This table lists the benchmark results for the high-res multi-view scenario. The following metrics are evaluated:

(*) For exact definitions, detailing how potentially incomplete ground truth is taken into account, see our paper.

The datasets are grouped into different categories, and result averages are computed for a category and method if results of the method are available for all datasets within the category. Note that the category "all" includes both the high-res multi-view and the low-res many-view scenarios.

Methods with suffix _ROB may participate in the Robust Vision Challenge.

Click a dataset result cell to show a visualization of the reconstruction. For training datasets, ground truth and accuracy / completeness visualizations are also available. The visualizations may not work with mobile browsers.




Method Infoallhigh-res
multi-view
indooroutdoorbotani.boulde.bridgedoorexhibi.lectur.living.loungeobserv.old co.statueterrac.
sort bysorted bysort bysort bysort bysort bysort bysort bysort bysort bysort bysort bysort bysort bysort bysort by
MCST-MVS91.08 191.46 389.94 497.66 273.37 1097.13 295.58 1189.33 185.77 5496.26 3072.84 2999.38 192.64 2095.93 997.08 11
MM90.87 291.52 288.92 1592.12 10071.10 2797.02 396.04 688.70 291.57 1496.19 3270.12 4498.91 1896.83 195.06 1796.76 15
DPM-MVS90.70 390.52 991.24 189.68 16076.68 297.29 195.35 1682.87 2291.58 1397.22 379.93 599.10 983.12 10297.64 297.94 1
DVP-MVS++90.53 491.09 588.87 1697.31 469.91 4293.96 7094.37 5372.48 18892.07 996.85 1683.82 299.15 291.53 3097.42 497.55 4
MSP-MVS90.38 591.87 185.88 9092.83 7964.03 19493.06 11294.33 5582.19 2993.65 396.15 3485.89 197.19 8491.02 3497.75 196.43 31
Zhenlong Yuan, Cong Liu, Fei Shen, Zhaoxin Li, Jingguo luo, Tianlu Mao and Zhaoqi Wang: MSP-MVS: Multi-granularity Segmentation Prior Guided Multi-View Stereo. AAAI2025
MVS_030490.32 690.90 788.55 2394.05 4570.23 3697.00 593.73 7487.30 492.15 696.15 3466.38 6698.94 1796.71 294.67 3396.47 28
CNVR-MVS90.32 690.89 888.61 2296.76 870.65 3096.47 1494.83 3184.83 1189.07 3196.80 1970.86 4099.06 1592.64 2095.71 1196.12 40
DELS-MVS90.05 890.09 1189.94 493.14 7073.88 997.01 494.40 5188.32 385.71 5594.91 7374.11 2198.91 1887.26 6295.94 897.03 12
Christian Sormann, Emanuele Santellani, Mattia Rossi, Andreas Kuhn, Friedrich Fraundorfer: DELS-MVS: Deep Epipolar Line Search for Multi-View Stereo. Winter Conference on Applications of Computer Vision (WACV), 2023
SED-MVS89.94 990.36 1088.70 1896.45 1269.38 5596.89 694.44 4771.65 21892.11 797.21 476.79 999.11 692.34 2295.36 1497.62 2
DeepPCF-MVS81.17 189.72 1091.38 484.72 13493.00 7558.16 31296.72 994.41 4986.50 890.25 2297.83 175.46 1498.67 2592.78 1995.49 1397.32 6
patch_mono-289.71 1190.99 685.85 9396.04 2463.70 20495.04 4095.19 2086.74 791.53 1595.15 6673.86 2297.58 5993.38 1492.00 6996.28 37
CANet89.61 1289.99 1288.46 2494.39 3969.71 5096.53 1393.78 6786.89 689.68 2895.78 4065.94 7199.10 992.99 1793.91 4296.58 21
DVP-MVScopyleft89.41 1389.73 1488.45 2596.40 1569.99 3896.64 1094.52 4371.92 20490.55 2096.93 1173.77 2399.08 1191.91 2894.90 2296.29 35
Zhenlong Yuan, Jinguo Luo, Fei Shen, Zhaoxin Li, Cong Liu, Tianlu Mao, Zhaoqi Wang: DVP-MVS: Synergize Depth-Edge and Visibility Prior for Multi-View Stereo. AAAI2025
HPM-MVS++copyleft89.37 1489.95 1387.64 3495.10 3068.23 8695.24 3394.49 4582.43 2688.90 3296.35 2771.89 3798.63 2688.76 4896.40 696.06 41
balanced_conf0389.08 1588.84 1789.81 693.66 5475.15 590.61 22593.43 8884.06 1486.20 4990.17 18272.42 3296.98 10193.09 1695.92 1097.29 7
NCCC89.07 1689.46 1587.91 2896.60 1069.05 6396.38 1594.64 4084.42 1286.74 4596.20 3166.56 6598.76 2489.03 4794.56 3495.92 46
DPE-MVScopyleft88.77 1789.21 1687.45 4396.26 2067.56 10294.17 5894.15 6068.77 26790.74 1897.27 276.09 1298.49 2990.58 3894.91 2196.30 34
Kehua Chen, Zhenlong Yuan, Tianlu Mao, Zhaoqi Wang: Dual-Level Precision Edges Guided Multi-View Stereo with Accurate Planarization. AAAI2025
SMA-MVScopyleft88.14 1888.29 2287.67 3393.21 6768.72 7293.85 7794.03 6374.18 15191.74 1296.67 2165.61 7598.42 3389.24 4496.08 795.88 47
Yufeng Yin; Xiaoyan Liu; Zichao Zhang: SMA-MVS: Segmentation-Guided Multi-Scale Anchor Deformation Patch Multi-View Stereo. IEEE Transactions on Circuits and Systems for Video Technology
PS-MVSNAJ88.14 1887.61 2989.71 792.06 10176.72 195.75 2093.26 9483.86 1589.55 2996.06 3653.55 22497.89 4391.10 3293.31 5394.54 109
TSAR-MVS + MP.88.11 2088.64 1886.54 7291.73 11568.04 9090.36 23193.55 8182.89 2191.29 1692.89 12572.27 3496.03 14887.99 5294.77 2695.54 57
Zhenlong Yuan, Jiakai Cao, Zhaoqi Wang, Zhaoxin Li: TSAR-MVS: Textureless-aware Segmentation and Correlative Refinement Guided Multi-View Stereo. Pattern Recognition
TSAR-MVS + GP.87.96 2188.37 2186.70 6593.51 6165.32 15995.15 3693.84 6678.17 9685.93 5394.80 7675.80 1398.21 3489.38 4188.78 10796.59 19
DeepC-MVS_fast79.48 287.95 2288.00 2587.79 3195.86 2768.32 8095.74 2194.11 6183.82 1683.49 7696.19 3264.53 8998.44 3183.42 10194.88 2596.61 18
Andreas Kuhn, Christian Sormann, Mattia Rossi, Oliver Erdler, Friedrich Fraundorfer: DeepC-MVS: Deep Confidence Prediction for Multi-View Stereo Reconstruction. 3DV 2020
xiu_mvs_v2_base87.92 2387.38 3389.55 1291.41 12776.43 395.74 2193.12 10283.53 1889.55 2995.95 3853.45 22897.68 5091.07 3392.62 6094.54 109
EPNet87.84 2488.38 2086.23 8293.30 6466.05 14195.26 3294.84 3087.09 588.06 3494.53 8266.79 6297.34 7383.89 9591.68 7495.29 70
Wanjuan Su, Wenbing Tao: Efficient Edge-Preserving Multi-View Stereo Network for Depth Estimation. AAAI 2023
lupinMVS87.74 2587.77 2787.63 3889.24 17571.18 2496.57 1292.90 11182.70 2487.13 4095.27 5964.99 8095.80 15389.34 4291.80 7295.93 45
test_fmvsm_n_192087.69 2688.50 1985.27 11487.05 23263.55 21193.69 8791.08 19584.18 1390.17 2497.04 867.58 5797.99 3995.72 590.03 9594.26 119
APDe-MVScopyleft87.54 2787.84 2686.65 6696.07 2366.30 13794.84 4593.78 6769.35 25888.39 3396.34 2867.74 5697.66 5490.62 3793.44 5196.01 44
Zhaojie Zeng, Yuesong Wang, Tao Guan: Matching Ambiguity-Resilient Multi-View Stereo via Adaptive Patch Deformation. Pattern Recognition
fmvsm_l_conf0.5_n87.49 2888.19 2385.39 10886.95 23364.37 18494.30 5588.45 29680.51 5192.70 496.86 1569.98 4597.15 8995.83 488.08 11594.65 103
SD-MVS87.49 2887.49 3187.50 4293.60 5668.82 6993.90 7492.63 12376.86 11687.90 3595.76 4166.17 6897.63 5689.06 4691.48 7896.05 42
Zhenlong Yuan, Jiakai Cao, Zhaoxin Li, Hao Jiang and Zhaoqi Wang: SD-MVS: Segmentation-driven Deformation Multi-View Stereo with Spherical Refinement and EM optimization. AAAI2024
fmvsm_l_conf0.5_n_a87.44 3088.15 2485.30 11287.10 23064.19 19194.41 5288.14 30580.24 5992.54 596.97 1069.52 4797.17 8595.89 388.51 11094.56 106
dcpmvs_287.37 3187.55 3086.85 5895.04 3268.20 8790.36 23190.66 20779.37 7481.20 9893.67 10974.73 1696.55 12390.88 3592.00 6995.82 48
alignmvs87.28 3286.97 3788.24 2791.30 12971.14 2695.61 2593.56 8079.30 7587.07 4295.25 6168.43 4996.93 10987.87 5384.33 15296.65 17
train_agg87.21 3387.42 3286.60 6894.18 4167.28 10994.16 5993.51 8271.87 20985.52 5795.33 5468.19 5197.27 8089.09 4594.90 2295.25 76
MG-MVS87.11 3486.27 4689.62 897.79 176.27 494.96 4394.49 4578.74 9083.87 7592.94 12364.34 9096.94 10775.19 16294.09 3895.66 52
SF-MVS87.03 3587.09 3586.84 5992.70 8567.45 10793.64 9093.76 7070.78 24286.25 4796.44 2666.98 6097.79 4788.68 4994.56 3495.28 72
CSCG86.87 3686.26 4788.72 1795.05 3170.79 2993.83 8295.33 1768.48 27177.63 14494.35 9173.04 2798.45 3084.92 8493.71 4796.92 14
sasdasda86.85 3786.25 4888.66 2091.80 11371.92 1693.54 9591.71 16480.26 5687.55 3795.25 6163.59 10396.93 10988.18 5084.34 15097.11 9
canonicalmvs86.85 3786.25 4888.66 2091.80 11371.92 1693.54 9591.71 16480.26 5687.55 3795.25 6163.59 10396.93 10988.18 5084.34 15097.11 9
UBG86.83 3986.70 4287.20 4893.07 7369.81 4693.43 10395.56 1381.52 3681.50 9492.12 14473.58 2696.28 13384.37 9085.20 14395.51 58
PHI-MVS86.83 3986.85 4186.78 6393.47 6265.55 15595.39 3095.10 2371.77 21485.69 5696.52 2362.07 12398.77 2386.06 7495.60 1296.03 43
SteuartSystems-ACMMP86.82 4186.90 3986.58 7090.42 14566.38 13496.09 1793.87 6577.73 10384.01 7495.66 4363.39 10697.94 4087.40 6093.55 5095.42 59
Skip Steuart: Steuart Systems R&D Blog.
PVSNet_Blended86.73 4286.86 4086.31 8193.76 5067.53 10496.33 1693.61 7882.34 2881.00 10393.08 11963.19 11097.29 7687.08 6591.38 8094.13 127
testing1186.71 4386.44 4587.55 4093.54 5971.35 2193.65 8995.58 1181.36 4380.69 10692.21 14372.30 3396.46 12885.18 8083.43 15994.82 95
test_fmvsmconf_n86.58 4487.17 3484.82 12785.28 26362.55 23694.26 5789.78 24083.81 1787.78 3696.33 2965.33 7796.98 10194.40 1187.55 12194.95 87
BP-MVS186.54 4586.68 4386.13 8487.80 21567.18 11392.97 11795.62 1079.92 6282.84 8394.14 9974.95 1596.46 12882.91 10488.96 10694.74 97
jason86.40 4686.17 5087.11 5186.16 24870.54 3295.71 2492.19 13982.00 3184.58 6794.34 9261.86 12595.53 17387.76 5490.89 8695.27 73
jason: jason.
fmvsm_s_conf0.5_n86.39 4786.91 3884.82 12787.36 22563.54 21294.74 4790.02 23482.52 2590.14 2596.92 1362.93 11597.84 4695.28 882.26 16993.07 164
WTY-MVS86.32 4885.81 5787.85 2992.82 8169.37 5795.20 3495.25 1882.71 2381.91 9194.73 7767.93 5597.63 5679.55 13182.25 17096.54 22
MSLP-MVS++86.27 4985.91 5687.35 4592.01 10568.97 6695.04 4092.70 11679.04 8581.50 9496.50 2558.98 16096.78 11583.49 10093.93 4196.29 35
VNet86.20 5085.65 6187.84 3093.92 4769.99 3895.73 2395.94 778.43 9386.00 5293.07 12058.22 16797.00 9785.22 7884.33 15296.52 23
MVS_111021_HR86.19 5185.80 5887.37 4493.17 6969.79 4793.99 6993.76 7079.08 8278.88 13293.99 10362.25 12298.15 3685.93 7591.15 8494.15 126
SPE-MVS-test86.14 5287.01 3683.52 17692.63 8759.36 30195.49 2791.92 15180.09 6085.46 5995.53 4961.82 12795.77 15686.77 6993.37 5295.41 60
ACMMP_NAP86.05 5385.80 5886.80 6291.58 11967.53 10491.79 17193.49 8574.93 14284.61 6695.30 5659.42 15197.92 4186.13 7294.92 2094.94 88
testing9986.01 5485.47 6287.63 3893.62 5571.25 2393.47 10195.23 1980.42 5480.60 10891.95 14871.73 3896.50 12680.02 12882.22 17195.13 79
ETV-MVS86.01 5486.11 5185.70 10090.21 15067.02 11993.43 10391.92 15181.21 4584.13 7394.07 10260.93 13595.63 16489.28 4389.81 9694.46 115
testing9185.93 5685.31 6587.78 3293.59 5771.47 1993.50 9895.08 2680.26 5680.53 10991.93 14970.43 4296.51 12580.32 12682.13 17395.37 63
APD-MVScopyleft85.93 5685.99 5485.76 9795.98 2665.21 16293.59 9392.58 12566.54 28586.17 5095.88 3963.83 9697.00 9786.39 7192.94 5795.06 82
Yuesong Wang, Zhaojie Zeng and etc.: Adaptive Patch Deformation for Textureless-Resilient Multi-View Stereo. CVPR2023
PAPM85.89 5885.46 6387.18 4988.20 20372.42 1592.41 14392.77 11482.11 3080.34 11293.07 12068.27 5095.02 18678.39 14493.59 4994.09 129
CS-MVS85.80 5986.65 4483.27 18492.00 10658.92 30595.31 3191.86 15679.97 6184.82 6595.40 5262.26 12195.51 17486.11 7392.08 6895.37 63
fmvsm_s_conf0.5_n_a85.75 6086.09 5284.72 13485.73 25763.58 20993.79 8389.32 25881.42 4190.21 2396.91 1462.41 12097.67 5194.48 1080.56 18892.90 170
test_fmvsmconf0.1_n85.71 6186.08 5384.62 14180.83 31762.33 24193.84 8088.81 28483.50 1987.00 4396.01 3763.36 10796.93 10994.04 1287.29 12494.61 105
CDPH-MVS85.71 6185.46 6386.46 7494.75 3467.19 11193.89 7592.83 11370.90 23883.09 8195.28 5763.62 10197.36 7180.63 12394.18 3794.84 92
casdiffmvs_mvgpermissive85.66 6385.18 6787.09 5288.22 20269.35 5893.74 8691.89 15481.47 3780.10 11491.45 15864.80 8596.35 13187.23 6387.69 11995.58 55
Fangjinhua Wang, Qingshan Xu, Yew-Soon Ong, Marc Pollefeys: Lightweight and Accurate Multi-View Stereo With Confidence-Aware Diffusion Model. IEEE T-PAMI 2025
fmvsm_s_conf0.1_n85.61 6485.93 5584.68 13782.95 30063.48 21494.03 6889.46 25281.69 3489.86 2696.74 2061.85 12697.75 4994.74 982.01 17592.81 172
MGCFI-Net85.59 6585.73 6085.17 11891.41 12762.44 23792.87 12191.31 18179.65 6886.99 4495.14 6762.90 11696.12 14087.13 6484.13 15796.96 13
DeepC-MVS77.85 385.52 6685.24 6686.37 7888.80 18566.64 12892.15 15093.68 7681.07 4676.91 15493.64 11062.59 11898.44 3185.50 7692.84 5994.03 133
Andreas Kuhn, Christian Sormann, Mattia Rossi, Oliver Erdler, Friedrich Fraundorfer: DeepC-MVS: Deep Confidence Prediction for Multi-View Stereo Reconstruction. 3DV 2020
casdiffmvspermissive85.37 6784.87 7386.84 5988.25 20069.07 6293.04 11491.76 16181.27 4480.84 10592.07 14664.23 9196.06 14684.98 8387.43 12395.39 61
Fangjinhua Wang, Qingshan Xu, Yew-Soon Ong, Marc Pollefeys: Lightweight and Accurate Multi-View Stereo With Confidence-Aware Diffusion Model. IEEE T-PAMI 2025
ZNCC-MVS85.33 6885.08 6986.06 8593.09 7265.65 15193.89 7593.41 9073.75 16279.94 11694.68 7960.61 13898.03 3882.63 10793.72 4694.52 111
MP-MVS-pluss85.24 6985.13 6885.56 10391.42 12465.59 15391.54 18192.51 12774.56 14580.62 10795.64 4459.15 15597.00 9786.94 6793.80 4394.07 131
MP-MVS-pluss: MP-MVS-pluss. MP-MVS-pluss
testing22285.18 7084.69 7586.63 6792.91 7769.91 4292.61 13495.80 980.31 5580.38 11192.27 14068.73 4895.19 18375.94 15683.27 16194.81 96
PAPR85.15 7184.47 7687.18 4996.02 2568.29 8191.85 16993.00 10876.59 12379.03 12895.00 6861.59 12897.61 5878.16 14589.00 10595.63 53
MP-MVScopyleft85.02 7284.97 7185.17 11892.60 8864.27 18993.24 10792.27 13273.13 17379.63 12094.43 8561.90 12497.17 8585.00 8292.56 6194.06 132
Rongxuan Tan, Qing Wang, et al.: MP-MVS: Multi-Scale Windows PatchMatch and Planar Prior Multi-View Stereo.
baseline85.01 7384.44 7786.71 6488.33 19768.73 7190.24 23691.82 16081.05 4781.18 9992.50 13263.69 9996.08 14584.45 8986.71 13395.32 68
CHOSEN 1792x268884.98 7483.45 9189.57 1189.94 15575.14 692.07 15692.32 13081.87 3275.68 16388.27 20660.18 14198.60 2780.46 12590.27 9494.96 86
MVSMamba_PlusPlus84.97 7583.65 8588.93 1490.17 15174.04 887.84 28392.69 11862.18 32381.47 9687.64 22071.47 3996.28 13384.69 8694.74 3196.47 28
EIA-MVS84.84 7684.88 7284.69 13691.30 12962.36 24093.85 7792.04 14479.45 7179.33 12594.28 9562.42 11996.35 13180.05 12791.25 8395.38 62
fmvsm_s_conf0.1_n_a84.76 7784.84 7484.53 14380.23 32763.50 21392.79 12388.73 28780.46 5289.84 2796.65 2260.96 13497.57 6193.80 1380.14 19092.53 179
HFP-MVS84.73 7884.40 7885.72 9993.75 5265.01 16893.50 9893.19 9872.19 19879.22 12694.93 7159.04 15897.67 5181.55 11392.21 6494.49 114
MVS84.66 7982.86 10990.06 290.93 13674.56 787.91 28195.54 1468.55 26972.35 20594.71 7859.78 14798.90 2081.29 11994.69 3296.74 16
GST-MVS84.63 8084.29 7985.66 10192.82 8165.27 16093.04 11493.13 10173.20 17178.89 12994.18 9859.41 15297.85 4581.45 11592.48 6393.86 141
EC-MVSNet84.53 8185.04 7083.01 18889.34 16761.37 26294.42 5191.09 19377.91 10083.24 7794.20 9758.37 16595.40 17585.35 7791.41 7992.27 189
ACMMPR84.37 8284.06 8085.28 11393.56 5864.37 18493.50 9893.15 10072.19 19878.85 13494.86 7456.69 18797.45 6581.55 11392.20 6594.02 134
region2R84.36 8384.03 8185.36 11093.54 5964.31 18793.43 10392.95 10972.16 20178.86 13394.84 7556.97 18297.53 6381.38 11792.11 6794.24 121
LFMVS84.34 8482.73 11189.18 1394.76 3373.25 1194.99 4291.89 15471.90 20682.16 9093.49 11447.98 27897.05 9282.55 10884.82 14697.25 8
test_yl84.28 8583.16 10187.64 3494.52 3769.24 5995.78 1895.09 2469.19 26181.09 10092.88 12657.00 18097.44 6681.11 12181.76 17796.23 38
DCV-MVSNet84.28 8583.16 10187.64 3494.52 3769.24 5995.78 1895.09 2469.19 26181.09 10092.88 12657.00 18097.44 6681.11 12181.76 17796.23 38
diffmvspermissive84.28 8583.83 8285.61 10287.40 22368.02 9190.88 21189.24 26180.54 5081.64 9392.52 13159.83 14694.52 21087.32 6185.11 14494.29 118
Fangjinhua Wang, Qingshan Xu, Yew-Soon Ong, Marc Pollefeys: Lightweight and Accurate Multi-View Stereo With Confidence-Aware Diffusion Model. IEEE T-PAMI 2025
HY-MVS76.49 584.28 8583.36 9787.02 5592.22 9567.74 9784.65 30994.50 4479.15 7982.23 8987.93 21566.88 6196.94 10780.53 12482.20 17296.39 33
ETVMVS84.22 8983.71 8385.76 9792.58 8968.25 8592.45 14295.53 1579.54 7079.46 12291.64 15670.29 4394.18 22269.16 21782.76 16794.84 92
MAR-MVS84.18 9083.43 9286.44 7596.25 2165.93 14694.28 5694.27 5774.41 14679.16 12795.61 4553.99 21998.88 2269.62 21193.26 5494.50 113
Zhenyu Xu, Yiguang Liu, Xuelei Shi, Ying Wang, Yunan Zheng: MARMVS: Matching Ambiguity Reduced Multiple View Stereo for Efficient Large Scale Scene Reconstruction. CVPR 2020
MVS_Test84.16 9183.20 10087.05 5491.56 12069.82 4589.99 24592.05 14377.77 10282.84 8386.57 23763.93 9596.09 14274.91 16789.18 10295.25 76
CANet_DTU84.09 9283.52 8685.81 9490.30 14866.82 12391.87 16789.01 27685.27 986.09 5193.74 10747.71 28296.98 10177.90 14789.78 9893.65 146
ET-MVSNet_ETH3D84.01 9383.15 10386.58 7090.78 14170.89 2894.74 4794.62 4181.44 4058.19 33893.64 11073.64 2592.35 28782.66 10678.66 20596.50 27
PVSNet_Blended_VisFu83.97 9483.50 8885.39 10890.02 15366.59 13193.77 8491.73 16277.43 11177.08 15389.81 18963.77 9896.97 10479.67 13088.21 11392.60 176
MTAPA83.91 9583.38 9685.50 10491.89 11165.16 16481.75 33492.23 13375.32 13780.53 10995.21 6456.06 19697.16 8884.86 8592.55 6294.18 123
XVS83.87 9683.47 9085.05 12093.22 6563.78 19892.92 11992.66 12073.99 15478.18 13894.31 9455.25 20297.41 6879.16 13591.58 7693.95 136
Effi-MVS+83.82 9782.76 11086.99 5689.56 16369.40 5391.35 19286.12 33072.59 18583.22 8092.81 12959.60 14996.01 15081.76 11287.80 11895.56 56
test_fmvsmvis_n_192083.80 9883.48 8984.77 13182.51 30363.72 20291.37 19083.99 35281.42 4177.68 14395.74 4258.37 16597.58 5993.38 1486.87 12793.00 167
EI-MVSNet-Vis-set83.77 9983.67 8484.06 15892.79 8463.56 21091.76 17494.81 3279.65 6877.87 14194.09 10063.35 10897.90 4279.35 13379.36 19790.74 215
MVSFormer83.75 10082.88 10886.37 7889.24 17571.18 2489.07 26390.69 20465.80 29087.13 4094.34 9264.99 8092.67 27472.83 17991.80 7295.27 73
CP-MVS83.71 10183.40 9584.65 13893.14 7063.84 19694.59 4992.28 13171.03 23677.41 14794.92 7255.21 20596.19 13781.32 11890.70 8893.91 138
test_fmvsmconf0.01_n83.70 10283.52 8684.25 15575.26 37061.72 25592.17 14987.24 31882.36 2784.91 6495.41 5155.60 20096.83 11492.85 1885.87 13994.21 122
baseline283.68 10383.42 9484.48 14687.37 22466.00 14390.06 24095.93 879.71 6769.08 24390.39 17677.92 696.28 13378.91 13981.38 18191.16 211
reproduce-ours83.51 10483.33 9884.06 15892.18 9860.49 28190.74 21792.04 14464.35 30083.24 7795.59 4759.05 15697.27 8083.61 9789.17 10394.41 116
our_new_method83.51 10483.33 9884.06 15892.18 9860.49 28190.74 21792.04 14464.35 30083.24 7795.59 4759.05 15697.27 8083.61 9789.17 10394.41 116
thisisatest051583.41 10682.49 11586.16 8389.46 16668.26 8393.54 9594.70 3774.31 14975.75 16190.92 16672.62 3096.52 12469.64 20981.50 18093.71 144
PVSNet_BlendedMVS83.38 10783.43 9283.22 18593.76 5067.53 10494.06 6393.61 7879.13 8081.00 10385.14 25263.19 11097.29 7687.08 6573.91 24184.83 311
test250683.29 10882.92 10784.37 15088.39 19563.18 22292.01 15991.35 18077.66 10578.49 13791.42 15964.58 8895.09 18573.19 17589.23 10094.85 89
PGM-MVS83.25 10982.70 11284.92 12392.81 8364.07 19390.44 22692.20 13771.28 23077.23 15094.43 8555.17 20697.31 7579.33 13491.38 8093.37 152
HPM-MVScopyleft83.25 10982.95 10684.17 15692.25 9462.88 23190.91 20891.86 15670.30 24777.12 15193.96 10456.75 18596.28 13382.04 11091.34 8293.34 153
Chunlin Ren, Qingshan Xu, Shikun Zhang, Jiaqi Yang: Hierarchical Prior Mining for Non-local Multi-View Stereo. ICCV 2023
reproduce_model83.15 11182.96 10483.73 16992.02 10259.74 29390.37 23092.08 14263.70 30782.86 8295.48 5058.62 16297.17 8583.06 10388.42 11194.26 119
EI-MVSNet-UG-set83.14 11282.96 10483.67 17492.28 9363.19 22191.38 18994.68 3879.22 7776.60 15693.75 10662.64 11797.76 4878.07 14678.01 20890.05 224
VDD-MVS83.06 11381.81 12486.81 6190.86 13967.70 9895.40 2991.50 17575.46 13481.78 9292.34 13940.09 31997.13 9086.85 6882.04 17495.60 54
h-mvs3383.01 11482.56 11484.35 15189.34 16762.02 24792.72 12693.76 7081.45 3882.73 8692.25 14260.11 14297.13 9087.69 5562.96 32093.91 138
PAPM_NR82.97 11581.84 12386.37 7894.10 4466.76 12687.66 28792.84 11269.96 25174.07 18293.57 11263.10 11397.50 6470.66 20490.58 9094.85 89
mPP-MVS82.96 11682.44 11684.52 14492.83 7962.92 22992.76 12491.85 15871.52 22675.61 16694.24 9653.48 22796.99 10078.97 13890.73 8793.64 147
SR-MVS82.81 11782.58 11383.50 17993.35 6361.16 26592.23 14891.28 18564.48 29981.27 9795.28 5753.71 22395.86 15282.87 10588.77 10893.49 150
DP-MVS Recon82.73 11881.65 12585.98 8797.31 467.06 11695.15 3691.99 14869.08 26476.50 15893.89 10554.48 21498.20 3570.76 20285.66 14192.69 173
CLD-MVS82.73 11882.35 11883.86 16587.90 21067.65 10095.45 2892.18 14085.06 1072.58 19892.27 14052.46 23595.78 15484.18 9179.06 20088.16 251
Zhaoxin Li, Wangmeng Zuo, Zhaoqi Wang, Lei Zhang: Confidence-based Large-scale Dense Multi-view Stereo. IEEE Transaction on Image Processing, 2020
sss82.71 12082.38 11783.73 16989.25 17259.58 29692.24 14794.89 2977.96 9879.86 11792.38 13756.70 18697.05 9277.26 15080.86 18594.55 107
3Dnovator73.91 682.69 12180.82 13888.31 2689.57 16271.26 2292.60 13594.39 5278.84 8767.89 26392.48 13548.42 27398.52 2868.80 22294.40 3695.15 78
RRT-MVS82.61 12281.16 12986.96 5791.10 13368.75 7087.70 28692.20 13776.97 11472.68 19487.10 23151.30 24796.41 13083.56 9987.84 11795.74 50
MVSTER82.47 12382.05 11983.74 16792.68 8669.01 6491.90 16693.21 9579.83 6372.14 20685.71 24874.72 1794.72 19775.72 15872.49 25187.50 257
TESTMET0.1,182.41 12481.98 12283.72 17188.08 20463.74 20092.70 12893.77 6979.30 7577.61 14587.57 22258.19 16894.08 22673.91 17386.68 13493.33 155
CostFormer82.33 12581.15 13085.86 9289.01 18068.46 7782.39 33193.01 10675.59 13280.25 11381.57 29572.03 3694.96 18979.06 13777.48 21694.16 125
API-MVS82.28 12680.53 14687.54 4196.13 2270.59 3193.63 9191.04 19965.72 29275.45 16892.83 12856.11 19598.89 2164.10 26689.75 9993.15 160
IB-MVS77.80 482.18 12780.46 14887.35 4589.14 17770.28 3595.59 2695.17 2278.85 8670.19 23185.82 24670.66 4197.67 5172.19 19166.52 29294.09 129
Christian Sormann, Mattia Rossi, Andreas Kuhn and Friedrich Fraundorfer: IB-MVS: An Iterative Algorithm for Deep Multi-View Stereo based on Binary Decisions. BMVC 2021
xiu_mvs_v1_base_debu82.16 12881.12 13185.26 11586.42 24168.72 7292.59 13790.44 21473.12 17484.20 7094.36 8738.04 33295.73 15884.12 9286.81 12891.33 204
xiu_mvs_v1_base82.16 12881.12 13185.26 11586.42 24168.72 7292.59 13790.44 21473.12 17484.20 7094.36 8738.04 33295.73 15884.12 9286.81 12891.33 204
xiu_mvs_v1_base_debi82.16 12881.12 13185.26 11586.42 24168.72 7292.59 13790.44 21473.12 17484.20 7094.36 8738.04 33295.73 15884.12 9286.81 12891.33 204
3Dnovator+73.60 782.10 13180.60 14586.60 6890.89 13866.80 12595.20 3493.44 8774.05 15367.42 27092.49 13449.46 26397.65 5570.80 20191.68 7495.33 66
MVS_111021_LR82.02 13281.52 12683.51 17888.42 19362.88 23189.77 24888.93 28076.78 11975.55 16793.10 11750.31 25495.38 17783.82 9687.02 12692.26 190
PMMVS81.98 13382.04 12081.78 22289.76 15956.17 33191.13 20490.69 20477.96 9880.09 11593.57 11246.33 29294.99 18881.41 11687.46 12294.17 124
baseline181.84 13481.03 13584.28 15491.60 11866.62 12991.08 20591.66 16981.87 3274.86 17391.67 15569.98 4594.92 19271.76 19464.75 30791.29 209
EPP-MVSNet81.79 13581.52 12682.61 19888.77 18660.21 28793.02 11693.66 7768.52 27072.90 19290.39 17672.19 3594.96 18974.93 16679.29 19992.67 174
WBMVS81.67 13680.98 13783.72 17193.07 7369.40 5394.33 5493.05 10476.84 11772.05 20884.14 26374.49 1993.88 24072.76 18268.09 28087.88 253
test_vis1_n_192081.66 13782.01 12180.64 24982.24 30555.09 33994.76 4686.87 32081.67 3584.40 6994.63 8038.17 32994.67 20191.98 2783.34 16092.16 193
APD-MVS_3200maxsize81.64 13881.32 12882.59 19992.36 9158.74 30791.39 18791.01 20063.35 31179.72 11994.62 8151.82 23896.14 13979.71 12987.93 11692.89 171
mvsmamba81.55 13980.72 14084.03 16291.42 12466.93 12183.08 32589.13 26978.55 9267.50 26887.02 23251.79 24090.07 32887.48 5890.49 9295.10 81
ACMMPcopyleft81.49 14080.67 14283.93 16491.71 11662.90 23092.13 15192.22 13671.79 21371.68 21493.49 11450.32 25396.96 10578.47 14384.22 15691.93 196
Qingshan Xu, Weihang Kong, Wenbing Tao, Marc Pollefeys: Multi-Scale Geometric Consistency Guided and Planar Prior Assisted Multi-View Stereo. IEEE Transactions on Pattern Analysis and Machine Intelligence
CDS-MVSNet81.43 14180.74 13983.52 17686.26 24564.45 17892.09 15490.65 20875.83 13073.95 18489.81 18963.97 9492.91 26471.27 19782.82 16493.20 159
Khang Truong Giang, Soohwan Song, Sungho Jo: Curvature-guided dynamic scale networks for Multi-view Stereo. ICLR 2022
mvs_anonymous81.36 14279.99 15385.46 10590.39 14768.40 7886.88 29890.61 20974.41 14670.31 23084.67 25763.79 9792.32 28973.13 17685.70 14095.67 51
ECVR-MVScopyleft81.29 14380.38 14984.01 16388.39 19561.96 24992.56 14086.79 32277.66 10576.63 15591.42 15946.34 29195.24 18274.36 17189.23 10094.85 89
thisisatest053081.15 14480.07 15084.39 14988.26 19965.63 15291.40 18594.62 4171.27 23170.93 22189.18 19572.47 3196.04 14765.62 25576.89 22291.49 200
Fast-Effi-MVS+81.14 14580.01 15284.51 14590.24 14965.86 14794.12 6289.15 26773.81 16175.37 16988.26 20757.26 17594.53 20966.97 24084.92 14593.15 160
HQP-MVS81.14 14580.64 14382.64 19787.54 21963.66 20794.06 6391.70 16779.80 6474.18 17890.30 17851.63 24395.61 16677.63 14878.90 20188.63 242
hse-mvs281.12 14781.11 13481.16 23686.52 24057.48 32089.40 25691.16 18881.45 3882.73 8690.49 17460.11 14294.58 20287.69 5560.41 34791.41 203
SR-MVS-dyc-post81.06 14880.70 14182.15 21392.02 10258.56 30990.90 20990.45 21162.76 31878.89 12994.46 8351.26 24895.61 16678.77 14186.77 13192.28 186
HyFIR lowres test81.03 14979.56 16085.43 10687.81 21468.11 8990.18 23790.01 23570.65 24472.95 19186.06 24463.61 10294.50 21175.01 16579.75 19493.67 145
nrg03080.93 15079.86 15584.13 15783.69 28968.83 6893.23 10891.20 18675.55 13375.06 17188.22 21063.04 11494.74 19681.88 11166.88 28988.82 240
Vis-MVSNetpermissive80.92 15179.98 15483.74 16788.48 19061.80 25193.44 10288.26 30473.96 15777.73 14291.76 15249.94 25894.76 19465.84 25290.37 9394.65 103
Jingyang Zhang, Yao Yao, Shiwei Li, Zixin Luo, Tian Fang: Visibility-aware Multiview Stereo Network. BMVC 2020
test111180.84 15280.02 15183.33 18287.87 21160.76 27392.62 13386.86 32177.86 10175.73 16291.39 16146.35 29094.70 20072.79 18188.68 10994.52 111
UWE-MVS80.81 15381.01 13680.20 25989.33 16957.05 32591.91 16594.71 3675.67 13175.01 17289.37 19363.13 11291.44 31267.19 23782.80 16692.12 194
131480.70 15478.95 17285.94 8987.77 21767.56 10287.91 28192.55 12672.17 20067.44 26993.09 11850.27 25597.04 9571.68 19687.64 12093.23 157
tpmrst80.57 15579.14 17084.84 12690.10 15268.28 8281.70 33589.72 24777.63 10775.96 16079.54 32764.94 8292.71 27175.43 16077.28 21993.55 148
1112_ss80.56 15679.83 15682.77 19288.65 18760.78 27192.29 14588.36 29872.58 18672.46 20294.95 6965.09 7993.42 25166.38 24677.71 21094.10 128
VDDNet80.50 15778.26 18087.21 4786.19 24669.79 4794.48 5091.31 18160.42 33779.34 12490.91 16738.48 32796.56 12282.16 10981.05 18395.27 73
BH-w/o80.49 15879.30 16784.05 16190.83 14064.36 18693.60 9289.42 25574.35 14869.09 24290.15 18455.23 20495.61 16664.61 26386.43 13792.17 192
test_cas_vis1_n_192080.45 15980.61 14479.97 26878.25 35357.01 32794.04 6788.33 29979.06 8482.81 8593.70 10838.65 32491.63 30490.82 3679.81 19291.27 210
TAMVS80.37 16079.45 16383.13 18785.14 26663.37 21591.23 19890.76 20374.81 14472.65 19688.49 20160.63 13792.95 25969.41 21381.95 17693.08 163
HQP_MVS80.34 16179.75 15782.12 21586.94 23462.42 23893.13 11091.31 18178.81 8872.53 19989.14 19750.66 25195.55 17176.74 15178.53 20688.39 248
SDMVSNet80.26 16278.88 17384.40 14889.25 17267.63 10185.35 30593.02 10576.77 12070.84 22287.12 22947.95 27996.09 14285.04 8174.55 23289.48 234
HPM-MVS_fast80.25 16379.55 16282.33 20591.55 12159.95 29091.32 19489.16 26665.23 29674.71 17593.07 12047.81 28195.74 15774.87 16988.23 11291.31 208
ab-mvs80.18 16478.31 17985.80 9588.44 19265.49 15883.00 32892.67 11971.82 21277.36 14885.01 25354.50 21196.59 11976.35 15575.63 22995.32 68
IS-MVSNet80.14 16579.41 16482.33 20587.91 20960.08 28991.97 16388.27 30272.90 18171.44 21891.73 15461.44 12993.66 24662.47 28086.53 13593.24 156
test-LLR80.10 16679.56 16081.72 22486.93 23661.17 26392.70 12891.54 17271.51 22775.62 16486.94 23353.83 22092.38 28472.21 18984.76 14891.60 198
PVSNet73.49 880.05 16778.63 17584.31 15290.92 13764.97 16992.47 14191.05 19879.18 7872.43 20390.51 17337.05 34494.06 22868.06 22686.00 13893.90 140
UA-Net80.02 16879.65 15881.11 23889.33 16957.72 31686.33 30289.00 27977.44 11081.01 10289.15 19659.33 15395.90 15161.01 28784.28 15489.73 230
test-mter79.96 16979.38 16681.72 22486.93 23661.17 26392.70 12891.54 17273.85 15975.62 16486.94 23349.84 26092.38 28472.21 18984.76 14891.60 198
QAPM79.95 17077.39 19787.64 3489.63 16171.41 2093.30 10693.70 7565.34 29567.39 27291.75 15347.83 28098.96 1657.71 30389.81 9692.54 178
UGNet79.87 17178.68 17483.45 18189.96 15461.51 25892.13 15190.79 20276.83 11878.85 13486.33 24138.16 33096.17 13867.93 22987.17 12592.67 174
Wanjuan Su, Qingshan Xu, Wenbing Tao: Uncertainty-guided Multi-view Stereo Network for Depth Estimation. IEEE Transactions on Circuits and Systems for Video Technology, 2022
tpm279.80 17277.95 18685.34 11188.28 19868.26 8381.56 33791.42 17870.11 24977.59 14680.50 31367.40 5894.26 22067.34 23477.35 21793.51 149
thres20079.66 17378.33 17883.66 17592.54 9065.82 14993.06 11296.31 374.90 14373.30 18888.66 19959.67 14895.61 16647.84 34278.67 20489.56 233
CPTT-MVS79.59 17479.16 16980.89 24791.54 12259.80 29292.10 15388.54 29560.42 33772.96 19093.28 11648.27 27492.80 26878.89 14086.50 13690.06 223
Test_1112_low_res79.56 17578.60 17682.43 20188.24 20160.39 28492.09 15487.99 30972.10 20271.84 21087.42 22464.62 8793.04 25565.80 25377.30 21893.85 142
tttt051779.50 17678.53 17782.41 20487.22 22761.43 26189.75 24994.76 3369.29 25967.91 26188.06 21472.92 2895.63 16462.91 27673.90 24290.16 222
reproduce_monomvs79.49 17779.11 17180.64 24992.91 7761.47 26091.17 20393.28 9383.09 2064.04 30082.38 28266.19 6794.57 20481.19 12057.71 35585.88 294
FIs79.47 17879.41 16479.67 27585.95 25159.40 29891.68 17893.94 6478.06 9768.96 24788.28 20566.61 6491.77 30066.20 24974.99 23187.82 254
BH-RMVSNet79.46 17977.65 18984.89 12491.68 11765.66 15093.55 9488.09 30772.93 17873.37 18791.12 16546.20 29496.12 14056.28 30885.61 14292.91 169
PCF-MVS73.15 979.29 18077.63 19084.29 15386.06 24965.96 14587.03 29491.10 19269.86 25369.79 23890.64 16957.54 17496.59 11964.37 26582.29 16890.32 220
Andreas Kuhn, Shan Lin, Oliver Erdler: Plane Completion and Filtering for Multi-View Stereo Reconstruction. GCPR 2019
Vis-MVSNet (Re-imp)79.24 18179.57 15978.24 29588.46 19152.29 35090.41 22889.12 27074.24 15069.13 24191.91 15065.77 7390.09 32759.00 29988.09 11492.33 183
114514_t79.17 18277.67 18883.68 17395.32 2965.53 15692.85 12291.60 17163.49 30967.92 26090.63 17146.65 28795.72 16267.01 23983.54 15889.79 228
FA-MVS(test-final)79.12 18377.23 19984.81 13090.54 14363.98 19581.35 34091.71 16471.09 23574.85 17482.94 27552.85 23197.05 9267.97 22781.73 17993.41 151
VPA-MVSNet79.03 18478.00 18482.11 21885.95 25164.48 17793.22 10994.66 3975.05 14174.04 18384.95 25452.17 23793.52 24874.90 16867.04 28888.32 250
OPM-MVS79.00 18578.09 18281.73 22383.52 29263.83 19791.64 18090.30 22176.36 12671.97 20989.93 18846.30 29395.17 18475.10 16377.70 21186.19 283
Ray L. Khuboni, Hongjun Xu: Octagram Propagation Matching for Multi-Scale View Stereopsis (OPM-MVS).
EI-MVSNet78.97 18678.22 18181.25 23385.33 26162.73 23489.53 25393.21 9572.39 19372.14 20690.13 18560.99 13294.72 19767.73 23172.49 25186.29 280
AdaColmapbinary78.94 18777.00 20384.76 13296.34 1765.86 14792.66 13287.97 31162.18 32370.56 22492.37 13843.53 30797.35 7264.50 26482.86 16391.05 213
GeoE78.90 18877.43 19383.29 18388.95 18162.02 24792.31 14486.23 32870.24 24871.34 21989.27 19454.43 21594.04 23163.31 27280.81 18793.81 143
miper_enhance_ethall78.86 18977.97 18581.54 22888.00 20865.17 16391.41 18389.15 26775.19 13968.79 25083.98 26667.17 5992.82 26672.73 18365.30 29886.62 277
VPNet78.82 19077.53 19282.70 19584.52 27666.44 13393.93 7292.23 13380.46 5272.60 19788.38 20449.18 26793.13 25472.47 18763.97 31788.55 245
EPNet_dtu78.80 19179.26 16877.43 30388.06 20549.71 36591.96 16491.95 15077.67 10476.56 15791.28 16358.51 16390.20 32556.37 30780.95 18492.39 181
Wanjuan Su, Wenbing Tao: Efficient Edge-Preserving Multi-View Stereo Network for Depth Estimation. AAAI 2023
tfpn200view978.79 19277.43 19382.88 19092.21 9664.49 17592.05 15796.28 473.48 16871.75 21288.26 20760.07 14495.32 17845.16 35377.58 21388.83 238
TR-MVS78.77 19377.37 19882.95 18990.49 14460.88 26993.67 8890.07 23070.08 25074.51 17691.37 16245.69 29695.70 16360.12 29380.32 18992.29 185
thres40078.68 19477.43 19382.43 20192.21 9664.49 17592.05 15796.28 473.48 16871.75 21288.26 20760.07 14495.32 17845.16 35377.58 21387.48 258
BH-untuned78.68 19477.08 20083.48 18089.84 15663.74 20092.70 12888.59 29371.57 22466.83 27988.65 20051.75 24195.39 17659.03 29884.77 14791.32 207
OMC-MVS78.67 19677.91 18780.95 24585.76 25657.40 32288.49 27288.67 29073.85 15972.43 20392.10 14549.29 26694.55 20872.73 18377.89 20990.91 214
tpm78.58 19777.03 20183.22 18585.94 25364.56 17383.21 32491.14 19178.31 9473.67 18579.68 32564.01 9392.09 29466.07 25071.26 26193.03 165
OpenMVScopyleft70.45 1178.54 19875.92 21786.41 7785.93 25471.68 1892.74 12592.51 12766.49 28664.56 29491.96 14743.88 30698.10 3754.61 31390.65 8989.44 236
EPMVS78.49 19975.98 21686.02 8691.21 13169.68 5180.23 34991.20 18675.25 13872.48 20178.11 33654.65 21093.69 24557.66 30483.04 16294.69 99
AUN-MVS78.37 20077.43 19381.17 23586.60 23957.45 32189.46 25591.16 18874.11 15274.40 17790.49 17455.52 20194.57 20474.73 17060.43 34691.48 201
thres100view90078.37 20077.01 20282.46 20091.89 11163.21 22091.19 20296.33 172.28 19670.45 22787.89 21660.31 13995.32 17845.16 35377.58 21388.83 238
GA-MVS78.33 20276.23 21284.65 13883.65 29066.30 13791.44 18290.14 22876.01 12870.32 22984.02 26542.50 31194.72 19770.98 19977.00 22192.94 168
cascas78.18 20375.77 21985.41 10787.14 22969.11 6192.96 11891.15 19066.71 28470.47 22586.07 24337.49 33896.48 12770.15 20779.80 19390.65 216
UniMVSNet_NR-MVSNet78.15 20477.55 19179.98 26684.46 27860.26 28592.25 14693.20 9777.50 10968.88 24886.61 23666.10 6992.13 29266.38 24662.55 32487.54 256
thres600view778.00 20576.66 20782.03 22091.93 10863.69 20591.30 19596.33 172.43 19170.46 22687.89 21660.31 13994.92 19242.64 36576.64 22387.48 258
FC-MVSNet-test77.99 20678.08 18377.70 29884.89 27155.51 33690.27 23493.75 7376.87 11566.80 28087.59 22165.71 7490.23 32462.89 27773.94 24087.37 261
Anonymous20240521177.96 20775.33 22585.87 9193.73 5364.52 17494.85 4485.36 33762.52 32176.11 15990.18 18129.43 37397.29 7668.51 22477.24 22095.81 49
cl2277.94 20876.78 20581.42 23087.57 21864.93 17190.67 22088.86 28372.45 19067.63 26782.68 27964.07 9292.91 26471.79 19265.30 29886.44 278
XXY-MVS77.94 20876.44 20982.43 20182.60 30264.44 17992.01 15991.83 15973.59 16770.00 23485.82 24654.43 21594.76 19469.63 21068.02 28288.10 252
MS-PatchMatch77.90 21076.50 20882.12 21585.99 25069.95 4191.75 17692.70 11673.97 15662.58 31684.44 26141.11 31695.78 15463.76 26992.17 6680.62 358
FMVSNet377.73 21176.04 21582.80 19191.20 13268.99 6591.87 16791.99 14873.35 17067.04 27583.19 27456.62 18892.14 29159.80 29569.34 26887.28 264
miper_ehance_all_eth77.60 21276.44 20981.09 24285.70 25864.41 18290.65 22188.64 29272.31 19467.37 27382.52 28064.77 8692.64 27770.67 20365.30 29886.24 282
UniMVSNet (Re)77.58 21376.78 20579.98 26684.11 28460.80 27091.76 17493.17 9976.56 12469.93 23784.78 25663.32 10992.36 28664.89 26262.51 32686.78 272
PatchmatchNetpermissive77.46 21474.63 23285.96 8889.55 16470.35 3479.97 35489.55 25072.23 19770.94 22076.91 34857.03 17892.79 26954.27 31581.17 18294.74 97
Fangjinhua Wang, Silvano Galliani, Christoph Vogel, Pablo Speciale, Marc Pollefeys: PatchmatchNet: Learned Multi-View Patchmatch Stereo.
v2v48277.42 21575.65 22182.73 19380.38 32367.13 11591.85 16990.23 22575.09 14069.37 23983.39 27253.79 22294.44 21271.77 19365.00 30486.63 276
CHOSEN 280x42077.35 21676.95 20478.55 29087.07 23162.68 23569.71 38682.95 35968.80 26671.48 21787.27 22866.03 7084.00 37076.47 15482.81 16588.95 237
PS-MVSNAJss77.26 21776.31 21180.13 26180.64 32159.16 30390.63 22491.06 19772.80 18268.58 25484.57 25953.55 22493.96 23672.97 17771.96 25587.27 265
gg-mvs-nofinetune77.18 21874.31 23985.80 9591.42 12468.36 7971.78 38094.72 3549.61 38077.12 15145.92 40677.41 893.98 23567.62 23293.16 5595.05 83
WB-MVSnew77.14 21976.18 21480.01 26586.18 24763.24 21891.26 19694.11 6171.72 21673.52 18687.29 22745.14 30193.00 25756.98 30579.42 19583.80 319
MVP-Stereo77.12 22076.23 21279.79 27381.72 31066.34 13689.29 25790.88 20170.56 24562.01 31982.88 27649.34 26494.13 22365.55 25793.80 4378.88 372
Qingsong Yan: MVP-Stereo: A Parallel Multi-View Patchmatch Stereo Method with Dilation Matching for Photogrammetric Application.
sd_testset77.08 22175.37 22382.20 21189.25 17262.11 24682.06 33289.09 27276.77 12070.84 22287.12 22941.43 31595.01 18767.23 23674.55 23289.48 234
MonoMVSNet76.99 22275.08 22882.73 19383.32 29463.24 21886.47 30186.37 32479.08 8266.31 28279.30 32949.80 26191.72 30179.37 13265.70 29693.23 157
dmvs_re76.93 22375.36 22481.61 22687.78 21660.71 27680.00 35387.99 30979.42 7269.02 24589.47 19246.77 28594.32 21463.38 27174.45 23589.81 227
X-MVStestdata76.86 22474.13 24385.05 12093.22 6563.78 19892.92 11992.66 12073.99 15478.18 13810.19 42155.25 20297.41 6879.16 13591.58 7693.95 136
DU-MVS76.86 22475.84 21879.91 26982.96 29860.26 28591.26 19691.54 17276.46 12568.88 24886.35 23956.16 19392.13 29266.38 24662.55 32487.35 262
Anonymous2024052976.84 22674.15 24284.88 12591.02 13464.95 17093.84 8091.09 19353.57 36873.00 18987.42 22435.91 34897.32 7469.14 21872.41 25392.36 182
c3_l76.83 22775.47 22280.93 24685.02 26964.18 19290.39 22988.11 30671.66 21766.65 28181.64 29363.58 10592.56 27869.31 21562.86 32186.04 288
WR-MVS76.76 22875.74 22079.82 27284.60 27462.27 24492.60 13592.51 12776.06 12767.87 26485.34 25056.76 18490.24 32362.20 28163.69 31986.94 270
v114476.73 22974.88 22982.27 20780.23 32766.60 13091.68 17890.21 22773.69 16469.06 24481.89 28852.73 23394.40 21369.21 21665.23 30185.80 295
IterMVS-LS76.49 23075.18 22780.43 25384.49 27762.74 23390.64 22288.80 28572.40 19265.16 28981.72 29160.98 13392.27 29067.74 23064.65 30986.29 280
Fangjinhua Wang, Silvano Galliani, Christoph Vogel, Marc Pollefeys: IterMVS: Iterative Probability Estimation for Efficient Multi-View Stereo.
V4276.46 23174.55 23582.19 21279.14 34167.82 9590.26 23589.42 25573.75 16268.63 25381.89 28851.31 24694.09 22571.69 19564.84 30584.66 312
v14876.19 23274.47 23781.36 23180.05 32964.44 17991.75 17690.23 22573.68 16567.13 27480.84 30855.92 19893.86 24368.95 22061.73 33585.76 298
Effi-MVS+-dtu76.14 23375.28 22678.72 28983.22 29555.17 33889.87 24687.78 31275.42 13567.98 25981.43 29745.08 30292.52 28075.08 16471.63 25688.48 246
cl____76.07 23474.67 23080.28 25685.15 26561.76 25390.12 23888.73 28771.16 23265.43 28681.57 29561.15 13092.95 25966.54 24362.17 32886.13 286
DIV-MVS_self_test76.07 23474.67 23080.28 25685.14 26661.75 25490.12 23888.73 28771.16 23265.42 28781.60 29461.15 13092.94 26366.54 24362.16 33086.14 284
FMVSNet276.07 23474.01 24582.26 20988.85 18267.66 9991.33 19391.61 17070.84 23965.98 28382.25 28448.03 27592.00 29658.46 30068.73 27687.10 267
v14419276.05 23774.03 24482.12 21579.50 33566.55 13291.39 18789.71 24872.30 19568.17 25781.33 30051.75 24194.03 23367.94 22864.19 31285.77 296
NR-MVSNet76.05 23774.59 23380.44 25282.96 29862.18 24590.83 21391.73 16277.12 11360.96 32286.35 23959.28 15491.80 29960.74 28861.34 33987.35 262
v119275.98 23973.92 24682.15 21379.73 33166.24 13991.22 19989.75 24272.67 18468.49 25581.42 29849.86 25994.27 21867.08 23865.02 30385.95 291
FE-MVS75.97 24073.02 25684.82 12789.78 15765.56 15477.44 36591.07 19664.55 29872.66 19579.85 32346.05 29596.69 11754.97 31280.82 18692.21 191
eth_miper_zixun_eth75.96 24174.40 23880.66 24884.66 27363.02 22489.28 25888.27 30271.88 20865.73 28481.65 29259.45 15092.81 26768.13 22560.53 34486.14 284
TranMVSNet+NR-MVSNet75.86 24274.52 23679.89 27082.44 30460.64 27991.37 19091.37 17976.63 12267.65 26686.21 24252.37 23691.55 30661.84 28360.81 34287.48 258
SCA75.82 24372.76 25985.01 12286.63 23870.08 3781.06 34289.19 26471.60 22370.01 23377.09 34645.53 29790.25 32060.43 29073.27 24494.68 100
LPG-MVS_test75.82 24374.58 23479.56 27984.31 28159.37 29990.44 22689.73 24569.49 25664.86 29088.42 20238.65 32494.30 21672.56 18572.76 24885.01 309
GBi-Net75.65 24573.83 24781.10 23988.85 18265.11 16590.01 24290.32 21770.84 23967.04 27580.25 31848.03 27591.54 30759.80 29569.34 26886.64 273
test175.65 24573.83 24781.10 23988.85 18265.11 16590.01 24290.32 21770.84 23967.04 27580.25 31848.03 27591.54 30759.80 29569.34 26886.64 273
v192192075.63 24773.49 25282.06 21979.38 33666.35 13591.07 20789.48 25171.98 20367.99 25881.22 30349.16 26993.90 23966.56 24264.56 31085.92 293
ACMP71.68 1075.58 24874.23 24179.62 27784.97 27059.64 29490.80 21489.07 27470.39 24662.95 31287.30 22638.28 32893.87 24172.89 17871.45 25985.36 305
Qingshan Xu and Wenbing Tao: Planar Prior Assisted PatchMatch Multi-View Stereo. AAAI 2020
v875.35 24973.26 25481.61 22680.67 32066.82 12389.54 25289.27 26071.65 21863.30 30880.30 31754.99 20894.06 22867.33 23562.33 32783.94 317
tpm cat175.30 25072.21 26884.58 14288.52 18867.77 9678.16 36388.02 30861.88 32968.45 25676.37 35260.65 13694.03 23353.77 31874.11 23891.93 196
PLCcopyleft68.80 1475.23 25173.68 25079.86 27192.93 7658.68 30890.64 22288.30 30060.90 33464.43 29890.53 17242.38 31294.57 20456.52 30676.54 22486.33 279
Jie Liao, Yanping Fu, Qingan Yan, Chunxia xiao: Pyramid Multi-View Stereo with Local Consistency. Pacific Graphics 2019
v124075.21 25272.98 25781.88 22179.20 33866.00 14390.75 21689.11 27171.63 22267.41 27181.22 30347.36 28393.87 24165.46 25864.72 30885.77 296
Fast-Effi-MVS+-dtu75.04 25373.37 25380.07 26280.86 31659.52 29791.20 20185.38 33671.90 20665.20 28884.84 25541.46 31492.97 25866.50 24572.96 24787.73 255
dp75.01 25472.09 26983.76 16689.28 17166.22 14079.96 35589.75 24271.16 23267.80 26577.19 34551.81 23992.54 27950.39 32671.44 26092.51 180
TAPA-MVS70.22 1274.94 25573.53 25179.17 28490.40 14652.07 35189.19 26189.61 24962.69 32070.07 23292.67 13048.89 27294.32 21438.26 37979.97 19191.12 212
Andrea Romanoni, Matteo Matteucci: TAPA-MVS: Textureless-Aware PAtchMatch Multi-View Stereo. ICCV 2019
v1074.77 25672.54 26581.46 22980.33 32566.71 12789.15 26289.08 27370.94 23763.08 31179.86 32252.52 23494.04 23165.70 25462.17 32883.64 320
XVG-OURS-SEG-HR74.70 25773.08 25579.57 27878.25 35357.33 32380.49 34587.32 31563.22 31368.76 25190.12 18744.89 30391.59 30570.55 20574.09 23989.79 228
ACMM69.62 1374.34 25872.73 26179.17 28484.25 28357.87 31490.36 23189.93 23663.17 31565.64 28586.04 24537.79 33694.10 22465.89 25171.52 25885.55 301
Qingshan Xu and Wenbing Tao: Multi-Scale Geometric Consistency Guided Multi-View Stereo. CVPR 2019
CNLPA74.31 25972.30 26780.32 25491.49 12361.66 25690.85 21280.72 36556.67 36063.85 30390.64 16946.75 28690.84 31553.79 31775.99 22888.47 247
XVG-OURS74.25 26072.46 26679.63 27678.45 35157.59 31980.33 34787.39 31463.86 30568.76 25189.62 19140.50 31891.72 30169.00 21974.25 23789.58 231
test_fmvs174.07 26173.69 24975.22 32178.91 34547.34 37889.06 26574.69 38163.68 30879.41 12391.59 15724.36 38387.77 34785.22 7876.26 22690.55 219
CVMVSNet74.04 26274.27 24073.33 33785.33 26143.94 39189.53 25388.39 29754.33 36770.37 22890.13 18549.17 26884.05 36861.83 28479.36 19791.99 195
Baseline_NR-MVSNet73.99 26372.83 25877.48 30280.78 31859.29 30291.79 17184.55 34568.85 26568.99 24680.70 30956.16 19392.04 29562.67 27860.98 34181.11 352
pmmvs473.92 26471.81 27380.25 25879.17 33965.24 16187.43 29087.26 31767.64 27763.46 30683.91 26748.96 27191.53 31062.94 27565.49 29783.96 316
D2MVS73.80 26572.02 27079.15 28679.15 34062.97 22588.58 27190.07 23072.94 17759.22 33278.30 33342.31 31392.70 27365.59 25672.00 25481.79 347
CR-MVSNet73.79 26670.82 28182.70 19583.15 29667.96 9270.25 38384.00 35073.67 16669.97 23572.41 36857.82 17189.48 33252.99 32173.13 24590.64 217
test_djsdf73.76 26772.56 26477.39 30477.00 36353.93 34489.07 26390.69 20465.80 29063.92 30182.03 28743.14 31092.67 27472.83 17968.53 27785.57 300
pmmvs573.35 26871.52 27578.86 28878.64 34960.61 28091.08 20586.90 31967.69 27463.32 30783.64 26844.33 30590.53 31762.04 28266.02 29485.46 303
Anonymous2023121173.08 26970.39 28581.13 23790.62 14263.33 21691.40 18590.06 23251.84 37364.46 29780.67 31136.49 34694.07 22763.83 26864.17 31385.98 290
tt080573.07 27070.73 28280.07 26278.37 35257.05 32587.78 28492.18 14061.23 33367.04 27586.49 23831.35 36694.58 20265.06 26167.12 28788.57 244
miper_lstm_enhance73.05 27171.73 27477.03 30883.80 28758.32 31181.76 33388.88 28169.80 25461.01 32178.23 33557.19 17687.51 35165.34 25959.53 34985.27 308
jajsoiax73.05 27171.51 27677.67 29977.46 36054.83 34088.81 26790.04 23369.13 26362.85 31483.51 27031.16 36792.75 27070.83 20069.80 26485.43 304
LCM-MVSNet-Re72.93 27371.84 27276.18 31788.49 18948.02 37380.07 35270.17 39373.96 15752.25 36380.09 32149.98 25788.24 34167.35 23384.23 15592.28 186
pm-mvs172.89 27471.09 27878.26 29479.10 34257.62 31890.80 21489.30 25967.66 27562.91 31381.78 29049.11 27092.95 25960.29 29258.89 35284.22 315
tpmvs72.88 27569.76 29182.22 21090.98 13567.05 11778.22 36288.30 30063.10 31664.35 29974.98 35955.09 20794.27 21843.25 35969.57 26785.34 306
test0.0.03 172.76 27672.71 26272.88 34180.25 32647.99 37491.22 19989.45 25371.51 22762.51 31787.66 21953.83 22085.06 36450.16 32867.84 28585.58 299
UniMVSNet_ETH3D72.74 27770.53 28479.36 28178.62 35056.64 32985.01 30789.20 26363.77 30664.84 29284.44 26134.05 35591.86 29863.94 26770.89 26389.57 232
mvs_tets72.71 27871.11 27777.52 30077.41 36154.52 34288.45 27389.76 24168.76 26862.70 31583.26 27329.49 37292.71 27170.51 20669.62 26685.34 306
FMVSNet172.71 27869.91 28981.10 23983.60 29165.11 16590.01 24290.32 21763.92 30463.56 30580.25 31836.35 34791.54 30754.46 31466.75 29086.64 273
test_fmvs1_n72.69 28071.92 27174.99 32471.15 38347.08 38087.34 29275.67 37663.48 31078.08 14091.17 16420.16 39587.87 34484.65 8775.57 23090.01 225
IterMVS72.65 28170.83 27978.09 29682.17 30662.96 22687.64 28886.28 32671.56 22560.44 32578.85 33145.42 29986.66 35563.30 27361.83 33284.65 313
Fangjinhua Wang, Silvano Galliani, Christoph Vogel, Marc Pollefeys: IterMVS: Iterative Probability Estimation for Efficient Multi-View Stereo.
myMVS_eth3d72.58 28272.74 26072.10 34987.87 21149.45 36788.07 27789.01 27672.91 17963.11 30988.10 21163.63 10085.54 36032.73 39469.23 27181.32 350
PatchMatch-RL72.06 28369.98 28678.28 29389.51 16555.70 33583.49 31783.39 35761.24 33263.72 30482.76 27734.77 35293.03 25653.37 32077.59 21286.12 287
PVSNet_068.08 1571.81 28468.32 30082.27 20784.68 27262.31 24388.68 26990.31 22075.84 12957.93 34380.65 31237.85 33594.19 22169.94 20829.05 40990.31 221
MIMVSNet71.64 28568.44 29881.23 23481.97 30964.44 17973.05 37788.80 28569.67 25564.59 29374.79 36132.79 35887.82 34553.99 31676.35 22591.42 202
test_vis1_n71.63 28670.73 28274.31 33169.63 38947.29 37986.91 29672.11 38763.21 31475.18 17090.17 18220.40 39385.76 35984.59 8874.42 23689.87 226
IterMVS-SCA-FT71.55 28769.97 28776.32 31581.48 31260.67 27887.64 28885.99 33166.17 28859.50 33078.88 33045.53 29783.65 37262.58 27961.93 33184.63 314
v7n71.31 28868.65 29579.28 28276.40 36560.77 27286.71 29989.45 25364.17 30358.77 33778.24 33444.59 30493.54 24757.76 30261.75 33483.52 323
anonymousdsp71.14 28969.37 29376.45 31472.95 37854.71 34184.19 31288.88 28161.92 32862.15 31879.77 32438.14 33191.44 31268.90 22167.45 28683.21 329
F-COLMAP70.66 29068.44 29877.32 30586.37 24455.91 33388.00 27986.32 32556.94 35857.28 34788.07 21333.58 35692.49 28151.02 32468.37 27883.55 321
WR-MVS_H70.59 29169.94 28872.53 34381.03 31551.43 35587.35 29192.03 14767.38 27860.23 32780.70 30955.84 19983.45 37446.33 34958.58 35482.72 336
CP-MVSNet70.50 29269.91 28972.26 34680.71 31951.00 35987.23 29390.30 22167.84 27359.64 32982.69 27850.23 25682.30 38251.28 32359.28 35083.46 325
RPMNet70.42 29365.68 31484.63 14083.15 29667.96 9270.25 38390.45 21146.83 38969.97 23565.10 38956.48 19295.30 18135.79 38473.13 24590.64 217
testing370.38 29470.83 27969.03 36185.82 25543.93 39290.72 21990.56 21068.06 27260.24 32686.82 23564.83 8484.12 36626.33 40264.10 31479.04 371
tfpnnormal70.10 29567.36 30478.32 29283.45 29360.97 26888.85 26692.77 11464.85 29760.83 32378.53 33243.52 30893.48 24931.73 39761.70 33680.52 359
TransMVSNet (Re)70.07 29667.66 30277.31 30680.62 32259.13 30491.78 17384.94 34165.97 28960.08 32880.44 31450.78 25091.87 29748.84 33545.46 38380.94 354
CL-MVSNet_self_test69.92 29768.09 30175.41 32073.25 37755.90 33490.05 24189.90 23769.96 25161.96 32076.54 34951.05 24987.64 34849.51 33250.59 37582.70 338
DP-MVS69.90 29866.48 30680.14 26095.36 2862.93 22789.56 25076.11 37450.27 37957.69 34585.23 25139.68 32095.73 15833.35 38971.05 26281.78 348
PS-CasMVS69.86 29969.13 29472.07 35080.35 32450.57 36187.02 29589.75 24267.27 27959.19 33382.28 28346.58 28882.24 38350.69 32559.02 35183.39 327
Syy-MVS69.65 30069.52 29270.03 35787.87 21143.21 39388.07 27789.01 27672.91 17963.11 30988.10 21145.28 30085.54 36022.07 40769.23 27181.32 350
MSDG69.54 30165.73 31380.96 24485.11 26863.71 20384.19 31283.28 35856.95 35754.50 35484.03 26431.50 36496.03 14842.87 36369.13 27383.14 331
PEN-MVS69.46 30268.56 29672.17 34879.27 33749.71 36586.90 29789.24 26167.24 28259.08 33482.51 28147.23 28483.54 37348.42 33757.12 35683.25 328
LS3D69.17 30366.40 30877.50 30191.92 10956.12 33285.12 30680.37 36746.96 38756.50 34987.51 22337.25 33993.71 24432.52 39679.40 19682.68 339
PatchT69.11 30465.37 31880.32 25482.07 30863.68 20667.96 39387.62 31350.86 37769.37 23965.18 38857.09 17788.53 33841.59 36866.60 29188.74 241
KD-MVS_2432*160069.03 30566.37 30977.01 30985.56 25961.06 26681.44 33890.25 22367.27 27958.00 34176.53 35054.49 21287.63 34948.04 33935.77 40082.34 342
miper_refine_blended69.03 30566.37 30977.01 30985.56 25961.06 26681.44 33890.25 22367.27 27958.00 34176.53 35054.49 21287.63 34948.04 33935.77 40082.34 342
mvsany_test168.77 30768.56 29669.39 35973.57 37645.88 38780.93 34360.88 40759.65 34371.56 21590.26 18043.22 30975.05 39474.26 17262.70 32387.25 266
ACMH63.93 1768.62 30864.81 32080.03 26485.22 26463.25 21787.72 28584.66 34360.83 33551.57 36779.43 32827.29 37994.96 18941.76 36664.84 30581.88 346
Qingshan Xu and Wenbing Tao: Multi-Scale Geometric Consistency Guided Multi-View Stereo. CVPR 2019
EG-PatchMatch MVS68.55 30965.41 31777.96 29778.69 34862.93 22789.86 24789.17 26560.55 33650.27 37277.73 34022.60 38994.06 22847.18 34572.65 25076.88 382
ADS-MVSNet68.54 31064.38 32781.03 24388.06 20566.90 12268.01 39184.02 34957.57 35164.48 29569.87 37838.68 32289.21 33440.87 37067.89 28386.97 268
DTE-MVSNet68.46 31167.33 30571.87 35277.94 35749.00 37186.16 30388.58 29466.36 28758.19 33882.21 28546.36 28983.87 37144.97 35655.17 36382.73 335
mmtdpeth68.33 31266.37 30974.21 33282.81 30151.73 35284.34 31180.42 36667.01 28371.56 21568.58 38230.52 37092.35 28775.89 15736.21 39878.56 376
our_test_368.29 31364.69 32279.11 28778.92 34364.85 17288.40 27485.06 33960.32 33952.68 36176.12 35440.81 31789.80 33144.25 35855.65 36182.67 340
Patchmatch-RL test68.17 31464.49 32579.19 28371.22 38253.93 34470.07 38571.54 39169.22 26056.79 34862.89 39356.58 18988.61 33569.53 21252.61 37095.03 85
XVG-ACMP-BASELINE68.04 31565.53 31675.56 31974.06 37552.37 34978.43 35985.88 33262.03 32658.91 33681.21 30520.38 39491.15 31460.69 28968.18 27983.16 330
FMVSNet568.04 31565.66 31575.18 32384.43 27957.89 31383.54 31686.26 32761.83 33053.64 35973.30 36437.15 34285.08 36348.99 33461.77 33382.56 341
ppachtmachnet_test67.72 31763.70 32979.77 27478.92 34366.04 14288.68 26982.90 36060.11 34155.45 35175.96 35539.19 32190.55 31639.53 37452.55 37182.71 337
ACMH+65.35 1667.65 31864.55 32376.96 31184.59 27557.10 32488.08 27680.79 36458.59 34953.00 36081.09 30726.63 38192.95 25946.51 34761.69 33780.82 355
pmmvs667.57 31964.76 32176.00 31872.82 38053.37 34688.71 26886.78 32353.19 36957.58 34678.03 33735.33 35192.41 28355.56 31054.88 36582.21 344
Anonymous2023120667.53 32065.78 31272.79 34274.95 37147.59 37688.23 27587.32 31561.75 33158.07 34077.29 34337.79 33687.29 35342.91 36163.71 31883.48 324
Patchmtry67.53 32063.93 32878.34 29182.12 30764.38 18368.72 38884.00 35048.23 38659.24 33172.41 36857.82 17189.27 33346.10 35056.68 36081.36 349
USDC67.43 32264.51 32476.19 31677.94 35755.29 33778.38 36085.00 34073.17 17248.36 38080.37 31521.23 39192.48 28252.15 32264.02 31680.81 356
ADS-MVSNet266.90 32363.44 33177.26 30788.06 20560.70 27768.01 39175.56 37857.57 35164.48 29569.87 37838.68 32284.10 36740.87 37067.89 28386.97 268
CMPMVSbinary48.56 2166.77 32464.41 32673.84 33470.65 38650.31 36277.79 36485.73 33545.54 39144.76 39082.14 28635.40 35090.14 32663.18 27474.54 23481.07 353
M. Jancosek, T. Pajdla: Multi-View Reconstruction Preserving Weakly-Supported Surfaces. CVPR 2011
OpenMVS_ROBcopyleft61.12 1866.39 32562.92 33476.80 31376.51 36457.77 31589.22 25983.41 35655.48 36453.86 35877.84 33826.28 38293.95 23734.90 38668.76 27578.68 374
LTVRE_ROB59.60 1966.27 32663.54 33074.45 32884.00 28651.55 35467.08 39583.53 35458.78 34754.94 35380.31 31634.54 35393.23 25340.64 37268.03 28178.58 375
Andreas Kuhn, Heiko Hirschmüller, Daniel Scharstein, Helmut Mayer: A TV Prior for High-Quality Scalable Multi-View Stereo Reconstruction. International Journal of Computer Vision 2016
JIA-IIPM66.06 32762.45 33776.88 31281.42 31454.45 34357.49 40788.67 29049.36 38163.86 30246.86 40556.06 19690.25 32049.53 33168.83 27485.95 291
Patchmatch-test65.86 32860.94 34380.62 25183.75 28858.83 30658.91 40675.26 38044.50 39450.95 37177.09 34658.81 16187.90 34335.13 38564.03 31595.12 80
UnsupCasMVSNet_eth65.79 32963.10 33273.88 33370.71 38550.29 36381.09 34189.88 23872.58 18649.25 37774.77 36232.57 36087.43 35255.96 30941.04 39083.90 318
test_fmvs265.78 33064.84 31968.60 36366.54 39541.71 39583.27 32169.81 39454.38 36667.91 26184.54 26015.35 40081.22 38775.65 15966.16 29382.88 332
dmvs_testset65.55 33166.45 30762.86 37579.87 33022.35 42176.55 36771.74 38977.42 11255.85 35087.77 21851.39 24580.69 38831.51 40065.92 29585.55 301
pmmvs-eth3d65.53 33262.32 33875.19 32269.39 39059.59 29582.80 32983.43 35562.52 32151.30 36972.49 36632.86 35787.16 35455.32 31150.73 37478.83 373
mamv465.18 33367.43 30358.44 37977.88 35949.36 37069.40 38770.99 39248.31 38557.78 34485.53 24959.01 15951.88 41773.67 17464.32 31174.07 387
SixPastTwentyTwo64.92 33461.78 34174.34 33078.74 34749.76 36483.42 32079.51 37062.86 31750.27 37277.35 34130.92 36990.49 31845.89 35147.06 38082.78 333
OurMVSNet-221017-064.68 33562.17 33972.21 34776.08 36847.35 37780.67 34481.02 36356.19 36151.60 36679.66 32627.05 38088.56 33753.60 31953.63 36880.71 357
test_040264.54 33661.09 34274.92 32584.10 28560.75 27487.95 28079.71 36952.03 37152.41 36277.20 34432.21 36291.64 30323.14 40561.03 34072.36 393
testgi64.48 33762.87 33569.31 36071.24 38140.62 39885.49 30479.92 36865.36 29454.18 35683.49 27123.74 38684.55 36541.60 36760.79 34382.77 334
RPSCF64.24 33861.98 34071.01 35576.10 36745.00 38875.83 37275.94 37546.94 38858.96 33584.59 25831.40 36582.00 38447.76 34360.33 34886.04 288
EU-MVSNet64.01 33963.01 33367.02 36974.40 37438.86 40483.27 32186.19 32945.11 39254.27 35581.15 30636.91 34580.01 39048.79 33657.02 35782.19 345
test20.0363.83 34062.65 33667.38 36870.58 38739.94 40086.57 30084.17 34763.29 31251.86 36577.30 34237.09 34382.47 38038.87 37854.13 36779.73 365
MDA-MVSNet_test_wron63.78 34160.16 34574.64 32678.15 35560.41 28383.49 31784.03 34856.17 36339.17 40071.59 37437.22 34083.24 37742.87 36348.73 37780.26 362
YYNet163.76 34260.14 34674.62 32778.06 35660.19 28883.46 31983.99 35256.18 36239.25 39971.56 37537.18 34183.34 37542.90 36248.70 37880.32 361
K. test v363.09 34359.61 34873.53 33676.26 36649.38 36983.27 32177.15 37364.35 30047.77 38272.32 37028.73 37487.79 34649.93 33036.69 39783.41 326
COLMAP_ROBcopyleft57.96 2062.98 34459.65 34772.98 34081.44 31353.00 34883.75 31575.53 37948.34 38448.81 37981.40 29924.14 38490.30 31932.95 39160.52 34575.65 385
Johannes L. Schönberger, Enliang Zheng, Marc Pollefeys, Jan-Michael Frahm: Pixelwise View Selection for Unstructured Multi-View Stereo. ECCV 2016
Anonymous2024052162.09 34559.08 34971.10 35467.19 39348.72 37283.91 31485.23 33850.38 37847.84 38171.22 37720.74 39285.51 36246.47 34858.75 35379.06 370
AllTest61.66 34658.06 35172.46 34479.57 33251.42 35680.17 35068.61 39651.25 37545.88 38481.23 30119.86 39686.58 35638.98 37657.01 35879.39 367
UnsupCasMVSNet_bld61.60 34757.71 35273.29 33868.73 39151.64 35378.61 35889.05 27557.20 35646.11 38361.96 39628.70 37588.60 33650.08 32938.90 39579.63 366
MDA-MVSNet-bldmvs61.54 34857.70 35373.05 33979.53 33457.00 32883.08 32581.23 36257.57 35134.91 40472.45 36732.79 35886.26 35835.81 38341.95 38875.89 384
mvs5depth61.03 34957.65 35471.18 35367.16 39447.04 38272.74 37877.49 37157.47 35460.52 32472.53 36522.84 38888.38 33949.15 33338.94 39478.11 379
KD-MVS_self_test60.87 35058.60 35067.68 36666.13 39639.93 40175.63 37484.70 34257.32 35549.57 37568.45 38329.55 37182.87 37848.09 33847.94 37980.25 363
kuosan60.86 35160.24 34462.71 37681.57 31146.43 38475.70 37385.88 33257.98 35048.95 37869.53 38058.42 16476.53 39228.25 40135.87 39965.15 400
TinyColmap60.32 35256.42 35972.00 35178.78 34653.18 34778.36 36175.64 37752.30 37041.59 39875.82 35714.76 40388.35 34035.84 38254.71 36674.46 386
MVS-HIRNet60.25 35355.55 36074.35 32984.37 28056.57 33071.64 38174.11 38234.44 40345.54 38842.24 41131.11 36889.81 32940.36 37376.10 22776.67 383
MIMVSNet160.16 35457.33 35568.67 36269.71 38844.13 39078.92 35784.21 34655.05 36544.63 39171.85 37223.91 38581.54 38632.63 39555.03 36480.35 360
PM-MVS59.40 35556.59 35767.84 36463.63 39941.86 39476.76 36663.22 40459.01 34651.07 37072.27 37111.72 40783.25 37661.34 28550.28 37678.39 377
new-patchmatchnet59.30 35656.48 35867.79 36565.86 39744.19 38982.47 33081.77 36159.94 34243.65 39466.20 38727.67 37881.68 38539.34 37541.40 38977.50 381
test_vis1_rt59.09 35757.31 35664.43 37268.44 39246.02 38683.05 32748.63 41651.96 37249.57 37563.86 39216.30 39880.20 38971.21 19862.79 32267.07 399
test_fmvs356.82 35854.86 36262.69 37753.59 41035.47 40775.87 37165.64 40143.91 39555.10 35271.43 3766.91 41574.40 39768.64 22352.63 36978.20 378
DSMNet-mixed56.78 35954.44 36363.79 37363.21 40029.44 41664.43 39864.10 40342.12 40051.32 36871.60 37331.76 36375.04 39536.23 38165.20 30286.87 271
pmmvs355.51 36051.50 36667.53 36757.90 40850.93 36080.37 34673.66 38340.63 40144.15 39364.75 39016.30 39878.97 39144.77 35740.98 39272.69 391
TDRefinement55.28 36151.58 36566.39 37059.53 40746.15 38576.23 36972.80 38444.60 39342.49 39676.28 35315.29 40182.39 38133.20 39043.75 38570.62 395
dongtai55.18 36255.46 36154.34 38776.03 36936.88 40576.07 37084.61 34451.28 37443.41 39564.61 39156.56 19067.81 40518.09 41028.50 41058.32 403
LF4IMVS54.01 36352.12 36459.69 37862.41 40239.91 40268.59 38968.28 39842.96 39844.55 39275.18 35814.09 40568.39 40441.36 36951.68 37270.78 394
ttmdpeth53.34 36449.96 36763.45 37462.07 40440.04 39972.06 37965.64 40142.54 39951.88 36477.79 33913.94 40676.48 39332.93 39230.82 40873.84 388
MVStest151.35 36546.89 36964.74 37165.06 39851.10 35867.33 39472.58 38530.20 40735.30 40274.82 36027.70 37769.89 40224.44 40424.57 41173.22 389
N_pmnet50.55 36649.11 36854.88 38577.17 3624.02 42984.36 3102.00 42748.59 38245.86 38668.82 38132.22 36182.80 37931.58 39851.38 37377.81 380
new_pmnet49.31 36746.44 37057.93 38062.84 40140.74 39768.47 39062.96 40536.48 40235.09 40357.81 40014.97 40272.18 39932.86 39346.44 38160.88 402
mvsany_test348.86 36846.35 37156.41 38146.00 41631.67 41262.26 40047.25 41743.71 39645.54 38868.15 38410.84 40864.44 41357.95 30135.44 40273.13 390
test_f46.58 36943.45 37355.96 38245.18 41732.05 41161.18 40149.49 41533.39 40442.05 39762.48 3957.00 41465.56 40947.08 34643.21 38770.27 396
WB-MVS46.23 37044.94 37250.11 39062.13 40321.23 42376.48 36855.49 40945.89 39035.78 40161.44 39835.54 34972.83 3989.96 41721.75 41256.27 405
FPMVS45.64 37143.10 37553.23 38851.42 41336.46 40664.97 39771.91 38829.13 40827.53 40861.55 3979.83 41065.01 41116.00 41455.58 36258.22 404
SSC-MVS44.51 37243.35 37447.99 39461.01 40618.90 42574.12 37654.36 41043.42 39734.10 40560.02 39934.42 35470.39 4019.14 41919.57 41354.68 406
EGC-MVSNET42.35 37338.09 37655.11 38474.57 37246.62 38371.63 38255.77 4080.04 4220.24 42362.70 39414.24 40474.91 39617.59 41146.06 38243.80 408
LCM-MVSNet40.54 37435.79 37954.76 38636.92 42330.81 41351.41 41069.02 39522.07 41024.63 41045.37 4074.56 41965.81 40833.67 38834.50 40367.67 397
APD_test140.50 37537.31 37850.09 39151.88 41135.27 40859.45 40552.59 41221.64 41126.12 40957.80 4014.56 41966.56 40722.64 40639.09 39348.43 407
test_vis3_rt40.46 37637.79 37748.47 39344.49 41833.35 41066.56 39632.84 42432.39 40529.65 40639.13 4143.91 42268.65 40350.17 32740.99 39143.40 409
ANet_high40.27 37735.20 38055.47 38334.74 42434.47 40963.84 39971.56 39048.42 38318.80 41341.08 4129.52 41164.45 41220.18 4088.66 42067.49 398
test_method38.59 37835.16 38148.89 39254.33 40921.35 42245.32 41353.71 4117.41 41928.74 40751.62 4038.70 41252.87 41633.73 38732.89 40472.47 392
PMMVS237.93 37933.61 38250.92 38946.31 41524.76 41960.55 40450.05 41328.94 40920.93 41147.59 4044.41 42165.13 41025.14 40318.55 41562.87 401
Gipumacopyleft34.91 38031.44 38345.30 39570.99 38439.64 40319.85 41772.56 38620.10 41316.16 41721.47 4185.08 41871.16 40013.07 41543.70 38625.08 415
S. Galliani, K. Lasinger, K. Schindler: Massively Parallel Multiview Stereopsis by Surface Normal Diffusion. ICCV 2015
testf132.77 38129.47 38442.67 39741.89 42030.81 41352.07 40843.45 41815.45 41418.52 41444.82 4082.12 42358.38 41416.05 41230.87 40638.83 410
APD_test232.77 38129.47 38442.67 39741.89 42030.81 41352.07 40843.45 41815.45 41418.52 41444.82 4082.12 42358.38 41416.05 41230.87 40638.83 410
PMVScopyleft26.43 2231.84 38328.16 38642.89 39625.87 42627.58 41750.92 41149.78 41421.37 41214.17 41840.81 4132.01 42566.62 4069.61 41838.88 39634.49 414
Y. Furukawa, J. Ponce: Accurate, dense, and robust multiview stereopsis. PAMI (2010)
E-PMN24.61 38424.00 38826.45 40143.74 41918.44 42660.86 40239.66 42015.11 4169.53 42022.10 4176.52 41646.94 4198.31 42010.14 41713.98 417
MVEpermissive24.84 2324.35 38519.77 39138.09 39934.56 42526.92 41826.57 41538.87 42211.73 41811.37 41927.44 4151.37 42650.42 41811.41 41614.60 41636.93 412
Simon Fuhrmann, Fabian Langguth, Michael Goesele: MVE - A Multi-View Reconstruction Environment. EUROGRAPHICS Workshops on Graphics and Cultural Heritage (2014)
EMVS23.76 38623.20 39025.46 40241.52 42216.90 42760.56 40338.79 42314.62 4178.99 42120.24 4207.35 41345.82 4207.25 4219.46 41813.64 418
tmp_tt22.26 38723.75 38917.80 4035.23 42712.06 42835.26 41439.48 4212.82 42118.94 41244.20 41022.23 39024.64 42236.30 3809.31 41916.69 416
cdsmvs_eth3d_5k19.86 38826.47 3870.00 4070.00 4300.00 4320.00 41893.45 860.00 4250.00 42695.27 5949.56 2620.00 4260.00 4250.00 4230.00 422
wuyk23d11.30 38910.95 39212.33 40448.05 41419.89 42425.89 4161.92 4283.58 4203.12 4221.37 4220.64 42715.77 4236.23 4227.77 4211.35 419
ab-mvs-re7.91 39010.55 3930.00 4070.00 4300.00 4320.00 4180.00 4310.00 4250.00 42694.95 690.00 4300.00 4260.00 4250.00 4230.00 422
testmvs7.23 3919.62 3940.06 4060.04 4280.02 43184.98 3080.02 4290.03 4230.18 4241.21 4230.01 4290.02 4240.14 4230.01 4220.13 421
test1236.92 3929.21 3950.08 4050.03 4290.05 43081.65 3360.01 4300.02 4240.14 4250.85 4240.03 4280.02 4240.12 4240.00 4230.16 420
pcd_1.5k_mvsjas4.46 3935.95 3960.00 4070.00 4300.00 4320.00 4180.00 4310.00 4250.00 4260.00 42553.55 2240.00 4260.00 4250.00 4230.00 422
mmdepth0.00 3940.00 3970.00 4070.00 4300.00 4320.00 4180.00 4310.00 4250.00 4260.00 4250.00 4300.00 4260.00 4250.00 4230.00 422
monomultidepth0.00 3940.00 3970.00 4070.00 4300.00 4320.00 4180.00 4310.00 4250.00 4260.00 4250.00 4300.00 4260.00 4250.00 4230.00 422
test_blank0.00 3940.00 3970.00 4070.00 4300.00 4320.00 4180.00 4310.00 4250.00 4260.00 4250.00 4300.00 4260.00 4250.00 4230.00 422
uanet_test0.00 3940.00 3970.00 4070.00 4300.00 4320.00 4180.00 4310.00 4250.00 4260.00 4250.00 4300.00 4260.00 4250.00 4230.00 422
DCPMVS0.00 3940.00 3970.00 4070.00 4300.00 4320.00 4180.00 4310.00 4250.00 4260.00 4250.00 4300.00 4260.00 4250.00 4230.00 422
sosnet-low-res0.00 3940.00 3970.00 4070.00 4300.00 4320.00 4180.00 4310.00 4250.00 4260.00 4250.00 4300.00 4260.00 4250.00 4230.00 422
sosnet0.00 3940.00 3970.00 4070.00 4300.00 4320.00 4180.00 4310.00 4250.00 4260.00 4250.00 4300.00 4260.00 4250.00 4230.00 422
uncertanet0.00 3940.00 3970.00 4070.00 4300.00 4320.00 4180.00 4310.00 4250.00 4260.00 4250.00 4300.00 4260.00 4250.00 4230.00 422
Regformer0.00 3940.00 3970.00 4070.00 4300.00 4320.00 4180.00 4310.00 4250.00 4260.00 4250.00 4300.00 4260.00 4250.00 4230.00 422
uanet0.00 3940.00 3970.00 4070.00 4300.00 4320.00 4180.00 4310.00 4250.00 4260.00 4250.00 4300.00 4260.00 4250.00 4230.00 422
WAC-MVS49.45 36731.56 399
FOURS193.95 4661.77 25293.96 7091.92 15162.14 32586.57 46
MSC_two_6792asdad89.60 997.31 473.22 1295.05 2799.07 1392.01 2594.77 2696.51 24
PC_three_145280.91 4894.07 296.83 1883.57 499.12 595.70 797.42 497.55 4
No_MVS89.60 997.31 473.22 1295.05 2799.07 1392.01 2594.77 2696.51 24
test_one_060196.32 1869.74 4994.18 5871.42 22990.67 1996.85 1674.45 20
eth-test20.00 430
eth-test0.00 430
ZD-MVS96.63 965.50 15793.50 8470.74 24385.26 6295.19 6564.92 8397.29 7687.51 5793.01 56
RE-MVS-def80.48 14792.02 10258.56 30990.90 20990.45 21162.76 31878.89 12994.46 8349.30 26578.77 14186.77 13192.28 186
IU-MVS96.46 1169.91 4295.18 2180.75 4995.28 192.34 2295.36 1496.47 28
OPU-MVS89.97 397.52 373.15 1496.89 697.00 983.82 299.15 295.72 597.63 397.62 2
test_241102_TWO94.41 4971.65 21892.07 997.21 474.58 1899.11 692.34 2295.36 1496.59 19
test_241102_ONE96.45 1269.38 5594.44 4771.65 21892.11 797.05 776.79 999.11 6
9.1487.63 2893.86 4894.41 5294.18 5872.76 18386.21 4896.51 2466.64 6397.88 4490.08 3994.04 39
save fliter93.84 4967.89 9495.05 3992.66 12078.19 95
test_0728_THIRD72.48 18890.55 2096.93 1176.24 1199.08 1191.53 3094.99 1896.43 31
test_0728_SECOND88.70 1896.45 1270.43 3396.64 1094.37 5399.15 291.91 2894.90 2296.51 24
test072696.40 1569.99 3896.76 894.33 5571.92 20491.89 1197.11 673.77 23
GSMVS94.68 100
test_part296.29 1968.16 8890.78 17
sam_mvs157.85 17094.68 100
sam_mvs54.91 209
ambc69.61 35861.38 40541.35 39649.07 41285.86 33450.18 37466.40 38610.16 40988.14 34245.73 35244.20 38479.32 369
MTGPAbinary92.23 133
test_post178.95 35620.70 41953.05 22991.50 31160.43 290
test_post23.01 41656.49 19192.67 274
patchmatchnet-post67.62 38557.62 17390.25 320
GG-mvs-BLEND86.53 7391.91 11069.67 5275.02 37594.75 3478.67 13690.85 16877.91 794.56 20772.25 18893.74 4595.36 65
MTMP93.77 8432.52 425
gm-plane-assit88.42 19367.04 11878.62 9191.83 15197.37 7076.57 153
test9_res89.41 4094.96 1995.29 70
TEST994.18 4167.28 10994.16 5993.51 8271.75 21585.52 5795.33 5468.01 5397.27 80
test_894.19 4067.19 11194.15 6193.42 8971.87 20985.38 6095.35 5368.19 5196.95 106
agg_prior286.41 7094.75 3095.33 66
agg_prior94.16 4366.97 12093.31 9284.49 6896.75 116
TestCases72.46 34479.57 33251.42 35668.61 39651.25 37545.88 38481.23 30119.86 39686.58 35638.98 37657.01 35879.39 367
test_prior467.18 11393.92 73
test_prior295.10 3875.40 13685.25 6395.61 4567.94 5487.47 5994.77 26
test_prior86.42 7694.71 3567.35 10893.10 10396.84 11395.05 83
旧先验292.00 16259.37 34587.54 3993.47 25075.39 161
新几何291.41 183
新几何184.73 13392.32 9264.28 18891.46 17759.56 34479.77 11892.90 12456.95 18396.57 12163.40 27092.91 5893.34 153
旧先验191.94 10760.74 27591.50 17594.36 8765.23 7891.84 7194.55 107
无先验92.71 12792.61 12462.03 32697.01 9666.63 24193.97 135
原ACMM292.01 159
原ACMM184.42 14793.21 6764.27 18993.40 9165.39 29379.51 12192.50 13258.11 16996.69 11765.27 26093.96 4092.32 184
test22289.77 15861.60 25789.55 25189.42 25556.83 35977.28 14992.43 13652.76 23291.14 8593.09 162
testdata296.09 14261.26 286
segment_acmp65.94 71
testdata81.34 23289.02 17957.72 31689.84 23958.65 34885.32 6194.09 10057.03 17893.28 25269.34 21490.56 9193.03 165
testdata189.21 26077.55 108
test1287.09 5294.60 3668.86 6792.91 11082.67 8865.44 7697.55 6293.69 4894.84 92
plane_prior786.94 23461.51 258
plane_prior687.23 22662.32 24250.66 251
plane_prior591.31 18195.55 17176.74 15178.53 20688.39 248
plane_prior489.14 197
plane_prior361.95 25079.09 8172.53 199
plane_prior293.13 11078.81 88
plane_prior187.15 228
plane_prior62.42 23893.85 7779.38 7378.80 203
n20.00 431
nn0.00 431
door-mid66.01 400
lessismore_v073.72 33572.93 37947.83 37561.72 40645.86 38673.76 36328.63 37689.81 32947.75 34431.37 40583.53 322
LGP-MVS_train79.56 27984.31 28159.37 29989.73 24569.49 25664.86 29088.42 20238.65 32494.30 21672.56 18572.76 24885.01 309
test1193.01 106
door66.57 399
HQP5-MVS63.66 207
HQP-NCC87.54 21994.06 6379.80 6474.18 178
ACMP_Plane87.54 21994.06 6379.80 6474.18 178
BP-MVS77.63 148
HQP4-MVS74.18 17895.61 16688.63 242
HQP3-MVS91.70 16778.90 201
HQP2-MVS51.63 243
NP-MVS87.41 22263.04 22390.30 178
MDTV_nov1_ep13_2view59.90 29180.13 35167.65 27672.79 19354.33 21759.83 29492.58 177
MDTV_nov1_ep1372.61 26389.06 17868.48 7680.33 34790.11 22971.84 21171.81 21175.92 35653.01 23093.92 23848.04 33973.38 243
ACMMP++_ref71.63 256
ACMMP++69.72 265
Test By Simon54.21 218
ITE_SJBPF70.43 35674.44 37347.06 38177.32 37260.16 34054.04 35783.53 26923.30 38784.01 36943.07 36061.58 33880.21 364
DeepMVS_CXcopyleft34.71 40051.45 41224.73 42028.48 42631.46 40617.49 41652.75 4025.80 41742.60 42118.18 40919.42 41436.81 413