This table lists the benchmark results for the high-res multi-view scenario. The following metrics are evaluated:

(*) For exact definitions, detailing how potentially incomplete ground truth is taken into account, see our paper.

The datasets are grouped into different categories, and result averages are computed for a category and method if results of the method are available for all datasets within the category. Note that the category "all" includes both the high-res multi-view and the low-res many-view scenarios.

Methods with suffix _ROB may participate in the Robust Vision Challenge.

Click a dataset result cell to show a visualization of the reconstruction. For training datasets, ground truth and accuracy / completeness visualizations are also available. The visualizations may not work with mobile browsers.




Method Infoallhigh-res
multi-view
indooroutdoorbotani.boulde.bridgedoorexhibi.lectur.living.loungeobserv.old co.statueterrac.
sort bysorted bysort bysort bysort bysort bysort bysort bysort bysort bysort bysort bysort bysort bysort bysort by
CNVR-MVS98.46 198.38 198.72 1099.80 496.19 1599.80 1697.99 5297.05 699.41 499.59 292.89 23100.00 198.99 2599.90 799.96 10
DVP-MVS++98.18 298.09 598.44 1699.61 2495.38 2499.55 4497.68 9093.01 7099.23 1099.45 1495.12 799.98 999.25 1899.92 399.97 7
SED-MVS98.18 298.10 498.41 1899.63 1895.24 2799.77 1897.72 8194.17 4399.30 899.54 393.32 1799.98 999.70 599.81 2399.99 1
MCST-MVS98.18 297.95 998.86 599.85 396.60 1099.70 2797.98 5397.18 495.96 9799.33 1992.62 24100.00 198.99 2599.93 199.98 6
NCCC98.12 598.11 398.13 2599.76 694.46 5199.81 1297.88 5796.54 1398.84 2499.46 1092.55 2599.98 998.25 4799.93 199.94 18
DPE-MVScopyleft98.11 698.00 698.44 1699.50 4295.39 2399.29 8097.72 8194.50 3798.64 3099.54 393.32 1799.97 2199.58 1199.90 799.95 15
Kehua Chen, Zhenlong Yuan, Tianlu Mao, Zhaoqi Wang: Dual-Level Precision Edges Guided Multi-View Stereo with Accurate Planarization. AAAI2025
DVP-MVScopyleft98.07 798.00 698.29 1999.66 1295.20 3299.72 2497.47 14193.95 4899.07 1599.46 1093.18 2099.97 2199.64 899.82 1999.69 55
Zhenlong Yuan, Jinguo Luo, Fei Shen, Zhaoxin Li, Cong Liu, Tianlu Mao, Zhaoqi Wang: DVP-MVS: Synergize Depth-Edge and Visibility Prior for Multi-View Stereo. AAAI2025
DPM-MVS97.86 897.25 2299.68 198.25 9599.10 199.76 2197.78 7396.61 1298.15 4399.53 793.62 15100.00 191.79 16699.80 2699.94 18
MVS_030497.81 997.51 1598.74 998.97 7396.57 1199.91 298.17 3697.45 398.76 2698.97 6286.69 10999.96 2899.72 398.92 8999.69 55
MSP-MVS97.77 1098.18 296.53 9899.54 3690.14 14599.41 6897.70 8695.46 2898.60 3199.19 3095.71 499.49 11298.15 4999.85 1399.95 15
Zhenlong Yuan, Cong Liu, Fei Shen, Zhaoxin Li, Jingguo luo, Tianlu Mao and Zhaoqi Wang: MSP-MVS: Multi-granularity Segmentation Prior Guided Multi-View Stereo. AAAI2025
MM97.76 1197.39 2098.86 598.30 9496.83 799.81 1299.13 997.66 298.29 4198.96 6785.84 12999.90 5099.72 398.80 9599.85 30
HPM-MVS++copyleft97.72 1297.59 1398.14 2499.53 4094.76 4599.19 8997.75 7695.66 2498.21 4299.29 2091.10 3199.99 597.68 5999.87 999.68 57
fmvsm_l_conf0.5_n_a97.70 1397.80 1197.42 5097.59 11992.91 8899.86 598.04 4896.70 1099.58 299.26 2190.90 3699.94 3599.57 1298.66 10299.40 91
fmvsm_l_conf0.5_n97.65 1497.72 1297.41 5197.51 12492.78 9099.85 898.05 4696.78 899.60 199.23 2690.42 4599.92 4199.55 1398.50 10799.55 74
APDe-MVScopyleft97.53 1597.47 1697.70 3999.58 3093.63 6999.56 4397.52 13193.59 6398.01 5299.12 4690.80 3999.55 10699.26 1799.79 2799.93 20
Zhaojie Zeng, Yuesong Wang, Tao Guan: Matching Ambiguity-Resilient Multi-View Stereo via Adaptive Patch Deformation. Pattern Recognition
SD-MVS97.51 1697.40 1997.81 3699.01 7293.79 6899.33 7897.38 15493.73 5998.83 2599.02 5890.87 3899.88 5498.69 3099.74 2999.77 43
Zhenlong Yuan, Jiakai Cao, Zhaoxin Li, Hao Jiang and Zhaoqi Wang: SD-MVS: Segmentation-driven Deformation Multi-View Stereo with Spherical Refinement and EM optimization. AAAI2024
MSLP-MVS++97.50 1797.45 1897.63 4199.65 1693.21 7799.70 2798.13 4294.61 3597.78 5999.46 1089.85 5499.81 7997.97 5299.91 699.88 26
TSAR-MVS + MP.97.44 1897.46 1797.39 5399.12 6593.49 7498.52 17297.50 13694.46 3898.99 1798.64 9991.58 2899.08 14898.49 3799.83 1599.60 70
Zhenlong Yuan, Jiakai Cao, Zhaoqi Wang, Zhaoxin Li: TSAR-MVS: Textureless-aware Segmentation and Correlative Refinement Guided Multi-View Stereo. Pattern Recognition
SteuartSystems-ACMMP97.25 1997.34 2197.01 6597.38 12891.46 11199.75 2297.66 9594.14 4798.13 4499.26 2192.16 2799.66 9497.91 5499.64 4399.90 22
Skip Steuart: Steuart Systems R&D Blog.
SMA-MVScopyleft97.24 2096.99 2498.00 3199.30 5494.20 6099.16 9597.65 10289.55 15999.22 1299.52 890.34 4899.99 598.32 4499.83 1599.82 32
Yufeng Yin; Xiaoyan Liu; Zichao Zhang: SMA-MVS: Segmentation-Guided Multi-Scale Anchor Deformation Patch Multi-View Stereo. IEEE Transactions on Circuits and Systems for Video Technology
MG-MVS97.24 2096.83 3198.47 1599.79 595.71 1999.07 11199.06 1094.45 4096.42 9198.70 9588.81 6799.74 8895.35 10999.86 1299.97 7
SF-MVS97.22 2296.92 2598.12 2799.11 6694.88 3899.44 6297.45 14489.60 15598.70 2799.42 1790.42 4599.72 8998.47 3899.65 4199.77 43
train_agg97.20 2397.08 2397.57 4599.57 3393.17 7899.38 7197.66 9590.18 13798.39 3799.18 3390.94 3499.66 9498.58 3699.85 1399.88 26
DeepC-MVS_fast93.52 297.16 2496.84 2998.13 2599.61 2494.45 5298.85 13397.64 10396.51 1695.88 10099.39 1887.35 9499.99 596.61 8399.69 3999.96 10
Andreas Kuhn, Christian Sormann, Mattia Rossi, Oliver Erdler, Friedrich Fraundorfer: DeepC-MVS: Deep Confidence Prediction for Multi-View Stereo Reconstruction. 3DV 2020
DELS-MVS97.12 2596.60 3598.68 1198.03 10496.57 1199.84 997.84 6196.36 1895.20 11798.24 12388.17 7599.83 7396.11 9399.60 5199.64 65
Christian Sormann, Emanuele Santellani, Mattia Rossi, Andreas Kuhn, Friedrich Fraundorfer: DELS-MVS: Deep Epipolar Line Search for Multi-View Stereo. Winter Conference on Applications of Computer Vision (WACV), 2023
patch_mono-297.10 2697.97 894.49 18099.21 6183.73 29399.62 3898.25 3195.28 3099.38 698.91 7592.28 2699.94 3599.61 1099.22 7499.78 38
test_fmvsm_n_192097.08 2797.55 1495.67 13797.94 10689.61 16499.93 198.48 2397.08 599.08 1499.13 4488.17 7599.93 3999.11 2399.06 7997.47 206
CANet97.00 2896.49 3798.55 1298.86 8196.10 1699.83 1097.52 13195.90 1997.21 7098.90 7682.66 18299.93 3998.71 2998.80 9599.63 67
TSAR-MVS + GP.96.95 2996.91 2697.07 6298.88 8091.62 10799.58 4196.54 21995.09 3296.84 7998.63 10191.16 2999.77 8599.04 2496.42 15099.81 33
APD-MVScopyleft96.95 2996.72 3297.63 4199.51 4193.58 7099.16 9597.44 14790.08 14298.59 3299.07 5189.06 6399.42 12397.92 5399.66 4099.88 26
Yuesong Wang, Zhaojie Zeng and etc.: Adaptive Patch Deformation for Textureless-Resilient Multi-View Stereo. CVPR2023
PS-MVSNAJ96.87 3196.40 4098.29 1997.35 13097.29 599.03 11797.11 17995.83 2098.97 1999.14 4282.48 18599.60 10398.60 3399.08 7798.00 192
balanced_conf0396.83 3296.51 3697.81 3697.60 11895.15 3498.40 19096.77 20393.00 7298.69 2896.19 21089.75 5698.76 16198.45 3999.72 3399.51 79
EPNet96.82 3396.68 3497.25 5898.65 8793.10 8099.48 5398.76 1496.54 1397.84 5698.22 12487.49 8799.66 9495.35 10997.78 12499.00 125
Wanjuan Su, Wenbing Tao: Efficient Edge-Preserving Multi-View Stereo Network for Depth Estimation. AAAI 2023
CHOSEN 280x42096.80 3496.85 2896.66 9097.85 10994.42 5494.76 33298.36 2892.50 8295.62 11097.52 15097.92 197.38 24498.31 4598.80 9598.20 186
test_fmvsmconf_n96.78 3596.84 2996.61 9195.99 19590.25 14099.90 398.13 4296.68 1198.42 3698.92 7485.34 14099.88 5499.12 2299.08 7799.70 52
MVS_111021_HR96.69 3696.69 3396.72 8698.58 8991.00 12599.14 10399.45 193.86 5495.15 11898.73 8988.48 7099.76 8697.23 6999.56 5399.40 91
xiu_mvs_v2_base96.66 3796.17 4998.11 2897.11 14896.96 699.01 12097.04 18695.51 2798.86 2399.11 5082.19 19399.36 13098.59 3598.14 11798.00 192
PHI-MVS96.65 3896.46 3997.21 5999.34 5091.77 10499.70 2798.05 4686.48 24798.05 4999.20 2989.33 6199.96 2898.38 4099.62 4799.90 22
ACMMP_NAP96.59 3996.18 4697.81 3698.82 8293.55 7198.88 13297.59 11690.66 12197.98 5399.14 4286.59 112100.00 196.47 8799.46 5899.89 25
CDPH-MVS96.56 4096.18 4697.70 3999.59 2893.92 6599.13 10697.44 14789.02 17197.90 5599.22 2788.90 6699.49 11294.63 12799.79 2799.68 57
DeepPCF-MVS93.56 196.55 4197.84 1092.68 23098.71 8678.11 35199.70 2797.71 8598.18 197.36 6699.76 190.37 4799.94 3599.27 1699.54 5599.99 1
XVS96.47 4296.37 4196.77 8099.62 2290.66 13499.43 6597.58 11892.41 8696.86 7798.96 6787.37 9099.87 5895.65 10099.43 6299.78 38
HFP-MVS96.42 4396.26 4396.90 7499.69 890.96 12699.47 5597.81 6890.54 12896.88 7699.05 5487.57 8599.96 2895.65 10099.72 3399.78 38
PAPR96.35 4495.82 5997.94 3399.63 1894.19 6199.42 6797.55 12392.43 8393.82 14499.12 4687.30 9599.91 4694.02 13499.06 7999.74 47
PAPM96.35 4495.94 5597.58 4394.10 26495.25 2698.93 12798.17 3694.26 4293.94 14098.72 9189.68 5797.88 20896.36 8899.29 7199.62 69
lupinMVS96.32 4695.94 5597.44 4895.05 23794.87 3999.86 596.50 22193.82 5798.04 5098.77 8585.52 13298.09 19596.98 7498.97 8599.37 94
region2R96.30 4796.17 4996.70 8799.70 790.31 13999.46 5997.66 9590.55 12797.07 7499.07 5186.85 10499.97 2195.43 10799.74 2999.81 33
ACMMPR96.28 4896.14 5396.73 8499.68 990.47 13799.47 5597.80 7090.54 12896.83 8199.03 5686.51 11699.95 3295.65 10099.72 3399.75 46
CP-MVS96.22 4996.15 5296.42 10399.67 1089.62 16399.70 2797.61 11090.07 14396.00 9699.16 3687.43 8899.92 4196.03 9599.72 3399.70 52
fmvsm_s_conf0.5_n96.19 5096.49 3795.30 15197.37 12989.16 16999.86 598.47 2495.68 2398.87 2299.15 3982.44 18999.92 4199.14 2197.43 13396.83 226
bld_raw_conf0396.19 5095.77 6497.46 4797.26 13794.35 5798.26 20496.75 20492.13 9397.84 5696.18 21185.75 13098.53 17298.04 5199.73 3199.49 82
SR-MVS96.13 5296.16 5196.07 12099.42 4789.04 17398.59 16797.33 15890.44 13196.84 7999.12 4686.75 10699.41 12697.47 6299.44 6199.76 45
ZNCC-MVS96.09 5395.81 6196.95 7399.42 4791.19 11599.55 4497.53 12789.72 15095.86 10298.94 7386.59 11299.97 2195.13 11499.56 5399.68 57
MTAPA96.09 5395.80 6296.96 7299.29 5591.19 11597.23 26897.45 14492.58 8094.39 13299.24 2586.43 11899.99 596.22 8999.40 6599.71 51
ETV-MVS96.00 5596.00 5496.00 12496.56 16591.05 12399.63 3796.61 21193.26 6897.39 6598.30 12186.62 11198.13 19298.07 5097.57 12798.82 146
MP-MVScopyleft96.00 5595.82 5996.54 9799.47 4690.13 14799.36 7597.41 15190.64 12495.49 11298.95 7085.51 13499.98 996.00 9699.59 5299.52 77
Rongxuan Tan, Qing Wang, et al.: MP-MVS: Multi-Scale Windows PatchMatch and Planar Prior Multi-View Stereo.
CS-MVS-test95.98 5796.34 4294.90 16598.06 10387.66 20899.69 3496.10 24893.66 6098.35 4099.05 5486.28 12097.66 22696.96 7598.90 9199.37 94
fmvsm_s_conf0.5_n_a95.97 5896.19 4495.31 15096.51 16989.01 17599.81 1298.39 2695.46 2899.19 1399.16 3681.44 20499.91 4698.83 2896.97 14297.01 222
GST-MVS95.97 5895.66 6896.90 7499.49 4591.22 11399.45 6197.48 13989.69 15195.89 9998.72 9186.37 11999.95 3294.62 12899.22 7499.52 77
WTY-MVS95.97 5895.11 8298.54 1397.62 11596.65 999.44 6298.74 1592.25 8995.21 11698.46 11686.56 11499.46 11895.00 11992.69 19399.50 81
test_fmvsmconf0.1_n95.94 6195.79 6396.40 10592.42 30189.92 15699.79 1796.85 19896.53 1597.22 6998.67 9782.71 18199.84 6998.92 2798.98 8499.43 90
PVSNet_Blended95.94 6195.66 6896.75 8298.77 8491.61 10899.88 498.04 4893.64 6294.21 13497.76 13783.50 16099.87 5897.41 6397.75 12598.79 149
mPP-MVS95.90 6395.75 6596.38 10699.58 3089.41 16799.26 8497.41 15190.66 12194.82 12298.95 7086.15 12499.98 995.24 11399.64 4399.74 47
PGM-MVS95.85 6495.65 7096.45 10199.50 4289.77 16098.22 20898.90 1389.19 16696.74 8498.95 7085.91 12899.92 4193.94 13599.46 5899.66 61
DP-MVS Recon95.85 6495.15 7997.95 3299.87 294.38 5599.60 3997.48 13986.58 24294.42 13099.13 4487.36 9399.98 993.64 14298.33 11399.48 84
MP-MVS-pluss95.80 6695.30 7497.29 5598.95 7792.66 9198.59 16797.14 17588.95 17493.12 15399.25 2385.62 13199.94 3596.56 8599.48 5799.28 103
MP-MVS-pluss: MP-MVS-pluss. MP-MVS-pluss
MVS_111021_LR95.78 6795.94 5595.28 15298.19 9987.69 20598.80 13999.26 793.39 6595.04 12098.69 9684.09 15499.76 8696.96 7599.06 7998.38 172
alignmvs95.77 6895.00 8598.06 2997.35 13095.68 2099.71 2697.50 13691.50 10496.16 9598.61 10386.28 12099.00 15196.19 9091.74 21299.51 79
EI-MVSNet-Vis-set95.76 6995.63 7296.17 11699.14 6490.33 13898.49 17897.82 6591.92 9594.75 12498.88 8087.06 10099.48 11695.40 10897.17 14098.70 156
SR-MVS-dyc-post95.75 7095.86 5895.41 14599.22 5987.26 22498.40 19097.21 16789.63 15396.67 8798.97 6286.73 10899.36 13096.62 8199.31 6999.60 70
CS-MVS95.75 7096.19 4494.40 18497.88 10886.22 24499.66 3596.12 24792.69 7998.07 4898.89 7887.09 9897.59 23296.71 7898.62 10399.39 93
MVSMamba_PlusPlus95.73 7295.15 7997.44 4897.28 13594.35 5798.26 20496.75 20483.09 30197.84 5695.97 21989.59 5898.48 17697.86 5599.73 3199.49 82
dcpmvs_295.67 7396.18 4694.12 19698.82 8284.22 28697.37 26195.45 30290.70 12095.77 10598.63 10190.47 4398.68 16799.20 2099.22 7499.45 87
APD-MVS_3200maxsize95.64 7495.65 7095.62 13999.24 5887.80 20498.42 18597.22 16688.93 17696.64 8998.98 6185.49 13599.36 13096.68 8099.27 7299.70 52
fmvsm_s_conf0.1_n95.56 7595.68 6795.20 15494.35 25689.10 17199.50 5197.67 9494.76 3498.68 2999.03 5681.13 20799.86 6398.63 3297.36 13596.63 229
test_fmvsmvis_n_192095.47 7695.40 7395.70 13594.33 25790.22 14399.70 2796.98 19396.80 792.75 15798.89 7882.46 18899.92 4198.36 4198.33 11396.97 223
EI-MVSNet-UG-set95.43 7795.29 7595.86 13099.07 7089.87 15798.43 18497.80 7091.78 9794.11 13698.77 8586.25 12299.48 11694.95 12196.45 14998.22 184
PAPM_NR95.43 7795.05 8496.57 9699.42 4790.14 14598.58 16997.51 13390.65 12392.44 16198.90 7687.77 8499.90 5090.88 17499.32 6899.68 57
HPM-MVScopyleft95.41 7995.22 7795.99 12599.29 5589.14 17099.17 9497.09 18387.28 22795.40 11398.48 11384.93 14499.38 12895.64 10499.65 4199.47 86
Chunlin Ren, Qingshan Xu, Shikun Zhang, Jiaqi Yang: Hierarchical Prior Mining for Non-local Multi-View Stereo. ICCV 2023
jason95.40 8094.86 8797.03 6492.91 29694.23 5999.70 2796.30 23293.56 6496.73 8598.52 10681.46 20397.91 20596.08 9498.47 11098.96 129
jason: jason.
testing1195.33 8194.98 8696.37 10797.20 13992.31 9799.29 8097.68 9090.59 12594.43 12997.20 16690.79 4098.60 17095.25 11292.38 19898.18 187
HY-MVS88.56 795.29 8294.23 9798.48 1497.72 11196.41 1394.03 34098.74 1592.42 8595.65 10994.76 24186.52 11599.49 11295.29 11192.97 18999.53 76
test_yl95.27 8394.60 9097.28 5698.53 9092.98 8499.05 11598.70 1886.76 23994.65 12797.74 13987.78 8299.44 11995.57 10592.61 19499.44 88
DCV-MVSNet95.27 8394.60 9097.28 5698.53 9092.98 8499.05 11598.70 1886.76 23994.65 12797.74 13987.78 8299.44 11995.57 10592.61 19499.44 88
fmvsm_s_conf0.1_n_a95.16 8595.15 7995.18 15592.06 30788.94 17999.29 8097.53 12794.46 3898.98 1898.99 6079.99 21399.85 6798.24 4896.86 14496.73 227
EIA-MVS95.11 8695.27 7694.64 17796.34 17886.51 23399.59 4096.62 21092.51 8194.08 13798.64 9986.05 12598.24 18895.07 11698.50 10799.18 111
EC-MVSNet95.09 8795.17 7894.84 16895.42 21488.17 19699.48 5395.92 26891.47 10597.34 6798.36 11882.77 17797.41 24397.24 6898.58 10498.94 134
VNet95.08 8894.26 9697.55 4698.07 10293.88 6698.68 15298.73 1790.33 13497.16 7397.43 15579.19 22399.53 10996.91 7791.85 21099.24 106
sasdasda95.02 8993.96 11098.20 2197.53 12295.92 1798.71 14796.19 24191.78 9795.86 10298.49 11079.53 21899.03 14996.12 9191.42 22499.66 61
canonicalmvs95.02 8993.96 11098.20 2197.53 12295.92 1798.71 14796.19 24191.78 9795.86 10298.49 11079.53 21899.03 14996.12 9191.42 22499.66 61
MGCFI-Net94.89 9193.84 11898.06 2997.49 12595.55 2198.64 15896.10 24891.60 10295.75 10698.46 11679.31 22298.98 15395.95 9791.24 22899.65 64
HPM-MVS_fast94.89 9194.62 8995.70 13599.11 6688.44 19499.14 10397.11 17985.82 25595.69 10898.47 11483.46 16299.32 13593.16 15299.63 4699.35 96
testing9194.88 9394.44 9396.21 11297.19 14191.90 10399.23 8697.66 9589.91 14693.66 14697.05 17790.21 5098.50 17393.52 14491.53 22198.25 180
testing9994.88 9394.45 9296.17 11697.20 13991.91 10299.20 8897.66 9589.95 14593.68 14597.06 17590.28 4998.50 17393.52 14491.54 21898.12 189
CSCG94.87 9594.71 8895.36 14699.54 3686.49 23499.34 7798.15 4082.71 31190.15 19999.25 2389.48 6099.86 6394.97 12098.82 9499.72 50
sss94.85 9693.94 11297.58 4396.43 17294.09 6398.93 12799.16 889.50 16095.27 11597.85 13181.50 20199.65 9892.79 15894.02 18098.99 126
test250694.80 9794.21 9896.58 9496.41 17492.18 10098.01 22898.96 1190.82 11893.46 14997.28 15985.92 12698.45 17889.82 18797.19 13899.12 117
API-MVS94.78 9894.18 10196.59 9399.21 6190.06 15298.80 13997.78 7383.59 29393.85 14299.21 2883.79 15799.97 2192.37 16199.00 8399.74 47
thisisatest051594.75 9994.19 9996.43 10296.13 19392.64 9499.47 5597.60 11287.55 22393.17 15297.59 14794.71 1198.42 17988.28 20593.20 18698.24 183
xiu_mvs_v1_base_debu94.73 10093.98 10796.99 6795.19 22395.24 2798.62 16196.50 22192.99 7397.52 6198.83 8272.37 26999.15 14197.03 7196.74 14596.58 232
xiu_mvs_v1_base94.73 10093.98 10796.99 6795.19 22395.24 2798.62 16196.50 22192.99 7397.52 6198.83 8272.37 26999.15 14197.03 7196.74 14596.58 232
xiu_mvs_v1_base_debi94.73 10093.98 10796.99 6795.19 22395.24 2798.62 16196.50 22192.99 7397.52 6198.83 8272.37 26999.15 14197.03 7196.74 14596.58 232
MVSFormer94.71 10394.08 10496.61 9195.05 23794.87 3997.77 24296.17 24486.84 23698.04 5098.52 10685.52 13295.99 30989.83 18598.97 8598.96 129
PVSNet_Blended_VisFu94.67 10494.11 10296.34 10997.14 14591.10 12099.32 7997.43 14992.10 9491.53 17696.38 20683.29 16699.68 9293.42 14996.37 15198.25 180
ACMMPcopyleft94.67 10494.30 9595.79 13299.25 5788.13 19898.41 18798.67 2190.38 13391.43 17798.72 9182.22 19299.95 3293.83 13995.76 16399.29 102
Qingshan Xu, Weihang Kong, Wenbing Tao, Marc Pollefeys: Multi-Scale Geometric Consistency Guided and Planar Prior Assisted Multi-View Stereo. IEEE Transactions on Pattern Analysis and Machine Intelligence
iter_conf0594.60 10693.87 11796.79 7997.28 13594.04 6495.67 32495.94 26283.09 30190.06 20095.97 21989.59 5898.48 17697.86 5599.34 6697.86 196
CPTT-MVS94.60 10694.43 9495.09 15899.66 1286.85 22999.44 6297.47 14183.22 29894.34 13398.96 6782.50 18399.55 10694.81 12299.50 5698.88 139
diffmvspermissive94.59 10894.19 9995.81 13195.54 21090.69 13298.70 15095.68 28991.61 10095.96 9797.81 13380.11 21298.06 19796.52 8695.76 16398.67 158
Fangjinhua Wang, Qingshan Xu, Yew-Soon Ong, Marc Pollefeys: Lightweight and Accurate Multi-View Stereo With Confidence-Aware Diffusion Model. IEEE T-PAMI 2025
mvsany_test194.57 10995.09 8392.98 22195.84 20082.07 31598.76 14595.24 31592.87 7896.45 9098.71 9484.81 14799.15 14197.68 5995.49 16897.73 198
DeepC-MVS91.02 494.56 11093.92 11396.46 10097.16 14490.76 13098.39 19497.11 17993.92 5088.66 21498.33 11978.14 23299.85 6795.02 11798.57 10598.78 151
Andreas Kuhn, Christian Sormann, Mattia Rossi, Oliver Erdler, Friedrich Fraundorfer: DeepC-MVS: Deep Confidence Prediction for Multi-View Stereo Reconstruction. 3DV 2020
ETVMVS94.50 11193.90 11596.31 11097.48 12692.98 8499.07 11197.86 5988.09 20494.40 13196.90 18488.35 7297.28 24890.72 17992.25 20498.66 161
testing22294.48 11294.00 10695.95 12797.30 13292.27 9898.82 13697.92 5589.20 16594.82 12297.26 16187.13 9797.32 24791.95 16491.56 21698.25 180
MAR-MVS94.43 11394.09 10395.45 14399.10 6887.47 21498.39 19497.79 7288.37 19394.02 13999.17 3578.64 22999.91 4692.48 16098.85 9398.96 129
Zhenyu Xu, Yiguang Liu, Xuelei Shi, Ying Wang, Yunan Zheng: MARMVS: Matching Ambiguity Reduced Multiple View Stereo for Efficient Large Scale Scene Reconstruction. CVPR 2020
CHOSEN 1792x268894.35 11493.82 11995.95 12797.40 12788.74 18798.41 18798.27 3092.18 9191.43 17796.40 20378.88 22499.81 7993.59 14397.81 12199.30 101
CANet_DTU94.31 11593.35 13097.20 6097.03 15394.71 4798.62 16195.54 29795.61 2597.21 7098.47 11471.88 27499.84 6988.38 20497.46 13297.04 220
mvsmamba94.27 11693.91 11495.35 14796.42 17388.61 18997.77 24296.38 22791.17 11394.05 13895.27 23378.41 23097.96 20497.36 6598.40 11199.48 84
PLCcopyleft91.07 394.23 11794.01 10594.87 16699.17 6387.49 21399.25 8596.55 21888.43 19191.26 18198.21 12685.92 12699.86 6389.77 18997.57 12797.24 213
Jie Liao, Yanping Fu, Qingan Yan, Chunxia xiao: Pyramid Multi-View Stereo with Local Consistency. Pacific Graphics 2019
test_fmvsmconf0.01_n94.14 11893.51 12696.04 12186.79 37289.19 16899.28 8395.94 26295.70 2195.50 11198.49 11073.27 26299.79 8298.28 4698.32 11599.15 113
114514_t94.06 11993.05 13897.06 6399.08 6992.26 9998.97 12597.01 19182.58 31392.57 15998.22 12480.68 21099.30 13689.34 19599.02 8299.63 67
baseline294.04 12093.80 12094.74 17293.07 29590.25 14098.12 21898.16 3989.86 14786.53 23596.95 18195.56 598.05 19991.44 16894.53 17595.93 245
thisisatest053094.00 12193.52 12595.43 14495.76 20390.02 15498.99 12297.60 11286.58 24291.74 16897.36 15894.78 1098.34 18186.37 22692.48 19797.94 194
casdiffmvs_mvgpermissive94.00 12193.33 13196.03 12295.22 22190.90 12899.09 10995.99 25590.58 12691.55 17597.37 15779.91 21498.06 19795.01 11895.22 17099.13 116
Fangjinhua Wang, Qingshan Xu, Yew-Soon Ong, Marc Pollefeys: Lightweight and Accurate Multi-View Stereo With Confidence-Aware Diffusion Model. IEEE T-PAMI 2025
casdiffmvspermissive93.98 12393.43 12795.61 14095.07 23689.86 15898.80 13995.84 28190.98 11592.74 15897.66 14479.71 21598.10 19494.72 12595.37 16998.87 141
Fangjinhua Wang, Qingshan Xu, Yew-Soon Ong, Marc Pollefeys: Lightweight and Accurate Multi-View Stereo With Confidence-Aware Diffusion Model. IEEE T-PAMI 2025
MVS93.92 12492.28 15398.83 795.69 20596.82 896.22 30598.17 3684.89 27384.34 25298.61 10379.32 22199.83 7393.88 13799.43 6299.86 29
baseline93.91 12593.30 13295.72 13495.10 23490.07 14997.48 25795.91 27391.03 11493.54 14897.68 14279.58 21698.02 20194.27 13295.14 17199.08 121
OMC-MVS93.90 12693.62 12394.73 17398.63 8887.00 22798.04 22796.56 21792.19 9092.46 16098.73 8979.49 22099.14 14592.16 16394.34 17898.03 191
Effi-MVS+93.87 12793.15 13696.02 12395.79 20190.76 13096.70 29095.78 28286.98 23395.71 10797.17 17079.58 21698.01 20294.57 12996.09 15899.31 100
test_cas_vis1_n_192093.86 12893.74 12194.22 19295.39 21786.08 25099.73 2396.07 25296.38 1797.19 7297.78 13665.46 32499.86 6396.71 7898.92 8996.73 227
TESTMET0.1,193.82 12993.26 13495.49 14295.21 22290.25 14099.15 10097.54 12689.18 16791.79 16794.87 23989.13 6297.63 22986.21 22896.29 15598.60 162
AdaColmapbinary93.82 12993.06 13796.10 11999.88 189.07 17298.33 19897.55 12386.81 23890.39 19698.65 9875.09 24499.98 993.32 15097.53 13099.26 105
EPP-MVSNet93.75 13193.67 12294.01 20295.86 19985.70 26298.67 15497.66 9584.46 27891.36 18097.18 16991.16 2997.79 21492.93 15593.75 18298.53 164
thres20093.69 13292.59 14996.97 7197.76 11094.74 4699.35 7699.36 289.23 16491.21 18396.97 18083.42 16398.77 15985.08 24090.96 22997.39 208
PVSNet87.13 1293.69 13292.83 14496.28 11197.99 10590.22 14399.38 7198.93 1291.42 10893.66 14697.68 14271.29 28199.64 10087.94 21097.20 13798.98 127
HyFIR lowres test93.68 13493.29 13394.87 16697.57 12188.04 20098.18 21298.47 2487.57 22291.24 18295.05 23785.49 13597.46 23993.22 15192.82 19099.10 119
MVS_Test93.67 13592.67 14796.69 8896.72 16292.66 9197.22 26996.03 25487.69 22095.12 11994.03 24981.55 19998.28 18589.17 19996.46 14899.14 114
CNLPA93.64 13692.74 14596.36 10898.96 7690.01 15599.19 8995.89 27686.22 25089.40 20998.85 8180.66 21199.84 6988.57 20296.92 14399.24 106
PMMVS93.62 13793.90 11592.79 22596.79 16081.40 32198.85 13396.81 19991.25 11196.82 8298.15 12877.02 23898.13 19293.15 15396.30 15498.83 145
CDS-MVSNet93.47 13893.04 13994.76 17094.75 24889.45 16698.82 13697.03 18887.91 21190.97 18496.48 20189.06 6396.36 28889.50 19192.81 19298.49 166
Khang Truong Giang, Soohwan Song, Sungho Jo: Curvature-guided dynamic scale networks for Multi-view Stereo. ICLR 2022
131493.44 13991.98 16197.84 3495.24 21994.38 5596.22 30597.92 5590.18 13782.28 27997.71 14177.63 23599.80 8191.94 16598.67 10199.34 98
tfpn200view993.43 14092.27 15496.90 7497.68 11394.84 4199.18 9199.36 288.45 18890.79 18696.90 18483.31 16498.75 16284.11 25690.69 23197.12 215
3Dnovator+87.72 893.43 14091.84 16498.17 2395.73 20495.08 3598.92 12997.04 18691.42 10881.48 29697.60 14674.60 24799.79 8290.84 17598.97 8599.64 65
thres40093.39 14292.27 15496.73 8497.68 11394.84 4199.18 9199.36 288.45 18890.79 18696.90 18483.31 16498.75 16284.11 25690.69 23196.61 230
PVSNet_BlendedMVS93.36 14393.20 13593.84 20798.77 8491.61 10899.47 5598.04 4891.44 10694.21 13492.63 28383.50 16099.87 5897.41 6383.37 27990.05 342
thres100view90093.34 14492.15 15796.90 7497.62 11594.84 4199.06 11499.36 287.96 20990.47 19496.78 19283.29 16698.75 16284.11 25690.69 23197.12 215
tttt051793.30 14593.01 14094.17 19495.57 20886.47 23598.51 17597.60 11285.99 25390.55 19197.19 16894.80 998.31 18285.06 24191.86 20997.74 197
UA-Net93.30 14592.62 14895.34 14896.27 18188.53 19395.88 31596.97 19490.90 11695.37 11497.07 17482.38 19099.10 14783.91 26094.86 17498.38 172
test-mter93.27 14792.89 14394.40 18494.94 24287.27 22299.15 10097.25 16188.95 17491.57 17294.04 24788.03 8097.58 23385.94 23296.13 15698.36 176
Vis-MVSNet (Re-imp)93.26 14893.00 14194.06 19996.14 19086.71 23298.68 15296.70 20688.30 19789.71 20897.64 14585.43 13896.39 28688.06 20996.32 15299.08 121
UWE-MVS93.18 14993.40 12992.50 23396.56 16583.55 29598.09 22497.84 6189.50 16091.72 16996.23 20991.08 3296.70 26986.28 22793.33 18597.26 212
thres600view793.18 14992.00 16096.75 8297.62 11594.92 3699.07 11199.36 287.96 20990.47 19496.78 19283.29 16698.71 16682.93 27090.47 23596.61 230
3Dnovator87.35 1193.17 15191.77 16697.37 5495.41 21593.07 8198.82 13697.85 6091.53 10382.56 27297.58 14871.97 27399.82 7691.01 17299.23 7399.22 109
test-LLR93.11 15292.68 14694.40 18494.94 24287.27 22299.15 10097.25 16190.21 13591.57 17294.04 24784.89 14597.58 23385.94 23296.13 15698.36 176
test_vis1_n_192093.08 15393.42 12892.04 24396.31 17979.36 33899.83 1096.06 25396.72 998.53 3498.10 12958.57 34999.91 4697.86 5598.79 9896.85 225
IS-MVSNet93.00 15492.51 15094.49 18096.14 19087.36 21898.31 20195.70 28788.58 18490.17 19897.50 15183.02 17397.22 24987.06 21596.07 16098.90 138
CostFormer92.89 15592.48 15194.12 19694.99 23985.89 25792.89 35097.00 19286.98 23395.00 12190.78 31490.05 5397.51 23792.92 15691.73 21398.96 129
tpmrst92.78 15692.16 15694.65 17596.27 18187.45 21591.83 36097.10 18289.10 17094.68 12690.69 31888.22 7497.73 22489.78 18891.80 21198.77 152
MVSTER92.71 15792.32 15293.86 20697.29 13392.95 8799.01 12096.59 21390.09 14185.51 24294.00 25194.61 1496.56 27590.77 17883.03 28192.08 282
1112_ss92.71 15791.55 17096.20 11395.56 20991.12 11898.48 18094.69 33388.29 19886.89 23298.50 10887.02 10198.66 16884.75 24589.77 23998.81 147
Vis-MVSNetpermissive92.64 15991.85 16395.03 16295.12 23088.23 19598.48 18096.81 19991.61 10092.16 16597.22 16571.58 27998.00 20385.85 23597.81 12198.88 139
Jingyang Zhang, Yao Yao, Shiwei Li, Zixin Luo, Tian Fang: Visibility-aware Multiview Stereo Network. BMVC 2020
TAMVS92.62 16092.09 15994.20 19394.10 26487.68 20698.41 18796.97 19487.53 22489.74 20696.04 21784.77 14996.49 28188.97 20192.31 20198.42 168
baseline192.61 16191.28 17596.58 9497.05 15294.63 4997.72 24796.20 23989.82 14888.56 21596.85 18886.85 10497.82 21288.42 20380.10 29697.30 210
EPMVS92.59 16291.59 16995.59 14197.22 13890.03 15391.78 36198.04 4890.42 13291.66 17190.65 32186.49 11797.46 23981.78 28196.31 15399.28 103
ET-MVSNet_ETH3D92.56 16391.45 17295.88 12996.39 17694.13 6299.46 5996.97 19492.18 9166.94 38198.29 12294.65 1394.28 35294.34 13183.82 27599.24 106
mvs_anonymous92.50 16491.65 16895.06 15996.60 16489.64 16297.06 27496.44 22586.64 24184.14 25393.93 25482.49 18496.17 30391.47 16796.08 15999.35 96
h-mvs3392.47 16591.95 16294.05 20097.13 14685.01 27698.36 19698.08 4493.85 5596.27 9396.73 19483.19 16999.43 12295.81 9868.09 36697.70 199
test_fmvs192.35 16692.94 14290.57 27597.19 14175.43 36099.55 4494.97 32295.20 3196.82 8297.57 14959.59 34799.84 6997.30 6698.29 11696.46 237
BH-w/o92.32 16791.79 16593.91 20596.85 15586.18 24699.11 10895.74 28588.13 20284.81 24697.00 17977.26 23797.91 20589.16 20098.03 11897.64 200
ECVR-MVScopyleft92.29 16891.33 17495.15 15696.41 17487.84 20398.10 22194.84 32690.82 11891.42 17997.28 15965.61 32198.49 17590.33 18197.19 13899.12 117
EPNet_dtu92.28 16992.15 15792.70 22997.29 13384.84 27898.64 15897.82 6592.91 7693.02 15597.02 17885.48 13795.70 32372.25 34794.89 17397.55 205
Wanjuan Su, Wenbing Tao: Efficient Edge-Preserving Multi-View Stereo Network for Depth Estimation. AAAI 2023
Test_1112_low_res92.27 17090.97 18196.18 11495.53 21191.10 12098.47 18294.66 33488.28 19986.83 23393.50 26787.00 10298.65 16984.69 24689.74 24098.80 148
LFMVS92.23 17190.84 18596.42 10398.24 9691.08 12298.24 20796.22 23883.39 29694.74 12598.31 12061.12 34298.85 15694.45 13092.82 19099.32 99
FA-MVS(test-final)92.22 17291.08 17995.64 13896.05 19488.98 17691.60 36497.25 16186.99 23091.84 16692.12 28683.03 17299.00 15186.91 22093.91 18198.93 135
test111192.12 17391.19 17794.94 16496.15 18887.36 21898.12 21894.84 32690.85 11790.97 18497.26 16165.60 32298.37 18089.74 19097.14 14199.07 123
IB-MVS89.43 692.12 17390.83 18795.98 12695.40 21690.78 12999.81 1298.06 4591.23 11285.63 24193.66 26290.63 4198.78 15891.22 16971.85 35598.36 176
Christian Sormann, Mattia Rossi, Andreas Kuhn and Friedrich Fraundorfer: IB-MVS: An Iterative Algorithm for Deep Multi-View Stereo based on Binary Decisions. BMVC 2021
F-COLMAP92.07 17591.75 16793.02 22098.16 10082.89 30598.79 14395.97 25786.54 24487.92 21997.80 13478.69 22899.65 9885.97 23095.93 16296.53 235
PatchmatchNetpermissive92.05 17691.04 18095.06 15996.17 18789.04 17391.26 36997.26 16089.56 15890.64 19090.56 32788.35 7297.11 25279.53 29496.07 16099.03 124
Fangjinhua Wang, Silvano Galliani, Christoph Vogel, Pablo Speciale, Marc Pollefeys: PatchmatchNet: Learned Multi-View Patchmatch Stereo.
UGNet91.91 17790.85 18495.10 15797.06 15188.69 18898.01 22898.24 3392.41 8692.39 16293.61 26360.52 34499.68 9288.14 20797.25 13696.92 224
Wanjuan Su, Qingshan Xu, Wenbing Tao: Uncertainty-guided Multi-view Stereo Network for Depth Estimation. IEEE Transactions on Circuits and Systems for Video Technology, 2022
tpm291.77 17891.09 17893.82 20894.83 24685.56 26592.51 35597.16 17484.00 28493.83 14390.66 32087.54 8697.17 25087.73 21291.55 21798.72 154
Fast-Effi-MVS+91.72 17990.79 18894.49 18095.89 19787.40 21799.54 4995.70 28785.01 27189.28 21195.68 22677.75 23497.57 23683.22 26595.06 17298.51 165
hse-mvs291.67 18091.51 17192.15 24096.22 18382.61 31197.74 24697.53 12793.85 5596.27 9396.15 21283.19 16997.44 24195.81 9866.86 37396.40 239
HQP-MVS91.50 18191.23 17692.29 23593.95 26986.39 23899.16 9596.37 22893.92 5087.57 22296.67 19773.34 25997.77 21693.82 14086.29 25292.72 263
PatchMatch-RL91.47 18290.54 19294.26 19098.20 9786.36 24096.94 27897.14 17587.75 21688.98 21295.75 22471.80 27699.40 12780.92 28697.39 13497.02 221
BH-untuned91.46 18390.84 18593.33 21596.51 16984.83 27998.84 13595.50 29986.44 24983.50 25796.70 19575.49 24397.77 21686.78 22397.81 12197.40 207
mamv491.41 18493.57 12484.91 34897.11 14858.11 39595.68 32395.93 26682.09 32389.78 20595.71 22590.09 5298.24 18897.26 6798.50 10798.38 172
QAPM91.41 18489.49 20597.17 6195.66 20793.42 7598.60 16597.51 13380.92 33781.39 29797.41 15672.89 26699.87 5882.33 27598.68 10098.21 185
FE-MVS91.38 18690.16 19795.05 16196.46 17187.53 21289.69 37897.84 6182.97 30592.18 16492.00 29284.07 15598.93 15580.71 28895.52 16798.68 157
HQP_MVS91.26 18790.95 18292.16 23993.84 27686.07 25299.02 11896.30 23293.38 6686.99 22996.52 19972.92 26497.75 22293.46 14786.17 25592.67 265
PCF-MVS89.78 591.26 18789.63 20296.16 11895.44 21391.58 11095.29 32796.10 24885.07 26882.75 26697.45 15478.28 23199.78 8480.60 29095.65 16697.12 215
Andreas Kuhn, Shan Lin, Oliver Erdler: Plane Completion and Filtering for Multi-View Stereo Reconstruction. GCPR 2019
BH-RMVSNet91.25 18989.99 19895.03 16296.75 16188.55 19198.65 15694.95 32387.74 21787.74 22197.80 13468.27 29898.14 19180.53 29197.49 13198.41 169
VDD-MVS91.24 19090.18 19694.45 18397.08 15085.84 26098.40 19096.10 24886.99 23093.36 15098.16 12754.27 36699.20 13896.59 8490.63 23498.31 179
SDMVSNet91.09 19189.91 19994.65 17596.80 15890.54 13697.78 24097.81 6888.34 19585.73 23895.26 23466.44 31698.26 18694.25 13386.75 24995.14 248
test_fmvs1_n91.07 19291.41 17390.06 28994.10 26474.31 36499.18 9194.84 32694.81 3396.37 9297.46 15350.86 37799.82 7697.14 7097.90 11996.04 244
CLD-MVS91.06 19390.71 18992.10 24194.05 26886.10 24999.55 4496.29 23594.16 4584.70 24797.17 17069.62 29097.82 21294.74 12486.08 25792.39 268
Zhaoxin Li, Wangmeng Zuo, Zhaoqi Wang, Lei Zhang: Confidence-based Large-scale Dense Multi-view Stereo. IEEE Transaction on Image Processing, 2020
ab-mvs91.05 19489.17 21196.69 8895.96 19691.72 10692.62 35497.23 16585.61 25989.74 20693.89 25668.55 29599.42 12391.09 17087.84 24498.92 137
XVG-OURS-SEG-HR90.95 19590.66 19191.83 24695.18 22681.14 32895.92 31295.92 26888.40 19290.33 19797.85 13170.66 28499.38 12892.83 15788.83 24194.98 251
cascas90.93 19689.33 20995.76 13395.69 20593.03 8398.99 12296.59 21380.49 33986.79 23494.45 24465.23 32598.60 17093.52 14492.18 20595.66 247
XVG-OURS90.83 19790.49 19391.86 24595.23 22081.25 32595.79 32095.92 26888.96 17390.02 20298.03 13071.60 27899.35 13391.06 17187.78 24594.98 251
TR-MVS90.77 19889.44 20694.76 17096.31 17988.02 20197.92 23295.96 25985.52 26088.22 21897.23 16466.80 31298.09 19584.58 24892.38 19898.17 188
OpenMVScopyleft85.28 1490.75 19988.84 21896.48 9993.58 28393.51 7398.80 13997.41 15182.59 31278.62 32597.49 15268.00 30299.82 7684.52 25098.55 10696.11 243
FIs90.70 20089.87 20093.18 21792.29 30291.12 11898.17 21498.25 3189.11 16983.44 25894.82 24082.26 19196.17 30387.76 21182.76 28392.25 273
X-MVStestdata90.69 20188.66 22396.77 8099.62 2290.66 13499.43 6597.58 11892.41 8696.86 7729.59 41287.37 9099.87 5895.65 10099.43 6299.78 38
SCA90.64 20289.25 21094.83 16994.95 24188.83 18396.26 30297.21 16790.06 14490.03 20190.62 32366.61 31396.81 26583.16 26694.36 17798.84 142
GeoE90.60 20389.56 20393.72 21195.10 23485.43 26699.41 6894.94 32483.96 28687.21 22896.83 19174.37 25197.05 25680.50 29293.73 18398.67 158
test_vis1_n90.40 20490.27 19590.79 27091.55 31776.48 35699.12 10794.44 33894.31 4197.34 6796.95 18143.60 38899.42 12397.57 6197.60 12696.47 236
TAPA-MVS87.50 990.35 20589.05 21494.25 19198.48 9285.17 27398.42 18596.58 21682.44 31887.24 22798.53 10582.77 17798.84 15759.09 38697.88 12098.72 154
Andrea Romanoni, Matteo Matteucci: TAPA-MVS: Textureless-Aware PAtchMatch Multi-View Stereo. ICCV 2019
miper_enhance_ethall90.33 20689.70 20192.22 23697.12 14788.93 18198.35 19795.96 25988.60 18383.14 26492.33 28587.38 8996.18 30286.49 22577.89 30591.55 297
CVMVSNet90.30 20790.91 18388.46 32294.32 25873.58 36897.61 25497.59 11690.16 14088.43 21797.10 17276.83 23992.86 36282.64 27293.54 18498.93 135
nrg03090.23 20888.87 21794.32 18891.53 31893.54 7298.79 14395.89 27688.12 20384.55 24994.61 24378.80 22796.88 26292.35 16275.21 32092.53 267
FC-MVSNet-test90.22 20989.40 20792.67 23191.78 31489.86 15897.89 23398.22 3488.81 17982.96 26594.66 24281.90 19795.96 31185.89 23482.52 28692.20 278
LS3D90.19 21088.72 22194.59 17998.97 7386.33 24196.90 28096.60 21274.96 36584.06 25598.74 8875.78 24199.83 7374.93 32797.57 12797.62 203
AUN-MVS90.17 21189.50 20492.19 23896.21 18482.67 30997.76 24597.53 12788.05 20591.67 17096.15 21283.10 17197.47 23888.11 20866.91 37296.43 238
dp90.16 21288.83 21994.14 19596.38 17786.42 23691.57 36597.06 18584.76 27588.81 21390.19 33984.29 15297.43 24275.05 32691.35 22798.56 163
GA-MVS90.10 21388.69 22294.33 18792.44 30087.97 20299.08 11096.26 23689.65 15286.92 23193.11 27568.09 30096.96 25882.54 27490.15 23698.05 190
VDDNet90.08 21488.54 22894.69 17494.41 25587.68 20698.21 21096.40 22676.21 35993.33 15197.75 13854.93 36498.77 15994.71 12690.96 22997.61 204
gg-mvs-nofinetune90.00 21587.71 24096.89 7896.15 18894.69 4885.15 38797.74 7768.32 38792.97 15660.16 40096.10 396.84 26393.89 13698.87 9299.14 114
Effi-MVS+-dtu89.97 21690.68 19087.81 32695.15 22771.98 37597.87 23695.40 30691.92 9587.57 22291.44 30274.27 25396.84 26389.45 19293.10 18894.60 253
EI-MVSNet89.87 21789.38 20891.36 25794.32 25885.87 25897.61 25496.59 21385.10 26685.51 24297.10 17281.30 20696.56 27583.85 26283.03 28191.64 289
OPM-MVS89.76 21889.15 21291.57 25490.53 33085.58 26498.11 22095.93 26692.88 7786.05 23696.47 20267.06 31197.87 20989.29 19886.08 25791.26 310
Ray L. Khuboni, Hongjun Xu: Octagram Propagation Matching for Multi-Scale View Stereopsis (OPM-MVS).
tpm89.67 21988.95 21691.82 24792.54 29981.43 32092.95 34995.92 26887.81 21390.50 19389.44 34684.99 14395.65 32483.67 26382.71 28498.38 172
UniMVSNet_NR-MVSNet89.60 22088.55 22792.75 22792.17 30590.07 14998.74 14698.15 4088.37 19383.21 26093.98 25282.86 17595.93 31386.95 21872.47 34992.25 273
cl2289.57 22188.79 22091.91 24497.94 10687.62 20997.98 23096.51 22085.03 26982.37 27891.79 29583.65 15896.50 27985.96 23177.89 30591.61 294
PS-MVSNAJss89.54 22289.05 21491.00 26388.77 35284.36 28497.39 25895.97 25788.47 18581.88 28993.80 25882.48 18596.50 27989.34 19583.34 28092.15 279
UniMVSNet (Re)89.50 22388.32 23193.03 21992.21 30490.96 12698.90 13198.39 2689.13 16883.22 25992.03 28881.69 19896.34 29486.79 22272.53 34891.81 287
sd_testset89.23 22488.05 23792.74 22896.80 15885.33 26995.85 31897.03 18888.34 19585.73 23895.26 23461.12 34297.76 22185.61 23686.75 24995.14 248
tpmvs89.16 22587.76 23893.35 21497.19 14184.75 28090.58 37697.36 15681.99 32484.56 24889.31 34983.98 15698.17 19074.85 32990.00 23897.12 215
VPA-MVSNet89.10 22687.66 24193.45 21392.56 29891.02 12497.97 23198.32 2986.92 23586.03 23792.01 29068.84 29497.10 25490.92 17375.34 31992.23 275
ADS-MVSNet88.99 22787.30 24694.07 19896.21 18487.56 21187.15 38296.78 20283.01 30389.91 20387.27 36278.87 22597.01 25774.20 33492.27 20297.64 200
test0.0.03 188.96 22888.61 22490.03 29391.09 32484.43 28398.97 12597.02 19090.21 13580.29 30696.31 20884.89 14591.93 37672.98 34385.70 26093.73 255
miper_ehance_all_eth88.94 22988.12 23591.40 25595.32 21886.93 22897.85 23795.55 29684.19 28181.97 28791.50 30184.16 15395.91 31684.69 24677.89 30591.36 305
tpm cat188.89 23087.27 24793.76 20995.79 20185.32 27090.76 37497.09 18376.14 36085.72 24088.59 35282.92 17498.04 20076.96 31391.43 22397.90 195
LPG-MVS_test88.86 23188.47 22990.06 28993.35 29080.95 33098.22 20895.94 26287.73 21883.17 26296.11 21466.28 31797.77 21690.19 18385.19 26291.46 300
Anonymous20240521188.84 23287.03 25194.27 18998.14 10184.18 28798.44 18395.58 29576.79 35889.34 21096.88 18753.42 36999.54 10887.53 21487.12 24899.09 120
Fast-Effi-MVS+-dtu88.84 23288.59 22689.58 30493.44 28878.18 34998.65 15694.62 33588.46 18784.12 25495.37 23268.91 29296.52 27882.06 27891.70 21494.06 254
DU-MVS88.83 23487.51 24292.79 22591.46 31990.07 14998.71 14797.62 10988.87 17883.21 26093.68 26074.63 24595.93 31386.95 21872.47 34992.36 269
CR-MVSNet88.83 23487.38 24593.16 21893.47 28586.24 24284.97 38994.20 34688.92 17790.76 18886.88 36684.43 15094.82 34470.64 35192.17 20698.41 169
FMVSNet388.81 23687.08 25093.99 20396.52 16894.59 5098.08 22596.20 23985.85 25482.12 28291.60 29974.05 25595.40 33279.04 29880.24 29391.99 285
ACMM86.95 1388.77 23788.22 23390.43 28093.61 28281.34 32398.50 17695.92 26887.88 21283.85 25695.20 23667.20 30997.89 20786.90 22184.90 26492.06 283
Qingshan Xu and Wenbing Tao: Multi-Scale Geometric Consistency Guided Multi-View Stereo. CVPR 2019
DP-MVS88.75 23886.56 25795.34 14898.92 7887.45 21597.64 25393.52 35770.55 37881.49 29597.25 16374.43 25099.88 5471.14 35094.09 17998.67 158
ACMP87.39 1088.71 23988.24 23290.12 28893.91 27481.06 32998.50 17695.67 29089.43 16280.37 30595.55 22765.67 31997.83 21190.55 18084.51 26691.47 299
Qingshan Xu and Wenbing Tao: Planar Prior Assisted PatchMatch Multi-View Stereo. AAAI 2020
WB-MVSnew88.69 24088.34 23089.77 29994.30 26285.99 25598.14 21597.31 15987.15 22987.85 22096.07 21669.91 28595.52 32772.83 34591.47 22287.80 366
dmvs_re88.69 24088.06 23690.59 27493.83 27878.68 34595.75 32196.18 24387.99 20884.48 25196.32 20767.52 30696.94 26084.98 24385.49 26196.14 242
myMVS_eth3d88.68 24289.07 21387.50 33095.14 22879.74 33697.68 25096.66 20886.52 24582.63 26996.84 18985.22 14289.89 38369.43 35691.54 21892.87 261
LCM-MVSNet-Re88.59 24388.61 22488.51 32195.53 21172.68 37396.85 28288.43 39388.45 18873.14 35790.63 32275.82 24094.38 35192.95 15495.71 16598.48 167
WR-MVS88.54 24487.22 24992.52 23291.93 31289.50 16598.56 17097.84 6186.99 23081.87 29093.81 25774.25 25495.92 31585.29 23874.43 32992.12 280
IterMVS-LS88.34 24587.44 24391.04 26294.10 26485.85 25998.10 22195.48 30085.12 26582.03 28691.21 30781.35 20595.63 32583.86 26175.73 31791.63 290
Fangjinhua Wang, Silvano Galliani, Christoph Vogel, Marc Pollefeys: IterMVS: Iterative Probability Estimation for Efficient Multi-View Stereo.
VPNet88.30 24686.57 25693.49 21291.95 31091.35 11298.18 21297.20 17188.61 18284.52 25094.89 23862.21 33796.76 26889.34 19572.26 35292.36 269
MSDG88.29 24786.37 25994.04 20196.90 15486.15 24896.52 29394.36 34377.89 35479.22 32096.95 18169.72 28899.59 10473.20 34292.58 19696.37 240
test_djsdf88.26 24887.73 23989.84 29688.05 36182.21 31397.77 24296.17 24486.84 23682.41 27791.95 29472.07 27295.99 30989.83 18584.50 26791.32 307
c3_l88.19 24987.23 24891.06 26194.97 24086.17 24797.72 24795.38 30783.43 29581.68 29491.37 30382.81 17695.72 32284.04 25973.70 33791.29 309
D2MVS87.96 25087.39 24489.70 30191.84 31383.40 29798.31 20198.49 2288.04 20678.23 33190.26 33373.57 25796.79 26784.21 25383.53 27788.90 358
cl____87.82 25186.79 25590.89 26794.88 24485.43 26697.81 23895.24 31582.91 31080.71 30291.22 30681.97 19695.84 31881.34 28375.06 32191.40 304
DIV-MVS_self_test87.82 25186.81 25490.87 26894.87 24585.39 26897.81 23895.22 32082.92 30980.76 30191.31 30581.99 19495.81 32081.36 28275.04 32291.42 303
eth_miper_zixun_eth87.76 25387.00 25290.06 28994.67 25082.65 31097.02 27795.37 30884.19 28181.86 29291.58 30081.47 20295.90 31783.24 26473.61 33891.61 294
testing387.75 25488.22 23386.36 33894.66 25177.41 35499.52 5097.95 5486.05 25281.12 29896.69 19686.18 12389.31 38761.65 38190.12 23792.35 272
TranMVSNet+NR-MVSNet87.75 25486.31 26092.07 24290.81 32788.56 19098.33 19897.18 17287.76 21581.87 29093.90 25572.45 26895.43 33083.13 26871.30 35992.23 275
XXY-MVS87.75 25486.02 26492.95 22390.46 33189.70 16197.71 24995.90 27484.02 28380.95 29994.05 24667.51 30797.10 25485.16 23978.41 30292.04 284
NR-MVSNet87.74 25786.00 26592.96 22291.46 31990.68 13396.65 29197.42 15088.02 20773.42 35493.68 26077.31 23695.83 31984.26 25271.82 35692.36 269
Anonymous2024052987.66 25885.58 27193.92 20497.59 11985.01 27698.13 21697.13 17766.69 39288.47 21696.01 21855.09 36399.51 11087.00 21784.12 27197.23 214
ADS-MVSNet287.62 25986.88 25389.86 29596.21 18479.14 34187.15 38292.99 36083.01 30389.91 20387.27 36278.87 22592.80 36574.20 33492.27 20297.64 200
pmmvs487.58 26086.17 26391.80 24889.58 34288.92 18297.25 26695.28 31182.54 31480.49 30493.17 27475.62 24296.05 30882.75 27178.90 30090.42 333
jajsoiax87.35 26186.51 25889.87 29487.75 36681.74 31797.03 27595.98 25688.47 18580.15 30893.80 25861.47 33996.36 28889.44 19384.47 26891.50 298
PVSNet_083.28 1687.31 26285.16 27793.74 21094.78 24784.59 28198.91 13098.69 2089.81 14978.59 32793.23 27261.95 33899.34 13494.75 12355.72 39397.30 210
v2v48287.27 26385.76 26891.78 25289.59 34187.58 21098.56 17095.54 29784.53 27782.51 27391.78 29673.11 26396.47 28282.07 27774.14 33591.30 308
mvs_tets87.09 26486.22 26189.71 30087.87 36281.39 32296.73 28995.90 27488.19 20179.99 31093.61 26359.96 34696.31 29689.40 19484.34 26991.43 302
V4287.00 26585.68 27090.98 26489.91 33586.08 25098.32 20095.61 29383.67 29282.72 26790.67 31974.00 25696.53 27781.94 28074.28 33290.32 335
miper_lstm_enhance86.90 26686.20 26289.00 31694.53 25381.19 32696.74 28895.24 31582.33 31980.15 30890.51 33081.99 19494.68 34880.71 28873.58 33991.12 313
FMVSNet286.90 26684.79 28593.24 21695.11 23192.54 9597.67 25295.86 28082.94 30680.55 30391.17 30862.89 33495.29 33477.23 31079.71 29991.90 286
v114486.83 26885.31 27691.40 25589.75 33987.21 22698.31 20195.45 30283.22 29882.70 26890.78 31473.36 25896.36 28879.49 29574.69 32690.63 330
MS-PatchMatch86.75 26985.92 26689.22 31191.97 30882.47 31296.91 27996.14 24683.74 28977.73 33293.53 26658.19 35197.37 24676.75 31698.35 11287.84 364
anonymousdsp86.69 27085.75 26989.53 30586.46 37482.94 30296.39 29695.71 28683.97 28579.63 31590.70 31768.85 29395.94 31286.01 22984.02 27289.72 348
GBi-Net86.67 27184.96 27991.80 24895.11 23188.81 18496.77 28495.25 31282.94 30682.12 28290.25 33462.89 33494.97 33979.04 29880.24 29391.62 291
test186.67 27184.96 27991.80 24895.11 23188.81 18496.77 28495.25 31282.94 30682.12 28290.25 33462.89 33494.97 33979.04 29880.24 29391.62 291
MVP-Stereo86.61 27385.83 26788.93 31888.70 35483.85 29296.07 30994.41 34282.15 32275.64 34391.96 29367.65 30596.45 28477.20 31298.72 9986.51 376
Qingsong Yan: MVP-Stereo: A Parallel Multi-View Patchmatch Stereo Method with Dilation Matching for Photogrammetric Application.
CP-MVSNet86.54 27485.45 27489.79 29891.02 32682.78 30897.38 26097.56 12285.37 26279.53 31793.03 27671.86 27595.25 33579.92 29373.43 34391.34 306
WR-MVS_H86.53 27585.49 27389.66 30391.04 32583.31 29997.53 25698.20 3584.95 27279.64 31490.90 31278.01 23395.33 33376.29 31972.81 34590.35 334
tt080586.50 27684.79 28591.63 25391.97 30881.49 31996.49 29497.38 15482.24 32082.44 27495.82 22351.22 37498.25 18784.55 24980.96 29295.13 250
v14419286.40 27784.89 28290.91 26589.48 34585.59 26398.21 21095.43 30582.45 31782.62 27190.58 32672.79 26796.36 28878.45 30574.04 33690.79 322
v14886.38 27885.06 27890.37 28489.47 34684.10 28898.52 17295.48 30083.80 28880.93 30090.22 33774.60 24796.31 29680.92 28671.55 35790.69 328
v119286.32 27984.71 28791.17 25989.53 34486.40 23798.13 21695.44 30482.52 31582.42 27690.62 32371.58 27996.33 29577.23 31074.88 32390.79 322
Patchmatch-test86.25 28084.06 29792.82 22494.42 25482.88 30682.88 39694.23 34571.58 37479.39 31890.62 32389.00 6596.42 28563.03 37791.37 22699.16 112
v886.11 28184.45 29291.10 26089.99 33486.85 22997.24 26795.36 30981.99 32479.89 31289.86 34274.53 24996.39 28678.83 30272.32 35190.05 342
v192192086.02 28284.44 29390.77 27189.32 34785.20 27198.10 22195.35 31082.19 32182.25 28090.71 31670.73 28296.30 29976.85 31574.49 32890.80 321
JIA-IIPM85.97 28384.85 28389.33 31093.23 29273.68 36785.05 38897.13 17769.62 38391.56 17468.03 39888.03 8096.96 25877.89 30893.12 18797.34 209
pmmvs585.87 28484.40 29590.30 28588.53 35684.23 28598.60 16593.71 35381.53 32980.29 30692.02 28964.51 32795.52 32782.04 27978.34 30391.15 312
XVG-ACMP-BASELINE85.86 28584.95 28188.57 32089.90 33677.12 35594.30 33695.60 29487.40 22682.12 28292.99 27853.42 36997.66 22685.02 24283.83 27390.92 318
Baseline_NR-MVSNet85.83 28684.82 28488.87 31988.73 35383.34 29898.63 16091.66 37780.41 34282.44 27491.35 30474.63 24595.42 33184.13 25571.39 35887.84 364
PS-CasMVS85.81 28784.58 29089.49 30890.77 32882.11 31497.20 27097.36 15684.83 27479.12 32292.84 27967.42 30895.16 33778.39 30673.25 34491.21 311
IterMVS85.81 28784.67 28889.22 31193.51 28483.67 29496.32 29994.80 32985.09 26778.69 32390.17 34066.57 31593.17 36179.48 29677.42 31190.81 320
Fangjinhua Wang, Silvano Galliani, Christoph Vogel, Marc Pollefeys: IterMVS: Iterative Probability Estimation for Efficient Multi-View Stereo.
v124085.77 28984.11 29690.73 27289.26 34885.15 27497.88 23595.23 31981.89 32782.16 28190.55 32869.60 29196.31 29675.59 32474.87 32490.72 327
IterMVS-SCA-FT85.73 29084.64 28989.00 31693.46 28782.90 30496.27 30094.70 33285.02 27078.62 32590.35 33266.61 31393.33 35879.38 29777.36 31290.76 324
v1085.73 29084.01 29890.87 26890.03 33386.73 23197.20 27095.22 32081.25 33279.85 31389.75 34373.30 26196.28 30076.87 31472.64 34789.61 350
UniMVSNet_ETH3D85.65 29283.79 30091.21 25890.41 33280.75 33295.36 32695.78 28278.76 34881.83 29394.33 24549.86 37996.66 27084.30 25183.52 27896.22 241
PatchT85.44 29383.19 30392.22 23693.13 29483.00 30183.80 39596.37 22870.62 37790.55 19179.63 39084.81 14794.87 34258.18 38891.59 21598.79 149
RPSCF85.33 29485.55 27284.67 35194.63 25262.28 39093.73 34293.76 35174.38 36885.23 24597.06 17564.09 32898.31 18280.98 28486.08 25793.41 259
PEN-MVS85.21 29583.93 29989.07 31589.89 33781.31 32497.09 27397.24 16484.45 27978.66 32492.68 28268.44 29794.87 34275.98 32170.92 36091.04 315
test_fmvs285.10 29685.45 27484.02 35489.85 33865.63 38898.49 17892.59 36590.45 13085.43 24493.32 26843.94 38696.59 27390.81 17684.19 27089.85 346
RPMNet85.07 29781.88 31594.64 17793.47 28586.24 24284.97 38997.21 16764.85 39490.76 18878.80 39180.95 20999.27 13753.76 39292.17 20698.41 169
AllTest84.97 29883.12 30490.52 27896.82 15678.84 34395.89 31392.17 37077.96 35275.94 33995.50 22855.48 35999.18 13971.15 34887.14 24693.55 257
USDC84.74 29982.93 30590.16 28791.73 31583.54 29695.00 33093.30 35988.77 18073.19 35693.30 27053.62 36897.65 22875.88 32281.54 29089.30 353
Anonymous2023121184.72 30082.65 31290.91 26597.71 11284.55 28297.28 26496.67 20766.88 39179.18 32190.87 31358.47 35096.60 27282.61 27374.20 33391.59 296
pm-mvs184.68 30182.78 30990.40 28189.58 34285.18 27297.31 26294.73 33181.93 32676.05 33892.01 29065.48 32396.11 30678.75 30369.14 36389.91 345
ACMH83.09 1784.60 30282.61 31390.57 27593.18 29382.94 30296.27 30094.92 32581.01 33572.61 36393.61 26356.54 35597.79 21474.31 33281.07 29190.99 316
Qingshan Xu and Wenbing Tao: Multi-Scale Geometric Consistency Guided Multi-View Stereo. CVPR 2019
LTVRE_ROB81.71 1984.59 30382.72 31190.18 28692.89 29783.18 30093.15 34794.74 33078.99 34575.14 34692.69 28165.64 32097.63 22969.46 35581.82 28989.74 347
Andreas Kuhn, Heiko Hirschmüller, Daniel Scharstein, Helmut Mayer: A TV Prior for High-Quality Scalable Multi-View Stereo Reconstruction. International Journal of Computer Vision 2016
COLMAP_ROBcopyleft82.69 1884.54 30482.82 30689.70 30196.72 16278.85 34295.89 31392.83 36371.55 37577.54 33495.89 22259.40 34899.14 14567.26 36488.26 24291.11 314
Johannes L. Schönberger, Enliang Zheng, Marc Pollefeys, Jan-Michael Frahm: Pixelwise View Selection for Unstructured Multi-View Stereo. ECCV 2016
MIMVSNet84.48 30581.83 31692.42 23491.73 31587.36 21885.52 38594.42 34181.40 33081.91 28887.58 35651.92 37292.81 36473.84 33788.15 24397.08 219
our_test_384.47 30682.80 30789.50 30689.01 34983.90 29197.03 27594.56 33681.33 33175.36 34590.52 32971.69 27794.54 35068.81 35876.84 31390.07 340
v7n84.42 30782.75 31089.43 30988.15 35981.86 31696.75 28795.67 29080.53 33878.38 32989.43 34769.89 28696.35 29373.83 33872.13 35390.07 340
kuosan84.40 30883.34 30287.60 32895.87 19879.21 33992.39 35696.87 19776.12 36173.79 35193.98 25281.51 20090.63 37964.13 37375.42 31892.95 260
ACMH+83.78 1584.21 30982.56 31489.15 31393.73 28179.16 34096.43 29594.28 34481.09 33474.00 35094.03 24954.58 36597.67 22576.10 32078.81 30190.63 330
EU-MVSNet84.19 31084.42 29483.52 35888.64 35567.37 38696.04 31095.76 28485.29 26378.44 32893.18 27370.67 28391.48 37875.79 32375.98 31591.70 288
DTE-MVSNet84.14 31182.80 30788.14 32388.95 35179.87 33596.81 28396.24 23783.50 29477.60 33392.52 28467.89 30494.24 35372.64 34669.05 36490.32 335
OurMVSNet-221017-084.13 31283.59 30185.77 34387.81 36370.24 38094.89 33193.65 35586.08 25176.53 33593.28 27161.41 34096.14 30580.95 28577.69 31090.93 317
Syy-MVS84.10 31384.53 29182.83 36095.14 22865.71 38797.68 25096.66 20886.52 24582.63 26996.84 18968.15 29989.89 38345.62 39891.54 21892.87 261
FMVSNet183.94 31481.32 32291.80 24891.94 31188.81 18496.77 28495.25 31277.98 35078.25 33090.25 33450.37 37894.97 33973.27 34177.81 30991.62 291
tfpnnormal83.65 31581.35 32190.56 27791.37 32188.06 19997.29 26397.87 5878.51 34976.20 33690.91 31164.78 32696.47 28261.71 38073.50 34087.13 373
ppachtmachnet_test83.63 31681.57 31989.80 29789.01 34985.09 27597.13 27294.50 33778.84 34676.14 33791.00 31069.78 28794.61 34963.40 37574.36 33089.71 349
Patchmtry83.61 31781.64 31789.50 30693.36 28982.84 30784.10 39294.20 34669.47 38479.57 31686.88 36684.43 15094.78 34568.48 36074.30 33190.88 319
KD-MVS_2432*160082.98 31880.52 32790.38 28294.32 25888.98 17692.87 35195.87 27880.46 34073.79 35187.49 35982.76 17993.29 35970.56 35246.53 40288.87 359
miper_refine_blended82.98 31880.52 32790.38 28294.32 25888.98 17692.87 35195.87 27880.46 34073.79 35187.49 35982.76 17993.29 35970.56 35246.53 40288.87 359
SixPastTwentyTwo82.63 32081.58 31885.79 34288.12 36071.01 37895.17 32892.54 36684.33 28072.93 36192.08 28760.41 34595.61 32674.47 33174.15 33490.75 325
testgi82.29 32181.00 32486.17 34087.24 36974.84 36397.39 25891.62 37888.63 18175.85 34295.42 23146.07 38591.55 37766.87 36779.94 29792.12 280
FMVSNet582.29 32180.54 32687.52 32993.79 28084.01 28993.73 34292.47 36776.92 35774.27 34886.15 37063.69 33289.24 38869.07 35774.79 32589.29 354
TransMVSNet (Re)81.97 32379.61 33389.08 31489.70 34084.01 28997.26 26591.85 37678.84 34673.07 36091.62 29867.17 31095.21 33667.50 36359.46 38788.02 363
LF4IMVS81.94 32481.17 32384.25 35387.23 37068.87 38593.35 34691.93 37583.35 29775.40 34493.00 27749.25 38296.65 27178.88 30178.11 30487.22 372
Patchmatch-RL test81.90 32580.13 32987.23 33380.71 39070.12 38284.07 39388.19 39483.16 30070.57 36582.18 38187.18 9692.59 36782.28 27662.78 38098.98 127
DSMNet-mixed81.60 32681.43 32082.10 36384.36 38060.79 39193.63 34486.74 39679.00 34479.32 31987.15 36463.87 33089.78 38566.89 36691.92 20895.73 246
dongtai81.36 32780.61 32583.62 35794.25 26373.32 36995.15 32996.81 19973.56 37169.79 36892.81 28081.00 20886.80 39452.08 39570.06 36290.75 325
test_vis1_rt81.31 32880.05 33185.11 34591.29 32270.66 37998.98 12477.39 40885.76 25768.80 37282.40 37936.56 39599.44 11992.67 15986.55 25185.24 383
K. test v381.04 32979.77 33284.83 34987.41 36770.23 38195.60 32593.93 35083.70 29167.51 37989.35 34855.76 35793.58 35776.67 31768.03 36790.67 329
Anonymous2023120680.76 33079.42 33484.79 35084.78 37972.98 37096.53 29292.97 36179.56 34374.33 34788.83 35061.27 34192.15 37360.59 38375.92 31689.24 355
CMPMVSbinary58.40 2180.48 33180.11 33081.59 36685.10 37859.56 39394.14 33995.95 26168.54 38660.71 39093.31 26955.35 36297.87 20983.06 26984.85 26587.33 370
M. Jancosek, T. Pajdla: Multi-View Reconstruction Preserving Weakly-Supported Surfaces. CVPR 2011
TinyColmap80.42 33277.94 33787.85 32592.09 30678.58 34693.74 34189.94 38774.99 36469.77 36991.78 29646.09 38497.58 23365.17 37277.89 30587.38 368
EG-PatchMatch MVS79.92 33377.59 33886.90 33587.06 37177.90 35396.20 30794.06 34874.61 36666.53 38388.76 35140.40 39396.20 30167.02 36583.66 27686.61 374
pmmvs679.90 33477.31 34087.67 32784.17 38178.13 35095.86 31793.68 35467.94 38872.67 36289.62 34550.98 37695.75 32174.80 33066.04 37489.14 356
CL-MVSNet_self_test79.89 33578.34 33684.54 35281.56 38875.01 36196.88 28195.62 29281.10 33375.86 34185.81 37168.49 29690.26 38163.21 37656.51 39188.35 361
MDA-MVSNet_test_wron79.65 33677.05 34187.45 33187.79 36580.13 33396.25 30394.44 33873.87 36951.80 39687.47 36168.04 30192.12 37466.02 36867.79 36990.09 338
YYNet179.64 33777.04 34287.43 33287.80 36479.98 33496.23 30494.44 33873.83 37051.83 39587.53 35767.96 30392.07 37566.00 36967.75 37090.23 337
MVS-HIRNet79.01 33875.13 35090.66 27393.82 27981.69 31885.16 38693.75 35254.54 39674.17 34959.15 40257.46 35396.58 27463.74 37494.38 17693.72 256
UnsupCasMVSNet_eth78.90 33976.67 34485.58 34482.81 38674.94 36291.98 35996.31 23184.64 27665.84 38587.71 35551.33 37392.23 37272.89 34456.50 39289.56 351
test_040278.81 34076.33 34586.26 33991.18 32378.44 34895.88 31591.34 38168.55 38570.51 36789.91 34152.65 37194.99 33847.14 39779.78 29885.34 382
pmmvs-eth3d78.71 34176.16 34686.38 33780.25 39281.19 32694.17 33892.13 37277.97 35166.90 38282.31 38055.76 35792.56 36873.63 34062.31 38385.38 380
Anonymous2024052178.63 34276.90 34383.82 35582.82 38572.86 37195.72 32293.57 35673.55 37272.17 36484.79 37349.69 38092.51 36965.29 37174.50 32786.09 378
test20.0378.51 34377.48 33981.62 36583.07 38471.03 37796.11 30892.83 36381.66 32869.31 37189.68 34457.53 35287.29 39358.65 38768.47 36586.53 375
TDRefinement78.01 34475.31 34886.10 34170.06 40373.84 36693.59 34591.58 37974.51 36773.08 35991.04 30949.63 38197.12 25174.88 32859.47 38687.33 370
OpenMVS_ROBcopyleft73.86 2077.99 34575.06 35186.77 33683.81 38377.94 35296.38 29791.53 38067.54 38968.38 37487.13 36543.94 38696.08 30755.03 39181.83 28886.29 377
MDA-MVSNet-bldmvs77.82 34674.75 35287.03 33488.33 35778.52 34796.34 29892.85 36275.57 36248.87 39887.89 35457.32 35492.49 37060.79 38264.80 37890.08 339
KD-MVS_self_test77.47 34775.88 34782.24 36181.59 38768.93 38492.83 35394.02 34977.03 35673.14 35783.39 37655.44 36190.42 38067.95 36157.53 39087.38 368
dmvs_testset77.17 34878.99 33571.71 37687.25 36838.55 41391.44 36681.76 40485.77 25669.49 37095.94 22169.71 28984.37 39652.71 39476.82 31492.21 277
new_pmnet76.02 34973.71 35482.95 35983.88 38272.85 37291.26 36992.26 36970.44 37962.60 38881.37 38347.64 38392.32 37161.85 37972.10 35483.68 388
MIMVSNet175.92 35073.30 35583.81 35681.29 38975.57 35992.26 35792.05 37373.09 37367.48 38086.18 36940.87 39287.64 39255.78 39070.68 36188.21 362
mvsany_test375.85 35174.52 35379.83 36873.53 40060.64 39291.73 36287.87 39583.91 28770.55 36682.52 37831.12 39793.66 35586.66 22462.83 37985.19 384
test_fmvs375.09 35275.19 34974.81 37377.45 39654.08 39995.93 31190.64 38482.51 31673.29 35581.19 38422.29 40286.29 39585.50 23767.89 36884.06 386
PM-MVS74.88 35372.85 35680.98 36778.98 39464.75 38990.81 37385.77 39780.95 33668.23 37682.81 37729.08 39992.84 36376.54 31862.46 38285.36 381
new-patchmatchnet74.80 35472.40 35781.99 36478.36 39572.20 37494.44 33492.36 36877.06 35563.47 38779.98 38951.04 37588.85 38960.53 38454.35 39484.92 385
UnsupCasMVSNet_bld73.85 35570.14 35984.99 34779.44 39375.73 35888.53 37995.24 31570.12 38161.94 38974.81 39541.41 39193.62 35668.65 35951.13 39985.62 379
pmmvs372.86 35669.76 36182.17 36273.86 39974.19 36594.20 33789.01 39264.23 39567.72 37780.91 38741.48 39088.65 39062.40 37854.02 39583.68 388
test_f71.94 35770.82 35875.30 37272.77 40153.28 40091.62 36389.66 39075.44 36364.47 38678.31 39220.48 40389.56 38678.63 30466.02 37583.05 391
N_pmnet70.19 35869.87 36071.12 37888.24 35830.63 41795.85 31828.70 41670.18 38068.73 37386.55 36864.04 32993.81 35453.12 39373.46 34188.94 357
test_method70.10 35968.66 36274.41 37586.30 37655.84 39794.47 33389.82 38835.18 40466.15 38484.75 37430.54 39877.96 40570.40 35460.33 38589.44 352
APD_test168.93 36066.98 36374.77 37480.62 39153.15 40187.97 38085.01 39953.76 39759.26 39187.52 35825.19 40089.95 38256.20 38967.33 37181.19 392
WB-MVS66.44 36166.29 36466.89 38174.84 39744.93 40893.00 34884.09 40271.15 37655.82 39381.63 38263.79 33180.31 40321.85 40750.47 40075.43 394
SSC-MVS65.42 36265.20 36566.06 38273.96 39843.83 40992.08 35883.54 40369.77 38254.73 39480.92 38663.30 33379.92 40420.48 40848.02 40174.44 395
FPMVS61.57 36360.32 36665.34 38360.14 41042.44 41191.02 37289.72 38944.15 39942.63 40280.93 38519.02 40480.59 40242.50 39972.76 34673.00 396
test_vis3_rt61.29 36458.75 36768.92 38067.41 40452.84 40291.18 37159.23 41566.96 39041.96 40358.44 40311.37 41194.72 34774.25 33357.97 38959.20 402
EGC-MVSNET60.70 36555.37 36976.72 37086.35 37571.08 37689.96 37784.44 4010.38 4131.50 41484.09 37537.30 39488.10 39140.85 40273.44 34270.97 398
LCM-MVSNet60.07 36656.37 36871.18 37754.81 41248.67 40582.17 39789.48 39137.95 40249.13 39769.12 39613.75 41081.76 39759.28 38551.63 39883.10 390
PMMVS258.97 36755.07 37070.69 37962.72 40755.37 39885.97 38480.52 40549.48 39845.94 39968.31 39715.73 40880.78 40149.79 39637.12 40475.91 393
testf156.38 36853.73 37164.31 38564.84 40545.11 40680.50 39875.94 41038.87 40042.74 40075.07 39311.26 41281.19 39941.11 40053.27 39666.63 399
APD_test256.38 36853.73 37164.31 38564.84 40545.11 40680.50 39875.94 41038.87 40042.74 40075.07 39311.26 41281.19 39941.11 40053.27 39666.63 399
Gipumacopyleft54.77 37052.22 37462.40 38786.50 37359.37 39450.20 40590.35 38636.52 40341.20 40449.49 40518.33 40681.29 39832.10 40465.34 37646.54 405
S. Galliani, K. Lasinger, K. Schindler: Massively Parallel Multiview Stereopsis by Surface Normal Diffusion. ICCV 2015
tmp_tt53.66 37152.86 37356.05 38832.75 41641.97 41273.42 40276.12 40921.91 40939.68 40596.39 20542.59 38965.10 40878.00 30714.92 40961.08 401
ANet_high50.71 37246.17 37564.33 38444.27 41452.30 40376.13 40178.73 40664.95 39327.37 40755.23 40414.61 40967.74 40736.01 40318.23 40772.95 397
PMVScopyleft41.42 2345.67 37342.50 37655.17 38934.28 41532.37 41566.24 40378.71 40730.72 40522.04 41059.59 4014.59 41477.85 40627.49 40558.84 38855.29 403
Y. Furukawa, J. Ponce: Accurate, dense, and robust multiview stereopsis. PAMI (2010)
MVEpermissive44.00 2241.70 37437.64 37953.90 39049.46 41343.37 41065.09 40466.66 41226.19 40825.77 40948.53 4063.58 41663.35 40926.15 40627.28 40554.97 404
Simon Fuhrmann, Fabian Langguth, Michael Goesele: MVE - A Multi-View Reconstruction Environment. EUROGRAPHICS Workshops on Graphics and Cultural Heritage (2014)
E-PMN41.02 37540.93 37741.29 39161.97 40833.83 41484.00 39465.17 41327.17 40627.56 40646.72 40717.63 40760.41 41019.32 40918.82 40629.61 406
EMVS39.96 37639.88 37840.18 39259.57 41132.12 41684.79 39164.57 41426.27 40726.14 40844.18 41018.73 40559.29 41117.03 41017.67 40829.12 407
cdsmvs_eth3d_5k22.52 37730.03 3800.00 3960.00 4190.00 4210.00 40797.17 1730.00 4140.00 41598.77 8574.35 2520.00 4150.00 4140.00 4130.00 411
testmvs18.81 37823.05 3816.10 3954.48 4172.29 42097.78 2403.00 4183.27 41118.60 41162.71 3991.53 4182.49 41414.26 4121.80 41113.50 409
wuyk23d16.71 37916.73 38316.65 39360.15 40925.22 41841.24 4065.17 4176.56 4105.48 4133.61 4133.64 41522.72 41215.20 4119.52 4101.99 410
test12316.58 38019.47 3827.91 3943.59 4185.37 41994.32 3351.39 4192.49 41213.98 41244.60 4092.91 4172.65 41311.35 4130.57 41215.70 408
ab-mvs-re8.21 38110.94 3840.00 3960.00 4190.00 4210.00 4070.00 4200.00 4140.00 41598.50 1080.00 4190.00 4150.00 4140.00 4130.00 411
pcd_1.5k_mvsjas6.87 3829.16 3850.00 3960.00 4190.00 4210.00 4070.00 4200.00 4140.00 4150.00 41482.48 1850.00 4150.00 4140.00 4130.00 411
test_blank0.00 3830.00 3860.00 3960.00 4190.00 4210.00 4070.00 4200.00 4140.00 4150.00 4140.00 4190.00 4150.00 4140.00 4130.00 411
uanet_test0.00 3830.00 3860.00 3960.00 4190.00 4210.00 4070.00 4200.00 4140.00 4150.00 4140.00 4190.00 4150.00 4140.00 4130.00 411
DCPMVS0.00 3830.00 3860.00 3960.00 4190.00 4210.00 4070.00 4200.00 4140.00 4150.00 4140.00 4190.00 4150.00 4140.00 4130.00 411
sosnet-low-res0.00 3830.00 3860.00 3960.00 4190.00 4210.00 4070.00 4200.00 4140.00 4150.00 4140.00 4190.00 4150.00 4140.00 4130.00 411
sosnet0.00 3830.00 3860.00 3960.00 4190.00 4210.00 4070.00 4200.00 4140.00 4150.00 4140.00 4190.00 4150.00 4140.00 4130.00 411
uncertanet0.00 3830.00 3860.00 3960.00 4190.00 4210.00 4070.00 4200.00 4140.00 4150.00 4140.00 4190.00 4150.00 4140.00 4130.00 411
Regformer0.00 3830.00 3860.00 3960.00 4190.00 4210.00 4070.00 4200.00 4140.00 4150.00 4140.00 4190.00 4150.00 4140.00 4130.00 411
uanet0.00 3830.00 3860.00 3960.00 4190.00 4210.00 4070.00 4200.00 4140.00 4150.00 4140.00 4190.00 4150.00 4140.00 4130.00 411
WAC-MVS79.74 33667.75 362
FOURS199.50 4288.94 17999.55 4497.47 14191.32 11098.12 46
MSC_two_6792asdad99.51 299.61 2498.60 297.69 8899.98 999.55 1399.83 1599.96 10
PC_three_145294.60 3699.41 499.12 4695.50 699.96 2899.84 299.92 399.97 7
No_MVS99.51 299.61 2498.60 297.69 8899.98 999.55 1399.83 1599.96 10
test_one_060199.59 2894.89 3797.64 10393.14 6998.93 2199.45 1493.45 16
eth-test20.00 419
eth-test0.00 419
ZD-MVS99.67 1093.28 7697.61 11087.78 21497.41 6499.16 3690.15 5199.56 10598.35 4299.70 38
RE-MVS-def95.70 6699.22 5987.26 22498.40 19097.21 16789.63 15396.67 8798.97 6285.24 14196.62 8199.31 6999.60 70
IU-MVS99.63 1895.38 2497.73 8095.54 2699.54 399.69 799.81 2399.99 1
OPU-MVS99.49 499.64 1798.51 499.77 1899.19 3095.12 799.97 2199.90 199.92 399.99 1
test_241102_TWO97.72 8194.17 4399.23 1099.54 393.14 2299.98 999.70 599.82 1999.99 1
test_241102_ONE99.63 1895.24 2797.72 8194.16 4599.30 899.49 993.32 1799.98 9
9.1496.87 2799.34 5099.50 5197.49 13889.41 16398.59 3299.43 1689.78 5599.69 9198.69 3099.62 47
save fliter99.34 5093.85 6799.65 3697.63 10795.69 22
test_0728_THIRD93.01 7099.07 1599.46 1094.66 1299.97 2199.25 1899.82 1999.95 15
test_0728_SECOND98.77 899.66 1296.37 1499.72 2497.68 9099.98 999.64 899.82 1999.96 10
test072699.66 1295.20 3299.77 1897.70 8693.95 4899.35 799.54 393.18 20
GSMVS98.84 142
test_part299.54 3695.42 2298.13 44
sam_mvs188.39 7198.84 142
sam_mvs87.08 99
ambc79.60 36972.76 40256.61 39676.20 40092.01 37468.25 37580.23 38823.34 40194.73 34673.78 33960.81 38487.48 367
MTGPAbinary97.45 144
test_post190.74 37541.37 41185.38 13996.36 28883.16 266
test_post46.00 40887.37 9097.11 252
patchmatchnet-post84.86 37288.73 6896.81 265
GG-mvs-BLEND96.98 7096.53 16794.81 4487.20 38197.74 7793.91 14196.40 20396.56 296.94 26095.08 11598.95 8899.20 110
MTMP99.21 8791.09 382
gm-plane-assit94.69 24988.14 19788.22 20097.20 16698.29 18490.79 177
test9_res98.60 3399.87 999.90 22
TEST999.57 3393.17 7899.38 7197.66 9589.57 15798.39 3799.18 3390.88 3799.66 94
test_899.55 3593.07 8199.37 7497.64 10390.18 13798.36 3999.19 3090.94 3499.64 100
agg_prior297.84 5899.87 999.91 21
agg_prior99.54 3692.66 9197.64 10397.98 5399.61 102
TestCases90.52 27896.82 15678.84 34392.17 37077.96 35275.94 33995.50 22855.48 35999.18 13971.15 34887.14 24693.55 257
test_prior492.00 10199.41 68
test_prior299.57 4291.43 10798.12 4698.97 6290.43 4498.33 4399.81 23
test_prior97.01 6599.58 3091.77 10497.57 12199.49 11299.79 36
旧先验298.67 15485.75 25898.96 2098.97 15493.84 138
新几何298.26 204
新几何197.40 5298.92 7892.51 9697.77 7585.52 26096.69 8699.06 5388.08 7999.89 5384.88 24499.62 4799.79 36
旧先验198.97 7392.90 8997.74 7799.15 3991.05 3399.33 6799.60 70
无先验98.52 17297.82 6587.20 22899.90 5087.64 21399.85 30
原ACMM298.69 151
原ACMM196.18 11499.03 7190.08 14897.63 10788.98 17297.00 7598.97 6288.14 7899.71 9088.23 20699.62 4798.76 153
test22298.32 9391.21 11498.08 22597.58 11883.74 28995.87 10199.02 5886.74 10799.64 4399.81 33
testdata299.88 5484.16 254
segment_acmp90.56 42
testdata95.26 15398.20 9787.28 22197.60 11285.21 26498.48 3599.15 3988.15 7798.72 16590.29 18299.45 6099.78 38
testdata197.89 23392.43 83
test1297.83 3599.33 5394.45 5297.55 12397.56 6088.60 6999.50 11199.71 3799.55 74
plane_prior793.84 27685.73 261
plane_prior693.92 27386.02 25472.92 264
plane_prior596.30 23297.75 22293.46 14786.17 25592.67 265
plane_prior496.52 199
plane_prior385.91 25693.65 6186.99 229
plane_prior299.02 11893.38 66
plane_prior193.90 275
plane_prior86.07 25299.14 10393.81 5886.26 254
n20.00 420
nn0.00 420
door-mid84.90 400
lessismore_v085.08 34685.59 37769.28 38390.56 38567.68 37890.21 33854.21 36795.46 32973.88 33662.64 38190.50 332
LGP-MVS_train90.06 28993.35 29080.95 33095.94 26287.73 21883.17 26296.11 21466.28 31797.77 21690.19 18385.19 26291.46 300
test1197.68 90
door85.30 398
HQP5-MVS86.39 238
HQP-NCC93.95 26999.16 9593.92 5087.57 222
ACMP_Plane93.95 26999.16 9593.92 5087.57 222
BP-MVS93.82 140
HQP4-MVS87.57 22297.77 21692.72 263
HQP3-MVS96.37 22886.29 252
HQP2-MVS73.34 259
NP-MVS93.94 27286.22 24496.67 197
MDTV_nov1_ep13_2view91.17 11791.38 36787.45 22593.08 15486.67 11087.02 21698.95 133
MDTV_nov1_ep1390.47 19496.14 19088.55 19191.34 36897.51 13389.58 15692.24 16390.50 33186.99 10397.61 23177.64 30992.34 200
ACMMP++_ref82.64 285
ACMMP++83.83 273
Test By Simon83.62 159
ITE_SJBPF87.93 32492.26 30376.44 35793.47 35887.67 22179.95 31195.49 23056.50 35697.38 24475.24 32582.33 28789.98 344
DeepMVS_CXcopyleft76.08 37190.74 32951.65 40490.84 38386.47 24857.89 39287.98 35335.88 39692.60 36665.77 37065.06 37783.97 387