MG-MVS | | | 78.42 21 | 76.99 37 | 82.73 2 | 93.17 1 | 64.46 1 | 89.93 29 | 88.51 43 | 64.83 72 | 73.52 48 | 88.09 120 | 48.07 60 | 92.19 50 | 62.24 139 | 84.53 49 | 91.53 48 |
|
MCST-MVS | | | 83.01 2 | 83.30 3 | 82.15 10 | 92.84 2 | 57.58 16 | 93.77 1 | 91.10 6 | 75.95 2 | 77.10 24 | 93.09 17 | 54.15 23 | 95.57 10 | 85.80 3 | 85.87 34 | 93.31 9 |
|
OPU-MVS | | | | | 81.71 12 | 92.05 3 | 55.97 42 | 92.48 3 | | | | 94.01 6 | 67.21 2 | 95.10 13 | 89.82 1 | 92.55 3 | 94.06 3 |
|
ETH3 D test6400 | | | 83.28 1 | 83.47 1 | 82.72 3 | 91.48 4 | 59.33 6 | 92.10 9 | 90.95 7 | 65.68 59 | 80.67 15 | 94.42 3 | 59.41 7 | 95.89 9 | 86.74 2 | 89.75 5 | 92.94 16 |
|
MAR-MVS | | | 76.76 48 | 75.60 53 | 80.21 23 | 90.87 5 | 54.68 76 | 89.14 41 | 89.11 22 | 62.95 97 | 70.54 81 | 92.33 29 | 41.05 148 | 94.95 15 | 57.90 181 | 86.55 28 | 91.00 63 |
Zhenyu Xu, Yiguang Liu, Xuelei Shi, Ying Wang, Yunan Zheng: MARMVS: Matching Ambiguity Reduced Multiple View Stereo for Efficient Large Scale Scene Reconstruction. CVPR 2020 |
DP-MVS Recon | | | 71.99 114 | 70.31 119 | 77.01 102 | 90.65 6 | 53.44 105 | 89.37 36 | 82.97 159 | 56.33 224 | 63.56 151 | 89.47 94 | 34.02 227 | 92.15 53 | 54.05 206 | 72.41 149 | 85.43 180 |
|
CNVR-MVS | | | 81.76 7 | 81.90 6 | 81.33 15 | 90.04 7 | 57.70 14 | 91.71 10 | 88.87 30 | 70.31 16 | 77.64 23 | 93.87 8 | 52.58 30 | 93.91 24 | 84.17 4 | 87.92 14 | 92.39 26 |
|
API-MVS | | | 74.17 81 | 72.07 98 | 80.49 19 | 90.02 8 | 58.55 9 | 87.30 73 | 84.27 129 | 57.51 203 | 65.77 118 | 87.77 127 | 41.61 144 | 95.97 8 | 51.71 223 | 82.63 59 | 86.94 147 |
|
testtj | | | 76.96 43 | 76.48 43 | 78.40 64 | 89.89 9 | 53.67 95 | 88.72 48 | 86.15 82 | 54.56 245 | 74.86 34 | 92.31 30 | 44.38 107 | 91.97 57 | 75.19 55 | 82.24 63 | 89.54 95 |
|
LFMVS | | | 78.52 19 | 77.14 35 | 82.67 4 | 89.58 10 | 58.90 8 | 91.27 18 | 88.05 47 | 63.22 94 | 74.63 36 | 90.83 63 | 41.38 147 | 94.40 19 | 75.42 53 | 79.90 89 | 94.72 2 |
|
ZD-MVS | | | | | | 89.55 11 | 53.46 101 | | 84.38 125 | 57.02 210 | 73.97 43 | 91.03 53 | 44.57 105 | 91.17 72 | 75.41 54 | 81.78 69 | |
|
test_0728_SECOND | | | | | 82.20 8 | 89.50 12 | 57.73 13 | 92.34 5 | 88.88 29 | | | | | 96.39 4 | 81.68 13 | 87.13 19 | 92.47 24 |
|
NCCC | | | 79.57 16 | 79.23 16 | 80.59 18 | 89.50 12 | 56.99 24 | 91.38 15 | 88.17 46 | 67.71 37 | 73.81 44 | 92.75 21 | 46.88 73 | 93.28 28 | 78.79 28 | 84.07 53 | 91.50 50 |
|
SED-MVS | | | 81.92 6 | 81.75 7 | 82.44 7 | 89.48 14 | 56.89 26 | 92.48 3 | 88.94 27 | 57.50 204 | 84.61 3 | 94.09 4 | 58.81 9 | 96.37 5 | 82.28 11 | 87.60 16 | 94.06 3 |
|
IU-MVS | | | | | | 89.48 14 | 57.49 17 | | 91.38 5 | 66.22 51 | 88.26 1 | | | | 82.83 7 | 87.60 16 | 92.44 25 |
|
test_241102_ONE | | | | | | 89.48 14 | 56.89 26 | | 88.94 27 | 57.53 202 | 84.61 3 | 93.29 13 | 58.81 9 | 96.45 1 | | | |
|
DVP-MVS | | | 81.30 8 | 81.00 10 | 82.20 8 | 89.40 17 | 57.45 18 | 92.34 5 | 89.99 14 | 57.71 198 | 81.91 9 | 93.64 10 | 55.17 17 | 96.44 2 | 81.68 13 | 87.13 19 | 92.72 21 |
Zhenlong Yuan, Jinguo Luo, Fei Shen, Zhaoxin Li, Cong Liu, Tianlu Mao, Zhaoqi Wang: DVP-MVS: Synergize Depth-Edge and Visibility Prior for Multi-View Stereo. AAAI2025 |
test0726 | | | | | | 89.40 17 | 57.45 18 | 92.32 7 | 88.63 37 | 57.71 198 | 83.14 7 | 93.96 7 | 55.17 17 | | | | |
|
test_part2 | | | | | | 89.33 19 | 55.48 48 | | | | 82.27 8 | | | | | | |
|
DPE-MVS |  | | 79.82 15 | 79.66 13 | 80.29 21 | 89.27 20 | 55.08 63 | 88.70 49 | 87.92 50 | 55.55 232 | 81.21 12 | 93.69 9 | 56.51 14 | 94.27 21 | 78.36 31 | 85.70 36 | 91.51 49 |
Kehua Chen, Zhenlong Yuan, Tianlu Mao, Zhaoqi Wang: Dual-Level Precision Edges Guided Multi-View Stereo with Accurate Planarization. AAAI2025 |
CSCG | | | 80.41 12 | 79.72 12 | 82.49 5 | 89.12 21 | 57.67 15 | 89.29 40 | 91.54 3 | 59.19 164 | 71.82 69 | 90.05 84 | 59.72 6 | 96.04 7 | 78.37 30 | 88.40 12 | 93.75 5 |
|
APDe-MVS | | | 78.44 20 | 78.20 21 | 79.19 37 | 88.56 22 | 54.55 80 | 89.76 33 | 87.77 54 | 55.91 227 | 78.56 20 | 92.49 25 | 48.20 59 | 92.65 40 | 79.49 22 | 83.04 57 | 90.39 76 |
|
APD-MVS |  | | 76.15 56 | 75.68 51 | 77.54 86 | 88.52 23 | 53.44 105 | 87.26 76 | 85.03 111 | 53.79 249 | 74.91 33 | 91.68 45 | 43.80 112 | 90.31 95 | 74.36 60 | 81.82 67 | 88.87 111 |
Yuesong Wang, Zhaojie Zeng and etc.: Adaptive Patch Deformation for Textureless-Resilient Multi-View Stereo. CVPR2023 |
DeepC-MVS_fast | | 67.50 3 | 78.00 28 | 77.63 28 | 79.13 39 | 88.52 23 | 55.12 60 | 89.95 28 | 85.98 85 | 68.31 27 | 71.33 75 | 92.75 21 | 45.52 92 | 90.37 92 | 71.15 80 | 85.14 43 | 91.91 38 |
Andreas Kuhn, Christian Sormann, Mattia Rossi, Oliver Erdler, Friedrich Fraundorfer: DeepC-MVS: Deep Confidence Prediction for Multi-View Stereo Reconstruction. 3DV 2020 |
114514_t | | | 69.87 147 | 67.88 153 | 75.85 129 | 88.38 25 | 52.35 137 | 86.94 83 | 83.68 142 | 53.70 250 | 55.68 249 | 85.60 153 | 30.07 264 | 91.20 71 | 55.84 196 | 71.02 160 | 83.99 199 |
|
WTY-MVS | | | 77.47 35 | 77.52 30 | 77.30 93 | 88.33 26 | 46.25 262 | 88.46 52 | 90.32 10 | 71.40 10 | 72.32 64 | 91.72 43 | 53.44 25 | 92.37 46 | 66.28 109 | 75.42 122 | 93.28 10 |
|
PAPR | | | 75.20 70 | 74.13 71 | 78.41 63 | 88.31 27 | 55.10 62 | 84.31 147 | 85.66 89 | 63.76 85 | 67.55 97 | 90.73 64 | 43.48 121 | 89.40 116 | 66.36 108 | 77.03 107 | 90.73 68 |
|
DP-MVS | | | 59.24 261 | 56.12 272 | 68.63 262 | 88.24 28 | 50.35 182 | 82.51 197 | 64.43 331 | 41.10 324 | 46.70 302 | 78.77 228 | 24.75 299 | 88.57 142 | 22.26 341 | 56.29 272 | 66.96 339 |
|
AdaColmap |  | | 67.86 183 | 65.48 203 | 75.00 143 | 88.15 29 | 54.99 65 | 86.10 100 | 76.63 270 | 49.30 278 | 57.80 220 | 86.65 142 | 29.39 267 | 88.94 132 | 45.10 261 | 70.21 167 | 81.06 251 |
|
test_yl | | | 75.85 61 | 74.83 65 | 78.91 42 | 88.08 30 | 51.94 144 | 91.30 16 | 89.28 18 | 57.91 192 | 71.19 77 | 89.20 100 | 42.03 138 | 92.77 35 | 69.41 87 | 75.07 127 | 92.01 36 |
|
DCV-MVSNet | | | 75.85 61 | 74.83 65 | 78.91 42 | 88.08 30 | 51.94 144 | 91.30 16 | 89.28 18 | 57.91 192 | 71.19 77 | 89.20 100 | 42.03 138 | 92.77 35 | 69.41 87 | 75.07 127 | 92.01 36 |
|
Regformer-1 | | | 77.80 31 | 77.44 31 | 78.88 44 | 87.78 32 | 52.44 133 | 87.60 62 | 90.08 12 | 68.86 24 | 72.49 62 | 91.79 40 | 47.69 66 | 94.90 16 | 73.57 67 | 77.05 105 | 89.31 98 |
|
Regformer-2 | | | 77.15 40 | 76.82 39 | 78.14 71 | 87.78 32 | 51.84 148 | 87.60 62 | 89.12 21 | 67.23 42 | 71.93 68 | 91.79 40 | 46.03 84 | 93.53 27 | 72.85 73 | 77.05 105 | 89.05 107 |
|
CANet | | | 80.90 9 | 81.17 9 | 80.09 28 | 87.62 34 | 54.21 85 | 91.60 13 | 86.47 75 | 73.13 5 | 79.89 18 | 93.10 15 | 49.88 51 | 92.98 31 | 84.09 5 | 84.75 47 | 93.08 14 |
|
VNet | | | 77.99 29 | 77.92 26 | 78.19 70 | 87.43 35 | 50.12 190 | 90.93 21 | 91.41 4 | 67.48 41 | 75.12 32 | 90.15 82 | 46.77 75 | 91.00 76 | 73.52 68 | 78.46 98 | 93.44 7 |
|
HPM-MVS++ |  | | 80.50 11 | 80.71 11 | 79.88 30 | 87.34 36 | 55.20 58 | 89.93 29 | 87.55 59 | 66.04 58 | 79.46 19 | 93.00 19 | 53.10 27 | 91.76 59 | 80.40 20 | 89.56 7 | 92.68 22 |
|
DWT-MVSNet_test | | | 75.47 67 | 73.87 75 | 80.29 21 | 87.33 37 | 57.05 23 | 82.86 189 | 87.96 49 | 72.59 6 | 67.29 99 | 87.79 125 | 51.61 35 | 91.52 64 | 54.75 203 | 72.63 147 | 92.29 28 |
|
RRT_test8_iter05 | | | 72.74 100 | 71.20 110 | 77.36 90 | 87.25 38 | 53.51 99 | 88.68 50 | 89.53 16 | 65.20 69 | 61.32 170 | 81.27 208 | 45.89 86 | 92.48 44 | 65.99 110 | 55.65 281 | 86.10 165 |
|
Anonymous202405211 | | | 70.11 138 | 67.88 153 | 76.79 110 | 87.20 39 | 47.24 249 | 89.49 35 | 77.38 255 | 54.88 241 | 66.14 111 | 86.84 138 | 20.93 319 | 91.54 63 | 56.45 194 | 71.62 155 | 91.59 44 |
|
test12 | | | | | 79.24 36 | 86.89 40 | 56.08 41 | | 85.16 107 | | 72.27 65 | | 47.15 70 | 91.10 74 | | 85.93 33 | 90.54 74 |
|
DELS-MVS | | | 82.32 4 | 82.50 4 | 81.79 11 | 86.80 41 | 56.89 26 | 92.77 2 | 86.30 79 | 77.83 1 | 77.88 21 | 92.13 32 | 60.24 4 | 94.78 18 | 78.97 25 | 89.61 6 | 93.69 6 |
Christian Sormann, Emanuele Santellani, Mattia Rossi, Andreas Kuhn, Friedrich Fraundorfer: DELS-MVS: Deep Epipolar Line Search for Multi-View Stereo. Winter Conference on Applications of Computer Vision (WACV), 2023 |
GG-mvs-BLEND | | | | | 77.77 80 | 86.68 42 | 50.61 171 | 68.67 315 | 88.45 44 | | 68.73 88 | 87.45 131 | 59.15 8 | 90.67 84 | 54.83 200 | 87.67 15 | 92.03 35 |
|
CDPH-MVS | | | 76.05 58 | 75.19 58 | 78.62 57 | 86.51 43 | 54.98 66 | 87.32 71 | 84.59 122 | 58.62 181 | 70.75 79 | 90.85 62 | 43.10 127 | 90.63 87 | 70.50 83 | 84.51 50 | 90.24 79 |
|
test_prior3 | | | 77.59 33 | 77.33 34 | 78.39 65 | 86.35 44 | 54.91 69 | 89.04 43 | 85.45 91 | 61.88 114 | 73.55 46 | 91.46 50 | 48.01 62 | 89.70 110 | 74.73 57 | 85.46 38 | 90.55 71 |
|
test_prior | | | | | 78.39 65 | 86.35 44 | 54.91 69 | | 85.45 91 | | | | | 89.70 110 | | | 90.55 71 |
|
gg-mvs-nofinetune | | | 67.43 193 | 64.53 217 | 76.13 122 | 85.95 46 | 47.79 241 | 64.38 322 | 88.28 45 | 39.34 326 | 66.62 104 | 41.27 348 | 58.69 11 | 89.00 126 | 49.64 235 | 86.62 27 | 91.59 44 |
|
test_part1 | | | 73.80 87 | 72.13 95 | 78.79 50 | 85.92 47 | 58.26 10 | 90.60 23 | 86.85 68 | 63.98 80 | 63.95 143 | 81.54 206 | 52.08 34 | 92.24 49 | 64.93 125 | 59.32 240 | 85.87 171 |
|
PVSNet_BlendedMVS | | | 73.42 93 | 73.30 78 | 73.76 171 | 85.91 48 | 51.83 149 | 86.18 98 | 84.24 132 | 65.40 63 | 69.09 86 | 80.86 212 | 46.70 76 | 88.13 157 | 75.43 51 | 65.92 196 | 81.33 246 |
|
PVSNet_Blended | | | 76.53 51 | 76.54 41 | 76.50 112 | 85.91 48 | 51.83 149 | 88.89 46 | 84.24 132 | 67.82 35 | 69.09 86 | 89.33 99 | 46.70 76 | 88.13 157 | 75.43 51 | 81.48 71 | 89.55 94 |
|
test_8 | | | | | | 85.72 50 | 55.31 53 | 87.60 62 | 83.88 139 | 57.84 195 | 72.84 56 | 90.99 54 | 44.99 97 | 88.34 149 | | | |
|
TEST9 | | | | | | 85.68 51 | 55.42 49 | 87.59 65 | 84.00 136 | 57.72 197 | 72.99 52 | 90.98 56 | 44.87 100 | 88.58 139 | | | |
|
train_agg | | | 76.91 44 | 76.40 45 | 78.45 62 | 85.68 51 | 55.42 49 | 87.59 65 | 84.00 136 | 57.84 195 | 72.99 52 | 90.98 56 | 44.99 97 | 88.58 139 | 78.19 32 | 85.32 41 | 91.34 56 |
|
9.14 | | | | 78.19 22 | | 85.67 53 | | 88.32 54 | 88.84 31 | 59.89 146 | 74.58 39 | 92.62 24 | 46.80 74 | 92.66 39 | 81.40 17 | 85.62 37 | |
|
agg_prior1 | | | 76.68 50 | 76.24 48 | 78.00 75 | 85.64 54 | 54.92 67 | 87.55 68 | 83.61 145 | 57.99 191 | 72.53 60 | 91.05 52 | 45.36 93 | 88.10 159 | 77.76 38 | 84.68 48 | 90.99 64 |
|
agg_prior | | | | | | 85.64 54 | 54.92 67 | | 83.61 145 | | 72.53 60 | | | 88.10 159 | | | |
|
ETH3D-3000-0.1 | | | 78.73 18 | 78.71 18 | 78.78 51 | 85.58 56 | 52.40 134 | 88.42 53 | 89.03 24 | 60.01 144 | 76.06 29 | 92.80 20 | 48.34 57 | 92.88 33 | 81.66 15 | 86.48 29 | 91.04 61 |
|
PS-MVSNAJ | | | 80.06 13 | 79.52 14 | 81.68 13 | 85.58 56 | 60.97 3 | 91.69 11 | 87.02 64 | 70.62 13 | 80.75 14 | 93.22 14 | 37.77 178 | 92.50 42 | 82.75 8 | 86.25 31 | 91.57 46 |
|
MVSTER | | | 73.25 95 | 72.33 89 | 76.01 126 | 85.54 58 | 53.76 92 | 83.52 166 | 87.16 62 | 67.06 44 | 63.88 146 | 81.66 204 | 52.77 28 | 90.44 90 | 64.66 126 | 64.69 201 | 83.84 206 |
|
Regformer-3 | | | 76.02 59 | 75.47 55 | 77.70 82 | 85.49 59 | 51.47 158 | 85.12 127 | 90.19 11 | 68.52 26 | 69.36 84 | 90.66 65 | 46.45 79 | 94.81 17 | 70.25 85 | 73.16 139 | 86.81 155 |
|
Regformer-4 | | | 75.06 73 | 74.59 68 | 76.47 113 | 85.49 59 | 50.33 183 | 85.12 127 | 88.61 39 | 66.42 47 | 68.48 90 | 90.66 65 | 44.15 108 | 92.68 38 | 69.24 89 | 73.16 139 | 86.39 162 |
|
EPNet | | | 78.36 23 | 78.49 19 | 77.97 77 | 85.49 59 | 52.04 142 | 89.36 37 | 84.07 135 | 73.22 4 | 77.03 25 | 91.72 43 | 49.32 55 | 90.17 101 | 73.46 69 | 82.77 58 | 91.69 41 |
Wanjuan Su, Wenbing Tao: Efficient Edge-Preserving Multi-View Stereo Network for Depth Estimation. AAAI 2023 |
DeepPCF-MVS | | 69.37 1 | 80.65 10 | 81.56 8 | 77.94 79 | 85.46 62 | 49.56 200 | 90.99 20 | 86.66 73 | 70.58 14 | 80.07 17 | 95.30 1 | 56.18 15 | 90.97 78 | 82.57 10 | 86.22 32 | 93.28 10 |
|
SD-MVS | | | 76.18 55 | 74.85 64 | 80.18 24 | 85.39 63 | 56.90 25 | 85.75 108 | 82.45 165 | 56.79 216 | 74.48 40 | 91.81 39 | 43.72 116 | 90.75 83 | 74.61 59 | 78.65 96 | 92.91 17 |
Zhenlong Yuan, Jiakai Cao, Zhaoxin Li, Hao Jiang and Zhaoqi Wang: SD-MVS: Segmentation-driven Deformation Multi-View Stereo with Spherical Refinement and EM optimization. AAAI2024 |
xxxxxxxxxxxxxcwj | | | 77.31 38 | 76.54 41 | 79.61 31 | 85.35 64 | 56.34 36 | 89.31 38 | 72.84 302 | 61.55 119 | 74.63 36 | 92.38 27 | 47.75 64 | 91.35 68 | 78.18 34 | 86.85 24 | 91.15 58 |
|
save fliter | | | | | | 85.35 64 | 56.34 36 | 89.31 38 | 81.46 178 | 61.55 119 | | | | | | | |
|
MVS_111021_HR | | | 76.39 53 | 75.38 57 | 79.42 34 | 85.33 66 | 56.47 33 | 88.15 55 | 84.97 112 | 65.15 70 | 66.06 113 | 89.88 87 | 43.79 113 | 92.16 51 | 75.03 56 | 80.03 87 | 89.64 93 |
|
PHI-MVS | | | 77.49 34 | 77.00 36 | 78.95 41 | 85.33 66 | 50.69 170 | 88.57 51 | 88.59 41 | 58.14 187 | 73.60 45 | 93.31 12 | 43.14 125 | 93.79 25 | 73.81 64 | 88.53 11 | 92.37 27 |
|
TSAR-MVS + GP. | | | 77.82 30 | 77.59 29 | 78.49 59 | 85.25 68 | 50.27 187 | 90.02 26 | 90.57 9 | 56.58 221 | 74.26 41 | 91.60 46 | 54.26 21 | 92.16 51 | 75.87 47 | 79.91 88 | 93.05 15 |
|
EIA-MVS | | | 75.92 60 | 75.18 59 | 78.13 72 | 85.14 69 | 51.60 154 | 87.17 77 | 85.32 98 | 64.69 73 | 68.56 89 | 90.53 70 | 45.79 89 | 91.58 62 | 67.21 101 | 82.18 65 | 91.20 57 |
|
baseline1 | | | 72.51 106 | 72.12 97 | 73.69 174 | 85.05 70 | 44.46 279 | 83.51 170 | 86.13 83 | 71.61 9 | 64.64 131 | 87.97 123 | 55.00 20 | 89.48 115 | 59.07 165 | 56.05 275 | 87.13 146 |
|
FMVSNet3 | | | 68.84 163 | 67.40 166 | 73.19 185 | 85.05 70 | 48.53 223 | 85.71 111 | 85.36 95 | 60.90 133 | 57.58 226 | 79.15 225 | 42.16 134 | 86.77 194 | 47.25 250 | 63.40 209 | 84.27 194 |
|
xiu_mvs_v2_base | | | 79.86 14 | 79.31 15 | 81.53 14 | 85.03 72 | 60.73 4 | 91.65 12 | 86.86 67 | 70.30 17 | 80.77 13 | 93.07 18 | 37.63 183 | 92.28 48 | 82.73 9 | 85.71 35 | 91.57 46 |
|
EPMVS | | | 68.45 172 | 65.44 206 | 77.47 88 | 84.91 73 | 56.17 39 | 71.89 303 | 81.91 172 | 61.72 117 | 60.85 174 | 72.49 292 | 36.21 208 | 87.06 186 | 47.32 249 | 71.62 155 | 89.17 104 |
|
原ACMM1 | | | | | 76.13 122 | 84.89 74 | 54.59 79 | | 85.26 103 | 51.98 262 | 66.70 102 | 87.07 136 | 40.15 159 | 89.70 110 | 51.23 226 | 85.06 45 | 84.10 195 |
|
thres200 | | | 68.71 169 | 67.27 169 | 73.02 186 | 84.73 75 | 46.76 253 | 85.03 132 | 87.73 55 | 62.34 106 | 59.87 181 | 83.45 177 | 43.15 124 | 88.32 151 | 31.25 316 | 67.91 182 | 83.98 201 |
|
HY-MVS | | 67.03 5 | 73.90 85 | 73.14 79 | 76.18 121 | 84.70 76 | 47.36 246 | 75.56 273 | 86.36 78 | 66.27 50 | 70.66 80 | 83.91 169 | 51.05 40 | 89.31 117 | 67.10 102 | 72.61 148 | 91.88 39 |
|
MVS | | | 76.91 44 | 75.48 54 | 81.23 16 | 84.56 77 | 55.21 57 | 80.23 242 | 91.64 2 | 58.65 180 | 65.37 121 | 91.48 49 | 45.72 90 | 95.05 14 | 72.11 77 | 89.52 8 | 93.44 7 |
|
ET-MVSNet_ETH3D | | | 75.23 69 | 74.08 72 | 78.67 55 | 84.52 78 | 55.59 45 | 88.92 45 | 89.21 20 | 68.06 33 | 53.13 267 | 90.22 78 | 49.71 52 | 87.62 174 | 72.12 76 | 70.82 162 | 92.82 19 |
|
SMA-MVS |  | | 79.10 17 | 78.76 17 | 80.12 26 | 84.42 79 | 55.87 43 | 87.58 67 | 86.76 70 | 61.48 123 | 80.26 16 | 93.10 15 | 46.53 78 | 92.41 45 | 79.97 21 | 88.77 9 | 92.08 33 |
Yufeng Yin; Xiaoyan Liu; Zichao Zhang: SMA-MVS: Segmentation-Guided Multi-Scale Anchor Deformation Patch Multi-View Stereo. IEEE Transactions on Circuits and Systems for Video Technology |
PVSNet | | 62.49 8 | 69.27 157 | 67.81 157 | 73.64 176 | 84.41 80 | 51.85 147 | 84.63 142 | 77.80 246 | 66.42 47 | 59.80 183 | 84.95 160 | 22.14 314 | 80.44 277 | 55.03 199 | 75.11 126 | 88.62 118 |
|
canonicalmvs | | | 78.17 26 | 77.86 27 | 79.12 40 | 84.30 81 | 54.22 84 | 87.71 60 | 84.57 123 | 67.70 38 | 77.70 22 | 92.11 35 | 50.90 42 | 89.95 104 | 78.18 34 | 77.54 103 | 93.20 12 |
|
HFP-MVS | | | 74.37 78 | 73.13 81 | 78.10 73 | 84.30 81 | 53.68 93 | 85.58 113 | 84.36 126 | 56.82 214 | 65.78 116 | 90.56 67 | 40.70 153 | 90.90 79 | 69.18 90 | 80.88 73 | 89.71 90 |
|
#test# | | | 74.86 76 | 73.78 76 | 78.10 73 | 84.30 81 | 53.68 93 | 86.95 82 | 84.36 126 | 59.00 174 | 65.78 116 | 90.56 67 | 40.70 153 | 90.90 79 | 71.48 78 | 80.88 73 | 89.71 90 |
|
VDD-MVS | | | 76.08 57 | 74.97 62 | 79.44 33 | 84.27 84 | 53.33 111 | 91.13 19 | 85.88 86 | 65.33 66 | 72.37 63 | 89.34 97 | 32.52 242 | 92.76 37 | 77.90 37 | 75.96 116 | 92.22 31 |
|
ETH3D cwj APD-0.16 | | | 78.36 23 | 78.19 22 | 78.86 46 | 84.21 85 | 52.68 127 | 86.70 88 | 89.02 25 | 59.13 170 | 75.37 31 | 92.49 25 | 49.06 56 | 93.20 29 | 80.67 19 | 87.08 21 | 90.71 69 |
|
BH-RMVSNet | | | 70.08 140 | 68.01 150 | 76.27 116 | 84.21 85 | 51.22 166 | 87.29 74 | 79.33 220 | 58.96 176 | 63.63 150 | 86.77 139 | 33.29 236 | 90.30 97 | 44.63 263 | 73.96 133 | 87.30 144 |
|
MVS_Test | | | 75.85 61 | 74.93 63 | 78.62 57 | 84.08 87 | 55.20 58 | 83.99 158 | 85.17 106 | 68.07 32 | 73.38 49 | 82.76 186 | 50.44 46 | 89.00 126 | 65.90 112 | 80.61 77 | 91.64 42 |
|
tfpn200view9 | | | 67.57 189 | 66.13 189 | 71.89 217 | 84.05 88 | 45.07 274 | 83.40 175 | 87.71 57 | 60.79 134 | 57.79 221 | 82.76 186 | 43.53 119 | 87.80 167 | 28.80 322 | 66.36 191 | 82.78 225 |
|
thres400 | | | 67.40 196 | 66.13 189 | 71.19 227 | 84.05 88 | 45.07 274 | 83.40 175 | 87.71 57 | 60.79 134 | 57.79 221 | 82.76 186 | 43.53 119 | 87.80 167 | 28.80 322 | 66.36 191 | 80.71 256 |
|
tpmvs | | | 62.45 246 | 59.42 251 | 71.53 222 | 83.93 90 | 54.32 82 | 70.03 310 | 77.61 250 | 51.91 263 | 53.48 266 | 68.29 316 | 37.91 176 | 86.66 198 | 33.36 306 | 58.27 249 | 73.62 319 |
|
ACMMPR | | | 73.76 88 | 72.61 84 | 77.24 98 | 83.92 91 | 52.96 123 | 85.58 113 | 84.29 128 | 56.82 214 | 65.12 123 | 90.45 72 | 37.24 193 | 90.18 100 | 69.18 90 | 80.84 75 | 88.58 119 |
|
region2R | | | 73.75 89 | 72.55 86 | 77.33 91 | 83.90 92 | 52.98 122 | 85.54 116 | 84.09 134 | 56.83 213 | 65.10 124 | 90.45 72 | 37.34 191 | 90.24 98 | 68.89 92 | 80.83 76 | 88.77 115 |
|
ZNCC-MVS | | | 75.82 64 | 75.02 61 | 78.23 69 | 83.88 93 | 53.80 91 | 86.91 85 | 86.05 84 | 59.71 149 | 67.85 96 | 90.55 69 | 42.23 133 | 91.02 75 | 72.66 75 | 85.29 42 | 89.87 89 |
|
Anonymous20240529 | | | 69.71 149 | 67.28 168 | 77.00 103 | 83.78 94 | 50.36 181 | 88.87 47 | 85.10 110 | 47.22 288 | 64.03 141 | 83.37 178 | 27.93 275 | 92.10 54 | 57.78 183 | 67.44 184 | 88.53 121 |
|
SF-MVS | | | 77.64 32 | 77.42 33 | 78.32 68 | 83.75 95 | 52.47 132 | 86.63 90 | 87.80 51 | 58.78 178 | 74.63 36 | 92.38 27 | 47.75 64 | 91.35 68 | 78.18 34 | 86.85 24 | 91.15 58 |
|
PMMVS | | | 72.98 97 | 72.05 99 | 75.78 130 | 83.57 96 | 48.60 220 | 84.08 153 | 82.85 161 | 61.62 118 | 68.24 93 | 90.33 76 | 28.35 270 | 87.78 170 | 72.71 74 | 76.69 110 | 90.95 65 |
|
alignmvs | | | 78.08 27 | 77.98 25 | 78.39 65 | 83.53 97 | 53.22 114 | 89.77 32 | 85.45 91 | 66.11 53 | 76.59 28 | 91.99 38 | 54.07 24 | 89.05 122 | 77.34 41 | 77.00 108 | 92.89 18 |
|
XVS | | | 72.92 98 | 71.62 102 | 76.81 107 | 83.41 98 | 52.48 130 | 84.88 136 | 83.20 154 | 58.03 188 | 63.91 144 | 89.63 92 | 35.50 216 | 89.78 107 | 65.50 114 | 80.50 79 | 88.16 124 |
|
X-MVStestdata | | | 65.85 221 | 62.20 230 | 76.81 107 | 83.41 98 | 52.48 130 | 84.88 136 | 83.20 154 | 58.03 188 | 63.91 144 | 4.82 364 | 35.50 216 | 89.78 107 | 65.50 114 | 80.50 79 | 88.16 124 |
|
thres600view7 | | | 66.46 213 | 65.12 211 | 70.47 236 | 83.41 98 | 43.80 287 | 82.15 204 | 87.78 52 | 59.37 158 | 56.02 246 | 82.21 197 | 43.73 114 | 86.90 192 | 26.51 333 | 64.94 198 | 80.71 256 |
|
3Dnovator+ | | 62.71 7 | 72.29 110 | 70.50 116 | 77.65 84 | 83.40 101 | 51.29 164 | 87.32 71 | 86.40 77 | 59.01 173 | 58.49 211 | 88.32 115 | 32.40 243 | 91.27 70 | 57.04 189 | 82.15 66 | 90.38 77 |
|
SR-MVS | | | 70.92 128 | 69.73 129 | 74.50 150 | 83.38 102 | 50.48 176 | 84.27 148 | 79.35 218 | 48.96 281 | 66.57 107 | 90.45 72 | 33.65 233 | 87.11 184 | 66.42 106 | 74.56 130 | 85.91 169 |
|
GST-MVS | | | 74.87 75 | 73.90 74 | 77.77 80 | 83.30 103 | 53.45 104 | 85.75 108 | 85.29 100 | 59.22 163 | 66.50 108 | 89.85 88 | 40.94 149 | 90.76 82 | 70.94 81 | 83.35 56 | 89.10 106 |
|
thres100view900 | | | 66.87 208 | 65.42 207 | 71.24 225 | 83.29 104 | 43.15 291 | 81.67 215 | 87.78 52 | 59.04 172 | 55.92 247 | 82.18 198 | 43.73 114 | 87.80 167 | 28.80 322 | 66.36 191 | 82.78 225 |
|
gm-plane-assit | | | | | | 83.24 105 | 54.21 85 | | | 70.91 12 | | 88.23 118 | | 95.25 12 | 66.37 107 | | |
|
tpmrst | | | 71.04 125 | 69.77 128 | 74.86 145 | 83.19 106 | 55.86 44 | 75.64 272 | 78.73 230 | 67.88 34 | 64.99 128 | 73.73 278 | 49.96 50 | 79.56 288 | 65.92 111 | 67.85 183 | 89.14 105 |
|
新几何1 | | | | | 73.30 184 | 83.10 107 | 53.48 100 | | 71.43 313 | 45.55 301 | 66.14 111 | 87.17 134 | 33.88 231 | 80.54 275 | 48.50 242 | 80.33 82 | 85.88 170 |
|
PatchmatchNet |  | | 67.07 204 | 63.63 224 | 77.40 89 | 83.10 107 | 58.03 11 | 72.11 301 | 77.77 247 | 58.85 177 | 59.37 191 | 70.83 305 | 37.84 177 | 84.93 241 | 42.96 271 | 69.83 170 | 89.26 99 |
Fangjinhua Wang, Silvano Galliani, Christoph Vogel, Pablo Speciale, Marc Pollefeys: PatchmatchNet: Learned Multi-View Patchmatch Stereo. |
CHOSEN 1792x2688 | | | 76.24 54 | 74.03 73 | 82.88 1 | 83.09 109 | 62.84 2 | 85.73 110 | 85.39 94 | 69.79 19 | 64.87 129 | 83.49 176 | 41.52 146 | 93.69 26 | 70.55 82 | 81.82 67 | 92.12 32 |
|
1121 | | | 68.79 167 | 66.77 175 | 74.82 146 | 83.08 110 | 53.46 101 | 80.23 242 | 71.53 312 | 45.47 303 | 66.31 110 | 87.19 133 | 34.02 227 | 85.13 237 | 52.78 216 | 80.36 81 | 85.87 171 |
|
Anonymous20231211 | | | 66.08 219 | 63.67 223 | 73.31 183 | 83.07 111 | 48.75 218 | 86.01 103 | 84.67 121 | 45.27 304 | 56.54 241 | 76.67 255 | 28.06 274 | 88.95 130 | 52.78 216 | 59.95 233 | 82.23 228 |
|
IB-MVS | | 68.87 2 | 74.01 83 | 72.03 100 | 79.94 29 | 83.04 112 | 55.50 47 | 90.24 25 | 88.65 35 | 67.14 43 | 61.38 169 | 81.74 203 | 53.21 26 | 94.28 20 | 60.45 158 | 62.41 223 | 90.03 85 |
Christian Sormann, Mattia Rossi, Andreas Kuhn and Friedrich Fraundorfer: IB-MVS: An Iterative Algorithm for Deep Multi-View Stereo based on Binary Decisions. BMVC 2021 |
MVSFormer | | | 73.53 92 | 72.19 94 | 77.57 85 | 83.02 113 | 55.24 55 | 81.63 216 | 81.44 179 | 50.28 272 | 76.67 26 | 90.91 60 | 44.82 102 | 86.11 211 | 60.83 150 | 80.09 84 | 91.36 54 |
|
lupinMVS | | | 78.38 22 | 78.11 24 | 79.19 37 | 83.02 113 | 55.24 55 | 91.57 14 | 84.82 116 | 69.12 23 | 76.67 26 | 92.02 36 | 44.82 102 | 90.23 99 | 80.83 18 | 80.09 84 | 92.08 33 |
|
MSP-MVS | | | 82.30 5 | 83.47 1 | 78.80 48 | 82.99 115 | 52.71 126 | 85.04 131 | 88.63 37 | 66.08 55 | 86.77 2 | 92.75 21 | 72.05 1 | 91.46 66 | 83.35 6 | 93.53 1 | 92.23 29 |
Zhenlong Yuan, Cong Liu, Fei Shen, Zhaoxin Li, Jingguo luo, Tianlu Mao and Zhaoqi Wang: MSP-MVS: Multi-granularity Segmentation Prior Guided Multi-View Stereo. AAAI2025 |
PGM-MVS | | | 72.60 103 | 71.20 110 | 76.80 109 | 82.95 116 | 52.82 125 | 83.07 184 | 82.14 166 | 56.51 222 | 63.18 153 | 89.81 89 | 35.68 215 | 89.76 109 | 67.30 100 | 80.19 83 | 87.83 133 |
|
TR-MVS | | | 69.71 149 | 67.85 156 | 75.27 139 | 82.94 117 | 48.48 226 | 87.40 70 | 80.86 188 | 57.15 209 | 64.61 132 | 87.08 135 | 32.67 241 | 89.64 113 | 46.38 255 | 71.55 157 | 87.68 137 |
|
CP-MVS | | | 72.59 105 | 71.46 105 | 76.00 127 | 82.93 118 | 52.32 138 | 86.93 84 | 82.48 164 | 55.15 236 | 63.65 149 | 90.44 75 | 35.03 220 | 88.53 143 | 68.69 93 | 77.83 101 | 87.15 145 |
|
MP-MVS |  | | 74.99 74 | 74.33 70 | 76.95 105 | 82.89 119 | 53.05 120 | 85.63 112 | 83.50 147 | 57.86 194 | 67.25 100 | 90.24 77 | 43.38 122 | 88.85 134 | 76.03 45 | 82.23 64 | 88.96 109 |
Rongxuan Tan, Qing Wang, et al.: MP-MVS: Multi-Scale Windows PatchMatch and Planar Prior Multi-View Stereo. |
mvs_anonymous | | | 72.29 110 | 70.74 113 | 76.94 106 | 82.85 120 | 54.72 74 | 78.43 260 | 81.54 177 | 63.77 84 | 61.69 168 | 79.32 222 | 51.11 39 | 85.31 230 | 62.15 141 | 75.79 118 | 90.79 67 |
|
3Dnovator | | 64.70 6 | 74.46 77 | 72.48 87 | 80.41 20 | 82.84 121 | 55.40 52 | 83.08 183 | 88.61 39 | 67.61 39 | 59.85 182 | 88.66 109 | 34.57 223 | 93.97 22 | 58.42 172 | 88.70 10 | 91.85 40 |
|
test1172 | | | 69.64 153 | 68.38 146 | 73.41 182 | 82.77 122 | 48.84 216 | 82.79 191 | 78.34 239 | 47.02 291 | 65.27 122 | 90.07 83 | 31.17 256 | 86.09 215 | 64.51 127 | 73.49 137 | 85.31 181 |
|
BH-w/o | | | 70.02 142 | 68.51 143 | 74.56 149 | 82.77 122 | 50.39 179 | 86.60 91 | 78.14 241 | 59.77 148 | 59.65 185 | 85.57 154 | 39.27 167 | 87.30 181 | 49.86 233 | 74.94 129 | 85.99 166 |
|
Fast-Effi-MVS+ | | | 72.73 101 | 71.15 112 | 77.48 87 | 82.75 124 | 54.76 71 | 86.77 87 | 80.64 191 | 63.05 96 | 65.93 114 | 84.01 167 | 44.42 106 | 89.03 123 | 56.45 194 | 76.36 115 | 88.64 117 |
|
GBi-Net | | | 67.09 202 | 65.47 204 | 71.96 210 | 82.71 125 | 46.36 258 | 83.52 166 | 83.31 149 | 58.55 182 | 57.58 226 | 76.23 261 | 36.72 203 | 86.20 207 | 47.25 250 | 63.40 209 | 83.32 212 |
|
test1 | | | 67.09 202 | 65.47 204 | 71.96 210 | 82.71 125 | 46.36 258 | 83.52 166 | 83.31 149 | 58.55 182 | 57.58 226 | 76.23 261 | 36.72 203 | 86.20 207 | 47.25 250 | 63.40 209 | 83.32 212 |
|
FMVSNet2 | | | 67.57 189 | 65.79 196 | 72.90 188 | 82.71 125 | 47.97 240 | 85.15 123 | 84.93 113 | 58.55 182 | 56.71 239 | 78.26 232 | 36.72 203 | 86.67 197 | 46.15 257 | 62.94 220 | 84.07 196 |
|
mPP-MVS | | | 71.79 117 | 70.38 118 | 76.04 125 | 82.65 128 | 52.06 140 | 84.45 143 | 81.78 174 | 55.59 231 | 62.05 166 | 89.68 91 | 33.48 234 | 88.28 154 | 65.45 119 | 78.24 100 | 87.77 135 |
|
CANet_DTU | | | 73.71 90 | 73.14 79 | 75.40 135 | 82.61 129 | 50.05 191 | 84.67 141 | 79.36 217 | 69.72 20 | 75.39 30 | 90.03 85 | 29.41 266 | 85.93 223 | 67.99 97 | 79.11 93 | 90.22 80 |
|
EI-MVSNet-Vis-set | | | 73.19 96 | 72.60 85 | 74.99 144 | 82.56 130 | 49.80 196 | 82.55 196 | 89.00 26 | 66.17 52 | 65.89 115 | 88.98 103 | 43.83 111 | 92.29 47 | 65.38 123 | 69.01 174 | 82.87 224 |
|
dp | | | 64.41 227 | 61.58 234 | 72.90 188 | 82.40 131 | 54.09 88 | 72.53 293 | 76.59 271 | 60.39 140 | 55.68 249 | 70.39 309 | 35.18 219 | 76.90 310 | 39.34 279 | 61.71 227 | 87.73 136 |
|
MS-PatchMatch | | | 72.34 108 | 71.26 108 | 75.61 131 | 82.38 132 | 55.55 46 | 88.00 56 | 89.95 15 | 65.38 64 | 56.51 243 | 80.74 214 | 32.28 245 | 92.89 32 | 57.95 180 | 88.10 13 | 78.39 279 |
|
CostFormer | | | 73.89 86 | 72.30 91 | 78.66 56 | 82.36 133 | 56.58 29 | 75.56 273 | 85.30 99 | 66.06 56 | 70.50 82 | 76.88 252 | 57.02 12 | 89.06 120 | 68.27 96 | 68.74 176 | 90.33 78 |
|
QAPM | | | 71.88 115 | 69.33 135 | 79.52 32 | 82.20 134 | 54.30 83 | 86.30 96 | 88.77 33 | 56.61 220 | 59.72 184 | 87.48 130 | 33.90 230 | 95.36 11 | 47.48 248 | 81.49 70 | 88.90 110 |
|
HPM-MVS |  | | 72.60 103 | 71.50 104 | 75.89 128 | 82.02 135 | 51.42 160 | 80.70 236 | 83.05 156 | 56.12 226 | 64.03 141 | 89.53 93 | 37.55 185 | 88.37 147 | 70.48 84 | 80.04 86 | 87.88 132 |
Chunlin Ren, Qingshan Xu, Shikun Zhang, Jiaqi Yang: Hierarchical Prior Mining for Non-local Multi-View Stereo. ICCV 2023 |
TESTMET0.1,1 | | | 72.86 99 | 72.33 89 | 74.46 151 | 81.98 136 | 50.77 168 | 85.13 124 | 85.47 90 | 66.09 54 | 67.30 98 | 83.69 174 | 37.27 192 | 83.57 254 | 65.06 124 | 78.97 95 | 89.05 107 |
|
CS-MVS | | | 77.40 36 | 77.43 32 | 77.32 92 | 81.95 137 | 52.05 141 | 89.14 41 | 85.29 100 | 67.60 40 | 72.89 55 | 90.99 54 | 47.02 72 | 91.99 56 | 77.61 39 | 84.37 51 | 87.90 131 |
|
ACMMP_NAP | | | 76.43 52 | 75.66 52 | 78.73 52 | 81.92 138 | 54.67 77 | 84.06 155 | 85.35 96 | 61.10 128 | 72.99 52 | 91.50 48 | 40.25 156 | 91.00 76 | 76.84 43 | 86.98 22 | 90.51 75 |
|
Effi-MVS+ | | | 75.24 68 | 73.61 77 | 80.16 25 | 81.92 138 | 57.42 20 | 85.21 121 | 76.71 268 | 60.68 137 | 73.32 50 | 89.34 97 | 47.30 68 | 91.63 61 | 68.28 95 | 79.72 90 | 91.42 51 |
|
ETV-MVS | | | 77.17 39 | 76.74 40 | 78.48 60 | 81.80 140 | 54.55 80 | 86.13 99 | 85.33 97 | 68.20 29 | 73.10 51 | 90.52 71 | 45.23 95 | 90.66 85 | 79.37 23 | 80.95 72 | 90.22 80 |
|
PLC |  | 52.38 18 | 60.89 253 | 58.97 256 | 66.68 280 | 81.77 141 | 45.70 269 | 78.96 256 | 74.04 291 | 43.66 316 | 47.63 296 | 83.19 182 | 23.52 305 | 77.78 305 | 37.47 282 | 60.46 232 | 76.55 300 |
Jie Liao, Yanping Fu, Qingan Yan, Chunxia xiao: Pyramid Multi-View Stereo with Local Consistency. Pacific Graphics 2019 |
MDTV_nov1_ep13 | | | | 61.56 235 | | 81.68 142 | 55.12 60 | 72.41 295 | 78.18 240 | 59.19 164 | 58.85 204 | 69.29 313 | 34.69 222 | 86.16 210 | 36.76 291 | 62.96 219 | |
|
baseline2 | | | 75.15 71 | 74.54 69 | 76.98 104 | 81.67 143 | 51.74 151 | 83.84 161 | 91.94 1 | 69.97 18 | 58.98 198 | 86.02 147 | 59.73 5 | 91.73 60 | 68.37 94 | 70.40 166 | 87.48 139 |
|
thisisatest0515 | | | 73.64 91 | 72.20 93 | 77.97 77 | 81.63 144 | 53.01 121 | 86.69 89 | 88.81 32 | 62.53 103 | 64.06 140 | 85.65 152 | 52.15 33 | 92.50 42 | 58.43 170 | 69.84 169 | 88.39 123 |
|
BH-untuned | | | 68.28 176 | 66.40 181 | 73.91 165 | 81.62 145 | 50.01 192 | 85.56 115 | 77.39 254 | 57.63 200 | 57.47 231 | 83.69 174 | 36.36 207 | 87.08 185 | 44.81 262 | 73.08 144 | 84.65 189 |
|
EI-MVSNet-UG-set | | | 72.37 107 | 71.73 101 | 74.29 157 | 81.60 146 | 49.29 206 | 81.85 211 | 88.64 36 | 65.29 68 | 65.05 125 | 88.29 116 | 43.18 123 | 91.83 58 | 63.74 130 | 67.97 181 | 81.75 234 |
|
sss | | | 70.49 134 | 70.13 124 | 71.58 221 | 81.59 147 | 39.02 316 | 80.78 235 | 84.71 120 | 59.34 159 | 66.61 105 | 88.09 120 | 37.17 194 | 85.52 226 | 61.82 144 | 71.02 160 | 90.20 82 |
|
APD-MVS_3200maxsize | | | 69.62 154 | 68.23 148 | 73.80 170 | 81.58 148 | 48.22 232 | 81.91 209 | 79.50 212 | 48.21 283 | 64.24 139 | 89.75 90 | 31.91 251 | 87.55 176 | 63.08 133 | 73.85 135 | 85.64 176 |
|
旧先验1 | | | | | | 81.57 149 | 47.48 243 | | 71.83 307 | | | 88.66 109 | 36.94 197 | | | 78.34 99 | 88.67 116 |
|
zzz-MVS | | | 74.15 82 | 73.11 82 | 77.27 95 | 81.54 150 | 53.57 97 | 84.02 157 | 81.31 181 | 59.41 156 | 68.39 91 | 90.96 58 | 36.07 210 | 89.01 124 | 73.80 65 | 82.45 61 | 89.23 100 |
|
MTAPA | | | 72.73 101 | 71.22 109 | 77.27 95 | 81.54 150 | 53.57 97 | 67.06 318 | 81.31 181 | 59.41 156 | 68.39 91 | 90.96 58 | 36.07 210 | 89.01 124 | 73.80 65 | 82.45 61 | 89.23 100 |
|
RRT_MVS | | | 65.43 225 | 64.01 222 | 69.68 249 | 81.54 150 | 50.15 188 | 82.31 202 | 76.78 265 | 55.25 235 | 60.64 178 | 82.00 201 | 25.18 295 | 79.00 289 | 60.96 148 | 51.45 303 | 79.89 266 |
|
PAPM_NR | | | 71.80 116 | 69.98 126 | 77.26 97 | 81.54 150 | 53.34 110 | 78.60 259 | 85.25 104 | 53.46 251 | 60.53 179 | 88.66 109 | 45.69 91 | 89.24 118 | 56.49 191 | 79.62 91 | 89.19 103 |
|
ACMMP |  | | 70.81 130 | 69.29 136 | 75.39 136 | 81.52 154 | 51.92 146 | 83.43 173 | 83.03 157 | 56.67 219 | 58.80 205 | 88.91 105 | 31.92 250 | 88.58 139 | 65.89 113 | 73.39 138 | 85.67 174 |
Qingshan Xu, Weihang Kong, Wenbing Tao, Marc Pollefeys: Multi-Scale Geometric Consistency Guided and Planar Prior Assisted Multi-View Stereo. IEEE Transactions on Pattern Analysis and Machine Intelligence |
MSLP-MVS++ | | | 74.21 80 | 72.25 92 | 80.11 27 | 81.45 155 | 56.47 33 | 86.32 95 | 79.65 209 | 58.19 186 | 66.36 109 | 92.29 31 | 36.11 209 | 90.66 85 | 67.39 99 | 82.49 60 | 93.18 13 |
|
tpm cat1 | | | 66.28 215 | 62.78 226 | 76.77 111 | 81.40 156 | 57.14 22 | 70.03 310 | 77.19 257 | 53.00 255 | 58.76 206 | 70.73 308 | 46.17 80 | 86.73 196 | 43.27 268 | 64.46 203 | 86.44 160 |
|
MP-MVS-pluss | | | 75.54 66 | 75.03 60 | 77.04 100 | 81.37 157 | 52.65 129 | 84.34 146 | 84.46 124 | 61.16 126 | 69.14 85 | 91.76 42 | 39.98 162 | 88.99 128 | 78.19 32 | 84.89 46 | 89.48 96 |
MP-MVS-pluss: MP-MVS-pluss. MP-MVS-pluss |
TSAR-MVS + MP. | | | 78.31 25 | 78.26 20 | 78.48 60 | 81.33 158 | 56.31 38 | 81.59 219 | 86.41 76 | 69.61 21 | 81.72 11 | 88.16 119 | 55.09 19 | 88.04 162 | 74.12 62 | 86.31 30 | 91.09 60 |
Zhenlong Yuan, Jiakai Cao, Zhaoqi Wang, Zhaoxin Li: TSAR-MVS: Textureless-aware Segmentation and Correlative Refinement Guided Multi-View Stereo. Pattern Recognition |
PVSNet_Blended_VisFu | | | 73.40 94 | 72.44 88 | 76.30 115 | 81.32 159 | 54.70 75 | 85.81 104 | 78.82 227 | 63.70 86 | 64.53 133 | 85.38 156 | 47.11 71 | 87.38 180 | 67.75 98 | 77.55 102 | 86.81 155 |
|
LS3D | | | 56.40 285 | 53.82 285 | 64.12 294 | 81.12 160 | 45.69 270 | 73.42 288 | 66.14 327 | 35.30 342 | 43.24 315 | 79.88 217 | 22.18 313 | 79.62 287 | 19.10 349 | 64.00 205 | 67.05 338 |
|
GeoE | | | 69.96 145 | 67.88 153 | 76.22 118 | 81.11 161 | 51.71 152 | 84.15 151 | 76.74 267 | 59.83 147 | 60.91 173 | 84.38 163 | 41.56 145 | 88.10 159 | 51.67 224 | 70.57 164 | 88.84 112 |
|
SteuartSystems-ACMMP | | | 77.08 41 | 76.33 46 | 79.34 35 | 80.98 162 | 55.31 53 | 89.76 33 | 86.91 66 | 62.94 98 | 71.65 70 | 91.56 47 | 42.33 131 | 92.56 41 | 77.14 42 | 83.69 55 | 90.15 83 |
Skip Steuart: Steuart Systems R&D Blog. |
SR-MVS-dyc-post | | | 68.27 177 | 66.87 172 | 72.48 198 | 80.96 163 | 48.14 235 | 81.54 220 | 76.98 261 | 46.42 296 | 62.75 158 | 89.42 95 | 31.17 256 | 86.09 215 | 60.52 156 | 72.06 153 | 83.19 217 |
|
RE-MVS-def | | | | 66.66 179 | | 80.96 163 | 48.14 235 | 81.54 220 | 76.98 261 | 46.42 296 | 62.75 158 | 89.42 95 | 29.28 268 | | 60.52 156 | 72.06 153 | 83.19 217 |
|
CPTT-MVS | | | 67.15 201 | 65.84 195 | 71.07 229 | 80.96 163 | 50.32 184 | 81.94 208 | 74.10 289 | 46.18 299 | 57.91 218 | 87.64 129 | 29.57 265 | 81.31 268 | 64.10 128 | 70.18 168 | 81.56 237 |
|
Vis-MVSNet |  | | 70.61 133 | 69.34 134 | 74.42 153 | 80.95 166 | 48.49 225 | 86.03 102 | 77.51 252 | 58.74 179 | 65.55 120 | 87.78 126 | 34.37 224 | 85.95 222 | 52.53 221 | 80.61 77 | 88.80 113 |
Jingyang Zhang, Yao Yao, Shiwei Li, Zixin Luo, Tian Fang: Visibility-aware Multiview Stereo Network. BMVC 2020 |
ab-mvs | | | 70.65 132 | 69.11 138 | 75.29 138 | 80.87 167 | 46.23 263 | 73.48 287 | 85.24 105 | 59.99 145 | 66.65 103 | 80.94 211 | 43.13 126 | 88.69 135 | 63.58 131 | 68.07 179 | 90.95 65 |
|
tpm2 | | | 70.82 129 | 68.44 144 | 77.98 76 | 80.78 168 | 56.11 40 | 74.21 283 | 81.28 184 | 60.24 142 | 68.04 94 | 75.27 270 | 52.26 32 | 88.50 144 | 55.82 197 | 68.03 180 | 89.33 97 |
|
1112_ss | | | 70.05 141 | 69.37 133 | 72.10 204 | 80.77 169 | 42.78 295 | 85.12 127 | 76.75 266 | 59.69 150 | 61.19 172 | 92.12 33 | 47.48 67 | 83.84 249 | 53.04 212 | 68.21 178 | 89.66 92 |
|
DeepC-MVS | | 67.15 4 | 76.90 46 | 76.27 47 | 78.80 48 | 80.70 170 | 55.02 64 | 86.39 93 | 86.71 71 | 66.96 45 | 67.91 95 | 89.97 86 | 48.03 61 | 91.41 67 | 75.60 50 | 84.14 52 | 89.96 86 |
Andreas Kuhn, Christian Sormann, Mattia Rossi, Oliver Erdler, Friedrich Fraundorfer: DeepC-MVS: Deep Confidence Prediction for Multi-View Stereo Reconstruction. 3DV 2020 |
CLD-MVS | | | 75.60 65 | 75.39 56 | 76.24 117 | 80.69 171 | 52.40 134 | 90.69 22 | 86.20 81 | 74.40 3 | 65.01 127 | 88.93 104 | 42.05 137 | 90.58 88 | 76.57 44 | 73.96 133 | 85.73 173 |
Zhaoxin Li, Wangmeng Zuo, Zhaoqi Wang, Lei Zhang: Confidence-based Large-scale Dense Multi-view Stereo. IEEE Transaction on Image Processing, 2020 |
HPM-MVS_fast | | | 67.86 183 | 66.28 185 | 72.61 193 | 80.67 172 | 48.34 230 | 81.18 228 | 75.95 276 | 50.81 271 | 59.55 189 | 88.05 122 | 27.86 276 | 85.98 219 | 58.83 167 | 73.58 136 | 83.51 209 |
|
ADS-MVSNet2 | | | 55.21 292 | 51.44 296 | 66.51 281 | 80.60 173 | 49.56 200 | 55.03 340 | 65.44 328 | 44.72 307 | 51.00 280 | 61.19 334 | 22.83 306 | 75.41 315 | 28.54 325 | 53.63 292 | 74.57 313 |
|
ADS-MVSNet | | | 56.17 286 | 51.95 295 | 68.84 256 | 80.60 173 | 53.07 119 | 55.03 340 | 70.02 320 | 44.72 307 | 51.00 280 | 61.19 334 | 22.83 306 | 78.88 291 | 28.54 325 | 53.63 292 | 74.57 313 |
|
UGNet | | | 68.71 169 | 67.11 171 | 73.50 180 | 80.55 175 | 47.61 242 | 84.08 153 | 78.51 235 | 59.45 154 | 65.68 119 | 82.73 189 | 23.78 302 | 85.08 239 | 52.80 215 | 76.40 111 | 87.80 134 |
Wanjuan Su, Qingshan Xu, Wenbing Tao: Uncertainty-guided Multi-view Stereo Network for Depth Estimation. IEEE Transactions on Circuits and Systems for Video Technology, 2022 |
baseline | | | 76.86 47 | 76.24 48 | 78.71 53 | 80.47 176 | 54.20 87 | 83.90 160 | 84.88 115 | 71.38 11 | 71.51 73 | 89.15 102 | 50.51 45 | 90.55 89 | 75.71 48 | 78.65 96 | 91.39 52 |
|
casdiffmvs | | | 77.36 37 | 76.85 38 | 78.88 44 | 80.40 177 | 54.66 78 | 87.06 79 | 85.88 86 | 72.11 8 | 71.57 72 | 88.63 113 | 50.89 44 | 90.35 93 | 76.00 46 | 79.11 93 | 91.63 43 |
|
PAPM | | | 76.76 48 | 76.07 50 | 78.81 47 | 80.20 178 | 59.11 7 | 86.86 86 | 86.23 80 | 68.60 25 | 70.18 83 | 88.84 107 | 51.57 36 | 87.16 183 | 65.48 116 | 86.68 26 | 90.15 83 |
|
hse-mvs3 | | | 73.95 84 | 72.89 83 | 77.15 99 | 80.17 179 | 50.37 180 | 84.68 139 | 83.33 148 | 68.08 30 | 71.97 66 | 88.65 112 | 42.50 129 | 91.15 73 | 78.82 26 | 57.78 261 | 89.91 88 |
|
DPM-MVS | | | 82.39 3 | 82.36 5 | 82.49 5 | 80.12 180 | 59.50 5 | 92.24 8 | 90.72 8 | 69.37 22 | 83.22 6 | 94.47 2 | 63.81 3 | 93.18 30 | 74.02 63 | 93.25 2 | 94.80 1 |
|
tpm | | | 68.36 173 | 67.48 165 | 70.97 231 | 79.93 181 | 51.34 162 | 76.58 269 | 78.75 229 | 67.73 36 | 63.54 152 | 74.86 272 | 48.33 58 | 72.36 331 | 53.93 207 | 63.71 207 | 89.21 102 |
|
thisisatest0530 | | | 70.47 136 | 68.56 142 | 76.20 120 | 79.78 182 | 51.52 157 | 83.49 172 | 88.58 42 | 57.62 201 | 58.60 207 | 82.79 185 | 51.03 41 | 91.48 65 | 52.84 214 | 62.36 225 | 85.59 178 |
|
jason | | | 77.01 42 | 76.45 44 | 78.69 54 | 79.69 183 | 54.74 72 | 90.56 24 | 83.99 138 | 68.26 28 | 74.10 42 | 90.91 60 | 42.14 135 | 89.99 103 | 79.30 24 | 79.12 92 | 91.36 54 |
jason: jason. |
VDDNet | | | 74.37 78 | 72.13 95 | 81.09 17 | 79.58 184 | 56.52 32 | 90.02 26 | 86.70 72 | 52.61 258 | 71.23 76 | 87.20 132 | 31.75 252 | 93.96 23 | 74.30 61 | 75.77 119 | 92.79 20 |
|
test222 | | | | | | 79.36 185 | 50.97 167 | 77.99 261 | 67.84 324 | 42.54 321 | 62.84 157 | 86.53 143 | 30.26 262 | | | 76.91 109 | 85.23 182 |
|
cascas | | | 69.01 161 | 66.13 189 | 77.66 83 | 79.36 185 | 55.41 51 | 86.99 80 | 83.75 141 | 56.69 218 | 58.92 201 | 81.35 207 | 24.31 300 | 92.10 54 | 53.23 209 | 70.61 163 | 85.46 179 |
|
1314 | | | 71.11 124 | 69.41 132 | 76.22 118 | 79.32 187 | 50.49 175 | 80.23 242 | 85.14 109 | 59.44 155 | 58.93 200 | 88.89 106 | 33.83 232 | 89.60 114 | 61.49 145 | 77.42 104 | 88.57 120 |
|
LCM-MVSNet-Re | | | 58.82 269 | 56.54 267 | 65.68 284 | 79.31 188 | 29.09 347 | 61.39 332 | 45.79 350 | 60.73 136 | 37.65 332 | 72.47 293 | 31.42 254 | 81.08 270 | 49.66 234 | 70.41 165 | 86.87 149 |
|
CNLPA | | | 60.59 255 | 58.44 258 | 67.05 275 | 79.21 189 | 47.26 248 | 79.75 249 | 64.34 332 | 42.46 322 | 51.90 276 | 83.94 168 | 27.79 278 | 75.41 315 | 37.12 285 | 59.49 238 | 78.47 276 |
|
EPP-MVSNet | | | 71.14 122 | 70.07 125 | 74.33 156 | 79.18 190 | 46.52 256 | 83.81 162 | 86.49 74 | 56.32 225 | 57.95 217 | 84.90 161 | 54.23 22 | 89.14 119 | 58.14 176 | 69.65 171 | 87.33 142 |
|
KD-MVS_2432*1600 | | | 59.04 266 | 56.44 269 | 66.86 276 | 79.07 191 | 45.87 266 | 72.13 299 | 80.42 195 | 55.03 238 | 48.15 292 | 71.01 303 | 36.73 201 | 78.05 298 | 35.21 297 | 30.18 349 | 76.67 295 |
|
miper_refine_blended | | | 59.04 266 | 56.44 269 | 66.86 276 | 79.07 191 | 45.87 266 | 72.13 299 | 80.42 195 | 55.03 238 | 48.15 292 | 71.01 303 | 36.73 201 | 78.05 298 | 35.21 297 | 30.18 349 | 76.67 295 |
|
HQP-NCC | | | | | | 79.02 193 | | 88.00 56 | | 65.45 60 | 64.48 134 | | | | | | |
|
ACMP_Plane | | | | | | 79.02 193 | | 88.00 56 | | 65.45 60 | 64.48 134 | | | | | | |
|
HQP-MVS | | | 72.34 108 | 71.44 106 | 75.03 142 | 79.02 193 | 51.56 155 | 88.00 56 | 83.68 142 | 65.45 60 | 64.48 134 | 85.13 157 | 37.35 189 | 88.62 137 | 66.70 104 | 73.12 141 | 84.91 187 |
|
miper_enhance_ethall | | | 69.77 148 | 68.90 140 | 72.38 200 | 78.93 196 | 49.91 194 | 83.29 179 | 78.85 225 | 64.90 71 | 59.37 191 | 79.46 220 | 52.77 28 | 85.16 236 | 63.78 129 | 58.72 244 | 82.08 229 |
|
UA-Net | | | 67.32 197 | 66.23 186 | 70.59 235 | 78.85 197 | 41.23 308 | 73.60 285 | 75.45 280 | 61.54 121 | 66.61 105 | 84.53 162 | 38.73 171 | 86.57 203 | 42.48 274 | 74.24 131 | 83.98 201 |
|
NP-MVS | | | | | | 78.76 198 | 50.43 177 | | | | | 85.12 158 | | | | | |
|
VPA-MVSNet | | | 71.12 123 | 70.66 115 | 72.49 197 | 78.75 199 | 44.43 281 | 87.64 61 | 90.02 13 | 63.97 81 | 65.02 126 | 81.58 205 | 42.14 135 | 87.42 179 | 63.42 132 | 63.38 212 | 85.63 177 |
|
Test_1112_low_res | | | 67.18 200 | 66.23 186 | 70.02 247 | 78.75 199 | 41.02 309 | 83.43 173 | 73.69 294 | 57.29 207 | 58.45 213 | 82.39 195 | 45.30 94 | 80.88 272 | 50.50 229 | 66.26 194 | 88.16 124 |
|
test-LLR | | | 69.65 152 | 69.01 139 | 71.60 219 | 78.67 201 | 48.17 233 | 85.13 124 | 79.72 206 | 59.18 166 | 63.13 154 | 82.58 191 | 36.91 198 | 80.24 279 | 60.56 154 | 75.17 124 | 86.39 162 |
|
test-mter | | | 68.36 173 | 67.29 167 | 71.60 219 | 78.67 201 | 48.17 233 | 85.13 124 | 79.72 206 | 53.38 252 | 63.13 154 | 82.58 191 | 27.23 281 | 80.24 279 | 60.56 154 | 75.17 124 | 86.39 162 |
|
EPNet_dtu | | | 66.25 216 | 66.71 177 | 64.87 292 | 78.66 203 | 34.12 330 | 82.80 190 | 75.51 278 | 61.75 116 | 64.47 137 | 86.90 137 | 37.06 195 | 72.46 330 | 43.65 267 | 69.63 172 | 88.02 130 |
Wanjuan Su, Wenbing Tao: Efficient Edge-Preserving Multi-View Stereo Network for Depth Estimation. AAAI 2023 |
VPNet | | | 72.07 113 | 71.42 107 | 74.04 162 | 78.64 204 | 47.17 250 | 89.91 31 | 87.97 48 | 72.56 7 | 64.66 130 | 85.04 159 | 41.83 142 | 88.33 150 | 61.17 147 | 60.97 230 | 86.62 157 |
|
SCA | | | 63.84 231 | 60.01 248 | 75.32 137 | 78.58 205 | 57.92 12 | 61.61 330 | 77.53 251 | 56.71 217 | 57.75 223 | 70.77 306 | 31.97 248 | 79.91 285 | 48.80 239 | 56.36 268 | 88.13 127 |
|
abl_6 | | | 68.03 180 | 66.15 188 | 73.66 175 | 78.54 206 | 48.48 226 | 79.77 247 | 78.04 242 | 47.39 287 | 63.70 148 | 88.25 117 | 28.21 271 | 89.06 120 | 60.17 162 | 71.25 158 | 83.45 210 |
|
diffmvs | | | 75.11 72 | 74.65 67 | 76.46 114 | 78.52 207 | 53.35 109 | 83.28 180 | 79.94 201 | 70.51 15 | 71.64 71 | 88.72 108 | 46.02 85 | 86.08 217 | 77.52 40 | 75.75 120 | 89.96 86 |
|
IS-MVSNet | | | 68.80 166 | 67.55 163 | 72.54 195 | 78.50 208 | 43.43 289 | 81.03 230 | 79.35 218 | 59.12 171 | 57.27 234 | 86.71 140 | 46.05 83 | 87.70 172 | 44.32 264 | 75.60 121 | 86.49 159 |
|
TAPA-MVS | | 56.12 14 | 61.82 250 | 60.18 247 | 66.71 278 | 78.48 209 | 37.97 321 | 75.19 278 | 76.41 273 | 46.82 292 | 57.04 235 | 86.52 144 | 27.67 279 | 77.03 308 | 26.50 334 | 67.02 187 | 85.14 183 |
Andrea Romanoni, Matteo Matteucci: TAPA-MVS: Textureless-Aware PAtchMatch Multi-View Stereo. ICCV 2019 |
plane_prior6 | | | | | | 78.42 210 | 49.39 204 | | | | | | 36.04 212 | | | | |
|
OpenMVS |  | 61.00 11 | 69.99 144 | 67.55 163 | 77.30 93 | 78.37 211 | 54.07 89 | 84.36 145 | 85.76 88 | 57.22 208 | 56.71 239 | 87.67 128 | 30.79 259 | 92.83 34 | 43.04 269 | 84.06 54 | 85.01 185 |
|
plane_prior1 | | | | | | 78.31 212 | | | | | | | | | | | |
|
tttt0517 | | | 68.33 175 | 66.29 184 | 74.46 151 | 78.08 213 | 49.06 208 | 80.88 233 | 89.08 23 | 54.40 247 | 54.75 253 | 80.77 213 | 51.31 38 | 90.33 94 | 49.35 237 | 58.01 255 | 83.99 199 |
|
cl-mvsnet2 | | | 68.85 162 | 67.69 158 | 72.35 201 | 78.07 214 | 49.98 193 | 82.45 199 | 78.48 236 | 62.50 104 | 58.46 212 | 77.95 233 | 49.99 49 | 85.17 235 | 62.55 136 | 58.72 244 | 81.90 231 |
|
HQP_MVS | | | 70.96 127 | 69.91 127 | 74.12 160 | 77.95 215 | 49.57 198 | 85.76 106 | 82.59 162 | 63.60 89 | 62.15 163 | 83.28 180 | 36.04 212 | 88.30 152 | 65.46 117 | 72.34 150 | 84.49 190 |
|
plane_prior7 | | | | | | 77.95 215 | 48.46 228 | | | | | | | | | | |
|
FIs | | | 70.00 143 | 70.24 123 | 69.30 252 | 77.93 217 | 38.55 318 | 83.99 158 | 87.72 56 | 66.86 46 | 57.66 224 | 84.17 166 | 52.28 31 | 85.31 230 | 52.72 220 | 68.80 175 | 84.02 197 |
|
PatchMatch-RL | | | 56.66 281 | 53.75 286 | 65.37 289 | 77.91 218 | 45.28 272 | 69.78 312 | 60.38 337 | 41.35 323 | 47.57 297 | 73.73 278 | 16.83 334 | 76.91 309 | 36.99 288 | 59.21 241 | 73.92 317 |
|
XXY-MVS | | | 70.18 137 | 69.28 137 | 72.89 190 | 77.64 219 | 42.88 294 | 85.06 130 | 87.50 60 | 62.58 102 | 62.66 160 | 82.34 196 | 43.64 118 | 89.83 106 | 58.42 172 | 63.70 208 | 85.96 168 |
|
testdata | | | | | 67.08 274 | 77.59 220 | 45.46 271 | | 69.20 322 | 44.47 309 | 71.50 74 | 88.34 114 | 31.21 255 | 70.76 336 | 52.20 222 | 75.88 117 | 85.03 184 |
|
CDS-MVSNet | | | 70.48 135 | 69.43 131 | 73.64 176 | 77.56 221 | 48.83 217 | 83.51 170 | 77.45 253 | 63.27 93 | 62.33 162 | 85.54 155 | 43.85 110 | 83.29 258 | 57.38 188 | 74.00 132 | 88.79 114 |
Khang Truong Giang, Soohwan Song, Sungho Jo: Curvature-guided dynamic scale networks for Multi-view Stereo. ICLR 2022 |
Vis-MVSNet (Re-imp) | | | 65.52 222 | 65.63 200 | 65.17 290 | 77.49 222 | 30.54 342 | 75.49 276 | 77.73 248 | 59.34 159 | 52.26 274 | 86.69 141 | 49.38 54 | 80.53 276 | 37.07 287 | 75.28 123 | 84.42 192 |
|
PVSNet_0 | | 57.04 13 | 61.19 252 | 57.24 263 | 73.02 186 | 77.45 223 | 50.31 185 | 79.43 254 | 77.36 256 | 63.96 82 | 47.51 299 | 72.45 294 | 25.03 297 | 83.78 251 | 52.76 219 | 19.22 355 | 84.96 186 |
|
FMVSNet1 | | | 64.57 226 | 62.11 231 | 71.96 210 | 77.32 224 | 46.36 258 | 83.52 166 | 83.31 149 | 52.43 260 | 54.42 256 | 76.23 261 | 27.80 277 | 86.20 207 | 42.59 273 | 61.34 229 | 83.32 212 |
|
MVS_111021_LR | | | 69.07 158 | 67.91 151 | 72.54 195 | 77.27 225 | 49.56 200 | 79.77 247 | 73.96 292 | 59.33 161 | 60.73 176 | 87.82 124 | 30.19 263 | 81.53 266 | 69.94 86 | 72.19 152 | 86.53 158 |
|
xiu_mvs_v1_base_debu | | | 71.60 118 | 70.29 120 | 75.55 132 | 77.26 226 | 53.15 115 | 85.34 117 | 79.37 214 | 55.83 228 | 72.54 57 | 90.19 79 | 22.38 310 | 86.66 198 | 73.28 70 | 76.39 112 | 86.85 151 |
|
xiu_mvs_v1_base | | | 71.60 118 | 70.29 120 | 75.55 132 | 77.26 226 | 53.15 115 | 85.34 117 | 79.37 214 | 55.83 228 | 72.54 57 | 90.19 79 | 22.38 310 | 86.66 198 | 73.28 70 | 76.39 112 | 86.85 151 |
|
xiu_mvs_v1_base_debi | | | 71.60 118 | 70.29 120 | 75.55 132 | 77.26 226 | 53.15 115 | 85.34 117 | 79.37 214 | 55.83 228 | 72.54 57 | 90.19 79 | 22.38 310 | 86.66 198 | 73.28 70 | 76.39 112 | 86.85 151 |
|
FMVSNet5 | | | 58.61 271 | 56.45 268 | 65.10 291 | 77.20 229 | 39.74 313 | 74.77 279 | 77.12 259 | 50.27 274 | 43.28 314 | 67.71 318 | 26.15 288 | 76.90 310 | 36.78 290 | 54.78 286 | 78.65 274 |
|
PCF-MVS | | 61.03 10 | 70.10 139 | 68.40 145 | 75.22 141 | 77.15 230 | 51.99 143 | 79.30 255 | 82.12 167 | 56.47 223 | 61.88 167 | 86.48 145 | 43.98 109 | 87.24 182 | 55.37 198 | 72.79 146 | 86.43 161 |
Andreas Kuhn, Shan Lin, Oliver Erdler: Plane Completion and Filtering for Multi-View Stereo Reconstruction. GCPR 2019 |
HyFIR lowres test | | | 69.94 146 | 67.58 160 | 77.04 100 | 77.11 231 | 57.29 21 | 81.49 224 | 79.11 223 | 58.27 185 | 58.86 203 | 80.41 215 | 42.33 131 | 86.96 189 | 61.91 142 | 68.68 177 | 86.87 149 |
|
miper_ehance_all_eth | | | 68.70 171 | 67.58 160 | 72.08 205 | 76.91 232 | 49.48 203 | 82.47 198 | 78.45 237 | 62.68 101 | 58.28 216 | 77.88 235 | 50.90 42 | 85.01 240 | 61.91 142 | 58.72 244 | 81.75 234 |
|
test_0402 | | | 56.45 284 | 53.03 288 | 66.69 279 | 76.78 233 | 50.31 185 | 81.76 213 | 69.61 321 | 42.79 320 | 43.88 309 | 72.13 298 | 22.82 308 | 86.46 204 | 16.57 352 | 50.94 304 | 63.31 345 |
|
ACMH | | 53.70 16 | 59.78 257 | 55.94 274 | 71.28 224 | 76.59 234 | 48.35 229 | 80.15 245 | 76.11 274 | 49.74 276 | 41.91 319 | 73.45 285 | 16.50 337 | 90.31 95 | 31.42 314 | 57.63 262 | 75.17 309 |
Qingshan Xu and Wenbing Tao: Multi-Scale Geometric Consistency Guided Multi-View Stereo. CVPR 2019 |
AUN-MVS | | | 68.20 179 | 66.35 182 | 73.76 171 | 76.37 235 | 47.45 244 | 79.52 252 | 79.52 211 | 60.98 131 | 62.34 161 | 86.02 147 | 36.59 206 | 86.94 190 | 62.32 138 | 53.47 296 | 86.89 148 |
|
hse-mvs2 | | | 71.44 121 | 70.68 114 | 73.73 173 | 76.34 236 | 47.44 245 | 79.45 253 | 79.47 213 | 68.08 30 | 71.97 66 | 86.01 149 | 42.50 129 | 86.93 191 | 78.82 26 | 53.46 297 | 86.83 154 |
|
cl-mvsnet____ | | | 67.43 193 | 65.93 193 | 71.95 213 | 76.33 237 | 48.02 238 | 82.58 193 | 79.12 222 | 61.30 125 | 56.72 238 | 76.92 250 | 46.12 81 | 86.44 205 | 57.98 178 | 56.31 270 | 81.38 245 |
|
cl-mvsnet1 | | | 67.43 193 | 65.93 193 | 71.94 214 | 76.33 237 | 48.01 239 | 82.57 194 | 79.11 223 | 61.31 124 | 56.73 237 | 76.92 250 | 46.09 82 | 86.43 206 | 57.98 178 | 56.31 270 | 81.39 244 |
|
TAMVS | | | 69.51 156 | 68.16 149 | 73.56 179 | 76.30 239 | 48.71 219 | 82.57 194 | 77.17 258 | 62.10 109 | 61.32 170 | 84.23 165 | 41.90 140 | 83.46 256 | 54.80 202 | 73.09 143 | 88.50 122 |
|
tfpnnormal | | | 61.47 251 | 59.09 254 | 68.62 263 | 76.29 240 | 41.69 303 | 81.14 229 | 85.16 107 | 54.48 246 | 51.32 278 | 73.63 282 | 32.32 244 | 86.89 193 | 21.78 343 | 55.71 280 | 77.29 291 |
|
cl_fuxian | | | 67.97 181 | 66.66 179 | 71.91 216 | 76.20 241 | 49.31 205 | 82.13 205 | 78.00 244 | 61.99 111 | 57.64 225 | 76.94 249 | 49.41 53 | 84.93 241 | 60.62 153 | 57.01 265 | 81.49 238 |
|
FC-MVSNet-test | | | 67.49 191 | 67.91 151 | 66.21 282 | 76.06 242 | 33.06 335 | 80.82 234 | 87.18 61 | 64.44 75 | 54.81 251 | 82.87 183 | 50.40 47 | 82.60 260 | 48.05 245 | 66.55 189 | 82.98 222 |
|
MVS-HIRNet | | | 49.01 310 | 44.71 314 | 61.92 306 | 76.06 242 | 46.61 255 | 63.23 325 | 54.90 343 | 24.77 349 | 33.56 342 | 36.60 352 | 21.28 318 | 75.88 313 | 29.49 319 | 62.54 222 | 63.26 346 |
|
MVP-Stereo | | | 70.97 126 | 70.44 117 | 72.59 194 | 76.03 244 | 51.36 161 | 85.02 133 | 86.99 65 | 60.31 141 | 56.53 242 | 78.92 227 | 40.11 160 | 90.00 102 | 60.00 163 | 90.01 4 | 76.41 301 |
Qingsong Yan: MVP-Stereo: A Parallel Multi-View Patchmatch Stereo Method with Dilation Matching for Photogrammetric Application. |
nrg030 | | | 72.27 112 | 71.56 103 | 74.42 153 | 75.93 245 | 50.60 172 | 86.97 81 | 83.21 153 | 62.75 100 | 67.15 101 | 84.38 163 | 50.07 48 | 86.66 198 | 71.19 79 | 62.37 224 | 85.99 166 |
|
WR-MVS | | | 67.58 188 | 66.76 176 | 70.04 246 | 75.92 246 | 45.06 277 | 86.23 97 | 85.28 102 | 64.31 76 | 58.50 210 | 81.00 209 | 44.80 104 | 82.00 265 | 49.21 238 | 55.57 282 | 83.06 220 |
|
MIMVSNet | | | 63.12 237 | 60.29 246 | 71.61 218 | 75.92 246 | 46.65 254 | 65.15 319 | 81.94 169 | 59.14 169 | 54.65 254 | 69.47 312 | 25.74 290 | 80.63 274 | 41.03 276 | 69.56 173 | 87.55 138 |
|
UniMVSNet_NR-MVSNet | | | 68.82 164 | 68.29 147 | 70.40 239 | 75.71 248 | 42.59 297 | 84.23 149 | 86.78 69 | 66.31 49 | 58.51 208 | 82.45 193 | 51.57 36 | 84.64 245 | 53.11 210 | 55.96 276 | 83.96 203 |
|
eth_miper_zixun_eth | | | 66.98 206 | 65.28 209 | 72.06 206 | 75.61 249 | 50.40 178 | 81.00 231 | 76.97 264 | 62.00 110 | 56.99 236 | 76.97 248 | 44.84 101 | 85.58 225 | 58.75 168 | 54.42 288 | 80.21 262 |
|
OPM-MVS | | | 70.75 131 | 69.58 130 | 74.26 158 | 75.55 250 | 51.34 162 | 86.05 101 | 83.29 152 | 61.94 113 | 62.95 156 | 85.77 151 | 34.15 226 | 88.44 145 | 65.44 120 | 71.07 159 | 82.99 221 |
|
Effi-MVS+-dtu | | | 66.24 217 | 64.96 214 | 70.08 244 | 75.17 251 | 49.64 197 | 82.01 206 | 74.48 286 | 62.15 107 | 57.83 219 | 76.08 265 | 30.59 260 | 83.79 250 | 65.40 121 | 60.93 231 | 76.81 294 |
|
mvs-test1 | | | 69.04 159 | 67.57 162 | 73.44 181 | 75.17 251 | 51.68 153 | 86.57 92 | 74.48 286 | 62.15 107 | 62.07 165 | 85.79 150 | 30.59 260 | 87.48 177 | 65.40 121 | 65.94 195 | 81.18 250 |
|
GA-MVS | | | 69.04 159 | 66.70 178 | 76.06 124 | 75.11 253 | 52.36 136 | 83.12 182 | 80.23 197 | 63.32 92 | 60.65 177 | 79.22 224 | 30.98 258 | 88.37 147 | 61.25 146 | 66.41 190 | 87.46 140 |
|
IterMVS-LS | | | 66.63 210 | 65.36 208 | 70.42 238 | 75.10 254 | 48.90 214 | 81.45 225 | 76.69 269 | 61.05 129 | 55.71 248 | 77.10 247 | 45.86 88 | 83.65 253 | 57.44 186 | 57.88 259 | 78.70 272 |
Fangjinhua Wang, Silvano Galliani, Christoph Vogel, Marc Pollefeys: IterMVS: Iterative Probability Estimation for Efficient Multi-View Stereo. |
miper_lstm_enhance | | | 63.91 230 | 62.30 229 | 68.75 260 | 75.06 255 | 46.78 252 | 69.02 314 | 81.14 185 | 59.68 151 | 52.76 269 | 72.39 295 | 40.71 152 | 77.99 300 | 56.81 190 | 53.09 298 | 81.48 240 |
|
EI-MVSNet | | | 69.70 151 | 68.70 141 | 72.68 192 | 75.00 256 | 48.90 214 | 79.54 250 | 87.16 62 | 61.05 129 | 63.88 146 | 83.74 172 | 45.87 87 | 90.44 90 | 57.42 187 | 64.68 202 | 78.70 272 |
|
CVMVSNet | | | 60.85 254 | 60.44 245 | 62.07 303 | 75.00 256 | 32.73 337 | 79.54 250 | 73.49 297 | 36.98 334 | 56.28 245 | 83.74 172 | 29.28 268 | 69.53 339 | 46.48 254 | 63.23 214 | 83.94 204 |
|
ACMP | | 61.11 9 | 66.24 217 | 64.33 218 | 72.00 209 | 74.89 258 | 49.12 207 | 83.18 181 | 79.83 204 | 55.41 234 | 52.29 272 | 82.68 190 | 25.83 289 | 86.10 213 | 60.89 149 | 63.94 206 | 80.78 254 |
Qingshan Xu and Wenbing Tao: Planar Prior Assisted PatchMatch Multi-View Stereo. AAAI 2020 |
MSDG | | | 59.44 259 | 55.14 279 | 72.32 202 | 74.69 259 | 50.71 169 | 74.39 282 | 73.58 295 | 44.44 310 | 43.40 313 | 77.52 239 | 19.45 323 | 90.87 81 | 31.31 315 | 57.49 263 | 75.38 307 |
|
ACMH+ | | 54.58 15 | 58.55 273 | 55.24 276 | 68.50 265 | 74.68 260 | 45.80 268 | 80.27 240 | 70.21 319 | 47.15 289 | 42.77 316 | 75.48 269 | 16.73 336 | 85.98 219 | 35.10 301 | 54.78 286 | 73.72 318 |
|
UniMVSNet (Re) | | | 67.71 186 | 66.80 174 | 70.45 237 | 74.44 261 | 42.93 293 | 82.42 200 | 84.90 114 | 63.69 87 | 59.63 186 | 80.99 210 | 47.18 69 | 85.23 234 | 51.17 227 | 56.75 267 | 83.19 217 |
|
LPG-MVS_test | | | 66.44 214 | 64.58 216 | 72.02 207 | 74.42 262 | 48.60 220 | 83.07 184 | 80.64 191 | 54.69 243 | 53.75 263 | 83.83 170 | 25.73 291 | 86.98 187 | 60.33 160 | 64.71 199 | 80.48 258 |
|
LGP-MVS_train | | | | | 72.02 207 | 74.42 262 | 48.60 220 | | 80.64 191 | 54.69 243 | 53.75 263 | 83.83 170 | 25.73 291 | 86.98 187 | 60.33 160 | 64.71 199 | 80.48 258 |
|
Baseline_NR-MVSNet | | | 65.49 224 | 64.27 219 | 69.13 253 | 74.37 264 | 41.65 304 | 83.39 177 | 78.85 225 | 59.56 152 | 59.62 187 | 76.88 252 | 40.75 150 | 87.44 178 | 49.99 231 | 55.05 283 | 78.28 281 |
|
ACMM | | 58.35 12 | 64.35 228 | 62.01 232 | 71.38 223 | 74.21 265 | 48.51 224 | 82.25 203 | 79.66 208 | 47.61 285 | 54.54 255 | 80.11 216 | 25.26 294 | 86.00 218 | 51.26 225 | 63.16 216 | 79.64 268 |
Qingshan Xu and Wenbing Tao: Multi-Scale Geometric Consistency Guided Multi-View Stereo. CVPR 2019 |
CHOSEN 280x420 | | | 57.53 278 | 56.38 271 | 60.97 313 | 74.01 266 | 48.10 237 | 46.30 346 | 54.31 344 | 48.18 284 | 50.88 283 | 77.43 242 | 38.37 174 | 59.16 347 | 54.83 200 | 63.14 217 | 75.66 305 |
|
TransMVSNet (Re) | | | 62.82 240 | 60.76 242 | 69.02 254 | 73.98 267 | 41.61 305 | 86.36 94 | 79.30 221 | 56.90 211 | 52.53 270 | 76.44 257 | 41.85 141 | 87.60 175 | 38.83 280 | 40.61 333 | 77.86 285 |
|
CR-MVSNet | | | 62.47 245 | 59.04 255 | 72.77 191 | 73.97 268 | 56.57 30 | 60.52 333 | 71.72 308 | 60.04 143 | 57.49 229 | 65.86 323 | 38.94 168 | 80.31 278 | 42.86 272 | 59.93 234 | 81.42 241 |
|
RPMNet | | | 59.29 260 | 54.25 283 | 74.42 153 | 73.97 268 | 56.57 30 | 60.52 333 | 76.98 261 | 35.72 338 | 57.49 229 | 58.87 341 | 37.73 181 | 85.26 233 | 27.01 332 | 59.93 234 | 81.42 241 |
|
TranMVSNet+NR-MVSNet | | | 66.94 207 | 65.61 201 | 70.93 232 | 73.45 270 | 43.38 290 | 83.02 186 | 84.25 130 | 65.31 67 | 58.33 215 | 81.90 202 | 39.92 163 | 85.52 226 | 49.43 236 | 54.89 285 | 83.89 205 |
|
Patchmatch-test | | | 53.33 300 | 48.17 307 | 68.81 258 | 73.31 271 | 42.38 301 | 42.98 349 | 58.23 339 | 32.53 343 | 38.79 330 | 70.77 306 | 39.66 164 | 73.51 325 | 25.18 336 | 52.06 301 | 90.55 71 |
|
EG-PatchMatch MVS | | | 62.40 247 | 59.59 249 | 70.81 233 | 73.29 272 | 49.05 209 | 85.81 104 | 84.78 118 | 51.85 265 | 44.19 308 | 73.48 284 | 15.52 340 | 89.85 105 | 40.16 277 | 67.24 185 | 73.54 320 |
|
DU-MVS | | | 66.84 209 | 65.74 198 | 70.16 242 | 73.27 273 | 42.59 297 | 81.50 222 | 82.92 160 | 63.53 91 | 58.51 208 | 82.11 199 | 40.75 150 | 84.64 245 | 53.11 210 | 55.96 276 | 83.24 215 |
|
NR-MVSNet | | | 67.25 198 | 65.99 192 | 71.04 230 | 73.27 273 | 43.91 285 | 85.32 120 | 84.75 119 | 66.05 57 | 53.65 265 | 82.11 199 | 45.05 96 | 85.97 221 | 47.55 247 | 56.18 273 | 83.24 215 |
|
PS-MVSNAJss | | | 68.78 168 | 67.17 170 | 73.62 178 | 73.01 275 | 48.33 231 | 84.95 134 | 84.81 117 | 59.30 162 | 58.91 202 | 79.84 218 | 37.77 178 | 88.86 133 | 62.83 135 | 63.12 218 | 83.67 208 |
|
OMC-MVS | | | 65.97 220 | 65.06 212 | 68.71 261 | 72.97 276 | 42.58 299 | 78.61 258 | 75.35 281 | 54.72 242 | 59.31 193 | 86.25 146 | 33.30 235 | 77.88 302 | 57.99 177 | 67.05 186 | 85.66 175 |
|
PatchT | | | 56.60 282 | 52.97 289 | 67.48 270 | 72.94 277 | 46.16 264 | 57.30 338 | 73.78 293 | 38.77 328 | 54.37 257 | 57.26 344 | 37.52 186 | 78.06 297 | 32.02 311 | 52.79 299 | 78.23 283 |
|
v8 | | | 67.25 198 | 64.99 213 | 74.04 162 | 72.89 278 | 53.31 112 | 82.37 201 | 80.11 199 | 61.54 121 | 54.29 258 | 76.02 266 | 42.89 128 | 88.41 146 | 58.43 170 | 56.36 268 | 80.39 260 |
|
F-COLMAP | | | 55.96 289 | 53.65 287 | 62.87 301 | 72.76 279 | 42.77 296 | 74.70 281 | 70.37 318 | 40.03 325 | 41.11 323 | 79.36 221 | 17.77 331 | 73.70 324 | 32.80 310 | 53.96 291 | 72.15 326 |
|
IterMVS | | | 63.77 233 | 61.67 233 | 70.08 244 | 72.68 280 | 51.24 165 | 80.44 238 | 75.51 278 | 60.51 139 | 51.41 277 | 73.70 281 | 32.08 247 | 78.91 290 | 54.30 205 | 54.35 289 | 80.08 264 |
Fangjinhua Wang, Silvano Galliani, Christoph Vogel, Marc Pollefeys: IterMVS: Iterative Probability Estimation for Efficient Multi-View Stereo. |
v10 | | | 66.61 211 | 64.20 220 | 73.83 169 | 72.59 281 | 53.37 108 | 81.88 210 | 79.91 203 | 61.11 127 | 54.09 260 | 75.60 268 | 40.06 161 | 88.26 155 | 56.47 192 | 56.10 274 | 79.86 267 |
|
Patchmtry | | | 56.56 283 | 52.95 290 | 67.42 271 | 72.53 282 | 50.59 173 | 59.05 335 | 71.72 308 | 37.86 332 | 46.92 300 | 65.86 323 | 38.94 168 | 80.06 282 | 36.94 289 | 46.72 320 | 71.60 330 |
|
Fast-Effi-MVS+-dtu | | | 66.53 212 | 64.10 221 | 73.84 168 | 72.41 283 | 52.30 139 | 84.73 138 | 75.66 277 | 59.51 153 | 56.34 244 | 79.11 226 | 28.11 273 | 85.85 224 | 57.74 184 | 63.29 213 | 83.35 211 |
|
v1144 | | | 68.81 165 | 66.82 173 | 74.80 147 | 72.34 284 | 53.46 101 | 84.68 139 | 81.77 175 | 64.25 77 | 60.28 180 | 77.91 234 | 40.23 157 | 88.95 130 | 60.37 159 | 59.52 236 | 81.97 230 |
|
v2v482 | | | 69.55 155 | 67.64 159 | 75.26 140 | 72.32 285 | 53.83 90 | 84.93 135 | 81.94 169 | 65.37 65 | 60.80 175 | 79.25 223 | 41.62 143 | 88.98 129 | 63.03 134 | 59.51 237 | 82.98 222 |
|
test0.0.03 1 | | | 62.54 242 | 62.44 228 | 62.86 302 | 72.28 286 | 29.51 344 | 82.93 187 | 78.78 228 | 59.18 166 | 53.07 268 | 82.41 194 | 36.91 198 | 77.39 306 | 37.45 283 | 58.96 242 | 81.66 236 |
|
v1192 | | | 67.96 182 | 65.74 198 | 74.63 148 | 71.79 287 | 53.43 107 | 84.06 155 | 80.99 187 | 63.19 95 | 59.56 188 | 77.46 241 | 37.50 188 | 88.65 136 | 58.20 175 | 58.93 243 | 81.79 233 |
|
v148 | | | 68.24 178 | 66.35 182 | 73.88 166 | 71.76 288 | 51.47 158 | 84.23 149 | 81.90 173 | 63.69 87 | 58.94 199 | 76.44 257 | 43.72 116 | 87.78 170 | 60.63 152 | 55.86 278 | 82.39 227 |
|
v144192 | | | 67.86 183 | 65.76 197 | 74.16 159 | 71.68 289 | 53.09 118 | 84.14 152 | 80.83 189 | 62.85 99 | 59.21 195 | 77.28 244 | 39.30 166 | 88.00 163 | 58.67 169 | 57.88 259 | 81.40 243 |
|
pm-mvs1 | | | 64.12 229 | 62.56 227 | 68.78 259 | 71.68 289 | 38.87 317 | 82.89 188 | 81.57 176 | 55.54 233 | 53.89 262 | 77.82 236 | 37.73 181 | 86.74 195 | 48.46 243 | 53.49 295 | 80.72 255 |
|
MDA-MVSNet-bldmvs | | | 51.56 306 | 47.75 311 | 63.00 300 | 71.60 291 | 47.32 247 | 69.70 313 | 72.12 306 | 43.81 315 | 27.65 351 | 63.38 329 | 21.97 315 | 75.96 312 | 27.30 331 | 32.19 346 | 65.70 342 |
|
v1921920 | | | 67.45 192 | 65.23 210 | 74.10 161 | 71.51 292 | 52.90 124 | 83.75 164 | 80.44 194 | 62.48 105 | 59.12 197 | 77.13 245 | 36.98 196 | 87.90 164 | 57.53 185 | 58.14 253 | 81.49 238 |
|
our_test_3 | | | 59.11 264 | 55.08 280 | 71.18 228 | 71.42 293 | 53.29 113 | 81.96 207 | 74.52 285 | 48.32 282 | 42.08 317 | 69.28 314 | 28.14 272 | 82.15 262 | 34.35 303 | 45.68 323 | 78.11 284 |
|
ppachtmachnet_test | | | 58.56 272 | 54.34 281 | 71.24 225 | 71.42 293 | 54.74 72 | 81.84 212 | 72.27 305 | 49.02 280 | 45.86 307 | 68.99 315 | 26.27 286 | 83.30 257 | 30.12 318 | 43.23 328 | 75.69 304 |
|
v1240 | | | 66.99 205 | 64.68 215 | 73.93 164 | 71.38 295 | 52.66 128 | 83.39 177 | 79.98 200 | 61.97 112 | 58.44 214 | 77.11 246 | 35.25 218 | 87.81 166 | 56.46 193 | 58.15 251 | 81.33 246 |
|
JIA-IIPM | | | 52.33 304 | 47.77 310 | 66.03 283 | 71.20 296 | 46.92 251 | 40.00 353 | 76.48 272 | 37.10 333 | 46.73 301 | 37.02 350 | 32.96 237 | 77.88 302 | 35.97 292 | 52.45 300 | 73.29 322 |
|
OpenMVS_ROB |  | 53.19 17 | 59.20 262 | 56.00 273 | 68.83 257 | 71.13 297 | 44.30 282 | 83.64 165 | 75.02 283 | 46.42 296 | 46.48 304 | 73.03 287 | 18.69 327 | 88.14 156 | 27.74 329 | 61.80 226 | 74.05 316 |
|
MVS_0304 | | | 56.72 280 | 55.17 277 | 61.37 310 | 70.71 298 | 36.80 326 | 75.74 270 | 68.75 323 | 44.11 314 | 52.53 270 | 68.20 317 | 15.05 341 | 74.53 318 | 42.98 270 | 58.44 247 | 72.79 325 |
|
SixPastTwentyTwo | | | 54.37 293 | 50.10 300 | 67.21 272 | 70.70 299 | 41.46 306 | 74.73 280 | 64.69 330 | 47.56 286 | 39.12 328 | 69.49 311 | 18.49 329 | 84.69 244 | 31.87 312 | 34.20 344 | 75.48 306 |
|
V42 | | | 67.66 187 | 65.60 202 | 73.86 167 | 70.69 300 | 53.63 96 | 81.50 222 | 78.61 233 | 63.85 83 | 59.49 190 | 77.49 240 | 37.98 175 | 87.65 173 | 62.33 137 | 58.43 248 | 80.29 261 |
|
IterMVS-SCA-FT | | | 59.12 263 | 58.81 257 | 60.08 315 | 70.68 301 | 45.07 274 | 80.42 239 | 74.25 288 | 43.54 317 | 50.02 285 | 73.73 278 | 31.97 248 | 56.74 348 | 51.06 228 | 53.60 294 | 78.42 278 |
|
pmmvs4 | | | 63.34 235 | 61.07 240 | 70.16 242 | 70.14 302 | 50.53 174 | 79.97 246 | 71.41 314 | 55.08 237 | 54.12 259 | 78.58 230 | 32.79 240 | 82.09 264 | 50.33 230 | 57.22 264 | 77.86 285 |
|
MDA-MVSNet_test_wron | | | 53.82 298 | 49.95 302 | 65.43 287 | 70.13 303 | 49.05 209 | 72.30 296 | 71.65 311 | 44.23 313 | 31.85 347 | 63.13 330 | 23.68 304 | 74.01 320 | 33.25 308 | 39.35 336 | 73.23 323 |
|
YYNet1 | | | 53.82 298 | 49.96 301 | 65.41 288 | 70.09 304 | 48.95 211 | 72.30 296 | 71.66 310 | 44.25 312 | 31.89 346 | 63.07 331 | 23.73 303 | 73.95 321 | 33.26 307 | 39.40 335 | 73.34 321 |
|
LTVRE_ROB | | 45.45 19 | 52.73 301 | 49.74 303 | 61.69 307 | 69.78 305 | 34.99 327 | 44.52 347 | 67.60 326 | 43.11 319 | 43.79 310 | 74.03 276 | 18.54 328 | 81.45 267 | 28.39 327 | 57.94 256 | 68.62 336 |
Andreas Kuhn, Heiko Hirschmüller, Daniel Scharstein, Helmut Mayer: A TV Prior for High-Quality Scalable Multi-View Stereo Reconstruction. International Journal of Computer Vision 2016 |
pmmvs5 | | | 62.80 241 | 61.18 238 | 67.66 269 | 69.53 306 | 42.37 302 | 82.65 192 | 75.19 282 | 54.30 248 | 52.03 275 | 78.51 231 | 31.64 253 | 80.67 273 | 48.60 241 | 58.15 251 | 79.95 265 |
|
D2MVS | | | 63.49 234 | 61.39 237 | 69.77 248 | 69.29 307 | 48.93 213 | 78.89 257 | 77.71 249 | 60.64 138 | 49.70 286 | 72.10 300 | 27.08 282 | 83.48 255 | 54.48 204 | 62.65 221 | 76.90 293 |
|
WR-MVS_H | | | 58.91 268 | 58.04 259 | 61.54 308 | 69.07 308 | 33.83 332 | 76.91 266 | 81.99 168 | 51.40 268 | 48.17 291 | 74.67 273 | 40.23 157 | 74.15 319 | 31.78 313 | 48.10 309 | 76.64 298 |
|
bset_n11_16_dypcd | | | 65.51 223 | 63.21 225 | 72.41 199 | 68.84 309 | 50.15 188 | 81.25 226 | 72.40 304 | 59.17 168 | 59.20 196 | 78.66 229 | 25.69 293 | 85.27 232 | 66.80 103 | 56.88 266 | 81.80 232 |
|
test_djsdf | | | 63.84 231 | 61.56 235 | 70.70 234 | 68.78 310 | 44.69 278 | 81.63 216 | 81.44 179 | 50.28 272 | 52.27 273 | 76.26 260 | 26.72 284 | 86.11 211 | 60.83 150 | 55.84 279 | 81.29 249 |
|
Anonymous20231206 | | | 59.08 265 | 57.59 261 | 63.55 297 | 68.77 311 | 32.14 340 | 80.26 241 | 79.78 205 | 50.00 275 | 49.39 287 | 72.39 295 | 26.64 285 | 78.36 293 | 33.12 309 | 57.94 256 | 80.14 263 |
|
K. test v3 | | | 54.04 296 | 49.42 304 | 67.92 268 | 68.55 312 | 42.57 300 | 75.51 275 | 63.07 334 | 52.07 261 | 39.21 327 | 64.59 327 | 19.34 324 | 82.21 261 | 37.11 286 | 25.31 351 | 78.97 269 |
|
CP-MVSNet | | | 58.54 274 | 57.57 262 | 61.46 309 | 68.50 313 | 33.96 331 | 76.90 267 | 78.60 234 | 51.67 267 | 47.83 294 | 76.60 256 | 34.99 221 | 72.79 328 | 35.45 294 | 47.58 312 | 77.64 289 |
|
N_pmnet | | | 41.25 317 | 39.77 320 | 45.66 333 | 68.50 313 | 0.82 369 | 72.51 294 | 0.38 369 | 35.61 339 | 35.26 338 | 61.51 333 | 20.07 322 | 67.74 340 | 23.51 340 | 40.63 332 | 68.42 337 |
|
jajsoiax | | | 63.21 236 | 60.84 241 | 70.32 240 | 68.33 315 | 44.45 280 | 81.23 227 | 81.05 186 | 53.37 253 | 50.96 282 | 77.81 237 | 17.49 332 | 85.49 228 | 59.31 164 | 58.05 254 | 81.02 252 |
|
UniMVSNet_ETH3D | | | 62.51 243 | 60.49 244 | 68.57 264 | 68.30 316 | 40.88 311 | 73.89 284 | 79.93 202 | 51.81 266 | 54.77 252 | 79.61 219 | 24.80 298 | 81.10 269 | 49.93 232 | 61.35 228 | 83.73 207 |
|
PS-CasMVS | | | 58.12 276 | 57.03 266 | 61.37 310 | 68.24 317 | 33.80 333 | 76.73 268 | 78.01 243 | 51.20 269 | 47.54 298 | 76.20 264 | 32.85 238 | 72.76 329 | 35.17 299 | 47.37 314 | 77.55 290 |
|
mvs_tets | | | 62.96 239 | 60.55 243 | 70.19 241 | 68.22 318 | 44.24 284 | 80.90 232 | 80.74 190 | 52.99 256 | 50.82 284 | 77.56 238 | 16.74 335 | 85.44 229 | 59.04 166 | 57.94 256 | 80.89 253 |
|
COLMAP_ROB |  | 43.60 20 | 50.90 307 | 48.05 308 | 59.47 316 | 67.81 319 | 40.57 312 | 71.25 305 | 62.72 336 | 36.49 337 | 36.19 335 | 73.51 283 | 13.48 343 | 73.92 322 | 20.71 345 | 50.26 305 | 63.92 344 |
Johannes L. Schönberger, Enliang Zheng, Marc Pollefeys, Jan-Michael Frahm: Pixelwise View Selection for Unstructured Multi-View Stereo. ECCV 2016 |
PEN-MVS | | | 58.35 275 | 57.15 264 | 61.94 305 | 67.55 320 | 34.39 329 | 77.01 265 | 78.35 238 | 51.87 264 | 47.72 295 | 76.73 254 | 33.91 229 | 73.75 323 | 34.03 304 | 47.17 316 | 77.68 287 |
|
v7n | | | 62.50 244 | 59.27 253 | 72.20 203 | 67.25 321 | 49.83 195 | 77.87 262 | 80.12 198 | 52.50 259 | 48.80 290 | 73.07 286 | 32.10 246 | 87.90 164 | 46.83 253 | 54.92 284 | 78.86 270 |
|
pmmvs6 | | | 59.64 258 | 57.15 264 | 67.09 273 | 66.01 322 | 36.86 325 | 80.50 237 | 78.64 231 | 45.05 306 | 49.05 289 | 73.94 277 | 27.28 280 | 86.10 213 | 43.96 266 | 49.94 306 | 78.31 280 |
|
DTE-MVSNet | | | 57.03 279 | 55.73 275 | 60.95 314 | 65.94 323 | 32.57 338 | 75.71 271 | 77.09 260 | 51.16 270 | 46.65 303 | 76.34 259 | 32.84 239 | 73.22 327 | 30.94 317 | 44.87 324 | 77.06 292 |
|
CL-MVSNet_2432*1600 | | | 62.98 238 | 61.14 239 | 68.50 265 | 65.86 324 | 42.96 292 | 84.37 144 | 82.98 158 | 60.98 131 | 53.95 261 | 72.70 291 | 40.43 155 | 83.71 252 | 41.10 275 | 47.93 311 | 78.83 271 |
|
TinyColmap | | | 48.15 312 | 44.49 316 | 59.13 318 | 65.73 325 | 38.04 320 | 63.34 324 | 62.86 335 | 38.78 327 | 29.48 349 | 67.23 321 | 6.46 356 | 73.30 326 | 24.59 337 | 41.90 331 | 66.04 340 |
|
XVG-OURS | | | 61.88 249 | 59.34 252 | 69.49 250 | 65.37 326 | 46.27 261 | 64.80 321 | 73.49 297 | 47.04 290 | 57.41 233 | 82.85 184 | 25.15 296 | 78.18 294 | 53.00 213 | 64.98 197 | 84.01 198 |
|
XVG-OURS-SEG-HR | | | 62.02 248 | 59.54 250 | 69.46 251 | 65.30 327 | 45.88 265 | 65.06 320 | 73.57 296 | 46.45 295 | 57.42 232 | 83.35 179 | 26.95 283 | 78.09 296 | 53.77 208 | 64.03 204 | 84.42 192 |
|
OurMVSNet-221017-0 | | | 52.39 303 | 48.73 305 | 63.35 299 | 65.21 328 | 38.42 319 | 68.54 316 | 64.95 329 | 38.19 329 | 39.57 326 | 71.43 302 | 13.23 344 | 79.92 283 | 37.16 284 | 40.32 334 | 71.72 329 |
|
AllTest | | | 47.32 313 | 44.66 315 | 55.32 325 | 65.08 329 | 37.50 323 | 62.96 327 | 54.25 345 | 35.45 340 | 33.42 343 | 72.82 288 | 9.98 348 | 59.33 345 | 24.13 338 | 43.84 326 | 69.13 334 |
|
TestCases | | | | | 55.32 325 | 65.08 329 | 37.50 323 | | 54.25 345 | 35.45 340 | 33.42 343 | 72.82 288 | 9.98 348 | 59.33 345 | 24.13 338 | 43.84 326 | 69.13 334 |
|
lessismore_v0 | | | | | 67.98 267 | 64.76 331 | 41.25 307 | | 45.75 351 | | 36.03 336 | 65.63 325 | 19.29 325 | 84.11 247 | 35.67 293 | 21.24 354 | 78.59 275 |
|
UnsupCasMVSNet_eth | | | 57.56 277 | 55.15 278 | 64.79 293 | 64.57 332 | 33.12 334 | 73.17 290 | 83.87 140 | 58.98 175 | 41.75 320 | 70.03 310 | 22.54 309 | 79.92 283 | 46.12 258 | 35.31 339 | 81.32 248 |
|
USDC | | | 54.36 294 | 51.23 297 | 63.76 296 | 64.29 333 | 37.71 322 | 62.84 328 | 73.48 299 | 56.85 212 | 35.47 337 | 71.94 301 | 9.23 350 | 78.43 292 | 38.43 281 | 48.57 308 | 75.13 310 |
|
Patchmatch-RL test | | | 58.72 270 | 54.32 282 | 71.92 215 | 63.91 334 | 44.25 283 | 61.73 329 | 55.19 342 | 57.38 206 | 49.31 288 | 54.24 345 | 37.60 184 | 80.89 271 | 62.19 140 | 47.28 315 | 90.63 70 |
|
anonymousdsp | | | 60.46 256 | 57.65 260 | 68.88 255 | 63.63 335 | 45.09 273 | 72.93 291 | 78.63 232 | 46.52 294 | 51.12 279 | 72.80 290 | 21.46 317 | 83.07 259 | 57.79 182 | 53.97 290 | 78.47 276 |
|
UnsupCasMVSNet_bld | | | 53.86 297 | 50.53 299 | 63.84 295 | 63.52 336 | 34.75 328 | 71.38 304 | 81.92 171 | 46.53 293 | 38.95 329 | 57.93 342 | 20.55 320 | 80.20 281 | 39.91 278 | 34.09 345 | 76.57 299 |
|
test20.03 | | | 55.22 291 | 54.07 284 | 58.68 319 | 63.14 337 | 25.00 351 | 77.69 263 | 74.78 284 | 52.64 257 | 43.43 312 | 72.39 295 | 26.21 287 | 74.76 317 | 29.31 320 | 47.05 318 | 76.28 302 |
|
testgi | | | 54.25 295 | 52.57 294 | 59.29 317 | 62.76 338 | 21.65 356 | 72.21 298 | 70.47 317 | 53.25 254 | 41.94 318 | 77.33 243 | 14.28 342 | 77.95 301 | 29.18 321 | 51.72 302 | 78.28 281 |
|
EU-MVSNet | | | 52.63 302 | 50.72 298 | 58.37 320 | 62.69 339 | 28.13 349 | 72.60 292 | 75.97 275 | 30.94 344 | 40.76 325 | 72.11 299 | 20.16 321 | 70.80 335 | 35.11 300 | 46.11 321 | 76.19 303 |
|
XVG-ACMP-BASELINE | | | 56.03 287 | 52.85 291 | 65.58 285 | 61.91 340 | 40.95 310 | 63.36 323 | 72.43 303 | 45.20 305 | 46.02 305 | 74.09 275 | 9.20 351 | 78.12 295 | 45.13 260 | 58.27 249 | 77.66 288 |
|
MIMVSNet1 | | | 50.35 308 | 47.81 309 | 57.96 321 | 61.53 341 | 27.80 350 | 67.40 317 | 74.06 290 | 43.25 318 | 33.31 345 | 65.38 326 | 16.03 338 | 71.34 333 | 21.80 342 | 47.55 313 | 74.75 311 |
|
pmmvs-eth3d | | | 55.97 288 | 52.78 292 | 65.54 286 | 61.02 342 | 46.44 257 | 75.36 277 | 67.72 325 | 49.61 277 | 43.65 311 | 67.58 319 | 21.63 316 | 77.04 307 | 44.11 265 | 44.33 325 | 73.15 324 |
|
CMPMVS |  | 40.41 21 | 55.34 290 | 52.64 293 | 63.46 298 | 60.88 343 | 43.84 286 | 61.58 331 | 71.06 315 | 30.43 345 | 36.33 334 | 74.63 274 | 24.14 301 | 75.44 314 | 48.05 245 | 66.62 188 | 71.12 333 |
M. Jancosek, T. Pajdla: Multi-View Reconstruction Preserving Weakly-Supported Surfaces. CVPR 2011 |
Gipuma |  | | 27.47 325 | 24.26 328 | 37.12 338 | 60.55 344 | 29.17 346 | 11.68 360 | 60.00 338 | 14.18 356 | 10.52 360 | 15.12 361 | 2.20 365 | 63.01 343 | 8.39 357 | 35.65 338 | 19.18 356 |
S. Galliani, K. Lasinger, K. Schindler: Massively Parallel Multiview Stereopsis by Surface Normal Diffusion. ICCV 2015 |
ITE_SJBPF | | | | | 51.84 328 | 58.03 345 | 31.94 341 | | 53.57 347 | 36.67 335 | 41.32 322 | 75.23 271 | 11.17 346 | 51.57 352 | 25.81 335 | 48.04 310 | 72.02 328 |
|
new-patchmatchnet | | | 48.21 311 | 46.55 313 | 53.18 327 | 57.73 346 | 18.19 360 | 70.24 308 | 71.02 316 | 45.70 300 | 33.70 341 | 60.23 336 | 18.00 330 | 69.86 338 | 27.97 328 | 34.35 342 | 71.49 332 |
|
RPSCF | | | 45.77 315 | 44.13 317 | 50.68 329 | 57.67 347 | 29.66 343 | 54.92 342 | 45.25 352 | 26.69 348 | 45.92 306 | 75.92 267 | 17.43 333 | 45.70 356 | 27.44 330 | 45.95 322 | 76.67 295 |
|
Anonymous20240521 | | | 51.65 305 | 48.42 306 | 61.34 312 | 56.43 348 | 39.65 315 | 73.57 286 | 73.47 300 | 36.64 336 | 36.59 333 | 63.98 328 | 10.75 347 | 72.25 332 | 35.35 295 | 49.01 307 | 72.11 327 |
|
DIV-MVS_2432*1600 | | | 49.24 309 | 46.85 312 | 56.44 323 | 54.32 349 | 22.87 353 | 57.39 337 | 73.36 301 | 44.36 311 | 37.98 331 | 59.30 340 | 18.97 326 | 71.17 334 | 33.48 305 | 42.44 329 | 75.26 308 |
|
ambc | | | | | 62.06 304 | 53.98 350 | 29.38 345 | 35.08 355 | 79.65 209 | | 41.37 321 | 59.96 337 | 6.27 357 | 82.15 262 | 35.34 296 | 38.22 337 | 74.65 312 |
|
PM-MVS | | | 46.92 314 | 43.76 318 | 56.41 324 | 52.18 351 | 32.26 339 | 63.21 326 | 38.18 355 | 37.99 331 | 40.78 324 | 66.20 322 | 5.09 359 | 65.42 342 | 48.19 244 | 41.99 330 | 71.54 331 |
|
TDRefinement | | | 40.91 318 | 38.37 321 | 48.55 331 | 50.45 352 | 33.03 336 | 58.98 336 | 50.97 348 | 28.50 346 | 29.89 348 | 67.39 320 | 6.21 358 | 54.51 349 | 17.67 351 | 35.25 340 | 58.11 347 |
|
new_pmnet | | | 33.56 322 | 31.89 325 | 38.59 336 | 49.01 353 | 20.42 357 | 51.01 343 | 37.92 356 | 20.58 350 | 23.45 352 | 46.79 347 | 6.66 355 | 49.28 354 | 20.00 348 | 31.57 348 | 46.09 353 |
|
pmmvs3 | | | 45.53 316 | 41.55 319 | 57.44 322 | 48.97 354 | 39.68 314 | 70.06 309 | 57.66 340 | 28.32 347 | 34.06 340 | 57.29 343 | 8.50 352 | 66.85 341 | 34.86 302 | 34.26 343 | 65.80 341 |
|
DSMNet-mixed | | | 38.35 319 | 35.36 322 | 47.33 332 | 48.11 355 | 14.91 362 | 37.87 354 | 36.60 357 | 19.18 353 | 34.37 339 | 59.56 339 | 15.53 339 | 53.01 351 | 20.14 347 | 46.89 319 | 74.07 315 |
|
FPMVS | | | 35.40 320 | 33.67 323 | 40.57 335 | 46.34 356 | 28.74 348 | 41.05 351 | 57.05 341 | 20.37 352 | 22.27 353 | 53.38 346 | 6.87 354 | 44.94 357 | 8.62 356 | 47.11 317 | 48.01 352 |
|
LF4IMVS | | | 33.04 323 | 32.55 324 | 34.52 339 | 40.96 357 | 22.03 355 | 44.45 348 | 35.62 358 | 20.42 351 | 28.12 350 | 62.35 332 | 5.03 360 | 31.88 362 | 21.61 344 | 34.42 341 | 49.63 351 |
|
wuyk23d | | | 9.11 334 | 8.77 338 | 10.15 346 | 40.18 358 | 16.76 361 | 20.28 358 | 1.01 368 | 2.58 363 | 2.66 365 | 0.98 365 | 0.23 370 | 12.49 364 | 4.08 363 | 6.90 361 | 1.19 361 |
|
PMMVS2 | | | 26.71 326 | 22.98 330 | 37.87 337 | 36.89 359 | 8.51 366 | 42.51 350 | 29.32 363 | 19.09 354 | 13.01 357 | 37.54 349 | 2.23 364 | 53.11 350 | 14.54 353 | 11.71 356 | 51.99 350 |
|
E-PMN | | | 19.16 329 | 18.40 333 | 21.44 343 | 36.19 360 | 13.63 363 | 47.59 344 | 30.89 361 | 10.73 358 | 5.91 363 | 16.59 359 | 3.66 362 | 39.77 358 | 5.95 360 | 8.14 358 | 10.92 358 |
|
EMVS | | | 18.42 330 | 17.66 334 | 20.71 344 | 34.13 361 | 12.64 364 | 46.94 345 | 29.94 362 | 10.46 360 | 5.58 364 | 14.93 362 | 4.23 361 | 38.83 359 | 5.24 362 | 7.51 360 | 10.67 359 |
|
ANet_high | | | 34.39 321 | 29.59 326 | 48.78 330 | 30.34 362 | 22.28 354 | 55.53 339 | 63.79 333 | 38.11 330 | 15.47 355 | 36.56 353 | 6.94 353 | 59.98 344 | 13.93 354 | 5.64 363 | 64.08 343 |
|
MVE |  | 16.60 23 | 17.34 332 | 13.39 335 | 29.16 342 | 28.43 363 | 19.72 358 | 13.73 359 | 23.63 364 | 7.23 361 | 7.96 361 | 21.41 357 | 0.80 369 | 36.08 360 | 6.97 358 | 10.39 357 | 31.69 354 |
Simon Fuhrmann, Fabian Langguth, Michael Goesele: MVE - A Multi-View Reconstruction Environment. EUROGRAPHICS Workshops on Graphics and Cultural Heritage (2014) |
test_method | | | 24.09 328 | 21.07 332 | 33.16 340 | 27.67 364 | 8.35 367 | 26.63 357 | 35.11 360 | 3.40 362 | 14.35 356 | 36.98 351 | 3.46 363 | 35.31 361 | 19.08 350 | 22.95 353 | 55.81 348 |
|
LCM-MVSNet | | | 28.07 324 | 23.85 329 | 40.71 334 | 27.46 365 | 18.93 359 | 30.82 356 | 46.19 349 | 12.76 357 | 16.40 354 | 34.70 355 | 1.90 366 | 48.69 355 | 20.25 346 | 24.22 352 | 54.51 349 |
|
PMVS |  | 19.57 22 | 25.07 327 | 22.43 331 | 32.99 341 | 23.12 366 | 22.98 352 | 40.98 352 | 35.19 359 | 15.99 355 | 11.95 359 | 35.87 354 | 1.47 368 | 49.29 353 | 5.41 361 | 31.90 347 | 26.70 355 |
Y. Furukawa, J. Ponce: Accurate, dense, and robust multiview stereopsis. PAMI (2010) |
DeepMVS_CX |  | | | | 13.10 345 | 21.34 367 | 8.99 365 | | 10.02 367 | 10.59 359 | 7.53 362 | 30.55 356 | 1.82 367 | 14.55 363 | 6.83 359 | 7.52 359 | 15.75 357 |
|
tmp_tt | | | 9.44 333 | 10.68 336 | 5.73 347 | 2.49 368 | 4.21 368 | 10.48 361 | 18.04 365 | 0.34 364 | 12.59 358 | 20.49 358 | 11.39 345 | 7.03 365 | 13.84 355 | 6.46 362 | 5.95 360 |
|
testmvs | | | 6.14 336 | 8.18 339 | 0.01 348 | 0.01 369 | 0.00 371 | 73.40 289 | 0.00 370 | 0.00 365 | 0.02 366 | 0.15 366 | 0.00 371 | 0.00 366 | 0.02 364 | 0.00 364 | 0.02 362 |
|
uanet_test | | | 0.00 339 | 0.00 342 | 0.00 350 | 0.00 370 | 0.00 371 | 0.00 362 | 0.00 370 | 0.00 365 | 0.00 368 | 0.00 368 | 0.00 371 | 0.00 366 | 0.00 366 | 0.00 364 | 0.00 364 |
|
cdsmvs_eth3d_5k | | | 18.33 331 | 24.44 327 | 0.00 350 | 0.00 370 | 0.00 371 | 0.00 362 | 89.40 17 | 0.00 365 | 0.00 368 | 92.02 36 | 38.55 172 | 0.00 366 | 0.00 366 | 0.00 364 | 0.00 364 |
|
pcd_1.5k_mvsjas | | | 3.15 338 | 4.20 341 | 0.00 350 | 0.00 370 | 0.00 371 | 0.00 362 | 0.00 370 | 0.00 365 | 0.00 368 | 0.00 368 | 37.77 178 | 0.00 366 | 0.00 366 | 0.00 364 | 0.00 364 |
|
sosnet-low-res | | | 0.00 339 | 0.00 342 | 0.00 350 | 0.00 370 | 0.00 371 | 0.00 362 | 0.00 370 | 0.00 365 | 0.00 368 | 0.00 368 | 0.00 371 | 0.00 366 | 0.00 366 | 0.00 364 | 0.00 364 |
|
sosnet | | | 0.00 339 | 0.00 342 | 0.00 350 | 0.00 370 | 0.00 371 | 0.00 362 | 0.00 370 | 0.00 365 | 0.00 368 | 0.00 368 | 0.00 371 | 0.00 366 | 0.00 366 | 0.00 364 | 0.00 364 |
|
uncertanet | | | 0.00 339 | 0.00 342 | 0.00 350 | 0.00 370 | 0.00 371 | 0.00 362 | 0.00 370 | 0.00 365 | 0.00 368 | 0.00 368 | 0.00 371 | 0.00 366 | 0.00 366 | 0.00 364 | 0.00 364 |
|
Regformer | | | 0.00 339 | 0.00 342 | 0.00 350 | 0.00 370 | 0.00 371 | 0.00 362 | 0.00 370 | 0.00 365 | 0.00 368 | 0.00 368 | 0.00 371 | 0.00 366 | 0.00 366 | 0.00 364 | 0.00 364 |
|
test123 | | | 6.01 337 | 8.01 340 | 0.01 348 | 0.00 370 | 0.01 370 | 71.93 302 | 0.00 370 | 0.00 365 | 0.02 366 | 0.11 367 | 0.00 371 | 0.00 366 | 0.02 364 | 0.00 364 | 0.02 362 |
|
ab-mvs-re | | | 7.68 335 | 10.24 337 | 0.00 350 | 0.00 370 | 0.00 371 | 0.00 362 | 0.00 370 | 0.00 365 | 0.00 368 | 92.12 33 | 0.00 371 | 0.00 366 | 0.00 366 | 0.00 364 | 0.00 364 |
|
uanet | | | 0.00 339 | 0.00 342 | 0.00 350 | 0.00 370 | 0.00 371 | 0.00 362 | 0.00 370 | 0.00 365 | 0.00 368 | 0.00 368 | 0.00 371 | 0.00 366 | 0.00 366 | 0.00 364 | 0.00 364 |
|
test_241102_TWO | | | | | | | | | 88.76 34 | 57.50 204 | 83.60 5 | 94.09 4 | 56.14 16 | 96.37 5 | 82.28 11 | 87.43 18 | 92.55 23 |
|
test_0728_THIRD | | | | | | | | | | 58.00 190 | 81.91 9 | 93.64 10 | 56.54 13 | 96.44 2 | 81.64 16 | 86.86 23 | 92.23 29 |
|
GSMVS | | | | | | | | | | | | | | | | | 88.13 127 |
|
sam_mvs1 | | | | | | | | | | | | | 38.86 170 | | | | 88.13 127 |
|
sam_mvs | | | | | | | | | | | | | 35.99 214 | | | | |
|
MTGPA |  | | | | | | | | 81.31 181 | | | | | | | | |
|
test_post1 | | | | | | | | 70.84 307 | | | | 14.72 363 | 34.33 225 | 83.86 248 | 48.80 239 | | |
|
test_post | | | | | | | | | | | | 16.22 360 | 37.52 186 | 84.72 243 | | | |
|
patchmatchnet-post | | | | | | | | | | | | 59.74 338 | 38.41 173 | 79.91 285 | | | |
|
MTMP | | | | | | | | 87.27 75 | 15.34 366 | | | | | | | | |
|
test9_res | | | | | | | | | | | | | | | 78.72 29 | 85.44 40 | 91.39 52 |
|
agg_prior2 | | | | | | | | | | | | | | | 75.65 49 | 85.11 44 | 91.01 62 |
|
test_prior4 | | | | | | | 56.39 35 | 87.15 78 | | | | | | | | | |
|
test_prior2 | | | | | | | | 89.04 43 | | 61.88 114 | 73.55 46 | 91.46 50 | 48.01 62 | | 74.73 57 | 85.46 38 | |
|
旧先验2 | | | | | | | | 81.73 214 | | 45.53 302 | 74.66 35 | | | 70.48 337 | 58.31 174 | | |
|
新几何2 | | | | | | | | 81.61 218 | | | | | | | | | |
|
无先验 | | | | | | | | 85.19 122 | 78.00 244 | 49.08 279 | | | | 85.13 237 | 52.78 216 | | 87.45 141 |
|
原ACMM2 | | | | | | | | 83.77 163 | | | | | | | | | |
|
testdata2 | | | | | | | | | | | | | | 77.81 304 | 45.64 259 | | |
|
segment_acmp | | | | | | | | | | | | | 44.97 99 | | | | |
|
testdata1 | | | | | | | | 77.55 264 | | 64.14 78 | | | | | | | |
|
plane_prior5 | | | | | | | | | 82.59 162 | | | | | 88.30 152 | 65.46 117 | 72.34 150 | 84.49 190 |
|
plane_prior4 | | | | | | | | | | | | 83.28 180 | | | | | |
|
plane_prior3 | | | | | | | 48.95 211 | | | 64.01 79 | 62.15 163 | | | | | | |
|
plane_prior2 | | | | | | | | 85.76 106 | | 63.60 89 | | | | | | | |
|
plane_prior | | | | | | | 49.57 198 | 87.43 69 | | 64.57 74 | | | | | | 72.84 145 | |
|
n2 | | | | | | | | | 0.00 370 | | | | | | | | |
|
nn | | | | | | | | | 0.00 370 | | | | | | | | |
|
door-mid | | | | | | | | | 41.31 354 | | | | | | | | |
|
test11 | | | | | | | | | 84.25 130 | | | | | | | | |
|
door | | | | | | | | | 43.27 353 | | | | | | | | |
|
HQP5-MVS | | | | | | | 51.56 155 | | | | | | | | | | |
|
BP-MVS | | | | | | | | | | | | | | | 66.70 104 | | |
|
HQP4-MVS | | | | | | | | | | | 64.47 137 | | | 88.61 138 | | | 84.91 187 |
|
HQP3-MVS | | | | | | | | | 83.68 142 | | | | | | | 73.12 141 | |
|
HQP2-MVS | | | | | | | | | | | | | 37.35 189 | | | | |
|
MDTV_nov1_ep13_2view | | | | | | | 43.62 288 | 71.13 306 | | 54.95 240 | 59.29 194 | | 36.76 200 | | 46.33 256 | | 87.32 143 |
|
ACMMP++_ref | | | | | | | | | | | | | | | | 63.20 215 | |
|
ACMMP++ | | | | | | | | | | | | | | | | 59.38 239 | |
|
Test By Simon | | | | | | | | | | | | | 39.38 165 | | | | |
|