| MCST-MVS | | | 91.08 1 | 91.46 3 | 89.94 4 | 97.66 2 | 73.37 8 | 97.13 3 | 95.58 11 | 89.33 2 | 85.77 54 | 96.26 32 | 72.84 26 | 99.38 1 | 92.64 19 | 95.93 9 | 97.08 12 |
|
| MM | | | 90.87 2 | 91.52 2 | 88.92 15 | 92.12 96 | 71.10 28 | 97.02 4 | 96.04 6 | 88.70 3 | 91.57 14 | 96.19 35 | 70.12 40 | 98.91 17 | 96.83 1 | 95.06 17 | 96.76 16 |
|
| DPM-MVS | | | 90.70 3 | 90.52 8 | 91.24 1 | 89.68 153 | 76.68 2 | 97.29 2 | 95.35 15 | 82.87 22 | 91.58 13 | 97.22 3 | 79.93 5 | 99.10 9 | 83.12 97 | 97.64 2 | 97.94 1 |
|
| DVP-MVS++ | | | 90.53 4 | 91.09 5 | 88.87 16 | 97.31 4 | 69.91 43 | 93.96 71 | 94.37 52 | 72.48 184 | 92.07 9 | 96.85 16 | 83.82 2 | 99.15 2 | 91.53 31 | 97.42 4 | 97.55 4 |
|
| MSP-MVS | | | 90.38 5 | 91.87 1 | 85.88 87 | 92.83 77 | 64.03 190 | 93.06 113 | 94.33 54 | 82.19 30 | 93.65 3 | 96.15 37 | 85.89 1 | 97.19 84 | 91.02 35 | 97.75 1 | 96.43 30 |
| Zhenlong Yuan, Cong Liu, Fei Shen, Zhaoxin Li, Jingguo luo, Tianlu Mao and Zhaoqi Wang: MSP-MVS: Multi-granularity Segmentation Prior Guided Multi-View Stereo. AAAI2025 |
| CNVR-MVS | | | 90.32 6 | 90.89 7 | 88.61 22 | 96.76 8 | 70.65 32 | 96.47 14 | 94.83 30 | 84.83 13 | 89.07 32 | 96.80 19 | 70.86 36 | 99.06 15 | 92.64 19 | 95.71 11 | 96.12 39 |
|
| DELS-MVS | | | 90.05 7 | 90.09 11 | 89.94 4 | 93.14 71 | 73.88 7 | 97.01 5 | 94.40 50 | 88.32 4 | 85.71 55 | 94.91 72 | 74.11 19 | 98.91 17 | 87.26 62 | 95.94 8 | 97.03 13 |
| Christian Sormann, Emanuele Santellani, Mattia Rossi, Andreas Kuhn, Friedrich Fraundorfer: DELS-MVS: Deep Epipolar Line Search for Multi-View Stereo. Winter Conference on Applications of Computer Vision (WACV), 2023 |
| MVS_0304 | | | 90.01 8 | 90.50 9 | 88.53 23 | 90.14 144 | 70.94 29 | 96.47 14 | 95.72 10 | 87.33 6 | 89.60 29 | 96.26 32 | 68.44 45 | 98.74 24 | 95.82 4 | 94.72 31 | 95.90 46 |
|
| SED-MVS | | | 89.94 9 | 90.36 10 | 88.70 18 | 96.45 12 | 69.38 54 | 96.89 6 | 94.44 46 | 71.65 214 | 92.11 7 | 97.21 4 | 76.79 9 | 99.11 6 | 92.34 21 | 95.36 14 | 97.62 2 |
|
| DeepPCF-MVS | | 81.17 1 | 89.72 10 | 91.38 4 | 84.72 132 | 93.00 74 | 58.16 304 | 96.72 9 | 94.41 48 | 86.50 10 | 90.25 22 | 97.83 1 | 75.46 14 | 98.67 25 | 92.78 18 | 95.49 13 | 97.32 8 |
|
| patch_mono-2 | | | 89.71 11 | 90.99 6 | 85.85 90 | 96.04 24 | 63.70 200 | 95.04 41 | 95.19 19 | 86.74 9 | 91.53 15 | 95.15 65 | 73.86 20 | 97.58 59 | 93.38 14 | 92.00 68 | 96.28 36 |
|
| CANet | | | 89.61 12 | 89.99 12 | 88.46 24 | 94.39 39 | 69.71 50 | 96.53 13 | 93.78 66 | 86.89 8 | 89.68 28 | 95.78 42 | 65.94 66 | 99.10 9 | 92.99 16 | 93.91 41 | 96.58 22 |
|
| DVP-MVS |  | | 89.41 13 | 89.73 14 | 88.45 25 | 96.40 15 | 69.99 39 | 96.64 10 | 94.52 42 | 71.92 200 | 90.55 20 | 96.93 11 | 73.77 21 | 99.08 11 | 91.91 29 | 94.90 22 | 96.29 34 |
| Zhenlong Yuan, Jinguo Luo, Fei Shen, Zhaoxin Li, Cong Liu, Tianlu Mao, Zhaoqi Wang: DVP-MVS: Synergize Depth-Edge and Visibility Prior for Multi-View Stereo. AAAI2025 |
| HPM-MVS++ |  | | 89.37 14 | 89.95 13 | 87.64 34 | 95.10 30 | 68.23 84 | 95.24 34 | 94.49 44 | 82.43 27 | 88.90 33 | 96.35 29 | 71.89 34 | 98.63 26 | 88.76 49 | 96.40 6 | 96.06 40 |
|
| NCCC | | | 89.07 15 | 89.46 15 | 87.91 28 | 96.60 10 | 69.05 62 | 96.38 16 | 94.64 39 | 84.42 14 | 86.74 46 | 96.20 34 | 66.56 62 | 98.76 23 | 89.03 48 | 94.56 33 | 95.92 45 |
|
| DPE-MVS |  | | 88.77 16 | 89.21 16 | 87.45 43 | 96.26 20 | 67.56 100 | 94.17 58 | 94.15 59 | 68.77 264 | 90.74 18 | 97.27 2 | 76.09 12 | 98.49 29 | 90.58 39 | 94.91 21 | 96.30 33 |
| Kehua Chen, Zhenlong Yuan, Tianlu Mao, Zhaoqi Wang: Dual-Level Precision Edges Guided Multi-View Stereo with Accurate Planarization. AAAI2025 |
| SMA-MVS |  | | 88.14 17 | 88.29 21 | 87.67 33 | 93.21 68 | 68.72 70 | 93.85 78 | 94.03 62 | 74.18 147 | 91.74 12 | 96.67 21 | 65.61 70 | 98.42 33 | 89.24 45 | 96.08 7 | 95.88 47 |
| Yufeng Yin; Xiaoyan Liu; Zichao Zhang: SMA-MVS: Segmentation-Guided Multi-Scale Anchor Deformation Patch Multi-View Stereo. IEEE Transactions on Circuits and Systems for Video Technology |
| PS-MVSNAJ | | | 88.14 17 | 87.61 28 | 89.71 6 | 92.06 97 | 76.72 1 | 95.75 21 | 93.26 90 | 83.86 16 | 89.55 30 | 96.06 38 | 53.55 213 | 97.89 43 | 91.10 33 | 93.31 52 | 94.54 105 |
|
| TSAR-MVS + MP. | | | 88.11 19 | 88.64 17 | 86.54 70 | 91.73 110 | 68.04 88 | 90.36 227 | 93.55 79 | 82.89 21 | 91.29 16 | 92.89 123 | 72.27 31 | 96.03 142 | 87.99 53 | 94.77 26 | 95.54 56 |
| Zhenlong Yuan, Jiakai Cao, Zhaoqi Wang, Zhaoxin Li: TSAR-MVS: Textureless-aware Segmentation and Correlative Refinement Guided Multi-View Stereo. Pattern Recognition |
| TSAR-MVS + GP. | | | 87.96 20 | 88.37 20 | 86.70 63 | 93.51 61 | 65.32 155 | 95.15 37 | 93.84 65 | 78.17 93 | 85.93 53 | 94.80 75 | 75.80 13 | 98.21 34 | 89.38 42 | 88.78 102 | 96.59 20 |
|
| DeepC-MVS_fast | | 79.48 2 | 87.95 21 | 88.00 24 | 87.79 31 | 95.86 27 | 68.32 78 | 95.74 22 | 94.11 60 | 83.82 17 | 83.49 76 | 96.19 35 | 64.53 84 | 98.44 31 | 83.42 96 | 94.88 25 | 96.61 19 |
| Andreas Kuhn, Christian Sormann, Mattia Rossi, Oliver Erdler, Friedrich Fraundorfer: DeepC-MVS: Deep Confidence Prediction for Multi-View Stereo Reconstruction. 3DV 2020 |
| xiu_mvs_v2_base | | | 87.92 22 | 87.38 32 | 89.55 11 | 91.41 121 | 76.43 3 | 95.74 22 | 93.12 98 | 83.53 19 | 89.55 30 | 95.95 40 | 53.45 217 | 97.68 50 | 91.07 34 | 92.62 59 | 94.54 105 |
|
| EPNet | | | 87.84 23 | 88.38 19 | 86.23 80 | 93.30 65 | 66.05 137 | 95.26 33 | 94.84 29 | 87.09 7 | 88.06 35 | 94.53 81 | 66.79 59 | 97.34 75 | 83.89 93 | 91.68 73 | 95.29 68 |
| Wanjuan Su, Wenbing Tao: Efficient Edge-Preserving Multi-View Stereo Network for Depth Estimation. AAAI 2023 |
| lupinMVS | | | 87.74 24 | 87.77 26 | 87.63 38 | 89.24 168 | 71.18 25 | 96.57 12 | 92.90 106 | 82.70 25 | 87.13 41 | 95.27 58 | 64.99 75 | 95.80 147 | 89.34 43 | 91.80 71 | 95.93 44 |
|
| test_fmvsm_n_1920 | | | 87.69 25 | 88.50 18 | 85.27 111 | 87.05 224 | 63.55 207 | 93.69 88 | 91.08 185 | 84.18 15 | 90.17 24 | 97.04 8 | 67.58 54 | 97.99 39 | 95.72 5 | 90.03 93 | 94.26 113 |
|
| APDe-MVS |  | | 87.54 26 | 87.84 25 | 86.65 64 | 96.07 23 | 66.30 133 | 94.84 46 | 93.78 66 | 69.35 255 | 88.39 34 | 96.34 30 | 67.74 53 | 97.66 54 | 90.62 38 | 93.44 50 | 96.01 43 |
| Zhaojie Zeng, Yuesong Wang, Tao Guan: Matching Ambiguity-Resilient Multi-View Stereo via Adaptive Patch Deformation. Pattern Recognition |
| fmvsm_l_conf0.5_n | | | 87.49 27 | 88.19 22 | 85.39 105 | 86.95 225 | 64.37 180 | 94.30 55 | 88.45 286 | 80.51 51 | 92.70 4 | 96.86 15 | 69.98 41 | 97.15 88 | 95.83 3 | 88.08 109 | 94.65 99 |
|
| SD-MVS | | | 87.49 27 | 87.49 30 | 87.50 42 | 93.60 56 | 68.82 68 | 93.90 75 | 92.63 117 | 76.86 112 | 87.90 36 | 95.76 43 | 66.17 63 | 97.63 56 | 89.06 47 | 91.48 77 | 96.05 41 |
| Zhenlong Yuan, Jiakai Cao, Zhaoxin Li, Hao Jiang and Zhaoqi Wang: SD-MVS: Segmentation-driven Deformation Multi-View Stereo with Spherical Refinement and EM optimization. AAAI2024 |
| fmvsm_l_conf0.5_n_a | | | 87.44 29 | 88.15 23 | 85.30 109 | 87.10 222 | 64.19 187 | 94.41 53 | 88.14 295 | 80.24 59 | 92.54 6 | 96.97 10 | 69.52 43 | 97.17 85 | 95.89 2 | 88.51 105 | 94.56 102 |
|
| dcpmvs_2 | | | 87.37 30 | 87.55 29 | 86.85 56 | 95.04 32 | 68.20 85 | 90.36 227 | 90.66 197 | 79.37 73 | 81.20 92 | 93.67 107 | 74.73 15 | 96.55 121 | 90.88 36 | 92.00 68 | 95.82 48 |
|
| alignmvs | | | 87.28 31 | 86.97 36 | 88.24 27 | 91.30 123 | 71.14 27 | 95.61 26 | 93.56 78 | 79.30 74 | 87.07 43 | 95.25 60 | 68.43 46 | 96.93 107 | 87.87 54 | 84.33 144 | 96.65 18 |
|
| train_agg | | | 87.21 32 | 87.42 31 | 86.60 66 | 94.18 41 | 67.28 107 | 94.16 59 | 93.51 80 | 71.87 205 | 85.52 57 | 95.33 53 | 68.19 48 | 97.27 82 | 89.09 46 | 94.90 22 | 95.25 74 |
|
| MG-MVS | | | 87.11 33 | 86.27 43 | 89.62 7 | 97.79 1 | 76.27 4 | 94.96 44 | 94.49 44 | 78.74 88 | 83.87 75 | 92.94 121 | 64.34 85 | 96.94 105 | 75.19 154 | 94.09 37 | 95.66 51 |
|
| SF-MVS | | | 87.03 34 | 87.09 34 | 86.84 57 | 92.70 83 | 67.45 105 | 93.64 91 | 93.76 69 | 70.78 238 | 86.25 48 | 96.44 28 | 66.98 57 | 97.79 47 | 88.68 50 | 94.56 33 | 95.28 70 |
|
| iter_conf05_11 | | | 86.99 35 | 86.27 43 | 89.15 13 | 93.74 52 | 72.45 13 | 97.56 1 | 87.04 309 | 88.32 4 | 92.60 5 | 96.57 23 | 32.61 348 | 97.45 66 | 92.21 24 | 95.80 10 | 97.53 6 |
|
| CSCG | | | 86.87 36 | 86.26 45 | 88.72 17 | 95.05 31 | 70.79 31 | 93.83 83 | 95.33 16 | 68.48 268 | 77.63 138 | 94.35 90 | 73.04 24 | 98.45 30 | 84.92 84 | 93.71 46 | 96.92 15 |
|
| sasdasda | | | 86.85 37 | 86.25 46 | 88.66 20 | 91.80 108 | 71.92 16 | 93.54 96 | 91.71 154 | 80.26 56 | 87.55 38 | 95.25 60 | 63.59 98 | 96.93 107 | 88.18 51 | 84.34 142 | 97.11 10 |
|
| canonicalmvs | | | 86.85 37 | 86.25 46 | 88.66 20 | 91.80 108 | 71.92 16 | 93.54 96 | 91.71 154 | 80.26 56 | 87.55 38 | 95.25 60 | 63.59 98 | 96.93 107 | 88.18 51 | 84.34 142 | 97.11 10 |
|
| PHI-MVS | | | 86.83 39 | 86.85 40 | 86.78 61 | 93.47 62 | 65.55 151 | 95.39 31 | 95.10 22 | 71.77 210 | 85.69 56 | 96.52 24 | 62.07 118 | 98.77 22 | 86.06 74 | 95.60 12 | 96.03 42 |
|
| SteuartSystems-ACMMP | | | 86.82 40 | 86.90 38 | 86.58 68 | 90.42 138 | 66.38 130 | 96.09 18 | 93.87 64 | 77.73 100 | 84.01 74 | 95.66 45 | 63.39 101 | 97.94 40 | 87.40 60 | 93.55 49 | 95.42 57 |
| Skip Steuart: Steuart Systems R&D Blog. |
| PVSNet_Blended | | | 86.73 41 | 86.86 39 | 86.31 79 | 93.76 49 | 67.53 102 | 96.33 17 | 93.61 76 | 82.34 29 | 81.00 97 | 93.08 117 | 63.19 105 | 97.29 78 | 87.08 65 | 91.38 79 | 94.13 120 |
|
| testing11 | | | 86.71 42 | 86.44 42 | 87.55 40 | 93.54 59 | 71.35 22 | 93.65 90 | 95.58 11 | 81.36 43 | 80.69 100 | 92.21 141 | 72.30 30 | 96.46 126 | 85.18 80 | 83.43 151 | 94.82 92 |
|
| test_fmvsmconf_n | | | 86.58 43 | 87.17 33 | 84.82 125 | 85.28 255 | 62.55 231 | 94.26 57 | 89.78 230 | 83.81 18 | 87.78 37 | 96.33 31 | 65.33 72 | 96.98 100 | 94.40 11 | 87.55 114 | 94.95 84 |
|
| jason | | | 86.40 44 | 86.17 48 | 87.11 50 | 86.16 240 | 70.54 34 | 95.71 25 | 92.19 132 | 82.00 32 | 84.58 67 | 94.34 91 | 61.86 120 | 95.53 167 | 87.76 55 | 90.89 85 | 95.27 71 |
| jason: jason. |
| fmvsm_s_conf0.5_n | | | 86.39 45 | 86.91 37 | 84.82 125 | 87.36 217 | 63.54 208 | 94.74 48 | 90.02 224 | 82.52 26 | 90.14 25 | 96.92 13 | 62.93 110 | 97.84 46 | 95.28 8 | 82.26 161 | 93.07 156 |
|
| WTY-MVS | | | 86.32 46 | 85.81 55 | 87.85 29 | 92.82 79 | 69.37 56 | 95.20 35 | 95.25 17 | 82.71 24 | 81.91 87 | 94.73 76 | 67.93 52 | 97.63 56 | 79.55 124 | 82.25 162 | 96.54 23 |
|
| MSLP-MVS++ | | | 86.27 47 | 85.91 54 | 87.35 45 | 92.01 100 | 68.97 65 | 95.04 41 | 92.70 111 | 79.04 83 | 81.50 90 | 96.50 26 | 58.98 152 | 96.78 113 | 83.49 95 | 93.93 40 | 96.29 34 |
|
| VNet | | | 86.20 48 | 85.65 59 | 87.84 30 | 93.92 46 | 69.99 39 | 95.73 24 | 95.94 7 | 78.43 90 | 86.00 52 | 93.07 118 | 58.22 157 | 97.00 96 | 85.22 78 | 84.33 144 | 96.52 24 |
|
| MVS_111021_HR | | | 86.19 49 | 85.80 56 | 87.37 44 | 93.17 70 | 69.79 47 | 93.99 70 | 93.76 69 | 79.08 81 | 78.88 126 | 93.99 101 | 62.25 117 | 98.15 36 | 85.93 75 | 91.15 83 | 94.15 119 |
|
| CS-MVS-test | | | 86.14 50 | 87.01 35 | 83.52 169 | 92.63 85 | 59.36 292 | 95.49 28 | 91.92 141 | 80.09 60 | 85.46 59 | 95.53 49 | 61.82 122 | 95.77 150 | 86.77 69 | 93.37 51 | 95.41 58 |
|
| ACMMP_NAP | | | 86.05 51 | 85.80 56 | 86.80 60 | 91.58 114 | 67.53 102 | 91.79 171 | 93.49 83 | 74.93 138 | 84.61 66 | 95.30 55 | 59.42 146 | 97.92 41 | 86.13 72 | 94.92 20 | 94.94 85 |
|
| testing99 | | | 86.01 52 | 85.47 60 | 87.63 38 | 93.62 55 | 71.25 24 | 93.47 102 | 95.23 18 | 80.42 54 | 80.60 102 | 91.95 145 | 71.73 35 | 96.50 124 | 80.02 121 | 82.22 163 | 95.13 77 |
|
| ETV-MVS | | | 86.01 52 | 86.11 49 | 85.70 97 | 90.21 143 | 67.02 116 | 93.43 104 | 91.92 141 | 81.21 45 | 84.13 73 | 94.07 100 | 60.93 130 | 95.63 158 | 89.28 44 | 89.81 94 | 94.46 111 |
|
| testing91 | | | 85.93 54 | 85.31 63 | 87.78 32 | 93.59 57 | 71.47 20 | 93.50 99 | 95.08 25 | 80.26 56 | 80.53 103 | 91.93 146 | 70.43 38 | 96.51 123 | 80.32 119 | 82.13 165 | 95.37 61 |
|
| APD-MVS |  | | 85.93 54 | 85.99 52 | 85.76 94 | 95.98 26 | 65.21 158 | 93.59 94 | 92.58 119 | 66.54 281 | 86.17 50 | 95.88 41 | 63.83 91 | 97.00 96 | 86.39 71 | 92.94 56 | 95.06 79 |
| Yuesong Wang, Zhaojie Zeng and etc.: Adaptive Patch Deformation for Textureless-Resilient Multi-View Stereo. CVPR2023 |
| PAPM | | | 85.89 56 | 85.46 61 | 87.18 48 | 88.20 196 | 72.42 14 | 92.41 143 | 92.77 109 | 82.11 31 | 80.34 106 | 93.07 118 | 68.27 47 | 95.02 180 | 78.39 136 | 93.59 48 | 94.09 122 |
|
| CS-MVS | | | 85.80 57 | 86.65 41 | 83.27 177 | 92.00 101 | 58.92 297 | 95.31 32 | 91.86 146 | 79.97 61 | 84.82 65 | 95.40 51 | 62.26 116 | 95.51 168 | 86.11 73 | 92.08 67 | 95.37 61 |
|
| fmvsm_s_conf0.5_n_a | | | 85.75 58 | 86.09 50 | 84.72 132 | 85.73 249 | 63.58 205 | 93.79 84 | 89.32 248 | 81.42 41 | 90.21 23 | 96.91 14 | 62.41 115 | 97.67 51 | 94.48 10 | 80.56 180 | 92.90 162 |
|
| test_fmvsmconf0.1_n | | | 85.71 59 | 86.08 51 | 84.62 139 | 80.83 308 | 62.33 236 | 93.84 81 | 88.81 273 | 83.50 20 | 87.00 44 | 96.01 39 | 63.36 102 | 96.93 107 | 94.04 12 | 87.29 117 | 94.61 101 |
|
| CDPH-MVS | | | 85.71 59 | 85.46 61 | 86.46 72 | 94.75 34 | 67.19 109 | 93.89 76 | 92.83 108 | 70.90 234 | 83.09 79 | 95.28 56 | 63.62 96 | 97.36 73 | 80.63 116 | 94.18 36 | 94.84 89 |
|
| casdiffmvs_mvg |  | | 85.66 61 | 85.18 65 | 87.09 51 | 88.22 195 | 69.35 57 | 93.74 87 | 91.89 144 | 81.47 37 | 80.10 108 | 91.45 155 | 64.80 80 | 96.35 127 | 87.23 63 | 87.69 112 | 95.58 54 |
| Fangjinhua Wang, Qingshan Xu, Yew-Soon Ong, Marc Pollefeys: Lightweight and Accurate Multi-View Stereo With Confidence-Aware Diffusion Model. IEEE T-PAMI 2025 |
| fmvsm_s_conf0.1_n | | | 85.61 62 | 85.93 53 | 84.68 135 | 82.95 292 | 63.48 210 | 94.03 69 | 89.46 242 | 81.69 35 | 89.86 26 | 96.74 20 | 61.85 121 | 97.75 49 | 94.74 9 | 82.01 167 | 92.81 164 |
|
| sdadasadasd | | | 85.59 63 | 85.73 58 | 85.17 115 | 91.41 121 | 62.44 232 | 92.87 121 | 91.31 171 | 79.65 67 | 86.99 45 | 95.14 66 | 62.90 111 | 96.12 134 | 87.13 64 | 84.13 149 | 96.96 14 |
|
| DeepC-MVS | | 77.85 3 | 85.52 64 | 85.24 64 | 86.37 76 | 88.80 178 | 66.64 124 | 92.15 150 | 93.68 74 | 81.07 46 | 76.91 148 | 93.64 108 | 62.59 113 | 98.44 31 | 85.50 76 | 92.84 58 | 94.03 126 |
| Andreas Kuhn, Christian Sormann, Mattia Rossi, Oliver Erdler, Friedrich Fraundorfer: DeepC-MVS: Deep Confidence Prediction for Multi-View Stereo Reconstruction. 3DV 2020 |
| casdiffmvs |  | | 85.37 65 | 84.87 71 | 86.84 57 | 88.25 193 | 69.07 61 | 93.04 115 | 91.76 151 | 81.27 44 | 80.84 99 | 92.07 143 | 64.23 86 | 96.06 140 | 84.98 83 | 87.43 116 | 95.39 59 |
| Fangjinhua Wang, Qingshan Xu, Yew-Soon Ong, Marc Pollefeys: Lightweight and Accurate Multi-View Stereo With Confidence-Aware Diffusion Model. IEEE T-PAMI 2025 |
| ZNCC-MVS | | | 85.33 66 | 85.08 67 | 86.06 82 | 93.09 73 | 65.65 147 | 93.89 76 | 93.41 87 | 73.75 158 | 79.94 110 | 94.68 78 | 60.61 133 | 98.03 38 | 82.63 100 | 93.72 45 | 94.52 107 |
|
| MP-MVS-pluss | | | 85.24 67 | 85.13 66 | 85.56 100 | 91.42 119 | 65.59 149 | 91.54 181 | 92.51 121 | 74.56 141 | 80.62 101 | 95.64 46 | 59.15 150 | 97.00 96 | 86.94 67 | 93.80 42 | 94.07 124 |
| MP-MVS-pluss: MP-MVS-pluss. MP-MVS-pluss |
| testing222 | | | 85.18 68 | 84.69 73 | 86.63 65 | 92.91 76 | 69.91 43 | 92.61 134 | 95.80 9 | 80.31 55 | 80.38 105 | 92.27 138 | 68.73 44 | 95.19 177 | 75.94 149 | 83.27 153 | 94.81 93 |
|
| PAPR | | | 85.15 69 | 84.47 74 | 87.18 48 | 96.02 25 | 68.29 79 | 91.85 169 | 93.00 103 | 76.59 119 | 79.03 122 | 95.00 67 | 61.59 123 | 97.61 58 | 78.16 137 | 89.00 101 | 95.63 52 |
|
| MP-MVS |  | | 85.02 70 | 84.97 69 | 85.17 115 | 92.60 86 | 64.27 185 | 93.24 107 | 92.27 126 | 73.13 169 | 79.63 114 | 94.43 84 | 61.90 119 | 97.17 85 | 85.00 82 | 92.56 60 | 94.06 125 |
| Rongxuan Tan, Qing Wang, et al.: MP-MVS: Multi-Scale Windows PatchMatch and Planar Prior Multi-View Stereo. |
| baseline | | | 85.01 71 | 84.44 75 | 86.71 62 | 88.33 190 | 68.73 69 | 90.24 232 | 91.82 150 | 81.05 47 | 81.18 93 | 92.50 130 | 63.69 94 | 96.08 139 | 84.45 88 | 86.71 126 | 95.32 66 |
|
| CHOSEN 1792x2688 | | | 84.98 72 | 83.45 88 | 89.57 10 | 89.94 148 | 75.14 5 | 92.07 156 | 92.32 124 | 81.87 33 | 75.68 157 | 88.27 203 | 60.18 136 | 98.60 27 | 80.46 118 | 90.27 92 | 94.96 83 |
|
| EIA-MVS | | | 84.84 73 | 84.88 70 | 84.69 134 | 91.30 123 | 62.36 235 | 93.85 78 | 92.04 136 | 79.45 70 | 79.33 119 | 94.28 94 | 62.42 114 | 96.35 127 | 80.05 120 | 91.25 82 | 95.38 60 |
|
| fmvsm_s_conf0.1_n_a | | | 84.76 74 | 84.84 72 | 84.53 141 | 80.23 318 | 63.50 209 | 92.79 123 | 88.73 277 | 80.46 52 | 89.84 27 | 96.65 22 | 60.96 129 | 97.57 61 | 93.80 13 | 80.14 182 | 92.53 171 |
|
| HFP-MVS | | | 84.73 75 | 84.40 76 | 85.72 96 | 93.75 51 | 65.01 164 | 93.50 99 | 93.19 94 | 72.19 194 | 79.22 120 | 94.93 70 | 59.04 151 | 97.67 51 | 81.55 107 | 92.21 63 | 94.49 110 |
|
| MVS | | | 84.66 76 | 82.86 103 | 90.06 2 | 90.93 129 | 74.56 6 | 87.91 278 | 95.54 13 | 68.55 266 | 72.35 200 | 94.71 77 | 59.78 142 | 98.90 19 | 81.29 113 | 94.69 32 | 96.74 17 |
|
| GST-MVS | | | 84.63 77 | 84.29 77 | 85.66 98 | 92.82 79 | 65.27 156 | 93.04 115 | 93.13 97 | 73.20 167 | 78.89 123 | 94.18 97 | 59.41 147 | 97.85 45 | 81.45 109 | 92.48 62 | 93.86 134 |
|
| EC-MVSNet | | | 84.53 78 | 85.04 68 | 83.01 181 | 89.34 160 | 61.37 256 | 94.42 52 | 91.09 183 | 77.91 97 | 83.24 77 | 94.20 96 | 58.37 155 | 95.40 169 | 85.35 77 | 91.41 78 | 92.27 181 |
|
| ACMMPR | | | 84.37 79 | 84.06 78 | 85.28 110 | 93.56 58 | 64.37 180 | 93.50 99 | 93.15 96 | 72.19 194 | 78.85 128 | 94.86 73 | 56.69 177 | 97.45 66 | 81.55 107 | 92.20 64 | 94.02 127 |
|
| region2R | | | 84.36 80 | 84.03 79 | 85.36 107 | 93.54 59 | 64.31 183 | 93.43 104 | 92.95 104 | 72.16 197 | 78.86 127 | 94.84 74 | 56.97 172 | 97.53 64 | 81.38 111 | 92.11 66 | 94.24 114 |
|
| LFMVS | | | 84.34 81 | 82.73 105 | 89.18 12 | 94.76 33 | 73.25 9 | 94.99 43 | 91.89 144 | 71.90 202 | 82.16 86 | 93.49 112 | 47.98 264 | 97.05 91 | 82.55 101 | 84.82 138 | 97.25 9 |
|
| test_yl | | | 84.28 82 | 83.16 96 | 87.64 34 | 94.52 37 | 69.24 58 | 95.78 19 | 95.09 23 | 69.19 258 | 81.09 94 | 92.88 124 | 57.00 170 | 97.44 68 | 81.11 114 | 81.76 169 | 96.23 37 |
|
| DCV-MVSNet | | | 84.28 82 | 83.16 96 | 87.64 34 | 94.52 37 | 69.24 58 | 95.78 19 | 95.09 23 | 69.19 258 | 81.09 94 | 92.88 124 | 57.00 170 | 97.44 68 | 81.11 114 | 81.76 169 | 96.23 37 |
|
| diffmvs |  | | 84.28 82 | 83.83 80 | 85.61 99 | 87.40 215 | 68.02 89 | 90.88 211 | 89.24 251 | 80.54 50 | 81.64 89 | 92.52 129 | 59.83 141 | 94.52 204 | 87.32 61 | 85.11 136 | 94.29 112 |
| Fangjinhua Wang, Qingshan Xu, Yew-Soon Ong, Marc Pollefeys: Lightweight and Accurate Multi-View Stereo With Confidence-Aware Diffusion Model. IEEE T-PAMI 2025 |
| HY-MVS | | 76.49 5 | 84.28 82 | 83.36 94 | 87.02 54 | 92.22 93 | 67.74 95 | 84.65 303 | 94.50 43 | 79.15 78 | 82.23 85 | 87.93 212 | 66.88 58 | 96.94 105 | 80.53 117 | 82.20 164 | 96.39 32 |
|
| ETVMVS | | | 84.22 86 | 83.71 81 | 85.76 94 | 92.58 87 | 68.25 83 | 92.45 142 | 95.53 14 | 79.54 69 | 79.46 116 | 91.64 153 | 70.29 39 | 94.18 217 | 69.16 208 | 82.76 159 | 94.84 89 |
|
| MAR-MVS | | | 84.18 87 | 83.43 89 | 86.44 73 | 96.25 21 | 65.93 142 | 94.28 56 | 94.27 56 | 74.41 142 | 79.16 121 | 95.61 47 | 53.99 208 | 98.88 21 | 69.62 202 | 93.26 53 | 94.50 109 |
| Zhenyu Xu, Yiguang Liu, Xuelei Shi, Ying Wang, Yunan Zheng: MARMVS: Matching Ambiguity Reduced Multiple View Stereo for Efficient Large Scale Scene Reconstruction. CVPR 2020 |
| MVS_Test | | | 84.16 88 | 83.20 95 | 87.05 53 | 91.56 115 | 69.82 46 | 89.99 241 | 92.05 135 | 77.77 99 | 82.84 80 | 86.57 231 | 63.93 90 | 96.09 136 | 74.91 159 | 89.18 100 | 95.25 74 |
|
| CANet_DTU | | | 84.09 89 | 83.52 83 | 85.81 91 | 90.30 141 | 66.82 119 | 91.87 167 | 89.01 265 | 85.27 11 | 86.09 51 | 93.74 105 | 47.71 268 | 96.98 100 | 77.90 139 | 89.78 96 | 93.65 139 |
|
| ET-MVSNet_ETH3D | | | 84.01 90 | 83.15 98 | 86.58 68 | 90.78 134 | 70.89 30 | 94.74 48 | 94.62 40 | 81.44 40 | 58.19 329 | 93.64 108 | 73.64 23 | 92.35 282 | 82.66 99 | 78.66 197 | 96.50 28 |
|
| PVSNet_Blended_VisFu | | | 83.97 91 | 83.50 85 | 85.39 105 | 90.02 146 | 66.59 127 | 93.77 85 | 91.73 152 | 77.43 108 | 77.08 147 | 89.81 185 | 63.77 93 | 96.97 102 | 79.67 123 | 88.21 107 | 92.60 168 |
|
| MTAPA | | | 83.91 92 | 83.38 93 | 85.50 101 | 91.89 106 | 65.16 160 | 81.75 326 | 92.23 127 | 75.32 133 | 80.53 103 | 95.21 63 | 56.06 185 | 97.16 87 | 84.86 85 | 92.55 61 | 94.18 116 |
|
| XVS | | | 83.87 93 | 83.47 87 | 85.05 117 | 93.22 66 | 63.78 194 | 92.92 119 | 92.66 114 | 73.99 150 | 78.18 132 | 94.31 93 | 55.25 191 | 97.41 70 | 79.16 127 | 91.58 75 | 93.95 129 |
|
| Effi-MVS+ | | | 83.82 94 | 82.76 104 | 86.99 55 | 89.56 156 | 69.40 53 | 91.35 193 | 86.12 320 | 72.59 181 | 83.22 78 | 92.81 127 | 59.60 144 | 96.01 144 | 81.76 106 | 87.80 111 | 95.56 55 |
|
| test_fmvsmvis_n_1920 | | | 83.80 95 | 83.48 86 | 84.77 129 | 82.51 294 | 63.72 198 | 91.37 191 | 83.99 340 | 81.42 41 | 77.68 137 | 95.74 44 | 58.37 155 | 97.58 59 | 93.38 14 | 86.87 120 | 93.00 159 |
|
| EI-MVSNet-Vis-set | | | 83.77 96 | 83.67 82 | 84.06 156 | 92.79 82 | 63.56 206 | 91.76 174 | 94.81 31 | 79.65 67 | 77.87 135 | 94.09 98 | 63.35 103 | 97.90 42 | 79.35 125 | 79.36 189 | 90.74 207 |
|
| MVSFormer | | | 83.75 97 | 82.88 102 | 86.37 76 | 89.24 168 | 71.18 25 | 89.07 260 | 90.69 194 | 65.80 286 | 87.13 41 | 94.34 91 | 64.99 75 | 92.67 268 | 72.83 170 | 91.80 71 | 95.27 71 |
|
| CP-MVS | | | 83.71 98 | 83.40 92 | 84.65 136 | 93.14 71 | 63.84 192 | 94.59 50 | 92.28 125 | 71.03 232 | 77.41 141 | 94.92 71 | 55.21 194 | 96.19 131 | 81.32 112 | 90.70 87 | 93.91 131 |
|
| test_fmvsmconf0.01_n | | | 83.70 99 | 83.52 83 | 84.25 153 | 75.26 359 | 61.72 250 | 92.17 149 | 87.24 308 | 82.36 28 | 84.91 64 | 95.41 50 | 55.60 189 | 96.83 112 | 92.85 17 | 85.87 132 | 94.21 115 |
|
| baseline2 | | | 83.68 100 | 83.42 91 | 84.48 144 | 87.37 216 | 66.00 139 | 90.06 236 | 95.93 8 | 79.71 66 | 69.08 236 | 90.39 173 | 77.92 6 | 96.28 129 | 78.91 131 | 81.38 173 | 91.16 203 |
|
| thisisatest0515 | | | 83.41 101 | 82.49 110 | 86.16 81 | 89.46 159 | 68.26 81 | 93.54 96 | 94.70 36 | 74.31 145 | 75.75 155 | 90.92 163 | 72.62 28 | 96.52 122 | 69.64 200 | 81.50 172 | 93.71 137 |
|
| PVSNet_BlendedMVS | | | 83.38 102 | 83.43 89 | 83.22 178 | 93.76 49 | 67.53 102 | 94.06 64 | 93.61 76 | 79.13 79 | 81.00 97 | 85.14 246 | 63.19 105 | 97.29 78 | 87.08 65 | 73.91 235 | 84.83 304 |
|
| test2506 | | | 83.29 103 | 82.92 101 | 84.37 148 | 88.39 188 | 63.18 217 | 92.01 159 | 91.35 170 | 77.66 102 | 78.49 131 | 91.42 156 | 64.58 83 | 95.09 179 | 73.19 166 | 89.23 98 | 94.85 86 |
|
| iter_conf05 | | | 83.27 104 | 82.70 106 | 84.98 120 | 93.32 64 | 71.84 18 | 94.16 59 | 81.76 350 | 82.74 23 | 73.83 180 | 88.40 200 | 72.77 27 | 94.61 196 | 82.10 103 | 75.21 224 | 88.48 238 |
|
| PGM-MVS | | | 83.25 105 | 82.70 106 | 84.92 121 | 92.81 81 | 64.07 189 | 90.44 223 | 92.20 131 | 71.28 226 | 77.23 144 | 94.43 84 | 55.17 195 | 97.31 77 | 79.33 126 | 91.38 79 | 93.37 145 |
|
| HPM-MVS |  | | 83.25 105 | 82.95 100 | 84.17 154 | 92.25 92 | 62.88 226 | 90.91 208 | 91.86 146 | 70.30 244 | 77.12 145 | 93.96 102 | 56.75 175 | 96.28 129 | 82.04 104 | 91.34 81 | 93.34 146 |
| Chunlin Ren, Qingshan Xu, Shikun Zhang, Jiaqi Yang: Hierarchical Prior Mining for Non-local Multi-View Stereo. ICCV 2023 |
| EI-MVSNet-UG-set | | | 83.14 107 | 82.96 99 | 83.67 167 | 92.28 91 | 63.19 216 | 91.38 190 | 94.68 37 | 79.22 76 | 76.60 150 | 93.75 104 | 62.64 112 | 97.76 48 | 78.07 138 | 78.01 200 | 90.05 216 |
|
| VDD-MVS | | | 83.06 108 | 81.81 119 | 86.81 59 | 90.86 132 | 67.70 96 | 95.40 30 | 91.50 165 | 75.46 130 | 81.78 88 | 92.34 137 | 40.09 306 | 97.13 89 | 86.85 68 | 82.04 166 | 95.60 53 |
|
| h-mvs33 | | | 83.01 109 | 82.56 109 | 84.35 149 | 89.34 160 | 62.02 242 | 92.72 126 | 93.76 69 | 81.45 38 | 82.73 82 | 92.25 140 | 60.11 137 | 97.13 89 | 87.69 56 | 62.96 313 | 93.91 131 |
|
| PAPM_NR | | | 82.97 110 | 81.84 118 | 86.37 76 | 94.10 44 | 66.76 122 | 87.66 282 | 92.84 107 | 69.96 248 | 74.07 177 | 93.57 110 | 63.10 108 | 97.50 65 | 70.66 194 | 90.58 89 | 94.85 86 |
|
| mPP-MVS | | | 82.96 111 | 82.44 111 | 84.52 142 | 92.83 77 | 62.92 224 | 92.76 124 | 91.85 148 | 71.52 222 | 75.61 160 | 94.24 95 | 53.48 216 | 96.99 99 | 78.97 130 | 90.73 86 | 93.64 140 |
|
| bld_raw_dy_0_64 | | | 82.84 112 | 80.75 132 | 89.09 14 | 93.74 52 | 72.16 15 | 93.16 110 | 77.36 360 | 89.69 1 | 74.55 170 | 96.48 27 | 32.35 350 | 97.56 62 | 92.21 24 | 77.24 212 | 97.53 6 |
|
| SR-MVS | | | 82.81 113 | 82.58 108 | 83.50 172 | 93.35 63 | 61.16 259 | 92.23 148 | 91.28 175 | 64.48 295 | 81.27 91 | 95.28 56 | 53.71 212 | 95.86 146 | 82.87 98 | 88.77 103 | 93.49 143 |
|
| DP-MVS Recon | | | 82.73 114 | 81.65 120 | 85.98 84 | 97.31 4 | 67.06 113 | 95.15 37 | 91.99 138 | 69.08 261 | 76.50 152 | 93.89 103 | 54.48 203 | 98.20 35 | 70.76 192 | 85.66 134 | 92.69 165 |
|
| CLD-MVS | | | 82.73 114 | 82.35 113 | 83.86 160 | 87.90 203 | 67.65 98 | 95.45 29 | 92.18 133 | 85.06 12 | 72.58 193 | 92.27 138 | 52.46 224 | 95.78 148 | 84.18 89 | 79.06 192 | 88.16 244 |
| Zhaoxin Li, Wangmeng Zuo, Zhaoqi Wang, Lei Zhang: Confidence-based Large-scale Dense Multi-view Stereo. IEEE Transaction on Image Processing, 2020 |
| sss | | | 82.71 116 | 82.38 112 | 83.73 164 | 89.25 165 | 59.58 287 | 92.24 147 | 94.89 28 | 77.96 95 | 79.86 111 | 92.38 135 | 56.70 176 | 97.05 91 | 77.26 142 | 80.86 177 | 94.55 103 |
|
| 3Dnovator | | 73.91 6 | 82.69 117 | 80.82 131 | 88.31 26 | 89.57 155 | 71.26 23 | 92.60 135 | 94.39 51 | 78.84 85 | 67.89 257 | 92.48 133 | 48.42 259 | 98.52 28 | 68.80 213 | 94.40 35 | 95.15 76 |
|
| MVSTER | | | 82.47 118 | 82.05 114 | 83.74 162 | 92.68 84 | 69.01 63 | 91.90 166 | 93.21 91 | 79.83 62 | 72.14 201 | 85.71 243 | 74.72 16 | 94.72 191 | 75.72 150 | 72.49 246 | 87.50 249 |
|
| TESTMET0.1,1 | | | 82.41 119 | 81.98 117 | 83.72 165 | 88.08 197 | 63.74 196 | 92.70 128 | 93.77 68 | 79.30 74 | 77.61 139 | 87.57 218 | 58.19 158 | 94.08 221 | 73.91 165 | 86.68 127 | 93.33 148 |
|
| CostFormer | | | 82.33 120 | 81.15 124 | 85.86 89 | 89.01 173 | 68.46 75 | 82.39 323 | 93.01 101 | 75.59 128 | 80.25 107 | 81.57 288 | 72.03 33 | 94.96 183 | 79.06 129 | 77.48 208 | 94.16 118 |
|
| API-MVS | | | 82.28 121 | 80.53 139 | 87.54 41 | 96.13 22 | 70.59 33 | 93.63 92 | 91.04 189 | 65.72 288 | 75.45 162 | 92.83 126 | 56.11 184 | 98.89 20 | 64.10 257 | 89.75 97 | 93.15 152 |
|
| IB-MVS | | 77.80 4 | 82.18 122 | 80.46 141 | 87.35 45 | 89.14 170 | 70.28 37 | 95.59 27 | 95.17 21 | 78.85 84 | 70.19 224 | 85.82 241 | 70.66 37 | 97.67 51 | 72.19 181 | 66.52 286 | 94.09 122 |
| Christian Sormann, Mattia Rossi, Andreas Kuhn and Friedrich Fraundorfer: IB-MVS: An Iterative Algorithm for Deep Multi-View Stereo based on Binary Decisions. BMVC 2021 |
| xiu_mvs_v1_base_debu | | | 82.16 123 | 81.12 125 | 85.26 112 | 86.42 233 | 68.72 70 | 92.59 137 | 90.44 204 | 73.12 170 | 84.20 70 | 94.36 86 | 38.04 320 | 95.73 152 | 84.12 90 | 86.81 121 | 91.33 196 |
|
| xiu_mvs_v1_base | | | 82.16 123 | 81.12 125 | 85.26 112 | 86.42 233 | 68.72 70 | 92.59 137 | 90.44 204 | 73.12 170 | 84.20 70 | 94.36 86 | 38.04 320 | 95.73 152 | 84.12 90 | 86.81 121 | 91.33 196 |
|
| xiu_mvs_v1_base_debi | | | 82.16 123 | 81.12 125 | 85.26 112 | 86.42 233 | 68.72 70 | 92.59 137 | 90.44 204 | 73.12 170 | 84.20 70 | 94.36 86 | 38.04 320 | 95.73 152 | 84.12 90 | 86.81 121 | 91.33 196 |
|
| 3Dnovator+ | | 73.60 7 | 82.10 126 | 80.60 138 | 86.60 66 | 90.89 131 | 66.80 121 | 95.20 35 | 93.44 85 | 74.05 149 | 67.42 263 | 92.49 132 | 49.46 249 | 97.65 55 | 70.80 191 | 91.68 73 | 95.33 64 |
|
| MVS_111021_LR | | | 82.02 127 | 81.52 121 | 83.51 171 | 88.42 186 | 62.88 226 | 89.77 245 | 88.93 269 | 76.78 115 | 75.55 161 | 93.10 115 | 50.31 241 | 95.38 171 | 83.82 94 | 87.02 119 | 92.26 182 |
|
| PMMVS | | | 81.98 128 | 82.04 115 | 81.78 214 | 89.76 152 | 56.17 324 | 91.13 204 | 90.69 194 | 77.96 95 | 80.09 109 | 93.57 110 | 46.33 278 | 94.99 182 | 81.41 110 | 87.46 115 | 94.17 117 |
|
| baseline1 | | | 81.84 129 | 81.03 129 | 84.28 152 | 91.60 113 | 66.62 125 | 91.08 205 | 91.66 159 | 81.87 33 | 74.86 167 | 91.67 152 | 69.98 41 | 94.92 186 | 71.76 184 | 64.75 301 | 91.29 201 |
|
| EPP-MVSNet | | | 81.79 130 | 81.52 121 | 82.61 190 | 88.77 179 | 60.21 279 | 93.02 117 | 93.66 75 | 68.52 267 | 72.90 188 | 90.39 173 | 72.19 32 | 94.96 183 | 74.93 158 | 79.29 191 | 92.67 166 |
|
| test_vis1_n_1920 | | | 81.66 131 | 82.01 116 | 80.64 241 | 82.24 297 | 55.09 332 | 94.76 47 | 86.87 311 | 81.67 36 | 84.40 69 | 94.63 79 | 38.17 317 | 94.67 195 | 91.98 28 | 83.34 152 | 92.16 185 |
|
| APD-MVS_3200maxsize | | | 81.64 132 | 81.32 123 | 82.59 191 | 92.36 89 | 58.74 299 | 91.39 188 | 91.01 190 | 63.35 304 | 79.72 113 | 94.62 80 | 51.82 227 | 96.14 133 | 79.71 122 | 87.93 110 | 92.89 163 |
|
| ACMMP |  | | 81.49 133 | 80.67 135 | 83.93 159 | 91.71 111 | 62.90 225 | 92.13 151 | 92.22 130 | 71.79 209 | 71.68 208 | 93.49 112 | 50.32 240 | 96.96 103 | 78.47 135 | 84.22 148 | 91.93 188 |
| Qingshan Xu, Weihang Kong, Wenbing Tao, Marc Pollefeys: Multi-Scale Geometric Consistency Guided and Planar Prior Assisted Multi-View Stereo. IEEE Transactions on Pattern Analysis and Machine Intelligence |
| CDS-MVSNet | | | 81.43 134 | 80.74 133 | 83.52 169 | 86.26 237 | 64.45 174 | 92.09 154 | 90.65 198 | 75.83 126 | 73.95 179 | 89.81 185 | 63.97 89 | 92.91 258 | 71.27 187 | 82.82 156 | 93.20 151 |
| Khang Truong Giang, Soohwan Song, Sungho Jo: Curvature-guided dynamic scale networks for Multi-view Stereo. ICLR 2022 |
| mvs_anonymous | | | 81.36 135 | 79.99 146 | 85.46 102 | 90.39 140 | 68.40 76 | 86.88 293 | 90.61 199 | 74.41 142 | 70.31 223 | 84.67 252 | 63.79 92 | 92.32 283 | 73.13 167 | 85.70 133 | 95.67 50 |
|
| ECVR-MVS |  | | 81.29 136 | 80.38 142 | 84.01 158 | 88.39 188 | 61.96 244 | 92.56 140 | 86.79 313 | 77.66 102 | 76.63 149 | 91.42 156 | 46.34 277 | 95.24 176 | 74.36 163 | 89.23 98 | 94.85 86 |
|
| thisisatest0530 | | | 81.15 137 | 80.07 143 | 84.39 147 | 88.26 192 | 65.63 148 | 91.40 186 | 94.62 40 | 71.27 227 | 70.93 214 | 89.18 191 | 72.47 29 | 96.04 141 | 65.62 246 | 76.89 215 | 91.49 192 |
|
| Fast-Effi-MVS+ | | | 81.14 138 | 80.01 145 | 84.51 143 | 90.24 142 | 65.86 143 | 94.12 63 | 89.15 257 | 73.81 157 | 75.37 163 | 88.26 204 | 57.26 165 | 94.53 203 | 66.97 231 | 84.92 137 | 93.15 152 |
|
| HQP-MVS | | | 81.14 138 | 80.64 136 | 82.64 189 | 87.54 211 | 63.66 203 | 94.06 64 | 91.70 157 | 79.80 63 | 74.18 173 | 90.30 175 | 51.63 231 | 95.61 160 | 77.63 140 | 78.90 193 | 88.63 234 |
|
| hse-mvs2 | | | 81.12 140 | 81.11 128 | 81.16 228 | 86.52 232 | 57.48 313 | 89.40 253 | 91.16 178 | 81.45 38 | 82.73 82 | 90.49 171 | 60.11 137 | 94.58 197 | 87.69 56 | 60.41 340 | 91.41 195 |
|
| SR-MVS-dyc-post | | | 81.06 141 | 80.70 134 | 82.15 205 | 92.02 98 | 58.56 301 | 90.90 209 | 90.45 201 | 62.76 311 | 78.89 123 | 94.46 82 | 51.26 235 | 95.61 160 | 78.77 133 | 86.77 124 | 92.28 178 |
|
| HyFIR lowres test | | | 81.03 142 | 79.56 153 | 85.43 103 | 87.81 207 | 68.11 87 | 90.18 233 | 90.01 225 | 70.65 240 | 72.95 187 | 86.06 239 | 63.61 97 | 94.50 205 | 75.01 157 | 79.75 186 | 93.67 138 |
|
| nrg030 | | | 80.93 143 | 79.86 148 | 84.13 155 | 83.69 281 | 68.83 67 | 93.23 108 | 91.20 176 | 75.55 129 | 75.06 165 | 88.22 207 | 63.04 109 | 94.74 190 | 81.88 105 | 66.88 283 | 88.82 232 |
|
| Vis-MVSNet |  | | 80.92 144 | 79.98 147 | 83.74 162 | 88.48 183 | 61.80 246 | 93.44 103 | 88.26 294 | 73.96 153 | 77.73 136 | 91.76 149 | 49.94 245 | 94.76 188 | 65.84 243 | 90.37 91 | 94.65 99 |
| Jingyang Zhang, Yao Yao, Shiwei Li, Zixin Luo, Tian Fang: Visibility-aware Multiview Stereo Network. BMVC 2020 |
| test1111 | | | 80.84 145 | 80.02 144 | 83.33 175 | 87.87 204 | 60.76 267 | 92.62 133 | 86.86 312 | 77.86 98 | 75.73 156 | 91.39 158 | 46.35 276 | 94.70 194 | 72.79 172 | 88.68 104 | 94.52 107 |
|
| UWE-MVS | | | 80.81 146 | 81.01 130 | 80.20 251 | 89.33 162 | 57.05 318 | 91.91 165 | 94.71 35 | 75.67 127 | 75.01 166 | 89.37 189 | 63.13 107 | 91.44 305 | 67.19 228 | 82.80 158 | 92.12 186 |
|
| 1314 | | | 80.70 147 | 78.95 164 | 85.94 86 | 87.77 209 | 67.56 100 | 87.91 278 | 92.55 120 | 72.17 196 | 67.44 262 | 93.09 116 | 50.27 242 | 97.04 94 | 71.68 186 | 87.64 113 | 93.23 150 |
|
| tpmrst | | | 80.57 148 | 79.14 163 | 84.84 124 | 90.10 145 | 68.28 80 | 81.70 327 | 89.72 237 | 77.63 104 | 75.96 154 | 79.54 320 | 64.94 77 | 92.71 265 | 75.43 152 | 77.28 211 | 93.55 141 |
|
| 1112_ss | | | 80.56 149 | 79.83 149 | 82.77 185 | 88.65 180 | 60.78 265 | 92.29 145 | 88.36 288 | 72.58 182 | 72.46 197 | 94.95 68 | 65.09 74 | 93.42 245 | 66.38 237 | 77.71 202 | 94.10 121 |
|
| VDDNet | | | 80.50 150 | 78.26 172 | 87.21 47 | 86.19 238 | 69.79 47 | 94.48 51 | 91.31 171 | 60.42 329 | 79.34 118 | 90.91 164 | 38.48 315 | 96.56 120 | 82.16 102 | 81.05 175 | 95.27 71 |
|
| BH-w/o | | | 80.49 151 | 79.30 160 | 84.05 157 | 90.83 133 | 64.36 182 | 93.60 93 | 89.42 245 | 74.35 144 | 69.09 235 | 90.15 180 | 55.23 193 | 95.61 160 | 64.61 254 | 86.43 130 | 92.17 184 |
|
| test_cas_vis1_n_1920 | | | 80.45 152 | 80.61 137 | 79.97 260 | 78.25 344 | 57.01 320 | 94.04 68 | 88.33 289 | 79.06 82 | 82.81 81 | 93.70 106 | 38.65 312 | 91.63 297 | 90.82 37 | 79.81 184 | 91.27 202 |
|
| TAMVS | | | 80.37 153 | 79.45 156 | 83.13 180 | 85.14 258 | 63.37 211 | 91.23 199 | 90.76 193 | 74.81 140 | 72.65 191 | 88.49 197 | 60.63 132 | 92.95 253 | 69.41 204 | 81.95 168 | 93.08 155 |
|
| HQP_MVS | | | 80.34 154 | 79.75 150 | 82.12 207 | 86.94 226 | 62.42 233 | 93.13 111 | 91.31 171 | 78.81 86 | 72.53 194 | 89.14 193 | 50.66 238 | 95.55 165 | 76.74 143 | 78.53 198 | 88.39 241 |
|
| SDMVSNet | | | 80.26 155 | 78.88 165 | 84.40 146 | 89.25 165 | 67.63 99 | 85.35 299 | 93.02 100 | 76.77 116 | 70.84 215 | 87.12 225 | 47.95 265 | 96.09 136 | 85.04 81 | 74.55 226 | 89.48 226 |
|
| HPM-MVS_fast | | | 80.25 156 | 79.55 155 | 82.33 197 | 91.55 116 | 59.95 282 | 91.32 195 | 89.16 256 | 65.23 292 | 74.71 169 | 93.07 118 | 47.81 267 | 95.74 151 | 74.87 161 | 88.23 106 | 91.31 200 |
|
| ab-mvs | | | 80.18 157 | 78.31 171 | 85.80 92 | 88.44 185 | 65.49 154 | 83.00 320 | 92.67 113 | 71.82 208 | 77.36 142 | 85.01 247 | 54.50 200 | 96.59 117 | 76.35 147 | 75.63 222 | 95.32 66 |
|
| IS-MVSNet | | | 80.14 158 | 79.41 157 | 82.33 197 | 87.91 202 | 60.08 281 | 91.97 163 | 88.27 292 | 72.90 177 | 71.44 211 | 91.73 151 | 61.44 124 | 93.66 240 | 62.47 271 | 86.53 128 | 93.24 149 |
|
| test-LLR | | | 80.10 159 | 79.56 153 | 81.72 216 | 86.93 228 | 61.17 257 | 92.70 128 | 91.54 162 | 71.51 223 | 75.62 158 | 86.94 227 | 53.83 209 | 92.38 279 | 72.21 179 | 84.76 140 | 91.60 190 |
|
| PVSNet | | 73.49 8 | 80.05 160 | 78.63 167 | 84.31 150 | 90.92 130 | 64.97 165 | 92.47 141 | 91.05 188 | 79.18 77 | 72.43 198 | 90.51 170 | 37.05 332 | 94.06 223 | 68.06 217 | 86.00 131 | 93.90 133 |
|
| UA-Net | | | 80.02 161 | 79.65 151 | 81.11 230 | 89.33 162 | 57.72 308 | 86.33 296 | 89.00 268 | 77.44 107 | 81.01 96 | 89.15 192 | 59.33 148 | 95.90 145 | 61.01 278 | 84.28 146 | 89.73 222 |
|
| test-mter | | | 79.96 162 | 79.38 159 | 81.72 216 | 86.93 228 | 61.17 257 | 92.70 128 | 91.54 162 | 73.85 155 | 75.62 158 | 86.94 227 | 49.84 247 | 92.38 279 | 72.21 179 | 84.76 140 | 91.60 190 |
|
| QAPM | | | 79.95 163 | 77.39 189 | 87.64 34 | 89.63 154 | 71.41 21 | 93.30 106 | 93.70 73 | 65.34 291 | 67.39 265 | 91.75 150 | 47.83 266 | 98.96 16 | 57.71 294 | 89.81 94 | 92.54 170 |
|
| UGNet | | | 79.87 164 | 78.68 166 | 83.45 174 | 89.96 147 | 61.51 253 | 92.13 151 | 90.79 192 | 76.83 114 | 78.85 128 | 86.33 235 | 38.16 318 | 96.17 132 | 67.93 220 | 87.17 118 | 92.67 166 |
| Wanjuan Su, Qingshan Xu, Wenbing Tao: Uncertainty-guided Multi-view Stereo Network for Depth Estimation. IEEE Transactions on Circuits and Systems for Video Technology, 2022 |
| tpm2 | | | 79.80 165 | 77.95 178 | 85.34 108 | 88.28 191 | 68.26 81 | 81.56 329 | 91.42 168 | 70.11 246 | 77.59 140 | 80.50 306 | 67.40 55 | 94.26 214 | 67.34 225 | 77.35 209 | 93.51 142 |
|
| thres200 | | | 79.66 166 | 78.33 170 | 83.66 168 | 92.54 88 | 65.82 145 | 93.06 113 | 96.31 3 | 74.90 139 | 73.30 184 | 88.66 195 | 59.67 143 | 95.61 160 | 47.84 332 | 78.67 196 | 89.56 225 |
|
| CPTT-MVS | | | 79.59 167 | 79.16 162 | 80.89 239 | 91.54 117 | 59.80 284 | 92.10 153 | 88.54 285 | 60.42 329 | 72.96 186 | 93.28 114 | 48.27 260 | 92.80 262 | 78.89 132 | 86.50 129 | 90.06 215 |
|
| Test_1112_low_res | | | 79.56 168 | 78.60 168 | 82.43 193 | 88.24 194 | 60.39 276 | 92.09 154 | 87.99 299 | 72.10 198 | 71.84 204 | 87.42 220 | 64.62 82 | 93.04 249 | 65.80 244 | 77.30 210 | 93.85 135 |
|
| tttt0517 | | | 79.50 169 | 78.53 169 | 82.41 196 | 87.22 219 | 61.43 255 | 89.75 246 | 94.76 32 | 69.29 256 | 67.91 255 | 88.06 211 | 72.92 25 | 95.63 158 | 62.91 267 | 73.90 236 | 90.16 214 |
|
| FIs | | | 79.47 170 | 79.41 157 | 79.67 267 | 85.95 243 | 59.40 289 | 91.68 178 | 93.94 63 | 78.06 94 | 68.96 240 | 88.28 202 | 66.61 61 | 91.77 294 | 66.20 240 | 74.99 225 | 87.82 246 |
|
| BH-RMVSNet | | | 79.46 171 | 77.65 181 | 84.89 122 | 91.68 112 | 65.66 146 | 93.55 95 | 88.09 297 | 72.93 174 | 73.37 183 | 91.12 162 | 46.20 280 | 96.12 134 | 56.28 299 | 85.61 135 | 92.91 161 |
|
| PCF-MVS | | 73.15 9 | 79.29 172 | 77.63 182 | 84.29 151 | 86.06 241 | 65.96 141 | 87.03 289 | 91.10 182 | 69.86 250 | 69.79 231 | 90.64 166 | 57.54 164 | 96.59 117 | 64.37 256 | 82.29 160 | 90.32 212 |
| Andreas Kuhn, Shan Lin, Oliver Erdler: Plane Completion and Filtering for Multi-View Stereo Reconstruction. GCPR 2019 |
| Vis-MVSNet (Re-imp) | | | 79.24 173 | 79.57 152 | 78.24 288 | 88.46 184 | 52.29 343 | 90.41 225 | 89.12 259 | 74.24 146 | 69.13 234 | 91.91 147 | 65.77 68 | 90.09 320 | 59.00 290 | 88.09 108 | 92.33 175 |
|
| 114514_t | | | 79.17 174 | 77.67 180 | 83.68 166 | 95.32 29 | 65.53 152 | 92.85 122 | 91.60 161 | 63.49 302 | 67.92 254 | 90.63 168 | 46.65 273 | 95.72 156 | 67.01 230 | 83.54 150 | 89.79 220 |
|
| FA-MVS(test-final) | | | 79.12 175 | 77.23 191 | 84.81 128 | 90.54 136 | 63.98 191 | 81.35 332 | 91.71 154 | 71.09 231 | 74.85 168 | 82.94 269 | 52.85 220 | 97.05 91 | 67.97 218 | 81.73 171 | 93.41 144 |
|
| VPA-MVSNet | | | 79.03 176 | 78.00 176 | 82.11 210 | 85.95 243 | 64.48 173 | 93.22 109 | 94.66 38 | 75.05 137 | 74.04 178 | 84.95 248 | 52.17 226 | 93.52 242 | 74.90 160 | 67.04 282 | 88.32 243 |
|
| OPM-MVS | | | 79.00 177 | 78.09 174 | 81.73 215 | 83.52 284 | 63.83 193 | 91.64 180 | 90.30 211 | 76.36 122 | 71.97 203 | 89.93 184 | 46.30 279 | 95.17 178 | 75.10 155 | 77.70 203 | 86.19 277 |
| Ray L. Khuboni, Hongjun Xu: Octagram Propagation Matching for Multi-Scale View Stereopsis (OPM-MVS). |
| EI-MVSNet | | | 78.97 178 | 78.22 173 | 81.25 225 | 85.33 253 | 62.73 229 | 89.53 250 | 93.21 91 | 72.39 189 | 72.14 201 | 90.13 181 | 60.99 127 | 94.72 191 | 67.73 222 | 72.49 246 | 86.29 273 |
|
| AdaColmap |  | | 78.94 179 | 77.00 195 | 84.76 130 | 96.34 17 | 65.86 143 | 92.66 132 | 87.97 301 | 62.18 316 | 70.56 217 | 92.37 136 | 43.53 294 | 97.35 74 | 64.50 255 | 82.86 155 | 91.05 205 |
|
| GeoE | | | 78.90 180 | 77.43 185 | 83.29 176 | 88.95 174 | 62.02 242 | 92.31 144 | 86.23 318 | 70.24 245 | 71.34 212 | 89.27 190 | 54.43 204 | 94.04 226 | 63.31 263 | 80.81 179 | 93.81 136 |
|
| miper_enhance_ethall | | | 78.86 181 | 77.97 177 | 81.54 220 | 88.00 201 | 65.17 159 | 91.41 184 | 89.15 257 | 75.19 135 | 68.79 243 | 83.98 260 | 67.17 56 | 92.82 260 | 72.73 173 | 65.30 292 | 86.62 270 |
|
| VPNet | | | 78.82 182 | 77.53 184 | 82.70 187 | 84.52 268 | 66.44 129 | 93.93 73 | 92.23 127 | 80.46 52 | 72.60 192 | 88.38 201 | 49.18 253 | 93.13 248 | 72.47 177 | 63.97 310 | 88.55 237 |
|
| EPNet_dtu | | | 78.80 183 | 79.26 161 | 77.43 296 | 88.06 198 | 49.71 356 | 91.96 164 | 91.95 140 | 77.67 101 | 76.56 151 | 91.28 160 | 58.51 154 | 90.20 318 | 56.37 298 | 80.95 176 | 92.39 173 |
| Wanjuan Su, Wenbing Tao: Efficient Edge-Preserving Multi-View Stereo Network for Depth Estimation. AAAI 2023 |
| tfpn200view9 | | | 78.79 184 | 77.43 185 | 82.88 183 | 92.21 94 | 64.49 171 | 92.05 157 | 96.28 4 | 73.48 164 | 71.75 206 | 88.26 204 | 60.07 139 | 95.32 172 | 45.16 343 | 77.58 205 | 88.83 230 |
|
| TR-MVS | | | 78.77 185 | 77.37 190 | 82.95 182 | 90.49 137 | 60.88 263 | 93.67 89 | 90.07 220 | 70.08 247 | 74.51 171 | 91.37 159 | 45.69 283 | 95.70 157 | 60.12 284 | 80.32 181 | 92.29 177 |
|
| thres400 | | | 78.68 186 | 77.43 185 | 82.43 193 | 92.21 94 | 64.49 171 | 92.05 157 | 96.28 4 | 73.48 164 | 71.75 206 | 88.26 204 | 60.07 139 | 95.32 172 | 45.16 343 | 77.58 205 | 87.48 250 |
|
| BH-untuned | | | 78.68 186 | 77.08 192 | 83.48 173 | 89.84 149 | 63.74 196 | 92.70 128 | 88.59 283 | 71.57 220 | 66.83 272 | 88.65 196 | 51.75 229 | 95.39 170 | 59.03 289 | 84.77 139 | 91.32 199 |
|
| OMC-MVS | | | 78.67 188 | 77.91 179 | 80.95 237 | 85.76 248 | 57.40 315 | 88.49 269 | 88.67 280 | 73.85 155 | 72.43 198 | 92.10 142 | 49.29 252 | 94.55 202 | 72.73 173 | 77.89 201 | 90.91 206 |
|
| tpm | | | 78.58 189 | 77.03 193 | 83.22 178 | 85.94 245 | 64.56 169 | 83.21 317 | 91.14 181 | 78.31 91 | 73.67 181 | 79.68 318 | 64.01 88 | 92.09 288 | 66.07 241 | 71.26 256 | 93.03 157 |
|
| OpenMVS |  | 70.45 11 | 78.54 190 | 75.92 209 | 86.41 75 | 85.93 246 | 71.68 19 | 92.74 125 | 92.51 121 | 66.49 282 | 64.56 287 | 91.96 144 | 43.88 293 | 98.10 37 | 54.61 304 | 90.65 88 | 89.44 228 |
|
| EPMVS | | | 78.49 191 | 75.98 208 | 86.02 83 | 91.21 125 | 69.68 51 | 80.23 341 | 91.20 176 | 75.25 134 | 72.48 196 | 78.11 328 | 54.65 199 | 93.69 239 | 57.66 295 | 83.04 154 | 94.69 95 |
|
| AUN-MVS | | | 78.37 192 | 77.43 185 | 81.17 227 | 86.60 231 | 57.45 314 | 89.46 252 | 91.16 178 | 74.11 148 | 74.40 172 | 90.49 171 | 55.52 190 | 94.57 199 | 74.73 162 | 60.43 339 | 91.48 193 |
|
| thres100view900 | | | 78.37 192 | 77.01 194 | 82.46 192 | 91.89 106 | 63.21 215 | 91.19 203 | 96.33 1 | 72.28 192 | 70.45 220 | 87.89 213 | 60.31 134 | 95.32 172 | 45.16 343 | 77.58 205 | 88.83 230 |
|
| GA-MVS | | | 78.33 194 | 76.23 204 | 84.65 136 | 83.65 282 | 66.30 133 | 91.44 182 | 90.14 218 | 76.01 124 | 70.32 222 | 84.02 259 | 42.50 298 | 94.72 191 | 70.98 189 | 77.00 214 | 92.94 160 |
|
| cascas | | | 78.18 195 | 75.77 211 | 85.41 104 | 87.14 221 | 69.11 60 | 92.96 118 | 91.15 180 | 66.71 280 | 70.47 218 | 86.07 238 | 37.49 326 | 96.48 125 | 70.15 197 | 79.80 185 | 90.65 208 |
|
| UniMVSNet_NR-MVSNet | | | 78.15 196 | 77.55 183 | 79.98 258 | 84.46 270 | 60.26 277 | 92.25 146 | 93.20 93 | 77.50 106 | 68.88 241 | 86.61 230 | 66.10 64 | 92.13 286 | 66.38 237 | 62.55 317 | 87.54 248 |
|
| thres600view7 | | | 78.00 197 | 76.66 199 | 82.03 212 | 91.93 103 | 63.69 201 | 91.30 196 | 96.33 1 | 72.43 187 | 70.46 219 | 87.89 213 | 60.31 134 | 94.92 186 | 42.64 355 | 76.64 216 | 87.48 250 |
|
| FC-MVSNet-test | | | 77.99 198 | 78.08 175 | 77.70 291 | 84.89 263 | 55.51 329 | 90.27 230 | 93.75 72 | 76.87 111 | 66.80 273 | 87.59 217 | 65.71 69 | 90.23 317 | 62.89 268 | 73.94 234 | 87.37 253 |
|
| Anonymous202405211 | | | 77.96 199 | 75.33 218 | 85.87 88 | 93.73 54 | 64.52 170 | 94.85 45 | 85.36 326 | 62.52 314 | 76.11 153 | 90.18 178 | 29.43 362 | 97.29 78 | 68.51 215 | 77.24 212 | 95.81 49 |
|
| cl22 | | | 77.94 200 | 76.78 197 | 81.42 222 | 87.57 210 | 64.93 167 | 90.67 218 | 88.86 272 | 72.45 186 | 67.63 261 | 82.68 273 | 64.07 87 | 92.91 258 | 71.79 182 | 65.30 292 | 86.44 271 |
|
| XXY-MVS | | | 77.94 200 | 76.44 201 | 82.43 193 | 82.60 293 | 64.44 175 | 92.01 159 | 91.83 149 | 73.59 163 | 70.00 227 | 85.82 241 | 54.43 204 | 94.76 188 | 69.63 201 | 68.02 276 | 88.10 245 |
|
| MS-PatchMatch | | | 77.90 202 | 76.50 200 | 82.12 207 | 85.99 242 | 69.95 42 | 91.75 176 | 92.70 111 | 73.97 152 | 62.58 308 | 84.44 256 | 41.11 303 | 95.78 148 | 63.76 260 | 92.17 65 | 80.62 351 |
|
| FMVSNet3 | | | 77.73 203 | 76.04 207 | 82.80 184 | 91.20 126 | 68.99 64 | 91.87 167 | 91.99 138 | 73.35 166 | 67.04 268 | 83.19 268 | 56.62 178 | 92.14 285 | 59.80 286 | 69.34 263 | 87.28 257 |
|
| miper_ehance_all_eth | | | 77.60 204 | 76.44 201 | 81.09 234 | 85.70 250 | 64.41 178 | 90.65 219 | 88.64 282 | 72.31 190 | 67.37 266 | 82.52 274 | 64.77 81 | 92.64 272 | 70.67 193 | 65.30 292 | 86.24 275 |
|
| UniMVSNet (Re) | | | 77.58 205 | 76.78 197 | 79.98 258 | 84.11 276 | 60.80 264 | 91.76 174 | 93.17 95 | 76.56 120 | 69.93 230 | 84.78 251 | 63.32 104 | 92.36 281 | 64.89 253 | 62.51 319 | 86.78 265 |
|
| PatchmatchNet |  | | 77.46 206 | 74.63 224 | 85.96 85 | 89.55 157 | 70.35 36 | 79.97 346 | 89.55 240 | 72.23 193 | 70.94 213 | 76.91 339 | 57.03 168 | 92.79 263 | 54.27 306 | 81.17 174 | 94.74 94 |
| Fangjinhua Wang, Silvano Galliani, Christoph Vogel, Pablo Speciale, Marc Pollefeys: PatchmatchNet: Learned Multi-View Patchmatch Stereo. |
| v2v482 | | | 77.42 207 | 75.65 214 | 82.73 186 | 80.38 314 | 67.13 112 | 91.85 169 | 90.23 215 | 75.09 136 | 69.37 232 | 83.39 266 | 53.79 211 | 94.44 206 | 71.77 183 | 65.00 298 | 86.63 269 |
|
| CHOSEN 280x420 | | | 77.35 208 | 76.95 196 | 78.55 283 | 87.07 223 | 62.68 230 | 69.71 374 | 82.95 347 | 68.80 263 | 71.48 210 | 87.27 224 | 66.03 65 | 84.00 361 | 76.47 146 | 82.81 157 | 88.95 229 |
|
| PS-MVSNAJss | | | 77.26 209 | 76.31 203 | 80.13 253 | 80.64 312 | 59.16 294 | 90.63 222 | 91.06 187 | 72.80 178 | 68.58 247 | 84.57 254 | 53.55 213 | 93.96 231 | 72.97 168 | 71.96 250 | 87.27 258 |
|
| gg-mvs-nofinetune | | | 77.18 210 | 74.31 231 | 85.80 92 | 91.42 119 | 68.36 77 | 71.78 368 | 94.72 34 | 49.61 369 | 77.12 145 | 45.92 392 | 77.41 8 | 93.98 230 | 67.62 223 | 93.16 54 | 95.05 80 |
|
| WB-MVSnew | | | 77.14 211 | 76.18 206 | 80.01 257 | 86.18 239 | 63.24 214 | 91.26 197 | 94.11 60 | 71.72 212 | 73.52 182 | 87.29 223 | 45.14 288 | 93.00 251 | 56.98 296 | 79.42 187 | 83.80 312 |
|
| MVP-Stereo | | | 77.12 212 | 76.23 204 | 79.79 265 | 81.72 302 | 66.34 132 | 89.29 254 | 90.88 191 | 70.56 242 | 62.01 311 | 82.88 270 | 49.34 250 | 94.13 218 | 65.55 248 | 93.80 42 | 78.88 365 |
| Qingsong Yan: MVP-Stereo: A Parallel Multi-View Patchmatch Stereo Method with Dilation Matching for Photogrammetric Application. |
| sd_testset | | | 77.08 213 | 75.37 216 | 82.20 203 | 89.25 165 | 62.11 241 | 82.06 324 | 89.09 261 | 76.77 116 | 70.84 215 | 87.12 225 | 41.43 302 | 95.01 181 | 67.23 227 | 74.55 226 | 89.48 226 |
|
| dmvs_re | | | 76.93 214 | 75.36 217 | 81.61 218 | 87.78 208 | 60.71 270 | 80.00 345 | 87.99 299 | 79.42 71 | 69.02 238 | 89.47 188 | 46.77 271 | 94.32 208 | 63.38 262 | 74.45 229 | 89.81 219 |
|
| X-MVStestdata | | | 76.86 215 | 74.13 235 | 85.05 117 | 93.22 66 | 63.78 194 | 92.92 119 | 92.66 114 | 73.99 150 | 78.18 132 | 10.19 407 | 55.25 191 | 97.41 70 | 79.16 127 | 91.58 75 | 93.95 129 |
|
| DU-MVS | | | 76.86 215 | 75.84 210 | 79.91 261 | 82.96 290 | 60.26 277 | 91.26 197 | 91.54 162 | 76.46 121 | 68.88 241 | 86.35 233 | 56.16 182 | 92.13 286 | 66.38 237 | 62.55 317 | 87.35 255 |
|
| mvsmamba | | | 76.85 217 | 75.71 213 | 80.25 249 | 83.07 289 | 59.16 294 | 91.44 182 | 80.64 355 | 76.84 113 | 67.95 253 | 86.33 235 | 46.17 281 | 94.24 215 | 76.06 148 | 72.92 242 | 87.36 254 |
|
| Anonymous20240529 | | | 76.84 218 | 74.15 234 | 84.88 123 | 91.02 127 | 64.95 166 | 93.84 81 | 91.09 183 | 53.57 358 | 73.00 185 | 87.42 220 | 35.91 336 | 97.32 76 | 69.14 209 | 72.41 248 | 92.36 174 |
|
| c3_l | | | 76.83 219 | 75.47 215 | 80.93 238 | 85.02 261 | 64.18 188 | 90.39 226 | 88.11 296 | 71.66 213 | 66.65 274 | 81.64 286 | 63.58 100 | 92.56 273 | 69.31 206 | 62.86 314 | 86.04 282 |
|
| WR-MVS | | | 76.76 220 | 75.74 212 | 79.82 264 | 84.60 266 | 62.27 239 | 92.60 135 | 92.51 121 | 76.06 123 | 67.87 258 | 85.34 244 | 56.76 174 | 90.24 316 | 62.20 272 | 63.69 312 | 86.94 263 |
|
| v1144 | | | 76.73 221 | 74.88 221 | 82.27 199 | 80.23 318 | 66.60 126 | 91.68 178 | 90.21 217 | 73.69 160 | 69.06 237 | 81.89 281 | 52.73 222 | 94.40 207 | 69.21 207 | 65.23 295 | 85.80 288 |
|
| IterMVS-LS | | | 76.49 222 | 75.18 220 | 80.43 244 | 84.49 269 | 62.74 228 | 90.64 220 | 88.80 274 | 72.40 188 | 65.16 281 | 81.72 284 | 60.98 128 | 92.27 284 | 67.74 221 | 64.65 303 | 86.29 273 |
| Fangjinhua Wang, Silvano Galliani, Christoph Vogel, Marc Pollefeys: IterMVS: Iterative Probability Estimation for Efficient Multi-View Stereo. |
| V42 | | | 76.46 223 | 74.55 227 | 82.19 204 | 79.14 332 | 67.82 93 | 90.26 231 | 89.42 245 | 73.75 158 | 68.63 246 | 81.89 281 | 51.31 234 | 94.09 220 | 71.69 185 | 64.84 299 | 84.66 305 |
|
| v148 | | | 76.19 224 | 74.47 229 | 81.36 223 | 80.05 320 | 64.44 175 | 91.75 176 | 90.23 215 | 73.68 161 | 67.13 267 | 80.84 301 | 55.92 187 | 93.86 237 | 68.95 211 | 61.73 328 | 85.76 291 |
|
| Effi-MVS+-dtu | | | 76.14 225 | 75.28 219 | 78.72 282 | 83.22 286 | 55.17 331 | 89.87 242 | 87.78 302 | 75.42 131 | 67.98 252 | 81.43 290 | 45.08 289 | 92.52 275 | 75.08 156 | 71.63 251 | 88.48 238 |
|
| cl____ | | | 76.07 226 | 74.67 222 | 80.28 247 | 85.15 257 | 61.76 248 | 90.12 234 | 88.73 277 | 71.16 228 | 65.43 278 | 81.57 288 | 61.15 125 | 92.95 253 | 66.54 234 | 62.17 321 | 86.13 280 |
|
| DIV-MVS_self_test | | | 76.07 226 | 74.67 222 | 80.28 247 | 85.14 258 | 61.75 249 | 90.12 234 | 88.73 277 | 71.16 228 | 65.42 279 | 81.60 287 | 61.15 125 | 92.94 257 | 66.54 234 | 62.16 323 | 86.14 278 |
|
| FMVSNet2 | | | 76.07 226 | 74.01 237 | 82.26 201 | 88.85 175 | 67.66 97 | 91.33 194 | 91.61 160 | 70.84 235 | 65.98 275 | 82.25 277 | 48.03 261 | 92.00 290 | 58.46 291 | 68.73 271 | 87.10 260 |
|
| v144192 | | | 76.05 229 | 74.03 236 | 82.12 207 | 79.50 326 | 66.55 128 | 91.39 188 | 89.71 238 | 72.30 191 | 68.17 250 | 81.33 293 | 51.75 229 | 94.03 228 | 67.94 219 | 64.19 305 | 85.77 289 |
|
| NR-MVSNet | | | 76.05 229 | 74.59 225 | 80.44 243 | 82.96 290 | 62.18 240 | 90.83 213 | 91.73 152 | 77.12 110 | 60.96 314 | 86.35 233 | 59.28 149 | 91.80 293 | 60.74 279 | 61.34 332 | 87.35 255 |
|
| v1192 | | | 75.98 231 | 73.92 238 | 82.15 205 | 79.73 322 | 66.24 135 | 91.22 200 | 89.75 232 | 72.67 180 | 68.49 248 | 81.42 291 | 49.86 246 | 94.27 212 | 67.08 229 | 65.02 297 | 85.95 285 |
|
| FE-MVS | | | 75.97 232 | 73.02 248 | 84.82 125 | 89.78 150 | 65.56 150 | 77.44 357 | 91.07 186 | 64.55 294 | 72.66 190 | 79.85 316 | 46.05 282 | 96.69 115 | 54.97 303 | 80.82 178 | 92.21 183 |
|
| eth_miper_zixun_eth | | | 75.96 233 | 74.40 230 | 80.66 240 | 84.66 265 | 63.02 219 | 89.28 255 | 88.27 292 | 71.88 204 | 65.73 276 | 81.65 285 | 59.45 145 | 92.81 261 | 68.13 216 | 60.53 337 | 86.14 278 |
|
| TranMVSNet+NR-MVSNet | | | 75.86 234 | 74.52 228 | 79.89 262 | 82.44 295 | 60.64 273 | 91.37 191 | 91.37 169 | 76.63 118 | 67.65 260 | 86.21 237 | 52.37 225 | 91.55 299 | 61.84 274 | 60.81 335 | 87.48 250 |
|
| SCA | | | 75.82 235 | 72.76 252 | 85.01 119 | 86.63 230 | 70.08 38 | 81.06 334 | 89.19 254 | 71.60 219 | 70.01 226 | 77.09 337 | 45.53 284 | 90.25 313 | 60.43 281 | 73.27 238 | 94.68 96 |
|
| LPG-MVS_test | | | 75.82 235 | 74.58 226 | 79.56 271 | 84.31 273 | 59.37 290 | 90.44 223 | 89.73 235 | 69.49 253 | 64.86 282 | 88.42 198 | 38.65 312 | 94.30 210 | 72.56 175 | 72.76 243 | 85.01 302 |
|
| GBi-Net | | | 75.65 237 | 73.83 239 | 81.10 231 | 88.85 175 | 65.11 161 | 90.01 238 | 90.32 207 | 70.84 235 | 67.04 268 | 80.25 311 | 48.03 261 | 91.54 300 | 59.80 286 | 69.34 263 | 86.64 266 |
|
| test1 | | | 75.65 237 | 73.83 239 | 81.10 231 | 88.85 175 | 65.11 161 | 90.01 238 | 90.32 207 | 70.84 235 | 67.04 268 | 80.25 311 | 48.03 261 | 91.54 300 | 59.80 286 | 69.34 263 | 86.64 266 |
|
| v1921920 | | | 75.63 239 | 73.49 244 | 82.06 211 | 79.38 327 | 66.35 131 | 91.07 207 | 89.48 241 | 71.98 199 | 67.99 251 | 81.22 296 | 49.16 255 | 93.90 234 | 66.56 233 | 64.56 304 | 85.92 287 |
|
| ACMP | | 71.68 10 | 75.58 240 | 74.23 233 | 79.62 269 | 84.97 262 | 59.64 285 | 90.80 214 | 89.07 263 | 70.39 243 | 62.95 304 | 87.30 222 | 38.28 316 | 93.87 235 | 72.89 169 | 71.45 254 | 85.36 298 |
| Qingshan Xu and Wenbing Tao: Planar Prior Assisted PatchMatch Multi-View Stereo. AAAI 2020 |
| v8 | | | 75.35 241 | 73.26 246 | 81.61 218 | 80.67 311 | 66.82 119 | 89.54 249 | 89.27 250 | 71.65 214 | 63.30 300 | 80.30 310 | 54.99 197 | 94.06 223 | 67.33 226 | 62.33 320 | 83.94 310 |
|
| tpm cat1 | | | 75.30 242 | 72.21 261 | 84.58 140 | 88.52 181 | 67.77 94 | 78.16 355 | 88.02 298 | 61.88 321 | 68.45 249 | 76.37 343 | 60.65 131 | 94.03 228 | 53.77 309 | 74.11 232 | 91.93 188 |
|
| PLC |  | 68.80 14 | 75.23 243 | 73.68 242 | 79.86 263 | 92.93 75 | 58.68 300 | 90.64 220 | 88.30 290 | 60.90 326 | 64.43 291 | 90.53 169 | 42.38 299 | 94.57 199 | 56.52 297 | 76.54 217 | 86.33 272 |
| Jie Liao, Yanping Fu, Qingan Yan, Chunxia xiao: Pyramid Multi-View Stereo with Local Consistency. Pacific Graphics 2019 |
| v1240 | | | 75.21 244 | 72.98 249 | 81.88 213 | 79.20 329 | 66.00 139 | 90.75 216 | 89.11 260 | 71.63 218 | 67.41 264 | 81.22 296 | 47.36 269 | 93.87 235 | 65.46 249 | 64.72 302 | 85.77 289 |
|
| Fast-Effi-MVS+-dtu | | | 75.04 245 | 73.37 245 | 80.07 254 | 80.86 307 | 59.52 288 | 91.20 202 | 85.38 325 | 71.90 202 | 65.20 280 | 84.84 250 | 41.46 301 | 92.97 252 | 66.50 236 | 72.96 241 | 87.73 247 |
|
| dp | | | 75.01 246 | 72.09 262 | 83.76 161 | 89.28 164 | 66.22 136 | 79.96 347 | 89.75 232 | 71.16 228 | 67.80 259 | 77.19 336 | 51.81 228 | 92.54 274 | 50.39 317 | 71.44 255 | 92.51 172 |
|
| TAPA-MVS | | 70.22 12 | 74.94 247 | 73.53 243 | 79.17 276 | 90.40 139 | 52.07 344 | 89.19 258 | 89.61 239 | 62.69 313 | 70.07 225 | 92.67 128 | 48.89 258 | 94.32 208 | 38.26 369 | 79.97 183 | 91.12 204 |
| Andrea Romanoni, Matteo Matteucci: TAPA-MVS: Textureless-Aware PAtchMatch Multi-View Stereo. ICCV 2019 |
| v10 | | | 74.77 248 | 72.54 258 | 81.46 221 | 80.33 316 | 66.71 123 | 89.15 259 | 89.08 262 | 70.94 233 | 63.08 303 | 79.86 315 | 52.52 223 | 94.04 226 | 65.70 245 | 62.17 321 | 83.64 313 |
|
| XVG-OURS-SEG-HR | | | 74.70 249 | 73.08 247 | 79.57 270 | 78.25 344 | 57.33 316 | 80.49 337 | 87.32 305 | 63.22 306 | 68.76 244 | 90.12 183 | 44.89 290 | 91.59 298 | 70.55 195 | 74.09 233 | 89.79 220 |
|
| RRT_MVS | | | 74.44 250 | 72.97 250 | 78.84 281 | 82.36 296 | 57.66 310 | 89.83 244 | 88.79 276 | 70.61 241 | 64.58 286 | 84.89 249 | 39.24 308 | 92.65 271 | 70.11 198 | 66.34 287 | 86.21 276 |
|
| ACMM | | 69.62 13 | 74.34 251 | 72.73 254 | 79.17 276 | 84.25 275 | 57.87 306 | 90.36 227 | 89.93 226 | 63.17 308 | 65.64 277 | 86.04 240 | 37.79 324 | 94.10 219 | 65.89 242 | 71.52 253 | 85.55 294 |
| Qingshan Xu and Wenbing Tao: Multi-Scale Geometric Consistency Guided Multi-View Stereo. CVPR 2019 |
| CNLPA | | | 74.31 252 | 72.30 260 | 80.32 245 | 91.49 118 | 61.66 251 | 90.85 212 | 80.72 354 | 56.67 350 | 63.85 295 | 90.64 166 | 46.75 272 | 90.84 308 | 53.79 308 | 75.99 221 | 88.47 240 |
|
| XVG-OURS | | | 74.25 253 | 72.46 259 | 79.63 268 | 78.45 342 | 57.59 312 | 80.33 339 | 87.39 304 | 63.86 299 | 68.76 244 | 89.62 187 | 40.50 305 | 91.72 295 | 69.00 210 | 74.25 231 | 89.58 223 |
|
| test_fmvs1 | | | 74.07 254 | 73.69 241 | 75.22 314 | 78.91 336 | 47.34 368 | 89.06 262 | 74.69 370 | 63.68 301 | 79.41 117 | 91.59 154 | 24.36 371 | 87.77 338 | 85.22 78 | 76.26 219 | 90.55 211 |
|
| CVMVSNet | | | 74.04 255 | 74.27 232 | 73.33 329 | 85.33 253 | 43.94 379 | 89.53 250 | 88.39 287 | 54.33 357 | 70.37 221 | 90.13 181 | 49.17 254 | 84.05 359 | 61.83 275 | 79.36 189 | 91.99 187 |
|
| Baseline_NR-MVSNet | | | 73.99 256 | 72.83 251 | 77.48 295 | 80.78 309 | 59.29 293 | 91.79 171 | 84.55 333 | 68.85 262 | 68.99 239 | 80.70 302 | 56.16 182 | 92.04 289 | 62.67 269 | 60.98 334 | 81.11 345 |
|
| pmmvs4 | | | 73.92 257 | 71.81 266 | 80.25 249 | 79.17 330 | 65.24 157 | 87.43 285 | 87.26 307 | 67.64 274 | 63.46 298 | 83.91 261 | 48.96 257 | 91.53 303 | 62.94 266 | 65.49 291 | 83.96 309 |
|
| D2MVS | | | 73.80 258 | 72.02 263 | 79.15 278 | 79.15 331 | 62.97 220 | 88.58 268 | 90.07 220 | 72.94 173 | 59.22 323 | 78.30 325 | 42.31 300 | 92.70 267 | 65.59 247 | 72.00 249 | 81.79 340 |
|
| CR-MVSNet | | | 73.79 259 | 70.82 274 | 82.70 187 | 83.15 287 | 67.96 90 | 70.25 371 | 84.00 338 | 73.67 162 | 69.97 228 | 72.41 357 | 57.82 161 | 89.48 324 | 52.99 312 | 73.13 239 | 90.64 209 |
|
| test_djsdf | | | 73.76 260 | 72.56 257 | 77.39 297 | 77.00 353 | 53.93 337 | 89.07 260 | 90.69 194 | 65.80 286 | 63.92 293 | 82.03 280 | 43.14 297 | 92.67 268 | 72.83 170 | 68.53 272 | 85.57 293 |
|
| pmmvs5 | | | 73.35 261 | 71.52 268 | 78.86 280 | 78.64 340 | 60.61 274 | 91.08 205 | 86.90 310 | 67.69 271 | 63.32 299 | 83.64 262 | 44.33 292 | 90.53 310 | 62.04 273 | 66.02 289 | 85.46 296 |
|
| Anonymous20231211 | | | 73.08 262 | 70.39 278 | 81.13 229 | 90.62 135 | 63.33 212 | 91.40 186 | 90.06 222 | 51.84 363 | 64.46 290 | 80.67 304 | 36.49 334 | 94.07 222 | 63.83 259 | 64.17 306 | 85.98 284 |
|
| tt0805 | | | 73.07 263 | 70.73 275 | 80.07 254 | 78.37 343 | 57.05 318 | 87.78 280 | 92.18 133 | 61.23 325 | 67.04 268 | 86.49 232 | 31.35 356 | 94.58 197 | 65.06 252 | 67.12 281 | 88.57 236 |
|
| miper_lstm_enhance | | | 73.05 264 | 71.73 267 | 77.03 301 | 83.80 279 | 58.32 303 | 81.76 325 | 88.88 270 | 69.80 251 | 61.01 313 | 78.23 327 | 57.19 166 | 87.51 342 | 65.34 250 | 59.53 342 | 85.27 301 |
|
| jajsoiax | | | 73.05 264 | 71.51 269 | 77.67 292 | 77.46 350 | 54.83 333 | 88.81 264 | 90.04 223 | 69.13 260 | 62.85 306 | 83.51 264 | 31.16 357 | 92.75 264 | 70.83 190 | 69.80 259 | 85.43 297 |
|
| LCM-MVSNet-Re | | | 72.93 266 | 71.84 265 | 76.18 310 | 88.49 182 | 48.02 363 | 80.07 344 | 70.17 380 | 73.96 153 | 52.25 353 | 80.09 314 | 49.98 244 | 88.24 332 | 67.35 224 | 84.23 147 | 92.28 178 |
|
| pm-mvs1 | | | 72.89 267 | 71.09 271 | 78.26 287 | 79.10 333 | 57.62 311 | 90.80 214 | 89.30 249 | 67.66 272 | 62.91 305 | 81.78 283 | 49.11 256 | 92.95 253 | 60.29 283 | 58.89 345 | 84.22 308 |
|
| tpmvs | | | 72.88 268 | 69.76 284 | 82.22 202 | 90.98 128 | 67.05 114 | 78.22 354 | 88.30 290 | 63.10 309 | 64.35 292 | 74.98 350 | 55.09 196 | 94.27 212 | 43.25 349 | 69.57 262 | 85.34 299 |
|
| test0.0.03 1 | | | 72.76 269 | 72.71 255 | 72.88 333 | 80.25 317 | 47.99 364 | 91.22 200 | 89.45 243 | 71.51 223 | 62.51 309 | 87.66 216 | 53.83 209 | 85.06 355 | 50.16 319 | 67.84 279 | 85.58 292 |
|
| UniMVSNet_ETH3D | | | 72.74 270 | 70.53 277 | 79.36 273 | 78.62 341 | 56.64 322 | 85.01 301 | 89.20 253 | 63.77 300 | 64.84 284 | 84.44 256 | 34.05 343 | 91.86 292 | 63.94 258 | 70.89 258 | 89.57 224 |
|
| mvs_tets | | | 72.71 271 | 71.11 270 | 77.52 293 | 77.41 351 | 54.52 335 | 88.45 270 | 89.76 231 | 68.76 265 | 62.70 307 | 83.26 267 | 29.49 361 | 92.71 265 | 70.51 196 | 69.62 261 | 85.34 299 |
|
| FMVSNet1 | | | 72.71 271 | 69.91 282 | 81.10 231 | 83.60 283 | 65.11 161 | 90.01 238 | 90.32 207 | 63.92 298 | 63.56 297 | 80.25 311 | 36.35 335 | 91.54 300 | 54.46 305 | 66.75 284 | 86.64 266 |
|
| test_fmvs1_n | | | 72.69 273 | 71.92 264 | 74.99 317 | 71.15 372 | 47.08 370 | 87.34 287 | 75.67 365 | 63.48 303 | 78.08 134 | 91.17 161 | 20.16 382 | 87.87 335 | 84.65 86 | 75.57 223 | 90.01 217 |
|
| IterMVS | | | 72.65 274 | 70.83 272 | 78.09 289 | 82.17 298 | 62.96 221 | 87.64 283 | 86.28 316 | 71.56 221 | 60.44 316 | 78.85 323 | 45.42 286 | 86.66 346 | 63.30 264 | 61.83 325 | 84.65 306 |
| Fangjinhua Wang, Silvano Galliani, Christoph Vogel, Marc Pollefeys: IterMVS: Iterative Probability Estimation for Efficient Multi-View Stereo. |
| myMVS_eth3d | | | 72.58 275 | 72.74 253 | 72.10 341 | 87.87 204 | 49.45 358 | 88.07 274 | 89.01 265 | 72.91 175 | 63.11 301 | 88.10 208 | 63.63 95 | 85.54 351 | 32.73 383 | 69.23 266 | 81.32 343 |
|
| PatchMatch-RL | | | 72.06 276 | 69.98 279 | 78.28 286 | 89.51 158 | 55.70 328 | 83.49 310 | 83.39 345 | 61.24 324 | 63.72 296 | 82.76 271 | 34.77 340 | 93.03 250 | 53.37 311 | 77.59 204 | 86.12 281 |
|
| PVSNet_0 | | 68.08 15 | 71.81 277 | 68.32 293 | 82.27 199 | 84.68 264 | 62.31 238 | 88.68 266 | 90.31 210 | 75.84 125 | 57.93 334 | 80.65 305 | 37.85 323 | 94.19 216 | 69.94 199 | 29.05 397 | 90.31 213 |
|
| MIMVSNet | | | 71.64 278 | 68.44 291 | 81.23 226 | 81.97 301 | 64.44 175 | 73.05 367 | 88.80 274 | 69.67 252 | 64.59 285 | 74.79 351 | 32.79 346 | 87.82 336 | 53.99 307 | 76.35 218 | 91.42 194 |
|
| test_vis1_n | | | 71.63 279 | 70.73 275 | 74.31 324 | 69.63 378 | 47.29 369 | 86.91 291 | 72.11 375 | 63.21 307 | 75.18 164 | 90.17 179 | 20.40 380 | 85.76 350 | 84.59 87 | 74.42 230 | 89.87 218 |
|
| IterMVS-SCA-FT | | | 71.55 280 | 69.97 280 | 76.32 308 | 81.48 303 | 60.67 272 | 87.64 283 | 85.99 321 | 66.17 284 | 59.50 321 | 78.88 322 | 45.53 284 | 83.65 363 | 62.58 270 | 61.93 324 | 84.63 307 |
|
| v7n | | | 71.31 281 | 68.65 288 | 79.28 274 | 76.40 355 | 60.77 266 | 86.71 294 | 89.45 243 | 64.17 297 | 58.77 328 | 78.24 326 | 44.59 291 | 93.54 241 | 57.76 293 | 61.75 327 | 83.52 316 |
|
| anonymousdsp | | | 71.14 282 | 69.37 286 | 76.45 307 | 72.95 367 | 54.71 334 | 84.19 305 | 88.88 270 | 61.92 320 | 62.15 310 | 79.77 317 | 38.14 319 | 91.44 305 | 68.90 212 | 67.45 280 | 83.21 322 |
|
| F-COLMAP | | | 70.66 283 | 68.44 291 | 77.32 298 | 86.37 236 | 55.91 326 | 88.00 276 | 86.32 315 | 56.94 348 | 57.28 337 | 88.07 210 | 33.58 344 | 92.49 276 | 51.02 315 | 68.37 273 | 83.55 314 |
|
| WR-MVS_H | | | 70.59 284 | 69.94 281 | 72.53 335 | 81.03 306 | 51.43 347 | 87.35 286 | 92.03 137 | 67.38 275 | 60.23 318 | 80.70 302 | 55.84 188 | 83.45 365 | 46.33 339 | 58.58 347 | 82.72 329 |
|
| CP-MVSNet | | | 70.50 285 | 69.91 282 | 72.26 338 | 80.71 310 | 51.00 350 | 87.23 288 | 90.30 211 | 67.84 270 | 59.64 320 | 82.69 272 | 50.23 243 | 82.30 373 | 51.28 314 | 59.28 343 | 83.46 318 |
|
| RPMNet | | | 70.42 286 | 65.68 305 | 84.63 138 | 83.15 287 | 67.96 90 | 70.25 371 | 90.45 201 | 46.83 377 | 69.97 228 | 65.10 376 | 56.48 181 | 95.30 175 | 35.79 374 | 73.13 239 | 90.64 209 |
|
| testing3 | | | 70.38 287 | 70.83 272 | 69.03 352 | 85.82 247 | 43.93 380 | 90.72 217 | 90.56 200 | 68.06 269 | 60.24 317 | 86.82 229 | 64.83 79 | 84.12 357 | 26.33 390 | 64.10 307 | 79.04 364 |
|
| tfpnnormal | | | 70.10 288 | 67.36 296 | 78.32 285 | 83.45 285 | 60.97 262 | 88.85 263 | 92.77 109 | 64.85 293 | 60.83 315 | 78.53 324 | 43.52 295 | 93.48 243 | 31.73 386 | 61.70 329 | 80.52 352 |
|
| TransMVSNet (Re) | | | 70.07 289 | 67.66 295 | 77.31 299 | 80.62 313 | 59.13 296 | 91.78 173 | 84.94 330 | 65.97 285 | 60.08 319 | 80.44 307 | 50.78 237 | 91.87 291 | 48.84 325 | 45.46 375 | 80.94 347 |
|
| CL-MVSNet_self_test | | | 69.92 290 | 68.09 294 | 75.41 313 | 73.25 366 | 55.90 327 | 90.05 237 | 89.90 227 | 69.96 248 | 61.96 312 | 76.54 340 | 51.05 236 | 87.64 339 | 49.51 323 | 50.59 367 | 82.70 331 |
|
| DP-MVS | | | 69.90 291 | 66.48 298 | 80.14 252 | 95.36 28 | 62.93 222 | 89.56 247 | 76.11 363 | 50.27 368 | 57.69 335 | 85.23 245 | 39.68 307 | 95.73 152 | 33.35 379 | 71.05 257 | 81.78 341 |
|
| PS-CasMVS | | | 69.86 292 | 69.13 287 | 72.07 342 | 80.35 315 | 50.57 352 | 87.02 290 | 89.75 232 | 67.27 276 | 59.19 324 | 82.28 276 | 46.58 274 | 82.24 374 | 50.69 316 | 59.02 344 | 83.39 320 |
|
| Syy-MVS | | | 69.65 293 | 69.52 285 | 70.03 348 | 87.87 204 | 43.21 381 | 88.07 274 | 89.01 265 | 72.91 175 | 63.11 301 | 88.10 208 | 45.28 287 | 85.54 351 | 22.07 394 | 69.23 266 | 81.32 343 |
|
| MSDG | | | 69.54 294 | 65.73 304 | 80.96 236 | 85.11 260 | 63.71 199 | 84.19 305 | 83.28 346 | 56.95 347 | 54.50 344 | 84.03 258 | 31.50 354 | 96.03 142 | 42.87 353 | 69.13 268 | 83.14 324 |
|
| PEN-MVS | | | 69.46 295 | 68.56 289 | 72.17 340 | 79.27 328 | 49.71 356 | 86.90 292 | 89.24 251 | 67.24 279 | 59.08 325 | 82.51 275 | 47.23 270 | 83.54 364 | 48.42 327 | 57.12 348 | 83.25 321 |
|
| LS3D | | | 69.17 296 | 66.40 300 | 77.50 294 | 91.92 104 | 56.12 325 | 85.12 300 | 80.37 356 | 46.96 375 | 56.50 339 | 87.51 219 | 37.25 327 | 93.71 238 | 32.52 385 | 79.40 188 | 82.68 332 |
|
| PatchT | | | 69.11 297 | 65.37 309 | 80.32 245 | 82.07 300 | 63.68 202 | 67.96 380 | 87.62 303 | 50.86 366 | 69.37 232 | 65.18 375 | 57.09 167 | 88.53 330 | 41.59 358 | 66.60 285 | 88.74 233 |
|
| KD-MVS_2432*1600 | | | 69.03 298 | 66.37 301 | 77.01 302 | 85.56 251 | 61.06 260 | 81.44 330 | 90.25 213 | 67.27 276 | 58.00 332 | 76.53 341 | 54.49 201 | 87.63 340 | 48.04 329 | 35.77 389 | 82.34 335 |
|
| miper_refine_blended | | | 69.03 298 | 66.37 301 | 77.01 302 | 85.56 251 | 61.06 260 | 81.44 330 | 90.25 213 | 67.27 276 | 58.00 332 | 76.53 341 | 54.49 201 | 87.63 340 | 48.04 329 | 35.77 389 | 82.34 335 |
|
| mvsany_test1 | | | 68.77 300 | 68.56 289 | 69.39 350 | 73.57 365 | 45.88 375 | 80.93 335 | 60.88 393 | 59.65 335 | 71.56 209 | 90.26 177 | 43.22 296 | 75.05 383 | 74.26 164 | 62.70 316 | 87.25 259 |
|
| ACMH | | 63.93 17 | 68.62 301 | 64.81 311 | 80.03 256 | 85.22 256 | 63.25 213 | 87.72 281 | 84.66 332 | 60.83 327 | 51.57 356 | 79.43 321 | 27.29 367 | 94.96 183 | 41.76 356 | 64.84 299 | 81.88 339 |
| Qingshan Xu and Wenbing Tao: Multi-Scale Geometric Consistency Guided Multi-View Stereo. CVPR 2019 |
| EG-PatchMatch MVS | | | 68.55 302 | 65.41 308 | 77.96 290 | 78.69 339 | 62.93 222 | 89.86 243 | 89.17 255 | 60.55 328 | 50.27 361 | 77.73 331 | 22.60 376 | 94.06 223 | 47.18 335 | 72.65 245 | 76.88 373 |
|
| ADS-MVSNet | | | 68.54 303 | 64.38 318 | 81.03 235 | 88.06 198 | 66.90 118 | 68.01 378 | 84.02 337 | 57.57 342 | 64.48 288 | 69.87 367 | 38.68 310 | 89.21 326 | 40.87 360 | 67.89 277 | 86.97 261 |
|
| DTE-MVSNet | | | 68.46 304 | 67.33 297 | 71.87 344 | 77.94 348 | 49.00 361 | 86.16 297 | 88.58 284 | 66.36 283 | 58.19 329 | 82.21 278 | 46.36 275 | 83.87 362 | 44.97 346 | 55.17 355 | 82.73 328 |
|
| our_test_3 | | | 68.29 305 | 64.69 313 | 79.11 279 | 78.92 334 | 64.85 168 | 88.40 271 | 85.06 328 | 60.32 331 | 52.68 351 | 76.12 345 | 40.81 304 | 89.80 323 | 44.25 348 | 55.65 353 | 82.67 333 |
|
| Patchmatch-RL test | | | 68.17 306 | 64.49 316 | 79.19 275 | 71.22 371 | 53.93 337 | 70.07 373 | 71.54 379 | 69.22 257 | 56.79 338 | 62.89 379 | 56.58 179 | 88.61 327 | 69.53 203 | 52.61 362 | 95.03 82 |
|
| XVG-ACMP-BASELINE | | | 68.04 307 | 65.53 307 | 75.56 312 | 74.06 364 | 52.37 342 | 78.43 351 | 85.88 322 | 62.03 318 | 58.91 327 | 81.21 298 | 20.38 381 | 91.15 307 | 60.69 280 | 68.18 274 | 83.16 323 |
|
| FMVSNet5 | | | 68.04 307 | 65.66 306 | 75.18 316 | 84.43 271 | 57.89 305 | 83.54 309 | 86.26 317 | 61.83 322 | 53.64 349 | 73.30 354 | 37.15 330 | 85.08 354 | 48.99 324 | 61.77 326 | 82.56 334 |
|
| ppachtmachnet_test | | | 67.72 309 | 63.70 320 | 79.77 266 | 78.92 334 | 66.04 138 | 88.68 266 | 82.90 348 | 60.11 333 | 55.45 341 | 75.96 346 | 39.19 309 | 90.55 309 | 39.53 364 | 52.55 363 | 82.71 330 |
|
| ACMH+ | | 65.35 16 | 67.65 310 | 64.55 314 | 76.96 304 | 84.59 267 | 57.10 317 | 88.08 273 | 80.79 353 | 58.59 341 | 53.00 350 | 81.09 300 | 26.63 369 | 92.95 253 | 46.51 337 | 61.69 330 | 80.82 348 |
|
| pmmvs6 | | | 67.57 311 | 64.76 312 | 76.00 311 | 72.82 369 | 53.37 339 | 88.71 265 | 86.78 314 | 53.19 359 | 57.58 336 | 78.03 329 | 35.33 339 | 92.41 278 | 55.56 301 | 54.88 357 | 82.21 337 |
|
| Anonymous20231206 | | | 67.53 312 | 65.78 303 | 72.79 334 | 74.95 360 | 47.59 366 | 88.23 272 | 87.32 305 | 61.75 323 | 58.07 331 | 77.29 334 | 37.79 324 | 87.29 344 | 42.91 351 | 63.71 311 | 83.48 317 |
|
| Patchmtry | | | 67.53 312 | 63.93 319 | 78.34 284 | 82.12 299 | 64.38 179 | 68.72 375 | 84.00 338 | 48.23 374 | 59.24 322 | 72.41 357 | 57.82 161 | 89.27 325 | 46.10 340 | 56.68 352 | 81.36 342 |
|
| USDC | | | 67.43 314 | 64.51 315 | 76.19 309 | 77.94 348 | 55.29 330 | 78.38 352 | 85.00 329 | 73.17 168 | 48.36 368 | 80.37 308 | 21.23 378 | 92.48 277 | 52.15 313 | 64.02 309 | 80.81 349 |
|
| ADS-MVSNet2 | | | 66.90 315 | 63.44 322 | 77.26 300 | 88.06 198 | 60.70 271 | 68.01 378 | 75.56 367 | 57.57 342 | 64.48 288 | 69.87 367 | 38.68 310 | 84.10 358 | 40.87 360 | 67.89 277 | 86.97 261 |
|
| CMPMVS |  | 48.56 21 | 66.77 316 | 64.41 317 | 73.84 326 | 70.65 375 | 50.31 353 | 77.79 356 | 85.73 324 | 45.54 379 | 44.76 378 | 82.14 279 | 35.40 338 | 90.14 319 | 63.18 265 | 74.54 228 | 81.07 346 |
| M. Jancosek, T. Pajdla: Multi-View Reconstruction Preserving Weakly-Supported Surfaces. CVPR 2011 |
| OpenMVS_ROB |  | 61.12 18 | 66.39 317 | 62.92 325 | 76.80 306 | 76.51 354 | 57.77 307 | 89.22 256 | 83.41 344 | 55.48 354 | 53.86 348 | 77.84 330 | 26.28 370 | 93.95 232 | 34.90 376 | 68.76 270 | 78.68 367 |
|
| LTVRE_ROB | | 59.60 19 | 66.27 318 | 63.54 321 | 74.45 321 | 84.00 278 | 51.55 346 | 67.08 381 | 83.53 342 | 58.78 339 | 54.94 343 | 80.31 309 | 34.54 341 | 93.23 247 | 40.64 362 | 68.03 275 | 78.58 368 |
| Andreas Kuhn, Heiko Hirschmüller, Daniel Scharstein, Helmut Mayer: A TV Prior for High-Quality Scalable Multi-View Stereo Reconstruction. International Journal of Computer Vision 2016 |
| JIA-IIPM | | | 66.06 319 | 62.45 328 | 76.88 305 | 81.42 305 | 54.45 336 | 57.49 393 | 88.67 280 | 49.36 370 | 63.86 294 | 46.86 391 | 56.06 185 | 90.25 313 | 49.53 322 | 68.83 269 | 85.95 285 |
|
| Patchmatch-test | | | 65.86 320 | 60.94 334 | 80.62 242 | 83.75 280 | 58.83 298 | 58.91 392 | 75.26 369 | 44.50 382 | 50.95 360 | 77.09 337 | 58.81 153 | 87.90 334 | 35.13 375 | 64.03 308 | 95.12 78 |
|
| UnsupCasMVSNet_eth | | | 65.79 321 | 63.10 323 | 73.88 325 | 70.71 374 | 50.29 354 | 81.09 333 | 89.88 228 | 72.58 182 | 49.25 366 | 74.77 352 | 32.57 349 | 87.43 343 | 55.96 300 | 41.04 382 | 83.90 311 |
|
| test_fmvs2 | | | 65.78 322 | 64.84 310 | 68.60 354 | 66.54 383 | 41.71 383 | 83.27 314 | 69.81 381 | 54.38 356 | 67.91 255 | 84.54 255 | 15.35 387 | 81.22 378 | 75.65 151 | 66.16 288 | 82.88 325 |
|
| dmvs_testset | | | 65.55 323 | 66.45 299 | 62.86 364 | 79.87 321 | 22.35 407 | 76.55 359 | 71.74 377 | 77.42 109 | 55.85 340 | 87.77 215 | 51.39 233 | 80.69 379 | 31.51 389 | 65.92 290 | 85.55 294 |
|
| pmmvs-eth3d | | | 65.53 324 | 62.32 329 | 75.19 315 | 69.39 379 | 59.59 286 | 82.80 321 | 83.43 343 | 62.52 314 | 51.30 358 | 72.49 355 | 32.86 345 | 87.16 345 | 55.32 302 | 50.73 366 | 78.83 366 |
|
| SixPastTwentyTwo | | | 64.92 325 | 61.78 332 | 74.34 323 | 78.74 338 | 49.76 355 | 83.42 313 | 79.51 359 | 62.86 310 | 50.27 361 | 77.35 332 | 30.92 359 | 90.49 311 | 45.89 341 | 47.06 372 | 82.78 326 |
|
| OurMVSNet-221017-0 | | | 64.68 326 | 62.17 330 | 72.21 339 | 76.08 358 | 47.35 367 | 80.67 336 | 81.02 352 | 56.19 351 | 51.60 355 | 79.66 319 | 27.05 368 | 88.56 329 | 53.60 310 | 53.63 360 | 80.71 350 |
|
| test_0402 | | | 64.54 327 | 61.09 333 | 74.92 318 | 84.10 277 | 60.75 268 | 87.95 277 | 79.71 358 | 52.03 361 | 52.41 352 | 77.20 335 | 32.21 352 | 91.64 296 | 23.14 392 | 61.03 333 | 72.36 381 |
|
| testgi | | | 64.48 328 | 62.87 326 | 69.31 351 | 71.24 370 | 40.62 386 | 85.49 298 | 79.92 357 | 65.36 290 | 54.18 346 | 83.49 265 | 23.74 374 | 84.55 356 | 41.60 357 | 60.79 336 | 82.77 327 |
|
| RPSCF | | | 64.24 329 | 61.98 331 | 71.01 346 | 76.10 357 | 45.00 376 | 75.83 363 | 75.94 364 | 46.94 376 | 58.96 326 | 84.59 253 | 31.40 355 | 82.00 375 | 47.76 333 | 60.33 341 | 86.04 282 |
|
| EU-MVSNet | | | 64.01 330 | 63.01 324 | 67.02 360 | 74.40 363 | 38.86 391 | 83.27 314 | 86.19 319 | 45.11 380 | 54.27 345 | 81.15 299 | 36.91 333 | 80.01 381 | 48.79 326 | 57.02 349 | 82.19 338 |
|
| test20.03 | | | 63.83 331 | 62.65 327 | 67.38 359 | 70.58 376 | 39.94 387 | 86.57 295 | 84.17 335 | 63.29 305 | 51.86 354 | 77.30 333 | 37.09 331 | 82.47 371 | 38.87 368 | 54.13 359 | 79.73 358 |
|
| MDA-MVSNet_test_wron | | | 63.78 332 | 60.16 335 | 74.64 319 | 78.15 346 | 60.41 275 | 83.49 310 | 84.03 336 | 56.17 353 | 39.17 387 | 71.59 363 | 37.22 328 | 83.24 368 | 42.87 353 | 48.73 369 | 80.26 355 |
|
| YYNet1 | | | 63.76 333 | 60.14 336 | 74.62 320 | 78.06 347 | 60.19 280 | 83.46 312 | 83.99 340 | 56.18 352 | 39.25 386 | 71.56 364 | 37.18 329 | 83.34 366 | 42.90 352 | 48.70 370 | 80.32 354 |
|
| K. test v3 | | | 63.09 334 | 59.61 338 | 73.53 328 | 76.26 356 | 49.38 360 | 83.27 314 | 77.15 362 | 64.35 296 | 47.77 370 | 72.32 359 | 28.73 363 | 87.79 337 | 49.93 321 | 36.69 388 | 83.41 319 |
|
| COLMAP_ROB |  | 57.96 20 | 62.98 335 | 59.65 337 | 72.98 332 | 81.44 304 | 53.00 341 | 83.75 308 | 75.53 368 | 48.34 373 | 48.81 367 | 81.40 292 | 24.14 372 | 90.30 312 | 32.95 381 | 60.52 338 | 75.65 376 |
| Johannes L. Schönberger, Enliang Zheng, Marc Pollefeys, Jan-Michael Frahm: Pixelwise View Selection for Unstructured Multi-View Stereo. ECCV 2016 |
| Anonymous20240521 | | | 62.09 336 | 59.08 339 | 71.10 345 | 67.19 382 | 48.72 362 | 83.91 307 | 85.23 327 | 50.38 367 | 47.84 369 | 71.22 366 | 20.74 379 | 85.51 353 | 46.47 338 | 58.75 346 | 79.06 363 |
|
| AllTest | | | 61.66 337 | 58.06 341 | 72.46 336 | 79.57 323 | 51.42 348 | 80.17 342 | 68.61 383 | 51.25 364 | 45.88 372 | 81.23 294 | 19.86 383 | 86.58 347 | 38.98 366 | 57.01 350 | 79.39 360 |
|
| UnsupCasMVSNet_bld | | | 61.60 338 | 57.71 342 | 73.29 330 | 68.73 380 | 51.64 345 | 78.61 350 | 89.05 264 | 57.20 346 | 46.11 371 | 61.96 382 | 28.70 364 | 88.60 328 | 50.08 320 | 38.90 386 | 79.63 359 |
|
| MDA-MVSNet-bldmvs | | | 61.54 339 | 57.70 343 | 73.05 331 | 79.53 325 | 57.00 321 | 83.08 318 | 81.23 351 | 57.57 342 | 34.91 390 | 72.45 356 | 32.79 346 | 86.26 349 | 35.81 373 | 41.95 380 | 75.89 375 |
|
| KD-MVS_self_test | | | 60.87 340 | 58.60 340 | 67.68 357 | 66.13 384 | 39.93 388 | 75.63 364 | 84.70 331 | 57.32 345 | 49.57 364 | 68.45 370 | 29.55 360 | 82.87 369 | 48.09 328 | 47.94 371 | 80.25 356 |
|
| TinyColmap | | | 60.32 341 | 56.42 348 | 72.00 343 | 78.78 337 | 53.18 340 | 78.36 353 | 75.64 366 | 52.30 360 | 41.59 385 | 75.82 348 | 14.76 390 | 88.35 331 | 35.84 372 | 54.71 358 | 74.46 377 |
|
| MVS-HIRNet | | | 60.25 342 | 55.55 349 | 74.35 322 | 84.37 272 | 56.57 323 | 71.64 369 | 74.11 371 | 34.44 390 | 45.54 376 | 42.24 397 | 31.11 358 | 89.81 321 | 40.36 363 | 76.10 220 | 76.67 374 |
|
| MIMVSNet1 | | | 60.16 343 | 57.33 344 | 68.67 353 | 69.71 377 | 44.13 378 | 78.92 349 | 84.21 334 | 55.05 355 | 44.63 379 | 71.85 361 | 23.91 373 | 81.54 377 | 32.63 384 | 55.03 356 | 80.35 353 |
|
| PM-MVS | | | 59.40 344 | 56.59 346 | 67.84 355 | 63.63 386 | 41.86 382 | 76.76 358 | 63.22 390 | 59.01 338 | 51.07 359 | 72.27 360 | 11.72 393 | 83.25 367 | 61.34 276 | 50.28 368 | 78.39 369 |
|
| new-patchmatchnet | | | 59.30 345 | 56.48 347 | 67.79 356 | 65.86 385 | 44.19 377 | 82.47 322 | 81.77 349 | 59.94 334 | 43.65 382 | 66.20 374 | 27.67 366 | 81.68 376 | 39.34 365 | 41.40 381 | 77.50 372 |
|
| test_vis1_rt | | | 59.09 346 | 57.31 345 | 64.43 362 | 68.44 381 | 46.02 374 | 83.05 319 | 48.63 402 | 51.96 362 | 49.57 364 | 63.86 378 | 16.30 385 | 80.20 380 | 71.21 188 | 62.79 315 | 67.07 387 |
|
| test_fmvs3 | | | 56.82 347 | 54.86 350 | 62.69 365 | 53.59 396 | 35.47 393 | 75.87 362 | 65.64 388 | 43.91 383 | 55.10 342 | 71.43 365 | 6.91 401 | 74.40 386 | 68.64 214 | 52.63 361 | 78.20 370 |
|
| DSMNet-mixed | | | 56.78 348 | 54.44 351 | 63.79 363 | 63.21 387 | 29.44 402 | 64.43 384 | 64.10 389 | 42.12 387 | 51.32 357 | 71.60 362 | 31.76 353 | 75.04 384 | 36.23 371 | 65.20 296 | 86.87 264 |
|
| pmmvs3 | | | 55.51 349 | 51.50 354 | 67.53 358 | 57.90 394 | 50.93 351 | 80.37 338 | 73.66 372 | 40.63 388 | 44.15 381 | 64.75 377 | 16.30 385 | 78.97 382 | 44.77 347 | 40.98 384 | 72.69 379 |
|
| TDRefinement | | | 55.28 350 | 51.58 353 | 66.39 361 | 59.53 393 | 46.15 373 | 76.23 361 | 72.80 373 | 44.60 381 | 42.49 383 | 76.28 344 | 15.29 388 | 82.39 372 | 33.20 380 | 43.75 377 | 70.62 383 |
|
| LF4IMVS | | | 54.01 351 | 52.12 352 | 59.69 366 | 62.41 389 | 39.91 389 | 68.59 376 | 68.28 385 | 42.96 386 | 44.55 380 | 75.18 349 | 14.09 392 | 68.39 392 | 41.36 359 | 51.68 364 | 70.78 382 |
|
| N_pmnet | | | 50.55 352 | 49.11 355 | 54.88 372 | 77.17 352 | 4.02 415 | 84.36 304 | 2.00 413 | 48.59 371 | 45.86 374 | 68.82 369 | 32.22 351 | 82.80 370 | 31.58 387 | 51.38 365 | 77.81 371 |
|
| new_pmnet | | | 49.31 353 | 46.44 356 | 57.93 367 | 62.84 388 | 40.74 385 | 68.47 377 | 62.96 391 | 36.48 389 | 35.09 389 | 57.81 386 | 14.97 389 | 72.18 388 | 32.86 382 | 46.44 373 | 60.88 389 |
|
| mvsany_test3 | | | 48.86 354 | 46.35 357 | 56.41 368 | 46.00 402 | 31.67 398 | 62.26 386 | 47.25 403 | 43.71 384 | 45.54 376 | 68.15 371 | 10.84 394 | 64.44 400 | 57.95 292 | 35.44 391 | 73.13 378 |
|
| test_f | | | 46.58 355 | 43.45 359 | 55.96 369 | 45.18 403 | 32.05 397 | 61.18 387 | 49.49 401 | 33.39 391 | 42.05 384 | 62.48 381 | 7.00 400 | 65.56 396 | 47.08 336 | 43.21 379 | 70.27 384 |
|
| WB-MVS | | | 46.23 356 | 44.94 358 | 50.11 376 | 62.13 390 | 21.23 409 | 76.48 360 | 55.49 395 | 45.89 378 | 35.78 388 | 61.44 384 | 35.54 337 | 72.83 387 | 9.96 403 | 21.75 398 | 56.27 391 |
|
| FPMVS | | | 45.64 357 | 43.10 361 | 53.23 374 | 51.42 399 | 36.46 392 | 64.97 383 | 71.91 376 | 29.13 394 | 27.53 394 | 61.55 383 | 9.83 396 | 65.01 398 | 16.00 400 | 55.58 354 | 58.22 390 |
|
| SSC-MVS | | | 44.51 358 | 43.35 360 | 47.99 380 | 61.01 392 | 18.90 411 | 74.12 366 | 54.36 396 | 43.42 385 | 34.10 391 | 60.02 385 | 34.42 342 | 70.39 390 | 9.14 405 | 19.57 399 | 54.68 392 |
|
| EGC-MVSNET | | | 42.35 359 | 38.09 362 | 55.11 371 | 74.57 361 | 46.62 372 | 71.63 370 | 55.77 394 | 0.04 408 | 0.24 409 | 62.70 380 | 14.24 391 | 74.91 385 | 17.59 397 | 46.06 374 | 43.80 394 |
|
| LCM-MVSNet | | | 40.54 360 | 35.79 365 | 54.76 373 | 36.92 409 | 30.81 399 | 51.41 396 | 69.02 382 | 22.07 396 | 24.63 396 | 45.37 393 | 4.56 405 | 65.81 395 | 33.67 378 | 34.50 392 | 67.67 385 |
|
| APD_test1 | | | 40.50 361 | 37.31 364 | 50.09 377 | 51.88 397 | 35.27 394 | 59.45 391 | 52.59 398 | 21.64 397 | 26.12 395 | 57.80 387 | 4.56 405 | 66.56 394 | 22.64 393 | 39.09 385 | 48.43 393 |
|
| test_vis3_rt | | | 40.46 362 | 37.79 363 | 48.47 379 | 44.49 404 | 33.35 396 | 66.56 382 | 32.84 410 | 32.39 392 | 29.65 392 | 39.13 400 | 3.91 408 | 68.65 391 | 50.17 318 | 40.99 383 | 43.40 395 |
|
| ANet_high | | | 40.27 363 | 35.20 366 | 55.47 370 | 34.74 410 | 34.47 395 | 63.84 385 | 71.56 378 | 48.42 372 | 18.80 399 | 41.08 398 | 9.52 397 | 64.45 399 | 20.18 395 | 8.66 406 | 67.49 386 |
|
| test_method | | | 38.59 364 | 35.16 367 | 48.89 378 | 54.33 395 | 21.35 408 | 45.32 399 | 53.71 397 | 7.41 405 | 28.74 393 | 51.62 389 | 8.70 398 | 52.87 403 | 33.73 377 | 32.89 393 | 72.47 380 |
|
| PMMVS2 | | | 37.93 365 | 33.61 368 | 50.92 375 | 46.31 401 | 24.76 405 | 60.55 390 | 50.05 399 | 28.94 395 | 20.93 397 | 47.59 390 | 4.41 407 | 65.13 397 | 25.14 391 | 18.55 401 | 62.87 388 |
|
| Gipuma |  | | 34.91 366 | 31.44 369 | 45.30 381 | 70.99 373 | 39.64 390 | 19.85 403 | 72.56 374 | 20.10 399 | 16.16 403 | 21.47 404 | 5.08 404 | 71.16 389 | 13.07 401 | 43.70 378 | 25.08 401 |
| S. Galliani, K. Lasinger, K. Schindler: Massively Parallel Multiview Stereopsis by Surface Normal Diffusion. ICCV 2015 |
| testf1 | | | 32.77 367 | 29.47 370 | 42.67 383 | 41.89 406 | 30.81 399 | 52.07 394 | 43.45 404 | 15.45 400 | 18.52 400 | 44.82 394 | 2.12 409 | 58.38 401 | 16.05 398 | 30.87 395 | 38.83 396 |
|
| APD_test2 | | | 32.77 367 | 29.47 370 | 42.67 383 | 41.89 406 | 30.81 399 | 52.07 394 | 43.45 404 | 15.45 400 | 18.52 400 | 44.82 394 | 2.12 409 | 58.38 401 | 16.05 398 | 30.87 395 | 38.83 396 |
|
| PMVS |  | 26.43 22 | 31.84 369 | 28.16 372 | 42.89 382 | 25.87 412 | 27.58 403 | 50.92 397 | 49.78 400 | 21.37 398 | 14.17 404 | 40.81 399 | 2.01 411 | 66.62 393 | 9.61 404 | 38.88 387 | 34.49 400 |
| Y. Furukawa, J. Ponce: Accurate, dense, and robust multiview stereopsis. PAMI (2010) |
| E-PMN | | | 24.61 370 | 24.00 374 | 26.45 387 | 43.74 405 | 18.44 412 | 60.86 388 | 39.66 406 | 15.11 402 | 9.53 406 | 22.10 403 | 6.52 402 | 46.94 405 | 8.31 406 | 10.14 403 | 13.98 403 |
|
| MVE |  | 24.84 23 | 24.35 371 | 19.77 377 | 38.09 385 | 34.56 411 | 26.92 404 | 26.57 401 | 38.87 408 | 11.73 404 | 11.37 405 | 27.44 401 | 1.37 412 | 50.42 404 | 11.41 402 | 14.60 402 | 36.93 398 |
| Simon Fuhrmann, Fabian Langguth, Michael Goesele: MVE - A Multi-View Reconstruction Environment. EUROGRAPHICS Workshops on Graphics and Cultural Heritage (2014) |
| EMVS | | | 23.76 372 | 23.20 376 | 25.46 388 | 41.52 408 | 16.90 413 | 60.56 389 | 38.79 409 | 14.62 403 | 8.99 407 | 20.24 406 | 7.35 399 | 45.82 406 | 7.25 407 | 9.46 404 | 13.64 404 |
|
| tmp_tt | | | 22.26 373 | 23.75 375 | 17.80 389 | 5.23 413 | 12.06 414 | 35.26 400 | 39.48 407 | 2.82 407 | 18.94 398 | 44.20 396 | 22.23 377 | 24.64 408 | 36.30 370 | 9.31 405 | 16.69 402 |
|
| cdsmvs_eth3d_5k | | | 19.86 374 | 26.47 373 | 0.00 393 | 0.00 416 | 0.00 418 | 0.00 404 | 93.45 84 | 0.00 411 | 0.00 412 | 95.27 58 | 49.56 248 | 0.00 412 | 0.00 411 | 0.00 409 | 0.00 408 |
|
| wuyk23d | | | 11.30 375 | 10.95 378 | 12.33 390 | 48.05 400 | 19.89 410 | 25.89 402 | 1.92 414 | 3.58 406 | 3.12 408 | 1.37 408 | 0.64 413 | 15.77 409 | 6.23 408 | 7.77 407 | 1.35 405 |
|
| ab-mvs-re | | | 7.91 376 | 10.55 379 | 0.00 393 | 0.00 416 | 0.00 418 | 0.00 404 | 0.00 417 | 0.00 411 | 0.00 412 | 94.95 68 | 0.00 416 | 0.00 412 | 0.00 411 | 0.00 409 | 0.00 408 |
|
| testmvs | | | 7.23 377 | 9.62 380 | 0.06 392 | 0.04 414 | 0.02 417 | 84.98 302 | 0.02 415 | 0.03 409 | 0.18 410 | 1.21 409 | 0.01 415 | 0.02 410 | 0.14 409 | 0.01 408 | 0.13 407 |
|
| test123 | | | 6.92 378 | 9.21 381 | 0.08 391 | 0.03 415 | 0.05 416 | 81.65 328 | 0.01 416 | 0.02 410 | 0.14 411 | 0.85 410 | 0.03 414 | 0.02 410 | 0.12 410 | 0.00 409 | 0.16 406 |
|
| pcd_1.5k_mvsjas | | | 4.46 379 | 5.95 382 | 0.00 393 | 0.00 416 | 0.00 418 | 0.00 404 | 0.00 417 | 0.00 411 | 0.00 412 | 0.00 411 | 53.55 213 | 0.00 412 | 0.00 411 | 0.00 409 | 0.00 408 |
|
| test_blank | | | 0.00 380 | 0.00 383 | 0.00 393 | 0.00 416 | 0.00 418 | 0.00 404 | 0.00 417 | 0.00 411 | 0.00 412 | 0.00 411 | 0.00 416 | 0.00 412 | 0.00 411 | 0.00 409 | 0.00 408 |
|
| uanet_test | | | 0.00 380 | 0.00 383 | 0.00 393 | 0.00 416 | 0.00 418 | 0.00 404 | 0.00 417 | 0.00 411 | 0.00 412 | 0.00 411 | 0.00 416 | 0.00 412 | 0.00 411 | 0.00 409 | 0.00 408 |
|
| DCPMVS | | | 0.00 380 | 0.00 383 | 0.00 393 | 0.00 416 | 0.00 418 | 0.00 404 | 0.00 417 | 0.00 411 | 0.00 412 | 0.00 411 | 0.00 416 | 0.00 412 | 0.00 411 | 0.00 409 | 0.00 408 |
|
| sosnet-low-res | | | 0.00 380 | 0.00 383 | 0.00 393 | 0.00 416 | 0.00 418 | 0.00 404 | 0.00 417 | 0.00 411 | 0.00 412 | 0.00 411 | 0.00 416 | 0.00 412 | 0.00 411 | 0.00 409 | 0.00 408 |
|
| sosnet | | | 0.00 380 | 0.00 383 | 0.00 393 | 0.00 416 | 0.00 418 | 0.00 404 | 0.00 417 | 0.00 411 | 0.00 412 | 0.00 411 | 0.00 416 | 0.00 412 | 0.00 411 | 0.00 409 | 0.00 408 |
|
| uncertanet | | | 0.00 380 | 0.00 383 | 0.00 393 | 0.00 416 | 0.00 418 | 0.00 404 | 0.00 417 | 0.00 411 | 0.00 412 | 0.00 411 | 0.00 416 | 0.00 412 | 0.00 411 | 0.00 409 | 0.00 408 |
|
| Regformer | | | 0.00 380 | 0.00 383 | 0.00 393 | 0.00 416 | 0.00 418 | 0.00 404 | 0.00 417 | 0.00 411 | 0.00 412 | 0.00 411 | 0.00 416 | 0.00 412 | 0.00 411 | 0.00 409 | 0.00 408 |
|
| uanet | | | 0.00 380 | 0.00 383 | 0.00 393 | 0.00 416 | 0.00 418 | 0.00 404 | 0.00 417 | 0.00 411 | 0.00 412 | 0.00 411 | 0.00 416 | 0.00 412 | 0.00 411 | 0.00 409 | 0.00 408 |
|
| WAC-MVS | | | | | | | 49.45 358 | | | | | | | | 31.56 388 | | |
|
| FOURS1 | | | | | | 93.95 45 | 61.77 247 | 93.96 71 | 91.92 141 | 62.14 317 | 86.57 47 | | | | | | |
|
| MSC_two_6792asdad | | | | | 89.60 8 | 97.31 4 | 73.22 10 | | 95.05 26 | | | | | 99.07 13 | 92.01 26 | 94.77 26 | 96.51 25 |
|
| PC_three_1452 | | | | | | | | | | 80.91 48 | 94.07 2 | 96.83 18 | 83.57 4 | 99.12 5 | 95.70 7 | 97.42 4 | 97.55 4 |
|
| No_MVS | | | | | 89.60 8 | 97.31 4 | 73.22 10 | | 95.05 26 | | | | | 99.07 13 | 92.01 26 | 94.77 26 | 96.51 25 |
|
| test_one_0601 | | | | | | 96.32 18 | 69.74 49 | | 94.18 57 | 71.42 225 | 90.67 19 | 96.85 16 | 74.45 18 | | | | |
|
| eth-test2 | | | | | | 0.00 416 | | | | | | | | | | | |
|
| eth-test | | | | | | 0.00 416 | | | | | | | | | | | |
|
| ZD-MVS | | | | | | 96.63 9 | 65.50 153 | | 93.50 82 | 70.74 239 | 85.26 62 | 95.19 64 | 64.92 78 | 97.29 78 | 87.51 58 | 93.01 55 | |
|
| RE-MVS-def | | | | 80.48 140 | | 92.02 98 | 58.56 301 | 90.90 209 | 90.45 201 | 62.76 311 | 78.89 123 | 94.46 82 | 49.30 251 | | 78.77 133 | 86.77 124 | 92.28 178 |
|
| IU-MVS | | | | | | 96.46 11 | 69.91 43 | | 95.18 20 | 80.75 49 | 95.28 1 | | | | 92.34 21 | 95.36 14 | 96.47 29 |
|
| OPU-MVS | | | | | 89.97 3 | 97.52 3 | 73.15 12 | 96.89 6 | | | | 97.00 9 | 83.82 2 | 99.15 2 | 95.72 5 | 97.63 3 | 97.62 2 |
|
| test_241102_TWO | | | | | | | | | 94.41 48 | 71.65 214 | 92.07 9 | 97.21 4 | 74.58 17 | 99.11 6 | 92.34 21 | 95.36 14 | 96.59 20 |
|
| test_241102_ONE | | | | | | 96.45 12 | 69.38 54 | | 94.44 46 | 71.65 214 | 92.11 7 | 97.05 7 | 76.79 9 | 99.11 6 | | | |
|
| 9.14 | | | | 87.63 27 | | 93.86 47 | | 94.41 53 | 94.18 57 | 72.76 179 | 86.21 49 | 96.51 25 | 66.64 60 | 97.88 44 | 90.08 40 | 94.04 38 | |
|
| save fliter | | | | | | 93.84 48 | 67.89 92 | 95.05 40 | 92.66 114 | 78.19 92 | | | | | | | |
|
| test_0728_THIRD | | | | | | | | | | 72.48 184 | 90.55 20 | 96.93 11 | 76.24 11 | 99.08 11 | 91.53 31 | 94.99 18 | 96.43 30 |
|
| test_0728_SECOND | | | | | 88.70 18 | 96.45 12 | 70.43 35 | 96.64 10 | 94.37 52 | | | | | 99.15 2 | 91.91 29 | 94.90 22 | 96.51 25 |
|
| test0726 | | | | | | 96.40 15 | 69.99 39 | 96.76 8 | 94.33 54 | 71.92 200 | 91.89 11 | 97.11 6 | 73.77 21 | | | | |
|
| GSMVS | | | | | | | | | | | | | | | | | 94.68 96 |
|
| test_part2 | | | | | | 96.29 19 | 68.16 86 | | | | 90.78 17 | | | | | | |
|
| sam_mvs1 | | | | | | | | | | | | | 57.85 160 | | | | 94.68 96 |
|
| sam_mvs | | | | | | | | | | | | | 54.91 198 | | | | |
|
| ambc | | | | | 69.61 349 | 61.38 391 | 41.35 384 | 49.07 398 | 85.86 323 | | 50.18 363 | 66.40 373 | 10.16 395 | 88.14 333 | 45.73 342 | 44.20 376 | 79.32 362 |
|
| MTGPA |  | | | | | | | | 92.23 127 | | | | | | | | |
|
| test_post1 | | | | | | | | 78.95 348 | | | | 20.70 405 | 53.05 218 | 91.50 304 | 60.43 281 | | |
|
| test_post | | | | | | | | | | | | 23.01 402 | 56.49 180 | 92.67 268 | | | |
|
| patchmatchnet-post | | | | | | | | | | | | 67.62 372 | 57.62 163 | 90.25 313 | | | |
|
| GG-mvs-BLEND | | | | | 86.53 71 | 91.91 105 | 69.67 52 | 75.02 365 | 94.75 33 | | 78.67 130 | 90.85 165 | 77.91 7 | 94.56 201 | 72.25 178 | 93.74 44 | 95.36 63 |
|
| MTMP | | | | | | | | 93.77 85 | 32.52 411 | | | | | | | | |
|
| gm-plane-assit | | | | | | 88.42 186 | 67.04 115 | | | 78.62 89 | | 91.83 148 | | 97.37 72 | 76.57 145 | | |
|
| test9_res | | | | | | | | | | | | | | | 89.41 41 | 94.96 19 | 95.29 68 |
|
| TEST9 | | | | | | 94.18 41 | 67.28 107 | 94.16 59 | 93.51 80 | 71.75 211 | 85.52 57 | 95.33 53 | 68.01 50 | 97.27 82 | | | |
|
| test_8 | | | | | | 94.19 40 | 67.19 109 | 94.15 62 | 93.42 86 | 71.87 205 | 85.38 60 | 95.35 52 | 68.19 48 | 96.95 104 | | | |
|
| agg_prior2 | | | | | | | | | | | | | | | 86.41 70 | 94.75 30 | 95.33 64 |
|
| agg_prior | | | | | | 94.16 43 | 66.97 117 | | 93.31 89 | | 84.49 68 | | | 96.75 114 | | | |
|
| TestCases | | | | | 72.46 336 | 79.57 323 | 51.42 348 | | 68.61 383 | 51.25 364 | 45.88 372 | 81.23 294 | 19.86 383 | 86.58 347 | 38.98 366 | 57.01 350 | 79.39 360 |
|
| test_prior4 | | | | | | | 67.18 111 | 93.92 74 | | | | | | | | | |
|
| test_prior2 | | | | | | | | 95.10 39 | | 75.40 132 | 85.25 63 | 95.61 47 | 67.94 51 | | 87.47 59 | 94.77 26 | |
|
| test_prior | | | | | 86.42 74 | 94.71 35 | 67.35 106 | | 93.10 99 | | | | | 96.84 111 | | | 95.05 80 |
|
| 旧先验2 | | | | | | | | 92.00 162 | | 59.37 337 | 87.54 40 | | | 93.47 244 | 75.39 153 | | |
|
| æ–°å‡ ä½•2 | | | | | | | | 91.41 184 | | | | | | | | | |
|
| æ–°å‡ ä½•1 | | | | | 84.73 131 | 92.32 90 | 64.28 184 | | 91.46 167 | 59.56 336 | 79.77 112 | 92.90 122 | 56.95 173 | 96.57 119 | 63.40 261 | 92.91 57 | 93.34 146 |
|
| 旧先验1 | | | | | | 91.94 102 | 60.74 269 | | 91.50 165 | | | 94.36 86 | 65.23 73 | | | 91.84 70 | 94.55 103 |
|
| æ— å…ˆéªŒ | | | | | | | | 92.71 127 | 92.61 118 | 62.03 318 | | | | 97.01 95 | 66.63 232 | | 93.97 128 |
|
| 原ACMM2 | | | | | | | | 92.01 159 | | | | | | | | | |
|
| 原ACMM1 | | | | | 84.42 145 | 93.21 68 | 64.27 185 | | 93.40 88 | 65.39 289 | 79.51 115 | 92.50 130 | 58.11 159 | 96.69 115 | 65.27 251 | 93.96 39 | 92.32 176 |
|
| test222 | | | | | | 89.77 151 | 61.60 252 | 89.55 248 | 89.42 245 | 56.83 349 | 77.28 143 | 92.43 134 | 52.76 221 | | | 91.14 84 | 93.09 154 |
|
| testdata2 | | | | | | | | | | | | | | 96.09 136 | 61.26 277 | | |
|
| segment_acmp | | | | | | | | | | | | | 65.94 66 | | | | |
|
| testdata | | | | | 81.34 224 | 89.02 172 | 57.72 308 | | 89.84 229 | 58.65 340 | 85.32 61 | 94.09 98 | 57.03 168 | 93.28 246 | 69.34 205 | 90.56 90 | 93.03 157 |
|
| testdata1 | | | | | | | | 89.21 257 | | 77.55 105 | | | | | | | |
|
| test12 | | | | | 87.09 51 | 94.60 36 | 68.86 66 | | 92.91 105 | | 82.67 84 | | 65.44 71 | 97.55 63 | | 93.69 47 | 94.84 89 |
|
| plane_prior7 | | | | | | 86.94 226 | 61.51 253 | | | | | | | | | | |
|
| plane_prior6 | | | | | | 87.23 218 | 62.32 237 | | | | | | 50.66 238 | | | | |
|
| plane_prior5 | | | | | | | | | 91.31 171 | | | | | 95.55 165 | 76.74 143 | 78.53 198 | 88.39 241 |
|
| plane_prior4 | | | | | | | | | | | | 89.14 193 | | | | | |
|
| plane_prior3 | | | | | | | 61.95 245 | | | 79.09 80 | 72.53 194 | | | | | | |
|
| plane_prior2 | | | | | | | | 93.13 111 | | 78.81 86 | | | | | | | |
|
| plane_prior1 | | | | | | 87.15 220 | | | | | | | | | | | |
|
| plane_prior | | | | | | | 62.42 233 | 93.85 78 | | 79.38 72 | | | | | | 78.80 195 | |
|
| n2 | | | | | | | | | 0.00 417 | | | | | | | | |
|
| nn | | | | | | | | | 0.00 417 | | | | | | | | |
|
| door-mid | | | | | | | | | 66.01 387 | | | | | | | | |
|
| lessismore_v0 | | | | | 73.72 327 | 72.93 368 | 47.83 365 | | 61.72 392 | | 45.86 374 | 73.76 353 | 28.63 365 | 89.81 321 | 47.75 334 | 31.37 394 | 83.53 315 |
|
| LGP-MVS_train | | | | | 79.56 271 | 84.31 273 | 59.37 290 | | 89.73 235 | 69.49 253 | 64.86 282 | 88.42 198 | 38.65 312 | 94.30 210 | 72.56 175 | 72.76 243 | 85.01 302 |
|
| test11 | | | | | | | | | 93.01 101 | | | | | | | | |
|
| door | | | | | | | | | 66.57 386 | | | | | | | | |
|
| HQP5-MVS | | | | | | | 63.66 203 | | | | | | | | | | |
|
| HQP-NCC | | | | | | 87.54 211 | | 94.06 64 | | 79.80 63 | 74.18 173 | | | | | | |
|
| ACMP_Plane | | | | | | 87.54 211 | | 94.06 64 | | 79.80 63 | 74.18 173 | | | | | | |
|
| BP-MVS | | | | | | | | | | | | | | | 77.63 140 | | |
|
| HQP4-MVS | | | | | | | | | | | 74.18 173 | | | 95.61 160 | | | 88.63 234 |
|
| HQP3-MVS | | | | | | | | | 91.70 157 | | | | | | | 78.90 193 | |
|
| HQP2-MVS | | | | | | | | | | | | | 51.63 231 | | | | |
|
| NP-MVS | | | | | | 87.41 214 | 63.04 218 | | | | | 90.30 175 | | | | | |
|
| MDTV_nov1_ep13_2view | | | | | | | 59.90 283 | 80.13 343 | | 67.65 273 | 72.79 189 | | 54.33 206 | | 59.83 285 | | 92.58 169 |
|
| MDTV_nov1_ep13 | | | | 72.61 256 | | 89.06 171 | 68.48 74 | 80.33 339 | 90.11 219 | 71.84 207 | 71.81 205 | 75.92 347 | 53.01 219 | 93.92 233 | 48.04 329 | 73.38 237 | |
|
| ACMMP++_ref | | | | | | | | | | | | | | | | 71.63 251 | |
|
| ACMMP++ | | | | | | | | | | | | | | | | 69.72 260 | |
|
| Test By Simon | | | | | | | | | | | | | 54.21 207 | | | | |
|
| ITE_SJBPF | | | | | 70.43 347 | 74.44 362 | 47.06 371 | | 77.32 361 | 60.16 332 | 54.04 347 | 83.53 263 | 23.30 375 | 84.01 360 | 43.07 350 | 61.58 331 | 80.21 357 |
|
| DeepMVS_CX |  | | | | 34.71 386 | 51.45 398 | 24.73 406 | | 28.48 412 | 31.46 393 | 17.49 402 | 52.75 388 | 5.80 403 | 42.60 407 | 18.18 396 | 19.42 400 | 36.81 399 |
|