This table lists the benchmark results for the high-res multi-view scenario. The following metrics are evaluated:

(*) For exact definitions, detailing how potentially incomplete ground truth is taken into account, see our paper.

The datasets are grouped into different categories, and result averages are computed for a category and method if results of the method are available for all datasets within the category. Note that the category "all" includes both the high-res multi-view and the low-res many-view scenarios.

Methods with suffix _ROB may participate in the Robust Vision Challenge.

Click a dataset result cell to show a visualization of the reconstruction. For training datasets, ground truth and accuracy / completeness visualizations are also available. The visualizations may not work with mobile browsers.




Method Infoallhigh-res
multi-view
indooroutdoorbotani.boulde.bridgedoorexhibi.lectur.living.loungeobserv.old co.statueterrac.
sort bysort bysort bysort bysort bysort bysorted bysort bysort bysort bysort bysort bysort bysort bysort bysort by
DPM-MVS90.70 390.52 991.24 189.68 16076.68 297.29 195.35 1682.87 2491.58 1397.22 379.93 599.10 983.12 10497.64 297.94 1
MCST-MVS91.08 191.46 389.94 497.66 273.37 1097.13 295.58 1189.33 185.77 5696.26 3272.84 2999.38 192.64 2295.93 997.08 11
MM90.87 291.52 288.92 1592.12 10071.10 2797.02 396.04 688.70 291.57 1496.19 3470.12 4598.91 1896.83 195.06 1796.76 15
DELS-MVS90.05 890.09 1189.94 493.14 7073.88 997.01 494.40 5188.32 385.71 5794.91 7574.11 2198.91 1887.26 6495.94 897.03 12
Christian Sormann, Emanuele Santellani, Mattia Rossi, Andreas Kuhn, Friedrich Fraundorfer: DELS-MVS: Deep Epipolar Line Search for Multi-View Stereo. Winter Conference on Applications of Computer Vision (WACV), 2023
MVS_030490.32 690.90 788.55 2394.05 4570.23 3697.00 593.73 7487.30 492.15 696.15 3666.38 6798.94 1796.71 294.67 3396.47 28
SED-MVS89.94 990.36 1088.70 1896.45 1269.38 5596.89 694.44 4771.65 22192.11 797.21 476.79 999.11 692.34 2495.36 1497.62 2
OPU-MVS89.97 397.52 373.15 1496.89 697.00 983.82 299.15 295.72 597.63 397.62 2
test072696.40 1569.99 3896.76 894.33 5571.92 20791.89 1197.11 673.77 23
DeepPCF-MVS81.17 189.72 1091.38 484.72 13593.00 7558.16 31596.72 994.41 4986.50 890.25 2297.83 175.46 1498.67 2592.78 2195.49 1397.32 6
DVP-MVScopyleft89.41 1389.73 1488.45 2596.40 1569.99 3896.64 1094.52 4371.92 20790.55 2096.93 1173.77 2399.08 1191.91 3094.90 2296.29 35
Zhenlong Yuan, Jinguo Luo, Fei Shen, Zhaoxin Li, Cong Liu, Tianlu Mao, Zhaoqi Wang: DVP-MVS: Synergize Depth-Edge and Visibility Prior for Multi-View Stereo. AAAI2025
test_0728_SECOND88.70 1896.45 1270.43 3396.64 1094.37 5399.15 291.91 3094.90 2296.51 24
lupinMVS87.74 2587.77 2787.63 3889.24 17571.18 2496.57 1292.90 11182.70 2687.13 4295.27 6164.99 8195.80 15689.34 4491.80 7295.93 45
CANet89.61 1289.99 1288.46 2494.39 3969.71 5096.53 1393.78 6786.89 689.68 2895.78 4265.94 7299.10 992.99 1993.91 4296.58 21
CNVR-MVS90.32 690.89 888.61 2296.76 870.65 3096.47 1494.83 3184.83 1189.07 3196.80 1970.86 4199.06 1592.64 2295.71 1196.12 40
NCCC89.07 1689.46 1587.91 2896.60 1069.05 6396.38 1594.64 4084.42 1286.74 4796.20 3366.56 6698.76 2489.03 4994.56 3495.92 46
PVSNet_Blended86.73 4286.86 4086.31 8193.76 5067.53 10596.33 1693.61 7882.34 3081.00 10693.08 12263.19 11197.29 7887.08 6791.38 8094.13 128
SteuartSystems-ACMMP86.82 4186.90 3986.58 7090.42 14566.38 13596.09 1793.87 6577.73 10684.01 7695.66 4563.39 10797.94 4087.40 6293.55 5095.42 59
Skip Steuart: Steuart Systems R&D Blog.
test_yl84.28 8883.16 10487.64 3494.52 3769.24 5995.78 1895.09 2469.19 26481.09 10392.88 12957.00 18197.44 6881.11 12381.76 18096.23 38
DCV-MVSNet84.28 8883.16 10487.64 3494.52 3769.24 5995.78 1895.09 2469.19 26481.09 10392.88 12957.00 18197.44 6881.11 12381.76 18096.23 38
PS-MVSNAJ88.14 1887.61 2989.71 792.06 10176.72 195.75 2093.26 9483.86 1589.55 2996.06 3853.55 22697.89 4391.10 3493.31 5394.54 109
xiu_mvs_v2_base87.92 2387.38 3389.55 1291.41 12776.43 395.74 2193.12 10283.53 1889.55 2995.95 4053.45 23097.68 5191.07 3592.62 6094.54 109
DeepC-MVS_fast79.48 287.95 2288.00 2587.79 3195.86 2768.32 8095.74 2194.11 6183.82 1683.49 7996.19 3464.53 9098.44 3183.42 10394.88 2596.61 18
Andreas Kuhn, Christian Sormann, Mattia Rossi, Oliver Erdler, Friedrich Fraundorfer: DeepC-MVS: Deep Confidence Prediction for Multi-View Stereo Reconstruction. 3DV 2020
VNet86.20 5085.65 6187.84 3093.92 4769.99 3895.73 2395.94 778.43 9586.00 5493.07 12358.22 16897.00 9985.22 8084.33 15496.52 23
jason86.40 4686.17 5087.11 5186.16 25070.54 3295.71 2492.19 14082.00 3384.58 6994.34 9461.86 12695.53 17687.76 5690.89 8695.27 73
jason: jason.
alignmvs87.28 3286.97 3788.24 2791.30 12971.14 2695.61 2593.56 8079.30 7787.07 4495.25 6368.43 5096.93 11187.87 5584.33 15496.65 17
IB-MVS77.80 482.18 13080.46 15187.35 4589.14 17770.28 3595.59 2695.17 2278.85 8870.19 23485.82 24970.66 4297.67 5372.19 19466.52 29594.09 130
Christian Sormann, Mattia Rossi, Andreas Kuhn and Friedrich Fraundorfer: IB-MVS: An Iterative Algorithm for Deep Multi-View Stereo based on Binary Decisions. BMVC 2021
SPE-MVS-test86.14 5287.01 3683.52 17792.63 8759.36 30495.49 2791.92 15280.09 6285.46 6195.53 5161.82 12895.77 15986.77 7193.37 5295.41 60
CLD-MVS82.73 12182.35 12183.86 16687.90 21067.65 10195.45 2892.18 14185.06 1072.58 20192.27 14352.46 23895.78 15784.18 9379.06 20388.16 254
Zhaoxin Li, Wangmeng Zuo, Zhaoqi Wang, Lei Zhang: Confidence-based Large-scale Dense Multi-view Stereo. IEEE Transaction on Image Processing, 2020
VDD-MVS83.06 11681.81 12786.81 6190.86 13967.70 9995.40 2991.50 17675.46 13781.78 9592.34 14240.09 32297.13 9286.85 7082.04 17795.60 54
PHI-MVS86.83 3986.85 4186.78 6393.47 6265.55 15695.39 3095.10 2371.77 21785.69 5896.52 2462.07 12498.77 2386.06 7695.60 1296.03 43
CS-MVS85.80 5986.65 4483.27 18692.00 10658.92 30895.31 3191.86 15779.97 6384.82 6795.40 5462.26 12295.51 17786.11 7592.08 6895.37 63
EPNet87.84 2488.38 2086.23 8293.30 6466.05 14295.26 3294.84 3087.09 588.06 3594.53 8466.79 6397.34 7583.89 9791.68 7495.29 70
Wanjuan Su, Wenbing Tao: Efficient Edge-Preserving Multi-View Stereo Network for Depth Estimation. AAAI 2023
HPM-MVS++copyleft89.37 1489.95 1387.64 3495.10 3068.23 8695.24 3394.49 4582.43 2888.90 3296.35 2971.89 3898.63 2688.76 5096.40 696.06 41
WTY-MVS86.32 4885.81 5787.85 2992.82 8169.37 5795.20 3495.25 1882.71 2581.91 9494.73 7967.93 5697.63 5879.55 13482.25 17396.54 22
3Dnovator+73.60 782.10 13480.60 14886.60 6890.89 13866.80 12695.20 3493.44 8774.05 15667.42 27392.49 13749.46 26697.65 5770.80 20491.68 7495.33 66
TSAR-MVS + GP.87.96 2188.37 2186.70 6593.51 6165.32 16095.15 3693.84 6678.17 9885.93 5594.80 7875.80 1398.21 3489.38 4388.78 10796.59 19
DP-MVS Recon82.73 12181.65 12885.98 8897.31 467.06 11795.15 3691.99 14969.08 26776.50 16193.89 10854.48 21598.20 3570.76 20585.66 14292.69 174
test_prior295.10 3875.40 13985.25 6595.61 4767.94 5587.47 6194.77 26
save fliter93.84 4967.89 9595.05 3992.66 12078.19 97
patch_mono-289.71 1190.99 685.85 9496.04 2463.70 20595.04 4095.19 2086.74 791.53 1595.15 6873.86 2297.58 6193.38 1692.00 6996.28 37
MSLP-MVS++86.27 4985.91 5687.35 4592.01 10568.97 6695.04 4092.70 11679.04 8781.50 9796.50 2658.98 16196.78 11783.49 10293.93 4196.29 35
LFMVS84.34 8782.73 11489.18 1394.76 3373.25 1194.99 4291.89 15571.90 20982.16 9393.49 11747.98 28197.05 9482.55 11084.82 14797.25 8
MG-MVS87.11 3486.27 4689.62 897.79 176.27 494.96 4394.49 4578.74 9283.87 7792.94 12664.34 9196.94 10975.19 16594.09 3895.66 52
Anonymous20240521177.96 21075.33 22885.87 9293.73 5364.52 17594.85 4485.36 34062.52 32476.11 16290.18 18429.43 37697.29 7868.51 22777.24 22395.81 49
APDe-MVScopyleft87.54 2787.84 2686.65 6696.07 2366.30 13894.84 4593.78 6769.35 26188.39 3496.34 3067.74 5797.66 5690.62 3993.44 5196.01 44
Zhaojie Zeng, Yuesong Wang, Tao Guan: Matching Ambiguity-Resilient Multi-View Stereo via Adaptive Patch Deformation. Pattern Recognition
test_vis1_n_192081.66 14082.01 12480.64 25282.24 30855.09 34294.76 4686.87 32281.67 3784.40 7194.63 8238.17 33294.67 20491.98 2983.34 16392.16 194
fmvsm_s_conf0.5_n86.39 4786.91 3884.82 12887.36 22663.54 21394.74 4790.02 23582.52 2790.14 2596.92 1362.93 11697.84 4695.28 882.26 17293.07 165
ET-MVSNet_ETH3D84.01 9683.15 10686.58 7090.78 14170.89 2894.74 4794.62 4181.44 4258.19 34193.64 11373.64 2592.35 29082.66 10878.66 20896.50 27
CP-MVS83.71 10483.40 9884.65 13993.14 7063.84 19794.59 4992.28 13271.03 23977.41 15094.92 7455.21 20696.19 14081.32 12090.70 8893.91 139
VDDNet80.50 16078.26 18387.21 4786.19 24869.79 4794.48 5091.31 18260.42 34079.34 12790.91 17038.48 33096.56 12482.16 11181.05 18695.27 73
EC-MVSNet84.53 8385.04 7283.01 19189.34 16761.37 26394.42 5191.09 19477.91 10283.24 8094.20 10058.37 16695.40 17885.35 7991.41 7992.27 190
fmvsm_s_conf0.5_n_285.06 7385.60 6283.44 18386.92 23960.53 28294.41 5287.31 31883.30 2088.72 3396.72 2154.28 21997.75 4994.07 1284.68 15192.04 196
fmvsm_l_conf0.5_n_a87.44 3088.15 2485.30 11387.10 23164.19 19294.41 5288.14 30680.24 6192.54 596.97 1069.52 4897.17 8795.89 388.51 11094.56 106
9.1487.63 2893.86 4894.41 5294.18 5872.76 18686.21 5096.51 2566.64 6497.88 4490.08 4194.04 39
WBMVS81.67 13980.98 14083.72 17293.07 7369.40 5394.33 5593.05 10476.84 12072.05 21184.14 26674.49 1993.88 24372.76 18568.09 28387.88 256
fmvsm_l_conf0.5_n87.49 2888.19 2385.39 10986.95 23464.37 18594.30 5688.45 29780.51 5392.70 496.86 1569.98 4697.15 9195.83 488.08 11594.65 103
MAR-MVS84.18 9383.43 9586.44 7596.25 2165.93 14794.28 5794.27 5774.41 14979.16 13095.61 4753.99 22198.88 2269.62 21493.26 5494.50 113
Zhenyu Xu, Yiguang Liu, Xuelei Shi, Ying Wang, Yunan Zheng: MARMVS: Matching Ambiguity Reduced Multiple View Stereo for Efficient Large Scale Scene Reconstruction. CVPR 2020
test_fmvsmconf_n86.58 4487.17 3484.82 12885.28 26562.55 23794.26 5889.78 24183.81 1787.78 3896.33 3165.33 7896.98 10394.40 1187.55 12194.95 87
DPE-MVScopyleft88.77 1789.21 1687.45 4396.26 2067.56 10394.17 5994.15 6068.77 27090.74 1897.27 276.09 1298.49 2990.58 4094.91 2196.30 34
Kehua Chen, Zhenlong Yuan, Tianlu Mao, Zhaoqi Wang: Dual-Level Precision Edges Guided Multi-View Stereo with Accurate Planarization. AAAI2025
TEST994.18 4167.28 11094.16 6093.51 8271.75 21885.52 5995.33 5668.01 5497.27 82
train_agg87.21 3387.42 3286.60 6894.18 4167.28 11094.16 6093.51 8271.87 21285.52 5995.33 5668.19 5297.27 8289.09 4794.90 2295.25 76
test_894.19 4067.19 11294.15 6293.42 8971.87 21285.38 6295.35 5568.19 5296.95 108
fmvsm_s_conf0.1_n_284.40 8484.78 7783.27 18685.25 26660.41 28594.13 6385.69 33883.05 2287.99 3696.37 2852.75 23597.68 5193.75 1584.05 16091.71 200
Fast-Effi-MVS+81.14 14880.01 15584.51 14690.24 14965.86 14894.12 6489.15 26873.81 16475.37 17288.26 21057.26 17694.53 21266.97 24384.92 14693.15 161
HQP-NCC87.54 22094.06 6579.80 6674.18 181
ACMP_Plane87.54 22094.06 6579.80 6674.18 181
PVSNet_BlendedMVS83.38 11083.43 9583.22 18893.76 5067.53 10594.06 6593.61 7879.13 8281.00 10685.14 25563.19 11197.29 7887.08 6773.91 24484.83 314
HQP-MVS81.14 14880.64 14682.64 20087.54 22063.66 20894.06 6591.70 16879.80 6674.18 18190.30 18151.63 24695.61 16977.63 15178.90 20488.63 245
test_cas_vis1_n_192080.45 16280.61 14779.97 27178.25 35657.01 33094.04 6988.33 30079.06 8682.81 8893.70 11138.65 32791.63 30790.82 3879.81 19591.27 213
fmvsm_s_conf0.1_n85.61 6485.93 5584.68 13882.95 30363.48 21594.03 7089.46 25381.69 3689.86 2696.74 2061.85 12797.75 4994.74 982.01 17892.81 173
MVS_111021_HR86.19 5185.80 5887.37 4493.17 6969.79 4793.99 7193.76 7079.08 8478.88 13593.99 10662.25 12398.15 3685.93 7791.15 8494.15 127
DVP-MVS++90.53 491.09 588.87 1697.31 469.91 4293.96 7294.37 5372.48 19192.07 996.85 1683.82 299.15 291.53 3297.42 497.55 4
FOURS193.95 4661.77 25393.96 7291.92 15262.14 32886.57 48
VPNet78.82 19377.53 19582.70 19884.52 27966.44 13493.93 7492.23 13480.46 5472.60 20088.38 20749.18 27093.13 25772.47 19063.97 32088.55 248
test_prior467.18 11493.92 75
SD-MVS87.49 2887.49 3187.50 4293.60 5668.82 6993.90 7692.63 12376.86 11987.90 3795.76 4366.17 6997.63 5889.06 4891.48 7896.05 42
Zhenlong Yuan, Jiakai Cao, Zhaoxin Li, Hao Jiang and Zhaoqi Wang: SD-MVS: Segmentation-driven Deformation Multi-View Stereo with Spherical Refinement and EM optimization. AAAI2024
ZNCC-MVS85.33 6985.08 7186.06 8693.09 7265.65 15293.89 7793.41 9073.75 16579.94 11994.68 8160.61 13998.03 3882.63 10993.72 4694.52 111
CDPH-MVS85.71 6185.46 6486.46 7494.75 3467.19 11293.89 7792.83 11370.90 24183.09 8495.28 5963.62 10297.36 7380.63 12594.18 3794.84 92
EIA-MVS84.84 7884.88 7484.69 13791.30 12962.36 24193.85 7992.04 14579.45 7379.33 12894.28 9862.42 12096.35 13480.05 13091.25 8395.38 62
SMA-MVScopyleft88.14 1888.29 2287.67 3393.21 6768.72 7293.85 7994.03 6374.18 15491.74 1296.67 2265.61 7698.42 3389.24 4696.08 795.88 47
Yufeng Yin; Xiaoyan Liu; Zichao Zhang: SMA-MVS: Segmentation-Guided Multi-Scale Anchor Deformation Patch Multi-View Stereo. IEEE Transactions on Circuits and Systems for Video Technology
plane_prior62.42 23993.85 7979.38 7578.80 206
test_fmvsmconf0.1_n85.71 6186.08 5384.62 14280.83 32062.33 24293.84 8288.81 28583.50 1987.00 4596.01 3963.36 10896.93 11194.04 1387.29 12494.61 105
Anonymous2024052976.84 22974.15 24584.88 12691.02 13464.95 17193.84 8291.09 19453.57 37173.00 19287.42 22735.91 35197.32 7669.14 22172.41 25692.36 183
CSCG86.87 3686.26 4788.72 1795.05 3170.79 2993.83 8495.33 1768.48 27477.63 14794.35 9373.04 2798.45 3084.92 8693.71 4796.92 14
fmvsm_s_conf0.5_n_a85.75 6086.09 5284.72 13585.73 25963.58 21093.79 8589.32 25981.42 4390.21 2396.91 1462.41 12197.67 5394.48 1080.56 19192.90 171
MTMP93.77 8632.52 428
PVSNet_Blended_VisFu83.97 9783.50 9185.39 10990.02 15366.59 13293.77 8691.73 16377.43 11477.08 15689.81 19263.77 9996.97 10679.67 13388.21 11392.60 177
casdiffmvs_mvgpermissive85.66 6385.18 6987.09 5288.22 20269.35 5893.74 8891.89 15581.47 3980.10 11791.45 16164.80 8696.35 13487.23 6587.69 11995.58 55
Fangjinhua Wang, Qingshan Xu, Yew-Soon Ong, Marc Pollefeys: Lightweight and Accurate Multi-View Stereo With Confidence-Aware Diffusion Model. IEEE T-PAMI 2025
test_fmvsm_n_192087.69 2688.50 1985.27 11587.05 23363.55 21293.69 8991.08 19684.18 1390.17 2497.04 867.58 5897.99 3995.72 590.03 9594.26 119
TR-MVS78.77 19677.37 20182.95 19290.49 14460.88 27093.67 9090.07 23170.08 25374.51 17991.37 16545.69 29995.70 16660.12 29680.32 19292.29 186
testing1186.71 4386.44 4587.55 4093.54 5971.35 2193.65 9195.58 1181.36 4580.69 10992.21 14672.30 3496.46 13085.18 8283.43 16294.82 95
SF-MVS87.03 3587.09 3586.84 5992.70 8567.45 10893.64 9293.76 7070.78 24586.25 4996.44 2766.98 6197.79 4788.68 5194.56 3495.28 72
API-MVS82.28 12980.53 14987.54 4196.13 2270.59 3193.63 9391.04 20065.72 29575.45 17192.83 13156.11 19698.89 2164.10 26989.75 9993.15 161
BH-w/o80.49 16179.30 17084.05 16290.83 14064.36 18793.60 9489.42 25674.35 15169.09 24590.15 18755.23 20595.61 16964.61 26686.43 13792.17 193
APD-MVScopyleft85.93 5685.99 5485.76 9895.98 2665.21 16393.59 9592.58 12566.54 28886.17 5295.88 4163.83 9797.00 9986.39 7392.94 5795.06 82
Yuesong Wang, Zhaojie Zeng and etc.: Adaptive Patch Deformation for Textureless-Resilient Multi-View Stereo. CVPR2023
BH-RMVSNet79.46 18277.65 19284.89 12591.68 11765.66 15193.55 9688.09 30872.93 18173.37 19091.12 16846.20 29796.12 14356.28 31185.61 14392.91 170
sasdasda86.85 3786.25 4888.66 2091.80 11371.92 1693.54 9791.71 16580.26 5887.55 3995.25 6363.59 10496.93 11188.18 5284.34 15297.11 9
thisisatest051583.41 10982.49 11886.16 8489.46 16668.26 8393.54 9794.70 3774.31 15275.75 16490.92 16972.62 3196.52 12669.64 21281.50 18393.71 145
canonicalmvs86.85 3786.25 4888.66 2091.80 11371.92 1693.54 9791.71 16580.26 5887.55 3995.25 6363.59 10496.93 11188.18 5284.34 15297.11 9
testing9185.93 5685.31 6787.78 3293.59 5771.47 1993.50 10095.08 2680.26 5880.53 11291.93 15270.43 4396.51 12780.32 12982.13 17695.37 63
HFP-MVS84.73 8084.40 8185.72 10093.75 5265.01 16993.50 10093.19 9872.19 20179.22 12994.93 7359.04 15997.67 5381.55 11592.21 6494.49 114
ACMMPR84.37 8584.06 8385.28 11493.56 5864.37 18593.50 10093.15 10072.19 20178.85 13794.86 7656.69 18897.45 6781.55 11592.20 6594.02 135
testing9986.01 5485.47 6387.63 3893.62 5571.25 2393.47 10395.23 1980.42 5680.60 11191.95 15171.73 3996.50 12880.02 13182.22 17495.13 79
Vis-MVSNetpermissive80.92 15479.98 15783.74 16888.48 19061.80 25293.44 10488.26 30573.96 16077.73 14591.76 15549.94 26194.76 19765.84 25590.37 9394.65 103
Jingyang Zhang, Yao Yao, Shiwei Li, Zixin Luo, Tian Fang: Visibility-aware Multiview Stereo Network. BMVC 2020
UBG86.83 3986.70 4287.20 4893.07 7369.81 4693.43 10595.56 1381.52 3881.50 9792.12 14773.58 2696.28 13684.37 9285.20 14495.51 58
ETV-MVS86.01 5486.11 5185.70 10190.21 15067.02 12093.43 10591.92 15281.21 4784.13 7594.07 10560.93 13695.63 16789.28 4589.81 9694.46 115
region2R84.36 8684.03 8485.36 11193.54 5964.31 18893.43 10592.95 10972.16 20478.86 13694.84 7756.97 18397.53 6581.38 11992.11 6794.24 121
QAPM79.95 17377.39 20087.64 3489.63 16171.41 2093.30 10893.70 7565.34 29867.39 27591.75 15647.83 28398.96 1657.71 30689.81 9692.54 179
MP-MVScopyleft85.02 7484.97 7385.17 11992.60 8864.27 19093.24 10992.27 13373.13 17679.63 12394.43 8761.90 12597.17 8785.00 8492.56 6194.06 133
Rongxuan Tan, Qing Wang, et al.: MP-MVS: Multi-Scale Windows PatchMatch and Planar Prior Multi-View Stereo.
nrg03080.93 15379.86 15884.13 15883.69 29268.83 6893.23 11091.20 18775.55 13675.06 17488.22 21363.04 11594.74 19981.88 11366.88 29288.82 243
VPA-MVSNet79.03 18778.00 18782.11 22185.95 25364.48 17893.22 11194.66 3975.05 14474.04 18684.95 25752.17 24093.52 25174.90 17167.04 29188.32 253
HQP_MVS80.34 16479.75 16082.12 21886.94 23562.42 23993.13 11291.31 18278.81 9072.53 20289.14 20050.66 25495.55 17476.74 15478.53 20988.39 251
plane_prior293.13 11278.81 90
MSP-MVS90.38 591.87 185.88 9192.83 7964.03 19593.06 11494.33 5582.19 3193.65 396.15 3685.89 197.19 8691.02 3697.75 196.43 31
Zhenlong Yuan, Cong Liu, Fei Shen, Zhaoxin Li, Jingguo luo, Tianlu Mao and Zhaoqi Wang: MSP-MVS: Multi-granularity Segmentation Prior Guided Multi-View Stereo. AAAI2025
thres20079.66 17678.33 18183.66 17692.54 9065.82 15093.06 11496.31 374.90 14673.30 19188.66 20259.67 14995.61 16947.84 34578.67 20789.56 236
GST-MVS84.63 8284.29 8285.66 10292.82 8165.27 16193.04 11693.13 10173.20 17478.89 13294.18 10159.41 15397.85 4581.45 11792.48 6393.86 142
casdiffmvspermissive85.37 6884.87 7586.84 5988.25 20069.07 6293.04 11691.76 16281.27 4680.84 10892.07 14964.23 9296.06 14984.98 8587.43 12395.39 61
Fangjinhua Wang, Qingshan Xu, Yew-Soon Ong, Marc Pollefeys: Lightweight and Accurate Multi-View Stereo With Confidence-Aware Diffusion Model. IEEE T-PAMI 2025
EPP-MVSNet81.79 13881.52 12982.61 20188.77 18660.21 29093.02 11893.66 7768.52 27372.90 19590.39 17972.19 3694.96 19274.93 16979.29 20292.67 175
BP-MVS186.54 4586.68 4386.13 8587.80 21567.18 11492.97 11995.62 1079.92 6482.84 8694.14 10274.95 1596.46 13082.91 10688.96 10694.74 97
cascas78.18 20675.77 22285.41 10887.14 23069.11 6192.96 12091.15 19166.71 28770.47 22886.07 24637.49 34196.48 12970.15 21079.80 19690.65 219
XVS83.87 9983.47 9385.05 12193.22 6563.78 19992.92 12192.66 12073.99 15778.18 14194.31 9655.25 20397.41 7079.16 13891.58 7693.95 137
X-MVStestdata76.86 22774.13 24685.05 12193.22 6563.78 19992.92 12192.66 12073.99 15778.18 14110.19 42455.25 20397.41 7079.16 13891.58 7693.95 137
GDP-MVS85.54 6685.32 6686.18 8387.64 21867.95 9492.91 12392.36 13077.81 10483.69 7894.31 9672.84 2996.41 13280.39 12885.95 13994.19 123
MGCFI-Net85.59 6585.73 6085.17 11991.41 12762.44 23892.87 12491.31 18279.65 7086.99 4695.14 6962.90 11796.12 14387.13 6684.13 15996.96 13
114514_t79.17 18577.67 19183.68 17495.32 2965.53 15792.85 12591.60 17263.49 31267.92 26390.63 17446.65 29095.72 16567.01 24283.54 16189.79 231
fmvsm_s_conf0.1_n_a84.76 7984.84 7684.53 14480.23 33063.50 21492.79 12688.73 28880.46 5489.84 2796.65 2360.96 13597.57 6393.80 1480.14 19392.53 180
mPP-MVS82.96 11982.44 11984.52 14592.83 7962.92 23092.76 12791.85 15971.52 22975.61 16994.24 9953.48 22996.99 10278.97 14190.73 8793.64 148
OpenMVScopyleft70.45 1178.54 20175.92 22086.41 7785.93 25671.68 1892.74 12892.51 12766.49 28964.56 29791.96 15043.88 30998.10 3754.61 31690.65 8989.44 239
h-mvs3383.01 11782.56 11784.35 15289.34 16762.02 24892.72 12993.76 7081.45 4082.73 8992.25 14560.11 14397.13 9287.69 5762.96 32393.91 139
无先验92.71 13092.61 12462.03 32997.01 9866.63 24493.97 136
test-LLR80.10 16979.56 16381.72 22786.93 23761.17 26492.70 13191.54 17371.51 23075.62 16786.94 23653.83 22292.38 28772.21 19284.76 14991.60 201
TESTMET0.1,182.41 12781.98 12583.72 17288.08 20463.74 20192.70 13193.77 6979.30 7777.61 14887.57 22558.19 16994.08 22973.91 17686.68 13493.33 156
test-mter79.96 17279.38 16981.72 22786.93 23761.17 26492.70 13191.54 17373.85 16275.62 16786.94 23649.84 26392.38 28772.21 19284.76 14991.60 201
BH-untuned78.68 19777.08 20383.48 18189.84 15663.74 20192.70 13188.59 29471.57 22766.83 28288.65 20351.75 24495.39 17959.03 30184.77 14891.32 210
AdaColmapbinary78.94 19077.00 20684.76 13396.34 1765.86 14892.66 13587.97 31262.18 32670.56 22792.37 14143.53 31097.35 7464.50 26782.86 16691.05 216
test111180.84 15580.02 15483.33 18487.87 21160.76 27492.62 13686.86 32377.86 10375.73 16591.39 16446.35 29394.70 20372.79 18488.68 10994.52 111
testing22285.18 7184.69 7886.63 6792.91 7769.91 4292.61 13795.80 980.31 5780.38 11492.27 14368.73 4995.19 18675.94 15983.27 16494.81 96
WR-MVS76.76 23175.74 22379.82 27584.60 27762.27 24592.60 13892.51 12776.06 13067.87 26785.34 25356.76 18590.24 32662.20 28463.69 32286.94 273
3Dnovator73.91 682.69 12480.82 14188.31 2689.57 16271.26 2292.60 13894.39 5278.84 8967.89 26692.48 13848.42 27698.52 2868.80 22594.40 3695.15 78
xiu_mvs_v1_base_debu82.16 13181.12 13485.26 11686.42 24368.72 7292.59 14090.44 21573.12 17784.20 7294.36 8938.04 33595.73 16184.12 9486.81 12891.33 207
xiu_mvs_v1_base82.16 13181.12 13485.26 11686.42 24368.72 7292.59 14090.44 21573.12 17784.20 7294.36 8938.04 33595.73 16184.12 9486.81 12891.33 207
xiu_mvs_v1_base_debi82.16 13181.12 13485.26 11686.42 24368.72 7292.59 14090.44 21573.12 17784.20 7294.36 8938.04 33595.73 16184.12 9486.81 12891.33 207
ECVR-MVScopyleft81.29 14680.38 15284.01 16488.39 19561.96 25092.56 14386.79 32477.66 10876.63 15891.42 16246.34 29495.24 18574.36 17489.23 10094.85 89
PVSNet73.49 880.05 17078.63 17884.31 15390.92 13764.97 17092.47 14491.05 19979.18 8072.43 20690.51 17637.05 34794.06 23168.06 22986.00 13893.90 141
ETVMVS84.22 9283.71 8685.76 9892.58 8968.25 8592.45 14595.53 1579.54 7279.46 12591.64 15970.29 4494.18 22569.16 22082.76 17094.84 92
PAPM85.89 5885.46 6487.18 4988.20 20372.42 1592.41 14692.77 11482.11 3280.34 11593.07 12368.27 5195.02 18978.39 14793.59 4994.09 130
GeoE78.90 19177.43 19683.29 18588.95 18162.02 24892.31 14786.23 33070.24 25171.34 22289.27 19754.43 21694.04 23463.31 27580.81 19093.81 144
1112_ss80.56 15979.83 15982.77 19588.65 18760.78 27292.29 14888.36 29972.58 18972.46 20594.95 7165.09 8093.42 25466.38 24977.71 21394.10 129
UniMVSNet_NR-MVSNet78.15 20777.55 19479.98 26984.46 28160.26 28892.25 14993.20 9777.50 11268.88 25186.61 23966.10 7092.13 29566.38 24962.55 32787.54 259
sss82.71 12382.38 12083.73 17089.25 17259.58 29992.24 15094.89 2977.96 10079.86 12092.38 14056.70 18797.05 9477.26 15380.86 18894.55 107
SR-MVS82.81 12082.58 11683.50 18093.35 6361.16 26692.23 15191.28 18664.48 30281.27 10095.28 5953.71 22595.86 15582.87 10788.77 10893.49 151
test_fmvsmconf0.01_n83.70 10583.52 8984.25 15675.26 37361.72 25692.17 15287.24 32082.36 2984.91 6695.41 5355.60 20196.83 11692.85 2085.87 14094.21 122
DeepC-MVS77.85 385.52 6785.24 6886.37 7888.80 18566.64 12992.15 15393.68 7681.07 4876.91 15793.64 11362.59 11998.44 3185.50 7892.84 5994.03 134
Andreas Kuhn, Christian Sormann, Mattia Rossi, Oliver Erdler, Friedrich Fraundorfer: DeepC-MVS: Deep Confidence Prediction for Multi-View Stereo Reconstruction. 3DV 2020
UGNet79.87 17478.68 17783.45 18289.96 15461.51 25992.13 15490.79 20376.83 12178.85 13786.33 24438.16 33396.17 14167.93 23287.17 12592.67 175
Wanjuan Su, Qingshan Xu, Wenbing Tao: Uncertainty-guided Multi-view Stereo Network for Depth Estimation. IEEE Transactions on Circuits and Systems for Video Technology, 2022
ACMMPcopyleft81.49 14380.67 14583.93 16591.71 11662.90 23192.13 15492.22 13771.79 21671.68 21793.49 11750.32 25696.96 10778.47 14684.22 15891.93 198
Qingshan Xu, Weihang Kong, Wenbing Tao, Marc Pollefeys: Multi-Scale Geometric Consistency Guided and Planar Prior Assisted Multi-View Stereo. IEEE Transactions on Pattern Analysis and Machine Intelligence
CPTT-MVS79.59 17779.16 17280.89 25091.54 12259.80 29592.10 15688.54 29660.42 34072.96 19393.28 11948.27 27792.80 27178.89 14386.50 13690.06 226
Test_1112_low_res79.56 17878.60 17982.43 20488.24 20160.39 28792.09 15787.99 31072.10 20571.84 21387.42 22764.62 8893.04 25865.80 25677.30 22193.85 143
CDS-MVSNet81.43 14480.74 14283.52 17786.26 24764.45 17992.09 15790.65 20975.83 13373.95 18789.81 19263.97 9592.91 26771.27 20082.82 16793.20 160
Khang Truong Giang, Soohwan Song, Sungho Jo: Curvature-guided dynamic scale networks for Multi-view Stereo. ICLR 2022
CHOSEN 1792x268884.98 7683.45 9489.57 1189.94 15575.14 692.07 15992.32 13181.87 3475.68 16688.27 20960.18 14298.60 2780.46 12790.27 9494.96 86
tfpn200view978.79 19577.43 19682.88 19392.21 9664.49 17692.05 16096.28 473.48 17171.75 21588.26 21060.07 14595.32 18145.16 35677.58 21688.83 241
thres40078.68 19777.43 19682.43 20492.21 9664.49 17692.05 16096.28 473.48 17171.75 21588.26 21060.07 14595.32 18145.16 35677.58 21687.48 261
test250683.29 11182.92 11084.37 15188.39 19563.18 22392.01 16291.35 18177.66 10878.49 14091.42 16264.58 8995.09 18873.19 17889.23 10094.85 89
原ACMM292.01 162
XXY-MVS77.94 21176.44 21282.43 20482.60 30564.44 18092.01 16291.83 16073.59 17070.00 23785.82 24954.43 21694.76 19769.63 21368.02 28588.10 255
旧先验292.00 16559.37 34887.54 4193.47 25375.39 164
IS-MVSNet80.14 16879.41 16782.33 20887.91 20960.08 29291.97 16688.27 30372.90 18471.44 22191.73 15761.44 13093.66 24962.47 28386.53 13593.24 157
EPNet_dtu78.80 19479.26 17177.43 30688.06 20549.71 36891.96 16791.95 15177.67 10776.56 16091.28 16658.51 16490.20 32856.37 31080.95 18792.39 182
Wanjuan Su, Wenbing Tao: Efficient Edge-Preserving Multi-View Stereo Network for Depth Estimation. AAAI 2023
UWE-MVS80.81 15681.01 13980.20 26289.33 16957.05 32891.91 16894.71 3675.67 13475.01 17589.37 19663.13 11391.44 31567.19 24082.80 16992.12 195
MVSTER82.47 12682.05 12283.74 16892.68 8669.01 6491.90 16993.21 9579.83 6572.14 20985.71 25174.72 1794.72 20075.72 16172.49 25487.50 260
CANet_DTU84.09 9583.52 8985.81 9590.30 14866.82 12491.87 17089.01 27785.27 986.09 5393.74 11047.71 28596.98 10377.90 15089.78 9893.65 147
FMVSNet377.73 21476.04 21882.80 19491.20 13268.99 6591.87 17091.99 14973.35 17367.04 27883.19 27756.62 18992.14 29459.80 29869.34 27187.28 267
v2v48277.42 21875.65 22482.73 19680.38 32667.13 11691.85 17290.23 22675.09 14369.37 24283.39 27553.79 22494.44 21571.77 19665.00 30786.63 279
PAPR85.15 7284.47 7987.18 4996.02 2568.29 8191.85 17293.00 10876.59 12679.03 13195.00 7061.59 12997.61 6078.16 14889.00 10595.63 53
ACMMP_NAP86.05 5385.80 5886.80 6291.58 11967.53 10591.79 17493.49 8574.93 14584.61 6895.30 5859.42 15297.92 4186.13 7494.92 2094.94 88
Baseline_NR-MVSNet73.99 26672.83 26177.48 30580.78 32159.29 30591.79 17484.55 34868.85 26868.99 24980.70 31256.16 19492.04 29862.67 28160.98 34481.11 355
TransMVSNet (Re)70.07 29967.66 30577.31 30980.62 32559.13 30791.78 17684.94 34465.97 29260.08 33180.44 31750.78 25391.87 30048.84 33845.46 38680.94 357
EI-MVSNet-Vis-set83.77 10283.67 8784.06 15992.79 8463.56 21191.76 17794.81 3279.65 7077.87 14494.09 10363.35 10997.90 4279.35 13679.36 20090.74 218
UniMVSNet (Re)77.58 21676.78 20879.98 26984.11 28760.80 27191.76 17793.17 9976.56 12769.93 24084.78 25963.32 11092.36 28964.89 26562.51 32986.78 275
MS-PatchMatch77.90 21376.50 21182.12 21885.99 25269.95 4191.75 17992.70 11673.97 15962.58 31984.44 26441.11 31995.78 15763.76 27292.17 6680.62 361
v14876.19 23574.47 24081.36 23480.05 33264.44 18091.75 17990.23 22673.68 16867.13 27780.84 31155.92 19993.86 24668.95 22361.73 33885.76 301
FIs79.47 18179.41 16779.67 27885.95 25359.40 30191.68 18193.94 6478.06 9968.96 25088.28 20866.61 6591.77 30366.20 25274.99 23487.82 257
v114476.73 23274.88 23282.27 21080.23 33066.60 13191.68 18190.21 22873.69 16769.06 24781.89 29152.73 23694.40 21669.21 21965.23 30485.80 298
OPM-MVS79.00 18878.09 18581.73 22683.52 29563.83 19891.64 18390.30 22276.36 12971.97 21289.93 19146.30 29695.17 18775.10 16677.70 21486.19 286
Ray L. Khuboni, Hongjun Xu: Octagram Propagation Matching for Multi-Scale View Stereopsis (OPM-MVS).
MP-MVS-pluss85.24 7085.13 7085.56 10491.42 12465.59 15491.54 18492.51 12774.56 14880.62 11095.64 4659.15 15697.00 9986.94 6993.80 4394.07 132
MP-MVS-pluss: MP-MVS-pluss. MP-MVS-pluss
GA-MVS78.33 20576.23 21584.65 13983.65 29366.30 13891.44 18590.14 22976.01 13170.32 23284.02 26842.50 31494.72 20070.98 20277.00 22492.94 169
miper_enhance_ethall78.86 19277.97 18881.54 23188.00 20865.17 16491.41 18689.15 26875.19 14268.79 25383.98 26967.17 6092.82 26972.73 18665.30 30186.62 280
新几何291.41 186
thisisatest053081.15 14780.07 15384.39 15088.26 19965.63 15391.40 18894.62 4171.27 23470.93 22489.18 19872.47 3296.04 15065.62 25876.89 22591.49 203
Anonymous2023121173.08 27270.39 28881.13 24090.62 14263.33 21791.40 18890.06 23351.84 37664.46 30080.67 31436.49 34994.07 23063.83 27164.17 31685.98 293
v14419276.05 24074.03 24782.12 21879.50 33866.55 13391.39 19089.71 24972.30 19868.17 26081.33 30351.75 24494.03 23667.94 23164.19 31585.77 299
APD-MVS_3200maxsize81.64 14181.32 13182.59 20292.36 9158.74 31091.39 19091.01 20163.35 31479.72 12294.62 8351.82 24196.14 14279.71 13287.93 11692.89 172
EI-MVSNet-UG-set83.14 11582.96 10783.67 17592.28 9363.19 22291.38 19294.68 3879.22 7976.60 15993.75 10962.64 11897.76 4878.07 14978.01 21190.05 227
test_fmvsmvis_n_192083.80 10183.48 9284.77 13282.51 30663.72 20391.37 19383.99 35581.42 4377.68 14695.74 4458.37 16697.58 6193.38 1686.87 12793.00 168
TranMVSNet+NR-MVSNet75.86 24574.52 23979.89 27382.44 30760.64 28091.37 19391.37 18076.63 12567.65 26986.21 24552.37 23991.55 30961.84 28660.81 34587.48 261
Effi-MVS+83.82 10082.76 11386.99 5689.56 16369.40 5391.35 19586.12 33272.59 18883.22 8392.81 13259.60 15096.01 15381.76 11487.80 11895.56 56
FMVSNet276.07 23774.01 24882.26 21288.85 18267.66 10091.33 19691.61 17170.84 24265.98 28682.25 28748.03 27892.00 29958.46 30368.73 27987.10 270
HPM-MVS_fast80.25 16679.55 16582.33 20891.55 12159.95 29391.32 19789.16 26765.23 29974.71 17893.07 12347.81 28495.74 16074.87 17288.23 11291.31 211
thres600view778.00 20876.66 21082.03 22391.93 10863.69 20691.30 19896.33 172.43 19470.46 22987.89 21960.31 14094.92 19542.64 36876.64 22687.48 261
WB-MVSnew77.14 22276.18 21780.01 26886.18 24963.24 21991.26 19994.11 6171.72 21973.52 18987.29 23045.14 30493.00 26056.98 30879.42 19883.80 322
DU-MVS76.86 22775.84 22179.91 27282.96 30160.26 28891.26 19991.54 17376.46 12868.88 25186.35 24256.16 19492.13 29566.38 24962.55 32787.35 265
TAMVS80.37 16379.45 16683.13 19085.14 26963.37 21691.23 20190.76 20474.81 14772.65 19988.49 20460.63 13892.95 26269.41 21681.95 17993.08 164
v119275.98 24273.92 24982.15 21679.73 33466.24 14091.22 20289.75 24372.67 18768.49 25881.42 30149.86 26294.27 22167.08 24165.02 30685.95 294
test0.0.03 172.76 27972.71 26572.88 34480.25 32947.99 37791.22 20289.45 25471.51 23062.51 32087.66 22253.83 22285.06 36750.16 33167.84 28885.58 302
Fast-Effi-MVS+-dtu75.04 25673.37 25680.07 26580.86 31959.52 30091.20 20485.38 33971.90 20965.20 29184.84 25841.46 31792.97 26166.50 24872.96 25087.73 258
thres100view90078.37 20377.01 20582.46 20391.89 11163.21 22191.19 20596.33 172.28 19970.45 23087.89 21960.31 14095.32 18145.16 35677.58 21688.83 241
reproduce_monomvs79.49 18079.11 17480.64 25292.91 7761.47 26191.17 20693.28 9383.09 2164.04 30382.38 28566.19 6894.57 20781.19 12257.71 35885.88 297
PMMVS81.98 13682.04 12381.78 22589.76 15956.17 33491.13 20790.69 20577.96 10080.09 11893.57 11546.33 29594.99 19181.41 11887.46 12294.17 125
pmmvs573.35 27171.52 27878.86 29178.64 35260.61 28191.08 20886.90 32167.69 27763.32 31083.64 27144.33 30890.53 32062.04 28566.02 29785.46 306
baseline181.84 13781.03 13884.28 15591.60 11866.62 13091.08 20891.66 17081.87 3474.86 17691.67 15869.98 4694.92 19571.76 19764.75 31091.29 212
v192192075.63 25073.49 25582.06 22279.38 33966.35 13691.07 21089.48 25271.98 20667.99 26181.22 30649.16 27293.90 24266.56 24564.56 31385.92 296
HPM-MVScopyleft83.25 11282.95 10984.17 15792.25 9462.88 23290.91 21191.86 15770.30 25077.12 15493.96 10756.75 18696.28 13682.04 11291.34 8293.34 154
Chunlin Ren, Qingshan Xu, Shikun Zhang, Jiaqi Yang: Hierarchical Prior Mining for Non-local Multi-View Stereo. ICCV 2023
SR-MVS-dyc-post81.06 15180.70 14482.15 21692.02 10258.56 31290.90 21290.45 21262.76 32178.89 13294.46 8551.26 25195.61 16978.77 14486.77 13192.28 187
RE-MVS-def80.48 15092.02 10258.56 31290.90 21290.45 21262.76 32178.89 13294.46 8549.30 26878.77 14486.77 13192.28 187
diffmvspermissive84.28 8883.83 8585.61 10387.40 22468.02 9190.88 21489.24 26280.54 5281.64 9692.52 13459.83 14794.52 21387.32 6385.11 14594.29 118
Fangjinhua Wang, Qingshan Xu, Yew-Soon Ong, Marc Pollefeys: Lightweight and Accurate Multi-View Stereo With Confidence-Aware Diffusion Model. IEEE T-PAMI 2025
CNLPA74.31 26272.30 27080.32 25791.49 12361.66 25790.85 21580.72 36856.67 36363.85 30690.64 17246.75 28990.84 31853.79 32075.99 23188.47 250
NR-MVSNet76.05 24074.59 23680.44 25582.96 30162.18 24690.83 21691.73 16377.12 11660.96 32586.35 24259.28 15591.80 30260.74 29161.34 34287.35 265
pm-mvs172.89 27771.09 28178.26 29779.10 34557.62 32190.80 21789.30 26067.66 27862.91 31681.78 29349.11 27392.95 26260.29 29558.89 35584.22 318
ACMP71.68 1075.58 25174.23 24479.62 28084.97 27359.64 29790.80 21789.07 27570.39 24962.95 31587.30 22938.28 33193.87 24472.89 18171.45 26285.36 308
Qingshan Xu and Wenbing Tao: Planar Prior Assisted PatchMatch Multi-View Stereo. AAAI 2020
v124075.21 25572.98 26081.88 22479.20 34166.00 14490.75 21989.11 27271.63 22567.41 27481.22 30647.36 28693.87 24465.46 26164.72 31185.77 299
reproduce-ours83.51 10783.33 10184.06 15992.18 9860.49 28390.74 22092.04 14564.35 30383.24 8095.59 4959.05 15797.27 8283.61 9989.17 10394.41 116
our_new_method83.51 10783.33 10184.06 15992.18 9860.49 28390.74 22092.04 14564.35 30383.24 8095.59 4959.05 15797.27 8283.61 9989.17 10394.41 116
testing370.38 29770.83 28269.03 36485.82 25743.93 39590.72 22290.56 21168.06 27560.24 32986.82 23864.83 8584.12 36926.33 40564.10 31779.04 374
cl2277.94 21176.78 20881.42 23387.57 21964.93 17290.67 22388.86 28472.45 19367.63 27082.68 28264.07 9392.91 26771.79 19565.30 30186.44 281
miper_ehance_all_eth77.60 21576.44 21281.09 24585.70 26064.41 18390.65 22488.64 29372.31 19767.37 27682.52 28364.77 8792.64 28070.67 20665.30 30186.24 285
IterMVS-LS76.49 23375.18 23080.43 25684.49 28062.74 23490.64 22588.80 28672.40 19565.16 29281.72 29460.98 13492.27 29367.74 23364.65 31286.29 283
Fangjinhua Wang, Silvano Galliani, Christoph Vogel, Marc Pollefeys: IterMVS: Iterative Probability Estimation for Efficient Multi-View Stereo.
PLCcopyleft68.80 1475.23 25473.68 25379.86 27492.93 7658.68 31190.64 22588.30 30160.90 33764.43 30190.53 17542.38 31594.57 20756.52 30976.54 22786.33 282
Jie Liao, Yanping Fu, Qingan Yan, Chunxia xiao: Pyramid Multi-View Stereo with Local Consistency. Pacific Graphics 2019
PS-MVSNAJss77.26 22076.31 21480.13 26480.64 32459.16 30690.63 22791.06 19872.80 18568.58 25784.57 26253.55 22693.96 23972.97 18071.96 25887.27 268
balanced_conf0389.08 1588.84 1789.81 693.66 5475.15 590.61 22893.43 8884.06 1486.20 5190.17 18572.42 3396.98 10393.09 1895.92 1097.29 7
PGM-MVS83.25 11282.70 11584.92 12492.81 8364.07 19490.44 22992.20 13871.28 23377.23 15394.43 8755.17 20797.31 7779.33 13791.38 8093.37 153
LPG-MVS_test75.82 24674.58 23779.56 28284.31 28459.37 30290.44 22989.73 24669.49 25964.86 29388.42 20538.65 32794.30 21972.56 18872.76 25185.01 312
Vis-MVSNet (Re-imp)79.24 18479.57 16278.24 29888.46 19152.29 35390.41 23189.12 27174.24 15369.13 24491.91 15365.77 7490.09 33059.00 30288.09 11492.33 184
c3_l76.83 23075.47 22580.93 24985.02 27264.18 19390.39 23288.11 30771.66 22066.65 28481.64 29663.58 10692.56 28169.31 21862.86 32486.04 291
reproduce_model83.15 11482.96 10783.73 17092.02 10259.74 29690.37 23392.08 14363.70 31082.86 8595.48 5258.62 16397.17 8783.06 10588.42 11194.26 119
dcpmvs_287.37 3187.55 3086.85 5895.04 3268.20 8790.36 23490.66 20879.37 7681.20 10193.67 11274.73 1696.55 12590.88 3792.00 6995.82 48
TSAR-MVS + MP.88.11 2088.64 1886.54 7291.73 11568.04 9090.36 23493.55 8182.89 2391.29 1692.89 12872.27 3596.03 15187.99 5494.77 2695.54 57
Zhenlong Yuan, Jiakai Cao, Zhaoqi Wang, Zhaoxin Li: TSAR-MVS: Textureless-aware Segmentation and Correlative Refinement Guided Multi-View Stereo. Pattern Recognition
ACMM69.62 1374.34 26172.73 26479.17 28784.25 28657.87 31790.36 23489.93 23763.17 31865.64 28886.04 24837.79 33994.10 22765.89 25471.52 26185.55 304
Qingshan Xu and Wenbing Tao: Multi-Scale Geometric Consistency Guided Multi-View Stereo. CVPR 2019
FC-MVSNet-test77.99 20978.08 18677.70 30184.89 27455.51 33990.27 23793.75 7376.87 11866.80 28387.59 22465.71 7590.23 32762.89 28073.94 24387.37 264
V4276.46 23474.55 23882.19 21579.14 34467.82 9690.26 23889.42 25673.75 16568.63 25681.89 29151.31 24994.09 22871.69 19864.84 30884.66 315
baseline85.01 7584.44 8086.71 6488.33 19768.73 7190.24 23991.82 16181.05 4981.18 10292.50 13563.69 10096.08 14884.45 9186.71 13395.32 68
HyFIR lowres test81.03 15279.56 16385.43 10787.81 21468.11 8990.18 24090.01 23670.65 24772.95 19486.06 24763.61 10394.50 21475.01 16879.75 19793.67 146
cl____76.07 23774.67 23380.28 25985.15 26861.76 25490.12 24188.73 28871.16 23565.43 28981.57 29861.15 13192.95 26266.54 24662.17 33186.13 289
DIV-MVS_self_test76.07 23774.67 23380.28 25985.14 26961.75 25590.12 24188.73 28871.16 23565.42 29081.60 29761.15 13192.94 26666.54 24662.16 33386.14 287
baseline283.68 10683.42 9784.48 14787.37 22566.00 14490.06 24395.93 879.71 6969.08 24690.39 17977.92 696.28 13678.91 14281.38 18491.16 214
CL-MVSNet_self_test69.92 30068.09 30475.41 32373.25 38055.90 33790.05 24489.90 23869.96 25461.96 32376.54 35251.05 25287.64 35149.51 33550.59 37882.70 341
GBi-Net75.65 24873.83 25081.10 24288.85 18265.11 16690.01 24590.32 21870.84 24267.04 27880.25 32148.03 27891.54 31059.80 29869.34 27186.64 276
test175.65 24873.83 25081.10 24288.85 18265.11 16690.01 24590.32 21870.84 24267.04 27880.25 32148.03 27891.54 31059.80 29869.34 27186.64 276
FMVSNet172.71 28169.91 29281.10 24283.60 29465.11 16690.01 24590.32 21863.92 30763.56 30880.25 32136.35 35091.54 31054.46 31766.75 29386.64 276
MVS_Test84.16 9483.20 10387.05 5491.56 12069.82 4589.99 24892.05 14477.77 10582.84 8686.57 24063.93 9696.09 14574.91 17089.18 10295.25 76
Effi-MVS+-dtu76.14 23675.28 22978.72 29283.22 29855.17 34189.87 24987.78 31375.42 13867.98 26281.43 30045.08 30592.52 28375.08 16771.63 25988.48 249
EG-PatchMatch MVS68.55 31265.41 32077.96 30078.69 35162.93 22889.86 25089.17 26660.55 33950.27 37577.73 34322.60 39294.06 23147.18 34872.65 25376.88 385
MVS_111021_LR82.02 13581.52 12983.51 17988.42 19362.88 23289.77 25188.93 28176.78 12275.55 17093.10 12050.31 25795.38 18083.82 9887.02 12692.26 191
tttt051779.50 17978.53 18082.41 20787.22 22861.43 26289.75 25294.76 3369.29 26267.91 26488.06 21772.92 2895.63 16762.91 27973.90 24590.16 225
DP-MVS69.90 30166.48 30980.14 26395.36 2862.93 22889.56 25376.11 37750.27 38257.69 34885.23 25439.68 32395.73 16133.35 39271.05 26581.78 351
test22289.77 15861.60 25889.55 25489.42 25656.83 36277.28 15292.43 13952.76 23491.14 8593.09 163
v875.35 25273.26 25781.61 22980.67 32366.82 12489.54 25589.27 26171.65 22163.30 31180.30 32054.99 20994.06 23167.33 23862.33 33083.94 320
EI-MVSNet78.97 18978.22 18481.25 23685.33 26362.73 23589.53 25693.21 9572.39 19672.14 20990.13 18860.99 13394.72 20067.73 23472.49 25486.29 283
CVMVSNet74.04 26574.27 24373.33 34085.33 26343.94 39489.53 25688.39 29854.33 37070.37 23190.13 18849.17 27184.05 37161.83 28779.36 20091.99 197
AUN-MVS78.37 20377.43 19681.17 23886.60 24157.45 32489.46 25891.16 18974.11 15574.40 18090.49 17755.52 20294.57 20774.73 17360.43 34991.48 204
hse-mvs281.12 15081.11 13781.16 23986.52 24257.48 32389.40 25991.16 18981.45 4082.73 8990.49 17760.11 14394.58 20587.69 5760.41 35091.41 206
MVP-Stereo77.12 22376.23 21579.79 27681.72 31366.34 13789.29 26090.88 20270.56 24862.01 32282.88 27949.34 26794.13 22665.55 26093.80 4378.88 375
Qingsong Yan: MVP-Stereo: A Parallel Multi-View Patchmatch Stereo Method with Dilation Matching for Photogrammetric Application.
eth_miper_zixun_eth75.96 24474.40 24180.66 25184.66 27663.02 22589.28 26188.27 30371.88 21165.73 28781.65 29559.45 15192.81 27068.13 22860.53 34786.14 287
OpenMVS_ROBcopyleft61.12 1866.39 32862.92 33776.80 31676.51 36757.77 31889.22 26283.41 35955.48 36753.86 36177.84 34126.28 38593.95 24034.90 38968.76 27878.68 377
testdata189.21 26377.55 111
TAPA-MVS70.22 1274.94 25873.53 25479.17 28790.40 14652.07 35489.19 26489.61 25062.69 32370.07 23592.67 13348.89 27594.32 21738.26 38279.97 19491.12 215
Andrea Romanoni, Matteo Matteucci: TAPA-MVS: Textureless-Aware PAtchMatch Multi-View Stereo. ICCV 2019
v1074.77 25972.54 26881.46 23280.33 32866.71 12889.15 26589.08 27470.94 24063.08 31479.86 32552.52 23794.04 23465.70 25762.17 33183.64 323
MVSFormer83.75 10382.88 11186.37 7889.24 17571.18 2489.07 26690.69 20565.80 29387.13 4294.34 9464.99 8192.67 27772.83 18291.80 7295.27 73
test_djsdf73.76 27072.56 26777.39 30777.00 36653.93 34789.07 26690.69 20565.80 29363.92 30482.03 29043.14 31392.67 27772.83 18268.53 28085.57 303
test_fmvs174.07 26473.69 25275.22 32478.91 34847.34 38189.06 26874.69 38463.68 31179.41 12691.59 16024.36 38687.77 35085.22 8076.26 22990.55 222
tfpnnormal70.10 29867.36 30778.32 29583.45 29660.97 26988.85 26992.77 11464.85 30060.83 32678.53 33543.52 31193.48 25231.73 40061.70 33980.52 362
jajsoiax73.05 27471.51 27977.67 30277.46 36354.83 34388.81 27090.04 23469.13 26662.85 31783.51 27331.16 37092.75 27370.83 20369.80 26785.43 307
pmmvs667.57 32264.76 32476.00 32172.82 38353.37 34988.71 27186.78 32553.19 37257.58 34978.03 34035.33 35492.41 28655.56 31354.88 36882.21 347
ppachtmachnet_test67.72 32063.70 33279.77 27778.92 34666.04 14388.68 27282.90 36360.11 34455.45 35475.96 35839.19 32490.55 31939.53 37752.55 37482.71 340
PVSNet_068.08 1571.81 28768.32 30382.27 21084.68 27562.31 24488.68 27290.31 22175.84 13257.93 34680.65 31537.85 33894.19 22469.94 21129.05 41290.31 224
D2MVS73.80 26872.02 27379.15 28979.15 34362.97 22688.58 27490.07 23172.94 18059.22 33578.30 33642.31 31692.70 27665.59 25972.00 25781.79 350
OMC-MVS78.67 19977.91 19080.95 24885.76 25857.40 32588.49 27588.67 29173.85 16272.43 20692.10 14849.29 26994.55 21172.73 18677.89 21290.91 217
mvs_tets72.71 28171.11 28077.52 30377.41 36454.52 34588.45 27689.76 24268.76 27162.70 31883.26 27629.49 37592.71 27470.51 20969.62 26985.34 309
our_test_368.29 31664.69 32579.11 29078.92 34664.85 17388.40 27785.06 34260.32 34252.68 36476.12 35740.81 32089.80 33444.25 36155.65 36482.67 343
Anonymous2023120667.53 32365.78 31572.79 34574.95 37447.59 37988.23 27887.32 31661.75 33458.07 34377.29 34637.79 33987.29 35642.91 36463.71 32183.48 327
ACMH+65.35 1667.65 32164.55 32676.96 31484.59 27857.10 32788.08 27980.79 36758.59 35253.00 36381.09 31026.63 38492.95 26246.51 35061.69 34080.82 358
Syy-MVS69.65 30369.52 29570.03 36087.87 21143.21 39688.07 28089.01 27772.91 18263.11 31288.10 21445.28 30385.54 36322.07 41069.23 27481.32 353
myMVS_eth3d72.58 28572.74 26372.10 35287.87 21149.45 37088.07 28089.01 27772.91 18263.11 31288.10 21463.63 10185.54 36332.73 39769.23 27481.32 353
F-COLMAP70.66 29368.44 30177.32 30886.37 24655.91 33688.00 28286.32 32756.94 36157.28 35088.07 21633.58 35992.49 28451.02 32768.37 28183.55 324
test_040264.54 33961.09 34574.92 32884.10 28860.75 27587.95 28379.71 37252.03 37452.41 36577.20 34732.21 36591.64 30623.14 40861.03 34372.36 396
131480.70 15778.95 17585.94 9087.77 21767.56 10387.91 28492.55 12672.17 20367.44 27293.09 12150.27 25897.04 9771.68 19987.64 12093.23 158
MVS84.66 8182.86 11290.06 290.93 13674.56 787.91 28495.54 1468.55 27272.35 20894.71 8059.78 14898.90 2081.29 12194.69 3296.74 16
MVSMamba_PlusPlus84.97 7783.65 8888.93 1490.17 15174.04 887.84 28692.69 11862.18 32681.47 9987.64 22371.47 4096.28 13684.69 8894.74 3196.47 28
tt080573.07 27370.73 28580.07 26578.37 35557.05 32887.78 28792.18 14161.23 33667.04 27886.49 24131.35 36994.58 20565.06 26467.12 29088.57 247
ACMH63.93 1768.62 31164.81 32380.03 26785.22 26763.25 21887.72 28884.66 34660.83 33851.57 37079.43 33127.29 38294.96 19241.76 36964.84 30881.88 349
Qingshan Xu and Wenbing Tao: Multi-Scale Geometric Consistency Guided Multi-View Stereo. CVPR 2019
RRT-MVS82.61 12581.16 13286.96 5791.10 13368.75 7087.70 28992.20 13876.97 11772.68 19787.10 23451.30 25096.41 13283.56 10187.84 11795.74 50
PAPM_NR82.97 11881.84 12686.37 7894.10 4466.76 12787.66 29092.84 11269.96 25474.07 18593.57 11563.10 11497.50 6670.66 20790.58 9094.85 89
IterMVS-SCA-FT71.55 29069.97 29076.32 31881.48 31560.67 27987.64 29185.99 33366.17 29159.50 33378.88 33345.53 30083.65 37562.58 28261.93 33484.63 317
IterMVS72.65 28470.83 28278.09 29982.17 30962.96 22787.64 29186.28 32871.56 22860.44 32878.85 33445.42 30286.66 35863.30 27661.83 33584.65 316
Fangjinhua Wang, Silvano Galliani, Christoph Vogel, Marc Pollefeys: IterMVS: Iterative Probability Estimation for Efficient Multi-View Stereo.
pmmvs473.92 26771.81 27680.25 26179.17 34265.24 16287.43 29387.26 31967.64 28063.46 30983.91 27048.96 27491.53 31362.94 27865.49 30083.96 319
WR-MVS_H70.59 29469.94 29172.53 34681.03 31851.43 35887.35 29492.03 14867.38 28160.23 33080.70 31255.84 20083.45 37746.33 35258.58 35782.72 339
test_fmvs1_n72.69 28371.92 27474.99 32771.15 38647.08 38387.34 29575.67 37963.48 31378.08 14391.17 16720.16 39887.87 34784.65 8975.57 23390.01 228
CP-MVSNet70.50 29569.91 29272.26 34980.71 32251.00 36287.23 29690.30 22267.84 27659.64 33282.69 28150.23 25982.30 38551.28 32659.28 35383.46 328
PCF-MVS73.15 979.29 18377.63 19384.29 15486.06 25165.96 14687.03 29791.10 19369.86 25669.79 24190.64 17257.54 17596.59 12164.37 26882.29 17190.32 223
Andreas Kuhn, Shan Lin, Oliver Erdler: Plane Completion and Filtering for Multi-View Stereo Reconstruction. GCPR 2019
PS-CasMVS69.86 30269.13 29772.07 35380.35 32750.57 36487.02 29889.75 24367.27 28259.19 33682.28 28646.58 29182.24 38650.69 32859.02 35483.39 330
test_vis1_n71.63 28970.73 28574.31 33469.63 39247.29 38286.91 29972.11 39063.21 31775.18 17390.17 18520.40 39685.76 36284.59 9074.42 23989.87 229
PEN-MVS69.46 30568.56 29972.17 35179.27 34049.71 36886.90 30089.24 26267.24 28559.08 33782.51 28447.23 28783.54 37648.42 34057.12 35983.25 331
mvs_anonymous81.36 14579.99 15685.46 10690.39 14768.40 7886.88 30190.61 21074.41 14970.31 23384.67 26063.79 9892.32 29273.13 17985.70 14195.67 51
v7n71.31 29168.65 29879.28 28576.40 36860.77 27386.71 30289.45 25464.17 30658.77 34078.24 33744.59 30793.54 25057.76 30561.75 33783.52 326
test20.0363.83 34362.65 33967.38 37170.58 39039.94 40386.57 30384.17 35063.29 31551.86 36877.30 34537.09 34682.47 38338.87 38154.13 37079.73 368
MonoMVSNet76.99 22575.08 23182.73 19683.32 29763.24 21986.47 30486.37 32679.08 8466.31 28579.30 33249.80 26491.72 30479.37 13565.70 29993.23 158
UA-Net80.02 17179.65 16181.11 24189.33 16957.72 31986.33 30589.00 28077.44 11381.01 10589.15 19959.33 15495.90 15461.01 29084.28 15689.73 233
DTE-MVSNet68.46 31467.33 30871.87 35577.94 36049.00 37486.16 30688.58 29566.36 29058.19 34182.21 28846.36 29283.87 37444.97 35955.17 36682.73 338
testgi64.48 34062.87 33869.31 36371.24 38440.62 40185.49 30779.92 37165.36 29754.18 35983.49 27423.74 38984.55 36841.60 37060.79 34682.77 337
SDMVSNet80.26 16578.88 17684.40 14989.25 17267.63 10285.35 30893.02 10576.77 12370.84 22587.12 23247.95 28296.09 14585.04 8374.55 23589.48 237
LS3D69.17 30666.40 31177.50 30491.92 10956.12 33585.12 30980.37 37046.96 39056.50 35287.51 22637.25 34293.71 24732.52 39979.40 19982.68 342
UniMVSNet_ETH3D72.74 28070.53 28779.36 28478.62 35356.64 33285.01 31089.20 26463.77 30964.84 29584.44 26434.05 35891.86 30163.94 27070.89 26689.57 235
testmvs7.23 3949.62 3970.06 4090.04 4310.02 43484.98 3110.02 4320.03 4260.18 4271.21 4260.01 4320.02 4270.14 4260.01 4250.13 424
HY-MVS76.49 584.28 8883.36 10087.02 5592.22 9567.74 9884.65 31294.50 4479.15 8182.23 9287.93 21866.88 6296.94 10980.53 12682.20 17596.39 33
N_pmnet50.55 36949.11 37154.88 38877.17 3654.02 43284.36 3132.00 43048.59 38545.86 38968.82 38432.22 36482.80 38231.58 40151.38 37677.81 383
mmtdpeth68.33 31566.37 31274.21 33582.81 30451.73 35584.34 31480.42 36967.01 28671.56 21868.58 38530.52 37392.35 29075.89 16036.21 40178.56 379
anonymousdsp71.14 29269.37 29676.45 31772.95 38154.71 34484.19 31588.88 28261.92 33162.15 32179.77 32738.14 33491.44 31568.90 22467.45 28983.21 332
MSDG69.54 30465.73 31680.96 24785.11 27163.71 20484.19 31583.28 36156.95 36054.50 35784.03 26731.50 36796.03 15142.87 36669.13 27683.14 334
Anonymous2024052162.09 34859.08 35271.10 35767.19 39648.72 37583.91 31785.23 34150.38 38147.84 38471.22 38020.74 39585.51 36546.47 35158.75 35679.06 373
COLMAP_ROBcopyleft57.96 2062.98 34759.65 35072.98 34381.44 31653.00 35183.75 31875.53 38248.34 38748.81 38281.40 30224.14 38790.30 32232.95 39460.52 34875.65 388
Johannes L. Schönberger, Enliang Zheng, Marc Pollefeys, Jan-Michael Frahm: Pixelwise View Selection for Unstructured Multi-View Stereo. ECCV 2016
FMVSNet568.04 31865.66 31875.18 32684.43 28257.89 31683.54 31986.26 32961.83 33353.64 36273.30 36737.15 34585.08 36648.99 33761.77 33682.56 344
MDA-MVSNet_test_wron63.78 34460.16 34874.64 32978.15 35860.41 28583.49 32084.03 35156.17 36639.17 40371.59 37737.22 34383.24 38042.87 36648.73 38080.26 365
PatchMatch-RL72.06 28669.98 28978.28 29689.51 16555.70 33883.49 32083.39 36061.24 33563.72 30782.76 28034.77 35593.03 25953.37 32377.59 21586.12 290
YYNet163.76 34560.14 34974.62 33078.06 35960.19 29183.46 32283.99 35556.18 36539.25 40271.56 37837.18 34483.34 37842.90 36548.70 38180.32 364
SixPastTwentyTwo64.92 33761.78 34474.34 33378.74 35049.76 36783.42 32379.51 37362.86 32050.27 37577.35 34430.92 37290.49 32145.89 35447.06 38382.78 336
test_fmvs265.78 33364.84 32268.60 36666.54 39841.71 39883.27 32469.81 39754.38 36967.91 26484.54 26315.35 40381.22 39075.65 16266.16 29682.88 335
EU-MVSNet64.01 34263.01 33667.02 37274.40 37738.86 40783.27 32486.19 33145.11 39554.27 35881.15 30936.91 34880.01 39348.79 33957.02 36082.19 348
K. test v363.09 34659.61 35173.53 33976.26 36949.38 37283.27 32477.15 37664.35 30347.77 38572.32 37328.73 37787.79 34949.93 33336.69 40083.41 329
tpm78.58 20077.03 20483.22 18885.94 25564.56 17483.21 32791.14 19278.31 9673.67 18879.68 32864.01 9492.09 29766.07 25371.26 26493.03 166
MDA-MVSNet-bldmvs61.54 35157.70 35673.05 34279.53 33757.00 33183.08 32881.23 36557.57 35434.91 40772.45 37032.79 36186.26 36135.81 38641.95 39175.89 387
mvsmamba81.55 14280.72 14384.03 16391.42 12466.93 12283.08 32889.13 27078.55 9467.50 27187.02 23551.79 24390.07 33187.48 6090.49 9295.10 81
test_vis1_rt59.09 36057.31 35964.43 37568.44 39546.02 38983.05 33048.63 41951.96 37549.57 37863.86 39516.30 40180.20 39271.21 20162.79 32567.07 402
ab-mvs80.18 16778.31 18285.80 9688.44 19265.49 15983.00 33192.67 11971.82 21577.36 15185.01 25654.50 21296.59 12176.35 15875.63 23295.32 68
pmmvs-eth3d65.53 33562.32 34175.19 32569.39 39359.59 29882.80 33283.43 35862.52 32451.30 37272.49 36932.86 36087.16 35755.32 31450.73 37778.83 376
new-patchmatchnet59.30 35956.48 36167.79 36865.86 40044.19 39282.47 33381.77 36459.94 34543.65 39766.20 39027.67 38181.68 38839.34 37841.40 39277.50 384
CostFormer82.33 12881.15 13385.86 9389.01 18068.46 7782.39 33493.01 10675.59 13580.25 11681.57 29872.03 3794.96 19279.06 14077.48 21994.16 126
sd_testset77.08 22475.37 22682.20 21489.25 17262.11 24782.06 33589.09 27376.77 12370.84 22587.12 23241.43 31895.01 19067.23 23974.55 23589.48 237
miper_lstm_enhance73.05 27471.73 27777.03 31183.80 29058.32 31481.76 33688.88 28269.80 25761.01 32478.23 33857.19 17787.51 35465.34 26259.53 35285.27 311
MTAPA83.91 9883.38 9985.50 10591.89 11165.16 16581.75 33792.23 13475.32 14080.53 11295.21 6656.06 19797.16 9084.86 8792.55 6294.18 124
tpmrst80.57 15879.14 17384.84 12790.10 15268.28 8281.70 33889.72 24877.63 11075.96 16379.54 33064.94 8392.71 27475.43 16377.28 22293.55 149
test1236.92 3959.21 3980.08 4080.03 4320.05 43381.65 3390.01 4330.02 4270.14 4280.85 4270.03 4310.02 4270.12 4270.00 4260.16 423
tpm279.80 17577.95 18985.34 11288.28 19868.26 8381.56 34091.42 17970.11 25277.59 14980.50 31667.40 5994.26 22367.34 23777.35 22093.51 150
KD-MVS_2432*160069.03 30866.37 31277.01 31285.56 26161.06 26781.44 34190.25 22467.27 28258.00 34476.53 35354.49 21387.63 35248.04 34235.77 40382.34 345
miper_refine_blended69.03 30866.37 31277.01 31285.56 26161.06 26781.44 34190.25 22467.27 28258.00 34476.53 35354.49 21387.63 35248.04 34235.77 40382.34 345
FA-MVS(test-final)79.12 18677.23 20284.81 13190.54 14363.98 19681.35 34391.71 16571.09 23874.85 17782.94 27852.85 23397.05 9467.97 23081.73 18293.41 152
UnsupCasMVSNet_eth65.79 33263.10 33573.88 33670.71 38850.29 36681.09 34489.88 23972.58 18949.25 38074.77 36532.57 36387.43 35555.96 31241.04 39383.90 321
SCA75.82 24672.76 26285.01 12386.63 24070.08 3781.06 34589.19 26571.60 22670.01 23677.09 34945.53 30090.25 32360.43 29373.27 24794.68 100
mvsany_test168.77 31068.56 29969.39 36273.57 37945.88 39080.93 34660.88 41059.65 34671.56 21890.26 18343.22 31275.05 39774.26 17562.70 32687.25 269
OurMVSNet-221017-064.68 33862.17 34272.21 35076.08 37147.35 38080.67 34781.02 36656.19 36451.60 36979.66 32927.05 38388.56 34053.60 32253.63 37180.71 360
XVG-OURS-SEG-HR74.70 26073.08 25879.57 28178.25 35657.33 32680.49 34887.32 31663.22 31668.76 25490.12 19044.89 30691.59 30870.55 20874.09 24289.79 231
pmmvs355.51 36351.50 36967.53 37057.90 41150.93 36380.37 34973.66 38640.63 40444.15 39664.75 39316.30 40178.97 39444.77 36040.98 39572.69 394
XVG-OURS74.25 26372.46 26979.63 27978.45 35457.59 32280.33 35087.39 31563.86 30868.76 25489.62 19440.50 32191.72 30469.00 22274.25 24089.58 234
MDTV_nov1_ep1372.61 26689.06 17868.48 7680.33 35090.11 23071.84 21471.81 21475.92 35953.01 23293.92 24148.04 34273.38 246
EPMVS78.49 20275.98 21986.02 8791.21 13169.68 5180.23 35291.20 18775.25 14172.48 20478.11 33954.65 21193.69 24857.66 30783.04 16594.69 99
AllTest61.66 34958.06 35472.46 34779.57 33551.42 35980.17 35368.61 39951.25 37845.88 38781.23 30419.86 39986.58 35938.98 37957.01 36179.39 370
MDTV_nov1_ep13_2view59.90 29480.13 35467.65 27972.79 19654.33 21859.83 29792.58 178
LCM-MVSNet-Re72.93 27671.84 27576.18 32088.49 18948.02 37680.07 35570.17 39673.96 16052.25 36680.09 32449.98 26088.24 34467.35 23684.23 15792.28 187
dmvs_re76.93 22675.36 22781.61 22987.78 21660.71 27780.00 35687.99 31079.42 7469.02 24889.47 19546.77 28894.32 21763.38 27474.45 23889.81 230
PatchmatchNetpermissive77.46 21774.63 23585.96 8989.55 16470.35 3479.97 35789.55 25172.23 20070.94 22376.91 35157.03 17992.79 27254.27 31881.17 18594.74 97
Fangjinhua Wang, Silvano Galliani, Christoph Vogel, Pablo Speciale, Marc Pollefeys: PatchmatchNet: Learned Multi-View Patchmatch Stereo.
dp75.01 25772.09 27283.76 16789.28 17166.22 14179.96 35889.75 24371.16 23567.80 26877.19 34851.81 24292.54 28250.39 32971.44 26392.51 181
test_post178.95 35920.70 42253.05 23191.50 31460.43 293
MIMVSNet160.16 35757.33 35868.67 36569.71 39144.13 39378.92 36084.21 34955.05 36844.63 39471.85 37523.91 38881.54 38932.63 39855.03 36780.35 363
UnsupCasMVSNet_bld61.60 35057.71 35573.29 34168.73 39451.64 35678.61 36189.05 27657.20 35946.11 38661.96 39928.70 37888.60 33950.08 33238.90 39879.63 369
XVG-ACMP-BASELINE68.04 31865.53 31975.56 32274.06 37852.37 35278.43 36285.88 33462.03 32958.91 33981.21 30820.38 39791.15 31760.69 29268.18 28283.16 333
USDC67.43 32564.51 32776.19 31977.94 36055.29 34078.38 36385.00 34373.17 17548.36 38380.37 31821.23 39492.48 28552.15 32564.02 31980.81 359
TinyColmap60.32 35556.42 36272.00 35478.78 34953.18 35078.36 36475.64 38052.30 37341.59 40175.82 36014.76 40688.35 34335.84 38554.71 36974.46 389
tpmvs72.88 27869.76 29482.22 21390.98 13567.05 11878.22 36588.30 30163.10 31964.35 30274.98 36255.09 20894.27 22143.25 36269.57 27085.34 309
tpm cat175.30 25372.21 27184.58 14388.52 18867.77 9778.16 36688.02 30961.88 33268.45 25976.37 35560.65 13794.03 23653.77 32174.11 24191.93 198
CMPMVSbinary48.56 2166.77 32764.41 32973.84 33770.65 38950.31 36577.79 36785.73 33745.54 39444.76 39382.14 28935.40 35390.14 32963.18 27774.54 23781.07 356
M. Jancosek, T. Pajdla: Multi-View Reconstruction Preserving Weakly-Supported Surfaces. CVPR 2011
FE-MVS75.97 24373.02 25984.82 12889.78 15765.56 15577.44 36891.07 19764.55 30172.66 19879.85 32646.05 29896.69 11954.97 31580.82 18992.21 192
PM-MVS59.40 35856.59 36067.84 36763.63 40241.86 39776.76 36963.22 40759.01 34951.07 37372.27 37411.72 41083.25 37961.34 28850.28 37978.39 380
dmvs_testset65.55 33466.45 31062.86 37879.87 33322.35 42476.55 37071.74 39277.42 11555.85 35387.77 22151.39 24880.69 39131.51 40365.92 29885.55 304
WB-MVS46.23 37344.94 37550.11 39362.13 40621.23 42676.48 37155.49 41245.89 39335.78 40461.44 40135.54 35272.83 4019.96 42021.75 41556.27 408
TDRefinement55.28 36451.58 36866.39 37359.53 41046.15 38876.23 37272.80 38744.60 39642.49 39976.28 35615.29 40482.39 38433.20 39343.75 38870.62 398
dongtai55.18 36555.46 36454.34 39076.03 37236.88 40876.07 37384.61 34751.28 37743.41 39864.61 39456.56 19167.81 40818.09 41328.50 41358.32 406
test_fmvs356.82 36154.86 36562.69 38053.59 41335.47 41075.87 37465.64 40443.91 39855.10 35571.43 3796.91 41874.40 40068.64 22652.63 37278.20 381
RPSCF64.24 34161.98 34371.01 35876.10 37045.00 39175.83 37575.94 37846.94 39158.96 33884.59 26131.40 36882.00 38747.76 34660.33 35186.04 291
kuosan60.86 35460.24 34762.71 37981.57 31446.43 38775.70 37685.88 33457.98 35348.95 38169.53 38358.42 16576.53 39528.25 40435.87 40265.15 403
KD-MVS_self_test60.87 35358.60 35367.68 36966.13 39939.93 40475.63 37784.70 34557.32 35849.57 37868.45 38629.55 37482.87 38148.09 34147.94 38280.25 366
GG-mvs-BLEND86.53 7391.91 11069.67 5275.02 37894.75 3478.67 13990.85 17177.91 794.56 21072.25 19193.74 4595.36 65
SSC-MVS44.51 37543.35 37747.99 39761.01 40918.90 42874.12 37954.36 41343.42 40034.10 40860.02 40234.42 35770.39 4049.14 42219.57 41654.68 409
MIMVSNet71.64 28868.44 30181.23 23781.97 31264.44 18073.05 38088.80 28669.67 25864.59 29674.79 36432.79 36187.82 34853.99 31976.35 22891.42 205
mvs5depth61.03 35257.65 35771.18 35667.16 39747.04 38572.74 38177.49 37457.47 35760.52 32772.53 36822.84 39188.38 34249.15 33638.94 39778.11 382
ttmdpeth53.34 36749.96 37063.45 37762.07 40740.04 40272.06 38265.64 40442.54 40251.88 36777.79 34213.94 40976.48 39632.93 39530.82 41173.84 391
gg-mvs-nofinetune77.18 22174.31 24285.80 9691.42 12468.36 7971.78 38394.72 3549.61 38377.12 15445.92 40977.41 893.98 23867.62 23593.16 5595.05 83
MVS-HIRNet60.25 35655.55 36374.35 33284.37 28356.57 33371.64 38474.11 38534.44 40645.54 39142.24 41431.11 37189.81 33240.36 37676.10 23076.67 386
EGC-MVSNET42.35 37638.09 37955.11 38774.57 37546.62 38671.63 38555.77 4110.04 4250.24 42662.70 39714.24 40774.91 39917.59 41446.06 38543.80 411
CR-MVSNet73.79 26970.82 28482.70 19883.15 29967.96 9270.25 38684.00 35373.67 16969.97 23872.41 37157.82 17289.48 33552.99 32473.13 24890.64 220
RPMNet70.42 29665.68 31784.63 14183.15 29967.96 9270.25 38690.45 21246.83 39269.97 23865.10 39256.48 19395.30 18435.79 38773.13 24890.64 220
Patchmatch-RL test68.17 31764.49 32879.19 28671.22 38553.93 34770.07 38871.54 39469.22 26356.79 35162.89 39656.58 19088.61 33869.53 21552.61 37395.03 85
CHOSEN 280x42077.35 21976.95 20778.55 29387.07 23262.68 23669.71 38982.95 36268.80 26971.48 22087.27 23166.03 7184.00 37376.47 15782.81 16888.95 240
mamv465.18 33667.43 30658.44 38277.88 36249.36 37369.40 39070.99 39548.31 38857.78 34785.53 25259.01 16051.88 42073.67 17764.32 31474.07 390
Patchmtry67.53 32363.93 33178.34 29482.12 31064.38 18468.72 39184.00 35348.23 38959.24 33472.41 37157.82 17289.27 33646.10 35356.68 36381.36 352
LF4IMVS54.01 36652.12 36759.69 38162.41 40539.91 40568.59 39268.28 40142.96 40144.55 39575.18 36114.09 40868.39 40741.36 37251.68 37570.78 397
new_pmnet49.31 37046.44 37357.93 38362.84 40440.74 40068.47 39362.96 40836.48 40535.09 40657.81 40314.97 40572.18 40232.86 39646.44 38460.88 405
ADS-MVSNet266.90 32663.44 33477.26 31088.06 20560.70 27868.01 39475.56 38157.57 35464.48 29869.87 38138.68 32584.10 37040.87 37367.89 28686.97 271
ADS-MVSNet68.54 31364.38 33081.03 24688.06 20566.90 12368.01 39484.02 35257.57 35464.48 29869.87 38138.68 32589.21 33740.87 37367.89 28686.97 271
PatchT69.11 30765.37 32180.32 25782.07 31163.68 20767.96 39687.62 31450.86 38069.37 24265.18 39157.09 17888.53 34141.59 37166.60 29488.74 244
MVStest151.35 36846.89 37264.74 37465.06 40151.10 36167.33 39772.58 38830.20 41035.30 40574.82 36327.70 38069.89 40524.44 40724.57 41473.22 392
LTVRE_ROB59.60 1966.27 32963.54 33374.45 33184.00 28951.55 35767.08 39883.53 35758.78 35054.94 35680.31 31934.54 35693.23 25640.64 37568.03 28478.58 378
Andreas Kuhn, Heiko Hirschmüller, Daniel Scharstein, Helmut Mayer: A TV Prior for High-Quality Scalable Multi-View Stereo Reconstruction. International Journal of Computer Vision 2016
test_vis3_rt40.46 37937.79 38048.47 39644.49 42133.35 41366.56 39932.84 42732.39 40829.65 40939.13 4173.91 42568.65 40650.17 33040.99 39443.40 412
FPMVS45.64 37443.10 37853.23 39151.42 41636.46 40964.97 40071.91 39129.13 41127.53 41161.55 4009.83 41365.01 41416.00 41755.58 36558.22 407
DSMNet-mixed56.78 36254.44 36663.79 37663.21 40329.44 41964.43 40164.10 40642.12 40351.32 37171.60 37631.76 36675.04 39836.23 38465.20 30586.87 274
ANet_high40.27 38035.20 38355.47 38634.74 42734.47 41263.84 40271.56 39348.42 38618.80 41641.08 4159.52 41464.45 41520.18 4118.66 42367.49 401
mvsany_test348.86 37146.35 37456.41 38446.00 41931.67 41562.26 40347.25 42043.71 39945.54 39168.15 38710.84 41164.44 41657.95 30435.44 40573.13 393
test_f46.58 37243.45 37655.96 38545.18 42032.05 41461.18 40449.49 41833.39 40742.05 40062.48 3987.00 41765.56 41247.08 34943.21 39070.27 399
E-PMN24.61 38724.00 39126.45 40443.74 42218.44 42960.86 40539.66 42315.11 4199.53 42322.10 4206.52 41946.94 4228.31 42310.14 42013.98 420
EMVS23.76 38923.20 39325.46 40541.52 42516.90 43060.56 40638.79 42614.62 4208.99 42420.24 4237.35 41645.82 4237.25 4249.46 42113.64 421
PMMVS237.93 38233.61 38550.92 39246.31 41824.76 42260.55 40750.05 41628.94 41220.93 41447.59 4074.41 42465.13 41325.14 40618.55 41862.87 404
APD_test140.50 37837.31 38150.09 39451.88 41435.27 41159.45 40852.59 41521.64 41426.12 41257.80 4044.56 42266.56 41022.64 40939.09 39648.43 410
Patchmatch-test65.86 33160.94 34680.62 25483.75 29158.83 30958.91 40975.26 38344.50 39750.95 37477.09 34958.81 16287.90 34635.13 38864.03 31895.12 80
JIA-IIPM66.06 33062.45 34076.88 31581.42 31754.45 34657.49 41088.67 29149.36 38463.86 30546.86 40856.06 19790.25 32349.53 33468.83 27785.95 294
testf132.77 38429.47 38742.67 40041.89 42330.81 41652.07 41143.45 42115.45 41718.52 41744.82 4112.12 42658.38 41716.05 41530.87 40938.83 413
APD_test232.77 38429.47 38742.67 40041.89 42330.81 41652.07 41143.45 42115.45 41718.52 41744.82 4112.12 42658.38 41716.05 41530.87 40938.83 413
LCM-MVSNet40.54 37735.79 38254.76 38936.92 42630.81 41651.41 41369.02 39822.07 41324.63 41345.37 4104.56 42265.81 41133.67 39134.50 40667.67 400
PMVScopyleft26.43 2231.84 38628.16 38942.89 39925.87 42927.58 42050.92 41449.78 41721.37 41514.17 42140.81 4162.01 42866.62 4099.61 42138.88 39934.49 417
Y. Furukawa, J. Ponce: Accurate, dense, and robust multiview stereopsis. PAMI (2010)
ambc69.61 36161.38 40841.35 39949.07 41585.86 33650.18 37766.40 38910.16 41288.14 34545.73 35544.20 38779.32 372
test_method38.59 38135.16 38448.89 39554.33 41221.35 42545.32 41653.71 4147.41 42228.74 41051.62 4068.70 41552.87 41933.73 39032.89 40772.47 395
tmp_tt22.26 39023.75 39217.80 4065.23 43012.06 43135.26 41739.48 4242.82 42418.94 41544.20 41322.23 39324.64 42536.30 3839.31 42216.69 419
MVEpermissive24.84 2324.35 38819.77 39438.09 40234.56 42826.92 42126.57 41838.87 42511.73 42111.37 42227.44 4181.37 42950.42 42111.41 41914.60 41936.93 415
Simon Fuhrmann, Fabian Langguth, Michael Goesele: MVE - A Multi-View Reconstruction Environment. EUROGRAPHICS Workshops on Graphics and Cultural Heritage (2014)
wuyk23d11.30 39210.95 39512.33 40748.05 41719.89 42725.89 4191.92 4313.58 4233.12 4251.37 4250.64 43015.77 4266.23 4257.77 4241.35 422
Gipumacopyleft34.91 38331.44 38645.30 39870.99 38739.64 40619.85 42072.56 38920.10 41616.16 42021.47 4215.08 42171.16 40313.07 41843.70 38925.08 418
S. Galliani, K. Lasinger, K. Schindler: Massively Parallel Multiview Stereopsis by Surface Normal Diffusion. ICCV 2015
mmdepth0.00 3970.00 4000.00 4100.00 4330.00 4350.00 4210.00 4340.00 4280.00 4290.00 4280.00 4330.00 4290.00 4280.00 4260.00 425
monomultidepth0.00 3970.00 4000.00 4100.00 4330.00 4350.00 4210.00 4340.00 4280.00 4290.00 4280.00 4330.00 4290.00 4280.00 4260.00 425
test_blank0.00 3970.00 4000.00 4100.00 4330.00 4350.00 4210.00 4340.00 4280.00 4290.00 4280.00 4330.00 4290.00 4280.00 4260.00 425
uanet_test0.00 3970.00 4000.00 4100.00 4330.00 4350.00 4210.00 4340.00 4280.00 4290.00 4280.00 4330.00 4290.00 4280.00 4260.00 425
DCPMVS0.00 3970.00 4000.00 4100.00 4330.00 4350.00 4210.00 4340.00 4280.00 4290.00 4280.00 4330.00 4290.00 4280.00 4260.00 425
cdsmvs_eth3d_5k19.86 39126.47 3900.00 4100.00 4330.00 4350.00 42193.45 860.00 4280.00 42995.27 6149.56 2650.00 4290.00 4280.00 4260.00 425
pcd_1.5k_mvsjas4.46 3965.95 3990.00 4100.00 4330.00 4350.00 4210.00 4340.00 4280.00 4290.00 42853.55 2260.00 4290.00 4280.00 4260.00 425
sosnet-low-res0.00 3970.00 4000.00 4100.00 4330.00 4350.00 4210.00 4340.00 4280.00 4290.00 4280.00 4330.00 4290.00 4280.00 4260.00 425
sosnet0.00 3970.00 4000.00 4100.00 4330.00 4350.00 4210.00 4340.00 4280.00 4290.00 4280.00 4330.00 4290.00 4280.00 4260.00 425
uncertanet0.00 3970.00 4000.00 4100.00 4330.00 4350.00 4210.00 4340.00 4280.00 4290.00 4280.00 4330.00 4290.00 4280.00 4260.00 425
Regformer0.00 3970.00 4000.00 4100.00 4330.00 4350.00 4210.00 4340.00 4280.00 4290.00 4280.00 4330.00 4290.00 4280.00 4260.00 425
ab-mvs-re7.91 39310.55 3960.00 4100.00 4330.00 4350.00 4210.00 4340.00 4280.00 42994.95 710.00 4330.00 4290.00 4280.00 4260.00 425
uanet0.00 3970.00 4000.00 4100.00 4330.00 4350.00 4210.00 4340.00 4280.00 4290.00 4280.00 4330.00 4290.00 4280.00 4260.00 425
WAC-MVS49.45 37031.56 402
MSC_two_6792asdad89.60 997.31 473.22 1295.05 2799.07 1392.01 2794.77 2696.51 24
PC_three_145280.91 5094.07 296.83 1883.57 499.12 595.70 797.42 497.55 4
No_MVS89.60 997.31 473.22 1295.05 2799.07 1392.01 2794.77 2696.51 24
test_one_060196.32 1869.74 4994.18 5871.42 23290.67 1996.85 1674.45 20
eth-test20.00 433
eth-test0.00 433
ZD-MVS96.63 965.50 15893.50 8470.74 24685.26 6495.19 6764.92 8497.29 7887.51 5993.01 56
IU-MVS96.46 1169.91 4295.18 2180.75 5195.28 192.34 2495.36 1496.47 28
test_241102_TWO94.41 4971.65 22192.07 997.21 474.58 1899.11 692.34 2495.36 1496.59 19
test_241102_ONE96.45 1269.38 5594.44 4771.65 22192.11 797.05 776.79 999.11 6
test_0728_THIRD72.48 19190.55 2096.93 1176.24 1199.08 1191.53 3294.99 1896.43 31
GSMVS94.68 100
test_part296.29 1968.16 8890.78 17
sam_mvs157.85 17194.68 100
sam_mvs54.91 210
MTGPAbinary92.23 134
test_post23.01 41956.49 19292.67 277
patchmatchnet-post67.62 38857.62 17490.25 323
gm-plane-assit88.42 19367.04 11978.62 9391.83 15497.37 7276.57 156
test9_res89.41 4294.96 1995.29 70
agg_prior286.41 7294.75 3095.33 66
agg_prior94.16 4366.97 12193.31 9284.49 7096.75 118
TestCases72.46 34779.57 33551.42 35968.61 39951.25 37845.88 38781.23 30419.86 39986.58 35938.98 37957.01 36179.39 370
test_prior86.42 7694.71 3567.35 10993.10 10396.84 11595.05 83
新几何184.73 13492.32 9264.28 18991.46 17859.56 34779.77 12192.90 12756.95 18496.57 12363.40 27392.91 5893.34 154
旧先验191.94 10760.74 27691.50 17694.36 8965.23 7991.84 7194.55 107
原ACMM184.42 14893.21 6764.27 19093.40 9165.39 29679.51 12492.50 13558.11 17096.69 11965.27 26393.96 4092.32 185
testdata296.09 14561.26 289
segment_acmp65.94 72
testdata81.34 23589.02 17957.72 31989.84 24058.65 35185.32 6394.09 10357.03 17993.28 25569.34 21790.56 9193.03 166
test1287.09 5294.60 3668.86 6792.91 11082.67 9165.44 7797.55 6493.69 4894.84 92
plane_prior786.94 23561.51 259
plane_prior687.23 22762.32 24350.66 254
plane_prior591.31 18295.55 17476.74 15478.53 20988.39 251
plane_prior489.14 200
plane_prior361.95 25179.09 8372.53 202
plane_prior187.15 229
n20.00 434
nn0.00 434
door-mid66.01 403
lessismore_v073.72 33872.93 38247.83 37861.72 40945.86 38973.76 36628.63 37989.81 33247.75 34731.37 40883.53 325
LGP-MVS_train79.56 28284.31 28459.37 30289.73 24669.49 25964.86 29388.42 20538.65 32794.30 21972.56 18872.76 25185.01 312
test1193.01 106
door66.57 402
HQP5-MVS63.66 208
BP-MVS77.63 151
HQP4-MVS74.18 18195.61 16988.63 245
HQP3-MVS91.70 16878.90 204
HQP2-MVS51.63 246
NP-MVS87.41 22363.04 22490.30 181
ACMMP++_ref71.63 259
ACMMP++69.72 268
Test By Simon54.21 220
ITE_SJBPF70.43 35974.44 37647.06 38477.32 37560.16 34354.04 36083.53 27223.30 39084.01 37243.07 36361.58 34180.21 367
DeepMVS_CXcopyleft34.71 40351.45 41524.73 42328.48 42931.46 40917.49 41952.75 4055.80 42042.60 42418.18 41219.42 41736.81 416