| SED-MVS | | | 88.94 1 | 90.98 1 | 86.56 1 | 92.53 7 | 95.09 1 | 88.55 5 | 76.83 6 | 94.16 1 | 86.57 1 | 90.85 5 | 87.07 1 | 86.18 1 | 86.36 7 | 85.08 12 | 88.67 21 | 98.21 3 |
|
| DVP-MVS |  | | 88.07 2 | 90.73 2 | 84.97 4 | 91.98 10 | 95.01 2 | 87.86 10 | 76.88 5 | 93.90 2 | 85.15 2 | 90.11 7 | 86.90 2 | 79.46 12 | 86.26 10 | 84.67 18 | 88.50 28 | 98.25 2 |
| Zhenlong Yuan, Jinguo Luo, Fei Shen, Zhaoxin Li, Cong Liu, Tianlu Mao, Zhaoqi Wang: DVP-MVS: Synergize Depth-Edge and Visibility Prior for Multi-View Stereo. AAAI2025 |
| DVP-MVS++ | | | 87.98 3 | 89.76 5 | 85.89 2 | 92.57 6 | 94.57 3 | 88.34 6 | 76.61 7 | 92.40 6 | 83.40 3 | 89.26 10 | 85.57 5 | 86.04 2 | 86.24 11 | 84.89 15 | 88.39 31 | 95.42 20 |
|
| MSP-MVS | | | 87.87 4 | 90.57 3 | 84.73 5 | 89.38 27 | 91.60 17 | 88.24 8 | 74.15 12 | 93.55 3 | 82.28 4 | 94.99 1 | 83.21 12 | 85.96 3 | 87.67 4 | 84.67 18 | 88.32 32 | 98.29 1 |
| Zhenlong Yuan, Cong Liu, Fei Shen, Zhaoxin Li, Jingguo luo, Tianlu Mao and Zhaoqi Wang: MSP-MVS: Multi-granularity Segmentation Prior Guided Multi-View Stereo. AAAI2025 |
| DPE-MVS |  | | 87.60 5 | 90.44 4 | 84.29 7 | 92.09 9 | 93.44 6 | 88.69 4 | 75.11 9 | 93.06 5 | 80.80 6 | 94.23 2 | 86.70 3 | 81.44 7 | 84.84 18 | 83.52 27 | 87.64 49 | 97.28 5 |
| Kehua Chen, Zhenlong Yuan, Tianlu Mao, Zhaoqi Wang: Dual-Level Precision Edges Guided Multi-View Stereo with Accurate Planarization. AAAI2025 |
| SF-MVS | | | 87.30 6 | 88.71 6 | 85.64 3 | 94.57 1 | 94.55 4 | 91.01 1 | 79.94 1 | 89.15 12 | 79.85 7 | 92.37 3 | 83.29 11 | 79.75 9 | 83.52 26 | 82.72 33 | 88.75 20 | 95.37 23 |
|
| APDe-MVS |  | | 86.37 7 | 88.41 8 | 84.00 9 | 91.43 15 | 91.83 15 | 88.34 6 | 74.67 10 | 91.19 7 | 81.76 5 | 91.13 4 | 81.94 19 | 80.07 8 | 83.38 27 | 82.58 35 | 87.69 47 | 96.78 10 |
| Zhaojie Zeng, Yuesong Wang, Tao Guan: Matching Ambiguity-Resilient Multi-View Stereo via Adaptive Patch Deformation. Pattern Recognition |
| CNVR-MVS | | | 85.96 8 | 87.58 11 | 84.06 8 | 92.58 5 | 92.40 11 | 87.62 11 | 77.77 4 | 88.44 14 | 75.93 16 | 79.49 26 | 81.97 18 | 81.65 6 | 87.04 6 | 86.58 4 | 88.79 18 | 97.18 7 |
|
| MCST-MVS | | | 85.75 9 | 86.99 13 | 84.31 6 | 94.07 3 | 92.80 8 | 88.15 9 | 79.10 2 | 85.66 21 | 70.72 29 | 76.50 33 | 80.45 22 | 82.17 5 | 88.35 2 | 87.49 3 | 91.63 2 | 97.65 4 |
|
| HPM-MVS++ |  | | 85.64 10 | 88.43 7 | 82.39 12 | 92.65 4 | 90.24 26 | 85.83 17 | 74.21 11 | 90.68 9 | 75.63 17 | 86.77 13 | 84.15 8 | 78.68 16 | 86.33 8 | 85.26 9 | 87.32 58 | 95.60 17 |
|
| DPM-MVS | | | 85.41 11 | 86.72 16 | 83.89 10 | 91.66 13 | 91.92 14 | 90.49 2 | 78.09 3 | 86.90 17 | 73.95 20 | 74.52 35 | 82.01 17 | 79.29 13 | 90.24 1 | 90.65 1 | 89.86 6 | 90.78 74 |
|
| SMA-MVS |  | | 85.24 12 | 88.27 9 | 81.72 15 | 91.74 12 | 90.71 20 | 86.71 13 | 73.16 19 | 90.56 10 | 74.33 19 | 83.07 18 | 85.88 4 | 77.16 20 | 86.28 9 | 85.58 6 | 87.23 63 | 95.77 13 |
| Yufeng Yin; Xiaoyan Liu; Zichao Zhang: SMA-MVS: Segmentation-Guided Multi-Scale Anchor Deformation Patch Multi-View Stereo. IEEE Transactions on Circuits and Systems for Video Technology |
| APD-MVS |  | | 84.83 13 | 87.00 12 | 82.30 13 | 89.61 25 | 89.21 36 | 86.51 15 | 73.64 16 | 90.98 8 | 77.99 12 | 89.89 8 | 80.04 24 | 79.18 14 | 82.00 48 | 81.37 50 | 86.88 72 | 95.49 19 |
| Yuesong Wang, Zhaojie Zeng and etc.: Adaptive Patch Deformation for Textureless-Resilient Multi-View Stereo. CVPR2023 |
| TSAR-MVS + MP. | | | 84.39 14 | 86.58 17 | 81.83 14 | 88.09 38 | 86.47 69 | 85.63 19 | 73.62 17 | 90.13 11 | 79.24 9 | 89.67 9 | 82.99 13 | 77.72 18 | 81.22 53 | 80.92 59 | 86.68 77 | 94.66 28 |
| Zhenlong Yuan, Jiakai Cao, Zhaoqi Wang, Zhaoxin Li: TSAR-MVS: Textureless-aware Segmentation and Correlative Refinement Guided Multi-View Stereo. Pattern Recognition |
| SD-MVS | | | 84.31 15 | 86.96 14 | 81.22 16 | 88.98 31 | 88.68 40 | 85.65 18 | 73.85 15 | 89.09 13 | 79.63 8 | 87.34 12 | 84.84 6 | 73.71 35 | 82.66 35 | 81.60 47 | 85.48 110 | 94.51 29 |
| Zhenlong Yuan, Jiakai Cao, Zhaoxin Li, Hao Jiang and Zhaoqi Wang: SD-MVS: Segmentation-driven Deformation Multi-View Stereo with Spherical Refinement and EM optimization. AAAI2024 |
| NCCC | | | 84.16 16 | 85.46 21 | 82.64 11 | 92.34 8 | 90.57 23 | 86.57 14 | 76.51 8 | 86.85 18 | 72.91 23 | 77.20 32 | 78.69 26 | 79.09 15 | 84.64 20 | 84.88 16 | 88.44 29 | 95.41 21 |
|
| ACMMP_NAP | | | 83.54 17 | 86.37 18 | 80.25 21 | 89.57 26 | 90.10 28 | 85.27 21 | 71.66 23 | 87.38 15 | 73.08 22 | 84.23 17 | 80.16 23 | 75.31 25 | 84.85 17 | 83.64 24 | 86.57 78 | 94.21 35 |
|
| train_agg | | | 83.35 18 | 86.93 15 | 79.17 26 | 89.70 24 | 88.41 43 | 85.60 20 | 72.89 21 | 86.31 19 | 66.58 41 | 90.48 6 | 82.24 16 | 73.06 41 | 83.10 31 | 82.64 34 | 87.21 67 | 95.30 24 |
|
| DeepPCF-MVS | | 76.94 1 | 83.08 19 | 87.77 10 | 77.60 33 | 90.11 20 | 90.96 19 | 78.48 56 | 72.63 22 | 93.10 4 | 65.84 42 | 80.67 24 | 81.55 20 | 74.80 29 | 85.94 13 | 85.39 8 | 83.75 147 | 96.77 11 |
|
| CSCG | | | 82.90 20 | 84.52 23 | 81.02 18 | 91.85 11 | 93.43 7 | 87.14 12 | 74.01 14 | 81.96 31 | 76.14 14 | 70.84 37 | 82.49 14 | 69.71 64 | 82.32 41 | 85.18 11 | 87.26 62 | 95.40 22 |
|
| SteuartSystems-ACMMP | | | 82.51 21 | 85.35 22 | 79.20 25 | 90.25 18 | 89.39 34 | 84.79 22 | 70.95 25 | 82.86 27 | 68.32 37 | 86.44 14 | 77.19 27 | 73.07 40 | 83.63 25 | 83.64 24 | 87.82 43 | 94.34 31 |
| Skip Steuart: Steuart Systems R&D Blog. |
| HFP-MVS | | | 82.48 22 | 84.12 24 | 80.56 19 | 90.15 19 | 87.55 54 | 84.28 24 | 69.67 32 | 85.22 22 | 77.95 13 | 84.69 16 | 75.94 30 | 75.04 27 | 81.85 49 | 81.17 54 | 86.30 85 | 92.40 55 |
|
| TSAR-MVS + GP. | | | 82.27 23 | 85.98 19 | 77.94 31 | 80.72 71 | 88.25 46 | 81.12 44 | 67.71 44 | 87.10 16 | 73.31 21 | 85.23 15 | 83.68 9 | 76.64 22 | 80.43 61 | 81.47 49 | 88.15 38 | 95.66 16 |
|
| DeepC-MVS_fast | | 75.41 2 | 81.69 24 | 82.10 32 | 81.20 17 | 91.04 17 | 87.81 53 | 83.42 27 | 74.04 13 | 83.77 25 | 71.09 27 | 66.88 48 | 72.44 38 | 79.48 11 | 85.08 15 | 84.97 14 | 88.12 39 | 93.78 40 |
| Andreas Kuhn, Christian Sormann, Mattia Rossi, Oliver Erdler, Friedrich Fraundorfer: DeepC-MVS: Deep Confidence Prediction for Multi-View Stereo Reconstruction. 3DV 2020 |
| TSAR-MVS + ACMM | | | 81.59 25 | 85.84 20 | 76.63 37 | 89.82 23 | 86.53 68 | 86.32 16 | 66.72 51 | 85.96 20 | 65.43 43 | 88.98 11 | 82.29 15 | 67.57 82 | 82.06 46 | 81.33 51 | 83.93 145 | 93.75 41 |
|
| MP-MVS |  | | 80.94 26 | 83.49 26 | 77.96 30 | 88.48 32 | 88.16 47 | 82.82 32 | 69.34 34 | 80.79 37 | 69.67 33 | 82.35 21 | 77.13 28 | 71.60 53 | 80.97 58 | 80.96 58 | 85.87 96 | 94.06 36 |
| Rongxuan Tan, Qing Wang, et al.: MP-MVS: Multi-Scale Windows PatchMatch and Planar Prior Multi-View Stereo. |
| CANet | | | 80.90 27 | 82.93 28 | 78.53 29 | 86.83 44 | 92.26 12 | 81.19 43 | 66.95 48 | 81.60 34 | 69.90 32 | 66.93 47 | 74.80 32 | 76.79 21 | 84.68 19 | 84.77 17 | 89.50 11 | 95.50 18 |
|
| ACMMPR | | | 80.62 28 | 82.98 27 | 77.87 32 | 88.41 33 | 87.05 60 | 83.02 29 | 69.18 35 | 83.91 24 | 68.35 36 | 82.89 19 | 73.64 35 | 72.16 48 | 80.78 59 | 81.13 55 | 86.10 90 | 91.43 64 |
|
| DeepC-MVS | | 74.46 3 | 80.30 29 | 81.05 35 | 79.42 23 | 87.42 40 | 88.50 42 | 83.23 28 | 73.27 18 | 82.78 28 | 71.01 28 | 62.86 60 | 69.93 51 | 74.80 29 | 84.30 21 | 84.20 21 | 86.79 75 | 94.77 26 |
| Andreas Kuhn, Christian Sormann, Mattia Rossi, Oliver Erdler, Friedrich Fraundorfer: DeepC-MVS: Deep Confidence Prediction for Multi-View Stereo Reconstruction. 3DV 2020 |
| DELS-MVS | | | 79.49 30 | 79.84 40 | 79.08 27 | 88.26 37 | 92.49 9 | 84.12 26 | 70.63 27 | 65.27 83 | 69.60 35 | 61.29 65 | 66.50 60 | 72.75 44 | 88.07 3 | 88.03 2 | 89.13 14 | 97.22 6 |
| Christian Sormann, Emanuele Santellani, Mattia Rossi, Andreas Kuhn, Friedrich Fraundorfer: DELS-MVS: Deep Epipolar Line Search for Multi-View Stereo. Winter Conference on Applications of Computer Vision (WACV), 2023 |
| CP-MVS | | | 79.44 31 | 81.51 34 | 77.02 36 | 86.95 42 | 85.96 78 | 82.00 34 | 68.44 41 | 81.82 32 | 67.39 38 | 77.43 30 | 73.68 34 | 71.62 52 | 79.56 70 | 79.58 72 | 85.73 100 | 92.51 54 |
|
| MVS_0304 | | | 79.43 32 | 82.20 30 | 76.20 40 | 84.22 52 | 91.79 16 | 81.82 37 | 63.81 70 | 76.83 51 | 61.71 58 | 66.37 50 | 75.52 31 | 76.38 23 | 85.54 14 | 85.03 13 | 89.28 13 | 94.32 32 |
|
| PHI-MVS | | | 79.43 32 | 84.06 25 | 74.04 56 | 86.15 47 | 91.57 18 | 80.85 47 | 68.90 38 | 82.22 30 | 51.81 94 | 78.10 28 | 74.28 33 | 70.39 61 | 84.01 24 | 84.00 22 | 86.14 89 | 94.24 33 |
|
| PGM-MVS | | | 79.42 34 | 81.84 33 | 76.60 38 | 88.38 35 | 86.69 64 | 82.97 31 | 65.75 57 | 80.39 38 | 64.94 44 | 81.95 23 | 72.11 43 | 71.41 55 | 80.45 60 | 80.55 65 | 86.18 87 | 90.76 77 |
|
| CDPH-MVS | | | 79.39 35 | 82.13 31 | 76.19 41 | 89.22 30 | 88.34 44 | 84.20 25 | 71.00 24 | 79.67 43 | 56.97 78 | 77.77 29 | 72.24 42 | 68.50 76 | 81.33 52 | 82.74 30 | 87.23 63 | 92.84 51 |
|
| EPNet | | | 79.28 36 | 82.25 29 | 75.83 43 | 88.31 36 | 90.14 27 | 79.43 54 | 68.07 42 | 81.76 33 | 61.26 61 | 77.26 31 | 70.08 50 | 70.06 62 | 82.43 39 | 82.00 39 | 87.82 43 | 92.09 58 |
| Wanjuan Su, Wenbing Tao: Efficient Edge-Preserving Multi-View Stereo Network for Depth Estimation. AAAI 2023 |
| MSLP-MVS++ | | | 78.57 37 | 77.33 54 | 80.02 22 | 88.39 34 | 84.79 84 | 84.62 23 | 66.17 55 | 75.96 53 | 78.40 10 | 61.59 63 | 71.47 45 | 73.54 38 | 78.43 79 | 78.88 78 | 88.97 16 | 90.18 84 |
|
| 3Dnovator | | 70.49 5 | 78.42 38 | 76.77 59 | 80.35 20 | 91.43 15 | 90.27 25 | 81.84 36 | 70.79 26 | 72.10 60 | 71.95 24 | 50.02 102 | 67.86 57 | 77.47 19 | 82.89 32 | 84.24 20 | 88.61 24 | 89.99 85 |
|
| HQP-MVS | | | 78.26 39 | 80.91 36 | 75.17 49 | 85.67 49 | 84.33 90 | 83.01 30 | 69.38 33 | 79.88 41 | 55.83 79 | 79.85 25 | 64.90 67 | 70.81 57 | 82.46 37 | 81.78 42 | 86.30 85 | 93.18 47 |
|
| X-MVS | | | 78.16 40 | 80.55 37 | 75.38 47 | 87.99 39 | 86.27 73 | 81.05 45 | 68.98 36 | 78.33 45 | 61.07 63 | 75.25 34 | 72.27 39 | 67.52 83 | 80.03 63 | 80.52 66 | 85.66 107 | 91.20 68 |
|
| 3Dnovator+ | | 70.16 6 | 77.87 41 | 77.29 55 | 78.55 28 | 89.25 29 | 88.32 45 | 80.09 50 | 67.95 43 | 74.89 58 | 71.83 25 | 52.05 95 | 70.68 48 | 76.27 24 | 82.27 42 | 82.04 37 | 85.92 93 | 90.77 76 |
|
| sasdasda | | | 77.65 42 | 79.59 41 | 75.39 45 | 81.52 63 | 89.83 32 | 81.32 41 | 60.74 106 | 80.05 39 | 66.72 39 | 68.43 41 | 65.09 63 | 74.72 31 | 78.87 74 | 82.73 31 | 87.32 58 | 92.16 56 |
|
| canonicalmvs | | | 77.65 42 | 79.59 41 | 75.39 45 | 81.52 63 | 89.83 32 | 81.32 41 | 60.74 106 | 80.05 39 | 66.72 39 | 68.43 41 | 65.09 63 | 74.72 31 | 78.87 74 | 82.73 31 | 87.32 58 | 92.16 56 |
|
| ACMMP |  | | 77.61 44 | 79.59 41 | 75.30 48 | 85.87 48 | 85.58 79 | 81.42 39 | 67.38 47 | 79.38 44 | 62.61 53 | 78.53 27 | 65.79 62 | 68.80 75 | 78.56 78 | 78.50 83 | 85.75 97 | 90.80 73 |
| Qingshan Xu, Weihang Kong, Wenbing Tao, Marc Pollefeys: Multi-Scale Geometric Consistency Guided and Planar Prior Assisted Multi-View Stereo. IEEE Transactions on Pattern Analysis and Machine Intelligence |
| QAPM | | | 77.50 45 | 77.43 53 | 77.59 34 | 91.52 14 | 92.00 13 | 81.41 40 | 70.63 27 | 66.22 76 | 58.05 73 | 54.70 83 | 71.79 44 | 74.49 33 | 82.46 37 | 82.04 37 | 89.46 12 | 92.79 53 |
|
| MVS_111021_HR | | | 77.42 46 | 78.40 49 | 76.28 39 | 86.95 42 | 90.68 21 | 77.41 65 | 70.56 30 | 66.21 77 | 62.48 55 | 66.17 52 | 63.98 71 | 72.08 49 | 82.87 33 | 83.15 28 | 88.24 35 | 95.71 15 |
|
| CLD-MVS | | | 77.36 47 | 77.29 55 | 77.45 35 | 82.21 59 | 88.11 48 | 81.92 35 | 68.96 37 | 77.97 47 | 69.62 34 | 62.08 61 | 59.44 94 | 73.57 37 | 81.75 50 | 81.27 52 | 88.41 30 | 90.39 81 |
| Zhaoxin Li, Wangmeng Zuo, Zhaoqi Wang, Lei Zhang: Confidence-based Large-scale Dense Multi-view Stereo. IEEE Transaction on Image Processing, 2020 |
| MAR-MVS | | | 77.19 48 | 78.37 50 | 75.81 44 | 89.87 22 | 90.58 22 | 79.33 55 | 65.56 59 | 77.62 49 | 58.33 72 | 59.24 73 | 67.98 55 | 74.83 28 | 82.37 40 | 83.12 29 | 86.95 70 | 87.67 110 |
| Zhenyu Xu, Yiguang Liu, Xuelei Shi, Ying Wang, Yunan Zheng: MARMVS: Matching Ambiguity Reduced Multiple View Stereo for Efficient Large Scale Scene Reconstruction. CVPR 2020 |
| MVSTER | | | 76.92 49 | 79.92 39 | 73.42 59 | 74.98 118 | 82.97 98 | 78.15 59 | 63.41 74 | 78.02 46 | 64.41 46 | 67.54 45 | 72.80 37 | 71.05 56 | 83.29 30 | 83.73 23 | 88.53 27 | 91.12 69 |
|
| PVSNet_BlendedMVS | | | 76.84 50 | 78.47 47 | 74.95 51 | 82.37 57 | 89.90 30 | 75.45 76 | 65.45 60 | 74.99 56 | 70.66 30 | 63.07 58 | 58.27 101 | 67.60 80 | 84.24 22 | 81.70 44 | 88.18 36 | 97.10 8 |
|
| PVSNet_Blended | | | 76.84 50 | 78.47 47 | 74.95 51 | 82.37 57 | 89.90 30 | 75.45 76 | 65.45 60 | 74.99 56 | 70.66 30 | 63.07 58 | 58.27 101 | 67.60 80 | 84.24 22 | 81.70 44 | 88.18 36 | 97.10 8 |
|
| ETV-MVS | | | 76.25 52 | 80.22 38 | 71.63 72 | 78.23 89 | 87.95 52 | 72.75 96 | 60.27 112 | 77.50 50 | 57.73 74 | 71.53 36 | 66.60 59 | 73.16 39 | 80.99 57 | 81.23 53 | 87.63 50 | 95.73 14 |
|
| AdaColmap |  | | 76.23 53 | 73.55 75 | 79.35 24 | 89.38 27 | 85.00 83 | 79.99 52 | 73.04 20 | 76.60 52 | 71.17 26 | 55.18 82 | 57.99 103 | 77.87 17 | 76.82 95 | 76.82 97 | 84.67 132 | 86.45 117 |
|
| EC-MVSNet | | | 76.05 54 | 78.87 44 | 72.77 63 | 78.87 85 | 86.63 65 | 77.50 64 | 57.04 138 | 75.34 54 | 61.68 59 | 64.20 55 | 69.56 52 | 73.96 34 | 82.12 44 | 80.65 63 | 87.57 51 | 93.57 43 |
|
| CS-MVS | | | 75.84 55 | 78.61 46 | 72.61 66 | 79.03 82 | 86.74 63 | 74.43 90 | 60.27 112 | 74.15 59 | 62.78 52 | 66.26 51 | 64.25 70 | 72.81 43 | 83.36 28 | 81.69 46 | 86.32 83 | 93.85 39 |
|
| PCF-MVS | | 70.85 4 | 75.73 56 | 76.55 62 | 74.78 54 | 83.67 53 | 88.04 51 | 81.47 38 | 70.62 29 | 69.24 71 | 57.52 76 | 60.59 69 | 69.18 53 | 70.65 59 | 77.11 92 | 77.65 91 | 84.75 130 | 94.01 37 |
| Andreas Kuhn, Shan Lin, Oliver Erdler: Plane Completion and Filtering for Multi-View Stereo Reconstruction. GCPR 2019 |
| casdiffmvs_mvg |  | | 75.57 57 | 76.04 64 | 75.02 50 | 80.48 74 | 89.31 35 | 80.79 48 | 64.04 68 | 66.95 74 | 63.87 47 | 57.52 75 | 61.33 84 | 72.90 42 | 82.01 47 | 81.99 40 | 88.03 40 | 93.16 48 |
| Fangjinhua Wang, Qingshan Xu, Yew-Soon Ong, Marc Pollefeys: Lightweight and Accurate Multi-View Stereo With Confidence-Aware Diffusion Model. IEEE T-PAMI 2025 |
| CPTT-MVS | | | 75.43 58 | 77.13 57 | 73.44 58 | 81.43 65 | 82.55 102 | 80.96 46 | 64.35 65 | 77.95 48 | 61.39 60 | 69.20 40 | 70.94 47 | 69.38 71 | 73.89 126 | 73.32 140 | 83.14 157 | 92.06 59 |
|
| MVS_Test | | | 75.22 59 | 76.69 60 | 73.51 57 | 79.30 79 | 88.82 39 | 80.06 51 | 58.74 117 | 69.77 67 | 57.50 77 | 59.78 72 | 61.35 82 | 75.31 25 | 82.07 45 | 83.60 26 | 90.13 5 | 91.41 66 |
|
| casdiffmvs |  | | 75.20 60 | 75.69 67 | 74.63 55 | 79.26 81 | 89.07 37 | 78.47 57 | 63.59 73 | 67.05 73 | 63.79 48 | 55.72 80 | 60.32 89 | 73.58 36 | 82.16 43 | 81.78 42 | 89.08 15 | 93.72 42 |
| Fangjinhua Wang, Qingshan Xu, Yew-Soon Ong, Marc Pollefeys: Lightweight and Accurate Multi-View Stereo With Confidence-Aware Diffusion Model. IEEE T-PAMI 2025 |
| CS-MVS-test | | | 75.09 61 | 77.84 51 | 71.87 71 | 79.27 80 | 86.92 61 | 70.53 122 | 60.36 110 | 75.13 55 | 63.13 50 | 67.92 44 | 65.08 65 | 71.43 54 | 78.15 84 | 78.51 82 | 86.53 80 | 93.16 48 |
|
| OpenMVS |  | 67.62 8 | 74.92 62 | 73.91 73 | 76.09 42 | 90.10 21 | 90.38 24 | 78.01 60 | 66.35 53 | 66.09 78 | 62.80 51 | 46.33 127 | 64.55 69 | 71.77 51 | 79.92 65 | 80.88 60 | 87.52 53 | 89.20 94 |
|
| diffmvs |  | | 74.32 63 | 75.42 68 | 73.04 61 | 75.60 115 | 87.27 57 | 78.20 58 | 62.96 79 | 68.66 72 | 61.89 56 | 59.79 71 | 59.84 92 | 71.80 50 | 78.30 82 | 79.87 68 | 87.80 45 | 94.23 34 |
| Fangjinhua Wang, Qingshan Xu, Yew-Soon Ong, Marc Pollefeys: Lightweight and Accurate Multi-View Stereo With Confidence-Aware Diffusion Model. IEEE T-PAMI 2025 |
| MGCFI-Net | | | 74.26 64 | 78.69 45 | 69.10 86 | 80.64 72 | 87.32 56 | 73.21 95 | 59.20 115 | 79.76 42 | 50.18 104 | 68.10 43 | 64.86 68 | 64.65 94 | 78.28 83 | 80.83 61 | 86.69 76 | 91.69 63 |
|
| MVS_111021_LR | | | 74.26 64 | 75.95 65 | 72.27 67 | 79.43 78 | 85.04 82 | 72.71 97 | 65.27 62 | 70.92 63 | 63.58 49 | 69.32 39 | 60.31 90 | 69.43 69 | 77.01 93 | 77.15 94 | 83.22 154 | 91.93 61 |
|
| OMC-MVS | | | 74.03 66 | 75.82 66 | 71.95 69 | 79.56 76 | 80.98 116 | 75.35 78 | 63.21 75 | 84.48 23 | 61.83 57 | 61.54 64 | 66.89 58 | 69.41 70 | 76.60 97 | 74.07 130 | 82.34 167 | 86.15 121 |
|
| DI_MVS_plusplus_trai | | | 73.94 67 | 74.85 70 | 72.88 62 | 76.57 107 | 86.80 62 | 80.41 49 | 61.47 97 | 62.35 89 | 59.44 70 | 47.91 110 | 68.12 54 | 72.24 47 | 82.84 34 | 81.50 48 | 87.15 69 | 94.42 30 |
|
| EIA-MVS | | | 73.48 68 | 76.05 63 | 70.47 78 | 78.12 90 | 87.21 58 | 71.78 104 | 60.63 108 | 69.66 68 | 55.56 83 | 64.86 54 | 60.69 86 | 69.53 67 | 77.35 91 | 78.59 79 | 87.22 65 | 94.01 37 |
|
| TSAR-MVS + COLMAP | | | 73.09 69 | 76.86 58 | 68.71 89 | 74.97 119 | 82.49 103 | 74.51 87 | 61.83 93 | 83.16 26 | 49.31 107 | 82.22 22 | 51.62 132 | 68.94 74 | 78.76 77 | 75.52 115 | 82.67 162 | 84.23 139 |
|
| baseline | | | 72.89 70 | 74.46 72 | 71.07 73 | 75.99 111 | 87.50 55 | 74.57 82 | 60.49 109 | 70.72 64 | 57.60 75 | 60.63 68 | 60.97 85 | 70.79 58 | 75.27 110 | 76.33 103 | 86.94 71 | 89.79 88 |
|
| CANet_DTU | | | 72.84 71 | 76.63 61 | 68.43 94 | 76.81 104 | 86.62 67 | 75.54 75 | 54.71 164 | 72.06 61 | 43.54 130 | 67.11 46 | 58.46 98 | 72.40 46 | 81.13 56 | 80.82 62 | 87.57 51 | 90.21 83 |
|
| OPM-MVS | | | 72.74 72 | 70.93 92 | 74.85 53 | 85.30 50 | 84.34 89 | 82.82 32 | 69.79 31 | 49.96 141 | 55.39 85 | 54.09 90 | 60.14 91 | 70.04 63 | 80.38 62 | 79.43 73 | 85.74 99 | 88.20 106 |
| Ray L. Khuboni, Hongjun Xu: Octagram Propagation Matching for Multi-Scale View Stereopsis (OPM-MVS). |
| CHOSEN 1792x2688 | | | 72.55 73 | 71.98 82 | 73.22 60 | 86.57 45 | 92.41 10 | 75.63 72 | 66.77 50 | 62.08 90 | 52.32 91 | 30.27 196 | 50.74 135 | 66.14 86 | 86.22 12 | 85.41 7 | 91.90 1 | 96.75 12 |
|
| CostFormer | | | 72.18 74 | 73.90 74 | 70.18 80 | 79.47 77 | 86.19 76 | 76.94 68 | 48.62 184 | 66.07 79 | 60.40 68 | 54.14 89 | 65.82 61 | 67.98 77 | 75.84 105 | 76.41 102 | 87.67 48 | 92.83 52 |
|
| ACMP | | 68.86 7 | 72.15 75 | 72.25 80 | 72.03 68 | 80.96 67 | 80.87 118 | 77.93 61 | 64.13 67 | 69.29 69 | 60.79 66 | 64.04 56 | 53.54 127 | 63.91 97 | 73.74 129 | 75.27 116 | 84.45 137 | 88.98 96 |
| Qingshan Xu and Wenbing Tao: Planar Prior Assisted PatchMatch Multi-View Stereo. AAAI 2020 |
| LGP-MVS_train | | | 72.02 76 | 73.18 78 | 70.67 77 | 82.13 60 | 80.26 124 | 79.58 53 | 63.04 77 | 70.09 65 | 51.98 92 | 65.06 53 | 55.62 115 | 62.49 107 | 75.97 104 | 76.32 104 | 84.80 129 | 88.93 97 |
|
| PVSNet_Blended_VisFu | | | 71.76 77 | 73.54 76 | 69.69 81 | 79.01 83 | 87.16 59 | 72.05 101 | 61.80 94 | 56.46 114 | 59.66 69 | 53.88 91 | 62.48 74 | 59.08 130 | 81.17 54 | 78.90 77 | 86.53 80 | 94.74 27 |
|
| baseline1 | | | 71.47 78 | 72.02 81 | 70.82 75 | 80.56 73 | 84.51 86 | 76.61 69 | 66.93 49 | 56.22 116 | 48.66 108 | 55.40 81 | 60.43 88 | 62.55 106 | 83.35 29 | 80.99 56 | 89.60 8 | 83.28 147 |
|
| TAPA-MVS | | 67.10 9 | 71.45 79 | 73.47 77 | 69.10 86 | 77.04 102 | 80.78 119 | 73.81 91 | 62.10 89 | 80.80 36 | 51.28 95 | 60.91 66 | 63.80 73 | 67.98 77 | 74.59 116 | 72.42 152 | 82.37 166 | 80.97 161 |
| Andrea Romanoni, Matteo Matteucci: TAPA-MVS: Textureless-Aware PAtchMatch Multi-View Stereo. ICCV 2019 |
| ET-MVSNet_ETH3D | | | 71.38 80 | 74.70 71 | 67.51 101 | 51.61 211 | 88.06 50 | 77.29 66 | 60.95 105 | 63.61 85 | 48.36 110 | 66.60 49 | 60.67 87 | 79.55 10 | 73.56 130 | 80.58 64 | 87.30 61 | 89.80 87 |
|
| CNLPA | | | 71.37 81 | 70.27 97 | 72.66 65 | 80.79 70 | 81.33 112 | 71.07 117 | 65.75 57 | 82.36 29 | 64.80 45 | 42.46 139 | 56.49 108 | 72.70 45 | 73.00 137 | 70.52 171 | 80.84 180 | 85.76 127 |
|
| baseline2 | | | 71.22 82 | 73.01 79 | 69.13 85 | 75.76 113 | 86.34 72 | 71.23 112 | 62.78 85 | 62.62 87 | 52.85 90 | 57.32 76 | 54.31 122 | 63.27 102 | 79.74 68 | 79.31 74 | 88.89 17 | 91.43 64 |
|
| Effi-MVS+ | | | 70.42 83 | 71.23 89 | 69.47 82 | 78.04 91 | 85.24 81 | 75.57 74 | 58.88 116 | 59.56 99 | 48.47 109 | 52.73 94 | 54.94 118 | 69.69 65 | 78.34 81 | 77.06 95 | 86.18 87 | 90.73 78 |
|
| ACMM | | 66.70 10 | 70.42 83 | 68.49 107 | 72.67 64 | 82.85 54 | 77.76 147 | 77.70 63 | 64.76 64 | 64.61 84 | 60.74 67 | 49.29 104 | 53.97 125 | 65.86 87 | 74.97 112 | 75.57 113 | 84.13 144 | 83.29 146 |
| Qingshan Xu and Wenbing Tao: Multi-Scale Geometric Consistency Guided Multi-View Stereo. CVPR 2019 |
| FMVSNet3 | | | 70.41 85 | 71.89 84 | 68.68 90 | 70.89 141 | 79.42 131 | 75.63 72 | 60.97 102 | 65.32 80 | 51.06 96 | 47.37 115 | 62.05 76 | 64.90 91 | 82.49 36 | 82.27 36 | 88.64 23 | 84.34 138 |
|
| PMMVS | | | 70.37 86 | 75.06 69 | 64.90 116 | 71.46 135 | 81.88 104 | 64.10 156 | 55.64 150 | 71.31 62 | 46.69 114 | 70.69 38 | 58.56 95 | 69.53 67 | 79.03 73 | 75.63 111 | 81.96 171 | 88.32 105 |
|
| MS-PatchMatch | | | 70.34 87 | 69.00 103 | 71.91 70 | 85.20 51 | 85.35 80 | 77.84 62 | 61.77 95 | 58.01 108 | 55.40 84 | 41.26 146 | 58.34 100 | 61.69 110 | 81.70 51 | 78.29 84 | 89.56 9 | 80.02 164 |
|
| FA-MVS(training) | | | 70.24 88 | 71.77 85 | 68.45 93 | 77.52 98 | 86.03 77 | 73.33 93 | 49.12 183 | 63.55 86 | 55.77 80 | 48.91 107 | 56.26 109 | 67.78 79 | 77.60 86 | 79.62 71 | 87.19 68 | 90.40 80 |
|
| test2506 | | | 69.26 89 | 70.79 93 | 67.48 102 | 78.64 86 | 86.40 70 | 72.22 99 | 62.75 86 | 58.05 106 | 45.24 120 | 50.76 98 | 54.93 119 | 58.05 136 | 79.82 66 | 79.70 69 | 87.96 41 | 85.90 125 |
|
| GBi-Net | | | 69.21 90 | 70.40 95 | 67.81 98 | 69.49 146 | 78.65 137 | 74.54 83 | 60.97 102 | 65.32 80 | 51.06 96 | 47.37 115 | 62.05 76 | 63.43 99 | 77.49 87 | 78.22 85 | 87.37 55 | 83.73 141 |
|
| test1 | | | 69.21 90 | 70.40 95 | 67.81 98 | 69.49 146 | 78.65 137 | 74.54 83 | 60.97 102 | 65.32 80 | 51.06 96 | 47.37 115 | 62.05 76 | 63.43 99 | 77.49 87 | 78.22 85 | 87.37 55 | 83.73 141 |
|
| DCV-MVSNet | | | 69.13 92 | 69.07 102 | 69.21 84 | 77.65 95 | 77.52 149 | 74.68 81 | 57.85 127 | 54.92 126 | 55.34 86 | 55.74 79 | 55.56 116 | 66.35 85 | 75.05 111 | 76.56 100 | 83.35 151 | 88.13 107 |
|
| IB-MVS | | 64.48 11 | 69.02 93 | 68.97 104 | 69.09 88 | 81.75 62 | 89.01 38 | 64.50 154 | 64.91 63 | 56.65 112 | 62.59 54 | 47.89 111 | 45.23 148 | 51.99 158 | 69.18 173 | 81.88 41 | 88.77 19 | 92.93 50 |
| Christian Sormann, Mattia Rossi, Andreas Kuhn and Friedrich Fraundorfer: IB-MVS: An Iterative Algorithm for Deep Multi-View Stereo based on Binary Decisions. BMVC 2021 |
| GeoE | | | 68.96 94 | 69.32 100 | 68.54 91 | 76.61 106 | 83.12 97 | 71.78 104 | 56.87 140 | 60.21 97 | 54.86 87 | 45.95 128 | 54.79 121 | 64.27 95 | 74.59 116 | 75.54 114 | 86.84 74 | 91.01 71 |
|
| FC-MVSNet-train | | | 68.83 95 | 68.29 109 | 69.47 82 | 78.35 88 | 79.94 125 | 64.72 153 | 66.38 52 | 54.96 125 | 54.51 88 | 56.75 77 | 47.91 142 | 66.91 84 | 75.57 109 | 75.75 109 | 85.92 93 | 87.12 112 |
|
| PLC |  | 64.00 12 | 68.54 96 | 66.66 121 | 70.74 76 | 80.28 75 | 74.88 168 | 72.64 98 | 63.70 72 | 69.26 70 | 55.71 81 | 47.24 118 | 55.31 117 | 70.42 60 | 72.05 148 | 70.67 169 | 81.66 174 | 77.19 172 |
| Jie Liao, Yanping Fu, Qingan Yan, Chunxia xiao: Pyramid Multi-View Stereo with Local Consistency. Pacific Graphics 2019 |
| Anonymous20231211 | | | 68.44 97 | 66.37 124 | 70.86 74 | 77.58 96 | 83.49 95 | 75.15 79 | 61.89 92 | 52.54 134 | 58.50 71 | 28.89 198 | 56.78 107 | 69.29 72 | 74.96 114 | 76.61 98 | 82.73 160 | 91.36 67 |
|
| HyFIR lowres test | | | 68.39 98 | 68.28 110 | 68.52 92 | 80.85 68 | 88.11 48 | 71.08 116 | 58.09 122 | 54.87 128 | 47.80 113 | 27.55 202 | 55.80 113 | 64.97 90 | 79.11 72 | 79.14 76 | 88.31 33 | 93.35 44 |
|
| thisisatest0530 | | | 68.38 99 | 70.98 91 | 65.35 112 | 72.61 129 | 84.42 87 | 68.21 135 | 57.98 123 | 59.77 98 | 50.80 99 | 54.63 84 | 58.48 97 | 57.92 138 | 76.99 94 | 77.47 92 | 84.60 133 | 85.07 131 |
|
| test-LLR | | | 68.23 100 | 71.61 87 | 64.28 123 | 71.37 136 | 81.32 113 | 63.98 159 | 61.03 100 | 58.62 102 | 42.96 135 | 52.74 92 | 61.65 80 | 57.74 141 | 75.64 107 | 78.09 88 | 88.61 24 | 93.21 45 |
|
| FMVSNet2 | | | 68.06 101 | 68.57 106 | 67.45 103 | 69.49 146 | 78.65 137 | 74.54 83 | 60.23 114 | 56.29 115 | 49.64 106 | 42.13 142 | 57.08 106 | 63.43 99 | 81.15 55 | 80.99 56 | 87.37 55 | 83.73 141 |
|
| tttt0517 | | | 67.99 102 | 70.61 94 | 64.94 115 | 71.94 134 | 83.96 93 | 67.62 139 | 57.98 123 | 59.30 100 | 49.90 105 | 54.50 87 | 57.98 104 | 57.92 138 | 76.48 98 | 77.47 92 | 84.24 140 | 84.58 135 |
|
| ECVR-MVS |  | | 67.93 103 | 68.49 107 | 67.28 105 | 78.64 86 | 86.40 70 | 72.22 99 | 62.75 86 | 58.05 106 | 44.06 128 | 40.92 150 | 48.20 140 | 58.05 136 | 79.82 66 | 79.70 69 | 87.96 41 | 86.32 120 |
|
| dmvs_re | | | 67.60 104 | 67.21 118 | 68.06 96 | 74.07 121 | 79.01 133 | 73.31 94 | 68.74 39 | 58.27 104 | 42.07 141 | 49.72 103 | 43.96 151 | 60.66 116 | 76.79 96 | 78.04 90 | 89.51 10 | 84.69 134 |
|
| Fast-Effi-MVS+ | | | 67.59 105 | 67.56 115 | 67.62 100 | 73.67 124 | 81.14 115 | 71.12 115 | 54.79 163 | 58.88 101 | 50.61 101 | 46.70 125 | 47.05 144 | 69.12 73 | 76.06 103 | 76.44 101 | 86.43 82 | 86.65 115 |
|
| EPP-MVSNet | | | 67.58 106 | 71.10 90 | 63.48 129 | 75.71 114 | 83.35 96 | 66.85 145 | 57.83 128 | 53.02 133 | 41.15 145 | 55.82 78 | 67.89 56 | 56.01 147 | 74.40 119 | 72.92 148 | 83.33 152 | 90.30 82 |
|
| UGNet | | | 67.57 107 | 71.69 86 | 62.76 136 | 69.88 144 | 82.58 101 | 66.43 149 | 58.64 118 | 54.71 129 | 51.87 93 | 61.74 62 | 62.01 79 | 45.46 181 | 74.78 115 | 74.99 117 | 84.24 140 | 91.02 70 |
| Wanjuan Su, Qingshan Xu, Wenbing Tao: Uncertainty-guided Multi-view Stereo Network for Depth Estimation. IEEE Transactions on Circuits and Systems for Video Technology, 2022 |
| tpm cat1 | | | 67.47 108 | 67.05 119 | 67.98 97 | 76.63 105 | 81.51 110 | 74.49 88 | 47.65 189 | 61.18 92 | 61.12 62 | 42.51 138 | 53.02 130 | 64.74 93 | 70.11 167 | 71.50 158 | 83.22 154 | 89.49 90 |
|
| TESTMET0.1,1 | | | 67.38 109 | 71.61 87 | 62.45 139 | 66.05 169 | 81.32 113 | 63.98 159 | 55.36 155 | 58.62 102 | 42.96 135 | 52.74 92 | 61.65 80 | 57.74 141 | 75.64 107 | 78.09 88 | 88.61 24 | 93.21 45 |
|
| IS_MVSNet | | | 67.29 110 | 71.98 82 | 61.82 143 | 76.92 103 | 84.32 91 | 65.90 152 | 58.22 120 | 55.75 120 | 39.22 154 | 54.51 86 | 62.47 75 | 45.99 179 | 78.83 76 | 78.52 81 | 84.70 131 | 89.47 91 |
|
| tpmrst | | | 67.15 111 | 68.12 112 | 66.03 109 | 76.21 109 | 80.98 116 | 71.27 111 | 45.05 195 | 60.69 95 | 50.63 100 | 46.95 123 | 54.15 124 | 65.30 88 | 71.80 150 | 71.77 156 | 87.72 46 | 90.48 79 |
|
| thres100view900 | | | 67.14 112 | 66.09 127 | 68.38 95 | 77.70 93 | 83.84 94 | 74.52 86 | 66.33 54 | 49.16 145 | 43.40 132 | 43.24 131 | 41.34 156 | 62.59 105 | 79.31 71 | 75.92 108 | 85.73 100 | 89.81 86 |
|
| test1111 | | | 66.72 113 | 67.80 113 | 65.45 111 | 77.42 100 | 86.63 65 | 69.69 126 | 62.98 78 | 55.29 122 | 39.47 151 | 40.12 155 | 47.11 143 | 55.70 148 | 79.96 64 | 80.00 67 | 87.47 54 | 85.49 130 |
|
| EPMVS | | | 66.21 114 | 67.49 116 | 64.73 117 | 75.81 112 | 84.20 92 | 68.94 131 | 44.37 199 | 61.55 91 | 48.07 112 | 49.21 106 | 54.87 120 | 62.88 103 | 71.82 149 | 71.40 162 | 88.28 34 | 79.37 167 |
|
| EPNet_dtu | | | 66.17 115 | 70.13 98 | 61.54 145 | 81.04 66 | 77.39 151 | 68.87 132 | 62.50 88 | 69.78 66 | 33.51 182 | 63.77 57 | 56.22 110 | 37.65 195 | 72.20 145 | 72.18 155 | 85.69 103 | 79.38 166 |
| Wanjuan Su, Wenbing Tao: Efficient Edge-Preserving Multi-View Stereo Network for Depth Estimation. AAAI 2023 |
| IterMVS-LS | | | 66.08 116 | 66.56 123 | 65.51 110 | 73.67 124 | 74.88 168 | 70.89 119 | 53.55 170 | 50.42 139 | 48.32 111 | 50.59 100 | 55.66 114 | 61.83 109 | 73.93 125 | 74.42 126 | 84.82 128 | 86.01 123 |
| Fangjinhua Wang, Silvano Galliani, Christoph Vogel, Marc Pollefeys: IterMVS: Iterative Probability Estimation for Efficient Multi-View Stereo. |
| tfpn200view9 | | | 65.90 117 | 64.96 131 | 67.00 106 | 77.70 93 | 81.58 108 | 71.71 107 | 62.94 82 | 49.16 145 | 43.40 132 | 43.24 131 | 41.34 156 | 61.42 112 | 76.24 100 | 74.63 122 | 84.84 125 | 88.52 103 |
|
| thres200 | | | 65.58 118 | 64.74 133 | 66.56 107 | 77.52 98 | 81.61 106 | 73.44 92 | 62.95 80 | 46.23 157 | 42.45 139 | 42.76 133 | 41.18 158 | 58.12 134 | 76.24 100 | 75.59 112 | 84.89 123 | 89.58 89 |
|
| MSDG | | | 65.57 119 | 61.57 156 | 70.24 79 | 82.02 61 | 76.47 156 | 74.46 89 | 68.73 40 | 56.52 113 | 50.33 102 | 38.47 161 | 41.10 160 | 62.42 108 | 72.12 146 | 72.94 147 | 83.47 150 | 73.37 186 |
|
| Vis-MVSNet |  | | 65.53 120 | 69.83 99 | 60.52 149 | 70.80 142 | 84.59 85 | 66.37 151 | 55.47 154 | 48.40 148 | 40.62 149 | 57.67 74 | 58.43 99 | 45.37 182 | 77.49 87 | 76.24 105 | 84.47 136 | 85.99 124 |
| Jingyang Zhang, Yao Yao, Shiwei Li, Zixin Luo, Tian Fang: Visibility-aware Multiview Stereo Network. BMVC 2020 |
| PatchmatchNet |  | | 65.43 121 | 67.71 114 | 62.78 135 | 73.49 126 | 82.83 99 | 66.42 150 | 45.40 194 | 60.40 96 | 45.27 119 | 49.22 105 | 57.60 105 | 60.01 122 | 70.61 159 | 71.38 163 | 86.08 91 | 81.91 158 |
| Fangjinhua Wang, Silvano Galliani, Christoph Vogel, Pablo Speciale, Marc Pollefeys: PatchmatchNet: Learned Multi-View Patchmatch Stereo. |
| MDTV_nov1_ep13 | | | 65.21 122 | 67.28 117 | 62.79 134 | 70.91 140 | 81.72 105 | 69.28 130 | 49.50 182 | 58.08 105 | 43.94 129 | 50.50 101 | 56.02 111 | 58.86 131 | 70.72 158 | 73.37 138 | 84.24 140 | 80.52 163 |
|
| thres400 | | | 65.18 123 | 64.44 135 | 66.04 108 | 76.40 108 | 82.63 100 | 71.52 109 | 64.27 66 | 44.93 163 | 40.69 148 | 41.86 143 | 40.79 162 | 58.12 134 | 77.67 85 | 74.64 121 | 85.26 113 | 88.56 102 |
|
| tpm | | | 64.85 124 | 66.02 128 | 63.48 129 | 74.52 120 | 78.38 140 | 70.98 118 | 44.99 197 | 51.61 136 | 43.28 134 | 47.66 113 | 53.18 128 | 60.57 117 | 70.58 161 | 71.30 165 | 86.54 79 | 89.45 92 |
|
| UA-Net | | | 64.62 125 | 68.23 111 | 60.42 150 | 77.53 97 | 81.38 111 | 60.08 178 | 57.47 133 | 47.01 152 | 44.75 124 | 60.68 67 | 71.32 46 | 41.84 189 | 73.27 132 | 72.25 154 | 80.83 181 | 71.68 191 |
|
| Effi-MVS+-dtu | | | 64.58 126 | 64.08 136 | 65.16 113 | 73.04 128 | 75.17 167 | 70.68 121 | 56.23 144 | 54.12 131 | 44.71 125 | 47.42 114 | 51.10 133 | 63.82 98 | 68.08 176 | 66.32 187 | 82.47 165 | 86.38 118 |
|
| GA-MVS | | | 64.55 127 | 65.76 130 | 63.12 131 | 69.68 145 | 81.56 109 | 69.59 127 | 58.16 121 | 45.23 162 | 35.58 174 | 47.01 122 | 41.82 155 | 59.41 126 | 79.62 69 | 78.54 80 | 86.32 83 | 86.56 116 |
|
| LS3D | | | 64.54 128 | 62.14 152 | 67.34 104 | 80.85 68 | 75.79 162 | 69.99 123 | 65.87 56 | 60.77 94 | 44.35 126 | 42.43 140 | 45.95 147 | 65.01 89 | 69.88 168 | 68.69 178 | 77.97 195 | 71.43 193 |
|
| CDS-MVSNet | | | 64.22 129 | 65.89 129 | 62.28 141 | 70.05 143 | 80.59 120 | 69.91 125 | 57.98 123 | 43.53 167 | 46.58 115 | 48.22 109 | 50.76 134 | 46.45 176 | 75.68 106 | 76.08 106 | 82.70 161 | 86.34 119 |
| Khang Truong Giang, Soohwan Song, Sungho Jo: Curvature-guided dynamic scale networks for Multi-view Stereo. ICLR 2022 |
| dps | | | 64.08 130 | 63.22 140 | 65.08 114 | 75.27 117 | 79.65 128 | 66.68 147 | 46.63 193 | 56.94 110 | 55.67 82 | 43.96 130 | 43.63 153 | 64.00 96 | 69.50 172 | 69.82 173 | 82.25 168 | 79.02 168 |
|
| test-mter | | | 64.06 131 | 69.24 101 | 58.01 164 | 59.07 198 | 77.40 150 | 59.13 181 | 48.11 187 | 55.64 121 | 39.18 155 | 51.56 97 | 58.54 96 | 55.38 150 | 73.52 131 | 76.00 107 | 87.22 65 | 92.05 60 |
|
| SCA | | | 63.90 132 | 66.67 120 | 60.66 148 | 73.75 122 | 71.78 183 | 59.87 179 | 43.66 200 | 61.13 93 | 45.03 122 | 51.64 96 | 59.45 93 | 57.92 138 | 70.96 156 | 70.80 167 | 83.71 148 | 80.92 162 |
|
| thres600view7 | | | 63.77 133 | 63.14 141 | 64.51 119 | 75.49 116 | 81.61 106 | 69.59 127 | 62.95 80 | 43.96 166 | 38.90 156 | 41.09 147 | 40.24 167 | 55.25 151 | 76.24 100 | 71.54 157 | 84.89 123 | 87.30 111 |
|
| v2v482 | | | 63.68 134 | 62.85 146 | 64.65 118 | 68.01 155 | 80.46 122 | 71.90 102 | 57.60 130 | 44.26 164 | 42.82 137 | 39.80 157 | 38.62 172 | 61.56 111 | 73.06 135 | 74.86 119 | 86.03 92 | 88.90 99 |
|
| FMVSNet1 | | | 63.48 135 | 63.07 142 | 63.97 125 | 65.31 174 | 76.37 158 | 71.77 106 | 57.90 126 | 43.32 168 | 45.66 117 | 35.06 184 | 49.43 137 | 58.57 132 | 77.49 87 | 78.22 85 | 84.59 134 | 81.60 160 |
|
| v8 | | | 63.44 136 | 62.58 148 | 64.43 120 | 68.28 154 | 78.07 142 | 71.82 103 | 54.85 161 | 46.70 155 | 45.20 121 | 39.40 158 | 40.91 161 | 60.54 118 | 72.85 139 | 74.39 127 | 85.92 93 | 85.76 127 |
|
| pmmvs4 | | | 63.14 137 | 62.46 149 | 63.94 126 | 66.03 170 | 76.40 157 | 66.82 146 | 57.60 130 | 56.74 111 | 50.26 103 | 40.81 151 | 37.51 175 | 59.26 128 | 71.75 151 | 71.48 159 | 83.68 149 | 82.53 152 |
|
| Fast-Effi-MVS+-dtu | | | 63.05 138 | 64.72 134 | 61.11 146 | 71.21 139 | 76.81 155 | 70.72 120 | 43.13 204 | 52.51 135 | 35.34 175 | 46.55 126 | 46.36 145 | 61.40 113 | 71.57 153 | 71.44 160 | 84.84 125 | 87.79 109 |
|
| v1144 | | | 63.00 139 | 62.39 150 | 63.70 128 | 67.72 158 | 80.27 123 | 71.23 112 | 56.40 141 | 42.51 169 | 40.81 147 | 38.12 165 | 37.73 173 | 60.42 120 | 74.46 118 | 74.55 124 | 85.64 108 | 89.12 95 |
|
| v10 | | | 63.00 139 | 62.22 151 | 63.90 127 | 67.88 157 | 77.78 146 | 71.59 108 | 54.34 165 | 45.37 161 | 42.76 138 | 38.53 160 | 38.93 170 | 61.05 115 | 74.39 120 | 74.52 125 | 85.75 97 | 86.04 122 |
|
| V42 | | | 62.86 141 | 62.97 143 | 62.74 137 | 60.84 192 | 78.99 135 | 71.46 110 | 57.13 137 | 46.85 153 | 44.28 127 | 38.87 159 | 40.73 164 | 57.63 143 | 72.60 143 | 74.14 128 | 85.09 118 | 88.63 101 |
|
| gg-mvs-nofinetune | | | 62.34 142 | 66.19 126 | 57.86 166 | 76.15 110 | 88.61 41 | 71.18 114 | 41.24 212 | 25.74 214 | 13.16 217 | 22.91 210 | 63.97 72 | 54.52 153 | 85.06 16 | 85.25 10 | 90.92 3 | 91.78 62 |
|
| CR-MVSNet | | | 62.31 143 | 64.75 132 | 59.47 156 | 68.63 152 | 71.29 186 | 67.53 140 | 43.18 202 | 55.83 118 | 41.40 142 | 41.04 148 | 55.85 112 | 57.29 144 | 72.76 140 | 73.27 142 | 78.77 192 | 83.23 148 |
|
| UniMVSNet_NR-MVSNet | | | 62.30 144 | 63.51 139 | 60.89 147 | 69.48 149 | 77.83 145 | 64.07 157 | 63.94 69 | 50.03 140 | 31.17 187 | 44.82 129 | 41.12 159 | 51.37 161 | 71.02 155 | 74.81 120 | 85.30 112 | 84.95 132 |
|
| v1192 | | | 62.25 145 | 61.64 155 | 62.96 132 | 66.88 163 | 79.72 127 | 69.96 124 | 55.77 148 | 41.58 174 | 39.42 152 | 37.05 170 | 35.96 186 | 60.50 119 | 74.30 123 | 74.09 129 | 85.24 114 | 88.76 100 |
|
| Vis-MVSNet (Re-imp) | | | 62.25 145 | 68.74 105 | 54.68 181 | 73.70 123 | 78.74 136 | 56.51 187 | 57.49 132 | 55.22 123 | 26.86 195 | 54.56 85 | 61.35 82 | 31.06 197 | 73.10 134 | 74.90 118 | 82.49 164 | 83.31 145 |
|
| CHOSEN 280x420 | | | 62.23 147 | 66.57 122 | 57.17 172 | 59.88 195 | 68.92 192 | 61.20 175 | 42.28 206 | 54.17 130 | 39.57 150 | 47.78 112 | 64.97 66 | 62.68 104 | 73.85 127 | 69.52 176 | 77.43 196 | 86.75 114 |
|
| PatchMatch-RL | | | 62.22 148 | 60.69 162 | 64.01 124 | 68.74 151 | 75.75 163 | 59.27 180 | 60.35 111 | 56.09 117 | 53.80 89 | 47.06 121 | 36.45 181 | 64.80 92 | 68.22 175 | 67.22 182 | 77.10 197 | 74.02 181 |
|
| v144192 | | | 62.05 149 | 61.46 157 | 62.73 138 | 66.59 167 | 79.87 126 | 69.30 129 | 55.88 146 | 41.50 176 | 39.41 153 | 37.23 168 | 36.45 181 | 59.62 124 | 72.69 142 | 73.51 135 | 85.61 109 | 88.93 97 |
|
| v148 | | | 62.00 150 | 61.19 159 | 62.96 132 | 67.46 161 | 79.49 130 | 67.87 136 | 57.66 129 | 42.30 170 | 45.02 123 | 38.20 164 | 38.89 171 | 54.77 152 | 69.83 169 | 72.60 151 | 84.96 119 | 87.01 113 |
|
| IterMVS | | | 61.87 151 | 63.55 138 | 59.90 152 | 67.29 162 | 72.20 180 | 67.34 143 | 48.56 185 | 47.48 151 | 37.86 163 | 47.07 120 | 48.27 138 | 54.08 154 | 72.12 146 | 73.71 133 | 84.30 139 | 83.99 140 |
| Fangjinhua Wang, Silvano Galliani, Christoph Vogel, Marc Pollefeys: IterMVS: Iterative Probability Estimation for Efficient Multi-View Stereo. |
| v1921920 | | | 61.66 152 | 61.10 160 | 62.31 140 | 66.32 168 | 79.57 129 | 68.41 134 | 55.49 153 | 41.03 177 | 38.69 157 | 36.64 176 | 35.27 189 | 59.60 125 | 73.23 133 | 73.41 137 | 85.37 111 | 88.51 104 |
|
| ACMH | | 59.42 14 | 61.59 153 | 59.22 172 | 64.36 122 | 78.92 84 | 78.26 141 | 67.65 138 | 67.48 46 | 39.81 182 | 30.98 189 | 38.25 163 | 34.59 192 | 61.37 114 | 70.55 162 | 73.47 136 | 79.74 187 | 79.59 165 |
| Qingshan Xu and Wenbing Tao: Multi-Scale Geometric Consistency Guided Multi-View Stereo. CVPR 2019 |
| ACMH+ | | 60.36 13 | 61.16 154 | 58.38 174 | 64.42 121 | 77.37 101 | 74.35 173 | 68.45 133 | 62.81 84 | 45.86 159 | 38.48 158 | 35.71 179 | 37.35 176 | 59.81 123 | 67.24 178 | 69.80 175 | 79.58 188 | 78.32 170 |
|
| v1240 | | | 61.09 155 | 60.55 164 | 61.72 144 | 65.92 172 | 79.28 132 | 67.16 144 | 54.91 160 | 39.79 183 | 38.10 160 | 36.08 178 | 34.64 191 | 59.15 129 | 72.86 138 | 73.36 139 | 85.10 116 | 87.84 108 |
|
| NR-MVSNet | | | 61.08 156 | 62.09 153 | 59.90 152 | 71.96 133 | 75.87 160 | 63.60 163 | 61.96 90 | 49.31 143 | 27.95 192 | 42.76 133 | 33.85 196 | 48.82 168 | 74.35 121 | 74.05 131 | 85.13 115 | 84.45 136 |
|
| DU-MVS | | | 60.87 157 | 61.82 154 | 59.76 154 | 66.69 164 | 75.87 160 | 64.07 157 | 61.96 90 | 49.31 143 | 31.17 187 | 42.76 133 | 36.95 178 | 51.37 161 | 69.67 170 | 73.20 145 | 83.30 153 | 84.95 132 |
|
| UniMVSNet (Re) | | | 60.62 158 | 62.93 145 | 57.92 165 | 67.64 159 | 77.90 144 | 61.75 172 | 61.24 99 | 49.83 142 | 29.80 191 | 42.57 136 | 40.62 165 | 43.36 185 | 70.49 163 | 73.27 142 | 83.76 146 | 85.81 126 |
|
| PatchT | | | 60.46 159 | 63.85 137 | 56.51 175 | 65.95 171 | 75.68 164 | 47.34 201 | 41.39 209 | 53.89 132 | 41.40 142 | 37.84 166 | 50.30 136 | 57.29 144 | 72.76 140 | 73.27 142 | 85.67 104 | 83.23 148 |
|
| TranMVSNet+NR-MVSNet | | | 60.38 160 | 61.30 158 | 59.30 158 | 68.34 153 | 75.57 166 | 63.38 166 | 63.78 71 | 46.74 154 | 27.73 193 | 42.56 137 | 36.84 179 | 47.66 171 | 70.36 164 | 74.59 123 | 84.91 122 | 82.46 153 |
|
| IterMVS-SCA-FT | | | 60.21 161 | 62.97 143 | 57.00 173 | 66.64 166 | 71.84 181 | 67.53 140 | 46.93 192 | 47.56 150 | 36.77 168 | 46.85 124 | 48.21 139 | 52.51 157 | 70.36 164 | 72.40 153 | 71.63 210 | 83.53 144 |
|
| pmmvs5 | | | 59.72 162 | 60.24 166 | 59.11 160 | 62.77 186 | 77.33 152 | 63.17 167 | 54.00 167 | 40.21 181 | 37.23 164 | 40.41 152 | 35.99 185 | 51.75 159 | 72.55 144 | 72.74 150 | 85.72 102 | 82.45 154 |
|
| USDC | | | 59.69 163 | 60.03 168 | 59.28 159 | 64.04 179 | 71.84 181 | 63.15 168 | 55.36 155 | 54.90 127 | 35.02 176 | 48.34 108 | 29.79 208 | 58.16 133 | 70.60 160 | 71.33 164 | 79.99 185 | 73.42 185 |
|
| Baseline_NR-MVSNet | | | 59.47 164 | 60.28 165 | 58.54 163 | 66.69 164 | 73.90 174 | 61.63 173 | 62.90 83 | 49.15 147 | 26.87 194 | 35.18 183 | 37.62 174 | 48.20 169 | 69.67 170 | 73.61 134 | 84.92 120 | 82.82 151 |
|
| thisisatest0515 | | | 59.37 165 | 60.68 163 | 57.84 167 | 64.39 178 | 75.65 165 | 58.56 183 | 53.86 168 | 41.55 175 | 42.12 140 | 40.40 153 | 39.59 168 | 47.09 174 | 71.69 152 | 73.79 132 | 81.02 179 | 82.08 157 |
|
| pm-mvs1 | | | 59.21 166 | 59.58 171 | 58.77 162 | 67.97 156 | 77.07 154 | 64.12 155 | 57.20 135 | 34.73 199 | 36.86 165 | 35.34 181 | 40.54 166 | 43.34 186 | 74.32 122 | 73.30 141 | 83.13 158 | 81.77 159 |
|
| tfpnnormal | | | 58.97 167 | 56.48 182 | 61.89 142 | 71.27 138 | 76.21 159 | 66.65 148 | 61.76 96 | 32.90 202 | 36.41 169 | 27.83 201 | 29.14 209 | 50.64 165 | 73.06 135 | 73.05 146 | 84.58 135 | 83.15 150 |
|
| FMVSNet5 | | | 58.86 168 | 60.24 166 | 57.25 171 | 52.66 210 | 66.25 198 | 63.77 162 | 52.86 175 | 57.85 109 | 37.92 162 | 36.12 177 | 52.22 131 | 51.37 161 | 70.88 157 | 71.43 161 | 84.92 120 | 66.91 202 |
|
| TAMVS | | | 58.86 168 | 60.91 161 | 56.47 176 | 62.38 188 | 77.57 148 | 58.97 182 | 52.98 173 | 38.76 186 | 36.17 170 | 42.26 141 | 47.94 141 | 46.45 176 | 70.23 166 | 70.79 168 | 81.86 172 | 78.82 169 |
|
| EG-PatchMatch MVS | | | 58.73 170 | 58.03 177 | 59.55 155 | 72.32 130 | 80.49 121 | 63.44 165 | 55.55 152 | 32.49 203 | 38.31 159 | 28.87 199 | 37.22 177 | 42.84 187 | 74.30 123 | 75.70 110 | 84.84 125 | 77.14 173 |
|
| RPMNet | | | 58.63 171 | 62.80 147 | 53.76 186 | 67.59 160 | 71.29 186 | 54.60 190 | 38.13 214 | 55.83 118 | 35.70 173 | 41.58 145 | 53.04 129 | 47.89 170 | 66.10 180 | 67.38 180 | 78.65 194 | 84.40 137 |
|
| ADS-MVSNet | | | 58.40 172 | 59.16 173 | 57.52 169 | 65.80 173 | 74.57 172 | 60.26 176 | 40.17 213 | 50.51 138 | 38.01 161 | 40.11 156 | 44.72 149 | 59.36 127 | 64.91 185 | 66.55 185 | 81.53 175 | 72.72 189 |
|
| UniMVSNet_ETH3D | | | 57.83 173 | 56.46 183 | 59.43 157 | 63.24 183 | 73.22 177 | 67.70 137 | 55.58 151 | 36.17 194 | 36.84 166 | 32.64 188 | 35.14 190 | 51.50 160 | 65.81 181 | 69.81 174 | 81.73 173 | 82.44 155 |
|
| TransMVSNet (Re) | | | 57.83 173 | 56.90 180 | 58.91 161 | 72.26 131 | 74.69 171 | 63.57 164 | 61.42 98 | 32.30 204 | 32.65 183 | 33.97 186 | 35.96 186 | 39.17 193 | 73.84 128 | 72.84 149 | 84.37 138 | 74.69 179 |
|
| MIMVSNet | | | 57.78 175 | 59.71 170 | 55.53 178 | 54.79 206 | 77.10 153 | 63.89 161 | 45.02 196 | 46.59 156 | 36.79 167 | 28.36 200 | 40.77 163 | 45.84 180 | 74.97 112 | 76.58 99 | 86.87 73 | 73.60 184 |
|
| CMPMVS |  | 43.63 17 | 57.67 176 | 55.43 184 | 60.28 151 | 72.01 132 | 79.00 134 | 62.77 169 | 53.23 172 | 41.77 173 | 45.42 118 | 30.74 195 | 39.03 169 | 53.01 156 | 64.81 187 | 64.65 193 | 75.26 202 | 68.03 200 |
| M. Jancosek, T. Pajdla: Multi-View Reconstruction Preserving Weakly-Supported Surfaces. CVPR 2011 |
| test0.0.03 1 | | | 57.35 177 | 59.89 169 | 54.38 184 | 71.37 136 | 73.45 176 | 52.71 193 | 61.03 100 | 46.11 158 | 26.33 196 | 41.73 144 | 44.08 150 | 29.72 199 | 71.43 154 | 70.90 166 | 85.10 116 | 71.56 192 |
|
| v7n | | | 57.04 178 | 56.64 181 | 57.52 169 | 62.85 185 | 74.75 170 | 61.76 171 | 51.80 178 | 35.58 198 | 36.02 172 | 32.33 190 | 33.61 197 | 50.16 166 | 67.73 177 | 70.34 172 | 82.51 163 | 82.12 156 |
|
| pmmvs-eth3d | | | 55.20 179 | 53.95 188 | 56.65 174 | 57.34 204 | 67.77 194 | 57.54 185 | 53.74 169 | 40.93 178 | 41.09 146 | 31.19 194 | 29.10 210 | 49.07 167 | 65.54 182 | 67.28 181 | 81.14 177 | 75.81 174 |
|
| COLMAP_ROB |  | 51.17 15 | 55.13 180 | 52.90 193 | 57.73 168 | 73.47 127 | 67.21 196 | 62.13 170 | 55.82 147 | 47.83 149 | 34.39 178 | 31.60 192 | 34.24 193 | 44.90 183 | 63.88 192 | 62.52 200 | 75.67 200 | 63.02 209 |
| Johannes L. Schönberger, Enliang Zheng, Marc Pollefeys, Jan-Michael Frahm: Pixelwise View Selection for Unstructured Multi-View Stereo. ECCV 2016 |
| RPSCF | | | 55.07 181 | 58.06 176 | 51.57 188 | 48.87 215 | 58.95 211 | 53.68 192 | 41.26 211 | 62.42 88 | 45.88 116 | 54.38 88 | 54.26 123 | 53.75 155 | 57.15 202 | 53.53 212 | 66.01 212 | 65.75 204 |
|
| gm-plane-assit | | | 54.99 182 | 57.99 178 | 51.49 190 | 69.27 150 | 54.42 215 | 32.32 218 | 42.59 205 | 21.18 218 | 13.71 215 | 23.61 207 | 43.84 152 | 60.21 121 | 87.09 5 | 86.55 5 | 90.81 4 | 89.28 93 |
|
| anonymousdsp | | | 54.99 182 | 57.24 179 | 52.36 187 | 53.82 208 | 71.75 184 | 51.49 194 | 48.14 186 | 33.74 200 | 33.66 181 | 38.34 162 | 36.13 184 | 47.54 172 | 64.53 189 | 70.60 170 | 79.53 189 | 85.59 129 |
|
| CVMVSNet | | | 54.92 184 | 58.16 175 | 51.13 191 | 62.61 187 | 68.44 193 | 55.45 189 | 52.38 176 | 42.28 171 | 21.45 203 | 47.10 119 | 46.10 146 | 37.96 194 | 64.42 190 | 63.81 194 | 76.92 198 | 75.01 178 |
|
| GG-mvs-BLEND | | | 54.54 185 | 77.58 52 | 27.67 214 | 0.03 229 | 90.09 29 | 77.20 67 | 0.02 225 | 66.83 75 | 0.05 230 | 59.90 70 | 73.33 36 | 0.04 225 | 78.40 80 | 79.30 75 | 88.65 22 | 95.20 25 |
|
| MDTV_nov1_ep13_2view | | | 54.47 186 | 54.61 185 | 54.30 185 | 60.50 193 | 73.82 175 | 57.92 184 | 43.38 201 | 39.43 185 | 32.51 184 | 33.23 187 | 34.05 194 | 47.26 173 | 62.36 193 | 66.21 188 | 84.24 140 | 73.19 187 |
|
| pmmvs6 | | | 54.20 187 | 53.54 189 | 54.97 179 | 63.22 184 | 72.98 178 | 60.17 177 | 52.32 177 | 26.77 213 | 34.30 179 | 23.29 209 | 36.23 183 | 40.33 192 | 68.77 174 | 68.76 177 | 79.47 190 | 78.00 171 |
|
| pmnet_mix02 | | | 53.92 188 | 53.30 190 | 54.65 183 | 61.89 189 | 71.33 185 | 54.54 191 | 54.17 166 | 40.38 179 | 34.65 177 | 34.76 185 | 30.68 207 | 40.44 191 | 60.97 195 | 63.71 195 | 82.19 169 | 71.24 194 |
|
| MVS-HIRNet | | | 53.86 189 | 53.02 191 | 54.85 180 | 60.30 194 | 72.36 179 | 44.63 209 | 42.20 207 | 39.45 184 | 43.47 131 | 21.66 213 | 34.00 195 | 55.47 149 | 65.42 183 | 67.16 183 | 83.02 159 | 71.08 195 |
|
| TDRefinement | | | 52.70 190 | 51.02 199 | 54.66 182 | 57.41 203 | 65.06 202 | 61.47 174 | 54.94 158 | 44.03 165 | 33.93 180 | 30.13 197 | 27.57 211 | 46.17 178 | 61.86 194 | 62.48 201 | 74.01 206 | 66.06 203 |
|
| TinyColmap | | | 52.66 191 | 50.09 202 | 55.65 177 | 59.72 196 | 64.02 206 | 57.15 186 | 52.96 174 | 40.28 180 | 32.51 184 | 32.42 189 | 20.97 219 | 56.65 146 | 63.95 191 | 65.15 192 | 74.91 203 | 63.87 207 |
|
| Anonymous20231206 | | | 52.23 192 | 52.80 194 | 51.56 189 | 64.70 177 | 69.41 190 | 51.01 195 | 58.60 119 | 36.63 191 | 22.44 202 | 21.80 212 | 31.42 203 | 30.52 198 | 66.79 179 | 67.83 179 | 82.10 170 | 75.73 175 |
|
| PEN-MVS | | | 51.04 193 | 52.94 192 | 48.82 194 | 61.45 191 | 66.00 199 | 48.68 198 | 57.20 135 | 36.87 189 | 15.36 211 | 36.98 171 | 32.72 198 | 28.77 203 | 57.63 201 | 66.37 186 | 81.44 176 | 74.00 182 |
|
| WR-MVS | | | 51.02 194 | 54.56 186 | 46.90 200 | 63.84 180 | 69.23 191 | 44.78 208 | 56.38 142 | 38.19 187 | 14.19 213 | 37.38 167 | 36.82 180 | 22.39 209 | 60.14 197 | 66.20 189 | 79.81 186 | 73.95 183 |
|
| CP-MVSNet | | | 50.57 195 | 52.60 196 | 48.21 197 | 58.77 200 | 65.82 200 | 48.17 199 | 56.29 143 | 37.41 188 | 16.59 208 | 37.14 169 | 31.95 200 | 29.21 200 | 56.60 204 | 63.71 195 | 80.22 183 | 75.56 176 |
|
| PS-CasMVS | | | 50.17 196 | 52.02 197 | 48.02 198 | 58.60 201 | 65.54 201 | 48.04 200 | 56.19 145 | 36.42 193 | 16.42 210 | 35.68 180 | 31.33 204 | 28.85 202 | 56.42 206 | 63.54 197 | 80.01 184 | 75.18 177 |
|
| PM-MVS | | | 50.11 197 | 50.38 201 | 49.80 192 | 47.23 217 | 62.08 209 | 50.91 196 | 44.84 198 | 41.90 172 | 36.10 171 | 35.22 182 | 26.05 215 | 46.83 175 | 57.64 200 | 55.42 211 | 72.90 207 | 74.32 180 |
|
| DTE-MVSNet | | | 49.82 198 | 51.92 198 | 47.37 199 | 61.75 190 | 64.38 204 | 45.89 207 | 57.33 134 | 36.11 195 | 12.79 218 | 36.87 172 | 31.93 201 | 25.73 206 | 58.01 199 | 65.22 191 | 80.75 182 | 70.93 196 |
|
| WR-MVS_H | | | 49.62 199 | 52.63 195 | 46.11 203 | 58.80 199 | 67.58 195 | 46.14 206 | 54.94 158 | 36.51 192 | 13.63 216 | 36.75 174 | 35.67 188 | 22.10 210 | 56.43 205 | 62.76 199 | 81.06 178 | 72.73 188 |
|
| LTVRE_ROB | | 47.26 16 | 49.41 200 | 49.91 203 | 48.82 194 | 64.76 176 | 69.79 189 | 49.05 197 | 47.12 191 | 20.36 220 | 16.52 209 | 36.65 175 | 26.96 212 | 50.76 164 | 60.47 196 | 63.16 198 | 64.73 213 | 72.00 190 |
| Andreas Kuhn, Heiko Hirschmüller, Daniel Scharstein, Helmut Mayer: A TV Prior for High-Quality Scalable Multi-View Stereo Reconstruction. International Journal of Computer Vision 2016 |
| SixPastTwentyTwo | | | 49.11 201 | 49.22 204 | 48.99 193 | 58.54 202 | 64.14 205 | 47.18 202 | 47.75 188 | 31.15 206 | 24.42 198 | 41.01 149 | 26.55 213 | 44.04 184 | 54.76 209 | 58.70 206 | 71.99 209 | 68.21 198 |
|
| testgi | | | 48.51 202 | 50.53 200 | 46.16 202 | 64.78 175 | 67.15 197 | 41.54 211 | 54.81 162 | 29.12 209 | 17.03 207 | 32.07 191 | 31.98 199 | 20.15 213 | 65.26 184 | 67.00 184 | 78.67 193 | 61.10 213 |
|
| N_pmnet | | | 47.67 203 | 47.00 207 | 48.45 196 | 54.72 207 | 62.78 207 | 46.95 203 | 51.25 179 | 36.01 196 | 26.09 197 | 26.59 204 | 25.93 216 | 35.50 196 | 55.67 208 | 59.01 204 | 76.22 199 | 63.04 208 |
|
| FC-MVSNet-test | | | 47.24 204 | 54.37 187 | 38.93 209 | 59.49 197 | 58.25 213 | 34.48 217 | 53.36 171 | 45.66 160 | 6.66 223 | 50.62 99 | 42.02 154 | 16.62 217 | 58.39 198 | 61.21 202 | 62.99 214 | 64.40 206 |
|
| test20.03 | | | 47.23 205 | 48.69 205 | 45.53 204 | 63.28 182 | 64.39 203 | 41.01 212 | 56.93 139 | 29.16 208 | 15.21 212 | 23.90 206 | 30.76 206 | 17.51 216 | 64.63 188 | 65.26 190 | 79.21 191 | 62.71 210 |
|
| EU-MVSNet | | | 44.84 206 | 47.85 206 | 41.32 208 | 49.26 214 | 56.59 214 | 43.07 210 | 47.64 190 | 33.03 201 | 13.82 214 | 36.78 173 | 30.99 205 | 24.37 207 | 53.80 210 | 55.57 210 | 69.78 211 | 68.21 198 |
|
| MDA-MVSNet-bldmvs | | | 44.15 207 | 42.27 212 | 46.34 201 | 38.34 219 | 62.31 208 | 46.28 204 | 55.74 149 | 29.83 207 | 20.98 204 | 27.11 203 | 16.45 225 | 41.98 188 | 41.11 217 | 57.47 207 | 74.72 204 | 61.65 212 |
|
| new-patchmatchnet | | | 42.21 208 | 42.97 209 | 41.33 207 | 53.05 209 | 59.89 210 | 39.38 213 | 49.61 181 | 28.26 211 | 12.10 219 | 22.17 211 | 21.54 218 | 19.22 214 | 50.96 211 | 56.04 209 | 74.61 205 | 61.92 211 |
|
| pmmvs3 | | | 41.86 209 | 42.29 211 | 41.36 206 | 39.80 218 | 52.66 216 | 38.93 215 | 35.85 218 | 23.40 217 | 20.22 205 | 19.30 214 | 20.84 220 | 40.56 190 | 55.98 207 | 58.79 205 | 72.80 208 | 65.03 205 |
|
| MIMVSNet1 | | | 40.84 210 | 43.46 208 | 37.79 210 | 32.14 220 | 58.92 212 | 39.24 214 | 50.83 180 | 27.00 212 | 11.29 220 | 16.76 219 | 26.53 214 | 17.75 215 | 57.14 203 | 61.12 203 | 75.46 201 | 56.78 214 |
|
| FPMVS | | | 39.11 211 | 36.39 213 | 42.28 205 | 55.97 205 | 45.94 218 | 46.23 205 | 41.57 208 | 35.73 197 | 22.61 200 | 23.46 208 | 19.82 221 | 28.32 204 | 43.57 214 | 40.67 216 | 58.96 216 | 45.54 216 |
|
| new_pmnet | | | 33.19 212 | 35.52 214 | 30.47 212 | 27.55 224 | 45.31 219 | 29.29 219 | 30.92 219 | 29.00 210 | 9.88 222 | 18.77 215 | 17.64 223 | 26.77 205 | 44.07 213 | 45.98 214 | 58.41 217 | 47.87 215 |
|
| PMVS |  | 27.44 18 | 32.08 213 | 29.07 217 | 35.60 211 | 48.33 216 | 24.79 222 | 26.97 220 | 41.34 210 | 20.45 219 | 22.50 201 | 17.11 218 | 18.64 222 | 20.44 212 | 41.99 216 | 38.06 217 | 54.02 218 | 42.44 217 |
| Y. Furukawa, J. Ponce: Accurate, dense, and robust multiview stereopsis. PAMI (2010) |
| WB-MVS | | | 30.42 214 | 32.63 216 | 27.84 213 | 51.51 212 | 41.64 220 | 17.75 223 | 55.06 157 | 20.11 221 | 2.46 228 | 26.13 205 | 16.63 224 | 3.90 223 | 44.91 212 | 44.54 215 | 36.34 222 | 34.48 219 |
|
| test_method | | | 28.15 215 | 34.48 215 | 20.76 216 | 6.76 228 | 21.18 224 | 21.03 221 | 18.41 222 | 36.77 190 | 17.52 206 | 15.67 220 | 31.63 202 | 24.05 208 | 41.03 218 | 26.69 220 | 36.82 221 | 68.38 197 |
|
| Gipuma |  | | 24.91 216 | 24.61 218 | 25.26 215 | 31.47 221 | 21.59 223 | 18.06 222 | 37.53 215 | 25.43 215 | 10.03 221 | 4.18 225 | 4.25 229 | 14.85 218 | 43.20 215 | 47.03 213 | 39.62 220 | 26.55 222 |
| S. Galliani, K. Lasinger, K. Schindler: Massively Parallel Multiview Stereopsis by Surface Normal Diffusion. ICCV 2015 |
| PMMVS2 | | | 20.45 217 | 22.31 219 | 18.27 219 | 20.52 225 | 26.73 221 | 14.85 225 | 28.43 221 | 13.69 222 | 0.79 229 | 10.35 221 | 9.10 226 | 3.83 224 | 27.64 220 | 32.87 218 | 41.17 219 | 35.81 218 |
|
| E-PMN | | | 15.08 218 | 11.65 221 | 19.08 217 | 28.73 222 | 12.31 227 | 6.95 228 | 36.87 217 | 10.71 224 | 3.63 226 | 5.13 222 | 2.22 232 | 13.81 220 | 11.34 223 | 18.50 222 | 24.49 224 | 21.32 223 |
|
| EMVS | | | 14.40 219 | 10.71 222 | 18.70 218 | 28.15 223 | 12.09 228 | 7.06 227 | 36.89 216 | 11.00 223 | 3.56 227 | 4.95 223 | 2.27 231 | 13.91 219 | 10.13 224 | 16.06 223 | 22.63 225 | 18.51 224 |
|
| MVE |  | 15.98 19 | 14.37 220 | 16.36 220 | 12.04 221 | 7.72 227 | 20.24 225 | 5.90 229 | 29.05 220 | 8.28 225 | 3.92 225 | 4.72 224 | 2.42 230 | 9.57 221 | 18.89 222 | 31.46 219 | 16.07 227 | 28.53 221 |
| Simon Fuhrmann, Fabian Langguth, Michael Goesele: MVE - A Multi-View Reconstruction Environment. EUROGRAPHICS Workshops on Graphics and Cultural Heritage (2014) |
| testmvs | | | 0.05 221 | 0.08 223 | 0.01 222 | 0.00 230 | 0.01 230 | 0.03 231 | 0.01 226 | 0.05 226 | 0.00 231 | 0.14 227 | 0.01 233 | 0.03 227 | 0.05 225 | 0.05 224 | 0.01 228 | 0.24 226 |
|
| test123 | | | 0.05 221 | 0.08 223 | 0.01 222 | 0.00 230 | 0.01 230 | 0.01 232 | 0.00 227 | 0.05 226 | 0.00 231 | 0.16 226 | 0.00 234 | 0.04 225 | 0.02 226 | 0.05 224 | 0.00 229 | 0.26 225 |
|
| uanet_test | | | 0.00 223 | 0.00 225 | 0.00 224 | 0.00 230 | 0.00 232 | 0.00 233 | 0.00 227 | 0.00 228 | 0.00 231 | 0.00 228 | 0.00 234 | 0.00 228 | 0.00 227 | 0.00 226 | 0.00 229 | 0.00 227 |
|
| sosnet-low-res | | | 0.00 223 | 0.00 225 | 0.00 224 | 0.00 230 | 0.00 232 | 0.00 233 | 0.00 227 | 0.00 228 | 0.00 231 | 0.00 228 | 0.00 234 | 0.00 228 | 0.00 227 | 0.00 226 | 0.00 229 | 0.00 227 |
|
| sosnet | | | 0.00 223 | 0.00 225 | 0.00 224 | 0.00 230 | 0.00 232 | 0.00 233 | 0.00 227 | 0.00 228 | 0.00 231 | 0.00 228 | 0.00 234 | 0.00 228 | 0.00 227 | 0.00 226 | 0.00 229 | 0.00 227 |
|
| TPM-MVS | | | | | | 94.34 2 | 93.91 5 | 89.34 3 | | | 75.49 18 | 82.52 20 | 83.34 10 | 83.53 4 | | | 89.62 7 | 90.78 74 |
| Ray Leroy Khuboni and Hongjun Xu: Textureless Resilient Propagation Matching in Multiple View Stereosis (TPM-MVS). SATNAC 2025 |
| RE-MVS-def | | | | | | | | | | | 31.47 186 | | | | | | | |
|
| 9.14 | | | | | | | | | | | | | 84.47 7 | | | | | |
|
| SR-MVS | | | | | | 86.33 46 | | | 67.54 45 | | | | 80.78 21 | | | | | |
|
| Anonymous202405211 | | | | 66.35 125 | | 78.00 92 | 84.41 88 | 74.85 80 | 63.18 76 | 51.00 137 | | 31.37 193 | 53.73 126 | 69.67 66 | 76.28 99 | 76.84 96 | 83.21 156 | 90.85 72 |
|
| our_test_3 | | | | | | 63.32 181 | 71.07 188 | 55.90 188 | | | | | | | | | | |
|
| ambc | | | | 42.30 210 | | 50.36 213 | 49.51 217 | 35.47 216 | | 32.04 205 | 23.53 199 | 17.36 216 | 8.95 227 | 29.06 201 | 64.88 186 | 56.26 208 | 61.29 215 | 67.12 201 |
|
| MTAPA | | | | | | | | | | | 78.32 11 | | 79.42 25 | | | | | |
|
| MTMP | | | | | | | | | | | 76.04 15 | | 76.65 29 | | | | | |
|
| Patchmatch-RL test | | | | | | | | 2.17 230 | | | | | | | | | | |
|
| tmp_tt | | | | | 16.09 220 | 13.07 226 | 8.12 229 | 13.61 226 | 2.08 224 | 55.09 124 | 30.10 190 | 40.26 154 | 22.83 217 | 5.35 222 | 29.91 219 | 25.25 221 | 32.33 223 | |
|
| XVS | | | | | | 82.43 55 | 86.27 73 | 75.70 70 | | | 61.07 63 | | 72.27 39 | | | | 85.67 104 | |
|
| X-MVStestdata | | | | | | 82.43 55 | 86.27 73 | 75.70 70 | | | 61.07 63 | | 72.27 39 | | | | 85.67 104 | |
|
| mPP-MVS | | | | | | 86.96 41 | | | | | | | 70.61 49 | | | | | |
|
| NP-MVS | | | | | | | | | | 81.60 34 | | | | | | | | |
|
| Patchmtry | | | | | | | 78.06 143 | 67.53 140 | 43.18 202 | | 41.40 142 | | | | | | | |
|
| DeepMVS_CX |  | | | | | | 19.81 226 | 17.01 224 | 10.02 223 | 23.61 216 | 5.85 224 | 17.21 217 | 8.03 228 | 21.13 211 | 22.60 221 | | 21.42 226 | 30.01 220 |
|