxin Li, Hao Jiang and Zhaoqi Wang: SD-MVS: Segmentation-driven Deformation Multi-View Stereo with Spherical Refinement and EM optimization. AAAI2024
ETH3D-3000-0.197.29 1797.01 2498.12 2599.18 7594.97 3299.47 4597.52 12489.85 13598.79 2099.46 1190.41 4999.69 8098.78 2199.67 4299.70 62
xxxxxxxxxxxxxcwj97.51 1397.42 1597.78 3799.34 5893.85 6399.65 2495.45 28095.69 1198.70 2199.42 1990.42 4799.72 7698.47 3199.65 4499.77 49
SF-MVS97.22 2296.92 2698.12 2599.11 7994.88 3599.44 5397.45 13889.60 14398.70 2199.42 1990.42 4799.72 7698.47 3199.65 4499.77 49
ETH3 D test640097.67 1197.33 1898.69 999.69 996.43 1199.63 2697.73 7591.05 10198.66 2399.53 790.59 4299.71 7899.32 1299.80 2799.91 22
DPE-MVScopyleft98.11 698.00 698.44 1599.50 4795.39 2099.29 7397.72 7794.50 2298.64 2499.54 393.32 1999.97 2399.58 999.90 799.95 15
Kehua Chen, Zhenlong Yuan, Tianlu Mao, Zhaoqi Wang: Dual-Level Precision Edges Guided Multi-View Stereo with Accurate Planarization. AAAI2025
MSP-MVS97.77 998.18 296.53 10199.54 4090.14 14399.41 5997.70 8295.46 1798.60 2599.19 3495.71 499.49 10998.15 4299.85 1399.95 15
Zhenlong Yuan, Cong Liu, Fei Shen, Zhaoxin Li, Jingguo luo, Tianlu Mao and Zhaoqi Wang: MSP-MVS: Multi-granularity Segmentation Prior Guided Multi-View Stereo. AAAI2025
9.1496.87 2899.34 5899.50 4297.49 13289.41 15098.59 2699.43 1889.78 5699.69 8098.69 2399.62 51
APD-MVScopyleft96.95 3196.72 3497.63 4199.51 4693.58 6799.16 8297.44 14290.08 13198.59 2699.07 5489.06 6499.42 12097.92 4599.66 4399.88 28
Yuesong Wang, Zhaojie Zeng and etc.: Adaptive Patch Deformation for Textureless-Resilient Multi-View Stereo. CVPR2023
ETH3D cwj APD-0.1696.94 3396.58 3898.01 2998.62 10294.73 4499.13 9497.38 14988.44 18098.53 2899.39 2189.66 6099.69 8098.43 3399.61 5599.61 77
testdata95.26 14498.20 11187.28 21197.60 10585.21 24598.48 2999.15 4388.15 7998.72 15890.29 16599.45 6699.78 42
testtj97.23 2197.05 2297.75 3899.75 793.34 7399.16 8297.74 7191.28 9898.40 3099.29 2489.95 5499.98 1098.20 4199.70 3999.94 18
TEST999.57 3793.17 7699.38 6297.66 8989.57 14598.39 3199.18 3790.88 3799.66 85
train_agg97.20 2397.08 2197.57 4599.57 3793.17 7699.38 6297.66 8990.18 12698.39 3199.18 3790.94 3599.66 8598.58 2899.85 1399.88 28
test_899.55 3993.07 8099.37 6597.64 9590.18 12698.36 3399.19 3490.94 3599.64 91
CS-MVS-test95.98 6196.34 4494.90 15598.06 11787.66 19899.69 2296.10 23393.66 4398.35 3499.05 5786.28 12397.66 20896.96 6198.90 9599.37 97
HPM-MVS++copyleft97.72 1097.59 1198.14 2299.53 4594.76 4299.19 7797.75 6995.66 1398.21 3599.29 2491.10 3399.99 597.68 4899.87 999.68 66
DPM-MVS97.86 897.25 1999.68 198.25 10999.10 199.76 1197.78 6696.61 498.15 3699.53 793.62 17100.00 191.79 15099.80 2799.94 18
test_part299.54 4095.42 1998.13 37
SteuartSystems-ACMMP97.25 1897.34 1797.01 6597.38 13691.46 11099.75 1297.66 8994.14 3098.13 3799.26 2692.16 2999.66 8597.91 4699.64 4799.90 24
Skip Steuart: Steuart Systems R&D Blog.
FOURS199.50 4788.94 17199.55 3597.47 13591.32 9798.12 39
test_prior397.07 2897.09 2097.01 6599.58 3391.77 10199.57 3297.57 11491.43 9398.12 3998.97 6790.43 4599.49 10998.33 3699.81 2399.79 38
test_prior299.57 3291.43 9398.12 3998.97 6790.43 4598.33 3699.81 23
CS-MVS95.75 7396.19 4894.40 17397.88 12186.22 23799.66 2396.12 23292.69 6298.07 4298.89 8387.09 10097.59 21496.71 6498.62 10799.39 96
PHI-MVS96.65 4096.46 4097.21 5999.34 5891.77 10199.70 1698.05 4186.48 23098.05 4399.20 3389.33 6299.96 3098.38 3499.62 5199.90 24
MVSFormer94.71 9894.08 10196.61 9595.05 22594.87 3697.77 22796.17 22986.84 22198.04 4498.52 10985.52 13295.99 29289.83 16898.97 9198.96 130
lupinMVS96.32 5195.94 6097.44 4895.05 22594.87 3699.86 296.50 20893.82 4098.04 4498.77 8985.52 13298.09 17996.98 6098.97 9199.37 97
APDe-MVS97.53 1297.47 1297.70 3999.58 3393.63 6699.56 3497.52 12493.59 4698.01 4699.12 4890.80 4099.55 9999.26 1499.79 2999.93 21
ACMMP_NAP96.59 4196.18 4997.81 3598.82 9593.55 6898.88 12097.59 10990.66 11197.98 4799.14 4586.59 114100.00 196.47 7299.46 6499.89 27
agg_prior197.12 2597.03 2397.38 5399.54 4092.66 8899.35 6797.64 9590.38 12097.98 4799.17 3990.84 3999.61 9498.57 2999.78 3199.87 31
agg_prior99.54 4092.66 8897.64 9597.98 4799.61 94
CDPH-MVS96.56 4296.18 4997.70 3999.59 3193.92 6199.13 9497.44 14289.02 16097.90 5099.22 3188.90 6799.49 10994.63 11399.79 2999.68 66
EPNet96.82 3696.68 3697.25 5898.65 10093.10 7999.48 4398.76 1396.54 597.84 5198.22 12487.49 9099.66 8595.35 9697.78 12199.00 126
Wanjuan Su, Wenbing Tao: Efficient Edge-Preserving Multi-View Stereo Network for Depth Estimation. AAAI 2023
MSLP-MVS++97.50 1597.45 1497.63 4199.65 1993.21 7599.70 1698.13 3894.61 2097.78 5299.46 1189.85 5599.81 6797.97 4499.91 699.88 28
test1297.83 3499.33 6494.45 5097.55 11797.56 5388.60 7099.50 10899.71 3899.55 82
xiu_mvs_v1_base_debu94.73 9593.98 10396.99 6895.19 21295.24 2498.62 14896.50 20892.99 5597.52 5498.83 8672.37 25899.15 13897.03 5696.74 13796.58 218
xiu_mvs_v1_base94.73 9593.98 10396.99 6895.19 21295.24 2498.62 14896.50 20892.99 5597.52 5498.83 8672.37 25899.15 13897.03 5696.74 13796.58 218
xiu_mvs_v1_base_debi94.73 9593.98 10396.99 6895.19 21295.24 2498.62 14896.50 20892.99 5597.52 5498.83 8672.37 25899.15 13897.03 5696.74 13796.58 218
ZD-MVS99.67 1393.28 7497.61 10387.78 20097.41 5799.16 4190.15 5299.56 9898.35 3599.70 39
ETV-MVS96.00 5996.00 5896.00 12096.56 16391.05 12499.63 2696.61 19793.26 5197.39 5898.30 12186.62 11398.13 17698.07 4397.57 12398.82 147
DeepPCF-MVS93.56 196.55 4397.84 1092.68 21998.71 9978.11 33699.70 1697.71 8198.18 197.36 5999.76 190.37 5099.94 3799.27 1399.54 6199.99 1
DROMVSNet95.09 8695.17 7994.84 15895.42 20588.17 18699.48 4395.92 24691.47 9197.34 6098.36 11882.77 17497.41 22597.24 5398.58 10898.94 135
CANet97.00 2996.49 3998.55 1198.86 9496.10 1599.83 497.52 12495.90 997.21 6198.90 8182.66 17899.93 4098.71 2298.80 10199.63 74
CANet_DTU94.31 10793.35 11697.20 6097.03 15294.71 4598.62 14895.54 27595.61 1497.21 6198.47 11571.88 26399.84 6088.38 18897.46 12897.04 212
VNet95.08 8794.26 9397.55 4698.07 11693.88 6298.68 14098.73 1690.33 12297.16 6397.43 15179.19 21099.53 10296.91 6391.85 19899.24 109
region2R96.30 5296.17 5296.70 9199.70 890.31 13999.46 5097.66 8990.55 11597.07 6499.07 5486.85 10699.97 2395.43 9499.74 3299.81 35
原ACMM196.18 11399.03 8490.08 14697.63 10088.98 16197.00 6598.97 6788.14 8099.71 7888.23 19099.62 5198.76 154
Regformer-196.97 3096.80 3297.47 4799.46 5293.11 7898.89 11897.94 4792.89 5996.90 6699.02 6189.78 5699.53 10297.06 5599.26 8099.75 53
HFP-MVS96.42 4896.26 4796.90 7799.69 990.96 12799.47 4597.81 6190.54 11696.88 6799.05 5787.57 8799.96 3095.65 8799.72 3499.78 42
#test#96.48 4596.34 4496.90 7799.69 990.96 12799.53 4097.81 6190.94 10596.88 6799.05 5787.57 8799.96 3095.87 8499.72 3499.78 42
Regformer-296.94 3396.78 3397.42 4999.46 5292.97 8598.89 11897.93 4892.86 6196.88 6799.02 6189.74 5899.53 10297.03 5699.26 8099.75 53
XVS96.47 4696.37 4296.77 8499.62 2590.66 13599.43 5697.58 11192.41 7296.86 7098.96 7287.37 9399.87 5295.65 8799.43 6899.78 42
X-MVStestdata90.69 18688.66 20796.77 8499.62 2590.66 13599.43 5697.58 11192.41 7296.86 7029.59 38087.37 9399.87 5295.65 8799.43 6899.78 42
112195.19 8494.45 9097.42 4998.88 9292.58 9396.22 28797.75 6985.50 24296.86 7099.01 6588.59 7299.90 4587.64 19899.60 5699.79 38
SR-MVS96.13 5696.16 5496.07 11899.42 5489.04 16698.59 15497.33 15390.44 11896.84 7399.12 4886.75 10899.41 12297.47 4999.44 6799.76 52
TSAR-MVS + GP.96.95 3196.91 2797.07 6298.88 9291.62 10699.58 3196.54 20695.09 1996.84 7398.63 10391.16 3199.77 7299.04 1896.42 14299.81 35
ACMMPR96.28 5396.14 5696.73 8899.68 1290.47 13799.47 4597.80 6390.54 11696.83 7599.03 6086.51 11899.95 3495.65 8799.72 3499.75 53
PMMVS93.62 12593.90 10992.79 21596.79 15881.40 31098.85 12196.81 19191.25 9996.82 7698.15 12877.02 22498.13 17693.15 13896.30 14698.83 146
PGM-MVS95.85 6795.65 7296.45 10499.50 4789.77 15798.22 19398.90 1289.19 15596.74 7798.95 7485.91 13099.92 4193.94 12299.46 6499.66 70
jason95.40 8094.86 8497.03 6492.91 27894.23 5599.70 1696.30 21993.56 4796.73 7898.52 10981.46 19697.91 18896.08 8198.47 11298.96 130
jason: jason.
新几何197.40 5198.92 9092.51 9597.77 6885.52 24096.69 7999.06 5688.08 8199.89 4884.88 22699.62 5199.79 38
SR-MVS-dyc-post95.75 7395.86 6395.41 13999.22 7187.26 21498.40 17797.21 16289.63 14196.67 8098.97 6786.73 11099.36 12696.62 6699.31 7699.60 78
RE-MVS-def95.70 6999.22 7187.26 21498.40 17797.21 16289.63 14196.67 8098.97 6785.24 14096.62 6699.31 7699.60 78
APD-MVS_3200maxsize95.64 7695.65 7295.62 13299.24 7087.80 19498.42 17297.22 16188.93 16596.64 8298.98 6685.49 13599.36 12696.68 6599.27 7999.70 62
test117295.92 6596.07 5795.46 13699.42 5487.24 21698.51 16297.24 15890.29 12396.56 8399.12 4886.73 11099.36 12697.33 5299.42 7199.78 42
MG-MVS97.24 1996.83 3198.47 1499.79 595.71 1799.07 9899.06 994.45 2496.42 8498.70 9888.81 6899.74 7595.35 9699.86 1299.97 7
h-mvs3392.47 15391.95 14994.05 18997.13 14685.01 26798.36 18398.08 3993.85 3896.27 8596.73 18283.19 16699.43 11995.81 8568.09 34397.70 193
hse-mvs291.67 16791.51 15892.15 22896.22 17782.61 30197.74 23097.53 12193.85 3896.27 8596.15 19583.19 16697.44 22395.81 8566.86 34896.40 223
alignmvs95.77 7195.00 8398.06 2897.35 13795.68 1899.71 1597.50 13091.50 9096.16 8798.61 10586.28 12399.00 14696.19 7891.74 20099.51 86
Regformer-396.50 4496.36 4396.91 7699.34 5891.72 10498.71 13397.90 5092.48 6796.00 8898.95 7488.60 7099.52 10596.44 7398.83 9899.49 88
CP-MVS96.22 5496.15 5596.42 10699.67 1389.62 16099.70 1697.61 10390.07 13296.00 8899.16 4187.43 9199.92 4196.03 8299.72 3499.70 62
Regformer-496.45 4796.33 4696.81 8399.34 5891.44 11198.71 13397.88 5192.43 6895.97 9098.95 7488.42 7499.51 10696.40 7498.83 9899.49 88
MCST-MVS98.18 297.95 998.86 599.85 396.60 999.70 1697.98 4697.18 295.96 9199.33 2392.62 26100.00 198.99 1999.93 199.98 6
diffmvs94.59 10394.19 9695.81 12695.54 20190.69 13398.70 13795.68 26791.61 8795.96 9197.81 13280.11 20298.06 18296.52 7195.76 15698.67 159
GST-MVS95.97 6295.66 7096.90 7799.49 5091.22 11399.45 5297.48 13389.69 13995.89 9398.72 9586.37 12299.95 3494.62 11499.22 8399.52 84
DeepC-MVS_fast93.52 297.16 2496.84 3098.13 2399.61 2794.45 5098.85 12197.64 9596.51 795.88 9499.39 2187.35 9799.99 596.61 6899.69 4199.96 10
Andreas Kuhn, Christian Sormann, Mattia Rossi, Oliver Erdler, Friedrich Fraundorfer: DeepC-MVS: Deep Confidence Prediction for Multi-View Stereo Reconstruction. 3DV 2020
test22298.32 10891.21 11498.08 20997.58 11183.74 26995.87 9599.02 6186.74 10999.64 4799.81 35
ZNCC-MVS96.09 5795.81 6696.95 7599.42 5491.19 11599.55 3597.53 12189.72 13895.86 9698.94 7986.59 11499.97 2395.13 10099.56 5999.68 66
canonicalmvs95.02 8893.96 10698.20 2097.53 13495.92 1698.71 13396.19 22891.78 8595.86 9698.49 11379.53 20799.03 14596.12 7991.42 20699.66 70
abl_694.63 10194.48 8995.09 14798.61 10386.96 21998.06 21296.97 18789.31 15195.86 9698.56 10779.82 20399.64 9194.53 11698.65 10698.66 162
dcpmvs_295.67 7596.18 4994.12 18598.82 9584.22 27797.37 24395.45 28090.70 11095.77 9998.63 10390.47 4498.68 16099.20 1799.22 8399.45 92
Effi-MVS+93.87 11693.15 12296.02 11995.79 19290.76 13196.70 27395.78 26086.98 21895.71 10097.17 16479.58 20598.01 18694.57 11596.09 15099.31 103
HPM-MVS_fast94.89 8994.62 8695.70 13099.11 7988.44 18499.14 9197.11 17485.82 23795.69 10198.47 11583.46 15999.32 13293.16 13799.63 5099.35 99
HY-MVS88.56 795.29 8194.23 9498.48 1397.72 12496.41 1294.03 31898.74 1492.42 7195.65 10294.76 21986.52 11799.49 10995.29 9892.97 17999.53 83
CHOSEN 280x42096.80 3796.85 2996.66 9497.85 12294.42 5294.76 31098.36 2492.50 6695.62 10397.52 14797.92 197.38 22698.31 3998.80 10198.20 184
MP-MVScopyleft96.00 5995.82 6496.54 10099.47 5190.13 14599.36 6697.41 14690.64 11495.49 10498.95 7485.51 13499.98 1096.00 8399.59 5899.52 84
Rongxuan Tan, Qing Wang, et al.: MP-MVS: Multi-Scale Windows PatchMatch and Planar Prior Multi-View Stereo.
HPM-MVScopyleft95.41 7995.22 7895.99 12199.29 6689.14 16499.17 8197.09 17887.28 21395.40 10598.48 11484.93 14299.38 12495.64 9199.65 4499.47 91
Chunlin Ren, Qingshan Xu, Shikun Zhang, Jiaqi Yang: Hierarchical Prior Mining for Non-local Multi-View Stereo. ICCV 2023
UA-Net93.30 13492.62 13495.34 14196.27 17588.53 18395.88 29796.97 18790.90 10695.37 10697.07 16882.38 18499.10 14383.91 24194.86 16598.38 173
sss94.85 9193.94 10797.58 4396.43 16894.09 6098.93 11399.16 889.50 14895.27 10797.85 13081.50 19499.65 8992.79 14494.02 17198.99 127
WTY-MVS95.97 6295.11 8198.54 1297.62 12896.65 899.44 5398.74 1492.25 7695.21 10898.46 11786.56 11699.46 11695.00 10492.69 18399.50 87
DELS-MVS97.12 2596.60 3798.68 1098.03 11896.57 1099.84 397.84 5596.36 895.20 10998.24 12388.17 7899.83 6296.11 8099.60 5699.64 72
Christian Sormann, Emanuele Santellani, Mattia Rossi, Andreas Kuhn, Friedrich Fraundorfer: DELS-MVS: Deep Epipolar Line Search for Multi-View Stereo. Winter Conference on Applications of Computer Vision (WACV), 2023
MVS_111021_HR96.69 3896.69 3596.72 9098.58 10491.00 12699.14 9199.45 193.86 3795.15 11098.73 9388.48 7399.76 7397.23 5499.56 5999.40 95
MVS_Test93.67 12392.67 13396.69 9296.72 16092.66 8897.22 25296.03 23687.69 20695.12 11194.03 22881.55 19398.28 17289.17 18396.46 14099.14 116
MVS_111021_LR95.78 7095.94 6095.28 14398.19 11387.69 19598.80 12699.26 793.39 4895.04 11298.69 9984.09 15199.76 7396.96 6199.06 8798.38 173
CostFormer92.89 14392.48 13794.12 18594.99 22785.89 24892.89 32797.00 18686.98 21895.00 11390.78 29190.05 5397.51 21992.92 14191.73 20198.96 130
mPP-MVS95.90 6695.75 6896.38 10899.58 3389.41 16399.26 7497.41 14690.66 11194.82 11498.95 7486.15 12699.98 1095.24 9999.64 4799.74 56
EI-MVSNet-Vis-set95.76 7295.63 7496.17 11599.14 7790.33 13898.49 16697.82 5891.92 8294.75 11598.88 8487.06 10299.48 11495.40 9597.17 13498.70 157
LFMVS92.23 15890.84 17196.42 10698.24 11091.08 12398.24 19296.22 22583.39 27694.74 11698.31 12061.12 32498.85 15094.45 11792.82 18099.32 102
tpmrst92.78 14492.16 14394.65 16596.27 17587.45 20591.83 33597.10 17789.10 15994.68 11790.69 29588.22 7797.73 20689.78 17191.80 19998.77 153
test_yl95.27 8294.60 8797.28 5698.53 10592.98 8399.05 10198.70 1786.76 22494.65 11897.74 13787.78 8499.44 11795.57 9292.61 18499.44 93
DCV-MVSNet95.27 8294.60 8797.28 5698.53 10592.98 8399.05 10198.70 1786.76 22494.65 11897.74 13787.78 8499.44 11795.57 9292.61 18499.44 93
DP-MVS Recon95.85 6795.15 8097.95 3199.87 294.38 5399.60 2997.48 13386.58 22794.42 12099.13 4787.36 9699.98 1093.64 12998.33 11499.48 90
zzz-MVS96.21 5595.96 5996.96 7399.29 6691.19 11598.69 13897.45 13892.58 6394.39 12199.24 2986.43 12099.99 596.22 7699.40 7299.71 60
MTAPA96.09 5795.80 6796.96 7399.29 6691.19 11597.23 25197.45 13892.58 6394.39 12199.24 2986.43 12099.99 596.22 7699.40 7299.71 60
CPTT-MVS94.60 10294.43 9195.09 14799.66 1586.85 22199.44 5397.47 13583.22 27894.34 12398.96 7282.50 17999.55 9994.81 10799.50 6298.88 140
PVSNet_BlendedMVS93.36 13293.20 12093.84 19698.77 9791.61 10799.47 4598.04 4291.44 9294.21 12492.63 26083.50 15799.87 5297.41 5083.37 25790.05 322
PVSNet_Blended95.94 6495.66 7096.75 8698.77 9791.61 10799.88 198.04 4293.64 4594.21 12497.76 13583.50 15799.87 5297.41 5097.75 12298.79 150
EI-MVSNet-UG-set95.43 7795.29 7695.86 12599.07 8389.87 15498.43 17197.80 6391.78 8594.11 12698.77 8986.25 12599.48 11494.95 10696.45 14198.22 182
EIA-MVS95.11 8595.27 7794.64 16696.34 17386.51 22599.59 3096.62 19692.51 6594.08 12798.64 10186.05 12798.24 17395.07 10298.50 11199.18 114
MAR-MVS94.43 10594.09 10095.45 13799.10 8187.47 20498.39 18197.79 6588.37 18394.02 12899.17 3978.64 21699.91 4392.48 14598.85 9798.96 130
Zhenyu Xu, Yiguang Liu, Xuelei Shi, Ying Wang, Yunan Zheng: MARMVS: Matching Ambiguity Reduced Multiple View Stereo for Efficient Large Scale Scene Reconstruction. CVPR 2020
PAPM96.35 4995.94 6097.58 4394.10 24795.25 2398.93 11398.17 3394.26 2593.94 12998.72 9589.68 5997.88 19196.36 7599.29 7899.62 76
GG-mvs-BLEND96.98 7196.53 16494.81 4187.20 35197.74 7193.91 13096.40 19096.56 296.94 24095.08 10198.95 9499.20 113
API-MVS94.78 9394.18 9896.59 9699.21 7390.06 15098.80 12697.78 6683.59 27393.85 13199.21 3283.79 15499.97 2392.37 14699.00 9099.74 56
tpm291.77 16591.09 16493.82 19794.83 23485.56 25792.51 33297.16 16984.00 26593.83 13290.66 29787.54 8997.17 23087.73 19791.55 20498.72 155
PAPR96.35 4995.82 6497.94 3299.63 2194.19 5799.42 5897.55 11792.43 6893.82 13399.12 4887.30 9899.91 4394.02 12099.06 8799.74 56
PVSNet87.13 1293.69 12092.83 13096.28 11197.99 11990.22 14299.38 6298.93 1191.42 9593.66 13497.68 14071.29 27099.64 9187.94 19597.20 13198.98 128
baseline93.91 11493.30 11795.72 12995.10 22290.07 14797.48 23995.91 25191.03 10293.54 13597.68 14079.58 20598.02 18594.27 11995.14 16299.08 122
test250694.80 9294.21 9596.58 9796.41 16992.18 9998.01 21498.96 1090.82 10893.46 13697.28 15485.92 12898.45 16589.82 17097.19 13299.12 118
VDD-MVS91.24 17790.18 18194.45 17297.08 14985.84 25198.40 17796.10 23386.99 21593.36 13798.16 12754.27 34599.20 13596.59 6990.63 21498.31 179
VDDNet90.08 19888.54 21394.69 16494.41 24287.68 19698.21 19596.40 21376.21 33693.33 13897.75 13654.93 34398.77 15394.71 11190.96 20997.61 198
thisisatest051594.75 9494.19 9696.43 10596.13 18792.64 9299.47 4597.60 10587.55 20993.17 13997.59 14594.71 1398.42 16688.28 18993.20 17698.24 181
MP-MVS-pluss95.80 6995.30 7597.29 5598.95 8992.66 8898.59 15497.14 17088.95 16393.12 14099.25 2785.62 13199.94 3796.56 7099.48 6399.28 106
MP-MVS-pluss: MP-MVS-pluss. MP-MVS-pluss
MDTV_nov1_ep13_2view91.17 11891.38 33987.45 21193.08 14186.67 11287.02 20298.95 134
EPNet_dtu92.28 15692.15 14492.70 21897.29 13984.84 26998.64 14697.82 5892.91 5893.02 14297.02 17085.48 13795.70 30672.25 32694.89 16497.55 199
Wanjuan Su, Wenbing Tao: Efficient Edge-Preserving Multi-View Stereo Network for Depth Estimation. AAAI 2023
gg-mvs-nofinetune90.00 19987.71 22196.89 8296.15 18294.69 4685.15 35797.74 7168.32 35992.97 14360.16 36996.10 396.84 24293.89 12398.87 9699.14 116
casdiffmvs93.98 11293.43 11595.61 13395.07 22489.86 15598.80 12695.84 25990.98 10492.74 14497.66 14279.71 20498.10 17894.72 11095.37 16198.87 142
114514_t94.06 10993.05 12497.06 6399.08 8292.26 9798.97 11197.01 18582.58 29192.57 14598.22 12480.68 20099.30 13389.34 17999.02 8999.63 74
OMC-MVS93.90 11593.62 11394.73 16398.63 10187.00 21898.04 21396.56 20392.19 7792.46 14698.73 9379.49 20899.14 14192.16 14894.34 16998.03 187
PAPM_NR95.43 7795.05 8296.57 9999.42 5490.14 14398.58 15697.51 12790.65 11392.44 14798.90 8187.77 8699.90 4590.88 15899.32 7599.68 66
UGNet91.91 16490.85 17095.10 14697.06 15088.69 17998.01 21498.24 2992.41 7292.39 14893.61 24160.52 32599.68 8388.14 19197.25 13096.92 214
Wanjuan Su, Qingshan Xu, Wenbing Tao: Uncertainty-guided Multi-view Stereo Network for Depth Estimation. IEEE Transactions on Circuits and Systems for Video Technology, 2022
MDTV_nov1_ep1390.47 18096.14 18488.55 18191.34 34097.51 12789.58 14492.24 14990.50 30886.99 10597.61 21377.64 28992.34 189
FE-MVS91.38 17390.16 18295.05 15196.46 16787.53 20289.69 34997.84 5582.97 28392.18 15092.00 26984.07 15298.93 14980.71 26995.52 16098.68 158
Vis-MVSNetpermissive92.64 14791.85 15095.03 15295.12 21888.23 18598.48 16796.81 19191.61 8792.16 15197.22 16071.58 26898.00 18785.85 21997.81 11898.88 140
Jingyang Zhang, Yao Yao, Shiwei Li, Zixin Luo, Tian Fang: Visibility-aware Multiview Stereo Network. BMVC 2020
FA-MVS(test-final)92.22 15991.08 16595.64 13196.05 18888.98 16891.60 33797.25 15586.99 21591.84 15292.12 26383.03 16999.00 14686.91 20693.91 17298.93 136
TESTMET0.1,193.82 11793.26 11995.49 13595.21 21190.25 14099.15 8897.54 12089.18 15691.79 15394.87 21689.13 6397.63 21186.21 21296.29 14798.60 163
thisisatest053094.00 11193.52 11495.43 13895.76 19490.02 15298.99 10997.60 10586.58 22791.74 15497.36 15394.78 1298.34 16886.37 21192.48 18797.94 190
AUN-MVS90.17 19589.50 18892.19 22696.21 17882.67 29997.76 22997.53 12188.05 19291.67 15596.15 19583.10 16897.47 22088.11 19266.91 34796.43 222
EPMVS92.59 15091.59 15695.59 13497.22 14190.03 15191.78 33698.04 4290.42 11991.66 15690.65 29886.49 11997.46 22181.78 26296.31 14599.28 106
test-LLR93.11 14192.68 13294.40 17394.94 23087.27 21299.15 8897.25 15590.21 12491.57 15794.04 22684.89 14397.58 21585.94 21696.13 14898.36 176
test-mter93.27 13692.89 12994.40 17394.94 23087.27 21299.15 8897.25 15588.95 16391.57 15794.04 22688.03 8297.58 21585.94 21696.13 14898.36 176
JIA-IIPM85.97 26584.85 26589.33 29593.23 27373.68 34985.05 35897.13 17269.62 35591.56 15968.03 36788.03 8296.96 23877.89 28893.12 17797.34 202
PVSNet_Blended_VisFu94.67 9994.11 9996.34 11097.14 14591.10 12199.32 7197.43 14492.10 8191.53 16096.38 19383.29 16399.68 8393.42 13496.37 14398.25 180
CHOSEN 1792x268894.35 10693.82 11095.95 12397.40 13588.74 17898.41 17498.27 2692.18 7891.43 16196.40 19078.88 21199.81 6793.59 13097.81 11899.30 104
ACMMPcopyleft94.67 9994.30 9295.79 12799.25 6988.13 18898.41 17498.67 2090.38 12091.43 16198.72 9582.22 18699.95 3493.83 12695.76 15699.29 105
Qingshan Xu, Weihang Kong, Wenbing Tao, Marc Pollefeys: Multi-Scale Geometric Consistency Guided and Planar Prior Assisted Multi-View Stereo. IEEE Transactions on Pattern Analysis and Machine Intelligence
ECVR-MVScopyleft92.29 15591.33 16095.15 14596.41 16987.84 19398.10 20694.84 30490.82 10891.42 16397.28 15465.61 30698.49 16490.33 16497.19 13299.12 118
EPP-MVSNet93.75 11993.67 11294.01 19195.86 19185.70 25398.67 14297.66 8984.46 25991.36 16497.18 16391.16 3197.79 19792.93 14093.75 17398.53 165
PLCcopyleft91.07 394.23 10894.01 10294.87 15699.17 7687.49 20399.25 7596.55 20488.43 18191.26 16598.21 12685.92 12899.86 5789.77 17297.57 12397.24 205
Jie Liao, Yanping Fu, Qingan Yan, Chunxia xiao: Pyramid Multi-View Stereo with Local Consistency. Pacific Graphics 2019
HyFIR lowres test93.68 12293.29 11894.87 15697.57 13288.04 19098.18 19798.47 2287.57 20891.24 16695.05 21385.49 13597.46 22193.22 13692.82 18099.10 120
thres20093.69 12092.59 13596.97 7297.76 12394.74 4399.35 6799.36 289.23 15491.21 16796.97 17283.42 16098.77 15385.08 22290.96 20997.39 201
mvs-test191.57 16892.20 14289.70 28595.15 21674.34 34699.51 4195.40 28591.92 8291.02 16897.25 15774.27 24198.08 18189.45 17595.83 15596.67 215
test111192.12 16091.19 16394.94 15496.15 18287.36 20898.12 20294.84 30490.85 10790.97 16997.26 15665.60 30798.37 16789.74 17397.14 13599.07 124
CDS-MVSNet93.47 12793.04 12594.76 16094.75 23689.45 16298.82 12497.03 18387.91 19790.97 16996.48 18889.06 6496.36 26989.50 17492.81 18298.49 167
Khang Truong Giang, Soohwan Song, Sungho Jo: Curvature-guided dynamic scale networks for Multi-view Stereo. ICLR 2022
tfpn200view993.43 12992.27 14096.90 7797.68 12694.84 3899.18 7999.36 288.45 17790.79 17196.90 17583.31 16198.75 15584.11 23790.69 21197.12 207
thres40093.39 13192.27 14096.73 8897.68 12694.84 3899.18 7999.36 288.45 17790.79 17196.90 17583.31 16198.75 15584.11 23790.69 21196.61 216
CR-MVSNet88.83 21987.38 22693.16 20993.47 26686.24 23584.97 35994.20 32288.92 16690.76 17386.88 34284.43 14794.82 32670.64 33092.17 19498.41 170
RPMNet85.07 27881.88 29594.64 16693.47 26686.24 23584.97 35997.21 16264.85 36590.76 17378.80 36380.95 19999.27 13453.76 36692.17 19498.41 170
PatchmatchNetpermissive92.05 16391.04 16695.06 14996.17 18189.04 16691.26 34197.26 15489.56 14690.64 17590.56 30488.35 7697.11 23279.53 27596.07 15299.03 125
Fangjinhua Wang, Silvano Galliani, Christoph Vogel, Pablo Speciale, Marc Pollefeys: PatchmatchNet: Learned Multi-View Patchmatch Stereo.
tttt051793.30 13493.01 12794.17 18395.57 19986.47 22798.51 16297.60 10585.99 23590.55 17697.19 16294.80 1198.31 16985.06 22391.86 19797.74 192
PatchT85.44 27583.19 28292.22 22493.13 27583.00 29183.80 36596.37 21570.62 35090.55 17679.63 36284.81 14594.87 32458.18 36391.59 20398.79 150
tpm89.67 20488.95 20091.82 23492.54 28181.43 30992.95 32695.92 24687.81 19990.50 17889.44 32384.99 14195.65 30783.67 24482.71 26398.38 173
thres100view90093.34 13392.15 14496.90 7797.62 12894.84 3899.06 10099.36 287.96 19590.47 17996.78 18083.29 16398.75 15584.11 23790.69 21197.12 207
thres600view793.18 13992.00 14796.75 8697.62 12894.92 3399.07 9899.36 287.96 19590.47 17996.78 18083.29 16398.71 15982.93 25190.47 21596.61 216
AdaColmapbinary93.82 11793.06 12396.10 11799.88 189.07 16598.33 18597.55 11786.81 22390.39 18198.65 10075.09 23199.98 1093.32 13597.53 12699.26 108
XVG-OURS-SEG-HR90.95 18090.66 17791.83 23395.18 21581.14 31795.92 29495.92 24688.40 18290.33 18297.85 13070.66 27399.38 12492.83 14288.83 22094.98 230
IS-MVSNet93.00 14292.51 13694.49 16996.14 18487.36 20898.31 18895.70 26588.58 17390.17 18397.50 14883.02 17097.22 22987.06 20196.07 15298.90 139
CSCG94.87 9094.71 8595.36 14099.54 4086.49 22699.34 6998.15 3682.71 28990.15 18499.25 2789.48 6199.86 5794.97 10598.82 10099.72 59
SCA90.64 18789.25 19594.83 15994.95 22988.83 17496.26 28497.21 16290.06 13390.03 18590.62 30066.61 29896.81 24483.16 24794.36 16898.84 143
XVG-OURS90.83 18290.49 17991.86 23295.23 21081.25 31495.79 30295.92 24688.96 16290.02 18698.03 12971.60 26799.35 13091.06 15587.78 22494.98 230
ADS-MVSNet287.62 24286.88 23489.86 28096.21 17879.14 32787.15 35292.99 33783.01 28189.91 18787.27 33878.87 21292.80 34674.20 31492.27 19197.64 194
ADS-MVSNet88.99 21187.30 22794.07 18796.21 17887.56 20187.15 35296.78 19383.01 28189.91 18787.27 33878.87 21297.01 23774.20 31492.27 19197.64 194
ab-mvs91.05 17989.17 19696.69 9295.96 18991.72 10492.62 33197.23 16085.61 23989.74 18993.89 23468.55 28299.42 12091.09 15487.84 22398.92 138
TAMVS92.62 14892.09 14694.20 18294.10 24787.68 19698.41 17496.97 18787.53 21089.74 18996.04 19984.77 14696.49 26288.97 18592.31 19098.42 169
Vis-MVSNet (Re-imp)93.26 13793.00 12894.06 18896.14 18486.71 22498.68 14096.70 19488.30 18589.71 19197.64 14385.43 13896.39 26788.06 19396.32 14499.08 122
CNLPA93.64 12492.74 13196.36 10998.96 8890.01 15399.19 7795.89 25486.22 23389.40 19298.85 8580.66 20199.84 6088.57 18696.92 13699.24 109
Anonymous20240521188.84 21787.03 23294.27 17998.14 11584.18 27898.44 17095.58 27376.79 33589.34 19396.88 17753.42 34899.54 10187.53 20087.12 22799.09 121
Fast-Effi-MVS+91.72 16690.79 17494.49 16995.89 19087.40 20799.54 3995.70 26585.01 25289.28 19495.68 20377.75 22097.57 21883.22 24695.06 16398.51 166
PatchMatch-RL91.47 17090.54 17894.26 18098.20 11186.36 23296.94 26197.14 17087.75 20288.98 19595.75 20271.80 26599.40 12380.92 26797.39 12997.02 213
dp90.16 19688.83 20394.14 18496.38 17286.42 22891.57 33897.06 18084.76 25688.81 19690.19 31684.29 14997.43 22475.05 30791.35 20898.56 164
DeepC-MVS91.02 494.56 10493.92 10896.46 10397.16 14390.76 13198.39 18197.11 17493.92 3388.66 19798.33 11978.14 21899.85 5995.02 10398.57 10998.78 152
Andreas Kuhn, Christian Sormann, Mattia Rossi, Oliver Erdler, Friedrich Fraundorfer: DeepC-MVS: Deep Confidence Prediction for Multi-View Stereo Reconstruction. 3DV 2020
baseline192.61 14991.28 16196.58 9797.05 15194.63 4797.72 23196.20 22689.82 13688.56 19896.85 17886.85 10697.82 19588.42 18780.10 27597.30 203
Anonymous2024052987.66 24185.58 25493.92 19397.59 13185.01 26798.13 20097.13 17266.69 36388.47 19996.01 20055.09 34299.51 10687.00 20384.12 24897.23 206
CVMVSNet90.30 19190.91 16988.46 30894.32 24373.58 35097.61 23697.59 10990.16 12988.43 20097.10 16676.83 22592.86 34382.64 25393.54 17598.93 136
TR-MVS90.77 18389.44 19094.76 16096.31 17488.02 19197.92 21895.96 24085.52 24088.22 20197.23 15966.80 29798.09 17984.58 23092.38 18898.17 185
F-COLMAP92.07 16291.75 15493.02 21198.16 11482.89 29598.79 13095.97 23886.54 22987.92 20297.80 13378.69 21599.65 8985.97 21495.93 15496.53 221
BH-RMVSNet91.25 17689.99 18395.03 15296.75 15988.55 18198.65 14494.95 30187.74 20387.74 20397.80 13368.27 28598.14 17580.53 27297.49 12798.41 170
Effi-MVS+-dtu89.97 20190.68 17687.81 31295.15 21671.98 35697.87 22295.40 28591.92 8287.57 20491.44 27974.27 24196.84 24289.45 17593.10 17894.60 232
HQP-NCC93.95 25199.16 8293.92 3387.57 204
ACMP_Plane93.95 25199.16 8293.92 3387.57 204
HQP4-MVS87.57 20497.77 19992.72 239
HQP-MVS91.50 16991.23 16292.29 22393.95 25186.39 23099.16 8296.37 21593.92 3387.57 20496.67 18473.34 24897.77 19993.82 12786.29 22992.72 239
TAPA-MVS87.50 990.35 18989.05 19894.25 18198.48 10785.17 26498.42 17296.58 20282.44 29587.24 20998.53 10882.77 17498.84 15159.09 36197.88 11798.72 155
Andrea Romanoni, Matteo Matteucci: TAPA-MVS: Textureless-Aware PAtchMatch Multi-View Stereo. ICCV 2019
GeoE90.60 18889.56 18793.72 20195.10 22285.43 25899.41 5994.94 30283.96 26787.21 21096.83 17974.37 23997.05 23680.50 27393.73 17498.67 159
HQP_MVS91.26 17490.95 16892.16 22793.84 25886.07 24499.02 10596.30 21993.38 4986.99 21196.52 18672.92 25397.75 20493.46 13286.17 23292.67 241
plane_prior385.91 24793.65 4486.99 211
iter_conf_final93.22 13893.04 12593.76 19897.03 15292.22 9899.05 10193.31 33592.11 8086.93 21395.42 20895.01 1096.59 25293.98 12184.48 24492.46 244
GA-MVS90.10 19788.69 20694.33 17792.44 28287.97 19299.08 9796.26 22389.65 14086.92 21493.11 25368.09 28696.96 23882.54 25590.15 21698.05 186
1112_ss92.71 14591.55 15796.20 11295.56 20091.12 11998.48 16794.69 31088.29 18686.89 21598.50 11187.02 10398.66 16184.75 22789.77 21898.81 148
MVS_030484.13 29282.66 29188.52 30693.07 27680.15 32295.81 30198.21 3179.27 32086.85 21686.40 34541.33 36794.69 32976.36 29986.69 22890.73 306
Test_1112_low_res92.27 15790.97 16796.18 11395.53 20291.10 12198.47 16994.66 31188.28 18786.83 21793.50 24587.00 10498.65 16284.69 22889.74 21998.80 149
cascas90.93 18189.33 19495.76 12895.69 19693.03 8298.99 10996.59 19980.49 31586.79 21894.45 22365.23 30998.60 16393.52 13192.18 19395.66 229
iter_conf0593.48 12693.18 12194.39 17697.15 14494.17 5899.30 7292.97 33892.38 7586.70 21995.42 20895.67 596.59 25294.67 11284.32 24792.39 245
baseline294.04 11093.80 11194.74 16293.07 27690.25 14098.12 20298.16 3589.86 13486.53 22096.95 17395.56 698.05 18391.44 15294.53 16695.93 227
OPM-MVS89.76 20389.15 19791.57 24190.53 30885.58 25698.11 20595.93 24592.88 6086.05 22196.47 18967.06 29697.87 19289.29 18286.08 23491.26 290
Ray L. Khuboni, Hongjun Xu: Octagram Propagation Matching for Multi-Scale View Stereopsis (OPM-MVS).
VPA-MVSNet89.10 21087.66 22293.45 20492.56 28091.02 12597.97 21798.32 2586.92 22086.03 22292.01 26768.84 28197.10 23490.92 15775.34 29692.23 252
tpm cat188.89 21587.27 22893.76 19895.79 19285.32 26190.76 34597.09 17876.14 33785.72 22388.59 32982.92 17198.04 18476.96 29391.43 20597.90 191
IB-MVS89.43 692.12 16090.83 17395.98 12295.40 20790.78 13099.81 598.06 4091.23 10085.63 22493.66 24090.63 4198.78 15291.22 15371.85 33398.36 176
Christian Sormann, Mattia Rossi, Andreas Kuhn and Friedrich Fraundorfer: IB-MVS: An Iterative Algorithm for Deep Multi-View Stereo based on Binary Decisions. BMVC 2021
EI-MVSNet89.87 20289.38 19391.36 24494.32 24385.87 24997.61 23696.59 19985.10 24785.51 22597.10 16681.30 19896.56 25583.85 24383.03 26091.64 269
MVSTER92.71 14592.32 13893.86 19597.29 13992.95 8699.01 10796.59 19990.09 13085.51 22594.00 23094.61 1696.56 25590.77 16183.03 26092.08 260
RPSCF85.33 27685.55 25584.67 33294.63 23962.28 36893.73 32093.76 32774.38 34385.23 22797.06 16964.09 31298.31 16980.98 26586.08 23493.41 238
BH-w/o92.32 15491.79 15293.91 19496.85 15586.18 23999.11 9695.74 26388.13 19084.81 22897.00 17177.26 22397.91 18889.16 18498.03 11697.64 194
mvsmamba89.99 20089.42 19191.69 24090.64 30786.34 23398.40 17792.27 34691.01 10384.80 22994.93 21476.12 22696.51 25992.81 14383.84 25092.21 254
CLD-MVS91.06 17890.71 17592.10 22994.05 25086.10 24299.55 3596.29 22294.16 2884.70 23097.17 16469.62 27797.82 19594.74 10986.08 23492.39 245
Zhaoxin Li, Wangmeng Zuo, Zhaoqi Wang, Lei Zhang: Confidence-based Large-scale Dense Multi-view Stereo. IEEE Transaction on Image Processing, 2020
tpmvs89.16 20987.76 21993.35 20597.19 14284.75 27190.58 34797.36 15181.99 30084.56 23189.31 32683.98 15398.17 17474.85 31090.00 21797.12 207
nrg03090.23 19288.87 20194.32 17891.53 29693.54 6998.79 13095.89 25488.12 19184.55 23294.61 22178.80 21496.88 24192.35 14775.21 29792.53 243
VPNet88.30 22986.57 23993.49 20391.95 28991.35 11298.18 19797.20 16688.61 17184.52 23394.89 21562.21 31996.76 24789.34 17972.26 33092.36 247
MVS93.92 11392.28 13998.83 695.69 19696.82 796.22 28798.17 3384.89 25484.34 23498.61 10579.32 20999.83 6293.88 12499.43 6899.86 32
mvs_anonymous92.50 15291.65 15595.06 14996.60 16289.64 15997.06 25796.44 21286.64 22684.14 23593.93 23282.49 18096.17 28591.47 15196.08 15199.35 99
Fast-Effi-MVS+-dtu88.84 21788.59 21089.58 28993.44 26978.18 33498.65 14494.62 31288.46 17684.12 23695.37 21168.91 27996.52 25882.06 25991.70 20294.06 233
LS3D90.19 19488.72 20594.59 16898.97 8686.33 23496.90 26396.60 19874.96 34084.06 23798.74 9275.78 22899.83 6274.93 30897.57 12397.62 197
ACMM86.95 1388.77 22288.22 21790.43 26593.61 26381.34 31298.50 16495.92 24687.88 19883.85 23895.20 21267.20 29497.89 19086.90 20784.90 24092.06 261
Qingshan Xu and Wenbing Tao: Multi-Scale Geometric Consistency Guided Multi-View Stereo. CVPR 2019
BH-untuned91.46 17190.84 17193.33 20696.51 16684.83 27098.84 12395.50 27786.44 23283.50 23996.70 18375.49 23097.77 19986.78 20997.81 11897.40 200
FIs90.70 18589.87 18493.18 20892.29 28391.12 11998.17 19998.25 2789.11 15883.44 24094.82 21882.26 18596.17 28587.76 19682.76 26292.25 250
bld_raw_dy_0_6487.82 23486.71 23791.15 24789.54 32285.61 25497.37 24389.16 36889.26 15383.42 24194.50 22265.79 30396.18 28388.00 19483.37 25791.67 268
UniMVSNet (Re)89.50 20888.32 21593.03 21092.21 28590.96 12798.90 11798.39 2389.13 15783.22 24292.03 26581.69 19296.34 27586.79 20872.53 32691.81 266
UniMVSNet_NR-MVSNet89.60 20588.55 21292.75 21792.17 28690.07 14798.74 13298.15 3688.37 18383.21 24393.98 23182.86 17295.93 29686.95 20472.47 32792.25 250
DU-MVS88.83 21987.51 22392.79 21591.46 29790.07 14798.71 13397.62 10288.87 16783.21 24393.68 23874.63 23295.93 29686.95 20472.47 32792.36 247
LPG-MVS_test88.86 21688.47 21490.06 27493.35 27180.95 31998.22 19395.94 24387.73 20483.17 24596.11 19766.28 30197.77 19990.19 16685.19 23891.46 280
LGP-MVS_train90.06 27493.35 27180.95 31995.94 24387.73 20483.17 24596.11 19766.28 30197.77 19990.19 16685.19 23891.46 280
miper_enhance_ethall90.33 19089.70 18592.22 22497.12 14788.93 17298.35 18495.96 24088.60 17283.14 24792.33 26287.38 9296.18 28386.49 21077.89 28491.55 277
FC-MVSNet-test90.22 19389.40 19292.67 22091.78 29389.86 15597.89 21998.22 3088.81 16882.96 24894.66 22081.90 19195.96 29485.89 21882.52 26592.20 255
PCF-MVS89.78 591.26 17489.63 18696.16 11695.44 20491.58 10995.29 30696.10 23385.07 24982.75 24997.45 15078.28 21799.78 7180.60 27195.65 15997.12 207
Andreas Kuhn, Shan Lin, Oliver Erdler: Plane Completion and Filtering for Multi-View Stereo Reconstruction. GCPR 2019
V4287.00 24885.68 25390.98 25289.91 31486.08 24398.32 18795.61 27183.67 27282.72 25090.67 29674.00 24596.53 25781.94 26174.28 30990.32 315
v114486.83 25185.31 25891.40 24289.75 31787.21 21798.31 18895.45 28083.22 27882.70 25190.78 29173.36 24796.36 26979.49 27674.69 30390.63 310
v14419286.40 25984.89 26490.91 25389.48 32485.59 25598.21 19595.43 28482.45 29482.62 25290.58 30372.79 25696.36 26978.45 28574.04 31390.79 302
3Dnovator87.35 1193.17 14091.77 15397.37 5495.41 20693.07 8098.82 12497.85 5491.53 8982.56 25397.58 14671.97 26299.82 6591.01 15699.23 8299.22 112
v2v48287.27 24685.76 25191.78 23989.59 31987.58 20098.56 15795.54 27584.53 25882.51 25491.78 27373.11 25296.47 26382.07 25874.14 31291.30 288
Baseline_NR-MVSNet85.83 26884.82 26688.87 30488.73 33283.34 28898.63 14791.66 35580.41 31882.44 25591.35 28174.63 23295.42 31384.13 23671.39 33687.84 343
v119286.32 26184.71 26891.17 24689.53 32386.40 22998.13 20095.44 28382.52 29382.42 25690.62 30071.58 26896.33 27677.23 29074.88 30090.79 302
RRT_MVS88.91 21488.56 21189.93 27890.31 31181.61 30898.08 20996.38 21489.30 15282.41 25794.84 21773.15 25196.04 29190.38 16382.23 26792.15 256
test_djsdf88.26 23187.73 22089.84 28188.05 34082.21 30397.77 22796.17 22986.84 22182.41 25791.95 27172.07 26195.99 29289.83 16884.50 24391.32 287
cl2289.57 20688.79 20491.91 23197.94 12087.62 19997.98 21696.51 20785.03 25082.37 25991.79 27283.65 15596.50 26085.96 21577.89 28491.61 274
131493.44 12891.98 14897.84 3395.24 20994.38 5396.22 28797.92 4990.18 12682.28 26097.71 13977.63 22199.80 6991.94 14998.67 10599.34 101
v192192086.02 26484.44 27390.77 25889.32 32685.20 26298.10 20695.35 29082.19 29882.25 26190.71 29370.73 27196.30 28076.85 29574.49 30590.80 301
v124085.77 27184.11 27690.73 25989.26 32785.15 26597.88 22195.23 29881.89 30382.16 26290.55 30569.60 27896.31 27775.59 30574.87 30190.72 307
XVG-ACMP-BASELINE85.86 26784.95 26388.57 30589.90 31577.12 33994.30 31495.60 27287.40 21282.12 26392.99 25653.42 34897.66 20885.02 22483.83 25190.92 298
GBi-Net86.67 25484.96 26191.80 23595.11 21988.81 17596.77 26795.25 29282.94 28482.12 26390.25 31162.89 31694.97 32179.04 27980.24 27291.62 271
test186.67 25484.96 26191.80 23595.11 21988.81 17596.77 26795.25 29282.94 28482.12 26390.25 31162.89 31694.97 32179.04 27980.24 27291.62 271
FMVSNet388.81 22187.08 23193.99 19296.52 16594.59 4898.08 20996.20 22685.85 23682.12 26391.60 27674.05 24495.40 31479.04 27980.24 27291.99 263
IterMVS-LS88.34 22887.44 22491.04 25094.10 24785.85 25098.10 20695.48 27885.12 24682.03 26791.21 28481.35 19795.63 30883.86 24275.73 29591.63 270
Fangjinhua Wang, Silvano Galliani, Christoph Vogel, Marc Pollefeys: IterMVS: Iterative Probability Estimation for Efficient Multi-View Stereo.
miper_ehance_all_eth88.94 21388.12 21891.40 24295.32 20886.93 22097.85 22395.55 27484.19 26281.97 26891.50 27884.16 15095.91 29984.69 22877.89 28491.36 285
MIMVSNet84.48 28681.83 29692.42 22291.73 29487.36 20885.52 35594.42 31781.40 30681.91 26987.58 33351.92 35192.81 34573.84 31788.15 22297.08 211
PS-MVSNAJss89.54 20789.05 19891.00 25188.77 33184.36 27597.39 24095.97 23888.47 17481.88 27093.80 23682.48 18196.50 26089.34 17983.34 25992.15 256
WR-MVS88.54 22687.22 23092.52 22191.93 29189.50 16198.56 15797.84 5586.99 21581.87 27193.81 23574.25 24395.92 29885.29 22074.43 30692.12 258
TranMVSNet+NR-MVSNet87.75 23886.31 24392.07 23090.81 30488.56 18098.33 18597.18 16787.76 20181.87 27193.90 23372.45 25795.43 31283.13 24971.30 33792.23 252
eth_miper_zixun_eth87.76 23787.00 23390.06 27494.67 23882.65 30097.02 26095.37 28884.19 26281.86 27391.58 27781.47 19595.90 30083.24 24573.61 31591.61 274
UniMVSNet_ETH3D85.65 27483.79 28091.21 24590.41 31080.75 32195.36 30595.78 26078.76 32581.83 27494.33 22449.86 35696.66 24884.30 23283.52 25696.22 225
c3_l88.19 23287.23 22991.06 24994.97 22886.17 24097.72 23195.38 28783.43 27581.68 27591.37 28082.81 17395.72 30584.04 24073.70 31491.29 289
DP-MVS88.75 22386.56 24095.34 14198.92 9087.45 20597.64 23593.52 33370.55 35181.49 27697.25 15774.43 23899.88 4971.14 32994.09 17098.67 159
3Dnovator+87.72 893.43 12991.84 15198.17 2195.73 19595.08 3198.92 11597.04 18191.42 9581.48 27797.60 14474.60 23499.79 7090.84 15998.97 9199.64 72
QAPM91.41 17289.49 18997.17 6195.66 19893.42 7298.60 15297.51 12780.92 31381.39 27897.41 15272.89 25599.87 5282.33 25698.68 10498.21 183
XXY-MVS87.75 23886.02 24792.95 21390.46 30989.70 15897.71 23395.90 25284.02 26480.95 27994.05 22567.51 29297.10 23485.16 22178.41 28192.04 262
v14886.38 26085.06 26090.37 26989.47 32584.10 27998.52 15995.48 27883.80 26880.93 28090.22 31474.60 23496.31 27780.92 26771.55 33590.69 308
DIV-MVS_self_test87.82 23486.81 23590.87 25694.87 23385.39 26097.81 22495.22 29982.92 28780.76 28191.31 28281.99 18895.81 30381.36 26375.04 29991.42 283
cl____87.82 23486.79 23690.89 25594.88 23285.43 25897.81 22495.24 29582.91 28880.71 28291.22 28381.97 19095.84 30181.34 26475.06 29891.40 284
FMVSNet286.90 24984.79 26793.24 20795.11 21992.54 9497.67 23495.86 25882.94 28480.55 28391.17 28562.89 31695.29 31677.23 29079.71 27891.90 265
pmmvs487.58 24386.17 24691.80 23589.58 32088.92 17397.25 24995.28 29182.54 29280.49 28493.17 25175.62 22996.05 29082.75 25278.90 27990.42 313
ACMP87.39 1088.71 22488.24 21690.12 27393.91 25681.06 31898.50 16495.67 26889.43 14980.37 28595.55 20465.67 30497.83 19490.55 16284.51 24291.47 279
Qingshan Xu and Wenbing Tao: Planar Prior Assisted PatchMatch Multi-View Stereo. AAAI 2020
test_part188.43 22786.68 23893.67 20297.56 13392.40 9698.12 20296.55 20482.26 29780.31 28693.16 25274.59 23696.62 25085.00 22572.61 32591.99 263
pmmvs585.87 26684.40 27590.30 27088.53 33584.23 27698.60 15293.71 32981.53 30580.29 28792.02 26664.51 31195.52 31082.04 26078.34 28291.15 292
test0.0.03 188.96 21288.61 20890.03 27791.09 30184.43 27498.97 11197.02 18490.21 12480.29 28796.31 19484.89 14391.93 35772.98 32385.70 23793.73 234
miper_lstm_enhance86.90 24986.20 24589.00 30194.53 24081.19 31596.74 27195.24 29582.33 29680.15 28990.51 30781.99 18894.68 33080.71 26973.58 31691.12 293
jajsoiax87.35 24486.51 24189.87 27987.75 34581.74 30697.03 25895.98 23788.47 17480.15 28993.80 23661.47 32196.36 26989.44 17784.47 24591.50 278
mvs_tets87.09 24786.22 24489.71 28487.87 34181.39 31196.73 27295.90 25288.19 18979.99 29193.61 24159.96 32796.31 27789.40 17884.34 24691.43 282
ITE_SJBPF87.93 31092.26 28476.44 34093.47 33487.67 20779.95 29295.49 20756.50 33597.38 22675.24 30682.33 26689.98 324
v886.11 26384.45 27291.10 24889.99 31386.85 22197.24 25095.36 28981.99 30079.89 29389.86 31974.53 23796.39 26778.83 28372.32 32990.05 322
v1085.73 27284.01 27890.87 25690.03 31286.73 22397.20 25395.22 29981.25 30879.85 29489.75 32073.30 25096.28 28176.87 29472.64 32489.61 329
WR-MVS_H86.53 25885.49 25689.66 28891.04 30283.31 28997.53 23898.20 3284.95 25379.64 29590.90 28978.01 21995.33 31576.29 30072.81 32290.35 314
anonymousdsp86.69 25385.75 25289.53 29086.46 35182.94 29296.39 27895.71 26483.97 26679.63 29690.70 29468.85 28095.94 29586.01 21384.02 24989.72 327
Patchmtry83.61 29781.64 29789.50 29193.36 27082.84 29784.10 36294.20 32269.47 35679.57 29786.88 34284.43 14794.78 32768.48 33874.30 30890.88 299
CP-MVSNet86.54 25785.45 25789.79 28391.02 30382.78 29897.38 24297.56 11685.37 24379.53 29893.03 25471.86 26495.25 31779.92 27473.43 32091.34 286
Patchmatch-test86.25 26284.06 27792.82 21494.42 24182.88 29682.88 36694.23 32171.58 34879.39 29990.62 30089.00 6696.42 26663.03 35391.37 20799.16 115
DSMNet-mixed81.60 30681.43 30082.10 34184.36 35760.79 36993.63 32286.74 37279.00 32179.32 30087.15 34063.87 31489.78 36266.89 34391.92 19695.73 228
MSDG88.29 23086.37 24294.04 19096.90 15486.15 24196.52 27694.36 31977.89 33179.22 30196.95 17369.72 27699.59 9773.20 32292.58 18696.37 224
Anonymous2023121184.72 28182.65 29290.91 25397.71 12584.55 27397.28 24796.67 19566.88 36279.18 30290.87 29058.47 32996.60 25182.61 25474.20 31091.59 276
PS-CasMVS85.81 26984.58 27189.49 29390.77 30582.11 30497.20 25397.36 15184.83 25579.12 30392.84 25767.42 29395.16 31978.39 28673.25 32191.21 291
IterMVS85.81 26984.67 26989.22 29693.51 26583.67 28596.32 28194.80 30685.09 24878.69 30490.17 31766.57 30093.17 34279.48 27777.42 29090.81 300
Fangjinhua Wang, Silvano Galliani, Christoph Vogel, Marc Pollefeys: IterMVS: Iterative Probability Estimation for Efficient Multi-View Stereo.
PEN-MVS85.21 27783.93 27989.07 30089.89 31681.31 31397.09 25697.24 15884.45 26078.66 30592.68 25968.44 28494.87 32475.98 30270.92 33891.04 295
IterMVS-SCA-FT85.73 27284.64 27089.00 30193.46 26882.90 29496.27 28294.70 30985.02 25178.62 30690.35 30966.61 29893.33 33979.38 27877.36 29190.76 304
OpenMVScopyleft85.28 1490.75 18488.84 20296.48 10293.58 26493.51 7098.80 12697.41 14682.59 29078.62 30697.49 14968.00 28899.82 6584.52 23198.55 11096.11 226
PVSNet_083.28 1687.31 24585.16 25993.74 20094.78 23584.59 27298.91 11698.69 1989.81 13778.59 30893.23 24961.95 32099.34 13194.75 10855.72 36597.30 203
EU-MVSNet84.19 29084.42 27483.52 33788.64 33467.37 36696.04 29395.76 26285.29 24478.44 30993.18 25070.67 27291.48 35975.79 30475.98 29391.70 267
v7n84.42 28882.75 28989.43 29488.15 33881.86 30596.75 27095.67 26880.53 31478.38 31089.43 32469.89 27496.35 27473.83 31872.13 33190.07 320
FMVSNet183.94 29481.32 30291.80 23591.94 29088.81 17596.77 26795.25 29277.98 32778.25 31190.25 31150.37 35594.97 32173.27 32177.81 28891.62 271
D2MVS87.96 23387.39 22589.70 28591.84 29283.40 28798.31 18898.49 2188.04 19378.23 31290.26 31073.57 24696.79 24684.21 23483.53 25588.90 337
MS-PatchMatch86.75 25285.92 24989.22 29691.97 28882.47 30296.91 26296.14 23183.74 26977.73 31393.53 24458.19 33097.37 22876.75 29698.35 11387.84 343
DTE-MVSNet84.14 29182.80 28688.14 30988.95 33079.87 32596.81 26696.24 22483.50 27477.60 31492.52 26167.89 29094.24 33572.64 32569.05 34190.32 315
COLMAP_ROBcopyleft82.69 1884.54 28582.82 28589.70 28596.72 16078.85 32895.89 29592.83 34171.55 34977.54 31595.89 20159.40 32899.14 14167.26 34188.26 22191.11 294
Johannes L. Schönberger, Enliang Zheng, Marc Pollefeys, Jan-Michael Frahm: Pixelwise View Selection for Unstructured Multi-View Stereo. ECCV 2016
OurMVSNet-221017-084.13 29283.59 28185.77 32687.81 34270.24 36094.89 30993.65 33186.08 23476.53 31693.28 24861.41 32296.14 28780.95 26677.69 28990.93 297
tfpnnormal83.65 29581.35 30190.56 26291.37 29988.06 18997.29 24697.87 5378.51 32676.20 31790.91 28864.78 31096.47 26361.71 35673.50 31787.13 351
ppachtmachnet_test83.63 29681.57 29989.80 28289.01 32885.09 26697.13 25594.50 31478.84 32376.14 31891.00 28769.78 27594.61 33163.40 35174.36 30789.71 328
pm-mvs184.68 28282.78 28890.40 26689.58 32085.18 26397.31 24594.73 30881.93 30276.05 31992.01 26765.48 30896.11 28878.75 28469.14 34089.91 325
AllTest84.97 27983.12 28390.52 26396.82 15678.84 32995.89 29592.17 34877.96 32975.94 32095.50 20555.48 33899.18 13671.15 32787.14 22593.55 236
TestCases90.52 26396.82 15678.84 32992.17 34877.96 32975.94 32095.50 20555.48 33899.18 13671.15 32787.14 22593.55 236
CL-MVSNet_self_test79.89 31378.34 31384.54 33381.56 36575.01 34396.88 26495.62 27081.10 30975.86 32285.81 34868.49 28390.26 36163.21 35256.51 36388.35 340
testgi82.29 30181.00 30486.17 32387.24 34774.84 34597.39 24091.62 35688.63 17075.85 32395.42 20846.07 36291.55 35866.87 34479.94 27692.12 258
MVP-Stereo86.61 25685.83 25088.93 30388.70 33383.85 28396.07 29294.41 31882.15 29975.64 32491.96 27067.65 29196.45 26577.20 29298.72 10386.51 354
Qingsong Yan: MVP-Stereo: A Parallel Multi-View Patchmatch Stereo Method with Dilation Matching for Photogrammetric Application.
LF4IMVS81.94 30481.17 30384.25 33487.23 34868.87 36593.35 32491.93 35383.35 27775.40 32593.00 25549.25 35996.65 24978.88 28278.11 28387.22 350
our_test_384.47 28782.80 28689.50 29189.01 32883.90 28297.03 25894.56 31381.33 30775.36 32690.52 30671.69 26694.54 33268.81 33676.84 29290.07 320
LTVRE_ROB81.71 1984.59 28482.72 29090.18 27192.89 27983.18 29093.15 32594.74 30778.99 32275.14 32792.69 25865.64 30597.63 21169.46 33481.82 26989.74 326
Andreas Kuhn, Heiko Hirschmüller, Daniel Scharstein, Helmut Mayer: A TV Prior for High-Quality Scalable Multi-View Stereo Reconstruction. International Journal of Computer Vision 2016
Anonymous2023120680.76 30879.42 31284.79 33184.78 35672.98 35196.53 27592.97 33879.56 31974.33 32888.83 32761.27 32392.15 35460.59 35875.92 29489.24 334
FMVSNet582.29 30180.54 30587.52 31493.79 26184.01 28093.73 32092.47 34476.92 33474.27 32986.15 34763.69 31589.24 36369.07 33574.79 30289.29 333
MVS-HIRNet79.01 31675.13 32690.66 26093.82 26081.69 30785.16 35693.75 32854.54 36774.17 33059.15 37157.46 33296.58 25463.74 35094.38 16793.72 235
ACMH+83.78 1584.21 28982.56 29489.15 29893.73 26279.16 32696.43 27794.28 32081.09 31074.00 33194.03 22854.58 34497.67 20776.10 30178.81 28090.63 310
KD-MVS_2432*160082.98 29880.52 30690.38 26794.32 24388.98 16892.87 32895.87 25680.46 31673.79 33287.49 33582.76 17693.29 34070.56 33146.53 37088.87 338
miper_refine_blended82.98 29880.52 30690.38 26794.32 24388.98 16892.87 32895.87 25680.46 31673.79 33287.49 33582.76 17693.29 34070.56 33146.53 37088.87 338
NR-MVSNet87.74 24086.00 24892.96 21291.46 29790.68 13496.65 27497.42 14588.02 19473.42 33493.68 23877.31 22295.83 30284.26 23371.82 33492.36 247
USDC84.74 28082.93 28490.16 27291.73 29483.54 28695.00 30893.30 33688.77 16973.19 33593.30 24753.62 34797.65 21075.88 30381.54 27089.30 332
KD-MVS_self_test77.47 32575.88 32482.24 33981.59 36468.93 36492.83 33094.02 32577.03 33373.14 33683.39 35355.44 34090.42 36067.95 33957.53 36287.38 346
LCM-MVSNet-Re88.59 22588.61 20888.51 30795.53 20272.68 35496.85 26588.43 37088.45 17773.14 33690.63 29975.82 22794.38 33392.95 13995.71 15898.48 168
TDRefinement78.01 32275.31 32586.10 32470.06 37473.84 34893.59 32391.58 35774.51 34273.08 33891.04 28649.63 35897.12 23174.88 30959.47 35987.33 348
TransMVSNet (Re)81.97 30379.61 31189.08 29989.70 31884.01 28097.26 24891.85 35478.84 32373.07 33991.62 27567.17 29595.21 31867.50 34059.46 36088.02 342
SixPastTwentyTwo82.63 30081.58 29885.79 32588.12 33971.01 35995.17 30792.54 34384.33 26172.93 34092.08 26460.41 32695.61 30974.47 31274.15 31190.75 305
pmmvs679.90 31277.31 31787.67 31384.17 35878.13 33595.86 29993.68 33067.94 36072.67 34189.62 32250.98 35495.75 30474.80 31166.04 34989.14 335
ACMH83.09 1784.60 28382.61 29390.57 26193.18 27482.94 29296.27 28294.92 30381.01 31172.61 34293.61 24156.54 33497.79 19774.31 31381.07 27190.99 296
Qingshan Xu and Wenbing Tao: Multi-Scale Geometric Consistency Guided Multi-View Stereo. CVPR 2019
Anonymous2024052178.63 32076.90 32083.82 33582.82 36272.86 35295.72 30393.57 33273.55 34672.17 34384.79 35049.69 35792.51 35065.29 34874.50 30486.09 356
Patchmatch-RL test81.90 30580.13 30887.23 31780.71 36770.12 36284.07 36388.19 37183.16 28070.57 34482.18 35687.18 9992.59 34882.28 25762.78 35398.98 128
test_040278.81 31876.33 32286.26 32291.18 30078.44 33395.88 29791.34 35968.55 35770.51 34589.91 31852.65 35094.99 32047.14 36979.78 27785.34 360
TinyColmap80.42 31077.94 31487.85 31192.09 28778.58 33193.74 31989.94 36474.99 33969.77 34691.78 27346.09 36197.58 21565.17 34977.89 28487.38 346
test20.0378.51 32177.48 31681.62 34383.07 36171.03 35896.11 29192.83 34181.66 30469.31 34789.68 32157.53 33187.29 36858.65 36268.47 34286.53 353
N_pmnet70.19 33269.87 33471.12 35188.24 33730.63 38495.85 30028.70 38470.18 35368.73 34886.55 34464.04 31393.81 33653.12 36773.46 31888.94 336
OpenMVS_ROBcopyleft73.86 2077.99 32375.06 32786.77 32083.81 36077.94 33796.38 27991.53 35867.54 36168.38 34987.13 34143.94 36396.08 28955.03 36581.83 26886.29 355
ambc79.60 34672.76 37356.61 37276.20 36892.01 35268.25 35080.23 36023.34 37494.73 32873.78 31960.81 35787.48 345
PM-MVS74.88 32872.85 33180.98 34578.98 37064.75 36790.81 34485.77 37380.95 31268.23 35182.81 35429.08 37392.84 34476.54 29862.46 35585.36 359
pmmvs372.86 33169.76 33582.17 34073.86 37274.19 34794.20 31589.01 36964.23 36667.72 35280.91 35941.48 36588.65 36562.40 35454.02 36783.68 363
lessismore_v085.08 32885.59 35469.28 36390.56 36267.68 35390.21 31554.21 34695.46 31173.88 31662.64 35490.50 312
K. test v381.04 30779.77 31084.83 33087.41 34670.23 36195.60 30493.93 32683.70 27167.51 35489.35 32555.76 33693.58 33876.67 29768.03 34490.67 309
MIMVSNet175.92 32773.30 33083.81 33681.29 36675.57 34292.26 33392.05 35173.09 34767.48 35586.18 34640.87 36887.64 36755.78 36470.68 33988.21 341
ET-MVSNet_ETH3D92.56 15191.45 15995.88 12496.39 17194.13 5999.46 5096.97 18792.18 7866.94 35698.29 12294.65 1594.28 33494.34 11883.82 25399.24 109
pmmvs-eth3d78.71 31976.16 32386.38 32180.25 36881.19 31594.17 31692.13 35077.97 32866.90 35782.31 35555.76 33692.56 34973.63 32062.31 35685.38 358
EG-PatchMatch MVS79.92 31177.59 31586.90 31987.06 34977.90 33896.20 29094.06 32474.61 34166.53 35888.76 32840.40 36996.20 28267.02 34283.66 25486.61 352
test_method70.10 33368.66 33674.41 34986.30 35355.84 37394.47 31189.82 36535.18 37266.15 35984.75 35130.54 37277.96 37370.40 33360.33 35889.44 331
UnsupCasMVSNet_eth78.90 31776.67 32185.58 32782.81 36374.94 34491.98 33496.31 21884.64 25765.84 36087.71 33251.33 35292.23 35372.89 32456.50 36489.56 330
new-patchmatchnet74.80 32972.40 33281.99 34278.36 37172.20 35594.44 31292.36 34577.06 33263.47 36179.98 36151.04 35388.85 36460.53 35954.35 36684.92 361
new_pmnet76.02 32673.71 32982.95 33883.88 35972.85 35391.26 34192.26 34770.44 35262.60 36281.37 35747.64 36092.32 35261.85 35572.10 33283.68 363
UnsupCasMVSNet_bld73.85 33070.14 33384.99 32979.44 36975.73 34188.53 35095.24 29570.12 35461.94 36374.81 36441.41 36693.62 33768.65 33751.13 36985.62 357
CMPMVSbinary58.40 2180.48 30980.11 30981.59 34485.10 35559.56 37094.14 31795.95 24268.54 35860.71 36493.31 24655.35 34197.87 19283.06 25084.85 24187.33 348
M. Jancosek, T. Pajdla: Multi-View Reconstruction Preserving Weakly-Supported Surfaces. CVPR 2011
DeepMVS_CXcopyleft76.08 34890.74 30651.65 37690.84 36186.47 23157.89 36587.98 33035.88 37192.60 34765.77 34765.06 35183.97 362
YYNet179.64 31577.04 31987.43 31687.80 34379.98 32496.23 28694.44 31573.83 34551.83 36687.53 33467.96 28992.07 35666.00 34667.75 34690.23 317
MDA-MVSNet_test_wron79.65 31477.05 31887.45 31587.79 34480.13 32396.25 28594.44 31573.87 34451.80 36787.47 33768.04 28792.12 35566.02 34567.79 34590.09 318
LCM-MVSNet60.07 33656.37 33871.18 35054.81 38048.67 37782.17 36789.48 36737.95 37049.13 36869.12 36513.75 38181.76 36959.28 36051.63 36883.10 365
MDA-MVSNet-bldmvs77.82 32474.75 32887.03 31888.33 33678.52 33296.34 28092.85 34075.57 33848.87 36987.89 33157.32 33392.49 35160.79 35764.80 35290.08 319
PMMVS258.97 33755.07 34070.69 35262.72 37555.37 37485.97 35480.52 37749.48 36845.94 37068.31 36615.73 37980.78 37149.79 36837.12 37275.91 366
FPMVS61.57 33460.32 33765.34 35360.14 37842.44 37991.02 34389.72 36644.15 36942.63 37180.93 35819.02 37580.59 37242.50 37072.76 32373.00 367
Gipumacopyleft54.77 33852.22 34262.40 35586.50 35059.37 37150.20 37390.35 36336.52 37141.20 37249.49 37318.33 37781.29 37032.10 37365.34 35046.54 373
S. Galliani, K. Lasinger, K. Schindler: Massively Parallel Multiview Stereopsis by Surface Normal Diffusion. ICCV 2015
tmp_tt53.66 33952.86 34156.05 35632.75 38441.97 38073.42 37076.12 38021.91 37739.68 37396.39 19242.59 36465.10 37678.00 28714.92 37761.08 370
E-PMN41.02 34340.93 34541.29 35961.97 37633.83 38184.00 36465.17 38227.17 37427.56 37446.72 37517.63 37860.41 37819.32 37618.82 37429.61 374
ANet_high50.71 34046.17 34364.33 35444.27 38252.30 37576.13 36978.73 37864.95 36427.37 37555.23 37214.61 38067.74 37536.01 37218.23 37572.95 368
EMVS39.96 34439.88 34640.18 36059.57 37932.12 38384.79 36164.57 38326.27 37526.14 37644.18 37818.73 37659.29 37917.03 37717.67 37629.12 375
MVEpermissive44.00 2241.70 34237.64 34753.90 35849.46 38143.37 37865.09 37266.66 38126.19 37625.77 37748.53 3743.58 38463.35 37726.15 37527.28 37354.97 372
Simon Fuhrmann, Fabian Langguth, Michael Goesele: MVE - A Multi-View Reconstruction Environment. EUROGRAPHICS Workshops on Graphics and Cultural Heritage (2014)
PMVScopyleft41.42 2345.67 34142.50 34455.17 35734.28 38332.37 38266.24 37178.71 37930.72 37322.04 37859.59 3704.59 38277.85 37427.49 37458.84 36155.29 371
Y. Furukawa, J. Ponce: Accurate, dense, and robust multiview stereopsis. PAMI (2010)
testmvs18.81 34623.05 3496.10 3634.48 3852.29 38797.78 2263.00 3863.27 37918.60 37962.71 3681.53 3862.49 38214.26 3791.80 37913.50 377
test12316.58 34819.47 3507.91 3623.59 3865.37 38694.32 3131.39 3872.49 38013.98 38044.60 3772.91 3852.65 38111.35 3800.57 38015.70 376
wuyk23d16.71 34716.73 35116.65 36160.15 37725.22 38541.24 3745.17 3856.56 3785.48 3813.61 3813.64 38322.72 38015.20 3789.52 3781.99 378
EGC-MVSNET60.70 33555.37 33976.72 34786.35 35271.08 35789.96 34884.44 3760.38 3811.50 38284.09 35237.30 37088.10 36640.85 37173.44 31970.97 369
test_blank0.00 3510.00 3540.00 3640.00 3870.00 3880.00 3750.00 3880.00 3820.00 3830.00 3820.00 3870.00 3830.00 3810.00 3810.00 379
uanet_test0.00 3510.00 3540.00 3640.00 3870.00 3880.00 3750.00 3880.00 3820.00 3830.00 3820.00 3870.00 3830.00 3810.00 3810.00 379
DCPMVS0.00 3510.00 3540.00 3640.00 3870.00 3880.00 3750.00 3880.00 3820.00 3830.00 3820.00 3870.00 3830.00 3810.00 3810.00 379
cdsmvs_eth3d_5k22.52 34530.03 3480.00 3640.00 3870.00 3880.00 37597.17 1680.00 3820.00 38398.77 8974.35 2400.00 3830.00 3810.00 3810.00 379
pcd_1.5k_mvsjas6.87 3509.16 3530.00 3640.00 3870.00 3880.00 3750.00 3880.00 3820.00 3830.00 38282.48 1810.00 3830.00 3810.00 3810.00 379
sosnet-low-res0.00 3510.00 3540.00 3640.00 3870.00 3880.00 3750.00 3880.00 3820.00 3830.00 3820.00 3870.00 3830.00 3810.00 3810.00 379
sosnet0.00 3510.00 3540.00 3640.00 3870.00 3880.00 3750.00 3880.00 3820.00 3830.00 3820.00 3870.00 3830.00 3810.00 3810.00 379
uncertanet0.00 3510.00 3540.00 3640.00 3870.00 3880.00 3750.00 3880.00 3820.00 3830.00 3820.00 3870.00 3830.00 3810.00 3810.00 379
Regformer0.00 3510.00 3540.00 3640.00 3870.00 3880.00 3750.00 3880.00 3820.00 3830.00 3820.00 3870.00 3830.00 3810.00 3810.00 379
ab-mvs-re8.21 34910.94 3520.00 3640.00 3870.00 3880.00 3750.00 3880.00 3820.00 38398.50 1110.00 3870.00 3830.00 3810.00 3810.00 379
uanet0.00 3510.00 3540.00 3640.00 3870.00 3880.00 3750.00 3880.00 3820.00 3830.00 3820.00 3870.00 3830.00 3810.00 3810.00 379
MSC_two_6792asdad99.51 299.61 2798.60 297.69 8499.98 1099.55 1099.83 1599.96 10
No_MVS99.51 299.61 2798.60 297.69 8499.98 1099.55 1099.83 1599.96 10
eth-test20.00 387
eth-test0.00 387
OPU-MVS99.49 499.64 2098.51 499.77 899.19 3495.12 899.97 2399.90 199.92 399.99 1
save fliter99.34 5893.85 6399.65 2497.63 10095.69 11
test_0728_SECOND98.77 799.66 1596.37 1399.72 1397.68 8699.98 1099.64 699.82 1999.96 10
GSMVS98.84 143
sam_mvs188.39 7598.84 143
sam_mvs87.08 101
MTGPAbinary97.45 138
test_post190.74 34641.37 37985.38 13996.36 26983.16 247
test_post46.00 37687.37 9397.11 232
patchmatchnet-post84.86 34988.73 6996.81 244
MTMP99.21 7691.09 360
gm-plane-assit94.69 23788.14 18788.22 18897.20 16198.29 17190.79 160
test9_res98.60 2599.87 999.90 24
agg_prior297.84 4799.87 999.91 22
test_prior492.00 10099.41 59
test_prior97.01 6599.58 3391.77 10197.57 11499.49 10999.79 38
新几何298.26 191
旧先验198.97 8692.90 8797.74 7199.15 4391.05 3499.33 7499.60 78
无先验98.52 15997.82 5887.20 21499.90 4587.64 19899.85 33
原ACMM298.69 138
testdata299.88 4984.16 235
segment_acmp90.56 43
testdata197.89 21992.43 68
plane_prior793.84 25885.73 252
plane_prior693.92 25586.02 24672.92 253
plane_prior596.30 21997.75 20493.46 13286.17 23292.67 241
plane_prior496.52 186
plane_prior299.02 10593.38 49
plane_prior193.90 257
plane_prior86.07 24499.14 9193.81 4186.26 231
n20.00 388
nn0.00 388
door-mid84.90 375
test1197.68 86
door85.30 374
HQP5-MVS86.39 230
BP-MVS93.82 127
HQP3-MVS96.37 21586.29 229
HQP2-MVS73.34 248
NP-MVS93.94 25486.22 23796.67 184
ACMMP++_ref82.64 264
ACMMP++83.83 251
Test By Simon83.62 156