This table lists the benchmark results for the high-res multi-view scenario. The following metrics are evaluated:

(*) For exact definitions, detailing how potentially incomplete ground truth is taken into account, see our paper.

The datasets are grouped into different categories, and result averages are computed for a category and method if results of the method are available for all datasets within the category. Note that the category "all" includes both the high-res multi-view and the low-res many-view scenarios.

Methods with suffix _ROB may participate in the Robust Vision Challenge.

Click a dataset result cell to show a visualization of the reconstruction. For training datasets, ground truth and accuracy / completeness visualizations are also available. The visualizations may not work with mobile browsers.




Method Infoallhigh-res
multi-view
indooroutdoorbotani.boulde.bridgedoorexhibi.lectur.living.loungeobserv.old co.statueterrac.
sort bysort bysort bysort bysorted bysort bysort bysort bysort bysort bysort bysort bysort bysort bysort bysort by
AdaColmapbinary93.82 13193.06 13996.10 12099.88 189.07 17398.33 20497.55 12586.81 24590.39 20198.65 10175.09 24999.98 993.32 15697.53 13199.26 108
DP-MVS Recon95.85 6695.15 8297.95 3299.87 294.38 5599.60 3997.48 14186.58 24994.42 13299.13 4787.36 9899.98 993.64 14898.33 11499.48 86
MCST-MVS98.18 297.95 998.86 599.85 396.60 1099.70 2797.98 5397.18 495.96 9999.33 2292.62 25100.00 198.99 2599.93 199.98 6
CNVR-MVS98.46 198.38 198.72 1099.80 496.19 1599.80 1697.99 5297.05 699.41 499.59 292.89 24100.00 198.99 2599.90 799.96 10
MG-MVS97.24 2096.83 3198.47 1599.79 595.71 1999.07 11399.06 1094.45 4196.42 9398.70 9888.81 7199.74 9195.35 11399.86 1299.97 7
NCCC98.12 598.11 398.13 2599.76 694.46 5199.81 1297.88 5896.54 1398.84 2499.46 1092.55 2699.98 998.25 5099.93 199.94 18
region2R96.30 5096.17 5296.70 8599.70 790.31 14099.46 5997.66 9790.55 13297.07 7399.07 5486.85 10999.97 2195.43 11199.74 2999.81 35
HFP-MVS96.42 4696.26 4696.90 7399.69 890.96 12699.47 5597.81 6990.54 13396.88 7699.05 5787.57 9099.96 2895.65 10499.72 3299.78 41
ACMMPR96.28 5196.14 5696.73 8299.68 990.47 13899.47 5597.80 7190.54 13396.83 8199.03 5986.51 12199.95 3295.65 10499.72 3299.75 49
ZD-MVS99.67 1093.28 7597.61 11287.78 22097.41 6399.16 3990.15 5499.56 10898.35 4599.70 37
CP-MVS96.22 5296.15 5596.42 10299.67 1089.62 16499.70 2797.61 11290.07 14896.00 9899.16 3987.43 9399.92 4196.03 9999.72 3299.70 55
DVP-MVScopyleft98.07 798.00 698.29 1999.66 1295.20 3299.72 2497.47 14393.95 4999.07 1599.46 1093.18 2199.97 2199.64 899.82 1999.69 58
Zhenlong Yuan, Jinguo Luo, Fei Shen, Zhaoxin Li, Cong Liu, Tianlu Mao, Zhaoqi Wang: DVP-MVS: Synergize Depth-Edge and Visibility Prior for Multi-View Stereo. AAAI2025
test_0728_SECOND98.77 899.66 1296.37 1499.72 2497.68 9299.98 999.64 899.82 1999.96 10
test072699.66 1295.20 3299.77 1897.70 8893.95 4999.35 799.54 393.18 21
CPTT-MVS94.60 10994.43 9795.09 16199.66 1286.85 23499.44 6297.47 14383.22 30594.34 13698.96 7082.50 18799.55 10994.81 12799.50 5598.88 143
MSLP-MVS++97.50 1797.45 1897.63 4199.65 1693.21 7799.70 2798.13 4294.61 3697.78 5899.46 1089.85 5799.81 7997.97 5499.91 699.88 26
OPU-MVS99.49 499.64 1798.51 499.77 1899.19 3395.12 899.97 2199.90 199.92 399.99 1
SED-MVS98.18 298.10 498.41 1899.63 1895.24 2799.77 1897.72 8394.17 4499.30 899.54 393.32 1899.98 999.70 599.81 2399.99 1
IU-MVS99.63 1895.38 2497.73 8295.54 2699.54 399.69 799.81 2399.99 1
test_241102_ONE99.63 1895.24 2797.72 8394.16 4699.30 899.49 993.32 1899.98 9
PAPR96.35 4795.82 6297.94 3399.63 1894.19 6099.42 6797.55 12592.43 8793.82 14799.12 4987.30 10099.91 4694.02 14099.06 8099.74 50
XVS96.47 4596.37 4496.77 7899.62 2290.66 13499.43 6597.58 12092.41 9096.86 7798.96 7087.37 9599.87 5895.65 10499.43 6199.78 41
X-MVStestdata90.69 20688.66 22996.77 7899.62 2290.66 13499.43 6597.58 12092.41 9096.86 7729.59 42287.37 9599.87 5895.65 10499.43 6199.78 41
DVP-MVS++98.18 298.09 598.44 1699.61 2495.38 2499.55 4497.68 9293.01 7499.23 1099.45 1495.12 899.98 999.25 1899.92 399.97 7
MSC_two_6792asdad99.51 299.61 2498.60 297.69 9099.98 999.55 1399.83 1599.96 10
No_MVS99.51 299.61 2498.60 297.69 9099.98 999.55 1399.83 1599.96 10
DeepC-MVS_fast93.52 297.16 2496.84 2998.13 2599.61 2494.45 5298.85 13597.64 10596.51 1695.88 10299.39 1887.35 9999.99 596.61 8599.69 3899.96 10
Andreas Kuhn, Christian Sormann, Mattia Rossi, Oliver Erdler, Friedrich Fraundorfer: DeepC-MVS: Deep Confidence Prediction for Multi-View Stereo Reconstruction. 3DV 2020
test_one_060199.59 2894.89 3797.64 10593.14 7398.93 2199.45 1493.45 17
CDPH-MVS96.56 4396.18 4997.70 3999.59 2893.92 6399.13 10797.44 14989.02 17797.90 5599.22 3088.90 7099.49 11594.63 13299.79 2799.68 60
test_prior97.01 6499.58 3091.77 10497.57 12399.49 11599.79 38
APDe-MVScopyleft97.53 1597.47 1697.70 3999.58 3093.63 6799.56 4397.52 13393.59 6498.01 5299.12 4990.80 4299.55 10999.26 1799.79 2799.93 20
Zhaojie Zeng, Yuesong Wang, Tao Guan: Matching Ambiguity-Resilient Multi-View Stereo via Adaptive Patch Deformation. Pattern Recognition
mPP-MVS95.90 6595.75 6796.38 10599.58 3089.41 16899.26 8597.41 15390.66 12594.82 12498.95 7386.15 12999.98 995.24 11899.64 4299.74 50
TEST999.57 3393.17 7899.38 7197.66 9789.57 16298.39 3799.18 3690.88 4099.66 97
train_agg97.20 2397.08 2397.57 4599.57 3393.17 7899.38 7197.66 9790.18 14298.39 3799.18 3690.94 3799.66 9798.58 3699.85 1399.88 26
test_899.55 3593.07 8199.37 7497.64 10590.18 14298.36 3999.19 3390.94 3799.64 103
test_part299.54 3695.42 2298.13 44
MSP-MVS97.77 1098.18 296.53 9799.54 3690.14 14699.41 6897.70 8895.46 2898.60 3199.19 3395.71 599.49 11598.15 5299.85 1399.95 15
Zhenlong Yuan, Cong Liu, Fei Shen, Zhaoxin Li, Jingguo luo, Tianlu Mao and Zhaoqi Wang: MSP-MVS: Multi-granularity Segmentation Prior Guided Multi-View Stereo. AAAI2025
agg_prior99.54 3692.66 9197.64 10597.98 5399.61 105
CSCG94.87 9894.71 9195.36 14999.54 3686.49 23999.34 7798.15 4082.71 31890.15 20499.25 2689.48 6299.86 6394.97 12598.82 9599.72 53
HPM-MVS++copyleft97.72 1297.59 1398.14 2499.53 4094.76 4599.19 9097.75 7895.66 2498.21 4299.29 2391.10 3499.99 597.68 6099.87 999.68 60
APD-MVScopyleft96.95 2996.72 3597.63 4199.51 4193.58 6899.16 9697.44 14990.08 14798.59 3299.07 5489.06 6599.42 12697.92 5599.66 3999.88 26
Yuesong Wang, Zhaojie Zeng and etc.: Adaptive Patch Deformation for Textureless-Resilient Multi-View Stereo. CVPR2023
FOURS199.50 4288.94 18299.55 4497.47 14391.32 11398.12 46
DPE-MVScopyleft98.11 698.00 698.44 1699.50 4295.39 2399.29 8097.72 8394.50 3898.64 3099.54 393.32 1899.97 2199.58 1199.90 799.95 15
Kehua Chen, Zhenlong Yuan, Tianlu Mao, Zhaoqi Wang: Dual-Level Precision Edges Guided Multi-View Stereo with Accurate Planarization. AAAI2025
PGM-MVS95.85 6695.65 7296.45 10099.50 4289.77 16198.22 21398.90 1389.19 17296.74 8698.95 7385.91 13399.92 4193.94 14199.46 5799.66 64
GST-MVS95.97 6095.66 7096.90 7399.49 4591.22 11399.45 6197.48 14189.69 15695.89 10198.72 9486.37 12499.95 3294.62 13399.22 7499.52 80
MP-MVScopyleft96.00 5795.82 6296.54 9699.47 4690.13 14899.36 7597.41 15390.64 12895.49 11498.95 7385.51 13899.98 996.00 10099.59 5199.52 80
Rongxuan Tan, Qing Wang, et al.: MP-MVS: Multi-Scale Windows PatchMatch and Planar Prior Multi-View Stereo.
ZNCC-MVS96.09 5595.81 6496.95 7299.42 4791.19 11599.55 4497.53 12989.72 15595.86 10498.94 7686.59 11799.97 2195.13 11999.56 5299.68 60
SR-MVS96.13 5496.16 5496.07 12199.42 4789.04 17498.59 17197.33 16390.44 13696.84 7999.12 4986.75 11199.41 12997.47 6399.44 6099.76 48
PAPM_NR95.43 8095.05 8796.57 9599.42 4790.14 14698.58 17397.51 13590.65 12792.44 16598.90 7987.77 8999.90 5090.88 18099.32 6699.68 60
9.1496.87 2799.34 5099.50 5197.49 14089.41 16998.59 3299.43 1689.78 5899.69 9498.69 3099.62 46
save fliter99.34 5093.85 6599.65 3697.63 10995.69 22
PHI-MVS96.65 4096.46 4297.21 5899.34 5091.77 10499.70 2798.05 4686.48 25498.05 4999.20 3289.33 6399.96 2898.38 4399.62 4699.90 22
test1297.83 3599.33 5394.45 5297.55 12597.56 5988.60 7499.50 11499.71 3699.55 77
SMA-MVScopyleft97.24 2096.99 2498.00 3199.30 5494.20 5999.16 9697.65 10489.55 16499.22 1299.52 890.34 5199.99 598.32 4799.83 1599.82 32
Yufeng Yin; Xiaoyan Liu; Zichao Zhang: SMA-MVS: Segmentation-Guided Multi-Scale Anchor Deformation Patch Multi-View Stereo. IEEE Transactions on Circuits and Systems for Video Technology
MTAPA96.09 5595.80 6596.96 7199.29 5591.19 11597.23 27497.45 14692.58 8494.39 13499.24 2886.43 12399.99 596.22 9299.40 6499.71 54
HPM-MVScopyleft95.41 8295.22 8095.99 12799.29 5589.14 17199.17 9597.09 18887.28 23495.40 11598.48 11684.93 14899.38 13195.64 10899.65 4099.47 88
Chunlin Ren, Qingshan Xu, Shikun Zhang, Jiaqi Yang: Hierarchical Prior Mining for Non-local Multi-View Stereo. ICCV 2023
ACMMPcopyleft94.67 10794.30 9895.79 13499.25 5788.13 20398.41 19298.67 2190.38 13891.43 18298.72 9482.22 19699.95 3293.83 14595.76 16599.29 105
Qingshan Xu, Weihang Kong, Wenbing Tao, Marc Pollefeys: Multi-Scale Geometric Consistency Guided and Planar Prior Assisted Multi-View Stereo. IEEE Transactions on Pattern Analysis and Machine Intelligence
APD-MVS_3200maxsize95.64 7795.65 7295.62 14299.24 5887.80 20998.42 19097.22 17188.93 18296.64 9198.98 6485.49 13999.36 13396.68 8299.27 7099.70 55
SR-MVS-dyc-post95.75 7295.86 6195.41 14899.22 5987.26 22998.40 19597.21 17289.63 15896.67 8998.97 6586.73 11399.36 13396.62 8399.31 6799.60 73
RE-MVS-def95.70 6899.22 5987.26 22998.40 19597.21 17289.63 15896.67 8998.97 6585.24 14596.62 8399.31 6799.60 73
patch_mono-297.10 2697.97 894.49 18399.21 6183.73 29999.62 3898.25 3195.28 3099.38 698.91 7892.28 2999.94 3599.61 1099.22 7499.78 41
API-MVS94.78 10194.18 10496.59 9299.21 6190.06 15398.80 14197.78 7583.59 30093.85 14599.21 3183.79 16199.97 2192.37 16799.00 8499.74 50
PLCcopyleft91.07 394.23 11994.01 10894.87 16999.17 6387.49 21899.25 8696.55 22388.43 19791.26 18698.21 12985.92 13199.86 6389.77 19597.57 12897.24 217
Jie Liao, Yanping Fu, Qingan Yan, Chunxia xiao: Pyramid Multi-View Stereo with Local Consistency. Pacific Graphics 2019
EI-MVSNet-Vis-set95.76 7195.63 7496.17 11799.14 6490.33 13998.49 18397.82 6691.92 9894.75 12698.88 8387.06 10599.48 11995.40 11297.17 14198.70 160
TSAR-MVS + MP.97.44 1897.46 1797.39 5299.12 6593.49 7298.52 17797.50 13894.46 3998.99 1798.64 10291.58 3199.08 15198.49 4099.83 1599.60 73
Zhenlong Yuan, Jiakai Cao, Zhaoqi Wang, Zhaoxin Li: TSAR-MVS: Textureless-aware Segmentation and Correlative Refinement Guided Multi-View Stereo. Pattern Recognition
SF-MVS97.22 2296.92 2598.12 2799.11 6694.88 3899.44 6297.45 14689.60 16098.70 2799.42 1790.42 4899.72 9298.47 4199.65 4099.77 46
HPM-MVS_fast94.89 9494.62 9295.70 13799.11 6688.44 19999.14 10497.11 18485.82 26295.69 11098.47 11783.46 16699.32 13893.16 15899.63 4599.35 99
MAR-MVS94.43 11594.09 10695.45 14699.10 6887.47 21998.39 19997.79 7388.37 19994.02 14299.17 3878.64 23399.91 4692.48 16698.85 9498.96 133
Zhenyu Xu, Yiguang Liu, Xuelei Shi, Ying Wang, Yunan Zheng: MARMVS: Matching Ambiguity Reduced Multiple View Stereo for Efficient Large Scale Scene Reconstruction. CVPR 2020
114514_t94.06 12193.05 14097.06 6299.08 6992.26 9998.97 12797.01 19682.58 32092.57 16398.22 12780.68 21499.30 13989.34 20199.02 8399.63 70
EI-MVSNet-UG-set95.43 8095.29 7895.86 13299.07 7089.87 15898.43 18997.80 7191.78 10094.11 13998.77 8886.25 12799.48 11994.95 12696.45 15198.22 189
原ACMM196.18 11599.03 7190.08 14997.63 10988.98 17897.00 7498.97 6588.14 8399.71 9388.23 21399.62 4698.76 157
SD-MVS97.51 1697.40 1997.81 3699.01 7293.79 6699.33 7897.38 15693.73 6098.83 2599.02 6190.87 4199.88 5498.69 3099.74 2999.77 46
Zhenlong Yuan, Jiakai Cao, Zhaoxin Li, Hao Jiang and Zhaoqi Wang: SD-MVS: Segmentation-driven Deformation Multi-View Stereo with Spherical Refinement and EM optimization. AAAI2024
MVS_030497.81 997.51 1598.74 998.97 7396.57 1199.91 298.17 3697.45 398.76 2698.97 6586.69 11499.96 2899.72 398.92 9099.69 58
旧先验198.97 7392.90 8997.74 7999.15 4291.05 3699.33 6599.60 73
LS3D90.19 21688.72 22794.59 18298.97 7386.33 24696.90 28696.60 21774.96 37484.06 26098.74 9175.78 24699.83 7374.93 33497.57 12897.62 207
CNLPA93.64 13892.74 14796.36 10798.96 7690.01 15699.19 9095.89 28086.22 25789.40 21398.85 8480.66 21599.84 6988.57 20996.92 14599.24 109
reproduce-ours96.66 3796.80 3296.22 11198.95 7789.03 17698.62 16397.38 15693.42 6696.80 8499.36 1988.92 6899.80 8198.51 3899.26 7199.82 32
our_new_method96.66 3796.80 3296.22 11198.95 7789.03 17698.62 16397.38 15693.42 6696.80 8499.36 1988.92 6899.80 8198.51 3899.26 7199.82 32
MP-MVS-pluss95.80 6895.30 7797.29 5498.95 7792.66 9198.59 17197.14 18088.95 18093.12 15699.25 2685.62 13599.94 3596.56 8799.48 5699.28 106
MP-MVS-pluss: MP-MVS-pluss. MP-MVS-pluss
reproduce_model96.57 4296.75 3496.02 12498.93 8088.46 19898.56 17497.34 16293.18 7296.96 7599.35 2188.69 7399.80 8198.53 3799.21 7799.79 38
新几何197.40 5198.92 8192.51 9697.77 7785.52 26796.69 8899.06 5688.08 8499.89 5384.88 25199.62 4699.79 38
DP-MVS88.75 24486.56 26395.34 15198.92 8187.45 22097.64 25893.52 36370.55 38781.49 30197.25 16674.43 25599.88 5471.14 35894.09 18198.67 162
TSAR-MVS + GP.96.95 2996.91 2697.07 6198.88 8391.62 10799.58 4196.54 22495.09 3296.84 7998.63 10491.16 3299.77 8899.04 2496.42 15299.81 35
CANet97.00 2896.49 4098.55 1298.86 8496.10 1699.83 1097.52 13395.90 1997.21 6998.90 7982.66 18699.93 3998.71 2998.80 9699.63 70
dcpmvs_295.67 7696.18 4994.12 19998.82 8584.22 29297.37 26795.45 30790.70 12495.77 10798.63 10490.47 4698.68 17199.20 2099.22 7499.45 89
ACMMP_NAP96.59 4196.18 4997.81 3698.82 8593.55 6998.88 13497.59 11890.66 12597.98 5399.14 4586.59 117100.00 196.47 8999.46 5799.89 25
PVSNet_BlendedMVS93.36 14693.20 13793.84 21198.77 8791.61 10899.47 5598.04 4891.44 10994.21 13792.63 28683.50 16499.87 5897.41 6483.37 28390.05 348
PVSNet_Blended95.94 6395.66 7096.75 8098.77 8791.61 10899.88 498.04 4893.64 6394.21 13797.76 14083.50 16499.87 5897.41 6497.75 12698.79 153
DeepPCF-MVS93.56 196.55 4497.84 1092.68 23698.71 8978.11 35899.70 2797.71 8798.18 197.36 6599.76 190.37 5099.94 3599.27 1699.54 5499.99 1
EPNet96.82 3396.68 3797.25 5798.65 9093.10 8099.48 5398.76 1496.54 1397.84 5698.22 12787.49 9299.66 9795.35 11397.78 12599.00 129
Wanjuan Su, Wenbing Tao: Efficient Edge-Preserving Multi-View Stereo Network for Depth Estimation. AAAI 2023
OMC-MVS93.90 12893.62 12594.73 17698.63 9187.00 23298.04 23296.56 22292.19 9492.46 16498.73 9279.49 22499.14 14892.16 16994.34 18098.03 196
MVS_111021_HR96.69 3696.69 3696.72 8498.58 9291.00 12599.14 10499.45 193.86 5595.15 12098.73 9288.48 7599.76 8997.23 7099.56 5299.40 93
test_yl95.27 8694.60 9397.28 5598.53 9392.98 8499.05 11798.70 1886.76 24694.65 12997.74 14287.78 8799.44 12295.57 10992.61 19799.44 90
DCV-MVSNet95.27 8694.60 9397.28 5598.53 9392.98 8499.05 11798.70 1886.76 24694.65 12997.74 14287.78 8799.44 12295.57 10992.61 19799.44 90
TAPA-MVS87.50 990.35 21189.05 22094.25 19498.48 9585.17 27898.42 19096.58 22182.44 32587.24 23198.53 10882.77 18198.84 16059.09 39697.88 12198.72 158
Andrea Romanoni, Matteo Matteucci: TAPA-MVS: Textureless-Aware PAtchMatch Multi-View Stereo. ICCV 2019
test22298.32 9691.21 11498.08 23097.58 12083.74 29695.87 10399.02 6186.74 11299.64 4299.81 35
MM97.76 1197.39 2098.86 598.30 9796.83 799.81 1299.13 997.66 298.29 4198.96 7085.84 13499.90 5099.72 398.80 9699.85 30
reproduce_monomvs92.11 17891.82 16892.98 22698.25 9890.55 13698.38 20197.93 5594.81 3380.46 31192.37 28896.46 397.17 25494.06 13973.61 34391.23 316
DPM-MVS97.86 897.25 2299.68 198.25 9899.10 199.76 2197.78 7596.61 1298.15 4399.53 793.62 16100.00 191.79 17299.80 2699.94 18
LFMVS92.23 17490.84 18996.42 10298.24 10091.08 12298.24 21296.22 24383.39 30394.74 12798.31 12361.12 34998.85 15994.45 13592.82 19399.32 102
testdata95.26 15698.20 10187.28 22697.60 11485.21 27198.48 3599.15 4288.15 8298.72 16990.29 18899.45 5999.78 41
PatchMatch-RL91.47 18690.54 19694.26 19398.20 10186.36 24596.94 28497.14 18087.75 22288.98 21695.75 22671.80 28299.40 13080.92 29397.39 13597.02 225
MVS_111021_LR95.78 6995.94 5895.28 15598.19 10387.69 21098.80 14199.26 793.39 6895.04 12298.69 9984.09 15899.76 8996.96 7699.06 8098.38 176
F-COLMAP92.07 17991.75 17193.02 22598.16 10482.89 31198.79 14595.97 26286.54 25187.92 22397.80 13778.69 23299.65 10185.97 23795.93 16496.53 239
Anonymous20240521188.84 23887.03 25794.27 19298.14 10584.18 29398.44 18895.58 30076.79 36689.34 21496.88 19053.42 37899.54 11187.53 22187.12 25199.09 124
VNet95.08 9194.26 9997.55 4698.07 10693.88 6498.68 15498.73 1790.33 13997.16 7297.43 15879.19 22799.53 11296.91 7891.85 21399.24 109
SPE-MVS-test95.98 5996.34 4594.90 16898.06 10787.66 21399.69 3496.10 25393.66 6198.35 4099.05 5786.28 12597.66 23096.96 7698.90 9299.37 96
DELS-MVS97.12 2596.60 3898.68 1198.03 10896.57 1199.84 997.84 6296.36 1895.20 11998.24 12688.17 8099.83 7396.11 9799.60 5099.64 68
Christian Sormann, Emanuele Santellani, Mattia Rossi, Andreas Kuhn, Friedrich Fraundorfer: DELS-MVS: Deep Epipolar Line Search for Multi-View Stereo. Winter Conference on Applications of Computer Vision (WACV), 2023
PVSNet87.13 1293.69 13492.83 14696.28 11097.99 10990.22 14499.38 7198.93 1291.42 11193.66 14997.68 14571.29 28799.64 10387.94 21797.20 13898.98 131
test_fmvsm_n_192097.08 2797.55 1495.67 13997.94 11089.61 16599.93 198.48 2397.08 599.08 1499.13 4788.17 8099.93 3999.11 2399.06 8097.47 210
cl2289.57 22788.79 22691.91 25097.94 11087.62 21497.98 23596.51 22585.03 27682.37 28491.79 29983.65 16296.50 28485.96 23877.89 30991.61 299
CS-MVS95.75 7296.19 4794.40 18797.88 11286.22 24999.66 3596.12 25292.69 8398.07 4898.89 8187.09 10397.59 23696.71 8098.62 10499.39 95
CHOSEN 280x42096.80 3496.85 2896.66 8997.85 11394.42 5494.76 34098.36 2892.50 8695.62 11297.52 15397.92 197.38 24898.31 4898.80 9698.20 191
thres20093.69 13492.59 15296.97 7097.76 11494.74 4699.35 7699.36 289.23 17091.21 18896.97 18383.42 16798.77 16385.08 24790.96 23297.39 212
HY-MVS88.56 795.29 8594.23 10098.48 1497.72 11596.41 1394.03 34998.74 1592.42 8995.65 11194.76 24486.52 12099.49 11595.29 11692.97 19299.53 79
Anonymous2023121184.72 30682.65 31890.91 27197.71 11684.55 28897.28 27096.67 21266.88 40079.18 32890.87 32058.47 35796.60 27782.61 28074.20 33891.59 301
tfpn200view993.43 14292.27 15796.90 7397.68 11794.84 4199.18 9299.36 288.45 19490.79 19196.90 18783.31 16898.75 16684.11 26390.69 23497.12 219
thres40093.39 14492.27 15796.73 8297.68 11794.84 4199.18 9299.36 288.45 19490.79 19196.90 18783.31 16898.75 16684.11 26390.69 23496.61 234
thres100view90093.34 14792.15 16096.90 7397.62 11994.84 4199.06 11699.36 287.96 21590.47 19996.78 19583.29 17098.75 16684.11 26390.69 23497.12 219
thres600view793.18 15292.00 16396.75 8097.62 11994.92 3699.07 11399.36 287.96 21590.47 19996.78 19583.29 17098.71 17082.93 27790.47 23896.61 234
WTY-MVS95.97 6095.11 8598.54 1397.62 11996.65 999.44 6298.74 1592.25 9395.21 11898.46 11986.56 11999.46 12195.00 12492.69 19699.50 84
balanced_conf0396.83 3296.51 3997.81 3697.60 12295.15 3498.40 19596.77 20893.00 7698.69 2896.19 21489.75 5998.76 16598.45 4299.72 3299.51 82
fmvsm_l_conf0.5_n_a97.70 1397.80 1197.42 4997.59 12392.91 8899.86 598.04 4896.70 1099.58 299.26 2490.90 3999.94 3599.57 1298.66 10399.40 93
Anonymous2024052987.66 26485.58 27793.92 20897.59 12385.01 28198.13 22197.13 18266.69 40188.47 22096.01 22155.09 37099.51 11387.00 22484.12 27497.23 218
HyFIR lowres test93.68 13693.29 13594.87 16997.57 12588.04 20598.18 21798.47 2487.57 22891.24 18795.05 24085.49 13997.46 24393.22 15792.82 19399.10 123
sasdasda95.02 9293.96 11398.20 2197.53 12695.92 1798.71 14996.19 24691.78 10095.86 10498.49 11379.53 22299.03 15296.12 9591.42 22799.66 64
canonicalmvs95.02 9293.96 11398.20 2197.53 12695.92 1798.71 14996.19 24691.78 10095.86 10498.49 11379.53 22299.03 15296.12 9591.42 22799.66 64
fmvsm_l_conf0.5_n97.65 1497.72 1297.41 5097.51 12892.78 9099.85 898.05 4696.78 899.60 199.23 2990.42 4899.92 4199.55 1398.50 10899.55 77
MGCFI-Net94.89 9493.84 12098.06 2997.49 12995.55 2198.64 16096.10 25391.60 10595.75 10898.46 11979.31 22698.98 15695.95 10191.24 23199.65 67
ETVMVS94.50 11393.90 11896.31 10997.48 13092.98 8499.07 11397.86 6088.09 21094.40 13396.90 18788.35 7797.28 25290.72 18592.25 20798.66 165
CHOSEN 1792x268894.35 11693.82 12195.95 12997.40 13188.74 19198.41 19298.27 3092.18 9591.43 18296.40 20778.88 22899.81 7993.59 14997.81 12299.30 104
SteuartSystems-ACMMP97.25 1997.34 2197.01 6497.38 13291.46 11199.75 2297.66 9794.14 4898.13 4499.26 2492.16 3099.66 9797.91 5699.64 4299.90 22
Skip Steuart: Steuart Systems R&D Blog.
fmvsm_s_conf0.5_n96.19 5396.49 4095.30 15497.37 13389.16 17099.86 598.47 2495.68 2398.87 2299.15 4282.44 19399.92 4199.14 2197.43 13496.83 230
alignmvs95.77 7095.00 8898.06 2997.35 13495.68 2099.71 2697.50 13891.50 10796.16 9798.61 10686.28 12599.00 15496.19 9391.74 21599.51 82
PS-MVSNAJ96.87 3196.40 4398.29 1997.35 13497.29 599.03 11997.11 18495.83 2098.97 1999.14 4582.48 18999.60 10698.60 3399.08 7898.00 197
testing22294.48 11494.00 10995.95 12997.30 13692.27 9898.82 13897.92 5689.20 17194.82 12497.26 16487.13 10297.32 25191.95 17091.56 21998.25 185
EPNet_dtu92.28 17292.15 16092.70 23597.29 13784.84 28498.64 16097.82 6692.91 8093.02 15897.02 18185.48 14195.70 33172.25 35594.89 17597.55 209
Wanjuan Su, Wenbing Tao: Efficient Edge-Preserving Multi-View Stereo Network for Depth Estimation. AAAI 2023
MVSTER92.71 16092.32 15593.86 21097.29 13792.95 8799.01 12296.59 21890.09 14685.51 24794.00 25494.61 1596.56 28090.77 18483.03 28592.08 287
MVSMamba_PlusPlus95.73 7495.15 8297.44 4797.28 13994.35 5798.26 21096.75 20983.09 30897.84 5695.97 22289.59 6198.48 18097.86 5799.73 3199.49 85
EPMVS92.59 16591.59 17395.59 14497.22 14090.03 15491.78 37098.04 4890.42 13791.66 17690.65 32886.49 12297.46 24381.78 28896.31 15599.28 106
testing1195.33 8494.98 8996.37 10697.20 14192.31 9799.29 8097.68 9290.59 12994.43 13197.20 16990.79 4398.60 17495.25 11792.38 20198.18 192
testing9994.88 9694.45 9596.17 11797.20 14191.91 10299.20 8997.66 9789.95 15093.68 14897.06 17890.28 5298.50 17793.52 15091.54 22198.12 194
testing9194.88 9694.44 9696.21 11397.19 14391.90 10399.23 8797.66 9789.91 15193.66 14997.05 18090.21 5398.50 17793.52 15091.53 22498.25 185
test_fmvs192.35 16992.94 14490.57 28197.19 14375.43 37099.55 4494.97 32795.20 3196.82 8297.57 15259.59 35499.84 6997.30 6798.29 11796.46 241
tpmvs89.16 23187.76 24493.35 21997.19 14384.75 28690.58 38597.36 16081.99 33184.56 25389.31 35783.98 16098.17 19474.85 33690.00 24197.12 219
DeepC-MVS91.02 494.56 11293.92 11696.46 9997.16 14690.76 13098.39 19997.11 18493.92 5188.66 21898.33 12278.14 23799.85 6795.02 12298.57 10698.78 155
Andreas Kuhn, Christian Sormann, Mattia Rossi, Oliver Erdler, Friedrich Fraundorfer: DeepC-MVS: Deep Confidence Prediction for Multi-View Stereo Reconstruction. 3DV 2020
PVSNet_Blended_VisFu94.67 10794.11 10596.34 10897.14 14791.10 12099.32 7997.43 15192.10 9791.53 18196.38 21083.29 17099.68 9593.42 15596.37 15398.25 185
h-mvs3392.47 16891.95 16594.05 20397.13 14885.01 28198.36 20298.08 4493.85 5696.27 9596.73 19883.19 17399.43 12595.81 10268.09 37297.70 203
miper_enhance_ethall90.33 21289.70 20792.22 24297.12 14988.93 18498.35 20395.96 26488.60 18983.14 26992.33 28987.38 9496.18 30986.49 23277.89 30991.55 302
xiu_mvs_v2_base96.66 3796.17 5298.11 2897.11 15096.96 699.01 12297.04 19195.51 2798.86 2399.11 5382.19 19799.36 13398.59 3598.14 11898.00 197
mamv491.41 18893.57 12684.91 35897.11 15058.11 40595.68 33195.93 27082.09 33089.78 20995.71 22790.09 5598.24 19197.26 6898.50 10898.38 176
VDD-MVS91.24 19590.18 20194.45 18697.08 15285.84 26598.40 19596.10 25386.99 23793.36 15398.16 13054.27 37499.20 14196.59 8690.63 23798.31 183
UGNet91.91 18190.85 18895.10 16097.06 15388.69 19298.01 23398.24 3392.41 9092.39 16793.61 26660.52 35199.68 9588.14 21497.25 13796.92 228
Wanjuan Su, Qingshan Xu, Wenbing Tao: Uncertainty-guided Multi-view Stereo Network for Depth Estimation. IEEE Transactions on Circuits and Systems for Video Technology, 2022
baseline192.61 16491.28 17996.58 9397.05 15494.63 4997.72 25296.20 24489.82 15388.56 21996.85 19186.85 10997.82 21688.42 21080.10 30097.30 214
CANet_DTU94.31 11793.35 13297.20 5997.03 15594.71 4798.62 16395.54 30295.61 2597.21 6998.47 11771.88 28099.84 6988.38 21197.46 13397.04 224
WBMVS91.35 19190.49 19793.94 20796.97 15693.40 7499.27 8496.71 21087.40 23283.10 27091.76 30292.38 2796.23 30788.95 20877.89 30992.17 283
UBG95.73 7495.41 7596.69 8696.97 15693.23 7699.13 10797.79 7391.28 11494.38 13596.78 19592.37 2898.56 17696.17 9493.84 18498.26 184
MSDG88.29 25386.37 26594.04 20496.90 15886.15 25396.52 29994.36 34977.89 36179.22 32796.95 18469.72 29499.59 10773.20 34992.58 19996.37 244
BH-w/o92.32 17091.79 16993.91 20996.85 15986.18 25199.11 11095.74 29088.13 20884.81 25197.00 18277.26 24297.91 20989.16 20698.03 11997.64 204
AllTest84.97 30483.12 31090.52 28496.82 16078.84 35095.89 32192.17 37677.96 35975.94 34795.50 23055.48 36699.18 14271.15 35687.14 24993.55 261
TestCases90.52 28496.82 16078.84 35092.17 37677.96 35975.94 34795.50 23055.48 36699.18 14271.15 35687.14 24993.55 261
SDMVSNet91.09 19689.91 20494.65 17896.80 16290.54 13797.78 24597.81 6988.34 20185.73 24395.26 23766.44 32398.26 18994.25 13886.75 25295.14 252
sd_testset89.23 23088.05 24392.74 23496.80 16285.33 27495.85 32697.03 19388.34 20185.73 24395.26 23761.12 34997.76 22585.61 24386.75 25295.14 252
PMMVS93.62 13993.90 11892.79 23196.79 16481.40 32798.85 13596.81 20491.25 11596.82 8298.15 13177.02 24398.13 19693.15 15996.30 15698.83 149
BH-RMVSNet91.25 19489.99 20395.03 16596.75 16588.55 19598.65 15894.95 32887.74 22387.74 22597.80 13768.27 30598.14 19580.53 29897.49 13298.41 173
MVS_Test93.67 13792.67 14996.69 8696.72 16692.66 9197.22 27596.03 25987.69 22695.12 12194.03 25281.55 20398.28 18889.17 20596.46 15099.14 117
COLMAP_ROBcopyleft82.69 1884.54 31082.82 31289.70 30796.72 16678.85 34995.89 32192.83 36971.55 38477.54 34295.89 22459.40 35599.14 14867.26 37388.26 24591.11 320
Johannes L. Schönberger, Enliang Zheng, Marc Pollefeys, Jan-Michael Frahm: Pixelwise View Selection for Unstructured Multi-View Stereo. ECCV 2016
mvs_anonymous92.50 16791.65 17295.06 16296.60 16889.64 16397.06 28096.44 23086.64 24884.14 25893.93 25782.49 18896.17 31091.47 17396.08 16199.35 99
UWE-MVS93.18 15293.40 13192.50 23996.56 16983.55 30198.09 22997.84 6289.50 16591.72 17496.23 21391.08 3596.70 27486.28 23493.33 18897.26 216
ETV-MVS96.00 5796.00 5796.00 12696.56 16991.05 12399.63 3796.61 21693.26 7197.39 6498.30 12486.62 11698.13 19698.07 5397.57 12898.82 150
GG-mvs-BLEND96.98 6996.53 17194.81 4487.20 39097.74 7993.91 14496.40 20796.56 296.94 26595.08 12098.95 8999.20 113
FMVSNet388.81 24287.08 25693.99 20696.52 17294.59 5098.08 23096.20 24485.85 26182.12 28891.60 30574.05 26095.40 34079.04 30580.24 29791.99 290
fmvsm_s_conf0.5_n_a95.97 6096.19 4795.31 15396.51 17389.01 17899.81 1298.39 2695.46 2899.19 1399.16 3981.44 20899.91 4698.83 2896.97 14397.01 226
BH-untuned91.46 18790.84 18993.33 22096.51 17384.83 28598.84 13795.50 30486.44 25683.50 26296.70 19975.49 24897.77 22086.78 23097.81 12297.40 211
FE-MVS91.38 19090.16 20295.05 16496.46 17587.53 21789.69 38797.84 6282.97 31192.18 16992.00 29684.07 15998.93 15880.71 29595.52 16998.68 161
sss94.85 9993.94 11597.58 4396.43 17694.09 6298.93 12999.16 889.50 16595.27 11797.85 13481.50 20599.65 10192.79 16494.02 18298.99 130
mvsmamba94.27 11893.91 11795.35 15096.42 17788.61 19397.77 24796.38 23291.17 11794.05 14195.27 23678.41 23597.96 20897.36 6698.40 11299.48 86
test250694.80 10094.21 10196.58 9396.41 17892.18 10098.01 23398.96 1190.82 12293.46 15297.28 16285.92 13198.45 18189.82 19397.19 13999.12 120
ECVR-MVScopyleft92.29 17191.33 17895.15 15996.41 17887.84 20898.10 22694.84 33190.82 12291.42 18497.28 16265.61 32898.49 17990.33 18797.19 13999.12 120
ET-MVSNet_ETH3D92.56 16691.45 17695.88 13196.39 18094.13 6199.46 5996.97 19992.18 9566.94 39098.29 12594.65 1494.28 36094.34 13683.82 27899.24 109
dp90.16 21888.83 22594.14 19896.38 18186.42 24191.57 37497.06 19084.76 28288.81 21790.19 34684.29 15697.43 24675.05 33391.35 23098.56 167
EIA-MVS95.11 8995.27 7994.64 18096.34 18286.51 23899.59 4096.62 21592.51 8594.08 14098.64 10286.05 13098.24 19195.07 12198.50 10899.18 114
test_vis1_n_192093.08 15693.42 13092.04 24996.31 18379.36 34599.83 1096.06 25896.72 998.53 3498.10 13258.57 35699.91 4697.86 5798.79 9996.85 229
TR-MVS90.77 20389.44 21294.76 17396.31 18388.02 20697.92 23795.96 26485.52 26788.22 22297.23 16766.80 31998.09 19984.58 25592.38 20198.17 193
UA-Net93.30 14892.62 15195.34 15196.27 18588.53 19795.88 32396.97 19990.90 12095.37 11697.07 17782.38 19499.10 15083.91 26794.86 17698.38 176
tpmrst92.78 15992.16 15994.65 17896.27 18587.45 22091.83 36997.10 18789.10 17694.68 12890.69 32588.22 7997.73 22889.78 19491.80 21498.77 156
hse-mvs291.67 18491.51 17592.15 24696.22 18782.61 31797.74 25197.53 12993.85 5696.27 9596.15 21583.19 17397.44 24595.81 10266.86 37996.40 243
AUN-MVS90.17 21789.50 21092.19 24496.21 18882.67 31597.76 25097.53 12988.05 21191.67 17596.15 21583.10 17597.47 24288.11 21566.91 37896.43 242
ADS-MVSNet287.62 26586.88 25989.86 30196.21 18879.14 34887.15 39192.99 36683.01 30989.91 20787.27 37178.87 22992.80 37474.20 34192.27 20597.64 204
ADS-MVSNet88.99 23387.30 25294.07 20196.21 18887.56 21687.15 39196.78 20783.01 30989.91 20787.27 37178.87 22997.01 26274.20 34192.27 20597.64 204
PatchmatchNetpermissive92.05 18091.04 18495.06 16296.17 19189.04 17491.26 37897.26 16589.56 16390.64 19590.56 33488.35 7797.11 25779.53 30196.07 16299.03 128
Fangjinhua Wang, Silvano Galliani, Christoph Vogel, Pablo Speciale, Marc Pollefeys: PatchmatchNet: Learned Multi-View Patchmatch Stereo.
test111192.12 17691.19 18194.94 16796.15 19287.36 22398.12 22394.84 33190.85 12190.97 18997.26 16465.60 32998.37 18389.74 19697.14 14299.07 127
gg-mvs-nofinetune90.00 22187.71 24696.89 7796.15 19294.69 4885.15 39797.74 7968.32 39692.97 15960.16 41096.10 496.84 26893.89 14298.87 9399.14 117
MDTV_nov1_ep1390.47 19996.14 19488.55 19591.34 37797.51 13589.58 16192.24 16890.50 33886.99 10897.61 23577.64 31692.34 203
IS-MVSNet93.00 15792.51 15394.49 18396.14 19487.36 22398.31 20795.70 29288.58 19090.17 20397.50 15483.02 17797.22 25387.06 22296.07 16298.90 142
Vis-MVSNet (Re-imp)93.26 15193.00 14394.06 20296.14 19486.71 23798.68 15496.70 21188.30 20389.71 21297.64 14885.43 14296.39 29188.06 21696.32 15499.08 125
thisisatest051594.75 10294.19 10296.43 10196.13 19792.64 9499.47 5597.60 11487.55 22993.17 15597.59 15094.71 1298.42 18288.28 21293.20 18998.24 188
RRT-MVS93.39 14492.64 15095.64 14096.11 19888.75 19097.40 26395.77 28889.46 16792.70 16295.42 23372.98 26998.81 16196.91 7896.97 14399.37 96
FA-MVS(test-final)92.22 17591.08 18395.64 14096.05 19988.98 17991.60 37397.25 16686.99 23791.84 17192.12 29083.03 17699.00 15486.91 22793.91 18398.93 139
test_fmvsmconf_n96.78 3596.84 2996.61 9095.99 20090.25 14199.90 398.13 4296.68 1198.42 3698.92 7785.34 14499.88 5499.12 2299.08 7899.70 55
ab-mvs91.05 19989.17 21796.69 8695.96 20191.72 10692.62 36397.23 17085.61 26689.74 21093.89 25968.55 30299.42 12691.09 17687.84 24798.92 141
Fast-Effi-MVS+91.72 18390.79 19294.49 18395.89 20287.40 22299.54 4995.70 29285.01 27889.28 21595.68 22877.75 23997.57 24083.22 27295.06 17498.51 169
kuosan84.40 31483.34 30887.60 33495.87 20379.21 34692.39 36596.87 20276.12 37073.79 36093.98 25581.51 20490.63 38964.13 38275.42 32392.95 264
EPP-MVSNet93.75 13393.67 12494.01 20595.86 20485.70 26798.67 15697.66 9784.46 28591.36 18597.18 17291.16 3297.79 21892.93 16193.75 18598.53 168
mvsany_test194.57 11195.09 8692.98 22695.84 20582.07 32198.76 14795.24 32092.87 8296.45 9298.71 9784.81 15199.15 14497.68 6095.49 17097.73 202
Effi-MVS+93.87 12993.15 13896.02 12495.79 20690.76 13096.70 29695.78 28686.98 24095.71 10997.17 17379.58 22098.01 20694.57 13496.09 16099.31 103
tpm cat188.89 23687.27 25393.76 21395.79 20685.32 27590.76 38397.09 18876.14 36985.72 24588.59 36082.92 17898.04 20476.96 32091.43 22697.90 200
thisisatest053094.00 12393.52 12795.43 14795.76 20890.02 15598.99 12497.60 11486.58 24991.74 17397.36 16194.78 1198.34 18486.37 23392.48 20097.94 199
3Dnovator+87.72 893.43 14291.84 16798.17 2395.73 20995.08 3598.92 13197.04 19191.42 11181.48 30297.60 14974.60 25299.79 8590.84 18198.97 8699.64 68
MVS93.92 12692.28 15698.83 795.69 21096.82 896.22 31298.17 3684.89 28084.34 25798.61 10679.32 22599.83 7393.88 14399.43 6199.86 29
cascas90.93 20189.33 21595.76 13595.69 21093.03 8398.99 12496.59 21880.49 34686.79 23894.45 24765.23 33298.60 17493.52 15092.18 20895.66 251
QAPM91.41 18889.49 21197.17 6095.66 21293.42 7398.60 16997.51 13580.92 34481.39 30397.41 15972.89 27299.87 5882.33 28298.68 10198.21 190
tttt051793.30 14893.01 14294.17 19795.57 21386.47 24098.51 18097.60 11485.99 26090.55 19697.19 17194.80 1098.31 18585.06 24891.86 21297.74 201
1112_ss92.71 16091.55 17496.20 11495.56 21491.12 11898.48 18594.69 33888.29 20486.89 23698.50 11187.02 10698.66 17284.75 25289.77 24298.81 151
diffmvspermissive94.59 11094.19 10295.81 13395.54 21590.69 13298.70 15295.68 29491.61 10395.96 9997.81 13680.11 21698.06 20196.52 8895.76 16598.67 162
Fangjinhua Wang, Qingshan Xu, Yew-Soon Ong, Marc Pollefeys: Lightweight and Accurate Multi-View Stereo With Confidence-Aware Diffusion Model. IEEE T-PAMI 2025
LCM-MVSNet-Re88.59 24988.61 23088.51 32795.53 21672.68 38396.85 28888.43 40388.45 19473.14 36690.63 32975.82 24594.38 35992.95 16095.71 16798.48 171
Test_1112_low_res92.27 17390.97 18596.18 11595.53 21691.10 12098.47 18794.66 33988.28 20586.83 23793.50 27087.00 10798.65 17384.69 25389.74 24398.80 152
PCF-MVS89.78 591.26 19289.63 20896.16 11995.44 21891.58 11095.29 33596.10 25385.07 27582.75 27297.45 15778.28 23699.78 8780.60 29795.65 16897.12 219
Andreas Kuhn, Shan Lin, Oliver Erdler: Plane Completion and Filtering for Multi-View Stereo Reconstruction. GCPR 2019
EC-MVSNet95.09 9095.17 8194.84 17195.42 21988.17 20199.48 5395.92 27291.47 10897.34 6698.36 12182.77 18197.41 24797.24 6998.58 10598.94 138
3Dnovator87.35 1193.17 15491.77 17097.37 5395.41 22093.07 8198.82 13897.85 6191.53 10682.56 27897.58 15171.97 27999.82 7691.01 17899.23 7399.22 112
IB-MVS89.43 692.12 17690.83 19195.98 12895.40 22190.78 12999.81 1298.06 4591.23 11685.63 24693.66 26590.63 4498.78 16291.22 17571.85 36198.36 180
Christian Sormann, Mattia Rossi, Andreas Kuhn and Friedrich Fraundorfer: IB-MVS: An Iterative Algorithm for Deep Multi-View Stereo based on Binary Decisions. BMVC 2021
test_cas_vis1_n_192093.86 13093.74 12394.22 19595.39 22286.08 25599.73 2396.07 25796.38 1797.19 7197.78 13965.46 33199.86 6396.71 8098.92 9096.73 231
miper_ehance_all_eth88.94 23588.12 24191.40 26195.32 22386.93 23397.85 24295.55 30184.19 28881.97 29391.50 30784.16 15795.91 32384.69 25377.89 30991.36 310
131493.44 14191.98 16497.84 3495.24 22494.38 5596.22 31297.92 5690.18 14282.28 28597.71 14477.63 24099.80 8191.94 17198.67 10299.34 101
XVG-OURS90.83 20290.49 19791.86 25195.23 22581.25 33195.79 32895.92 27288.96 17990.02 20698.03 13371.60 28499.35 13691.06 17787.78 24894.98 255
casdiffmvs_mvgpermissive94.00 12393.33 13396.03 12395.22 22690.90 12899.09 11195.99 26090.58 13091.55 18097.37 16079.91 21898.06 20195.01 12395.22 17299.13 119
Fangjinhua Wang, Qingshan Xu, Yew-Soon Ong, Marc Pollefeys: Lightweight and Accurate Multi-View Stereo With Confidence-Aware Diffusion Model. IEEE T-PAMI 2025
TESTMET0.1,193.82 13193.26 13695.49 14595.21 22790.25 14199.15 10197.54 12889.18 17391.79 17294.87 24289.13 6497.63 23386.21 23596.29 15798.60 166
xiu_mvs_v1_base_debu94.73 10393.98 11096.99 6695.19 22895.24 2798.62 16396.50 22692.99 7797.52 6098.83 8572.37 27599.15 14497.03 7296.74 14796.58 236
xiu_mvs_v1_base94.73 10393.98 11096.99 6695.19 22895.24 2798.62 16396.50 22692.99 7797.52 6098.83 8572.37 27599.15 14497.03 7296.74 14796.58 236
xiu_mvs_v1_base_debi94.73 10393.98 11096.99 6695.19 22895.24 2798.62 16396.50 22692.99 7797.52 6098.83 8572.37 27599.15 14497.03 7296.74 14796.58 236
XVG-OURS-SEG-HR90.95 20090.66 19591.83 25295.18 23181.14 33495.92 32095.92 27288.40 19890.33 20297.85 13470.66 29099.38 13192.83 16388.83 24494.98 255
Effi-MVS+-dtu89.97 22290.68 19487.81 33295.15 23271.98 38597.87 24195.40 31191.92 9887.57 22691.44 30874.27 25896.84 26889.45 19893.10 19194.60 257
Syy-MVS84.10 31984.53 29782.83 37095.14 23365.71 39797.68 25596.66 21386.52 25282.63 27596.84 19268.15 30689.89 39345.62 40891.54 22192.87 265
myMVS_eth3d88.68 24889.07 21987.50 33695.14 23379.74 34397.68 25596.66 21386.52 25282.63 27596.84 19285.22 14689.89 39369.43 36491.54 22192.87 265
Vis-MVSNetpermissive92.64 16291.85 16695.03 16595.12 23588.23 20098.48 18596.81 20491.61 10392.16 17097.22 16871.58 28598.00 20785.85 24297.81 12298.88 143
Jingyang Zhang, Yao Yao, Shiwei Li, Zixin Luo, Tian Fang: Visibility-aware Multiview Stereo Network. BMVC 2020
GBi-Net86.67 27784.96 28591.80 25495.11 23688.81 18796.77 29095.25 31782.94 31282.12 28890.25 34162.89 34194.97 34779.04 30580.24 29791.62 296
test186.67 27784.96 28591.80 25495.11 23688.81 18796.77 29095.25 31782.94 31282.12 28890.25 34162.89 34194.97 34779.04 30580.24 29791.62 296
FMVSNet286.90 27284.79 29193.24 22195.11 23692.54 9597.67 25795.86 28482.94 31280.55 30991.17 31462.89 34195.29 34277.23 31779.71 30391.90 291
GeoE90.60 20989.56 20993.72 21595.10 23985.43 27199.41 6894.94 32983.96 29387.21 23296.83 19474.37 25697.05 26180.50 29993.73 18698.67 162
baseline93.91 12793.30 13495.72 13695.10 23990.07 15097.48 26295.91 27791.03 11893.54 15197.68 14579.58 22098.02 20594.27 13795.14 17399.08 125
casdiffmvspermissive93.98 12593.43 12995.61 14395.07 24189.86 15998.80 14195.84 28590.98 11992.74 16197.66 14779.71 21998.10 19894.72 13095.37 17198.87 145
Fangjinhua Wang, Qingshan Xu, Yew-Soon Ong, Marc Pollefeys: Lightweight and Accurate Multi-View Stereo With Confidence-Aware Diffusion Model. IEEE T-PAMI 2025
MVSFormer94.71 10694.08 10796.61 9095.05 24294.87 3997.77 24796.17 24986.84 24398.04 5098.52 10985.52 13695.99 31689.83 19198.97 8698.96 133
lupinMVS96.32 4995.94 5897.44 4795.05 24294.87 3999.86 596.50 22693.82 5898.04 5098.77 8885.52 13698.09 19996.98 7598.97 8699.37 96
CostFormer92.89 15892.48 15494.12 19994.99 24485.89 26292.89 35997.00 19786.98 24095.00 12390.78 32190.05 5697.51 24192.92 16291.73 21698.96 133
c3_l88.19 25587.23 25491.06 26794.97 24586.17 25297.72 25295.38 31283.43 30281.68 30091.37 30982.81 18095.72 33084.04 26673.70 34291.29 314
SCA90.64 20889.25 21694.83 17294.95 24688.83 18696.26 30997.21 17290.06 14990.03 20590.62 33066.61 32096.81 27083.16 27394.36 17998.84 146
test-LLR93.11 15592.68 14894.40 18794.94 24787.27 22799.15 10197.25 16690.21 14091.57 17794.04 25084.89 14997.58 23785.94 23996.13 15898.36 180
test-mter93.27 15092.89 14594.40 18794.94 24787.27 22799.15 10197.25 16688.95 18091.57 17794.04 25088.03 8597.58 23785.94 23996.13 15898.36 180
cl____87.82 25786.79 26190.89 27394.88 24985.43 27197.81 24395.24 32082.91 31680.71 30891.22 31281.97 20095.84 32581.34 29075.06 32691.40 309
DIV-MVS_self_test87.82 25786.81 26090.87 27494.87 25085.39 27397.81 24395.22 32582.92 31580.76 30791.31 31181.99 19895.81 32781.36 28975.04 32791.42 308
tpm291.77 18291.09 18293.82 21294.83 25185.56 27092.51 36497.16 17984.00 29193.83 14690.66 32787.54 9197.17 25487.73 21991.55 22098.72 158
PVSNet_083.28 1687.31 26885.16 28393.74 21494.78 25284.59 28798.91 13298.69 2089.81 15478.59 33493.23 27561.95 34599.34 13794.75 12855.72 40197.30 214
CDS-MVSNet93.47 14093.04 14194.76 17394.75 25389.45 16798.82 13897.03 19387.91 21790.97 18996.48 20589.06 6596.36 29389.50 19792.81 19598.49 170
Khang Truong Giang, Soohwan Song, Sungho Jo: Curvature-guided dynamic scale networks for Multi-view Stereo. ICLR 2022
gm-plane-assit94.69 25488.14 20288.22 20697.20 16998.29 18790.79 183
eth_miper_zixun_eth87.76 25987.00 25890.06 29594.67 25582.65 31697.02 28395.37 31384.19 28881.86 29891.58 30681.47 20695.90 32483.24 27173.61 34391.61 299
testing387.75 26088.22 23986.36 34594.66 25677.41 36199.52 5097.95 5486.05 25981.12 30496.69 20086.18 12889.31 39761.65 39090.12 24092.35 276
RPSCF85.33 30085.55 27884.67 36194.63 25762.28 40093.73 35193.76 35774.38 37785.23 25097.06 17864.09 33598.31 18580.98 29186.08 26093.41 263
miper_lstm_enhance86.90 27286.20 26889.00 32294.53 25881.19 33296.74 29495.24 32082.33 32680.15 31590.51 33781.99 19894.68 35680.71 29573.58 34591.12 319
Patchmatch-test86.25 28684.06 30392.82 23094.42 25982.88 31282.88 40694.23 35171.58 38379.39 32590.62 33089.00 6796.42 29063.03 38691.37 22999.16 115
VDDNet90.08 22088.54 23494.69 17794.41 26087.68 21198.21 21596.40 23176.21 36893.33 15497.75 14154.93 37298.77 16394.71 13190.96 23297.61 208
fmvsm_s_conf0.1_n95.56 7895.68 6995.20 15794.35 26189.10 17299.50 5197.67 9694.76 3598.68 2999.03 5981.13 21199.86 6398.63 3297.36 13696.63 233
test_fmvsmvis_n_192095.47 7995.40 7695.70 13794.33 26290.22 14499.70 2796.98 19896.80 792.75 16098.89 8182.46 19299.92 4198.36 4498.33 11496.97 227
KD-MVS_2432*160082.98 32580.52 33490.38 28894.32 26388.98 17992.87 36095.87 28280.46 34773.79 36087.49 36882.76 18393.29 36870.56 36046.53 41288.87 365
miper_refine_blended82.98 32580.52 33490.38 28894.32 26388.98 17992.87 36095.87 28280.46 34773.79 36087.49 36882.76 18393.29 36870.56 36046.53 41288.87 365
EI-MVSNet89.87 22389.38 21491.36 26394.32 26385.87 26397.61 25996.59 21885.10 27385.51 24797.10 17581.30 21096.56 28083.85 26983.03 28591.64 294
CVMVSNet90.30 21390.91 18788.46 32894.32 26373.58 37897.61 25997.59 11890.16 14588.43 22197.10 17576.83 24492.86 37182.64 27993.54 18798.93 139
WB-MVSnew88.69 24688.34 23689.77 30594.30 26785.99 26098.14 22097.31 16487.15 23687.85 22496.07 21969.91 29195.52 33572.83 35291.47 22587.80 372
dongtai81.36 33480.61 33283.62 36794.25 26873.32 37995.15 33796.81 20473.56 38069.79 37792.81 28381.00 21286.80 40452.08 40570.06 36890.75 331
test_fmvs1_n91.07 19791.41 17790.06 29594.10 26974.31 37499.18 9294.84 33194.81 3396.37 9497.46 15650.86 38799.82 7697.14 7197.90 12096.04 248
IterMVS-LS88.34 25187.44 24991.04 26894.10 26985.85 26498.10 22695.48 30585.12 27282.03 29291.21 31381.35 20995.63 33383.86 26875.73 32291.63 295
Fangjinhua Wang, Silvano Galliani, Christoph Vogel, Marc Pollefeys: IterMVS: Iterative Probability Estimation for Efficient Multi-View Stereo.
TAMVS92.62 16392.09 16294.20 19694.10 26987.68 21198.41 19296.97 19987.53 23089.74 21096.04 22084.77 15396.49 28688.97 20792.31 20498.42 172
PAPM96.35 4795.94 5897.58 4394.10 26995.25 2698.93 12998.17 3694.26 4393.94 14398.72 9489.68 6097.88 21296.36 9099.29 6999.62 72
CLD-MVS91.06 19890.71 19392.10 24794.05 27386.10 25499.55 4496.29 24094.16 4684.70 25297.17 17369.62 29697.82 21694.74 12986.08 26092.39 272
Zhaoxin Li, Wangmeng Zuo, Zhaoqi Wang, Lei Zhang: Confidence-based Large-scale Dense Multi-view Stereo. IEEE Transaction on Image Processing, 2020
HQP-NCC93.95 27499.16 9693.92 5187.57 226
ACMP_Plane93.95 27499.16 9693.92 5187.57 226
HQP-MVS91.50 18591.23 18092.29 24193.95 27486.39 24399.16 9696.37 23393.92 5187.57 22696.67 20173.34 26497.77 22093.82 14686.29 25592.72 267
NP-MVS93.94 27786.22 24996.67 201
plane_prior693.92 27886.02 25972.92 270
ACMP87.39 1088.71 24588.24 23890.12 29493.91 27981.06 33598.50 18195.67 29589.43 16880.37 31295.55 22965.67 32697.83 21590.55 18684.51 26991.47 304
Qingshan Xu and Wenbing Tao: Planar Prior Assisted PatchMatch Multi-View Stereo. AAAI 2020
plane_prior193.90 280
HQP_MVS91.26 19290.95 18692.16 24593.84 28186.07 25799.02 12096.30 23793.38 6986.99 23396.52 20372.92 27097.75 22693.46 15386.17 25892.67 269
plane_prior793.84 28185.73 266
dmvs_re88.69 24688.06 24290.59 28093.83 28378.68 35295.75 32996.18 24887.99 21484.48 25696.32 21167.52 31396.94 26584.98 25085.49 26496.14 246
MVS-HIRNet79.01 34675.13 35990.66 27993.82 28481.69 32485.16 39693.75 35854.54 40674.17 35859.15 41257.46 36096.58 27963.74 38394.38 17893.72 260
FMVSNet582.29 32880.54 33387.52 33593.79 28584.01 29593.73 35192.47 37376.92 36474.27 35786.15 37963.69 33989.24 39869.07 36674.79 33089.29 360
ACMH+83.78 1584.21 31582.56 32189.15 31993.73 28679.16 34796.43 30294.28 35081.09 34174.00 35994.03 25254.58 37397.67 22976.10 32778.81 30590.63 336
ACMM86.95 1388.77 24388.22 23990.43 28693.61 28781.34 32998.50 18195.92 27287.88 21883.85 26195.20 23967.20 31697.89 21186.90 22884.90 26792.06 288
Qingshan Xu and Wenbing Tao: Multi-Scale Geometric Consistency Guided Multi-View Stereo. CVPR 2019
OpenMVScopyleft85.28 1490.75 20488.84 22496.48 9893.58 28893.51 7198.80 14197.41 15382.59 31978.62 33297.49 15568.00 30999.82 7684.52 25798.55 10796.11 247
IterMVS85.81 29384.67 29489.22 31793.51 28983.67 30096.32 30694.80 33485.09 27478.69 33090.17 34766.57 32293.17 37079.48 30377.42 31690.81 326
Fangjinhua Wang, Silvano Galliani, Christoph Vogel, Marc Pollefeys: IterMVS: Iterative Probability Estimation for Efficient Multi-View Stereo.
CR-MVSNet88.83 24087.38 25193.16 22393.47 29086.24 24784.97 39994.20 35288.92 18390.76 19386.88 37584.43 15494.82 35270.64 35992.17 20998.41 173
RPMNet85.07 30381.88 32294.64 18093.47 29086.24 24784.97 39997.21 17264.85 40390.76 19378.80 40180.95 21399.27 14053.76 40292.17 20998.41 173
IterMVS-SCA-FT85.73 29684.64 29589.00 32293.46 29282.90 31096.27 30794.70 33785.02 27778.62 33290.35 33966.61 32093.33 36779.38 30477.36 31790.76 330
Fast-Effi-MVS+-dtu88.84 23888.59 23289.58 31093.44 29378.18 35698.65 15894.62 34088.46 19384.12 25995.37 23568.91 29996.52 28382.06 28591.70 21794.06 258
Patchmtry83.61 32481.64 32489.50 31293.36 29482.84 31384.10 40294.20 35269.47 39379.57 32386.88 37584.43 15494.78 35368.48 36974.30 33690.88 325
LPG-MVS_test88.86 23788.47 23590.06 29593.35 29580.95 33698.22 21395.94 26787.73 22483.17 26796.11 21766.28 32497.77 22090.19 18985.19 26591.46 305
LGP-MVS_train90.06 29593.35 29580.95 33695.94 26787.73 22483.17 26796.11 21766.28 32497.77 22090.19 18985.19 26591.46 305
JIA-IIPM85.97 28984.85 28989.33 31693.23 29773.68 37785.05 39897.13 18269.62 39291.56 17968.03 40888.03 8596.96 26377.89 31593.12 19097.34 213
ACMH83.09 1784.60 30882.61 31990.57 28193.18 29882.94 30896.27 30794.92 33081.01 34272.61 37293.61 26656.54 36297.79 21874.31 33981.07 29590.99 322
Qingshan Xu and Wenbing Tao: Multi-Scale Geometric Consistency Guided Multi-View Stereo. CVPR 2019
PatchT85.44 29983.19 30992.22 24293.13 29983.00 30783.80 40596.37 23370.62 38690.55 19679.63 40084.81 15194.87 35058.18 39891.59 21898.79 153
baseline294.04 12293.80 12294.74 17593.07 30090.25 14198.12 22398.16 3989.86 15286.53 23996.95 18495.56 698.05 20391.44 17494.53 17795.93 249
jason95.40 8394.86 9097.03 6392.91 30194.23 5899.70 2796.30 23793.56 6596.73 8798.52 10981.46 20797.91 20996.08 9898.47 11198.96 133
jason: jason.
LTVRE_ROB81.71 1984.59 30982.72 31790.18 29292.89 30283.18 30693.15 35694.74 33578.99 35275.14 35492.69 28465.64 32797.63 23369.46 36381.82 29389.74 353
Andreas Kuhn, Heiko Hirschmüller, Daniel Scharstein, Helmut Mayer: A TV Prior for High-Quality Scalable Multi-View Stereo Reconstruction. International Journal of Computer Vision 2016
mmtdpeth83.69 32182.59 32086.99 34192.82 30376.98 36396.16 31591.63 38582.89 31792.41 16682.90 38654.95 37198.19 19396.27 9153.27 40485.81 386
VPA-MVSNet89.10 23287.66 24793.45 21792.56 30491.02 12497.97 23698.32 2986.92 24286.03 24192.01 29468.84 30197.10 25990.92 17975.34 32492.23 279
tpm89.67 22588.95 22291.82 25392.54 30581.43 32692.95 35895.92 27287.81 21990.50 19889.44 35484.99 14795.65 33283.67 27082.71 28898.38 176
GA-MVS90.10 21988.69 22894.33 19092.44 30687.97 20799.08 11296.26 24189.65 15786.92 23593.11 27868.09 30796.96 26382.54 28190.15 23998.05 195
test_fmvsmconf0.1_n95.94 6395.79 6696.40 10492.42 30789.92 15799.79 1796.85 20396.53 1597.22 6898.67 10082.71 18599.84 6998.92 2798.98 8599.43 92
FIs90.70 20589.87 20593.18 22292.29 30891.12 11898.17 21998.25 3189.11 17583.44 26394.82 24382.26 19596.17 31087.76 21882.76 28792.25 277
ITE_SJBPF87.93 33092.26 30976.44 36593.47 36487.67 22779.95 31895.49 23256.50 36397.38 24875.24 33282.33 29189.98 350
UniMVSNet (Re)89.50 22988.32 23793.03 22492.21 31090.96 12698.90 13398.39 2689.13 17483.22 26492.03 29281.69 20296.34 29986.79 22972.53 35491.81 292
UniMVSNet_NR-MVSNet89.60 22688.55 23392.75 23392.17 31190.07 15098.74 14898.15 4088.37 19983.21 26593.98 25582.86 17995.93 32086.95 22572.47 35592.25 277
TinyColmap80.42 33977.94 34487.85 33192.09 31278.58 35393.74 35089.94 39674.99 37369.77 37891.78 30046.09 39497.58 23765.17 38177.89 30987.38 374
fmvsm_s_conf0.1_n_a95.16 8895.15 8295.18 15892.06 31388.94 18299.29 8097.53 12994.46 3998.98 1898.99 6379.99 21799.85 6798.24 5196.86 14696.73 231
tt080586.50 28284.79 29191.63 25991.97 31481.49 32596.49 30197.38 15682.24 32782.44 28095.82 22551.22 38498.25 19084.55 25680.96 29695.13 254
MS-PatchMatch86.75 27585.92 27289.22 31791.97 31482.47 31896.91 28596.14 25183.74 29677.73 34093.53 26958.19 35897.37 25076.75 32398.35 11387.84 370
VPNet88.30 25286.57 26293.49 21691.95 31691.35 11298.18 21797.20 17688.61 18884.52 25594.89 24162.21 34496.76 27389.34 20172.26 35892.36 273
FMVSNet183.94 32081.32 32991.80 25491.94 31788.81 18796.77 29095.25 31777.98 35778.25 33790.25 34150.37 38894.97 34773.27 34877.81 31491.62 296
WR-MVS88.54 25087.22 25592.52 23891.93 31889.50 16698.56 17497.84 6286.99 23781.87 29693.81 26074.25 25995.92 32285.29 24574.43 33492.12 285
D2MVS87.96 25687.39 25089.70 30791.84 31983.40 30398.31 20798.49 2288.04 21278.23 33890.26 34073.57 26296.79 27284.21 26083.53 28188.90 364
MonoMVSNet90.69 20689.78 20693.45 21791.78 32084.97 28396.51 30094.44 34390.56 13185.96 24290.97 31778.61 23496.27 30695.35 11383.79 27999.11 122
FC-MVSNet-test90.22 21589.40 21392.67 23791.78 32089.86 15997.89 23898.22 3488.81 18582.96 27194.66 24581.90 20195.96 31885.89 24182.52 29092.20 282
MIMVSNet84.48 31181.83 32392.42 24091.73 32287.36 22385.52 39494.42 34781.40 33781.91 29487.58 36551.92 38192.81 37373.84 34488.15 24697.08 223
USDC84.74 30582.93 31190.16 29391.73 32283.54 30295.00 33893.30 36588.77 18673.19 36593.30 27353.62 37797.65 23275.88 32981.54 29489.30 359
test_vis1_n90.40 21090.27 20090.79 27691.55 32476.48 36499.12 10994.44 34394.31 4297.34 6696.95 18443.60 39899.42 12697.57 6297.60 12796.47 240
nrg03090.23 21488.87 22394.32 19191.53 32593.54 7098.79 14595.89 28088.12 20984.55 25494.61 24678.80 23196.88 26792.35 16875.21 32592.53 271
DU-MVS88.83 24087.51 24892.79 23191.46 32690.07 15098.71 14997.62 11188.87 18483.21 26593.68 26374.63 25095.93 32086.95 22572.47 35592.36 273
NR-MVSNet87.74 26386.00 27192.96 22891.46 32690.68 13396.65 29797.42 15288.02 21373.42 36393.68 26377.31 24195.83 32684.26 25971.82 36292.36 273
tfpnnormal83.65 32281.35 32890.56 28391.37 32888.06 20497.29 26997.87 5978.51 35676.20 34490.91 31864.78 33396.47 28761.71 38973.50 34687.13 379
test_vis1_rt81.31 33580.05 33885.11 35591.29 32970.66 38998.98 12677.39 41885.76 26468.80 38182.40 38936.56 40599.44 12292.67 16586.55 25485.24 393
test_040278.81 34876.33 35386.26 34691.18 33078.44 35595.88 32391.34 39068.55 39470.51 37689.91 34952.65 38094.99 34647.14 40779.78 30285.34 392
test0.0.03 188.96 23488.61 23090.03 29991.09 33184.43 28998.97 12797.02 19590.21 14080.29 31396.31 21284.89 14991.93 38572.98 35085.70 26393.73 259
WR-MVS_H86.53 28185.49 27989.66 30991.04 33283.31 30597.53 26198.20 3584.95 27979.64 32190.90 31978.01 23895.33 34176.29 32672.81 35190.35 340
CP-MVSNet86.54 28085.45 28089.79 30491.02 33382.78 31497.38 26697.56 12485.37 26979.53 32493.03 27971.86 28195.25 34379.92 30073.43 34991.34 311
TranMVSNet+NR-MVSNet87.75 26086.31 26692.07 24890.81 33488.56 19498.33 20497.18 17787.76 22181.87 29693.90 25872.45 27495.43 33883.13 27571.30 36592.23 279
PS-CasMVS85.81 29384.58 29689.49 31490.77 33582.11 32097.20 27697.36 16084.83 28179.12 32992.84 28267.42 31595.16 34578.39 31373.25 35091.21 317
DeepMVS_CXcopyleft76.08 38190.74 33651.65 41490.84 39286.47 25557.89 40287.98 36235.88 40692.60 37565.77 37965.06 38383.97 397
OPM-MVS89.76 22489.15 21891.57 26090.53 33785.58 26998.11 22595.93 27092.88 8186.05 24096.47 20667.06 31897.87 21389.29 20486.08 26091.26 315
Ray L. Khuboni, Hongjun Xu: Octagram Propagation Matching for Multi-Scale View Stereopsis (OPM-MVS).
XXY-MVS87.75 26086.02 27092.95 22990.46 33889.70 16297.71 25495.90 27884.02 29080.95 30594.05 24967.51 31497.10 25985.16 24678.41 30692.04 289
UniMVSNet_ETH3D85.65 29883.79 30691.21 26490.41 33980.75 33995.36 33395.78 28678.76 35581.83 29994.33 24849.86 38996.66 27584.30 25883.52 28296.22 245
v1085.73 29684.01 30490.87 27490.03 34086.73 23697.20 27695.22 32581.25 33979.85 32089.75 35173.30 26696.28 30576.87 32172.64 35389.61 356
v886.11 28784.45 29891.10 26689.99 34186.85 23497.24 27395.36 31481.99 33179.89 31989.86 35074.53 25496.39 29178.83 30972.32 35790.05 348
V4287.00 27185.68 27690.98 27089.91 34286.08 25598.32 20695.61 29883.67 29982.72 27390.67 32674.00 26196.53 28281.94 28774.28 33790.32 341
XVG-ACMP-BASELINE85.86 29184.95 28788.57 32689.90 34377.12 36294.30 34495.60 29987.40 23282.12 28892.99 28153.42 37897.66 23085.02 24983.83 27690.92 324
PEN-MVS85.21 30183.93 30589.07 32189.89 34481.31 33097.09 27997.24 16984.45 28678.66 33192.68 28568.44 30494.87 35075.98 32870.92 36691.04 321
test_fmvs285.10 30285.45 28084.02 36489.85 34565.63 39898.49 18392.59 37190.45 13585.43 24993.32 27143.94 39696.59 27890.81 18284.19 27389.85 352
v114486.83 27485.31 28291.40 26189.75 34687.21 23198.31 20795.45 30783.22 30582.70 27490.78 32173.36 26396.36 29379.49 30274.69 33190.63 336
TransMVSNet (Re)81.97 33079.61 34089.08 32089.70 34784.01 29597.26 27191.85 38278.84 35373.07 36991.62 30467.17 31795.21 34467.50 37259.46 39588.02 369
v2v48287.27 26985.76 27491.78 25889.59 34887.58 21598.56 17495.54 30284.53 28482.51 27991.78 30073.11 26896.47 28782.07 28474.14 34091.30 313
pm-mvs184.68 30782.78 31590.40 28789.58 34985.18 27797.31 26894.73 33681.93 33376.05 34692.01 29465.48 33096.11 31378.75 31069.14 36989.91 351
pmmvs487.58 26686.17 26991.80 25489.58 34988.92 18597.25 27295.28 31682.54 32180.49 31093.17 27775.62 24796.05 31582.75 27878.90 30490.42 339
v119286.32 28584.71 29391.17 26589.53 35186.40 24298.13 22195.44 30982.52 32282.42 28290.62 33071.58 28596.33 30077.23 31774.88 32890.79 328
v14419286.40 28384.89 28890.91 27189.48 35285.59 26898.21 21595.43 31082.45 32482.62 27790.58 33372.79 27396.36 29378.45 31274.04 34190.79 328
v14886.38 28485.06 28490.37 29089.47 35384.10 29498.52 17795.48 30583.80 29580.93 30690.22 34474.60 25296.31 30180.92 29371.55 36390.69 334
v192192086.02 28884.44 29990.77 27789.32 35485.20 27698.10 22695.35 31582.19 32882.25 28690.71 32370.73 28896.30 30476.85 32274.49 33390.80 327
v124085.77 29584.11 30290.73 27889.26 35585.15 27997.88 24095.23 32481.89 33482.16 28790.55 33569.60 29796.31 30175.59 33174.87 32990.72 333
our_test_384.47 31282.80 31389.50 31289.01 35683.90 29797.03 28194.56 34181.33 33875.36 35390.52 33671.69 28394.54 35868.81 36776.84 31890.07 346
ppachtmachnet_test83.63 32381.57 32689.80 30389.01 35685.09 28097.13 27894.50 34278.84 35376.14 34591.00 31669.78 29394.61 35763.40 38474.36 33589.71 355
DTE-MVSNet84.14 31782.80 31388.14 32988.95 35879.87 34296.81 28996.24 24283.50 30177.60 34192.52 28767.89 31194.24 36172.64 35369.05 37090.32 341
PS-MVSNAJss89.54 22889.05 22091.00 26988.77 35984.36 29097.39 26495.97 26288.47 19181.88 29593.80 26182.48 18996.50 28489.34 20183.34 28492.15 284
Baseline_NR-MVSNet85.83 29284.82 29088.87 32588.73 36083.34 30498.63 16291.66 38480.41 34982.44 28091.35 31074.63 25095.42 33984.13 26271.39 36487.84 370
MVP-Stereo86.61 27985.83 27388.93 32488.70 36183.85 29896.07 31794.41 34882.15 32975.64 35191.96 29767.65 31296.45 28977.20 31998.72 10086.51 382
Qingsong Yan: MVP-Stereo: A Parallel Multi-View Patchmatch Stereo Method with Dilation Matching for Photogrammetric Application.
EU-MVSNet84.19 31684.42 30083.52 36888.64 36267.37 39696.04 31895.76 28985.29 27078.44 33593.18 27670.67 28991.48 38775.79 33075.98 32091.70 293
pmmvs585.87 29084.40 30190.30 29188.53 36384.23 29198.60 16993.71 35981.53 33680.29 31392.02 29364.51 33495.52 33582.04 28678.34 30791.15 318
MDA-MVSNet-bldmvs77.82 35574.75 36187.03 34088.33 36478.52 35496.34 30592.85 36875.57 37148.87 40887.89 36357.32 36192.49 37960.79 39164.80 38490.08 345
N_pmnet70.19 36869.87 37071.12 38888.24 36530.63 42795.85 32628.70 42670.18 38968.73 38286.55 37764.04 33693.81 36353.12 40373.46 34788.94 363
v7n84.42 31382.75 31689.43 31588.15 36681.86 32296.75 29395.67 29580.53 34578.38 33689.43 35569.89 29296.35 29873.83 34572.13 35990.07 346
SixPastTwentyTwo82.63 32781.58 32585.79 35188.12 36771.01 38895.17 33692.54 37284.33 28772.93 37092.08 29160.41 35295.61 33474.47 33874.15 33990.75 331
test_djsdf88.26 25487.73 24589.84 30288.05 36882.21 31997.77 24796.17 24986.84 24382.41 28391.95 29872.07 27895.99 31689.83 19184.50 27091.32 312
mvs_tets87.09 27086.22 26789.71 30687.87 36981.39 32896.73 29595.90 27888.19 20779.99 31793.61 26659.96 35396.31 30189.40 20084.34 27291.43 307
OurMVSNet-221017-084.13 31883.59 30785.77 35287.81 37070.24 39094.89 33993.65 36186.08 25876.53 34393.28 27461.41 34796.14 31280.95 29277.69 31590.93 323
YYNet179.64 34577.04 35087.43 33887.80 37179.98 34196.23 31194.44 34373.83 37951.83 40587.53 36667.96 31092.07 38466.00 37867.75 37690.23 343
MDA-MVSNet_test_wron79.65 34477.05 34987.45 33787.79 37280.13 34096.25 31094.44 34373.87 37851.80 40687.47 37068.04 30892.12 38366.02 37767.79 37590.09 344
jajsoiax87.35 26786.51 26489.87 30087.75 37381.74 32397.03 28195.98 26188.47 19180.15 31593.80 26161.47 34696.36 29389.44 19984.47 27191.50 303
K. test v381.04 33679.77 33984.83 35987.41 37470.23 39195.60 33293.93 35683.70 29867.51 38889.35 35655.76 36493.58 36676.67 32468.03 37390.67 335
dmvs_testset77.17 35778.99 34271.71 38687.25 37538.55 42391.44 37581.76 41485.77 26369.49 37995.94 22369.71 29584.37 40652.71 40476.82 31992.21 281
testgi82.29 32881.00 33186.17 34787.24 37674.84 37397.39 26491.62 38688.63 18775.85 35095.42 23346.07 39591.55 38666.87 37679.94 30192.12 285
LF4IMVS81.94 33181.17 33084.25 36387.23 37768.87 39593.35 35591.93 38183.35 30475.40 35293.00 28049.25 39296.65 27678.88 30878.11 30887.22 378
EG-PatchMatch MVS79.92 34077.59 34686.90 34287.06 37877.90 36096.20 31494.06 35474.61 37566.53 39288.76 35940.40 40396.20 30867.02 37483.66 28086.61 380
test_fmvsmconf0.01_n94.14 12093.51 12896.04 12286.79 37989.19 16999.28 8395.94 26795.70 2195.50 11398.49 11373.27 26799.79 8598.28 4998.32 11699.15 116
Gipumacopyleft54.77 38052.22 38462.40 39786.50 38059.37 40450.20 41590.35 39536.52 41341.20 41449.49 41518.33 41681.29 40832.10 41465.34 38246.54 415
S. Galliani, K. Lasinger, K. Schindler: Massively Parallel Multiview Stereopsis by Surface Normal Diffusion. ICCV 2015
anonymousdsp86.69 27685.75 27589.53 31186.46 38182.94 30896.39 30395.71 29183.97 29279.63 32290.70 32468.85 30095.94 31986.01 23684.02 27589.72 354
EGC-MVSNET60.70 37555.37 37976.72 38086.35 38271.08 38689.96 38684.44 4110.38 4231.50 42484.09 38437.30 40488.10 40140.85 41273.44 34870.97 408
MVStest176.56 35873.43 36485.96 35086.30 38380.88 33894.26 34591.74 38361.98 40558.53 40189.96 34869.30 29891.47 38859.26 39549.56 41085.52 389
test_method70.10 36968.66 37274.41 38586.30 38355.84 40794.47 34189.82 39735.18 41466.15 39384.75 38330.54 40877.96 41570.40 36260.33 39389.44 358
lessismore_v085.08 35685.59 38569.28 39390.56 39467.68 38790.21 34554.21 37595.46 33773.88 34362.64 38790.50 338
CMPMVSbinary58.40 2180.48 33880.11 33781.59 37685.10 38659.56 40394.14 34895.95 26668.54 39560.71 39993.31 27255.35 36997.87 21383.06 27684.85 26887.33 376
M. Jancosek, T. Pajdla: Multi-View Reconstruction Preserving Weakly-Supported Surfaces. CVPR 2011
Anonymous2023120680.76 33779.42 34184.79 36084.78 38772.98 38096.53 29892.97 36779.56 35074.33 35688.83 35861.27 34892.15 38260.59 39275.92 32189.24 361
DSMNet-mixed81.60 33381.43 32782.10 37384.36 38860.79 40193.63 35386.74 40679.00 35179.32 32687.15 37363.87 33789.78 39566.89 37591.92 21195.73 250
pmmvs679.90 34177.31 34887.67 33384.17 38978.13 35795.86 32593.68 36067.94 39772.67 37189.62 35350.98 38695.75 32874.80 33766.04 38089.14 362
new_pmnet76.02 35973.71 36382.95 36983.88 39072.85 38291.26 37892.26 37570.44 38862.60 39781.37 39347.64 39392.32 38061.85 38872.10 36083.68 398
OpenMVS_ROBcopyleft73.86 2077.99 35475.06 36086.77 34383.81 39177.94 35996.38 30491.53 38867.54 39868.38 38387.13 37443.94 39696.08 31455.03 40181.83 29286.29 384
ttmdpeth79.80 34377.91 34585.47 35483.34 39275.75 36795.32 33491.45 38976.84 36574.81 35591.71 30353.98 37694.13 36272.42 35461.29 39086.51 382
test20.0378.51 35177.48 34781.62 37583.07 39371.03 38796.11 31692.83 36981.66 33569.31 38089.68 35257.53 35987.29 40358.65 39768.47 37186.53 381
Anonymous2024052178.63 35076.90 35183.82 36582.82 39472.86 38195.72 33093.57 36273.55 38172.17 37384.79 38249.69 39092.51 37865.29 38074.50 33286.09 385
UnsupCasMVSNet_eth78.90 34776.67 35285.58 35382.81 39574.94 37291.98 36896.31 23684.64 28365.84 39487.71 36451.33 38392.23 38172.89 35156.50 40089.56 357
KD-MVS_self_test77.47 35675.88 35582.24 37181.59 39668.93 39492.83 36294.02 35577.03 36373.14 36683.39 38555.44 36890.42 39067.95 37057.53 39887.38 374
CL-MVSNet_self_test79.89 34278.34 34384.54 36281.56 39775.01 37196.88 28795.62 29781.10 34075.86 34985.81 38068.49 30390.26 39163.21 38556.51 39988.35 367
MIMVSNet175.92 36073.30 36583.81 36681.29 39875.57 36992.26 36692.05 37973.09 38267.48 38986.18 37840.87 40287.64 40255.78 40070.68 36788.21 368
Patchmatch-RL test81.90 33280.13 33687.23 33980.71 39970.12 39284.07 40388.19 40483.16 30770.57 37482.18 39187.18 10192.59 37682.28 28362.78 38698.98 131
APD_test168.93 37066.98 37374.77 38480.62 40053.15 41187.97 38985.01 40953.76 40759.26 40087.52 36725.19 41089.95 39256.20 39967.33 37781.19 402
mvs5depth78.17 35275.56 35685.97 34980.43 40176.44 36585.46 39589.24 40176.39 36778.17 33988.26 36151.73 38295.73 32969.31 36561.09 39185.73 387
pmmvs-eth3d78.71 34976.16 35486.38 34480.25 40281.19 33294.17 34792.13 37877.97 35866.90 39182.31 39055.76 36492.56 37773.63 34762.31 38985.38 390
UnsupCasMVSNet_bld73.85 36570.14 36984.99 35779.44 40375.73 36888.53 38895.24 32070.12 39061.94 39874.81 40541.41 40193.62 36568.65 36851.13 40885.62 388
PM-MVS74.88 36372.85 36680.98 37778.98 40464.75 39990.81 38285.77 40780.95 34368.23 38582.81 38729.08 40992.84 37276.54 32562.46 38885.36 391
new-patchmatchnet74.80 36472.40 36781.99 37478.36 40572.20 38494.44 34292.36 37477.06 36263.47 39679.98 39951.04 38588.85 39960.53 39354.35 40284.92 395
test_fmvs375.09 36275.19 35874.81 38377.45 40654.08 40995.93 31990.64 39382.51 32373.29 36481.19 39422.29 41286.29 40585.50 24467.89 37484.06 396
WB-MVS66.44 37166.29 37466.89 39174.84 40744.93 41893.00 35784.09 41271.15 38555.82 40381.63 39263.79 33880.31 41321.85 41750.47 40975.43 404
SSC-MVS65.42 37265.20 37566.06 39273.96 40843.83 41992.08 36783.54 41369.77 39154.73 40480.92 39663.30 34079.92 41420.48 41848.02 41174.44 405
pmmvs372.86 36669.76 37182.17 37273.86 40974.19 37594.20 34689.01 40264.23 40467.72 38680.91 39741.48 40088.65 40062.40 38754.02 40383.68 398
mvsany_test375.85 36174.52 36279.83 37873.53 41060.64 40291.73 37187.87 40583.91 29470.55 37582.52 38831.12 40793.66 36486.66 23162.83 38585.19 394
test_f71.94 36770.82 36875.30 38272.77 41153.28 41091.62 37289.66 39975.44 37264.47 39578.31 40220.48 41389.56 39678.63 31166.02 38183.05 401
ambc79.60 37972.76 41256.61 40676.20 41092.01 38068.25 38480.23 39823.34 41194.73 35473.78 34660.81 39287.48 373
TDRefinement78.01 35375.31 35786.10 34870.06 41373.84 37693.59 35491.58 38774.51 37673.08 36891.04 31549.63 39197.12 25674.88 33559.47 39487.33 376
test_vis3_rt61.29 37458.75 37768.92 39067.41 41452.84 41291.18 38059.23 42566.96 39941.96 41358.44 41311.37 42194.72 35574.25 34057.97 39759.20 412
testf156.38 37853.73 38164.31 39564.84 41545.11 41680.50 40875.94 42038.87 41042.74 41075.07 40311.26 42281.19 40941.11 41053.27 40466.63 409
APD_test256.38 37853.73 38164.31 39564.84 41545.11 41680.50 40875.94 42038.87 41042.74 41075.07 40311.26 42281.19 40941.11 41053.27 40466.63 409
PMMVS258.97 37755.07 38070.69 38962.72 41755.37 40885.97 39380.52 41549.48 40845.94 40968.31 40715.73 41880.78 41149.79 40637.12 41475.91 403
E-PMN41.02 38540.93 38741.29 40161.97 41833.83 42484.00 40465.17 42327.17 41627.56 41646.72 41717.63 41760.41 42019.32 41918.82 41629.61 416
wuyk23d16.71 38916.73 39316.65 40360.15 41925.22 42841.24 4165.17 4276.56 4205.48 4233.61 4233.64 42522.72 42215.20 4219.52 4201.99 420
FPMVS61.57 37360.32 37665.34 39360.14 42042.44 42191.02 38189.72 39844.15 40942.63 41280.93 39519.02 41480.59 41242.50 40972.76 35273.00 406
EMVS39.96 38639.88 38840.18 40259.57 42132.12 42684.79 40164.57 42426.27 41726.14 41844.18 42018.73 41559.29 42117.03 42017.67 41829.12 417
LCM-MVSNet60.07 37656.37 37871.18 38754.81 42248.67 41582.17 40789.48 40037.95 41249.13 40769.12 40613.75 42081.76 40759.28 39451.63 40783.10 400
MVEpermissive44.00 2241.70 38437.64 38953.90 40049.46 42343.37 42065.09 41466.66 42226.19 41825.77 41948.53 4163.58 42663.35 41926.15 41627.28 41554.97 414
Simon Fuhrmann, Fabian Langguth, Michael Goesele: MVE - A Multi-View Reconstruction Environment. EUROGRAPHICS Workshops on Graphics and Cultural Heritage (2014)
ANet_high50.71 38246.17 38564.33 39444.27 42452.30 41376.13 41178.73 41664.95 40227.37 41755.23 41414.61 41967.74 41736.01 41318.23 41772.95 407
PMVScopyleft41.42 2345.67 38342.50 38655.17 39934.28 42532.37 42566.24 41378.71 41730.72 41522.04 42059.59 4114.59 42477.85 41627.49 41558.84 39655.29 413
Y. Furukawa, J. Ponce: Accurate, dense, and robust multiview stereopsis. PAMI (2010)
tmp_tt53.66 38152.86 38356.05 39832.75 42641.97 42273.42 41276.12 41921.91 41939.68 41596.39 20942.59 39965.10 41878.00 31414.92 41961.08 411
testmvs18.81 38823.05 3916.10 4054.48 4272.29 43097.78 2453.00 4283.27 42118.60 42162.71 4091.53 4282.49 42414.26 4221.80 42113.50 419
test12316.58 39019.47 3927.91 4043.59 4285.37 42994.32 3431.39 4292.49 42213.98 42244.60 4192.91 4272.65 42311.35 4230.57 42215.70 418
mmdepth0.00 3930.00 3960.00 4060.00 4290.00 4310.00 4170.00 4300.00 4240.00 4250.00 4240.00 4290.00 4250.00 4240.00 4230.00 421
monomultidepth0.00 3930.00 3960.00 4060.00 4290.00 4310.00 4170.00 4300.00 4240.00 4250.00 4240.00 4290.00 4250.00 4240.00 4230.00 421
test_blank0.00 3930.00 3960.00 4060.00 4290.00 4310.00 4170.00 4300.00 4240.00 4250.00 4240.00 4290.00 4250.00 4240.00 4230.00 421
eth-test20.00 429
eth-test0.00 429
uanet_test0.00 3930.00 3960.00 4060.00 4290.00 4310.00 4170.00 4300.00 4240.00 4250.00 4240.00 4290.00 4250.00 4240.00 4230.00 421
DCPMVS0.00 3930.00 3960.00 4060.00 4290.00 4310.00 4170.00 4300.00 4240.00 4250.00 4240.00 4290.00 4250.00 4240.00 4230.00 421
cdsmvs_eth3d_5k22.52 38730.03 3900.00 4060.00 4290.00 4310.00 41797.17 1780.00 4240.00 42598.77 8874.35 2570.00 4250.00 4240.00 4230.00 421
pcd_1.5k_mvsjas6.87 3929.16 3950.00 4060.00 4290.00 4310.00 4170.00 4300.00 4240.00 4250.00 42482.48 1890.00 4250.00 4240.00 4230.00 421
sosnet-low-res0.00 3930.00 3960.00 4060.00 4290.00 4310.00 4170.00 4300.00 4240.00 4250.00 4240.00 4290.00 4250.00 4240.00 4230.00 421
sosnet0.00 3930.00 3960.00 4060.00 4290.00 4310.00 4170.00 4300.00 4240.00 4250.00 4240.00 4290.00 4250.00 4240.00 4230.00 421
uncertanet0.00 3930.00 3960.00 4060.00 4290.00 4310.00 4170.00 4300.00 4240.00 4250.00 4240.00 4290.00 4250.00 4240.00 4230.00 421
Regformer0.00 3930.00 3960.00 4060.00 4290.00 4310.00 4170.00 4300.00 4240.00 4250.00 4240.00 4290.00 4250.00 4240.00 4230.00 421
ab-mvs-re8.21 39110.94 3940.00 4060.00 4290.00 4310.00 4170.00 4300.00 4240.00 42598.50 1110.00 4290.00 4250.00 4240.00 4230.00 421
uanet0.00 3930.00 3960.00 4060.00 4290.00 4310.00 4170.00 4300.00 4240.00 4250.00 4240.00 4290.00 4250.00 4240.00 4230.00 421
WAC-MVS79.74 34367.75 371
PC_three_145294.60 3799.41 499.12 4995.50 799.96 2899.84 299.92 399.97 7
test_241102_TWO97.72 8394.17 4499.23 1099.54 393.14 2399.98 999.70 599.82 1999.99 1
test_0728_THIRD93.01 7499.07 1599.46 1094.66 1399.97 2199.25 1899.82 1999.95 15
GSMVS98.84 146
sam_mvs188.39 7698.84 146
sam_mvs87.08 104
MTGPAbinary97.45 146
test_post190.74 38441.37 42185.38 14396.36 29383.16 273
test_post46.00 41887.37 9597.11 257
patchmatchnet-post84.86 38188.73 7296.81 270
MTMP99.21 8891.09 391
test9_res98.60 3399.87 999.90 22
agg_prior297.84 5999.87 999.91 21
test_prior492.00 10199.41 68
test_prior299.57 4291.43 11098.12 4698.97 6590.43 4798.33 4699.81 23
旧先验298.67 15685.75 26598.96 2098.97 15793.84 144
新几何298.26 210
无先验98.52 17797.82 6687.20 23599.90 5087.64 22099.85 30
原ACMM298.69 153
testdata299.88 5484.16 261
segment_acmp90.56 45
testdata197.89 23892.43 87
plane_prior596.30 23797.75 22693.46 15386.17 25892.67 269
plane_prior496.52 203
plane_prior385.91 26193.65 6286.99 233
plane_prior299.02 12093.38 69
plane_prior86.07 25799.14 10493.81 5986.26 257
n20.00 430
nn0.00 430
door-mid84.90 410
test1197.68 92
door85.30 408
HQP5-MVS86.39 243
BP-MVS93.82 146
HQP4-MVS87.57 22697.77 22092.72 267
HQP3-MVS96.37 23386.29 255
HQP2-MVS73.34 264
MDTV_nov1_ep13_2view91.17 11791.38 37687.45 23193.08 15786.67 11587.02 22398.95 137
ACMMP++_ref82.64 289
ACMMP++83.83 276
Test By Simon83.62 163