DP-MVS Recon | | | 91.72 72 | 90.85 82 | 94.34 32 | 99.50 1 | 85.00 60 | 98.51 24 | 95.96 135 | 80.57 212 | 88.08 125 | 97.63 74 | 76.84 112 | 99.89 7 | 85.67 135 | 94.88 113 | 98.13 72 |
|
MCST-MVS | | | 96.17 3 | 96.12 5 | 96.32 5 | 99.42 2 | 89.36 8 | 98.94 15 | 97.10 24 | 95.17 2 | 92.11 66 | 98.46 24 | 87.33 20 | 99.97 2 | 97.21 12 | 99.31 2 | 99.63 5 |
|
MG-MVS | | | 94.25 24 | 93.72 34 | 95.85 9 | 99.38 3 | 89.35 9 | 97.98 44 | 98.09 8 | 89.99 34 | 92.34 63 | 96.97 103 | 81.30 59 | 98.99 101 | 88.54 113 | 98.88 19 | 99.20 18 |
|
AdaColmap |  | | 88.81 130 | 87.61 139 | 92.39 110 | 99.33 4 | 79.95 167 | 96.70 147 | 95.58 155 | 77.51 266 | 83.05 172 | 96.69 115 | 61.90 252 | 99.72 31 | 84.29 145 | 93.47 126 | 97.50 121 |
|
CNVR-MVS | | | 96.30 1 | 96.54 1 | 95.55 12 | 99.31 5 | 87.69 19 | 99.06 9 | 97.12 22 | 94.66 3 | 96.79 9 | 98.78 11 | 86.42 24 | 99.95 3 | 97.59 9 | 99.18 5 | 99.00 23 |
|
testtj | | | 94.09 29 | 94.08 29 | 94.09 42 | 99.28 6 | 83.32 91 | 97.59 71 | 96.61 74 | 83.60 165 | 94.77 36 | 98.46 24 | 82.72 52 | 99.64 42 | 95.29 32 | 98.42 42 | 99.32 13 |
|
NCCC | | | 95.63 5 | 95.94 6 | 94.69 24 | 99.21 7 | 85.15 56 | 99.16 3 | 96.96 33 | 94.11 6 | 95.59 21 | 98.64 19 | 85.07 28 | 99.91 4 | 95.61 27 | 99.10 7 | 99.00 23 |
|
OPU-MVS | | | | | 97.30 2 | 99.19 8 | 92.31 3 | 99.12 6 | | | | 98.54 20 | 92.06 2 | 99.84 12 | 99.11 1 | 99.37 1 | 99.74 1 |
|
ZD-MVS | | | | | | 99.09 9 | 83.22 93 | | 96.60 77 | 82.88 178 | 93.61 49 | 98.06 48 | 82.93 48 | 99.14 91 | 95.51 29 | 98.49 38 | |
|
DVP-MVS | | | 95.58 7 | 95.91 7 | 94.57 26 | 99.05 10 | 85.18 51 | 99.06 9 | 96.46 95 | 88.75 48 | 96.69 10 | 98.76 12 | 87.69 18 | 99.76 20 | 97.90 5 | 98.85 20 | 98.77 30 |
Zhenlong Yuan, Jinguo Luo, Fei Shen, Zhaoxin Li, Cong Liu, Tianlu Mao, Zhaoqi Wang: DVP-MVS: Synergize Depth-Edge and Visibility Prior for Multi-View Stereo. AAAI2025 |
test0726 | | | | | | 99.05 10 | 85.18 51 | 99.11 8 | 96.78 45 | 88.75 48 | 97.65 6 | 98.91 3 | 87.69 18 | | | | |
|
test_0728_SECOND | | | | | 95.14 15 | 99.04 12 | 86.14 31 | 99.06 9 | 96.77 51 | | | | | 99.84 12 | 97.90 5 | 98.85 20 | 99.45 8 |
|
SED-MVS | | | 95.88 4 | 96.22 3 | 94.87 19 | 99.03 13 | 85.03 58 | 99.12 6 | 96.78 45 | 88.72 50 | 97.79 3 | 98.91 3 | 88.48 14 | 99.82 16 | 98.15 2 | 98.97 15 | 99.74 1 |
|
IU-MVS | | | | | | 99.03 13 | 85.34 47 | | 96.86 42 | 92.05 15 | 98.74 1 | | | | 98.15 2 | 98.97 15 | 99.42 9 |
|
test_241102_ONE | | | | | | 99.03 13 | 85.03 58 | | 96.78 45 | 88.72 50 | 97.79 3 | 98.90 6 | 88.48 14 | 99.82 16 | | | |
|
ETH3 D test6400 | | | 95.56 8 | 95.41 11 | 96.00 7 | 99.02 16 | 89.42 7 | 98.75 17 | 96.80 44 | 87.28 79 | 95.88 19 | 98.95 2 | 85.92 26 | 99.41 62 | 97.15 13 | 98.95 18 | 99.18 20 |
|
test_part2 | | | | | | 98.90 17 | 85.14 57 | | | | 96.07 17 | | | | | | |
|
PAPR | | | 92.74 50 | 92.17 64 | 94.45 28 | 98.89 18 | 84.87 63 | 97.20 100 | 96.20 121 | 87.73 72 | 88.40 120 | 98.12 41 | 78.71 86 | 99.76 20 | 87.99 120 | 96.28 96 | 98.74 31 |
|
DeepC-MVS_fast | | 89.06 2 | 94.48 18 | 94.30 26 | 95.02 17 | 98.86 19 | 85.68 42 | 98.06 40 | 96.64 71 | 93.64 8 | 91.74 72 | 98.54 20 | 80.17 70 | 99.90 5 | 92.28 70 | 98.75 26 | 99.49 6 |
Andreas Kuhn, Christian Sormann, Mattia Rossi, Oliver Erdler, Friedrich Fraundorfer: DeepC-MVS: Deep Confidence Prediction for Multi-View Stereo Reconstruction. 3DV 2020 |
APDe-MVS | | | 94.56 17 | 94.75 14 | 93.96 45 | 98.84 20 | 83.40 88 | 98.04 42 | 96.41 101 | 85.79 101 | 95.00 31 | 98.28 29 | 84.32 35 | 99.18 87 | 97.35 11 | 98.77 25 | 99.28 15 |
|
DPE-MVS |  | | 95.32 9 | 95.55 8 | 94.64 25 | 98.79 21 | 84.87 63 | 97.77 56 | 96.74 55 | 86.11 93 | 96.54 13 | 98.89 7 | 88.39 16 | 99.74 28 | 97.67 8 | 99.05 10 | 99.31 14 |
Kehua Chen, Zhenlong Yuan, Tianlu Mao, Zhaoqi Wang: Dual-Level Precision Edges Guided Multi-View Stereo with Accurate Planarization. AAAI2025 |
APD-MVS |  | | 93.61 37 | 93.59 36 | 93.69 54 | 98.76 22 | 83.26 92 | 97.21 98 | 96.09 128 | 82.41 186 | 94.65 37 | 98.21 31 | 81.96 57 | 98.81 114 | 94.65 39 | 98.36 50 | 99.01 22 |
Yuesong Wang, Zhaojie Zeng and etc.: Adaptive Patch Deformation for Textureless-Resilient Multi-View Stereo. CVPR2023 |
HFP-MVS | | | 92.89 47 | 92.86 48 | 92.98 86 | 98.71 23 | 81.12 137 | 97.58 72 | 96.70 60 | 85.20 118 | 91.75 70 | 97.97 56 | 78.47 88 | 99.71 32 | 90.95 81 | 98.41 44 | 98.12 73 |
|
#test# | | | 92.99 45 | 92.99 44 | 92.98 86 | 98.71 23 | 81.12 137 | 97.77 56 | 96.70 60 | 85.75 102 | 91.75 70 | 97.97 56 | 78.47 88 | 99.71 32 | 91.36 77 | 98.41 44 | 98.12 73 |
|
region2R | | | 92.72 53 | 92.70 51 | 92.79 95 | 98.68 25 | 80.53 155 | 97.53 76 | 96.51 89 | 85.22 116 | 91.94 68 | 97.98 54 | 77.26 105 | 99.67 40 | 90.83 85 | 98.37 49 | 98.18 66 |
|
test_prior3 | | | 94.03 31 | 94.34 24 | 93.09 81 | 98.68 25 | 81.91 117 | 98.37 26 | 96.40 104 | 86.08 95 | 94.57 38 | 98.02 49 | 83.14 44 | 99.06 97 | 95.05 34 | 98.79 23 | 98.29 59 |
|
test_prior | | | | | 93.09 81 | 98.68 25 | 81.91 117 | | 96.40 104 | | | | | 99.06 97 | | | 98.29 59 |
|
ACMMPR | | | 92.69 55 | 92.67 52 | 92.75 96 | 98.66 28 | 80.57 152 | 97.58 72 | 96.69 62 | 85.20 118 | 91.57 74 | 97.92 58 | 77.01 110 | 99.67 40 | 90.95 81 | 98.41 44 | 98.00 85 |
|
API-MVS | | | 90.18 106 | 88.97 115 | 93.80 49 | 98.66 28 | 82.95 99 | 97.50 80 | 95.63 154 | 75.16 284 | 86.31 138 | 97.69 68 | 72.49 178 | 99.90 5 | 81.26 174 | 96.07 99 | 98.56 42 |
|
CDPH-MVS | | | 93.12 43 | 92.91 46 | 93.74 51 | 98.65 30 | 83.88 76 | 97.67 66 | 96.26 117 | 83.00 175 | 93.22 54 | 98.24 30 | 81.31 58 | 99.21 80 | 89.12 109 | 98.74 27 | 98.14 71 |
|
TEST9 | | | | | | 98.64 31 | 83.71 81 | 97.82 52 | 96.65 68 | 84.29 144 | 95.16 25 | 98.09 43 | 84.39 31 | 99.36 70 | | | |
|
train_agg | | | 94.28 22 | 94.45 20 | 93.74 51 | 98.64 31 | 83.71 81 | 97.82 52 | 96.65 68 | 84.50 136 | 95.16 25 | 98.09 43 | 84.33 32 | 99.36 70 | 95.91 23 | 98.96 17 | 98.16 68 |
|
test_8 | | | | | | 98.63 33 | 83.64 84 | 97.81 54 | 96.63 73 | 84.50 136 | 95.10 27 | 98.11 42 | 84.33 32 | 99.23 76 | | | |
|
HPM-MVS++ |  | | 95.32 9 | 95.48 10 | 94.85 20 | 98.62 34 | 86.04 32 | 97.81 54 | 96.93 36 | 92.45 11 | 95.69 20 | 98.50 22 | 85.38 27 | 99.85 10 | 94.75 37 | 99.18 5 | 98.65 38 |
|
agg_prior1 | | | 94.10 28 | 94.31 25 | 93.48 67 | 98.59 35 | 83.13 94 | 97.77 56 | 96.56 82 | 84.38 140 | 94.19 41 | 98.13 38 | 84.66 30 | 99.16 89 | 95.74 25 | 98.74 27 | 98.15 70 |
|
agg_prior | | | | | | 98.59 35 | 83.13 94 | | 96.56 82 | | 94.19 41 | | | 99.16 89 | | | |
|
CSCG | | | 92.02 67 | 91.65 72 | 93.12 79 | 98.53 37 | 80.59 151 | 97.47 81 | 97.18 20 | 77.06 274 | 84.64 152 | 97.98 54 | 83.98 37 | 99.52 53 | 90.72 87 | 97.33 76 | 99.23 17 |
|
XVS | | | 92.69 55 | 92.71 49 | 92.63 102 | 98.52 38 | 80.29 158 | 97.37 92 | 96.44 97 | 87.04 86 | 91.38 76 | 97.83 64 | 77.24 107 | 99.59 47 | 90.46 91 | 98.07 58 | 98.02 80 |
|
X-MVStestdata | | | 86.26 175 | 84.14 191 | 92.63 102 | 98.52 38 | 80.29 158 | 97.37 92 | 96.44 97 | 87.04 86 | 91.38 76 | 20.73 364 | 77.24 107 | 99.59 47 | 90.46 91 | 98.07 58 | 98.02 80 |
|
CP-MVS | | | 92.54 60 | 92.60 54 | 92.34 111 | 98.50 40 | 79.90 169 | 98.40 25 | 96.40 104 | 84.75 126 | 90.48 93 | 98.09 43 | 77.40 104 | 99.21 80 | 91.15 80 | 98.23 55 | 97.92 91 |
|
PAPM_NR | | | 91.46 79 | 90.82 83 | 93.37 71 | 98.50 40 | 81.81 124 | 95.03 225 | 96.13 125 | 84.65 132 | 86.10 141 | 97.65 73 | 79.24 79 | 99.75 26 | 83.20 163 | 96.88 88 | 98.56 42 |
|
MAR-MVS | | | 90.63 96 | 90.22 92 | 91.86 127 | 98.47 42 | 78.20 216 | 97.18 102 | 96.61 74 | 83.87 157 | 88.18 124 | 98.18 32 | 68.71 207 | 99.75 26 | 83.66 155 | 97.15 81 | 97.63 112 |
Zhenyu Xu, Yiguang Liu, Xuelei Shi, Ying Wang, Yunan Zheng: MARMVS: Matching Ambiguity Reduced Multiple View Stereo for Efficient Large Scale Scene Reconstruction. CVPR 2020 |
Regformer-1 | | | 94.00 32 | 94.04 31 | 93.87 47 | 98.41 43 | 84.29 70 | 97.43 87 | 97.04 26 | 89.50 39 | 92.75 60 | 98.13 38 | 82.60 54 | 99.26 75 | 93.55 50 | 96.99 83 | 98.06 77 |
|
Regformer-2 | | | 93.92 33 | 94.01 32 | 93.67 56 | 98.41 43 | 83.75 80 | 97.43 87 | 97.00 28 | 89.43 41 | 92.69 61 | 98.13 38 | 82.48 55 | 99.22 78 | 93.51 51 | 96.99 83 | 98.04 78 |
|
mPP-MVS | | | 91.88 69 | 91.82 68 | 92.07 120 | 98.38 45 | 78.63 200 | 97.29 95 | 96.09 128 | 85.12 120 | 88.45 119 | 97.66 69 | 75.53 138 | 99.68 38 | 89.83 100 | 98.02 61 | 97.88 92 |
|
SR-MVS | | | 92.16 65 | 92.27 60 | 91.83 130 | 98.37 46 | 78.41 206 | 96.67 148 | 95.76 146 | 82.19 190 | 91.97 67 | 98.07 47 | 76.44 119 | 98.64 118 | 93.71 47 | 97.27 77 | 98.45 48 |
|
test12 | | | | | 94.25 35 | 98.34 47 | 85.55 44 | | 96.35 111 | | 92.36 62 | | 80.84 60 | 99.22 78 | | 98.31 52 | 97.98 87 |
|
CPTT-MVS | | | 89.72 112 | 89.87 103 | 89.29 195 | 98.33 48 | 73.30 282 | 97.70 64 | 95.35 171 | 75.68 280 | 87.40 128 | 97.44 84 | 70.43 199 | 98.25 135 | 89.56 105 | 96.90 86 | 96.33 165 |
|
MSP-MVS | | | 95.62 6 | 96.54 1 | 92.86 92 | 98.31 49 | 80.10 166 | 97.42 89 | 96.78 45 | 92.20 13 | 97.11 8 | 98.29 28 | 93.46 1 | 99.10 95 | 96.01 20 | 99.30 3 | 99.38 10 |
Zhenlong Yuan, Cong Liu, Fei Shen, Zhaoxin Li, Jingguo luo, Tianlu Mao and Zhaoqi Wang: MSP-MVS: Multi-granularity Segmentation Prior Guided Multi-View Stereo. AAAI2025 |
MSLP-MVS++ | | | 94.28 22 | 94.39 23 | 93.97 44 | 98.30 50 | 84.06 75 | 98.64 20 | 96.93 36 | 90.71 25 | 93.08 56 | 98.70 16 | 79.98 71 | 99.21 80 | 94.12 45 | 99.07 9 | 98.63 39 |
|
PGM-MVS | | | 91.93 68 | 91.80 69 | 92.32 113 | 98.27 51 | 79.74 174 | 95.28 211 | 97.27 17 | 83.83 158 | 90.89 88 | 97.78 66 | 76.12 126 | 99.56 51 | 88.82 111 | 97.93 64 | 97.66 109 |
|
xxxxxxxxxxxxxcwj | | | 94.38 20 | 94.62 17 | 93.68 55 | 98.24 52 | 83.34 89 | 98.61 22 | 92.69 289 | 91.32 18 | 95.07 29 | 98.74 14 | 82.93 48 | 99.38 64 | 95.42 30 | 98.51 34 | 98.32 54 |
|
ZNCC-MVS | | | 92.75 49 | 92.60 54 | 93.23 75 | 98.24 52 | 81.82 123 | 97.63 67 | 96.50 91 | 85.00 123 | 91.05 85 | 97.74 67 | 78.38 90 | 99.80 19 | 90.48 90 | 98.34 51 | 98.07 76 |
|
save fliter | | | | | | 98.24 52 | 83.34 89 | 98.61 22 | 96.57 80 | 91.32 18 | | | | | | | |
|
114514_t | | | 88.79 132 | 87.57 140 | 92.45 107 | 98.21 55 | 81.74 126 | 96.99 122 | 95.45 163 | 75.16 284 | 82.48 175 | 95.69 131 | 68.59 208 | 98.50 126 | 80.33 179 | 95.18 111 | 97.10 139 |
|
test1172 | | | 91.64 74 | 92.00 66 | 90.54 163 | 98.20 56 | 74.48 273 | 96.45 158 | 95.65 151 | 81.97 194 | 91.63 73 | 98.02 49 | 75.76 133 | 98.61 119 | 93.16 58 | 97.17 80 | 98.52 45 |
|
GST-MVS | | | 92.43 62 | 92.22 63 | 93.04 84 | 98.17 57 | 81.64 130 | 97.40 91 | 96.38 108 | 84.71 129 | 90.90 87 | 97.40 86 | 77.55 102 | 99.76 20 | 89.75 102 | 97.74 66 | 97.72 104 |
|
DP-MVS | | | 81.47 247 | 78.28 261 | 91.04 149 | 98.14 58 | 78.48 202 | 95.09 224 | 86.97 336 | 61.14 342 | 71.12 289 | 92.78 189 | 59.59 261 | 99.38 64 | 53.11 336 | 86.61 180 | 95.27 188 |
|
MP-MVS |  | | 92.61 58 | 92.67 52 | 92.42 109 | 98.13 59 | 79.73 175 | 97.33 94 | 96.20 121 | 85.63 104 | 90.53 91 | 97.66 69 | 78.14 94 | 99.70 35 | 92.12 72 | 98.30 53 | 97.85 95 |
Rongxuan Tan, Qing Wang, et al.: MP-MVS: Multi-Scale Windows PatchMatch and Planar Prior Multi-View Stereo. |
9.14 | | | | 94.26 27 | | 98.10 60 | | 98.14 34 | 96.52 88 | 84.74 127 | 94.83 34 | 98.80 9 | 82.80 51 | 99.37 68 | 95.95 22 | 98.42 42 | |
|
Regformer-3 | | | 93.19 41 | 93.19 42 | 93.19 77 | 98.10 60 | 83.01 98 | 97.08 117 | 96.98 30 | 88.98 45 | 91.35 80 | 97.89 59 | 80.80 61 | 99.23 76 | 92.30 69 | 95.20 109 | 97.32 130 |
|
Regformer-4 | | | 93.06 44 | 93.12 43 | 92.89 91 | 98.10 60 | 82.20 111 | 97.08 117 | 96.92 38 | 88.87 47 | 91.23 82 | 97.89 59 | 80.57 64 | 99.19 85 | 92.21 71 | 95.20 109 | 97.29 134 |
|
PHI-MVS | | | 93.59 38 | 93.63 35 | 93.48 67 | 98.05 63 | 81.76 125 | 98.64 20 | 97.13 21 | 82.60 184 | 94.09 45 | 98.49 23 | 80.35 65 | 99.85 10 | 94.74 38 | 98.62 31 | 98.83 28 |
|
SMA-MVS |  | | 94.70 15 | 94.68 15 | 94.76 22 | 98.02 64 | 85.94 35 | 97.47 81 | 96.77 51 | 85.32 112 | 97.92 2 | 98.70 16 | 83.09 47 | 99.84 12 | 95.79 24 | 99.08 8 | 98.49 46 |
Yufeng Yin; Xiaoyan Liu; Zichao Zhang: SMA-MVS: Segmentation-Guided Multi-Scale Anchor Deformation Patch Multi-View Stereo. IEEE Transactions on Circuits and Systems for Video Technology |
PLC |  | 83.97 7 | 88.00 150 | 87.38 146 | 89.83 186 | 98.02 64 | 76.46 248 | 97.16 106 | 94.43 221 | 79.26 244 | 81.98 185 | 96.28 119 | 69.36 204 | 99.27 73 | 77.71 205 | 92.25 139 | 93.77 210 |
Jie Liao, Yanping Fu, Qingan Yan, Chunxia xiao: Pyramid Multi-View Stereo with Local Consistency. Pacific Graphics 2019 |
zzz-MVS | | | 92.74 50 | 92.71 49 | 92.86 92 | 97.90 66 | 80.85 145 | 96.47 155 | 96.33 112 | 87.92 65 | 90.20 96 | 98.18 32 | 76.71 116 | 99.76 20 | 92.57 67 | 98.09 56 | 97.96 89 |
|
MTAPA | | | 92.45 61 | 92.31 59 | 92.86 92 | 97.90 66 | 80.85 145 | 92.88 275 | 96.33 112 | 87.92 65 | 90.20 96 | 98.18 32 | 76.71 116 | 99.76 20 | 92.57 67 | 98.09 56 | 97.96 89 |
|
APD-MVS_3200maxsize | | | 91.23 86 | 91.35 76 | 90.89 154 | 97.89 68 | 76.35 251 | 96.30 170 | 95.52 159 | 79.82 231 | 91.03 86 | 97.88 61 | 74.70 155 | 98.54 124 | 92.11 73 | 96.89 87 | 97.77 101 |
|
HPM-MVS |  | | 91.62 76 | 91.53 74 | 91.89 126 | 97.88 69 | 79.22 185 | 96.99 122 | 95.73 148 | 82.07 191 | 89.50 108 | 97.19 96 | 75.59 137 | 98.93 109 | 90.91 83 | 97.94 62 | 97.54 116 |
Chunlin Ren, Qingshan Xu, Shikun Zhang, Jiaqi Yang: Hierarchical Prior Mining for Non-local Multi-View Stereo. ICCV 2023 |
SD-MVS | | | 94.84 13 | 95.02 13 | 94.29 34 | 97.87 70 | 84.61 67 | 97.76 60 | 96.19 123 | 89.59 38 | 96.66 12 | 98.17 36 | 84.33 32 | 99.60 46 | 96.09 18 | 98.50 37 | 98.66 37 |
Zhenlong Yuan, Jiakai Cao, Zhaoxin Li, Hao Jiang and Zhaoqi Wang: SD-MVS: Segmentation-driven Deformation Multi-View Stereo with Spherical Refinement and EM optimization. AAAI2024 |
ETH3D-3000-0.1 | | | 94.43 19 | 94.42 22 | 94.45 28 | 97.78 71 | 85.78 38 | 97.98 44 | 96.53 87 | 85.29 115 | 95.45 22 | 98.81 8 | 83.36 42 | 99.38 64 | 96.07 19 | 98.53 33 | 98.19 65 |
|
原ACMM1 | | | | | 91.22 146 | 97.77 72 | 78.10 218 | | 96.61 74 | 81.05 203 | 91.28 81 | 97.42 85 | 77.92 97 | 98.98 102 | 79.85 187 | 98.51 34 | 96.59 156 |
|
SR-MVS-dyc-post | | | 91.29 84 | 91.45 75 | 90.80 156 | 97.76 73 | 76.03 256 | 96.20 176 | 95.44 164 | 80.56 213 | 90.72 89 | 97.84 62 | 75.76 133 | 98.61 119 | 91.99 74 | 96.79 91 | 97.75 102 |
|
RE-MVS-def | | | | 91.18 80 | | 97.76 73 | 76.03 256 | 96.20 176 | 95.44 164 | 80.56 213 | 90.72 89 | 97.84 62 | 73.36 172 | | 91.99 74 | 96.79 91 | 97.75 102 |
|
TSAR-MVS + MP. | | | 94.79 14 | 95.17 12 | 93.64 57 | 97.66 75 | 84.10 74 | 95.85 194 | 96.42 100 | 91.26 20 | 97.49 7 | 96.80 111 | 86.50 23 | 98.49 127 | 95.54 28 | 99.03 11 | 98.33 53 |
Zhenlong Yuan, Jiakai Cao, Zhaoqi Wang, Zhaoxin Li: TSAR-MVS: Textureless-aware Segmentation and Correlative Refinement Guided Multi-View Stereo. Pattern Recognition |
HPM-MVS_fast | | | 90.38 104 | 90.17 95 | 91.03 150 | 97.61 76 | 77.35 236 | 97.15 107 | 95.48 161 | 79.51 237 | 88.79 115 | 96.90 104 | 71.64 188 | 98.81 114 | 87.01 129 | 97.44 72 | 96.94 142 |
|
EI-MVSNet-Vis-set | | | 91.84 70 | 91.77 70 | 92.04 122 | 97.60 77 | 81.17 136 | 96.61 149 | 96.87 40 | 88.20 61 | 89.19 110 | 97.55 79 | 78.69 87 | 99.14 91 | 90.29 96 | 90.94 148 | 95.80 175 |
|
CNLPA | | | 86.96 161 | 85.37 170 | 91.72 132 | 97.59 78 | 79.34 183 | 97.21 98 | 91.05 311 | 74.22 291 | 78.90 213 | 96.75 113 | 67.21 216 | 98.95 106 | 74.68 236 | 90.77 149 | 96.88 147 |
|
ACMMP |  | | 90.39 102 | 89.97 98 | 91.64 133 | 97.58 79 | 78.21 215 | 96.78 139 | 96.72 58 | 84.73 128 | 84.72 150 | 97.23 93 | 71.22 191 | 99.63 44 | 88.37 118 | 92.41 137 | 97.08 140 |
Qingshan Xu, Weihang Kong, Wenbing Tao, Marc Pollefeys: Multi-Scale Geometric Consistency Guided and Planar Prior Assisted Multi-View Stereo. IEEE Transactions on Pattern Analysis and Machine Intelligence |
SF-MVS | | | 94.17 25 | 94.05 30 | 94.55 27 | 97.56 80 | 85.95 33 | 97.73 62 | 96.43 99 | 84.02 150 | 95.07 29 | 98.74 14 | 82.93 48 | 99.38 64 | 95.42 30 | 98.51 34 | 98.32 54 |
|
CANet | | | 94.89 12 | 94.64 16 | 95.63 10 | 97.55 81 | 88.12 13 | 99.06 9 | 96.39 107 | 94.07 7 | 95.34 24 | 97.80 65 | 76.83 113 | 99.87 8 | 97.08 14 | 97.64 68 | 98.89 26 |
|
PVSNet_BlendedMVS | | | 90.05 107 | 89.96 99 | 90.33 169 | 97.47 82 | 83.86 77 | 98.02 43 | 96.73 56 | 87.98 64 | 89.53 106 | 89.61 230 | 76.42 120 | 99.57 49 | 94.29 43 | 79.59 228 | 87.57 297 |
|
PVSNet_Blended | | | 93.13 42 | 92.98 45 | 93.57 61 | 97.47 82 | 83.86 77 | 99.32 1 | 96.73 56 | 91.02 23 | 89.53 106 | 96.21 120 | 76.42 120 | 99.57 49 | 94.29 43 | 95.81 105 | 97.29 134 |
|
新几何1 | | | | | 93.12 79 | 97.44 84 | 81.60 131 | | 96.71 59 | 74.54 289 | 91.22 83 | 97.57 75 | 79.13 81 | 99.51 56 | 77.40 210 | 98.46 39 | 98.26 62 |
|
LS3D | | | 82.22 239 | 79.94 251 | 89.06 197 | 97.43 85 | 74.06 278 | 93.20 269 | 92.05 295 | 61.90 337 | 73.33 273 | 95.21 142 | 59.35 264 | 99.21 80 | 54.54 332 | 92.48 136 | 93.90 209 |
|
test_yl | | | 91.46 79 | 90.53 87 | 94.24 36 | 97.41 86 | 85.18 51 | 98.08 38 | 97.72 10 | 80.94 204 | 89.85 98 | 96.14 121 | 75.61 135 | 98.81 114 | 90.42 94 | 88.56 166 | 98.74 31 |
|
DCV-MVSNet | | | 91.46 79 | 90.53 87 | 94.24 36 | 97.41 86 | 85.18 51 | 98.08 38 | 97.72 10 | 80.94 204 | 89.85 98 | 96.14 121 | 75.61 135 | 98.81 114 | 90.42 94 | 88.56 166 | 98.74 31 |
|
EI-MVSNet-UG-set | | | 91.35 83 | 91.22 77 | 91.73 131 | 97.39 88 | 80.68 149 | 96.47 155 | 96.83 43 | 87.92 65 | 88.30 123 | 97.36 87 | 77.84 98 | 99.13 93 | 89.43 107 | 89.45 155 | 95.37 185 |
|
旧先验1 | | | | | | 97.39 88 | 79.58 178 | | 96.54 85 | | | 98.08 46 | 84.00 36 | | | 97.42 74 | 97.62 113 |
|
1121 | | | 90.66 95 | 89.82 104 | 93.16 78 | 97.39 88 | 81.71 128 | 93.33 262 | 96.66 67 | 74.45 290 | 91.38 76 | 97.55 79 | 79.27 77 | 99.52 53 | 79.95 184 | 98.43 41 | 98.26 62 |
|
TSAR-MVS + GP. | | | 94.35 21 | 94.50 18 | 93.89 46 | 97.38 91 | 83.04 97 | 98.10 37 | 95.29 175 | 91.57 16 | 93.81 46 | 97.45 81 | 86.64 21 | 99.43 61 | 96.28 17 | 94.01 119 | 99.20 18 |
|
MVS_111021_HR | | | 93.41 40 | 93.39 39 | 93.47 70 | 97.34 92 | 82.83 100 | 97.56 74 | 98.27 6 | 89.16 44 | 89.71 101 | 97.14 97 | 79.77 73 | 99.56 51 | 93.65 48 | 97.94 62 | 98.02 80 |
|
MP-MVS-pluss | | | 92.58 59 | 92.35 58 | 93.29 72 | 97.30 93 | 82.53 104 | 96.44 160 | 96.04 132 | 84.68 130 | 89.12 111 | 98.37 26 | 77.48 103 | 99.74 28 | 93.31 56 | 98.38 48 | 97.59 115 |
MP-MVS-pluss: MP-MVS-pluss. MP-MVS-pluss |
EPNet | | | 94.06 30 | 94.15 28 | 93.76 50 | 97.27 94 | 84.35 68 | 98.29 29 | 97.64 13 | 94.57 4 | 95.36 23 | 96.88 106 | 79.96 72 | 99.12 94 | 91.30 78 | 96.11 98 | 97.82 98 |
Wanjuan Su, Wenbing Tao: Efficient Edge-Preserving Multi-View Stereo Network for Depth Estimation. AAAI 2023 |
ACMMP_NAP | | | 93.46 39 | 93.23 41 | 94.17 39 | 97.16 95 | 84.28 71 | 96.82 136 | 96.65 68 | 86.24 91 | 94.27 40 | 97.99 52 | 77.94 96 | 99.83 15 | 93.39 52 | 98.57 32 | 98.39 51 |
|
LFMVS | | | 89.27 120 | 87.64 136 | 94.16 41 | 97.16 95 | 85.52 45 | 97.18 102 | 94.66 205 | 79.17 245 | 89.63 104 | 96.57 116 | 55.35 294 | 98.22 136 | 89.52 106 | 89.54 154 | 98.74 31 |
|
DeepPCF-MVS | | 89.82 1 | 94.61 16 | 96.17 4 | 89.91 183 | 97.09 97 | 70.21 309 | 98.99 14 | 96.69 62 | 95.57 1 | 95.08 28 | 99.23 1 | 86.40 25 | 99.87 8 | 97.84 7 | 98.66 30 | 99.65 4 |
|
VNet | | | 92.11 66 | 91.22 77 | 94.79 21 | 96.91 98 | 86.98 24 | 97.91 47 | 97.96 9 | 86.38 90 | 93.65 48 | 95.74 128 | 70.16 202 | 98.95 106 | 93.39 52 | 88.87 161 | 98.43 49 |
|
TAPA-MVS | | 81.61 12 | 85.02 192 | 83.67 195 | 89.06 197 | 96.79 99 | 73.27 284 | 95.92 188 | 94.79 199 | 74.81 287 | 80.47 199 | 96.83 108 | 71.07 193 | 98.19 138 | 49.82 344 | 92.57 133 | 95.71 178 |
Andrea Romanoni, Matteo Matteucci: TAPA-MVS: Textureless-Aware PAtchMatch Multi-View Stereo. ICCV 2019 |
Anonymous202405211 | | | 84.41 203 | 81.93 222 | 91.85 129 | 96.78 100 | 78.41 206 | 97.44 83 | 91.34 306 | 70.29 316 | 84.06 156 | 94.26 166 | 41.09 338 | 98.96 103 | 79.46 189 | 82.65 216 | 98.17 67 |
|
ETH3D cwj APD-0.16 | | | 93.91 35 | 93.76 33 | 94.36 31 | 96.70 101 | 85.74 39 | 97.22 96 | 96.41 101 | 83.94 153 | 94.13 44 | 98.69 18 | 83.13 46 | 99.37 68 | 95.25 33 | 98.39 47 | 97.97 88 |
|
abl_6 | | | 89.80 110 | 89.71 107 | 90.07 175 | 96.53 102 | 75.52 264 | 94.48 233 | 95.04 184 | 81.12 202 | 89.22 109 | 97.00 102 | 68.83 206 | 98.96 103 | 89.86 99 | 95.27 108 | 95.73 177 |
|
DELS-MVS | | | 94.98 11 | 94.49 19 | 96.44 4 | 96.42 103 | 90.59 5 | 99.21 2 | 97.02 27 | 94.40 5 | 91.46 75 | 97.08 100 | 83.32 43 | 99.69 36 | 92.83 63 | 98.70 29 | 99.04 21 |
Christian Sormann, Emanuele Santellani, Mattia Rossi, Andreas Kuhn, Friedrich Fraundorfer: DELS-MVS: Deep Epipolar Line Search for Multi-View Stereo. Winter Conference on Applications of Computer Vision (WACV), 2023 |
thres200 | | | 88.92 126 | 87.65 135 | 92.73 98 | 96.30 104 | 85.62 43 | 97.85 50 | 98.86 1 | 84.38 140 | 84.82 148 | 93.99 174 | 75.12 151 | 98.01 140 | 70.86 266 | 86.67 179 | 94.56 200 |
|
DPM-MVS | | | 96.21 2 | 95.53 9 | 98.26 1 | 96.26 105 | 95.09 1 | 99.15 4 | 96.98 30 | 93.39 9 | 96.45 14 | 98.79 10 | 90.17 7 | 99.99 1 | 89.33 108 | 99.25 4 | 99.70 3 |
|
tfpn200view9 | | | 88.48 139 | 87.15 150 | 92.47 106 | 96.21 106 | 85.30 49 | 97.44 83 | 98.85 2 | 83.37 167 | 83.99 158 | 93.82 177 | 75.36 145 | 97.93 142 | 69.04 272 | 86.24 185 | 94.17 202 |
|
thres400 | | | 88.42 142 | 87.15 150 | 92.23 115 | 96.21 106 | 85.30 49 | 97.44 83 | 98.85 2 | 83.37 167 | 83.99 158 | 93.82 177 | 75.36 145 | 97.93 142 | 69.04 272 | 86.24 185 | 93.45 215 |
|
test222 | | | | | | 96.15 108 | 78.41 206 | 95.87 192 | 96.46 95 | 71.97 309 | 89.66 103 | 97.45 81 | 76.33 123 | | | 98.24 54 | 98.30 58 |
|
HY-MVS | | 84.06 6 | 91.63 75 | 90.37 90 | 95.39 14 | 96.12 109 | 88.25 12 | 90.22 299 | 97.58 14 | 88.33 59 | 90.50 92 | 91.96 196 | 79.26 78 | 99.06 97 | 90.29 96 | 89.07 158 | 98.88 27 |
|
thres100view900 | | | 88.30 144 | 86.95 155 | 92.33 112 | 96.10 110 | 84.90 62 | 97.14 108 | 98.85 2 | 82.69 182 | 83.41 166 | 93.66 180 | 75.43 142 | 97.93 142 | 69.04 272 | 86.24 185 | 94.17 202 |
|
thres600view7 | | | 88.06 148 | 86.70 158 | 92.15 118 | 96.10 110 | 85.17 55 | 97.14 108 | 98.85 2 | 82.70 181 | 83.41 166 | 93.66 180 | 75.43 142 | 97.82 149 | 67.13 281 | 85.88 189 | 93.45 215 |
|
WTY-MVS | | | 92.65 57 | 91.68 71 | 95.56 11 | 96.00 112 | 88.90 10 | 98.23 31 | 97.65 12 | 88.57 53 | 89.82 100 | 97.22 95 | 79.29 76 | 99.06 97 | 89.57 104 | 88.73 163 | 98.73 35 |
|
MVSTER | | | 89.25 121 | 88.92 118 | 90.24 171 | 95.98 113 | 84.66 66 | 96.79 138 | 95.36 169 | 87.19 84 | 80.33 202 | 90.61 216 | 90.02 9 | 95.97 227 | 85.38 138 | 78.64 237 | 90.09 240 |
|
testdata | | | | | 90.13 174 | 95.92 114 | 74.17 276 | | 96.49 94 | 73.49 298 | 94.82 35 | 97.99 52 | 78.80 85 | 97.93 142 | 83.53 159 | 97.52 69 | 98.29 59 |
|
PatchMatch-RL | | | 85.00 193 | 83.66 196 | 89.02 199 | 95.86 115 | 74.55 272 | 92.49 279 | 93.60 260 | 79.30 242 | 79.29 212 | 91.47 201 | 58.53 271 | 98.45 129 | 70.22 269 | 92.17 141 | 94.07 206 |
|
canonicalmvs | | | 92.27 64 | 91.22 77 | 95.41 13 | 95.80 116 | 88.31 11 | 97.09 115 | 94.64 208 | 88.49 55 | 92.99 58 | 97.31 88 | 72.68 177 | 98.57 123 | 93.38 54 | 88.58 165 | 99.36 12 |
|
Anonymous20240529 | | | 83.15 222 | 80.60 240 | 90.80 156 | 95.74 117 | 78.27 210 | 96.81 137 | 94.92 189 | 60.10 346 | 81.89 187 | 92.54 190 | 45.82 323 | 98.82 113 | 79.25 193 | 78.32 242 | 95.31 187 |
|
MVS_111021_LR | | | 91.60 77 | 91.64 73 | 91.47 140 | 95.74 117 | 78.79 198 | 96.15 178 | 96.77 51 | 88.49 55 | 88.64 117 | 97.07 101 | 72.33 180 | 99.19 85 | 93.13 61 | 96.48 95 | 96.43 160 |
|
test_part1 | | | 84.72 196 | 82.85 208 | 90.34 168 | 95.73 119 | 84.79 65 | 96.75 142 | 94.10 234 | 79.05 251 | 75.97 250 | 89.51 231 | 67.69 209 | 95.94 231 | 79.34 190 | 67.50 308 | 90.30 235 |
|
DWT-MVSNet_test | | | 90.52 101 | 89.80 105 | 92.70 100 | 95.73 119 | 82.20 111 | 93.69 253 | 96.55 84 | 88.34 58 | 87.04 134 | 95.34 140 | 86.53 22 | 97.55 159 | 76.32 222 | 88.66 164 | 98.34 52 |
|
PS-MVSNAJ | | | 94.17 25 | 93.52 38 | 96.10 6 | 95.65 121 | 92.35 2 | 98.21 32 | 95.79 145 | 92.42 12 | 96.24 15 | 98.18 32 | 71.04 194 | 99.17 88 | 96.77 15 | 97.39 75 | 96.79 149 |
|
Anonymous20231211 | | | 79.72 263 | 77.19 269 | 87.33 237 | 95.59 122 | 77.16 241 | 95.18 218 | 94.18 229 | 59.31 348 | 72.57 281 | 86.20 282 | 47.89 317 | 95.66 247 | 74.53 240 | 69.24 291 | 89.18 258 |
|
alignmvs | | | 92.97 46 | 92.26 61 | 95.12 16 | 95.54 123 | 87.77 17 | 98.67 18 | 96.38 108 | 88.04 63 | 93.01 57 | 97.45 81 | 79.20 80 | 98.60 121 | 93.25 57 | 88.76 162 | 98.99 25 |
|
PVSNet | | 82.34 9 | 89.02 123 | 87.79 133 | 92.71 99 | 95.49 124 | 81.50 132 | 97.70 64 | 97.29 16 | 87.76 71 | 85.47 143 | 95.12 149 | 56.90 283 | 98.90 110 | 80.33 179 | 94.02 118 | 97.71 106 |
|
tpmvs | | | 83.04 225 | 80.77 236 | 89.84 185 | 95.43 125 | 77.96 221 | 85.59 331 | 95.32 174 | 75.31 283 | 76.27 244 | 83.70 311 | 73.89 164 | 97.41 169 | 59.53 312 | 81.93 219 | 94.14 204 |
|
SteuartSystems-ACMMP | | | 94.13 27 | 94.44 21 | 93.20 76 | 95.41 126 | 81.35 134 | 99.02 13 | 96.59 78 | 89.50 39 | 94.18 43 | 98.36 27 | 83.68 40 | 99.45 60 | 94.77 36 | 98.45 40 | 98.81 29 |
Skip Steuart: Steuart Systems R&D Blog. |
EPMVS | | | 87.47 157 | 85.90 165 | 92.18 117 | 95.41 126 | 82.26 110 | 87.00 322 | 96.28 116 | 85.88 100 | 84.23 155 | 85.57 289 | 75.07 152 | 96.26 218 | 71.14 264 | 92.50 135 | 98.03 79 |
|
BH-RMVSNet | | | 86.84 165 | 85.28 171 | 91.49 139 | 95.35 128 | 80.26 161 | 96.95 129 | 92.21 293 | 82.86 179 | 81.77 189 | 95.46 138 | 59.34 265 | 97.64 154 | 69.79 270 | 93.81 123 | 96.57 157 |
|
OMC-MVS | | | 88.80 131 | 88.16 127 | 90.72 159 | 95.30 129 | 77.92 224 | 94.81 229 | 94.51 215 | 86.80 88 | 84.97 146 | 96.85 107 | 67.53 212 | 98.60 121 | 85.08 140 | 87.62 173 | 95.63 179 |
|
MVS_Test | | | 90.29 105 | 89.18 112 | 93.62 59 | 95.23 130 | 84.93 61 | 94.41 236 | 94.66 205 | 84.31 142 | 90.37 95 | 91.02 209 | 75.13 150 | 97.82 149 | 83.11 165 | 94.42 115 | 98.12 73 |
|
F-COLMAP | | | 84.50 202 | 83.44 202 | 87.67 227 | 95.22 131 | 72.22 289 | 95.95 186 | 93.78 251 | 75.74 279 | 76.30 243 | 95.18 144 | 59.50 263 | 98.45 129 | 72.67 252 | 86.59 181 | 92.35 219 |
|
baseline1 | | | 88.85 129 | 87.49 142 | 92.93 90 | 95.21 132 | 86.85 25 | 95.47 206 | 94.61 210 | 87.29 78 | 83.11 171 | 94.99 154 | 80.70 62 | 96.89 195 | 82.28 169 | 73.72 258 | 95.05 189 |
|
CHOSEN 1792x2688 | | | 91.07 88 | 90.21 93 | 93.64 57 | 95.18 133 | 83.53 85 | 96.26 172 | 96.13 125 | 88.92 46 | 84.90 147 | 93.10 186 | 72.86 175 | 99.62 45 | 88.86 110 | 95.67 106 | 97.79 100 |
|
UGNet | | | 87.73 154 | 86.55 159 | 91.27 144 | 95.16 134 | 79.11 189 | 96.35 166 | 96.23 119 | 88.14 62 | 87.83 127 | 90.48 217 | 50.65 306 | 99.09 96 | 80.13 183 | 94.03 117 | 95.60 180 |
Wanjuan Su, Qingshan Xu, Wenbing Tao: Uncertainty-guided Multi-view Stereo Network for Depth Estimation. IEEE Transactions on Circuits and Systems for Video Technology, 2022 |
VDD-MVS | | | 88.28 145 | 87.02 154 | 92.06 121 | 95.09 135 | 80.18 164 | 97.55 75 | 94.45 220 | 83.09 172 | 89.10 112 | 95.92 127 | 47.97 316 | 98.49 127 | 93.08 62 | 86.91 178 | 97.52 120 |
|
PVSNet_Blended_VisFu | | | 91.24 85 | 90.77 84 | 92.66 101 | 95.09 135 | 82.40 107 | 97.77 56 | 95.87 142 | 88.26 60 | 86.39 137 | 93.94 175 | 76.77 114 | 99.27 73 | 88.80 112 | 94.00 120 | 96.31 166 |
|
hse-mvs3 | | | 89.30 119 | 88.95 117 | 90.36 167 | 95.07 137 | 76.04 255 | 96.96 128 | 97.11 23 | 90.39 30 | 92.22 64 | 95.10 150 | 74.70 155 | 98.86 111 | 93.14 59 | 65.89 318 | 96.16 168 |
|
xiu_mvs_v2_base | | | 93.92 33 | 93.26 40 | 95.91 8 | 95.07 137 | 92.02 4 | 98.19 33 | 95.68 150 | 92.06 14 | 96.01 18 | 98.14 37 | 70.83 197 | 98.96 103 | 96.74 16 | 96.57 94 | 96.76 152 |
|
cl-mvsnet2 | | | 85.11 191 | 84.17 190 | 87.92 223 | 95.06 139 | 78.82 195 | 95.51 204 | 94.22 226 | 79.74 233 | 76.77 234 | 87.92 253 | 75.96 129 | 95.68 246 | 79.93 186 | 72.42 266 | 89.27 256 |
|
BH-w/o | | | 88.24 146 | 87.47 144 | 90.54 163 | 95.03 140 | 78.54 201 | 97.41 90 | 93.82 246 | 84.08 148 | 78.23 221 | 94.51 162 | 69.34 205 | 97.21 179 | 80.21 182 | 94.58 114 | 95.87 174 |
|
RRT_MVS | | | 86.89 163 | 85.96 163 | 89.68 191 | 95.01 141 | 84.13 73 | 96.33 168 | 94.98 187 | 84.20 147 | 80.10 206 | 92.07 194 | 70.52 198 | 95.01 282 | 83.30 162 | 77.14 246 | 89.91 244 |
|
CHOSEN 280x420 | | | 91.71 73 | 91.85 67 | 91.29 143 | 94.94 142 | 82.69 101 | 87.89 316 | 96.17 124 | 85.94 98 | 87.27 131 | 94.31 164 | 90.27 6 | 95.65 249 | 94.04 46 | 95.86 103 | 95.53 182 |
|
GG-mvs-BLEND | | | | | 93.49 66 | 94.94 142 | 86.26 29 | 81.62 337 | 97.00 28 | | 88.32 122 | 94.30 165 | 91.23 3 | 96.21 221 | 88.49 115 | 97.43 73 | 98.00 85 |
|
HyFIR lowres test | | | 89.36 117 | 88.60 121 | 91.63 135 | 94.91 144 | 80.76 148 | 95.60 202 | 95.53 157 | 82.56 185 | 84.03 157 | 91.24 206 | 78.03 95 | 96.81 200 | 87.07 128 | 88.41 168 | 97.32 130 |
|
miper_enhance_ethall | | | 85.95 179 | 85.20 172 | 88.19 220 | 94.85 145 | 79.76 171 | 96.00 183 | 94.06 237 | 82.98 176 | 77.74 224 | 88.76 240 | 79.42 74 | 95.46 259 | 80.58 177 | 72.42 266 | 89.36 255 |
|
mvs_anonymous | | | 88.68 133 | 87.62 138 | 91.86 127 | 94.80 146 | 81.69 129 | 93.53 258 | 94.92 189 | 82.03 192 | 78.87 215 | 90.43 220 | 75.77 132 | 95.34 263 | 85.04 141 | 93.16 130 | 98.55 44 |
|
CANet_DTU | | | 90.98 89 | 90.04 97 | 93.83 48 | 94.76 147 | 86.23 30 | 96.32 169 | 93.12 282 | 93.11 10 | 93.71 47 | 96.82 110 | 63.08 240 | 99.48 58 | 84.29 145 | 95.12 112 | 95.77 176 |
|
PMMVS | | | 89.46 116 | 89.92 101 | 88.06 221 | 94.64 148 | 69.57 316 | 96.22 174 | 94.95 188 | 87.27 80 | 91.37 79 | 96.54 117 | 65.88 223 | 97.39 170 | 88.54 113 | 93.89 121 | 97.23 136 |
|
TR-MVS | | | 86.30 174 | 84.93 180 | 90.42 165 | 94.63 149 | 77.58 231 | 96.57 151 | 93.82 246 | 80.30 221 | 82.42 177 | 95.16 145 | 58.74 269 | 97.55 159 | 74.88 234 | 87.82 172 | 96.13 170 |
|
EPNet_dtu | | | 87.65 155 | 87.89 130 | 86.93 246 | 94.57 150 | 71.37 303 | 96.72 143 | 96.50 91 | 88.56 54 | 87.12 132 | 95.02 152 | 75.91 131 | 94.01 300 | 66.62 283 | 90.00 152 | 95.42 184 |
Wanjuan Su, Wenbing Tao: Efficient Edge-Preserving Multi-View Stereo Network for Depth Estimation. AAAI 2023 |
FMVSNet3 | | | 84.71 197 | 82.71 212 | 90.70 160 | 94.55 151 | 87.71 18 | 95.92 188 | 94.67 204 | 81.73 196 | 75.82 253 | 88.08 251 | 66.99 217 | 94.47 292 | 71.23 261 | 75.38 252 | 89.91 244 |
|
ETV-MVS | | | 92.72 53 | 92.87 47 | 92.28 114 | 94.54 152 | 81.89 119 | 97.98 44 | 95.21 178 | 89.77 37 | 93.11 55 | 96.83 108 | 77.23 109 | 97.50 165 | 95.74 25 | 95.38 107 | 97.44 123 |
|
EIA-MVS | | | 91.73 71 | 92.05 65 | 90.78 158 | 94.52 153 | 76.40 250 | 98.06 40 | 95.34 172 | 89.19 43 | 88.90 114 | 97.28 92 | 77.56 101 | 97.73 152 | 90.77 86 | 96.86 90 | 98.20 64 |
|
BH-untuned | | | 86.95 162 | 85.94 164 | 89.99 178 | 94.52 153 | 77.46 233 | 96.78 139 | 93.37 272 | 81.80 195 | 76.62 237 | 93.81 179 | 66.64 220 | 97.02 188 | 76.06 224 | 93.88 122 | 95.48 183 |
|
DeepC-MVS | | 86.58 3 | 91.53 78 | 91.06 81 | 92.94 89 | 94.52 153 | 81.89 119 | 95.95 186 | 95.98 134 | 90.76 24 | 83.76 164 | 96.76 112 | 73.24 173 | 99.71 32 | 91.67 76 | 96.96 85 | 97.22 137 |
Andreas Kuhn, Christian Sormann, Mattia Rossi, Oliver Erdler, Friedrich Fraundorfer: DeepC-MVS: Deep Confidence Prediction for Multi-View Stereo Reconstruction. 3DV 2020 |
gg-mvs-nofinetune | | | 85.48 187 | 82.90 207 | 93.24 74 | 94.51 156 | 85.82 37 | 79.22 341 | 96.97 32 | 61.19 341 | 87.33 130 | 53.01 354 | 90.58 4 | 96.07 223 | 86.07 133 | 97.23 79 | 97.81 99 |
|
3Dnovator+ | | 82.88 8 | 89.63 114 | 87.85 131 | 94.99 18 | 94.49 157 | 86.76 27 | 97.84 51 | 95.74 147 | 86.10 94 | 75.47 258 | 96.02 124 | 65.00 231 | 99.51 56 | 82.91 167 | 97.07 82 | 98.72 36 |
|
RRT_test8_iter05 | | | 87.14 159 | 86.41 160 | 89.32 194 | 94.41 158 | 81.10 139 | 97.06 119 | 95.33 173 | 84.67 131 | 76.27 244 | 90.48 217 | 83.60 41 | 96.33 215 | 85.10 139 | 70.78 274 | 90.53 229 |
|
ET-MVSNet_ETH3D | | | 90.01 108 | 89.03 113 | 92.95 88 | 94.38 159 | 86.77 26 | 98.14 34 | 96.31 115 | 89.30 42 | 63.33 325 | 96.72 114 | 90.09 8 | 93.63 307 | 90.70 88 | 82.29 218 | 98.46 47 |
|
tpmrst | | | 88.36 143 | 87.38 146 | 91.31 141 | 94.36 160 | 79.92 168 | 87.32 320 | 95.26 177 | 85.32 112 | 88.34 121 | 86.13 283 | 80.60 63 | 96.70 204 | 83.78 149 | 85.34 196 | 97.30 133 |
|
MVS | | | 90.60 97 | 88.64 120 | 96.50 3 | 94.25 161 | 90.53 6 | 93.33 262 | 97.21 19 | 77.59 265 | 78.88 214 | 97.31 88 | 71.52 189 | 99.69 36 | 89.60 103 | 98.03 60 | 99.27 16 |
|
dp | | | 84.30 206 | 82.31 217 | 90.28 170 | 94.24 162 | 77.97 220 | 86.57 325 | 95.53 157 | 79.94 230 | 80.75 196 | 85.16 297 | 71.49 190 | 96.39 213 | 63.73 298 | 83.36 206 | 96.48 159 |
|
sss | | | 90.87 92 | 89.96 99 | 93.60 60 | 94.15 163 | 83.84 79 | 97.14 108 | 98.13 7 | 85.93 99 | 89.68 102 | 96.09 123 | 71.67 186 | 99.30 72 | 87.69 121 | 89.16 157 | 97.66 109 |
|
PatchmatchNet |  | | 86.83 166 | 85.12 176 | 91.95 124 | 94.12 164 | 82.27 109 | 86.55 326 | 95.64 153 | 84.59 134 | 82.98 173 | 84.99 301 | 77.26 105 | 95.96 230 | 68.61 276 | 91.34 146 | 97.64 111 |
Fangjinhua Wang, Silvano Galliani, Christoph Vogel, Pablo Speciale, Marc Pollefeys: PatchmatchNet: Learned Multi-View Patchmatch Stereo. |
MDTV_nov1_ep13 | | | | 83.69 194 | | 94.09 165 | 81.01 140 | 86.78 324 | 96.09 128 | 83.81 159 | 84.75 149 | 84.32 306 | 74.44 159 | 96.54 208 | 63.88 297 | 85.07 197 | |
|
UA-Net | | | 88.92 126 | 88.48 123 | 90.24 171 | 94.06 166 | 77.18 240 | 93.04 271 | 94.66 205 | 87.39 77 | 91.09 84 | 93.89 176 | 74.92 153 | 98.18 139 | 75.83 227 | 91.43 145 | 95.35 186 |
|
Fast-Effi-MVS+ | | | 87.93 152 | 86.94 156 | 90.92 153 | 94.04 167 | 79.16 187 | 98.26 30 | 93.72 255 | 81.29 200 | 83.94 161 | 92.90 187 | 69.83 203 | 96.68 205 | 76.70 216 | 91.74 144 | 96.93 143 |
|
QAPM | | | 86.88 164 | 84.51 183 | 93.98 43 | 94.04 167 | 85.89 36 | 97.19 101 | 96.05 131 | 73.62 295 | 75.12 261 | 95.62 134 | 62.02 248 | 99.74 28 | 70.88 265 | 96.06 100 | 96.30 167 |
|
thisisatest0515 | | | 90.95 90 | 90.26 91 | 93.01 85 | 94.03 169 | 84.27 72 | 97.91 47 | 96.67 64 | 83.18 170 | 86.87 135 | 95.51 137 | 88.66 13 | 97.85 148 | 80.46 178 | 89.01 159 | 96.92 145 |
|
Vis-MVSNet (Re-imp) | | | 88.88 128 | 88.87 119 | 88.91 201 | 93.89 170 | 74.43 274 | 96.93 131 | 94.19 228 | 84.39 139 | 83.22 169 | 95.67 132 | 78.24 92 | 94.70 288 | 78.88 197 | 94.40 116 | 97.61 114 |
|
CS-MVS | | | 92.29 63 | 92.54 56 | 91.51 138 | 93.78 171 | 80.14 165 | 98.36 28 | 94.53 214 | 87.91 68 | 93.39 50 | 97.23 93 | 76.09 127 | 96.96 190 | 94.36 41 | 97.26 78 | 97.43 124 |
|
ADS-MVSNet2 | | | 79.57 264 | 77.53 266 | 85.71 265 | 93.78 171 | 72.13 291 | 79.48 339 | 86.11 341 | 73.09 301 | 80.14 204 | 79.99 331 | 62.15 246 | 90.14 340 | 59.49 313 | 83.52 203 | 94.85 192 |
|
ADS-MVSNet | | | 81.26 250 | 78.36 260 | 89.96 181 | 93.78 171 | 79.78 170 | 79.48 339 | 93.60 260 | 73.09 301 | 80.14 204 | 79.99 331 | 62.15 246 | 95.24 269 | 59.49 313 | 83.52 203 | 94.85 192 |
|
EPP-MVSNet | | | 89.76 111 | 89.72 106 | 89.87 184 | 93.78 171 | 76.02 258 | 97.22 96 | 96.51 89 | 79.35 239 | 85.11 145 | 95.01 153 | 84.82 29 | 97.10 186 | 87.46 124 | 88.21 170 | 96.50 158 |
|
3Dnovator | | 82.32 10 | 89.33 118 | 87.64 136 | 94.42 30 | 93.73 175 | 85.70 41 | 97.73 62 | 96.75 54 | 86.73 89 | 76.21 246 | 95.93 125 | 62.17 245 | 99.68 38 | 81.67 172 | 97.81 65 | 97.88 92 |
|
Effi-MVS+ | | | 90.70 94 | 89.90 102 | 93.09 81 | 93.61 176 | 83.48 86 | 95.20 216 | 92.79 287 | 83.22 169 | 91.82 69 | 95.70 130 | 71.82 185 | 97.48 166 | 91.25 79 | 93.67 124 | 98.32 54 |
|
IS-MVSNet | | | 88.67 134 | 88.16 127 | 90.20 173 | 93.61 176 | 76.86 243 | 96.77 141 | 93.07 283 | 84.02 150 | 83.62 165 | 95.60 135 | 74.69 158 | 96.24 220 | 78.43 200 | 93.66 125 | 97.49 122 |
|
AUN-MVS | | | 86.25 176 | 85.57 166 | 88.26 216 | 93.57 178 | 73.38 280 | 95.45 207 | 95.88 140 | 83.94 153 | 85.47 143 | 94.21 168 | 73.70 169 | 96.67 206 | 83.54 158 | 64.41 322 | 94.73 198 |
|
hse-mvs2 | | | 88.22 147 | 88.21 125 | 88.25 217 | 93.54 179 | 73.41 279 | 95.41 209 | 95.89 139 | 90.39 30 | 92.22 64 | 94.22 167 | 74.70 155 | 96.66 207 | 93.14 59 | 64.37 323 | 94.69 199 |
|
LCM-MVSNet-Re | | | 83.75 212 | 83.54 200 | 84.39 286 | 93.54 179 | 64.14 332 | 92.51 278 | 84.03 348 | 83.90 156 | 66.14 314 | 86.59 272 | 67.36 214 | 92.68 314 | 84.89 143 | 92.87 131 | 96.35 162 |
|
tpm cat1 | | | 83.63 214 | 81.38 230 | 90.39 166 | 93.53 181 | 78.19 217 | 85.56 332 | 95.09 181 | 70.78 314 | 78.51 218 | 83.28 314 | 74.80 154 | 97.03 187 | 66.77 282 | 84.05 201 | 95.95 171 |
|
thisisatest0530 | | | 89.65 113 | 89.02 114 | 91.53 137 | 93.46 182 | 80.78 147 | 96.52 152 | 96.67 64 | 81.69 197 | 83.79 163 | 94.90 155 | 88.85 12 | 97.68 153 | 77.80 201 | 87.49 176 | 96.14 169 |
|
MSDG | | | 80.62 257 | 77.77 265 | 89.14 196 | 93.43 183 | 77.24 237 | 91.89 286 | 90.18 318 | 69.86 319 | 68.02 303 | 91.94 198 | 52.21 304 | 98.84 112 | 59.32 315 | 83.12 207 | 91.35 221 |
|
ab-mvs | | | 87.08 160 | 84.94 179 | 93.48 67 | 93.34 184 | 83.67 83 | 88.82 307 | 95.70 149 | 81.18 201 | 84.55 153 | 90.14 226 | 62.72 241 | 98.94 108 | 85.49 137 | 82.54 217 | 97.85 95 |
|
1314 | | | 88.94 125 | 87.20 148 | 94.17 39 | 93.21 185 | 85.73 40 | 93.33 262 | 96.64 71 | 82.89 177 | 75.98 249 | 96.36 118 | 66.83 219 | 99.39 63 | 83.52 160 | 96.02 101 | 97.39 128 |
|
1112_ss | | | 88.60 137 | 87.47 144 | 92.00 123 | 93.21 185 | 80.97 142 | 96.47 155 | 92.46 291 | 83.64 163 | 80.86 195 | 97.30 90 | 80.24 68 | 97.62 155 | 77.60 206 | 85.49 193 | 97.40 127 |
|
GeoE | | | 86.36 173 | 85.20 172 | 89.83 186 | 93.17 187 | 76.13 253 | 97.53 76 | 92.11 294 | 79.58 236 | 80.99 193 | 94.01 173 | 66.60 221 | 96.17 222 | 73.48 248 | 89.30 156 | 97.20 138 |
|
Test_1112_low_res | | | 88.03 149 | 86.73 157 | 91.94 125 | 93.15 188 | 80.88 144 | 96.44 160 | 92.41 292 | 83.59 166 | 80.74 197 | 91.16 207 | 80.18 69 | 97.59 156 | 77.48 209 | 85.40 194 | 97.36 129 |
|
CostFormer | | | 89.08 122 | 88.39 124 | 91.15 147 | 93.13 189 | 79.15 188 | 88.61 310 | 96.11 127 | 83.14 171 | 89.58 105 | 86.93 267 | 83.83 39 | 96.87 197 | 88.22 119 | 85.92 188 | 97.42 125 |
|
IB-MVS | | 85.34 4 | 88.67 134 | 87.14 152 | 93.26 73 | 93.12 190 | 84.32 69 | 98.76 16 | 97.27 17 | 87.19 84 | 79.36 211 | 90.45 219 | 83.92 38 | 98.53 125 | 84.41 144 | 69.79 285 | 96.93 143 |
Christian Sormann, Mattia Rossi, Andreas Kuhn and Friedrich Fraundorfer: IB-MVS: An Iterative Algorithm for Deep Multi-View Stereo based on Binary Decisions. BMVC 2021 |
diffmvs | | | 91.17 87 | 90.74 85 | 92.44 108 | 93.11 191 | 82.50 106 | 96.25 173 | 93.62 259 | 87.79 70 | 90.40 94 | 95.93 125 | 73.44 171 | 97.42 168 | 93.62 49 | 92.55 134 | 97.41 126 |
|
tttt0517 | | | 88.57 138 | 88.19 126 | 89.71 190 | 93.00 192 | 75.99 259 | 95.67 199 | 96.67 64 | 80.78 207 | 81.82 188 | 94.40 163 | 88.97 11 | 97.58 157 | 76.05 225 | 86.31 182 | 95.57 181 |
|
MVSFormer | | | 91.36 82 | 90.57 86 | 93.73 53 | 93.00 192 | 88.08 14 | 94.80 230 | 94.48 216 | 80.74 208 | 94.90 32 | 97.13 98 | 78.84 83 | 95.10 278 | 83.77 150 | 97.46 70 | 98.02 80 |
|
lupinMVS | | | 93.87 36 | 93.58 37 | 94.75 23 | 93.00 192 | 88.08 14 | 99.15 4 | 95.50 160 | 91.03 22 | 94.90 32 | 97.66 69 | 78.84 83 | 97.56 158 | 94.64 40 | 97.46 70 | 98.62 40 |
|
tpm2 | | | 87.35 158 | 86.26 161 | 90.62 161 | 92.93 195 | 78.67 199 | 88.06 315 | 95.99 133 | 79.33 240 | 87.40 128 | 86.43 278 | 80.28 67 | 96.40 212 | 80.23 181 | 85.73 192 | 96.79 149 |
|
baseline | | | 90.76 93 | 90.10 96 | 92.74 97 | 92.90 196 | 82.56 103 | 94.60 232 | 94.56 213 | 87.69 73 | 89.06 113 | 95.67 132 | 73.76 166 | 97.51 164 | 90.43 93 | 92.23 140 | 98.16 68 |
|
casdiffmvs | | | 90.95 90 | 90.39 89 | 92.63 102 | 92.82 197 | 82.53 104 | 96.83 135 | 94.47 218 | 87.69 73 | 88.47 118 | 95.56 136 | 74.04 163 | 97.54 162 | 90.90 84 | 92.74 132 | 97.83 97 |
|
Vis-MVSNet |  | | 88.67 134 | 87.82 132 | 91.24 145 | 92.68 198 | 78.82 195 | 96.95 129 | 93.85 245 | 87.55 75 | 87.07 133 | 95.13 148 | 63.43 238 | 97.21 179 | 77.58 207 | 96.15 97 | 97.70 107 |
Jingyang Zhang, Yao Yao, Shiwei Li, Zixin Luo, Tian Fang: Visibility-aware Multiview Stereo Network. BMVC 2020 |
GBi-Net | | | 82.42 235 | 80.43 243 | 88.39 212 | 92.66 199 | 81.95 114 | 94.30 241 | 93.38 269 | 79.06 248 | 75.82 253 | 85.66 285 | 56.38 289 | 93.84 302 | 71.23 261 | 75.38 252 | 89.38 252 |
|
test1 | | | 82.42 235 | 80.43 243 | 88.39 212 | 92.66 199 | 81.95 114 | 94.30 241 | 93.38 269 | 79.06 248 | 75.82 253 | 85.66 285 | 56.38 289 | 93.84 302 | 71.23 261 | 75.38 252 | 89.38 252 |
|
FMVSNet2 | | | 82.79 229 | 80.44 242 | 89.83 186 | 92.66 199 | 85.43 46 | 95.42 208 | 94.35 222 | 79.06 248 | 74.46 265 | 87.28 259 | 56.38 289 | 94.31 295 | 69.72 271 | 74.68 255 | 89.76 246 |
|
miper_ehance_all_eth | | | 84.57 200 | 83.60 199 | 87.50 234 | 92.64 202 | 78.25 211 | 95.40 210 | 93.47 264 | 79.28 243 | 76.41 240 | 87.64 256 | 76.53 118 | 95.24 269 | 78.58 198 | 72.42 266 | 89.01 266 |
|
cascas | | | 86.50 171 | 84.48 185 | 92.55 105 | 92.64 202 | 85.95 33 | 97.04 121 | 95.07 183 | 75.32 282 | 80.50 198 | 91.02 209 | 54.33 301 | 97.98 141 | 86.79 130 | 87.62 173 | 93.71 211 |
|
TESTMET0.1,1 | | | 89.83 109 | 89.34 111 | 91.31 141 | 92.54 204 | 80.19 163 | 97.11 111 | 96.57 80 | 86.15 92 | 86.85 136 | 91.83 200 | 79.32 75 | 96.95 191 | 81.30 173 | 92.35 138 | 96.77 151 |
|
COLMAP_ROB |  | 73.24 19 | 75.74 293 | 73.00 299 | 83.94 288 | 92.38 205 | 69.08 318 | 91.85 287 | 86.93 337 | 61.48 340 | 65.32 317 | 90.27 222 | 42.27 334 | 96.93 194 | 50.91 341 | 75.63 251 | 85.80 322 |
Johannes L. Schönberger, Enliang Zheng, Marc Pollefeys, Jan-Michael Frahm: Pixelwise View Selection for Unstructured Multi-View Stereo. ECCV 2016 |
xiu_mvs_v1_base_debu | | | 90.54 98 | 89.54 108 | 93.55 62 | 92.31 206 | 87.58 20 | 96.99 122 | 94.87 192 | 87.23 81 | 93.27 51 | 97.56 76 | 57.43 279 | 98.32 132 | 92.72 64 | 93.46 127 | 94.74 195 |
|
xiu_mvs_v1_base | | | 90.54 98 | 89.54 108 | 93.55 62 | 92.31 206 | 87.58 20 | 96.99 122 | 94.87 192 | 87.23 81 | 93.27 51 | 97.56 76 | 57.43 279 | 98.32 132 | 92.72 64 | 93.46 127 | 94.74 195 |
|
xiu_mvs_v1_base_debi | | | 90.54 98 | 89.54 108 | 93.55 62 | 92.31 206 | 87.58 20 | 96.99 122 | 94.87 192 | 87.23 81 | 93.27 51 | 97.56 76 | 57.43 279 | 98.32 132 | 92.72 64 | 93.46 127 | 94.74 195 |
|
SCA | | | 85.63 184 | 83.64 197 | 91.60 136 | 92.30 209 | 81.86 121 | 92.88 275 | 95.56 156 | 84.85 124 | 82.52 174 | 85.12 299 | 58.04 274 | 95.39 260 | 73.89 244 | 87.58 175 | 97.54 116 |
|
gm-plane-assit | | | | | | 92.27 210 | 79.64 177 | | | 84.47 138 | | 95.15 146 | | 97.93 142 | 85.81 134 | | |
|
test-LLR | | | 88.48 139 | 87.98 129 | 89.98 179 | 92.26 211 | 77.23 238 | 97.11 111 | 95.96 135 | 83.76 160 | 86.30 139 | 91.38 203 | 72.30 181 | 96.78 202 | 80.82 175 | 91.92 142 | 95.94 172 |
|
test-mter | | | 88.95 124 | 88.60 121 | 89.98 179 | 92.26 211 | 77.23 238 | 97.11 111 | 95.96 135 | 85.32 112 | 86.30 139 | 91.38 203 | 76.37 122 | 96.78 202 | 80.82 175 | 91.92 142 | 95.94 172 |
|
PAPM | | | 92.87 48 | 92.40 57 | 94.30 33 | 92.25 213 | 87.85 16 | 96.40 164 | 96.38 108 | 91.07 21 | 88.72 116 | 96.90 104 | 82.11 56 | 97.37 171 | 90.05 98 | 97.70 67 | 97.67 108 |
|
cl-mvsnet____ | | | 83.27 219 | 82.12 218 | 86.74 247 | 92.20 214 | 75.95 260 | 95.11 221 | 93.27 276 | 78.44 258 | 74.82 263 | 87.02 266 | 74.19 161 | 95.19 271 | 74.67 237 | 69.32 289 | 89.09 261 |
|
cl-mvsnet1 | | | 83.27 219 | 82.12 218 | 86.74 247 | 92.19 215 | 75.92 261 | 95.11 221 | 93.26 277 | 78.44 258 | 74.81 264 | 87.08 265 | 74.19 161 | 95.19 271 | 74.66 238 | 69.30 290 | 89.11 260 |
|
AllTest | | | 75.92 291 | 73.06 298 | 84.47 282 | 92.18 216 | 67.29 323 | 91.07 295 | 84.43 346 | 67.63 323 | 63.48 322 | 90.18 223 | 38.20 342 | 97.16 182 | 57.04 323 | 73.37 261 | 88.97 269 |
|
TestCases | | | | | 84.47 282 | 92.18 216 | 67.29 323 | | 84.43 346 | 67.63 323 | 63.48 322 | 90.18 223 | 38.20 342 | 97.16 182 | 57.04 323 | 73.37 261 | 88.97 269 |
|
CLD-MVS | | | 87.97 151 | 87.48 143 | 89.44 192 | 92.16 218 | 80.54 154 | 98.14 34 | 94.92 189 | 91.41 17 | 79.43 210 | 95.40 139 | 62.34 243 | 97.27 177 | 90.60 89 | 82.90 212 | 90.50 230 |
Zhaoxin Li, Wangmeng Zuo, Zhaoqi Wang, Lei Zhang: Confidence-based Large-scale Dense Multi-view Stereo. IEEE Transaction on Image Processing, 2020 |
cl_fuxian | | | 83.80 211 | 82.65 213 | 87.25 241 | 92.10 219 | 77.74 229 | 95.25 214 | 93.04 284 | 78.58 255 | 76.01 248 | 87.21 263 | 75.25 149 | 95.11 276 | 77.54 208 | 68.89 293 | 88.91 272 |
|
HQP-NCC | | | | | | 92.08 220 | | 97.63 67 | | 90.52 27 | 82.30 178 | | | | | | |
|
ACMP_Plane | | | | | | 92.08 220 | | 97.63 67 | | 90.52 27 | 82.30 178 | | | | | | |
|
HQP-MVS | | | 87.91 153 | 87.55 141 | 88.98 200 | 92.08 220 | 78.48 202 | 97.63 67 | 94.80 197 | 90.52 27 | 82.30 178 | 94.56 160 | 65.40 227 | 97.32 172 | 87.67 122 | 83.01 209 | 91.13 222 |
|
PCF-MVS | | 84.09 5 | 86.77 169 | 85.00 178 | 92.08 119 | 92.06 223 | 83.07 96 | 92.14 283 | 94.47 218 | 79.63 235 | 76.90 233 | 94.78 156 | 71.15 192 | 99.20 84 | 72.87 250 | 91.05 147 | 93.98 207 |
Andreas Kuhn, Shan Lin, Oliver Erdler: Plane Completion and Filtering for Multi-View Stereo Reconstruction. GCPR 2019 |
NP-MVS | | | | | | 92.04 224 | 78.22 212 | | | | | 94.56 160 | | | | | |
|
plane_prior6 | | | | | | 91.98 225 | 77.92 224 | | | | | | 64.77 232 | | | | |
|
Effi-MVS+-dtu | | | 84.61 199 | 84.90 181 | 83.72 293 | 91.96 226 | 63.14 336 | 94.95 226 | 93.34 273 | 85.57 105 | 79.79 208 | 87.12 264 | 61.99 249 | 95.61 253 | 83.55 156 | 85.83 190 | 92.41 218 |
|
mvs-test1 | | | 86.83 166 | 87.17 149 | 85.81 262 | 91.96 226 | 65.24 329 | 97.90 49 | 93.34 273 | 85.57 105 | 84.51 154 | 95.14 147 | 61.99 249 | 97.19 181 | 83.55 156 | 90.55 150 | 95.00 190 |
|
plane_prior1 | | | | | | 91.95 228 | | | | | | | | | | | |
|
CDS-MVSNet | | | 89.50 115 | 88.96 116 | 91.14 148 | 91.94 229 | 80.93 143 | 97.09 115 | 95.81 144 | 84.26 145 | 84.72 150 | 94.20 169 | 80.31 66 | 95.64 250 | 83.37 161 | 88.96 160 | 96.85 148 |
Khang Truong Giang, Soohwan Song, Sungho Jo: Curvature-guided dynamic scale networks for Multi-view Stereo. ICLR 2022 |
HQP_MVS | | | 87.50 156 | 87.09 153 | 88.74 206 | 91.86 230 | 77.96 221 | 97.18 102 | 94.69 201 | 89.89 35 | 81.33 190 | 94.15 170 | 64.77 232 | 97.30 174 | 87.08 126 | 82.82 213 | 90.96 224 |
|
plane_prior7 | | | | | | 91.86 230 | 77.55 232 | | | | | | | | | | |
|
eth_miper_zixun_eth | | | 83.12 223 | 82.01 220 | 86.47 252 | 91.85 232 | 74.80 269 | 94.33 239 | 93.18 279 | 79.11 246 | 75.74 256 | 87.25 262 | 72.71 176 | 95.32 265 | 76.78 215 | 67.13 312 | 89.27 256 |
|
VDDNet | | | 86.44 172 | 84.51 183 | 92.22 116 | 91.56 233 | 81.83 122 | 97.10 114 | 94.64 208 | 69.50 320 | 87.84 126 | 95.19 143 | 48.01 315 | 97.92 147 | 89.82 101 | 86.92 177 | 96.89 146 |
|
EI-MVSNet | | | 85.80 181 | 85.20 172 | 87.59 230 | 91.55 234 | 77.41 234 | 95.13 219 | 95.36 169 | 80.43 218 | 80.33 202 | 94.71 157 | 73.72 167 | 95.97 227 | 76.96 214 | 78.64 237 | 89.39 250 |
|
CVMVSNet | | | 84.83 195 | 85.57 166 | 82.63 304 | 91.55 234 | 60.38 343 | 95.13 219 | 95.03 185 | 80.60 211 | 82.10 184 | 94.71 157 | 66.40 222 | 90.19 339 | 74.30 241 | 90.32 151 | 97.31 132 |
|
ACMP | | 81.66 11 | 84.00 208 | 83.22 204 | 86.33 253 | 91.53 236 | 72.95 287 | 95.91 190 | 93.79 250 | 83.70 162 | 73.79 268 | 92.22 192 | 54.31 302 | 96.89 195 | 83.98 147 | 79.74 227 | 89.16 259 |
Qingshan Xu and Wenbing Tao: Planar Prior Assisted PatchMatch Multi-View Stereo. AAAI 2020 |
IterMVS-LS | | | 83.93 209 | 82.80 211 | 87.31 239 | 91.46 237 | 77.39 235 | 95.66 200 | 93.43 267 | 80.44 216 | 75.51 257 | 87.26 261 | 73.72 167 | 95.16 273 | 76.99 212 | 70.72 276 | 89.39 250 |
Fangjinhua Wang, Silvano Galliani, Christoph Vogel, Marc Pollefeys: IterMVS: Iterative Probability Estimation for Efficient Multi-View Stereo. |
Patchmatch-test | | | 78.25 274 | 74.72 287 | 88.83 204 | 91.20 238 | 74.10 277 | 73.91 353 | 88.70 332 | 59.89 347 | 66.82 310 | 85.12 299 | 78.38 90 | 94.54 291 | 48.84 346 | 79.58 229 | 97.86 94 |
|
miper_lstm_enhance | | | 81.66 246 | 80.66 239 | 84.67 278 | 91.19 239 | 71.97 295 | 91.94 285 | 93.19 278 | 77.86 262 | 72.27 283 | 85.26 293 | 73.46 170 | 93.42 309 | 73.71 247 | 67.05 313 | 88.61 274 |
|
ACMM | | 80.70 13 | 83.72 213 | 82.85 208 | 86.31 256 | 91.19 239 | 72.12 292 | 95.88 191 | 94.29 224 | 80.44 216 | 77.02 231 | 91.96 196 | 55.24 295 | 97.14 185 | 79.30 192 | 80.38 223 | 89.67 247 |
Qingshan Xu and Wenbing Tao: Multi-Scale Geometric Consistency Guided Multi-View Stereo. CVPR 2019 |
TAMVS | | | 88.48 139 | 87.79 133 | 90.56 162 | 91.09 241 | 79.18 186 | 96.45 158 | 95.88 140 | 83.64 163 | 83.12 170 | 93.33 182 | 75.94 130 | 95.74 245 | 82.40 168 | 88.27 169 | 96.75 153 |
|
ACMH+ | | 76.62 16 | 77.47 282 | 74.94 284 | 85.05 272 | 91.07 242 | 71.58 301 | 93.26 267 | 90.01 319 | 71.80 310 | 64.76 319 | 88.55 243 | 41.62 336 | 96.48 210 | 62.35 304 | 71.00 272 | 87.09 305 |
|
OpenMVS |  | 79.58 14 | 86.09 177 | 83.62 198 | 93.50 65 | 90.95 243 | 86.71 28 | 97.44 83 | 95.83 143 | 75.35 281 | 72.64 280 | 95.72 129 | 57.42 282 | 99.64 42 | 71.41 259 | 95.85 104 | 94.13 205 |
|
LPG-MVS_test | | | 84.20 207 | 83.49 201 | 86.33 253 | 90.88 244 | 73.06 285 | 95.28 211 | 94.13 231 | 82.20 188 | 76.31 241 | 93.20 183 | 54.83 299 | 96.95 191 | 83.72 152 | 80.83 221 | 88.98 267 |
|
LGP-MVS_train | | | | | 86.33 253 | 90.88 244 | 73.06 285 | | 94.13 231 | 82.20 188 | 76.31 241 | 93.20 183 | 54.83 299 | 96.95 191 | 83.72 152 | 80.83 221 | 88.98 267 |
|
KD-MVS_2432*1600 | | | 77.63 280 | 74.92 285 | 85.77 263 | 90.86 246 | 79.44 179 | 88.08 313 | 93.92 241 | 76.26 276 | 67.05 308 | 82.78 316 | 72.15 183 | 91.92 323 | 61.53 305 | 41.62 354 | 85.94 319 |
|
miper_refine_blended | | | 77.63 280 | 74.92 285 | 85.77 263 | 90.86 246 | 79.44 179 | 88.08 313 | 93.92 241 | 76.26 276 | 67.05 308 | 82.78 316 | 72.15 183 | 91.92 323 | 61.53 305 | 41.62 354 | 85.94 319 |
|
baseline2 | | | 90.39 102 | 90.21 93 | 90.93 152 | 90.86 246 | 80.99 141 | 95.20 216 | 97.41 15 | 86.03 97 | 80.07 207 | 94.61 159 | 90.58 4 | 97.47 167 | 87.29 125 | 89.86 153 | 94.35 201 |
|
PVSNet_0 | | 77.72 15 | 81.70 244 | 78.95 258 | 89.94 182 | 90.77 249 | 76.72 246 | 95.96 185 | 96.95 34 | 85.01 122 | 70.24 296 | 88.53 245 | 52.32 303 | 98.20 137 | 86.68 132 | 44.08 353 | 94.89 191 |
|
ACMH | | 75.40 17 | 77.99 276 | 74.96 283 | 87.10 244 | 90.67 250 | 76.41 249 | 93.19 270 | 91.64 302 | 72.47 307 | 63.44 324 | 87.61 257 | 43.34 329 | 97.16 182 | 58.34 317 | 73.94 257 | 87.72 291 |
Qingshan Xu and Wenbing Tao: Multi-Scale Geometric Consistency Guided Multi-View Stereo. CVPR 2019 |
MVS-HIRNet | | | 71.36 312 | 67.00 316 | 84.46 284 | 90.58 251 | 69.74 314 | 79.15 342 | 87.74 335 | 46.09 353 | 61.96 332 | 50.50 355 | 45.14 324 | 95.64 250 | 53.74 334 | 88.11 171 | 88.00 288 |
|
jason | | | 92.73 52 | 92.23 62 | 94.21 38 | 90.50 252 | 87.30 23 | 98.65 19 | 95.09 181 | 90.61 26 | 92.76 59 | 97.13 98 | 75.28 148 | 97.30 174 | 93.32 55 | 96.75 93 | 98.02 80 |
jason: jason. |
LTVRE_ROB | | 73.68 18 | 77.99 276 | 75.74 280 | 84.74 275 | 90.45 253 | 72.02 293 | 86.41 327 | 91.12 308 | 72.57 306 | 66.63 311 | 87.27 260 | 54.95 298 | 96.98 189 | 56.29 327 | 75.98 248 | 85.21 325 |
Andreas Kuhn, Heiko Hirschmüller, Daniel Scharstein, Helmut Mayer: A TV Prior for High-Quality Scalable Multi-View Stereo Reconstruction. International Journal of Computer Vision 2016 |
XVG-OURS | | | 85.18 190 | 84.38 187 | 87.59 230 | 90.42 254 | 71.73 299 | 91.06 296 | 94.07 236 | 82.00 193 | 83.29 168 | 95.08 151 | 56.42 288 | 97.55 159 | 83.70 154 | 83.42 205 | 93.49 214 |
|
VPA-MVSNet | | | 85.32 188 | 83.83 193 | 89.77 189 | 90.25 255 | 82.63 102 | 96.36 165 | 97.07 25 | 83.03 174 | 81.21 192 | 89.02 236 | 61.58 253 | 96.31 217 | 85.02 142 | 70.95 273 | 90.36 231 |
|
XVG-OURS-SEG-HR | | | 85.74 183 | 85.16 175 | 87.49 235 | 90.22 256 | 71.45 302 | 91.29 293 | 94.09 235 | 81.37 199 | 83.90 162 | 95.22 141 | 60.30 258 | 97.53 163 | 85.58 136 | 84.42 200 | 93.50 213 |
|
tpm | | | 85.55 185 | 84.47 186 | 88.80 205 | 90.19 257 | 75.39 266 | 88.79 308 | 94.69 201 | 84.83 125 | 83.96 160 | 85.21 295 | 78.22 93 | 94.68 289 | 76.32 222 | 78.02 244 | 96.34 163 |
|
CR-MVSNet | | | 83.53 215 | 81.36 231 | 90.06 176 | 90.16 258 | 79.75 172 | 79.02 343 | 91.12 308 | 84.24 146 | 82.27 182 | 80.35 328 | 75.45 140 | 93.67 306 | 63.37 301 | 86.25 183 | 96.75 153 |
|
RPMNet | | | 79.85 261 | 75.92 279 | 91.64 133 | 90.16 258 | 79.75 172 | 79.02 343 | 95.44 164 | 58.43 350 | 82.27 182 | 72.55 346 | 73.03 174 | 98.41 131 | 46.10 350 | 86.25 183 | 96.75 153 |
|
FIs | | | 86.73 170 | 86.10 162 | 88.61 208 | 90.05 260 | 80.21 162 | 96.14 179 | 96.95 34 | 85.56 108 | 78.37 220 | 92.30 191 | 76.73 115 | 95.28 267 | 79.51 188 | 79.27 231 | 90.35 232 |
|
FMVSNet5 | | | 76.46 289 | 74.16 293 | 83.35 299 | 90.05 260 | 76.17 252 | 89.58 302 | 89.85 320 | 71.39 313 | 65.29 318 | 80.42 327 | 50.61 307 | 87.70 346 | 61.05 310 | 69.24 291 | 86.18 315 |
|
IterMVS | | | 80.67 256 | 79.16 256 | 85.20 271 | 89.79 262 | 76.08 254 | 92.97 273 | 91.86 297 | 80.28 222 | 71.20 288 | 85.14 298 | 57.93 277 | 91.34 329 | 72.52 253 | 70.74 275 | 88.18 285 |
Fangjinhua Wang, Silvano Galliani, Christoph Vogel, Marc Pollefeys: IterMVS: Iterative Probability Estimation for Efficient Multi-View Stereo. |
UniMVSNet (Re) | | | 85.31 189 | 84.23 189 | 88.55 209 | 89.75 263 | 80.55 153 | 96.72 143 | 96.89 39 | 85.42 109 | 78.40 219 | 88.93 238 | 75.38 144 | 95.52 257 | 78.58 198 | 68.02 302 | 89.57 248 |
|
Patchmtry | | | 77.36 283 | 74.59 288 | 85.67 266 | 89.75 263 | 75.75 263 | 77.85 346 | 91.12 308 | 60.28 344 | 71.23 287 | 80.35 328 | 75.45 140 | 93.56 308 | 57.94 318 | 67.34 311 | 87.68 293 |
|
JIA-IIPM | | | 79.00 270 | 77.20 268 | 84.40 285 | 89.74 265 | 64.06 333 | 75.30 350 | 95.44 164 | 62.15 336 | 81.90 186 | 59.08 352 | 78.92 82 | 95.59 254 | 66.51 286 | 85.78 191 | 93.54 212 |
|
MS-PatchMatch | | | 83.05 224 | 81.82 224 | 86.72 251 | 89.64 266 | 79.10 190 | 94.88 228 | 94.59 212 | 79.70 234 | 70.67 292 | 89.65 229 | 50.43 308 | 96.82 199 | 70.82 268 | 95.99 102 | 84.25 331 |
|
IterMVS-SCA-FT | | | 80.51 258 | 79.10 257 | 84.73 276 | 89.63 267 | 74.66 270 | 92.98 272 | 91.81 299 | 80.05 227 | 71.06 290 | 85.18 296 | 58.04 274 | 91.40 328 | 72.48 254 | 70.70 277 | 88.12 286 |
|
Fast-Effi-MVS+-dtu | | | 83.33 218 | 82.60 214 | 85.50 268 | 89.55 268 | 69.38 317 | 96.09 182 | 91.38 303 | 82.30 187 | 75.96 251 | 91.41 202 | 56.71 284 | 95.58 255 | 75.13 233 | 84.90 198 | 91.54 220 |
|
PatchT | | | 79.75 262 | 76.85 272 | 88.42 210 | 89.55 268 | 75.49 265 | 77.37 347 | 94.61 210 | 63.07 333 | 82.46 176 | 73.32 345 | 75.52 139 | 93.41 310 | 51.36 339 | 84.43 199 | 96.36 161 |
|
GA-MVS | | | 85.79 182 | 84.04 192 | 91.02 151 | 89.47 270 | 80.27 160 | 96.90 132 | 94.84 195 | 85.57 105 | 80.88 194 | 89.08 234 | 56.56 287 | 96.47 211 | 77.72 204 | 85.35 195 | 96.34 163 |
|
UniMVSNet_NR-MVSNet | | | 85.49 186 | 84.59 182 | 88.21 219 | 89.44 271 | 79.36 181 | 96.71 145 | 96.41 101 | 85.22 116 | 78.11 222 | 90.98 211 | 76.97 111 | 95.14 274 | 79.14 194 | 68.30 299 | 90.12 238 |
|
FC-MVSNet-test | | | 85.96 178 | 85.39 169 | 87.66 228 | 89.38 272 | 78.02 219 | 95.65 201 | 96.87 40 | 85.12 120 | 77.34 226 | 91.94 198 | 76.28 124 | 94.74 287 | 77.09 211 | 78.82 235 | 90.21 236 |
|
WR-MVS | | | 84.32 205 | 82.96 205 | 88.41 211 | 89.38 272 | 80.32 157 | 96.59 150 | 96.25 118 | 83.97 152 | 76.63 236 | 90.36 221 | 67.53 212 | 94.86 285 | 75.82 228 | 70.09 283 | 90.06 242 |
|
VPNet | | | 84.69 198 | 82.92 206 | 90.01 177 | 89.01 274 | 83.45 87 | 96.71 145 | 95.46 162 | 85.71 103 | 79.65 209 | 92.18 193 | 56.66 286 | 96.01 226 | 83.05 166 | 67.84 305 | 90.56 228 |
|
nrg030 | | | 86.79 168 | 85.43 168 | 90.87 155 | 88.76 275 | 85.34 47 | 97.06 119 | 94.33 223 | 84.31 142 | 80.45 200 | 91.98 195 | 72.36 179 | 96.36 214 | 88.48 116 | 71.13 271 | 90.93 226 |
|
DU-MVS | | | 84.57 200 | 83.33 203 | 88.28 215 | 88.76 275 | 79.36 181 | 96.43 162 | 95.41 168 | 85.42 109 | 78.11 222 | 90.82 212 | 67.61 210 | 95.14 274 | 79.14 194 | 68.30 299 | 90.33 233 |
|
NR-MVSNet | | | 83.35 217 | 81.52 229 | 88.84 203 | 88.76 275 | 81.31 135 | 94.45 235 | 95.16 179 | 84.65 132 | 67.81 304 | 90.82 212 | 70.36 200 | 94.87 284 | 74.75 235 | 66.89 315 | 90.33 233 |
|
test_0402 | | | 72.68 306 | 69.54 312 | 82.09 308 | 88.67 278 | 71.81 298 | 92.72 277 | 86.77 338 | 61.52 339 | 62.21 330 | 83.91 309 | 43.22 330 | 93.76 305 | 34.60 355 | 72.23 269 | 80.72 347 |
|
RPSCF | | | 77.73 279 | 76.63 274 | 81.06 312 | 88.66 279 | 55.76 351 | 87.77 317 | 87.88 334 | 64.82 332 | 74.14 267 | 92.79 188 | 49.22 312 | 96.81 200 | 67.47 280 | 76.88 247 | 90.62 227 |
|
FMVSNet1 | | | 79.50 265 | 76.54 275 | 88.39 212 | 88.47 280 | 81.95 114 | 94.30 241 | 93.38 269 | 73.14 300 | 72.04 285 | 85.66 285 | 43.86 326 | 93.84 302 | 65.48 290 | 72.53 265 | 89.38 252 |
|
OPM-MVS | | | 85.84 180 | 85.10 177 | 88.06 221 | 88.34 281 | 77.83 227 | 95.72 197 | 94.20 227 | 87.89 69 | 80.45 200 | 94.05 172 | 58.57 270 | 97.26 178 | 83.88 148 | 82.76 215 | 89.09 261 |
|
tfpnnormal | | | 78.14 275 | 75.42 281 | 86.31 256 | 88.33 282 | 79.24 184 | 94.41 236 | 96.22 120 | 73.51 296 | 69.81 298 | 85.52 291 | 55.43 293 | 95.75 242 | 47.65 348 | 67.86 304 | 83.95 334 |
|
MVS_0304 | | | 78.43 272 | 76.70 273 | 83.60 295 | 88.22 283 | 69.81 312 | 92.91 274 | 95.10 180 | 72.32 308 | 78.71 216 | 80.29 330 | 33.78 349 | 93.37 311 | 68.77 275 | 80.23 224 | 87.63 294 |
|
TinyColmap | | | 72.41 307 | 68.99 314 | 82.68 303 | 88.11 284 | 69.59 315 | 88.41 311 | 85.20 343 | 65.55 329 | 57.91 342 | 84.82 303 | 30.80 355 | 95.94 231 | 51.38 338 | 68.70 294 | 82.49 342 |
|
WR-MVS_H | | | 81.02 252 | 80.09 246 | 83.79 290 | 88.08 285 | 71.26 304 | 94.46 234 | 96.54 85 | 80.08 226 | 72.81 279 | 86.82 268 | 70.36 200 | 92.65 315 | 64.18 295 | 67.50 308 | 87.46 301 |
|
CP-MVSNet | | | 81.01 253 | 80.08 247 | 83.79 290 | 87.91 286 | 70.51 306 | 94.29 244 | 95.65 151 | 80.83 206 | 72.54 282 | 88.84 239 | 63.71 236 | 92.32 318 | 68.58 277 | 68.36 298 | 88.55 275 |
|
D2MVS | | | 82.67 231 | 81.55 227 | 86.04 260 | 87.77 287 | 76.47 247 | 95.21 215 | 96.58 79 | 82.66 183 | 70.26 295 | 85.46 292 | 60.39 257 | 95.80 239 | 76.40 220 | 79.18 232 | 85.83 321 |
|
TranMVSNet+NR-MVSNet | | | 83.24 221 | 81.71 225 | 87.83 224 | 87.71 288 | 78.81 197 | 96.13 181 | 94.82 196 | 84.52 135 | 76.18 247 | 90.78 214 | 64.07 235 | 94.60 290 | 74.60 239 | 66.59 317 | 90.09 240 |
|
USDC | | | 78.65 271 | 76.25 276 | 85.85 261 | 87.58 289 | 74.60 271 | 89.58 302 | 90.58 317 | 84.05 149 | 63.13 326 | 88.23 248 | 40.69 340 | 96.86 198 | 66.57 285 | 75.81 250 | 86.09 317 |
|
PS-CasMVS | | | 80.27 259 | 79.18 255 | 83.52 297 | 87.56 290 | 69.88 311 | 94.08 248 | 95.29 175 | 80.27 223 | 72.08 284 | 88.51 246 | 59.22 267 | 92.23 320 | 67.49 279 | 68.15 301 | 88.45 279 |
|
MIMVSNet | | | 79.18 269 | 75.99 278 | 88.72 207 | 87.37 291 | 80.66 150 | 79.96 338 | 91.82 298 | 77.38 268 | 74.33 266 | 81.87 320 | 41.78 335 | 90.74 335 | 66.36 288 | 83.10 208 | 94.76 194 |
|
XXY-MVS | | | 83.84 210 | 82.00 221 | 89.35 193 | 87.13 292 | 81.38 133 | 95.72 197 | 94.26 225 | 80.15 225 | 75.92 252 | 90.63 215 | 61.96 251 | 96.52 209 | 78.98 196 | 73.28 264 | 90.14 237 |
|
ITE_SJBPF | | | | | 82.38 305 | 87.00 293 | 65.59 328 | | 89.55 322 | 79.99 229 | 69.37 300 | 91.30 205 | 41.60 337 | 95.33 264 | 62.86 303 | 74.63 256 | 86.24 314 |
|
test0.0.03 1 | | | 82.79 229 | 82.48 215 | 83.74 292 | 86.81 294 | 72.22 289 | 96.52 152 | 95.03 185 | 83.76 160 | 73.00 276 | 93.20 183 | 72.30 181 | 88.88 342 | 64.15 296 | 77.52 245 | 90.12 238 |
|
v8 | | | 81.88 242 | 80.06 249 | 87.32 238 | 86.63 295 | 79.04 193 | 94.41 236 | 93.65 258 | 78.77 253 | 73.19 275 | 85.57 289 | 66.87 218 | 95.81 238 | 73.84 246 | 67.61 307 | 87.11 304 |
|
v10 | | | 81.43 248 | 79.53 254 | 87.11 243 | 86.38 296 | 78.87 194 | 94.31 240 | 93.43 267 | 77.88 261 | 73.24 274 | 85.26 293 | 65.44 226 | 95.75 242 | 72.14 255 | 67.71 306 | 86.72 308 |
|
PEN-MVS | | | 79.47 266 | 78.26 262 | 83.08 300 | 86.36 297 | 68.58 319 | 93.85 251 | 94.77 200 | 79.76 232 | 71.37 286 | 88.55 243 | 59.79 259 | 92.46 316 | 64.50 294 | 65.40 319 | 88.19 284 |
|
UniMVSNet_ETH3D | | | 80.86 255 | 78.75 259 | 87.22 242 | 86.31 298 | 72.02 293 | 91.95 284 | 93.76 254 | 73.51 296 | 75.06 262 | 90.16 225 | 43.04 332 | 95.66 247 | 76.37 221 | 78.55 240 | 93.98 207 |
|
v1144 | | | 82.90 228 | 81.27 232 | 87.78 226 | 86.29 299 | 79.07 192 | 96.14 179 | 93.93 240 | 80.05 227 | 77.38 225 | 86.80 269 | 65.50 225 | 95.93 233 | 75.21 232 | 70.13 280 | 88.33 282 |
|
V42 | | | 83.04 225 | 81.53 228 | 87.57 232 | 86.27 300 | 79.09 191 | 95.87 192 | 94.11 233 | 80.35 220 | 77.22 229 | 86.79 270 | 65.32 229 | 96.02 225 | 77.74 203 | 70.14 279 | 87.61 296 |
|
v2v482 | | | 83.46 216 | 81.86 223 | 88.25 217 | 86.19 301 | 79.65 176 | 96.34 167 | 94.02 238 | 81.56 198 | 77.32 227 | 88.23 248 | 65.62 224 | 96.03 224 | 77.77 202 | 69.72 287 | 89.09 261 |
|
v148 | | | 82.41 237 | 80.89 234 | 86.99 245 | 86.18 302 | 76.81 244 | 96.27 171 | 93.82 246 | 80.49 215 | 75.28 260 | 86.11 284 | 67.32 215 | 95.75 242 | 75.48 230 | 67.03 314 | 88.42 280 |
|
pmmvs4 | | | 82.54 233 | 80.79 235 | 87.79 225 | 86.11 303 | 80.49 156 | 93.55 257 | 93.18 279 | 77.29 269 | 73.35 272 | 89.40 233 | 65.26 230 | 95.05 281 | 75.32 231 | 73.61 259 | 87.83 290 |
|
MVP-Stereo | | | 82.65 232 | 81.67 226 | 85.59 267 | 86.10 304 | 78.29 209 | 93.33 262 | 92.82 286 | 77.75 263 | 69.17 302 | 87.98 252 | 59.28 266 | 95.76 241 | 71.77 256 | 96.88 88 | 82.73 339 |
Qingsong Yan: MVP-Stereo: A Parallel Multi-View Patchmatch Stereo Method with Dilation Matching for Photogrammetric Application. |
v1192 | | | 82.31 238 | 80.55 241 | 87.60 229 | 85.94 305 | 78.47 205 | 95.85 194 | 93.80 249 | 79.33 240 | 76.97 232 | 86.51 273 | 63.33 239 | 95.87 235 | 73.11 249 | 70.13 280 | 88.46 278 |
|
TransMVSNet (Re) | | | 76.94 286 | 74.38 290 | 84.62 280 | 85.92 306 | 75.25 267 | 95.28 211 | 89.18 326 | 73.88 294 | 67.22 305 | 86.46 275 | 59.64 260 | 94.10 298 | 59.24 316 | 52.57 344 | 84.50 329 |
|
PS-MVSNAJss | | | 84.91 194 | 84.30 188 | 86.74 247 | 85.89 307 | 74.40 275 | 94.95 226 | 94.16 230 | 83.93 155 | 76.45 239 | 90.11 227 | 71.04 194 | 95.77 240 | 83.16 164 | 79.02 234 | 90.06 242 |
|
v144192 | | | 82.43 234 | 80.73 237 | 87.54 233 | 85.81 308 | 78.22 212 | 95.98 184 | 93.78 251 | 79.09 247 | 77.11 230 | 86.49 274 | 64.66 234 | 95.91 234 | 74.20 242 | 69.42 288 | 88.49 276 |
|
v1921920 | | | 82.02 241 | 80.23 245 | 87.41 236 | 85.62 309 | 77.92 224 | 95.79 196 | 93.69 256 | 78.86 252 | 76.67 235 | 86.44 276 | 62.50 242 | 95.83 237 | 72.69 251 | 69.77 286 | 88.47 277 |
|
v1240 | | | 81.70 244 | 79.83 252 | 87.30 240 | 85.50 310 | 77.70 230 | 95.48 205 | 93.44 266 | 78.46 257 | 76.53 238 | 86.44 276 | 60.85 256 | 95.84 236 | 71.59 258 | 70.17 278 | 88.35 281 |
|
pm-mvs1 | | | 80.05 260 | 78.02 263 | 86.15 258 | 85.42 311 | 75.81 262 | 95.11 221 | 92.69 289 | 77.13 271 | 70.36 294 | 87.43 258 | 58.44 272 | 95.27 268 | 71.36 260 | 64.25 324 | 87.36 302 |
|
our_test_3 | | | 77.90 278 | 75.37 282 | 85.48 269 | 85.39 312 | 76.74 245 | 93.63 254 | 91.67 300 | 73.39 299 | 65.72 316 | 84.65 304 | 58.20 273 | 93.13 313 | 57.82 319 | 67.87 303 | 86.57 310 |
|
ppachtmachnet_test | | | 77.19 284 | 74.22 292 | 86.13 259 | 85.39 312 | 78.22 212 | 93.98 249 | 91.36 305 | 71.74 311 | 67.11 307 | 84.87 302 | 56.67 285 | 93.37 311 | 52.21 337 | 64.59 321 | 86.80 307 |
|
MDA-MVSNet-bldmvs | | | 71.45 311 | 67.94 315 | 81.98 309 | 85.33 314 | 68.50 320 | 92.35 282 | 88.76 330 | 70.40 315 | 42.99 353 | 81.96 319 | 46.57 321 | 91.31 330 | 48.75 347 | 54.39 338 | 86.11 316 |
|
Baseline_NR-MVSNet | | | 81.22 251 | 80.07 248 | 84.68 277 | 85.32 315 | 75.12 268 | 96.48 154 | 88.80 329 | 76.24 278 | 77.28 228 | 86.40 279 | 67.61 210 | 94.39 294 | 75.73 229 | 66.73 316 | 84.54 328 |
|
DTE-MVSNet | | | 78.37 273 | 77.06 270 | 82.32 307 | 85.22 316 | 67.17 325 | 93.40 259 | 93.66 257 | 78.71 254 | 70.53 293 | 88.29 247 | 59.06 268 | 92.23 320 | 61.38 308 | 63.28 328 | 87.56 298 |
|
pmmvs5 | | | 81.34 249 | 79.54 253 | 86.73 250 | 85.02 317 | 76.91 242 | 96.22 174 | 91.65 301 | 77.65 264 | 73.55 269 | 88.61 242 | 55.70 292 | 94.43 293 | 74.12 243 | 73.35 263 | 88.86 273 |
|
XVG-ACMP-BASELINE | | | 79.38 267 | 77.90 264 | 83.81 289 | 84.98 318 | 67.14 326 | 89.03 306 | 93.18 279 | 80.26 224 | 72.87 278 | 88.15 250 | 38.55 341 | 96.26 218 | 76.05 225 | 78.05 243 | 88.02 287 |
|
MDA-MVSNet_test_wron | | | 73.54 301 | 70.43 308 | 82.86 301 | 84.55 319 | 71.85 296 | 91.74 289 | 91.32 307 | 67.63 323 | 46.73 352 | 81.09 325 | 55.11 296 | 90.42 338 | 55.91 329 | 59.76 332 | 86.31 313 |
|
SixPastTwentyTwo | | | 76.04 290 | 74.32 291 | 81.22 311 | 84.54 320 | 61.43 342 | 91.16 294 | 89.30 325 | 77.89 260 | 64.04 321 | 86.31 280 | 48.23 313 | 94.29 296 | 63.54 300 | 63.84 326 | 87.93 289 |
|
YYNet1 | | | 73.53 302 | 70.43 308 | 82.85 302 | 84.52 321 | 71.73 299 | 91.69 290 | 91.37 304 | 67.63 323 | 46.79 351 | 81.21 324 | 55.04 297 | 90.43 337 | 55.93 328 | 59.70 333 | 86.38 312 |
|
N_pmnet | | | 61.30 321 | 60.20 324 | 64.60 336 | 84.32 322 | 17.00 369 | 91.67 291 | 10.98 368 | 61.77 338 | 58.45 341 | 78.55 335 | 49.89 310 | 91.83 325 | 42.27 353 | 63.94 325 | 84.97 326 |
|
mvs_tets | | | 81.74 243 | 80.71 238 | 84.84 274 | 84.22 323 | 70.29 308 | 93.91 250 | 93.78 251 | 82.77 180 | 73.37 271 | 89.46 232 | 47.36 320 | 95.31 266 | 81.99 171 | 79.55 230 | 88.92 271 |
|
jajsoiax | | | 82.12 240 | 81.15 233 | 85.03 273 | 84.19 324 | 70.70 305 | 94.22 245 | 93.95 239 | 83.07 173 | 73.48 270 | 89.75 228 | 49.66 311 | 95.37 262 | 82.24 170 | 79.76 225 | 89.02 265 |
|
EU-MVSNet | | | 76.92 287 | 76.95 271 | 76.83 326 | 84.10 325 | 54.73 353 | 91.77 288 | 92.71 288 | 72.74 304 | 69.57 299 | 88.69 241 | 58.03 276 | 87.43 347 | 64.91 293 | 70.00 284 | 88.33 282 |
|
test_djsdf | | | 83.00 227 | 82.45 216 | 84.64 279 | 84.07 326 | 69.78 313 | 94.80 230 | 94.48 216 | 80.74 208 | 75.41 259 | 87.70 255 | 61.32 255 | 95.10 278 | 83.77 150 | 79.76 225 | 89.04 264 |
|
v7n | | | 79.32 268 | 77.34 267 | 85.28 270 | 84.05 327 | 72.89 288 | 93.38 260 | 93.87 244 | 75.02 286 | 70.68 291 | 84.37 305 | 59.58 262 | 95.62 252 | 67.60 278 | 67.50 308 | 87.32 303 |
|
OurMVSNet-221017-0 | | | 77.18 285 | 76.06 277 | 80.55 315 | 83.78 328 | 60.00 344 | 90.35 298 | 91.05 311 | 77.01 275 | 66.62 312 | 87.92 253 | 47.73 318 | 94.03 299 | 71.63 257 | 68.44 297 | 87.62 295 |
|
EG-PatchMatch MVS | | | 74.92 296 | 72.02 301 | 83.62 294 | 83.76 329 | 73.28 283 | 93.62 255 | 92.04 296 | 68.57 322 | 58.88 339 | 83.80 310 | 31.87 353 | 95.57 256 | 56.97 325 | 78.67 236 | 82.00 345 |
|
K. test v3 | | | 73.62 299 | 71.59 303 | 79.69 318 | 82.98 330 | 59.85 345 | 90.85 297 | 88.83 328 | 77.13 271 | 58.90 338 | 82.11 318 | 43.62 327 | 91.72 326 | 65.83 289 | 54.10 339 | 87.50 300 |
|
bset_n11_16_dypcd | | | 84.35 204 | 82.83 210 | 88.91 201 | 82.54 331 | 82.07 113 | 94.12 247 | 93.47 264 | 85.39 111 | 78.55 217 | 88.98 237 | 62.23 244 | 95.11 276 | 86.75 131 | 73.42 260 | 89.55 249 |
|
anonymousdsp | | | 80.98 254 | 79.97 250 | 84.01 287 | 81.73 332 | 70.44 307 | 92.49 279 | 93.58 262 | 77.10 273 | 72.98 277 | 86.31 280 | 57.58 278 | 94.90 283 | 79.32 191 | 78.63 239 | 86.69 309 |
|
Anonymous20231206 | | | 75.29 295 | 73.64 296 | 80.22 316 | 80.75 333 | 63.38 335 | 93.36 261 | 90.71 316 | 73.09 301 | 67.12 306 | 83.70 311 | 50.33 309 | 90.85 334 | 53.63 335 | 70.10 282 | 86.44 311 |
|
Gipuma |  | | 45.11 327 | 42.05 329 | 54.30 341 | 80.69 334 | 51.30 355 | 35.80 360 | 83.81 349 | 28.13 357 | 27.94 359 | 34.53 359 | 11.41 365 | 76.70 356 | 21.45 358 | 54.65 337 | 34.90 358 |
S. Galliani, K. Lasinger, K. Schindler: Massively Parallel Multiview Stereopsis by Surface Normal Diffusion. ICCV 2015 |
lessismore_v0 | | | | | 79.98 317 | 80.59 335 | 58.34 347 | | 80.87 354 | | 58.49 340 | 83.46 313 | 43.10 331 | 93.89 301 | 63.11 302 | 48.68 346 | 87.72 291 |
|
OpenMVS_ROB |  | 68.52 20 | 73.02 305 | 69.57 311 | 83.37 298 | 80.54 336 | 71.82 297 | 93.60 256 | 88.22 333 | 62.37 335 | 61.98 331 | 83.15 315 | 35.31 348 | 95.47 258 | 45.08 351 | 75.88 249 | 82.82 337 |
|
testgi | | | 74.88 297 | 73.40 297 | 79.32 320 | 80.13 337 | 61.75 339 | 93.21 268 | 86.64 339 | 79.49 238 | 66.56 313 | 91.06 208 | 35.51 347 | 88.67 343 | 56.79 326 | 71.25 270 | 87.56 298 |
|
CMPMVS |  | 54.94 21 | 75.71 294 | 74.56 289 | 79.17 321 | 79.69 338 | 55.98 349 | 89.59 301 | 93.30 275 | 60.28 344 | 53.85 348 | 89.07 235 | 47.68 319 | 96.33 215 | 76.55 217 | 81.02 220 | 85.22 324 |
M. Jancosek, T. Pajdla: Multi-View Reconstruction Preserving Weakly-Supported Surfaces. CVPR 2011 |
LF4IMVS | | | 72.36 308 | 70.82 305 | 76.95 325 | 79.18 339 | 56.33 348 | 86.12 328 | 86.11 341 | 69.30 321 | 63.06 327 | 86.66 271 | 33.03 351 | 92.25 319 | 65.33 291 | 68.64 295 | 82.28 343 |
|
pmmvs6 | | | 74.65 298 | 71.67 302 | 83.60 295 | 79.13 340 | 69.94 310 | 93.31 266 | 90.88 315 | 61.05 343 | 65.83 315 | 84.15 308 | 43.43 328 | 94.83 286 | 66.62 283 | 60.63 331 | 86.02 318 |
|
DeepMVS_CX |  | | | | 64.06 337 | 78.53 341 | 43.26 359 | | 68.11 362 | 69.94 318 | 38.55 354 | 76.14 340 | 18.53 359 | 79.34 353 | 43.72 352 | 41.62 354 | 69.57 353 |
|
CL-MVSNet_2432*1600 | | | 75.81 292 | 74.14 294 | 80.83 314 | 78.33 342 | 67.79 322 | 94.22 245 | 93.52 263 | 77.28 270 | 69.82 297 | 81.54 322 | 61.47 254 | 89.22 341 | 57.59 321 | 53.51 340 | 85.48 323 |
|
test20.03 | | | 72.36 308 | 71.15 304 | 75.98 330 | 77.79 343 | 59.16 346 | 92.40 281 | 89.35 324 | 74.09 292 | 61.50 333 | 84.32 306 | 48.09 314 | 85.54 352 | 50.63 342 | 62.15 330 | 83.24 335 |
|
UnsupCasMVSNet_eth | | | 73.25 303 | 70.57 307 | 81.30 310 | 77.53 344 | 66.33 327 | 87.24 321 | 93.89 243 | 80.38 219 | 57.90 343 | 81.59 321 | 42.91 333 | 90.56 336 | 65.18 292 | 48.51 347 | 87.01 306 |
|
DSMNet-mixed | | | 73.13 304 | 72.45 300 | 75.19 332 | 77.51 345 | 46.82 356 | 85.09 333 | 82.01 353 | 67.61 327 | 69.27 301 | 81.33 323 | 50.89 305 | 86.28 349 | 54.54 332 | 83.80 202 | 92.46 217 |
|
Patchmatch-RL test | | | 76.65 288 | 74.01 295 | 84.55 281 | 77.37 346 | 64.23 331 | 78.49 345 | 82.84 352 | 78.48 256 | 64.63 320 | 73.40 344 | 76.05 128 | 91.70 327 | 76.99 212 | 57.84 334 | 97.72 104 |
|
Anonymous20240521 | | | 72.06 310 | 69.91 310 | 78.50 322 | 77.11 347 | 61.67 341 | 91.62 292 | 90.97 313 | 65.52 330 | 62.37 329 | 79.05 334 | 36.32 344 | 90.96 333 | 57.75 320 | 68.52 296 | 82.87 336 |
|
test_method | | | 56.77 322 | 54.53 325 | 63.49 338 | 76.49 348 | 40.70 361 | 75.68 349 | 74.24 359 | 19.47 361 | 48.73 350 | 71.89 348 | 19.31 358 | 65.80 360 | 57.46 322 | 47.51 350 | 83.97 333 |
|
MIMVSNet1 | | | 69.44 314 | 66.65 318 | 77.84 323 | 76.48 349 | 62.84 337 | 87.42 319 | 88.97 327 | 66.96 328 | 57.75 344 | 79.72 333 | 32.77 352 | 85.83 351 | 46.32 349 | 63.42 327 | 84.85 327 |
|
pmmvs-eth3d | | | 73.59 300 | 70.66 306 | 82.38 305 | 76.40 350 | 73.38 280 | 89.39 305 | 89.43 323 | 72.69 305 | 60.34 337 | 77.79 337 | 46.43 322 | 91.26 331 | 66.42 287 | 57.06 335 | 82.51 340 |
|
new_pmnet | | | 66.18 319 | 63.18 322 | 75.18 333 | 76.27 351 | 61.74 340 | 83.79 335 | 84.66 345 | 56.64 351 | 51.57 349 | 71.85 349 | 31.29 354 | 87.93 345 | 49.98 343 | 62.55 329 | 75.86 350 |
|
DIV-MVS_2432*1600 | | | 70.97 313 | 69.31 313 | 75.95 331 | 76.24 352 | 55.39 352 | 87.45 318 | 90.94 314 | 70.20 317 | 62.96 328 | 77.48 338 | 44.01 325 | 88.09 344 | 61.25 309 | 53.26 341 | 84.37 330 |
|
UnsupCasMVSNet_bld | | | 68.60 318 | 64.50 321 | 80.92 313 | 74.63 353 | 67.80 321 | 83.97 334 | 92.94 285 | 65.12 331 | 54.63 347 | 68.23 350 | 35.97 345 | 92.17 322 | 60.13 311 | 44.83 351 | 82.78 338 |
|
PM-MVS | | | 69.32 315 | 66.93 317 | 76.49 327 | 73.60 354 | 55.84 350 | 85.91 329 | 79.32 357 | 74.72 288 | 61.09 334 | 78.18 336 | 21.76 357 | 91.10 332 | 70.86 266 | 56.90 336 | 82.51 340 |
|
new-patchmatchnet | | | 68.85 317 | 65.93 319 | 77.61 324 | 73.57 355 | 63.94 334 | 90.11 300 | 88.73 331 | 71.62 312 | 55.08 346 | 73.60 343 | 40.84 339 | 87.22 348 | 51.35 340 | 48.49 348 | 81.67 346 |
|
ambc | | | | | 76.02 329 | 68.11 356 | 51.43 354 | 64.97 356 | 89.59 321 | | 60.49 336 | 74.49 341 | 17.17 360 | 92.46 316 | 61.50 307 | 52.85 343 | 84.17 332 |
|
pmmvs3 | | | 65.75 320 | 62.18 323 | 76.45 328 | 67.12 357 | 64.54 330 | 88.68 309 | 85.05 344 | 54.77 352 | 57.54 345 | 73.79 342 | 29.40 356 | 86.21 350 | 55.49 331 | 47.77 349 | 78.62 348 |
|
TDRefinement | | | 69.20 316 | 65.78 320 | 79.48 319 | 66.04 358 | 62.21 338 | 88.21 312 | 86.12 340 | 62.92 334 | 61.03 335 | 85.61 288 | 33.23 350 | 94.16 297 | 55.82 330 | 53.02 342 | 82.08 344 |
|
FPMVS | | | 55.09 323 | 52.93 326 | 61.57 339 | 55.98 359 | 40.51 362 | 83.11 336 | 83.41 351 | 37.61 355 | 34.95 356 | 71.95 347 | 14.40 361 | 76.95 354 | 29.81 356 | 65.16 320 | 67.25 354 |
|
PMMVS2 | | | 50.90 325 | 46.31 328 | 64.67 335 | 55.53 360 | 46.67 357 | 77.30 348 | 71.02 360 | 40.89 354 | 34.16 357 | 59.32 351 | 9.83 366 | 76.14 357 | 40.09 354 | 28.63 357 | 71.21 351 |
|
wuyk23d | | | 14.10 334 | 13.89 337 | 14.72 347 | 55.23 361 | 22.91 368 | 33.83 361 | 3.56 369 | 4.94 364 | 4.11 365 | 2.28 367 | 2.06 370 | 19.66 365 | 10.23 363 | 8.74 363 | 1.59 363 |
|
E-PMN | | | 32.70 331 | 32.39 333 | 33.65 345 | 53.35 362 | 25.70 366 | 74.07 352 | 53.33 366 | 21.08 359 | 17.17 363 | 33.63 361 | 11.85 364 | 54.84 362 | 12.98 361 | 14.04 359 | 20.42 359 |
|
EMVS | | | 31.70 332 | 31.45 334 | 32.48 346 | 50.72 363 | 23.95 367 | 74.78 351 | 52.30 367 | 20.36 360 | 16.08 364 | 31.48 362 | 12.80 362 | 53.60 363 | 11.39 362 | 13.10 362 | 19.88 360 |
|
LCM-MVSNet | | | 52.52 324 | 48.24 327 | 65.35 334 | 47.63 364 | 41.45 360 | 72.55 354 | 83.62 350 | 31.75 356 | 37.66 355 | 57.92 353 | 9.19 367 | 76.76 355 | 49.26 345 | 44.60 352 | 77.84 349 |
|
MVE |  | 35.65 22 | 33.85 330 | 29.49 335 | 46.92 343 | 41.86 365 | 36.28 363 | 50.45 359 | 56.52 365 | 18.75 362 | 18.28 361 | 37.84 358 | 2.41 369 | 58.41 361 | 18.71 359 | 20.62 358 | 46.06 356 |
Simon Fuhrmann, Fabian Langguth, Michael Goesele: MVE - A Multi-View Reconstruction Environment. EUROGRAPHICS Workshops on Graphics and Cultural Heritage (2014) |
ANet_high | | | 46.22 326 | 41.28 331 | 61.04 340 | 39.91 366 | 46.25 358 | 70.59 355 | 76.18 358 | 58.87 349 | 23.09 360 | 48.00 357 | 12.58 363 | 66.54 359 | 28.65 357 | 13.62 360 | 70.35 352 |
|
PMVS |  | 34.80 23 | 39.19 329 | 35.53 332 | 50.18 342 | 29.72 367 | 30.30 364 | 59.60 358 | 66.20 363 | 26.06 358 | 17.91 362 | 49.53 356 | 3.12 368 | 74.09 358 | 18.19 360 | 49.40 345 | 46.14 355 |
Y. Furukawa, J. Ponce: Accurate, dense, and robust multiview stereopsis. PAMI (2010) |
tmp_tt | | | 41.54 328 | 41.93 330 | 40.38 344 | 20.10 368 | 26.84 365 | 61.93 357 | 59.09 364 | 14.81 363 | 28.51 358 | 80.58 326 | 35.53 346 | 48.33 364 | 63.70 299 | 13.11 361 | 45.96 357 |
|
testmvs | | | 9.92 335 | 12.94 338 | 0.84 349 | 0.65 369 | 0.29 371 | 93.78 252 | 0.39 370 | 0.42 365 | 2.85 366 | 15.84 365 | 0.17 372 | 0.30 367 | 2.18 364 | 0.21 364 | 1.91 362 |
|
test123 | | | 9.07 336 | 11.73 339 | 1.11 348 | 0.50 370 | 0.77 370 | 89.44 304 | 0.20 371 | 0.34 366 | 2.15 367 | 10.72 366 | 0.34 371 | 0.32 366 | 1.79 365 | 0.08 365 | 2.23 361 |
|
uanet_test | | | 0.00 339 | 0.00 342 | 0.00 350 | 0.00 371 | 0.00 372 | 0.00 362 | 0.00 372 | 0.00 367 | 0.00 368 | 0.00 368 | 0.00 373 | 0.00 368 | 0.00 366 | 0.00 366 | 0.00 364 |
|
cdsmvs_eth3d_5k | | | 21.43 333 | 28.57 336 | 0.00 350 | 0.00 371 | 0.00 372 | 0.00 362 | 95.93 138 | 0.00 367 | 0.00 368 | 97.66 69 | 63.57 237 | 0.00 368 | 0.00 366 | 0.00 366 | 0.00 364 |
|
pcd_1.5k_mvsjas | | | 5.92 338 | 7.89 341 | 0.00 350 | 0.00 371 | 0.00 372 | 0.00 362 | 0.00 372 | 0.00 367 | 0.00 368 | 0.00 368 | 71.04 194 | 0.00 368 | 0.00 366 | 0.00 366 | 0.00 364 |
|
sosnet-low-res | | | 0.00 339 | 0.00 342 | 0.00 350 | 0.00 371 | 0.00 372 | 0.00 362 | 0.00 372 | 0.00 367 | 0.00 368 | 0.00 368 | 0.00 373 | 0.00 368 | 0.00 366 | 0.00 366 | 0.00 364 |
|
sosnet | | | 0.00 339 | 0.00 342 | 0.00 350 | 0.00 371 | 0.00 372 | 0.00 362 | 0.00 372 | 0.00 367 | 0.00 368 | 0.00 368 | 0.00 373 | 0.00 368 | 0.00 366 | 0.00 366 | 0.00 364 |
|
uncertanet | | | 0.00 339 | 0.00 342 | 0.00 350 | 0.00 371 | 0.00 372 | 0.00 362 | 0.00 372 | 0.00 367 | 0.00 368 | 0.00 368 | 0.00 373 | 0.00 368 | 0.00 366 | 0.00 366 | 0.00 364 |
|
Regformer | | | 0.00 339 | 0.00 342 | 0.00 350 | 0.00 371 | 0.00 372 | 0.00 362 | 0.00 372 | 0.00 367 | 0.00 368 | 0.00 368 | 0.00 373 | 0.00 368 | 0.00 366 | 0.00 366 | 0.00 364 |
|
ab-mvs-re | | | 8.11 337 | 10.81 340 | 0.00 350 | 0.00 371 | 0.00 372 | 0.00 362 | 0.00 372 | 0.00 367 | 0.00 368 | 97.30 90 | 0.00 373 | 0.00 368 | 0.00 366 | 0.00 366 | 0.00 364 |
|
uanet | | | 0.00 339 | 0.00 342 | 0.00 350 | 0.00 371 | 0.00 372 | 0.00 362 | 0.00 372 | 0.00 367 | 0.00 368 | 0.00 368 | 0.00 373 | 0.00 368 | 0.00 366 | 0.00 366 | 0.00 364 |
|
test_241102_TWO | | | | | | | | | 96.78 45 | 88.72 50 | 97.70 5 | 98.91 3 | 87.86 17 | 99.82 16 | 98.15 2 | 99.00 13 | 99.47 7 |
|
test_0728_THIRD | | | | | | | | | | 88.38 57 | 96.69 10 | 98.76 12 | 89.64 10 | 99.76 20 | 97.47 10 | 98.84 22 | 99.38 10 |
|
GSMVS | | | | | | | | | | | | | | | | | 97.54 116 |
|
sam_mvs1 | | | | | | | | | | | | | 77.59 100 | | | | 97.54 116 |
|
sam_mvs | | | | | | | | | | | | | 75.35 147 | | | | |
|
MTGPA |  | | | | | | | | 96.33 112 | | | | | | | | |
|
test_post1 | | | | | | | | 85.88 330 | | | | 30.24 363 | 73.77 165 | 95.07 280 | 73.89 244 | | |
|
test_post | | | | | | | | | | | | 33.80 360 | 76.17 125 | 95.97 227 | | | |
|
patchmatchnet-post | | | | | | | | | | | | 77.09 339 | 77.78 99 | 95.39 260 | | | |
|
MTMP | | | | | | | | 97.53 76 | 68.16 361 | | | | | | | | |
|
test9_res | | | | | | | | | | | | | | | 96.00 21 | 99.03 11 | 98.31 57 |
|
agg_prior2 | | | | | | | | | | | | | | | 94.30 42 | 99.00 13 | 98.57 41 |
|
test_prior4 | | | | | | | 82.34 108 | 97.75 61 | | | | | | | | | |
|
test_prior2 | | | | | | | | 98.37 26 | | 86.08 95 | 94.57 38 | 98.02 49 | 83.14 44 | | 95.05 34 | 98.79 23 | |
|
旧先验2 | | | | | | | | 96.97 127 | | 74.06 293 | 96.10 16 | | | 97.76 151 | 88.38 117 | | |
|
新几何2 | | | | | | | | 96.42 163 | | | | | | | | | |
|
无先验 | | | | | | | | 96.87 133 | 96.78 45 | 77.39 267 | | | | 99.52 53 | 79.95 184 | | 98.43 49 |
|
原ACMM2 | | | | | | | | 96.84 134 | | | | | | | | | |
|
testdata2 | | | | | | | | | | | | | | 99.48 58 | 76.45 219 | | |
|
segment_acmp | | | | | | | | | | | | | 82.69 53 | | | | |
|
testdata1 | | | | | | | | 95.57 203 | | 87.44 76 | | | | | | | |
|
plane_prior5 | | | | | | | | | 94.69 201 | | | | | 97.30 174 | 87.08 126 | 82.82 213 | 90.96 224 |
|
plane_prior4 | | | | | | | | | | | | 94.15 170 | | | | | |
|
plane_prior3 | | | | | | | 77.75 228 | | | 90.17 33 | 81.33 190 | | | | | | |
|
plane_prior2 | | | | | | | | 97.18 102 | | 89.89 35 | | | | | | | |
|
plane_prior | | | | | | | 77.96 221 | 97.52 79 | | 90.36 32 | | | | | | 82.96 211 | |
|
n2 | | | | | | | | | 0.00 372 | | | | | | | | |
|
nn | | | | | | | | | 0.00 372 | | | | | | | | |
|
door-mid | | | | | | | | | 79.75 356 | | | | | | | | |
|
test11 | | | | | | | | | 96.50 91 | | | | | | | | |
|
door | | | | | | | | | 80.13 355 | | | | | | | | |
|
HQP5-MVS | | | | | | | 78.48 202 | | | | | | | | | | |
|
BP-MVS | | | | | | | | | | | | | | | 87.67 122 | | |
|
HQP4-MVS | | | | | | | | | | | 82.30 178 | | | 97.32 172 | | | 91.13 222 |
|
HQP3-MVS | | | | | | | | | 94.80 197 | | | | | | | 83.01 209 | |
|
HQP2-MVS | | | | | | | | | | | | | 65.40 227 | | | | |
|
MDTV_nov1_ep13_2view | | | | | | | 81.74 126 | 86.80 323 | | 80.65 210 | 85.65 142 | | 74.26 160 | | 76.52 218 | | 96.98 141 |
|
ACMMP++_ref | | | | | | | | | | | | | | | | 78.45 241 | |
|
ACMMP++ | | | | | | | | | | | | | | | | 79.05 233 | |
|
Test By Simon | | | | | | | | | | | | | 71.65 187 | | | | |
|