IU-MVS | | | | | | 99.63 18 | 95.38 21 | | 97.73 70 | 95.54 19 | 99.54 1 | | | | 99.69 5 | 99.81 23 | 99.99 1 |
|
PC_three_1452 | | | | | | | | | | 94.60 27 | 99.41 2 | 99.12 42 | 95.50 7 | 99.96 28 | 99.84 2 | 99.92 3 | 99.97 7 |
|
CNVR-MVS | | | 98.46 1 | 98.38 1 | 98.72 8 | 99.80 4 | 96.19 14 | 99.80 9 | 97.99 46 | 97.05 5 | 99.41 2 | 99.59 2 | 92.89 25 | 100.00 1 | 98.99 20 | 99.90 7 | 99.96 10 |
|
patch_mono-2 | | | 97.10 23 | 97.97 8 | 94.49 158 | 99.21 61 | 83.73 274 | 99.62 30 | 98.25 29 | 95.28 22 | 99.38 4 | 98.91 67 | 92.28 28 | 99.94 34 | 99.61 8 | 99.22 70 | 99.78 37 |
|
test0726 | | | | | | 99.66 12 | 95.20 29 | 99.77 10 | 97.70 76 | 93.95 38 | 99.35 5 | 99.54 3 | 93.18 22 | | | | |
|
SED-MVS | | | 98.18 2 | 98.10 4 | 98.41 17 | 99.63 18 | 95.24 24 | 99.77 10 | 97.72 71 | 94.17 33 | 99.30 6 | 99.54 3 | 93.32 19 | 99.98 9 | 99.70 3 | 99.81 23 | 99.99 1 |
|
test_241102_ONE | | | | | | 99.63 18 | 95.24 24 | | 97.72 71 | 94.16 35 | 99.30 6 | 99.49 9 | 93.32 19 | 99.98 9 | | | |
|
DVP-MVS++ | | | 98.18 2 | 98.09 5 | 98.44 15 | 99.61 24 | 95.38 21 | 99.55 37 | 97.68 80 | 93.01 60 | 99.23 8 | 99.45 14 | 95.12 8 | 99.98 9 | 99.25 15 | 99.92 3 | 99.97 7 |
|
test_241102_TWO | | | | | | | | | 97.72 71 | 94.17 33 | 99.23 8 | 99.54 3 | 93.14 24 | 99.98 9 | 99.70 3 | 99.82 19 | 99.99 1 |
|
SMA-MVS |  | | 97.24 17 | 96.99 21 | 98.00 28 | 99.30 54 | 94.20 54 | 99.16 82 | 97.65 88 | 89.55 144 | 99.22 10 | 99.52 8 | 90.34 46 | 99.99 5 | 98.32 35 | 99.83 15 | 99.82 31 |
Yufeng Yin; Xiaoyan Liu; Zichao Zhang: SMA-MVS: Segmentation-Guided Multi-Scale Anchor Deformation Patch Multi-View Stereo. IEEE Transactions on Circuits and Systems for Video Technology |
test_fmvsm_n_1920 | | | 97.08 24 | 97.55 12 | 95.67 120 | 97.94 104 | 89.61 150 | 99.93 1 | 98.48 23 | 97.08 4 | 99.08 11 | 99.13 40 | 88.17 66 | 99.93 37 | 99.11 18 | 99.06 74 | 97.47 187 |
|
DVP-MVS |  | | 98.07 7 | 98.00 6 | 98.29 18 | 99.66 12 | 95.20 29 | 99.72 16 | 97.47 126 | 93.95 38 | 99.07 12 | 99.46 10 | 93.18 22 | 99.97 21 | 99.64 6 | 99.82 19 | 99.69 53 |
Zhenlong Yuan, Jinguo Luo, Fei Shen, Zhaoxin Li, Cong Liu, Tianlu Mao, Zhaoqi Wang: DVP-MVS: Synergize Depth-Edge and Visibility Prior for Multi-View Stereo. AAAI2025 |
test_0728_THIRD | | | | | | | | | | 93.01 60 | 99.07 12 | 99.46 10 | 94.66 14 | 99.97 21 | 99.25 15 | 99.82 19 | 99.95 15 |
|
TSAR-MVS + MP. | | | 97.44 15 | 97.46 14 | 97.39 45 | 99.12 65 | 93.49 68 | 98.52 156 | 97.50 121 | 94.46 29 | 98.99 14 | 98.64 90 | 91.58 30 | 99.08 138 | 98.49 29 | 99.83 15 | 99.60 65 |
Zhenlong Yuan, Jiakai Cao, Zhaoqi Wang, Zhaoxin Li: TSAR-MVS: Textureless-aware Segmentation and Correlative Refinement Guided Multi-View Stereo. Pattern Recognition |
PS-MVSNAJ | | | 96.87 28 | 96.40 34 | 98.29 18 | 97.35 121 | 97.29 5 | 99.03 104 | 97.11 163 | 95.83 15 | 98.97 15 | 99.14 38 | 82.48 169 | 99.60 93 | 98.60 25 | 99.08 73 | 98.00 174 |
|
旧先验2 | | | | | | | | 98.67 139 | | 85.75 238 | 98.96 16 | | | 98.97 142 | 93.84 121 | | |
|
test_one_0601 | | | | | | 99.59 28 | 94.89 33 | | 97.64 89 | 93.14 59 | 98.93 17 | 99.45 14 | 93.45 18 | | | | |
|
xiu_mvs_v2_base | | | 96.66 32 | 96.17 42 | 98.11 26 | 97.11 134 | 96.96 6 | 99.01 107 | 97.04 170 | 95.51 20 | 98.86 18 | 99.11 46 | 82.19 176 | 99.36 120 | 98.59 27 | 98.14 105 | 98.00 174 |
|
NCCC | | | 98.12 5 | 98.11 3 | 98.13 23 | 99.76 6 | 94.46 47 | 99.81 7 | 97.88 49 | 96.54 9 | 98.84 19 | 99.46 10 | 92.55 27 | 99.98 9 | 98.25 37 | 99.93 1 | 99.94 18 |
|
SD-MVS | | | 97.51 13 | 97.40 16 | 97.81 33 | 99.01 72 | 93.79 62 | 99.33 69 | 97.38 139 | 93.73 49 | 98.83 20 | 99.02 53 | 90.87 38 | 99.88 49 | 98.69 23 | 99.74 29 | 99.77 42 |
Zhenlong Yuan, Jiakai Cao, Zhaoxin Li, Hao Jiang and Zhaoqi Wang: SD-MVS: Segmentation-driven Deformation Multi-View Stereo with Spherical Refinement and EM optimization. AAAI2024 |
SF-MVS | | | 97.22 19 | 96.92 22 | 98.12 25 | 99.11 66 | 94.88 34 | 99.44 53 | 97.45 129 | 89.60 140 | 98.70 21 | 99.42 17 | 90.42 44 | 99.72 79 | 98.47 30 | 99.65 38 | 99.77 42 |
|
DPE-MVS |  | | 98.11 6 | 98.00 6 | 98.44 15 | 99.50 42 | 95.39 20 | 99.29 72 | 97.72 71 | 94.50 28 | 98.64 22 | 99.54 3 | 93.32 19 | 99.97 21 | 99.58 9 | 99.90 7 | 99.95 15 |
Kehua Chen, Zhenlong Yuan, Tianlu Mao, Zhaoqi Wang: Dual-Level Precision Edges Guided Multi-View Stereo with Accurate Planarization. AAAI2025 |
MSP-MVS | | | 97.77 9 | 98.18 2 | 96.53 88 | 99.54 36 | 90.14 132 | 99.41 59 | 97.70 76 | 95.46 21 | 98.60 23 | 99.19 28 | 95.71 4 | 99.49 102 | 98.15 38 | 99.85 13 | 99.95 15 |
Zhenlong Yuan, Cong Liu, Fei Shen, Zhaoxin Li, Jingguo luo, Tianlu Mao and Zhaoqi Wang: MSP-MVS: Multi-granularity Segmentation Prior Guided Multi-View Stereo. AAAI2025 |
9.14 | | | | 96.87 24 | | 99.34 50 | | 99.50 43 | 97.49 123 | 89.41 147 | 98.59 24 | 99.43 16 | 89.78 50 | 99.69 81 | 98.69 23 | 99.62 44 | |
|
APD-MVS |  | | 96.95 26 | 96.72 28 | 97.63 37 | 99.51 41 | 93.58 64 | 99.16 82 | 97.44 132 | 90.08 129 | 98.59 24 | 99.07 47 | 89.06 55 | 99.42 113 | 97.92 41 | 99.66 37 | 99.88 26 |
Yuesong Wang, Zhaojie Zeng and etc.: Adaptive Patch Deformation for Textureless-Resilient Multi-View Stereo. CVPR2023 |
test_vis1_n_1920 | | | 93.08 132 | 93.42 105 | 92.04 222 | 96.31 162 | 79.36 317 | 99.83 5 | 96.06 227 | 96.72 7 | 98.53 26 | 98.10 117 | 58.57 322 | 99.91 42 | 97.86 43 | 98.79 91 | 96.85 204 |
|
testdata | | | | | 95.26 133 | 98.20 95 | 87.28 201 | | 97.60 98 | 85.21 244 | 98.48 27 | 99.15 36 | 88.15 68 | 98.72 152 | 90.29 163 | 99.45 57 | 99.78 37 |
|
TEST9 | | | | | | 99.57 33 | 93.17 72 | 99.38 62 | 97.66 83 | 89.57 142 | 98.39 28 | 99.18 31 | 90.88 37 | 99.66 84 | | | |
|
train_agg | | | 97.20 20 | 97.08 20 | 97.57 41 | 99.57 33 | 93.17 72 | 99.38 62 | 97.66 83 | 90.18 124 | 98.39 28 | 99.18 31 | 90.94 35 | 99.66 84 | 98.58 28 | 99.85 13 | 99.88 26 |
|
test_8 | | | | | | 99.55 35 | 93.07 75 | 99.37 65 | 97.64 89 | 90.18 124 | 98.36 30 | 99.19 28 | 90.94 35 | 99.64 90 | | | |
|
CS-MVS-test | | | 95.98 50 | 96.34 36 | 94.90 143 | 98.06 101 | 87.66 188 | 99.69 26 | 96.10 223 | 93.66 50 | 98.35 31 | 99.05 50 | 86.28 110 | 97.66 205 | 96.96 59 | 98.90 85 | 99.37 83 |
|
HPM-MVS++ |  | | 97.72 10 | 97.59 11 | 98.14 22 | 99.53 40 | 94.76 41 | 99.19 76 | 97.75 66 | 95.66 17 | 98.21 32 | 99.29 20 | 91.10 33 | 99.99 5 | 97.68 45 | 99.87 9 | 99.68 54 |
|
DPM-MVS | | | 97.86 8 | 97.25 18 | 99.68 1 | 98.25 93 | 99.10 1 | 99.76 13 | 97.78 63 | 96.61 8 | 98.15 33 | 99.53 7 | 93.62 17 | 100.00 1 | 91.79 147 | 99.80 26 | 99.94 18 |
|
test_part2 | | | | | | 99.54 36 | 95.42 19 | | | | 98.13 34 | | | | | | |
|
SteuartSystems-ACMMP | | | 97.25 16 | 97.34 17 | 97.01 57 | 97.38 120 | 91.46 99 | 99.75 14 | 97.66 83 | 94.14 37 | 98.13 34 | 99.26 21 | 92.16 29 | 99.66 84 | 97.91 42 | 99.64 40 | 99.90 22 |
Skip Steuart: Steuart Systems R&D Blog. |
FOURS1 | | | | | | 99.50 42 | 88.94 161 | 99.55 37 | 97.47 126 | 91.32 98 | 98.12 36 | | | | | | |
|
test_prior2 | | | | | | | | 99.57 35 | | 91.43 95 | 98.12 36 | 98.97 56 | 90.43 43 | | 98.33 34 | 99.81 23 | |
|
CS-MVS | | | 95.75 61 | 96.19 38 | 94.40 162 | 97.88 106 | 86.22 225 | 99.66 27 | 96.12 222 | 92.69 68 | 98.07 38 | 98.89 70 | 87.09 88 | 97.59 211 | 96.71 62 | 98.62 95 | 99.39 82 |
|
PHI-MVS | | | 96.65 33 | 96.46 33 | 97.21 51 | 99.34 50 | 91.77 92 | 99.70 19 | 98.05 42 | 86.48 228 | 98.05 39 | 99.20 27 | 89.33 53 | 99.96 28 | 98.38 31 | 99.62 44 | 99.90 22 |
|
MVSFormer | | | 94.71 86 | 94.08 89 | 96.61 82 | 95.05 216 | 94.87 35 | 97.77 223 | 96.17 219 | 86.84 219 | 98.04 40 | 98.52 97 | 85.52 119 | 95.99 290 | 89.83 166 | 98.97 79 | 98.96 117 |
|
lupinMVS | | | 96.32 41 | 95.94 48 | 97.44 43 | 95.05 216 | 94.87 35 | 99.86 3 | 96.50 197 | 93.82 47 | 98.04 40 | 98.77 77 | 85.52 119 | 98.09 175 | 96.98 58 | 98.97 79 | 99.37 83 |
|
APDe-MVS | | | 97.53 11 | 97.47 13 | 97.70 35 | 99.58 30 | 93.63 63 | 99.56 36 | 97.52 116 | 93.59 53 | 98.01 42 | 99.12 42 | 90.80 39 | 99.55 96 | 99.26 14 | 99.79 27 | 99.93 20 |
|
ACMMP_NAP | | | 96.59 34 | 96.18 39 | 97.81 33 | 98.82 81 | 93.55 65 | 98.88 119 | 97.59 102 | 90.66 109 | 97.98 43 | 99.14 38 | 86.59 102 | 100.00 1 | 96.47 71 | 99.46 55 | 99.89 25 |
|
agg_prior | | | | | | 99.54 36 | 92.66 82 | | 97.64 89 | | 97.98 43 | | | 99.61 92 | | | |
|
CDPH-MVS | | | 96.56 35 | 96.18 39 | 97.70 35 | 99.59 28 | 93.92 59 | 99.13 93 | 97.44 132 | 89.02 156 | 97.90 45 | 99.22 25 | 88.90 58 | 99.49 102 | 94.63 109 | 99.79 27 | 99.68 54 |
|
EPNet | | | 96.82 29 | 96.68 30 | 97.25 50 | 98.65 86 | 93.10 74 | 99.48 44 | 98.76 14 | 96.54 9 | 97.84 46 | 98.22 112 | 87.49 78 | 99.66 84 | 95.35 91 | 97.78 112 | 99.00 113 |
Wanjuan Su, Wenbing Tao: Efficient Edge-Preserving Multi-View Stereo Network for Depth Estimation. AAAI 2023 |
MSLP-MVS++ | | | 97.50 14 | 97.45 15 | 97.63 37 | 99.65 16 | 93.21 71 | 99.70 19 | 98.13 39 | 94.61 26 | 97.78 47 | 99.46 10 | 89.85 49 | 99.81 70 | 97.97 40 | 99.91 6 | 99.88 26 |
|
test12 | | | | | 97.83 32 | 99.33 53 | 94.45 48 | | 97.55 109 | | 97.56 48 | | 88.60 61 | 99.50 101 | | 99.71 34 | 99.55 70 |
|
xiu_mvs_v1_base_debu | | | 94.73 83 | 93.98 91 | 96.99 59 | 95.19 204 | 95.24 24 | 98.62 145 | 96.50 197 | 92.99 62 | 97.52 49 | 98.83 74 | 72.37 245 | 99.15 131 | 97.03 55 | 96.74 129 | 96.58 208 |
|
xiu_mvs_v1_base | | | 94.73 83 | 93.98 91 | 96.99 59 | 95.19 204 | 95.24 24 | 98.62 145 | 96.50 197 | 92.99 62 | 97.52 49 | 98.83 74 | 72.37 245 | 99.15 131 | 97.03 55 | 96.74 129 | 96.58 208 |
|
xiu_mvs_v1_base_debi | | | 94.73 83 | 93.98 91 | 96.99 59 | 95.19 204 | 95.24 24 | 98.62 145 | 96.50 197 | 92.99 62 | 97.52 49 | 98.83 74 | 72.37 245 | 99.15 131 | 97.03 55 | 96.74 129 | 96.58 208 |
|
ZD-MVS | | | | | | 99.67 10 | 93.28 70 | | 97.61 96 | 87.78 198 | 97.41 52 | 99.16 34 | 90.15 47 | 99.56 95 | 98.35 33 | 99.70 35 | |
|
ETV-MVS | | | 96.00 48 | 96.00 47 | 96.00 108 | 96.56 151 | 91.05 111 | 99.63 29 | 96.61 187 | 93.26 58 | 97.39 53 | 98.30 109 | 86.62 101 | 98.13 172 | 98.07 39 | 97.57 115 | 98.82 134 |
|
DeepPCF-MVS | | 93.56 1 | 96.55 36 | 97.84 10 | 92.68 210 | 98.71 85 | 78.11 329 | 99.70 19 | 97.71 75 | 98.18 1 | 97.36 54 | 99.76 1 | 90.37 45 | 99.94 34 | 99.27 13 | 99.54 52 | 99.99 1 |
|
test_vis1_n | | | 90.40 182 | 90.27 173 | 90.79 251 | 91.55 290 | 76.48 333 | 99.12 94 | 94.44 309 | 94.31 31 | 97.34 55 | 96.95 165 | 43.60 361 | 99.42 113 | 97.57 47 | 97.60 114 | 96.47 212 |
|
EC-MVSNet | | | 95.09 74 | 95.17 68 | 94.84 146 | 95.42 195 | 88.17 176 | 99.48 44 | 95.92 239 | 91.47 93 | 97.34 55 | 98.36 106 | 82.77 162 | 97.41 222 | 97.24 52 | 98.58 96 | 98.94 122 |
|
CANet | | | 97.00 25 | 96.49 32 | 98.55 11 | 98.86 80 | 96.10 15 | 99.83 5 | 97.52 116 | 95.90 14 | 97.21 57 | 98.90 68 | 82.66 166 | 99.93 37 | 98.71 22 | 98.80 89 | 99.63 62 |
|
CANet_DTU | | | 94.31 95 | 93.35 106 | 97.20 52 | 97.03 138 | 94.71 43 | 98.62 145 | 95.54 268 | 95.61 18 | 97.21 57 | 98.47 103 | 71.88 250 | 99.84 61 | 88.38 185 | 97.46 120 | 97.04 200 |
|
MVS_0304 | | | 97.53 11 | 97.15 19 | 98.67 10 | 97.30 123 | 96.52 11 | 99.60 31 | 98.88 13 | 97.14 3 | 97.21 57 | 98.94 65 | 86.89 94 | 99.91 42 | 99.43 12 | 98.91 84 | 99.59 69 |
|
test_cas_vis1_n_1920 | | | 93.86 106 | 93.74 100 | 94.22 171 | 95.39 198 | 86.08 231 | 99.73 15 | 96.07 226 | 96.38 12 | 97.19 60 | 97.78 124 | 65.46 299 | 99.86 57 | 96.71 62 | 98.92 83 | 96.73 205 |
|
VNet | | | 95.08 75 | 94.26 81 | 97.55 42 | 98.07 100 | 93.88 60 | 98.68 137 | 98.73 17 | 90.33 121 | 97.16 61 | 97.43 143 | 79.19 199 | 99.53 99 | 96.91 61 | 91.85 191 | 99.24 95 |
|
region2R | | | 96.30 42 | 96.17 42 | 96.70 78 | 99.70 7 | 90.31 127 | 99.46 50 | 97.66 83 | 90.55 114 | 97.07 62 | 99.07 47 | 86.85 95 | 99.97 21 | 95.43 89 | 99.74 29 | 99.81 32 |
|
原ACMM1 | | | | | 96.18 100 | 99.03 71 | 90.08 135 | | 97.63 93 | 88.98 157 | 97.00 63 | 98.97 56 | 88.14 69 | 99.71 80 | 88.23 187 | 99.62 44 | 98.76 141 |
|
HFP-MVS | | | 96.42 38 | 96.26 37 | 96.90 66 | 99.69 8 | 90.96 114 | 99.47 46 | 97.81 58 | 90.54 115 | 96.88 64 | 99.05 50 | 87.57 76 | 99.96 28 | 95.65 82 | 99.72 31 | 99.78 37 |
|
XVS | | | 96.47 37 | 96.37 35 | 96.77 71 | 99.62 22 | 90.66 122 | 99.43 56 | 97.58 104 | 92.41 75 | 96.86 65 | 98.96 60 | 87.37 81 | 99.87 52 | 95.65 82 | 99.43 59 | 99.78 37 |
|
X-MVStestdata | | | 90.69 179 | 88.66 201 | 96.77 71 | 99.62 22 | 90.66 122 | 99.43 56 | 97.58 104 | 92.41 75 | 96.86 65 | 29.59 385 | 87.37 81 | 99.87 52 | 95.65 82 | 99.43 59 | 99.78 37 |
|
SR-MVS | | | 96.13 45 | 96.16 44 | 96.07 105 | 99.42 47 | 89.04 156 | 98.59 151 | 97.33 143 | 90.44 118 | 96.84 67 | 99.12 42 | 86.75 97 | 99.41 116 | 97.47 48 | 99.44 58 | 99.76 44 |
|
TSAR-MVS + GP. | | | 96.95 26 | 96.91 23 | 97.07 54 | 98.88 79 | 91.62 95 | 99.58 34 | 96.54 195 | 95.09 24 | 96.84 67 | 98.63 92 | 91.16 31 | 99.77 75 | 99.04 19 | 96.42 134 | 99.81 32 |
|
ACMMPR | | | 96.28 43 | 96.14 46 | 96.73 75 | 99.68 9 | 90.47 125 | 99.47 46 | 97.80 60 | 90.54 115 | 96.83 69 | 99.03 52 | 86.51 106 | 99.95 31 | 95.65 82 | 99.72 31 | 99.75 45 |
|
test_fmvs1 | | | 92.35 145 | 92.94 120 | 90.57 256 | 97.19 127 | 75.43 337 | 99.55 37 | 94.97 293 | 95.20 23 | 96.82 70 | 97.57 137 | 59.59 320 | 99.84 61 | 97.30 51 | 98.29 104 | 96.46 213 |
|
PMMVS | | | 93.62 115 | 93.90 97 | 92.79 205 | 96.79 146 | 81.40 302 | 98.85 120 | 96.81 181 | 91.25 99 | 96.82 70 | 98.15 116 | 77.02 213 | 98.13 172 | 93.15 134 | 96.30 138 | 98.83 133 |
|
PGM-MVS | | | 95.85 55 | 95.65 60 | 96.45 91 | 99.50 42 | 89.77 146 | 98.22 190 | 98.90 12 | 89.19 151 | 96.74 72 | 98.95 62 | 85.91 117 | 99.92 39 | 93.94 118 | 99.46 55 | 99.66 58 |
|
jason | | | 95.40 69 | 94.86 74 | 97.03 56 | 92.91 271 | 94.23 53 | 99.70 19 | 96.30 208 | 93.56 54 | 96.73 73 | 98.52 97 | 81.46 185 | 97.91 184 | 96.08 77 | 98.47 100 | 98.96 117 |
jason: jason. |
新几何1 | | | | | 97.40 44 | 98.92 77 | 92.51 87 | | 97.77 65 | 85.52 240 | 96.69 74 | 99.06 49 | 88.08 70 | 99.89 48 | 84.88 225 | 99.62 44 | 99.79 35 |
|
SR-MVS-dyc-post | | | 95.75 61 | 95.86 51 | 95.41 128 | 99.22 59 | 87.26 204 | 98.40 174 | 97.21 151 | 89.63 138 | 96.67 75 | 98.97 56 | 86.73 99 | 99.36 120 | 96.62 65 | 99.31 65 | 99.60 65 |
|
RE-MVS-def | | | | 95.70 57 | | 99.22 59 | 87.26 204 | 98.40 174 | 97.21 151 | 89.63 138 | 96.67 75 | 98.97 56 | 85.24 127 | | 96.62 65 | 99.31 65 | 99.60 65 |
|
APD-MVS_3200maxsize | | | 95.64 64 | 95.65 60 | 95.62 122 | 99.24 58 | 87.80 184 | 98.42 169 | 97.22 150 | 88.93 161 | 96.64 77 | 98.98 55 | 85.49 122 | 99.36 120 | 96.68 64 | 99.27 68 | 99.70 51 |
|
mvsany_test1 | | | 94.57 91 | 95.09 71 | 92.98 201 | 95.84 181 | 82.07 295 | 98.76 131 | 95.24 286 | 92.87 67 | 96.45 78 | 98.71 86 | 84.81 132 | 99.15 131 | 97.68 45 | 95.49 152 | 97.73 179 |
|
MG-MVS | | | 97.24 17 | 96.83 27 | 98.47 14 | 99.79 5 | 95.71 17 | 99.07 98 | 99.06 9 | 94.45 30 | 96.42 79 | 98.70 87 | 88.81 59 | 99.74 78 | 95.35 91 | 99.86 12 | 99.97 7 |
|
test_fmvs1_n | | | 91.07 170 | 91.41 151 | 90.06 270 | 94.10 239 | 74.31 341 | 99.18 78 | 94.84 297 | 94.81 25 | 96.37 80 | 97.46 141 | 50.86 350 | 99.82 67 | 97.14 54 | 97.90 107 | 96.04 220 |
|
h-mvs33 | | | 92.47 144 | 91.95 140 | 94.05 179 | 97.13 132 | 85.01 257 | 98.36 180 | 98.08 40 | 93.85 45 | 96.27 81 | 96.73 175 | 83.19 154 | 99.43 112 | 95.81 80 | 68.09 341 | 97.70 180 |
|
hse-mvs2 | | | 91.67 159 | 91.51 149 | 92.15 219 | 96.22 166 | 82.61 291 | 97.74 226 | 97.53 113 | 93.85 45 | 96.27 81 | 96.15 189 | 83.19 154 | 97.44 220 | 95.81 80 | 66.86 348 | 96.40 215 |
|
alignmvs | | | 95.77 59 | 95.00 73 | 98.06 27 | 97.35 121 | 95.68 18 | 99.71 18 | 97.50 121 | 91.50 92 | 96.16 83 | 98.61 94 | 86.28 110 | 99.00 140 | 96.19 74 | 91.74 193 | 99.51 74 |
|
CP-MVS | | | 96.22 44 | 96.15 45 | 96.42 93 | 99.67 10 | 89.62 149 | 99.70 19 | 97.61 96 | 90.07 130 | 96.00 84 | 99.16 34 | 87.43 79 | 99.92 39 | 96.03 78 | 99.72 31 | 99.70 51 |
|
MCST-MVS | | | 98.18 2 | 97.95 9 | 98.86 5 | 99.85 3 | 96.60 9 | 99.70 19 | 97.98 47 | 97.18 2 | 95.96 85 | 99.33 19 | 92.62 26 | 100.00 1 | 98.99 20 | 99.93 1 | 99.98 6 |
|
diffmvs |  | | 94.59 90 | 94.19 84 | 95.81 114 | 95.54 191 | 90.69 120 | 98.70 135 | 95.68 260 | 91.61 89 | 95.96 85 | 97.81 121 | 80.11 191 | 98.06 177 | 96.52 70 | 95.76 147 | 98.67 146 |
Fangjinhua Wang, Qingshan Xu, Yew-Soon Ong, Marc Pollefeys: Lightweight and Accurate Multi-View Stereo With Confidence-Aware Diffusion Model. IEEE T-PAMI 2025 |
GST-MVS | | | 95.97 51 | 95.66 58 | 96.90 66 | 99.49 45 | 91.22 101 | 99.45 52 | 97.48 124 | 89.69 136 | 95.89 87 | 98.72 83 | 86.37 109 | 99.95 31 | 94.62 110 | 99.22 70 | 99.52 72 |
|
DeepC-MVS_fast | | 93.52 2 | 97.16 21 | 96.84 26 | 98.13 23 | 99.61 24 | 94.45 48 | 98.85 120 | 97.64 89 | 96.51 11 | 95.88 88 | 99.39 18 | 87.35 85 | 99.99 5 | 96.61 67 | 99.69 36 | 99.96 10 |
Andreas Kuhn, Christian Sormann, Mattia Rossi, Oliver Erdler, Friedrich Fraundorfer: DeepC-MVS: Deep Confidence Prediction for Multi-View Stereo Reconstruction. 3DV 2020 |
test222 | | | | | | 98.32 92 | 91.21 102 | 98.08 205 | 97.58 104 | 83.74 269 | 95.87 89 | 99.02 53 | 86.74 98 | | | 99.64 40 | 99.81 32 |
|
ZNCC-MVS | | | 96.09 46 | 95.81 54 | 96.95 65 | 99.42 47 | 91.19 103 | 99.55 37 | 97.53 113 | 89.72 135 | 95.86 90 | 98.94 65 | 86.59 102 | 99.97 21 | 95.13 95 | 99.56 50 | 99.68 54 |
|
canonicalmvs | | | 95.02 76 | 93.96 94 | 98.20 20 | 97.53 118 | 95.92 16 | 98.71 133 | 96.19 217 | 91.78 87 | 95.86 90 | 98.49 101 | 79.53 196 | 99.03 139 | 96.12 75 | 91.42 199 | 99.66 58 |
|
dcpmvs_2 | | | 95.67 63 | 96.18 39 | 94.12 175 | 98.82 81 | 84.22 267 | 97.37 239 | 95.45 273 | 90.70 108 | 95.77 92 | 98.63 92 | 90.47 42 | 98.68 154 | 99.20 17 | 99.22 70 | 99.45 78 |
|
Effi-MVS+ | | | 93.87 105 | 93.15 113 | 96.02 107 | 95.79 182 | 90.76 118 | 96.70 269 | 95.78 253 | 86.98 216 | 95.71 93 | 97.17 156 | 79.58 194 | 98.01 182 | 94.57 111 | 96.09 142 | 99.31 89 |
|
HPM-MVS_fast | | | 94.89 77 | 94.62 76 | 95.70 118 | 99.11 66 | 88.44 174 | 99.14 90 | 97.11 163 | 85.82 235 | 95.69 94 | 98.47 103 | 83.46 147 | 99.32 125 | 93.16 133 | 99.63 43 | 99.35 85 |
|
HY-MVS | | 88.56 7 | 95.29 70 | 94.23 82 | 98.48 13 | 97.72 109 | 96.41 12 | 94.03 316 | 98.74 15 | 92.42 74 | 95.65 95 | 94.76 217 | 86.52 105 | 99.49 102 | 95.29 93 | 92.97 172 | 99.53 71 |
|
CHOSEN 280x420 | | | 96.80 30 | 96.85 25 | 96.66 81 | 97.85 107 | 94.42 50 | 94.76 308 | 98.36 26 | 92.50 71 | 95.62 96 | 97.52 138 | 97.92 1 | 97.38 223 | 98.31 36 | 98.80 89 | 98.20 170 |
|
MP-MVS |  | | 96.00 48 | 95.82 52 | 96.54 87 | 99.47 46 | 90.13 134 | 99.36 66 | 97.41 136 | 90.64 112 | 95.49 97 | 98.95 62 | 85.51 121 | 99.98 9 | 96.00 79 | 99.59 49 | 99.52 72 |
Rongxuan Tan, Qing Wang, et al.: MP-MVS: Multi-Scale Windows PatchMatch and Planar Prior Multi-View Stereo. |
HPM-MVS |  | | 95.41 68 | 95.22 67 | 95.99 109 | 99.29 55 | 89.14 154 | 99.17 81 | 97.09 167 | 87.28 211 | 95.40 98 | 98.48 102 | 84.93 129 | 99.38 118 | 95.64 86 | 99.65 38 | 99.47 77 |
Chunlin Ren, Qingshan Xu, Shikun Zhang, Jiaqi Yang: Hierarchical Prior Mining for Non-local Multi-View Stereo. ICCV 2023 |
UA-Net | | | 93.30 124 | 92.62 126 | 95.34 130 | 96.27 164 | 88.53 173 | 95.88 294 | 96.97 178 | 90.90 104 | 95.37 99 | 97.07 160 | 82.38 173 | 99.10 137 | 83.91 241 | 94.86 158 | 98.38 159 |
|
sss | | | 94.85 79 | 93.94 95 | 97.58 39 | 96.43 156 | 94.09 58 | 98.93 114 | 99.16 8 | 89.50 145 | 95.27 100 | 97.85 119 | 81.50 183 | 99.65 88 | 92.79 140 | 94.02 164 | 98.99 114 |
|
WTY-MVS | | | 95.97 51 | 95.11 70 | 98.54 12 | 97.62 113 | 96.65 8 | 99.44 53 | 98.74 15 | 92.25 79 | 95.21 101 | 98.46 105 | 86.56 104 | 99.46 108 | 95.00 100 | 92.69 176 | 99.50 75 |
|
DELS-MVS | | | 97.12 22 | 96.60 31 | 98.68 9 | 98.03 102 | 96.57 10 | 99.84 4 | 97.84 52 | 96.36 13 | 95.20 102 | 98.24 111 | 88.17 66 | 99.83 64 | 96.11 76 | 99.60 48 | 99.64 60 |
Christian Sormann, Emanuele Santellani, Mattia Rossi, Andreas Kuhn, Friedrich Fraundorfer: DELS-MVS: Deep Epipolar Line Search for Multi-View Stereo. Winter Conference on Applications of Computer Vision (WACV), 2023 |
MVS_111021_HR | | | 96.69 31 | 96.69 29 | 96.72 77 | 98.58 88 | 91.00 113 | 99.14 90 | 99.45 1 | 93.86 44 | 95.15 103 | 98.73 81 | 88.48 62 | 99.76 76 | 97.23 53 | 99.56 50 | 99.40 81 |
|
MVS_Test | | | 93.67 113 | 92.67 125 | 96.69 79 | 96.72 148 | 92.66 82 | 97.22 248 | 96.03 228 | 87.69 204 | 95.12 104 | 94.03 226 | 81.55 182 | 98.28 166 | 89.17 180 | 96.46 132 | 99.14 102 |
|
MVS_111021_LR | | | 95.78 58 | 95.94 48 | 95.28 132 | 98.19 97 | 87.69 185 | 98.80 125 | 99.26 7 | 93.39 55 | 95.04 105 | 98.69 88 | 84.09 139 | 99.76 76 | 96.96 59 | 99.06 74 | 98.38 159 |
|
CostFormer | | | 92.89 134 | 92.48 129 | 94.12 175 | 94.99 218 | 85.89 237 | 92.89 325 | 97.00 176 | 86.98 216 | 95.00 106 | 90.78 289 | 90.05 48 | 97.51 216 | 92.92 137 | 91.73 194 | 98.96 117 |
|
mPP-MVS | | | 95.90 54 | 95.75 56 | 96.38 95 | 99.58 30 | 89.41 153 | 99.26 73 | 97.41 136 | 90.66 109 | 94.82 107 | 98.95 62 | 86.15 113 | 99.98 9 | 95.24 94 | 99.64 40 | 99.74 46 |
|
EI-MVSNet-Vis-set | | | 95.76 60 | 95.63 62 | 96.17 102 | 99.14 64 | 90.33 126 | 98.49 162 | 97.82 55 | 91.92 85 | 94.75 108 | 98.88 72 | 87.06 90 | 99.48 106 | 95.40 90 | 97.17 126 | 98.70 144 |
|
LFMVS | | | 92.23 150 | 90.84 163 | 96.42 93 | 98.24 94 | 91.08 110 | 98.24 189 | 96.22 214 | 83.39 276 | 94.74 109 | 98.31 108 | 61.12 315 | 98.85 144 | 94.45 112 | 92.82 173 | 99.32 88 |
|
tpmrst | | | 92.78 135 | 92.16 134 | 94.65 153 | 96.27 164 | 87.45 195 | 91.83 333 | 97.10 166 | 89.10 155 | 94.68 110 | 90.69 293 | 88.22 65 | 97.73 203 | 89.78 169 | 91.80 192 | 98.77 140 |
|
test_yl | | | 95.27 71 | 94.60 77 | 97.28 48 | 98.53 89 | 92.98 78 | 99.05 101 | 98.70 18 | 86.76 222 | 94.65 111 | 97.74 127 | 87.78 73 | 99.44 109 | 95.57 87 | 92.61 177 | 99.44 79 |
|
DCV-MVSNet | | | 95.27 71 | 94.60 77 | 97.28 48 | 98.53 89 | 92.98 78 | 99.05 101 | 98.70 18 | 86.76 222 | 94.65 111 | 97.74 127 | 87.78 73 | 99.44 109 | 95.57 87 | 92.61 177 | 99.44 79 |
|
DP-MVS Recon | | | 95.85 55 | 95.15 69 | 97.95 29 | 99.87 2 | 94.38 51 | 99.60 31 | 97.48 124 | 86.58 225 | 94.42 113 | 99.13 40 | 87.36 84 | 99.98 9 | 93.64 125 | 98.33 102 | 99.48 76 |
|
MTAPA | | | 96.09 46 | 95.80 55 | 96.96 64 | 99.29 55 | 91.19 103 | 97.23 247 | 97.45 129 | 92.58 69 | 94.39 114 | 99.24 24 | 86.43 108 | 99.99 5 | 96.22 73 | 99.40 62 | 99.71 50 |
|
CPTT-MVS | | | 94.60 89 | 94.43 79 | 95.09 136 | 99.66 12 | 86.85 209 | 99.44 53 | 97.47 126 | 83.22 278 | 94.34 115 | 98.96 60 | 82.50 167 | 99.55 96 | 94.81 103 | 99.50 53 | 98.88 127 |
|
PVSNet_BlendedMVS | | | 93.36 122 | 93.20 111 | 93.84 186 | 98.77 83 | 91.61 96 | 99.47 46 | 98.04 43 | 91.44 94 | 94.21 116 | 92.63 258 | 83.50 145 | 99.87 52 | 97.41 49 | 83.37 254 | 90.05 318 |
|
PVSNet_Blended | | | 95.94 53 | 95.66 58 | 96.75 73 | 98.77 83 | 91.61 96 | 99.88 2 | 98.04 43 | 93.64 52 | 94.21 116 | 97.76 125 | 83.50 145 | 99.87 52 | 97.41 49 | 97.75 113 | 98.79 137 |
|
EI-MVSNet-UG-set | | | 95.43 66 | 95.29 65 | 95.86 113 | 99.07 70 | 89.87 143 | 98.43 168 | 97.80 60 | 91.78 87 | 94.11 118 | 98.77 77 | 86.25 112 | 99.48 106 | 94.95 102 | 96.45 133 | 98.22 168 |
|
EIA-MVS | | | 95.11 73 | 95.27 66 | 94.64 155 | 96.34 161 | 86.51 213 | 99.59 33 | 96.62 186 | 92.51 70 | 94.08 119 | 98.64 90 | 86.05 114 | 98.24 169 | 95.07 97 | 98.50 99 | 99.18 100 |
|
MAR-MVS | | | 94.43 93 | 94.09 88 | 95.45 126 | 99.10 68 | 87.47 194 | 98.39 178 | 97.79 62 | 88.37 178 | 94.02 120 | 99.17 33 | 78.64 205 | 99.91 42 | 92.48 142 | 98.85 87 | 98.96 117 |
Zhenyu Xu, Yiguang Liu, Xuelei Shi, Ying Wang, Yunan Zheng: MARMVS: Matching Ambiguity Reduced Multiple View Stereo for Efficient Large Scale Scene Reconstruction. CVPR 2020 |
PAPM | | | 96.35 39 | 95.94 48 | 97.58 39 | 94.10 239 | 95.25 23 | 98.93 114 | 98.17 34 | 94.26 32 | 93.94 121 | 98.72 83 | 89.68 51 | 97.88 187 | 96.36 72 | 99.29 67 | 99.62 64 |
|
GG-mvs-BLEND | | | | | 96.98 62 | 96.53 152 | 94.81 40 | 87.20 354 | 97.74 67 | | 93.91 122 | 96.40 183 | 96.56 2 | 96.94 237 | 95.08 96 | 98.95 82 | 99.20 99 |
|
API-MVS | | | 94.78 81 | 94.18 86 | 96.59 83 | 99.21 61 | 90.06 139 | 98.80 125 | 97.78 63 | 83.59 273 | 93.85 123 | 99.21 26 | 83.79 142 | 99.97 21 | 92.37 143 | 99.00 78 | 99.74 46 |
|
tpm2 | | | 91.77 157 | 91.09 156 | 93.82 187 | 94.83 225 | 85.56 246 | 92.51 330 | 97.16 158 | 84.00 264 | 93.83 124 | 90.66 295 | 87.54 77 | 97.17 227 | 87.73 194 | 91.55 197 | 98.72 142 |
|
PAPR | | | 96.35 39 | 95.82 52 | 97.94 30 | 99.63 18 | 94.19 55 | 99.42 58 | 97.55 109 | 92.43 72 | 93.82 125 | 99.12 42 | 87.30 86 | 99.91 42 | 94.02 116 | 99.06 74 | 99.74 46 |
|
PVSNet | | 87.13 12 | 93.69 110 | 92.83 122 | 96.28 98 | 97.99 103 | 90.22 130 | 99.38 62 | 98.93 11 | 91.42 96 | 93.66 126 | 97.68 130 | 71.29 257 | 99.64 90 | 87.94 192 | 97.20 123 | 98.98 115 |
|
baseline | | | 93.91 103 | 93.30 108 | 95.72 117 | 95.10 213 | 90.07 136 | 97.48 235 | 95.91 244 | 91.03 101 | 93.54 127 | 97.68 130 | 79.58 194 | 98.02 181 | 94.27 114 | 95.14 155 | 99.08 109 |
|
test2506 | | | 94.80 80 | 94.21 83 | 96.58 84 | 96.41 157 | 92.18 90 | 98.01 209 | 98.96 10 | 90.82 106 | 93.46 128 | 97.28 147 | 85.92 115 | 98.45 159 | 89.82 168 | 97.19 124 | 99.12 105 |
|
VDD-MVS | | | 91.24 168 | 90.18 174 | 94.45 161 | 97.08 135 | 85.84 240 | 98.40 174 | 96.10 223 | 86.99 213 | 93.36 129 | 98.16 115 | 54.27 339 | 99.20 128 | 96.59 68 | 90.63 207 | 98.31 165 |
|
VDDNet | | | 90.08 192 | 88.54 207 | 94.69 152 | 94.41 233 | 87.68 186 | 98.21 192 | 96.40 202 | 76.21 336 | 93.33 130 | 97.75 126 | 54.93 337 | 98.77 147 | 94.71 107 | 90.96 202 | 97.61 185 |
|
thisisatest0515 | | | 94.75 82 | 94.19 84 | 96.43 92 | 96.13 176 | 92.64 85 | 99.47 46 | 97.60 98 | 87.55 207 | 93.17 131 | 97.59 135 | 94.71 13 | 98.42 160 | 88.28 186 | 93.20 169 | 98.24 167 |
|
MP-MVS-pluss | | | 95.80 57 | 95.30 64 | 97.29 47 | 98.95 76 | 92.66 82 | 98.59 151 | 97.14 159 | 88.95 159 | 93.12 132 | 99.25 22 | 85.62 118 | 99.94 34 | 96.56 69 | 99.48 54 | 99.28 92 |
MP-MVS-pluss: MP-MVS-pluss. MP-MVS-pluss |
MDTV_nov1_ep13_2view | | | | | | | 91.17 105 | 91.38 340 | | 87.45 209 | 93.08 133 | | 86.67 100 | | 87.02 198 | | 98.95 121 |
|
EPNet_dtu | | | 92.28 148 | 92.15 135 | 92.70 209 | 97.29 124 | 84.84 259 | 98.64 143 | 97.82 55 | 92.91 65 | 93.02 134 | 97.02 162 | 85.48 124 | 95.70 304 | 72.25 327 | 94.89 157 | 97.55 186 |
Wanjuan Su, Wenbing Tao: Efficient Edge-Preserving Multi-View Stereo Network for Depth Estimation. AAAI 2023 |
gg-mvs-nofinetune | | | 90.00 193 | 87.71 217 | 96.89 70 | 96.15 171 | 94.69 44 | 85.15 360 | 97.74 67 | 68.32 360 | 92.97 135 | 60.16 373 | 96.10 3 | 96.84 240 | 93.89 119 | 98.87 86 | 99.14 102 |
|
test_fmvsmvis_n_1920 | | | 95.47 65 | 95.40 63 | 95.70 118 | 94.33 234 | 90.22 130 | 99.70 19 | 96.98 177 | 96.80 6 | 92.75 136 | 98.89 70 | 82.46 172 | 99.92 39 | 98.36 32 | 98.33 102 | 96.97 202 |
|
casdiffmvs |  | | 93.98 101 | 93.43 104 | 95.61 123 | 95.07 215 | 89.86 144 | 98.80 125 | 95.84 252 | 90.98 103 | 92.74 137 | 97.66 132 | 79.71 193 | 98.10 174 | 94.72 106 | 95.37 153 | 98.87 129 |
Fangjinhua Wang, Qingshan Xu, Yew-Soon Ong, Marc Pollefeys: Lightweight and Accurate Multi-View Stereo With Confidence-Aware Diffusion Model. IEEE T-PAMI 2025 |
114514_t | | | 94.06 97 | 93.05 115 | 97.06 55 | 99.08 69 | 92.26 88 | 98.97 112 | 97.01 175 | 82.58 291 | 92.57 138 | 98.22 112 | 80.68 189 | 99.30 126 | 89.34 176 | 99.02 77 | 99.63 62 |
|
OMC-MVS | | | 93.90 104 | 93.62 102 | 94.73 151 | 98.63 87 | 87.00 207 | 98.04 208 | 96.56 193 | 92.19 80 | 92.46 139 | 98.73 81 | 79.49 197 | 99.14 135 | 92.16 145 | 94.34 162 | 98.03 173 |
|
PAPM_NR | | | 95.43 66 | 95.05 72 | 96.57 86 | 99.42 47 | 90.14 132 | 98.58 153 | 97.51 118 | 90.65 111 | 92.44 140 | 98.90 68 | 87.77 75 | 99.90 46 | 90.88 155 | 99.32 64 | 99.68 54 |
|
UGNet | | | 91.91 156 | 90.85 162 | 95.10 135 | 97.06 136 | 88.69 169 | 98.01 209 | 98.24 31 | 92.41 75 | 92.39 141 | 93.61 239 | 60.52 317 | 99.68 82 | 88.14 188 | 97.25 122 | 96.92 203 |
Wanjuan Su, Qingshan Xu, Wenbing Tao: Uncertainty-guided Multi-view Stereo Network for Depth Estimation. IEEE Transactions on Circuits and Systems for Video Technology, 2022 |
MDTV_nov1_ep13 | | | | 90.47 172 | | 96.14 173 | 88.55 171 | 91.34 341 | 97.51 118 | 89.58 141 | 92.24 142 | 90.50 306 | 86.99 93 | 97.61 210 | 77.64 290 | 92.34 182 | |
|
FE-MVS | | | 91.38 164 | 90.16 175 | 95.05 139 | 96.46 155 | 87.53 192 | 89.69 351 | 97.84 52 | 82.97 283 | 92.18 143 | 92.00 267 | 84.07 140 | 98.93 143 | 80.71 269 | 95.52 151 | 98.68 145 |
|
Vis-MVSNet |  | | 92.64 138 | 91.85 141 | 95.03 140 | 95.12 209 | 88.23 175 | 98.48 164 | 96.81 181 | 91.61 89 | 92.16 144 | 97.22 152 | 71.58 255 | 98.00 183 | 85.85 216 | 97.81 109 | 98.88 127 |
Jingyang Zhang, Yao Yao, Shiwei Li, Zixin Luo, Tian Fang: Visibility-aware Multiview Stereo Network. BMVC 2020 |
FA-MVS(test-final) | | | 92.22 151 | 91.08 157 | 95.64 121 | 96.05 177 | 88.98 158 | 91.60 337 | 97.25 145 | 86.99 213 | 91.84 145 | 92.12 261 | 83.03 157 | 99.00 140 | 86.91 202 | 93.91 165 | 98.93 123 |
|
TESTMET0.1,1 | | | 93.82 107 | 93.26 110 | 95.49 125 | 95.21 203 | 90.25 128 | 99.15 87 | 97.54 112 | 89.18 152 | 91.79 146 | 94.87 214 | 89.13 54 | 97.63 208 | 86.21 209 | 96.29 139 | 98.60 149 |
|
thisisatest0530 | | | 94.00 99 | 93.52 103 | 95.43 127 | 95.76 184 | 90.02 141 | 98.99 109 | 97.60 98 | 86.58 225 | 91.74 147 | 97.36 146 | 94.78 12 | 98.34 162 | 86.37 208 | 92.48 180 | 97.94 176 |
|
AUN-MVS | | | 90.17 189 | 89.50 182 | 92.19 217 | 96.21 167 | 82.67 289 | 97.76 225 | 97.53 113 | 88.05 189 | 91.67 148 | 96.15 189 | 83.10 156 | 97.47 217 | 88.11 189 | 66.91 347 | 96.43 214 |
|
EPMVS | | | 92.59 141 | 91.59 147 | 95.59 124 | 97.22 126 | 90.03 140 | 91.78 334 | 98.04 43 | 90.42 119 | 91.66 149 | 90.65 296 | 86.49 107 | 97.46 218 | 81.78 262 | 96.31 137 | 99.28 92 |
|
test-LLR | | | 93.11 131 | 92.68 124 | 94.40 162 | 94.94 221 | 87.27 202 | 99.15 87 | 97.25 145 | 90.21 122 | 91.57 150 | 94.04 224 | 84.89 130 | 97.58 212 | 85.94 213 | 96.13 140 | 98.36 162 |
|
test-mter | | | 93.27 126 | 92.89 121 | 94.40 162 | 94.94 221 | 87.27 202 | 99.15 87 | 97.25 145 | 88.95 159 | 91.57 150 | 94.04 224 | 88.03 71 | 97.58 212 | 85.94 213 | 96.13 140 | 98.36 162 |
|
JIA-IIPM | | | 85.97 261 | 84.85 261 | 89.33 291 | 93.23 267 | 73.68 344 | 85.05 361 | 97.13 161 | 69.62 356 | 91.56 152 | 68.03 371 | 88.03 71 | 96.96 235 | 77.89 289 | 93.12 170 | 97.34 190 |
|
casdiffmvs_mvg |  | | 94.00 99 | 93.33 107 | 96.03 106 | 95.22 202 | 90.90 116 | 99.09 96 | 95.99 229 | 90.58 113 | 91.55 153 | 97.37 145 | 79.91 192 | 98.06 177 | 95.01 99 | 95.22 154 | 99.13 104 |
Fangjinhua Wang, Qingshan Xu, Yew-Soon Ong, Marc Pollefeys: Lightweight and Accurate Multi-View Stereo With Confidence-Aware Diffusion Model. IEEE T-PAMI 2025 |
PVSNet_Blended_VisFu | | | 94.67 87 | 94.11 87 | 96.34 97 | 97.14 131 | 91.10 108 | 99.32 70 | 97.43 134 | 92.10 84 | 91.53 154 | 96.38 186 | 83.29 151 | 99.68 82 | 93.42 130 | 96.37 135 | 98.25 166 |
|
CHOSEN 1792x2688 | | | 94.35 94 | 93.82 98 | 95.95 111 | 97.40 119 | 88.74 168 | 98.41 171 | 98.27 28 | 92.18 81 | 91.43 155 | 96.40 183 | 78.88 200 | 99.81 70 | 93.59 126 | 97.81 109 | 99.30 90 |
|
ACMMP |  | | 94.67 87 | 94.30 80 | 95.79 115 | 99.25 57 | 88.13 178 | 98.41 171 | 98.67 21 | 90.38 120 | 91.43 155 | 98.72 83 | 82.22 175 | 99.95 31 | 93.83 122 | 95.76 147 | 99.29 91 |
Qingshan Xu, Weihang Kong, Wenbing Tao, Marc Pollefeys: Multi-Scale Geometric Consistency Guided and Planar Prior Assisted Multi-View Stereo. IEEE Transactions on Pattern Analysis and Machine Intelligence |
ECVR-MVS |  | | 92.29 147 | 91.33 152 | 95.15 134 | 96.41 157 | 87.84 183 | 98.10 202 | 94.84 297 | 90.82 106 | 91.42 157 | 97.28 147 | 65.61 296 | 98.49 158 | 90.33 162 | 97.19 124 | 99.12 105 |
|
EPP-MVSNet | | | 93.75 109 | 93.67 101 | 94.01 181 | 95.86 180 | 85.70 242 | 98.67 139 | 97.66 83 | 84.46 258 | 91.36 158 | 97.18 155 | 91.16 31 | 97.79 193 | 92.93 136 | 93.75 166 | 98.53 151 |
|
PLC |  | 91.07 3 | 94.23 96 | 94.01 90 | 94.87 144 | 99.17 63 | 87.49 193 | 99.25 74 | 96.55 194 | 88.43 176 | 91.26 159 | 98.21 114 | 85.92 115 | 99.86 57 | 89.77 170 | 97.57 115 | 97.24 193 |
Jie Liao, Yanping Fu, Qingan Yan, Chunxia xiao: Pyramid Multi-View Stereo with Local Consistency. Pacific Graphics 2019 |
HyFIR lowres test | | | 93.68 112 | 93.29 109 | 94.87 144 | 97.57 117 | 88.04 180 | 98.18 194 | 98.47 24 | 87.57 206 | 91.24 160 | 95.05 211 | 85.49 122 | 97.46 218 | 93.22 132 | 92.82 173 | 99.10 107 |
|
thres200 | | | 93.69 110 | 92.59 127 | 96.97 63 | 97.76 108 | 94.74 42 | 99.35 67 | 99.36 2 | 89.23 150 | 91.21 161 | 96.97 164 | 83.42 148 | 98.77 147 | 85.08 221 | 90.96 202 | 97.39 189 |
|
test1111 | | | 92.12 152 | 91.19 155 | 94.94 142 | 96.15 171 | 87.36 198 | 98.12 199 | 94.84 297 | 90.85 105 | 90.97 162 | 97.26 149 | 65.60 297 | 98.37 161 | 89.74 171 | 97.14 127 | 99.07 111 |
|
CDS-MVSNet | | | 93.47 117 | 93.04 116 | 94.76 148 | 94.75 227 | 89.45 152 | 98.82 123 | 97.03 172 | 87.91 195 | 90.97 162 | 96.48 181 | 89.06 55 | 96.36 267 | 89.50 172 | 92.81 175 | 98.49 153 |
Khang Truong Giang, Soohwan Song, Sungho Jo: Curvature-guided dynamic scale networks for Multi-view Stereo. ICLR 2022 |
tfpn200view9 | | | 93.43 119 | 92.27 132 | 96.90 66 | 97.68 111 | 94.84 37 | 99.18 78 | 99.36 2 | 88.45 173 | 90.79 164 | 96.90 168 | 83.31 149 | 98.75 149 | 84.11 237 | 90.69 204 | 97.12 195 |
|
thres400 | | | 93.39 121 | 92.27 132 | 96.73 75 | 97.68 111 | 94.84 37 | 99.18 78 | 99.36 2 | 88.45 173 | 90.79 164 | 96.90 168 | 83.31 149 | 98.75 149 | 84.11 237 | 90.69 204 | 96.61 206 |
|
CR-MVSNet | | | 88.83 214 | 87.38 222 | 93.16 198 | 93.47 260 | 86.24 223 | 84.97 362 | 94.20 317 | 88.92 162 | 90.76 166 | 86.88 341 | 84.43 135 | 94.82 324 | 70.64 331 | 92.17 187 | 98.41 156 |
|
RPMNet | | | 85.07 275 | 81.88 291 | 94.64 155 | 93.47 260 | 86.24 223 | 84.97 362 | 97.21 151 | 64.85 367 | 90.76 166 | 78.80 364 | 80.95 188 | 99.27 127 | 53.76 368 | 92.17 187 | 98.41 156 |
|
PatchmatchNet |  | | 92.05 155 | 91.04 158 | 95.06 137 | 96.17 170 | 89.04 156 | 91.26 342 | 97.26 144 | 89.56 143 | 90.64 168 | 90.56 302 | 88.35 64 | 97.11 229 | 79.53 275 | 96.07 144 | 99.03 112 |
Fangjinhua Wang, Silvano Galliani, Christoph Vogel, Pablo Speciale, Marc Pollefeys: PatchmatchNet: Learned Multi-View Patchmatch Stereo. |
tttt0517 | | | 93.30 124 | 93.01 118 | 94.17 173 | 95.57 189 | 86.47 215 | 98.51 159 | 97.60 98 | 85.99 233 | 90.55 169 | 97.19 154 | 94.80 11 | 98.31 163 | 85.06 222 | 91.86 190 | 97.74 178 |
|
PatchT | | | 85.44 271 | 83.19 279 | 92.22 215 | 93.13 269 | 83.00 281 | 83.80 368 | 96.37 204 | 70.62 351 | 90.55 169 | 79.63 363 | 84.81 132 | 94.87 322 | 58.18 364 | 91.59 196 | 98.79 137 |
|
tpm | | | 89.67 198 | 88.95 194 | 91.82 226 | 92.54 274 | 81.43 301 | 92.95 324 | 95.92 239 | 87.81 197 | 90.50 171 | 89.44 321 | 84.99 128 | 95.65 305 | 83.67 244 | 82.71 260 | 98.38 159 |
|
thres100view900 | | | 93.34 123 | 92.15 135 | 96.90 66 | 97.62 113 | 94.84 37 | 99.06 100 | 99.36 2 | 87.96 193 | 90.47 172 | 96.78 173 | 83.29 151 | 98.75 149 | 84.11 237 | 90.69 204 | 97.12 195 |
|
thres600view7 | | | 93.18 129 | 92.00 138 | 96.75 73 | 97.62 113 | 94.92 32 | 99.07 98 | 99.36 2 | 87.96 193 | 90.47 172 | 96.78 173 | 83.29 151 | 98.71 153 | 82.93 251 | 90.47 208 | 96.61 206 |
|
AdaColmap |  | | 93.82 107 | 93.06 114 | 96.10 104 | 99.88 1 | 89.07 155 | 98.33 182 | 97.55 109 | 86.81 221 | 90.39 174 | 98.65 89 | 75.09 220 | 99.98 9 | 93.32 131 | 97.53 118 | 99.26 94 |
|
XVG-OURS-SEG-HR | | | 90.95 173 | 90.66 169 | 91.83 225 | 95.18 207 | 81.14 309 | 95.92 291 | 95.92 239 | 88.40 177 | 90.33 175 | 97.85 119 | 70.66 260 | 99.38 118 | 92.83 138 | 88.83 213 | 94.98 227 |
|
IS-MVSNet | | | 93.00 133 | 92.51 128 | 94.49 158 | 96.14 173 | 87.36 198 | 98.31 185 | 95.70 258 | 88.58 169 | 90.17 176 | 97.50 139 | 83.02 158 | 97.22 226 | 87.06 197 | 96.07 144 | 98.90 126 |
|
CSCG | | | 94.87 78 | 94.71 75 | 95.36 129 | 99.54 36 | 86.49 214 | 99.34 68 | 98.15 37 | 82.71 289 | 90.15 177 | 99.25 22 | 89.48 52 | 99.86 57 | 94.97 101 | 98.82 88 | 99.72 49 |
|
SCA | | | 90.64 180 | 89.25 189 | 94.83 147 | 94.95 220 | 88.83 164 | 96.26 281 | 97.21 151 | 90.06 131 | 90.03 178 | 90.62 298 | 66.61 287 | 96.81 242 | 83.16 247 | 94.36 161 | 98.84 130 |
|
XVG-OURS | | | 90.83 175 | 90.49 171 | 91.86 224 | 95.23 201 | 81.25 306 | 95.79 299 | 95.92 239 | 88.96 158 | 90.02 179 | 98.03 118 | 71.60 254 | 99.35 123 | 91.06 152 | 87.78 217 | 94.98 227 |
|
ADS-MVSNet2 | | | 87.62 237 | 86.88 230 | 89.86 277 | 96.21 167 | 79.14 319 | 87.15 355 | 92.99 332 | 83.01 281 | 89.91 180 | 87.27 337 | 78.87 201 | 92.80 345 | 74.20 315 | 92.27 184 | 97.64 181 |
|
ADS-MVSNet | | | 88.99 206 | 87.30 223 | 94.07 177 | 96.21 167 | 87.56 191 | 87.15 355 | 96.78 183 | 83.01 281 | 89.91 180 | 87.27 337 | 78.87 201 | 97.01 234 | 74.20 315 | 92.27 184 | 97.64 181 |
|
ab-mvs | | | 91.05 172 | 89.17 190 | 96.69 79 | 95.96 178 | 91.72 94 | 92.62 329 | 97.23 149 | 85.61 239 | 89.74 182 | 93.89 232 | 68.55 270 | 99.42 113 | 91.09 151 | 87.84 216 | 98.92 125 |
|
TAMVS | | | 92.62 139 | 92.09 137 | 94.20 172 | 94.10 239 | 87.68 186 | 98.41 171 | 96.97 178 | 87.53 208 | 89.74 182 | 96.04 193 | 84.77 134 | 96.49 260 | 88.97 182 | 92.31 183 | 98.42 155 |
|
Vis-MVSNet (Re-imp) | | | 93.26 127 | 93.00 119 | 94.06 178 | 96.14 173 | 86.71 212 | 98.68 137 | 96.70 184 | 88.30 182 | 89.71 184 | 97.64 133 | 85.43 125 | 96.39 265 | 88.06 190 | 96.32 136 | 99.08 109 |
|
CNLPA | | | 93.64 114 | 92.74 123 | 96.36 96 | 98.96 75 | 90.01 142 | 99.19 76 | 95.89 247 | 86.22 231 | 89.40 185 | 98.85 73 | 80.66 190 | 99.84 61 | 88.57 183 | 96.92 128 | 99.24 95 |
|
Anonymous202405211 | | | 88.84 212 | 87.03 228 | 94.27 168 | 98.14 99 | 84.18 268 | 98.44 167 | 95.58 266 | 76.79 335 | 89.34 186 | 96.88 170 | 53.42 342 | 99.54 98 | 87.53 196 | 87.12 220 | 99.09 108 |
|
Fast-Effi-MVS+ | | | 91.72 158 | 90.79 166 | 94.49 158 | 95.89 179 | 87.40 197 | 99.54 42 | 95.70 258 | 85.01 251 | 89.28 187 | 95.68 199 | 77.75 209 | 97.57 215 | 83.22 246 | 95.06 156 | 98.51 152 |
|
PatchMatch-RL | | | 91.47 161 | 90.54 170 | 94.26 169 | 98.20 95 | 86.36 220 | 96.94 257 | 97.14 159 | 87.75 200 | 88.98 188 | 95.75 198 | 71.80 252 | 99.40 117 | 80.92 267 | 97.39 121 | 97.02 201 |
|
dp | | | 90.16 190 | 88.83 197 | 94.14 174 | 96.38 160 | 86.42 216 | 91.57 338 | 97.06 169 | 84.76 255 | 88.81 189 | 90.19 314 | 84.29 137 | 97.43 221 | 75.05 307 | 91.35 201 | 98.56 150 |
|
DeepC-MVS | | 91.02 4 | 94.56 92 | 93.92 96 | 96.46 90 | 97.16 129 | 90.76 118 | 98.39 178 | 97.11 163 | 93.92 40 | 88.66 190 | 98.33 107 | 78.14 207 | 99.85 60 | 95.02 98 | 98.57 97 | 98.78 139 |
Andreas Kuhn, Christian Sormann, Mattia Rossi, Oliver Erdler, Friedrich Fraundorfer: DeepC-MVS: Deep Confidence Prediction for Multi-View Stereo Reconstruction. 3DV 2020 |
baseline1 | | | 92.61 140 | 91.28 153 | 96.58 84 | 97.05 137 | 94.63 45 | 97.72 227 | 96.20 215 | 89.82 133 | 88.56 191 | 96.85 171 | 86.85 95 | 97.82 191 | 88.42 184 | 80.10 273 | 97.30 191 |
|
Anonymous20240529 | | | 87.66 236 | 85.58 249 | 93.92 183 | 97.59 116 | 85.01 257 | 98.13 197 | 97.13 161 | 66.69 365 | 88.47 192 | 96.01 194 | 55.09 336 | 99.51 100 | 87.00 199 | 84.12 245 | 97.23 194 |
|
CVMVSNet | | | 90.30 185 | 90.91 161 | 88.46 303 | 94.32 235 | 73.58 345 | 97.61 232 | 97.59 102 | 90.16 127 | 88.43 193 | 97.10 158 | 76.83 214 | 92.86 342 | 82.64 253 | 93.54 168 | 98.93 123 |
|
TR-MVS | | | 90.77 176 | 89.44 184 | 94.76 148 | 96.31 162 | 88.02 181 | 97.92 213 | 95.96 233 | 85.52 240 | 88.22 194 | 97.23 151 | 66.80 286 | 98.09 175 | 84.58 229 | 92.38 181 | 98.17 171 |
|
F-COLMAP | | | 92.07 154 | 91.75 145 | 93.02 200 | 98.16 98 | 82.89 285 | 98.79 129 | 95.97 231 | 86.54 227 | 87.92 195 | 97.80 122 | 78.69 204 | 99.65 88 | 85.97 211 | 95.93 146 | 96.53 211 |
|
BH-RMVSNet | | | 91.25 167 | 89.99 176 | 95.03 140 | 96.75 147 | 88.55 171 | 98.65 141 | 94.95 294 | 87.74 201 | 87.74 196 | 97.80 122 | 68.27 273 | 98.14 171 | 80.53 272 | 97.49 119 | 98.41 156 |
|
Effi-MVS+-dtu | | | 89.97 195 | 90.68 168 | 87.81 307 | 95.15 208 | 71.98 351 | 97.87 217 | 95.40 277 | 91.92 85 | 87.57 197 | 91.44 277 | 74.27 229 | 96.84 240 | 89.45 173 | 93.10 171 | 94.60 229 |
|
HQP-NCC | | | | | | 93.95 244 | | 99.16 82 | | 93.92 40 | 87.57 197 | | | | | | |
|
ACMP_Plane | | | | | | 93.95 244 | | 99.16 82 | | 93.92 40 | 87.57 197 | | | | | | |
|
HQP4-MVS | | | | | | | | | | | 87.57 197 | | | 97.77 195 | | | 92.72 236 |
|
HQP-MVS | | | 91.50 160 | 91.23 154 | 92.29 214 | 93.95 244 | 86.39 218 | 99.16 82 | 96.37 204 | 93.92 40 | 87.57 197 | 96.67 177 | 73.34 235 | 97.77 195 | 93.82 123 | 86.29 224 | 92.72 236 |
|
TAPA-MVS | | 87.50 9 | 90.35 183 | 89.05 192 | 94.25 170 | 98.48 91 | 85.17 254 | 98.42 169 | 96.58 192 | 82.44 296 | 87.24 202 | 98.53 96 | 82.77 162 | 98.84 145 | 59.09 362 | 97.88 108 | 98.72 142 |
Andrea Romanoni, Matteo Matteucci: TAPA-MVS: Textureless-Aware PAtchMatch Multi-View Stereo. ICCV 2019 |
GeoE | | | 90.60 181 | 89.56 181 | 93.72 191 | 95.10 213 | 85.43 247 | 99.41 59 | 94.94 295 | 83.96 266 | 87.21 203 | 96.83 172 | 74.37 227 | 97.05 233 | 80.50 273 | 93.73 167 | 98.67 146 |
|
HQP_MVS | | | 91.26 165 | 90.95 160 | 92.16 218 | 93.84 251 | 86.07 233 | 99.02 105 | 96.30 208 | 93.38 56 | 86.99 204 | 96.52 179 | 72.92 240 | 97.75 201 | 93.46 128 | 86.17 227 | 92.67 238 |
|
plane_prior3 | | | | | | | 85.91 236 | | | 93.65 51 | 86.99 204 | | | | | | |
|
iter_conf_final | | | 93.22 128 | 93.04 116 | 93.76 188 | 97.03 138 | 92.22 89 | 99.05 101 | 93.31 330 | 92.11 83 | 86.93 206 | 95.42 204 | 95.01 10 | 96.59 249 | 93.98 117 | 84.48 240 | 92.46 241 |
|
GA-MVS | | | 90.10 191 | 88.69 200 | 94.33 166 | 92.44 275 | 87.97 182 | 99.08 97 | 96.26 212 | 89.65 137 | 86.92 207 | 93.11 251 | 68.09 274 | 96.96 235 | 82.54 255 | 90.15 209 | 98.05 172 |
|
1112_ss | | | 92.71 136 | 91.55 148 | 96.20 99 | 95.56 190 | 91.12 106 | 98.48 164 | 94.69 304 | 88.29 183 | 86.89 208 | 98.50 99 | 87.02 91 | 98.66 155 | 84.75 226 | 89.77 211 | 98.81 135 |
|
Test_1112_low_res | | | 92.27 149 | 90.97 159 | 96.18 100 | 95.53 192 | 91.10 108 | 98.47 166 | 94.66 305 | 88.28 184 | 86.83 209 | 93.50 243 | 87.00 92 | 98.65 156 | 84.69 227 | 89.74 212 | 98.80 136 |
|
cascas | | | 90.93 174 | 89.33 188 | 95.76 116 | 95.69 186 | 93.03 77 | 98.99 109 | 96.59 189 | 80.49 316 | 86.79 210 | 94.45 221 | 65.23 300 | 98.60 157 | 93.52 127 | 92.18 186 | 95.66 223 |
|
iter_conf05 | | | 93.48 116 | 93.18 112 | 94.39 165 | 97.15 130 | 94.17 56 | 99.30 71 | 92.97 333 | 92.38 78 | 86.70 211 | 95.42 204 | 95.67 5 | 96.59 249 | 94.67 108 | 84.32 243 | 92.39 242 |
|
baseline2 | | | 94.04 98 | 93.80 99 | 94.74 150 | 93.07 270 | 90.25 128 | 98.12 199 | 98.16 36 | 89.86 132 | 86.53 212 | 96.95 165 | 95.56 6 | 98.05 179 | 91.44 149 | 94.53 159 | 95.93 221 |
|
OPM-MVS | | | 89.76 197 | 89.15 191 | 91.57 234 | 90.53 304 | 85.58 245 | 98.11 201 | 95.93 238 | 92.88 66 | 86.05 213 | 96.47 182 | 67.06 285 | 97.87 188 | 89.29 179 | 86.08 229 | 91.26 287 |
Ray L. Khuboni, Hongjun Xu: Octagram Propagation Matching for Multi-Scale View Stereopsis (OPM-MVS). |
VPA-MVSNet | | | 89.10 205 | 87.66 218 | 93.45 193 | 92.56 273 | 91.02 112 | 97.97 212 | 98.32 27 | 86.92 218 | 86.03 214 | 92.01 265 | 68.84 269 | 97.10 231 | 90.92 154 | 75.34 295 | 92.23 249 |
|
SDMVSNet | | | 91.09 169 | 89.91 177 | 94.65 153 | 96.80 144 | 90.54 124 | 97.78 221 | 97.81 58 | 88.34 180 | 85.73 215 | 95.26 208 | 66.44 290 | 98.26 167 | 94.25 115 | 86.75 221 | 95.14 224 |
|
sd_testset | | | 89.23 203 | 88.05 214 | 92.74 208 | 96.80 144 | 85.33 250 | 95.85 297 | 97.03 172 | 88.34 180 | 85.73 215 | 95.26 208 | 61.12 315 | 97.76 200 | 85.61 217 | 86.75 221 | 95.14 224 |
|
tpm cat1 | | | 88.89 210 | 87.27 224 | 93.76 188 | 95.79 182 | 85.32 251 | 90.76 347 | 97.09 167 | 76.14 337 | 85.72 217 | 88.59 327 | 82.92 159 | 98.04 180 | 76.96 294 | 91.43 198 | 97.90 177 |
|
IB-MVS | | 89.43 6 | 92.12 152 | 90.83 165 | 95.98 110 | 95.40 197 | 90.78 117 | 99.81 7 | 98.06 41 | 91.23 100 | 85.63 218 | 93.66 238 | 90.63 40 | 98.78 146 | 91.22 150 | 71.85 331 | 98.36 162 |
Christian Sormann, Mattia Rossi, Andreas Kuhn and Friedrich Fraundorfer: IB-MVS: An Iterative Algorithm for Deep Multi-View Stereo based on Binary Decisions. BMVC 2021 |
EI-MVSNet | | | 89.87 196 | 89.38 187 | 91.36 237 | 94.32 235 | 85.87 238 | 97.61 232 | 96.59 189 | 85.10 246 | 85.51 219 | 97.10 158 | 81.30 187 | 96.56 253 | 83.85 243 | 83.03 257 | 91.64 266 |
|
MVSTER | | | 92.71 136 | 92.32 130 | 93.86 185 | 97.29 124 | 92.95 80 | 99.01 107 | 96.59 189 | 90.09 128 | 85.51 219 | 94.00 228 | 94.61 16 | 96.56 253 | 90.77 159 | 83.03 257 | 92.08 258 |
|
test_fmvs2 | | | 85.10 274 | 85.45 252 | 84.02 331 | 89.85 313 | 65.63 363 | 98.49 162 | 92.59 338 | 90.45 117 | 85.43 221 | 93.32 244 | 43.94 359 | 96.59 249 | 90.81 157 | 84.19 244 | 89.85 322 |
|
RPSCF | | | 85.33 272 | 85.55 250 | 84.67 328 | 94.63 230 | 62.28 365 | 93.73 318 | 93.76 322 | 74.38 344 | 85.23 222 | 97.06 161 | 64.09 303 | 98.31 163 | 80.98 265 | 86.08 229 | 93.41 235 |
|
BH-w/o | | | 92.32 146 | 91.79 143 | 93.91 184 | 96.85 141 | 86.18 227 | 99.11 95 | 95.74 256 | 88.13 187 | 84.81 223 | 97.00 163 | 77.26 212 | 97.91 184 | 89.16 181 | 98.03 106 | 97.64 181 |
|
mvsmamba | | | 89.99 194 | 89.42 185 | 91.69 232 | 90.64 303 | 86.34 221 | 98.40 174 | 92.27 342 | 91.01 102 | 84.80 224 | 94.93 212 | 76.12 215 | 96.51 257 | 92.81 139 | 83.84 247 | 92.21 251 |
|
CLD-MVS | | | 91.06 171 | 90.71 167 | 92.10 220 | 94.05 243 | 86.10 230 | 99.55 37 | 96.29 211 | 94.16 35 | 84.70 225 | 97.17 156 | 69.62 265 | 97.82 191 | 94.74 105 | 86.08 229 | 92.39 242 |
Zhaoxin Li, Wangmeng Zuo, Zhaoqi Wang, Lei Zhang: Confidence-based Large-scale Dense Multi-view Stereo. IEEE Transaction on Image Processing, 2020 |
tpmvs | | | 89.16 204 | 87.76 215 | 93.35 194 | 97.19 127 | 84.75 261 | 90.58 349 | 97.36 141 | 81.99 301 | 84.56 226 | 89.31 324 | 83.98 141 | 98.17 170 | 74.85 310 | 90.00 210 | 97.12 195 |
|
nrg030 | | | 90.23 186 | 88.87 195 | 94.32 167 | 91.53 291 | 93.54 66 | 98.79 129 | 95.89 247 | 88.12 188 | 84.55 227 | 94.61 219 | 78.80 203 | 96.88 239 | 92.35 144 | 75.21 296 | 92.53 240 |
|
VPNet | | | 88.30 224 | 86.57 234 | 93.49 192 | 91.95 283 | 91.35 100 | 98.18 194 | 97.20 155 | 88.61 167 | 84.52 228 | 94.89 213 | 62.21 310 | 96.76 245 | 89.34 176 | 72.26 328 | 92.36 244 |
|
dmvs_re | | | 88.69 220 | 88.06 213 | 90.59 255 | 93.83 253 | 78.68 323 | 95.75 300 | 96.18 218 | 87.99 192 | 84.48 229 | 96.32 187 | 67.52 280 | 96.94 237 | 84.98 224 | 85.49 233 | 96.14 218 |
|
MVS | | | 93.92 102 | 92.28 131 | 98.83 6 | 95.69 186 | 96.82 7 | 96.22 284 | 98.17 34 | 84.89 253 | 84.34 230 | 98.61 94 | 79.32 198 | 99.83 64 | 93.88 120 | 99.43 59 | 99.86 29 |
|
mvs_anonymous | | | 92.50 143 | 91.65 146 | 95.06 137 | 96.60 150 | 89.64 148 | 97.06 253 | 96.44 201 | 86.64 224 | 84.14 231 | 93.93 230 | 82.49 168 | 96.17 283 | 91.47 148 | 96.08 143 | 99.35 85 |
|
Fast-Effi-MVS+-dtu | | | 88.84 212 | 88.59 204 | 89.58 285 | 93.44 263 | 78.18 327 | 98.65 141 | 94.62 306 | 88.46 172 | 84.12 232 | 95.37 207 | 68.91 267 | 96.52 256 | 82.06 259 | 91.70 195 | 94.06 230 |
|
LS3D | | | 90.19 188 | 88.72 199 | 94.59 157 | 98.97 73 | 86.33 222 | 96.90 259 | 96.60 188 | 74.96 341 | 84.06 233 | 98.74 80 | 75.78 217 | 99.83 64 | 74.93 308 | 97.57 115 | 97.62 184 |
|
ACMM | | 86.95 13 | 88.77 217 | 88.22 211 | 90.43 261 | 93.61 257 | 81.34 304 | 98.50 160 | 95.92 239 | 87.88 196 | 83.85 234 | 95.20 210 | 67.20 283 | 97.89 186 | 86.90 203 | 84.90 236 | 92.06 259 |
Qingshan Xu and Wenbing Tao: Multi-Scale Geometric Consistency Guided Multi-View Stereo. CVPR 2019 |
BH-untuned | | | 91.46 162 | 90.84 163 | 93.33 195 | 96.51 154 | 84.83 260 | 98.84 122 | 95.50 270 | 86.44 230 | 83.50 235 | 96.70 176 | 75.49 219 | 97.77 195 | 86.78 205 | 97.81 109 | 97.40 188 |
|
FIs | | | 90.70 178 | 89.87 178 | 93.18 197 | 92.29 276 | 91.12 106 | 98.17 196 | 98.25 29 | 89.11 154 | 83.44 236 | 94.82 216 | 82.26 174 | 96.17 283 | 87.76 193 | 82.76 259 | 92.25 247 |
|
bld_raw_dy_0_64 | | | 87.82 229 | 86.71 233 | 91.15 240 | 89.54 319 | 85.61 243 | 97.37 239 | 89.16 366 | 89.26 149 | 83.42 237 | 94.50 220 | 65.79 293 | 96.18 281 | 88.00 191 | 83.37 254 | 91.67 265 |
|
UniMVSNet (Re) | | | 89.50 202 | 88.32 209 | 93.03 199 | 92.21 278 | 90.96 114 | 98.90 118 | 98.39 25 | 89.13 153 | 83.22 238 | 92.03 263 | 81.69 181 | 96.34 273 | 86.79 204 | 72.53 324 | 91.81 263 |
|
UniMVSNet_NR-MVSNet | | | 89.60 199 | 88.55 206 | 92.75 207 | 92.17 279 | 90.07 136 | 98.74 132 | 98.15 37 | 88.37 178 | 83.21 239 | 93.98 229 | 82.86 160 | 95.93 294 | 86.95 200 | 72.47 325 | 92.25 247 |
|
DU-MVS | | | 88.83 214 | 87.51 219 | 92.79 205 | 91.46 292 | 90.07 136 | 98.71 133 | 97.62 95 | 88.87 163 | 83.21 239 | 93.68 236 | 74.63 221 | 95.93 294 | 86.95 200 | 72.47 325 | 92.36 244 |
|
LPG-MVS_test | | | 88.86 211 | 88.47 208 | 90.06 270 | 93.35 265 | 80.95 311 | 98.22 190 | 95.94 236 | 87.73 202 | 83.17 241 | 96.11 191 | 66.28 291 | 97.77 195 | 90.19 164 | 85.19 234 | 91.46 277 |
|
LGP-MVS_train | | | | | 90.06 270 | 93.35 265 | 80.95 311 | | 95.94 236 | 87.73 202 | 83.17 241 | 96.11 191 | 66.28 291 | 97.77 195 | 90.19 164 | 85.19 234 | 91.46 277 |
|
miper_enhance_ethall | | | 90.33 184 | 89.70 179 | 92.22 215 | 97.12 133 | 88.93 162 | 98.35 181 | 95.96 233 | 88.60 168 | 83.14 243 | 92.33 260 | 87.38 80 | 96.18 281 | 86.49 207 | 77.89 282 | 91.55 274 |
|
FC-MVSNet-test | | | 90.22 187 | 89.40 186 | 92.67 211 | 91.78 287 | 89.86 144 | 97.89 214 | 98.22 32 | 88.81 164 | 82.96 244 | 94.66 218 | 81.90 180 | 95.96 292 | 85.89 215 | 82.52 262 | 92.20 253 |
|
PCF-MVS | | 89.78 5 | 91.26 165 | 89.63 180 | 96.16 103 | 95.44 194 | 91.58 98 | 95.29 304 | 96.10 223 | 85.07 248 | 82.75 245 | 97.45 142 | 78.28 206 | 99.78 74 | 80.60 271 | 95.65 150 | 97.12 195 |
Andreas Kuhn, Shan Lin, Oliver Erdler: Plane Completion and Filtering for Multi-View Stereo Reconstruction. GCPR 2019 |
V42 | | | 87.00 243 | 85.68 248 | 90.98 245 | 89.91 310 | 86.08 231 | 98.32 184 | 95.61 264 | 83.67 272 | 82.72 246 | 90.67 294 | 74.00 232 | 96.53 255 | 81.94 261 | 74.28 308 | 90.32 311 |
|
v1144 | | | 86.83 246 | 85.31 254 | 91.40 235 | 89.75 314 | 87.21 206 | 98.31 185 | 95.45 273 | 83.22 278 | 82.70 247 | 90.78 289 | 73.36 234 | 96.36 267 | 79.49 276 | 74.69 302 | 90.63 306 |
|
v144192 | | | 86.40 255 | 84.89 260 | 90.91 246 | 89.48 321 | 85.59 244 | 98.21 192 | 95.43 276 | 82.45 295 | 82.62 248 | 90.58 301 | 72.79 243 | 96.36 267 | 78.45 286 | 74.04 312 | 90.79 299 |
|
3Dnovator | | 87.35 11 | 93.17 130 | 91.77 144 | 97.37 46 | 95.41 196 | 93.07 75 | 98.82 123 | 97.85 51 | 91.53 91 | 82.56 249 | 97.58 136 | 71.97 249 | 99.82 67 | 91.01 153 | 99.23 69 | 99.22 98 |
|
v2v482 | | | 87.27 241 | 85.76 246 | 91.78 231 | 89.59 316 | 87.58 190 | 98.56 154 | 95.54 268 | 84.53 257 | 82.51 250 | 91.78 271 | 73.11 239 | 96.47 261 | 82.07 258 | 74.14 311 | 91.30 285 |
|
tt0805 | | | 86.50 254 | 84.79 263 | 91.63 233 | 91.97 281 | 81.49 300 | 96.49 273 | 97.38 139 | 82.24 298 | 82.44 251 | 95.82 197 | 51.22 347 | 98.25 168 | 84.55 230 | 80.96 269 | 95.13 226 |
|
Baseline_NR-MVSNet | | | 85.83 264 | 84.82 262 | 88.87 300 | 88.73 329 | 83.34 278 | 98.63 144 | 91.66 351 | 80.41 319 | 82.44 251 | 91.35 279 | 74.63 221 | 95.42 311 | 84.13 236 | 71.39 334 | 87.84 340 |
|
v1192 | | | 86.32 257 | 84.71 265 | 91.17 239 | 89.53 320 | 86.40 217 | 98.13 197 | 95.44 275 | 82.52 293 | 82.42 253 | 90.62 298 | 71.58 255 | 96.33 274 | 77.23 291 | 74.88 299 | 90.79 299 |
|
RRT_MVS | | | 88.91 209 | 88.56 205 | 89.93 275 | 90.31 307 | 81.61 299 | 98.08 205 | 96.38 203 | 89.30 148 | 82.41 254 | 94.84 215 | 73.15 238 | 96.04 289 | 90.38 161 | 82.23 264 | 92.15 254 |
|
test_djsdf | | | 88.26 226 | 87.73 216 | 89.84 278 | 88.05 337 | 82.21 293 | 97.77 223 | 96.17 219 | 86.84 219 | 82.41 254 | 91.95 269 | 72.07 248 | 95.99 290 | 89.83 166 | 84.50 239 | 91.32 284 |
|
cl22 | | | 89.57 200 | 88.79 198 | 91.91 223 | 97.94 104 | 87.62 189 | 97.98 211 | 96.51 196 | 85.03 249 | 82.37 256 | 91.79 270 | 83.65 143 | 96.50 258 | 85.96 212 | 77.89 282 | 91.61 271 |
|
1314 | | | 93.44 118 | 91.98 139 | 97.84 31 | 95.24 200 | 94.38 51 | 96.22 284 | 97.92 48 | 90.18 124 | 82.28 257 | 97.71 129 | 77.63 210 | 99.80 72 | 91.94 146 | 98.67 94 | 99.34 87 |
|
v1921920 | | | 86.02 260 | 84.44 270 | 90.77 252 | 89.32 323 | 85.20 252 | 98.10 202 | 95.35 281 | 82.19 299 | 82.25 258 | 90.71 291 | 70.73 258 | 96.30 278 | 76.85 296 | 74.49 304 | 90.80 298 |
|
v1240 | | | 85.77 267 | 84.11 273 | 90.73 253 | 89.26 324 | 85.15 255 | 97.88 216 | 95.23 290 | 81.89 304 | 82.16 259 | 90.55 303 | 69.60 266 | 96.31 275 | 75.59 305 | 74.87 300 | 90.72 303 |
|
XVG-ACMP-BASELINE | | | 85.86 263 | 84.95 259 | 88.57 301 | 89.90 311 | 77.12 332 | 94.30 312 | 95.60 265 | 87.40 210 | 82.12 260 | 92.99 254 | 53.42 342 | 97.66 205 | 85.02 223 | 83.83 248 | 90.92 295 |
|
GBi-Net | | | 86.67 249 | 84.96 257 | 91.80 227 | 95.11 210 | 88.81 165 | 96.77 263 | 95.25 283 | 82.94 284 | 82.12 260 | 90.25 309 | 62.89 307 | 94.97 319 | 79.04 279 | 80.24 270 | 91.62 268 |
|
test1 | | | 86.67 249 | 84.96 257 | 91.80 227 | 95.11 210 | 88.81 165 | 96.77 263 | 95.25 283 | 82.94 284 | 82.12 260 | 90.25 309 | 62.89 307 | 94.97 319 | 79.04 279 | 80.24 270 | 91.62 268 |
|
FMVSNet3 | | | 88.81 216 | 87.08 227 | 93.99 182 | 96.52 153 | 94.59 46 | 98.08 205 | 96.20 215 | 85.85 234 | 82.12 260 | 91.60 274 | 74.05 231 | 95.40 312 | 79.04 279 | 80.24 270 | 91.99 261 |
|
IterMVS-LS | | | 88.34 223 | 87.44 220 | 91.04 243 | 94.10 239 | 85.85 239 | 98.10 202 | 95.48 271 | 85.12 245 | 82.03 264 | 91.21 282 | 81.35 186 | 95.63 306 | 83.86 242 | 75.73 294 | 91.63 267 |
Fangjinhua Wang, Silvano Galliani, Christoph Vogel, Marc Pollefeys: IterMVS: Iterative Probability Estimation for Efficient Multi-View Stereo. |
miper_ehance_all_eth | | | 88.94 208 | 88.12 212 | 91.40 235 | 95.32 199 | 86.93 208 | 97.85 218 | 95.55 267 | 84.19 261 | 81.97 265 | 91.50 276 | 84.16 138 | 95.91 297 | 84.69 227 | 77.89 282 | 91.36 282 |
|
MIMVSNet | | | 84.48 283 | 81.83 292 | 92.42 213 | 91.73 288 | 87.36 198 | 85.52 358 | 94.42 312 | 81.40 307 | 81.91 266 | 87.58 331 | 51.92 345 | 92.81 344 | 73.84 318 | 88.15 215 | 97.08 199 |
|
PS-MVSNAJss | | | 89.54 201 | 89.05 192 | 91.00 244 | 88.77 328 | 84.36 265 | 97.39 236 | 95.97 231 | 88.47 170 | 81.88 267 | 93.80 234 | 82.48 169 | 96.50 258 | 89.34 176 | 83.34 256 | 92.15 254 |
|
WR-MVS | | | 88.54 222 | 87.22 226 | 92.52 212 | 91.93 285 | 89.50 151 | 98.56 154 | 97.84 52 | 86.99 213 | 81.87 268 | 93.81 233 | 74.25 230 | 95.92 296 | 85.29 219 | 74.43 305 | 92.12 256 |
|
TranMVSNet+NR-MVSNet | | | 87.75 233 | 86.31 238 | 92.07 221 | 90.81 300 | 88.56 170 | 98.33 182 | 97.18 156 | 87.76 199 | 81.87 268 | 93.90 231 | 72.45 244 | 95.43 310 | 83.13 249 | 71.30 335 | 92.23 249 |
|
eth_miper_zixun_eth | | | 87.76 232 | 87.00 229 | 90.06 270 | 94.67 229 | 82.65 290 | 97.02 256 | 95.37 279 | 84.19 261 | 81.86 270 | 91.58 275 | 81.47 184 | 95.90 298 | 83.24 245 | 73.61 314 | 91.61 271 |
|
UniMVSNet_ETH3D | | | 85.65 270 | 83.79 277 | 91.21 238 | 90.41 306 | 80.75 313 | 95.36 303 | 95.78 253 | 78.76 325 | 81.83 271 | 94.33 222 | 49.86 352 | 96.66 246 | 84.30 232 | 83.52 253 | 96.22 217 |
|
c3_l | | | 88.19 227 | 87.23 225 | 91.06 242 | 94.97 219 | 86.17 228 | 97.72 227 | 95.38 278 | 83.43 275 | 81.68 272 | 91.37 278 | 82.81 161 | 95.72 303 | 84.04 240 | 73.70 313 | 91.29 286 |
|
DP-MVS | | | 88.75 218 | 86.56 235 | 95.34 130 | 98.92 77 | 87.45 195 | 97.64 231 | 93.52 328 | 70.55 352 | 81.49 273 | 97.25 150 | 74.43 226 | 99.88 49 | 71.14 330 | 94.09 163 | 98.67 146 |
|
3Dnovator+ | | 87.72 8 | 93.43 119 | 91.84 142 | 98.17 21 | 95.73 185 | 95.08 31 | 98.92 116 | 97.04 170 | 91.42 96 | 81.48 274 | 97.60 134 | 74.60 223 | 99.79 73 | 90.84 156 | 98.97 79 | 99.64 60 |
|
QAPM | | | 91.41 163 | 89.49 183 | 97.17 53 | 95.66 188 | 93.42 69 | 98.60 149 | 97.51 118 | 80.92 314 | 81.39 275 | 97.41 144 | 72.89 242 | 99.87 52 | 82.33 256 | 98.68 93 | 98.21 169 |
|
XXY-MVS | | | 87.75 233 | 86.02 242 | 92.95 203 | 90.46 305 | 89.70 147 | 97.71 229 | 95.90 245 | 84.02 263 | 80.95 276 | 94.05 223 | 67.51 281 | 97.10 231 | 85.16 220 | 78.41 279 | 92.04 260 |
|
v148 | | | 86.38 256 | 85.06 256 | 90.37 265 | 89.47 322 | 84.10 269 | 98.52 156 | 95.48 271 | 83.80 268 | 80.93 277 | 90.22 312 | 74.60 223 | 96.31 275 | 80.92 267 | 71.55 333 | 90.69 304 |
|
DIV-MVS_self_test | | | 87.82 229 | 86.81 231 | 90.87 249 | 94.87 224 | 85.39 249 | 97.81 219 | 95.22 291 | 82.92 287 | 80.76 278 | 91.31 280 | 81.99 177 | 95.81 301 | 81.36 263 | 75.04 298 | 91.42 280 |
|
cl____ | | | 87.82 229 | 86.79 232 | 90.89 248 | 94.88 223 | 85.43 247 | 97.81 219 | 95.24 286 | 82.91 288 | 80.71 279 | 91.22 281 | 81.97 179 | 95.84 299 | 81.34 264 | 75.06 297 | 91.40 281 |
|
FMVSNet2 | | | 86.90 244 | 84.79 263 | 93.24 196 | 95.11 210 | 92.54 86 | 97.67 230 | 95.86 251 | 82.94 284 | 80.55 280 | 91.17 283 | 62.89 307 | 95.29 314 | 77.23 291 | 79.71 276 | 91.90 262 |
|
pmmvs4 | | | 87.58 238 | 86.17 241 | 91.80 227 | 89.58 317 | 88.92 163 | 97.25 245 | 95.28 282 | 82.54 292 | 80.49 281 | 93.17 250 | 75.62 218 | 96.05 288 | 82.75 252 | 78.90 277 | 90.42 309 |
|
ACMP | | 87.39 10 | 88.71 219 | 88.24 210 | 90.12 269 | 93.91 249 | 81.06 310 | 98.50 160 | 95.67 261 | 89.43 146 | 80.37 282 | 95.55 200 | 65.67 294 | 97.83 190 | 90.55 160 | 84.51 238 | 91.47 276 |
Qingshan Xu and Wenbing Tao: Planar Prior Assisted PatchMatch Multi-View Stereo. AAAI 2020 |
pmmvs5 | | | 85.87 262 | 84.40 272 | 90.30 266 | 88.53 332 | 84.23 266 | 98.60 149 | 93.71 324 | 81.53 306 | 80.29 283 | 92.02 264 | 64.51 302 | 95.52 308 | 82.04 260 | 78.34 280 | 91.15 289 |
|
test0.0.03 1 | | | 88.96 207 | 88.61 202 | 90.03 274 | 91.09 297 | 84.43 264 | 98.97 112 | 97.02 174 | 90.21 122 | 80.29 283 | 96.31 188 | 84.89 130 | 91.93 356 | 72.98 324 | 85.70 232 | 93.73 231 |
|
miper_lstm_enhance | | | 86.90 244 | 86.20 240 | 89.00 297 | 94.53 231 | 81.19 307 | 96.74 267 | 95.24 286 | 82.33 297 | 80.15 285 | 90.51 305 | 81.99 177 | 94.68 328 | 80.71 269 | 73.58 315 | 91.12 290 |
|
jajsoiax | | | 87.35 239 | 86.51 236 | 89.87 276 | 87.75 342 | 81.74 297 | 97.03 254 | 95.98 230 | 88.47 170 | 80.15 285 | 93.80 234 | 61.47 312 | 96.36 267 | 89.44 174 | 84.47 241 | 91.50 275 |
|
mvs_tets | | | 87.09 242 | 86.22 239 | 89.71 281 | 87.87 338 | 81.39 303 | 96.73 268 | 95.90 245 | 88.19 186 | 79.99 287 | 93.61 239 | 59.96 319 | 96.31 275 | 89.40 175 | 84.34 242 | 91.43 279 |
|
ITE_SJBPF | | | | | 87.93 305 | 92.26 277 | 76.44 334 | | 93.47 329 | 87.67 205 | 79.95 288 | 95.49 203 | 56.50 329 | 97.38 223 | 75.24 306 | 82.33 263 | 89.98 320 |
|
v8 | | | 86.11 259 | 84.45 269 | 91.10 241 | 89.99 309 | 86.85 209 | 97.24 246 | 95.36 280 | 81.99 301 | 79.89 289 | 89.86 317 | 74.53 225 | 96.39 265 | 78.83 283 | 72.32 327 | 90.05 318 |
|
v10 | | | 85.73 268 | 84.01 275 | 90.87 249 | 90.03 308 | 86.73 211 | 97.20 249 | 95.22 291 | 81.25 309 | 79.85 290 | 89.75 318 | 73.30 237 | 96.28 279 | 76.87 295 | 72.64 323 | 89.61 326 |
|
WR-MVS_H | | | 86.53 253 | 85.49 251 | 89.66 284 | 91.04 298 | 83.31 279 | 97.53 234 | 98.20 33 | 84.95 252 | 79.64 291 | 90.90 287 | 78.01 208 | 95.33 313 | 76.29 300 | 72.81 321 | 90.35 310 |
|
anonymousdsp | | | 86.69 248 | 85.75 247 | 89.53 286 | 86.46 349 | 82.94 282 | 96.39 275 | 95.71 257 | 83.97 265 | 79.63 292 | 90.70 292 | 68.85 268 | 95.94 293 | 86.01 210 | 84.02 246 | 89.72 324 |
|
Patchmtry | | | 83.61 293 | 81.64 293 | 89.50 287 | 93.36 264 | 82.84 287 | 84.10 365 | 94.20 317 | 69.47 357 | 79.57 293 | 86.88 341 | 84.43 135 | 94.78 325 | 68.48 339 | 74.30 307 | 90.88 296 |
|
CP-MVSNet | | | 86.54 252 | 85.45 252 | 89.79 280 | 91.02 299 | 82.78 288 | 97.38 238 | 97.56 108 | 85.37 242 | 79.53 294 | 93.03 252 | 71.86 251 | 95.25 315 | 79.92 274 | 73.43 319 | 91.34 283 |
|
Patchmatch-test | | | 86.25 258 | 84.06 274 | 92.82 204 | 94.42 232 | 82.88 286 | 82.88 369 | 94.23 316 | 71.58 349 | 79.39 295 | 90.62 298 | 89.00 57 | 96.42 264 | 63.03 354 | 91.37 200 | 99.16 101 |
|
DSMNet-mixed | | | 81.60 302 | 81.43 296 | 82.10 338 | 84.36 355 | 60.79 366 | 93.63 320 | 86.74 371 | 79.00 321 | 79.32 296 | 87.15 339 | 63.87 305 | 89.78 362 | 66.89 344 | 91.92 189 | 95.73 222 |
|
MSDG | | | 88.29 225 | 86.37 237 | 94.04 180 | 96.90 140 | 86.15 229 | 96.52 272 | 94.36 314 | 77.89 331 | 79.22 297 | 96.95 165 | 69.72 263 | 99.59 94 | 73.20 323 | 92.58 179 | 96.37 216 |
|
Anonymous20231211 | | | 84.72 278 | 82.65 288 | 90.91 246 | 97.71 110 | 84.55 263 | 97.28 243 | 96.67 185 | 66.88 364 | 79.18 298 | 90.87 288 | 58.47 323 | 96.60 248 | 82.61 254 | 74.20 309 | 91.59 273 |
|
PS-CasMVS | | | 85.81 265 | 84.58 268 | 89.49 289 | 90.77 301 | 82.11 294 | 97.20 249 | 97.36 141 | 84.83 254 | 79.12 299 | 92.84 255 | 67.42 282 | 95.16 317 | 78.39 287 | 73.25 320 | 91.21 288 |
|
IterMVS | | | 85.81 265 | 84.67 266 | 89.22 292 | 93.51 259 | 83.67 275 | 96.32 278 | 94.80 300 | 85.09 247 | 78.69 300 | 90.17 315 | 66.57 289 | 93.17 341 | 79.48 277 | 77.42 288 | 90.81 297 |
Fangjinhua Wang, Silvano Galliani, Christoph Vogel, Marc Pollefeys: IterMVS: Iterative Probability Estimation for Efficient Multi-View Stereo. |
PEN-MVS | | | 85.21 273 | 83.93 276 | 89.07 296 | 89.89 312 | 81.31 305 | 97.09 252 | 97.24 148 | 84.45 259 | 78.66 301 | 92.68 257 | 68.44 272 | 94.87 322 | 75.98 302 | 70.92 336 | 91.04 292 |
|
IterMVS-SCA-FT | | | 85.73 268 | 84.64 267 | 89.00 297 | 93.46 262 | 82.90 284 | 96.27 279 | 94.70 303 | 85.02 250 | 78.62 302 | 90.35 307 | 66.61 287 | 93.33 338 | 79.38 278 | 77.36 289 | 90.76 301 |
|
OpenMVS |  | 85.28 14 | 90.75 177 | 88.84 196 | 96.48 89 | 93.58 258 | 93.51 67 | 98.80 125 | 97.41 136 | 82.59 290 | 78.62 302 | 97.49 140 | 68.00 276 | 99.82 67 | 84.52 231 | 98.55 98 | 96.11 219 |
|
PVSNet_0 | | 83.28 16 | 87.31 240 | 85.16 255 | 93.74 190 | 94.78 226 | 84.59 262 | 98.91 117 | 98.69 20 | 89.81 134 | 78.59 304 | 93.23 248 | 61.95 311 | 99.34 124 | 94.75 104 | 55.72 368 | 97.30 191 |
|
EU-MVSNet | | | 84.19 287 | 84.42 271 | 83.52 334 | 88.64 331 | 67.37 362 | 96.04 289 | 95.76 255 | 85.29 243 | 78.44 305 | 93.18 249 | 70.67 259 | 91.48 358 | 75.79 304 | 75.98 292 | 91.70 264 |
|
v7n | | | 84.42 285 | 82.75 286 | 89.43 290 | 88.15 335 | 81.86 296 | 96.75 266 | 95.67 261 | 80.53 315 | 78.38 306 | 89.43 322 | 69.89 261 | 96.35 272 | 73.83 319 | 72.13 329 | 90.07 316 |
|
FMVSNet1 | | | 83.94 290 | 81.32 298 | 91.80 227 | 91.94 284 | 88.81 165 | 96.77 263 | 95.25 283 | 77.98 327 | 78.25 307 | 90.25 309 | 50.37 351 | 94.97 319 | 73.27 322 | 77.81 286 | 91.62 268 |
|
D2MVS | | | 87.96 228 | 87.39 221 | 89.70 282 | 91.84 286 | 83.40 277 | 98.31 185 | 98.49 22 | 88.04 190 | 78.23 308 | 90.26 308 | 73.57 233 | 96.79 244 | 84.21 234 | 83.53 252 | 88.90 334 |
|
MS-PatchMatch | | | 86.75 247 | 85.92 244 | 89.22 292 | 91.97 281 | 82.47 292 | 96.91 258 | 96.14 221 | 83.74 269 | 77.73 309 | 93.53 242 | 58.19 324 | 97.37 225 | 76.75 297 | 98.35 101 | 87.84 340 |
|
DTE-MVSNet | | | 84.14 288 | 82.80 283 | 88.14 304 | 88.95 327 | 79.87 316 | 96.81 262 | 96.24 213 | 83.50 274 | 77.60 310 | 92.52 259 | 67.89 278 | 94.24 333 | 72.64 326 | 69.05 339 | 90.32 311 |
|
COLMAP_ROB |  | 82.69 18 | 84.54 282 | 82.82 282 | 89.70 282 | 96.72 148 | 78.85 320 | 95.89 292 | 92.83 336 | 71.55 350 | 77.54 311 | 95.89 196 | 59.40 321 | 99.14 135 | 67.26 342 | 88.26 214 | 91.11 291 |
Johannes L. Schönberger, Enliang Zheng, Marc Pollefeys, Jan-Michael Frahm: Pixelwise View Selection for Unstructured Multi-View Stereo. ECCV 2016 |
OurMVSNet-221017-0 | | | 84.13 289 | 83.59 278 | 85.77 321 | 87.81 339 | 70.24 356 | 94.89 307 | 93.65 326 | 86.08 232 | 76.53 312 | 93.28 247 | 61.41 313 | 96.14 285 | 80.95 266 | 77.69 287 | 90.93 294 |
|
tfpnnormal | | | 83.65 291 | 81.35 297 | 90.56 258 | 91.37 294 | 88.06 179 | 97.29 242 | 97.87 50 | 78.51 326 | 76.20 313 | 90.91 286 | 64.78 301 | 96.47 261 | 61.71 357 | 73.50 316 | 87.13 348 |
|
ppachtmachnet_test | | | 83.63 292 | 81.57 295 | 89.80 279 | 89.01 325 | 85.09 256 | 97.13 251 | 94.50 308 | 78.84 323 | 76.14 314 | 91.00 285 | 69.78 262 | 94.61 329 | 63.40 352 | 74.36 306 | 89.71 325 |
|
pm-mvs1 | | | 84.68 279 | 82.78 285 | 90.40 262 | 89.58 317 | 85.18 253 | 97.31 241 | 94.73 302 | 81.93 303 | 76.05 315 | 92.01 265 | 65.48 298 | 96.11 286 | 78.75 284 | 69.14 338 | 89.91 321 |
|
AllTest | | | 84.97 276 | 83.12 280 | 90.52 259 | 96.82 142 | 78.84 321 | 95.89 292 | 92.17 344 | 77.96 329 | 75.94 316 | 95.50 201 | 55.48 332 | 99.18 129 | 71.15 328 | 87.14 218 | 93.55 233 |
|
TestCases | | | | | 90.52 259 | 96.82 142 | 78.84 321 | | 92.17 344 | 77.96 329 | 75.94 316 | 95.50 201 | 55.48 332 | 99.18 129 | 71.15 328 | 87.14 218 | 93.55 233 |
|
CL-MVSNet_self_test | | | 79.89 310 | 78.34 311 | 84.54 329 | 81.56 363 | 75.01 338 | 96.88 260 | 95.62 263 | 81.10 310 | 75.86 318 | 85.81 346 | 68.49 271 | 90.26 360 | 63.21 353 | 56.51 366 | 88.35 337 |
|
testgi | | | 82.29 297 | 81.00 300 | 86.17 318 | 87.24 345 | 74.84 340 | 97.39 236 | 91.62 352 | 88.63 166 | 75.85 319 | 95.42 204 | 46.07 358 | 91.55 357 | 66.87 345 | 79.94 274 | 92.12 256 |
|
MVP-Stereo | | | 86.61 251 | 85.83 245 | 88.93 299 | 88.70 330 | 83.85 273 | 96.07 288 | 94.41 313 | 82.15 300 | 75.64 320 | 91.96 268 | 67.65 279 | 96.45 263 | 77.20 293 | 98.72 92 | 86.51 351 |
Qingsong Yan: MVP-Stereo: A Parallel Multi-View Patchmatch Stereo Method with Dilation Matching for Photogrammetric Application. |
LF4IMVS | | | 81.94 300 | 81.17 299 | 84.25 330 | 87.23 346 | 68.87 361 | 93.35 322 | 91.93 349 | 83.35 277 | 75.40 321 | 93.00 253 | 49.25 355 | 96.65 247 | 78.88 282 | 78.11 281 | 87.22 347 |
|
our_test_3 | | | 84.47 284 | 82.80 283 | 89.50 287 | 89.01 325 | 83.90 272 | 97.03 254 | 94.56 307 | 81.33 308 | 75.36 322 | 90.52 304 | 71.69 253 | 94.54 330 | 68.81 337 | 76.84 290 | 90.07 316 |
|
LTVRE_ROB | | 81.71 19 | 84.59 281 | 82.72 287 | 90.18 267 | 92.89 272 | 83.18 280 | 93.15 323 | 94.74 301 | 78.99 322 | 75.14 323 | 92.69 256 | 65.64 295 | 97.63 208 | 69.46 335 | 81.82 266 | 89.74 323 |
Andreas Kuhn, Heiko Hirschmüller, Daniel Scharstein, Helmut Mayer: A TV Prior for High-Quality Scalable Multi-View Stereo Reconstruction. International Journal of Computer Vision 2016 |
Anonymous20231206 | | | 80.76 305 | 79.42 309 | 84.79 327 | 84.78 354 | 72.98 346 | 96.53 271 | 92.97 333 | 79.56 320 | 74.33 324 | 88.83 325 | 61.27 314 | 92.15 353 | 60.59 359 | 75.92 293 | 89.24 331 |
|
FMVSNet5 | | | 82.29 297 | 80.54 301 | 87.52 309 | 93.79 255 | 84.01 270 | 93.73 318 | 92.47 340 | 76.92 334 | 74.27 325 | 86.15 345 | 63.69 306 | 89.24 364 | 69.07 336 | 74.79 301 | 89.29 330 |
|
MVS-HIRNet | | | 79.01 313 | 75.13 325 | 90.66 254 | 93.82 254 | 81.69 298 | 85.16 359 | 93.75 323 | 54.54 369 | 74.17 326 | 59.15 375 | 57.46 326 | 96.58 252 | 63.74 351 | 94.38 160 | 93.72 232 |
|
ACMH+ | | 83.78 15 | 84.21 286 | 82.56 290 | 89.15 294 | 93.73 256 | 79.16 318 | 96.43 274 | 94.28 315 | 81.09 311 | 74.00 327 | 94.03 226 | 54.58 338 | 97.67 204 | 76.10 301 | 78.81 278 | 90.63 306 |
|
KD-MVS_2432*1600 | | | 82.98 294 | 80.52 302 | 90.38 263 | 94.32 235 | 88.98 158 | 92.87 326 | 95.87 249 | 80.46 317 | 73.79 328 | 87.49 334 | 82.76 164 | 93.29 339 | 70.56 332 | 46.53 375 | 88.87 335 |
|
miper_refine_blended | | | 82.98 294 | 80.52 302 | 90.38 263 | 94.32 235 | 88.98 158 | 92.87 326 | 95.87 249 | 80.46 317 | 73.79 328 | 87.49 334 | 82.76 164 | 93.29 339 | 70.56 332 | 46.53 375 | 88.87 335 |
|
NR-MVSNet | | | 87.74 235 | 86.00 243 | 92.96 202 | 91.46 292 | 90.68 121 | 96.65 270 | 97.42 135 | 88.02 191 | 73.42 330 | 93.68 236 | 77.31 211 | 95.83 300 | 84.26 233 | 71.82 332 | 92.36 244 |
|
test_fmvs3 | | | 75.09 327 | 75.19 324 | 74.81 348 | 77.45 371 | 54.08 373 | 95.93 290 | 90.64 358 | 82.51 294 | 73.29 331 | 81.19 358 | 22.29 375 | 86.29 370 | 85.50 218 | 67.89 343 | 84.06 361 |
|
USDC | | | 84.74 277 | 82.93 281 | 90.16 268 | 91.73 288 | 83.54 276 | 95.00 306 | 93.30 331 | 88.77 165 | 73.19 332 | 93.30 246 | 53.62 341 | 97.65 207 | 75.88 303 | 81.54 267 | 89.30 329 |
|
KD-MVS_self_test | | | 77.47 322 | 75.88 322 | 82.24 336 | 81.59 362 | 68.93 360 | 92.83 328 | 94.02 320 | 77.03 333 | 73.14 333 | 83.39 351 | 55.44 334 | 90.42 359 | 67.95 340 | 57.53 365 | 87.38 343 |
|
LCM-MVSNet-Re | | | 88.59 221 | 88.61 202 | 88.51 302 | 95.53 192 | 72.68 349 | 96.85 261 | 88.43 368 | 88.45 173 | 73.14 333 | 90.63 297 | 75.82 216 | 94.38 331 | 92.95 135 | 95.71 149 | 98.48 154 |
|
TDRefinement | | | 78.01 319 | 75.31 323 | 86.10 319 | 70.06 376 | 73.84 343 | 93.59 321 | 91.58 353 | 74.51 343 | 73.08 335 | 91.04 284 | 49.63 354 | 97.12 228 | 74.88 309 | 59.47 361 | 87.33 345 |
|
TransMVSNet (Re) | | | 81.97 299 | 79.61 308 | 89.08 295 | 89.70 315 | 84.01 270 | 97.26 244 | 91.85 350 | 78.84 323 | 73.07 336 | 91.62 273 | 67.17 284 | 95.21 316 | 67.50 341 | 59.46 362 | 88.02 339 |
|
SixPastTwentyTwo | | | 82.63 296 | 81.58 294 | 85.79 320 | 88.12 336 | 71.01 354 | 95.17 305 | 92.54 339 | 84.33 260 | 72.93 337 | 92.08 262 | 60.41 318 | 95.61 307 | 74.47 312 | 74.15 310 | 90.75 302 |
|
pmmvs6 | | | 79.90 309 | 77.31 315 | 87.67 308 | 84.17 356 | 78.13 328 | 95.86 296 | 93.68 325 | 67.94 361 | 72.67 338 | 89.62 320 | 50.98 349 | 95.75 302 | 74.80 311 | 66.04 349 | 89.14 332 |
|
ACMH | | 83.09 17 | 84.60 280 | 82.61 289 | 90.57 256 | 93.18 268 | 82.94 282 | 96.27 279 | 94.92 296 | 81.01 312 | 72.61 339 | 93.61 239 | 56.54 328 | 97.79 193 | 74.31 313 | 81.07 268 | 90.99 293 |
Qingshan Xu and Wenbing Tao: Multi-Scale Geometric Consistency Guided Multi-View Stereo. CVPR 2019 |
Anonymous20240521 | | | 78.63 317 | 76.90 318 | 83.82 332 | 82.82 360 | 72.86 347 | 95.72 301 | 93.57 327 | 73.55 347 | 72.17 340 | 84.79 348 | 49.69 353 | 92.51 349 | 65.29 349 | 74.50 303 | 86.09 353 |
|
Patchmatch-RL test | | | 81.90 301 | 80.13 304 | 87.23 312 | 80.71 365 | 70.12 358 | 84.07 366 | 88.19 369 | 83.16 280 | 70.57 341 | 82.18 356 | 87.18 87 | 92.59 347 | 82.28 257 | 62.78 355 | 98.98 115 |
|
mvsany_test3 | | | 75.85 326 | 74.52 328 | 79.83 343 | 73.53 373 | 60.64 367 | 91.73 335 | 87.87 370 | 83.91 267 | 70.55 342 | 82.52 353 | 31.12 370 | 93.66 335 | 86.66 206 | 62.83 354 | 85.19 359 |
|
test_0402 | | | 78.81 315 | 76.33 320 | 86.26 317 | 91.18 296 | 78.44 326 | 95.88 294 | 91.34 355 | 68.55 358 | 70.51 343 | 89.91 316 | 52.65 344 | 94.99 318 | 47.14 372 | 79.78 275 | 85.34 357 |
|
TinyColmap | | | 80.42 307 | 77.94 312 | 87.85 306 | 92.09 280 | 78.58 324 | 93.74 317 | 89.94 361 | 74.99 340 | 69.77 344 | 91.78 271 | 46.09 357 | 97.58 212 | 65.17 350 | 77.89 282 | 87.38 343 |
|
dmvs_testset | | | 77.17 323 | 78.99 310 | 71.71 351 | 87.25 344 | 38.55 385 | 91.44 339 | 81.76 377 | 85.77 236 | 69.49 345 | 95.94 195 | 69.71 264 | 84.37 371 | 52.71 370 | 76.82 291 | 92.21 251 |
|
test20.03 | | | 78.51 318 | 77.48 314 | 81.62 340 | 83.07 359 | 71.03 353 | 96.11 287 | 92.83 336 | 81.66 305 | 69.31 346 | 89.68 319 | 57.53 325 | 87.29 369 | 58.65 363 | 68.47 340 | 86.53 350 |
|
test_vis1_rt | | | 81.31 303 | 80.05 306 | 85.11 323 | 91.29 295 | 70.66 355 | 98.98 111 | 77.39 381 | 85.76 237 | 68.80 347 | 82.40 354 | 36.56 368 | 99.44 109 | 92.67 141 | 86.55 223 | 85.24 358 |
|
N_pmnet | | | 70.19 333 | 69.87 335 | 71.12 353 | 88.24 334 | 30.63 389 | 95.85 297 | 28.70 389 | 70.18 354 | 68.73 348 | 86.55 343 | 64.04 304 | 93.81 334 | 53.12 369 | 73.46 317 | 88.94 333 |
|
OpenMVS_ROB |  | 73.86 20 | 77.99 320 | 75.06 326 | 86.77 315 | 83.81 358 | 77.94 330 | 96.38 276 | 91.53 354 | 67.54 362 | 68.38 349 | 87.13 340 | 43.94 359 | 96.08 287 | 55.03 367 | 81.83 265 | 86.29 352 |
|
ambc | | | | | 79.60 344 | 72.76 375 | 56.61 370 | 76.20 373 | 92.01 348 | | 68.25 350 | 80.23 361 | 23.34 374 | 94.73 326 | 73.78 320 | 60.81 359 | 87.48 342 |
|
PM-MVS | | | 74.88 328 | 72.85 331 | 80.98 342 | 78.98 369 | 64.75 364 | 90.81 346 | 85.77 372 | 80.95 313 | 68.23 351 | 82.81 352 | 29.08 372 | 92.84 343 | 76.54 299 | 62.46 357 | 85.36 356 |
|
pmmvs3 | | | 72.86 331 | 69.76 336 | 82.17 337 | 73.86 372 | 74.19 342 | 94.20 313 | 89.01 367 | 64.23 368 | 67.72 352 | 80.91 360 | 41.48 363 | 88.65 366 | 62.40 355 | 54.02 370 | 83.68 363 |
|
lessismore_v0 | | | | | 85.08 324 | 85.59 352 | 69.28 359 | | 90.56 359 | | 67.68 353 | 90.21 313 | 54.21 340 | 95.46 309 | 73.88 317 | 62.64 356 | 90.50 308 |
|
K. test v3 | | | 81.04 304 | 79.77 307 | 84.83 326 | 87.41 343 | 70.23 357 | 95.60 302 | 93.93 321 | 83.70 271 | 67.51 354 | 89.35 323 | 55.76 330 | 93.58 337 | 76.67 298 | 68.03 342 | 90.67 305 |
|
MIMVSNet1 | | | 75.92 325 | 73.30 330 | 83.81 333 | 81.29 364 | 75.57 336 | 92.26 331 | 92.05 347 | 73.09 348 | 67.48 355 | 86.18 344 | 40.87 365 | 87.64 368 | 55.78 366 | 70.68 337 | 88.21 338 |
|
ET-MVSNet_ETH3D | | | 92.56 142 | 91.45 150 | 95.88 112 | 96.39 159 | 94.13 57 | 99.46 50 | 96.97 178 | 92.18 81 | 66.94 356 | 98.29 110 | 94.65 15 | 94.28 332 | 94.34 113 | 83.82 250 | 99.24 95 |
|
pmmvs-eth3d | | | 78.71 316 | 76.16 321 | 86.38 316 | 80.25 367 | 81.19 307 | 94.17 314 | 92.13 346 | 77.97 328 | 66.90 357 | 82.31 355 | 55.76 330 | 92.56 348 | 73.63 321 | 62.31 358 | 85.38 355 |
|
EG-PatchMatch MVS | | | 79.92 308 | 77.59 313 | 86.90 314 | 87.06 347 | 77.90 331 | 96.20 286 | 94.06 319 | 74.61 342 | 66.53 358 | 88.76 326 | 40.40 366 | 96.20 280 | 67.02 343 | 83.66 251 | 86.61 349 |
|
test_method | | | 70.10 334 | 68.66 337 | 74.41 350 | 86.30 351 | 55.84 371 | 94.47 309 | 89.82 362 | 35.18 377 | 66.15 359 | 84.75 349 | 30.54 371 | 77.96 378 | 70.40 334 | 60.33 360 | 89.44 328 |
|
UnsupCasMVSNet_eth | | | 78.90 314 | 76.67 319 | 85.58 322 | 82.81 361 | 74.94 339 | 91.98 332 | 96.31 207 | 84.64 256 | 65.84 360 | 87.71 330 | 51.33 346 | 92.23 352 | 72.89 325 | 56.50 367 | 89.56 327 |
|
test_f | | | 71.94 332 | 70.82 333 | 75.30 347 | 72.77 374 | 53.28 374 | 91.62 336 | 89.66 364 | 75.44 339 | 64.47 361 | 78.31 365 | 20.48 376 | 89.56 363 | 78.63 285 | 66.02 350 | 83.05 366 |
|
new-patchmatchnet | | | 74.80 329 | 72.40 332 | 81.99 339 | 78.36 370 | 72.20 350 | 94.44 310 | 92.36 341 | 77.06 332 | 63.47 362 | 79.98 362 | 51.04 348 | 88.85 365 | 60.53 360 | 54.35 369 | 84.92 360 |
|
new_pmnet | | | 76.02 324 | 73.71 329 | 82.95 335 | 83.88 357 | 72.85 348 | 91.26 342 | 92.26 343 | 70.44 353 | 62.60 363 | 81.37 357 | 47.64 356 | 92.32 351 | 61.85 356 | 72.10 330 | 83.68 363 |
|
UnsupCasMVSNet_bld | | | 73.85 330 | 70.14 334 | 84.99 325 | 79.44 368 | 75.73 335 | 88.53 352 | 95.24 286 | 70.12 355 | 61.94 364 | 74.81 368 | 41.41 364 | 93.62 336 | 68.65 338 | 51.13 374 | 85.62 354 |
|
CMPMVS |  | 58.40 21 | 80.48 306 | 80.11 305 | 81.59 341 | 85.10 353 | 59.56 368 | 94.14 315 | 95.95 235 | 68.54 359 | 60.71 365 | 93.31 245 | 55.35 335 | 97.87 188 | 83.06 250 | 84.85 237 | 87.33 345 |
M. Jancosek, T. Pajdla: Multi-View Reconstruction Preserving Weakly-Supported Surfaces. CVPR 2011 |
APD_test1 | | | 68.93 335 | 66.98 338 | 74.77 349 | 80.62 366 | 53.15 375 | 87.97 353 | 85.01 374 | 53.76 370 | 59.26 366 | 87.52 333 | 25.19 373 | 89.95 361 | 56.20 365 | 67.33 346 | 81.19 367 |
|
DeepMVS_CX |  | | | | 76.08 346 | 90.74 302 | 51.65 378 | | 90.84 357 | 86.47 229 | 57.89 367 | 87.98 328 | 35.88 369 | 92.60 346 | 65.77 348 | 65.06 352 | 83.97 362 |
|
YYNet1 | | | 79.64 312 | 77.04 317 | 87.43 311 | 87.80 340 | 79.98 315 | 96.23 283 | 94.44 309 | 73.83 346 | 51.83 368 | 87.53 332 | 67.96 277 | 92.07 355 | 66.00 347 | 67.75 345 | 90.23 313 |
|
MDA-MVSNet_test_wron | | | 79.65 311 | 77.05 316 | 87.45 310 | 87.79 341 | 80.13 314 | 96.25 282 | 94.44 309 | 73.87 345 | 51.80 369 | 87.47 336 | 68.04 275 | 92.12 354 | 66.02 346 | 67.79 344 | 90.09 314 |
|
LCM-MVSNet | | | 60.07 339 | 56.37 341 | 71.18 352 | 54.81 385 | 48.67 379 | 82.17 370 | 89.48 365 | 37.95 375 | 49.13 370 | 69.12 369 | 13.75 383 | 81.76 372 | 59.28 361 | 51.63 373 | 83.10 365 |
|
MDA-MVSNet-bldmvs | | | 77.82 321 | 74.75 327 | 87.03 313 | 88.33 333 | 78.52 325 | 96.34 277 | 92.85 335 | 75.57 338 | 48.87 371 | 87.89 329 | 57.32 327 | 92.49 350 | 60.79 358 | 64.80 353 | 90.08 315 |
|
PMMVS2 | | | 58.97 340 | 55.07 343 | 70.69 354 | 62.72 380 | 55.37 372 | 85.97 357 | 80.52 378 | 49.48 371 | 45.94 372 | 68.31 370 | 15.73 381 | 80.78 376 | 49.79 371 | 37.12 377 | 75.91 368 |
|
testf1 | | | 56.38 341 | 53.73 344 | 64.31 358 | 64.84 378 | 45.11 380 | 80.50 371 | 75.94 383 | 38.87 373 | 42.74 373 | 75.07 366 | 11.26 385 | 81.19 374 | 41.11 374 | 53.27 371 | 66.63 372 |
|
APD_test2 | | | 56.38 341 | 53.73 344 | 64.31 358 | 64.84 378 | 45.11 380 | 80.50 371 | 75.94 383 | 38.87 373 | 42.74 373 | 75.07 366 | 11.26 385 | 81.19 374 | 41.11 374 | 53.27 371 | 66.63 372 |
|
FPMVS | | | 61.57 336 | 60.32 339 | 65.34 356 | 60.14 383 | 42.44 383 | 91.02 345 | 89.72 363 | 44.15 372 | 42.63 375 | 80.93 359 | 19.02 377 | 80.59 377 | 42.50 373 | 72.76 322 | 73.00 369 |
|
test_vis3_rt | | | 61.29 337 | 58.75 340 | 68.92 355 | 67.41 377 | 52.84 376 | 91.18 344 | 59.23 388 | 66.96 363 | 41.96 376 | 58.44 376 | 11.37 384 | 94.72 327 | 74.25 314 | 57.97 364 | 59.20 375 |
|
Gipuma |  | | 54.77 343 | 52.22 347 | 62.40 360 | 86.50 348 | 59.37 369 | 50.20 378 | 90.35 360 | 36.52 376 | 41.20 377 | 49.49 378 | 18.33 379 | 81.29 373 | 32.10 378 | 65.34 351 | 46.54 378 |
S. Galliani, K. Lasinger, K. Schindler: Massively Parallel Multiview Stereopsis by Surface Normal Diffusion. ICCV 2015 |
tmp_tt | | | 53.66 344 | 52.86 346 | 56.05 361 | 32.75 389 | 41.97 384 | 73.42 375 | 76.12 382 | 21.91 382 | 39.68 378 | 96.39 185 | 42.59 362 | 65.10 381 | 78.00 288 | 14.92 382 | 61.08 374 |
|
E-PMN | | | 41.02 348 | 40.93 350 | 41.29 364 | 61.97 381 | 33.83 386 | 84.00 367 | 65.17 386 | 27.17 379 | 27.56 379 | 46.72 380 | 17.63 380 | 60.41 383 | 19.32 381 | 18.82 379 | 29.61 379 |
|
ANet_high | | | 50.71 345 | 46.17 348 | 64.33 357 | 44.27 387 | 52.30 377 | 76.13 374 | 78.73 379 | 64.95 366 | 27.37 380 | 55.23 377 | 14.61 382 | 67.74 380 | 36.01 377 | 18.23 380 | 72.95 370 |
|
EMVS | | | 39.96 349 | 39.88 351 | 40.18 365 | 59.57 384 | 32.12 388 | 84.79 364 | 64.57 387 | 26.27 380 | 26.14 381 | 44.18 383 | 18.73 378 | 59.29 384 | 17.03 382 | 17.67 381 | 29.12 380 |
|
MVE |  | 44.00 22 | 41.70 347 | 37.64 352 | 53.90 363 | 49.46 386 | 43.37 382 | 65.09 377 | 66.66 385 | 26.19 381 | 25.77 382 | 48.53 379 | 3.58 389 | 63.35 382 | 26.15 380 | 27.28 378 | 54.97 377 |
Simon Fuhrmann, Fabian Langguth, Michael Goesele: MVE - A Multi-View Reconstruction Environment. EUROGRAPHICS Workshops on Graphics and Cultural Heritage (2014) |
PMVS |  | 41.42 23 | 45.67 346 | 42.50 349 | 55.17 362 | 34.28 388 | 32.37 387 | 66.24 376 | 78.71 380 | 30.72 378 | 22.04 383 | 59.59 374 | 4.59 387 | 77.85 379 | 27.49 379 | 58.84 363 | 55.29 376 |
Y. Furukawa, J. Ponce: Accurate, dense, and robust multiview stereopsis. PAMI (2010) |
testmvs | | | 18.81 351 | 23.05 354 | 6.10 368 | 4.48 390 | 2.29 392 | 97.78 221 | 3.00 391 | 3.27 384 | 18.60 384 | 62.71 372 | 1.53 391 | 2.49 387 | 14.26 384 | 1.80 384 | 13.50 382 |
|
test123 | | | 16.58 353 | 19.47 355 | 7.91 367 | 3.59 391 | 5.37 391 | 94.32 311 | 1.39 392 | 2.49 385 | 13.98 385 | 44.60 382 | 2.91 390 | 2.65 386 | 11.35 385 | 0.57 385 | 15.70 381 |
|
wuyk23d | | | 16.71 352 | 16.73 356 | 16.65 366 | 60.15 382 | 25.22 390 | 41.24 379 | 5.17 390 | 6.56 383 | 5.48 386 | 3.61 386 | 3.64 388 | 22.72 385 | 15.20 383 | 9.52 383 | 1.99 383 |
|
EGC-MVSNET | | | 60.70 338 | 55.37 342 | 76.72 345 | 86.35 350 | 71.08 352 | 89.96 350 | 84.44 376 | 0.38 386 | 1.50 387 | 84.09 350 | 37.30 367 | 88.10 367 | 40.85 376 | 73.44 318 | 70.97 371 |
|
test_blank | | | 0.00 356 | 0.00 359 | 0.00 369 | 0.00 392 | 0.00 393 | 0.00 380 | 0.00 393 | 0.00 387 | 0.00 388 | 0.00 387 | 0.00 392 | 0.00 388 | 0.00 386 | 0.00 386 | 0.00 384 |
|
uanet_test | | | 0.00 356 | 0.00 359 | 0.00 369 | 0.00 392 | 0.00 393 | 0.00 380 | 0.00 393 | 0.00 387 | 0.00 388 | 0.00 387 | 0.00 392 | 0.00 388 | 0.00 386 | 0.00 386 | 0.00 384 |
|
DCPMVS | | | 0.00 356 | 0.00 359 | 0.00 369 | 0.00 392 | 0.00 393 | 0.00 380 | 0.00 393 | 0.00 387 | 0.00 388 | 0.00 387 | 0.00 392 | 0.00 388 | 0.00 386 | 0.00 386 | 0.00 384 |
|
cdsmvs_eth3d_5k | | | 22.52 350 | 30.03 353 | 0.00 369 | 0.00 392 | 0.00 393 | 0.00 380 | 97.17 157 | 0.00 387 | 0.00 388 | 98.77 77 | 74.35 228 | 0.00 388 | 0.00 386 | 0.00 386 | 0.00 384 |
|
pcd_1.5k_mvsjas | | | 6.87 355 | 9.16 358 | 0.00 369 | 0.00 392 | 0.00 393 | 0.00 380 | 0.00 393 | 0.00 387 | 0.00 388 | 0.00 387 | 82.48 169 | 0.00 388 | 0.00 386 | 0.00 386 | 0.00 384 |
|
sosnet-low-res | | | 0.00 356 | 0.00 359 | 0.00 369 | 0.00 392 | 0.00 393 | 0.00 380 | 0.00 393 | 0.00 387 | 0.00 388 | 0.00 387 | 0.00 392 | 0.00 388 | 0.00 386 | 0.00 386 | 0.00 384 |
|
sosnet | | | 0.00 356 | 0.00 359 | 0.00 369 | 0.00 392 | 0.00 393 | 0.00 380 | 0.00 393 | 0.00 387 | 0.00 388 | 0.00 387 | 0.00 392 | 0.00 388 | 0.00 386 | 0.00 386 | 0.00 384 |
|
uncertanet | | | 0.00 356 | 0.00 359 | 0.00 369 | 0.00 392 | 0.00 393 | 0.00 380 | 0.00 393 | 0.00 387 | 0.00 388 | 0.00 387 | 0.00 392 | 0.00 388 | 0.00 386 | 0.00 386 | 0.00 384 |
|
Regformer | | | 0.00 356 | 0.00 359 | 0.00 369 | 0.00 392 | 0.00 393 | 0.00 380 | 0.00 393 | 0.00 387 | 0.00 388 | 0.00 387 | 0.00 392 | 0.00 388 | 0.00 386 | 0.00 386 | 0.00 384 |
|
ab-mvs-re | | | 8.21 354 | 10.94 357 | 0.00 369 | 0.00 392 | 0.00 393 | 0.00 380 | 0.00 393 | 0.00 387 | 0.00 388 | 98.50 99 | 0.00 392 | 0.00 388 | 0.00 386 | 0.00 386 | 0.00 384 |
|
uanet | | | 0.00 356 | 0.00 359 | 0.00 369 | 0.00 392 | 0.00 393 | 0.00 380 | 0.00 393 | 0.00 387 | 0.00 388 | 0.00 387 | 0.00 392 | 0.00 388 | 0.00 386 | 0.00 386 | 0.00 384 |
|
MSC_two_6792asdad | | | | | 99.51 2 | 99.61 24 | 98.60 2 | | 97.69 78 | | | | | 99.98 9 | 99.55 10 | 99.83 15 | 99.96 10 |
|
No_MVS | | | | | 99.51 2 | 99.61 24 | 98.60 2 | | 97.69 78 | | | | | 99.98 9 | 99.55 10 | 99.83 15 | 99.96 10 |
|
eth-test2 | | | | | | 0.00 392 | | | | | | | | | | | |
|
eth-test | | | | | | 0.00 392 | | | | | | | | | | | |
|
OPU-MVS | | | | | 99.49 4 | 99.64 17 | 98.51 4 | 99.77 10 | | | | 99.19 28 | 95.12 8 | 99.97 21 | 99.90 1 | 99.92 3 | 99.99 1 |
|
save fliter | | | | | | 99.34 50 | 93.85 61 | 99.65 28 | 97.63 93 | 95.69 16 | | | | | | | |
|
test_0728_SECOND | | | | | 98.77 7 | 99.66 12 | 96.37 13 | 99.72 16 | 97.68 80 | | | | | 99.98 9 | 99.64 6 | 99.82 19 | 99.96 10 |
|
GSMVS | | | | | | | | | | | | | | | | | 98.84 130 |
|
sam_mvs1 | | | | | | | | | | | | | 88.39 63 | | | | 98.84 130 |
|
sam_mvs | | | | | | | | | | | | | 87.08 89 | | | | |
|
MTGPA |  | | | | | | | | 97.45 129 | | | | | | | | |
|
test_post1 | | | | | | | | 90.74 348 | | | | 41.37 384 | 85.38 126 | 96.36 267 | 83.16 247 | | |
|
test_post | | | | | | | | | | | | 46.00 381 | 87.37 81 | 97.11 229 | | | |
|
patchmatchnet-post | | | | | | | | | | | | 84.86 347 | 88.73 60 | 96.81 242 | | | |
|
MTMP | | | | | | | | 99.21 75 | 91.09 356 | | | | | | | | |
|
gm-plane-assit | | | | | | 94.69 228 | 88.14 177 | | | 88.22 185 | | 97.20 153 | | 98.29 165 | 90.79 158 | | |
|
test9_res | | | | | | | | | | | | | | | 98.60 25 | 99.87 9 | 99.90 22 |
|
agg_prior2 | | | | | | | | | | | | | | | 97.84 44 | 99.87 9 | 99.91 21 |
|
test_prior4 | | | | | | | 92.00 91 | 99.41 59 | | | | | | | | | |
|
test_prior | | | | | 97.01 57 | 99.58 30 | 91.77 92 | | 97.57 107 | | | | | 99.49 102 | | | 99.79 35 |
|
新几何2 | | | | | | | | 98.26 188 | | | | | | | | | |
|
旧先验1 | | | | | | 98.97 73 | 92.90 81 | | 97.74 67 | | | 99.15 36 | 91.05 34 | | | 99.33 63 | 99.60 65 |
|
无先验 | | | | | | | | 98.52 156 | 97.82 55 | 87.20 212 | | | | 99.90 46 | 87.64 195 | | 99.85 30 |
|
原ACMM2 | | | | | | | | 98.69 136 | | | | | | | | | |
|
testdata2 | | | | | | | | | | | | | | 99.88 49 | 84.16 235 | | |
|
segment_acmp | | | | | | | | | | | | | 90.56 41 | | | | |
|
testdata1 | | | | | | | | 97.89 214 | | 92.43 72 | | | | | | | |
|
plane_prior7 | | | | | | 93.84 251 | 85.73 241 | | | | | | | | | | |
|
plane_prior6 | | | | | | 93.92 248 | 86.02 235 | | | | | | 72.92 240 | | | | |
|
plane_prior5 | | | | | | | | | 96.30 208 | | | | | 97.75 201 | 93.46 128 | 86.17 227 | 92.67 238 |
|
plane_prior4 | | | | | | | | | | | | 96.52 179 | | | | | |
|
plane_prior2 | | | | | | | | 99.02 105 | | 93.38 56 | | | | | | | |
|
plane_prior1 | | | | | | 93.90 250 | | | | | | | | | | | |
|
plane_prior | | | | | | | 86.07 233 | 99.14 90 | | 93.81 48 | | | | | | 86.26 226 | |
|
n2 | | | | | | | | | 0.00 393 | | | | | | | | |
|
nn | | | | | | | | | 0.00 393 | | | | | | | | |
|
door-mid | | | | | | | | | 84.90 375 | | | | | | | | |
|
test11 | | | | | | | | | 97.68 80 | | | | | | | | |
|
door | | | | | | | | | 85.30 373 | | | | | | | | |
|
HQP5-MVS | | | | | | | 86.39 218 | | | | | | | | | | |
|
BP-MVS | | | | | | | | | | | | | | | 93.82 123 | | |
|
HQP3-MVS | | | | | | | | | 96.37 204 | | | | | | | 86.29 224 | |
|
HQP2-MVS | | | | | | | | | | | | | 73.34 235 | | | | |
|
NP-MVS | | | | | | 93.94 247 | 86.22 225 | | | | | 96.67 177 | | | | | |
|
ACMMP++_ref | | | | | | | | | | | | | | | | 82.64 261 | |
|
ACMMP++ | | | | | | | | | | | | | | | | 83.83 248 | |
|
Test By Simon | | | | | | | | | | | | | 83.62 144 | | | | |
|