This table lists the benchmark results for the high-res multi-view scenario. The following metrics are evaluated:

(*) For exact definitions, detailing how potentially incomplete ground truth is taken into account, see our paper.

The datasets are grouped into different categories, and result averages are computed for a category and method if results of the method are available for all datasets within the category. Note that the category "all" includes both the high-res multi-view and the low-res many-view scenarios.

Methods with suffix _ROB may participate in the Robust Vision Challenge.

Click a dataset result cell to show a visualization of the reconstruction. For training datasets, ground truth and accuracy / completeness visualizations are also available. The visualizations may not work with mobile browsers.




Method Infoallhigh-res
multi-view
indooroutdoorbotani.boulde.bridgedoorexhibi.lectur.living.loungeobserv.old co.statueterrac.
sort bysort bysort bysort bysorted bysort bysort bysort bysort bysort bysort bysort bysort bysort bysort bysort by
AdaColmapbinary97.23 10496.80 10898.51 11699.99 195.60 17099.09 23598.84 4993.32 15996.74 15899.72 9186.04 217100.00 198.01 11199.43 11899.94 84
CNVR-MVS99.40 199.26 199.84 699.98 299.51 699.98 998.69 5798.20 399.93 199.98 296.82 23100.00 199.75 28100.00 199.99 24
MCST-MVS99.32 399.14 499.86 599.97 399.59 599.97 1898.64 6598.47 299.13 8399.92 1396.38 30100.00 199.74 30100.00 1100.00 1
mPP-MVS98.39 5398.20 5298.97 8499.97 396.92 12399.95 4398.38 14795.04 8698.61 10999.80 6093.39 108100.00 198.64 88100.00 199.98 55
CPTT-MVS97.64 8997.32 9298.58 10899.97 395.77 16299.96 2598.35 15589.90 25498.36 11999.79 6491.18 16099.99 4098.37 9799.99 2299.99 24
DP-MVS Recon98.41 5098.02 6499.56 2499.97 398.70 4799.92 7198.44 11292.06 20898.40 11899.84 4895.68 42100.00 198.19 10199.71 9999.97 67
PAPR98.52 4298.16 5599.58 2399.97 398.77 4099.95 4398.43 12095.35 7998.03 12999.75 8294.03 9499.98 4698.11 10699.83 8599.99 24
HFP-MVS98.56 3898.37 4299.14 6699.96 897.43 10499.95 4398.61 7194.77 9699.31 7199.85 3594.22 87100.00 198.70 8299.98 3599.98 55
region2R98.54 4098.37 4299.05 7699.96 897.18 11299.96 2598.55 8594.87 9499.45 5899.85 3594.07 93100.00 198.67 84100.00 199.98 55
#test#98.59 3698.41 3599.14 6699.96 897.43 10499.95 4398.61 7195.00 8799.31 7199.85 3594.22 87100.00 198.78 7799.98 3599.98 55
ACMMPR98.50 4398.32 4699.05 7699.96 897.18 11299.95 4398.60 7394.77 9699.31 7199.84 4893.73 102100.00 198.70 8299.98 3599.98 55
NCCC99.37 299.25 299.71 1399.96 899.15 2099.97 1898.62 6998.02 699.90 299.95 397.33 17100.00 199.54 39100.00 1100.00 1
CP-MVS98.45 4798.32 4698.87 8999.96 896.62 13199.97 1898.39 14394.43 11098.90 9499.87 2894.30 85100.00 199.04 6099.99 2299.99 24
test_one_060199.94 1499.30 1198.41 13696.63 4099.75 2899.93 1197.49 10
testtj98.89 1998.69 2099.52 2999.94 1498.56 5799.90 8098.55 8595.14 8499.72 3399.84 4895.46 47100.00 199.65 3899.99 2299.99 24
test_0728_SECOND99.82 799.94 1499.47 799.95 4398.43 120100.00 199.99 5100.00 1100.00 1
XVS98.70 2998.55 2799.15 6499.94 1497.50 9999.94 6198.42 13296.22 5399.41 6299.78 7094.34 8099.96 5898.92 6699.95 5599.99 24
test_prior398.99 1498.84 1699.43 3899.94 1498.49 6199.95 4398.65 6295.78 6499.73 3099.76 7696.00 3399.80 11199.78 26100.00 199.99 24
X-MVStestdata93.83 19792.06 22899.15 6499.94 1497.50 9999.94 6198.42 13296.22 5399.41 6241.37 38094.34 8099.96 5898.92 6699.95 5599.99 24
test_prior99.43 3899.94 1498.49 6198.65 6299.80 11199.99 24
MSLP-MVS++99.13 899.01 1199.49 3499.94 1498.46 6399.98 998.86 4797.10 2699.80 1799.94 495.92 37100.00 199.51 40100.00 1100.00 1
APDe-MVS99.06 1198.91 1499.51 3199.94 1498.76 4499.91 7598.39 14397.20 2599.46 5799.85 3595.53 4699.79 11499.86 18100.00 199.99 24
MP-MVScopyleft98.23 6597.97 6799.03 7899.94 1497.17 11599.95 4398.39 14394.70 9998.26 12599.81 5991.84 151100.00 198.85 7299.97 4899.93 85
Rongxuan Tan, Qing Wang, et al.: MP-MVS: Multi-Scale Windows PatchMatch and Planar Prior Multi-View Stereo.
CDPH-MVS98.65 3298.36 4499.49 3499.94 1498.73 4599.87 9398.33 15893.97 13699.76 2799.87 2894.99 6199.75 12698.55 91100.00 199.98 55
PAPM_NR98.12 6897.93 7298.70 9799.94 1496.13 15299.82 11998.43 12094.56 10597.52 14099.70 9594.40 7499.98 4697.00 14399.98 3599.99 24
MG-MVS98.91 1898.65 2299.68 1499.94 1499.07 2299.64 16899.44 1997.33 1899.00 9099.72 9194.03 9499.98 4698.73 81100.00 1100.00 1
SED-MVS99.28 599.11 799.77 899.93 2799.30 1199.96 2598.43 12097.27 2199.80 1799.94 496.71 24100.00 1100.00 1100.00 1100.00 1
IU-MVS99.93 2799.31 998.41 13697.71 899.84 9100.00 1100.00 1100.00 1
test_241102_ONE99.93 2799.30 1198.43 12097.26 2399.80 1799.88 2496.71 24100.00 1
ETH3 D test640098.81 2398.54 2899.59 2199.93 2798.93 2699.93 6798.46 10794.56 10599.84 999.92 1394.32 8499.86 9599.96 999.98 35100.00 1
DVP-MVScopyleft99.30 499.16 399.73 1199.93 2799.29 1499.95 4398.32 16097.28 1999.83 1199.91 1597.22 19100.00 199.99 5100.00 199.89 94
Zhenlong Yuan, Jinguo Luo, Fei Shen, Zhaoxin Li, Cong Liu, Tianlu Mao, Zhaoqi Wang: DVP-MVS: Synergize Depth-Edge and Visibility Prior for Multi-View Stereo. AAAI2025
test072699.93 2799.29 1499.96 2598.42 13297.28 1999.86 599.94 497.22 19
MSP-MVS99.09 999.12 598.98 8399.93 2797.24 10999.95 4398.42 13297.50 1599.52 5499.88 2497.43 1699.71 13499.50 4199.98 35100.00 1
Zhenlong Yuan, Cong Liu, Fei Shen, Zhaoxin Li, Jingguo luo, Tianlu Mao and Zhaoqi Wang: MSP-MVS: Multi-granularity Segmentation Prior Guided Multi-View Stereo. AAAI2025
agg_prior198.88 2098.66 2199.54 2699.93 2798.77 4099.96 2598.43 12094.63 10399.63 4099.85 3595.79 4199.85 9999.72 3499.99 2299.99 24
agg_prior99.93 2798.77 4098.43 12099.63 4099.85 99
FOURS199.92 3697.66 9099.95 4398.36 15295.58 7399.52 54
ZD-MVS99.92 3698.57 5598.52 9292.34 19899.31 7199.83 5195.06 5699.80 11199.70 3699.97 48
GST-MVS98.27 6097.97 6799.17 6099.92 3697.57 9299.93 6798.39 14394.04 13498.80 9799.74 8792.98 122100.00 198.16 10399.76 9599.93 85
TEST999.92 3698.92 2799.96 2598.43 12093.90 14199.71 3499.86 3195.88 3899.85 99
train_agg98.88 2098.65 2299.59 2199.92 3698.92 2799.96 2598.43 12094.35 11599.71 3499.86 3195.94 3599.85 9999.69 3799.98 3599.99 24
test_899.92 3698.88 3099.96 2598.43 12094.35 11599.69 3699.85 3595.94 3599.85 99
PGM-MVS98.34 5598.13 5798.99 8299.92 3697.00 11999.75 14099.50 1793.90 14199.37 6899.76 7693.24 117100.00 197.75 12699.96 5299.98 55
ACMMPcopyleft97.74 8697.44 8698.66 10099.92 3696.13 15299.18 22999.45 1894.84 9596.41 16999.71 9391.40 15499.99 4097.99 11398.03 15599.87 98
Qingshan Xu, Weihang Kong, Wenbing Tao, Marc Pollefeys: Multi-Scale Geometric Consistency Guided and Planar Prior Assisted Multi-View Stereo. IEEE Transactions on Pattern Analysis and Machine Intelligence
DVP-MVS++99.26 699.09 999.77 899.91 4499.31 999.95 4398.43 12096.48 4399.80 1799.93 1197.44 14100.00 199.92 1399.98 35100.00 1
MSC_two_6792asdad99.93 299.91 4499.80 298.41 136100.00 199.96 9100.00 1100.00 1
No_MVS99.93 299.91 4499.80 298.41 136100.00 199.96 9100.00 1100.00 1
HPM-MVS++copyleft99.07 1098.88 1599.63 1599.90 4799.02 2399.95 4398.56 7997.56 1499.44 5999.85 3595.38 49100.00 199.31 4999.99 2299.87 98
APD-MVScopyleft98.62 3398.35 4599.41 4299.90 4798.51 6099.87 9398.36 15294.08 12899.74 2999.73 8994.08 9299.74 13099.42 4599.99 2299.99 24
Yuesong Wang, Zhaojie Zeng and etc.: Adaptive Patch Deformation for Textureless-Resilient Multi-View Stereo. CVPR2023
DeepC-MVS_fast96.59 198.81 2398.54 2899.62 1899.90 4798.85 3399.24 22498.47 10598.14 499.08 8499.91 1593.09 120100.00 199.04 6099.99 22100.00 1
Andreas Kuhn, Christian Sormann, Mattia Rossi, Oliver Erdler, Friedrich Fraundorfer: DeepC-MVS: Deep Confidence Prediction for Multi-View Stereo Reconstruction. 3DV 2020
OPU-MVS99.93 299.89 5099.80 299.96 2599.80 6097.44 14100.00 1100.00 199.98 35100.00 1
DPE-MVScopyleft99.26 699.10 899.74 1099.89 5099.24 1899.87 9398.44 11297.48 1699.64 3999.94 496.68 2699.99 4099.99 5100.00 199.99 24
Kehua Chen, Zhenlong Yuan, Tianlu Mao, Zhaoqi Wang: Dual-Level Precision Edges Guided Multi-View Stereo with Accurate Planarization. AAAI2025
test_part299.89 5099.25 1799.49 56
CSCG97.10 10797.04 10197.27 17199.89 5091.92 25799.90 8099.07 3288.67 27495.26 18999.82 5593.17 11999.98 4698.15 10499.47 11599.90 93
test117298.38 5498.25 4998.77 9399.88 5496.56 13499.80 12598.36 15294.68 10099.20 7899.80 6093.28 11499.78 11699.34 4899.92 7199.98 55
ZNCC-MVS98.31 5798.03 6399.17 6099.88 5497.59 9199.94 6198.44 11294.31 11898.50 11399.82 5593.06 12199.99 4098.30 10099.99 2299.93 85
SR-MVS98.46 4698.30 4898.93 8799.88 5497.04 11799.84 11298.35 15594.92 9199.32 7099.80 6093.35 10999.78 11699.30 5099.95 5599.96 74
9.1498.38 4099.87 5799.91 7598.33 15893.22 16299.78 2599.89 2194.57 7199.85 9999.84 1999.97 48
SMA-MVScopyleft98.76 2798.48 3199.62 1899.87 5798.87 3199.86 10598.38 14793.19 16399.77 2699.94 495.54 44100.00 199.74 3099.99 22100.00 1
Yufeng Yin; Xiaoyan Liu; Zichao Zhang: SMA-MVS: Segmentation-Guided Multi-Scale Anchor Deformation Patch Multi-View Stereo. IEEE Transactions on Circuits and Systems for Video Technology
PHI-MVS98.41 5098.21 5199.03 7899.86 5997.10 11699.98 998.80 5290.78 24199.62 4399.78 7095.30 50100.00 199.80 2499.93 6799.99 24
zzz-MVS98.33 5698.00 6599.30 5099.85 6097.93 8199.80 12598.28 16795.76 6697.18 14799.88 2492.74 129100.00 198.67 8499.88 8099.99 24
MTAPA98.29 5997.96 7099.30 5099.85 6097.93 8199.39 20598.28 16795.76 6697.18 14799.88 2492.74 129100.00 198.67 8499.88 8099.99 24
Regformer-198.79 2598.60 2599.36 4899.85 6098.34 6699.87 9398.52 9296.05 5799.41 6299.79 6494.93 6399.76 12399.07 5599.90 7699.99 24
Regformer-298.78 2698.59 2699.36 4899.85 6098.32 6799.87 9398.52 9296.04 5899.41 6299.79 6494.92 6499.76 12399.05 5699.90 7699.98 55
LS3D95.84 15195.11 16198.02 13999.85 6095.10 18598.74 27898.50 10387.22 29493.66 20799.86 3187.45 20399.95 6590.94 24699.81 9399.02 198
Regformer-398.58 3798.41 3599.10 7299.84 6597.57 9299.66 16098.52 9295.79 6399.01 8899.77 7294.40 7499.75 12698.82 7399.83 8599.98 55
Regformer-498.56 3898.39 3999.08 7499.84 6597.52 9599.66 16098.52 9295.76 6699.01 8899.77 7294.33 8399.75 12698.80 7699.83 8599.98 55
HPM-MVScopyleft97.96 7297.72 7798.68 9899.84 6596.39 14099.90 8098.17 18292.61 18698.62 10899.57 11191.87 15099.67 14198.87 7199.99 2299.99 24
Chunlin Ren, Qingshan Xu, Shikun Zhang, Jiaqi Yang: Hierarchical Prior Mining for Non-local Multi-View Stereo. ICCV 2023
ETH3D-3000-0.198.68 3098.42 3399.47 3799.83 6898.57 5599.90 8098.37 15093.81 14499.81 1399.90 1994.34 8099.86 9599.84 1999.98 3599.97 67
EI-MVSNet-Vis-set98.27 6098.11 5998.75 9599.83 6896.59 13399.40 20198.51 9995.29 8198.51 11299.76 7693.60 10699.71 13498.53 9299.52 11299.95 82
xxxxxxxxxxxxxcwj98.98 1598.79 1799.54 2699.82 7098.79 3799.96 2597.52 24497.66 1099.81 1399.89 2194.70 6899.86 9599.84 1999.93 6799.96 74
save fliter99.82 7098.79 3799.96 2598.40 14097.66 10
PLCcopyleft95.54 397.93 7497.89 7498.05 13899.82 7094.77 19499.92 7198.46 10793.93 13997.20 14699.27 13495.44 4899.97 5697.41 13199.51 11499.41 169
Jie Liao, Yanping Fu, Qingan Yan, Chunxia xiao: Pyramid Multi-View Stereo with Local Consistency. Pacific Graphics 2019
APD-MVS_3200maxsize98.25 6398.08 6198.78 9299.81 7396.60 13299.82 11998.30 16593.95 13899.37 6899.77 7292.84 12699.76 12398.95 6399.92 7199.97 67
EI-MVSNet-UG-set98.14 6797.99 6698.60 10599.80 7496.27 14399.36 21098.50 10395.21 8398.30 12299.75 8293.29 11399.73 13398.37 9799.30 12199.81 104
SR-MVS-dyc-post98.31 5798.17 5498.71 9699.79 7596.37 14199.76 13798.31 16294.43 11099.40 6699.75 8293.28 11499.78 11698.90 6999.92 7199.97 67
RE-MVS-def98.13 5799.79 7596.37 14199.76 13798.31 16294.43 11099.40 6699.75 8292.95 12398.90 6999.92 7199.97 67
HPM-MVS_fast97.80 8297.50 8498.68 9899.79 7596.42 13799.88 9098.16 18591.75 21798.94 9299.54 11491.82 15299.65 14397.62 12899.99 2299.99 24
SF-MVS98.67 3198.40 3799.50 3299.77 7898.67 4899.90 8098.21 17793.53 15399.81 1399.89 2194.70 6899.86 9599.84 1999.93 6799.96 74
旧先验199.76 7997.52 9598.64 6599.85 3595.63 4399.94 6199.99 24
OMC-MVS97.28 10197.23 9497.41 16399.76 7993.36 22699.65 16497.95 20396.03 5997.41 14399.70 9589.61 17999.51 14896.73 15098.25 14699.38 171
新几何199.42 4199.75 8198.27 6898.63 6892.69 18199.55 4999.82 5594.40 74100.00 191.21 23799.94 6199.99 24
MP-MVS-pluss98.07 7097.64 7999.38 4799.74 8298.41 6499.74 14398.18 18193.35 15796.45 16699.85 3592.64 13299.97 5698.91 6899.89 7899.77 110
MP-MVS-pluss: MP-MVS-pluss. MP-MVS-pluss
TSAR-MVS + MP.98.93 1698.77 1899.41 4299.74 8298.67 4899.77 13298.38 14796.73 3799.88 499.74 8794.89 6599.59 14599.80 2499.98 3599.97 67
Zhenlong Yuan, Jiakai Cao, Zhaoqi Wang, Zhaoxin Li: TSAR-MVS: Textureless-aware Segmentation and Correlative Refinement Guided Multi-View Stereo. Pattern Recognition
112198.03 7197.57 8399.40 4499.74 8298.21 6998.31 30198.62 6992.78 17699.53 5199.83 5195.08 54100.00 194.36 19099.92 7199.99 24
test1299.43 3899.74 8298.56 5798.40 14099.65 3894.76 6699.75 12699.98 3599.99 24
原ACMM198.96 8599.73 8696.99 12098.51 9994.06 13199.62 4399.85 3594.97 6299.96 5895.11 16899.95 5599.92 91
TSAR-MVS + GP.98.60 3498.51 3098.86 9099.73 8696.63 13099.97 1897.92 20798.07 598.76 10199.55 11295.00 6099.94 7399.91 1697.68 15999.99 24
CANet98.27 6097.82 7599.63 1599.72 8899.10 2199.98 998.51 9997.00 2998.52 11199.71 9387.80 19999.95 6599.75 2899.38 11999.83 102
F-COLMAP96.93 11396.95 10496.87 18099.71 8991.74 26299.85 10897.95 20393.11 16695.72 18299.16 14392.35 13999.94 7395.32 16699.35 12098.92 200
SD-MVS98.92 1798.70 1999.56 2499.70 9098.73 4599.94 6198.34 15796.38 4899.81 1399.76 7694.59 7099.98 4699.84 1999.96 5299.97 67
Zhenlong Yuan, Jiakai Cao, Zhaoxin Li, Hao Jiang and Zhaoqi Wang: SD-MVS: Segmentation-driven Deformation Multi-View Stereo with Spherical Refinement and EM optimization. AAAI2024
abl_697.67 8897.34 9098.66 10099.68 9196.11 15599.68 15698.14 18893.80 14599.27 7699.70 9588.65 19599.98 4697.46 13099.72 9899.89 94
patch_mono-298.24 6499.12 595.59 21399.67 9286.91 32999.95 4398.89 4397.60 1299.90 299.76 7696.54 2899.98 4699.94 1299.82 9199.88 96
ACMMP_NAP98.49 4498.14 5699.54 2699.66 9398.62 5499.85 10898.37 15094.68 10099.53 5199.83 5192.87 125100.00 198.66 8799.84 8499.99 24
DeepPCF-MVS95.94 297.71 8798.98 1293.92 27799.63 9481.76 35599.96 2598.56 7999.47 199.19 8199.99 194.16 91100.00 199.92 1399.93 67100.00 1
EPNet98.49 4498.40 3798.77 9399.62 9596.80 12799.90 8099.51 1697.60 1299.20 7899.36 12993.71 10399.91 7997.99 11398.71 13599.61 136
Wanjuan Su, Wenbing Tao: Efficient Edge-Preserving Multi-View Stereo Network for Depth Estimation. AAAI 2023
ETH3D cwj APD-0.1698.40 5298.07 6299.40 4499.59 9698.41 6499.86 10598.24 17392.18 20399.73 3099.87 2893.47 10799.85 9999.74 3099.95 5599.93 85
PVSNet_BlendedMVS96.05 14595.82 14496.72 18599.59 9696.99 12099.95 4399.10 2994.06 13198.27 12395.80 27289.00 19099.95 6599.12 5387.53 26693.24 327
PVSNet_Blended97.94 7397.64 7998.83 9199.59 9696.99 120100.00 199.10 2995.38 7898.27 12399.08 14689.00 19099.95 6599.12 5399.25 12399.57 146
PatchMatch-RL96.04 14695.40 15197.95 14099.59 9695.22 18299.52 18699.07 3293.96 13796.49 16598.35 20082.28 24599.82 11090.15 26099.22 12598.81 207
dcpmvs_297.42 9798.09 6095.42 21899.58 10087.24 32699.23 22596.95 30094.28 12098.93 9399.73 8994.39 7899.16 16499.89 1799.82 9199.86 100
test22299.55 10197.41 10799.34 21198.55 8591.86 21299.27 7699.83 5193.84 10099.95 5599.99 24
CNLPA97.76 8597.38 8798.92 8899.53 10296.84 12599.87 9398.14 18893.78 14696.55 16499.69 9892.28 14199.98 4697.13 13899.44 11799.93 85
API-MVS97.86 7797.66 7898.47 11899.52 10395.41 17499.47 19598.87 4691.68 21898.84 9599.85 3592.34 14099.99 4098.44 9499.96 52100.00 1
PVSNet91.05 1397.13 10696.69 11198.45 12099.52 10395.81 16099.95 4399.65 1194.73 9899.04 8699.21 14184.48 23099.95 6594.92 17498.74 13499.58 145
114514_t97.41 9896.83 10699.14 6699.51 10597.83 8399.89 8898.27 17088.48 27899.06 8599.66 10490.30 17299.64 14496.32 15499.97 4899.96 74
cl2293.77 20193.25 20595.33 22199.49 10694.43 19799.61 17298.09 19190.38 24589.16 27095.61 27990.56 17097.34 25991.93 22984.45 28794.21 271
testdata98.42 12399.47 10795.33 17698.56 7993.78 14699.79 2499.85 3593.64 10599.94 7394.97 17299.94 61100.00 1
MAR-MVS97.43 9397.19 9598.15 13599.47 10794.79 19399.05 24698.76 5392.65 18498.66 10699.82 5588.52 19699.98 4698.12 10599.63 10399.67 122
Zhenyu Xu, Yiguang Liu, Xuelei Shi, Ying Wang, Yunan Zheng: MARMVS: Matching Ambiguity Reduced Multiple View Stereo for Efficient Large Scale Scene Reconstruction. CVPR 2020
DP-MVS94.54 18293.42 19897.91 14399.46 10994.04 20598.93 25997.48 24981.15 34490.04 24399.55 11287.02 20899.95 6588.97 26998.11 15099.73 114
MVS_111021_LR98.42 4998.38 4098.53 11599.39 11095.79 16199.87 9399.86 296.70 3898.78 9899.79 6492.03 14799.90 8099.17 5299.86 8399.88 96
CHOSEN 280x42099.01 1399.03 1098.95 8699.38 11198.87 3198.46 29499.42 2197.03 2899.02 8799.09 14599.35 198.21 22599.73 3399.78 9499.77 110
MVS_111021_HR98.72 2898.62 2499.01 8199.36 11297.18 11299.93 6799.90 196.81 3598.67 10599.77 7293.92 9699.89 8499.27 5199.94 6199.96 74
DPM-MVS98.83 2298.46 3299.97 199.33 11399.92 199.96 2598.44 11297.96 799.55 4999.94 497.18 21100.00 193.81 20399.94 6199.98 55
TAPA-MVS92.12 894.42 18693.60 19196.90 17999.33 11391.78 26199.78 12998.00 19789.89 25594.52 19599.47 11891.97 14899.18 16269.90 35899.52 11299.73 114
Andrea Romanoni, Matteo Matteucci: TAPA-MVS: Textureless-Aware PAtchMatch Multi-View Stereo. ICCV 2019
CS-MVS-test97.88 7697.94 7197.70 15299.28 11595.20 18399.98 997.15 27795.53 7599.62 4399.79 6492.08 14698.38 20998.75 8099.28 12299.52 155
test_yl97.83 7997.37 8899.21 5499.18 11697.98 7899.64 16899.27 2691.43 22697.88 13498.99 15495.84 3999.84 10898.82 7395.32 20599.79 106
DCV-MVSNet97.83 7997.37 8899.21 5499.18 11697.98 7899.64 16899.27 2691.43 22697.88 13498.99 15495.84 3999.84 10898.82 7395.32 20599.79 106
DeepC-MVS94.51 496.92 11496.40 12098.45 12099.16 11895.90 15899.66 16098.06 19496.37 5194.37 19899.49 11783.29 24099.90 8097.63 12799.61 10799.55 148
Andreas Kuhn, Christian Sormann, Mattia Rossi, Oliver Erdler, Friedrich Fraundorfer: DeepC-MVS: Deep Confidence Prediction for Multi-View Stereo Reconstruction. 3DV 2020
DELS-MVS98.54 4098.22 5099.50 3299.15 11998.65 52100.00 198.58 7597.70 998.21 12799.24 13992.58 13399.94 7398.63 8999.94 6199.92 91
Christian Sormann, Emanuele Santellani, Mattia Rossi, Andreas Kuhn, Friedrich Fraundorfer: DELS-MVS: Deep Epipolar Line Search for Multi-View Stereo. Winter Conference on Applications of Computer Vision (WACV), 2023
CS-MVS97.79 8397.91 7397.43 16299.10 12094.42 19899.99 397.10 28295.07 8599.68 3799.75 8292.95 12398.34 21398.38 9699.14 12799.54 151
Anonymous20240521193.10 21791.99 23096.40 19699.10 12089.65 30398.88 26497.93 20583.71 33394.00 20398.75 17968.79 33399.88 9095.08 17091.71 22899.68 120
HyFIR lowres test96.66 12796.43 11997.36 16899.05 12293.91 21099.70 15399.80 390.54 24396.26 17298.08 20592.15 14498.23 22496.84 14995.46 20299.93 85
LFMVS94.75 17693.56 19498.30 12899.03 12395.70 16798.74 27897.98 20087.81 28798.47 11499.39 12667.43 34199.53 14698.01 11195.20 20799.67 122
AllTest92.48 23291.64 23595.00 23199.01 12488.43 31698.94 25896.82 31586.50 30388.71 27698.47 19774.73 31299.88 9085.39 30496.18 18696.71 231
TestCases95.00 23199.01 12488.43 31696.82 31586.50 30388.71 27698.47 19774.73 31299.88 9085.39 30496.18 18696.71 231
COLMAP_ROBcopyleft90.47 1492.18 23991.49 24194.25 26399.00 12688.04 32298.42 29996.70 32282.30 34188.43 28399.01 15176.97 29099.85 9986.11 30196.50 18294.86 238
Johannes L. Schönberger, Enliang Zheng, Marc Pollefeys, Jan-Michael Frahm: Pixelwise View Selection for Unstructured Multi-View Stereo. ECCV 2016
HY-MVS92.50 797.79 8397.17 9799.63 1598.98 12799.32 897.49 32299.52 1495.69 7098.32 12197.41 22693.32 11199.77 12098.08 10995.75 19899.81 104
VNet97.21 10596.57 11599.13 7198.97 12897.82 8499.03 24899.21 2894.31 11899.18 8298.88 17086.26 21699.89 8498.93 6594.32 21399.69 119
thres20096.96 11196.21 12399.22 5398.97 12898.84 3499.85 10899.71 693.17 16496.26 17298.88 17089.87 17799.51 14894.26 19494.91 20899.31 180
tfpn200view996.79 11895.99 12899.19 5698.94 13098.82 3599.78 12999.71 692.86 16996.02 17598.87 17289.33 18399.50 15093.84 20094.57 20999.27 183
thres40096.78 11995.99 12899.16 6298.94 13098.82 3599.78 12999.71 692.86 16996.02 17598.87 17289.33 18399.50 15093.84 20094.57 20999.16 190
Anonymous2023121189.86 28788.44 29394.13 26798.93 13290.68 28198.54 29198.26 17176.28 35586.73 30495.54 28370.60 32997.56 25190.82 24980.27 32094.15 279
canonicalmvs97.09 10996.32 12199.39 4698.93 13298.95 2599.72 15197.35 26094.45 10897.88 13499.42 12286.71 21099.52 14798.48 9393.97 21899.72 116
EPNet_dtu95.71 15595.39 15296.66 18798.92 13493.41 22399.57 17898.90 4296.19 5597.52 14098.56 19192.65 13197.36 25777.89 34298.33 14299.20 188
Wanjuan Su, Wenbing Tao: Efficient Edge-Preserving Multi-View Stereo Network for Depth Estimation. AAAI 2023
WTY-MVS98.10 6997.60 8199.60 2098.92 13499.28 1699.89 8899.52 1495.58 7398.24 12699.39 12693.33 11099.74 13097.98 11595.58 20199.78 109
CHOSEN 1792x268896.81 11796.53 11697.64 15398.91 13693.07 22899.65 16499.80 395.64 7195.39 18698.86 17484.35 23399.90 8096.98 14499.16 12699.95 82
thres100view90096.74 12295.92 14099.18 5798.90 13798.77 4099.74 14399.71 692.59 18895.84 17898.86 17489.25 18599.50 15093.84 20094.57 20999.27 183
thres600view796.69 12595.87 14399.14 6698.90 13798.78 3999.74 14399.71 692.59 18895.84 17898.86 17489.25 18599.50 15093.44 21394.50 21299.16 190
MSDG94.37 18893.36 20297.40 16498.88 13993.95 20999.37 20897.38 25885.75 31590.80 23599.17 14284.11 23599.88 9086.35 29898.43 14098.36 213
test_part192.15 24090.72 25096.44 19498.87 14097.46 10398.99 25198.26 17185.89 31086.34 31396.34 26181.71 24997.48 25491.06 24178.99 32594.37 255
h-mvs3394.92 17194.36 17496.59 18998.85 14191.29 27398.93 25998.94 3795.90 6098.77 9998.42 19990.89 16699.77 12097.80 11970.76 35298.72 210
Anonymous2024052992.10 24190.65 25296.47 19098.82 14290.61 28498.72 28098.67 6175.54 35993.90 20598.58 18966.23 34499.90 8094.70 18490.67 22998.90 203
PVSNet_Blended_VisFu97.27 10296.81 10798.66 10098.81 14396.67 12999.92 7198.64 6594.51 10796.38 17098.49 19389.05 18999.88 9097.10 14098.34 14199.43 167
PS-MVSNAJ98.44 4898.20 5299.16 6298.80 14498.92 2799.54 18498.17 18297.34 1799.85 799.85 3591.20 15799.89 8499.41 4699.67 10198.69 211
CANet_DTU96.76 12096.15 12498.60 10598.78 14597.53 9499.84 11297.63 22797.25 2499.20 7899.64 10681.36 25599.98 4692.77 22398.89 13098.28 214
alignmvs97.81 8197.33 9199.25 5298.77 14698.66 5099.99 398.44 11294.40 11498.41 11699.47 11893.65 10499.42 15698.57 9094.26 21499.67 122
SteuartSystems-ACMMP99.02 1298.97 1399.18 5798.72 14797.71 8699.98 998.44 11296.85 3199.80 1799.91 1597.57 899.85 9999.44 4499.99 2299.99 24
Skip Steuart: Steuart Systems R&D Blog.
xiu_mvs_v2_base98.23 6597.97 6799.02 8098.69 14898.66 5099.52 18698.08 19397.05 2799.86 599.86 3190.65 16899.71 13499.39 4798.63 13698.69 211
miper_enhance_ethall94.36 19093.98 18295.49 21498.68 14995.24 18099.73 14897.29 26693.28 16189.86 24895.97 27094.37 7997.05 28292.20 22784.45 28794.19 272
test250697.53 9197.19 9598.58 10898.66 15096.90 12498.81 27399.77 594.93 8997.95 13198.96 16092.51 13599.20 16094.93 17398.15 14799.64 128
ECVR-MVScopyleft95.66 15795.05 16297.51 15898.66 15093.71 21498.85 27098.45 10994.93 8996.86 15498.96 16075.22 30899.20 16095.34 16598.15 14799.64 128
test111195.57 15994.98 16497.37 16698.56 15293.37 22598.86 26898.45 10994.95 8896.63 16098.95 16475.21 30999.11 16595.02 17198.14 14999.64 128
MVSTER95.53 16095.22 15796.45 19298.56 15297.72 8599.91 7597.67 22492.38 19791.39 22897.14 23397.24 1897.30 26494.80 17987.85 26094.34 262
VDD-MVS93.77 20192.94 20796.27 20198.55 15490.22 29298.77 27797.79 21890.85 23996.82 15699.42 12261.18 35999.77 12098.95 6394.13 21598.82 206
tpmvs94.28 19293.57 19396.40 19698.55 15491.50 27195.70 34998.55 8587.47 28992.15 22394.26 32991.42 15398.95 17188.15 27895.85 19498.76 209
UGNet95.33 16494.57 17197.62 15598.55 15494.85 18998.67 28599.32 2595.75 6996.80 15796.27 26372.18 32299.96 5894.58 18799.05 12998.04 218
Wanjuan Su, Qingshan Xu, Wenbing Tao: Uncertainty-guided Multi-view Stereo Network for Depth Estimation. IEEE Transactions on Circuits and Systems for Video Technology, 2022
PCF-MVS94.20 595.18 16594.10 17998.43 12298.55 15495.99 15697.91 31797.31 26590.35 24789.48 25999.22 14085.19 22599.89 8490.40 25798.47 13999.41 169
Andreas Kuhn, Shan Lin, Oliver Erdler: Plane Completion and Filtering for Multi-View Stereo Reconstruction. GCPR 2019
BH-w/o95.71 15595.38 15396.68 18698.49 15892.28 24799.84 11297.50 24792.12 20592.06 22498.79 17884.69 22898.67 18695.29 16799.66 10299.09 196
baseline195.78 15294.86 16698.54 11398.47 15998.07 7399.06 24297.99 19892.68 18294.13 20298.62 18693.28 11498.69 18593.79 20585.76 27598.84 205
iter_conf0596.07 14495.95 13796.44 19498.43 16097.52 9599.91 7596.85 31194.16 12492.49 22297.98 21198.20 497.34 25997.26 13588.29 25394.45 250
EPMVS96.53 13096.01 12798.09 13698.43 16096.12 15496.36 33899.43 2093.53 15397.64 13895.04 30794.41 7398.38 20991.13 23998.11 15099.75 112
iter_conf_final96.01 14795.93 13896.28 20098.38 16297.03 11899.87 9397.03 29194.05 13392.61 22097.98 21198.01 597.34 25997.02 14288.39 25294.47 244
sss97.57 9097.03 10299.18 5798.37 16398.04 7599.73 14899.38 2293.46 15598.76 10199.06 14791.21 15699.89 8496.33 15397.01 17499.62 133
BH-untuned95.18 16594.83 16796.22 20298.36 16491.22 27499.80 12597.32 26490.91 23791.08 23298.67 18283.51 23798.54 19294.23 19599.61 10798.92 200
ET-MVSNet_ETH3D94.37 18893.28 20497.64 15398.30 16597.99 7799.99 397.61 23294.35 11571.57 36399.45 12196.23 3195.34 33896.91 14885.14 28299.59 139
AUN-MVS93.28 21192.60 21595.34 22098.29 16690.09 29599.31 21598.56 7991.80 21696.35 17198.00 20889.38 18298.28 21992.46 22469.22 35797.64 225
FMVSNet392.69 22891.58 23795.99 20698.29 16697.42 10699.26 22397.62 22989.80 25689.68 25295.32 29781.62 25396.27 32087.01 29485.65 27694.29 265
PMMVS96.76 12096.76 10996.76 18398.28 16892.10 25299.91 7597.98 20094.12 12699.53 5199.39 12686.93 20998.73 18196.95 14697.73 15799.45 164
hse-mvs294.38 18794.08 18095.31 22298.27 16990.02 29799.29 22098.56 7995.90 6098.77 9998.00 20890.89 16698.26 22397.80 11969.20 35897.64 225
PVSNet_088.03 1991.80 24890.27 26096.38 19898.27 16990.46 28899.94 6199.61 1293.99 13586.26 31597.39 22871.13 32899.89 8498.77 7867.05 36298.79 208
UA-Net96.54 12995.96 13598.27 12998.23 17195.71 16698.00 31598.45 10993.72 14998.41 11699.27 13488.71 19499.66 14291.19 23897.69 15899.44 166
GG-mvs-BLEND98.54 11398.21 17298.01 7693.87 35498.52 9297.92 13297.92 21499.02 297.94 24198.17 10299.58 10999.67 122
mvs_anonymous95.65 15895.03 16397.53 15698.19 17395.74 16499.33 21297.49 24890.87 23890.47 23897.10 23588.23 19797.16 27395.92 15997.66 16099.68 120
MVS_Test96.46 13295.74 14598.61 10498.18 17497.23 11099.31 21597.15 27791.07 23498.84 9597.05 23988.17 19898.97 17094.39 18997.50 16299.61 136
BH-RMVSNet95.18 16594.31 17697.80 14498.17 17595.23 18199.76 13797.53 24292.52 19394.27 20099.25 13876.84 29298.80 17590.89 24899.54 11199.35 176
RPSCF91.80 24892.79 21288.83 33598.15 17669.87 36998.11 31196.60 32583.93 33194.33 19999.27 13479.60 27399.46 15591.99 22893.16 22597.18 229
ETV-MVS97.92 7597.80 7698.25 13098.14 17796.48 13599.98 997.63 22795.61 7299.29 7599.46 12092.55 13498.82 17499.02 6298.54 13799.46 162
IS-MVSNet96.29 14095.90 14197.45 16098.13 17894.80 19299.08 23797.61 23292.02 20995.54 18598.96 16090.64 16998.08 23093.73 20897.41 16699.47 161
ab-mvs94.69 17793.42 19898.51 11698.07 17996.26 14496.49 33798.68 5890.31 24894.54 19497.00 24176.30 29899.71 13495.98 15893.38 22399.56 147
XVG-OURS-SEG-HR94.79 17394.70 17095.08 22898.05 18089.19 30699.08 23797.54 24093.66 15094.87 19299.58 11078.78 27999.79 11497.31 13393.40 22296.25 233
EIA-MVS97.53 9197.46 8597.76 14998.04 18194.84 19099.98 997.61 23294.41 11397.90 13399.59 10992.40 13898.87 17298.04 11099.13 12899.59 139
XVG-OURS94.82 17294.74 16995.06 22998.00 18289.19 30699.08 23797.55 23894.10 12794.71 19399.62 10780.51 26699.74 13096.04 15793.06 22696.25 233
dp95.05 16894.43 17396.91 17897.99 18392.73 23796.29 34097.98 20089.70 25795.93 17794.67 32093.83 10198.45 19886.91 29796.53 18199.54 151
tpmrst96.27 14295.98 13097.13 17397.96 18493.15 22796.34 33998.17 18292.07 20698.71 10495.12 30593.91 9798.73 18194.91 17696.62 17999.50 159
TR-MVS94.54 18293.56 19497.49 15997.96 18494.34 20098.71 28197.51 24690.30 24994.51 19698.69 18175.56 30398.77 17892.82 22295.99 19099.35 176
Vis-MVSNet (Re-imp)96.32 13795.98 13097.35 16997.93 18694.82 19199.47 19598.15 18791.83 21395.09 19099.11 14491.37 15597.47 25593.47 21297.43 16399.74 113
MDTV_nov1_ep1395.69 14697.90 18794.15 20295.98 34598.44 11293.12 16597.98 13095.74 27495.10 5398.58 18990.02 26196.92 176
Fast-Effi-MVS+95.02 16994.19 17797.52 15797.88 18894.55 19599.97 1897.08 28588.85 27194.47 19797.96 21384.59 22998.41 20189.84 26397.10 17199.59 139
ADS-MVSNet293.80 20093.88 18593.55 29097.87 18985.94 33394.24 35096.84 31290.07 25196.43 16794.48 32590.29 17395.37 33787.44 28597.23 16899.36 174
ADS-MVSNet94.79 17394.02 18197.11 17597.87 18993.79 21194.24 35098.16 18590.07 25196.43 16794.48 32590.29 17398.19 22687.44 28597.23 16899.36 174
Effi-MVS+96.30 13995.69 14698.16 13297.85 19196.26 14497.41 32397.21 27090.37 24698.65 10798.58 18986.61 21298.70 18497.11 13997.37 16799.52 155
PatchmatchNetpermissive95.94 14995.45 15097.39 16597.83 19294.41 19996.05 34498.40 14092.86 16997.09 14995.28 30294.21 9098.07 23289.26 26798.11 15099.70 117
Fangjinhua Wang, Silvano Galliani, Christoph Vogel, Pablo Speciale, Marc Pollefeys: PatchmatchNet: Learned Multi-View Patchmatch Stereo.
cascas94.64 18093.61 18997.74 15197.82 19396.26 14499.96 2597.78 21985.76 31394.00 20397.54 22276.95 29199.21 15997.23 13695.43 20397.76 224
1112_ss96.01 14795.20 15898.42 12397.80 19496.41 13899.65 16496.66 32392.71 17992.88 21799.40 12492.16 14399.30 15791.92 23093.66 21999.55 148
Test_1112_low_res95.72 15394.83 16798.42 12397.79 19596.41 13899.65 16496.65 32492.70 18092.86 21896.13 26792.15 14499.30 15791.88 23193.64 22099.55 148
Effi-MVS+-dtu94.53 18495.30 15592.22 30897.77 19682.54 34899.59 17497.06 28794.92 9195.29 18895.37 29585.81 21897.89 24294.80 17997.07 17296.23 235
mvs-test195.53 16095.97 13394.20 26497.77 19685.44 33799.95 4397.06 28794.92 9196.58 16298.72 18085.81 21898.98 16994.80 17998.11 15098.18 215
tpm cat193.51 20792.52 22096.47 19097.77 19691.47 27296.13 34298.06 19480.98 34592.91 21693.78 33389.66 17898.87 17287.03 29396.39 18499.09 196
xiu_mvs_v1_base_debu97.43 9397.06 9898.55 11097.74 19998.14 7099.31 21597.86 21396.43 4599.62 4399.69 9885.56 22199.68 13899.05 5698.31 14397.83 220
xiu_mvs_v1_base97.43 9397.06 9898.55 11097.74 19998.14 7099.31 21597.86 21396.43 4599.62 4399.69 9885.56 22199.68 13899.05 5698.31 14397.83 220
xiu_mvs_v1_base_debi97.43 9397.06 9898.55 11097.74 19998.14 7099.31 21597.86 21396.43 4599.62 4399.69 9885.56 22199.68 13899.05 5698.31 14397.83 220
EPP-MVSNet96.69 12596.60 11396.96 17797.74 19993.05 23099.37 20898.56 7988.75 27295.83 18099.01 15196.01 3298.56 19096.92 14797.20 17099.25 185
gg-mvs-nofinetune93.51 20791.86 23498.47 11897.72 20397.96 8092.62 35898.51 9974.70 36197.33 14469.59 37298.91 397.79 24497.77 12499.56 11099.67 122
IB-MVS92.85 694.99 17093.94 18398.16 13297.72 20395.69 16899.99 398.81 5094.28 12092.70 21996.90 24395.08 5499.17 16396.07 15673.88 35099.60 138
Christian Sormann, Mattia Rossi, Andreas Kuhn and Friedrich Fraundorfer: IB-MVS: An Iterative Algorithm for Deep Multi-View Stereo based on Binary Decisions. BMVC 2021
thisisatest051597.41 9897.02 10398.59 10797.71 20597.52 9599.97 1898.54 8991.83 21397.45 14299.04 14897.50 999.10 16694.75 18296.37 18599.16 190
diffmvs97.00 11096.64 11298.09 13697.64 20696.17 15199.81 12197.19 27194.67 10298.95 9199.28 13186.43 21398.76 17998.37 9797.42 16599.33 178
Vis-MVSNetpermissive95.72 15395.15 16097.45 16097.62 20794.28 20199.28 22198.24 17394.27 12296.84 15598.94 16679.39 27498.76 17993.25 21498.49 13899.30 181
Jingyang Zhang, Yao Yao, Shiwei Li, Zixin Luo, Tian Fang: Visibility-aware Multiview Stereo Network. BMVC 2020
thisisatest053097.10 10796.72 11098.22 13197.60 20896.70 12899.92 7198.54 8991.11 23397.07 15098.97 15897.47 1299.03 16793.73 20896.09 18898.92 200
miper_ehance_all_eth93.16 21392.60 21594.82 23997.57 20993.56 21799.50 19097.07 28688.75 27288.85 27595.52 28590.97 16396.74 30290.77 25084.45 28794.17 273
LCM-MVSNet-Re92.31 23692.60 21591.43 31697.53 21079.27 36599.02 24991.83 37292.07 20680.31 34494.38 32883.50 23895.48 33597.22 13797.58 16199.54 151
GBi-Net90.88 26389.82 26894.08 26897.53 21091.97 25398.43 29696.95 30087.05 29589.68 25294.72 31671.34 32596.11 32487.01 29485.65 27694.17 273
test190.88 26389.82 26894.08 26897.53 21091.97 25398.43 29696.95 30087.05 29589.68 25294.72 31671.34 32596.11 32487.01 29485.65 27694.17 273
FMVSNet291.02 26089.56 27295.41 21997.53 21095.74 16498.98 25397.41 25687.05 29588.43 28395.00 31071.34 32596.24 32285.12 30685.21 28194.25 268
tttt051796.85 11596.49 11797.92 14297.48 21495.89 15999.85 10898.54 8990.72 24296.63 16098.93 16897.47 1299.02 16893.03 22195.76 19798.85 204
DROMVSNet97.38 10097.24 9397.80 14497.41 21595.64 16999.99 397.06 28794.59 10499.63 4099.32 13089.20 18898.14 22798.76 7999.23 12499.62 133
c3_l92.53 23191.87 23394.52 25197.40 21692.99 23199.40 20196.93 30587.86 28588.69 27895.44 28989.95 17696.44 31390.45 25480.69 31694.14 282
CDS-MVSNet96.34 13696.07 12597.13 17397.37 21794.96 18799.53 18597.91 20891.55 22195.37 18798.32 20195.05 5797.13 27693.80 20495.75 19899.30 181
Khang Truong Giang, Soohwan Song, Sungho Jo: Curvature-guided dynamic scale networks for Multi-view Stereo. ICLR 2022
TESTMET0.1,196.74 12296.26 12298.16 13297.36 21896.48 13599.96 2598.29 16691.93 21095.77 18198.07 20695.54 4498.29 21790.55 25298.89 13099.70 117
miper_lstm_enhance91.81 24591.39 24393.06 30097.34 21989.18 30899.38 20696.79 31786.70 30287.47 29695.22 30390.00 17595.86 33388.26 27681.37 30694.15 279
baseline96.43 13395.98 13097.76 14997.34 21995.17 18499.51 18897.17 27493.92 14096.90 15399.28 13185.37 22498.64 18797.50 12996.86 17899.46 162
cl____92.31 23691.58 23794.52 25197.33 22192.77 23399.57 17896.78 31886.97 29987.56 29495.51 28689.43 18196.62 30788.60 27182.44 29894.16 278
DIV-MVS_self_test92.32 23591.60 23694.47 25597.31 22292.74 23599.58 17596.75 31986.99 29887.64 29295.54 28389.55 18096.50 31188.58 27282.44 29894.17 273
casdiffmvs96.42 13495.97 13397.77 14897.30 22394.98 18699.84 11297.09 28493.75 14896.58 16299.26 13785.07 22698.78 17797.77 12497.04 17399.54 151
GeoE94.36 19093.48 19696.99 17697.29 22493.54 21899.96 2596.72 32188.35 28193.43 20898.94 16682.05 24698.05 23388.12 28096.48 18399.37 173
eth_miper_zixun_eth92.41 23491.93 23193.84 28097.28 22590.68 28198.83 27196.97 29988.57 27789.19 26995.73 27689.24 18796.69 30589.97 26281.55 30494.15 279
MVSFormer96.94 11296.60 11397.95 14097.28 22597.70 8899.55 18297.27 26791.17 23099.43 6099.54 11490.92 16496.89 29594.67 18599.62 10499.25 185
lupinMVS97.85 7897.60 8198.62 10397.28 22597.70 8899.99 397.55 23895.50 7799.43 6099.67 10290.92 16498.71 18398.40 9599.62 10499.45 164
SCA94.69 17793.81 18797.33 17097.10 22894.44 19698.86 26898.32 16093.30 16096.17 17495.59 28176.48 29697.95 23991.06 24197.43 16399.59 139
TAMVS95.85 15095.58 14896.65 18897.07 22993.50 21999.17 23097.82 21791.39 22995.02 19198.01 20792.20 14297.30 26493.75 20795.83 19599.14 193
Fast-Effi-MVS+-dtu93.72 20493.86 18693.29 29397.06 23086.16 33199.80 12596.83 31392.66 18392.58 22197.83 21581.39 25497.67 24889.75 26496.87 17796.05 237
MVS_030489.28 29688.31 29592.21 30997.05 23186.53 33097.76 32099.57 1385.58 31893.86 20692.71 34251.04 37096.30 31984.49 31092.72 22793.79 310
CostFormer96.10 14395.88 14296.78 18297.03 23292.55 24397.08 33097.83 21690.04 25398.72 10394.89 31495.01 5998.29 21796.54 15295.77 19699.50 159
test-LLR96.47 13196.04 12697.78 14697.02 23395.44 17299.96 2598.21 17794.07 12995.55 18396.38 25893.90 9898.27 22190.42 25598.83 13299.64 128
test-mter96.39 13595.93 13897.78 14697.02 23395.44 17299.96 2598.21 17791.81 21595.55 18396.38 25895.17 5198.27 22190.42 25598.83 13299.64 128
gm-plane-assit96.97 23593.76 21391.47 22498.96 16098.79 17694.92 174
QAPM95.40 16394.17 17899.10 7296.92 23697.71 8699.40 20198.68 5889.31 25988.94 27398.89 16982.48 24399.96 5893.12 22099.83 8599.62 133
KD-MVS_2432*160088.00 30486.10 30893.70 28696.91 23794.04 20597.17 32897.12 28084.93 32481.96 33592.41 34592.48 13694.51 34879.23 33552.68 37092.56 336
miper_refine_blended88.00 30486.10 30893.70 28696.91 23794.04 20597.17 32897.12 28084.93 32481.96 33592.41 34592.48 13694.51 34879.23 33552.68 37092.56 336
tpm295.47 16295.18 15996.35 19996.91 23791.70 26696.96 33397.93 20588.04 28498.44 11595.40 29193.32 11197.97 23694.00 19795.61 20099.38 171
FMVSNet588.32 30187.47 30390.88 31996.90 24088.39 31897.28 32595.68 34482.60 34084.67 32492.40 34779.83 27291.16 36576.39 34981.51 30593.09 329
3Dnovator+91.53 1196.31 13895.24 15699.52 2996.88 24198.64 5399.72 15198.24 17395.27 8288.42 28598.98 15682.76 24299.94 7397.10 14099.83 8599.96 74
Patchmatch-test92.65 23091.50 24096.10 20596.85 24290.49 28791.50 36397.19 27182.76 33990.23 24095.59 28195.02 5898.00 23577.41 34496.98 17599.82 103
MVS96.60 12895.56 14999.72 1296.85 24299.22 1998.31 30198.94 3791.57 22090.90 23499.61 10886.66 21199.96 5897.36 13299.88 8099.99 24
3Dnovator91.47 1296.28 14195.34 15499.08 7496.82 24497.47 10299.45 19898.81 5095.52 7689.39 26099.00 15381.97 24799.95 6597.27 13499.83 8599.84 101
EI-MVSNet93.73 20393.40 20194.74 24096.80 24592.69 23899.06 24297.67 22488.96 26791.39 22899.02 14988.75 19397.30 26491.07 24087.85 26094.22 269
CVMVSNet94.68 17994.94 16593.89 27996.80 24586.92 32899.06 24298.98 3594.45 10894.23 20199.02 14985.60 22095.31 33990.91 24795.39 20499.43 167
IterMVS-LS92.69 22892.11 22694.43 25996.80 24592.74 23599.45 19896.89 30888.98 26589.65 25595.38 29488.77 19296.34 31790.98 24582.04 30194.22 269
Fangjinhua Wang, Silvano Galliani, Christoph Vogel, Marc Pollefeys: IterMVS: Iterative Probability Estimation for Efficient Multi-View Stereo.
IterMVS90.91 26290.17 26393.12 29796.78 24890.42 29098.89 26297.05 29089.03 26386.49 30995.42 29076.59 29595.02 34187.22 29084.09 29093.93 300
Fangjinhua Wang, Silvano Galliani, Christoph Vogel, Marc Pollefeys: IterMVS: Iterative Probability Estimation for Efficient Multi-View Stereo.
131496.84 11695.96 13599.48 3696.74 24998.52 5998.31 30198.86 4795.82 6289.91 24698.98 15687.49 20299.96 5897.80 11999.73 9799.96 74
IterMVS-SCA-FT90.85 26590.16 26492.93 30196.72 25089.96 29898.89 26296.99 29588.95 26886.63 30695.67 27776.48 29695.00 34287.04 29284.04 29393.84 307
MVS-HIRNet86.22 31083.19 32295.31 22296.71 25190.29 29192.12 36097.33 26362.85 36786.82 30370.37 37169.37 33297.49 25375.12 35197.99 15698.15 216
VDDNet93.12 21691.91 23296.76 18396.67 25292.65 24198.69 28398.21 17782.81 33897.75 13799.28 13161.57 35799.48 15498.09 10894.09 21698.15 216
MIMVSNet90.30 27888.67 29095.17 22796.45 25391.64 26892.39 35997.15 27785.99 30990.50 23793.19 34066.95 34294.86 34582.01 32593.43 22199.01 199
CR-MVSNet93.45 21092.62 21495.94 20796.29 25492.66 23992.01 36196.23 33392.62 18596.94 15193.31 33891.04 16196.03 32979.23 33595.96 19199.13 194
RPMNet89.76 28987.28 30497.19 17296.29 25492.66 23992.01 36198.31 16270.19 36696.94 15185.87 36587.25 20599.78 11662.69 36895.96 19199.13 194
Patchmtry89.70 29088.49 29293.33 29296.24 25689.94 30191.37 36496.23 33378.22 35287.69 29193.31 33891.04 16196.03 32980.18 33482.10 30094.02 290
JIA-IIPM91.76 25190.70 25194.94 23396.11 25787.51 32493.16 35798.13 19075.79 35897.58 13977.68 36992.84 12697.97 23688.47 27596.54 18099.33 178
OpenMVScopyleft90.15 1594.77 17593.59 19298.33 12796.07 25897.48 10199.56 18098.57 7790.46 24486.51 30898.95 16478.57 28199.94 7393.86 19999.74 9697.57 227
PAPM98.60 3498.42 3399.14 6696.05 25998.96 2499.90 8099.35 2496.68 3998.35 12099.66 10496.45 2998.51 19399.45 4399.89 7899.96 74
CLD-MVS94.06 19593.90 18494.55 25096.02 26090.69 28099.98 997.72 22096.62 4291.05 23398.85 17777.21 28898.47 19498.11 10689.51 23594.48 243
Zhaoxin Li, Wangmeng Zuo, Zhaoqi Wang, Lei Zhang: Confidence-based Large-scale Dense Multi-view Stereo. IEEE Transaction on Image Processing, 2020
PatchT90.38 27588.75 28995.25 22495.99 26190.16 29391.22 36597.54 24076.80 35497.26 14586.01 36491.88 14996.07 32866.16 36595.91 19399.51 157
ACMH+89.98 1690.35 27689.54 27392.78 30495.99 26186.12 33298.81 27397.18 27389.38 25883.14 33197.76 21868.42 33798.43 19989.11 26886.05 27493.78 311
DeepMVS_CXcopyleft82.92 34995.98 26358.66 37596.01 33892.72 17878.34 35195.51 28658.29 36298.08 23082.57 32185.29 27992.03 344
ACMP92.05 992.74 22592.42 22293.73 28295.91 26488.72 31199.81 12197.53 24294.13 12587.00 30298.23 20274.07 31698.47 19496.22 15588.86 24293.99 295
Qingshan Xu and Wenbing Tao: Planar Prior Assisted PatchMatch Multi-View Stereo. AAAI 2020
HQP-NCC95.78 26599.87 9396.82 3293.37 209
ACMP_Plane95.78 26599.87 9396.82 3293.37 209
HQP-MVS94.61 18194.50 17294.92 23495.78 26591.85 25899.87 9397.89 20996.82 3293.37 20998.65 18380.65 26498.39 20597.92 11789.60 23094.53 239
NP-MVS95.77 26891.79 26098.65 183
plane_prior695.76 26991.72 26580.47 268
ACMM91.95 1092.88 22192.52 22093.98 27695.75 27089.08 30999.77 13297.52 24493.00 16789.95 24597.99 21076.17 30098.46 19793.63 21188.87 24194.39 254
Qingshan Xu and Wenbing Tao: Multi-Scale Geometric Consistency Guided Multi-View Stereo. CVPR 2019
GA-MVS93.83 19792.84 21096.80 18195.73 27193.57 21699.88 9097.24 26992.57 19092.92 21596.66 25178.73 28097.67 24887.75 28394.06 21799.17 189
plane_prior195.73 271
jason97.24 10396.86 10598.38 12695.73 27197.32 10899.97 1897.40 25795.34 8098.60 11099.54 11487.70 20098.56 19097.94 11699.47 11599.25 185
jason: jason.
HQP_MVS94.49 18594.36 17494.87 23595.71 27491.74 26299.84 11297.87 21196.38 4893.01 21398.59 18780.47 26898.37 21197.79 12289.55 23394.52 241
plane_prior795.71 27491.59 270
ITE_SJBPF92.38 30695.69 27685.14 33895.71 34392.81 17389.33 26398.11 20470.23 33098.42 20085.91 30288.16 25593.59 319
ACMH89.72 1790.64 26989.63 27093.66 28895.64 27788.64 31498.55 28997.45 25089.03 26381.62 33897.61 22169.75 33198.41 20189.37 26587.62 26593.92 301
Qingshan Xu and Wenbing Tao: Multi-Scale Geometric Consistency Guided Multi-View Stereo. CVPR 2019
baseline296.71 12496.49 11797.37 16695.63 27895.96 15799.74 14398.88 4592.94 16891.61 22698.97 15897.72 798.62 18894.83 17898.08 15497.53 228
FMVSNet188.50 30086.64 30694.08 26895.62 27991.97 25398.43 29696.95 30083.00 33686.08 31794.72 31659.09 36196.11 32481.82 32784.07 29194.17 273
LPG-MVS_test92.96 21992.71 21393.71 28495.43 28088.67 31299.75 14097.62 22992.81 17390.05 24198.49 19375.24 30698.40 20395.84 16189.12 23794.07 287
LGP-MVS_train93.71 28495.43 28088.67 31297.62 22992.81 17390.05 24198.49 19375.24 30698.40 20395.84 16189.12 23794.07 287
tpm93.70 20593.41 20094.58 24895.36 28287.41 32597.01 33196.90 30790.85 23996.72 15994.14 33090.40 17196.84 29890.75 25188.54 24999.51 157
D2MVS92.76 22492.59 21893.27 29495.13 28389.54 30599.69 15499.38 2292.26 20087.59 29394.61 32285.05 22797.79 24491.59 23488.01 25892.47 339
VPA-MVSNet92.70 22791.55 23996.16 20395.09 28496.20 14998.88 26499.00 3491.02 23691.82 22595.29 30176.05 30297.96 23895.62 16481.19 30794.30 264
LTVRE_ROB88.28 1890.29 27989.05 28494.02 27195.08 28590.15 29497.19 32797.43 25284.91 32683.99 32797.06 23874.00 31798.28 21984.08 31187.71 26393.62 318
Andreas Kuhn, Heiko Hirschmüller, Daniel Scharstein, Helmut Mayer: A TV Prior for High-Quality Scalable Multi-View Stereo Reconstruction. International Journal of Computer Vision 2016
TinyColmap87.87 30686.51 30791.94 31295.05 28685.57 33597.65 32194.08 36584.40 32981.82 33796.85 24762.14 35698.33 21480.25 33386.37 27391.91 346
test0.0.03 193.86 19693.61 18994.64 24495.02 28792.18 25199.93 6798.58 7594.07 12987.96 28998.50 19293.90 9894.96 34381.33 32893.17 22496.78 230
UniMVSNet (Re)93.07 21892.13 22595.88 20894.84 28896.24 14899.88 9098.98 3592.49 19589.25 26495.40 29187.09 20797.14 27593.13 21978.16 33194.26 266
USDC90.00 28688.96 28593.10 29994.81 28988.16 32098.71 28195.54 34893.66 15083.75 32997.20 23265.58 34698.31 21683.96 31487.49 26792.85 334
VPNet91.81 24590.46 25495.85 21094.74 29095.54 17198.98 25398.59 7492.14 20490.77 23697.44 22568.73 33597.54 25294.89 17777.89 33394.46 245
FIs94.10 19393.43 19796.11 20494.70 29196.82 12699.58 17598.93 4192.54 19189.34 26297.31 22987.62 20197.10 27994.22 19686.58 27194.40 252
UniMVSNet_ETH3D90.06 28588.58 29194.49 25494.67 29288.09 32197.81 31997.57 23783.91 33288.44 28197.41 22657.44 36397.62 25091.41 23588.59 24897.77 223
UniMVSNet_NR-MVSNet92.95 22092.11 22695.49 21494.61 29395.28 17899.83 11899.08 3191.49 22289.21 26796.86 24687.14 20696.73 30393.20 21577.52 33694.46 245
WR-MVS92.31 23691.25 24495.48 21794.45 29495.29 17799.60 17398.68 5890.10 25088.07 28896.89 24480.68 26396.80 30193.14 21879.67 32394.36 257
nrg03093.51 20792.53 21996.45 19294.36 29597.20 11199.81 12197.16 27691.60 21989.86 24897.46 22486.37 21497.68 24795.88 16080.31 31994.46 245
tfpnnormal89.29 29587.61 30294.34 26194.35 29694.13 20398.95 25798.94 3783.94 33084.47 32595.51 28674.84 31197.39 25677.05 34780.41 31791.48 349
FC-MVSNet-test93.81 19993.15 20695.80 21194.30 29796.20 14999.42 20098.89 4392.33 19989.03 27297.27 23187.39 20496.83 29993.20 21586.48 27294.36 257
MS-PatchMatch90.65 26890.30 25991.71 31594.22 29885.50 33698.24 30597.70 22188.67 27486.42 31196.37 26067.82 33998.03 23483.62 31699.62 10491.60 347
WR-MVS_H91.30 25490.35 25794.15 26594.17 29992.62 24299.17 23098.94 3788.87 27086.48 31094.46 32784.36 23196.61 30888.19 27778.51 32993.21 328
DU-MVS92.46 23391.45 24295.49 21494.05 30095.28 17899.81 12198.74 5492.25 20189.21 26796.64 25381.66 25196.73 30393.20 21577.52 33694.46 245
NR-MVSNet91.56 25390.22 26195.60 21294.05 30095.76 16398.25 30498.70 5691.16 23280.78 34396.64 25383.23 24196.57 30991.41 23577.73 33594.46 245
CP-MVSNet91.23 25790.22 26194.26 26293.96 30292.39 24699.09 23598.57 7788.95 26886.42 31196.57 25579.19 27696.37 31590.29 25878.95 32694.02 290
XXY-MVS91.82 24490.46 25495.88 20893.91 30395.40 17598.87 26797.69 22288.63 27687.87 29097.08 23674.38 31597.89 24291.66 23384.07 29194.35 260
PS-CasMVS90.63 27089.51 27593.99 27593.83 30491.70 26698.98 25398.52 9288.48 27886.15 31696.53 25775.46 30496.31 31888.83 27078.86 32893.95 298
test_040285.58 31283.94 31690.50 32393.81 30585.04 33998.55 28995.20 35676.01 35679.72 34795.13 30464.15 35296.26 32166.04 36686.88 27090.21 358
XVG-ACMP-BASELINE91.22 25890.75 24992.63 30593.73 30685.61 33498.52 29397.44 25192.77 17789.90 24796.85 24766.64 34398.39 20592.29 22688.61 24693.89 303
TranMVSNet+NR-MVSNet91.68 25290.61 25394.87 23593.69 30793.98 20899.69 15498.65 6291.03 23588.44 28196.83 25080.05 27196.18 32390.26 25976.89 34494.45 250
mvsmamba94.10 19393.72 18895.25 22493.57 30894.13 20399.67 15996.45 33093.63 15291.34 23097.77 21786.29 21597.22 27096.65 15188.10 25694.40 252
TransMVSNet (Re)87.25 30785.28 31293.16 29693.56 30991.03 27598.54 29194.05 36683.69 33481.09 34196.16 26575.32 30596.40 31476.69 34868.41 35992.06 343
v1090.25 28088.82 28794.57 24993.53 31093.43 22299.08 23796.87 31085.00 32387.34 30094.51 32380.93 26097.02 29082.85 32079.23 32493.26 326
testgi89.01 29888.04 29991.90 31393.49 31184.89 34099.73 14895.66 34593.89 14385.14 32298.17 20359.68 36094.66 34777.73 34388.88 24096.16 236
v890.54 27289.17 28094.66 24393.43 31293.40 22499.20 22796.94 30485.76 31387.56 29494.51 32381.96 24897.19 27284.94 30878.25 33093.38 324
V4291.28 25690.12 26594.74 24093.42 31393.46 22099.68 15697.02 29287.36 29189.85 25095.05 30681.31 25697.34 25987.34 28880.07 32193.40 322
pm-mvs189.36 29487.81 30194.01 27293.40 31491.93 25698.62 28896.48 32986.25 30783.86 32896.14 26673.68 31897.04 28586.16 30075.73 34893.04 331
bld_raw_conf00592.79 22392.18 22494.61 24593.38 31592.27 24898.99 25195.20 35693.34 15889.25 26497.67 22078.03 28697.21 27195.81 16387.99 25994.35 260
RRT_MVS93.14 21592.92 20893.78 28193.31 31690.04 29699.66 16097.69 22292.53 19288.91 27497.76 21884.36 23196.93 29395.10 16986.99 26994.37 255
v114491.09 25989.83 26794.87 23593.25 31793.69 21599.62 17196.98 29786.83 30189.64 25694.99 31180.94 25997.05 28285.08 30781.16 30893.87 305
test_low_dy_conf_00193.16 21392.88 20994.01 27293.16 31890.65 28399.58 17597.66 22692.21 20291.34 23097.80 21682.45 24497.05 28293.64 21088.05 25794.32 263
v119290.62 27189.25 27994.72 24293.13 31993.07 22899.50 19097.02 29286.33 30689.56 25895.01 30879.22 27597.09 28182.34 32381.16 30894.01 292
v2v48291.30 25490.07 26695.01 23093.13 31993.79 21199.77 13297.02 29288.05 28389.25 26495.37 29580.73 26297.15 27487.28 28980.04 32294.09 286
OPM-MVS93.21 21292.80 21194.44 25793.12 32190.85 27999.77 13297.61 23296.19 5591.56 22798.65 18375.16 31098.47 19493.78 20689.39 23693.99 295
Ray L. Khuboni, Hongjun Xu: Octagram Propagation Matching for Multi-Scale View Stereopsis (OPM-MVS).
v14419290.79 26689.52 27494.59 24793.11 32292.77 23399.56 18096.99 29586.38 30589.82 25194.95 31380.50 26797.10 27983.98 31380.41 31793.90 302
bld_raw_dy_0_6492.74 22592.03 22994.87 23593.09 32393.46 22099.12 23295.41 35092.84 17290.44 23997.54 22278.08 28597.04 28593.94 19887.77 26294.11 284
PEN-MVS90.19 28289.06 28393.57 28993.06 32490.90 27899.06 24298.47 10588.11 28285.91 31896.30 26276.67 29395.94 33287.07 29176.91 34393.89 303
v124090.20 28188.79 28894.44 25793.05 32592.27 24899.38 20696.92 30685.89 31089.36 26194.87 31577.89 28797.03 28880.66 33181.08 31194.01 292
v14890.70 26789.63 27093.92 27792.97 32690.97 27699.75 14096.89 30887.51 28888.27 28695.01 30881.67 25097.04 28587.40 28777.17 34193.75 312
v192192090.46 27389.12 28194.50 25392.96 32792.46 24499.49 19296.98 29786.10 30889.61 25795.30 29878.55 28297.03 28882.17 32480.89 31594.01 292
Baseline_NR-MVSNet90.33 27789.51 27592.81 30392.84 32889.95 29999.77 13293.94 36784.69 32889.04 27195.66 27881.66 25196.52 31090.99 24476.98 34291.97 345
test_method80.79 32979.70 33284.08 34692.83 32967.06 37199.51 18895.42 34954.34 36981.07 34293.53 33544.48 37292.22 36278.90 33977.23 34092.94 332
pmmvs492.10 24191.07 24795.18 22692.82 33094.96 18799.48 19496.83 31387.45 29088.66 27996.56 25683.78 23696.83 29989.29 26684.77 28593.75 312
LF4IMVS89.25 29788.85 28690.45 32592.81 33181.19 35898.12 31094.79 36091.44 22586.29 31497.11 23465.30 34998.11 22988.53 27485.25 28092.07 342
DTE-MVSNet89.40 29388.24 29792.88 30292.66 33289.95 29999.10 23498.22 17687.29 29285.12 32396.22 26476.27 29995.30 34083.56 31775.74 34793.41 321
EU-MVSNet90.14 28490.34 25889.54 33192.55 33381.06 35998.69 28398.04 19691.41 22886.59 30796.84 24980.83 26193.31 35986.20 29981.91 30294.26 266
our_test_390.39 27489.48 27793.12 29792.40 33489.57 30499.33 21296.35 33287.84 28685.30 32194.99 31184.14 23496.09 32780.38 33284.56 28693.71 317
ppachtmachnet_test89.58 29288.35 29493.25 29592.40 33490.44 28999.33 21296.73 32085.49 31985.90 31995.77 27381.09 25896.00 33176.00 35082.49 29793.30 325
v7n89.65 29188.29 29693.72 28392.22 33690.56 28699.07 24197.10 28285.42 32186.73 30494.72 31680.06 27097.13 27681.14 32978.12 33293.49 320
PS-MVSNAJss93.64 20693.31 20394.61 24592.11 33792.19 25099.12 23297.38 25892.51 19488.45 28096.99 24291.20 15797.29 26794.36 19087.71 26394.36 257
pmmvs590.17 28389.09 28293.40 29192.10 33889.77 30299.74 14395.58 34785.88 31287.24 30195.74 27473.41 31996.48 31288.54 27383.56 29493.95 298
N_pmnet80.06 33280.78 33077.89 35091.94 33945.28 38198.80 27556.82 38478.10 35380.08 34693.33 33677.03 28995.76 33468.14 36282.81 29692.64 335
test_djsdf92.83 22292.29 22394.47 25591.90 34092.46 24499.55 18297.27 26791.17 23089.96 24496.07 26981.10 25796.89 29594.67 18588.91 23994.05 289
SixPastTwentyTwo88.73 29988.01 30090.88 31991.85 34182.24 35098.22 30795.18 35888.97 26682.26 33496.89 24471.75 32496.67 30684.00 31282.98 29593.72 316
K. test v388.05 30387.24 30590.47 32491.82 34282.23 35198.96 25697.42 25489.05 26276.93 35495.60 28068.49 33695.42 33685.87 30381.01 31393.75 312
OurMVSNet-221017-089.81 28889.48 27790.83 32191.64 34381.21 35798.17 30995.38 35291.48 22385.65 32097.31 22972.66 32097.29 26788.15 27884.83 28493.97 297
mvs_tets91.81 24591.08 24694.00 27491.63 34490.58 28598.67 28597.43 25292.43 19687.37 29997.05 23971.76 32397.32 26394.75 18288.68 24594.11 284
Gipumacopyleft66.95 33865.00 33872.79 35391.52 34567.96 37066.16 37395.15 35947.89 37158.54 36967.99 37329.74 37587.54 37050.20 37377.83 33462.87 373
S. Galliani, K. Lasinger, K. Schindler: Massively Parallel Multiview Stereopsis by Surface Normal Diffusion. ICCV 2015
jajsoiax91.92 24391.18 24594.15 26591.35 34690.95 27799.00 25097.42 25492.61 18687.38 29897.08 23672.46 32197.36 25794.53 18888.77 24394.13 283
MDA-MVSNet-bldmvs84.09 32381.52 32991.81 31491.32 34788.00 32398.67 28595.92 34080.22 34755.60 37293.32 33768.29 33893.60 35773.76 35276.61 34593.82 309
MVP-Stereo90.93 26190.45 25692.37 30791.25 34888.76 31098.05 31496.17 33587.27 29384.04 32695.30 29878.46 28397.27 26983.78 31599.70 10091.09 350
Qingsong Yan: MVP-Stereo: A Parallel Multi-View Patchmatch Stereo Method with Dilation Matching for Photogrammetric Application.
MDA-MVSNet_test_wron85.51 31483.32 32192.10 31090.96 34988.58 31599.20 22796.52 32779.70 34957.12 37192.69 34379.11 27793.86 35477.10 34677.46 33893.86 306
YYNet185.50 31583.33 32092.00 31190.89 35088.38 31999.22 22696.55 32679.60 35057.26 37092.72 34179.09 27893.78 35577.25 34577.37 33993.84 307
anonymousdsp91.79 25090.92 24894.41 26090.76 35192.93 23298.93 25997.17 27489.08 26187.46 29795.30 29878.43 28496.92 29492.38 22588.73 24493.39 323
lessismore_v090.53 32290.58 35280.90 36095.80 34177.01 35395.84 27166.15 34596.95 29183.03 31975.05 34993.74 315
EG-PatchMatch MVS85.35 31683.81 31889.99 32990.39 35381.89 35398.21 30896.09 33781.78 34374.73 36093.72 33451.56 36997.12 27879.16 33888.61 24690.96 352
EGC-MVSNET69.38 33463.76 34186.26 34490.32 35481.66 35696.24 34193.85 3680.99 3813.22 38292.33 34852.44 36792.92 36059.53 37184.90 28384.21 367
CMPMVSbinary61.59 2184.75 31985.14 31383.57 34790.32 35462.54 37396.98 33297.59 23674.33 36269.95 36596.66 25164.17 35198.32 21587.88 28288.41 25189.84 360
M. Jancosek, T. Pajdla: Multi-View Reconstruction Preserving Weakly-Supported Surfaces. CVPR 2011
new_pmnet84.49 32282.92 32489.21 33290.03 35682.60 34796.89 33495.62 34680.59 34675.77 35989.17 35665.04 35094.79 34672.12 35581.02 31290.23 357
pmmvs685.69 31183.84 31791.26 31890.00 35784.41 34297.82 31896.15 33675.86 35781.29 34095.39 29361.21 35896.87 29783.52 31873.29 35192.50 338
DSMNet-mixed88.28 30288.24 29788.42 33989.64 35875.38 36798.06 31389.86 37585.59 31788.20 28792.14 34976.15 30191.95 36378.46 34096.05 18997.92 219
UnsupCasMVSNet_eth85.52 31383.99 31490.10 32789.36 35983.51 34496.65 33597.99 19889.14 26075.89 35893.83 33263.25 35493.92 35281.92 32667.90 36192.88 333
Anonymous2023120686.32 30985.42 31189.02 33489.11 36080.53 36399.05 24695.28 35385.43 32082.82 33293.92 33174.40 31493.44 35866.99 36381.83 30393.08 330
Anonymous2024052185.15 31783.81 31889.16 33388.32 36182.69 34698.80 27595.74 34279.72 34881.53 33990.99 35265.38 34894.16 35072.69 35481.11 31090.63 355
OpenMVS_ROBcopyleft79.82 2083.77 32581.68 32890.03 32888.30 36282.82 34598.46 29495.22 35573.92 36376.00 35791.29 35155.00 36596.94 29268.40 36188.51 25090.34 356
test20.0384.72 32083.99 31486.91 34288.19 36380.62 36298.88 26495.94 33988.36 28078.87 34894.62 32168.75 33489.11 36966.52 36475.82 34691.00 351
KD-MVS_self_test83.59 32682.06 32688.20 34086.93 36480.70 36197.21 32696.38 33182.87 33782.49 33388.97 35767.63 34092.32 36173.75 35362.30 36691.58 348
MIMVSNet182.58 32780.51 33188.78 33686.68 36584.20 34396.65 33595.41 35078.75 35178.59 35092.44 34451.88 36889.76 36865.26 36778.95 32692.38 341
CL-MVSNet_self_test84.50 32183.15 32388.53 33886.00 36681.79 35498.82 27297.35 26085.12 32283.62 33090.91 35476.66 29491.40 36469.53 35960.36 36792.40 340
UnsupCasMVSNet_bld79.97 33377.03 33688.78 33685.62 36781.98 35293.66 35597.35 26075.51 36070.79 36483.05 36648.70 37194.91 34478.31 34160.29 36889.46 363
Patchmatch-RL test86.90 30885.98 31089.67 33084.45 36875.59 36689.71 36692.43 37086.89 30077.83 35290.94 35394.22 8793.63 35687.75 28369.61 35499.79 106
pmmvs-eth3d84.03 32481.97 32790.20 32684.15 36987.09 32798.10 31294.73 36283.05 33574.10 36187.77 36065.56 34794.01 35181.08 33069.24 35689.49 362
PM-MVS80.47 33078.88 33485.26 34583.79 37072.22 36895.89 34791.08 37385.71 31676.56 35688.30 35836.64 37393.90 35382.39 32269.57 35589.66 361
new-patchmatchnet81.19 32879.34 33386.76 34382.86 37180.36 36497.92 31695.27 35482.09 34272.02 36286.87 36262.81 35590.74 36771.10 35663.08 36489.19 364
pmmvs380.27 33177.77 33587.76 34180.32 37282.43 34998.23 30691.97 37172.74 36478.75 34987.97 35957.30 36490.99 36670.31 35762.37 36589.87 359
ambc83.23 34877.17 37362.61 37287.38 36894.55 36476.72 35586.65 36330.16 37496.36 31684.85 30969.86 35390.73 354
TDRefinement84.76 31882.56 32591.38 31774.58 37484.80 34197.36 32494.56 36384.73 32780.21 34596.12 26863.56 35398.39 20587.92 28163.97 36390.95 353
E-PMN52.30 34252.18 34452.67 35971.51 37545.40 38093.62 35676.60 38236.01 37543.50 37664.13 37527.11 37767.31 37831.06 37826.06 37445.30 377
EMVS51.44 34451.22 34652.11 36070.71 37644.97 38294.04 35275.66 38335.34 37742.40 37761.56 37828.93 37665.87 37927.64 37924.73 37545.49 376
PMMVS267.15 33764.15 34076.14 35270.56 37762.07 37493.89 35387.52 37958.09 36860.02 36878.32 36822.38 37984.54 37259.56 37047.03 37281.80 368
FPMVS68.72 33568.72 33768.71 35565.95 37844.27 38395.97 34694.74 36151.13 37053.26 37390.50 35525.11 37883.00 37360.80 36980.97 31478.87 369
wuyk23d20.37 34820.84 35118.99 36365.34 37927.73 38550.43 3747.67 3879.50 3808.01 3816.34 3816.13 38526.24 38023.40 38010.69 3792.99 378
LCM-MVSNet67.77 33664.73 33976.87 35162.95 38056.25 37789.37 36793.74 36944.53 37261.99 36780.74 36720.42 38086.53 37169.37 36059.50 36987.84 365
MVEpermissive53.74 2251.54 34347.86 34762.60 35759.56 38150.93 37879.41 37177.69 38135.69 37636.27 37861.76 3775.79 38669.63 37637.97 37736.61 37367.24 371
Simon Fuhrmann, Fabian Langguth, Michael Goesele: MVE - A Multi-View Reconstruction Environment. EUROGRAPHICS Workshops on Graphics and Cultural Heritage (2014)
ANet_high56.10 34052.24 34367.66 35649.27 38256.82 37683.94 36982.02 38070.47 36533.28 37964.54 37417.23 38269.16 37745.59 37523.85 37677.02 370
tmp_tt65.23 33962.94 34272.13 35444.90 38350.03 37981.05 37089.42 37838.45 37348.51 37599.90 1954.09 36678.70 37591.84 23218.26 37787.64 366
PMVScopyleft49.05 2353.75 34151.34 34560.97 35840.80 38434.68 38474.82 37289.62 37737.55 37428.67 38072.12 3707.09 38481.63 37443.17 37668.21 36066.59 372
Y. Furukawa, J. Ponce: Accurate, dense, and robust multiview stereopsis. PAMI (2010)
test12337.68 34639.14 34933.31 36119.94 38524.83 38698.36 3009.75 38615.53 37951.31 37487.14 36119.62 38117.74 38147.10 3743.47 38057.36 374
testmvs40.60 34544.45 34829.05 36219.49 38614.11 38799.68 15618.47 38520.74 37864.59 36698.48 19610.95 38317.09 38256.66 37211.01 37855.94 375
test_blank0.00 3510.00 3540.00 3640.00 3870.00 3880.00 3750.00 3880.00 3820.00 3830.02 3820.00 3870.00 3830.00 3810.00 3810.00 379
eth-test20.00 387
eth-test0.00 387
uanet_test0.00 3510.00 3540.00 3640.00 3870.00 3880.00 3750.00 3880.00 3820.00 3830.00 3830.00 3870.00 3830.00 3810.00 3810.00 379
DCPMVS0.00 3510.00 3540.00 3640.00 3870.00 3880.00 3750.00 3880.00 3820.00 3830.00 3830.00 3870.00 3830.00 3810.00 3810.00 379
cdsmvs_eth3d_5k23.43 34731.24 3500.00 3640.00 3870.00 3880.00 37598.09 1910.00 3820.00 38399.67 10283.37 2390.00 3830.00 3810.00 3810.00 379
pcd_1.5k_mvsjas7.60 35010.13 3530.00 3640.00 3870.00 3880.00 3750.00 3880.00 3820.00 3830.00 38391.20 1570.00 3830.00 3810.00 3810.00 379
sosnet-low-res0.00 3510.00 3540.00 3640.00 3870.00 3880.00 3750.00 3880.00 3820.00 3830.00 3830.00 3870.00 3830.00 3810.00 3810.00 379
sosnet0.00 3510.00 3540.00 3640.00 3870.00 3880.00 3750.00 3880.00 3820.00 3830.00 3830.00 3870.00 3830.00 3810.00 3810.00 379
uncertanet0.00 3510.00 3540.00 3640.00 3870.00 3880.00 3750.00 3880.00 3820.00 3830.00 3830.00 3870.00 3830.00 3810.00 3810.00 379
Regformer0.00 3510.00 3540.00 3640.00 3870.00 3880.00 3750.00 3880.00 3820.00 3830.00 3830.00 3870.00 3830.00 3810.00 3810.00 379
ab-mvs-re8.28 34911.04 3520.00 3640.00 3870.00 3880.00 3750.00 3880.00 3820.00 38399.40 1240.00 3870.00 3830.00 3810.00 3810.00 379
uanet0.00 3510.00 3540.00 3640.00 3870.00 3880.00 3750.00 3880.00 3820.00 3830.00 3830.00 3870.00 3830.00 3810.00 3810.00 379
PC_three_145296.96 3099.80 1799.79 6497.49 10100.00 199.99 599.98 35100.00 1
test_241102_TWO98.43 12097.27 2199.80 1799.94 497.18 21100.00 1100.00 1100.00 1100.00 1
test_0728_THIRD96.48 4399.83 1199.91 1597.87 6100.00 199.92 13100.00 1100.00 1
GSMVS99.59 139
sam_mvs194.72 6799.59 139
sam_mvs94.25 86
MTGPAbinary98.28 167
test_post195.78 34859.23 37993.20 11897.74 24691.06 241
test_post63.35 37694.43 7298.13 228
patchmatchnet-post91.70 35095.12 5297.95 239
MTMP99.87 9396.49 328
test9_res99.71 3599.99 22100.00 1
agg_prior299.48 42100.00 1100.00 1
test_prior498.05 7499.94 61
test_prior299.95 4395.78 6499.73 3099.76 7696.00 3399.78 26100.00 1
旧先验299.46 19794.21 12399.85 799.95 6596.96 145
新几何299.40 201
无先验99.49 19298.71 5593.46 155100.00 194.36 19099.99 24
原ACMM299.90 80
testdata299.99 4090.54 253
segment_acmp96.68 26
testdata199.28 22196.35 52
plane_prior597.87 21198.37 21197.79 12289.55 23394.52 241
plane_prior498.59 187
plane_prior391.64 26896.63 4093.01 213
plane_prior299.84 11296.38 48
plane_prior91.74 26299.86 10596.76 3689.59 232
n20.00 388
nn0.00 388
door-mid89.69 376
test1198.44 112
door90.31 374
HQP5-MVS91.85 258
BP-MVS97.92 117
HQP4-MVS93.37 20998.39 20594.53 239
HQP3-MVS97.89 20989.60 230
HQP2-MVS80.65 264
MDTV_nov1_ep13_2view96.26 14496.11 34391.89 21198.06 12894.40 7494.30 19399.67 122
ACMMP++_ref87.04 268
ACMMP++88.23 254
Test By Simon92.82 128