This table lists the benchmark results for the high-res multi-view scenario. The following metrics are evaluated:

(*) For exact definitions, detailing how potentially incomplete ground truth is taken into account, see our paper.

The datasets are grouped into different categories, and result averages are computed for a category and method if results of the method are available for all datasets within the category. Note that the category "all" includes both the high-res multi-view and the low-res many-view scenarios.

Methods with suffix _ROB may participate in the Robust Vision Challenge.

Click a dataset result cell to show a visualization of the reconstruction. For training datasets, ground truth and accuracy / completeness visualizations are also available. The visualizations may not work with mobile browsers.




Method Infoallhigh-res
multi-view
indooroutdoorbotani.boulde.bridgedoorexhibi.lectur.living.loungeobserv.old co.statueterrac.
sort bysort bysort bysort bysorted bysort bysort bysort bysort bysort bysort bysort bysort bysort bysort bysort by
DP-MVS Recon91.72 7590.85 8594.34 3599.50 185.00 6398.51 2595.96 14080.57 21888.08 13197.63 7776.84 11799.89 785.67 14194.88 11998.13 76
MCST-MVS96.17 396.12 696.32 799.42 289.36 1098.94 1597.10 2495.17 292.11 7298.46 2687.33 2399.97 297.21 1699.31 499.63 7
MG-MVS94.25 2593.72 3595.85 1199.38 389.35 1197.98 4898.09 889.99 3592.34 6996.97 10881.30 6298.99 10588.54 11998.88 2199.20 22
AdaColmapbinary88.81 13387.61 14292.39 11499.33 479.95 17196.70 15195.58 16077.51 27283.05 17896.69 12061.90 25799.72 3584.29 15193.47 13297.50 126
CNVR-MVS96.30 196.54 195.55 1499.31 587.69 2199.06 997.12 2294.66 396.79 1198.78 1186.42 2799.95 397.59 1299.18 799.00 27
testtj94.09 3094.08 3094.09 4599.28 683.32 9597.59 7596.61 7883.60 17094.77 3998.46 2682.72 5599.64 4695.29 3698.42 4699.32 17
NCCC95.63 695.94 794.69 2799.21 785.15 5999.16 396.96 3394.11 695.59 2498.64 2185.07 3199.91 495.61 3199.10 999.00 27
OPU-MVS97.30 299.19 892.31 399.12 698.54 2292.06 399.84 1299.11 199.37 199.74 1
ZD-MVS99.09 983.22 9796.60 8182.88 18493.61 5498.06 5182.93 5199.14 9595.51 3398.49 42
DVP-MVS++.96.05 496.41 394.96 2199.05 1085.34 4998.13 3896.77 5388.38 5997.70 698.77 1292.06 399.84 1297.47 1399.37 199.70 3
MSC_two_6792asdad97.14 399.05 1092.19 496.83 4399.81 2098.08 698.81 2599.43 11
No_MVS97.14 399.05 1092.19 496.83 4399.81 2098.08 698.81 2599.43 11
DVP-MVScopyleft95.58 895.91 894.57 2999.05 1085.18 5499.06 996.46 9988.75 4996.69 1298.76 1487.69 2199.76 2497.90 898.85 2298.77 34
Zhenlong Yuan, Jinguo Luo, Fei Shen, Zhaoxin Li, Cong Liu, Tianlu Mao, Zhaoqi Wang: DVP-MVS: Synergize Depth-Edge and Visibility Prior for Multi-View Stereo. AAAI2025
test072699.05 1085.18 5499.11 896.78 4788.75 4997.65 898.91 387.69 21
test_0728_SECOND95.14 1799.04 1586.14 3399.06 996.77 5399.84 1297.90 898.85 2299.45 10
SED-MVS95.88 596.22 494.87 2299.03 1685.03 6199.12 696.78 4788.72 5197.79 498.91 388.48 1699.82 1798.15 398.97 1799.74 1
IU-MVS99.03 1685.34 4996.86 4292.05 1598.74 198.15 398.97 1799.42 13
test_241102_ONE99.03 1685.03 6196.78 4788.72 5197.79 498.90 688.48 1699.82 17
ETH3 D test640095.56 995.41 1296.00 999.02 1989.42 998.75 1896.80 4687.28 8395.88 2298.95 285.92 2999.41 6697.15 1798.95 2099.18 24
test_one_060198.91 2084.56 7196.70 6388.06 6696.57 1598.77 1288.04 19
test_part298.90 2185.14 6096.07 20
PAPR92.74 5292.17 6594.45 3198.89 2284.87 6697.20 10496.20 12687.73 7588.40 12698.12 4478.71 9099.76 2487.99 12696.28 10298.74 35
DeepC-MVS_fast89.06 294.48 1994.30 2795.02 1998.86 2385.68 4498.06 4496.64 7593.64 891.74 7898.54 2280.17 7399.90 592.28 7598.75 3099.49 8
Andreas Kuhn, Christian Sormann, Mattia Rossi, Oliver Erdler, Friedrich Fraundorfer: DeepC-MVS: Deep Confidence Prediction for Multi-View Stereo Reconstruction. 3DV 2020
APDe-MVS94.56 1894.75 1593.96 4898.84 2483.40 9298.04 4696.41 10585.79 10695.00 3498.28 3284.32 3899.18 9197.35 1598.77 2999.28 19
DPE-MVScopyleft95.32 1095.55 994.64 2898.79 2584.87 6697.77 6096.74 5886.11 9896.54 1698.89 788.39 1899.74 3297.67 1199.05 1299.31 18
Kehua Chen, Zhenlong Yuan, Tianlu Mao, Zhaoqi Wang: Dual-Level Precision Edges Guided Multi-View Stereo with Accurate Planarization. AAAI2025
APD-MVScopyleft93.61 3893.59 3793.69 5798.76 2683.26 9697.21 10296.09 13382.41 19294.65 4098.21 3481.96 6098.81 11894.65 4498.36 5499.01 26
Yuesong Wang, Zhaojie Zeng and etc.: Adaptive Patch Deformation for Textureless-Resilient Multi-View Stereo. CVPR2023
HFP-MVS92.89 4992.86 5092.98 8998.71 2781.12 14297.58 7696.70 6385.20 12391.75 7697.97 5978.47 9299.71 3690.95 8798.41 4898.12 77
#test#92.99 4792.99 4692.98 8998.71 2781.12 14297.77 6096.70 6385.75 10791.75 7697.97 5978.47 9299.71 3691.36 8398.41 4898.12 77
region2R92.72 5592.70 5392.79 9898.68 2980.53 16097.53 8096.51 9385.22 12191.94 7497.98 5777.26 10999.67 4490.83 9198.37 5398.18 70
test_prior394.03 3294.34 2593.09 8498.68 2981.91 12298.37 2896.40 10886.08 10094.57 4198.02 5283.14 4799.06 10195.05 3898.79 2798.29 63
test_prior93.09 8498.68 2981.91 12296.40 10899.06 10198.29 63
ACMMPR92.69 5792.67 5492.75 9998.66 3280.57 15797.58 7696.69 6685.20 12391.57 8097.92 6177.01 11599.67 4490.95 8798.41 4898.00 89
API-MVS90.18 10988.97 11893.80 5298.66 3282.95 10497.50 8495.63 15975.16 29086.31 14497.69 7172.49 18399.90 581.26 18096.07 10598.56 46
CDPH-MVS93.12 4492.91 4893.74 5498.65 3483.88 8097.67 7096.26 12183.00 18193.22 5898.24 3381.31 6199.21 8489.12 11598.74 3198.14 75
TEST998.64 3583.71 8597.82 5696.65 7284.29 14995.16 2898.09 4684.39 3499.36 74
train_agg94.28 2394.45 2193.74 5498.64 3583.71 8597.82 5696.65 7284.50 14195.16 2898.09 4684.33 3599.36 7495.91 2798.96 1998.16 72
test_898.63 3783.64 8897.81 5896.63 7784.50 14195.10 3098.11 4584.33 3599.23 80
HPM-MVS++copyleft95.32 1095.48 1194.85 2398.62 3886.04 3497.81 5896.93 3692.45 1195.69 2398.50 2485.38 3099.85 1094.75 4299.18 798.65 42
agg_prior194.10 2994.31 2693.48 7098.59 3983.13 9897.77 6096.56 8684.38 14594.19 4598.13 4184.66 3399.16 9395.74 2998.74 3198.15 74
agg_prior98.59 3983.13 9896.56 8694.19 4599.16 93
CSCG92.02 6891.65 7593.12 8298.53 4180.59 15697.47 8597.18 2077.06 28084.64 15897.98 5783.98 4099.52 5790.72 9397.33 8199.23 21
XVS92.69 5792.71 5192.63 10698.52 4280.29 16397.37 9696.44 10187.04 9191.38 8297.83 6777.24 11199.59 5190.46 9798.07 6298.02 84
X-MVStestdata86.26 17884.14 19492.63 10698.52 4280.29 16397.37 9696.44 10187.04 9191.38 8220.73 36977.24 11199.59 5190.46 9798.07 6298.02 84
FOURS198.51 4478.01 22598.13 3896.21 12583.04 17994.39 43
CP-MVS92.54 6292.60 5692.34 11598.50 4579.90 17398.40 2696.40 10884.75 13190.48 9998.09 4677.40 10899.21 8491.15 8698.23 5997.92 95
PAPM_NR91.46 8290.82 8693.37 7498.50 4581.81 12995.03 22996.13 13084.65 13786.10 14797.65 7679.24 8299.75 3083.20 16996.88 9398.56 46
MAR-MVS90.63 9990.22 9591.86 13198.47 4778.20 22197.18 10696.61 7883.87 16288.18 13098.18 3568.71 21299.75 3083.66 16197.15 8597.63 117
Zhenyu Xu, Yiguang Liu, Xuelei Shi, Ying Wang, Yunan Zheng: MARMVS: Matching Ambiguity Reduced Multiple View Stereo for Efficient Large Scale Scene Reconstruction. CVPR 2020
Regformer-194.00 3394.04 3293.87 5098.41 4884.29 7497.43 9197.04 2689.50 4092.75 6698.13 4182.60 5799.26 7993.55 5596.99 8898.06 81
Regformer-293.92 3494.01 3393.67 5998.41 4883.75 8497.43 9197.00 2889.43 4292.69 6798.13 4182.48 5899.22 8293.51 5696.99 8898.04 82
mPP-MVS91.88 7191.82 7192.07 12498.38 5078.63 20597.29 9996.09 13385.12 12588.45 12597.66 7275.53 14299.68 4289.83 10698.02 6597.88 96
SR-MVS92.16 6692.27 6191.83 13498.37 5178.41 21196.67 15295.76 15182.19 19691.97 7398.07 5076.44 12498.64 12293.71 5297.27 8298.45 52
test1294.25 3898.34 5285.55 4696.35 11592.36 6880.84 6399.22 8298.31 5697.98 91
CPTT-MVS89.72 11589.87 10689.29 20098.33 5373.30 28997.70 6895.35 17675.68 28687.40 13497.44 8770.43 20498.25 13989.56 11196.90 9196.33 171
MSP-MVS95.62 796.54 192.86 9598.31 5480.10 17097.42 9396.78 4792.20 1397.11 1098.29 3193.46 199.10 9996.01 2499.30 599.38 14
Zhenlong Yuan, Cong Liu, Fei Shen, Zhaoxin Li, Jingguo luo, Tianlu Mao and Zhaoqi Wang: MSP-MVS: Multi-granularity Segmentation Prior Guided Multi-View Stereo. AAAI2025
MSLP-MVS++94.28 2394.39 2493.97 4798.30 5584.06 7998.64 2196.93 3690.71 2693.08 6098.70 1879.98 7499.21 8494.12 4999.07 1198.63 43
PGM-MVS91.93 6991.80 7292.32 11798.27 5679.74 17895.28 21597.27 1783.83 16390.89 9497.78 6976.12 13199.56 5588.82 11797.93 6897.66 114
xxxxxxxxxxxxxcwj94.38 2194.62 1893.68 5898.24 5783.34 9398.61 2392.69 29691.32 1895.07 3298.74 1682.93 5199.38 6895.42 3498.51 3898.32 58
ZNCC-MVS92.75 5192.60 5693.23 7898.24 5781.82 12897.63 7196.50 9585.00 12891.05 9197.74 7078.38 9499.80 2390.48 9698.34 5598.07 80
save fliter98.24 5783.34 9398.61 2396.57 8491.32 18
114514_t88.79 13587.57 14392.45 11198.21 6081.74 13196.99 12695.45 16875.16 29082.48 18195.69 13668.59 21398.50 13080.33 18595.18 11797.10 145
test117291.64 7792.00 6990.54 16898.20 6174.48 28096.45 16295.65 15681.97 20091.63 7998.02 5275.76 13798.61 12393.16 6397.17 8498.52 49
GST-MVS92.43 6492.22 6493.04 8798.17 6281.64 13597.40 9596.38 11284.71 13490.90 9397.40 9077.55 10699.76 2489.75 10897.74 7197.72 109
DP-MVS81.47 25078.28 26491.04 15398.14 6378.48 20795.09 22886.97 34361.14 34871.12 29592.78 19459.59 26699.38 6853.11 34286.61 18695.27 194
MP-MVScopyleft92.61 6092.67 5492.42 11398.13 6479.73 17997.33 9896.20 12685.63 10990.53 9797.66 7278.14 9899.70 3992.12 7798.30 5797.85 99
Rongxuan Tan, Qing Wang, et al.: MP-MVS: Multi-Scale Windows PatchMatch and Planar Prior Multi-View Stereo.
9.1494.26 2898.10 6598.14 3596.52 9284.74 13294.83 3798.80 982.80 5499.37 7295.95 2698.42 46
Regformer-393.19 4293.19 4493.19 8098.10 6583.01 10397.08 12196.98 3088.98 4691.35 8697.89 6280.80 6499.23 8092.30 7495.20 11597.32 135
Regformer-493.06 4693.12 4592.89 9498.10 6582.20 11697.08 12196.92 3888.87 4891.23 8897.89 6280.57 6799.19 8992.21 7695.20 11597.29 139
PHI-MVS93.59 3993.63 3693.48 7098.05 6881.76 13098.64 2197.13 2182.60 19094.09 5098.49 2580.35 6899.85 1094.74 4398.62 3598.83 32
SMA-MVScopyleft94.70 1694.68 1694.76 2598.02 6985.94 3797.47 8596.77 5385.32 11797.92 398.70 1883.09 5099.84 1295.79 2899.08 1098.49 50
Yufeng Yin; Xiaoyan Liu; Zichao Zhang: SMA-MVS: Segmentation-Guided Multi-Scale Anchor Deformation Patch Multi-View Stereo. IEEE Transactions on Circuits and Systems for Video Technology
PLCcopyleft83.97 788.00 15387.38 14989.83 19198.02 6976.46 25597.16 11094.43 22679.26 25081.98 19196.28 12469.36 20999.27 7777.71 21192.25 14593.77 216
Jie Liao, Yanping Fu, Qingan Yan, Chunxia xiao: Pyramid Multi-View Stereo with Local Consistency. Pacific Graphics 2019
zzz-MVS92.74 5292.71 5192.86 9597.90 7180.85 15096.47 15996.33 11687.92 6990.20 10298.18 3576.71 12199.76 2492.57 7298.09 6097.96 93
MTAPA92.45 6392.31 6092.86 9597.90 7180.85 15092.88 27996.33 11687.92 6990.20 10298.18 3576.71 12199.76 2492.57 7298.09 6097.96 93
APD-MVS_3200maxsize91.23 8991.35 7990.89 15897.89 7376.35 25896.30 17495.52 16479.82 23791.03 9297.88 6474.70 15998.54 12892.11 7896.89 9297.77 106
HPM-MVScopyleft91.62 7991.53 7791.89 13097.88 7479.22 19096.99 12695.73 15382.07 19789.50 11497.19 9975.59 14198.93 11390.91 8997.94 6697.54 121
Chunlin Ren, Qingshan Xu, Shikun Zhang, Jiaqi Yang: Hierarchical Prior Mining for Non-local Multi-View Stereo. ICCV 2023
SD-MVS94.84 1495.02 1494.29 3797.87 7584.61 7097.76 6496.19 12889.59 3996.66 1498.17 3984.33 3599.60 5096.09 2298.50 4198.66 41
Zhenlong Yuan, Jiakai Cao, Zhaoxin Li, Hao Jiang and Zhaoqi Wang: SD-MVS: Segmentation-driven Deformation Multi-View Stereo with Spherical Refinement and EM optimization. AAAI2024
ETH3D-3000-0.194.43 2094.42 2394.45 3197.78 7685.78 4097.98 4896.53 9185.29 12095.45 2598.81 883.36 4599.38 6896.07 2398.53 3798.19 69
原ACMM191.22 15097.77 7778.10 22396.61 7881.05 20991.28 8797.42 8877.92 10198.98 10679.85 19398.51 3896.59 162
SR-MVS-dyc-post91.29 8791.45 7890.80 16097.76 7876.03 26396.20 18095.44 16980.56 21990.72 9597.84 6575.76 13798.61 12391.99 7996.79 9697.75 107
RE-MVS-def91.18 8397.76 7876.03 26396.20 18095.44 16980.56 21990.72 9597.84 6573.36 17791.99 7996.79 9697.75 107
TSAR-MVS + MP.94.79 1595.17 1393.64 6097.66 8084.10 7895.85 19896.42 10491.26 2097.49 996.80 11686.50 2698.49 13195.54 3299.03 1398.33 57
Zhenlong Yuan, Jiakai Cao, Zhaoqi Wang, Zhaoxin Li: TSAR-MVS: Textureless-aware Segmentation and Correlative Refinement Guided Multi-View Stereo. Pattern Recognition
HPM-MVS_fast90.38 10790.17 9891.03 15497.61 8177.35 24397.15 11195.48 16679.51 24388.79 12196.90 10971.64 19398.81 11887.01 13597.44 7796.94 148
EI-MVSNet-Vis-set91.84 7291.77 7392.04 12697.60 8281.17 14196.61 15396.87 4088.20 6489.19 11697.55 8278.69 9199.14 9590.29 10290.94 15495.80 181
CNLPA86.96 16485.37 17391.72 13697.59 8379.34 18897.21 10291.05 31874.22 29778.90 21996.75 11867.21 22198.95 11074.68 24290.77 15596.88 153
ACMMPcopyleft90.39 10589.97 10191.64 13797.58 8478.21 22096.78 14396.72 6184.73 13384.72 15697.23 9771.22 19699.63 4888.37 12492.41 14397.08 146
Qingshan Xu, Weihang Kong, Wenbing Tao, Marc Pollefeys: Multi-Scale Geometric Consistency Guided and Planar Prior Assisted Multi-View Stereo. IEEE Transactions on Pattern Analysis and Machine Intelligence
SF-MVS94.17 2694.05 3194.55 3097.56 8585.95 3597.73 6696.43 10384.02 15595.07 3298.74 1682.93 5199.38 6895.42 3498.51 3898.32 58
CANet94.89 1394.64 1795.63 1297.55 8688.12 1599.06 996.39 11194.07 795.34 2797.80 6876.83 11899.87 897.08 1897.64 7398.89 30
PVSNet_BlendedMVS90.05 11089.96 10290.33 17497.47 8783.86 8198.02 4796.73 5987.98 6889.53 11289.61 23576.42 12599.57 5394.29 4779.59 23487.57 303
PVSNet_Blended93.13 4392.98 4793.57 6497.47 8783.86 8199.32 196.73 5991.02 2489.53 11296.21 12576.42 12599.57 5394.29 4795.81 11197.29 139
新几何193.12 8297.44 8981.60 13696.71 6274.54 29591.22 8997.57 7879.13 8499.51 6077.40 21698.46 4398.26 66
LS3D82.22 24279.94 25489.06 20297.43 9074.06 28593.20 27392.05 30261.90 34373.33 27995.21 14759.35 26999.21 8454.54 33892.48 14293.90 215
test_yl91.46 8290.53 9094.24 3997.41 9185.18 5498.08 4197.72 1080.94 21089.85 10496.14 12675.61 13998.81 11890.42 10088.56 17298.74 35
DCV-MVSNet91.46 8290.53 9094.24 3997.41 9185.18 5498.08 4197.72 1080.94 21089.85 10496.14 12675.61 13998.81 11890.42 10088.56 17298.74 35
EI-MVSNet-UG-set91.35 8691.22 8091.73 13597.39 9380.68 15496.47 15996.83 4387.92 6988.30 12997.36 9177.84 10299.13 9789.43 11389.45 16195.37 191
旧先验197.39 9379.58 18396.54 8998.08 4984.00 3997.42 7997.62 118
112190.66 9889.82 10793.16 8197.39 9381.71 13393.33 26696.66 7174.45 29691.38 8297.55 8279.27 8099.52 5779.95 19098.43 4598.26 66
TSAR-MVS + GP.94.35 2294.50 1993.89 4997.38 9683.04 10298.10 4095.29 18091.57 1693.81 5197.45 8486.64 2499.43 6596.28 2194.01 12599.20 22
MVS_111021_HR93.41 4193.39 4093.47 7397.34 9782.83 10597.56 7898.27 689.16 4589.71 10797.14 10079.77 7699.56 5593.65 5397.94 6698.02 84
MP-MVS-pluss92.58 6192.35 5993.29 7597.30 9882.53 10996.44 16496.04 13784.68 13589.12 11798.37 2977.48 10799.74 3293.31 6198.38 5297.59 120
MP-MVS-pluss: MP-MVS-pluss. MP-MVS-pluss
EPNet94.06 3194.15 2993.76 5397.27 9984.35 7298.29 3097.64 1394.57 495.36 2696.88 11179.96 7599.12 9891.30 8496.11 10497.82 102
Wanjuan Su, Wenbing Tao: Efficient Edge-Preserving Multi-View Stereo Network for Depth Estimation. AAAI 2023
ACMMP_NAP93.46 4093.23 4394.17 4297.16 10084.28 7596.82 14096.65 7286.24 9694.27 4497.99 5577.94 10099.83 1693.39 5798.57 3698.39 55
LFMVS89.27 12387.64 13994.16 4497.16 10085.52 4797.18 10694.66 21179.17 25189.63 11096.57 12155.35 29998.22 14089.52 11289.54 16098.74 35
DeepPCF-MVS89.82 194.61 1796.17 589.91 18897.09 10270.21 31698.99 1496.69 6695.57 195.08 3199.23 186.40 2899.87 897.84 1098.66 3499.65 6
VNet92.11 6791.22 8094.79 2496.91 10386.98 2697.91 5197.96 986.38 9593.65 5395.74 13370.16 20798.95 11093.39 5788.87 16798.43 53
TAPA-MVS81.61 1285.02 19583.67 19889.06 20296.79 10473.27 29195.92 19294.79 20574.81 29380.47 20596.83 11371.07 19898.19 14249.82 35092.57 13995.71 184
Andrea Romanoni, Matteo Matteucci: TAPA-MVS: Textureless-Aware PAtchMatch Multi-View Stereo. ICCV 2019
Anonymous20240521184.41 20681.93 22591.85 13396.78 10578.41 21197.44 8791.34 31370.29 32284.06 16294.26 17141.09 34398.96 10779.46 19582.65 22298.17 71
ETH3D cwj APD-0.1693.91 3693.76 3494.36 3496.70 10685.74 4197.22 10096.41 10583.94 15894.13 4998.69 2083.13 4999.37 7295.25 3798.39 5197.97 92
abl_689.80 11389.71 11090.07 18096.53 10775.52 27194.48 23795.04 18981.12 20889.22 11597.00 10768.83 21198.96 10789.86 10595.27 11495.73 183
DELS-MVS94.98 1294.49 2096.44 696.42 10890.59 799.21 297.02 2794.40 591.46 8197.08 10483.32 4699.69 4092.83 6898.70 3399.04 25
Christian Sormann, Emanuele Santellani, Mattia Rossi, Andreas Kuhn, Friedrich Fraundorfer: DELS-MVS: Deep Epipolar Line Search for Multi-View Stereo. Winter Conference on Applications of Computer Vision (WACV), 2023
thres20088.92 12987.65 13892.73 10196.30 10985.62 4597.85 5498.86 184.38 14584.82 15493.99 17975.12 15598.01 14470.86 27286.67 18594.56 206
DPM-MVS96.21 295.53 1098.26 196.26 11095.09 199.15 496.98 3093.39 996.45 1798.79 1090.17 999.99 189.33 11499.25 699.70 3
tfpn200view988.48 14287.15 15392.47 11096.21 11185.30 5297.44 8798.85 283.37 17283.99 16493.82 18275.36 14997.93 14669.04 27886.24 19194.17 208
thres40088.42 14587.15 15392.23 11996.21 11185.30 5297.44 8798.85 283.37 17283.99 16493.82 18275.36 14997.93 14669.04 27886.24 19193.45 221
test22296.15 11378.41 21195.87 19696.46 9971.97 31589.66 10997.45 8476.33 12898.24 5898.30 62
HY-MVS84.06 691.63 7890.37 9395.39 1696.12 11488.25 1490.22 30397.58 1488.33 6290.50 9891.96 20179.26 8199.06 10190.29 10289.07 16498.88 31
thres100view90088.30 14786.95 15892.33 11696.10 11584.90 6597.14 11298.85 282.69 18883.41 17293.66 18575.43 14697.93 14669.04 27886.24 19194.17 208
thres600view788.06 15186.70 16192.15 12296.10 11585.17 5897.14 11298.85 282.70 18783.41 17293.66 18575.43 14697.82 15367.13 28785.88 19593.45 221
WTY-MVS92.65 5991.68 7495.56 1396.00 11788.90 1298.23 3297.65 1288.57 5589.82 10697.22 9879.29 7999.06 10189.57 11088.73 16998.73 39
MVSTER89.25 12488.92 12190.24 17695.98 11884.66 6996.79 14295.36 17487.19 8880.33 20890.61 22190.02 1195.97 23385.38 14478.64 24390.09 246
testdata90.13 17995.92 11974.17 28396.49 9873.49 30494.82 3897.99 5578.80 8997.93 14683.53 16597.52 7498.29 63
PatchMatch-RL85.00 19683.66 19989.02 20495.86 12074.55 27992.49 28393.60 26779.30 24879.29 21891.47 20658.53 27698.45 13370.22 27592.17 14794.07 212
canonicalmvs92.27 6591.22 8095.41 1595.80 12188.31 1397.09 11994.64 21488.49 5792.99 6297.31 9272.68 18298.57 12793.38 5988.58 17199.36 16
Anonymous2024052983.15 22580.60 24390.80 16095.74 12278.27 21596.81 14194.92 19460.10 35281.89 19392.54 19545.82 32898.82 11779.25 19978.32 24895.31 193
MVS_111021_LR91.60 8091.64 7691.47 14395.74 12278.79 20396.15 18296.77 5388.49 5788.64 12397.07 10572.33 18599.19 8993.13 6696.48 10196.43 166
test_part184.72 19982.85 21190.34 17395.73 12484.79 6896.75 14694.10 24179.05 25775.97 25689.51 23667.69 21495.94 23779.34 19667.50 31490.30 241
DWT-MVSNet_test90.52 10489.80 10892.70 10395.73 12482.20 11693.69 25796.55 8888.34 6187.04 14095.34 14586.53 2597.55 16376.32 22888.66 17098.34 56
PS-MVSNAJ94.17 2693.52 3996.10 895.65 12692.35 298.21 3395.79 15092.42 1296.24 1898.18 3571.04 19999.17 9296.77 1997.39 8096.79 155
Anonymous2023121179.72 26677.19 27287.33 24295.59 12777.16 24895.18 22294.18 23659.31 35472.57 28786.20 28747.89 32295.66 25374.53 24669.24 29789.18 264
alignmvs92.97 4892.26 6295.12 1895.54 12887.77 1998.67 1996.38 11288.04 6793.01 6197.45 8479.20 8398.60 12593.25 6288.76 16898.99 29
PVSNet82.34 989.02 12687.79 13692.71 10295.49 12981.50 13797.70 6897.29 1687.76 7485.47 14995.12 15456.90 28898.90 11480.33 18594.02 12497.71 111
tpmvs83.04 22880.77 23989.84 19095.43 13077.96 22785.59 33595.32 17975.31 28976.27 25083.70 31673.89 16997.41 17359.53 31881.93 22594.14 210
SteuartSystems-ACMMP94.13 2894.44 2293.20 7995.41 13181.35 13999.02 1396.59 8289.50 4094.18 4898.36 3083.68 4399.45 6494.77 4198.45 4498.81 33
Skip Steuart: Steuart Systems R&D Blog.
EPMVS87.47 16085.90 16892.18 12195.41 13182.26 11587.00 32696.28 12085.88 10584.23 16185.57 29475.07 15696.26 22471.14 27092.50 14198.03 83
BH-RMVSNet86.84 16885.28 17491.49 14295.35 13380.26 16696.95 13392.21 30082.86 18581.77 19595.46 14359.34 27097.64 15869.79 27693.81 12996.57 163
OMC-MVS88.80 13488.16 13090.72 16395.30 13477.92 23094.81 23394.51 22086.80 9384.97 15296.85 11267.53 21798.60 12585.08 14687.62 17995.63 185
MVS_Test90.29 10889.18 11593.62 6295.23 13584.93 6494.41 24094.66 21184.31 14790.37 10191.02 21475.13 15497.82 15383.11 17194.42 12198.12 77
F-COLMAP84.50 20583.44 20587.67 23295.22 13672.22 29695.95 19093.78 25875.74 28576.30 24995.18 14959.50 26898.45 13372.67 25886.59 18792.35 225
baseline188.85 13287.49 14592.93 9395.21 13786.85 2795.47 21094.61 21687.29 8283.11 17794.99 15980.70 6596.89 20082.28 17573.72 26495.05 195
CHOSEN 1792x268891.07 9190.21 9693.64 6095.18 13883.53 8996.26 17696.13 13088.92 4784.90 15393.10 19172.86 18099.62 4988.86 11695.67 11297.79 104
UGNet87.73 15786.55 16291.27 14895.16 13979.11 19496.35 17096.23 12388.14 6587.83 13390.48 22250.65 31199.09 10080.13 18994.03 12395.60 186
Wanjuan Su, Qingshan Xu, Wenbing Tao: Uncertainty-guided Multi-view Stereo Network for Depth Estimation. IEEE Transactions on Circuits and Systems for Video Technology, 2022
VDD-MVS88.28 14887.02 15792.06 12595.09 14080.18 16997.55 7994.45 22583.09 17789.10 11895.92 13247.97 32198.49 13193.08 6786.91 18497.52 125
PVSNet_Blended_VisFu91.24 8890.77 8792.66 10495.09 14082.40 11297.77 6095.87 14788.26 6386.39 14393.94 18076.77 11999.27 7788.80 11894.00 12696.31 172
hse-mvs389.30 12288.95 12090.36 17295.07 14276.04 26296.96 13297.11 2390.39 3192.22 7095.10 15574.70 15998.86 11593.14 6465.89 32496.16 174
xiu_mvs_v2_base93.92 3493.26 4295.91 1095.07 14292.02 698.19 3495.68 15592.06 1496.01 2198.14 4070.83 20298.96 10796.74 2096.57 9996.76 158
cl-mvsnet285.11 19484.17 19387.92 22895.06 14478.82 20095.51 20894.22 23379.74 23976.77 24087.92 25875.96 13395.68 25279.93 19272.42 27289.27 262
BH-w/o88.24 14987.47 14790.54 16895.03 14578.54 20697.41 9493.82 25384.08 15378.23 22794.51 16769.34 21097.21 18380.21 18894.58 12095.87 180
RRT_MVS86.89 16685.96 16689.68 19695.01 14684.13 7796.33 17294.98 19284.20 15280.10 21292.07 19970.52 20395.01 28883.30 16877.14 25289.91 250
CHOSEN 280x42091.71 7691.85 7091.29 14794.94 14782.69 10687.89 32096.17 12985.94 10387.27 13794.31 16990.27 895.65 25594.04 5095.86 10995.53 188
GG-mvs-BLEND93.49 6994.94 14786.26 3181.62 34197.00 2888.32 12894.30 17091.23 596.21 22788.49 12197.43 7898.00 89
HyFIR lowres test89.36 12088.60 12491.63 13994.91 14980.76 15395.60 20695.53 16282.56 19184.03 16391.24 21178.03 9996.81 20687.07 13488.41 17497.32 135
miper_enhance_ethall85.95 18285.20 17588.19 22594.85 15079.76 17596.00 18794.06 24482.98 18277.74 23088.76 24579.42 7795.46 26580.58 18372.42 27289.36 261
mvs_anonymous88.68 13687.62 14191.86 13194.80 15181.69 13493.53 26294.92 19482.03 19878.87 22190.43 22575.77 13695.34 26985.04 14793.16 13698.55 48
CANet_DTU90.98 9290.04 10093.83 5194.76 15286.23 3296.32 17393.12 28993.11 1093.71 5296.82 11563.08 24599.48 6284.29 15195.12 11895.77 182
PMMVS89.46 11989.92 10488.06 22694.64 15369.57 32396.22 17894.95 19387.27 8491.37 8596.54 12265.88 22897.39 17488.54 11993.89 12797.23 141
TR-MVS86.30 17784.93 18390.42 17094.63 15477.58 23896.57 15593.82 25380.30 22782.42 18395.16 15058.74 27497.55 16374.88 24087.82 17896.13 176
EPNet_dtu87.65 15887.89 13386.93 25194.57 15571.37 31096.72 14796.50 9588.56 5687.12 13895.02 15775.91 13594.01 30666.62 28990.00 15895.42 190
Wanjuan Su, Wenbing Tao: Efficient Edge-Preserving Multi-View Stereo Network for Depth Estimation. AAAI 2023
FMVSNet384.71 20082.71 21590.70 16494.55 15687.71 2095.92 19294.67 21081.73 20275.82 25988.08 25666.99 22294.47 29871.23 26775.38 25889.91 250
ETV-MVS92.72 5592.87 4992.28 11894.54 15781.89 12497.98 4895.21 18389.77 3893.11 5996.83 11377.23 11397.50 16995.74 2995.38 11397.44 129
EIA-MVS91.73 7392.05 6890.78 16294.52 15876.40 25798.06 4495.34 17789.19 4488.90 12097.28 9677.56 10597.73 15690.77 9296.86 9598.20 68
BH-untuned86.95 16585.94 16789.99 18394.52 15877.46 24096.78 14393.37 27981.80 20176.62 24393.81 18466.64 22597.02 19276.06 23093.88 12895.48 189
DeepC-MVS86.58 391.53 8191.06 8492.94 9294.52 15881.89 12495.95 19095.98 13990.76 2583.76 17096.76 11773.24 17899.71 3691.67 8196.96 9097.22 142
Andreas Kuhn, Christian Sormann, Mattia Rossi, Oliver Erdler, Friedrich Fraundorfer: DeepC-MVS: Deep Confidence Prediction for Multi-View Stereo Reconstruction. 3DV 2020
gg-mvs-nofinetune85.48 19082.90 21093.24 7794.51 16185.82 3979.22 34596.97 3261.19 34787.33 13653.01 35990.58 696.07 22986.07 13997.23 8397.81 103
3Dnovator+82.88 889.63 11787.85 13494.99 2094.49 16286.76 2997.84 5595.74 15286.10 9975.47 26496.02 12965.00 23699.51 6082.91 17397.07 8798.72 40
RRT_test8_iter0587.14 16286.41 16389.32 19994.41 16381.10 14497.06 12395.33 17884.67 13676.27 25090.48 22283.60 4496.33 22185.10 14570.78 28090.53 235
ET-MVSNet_ETH3D90.01 11189.03 11692.95 9194.38 16486.77 2898.14 3596.31 11989.30 4363.33 33196.72 11990.09 1093.63 31390.70 9482.29 22498.46 51
tpmrst88.36 14687.38 14991.31 14594.36 16579.92 17287.32 32495.26 18285.32 11788.34 12786.13 28880.60 6696.70 21083.78 15585.34 20297.30 138
MVS90.60 10088.64 12396.50 594.25 16690.53 893.33 26697.21 1977.59 27178.88 22097.31 9271.52 19499.69 4089.60 10998.03 6499.27 20
dp84.30 20982.31 22090.28 17594.24 16777.97 22686.57 32995.53 16279.94 23680.75 20285.16 30271.49 19596.39 21963.73 30483.36 21296.48 165
sss90.87 9589.96 10293.60 6394.15 16883.84 8397.14 11298.13 785.93 10489.68 10896.09 12871.67 19199.30 7687.69 12789.16 16397.66 114
PatchmatchNetpermissive86.83 16985.12 17991.95 12894.12 16982.27 11486.55 33095.64 15884.59 13982.98 17984.99 30677.26 10995.96 23668.61 28291.34 15297.64 116
Fangjinhua Wang, Silvano Galliani, Christoph Vogel, Pablo Speciale, Marc Pollefeys: PatchmatchNet: Learned Multi-View Patchmatch Stereo.
MDTV_nov1_ep1383.69 19794.09 17081.01 14586.78 32896.09 13383.81 16484.75 15584.32 31174.44 16496.54 21463.88 30385.07 203
UA-Net88.92 12988.48 12690.24 17694.06 17177.18 24793.04 27594.66 21187.39 8191.09 9093.89 18174.92 15798.18 14375.83 23391.43 15195.35 192
Fast-Effi-MVS+87.93 15586.94 15990.92 15794.04 17279.16 19298.26 3193.72 26281.29 20683.94 16792.90 19269.83 20896.68 21176.70 22291.74 15096.93 149
QAPM86.88 16784.51 18693.98 4694.04 17285.89 3897.19 10596.05 13673.62 30175.12 26795.62 13962.02 25399.74 3270.88 27196.06 10696.30 173
thisisatest051590.95 9390.26 9493.01 8894.03 17484.27 7697.91 5196.67 6883.18 17586.87 14195.51 14288.66 1597.85 15280.46 18489.01 16596.92 151
CS-MVS-test91.92 7092.11 6691.37 14494.00 17579.66 18098.39 2794.38 22887.14 9092.87 6497.05 10677.17 11496.97 19591.44 8296.55 10097.47 128
Vis-MVSNet (Re-imp)88.88 13188.87 12288.91 20693.89 17674.43 28196.93 13594.19 23584.39 14483.22 17595.67 13778.24 9694.70 29478.88 20394.40 12297.61 119
CS-MVS93.12 4493.27 4192.64 10593.86 17783.12 10098.85 1694.85 20088.61 5494.19 4597.42 8879.02 8597.02 19294.89 4097.77 7097.78 105
ADS-MVSNet279.57 26777.53 26985.71 27093.78 17872.13 29879.48 34386.11 34873.09 30780.14 21079.99 33662.15 25190.14 34659.49 31983.52 20994.85 198
ADS-MVSNet81.26 25378.36 26389.96 18693.78 17879.78 17479.48 34393.60 26773.09 30780.14 21079.99 33662.15 25195.24 27559.49 31983.52 20994.85 198
EPP-MVSNet89.76 11489.72 10989.87 18993.78 17876.02 26597.22 10096.51 9379.35 24585.11 15195.01 15884.82 3297.10 19087.46 13088.21 17696.50 164
3Dnovator82.32 1089.33 12187.64 13994.42 3393.73 18185.70 4397.73 6696.75 5786.73 9476.21 25295.93 13062.17 25099.68 4281.67 17897.81 6997.88 96
Effi-MVS+90.70 9789.90 10593.09 8493.61 18283.48 9095.20 22092.79 29483.22 17491.82 7595.70 13571.82 19097.48 17091.25 8593.67 13098.32 58
IS-MVSNet88.67 13788.16 13090.20 17893.61 18276.86 25096.77 14593.07 29084.02 15583.62 17195.60 14074.69 16296.24 22678.43 20693.66 13197.49 127
AUN-MVS86.25 17985.57 16988.26 22193.57 18473.38 28795.45 21195.88 14583.94 15885.47 14994.21 17373.70 17496.67 21283.54 16464.41 32894.73 204
hse-mvs288.22 15088.21 12888.25 22293.54 18573.41 28695.41 21395.89 14490.39 3192.22 7094.22 17274.70 15996.66 21393.14 6464.37 32994.69 205
LCM-MVSNet-Re83.75 21583.54 20384.39 29193.54 18564.14 33992.51 28284.03 35583.90 16166.14 32086.59 27767.36 21992.68 32084.89 14992.87 13796.35 168
DROMVSNet91.73 7392.11 6690.58 16693.54 18577.77 23498.07 4394.40 22787.44 7992.99 6297.11 10374.59 16396.87 20293.75 5197.08 8697.11 144
tpm cat183.63 21781.38 23390.39 17193.53 18878.19 22285.56 33695.09 18670.78 32078.51 22483.28 31974.80 15897.03 19166.77 28884.05 20795.95 177
thisisatest053089.65 11689.02 11791.53 14193.46 18980.78 15296.52 15696.67 6881.69 20383.79 16994.90 16088.85 1497.68 15777.80 20787.49 18296.14 175
MSDG80.62 26077.77 26889.14 20193.43 19077.24 24491.89 29090.18 32569.86 32568.02 30991.94 20352.21 30998.84 11659.32 32183.12 21391.35 227
ab-mvs87.08 16384.94 18293.48 7093.34 19183.67 8788.82 31195.70 15481.18 20784.55 15990.14 23162.72 24698.94 11285.49 14382.54 22397.85 99
131488.94 12887.20 15194.17 4293.21 19285.73 4293.33 26696.64 7582.89 18375.98 25596.36 12366.83 22499.39 6783.52 16696.02 10797.39 133
1112_ss88.60 14087.47 14792.00 12793.21 19280.97 14796.47 15992.46 29883.64 16880.86 20197.30 9480.24 7197.62 15977.60 21285.49 19997.40 132
GeoE86.36 17685.20 17589.83 19193.17 19476.13 26097.53 8092.11 30179.58 24280.99 19994.01 17866.60 22696.17 22873.48 25489.30 16297.20 143
Test_1112_low_res88.03 15286.73 16091.94 12993.15 19580.88 14996.44 16492.41 29983.59 17180.74 20391.16 21280.18 7297.59 16077.48 21585.40 20097.36 134
CostFormer89.08 12588.39 12791.15 15193.13 19679.15 19388.61 31496.11 13283.14 17689.58 11186.93 27283.83 4296.87 20288.22 12585.92 19497.42 130
IB-MVS85.34 488.67 13787.14 15593.26 7693.12 19784.32 7398.76 1797.27 1787.19 8879.36 21790.45 22483.92 4198.53 12984.41 15069.79 29196.93 149
Christian Sormann, Mattia Rossi, Andreas Kuhn and Friedrich Fraundorfer: IB-MVS: An Iterative Algorithm for Deep Multi-View Stereo based on Binary Decisions. BMVC 2021
diffmvs91.17 9090.74 8892.44 11293.11 19882.50 11196.25 17793.62 26687.79 7390.40 10095.93 13073.44 17697.42 17293.62 5492.55 14097.41 131
tttt051788.57 14188.19 12989.71 19593.00 19975.99 26695.67 20396.67 6880.78 21381.82 19494.40 16888.97 1397.58 16176.05 23186.31 18895.57 187
MVSFormer91.36 8590.57 8993.73 5693.00 19988.08 1694.80 23494.48 22180.74 21494.90 3597.13 10178.84 8795.10 28483.77 15697.46 7598.02 84
lupinMVS93.87 3793.58 3894.75 2693.00 19988.08 1699.15 495.50 16591.03 2394.90 3597.66 7278.84 8797.56 16294.64 4597.46 7598.62 44
tpm287.35 16186.26 16490.62 16592.93 20278.67 20488.06 31995.99 13879.33 24687.40 13486.43 28380.28 7096.40 21880.23 18785.73 19896.79 155
baseline90.76 9690.10 9992.74 10092.90 20382.56 10894.60 23694.56 21987.69 7689.06 11995.67 13773.76 17197.51 16890.43 9992.23 14698.16 72
casdiffmvs90.95 9390.39 9292.63 10692.82 20482.53 10996.83 13994.47 22387.69 7688.47 12495.56 14174.04 16897.54 16690.90 9092.74 13897.83 101
Vis-MVSNetpermissive88.67 13787.82 13591.24 14992.68 20578.82 20096.95 13393.85 25287.55 7887.07 13995.13 15363.43 24397.21 18377.58 21396.15 10397.70 112
Jingyang Zhang, Yao Yao, Shiwei Li, Zixin Luo, Tian Fang: Visibility-aware Multiview Stereo Network. BMVC 2020
GBi-Net82.42 23880.43 24688.39 21792.66 20681.95 11994.30 24593.38 27679.06 25475.82 25985.66 29056.38 29493.84 30871.23 26775.38 25889.38 258
test182.42 23880.43 24688.39 21792.66 20681.95 11994.30 24593.38 27679.06 25475.82 25985.66 29056.38 29493.84 30871.23 26775.38 25889.38 258
FMVSNet282.79 23280.44 24589.83 19192.66 20685.43 4895.42 21294.35 22979.06 25474.46 27187.28 26456.38 29494.31 30169.72 27774.68 26189.76 252
miper_ehance_all_eth84.57 20383.60 20287.50 23992.64 20978.25 21695.40 21493.47 27179.28 24976.41 24687.64 26176.53 12395.24 27578.58 20472.42 27289.01 272
cascas86.50 17484.48 18892.55 10992.64 20985.95 3597.04 12595.07 18875.32 28880.50 20491.02 21454.33 30697.98 14586.79 13687.62 17993.71 217
TESTMET0.1,189.83 11289.34 11491.31 14592.54 21180.19 16897.11 11596.57 8486.15 9786.85 14291.83 20579.32 7896.95 19681.30 17992.35 14496.77 157
COLMAP_ROBcopyleft73.24 1975.74 29673.00 30283.94 29392.38 21269.08 32591.85 29186.93 34461.48 34665.32 32390.27 22742.27 33996.93 19950.91 34775.63 25785.80 328
Johannes L. Schönberger, Enliang Zheng, Marc Pollefeys, Jan-Michael Frahm: Pixelwise View Selection for Unstructured Multi-View Stereo. ECCV 2016
xiu_mvs_v1_base_debu90.54 10189.54 11193.55 6592.31 21387.58 2296.99 12694.87 19787.23 8593.27 5597.56 7957.43 28498.32 13692.72 6993.46 13394.74 201
xiu_mvs_v1_base90.54 10189.54 11193.55 6592.31 21387.58 2296.99 12694.87 19787.23 8593.27 5597.56 7957.43 28498.32 13692.72 6993.46 13394.74 201
xiu_mvs_v1_base_debi90.54 10189.54 11193.55 6592.31 21387.58 2296.99 12694.87 19787.23 8593.27 5597.56 7957.43 28498.32 13692.72 6993.46 13394.74 201
SCA85.63 18783.64 20091.60 14092.30 21681.86 12692.88 27995.56 16184.85 12982.52 18085.12 30458.04 27995.39 26673.89 25087.58 18197.54 121
gm-plane-assit92.27 21779.64 18284.47 14395.15 15197.93 14685.81 140
test-LLR88.48 14287.98 13289.98 18492.26 21877.23 24597.11 11595.96 14083.76 16586.30 14591.38 20872.30 18696.78 20880.82 18191.92 14895.94 178
test-mter88.95 12788.60 12489.98 18492.26 21877.23 24597.11 11595.96 14085.32 11786.30 14591.38 20876.37 12796.78 20880.82 18191.92 14895.94 178
PAPM92.87 5092.40 5894.30 3692.25 22087.85 1896.40 16896.38 11291.07 2288.72 12296.90 10982.11 5997.37 17590.05 10497.70 7297.67 113
cl-mvsnet____83.27 22282.12 22186.74 25292.20 22175.95 26795.11 22593.27 28378.44 26474.82 26987.02 27174.19 16695.19 27774.67 24369.32 29589.09 267
cl-mvsnet183.27 22282.12 22186.74 25292.19 22275.92 26895.11 22593.26 28478.44 26474.81 27087.08 27074.19 16695.19 27774.66 24469.30 29689.11 266
AllTest75.92 29473.06 30184.47 28792.18 22367.29 33091.07 29984.43 35367.63 32963.48 32890.18 22838.20 34797.16 18657.04 32973.37 26788.97 275
TestCases84.47 28792.18 22367.29 33084.43 35367.63 32963.48 32890.18 22838.20 34797.16 18657.04 32973.37 26788.97 275
CLD-MVS87.97 15487.48 14689.44 19792.16 22580.54 15998.14 3594.92 19491.41 1779.43 21695.40 14462.34 24897.27 18190.60 9582.90 21890.50 236
Zhaoxin Li, Wangmeng Zuo, Zhaoqi Wang, Lei Zhang: Confidence-based Large-scale Dense Multi-view Stereo. IEEE Transaction on Image Processing, 2020
cl_fuxian83.80 21482.65 21687.25 24692.10 22677.74 23695.25 21893.04 29178.58 26176.01 25487.21 26875.25 15395.11 28277.54 21468.89 29988.91 278
HQP-NCC92.08 22797.63 7190.52 2882.30 184
ACMP_Plane92.08 22797.63 7190.52 2882.30 184
HQP-MVS87.91 15687.55 14488.98 20592.08 22778.48 20797.63 7194.80 20390.52 2882.30 18494.56 16565.40 23297.32 17687.67 12883.01 21591.13 228
PCF-MVS84.09 586.77 17285.00 18192.08 12392.06 23083.07 10192.14 28794.47 22379.63 24176.90 23994.78 16171.15 19799.20 8872.87 25691.05 15393.98 213
Andreas Kuhn, Shan Lin, Oliver Erdler: Plane Completion and Filtering for Multi-View Stereo Reconstruction. GCPR 2019
NP-MVS92.04 23178.22 21794.56 165
plane_prior691.98 23277.92 23064.77 237
Effi-MVS+-dtu84.61 20284.90 18483.72 29891.96 23363.14 34394.95 23093.34 28085.57 11079.79 21487.12 26961.99 25495.61 25983.55 16285.83 19692.41 224
mvs-test186.83 16987.17 15285.81 26791.96 23365.24 33697.90 5393.34 28085.57 11084.51 16095.14 15261.99 25497.19 18583.55 16290.55 15695.00 196
plane_prior191.95 235
CDS-MVSNet89.50 11888.96 11991.14 15291.94 23680.93 14897.09 11995.81 14984.26 15084.72 15694.20 17480.31 6995.64 25683.37 16788.96 16696.85 154
Khang Truong Giang, Soohwan Song, Sungho Jo: Curvature-guided dynamic scale networks for Multi-view Stereo. ICLR 2022
HQP_MVS87.50 15987.09 15688.74 21191.86 23777.96 22797.18 10694.69 20789.89 3681.33 19694.15 17564.77 23797.30 17887.08 13282.82 21990.96 230
plane_prior791.86 23777.55 239
eth_miper_zixun_eth83.12 22682.01 22386.47 25791.85 23974.80 27694.33 24393.18 28679.11 25275.74 26287.25 26772.71 18195.32 27176.78 22167.13 31889.27 262
VDDNet86.44 17584.51 18692.22 12091.56 24081.83 12797.10 11894.64 21469.50 32687.84 13295.19 14848.01 32097.92 15189.82 10786.92 18396.89 152
EI-MVSNet85.80 18485.20 17587.59 23591.55 24177.41 24195.13 22395.36 17480.43 22480.33 20894.71 16273.72 17295.97 23376.96 22078.64 24389.39 256
CVMVSNet84.83 19885.57 16982.63 30991.55 24160.38 35095.13 22395.03 19080.60 21782.10 19094.71 16266.40 22790.19 34574.30 24790.32 15797.31 137
ACMP81.66 1184.00 21183.22 20786.33 25891.53 24372.95 29495.91 19493.79 25783.70 16773.79 27492.22 19754.31 30796.89 20083.98 15379.74 23389.16 265
Qingshan Xu and Wenbing Tao: Planar Prior Assisted PatchMatch Multi-View Stereo. AAAI 2020
IterMVS-LS83.93 21282.80 21487.31 24491.46 24477.39 24295.66 20493.43 27480.44 22275.51 26387.26 26673.72 17295.16 27976.99 21870.72 28289.39 256
Fangjinhua Wang, Silvano Galliani, Christoph Vogel, Marc Pollefeys: IterMVS: Iterative Probability Estimation for Efficient Multi-View Stereo.
Patchmatch-test78.25 27774.72 29088.83 20991.20 24574.10 28473.91 35788.70 33959.89 35366.82 31685.12 30478.38 9494.54 29748.84 35279.58 23597.86 98
miper_lstm_enhance81.66 24980.66 24284.67 28391.19 24671.97 30291.94 28993.19 28577.86 26872.27 28985.26 29873.46 17593.42 31573.71 25367.05 31988.61 280
ACMM80.70 1383.72 21682.85 21186.31 26191.19 24672.12 29995.88 19594.29 23180.44 22277.02 23791.96 20155.24 30097.14 18979.30 19880.38 22989.67 253
Qingshan Xu and Wenbing Tao: Multi-Scale Geometric Consistency Guided Multi-View Stereo. CVPR 2019
TAMVS88.48 14287.79 13690.56 16791.09 24879.18 19196.45 16295.88 14583.64 16883.12 17693.33 18775.94 13495.74 25182.40 17488.27 17596.75 159
ACMH+76.62 1677.47 28574.94 28785.05 27791.07 24971.58 30893.26 27190.01 32671.80 31664.76 32588.55 24841.62 34196.48 21662.35 31071.00 27887.09 311
OpenMVScopyleft79.58 1486.09 18083.62 20193.50 6890.95 25086.71 3097.44 8795.83 14875.35 28772.64 28695.72 13457.42 28799.64 4671.41 26595.85 11094.13 211
LPG-MVS_test84.20 21083.49 20486.33 25890.88 25173.06 29295.28 21594.13 23882.20 19476.31 24793.20 18854.83 30496.95 19683.72 15880.83 22788.98 273
LGP-MVS_train86.33 25890.88 25173.06 29294.13 23882.20 19476.31 24793.20 18854.83 30496.95 19683.72 15880.83 22788.98 273
KD-MVS_2432*160077.63 28374.92 28885.77 26890.86 25379.44 18488.08 31793.92 24876.26 28267.05 31482.78 32172.15 18891.92 32961.53 31141.62 36085.94 325
miper_refine_blended77.63 28374.92 28885.77 26890.86 25379.44 18488.08 31793.92 24876.26 28267.05 31482.78 32172.15 18891.92 32961.53 31141.62 36085.94 325
baseline290.39 10590.21 9690.93 15690.86 25380.99 14695.20 22097.41 1586.03 10280.07 21394.61 16490.58 697.47 17187.29 13189.86 15994.35 207
PVSNet_077.72 1581.70 24778.95 26189.94 18790.77 25676.72 25395.96 18996.95 3485.01 12770.24 30288.53 25052.32 30898.20 14186.68 13844.08 35994.89 197
ACMH75.40 1777.99 27974.96 28687.10 24990.67 25776.41 25693.19 27491.64 30972.47 31363.44 33087.61 26243.34 33497.16 18658.34 32373.94 26387.72 297
Qingshan Xu and Wenbing Tao: Multi-Scale Geometric Consistency Guided Multi-View Stereo. CVPR 2019
MVS-HIRNet71.36 31567.00 31984.46 28990.58 25869.74 32179.15 34687.74 34246.09 35961.96 33850.50 36045.14 32995.64 25653.74 34088.11 17788.00 294
jason92.73 5492.23 6394.21 4190.50 25987.30 2598.65 2095.09 18690.61 2792.76 6597.13 10175.28 15297.30 17893.32 6096.75 9898.02 84
jason: jason.
LTVRE_ROB73.68 1877.99 27975.74 28384.74 28090.45 26072.02 30086.41 33191.12 31572.57 31266.63 31787.27 26554.95 30396.98 19456.29 33375.98 25485.21 331
Andreas Kuhn, Heiko Hirschmüller, Daniel Scharstein, Helmut Mayer: A TV Prior for High-Quality Scalable Multi-View Stereo Reconstruction. International Journal of Computer Vision 2016
XVG-OURS85.18 19384.38 19087.59 23590.42 26171.73 30691.06 30094.07 24382.00 19983.29 17495.08 15656.42 29397.55 16383.70 16083.42 21193.49 220
VPA-MVSNet85.32 19183.83 19689.77 19490.25 26282.63 10796.36 16997.07 2583.03 18081.21 19889.02 24161.58 25896.31 22385.02 14870.95 27990.36 237
XVG-OURS-SEG-HR85.74 18685.16 17887.49 24090.22 26371.45 30991.29 29794.09 24281.37 20583.90 16895.22 14660.30 26397.53 16785.58 14284.42 20693.50 219
tpm85.55 18884.47 18988.80 21090.19 26475.39 27388.79 31294.69 20784.83 13083.96 16685.21 30078.22 9794.68 29576.32 22878.02 25096.34 169
CR-MVSNet83.53 21881.36 23490.06 18190.16 26579.75 17679.02 34791.12 31584.24 15182.27 18880.35 33375.45 14493.67 31263.37 30786.25 18996.75 159
RPMNet79.85 26475.92 28291.64 13790.16 26579.75 17679.02 34795.44 16958.43 35682.27 18872.55 35173.03 17998.41 13546.10 35686.25 18996.75 159
FIs86.73 17386.10 16588.61 21390.05 26780.21 16796.14 18396.95 3485.56 11378.37 22692.30 19676.73 12095.28 27379.51 19479.27 23790.35 238
FMVSNet576.46 29274.16 29683.35 30490.05 26776.17 25989.58 30689.85 32771.39 31965.29 32480.42 33250.61 31287.70 35261.05 31669.24 29786.18 321
IterMVS80.67 25979.16 25985.20 27689.79 26976.08 26192.97 27791.86 30480.28 22871.20 29485.14 30357.93 28291.34 33572.52 25970.74 28188.18 291
Fangjinhua Wang, Silvano Galliani, Christoph Vogel, Marc Pollefeys: IterMVS: Iterative Probability Estimation for Efficient Multi-View Stereo.
UniMVSNet (Re)85.31 19284.23 19288.55 21489.75 27080.55 15896.72 14796.89 3985.42 11478.40 22588.93 24375.38 14895.52 26378.58 20468.02 30889.57 254
Patchmtry77.36 28674.59 29185.67 27189.75 27075.75 27077.85 35091.12 31560.28 35071.23 29380.35 33375.45 14493.56 31457.94 32467.34 31787.68 299
JIA-IIPM79.00 27377.20 27184.40 29089.74 27264.06 34075.30 35495.44 16962.15 34281.90 19259.08 35778.92 8695.59 26066.51 29285.78 19793.54 218
MS-PatchMatch83.05 22781.82 22786.72 25689.64 27379.10 19594.88 23294.59 21879.70 24070.67 29889.65 23450.43 31396.82 20570.82 27495.99 10884.25 337
IterMVS-SCA-FT80.51 26179.10 26084.73 28189.63 27474.66 27792.98 27691.81 30680.05 23371.06 29685.18 30158.04 27991.40 33472.48 26070.70 28388.12 292
Fast-Effi-MVS+-dtu83.33 22182.60 21785.50 27389.55 27569.38 32496.09 18691.38 31082.30 19375.96 25791.41 20756.71 28995.58 26175.13 23984.90 20491.54 226
PatchT79.75 26576.85 27588.42 21589.55 27575.49 27277.37 35194.61 21663.07 33982.46 18273.32 35075.52 14393.41 31651.36 34584.43 20596.36 167
GA-MVS85.79 18584.04 19591.02 15589.47 27780.27 16596.90 13694.84 20185.57 11080.88 20089.08 23956.56 29296.47 21777.72 21085.35 20196.34 169
UniMVSNet_NR-MVSNet85.49 18984.59 18588.21 22489.44 27879.36 18696.71 14996.41 10585.22 12178.11 22890.98 21676.97 11695.14 28079.14 20068.30 30590.12 244
FC-MVSNet-test85.96 18185.39 17287.66 23389.38 27978.02 22495.65 20596.87 4085.12 12577.34 23291.94 20376.28 12994.74 29377.09 21778.82 24190.21 242
WR-MVS84.32 20882.96 20888.41 21689.38 27980.32 16296.59 15496.25 12283.97 15776.63 24290.36 22667.53 21794.86 29175.82 23470.09 28990.06 248
VPNet84.69 20182.92 20990.01 18289.01 28183.45 9196.71 14995.46 16785.71 10879.65 21592.18 19856.66 29196.01 23283.05 17267.84 31190.56 234
nrg03086.79 17185.43 17190.87 15988.76 28285.34 4997.06 12394.33 23084.31 14780.45 20691.98 20072.36 18496.36 22088.48 12271.13 27790.93 232
DU-MVS84.57 20383.33 20688.28 22088.76 28279.36 18696.43 16695.41 17385.42 11478.11 22890.82 21767.61 21595.14 28079.14 20068.30 30590.33 239
NR-MVSNet83.35 22081.52 23288.84 20888.76 28281.31 14094.45 23995.16 18484.65 13767.81 31090.82 21770.36 20594.87 29074.75 24166.89 32190.33 239
test_040272.68 30969.54 31582.09 31388.67 28571.81 30592.72 28186.77 34561.52 34562.21 33683.91 31443.22 33593.76 31134.60 36172.23 27580.72 353
RPSCF77.73 28276.63 27781.06 31788.66 28655.76 35887.77 32187.88 34164.82 33874.14 27392.79 19349.22 31796.81 20667.47 28676.88 25390.62 233
FMVSNet179.50 26876.54 27888.39 21788.47 28781.95 11994.30 24593.38 27673.14 30672.04 29185.66 29043.86 33193.84 30865.48 29672.53 27189.38 258
OPM-MVS85.84 18385.10 18088.06 22688.34 28877.83 23395.72 20194.20 23487.89 7280.45 20694.05 17758.57 27597.26 18283.88 15482.76 22189.09 267
Ray L. Khuboni, Hongjun Xu: Octagram Propagation Matching for Multi-Scale View Stereopsis (OPM-MVS).
tfpnnormal78.14 27875.42 28486.31 26188.33 28979.24 18994.41 24096.22 12473.51 30269.81 30485.52 29655.43 29895.75 24847.65 35467.86 31083.95 340
MVS_030478.43 27576.70 27683.60 30088.22 29069.81 31992.91 27895.10 18572.32 31478.71 22280.29 33533.78 35493.37 31768.77 28180.23 23087.63 300
TinyColmap72.41 31068.99 31782.68 30888.11 29169.59 32288.41 31585.20 35065.55 33557.91 34884.82 30830.80 36095.94 23751.38 34468.70 30082.49 348
WR-MVS_H81.02 25580.09 24983.79 29588.08 29271.26 31194.46 23896.54 8980.08 23272.81 28586.82 27370.36 20592.65 32164.18 30167.50 31487.46 307
CP-MVSNet81.01 25680.08 25083.79 29587.91 29370.51 31394.29 24895.65 15680.83 21272.54 28888.84 24463.71 24192.32 32468.58 28368.36 30488.55 281
D2MVS82.67 23481.55 23086.04 26587.77 29476.47 25495.21 21996.58 8382.66 18970.26 30185.46 29760.39 26295.80 24576.40 22679.18 23885.83 327
TranMVSNet+NR-MVSNet83.24 22481.71 22887.83 22987.71 29578.81 20296.13 18594.82 20284.52 14076.18 25390.78 21964.07 24094.60 29674.60 24566.59 32390.09 246
USDC78.65 27476.25 27985.85 26687.58 29674.60 27889.58 30690.58 32484.05 15463.13 33288.23 25340.69 34596.86 20466.57 29175.81 25686.09 323
PS-CasMVS80.27 26279.18 25883.52 30287.56 29769.88 31894.08 25295.29 18080.27 22972.08 29088.51 25159.22 27292.23 32667.49 28568.15 30788.45 285
MIMVSNet79.18 27275.99 28188.72 21287.37 29880.66 15579.96 34291.82 30577.38 27474.33 27281.87 32541.78 34090.74 34166.36 29483.10 21494.76 200
XXY-MVS83.84 21382.00 22489.35 19887.13 29981.38 13895.72 20194.26 23280.15 23175.92 25890.63 22061.96 25696.52 21578.98 20273.28 27090.14 243
ITE_SJBPF82.38 31087.00 30065.59 33589.55 32979.99 23569.37 30691.30 21041.60 34295.33 27062.86 30974.63 26286.24 320
test0.0.03 182.79 23282.48 21883.74 29786.81 30172.22 29696.52 15695.03 19083.76 16573.00 28293.20 18872.30 18688.88 34864.15 30277.52 25190.12 244
v881.88 24580.06 25287.32 24386.63 30279.04 19894.41 24093.65 26578.77 25973.19 28185.57 29466.87 22395.81 24473.84 25267.61 31387.11 310
v1081.43 25179.53 25787.11 24886.38 30378.87 19994.31 24493.43 27477.88 26773.24 28085.26 29865.44 23195.75 24872.14 26167.71 31286.72 314
PEN-MVS79.47 26978.26 26583.08 30586.36 30468.58 32693.85 25594.77 20679.76 23871.37 29288.55 24859.79 26492.46 32264.50 30065.40 32588.19 290
UniMVSNet_ETH3D80.86 25878.75 26287.22 24786.31 30572.02 30091.95 28893.76 26173.51 30275.06 26890.16 23043.04 33795.66 25376.37 22778.55 24693.98 213
v114482.90 23181.27 23587.78 23186.29 30679.07 19796.14 18393.93 24780.05 23377.38 23186.80 27465.50 23095.93 23975.21 23870.13 28688.33 288
V4283.04 22881.53 23187.57 23786.27 30779.09 19695.87 19694.11 24080.35 22677.22 23586.79 27565.32 23496.02 23177.74 20970.14 28587.61 302
v2v48283.46 21981.86 22688.25 22286.19 30879.65 18196.34 17194.02 24581.56 20477.32 23388.23 25365.62 22996.03 23077.77 20869.72 29389.09 267
v14882.41 24080.89 23786.99 25086.18 30976.81 25196.27 17593.82 25380.49 22175.28 26686.11 28967.32 22095.75 24875.48 23667.03 32088.42 286
pmmvs482.54 23680.79 23887.79 23086.11 31080.49 16193.55 26193.18 28677.29 27573.35 27889.40 23865.26 23595.05 28775.32 23773.61 26587.83 296
MVP-Stereo82.65 23581.67 22985.59 27286.10 31178.29 21493.33 26692.82 29377.75 26969.17 30887.98 25759.28 27195.76 24771.77 26296.88 9382.73 345
Qingsong Yan: MVP-Stereo: A Parallel Multi-View Patchmatch Stereo Method with Dilation Matching for Photogrammetric Application.
v119282.31 24180.55 24487.60 23485.94 31278.47 21095.85 19893.80 25679.33 24676.97 23886.51 27863.33 24495.87 24173.11 25570.13 28688.46 284
TransMVSNet (Re)76.94 28974.38 29384.62 28585.92 31375.25 27495.28 21589.18 33373.88 30067.22 31186.46 28059.64 26594.10 30459.24 32252.57 35084.50 335
PS-MVSNAJss84.91 19784.30 19186.74 25285.89 31474.40 28294.95 23094.16 23783.93 16076.45 24590.11 23271.04 19995.77 24683.16 17079.02 24090.06 248
v14419282.43 23780.73 24087.54 23885.81 31578.22 21795.98 18893.78 25879.09 25377.11 23686.49 27964.66 23995.91 24074.20 24869.42 29488.49 282
v192192082.02 24480.23 24887.41 24185.62 31677.92 23095.79 20093.69 26378.86 25876.67 24186.44 28162.50 24795.83 24372.69 25769.77 29288.47 283
v124081.70 24779.83 25587.30 24585.50 31777.70 23795.48 20993.44 27378.46 26376.53 24486.44 28160.85 26195.84 24271.59 26470.17 28488.35 287
pm-mvs180.05 26378.02 26686.15 26385.42 31875.81 26995.11 22592.69 29677.13 27770.36 30087.43 26358.44 27795.27 27471.36 26664.25 33087.36 308
our_test_377.90 28175.37 28585.48 27485.39 31976.74 25293.63 25891.67 30773.39 30565.72 32284.65 30958.20 27893.13 31957.82 32567.87 30986.57 316
ppachtmachnet_test77.19 28774.22 29586.13 26485.39 31978.22 21793.98 25391.36 31271.74 31767.11 31384.87 30756.67 29093.37 31752.21 34364.59 32786.80 313
MDA-MVSNet-bldmvs71.45 31467.94 31881.98 31485.33 32168.50 32792.35 28688.76 33770.40 32142.99 35981.96 32446.57 32691.31 33648.75 35354.39 34486.11 322
Baseline_NR-MVSNet81.22 25480.07 25184.68 28285.32 32275.12 27596.48 15888.80 33676.24 28477.28 23486.40 28467.61 21594.39 30075.73 23566.73 32284.54 334
DTE-MVSNet78.37 27677.06 27382.32 31285.22 32367.17 33293.40 26393.66 26478.71 26070.53 29988.29 25259.06 27392.23 32661.38 31463.28 33487.56 304
pmmvs581.34 25279.54 25686.73 25585.02 32476.91 24996.22 17891.65 30877.65 27073.55 27588.61 24755.70 29794.43 29974.12 24973.35 26988.86 279
XVG-ACMP-BASELINE79.38 27077.90 26783.81 29484.98 32567.14 33389.03 31093.18 28680.26 23072.87 28488.15 25538.55 34696.26 22476.05 23178.05 24988.02 293
MDA-MVSNet_test_wron73.54 30470.43 31182.86 30684.55 32671.85 30391.74 29391.32 31467.63 32946.73 35881.09 33055.11 30190.42 34455.91 33559.76 33886.31 319
SixPastTwentyTwo76.04 29374.32 29481.22 31684.54 32761.43 34991.16 29889.30 33277.89 26664.04 32786.31 28548.23 31894.29 30263.54 30663.84 33287.93 295
YYNet173.53 30570.43 31182.85 30784.52 32871.73 30691.69 29491.37 31167.63 32946.79 35781.21 32955.04 30290.43 34355.93 33459.70 33986.38 318
N_pmnet61.30 32460.20 32764.60 34184.32 32917.00 37691.67 29510.98 37561.77 34458.45 34778.55 34049.89 31591.83 33142.27 35963.94 33184.97 332
mvs_tets81.74 24680.71 24184.84 27984.22 33070.29 31593.91 25493.78 25882.77 18673.37 27789.46 23747.36 32595.31 27281.99 17779.55 23688.92 277
jajsoiax82.12 24381.15 23685.03 27884.19 33170.70 31294.22 24993.95 24683.07 17873.48 27689.75 23349.66 31695.37 26882.24 17679.76 23189.02 271
EU-MVSNet76.92 29076.95 27476.83 33184.10 33254.73 36091.77 29292.71 29572.74 31069.57 30588.69 24658.03 28187.43 35364.91 29970.00 29088.33 288
test_djsdf83.00 23082.45 21984.64 28484.07 33369.78 32094.80 23494.48 22180.74 21475.41 26587.70 26061.32 26095.10 28483.77 15679.76 23189.04 270
v7n79.32 27177.34 27085.28 27584.05 33472.89 29593.38 26493.87 25175.02 29270.68 29784.37 31059.58 26795.62 25867.60 28467.50 31487.32 309
OurMVSNet-221017-077.18 28876.06 28080.55 32083.78 33560.00 35190.35 30291.05 31877.01 28166.62 31887.92 25847.73 32394.03 30571.63 26368.44 30387.62 301
EG-PatchMatch MVS74.92 29972.02 30483.62 29983.76 33673.28 29093.62 25992.04 30368.57 32858.88 34583.80 31531.87 35895.57 26256.97 33178.67 24282.00 351
K. test v373.62 30271.59 30679.69 32382.98 33759.85 35290.85 30188.83 33577.13 27758.90 34482.11 32343.62 33291.72 33265.83 29554.10 34587.50 306
bset_n11_16_dypcd84.35 20782.83 21388.91 20682.54 33882.07 11894.12 25193.47 27185.39 11678.55 22388.98 24262.23 24995.11 28286.75 13773.42 26689.55 255
anonymousdsp80.98 25779.97 25384.01 29281.73 33970.44 31492.49 28393.58 26977.10 27972.98 28386.31 28557.58 28394.90 28979.32 19778.63 24586.69 315
Anonymous2023120675.29 29873.64 29980.22 32180.75 34063.38 34293.36 26590.71 32373.09 30767.12 31283.70 31650.33 31490.85 34053.63 34170.10 28886.44 317
Gipumacopyleft45.11 33042.05 33254.30 34680.69 34151.30 36235.80 36483.81 35628.13 36327.94 36534.53 36411.41 37076.70 36221.45 36454.65 34334.90 364
S. Galliani, K. Lasinger, K. Schindler: Massively Parallel Multiview Stereopsis by Surface Normal Diffusion. ICCV 2015
lessismore_v079.98 32280.59 34258.34 35480.87 36158.49 34683.46 31843.10 33693.89 30763.11 30848.68 35287.72 297
OpenMVS_ROBcopyleft68.52 2073.02 30869.57 31483.37 30380.54 34371.82 30493.60 26088.22 34062.37 34161.98 33783.15 32035.31 35395.47 26445.08 35775.88 25582.82 343
testgi74.88 30073.40 30079.32 32580.13 34461.75 34693.21 27286.64 34679.49 24466.56 31991.06 21335.51 35288.67 34956.79 33271.25 27687.56 304
CMPMVSbinary54.94 2175.71 29774.56 29279.17 32679.69 34555.98 35689.59 30593.30 28260.28 35053.85 35489.07 24047.68 32496.33 22176.55 22381.02 22685.22 330
M. Jancosek, T. Pajdla: Multi-View Reconstruction Preserving Weakly-Supported Surfaces. CVPR 2011
LF4IMVS72.36 31170.82 30876.95 33079.18 34656.33 35586.12 33286.11 34869.30 32763.06 33386.66 27633.03 35692.25 32565.33 29768.64 30182.28 349
pmmvs674.65 30171.67 30583.60 30079.13 34769.94 31793.31 27090.88 32261.05 34965.83 32184.15 31343.43 33394.83 29266.62 28960.63 33786.02 324
DeepMVS_CXcopyleft64.06 34278.53 34843.26 36668.11 36969.94 32438.55 36076.14 34518.53 36479.34 35943.72 35841.62 36069.57 359
CL-MVSNet_2432*160075.81 29574.14 29780.83 31978.33 34967.79 32994.22 24993.52 27077.28 27669.82 30381.54 32761.47 25989.22 34757.59 32753.51 34685.48 329
test20.0372.36 31171.15 30775.98 33577.79 35059.16 35392.40 28589.35 33174.09 29861.50 33984.32 31148.09 31985.54 35850.63 34862.15 33683.24 341
UnsupCasMVSNet_eth73.25 30670.57 31081.30 31577.53 35166.33 33487.24 32593.89 25080.38 22557.90 34981.59 32642.91 33890.56 34265.18 29848.51 35387.01 312
DSMNet-mixed73.13 30772.45 30375.19 33777.51 35246.82 36385.09 33782.01 36067.61 33369.27 30781.33 32850.89 31086.28 35554.54 33883.80 20892.46 223
Patchmatch-RL test76.65 29174.01 29884.55 28677.37 35364.23 33878.49 34982.84 35978.48 26264.63 32673.40 34976.05 13291.70 33376.99 21857.84 34097.72 109
Anonymous2024052172.06 31369.91 31378.50 32777.11 35461.67 34891.62 29690.97 32065.52 33662.37 33579.05 33936.32 34990.96 33957.75 32668.52 30282.87 342
test_method56.77 32554.53 32863.49 34376.49 35540.70 36875.68 35374.24 36619.47 36748.73 35671.89 35319.31 36365.80 36657.46 32847.51 35683.97 339
MIMVSNet169.44 31766.65 32177.84 32876.48 35662.84 34487.42 32388.97 33466.96 33457.75 35079.72 33832.77 35785.83 35746.32 35563.42 33384.85 333
pmmvs-eth3d73.59 30370.66 30982.38 31076.40 35773.38 28789.39 30989.43 33072.69 31160.34 34377.79 34246.43 32791.26 33766.42 29357.06 34182.51 346
new_pmnet66.18 32263.18 32575.18 33876.27 35861.74 34783.79 33984.66 35256.64 35751.57 35571.85 35431.29 35987.93 35149.98 34962.55 33575.86 356
DIV-MVS_2432*160070.97 31669.31 31675.95 33676.24 35955.39 35987.45 32290.94 32170.20 32362.96 33477.48 34344.01 33088.09 35061.25 31553.26 34784.37 336
UnsupCasMVSNet_bld68.60 32164.50 32480.92 31874.63 36067.80 32883.97 33892.94 29265.12 33754.63 35368.23 35535.97 35092.17 32860.13 31744.83 35782.78 344
PM-MVS69.32 31866.93 32076.49 33273.60 36155.84 35785.91 33379.32 36474.72 29461.09 34078.18 34121.76 36291.10 33870.86 27256.90 34282.51 346
new-patchmatchnet68.85 32065.93 32277.61 32973.57 36263.94 34190.11 30488.73 33871.62 31855.08 35273.60 34840.84 34487.22 35451.35 34648.49 35481.67 352
ambc76.02 33468.11 36351.43 36164.97 36089.59 32860.49 34274.49 34617.17 36592.46 32261.50 31352.85 34984.17 338
pmmvs365.75 32362.18 32676.45 33367.12 36464.54 33788.68 31385.05 35154.77 35857.54 35173.79 34729.40 36186.21 35655.49 33747.77 35578.62 354
TDRefinement69.20 31965.78 32379.48 32466.04 36562.21 34588.21 31686.12 34762.92 34061.03 34185.61 29333.23 35594.16 30355.82 33653.02 34882.08 350
FPMVS55.09 32652.93 32961.57 34455.98 36640.51 36983.11 34083.41 35837.61 36134.95 36271.95 35214.40 36676.95 36029.81 36265.16 32667.25 360
PMMVS250.90 32846.31 33164.67 34055.53 36746.67 36477.30 35271.02 36740.89 36034.16 36359.32 3569.83 37176.14 36340.09 36028.63 36371.21 357
wuyk23d14.10 33713.89 34014.72 35255.23 36822.91 37533.83 3653.56 3764.94 3704.11 3712.28 3722.06 37519.66 37110.23 3698.74 3691.59 369
E-PMN32.70 33432.39 33633.65 35053.35 36925.70 37374.07 35653.33 37321.08 36517.17 36933.63 36611.85 36954.84 36812.98 36714.04 36520.42 365
EMVS31.70 33531.45 33732.48 35150.72 37023.95 37474.78 35552.30 37420.36 36616.08 37031.48 36712.80 36753.60 36911.39 36813.10 36819.88 366
LCM-MVSNet52.52 32748.24 33065.35 33947.63 37141.45 36772.55 35883.62 35731.75 36237.66 36157.92 3589.19 37276.76 36149.26 35144.60 35877.84 355
MVEpermissive35.65 2233.85 33329.49 33846.92 34841.86 37236.28 37050.45 36356.52 37218.75 36818.28 36737.84 3632.41 37458.41 36718.71 36520.62 36446.06 362
Simon Fuhrmann, Fabian Langguth, Michael Goesele: MVE - A Multi-View Reconstruction Environment. EUROGRAPHICS Workshops on Graphics and Cultural Heritage (2014)
ANet_high46.22 32941.28 33461.04 34539.91 37346.25 36570.59 35976.18 36558.87 35523.09 36648.00 36212.58 36866.54 36528.65 36313.62 36670.35 358
PMVScopyleft34.80 2339.19 33235.53 33550.18 34729.72 37430.30 37159.60 36266.20 37026.06 36417.91 36849.53 3613.12 37374.09 36418.19 36649.40 35146.14 361
Y. Furukawa, J. Ponce: Accurate, dense, and robust multiview stereopsis. PAMI (2010)
tmp_tt41.54 33141.93 33340.38 34920.10 37526.84 37261.93 36159.09 37114.81 36928.51 36480.58 33135.53 35148.33 37063.70 30513.11 36745.96 363
testmvs9.92 33812.94 3410.84 3540.65 3760.29 37893.78 2560.39 3770.42 3712.85 37215.84 3700.17 3770.30 3732.18 3700.21 3701.91 368
test1239.07 33911.73 3421.11 3530.50 3770.77 37789.44 3080.20 3780.34 3722.15 37310.72 3710.34 3760.32 3721.79 3710.08 3712.23 367
test_blank0.00 3420.00 3450.00 3550.00 3780.00 3790.00 3660.00 3790.00 3730.00 3740.00 3730.00 3780.00 3740.00 3720.00 3720.00 370
eth-test20.00 378
eth-test0.00 378
uanet_test0.00 3420.00 3450.00 3550.00 3780.00 3790.00 3660.00 3790.00 3730.00 3740.00 3730.00 3780.00 3740.00 3720.00 3720.00 370
cdsmvs_eth3d_5k21.43 33628.57 3390.00 3550.00 3780.00 3790.00 36695.93 1430.00 3730.00 37497.66 7263.57 2420.00 3740.00 3720.00 3720.00 370
pcd_1.5k_mvsjas5.92 3417.89 3440.00 3550.00 3780.00 3790.00 3660.00 3790.00 3730.00 3740.00 37371.04 1990.00 3740.00 3720.00 3720.00 370
sosnet-low-res0.00 3420.00 3450.00 3550.00 3780.00 3790.00 3660.00 3790.00 3730.00 3740.00 3730.00 3780.00 3740.00 3720.00 3720.00 370
sosnet0.00 3420.00 3450.00 3550.00 3780.00 3790.00 3660.00 3790.00 3730.00 3740.00 3730.00 3780.00 3740.00 3720.00 3720.00 370
uncertanet0.00 3420.00 3450.00 3550.00 3780.00 3790.00 3660.00 3790.00 3730.00 3740.00 3730.00 3780.00 3740.00 3720.00 3720.00 370
Regformer0.00 3420.00 3450.00 3550.00 3780.00 3790.00 3660.00 3790.00 3730.00 3740.00 3730.00 3780.00 3740.00 3720.00 3720.00 370
ab-mvs-re8.11 34010.81 3430.00 3550.00 3780.00 3790.00 3660.00 3790.00 3730.00 37497.30 940.00 3780.00 3740.00 3720.00 3720.00 370
uanet0.00 3420.00 3450.00 3550.00 3780.00 3790.00 3660.00 3790.00 3730.00 3740.00 3730.00 3780.00 3740.00 3720.00 3720.00 370
PC_three_145291.12 2198.33 298.42 2892.51 299.81 2098.96 299.37 199.70 3
test_241102_TWO96.78 4788.72 5197.70 698.91 387.86 2099.82 1798.15 399.00 1599.47 9
test_0728_THIRD88.38 5996.69 1298.76 1489.64 1299.76 2497.47 1398.84 2499.38 14
GSMVS97.54 121
sam_mvs177.59 10497.54 121
sam_mvs75.35 151
MTGPAbinary96.33 116
test_post185.88 33430.24 36873.77 17095.07 28673.89 250
test_post33.80 36576.17 13095.97 233
patchmatchnet-post77.09 34477.78 10395.39 266
MTMP97.53 8068.16 368
test9_res96.00 2599.03 1398.31 61
agg_prior294.30 4699.00 1598.57 45
test_prior482.34 11397.75 65
test_prior298.37 2886.08 10094.57 4198.02 5283.14 4795.05 3898.79 27
旧先验296.97 13174.06 29996.10 1997.76 15588.38 123
新几何296.42 167
无先验96.87 13796.78 4777.39 27399.52 5779.95 19098.43 53
原ACMM296.84 138
testdata299.48 6276.45 225
segment_acmp82.69 56
testdata195.57 20787.44 79
plane_prior594.69 20797.30 17887.08 13282.82 21990.96 230
plane_prior494.15 175
plane_prior377.75 23590.17 3481.33 196
plane_prior297.18 10689.89 36
plane_prior77.96 22797.52 8390.36 3382.96 217
n20.00 379
nn0.00 379
door-mid79.75 363
test1196.50 95
door80.13 362
HQP5-MVS78.48 207
BP-MVS87.67 128
HQP4-MVS82.30 18497.32 17691.13 228
HQP3-MVS94.80 20383.01 215
HQP2-MVS65.40 232
MDTV_nov1_ep13_2view81.74 13186.80 32780.65 21685.65 14874.26 16576.52 22496.98 147
ACMMP++_ref78.45 247
ACMMP++79.05 239
Test By Simon71.65 192