This table lists the benchmark results for the high-res multi-view scenario. The following metrics are evaluated:

(*) For exact definitions, detailing how potentially incomplete ground truth is taken into account, see our paper.

The datasets are grouped into different categories, and result averages are computed for a category and method if results of the method are available for all datasets within the category. Note that the category "all" includes both the high-res multi-view and the low-res many-view scenarios.

Methods with suffix _ROB may participate in the Robust Vision Challenge.

Click a dataset result cell to show a visualization of the reconstruction. For training datasets, ground truth and accuracy / completeness visualizations are also available. The visualizations may not work with mobile browsers.




Method Infoallhigh-res
multi-view
indooroutdoorbotani.boulde.bridgedoorexhibi.lectur.living.loungeobserv.old co.statueterrac.
sort bysort bysort bysort bysort bysort bysort bysort bysort bysorted bysort bysort bysort bysort bysort bysort by
fmvsm_l_conf0.5_n97.65 1397.72 1297.41 4997.51 12292.78 8899.85 798.05 4696.78 899.60 199.23 2690.42 4599.92 4099.55 1298.50 10699.55 74
fmvsm_l_conf0.5_n_a97.70 1297.80 1197.42 4897.59 11792.91 8699.86 498.04 4896.70 1099.58 299.26 2190.90 3699.94 3499.57 1198.66 10199.40 88
IU-MVS99.63 1895.38 2497.73 8095.54 2699.54 399.69 699.81 2399.99 1
PC_three_145294.60 3699.41 499.12 4695.50 699.96 2899.84 299.92 399.97 7
CNVR-MVS98.46 198.38 198.72 999.80 496.19 1599.80 1597.99 5297.05 699.41 499.59 292.89 23100.00 198.99 2599.90 799.96 10
patch_mono-297.10 2697.97 894.49 17999.21 6183.73 29399.62 3798.25 3295.28 3099.38 698.91 7592.28 2699.94 3499.61 999.22 7399.78 38
test072699.66 1295.20 3299.77 1797.70 8693.95 4899.35 799.54 393.18 20
SED-MVS98.18 298.10 498.41 1899.63 1895.24 2799.77 1797.72 8194.17 4399.30 899.54 393.32 1799.98 999.70 499.81 2399.99 1
test_241102_ONE99.63 1895.24 2797.72 8194.16 4599.30 899.49 993.32 1799.98 9
DVP-MVS++98.18 298.09 598.44 1699.61 2495.38 2499.55 4497.68 9093.01 7099.23 1099.45 1495.12 799.98 999.25 1899.92 399.97 7
test_241102_TWO97.72 8194.17 4399.23 1099.54 393.14 2299.98 999.70 499.82 1999.99 1
SMA-MVScopyleft97.24 2096.99 2498.00 3199.30 5494.20 5899.16 9597.65 10289.55 15899.22 1299.52 890.34 4899.99 598.32 4399.83 1599.82 32
Yufeng Yin; Xiaoyan Liu; Zichao Zhang: SMA-MVS: Segmentation-Guided Multi-Scale Anchor Deformation Patch Multi-View Stereo. IEEE Transactions on Circuits and Systems for Video Technology
fmvsm_s_conf0.5_n_a95.97 5696.19 4395.31 14896.51 16889.01 17599.81 1198.39 2795.46 2899.19 1399.16 3681.44 20499.91 4598.83 2896.97 14197.01 220
test_fmvsm_n_192097.08 2797.55 1495.67 13697.94 10589.61 16399.93 198.48 2497.08 599.08 1499.13 4488.17 7499.93 3899.11 2399.06 7897.47 204
DVP-MVScopyleft98.07 798.00 698.29 1999.66 1295.20 3299.72 2397.47 14193.95 4899.07 1599.46 1093.18 2099.97 2199.64 799.82 1999.69 55
Zhenlong Yuan, Jinguo Luo, Fei Shen, Zhaoxin Li, Cong Liu, Tianlu Mao, Zhaoqi Wang: DVP-MVS: Synergize Depth-Edge and Visibility Prior for Multi-View Stereo. AAAI2025
test_0728_THIRD93.01 7099.07 1599.46 1094.66 1299.97 2199.25 1899.82 1999.95 15
TSAR-MVS + MP.97.44 1897.46 1697.39 5199.12 6593.49 7298.52 17297.50 13694.46 3898.99 1798.64 9991.58 2899.08 14898.49 3799.83 1599.60 69
Zhenlong Yuan, Jiakai Cao, Zhaoqi Wang, Zhaoxin Li: TSAR-MVS: Textureless-aware Segmentation and Correlative Refinement Guided Multi-View Stereo. Pattern Recognition
fmvsm_s_conf0.1_n_a95.16 8495.15 7895.18 15392.06 30688.94 17999.29 8097.53 12794.46 3898.98 1898.99 6079.99 21399.85 6798.24 4796.86 14396.73 225
PS-MVSNAJ96.87 3196.40 3998.29 1997.35 12897.29 599.03 11797.11 17995.83 2098.97 1999.14 4282.48 18599.60 10398.60 3399.08 7698.00 190
旧先验298.67 15485.75 25798.96 2098.97 15493.84 137
test_one_060199.59 2894.89 3697.64 10393.14 6998.93 2199.45 1493.45 16
fmvsm_s_conf0.5_n96.19 4996.49 3695.30 14997.37 12789.16 16899.86 498.47 2595.68 2398.87 2299.15 3982.44 18999.92 4099.14 2197.43 13296.83 224
xiu_mvs_v2_base96.66 3696.17 4898.11 2897.11 14796.96 699.01 12097.04 18695.51 2798.86 2399.11 5082.19 19399.36 13098.59 3598.14 11598.00 190
NCCC98.12 598.11 398.13 2599.76 694.46 5099.81 1197.88 5796.54 1398.84 2499.46 1092.55 2599.98 998.25 4699.93 199.94 18
SD-MVS97.51 1697.40 1897.81 3699.01 7293.79 6699.33 7897.38 15493.73 5998.83 2599.02 5890.87 3899.88 5498.69 3099.74 2999.77 43
Zhenlong Yuan, Jiakai Cao, Zhaoxin Li, Hao Jiang and Zhaoqi Wang: SD-MVS: Segmentation-driven Deformation Multi-View Stereo with Spherical Refinement and EM optimization. AAAI2024
SF-MVS97.22 2296.92 2598.12 2799.11 6694.88 3799.44 6297.45 14489.60 15498.70 2699.42 1790.42 4599.72 8998.47 3899.65 4099.77 43
fmvsm_s_conf0.1_n95.56 7395.68 6595.20 15294.35 25589.10 17199.50 5197.67 9494.76 3498.68 2799.03 5681.13 20799.86 6398.63 3297.36 13496.63 227
DPE-MVScopyleft98.11 698.00 698.44 1699.50 4295.39 2399.29 8097.72 8194.50 3798.64 2899.54 393.32 1799.97 2199.58 1099.90 799.95 15
Kehua Chen, Zhenlong Yuan, Tianlu Mao, Zhaoqi Wang: Dual-Level Precision Edges Guided Multi-View Stereo with Accurate Planarization. AAAI2025
MSP-MVS97.77 998.18 296.53 9699.54 3690.14 14499.41 6897.70 8695.46 2898.60 2999.19 3095.71 499.49 11298.15 4899.85 1399.95 15
Zhenlong Yuan, Cong Liu, Fei Shen, Zhaoxin Li, Jingguo luo, Tianlu Mao and Zhaoqi Wang: MSP-MVS: Multi-granularity Segmentation Prior Guided Multi-View Stereo. AAAI2025
9.1496.87 2799.34 5099.50 5197.49 13889.41 16298.59 3099.43 1689.78 5599.69 9198.69 3099.62 46
APD-MVScopyleft96.95 2996.72 3297.63 4099.51 4193.58 6899.16 9597.44 14790.08 14198.59 3099.07 5189.06 6299.42 12397.92 5199.66 3899.88 26
Yuesong Wang, Zhaojie Zeng and etc.: Adaptive Patch Deformation for Textureless-Resilient Multi-View Stereo. CVPR2023
test_vis1_n_192093.08 15193.42 12692.04 24296.31 17779.36 33899.83 996.06 25196.72 998.53 3298.10 12958.57 34999.91 4597.86 5398.79 9796.85 223
testdata95.26 15198.20 9687.28 22097.60 11285.21 26398.48 3399.15 3988.15 7698.72 16490.29 18299.45 5999.78 38
test_fmvsmconf_n96.78 3496.84 2996.61 8995.99 19390.25 13999.90 298.13 4296.68 1198.42 3498.92 7485.34 14099.88 5499.12 2299.08 7699.70 52
TEST999.57 3393.17 7699.38 7197.66 9589.57 15698.39 3599.18 3390.88 3799.66 94
train_agg97.20 2397.08 2397.57 4499.57 3393.17 7699.38 7197.66 9590.18 13698.39 3599.18 3390.94 3499.66 9498.58 3699.85 1399.88 26
test_899.55 3593.07 7999.37 7497.64 10390.18 13698.36 3799.19 3090.94 3499.64 100
CS-MVS-test95.98 5596.34 4194.90 16498.06 10287.66 20799.69 3396.10 24693.66 6098.35 3899.05 5486.28 11997.66 22596.96 7298.90 9099.37 92
MM97.76 1097.39 1998.86 598.30 9396.83 799.81 1199.13 997.66 298.29 3998.96 6685.84 12899.90 5099.72 398.80 9499.85 30
HPM-MVS++copyleft97.72 1197.59 1398.14 2499.53 4094.76 4499.19 8997.75 7695.66 2498.21 4099.29 2091.10 3199.99 597.68 5799.87 999.68 56
DPM-MVS97.86 897.25 2199.68 198.25 9499.10 199.76 2097.78 7396.61 1298.15 4199.53 793.62 15100.00 191.79 16699.80 2699.94 18
test_part299.54 3695.42 2298.13 42
SteuartSystems-ACMMP97.25 1997.34 2097.01 6397.38 12691.46 11099.75 2197.66 9594.14 4798.13 4299.26 2192.16 2799.66 9497.91 5299.64 4299.90 22
Skip Steuart: Steuart Systems R&D Blog.
FOURS199.50 4288.94 17999.55 4497.47 14191.32 10998.12 44
test_prior299.57 4291.43 10598.12 4498.97 6290.43 4498.33 4299.81 23
CS-MVS95.75 6896.19 4394.40 18397.88 10786.22 24499.66 3496.12 24592.69 7898.07 4698.89 7887.09 9797.59 23196.71 7598.62 10299.39 91
PHI-MVS96.65 3796.46 3897.21 5799.34 5091.77 10399.70 2698.05 4686.48 24698.05 4799.20 2989.33 6099.96 2898.38 3999.62 4699.90 22
MVSFormer94.71 10294.08 10396.61 8995.05 23694.87 3897.77 24296.17 24286.84 23598.04 4898.52 10685.52 13295.99 30989.83 18598.97 8498.96 127
lupinMVS96.32 4595.94 5497.44 4695.05 23694.87 3899.86 496.50 22093.82 5798.04 4898.77 8585.52 13298.09 19596.98 7198.97 8499.37 92
APDe-MVScopyleft97.53 1497.47 1597.70 3899.58 3093.63 6799.56 4397.52 13193.59 6398.01 5099.12 4690.80 3999.55 10699.26 1799.79 2799.93 20
Zhaojie Zeng, Yuesong Wang, Tao Guan: Matching Ambiguity-Resilient Multi-View Stereo via Adaptive Patch Deformation. Pattern Recognition
ACMMP_NAP96.59 3896.18 4597.81 3698.82 8193.55 6998.88 13297.59 11690.66 12097.98 5199.14 4286.59 111100.00 196.47 8499.46 5799.89 25
agg_prior99.54 3692.66 8997.64 10397.98 5199.61 102
CDPH-MVS96.56 3996.18 4597.70 3899.59 2893.92 6399.13 10697.44 14789.02 17097.90 5399.22 2788.90 6599.49 11294.63 12599.79 2799.68 56
MVSMamba_PlusPlus95.73 7095.15 7897.44 4697.28 13494.35 5698.26 20496.75 20383.09 30097.84 5495.97 21889.59 5798.48 17597.86 5399.73 3199.49 81
iter_conf05_1195.50 7495.43 7195.70 13397.26 13689.15 16998.26 20496.60 21091.37 10897.84 5496.18 21085.57 13198.56 17196.12 8899.66 3899.40 88
EPNet96.82 3296.68 3497.25 5698.65 8693.10 7899.48 5398.76 1596.54 1397.84 5498.22 12487.49 8699.66 9495.35 10797.78 12399.00 123
Wanjuan Su, Wenbing Tao: Efficient Edge-Preserving Multi-View Stereo Network for Depth Estimation. AAAI 2023
MSLP-MVS++97.50 1797.45 1797.63 4099.65 1693.21 7599.70 2698.13 4294.61 3597.78 5799.46 1089.85 5499.81 7997.97 5099.91 699.88 26
test1297.83 3599.33 5394.45 5197.55 12397.56 5888.60 6899.50 11199.71 3599.55 74
xiu_mvs_v1_base_debu94.73 9993.98 10696.99 6595.19 22295.24 2798.62 16196.50 22092.99 7297.52 5998.83 8272.37 26999.15 14197.03 6896.74 14496.58 230
xiu_mvs_v1_base94.73 9993.98 10696.99 6595.19 22295.24 2798.62 16196.50 22092.99 7297.52 5998.83 8272.37 26999.15 14197.03 6896.74 14496.58 230
xiu_mvs_v1_base_debi94.73 9993.98 10696.99 6595.19 22295.24 2798.62 16196.50 22092.99 7297.52 5998.83 8272.37 26999.15 14197.03 6896.74 14496.58 230
ZD-MVS99.67 1093.28 7497.61 11087.78 21397.41 6299.16 3690.15 5199.56 10598.35 4199.70 36
ETV-MVS96.00 5396.00 5396.00 12296.56 16491.05 12299.63 3696.61 20993.26 6897.39 6398.30 12186.62 11098.13 19298.07 4997.57 12698.82 144
DeepPCF-MVS93.56 196.55 4097.84 1092.68 22998.71 8578.11 35199.70 2697.71 8598.18 197.36 6499.76 190.37 4799.94 3499.27 1699.54 5499.99 1
test_vis1_n90.40 20390.27 19390.79 27091.55 31676.48 35699.12 10794.44 33794.31 4197.34 6596.95 18143.60 38899.42 12397.57 5997.60 12596.47 234
EC-MVSNet95.09 8695.17 7794.84 16795.42 21388.17 19599.48 5395.92 26691.47 10397.34 6598.36 11882.77 17797.41 24297.24 6598.58 10398.94 132
test_fmvsmconf0.1_n95.94 5995.79 6296.40 10392.42 30089.92 15599.79 1696.85 19896.53 1597.22 6798.67 9782.71 18199.84 6998.92 2798.98 8399.43 87
CANet97.00 2896.49 3698.55 1298.86 8096.10 1699.83 997.52 13195.90 1997.21 6898.90 7682.66 18299.93 3898.71 2998.80 9499.63 66
CANet_DTU94.31 11493.35 12897.20 5897.03 15294.71 4698.62 16195.54 29695.61 2597.21 6898.47 11471.88 27499.84 6988.38 20497.46 13197.04 218
MVS_030497.53 1497.15 2298.67 1197.30 13096.52 1299.60 3898.88 1497.14 497.21 6898.94 7286.89 10399.91 4599.43 1598.91 8999.59 73
test_cas_vis1_n_192093.86 12693.74 11994.22 19195.39 21686.08 25099.73 2296.07 25096.38 1797.19 7197.78 13665.46 32499.86 6396.71 7598.92 8896.73 225
VNet95.08 8794.26 9597.55 4598.07 10193.88 6498.68 15298.73 1890.33 13397.16 7297.43 15579.19 22399.53 10996.91 7491.85 20999.24 104
region2R96.30 4696.17 4896.70 8599.70 790.31 13899.46 5997.66 9590.55 12697.07 7399.07 5186.85 10499.97 2195.43 10599.74 2999.81 33
原ACMM196.18 11299.03 7190.08 14797.63 10788.98 17197.00 7498.97 6288.14 7799.71 9088.23 20699.62 4698.76 151
HFP-MVS96.42 4296.26 4296.90 7299.69 890.96 12599.47 5597.81 6890.54 12796.88 7599.05 5487.57 8499.96 2895.65 9899.72 3299.78 38
XVS96.47 4196.37 4096.77 7899.62 2290.66 13399.43 6597.58 11892.41 8596.86 7698.96 6687.37 8999.87 5895.65 9899.43 6199.78 38
X-MVStestdata90.69 20088.66 22396.77 7899.62 2290.66 13399.43 6597.58 11892.41 8596.86 7629.59 41287.37 8999.87 5895.65 9899.43 6199.78 38
SR-MVS96.13 5096.16 5096.07 11899.42 4789.04 17398.59 16797.33 15890.44 13096.84 7899.12 4686.75 10699.41 12697.47 6099.44 6099.76 45
TSAR-MVS + GP.96.95 2996.91 2697.07 6098.88 7991.62 10699.58 4196.54 21895.09 3296.84 7898.63 10191.16 2999.77 8599.04 2496.42 14999.81 33
ACMMPR96.28 4796.14 5296.73 8299.68 990.47 13699.47 5597.80 7090.54 12796.83 8099.03 5686.51 11599.95 3195.65 9899.72 3299.75 46
test_fmvs192.35 16492.94 14090.57 27597.19 14075.43 36099.55 4494.97 32195.20 3196.82 8197.57 14959.59 34799.84 6997.30 6398.29 11496.46 235
PMMVS93.62 13593.90 11392.79 22496.79 15981.40 32198.85 13396.81 19991.25 11096.82 8198.15 12877.02 23798.13 19293.15 15296.30 15398.83 143
PGM-MVS95.85 6295.65 6896.45 9999.50 4289.77 15998.22 20898.90 1389.19 16596.74 8398.95 6985.91 12799.92 4093.94 13499.46 5799.66 60
jason95.40 7994.86 8697.03 6292.91 29594.23 5799.70 2696.30 23093.56 6496.73 8498.52 10681.46 20397.91 20496.08 9298.47 10998.96 127
jason: jason.
新几何197.40 5098.92 7792.51 9497.77 7585.52 25996.69 8599.06 5388.08 7899.89 5384.88 24499.62 4699.79 36
SR-MVS-dyc-post95.75 6895.86 5795.41 14499.22 5987.26 22398.40 19097.21 16789.63 15296.67 8698.97 6286.73 10899.36 13096.62 7899.31 6899.60 69
RE-MVS-def95.70 6499.22 5987.26 22398.40 19097.21 16789.63 15296.67 8698.97 6285.24 14196.62 7899.31 6899.60 69
APD-MVS_3200maxsize95.64 7295.65 6895.62 13899.24 5887.80 20398.42 18597.22 16688.93 17596.64 8898.98 6185.49 13599.36 13096.68 7799.27 7199.70 52
mvsany_test194.57 10895.09 8292.98 22095.84 19982.07 31598.76 14595.24 31492.87 7796.45 8998.71 9484.81 14799.15 14197.68 5795.49 16797.73 196
MG-MVS97.24 2096.83 3198.47 1599.79 595.71 1999.07 11199.06 1094.45 4096.42 9098.70 9588.81 6699.74 8895.35 10799.86 1299.97 7
test_fmvs1_n91.07 19191.41 17190.06 28994.10 26374.31 36499.18 9194.84 32594.81 3396.37 9197.46 15350.86 37799.82 7697.14 6797.90 11896.04 242
h-mvs3392.47 16391.95 16094.05 19997.13 14585.01 27698.36 19698.08 4493.85 5596.27 9296.73 19483.19 16999.43 12295.81 9668.09 36697.70 197
hse-mvs291.67 17891.51 16992.15 23996.22 18182.61 31197.74 24597.53 12793.85 5596.27 9296.15 21183.19 16997.44 24095.81 9666.86 37396.40 237
alignmvs95.77 6695.00 8498.06 2997.35 12895.68 2099.71 2597.50 13691.50 10296.16 9498.61 10386.28 11999.00 15196.19 8791.74 21199.51 79
CP-MVS96.22 4896.15 5196.42 10199.67 1089.62 16299.70 2697.61 11090.07 14296.00 9599.16 3687.43 8799.92 4096.03 9399.72 3299.70 52
MCST-MVS98.18 297.95 998.86 599.85 396.60 1099.70 2697.98 5397.18 395.96 9699.33 1992.62 24100.00 198.99 2599.93 199.98 6
diffmvspermissive94.59 10794.19 9895.81 12995.54 20990.69 13198.70 15095.68 28891.61 9895.96 9697.81 13380.11 21298.06 19796.52 8395.76 16298.67 156
Fangjinhua Wang, Qingshan Xu, Yew-Soon Ong, Marc Pollefeys: Lightweight and Accurate Multi-View Stereo With Confidence-Aware Diffusion Model. IEEE T-PAMI 2025
GST-MVS95.97 5695.66 6696.90 7299.49 4591.22 11299.45 6197.48 13989.69 15095.89 9898.72 9186.37 11899.95 3194.62 12699.22 7399.52 77
DeepC-MVS_fast93.52 297.16 2496.84 2998.13 2599.61 2494.45 5198.85 13397.64 10396.51 1695.88 9999.39 1887.35 9399.99 596.61 8099.69 3799.96 10
Andreas Kuhn, Christian Sormann, Mattia Rossi, Oliver Erdler, Friedrich Fraundorfer: DeepC-MVS: Deep Confidence Prediction for Multi-View Stereo Reconstruction. 3DV 2020
test22298.32 9291.21 11398.08 22597.58 11883.74 28895.87 10099.02 5886.74 10799.64 4299.81 33
sasdasda95.02 8893.96 10998.20 2197.53 12095.92 1798.71 14796.19 23991.78 9595.86 10198.49 11079.53 21899.03 14996.12 8891.42 22399.66 60
ZNCC-MVS96.09 5195.81 6096.95 7199.42 4791.19 11499.55 4497.53 12789.72 14995.86 10198.94 7286.59 11199.97 2195.13 11299.56 5299.68 56
canonicalmvs95.02 8893.96 10998.20 2197.53 12095.92 1798.71 14796.19 23991.78 9595.86 10198.49 11079.53 21899.03 14996.12 8891.42 22399.66 60
dcpmvs_295.67 7196.18 4594.12 19598.82 8184.22 28697.37 26095.45 30190.70 11995.77 10498.63 10190.47 4398.68 16699.20 2099.22 7399.45 84
MGCFI-Net94.89 9093.84 11698.06 2997.49 12395.55 2198.64 15896.10 24691.60 10095.75 10598.46 11679.31 22298.98 15395.95 9591.24 22799.65 63
Effi-MVS+93.87 12593.15 13496.02 12195.79 20090.76 12996.70 28995.78 28086.98 23295.71 10697.17 17079.58 21698.01 20294.57 12796.09 15799.31 98
HPM-MVS_fast94.89 9094.62 8895.70 13399.11 6688.44 19399.14 10397.11 17985.82 25495.69 10798.47 11483.46 16299.32 13593.16 15199.63 4599.35 94
HY-MVS88.56 795.29 8194.23 9698.48 1497.72 11096.41 1394.03 33998.74 1692.42 8495.65 10894.76 24086.52 11499.49 11295.29 10992.97 18899.53 76
CHOSEN 280x42096.80 3396.85 2896.66 8897.85 10894.42 5394.76 33198.36 2992.50 8195.62 10997.52 15097.92 197.38 24398.31 4498.80 9498.20 184
test_fmvsmconf0.01_n94.14 11693.51 12496.04 11986.79 37289.19 16799.28 8395.94 26095.70 2195.50 11098.49 11073.27 26299.79 8298.28 4598.32 11399.15 111
MP-MVScopyleft96.00 5395.82 5896.54 9599.47 4690.13 14699.36 7597.41 15190.64 12395.49 11198.95 6985.51 13499.98 996.00 9499.59 5199.52 77
Rongxuan Tan, Qing Wang, et al.: MP-MVS: Multi-Scale Windows PatchMatch and Planar Prior Multi-View Stereo.
HPM-MVScopyleft95.41 7895.22 7695.99 12399.29 5589.14 17099.17 9497.09 18387.28 22695.40 11298.48 11384.93 14499.38 12895.64 10299.65 4099.47 83
Chunlin Ren, Qingshan Xu, Shikun Zhang, Jiaqi Yang: Hierarchical Prior Mining for Non-local Multi-View Stereo. ICCV 2023
UA-Net93.30 14392.62 14695.34 14696.27 17988.53 19295.88 31496.97 19490.90 11595.37 11397.07 17482.38 19099.10 14783.91 26094.86 17398.38 170
sss94.85 9593.94 11197.58 4296.43 17194.09 6198.93 12799.16 889.50 15995.27 11497.85 13181.50 20199.65 9892.79 15894.02 17998.99 124
WTY-MVS95.97 5695.11 8198.54 1397.62 11496.65 999.44 6298.74 1692.25 8895.21 11598.46 11686.56 11399.46 11895.00 11792.69 19299.50 80
DELS-MVS97.12 2596.60 3598.68 1098.03 10396.57 1199.84 897.84 6196.36 1895.20 11698.24 12388.17 7499.83 7396.11 9199.60 5099.64 64
Christian Sormann, Emanuele Santellani, Mattia Rossi, Andreas Kuhn, Friedrich Fraundorfer: DELS-MVS: Deep Epipolar Line Search for Multi-View Stereo. Winter Conference on Applications of Computer Vision (WACV), 2023
MVS_111021_HR96.69 3596.69 3396.72 8498.58 8891.00 12499.14 10399.45 193.86 5495.15 11798.73 8988.48 6999.76 8697.23 6699.56 5299.40 88
MVS_Test93.67 13392.67 14596.69 8696.72 16192.66 8997.22 26896.03 25287.69 21995.12 11894.03 24981.55 19998.28 18489.17 19996.46 14799.14 112
MVS_111021_LR95.78 6595.94 5495.28 15098.19 9887.69 20498.80 13999.26 793.39 6595.04 11998.69 9684.09 15499.76 8696.96 7299.06 7898.38 170
CostFormer92.89 15392.48 14994.12 19594.99 23885.89 25792.89 34997.00 19286.98 23295.00 12090.78 31490.05 5397.51 23692.92 15591.73 21298.96 127
testing22294.48 11194.00 10595.95 12597.30 13092.27 9798.82 13697.92 5589.20 16494.82 12197.26 16187.13 9697.32 24691.95 16491.56 21598.25 178
mPP-MVS95.90 6195.75 6396.38 10499.58 3089.41 16699.26 8497.41 15190.66 12094.82 12198.95 6986.15 12399.98 995.24 11199.64 4299.74 47
EI-MVSNet-Vis-set95.76 6795.63 7096.17 11499.14 6490.33 13798.49 17897.82 6591.92 9394.75 12398.88 8087.06 9999.48 11695.40 10697.17 13998.70 154
LFMVS92.23 16990.84 18396.42 10198.24 9591.08 12198.24 20796.22 23683.39 29594.74 12498.31 12061.12 34298.85 15694.45 12892.82 18999.32 97
tpmrst92.78 15492.16 15494.65 17496.27 17987.45 21491.83 35997.10 18289.10 16994.68 12590.69 31888.22 7397.73 22389.78 18891.80 21098.77 150
test_yl95.27 8294.60 8997.28 5498.53 8992.98 8299.05 11598.70 1986.76 23894.65 12697.74 13987.78 8199.44 11995.57 10392.61 19399.44 85
DCV-MVSNet95.27 8294.60 8997.28 5498.53 8992.98 8299.05 11598.70 1986.76 23894.65 12697.74 13987.78 8199.44 11995.57 10392.61 19399.44 85
testing1195.33 8094.98 8596.37 10597.20 13892.31 9699.29 8097.68 9090.59 12494.43 12897.20 16690.79 4098.60 16995.25 11092.38 19798.18 185
DP-MVS Recon95.85 6295.15 7897.95 3299.87 294.38 5499.60 3897.48 13986.58 24194.42 12999.13 4487.36 9299.98 993.64 14198.33 11199.48 82
ETVMVS94.50 11093.90 11396.31 10897.48 12492.98 8299.07 11197.86 5988.09 20394.40 13096.90 18488.35 7197.28 24790.72 17992.25 20398.66 159
MTAPA96.09 5195.80 6196.96 7099.29 5591.19 11497.23 26797.45 14492.58 7994.39 13199.24 2586.43 11799.99 596.22 8699.40 6499.71 51
CPTT-MVS94.60 10594.43 9395.09 15699.66 1286.85 22899.44 6297.47 14183.22 29794.34 13298.96 6682.50 18399.55 10694.81 12099.50 5598.88 137
PVSNet_BlendedMVS93.36 14193.20 13393.84 20698.77 8391.61 10799.47 5598.04 4891.44 10494.21 13392.63 28383.50 16099.87 5897.41 6183.37 27990.05 342
PVSNet_Blended95.94 5995.66 6696.75 8098.77 8391.61 10799.88 398.04 4893.64 6294.21 13397.76 13783.50 16099.87 5897.41 6197.75 12498.79 147
EI-MVSNet-UG-set95.43 7695.29 7495.86 12899.07 7089.87 15698.43 18497.80 7091.78 9594.11 13598.77 8586.25 12199.48 11694.95 11996.45 14898.22 182
EIA-MVS95.11 8595.27 7594.64 17696.34 17686.51 23299.59 4096.62 20892.51 8094.08 13698.64 9986.05 12498.24 18795.07 11498.50 10699.18 109
MAR-MVS94.43 11294.09 10295.45 14299.10 6887.47 21398.39 19497.79 7288.37 19294.02 13799.17 3578.64 22999.91 4592.48 16098.85 9298.96 127
Zhenyu Xu, Yiguang Liu, Xuelei Shi, Ying Wang, Yunan Zheng: MARMVS: Matching Ambiguity Reduced Multiple View Stereo for Efficient Large Scale Scene Reconstruction. CVPR 2020
PAPM96.35 4395.94 5497.58 4294.10 26395.25 2698.93 12798.17 3794.26 4293.94 13898.72 9189.68 5697.88 20796.36 8599.29 7099.62 68
GG-mvs-BLEND96.98 6896.53 16694.81 4387.20 38197.74 7793.91 13996.40 20396.56 296.94 25995.08 11398.95 8799.20 108
API-MVS94.78 9794.18 10096.59 9199.21 6190.06 15198.80 13997.78 7383.59 29293.85 14099.21 2883.79 15799.97 2192.37 16199.00 8299.74 47
tpm291.77 17691.09 17693.82 20794.83 24585.56 26592.51 35497.16 17484.00 28393.83 14190.66 32087.54 8597.17 24987.73 21291.55 21698.72 152
PAPR96.35 4395.82 5897.94 3399.63 1894.19 5999.42 6797.55 12392.43 8293.82 14299.12 4687.30 9499.91 4594.02 13399.06 7899.74 47
testing9994.88 9294.45 9196.17 11497.20 13891.91 10199.20 8897.66 9589.95 14493.68 14397.06 17590.28 4998.50 17293.52 14391.54 21798.12 187
testing9194.88 9294.44 9296.21 11097.19 14091.90 10299.23 8697.66 9589.91 14593.66 14497.05 17790.21 5098.50 17293.52 14391.53 22098.25 178
PVSNet87.13 1293.69 13092.83 14296.28 10997.99 10490.22 14299.38 7198.93 1291.42 10693.66 14497.68 14271.29 28199.64 10087.94 21097.20 13698.98 125
baseline93.91 12393.30 13095.72 13295.10 23390.07 14897.48 25695.91 27191.03 11293.54 14697.68 14279.58 21698.02 20194.27 13195.14 17099.08 119
test250694.80 9694.21 9796.58 9296.41 17292.18 9998.01 22898.96 1190.82 11793.46 14797.28 15985.92 12598.45 17789.82 18797.19 13799.12 115
VDD-MVS91.24 18990.18 19494.45 18297.08 14985.84 26098.40 19096.10 24686.99 22993.36 14898.16 12754.27 36699.20 13896.59 8190.63 23398.31 177
VDDNet90.08 21388.54 22894.69 17394.41 25487.68 20598.21 21096.40 22576.21 35893.33 14997.75 13854.93 36498.77 15994.71 12490.96 22897.61 202
thisisatest051594.75 9894.19 9896.43 10096.13 19192.64 9299.47 5597.60 11287.55 22293.17 15097.59 14794.71 1198.42 17888.28 20593.20 18598.24 181
MP-MVS-pluss95.80 6495.30 7397.29 5398.95 7692.66 8998.59 16797.14 17588.95 17393.12 15199.25 2385.62 12999.94 3496.56 8299.48 5699.28 101
MP-MVS-pluss: MP-MVS-pluss. MP-MVS-pluss
MDTV_nov1_ep13_2view91.17 11691.38 36787.45 22493.08 15286.67 10987.02 21698.95 131
EPNet_dtu92.28 16792.15 15592.70 22897.29 13284.84 27898.64 15897.82 6592.91 7593.02 15397.02 17885.48 13795.70 32372.25 34794.89 17297.55 203
Wanjuan Su, Wenbing Tao: Efficient Edge-Preserving Multi-View Stereo Network for Depth Estimation. AAAI 2023
gg-mvs-nofinetune90.00 21487.71 24096.89 7696.15 18694.69 4785.15 38797.74 7768.32 38792.97 15460.16 40096.10 396.84 26293.89 13598.87 9199.14 112
test_fmvsmvis_n_192095.47 7595.40 7295.70 13394.33 25690.22 14299.70 2696.98 19396.80 792.75 15598.89 7882.46 18899.92 4098.36 4098.33 11196.97 221
casdiffmvspermissive93.98 12193.43 12595.61 13995.07 23589.86 15798.80 13995.84 27990.98 11492.74 15697.66 14479.71 21598.10 19494.72 12395.37 16898.87 139
Fangjinhua Wang, Qingshan Xu, Yew-Soon Ong, Marc Pollefeys: Lightweight and Accurate Multi-View Stereo With Confidence-Aware Diffusion Model. IEEE T-PAMI 2025
114514_t94.06 11793.05 13697.06 6199.08 6992.26 9898.97 12597.01 19182.58 31292.57 15798.22 12480.68 21099.30 13689.34 19599.02 8199.63 66
OMC-MVS93.90 12493.62 12194.73 17298.63 8787.00 22698.04 22796.56 21692.19 8992.46 15898.73 8979.49 22099.14 14592.16 16394.34 17798.03 189
PAPM_NR95.43 7695.05 8396.57 9499.42 4790.14 14498.58 16997.51 13390.65 12292.44 15998.90 7687.77 8399.90 5090.88 17499.32 6799.68 56
UGNet91.91 17590.85 18295.10 15597.06 15088.69 18898.01 22898.24 3492.41 8592.39 16093.61 26360.52 34499.68 9288.14 20797.25 13596.92 222
Wanjuan Su, Qingshan Xu, Wenbing Tao: Uncertainty-guided Multi-view Stereo Network for Depth Estimation. IEEE Transactions on Circuits and Systems for Video Technology, 2022
MDTV_nov1_ep1390.47 19296.14 18888.55 19091.34 36897.51 13389.58 15592.24 16190.50 33186.99 10297.61 23077.64 30992.34 199
FE-MVS91.38 18490.16 19595.05 15996.46 17087.53 21189.69 37897.84 6182.97 30492.18 16292.00 29284.07 15598.93 15580.71 28895.52 16698.68 155
Vis-MVSNetpermissive92.64 15791.85 16195.03 16095.12 22988.23 19498.48 18096.81 19991.61 9892.16 16397.22 16571.58 27998.00 20385.85 23597.81 12098.88 137
Jingyang Zhang, Yao Yao, Shiwei Li, Zixin Luo, Tian Fang: Visibility-aware Multiview Stereo Network. BMVC 2020
FA-MVS(test-final)92.22 17091.08 17795.64 13796.05 19288.98 17691.60 36397.25 16186.99 22991.84 16492.12 28683.03 17299.00 15186.91 22093.91 18098.93 133
TESTMET0.1,193.82 12793.26 13295.49 14195.21 22190.25 13999.15 10097.54 12689.18 16691.79 16594.87 23889.13 6197.63 22886.21 22896.29 15498.60 160
thisisatest053094.00 11993.52 12395.43 14395.76 20290.02 15398.99 12297.60 11286.58 24191.74 16697.36 15894.78 1098.34 18086.37 22692.48 19697.94 192
UWE-MVS93.18 14793.40 12792.50 23296.56 16483.55 29598.09 22497.84 6189.50 15991.72 16796.23 20991.08 3296.70 26886.28 22793.33 18497.26 210
AUN-MVS90.17 21089.50 20392.19 23796.21 18282.67 30997.76 24497.53 12788.05 20491.67 16896.15 21183.10 17197.47 23788.11 20866.91 37296.43 236
EPMVS92.59 16091.59 16795.59 14097.22 13790.03 15291.78 36098.04 4890.42 13191.66 16990.65 32186.49 11697.46 23881.78 28196.31 15299.28 101
test-LLR93.11 15092.68 14494.40 18394.94 24187.27 22199.15 10097.25 16190.21 13491.57 17094.04 24784.89 14597.58 23285.94 23296.13 15598.36 174
test-mter93.27 14592.89 14194.40 18394.94 24187.27 22199.15 10097.25 16188.95 17391.57 17094.04 24788.03 7997.58 23285.94 23296.13 15598.36 174
JIA-IIPM85.97 28384.85 28389.33 31093.23 29173.68 36785.05 38897.13 17769.62 38391.56 17268.03 39888.03 7996.96 25777.89 30893.12 18697.34 207
casdiffmvs_mvgpermissive94.00 11993.33 12996.03 12095.22 22090.90 12799.09 10995.99 25390.58 12591.55 17397.37 15779.91 21498.06 19795.01 11695.22 16999.13 114
Fangjinhua Wang, Qingshan Xu, Yew-Soon Ong, Marc Pollefeys: Lightweight and Accurate Multi-View Stereo With Confidence-Aware Diffusion Model. IEEE T-PAMI 2025
PVSNet_Blended_VisFu94.67 10394.11 10196.34 10797.14 14491.10 11999.32 7997.43 14992.10 9291.53 17496.38 20683.29 16699.68 9293.42 14896.37 15098.25 178
CHOSEN 1792x268894.35 11393.82 11795.95 12597.40 12588.74 18798.41 18798.27 3192.18 9091.43 17596.40 20378.88 22499.81 7993.59 14297.81 12099.30 99
ACMMPcopyleft94.67 10394.30 9495.79 13099.25 5788.13 19798.41 18798.67 2290.38 13291.43 17598.72 9182.22 19299.95 3193.83 13895.76 16299.29 100
Qingshan Xu, Weihang Kong, Wenbing Tao, Marc Pollefeys: Multi-Scale Geometric Consistency Guided and Planar Prior Assisted Multi-View Stereo. IEEE Transactions on Pattern Analysis and Machine Intelligence
ECVR-MVScopyleft92.29 16691.33 17295.15 15496.41 17287.84 20298.10 22194.84 32590.82 11791.42 17797.28 15965.61 32198.49 17490.33 18197.19 13799.12 115
EPP-MVSNet93.75 12993.67 12094.01 20195.86 19885.70 26298.67 15497.66 9584.46 27791.36 17897.18 16991.16 2997.79 21392.93 15493.75 18198.53 162
PLCcopyleft91.07 394.23 11594.01 10494.87 16599.17 6387.49 21299.25 8596.55 21788.43 19091.26 17998.21 12685.92 12599.86 6389.77 18997.57 12697.24 211
Jie Liao, Yanping Fu, Qingan Yan, Chunxia xiao: Pyramid Multi-View Stereo with Local Consistency. Pacific Graphics 2019
HyFIR lowres test93.68 13293.29 13194.87 16597.57 11988.04 19998.18 21298.47 2587.57 22191.24 18095.05 23585.49 13597.46 23893.22 15092.82 18999.10 117
thres20093.69 13092.59 14796.97 6997.76 10994.74 4599.35 7699.36 289.23 16391.21 18196.97 18083.42 16398.77 15985.08 24090.96 22897.39 206
test111192.12 17191.19 17594.94 16296.15 18687.36 21798.12 21894.84 32590.85 11690.97 18297.26 16165.60 32298.37 17989.74 19097.14 14099.07 121
CDS-MVSNet93.47 13693.04 13794.76 16994.75 24789.45 16598.82 13697.03 18887.91 21090.97 18296.48 20189.06 6296.36 28889.50 19192.81 19198.49 164
Khang Truong Giang, Soohwan Song, Sungho Jo: Curvature-guided dynamic scale networks for Multi-view Stereo. ICLR 2022
tfpn200view993.43 13892.27 15296.90 7297.68 11294.84 4099.18 9199.36 288.45 18790.79 18496.90 18483.31 16498.75 16184.11 25690.69 23097.12 213
thres40093.39 14092.27 15296.73 8297.68 11294.84 4099.18 9199.36 288.45 18790.79 18496.90 18483.31 16498.75 16184.11 25690.69 23096.61 228
CR-MVSNet88.83 23487.38 24593.16 21793.47 28486.24 24284.97 38994.20 34588.92 17690.76 18686.88 36684.43 15094.82 34470.64 35192.17 20598.41 167
RPMNet85.07 29781.88 31594.64 17693.47 28486.24 24284.97 38997.21 16764.85 39490.76 18678.80 39180.95 20999.27 13753.76 39292.17 20598.41 167
PatchmatchNetpermissive92.05 17491.04 17895.06 15796.17 18589.04 17391.26 36997.26 16089.56 15790.64 18890.56 32788.35 7197.11 25179.53 29496.07 15999.03 122
Fangjinhua Wang, Silvano Galliani, Christoph Vogel, Pablo Speciale, Marc Pollefeys: PatchmatchNet: Learned Multi-View Patchmatch Stereo.
tttt051793.30 14393.01 13894.17 19395.57 20786.47 23498.51 17597.60 11285.99 25290.55 18997.19 16894.80 998.31 18185.06 24191.86 20897.74 195
PatchT85.44 29383.19 30392.22 23593.13 29383.00 30183.80 39596.37 22670.62 37690.55 18979.63 39084.81 14794.87 34258.18 38891.59 21498.79 147
tpm89.67 21988.95 21691.82 24692.54 29881.43 32092.95 34895.92 26687.81 21290.50 19189.44 34684.99 14395.65 32483.67 26382.71 28498.38 170
thres100view90093.34 14292.15 15596.90 7297.62 11494.84 4099.06 11499.36 287.96 20890.47 19296.78 19283.29 16698.75 16184.11 25690.69 23097.12 213
thres600view793.18 14792.00 15896.75 8097.62 11494.92 3599.07 11199.36 287.96 20890.47 19296.78 19283.29 16698.71 16582.93 27090.47 23496.61 228
AdaColmapbinary93.82 12793.06 13596.10 11799.88 189.07 17298.33 19897.55 12386.81 23790.39 19498.65 9875.09 24499.98 993.32 14997.53 12999.26 103
XVG-OURS-SEG-HR90.95 19490.66 18991.83 24595.18 22581.14 32895.92 31195.92 26688.40 19190.33 19597.85 13170.66 28499.38 12892.83 15688.83 24094.98 249
IS-MVSNet93.00 15292.51 14894.49 17996.14 18887.36 21798.31 20195.70 28688.58 18390.17 19697.50 15183.02 17397.22 24887.06 21596.07 15998.90 136
CSCG94.87 9494.71 8795.36 14599.54 3686.49 23399.34 7798.15 4082.71 31090.15 19799.25 2389.48 5999.86 6394.97 11898.82 9399.72 50
iter_conf0594.60 10593.87 11596.79 7797.28 13494.04 6295.67 32395.94 26083.09 30090.06 19895.97 21889.59 5798.48 17597.86 5399.34 6597.86 194
SCA90.64 20189.25 21094.83 16894.95 24088.83 18396.26 30197.21 16790.06 14390.03 19990.62 32366.61 31396.81 26483.16 26694.36 17698.84 140
XVG-OURS90.83 19690.49 19191.86 24495.23 21981.25 32595.79 31995.92 26688.96 17290.02 20098.03 13071.60 27899.35 13391.06 17187.78 24494.98 249
ADS-MVSNet287.62 25986.88 25389.86 29596.21 18279.14 34187.15 38292.99 35983.01 30289.91 20187.27 36278.87 22592.80 36574.20 33492.27 20197.64 198
ADS-MVSNet88.99 22787.30 24694.07 19796.21 18287.56 21087.15 38296.78 20283.01 30289.91 20187.27 36278.87 22597.01 25674.20 33492.27 20197.64 198
mamv491.41 18293.57 12284.91 34897.11 14758.11 39595.68 32295.93 26482.09 32289.78 20395.71 22490.09 5298.24 18797.26 6498.50 10698.38 170
ab-mvs91.05 19389.17 21196.69 8695.96 19591.72 10592.62 35397.23 16585.61 25889.74 20493.89 25668.55 29599.42 12391.09 17087.84 24398.92 135
TAMVS92.62 15892.09 15794.20 19294.10 26387.68 20598.41 18796.97 19487.53 22389.74 20496.04 21684.77 14996.49 28188.97 20192.31 20098.42 166
Vis-MVSNet (Re-imp)93.26 14693.00 13994.06 19896.14 18886.71 23198.68 15296.70 20488.30 19689.71 20697.64 14585.43 13896.39 28688.06 20996.32 15199.08 119
CNLPA93.64 13492.74 14396.36 10698.96 7590.01 15499.19 8995.89 27486.22 24989.40 20798.85 8180.66 21199.84 6988.57 20296.92 14299.24 104
Anonymous20240521188.84 23287.03 25194.27 18898.14 10084.18 28798.44 18395.58 29476.79 35789.34 20896.88 18753.42 36999.54 10887.53 21487.12 24799.09 118
Fast-Effi-MVS+91.72 17790.79 18694.49 17995.89 19687.40 21699.54 4995.70 28685.01 27089.28 20995.68 22577.75 23397.57 23583.22 26595.06 17198.51 163
PatchMatch-RL91.47 18090.54 19094.26 18998.20 9686.36 23996.94 27797.14 17587.75 21588.98 21095.75 22371.80 27699.40 12780.92 28697.39 13397.02 219
dp90.16 21188.83 21994.14 19496.38 17586.42 23591.57 36497.06 18584.76 27488.81 21190.19 33984.29 15297.43 24175.05 32691.35 22698.56 161
DeepC-MVS91.02 494.56 10993.92 11296.46 9897.16 14390.76 12998.39 19497.11 17993.92 5088.66 21298.33 11978.14 23199.85 6795.02 11598.57 10498.78 149
Andreas Kuhn, Christian Sormann, Mattia Rossi, Oliver Erdler, Friedrich Fraundorfer: DeepC-MVS: Deep Confidence Prediction for Multi-View Stereo Reconstruction. 3DV 2020
baseline192.61 15991.28 17396.58 9297.05 15194.63 4897.72 24696.20 23789.82 14788.56 21396.85 18886.85 10497.82 21188.42 20380.10 29697.30 208
Anonymous2024052987.66 25885.58 27193.92 20397.59 11785.01 27698.13 21697.13 17766.69 39288.47 21496.01 21755.09 36399.51 11087.00 21784.12 27097.23 212
CVMVSNet90.30 20690.91 18188.46 32294.32 25773.58 36897.61 25397.59 11690.16 13988.43 21597.10 17276.83 23892.86 36282.64 27293.54 18398.93 133
TR-MVS90.77 19789.44 20594.76 16996.31 17788.02 20097.92 23295.96 25785.52 25988.22 21697.23 16466.80 31298.09 19584.58 24892.38 19798.17 186
F-COLMAP92.07 17391.75 16593.02 21998.16 9982.89 30598.79 14395.97 25586.54 24387.92 21797.80 13478.69 22899.65 9885.97 23095.93 16196.53 233
WB-MVSnew88.69 24088.34 23089.77 29994.30 26185.99 25598.14 21597.31 15987.15 22887.85 21896.07 21569.91 28595.52 32772.83 34591.47 22187.80 366
BH-RMVSNet91.25 18789.99 19795.03 16096.75 16088.55 19098.65 15694.95 32287.74 21687.74 21997.80 13468.27 29898.14 19180.53 29197.49 13098.41 167
Effi-MVS+-dtu89.97 21690.68 18887.81 32695.15 22671.98 37597.87 23695.40 30591.92 9387.57 22091.44 30274.27 25396.84 26289.45 19293.10 18794.60 251
HQP-NCC93.95 26899.16 9593.92 5087.57 220
ACMP_Plane93.95 26899.16 9593.92 5087.57 220
HQP4-MVS87.57 22097.77 21592.72 262
HQP-MVS91.50 17991.23 17492.29 23493.95 26886.39 23799.16 9596.37 22693.92 5087.57 22096.67 19773.34 25997.77 21593.82 13986.29 25192.72 262
TAPA-MVS87.50 990.35 20489.05 21494.25 19098.48 9185.17 27398.42 18596.58 21582.44 31787.24 22598.53 10582.77 17798.84 15759.09 38697.88 11998.72 152
Andrea Romanoni, Matteo Matteucci: TAPA-MVS: Textureless-Aware PAtchMatch Multi-View Stereo. ICCV 2019
GeoE90.60 20289.56 20293.72 21095.10 23385.43 26699.41 6894.94 32383.96 28587.21 22696.83 19174.37 25197.05 25580.50 29293.73 18298.67 156
HQP_MVS91.26 18590.95 18092.16 23893.84 27586.07 25299.02 11896.30 23093.38 6686.99 22796.52 19972.92 26497.75 22193.46 14686.17 25492.67 264
plane_prior385.91 25693.65 6186.99 227
GA-MVS90.10 21288.69 22294.33 18692.44 29987.97 20199.08 11096.26 23489.65 15186.92 22993.11 27568.09 30096.96 25782.54 27490.15 23598.05 188
1112_ss92.71 15591.55 16896.20 11195.56 20891.12 11798.48 18094.69 33288.29 19786.89 23098.50 10887.02 10098.66 16784.75 24589.77 23898.81 145
Test_1112_low_res92.27 16890.97 17996.18 11295.53 21091.10 11998.47 18294.66 33388.28 19886.83 23193.50 26787.00 10198.65 16884.69 24689.74 23998.80 146
cascas90.93 19589.33 20995.76 13195.69 20493.03 8198.99 12296.59 21280.49 33886.79 23294.45 24465.23 32598.60 16993.52 14392.18 20495.66 245
baseline294.04 11893.80 11894.74 17193.07 29490.25 13998.12 21898.16 3989.86 14686.53 23396.95 18195.56 598.05 19991.44 16894.53 17495.93 243
OPM-MVS89.76 21889.15 21291.57 25490.53 33085.58 26498.11 22095.93 26492.88 7686.05 23496.47 20267.06 31197.87 20889.29 19886.08 25691.26 310
Ray L. Khuboni, Hongjun Xu: Octagram Propagation Matching for Multi-Scale View Stereopsis (OPM-MVS).
VPA-MVSNet89.10 22687.66 24193.45 21292.56 29791.02 12397.97 23198.32 3086.92 23486.03 23592.01 29068.84 29497.10 25390.92 17375.34 31992.23 274
SDMVSNet91.09 19089.91 19894.65 17496.80 15790.54 13597.78 24097.81 6888.34 19485.73 23695.26 23266.44 31698.26 18594.25 13286.75 24895.14 246
sd_testset89.23 22488.05 23792.74 22796.80 15785.33 26995.85 31797.03 18888.34 19485.73 23695.26 23261.12 34297.76 22085.61 23686.75 24895.14 246
tpm cat188.89 23087.27 24793.76 20895.79 20085.32 27090.76 37497.09 18376.14 35985.72 23888.59 35282.92 17498.04 20076.96 31391.43 22297.90 193
IB-MVS89.43 692.12 17190.83 18595.98 12495.40 21590.78 12899.81 1198.06 4591.23 11185.63 23993.66 26290.63 4198.78 15891.22 16971.85 35598.36 174
Christian Sormann, Mattia Rossi, Andreas Kuhn and Friedrich Fraundorfer: IB-MVS: An Iterative Algorithm for Deep Multi-View Stereo based on Binary Decisions. BMVC 2021
EI-MVSNet89.87 21789.38 20891.36 25794.32 25785.87 25897.61 25396.59 21285.10 26585.51 24097.10 17281.30 20696.56 27483.85 26283.03 28191.64 289
MVSTER92.71 15592.32 15093.86 20597.29 13292.95 8599.01 12096.59 21290.09 14085.51 24094.00 25194.61 1496.56 27490.77 17883.03 28192.08 282
test_fmvs285.10 29685.45 27484.02 35489.85 33865.63 38898.49 17892.59 36490.45 12985.43 24293.32 26843.94 38696.59 27290.81 17684.19 26989.85 346
RPSCF85.33 29485.55 27284.67 35194.63 25162.28 39093.73 34193.76 35074.38 36785.23 24397.06 17564.09 32898.31 18180.98 28486.08 25693.41 258
BH-w/o92.32 16591.79 16393.91 20496.85 15486.18 24699.11 10895.74 28388.13 20184.81 24497.00 17977.26 23697.91 20489.16 20098.03 11797.64 198
mvsmamba89.99 21589.42 20691.69 25290.64 32986.34 24098.40 19092.27 36891.01 11384.80 24594.93 23676.12 23996.51 27892.81 15783.84 27292.21 276
CLD-MVS91.06 19290.71 18792.10 24094.05 26786.10 24999.55 4496.29 23394.16 4584.70 24697.17 17069.62 29097.82 21194.74 12286.08 25692.39 267
Zhaoxin Li, Wangmeng Zuo, Zhaoqi Wang, Lei Zhang: Confidence-based Large-scale Dense Multi-view Stereo. IEEE Transaction on Image Processing, 2020
tpmvs89.16 22587.76 23893.35 21397.19 14084.75 28090.58 37697.36 15681.99 32384.56 24789.31 34983.98 15698.17 18974.85 32990.00 23797.12 213
nrg03090.23 20788.87 21794.32 18791.53 31793.54 7098.79 14395.89 27488.12 20284.55 24894.61 24278.80 22796.88 26192.35 16275.21 32092.53 266
VPNet88.30 24686.57 25693.49 21191.95 30991.35 11198.18 21297.20 17188.61 18184.52 24994.89 23762.21 33796.76 26789.34 19572.26 35292.36 268
dmvs_re88.69 24088.06 23690.59 27493.83 27778.68 34595.75 32096.18 24187.99 20784.48 25096.32 20767.52 30696.94 25984.98 24385.49 26096.14 240
MVS93.92 12292.28 15198.83 795.69 20496.82 896.22 30498.17 3784.89 27284.34 25198.61 10379.32 22199.83 7393.88 13699.43 6199.86 29
bld_raw_dy_0_6491.25 18790.03 19694.92 16395.99 19392.32 9591.40 36695.74 28370.34 37984.15 25294.47 24385.61 13098.17 18994.42 12998.14 11594.26 252
mvs_anonymous92.50 16291.65 16695.06 15796.60 16389.64 16197.06 27396.44 22486.64 24084.14 25393.93 25482.49 18496.17 30391.47 16796.08 15899.35 94
Fast-Effi-MVS+-dtu88.84 23288.59 22689.58 30493.44 28778.18 34998.65 15694.62 33488.46 18684.12 25495.37 23168.91 29296.52 27782.06 27891.70 21394.06 253
LS3D90.19 20988.72 22194.59 17898.97 7386.33 24196.90 27996.60 21074.96 36484.06 25598.74 8875.78 24199.83 7374.93 32797.57 12697.62 201
ACMM86.95 1388.77 23788.22 23390.43 28093.61 28181.34 32398.50 17695.92 26687.88 21183.85 25695.20 23467.20 30997.89 20686.90 22184.90 26392.06 283
Qingshan Xu and Wenbing Tao: Multi-Scale Geometric Consistency Guided Multi-View Stereo. CVPR 2019
BH-untuned91.46 18190.84 18393.33 21496.51 16884.83 27998.84 13595.50 29886.44 24883.50 25796.70 19575.49 24397.77 21586.78 22397.81 12097.40 205
FIs90.70 19989.87 19993.18 21692.29 30191.12 11798.17 21498.25 3289.11 16883.44 25894.82 23982.26 19196.17 30387.76 21182.76 28392.25 272
UniMVSNet (Re)89.50 22388.32 23193.03 21892.21 30390.96 12598.90 13198.39 2789.13 16783.22 25992.03 28881.69 19896.34 29486.79 22272.53 34891.81 287
UniMVSNet_NR-MVSNet89.60 22088.55 22792.75 22692.17 30490.07 14898.74 14698.15 4088.37 19283.21 26093.98 25282.86 17595.93 31386.95 21872.47 34992.25 272
DU-MVS88.83 23487.51 24292.79 22491.46 31890.07 14898.71 14797.62 10988.87 17783.21 26093.68 26074.63 24595.93 31386.95 21872.47 34992.36 268
LPG-MVS_test88.86 23188.47 22990.06 28993.35 28980.95 33098.22 20895.94 26087.73 21783.17 26296.11 21366.28 31797.77 21590.19 18385.19 26191.46 300
LGP-MVS_train90.06 28993.35 28980.95 33095.94 26087.73 21783.17 26296.11 21366.28 31797.77 21590.19 18385.19 26191.46 300
miper_enhance_ethall90.33 20589.70 20092.22 23597.12 14688.93 18198.35 19795.96 25788.60 18283.14 26492.33 28587.38 8896.18 30286.49 22577.89 30591.55 297
FC-MVSNet-test90.22 20889.40 20792.67 23091.78 31389.86 15797.89 23398.22 3588.81 17882.96 26594.66 24181.90 19795.96 31185.89 23482.52 28692.20 278
PCF-MVS89.78 591.26 18589.63 20196.16 11695.44 21291.58 10995.29 32696.10 24685.07 26782.75 26697.45 15478.28 23099.78 8480.60 29095.65 16597.12 213
Andreas Kuhn, Shan Lin, Oliver Erdler: Plane Completion and Filtering for Multi-View Stereo Reconstruction. GCPR 2019
V4287.00 26585.68 27090.98 26489.91 33586.08 25098.32 20095.61 29283.67 29182.72 26790.67 31974.00 25696.53 27681.94 28074.28 33290.32 335
v114486.83 26885.31 27691.40 25589.75 33987.21 22598.31 20195.45 30183.22 29782.70 26890.78 31473.36 25896.36 28879.49 29574.69 32690.63 330
Syy-MVS84.10 31384.53 29182.83 36095.14 22765.71 38797.68 24996.66 20686.52 24482.63 26996.84 18968.15 29989.89 38345.62 39891.54 21792.87 260
myMVS_eth3d88.68 24289.07 21387.50 33095.14 22779.74 33697.68 24996.66 20686.52 24482.63 26996.84 18985.22 14289.89 38369.43 35691.54 21792.87 260
v14419286.40 27784.89 28290.91 26589.48 34585.59 26398.21 21095.43 30482.45 31682.62 27190.58 32672.79 26796.36 28878.45 30574.04 33690.79 322
3Dnovator87.35 1193.17 14991.77 16497.37 5295.41 21493.07 7998.82 13697.85 6091.53 10182.56 27297.58 14871.97 27399.82 7691.01 17299.23 7299.22 107
v2v48287.27 26385.76 26891.78 25189.59 34187.58 20998.56 17095.54 29684.53 27682.51 27391.78 29673.11 26396.47 28282.07 27774.14 33591.30 308
tt080586.50 27684.79 28591.63 25391.97 30781.49 31996.49 29397.38 15482.24 31982.44 27495.82 22251.22 37498.25 18684.55 24980.96 29295.13 248
Baseline_NR-MVSNet85.83 28684.82 28488.87 31988.73 35383.34 29898.63 16091.66 37780.41 34182.44 27491.35 30474.63 24595.42 33184.13 25571.39 35887.84 364
v119286.32 27984.71 28791.17 25989.53 34486.40 23698.13 21695.44 30382.52 31482.42 27690.62 32371.58 27996.33 29577.23 31074.88 32390.79 322
test_djsdf88.26 24887.73 23989.84 29688.05 36182.21 31397.77 24296.17 24286.84 23582.41 27791.95 29472.07 27295.99 30989.83 18584.50 26691.32 307
cl2289.57 22188.79 22091.91 24397.94 10587.62 20897.98 23096.51 21985.03 26882.37 27891.79 29583.65 15896.50 27985.96 23177.89 30591.61 294
131493.44 13791.98 15997.84 3495.24 21894.38 5496.22 30497.92 5590.18 13682.28 27997.71 14177.63 23499.80 8191.94 16598.67 10099.34 96
v192192086.02 28284.44 29390.77 27189.32 34785.20 27198.10 22195.35 30982.19 32082.25 28090.71 31670.73 28296.30 29976.85 31574.49 32890.80 321
v124085.77 28984.11 29690.73 27289.26 34885.15 27497.88 23595.23 31881.89 32682.16 28190.55 32869.60 29196.31 29675.59 32474.87 32490.72 327
XVG-ACMP-BASELINE85.86 28584.95 28188.57 32089.90 33677.12 35594.30 33595.60 29387.40 22582.12 28292.99 27853.42 36997.66 22585.02 24283.83 27390.92 318
GBi-Net86.67 27184.96 27991.80 24795.11 23088.81 18496.77 28395.25 31182.94 30582.12 28290.25 33462.89 33494.97 33979.04 29880.24 29391.62 291
test186.67 27184.96 27991.80 24795.11 23088.81 18496.77 28395.25 31182.94 30582.12 28290.25 33462.89 33494.97 33979.04 29880.24 29391.62 291
FMVSNet388.81 23687.08 25093.99 20296.52 16794.59 4998.08 22596.20 23785.85 25382.12 28291.60 29974.05 25595.40 33279.04 29880.24 29391.99 285
IterMVS-LS88.34 24587.44 24391.04 26294.10 26385.85 25998.10 22195.48 29985.12 26482.03 28691.21 30781.35 20595.63 32583.86 26175.73 31791.63 290
Fangjinhua Wang, Silvano Galliani, Christoph Vogel, Marc Pollefeys: IterMVS: Iterative Probability Estimation for Efficient Multi-View Stereo.
miper_ehance_all_eth88.94 22988.12 23591.40 25595.32 21786.93 22797.85 23795.55 29584.19 28081.97 28791.50 30184.16 15395.91 31684.69 24677.89 30591.36 305
MIMVSNet84.48 30581.83 31692.42 23391.73 31487.36 21785.52 38594.42 34081.40 32981.91 28887.58 35651.92 37292.81 36473.84 33788.15 24297.08 217
PS-MVSNAJss89.54 22289.05 21491.00 26388.77 35284.36 28497.39 25795.97 25588.47 18481.88 28993.80 25882.48 18596.50 27989.34 19583.34 28092.15 279
WR-MVS88.54 24487.22 24992.52 23191.93 31189.50 16498.56 17097.84 6186.99 22981.87 29093.81 25774.25 25495.92 31585.29 23874.43 32992.12 280
TranMVSNet+NR-MVSNet87.75 25486.31 26092.07 24190.81 32688.56 18998.33 19897.18 17287.76 21481.87 29093.90 25572.45 26895.43 33083.13 26871.30 35992.23 274
eth_miper_zixun_eth87.76 25387.00 25290.06 28994.67 24982.65 31097.02 27695.37 30784.19 28081.86 29291.58 30081.47 20295.90 31783.24 26473.61 33891.61 294
UniMVSNet_ETH3D85.65 29283.79 30091.21 25890.41 33280.75 33295.36 32595.78 28078.76 34781.83 29394.33 24549.86 37996.66 26984.30 25183.52 27896.22 239
c3_l88.19 24987.23 24891.06 26194.97 23986.17 24797.72 24695.38 30683.43 29481.68 29491.37 30382.81 17695.72 32284.04 25973.70 33791.29 309
DP-MVS88.75 23886.56 25795.34 14698.92 7787.45 21497.64 25293.52 35670.55 37781.49 29597.25 16374.43 25099.88 5471.14 35094.09 17898.67 156
3Dnovator+87.72 893.43 13891.84 16298.17 2395.73 20395.08 3498.92 12997.04 18691.42 10681.48 29697.60 14674.60 24799.79 8290.84 17598.97 8499.64 64
QAPM91.41 18289.49 20497.17 5995.66 20693.42 7398.60 16597.51 13380.92 33681.39 29797.41 15672.89 26699.87 5882.33 27598.68 9998.21 183
testing387.75 25488.22 23386.36 33894.66 25077.41 35499.52 5097.95 5486.05 25181.12 29896.69 19686.18 12289.31 38761.65 38190.12 23692.35 271
XXY-MVS87.75 25486.02 26492.95 22290.46 33189.70 16097.71 24895.90 27284.02 28280.95 29994.05 24667.51 30797.10 25385.16 23978.41 30292.04 284
v14886.38 27885.06 27890.37 28489.47 34684.10 28898.52 17295.48 29983.80 28780.93 30090.22 33774.60 24796.31 29680.92 28671.55 35790.69 328
DIV-MVS_self_test87.82 25186.81 25490.87 26894.87 24485.39 26897.81 23895.22 31982.92 30880.76 30191.31 30581.99 19495.81 32081.36 28275.04 32291.42 303
cl____87.82 25186.79 25590.89 26794.88 24385.43 26697.81 23895.24 31482.91 30980.71 30291.22 30681.97 19695.84 31881.34 28375.06 32191.40 304
FMVSNet286.90 26684.79 28593.24 21595.11 23092.54 9397.67 25195.86 27882.94 30580.55 30391.17 30862.89 33495.29 33477.23 31079.71 29991.90 286
pmmvs487.58 26086.17 26391.80 24789.58 34288.92 18297.25 26595.28 31082.54 31380.49 30493.17 27475.62 24296.05 30882.75 27178.90 30090.42 333
ACMP87.39 1088.71 23988.24 23290.12 28893.91 27381.06 32998.50 17695.67 28989.43 16180.37 30595.55 22665.67 31997.83 21090.55 18084.51 26591.47 299
Qingshan Xu and Wenbing Tao: Planar Prior Assisted PatchMatch Multi-View Stereo. AAAI 2020
pmmvs585.87 28484.40 29590.30 28588.53 35684.23 28598.60 16593.71 35281.53 32880.29 30692.02 28964.51 32795.52 32782.04 27978.34 30391.15 312
test0.0.03 188.96 22888.61 22490.03 29391.09 32384.43 28398.97 12597.02 19090.21 13480.29 30696.31 20884.89 14591.93 37672.98 34385.70 25993.73 254
miper_lstm_enhance86.90 26686.20 26289.00 31694.53 25281.19 32696.74 28795.24 31482.33 31880.15 30890.51 33081.99 19494.68 34880.71 28873.58 33991.12 313
jajsoiax87.35 26186.51 25889.87 29487.75 36681.74 31797.03 27495.98 25488.47 18480.15 30893.80 25861.47 33996.36 28889.44 19384.47 26791.50 298
mvs_tets87.09 26486.22 26189.71 30087.87 36281.39 32296.73 28895.90 27288.19 20079.99 31093.61 26359.96 34696.31 29689.40 19484.34 26891.43 302
ITE_SJBPF87.93 32492.26 30276.44 35793.47 35787.67 22079.95 31195.49 22956.50 35697.38 24375.24 32582.33 28789.98 344
v886.11 28184.45 29291.10 26089.99 33486.85 22897.24 26695.36 30881.99 32379.89 31289.86 34274.53 24996.39 28678.83 30272.32 35190.05 342
v1085.73 29084.01 29890.87 26890.03 33386.73 23097.20 26995.22 31981.25 33179.85 31389.75 34373.30 26196.28 30076.87 31472.64 34789.61 350
WR-MVS_H86.53 27585.49 27389.66 30391.04 32483.31 29997.53 25598.20 3684.95 27179.64 31490.90 31278.01 23295.33 33376.29 31972.81 34590.35 334
anonymousdsp86.69 27085.75 26989.53 30586.46 37482.94 30296.39 29595.71 28583.97 28479.63 31590.70 31768.85 29395.94 31286.01 22984.02 27189.72 348
Patchmtry83.61 31781.64 31789.50 30693.36 28882.84 30784.10 39294.20 34569.47 38479.57 31686.88 36684.43 15094.78 34568.48 36074.30 33190.88 319
CP-MVSNet86.54 27485.45 27489.79 29891.02 32582.78 30897.38 25997.56 12285.37 26179.53 31793.03 27671.86 27595.25 33579.92 29373.43 34391.34 306
Patchmatch-test86.25 28084.06 29792.82 22394.42 25382.88 30682.88 39694.23 34471.58 37379.39 31890.62 32389.00 6496.42 28563.03 37791.37 22599.16 110
DSMNet-mixed81.60 32681.43 32082.10 36384.36 38060.79 39193.63 34386.74 39679.00 34379.32 31987.15 36463.87 33089.78 38566.89 36691.92 20795.73 244
MSDG88.29 24786.37 25994.04 20096.90 15386.15 24896.52 29294.36 34277.89 35379.22 32096.95 18169.72 28899.59 10473.20 34292.58 19596.37 238
Anonymous2023121184.72 30082.65 31290.91 26597.71 11184.55 28297.28 26396.67 20566.88 39179.18 32190.87 31358.47 35096.60 27182.61 27374.20 33391.59 296
PS-CasMVS85.81 28784.58 29089.49 30890.77 32782.11 31497.20 26997.36 15684.83 27379.12 32292.84 27967.42 30895.16 33778.39 30673.25 34491.21 311
IterMVS85.81 28784.67 28889.22 31193.51 28383.67 29496.32 29894.80 32885.09 26678.69 32390.17 34066.57 31593.17 36179.48 29677.42 31190.81 320
Fangjinhua Wang, Silvano Galliani, Christoph Vogel, Marc Pollefeys: IterMVS: Iterative Probability Estimation for Efficient Multi-View Stereo.
PEN-MVS85.21 29583.93 29989.07 31589.89 33781.31 32497.09 27297.24 16484.45 27878.66 32492.68 28268.44 29794.87 34275.98 32170.92 36091.04 315
IterMVS-SCA-FT85.73 29084.64 28989.00 31693.46 28682.90 30496.27 29994.70 33185.02 26978.62 32590.35 33266.61 31393.33 35879.38 29777.36 31290.76 324
OpenMVScopyleft85.28 1490.75 19888.84 21896.48 9793.58 28293.51 7198.80 13997.41 15182.59 31178.62 32597.49 15268.00 30299.82 7684.52 25098.55 10596.11 241
PVSNet_083.28 1687.31 26285.16 27793.74 20994.78 24684.59 28198.91 13098.69 2189.81 14878.59 32793.23 27261.95 33899.34 13494.75 12155.72 39397.30 208
EU-MVSNet84.19 31084.42 29483.52 35888.64 35567.37 38696.04 30995.76 28285.29 26278.44 32893.18 27370.67 28391.48 37875.79 32375.98 31591.70 288
v7n84.42 30782.75 31089.43 30988.15 35981.86 31696.75 28695.67 28980.53 33778.38 32989.43 34769.89 28696.35 29373.83 33872.13 35390.07 340
FMVSNet183.94 31481.32 32291.80 24791.94 31088.81 18496.77 28395.25 31177.98 34978.25 33090.25 33450.37 37894.97 33973.27 34177.81 30991.62 291
D2MVS87.96 25087.39 24489.70 30191.84 31283.40 29798.31 20198.49 2388.04 20578.23 33190.26 33373.57 25796.79 26684.21 25383.53 27788.90 358
MS-PatchMatch86.75 26985.92 26689.22 31191.97 30782.47 31296.91 27896.14 24483.74 28877.73 33293.53 26658.19 35197.37 24576.75 31698.35 11087.84 364
DTE-MVSNet84.14 31182.80 30788.14 32388.95 35179.87 33596.81 28296.24 23583.50 29377.60 33392.52 28467.89 30494.24 35372.64 34669.05 36490.32 335
COLMAP_ROBcopyleft82.69 1884.54 30482.82 30689.70 30196.72 16178.85 34295.89 31292.83 36271.55 37477.54 33495.89 22159.40 34899.14 14567.26 36488.26 24191.11 314
Johannes L. Schönberger, Enliang Zheng, Marc Pollefeys, Jan-Michael Frahm: Pixelwise View Selection for Unstructured Multi-View Stereo. ECCV 2016
OurMVSNet-221017-084.13 31283.59 30185.77 34387.81 36370.24 38094.89 33093.65 35486.08 25076.53 33593.28 27161.41 34096.14 30580.95 28577.69 31090.93 317
tfpnnormal83.65 31581.35 32190.56 27791.37 32088.06 19897.29 26297.87 5878.51 34876.20 33690.91 31164.78 32696.47 28261.71 38073.50 34087.13 373
ppachtmachnet_test83.63 31681.57 31989.80 29789.01 34985.09 27597.13 27194.50 33678.84 34576.14 33791.00 31069.78 28794.61 34963.40 37574.36 33089.71 349
pm-mvs184.68 30182.78 30990.40 28189.58 34285.18 27297.31 26194.73 33081.93 32576.05 33892.01 29065.48 32396.11 30678.75 30369.14 36389.91 345
AllTest84.97 29883.12 30490.52 27896.82 15578.84 34395.89 31292.17 37077.96 35175.94 33995.50 22755.48 35999.18 13971.15 34887.14 24593.55 256
TestCases90.52 27896.82 15578.84 34392.17 37077.96 35175.94 33995.50 22755.48 35999.18 13971.15 34887.14 24593.55 256
CL-MVSNet_self_test79.89 33578.34 33684.54 35281.56 38875.01 36196.88 28095.62 29181.10 33275.86 34185.81 37168.49 29690.26 38163.21 37656.51 39188.35 361
testgi82.29 32181.00 32486.17 34087.24 36974.84 36397.39 25791.62 37888.63 18075.85 34295.42 23046.07 38591.55 37766.87 36779.94 29792.12 280
MVP-Stereo86.61 27385.83 26788.93 31888.70 35483.85 29296.07 30894.41 34182.15 32175.64 34391.96 29367.65 30596.45 28477.20 31298.72 9886.51 376
Qingsong Yan: MVP-Stereo: A Parallel Multi-View Patchmatch Stereo Method with Dilation Matching for Photogrammetric Application.
LF4IMVS81.94 32481.17 32384.25 35387.23 37068.87 38593.35 34591.93 37583.35 29675.40 34493.00 27749.25 38296.65 27078.88 30178.11 30487.22 372
our_test_384.47 30682.80 30789.50 30689.01 34983.90 29197.03 27494.56 33581.33 33075.36 34590.52 32971.69 27794.54 35068.81 35876.84 31390.07 340
LTVRE_ROB81.71 1984.59 30382.72 31190.18 28692.89 29683.18 30093.15 34694.74 32978.99 34475.14 34692.69 28165.64 32097.63 22869.46 35581.82 28989.74 347
Andreas Kuhn, Heiko Hirschmüller, Daniel Scharstein, Helmut Mayer: A TV Prior for High-Quality Scalable Multi-View Stereo Reconstruction. International Journal of Computer Vision 2016
Anonymous2023120680.76 33079.42 33484.79 35084.78 37972.98 37096.53 29192.97 36079.56 34274.33 34788.83 35061.27 34192.15 37360.59 38375.92 31689.24 355
FMVSNet582.29 32180.54 32687.52 32993.79 27984.01 28993.73 34192.47 36676.92 35674.27 34886.15 37063.69 33289.24 38869.07 35774.79 32589.29 354
MVS-HIRNet79.01 33875.13 35090.66 27393.82 27881.69 31885.16 38693.75 35154.54 39674.17 34959.15 40257.46 35396.58 27363.74 37494.38 17593.72 255
ACMH+83.78 1584.21 30982.56 31489.15 31393.73 28079.16 34096.43 29494.28 34381.09 33374.00 35094.03 24954.58 36597.67 22476.10 32078.81 30190.63 330
kuosan84.40 30883.34 30287.60 32895.87 19779.21 33992.39 35596.87 19776.12 36073.79 35193.98 25281.51 20090.63 37964.13 37375.42 31892.95 259
KD-MVS_2432*160082.98 31880.52 32790.38 28294.32 25788.98 17692.87 35095.87 27680.46 33973.79 35187.49 35982.76 17993.29 35970.56 35246.53 40288.87 359
miper_refine_blended82.98 31880.52 32790.38 28294.32 25788.98 17692.87 35095.87 27680.46 33973.79 35187.49 35982.76 17993.29 35970.56 35246.53 40288.87 359
NR-MVSNet87.74 25786.00 26592.96 22191.46 31890.68 13296.65 29097.42 15088.02 20673.42 35493.68 26077.31 23595.83 31984.26 25271.82 35692.36 268
test_fmvs375.09 35275.19 34974.81 37377.45 39654.08 39995.93 31090.64 38482.51 31573.29 35581.19 38422.29 40286.29 39585.50 23767.89 36884.06 386
USDC84.74 29982.93 30590.16 28791.73 31483.54 29695.00 32993.30 35888.77 17973.19 35693.30 27053.62 36897.65 22775.88 32281.54 29089.30 353
KD-MVS_self_test77.47 34775.88 34782.24 36181.59 38768.93 38492.83 35294.02 34877.03 35573.14 35783.39 37655.44 36190.42 38067.95 36157.53 39087.38 368
LCM-MVSNet-Re88.59 24388.61 22488.51 32195.53 21072.68 37396.85 28188.43 39388.45 18773.14 35790.63 32275.82 24094.38 35192.95 15395.71 16498.48 165
TDRefinement78.01 34475.31 34886.10 34170.06 40373.84 36693.59 34491.58 37974.51 36673.08 35991.04 30949.63 38197.12 25074.88 32859.47 38687.33 370
TransMVSNet (Re)81.97 32379.61 33389.08 31489.70 34084.01 28997.26 26491.85 37678.84 34573.07 36091.62 29867.17 31095.21 33667.50 36359.46 38788.02 363
SixPastTwentyTwo82.63 32081.58 31885.79 34288.12 36071.01 37895.17 32792.54 36584.33 27972.93 36192.08 28760.41 34595.61 32674.47 33174.15 33490.75 325
pmmvs679.90 33477.31 34087.67 32784.17 38178.13 35095.86 31693.68 35367.94 38872.67 36289.62 34550.98 37695.75 32174.80 33066.04 37489.14 356
ACMH83.09 1784.60 30282.61 31390.57 27593.18 29282.94 30296.27 29994.92 32481.01 33472.61 36393.61 26356.54 35597.79 21374.31 33281.07 29190.99 316
Qingshan Xu and Wenbing Tao: Multi-Scale Geometric Consistency Guided Multi-View Stereo. CVPR 2019
Anonymous2024052178.63 34276.90 34383.82 35582.82 38572.86 37195.72 32193.57 35573.55 37172.17 36484.79 37349.69 38092.51 36965.29 37174.50 32786.09 378
Patchmatch-RL test81.90 32580.13 32987.23 33380.71 39070.12 38284.07 39388.19 39483.16 29970.57 36582.18 38187.18 9592.59 36782.28 27662.78 38098.98 125
mvsany_test375.85 35174.52 35379.83 36873.53 40060.64 39291.73 36187.87 39583.91 28670.55 36682.52 37831.12 39793.66 35586.66 22462.83 37985.19 384
test_040278.81 34076.33 34586.26 33991.18 32278.44 34895.88 31491.34 38168.55 38570.51 36789.91 34152.65 37194.99 33847.14 39779.78 29885.34 382
dongtai81.36 32780.61 32583.62 35794.25 26273.32 36995.15 32896.81 19973.56 37069.79 36892.81 28081.00 20886.80 39452.08 39570.06 36290.75 325
TinyColmap80.42 33277.94 33787.85 32592.09 30578.58 34693.74 34089.94 38774.99 36369.77 36991.78 29646.09 38497.58 23265.17 37277.89 30587.38 368
dmvs_testset77.17 34878.99 33571.71 37687.25 36838.55 41391.44 36581.76 40485.77 25569.49 37095.94 22069.71 28984.37 39652.71 39476.82 31492.21 276
test20.0378.51 34377.48 33981.62 36583.07 38471.03 37796.11 30792.83 36281.66 32769.31 37189.68 34457.53 35287.29 39358.65 38768.47 36586.53 375
test_vis1_rt81.31 32880.05 33185.11 34591.29 32170.66 37998.98 12477.39 40885.76 25668.80 37282.40 37936.56 39599.44 11992.67 15986.55 25085.24 383
N_pmnet70.19 35869.87 36071.12 37888.24 35830.63 41795.85 31728.70 41670.18 38068.73 37386.55 36864.04 32993.81 35453.12 39373.46 34188.94 357
OpenMVS_ROBcopyleft73.86 2077.99 34575.06 35186.77 33683.81 38377.94 35296.38 29691.53 38067.54 38968.38 37487.13 36543.94 38696.08 30755.03 39181.83 28886.29 377
ambc79.60 36972.76 40256.61 39676.20 40092.01 37468.25 37580.23 38823.34 40194.73 34673.78 33960.81 38487.48 367
PM-MVS74.88 35372.85 35680.98 36778.98 39464.75 38990.81 37385.77 39780.95 33568.23 37682.81 37729.08 39992.84 36376.54 31862.46 38285.36 381
pmmvs372.86 35669.76 36182.17 36273.86 39974.19 36594.20 33689.01 39264.23 39567.72 37780.91 38741.48 39088.65 39062.40 37854.02 39583.68 388
lessismore_v085.08 34685.59 37769.28 38390.56 38567.68 37890.21 33854.21 36795.46 32973.88 33662.64 38190.50 332
K. test v381.04 32979.77 33284.83 34987.41 36770.23 38195.60 32493.93 34983.70 29067.51 37989.35 34855.76 35793.58 35776.67 31768.03 36790.67 329
MIMVSNet175.92 35073.30 35583.81 35681.29 38975.57 35992.26 35692.05 37373.09 37267.48 38086.18 36940.87 39287.64 39255.78 39070.68 36188.21 362
ET-MVSNet_ETH3D92.56 16191.45 17095.88 12796.39 17494.13 6099.46 5996.97 19492.18 9066.94 38198.29 12294.65 1394.28 35294.34 13083.82 27599.24 104
pmmvs-eth3d78.71 34176.16 34686.38 33780.25 39281.19 32694.17 33792.13 37277.97 35066.90 38282.31 38055.76 35792.56 36873.63 34062.31 38385.38 380
EG-PatchMatch MVS79.92 33377.59 33886.90 33587.06 37177.90 35396.20 30694.06 34774.61 36566.53 38388.76 35140.40 39396.20 30167.02 36583.66 27686.61 374
test_method70.10 35968.66 36274.41 37586.30 37655.84 39794.47 33289.82 38835.18 40466.15 38484.75 37430.54 39877.96 40570.40 35460.33 38589.44 352
UnsupCasMVSNet_eth78.90 33976.67 34485.58 34482.81 38674.94 36291.98 35896.31 22984.64 27565.84 38587.71 35551.33 37392.23 37272.89 34456.50 39289.56 351
test_f71.94 35770.82 35875.30 37272.77 40153.28 40091.62 36289.66 39075.44 36264.47 38678.31 39220.48 40389.56 38678.63 30466.02 37583.05 391
new-patchmatchnet74.80 35472.40 35781.99 36478.36 39572.20 37494.44 33392.36 36777.06 35463.47 38779.98 38951.04 37588.85 38960.53 38454.35 39484.92 385
new_pmnet76.02 34973.71 35482.95 35983.88 38272.85 37291.26 36992.26 36970.44 37862.60 38881.37 38347.64 38392.32 37161.85 37972.10 35483.68 388
UnsupCasMVSNet_bld73.85 35570.14 35984.99 34779.44 39375.73 35888.53 37995.24 31470.12 38161.94 38974.81 39541.41 39193.62 35668.65 35951.13 39985.62 379
CMPMVSbinary58.40 2180.48 33180.11 33081.59 36685.10 37859.56 39394.14 33895.95 25968.54 38660.71 39093.31 26955.35 36297.87 20883.06 26984.85 26487.33 370
M. Jancosek, T. Pajdla: Multi-View Reconstruction Preserving Weakly-Supported Surfaces. CVPR 2011
APD_test168.93 36066.98 36374.77 37480.62 39153.15 40187.97 38085.01 39953.76 39759.26 39187.52 35825.19 40089.95 38256.20 38967.33 37181.19 392
DeepMVS_CXcopyleft76.08 37190.74 32851.65 40490.84 38386.47 24757.89 39287.98 35335.88 39692.60 36665.77 37065.06 37783.97 387
WB-MVS66.44 36166.29 36466.89 38174.84 39744.93 40893.00 34784.09 40271.15 37555.82 39381.63 38263.79 33180.31 40321.85 40750.47 40075.43 394
SSC-MVS65.42 36265.20 36566.06 38273.96 39843.83 40992.08 35783.54 40369.77 38254.73 39480.92 38663.30 33379.92 40420.48 40848.02 40174.44 395
YYNet179.64 33777.04 34287.43 33287.80 36479.98 33496.23 30394.44 33773.83 36951.83 39587.53 35767.96 30392.07 37566.00 36967.75 37090.23 337
MDA-MVSNet_test_wron79.65 33677.05 34187.45 33187.79 36580.13 33396.25 30294.44 33773.87 36851.80 39687.47 36168.04 30192.12 37466.02 36867.79 36990.09 338
LCM-MVSNet60.07 36656.37 36871.18 37754.81 41248.67 40582.17 39789.48 39137.95 40249.13 39769.12 39613.75 41081.76 39759.28 38551.63 39883.10 390
MDA-MVSNet-bldmvs77.82 34674.75 35287.03 33488.33 35778.52 34796.34 29792.85 36175.57 36148.87 39887.89 35457.32 35492.49 37060.79 38264.80 37890.08 339
PMMVS258.97 36755.07 37070.69 37962.72 40755.37 39885.97 38480.52 40549.48 39845.94 39968.31 39715.73 40880.78 40149.79 39637.12 40475.91 393
testf156.38 36853.73 37164.31 38564.84 40545.11 40680.50 39875.94 41038.87 40042.74 40075.07 39311.26 41281.19 39941.11 40053.27 39666.63 399
APD_test256.38 36853.73 37164.31 38564.84 40545.11 40680.50 39875.94 41038.87 40042.74 40075.07 39311.26 41281.19 39941.11 40053.27 39666.63 399
FPMVS61.57 36360.32 36665.34 38360.14 41042.44 41191.02 37289.72 38944.15 39942.63 40280.93 38519.02 40480.59 40242.50 39972.76 34673.00 396
test_vis3_rt61.29 36458.75 36768.92 38067.41 40452.84 40291.18 37159.23 41566.96 39041.96 40358.44 40311.37 41194.72 34774.25 33357.97 38959.20 402
Gipumacopyleft54.77 37052.22 37462.40 38786.50 37359.37 39450.20 40590.35 38636.52 40341.20 40449.49 40518.33 40681.29 39832.10 40465.34 37646.54 405
S. Galliani, K. Lasinger, K. Schindler: Massively Parallel Multiview Stereopsis by Surface Normal Diffusion. ICCV 2015
tmp_tt53.66 37152.86 37356.05 38832.75 41641.97 41273.42 40276.12 40921.91 40939.68 40596.39 20542.59 38965.10 40878.00 30714.92 40961.08 401
E-PMN41.02 37540.93 37741.29 39161.97 40833.83 41484.00 39465.17 41327.17 40627.56 40646.72 40717.63 40760.41 41019.32 40918.82 40629.61 406
ANet_high50.71 37246.17 37564.33 38444.27 41452.30 40376.13 40178.73 40664.95 39327.37 40755.23 40414.61 40967.74 40736.01 40318.23 40772.95 397
EMVS39.96 37639.88 37840.18 39259.57 41132.12 41684.79 39164.57 41426.27 40726.14 40844.18 41018.73 40559.29 41117.03 41017.67 40829.12 407
MVEpermissive44.00 2241.70 37437.64 37953.90 39049.46 41343.37 41065.09 40466.66 41226.19 40825.77 40948.53 4063.58 41663.35 40926.15 40627.28 40554.97 404
Simon Fuhrmann, Fabian Langguth, Michael Goesele: MVE - A Multi-View Reconstruction Environment. EUROGRAPHICS Workshops on Graphics and Cultural Heritage (2014)
PMVScopyleft41.42 2345.67 37342.50 37655.17 38934.28 41532.37 41566.24 40378.71 40730.72 40522.04 41059.59 4014.59 41477.85 40627.49 40558.84 38855.29 403
Y. Furukawa, J. Ponce: Accurate, dense, and robust multiview stereopsis. PAMI (2010)
testmvs18.81 37823.05 3816.10 3954.48 4172.29 42097.78 2403.00 4183.27 41118.60 41162.71 3991.53 4182.49 41414.26 4121.80 41113.50 409
test12316.58 38019.47 3827.91 3943.59 4185.37 41994.32 3341.39 4192.49 41213.98 41244.60 4092.91 4172.65 41311.35 4130.57 41215.70 408
wuyk23d16.71 37916.73 38316.65 39360.15 40925.22 41841.24 4065.17 4176.56 4105.48 4133.61 4133.64 41522.72 41215.20 4119.52 4101.99 410
EGC-MVSNET60.70 36555.37 36976.72 37086.35 37571.08 37689.96 37784.44 4010.38 4131.50 41484.09 37537.30 39488.10 39140.85 40273.44 34270.97 398
test_blank0.00 3830.00 3860.00 3960.00 4190.00 4210.00 4070.00 4200.00 4140.00 4150.00 4140.00 4190.00 4150.00 4140.00 4130.00 411
uanet_test0.00 3830.00 3860.00 3960.00 4190.00 4210.00 4070.00 4200.00 4140.00 4150.00 4140.00 4190.00 4150.00 4140.00 4130.00 411
DCPMVS0.00 3830.00 3860.00 3960.00 4190.00 4210.00 4070.00 4200.00 4140.00 4150.00 4140.00 4190.00 4150.00 4140.00 4130.00 411
cdsmvs_eth3d_5k22.52 37730.03 3800.00 3960.00 4190.00 4210.00 40797.17 1730.00 4140.00 41598.77 8574.35 2520.00 4150.00 4140.00 4130.00 411
pcd_1.5k_mvsjas6.87 3829.16 3850.00 3960.00 4190.00 4210.00 4070.00 4200.00 4140.00 4150.00 41482.48 1850.00 4150.00 4140.00 4130.00 411
sosnet-low-res0.00 3830.00 3860.00 3960.00 4190.00 4210.00 4070.00 4200.00 4140.00 4150.00 4140.00 4190.00 4150.00 4140.00 4130.00 411
sosnet0.00 3830.00 3860.00 3960.00 4190.00 4210.00 4070.00 4200.00 4140.00 4150.00 4140.00 4190.00 4150.00 4140.00 4130.00 411
uncertanet0.00 3830.00 3860.00 3960.00 4190.00 4210.00 4070.00 4200.00 4140.00 4150.00 4140.00 4190.00 4150.00 4140.00 4130.00 411
Regformer0.00 3830.00 3860.00 3960.00 4190.00 4210.00 4070.00 4200.00 4140.00 4150.00 4140.00 4190.00 4150.00 4140.00 4130.00 411
ab-mvs-re8.21 38110.94 3840.00 3960.00 4190.00 4210.00 4070.00 4200.00 4140.00 41598.50 1080.00 4190.00 4150.00 4140.00 4130.00 411
uanet0.00 3830.00 3860.00 3960.00 4190.00 4210.00 4070.00 4200.00 4140.00 4150.00 4140.00 4190.00 4150.00 4140.00 4130.00 411
WAC-MVS79.74 33667.75 362
MSC_two_6792asdad99.51 299.61 2498.60 297.69 8899.98 999.55 1299.83 1599.96 10
No_MVS99.51 299.61 2498.60 297.69 8899.98 999.55 1299.83 1599.96 10
eth-test20.00 419
eth-test0.00 419
OPU-MVS99.49 499.64 1798.51 499.77 1799.19 3095.12 799.97 2199.90 199.92 399.99 1
save fliter99.34 5093.85 6599.65 3597.63 10795.69 22
test_0728_SECOND98.77 899.66 1296.37 1499.72 2397.68 9099.98 999.64 799.82 1999.96 10
GSMVS98.84 140
sam_mvs188.39 7098.84 140
sam_mvs87.08 98
MTGPAbinary97.45 144
test_post190.74 37541.37 41185.38 13996.36 28883.16 266
test_post46.00 40887.37 8997.11 251
patchmatchnet-post84.86 37288.73 6796.81 264
MTMP99.21 8791.09 382
gm-plane-assit94.69 24888.14 19688.22 19997.20 16698.29 18390.79 177
test9_res98.60 3399.87 999.90 22
agg_prior297.84 5699.87 999.91 21
test_prior492.00 10099.41 68
test_prior97.01 6399.58 3091.77 10397.57 12199.49 11299.79 36
新几何298.26 204
旧先验198.97 7392.90 8797.74 7799.15 3991.05 3399.33 6699.60 69
无先验98.52 17297.82 6587.20 22799.90 5087.64 21399.85 30
原ACMM298.69 151
testdata299.88 5484.16 254
segment_acmp90.56 42
testdata197.89 23392.43 82
plane_prior793.84 27585.73 261
plane_prior693.92 27286.02 25472.92 264
plane_prior596.30 23097.75 22193.46 14686.17 25492.67 264
plane_prior496.52 199
plane_prior299.02 11893.38 66
plane_prior193.90 274
plane_prior86.07 25299.14 10393.81 5886.26 253
n20.00 420
nn0.00 420
door-mid84.90 400
test1197.68 90
door85.30 398
HQP5-MVS86.39 237
BP-MVS93.82 139
HQP3-MVS96.37 22686.29 251
HQP2-MVS73.34 259
NP-MVS93.94 27186.22 24496.67 197
ACMMP++_ref82.64 285
ACMMP++83.83 273
Test By Simon83.62 159