| CNVR-MVS | | | 98.46 1 | 98.38 1 | 98.72 10 | 99.80 4 | 96.19 15 | 99.80 16 | 97.99 52 | 97.05 6 | 99.41 4 | 99.59 2 | 92.89 23 | 100.00 1 | 98.99 25 | 99.90 7 | 99.96 10 |
|
| DVP-MVS++ | | | 98.18 2 | 98.09 5 | 98.44 16 | 99.61 24 | 95.38 24 | 99.55 44 | 97.68 90 | 93.01 70 | 99.23 10 | 99.45 14 | 95.12 7 | 99.98 9 | 99.25 18 | 99.92 3 | 99.97 7 |
|
| SED-MVS | | | 98.18 2 | 98.10 4 | 98.41 18 | 99.63 18 | 95.24 27 | 99.77 18 | 97.72 81 | 94.17 43 | 99.30 8 | 99.54 3 | 93.32 17 | 99.98 9 | 99.70 5 | 99.81 23 | 99.99 1 |
|
| MCST-MVS | | | 98.18 2 | 97.95 9 | 98.86 5 | 99.85 3 | 96.60 10 | 99.70 27 | 97.98 53 | 97.18 4 | 95.96 97 | 99.33 19 | 92.62 24 | 100.00 1 | 98.99 25 | 99.93 1 | 99.98 6 |
|
| NCCC | | | 98.12 5 | 98.11 3 | 98.13 25 | 99.76 6 | 94.46 51 | 99.81 12 | 97.88 57 | 96.54 13 | 98.84 24 | 99.46 10 | 92.55 25 | 99.98 9 | 98.25 47 | 99.93 1 | 99.94 18 |
|
| DPE-MVS |  | | 98.11 6 | 98.00 6 | 98.44 16 | 99.50 42 | 95.39 23 | 99.29 80 | 97.72 81 | 94.50 37 | 98.64 30 | 99.54 3 | 93.32 17 | 99.97 21 | 99.58 11 | 99.90 7 | 99.95 15 |
| Kehua Chen, Zhenlong Yuan, Tianlu Mao, Zhaoqi Wang: Dual-Level Precision Edges Guided Multi-View Stereo with Accurate Planarization. AAAI2025 |
| DVP-MVS |  | | 98.07 7 | 98.00 6 | 98.29 19 | 99.66 12 | 95.20 32 | 99.72 24 | 97.47 141 | 93.95 48 | 99.07 15 | 99.46 10 | 93.18 20 | 99.97 21 | 99.64 8 | 99.82 19 | 99.69 55 |
| Zhenlong Yuan, Jinguo Luo, Fei Shen, Zhaoxin Li, Cong Liu, Tianlu Mao, Zhaoqi Wang: DVP-MVS: Synergize Depth-Edge and Visibility Prior for Multi-View Stereo. AAAI2025 |
| DPM-MVS | | | 97.86 8 | 97.25 22 | 99.68 1 | 98.25 95 | 99.10 1 | 99.76 21 | 97.78 73 | 96.61 12 | 98.15 43 | 99.53 7 | 93.62 15 | 100.00 1 | 91.79 166 | 99.80 26 | 99.94 18 |
|
| MVS_0304 | | | 97.81 9 | 97.51 15 | 98.74 9 | 98.97 73 | 96.57 11 | 99.91 2 | 98.17 36 | 97.45 3 | 98.76 26 | 98.97 62 | 86.69 109 | 99.96 28 | 99.72 3 | 98.92 89 | 99.69 55 |
|
| MSP-MVS | | | 97.77 10 | 98.18 2 | 96.53 98 | 99.54 36 | 90.14 145 | 99.41 68 | 97.70 86 | 95.46 28 | 98.60 31 | 99.19 30 | 95.71 4 | 99.49 112 | 98.15 49 | 99.85 13 | 99.95 15 |
| Zhenlong Yuan, Cong Liu, Fei Shen, Zhaoxin Li, Jingguo luo, Tianlu Mao and Zhaoqi Wang: MSP-MVS: Multi-granularity Segmentation Prior Guided Multi-View Stereo. AAAI2025 |
| MM | | | 97.76 11 | 97.39 20 | 98.86 5 | 98.30 94 | 96.83 7 | 99.81 12 | 99.13 9 | 97.66 2 | 98.29 41 | 98.96 67 | 85.84 129 | 99.90 50 | 99.72 3 | 98.80 95 | 99.85 30 |
|
| HPM-MVS++ |  | | 97.72 12 | 97.59 13 | 98.14 24 | 99.53 40 | 94.76 45 | 99.19 89 | 97.75 76 | 95.66 24 | 98.21 42 | 99.29 20 | 91.10 31 | 99.99 5 | 97.68 59 | 99.87 9 | 99.68 57 |
|
| fmvsm_l_conf0.5_n_a | | | 97.70 13 | 97.80 11 | 97.42 50 | 97.59 119 | 92.91 88 | 99.86 5 | 98.04 48 | 96.70 10 | 99.58 2 | 99.26 21 | 90.90 36 | 99.94 35 | 99.57 12 | 98.66 102 | 99.40 91 |
|
| fmvsm_l_conf0.5_n | | | 97.65 14 | 97.72 12 | 97.41 51 | 97.51 124 | 92.78 90 | 99.85 8 | 98.05 46 | 96.78 8 | 99.60 1 | 99.23 26 | 90.42 45 | 99.92 41 | 99.55 13 | 98.50 107 | 99.55 74 |
|
| APDe-MVS |  | | 97.53 15 | 97.47 16 | 97.70 39 | 99.58 30 | 93.63 69 | 99.56 43 | 97.52 131 | 93.59 63 | 98.01 52 | 99.12 46 | 90.80 39 | 99.55 106 | 99.26 17 | 99.79 27 | 99.93 20 |
| Zhaojie Zeng, Yuesong Wang, Tao Guan: Matching Ambiguity-Resilient Multi-View Stereo via Adaptive Patch Deformation. Pattern Recognition |
| SD-MVS | | | 97.51 16 | 97.40 19 | 97.81 36 | 99.01 72 | 93.79 68 | 99.33 78 | 97.38 154 | 93.73 59 | 98.83 25 | 99.02 58 | 90.87 38 | 99.88 54 | 98.69 30 | 99.74 29 | 99.77 43 |
| Zhenlong Yuan, Jiakai Cao, Zhaoxin Li, Hao Jiang and Zhaoqi Wang: SD-MVS: Segmentation-driven Deformation Multi-View Stereo with Spherical Refinement and EM optimization. AAAI2024 |
| MSLP-MVS++ | | | 97.50 17 | 97.45 18 | 97.63 41 | 99.65 16 | 93.21 77 | 99.70 27 | 98.13 42 | 94.61 35 | 97.78 59 | 99.46 10 | 89.85 54 | 99.81 79 | 97.97 52 | 99.91 6 | 99.88 26 |
|
| TSAR-MVS + MP. | | | 97.44 18 | 97.46 17 | 97.39 53 | 99.12 65 | 93.49 74 | 98.52 172 | 97.50 136 | 94.46 38 | 98.99 17 | 98.64 99 | 91.58 28 | 99.08 148 | 98.49 37 | 99.83 15 | 99.60 70 |
| Zhenlong Yuan, Jiakai Cao, Zhaoqi Wang, Zhaoxin Li: TSAR-MVS: Textureless-aware Segmentation and Correlative Refinement Guided Multi-View Stereo. Pattern Recognition |
| SteuartSystems-ACMMP | | | 97.25 19 | 97.34 21 | 97.01 65 | 97.38 128 | 91.46 111 | 99.75 22 | 97.66 95 | 94.14 47 | 98.13 44 | 99.26 21 | 92.16 27 | 99.66 94 | 97.91 54 | 99.64 43 | 99.90 22 |
| Skip Steuart: Steuart Systems R&D Blog. |
| SMA-MVS |  | | 97.24 20 | 96.99 24 | 98.00 31 | 99.30 54 | 94.20 60 | 99.16 95 | 97.65 102 | 89.55 159 | 99.22 12 | 99.52 8 | 90.34 48 | 99.99 5 | 98.32 44 | 99.83 15 | 99.82 32 |
| Yufeng Yin; Xiaoyan Liu; Zichao Zhang: SMA-MVS: Segmentation-Guided Multi-Scale Anchor Deformation Patch Multi-View Stereo. IEEE Transactions on Circuits and Systems for Video Technology |
| MG-MVS | | | 97.24 20 | 96.83 31 | 98.47 15 | 99.79 5 | 95.71 19 | 99.07 111 | 99.06 10 | 94.45 40 | 96.42 91 | 98.70 95 | 88.81 67 | 99.74 88 | 95.35 109 | 99.86 12 | 99.97 7 |
|
| SF-MVS | | | 97.22 22 | 96.92 25 | 98.12 27 | 99.11 66 | 94.88 38 | 99.44 62 | 97.45 144 | 89.60 155 | 98.70 27 | 99.42 17 | 90.42 45 | 99.72 89 | 98.47 38 | 99.65 41 | 99.77 43 |
|
| train_agg | | | 97.20 23 | 97.08 23 | 97.57 45 | 99.57 33 | 93.17 78 | 99.38 71 | 97.66 95 | 90.18 137 | 98.39 37 | 99.18 33 | 90.94 34 | 99.66 94 | 98.58 36 | 99.85 13 | 99.88 26 |
|
| DeepC-MVS_fast | | 93.52 2 | 97.16 24 | 96.84 29 | 98.13 25 | 99.61 24 | 94.45 52 | 98.85 133 | 97.64 103 | 96.51 16 | 95.88 100 | 99.39 18 | 87.35 94 | 99.99 5 | 96.61 83 | 99.69 39 | 99.96 10 |
| Andreas Kuhn, Christian Sormann, Mattia Rossi, Oliver Erdler, Friedrich Fraundorfer: DeepC-MVS: Deep Confidence Prediction for Multi-View Stereo Reconstruction. 3DV 2020 |
| DELS-MVS | | | 97.12 25 | 96.60 35 | 98.68 11 | 98.03 104 | 96.57 11 | 99.84 9 | 97.84 61 | 96.36 18 | 95.20 117 | 98.24 123 | 88.17 75 | 99.83 73 | 96.11 93 | 99.60 51 | 99.64 65 |
| Christian Sormann, Emanuele Santellani, Mattia Rossi, Andreas Kuhn, Friedrich Fraundorfer: DELS-MVS: Deep Epipolar Line Search for Multi-View Stereo. Winter Conference on Applications of Computer Vision (WACV), 2023 |
| patch_mono-2 | | | 97.10 26 | 97.97 8 | 94.49 180 | 99.21 61 | 83.73 293 | 99.62 38 | 98.25 31 | 95.28 30 | 99.38 6 | 98.91 75 | 92.28 26 | 99.94 35 | 99.61 10 | 99.22 74 | 99.78 38 |
|
| test_fmvsm_n_1920 | | | 97.08 27 | 97.55 14 | 95.67 137 | 97.94 106 | 89.61 164 | 99.93 1 | 98.48 23 | 97.08 5 | 99.08 14 | 99.13 44 | 88.17 75 | 99.93 39 | 99.11 23 | 99.06 79 | 97.47 206 |
|
| CANet | | | 97.00 28 | 96.49 37 | 98.55 12 | 98.86 81 | 96.10 16 | 99.83 10 | 97.52 131 | 95.90 19 | 97.21 70 | 98.90 76 | 82.66 182 | 99.93 39 | 98.71 29 | 98.80 95 | 99.63 67 |
|
| TSAR-MVS + GP. | | | 96.95 29 | 96.91 26 | 97.07 62 | 98.88 80 | 91.62 107 | 99.58 41 | 96.54 219 | 95.09 32 | 96.84 79 | 98.63 101 | 91.16 29 | 99.77 85 | 99.04 24 | 96.42 150 | 99.81 33 |
|
| APD-MVS |  | | 96.95 29 | 96.72 32 | 97.63 41 | 99.51 41 | 93.58 70 | 99.16 95 | 97.44 147 | 90.08 142 | 98.59 32 | 99.07 51 | 89.06 63 | 99.42 123 | 97.92 53 | 99.66 40 | 99.88 26 |
| Yuesong Wang, Zhaojie Zeng and etc.: Adaptive Patch Deformation for Textureless-Resilient Multi-View Stereo. CVPR2023 |
| PS-MVSNAJ | | | 96.87 31 | 96.40 40 | 98.29 19 | 97.35 130 | 97.29 5 | 99.03 117 | 97.11 179 | 95.83 20 | 98.97 19 | 99.14 42 | 82.48 185 | 99.60 103 | 98.60 33 | 99.08 77 | 98.00 192 |
|
| balanced_conf03 | | | 96.83 32 | 96.51 36 | 97.81 36 | 97.60 118 | 95.15 34 | 98.40 190 | 96.77 203 | 93.00 72 | 98.69 28 | 96.19 210 | 89.75 56 | 98.76 161 | 98.45 39 | 99.72 33 | 99.51 79 |
|
| EPNet | | | 96.82 33 | 96.68 34 | 97.25 58 | 98.65 87 | 93.10 80 | 99.48 53 | 98.76 14 | 96.54 13 | 97.84 56 | 98.22 124 | 87.49 87 | 99.66 94 | 95.35 109 | 97.78 124 | 99.00 125 |
| Wanjuan Su, Wenbing Tao: Efficient Edge-Preserving Multi-View Stereo Network for Depth Estimation. AAAI 2023 |
| CHOSEN 280x420 | | | 96.80 34 | 96.85 28 | 96.66 90 | 97.85 109 | 94.42 54 | 94.76 332 | 98.36 28 | 92.50 82 | 95.62 110 | 97.52 150 | 97.92 1 | 97.38 244 | 98.31 45 | 98.80 95 | 98.20 186 |
|
| test_fmvsmconf_n | | | 96.78 35 | 96.84 29 | 96.61 91 | 95.99 195 | 90.25 140 | 99.90 3 | 98.13 42 | 96.68 11 | 98.42 36 | 98.92 74 | 85.34 140 | 99.88 54 | 99.12 22 | 99.08 77 | 99.70 52 |
|
| MVS_111021_HR | | | 96.69 36 | 96.69 33 | 96.72 86 | 98.58 89 | 91.00 125 | 99.14 103 | 99.45 1 | 93.86 54 | 95.15 118 | 98.73 89 | 88.48 70 | 99.76 86 | 97.23 69 | 99.56 53 | 99.40 91 |
|
| xiu_mvs_v2_base | | | 96.66 37 | 96.17 49 | 98.11 28 | 97.11 148 | 96.96 6 | 99.01 120 | 97.04 186 | 95.51 27 | 98.86 23 | 99.11 50 | 82.19 193 | 99.36 130 | 98.59 35 | 98.14 117 | 98.00 192 |
|
| PHI-MVS | | | 96.65 38 | 96.46 39 | 97.21 59 | 99.34 50 | 91.77 104 | 99.70 27 | 98.05 46 | 86.48 247 | 98.05 49 | 99.20 29 | 89.33 61 | 99.96 28 | 98.38 40 | 99.62 47 | 99.90 22 |
|
| ACMMP_NAP | | | 96.59 39 | 96.18 46 | 97.81 36 | 98.82 82 | 93.55 71 | 98.88 132 | 97.59 116 | 90.66 121 | 97.98 53 | 99.14 42 | 86.59 112 | 100.00 1 | 96.47 87 | 99.46 58 | 99.89 25 |
|
| CDPH-MVS | | | 96.56 40 | 96.18 46 | 97.70 39 | 99.59 28 | 93.92 65 | 99.13 106 | 97.44 147 | 89.02 171 | 97.90 55 | 99.22 27 | 88.90 66 | 99.49 112 | 94.63 127 | 99.79 27 | 99.68 57 |
|
| DeepPCF-MVS | | 93.56 1 | 96.55 41 | 97.84 10 | 92.68 230 | 98.71 86 | 78.11 351 | 99.70 27 | 97.71 85 | 98.18 1 | 97.36 66 | 99.76 1 | 90.37 47 | 99.94 35 | 99.27 16 | 99.54 55 | 99.99 1 |
|
| XVS | | | 96.47 42 | 96.37 41 | 96.77 80 | 99.62 22 | 90.66 134 | 99.43 65 | 97.58 118 | 92.41 86 | 96.86 77 | 98.96 67 | 87.37 90 | 99.87 58 | 95.65 100 | 99.43 62 | 99.78 38 |
|
| HFP-MVS | | | 96.42 43 | 96.26 43 | 96.90 74 | 99.69 8 | 90.96 126 | 99.47 55 | 97.81 68 | 90.54 128 | 96.88 76 | 99.05 54 | 87.57 85 | 99.96 28 | 95.65 100 | 99.72 33 | 99.78 38 |
|
| PAPR | | | 96.35 44 | 95.82 59 | 97.94 33 | 99.63 18 | 94.19 61 | 99.42 67 | 97.55 123 | 92.43 83 | 93.82 144 | 99.12 46 | 87.30 95 | 99.91 46 | 94.02 134 | 99.06 79 | 99.74 47 |
|
| PAPM | | | 96.35 44 | 95.94 55 | 97.58 43 | 94.10 264 | 95.25 26 | 98.93 127 | 98.17 36 | 94.26 42 | 93.94 140 | 98.72 91 | 89.68 57 | 97.88 208 | 96.36 88 | 99.29 71 | 99.62 69 |
|
| lupinMVS | | | 96.32 46 | 95.94 55 | 97.44 48 | 95.05 237 | 94.87 39 | 99.86 5 | 96.50 221 | 93.82 57 | 98.04 50 | 98.77 85 | 85.52 132 | 98.09 195 | 96.98 74 | 98.97 85 | 99.37 94 |
|
| region2R | | | 96.30 47 | 96.17 49 | 96.70 87 | 99.70 7 | 90.31 139 | 99.46 59 | 97.66 95 | 90.55 127 | 97.07 74 | 99.07 51 | 86.85 104 | 99.97 21 | 95.43 107 | 99.74 29 | 99.81 33 |
|
| ACMMPR | | | 96.28 48 | 96.14 53 | 96.73 84 | 99.68 9 | 90.47 137 | 99.47 55 | 97.80 70 | 90.54 128 | 96.83 81 | 99.03 56 | 86.51 116 | 99.95 32 | 95.65 100 | 99.72 33 | 99.75 46 |
|
| CP-MVS | | | 96.22 49 | 96.15 52 | 96.42 103 | 99.67 10 | 89.62 163 | 99.70 27 | 97.61 110 | 90.07 143 | 96.00 96 | 99.16 36 | 87.43 88 | 99.92 41 | 96.03 95 | 99.72 33 | 99.70 52 |
|
| fmvsm_s_conf0.5_n | | | 96.19 50 | 96.49 37 | 95.30 151 | 97.37 129 | 89.16 169 | 99.86 5 | 98.47 24 | 95.68 23 | 98.87 22 | 99.15 39 | 82.44 189 | 99.92 41 | 99.14 21 | 97.43 133 | 96.83 226 |
|
| bld_raw_conf03 | | | 96.19 50 | 95.77 64 | 97.46 47 | 97.26 137 | 94.35 57 | 98.26 204 | 96.75 204 | 92.13 93 | 97.84 56 | 96.18 211 | 85.75 130 | 98.53 172 | 98.04 51 | 99.73 31 | 99.49 82 |
|
| SR-MVS | | | 96.13 52 | 96.16 51 | 96.07 120 | 99.42 47 | 89.04 173 | 98.59 167 | 97.33 158 | 90.44 131 | 96.84 79 | 99.12 46 | 86.75 106 | 99.41 126 | 97.47 62 | 99.44 61 | 99.76 45 |
|
| ZNCC-MVS | | | 96.09 53 | 95.81 61 | 96.95 73 | 99.42 47 | 91.19 115 | 99.55 44 | 97.53 127 | 89.72 150 | 95.86 102 | 98.94 73 | 86.59 112 | 99.97 21 | 95.13 114 | 99.56 53 | 99.68 57 |
|
| MTAPA | | | 96.09 53 | 95.80 62 | 96.96 72 | 99.29 55 | 91.19 115 | 97.23 268 | 97.45 144 | 92.58 80 | 94.39 132 | 99.24 25 | 86.43 118 | 99.99 5 | 96.22 89 | 99.40 65 | 99.71 51 |
|
| ETV-MVS | | | 96.00 55 | 96.00 54 | 96.00 124 | 96.56 165 | 91.05 123 | 99.63 37 | 96.61 211 | 93.26 68 | 97.39 65 | 98.30 121 | 86.62 111 | 98.13 192 | 98.07 50 | 97.57 127 | 98.82 146 |
|
| MP-MVS |  | | 96.00 55 | 95.82 59 | 96.54 97 | 99.47 46 | 90.13 147 | 99.36 75 | 97.41 151 | 90.64 124 | 95.49 112 | 98.95 70 | 85.51 134 | 99.98 9 | 96.00 96 | 99.59 52 | 99.52 77 |
| Rongxuan Tan, Qing Wang, et al.: MP-MVS: Multi-Scale Windows PatchMatch and Planar Prior Multi-View Stereo. |
| CS-MVS-test | | | 95.98 57 | 96.34 42 | 94.90 165 | 98.06 103 | 87.66 208 | 99.69 34 | 96.10 248 | 93.66 60 | 98.35 40 | 99.05 54 | 86.28 120 | 97.66 226 | 96.96 75 | 98.90 91 | 99.37 94 |
|
| fmvsm_s_conf0.5_n_a | | | 95.97 58 | 96.19 44 | 95.31 150 | 96.51 169 | 89.01 175 | 99.81 12 | 98.39 26 | 95.46 28 | 99.19 13 | 99.16 36 | 81.44 204 | 99.91 46 | 98.83 28 | 96.97 142 | 97.01 222 |
|
| GST-MVS | | | 95.97 58 | 95.66 68 | 96.90 74 | 99.49 45 | 91.22 113 | 99.45 61 | 97.48 139 | 89.69 151 | 95.89 99 | 98.72 91 | 86.37 119 | 99.95 32 | 94.62 128 | 99.22 74 | 99.52 77 |
|
| WTY-MVS | | | 95.97 58 | 95.11 82 | 98.54 13 | 97.62 115 | 96.65 9 | 99.44 62 | 98.74 15 | 92.25 89 | 95.21 116 | 98.46 116 | 86.56 114 | 99.46 118 | 95.00 119 | 92.69 193 | 99.50 81 |
|
| test_fmvsmconf0.1_n | | | 95.94 61 | 95.79 63 | 96.40 105 | 92.42 301 | 89.92 156 | 99.79 17 | 96.85 198 | 96.53 15 | 97.22 69 | 98.67 97 | 82.71 181 | 99.84 69 | 98.92 27 | 98.98 84 | 99.43 90 |
|
| PVSNet_Blended | | | 95.94 61 | 95.66 68 | 96.75 82 | 98.77 84 | 91.61 108 | 99.88 4 | 98.04 48 | 93.64 62 | 94.21 134 | 97.76 137 | 83.50 160 | 99.87 58 | 97.41 63 | 97.75 125 | 98.79 149 |
|
| mPP-MVS | | | 95.90 63 | 95.75 65 | 96.38 106 | 99.58 30 | 89.41 167 | 99.26 84 | 97.41 151 | 90.66 121 | 94.82 122 | 98.95 70 | 86.15 124 | 99.98 9 | 95.24 113 | 99.64 43 | 99.74 47 |
|
| PGM-MVS | | | 95.85 64 | 95.65 70 | 96.45 101 | 99.50 42 | 89.77 160 | 98.22 208 | 98.90 13 | 89.19 166 | 96.74 84 | 98.95 70 | 85.91 128 | 99.92 41 | 93.94 135 | 99.46 58 | 99.66 61 |
|
| DP-MVS Recon | | | 95.85 64 | 95.15 79 | 97.95 32 | 99.87 2 | 94.38 55 | 99.60 39 | 97.48 139 | 86.58 242 | 94.42 130 | 99.13 44 | 87.36 93 | 99.98 9 | 93.64 142 | 98.33 113 | 99.48 84 |
|
| MP-MVS-pluss | | | 95.80 66 | 95.30 74 | 97.29 55 | 98.95 77 | 92.66 91 | 98.59 167 | 97.14 175 | 88.95 174 | 93.12 153 | 99.25 23 | 85.62 131 | 99.94 35 | 96.56 85 | 99.48 57 | 99.28 103 |
| MP-MVS-pluss: MP-MVS-pluss. MP-MVS-pluss |
| MVS_111021_LR | | | 95.78 67 | 95.94 55 | 95.28 152 | 98.19 99 | 87.69 205 | 98.80 139 | 99.26 7 | 93.39 65 | 95.04 120 | 98.69 96 | 84.09 154 | 99.76 86 | 96.96 75 | 99.06 79 | 98.38 172 |
|
| alignmvs | | | 95.77 68 | 95.00 85 | 98.06 29 | 97.35 130 | 95.68 20 | 99.71 26 | 97.50 136 | 91.50 104 | 96.16 95 | 98.61 103 | 86.28 120 | 99.00 151 | 96.19 90 | 91.74 212 | 99.51 79 |
|
| EI-MVSNet-Vis-set | | | 95.76 69 | 95.63 72 | 96.17 116 | 99.14 64 | 90.33 138 | 98.49 178 | 97.82 65 | 91.92 95 | 94.75 124 | 98.88 80 | 87.06 100 | 99.48 116 | 95.40 108 | 97.17 140 | 98.70 156 |
|
| SR-MVS-dyc-post | | | 95.75 70 | 95.86 58 | 95.41 145 | 99.22 59 | 87.26 224 | 98.40 190 | 97.21 167 | 89.63 153 | 96.67 87 | 98.97 62 | 86.73 108 | 99.36 130 | 96.62 81 | 99.31 69 | 99.60 70 |
|
| CS-MVS | | | 95.75 70 | 96.19 44 | 94.40 184 | 97.88 108 | 86.22 244 | 99.66 35 | 96.12 247 | 92.69 79 | 98.07 48 | 98.89 78 | 87.09 98 | 97.59 232 | 96.71 78 | 98.62 103 | 99.39 93 |
|
| MVSMamba_PlusPlus | | | 95.73 72 | 95.15 79 | 97.44 48 | 97.28 135 | 94.35 57 | 98.26 204 | 96.75 204 | 83.09 301 | 97.84 56 | 95.97 219 | 89.59 58 | 98.48 176 | 97.86 55 | 99.73 31 | 99.49 82 |
|
| dcpmvs_2 | | | 95.67 73 | 96.18 46 | 94.12 196 | 98.82 82 | 84.22 286 | 97.37 261 | 95.45 302 | 90.70 120 | 95.77 105 | 98.63 101 | 90.47 43 | 98.68 167 | 99.20 20 | 99.22 74 | 99.45 87 |
|
| APD-MVS_3200maxsize | | | 95.64 74 | 95.65 70 | 95.62 139 | 99.24 58 | 87.80 204 | 98.42 185 | 97.22 166 | 88.93 176 | 96.64 89 | 98.98 61 | 85.49 135 | 99.36 130 | 96.68 80 | 99.27 72 | 99.70 52 |
|
| fmvsm_s_conf0.1_n | | | 95.56 75 | 95.68 67 | 95.20 154 | 94.35 256 | 89.10 171 | 99.50 51 | 97.67 94 | 94.76 34 | 98.68 29 | 99.03 56 | 81.13 207 | 99.86 63 | 98.63 32 | 97.36 135 | 96.63 229 |
|
| test_fmvsmvis_n_1920 | | | 95.47 76 | 95.40 73 | 95.70 135 | 94.33 257 | 90.22 143 | 99.70 27 | 96.98 193 | 96.80 7 | 92.75 157 | 98.89 78 | 82.46 188 | 99.92 41 | 98.36 41 | 98.33 113 | 96.97 223 |
|
| EI-MVSNet-UG-set | | | 95.43 77 | 95.29 75 | 95.86 130 | 99.07 70 | 89.87 157 | 98.43 184 | 97.80 70 | 91.78 97 | 94.11 136 | 98.77 85 | 86.25 122 | 99.48 116 | 94.95 121 | 96.45 149 | 98.22 184 |
|
| PAPM_NR | | | 95.43 77 | 95.05 84 | 96.57 96 | 99.42 47 | 90.14 145 | 98.58 169 | 97.51 133 | 90.65 123 | 92.44 161 | 98.90 76 | 87.77 84 | 99.90 50 | 90.88 174 | 99.32 68 | 99.68 57 |
|
| HPM-MVS |  | | 95.41 79 | 95.22 77 | 95.99 125 | 99.29 55 | 89.14 170 | 99.17 94 | 97.09 183 | 87.28 227 | 95.40 113 | 98.48 113 | 84.93 144 | 99.38 128 | 95.64 104 | 99.65 41 | 99.47 86 |
| Chunlin Ren, Qingshan Xu, Shikun Zhang, Jiaqi Yang: Hierarchical Prior Mining for Non-local Multi-View Stereo. ICCV 2023 |
| jason | | | 95.40 80 | 94.86 87 | 97.03 64 | 92.91 296 | 94.23 59 | 99.70 27 | 96.30 232 | 93.56 64 | 96.73 85 | 98.52 106 | 81.46 203 | 97.91 205 | 96.08 94 | 98.47 110 | 98.96 129 |
| jason: jason. |
| testing11 | | | 95.33 81 | 94.98 86 | 96.37 107 | 97.20 139 | 92.31 97 | 99.29 80 | 97.68 90 | 90.59 125 | 94.43 129 | 97.20 166 | 90.79 40 | 98.60 170 | 95.25 112 | 92.38 198 | 98.18 187 |
|
| HY-MVS | | 88.56 7 | 95.29 82 | 94.23 97 | 98.48 14 | 97.72 111 | 96.41 13 | 94.03 340 | 98.74 15 | 92.42 85 | 95.65 109 | 94.76 241 | 86.52 115 | 99.49 112 | 95.29 111 | 92.97 189 | 99.53 76 |
|
| test_yl | | | 95.27 83 | 94.60 90 | 97.28 56 | 98.53 90 | 92.98 84 | 99.05 115 | 98.70 18 | 86.76 239 | 94.65 127 | 97.74 139 | 87.78 82 | 99.44 119 | 95.57 105 | 92.61 194 | 99.44 88 |
|
| DCV-MVSNet | | | 95.27 83 | 94.60 90 | 97.28 56 | 98.53 90 | 92.98 84 | 99.05 115 | 98.70 18 | 86.76 239 | 94.65 127 | 97.74 139 | 87.78 82 | 99.44 119 | 95.57 105 | 92.61 194 | 99.44 88 |
|
| fmvsm_s_conf0.1_n_a | | | 95.16 85 | 95.15 79 | 95.18 155 | 92.06 307 | 88.94 179 | 99.29 80 | 97.53 127 | 94.46 38 | 98.98 18 | 98.99 60 | 79.99 213 | 99.85 67 | 98.24 48 | 96.86 144 | 96.73 227 |
|
| EIA-MVS | | | 95.11 86 | 95.27 76 | 94.64 177 | 96.34 178 | 86.51 233 | 99.59 40 | 96.62 210 | 92.51 81 | 94.08 137 | 98.64 99 | 86.05 125 | 98.24 188 | 95.07 116 | 98.50 107 | 99.18 111 |
|
| EC-MVSNet | | | 95.09 87 | 95.17 78 | 94.84 168 | 95.42 214 | 88.17 196 | 99.48 53 | 95.92 268 | 91.47 105 | 97.34 67 | 98.36 118 | 82.77 177 | 97.41 243 | 97.24 68 | 98.58 104 | 98.94 134 |
|
| VNet | | | 95.08 88 | 94.26 96 | 97.55 46 | 98.07 102 | 93.88 66 | 98.68 152 | 98.73 17 | 90.33 134 | 97.16 73 | 97.43 155 | 79.19 223 | 99.53 109 | 96.91 77 | 91.85 210 | 99.24 106 |
|
| sasdasda | | | 95.02 89 | 93.96 110 | 98.20 21 | 97.53 122 | 95.92 17 | 98.71 147 | 96.19 241 | 91.78 97 | 95.86 102 | 98.49 110 | 79.53 218 | 99.03 149 | 96.12 91 | 91.42 224 | 99.66 61 |
|
| canonicalmvs | | | 95.02 89 | 93.96 110 | 98.20 21 | 97.53 122 | 95.92 17 | 98.71 147 | 96.19 241 | 91.78 97 | 95.86 102 | 98.49 110 | 79.53 218 | 99.03 149 | 96.12 91 | 91.42 224 | 99.66 61 |
|
| MGCFI-Net | | | 94.89 91 | 93.84 118 | 98.06 29 | 97.49 125 | 95.55 21 | 98.64 158 | 96.10 248 | 91.60 102 | 95.75 106 | 98.46 116 | 79.31 222 | 98.98 153 | 95.95 97 | 91.24 228 | 99.65 64 |
|
| HPM-MVS_fast | | | 94.89 91 | 94.62 89 | 95.70 135 | 99.11 66 | 88.44 194 | 99.14 103 | 97.11 179 | 85.82 255 | 95.69 108 | 98.47 114 | 83.46 162 | 99.32 135 | 93.16 152 | 99.63 46 | 99.35 96 |
|
| testing91 | | | 94.88 93 | 94.44 93 | 96.21 112 | 97.19 141 | 91.90 103 | 99.23 86 | 97.66 95 | 89.91 146 | 93.66 146 | 97.05 177 | 90.21 50 | 98.50 173 | 93.52 144 | 91.53 221 | 98.25 180 |
|
| testing99 | | | 94.88 93 | 94.45 92 | 96.17 116 | 97.20 139 | 91.91 102 | 99.20 88 | 97.66 95 | 89.95 145 | 93.68 145 | 97.06 175 | 90.28 49 | 98.50 173 | 93.52 144 | 91.54 218 | 98.12 189 |
|
| CSCG | | | 94.87 95 | 94.71 88 | 95.36 146 | 99.54 36 | 86.49 234 | 99.34 77 | 98.15 40 | 82.71 311 | 90.15 199 | 99.25 23 | 89.48 60 | 99.86 63 | 94.97 120 | 98.82 94 | 99.72 50 |
|
| sss | | | 94.85 96 | 93.94 112 | 97.58 43 | 96.43 172 | 94.09 63 | 98.93 127 | 99.16 8 | 89.50 160 | 95.27 115 | 97.85 131 | 81.50 201 | 99.65 98 | 92.79 158 | 94.02 180 | 98.99 126 |
|
| test2506 | | | 94.80 97 | 94.21 98 | 96.58 94 | 96.41 174 | 92.18 100 | 98.01 228 | 98.96 11 | 90.82 118 | 93.46 149 | 97.28 159 | 85.92 126 | 98.45 178 | 89.82 187 | 97.19 138 | 99.12 117 |
|
| API-MVS | | | 94.78 98 | 94.18 101 | 96.59 93 | 99.21 61 | 90.06 152 | 98.80 139 | 97.78 73 | 83.59 293 | 93.85 142 | 99.21 28 | 83.79 157 | 99.97 21 | 92.37 161 | 99.00 83 | 99.74 47 |
|
| thisisatest0515 | | | 94.75 99 | 94.19 99 | 96.43 102 | 96.13 193 | 92.64 94 | 99.47 55 | 97.60 112 | 87.55 223 | 93.17 152 | 97.59 147 | 94.71 11 | 98.42 179 | 88.28 205 | 93.20 186 | 98.24 183 |
|
| xiu_mvs_v1_base_debu | | | 94.73 100 | 93.98 107 | 96.99 67 | 95.19 223 | 95.24 27 | 98.62 161 | 96.50 221 | 92.99 73 | 97.52 61 | 98.83 82 | 72.37 269 | 99.15 141 | 97.03 71 | 96.74 145 | 96.58 232 |
|
| xiu_mvs_v1_base | | | 94.73 100 | 93.98 107 | 96.99 67 | 95.19 223 | 95.24 27 | 98.62 161 | 96.50 221 | 92.99 73 | 97.52 61 | 98.83 82 | 72.37 269 | 99.15 141 | 97.03 71 | 96.74 145 | 96.58 232 |
|
| xiu_mvs_v1_base_debi | | | 94.73 100 | 93.98 107 | 96.99 67 | 95.19 223 | 95.24 27 | 98.62 161 | 96.50 221 | 92.99 73 | 97.52 61 | 98.83 82 | 72.37 269 | 99.15 141 | 97.03 71 | 96.74 145 | 96.58 232 |
|
| MVSFormer | | | 94.71 103 | 94.08 104 | 96.61 91 | 95.05 237 | 94.87 39 | 97.77 242 | 96.17 244 | 86.84 236 | 98.04 50 | 98.52 106 | 85.52 132 | 95.99 309 | 89.83 185 | 98.97 85 | 98.96 129 |
|
| PVSNet_Blended_VisFu | | | 94.67 104 | 94.11 102 | 96.34 109 | 97.14 145 | 91.10 120 | 99.32 79 | 97.43 149 | 92.10 94 | 91.53 176 | 96.38 206 | 83.29 166 | 99.68 92 | 93.42 149 | 96.37 151 | 98.25 180 |
|
| ACMMP |  | | 94.67 104 | 94.30 95 | 95.79 132 | 99.25 57 | 88.13 198 | 98.41 187 | 98.67 21 | 90.38 133 | 91.43 177 | 98.72 91 | 82.22 192 | 99.95 32 | 93.83 139 | 95.76 163 | 99.29 102 |
| Qingshan Xu, Weihang Kong, Wenbing Tao, Marc Pollefeys: Multi-Scale Geometric Consistency Guided and Planar Prior Assisted Multi-View Stereo. IEEE Transactions on Pattern Analysis and Machine Intelligence |
| iter_conf05 | | | 94.60 106 | 93.87 117 | 96.79 79 | 97.28 135 | 94.04 64 | 95.67 324 | 95.94 262 | 83.09 301 | 90.06 200 | 95.97 219 | 89.59 58 | 98.48 176 | 97.86 55 | 99.34 66 | 97.86 196 |
|
| CPTT-MVS | | | 94.60 106 | 94.43 94 | 95.09 158 | 99.66 12 | 86.85 229 | 99.44 62 | 97.47 141 | 83.22 298 | 94.34 133 | 98.96 67 | 82.50 183 | 99.55 106 | 94.81 122 | 99.50 56 | 98.88 139 |
|
| diffmvs |  | | 94.59 108 | 94.19 99 | 95.81 131 | 95.54 210 | 90.69 132 | 98.70 150 | 95.68 289 | 91.61 100 | 95.96 97 | 97.81 133 | 80.11 212 | 98.06 197 | 96.52 86 | 95.76 163 | 98.67 158 |
| Fangjinhua Wang, Qingshan Xu, Yew-Soon Ong, Marc Pollefeys: Lightweight and Accurate Multi-View Stereo With Confidence-Aware Diffusion Model. IEEE T-PAMI 2025 |
| mvsany_test1 | | | 94.57 109 | 95.09 83 | 92.98 221 | 95.84 200 | 82.07 315 | 98.76 145 | 95.24 315 | 92.87 78 | 96.45 90 | 98.71 94 | 84.81 147 | 99.15 141 | 97.68 59 | 95.49 168 | 97.73 198 |
|
| DeepC-MVS | | 91.02 4 | 94.56 110 | 93.92 113 | 96.46 100 | 97.16 144 | 90.76 130 | 98.39 194 | 97.11 179 | 93.92 50 | 88.66 214 | 98.33 119 | 78.14 232 | 99.85 67 | 95.02 117 | 98.57 105 | 98.78 151 |
| Andreas Kuhn, Christian Sormann, Mattia Rossi, Oliver Erdler, Friedrich Fraundorfer: DeepC-MVS: Deep Confidence Prediction for Multi-View Stereo Reconstruction. 3DV 2020 |
| ETVMVS | | | 94.50 111 | 93.90 115 | 96.31 110 | 97.48 126 | 92.98 84 | 99.07 111 | 97.86 59 | 88.09 204 | 94.40 131 | 96.90 184 | 88.35 72 | 97.28 248 | 90.72 179 | 92.25 204 | 98.66 161 |
|
| testing222 | | | 94.48 112 | 94.00 106 | 95.95 127 | 97.30 132 | 92.27 98 | 98.82 136 | 97.92 55 | 89.20 165 | 94.82 122 | 97.26 161 | 87.13 97 | 97.32 247 | 91.95 164 | 91.56 216 | 98.25 180 |
|
| MAR-MVS | | | 94.43 113 | 94.09 103 | 95.45 143 | 99.10 68 | 87.47 214 | 98.39 194 | 97.79 72 | 88.37 193 | 94.02 139 | 99.17 35 | 78.64 229 | 99.91 46 | 92.48 160 | 98.85 93 | 98.96 129 |
| Zhenyu Xu, Yiguang Liu, Xuelei Shi, Ying Wang, Yunan Zheng: MARMVS: Matching Ambiguity Reduced Multiple View Stereo for Efficient Large Scale Scene Reconstruction. CVPR 2020 |
| CHOSEN 1792x2688 | | | 94.35 114 | 93.82 119 | 95.95 127 | 97.40 127 | 88.74 187 | 98.41 187 | 98.27 30 | 92.18 91 | 91.43 177 | 96.40 203 | 78.88 224 | 99.81 79 | 93.59 143 | 97.81 121 | 99.30 101 |
|
| CANet_DTU | | | 94.31 115 | 93.35 130 | 97.20 60 | 97.03 153 | 94.71 47 | 98.62 161 | 95.54 297 | 95.61 25 | 97.21 70 | 98.47 114 | 71.88 274 | 99.84 69 | 88.38 204 | 97.46 132 | 97.04 220 |
|
| mvsmamba | | | 94.27 116 | 93.91 114 | 95.35 147 | 96.42 173 | 88.61 189 | 97.77 242 | 96.38 227 | 91.17 113 | 94.05 138 | 95.27 233 | 78.41 230 | 97.96 204 | 97.36 65 | 98.40 111 | 99.48 84 |
|
| PLC |  | 91.07 3 | 94.23 117 | 94.01 105 | 94.87 166 | 99.17 63 | 87.49 213 | 99.25 85 | 96.55 218 | 88.43 191 | 91.26 181 | 98.21 126 | 85.92 126 | 99.86 63 | 89.77 189 | 97.57 127 | 97.24 213 |
| Jie Liao, Yanping Fu, Qingan Yan, Chunxia xiao: Pyramid Multi-View Stereo with Local Consistency. Pacific Graphics 2019 |
| test_fmvsmconf0.01_n | | | 94.14 118 | 93.51 126 | 96.04 121 | 86.79 372 | 89.19 168 | 99.28 83 | 95.94 262 | 95.70 21 | 95.50 111 | 98.49 110 | 73.27 262 | 99.79 82 | 98.28 46 | 98.32 115 | 99.15 113 |
|
| 114514_t | | | 94.06 119 | 93.05 138 | 97.06 63 | 99.08 69 | 92.26 99 | 98.97 125 | 97.01 191 | 82.58 313 | 92.57 159 | 98.22 124 | 80.68 210 | 99.30 136 | 89.34 195 | 99.02 82 | 99.63 67 |
|
| baseline2 | | | 94.04 120 | 93.80 120 | 94.74 172 | 93.07 295 | 90.25 140 | 98.12 218 | 98.16 39 | 89.86 147 | 86.53 235 | 96.95 181 | 95.56 5 | 98.05 199 | 91.44 168 | 94.53 175 | 95.93 245 |
|
| thisisatest0530 | | | 94.00 121 | 93.52 125 | 95.43 144 | 95.76 203 | 90.02 154 | 98.99 122 | 97.60 112 | 86.58 242 | 91.74 168 | 97.36 158 | 94.78 10 | 98.34 181 | 86.37 226 | 92.48 197 | 97.94 194 |
|
| casdiffmvs_mvg |  | | 94.00 121 | 93.33 131 | 96.03 122 | 95.22 221 | 90.90 128 | 99.09 109 | 95.99 255 | 90.58 126 | 91.55 175 | 97.37 157 | 79.91 214 | 98.06 197 | 95.01 118 | 95.22 170 | 99.13 116 |
| Fangjinhua Wang, Qingshan Xu, Yew-Soon Ong, Marc Pollefeys: Lightweight and Accurate Multi-View Stereo With Confidence-Aware Diffusion Model. IEEE T-PAMI 2025 |
| casdiffmvs |  | | 93.98 123 | 93.43 127 | 95.61 140 | 95.07 236 | 89.86 158 | 98.80 139 | 95.84 281 | 90.98 115 | 92.74 158 | 97.66 144 | 79.71 215 | 98.10 194 | 94.72 125 | 95.37 169 | 98.87 141 |
| Fangjinhua Wang, Qingshan Xu, Yew-Soon Ong, Marc Pollefeys: Lightweight and Accurate Multi-View Stereo With Confidence-Aware Diffusion Model. IEEE T-PAMI 2025 |
| MVS | | | 93.92 124 | 92.28 153 | 98.83 7 | 95.69 205 | 96.82 8 | 96.22 305 | 98.17 36 | 84.89 273 | 84.34 252 | 98.61 103 | 79.32 221 | 99.83 73 | 93.88 137 | 99.43 62 | 99.86 29 |
|
| baseline | | | 93.91 125 | 93.30 132 | 95.72 134 | 95.10 234 | 90.07 149 | 97.48 257 | 95.91 273 | 91.03 114 | 93.54 148 | 97.68 142 | 79.58 216 | 98.02 201 | 94.27 132 | 95.14 171 | 99.08 121 |
|
| OMC-MVS | | | 93.90 126 | 93.62 123 | 94.73 173 | 98.63 88 | 87.00 227 | 98.04 227 | 96.56 217 | 92.19 90 | 92.46 160 | 98.73 89 | 79.49 220 | 99.14 145 | 92.16 163 | 94.34 178 | 98.03 191 |
|
| Effi-MVS+ | | | 93.87 127 | 93.15 136 | 96.02 123 | 95.79 201 | 90.76 130 | 96.70 290 | 95.78 282 | 86.98 233 | 95.71 107 | 97.17 170 | 79.58 216 | 98.01 202 | 94.57 129 | 96.09 158 | 99.31 100 |
|
| test_cas_vis1_n_1920 | | | 93.86 128 | 93.74 121 | 94.22 192 | 95.39 217 | 86.08 250 | 99.73 23 | 96.07 252 | 96.38 17 | 97.19 72 | 97.78 136 | 65.46 324 | 99.86 63 | 96.71 78 | 98.92 89 | 96.73 227 |
|
| TESTMET0.1,1 | | | 93.82 129 | 93.26 134 | 95.49 142 | 95.21 222 | 90.25 140 | 99.15 100 | 97.54 126 | 89.18 167 | 91.79 167 | 94.87 239 | 89.13 62 | 97.63 229 | 86.21 228 | 96.29 155 | 98.60 162 |
|
| AdaColmap |  | | 93.82 129 | 93.06 137 | 96.10 119 | 99.88 1 | 89.07 172 | 98.33 198 | 97.55 123 | 86.81 238 | 90.39 196 | 98.65 98 | 75.09 244 | 99.98 9 | 93.32 150 | 97.53 130 | 99.26 105 |
|
| EPP-MVSNet | | | 93.75 131 | 93.67 122 | 94.01 202 | 95.86 199 | 85.70 262 | 98.67 154 | 97.66 95 | 84.46 278 | 91.36 180 | 97.18 169 | 91.16 29 | 97.79 214 | 92.93 155 | 93.75 182 | 98.53 164 |
|
| thres200 | | | 93.69 132 | 92.59 149 | 96.97 71 | 97.76 110 | 94.74 46 | 99.35 76 | 99.36 2 | 89.23 164 | 91.21 183 | 96.97 180 | 83.42 163 | 98.77 159 | 85.08 240 | 90.96 229 | 97.39 208 |
|
| PVSNet | | 87.13 12 | 93.69 132 | 92.83 144 | 96.28 111 | 97.99 105 | 90.22 143 | 99.38 71 | 98.93 12 | 91.42 108 | 93.66 146 | 97.68 142 | 71.29 281 | 99.64 100 | 87.94 210 | 97.20 137 | 98.98 127 |
|
| HyFIR lowres test | | | 93.68 134 | 93.29 133 | 94.87 166 | 97.57 121 | 88.04 200 | 98.18 212 | 98.47 24 | 87.57 222 | 91.24 182 | 95.05 237 | 85.49 135 | 97.46 239 | 93.22 151 | 92.82 190 | 99.10 119 |
|
| MVS_Test | | | 93.67 135 | 92.67 147 | 96.69 88 | 96.72 162 | 92.66 91 | 97.22 269 | 96.03 254 | 87.69 220 | 95.12 119 | 94.03 249 | 81.55 199 | 98.28 185 | 89.17 199 | 96.46 148 | 99.14 114 |
|
| CNLPA | | | 93.64 136 | 92.74 145 | 96.36 108 | 98.96 76 | 90.01 155 | 99.19 89 | 95.89 276 | 86.22 250 | 89.40 209 | 98.85 81 | 80.66 211 | 99.84 69 | 88.57 202 | 96.92 143 | 99.24 106 |
|
| PMMVS | | | 93.62 137 | 93.90 115 | 92.79 225 | 96.79 160 | 81.40 321 | 98.85 133 | 96.81 199 | 91.25 111 | 96.82 82 | 98.15 128 | 77.02 238 | 98.13 192 | 93.15 153 | 96.30 154 | 98.83 145 |
|
| CDS-MVSNet | | | 93.47 138 | 93.04 139 | 94.76 170 | 94.75 248 | 89.45 166 | 98.82 136 | 97.03 188 | 87.91 211 | 90.97 184 | 96.48 201 | 89.06 63 | 96.36 288 | 89.50 191 | 92.81 192 | 98.49 166 |
| Khang Truong Giang, Soohwan Song, Sungho Jo: Curvature-guided dynamic scale networks for Multi-view Stereo. ICLR 2022 |
| 1314 | | | 93.44 139 | 91.98 161 | 97.84 34 | 95.24 219 | 94.38 55 | 96.22 305 | 97.92 55 | 90.18 137 | 82.28 279 | 97.71 141 | 77.63 235 | 99.80 81 | 91.94 165 | 98.67 101 | 99.34 98 |
|
| tfpn200view9 | | | 93.43 140 | 92.27 154 | 96.90 74 | 97.68 113 | 94.84 41 | 99.18 91 | 99.36 2 | 88.45 188 | 90.79 186 | 96.90 184 | 83.31 164 | 98.75 162 | 84.11 256 | 90.69 231 | 97.12 215 |
|
| 3Dnovator+ | | 87.72 8 | 93.43 140 | 91.84 164 | 98.17 23 | 95.73 204 | 95.08 35 | 98.92 129 | 97.04 186 | 91.42 108 | 81.48 296 | 97.60 146 | 74.60 247 | 99.79 82 | 90.84 175 | 98.97 85 | 99.64 65 |
|
| thres400 | | | 93.39 142 | 92.27 154 | 96.73 84 | 97.68 113 | 94.84 41 | 99.18 91 | 99.36 2 | 88.45 188 | 90.79 186 | 96.90 184 | 83.31 164 | 98.75 162 | 84.11 256 | 90.69 231 | 96.61 230 |
|
| PVSNet_BlendedMVS | | | 93.36 143 | 93.20 135 | 93.84 207 | 98.77 84 | 91.61 108 | 99.47 55 | 98.04 48 | 91.44 106 | 94.21 134 | 92.63 283 | 83.50 160 | 99.87 58 | 97.41 63 | 83.37 279 | 90.05 342 |
|
| thres100view900 | | | 93.34 144 | 92.15 157 | 96.90 74 | 97.62 115 | 94.84 41 | 99.06 114 | 99.36 2 | 87.96 209 | 90.47 194 | 96.78 192 | 83.29 166 | 98.75 162 | 84.11 256 | 90.69 231 | 97.12 215 |
|
| tttt0517 | | | 93.30 145 | 93.01 140 | 94.17 194 | 95.57 208 | 86.47 235 | 98.51 175 | 97.60 112 | 85.99 253 | 90.55 191 | 97.19 168 | 94.80 9 | 98.31 182 | 85.06 241 | 91.86 209 | 97.74 197 |
|
| UA-Net | | | 93.30 145 | 92.62 148 | 95.34 148 | 96.27 181 | 88.53 193 | 95.88 315 | 96.97 194 | 90.90 116 | 95.37 114 | 97.07 174 | 82.38 190 | 99.10 147 | 83.91 260 | 94.86 174 | 98.38 172 |
|
| test-mter | | | 93.27 147 | 92.89 143 | 94.40 184 | 94.94 242 | 87.27 222 | 99.15 100 | 97.25 161 | 88.95 174 | 91.57 172 | 94.04 247 | 88.03 80 | 97.58 233 | 85.94 232 | 96.13 156 | 98.36 176 |
|
| Vis-MVSNet (Re-imp) | | | 93.26 148 | 93.00 141 | 94.06 199 | 96.14 190 | 86.71 232 | 98.68 152 | 96.70 206 | 88.30 197 | 89.71 208 | 97.64 145 | 85.43 138 | 96.39 286 | 88.06 209 | 96.32 152 | 99.08 121 |
|
| UWE-MVS | | | 93.18 149 | 93.40 129 | 92.50 233 | 96.56 165 | 83.55 295 | 98.09 224 | 97.84 61 | 89.50 160 | 91.72 169 | 96.23 209 | 91.08 32 | 96.70 269 | 86.28 227 | 93.33 185 | 97.26 212 |
|
| thres600view7 | | | 93.18 149 | 92.00 160 | 96.75 82 | 97.62 115 | 94.92 36 | 99.07 111 | 99.36 2 | 87.96 209 | 90.47 194 | 96.78 192 | 83.29 166 | 98.71 166 | 82.93 270 | 90.47 235 | 96.61 230 |
|
| 3Dnovator | | 87.35 11 | 93.17 151 | 91.77 166 | 97.37 54 | 95.41 215 | 93.07 81 | 98.82 136 | 97.85 60 | 91.53 103 | 82.56 272 | 97.58 148 | 71.97 273 | 99.82 76 | 91.01 172 | 99.23 73 | 99.22 109 |
|
| test-LLR | | | 93.11 152 | 92.68 146 | 94.40 184 | 94.94 242 | 87.27 222 | 99.15 100 | 97.25 161 | 90.21 135 | 91.57 172 | 94.04 247 | 84.89 145 | 97.58 233 | 85.94 232 | 96.13 156 | 98.36 176 |
|
| test_vis1_n_1920 | | | 93.08 153 | 93.42 128 | 92.04 243 | 96.31 179 | 79.36 338 | 99.83 10 | 96.06 253 | 96.72 9 | 98.53 34 | 98.10 129 | 58.57 349 | 99.91 46 | 97.86 55 | 98.79 98 | 96.85 225 |
|
| IS-MVSNet | | | 93.00 154 | 92.51 150 | 94.49 180 | 96.14 190 | 87.36 218 | 98.31 201 | 95.70 287 | 88.58 184 | 90.17 198 | 97.50 151 | 83.02 173 | 97.22 249 | 87.06 215 | 96.07 160 | 98.90 138 |
|
| CostFormer | | | 92.89 155 | 92.48 151 | 94.12 196 | 94.99 239 | 85.89 257 | 92.89 350 | 97.00 192 | 86.98 233 | 95.00 121 | 90.78 314 | 90.05 53 | 97.51 237 | 92.92 156 | 91.73 213 | 98.96 129 |
|
| tpmrst | | | 92.78 156 | 92.16 156 | 94.65 175 | 96.27 181 | 87.45 215 | 91.83 360 | 97.10 182 | 89.10 170 | 94.68 126 | 90.69 318 | 88.22 74 | 97.73 224 | 89.78 188 | 91.80 211 | 98.77 152 |
|
| MVSTER | | | 92.71 157 | 92.32 152 | 93.86 206 | 97.29 133 | 92.95 87 | 99.01 120 | 96.59 213 | 90.09 141 | 85.51 242 | 94.00 251 | 94.61 14 | 96.56 275 | 90.77 178 | 83.03 281 | 92.08 282 |
|
| 1112_ss | | | 92.71 157 | 91.55 170 | 96.20 113 | 95.56 209 | 91.12 118 | 98.48 180 | 94.69 333 | 88.29 198 | 86.89 232 | 98.50 108 | 87.02 101 | 98.66 168 | 84.75 245 | 89.77 239 | 98.81 147 |
|
| Vis-MVSNet |  | | 92.64 159 | 91.85 163 | 95.03 162 | 95.12 230 | 88.23 195 | 98.48 180 | 96.81 199 | 91.61 100 | 92.16 165 | 97.22 165 | 71.58 279 | 98.00 203 | 85.85 235 | 97.81 121 | 98.88 139 |
| Jingyang Zhang, Yao Yao, Shiwei Li, Zixin Luo, Tian Fang: Visibility-aware Multiview Stereo Network. BMVC 2020 |
| TAMVS | | | 92.62 160 | 92.09 159 | 94.20 193 | 94.10 264 | 87.68 206 | 98.41 187 | 96.97 194 | 87.53 224 | 89.74 206 | 96.04 217 | 84.77 149 | 96.49 281 | 88.97 201 | 92.31 201 | 98.42 168 |
|
| baseline1 | | | 92.61 161 | 91.28 175 | 96.58 94 | 97.05 152 | 94.63 49 | 97.72 247 | 96.20 239 | 89.82 148 | 88.56 215 | 96.85 188 | 86.85 104 | 97.82 212 | 88.42 203 | 80.10 296 | 97.30 210 |
|
| EPMVS | | | 92.59 162 | 91.59 169 | 95.59 141 | 97.22 138 | 90.03 153 | 91.78 361 | 98.04 48 | 90.42 132 | 91.66 171 | 90.65 321 | 86.49 117 | 97.46 239 | 81.78 281 | 96.31 153 | 99.28 103 |
|
| ET-MVSNet_ETH3D | | | 92.56 163 | 91.45 172 | 95.88 129 | 96.39 176 | 94.13 62 | 99.46 59 | 96.97 194 | 92.18 91 | 66.94 381 | 98.29 122 | 94.65 13 | 94.28 352 | 94.34 131 | 83.82 275 | 99.24 106 |
|
| mvs_anonymous | | | 92.50 164 | 91.65 168 | 95.06 159 | 96.60 164 | 89.64 162 | 97.06 274 | 96.44 225 | 86.64 241 | 84.14 253 | 93.93 254 | 82.49 184 | 96.17 303 | 91.47 167 | 96.08 159 | 99.35 96 |
|
| h-mvs33 | | | 92.47 165 | 91.95 162 | 94.05 200 | 97.13 146 | 85.01 276 | 98.36 196 | 98.08 44 | 93.85 55 | 96.27 93 | 96.73 194 | 83.19 169 | 99.43 122 | 95.81 98 | 68.09 366 | 97.70 199 |
|
| test_fmvs1 | | | 92.35 166 | 92.94 142 | 90.57 275 | 97.19 141 | 75.43 360 | 99.55 44 | 94.97 322 | 95.20 31 | 96.82 82 | 97.57 149 | 59.59 347 | 99.84 69 | 97.30 66 | 98.29 116 | 96.46 237 |
|
| BH-w/o | | | 92.32 167 | 91.79 165 | 93.91 205 | 96.85 155 | 86.18 246 | 99.11 108 | 95.74 285 | 88.13 202 | 84.81 246 | 97.00 179 | 77.26 237 | 97.91 205 | 89.16 200 | 98.03 118 | 97.64 200 |
|
| ECVR-MVS |  | | 92.29 168 | 91.33 174 | 95.15 156 | 96.41 174 | 87.84 203 | 98.10 221 | 94.84 326 | 90.82 118 | 91.42 179 | 97.28 159 | 65.61 321 | 98.49 175 | 90.33 181 | 97.19 138 | 99.12 117 |
|
| EPNet_dtu | | | 92.28 169 | 92.15 157 | 92.70 229 | 97.29 133 | 84.84 278 | 98.64 158 | 97.82 65 | 92.91 76 | 93.02 155 | 97.02 178 | 85.48 137 | 95.70 323 | 72.25 347 | 94.89 173 | 97.55 205 |
| Wanjuan Su, Wenbing Tao: Efficient Edge-Preserving Multi-View Stereo Network for Depth Estimation. AAAI 2023 |
| Test_1112_low_res | | | 92.27 170 | 90.97 181 | 96.18 114 | 95.53 211 | 91.10 120 | 98.47 182 | 94.66 334 | 88.28 199 | 86.83 233 | 93.50 267 | 87.00 102 | 98.65 169 | 84.69 246 | 89.74 240 | 98.80 148 |
|
| LFMVS | | | 92.23 171 | 90.84 185 | 96.42 103 | 98.24 96 | 91.08 122 | 98.24 207 | 96.22 238 | 83.39 296 | 94.74 125 | 98.31 120 | 61.12 342 | 98.85 156 | 94.45 130 | 92.82 190 | 99.32 99 |
|
| FA-MVS(test-final) | | | 92.22 172 | 91.08 179 | 95.64 138 | 96.05 194 | 88.98 176 | 91.60 364 | 97.25 161 | 86.99 230 | 91.84 166 | 92.12 286 | 83.03 172 | 99.00 151 | 86.91 220 | 93.91 181 | 98.93 135 |
|
| test1111 | | | 92.12 173 | 91.19 177 | 94.94 164 | 96.15 188 | 87.36 218 | 98.12 218 | 94.84 326 | 90.85 117 | 90.97 184 | 97.26 161 | 65.60 322 | 98.37 180 | 89.74 190 | 97.14 141 | 99.07 123 |
|
| IB-MVS | | 89.43 6 | 92.12 173 | 90.83 187 | 95.98 126 | 95.40 216 | 90.78 129 | 99.81 12 | 98.06 45 | 91.23 112 | 85.63 241 | 93.66 262 | 90.63 41 | 98.78 158 | 91.22 169 | 71.85 355 | 98.36 176 |
| Christian Sormann, Mattia Rossi, Andreas Kuhn and Friedrich Fraundorfer: IB-MVS: An Iterative Algorithm for Deep Multi-View Stereo based on Binary Decisions. BMVC 2021 |
| F-COLMAP | | | 92.07 175 | 91.75 167 | 93.02 220 | 98.16 100 | 82.89 305 | 98.79 143 | 95.97 257 | 86.54 244 | 87.92 219 | 97.80 134 | 78.69 228 | 99.65 98 | 85.97 230 | 95.93 162 | 96.53 235 |
|
| PatchmatchNet |  | | 92.05 176 | 91.04 180 | 95.06 159 | 96.17 187 | 89.04 173 | 91.26 369 | 97.26 160 | 89.56 158 | 90.64 190 | 90.56 327 | 88.35 72 | 97.11 252 | 79.53 294 | 96.07 160 | 99.03 124 |
| Fangjinhua Wang, Silvano Galliani, Christoph Vogel, Pablo Speciale, Marc Pollefeys: PatchmatchNet: Learned Multi-View Patchmatch Stereo. |
| UGNet | | | 91.91 177 | 90.85 184 | 95.10 157 | 97.06 151 | 88.69 188 | 98.01 228 | 98.24 33 | 92.41 86 | 92.39 162 | 93.61 263 | 60.52 344 | 99.68 92 | 88.14 207 | 97.25 136 | 96.92 224 |
| Wanjuan Su, Qingshan Xu, Wenbing Tao: Uncertainty-guided Multi-view Stereo Network for Depth Estimation. IEEE Transactions on Circuits and Systems for Video Technology, 2022 |
| tpm2 | | | 91.77 178 | 91.09 178 | 93.82 208 | 94.83 246 | 85.56 265 | 92.51 355 | 97.16 174 | 84.00 284 | 93.83 143 | 90.66 320 | 87.54 86 | 97.17 250 | 87.73 212 | 91.55 217 | 98.72 154 |
|
| Fast-Effi-MVS+ | | | 91.72 179 | 90.79 188 | 94.49 180 | 95.89 197 | 87.40 217 | 99.54 49 | 95.70 287 | 85.01 271 | 89.28 211 | 95.68 226 | 77.75 234 | 97.57 236 | 83.22 265 | 95.06 172 | 98.51 165 |
|
| hse-mvs2 | | | 91.67 180 | 91.51 171 | 92.15 240 | 96.22 183 | 82.61 311 | 97.74 246 | 97.53 127 | 93.85 55 | 96.27 93 | 96.15 212 | 83.19 169 | 97.44 241 | 95.81 98 | 66.86 373 | 96.40 239 |
|
| HQP-MVS | | | 91.50 181 | 91.23 176 | 92.29 235 | 93.95 269 | 86.39 238 | 99.16 95 | 96.37 228 | 93.92 50 | 87.57 222 | 96.67 197 | 73.34 259 | 97.77 216 | 93.82 140 | 86.29 252 | 92.72 263 |
|
| PatchMatch-RL | | | 91.47 182 | 90.54 192 | 94.26 190 | 98.20 97 | 86.36 240 | 96.94 278 | 97.14 175 | 87.75 216 | 88.98 212 | 95.75 224 | 71.80 276 | 99.40 127 | 80.92 286 | 97.39 134 | 97.02 221 |
|
| BH-untuned | | | 91.46 183 | 90.84 185 | 93.33 215 | 96.51 169 | 84.83 279 | 98.84 135 | 95.50 299 | 86.44 249 | 83.50 257 | 96.70 195 | 75.49 243 | 97.77 216 | 86.78 223 | 97.81 121 | 97.40 207 |
|
| mamv4 | | | 91.41 184 | 93.57 124 | 84.91 348 | 97.11 148 | 58.11 395 | 95.68 323 | 95.93 266 | 82.09 323 | 89.78 205 | 95.71 225 | 90.09 52 | 98.24 188 | 97.26 67 | 98.50 107 | 98.38 172 |
|
| QAPM | | | 91.41 184 | 89.49 205 | 97.17 61 | 95.66 207 | 93.42 75 | 98.60 165 | 97.51 133 | 80.92 337 | 81.39 297 | 97.41 156 | 72.89 266 | 99.87 58 | 82.33 275 | 98.68 100 | 98.21 185 |
|
| FE-MVS | | | 91.38 186 | 90.16 197 | 95.05 161 | 96.46 171 | 87.53 212 | 89.69 378 | 97.84 61 | 82.97 305 | 92.18 164 | 92.00 292 | 84.07 155 | 98.93 155 | 80.71 288 | 95.52 167 | 98.68 157 |
|
| HQP_MVS | | | 91.26 187 | 90.95 182 | 92.16 239 | 93.84 276 | 86.07 252 | 99.02 118 | 96.30 232 | 93.38 66 | 86.99 229 | 96.52 199 | 72.92 264 | 97.75 222 | 93.46 147 | 86.17 255 | 92.67 265 |
|
| PCF-MVS | | 89.78 5 | 91.26 187 | 89.63 202 | 96.16 118 | 95.44 213 | 91.58 110 | 95.29 327 | 96.10 248 | 85.07 268 | 82.75 266 | 97.45 154 | 78.28 231 | 99.78 84 | 80.60 290 | 95.65 166 | 97.12 215 |
| Andreas Kuhn, Shan Lin, Oliver Erdler: Plane Completion and Filtering for Multi-View Stereo Reconstruction. GCPR 2019 |
| BH-RMVSNet | | | 91.25 189 | 89.99 198 | 95.03 162 | 96.75 161 | 88.55 191 | 98.65 156 | 94.95 323 | 87.74 217 | 87.74 221 | 97.80 134 | 68.27 298 | 98.14 191 | 80.53 291 | 97.49 131 | 98.41 169 |
|
| VDD-MVS | | | 91.24 190 | 90.18 196 | 94.45 183 | 97.08 150 | 85.84 260 | 98.40 190 | 96.10 248 | 86.99 230 | 93.36 150 | 98.16 127 | 54.27 366 | 99.20 138 | 96.59 84 | 90.63 234 | 98.31 179 |
|
| SDMVSNet | | | 91.09 191 | 89.91 199 | 94.65 175 | 96.80 158 | 90.54 136 | 97.78 240 | 97.81 68 | 88.34 195 | 85.73 238 | 95.26 234 | 66.44 316 | 98.26 186 | 94.25 133 | 86.75 249 | 95.14 248 |
|
| test_fmvs1_n | | | 91.07 192 | 91.41 173 | 90.06 289 | 94.10 264 | 74.31 364 | 99.18 91 | 94.84 326 | 94.81 33 | 96.37 92 | 97.46 153 | 50.86 377 | 99.82 76 | 97.14 70 | 97.90 119 | 96.04 244 |
|
| CLD-MVS | | | 91.06 193 | 90.71 189 | 92.10 241 | 94.05 268 | 86.10 249 | 99.55 44 | 96.29 235 | 94.16 45 | 84.70 247 | 97.17 170 | 69.62 290 | 97.82 212 | 94.74 124 | 86.08 257 | 92.39 268 |
| Zhaoxin Li, Wangmeng Zuo, Zhaoqi Wang, Lei Zhang: Confidence-based Large-scale Dense Multi-view Stereo. IEEE Transaction on Image Processing, 2020 |
| ab-mvs | | | 91.05 194 | 89.17 211 | 96.69 88 | 95.96 196 | 91.72 106 | 92.62 354 | 97.23 165 | 85.61 259 | 89.74 206 | 93.89 256 | 68.55 295 | 99.42 123 | 91.09 170 | 87.84 244 | 98.92 137 |
|
| XVG-OURS-SEG-HR | | | 90.95 195 | 90.66 191 | 91.83 246 | 95.18 226 | 81.14 328 | 95.92 312 | 95.92 268 | 88.40 192 | 90.33 197 | 97.85 131 | 70.66 284 | 99.38 128 | 92.83 157 | 88.83 241 | 94.98 251 |
|
| cascas | | | 90.93 196 | 89.33 209 | 95.76 133 | 95.69 205 | 93.03 83 | 98.99 122 | 96.59 213 | 80.49 339 | 86.79 234 | 94.45 244 | 65.23 325 | 98.60 170 | 93.52 144 | 92.18 205 | 95.66 247 |
|
| XVG-OURS | | | 90.83 197 | 90.49 193 | 91.86 245 | 95.23 220 | 81.25 325 | 95.79 320 | 95.92 268 | 88.96 173 | 90.02 202 | 98.03 130 | 71.60 278 | 99.35 133 | 91.06 171 | 87.78 245 | 94.98 251 |
|
| TR-MVS | | | 90.77 198 | 89.44 206 | 94.76 170 | 96.31 179 | 88.02 201 | 97.92 232 | 95.96 259 | 85.52 260 | 88.22 218 | 97.23 164 | 66.80 312 | 98.09 195 | 84.58 248 | 92.38 198 | 98.17 188 |
|
| OpenMVS |  | 85.28 14 | 90.75 199 | 88.84 218 | 96.48 99 | 93.58 283 | 93.51 73 | 98.80 139 | 97.41 151 | 82.59 312 | 78.62 325 | 97.49 152 | 68.00 302 | 99.82 76 | 84.52 250 | 98.55 106 | 96.11 243 |
|
| FIs | | | 90.70 200 | 89.87 200 | 93.18 217 | 92.29 302 | 91.12 118 | 98.17 214 | 98.25 31 | 89.11 169 | 83.44 258 | 94.82 240 | 82.26 191 | 96.17 303 | 87.76 211 | 82.76 283 | 92.25 273 |
|
| X-MVStestdata | | | 90.69 201 | 88.66 223 | 96.77 80 | 99.62 22 | 90.66 134 | 99.43 65 | 97.58 118 | 92.41 86 | 96.86 77 | 29.59 412 | 87.37 90 | 99.87 58 | 95.65 100 | 99.43 62 | 99.78 38 |
|
| SCA | | | 90.64 202 | 89.25 210 | 94.83 169 | 94.95 241 | 88.83 183 | 96.26 302 | 97.21 167 | 90.06 144 | 90.03 201 | 90.62 323 | 66.61 313 | 96.81 265 | 83.16 266 | 94.36 177 | 98.84 142 |
|
| GeoE | | | 90.60 203 | 89.56 203 | 93.72 211 | 95.10 234 | 85.43 266 | 99.41 68 | 94.94 324 | 83.96 286 | 87.21 228 | 96.83 191 | 74.37 251 | 97.05 256 | 80.50 292 | 93.73 183 | 98.67 158 |
|
| test_vis1_n | | | 90.40 204 | 90.27 195 | 90.79 270 | 91.55 317 | 76.48 356 | 99.12 107 | 94.44 338 | 94.31 41 | 97.34 67 | 96.95 181 | 43.60 388 | 99.42 123 | 97.57 61 | 97.60 126 | 96.47 236 |
|
| TAPA-MVS | | 87.50 9 | 90.35 205 | 89.05 214 | 94.25 191 | 98.48 92 | 85.17 273 | 98.42 185 | 96.58 216 | 82.44 318 | 87.24 227 | 98.53 105 | 82.77 177 | 98.84 157 | 59.09 386 | 97.88 120 | 98.72 154 |
| Andrea Romanoni, Matteo Matteucci: TAPA-MVS: Textureless-Aware PAtchMatch Multi-View Stereo. ICCV 2019 |
| miper_enhance_ethall | | | 90.33 206 | 89.70 201 | 92.22 236 | 97.12 147 | 88.93 181 | 98.35 197 | 95.96 259 | 88.60 183 | 83.14 264 | 92.33 285 | 87.38 89 | 96.18 302 | 86.49 225 | 77.89 305 | 91.55 297 |
|
| CVMVSNet | | | 90.30 207 | 90.91 183 | 88.46 322 | 94.32 258 | 73.58 368 | 97.61 254 | 97.59 116 | 90.16 140 | 88.43 217 | 97.10 172 | 76.83 239 | 92.86 362 | 82.64 272 | 93.54 184 | 98.93 135 |
|
| nrg030 | | | 90.23 208 | 88.87 217 | 94.32 188 | 91.53 318 | 93.54 72 | 98.79 143 | 95.89 276 | 88.12 203 | 84.55 249 | 94.61 243 | 78.80 227 | 96.88 262 | 92.35 162 | 75.21 320 | 92.53 267 |
|
| FC-MVSNet-test | | | 90.22 209 | 89.40 207 | 92.67 231 | 91.78 314 | 89.86 158 | 97.89 233 | 98.22 34 | 88.81 179 | 82.96 265 | 94.66 242 | 81.90 197 | 95.96 311 | 85.89 234 | 82.52 286 | 92.20 278 |
|
| LS3D | | | 90.19 210 | 88.72 221 | 94.59 179 | 98.97 73 | 86.33 241 | 96.90 280 | 96.60 212 | 74.96 365 | 84.06 255 | 98.74 88 | 75.78 241 | 99.83 73 | 74.93 327 | 97.57 127 | 97.62 203 |
|
| AUN-MVS | | | 90.17 211 | 89.50 204 | 92.19 238 | 96.21 184 | 82.67 309 | 97.76 245 | 97.53 127 | 88.05 205 | 91.67 170 | 96.15 212 | 83.10 171 | 97.47 238 | 88.11 208 | 66.91 372 | 96.43 238 |
|
| dp | | | 90.16 212 | 88.83 219 | 94.14 195 | 96.38 177 | 86.42 236 | 91.57 365 | 97.06 185 | 84.76 275 | 88.81 213 | 90.19 339 | 84.29 152 | 97.43 242 | 75.05 326 | 91.35 227 | 98.56 163 |
|
| GA-MVS | | | 90.10 213 | 88.69 222 | 94.33 187 | 92.44 300 | 87.97 202 | 99.08 110 | 96.26 236 | 89.65 152 | 86.92 231 | 93.11 275 | 68.09 300 | 96.96 258 | 82.54 274 | 90.15 236 | 98.05 190 |
|
| VDDNet | | | 90.08 214 | 88.54 228 | 94.69 174 | 94.41 255 | 87.68 206 | 98.21 210 | 96.40 226 | 76.21 359 | 93.33 151 | 97.75 138 | 54.93 364 | 98.77 159 | 94.71 126 | 90.96 229 | 97.61 204 |
|
| gg-mvs-nofinetune | | | 90.00 215 | 87.71 240 | 96.89 78 | 96.15 188 | 94.69 48 | 85.15 387 | 97.74 77 | 68.32 387 | 92.97 156 | 60.16 400 | 96.10 3 | 96.84 263 | 93.89 136 | 98.87 92 | 99.14 114 |
|
| Effi-MVS+-dtu | | | 89.97 216 | 90.68 190 | 87.81 326 | 95.15 227 | 71.98 375 | 97.87 236 | 95.40 306 | 91.92 95 | 87.57 222 | 91.44 302 | 74.27 253 | 96.84 263 | 89.45 192 | 93.10 188 | 94.60 253 |
|
| EI-MVSNet | | | 89.87 217 | 89.38 208 | 91.36 257 | 94.32 258 | 85.87 258 | 97.61 254 | 96.59 213 | 85.10 266 | 85.51 242 | 97.10 172 | 81.30 206 | 96.56 275 | 83.85 262 | 83.03 281 | 91.64 289 |
|
| OPM-MVS | | | 89.76 218 | 89.15 212 | 91.57 254 | 90.53 330 | 85.58 264 | 98.11 220 | 95.93 266 | 92.88 77 | 86.05 236 | 96.47 202 | 67.06 311 | 97.87 209 | 89.29 198 | 86.08 257 | 91.26 310 |
| Ray L. Khuboni, Hongjun Xu: Octagram Propagation Matching for Multi-Scale View Stereopsis (OPM-MVS). |
| tpm | | | 89.67 219 | 88.95 216 | 91.82 247 | 92.54 299 | 81.43 320 | 92.95 349 | 95.92 268 | 87.81 213 | 90.50 193 | 89.44 346 | 84.99 143 | 95.65 324 | 83.67 263 | 82.71 284 | 98.38 172 |
|
| UniMVSNet_NR-MVSNet | | | 89.60 220 | 88.55 227 | 92.75 227 | 92.17 305 | 90.07 149 | 98.74 146 | 98.15 40 | 88.37 193 | 83.21 260 | 93.98 252 | 82.86 175 | 95.93 313 | 86.95 218 | 72.47 349 | 92.25 273 |
|
| cl22 | | | 89.57 221 | 88.79 220 | 91.91 244 | 97.94 106 | 87.62 209 | 97.98 230 | 96.51 220 | 85.03 269 | 82.37 278 | 91.79 295 | 83.65 158 | 96.50 279 | 85.96 231 | 77.89 305 | 91.61 294 |
|
| PS-MVSNAJss | | | 89.54 222 | 89.05 214 | 91.00 263 | 88.77 352 | 84.36 284 | 97.39 258 | 95.97 257 | 88.47 185 | 81.88 289 | 93.80 258 | 82.48 185 | 96.50 279 | 89.34 195 | 83.34 280 | 92.15 279 |
|
| UniMVSNet (Re) | | | 89.50 223 | 88.32 231 | 93.03 219 | 92.21 304 | 90.96 126 | 98.90 131 | 98.39 26 | 89.13 168 | 83.22 259 | 92.03 288 | 81.69 198 | 96.34 294 | 86.79 222 | 72.53 348 | 91.81 287 |
|
| sd_testset | | | 89.23 224 | 88.05 237 | 92.74 228 | 96.80 158 | 85.33 269 | 95.85 318 | 97.03 188 | 88.34 195 | 85.73 238 | 95.26 234 | 61.12 342 | 97.76 221 | 85.61 236 | 86.75 249 | 95.14 248 |
|
| tpmvs | | | 89.16 225 | 87.76 238 | 93.35 214 | 97.19 141 | 84.75 280 | 90.58 376 | 97.36 156 | 81.99 324 | 84.56 248 | 89.31 349 | 83.98 156 | 98.17 190 | 74.85 329 | 90.00 238 | 97.12 215 |
|
| VPA-MVSNet | | | 89.10 226 | 87.66 241 | 93.45 213 | 92.56 298 | 91.02 124 | 97.97 231 | 98.32 29 | 86.92 235 | 86.03 237 | 92.01 290 | 68.84 294 | 97.10 254 | 90.92 173 | 75.34 319 | 92.23 275 |
|
| ADS-MVSNet | | | 88.99 227 | 87.30 246 | 94.07 198 | 96.21 184 | 87.56 211 | 87.15 382 | 96.78 202 | 83.01 303 | 89.91 203 | 87.27 362 | 78.87 225 | 97.01 257 | 74.20 334 | 92.27 202 | 97.64 200 |
|
| test0.0.03 1 | | | 88.96 228 | 88.61 224 | 90.03 293 | 91.09 324 | 84.43 283 | 98.97 125 | 97.02 190 | 90.21 135 | 80.29 306 | 96.31 208 | 84.89 145 | 91.93 376 | 72.98 343 | 85.70 260 | 93.73 255 |
|
| miper_ehance_all_eth | | | 88.94 229 | 88.12 235 | 91.40 255 | 95.32 218 | 86.93 228 | 97.85 237 | 95.55 296 | 84.19 281 | 81.97 287 | 91.50 301 | 84.16 153 | 95.91 316 | 84.69 246 | 77.89 305 | 91.36 305 |
|
| tpm cat1 | | | 88.89 230 | 87.27 247 | 93.76 209 | 95.79 201 | 85.32 270 | 90.76 374 | 97.09 183 | 76.14 360 | 85.72 240 | 88.59 352 | 82.92 174 | 98.04 200 | 76.96 313 | 91.43 223 | 97.90 195 |
|
| LPG-MVS_test | | | 88.86 231 | 88.47 229 | 90.06 289 | 93.35 290 | 80.95 330 | 98.22 208 | 95.94 262 | 87.73 218 | 83.17 262 | 96.11 214 | 66.28 317 | 97.77 216 | 90.19 183 | 85.19 262 | 91.46 300 |
|
| Anonymous202405211 | | | 88.84 232 | 87.03 251 | 94.27 189 | 98.14 101 | 84.18 287 | 98.44 183 | 95.58 295 | 76.79 358 | 89.34 210 | 96.88 187 | 53.42 369 | 99.54 108 | 87.53 214 | 87.12 248 | 99.09 120 |
|
| Fast-Effi-MVS+-dtu | | | 88.84 232 | 88.59 226 | 89.58 304 | 93.44 288 | 78.18 349 | 98.65 156 | 94.62 335 | 88.46 187 | 84.12 254 | 95.37 232 | 68.91 292 | 96.52 278 | 82.06 278 | 91.70 214 | 94.06 254 |
|
| DU-MVS | | | 88.83 234 | 87.51 242 | 92.79 225 | 91.46 319 | 90.07 149 | 98.71 147 | 97.62 109 | 88.87 178 | 83.21 260 | 93.68 260 | 74.63 245 | 95.93 313 | 86.95 218 | 72.47 349 | 92.36 269 |
|
| CR-MVSNet | | | 88.83 234 | 87.38 245 | 93.16 218 | 93.47 285 | 86.24 242 | 84.97 389 | 94.20 346 | 88.92 177 | 90.76 188 | 86.88 366 | 84.43 150 | 94.82 344 | 70.64 351 | 92.17 206 | 98.41 169 |
|
| FMVSNet3 | | | 88.81 236 | 87.08 250 | 93.99 203 | 96.52 168 | 94.59 50 | 98.08 225 | 96.20 239 | 85.85 254 | 82.12 282 | 91.60 299 | 74.05 255 | 95.40 332 | 79.04 298 | 80.24 293 | 91.99 285 |
|
| ACMM | | 86.95 13 | 88.77 237 | 88.22 233 | 90.43 280 | 93.61 282 | 81.34 323 | 98.50 176 | 95.92 268 | 87.88 212 | 83.85 256 | 95.20 236 | 67.20 309 | 97.89 207 | 86.90 221 | 84.90 264 | 92.06 283 |
| Qingshan Xu and Wenbing Tao: Multi-Scale Geometric Consistency Guided Multi-View Stereo. CVPR 2019 |
| DP-MVS | | | 88.75 238 | 86.56 257 | 95.34 148 | 98.92 78 | 87.45 215 | 97.64 253 | 93.52 357 | 70.55 378 | 81.49 295 | 97.25 163 | 74.43 250 | 99.88 54 | 71.14 350 | 94.09 179 | 98.67 158 |
|
| ACMP | | 87.39 10 | 88.71 239 | 88.24 232 | 90.12 288 | 93.91 274 | 81.06 329 | 98.50 176 | 95.67 290 | 89.43 162 | 80.37 305 | 95.55 227 | 65.67 319 | 97.83 211 | 90.55 180 | 84.51 266 | 91.47 299 |
| Qingshan Xu and Wenbing Tao: Planar Prior Assisted PatchMatch Multi-View Stereo. AAAI 2020 |
| WB-MVSnew | | | 88.69 240 | 88.34 230 | 89.77 299 | 94.30 262 | 85.99 255 | 98.14 215 | 97.31 159 | 87.15 229 | 87.85 220 | 96.07 216 | 69.91 285 | 95.52 327 | 72.83 345 | 91.47 222 | 87.80 366 |
|
| dmvs_re | | | 88.69 240 | 88.06 236 | 90.59 274 | 93.83 278 | 78.68 345 | 95.75 321 | 96.18 243 | 87.99 208 | 84.48 251 | 96.32 207 | 67.52 306 | 96.94 260 | 84.98 243 | 85.49 261 | 96.14 242 |
|
| myMVS_eth3d | | | 88.68 242 | 89.07 213 | 87.50 330 | 95.14 228 | 79.74 336 | 97.68 250 | 96.66 208 | 86.52 245 | 82.63 269 | 96.84 189 | 85.22 142 | 89.89 383 | 69.43 356 | 91.54 218 | 92.87 261 |
|
| LCM-MVSNet-Re | | | 88.59 243 | 88.61 224 | 88.51 321 | 95.53 211 | 72.68 373 | 96.85 282 | 88.43 393 | 88.45 188 | 73.14 357 | 90.63 322 | 75.82 240 | 94.38 351 | 92.95 154 | 95.71 165 | 98.48 167 |
|
| WR-MVS | | | 88.54 244 | 87.22 249 | 92.52 232 | 91.93 312 | 89.50 165 | 98.56 170 | 97.84 61 | 86.99 230 | 81.87 290 | 93.81 257 | 74.25 254 | 95.92 315 | 85.29 238 | 74.43 329 | 92.12 280 |
|
| IterMVS-LS | | | 88.34 245 | 87.44 243 | 91.04 262 | 94.10 264 | 85.85 259 | 98.10 221 | 95.48 300 | 85.12 265 | 82.03 286 | 91.21 307 | 81.35 205 | 95.63 325 | 83.86 261 | 75.73 317 | 91.63 290 |
| Fangjinhua Wang, Silvano Galliani, Christoph Vogel, Marc Pollefeys: IterMVS: Iterative Probability Estimation for Efficient Multi-View Stereo. |
| VPNet | | | 88.30 246 | 86.57 256 | 93.49 212 | 91.95 310 | 91.35 112 | 98.18 212 | 97.20 171 | 88.61 182 | 84.52 250 | 94.89 238 | 62.21 337 | 96.76 268 | 89.34 195 | 72.26 352 | 92.36 269 |
|
| MSDG | | | 88.29 247 | 86.37 259 | 94.04 201 | 96.90 154 | 86.15 248 | 96.52 293 | 94.36 343 | 77.89 354 | 79.22 320 | 96.95 181 | 69.72 288 | 99.59 104 | 73.20 342 | 92.58 196 | 96.37 240 |
|
| test_djsdf | | | 88.26 248 | 87.73 239 | 89.84 296 | 88.05 361 | 82.21 313 | 97.77 242 | 96.17 244 | 86.84 236 | 82.41 277 | 91.95 294 | 72.07 272 | 95.99 309 | 89.83 185 | 84.50 267 | 91.32 307 |
|
| c3_l | | | 88.19 249 | 87.23 248 | 91.06 261 | 94.97 240 | 86.17 247 | 97.72 247 | 95.38 307 | 83.43 295 | 81.68 294 | 91.37 303 | 82.81 176 | 95.72 322 | 84.04 259 | 73.70 337 | 91.29 309 |
|
| D2MVS | | | 87.96 250 | 87.39 244 | 89.70 301 | 91.84 313 | 83.40 297 | 98.31 201 | 98.49 22 | 88.04 206 | 78.23 331 | 90.26 333 | 73.57 257 | 96.79 267 | 84.21 253 | 83.53 277 | 88.90 358 |
|
| cl____ | | | 87.82 251 | 86.79 255 | 90.89 267 | 94.88 244 | 85.43 266 | 97.81 238 | 95.24 315 | 82.91 310 | 80.71 302 | 91.22 306 | 81.97 196 | 95.84 318 | 81.34 283 | 75.06 321 | 91.40 304 |
|
| DIV-MVS_self_test | | | 87.82 251 | 86.81 254 | 90.87 268 | 94.87 245 | 85.39 268 | 97.81 238 | 95.22 320 | 82.92 309 | 80.76 301 | 91.31 305 | 81.99 194 | 95.81 320 | 81.36 282 | 75.04 322 | 91.42 303 |
|
| eth_miper_zixun_eth | | | 87.76 253 | 87.00 252 | 90.06 289 | 94.67 250 | 82.65 310 | 97.02 277 | 95.37 308 | 84.19 281 | 81.86 292 | 91.58 300 | 81.47 202 | 95.90 317 | 83.24 264 | 73.61 338 | 91.61 294 |
|
| testing3 | | | 87.75 254 | 88.22 233 | 86.36 338 | 94.66 251 | 77.41 354 | 99.52 50 | 97.95 54 | 86.05 252 | 81.12 298 | 96.69 196 | 86.18 123 | 89.31 387 | 61.65 381 | 90.12 237 | 92.35 272 |
|
| TranMVSNet+NR-MVSNet | | | 87.75 254 | 86.31 260 | 92.07 242 | 90.81 327 | 88.56 190 | 98.33 198 | 97.18 172 | 87.76 215 | 81.87 290 | 93.90 255 | 72.45 268 | 95.43 330 | 83.13 268 | 71.30 359 | 92.23 275 |
|
| XXY-MVS | | | 87.75 254 | 86.02 264 | 92.95 223 | 90.46 331 | 89.70 161 | 97.71 249 | 95.90 274 | 84.02 283 | 80.95 299 | 94.05 246 | 67.51 307 | 97.10 254 | 85.16 239 | 78.41 302 | 92.04 284 |
|
| NR-MVSNet | | | 87.74 257 | 86.00 265 | 92.96 222 | 91.46 319 | 90.68 133 | 96.65 291 | 97.42 150 | 88.02 207 | 73.42 354 | 93.68 260 | 77.31 236 | 95.83 319 | 84.26 252 | 71.82 356 | 92.36 269 |
|
| Anonymous20240529 | | | 87.66 258 | 85.58 271 | 93.92 204 | 97.59 119 | 85.01 276 | 98.13 216 | 97.13 177 | 66.69 392 | 88.47 216 | 96.01 218 | 55.09 363 | 99.51 110 | 87.00 217 | 84.12 271 | 97.23 214 |
|
| ADS-MVSNet2 | | | 87.62 259 | 86.88 253 | 89.86 295 | 96.21 184 | 79.14 341 | 87.15 382 | 92.99 360 | 83.01 303 | 89.91 203 | 87.27 362 | 78.87 225 | 92.80 365 | 74.20 334 | 92.27 202 | 97.64 200 |
|
| pmmvs4 | | | 87.58 260 | 86.17 263 | 91.80 248 | 89.58 342 | 88.92 182 | 97.25 266 | 95.28 311 | 82.54 314 | 80.49 304 | 93.17 274 | 75.62 242 | 96.05 308 | 82.75 271 | 78.90 300 | 90.42 333 |
|
| jajsoiax | | | 87.35 261 | 86.51 258 | 89.87 294 | 87.75 366 | 81.74 317 | 97.03 275 | 95.98 256 | 88.47 185 | 80.15 308 | 93.80 258 | 61.47 339 | 96.36 288 | 89.44 193 | 84.47 268 | 91.50 298 |
|
| PVSNet_0 | | 83.28 16 | 87.31 262 | 85.16 277 | 93.74 210 | 94.78 247 | 84.59 281 | 98.91 130 | 98.69 20 | 89.81 149 | 78.59 327 | 93.23 272 | 61.95 338 | 99.34 134 | 94.75 123 | 55.72 393 | 97.30 210 |
|
| v2v482 | | | 87.27 263 | 85.76 268 | 91.78 252 | 89.59 341 | 87.58 210 | 98.56 170 | 95.54 297 | 84.53 277 | 82.51 273 | 91.78 296 | 73.11 263 | 96.47 282 | 82.07 277 | 74.14 335 | 91.30 308 |
|
| mvs_tets | | | 87.09 264 | 86.22 261 | 89.71 300 | 87.87 362 | 81.39 322 | 96.73 289 | 95.90 274 | 88.19 201 | 79.99 310 | 93.61 263 | 59.96 346 | 96.31 296 | 89.40 194 | 84.34 269 | 91.43 302 |
|
| V42 | | | 87.00 265 | 85.68 270 | 90.98 264 | 89.91 335 | 86.08 250 | 98.32 200 | 95.61 293 | 83.67 292 | 82.72 267 | 90.67 319 | 74.00 256 | 96.53 277 | 81.94 280 | 74.28 332 | 90.32 335 |
|
| miper_lstm_enhance | | | 86.90 266 | 86.20 262 | 89.00 316 | 94.53 253 | 81.19 326 | 96.74 288 | 95.24 315 | 82.33 319 | 80.15 308 | 90.51 330 | 81.99 194 | 94.68 348 | 80.71 288 | 73.58 339 | 91.12 313 |
|
| FMVSNet2 | | | 86.90 266 | 84.79 285 | 93.24 216 | 95.11 231 | 92.54 95 | 97.67 252 | 95.86 280 | 82.94 306 | 80.55 303 | 91.17 308 | 62.89 334 | 95.29 334 | 77.23 310 | 79.71 299 | 91.90 286 |
|
| v1144 | | | 86.83 268 | 85.31 276 | 91.40 255 | 89.75 339 | 87.21 226 | 98.31 201 | 95.45 302 | 83.22 298 | 82.70 268 | 90.78 314 | 73.36 258 | 96.36 288 | 79.49 295 | 74.69 326 | 90.63 330 |
|
| MS-PatchMatch | | | 86.75 269 | 85.92 266 | 89.22 311 | 91.97 308 | 82.47 312 | 96.91 279 | 96.14 246 | 83.74 289 | 77.73 332 | 93.53 266 | 58.19 351 | 97.37 246 | 76.75 316 | 98.35 112 | 87.84 364 |
|
| anonymousdsp | | | 86.69 270 | 85.75 269 | 89.53 305 | 86.46 374 | 82.94 302 | 96.39 296 | 95.71 286 | 83.97 285 | 79.63 315 | 90.70 317 | 68.85 293 | 95.94 312 | 86.01 229 | 84.02 272 | 89.72 348 |
|
| GBi-Net | | | 86.67 271 | 84.96 279 | 91.80 248 | 95.11 231 | 88.81 184 | 96.77 284 | 95.25 312 | 82.94 306 | 82.12 282 | 90.25 334 | 62.89 334 | 94.97 339 | 79.04 298 | 80.24 293 | 91.62 291 |
|
| test1 | | | 86.67 271 | 84.96 279 | 91.80 248 | 95.11 231 | 88.81 184 | 96.77 284 | 95.25 312 | 82.94 306 | 82.12 282 | 90.25 334 | 62.89 334 | 94.97 339 | 79.04 298 | 80.24 293 | 91.62 291 |
|
| MVP-Stereo | | | 86.61 273 | 85.83 267 | 88.93 318 | 88.70 354 | 83.85 292 | 96.07 309 | 94.41 342 | 82.15 322 | 75.64 343 | 91.96 293 | 67.65 305 | 96.45 284 | 77.20 312 | 98.72 99 | 86.51 376 |
| Qingsong Yan: MVP-Stereo: A Parallel Multi-View Patchmatch Stereo Method with Dilation Matching for Photogrammetric Application. |
| CP-MVSNet | | | 86.54 274 | 85.45 274 | 89.79 298 | 91.02 326 | 82.78 308 | 97.38 260 | 97.56 122 | 85.37 262 | 79.53 317 | 93.03 276 | 71.86 275 | 95.25 335 | 79.92 293 | 73.43 343 | 91.34 306 |
|
| WR-MVS_H | | | 86.53 275 | 85.49 273 | 89.66 303 | 91.04 325 | 83.31 299 | 97.53 256 | 98.20 35 | 84.95 272 | 79.64 314 | 90.90 312 | 78.01 233 | 95.33 333 | 76.29 319 | 72.81 345 | 90.35 334 |
|
| tt0805 | | | 86.50 276 | 84.79 285 | 91.63 253 | 91.97 308 | 81.49 319 | 96.49 294 | 97.38 154 | 82.24 320 | 82.44 274 | 95.82 223 | 51.22 374 | 98.25 187 | 84.55 249 | 80.96 292 | 95.13 250 |
|
| v144192 | | | 86.40 277 | 84.89 282 | 90.91 265 | 89.48 345 | 85.59 263 | 98.21 210 | 95.43 305 | 82.45 317 | 82.62 271 | 90.58 326 | 72.79 267 | 96.36 288 | 78.45 305 | 74.04 336 | 90.79 322 |
|
| v148 | | | 86.38 278 | 85.06 278 | 90.37 284 | 89.47 346 | 84.10 288 | 98.52 172 | 95.48 300 | 83.80 288 | 80.93 300 | 90.22 337 | 74.60 247 | 96.31 296 | 80.92 286 | 71.55 357 | 90.69 328 |
|
| v1192 | | | 86.32 279 | 84.71 287 | 91.17 259 | 89.53 344 | 86.40 237 | 98.13 216 | 95.44 304 | 82.52 315 | 82.42 276 | 90.62 323 | 71.58 279 | 96.33 295 | 77.23 310 | 74.88 323 | 90.79 322 |
|
| Patchmatch-test | | | 86.25 280 | 84.06 297 | 92.82 224 | 94.42 254 | 82.88 306 | 82.88 396 | 94.23 345 | 71.58 374 | 79.39 318 | 90.62 323 | 89.00 65 | 96.42 285 | 63.03 377 | 91.37 226 | 99.16 112 |
|
| v8 | | | 86.11 281 | 84.45 292 | 91.10 260 | 89.99 334 | 86.85 229 | 97.24 267 | 95.36 309 | 81.99 324 | 79.89 312 | 89.86 342 | 74.53 249 | 96.39 286 | 78.83 302 | 72.32 351 | 90.05 342 |
|
| v1921920 | | | 86.02 282 | 84.44 293 | 90.77 271 | 89.32 347 | 85.20 271 | 98.10 221 | 95.35 310 | 82.19 321 | 82.25 280 | 90.71 316 | 70.73 282 | 96.30 299 | 76.85 315 | 74.49 328 | 90.80 321 |
|
| JIA-IIPM | | | 85.97 283 | 84.85 283 | 89.33 310 | 93.23 292 | 73.68 367 | 85.05 388 | 97.13 177 | 69.62 383 | 91.56 174 | 68.03 398 | 88.03 80 | 96.96 258 | 77.89 308 | 93.12 187 | 97.34 209 |
|
| pmmvs5 | | | 85.87 284 | 84.40 295 | 90.30 285 | 88.53 356 | 84.23 285 | 98.60 165 | 93.71 353 | 81.53 329 | 80.29 306 | 92.02 289 | 64.51 327 | 95.52 327 | 82.04 279 | 78.34 303 | 91.15 312 |
|
| XVG-ACMP-BASELINE | | | 85.86 285 | 84.95 281 | 88.57 320 | 89.90 336 | 77.12 355 | 94.30 336 | 95.60 294 | 87.40 226 | 82.12 282 | 92.99 278 | 53.42 369 | 97.66 226 | 85.02 242 | 83.83 273 | 90.92 318 |
|
| Baseline_NR-MVSNet | | | 85.83 286 | 84.82 284 | 88.87 319 | 88.73 353 | 83.34 298 | 98.63 160 | 91.66 377 | 80.41 342 | 82.44 274 | 91.35 304 | 74.63 245 | 95.42 331 | 84.13 255 | 71.39 358 | 87.84 364 |
|
| PS-CasMVS | | | 85.81 287 | 84.58 290 | 89.49 308 | 90.77 328 | 82.11 314 | 97.20 270 | 97.36 156 | 84.83 274 | 79.12 322 | 92.84 279 | 67.42 308 | 95.16 337 | 78.39 306 | 73.25 344 | 91.21 311 |
|
| IterMVS | | | 85.81 287 | 84.67 288 | 89.22 311 | 93.51 284 | 83.67 294 | 96.32 299 | 94.80 329 | 85.09 267 | 78.69 323 | 90.17 340 | 66.57 315 | 93.17 361 | 79.48 296 | 77.42 311 | 90.81 320 |
| Fangjinhua Wang, Silvano Galliani, Christoph Vogel, Marc Pollefeys: IterMVS: Iterative Probability Estimation for Efficient Multi-View Stereo. |
| v1240 | | | 85.77 289 | 84.11 296 | 90.73 272 | 89.26 348 | 85.15 274 | 97.88 235 | 95.23 319 | 81.89 327 | 82.16 281 | 90.55 328 | 69.60 291 | 96.31 296 | 75.59 324 | 74.87 324 | 90.72 327 |
|
| IterMVS-SCA-FT | | | 85.73 290 | 84.64 289 | 89.00 316 | 93.46 287 | 82.90 304 | 96.27 300 | 94.70 332 | 85.02 270 | 78.62 325 | 90.35 332 | 66.61 313 | 93.33 358 | 79.38 297 | 77.36 312 | 90.76 324 |
|
| v10 | | | 85.73 290 | 84.01 298 | 90.87 268 | 90.03 333 | 86.73 231 | 97.20 270 | 95.22 320 | 81.25 332 | 79.85 313 | 89.75 343 | 73.30 261 | 96.28 300 | 76.87 314 | 72.64 347 | 89.61 350 |
|
| UniMVSNet_ETH3D | | | 85.65 292 | 83.79 300 | 91.21 258 | 90.41 332 | 80.75 332 | 95.36 326 | 95.78 282 | 78.76 348 | 81.83 293 | 94.33 245 | 49.86 379 | 96.66 270 | 84.30 251 | 83.52 278 | 96.22 241 |
|
| PatchT | | | 85.44 293 | 83.19 303 | 92.22 236 | 93.13 294 | 83.00 301 | 83.80 395 | 96.37 228 | 70.62 377 | 90.55 191 | 79.63 390 | 84.81 147 | 94.87 342 | 58.18 388 | 91.59 215 | 98.79 149 |
|
| RPSCF | | | 85.33 294 | 85.55 272 | 84.67 351 | 94.63 252 | 62.28 390 | 93.73 342 | 93.76 351 | 74.38 368 | 85.23 245 | 97.06 175 | 64.09 328 | 98.31 182 | 80.98 284 | 86.08 257 | 93.41 259 |
|
| PEN-MVS | | | 85.21 295 | 83.93 299 | 89.07 315 | 89.89 337 | 81.31 324 | 97.09 273 | 97.24 164 | 84.45 279 | 78.66 324 | 92.68 282 | 68.44 297 | 94.87 342 | 75.98 321 | 70.92 360 | 91.04 315 |
|
| test_fmvs2 | | | 85.10 296 | 85.45 274 | 84.02 354 | 89.85 338 | 65.63 388 | 98.49 178 | 92.59 365 | 90.45 130 | 85.43 244 | 93.32 268 | 43.94 386 | 96.59 273 | 90.81 176 | 84.19 270 | 89.85 346 |
|
| RPMNet | | | 85.07 297 | 81.88 315 | 94.64 177 | 93.47 285 | 86.24 242 | 84.97 389 | 97.21 167 | 64.85 394 | 90.76 188 | 78.80 391 | 80.95 209 | 99.27 137 | 53.76 392 | 92.17 206 | 98.41 169 |
|
| AllTest | | | 84.97 298 | 83.12 304 | 90.52 278 | 96.82 156 | 78.84 343 | 95.89 313 | 92.17 370 | 77.96 352 | 75.94 339 | 95.50 228 | 55.48 359 | 99.18 139 | 71.15 348 | 87.14 246 | 93.55 257 |
|
| USDC | | | 84.74 299 | 82.93 305 | 90.16 287 | 91.73 315 | 83.54 296 | 95.00 330 | 93.30 359 | 88.77 180 | 73.19 356 | 93.30 270 | 53.62 368 | 97.65 228 | 75.88 322 | 81.54 290 | 89.30 353 |
|
| Anonymous20231211 | | | 84.72 300 | 82.65 312 | 90.91 265 | 97.71 112 | 84.55 282 | 97.28 264 | 96.67 207 | 66.88 391 | 79.18 321 | 90.87 313 | 58.47 350 | 96.60 272 | 82.61 273 | 74.20 333 | 91.59 296 |
|
| pm-mvs1 | | | 84.68 301 | 82.78 309 | 90.40 281 | 89.58 342 | 85.18 272 | 97.31 262 | 94.73 331 | 81.93 326 | 76.05 338 | 92.01 290 | 65.48 323 | 96.11 306 | 78.75 303 | 69.14 363 | 89.91 345 |
|
| ACMH | | 83.09 17 | 84.60 302 | 82.61 313 | 90.57 275 | 93.18 293 | 82.94 302 | 96.27 300 | 94.92 325 | 81.01 335 | 72.61 363 | 93.61 263 | 56.54 355 | 97.79 214 | 74.31 332 | 81.07 291 | 90.99 316 |
| Qingshan Xu and Wenbing Tao: Multi-Scale Geometric Consistency Guided Multi-View Stereo. CVPR 2019 |
| LTVRE_ROB | | 81.71 19 | 84.59 303 | 82.72 311 | 90.18 286 | 92.89 297 | 83.18 300 | 93.15 347 | 94.74 330 | 78.99 345 | 75.14 346 | 92.69 281 | 65.64 320 | 97.63 229 | 69.46 355 | 81.82 289 | 89.74 347 |
| Andreas Kuhn, Heiko Hirschmüller, Daniel Scharstein, Helmut Mayer: A TV Prior for High-Quality Scalable Multi-View Stereo Reconstruction. International Journal of Computer Vision 2016 |
| COLMAP_ROB |  | 82.69 18 | 84.54 304 | 82.82 306 | 89.70 301 | 96.72 162 | 78.85 342 | 95.89 313 | 92.83 363 | 71.55 375 | 77.54 334 | 95.89 222 | 59.40 348 | 99.14 145 | 67.26 364 | 88.26 242 | 91.11 314 |
| Johannes L. Schönberger, Enliang Zheng, Marc Pollefeys, Jan-Michael Frahm: Pixelwise View Selection for Unstructured Multi-View Stereo. ECCV 2016 |
| MIMVSNet | | | 84.48 305 | 81.83 316 | 92.42 234 | 91.73 315 | 87.36 218 | 85.52 385 | 94.42 341 | 81.40 330 | 81.91 288 | 87.58 356 | 51.92 372 | 92.81 364 | 73.84 337 | 88.15 243 | 97.08 219 |
|
| our_test_3 | | | 84.47 306 | 82.80 307 | 89.50 306 | 89.01 349 | 83.90 291 | 97.03 275 | 94.56 336 | 81.33 331 | 75.36 345 | 90.52 329 | 71.69 277 | 94.54 350 | 68.81 358 | 76.84 313 | 90.07 340 |
|
| v7n | | | 84.42 307 | 82.75 310 | 89.43 309 | 88.15 359 | 81.86 316 | 96.75 287 | 95.67 290 | 80.53 338 | 78.38 329 | 89.43 347 | 69.89 286 | 96.35 293 | 73.83 338 | 72.13 353 | 90.07 340 |
|
| kuosan | | | 84.40 308 | 83.34 302 | 87.60 328 | 95.87 198 | 79.21 339 | 92.39 356 | 96.87 197 | 76.12 361 | 73.79 351 | 93.98 252 | 81.51 200 | 90.63 379 | 64.13 373 | 75.42 318 | 92.95 260 |
|
| ACMH+ | | 83.78 15 | 84.21 309 | 82.56 314 | 89.15 313 | 93.73 281 | 79.16 340 | 96.43 295 | 94.28 344 | 81.09 334 | 74.00 350 | 94.03 249 | 54.58 365 | 97.67 225 | 76.10 320 | 78.81 301 | 90.63 330 |
|
| EU-MVSNet | | | 84.19 310 | 84.42 294 | 83.52 358 | 88.64 355 | 67.37 386 | 96.04 310 | 95.76 284 | 85.29 263 | 78.44 328 | 93.18 273 | 70.67 283 | 91.48 378 | 75.79 323 | 75.98 315 | 91.70 288 |
|
| DTE-MVSNet | | | 84.14 311 | 82.80 307 | 88.14 323 | 88.95 351 | 79.87 335 | 96.81 283 | 96.24 237 | 83.50 294 | 77.60 333 | 92.52 284 | 67.89 304 | 94.24 353 | 72.64 346 | 69.05 364 | 90.32 335 |
|
| OurMVSNet-221017-0 | | | 84.13 312 | 83.59 301 | 85.77 343 | 87.81 363 | 70.24 380 | 94.89 331 | 93.65 355 | 86.08 251 | 76.53 335 | 93.28 271 | 61.41 340 | 96.14 305 | 80.95 285 | 77.69 310 | 90.93 317 |
|
| Syy-MVS | | | 84.10 313 | 84.53 291 | 82.83 360 | 95.14 228 | 65.71 387 | 97.68 250 | 96.66 208 | 86.52 245 | 82.63 269 | 96.84 189 | 68.15 299 | 89.89 383 | 45.62 398 | 91.54 218 | 92.87 261 |
|
| FMVSNet1 | | | 83.94 314 | 81.32 322 | 91.80 248 | 91.94 311 | 88.81 184 | 96.77 284 | 95.25 312 | 77.98 350 | 78.25 330 | 90.25 334 | 50.37 378 | 94.97 339 | 73.27 341 | 77.81 309 | 91.62 291 |
|
| tfpnnormal | | | 83.65 315 | 81.35 321 | 90.56 277 | 91.37 321 | 88.06 199 | 97.29 263 | 97.87 58 | 78.51 349 | 76.20 336 | 90.91 311 | 64.78 326 | 96.47 282 | 61.71 380 | 73.50 340 | 87.13 373 |
|
| ppachtmachnet_test | | | 83.63 316 | 81.57 319 | 89.80 297 | 89.01 349 | 85.09 275 | 97.13 272 | 94.50 337 | 78.84 346 | 76.14 337 | 91.00 310 | 69.78 287 | 94.61 349 | 63.40 375 | 74.36 330 | 89.71 349 |
|
| Patchmtry | | | 83.61 317 | 81.64 317 | 89.50 306 | 93.36 289 | 82.84 307 | 84.10 392 | 94.20 346 | 69.47 384 | 79.57 316 | 86.88 366 | 84.43 150 | 94.78 345 | 68.48 360 | 74.30 331 | 90.88 319 |
|
| KD-MVS_2432*1600 | | | 82.98 318 | 80.52 327 | 90.38 282 | 94.32 258 | 88.98 176 | 92.87 351 | 95.87 278 | 80.46 340 | 73.79 351 | 87.49 359 | 82.76 179 | 93.29 359 | 70.56 352 | 46.53 402 | 88.87 359 |
|
| miper_refine_blended | | | 82.98 318 | 80.52 327 | 90.38 282 | 94.32 258 | 88.98 176 | 92.87 351 | 95.87 278 | 80.46 340 | 73.79 351 | 87.49 359 | 82.76 179 | 93.29 359 | 70.56 352 | 46.53 402 | 88.87 359 |
|
| SixPastTwentyTwo | | | 82.63 320 | 81.58 318 | 85.79 342 | 88.12 360 | 71.01 378 | 95.17 328 | 92.54 366 | 84.33 280 | 72.93 361 | 92.08 287 | 60.41 345 | 95.61 326 | 74.47 331 | 74.15 334 | 90.75 325 |
|
| testgi | | | 82.29 321 | 81.00 324 | 86.17 340 | 87.24 369 | 74.84 363 | 97.39 258 | 91.62 378 | 88.63 181 | 75.85 342 | 95.42 231 | 46.07 385 | 91.55 377 | 66.87 367 | 79.94 297 | 92.12 280 |
|
| FMVSNet5 | | | 82.29 321 | 80.54 326 | 87.52 329 | 93.79 280 | 84.01 289 | 93.73 342 | 92.47 367 | 76.92 357 | 74.27 348 | 86.15 370 | 63.69 332 | 89.24 388 | 69.07 357 | 74.79 325 | 89.29 354 |
|
| TransMVSNet (Re) | | | 81.97 323 | 79.61 333 | 89.08 314 | 89.70 340 | 84.01 289 | 97.26 265 | 91.85 376 | 78.84 346 | 73.07 360 | 91.62 298 | 67.17 310 | 95.21 336 | 67.50 363 | 59.46 387 | 88.02 363 |
|
| LF4IMVS | | | 81.94 324 | 81.17 323 | 84.25 353 | 87.23 370 | 68.87 385 | 93.35 346 | 91.93 375 | 83.35 297 | 75.40 344 | 93.00 277 | 49.25 382 | 96.65 271 | 78.88 301 | 78.11 304 | 87.22 372 |
|
| Patchmatch-RL test | | | 81.90 325 | 80.13 329 | 87.23 333 | 80.71 390 | 70.12 382 | 84.07 393 | 88.19 394 | 83.16 300 | 70.57 365 | 82.18 381 | 87.18 96 | 92.59 367 | 82.28 276 | 62.78 380 | 98.98 127 |
|
| DSMNet-mixed | | | 81.60 326 | 81.43 320 | 82.10 363 | 84.36 380 | 60.79 391 | 93.63 344 | 86.74 396 | 79.00 344 | 79.32 319 | 87.15 364 | 63.87 330 | 89.78 385 | 66.89 366 | 91.92 208 | 95.73 246 |
|
| dongtai | | | 81.36 327 | 80.61 325 | 83.62 357 | 94.25 263 | 73.32 369 | 95.15 329 | 96.81 199 | 73.56 371 | 69.79 368 | 92.81 280 | 81.00 208 | 86.80 394 | 52.08 395 | 70.06 362 | 90.75 325 |
|
| test_vis1_rt | | | 81.31 328 | 80.05 331 | 85.11 345 | 91.29 322 | 70.66 379 | 98.98 124 | 77.39 408 | 85.76 257 | 68.80 372 | 82.40 379 | 36.56 395 | 99.44 119 | 92.67 159 | 86.55 251 | 85.24 383 |
|
| K. test v3 | | | 81.04 329 | 79.77 332 | 84.83 349 | 87.41 367 | 70.23 381 | 95.60 325 | 93.93 350 | 83.70 291 | 67.51 379 | 89.35 348 | 55.76 357 | 93.58 357 | 76.67 317 | 68.03 367 | 90.67 329 |
|
| Anonymous20231206 | | | 80.76 330 | 79.42 334 | 84.79 350 | 84.78 379 | 72.98 370 | 96.53 292 | 92.97 361 | 79.56 343 | 74.33 347 | 88.83 350 | 61.27 341 | 92.15 373 | 60.59 383 | 75.92 316 | 89.24 355 |
|
| CMPMVS |  | 58.40 21 | 80.48 331 | 80.11 330 | 81.59 366 | 85.10 378 | 59.56 393 | 94.14 339 | 95.95 261 | 68.54 386 | 60.71 390 | 93.31 269 | 55.35 362 | 97.87 209 | 83.06 269 | 84.85 265 | 87.33 370 |
| M. Jancosek, T. Pajdla: Multi-View Reconstruction Preserving Weakly-Supported Surfaces. CVPR 2011 |
| TinyColmap | | | 80.42 332 | 77.94 337 | 87.85 325 | 92.09 306 | 78.58 346 | 93.74 341 | 89.94 387 | 74.99 364 | 69.77 369 | 91.78 296 | 46.09 384 | 97.58 233 | 65.17 372 | 77.89 305 | 87.38 368 |
|
| EG-PatchMatch MVS | | | 79.92 333 | 77.59 338 | 86.90 335 | 87.06 371 | 77.90 353 | 96.20 307 | 94.06 348 | 74.61 366 | 66.53 383 | 88.76 351 | 40.40 393 | 96.20 301 | 67.02 365 | 83.66 276 | 86.61 374 |
|
| pmmvs6 | | | 79.90 334 | 77.31 340 | 87.67 327 | 84.17 381 | 78.13 350 | 95.86 317 | 93.68 354 | 67.94 388 | 72.67 362 | 89.62 345 | 50.98 376 | 95.75 321 | 74.80 330 | 66.04 374 | 89.14 356 |
|
| CL-MVSNet_self_test | | | 79.89 335 | 78.34 336 | 84.54 352 | 81.56 388 | 75.01 361 | 96.88 281 | 95.62 292 | 81.10 333 | 75.86 341 | 85.81 371 | 68.49 296 | 90.26 381 | 63.21 376 | 56.51 391 | 88.35 361 |
|
| MDA-MVSNet_test_wron | | | 79.65 336 | 77.05 341 | 87.45 331 | 87.79 365 | 80.13 333 | 96.25 303 | 94.44 338 | 73.87 369 | 51.80 396 | 87.47 361 | 68.04 301 | 92.12 374 | 66.02 368 | 67.79 369 | 90.09 338 |
|
| YYNet1 | | | 79.64 337 | 77.04 342 | 87.43 332 | 87.80 364 | 79.98 334 | 96.23 304 | 94.44 338 | 73.83 370 | 51.83 395 | 87.53 357 | 67.96 303 | 92.07 375 | 66.00 369 | 67.75 370 | 90.23 337 |
|
| MVS-HIRNet | | | 79.01 338 | 75.13 350 | 90.66 273 | 93.82 279 | 81.69 318 | 85.16 386 | 93.75 352 | 54.54 396 | 74.17 349 | 59.15 402 | 57.46 353 | 96.58 274 | 63.74 374 | 94.38 176 | 93.72 256 |
|
| UnsupCasMVSNet_eth | | | 78.90 339 | 76.67 344 | 85.58 344 | 82.81 386 | 74.94 362 | 91.98 359 | 96.31 231 | 84.64 276 | 65.84 385 | 87.71 355 | 51.33 373 | 92.23 372 | 72.89 344 | 56.50 392 | 89.56 351 |
|
| test_0402 | | | 78.81 340 | 76.33 345 | 86.26 339 | 91.18 323 | 78.44 348 | 95.88 315 | 91.34 381 | 68.55 385 | 70.51 367 | 89.91 341 | 52.65 371 | 94.99 338 | 47.14 397 | 79.78 298 | 85.34 382 |
|
| pmmvs-eth3d | | | 78.71 341 | 76.16 346 | 86.38 337 | 80.25 392 | 81.19 326 | 94.17 338 | 92.13 372 | 77.97 351 | 66.90 382 | 82.31 380 | 55.76 357 | 92.56 368 | 73.63 340 | 62.31 383 | 85.38 380 |
|
| Anonymous20240521 | | | 78.63 342 | 76.90 343 | 83.82 355 | 82.82 385 | 72.86 371 | 95.72 322 | 93.57 356 | 73.55 372 | 72.17 364 | 84.79 373 | 49.69 380 | 92.51 369 | 65.29 371 | 74.50 327 | 86.09 378 |
|
| test20.03 | | | 78.51 343 | 77.48 339 | 81.62 365 | 83.07 384 | 71.03 377 | 96.11 308 | 92.83 363 | 81.66 328 | 69.31 371 | 89.68 344 | 57.53 352 | 87.29 393 | 58.65 387 | 68.47 365 | 86.53 375 |
|
| TDRefinement | | | 78.01 344 | 75.31 348 | 86.10 341 | 70.06 403 | 73.84 366 | 93.59 345 | 91.58 379 | 74.51 367 | 73.08 359 | 91.04 309 | 49.63 381 | 97.12 251 | 74.88 328 | 59.47 386 | 87.33 370 |
|
| OpenMVS_ROB |  | 73.86 20 | 77.99 345 | 75.06 351 | 86.77 336 | 83.81 383 | 77.94 352 | 96.38 297 | 91.53 380 | 67.54 389 | 68.38 374 | 87.13 365 | 43.94 386 | 96.08 307 | 55.03 391 | 81.83 288 | 86.29 377 |
|
| MDA-MVSNet-bldmvs | | | 77.82 346 | 74.75 352 | 87.03 334 | 88.33 357 | 78.52 347 | 96.34 298 | 92.85 362 | 75.57 362 | 48.87 398 | 87.89 354 | 57.32 354 | 92.49 370 | 60.79 382 | 64.80 378 | 90.08 339 |
|
| KD-MVS_self_test | | | 77.47 347 | 75.88 347 | 82.24 361 | 81.59 387 | 68.93 384 | 92.83 353 | 94.02 349 | 77.03 356 | 73.14 357 | 83.39 376 | 55.44 361 | 90.42 380 | 67.95 361 | 57.53 390 | 87.38 368 |
|
| dmvs_testset | | | 77.17 348 | 78.99 335 | 71.71 376 | 87.25 368 | 38.55 413 | 91.44 366 | 81.76 404 | 85.77 256 | 69.49 370 | 95.94 221 | 69.71 289 | 84.37 396 | 52.71 394 | 76.82 314 | 92.21 277 |
|
| new_pmnet | | | 76.02 349 | 73.71 354 | 82.95 359 | 83.88 382 | 72.85 372 | 91.26 369 | 92.26 369 | 70.44 379 | 62.60 388 | 81.37 383 | 47.64 383 | 92.32 371 | 61.85 379 | 72.10 354 | 83.68 388 |
|
| MIMVSNet1 | | | 75.92 350 | 73.30 355 | 83.81 356 | 81.29 389 | 75.57 359 | 92.26 357 | 92.05 373 | 73.09 373 | 67.48 380 | 86.18 369 | 40.87 392 | 87.64 392 | 55.78 390 | 70.68 361 | 88.21 362 |
|
| mvsany_test3 | | | 75.85 351 | 74.52 353 | 79.83 368 | 73.53 400 | 60.64 392 | 91.73 362 | 87.87 395 | 83.91 287 | 70.55 366 | 82.52 378 | 31.12 397 | 93.66 355 | 86.66 224 | 62.83 379 | 85.19 384 |
|
| test_fmvs3 | | | 75.09 352 | 75.19 349 | 74.81 373 | 77.45 396 | 54.08 399 | 95.93 311 | 90.64 384 | 82.51 316 | 73.29 355 | 81.19 384 | 22.29 402 | 86.29 395 | 85.50 237 | 67.89 368 | 84.06 386 |
|
| PM-MVS | | | 74.88 353 | 72.85 356 | 80.98 367 | 78.98 394 | 64.75 389 | 90.81 373 | 85.77 397 | 80.95 336 | 68.23 376 | 82.81 377 | 29.08 399 | 92.84 363 | 76.54 318 | 62.46 382 | 85.36 381 |
|
| new-patchmatchnet | | | 74.80 354 | 72.40 357 | 81.99 364 | 78.36 395 | 72.20 374 | 94.44 334 | 92.36 368 | 77.06 355 | 63.47 387 | 79.98 389 | 51.04 375 | 88.85 389 | 60.53 384 | 54.35 394 | 84.92 385 |
|
| UnsupCasMVSNet_bld | | | 73.85 355 | 70.14 359 | 84.99 347 | 79.44 393 | 75.73 358 | 88.53 379 | 95.24 315 | 70.12 381 | 61.94 389 | 74.81 395 | 41.41 391 | 93.62 356 | 68.65 359 | 51.13 399 | 85.62 379 |
|
| pmmvs3 | | | 72.86 356 | 69.76 361 | 82.17 362 | 73.86 399 | 74.19 365 | 94.20 337 | 89.01 392 | 64.23 395 | 67.72 377 | 80.91 387 | 41.48 390 | 88.65 390 | 62.40 378 | 54.02 395 | 83.68 388 |
|
| test_f | | | 71.94 357 | 70.82 358 | 75.30 372 | 72.77 401 | 53.28 400 | 91.62 363 | 89.66 390 | 75.44 363 | 64.47 386 | 78.31 392 | 20.48 403 | 89.56 386 | 78.63 304 | 66.02 375 | 83.05 391 |
|
| N_pmnet | | | 70.19 358 | 69.87 360 | 71.12 378 | 88.24 358 | 30.63 417 | 95.85 318 | 28.70 416 | 70.18 380 | 68.73 373 | 86.55 368 | 64.04 329 | 93.81 354 | 53.12 393 | 73.46 341 | 88.94 357 |
|
| test_method | | | 70.10 359 | 68.66 362 | 74.41 375 | 86.30 376 | 55.84 397 | 94.47 333 | 89.82 388 | 35.18 404 | 66.15 384 | 84.75 374 | 30.54 398 | 77.96 405 | 70.40 354 | 60.33 385 | 89.44 352 |
|
| APD_test1 | | | 68.93 360 | 66.98 363 | 74.77 374 | 80.62 391 | 53.15 401 | 87.97 380 | 85.01 399 | 53.76 397 | 59.26 391 | 87.52 358 | 25.19 400 | 89.95 382 | 56.20 389 | 67.33 371 | 81.19 392 |
|
| WB-MVS | | | 66.44 361 | 66.29 364 | 66.89 381 | 74.84 397 | 44.93 408 | 93.00 348 | 84.09 402 | 71.15 376 | 55.82 393 | 81.63 382 | 63.79 331 | 80.31 403 | 21.85 407 | 50.47 400 | 75.43 394 |
|
| SSC-MVS | | | 65.42 362 | 65.20 365 | 66.06 382 | 73.96 398 | 43.83 409 | 92.08 358 | 83.54 403 | 69.77 382 | 54.73 394 | 80.92 386 | 63.30 333 | 79.92 404 | 20.48 408 | 48.02 401 | 74.44 395 |
|
| FPMVS | | | 61.57 363 | 60.32 366 | 65.34 383 | 60.14 410 | 42.44 411 | 91.02 372 | 89.72 389 | 44.15 399 | 42.63 402 | 80.93 385 | 19.02 404 | 80.59 402 | 42.50 399 | 72.76 346 | 73.00 396 |
|
| test_vis3_rt | | | 61.29 364 | 58.75 367 | 68.92 380 | 67.41 404 | 52.84 402 | 91.18 371 | 59.23 415 | 66.96 390 | 41.96 403 | 58.44 403 | 11.37 411 | 94.72 347 | 74.25 333 | 57.97 389 | 59.20 402 |
|
| EGC-MVSNET | | | 60.70 365 | 55.37 369 | 76.72 370 | 86.35 375 | 71.08 376 | 89.96 377 | 84.44 401 | 0.38 413 | 1.50 414 | 84.09 375 | 37.30 394 | 88.10 391 | 40.85 402 | 73.44 342 | 70.97 398 |
|
| LCM-MVSNet | | | 60.07 366 | 56.37 368 | 71.18 377 | 54.81 412 | 48.67 405 | 82.17 397 | 89.48 391 | 37.95 402 | 49.13 397 | 69.12 396 | 13.75 410 | 81.76 397 | 59.28 385 | 51.63 398 | 83.10 390 |
|
| PMMVS2 | | | 58.97 367 | 55.07 370 | 70.69 379 | 62.72 407 | 55.37 398 | 85.97 384 | 80.52 405 | 49.48 398 | 45.94 399 | 68.31 397 | 15.73 408 | 80.78 401 | 49.79 396 | 37.12 404 | 75.91 393 |
|
| testf1 | | | 56.38 368 | 53.73 371 | 64.31 385 | 64.84 405 | 45.11 406 | 80.50 398 | 75.94 410 | 38.87 400 | 42.74 400 | 75.07 393 | 11.26 412 | 81.19 399 | 41.11 400 | 53.27 396 | 66.63 399 |
|
| APD_test2 | | | 56.38 368 | 53.73 371 | 64.31 385 | 64.84 405 | 45.11 406 | 80.50 398 | 75.94 410 | 38.87 400 | 42.74 400 | 75.07 393 | 11.26 412 | 81.19 399 | 41.11 400 | 53.27 396 | 66.63 399 |
|
| Gipuma |  | | 54.77 370 | 52.22 374 | 62.40 387 | 86.50 373 | 59.37 394 | 50.20 405 | 90.35 386 | 36.52 403 | 41.20 404 | 49.49 405 | 18.33 406 | 81.29 398 | 32.10 404 | 65.34 376 | 46.54 405 |
| S. Galliani, K. Lasinger, K. Schindler: Massively Parallel Multiview Stereopsis by Surface Normal Diffusion. ICCV 2015 |
| tmp_tt | | | 53.66 371 | 52.86 373 | 56.05 388 | 32.75 416 | 41.97 412 | 73.42 402 | 76.12 409 | 21.91 409 | 39.68 405 | 96.39 205 | 42.59 389 | 65.10 408 | 78.00 307 | 14.92 409 | 61.08 401 |
|
| ANet_high | | | 50.71 372 | 46.17 375 | 64.33 384 | 44.27 414 | 52.30 403 | 76.13 401 | 78.73 406 | 64.95 393 | 27.37 407 | 55.23 404 | 14.61 409 | 67.74 407 | 36.01 403 | 18.23 407 | 72.95 397 |
|
| PMVS |  | 41.42 23 | 45.67 373 | 42.50 376 | 55.17 389 | 34.28 415 | 32.37 415 | 66.24 403 | 78.71 407 | 30.72 405 | 22.04 410 | 59.59 401 | 4.59 414 | 77.85 406 | 27.49 405 | 58.84 388 | 55.29 403 |
| Y. Furukawa, J. Ponce: Accurate, dense, and robust multiview stereopsis. PAMI (2010) |
| MVE |  | 44.00 22 | 41.70 374 | 37.64 379 | 53.90 390 | 49.46 413 | 43.37 410 | 65.09 404 | 66.66 412 | 26.19 408 | 25.77 409 | 48.53 406 | 3.58 416 | 63.35 409 | 26.15 406 | 27.28 405 | 54.97 404 |
| Simon Fuhrmann, Fabian Langguth, Michael Goesele: MVE - A Multi-View Reconstruction Environment. EUROGRAPHICS Workshops on Graphics and Cultural Heritage (2014) |
| E-PMN | | | 41.02 375 | 40.93 377 | 41.29 391 | 61.97 408 | 33.83 414 | 84.00 394 | 65.17 413 | 27.17 406 | 27.56 406 | 46.72 407 | 17.63 407 | 60.41 410 | 19.32 409 | 18.82 406 | 29.61 406 |
|
| EMVS | | | 39.96 376 | 39.88 378 | 40.18 392 | 59.57 411 | 32.12 416 | 84.79 391 | 64.57 414 | 26.27 407 | 26.14 408 | 44.18 410 | 18.73 405 | 59.29 411 | 17.03 410 | 17.67 408 | 29.12 407 |
|
| cdsmvs_eth3d_5k | | | 22.52 377 | 30.03 380 | 0.00 396 | 0.00 419 | 0.00 421 | 0.00 407 | 97.17 173 | 0.00 414 | 0.00 415 | 98.77 85 | 74.35 252 | 0.00 415 | 0.00 414 | 0.00 413 | 0.00 411 |
|
| testmvs | | | 18.81 378 | 23.05 381 | 6.10 395 | 4.48 417 | 2.29 420 | 97.78 240 | 3.00 418 | 3.27 411 | 18.60 411 | 62.71 399 | 1.53 418 | 2.49 414 | 14.26 412 | 1.80 411 | 13.50 409 |
|
| wuyk23d | | | 16.71 379 | 16.73 383 | 16.65 393 | 60.15 409 | 25.22 418 | 41.24 406 | 5.17 417 | 6.56 410 | 5.48 413 | 3.61 413 | 3.64 415 | 22.72 412 | 15.20 411 | 9.52 410 | 1.99 410 |
|
| test123 | | | 16.58 380 | 19.47 382 | 7.91 394 | 3.59 418 | 5.37 419 | 94.32 335 | 1.39 419 | 2.49 412 | 13.98 412 | 44.60 409 | 2.91 417 | 2.65 413 | 11.35 413 | 0.57 412 | 15.70 408 |
|
| ab-mvs-re | | | 8.21 381 | 10.94 384 | 0.00 396 | 0.00 419 | 0.00 421 | 0.00 407 | 0.00 420 | 0.00 414 | 0.00 415 | 98.50 108 | 0.00 419 | 0.00 415 | 0.00 414 | 0.00 413 | 0.00 411 |
|
| pcd_1.5k_mvsjas | | | 6.87 382 | 9.16 385 | 0.00 396 | 0.00 419 | 0.00 421 | 0.00 407 | 0.00 420 | 0.00 414 | 0.00 415 | 0.00 414 | 82.48 185 | 0.00 415 | 0.00 414 | 0.00 413 | 0.00 411 |
|
| test_blank | | | 0.00 383 | 0.00 386 | 0.00 396 | 0.00 419 | 0.00 421 | 0.00 407 | 0.00 420 | 0.00 414 | 0.00 415 | 0.00 414 | 0.00 419 | 0.00 415 | 0.00 414 | 0.00 413 | 0.00 411 |
|
| uanet_test | | | 0.00 383 | 0.00 386 | 0.00 396 | 0.00 419 | 0.00 421 | 0.00 407 | 0.00 420 | 0.00 414 | 0.00 415 | 0.00 414 | 0.00 419 | 0.00 415 | 0.00 414 | 0.00 413 | 0.00 411 |
|
| DCPMVS | | | 0.00 383 | 0.00 386 | 0.00 396 | 0.00 419 | 0.00 421 | 0.00 407 | 0.00 420 | 0.00 414 | 0.00 415 | 0.00 414 | 0.00 419 | 0.00 415 | 0.00 414 | 0.00 413 | 0.00 411 |
|
| sosnet-low-res | | | 0.00 383 | 0.00 386 | 0.00 396 | 0.00 419 | 0.00 421 | 0.00 407 | 0.00 420 | 0.00 414 | 0.00 415 | 0.00 414 | 0.00 419 | 0.00 415 | 0.00 414 | 0.00 413 | 0.00 411 |
|
| sosnet | | | 0.00 383 | 0.00 386 | 0.00 396 | 0.00 419 | 0.00 421 | 0.00 407 | 0.00 420 | 0.00 414 | 0.00 415 | 0.00 414 | 0.00 419 | 0.00 415 | 0.00 414 | 0.00 413 | 0.00 411 |
|
| uncertanet | | | 0.00 383 | 0.00 386 | 0.00 396 | 0.00 419 | 0.00 421 | 0.00 407 | 0.00 420 | 0.00 414 | 0.00 415 | 0.00 414 | 0.00 419 | 0.00 415 | 0.00 414 | 0.00 413 | 0.00 411 |
|
| Regformer | | | 0.00 383 | 0.00 386 | 0.00 396 | 0.00 419 | 0.00 421 | 0.00 407 | 0.00 420 | 0.00 414 | 0.00 415 | 0.00 414 | 0.00 419 | 0.00 415 | 0.00 414 | 0.00 413 | 0.00 411 |
|
| uanet | | | 0.00 383 | 0.00 386 | 0.00 396 | 0.00 419 | 0.00 421 | 0.00 407 | 0.00 420 | 0.00 414 | 0.00 415 | 0.00 414 | 0.00 419 | 0.00 415 | 0.00 414 | 0.00 413 | 0.00 411 |
|
| WAC-MVS | | | | | | | 79.74 336 | | | | | | | | 67.75 362 | | |
|
| FOURS1 | | | | | | 99.50 42 | 88.94 179 | 99.55 44 | 97.47 141 | 91.32 110 | 98.12 46 | | | | | | |
|
| MSC_two_6792asdad | | | | | 99.51 2 | 99.61 24 | 98.60 2 | | 97.69 88 | | | | | 99.98 9 | 99.55 13 | 99.83 15 | 99.96 10 |
|
| PC_three_1452 | | | | | | | | | | 94.60 36 | 99.41 4 | 99.12 46 | 95.50 6 | 99.96 28 | 99.84 2 | 99.92 3 | 99.97 7 |
|
| No_MVS | | | | | 99.51 2 | 99.61 24 | 98.60 2 | | 97.69 88 | | | | | 99.98 9 | 99.55 13 | 99.83 15 | 99.96 10 |
|
| test_one_0601 | | | | | | 99.59 28 | 94.89 37 | | 97.64 103 | 93.14 69 | 98.93 21 | 99.45 14 | 93.45 16 | | | | |
|
| eth-test2 | | | | | | 0.00 419 | | | | | | | | | | | |
|
| eth-test | | | | | | 0.00 419 | | | | | | | | | | | |
|
| ZD-MVS | | | | | | 99.67 10 | 93.28 76 | | 97.61 110 | 87.78 214 | 97.41 64 | 99.16 36 | 90.15 51 | 99.56 105 | 98.35 42 | 99.70 38 | |
|
| RE-MVS-def | | | | 95.70 66 | | 99.22 59 | 87.26 224 | 98.40 190 | 97.21 167 | 89.63 153 | 96.67 87 | 98.97 62 | 85.24 141 | | 96.62 81 | 99.31 69 | 99.60 70 |
|
| IU-MVS | | | | | | 99.63 18 | 95.38 24 | | 97.73 80 | 95.54 26 | 99.54 3 | | | | 99.69 7 | 99.81 23 | 99.99 1 |
|
| OPU-MVS | | | | | 99.49 4 | 99.64 17 | 98.51 4 | 99.77 18 | | | | 99.19 30 | 95.12 7 | 99.97 21 | 99.90 1 | 99.92 3 | 99.99 1 |
|
| test_241102_TWO | | | | | | | | | 97.72 81 | 94.17 43 | 99.23 10 | 99.54 3 | 93.14 22 | 99.98 9 | 99.70 5 | 99.82 19 | 99.99 1 |
|
| test_241102_ONE | | | | | | 99.63 18 | 95.24 27 | | 97.72 81 | 94.16 45 | 99.30 8 | 99.49 9 | 93.32 17 | 99.98 9 | | | |
|
| 9.14 | | | | 96.87 27 | | 99.34 50 | | 99.50 51 | 97.49 138 | 89.41 163 | 98.59 32 | 99.43 16 | 89.78 55 | 99.69 91 | 98.69 30 | 99.62 47 | |
|
| save fliter | | | | | | 99.34 50 | 93.85 67 | 99.65 36 | 97.63 107 | 95.69 22 | | | | | | | |
|
| test_0728_THIRD | | | | | | | | | | 93.01 70 | 99.07 15 | 99.46 10 | 94.66 12 | 99.97 21 | 99.25 18 | 99.82 19 | 99.95 15 |
|
| test_0728_SECOND | | | | | 98.77 8 | 99.66 12 | 96.37 14 | 99.72 24 | 97.68 90 | | | | | 99.98 9 | 99.64 8 | 99.82 19 | 99.96 10 |
|
| test0726 | | | | | | 99.66 12 | 95.20 32 | 99.77 18 | 97.70 86 | 93.95 48 | 99.35 7 | 99.54 3 | 93.18 20 | | | | |
|
| GSMVS | | | | | | | | | | | | | | | | | 98.84 142 |
|
| test_part2 | | | | | | 99.54 36 | 95.42 22 | | | | 98.13 44 | | | | | | |
|
| sam_mvs1 | | | | | | | | | | | | | 88.39 71 | | | | 98.84 142 |
|
| sam_mvs | | | | | | | | | | | | | 87.08 99 | | | | |
|
| ambc | | | | | 79.60 369 | 72.76 402 | 56.61 396 | 76.20 400 | 92.01 374 | | 68.25 375 | 80.23 388 | 23.34 401 | 94.73 346 | 73.78 339 | 60.81 384 | 87.48 367 |
|
| MTGPA |  | | | | | | | | 97.45 144 | | | | | | | | |
|
| test_post1 | | | | | | | | 90.74 375 | | | | 41.37 411 | 85.38 139 | 96.36 288 | 83.16 266 | | |
|
| test_post | | | | | | | | | | | | 46.00 408 | 87.37 90 | 97.11 252 | | | |
|
| patchmatchnet-post | | | | | | | | | | | | 84.86 372 | 88.73 68 | 96.81 265 | | | |
|
| GG-mvs-BLEND | | | | | 96.98 70 | 96.53 167 | 94.81 44 | 87.20 381 | 97.74 77 | | 93.91 141 | 96.40 203 | 96.56 2 | 96.94 260 | 95.08 115 | 98.95 88 | 99.20 110 |
|
| MTMP | | | | | | | | 99.21 87 | 91.09 382 | | | | | | | | |
|
| gm-plane-assit | | | | | | 94.69 249 | 88.14 197 | | | 88.22 200 | | 97.20 166 | | 98.29 184 | 90.79 177 | | |
|
| test9_res | | | | | | | | | | | | | | | 98.60 33 | 99.87 9 | 99.90 22 |
|
| TEST9 | | | | | | 99.57 33 | 93.17 78 | 99.38 71 | 97.66 95 | 89.57 157 | 98.39 37 | 99.18 33 | 90.88 37 | 99.66 94 | | | |
|
| test_8 | | | | | | 99.55 35 | 93.07 81 | 99.37 74 | 97.64 103 | 90.18 137 | 98.36 39 | 99.19 30 | 90.94 34 | 99.64 100 | | | |
|
| agg_prior2 | | | | | | | | | | | | | | | 97.84 58 | 99.87 9 | 99.91 21 |
|
| agg_prior | | | | | | 99.54 36 | 92.66 91 | | 97.64 103 | | 97.98 53 | | | 99.61 102 | | | |
|
| TestCases | | | | | 90.52 278 | 96.82 156 | 78.84 343 | | 92.17 370 | 77.96 352 | 75.94 339 | 95.50 228 | 55.48 359 | 99.18 139 | 71.15 348 | 87.14 246 | 93.55 257 |
|
| test_prior4 | | | | | | | 92.00 101 | 99.41 68 | | | | | | | | | |
|
| test_prior2 | | | | | | | | 99.57 42 | | 91.43 107 | 98.12 46 | 98.97 62 | 90.43 44 | | 98.33 43 | 99.81 23 | |
|
| test_prior | | | | | 97.01 65 | 99.58 30 | 91.77 104 | | 97.57 121 | | | | | 99.49 112 | | | 99.79 36 |
|
| 旧先验2 | | | | | | | | 98.67 154 | | 85.75 258 | 98.96 20 | | | 98.97 154 | 93.84 138 | | |
|
| æ–°å‡ ä½•2 | | | | | | | | 98.26 204 | | | | | | | | | |
|
| æ–°å‡ ä½•1 | | | | | 97.40 52 | 98.92 78 | 92.51 96 | | 97.77 75 | 85.52 260 | 96.69 86 | 99.06 53 | 88.08 79 | 99.89 53 | 84.88 244 | 99.62 47 | 99.79 36 |
|
| 旧先验1 | | | | | | 98.97 73 | 92.90 89 | | 97.74 77 | | | 99.15 39 | 91.05 33 | | | 99.33 67 | 99.60 70 |
|
| æ— å…ˆéªŒ | | | | | | | | 98.52 172 | 97.82 65 | 87.20 228 | | | | 99.90 50 | 87.64 213 | | 99.85 30 |
|
| 原ACMM2 | | | | | | | | 98.69 151 | | | | | | | | | |
|
| 原ACMM1 | | | | | 96.18 114 | 99.03 71 | 90.08 148 | | 97.63 107 | 88.98 172 | 97.00 75 | 98.97 62 | 88.14 78 | 99.71 90 | 88.23 206 | 99.62 47 | 98.76 153 |
|
| test222 | | | | | | 98.32 93 | 91.21 114 | 98.08 225 | 97.58 118 | 83.74 289 | 95.87 101 | 99.02 58 | 86.74 107 | | | 99.64 43 | 99.81 33 |
|
| testdata2 | | | | | | | | | | | | | | 99.88 54 | 84.16 254 | | |
|
| segment_acmp | | | | | | | | | | | | | 90.56 42 | | | | |
|
| testdata | | | | | 95.26 153 | 98.20 97 | 87.28 221 | | 97.60 112 | 85.21 264 | 98.48 35 | 99.15 39 | 88.15 77 | 98.72 165 | 90.29 182 | 99.45 60 | 99.78 38 |
|
| testdata1 | | | | | | | | 97.89 233 | | 92.43 83 | | | | | | | |
|
| test12 | | | | | 97.83 35 | 99.33 53 | 94.45 52 | | 97.55 123 | | 97.56 60 | | 88.60 69 | 99.50 111 | | 99.71 37 | 99.55 74 |
|
| plane_prior7 | | | | | | 93.84 276 | 85.73 261 | | | | | | | | | | |
|
| plane_prior6 | | | | | | 93.92 273 | 86.02 254 | | | | | | 72.92 264 | | | | |
|
| plane_prior5 | | | | | | | | | 96.30 232 | | | | | 97.75 222 | 93.46 147 | 86.17 255 | 92.67 265 |
|
| plane_prior4 | | | | | | | | | | | | 96.52 199 | | | | | |
|
| plane_prior3 | | | | | | | 85.91 256 | | | 93.65 61 | 86.99 229 | | | | | | |
|
| plane_prior2 | | | | | | | | 99.02 118 | | 93.38 66 | | | | | | | |
|
| plane_prior1 | | | | | | 93.90 275 | | | | | | | | | | | |
|
| plane_prior | | | | | | | 86.07 252 | 99.14 103 | | 93.81 58 | | | | | | 86.26 254 | |
|
| n2 | | | | | | | | | 0.00 420 | | | | | | | | |
|
| nn | | | | | | | | | 0.00 420 | | | | | | | | |
|
| door-mid | | | | | | | | | 84.90 400 | | | | | | | | |
|
| lessismore_v0 | | | | | 85.08 346 | 85.59 377 | 69.28 383 | | 90.56 385 | | 67.68 378 | 90.21 338 | 54.21 367 | 95.46 329 | 73.88 336 | 62.64 381 | 90.50 332 |
|
| LGP-MVS_train | | | | | 90.06 289 | 93.35 290 | 80.95 330 | | 95.94 262 | 87.73 218 | 83.17 262 | 96.11 214 | 66.28 317 | 97.77 216 | 90.19 183 | 85.19 262 | 91.46 300 |
|
| test11 | | | | | | | | | 97.68 90 | | | | | | | | |
|
| door | | | | | | | | | 85.30 398 | | | | | | | | |
|
| HQP5-MVS | | | | | | | 86.39 238 | | | | | | | | | | |
|
| HQP-NCC | | | | | | 93.95 269 | | 99.16 95 | | 93.92 50 | 87.57 222 | | | | | | |
|
| ACMP_Plane | | | | | | 93.95 269 | | 99.16 95 | | 93.92 50 | 87.57 222 | | | | | | |
|
| BP-MVS | | | | | | | | | | | | | | | 93.82 140 | | |
|
| HQP4-MVS | | | | | | | | | | | 87.57 222 | | | 97.77 216 | | | 92.72 263 |
|
| HQP3-MVS | | | | | | | | | 96.37 228 | | | | | | | 86.29 252 | |
|
| HQP2-MVS | | | | | | | | | | | | | 73.34 259 | | | | |
|
| NP-MVS | | | | | | 93.94 272 | 86.22 244 | | | | | 96.67 197 | | | | | |
|
| MDTV_nov1_ep13_2view | | | | | | | 91.17 117 | 91.38 367 | | 87.45 225 | 93.08 154 | | 86.67 110 | | 87.02 216 | | 98.95 133 |
|
| MDTV_nov1_ep13 | | | | 90.47 194 | | 96.14 190 | 88.55 191 | 91.34 368 | 97.51 133 | 89.58 156 | 92.24 163 | 90.50 331 | 86.99 103 | 97.61 231 | 77.64 309 | 92.34 200 | |
|
| ACMMP++_ref | | | | | | | | | | | | | | | | 82.64 285 | |
|
| ACMMP++ | | | | | | | | | | | | | | | | 83.83 273 | |
|
| Test By Simon | | | | | | | | | | | | | 83.62 159 | | | | |
|
| ITE_SJBPF | | | | | 87.93 324 | 92.26 303 | 76.44 357 | | 93.47 358 | 87.67 221 | 79.95 311 | 95.49 230 | 56.50 356 | 97.38 244 | 75.24 325 | 82.33 287 | 89.98 344 |
|
| DeepMVS_CX |  | | | | 76.08 371 | 90.74 329 | 51.65 404 | | 90.84 383 | 86.47 248 | 57.89 392 | 87.98 353 | 35.88 396 | 92.60 366 | 65.77 370 | 65.06 377 | 83.97 387 |
|