This table lists the benchmark results for the high-res multi-view scenario. The following metrics are evaluated:

(*) For exact definitions, detailing how potentially incomplete ground truth is taken into account, see our paper.

The datasets are grouped into different categories, and result averages are computed for a category and method if results of the method are available for all datasets within the category. Note that the category "all" includes both the high-res multi-view and the low-res many-view scenarios.

Methods with suffix _ROB may participate in the Robust Vision Challenge.

Click a dataset result cell to show a visualization of the reconstruction. For training datasets, ground truth and accuracy / completeness visualizations are also available. The visualizations may not work with mobile browsers.




Method Infoallhigh-res
multi-view
indooroutdoorbotani.boulde.bridgedoorexhibi.lectur.living.loungeobserv.old co.statueterrac.
sort bysort bysort bysort bysort bysort bysort bysort bysort bysorted bysort bysort bysort bysort bysort bysort by
IU-MVS99.63 1895.38 2197.73 7095.54 1999.54 199.69 599.81 2399.99 1
PC_three_145294.60 2799.41 299.12 4295.50 799.96 2899.84 299.92 399.97 7
CNVR-MVS98.46 198.38 198.72 899.80 496.19 1499.80 997.99 4697.05 599.41 299.59 292.89 25100.00 198.99 2099.90 799.96 10
patch_mono-297.10 2397.97 894.49 15899.21 6183.73 27499.62 3098.25 2995.28 2299.38 498.91 6792.28 2899.94 3499.61 899.22 7099.78 37
test072699.66 1295.20 2999.77 1097.70 7693.95 3899.35 599.54 393.18 22
SED-MVS98.18 298.10 498.41 1799.63 1895.24 2499.77 1097.72 7194.17 3399.30 699.54 393.32 1999.98 999.70 399.81 2399.99 1
test_241102_ONE99.63 1895.24 2497.72 7194.16 3599.30 699.49 993.32 1999.98 9
DVP-MVS++98.18 298.09 598.44 1599.61 2495.38 2199.55 3797.68 8093.01 6099.23 899.45 1495.12 899.98 999.25 1599.92 399.97 7
test_241102_TWO97.72 7194.17 3399.23 899.54 393.14 2499.98 999.70 399.82 1999.99 1
SMA-MVScopyleft97.24 1796.99 2198.00 2899.30 5494.20 5499.16 8297.65 8889.55 14499.22 1099.52 890.34 4699.99 598.32 3599.83 1599.82 31
Yufeng Yin; Xiaoyan Liu; Zichao Zhang: SMA-MVS: Segmentation-Guided Multi-Scale Anchor Deformation Patch Multi-View Stereo. IEEE Transactions on Circuits and Systems for Video Technology
test_fmvsm_n_192097.08 2497.55 1295.67 12097.94 10489.61 15099.93 198.48 2397.08 499.08 1199.13 4088.17 6699.93 3799.11 1899.06 7497.47 187
DVP-MVScopyleft98.07 798.00 698.29 1899.66 1295.20 2999.72 1697.47 12693.95 3899.07 1299.46 1093.18 2299.97 2199.64 699.82 1999.69 53
Zhenlong Yuan, Jinguo Luo, Fei Shen, Zhaoxin Li, Cong Liu, Tianlu Mao, Zhaoqi Wang: DVP-MVS: Synergize Depth-Edge and Visibility Prior for Multi-View Stereo. AAAI2025
test_0728_THIRD93.01 6099.07 1299.46 1094.66 1499.97 2199.25 1599.82 1999.95 15
TSAR-MVS + MP.97.44 1597.46 1497.39 4599.12 6593.49 6898.52 15697.50 12194.46 2998.99 1498.64 9091.58 3099.08 13898.49 2999.83 1599.60 65
Zhenlong Yuan, Jiakai Cao, Zhaoqi Wang, Zhaoxin Li: TSAR-MVS: Textureless-aware Segmentation and Correlative Refinement Guided Multi-View Stereo. Pattern Recognition
PS-MVSNAJ96.87 2896.40 3498.29 1897.35 12197.29 599.03 10497.11 16395.83 1598.97 1599.14 3882.48 16999.60 9398.60 2599.08 7398.00 174
旧先验298.67 13985.75 23898.96 1698.97 14293.84 121
test_one_060199.59 2894.89 3397.64 8993.14 5998.93 1799.45 1493.45 18
xiu_mvs_v2_base96.66 3296.17 4298.11 2697.11 13496.96 699.01 10797.04 17095.51 2098.86 1899.11 4682.19 17699.36 12098.59 2798.14 10598.00 174
NCCC98.12 598.11 398.13 2399.76 694.46 4799.81 797.88 4996.54 998.84 1999.46 1092.55 2799.98 998.25 3799.93 199.94 18
SD-MVS97.51 1397.40 1697.81 3399.01 7293.79 6299.33 6997.38 13993.73 4998.83 2099.02 5390.87 3899.88 4998.69 2399.74 2999.77 42
Zhenlong Yuan, Jiakai Cao, Zhaoxin Li, Hao Jiang and Zhaoqi Wang: SD-MVS: Segmentation-driven Deformation Multi-View Stereo with Spherical Refinement and EM optimization. AAAI2024
SF-MVS97.22 1996.92 2298.12 2599.11 6694.88 3499.44 5397.45 12989.60 14098.70 2199.42 1790.42 4499.72 7998.47 3099.65 3899.77 42
DPE-MVScopyleft98.11 698.00 698.44 1599.50 4295.39 2099.29 7297.72 7194.50 2898.64 2299.54 393.32 1999.97 2199.58 999.90 799.95 15
Kehua Chen, Zhenlong Yuan, Tianlu Mao, Zhaoqi Wang: Dual-Level Precision Edges Guided Multi-View Stereo with Accurate Planarization. AAAI2025
MSP-MVS97.77 998.18 296.53 8899.54 3690.14 13299.41 5997.70 7695.46 2198.60 2399.19 2895.71 499.49 10298.15 3899.85 1399.95 15
Zhenlong Yuan, Cong Liu, Fei Shen, Zhaoxin Li, Jingguo luo, Tianlu Mao and Zhaoqi Wang: MSP-MVS: Multi-granularity Segmentation Prior Guided Multi-View Stereo. AAAI2025
9.1496.87 2499.34 5099.50 4397.49 12389.41 14798.59 2499.43 1689.78 5099.69 8198.69 2399.62 44
APD-MVScopyleft96.95 2696.72 2897.63 3799.51 4193.58 6499.16 8297.44 13290.08 12998.59 2499.07 4789.06 5599.42 11397.92 4199.66 3799.88 26
Yuesong Wang, Zhaojie Zeng and etc.: Adaptive Patch Deformation for Textureless-Resilient Multi-View Stereo. CVPR2023
test_vis1_n_192093.08 13293.42 10592.04 22296.31 16279.36 31799.83 596.06 22796.72 798.53 2698.10 11758.57 32299.91 4297.86 4398.79 9196.85 204
testdata95.26 13398.20 9587.28 20197.60 9885.21 24498.48 2799.15 3688.15 6898.72 15290.29 16399.45 5799.78 37
TEST999.57 3393.17 7299.38 6297.66 8389.57 14298.39 2899.18 3190.88 3799.66 84
train_agg97.20 2097.08 2097.57 4199.57 3393.17 7299.38 6297.66 8390.18 12498.39 2899.18 3190.94 3599.66 8498.58 2899.85 1399.88 26
test_899.55 3593.07 7599.37 6597.64 8990.18 12498.36 3099.19 2890.94 3599.64 90
CS-MVS-test95.98 5096.34 3694.90 14398.06 10187.66 18899.69 2696.10 22393.66 5098.35 3199.05 5086.28 11097.66 20596.96 5998.90 8599.37 83
HPM-MVS++copyleft97.72 1097.59 1198.14 2299.53 4094.76 4199.19 7697.75 6695.66 1798.21 3299.29 2091.10 3399.99 597.68 4599.87 999.68 54
DPM-MVS97.86 897.25 1899.68 198.25 9399.10 199.76 1397.78 6396.61 898.15 3399.53 793.62 17100.00 191.79 14799.80 2699.94 18
test_part299.54 3695.42 1998.13 34
SteuartSystems-ACMMP97.25 1697.34 1797.01 5797.38 12091.46 9999.75 1497.66 8394.14 3798.13 3499.26 2192.16 2999.66 8497.91 4299.64 4099.90 22
Skip Steuart: Steuart Systems R&D Blog.
FOURS199.50 4288.94 16199.55 3797.47 12691.32 9898.12 36
test_prior299.57 3591.43 9598.12 3698.97 5690.43 4398.33 3499.81 23
CS-MVS95.75 6196.19 3894.40 16297.88 10686.22 22599.66 2796.12 22292.69 6898.07 3898.89 7087.09 8897.59 21196.71 6298.62 9599.39 82
PHI-MVS96.65 3396.46 3397.21 5199.34 5091.77 9299.70 1998.05 4286.48 22898.05 3999.20 2789.33 5399.96 2898.38 3199.62 4499.90 22
MVSFormer94.71 8694.08 8996.61 8295.05 21694.87 3597.77 22396.17 21986.84 21998.04 4098.52 9785.52 11995.99 29089.83 16698.97 7998.96 117
lupinMVS96.32 4195.94 4897.44 4395.05 21694.87 3599.86 396.50 19793.82 4798.04 4098.77 7785.52 11998.09 17596.98 5898.97 7999.37 83
APDe-MVS97.53 1197.47 1397.70 3599.58 3093.63 6399.56 3697.52 11693.59 5398.01 4299.12 4290.80 3999.55 9699.26 1499.79 2799.93 20
ACMMP_NAP96.59 3496.18 3997.81 3398.82 8193.55 6598.88 11997.59 10290.66 10997.98 4399.14 3886.59 102100.00 196.47 7199.46 5599.89 25
agg_prior99.54 3692.66 8297.64 8997.98 4399.61 92
CDPH-MVS96.56 3596.18 3997.70 3599.59 2893.92 5999.13 9397.44 13289.02 15697.90 4599.22 2588.90 5899.49 10294.63 10999.79 2799.68 54
EPNet96.82 2996.68 3097.25 5098.65 8693.10 7499.48 4498.76 1496.54 997.84 4698.22 11287.49 7899.66 8495.35 9197.78 11299.00 113
Wanjuan Su, Wenbing Tao: Efficient Edge-Preserving Multi-View Stereo Network for Depth Estimation. AAAI 2023
MSLP-MVS++97.50 1497.45 1597.63 3799.65 1693.21 7199.70 1998.13 3994.61 2697.78 4799.46 1089.85 4999.81 7097.97 4099.91 699.88 26
test1297.83 3299.33 5394.45 4897.55 10997.56 4888.60 6199.50 10199.71 3499.55 70
xiu_mvs_v1_base_debu94.73 8393.98 9196.99 5995.19 20495.24 2498.62 14596.50 19792.99 6297.52 4998.83 7472.37 24599.15 13197.03 5596.74 12996.58 208
xiu_mvs_v1_base94.73 8393.98 9196.99 5995.19 20495.24 2498.62 14596.50 19792.99 6297.52 4998.83 7472.37 24599.15 13197.03 5596.74 12996.58 208
xiu_mvs_v1_base_debi94.73 8393.98 9196.99 5995.19 20495.24 2498.62 14596.50 19792.99 6297.52 4998.83 7472.37 24599.15 13197.03 5596.74 12996.58 208
ZD-MVS99.67 1093.28 7097.61 9687.78 19897.41 5299.16 3490.15 4799.56 9598.35 3399.70 35
ETV-MVS96.00 4896.00 4796.00 10896.56 15191.05 11199.63 2996.61 18793.26 5897.39 5398.30 10986.62 10198.13 17298.07 3997.57 11598.82 134
DeepPCF-MVS93.56 196.55 3697.84 1092.68 21098.71 8578.11 32999.70 1997.71 7598.18 197.36 5499.76 190.37 4599.94 3499.27 1399.54 5299.99 1
test_vis1_n90.40 18290.27 17390.79 25191.55 29076.48 33399.12 9494.44 30994.31 3197.34 5596.95 16543.60 36199.42 11397.57 4797.60 11496.47 212
EC-MVSNet95.09 7495.17 6894.84 14695.42 19588.17 17699.48 4495.92 23991.47 9397.34 5598.36 10682.77 16297.41 22297.24 5298.58 9698.94 122
CANet97.00 2596.49 3298.55 1198.86 8096.10 1599.83 597.52 11695.90 1497.21 5798.90 6882.66 16699.93 3798.71 2298.80 8999.63 62
CANet_DTU94.31 9593.35 10697.20 5297.03 13894.71 4398.62 14595.54 26895.61 1897.21 5798.47 10371.88 25099.84 6188.38 18597.46 12097.04 200
MVS_030497.53 1197.15 1998.67 1097.30 12396.52 1199.60 3198.88 1397.14 397.21 5798.94 6586.89 9499.91 4299.43 1298.91 8499.59 69
test_cas_vis1_n_192093.86 10693.74 10094.22 17195.39 19886.08 23199.73 1596.07 22696.38 1297.19 6097.78 12465.46 29999.86 5796.71 6298.92 8396.73 205
VNet95.08 7594.26 8197.55 4298.07 10093.88 6098.68 13798.73 1790.33 12197.16 6197.43 14379.19 19999.53 9996.91 6191.85 19199.24 95
region2R96.30 4296.17 4296.70 7899.70 790.31 12799.46 5097.66 8390.55 11497.07 6299.07 4786.85 9599.97 2195.43 8999.74 2999.81 32
原ACMM196.18 10099.03 7190.08 13597.63 9388.98 15797.00 6398.97 5688.14 6999.71 8088.23 18799.62 4498.76 141
HFP-MVS96.42 3896.26 3796.90 6699.69 890.96 11499.47 4697.81 5890.54 11596.88 6499.05 5087.57 7699.96 2895.65 8299.72 3199.78 37
XVS96.47 3796.37 3596.77 7199.62 2290.66 12299.43 5697.58 10492.41 7596.86 6598.96 6087.37 8199.87 5295.65 8299.43 5999.78 37
X-MVStestdata90.69 17988.66 20196.77 7199.62 2290.66 12299.43 5697.58 10492.41 7596.86 6529.59 38587.37 8199.87 5295.65 8299.43 5999.78 37
SR-MVS96.13 4596.16 4496.07 10599.42 4789.04 15698.59 15197.33 14390.44 11896.84 6799.12 4286.75 9799.41 11697.47 4899.44 5899.76 44
TSAR-MVS + GP.96.95 2696.91 2397.07 5498.88 7991.62 9599.58 3496.54 19595.09 2496.84 6798.63 9291.16 3199.77 7599.04 1996.42 13499.81 32
ACMMPR96.28 4396.14 4696.73 7599.68 990.47 12599.47 4697.80 6090.54 11596.83 6999.03 5286.51 10699.95 3195.65 8299.72 3199.75 45
test_fmvs192.35 14592.94 12090.57 25697.19 12775.43 33799.55 3794.97 29395.20 2396.82 7097.57 13759.59 32099.84 6197.30 5198.29 10496.46 213
PMMVS93.62 11593.90 9792.79 20596.79 14681.40 30298.85 12096.81 18191.25 9996.82 7098.15 11677.02 21398.13 17293.15 13496.30 13898.83 133
PGM-MVS95.85 5595.65 6096.45 9199.50 4289.77 14698.22 19098.90 1289.19 15196.74 7298.95 6285.91 11799.92 3993.94 11899.46 5599.66 58
jason95.40 6994.86 7497.03 5692.91 27194.23 5399.70 1996.30 20893.56 5496.73 7398.52 9781.46 18597.91 18496.08 7798.47 10098.96 117
jason: jason.
新几何197.40 4498.92 7792.51 8797.77 6585.52 24096.69 7499.06 4988.08 7099.89 4884.88 22599.62 4499.79 35
SR-MVS-dyc-post95.75 6195.86 5195.41 12899.22 5987.26 20498.40 17497.21 15189.63 13896.67 7598.97 5686.73 9999.36 12096.62 6599.31 6599.60 65
RE-MVS-def95.70 5799.22 5987.26 20498.40 17497.21 15189.63 13896.67 7598.97 5685.24 12796.62 6599.31 6599.60 65
APD-MVS_3200maxsize95.64 6495.65 6095.62 12299.24 5887.80 18498.42 16997.22 15088.93 16196.64 7798.98 5585.49 12299.36 12096.68 6499.27 6899.70 51
mvsany_test194.57 9195.09 7192.98 20195.84 18182.07 29598.76 13195.24 28692.87 6796.45 7898.71 8684.81 13299.15 13197.68 4595.49 15297.73 179
MG-MVS97.24 1796.83 2798.47 1499.79 595.71 1799.07 9899.06 994.45 3096.42 7998.70 8788.81 5999.74 7895.35 9199.86 1299.97 7
test_fmvs1_n91.07 17091.41 15190.06 27094.10 23974.31 34199.18 7894.84 29794.81 2596.37 8097.46 14150.86 35099.82 6797.14 5497.90 10796.04 220
h-mvs3392.47 14491.95 14094.05 17997.13 13285.01 25798.36 18098.08 4093.85 4596.27 8196.73 17583.19 15499.43 11295.81 8068.09 34197.70 180
hse-mvs291.67 15991.51 14992.15 21996.22 16682.61 29197.74 22697.53 11393.85 4596.27 8196.15 18983.19 15497.44 22095.81 8066.86 34896.40 215
alignmvs95.77 5995.00 7398.06 2797.35 12195.68 1899.71 1897.50 12191.50 9296.16 8398.61 9486.28 11099.00 14096.19 7491.74 19399.51 74
CP-MVS96.22 4496.15 4596.42 9399.67 1089.62 14999.70 1997.61 9690.07 13096.00 8499.16 3487.43 7999.92 3996.03 7899.72 3199.70 51
MCST-MVS98.18 297.95 998.86 599.85 396.60 999.70 1997.98 4797.18 295.96 8599.33 1992.62 26100.00 198.99 2099.93 199.98 6
diffmvspermissive94.59 9094.19 8495.81 11495.54 19190.69 12098.70 13595.68 26091.61 8995.96 8597.81 12180.11 19198.06 17796.52 7095.76 14798.67 146
Fangjinhua Wang, Qingshan Xu, Yew-Soon Ong, Marc Pollefeys: Lightweight and Accurate Multi-View Stereo With Confidence-Aware Diffusion Model. IEEE T-PAMI 2025
GST-MVS95.97 5195.66 5896.90 6699.49 4591.22 10199.45 5297.48 12489.69 13695.89 8798.72 8386.37 10999.95 3194.62 11099.22 7099.52 72
DeepC-MVS_fast93.52 297.16 2196.84 2698.13 2399.61 2494.45 4898.85 12097.64 8996.51 1195.88 8899.39 1887.35 8599.99 596.61 6799.69 3699.96 10
Andreas Kuhn, Christian Sormann, Mattia Rossi, Oliver Erdler, Friedrich Fraundorfer: DeepC-MVS: Deep Confidence Prediction for Multi-View Stereo Reconstruction. 3DV 2020
test22298.32 9291.21 10298.08 20597.58 10483.74 26995.87 8999.02 5386.74 9899.64 4099.81 32
ZNCC-MVS96.09 4695.81 5496.95 6599.42 4791.19 10399.55 3797.53 11389.72 13595.86 9098.94 6586.59 10299.97 2195.13 9599.56 5099.68 54
canonicalmvs95.02 7693.96 9498.20 2097.53 11895.92 1698.71 13396.19 21791.78 8795.86 9098.49 10179.53 19699.03 13996.12 7591.42 19999.66 58
dcpmvs_295.67 6396.18 3994.12 17598.82 8184.22 26797.37 23995.45 27390.70 10895.77 9298.63 9290.47 4298.68 15499.20 1799.22 7099.45 78
Effi-MVS+93.87 10593.15 11396.02 10795.79 18290.76 11896.70 26995.78 25386.98 21695.71 9397.17 15679.58 19498.01 18294.57 11196.09 14299.31 89
HPM-MVS_fast94.89 7794.62 7695.70 11899.11 6688.44 17499.14 9097.11 16385.82 23595.69 9498.47 10383.46 14799.32 12593.16 13399.63 4399.35 85
HY-MVS88.56 795.29 7094.23 8298.48 1397.72 10996.41 1294.03 31698.74 1592.42 7495.65 9594.76 21786.52 10599.49 10295.29 9392.97 17299.53 71
CHOSEN 280x42096.80 3096.85 2596.66 8197.85 10794.42 5094.76 30898.36 2692.50 7195.62 9697.52 13897.92 197.38 22398.31 3698.80 8998.20 170
MP-MVScopyleft96.00 4895.82 5296.54 8799.47 4690.13 13499.36 6697.41 13690.64 11295.49 9798.95 6285.51 12199.98 996.00 7999.59 4999.52 72
Rongxuan Tan, Qing Wang, et al.: MP-MVS: Multi-Scale Windows PatchMatch and Planar Prior Multi-View Stereo.
HPM-MVScopyleft95.41 6895.22 6795.99 10999.29 5589.14 15499.17 8197.09 16787.28 21195.40 9898.48 10284.93 12999.38 11895.64 8699.65 3899.47 77
Chunlin Ren, Qingshan Xu, Shikun Zhang, Jiaqi Yang: Hierarchical Prior Mining for Non-local Multi-View Stereo. ICCV 2023
UA-Net93.30 12492.62 12695.34 13096.27 16488.53 17395.88 29496.97 17890.90 10495.37 9997.07 16082.38 17399.10 13783.91 24194.86 15898.38 159
sss94.85 7993.94 9597.58 3996.43 15694.09 5898.93 11499.16 889.50 14595.27 10097.85 11981.50 18399.65 8892.79 14094.02 16498.99 114
WTY-MVS95.97 5195.11 7098.54 1297.62 11396.65 899.44 5398.74 1592.25 7995.21 10198.46 10586.56 10499.46 10895.00 10092.69 17699.50 75
DELS-MVS97.12 2296.60 3198.68 998.03 10296.57 1099.84 497.84 5296.36 1395.20 10298.24 11188.17 6699.83 6496.11 7699.60 4899.64 60
Christian Sormann, Emanuele Santellani, Mattia Rossi, Andreas Kuhn, Friedrich Fraundorfer: DELS-MVS: Deep Epipolar Line Search for Multi-View Stereo. Winter Conference on Applications of Computer Vision (WACV), 2023
MVS_111021_HR96.69 3196.69 2996.72 7798.58 8891.00 11399.14 9099.45 193.86 4495.15 10398.73 8188.48 6299.76 7697.23 5399.56 5099.40 81
MVS_Test93.67 11392.67 12596.69 7996.72 14892.66 8297.22 24896.03 22887.69 20495.12 10494.03 22681.55 18298.28 16689.17 18096.46 13299.14 102
MVS_111021_LR95.78 5895.94 4895.28 13298.19 9787.69 18598.80 12599.26 793.39 5595.04 10598.69 8884.09 13999.76 7696.96 5999.06 7498.38 159
CostFormer92.89 13492.48 12994.12 17594.99 21885.89 23792.89 32597.00 17686.98 21695.00 10690.78 28990.05 4897.51 21692.92 13791.73 19498.96 117
mPP-MVS95.90 5495.75 5696.38 9599.58 3089.41 15399.26 7397.41 13690.66 10994.82 10798.95 6286.15 11399.98 995.24 9499.64 4099.74 46
EI-MVSNet-Vis-set95.76 6095.63 6296.17 10299.14 6490.33 12698.49 16297.82 5591.92 8594.75 10898.88 7287.06 9099.48 10695.40 9097.17 12698.70 144
LFMVS92.23 15090.84 16396.42 9398.24 9491.08 11098.24 18996.22 21483.39 27694.74 10998.31 10861.12 31598.85 14494.45 11292.82 17399.32 88
tpmrst92.78 13592.16 13494.65 15396.27 16487.45 19591.83 33397.10 16689.10 15594.68 11090.69 29388.22 6597.73 20389.78 16991.80 19298.77 140
test_yl95.27 7194.60 7797.28 4898.53 8992.98 7899.05 10198.70 1886.76 22294.65 11197.74 12787.78 7399.44 10995.57 8792.61 17799.44 79
DCV-MVSNet95.27 7194.60 7797.28 4898.53 8992.98 7899.05 10198.70 1886.76 22294.65 11197.74 12787.78 7399.44 10995.57 8792.61 17799.44 79
DP-MVS Recon95.85 5595.15 6997.95 2999.87 294.38 5199.60 3197.48 12486.58 22594.42 11399.13 4087.36 8499.98 993.64 12598.33 10299.48 76
MTAPA96.09 4695.80 5596.96 6499.29 5591.19 10397.23 24797.45 12992.58 6994.39 11499.24 2486.43 10899.99 596.22 7399.40 6299.71 50
CPTT-MVS94.60 8994.43 7995.09 13699.66 1286.85 20999.44 5397.47 12683.22 27894.34 11598.96 6082.50 16799.55 9694.81 10399.50 5398.88 127
PVSNet_BlendedMVS93.36 12293.20 11193.84 18698.77 8391.61 9699.47 4698.04 4391.44 9494.21 11692.63 25883.50 14599.87 5297.41 4983.37 25490.05 318
PVSNet_Blended95.94 5395.66 5896.75 7398.77 8391.61 9699.88 298.04 4393.64 5294.21 11697.76 12583.50 14599.87 5297.41 4997.75 11398.79 137
EI-MVSNet-UG-set95.43 6695.29 6595.86 11399.07 7089.87 14398.43 16897.80 6091.78 8794.11 11898.77 7786.25 11299.48 10694.95 10296.45 13398.22 168
EIA-MVS95.11 7395.27 6694.64 15596.34 16186.51 21399.59 3396.62 18692.51 7094.08 11998.64 9086.05 11498.24 16995.07 9798.50 9999.18 100
MAR-MVS94.43 9394.09 8895.45 12699.10 6887.47 19498.39 17897.79 6288.37 17894.02 12099.17 3378.64 20599.91 4292.48 14298.85 8798.96 117
Zhenyu Xu, Yiguang Liu, Xuelei Shi, Ying Wang, Yunan Zheng: MARMVS: Matching Ambiguity Reduced Multiple View Stereo for Efficient Large Scale Scene Reconstruction. CVPR 2020
PAPM96.35 3995.94 4897.58 3994.10 23995.25 2398.93 11498.17 3494.26 3293.94 12198.72 8389.68 5197.88 18796.36 7299.29 6799.62 64
GG-mvs-BLEND96.98 6296.53 15294.81 4087.20 35497.74 6793.91 12296.40 18396.56 296.94 23795.08 9698.95 8299.20 99
API-MVS94.78 8194.18 8696.59 8399.21 6190.06 13998.80 12597.78 6383.59 27393.85 12399.21 2683.79 14299.97 2192.37 14399.00 7899.74 46
tpm291.77 15791.09 15693.82 18794.83 22585.56 24692.51 33097.16 15884.00 26493.83 12490.66 29587.54 7797.17 22787.73 19491.55 19798.72 142
PAPR96.35 3995.82 5297.94 3099.63 1894.19 5599.42 5897.55 10992.43 7293.82 12599.12 4287.30 8699.91 4294.02 11699.06 7499.74 46
PVSNet87.13 1293.69 11092.83 12296.28 9897.99 10390.22 13099.38 6298.93 1191.42 9693.66 12697.68 13071.29 25799.64 9087.94 19297.20 12398.98 115
baseline93.91 10393.30 10895.72 11795.10 21390.07 13697.48 23595.91 24491.03 10193.54 12797.68 13079.58 19498.02 18194.27 11495.14 15599.08 109
test250694.80 8094.21 8396.58 8496.41 15792.18 9098.01 20998.96 1090.82 10693.46 12897.28 14785.92 11598.45 15989.82 16897.19 12499.12 105
VDD-MVS91.24 16890.18 17494.45 16197.08 13585.84 24098.40 17496.10 22386.99 21393.36 12998.16 11554.27 33999.20 12896.59 6890.63 20798.31 165
VDDNet90.08 19288.54 20794.69 15294.41 23387.68 18698.21 19296.40 20276.21 33693.33 13097.75 12654.93 33798.77 14794.71 10790.96 20297.61 185
thisisatest051594.75 8294.19 8496.43 9296.13 17692.64 8599.47 4697.60 9887.55 20793.17 13197.59 13594.71 1398.42 16088.28 18693.20 16998.24 167
MP-MVS-pluss95.80 5795.30 6497.29 4798.95 7692.66 8298.59 15197.14 15988.95 15993.12 13299.25 2285.62 11899.94 3496.56 6999.48 5499.28 92
MP-MVS-pluss: MP-MVS-pluss. MP-MVS-pluss
MDTV_nov1_ep13_2view91.17 10591.38 34087.45 20993.08 13386.67 10087.02 19898.95 121
EPNet_dtu92.28 14892.15 13592.70 20997.29 12484.84 25998.64 14397.82 5592.91 6593.02 13497.02 16285.48 12495.70 30472.25 32794.89 15797.55 186
Wanjuan Su, Wenbing Tao: Efficient Edge-Preserving Multi-View Stereo Network for Depth Estimation. AAAI 2023
gg-mvs-nofinetune90.00 19387.71 21796.89 7096.15 17194.69 4485.15 36097.74 6768.32 36092.97 13560.16 37396.10 396.84 24093.89 11998.87 8699.14 102
test_fmvsmvis_n_192095.47 6595.40 6395.70 11894.33 23490.22 13099.70 1996.98 17796.80 692.75 13698.89 7082.46 17299.92 3998.36 3298.33 10296.97 202
casdiffmvspermissive93.98 10193.43 10495.61 12395.07 21589.86 14498.80 12595.84 25290.98 10392.74 13797.66 13279.71 19398.10 17494.72 10695.37 15398.87 129
Fangjinhua Wang, Qingshan Xu, Yew-Soon Ong, Marc Pollefeys: Lightweight and Accurate Multi-View Stereo With Confidence-Aware Diffusion Model. IEEE T-PAMI 2025
114514_t94.06 9793.05 11597.06 5599.08 6992.26 8898.97 11297.01 17582.58 29192.57 13898.22 11280.68 18999.30 12689.34 17699.02 7799.63 62
OMC-MVS93.90 10493.62 10294.73 15198.63 8787.00 20798.04 20896.56 19392.19 8092.46 13998.73 8179.49 19799.14 13592.16 14594.34 16298.03 173
PAPM_NR95.43 6695.05 7296.57 8699.42 4790.14 13298.58 15397.51 11890.65 11192.44 14098.90 6887.77 7599.90 4690.88 15599.32 6499.68 54
UGNet91.91 15690.85 16295.10 13597.06 13688.69 16998.01 20998.24 3192.41 7592.39 14193.61 23960.52 31799.68 8288.14 18897.25 12296.92 203
Wanjuan Su, Qingshan Xu, Wenbing Tao: Uncertainty-guided Multi-view Stereo Network for Depth Estimation. IEEE Transactions on Circuits and Systems for Video Technology, 2022
MDTV_nov1_ep1390.47 17296.14 17388.55 17191.34 34197.51 11889.58 14192.24 14290.50 30686.99 9397.61 21077.64 29092.34 182
FE-MVS91.38 16490.16 17595.05 13996.46 15587.53 19289.69 35197.84 5282.97 28392.18 14392.00 26784.07 14098.93 14380.71 26995.52 15198.68 145
Vis-MVSNetpermissive92.64 13891.85 14195.03 14095.12 20988.23 17598.48 16496.81 18191.61 8992.16 14497.22 15271.58 25598.00 18385.85 21697.81 10998.88 127
Jingyang Zhang, Yao Yao, Shiwei Li, Zixin Luo, Tian Fang: Visibility-aware Multiview Stereo Network. BMVC 2020
FA-MVS(test-final)92.22 15191.08 15795.64 12196.05 17788.98 15891.60 33797.25 14586.99 21391.84 14592.12 26183.03 15799.00 14086.91 20293.91 16598.93 123
TESTMET0.1,193.82 10793.26 11095.49 12595.21 20390.25 12899.15 8797.54 11289.18 15291.79 14694.87 21489.13 5497.63 20886.21 20996.29 13998.60 149
thisisatest053094.00 9993.52 10395.43 12795.76 18490.02 14198.99 10997.60 9886.58 22591.74 14797.36 14694.78 1298.34 16286.37 20892.48 18097.94 176
AUN-MVS90.17 18989.50 18292.19 21796.21 16782.67 28997.76 22597.53 11388.05 18991.67 14896.15 18983.10 15697.47 21788.11 18966.91 34796.43 214
EPMVS92.59 14191.59 14795.59 12497.22 12690.03 14091.78 33498.04 4390.42 11991.66 14990.65 29686.49 10797.46 21881.78 26296.31 13799.28 92
test-LLR93.11 13192.68 12494.40 16294.94 22187.27 20299.15 8797.25 14590.21 12291.57 15094.04 22484.89 13097.58 21285.94 21396.13 14098.36 162
test-mter93.27 12692.89 12194.40 16294.94 22187.27 20299.15 8797.25 14588.95 15991.57 15094.04 22488.03 7197.58 21285.94 21396.13 14098.36 162
JIA-IIPM85.97 26184.85 26189.33 29193.23 26773.68 34485.05 36197.13 16169.62 35691.56 15268.03 37188.03 7196.96 23577.89 28993.12 17097.34 190
casdiffmvs_mvgpermissive94.00 9993.33 10796.03 10695.22 20290.90 11699.09 9695.99 22990.58 11391.55 15397.37 14579.91 19298.06 17795.01 9995.22 15499.13 104
Fangjinhua Wang, Qingshan Xu, Yew-Soon Ong, Marc Pollefeys: Lightweight and Accurate Multi-View Stereo With Confidence-Aware Diffusion Model. IEEE T-PAMI 2025
PVSNet_Blended_VisFu94.67 8794.11 8796.34 9797.14 13191.10 10899.32 7097.43 13492.10 8491.53 15496.38 18683.29 15199.68 8293.42 13096.37 13598.25 166
CHOSEN 1792x268894.35 9493.82 9895.95 11197.40 11988.74 16898.41 17198.27 2892.18 8191.43 15596.40 18378.88 20099.81 7093.59 12697.81 10999.30 90
ACMMPcopyleft94.67 8794.30 8095.79 11599.25 5788.13 17898.41 17198.67 2190.38 12091.43 15598.72 8382.22 17599.95 3193.83 12295.76 14799.29 91
Qingshan Xu, Weihang Kong, Wenbing Tao, Marc Pollefeys: Multi-Scale Geometric Consistency Guided and Planar Prior Assisted Multi-View Stereo. IEEE Transactions on Pattern Analysis and Machine Intelligence
ECVR-MVScopyleft92.29 14791.33 15295.15 13496.41 15787.84 18398.10 20294.84 29790.82 10691.42 15797.28 14765.61 29698.49 15890.33 16297.19 12499.12 105
EPP-MVSNet93.75 10993.67 10194.01 18195.86 18085.70 24298.67 13997.66 8384.46 25891.36 15897.18 15591.16 3197.79 19392.93 13693.75 16698.53 151
PLCcopyleft91.07 394.23 9694.01 9094.87 14499.17 6387.49 19399.25 7496.55 19488.43 17691.26 15998.21 11485.92 11599.86 5789.77 17097.57 11597.24 193
Jie Liao, Yanping Fu, Qingan Yan, Chunxia xiao: Pyramid Multi-View Stereo with Local Consistency. Pacific Graphics 2019
HyFIR lowres test93.68 11293.29 10994.87 14497.57 11788.04 18098.18 19498.47 2487.57 20691.24 16095.05 21185.49 12297.46 21893.22 13292.82 17399.10 107
thres20093.69 11092.59 12796.97 6397.76 10894.74 4299.35 6799.36 289.23 15091.21 16196.97 16483.42 14898.77 14785.08 22190.96 20297.39 189
test111192.12 15291.19 15594.94 14296.15 17187.36 19898.12 19994.84 29790.85 10590.97 16297.26 14965.60 29798.37 16189.74 17197.14 12799.07 111
CDS-MVSNet93.47 11793.04 11694.76 14894.75 22789.45 15298.82 12397.03 17287.91 19590.97 16296.48 18189.06 5596.36 26789.50 17292.81 17598.49 153
Khang Truong Giang, Soohwan Song, Sungho Jo: Curvature-guided dynamic scale networks for Multi-view Stereo. ICLR 2022
tfpn200view993.43 11992.27 13296.90 6697.68 11194.84 3799.18 7899.36 288.45 17390.79 16496.90 16883.31 14998.75 14984.11 23790.69 20497.12 195
thres40093.39 12192.27 13296.73 7597.68 11194.84 3799.18 7899.36 288.45 17390.79 16496.90 16883.31 14998.75 14984.11 23790.69 20496.61 206
CR-MVSNet88.83 21487.38 22293.16 19893.47 26086.24 22384.97 36294.20 31788.92 16290.76 16686.88 34184.43 13594.82 32470.64 33192.17 18798.41 156
RPMNet85.07 27581.88 29194.64 15593.47 26086.24 22384.97 36297.21 15164.85 36790.76 16678.80 36480.95 18899.27 12753.76 36892.17 18798.41 156
PatchmatchNetpermissive92.05 15591.04 15895.06 13796.17 17089.04 15691.26 34297.26 14489.56 14390.64 16890.56 30288.35 6497.11 22979.53 27596.07 14499.03 112
Fangjinhua Wang, Silvano Galliani, Christoph Vogel, Pablo Speciale, Marc Pollefeys: PatchmatchNet: Learned Multi-View Patchmatch Stereo.
tttt051793.30 12493.01 11894.17 17395.57 18986.47 21598.51 15997.60 9885.99 23390.55 16997.19 15494.80 1198.31 16385.06 22291.86 19097.74 178
PatchT85.44 27183.19 27992.22 21593.13 26983.00 28183.80 36896.37 20470.62 35190.55 16979.63 36384.81 13294.87 32258.18 36491.59 19698.79 137
tpm89.67 19888.95 19491.82 22692.54 27481.43 30192.95 32495.92 23987.81 19790.50 17189.44 32184.99 12895.65 30583.67 24482.71 26098.38 159
thres100view90093.34 12392.15 13596.90 6697.62 11394.84 3799.06 10099.36 287.96 19390.47 17296.78 17383.29 15198.75 14984.11 23790.69 20497.12 195
thres600view793.18 12992.00 13896.75 7397.62 11394.92 3299.07 9899.36 287.96 19390.47 17296.78 17383.29 15198.71 15382.93 25190.47 20896.61 206
AdaColmapbinary93.82 10793.06 11496.10 10499.88 189.07 15598.33 18297.55 10986.81 22190.39 17498.65 8975.09 22099.98 993.32 13197.53 11899.26 94
XVG-OURS-SEG-HR90.95 17390.66 16991.83 22595.18 20781.14 30995.92 29195.92 23988.40 17790.33 17597.85 11970.66 26099.38 11892.83 13888.83 21394.98 227
IS-MVSNet93.00 13392.51 12894.49 15896.14 17387.36 19898.31 18595.70 25888.58 16990.17 17697.50 13983.02 15897.22 22687.06 19796.07 14498.90 126
CSCG94.87 7894.71 7595.36 12999.54 3686.49 21499.34 6898.15 3782.71 28990.15 17799.25 2289.48 5299.86 5794.97 10198.82 8899.72 49
SCA90.64 18089.25 18994.83 14794.95 22088.83 16496.26 28197.21 15190.06 13190.03 17890.62 29866.61 28796.81 24283.16 24794.36 16198.84 130
XVG-OURS90.83 17590.49 17191.86 22495.23 20181.25 30695.79 29995.92 23988.96 15890.02 17998.03 11871.60 25499.35 12391.06 15287.78 21794.98 227
ADS-MVSNet287.62 23786.88 23089.86 27796.21 16779.14 31987.15 35592.99 33283.01 28189.91 18087.27 33778.87 20192.80 34574.20 31592.27 18497.64 181
ADS-MVSNet88.99 20687.30 22394.07 17796.21 16787.56 19187.15 35596.78 18383.01 28189.91 18087.27 33778.87 20197.01 23474.20 31592.27 18497.64 181
ab-mvs91.05 17289.17 19096.69 7995.96 17891.72 9492.62 32997.23 14985.61 23989.74 18293.89 23268.55 27099.42 11391.09 15187.84 21698.92 125
TAMVS92.62 13992.09 13794.20 17294.10 23987.68 18698.41 17196.97 17887.53 20889.74 18296.04 19384.77 13496.49 26088.97 18292.31 18398.42 155
Vis-MVSNet (Re-imp)93.26 12793.00 11994.06 17896.14 17386.71 21298.68 13796.70 18488.30 18289.71 18497.64 13385.43 12596.39 26588.06 19096.32 13699.08 109
CNLPA93.64 11492.74 12396.36 9698.96 7590.01 14299.19 7695.89 24786.22 23189.40 18598.85 7380.66 19099.84 6188.57 18396.92 12899.24 95
Anonymous20240521188.84 21287.03 22894.27 16898.14 9984.18 26898.44 16795.58 26676.79 33589.34 18696.88 17053.42 34299.54 9887.53 19687.12 22099.09 108
Fast-Effi-MVS+91.72 15890.79 16694.49 15895.89 17987.40 19799.54 4295.70 25885.01 25189.28 18795.68 19977.75 20997.57 21583.22 24695.06 15698.51 152
PatchMatch-RL91.47 16190.54 17094.26 16998.20 9586.36 22096.94 25797.14 15987.75 20088.98 18895.75 19871.80 25299.40 11780.92 26797.39 12197.02 201
dp90.16 19088.83 19794.14 17496.38 16086.42 21691.57 33897.06 16984.76 25588.81 18990.19 31484.29 13797.43 22175.05 30791.35 20198.56 150
DeepC-MVS91.02 494.56 9293.92 9696.46 9097.16 12990.76 11898.39 17897.11 16393.92 4088.66 19098.33 10778.14 20799.85 6095.02 9898.57 9798.78 139
Andreas Kuhn, Christian Sormann, Mattia Rossi, Oliver Erdler, Friedrich Fraundorfer: DeepC-MVS: Deep Confidence Prediction for Multi-View Stereo Reconstruction. 3DV 2020
baseline192.61 14091.28 15396.58 8497.05 13794.63 4597.72 22796.20 21589.82 13388.56 19196.85 17186.85 9597.82 19188.42 18480.10 27397.30 191
Anonymous2024052987.66 23685.58 24993.92 18397.59 11685.01 25798.13 19797.13 16166.69 36588.47 19296.01 19455.09 33699.51 10087.00 19984.12 24597.23 194
CVMVSNet90.30 18590.91 16188.46 30394.32 23573.58 34597.61 23297.59 10290.16 12788.43 19397.10 15876.83 21492.86 34282.64 25393.54 16898.93 123
TR-MVS90.77 17689.44 18494.76 14896.31 16288.02 18197.92 21395.96 23385.52 24088.22 19497.23 15166.80 28698.09 17584.58 22992.38 18198.17 171
F-COLMAP92.07 15491.75 14593.02 20098.16 9882.89 28598.79 12995.97 23186.54 22787.92 19597.80 12278.69 20499.65 8885.97 21195.93 14696.53 211
BH-RMVSNet91.25 16789.99 17695.03 14096.75 14788.55 17198.65 14194.95 29487.74 20187.74 19697.80 12268.27 27398.14 17180.53 27297.49 11998.41 156
Effi-MVS+-dtu89.97 19590.68 16887.81 30795.15 20871.98 35197.87 21795.40 27791.92 8587.57 19791.44 27774.27 22996.84 24089.45 17393.10 17194.60 229
HQP-NCC93.95 24499.16 8293.92 4087.57 197
ACMP_Plane93.95 24499.16 8293.92 4087.57 197
HQP4-MVS87.57 19797.77 19592.72 236
HQP-MVS91.50 16091.23 15492.29 21493.95 24486.39 21899.16 8296.37 20493.92 4087.57 19796.67 17773.34 23597.77 19593.82 12386.29 22492.72 236
TAPA-MVS87.50 990.35 18389.05 19294.25 17098.48 9185.17 25498.42 16996.58 19282.44 29687.24 20298.53 9682.77 16298.84 14559.09 36297.88 10898.72 142
Andrea Romanoni, Matteo Matteucci: TAPA-MVS: Textureless-Aware PAtchMatch Multi-View Stereo. ICCV 2019
GeoE90.60 18189.56 18193.72 19195.10 21385.43 24799.41 5994.94 29583.96 26687.21 20396.83 17274.37 22797.05 23380.50 27393.73 16798.67 146
HQP_MVS91.26 16590.95 16092.16 21893.84 25186.07 23399.02 10596.30 20893.38 5686.99 20496.52 17972.92 24097.75 20193.46 12886.17 22792.67 238
plane_prior385.91 23693.65 5186.99 204
iter_conf_final93.22 12893.04 11693.76 18897.03 13892.22 8999.05 10193.31 33092.11 8386.93 20695.42 20495.01 1096.59 24993.98 11784.48 24092.46 241
GA-MVS90.10 19188.69 20094.33 16692.44 27587.97 18299.08 9796.26 21289.65 13786.92 20793.11 25168.09 27496.96 23582.54 25590.15 20998.05 172
1112_ss92.71 13691.55 14896.20 9995.56 19091.12 10698.48 16494.69 30488.29 18386.89 20898.50 9987.02 9198.66 15584.75 22689.77 21198.81 135
Test_1112_low_res92.27 14990.97 15996.18 10095.53 19291.10 10898.47 16694.66 30588.28 18486.83 20993.50 24387.00 9298.65 15684.69 22789.74 21298.80 136
cascas90.93 17489.33 18895.76 11695.69 18693.03 7798.99 10996.59 18980.49 31686.79 21094.45 22165.23 30098.60 15793.52 12792.18 18695.66 223
iter_conf0593.48 11693.18 11294.39 16597.15 13094.17 5699.30 7192.97 33392.38 7886.70 21195.42 20495.67 596.59 24994.67 10884.32 24392.39 242
baseline294.04 9893.80 9994.74 15093.07 27090.25 12898.12 19998.16 3689.86 13286.53 21296.95 16595.56 698.05 17991.44 14994.53 15995.93 221
OPM-MVS89.76 19789.15 19191.57 23490.53 30485.58 24598.11 20195.93 23892.88 6686.05 21396.47 18267.06 28597.87 18889.29 17986.08 22991.26 287
Ray L. Khuboni, Hongjun Xu: Octagram Propagation Matching for Multi-Scale View Stereopsis (OPM-MVS).
VPA-MVSNet89.10 20587.66 21893.45 19392.56 27391.02 11297.97 21298.32 2786.92 21886.03 21492.01 26568.84 26997.10 23190.92 15475.34 29592.23 249
SDMVSNet91.09 16989.91 17794.65 15396.80 14490.54 12497.78 22197.81 5888.34 18085.73 21595.26 20866.44 29098.26 16794.25 11586.75 22195.14 224
sd_testset89.23 20388.05 21492.74 20896.80 14485.33 25095.85 29797.03 17288.34 18085.73 21595.26 20861.12 31597.76 20085.61 21786.75 22195.14 224
tpm cat188.89 21087.27 22493.76 18895.79 18285.32 25190.76 34797.09 16776.14 33785.72 21788.59 32782.92 15998.04 18076.96 29491.43 19897.90 177
IB-MVS89.43 692.12 15290.83 16595.98 11095.40 19790.78 11799.81 798.06 4191.23 10085.63 21893.66 23890.63 4098.78 14691.22 15071.85 33198.36 162
Christian Sormann, Mattia Rossi, Andreas Kuhn and Friedrich Fraundorfer: IB-MVS: An Iterative Algorithm for Deep Multi-View Stereo based on Binary Decisions. BMVC 2021
EI-MVSNet89.87 19689.38 18791.36 23794.32 23585.87 23897.61 23296.59 18985.10 24685.51 21997.10 15881.30 18796.56 25383.85 24383.03 25791.64 266
MVSTER92.71 13692.32 13093.86 18597.29 12492.95 8099.01 10796.59 18990.09 12885.51 21994.00 22894.61 1696.56 25390.77 15983.03 25792.08 258
test_fmvs285.10 27485.45 25284.02 33189.85 31365.63 36398.49 16292.59 33890.45 11785.43 22193.32 24443.94 35996.59 24990.81 15784.19 24489.85 322
RPSCF85.33 27285.55 25084.67 32894.63 23062.28 36593.73 31893.76 32274.38 34485.23 22297.06 16164.09 30398.31 16380.98 26586.08 22993.41 235
BH-w/o92.32 14691.79 14393.91 18496.85 14186.18 22799.11 9595.74 25688.13 18784.81 22397.00 16377.26 21297.91 18489.16 18198.03 10697.64 181
mvsmamba89.99 19489.42 18591.69 23290.64 30386.34 22198.40 17492.27 34291.01 10284.80 22494.93 21276.12 21596.51 25792.81 13983.84 24792.21 251
CLD-MVS91.06 17190.71 16792.10 22094.05 24386.10 23099.55 3796.29 21194.16 3584.70 22597.17 15669.62 26597.82 19194.74 10586.08 22992.39 242
Zhaoxin Li, Wangmeng Zuo, Zhaoqi Wang, Lei Zhang: Confidence-based Large-scale Dense Multi-view Stereo. IEEE Transaction on Image Processing, 2020
tpmvs89.16 20487.76 21593.35 19497.19 12784.75 26190.58 34997.36 14181.99 30184.56 22689.31 32483.98 14198.17 17074.85 31090.00 21097.12 195
nrg03090.23 18688.87 19594.32 16791.53 29193.54 6698.79 12995.89 24788.12 18884.55 22794.61 21978.80 20396.88 23992.35 14475.21 29692.53 240
VPNet88.30 22486.57 23493.49 19291.95 28391.35 10098.18 19497.20 15588.61 16784.52 22894.89 21362.21 31096.76 24589.34 17672.26 32892.36 244
dmvs_re88.69 22088.06 21390.59 25593.83 25378.68 32395.75 30096.18 21887.99 19284.48 22996.32 18767.52 28096.94 23784.98 22485.49 23396.14 218
MVS93.92 10292.28 13198.83 695.69 18696.82 796.22 28498.17 3484.89 25384.34 23098.61 9479.32 19899.83 6493.88 12099.43 5999.86 29
mvs_anonymous92.50 14391.65 14695.06 13796.60 15089.64 14897.06 25396.44 20186.64 22484.14 23193.93 23082.49 16896.17 28391.47 14896.08 14399.35 85
Fast-Effi-MVS+-dtu88.84 21288.59 20489.58 28593.44 26378.18 32798.65 14194.62 30688.46 17284.12 23295.37 20768.91 26796.52 25682.06 25991.70 19594.06 230
LS3D90.19 18888.72 19994.59 15798.97 7386.33 22296.90 25996.60 18874.96 34184.06 23398.74 8075.78 21799.83 6474.93 30897.57 11597.62 184
ACMM86.95 1388.77 21788.22 21190.43 26193.61 25781.34 30498.50 16095.92 23987.88 19683.85 23495.20 21067.20 28397.89 18686.90 20384.90 23692.06 259
Qingshan Xu and Wenbing Tao: Multi-Scale Geometric Consistency Guided Multi-View Stereo. CVPR 2019
BH-untuned91.46 16290.84 16393.33 19596.51 15484.83 26098.84 12295.50 27086.44 23083.50 23596.70 17675.49 21997.77 19586.78 20597.81 10997.40 188
FIs90.70 17889.87 17893.18 19792.29 27691.12 10698.17 19698.25 2989.11 15483.44 23694.82 21682.26 17496.17 28387.76 19382.76 25992.25 247
bld_raw_dy_0_6487.82 22986.71 23391.15 24089.54 31985.61 24397.37 23989.16 36689.26 14983.42 23794.50 22065.79 29396.18 28188.00 19183.37 25491.67 265
UniMVSNet (Re)89.50 20288.32 20993.03 19992.21 27890.96 11498.90 11898.39 2589.13 15383.22 23892.03 26381.69 18196.34 27386.79 20472.53 32491.81 263
UniMVSNet_NR-MVSNet89.60 19988.55 20692.75 20792.17 27990.07 13698.74 13298.15 3788.37 17883.21 23993.98 22982.86 16095.93 29486.95 20072.47 32592.25 247
DU-MVS88.83 21487.51 21992.79 20591.46 29290.07 13698.71 13397.62 9588.87 16383.21 23993.68 23674.63 22195.93 29486.95 20072.47 32592.36 244
LPG-MVS_test88.86 21188.47 20890.06 27093.35 26580.95 31198.22 19095.94 23687.73 20283.17 24196.11 19166.28 29197.77 19590.19 16485.19 23491.46 277
LGP-MVS_train90.06 27093.35 26580.95 31195.94 23687.73 20283.17 24196.11 19166.28 29197.77 19590.19 16485.19 23491.46 277
miper_enhance_ethall90.33 18489.70 17992.22 21597.12 13388.93 16298.35 18195.96 23388.60 16883.14 24392.33 26087.38 8096.18 28186.49 20777.89 28291.55 274
FC-MVSNet-test90.22 18789.40 18692.67 21191.78 28789.86 14497.89 21498.22 3288.81 16482.96 24494.66 21881.90 18095.96 29285.89 21582.52 26292.20 253
PCF-MVS89.78 591.26 16589.63 18096.16 10395.44 19491.58 9895.29 30496.10 22385.07 24882.75 24597.45 14278.28 20699.78 7480.60 27195.65 15097.12 195
Andreas Kuhn, Shan Lin, Oliver Erdler: Plane Completion and Filtering for Multi-View Stereo Reconstruction. GCPR 2019
V4287.00 24385.68 24890.98 24589.91 31086.08 23198.32 18495.61 26483.67 27282.72 24690.67 29474.00 23296.53 25581.94 26174.28 30890.32 311
v114486.83 24685.31 25491.40 23589.75 31487.21 20698.31 18595.45 27383.22 27882.70 24790.78 28973.36 23496.36 26779.49 27674.69 30290.63 306
v14419286.40 25584.89 26090.91 24689.48 32185.59 24498.21 19295.43 27682.45 29582.62 24890.58 30172.79 24396.36 26778.45 28674.04 31290.79 299
3Dnovator87.35 1193.17 13091.77 14497.37 4695.41 19693.07 7598.82 12397.85 5191.53 9182.56 24997.58 13671.97 24999.82 6791.01 15399.23 6999.22 98
v2v48287.27 24185.76 24691.78 23189.59 31687.58 19098.56 15495.54 26884.53 25782.51 25091.78 27173.11 23996.47 26182.07 25874.14 31191.30 285
tt080586.50 25484.79 26391.63 23391.97 28181.49 30096.49 27397.38 13982.24 29882.44 25195.82 19751.22 34798.25 16884.55 23080.96 26995.13 226
Baseline_NR-MVSNet85.83 26484.82 26288.87 30088.73 32983.34 27898.63 14491.66 35180.41 31982.44 25191.35 27974.63 22195.42 31184.13 23671.39 33487.84 340
v119286.32 25784.71 26591.17 23989.53 32086.40 21798.13 19795.44 27582.52 29382.42 25390.62 29871.58 25596.33 27477.23 29174.88 29990.79 299
RRT_MVS88.91 20988.56 20589.93 27590.31 30781.61 29998.08 20596.38 20389.30 14882.41 25494.84 21573.15 23896.04 28990.38 16182.23 26492.15 254
test_djsdf88.26 22687.73 21689.84 27888.05 33782.21 29397.77 22396.17 21986.84 21982.41 25491.95 26972.07 24895.99 29089.83 16684.50 23991.32 284
cl2289.57 20088.79 19891.91 22397.94 10487.62 18997.98 21196.51 19685.03 24982.37 25691.79 27083.65 14396.50 25885.96 21277.89 28291.61 271
131493.44 11891.98 13997.84 3195.24 20094.38 5196.22 28497.92 4890.18 12482.28 25797.71 12977.63 21099.80 7291.94 14698.67 9499.34 87
v192192086.02 26084.44 27090.77 25289.32 32385.20 25298.10 20295.35 28182.19 29982.25 25890.71 29170.73 25896.30 27876.85 29674.49 30490.80 298
v124085.77 26784.11 27390.73 25389.26 32485.15 25597.88 21695.23 29081.89 30482.16 25990.55 30369.60 26696.31 27575.59 30574.87 30090.72 303
XVG-ACMP-BASELINE85.86 26384.95 25988.57 30189.90 31177.12 33294.30 31295.60 26587.40 21082.12 26092.99 25453.42 34297.66 20585.02 22383.83 24890.92 295
GBi-Net86.67 24984.96 25791.80 22795.11 21088.81 16596.77 26395.25 28382.94 28482.12 26090.25 30962.89 30794.97 31979.04 27980.24 27091.62 268
test186.67 24984.96 25791.80 22795.11 21088.81 16596.77 26395.25 28382.94 28482.12 26090.25 30962.89 30794.97 31979.04 27980.24 27091.62 268
FMVSNet388.81 21687.08 22793.99 18296.52 15394.59 4698.08 20596.20 21585.85 23482.12 26091.60 27474.05 23195.40 31279.04 27980.24 27091.99 261
IterMVS-LS88.34 22387.44 22091.04 24394.10 23985.85 23998.10 20295.48 27185.12 24582.03 26491.21 28281.35 18695.63 30683.86 24275.73 29491.63 267
Fangjinhua Wang, Silvano Galliani, Christoph Vogel, Marc Pollefeys: IterMVS: Iterative Probability Estimation for Efficient Multi-View Stereo.
miper_ehance_all_eth88.94 20888.12 21291.40 23595.32 19986.93 20897.85 21895.55 26784.19 26181.97 26591.50 27684.16 13895.91 29784.69 22777.89 28291.36 282
MIMVSNet84.48 28381.83 29292.42 21391.73 28887.36 19885.52 35894.42 31281.40 30781.91 26687.58 33151.92 34592.81 34473.84 31888.15 21597.08 199
PS-MVSNAJss89.54 20189.05 19291.00 24488.77 32884.36 26597.39 23695.97 23188.47 17081.88 26793.80 23482.48 16996.50 25889.34 17683.34 25692.15 254
WR-MVS88.54 22287.22 22692.52 21291.93 28589.50 15198.56 15497.84 5286.99 21381.87 26893.81 23374.25 23095.92 29685.29 21974.43 30592.12 256
TranMVSNet+NR-MVSNet87.75 23386.31 23892.07 22190.81 30088.56 17098.33 18297.18 15687.76 19981.87 26893.90 23172.45 24495.43 31083.13 24971.30 33592.23 249
eth_miper_zixun_eth87.76 23287.00 22990.06 27094.67 22982.65 29097.02 25695.37 27984.19 26181.86 27091.58 27581.47 18495.90 29883.24 24573.61 31491.61 271
UniMVSNet_ETH3D85.65 27083.79 27791.21 23890.41 30680.75 31395.36 30395.78 25378.76 32581.83 27194.33 22249.86 35296.66 24684.30 23283.52 25396.22 217
c3_l88.19 22787.23 22591.06 24294.97 21986.17 22897.72 22795.38 27883.43 27581.68 27291.37 27882.81 16195.72 30384.04 24073.70 31391.29 286
DP-MVS88.75 21886.56 23595.34 13098.92 7787.45 19597.64 23193.52 32870.55 35281.49 27397.25 15074.43 22699.88 4971.14 33094.09 16398.67 146
3Dnovator+87.72 893.43 11991.84 14298.17 2195.73 18595.08 3198.92 11697.04 17091.42 9681.48 27497.60 13474.60 22399.79 7390.84 15698.97 7999.64 60
QAPM91.41 16389.49 18397.17 5395.66 18893.42 6998.60 14997.51 11880.92 31481.39 27597.41 14472.89 24299.87 5282.33 25698.68 9398.21 169
XXY-MVS87.75 23386.02 24292.95 20390.46 30589.70 14797.71 22995.90 24584.02 26380.95 27694.05 22367.51 28197.10 23185.16 22078.41 27992.04 260
v14886.38 25685.06 25690.37 26589.47 32284.10 26998.52 15695.48 27183.80 26880.93 27790.22 31274.60 22396.31 27580.92 26771.55 33390.69 304
DIV-MVS_self_test87.82 22986.81 23190.87 24994.87 22485.39 24997.81 21995.22 29182.92 28780.76 27891.31 28081.99 17795.81 30181.36 26375.04 29891.42 280
cl____87.82 22986.79 23290.89 24894.88 22385.43 24797.81 21995.24 28682.91 28880.71 27991.22 28181.97 17995.84 29981.34 26475.06 29791.40 281
FMVSNet286.90 24484.79 26393.24 19695.11 21092.54 8697.67 23095.86 25182.94 28480.55 28091.17 28362.89 30795.29 31477.23 29179.71 27691.90 262
pmmvs487.58 23886.17 24191.80 22789.58 31788.92 16397.25 24595.28 28282.54 29280.49 28193.17 25075.62 21896.05 28882.75 25278.90 27790.42 309
ACMP87.39 1088.71 21988.24 21090.12 26993.91 24981.06 31098.50 16095.67 26189.43 14680.37 28295.55 20065.67 29497.83 19090.55 16084.51 23891.47 276
Qingshan Xu and Wenbing Tao: Planar Prior Assisted PatchMatch Multi-View Stereo. AAAI 2020
pmmvs585.87 26284.40 27290.30 26688.53 33284.23 26698.60 14993.71 32481.53 30680.29 28392.02 26464.51 30295.52 30882.04 26078.34 28091.15 289
test0.0.03 188.96 20788.61 20290.03 27491.09 29784.43 26498.97 11297.02 17490.21 12280.29 28396.31 18884.89 13091.93 35672.98 32485.70 23293.73 231
miper_lstm_enhance86.90 24486.20 24089.00 29794.53 23181.19 30796.74 26795.24 28682.33 29780.15 28590.51 30581.99 17794.68 32880.71 26973.58 31591.12 290
jajsoiax87.35 23986.51 23689.87 27687.75 34281.74 29797.03 25495.98 23088.47 17080.15 28593.80 23461.47 31296.36 26789.44 17484.47 24191.50 275
mvs_tets87.09 24286.22 23989.71 28187.87 33881.39 30396.73 26895.90 24588.19 18679.99 28793.61 23959.96 31996.31 27589.40 17584.34 24291.43 279
ITE_SJBPF87.93 30592.26 27776.44 33493.47 32987.67 20579.95 28895.49 20356.50 32997.38 22375.24 30682.33 26389.98 320
v886.11 25984.45 26991.10 24189.99 30986.85 20997.24 24695.36 28081.99 30179.89 28989.86 31774.53 22596.39 26578.83 28372.32 32790.05 318
v1085.73 26884.01 27590.87 24990.03 30886.73 21197.20 24995.22 29181.25 30979.85 29089.75 31873.30 23796.28 27976.87 29572.64 32389.61 326
WR-MVS_H86.53 25385.49 25189.66 28491.04 29883.31 27997.53 23498.20 3384.95 25279.64 29190.90 28778.01 20895.33 31376.29 30072.81 32190.35 310
anonymousdsp86.69 24885.75 24789.53 28686.46 34982.94 28296.39 27595.71 25783.97 26579.63 29290.70 29268.85 26895.94 29386.01 21084.02 24689.72 324
Patchmtry83.61 29381.64 29389.50 28793.36 26482.84 28784.10 36594.20 31769.47 35779.57 29386.88 34184.43 13594.78 32568.48 33974.30 30790.88 296
CP-MVSNet86.54 25285.45 25289.79 28091.02 29982.78 28897.38 23897.56 10885.37 24279.53 29493.03 25271.86 25195.25 31579.92 27473.43 31991.34 283
Patchmatch-test86.25 25884.06 27492.82 20494.42 23282.88 28682.88 36994.23 31671.58 34979.39 29590.62 29889.00 5796.42 26463.03 35491.37 20099.16 101
DSMNet-mixed81.60 30281.43 29682.10 33884.36 35560.79 36693.63 32086.74 37179.00 32179.32 29687.15 33963.87 30589.78 36266.89 34491.92 18995.73 222
MSDG88.29 22586.37 23794.04 18096.90 14086.15 22996.52 27294.36 31477.89 33179.22 29796.95 16569.72 26399.59 9473.20 32392.58 17996.37 216
Anonymous2023121184.72 27882.65 28890.91 24697.71 11084.55 26397.28 24396.67 18566.88 36479.18 29890.87 28858.47 32396.60 24882.61 25474.20 30991.59 273
PS-CasMVS85.81 26584.58 26889.49 28990.77 30182.11 29497.20 24997.36 14184.83 25479.12 29992.84 25567.42 28295.16 31778.39 28773.25 32091.21 288
IterMVS85.81 26584.67 26689.22 29293.51 25983.67 27596.32 27894.80 30085.09 24778.69 30090.17 31566.57 28993.17 34179.48 27777.42 28890.81 297
Fangjinhua Wang, Silvano Galliani, Christoph Vogel, Marc Pollefeys: IterMVS: Iterative Probability Estimation for Efficient Multi-View Stereo.
PEN-MVS85.21 27383.93 27689.07 29689.89 31281.31 30597.09 25297.24 14884.45 25978.66 30192.68 25768.44 27294.87 32275.98 30270.92 33691.04 292
IterMVS-SCA-FT85.73 26884.64 26789.00 29793.46 26282.90 28496.27 27994.70 30385.02 25078.62 30290.35 30766.61 28793.33 33879.38 27877.36 28990.76 301
OpenMVScopyleft85.28 1490.75 17788.84 19696.48 8993.58 25893.51 6798.80 12597.41 13682.59 29078.62 30297.49 14068.00 27699.82 6784.52 23198.55 9896.11 219
PVSNet_083.28 1687.31 24085.16 25593.74 19094.78 22684.59 26298.91 11798.69 2089.81 13478.59 30493.23 24861.95 31199.34 12494.75 10455.72 36897.30 191
EU-MVSNet84.19 28784.42 27183.52 33488.64 33167.37 36296.04 28995.76 25585.29 24378.44 30593.18 24970.67 25991.48 35875.79 30475.98 29291.70 264
v7n84.42 28582.75 28689.43 29088.15 33581.86 29696.75 26695.67 26180.53 31578.38 30689.43 32269.89 26196.35 27273.83 31972.13 32990.07 316
FMVSNet183.94 29081.32 29891.80 22791.94 28488.81 16596.77 26395.25 28377.98 32778.25 30790.25 30950.37 35194.97 31973.27 32277.81 28691.62 268
D2MVS87.96 22887.39 22189.70 28291.84 28683.40 27798.31 18598.49 2288.04 19078.23 30890.26 30873.57 23396.79 24484.21 23483.53 25288.90 334
MS-PatchMatch86.75 24785.92 24489.22 29291.97 28182.47 29296.91 25896.14 22183.74 26977.73 30993.53 24258.19 32497.37 22576.75 29798.35 10187.84 340
DTE-MVSNet84.14 28882.80 28388.14 30488.95 32779.87 31696.81 26296.24 21383.50 27477.60 31092.52 25967.89 27894.24 33372.64 32669.05 33990.32 311
COLMAP_ROBcopyleft82.69 1884.54 28282.82 28289.70 28296.72 14878.85 32095.89 29292.83 33671.55 35077.54 31195.89 19659.40 32199.14 13567.26 34288.26 21491.11 291
Johannes L. Schönberger, Enliang Zheng, Marc Pollefeys, Jan-Michael Frahm: Pixelwise View Selection for Unstructured Multi-View Stereo. ECCV 2016
OurMVSNet-221017-084.13 28983.59 27885.77 32187.81 33970.24 35694.89 30793.65 32686.08 23276.53 31293.28 24761.41 31396.14 28580.95 26677.69 28790.93 294
tfpnnormal83.65 29181.35 29790.56 25891.37 29488.06 17997.29 24297.87 5078.51 32676.20 31390.91 28664.78 30196.47 26161.71 35773.50 31687.13 348
ppachtmachnet_test83.63 29281.57 29589.80 27989.01 32585.09 25697.13 25194.50 30878.84 32376.14 31491.00 28569.78 26294.61 32963.40 35274.36 30689.71 325
pm-mvs184.68 27982.78 28590.40 26289.58 31785.18 25397.31 24194.73 30281.93 30376.05 31592.01 26565.48 29896.11 28678.75 28469.14 33889.91 321
AllTest84.97 27683.12 28090.52 25996.82 14278.84 32195.89 29292.17 34477.96 32975.94 31695.50 20155.48 33299.18 12971.15 32887.14 21893.55 233
TestCases90.52 25996.82 14278.84 32192.17 34477.96 32975.94 31695.50 20155.48 33299.18 12971.15 32887.14 21893.55 233
CL-MVSNet_self_test79.89 31078.34 31184.54 32981.56 36375.01 33896.88 26095.62 26381.10 31075.86 31885.81 34668.49 27190.26 36063.21 35356.51 36688.35 337
testgi82.29 29781.00 30086.17 31887.24 34574.84 34097.39 23691.62 35288.63 16675.85 31995.42 20446.07 35891.55 35766.87 34579.94 27492.12 256
MVP-Stereo86.61 25185.83 24588.93 29988.70 33083.85 27396.07 28894.41 31382.15 30075.64 32091.96 26867.65 27996.45 26377.20 29398.72 9286.51 351
Qingsong Yan: MVP-Stereo: A Parallel Multi-View Patchmatch Stereo Method with Dilation Matching for Photogrammetric Application.
LF4IMVS81.94 30081.17 29984.25 33087.23 34668.87 36193.35 32291.93 34983.35 27775.40 32193.00 25349.25 35596.65 24778.88 28278.11 28187.22 347
our_test_384.47 28482.80 28389.50 28789.01 32583.90 27297.03 25494.56 30781.33 30875.36 32290.52 30471.69 25394.54 33068.81 33776.84 29090.07 316
LTVRE_ROB81.71 1984.59 28182.72 28790.18 26792.89 27283.18 28093.15 32394.74 30178.99 32275.14 32392.69 25665.64 29597.63 20869.46 33581.82 26689.74 323
Andreas Kuhn, Heiko Hirschmüller, Daniel Scharstein, Helmut Mayer: A TV Prior for High-Quality Scalable Multi-View Stereo Reconstruction. International Journal of Computer Vision 2016
Anonymous2023120680.76 30579.42 30984.79 32784.78 35472.98 34696.53 27192.97 33379.56 32074.33 32488.83 32561.27 31492.15 35360.59 35975.92 29389.24 331
FMVSNet582.29 29780.54 30187.52 30993.79 25584.01 27093.73 31892.47 34076.92 33474.27 32586.15 34563.69 30689.24 36469.07 33674.79 30189.29 330
MVS-HIRNet79.01 31375.13 32590.66 25493.82 25481.69 29885.16 35993.75 32354.54 36974.17 32659.15 37557.46 32696.58 25263.74 35194.38 16093.72 232
ACMH+83.78 1584.21 28682.56 29089.15 29493.73 25679.16 31896.43 27494.28 31581.09 31174.00 32794.03 22654.58 33897.67 20476.10 30178.81 27890.63 306
KD-MVS_2432*160082.98 29480.52 30290.38 26394.32 23588.98 15892.87 32695.87 24980.46 31773.79 32887.49 33482.76 16493.29 33970.56 33246.53 37588.87 335
miper_refine_blended82.98 29480.52 30290.38 26394.32 23588.98 15892.87 32695.87 24980.46 31773.79 32887.49 33482.76 16493.29 33970.56 33246.53 37588.87 335
NR-MVSNet87.74 23586.00 24392.96 20291.46 29290.68 12196.65 27097.42 13588.02 19173.42 33093.68 23677.31 21195.83 30084.26 23371.82 33292.36 244
test_fmvs375.09 32775.19 32474.81 34877.45 37154.08 37395.93 29090.64 35882.51 29473.29 33181.19 35822.29 37586.29 37085.50 21867.89 34384.06 361
USDC84.74 27782.93 28190.16 26891.73 28883.54 27695.00 30693.30 33188.77 16573.19 33293.30 24653.62 34197.65 20775.88 30381.54 26789.30 329
KD-MVS_self_test77.47 32275.88 32282.24 33681.59 36268.93 36092.83 32894.02 32077.03 33373.14 33383.39 35155.44 33490.42 35967.95 34057.53 36587.38 343
LCM-MVSNet-Re88.59 22188.61 20288.51 30295.53 19272.68 34996.85 26188.43 36888.45 17373.14 33390.63 29775.82 21694.38 33192.95 13595.71 14998.48 154
TDRefinement78.01 31975.31 32386.10 31970.06 37673.84 34393.59 32191.58 35374.51 34373.08 33591.04 28449.63 35497.12 22874.88 30959.47 36187.33 345
TransMVSNet (Re)81.97 29979.61 30889.08 29589.70 31584.01 27097.26 24491.85 35078.84 32373.07 33691.62 27367.17 28495.21 31667.50 34159.46 36288.02 339
SixPastTwentyTwo82.63 29681.58 29485.79 32088.12 33671.01 35495.17 30592.54 33984.33 26072.93 33792.08 26260.41 31895.61 30774.47 31274.15 31090.75 302
pmmvs679.90 30977.31 31587.67 30884.17 35678.13 32895.86 29693.68 32567.94 36172.67 33889.62 32050.98 34995.75 30274.80 31166.04 34989.14 332
ACMH83.09 1784.60 28082.61 28990.57 25693.18 26882.94 28296.27 27994.92 29681.01 31272.61 33993.61 23956.54 32897.79 19374.31 31381.07 26890.99 293
Qingshan Xu and Wenbing Tao: Multi-Scale Geometric Consistency Guided Multi-View Stereo. CVPR 2019
Anonymous2024052178.63 31776.90 31883.82 33282.82 36072.86 34795.72 30193.57 32773.55 34772.17 34084.79 34849.69 35392.51 34965.29 34974.50 30386.09 353
Patchmatch-RL test81.90 30180.13 30487.23 31280.71 36570.12 35884.07 36688.19 36983.16 28070.57 34182.18 35687.18 8792.59 34782.28 25762.78 35598.98 115
mvsany_test375.85 32674.52 32879.83 34373.53 37360.64 36791.73 33587.87 37083.91 26770.55 34282.52 35331.12 37093.66 33586.66 20662.83 35485.19 359
test_040278.81 31576.33 32086.26 31791.18 29678.44 32695.88 29491.34 35568.55 35870.51 34389.91 31652.65 34494.99 31847.14 37279.78 27585.34 357
TinyColmap80.42 30777.94 31287.85 30692.09 28078.58 32493.74 31789.94 36174.99 34069.77 34491.78 27146.09 35797.58 21265.17 35077.89 28287.38 343
dmvs_testset77.17 32378.99 31071.71 35187.25 34438.55 38591.44 33981.76 37785.77 23669.49 34595.94 19569.71 26484.37 37152.71 37076.82 29192.21 251
test20.0378.51 31877.48 31481.62 34083.07 35971.03 35396.11 28792.83 33681.66 30569.31 34689.68 31957.53 32587.29 36958.65 36368.47 34086.53 350
test_vis1_rt81.31 30380.05 30685.11 32391.29 29570.66 35598.98 11177.39 38185.76 23768.80 34782.40 35436.56 36899.44 10992.67 14186.55 22385.24 358
N_pmnet70.19 33369.87 33571.12 35388.24 33430.63 38995.85 29728.70 38970.18 35468.73 34886.55 34364.04 30493.81 33453.12 36973.46 31788.94 333
OpenMVS_ROBcopyleft73.86 2077.99 32075.06 32686.77 31583.81 35877.94 33096.38 27691.53 35467.54 36268.38 34987.13 34043.94 35996.08 28755.03 36781.83 26586.29 352
ambc79.60 34472.76 37556.61 37076.20 37392.01 34868.25 35080.23 36123.34 37494.73 32673.78 32060.81 35987.48 342
PM-MVS74.88 32872.85 33180.98 34278.98 36964.75 36490.81 34685.77 37280.95 31368.23 35182.81 35229.08 37292.84 34376.54 29962.46 35785.36 356
pmmvs372.86 33169.76 33682.17 33773.86 37274.19 34294.20 31389.01 36764.23 36867.72 35280.91 36041.48 36388.65 36662.40 35554.02 37083.68 363
lessismore_v085.08 32485.59 35269.28 35990.56 35967.68 35390.21 31354.21 34095.46 30973.88 31762.64 35690.50 308
K. test v381.04 30479.77 30784.83 32687.41 34370.23 35795.60 30293.93 32183.70 27167.51 35489.35 32355.76 33093.58 33776.67 29868.03 34290.67 305
MIMVSNet175.92 32573.30 33083.81 33381.29 36475.57 33692.26 33192.05 34773.09 34867.48 35586.18 34440.87 36587.64 36855.78 36670.68 33788.21 338
ET-MVSNet_ETH3D92.56 14291.45 15095.88 11296.39 15994.13 5799.46 5096.97 17892.18 8166.94 35698.29 11094.65 1594.28 33294.34 11383.82 25099.24 95
pmmvs-eth3d78.71 31676.16 32186.38 31680.25 36781.19 30794.17 31492.13 34677.97 32866.90 35782.31 35555.76 33092.56 34873.63 32162.31 35885.38 355
EG-PatchMatch MVS79.92 30877.59 31386.90 31487.06 34777.90 33196.20 28694.06 31974.61 34266.53 35888.76 32640.40 36696.20 28067.02 34383.66 25186.61 349
test_method70.10 33468.66 33774.41 35086.30 35155.84 37194.47 30989.82 36235.18 37766.15 35984.75 34930.54 37177.96 37870.40 33460.33 36089.44 328
UnsupCasMVSNet_eth78.90 31476.67 31985.58 32282.81 36174.94 33991.98 33296.31 20784.64 25665.84 36087.71 33051.33 34692.23 35272.89 32556.50 36789.56 327
test_f71.94 33270.82 33375.30 34772.77 37453.28 37491.62 33689.66 36475.44 33964.47 36178.31 36520.48 37689.56 36378.63 28566.02 35083.05 366
new-patchmatchnet74.80 32972.40 33281.99 33978.36 37072.20 35094.44 31092.36 34177.06 33263.47 36279.98 36251.04 34888.85 36560.53 36054.35 36984.92 360
new_pmnet76.02 32473.71 32982.95 33583.88 35772.85 34891.26 34292.26 34370.44 35362.60 36381.37 35747.64 35692.32 35161.85 35672.10 33083.68 363
UnsupCasMVSNet_bld73.85 33070.14 33484.99 32579.44 36875.73 33588.53 35295.24 28670.12 35561.94 36474.81 36841.41 36493.62 33668.65 33851.13 37485.62 354
CMPMVSbinary58.40 2180.48 30680.11 30581.59 34185.10 35359.56 36894.14 31595.95 23568.54 35960.71 36593.31 24555.35 33597.87 18883.06 25084.85 23787.33 345
M. Jancosek, T. Pajdla: Multi-View Reconstruction Preserving Weakly-Supported Surfaces. CVPR 2011
APD_test168.93 33566.98 33874.77 34980.62 36653.15 37587.97 35385.01 37453.76 37059.26 36687.52 33325.19 37389.95 36156.20 36567.33 34681.19 367
DeepMVS_CXcopyleft76.08 34690.74 30251.65 37890.84 35786.47 22957.89 36787.98 32835.88 36992.60 34665.77 34865.06 35283.97 362
YYNet179.64 31277.04 31787.43 31187.80 34079.98 31596.23 28394.44 30973.83 34651.83 36887.53 33267.96 27792.07 35566.00 34767.75 34590.23 313
MDA-MVSNet_test_wron79.65 31177.05 31687.45 31087.79 34180.13 31496.25 28294.44 30973.87 34551.80 36987.47 33668.04 27592.12 35466.02 34667.79 34490.09 314
LCM-MVSNet60.07 33956.37 34171.18 35254.81 38548.67 37982.17 37089.48 36537.95 37549.13 37069.12 36913.75 38381.76 37259.28 36151.63 37383.10 365
MDA-MVSNet-bldmvs77.82 32174.75 32787.03 31388.33 33378.52 32596.34 27792.85 33575.57 33848.87 37187.89 32957.32 32792.49 35060.79 35864.80 35390.08 315
PMMVS258.97 34055.07 34370.69 35462.72 38055.37 37285.97 35780.52 37849.48 37145.94 37268.31 37015.73 38180.78 37649.79 37137.12 37775.91 368
testf156.38 34153.73 34464.31 35864.84 37845.11 38080.50 37175.94 38338.87 37342.74 37375.07 36611.26 38581.19 37441.11 37453.27 37166.63 372
APD_test256.38 34153.73 34464.31 35864.84 37845.11 38080.50 37175.94 38338.87 37342.74 37375.07 36611.26 38581.19 37441.11 37453.27 37166.63 372
FPMVS61.57 33660.32 33965.34 35660.14 38342.44 38391.02 34589.72 36344.15 37242.63 37580.93 35919.02 37780.59 37742.50 37372.76 32273.00 369
test_vis3_rt61.29 33758.75 34068.92 35567.41 37752.84 37691.18 34459.23 38866.96 36341.96 37658.44 37611.37 38494.72 32774.25 31457.97 36459.20 375
Gipumacopyleft54.77 34352.22 34762.40 36086.50 34859.37 36950.20 37890.35 36036.52 37641.20 37749.49 37818.33 37981.29 37332.10 37865.34 35146.54 378
S. Galliani, K. Lasinger, K. Schindler: Massively Parallel Multiview Stereopsis by Surface Normal Diffusion. ICCV 2015
tmp_tt53.66 34452.86 34656.05 36132.75 38941.97 38473.42 37576.12 38221.91 38239.68 37896.39 18542.59 36265.10 38178.00 28814.92 38261.08 374
E-PMN41.02 34840.93 35041.29 36461.97 38133.83 38684.00 36765.17 38627.17 37927.56 37946.72 38017.63 38060.41 38319.32 38118.82 37929.61 379
ANet_high50.71 34546.17 34864.33 35744.27 38752.30 37776.13 37478.73 37964.95 36627.37 38055.23 37714.61 38267.74 38036.01 37718.23 38072.95 370
EMVS39.96 34939.88 35140.18 36559.57 38432.12 38884.79 36464.57 38726.27 38026.14 38144.18 38318.73 37859.29 38417.03 38217.67 38129.12 380
MVEpermissive44.00 2241.70 34737.64 35253.90 36349.46 38643.37 38265.09 37766.66 38526.19 38125.77 38248.53 3793.58 38963.35 38226.15 38027.28 37854.97 377
Simon Fuhrmann, Fabian Langguth, Michael Goesele: MVE - A Multi-View Reconstruction Environment. EUROGRAPHICS Workshops on Graphics and Cultural Heritage (2014)
PMVScopyleft41.42 2345.67 34642.50 34955.17 36234.28 38832.37 38766.24 37678.71 38030.72 37822.04 38359.59 3744.59 38777.85 37927.49 37958.84 36355.29 376
Y. Furukawa, J. Ponce: Accurate, dense, and robust multiview stereopsis. PAMI (2010)
testmvs18.81 35123.05 3546.10 3684.48 3902.29 39297.78 2213.00 3913.27 38418.60 38462.71 3721.53 3912.49 38714.26 3841.80 38413.50 382
test12316.58 35319.47 3557.91 3673.59 3915.37 39194.32 3111.39 3922.49 38513.98 38544.60 3822.91 3902.65 38611.35 3850.57 38515.70 381
wuyk23d16.71 35216.73 35616.65 36660.15 38225.22 39041.24 3795.17 3906.56 3835.48 3863.61 3863.64 38822.72 38515.20 3839.52 3831.99 383
EGC-MVSNET60.70 33855.37 34276.72 34586.35 35071.08 35289.96 35084.44 3760.38 3861.50 38784.09 35037.30 36788.10 36740.85 37673.44 31870.97 371
test_blank0.00 3560.00 3590.00 3690.00 3920.00 3930.00 3800.00 3930.00 3870.00 3880.00 3870.00 3920.00 3880.00 3860.00 3860.00 384
uanet_test0.00 3560.00 3590.00 3690.00 3920.00 3930.00 3800.00 3930.00 3870.00 3880.00 3870.00 3920.00 3880.00 3860.00 3860.00 384
DCPMVS0.00 3560.00 3590.00 3690.00 3920.00 3930.00 3800.00 3930.00 3870.00 3880.00 3870.00 3920.00 3880.00 3860.00 3860.00 384
cdsmvs_eth3d_5k22.52 35030.03 3530.00 3690.00 3920.00 3930.00 38097.17 1570.00 3870.00 38898.77 7774.35 2280.00 3880.00 3860.00 3860.00 384
pcd_1.5k_mvsjas6.87 3559.16 3580.00 3690.00 3920.00 3930.00 3800.00 3930.00 3870.00 3880.00 38782.48 1690.00 3880.00 3860.00 3860.00 384
sosnet-low-res0.00 3560.00 3590.00 3690.00 3920.00 3930.00 3800.00 3930.00 3870.00 3880.00 3870.00 3920.00 3880.00 3860.00 3860.00 384
sosnet0.00 3560.00 3590.00 3690.00 3920.00 3930.00 3800.00 3930.00 3870.00 3880.00 3870.00 3920.00 3880.00 3860.00 3860.00 384
uncertanet0.00 3560.00 3590.00 3690.00 3920.00 3930.00 3800.00 3930.00 3870.00 3880.00 3870.00 3920.00 3880.00 3860.00 3860.00 384
Regformer0.00 3560.00 3590.00 3690.00 3920.00 3930.00 3800.00 3930.00 3870.00 3880.00 3870.00 3920.00 3880.00 3860.00 3860.00 384
ab-mvs-re8.21 35410.94 3570.00 3690.00 3920.00 3930.00 3800.00 3930.00 3870.00 38898.50 990.00 3920.00 3880.00 3860.00 3860.00 384
uanet0.00 3560.00 3590.00 3690.00 3920.00 3930.00 3800.00 3930.00 3870.00 3880.00 3870.00 3920.00 3880.00 3860.00 3860.00 384
MSC_two_6792asdad99.51 299.61 2498.60 297.69 7899.98 999.55 1099.83 1599.96 10
No_MVS99.51 299.61 2498.60 297.69 7899.98 999.55 1099.83 1599.96 10
eth-test20.00 392
eth-test0.00 392
OPU-MVS99.49 499.64 1798.51 499.77 1099.19 2895.12 899.97 2199.90 199.92 399.99 1
save fliter99.34 5093.85 6199.65 2897.63 9395.69 16
test_0728_SECOND98.77 799.66 1296.37 1399.72 1697.68 8099.98 999.64 699.82 1999.96 10
GSMVS98.84 130
sam_mvs188.39 6398.84 130
sam_mvs87.08 89
MTGPAbinary97.45 129
test_post190.74 34841.37 38485.38 12696.36 26783.16 247
test_post46.00 38187.37 8197.11 229
patchmatchnet-post84.86 34788.73 6096.81 242
MTMP99.21 7591.09 356
gm-plane-assit94.69 22888.14 17788.22 18597.20 15398.29 16590.79 158
test9_res98.60 2599.87 999.90 22
agg_prior297.84 4499.87 999.91 21
test_prior492.00 9199.41 59
test_prior97.01 5799.58 3091.77 9297.57 10799.49 10299.79 35
新几何298.26 188
旧先验198.97 7392.90 8197.74 6799.15 3691.05 3499.33 6399.60 65
无先验98.52 15697.82 5587.20 21299.90 4687.64 19599.85 30
原ACMM298.69 136
testdata299.88 4984.16 235
segment_acmp90.56 41
testdata197.89 21492.43 72
plane_prior793.84 25185.73 241
plane_prior693.92 24886.02 23572.92 240
plane_prior596.30 20897.75 20193.46 12886.17 22792.67 238
plane_prior496.52 179
plane_prior299.02 10593.38 56
plane_prior193.90 250
plane_prior86.07 23399.14 9093.81 4886.26 226
n20.00 393
nn0.00 393
door-mid84.90 375
test1197.68 80
door85.30 373
HQP5-MVS86.39 218
BP-MVS93.82 123
HQP3-MVS96.37 20486.29 224
HQP2-MVS73.34 235
NP-MVS93.94 24786.22 22596.67 177
ACMMP++_ref82.64 261
ACMMP++83.83 248
Test By Simon83.62 144