This table lists the benchmark results for the high-res multi-view scenario. The following metrics are evaluated:

(*) For exact definitions, detailing how potentially incomplete ground truth is taken into account, see our paper.

The datasets are grouped into different categories, and result averages are computed for a category and method if results of the method are available for all datasets within the category. Note that the category "all" includes both the high-res multi-view and the low-res many-view scenarios.

Methods with suffix _ROB may participate in the Robust Vision Challenge.

Click a dataset result cell to show a visualization of the reconstruction. For training datasets, ground truth and accuracy / completeness visualizations are also available. The visualizations may not work with mobile browsers.




Method Infoallhigh-res
multi-view
indooroutdoorbotani.boulde.bridgedoorexhibi.lectur.living.loungeobserv.old co.statueterrac.
sort bysort bysort bysort bysorted bysort bysort bysort bysort bysort bysort bysort bysort bysort bysort bysort by
AdaColmapbinary97.23 10296.80 10698.51 11599.99 195.60 17099.09 23098.84 4793.32 15196.74 15599.72 8786.04 214100.00 198.01 10999.43 11699.94 84
CNVR-MVS99.40 199.26 199.84 699.98 299.51 699.98 1098.69 5598.20 399.93 199.98 296.82 22100.00 199.75 26100.00 199.99 24
MCST-MVS99.32 399.14 499.86 599.97 399.59 599.97 1898.64 6398.47 299.13 8299.92 1396.38 29100.00 199.74 28100.00 1100.00 1
mPP-MVS98.39 5398.20 5198.97 8499.97 396.92 12299.95 4398.38 14395.04 8398.61 10799.80 6093.39 107100.00 198.64 86100.00 199.98 55
CPTT-MVS97.64 8797.32 9098.58 10899.97 395.77 16299.96 2598.35 15189.90 24698.36 11799.79 6491.18 15899.99 4098.37 9499.99 2299.99 24
DP-MVS Recon98.41 5098.02 6299.56 2499.97 398.70 4799.92 7098.44 10892.06 19998.40 11699.84 4895.68 41100.00 198.19 9999.71 9799.97 67
PAPR98.52 4298.16 5499.58 2399.97 398.77 4099.95 4398.43 11695.35 7798.03 12899.75 8094.03 9399.98 4698.11 10499.83 8599.99 24
HFP-MVS98.56 3898.37 4199.14 6699.96 897.43 10499.95 4398.61 6994.77 9199.31 7099.85 3594.22 86100.00 198.70 8099.98 3599.98 55
region2R98.54 4098.37 4199.05 7699.96 897.18 11299.96 2598.55 8394.87 8999.45 5799.85 3594.07 92100.00 198.67 82100.00 199.98 55
#test#98.59 3698.41 3499.14 6699.96 897.43 10499.95 4398.61 6995.00 8499.31 7099.85 3594.22 86100.00 198.78 7699.98 3599.98 55
ACMMPR98.50 4398.32 4599.05 7699.96 897.18 11299.95 4398.60 7194.77 9199.31 7099.84 4893.73 101100.00 198.70 8099.98 3599.98 55
NCCC99.37 299.25 299.71 1399.96 899.15 2099.97 1898.62 6798.02 699.90 299.95 397.33 16100.00 199.54 37100.00 1100.00 1
CP-MVS98.45 4798.32 4598.87 8999.96 896.62 13099.97 1898.39 13994.43 10698.90 9299.87 2894.30 84100.00 199.04 5899.99 2299.99 24
test_one_060199.94 1499.30 1198.41 13296.63 3999.75 2799.93 1197.49 9
testtj98.89 1998.69 1999.52 2999.94 1498.56 5799.90 7898.55 8395.14 8299.72 3399.84 4895.46 46100.00 199.65 3699.99 2299.99 24
test_0728_SECOND99.82 799.94 1499.47 799.95 4398.43 116100.00 199.99 5100.00 1100.00 1
XVS98.70 2998.55 2699.15 6499.94 1497.50 9999.94 6098.42 12896.22 5299.41 6199.78 6994.34 7999.96 5798.92 6499.95 5599.99 24
test_prior398.99 1498.84 1599.43 3899.94 1498.49 6199.95 4398.65 6095.78 6399.73 2999.76 7596.00 3299.80 11099.78 24100.00 199.99 24
X-MVStestdata93.83 19292.06 22199.15 6499.94 1497.50 9999.94 6098.42 12896.22 5299.41 6141.37 37194.34 7999.96 5798.92 6499.95 5599.99 24
test_prior99.43 3899.94 1498.49 6198.65 6099.80 11099.99 24
MSLP-MVS++99.13 899.01 1099.49 3499.94 1498.46 6399.98 1098.86 4597.10 2599.80 1699.94 495.92 36100.00 199.51 38100.00 1100.00 1
APDe-MVS99.06 1198.91 1399.51 3199.94 1498.76 4499.91 7498.39 13997.20 2499.46 5699.85 3595.53 4599.79 11399.86 16100.00 199.99 24
MP-MVScopyleft98.23 6497.97 6599.03 7899.94 1497.17 11599.95 4398.39 13994.70 9498.26 12399.81 5991.84 147100.00 198.85 7099.97 4899.93 85
Rongxuan Tan, Qing Wang, et al.: MP-MVS: Multi-Scale Windows PatchMatch and Planar Prior Multi-View Stereo.
CDPH-MVS98.65 3298.36 4399.49 3499.94 1498.73 4599.87 9298.33 15493.97 12999.76 2699.87 2894.99 6199.75 12598.55 89100.00 199.98 55
PAPM_NR98.12 6797.93 6998.70 9799.94 1496.13 15199.82 11798.43 11694.56 10197.52 13899.70 9194.40 7499.98 4697.00 13999.98 3599.99 24
MG-MVS98.91 1898.65 2199.68 1499.94 1499.07 2299.64 16599.44 1897.33 1799.00 8999.72 8794.03 9399.98 4698.73 79100.00 1100.00 1
SED-MVS99.28 599.11 699.77 899.93 2799.30 1199.96 2598.43 11697.27 2099.80 1699.94 496.71 23100.00 1100.00 1100.00 1100.00 1
IU-MVS99.93 2799.31 998.41 13297.71 899.84 8100.00 1100.00 1100.00 1
test_241102_ONE99.93 2799.30 1198.43 11697.26 2299.80 1699.88 2496.71 23100.00 1
ETH3 D test640098.81 2398.54 2799.59 2199.93 2798.93 2699.93 6698.46 10594.56 10199.84 899.92 1394.32 8399.86 9499.96 999.98 35100.00 1
DVP-MVScopyleft99.30 499.16 399.73 1199.93 2799.29 1499.95 4398.32 15697.28 1899.83 1099.91 1597.22 18100.00 199.99 5100.00 199.89 94
Zhenlong Yuan, Jinguo Luo, Fei Shen, Zhaoxin Li, Cong Liu, Tianlu Mao, Zhaoqi Wang: DVP-MVS: Synergize Depth-Edge and Visibility Prior for Multi-View Stereo. AAAI2025
test072699.93 2799.29 1499.96 2598.42 12897.28 1899.86 499.94 497.22 18
MSP-MVS99.09 999.12 598.98 8399.93 2797.24 10999.95 4398.42 12897.50 1499.52 5399.88 2497.43 1599.71 13399.50 3999.98 35100.00 1
Zhenlong Yuan, Cong Liu, Fei Shen, Zhaoxin Li, Jingguo luo, Tianlu Mao and Zhaoqi Wang: MSP-MVS: Multi-granularity Segmentation Prior Guided Multi-View Stereo. AAAI2025
agg_prior198.88 2098.66 2099.54 2699.93 2798.77 4099.96 2598.43 11694.63 9999.63 4099.85 3595.79 4099.85 9899.72 3299.99 2299.99 24
agg_prior99.93 2798.77 4098.43 11699.63 4099.85 98
FOURS199.92 3697.66 9199.95 4398.36 14895.58 7299.52 53
ZD-MVS99.92 3698.57 5598.52 9092.34 19099.31 7099.83 5195.06 5599.80 11099.70 3499.97 48
GST-MVS98.27 6097.97 6599.17 6099.92 3697.57 9399.93 6698.39 13994.04 12798.80 9599.74 8492.98 121100.00 198.16 10199.76 9399.93 85
TEST999.92 3698.92 2799.96 2598.43 11693.90 13499.71 3599.86 3195.88 3799.85 98
train_agg98.88 2098.65 2199.59 2199.92 3698.92 2799.96 2598.43 11694.35 11199.71 3599.86 3195.94 3499.85 9899.69 3599.98 3599.99 24
test_899.92 3698.88 3099.96 2598.43 11694.35 11199.69 3799.85 3595.94 3499.85 98
PGM-MVS98.34 5598.13 5698.99 8299.92 3697.00 11899.75 13999.50 1693.90 13499.37 6799.76 7593.24 116100.00 197.75 12499.96 5299.98 55
ACMMPcopyleft97.74 8397.44 8398.66 10099.92 3696.13 15199.18 22599.45 1794.84 9096.41 16599.71 8991.40 15199.99 4097.99 11198.03 15099.87 97
Qingshan Xu, Weihang Kong, Wenbing Tao, Marc Pollefeys: Multi-Scale Geometric Consistency Guided and Planar Prior Assisted Multi-View Stereo. IEEE Transactions on Pattern Analysis and Machine Intelligence
DVP-MVS++.99.26 699.09 899.77 899.91 4499.31 999.95 4398.43 11696.48 4299.80 1699.93 1197.44 13100.00 199.92 1299.98 35100.00 1
MSC_two_6792asdad99.93 299.91 4499.80 298.41 132100.00 199.96 9100.00 1100.00 1
No_MVS99.93 299.91 4499.80 298.41 132100.00 199.96 9100.00 1100.00 1
HPM-MVS++copyleft99.07 1098.88 1499.63 1599.90 4799.02 2399.95 4398.56 7797.56 1399.44 5899.85 3595.38 48100.00 199.31 4799.99 2299.87 97
APD-MVScopyleft98.62 3398.35 4499.41 4299.90 4798.51 6099.87 9298.36 14894.08 12299.74 2899.73 8694.08 9199.74 12999.42 4399.99 2299.99 24
Yuesong Wang, Zhaojie Zeng and etc.: Adaptive Patch Deformation for Textureless-Resilient Multi-View Stereo. CVPR2023
DeepC-MVS_fast96.59 198.81 2398.54 2799.62 1899.90 4798.85 3399.24 22198.47 10398.14 499.08 8399.91 1593.09 119100.00 199.04 5899.99 22100.00 1
Andreas Kuhn, Christian Sormann, Mattia Rossi, Oliver Erdler, Friedrich Fraundorfer: DeepC-MVS: Deep Confidence Prediction for Multi-View Stereo Reconstruction. 3DV 2020
OPU-MVS99.93 299.89 5099.80 299.96 2599.80 6097.44 13100.00 1100.00 199.98 35100.00 1
DPE-MVScopyleft99.26 699.10 799.74 1099.89 5099.24 1899.87 9298.44 10897.48 1599.64 3999.94 496.68 2599.99 4099.99 5100.00 199.99 24
Kehua Chen, Zhenlong Yuan, Tianlu Mao, Zhaoqi Wang: Dual-Level Precision Edges Guided Multi-View Stereo with Accurate Planarization. AAAI2025
test_part299.89 5099.25 1799.49 55
CSCG97.10 10597.04 9997.27 16999.89 5091.92 25399.90 7899.07 3188.67 26695.26 18599.82 5593.17 11899.98 4698.15 10299.47 11399.90 93
test117298.38 5498.25 4898.77 9399.88 5496.56 13399.80 12498.36 14894.68 9699.20 7799.80 6093.28 11399.78 11599.34 4699.92 7199.98 55
ZNCC-MVS98.31 5798.03 6199.17 6099.88 5497.59 9299.94 6098.44 10894.31 11498.50 11199.82 5593.06 12099.99 4098.30 9899.99 2299.93 85
SR-MVS98.46 4698.30 4798.93 8799.88 5497.04 11799.84 11098.35 15194.92 8699.32 6999.80 6093.35 10899.78 11599.30 4899.95 5599.96 74
9.1498.38 3999.87 5799.91 7498.33 15493.22 15499.78 2499.89 2194.57 7199.85 9899.84 1799.97 48
SMA-MVScopyleft98.76 2798.48 3099.62 1899.87 5798.87 3199.86 10398.38 14393.19 15599.77 2599.94 495.54 43100.00 199.74 2899.99 22100.00 1
Yufeng Yin; Xiaoyan Liu; Zichao Zhang: SMA-MVS: Segmentation-Guided Multi-Scale Anchor Deformation Patch Multi-View Stereo. IEEE Transactions on Circuits and Systems for Video Technology
PHI-MVS98.41 5098.21 5099.03 7899.86 5997.10 11699.98 1098.80 5090.78 23399.62 4399.78 6995.30 49100.00 199.80 2299.93 6799.99 24
zzz-MVS98.33 5698.00 6399.30 5099.85 6097.93 8299.80 12498.28 16395.76 6597.18 14599.88 2492.74 127100.00 198.67 8299.88 8099.99 24
MTAPA98.29 5997.96 6899.30 5099.85 6097.93 8299.39 20298.28 16395.76 6597.18 14599.88 2492.74 127100.00 198.67 8299.88 8099.99 24
Regformer-198.79 2598.60 2499.36 4899.85 6098.34 6699.87 9298.52 9096.05 5699.41 6199.79 6494.93 6399.76 12299.07 5399.90 7699.99 24
Regformer-298.78 2698.59 2599.36 4899.85 6098.32 6799.87 9298.52 9096.04 5799.41 6199.79 6494.92 6499.76 12299.05 5499.90 7699.98 55
LS3D95.84 14795.11 15798.02 13999.85 6095.10 18498.74 27098.50 10187.22 28693.66 20399.86 3187.45 20199.95 6490.94 23899.81 9199.02 194
Regformer-398.58 3798.41 3499.10 7299.84 6597.57 9399.66 15898.52 9095.79 6299.01 8799.77 7194.40 7499.75 12598.82 7299.83 8599.98 55
Regformer-498.56 3898.39 3899.08 7499.84 6597.52 9699.66 15898.52 9095.76 6599.01 8799.77 7194.33 8299.75 12598.80 7599.83 8599.98 55
HPM-MVScopyleft97.96 7197.72 7398.68 9899.84 6596.39 13999.90 7898.17 17992.61 17798.62 10699.57 10791.87 14699.67 14098.87 6999.99 2299.99 24
Chunlin Ren, Qingshan Xu, Shikun Zhang, Jiaqi Yang: Hierarchical Prior Mining for Non-local Multi-View Stereo. ICCV 2023
ETH3D-3000-0.198.68 3098.42 3299.47 3799.83 6898.57 5599.90 7898.37 14693.81 13799.81 1299.90 1994.34 7999.86 9499.84 1799.98 3599.97 67
EI-MVSNet-Vis-set98.27 6098.11 5898.75 9599.83 6896.59 13299.40 19898.51 9795.29 7998.51 11099.76 7593.60 10599.71 13398.53 9099.52 11099.95 82
xxxxxxxxxxxxxcwj98.98 1598.79 1699.54 2699.82 7098.79 3799.96 2597.52 23997.66 1099.81 1299.89 2194.70 6899.86 9499.84 1799.93 6799.96 74
save fliter99.82 7098.79 3799.96 2598.40 13697.66 10
PLCcopyleft95.54 397.93 7397.89 7098.05 13899.82 7094.77 19499.92 7098.46 10593.93 13297.20 14499.27 13195.44 4799.97 5597.41 12999.51 11299.41 165
Jie Liao, Yanping Fu, Qingan Yan, Chunxia xiao: Pyramid Multi-View Stereo with Local Consistency. Pacific Graphics 2019
APD-MVS_3200maxsize98.25 6398.08 5998.78 9299.81 7396.60 13199.82 11798.30 16193.95 13199.37 6799.77 7192.84 12499.76 12298.95 6199.92 7199.97 67
EI-MVSNet-UG-set98.14 6697.99 6498.60 10599.80 7496.27 14299.36 20798.50 10195.21 8198.30 12099.75 8093.29 11299.73 13298.37 9499.30 11999.81 102
SR-MVS-dyc-post98.31 5798.17 5398.71 9699.79 7596.37 14099.76 13698.31 15894.43 10699.40 6599.75 8093.28 11399.78 11598.90 6799.92 7199.97 67
RE-MVS-def98.13 5699.79 7596.37 14099.76 13698.31 15894.43 10699.40 6599.75 8092.95 12298.90 6799.92 7199.97 67
HPM-MVS_fast97.80 8097.50 8198.68 9899.79 7596.42 13699.88 8998.16 18291.75 20898.94 9199.54 11091.82 14899.65 14297.62 12699.99 2299.99 24
SF-MVS98.67 3198.40 3699.50 3299.77 7898.67 4899.90 7898.21 17393.53 14699.81 1299.89 2194.70 6899.86 9499.84 1799.93 6799.96 74
旧先验199.76 7997.52 9698.64 6399.85 3595.63 4299.94 6199.99 24
OMC-MVS97.28 9997.23 9297.41 16299.76 7993.36 22399.65 16197.95 20096.03 5897.41 14199.70 9189.61 17799.51 14796.73 14698.25 14499.38 167
新几何199.42 4199.75 8198.27 6998.63 6692.69 17299.55 4899.82 5594.40 74100.00 191.21 22999.94 6199.99 24
MP-MVS-pluss98.07 6997.64 7599.38 4799.74 8298.41 6499.74 14298.18 17893.35 15096.45 16299.85 3592.64 13099.97 5598.91 6699.89 7899.77 108
MP-MVS-pluss: MP-MVS-pluss. MP-MVS-pluss
TSAR-MVS + MP.98.93 1698.77 1799.41 4299.74 8298.67 4899.77 13198.38 14396.73 3699.88 399.74 8494.89 6599.59 14499.80 2299.98 3599.97 67
Zhenlong Yuan, Jiakai Cao, Zhaoqi Wang, Zhaoxin Li: TSAR-MVS: Textureless-aware Segmentation and Correlative Refinement Guided Multi-View Stereo. Pattern Recognition
112198.03 7097.57 8099.40 4499.74 8298.21 7098.31 29398.62 6792.78 16799.53 5099.83 5195.08 53100.00 194.36 18299.92 7199.99 24
test1299.43 3899.74 8298.56 5798.40 13699.65 3894.76 6699.75 12599.98 3599.99 24
原ACMM198.96 8599.73 8696.99 11998.51 9794.06 12599.62 4399.85 3594.97 6299.96 5795.11 16199.95 5599.92 91
TSAR-MVS + GP.98.60 3498.51 2998.86 9099.73 8696.63 12999.97 1897.92 20498.07 598.76 9999.55 10895.00 6099.94 7299.91 1597.68 15499.99 24
CANet98.27 6097.82 7199.63 1599.72 8899.10 2199.98 1098.51 9797.00 2898.52 10999.71 8987.80 19799.95 6499.75 2699.38 11799.83 100
F-COLMAP96.93 11196.95 10296.87 17899.71 8991.74 25899.85 10697.95 20093.11 15895.72 17899.16 14192.35 13699.94 7295.32 15999.35 11898.92 196
SD-MVS98.92 1798.70 1899.56 2499.70 9098.73 4599.94 6098.34 15396.38 4799.81 1299.76 7594.59 7099.98 4699.84 1799.96 5299.97 67
Zhenlong Yuan, Jiakai Cao, Zhaoxin Li, Hao Jiang and Zhaoqi Wang: SD-MVS: Segmentation-driven Deformation Multi-View Stereo with Spherical Refinement and EM optimization. AAAI2024
abl_697.67 8697.34 8898.66 10099.68 9196.11 15499.68 15598.14 18593.80 13899.27 7599.70 9188.65 19399.98 4697.46 12899.72 9699.89 94
ACMMP_NAP98.49 4498.14 5599.54 2699.66 9298.62 5499.85 10698.37 14694.68 9699.53 5099.83 5192.87 123100.00 198.66 8599.84 8499.99 24
DeepPCF-MVS95.94 297.71 8598.98 1193.92 27099.63 9381.76 34799.96 2598.56 7799.47 199.19 8099.99 194.16 90100.00 199.92 1299.93 67100.00 1
EPNet98.49 4498.40 3698.77 9399.62 9496.80 12599.90 7899.51 1597.60 1299.20 7799.36 12693.71 10299.91 7897.99 11198.71 13399.61 132
Wanjuan Su, Wenbing Tao: Efficient Edge-Preserving Multi-View Stereo Network for Depth Estimation. AAAI 2023
ETH3D cwj APD-0.1698.40 5298.07 6099.40 4499.59 9598.41 6499.86 10398.24 16992.18 19499.73 2999.87 2893.47 10699.85 9899.74 2899.95 5599.93 85
PVSNet_BlendedMVS96.05 14295.82 14096.72 18399.59 9596.99 11999.95 4399.10 2894.06 12598.27 12195.80 26489.00 18899.95 6499.12 5187.53 25693.24 319
PVSNet_Blended97.94 7297.64 7598.83 9199.59 9596.99 119100.00 199.10 2895.38 7698.27 12199.08 14489.00 18899.95 6499.12 5199.25 12099.57 142
PatchMatch-RL96.04 14395.40 14797.95 14099.59 9595.22 18299.52 18299.07 3193.96 13096.49 16198.35 19682.28 24199.82 10990.15 25299.22 12398.81 203
test22299.55 9997.41 10799.34 20898.55 8391.86 20399.27 7599.83 5193.84 9999.95 5599.99 24
CNLPA97.76 8297.38 8598.92 8899.53 10096.84 12399.87 9298.14 18593.78 13996.55 16099.69 9492.28 13899.98 4697.13 13599.44 11599.93 85
API-MVS97.86 7597.66 7498.47 11799.52 10195.41 17499.47 19198.87 4491.68 20998.84 9399.85 3592.34 13799.99 4098.44 9299.96 52100.00 1
PVSNet91.05 1397.13 10496.69 10998.45 11999.52 10195.81 16099.95 4399.65 1094.73 9399.04 8599.21 13984.48 22899.95 6494.92 16498.74 13299.58 141
114514_t97.41 9596.83 10499.14 6699.51 10397.83 8499.89 8698.27 16688.48 27099.06 8499.66 10090.30 17099.64 14396.32 14999.97 4899.96 74
cl2293.77 19693.25 20095.33 21799.49 10494.43 19999.61 16998.09 18890.38 23789.16 26295.61 27190.56 16897.34 25691.93 22184.45 27694.21 263
testdata98.42 12299.47 10595.33 17698.56 7793.78 13999.79 2399.85 3593.64 10499.94 7294.97 16399.94 61100.00 1
MAR-MVS97.43 9197.19 9398.15 13499.47 10594.79 19399.05 24198.76 5192.65 17598.66 10499.82 5588.52 19499.98 4698.12 10399.63 10199.67 120
Zhenyu Xu, Yiguang Liu, Xuelei Shi, Ying Wang, Yunan Zheng: MARMVS: Matching Ambiguity Reduced Multiple View Stereo for Efficient Large Scale Scene Reconstruction. CVPR 2020
DP-MVS94.54 17893.42 19397.91 14399.46 10794.04 20598.93 25397.48 24481.15 33690.04 23699.55 10887.02 20699.95 6488.97 26198.11 14599.73 112
MVS_111021_LR98.42 4998.38 3998.53 11499.39 10895.79 16199.87 9299.86 296.70 3798.78 9699.79 6492.03 14399.90 7999.17 5099.86 8399.88 96
CHOSEN 280x42099.01 1399.03 998.95 8699.38 10998.87 3198.46 28699.42 2097.03 2799.02 8699.09 14399.35 198.21 22199.73 3199.78 9299.77 108
MVS_111021_HR98.72 2898.62 2399.01 8199.36 11097.18 11299.93 6699.90 196.81 3498.67 10399.77 7193.92 9599.89 8399.27 4999.94 6199.96 74
DPM-MVS98.83 2298.46 3199.97 199.33 11199.92 199.96 2598.44 10897.96 799.55 4899.94 497.18 20100.00 193.81 19599.94 6199.98 55
TAPA-MVS92.12 894.42 18293.60 18696.90 17799.33 11191.78 25799.78 12898.00 19489.89 24794.52 19199.47 11491.97 14499.18 15969.90 35099.52 11099.73 112
Andrea Romanoni, Matteo Matteucci: TAPA-MVS: Textureless-Aware PAtchMatch Multi-View Stereo. ICCV 2019
test_yl97.83 7797.37 8699.21 5499.18 11397.98 7999.64 16599.27 2591.43 21897.88 13298.99 15295.84 3899.84 10798.82 7295.32 20199.79 104
DCV-MVSNet97.83 7797.37 8699.21 5499.18 11397.98 7999.64 16599.27 2591.43 21897.88 13298.99 15295.84 3899.84 10798.82 7295.32 20199.79 104
DeepC-MVS94.51 496.92 11296.40 11898.45 11999.16 11595.90 15899.66 15898.06 19196.37 5094.37 19499.49 11383.29 23799.90 7997.63 12599.61 10599.55 144
Andreas Kuhn, Christian Sormann, Mattia Rossi, Oliver Erdler, Friedrich Fraundorfer: DeepC-MVS: Deep Confidence Prediction for Multi-View Stereo Reconstruction. 3DV 2020
DELS-MVS98.54 4098.22 4999.50 3299.15 11698.65 52100.00 198.58 7397.70 998.21 12599.24 13792.58 13199.94 7298.63 8799.94 6199.92 91
Christian Sormann, Emanuele Santellani, Mattia Rossi, Andreas Kuhn, Friedrich Fraundorfer: DELS-MVS: Deep Epipolar Line Search for Multi-View Stereo. Winter Conference on Applications of Computer Vision (WACV), 2023
Anonymous20240521193.10 21091.99 22296.40 19499.10 11789.65 29798.88 25897.93 20283.71 32594.00 19998.75 17568.79 32599.88 8995.08 16291.71 22499.68 118
HyFIR lowres test96.66 12596.43 11797.36 16699.05 11893.91 21099.70 15299.80 390.54 23596.26 16898.08 20192.15 14198.23 22096.84 14595.46 19899.93 85
LFMVS94.75 17193.56 18998.30 12799.03 11995.70 16798.74 27097.98 19787.81 27998.47 11299.39 12367.43 33399.53 14598.01 10995.20 20399.67 120
AllTest92.48 22491.64 22795.00 22799.01 12088.43 31098.94 25296.82 31086.50 29588.71 26798.47 19374.73 30499.88 8985.39 29696.18 18296.71 227
TestCases95.00 22799.01 12088.43 31096.82 31086.50 29588.71 26798.47 19374.73 30499.88 8985.39 29696.18 18296.71 227
COLMAP_ROBcopyleft90.47 1492.18 23191.49 23394.25 25799.00 12288.04 31698.42 29196.70 31782.30 33388.43 27499.01 14976.97 28499.85 9886.11 29396.50 17894.86 234
Johannes L. Schönberger, Enliang Zheng, Marc Pollefeys, Jan-Michael Frahm: Pixelwise View Selection for Unstructured Multi-View Stereo. ECCV 2016
HY-MVS92.50 797.79 8197.17 9599.63 1598.98 12399.32 897.49 31499.52 1395.69 6998.32 11997.41 21693.32 11099.77 11998.08 10795.75 19499.81 102
VNet97.21 10396.57 11399.13 7198.97 12497.82 8599.03 24399.21 2794.31 11499.18 8198.88 16686.26 21399.89 8398.93 6394.32 20999.69 117
thres20096.96 10996.21 12199.22 5398.97 12498.84 3499.85 10699.71 593.17 15696.26 16898.88 16689.87 17599.51 14794.26 18694.91 20499.31 176
tfpn200view996.79 11695.99 12699.19 5698.94 12698.82 3599.78 12899.71 592.86 16196.02 17198.87 16889.33 18199.50 14993.84 19294.57 20599.27 179
thres40096.78 11795.99 12699.16 6298.94 12698.82 3599.78 12899.71 592.86 16196.02 17198.87 16889.33 18199.50 14993.84 19294.57 20599.16 186
Anonymous2023121189.86 27988.44 28594.13 26198.93 12890.68 27798.54 28398.26 16776.28 34786.73 29695.54 27570.60 32197.56 24790.82 24180.27 31194.15 272
canonicalmvs97.09 10796.32 11999.39 4698.93 12898.95 2599.72 15097.35 25794.45 10497.88 13299.42 11886.71 20899.52 14698.48 9193.97 21499.72 114
EPNet_dtu95.71 15195.39 14896.66 18598.92 13093.41 22199.57 17498.90 4196.19 5497.52 13898.56 18792.65 12997.36 25477.89 33498.33 14099.20 184
Wanjuan Su, Wenbing Tao: Efficient Edge-Preserving Multi-View Stereo Network for Depth Estimation. AAAI 2023
WTY-MVS98.10 6897.60 7899.60 2098.92 13099.28 1699.89 8699.52 1395.58 7298.24 12499.39 12393.33 10999.74 12997.98 11395.58 19799.78 107
CHOSEN 1792x268896.81 11596.53 11497.64 15398.91 13293.07 22599.65 16199.80 395.64 7095.39 18298.86 17084.35 23099.90 7996.98 14099.16 12499.95 82
thres100view90096.74 12095.92 13699.18 5798.90 13398.77 4099.74 14299.71 592.59 17995.84 17498.86 17089.25 18399.50 14993.84 19294.57 20599.27 179
thres600view796.69 12395.87 13999.14 6698.90 13398.78 3999.74 14299.71 592.59 17995.84 17498.86 17089.25 18399.50 14993.44 20594.50 20899.16 186
MSDG94.37 18493.36 19797.40 16398.88 13593.95 20999.37 20597.38 25585.75 30790.80 22899.17 14084.11 23299.88 8986.35 29098.43 13898.36 209
test_part192.15 23290.72 24296.44 19398.87 13697.46 10398.99 24698.26 16785.89 30286.34 30596.34 25381.71 24597.48 25091.06 23378.99 31694.37 249
h-mvs3394.92 16694.36 16996.59 18898.85 13791.29 26998.93 25398.94 3695.90 5998.77 9798.42 19590.89 16499.77 11997.80 11770.76 34398.72 206
Anonymous2024052992.10 23390.65 24496.47 18998.82 13890.61 27998.72 27298.67 5975.54 35193.90 20198.58 18566.23 33699.90 7994.70 17590.67 22598.90 199
PVSNet_Blended_VisFu97.27 10096.81 10598.66 10098.81 13996.67 12899.92 7098.64 6394.51 10396.38 16698.49 18989.05 18799.88 8997.10 13798.34 13999.43 163
PS-MVSNAJ98.44 4898.20 5199.16 6298.80 14098.92 2799.54 18098.17 17997.34 1699.85 699.85 3591.20 15599.89 8399.41 4499.67 9998.69 207
CANet_DTU96.76 11896.15 12298.60 10598.78 14197.53 9599.84 11097.63 22297.25 2399.20 7799.64 10281.36 25199.98 4692.77 21598.89 12898.28 210
alignmvs97.81 7997.33 8999.25 5298.77 14298.66 5099.99 598.44 10894.40 11098.41 11499.47 11493.65 10399.42 15598.57 8894.26 21099.67 120
SteuartSystems-ACMMP99.02 1298.97 1299.18 5798.72 14397.71 8799.98 1098.44 10896.85 3099.80 1699.91 1597.57 699.85 9899.44 4299.99 2299.99 24
Skip Steuart: Steuart Systems R&D Blog.
xiu_mvs_v2_base98.23 6497.97 6599.02 8098.69 14498.66 5099.52 18298.08 19097.05 2699.86 499.86 3190.65 16699.71 13399.39 4598.63 13498.69 207
miper_enhance_ethall94.36 18693.98 17895.49 21198.68 14595.24 18099.73 14797.29 26393.28 15389.86 24195.97 26294.37 7897.05 27692.20 21984.45 27694.19 264
MVSTER95.53 15495.22 15396.45 19198.56 14697.72 8699.91 7497.67 22092.38 18991.39 22297.14 22397.24 1797.30 25994.80 16987.85 25194.34 254
VDD-MVS93.77 19692.94 20296.27 19898.55 14790.22 28798.77 26997.79 21590.85 23196.82 15399.42 11861.18 35199.77 11998.95 6194.13 21198.82 202
tpmvs94.28 18893.57 18896.40 19498.55 14791.50 26795.70 34098.55 8387.47 28192.15 21794.26 32191.42 15098.95 16688.15 27095.85 19098.76 205
UGNet95.33 15894.57 16697.62 15598.55 14794.85 18998.67 27799.32 2495.75 6896.80 15496.27 25572.18 31499.96 5794.58 17899.05 12698.04 214
Wanjuan Su, Qingshan Xu, Wenbing Tao: Uncertainty-guided Multi-view Stereo Network for Depth Estimation. IEEE Transactions on Circuits and Systems for Video Technology, 2022
PCF-MVS94.20 595.18 16094.10 17598.43 12198.55 14795.99 15697.91 30997.31 26290.35 23989.48 25299.22 13885.19 22399.89 8390.40 24998.47 13799.41 165
Andreas Kuhn, Shan Lin, Oliver Erdler: Plane Completion and Filtering for Multi-View Stereo Reconstruction. GCPR 2019
BH-w/o95.71 15195.38 14996.68 18498.49 15192.28 24499.84 11097.50 24292.12 19692.06 21898.79 17484.69 22698.67 18295.29 16099.66 10099.09 192
baseline195.78 14894.86 16098.54 11298.47 15298.07 7499.06 23797.99 19592.68 17394.13 19898.62 18293.28 11398.69 18193.79 19785.76 26598.84 201
EPMVS96.53 12896.01 12598.09 13698.43 15396.12 15396.36 33099.43 1993.53 14697.64 13695.04 29994.41 7398.38 20591.13 23198.11 14599.75 110
sss97.57 8897.03 10099.18 5798.37 15498.04 7699.73 14799.38 2193.46 14898.76 9999.06 14591.21 15499.89 8396.33 14897.01 17099.62 129
BH-untuned95.18 16094.83 16196.22 19998.36 15591.22 27099.80 12497.32 26190.91 22991.08 22598.67 17883.51 23498.54 18894.23 18799.61 10598.92 196
ET-MVSNet_ETH3D94.37 18493.28 19997.64 15398.30 15697.99 7899.99 597.61 22794.35 11171.57 35599.45 11796.23 3095.34 33096.91 14485.14 27299.59 135
AUN-MVS93.28 20692.60 20895.34 21698.29 15790.09 29099.31 21298.56 7791.80 20796.35 16798.00 20489.38 18098.28 21492.46 21669.22 34897.64 221
FMVSNet392.69 22091.58 22995.99 20398.29 15797.42 10699.26 22097.62 22489.80 24889.68 24595.32 28981.62 24996.27 31287.01 28685.65 26694.29 256
RRT_MVS95.23 15994.77 16396.61 18798.28 15998.32 6799.81 11997.41 25292.59 17991.28 22497.76 21095.02 5797.23 26593.65 20287.14 25894.28 257
PMMVS96.76 11896.76 10796.76 18198.28 15992.10 24899.91 7497.98 19794.12 12099.53 5099.39 12386.93 20798.73 17796.95 14297.73 15299.45 160
hse-mvs294.38 18394.08 17695.31 21898.27 16190.02 29199.29 21798.56 7795.90 5998.77 9798.00 20490.89 16498.26 21897.80 11769.20 34997.64 221
PVSNet_088.03 1991.80 24090.27 25296.38 19698.27 16190.46 28399.94 6099.61 1193.99 12886.26 30797.39 21871.13 32099.89 8398.77 7767.05 35398.79 204
DWT-MVSNet_test97.31 9897.19 9397.66 15298.24 16394.67 19598.86 26298.20 17793.60 14598.09 12698.89 16497.51 798.78 17294.04 18997.28 16399.55 144
UA-Net96.54 12795.96 13398.27 12898.23 16495.71 16698.00 30798.45 10793.72 14298.41 11499.27 13188.71 19299.66 14191.19 23097.69 15399.44 162
GG-mvs-BLEND98.54 11298.21 16598.01 7793.87 34598.52 9097.92 13097.92 20899.02 297.94 23798.17 10099.58 10799.67 120
mvs_anonymous95.65 15395.03 15897.53 15698.19 16695.74 16499.33 20997.49 24390.87 23090.47 23297.10 22588.23 19597.16 26795.92 15497.66 15599.68 118
MVS_Test96.46 13095.74 14198.61 10498.18 16797.23 11099.31 21297.15 27591.07 22698.84 9397.05 22988.17 19698.97 16594.39 18197.50 15799.61 132
BH-RMVSNet95.18 16094.31 17197.80 14498.17 16895.23 18199.76 13697.53 23792.52 18494.27 19699.25 13576.84 28698.80 17090.89 24099.54 10999.35 172
RPSCF91.80 24092.79 20588.83 32798.15 16969.87 36098.11 30396.60 32083.93 32394.33 19599.27 13179.60 26999.46 15491.99 22093.16 22197.18 225
ETV-MVS97.92 7497.80 7298.25 12998.14 17096.48 13499.98 1097.63 22295.61 7199.29 7499.46 11692.55 13298.82 16999.02 6098.54 13599.46 158
IS-MVSNet96.29 13895.90 13797.45 16098.13 17194.80 19299.08 23297.61 22792.02 20095.54 18198.96 15890.64 16798.08 22693.73 20097.41 16199.47 157
ab-mvs94.69 17293.42 19398.51 11598.07 17296.26 14396.49 32998.68 5690.31 24094.54 19097.00 23176.30 29299.71 13395.98 15393.38 21999.56 143
XVG-OURS-SEG-HR94.79 16894.70 16595.08 22498.05 17389.19 30099.08 23297.54 23593.66 14394.87 18899.58 10678.78 27599.79 11397.31 13193.40 21896.25 229
EIA-MVS97.53 8997.46 8297.76 14998.04 17494.84 19099.98 1097.61 22794.41 10997.90 13199.59 10592.40 13598.87 16798.04 10899.13 12599.59 135
XVG-OURS94.82 16794.74 16495.06 22598.00 17589.19 30099.08 23297.55 23394.10 12194.71 18999.62 10380.51 26299.74 12996.04 15293.06 22296.25 229
dp95.05 16394.43 16896.91 17697.99 17692.73 23496.29 33297.98 19789.70 24995.93 17394.67 31293.83 10098.45 19486.91 28996.53 17799.54 148
tpmrst96.27 14095.98 12897.13 17197.96 17793.15 22496.34 33198.17 17992.07 19798.71 10295.12 29793.91 9698.73 17794.91 16696.62 17599.50 155
TR-MVS94.54 17893.56 18997.49 15997.96 17794.34 20198.71 27397.51 24190.30 24194.51 19298.69 17775.56 29798.77 17492.82 21495.99 18699.35 172
Vis-MVSNet (Re-imp)96.32 13595.98 12897.35 16797.93 17994.82 19199.47 19198.15 18491.83 20495.09 18699.11 14291.37 15297.47 25193.47 20497.43 15899.74 111
MDTV_nov1_ep1395.69 14297.90 18094.15 20395.98 33698.44 10893.12 15797.98 12995.74 26695.10 5298.58 18590.02 25396.92 172
Fast-Effi-MVS+95.02 16494.19 17297.52 15897.88 18194.55 19799.97 1897.08 28288.85 26394.47 19397.96 20784.59 22798.41 19789.84 25597.10 16799.59 135
RRT_test8_iter0594.58 17794.11 17495.98 20497.88 18196.11 15499.89 8697.45 24591.66 21088.28 27796.71 24196.53 2797.40 25294.73 17483.85 28494.45 245
ADS-MVSNet293.80 19593.88 18193.55 28297.87 18385.94 32594.24 34196.84 30790.07 24396.43 16394.48 31790.29 17195.37 32987.44 27797.23 16499.36 170
ADS-MVSNet94.79 16894.02 17797.11 17397.87 18393.79 21194.24 34198.16 18290.07 24396.43 16394.48 31790.29 17198.19 22287.44 27797.23 16499.36 170
Effi-MVS+96.30 13795.69 14298.16 13197.85 18596.26 14397.41 31597.21 26890.37 23898.65 10598.58 18586.61 21098.70 18097.11 13697.37 16299.52 151
PatchmatchNetpermissive95.94 14595.45 14697.39 16497.83 18694.41 20096.05 33598.40 13692.86 16197.09 14795.28 29494.21 8998.07 22889.26 25998.11 14599.70 115
Fangjinhua Wang, Silvano Galliani, Christoph Vogel, Pablo Speciale, Marc Pollefeys: PatchmatchNet: Learned Multi-View Patchmatch Stereo.
cascas94.64 17593.61 18497.74 15197.82 18796.26 14399.96 2597.78 21685.76 30594.00 19997.54 21376.95 28599.21 15897.23 13395.43 19997.76 220
1112_ss96.01 14495.20 15498.42 12297.80 18896.41 13799.65 16196.66 31892.71 17092.88 21399.40 12192.16 14099.30 15691.92 22293.66 21599.55 144
Test_1112_low_res95.72 14994.83 16198.42 12297.79 18996.41 13799.65 16196.65 31992.70 17192.86 21496.13 25992.15 14199.30 15691.88 22393.64 21699.55 144
Effi-MVS+-dtu94.53 18095.30 15192.22 30097.77 19082.54 34099.59 17197.06 28494.92 8695.29 18495.37 28785.81 21597.89 23894.80 16997.07 16896.23 231
mvs-test195.53 15495.97 13194.20 25897.77 19085.44 32999.95 4397.06 28494.92 8696.58 15898.72 17685.81 21598.98 16494.80 16998.11 14598.18 211
tpm cat193.51 20292.52 21396.47 18997.77 19091.47 26896.13 33398.06 19180.98 33792.91 21293.78 32589.66 17698.87 16787.03 28596.39 18099.09 192
xiu_mvs_v1_base_debu97.43 9197.06 9698.55 10997.74 19398.14 7199.31 21297.86 21096.43 4499.62 4399.69 9485.56 21899.68 13799.05 5498.31 14197.83 216
xiu_mvs_v1_base97.43 9197.06 9698.55 10997.74 19398.14 7199.31 21297.86 21096.43 4499.62 4399.69 9485.56 21899.68 13799.05 5498.31 14197.83 216
xiu_mvs_v1_base_debi97.43 9197.06 9698.55 10997.74 19398.14 7199.31 21297.86 21096.43 4499.62 4399.69 9485.56 21899.68 13799.05 5498.31 14197.83 216
EPP-MVSNet96.69 12396.60 11196.96 17597.74 19393.05 22799.37 20598.56 7788.75 26495.83 17699.01 14996.01 3198.56 18696.92 14397.20 16699.25 181
gg-mvs-nofinetune93.51 20291.86 22698.47 11797.72 19797.96 8192.62 34998.51 9774.70 35397.33 14269.59 36398.91 397.79 24097.77 12299.56 10899.67 120
IB-MVS92.85 694.99 16593.94 17998.16 13197.72 19795.69 16899.99 598.81 4894.28 11692.70 21596.90 23395.08 5399.17 16096.07 15173.88 34199.60 134
Christian Sormann, Mattia Rossi, Andreas Kuhn and Friedrich Fraundorfer: IB-MVS: An Iterative Algorithm for Deep Multi-View Stereo based on Binary Decisions. BMVC 2021
thisisatest051597.41 9597.02 10198.59 10797.71 19997.52 9699.97 1898.54 8791.83 20497.45 14099.04 14697.50 899.10 16194.75 17296.37 18199.16 186
diffmvs97.00 10896.64 11098.09 13697.64 20096.17 15099.81 11997.19 26994.67 9898.95 9099.28 12886.43 21198.76 17598.37 9497.42 16099.33 174
Vis-MVSNetpermissive95.72 14995.15 15697.45 16097.62 20194.28 20299.28 21898.24 16994.27 11796.84 15298.94 16179.39 27098.76 17593.25 20698.49 13699.30 177
Jingyang Zhang, Yao Yao, Shiwei Li, Zixin Luo, Tian Fang: Visibility-aware Multiview Stereo Network. BMVC 2020
thisisatest053097.10 10596.72 10898.22 13097.60 20296.70 12699.92 7098.54 8791.11 22597.07 14898.97 15697.47 1199.03 16293.73 20096.09 18498.92 196
miper_ehance_all_eth93.16 20892.60 20894.82 23497.57 20393.56 21699.50 18697.07 28388.75 26488.85 26695.52 27790.97 16196.74 29390.77 24284.45 27694.17 265
LCM-MVSNet-Re92.31 22892.60 20891.43 30897.53 20479.27 35699.02 24491.83 36392.07 19780.31 33694.38 32083.50 23595.48 32797.22 13497.58 15699.54 148
GBi-Net90.88 25589.82 26094.08 26297.53 20491.97 24998.43 28896.95 29787.05 28789.68 24594.72 30871.34 31796.11 31687.01 28685.65 26694.17 265
test190.88 25589.82 26094.08 26297.53 20491.97 24998.43 28896.95 29787.05 28789.68 24594.72 30871.34 31796.11 31687.01 28685.65 26694.17 265
FMVSNet291.02 25289.56 26495.41 21597.53 20495.74 16498.98 24797.41 25287.05 28788.43 27495.00 30271.34 31796.24 31485.12 29885.21 27194.25 260
CS-MVS97.74 8397.61 7798.15 13497.52 20896.69 127100.00 197.11 27994.93 8599.73 2999.41 12091.68 14998.25 21998.84 7199.24 12199.52 151
tttt051796.85 11396.49 11597.92 14297.48 20995.89 15999.85 10698.54 8790.72 23496.63 15798.93 16397.47 1199.02 16393.03 21395.76 19398.85 200
CS-MVS-test97.44 9097.41 8497.53 15697.46 21094.66 196100.00 197.04 28894.69 9599.72 3399.25 13591.22 15398.29 21198.33 9798.95 12799.64 126
DROMVSNet97.38 9797.24 9197.80 14497.41 21195.64 16999.99 597.06 28494.59 10099.63 4099.32 12789.20 18698.14 22398.76 7899.23 12299.62 129
c3_l92.53 22391.87 22594.52 24597.40 21292.99 22899.40 19896.93 30187.86 27788.69 26995.44 28189.95 17496.44 30590.45 24680.69 30794.14 275
CDS-MVSNet96.34 13496.07 12397.13 17197.37 21394.96 18799.53 18197.91 20591.55 21395.37 18398.32 19795.05 5697.13 27093.80 19695.75 19499.30 177
Khang Truong Giang, Soohwan Song, Sungho Jo: Curvature-guided dynamic scale networks for Multi-view Stereo. ICLR 2022
TESTMET0.1,196.74 12096.26 12098.16 13197.36 21496.48 13499.96 2598.29 16291.93 20195.77 17798.07 20295.54 4398.29 21190.55 24498.89 12899.70 115
miper_lstm_enhance91.81 23791.39 23593.06 29297.34 21589.18 30299.38 20396.79 31286.70 29487.47 28895.22 29590.00 17395.86 32588.26 26881.37 29794.15 272
baseline96.43 13195.98 12897.76 14997.34 21595.17 18399.51 18497.17 27293.92 13396.90 15199.28 12885.37 22198.64 18397.50 12796.86 17499.46 158
cl____92.31 22891.58 22994.52 24597.33 21792.77 23099.57 17496.78 31386.97 29187.56 28695.51 27889.43 17996.62 29988.60 26382.44 28994.16 270
DIV-MVS_self_test92.32 22791.60 22894.47 24997.31 21892.74 23299.58 17296.75 31486.99 29087.64 28495.54 27589.55 17896.50 30388.58 26482.44 28994.17 265
casdiffmvs96.42 13295.97 13197.77 14897.30 21994.98 18699.84 11097.09 28193.75 14196.58 15899.26 13485.07 22498.78 17297.77 12297.04 16999.54 148
GeoE94.36 18693.48 19196.99 17497.29 22093.54 21799.96 2596.72 31688.35 27393.43 20498.94 16182.05 24298.05 22988.12 27296.48 17999.37 169
eth_miper_zixun_eth92.41 22691.93 22393.84 27397.28 22190.68 27798.83 26496.97 29688.57 26989.19 26195.73 26889.24 18596.69 29789.97 25481.55 29594.15 272
MVSFormer96.94 11096.60 11197.95 14097.28 22197.70 8999.55 17897.27 26591.17 22299.43 5999.54 11090.92 16296.89 28694.67 17699.62 10299.25 181
lupinMVS97.85 7697.60 7898.62 10397.28 22197.70 8999.99 597.55 23395.50 7599.43 5999.67 9890.92 16298.71 17998.40 9399.62 10299.45 160
SCA94.69 17293.81 18397.33 16897.10 22494.44 19898.86 26298.32 15693.30 15296.17 17095.59 27376.48 29097.95 23591.06 23397.43 15899.59 135
TAMVS95.85 14695.58 14496.65 18697.07 22593.50 21899.17 22697.82 21491.39 22195.02 18798.01 20392.20 13997.30 25993.75 19995.83 19199.14 189
Fast-Effi-MVS+-dtu93.72 19993.86 18293.29 28597.06 22686.16 32399.80 12496.83 30892.66 17492.58 21697.83 20981.39 25097.67 24489.75 25696.87 17396.05 233
MVS_030489.28 28888.31 28792.21 30197.05 22786.53 32297.76 31299.57 1285.58 31093.86 20292.71 33451.04 36196.30 31184.49 30292.72 22393.79 302
CostFormer96.10 14195.88 13896.78 18097.03 22892.55 24097.08 32297.83 21390.04 24598.72 10194.89 30695.01 5998.29 21196.54 14795.77 19299.50 155
test-LLR96.47 12996.04 12497.78 14697.02 22995.44 17299.96 2598.21 17394.07 12395.55 17996.38 25093.90 9798.27 21690.42 24798.83 13099.64 126
test-mter96.39 13395.93 13597.78 14697.02 22995.44 17299.96 2598.21 17391.81 20695.55 17996.38 25095.17 5098.27 21690.42 24798.83 13099.64 126
gm-plane-assit96.97 23193.76 21391.47 21698.96 15898.79 17194.92 164
QAPM95.40 15794.17 17399.10 7296.92 23297.71 8799.40 19898.68 5689.31 25188.94 26598.89 16482.48 24099.96 5793.12 21299.83 8599.62 129
KD-MVS_2432*160088.00 29686.10 30093.70 27896.91 23394.04 20597.17 32097.12 27784.93 31681.96 32792.41 33792.48 13394.51 34079.23 32752.68 36192.56 328
miper_refine_blended88.00 29686.10 30093.70 27896.91 23394.04 20597.17 32097.12 27784.93 31681.96 32792.41 33792.48 13394.51 34079.23 32752.68 36192.56 328
tpm295.47 15695.18 15596.35 19796.91 23391.70 26296.96 32597.93 20288.04 27698.44 11395.40 28393.32 11097.97 23294.00 19095.61 19699.38 167
FMVSNet588.32 29387.47 29590.88 31196.90 23688.39 31297.28 31795.68 33882.60 33284.67 31692.40 33979.83 26891.16 35676.39 34181.51 29693.09 321
3Dnovator+91.53 1196.31 13695.24 15299.52 2996.88 23798.64 5399.72 15098.24 16995.27 8088.42 27698.98 15482.76 23999.94 7297.10 13799.83 8599.96 74
Patchmatch-test92.65 22291.50 23296.10 20296.85 23890.49 28291.50 35497.19 26982.76 33190.23 23395.59 27395.02 5798.00 23177.41 33696.98 17199.82 101
MVS96.60 12695.56 14599.72 1296.85 23899.22 1998.31 29398.94 3691.57 21290.90 22799.61 10486.66 20999.96 5797.36 13099.88 8099.99 24
3Dnovator91.47 1296.28 13995.34 15099.08 7496.82 24097.47 10299.45 19498.81 4895.52 7489.39 25399.00 15181.97 24399.95 6497.27 13299.83 8599.84 99
EI-MVSNet93.73 19893.40 19694.74 23596.80 24192.69 23599.06 23797.67 22088.96 25991.39 22299.02 14788.75 19197.30 25991.07 23287.85 25194.22 261
CVMVSNet94.68 17494.94 15993.89 27296.80 24186.92 32199.06 23798.98 3494.45 10494.23 19799.02 14785.60 21795.31 33190.91 23995.39 20099.43 163
IterMVS-LS92.69 22092.11 21994.43 25396.80 24192.74 23299.45 19496.89 30488.98 25789.65 24895.38 28688.77 19096.34 30990.98 23782.04 29294.22 261
Fangjinhua Wang, Silvano Galliani, Christoph Vogel, Marc Pollefeys: IterMVS: Iterative Probability Estimation for Efficient Multi-View Stereo.
IterMVS90.91 25490.17 25593.12 28996.78 24490.42 28598.89 25697.05 28789.03 25586.49 30195.42 28276.59 28995.02 33387.22 28284.09 28093.93 292
Fangjinhua Wang, Silvano Galliani, Christoph Vogel, Marc Pollefeys: IterMVS: Iterative Probability Estimation for Efficient Multi-View Stereo.
131496.84 11495.96 13399.48 3696.74 24598.52 5998.31 29398.86 4595.82 6189.91 23998.98 15487.49 20099.96 5797.80 11799.73 9599.96 74
IterMVS-SCA-FT90.85 25790.16 25692.93 29396.72 24689.96 29298.89 25696.99 29288.95 26086.63 29895.67 26976.48 29095.00 33487.04 28484.04 28393.84 299
MVS-HIRNet86.22 30283.19 31495.31 21896.71 24790.29 28692.12 35197.33 26062.85 35986.82 29570.37 36269.37 32497.49 24975.12 34397.99 15198.15 212
VDDNet93.12 20991.91 22496.76 18196.67 24892.65 23898.69 27598.21 17382.81 33097.75 13599.28 12861.57 34999.48 15398.09 10694.09 21298.15 212
MIMVSNet90.30 27088.67 28295.17 22396.45 24991.64 26492.39 35097.15 27585.99 30190.50 23193.19 33266.95 33494.86 33782.01 31793.43 21799.01 195
CR-MVSNet93.45 20592.62 20795.94 20596.29 25092.66 23692.01 35296.23 32792.62 17696.94 14993.31 33091.04 15996.03 32179.23 32795.96 18799.13 190
RPMNet89.76 28187.28 29697.19 17096.29 25092.66 23692.01 35298.31 15870.19 35896.94 14985.87 35687.25 20399.78 11562.69 36095.96 18799.13 190
Patchmtry89.70 28288.49 28493.33 28496.24 25289.94 29591.37 35596.23 32778.22 34487.69 28393.31 33091.04 15996.03 32180.18 32682.10 29194.02 282
JIA-IIPM91.76 24390.70 24394.94 22996.11 25387.51 31893.16 34898.13 18775.79 35097.58 13777.68 36092.84 12497.97 23288.47 26796.54 17699.33 174
OpenMVScopyleft90.15 1594.77 17093.59 18798.33 12696.07 25497.48 10199.56 17698.57 7590.46 23686.51 30098.95 16078.57 27799.94 7293.86 19199.74 9497.57 223
PAPM98.60 3498.42 3299.14 6696.05 25598.96 2499.90 7899.35 2396.68 3898.35 11899.66 10096.45 2898.51 18999.45 4199.89 7899.96 74
CLD-MVS94.06 19093.90 18094.55 24496.02 25690.69 27699.98 1097.72 21796.62 4191.05 22698.85 17377.21 28298.47 19098.11 10489.51 23194.48 239
Zhaoxin Li, Wangmeng Zuo, Zhaoqi Wang, Lei Zhang: Confidence-based Large-scale Dense Multi-view Stereo. IEEE Transaction on Image Processing, 2020
PatchT90.38 26788.75 28195.25 22195.99 25790.16 28891.22 35697.54 23576.80 34697.26 14386.01 35591.88 14596.07 32066.16 35795.91 18999.51 153
ACMH+89.98 1690.35 26889.54 26592.78 29695.99 25786.12 32498.81 26697.18 27189.38 25083.14 32397.76 21068.42 32998.43 19589.11 26086.05 26493.78 303
DeepMVS_CXcopyleft82.92 34095.98 25958.66 36696.01 33292.72 16978.34 34395.51 27858.29 35498.08 22682.57 31385.29 26992.03 336
ACMP92.05 992.74 21892.42 21593.73 27495.91 26088.72 30599.81 11997.53 23794.13 11987.00 29498.23 19874.07 30898.47 19096.22 15088.86 23893.99 287
Qingshan Xu and Wenbing Tao: Planar Prior Assisted PatchMatch Multi-View Stereo. AAAI 2020
HQP-NCC95.78 26199.87 9296.82 3193.37 205
ACMP_Plane95.78 26199.87 9296.82 3193.37 205
HQP-MVS94.61 17694.50 16794.92 23095.78 26191.85 25499.87 9297.89 20696.82 3193.37 20598.65 17980.65 26098.39 20197.92 11589.60 22694.53 235
NP-MVS95.77 26491.79 25698.65 179
plane_prior695.76 26591.72 26180.47 264
ACMM91.95 1092.88 21592.52 21393.98 26995.75 26689.08 30399.77 13197.52 23993.00 15989.95 23897.99 20676.17 29498.46 19393.63 20388.87 23794.39 248
Qingshan Xu and Wenbing Tao: Multi-Scale Geometric Consistency Guided Multi-View Stereo. CVPR 2019
GA-MVS93.83 19292.84 20396.80 17995.73 26793.57 21599.88 8997.24 26792.57 18292.92 21196.66 24378.73 27697.67 24487.75 27594.06 21399.17 185
plane_prior195.73 267
jason97.24 10196.86 10398.38 12595.73 26797.32 10899.97 1897.40 25495.34 7898.60 10899.54 11087.70 19898.56 18697.94 11499.47 11399.25 181
jason: jason.
HQP_MVS94.49 18194.36 16994.87 23195.71 27091.74 25899.84 11097.87 20896.38 4793.01 20998.59 18380.47 26498.37 20697.79 12089.55 22994.52 237
plane_prior795.71 27091.59 266
ITE_SJBPF92.38 29895.69 27285.14 33095.71 33792.81 16489.33 25698.11 20070.23 32298.42 19685.91 29488.16 24993.59 311
ACMH89.72 1790.64 26189.63 26293.66 28095.64 27388.64 30898.55 28197.45 24589.03 25581.62 33097.61 21269.75 32398.41 19789.37 25787.62 25593.92 293
Qingshan Xu and Wenbing Tao: Multi-Scale Geometric Consistency Guided Multi-View Stereo. CVPR 2019
baseline296.71 12296.49 11597.37 16595.63 27495.96 15799.74 14298.88 4392.94 16091.61 22098.97 15697.72 598.62 18494.83 16898.08 14997.53 224
FMVSNet188.50 29286.64 29894.08 26295.62 27591.97 24998.43 28896.95 29783.00 32886.08 30994.72 30859.09 35396.11 31681.82 31984.07 28194.17 265
LPG-MVS_test92.96 21392.71 20693.71 27695.43 27688.67 30699.75 13997.62 22492.81 16490.05 23498.49 18975.24 30098.40 19995.84 15689.12 23394.07 279
LGP-MVS_train93.71 27695.43 27688.67 30697.62 22492.81 16490.05 23498.49 18975.24 30098.40 19995.84 15689.12 23394.07 279
tpm93.70 20093.41 19594.58 24295.36 27887.41 31997.01 32396.90 30390.85 23196.72 15694.14 32290.40 16996.84 28990.75 24388.54 24599.51 153
D2MVS92.76 21792.59 21193.27 28695.13 27989.54 29999.69 15399.38 2192.26 19287.59 28594.61 31485.05 22597.79 24091.59 22688.01 25092.47 331
VPA-MVSNet92.70 21991.55 23196.16 20095.09 28096.20 14898.88 25899.00 3391.02 22891.82 21995.29 29376.05 29697.96 23495.62 15881.19 29894.30 255
LTVRE_ROB88.28 1890.29 27189.05 27694.02 26595.08 28190.15 28997.19 31997.43 24884.91 31883.99 31997.06 22874.00 30998.28 21484.08 30387.71 25393.62 310
Andreas Kuhn, Heiko Hirschmüller, Daniel Scharstein, Helmut Mayer: A TV Prior for High-Quality Scalable Multi-View Stereo Reconstruction. International Journal of Computer Vision 2016
TinyColmap87.87 29886.51 29991.94 30495.05 28285.57 32797.65 31394.08 35784.40 32181.82 32996.85 23762.14 34898.33 20880.25 32586.37 26391.91 338
test0.0.03 193.86 19193.61 18494.64 23995.02 28392.18 24799.93 6698.58 7394.07 12387.96 28198.50 18893.90 9794.96 33581.33 32093.17 22096.78 226
UniMVSNet (Re)93.07 21192.13 21895.88 20694.84 28496.24 14799.88 8998.98 3492.49 18789.25 25795.40 28387.09 20597.14 26993.13 21178.16 32294.26 258
USDC90.00 27888.96 27793.10 29194.81 28588.16 31498.71 27395.54 34293.66 14383.75 32197.20 22265.58 33898.31 21083.96 30687.49 25792.85 326
VPNet91.81 23790.46 24695.85 20894.74 28695.54 17198.98 24798.59 7292.14 19590.77 22997.44 21568.73 32797.54 24894.89 16777.89 32494.46 240
FIs94.10 18993.43 19296.11 20194.70 28796.82 12499.58 17298.93 4092.54 18389.34 25597.31 21987.62 19997.10 27394.22 18886.58 26194.40 247
UniMVSNet_ETH3D90.06 27788.58 28394.49 24894.67 28888.09 31597.81 31197.57 23283.91 32488.44 27297.41 21657.44 35597.62 24691.41 22788.59 24497.77 219
UniMVSNet_NR-MVSNet92.95 21492.11 21995.49 21194.61 28995.28 17899.83 11699.08 3091.49 21489.21 25996.86 23687.14 20496.73 29493.20 20777.52 32794.46 240
WR-MVS92.31 22891.25 23695.48 21494.45 29095.29 17799.60 17098.68 5690.10 24288.07 28096.89 23480.68 25996.80 29293.14 21079.67 31494.36 250
nrg03093.51 20292.53 21296.45 19194.36 29197.20 11199.81 11997.16 27491.60 21189.86 24197.46 21486.37 21297.68 24395.88 15580.31 31094.46 240
tfpnnormal89.29 28787.61 29494.34 25594.35 29294.13 20498.95 25198.94 3683.94 32284.47 31795.51 27874.84 30397.39 25377.05 33980.41 30891.48 341
FC-MVSNet-test93.81 19493.15 20195.80 20994.30 29396.20 14899.42 19798.89 4292.33 19189.03 26497.27 22187.39 20296.83 29093.20 20786.48 26294.36 250
MS-PatchMatch90.65 26090.30 25191.71 30794.22 29485.50 32898.24 29797.70 21888.67 26686.42 30396.37 25267.82 33198.03 23083.62 30899.62 10291.60 339
WR-MVS_H91.30 24690.35 24994.15 25994.17 29592.62 23999.17 22698.94 3688.87 26286.48 30294.46 31984.36 22996.61 30088.19 26978.51 32093.21 320
DU-MVS92.46 22591.45 23495.49 21194.05 29695.28 17899.81 11998.74 5292.25 19389.21 25996.64 24581.66 24796.73 29493.20 20777.52 32794.46 240
NR-MVSNet91.56 24590.22 25395.60 21094.05 29695.76 16398.25 29698.70 5491.16 22480.78 33596.64 24583.23 23896.57 30191.41 22777.73 32694.46 240
CP-MVSNet91.23 24990.22 25394.26 25693.96 29892.39 24399.09 23098.57 7588.95 26086.42 30396.57 24779.19 27296.37 30790.29 25078.95 31794.02 282
XXY-MVS91.82 23690.46 24695.88 20693.91 29995.40 17598.87 26197.69 21988.63 26887.87 28297.08 22674.38 30797.89 23891.66 22584.07 28194.35 253
PS-CasMVS90.63 26289.51 26793.99 26893.83 30091.70 26298.98 24798.52 9088.48 27086.15 30896.53 24975.46 29896.31 31088.83 26278.86 31993.95 290
test_040285.58 30483.94 30890.50 31593.81 30185.04 33198.55 28195.20 34976.01 34879.72 33995.13 29664.15 34496.26 31366.04 35886.88 26090.21 350
XVG-ACMP-BASELINE91.22 25090.75 24192.63 29793.73 30285.61 32698.52 28597.44 24792.77 16889.90 24096.85 23766.64 33598.39 20192.29 21888.61 24293.89 295
TranMVSNet+NR-MVSNet91.68 24490.61 24594.87 23193.69 30393.98 20899.69 15398.65 6091.03 22788.44 27296.83 24080.05 26796.18 31590.26 25176.89 33594.45 245
TransMVSNet (Re)87.25 29985.28 30493.16 28893.56 30491.03 27198.54 28394.05 35883.69 32681.09 33396.16 25775.32 29996.40 30676.69 34068.41 35092.06 335
v1090.25 27288.82 27994.57 24393.53 30593.43 22099.08 23296.87 30685.00 31587.34 29294.51 31580.93 25697.02 28282.85 31279.23 31593.26 318
testgi89.01 29088.04 29191.90 30593.49 30684.89 33299.73 14795.66 33993.89 13685.14 31498.17 19959.68 35294.66 33977.73 33588.88 23696.16 232
v890.54 26489.17 27294.66 23893.43 30793.40 22299.20 22396.94 30085.76 30587.56 28694.51 31581.96 24497.19 26684.94 30078.25 32193.38 316
V4291.28 24890.12 25794.74 23593.42 30893.46 21999.68 15597.02 28987.36 28389.85 24395.05 29881.31 25297.34 25687.34 28080.07 31293.40 314
pm-mvs189.36 28687.81 29394.01 26693.40 30991.93 25298.62 28096.48 32486.25 29983.86 32096.14 25873.68 31097.04 27886.16 29275.73 33993.04 323
v114491.09 25189.83 25994.87 23193.25 31093.69 21499.62 16896.98 29486.83 29389.64 24994.99 30380.94 25597.05 27685.08 29981.16 29993.87 297
v119290.62 26389.25 27194.72 23793.13 31193.07 22599.50 18697.02 28986.33 29889.56 25195.01 30079.22 27197.09 27582.34 31581.16 29994.01 284
v2v48291.30 24690.07 25895.01 22693.13 31193.79 21199.77 13197.02 28988.05 27589.25 25795.37 28780.73 25897.15 26887.28 28180.04 31394.09 278
OPM-MVS93.21 20792.80 20494.44 25193.12 31390.85 27599.77 13197.61 22796.19 5491.56 22198.65 17975.16 30298.47 19093.78 19889.39 23293.99 287
Ray L. Khuboni, Hongjun Xu: Octagram Propagation Matching for Multi-Scale View Stereopsis (OPM-MVS).
v14419290.79 25889.52 26694.59 24193.11 31492.77 23099.56 17696.99 29286.38 29789.82 24494.95 30580.50 26397.10 27383.98 30580.41 30893.90 294
PEN-MVS90.19 27489.06 27593.57 28193.06 31590.90 27499.06 23798.47 10388.11 27485.91 31096.30 25476.67 28795.94 32487.07 28376.91 33493.89 295
v124090.20 27388.79 28094.44 25193.05 31692.27 24599.38 20396.92 30285.89 30289.36 25494.87 30777.89 28197.03 28080.66 32381.08 30294.01 284
v14890.70 25989.63 26293.92 27092.97 31790.97 27299.75 13996.89 30487.51 28088.27 27895.01 30081.67 24697.04 27887.40 27977.17 33293.75 304
v192192090.46 26589.12 27394.50 24792.96 31892.46 24199.49 18896.98 29486.10 30089.61 25095.30 29078.55 27897.03 28082.17 31680.89 30694.01 284
Baseline_NR-MVSNet90.33 26989.51 26792.81 29592.84 31989.95 29399.77 13193.94 35984.69 32089.04 26395.66 27081.66 24796.52 30290.99 23676.98 33391.97 337
test_method80.79 32179.70 32484.08 33792.83 32067.06 36299.51 18495.42 34354.34 36181.07 33493.53 32744.48 36392.22 35378.90 33177.23 33192.94 324
pmmvs492.10 23391.07 23995.18 22292.82 32194.96 18799.48 19096.83 30887.45 28288.66 27096.56 24883.78 23396.83 29089.29 25884.77 27493.75 304
LF4IMVS89.25 28988.85 27890.45 31792.81 32281.19 34998.12 30294.79 35291.44 21786.29 30697.11 22465.30 34198.11 22588.53 26685.25 27092.07 334
DTE-MVSNet89.40 28588.24 28992.88 29492.66 32389.95 29399.10 22998.22 17287.29 28485.12 31596.22 25676.27 29395.30 33283.56 30975.74 33893.41 313
EU-MVSNet90.14 27690.34 25089.54 32392.55 32481.06 35098.69 27598.04 19391.41 22086.59 29996.84 23980.83 25793.31 35186.20 29181.91 29394.26 258
our_test_390.39 26689.48 26993.12 28992.40 32589.57 29899.33 20996.35 32687.84 27885.30 31394.99 30384.14 23196.09 31980.38 32484.56 27593.71 309
ppachtmachnet_test89.58 28488.35 28693.25 28792.40 32590.44 28499.33 20996.73 31585.49 31185.90 31195.77 26581.09 25496.00 32376.00 34282.49 28893.30 317
v7n89.65 28388.29 28893.72 27592.22 32790.56 28199.07 23697.10 28085.42 31386.73 29694.72 30880.06 26697.13 27081.14 32178.12 32393.49 312
PS-MVSNAJss93.64 20193.31 19894.61 24092.11 32892.19 24699.12 22897.38 25592.51 18588.45 27196.99 23291.20 15597.29 26294.36 18287.71 25394.36 250
pmmvs590.17 27589.09 27493.40 28392.10 32989.77 29699.74 14295.58 34185.88 30487.24 29395.74 26673.41 31196.48 30488.54 26583.56 28593.95 290
N_pmnet80.06 32480.78 32277.89 34191.94 33045.28 37298.80 26756.82 37578.10 34580.08 33893.33 32877.03 28395.76 32668.14 35482.81 28792.64 327
test_djsdf92.83 21692.29 21794.47 24991.90 33192.46 24199.55 17897.27 26591.17 22289.96 23796.07 26181.10 25396.89 28694.67 17688.91 23594.05 281
SixPastTwentyTwo88.73 29188.01 29290.88 31191.85 33282.24 34298.22 29995.18 35088.97 25882.26 32696.89 23471.75 31696.67 29884.00 30482.98 28693.72 308
K. test v388.05 29587.24 29790.47 31691.82 33382.23 34398.96 25097.42 25089.05 25476.93 34695.60 27268.49 32895.42 32885.87 29581.01 30493.75 304
OurMVSNet-221017-089.81 28089.48 26990.83 31391.64 33481.21 34898.17 30195.38 34591.48 21585.65 31297.31 21972.66 31297.29 26288.15 27084.83 27393.97 289
mvs_tets91.81 23791.08 23894.00 26791.63 33590.58 28098.67 27797.43 24892.43 18887.37 29197.05 22971.76 31597.32 25894.75 17288.68 24194.11 277
Gipumacopyleft66.95 32965.00 33072.79 34491.52 33667.96 36166.16 36495.15 35147.89 36358.54 36167.99 36429.74 36687.54 36150.20 36477.83 32562.87 364
S. Galliani, K. Lasinger, K. Schindler: Massively Parallel Multiview Stereopsis by Surface Normal Diffusion. ICCV 2015
jajsoiax91.92 23591.18 23794.15 25991.35 33790.95 27399.00 24597.42 25092.61 17787.38 29097.08 22672.46 31397.36 25494.53 17988.77 23994.13 276
MDA-MVSNet-bldmvs84.09 31581.52 32191.81 30691.32 33888.00 31798.67 27795.92 33480.22 33955.60 36493.32 32968.29 33093.60 34973.76 34476.61 33693.82 301
MVP-Stereo90.93 25390.45 24892.37 29991.25 33988.76 30498.05 30696.17 32987.27 28584.04 31895.30 29078.46 27997.27 26483.78 30799.70 9891.09 342
Qingsong Yan: MVP-Stereo: A Parallel Multi-View Patchmatch Stereo Method with Dilation Matching for Photogrammetric Application.
MDA-MVSNet_test_wron85.51 30683.32 31392.10 30290.96 34088.58 30999.20 22396.52 32279.70 34157.12 36392.69 33579.11 27393.86 34677.10 33877.46 32993.86 298
YYNet185.50 30783.33 31292.00 30390.89 34188.38 31399.22 22296.55 32179.60 34257.26 36292.72 33379.09 27493.78 34777.25 33777.37 33093.84 299
anonymousdsp91.79 24290.92 24094.41 25490.76 34292.93 22998.93 25397.17 27289.08 25387.46 28995.30 29078.43 28096.92 28592.38 21788.73 24093.39 315
lessismore_v090.53 31490.58 34380.90 35195.80 33577.01 34595.84 26366.15 33796.95 28383.03 31175.05 34093.74 307
EG-PatchMatch MVS85.35 30883.81 31089.99 32190.39 34481.89 34598.21 30096.09 33181.78 33574.73 35293.72 32651.56 36097.12 27279.16 33088.61 24290.96 344
CMPMVSbinary61.59 2184.75 31185.14 30583.57 33890.32 34562.54 36496.98 32497.59 23174.33 35469.95 35796.66 24364.17 34398.32 20987.88 27488.41 24789.84 352
M. Jancosek, T. Pajdla: Multi-View Reconstruction Preserving Weakly-Supported Surfaces. CVPR 2011
bset_n11_16_dypcd93.05 21292.30 21695.31 21890.23 34695.05 18599.44 19697.28 26492.51 18590.65 23096.68 24285.30 22296.71 29694.49 18084.14 27994.16 270
new_pmnet84.49 31482.92 31689.21 32490.03 34782.60 33996.89 32695.62 34080.59 33875.77 35189.17 34765.04 34294.79 33872.12 34781.02 30390.23 349
pmmvs685.69 30383.84 30991.26 31090.00 34884.41 33497.82 31096.15 33075.86 34981.29 33295.39 28561.21 35096.87 28883.52 31073.29 34292.50 330
DSMNet-mixed88.28 29488.24 28988.42 33189.64 34975.38 35898.06 30589.86 36685.59 30988.20 27992.14 34076.15 29591.95 35478.46 33296.05 18597.92 215
UnsupCasMVSNet_eth85.52 30583.99 30690.10 31989.36 35083.51 33696.65 32797.99 19589.14 25275.89 35093.83 32463.25 34693.92 34481.92 31867.90 35292.88 325
Anonymous2023120686.32 30185.42 30389.02 32689.11 35180.53 35499.05 24195.28 34685.43 31282.82 32493.92 32374.40 30693.44 35066.99 35581.83 29493.08 322
Anonymous2024052185.15 30983.81 31089.16 32588.32 35282.69 33898.80 26795.74 33679.72 34081.53 33190.99 34365.38 34094.16 34272.69 34681.11 30190.63 347
OpenMVS_ROBcopyleft79.82 2083.77 31781.68 32090.03 32088.30 35382.82 33798.46 28695.22 34873.92 35576.00 34991.29 34255.00 35796.94 28468.40 35388.51 24690.34 348
test20.0384.72 31283.99 30686.91 33488.19 35480.62 35398.88 25895.94 33388.36 27278.87 34094.62 31368.75 32689.11 36066.52 35675.82 33791.00 343
KD-MVS_self_test83.59 31882.06 31888.20 33286.93 35580.70 35297.21 31896.38 32582.87 32982.49 32588.97 34867.63 33292.32 35273.75 34562.30 35791.58 340
MIMVSNet182.58 31980.51 32388.78 32886.68 35684.20 33596.65 32795.41 34478.75 34378.59 34292.44 33651.88 35989.76 35965.26 35978.95 31792.38 333
CL-MVSNet_self_test84.50 31383.15 31588.53 33086.00 35781.79 34698.82 26597.35 25785.12 31483.62 32290.91 34576.66 28891.40 35569.53 35160.36 35892.40 332
UnsupCasMVSNet_bld79.97 32577.03 32888.78 32885.62 35881.98 34493.66 34697.35 25775.51 35270.79 35683.05 35748.70 36294.91 33678.31 33360.29 35989.46 355
Patchmatch-RL test86.90 30085.98 30289.67 32284.45 35975.59 35789.71 35792.43 36186.89 29277.83 34490.94 34494.22 8693.63 34887.75 27569.61 34599.79 104
pmmvs-eth3d84.03 31681.97 31990.20 31884.15 36087.09 32098.10 30494.73 35483.05 32774.10 35387.77 35165.56 33994.01 34381.08 32269.24 34789.49 354
PM-MVS80.47 32278.88 32685.26 33683.79 36172.22 35995.89 33891.08 36485.71 30876.56 34888.30 34936.64 36493.90 34582.39 31469.57 34689.66 353
new-patchmatchnet81.19 32079.34 32586.76 33582.86 36280.36 35597.92 30895.27 34782.09 33472.02 35486.87 35362.81 34790.74 35871.10 34863.08 35589.19 356
pmmvs380.27 32377.77 32787.76 33380.32 36382.43 34198.23 29891.97 36272.74 35678.75 34187.97 35057.30 35690.99 35770.31 34962.37 35689.87 351
ambc83.23 33977.17 36462.61 36387.38 35994.55 35676.72 34786.65 35430.16 36596.36 30884.85 30169.86 34490.73 346
TDRefinement84.76 31082.56 31791.38 30974.58 36584.80 33397.36 31694.56 35584.73 31980.21 33796.12 26063.56 34598.39 20187.92 27363.97 35490.95 345
E-PMN52.30 33352.18 33552.67 35071.51 36645.40 37193.62 34776.60 37336.01 36743.50 36864.13 36627.11 36867.31 36931.06 36926.06 36545.30 368
EMVS51.44 33551.22 33752.11 35170.71 36744.97 37394.04 34375.66 37435.34 36942.40 36961.56 36928.93 36765.87 37027.64 37024.73 36645.49 367
PMMVS267.15 32864.15 33276.14 34370.56 36862.07 36593.89 34487.52 37058.09 36060.02 36078.32 35922.38 37084.54 36359.56 36247.03 36381.80 359
FPMVS68.72 32668.72 32968.71 34665.95 36944.27 37495.97 33794.74 35351.13 36253.26 36590.50 34625.11 36983.00 36460.80 36180.97 30578.87 360
wuyk23d20.37 33920.84 34218.99 35465.34 37027.73 37650.43 3657.67 3789.50 3728.01 3736.34 3726.13 37626.24 37123.40 37110.69 3702.99 369
LCM-MVSNet67.77 32764.73 33176.87 34262.95 37156.25 36889.37 35893.74 36044.53 36461.99 35980.74 35820.42 37186.53 36269.37 35259.50 36087.84 357
MVEpermissive53.74 2251.54 33447.86 33862.60 34859.56 37250.93 36979.41 36277.69 37235.69 36836.27 37061.76 3685.79 37769.63 36737.97 36836.61 36467.24 362
Simon Fuhrmann, Fabian Langguth, Michael Goesele: MVE - A Multi-View Reconstruction Environment. EUROGRAPHICS Workshops on Graphics and Cultural Heritage (2014)
ANet_high56.10 33152.24 33467.66 34749.27 37356.82 36783.94 36082.02 37170.47 35733.28 37164.54 36517.23 37369.16 36845.59 36623.85 36777.02 361
tmp_tt65.23 33062.94 33372.13 34544.90 37450.03 37081.05 36189.42 36938.45 36548.51 36799.90 1954.09 35878.70 36691.84 22418.26 36887.64 358
PMVScopyleft49.05 2353.75 33251.34 33660.97 34940.80 37534.68 37574.82 36389.62 36837.55 36628.67 37272.12 3617.09 37581.63 36543.17 36768.21 35166.59 363
Y. Furukawa, J. Ponce: Accurate, dense, and robust multiview stereopsis. PAMI (2010)
test12337.68 33739.14 34033.31 35219.94 37624.83 37798.36 2929.75 37715.53 37151.31 36687.14 35219.62 37217.74 37247.10 3653.47 37157.36 365
testmvs40.60 33644.45 33929.05 35319.49 37714.11 37899.68 15518.47 37620.74 37064.59 35898.48 19210.95 37417.09 37356.66 36311.01 36955.94 366
test_blank0.00 3420.00 3450.00 3550.00 3780.00 3790.00 3660.00 3790.00 3730.00 3740.02 3730.00 3780.00 3740.00 3720.00 3720.00 370
eth-test20.00 378
eth-test0.00 378
uanet_test0.00 3420.00 3450.00 3550.00 3780.00 3790.00 3660.00 3790.00 3730.00 3740.00 3740.00 3780.00 3740.00 3720.00 3720.00 370
cdsmvs_eth3d_5k23.43 33831.24 3410.00 3550.00 3780.00 3790.00 36698.09 1880.00 3730.00 37499.67 9883.37 2360.00 3740.00 3720.00 3720.00 370
pcd_1.5k_mvsjas7.60 34110.13 3440.00 3550.00 3780.00 3790.00 3660.00 3790.00 3730.00 3740.00 37491.20 1550.00 3740.00 3720.00 3720.00 370
sosnet-low-res0.00 3420.00 3450.00 3550.00 3780.00 3790.00 3660.00 3790.00 3730.00 3740.00 3740.00 3780.00 3740.00 3720.00 3720.00 370
sosnet0.00 3420.00 3450.00 3550.00 3780.00 3790.00 3660.00 3790.00 3730.00 3740.00 3740.00 3780.00 3740.00 3720.00 3720.00 370
uncertanet0.00 3420.00 3450.00 3550.00 3780.00 3790.00 3660.00 3790.00 3730.00 3740.00 3740.00 3780.00 3740.00 3720.00 3720.00 370
Regformer0.00 3420.00 3450.00 3550.00 3780.00 3790.00 3660.00 3790.00 3730.00 3740.00 3740.00 3780.00 3740.00 3720.00 3720.00 370
ab-mvs-re8.28 34011.04 3430.00 3550.00 3780.00 3790.00 3660.00 3790.00 3730.00 37499.40 1210.00 3780.00 3740.00 3720.00 3720.00 370
uanet0.00 3420.00 3450.00 3550.00 3780.00 3790.00 3660.00 3790.00 3730.00 3740.00 3740.00 3780.00 3740.00 3720.00 3720.00 370
PC_three_145296.96 2999.80 1699.79 6497.49 9100.00 199.99 599.98 35100.00 1
test_241102_TWO98.43 11697.27 2099.80 1699.94 497.18 20100.00 1100.00 1100.00 1100.00 1
test_0728_THIRD96.48 4299.83 1099.91 1597.87 4100.00 199.92 12100.00 1100.00 1
GSMVS99.59 135
sam_mvs194.72 6799.59 135
sam_mvs94.25 85
MTGPAbinary98.28 163
test_post195.78 33959.23 37093.20 11797.74 24291.06 233
test_post63.35 36794.43 7298.13 224
patchmatchnet-post91.70 34195.12 5197.95 235
MTMP99.87 9296.49 323
test9_res99.71 3399.99 22100.00 1
agg_prior299.48 40100.00 1100.00 1
test_prior498.05 7599.94 60
test_prior299.95 4395.78 6399.73 2999.76 7596.00 3299.78 24100.00 1
旧先验299.46 19394.21 11899.85 699.95 6496.96 141
新几何299.40 198
无先验99.49 18898.71 5393.46 148100.00 194.36 18299.99 24
原ACMM299.90 78
testdata299.99 4090.54 245
segment_acmp96.68 25
testdata199.28 21896.35 51
plane_prior597.87 20898.37 20697.79 12089.55 22994.52 237
plane_prior498.59 183
plane_prior391.64 26496.63 3993.01 209
plane_prior299.84 11096.38 47
plane_prior91.74 25899.86 10396.76 3589.59 228
n20.00 379
nn0.00 379
door-mid89.69 367
test1198.44 108
door90.31 365
HQP5-MVS91.85 254
BP-MVS97.92 115
HQP4-MVS93.37 20598.39 20194.53 235
HQP3-MVS97.89 20689.60 226
HQP2-MVS80.65 260
MDTV_nov1_ep13_2view96.26 14396.11 33491.89 20298.06 12794.40 7494.30 18599.67 120
ACMMP++_ref87.04 259
ACMMP++88.23 248
Test By Simon92.82 126