This table lists the benchmark results for the high-res multi-view scenario. The following metrics are evaluated:

(*) For exact definitions, detailing how potentially incomplete ground truth is taken into account, see our paper.

The datasets are grouped into different categories, and result averages are computed for a category and method if results of the method are available for all datasets within the category. Note that the category "all" includes both the high-res multi-view and the low-res many-view scenarios.

Methods with suffix _ROB may participate in the Robust Vision Challenge.

Click a dataset result cell to show a visualization of the reconstruction. For training datasets, ground truth and accuracy / completeness visualizations are also available. The visualizations may not work with mobile browsers.




Method Infoallhigh-res
multi-view
indooroutdoorbotani.boulde.bridgedoorexhibi.lectur.living.loungeobserv.old co.statueterrac.
sort bysort bysort bysort bysorted bysort bysort bysort bysort bysort bysort bysort bysort bysort bysort bysort by
MG-MVS78.42 2876.99 4582.73 293.17 164.46 189.93 2988.51 4964.83 9273.52 5988.09 13548.07 7692.19 5462.24 16284.53 5291.53 62
MCST-MVS83.01 183.30 282.15 1092.84 257.58 1693.77 191.10 1175.95 377.10 3793.09 2754.15 3795.57 1285.80 1085.87 3893.31 11
OPU-MVS81.71 1392.05 355.97 4892.48 394.01 567.21 295.10 1589.82 392.55 394.06 3
DVP-MVS++82.44 382.38 682.62 491.77 457.49 1784.98 13788.88 3358.00 21983.60 693.39 1867.21 296.39 481.64 3191.98 493.98 5
MSC_two_6792asdad81.53 1591.77 456.03 4691.10 1196.22 881.46 3386.80 2892.34 35
No_MVS81.53 1591.77 456.03 4691.10 1196.22 881.46 3386.80 2892.34 35
MAR-MVS76.76 5475.60 6080.21 3190.87 754.68 8589.14 4289.11 2862.95 12670.54 10292.33 3941.05 17094.95 1757.90 20886.55 3291.00 79
Zhenyu Xu, Yiguang Liu, Xuelei Shi, Ying Wang, Yunan Zheng: MARMVS: Matching Ambiguity Reduced Multiple View Stereo for Efficient Large Scale Scene Reconstruction. CVPR 2020
DP-MVS Recon71.99 12970.31 14177.01 10490.65 853.44 11389.37 3782.97 17356.33 25563.56 17689.47 10534.02 26592.15 5754.05 23772.41 16785.43 210
patch_mono-280.84 1281.59 1078.62 6690.34 953.77 10488.08 5488.36 5176.17 279.40 2791.09 6455.43 2790.09 10885.01 1280.40 8291.99 48
CNVR-MVS81.76 981.90 881.33 1890.04 1057.70 1491.71 1188.87 3570.31 2577.64 3693.87 752.58 4493.91 2684.17 1587.92 1692.39 33
API-MVS74.17 9072.07 11280.49 2590.02 1158.55 987.30 7584.27 14357.51 23265.77 14187.77 14441.61 16695.97 1151.71 25482.63 6186.94 176
dcpmvs_279.33 2178.94 2180.49 2589.75 1256.54 3684.83 14483.68 15667.85 4569.36 10590.24 8760.20 892.10 5884.14 1680.40 8292.82 25
LFMVS78.52 2577.14 4382.67 389.58 1358.90 891.27 1988.05 5563.22 12274.63 4890.83 7541.38 16994.40 2075.42 7279.90 9194.72 2
ZD-MVS89.55 1453.46 11084.38 14057.02 24173.97 5591.03 6544.57 12591.17 7775.41 7381.78 71
test_0728_SECOND82.20 889.50 1557.73 1392.34 588.88 3396.39 481.68 2987.13 2192.47 31
NCCC79.57 2079.23 2080.59 2489.50 1556.99 2691.38 1688.17 5367.71 4873.81 5692.75 3246.88 8993.28 3078.79 4784.07 5591.50 64
SED-MVS81.92 881.75 982.44 789.48 1756.89 2992.48 388.94 3157.50 23384.61 494.09 358.81 1296.37 682.28 2687.60 1894.06 3
IU-MVS89.48 1757.49 1791.38 966.22 6988.26 182.83 2287.60 1892.44 32
test_241102_ONE89.48 1756.89 2988.94 3157.53 23184.61 493.29 2258.81 1296.45 1
DVP-MVScopyleft81.30 1081.00 1382.20 889.40 2057.45 1992.34 589.99 1957.71 22781.91 1493.64 1255.17 2996.44 281.68 2987.13 2192.72 28
Zhenlong Yuan, Jinguo Luo, Fei Shen, Zhaoxin Li, Cong Liu, Tianlu Mao, Zhaoqi Wang: DVP-MVS: Synergize Depth-Edge and Visibility Prior for Multi-View Stereo. AAAI2025
test072689.40 2057.45 1992.32 788.63 4457.71 22783.14 993.96 655.17 29
test_one_060189.39 2257.29 2288.09 5457.21 23982.06 1393.39 1854.94 33
test_part289.33 2355.48 5482.27 12
DPE-MVScopyleft79.82 1979.66 1780.29 3089.27 2455.08 7288.70 4787.92 5755.55 26381.21 1993.69 1156.51 2294.27 2278.36 5185.70 4091.51 63
Kehua Chen, Zhenlong Yuan, Tianlu Mao, Zhaoqi Wang: Dual-Level Precision Edges Guided Multi-View Stereo with Accurate Planarization. AAAI2025
CSCG80.41 1579.72 1682.49 589.12 2557.67 1589.29 4191.54 559.19 19571.82 8290.05 9559.72 1096.04 1078.37 5088.40 1493.75 7
APDe-MVScopyleft78.44 2778.20 2779.19 4588.56 2654.55 8989.76 3387.77 6155.91 25878.56 3092.49 3748.20 7592.65 4279.49 3983.04 5990.39 91
Zhaojie Zeng, Yuesong Wang, Tao Guan: Matching Ambiguity-Resilient Multi-View Stereo via Adaptive Patch Deformation. Pattern Recognition
APD-MVScopyleft76.15 6175.68 5877.54 9088.52 2753.44 11387.26 7885.03 12353.79 28074.91 4691.68 5643.80 13190.31 10174.36 8081.82 6988.87 132
Yuesong Wang, Zhaojie Zeng and etc.: Adaptive Patch Deformation for Textureless-Resilient Multi-View Stereo. CVPR2023
DeepC-MVS_fast67.50 378.00 3677.63 3579.13 4988.52 2755.12 6989.95 2885.98 9568.31 3671.33 8992.75 3245.52 10790.37 9871.15 10185.14 4691.91 49
Andreas Kuhn, Christian Sormann, Mattia Rossi, Oliver Erdler, Friedrich Fraundorfer: DeepC-MVS: Deep Confidence Prediction for Multi-View Stereo Reconstruction. 3DV 2020
114514_t69.87 17067.88 17875.85 13388.38 2952.35 14286.94 8583.68 15653.70 28155.68 28085.60 17330.07 30091.20 7655.84 22771.02 18083.99 231
testing1179.18 2278.85 2380.16 3388.33 3056.99 2688.31 5292.06 172.82 1070.62 10188.37 12757.69 1792.30 5075.25 7476.24 12891.20 73
WTY-MVS77.47 4377.52 3877.30 9588.33 3046.25 28588.46 5090.32 1771.40 1872.32 7791.72 5453.44 3992.37 4966.28 13175.42 13793.28 13
PAPR75.20 7974.13 8078.41 7388.31 3255.10 7184.31 15885.66 10063.76 10967.55 12090.73 7743.48 14089.40 12566.36 13077.03 11590.73 85
testing9978.45 2677.78 3480.45 2888.28 3356.81 3287.95 5991.49 671.72 1470.84 9688.09 13557.29 1992.63 4469.24 11175.13 14391.91 49
DP-MVS59.24 29256.12 30468.63 29188.24 3450.35 18682.51 21364.43 36941.10 36146.70 34378.77 26224.75 33588.57 16122.26 38756.29 30566.96 379
testing9178.30 3277.54 3780.61 2388.16 3557.12 2587.94 6091.07 1471.43 1770.75 9788.04 13955.82 2692.65 4269.61 10875.00 14792.05 44
AdaColmapbinary67.86 20765.48 23075.00 16488.15 3654.99 7486.10 10176.63 29649.30 31257.80 25086.65 16329.39 30388.94 14645.10 29770.21 18881.06 284
test_yl75.85 6774.83 7478.91 5488.08 3751.94 14991.30 1789.28 2557.91 22171.19 9189.20 11142.03 16092.77 3869.41 10975.07 14592.01 46
DCV-MVSNet75.85 6774.83 7478.91 5488.08 3751.94 14991.30 1789.28 2557.91 22171.19 9189.20 11142.03 16092.77 3869.41 10975.07 14592.01 46
WBMVS73.93 9473.39 8775.55 14287.82 3955.21 6589.37 3787.29 6967.27 5363.70 17280.30 24760.32 686.47 23161.58 16862.85 25284.97 215
UBG78.86 2478.86 2278.86 5787.80 4055.43 5587.67 6491.21 1072.83 972.10 7988.40 12658.53 1689.08 13573.21 9477.98 10792.08 41
CANet80.90 1181.17 1280.09 3787.62 4154.21 9691.60 1486.47 8573.13 879.89 2593.10 2549.88 6892.98 3384.09 1784.75 5093.08 19
VNet77.99 3777.92 3178.19 7887.43 4250.12 19190.93 2291.41 867.48 5275.12 4390.15 9346.77 9191.00 8273.52 8978.46 10393.44 9
HPM-MVS++copyleft80.50 1480.71 1479.88 3987.34 4355.20 6789.93 2987.55 6766.04 7679.46 2693.00 3053.10 4191.76 6380.40 3789.56 992.68 29
Anonymous20240521170.11 16167.88 17876.79 11487.20 4447.24 27189.49 3577.38 28154.88 27266.14 13386.84 15820.93 35891.54 6756.45 22471.62 17491.59 58
testing22277.70 4077.22 4279.14 4886.95 4554.89 7887.18 7991.96 272.29 1271.17 9388.70 12055.19 2891.24 7465.18 14676.32 12791.29 71
test1279.24 4486.89 4656.08 4585.16 11972.27 7847.15 8691.10 8085.93 3790.54 89
DELS-MVS82.32 582.50 581.79 1286.80 4756.89 2992.77 286.30 8977.83 177.88 3392.13 4160.24 794.78 1978.97 4489.61 893.69 8
Christian Sormann, Emanuele Santellani, Mattia Rossi, Andreas Kuhn, Friedrich Fraundorfer: DELS-MVS: Deep Epipolar Line Search for Multi-View Stereo. Winter Conference on Applications of Computer Vision (WACV), 2023
GG-mvs-BLEND77.77 8586.68 4850.61 17468.67 34588.45 5068.73 11287.45 14959.15 1190.67 9054.83 23187.67 1792.03 45
MVS_030482.10 782.64 480.47 2786.63 4954.69 8492.20 986.66 8174.48 582.63 1093.80 950.83 5993.70 2890.11 286.44 3393.01 21
CDPH-MVS76.05 6375.19 6778.62 6686.51 5054.98 7587.32 7384.59 13658.62 21070.75 9790.85 7443.10 14790.63 9370.50 10484.51 5390.24 96
balanced_conf0380.28 1679.73 1581.90 1186.47 5159.34 680.45 25889.51 2369.76 2971.05 9486.66 16258.68 1593.24 3184.64 1490.40 693.14 18
reproduce_monomvs69.71 17268.52 16673.29 20886.43 5248.21 24783.91 17086.17 9268.02 4354.91 28577.46 27542.96 14888.86 14868.44 11648.38 34582.80 257
test_prior78.39 7486.35 5354.91 7785.45 10489.70 11990.55 87
ETVMVS75.80 7175.44 6376.89 11086.23 5450.38 18385.55 11891.42 771.30 2068.80 11187.94 14156.42 2389.24 13056.54 22074.75 15091.07 77
gg-mvs-nofinetune67.43 21964.53 24476.13 12685.95 5547.79 26364.38 35988.28 5239.34 36466.62 12741.27 40158.69 1489.00 14049.64 26786.62 3191.59 58
PVSNet_BlendedMVS73.42 10573.30 8973.76 19685.91 5651.83 15386.18 9984.24 14665.40 8469.09 10980.86 24346.70 9288.13 17775.43 7065.92 22281.33 279
PVSNet_Blended76.53 5676.54 4976.50 11685.91 5651.83 15388.89 4584.24 14667.82 4669.09 10989.33 11046.70 9288.13 17775.43 7081.48 7389.55 115
test_885.72 5855.31 6187.60 6683.88 15357.84 22472.84 6990.99 6644.99 11588.34 169
TEST985.68 5955.42 5687.59 6784.00 15057.72 22672.99 6590.98 6744.87 11988.58 158
train_agg76.91 4976.40 5178.45 7285.68 5955.42 5687.59 6784.00 15057.84 22472.99 6590.98 6744.99 11588.58 15878.19 5285.32 4491.34 70
9.1478.19 2885.67 6188.32 5188.84 3759.89 17874.58 5092.62 3546.80 9092.66 4181.40 3585.62 41
agg_prior85.64 6254.92 7683.61 16072.53 7488.10 179
PS-MVSNAJ80.06 1779.52 1881.68 1485.58 6360.97 391.69 1287.02 7370.62 2280.75 2193.22 2437.77 20492.50 4682.75 2386.25 3591.57 60
MVSTER73.25 10872.33 10376.01 13085.54 6453.76 10583.52 17887.16 7167.06 5663.88 17081.66 23652.77 4290.44 9664.66 15064.69 22983.84 238
EPNet78.36 3078.49 2577.97 8285.49 6552.04 14789.36 3984.07 14973.22 777.03 3891.72 5449.32 7290.17 10773.46 9082.77 6091.69 55
Wanjuan Su, Wenbing Tao: Efficient Edge-Preserving Multi-View Stereo Network for Depth Estimation. AAAI 2023
DeepPCF-MVS69.37 180.65 1381.56 1177.94 8485.46 6649.56 20390.99 2186.66 8170.58 2380.07 2495.30 156.18 2490.97 8582.57 2586.22 3693.28 13
SD-MVS76.18 6074.85 7380.18 3285.39 6756.90 2885.75 10982.45 18056.79 24774.48 5191.81 5243.72 13590.75 8974.61 7878.65 10192.91 22
Zhenlong Yuan, Jiakai Cao, Zhaoxin Li, Hao Jiang and Zhaoqi Wang: SD-MVS: Segmentation-driven Deformation Multi-View Stereo with Spherical Refinement and EM optimization. AAAI2024
save fliter85.35 6856.34 4189.31 4081.46 19661.55 149
MVS_111021_HR76.39 5875.38 6579.42 4285.33 6956.47 3888.15 5384.97 12465.15 9066.06 13589.88 9843.79 13292.16 5575.03 7580.03 8989.64 113
PHI-MVS77.49 4277.00 4478.95 5385.33 6950.69 17388.57 4988.59 4758.14 21673.60 5793.31 2143.14 14593.79 2773.81 8788.53 1392.37 34
TSAR-MVS + GP.77.82 3877.59 3678.49 6985.25 7150.27 19090.02 2690.57 1656.58 25274.26 5391.60 5954.26 3592.16 5575.87 6679.91 9093.05 20
EIA-MVS75.92 6575.18 6878.13 7985.14 7251.60 15887.17 8085.32 11064.69 9368.56 11390.53 8045.79 10391.58 6667.21 12482.18 6691.20 73
baseline172.51 12072.12 11173.69 19985.05 7344.46 30283.51 18286.13 9371.61 1664.64 15487.97 14055.00 3289.48 12359.07 18956.05 30887.13 175
FMVSNet368.84 18867.40 19173.19 20985.05 7348.53 23485.71 11385.36 10760.90 16657.58 25679.15 25942.16 15686.77 22147.25 28463.40 24084.27 225
xiu_mvs_v2_base79.86 1879.31 1981.53 1585.03 7560.73 491.65 1386.86 7670.30 2680.77 2093.07 2937.63 20992.28 5282.73 2485.71 3991.57 60
EPMVS68.45 19765.44 23377.47 9284.91 7656.17 4371.89 33181.91 18961.72 14660.85 20272.49 33136.21 24187.06 21347.32 28371.62 17489.17 125
原ACMM176.13 12684.89 7754.59 8885.26 11451.98 29466.70 12587.07 15640.15 18389.70 11951.23 25885.06 4884.10 227
thres20068.71 19367.27 19473.02 21084.73 7846.76 27585.03 13587.73 6262.34 13759.87 21083.45 20043.15 14488.32 17131.25 35667.91 20483.98 233
HY-MVS67.03 573.90 9573.14 9376.18 12584.70 7947.36 26875.56 29786.36 8866.27 6870.66 10083.91 19151.05 5389.31 12867.10 12572.61 16691.88 51
RRT-MVS73.29 10771.37 12379.07 5284.63 8054.16 9978.16 28386.64 8361.67 14760.17 20882.35 22640.63 17892.26 5370.19 10677.87 10890.81 83
SPE-MVS-test77.20 4577.25 4177.05 10184.60 8149.04 21889.42 3685.83 9865.90 7772.85 6891.98 5045.10 11291.27 7275.02 7684.56 5190.84 82
MVS76.91 4975.48 6281.23 1984.56 8255.21 6580.23 26491.64 458.65 20965.37 14491.48 6245.72 10495.05 1672.11 9889.52 1093.44 9
ET-MVSNet_ETH3D75.23 7874.08 8278.67 6484.52 8355.59 5188.92 4489.21 2768.06 4253.13 30390.22 8949.71 6987.62 19972.12 9770.82 18292.82 25
SMA-MVScopyleft79.10 2378.76 2480.12 3584.42 8455.87 4987.58 6986.76 7861.48 15280.26 2393.10 2546.53 9492.41 4879.97 3888.77 1192.08 41
Yufeng Yin; Xiaoyan Liu; Zichao Zhang: SMA-MVS: Segmentation-Guided Multi-Scale Anchor Deformation Patch Multi-View Stereo. IEEE Transactions on Circuits and Systems for Video Technology
PVSNet62.49 869.27 18267.81 18273.64 20084.41 8551.85 15284.63 15177.80 27266.42 6559.80 21284.95 18222.14 35380.44 31155.03 23075.11 14488.62 139
MM82.69 283.29 380.89 2284.38 8655.40 5992.16 1089.85 2175.28 482.41 1193.86 854.30 3493.98 2390.29 187.13 2193.30 12
sasdasda78.17 3377.86 3279.12 5084.30 8754.22 9487.71 6284.57 13767.70 4977.70 3492.11 4450.90 5589.95 11178.18 5477.54 11193.20 15
canonicalmvs78.17 3377.86 3279.12 5084.30 8754.22 9487.71 6284.57 13767.70 4977.70 3492.11 4450.90 5589.95 11178.18 5477.54 11193.20 15
HFP-MVS74.37 8773.13 9578.10 8084.30 8753.68 10685.58 11584.36 14156.82 24565.78 14090.56 7840.70 17790.90 8669.18 11280.88 7589.71 111
VDD-MVS76.08 6274.97 7179.44 4184.27 9053.33 11991.13 2085.88 9665.33 8772.37 7689.34 10832.52 27992.76 4077.90 5775.96 13192.22 39
BH-RMVSNet70.08 16368.01 17576.27 11984.21 9151.22 16987.29 7679.33 24558.96 20463.63 17486.77 15933.29 27390.30 10344.63 30073.96 15487.30 173
MVS_Test75.85 6774.93 7278.62 6684.08 9255.20 6783.99 16885.17 11868.07 4173.38 6182.76 21050.44 6189.00 14065.90 13580.61 7891.64 56
tfpn200view967.57 21566.13 21471.89 24584.05 9345.07 29783.40 18787.71 6460.79 16757.79 25182.76 21043.53 13887.80 18828.80 36366.36 21782.78 258
thres40067.40 22266.13 21471.19 25584.05 9345.07 29783.40 18787.71 6460.79 16757.79 25182.76 21043.53 13887.80 18828.80 36366.36 21780.71 289
tpmvs62.45 27559.42 28271.53 25083.93 9554.32 9270.03 33877.61 27651.91 29553.48 30268.29 35737.91 20286.66 22533.36 34658.27 28373.62 358
ACMMPR73.76 9872.61 9777.24 9983.92 9652.96 13185.58 11584.29 14256.82 24565.12 14690.45 8237.24 22190.18 10669.18 11280.84 7688.58 140
region2R73.75 9972.55 9977.33 9483.90 9752.98 13085.54 11984.09 14856.83 24465.10 14790.45 8237.34 21890.24 10468.89 11480.83 7788.77 136
ZNCC-MVS75.82 7075.02 7078.23 7783.88 9853.80 10386.91 8786.05 9459.71 18167.85 11990.55 7942.23 15591.02 8172.66 9685.29 4589.87 110
Anonymous2024052969.71 17267.28 19377.00 10583.78 9950.36 18588.87 4685.10 12247.22 32764.03 16683.37 20227.93 31092.10 5857.78 21167.44 20788.53 143
SF-MVS77.64 4177.42 3978.32 7683.75 10052.47 13986.63 9287.80 5858.78 20774.63 4892.38 3847.75 8191.35 7178.18 5486.85 2791.15 75
PMMVS72.98 11072.05 11375.78 13483.57 10148.60 23184.08 16482.85 17561.62 14868.24 11690.33 8628.35 30687.78 19172.71 9576.69 12190.95 80
CS-MVS76.77 5376.70 4876.99 10683.55 10248.75 22888.60 4885.18 11766.38 6672.47 7591.62 5845.53 10690.99 8474.48 7982.51 6291.23 72
alignmvs78.08 3577.98 3078.39 7483.53 10353.22 12289.77 3285.45 10466.11 7176.59 4191.99 4854.07 3889.05 13777.34 6077.00 11692.89 23
FA-MVS(test-final)69.00 18666.60 20576.19 12483.48 10447.96 25974.73 30482.07 18457.27 23762.18 19078.47 26536.09 24392.89 3453.76 24071.32 17887.73 162
XVS72.92 11171.62 11776.81 11183.41 10552.48 13784.88 14283.20 16858.03 21763.91 16889.63 10335.50 24989.78 11565.50 13780.50 8088.16 150
X-MVStestdata65.85 24962.20 25776.81 11183.41 10552.48 13784.88 14283.20 16858.03 21763.91 1684.82 42035.50 24989.78 11565.50 13780.50 8088.16 150
thres600view766.46 24165.12 23870.47 26483.41 10543.80 31282.15 21987.78 5959.37 18956.02 27782.21 22843.73 13386.90 21926.51 37564.94 22680.71 289
3Dnovator+62.71 772.29 12470.50 13477.65 8883.40 10851.29 16787.32 7386.40 8759.01 20258.49 24188.32 13132.40 28091.27 7257.04 21782.15 6790.38 92
SR-MVS70.92 15169.73 15174.50 17183.38 10950.48 17984.27 15979.35 24348.96 31566.57 13090.45 8233.65 27087.11 21166.42 12874.56 15185.91 200
GST-MVS74.87 8373.90 8577.77 8583.30 11053.45 11285.75 10985.29 11259.22 19466.50 13189.85 9940.94 17290.76 8870.94 10283.35 5889.10 127
thres100view90066.87 23565.42 23471.24 25383.29 11143.15 32181.67 23487.78 5959.04 20155.92 27882.18 22943.73 13387.80 18828.80 36366.36 21782.78 258
FOURS183.24 11249.90 19684.98 13778.76 25447.71 32473.42 60
gm-plane-assit83.24 11254.21 9670.91 2188.23 13395.25 1466.37 129
tpmrst71.04 14869.77 15074.86 16783.19 11455.86 5075.64 29678.73 25667.88 4464.99 15173.73 31749.96 6779.56 32365.92 13467.85 20589.14 126
新几何173.30 20783.10 11553.48 10971.43 34045.55 33966.14 13387.17 15433.88 26880.54 30948.50 27680.33 8485.88 202
PatchmatchNetpermissive67.07 23163.63 25177.40 9383.10 11558.03 1172.11 32977.77 27358.85 20559.37 22170.83 34437.84 20384.93 26842.96 30869.83 19189.26 120
Fangjinhua Wang, Silvano Galliani, Christoph Vogel, Pablo Speciale, Marc Pollefeys: PatchmatchNet: Learned Multi-View Patchmatch Stereo.
CHOSEN 1792x268876.24 5974.03 8482.88 183.09 11762.84 285.73 11185.39 10669.79 2864.87 15283.49 19941.52 16893.69 2970.55 10381.82 6992.12 40
Anonymous2023121166.08 24763.67 25073.31 20683.07 11848.75 22886.01 10484.67 13545.27 34156.54 27276.67 29028.06 30988.95 14452.78 24859.95 26582.23 261
IB-MVS68.87 274.01 9272.03 11579.94 3883.04 11955.50 5390.24 2588.65 4267.14 5561.38 19881.74 23553.21 4094.28 2160.45 18262.41 25590.03 105
Christian Sormann, Mattia Rossi, Andreas Kuhn and Friedrich Fraundorfer: IB-MVS: An Iterative Algorithm for Deep Multi-View Stereo based on Binary Decisions. BMVC 2021
MVSFormer73.53 10472.19 10877.57 8983.02 12055.24 6381.63 23581.44 19750.28 30576.67 3990.91 7244.82 12186.11 24160.83 17480.09 8691.36 68
lupinMVS78.38 2978.11 2979.19 4583.02 12055.24 6391.57 1584.82 12869.12 3476.67 3992.02 4644.82 12190.23 10580.83 3680.09 8692.08 41
MSP-MVS82.30 683.47 178.80 5982.99 12252.71 13485.04 13488.63 4466.08 7386.77 392.75 3272.05 191.46 6983.35 2093.53 192.23 37
Zhenlong Yuan, Cong Liu, Fei Shen, Zhaoxin Li, Jingguo luo, Tianlu Mao and Zhaoqi Wang: MSP-MVS: Multi-granularity Segmentation Prior Guided Multi-View Stereo. AAAI2025
PGM-MVS72.60 11771.20 12676.80 11382.95 12352.82 13383.07 19882.14 18256.51 25363.18 17889.81 10035.68 24889.76 11767.30 12380.19 8587.83 159
TR-MVS69.71 17267.85 18175.27 15882.94 12448.48 23787.40 7280.86 20957.15 24064.61 15687.08 15532.67 27889.64 12146.38 29171.55 17687.68 164
CP-MVS72.59 11971.46 12076.00 13182.93 12552.32 14386.93 8682.48 17955.15 26763.65 17390.44 8535.03 25688.53 16268.69 11577.83 10987.15 174
MGCFI-Net74.07 9174.64 7772.34 22882.90 12643.33 31980.04 26779.96 22565.61 7974.93 4591.85 5148.01 7880.86 30371.41 9977.10 11492.84 24
MP-MVScopyleft74.99 8274.33 7976.95 10882.89 12753.05 12885.63 11483.50 16157.86 22367.25 12290.24 8743.38 14288.85 15176.03 6482.23 6588.96 129
Rongxuan Tan, Qing Wang, et al.: MP-MVS: Multi-Scale Windows PatchMatch and Planar Prior Multi-View Stereo.
mvsmamba69.38 18067.52 18974.95 16682.86 12852.22 14567.36 35076.75 29161.14 15749.43 32482.04 23237.26 22084.14 27573.93 8576.91 11788.50 144
mvs_anonymous72.29 12470.74 13076.94 10982.85 12954.72 8278.43 28281.54 19563.77 10861.69 19579.32 25651.11 5285.31 25962.15 16475.79 13390.79 84
3Dnovator64.70 674.46 8572.48 10080.41 2982.84 13055.40 5983.08 19788.61 4667.61 5159.85 21188.66 12134.57 26093.97 2458.42 19788.70 1291.85 52
BH-w/o70.02 16568.51 16774.56 17082.77 13150.39 18286.60 9378.14 26859.77 18059.65 21485.57 17439.27 19287.30 20749.86 26574.94 14885.99 197
Fast-Effi-MVS+72.73 11571.15 12777.48 9182.75 13254.76 7986.77 9080.64 21263.05 12565.93 13784.01 18944.42 12689.03 13856.45 22476.36 12688.64 138
GBi-Net67.09 22965.47 23171.96 23882.71 13346.36 28083.52 17883.31 16358.55 21157.58 25676.23 29636.72 23586.20 23747.25 28463.40 24083.32 244
test167.09 22965.47 23171.96 23882.71 13346.36 28083.52 17883.31 16358.55 21157.58 25676.23 29636.72 23586.20 23747.25 28463.40 24083.32 244
FMVSNet267.57 21565.79 22372.90 21382.71 13347.97 25785.15 12884.93 12558.55 21156.71 27078.26 26636.72 23586.67 22446.15 29362.94 25184.07 228
mPP-MVS71.79 13570.38 13976.04 12982.65 13652.06 14684.45 15481.78 19255.59 26262.05 19389.68 10233.48 27188.28 17465.45 14278.24 10687.77 161
CANet_DTU73.71 10073.14 9375.40 14882.61 13750.05 19284.67 15079.36 24269.72 3075.39 4290.03 9629.41 30285.93 25267.99 12079.11 9890.22 97
EI-MVSNet-Vis-set73.19 10972.60 9874.99 16582.56 13849.80 19982.55 21089.00 3066.17 7065.89 13888.98 11443.83 13092.29 5165.38 14569.01 19682.87 256
dp64.41 25361.58 26172.90 21382.40 13954.09 10072.53 32176.59 29760.39 17355.68 28070.39 34835.18 25376.90 34539.34 31861.71 25987.73 162
MS-PatchMatch72.34 12271.26 12475.61 13982.38 14055.55 5288.00 5589.95 2065.38 8556.51 27480.74 24532.28 28292.89 3457.95 20688.10 1578.39 314
CostFormer73.89 9672.30 10578.66 6582.36 14156.58 3375.56 29785.30 11166.06 7470.50 10376.88 28757.02 2089.06 13668.27 11968.74 19890.33 93
UWE-MVS72.17 12772.15 10972.21 23082.26 14244.29 30686.83 8989.58 2265.58 8065.82 13985.06 17945.02 11484.35 27454.07 23675.18 14087.99 157
QAPM71.88 13269.33 15879.52 4082.20 14354.30 9386.30 9788.77 3956.61 25159.72 21387.48 14833.90 26795.36 1347.48 28281.49 7288.90 130
HPM-MVScopyleft72.60 11771.50 11975.89 13282.02 14451.42 16380.70 25683.05 17056.12 25764.03 16689.53 10437.55 21288.37 16670.48 10580.04 8887.88 158
Chunlin Ren, Qingshan Xu, Shikun Zhang, Jiaqi Yang: Hierarchical Prior Mining for Non-local Multi-View Stereo. ICCV 2023
TESTMET0.1,172.86 11372.33 10374.46 17281.98 14550.77 17185.13 12985.47 10266.09 7267.30 12183.69 19637.27 21983.57 28365.06 14878.97 10089.05 128
reproduce-ours71.77 13670.43 13675.78 13481.96 14649.54 20682.54 21181.01 20648.77 31769.21 10690.96 6937.13 22489.40 12566.28 13176.01 12988.39 147
our_new_method71.77 13670.43 13675.78 13481.96 14649.54 20682.54 21181.01 20648.77 31769.21 10690.96 6937.13 22489.40 12566.28 13176.01 12988.39 147
ACMMP_NAP76.43 5775.66 5978.73 6181.92 14854.67 8684.06 16685.35 10861.10 15972.99 6591.50 6140.25 18091.00 8276.84 6286.98 2590.51 90
Effi-MVS+75.24 7773.61 8680.16 3381.92 14857.42 2185.21 12676.71 29460.68 17073.32 6289.34 10847.30 8491.63 6568.28 11879.72 9391.42 65
dmvs_re67.61 21366.00 21772.42 22581.86 15043.45 31564.67 35880.00 22369.56 3260.07 20985.00 18134.71 25887.63 19751.48 25666.68 21186.17 194
ETV-MVS77.17 4676.74 4778.48 7081.80 15154.55 8986.13 10085.33 10968.20 3873.10 6490.52 8145.23 11190.66 9179.37 4080.95 7490.22 97
PLCcopyleft52.38 1860.89 28358.97 28766.68 31181.77 15245.70 29278.96 27874.04 31843.66 35347.63 33683.19 20623.52 34377.78 33937.47 32160.46 26476.55 335
Jie Liao, Yanping Fu, Qingan Yan, Chunxia xiao: Pyramid Multi-View Stereo with Local Consistency. Pacific Graphics 2019
Syy-MVS61.51 28061.35 26562.00 33881.73 15330.09 38380.97 25081.02 20460.93 16455.06 28382.64 21535.09 25480.81 30416.40 40258.32 28175.10 347
myMVS_eth3d63.52 26163.56 25263.40 33081.73 15334.28 36480.97 25081.02 20460.93 16455.06 28382.64 21548.00 8080.81 30423.42 38558.32 28175.10 347
SDMVSNet71.89 13170.62 13375.70 13781.70 15551.61 15773.89 31088.72 4166.58 6161.64 19682.38 22337.63 20989.48 12377.44 5965.60 22386.01 195
sd_testset67.79 21065.95 21973.32 20581.70 15546.33 28368.99 34380.30 21966.58 6161.64 19682.38 22330.45 29787.63 19755.86 22665.60 22386.01 195
MDTV_nov1_ep1361.56 26281.68 15755.12 6972.41 32378.18 26759.19 19558.85 23469.29 35334.69 25986.16 24036.76 33062.96 250
baseline275.15 8074.54 7876.98 10781.67 15851.74 15583.84 17391.94 369.97 2758.98 22886.02 16859.73 991.73 6468.37 11770.40 18787.48 167
thisisatest051573.64 10372.20 10777.97 8281.63 15953.01 12986.69 9188.81 3862.53 13364.06 16585.65 17252.15 4792.50 4658.43 19569.84 19088.39 147
BH-untuned68.28 20166.40 20773.91 19081.62 16050.01 19385.56 11777.39 28057.63 22957.47 26183.69 19636.36 24087.08 21244.81 29873.08 16384.65 220
EI-MVSNet-UG-set72.37 12171.73 11674.29 17981.60 16149.29 21381.85 22788.64 4365.29 8965.05 14888.29 13243.18 14391.83 6263.74 15367.97 20381.75 267
sss70.49 15770.13 14671.58 24981.59 16239.02 34880.78 25584.71 13359.34 19066.61 12888.09 13537.17 22385.52 25561.82 16771.02 18090.20 99
APD-MVS_3200maxsize69.62 17768.23 17373.80 19581.58 16348.22 24681.91 22579.50 23748.21 32164.24 16489.75 10131.91 28887.55 20163.08 15673.85 15685.64 206
旧先验181.57 16447.48 26571.83 33488.66 12136.94 22978.34 10588.67 137
MTAPA72.73 11571.22 12577.27 9781.54 16553.57 10867.06 35281.31 19959.41 18868.39 11490.96 6936.07 24489.01 13973.80 8882.45 6489.23 122
PAPM_NR71.80 13469.98 14877.26 9881.54 16553.34 11878.60 28185.25 11553.46 28360.53 20688.66 12145.69 10589.24 13056.49 22179.62 9689.19 124
ACMMPcopyleft70.81 15369.29 15975.39 14981.52 16751.92 15183.43 18583.03 17156.67 25058.80 23588.91 11631.92 28788.58 15865.89 13673.39 15885.67 204
Qingshan Xu, Weihang Kong, Wenbing Tao, Marc Pollefeys: Multi-Scale Geometric Consistency Guided and Planar Prior Assisted Multi-View Stereo. IEEE Transactions on Pattern Analysis and Machine Intelligence
reproduce_model71.07 14669.67 15275.28 15781.51 16848.82 22681.73 23280.57 21547.81 32368.26 11590.78 7636.49 23988.60 15765.12 14774.76 14988.42 146
MSLP-MVS++74.21 8972.25 10680.11 3681.45 16956.47 3886.32 9679.65 23458.19 21566.36 13292.29 4036.11 24290.66 9167.39 12282.49 6393.18 17
tpm cat166.28 24362.78 25376.77 11581.40 17057.14 2470.03 33877.19 28353.00 28758.76 23670.73 34746.17 9686.73 22343.27 30664.46 23186.44 189
MP-MVS-pluss75.54 7475.03 6977.04 10281.37 17152.65 13684.34 15784.46 13961.16 15669.14 10891.76 5339.98 18788.99 14278.19 5284.89 4989.48 118
MP-MVS-pluss: MP-MVS-pluss. MP-MVS-pluss
TSAR-MVS + MP.78.31 3178.26 2678.48 7081.33 17256.31 4281.59 23886.41 8669.61 3181.72 1688.16 13455.09 3188.04 18174.12 8386.31 3491.09 76
Zhenlong Yuan, Jiakai Cao, Zhaoqi Wang, Zhaoxin Li: TSAR-MVS: Textureless-aware Segmentation and Correlative Refinement Guided Multi-View Stereo. Pattern Recognition
PVSNet_Blended_VisFu73.40 10672.44 10176.30 11881.32 17354.70 8385.81 10578.82 25263.70 11064.53 15885.38 17647.11 8787.38 20667.75 12177.55 11086.81 184
LS3D56.40 31753.82 31764.12 32581.12 17445.69 29373.42 31566.14 36435.30 38043.24 35679.88 25022.18 35279.62 32219.10 39664.00 23567.05 378
GeoE69.96 16867.88 17876.22 12181.11 17551.71 15684.15 16276.74 29359.83 17960.91 20184.38 18541.56 16788.10 17951.67 25570.57 18588.84 133
SteuartSystems-ACMMP77.08 4776.33 5279.34 4380.98 17655.31 6189.76 3386.91 7562.94 12771.65 8391.56 6042.33 15392.56 4577.14 6183.69 5790.15 101
Skip Steuart: Steuart Systems R&D Blog.
EC-MVSNet75.30 7575.20 6675.62 13880.98 17649.00 21987.43 7084.68 13463.49 11770.97 9590.15 9342.86 15091.14 7974.33 8181.90 6886.71 185
SR-MVS-dyc-post68.27 20266.87 19772.48 22480.96 17848.14 25081.54 23976.98 28746.42 33462.75 18489.42 10631.17 29386.09 24560.52 18072.06 17183.19 249
RE-MVS-def66.66 20380.96 17848.14 25081.54 23976.98 28746.42 33462.75 18489.42 10629.28 30460.52 18072.06 17183.19 249
CPTT-MVS67.15 22765.84 22271.07 25780.96 17850.32 18781.94 22474.10 31546.18 33757.91 24887.64 14729.57 30181.31 29864.10 15170.18 18981.56 270
Vis-MVSNetpermissive70.61 15669.34 15774.42 17480.95 18148.49 23686.03 10377.51 27858.74 20865.55 14387.78 14334.37 26285.95 25152.53 25280.61 7888.80 134
Jingyang Zhang, Yao Yao, Shiwei Li, Zixin Luo, Tian Fang: Visibility-aware Multiview Stereo Network. BMVC 2020
ab-mvs70.65 15569.11 16175.29 15580.87 18246.23 28673.48 31485.24 11659.99 17766.65 12680.94 24243.13 14688.69 15363.58 15468.07 20190.95 80
MVSMamba_PlusPlus75.28 7673.39 8780.96 2180.85 18358.25 1074.47 30787.61 6650.53 30465.24 14583.41 20157.38 1892.83 3673.92 8687.13 2191.80 54
FE-MVS64.15 25560.43 27575.30 15480.85 18349.86 19768.28 34778.37 26450.26 30859.31 22373.79 31626.19 32391.92 6140.19 31566.67 21284.12 226
tpm270.82 15268.44 16877.98 8180.78 18556.11 4474.21 30981.28 20160.24 17568.04 11775.27 30552.26 4688.50 16355.82 22868.03 20289.33 119
1112_ss70.05 16469.37 15672.10 23280.77 18642.78 32585.12 13276.75 29159.69 18261.19 20092.12 4247.48 8383.84 27853.04 24468.21 20089.66 112
DeepC-MVS67.15 476.90 5176.27 5378.80 5980.70 18755.02 7386.39 9486.71 7966.96 5867.91 11889.97 9748.03 7791.41 7075.60 6984.14 5489.96 107
Andreas Kuhn, Christian Sormann, Mattia Rossi, Oliver Erdler, Friedrich Fraundorfer: DeepC-MVS: Deep Confidence Prediction for Multi-View Stereo Reconstruction. 3DV 2020
CLD-MVS75.60 7275.39 6476.24 12080.69 18852.40 14090.69 2386.20 9174.40 665.01 15088.93 11542.05 15990.58 9476.57 6373.96 15485.73 203
Zhaoxin Li, Wangmeng Zuo, Zhaoqi Wang, Lei Zhang: Confidence-based Large-scale Dense Multi-view Stereo. IEEE Transaction on Image Processing, 2020
HPM-MVS_fast67.86 20766.28 21172.61 21980.67 18948.34 24281.18 24675.95 30250.81 30359.55 21888.05 13827.86 31185.98 24858.83 19173.58 15783.51 242
ADS-MVSNet255.21 32451.44 32966.51 31280.60 19049.56 20355.03 38665.44 36544.72 34551.00 31661.19 37822.83 34575.41 35228.54 36653.63 32774.57 352
ADS-MVSNet56.17 31851.95 32868.84 28580.60 19053.07 12755.03 38670.02 35044.72 34551.00 31661.19 37822.83 34578.88 32528.54 36653.63 32774.57 352
UGNet68.71 19367.11 19673.50 20480.55 19247.61 26484.08 16478.51 26159.45 18665.68 14282.73 21323.78 34085.08 26652.80 24776.40 12287.80 160
Wanjuan Su, Qingshan Xu, Wenbing Tao: Uncertainty-guided Multi-view Stereo Network for Depth Estimation. IEEE Transactions on Circuits and Systems for Video Technology, 2022
baseline76.86 5276.24 5478.71 6280.47 19354.20 9883.90 17184.88 12771.38 1971.51 8689.15 11350.51 6090.55 9575.71 6778.65 10191.39 66
casdiffmvs_mvgpermissive77.75 3977.28 4079.16 4780.42 19454.44 9187.76 6185.46 10371.67 1571.38 8888.35 12951.58 4891.22 7579.02 4379.89 9291.83 53
Fangjinhua Wang, Qingshan Xu, Yew-Soon Ong, Marc Pollefeys: Lightweight and Accurate Multi-View Stereo With Confidence-Aware Diffusion Model. IEEE T-PAMI 2025
casdiffmvspermissive77.36 4476.85 4678.88 5680.40 19554.66 8787.06 8285.88 9672.11 1371.57 8588.63 12550.89 5890.35 9976.00 6579.11 9891.63 57
Fangjinhua Wang, Qingshan Xu, Yew-Soon Ong, Marc Pollefeys: Lightweight and Accurate Multi-View Stereo With Confidence-Aware Diffusion Model. IEEE T-PAMI 2025
PAPM76.76 5476.07 5678.81 5880.20 19659.11 786.86 8886.23 9068.60 3570.18 10488.84 11851.57 4987.16 21065.48 13986.68 3090.15 101
h-mvs3373.95 9372.89 9677.15 10080.17 19750.37 18484.68 14883.33 16268.08 3971.97 8088.65 12442.50 15191.15 7878.82 4557.78 29589.91 109
test250672.91 11272.43 10274.32 17880.12 19844.18 30983.19 19484.77 13164.02 10265.97 13687.43 15047.67 8288.72 15259.08 18879.66 9490.08 103
ECVR-MVScopyleft71.81 13371.00 12874.26 18080.12 19843.49 31484.69 14782.16 18164.02 10264.64 15487.43 15035.04 25589.21 13361.24 17179.66 9490.08 103
DPM-MVS82.39 482.36 782.49 580.12 19859.50 592.24 890.72 1569.37 3383.22 894.47 263.81 593.18 3274.02 8493.25 294.80 1
tpm68.36 19867.48 19070.97 25979.93 20151.34 16576.58 29378.75 25567.73 4763.54 17774.86 30748.33 7472.36 36753.93 23863.71 23789.21 123
thisisatest053070.47 15968.56 16576.20 12379.78 20251.52 16183.49 18488.58 4857.62 23058.60 23782.79 20951.03 5491.48 6852.84 24662.36 25785.59 208
jason77.01 4876.45 5078.69 6379.69 20354.74 8090.56 2483.99 15268.26 3774.10 5490.91 7242.14 15789.99 11079.30 4179.12 9791.36 68
jason: jason.
VDDNet74.37 8772.13 11081.09 2079.58 20456.52 3790.02 2686.70 8052.61 29071.23 9087.20 15331.75 28993.96 2574.30 8275.77 13492.79 27
test111171.06 14770.42 13872.97 21279.48 20541.49 33784.82 14582.74 17664.20 9962.98 18187.43 15035.20 25287.92 18358.54 19478.42 10489.49 117
test22279.36 20650.97 17077.99 28567.84 36042.54 35862.84 18386.53 16430.26 29876.91 11785.23 211
cascas69.01 18566.13 21477.66 8779.36 20655.41 5886.99 8383.75 15556.69 24958.92 23181.35 23924.31 33892.10 5853.23 24170.61 18485.46 209
131471.11 14569.41 15576.22 12179.32 20850.49 17880.23 26485.14 12159.44 18758.93 23088.89 11733.83 26989.60 12261.49 16977.42 11388.57 141
LCM-MVSNet-Re58.82 30056.54 29965.68 31579.31 20929.09 39161.39 37345.79 39160.73 16937.65 37872.47 33231.42 29181.08 30049.66 26670.41 18686.87 178
WB-MVSnew69.36 18168.24 17272.72 21779.26 21049.40 21085.72 11288.85 3661.33 15364.59 15782.38 22334.57 26087.53 20246.82 28870.63 18381.22 283
CNLPA60.59 28558.44 28967.05 30679.21 21147.26 27079.75 27064.34 37042.46 35951.90 31283.94 19027.79 31375.41 35237.12 32459.49 27178.47 311
EPP-MVSNet71.14 14370.07 14774.33 17779.18 21246.52 27883.81 17486.49 8456.32 25657.95 24784.90 18354.23 3689.14 13458.14 20269.65 19387.33 171
KD-MVS_2432*160059.04 29756.44 30166.86 30779.07 21345.87 28972.13 32780.42 21755.03 26948.15 33171.01 34236.73 23378.05 33235.21 33730.18 39476.67 330
miper_refine_blended59.04 29756.44 30166.86 30779.07 21345.87 28972.13 32780.42 21755.03 26948.15 33171.01 34236.73 23378.05 33235.21 33730.18 39476.67 330
HQP-NCC79.02 21588.00 5565.45 8164.48 159
ACMP_Plane79.02 21588.00 5565.45 8164.48 159
HQP-MVS72.34 12271.44 12175.03 16379.02 21551.56 15988.00 5583.68 15665.45 8164.48 15985.13 17737.35 21688.62 15566.70 12673.12 16084.91 217
miper_enhance_ethall69.77 17168.90 16372.38 22678.93 21849.91 19583.29 19178.85 25064.90 9159.37 22179.46 25452.77 4285.16 26463.78 15258.72 27782.08 262
UA-Net67.32 22366.23 21270.59 26378.85 21941.23 34073.60 31275.45 30661.54 15066.61 12884.53 18438.73 19786.57 23042.48 31274.24 15283.98 233
NP-MVS78.76 22050.43 18085.12 178
VPA-MVSNet71.12 14470.66 13272.49 22378.75 22144.43 30487.64 6590.02 1863.97 10565.02 14981.58 23842.14 15787.42 20463.42 15563.38 24385.63 207
Test_1112_low_res67.18 22666.23 21270.02 27578.75 22141.02 34183.43 18573.69 32157.29 23658.45 24382.39 22245.30 11080.88 30250.50 26166.26 22188.16 150
test-LLR69.65 17669.01 16271.60 24778.67 22348.17 24885.13 12979.72 23159.18 19763.13 17982.58 21736.91 23080.24 31360.56 17875.17 14186.39 191
test-mter68.36 19867.29 19271.60 24778.67 22348.17 24885.13 12979.72 23153.38 28463.13 17982.58 21727.23 31680.24 31360.56 17875.17 14186.39 191
EPNet_dtu66.25 24466.71 20164.87 32378.66 22534.12 36782.80 20375.51 30461.75 14564.47 16286.90 15737.06 22672.46 36643.65 30569.63 19488.02 156
Wanjuan Su, Wenbing Tao: Efficient Edge-Preserving Multi-View Stereo Network for Depth Estimation. AAAI 2023
VPNet72.07 12871.42 12274.04 18578.64 22647.17 27289.91 3187.97 5672.56 1164.66 15385.04 18041.83 16488.33 17061.17 17260.97 26286.62 186
SCA63.84 25860.01 27975.32 15178.58 22757.92 1261.61 37177.53 27756.71 24857.75 25370.77 34531.97 28579.91 31948.80 27356.36 30188.13 153
diffmvspermissive75.11 8174.65 7676.46 11778.52 22853.35 11783.28 19279.94 22670.51 2471.64 8488.72 11946.02 10086.08 24677.52 5875.75 13589.96 107
Fangjinhua Wang, Qingshan Xu, Yew-Soon Ong, Marc Pollefeys: Lightweight and Accurate Multi-View Stereo With Confidence-Aware Diffusion Model. IEEE T-PAMI 2025
IS-MVSNet68.80 19167.55 18772.54 22178.50 22943.43 31681.03 24879.35 24359.12 20057.27 26486.71 16046.05 9987.70 19444.32 30275.60 13686.49 188
TAPA-MVS56.12 1461.82 27960.18 27866.71 30978.48 23037.97 35575.19 30276.41 29946.82 33057.04 26586.52 16527.67 31477.03 34226.50 37667.02 21085.14 212
Andrea Romanoni, Matteo Matteucci: TAPA-MVS: Textureless-Aware PAtchMatch Multi-View Stereo. ICCV 2019
plane_prior678.42 23149.39 21136.04 245
OpenMVScopyleft61.00 1169.99 16767.55 18777.30 9578.37 23254.07 10184.36 15685.76 9957.22 23856.71 27087.67 14630.79 29592.83 3643.04 30784.06 5685.01 214
plane_prior178.31 233
tttt051768.33 20066.29 21074.46 17278.08 23449.06 21580.88 25389.08 2954.40 27854.75 28880.77 24451.31 5190.33 10049.35 26958.01 28983.99 231
cl2268.85 18767.69 18372.35 22778.07 23549.98 19482.45 21578.48 26262.50 13558.46 24277.95 26749.99 6585.17 26362.55 15958.72 27781.90 265
HQP_MVS70.96 15069.91 14974.12 18377.95 23649.57 20185.76 10782.59 17763.60 11362.15 19183.28 20436.04 24588.30 17265.46 14072.34 16884.49 221
plane_prior777.95 23648.46 238
FIs70.00 16670.24 14569.30 28177.93 23838.55 35183.99 16887.72 6366.86 5957.66 25484.17 18852.28 4585.31 25952.72 25168.80 19784.02 229
PatchMatch-RL56.66 31353.75 31865.37 32077.91 23945.28 29569.78 34060.38 37641.35 36047.57 33773.73 31716.83 37576.91 34336.99 32759.21 27473.92 356
XXY-MVS70.18 16069.28 16072.89 21577.64 24042.88 32485.06 13387.50 6862.58 13262.66 18682.34 22743.64 13789.83 11458.42 19763.70 23885.96 199
testing359.97 28760.19 27759.32 35077.60 24130.01 38581.75 23181.79 19153.54 28250.34 32179.94 24948.99 7376.91 34317.19 40050.59 34071.03 373
testdata67.08 30577.59 24245.46 29469.20 35544.47 34771.50 8788.34 13031.21 29270.76 37252.20 25375.88 13285.03 213
CDS-MVSNet70.48 15869.43 15473.64 20077.56 24348.83 22583.51 18277.45 27963.27 12162.33 18885.54 17543.85 12983.29 28857.38 21674.00 15388.79 135
Khang Truong Giang, Soohwan Song, Sungho Jo: Curvature-guided dynamic scale networks for Multi-view Stereo. ICLR 2022
Vis-MVSNet (Re-imp)65.52 25065.63 22765.17 32177.49 24430.54 37975.49 30077.73 27459.34 19052.26 31086.69 16149.38 7180.53 31037.07 32675.28 13984.42 223
PVSNet_057.04 1361.19 28257.24 29573.02 21077.45 24550.31 18879.43 27577.36 28263.96 10647.51 33972.45 33325.03 33283.78 28052.76 25019.22 40884.96 216
FMVSNet164.57 25262.11 25871.96 23877.32 24646.36 28083.52 17883.31 16352.43 29254.42 29176.23 29627.80 31286.20 23742.59 31161.34 26183.32 244
MVS_111021_LR69.07 18367.91 17672.54 22177.27 24749.56 20379.77 26973.96 31959.33 19260.73 20487.82 14230.19 29981.53 29669.94 10772.19 17086.53 187
xiu_mvs_v1_base_debu71.60 13870.29 14275.55 14277.26 24853.15 12385.34 12079.37 23955.83 25972.54 7190.19 9022.38 34986.66 22573.28 9176.39 12386.85 180
xiu_mvs_v1_base71.60 13870.29 14275.55 14277.26 24853.15 12385.34 12079.37 23955.83 25972.54 7190.19 9022.38 34986.66 22573.28 9176.39 12386.85 180
xiu_mvs_v1_base_debi71.60 13870.29 14275.55 14277.26 24853.15 12385.34 12079.37 23955.83 25972.54 7190.19 9022.38 34986.66 22573.28 9176.39 12386.85 180
FMVSNet558.61 30256.45 30065.10 32277.20 25139.74 34574.77 30377.12 28550.27 30743.28 35567.71 35826.15 32476.90 34536.78 32954.78 31978.65 309
PCF-MVS61.03 1070.10 16268.40 16975.22 16077.15 25251.99 14879.30 27682.12 18356.47 25461.88 19486.48 16643.98 12887.24 20855.37 22972.79 16586.43 190
Andreas Kuhn, Shan Lin, Oliver Erdler: Plane Completion and Filtering for Multi-View Stereo Reconstruction. GCPR 2019
HyFIR lowres test69.94 16967.58 18577.04 10277.11 25357.29 2281.49 24379.11 24858.27 21458.86 23380.41 24642.33 15386.96 21661.91 16568.68 19986.87 178
fmvsm_s_conf0.5_n74.48 8474.12 8175.56 14176.96 25447.85 26185.32 12369.80 35264.16 10078.74 2893.48 1645.51 10889.29 12986.48 866.62 21389.55 115
miper_ehance_all_eth68.70 19567.58 18572.08 23376.91 25549.48 20982.47 21478.45 26362.68 13158.28 24677.88 26950.90 5585.01 26761.91 16558.72 27781.75 267
test_040256.45 31653.03 32066.69 31076.78 25650.31 18881.76 23069.61 35342.79 35743.88 35072.13 33722.82 34786.46 23216.57 40150.94 33963.31 388
ACMH53.70 1659.78 28855.94 30671.28 25276.59 25748.35 24180.15 26676.11 30049.74 31041.91 36073.45 32416.50 37890.31 10131.42 35457.63 29675.17 345
Qingshan Xu and Wenbing Tao: Multi-Scale Geometric Consistency Guided Multi-View Stereo. CVPR 2019
AUN-MVS68.20 20466.35 20873.76 19676.37 25847.45 26679.52 27379.52 23660.98 16262.34 18786.02 16836.59 23886.94 21762.32 16153.47 33186.89 177
hse-mvs271.44 14170.68 13173.73 19876.34 25947.44 26779.45 27479.47 23868.08 3971.97 8086.01 17042.50 15186.93 21878.82 4553.46 33286.83 183
cl____67.43 21965.93 22071.95 24176.33 26048.02 25582.58 20779.12 24761.30 15556.72 26976.92 28546.12 9786.44 23357.98 20456.31 30381.38 278
DIV-MVS_self_test67.43 21965.93 22071.94 24276.33 26048.01 25682.57 20879.11 24861.31 15456.73 26876.92 28546.09 9886.43 23457.98 20456.31 30381.39 277
TAMVS69.51 17968.16 17473.56 20376.30 26248.71 23082.57 20877.17 28462.10 13961.32 19984.23 18741.90 16283.46 28554.80 23373.09 16288.50 144
tfpnnormal61.47 28159.09 28568.62 29276.29 26341.69 33381.14 24785.16 11954.48 27651.32 31473.63 32132.32 28186.89 22021.78 38955.71 31377.29 326
MonoMVSNet66.80 23764.41 24573.96 18876.21 26448.07 25376.56 29478.26 26664.34 9654.32 29374.02 31437.21 22286.36 23664.85 14953.96 32587.45 169
c3_l67.97 20566.66 20371.91 24476.20 26549.31 21282.13 22178.00 27061.99 14157.64 25576.94 28449.41 7084.93 26860.62 17757.01 29981.49 271
fmvsm_l_conf0.5_n_a75.88 6676.07 5675.31 15276.08 26648.34 24285.24 12570.62 34563.13 12481.45 1893.62 1449.98 6687.40 20587.76 676.77 12090.20 99
FC-MVSNet-test67.49 21767.91 17666.21 31376.06 26733.06 37280.82 25487.18 7064.44 9554.81 28682.87 20750.40 6282.60 29048.05 27966.55 21582.98 254
MVS-HIRNet49.01 34744.71 35161.92 34076.06 26746.61 27763.23 36454.90 38324.77 39633.56 38836.60 40521.28 35775.88 35029.49 36062.54 25463.26 389
MVP-Stereo70.97 14970.44 13572.59 22076.03 26951.36 16485.02 13686.99 7460.31 17456.53 27378.92 26140.11 18490.00 10960.00 18690.01 776.41 336
Qingsong Yan: MVP-Stereo: A Parallel Multi-View Patchmatch Stereo Method with Dilation Matching for Photogrammetric Application.
fmvsm_l_conf0.5_n75.95 6476.16 5575.31 15276.01 27048.44 23984.98 13771.08 34263.50 11681.70 1793.52 1550.00 6487.18 20987.80 576.87 11990.32 94
nrg03072.27 12671.56 11874.42 17475.93 27150.60 17586.97 8483.21 16762.75 12967.15 12384.38 18550.07 6386.66 22571.19 10062.37 25685.99 197
WR-MVS67.58 21466.76 20070.04 27475.92 27245.06 30086.23 9885.28 11364.31 9758.50 24081.00 24044.80 12382.00 29549.21 27155.57 31483.06 252
MIMVSNet63.12 26660.29 27671.61 24675.92 27246.65 27665.15 35581.94 18659.14 19954.65 28969.47 35125.74 32680.63 30741.03 31469.56 19587.55 166
UniMVSNet_NR-MVSNet68.82 18968.29 17170.40 26775.71 27442.59 32784.23 16086.78 7766.31 6758.51 23882.45 22051.57 4984.64 27253.11 24255.96 30983.96 235
eth_miper_zixun_eth66.98 23365.28 23672.06 23475.61 27550.40 18181.00 24976.97 29062.00 14056.99 26676.97 28344.84 12085.58 25458.75 19254.42 32280.21 295
OPM-MVS70.75 15469.58 15374.26 18075.55 27651.34 16586.05 10283.29 16661.94 14362.95 18285.77 17134.15 26488.44 16465.44 14371.07 17982.99 253
Ray L. Khuboni, Hongjun Xu: Octagram Propagation Matching for Multi-Scale View Stereopsis (OPM-MVS).
fmvsm_s_conf0.5_n_a73.68 10273.15 9175.29 15575.45 27748.05 25483.88 17268.84 35763.43 11878.60 2993.37 2045.32 10988.92 14785.39 1164.04 23388.89 131
Effi-MVS+-dtu66.24 24564.96 24170.08 27275.17 27849.64 20082.01 22274.48 31362.15 13857.83 24976.08 30030.59 29683.79 27965.40 14460.93 26376.81 329
GA-MVS69.04 18466.70 20276.06 12875.11 27952.36 14183.12 19680.23 22063.32 12060.65 20579.22 25830.98 29488.37 16661.25 17066.41 21687.46 168
IterMVS-LS66.63 23865.36 23570.42 26675.10 28048.90 22381.45 24476.69 29561.05 16055.71 27977.10 28245.86 10283.65 28257.44 21457.88 29378.70 307
Fangjinhua Wang, Silvano Galliani, Christoph Vogel, Marc Pollefeys: IterMVS: Iterative Probability Estimation for Efficient Multi-View Stereo.
miper_lstm_enhance63.91 25762.30 25668.75 28975.06 28146.78 27469.02 34281.14 20259.68 18352.76 30572.39 33440.71 17677.99 33456.81 21953.09 33381.48 273
EI-MVSNet69.70 17568.70 16472.68 21875.00 28248.90 22379.54 27187.16 7161.05 16063.88 17083.74 19445.87 10190.44 9657.42 21564.68 23078.70 307
CVMVSNet60.85 28460.44 27462.07 33675.00 28232.73 37479.54 27173.49 32436.98 37256.28 27683.74 19429.28 30469.53 37546.48 29063.23 24583.94 236
ACMP61.11 966.24 24564.33 24672.00 23774.89 28449.12 21483.18 19579.83 22955.41 26552.29 30882.68 21425.83 32586.10 24360.89 17363.94 23680.78 287
Qingshan Xu and Wenbing Tao: Planar Prior Assisted PatchMatch Multi-View Stereo. AAAI 2020
MSDG59.44 29055.14 31072.32 22974.69 28550.71 17274.39 30873.58 32244.44 34843.40 35477.52 27319.45 36290.87 8731.31 35557.49 29775.38 342
ACMH+54.58 1558.55 30455.24 30868.50 29574.68 28645.80 29180.27 26270.21 34847.15 32842.77 35775.48 30416.73 37785.98 24835.10 34154.78 31973.72 357
dmvs_testset57.65 30958.21 29055.97 36174.62 2879.82 42263.75 36163.34 37267.23 5448.89 32883.68 19839.12 19376.14 34823.43 38459.80 26881.96 264
test_fmvsm_n_192075.56 7375.54 6175.61 13974.60 28849.51 20881.82 22974.08 31666.52 6480.40 2293.46 1746.95 8889.72 11886.69 775.30 13887.61 165
UniMVSNet (Re)67.71 21166.80 19970.45 26574.44 28942.93 32382.42 21684.90 12663.69 11159.63 21580.99 24147.18 8585.23 26251.17 25956.75 30083.19 249
LPG-MVS_test66.44 24264.58 24372.02 23574.42 29048.60 23183.07 19880.64 21254.69 27453.75 29983.83 19225.73 32786.98 21460.33 18464.71 22780.48 291
LGP-MVS_train72.02 23574.42 29048.60 23180.64 21254.69 27453.75 29983.83 19225.73 32786.98 21460.33 18464.71 22780.48 291
Baseline_NR-MVSNet65.49 25164.27 24769.13 28274.37 29241.65 33483.39 18978.85 25059.56 18459.62 21676.88 28740.75 17487.44 20349.99 26355.05 31678.28 316
ACMM58.35 1264.35 25462.01 25971.38 25174.21 29348.51 23582.25 21879.66 23347.61 32554.54 29080.11 24825.26 33086.00 24751.26 25763.16 24779.64 300
Qingshan Xu and Wenbing Tao: Multi-Scale Geometric Consistency Guided Multi-View Stereo. CVPR 2019
test_fmvsmconf_n74.41 8674.05 8375.49 14674.16 29448.38 24082.66 20572.57 32967.05 5775.11 4492.88 3146.35 9587.81 18683.93 1871.71 17390.28 95
CHOSEN 280x42057.53 31156.38 30360.97 34674.01 29548.10 25246.30 39454.31 38448.18 32250.88 31977.43 27738.37 20059.16 39054.83 23163.14 24875.66 340
TransMVSNet (Re)62.82 26960.76 27169.02 28373.98 29641.61 33586.36 9579.30 24656.90 24252.53 30676.44 29241.85 16387.60 20038.83 31940.61 37277.86 320
CR-MVSNet62.47 27459.04 28672.77 21673.97 29756.57 3460.52 37471.72 33660.04 17657.49 25965.86 36338.94 19480.31 31242.86 30959.93 26681.42 274
RPMNet59.29 29154.25 31574.42 17473.97 29756.57 3460.52 37476.98 28735.72 37657.49 25958.87 38637.73 20785.26 26127.01 37459.93 26681.42 274
TranMVSNet+NR-MVSNet66.94 23465.61 22870.93 26073.45 29943.38 31783.02 20084.25 14465.31 8858.33 24581.90 23439.92 18885.52 25549.43 26854.89 31883.89 237
Patchmatch-test53.33 33348.17 34368.81 28773.31 30042.38 33142.98 39858.23 37832.53 38238.79 37570.77 34539.66 18973.51 36125.18 37852.06 33790.55 87
EG-PatchMatch MVS62.40 27659.59 28070.81 26173.29 30149.05 21685.81 10584.78 13051.85 29744.19 34973.48 32315.52 38189.85 11340.16 31667.24 20873.54 359
fmvsm_s_conf0.1_n73.80 9773.26 9075.43 14773.28 30247.80 26284.57 15369.43 35463.34 11978.40 3193.29 2244.73 12489.22 13285.99 966.28 22089.26 120
DU-MVS66.84 23665.74 22570.16 27073.27 30342.59 32781.50 24182.92 17463.53 11558.51 23882.11 23040.75 17484.64 27253.11 24255.96 30983.24 247
NR-MVSNet67.25 22465.99 21871.04 25873.27 30343.91 31085.32 12384.75 13266.05 7553.65 30182.11 23045.05 11385.97 25047.55 28156.18 30683.24 247
kuosan50.20 34550.09 33550.52 36973.09 30529.09 39165.25 35474.89 31048.27 32041.34 36360.85 38043.45 14167.48 37718.59 39825.07 40055.01 394
PS-MVSNAJss68.78 19267.17 19573.62 20273.01 30648.33 24484.95 14084.81 12959.30 19358.91 23279.84 25237.77 20488.86 14862.83 15863.12 24983.67 241
OMC-MVS65.97 24865.06 23968.71 29072.97 30742.58 32978.61 28075.35 30754.72 27359.31 22386.25 16733.30 27277.88 33657.99 20367.05 20985.66 205
PatchT56.60 31452.97 32167.48 30072.94 30846.16 28757.30 38273.78 32038.77 36654.37 29257.26 38937.52 21378.06 33132.02 35152.79 33478.23 318
v867.25 22464.99 24074.04 18572.89 30953.31 12082.37 21780.11 22261.54 15054.29 29476.02 30142.89 14988.41 16558.43 19556.36 30180.39 293
F-COLMAP55.96 32153.65 31962.87 33472.76 31042.77 32674.70 30670.37 34740.03 36241.11 36679.36 25517.77 37173.70 36032.80 35053.96 32572.15 365
IterMVS63.77 26061.67 26070.08 27272.68 31151.24 16880.44 25975.51 30460.51 17251.41 31373.70 32032.08 28478.91 32454.30 23554.35 32380.08 297
Fangjinhua Wang, Silvano Galliani, Christoph Vogel, Marc Pollefeys: IterMVS: Iterative Probability Estimation for Efficient Multi-View Stereo.
v1066.61 23964.20 24873.83 19472.59 31253.37 11681.88 22679.91 22861.11 15854.09 29675.60 30340.06 18588.26 17556.47 22256.10 30779.86 299
Patchmtry56.56 31552.95 32267.42 30172.53 31350.59 17659.05 37871.72 33637.86 37046.92 34165.86 36338.94 19480.06 31636.94 32846.72 35871.60 369
Fast-Effi-MVS+-dtu66.53 24064.10 24973.84 19372.41 31452.30 14484.73 14675.66 30359.51 18556.34 27579.11 26028.11 30885.85 25357.74 21263.29 24483.35 243
v114468.81 19066.82 19874.80 16872.34 31553.46 11084.68 14881.77 19364.25 9860.28 20777.91 26840.23 18188.95 14460.37 18359.52 26981.97 263
mmtdpeth57.93 30854.78 31267.39 30272.32 31643.38 31772.72 31968.93 35654.45 27756.85 26762.43 37417.02 37483.46 28557.95 20630.31 39375.31 343
v2v48269.55 17867.64 18475.26 15972.32 31653.83 10284.93 14181.94 18665.37 8660.80 20379.25 25741.62 16588.98 14363.03 15759.51 27082.98 254
test0.0.03 162.54 27162.44 25562.86 33572.28 31829.51 38882.93 20178.78 25359.18 19753.07 30482.41 22136.91 23077.39 34037.45 32258.96 27581.66 269
v119267.96 20665.74 22574.63 16971.79 31953.43 11584.06 16680.99 20863.19 12359.56 21777.46 27537.50 21588.65 15458.20 20158.93 27681.79 266
v14868.24 20366.35 20873.88 19171.76 32051.47 16284.23 16081.90 19063.69 11158.94 22976.44 29243.72 13587.78 19160.63 17655.86 31182.39 260
v14419267.86 20765.76 22474.16 18271.68 32153.09 12684.14 16380.83 21062.85 12859.21 22677.28 27939.30 19188.00 18258.67 19357.88 29381.40 276
pm-mvs164.12 25662.56 25468.78 28871.68 32138.87 34982.89 20281.57 19455.54 26453.89 29877.82 27037.73 20786.74 22248.46 27753.49 33080.72 288
MDA-MVSNet-bldmvs51.56 34047.75 34763.00 33271.60 32347.32 26969.70 34172.12 33243.81 35227.65 40163.38 37121.97 35475.96 34927.30 37332.19 38965.70 384
v192192067.45 21865.23 23774.10 18471.51 32452.90 13283.75 17680.44 21662.48 13659.12 22777.13 28036.98 22887.90 18457.53 21358.14 28781.49 271
our_test_359.11 29555.08 31171.18 25671.42 32553.29 12181.96 22374.52 31248.32 31942.08 35869.28 35428.14 30782.15 29234.35 34345.68 36278.11 319
ppachtmachnet_test58.56 30354.34 31371.24 25371.42 32554.74 8081.84 22872.27 33149.02 31445.86 34868.99 35526.27 32183.30 28730.12 35843.23 36775.69 339
v124066.99 23264.68 24273.93 18971.38 32752.66 13583.39 18979.98 22461.97 14258.44 24477.11 28135.25 25187.81 18656.46 22358.15 28581.33 279
JIA-IIPM52.33 33847.77 34666.03 31471.20 32846.92 27340.00 40376.48 29837.10 37146.73 34237.02 40332.96 27477.88 33635.97 33252.45 33673.29 361
OpenMVS_ROBcopyleft53.19 1759.20 29356.00 30568.83 28671.13 32944.30 30583.64 17775.02 30946.42 33446.48 34573.03 32618.69 36688.14 17627.74 37161.80 25874.05 355
test_fmvsmvis_n_192071.29 14270.38 13974.00 18771.04 33048.79 22779.19 27764.62 36862.75 12966.73 12491.99 4840.94 17288.35 16883.00 2173.18 15984.85 219
fmvsm_s_conf0.1_n_a72.82 11472.05 11375.12 16170.95 33147.97 25782.72 20468.43 35962.52 13478.17 3293.08 2844.21 12788.86 14884.82 1363.54 23988.54 142
test_fmvsmconf0.1_n73.69 10173.15 9175.34 15070.71 33248.26 24582.15 21971.83 33466.75 6074.47 5292.59 3644.89 11887.78 19183.59 1971.35 17789.97 106
SixPastTwentyTwo54.37 32550.10 33467.21 30370.70 33341.46 33874.73 30464.69 36747.56 32639.12 37369.49 35018.49 36984.69 27131.87 35234.20 38775.48 341
V4267.66 21265.60 22973.86 19270.69 33453.63 10781.50 24178.61 25963.85 10759.49 22077.49 27437.98 20187.65 19662.33 16058.43 28080.29 294
IterMVS-SCA-FT59.12 29458.81 28860.08 34870.68 33545.07 29780.42 26074.25 31443.54 35450.02 32273.73 31731.97 28556.74 39451.06 26053.60 32978.42 313
pmmvs463.34 26461.07 26970.16 27070.14 33650.53 17779.97 26871.41 34155.08 26854.12 29578.58 26332.79 27782.09 29450.33 26257.22 29877.86 320
MDA-MVSNet_test_wron53.82 33049.95 33765.43 31870.13 33749.05 21672.30 32471.65 33944.23 35131.85 39463.13 37223.68 34274.01 35633.25 34839.35 37573.23 362
YYNet153.82 33049.96 33665.41 31970.09 33848.95 22072.30 32471.66 33844.25 35031.89 39363.07 37323.73 34173.95 35733.26 34739.40 37473.34 360
LTVRE_ROB45.45 1952.73 33449.74 33861.69 34169.78 33934.99 36144.52 39567.60 36243.11 35643.79 35174.03 31318.54 36881.45 29728.39 36857.94 29068.62 376
Andreas Kuhn, Heiko Hirschmüller, Daniel Scharstein, Helmut Mayer: A TV Prior for High-Quality Scalable Multi-View Stereo Reconstruction. International Journal of Computer Vision 2016
pmmvs562.80 27061.18 26767.66 29969.53 34042.37 33282.65 20675.19 30854.30 27952.03 31178.51 26431.64 29080.67 30648.60 27558.15 28579.95 298
tt080563.39 26361.31 26669.64 27769.36 34138.87 34978.00 28485.48 10148.82 31655.66 28281.66 23624.38 33786.37 23549.04 27259.36 27383.68 240
D2MVS63.49 26261.39 26469.77 27669.29 34248.93 22278.89 27977.71 27560.64 17149.70 32372.10 33927.08 31783.48 28454.48 23462.65 25376.90 328
test_vis1_n_192068.59 19668.31 17069.44 28069.16 34341.51 33684.63 15168.58 35858.80 20673.26 6388.37 12725.30 32980.60 30879.10 4267.55 20686.23 193
WR-MVS_H58.91 29958.04 29161.54 34269.07 34433.83 36976.91 29081.99 18551.40 30048.17 33074.67 30840.23 18174.15 35531.78 35348.10 34676.64 333
test_djsdf63.84 25861.56 26270.70 26268.78 34544.69 30181.63 23581.44 19750.28 30552.27 30976.26 29526.72 31986.11 24160.83 17455.84 31281.29 282
Anonymous2023120659.08 29657.59 29363.55 32868.77 34632.14 37780.26 26379.78 23050.00 30949.39 32572.39 33426.64 32078.36 32733.12 34957.94 29080.14 296
K. test v354.04 32849.42 34067.92 29868.55 34742.57 33075.51 29963.07 37352.07 29339.21 37264.59 36919.34 36382.21 29137.11 32525.31 39978.97 304
CP-MVSNet58.54 30557.57 29461.46 34368.50 34833.96 36876.90 29178.60 26051.67 29947.83 33476.60 29134.99 25772.79 36435.45 33447.58 35077.64 324
N_pmnet41.25 35839.77 36145.66 37668.50 3480.82 42872.51 3220.38 42735.61 37735.26 38461.51 37720.07 36167.74 37623.51 38340.63 37168.42 377
jajsoiax63.21 26560.84 27070.32 26868.33 35044.45 30381.23 24581.05 20353.37 28550.96 31877.81 27117.49 37285.49 25759.31 18758.05 28881.02 285
UniMVSNet_ETH3D62.51 27260.49 27368.57 29468.30 35140.88 34373.89 31079.93 22751.81 29854.77 28779.61 25324.80 33481.10 29949.93 26461.35 26083.73 239
PS-CasMVS58.12 30757.03 29861.37 34468.24 35233.80 37076.73 29278.01 26951.20 30147.54 33876.20 29932.85 27572.76 36535.17 33947.37 35277.55 325
mvs_tets62.96 26860.55 27270.19 26968.22 35344.24 30880.90 25280.74 21152.99 28850.82 32077.56 27216.74 37685.44 25859.04 19057.94 29080.89 286
COLMAP_ROBcopyleft43.60 2050.90 34348.05 34459.47 34967.81 35440.57 34471.25 33362.72 37536.49 37536.19 38173.51 32213.48 38373.92 35820.71 39150.26 34163.92 387
Johannes L. Schönberger, Enliang Zheng, Marc Pollefeys, Jan-Michael Frahm: Pixelwise View Selection for Unstructured Multi-View Stereo. ECCV 2016
PEN-MVS58.35 30657.15 29661.94 33967.55 35534.39 36377.01 28978.35 26551.87 29647.72 33576.73 28933.91 26673.75 35934.03 34447.17 35477.68 322
v7n62.50 27359.27 28472.20 23167.25 35649.83 19877.87 28680.12 22152.50 29148.80 32973.07 32532.10 28387.90 18446.83 28754.92 31778.86 305
test_fmvsmconf0.01_n71.97 13070.95 12975.04 16266.21 35747.87 26080.35 26170.08 34965.85 7872.69 7091.68 5639.99 18687.67 19582.03 2869.66 19289.58 114
pmmvs659.64 28957.15 29667.09 30466.01 35836.86 35980.50 25778.64 25745.05 34349.05 32773.94 31527.28 31586.10 24343.96 30449.94 34278.31 315
DTE-MVSNet57.03 31255.73 30760.95 34765.94 35932.57 37575.71 29577.09 28651.16 30246.65 34476.34 29432.84 27673.22 36330.94 35744.87 36377.06 327
CL-MVSNet_self_test62.98 26761.14 26868.50 29565.86 36042.96 32284.37 15582.98 17260.98 16253.95 29772.70 33040.43 17983.71 28141.10 31347.93 34878.83 306
TinyColmap48.15 34944.49 35359.13 35265.73 36138.04 35363.34 36362.86 37438.78 36529.48 39667.23 3616.46 40473.30 36224.59 38041.90 37066.04 382
XVG-OURS61.88 27859.34 28369.49 27865.37 36246.27 28464.80 35773.49 32447.04 32957.41 26382.85 20825.15 33178.18 32853.00 24564.98 22584.01 230
XVG-OURS-SEG-HR62.02 27759.54 28169.46 27965.30 36345.88 28865.06 35673.57 32346.45 33357.42 26283.35 20326.95 31878.09 33053.77 23964.03 23484.42 223
OurMVSNet-221017-052.39 33748.73 34163.35 33165.21 36438.42 35268.54 34664.95 36638.19 36739.57 37171.43 34113.23 38479.92 31737.16 32340.32 37371.72 368
test_cas_vis1_n_192067.10 22866.60 20568.59 29365.17 36543.23 32083.23 19369.84 35155.34 26670.67 9987.71 14524.70 33676.66 34778.57 4964.20 23285.89 201
AllTest47.32 35044.66 35255.32 36365.08 36637.50 35762.96 36654.25 38535.45 37833.42 38972.82 3279.98 39159.33 38724.13 38143.84 36569.13 374
TestCases55.32 36365.08 36637.50 35754.25 38535.45 37833.42 38972.82 3279.98 39159.33 38724.13 38143.84 36569.13 374
EGC-MVSNET33.75 36930.42 37343.75 37964.94 36836.21 36060.47 37640.70 4000.02 4210.10 42253.79 3937.39 39860.26 38511.09 40835.23 38334.79 407
lessismore_v067.98 29764.76 36941.25 33945.75 39236.03 38265.63 36619.29 36484.11 27635.67 33321.24 40578.59 310
UnsupCasMVSNet_eth57.56 31055.15 30964.79 32464.57 37033.12 37173.17 31783.87 15458.98 20341.75 36170.03 34922.54 34879.92 31746.12 29435.31 38181.32 281
USDC54.36 32651.23 33063.76 32764.29 37137.71 35662.84 36773.48 32656.85 24335.47 38371.94 3409.23 39378.43 32638.43 32048.57 34475.13 346
Patchmatch-RL test58.72 30154.32 31471.92 24363.91 37244.25 30761.73 37055.19 38257.38 23549.31 32654.24 39237.60 21180.89 30162.19 16347.28 35390.63 86
dongtai43.51 35544.07 35641.82 38063.75 37321.90 40463.80 36072.05 33339.59 36333.35 39154.54 39141.04 17157.30 39210.75 40917.77 40946.26 403
anonymousdsp60.46 28657.65 29268.88 28463.63 37445.09 29672.93 31878.63 25846.52 33251.12 31572.80 32921.46 35683.07 28957.79 21053.97 32478.47 311
UnsupCasMVSNet_bld53.86 32950.53 33363.84 32663.52 37534.75 36271.38 33281.92 18846.53 33138.95 37457.93 38720.55 35980.20 31539.91 31734.09 38876.57 334
test20.0355.22 32354.07 31658.68 35363.14 37625.00 39777.69 28774.78 31152.64 28943.43 35372.39 33426.21 32274.76 35429.31 36147.05 35676.28 337
testgi54.25 32752.57 32659.29 35162.76 37721.65 40672.21 32670.47 34653.25 28641.94 35977.33 27814.28 38277.95 33529.18 36251.72 33878.28 316
EU-MVSNet52.63 33550.72 33258.37 35462.69 37828.13 39472.60 32075.97 30130.94 38740.76 36872.11 33820.16 36070.80 37135.11 34046.11 36076.19 338
XVG-ACMP-BASELINE56.03 31952.85 32365.58 31661.91 37940.95 34263.36 36272.43 33045.20 34246.02 34674.09 3129.20 39478.12 32945.13 29658.27 28377.66 323
MIMVSNet150.35 34447.81 34557.96 35561.53 38027.80 39567.40 34974.06 31743.25 35533.31 39265.38 36816.03 37971.34 36921.80 38847.55 35174.75 349
pmmvs-eth3d55.97 32052.78 32465.54 31761.02 38146.44 27975.36 30167.72 36149.61 31143.65 35267.58 35921.63 35577.04 34144.11 30344.33 36473.15 363
CMPMVSbinary40.41 2155.34 32252.64 32563.46 32960.88 38243.84 31161.58 37271.06 34330.43 38836.33 38074.63 30924.14 33975.44 35148.05 27966.62 21371.12 372
M. Jancosek, T. Pajdla: Multi-View Reconstruction Preserving Weakly-Supported Surfaces. CVPR 2011
Gipumacopyleft27.47 37424.26 37937.12 38860.55 38329.17 39011.68 41560.00 37714.18 40710.52 41615.12 4172.20 41763.01 3818.39 41135.65 38019.18 413
S. Galliani, K. Lasinger, K. Schindler: Massively Parallel Multiview Stereopsis by Surface Normal Diffusion. ICCV 2015
mamv442.60 35744.05 35738.26 38559.21 38438.00 35444.14 39739.03 40125.03 39540.61 36968.39 35637.01 22724.28 41946.62 28936.43 37852.50 397
test_fmvs153.60 33252.54 32756.78 35758.07 38530.26 38168.95 34442.19 39732.46 38363.59 17582.56 21911.55 38660.81 38458.25 20055.27 31579.28 301
ITE_SJBPF51.84 36658.03 38631.94 37853.57 38736.67 37341.32 36475.23 30611.17 38851.57 39925.81 37748.04 34772.02 367
new-patchmatchnet48.21 34846.55 35053.18 36557.73 38718.19 41470.24 33671.02 34445.70 33833.70 38760.23 38118.00 37069.86 37427.97 37034.35 38571.49 371
RPSCF45.77 35344.13 35550.68 36757.67 38829.66 38754.92 38845.25 39326.69 39345.92 34775.92 30217.43 37345.70 40527.44 37245.95 36176.67 330
mvs5depth50.97 34246.98 34862.95 33356.63 38934.23 36662.73 36867.35 36345.03 34448.00 33365.41 36710.40 39079.88 32136.00 33131.27 39274.73 350
Anonymous2024052151.65 33948.42 34261.34 34556.43 39039.65 34773.57 31373.47 32736.64 37436.59 37963.98 37010.75 38972.25 36835.35 33549.01 34372.11 366
KD-MVS_self_test49.24 34646.85 34956.44 35954.32 39122.87 40057.39 38173.36 32844.36 34937.98 37759.30 38518.97 36571.17 37033.48 34542.44 36875.26 344
WB-MVS37.41 36536.37 36540.54 38354.23 39210.43 42165.29 35343.75 39434.86 38127.81 40054.63 39024.94 33363.21 3806.81 41615.00 41147.98 402
ambc62.06 33753.98 39329.38 38935.08 40679.65 23441.37 36259.96 3826.27 40582.15 29235.34 33638.22 37674.65 351
SSC-MVS35.20 36734.30 36937.90 38652.58 3948.65 42461.86 36941.64 39831.81 38625.54 40352.94 39623.39 34459.28 3896.10 41712.86 41245.78 405
PM-MVS46.92 35143.76 35856.41 36052.18 39532.26 37663.21 36538.18 40337.99 36940.78 36766.20 3625.09 40865.42 37948.19 27841.99 36971.54 370
test_fmvs1_n52.55 33651.19 33156.65 35851.90 39630.14 38267.66 34842.84 39632.27 38462.30 18982.02 2339.12 39560.84 38357.82 20954.75 32178.99 303
MVStest138.35 36234.53 36849.82 37151.43 39730.41 38050.39 39055.25 38117.56 40426.45 40265.85 36511.72 38557.00 39314.79 40317.31 41062.05 390
test_vis1_n51.19 34149.66 33955.76 36251.26 39829.85 38667.20 35138.86 40232.12 38559.50 21979.86 2518.78 39658.23 39156.95 21852.46 33579.19 302
mvsany_test143.38 35642.57 35945.82 37550.96 39926.10 39655.80 38427.74 41527.15 39247.41 34074.39 31118.67 36744.95 40644.66 29936.31 37966.40 381
TDRefinement40.91 35938.37 36348.55 37350.45 40033.03 37358.98 37950.97 38828.50 38929.89 39567.39 3606.21 40654.51 39617.67 39935.25 38258.11 391
ttmdpeth40.58 36037.50 36449.85 37049.40 40122.71 40156.65 38346.78 38928.35 39040.29 37069.42 3525.35 40761.86 38220.16 39321.06 40664.96 385
new_pmnet33.56 37031.89 37238.59 38449.01 40220.42 40751.01 38937.92 40420.58 39823.45 40446.79 3996.66 40349.28 40220.00 39531.57 39146.09 404
pmmvs345.53 35441.55 36057.44 35648.97 40339.68 34670.06 33757.66 37928.32 39134.06 38657.29 3888.50 39766.85 37834.86 34234.26 38665.80 383
test_vis1_rt40.29 36138.64 36245.25 37748.91 40430.09 38359.44 37727.07 41624.52 39738.48 37651.67 3976.71 40249.44 40044.33 30146.59 35956.23 392
DSMNet-mixed38.35 36235.36 36747.33 37448.11 40514.91 41837.87 40436.60 40619.18 40134.37 38559.56 38415.53 38053.01 39820.14 39446.89 35774.07 354
FPMVS35.40 36633.67 37040.57 38246.34 40628.74 39341.05 40057.05 38020.37 40022.27 40553.38 3946.87 40144.94 4078.62 41047.11 35548.01 401
test_fmvs245.89 35244.32 35450.62 36845.85 40724.70 39858.87 38037.84 40525.22 39452.46 30774.56 3107.07 39954.69 39549.28 27047.70 34972.48 364
LF4IMVS33.04 37132.55 37134.52 38940.96 40822.03 40344.45 39635.62 40720.42 39928.12 39962.35 3755.03 40931.88 41821.61 39034.42 38449.63 400
wuyk23d9.11 3888.77 39210.15 40240.18 40916.76 41520.28 4131.01 4262.58 4192.66 4210.98 4210.23 42612.49 4214.08 4216.90 4181.19 418
APD_test126.46 37724.41 37832.62 39437.58 41021.74 40540.50 40230.39 41211.45 41116.33 40843.76 4001.63 42041.62 40811.24 40726.82 39834.51 408
PMMVS226.71 37622.98 38137.87 38736.89 4118.51 42542.51 39929.32 41419.09 40213.01 41137.54 4022.23 41653.11 39714.54 40411.71 41351.99 399
E-PMN19.16 38318.40 38721.44 39936.19 41213.63 41947.59 39230.89 41110.73 4125.91 41916.59 4153.66 41139.77 4095.95 4188.14 41510.92 415
test_fmvs337.95 36435.75 36644.55 37835.50 41318.92 41048.32 39134.00 41018.36 40341.31 36561.58 3762.29 41548.06 40442.72 31037.71 37766.66 380
EMVS18.42 38417.66 38820.71 40034.13 41412.64 42046.94 39329.94 41310.46 4145.58 42014.93 4184.23 41038.83 4105.24 4207.51 41710.67 416
testf121.11 38119.08 38527.18 39730.56 41518.28 41233.43 40824.48 4178.02 41512.02 41333.50 4090.75 42435.09 4147.68 41221.32 40328.17 410
APD_test221.11 38119.08 38527.18 39730.56 41518.28 41233.43 40824.48 4178.02 41512.02 41333.50 4090.75 42435.09 4147.68 41221.32 40328.17 410
ANet_high34.39 36829.59 37448.78 37230.34 41722.28 40255.53 38563.79 37138.11 36815.47 40936.56 4066.94 40059.98 38613.93 4055.64 42064.08 386
mvsany_test328.00 37325.98 37534.05 39028.97 41815.31 41634.54 40718.17 42116.24 40529.30 39753.37 3952.79 41333.38 41730.01 35920.41 40753.45 396
test_vis3_rt24.79 37922.95 38230.31 39528.59 41918.92 41037.43 40517.27 42312.90 40821.28 40629.92 4121.02 42236.35 41128.28 36929.82 39635.65 406
MVEpermissive16.60 2317.34 38613.39 38929.16 39628.43 42019.72 40813.73 41423.63 4197.23 4177.96 41721.41 4130.80 42336.08 4126.97 41410.39 41431.69 409
Simon Fuhrmann, Fabian Langguth, Michael Goesele: MVE - A Multi-View Reconstruction Environment. EUROGRAPHICS Workshops on Graphics and Cultural Heritage (2014)
test_method24.09 38021.07 38433.16 39227.67 4218.35 42626.63 41235.11 4093.40 41814.35 41036.98 4043.46 41235.31 41319.08 39722.95 40255.81 393
LCM-MVSNet28.07 37223.85 38040.71 38127.46 42218.93 40930.82 41046.19 39012.76 40916.40 40734.70 4081.90 41848.69 40320.25 39224.22 40154.51 395
test_f27.12 37524.85 37633.93 39126.17 42315.25 41730.24 41122.38 42012.53 41028.23 39849.43 3982.59 41434.34 41625.12 37926.99 39752.20 398
PMVScopyleft19.57 2225.07 37822.43 38332.99 39323.12 42422.98 39940.98 40135.19 40815.99 40611.95 41535.87 4071.47 42149.29 4015.41 41931.90 39026.70 412
Y. Furukawa, J. Ponce: Accurate, dense, and robust multiview stereopsis. PAMI (2010)
DeepMVS_CXcopyleft13.10 40121.34 4258.99 42310.02 42510.59 4137.53 41830.55 4111.82 41914.55 4206.83 4157.52 41615.75 414
tmp_tt9.44 38710.68 3905.73 4032.49 4264.21 42710.48 41618.04 4220.34 42012.59 41220.49 41411.39 3877.03 42213.84 4066.46 4195.95 417
testmvs6.14 3908.18 3930.01 4040.01 4270.00 43073.40 3160.00 4280.00 4220.02 4230.15 4220.00 4270.00 4230.02 4220.00 4210.02 419
mmdepth0.00 3930.00 3960.00 4060.00 4280.00 4300.00 4170.00 4280.00 4220.00 4250.00 4240.00 4270.00 4230.00 4240.00 4210.00 421
monomultidepth0.00 3930.00 3960.00 4060.00 4280.00 4300.00 4170.00 4280.00 4220.00 4250.00 4240.00 4270.00 4230.00 4240.00 4210.00 421
test_blank0.00 3930.00 3960.00 4060.00 4280.00 4300.00 4170.00 4280.00 4220.00 4250.00 4240.00 4270.00 4230.00 4240.00 4210.00 421
eth-test20.00 428
eth-test0.00 428
uanet_test0.00 3930.00 3960.00 4060.00 4280.00 4300.00 4170.00 4280.00 4220.00 4250.00 4240.00 4270.00 4230.00 4240.00 4210.00 421
DCPMVS0.00 3930.00 3960.00 4060.00 4280.00 4300.00 4170.00 4280.00 4220.00 4250.00 4240.00 4270.00 4230.00 4240.00 4210.00 421
cdsmvs_eth3d_5k18.33 38524.44 3770.00 4060.00 4280.00 4300.00 41789.40 240.00 4220.00 42592.02 4638.55 1980.00 4230.00 4240.00 4210.00 421
pcd_1.5k_mvsjas3.15 3924.20 3950.00 4060.00 4280.00 4300.00 4170.00 4280.00 4220.00 4250.00 42437.77 2040.00 4230.00 4240.00 4210.00 421
sosnet-low-res0.00 3930.00 3960.00 4060.00 4280.00 4300.00 4170.00 4280.00 4220.00 4250.00 4240.00 4270.00 4230.00 4240.00 4210.00 421
sosnet0.00 3930.00 3960.00 4060.00 4280.00 4300.00 4170.00 4280.00 4220.00 4250.00 4240.00 4270.00 4230.00 4240.00 4210.00 421
uncertanet0.00 3930.00 3960.00 4060.00 4280.00 4300.00 4170.00 4280.00 4220.00 4250.00 4240.00 4270.00 4230.00 4240.00 4210.00 421
Regformer0.00 3930.00 3960.00 4060.00 4280.00 4300.00 4170.00 4280.00 4220.00 4250.00 4240.00 4270.00 4230.00 4240.00 4210.00 421
test1236.01 3918.01 3940.01 4040.00 4280.01 42971.93 3300.00 4280.00 4220.02 4230.11 4230.00 4270.00 4230.02 4220.00 4210.02 419
ab-mvs-re7.68 38910.24 3910.00 4060.00 4280.00 4300.00 4170.00 4280.00 4220.00 42592.12 420.00 4270.00 4230.00 4240.00 4210.00 421
uanet0.00 3930.00 3960.00 4060.00 4280.00 4300.00 4170.00 4280.00 4220.00 4250.00 4240.00 4270.00 4230.00 4240.00 4210.00 421
WAC-MVS34.28 36422.56 386
PC_three_145266.58 6187.27 293.70 1066.82 494.95 1789.74 491.98 493.98 5
test_241102_TWO88.76 4057.50 23383.60 694.09 356.14 2596.37 682.28 2687.43 2092.55 30
test_0728_THIRD58.00 21981.91 1493.64 1256.54 2196.44 281.64 3186.86 2692.23 37
GSMVS88.13 153
sam_mvs138.86 19688.13 153
sam_mvs35.99 247
MTGPAbinary81.31 199
test_post170.84 33514.72 41934.33 26383.86 27748.80 273
test_post16.22 41637.52 21384.72 270
patchmatchnet-post59.74 38338.41 19979.91 319
MTMP87.27 7715.34 424
test9_res78.72 4885.44 4391.39 66
agg_prior275.65 6885.11 4791.01 78
test_prior456.39 4087.15 81
test_prior289.04 4361.88 14473.55 5891.46 6348.01 7874.73 7785.46 42
旧先验281.73 23245.53 34074.66 4770.48 37358.31 199
新几何281.61 237
无先验85.19 12778.00 27049.08 31385.13 26552.78 24887.45 169
原ACMM283.77 175
testdata277.81 33845.64 295
segment_acmp44.97 117
testdata177.55 28864.14 101
plane_prior582.59 17788.30 17265.46 14072.34 16884.49 221
plane_prior483.28 204
plane_prior348.95 22064.01 10462.15 191
plane_prior285.76 10763.60 113
plane_prior49.57 20187.43 7064.57 9472.84 164
n20.00 428
nn0.00 428
door-mid41.31 399
test1184.25 144
door43.27 395
HQP5-MVS51.56 159
BP-MVS66.70 126
HQP4-MVS64.47 16288.61 15684.91 217
HQP3-MVS83.68 15673.12 160
HQP2-MVS37.35 216
MDTV_nov1_ep13_2view43.62 31371.13 33454.95 27159.29 22536.76 23246.33 29287.32 172
ACMMP++_ref63.20 246
ACMMP++59.38 272
Test By Simon39.38 190