SED-MVS | | | 88.94 1 | 90.98 1 | 86.56 1 | 92.53 6 | 95.09 1 | 88.55 4 | 76.83 6 | 94.16 1 | 86.57 1 | 90.85 5 | 87.07 1 | 86.18 1 | 86.36 7 | 85.08 12 | 88.67 19 | 98.21 3 |
|
DVP-MVS |  | | 88.07 2 | 90.73 2 | 84.97 4 | 91.98 9 | 95.01 2 | 87.86 9 | 76.88 5 | 93.90 2 | 85.15 2 | 90.11 7 | 86.90 2 | 79.46 11 | 86.26 10 | 84.67 18 | 88.50 26 | 98.25 2 |
Zhenlong Yuan, Jinguo Luo, Fei Shen, Zhaoxin Li, Cong Liu, Tianlu Mao, Zhaoqi Wang: DVP-MVS: Synergize Depth-Edge and Visibility Prior for Multi-View Stereo. AAAI2025 |
DVP-MVS++ | | | 87.98 3 | 89.76 5 | 85.89 2 | 92.57 5 | 94.57 3 | 88.34 5 | 76.61 7 | 92.40 6 | 83.40 3 | 89.26 10 | 85.57 5 | 86.04 2 | 86.24 11 | 84.89 15 | 88.39 29 | 95.42 20 |
|
MSP-MVS | | | 87.87 4 | 90.57 3 | 84.73 5 | 89.38 26 | 91.60 16 | 88.24 7 | 74.15 12 | 93.55 3 | 82.28 4 | 94.99 1 | 83.21 11 | 85.96 3 | 87.67 4 | 84.67 18 | 88.32 30 | 98.29 1 |
Zhenlong Yuan, Cong Liu, Fei Shen, Zhaoxin Li, Jingguo luo, Tianlu Mao and Zhaoqi Wang: MSP-MVS: Multi-granularity Segmentation Prior Guided Multi-View Stereo. AAAI2025 |
DPE-MVS |  | | 87.60 5 | 90.44 4 | 84.29 7 | 92.09 8 | 93.44 5 | 88.69 3 | 75.11 9 | 93.06 5 | 80.80 6 | 94.23 2 | 86.70 3 | 81.44 6 | 84.84 18 | 83.52 27 | 87.64 47 | 97.28 5 |
Kehua Chen, Zhenlong Yuan, Tianlu Mao, Zhaoqi Wang: Dual-Level Precision Edges Guided Multi-View Stereo with Accurate Planarization. AAAI2025 |
SF-MVS | | | 87.30 6 | 88.71 6 | 85.64 3 | 94.57 1 | 94.55 4 | 91.01 1 | 79.94 1 | 89.15 12 | 79.85 7 | 92.37 3 | 83.29 10 | 79.75 8 | 83.52 26 | 82.72 32 | 88.75 18 | 95.37 23 |
|
APDe-MVS | | | 86.37 7 | 88.41 8 | 84.00 9 | 91.43 14 | 91.83 14 | 88.34 5 | 74.67 10 | 91.19 7 | 81.76 5 | 91.13 4 | 81.94 18 | 80.07 7 | 83.38 27 | 82.58 34 | 87.69 45 | 96.78 10 |
|
CNVR-MVS | | | 85.96 8 | 87.58 11 | 84.06 8 | 92.58 4 | 92.40 10 | 87.62 10 | 77.77 4 | 88.44 14 | 75.93 16 | 79.49 25 | 81.97 17 | 81.65 5 | 87.04 6 | 86.58 4 | 88.79 16 | 97.18 7 |
|
MCST-MVS | | | 85.75 9 | 86.99 13 | 84.31 6 | 94.07 2 | 92.80 7 | 88.15 8 | 79.10 2 | 85.66 21 | 70.72 28 | 76.50 32 | 80.45 21 | 82.17 4 | 88.35 2 | 87.49 3 | 91.63 2 | 97.65 4 |
|
HPM-MVS++ |  | | 85.64 10 | 88.43 7 | 82.39 12 | 92.65 3 | 90.24 25 | 85.83 16 | 74.21 11 | 90.68 9 | 75.63 17 | 86.77 13 | 84.15 8 | 78.68 15 | 86.33 8 | 85.26 9 | 87.32 56 | 95.60 17 |
|
DPM-MVS | | | 85.41 11 | 86.72 16 | 83.89 10 | 91.66 12 | 91.92 13 | 90.49 2 | 78.09 3 | 86.90 17 | 73.95 19 | 74.52 34 | 82.01 16 | 79.29 12 | 90.24 1 | 90.65 1 | 89.86 6 | 90.78 72 |
|
SMA-MVS |  | | 85.24 12 | 88.27 9 | 81.72 15 | 91.74 11 | 90.71 19 | 86.71 12 | 73.16 19 | 90.56 10 | 74.33 18 | 83.07 18 | 85.88 4 | 77.16 19 | 86.28 9 | 85.58 6 | 87.23 60 | 95.77 13 |
Yufeng Yin; Xiaoyan Liu; Zichao Zhang: SMA-MVS: Segmentation-Guided Multi-Scale Anchor Deformation Patch Multi-View Stereo. IEEE Transactions on Circuits and Systems for Video Technology |
APD-MVS |  | | 84.83 13 | 87.00 12 | 82.30 13 | 89.61 24 | 89.21 34 | 86.51 14 | 73.64 16 | 90.98 8 | 77.99 12 | 89.89 8 | 80.04 23 | 79.18 13 | 82.00 48 | 81.37 49 | 86.88 69 | 95.49 19 |
Yuesong Wang, Zhaojie Zeng and etc.: Adaptive Patch Deformation for Textureless-Resilient Multi-View Stereo. CVPR2023 |
TSAR-MVS + MP. | | | 84.39 14 | 86.58 17 | 81.83 14 | 88.09 37 | 86.47 66 | 85.63 18 | 73.62 17 | 90.13 11 | 79.24 9 | 89.67 9 | 82.99 12 | 77.72 17 | 81.22 53 | 80.92 58 | 86.68 73 | 94.66 28 |
Zhenlong Yuan, Jiakai Cao, Zhaoqi Wang, Zhaoxin Li: TSAR-MVS: Textureless-aware Segmentation and Correlative Refinement Guided Multi-View Stereo. Pattern Recognition |
SD-MVS | | | 84.31 15 | 86.96 14 | 81.22 16 | 88.98 30 | 88.68 38 | 85.65 17 | 73.85 15 | 89.09 13 | 79.63 8 | 87.34 12 | 84.84 6 | 73.71 33 | 82.66 35 | 81.60 46 | 85.48 106 | 94.51 29 |
Zhenlong Yuan, Jiakai Cao, Zhaoxin Li, Hao Jiang and Zhaoqi Wang: SD-MVS: Segmentation-driven Deformation Multi-View Stereo with Spherical Refinement and EM optimization. AAAI2024 |
NCCC | | | 84.16 16 | 85.46 21 | 82.64 11 | 92.34 7 | 90.57 22 | 86.57 13 | 76.51 8 | 86.85 18 | 72.91 22 | 77.20 31 | 78.69 25 | 79.09 14 | 84.64 20 | 84.88 16 | 88.44 27 | 95.41 21 |
|
ACMMP_NAP | | | 83.54 17 | 86.37 18 | 80.25 21 | 89.57 25 | 90.10 27 | 85.27 20 | 71.66 23 | 87.38 15 | 73.08 21 | 84.23 17 | 80.16 22 | 75.31 24 | 84.85 17 | 83.64 24 | 86.57 74 | 94.21 35 |
|
train_agg | | | 83.35 18 | 86.93 15 | 79.17 26 | 89.70 23 | 88.41 41 | 85.60 19 | 72.89 21 | 86.31 19 | 66.58 39 | 90.48 6 | 82.24 15 | 73.06 39 | 83.10 31 | 82.64 33 | 87.21 64 | 95.30 24 |
|
DeepPCF-MVS | | 76.94 1 | 83.08 19 | 87.77 10 | 77.60 33 | 90.11 19 | 90.96 18 | 78.48 54 | 72.63 22 | 93.10 4 | 65.84 40 | 80.67 23 | 81.55 19 | 74.80 28 | 85.94 13 | 85.39 8 | 83.75 143 | 96.77 11 |
|
CSCG | | | 82.90 20 | 84.52 23 | 81.02 18 | 91.85 10 | 93.43 6 | 87.14 11 | 74.01 14 | 81.96 31 | 76.14 14 | 70.84 36 | 82.49 13 | 69.71 62 | 82.32 41 | 85.18 11 | 87.26 59 | 95.40 22 |
|
SteuartSystems-ACMMP | | | 82.51 21 | 85.35 22 | 79.20 25 | 90.25 17 | 89.39 32 | 84.79 21 | 70.95 25 | 82.86 27 | 68.32 36 | 86.44 14 | 77.19 26 | 73.07 38 | 83.63 25 | 83.64 24 | 87.82 41 | 94.34 31 |
Skip Steuart: Steuart Systems R&D Blog. |
HFP-MVS | | | 82.48 22 | 84.12 24 | 80.56 19 | 90.15 18 | 87.55 52 | 84.28 23 | 69.67 32 | 85.22 22 | 77.95 13 | 84.69 16 | 75.94 29 | 75.04 26 | 81.85 49 | 81.17 53 | 86.30 81 | 92.40 55 |
|
TSAR-MVS + GP. | | | 82.27 23 | 85.98 19 | 77.94 31 | 80.72 69 | 88.25 44 | 81.12 42 | 67.71 43 | 87.10 16 | 73.31 20 | 85.23 15 | 83.68 9 | 76.64 21 | 80.43 61 | 81.47 48 | 88.15 36 | 95.66 16 |
|
DeepC-MVS_fast | | 75.41 2 | 81.69 24 | 82.10 32 | 81.20 17 | 91.04 16 | 87.81 51 | 83.42 26 | 74.04 13 | 83.77 25 | 71.09 26 | 66.88 45 | 72.44 37 | 79.48 10 | 85.08 15 | 84.97 14 | 88.12 37 | 93.78 40 |
Andreas Kuhn, Christian Sormann, Mattia Rossi, Oliver Erdler, Friedrich Fraundorfer: DeepC-MVS: Deep Confidence Prediction for Multi-View Stereo Reconstruction. 3DV 2020 |
TSAR-MVS + ACMM | | | 81.59 25 | 85.84 20 | 76.63 37 | 89.82 22 | 86.53 65 | 86.32 15 | 66.72 50 | 85.96 20 | 65.43 41 | 88.98 11 | 82.29 14 | 67.57 80 | 82.06 46 | 81.33 50 | 83.93 141 | 93.75 41 |
|
MP-MVS |  | | 80.94 26 | 83.49 26 | 77.96 30 | 88.48 31 | 88.16 45 | 82.82 31 | 69.34 34 | 80.79 37 | 69.67 32 | 82.35 20 | 77.13 27 | 71.60 51 | 80.97 58 | 80.96 57 | 85.87 92 | 94.06 36 |
Rongxuan Tan, Qing Wang, et al.: MP-MVS: Multi-Scale Windows PatchMatch and Planar Prior Multi-View Stereo. |
CANet | | | 80.90 27 | 82.93 28 | 78.53 29 | 86.83 43 | 92.26 11 | 81.19 41 | 66.95 47 | 81.60 34 | 69.90 31 | 66.93 44 | 74.80 31 | 76.79 20 | 84.68 19 | 84.77 17 | 89.50 9 | 95.50 18 |
|
ACMMPR | | | 80.62 28 | 82.98 27 | 77.87 32 | 88.41 32 | 87.05 57 | 83.02 28 | 69.18 35 | 83.91 24 | 68.35 35 | 82.89 19 | 73.64 34 | 72.16 46 | 80.78 59 | 81.13 54 | 86.10 86 | 91.43 62 |
|
DeepC-MVS | | 74.46 3 | 80.30 29 | 81.05 35 | 79.42 23 | 87.42 39 | 88.50 40 | 83.23 27 | 73.27 18 | 82.78 28 | 71.01 27 | 62.86 57 | 69.93 50 | 74.80 28 | 84.30 21 | 84.20 21 | 86.79 72 | 94.77 26 |
Andreas Kuhn, Christian Sormann, Mattia Rossi, Oliver Erdler, Friedrich Fraundorfer: DeepC-MVS: Deep Confidence Prediction for Multi-View Stereo Reconstruction. 3DV 2020 |
DELS-MVS | | | 79.49 30 | 79.84 40 | 79.08 27 | 88.26 36 | 92.49 8 | 84.12 25 | 70.63 27 | 65.27 81 | 69.60 34 | 61.29 62 | 66.50 59 | 72.75 42 | 88.07 3 | 88.03 2 | 89.13 12 | 97.22 6 |
Christian Sormann, Emanuele Santellani, Mattia Rossi, Andreas Kuhn, Friedrich Fraundorfer: DELS-MVS: Deep Epipolar Line Search for Multi-View Stereo. Winter Conference on Applications of Computer Vision (WACV), 2023 |
CP-MVS | | | 79.44 31 | 81.51 34 | 77.02 36 | 86.95 41 | 85.96 75 | 82.00 33 | 68.44 40 | 81.82 32 | 67.39 37 | 77.43 29 | 73.68 33 | 71.62 50 | 79.56 70 | 79.58 70 | 85.73 96 | 92.51 54 |
|
MVS_0304 | | | 79.43 32 | 82.20 30 | 76.20 40 | 84.22 51 | 91.79 15 | 81.82 36 | 63.81 69 | 76.83 49 | 61.71 56 | 66.37 47 | 75.52 30 | 76.38 22 | 85.54 14 | 85.03 13 | 89.28 11 | 94.32 32 |
|
PHI-MVS | | | 79.43 32 | 84.06 25 | 74.04 55 | 86.15 46 | 91.57 17 | 80.85 45 | 68.90 38 | 82.22 30 | 51.81 92 | 78.10 27 | 74.28 32 | 70.39 59 | 84.01 24 | 84.00 22 | 86.14 85 | 94.24 33 |
|
PGM-MVS | | | 79.42 34 | 81.84 33 | 76.60 38 | 88.38 34 | 86.69 61 | 82.97 30 | 65.75 56 | 80.39 38 | 64.94 42 | 81.95 22 | 72.11 42 | 71.41 53 | 80.45 60 | 80.55 63 | 86.18 83 | 90.76 74 |
|
CDPH-MVS | | | 79.39 35 | 82.13 31 | 76.19 41 | 89.22 29 | 88.34 42 | 84.20 24 | 71.00 24 | 79.67 41 | 56.97 76 | 77.77 28 | 72.24 41 | 68.50 74 | 81.33 52 | 82.74 30 | 87.23 60 | 92.84 51 |
|
EPNet | | | 79.28 36 | 82.25 29 | 75.83 43 | 88.31 35 | 90.14 26 | 79.43 52 | 68.07 41 | 81.76 33 | 61.26 59 | 77.26 30 | 70.08 49 | 70.06 60 | 82.43 39 | 82.00 38 | 87.82 41 | 92.09 57 |
Wanjuan Su, Wenbing Tao: Efficient Edge-Preserving Multi-View Stereo Network for Depth Estimation. AAAI 2023 |
MSLP-MVS++ | | | 78.57 37 | 77.33 52 | 80.02 22 | 88.39 33 | 84.79 81 | 84.62 22 | 66.17 54 | 75.96 51 | 78.40 10 | 61.59 60 | 71.47 44 | 73.54 36 | 78.43 78 | 78.88 76 | 88.97 14 | 90.18 81 |
|
3Dnovator | | 70.49 5 | 78.42 38 | 76.77 57 | 80.35 20 | 91.43 14 | 90.27 24 | 81.84 35 | 70.79 26 | 72.10 58 | 71.95 23 | 50.02 99 | 67.86 56 | 77.47 18 | 82.89 32 | 84.24 20 | 88.61 22 | 89.99 82 |
|
HQP-MVS | | | 78.26 39 | 80.91 36 | 75.17 48 | 85.67 48 | 84.33 87 | 83.01 29 | 69.38 33 | 79.88 40 | 55.83 77 | 79.85 24 | 64.90 65 | 70.81 55 | 82.46 37 | 81.78 41 | 86.30 81 | 93.18 47 |
|
X-MVS | | | 78.16 40 | 80.55 37 | 75.38 46 | 87.99 38 | 86.27 70 | 81.05 43 | 68.98 36 | 78.33 43 | 61.07 61 | 75.25 33 | 72.27 38 | 67.52 81 | 80.03 63 | 80.52 64 | 85.66 103 | 91.20 66 |
|
3Dnovator+ | | 70.16 6 | 77.87 41 | 77.29 53 | 78.55 28 | 89.25 28 | 88.32 43 | 80.09 48 | 67.95 42 | 74.89 56 | 71.83 24 | 52.05 92 | 70.68 47 | 76.27 23 | 82.27 42 | 82.04 36 | 85.92 89 | 90.77 73 |
|
canonicalmvs | | | 77.65 42 | 79.59 41 | 75.39 45 | 81.52 62 | 89.83 31 | 81.32 40 | 60.74 105 | 80.05 39 | 66.72 38 | 68.43 40 | 65.09 62 | 74.72 30 | 78.87 74 | 82.73 31 | 87.32 56 | 92.16 56 |
|
ACMMP |  | | 77.61 43 | 79.59 41 | 75.30 47 | 85.87 47 | 85.58 76 | 81.42 38 | 67.38 46 | 79.38 42 | 62.61 51 | 78.53 26 | 65.79 61 | 68.80 73 | 78.56 77 | 78.50 81 | 85.75 93 | 90.80 71 |
Qingshan Xu, Weihang Kong, Wenbing Tao, Marc Pollefeys: Multi-Scale Geometric Consistency Guided and Planar Prior Assisted Multi-View Stereo. IEEE Transactions on Pattern Analysis and Machine Intelligence |
QAPM | | | 77.50 44 | 77.43 51 | 77.59 34 | 91.52 13 | 92.00 12 | 81.41 39 | 70.63 27 | 66.22 74 | 58.05 71 | 54.70 80 | 71.79 43 | 74.49 31 | 82.46 37 | 82.04 36 | 89.46 10 | 92.79 53 |
|
MVS_111021_HR | | | 77.42 45 | 78.40 47 | 76.28 39 | 86.95 41 | 90.68 20 | 77.41 63 | 70.56 30 | 66.21 75 | 62.48 53 | 66.17 49 | 63.98 68 | 72.08 47 | 82.87 33 | 83.15 28 | 88.24 33 | 95.71 15 |
|
CLD-MVS | | | 77.36 46 | 77.29 53 | 77.45 35 | 82.21 58 | 88.11 46 | 81.92 34 | 68.96 37 | 77.97 45 | 69.62 33 | 62.08 58 | 59.44 91 | 73.57 35 | 81.75 50 | 81.27 51 | 88.41 28 | 90.39 78 |
Zhaoxin Li, Wangmeng Zuo, Zhaoqi Wang, Lei Zhang: Confidence-based Large-scale Dense Multi-view Stereo. IEEE Transaction on Image Processing, 2020 |
MAR-MVS | | | 77.19 47 | 78.37 48 | 75.81 44 | 89.87 21 | 90.58 21 | 79.33 53 | 65.56 58 | 77.62 47 | 58.33 70 | 59.24 70 | 67.98 54 | 74.83 27 | 82.37 40 | 83.12 29 | 86.95 67 | 87.67 107 |
Zhenyu Xu, Yiguang Liu, Xuelei Shi, Ying Wang, Yunan Zheng: MARMVS: Matching Ambiguity Reduced Multiple View Stereo for Efficient Large Scale Scene Reconstruction. CVPR 2020 |
MVSTER | | | 76.92 48 | 79.92 39 | 73.42 58 | 74.98 115 | 82.97 95 | 78.15 57 | 63.41 73 | 78.02 44 | 64.41 44 | 67.54 42 | 72.80 36 | 71.05 54 | 83.29 30 | 83.73 23 | 88.53 25 | 91.12 67 |
|
PVSNet_BlendedMVS | | | 76.84 49 | 78.47 45 | 74.95 50 | 82.37 56 | 89.90 29 | 75.45 74 | 65.45 59 | 74.99 54 | 70.66 29 | 63.07 55 | 58.27 98 | 67.60 78 | 84.24 22 | 81.70 43 | 88.18 34 | 97.10 8 |
|
PVSNet_Blended | | | 76.84 49 | 78.47 45 | 74.95 50 | 82.37 56 | 89.90 29 | 75.45 74 | 65.45 59 | 74.99 54 | 70.66 29 | 63.07 55 | 58.27 98 | 67.60 78 | 84.24 22 | 81.70 43 | 88.18 34 | 97.10 8 |
|
ETV-MVS | | | 76.25 51 | 80.22 38 | 71.63 71 | 78.23 86 | 87.95 50 | 72.75 92 | 60.27 110 | 77.50 48 | 57.73 72 | 71.53 35 | 66.60 58 | 73.16 37 | 80.99 57 | 81.23 52 | 87.63 48 | 95.73 14 |
|
AdaColmap |  | | 76.23 52 | 73.55 73 | 79.35 24 | 89.38 26 | 85.00 80 | 79.99 50 | 73.04 20 | 76.60 50 | 71.17 25 | 55.18 79 | 57.99 100 | 77.87 16 | 76.82 93 | 76.82 94 | 84.67 128 | 86.45 114 |
|
DROMVSNet | | | 76.05 53 | 78.87 43 | 72.77 62 | 78.87 82 | 86.63 62 | 77.50 62 | 57.04 135 | 75.34 52 | 61.68 57 | 64.20 52 | 69.56 51 | 73.96 32 | 82.12 44 | 80.65 61 | 87.57 49 | 93.57 43 |
|
CS-MVS | | | 75.84 54 | 78.61 44 | 72.61 65 | 79.03 79 | 86.74 60 | 74.43 88 | 60.27 110 | 74.15 57 | 62.78 50 | 66.26 48 | 64.25 67 | 72.81 41 | 83.36 28 | 81.69 45 | 86.32 79 | 93.85 39 |
|
PCF-MVS | | 70.85 4 | 75.73 55 | 76.55 60 | 74.78 53 | 83.67 52 | 88.04 49 | 81.47 37 | 70.62 29 | 69.24 69 | 57.52 74 | 60.59 66 | 69.18 52 | 70.65 57 | 77.11 90 | 77.65 88 | 84.75 126 | 94.01 37 |
Andreas Kuhn, Shan Lin, Oliver Erdler: Plane Completion and Filtering for Multi-View Stereo Reconstruction. GCPR 2019 |
casdiffmvs_mvg |  | | 75.57 56 | 76.04 62 | 75.02 49 | 80.48 71 | 89.31 33 | 80.79 46 | 64.04 67 | 66.95 72 | 63.87 45 | 57.52 72 | 61.33 81 | 72.90 40 | 82.01 47 | 81.99 39 | 88.03 38 | 93.16 48 |
Fangjinhua Wang, Qingshan Xu, Yew-Soon Ong, Marc Pollefeys: Lightweight and Accurate Multi-View Stereo With Confidence-Aware Diffusion Model. IEEE T-PAMI 2025 |
CPTT-MVS | | | 75.43 57 | 77.13 55 | 73.44 57 | 81.43 63 | 82.55 99 | 80.96 44 | 64.35 64 | 77.95 46 | 61.39 58 | 69.20 39 | 70.94 46 | 69.38 69 | 73.89 123 | 73.32 137 | 83.14 153 | 92.06 58 |
|
MVS_Test | | | 75.22 58 | 76.69 58 | 73.51 56 | 79.30 76 | 88.82 37 | 80.06 49 | 58.74 114 | 69.77 65 | 57.50 75 | 59.78 69 | 61.35 79 | 75.31 24 | 82.07 45 | 83.60 26 | 90.13 5 | 91.41 64 |
|
casdiffmvs |  | | 75.20 59 | 75.69 65 | 74.63 54 | 79.26 78 | 89.07 35 | 78.47 55 | 63.59 72 | 67.05 71 | 63.79 46 | 55.72 77 | 60.32 86 | 73.58 34 | 82.16 43 | 81.78 41 | 89.08 13 | 93.72 42 |
Fangjinhua Wang, Qingshan Xu, Yew-Soon Ong, Marc Pollefeys: Lightweight and Accurate Multi-View Stereo With Confidence-Aware Diffusion Model. IEEE T-PAMI 2025 |
CS-MVS-test | | | 75.09 60 | 77.84 49 | 71.87 70 | 79.27 77 | 86.92 58 | 70.53 118 | 60.36 108 | 75.13 53 | 63.13 48 | 67.92 41 | 65.08 63 | 71.43 52 | 78.15 82 | 78.51 80 | 86.53 76 | 93.16 48 |
|
OpenMVS |  | 67.62 8 | 74.92 61 | 73.91 71 | 76.09 42 | 90.10 20 | 90.38 23 | 78.01 58 | 66.35 52 | 66.09 76 | 62.80 49 | 46.33 123 | 64.55 66 | 71.77 49 | 79.92 65 | 80.88 59 | 87.52 51 | 89.20 91 |
|
diffmvs |  | | 74.32 62 | 75.42 66 | 73.04 60 | 75.60 112 | 87.27 54 | 78.20 56 | 62.96 78 | 68.66 70 | 61.89 54 | 59.79 68 | 59.84 89 | 71.80 48 | 78.30 81 | 79.87 66 | 87.80 43 | 94.23 34 |
Fangjinhua Wang, Qingshan Xu, Yew-Soon Ong, Marc Pollefeys: Lightweight and Accurate Multi-View Stereo With Confidence-Aware Diffusion Model. IEEE T-PAMI 2025 |
MVS_111021_LR | | | 74.26 63 | 75.95 63 | 72.27 66 | 79.43 75 | 85.04 79 | 72.71 93 | 65.27 61 | 70.92 61 | 63.58 47 | 69.32 38 | 60.31 87 | 69.43 67 | 77.01 91 | 77.15 91 | 83.22 150 | 91.93 60 |
|
OMC-MVS | | | 74.03 64 | 75.82 64 | 71.95 68 | 79.56 73 | 80.98 113 | 75.35 76 | 63.21 74 | 84.48 23 | 61.83 55 | 61.54 61 | 66.89 57 | 69.41 68 | 76.60 94 | 74.07 127 | 82.34 163 | 86.15 118 |
|
DI_MVS_plusplus_trai | | | 73.94 65 | 74.85 68 | 72.88 61 | 76.57 104 | 86.80 59 | 80.41 47 | 61.47 96 | 62.35 87 | 59.44 68 | 47.91 106 | 68.12 53 | 72.24 45 | 82.84 34 | 81.50 47 | 87.15 66 | 94.42 30 |
|
EIA-MVS | | | 73.48 66 | 76.05 61 | 70.47 77 | 78.12 87 | 87.21 55 | 71.78 100 | 60.63 106 | 69.66 66 | 55.56 81 | 64.86 51 | 60.69 83 | 69.53 65 | 77.35 89 | 78.59 77 | 87.22 62 | 94.01 37 |
|
TSAR-MVS + COLMAP | | | 73.09 67 | 76.86 56 | 68.71 87 | 74.97 116 | 82.49 100 | 74.51 85 | 61.83 92 | 83.16 26 | 49.31 104 | 82.22 21 | 51.62 129 | 68.94 72 | 78.76 76 | 75.52 112 | 82.67 158 | 84.23 135 |
|
baseline | | | 72.89 68 | 74.46 70 | 71.07 72 | 75.99 108 | 87.50 53 | 74.57 80 | 60.49 107 | 70.72 62 | 57.60 73 | 60.63 65 | 60.97 82 | 70.79 56 | 75.27 107 | 76.33 100 | 86.94 68 | 89.79 85 |
|
CANet_DTU | | | 72.84 69 | 76.63 59 | 68.43 92 | 76.81 101 | 86.62 64 | 75.54 73 | 54.71 160 | 72.06 59 | 43.54 127 | 67.11 43 | 58.46 95 | 72.40 44 | 81.13 56 | 80.82 60 | 87.57 49 | 90.21 80 |
|
OPM-MVS | | | 72.74 70 | 70.93 90 | 74.85 52 | 85.30 49 | 84.34 86 | 82.82 31 | 69.79 31 | 49.96 138 | 55.39 83 | 54.09 87 | 60.14 88 | 70.04 61 | 80.38 62 | 79.43 71 | 85.74 95 | 88.20 103 |
Ray L. Khuboni, Hongjun Xu: Octagram Propagation Matching for Multi-Scale View Stereopsis (OPM-MVS). |
CHOSEN 1792x2688 | | | 72.55 71 | 71.98 80 | 73.22 59 | 86.57 44 | 92.41 9 | 75.63 70 | 66.77 49 | 62.08 88 | 52.32 89 | 30.27 192 | 50.74 132 | 66.14 84 | 86.22 12 | 85.41 7 | 91.90 1 | 96.75 12 |
|
CostFormer | | | 72.18 72 | 73.90 72 | 70.18 79 | 79.47 74 | 86.19 73 | 76.94 66 | 48.62 180 | 66.07 77 | 60.40 66 | 54.14 86 | 65.82 60 | 67.98 75 | 75.84 102 | 76.41 99 | 87.67 46 | 92.83 52 |
|
ACMP | | 68.86 7 | 72.15 73 | 72.25 78 | 72.03 67 | 80.96 65 | 80.87 115 | 77.93 59 | 64.13 66 | 69.29 67 | 60.79 64 | 64.04 53 | 53.54 124 | 63.91 94 | 73.74 126 | 75.27 113 | 84.45 133 | 88.98 93 |
Qingshan Xu and Wenbing Tao: Planar Prior Assisted PatchMatch Multi-View Stereo. AAAI 2020 |
LGP-MVS_train | | | 72.02 74 | 73.18 76 | 70.67 76 | 82.13 59 | 80.26 121 | 79.58 51 | 63.04 76 | 70.09 63 | 51.98 90 | 65.06 50 | 55.62 112 | 62.49 104 | 75.97 101 | 76.32 101 | 84.80 125 | 88.93 94 |
|
PVSNet_Blended_VisFu | | | 71.76 75 | 73.54 74 | 69.69 80 | 79.01 80 | 87.16 56 | 72.05 97 | 61.80 93 | 56.46 111 | 59.66 67 | 53.88 88 | 62.48 71 | 59.08 126 | 81.17 54 | 78.90 75 | 86.53 76 | 94.74 27 |
|
baseline1 | | | 71.47 76 | 72.02 79 | 70.82 74 | 80.56 70 | 84.51 83 | 76.61 67 | 66.93 48 | 56.22 113 | 48.66 105 | 55.40 78 | 60.43 85 | 62.55 103 | 83.35 29 | 80.99 55 | 89.60 7 | 83.28 143 |
|
TAPA-MVS | | 67.10 9 | 71.45 77 | 73.47 75 | 69.10 85 | 77.04 99 | 80.78 116 | 73.81 89 | 62.10 88 | 80.80 36 | 51.28 93 | 60.91 63 | 63.80 70 | 67.98 75 | 74.59 113 | 72.42 149 | 82.37 162 | 80.97 157 |
Andrea Romanoni, Matteo Matteucci: TAPA-MVS: Textureless-Aware PAtchMatch Multi-View Stereo. ICCV 2019 |
ET-MVSNet_ETH3D | | | 71.38 78 | 74.70 69 | 67.51 98 | 51.61 207 | 88.06 48 | 77.29 64 | 60.95 104 | 63.61 83 | 48.36 107 | 66.60 46 | 60.67 84 | 79.55 9 | 73.56 127 | 80.58 62 | 87.30 58 | 89.80 84 |
|
CNLPA | | | 71.37 79 | 70.27 95 | 72.66 64 | 80.79 68 | 81.33 109 | 71.07 113 | 65.75 56 | 82.36 29 | 64.80 43 | 42.46 135 | 56.49 105 | 72.70 43 | 73.00 134 | 70.52 168 | 80.84 176 | 85.76 124 |
|
baseline2 | | | 71.22 80 | 73.01 77 | 69.13 84 | 75.76 110 | 86.34 69 | 71.23 108 | 62.78 84 | 62.62 85 | 52.85 88 | 57.32 73 | 54.31 119 | 63.27 99 | 79.74 68 | 79.31 72 | 88.89 15 | 91.43 62 |
|
Effi-MVS+ | | | 70.42 81 | 71.23 87 | 69.47 81 | 78.04 88 | 85.24 78 | 75.57 72 | 58.88 113 | 59.56 97 | 48.47 106 | 52.73 91 | 54.94 115 | 69.69 63 | 78.34 80 | 77.06 92 | 86.18 83 | 90.73 75 |
|
ACMM | | 66.70 10 | 70.42 81 | 68.49 105 | 72.67 63 | 82.85 53 | 77.76 143 | 77.70 61 | 64.76 63 | 64.61 82 | 60.74 65 | 49.29 100 | 53.97 122 | 65.86 85 | 74.97 109 | 75.57 110 | 84.13 140 | 83.29 142 |
Qingshan Xu and Wenbing Tao: Multi-Scale Geometric Consistency Guided Multi-View Stereo. CVPR 2019 |
FMVSNet3 | | | 70.41 83 | 71.89 82 | 68.68 88 | 70.89 137 | 79.42 128 | 75.63 70 | 60.97 101 | 65.32 78 | 51.06 94 | 47.37 111 | 62.05 73 | 64.90 89 | 82.49 36 | 82.27 35 | 88.64 21 | 84.34 134 |
|
PMMVS | | | 70.37 84 | 75.06 67 | 64.90 113 | 71.46 131 | 81.88 101 | 64.10 152 | 55.64 147 | 71.31 60 | 46.69 111 | 70.69 37 | 58.56 92 | 69.53 65 | 79.03 73 | 75.63 108 | 81.96 167 | 88.32 102 |
|
MS-PatchMatch | | | 70.34 85 | 69.00 101 | 71.91 69 | 85.20 50 | 85.35 77 | 77.84 60 | 61.77 94 | 58.01 105 | 55.40 82 | 41.26 142 | 58.34 97 | 61.69 107 | 81.70 51 | 78.29 82 | 89.56 8 | 80.02 160 |
|
FA-MVS(training) | | | 70.24 86 | 71.77 83 | 68.45 91 | 77.52 95 | 86.03 74 | 73.33 91 | 49.12 179 | 63.55 84 | 55.77 78 | 48.91 103 | 56.26 106 | 67.78 77 | 77.60 84 | 79.62 69 | 87.19 65 | 90.40 77 |
|
test2506 | | | 69.26 87 | 70.79 91 | 67.48 99 | 78.64 83 | 86.40 67 | 72.22 95 | 62.75 85 | 58.05 103 | 45.24 117 | 50.76 95 | 54.93 116 | 58.05 132 | 79.82 66 | 79.70 67 | 87.96 39 | 85.90 122 |
|
GBi-Net | | | 69.21 88 | 70.40 93 | 67.81 95 | 69.49 142 | 78.65 133 | 74.54 81 | 60.97 101 | 65.32 78 | 51.06 94 | 47.37 111 | 62.05 73 | 63.43 96 | 77.49 85 | 78.22 83 | 87.37 53 | 83.73 137 |
|
test1 | | | 69.21 88 | 70.40 93 | 67.81 95 | 69.49 142 | 78.65 133 | 74.54 81 | 60.97 101 | 65.32 78 | 51.06 94 | 47.37 111 | 62.05 73 | 63.43 96 | 77.49 85 | 78.22 83 | 87.37 53 | 83.73 137 |
|
DCV-MVSNet | | | 69.13 90 | 69.07 100 | 69.21 83 | 77.65 92 | 77.52 145 | 74.68 79 | 57.85 124 | 54.92 123 | 55.34 84 | 55.74 76 | 55.56 113 | 66.35 83 | 75.05 108 | 76.56 97 | 83.35 147 | 88.13 104 |
|
IB-MVS | | 64.48 11 | 69.02 91 | 68.97 102 | 69.09 86 | 81.75 61 | 89.01 36 | 64.50 150 | 64.91 62 | 56.65 109 | 62.59 52 | 47.89 107 | 45.23 145 | 51.99 154 | 69.18 170 | 81.88 40 | 88.77 17 | 92.93 50 |
Christian Sormann, Mattia Rossi, Andreas Kuhn and Friedrich Fraundorfer: IB-MVS: An Iterative Algorithm for Deep Multi-View Stereo based on Binary Decisions. BMVC 2021 |
GeoE | | | 68.96 92 | 69.32 98 | 68.54 89 | 76.61 103 | 83.12 94 | 71.78 100 | 56.87 137 | 60.21 95 | 54.86 85 | 45.95 124 | 54.79 118 | 64.27 92 | 74.59 113 | 75.54 111 | 86.84 71 | 91.01 69 |
|
FC-MVSNet-train | | | 68.83 93 | 68.29 107 | 69.47 81 | 78.35 85 | 79.94 122 | 64.72 149 | 66.38 51 | 54.96 122 | 54.51 86 | 56.75 74 | 47.91 139 | 66.91 82 | 75.57 106 | 75.75 106 | 85.92 89 | 87.12 109 |
|
PLC |  | 64.00 12 | 68.54 94 | 66.66 118 | 70.74 75 | 80.28 72 | 74.88 164 | 72.64 94 | 63.70 71 | 69.26 68 | 55.71 79 | 47.24 114 | 55.31 114 | 70.42 58 | 72.05 145 | 70.67 166 | 81.66 170 | 77.19 168 |
Jie Liao, Yanping Fu, Qingan Yan, Chunxia xiao: Pyramid Multi-View Stereo with Local Consistency. Pacific Graphics 2019 |
Anonymous20231211 | | | 68.44 95 | 66.37 121 | 70.86 73 | 77.58 93 | 83.49 92 | 75.15 77 | 61.89 91 | 52.54 131 | 58.50 69 | 28.89 194 | 56.78 104 | 69.29 70 | 74.96 111 | 76.61 95 | 82.73 156 | 91.36 65 |
|
HyFIR lowres test | | | 68.39 96 | 68.28 108 | 68.52 90 | 80.85 66 | 88.11 46 | 71.08 112 | 58.09 119 | 54.87 125 | 47.80 110 | 27.55 198 | 55.80 110 | 64.97 88 | 79.11 72 | 79.14 74 | 88.31 31 | 93.35 44 |
|
thisisatest0530 | | | 68.38 97 | 70.98 89 | 65.35 109 | 72.61 125 | 84.42 84 | 68.21 131 | 57.98 120 | 59.77 96 | 50.80 97 | 54.63 81 | 58.48 94 | 57.92 134 | 76.99 92 | 77.47 89 | 84.60 129 | 85.07 128 |
|
test-LLR | | | 68.23 98 | 71.61 85 | 64.28 120 | 71.37 132 | 81.32 110 | 63.98 155 | 61.03 99 | 58.62 100 | 42.96 132 | 52.74 89 | 61.65 77 | 57.74 137 | 75.64 104 | 78.09 86 | 88.61 22 | 93.21 45 |
|
FMVSNet2 | | | 68.06 99 | 68.57 104 | 67.45 100 | 69.49 142 | 78.65 133 | 74.54 81 | 60.23 112 | 56.29 112 | 49.64 103 | 42.13 138 | 57.08 103 | 63.43 96 | 81.15 55 | 80.99 55 | 87.37 53 | 83.73 137 |
|
tttt0517 | | | 67.99 100 | 70.61 92 | 64.94 112 | 71.94 130 | 83.96 90 | 67.62 135 | 57.98 120 | 59.30 98 | 49.90 102 | 54.50 84 | 57.98 101 | 57.92 134 | 76.48 95 | 77.47 89 | 84.24 136 | 84.58 131 |
|
ECVR-MVS |  | | 67.93 101 | 68.49 105 | 67.28 102 | 78.64 83 | 86.40 67 | 72.22 95 | 62.75 85 | 58.05 103 | 44.06 125 | 40.92 146 | 48.20 137 | 58.05 132 | 79.82 66 | 79.70 67 | 87.96 39 | 86.32 117 |
|
Fast-Effi-MVS+ | | | 67.59 102 | 67.56 113 | 67.62 97 | 73.67 120 | 81.14 112 | 71.12 111 | 54.79 159 | 58.88 99 | 50.61 99 | 46.70 121 | 47.05 141 | 69.12 71 | 76.06 100 | 76.44 98 | 86.43 78 | 86.65 112 |
|
EPP-MVSNet | | | 67.58 103 | 71.10 88 | 63.48 126 | 75.71 111 | 83.35 93 | 66.85 141 | 57.83 125 | 53.02 130 | 41.15 141 | 55.82 75 | 67.89 55 | 56.01 143 | 74.40 116 | 72.92 145 | 83.33 148 | 90.30 79 |
|
UGNet | | | 67.57 104 | 71.69 84 | 62.76 133 | 69.88 140 | 82.58 98 | 66.43 145 | 58.64 115 | 54.71 126 | 51.87 91 | 61.74 59 | 62.01 76 | 45.46 177 | 74.78 112 | 74.99 114 | 84.24 136 | 91.02 68 |
Wanjuan Su, Qingshan Xu, Wenbing Tao: Uncertainty-guided Multi-view Stereo Network for Depth Estimation. IEEE Transactions on Circuits and Systems for Video Technology, 2022 |
tpm cat1 | | | 67.47 105 | 67.05 116 | 67.98 94 | 76.63 102 | 81.51 107 | 74.49 86 | 47.65 185 | 61.18 90 | 61.12 60 | 42.51 134 | 53.02 127 | 64.74 91 | 70.11 164 | 71.50 155 | 83.22 150 | 89.49 87 |
|
TESTMET0.1,1 | | | 67.38 106 | 71.61 85 | 62.45 136 | 66.05 165 | 81.32 110 | 63.98 155 | 55.36 152 | 58.62 100 | 42.96 132 | 52.74 89 | 61.65 77 | 57.74 137 | 75.64 104 | 78.09 86 | 88.61 22 | 93.21 45 |
|
IS_MVSNet | | | 67.29 107 | 71.98 80 | 61.82 140 | 76.92 100 | 84.32 88 | 65.90 148 | 58.22 117 | 55.75 117 | 39.22 150 | 54.51 83 | 62.47 72 | 45.99 175 | 78.83 75 | 78.52 79 | 84.70 127 | 89.47 88 |
|
tpmrst | | | 67.15 108 | 68.12 110 | 66.03 106 | 76.21 106 | 80.98 113 | 71.27 107 | 45.05 191 | 60.69 93 | 50.63 98 | 46.95 119 | 54.15 121 | 65.30 86 | 71.80 147 | 71.77 153 | 87.72 44 | 90.48 76 |
|
thres100view900 | | | 67.14 109 | 66.09 124 | 68.38 93 | 77.70 90 | 83.84 91 | 74.52 84 | 66.33 53 | 49.16 142 | 43.40 129 | 43.24 127 | 41.34 152 | 62.59 102 | 79.31 71 | 75.92 105 | 85.73 96 | 89.81 83 |
|
test1111 | | | 66.72 110 | 67.80 111 | 65.45 108 | 77.42 97 | 86.63 62 | 69.69 122 | 62.98 77 | 55.29 119 | 39.47 147 | 40.12 151 | 47.11 140 | 55.70 144 | 79.96 64 | 80.00 65 | 87.47 52 | 85.49 127 |
|
EPMVS | | | 66.21 111 | 67.49 114 | 64.73 114 | 75.81 109 | 84.20 89 | 68.94 127 | 44.37 195 | 61.55 89 | 48.07 109 | 49.21 102 | 54.87 117 | 62.88 100 | 71.82 146 | 71.40 159 | 88.28 32 | 79.37 163 |
|
EPNet_dtu | | | 66.17 112 | 70.13 96 | 61.54 142 | 81.04 64 | 77.39 147 | 68.87 128 | 62.50 87 | 69.78 64 | 33.51 178 | 63.77 54 | 56.22 107 | 37.65 191 | 72.20 142 | 72.18 152 | 85.69 99 | 79.38 162 |
Wanjuan Su, Wenbing Tao: Efficient Edge-Preserving Multi-View Stereo Network for Depth Estimation. AAAI 2023 |
IterMVS-LS | | | 66.08 113 | 66.56 120 | 65.51 107 | 73.67 120 | 74.88 164 | 70.89 115 | 53.55 166 | 50.42 136 | 48.32 108 | 50.59 97 | 55.66 111 | 61.83 106 | 73.93 122 | 74.42 123 | 84.82 124 | 86.01 120 |
Fangjinhua Wang, Silvano Galliani, Christoph Vogel, Marc Pollefeys: IterMVS: Iterative Probability Estimation for Efficient Multi-View Stereo. |
tfpn200view9 | | | 65.90 114 | 64.96 128 | 67.00 103 | 77.70 90 | 81.58 105 | 71.71 103 | 62.94 81 | 49.16 142 | 43.40 129 | 43.24 127 | 41.34 152 | 61.42 109 | 76.24 97 | 74.63 119 | 84.84 121 | 88.52 100 |
|
thres200 | | | 65.58 115 | 64.74 130 | 66.56 104 | 77.52 95 | 81.61 103 | 73.44 90 | 62.95 79 | 46.23 154 | 42.45 136 | 42.76 129 | 41.18 154 | 58.12 130 | 76.24 97 | 75.59 109 | 84.89 119 | 89.58 86 |
|
MSDG | | | 65.57 116 | 61.57 153 | 70.24 78 | 82.02 60 | 76.47 152 | 74.46 87 | 68.73 39 | 56.52 110 | 50.33 100 | 38.47 157 | 41.10 156 | 62.42 105 | 72.12 143 | 72.94 144 | 83.47 146 | 73.37 182 |
|
Vis-MVSNet |  | | 65.53 117 | 69.83 97 | 60.52 146 | 70.80 138 | 84.59 82 | 66.37 147 | 55.47 151 | 48.40 145 | 40.62 145 | 57.67 71 | 58.43 96 | 45.37 178 | 77.49 85 | 76.24 102 | 84.47 132 | 85.99 121 |
Jingyang Zhang, Yao Yao, Shiwei Li, Zixin Luo, Tian Fang: Visibility-aware Multiview Stereo Network. BMVC 2020 |
PatchmatchNet |  | | 65.43 118 | 67.71 112 | 62.78 132 | 73.49 122 | 82.83 96 | 66.42 146 | 45.40 190 | 60.40 94 | 45.27 116 | 49.22 101 | 57.60 102 | 60.01 118 | 70.61 156 | 71.38 160 | 86.08 87 | 81.91 154 |
Fangjinhua Wang, Silvano Galliani, Christoph Vogel, Pablo Speciale, Marc Pollefeys: PatchmatchNet: Learned Multi-View Patchmatch Stereo. |
MDTV_nov1_ep13 | | | 65.21 119 | 67.28 115 | 62.79 131 | 70.91 136 | 81.72 102 | 69.28 126 | 49.50 178 | 58.08 102 | 43.94 126 | 50.50 98 | 56.02 108 | 58.86 127 | 70.72 155 | 73.37 135 | 84.24 136 | 80.52 159 |
|
thres400 | | | 65.18 120 | 64.44 132 | 66.04 105 | 76.40 105 | 82.63 97 | 71.52 105 | 64.27 65 | 44.93 160 | 40.69 144 | 41.86 139 | 40.79 158 | 58.12 130 | 77.67 83 | 74.64 118 | 85.26 109 | 88.56 99 |
|
tpm | | | 64.85 121 | 66.02 125 | 63.48 126 | 74.52 117 | 78.38 136 | 70.98 114 | 44.99 193 | 51.61 133 | 43.28 131 | 47.66 109 | 53.18 125 | 60.57 113 | 70.58 158 | 71.30 162 | 86.54 75 | 89.45 89 |
|
UA-Net | | | 64.62 122 | 68.23 109 | 60.42 147 | 77.53 94 | 81.38 108 | 60.08 174 | 57.47 130 | 47.01 149 | 44.75 121 | 60.68 64 | 71.32 45 | 41.84 185 | 73.27 129 | 72.25 151 | 80.83 177 | 71.68 187 |
|
Effi-MVS+-dtu | | | 64.58 123 | 64.08 133 | 65.16 110 | 73.04 124 | 75.17 163 | 70.68 117 | 56.23 141 | 54.12 128 | 44.71 122 | 47.42 110 | 51.10 130 | 63.82 95 | 68.08 173 | 66.32 184 | 82.47 161 | 86.38 115 |
|
GA-MVS | | | 64.55 124 | 65.76 127 | 63.12 128 | 69.68 141 | 81.56 106 | 69.59 123 | 58.16 118 | 45.23 159 | 35.58 170 | 47.01 118 | 41.82 151 | 59.41 122 | 79.62 69 | 78.54 78 | 86.32 79 | 86.56 113 |
|
LS3D | | | 64.54 125 | 62.14 149 | 67.34 101 | 80.85 66 | 75.79 158 | 69.99 119 | 65.87 55 | 60.77 92 | 44.35 123 | 42.43 136 | 45.95 144 | 65.01 87 | 69.88 165 | 68.69 175 | 77.97 191 | 71.43 189 |
|
CDS-MVSNet | | | 64.22 126 | 65.89 126 | 62.28 138 | 70.05 139 | 80.59 117 | 69.91 121 | 57.98 120 | 43.53 164 | 46.58 112 | 48.22 105 | 50.76 131 | 46.45 172 | 75.68 103 | 76.08 103 | 82.70 157 | 86.34 116 |
Khang Truong Giang, Soohwan Song, Sungho Jo: Curvature-guided dynamic scale networks for Multi-view Stereo. ICLR 2022 |
dps | | | 64.08 127 | 63.22 137 | 65.08 111 | 75.27 114 | 79.65 125 | 66.68 143 | 46.63 189 | 56.94 107 | 55.67 80 | 43.96 126 | 43.63 149 | 64.00 93 | 69.50 169 | 69.82 170 | 82.25 164 | 79.02 164 |
|
test-mter | | | 64.06 128 | 69.24 99 | 58.01 161 | 59.07 194 | 77.40 146 | 59.13 177 | 48.11 183 | 55.64 118 | 39.18 151 | 51.56 94 | 58.54 93 | 55.38 146 | 73.52 128 | 76.00 104 | 87.22 62 | 92.05 59 |
|
SCA | | | 63.90 129 | 66.67 117 | 60.66 145 | 73.75 118 | 71.78 179 | 59.87 175 | 43.66 196 | 61.13 91 | 45.03 119 | 51.64 93 | 59.45 90 | 57.92 134 | 70.96 153 | 70.80 164 | 83.71 144 | 80.92 158 |
|
thres600view7 | | | 63.77 130 | 63.14 138 | 64.51 116 | 75.49 113 | 81.61 103 | 69.59 123 | 62.95 79 | 43.96 163 | 38.90 152 | 41.09 143 | 40.24 163 | 55.25 147 | 76.24 97 | 71.54 154 | 84.89 119 | 87.30 108 |
|
v2v482 | | | 63.68 131 | 62.85 143 | 64.65 115 | 68.01 151 | 80.46 119 | 71.90 98 | 57.60 127 | 44.26 161 | 42.82 134 | 39.80 153 | 38.62 168 | 61.56 108 | 73.06 132 | 74.86 116 | 86.03 88 | 88.90 96 |
|
FMVSNet1 | | | 63.48 132 | 63.07 139 | 63.97 122 | 65.31 170 | 76.37 154 | 71.77 102 | 57.90 123 | 43.32 165 | 45.66 114 | 35.06 180 | 49.43 134 | 58.57 128 | 77.49 85 | 78.22 83 | 84.59 130 | 81.60 156 |
|
v8 | | | 63.44 133 | 62.58 145 | 64.43 117 | 68.28 150 | 78.07 138 | 71.82 99 | 54.85 157 | 46.70 152 | 45.20 118 | 39.40 154 | 40.91 157 | 60.54 114 | 72.85 136 | 74.39 124 | 85.92 89 | 85.76 124 |
|
pmmvs4 | | | 63.14 134 | 62.46 146 | 63.94 123 | 66.03 166 | 76.40 153 | 66.82 142 | 57.60 127 | 56.74 108 | 50.26 101 | 40.81 147 | 37.51 171 | 59.26 124 | 71.75 148 | 71.48 156 | 83.68 145 | 82.53 148 |
|
Fast-Effi-MVS+-dtu | | | 63.05 135 | 64.72 131 | 61.11 143 | 71.21 135 | 76.81 151 | 70.72 116 | 43.13 200 | 52.51 132 | 35.34 171 | 46.55 122 | 46.36 142 | 61.40 110 | 71.57 150 | 71.44 157 | 84.84 121 | 87.79 106 |
|
v1144 | | | 63.00 136 | 62.39 147 | 63.70 125 | 67.72 154 | 80.27 120 | 71.23 108 | 56.40 138 | 42.51 166 | 40.81 143 | 38.12 161 | 37.73 169 | 60.42 116 | 74.46 115 | 74.55 121 | 85.64 104 | 89.12 92 |
|
v10 | | | 63.00 136 | 62.22 148 | 63.90 124 | 67.88 153 | 77.78 142 | 71.59 104 | 54.34 161 | 45.37 158 | 42.76 135 | 38.53 156 | 38.93 166 | 61.05 112 | 74.39 117 | 74.52 122 | 85.75 93 | 86.04 119 |
|
V42 | | | 62.86 138 | 62.97 140 | 62.74 134 | 60.84 188 | 78.99 131 | 71.46 106 | 57.13 134 | 46.85 150 | 44.28 124 | 38.87 155 | 40.73 160 | 57.63 139 | 72.60 140 | 74.14 125 | 85.09 114 | 88.63 98 |
|
gg-mvs-nofinetune | | | 62.34 139 | 66.19 123 | 57.86 163 | 76.15 107 | 88.61 39 | 71.18 110 | 41.24 208 | 25.74 211 | 13.16 213 | 22.91 205 | 63.97 69 | 54.52 149 | 85.06 16 | 85.25 10 | 90.92 3 | 91.78 61 |
|
CR-MVSNet | | | 62.31 140 | 64.75 129 | 59.47 153 | 68.63 148 | 71.29 182 | 67.53 136 | 43.18 198 | 55.83 115 | 41.40 138 | 41.04 144 | 55.85 109 | 57.29 140 | 72.76 137 | 73.27 139 | 78.77 188 | 83.23 144 |
|
UniMVSNet_NR-MVSNet | | | 62.30 141 | 63.51 136 | 60.89 144 | 69.48 145 | 77.83 141 | 64.07 153 | 63.94 68 | 50.03 137 | 31.17 183 | 44.82 125 | 41.12 155 | 51.37 157 | 71.02 152 | 74.81 117 | 85.30 108 | 84.95 129 |
|
v1192 | | | 62.25 142 | 61.64 152 | 62.96 129 | 66.88 159 | 79.72 124 | 69.96 120 | 55.77 145 | 41.58 171 | 39.42 148 | 37.05 166 | 35.96 182 | 60.50 115 | 74.30 120 | 74.09 126 | 85.24 110 | 88.76 97 |
|
Vis-MVSNet (Re-imp) | | | 62.25 142 | 68.74 103 | 54.68 178 | 73.70 119 | 78.74 132 | 56.51 183 | 57.49 129 | 55.22 120 | 26.86 191 | 54.56 82 | 61.35 79 | 31.06 193 | 73.10 131 | 74.90 115 | 82.49 160 | 83.31 141 |
|
CHOSEN 280x420 | | | 62.23 144 | 66.57 119 | 57.17 169 | 59.88 191 | 68.92 188 | 61.20 171 | 42.28 202 | 54.17 127 | 39.57 146 | 47.78 108 | 64.97 64 | 62.68 101 | 73.85 124 | 69.52 173 | 77.43 192 | 86.75 111 |
|
PatchMatch-RL | | | 62.22 145 | 60.69 159 | 64.01 121 | 68.74 147 | 75.75 159 | 59.27 176 | 60.35 109 | 56.09 114 | 53.80 87 | 47.06 117 | 36.45 177 | 64.80 90 | 68.22 172 | 67.22 179 | 77.10 193 | 74.02 177 |
|
v144192 | | | 62.05 146 | 61.46 154 | 62.73 135 | 66.59 163 | 79.87 123 | 69.30 125 | 55.88 143 | 41.50 173 | 39.41 149 | 37.23 164 | 36.45 177 | 59.62 120 | 72.69 139 | 73.51 132 | 85.61 105 | 88.93 94 |
|
v148 | | | 62.00 147 | 61.19 156 | 62.96 129 | 67.46 157 | 79.49 127 | 67.87 132 | 57.66 126 | 42.30 167 | 45.02 120 | 38.20 160 | 38.89 167 | 54.77 148 | 69.83 166 | 72.60 148 | 84.96 115 | 87.01 110 |
|
IterMVS | | | 61.87 148 | 63.55 135 | 59.90 149 | 67.29 158 | 72.20 176 | 67.34 139 | 48.56 181 | 47.48 148 | 37.86 159 | 47.07 116 | 48.27 135 | 54.08 150 | 72.12 143 | 73.71 130 | 84.30 135 | 83.99 136 |
Fangjinhua Wang, Silvano Galliani, Christoph Vogel, Marc Pollefeys: IterMVS: Iterative Probability Estimation for Efficient Multi-View Stereo. |
v1921920 | | | 61.66 149 | 61.10 157 | 62.31 137 | 66.32 164 | 79.57 126 | 68.41 130 | 55.49 150 | 41.03 174 | 38.69 153 | 36.64 172 | 35.27 185 | 59.60 121 | 73.23 130 | 73.41 134 | 85.37 107 | 88.51 101 |
|
ACMH | | 59.42 14 | 61.59 150 | 59.22 169 | 64.36 119 | 78.92 81 | 78.26 137 | 67.65 134 | 67.48 45 | 39.81 179 | 30.98 185 | 38.25 159 | 34.59 188 | 61.37 111 | 70.55 159 | 73.47 133 | 79.74 183 | 79.59 161 |
Qingshan Xu and Wenbing Tao: Multi-Scale Geometric Consistency Guided Multi-View Stereo. CVPR 2019 |
ACMH+ | | 60.36 13 | 61.16 151 | 58.38 171 | 64.42 118 | 77.37 98 | 74.35 169 | 68.45 129 | 62.81 83 | 45.86 156 | 38.48 154 | 35.71 175 | 37.35 172 | 59.81 119 | 67.24 175 | 69.80 172 | 79.58 184 | 78.32 166 |
|
v1240 | | | 61.09 152 | 60.55 161 | 61.72 141 | 65.92 168 | 79.28 129 | 67.16 140 | 54.91 156 | 39.79 180 | 38.10 156 | 36.08 174 | 34.64 187 | 59.15 125 | 72.86 135 | 73.36 136 | 85.10 112 | 87.84 105 |
|
NR-MVSNet | | | 61.08 153 | 62.09 150 | 59.90 149 | 71.96 129 | 75.87 156 | 63.60 159 | 61.96 89 | 49.31 140 | 27.95 188 | 42.76 129 | 33.85 192 | 48.82 164 | 74.35 118 | 74.05 128 | 85.13 111 | 84.45 132 |
|
DU-MVS | | | 60.87 154 | 61.82 151 | 59.76 151 | 66.69 160 | 75.87 156 | 64.07 153 | 61.96 89 | 49.31 140 | 31.17 183 | 42.76 129 | 36.95 174 | 51.37 157 | 69.67 167 | 73.20 142 | 83.30 149 | 84.95 129 |
|
UniMVSNet (Re) | | | 60.62 155 | 62.93 142 | 57.92 162 | 67.64 155 | 77.90 140 | 61.75 168 | 61.24 98 | 49.83 139 | 29.80 187 | 42.57 132 | 40.62 161 | 43.36 181 | 70.49 160 | 73.27 139 | 83.76 142 | 85.81 123 |
|
PatchT | | | 60.46 156 | 63.85 134 | 56.51 172 | 65.95 167 | 75.68 160 | 47.34 197 | 41.39 205 | 53.89 129 | 41.40 138 | 37.84 162 | 50.30 133 | 57.29 140 | 72.76 137 | 73.27 139 | 85.67 100 | 83.23 144 |
|
TranMVSNet+NR-MVSNet | | | 60.38 157 | 61.30 155 | 59.30 155 | 68.34 149 | 75.57 162 | 63.38 162 | 63.78 70 | 46.74 151 | 27.73 189 | 42.56 133 | 36.84 175 | 47.66 167 | 70.36 161 | 74.59 120 | 84.91 118 | 82.46 149 |
|
IterMVS-SCA-FT | | | 60.21 158 | 62.97 140 | 57.00 170 | 66.64 162 | 71.84 177 | 67.53 136 | 46.93 188 | 47.56 147 | 36.77 164 | 46.85 120 | 48.21 136 | 52.51 153 | 70.36 161 | 72.40 150 | 71.63 206 | 83.53 140 |
|
pmmvs5 | | | 59.72 159 | 60.24 163 | 59.11 157 | 62.77 182 | 77.33 148 | 63.17 163 | 54.00 163 | 40.21 178 | 37.23 160 | 40.41 148 | 35.99 181 | 51.75 155 | 72.55 141 | 72.74 147 | 85.72 98 | 82.45 150 |
|
USDC | | | 59.69 160 | 60.03 165 | 59.28 156 | 64.04 175 | 71.84 177 | 63.15 164 | 55.36 152 | 54.90 124 | 35.02 172 | 48.34 104 | 29.79 204 | 58.16 129 | 70.60 157 | 71.33 161 | 79.99 181 | 73.42 181 |
|
Baseline_NR-MVSNet | | | 59.47 161 | 60.28 162 | 58.54 160 | 66.69 160 | 73.90 170 | 61.63 169 | 62.90 82 | 49.15 144 | 26.87 190 | 35.18 179 | 37.62 170 | 48.20 165 | 69.67 167 | 73.61 131 | 84.92 116 | 82.82 147 |
|
thisisatest0515 | | | 59.37 162 | 60.68 160 | 57.84 164 | 64.39 174 | 75.65 161 | 58.56 179 | 53.86 164 | 41.55 172 | 42.12 137 | 40.40 149 | 39.59 164 | 47.09 170 | 71.69 149 | 73.79 129 | 81.02 175 | 82.08 153 |
|
pm-mvs1 | | | 59.21 163 | 59.58 168 | 58.77 159 | 67.97 152 | 77.07 150 | 64.12 151 | 57.20 132 | 34.73 196 | 36.86 161 | 35.34 177 | 40.54 162 | 43.34 182 | 74.32 119 | 73.30 138 | 83.13 154 | 81.77 155 |
|
tfpnnormal | | | 58.97 164 | 56.48 179 | 61.89 139 | 71.27 134 | 76.21 155 | 66.65 144 | 61.76 95 | 32.90 199 | 36.41 165 | 27.83 197 | 29.14 205 | 50.64 161 | 73.06 132 | 73.05 143 | 84.58 131 | 83.15 146 |
|
FMVSNet5 | | | 58.86 165 | 60.24 163 | 57.25 168 | 52.66 206 | 66.25 194 | 63.77 158 | 52.86 171 | 57.85 106 | 37.92 158 | 36.12 173 | 52.22 128 | 51.37 157 | 70.88 154 | 71.43 158 | 84.92 116 | 66.91 198 |
|
TAMVS | | | 58.86 165 | 60.91 158 | 56.47 173 | 62.38 184 | 77.57 144 | 58.97 178 | 52.98 169 | 38.76 183 | 36.17 166 | 42.26 137 | 47.94 138 | 46.45 172 | 70.23 163 | 70.79 165 | 81.86 168 | 78.82 165 |
|
EG-PatchMatch MVS | | | 58.73 167 | 58.03 174 | 59.55 152 | 72.32 126 | 80.49 118 | 63.44 161 | 55.55 149 | 32.49 200 | 38.31 155 | 28.87 195 | 37.22 173 | 42.84 183 | 74.30 120 | 75.70 107 | 84.84 121 | 77.14 169 |
|
RPMNet | | | 58.63 168 | 62.80 144 | 53.76 183 | 67.59 156 | 71.29 182 | 54.60 186 | 38.13 210 | 55.83 115 | 35.70 169 | 41.58 141 | 53.04 126 | 47.89 166 | 66.10 177 | 67.38 177 | 78.65 190 | 84.40 133 |
|
ADS-MVSNet | | | 58.40 169 | 59.16 170 | 57.52 166 | 65.80 169 | 74.57 168 | 60.26 172 | 40.17 209 | 50.51 135 | 38.01 157 | 40.11 152 | 44.72 146 | 59.36 123 | 64.91 182 | 66.55 182 | 81.53 171 | 72.72 185 |
|
UniMVSNet_ETH3D | | | 57.83 170 | 56.46 180 | 59.43 154 | 63.24 179 | 73.22 173 | 67.70 133 | 55.58 148 | 36.17 191 | 36.84 162 | 32.64 184 | 35.14 186 | 51.50 156 | 65.81 178 | 69.81 171 | 81.73 169 | 82.44 151 |
|
TransMVSNet (Re) | | | 57.83 170 | 56.90 177 | 58.91 158 | 72.26 127 | 74.69 167 | 63.57 160 | 61.42 97 | 32.30 201 | 32.65 179 | 33.97 182 | 35.96 182 | 39.17 189 | 73.84 125 | 72.84 146 | 84.37 134 | 74.69 175 |
|
MIMVSNet | | | 57.78 172 | 59.71 167 | 55.53 175 | 54.79 202 | 77.10 149 | 63.89 157 | 45.02 192 | 46.59 153 | 36.79 163 | 28.36 196 | 40.77 159 | 45.84 176 | 74.97 109 | 76.58 96 | 86.87 70 | 73.60 180 |
|
CMPMVS |  | 43.63 17 | 57.67 173 | 55.43 181 | 60.28 148 | 72.01 128 | 79.00 130 | 62.77 165 | 53.23 168 | 41.77 170 | 45.42 115 | 30.74 191 | 39.03 165 | 53.01 152 | 64.81 184 | 64.65 190 | 75.26 198 | 68.03 196 |
M. Jancosek, T. Pajdla: Multi-View Reconstruction Preserving Weakly-Supported Surfaces. CVPR 2011 |
test0.0.03 1 | | | 57.35 174 | 59.89 166 | 54.38 181 | 71.37 132 | 73.45 172 | 52.71 189 | 61.03 99 | 46.11 155 | 26.33 192 | 41.73 140 | 44.08 147 | 29.72 195 | 71.43 151 | 70.90 163 | 85.10 112 | 71.56 188 |
|
v7n | | | 57.04 175 | 56.64 178 | 57.52 166 | 62.85 181 | 74.75 166 | 61.76 167 | 51.80 174 | 35.58 195 | 36.02 168 | 32.33 186 | 33.61 193 | 50.16 162 | 67.73 174 | 70.34 169 | 82.51 159 | 82.12 152 |
|
pmmvs-eth3d | | | 55.20 176 | 53.95 185 | 56.65 171 | 57.34 200 | 67.77 190 | 57.54 181 | 53.74 165 | 40.93 175 | 41.09 142 | 31.19 190 | 29.10 206 | 49.07 163 | 65.54 179 | 67.28 178 | 81.14 173 | 75.81 170 |
|
COLMAP_ROB |  | 51.17 15 | 55.13 177 | 52.90 190 | 57.73 165 | 73.47 123 | 67.21 192 | 62.13 166 | 55.82 144 | 47.83 146 | 34.39 174 | 31.60 188 | 34.24 189 | 44.90 179 | 63.88 189 | 62.52 197 | 75.67 196 | 63.02 205 |
Johannes L. Schönberger, Enliang Zheng, Marc Pollefeys, Jan-Michael Frahm: Pixelwise View Selection for Unstructured Multi-View Stereo. ECCV 2016 |
RPSCF | | | 55.07 178 | 58.06 173 | 51.57 185 | 48.87 210 | 58.95 207 | 53.68 188 | 41.26 207 | 62.42 86 | 45.88 113 | 54.38 85 | 54.26 120 | 53.75 151 | 57.15 199 | 53.53 209 | 66.01 208 | 65.75 200 |
|
gm-plane-assit | | | 54.99 179 | 57.99 175 | 51.49 187 | 69.27 146 | 54.42 211 | 32.32 214 | 42.59 201 | 21.18 215 | 13.71 211 | 23.61 202 | 43.84 148 | 60.21 117 | 87.09 5 | 86.55 5 | 90.81 4 | 89.28 90 |
|
anonymousdsp | | | 54.99 179 | 57.24 176 | 52.36 184 | 53.82 204 | 71.75 180 | 51.49 190 | 48.14 182 | 33.74 197 | 33.66 177 | 38.34 158 | 36.13 180 | 47.54 168 | 64.53 186 | 70.60 167 | 79.53 185 | 85.59 126 |
|
CVMVSNet | | | 54.92 181 | 58.16 172 | 51.13 188 | 62.61 183 | 68.44 189 | 55.45 185 | 52.38 172 | 42.28 168 | 21.45 199 | 47.10 115 | 46.10 143 | 37.96 190 | 64.42 187 | 63.81 191 | 76.92 194 | 75.01 174 |
|
GG-mvs-BLEND | | | 54.54 182 | 77.58 50 | 27.67 210 | 0.03 224 | 90.09 28 | 77.20 65 | 0.02 221 | 66.83 73 | 0.05 225 | 59.90 67 | 73.33 35 | 0.04 220 | 78.40 79 | 79.30 73 | 88.65 20 | 95.20 25 |
|
MDTV_nov1_ep13_2view | | | 54.47 183 | 54.61 182 | 54.30 182 | 60.50 189 | 73.82 171 | 57.92 180 | 43.38 197 | 39.43 182 | 32.51 180 | 33.23 183 | 34.05 190 | 47.26 169 | 62.36 190 | 66.21 185 | 84.24 136 | 73.19 183 |
|
pmmvs6 | | | 54.20 184 | 53.54 186 | 54.97 176 | 63.22 180 | 72.98 174 | 60.17 173 | 52.32 173 | 26.77 210 | 34.30 175 | 23.29 204 | 36.23 179 | 40.33 188 | 68.77 171 | 68.76 174 | 79.47 186 | 78.00 167 |
|
pmnet_mix02 | | | 53.92 185 | 53.30 187 | 54.65 180 | 61.89 185 | 71.33 181 | 54.54 187 | 54.17 162 | 40.38 176 | 34.65 173 | 34.76 181 | 30.68 203 | 40.44 187 | 60.97 192 | 63.71 192 | 82.19 165 | 71.24 190 |
|
MVS-HIRNet | | | 53.86 186 | 53.02 188 | 54.85 177 | 60.30 190 | 72.36 175 | 44.63 205 | 42.20 203 | 39.45 181 | 43.47 128 | 21.66 208 | 34.00 191 | 55.47 145 | 65.42 180 | 67.16 180 | 83.02 155 | 71.08 191 |
|
TDRefinement | | | 52.70 187 | 51.02 196 | 54.66 179 | 57.41 199 | 65.06 198 | 61.47 170 | 54.94 154 | 44.03 162 | 33.93 176 | 30.13 193 | 27.57 207 | 46.17 174 | 61.86 191 | 62.48 198 | 74.01 202 | 66.06 199 |
|
TinyColmap | | | 52.66 188 | 50.09 199 | 55.65 174 | 59.72 192 | 64.02 202 | 57.15 182 | 52.96 170 | 40.28 177 | 32.51 180 | 32.42 185 | 20.97 215 | 56.65 142 | 63.95 188 | 65.15 189 | 74.91 199 | 63.87 203 |
|
Anonymous20231206 | | | 52.23 189 | 52.80 191 | 51.56 186 | 64.70 173 | 69.41 186 | 51.01 191 | 58.60 116 | 36.63 188 | 22.44 198 | 21.80 207 | 31.42 199 | 30.52 194 | 66.79 176 | 67.83 176 | 82.10 166 | 75.73 171 |
|
PEN-MVS | | | 51.04 190 | 52.94 189 | 48.82 191 | 61.45 187 | 66.00 195 | 48.68 194 | 57.20 132 | 36.87 186 | 15.36 207 | 36.98 167 | 32.72 194 | 28.77 199 | 57.63 198 | 66.37 183 | 81.44 172 | 74.00 178 |
|
WR-MVS | | | 51.02 191 | 54.56 183 | 46.90 197 | 63.84 176 | 69.23 187 | 44.78 204 | 56.38 139 | 38.19 184 | 14.19 209 | 37.38 163 | 36.82 176 | 22.39 205 | 60.14 194 | 66.20 186 | 79.81 182 | 73.95 179 |
|
CP-MVSNet | | | 50.57 192 | 52.60 193 | 48.21 194 | 58.77 196 | 65.82 196 | 48.17 195 | 56.29 140 | 37.41 185 | 16.59 204 | 37.14 165 | 31.95 196 | 29.21 196 | 56.60 201 | 63.71 192 | 80.22 179 | 75.56 172 |
|
PS-CasMVS | | | 50.17 193 | 52.02 194 | 48.02 195 | 58.60 197 | 65.54 197 | 48.04 196 | 56.19 142 | 36.42 190 | 16.42 206 | 35.68 176 | 31.33 200 | 28.85 198 | 56.42 203 | 63.54 194 | 80.01 180 | 75.18 173 |
|
PM-MVS | | | 50.11 194 | 50.38 198 | 49.80 189 | 47.23 212 | 62.08 205 | 50.91 192 | 44.84 194 | 41.90 169 | 36.10 167 | 35.22 178 | 26.05 211 | 46.83 171 | 57.64 197 | 55.42 208 | 72.90 203 | 74.32 176 |
|
DTE-MVSNet | | | 49.82 195 | 51.92 195 | 47.37 196 | 61.75 186 | 64.38 200 | 45.89 203 | 57.33 131 | 36.11 192 | 12.79 214 | 36.87 168 | 31.93 197 | 25.73 202 | 58.01 196 | 65.22 188 | 80.75 178 | 70.93 192 |
|
WR-MVS_H | | | 49.62 196 | 52.63 192 | 46.11 200 | 58.80 195 | 67.58 191 | 46.14 202 | 54.94 154 | 36.51 189 | 13.63 212 | 36.75 170 | 35.67 184 | 22.10 206 | 56.43 202 | 62.76 196 | 81.06 174 | 72.73 184 |
|
LTVRE_ROB | | 47.26 16 | 49.41 197 | 49.91 200 | 48.82 191 | 64.76 172 | 69.79 185 | 49.05 193 | 47.12 187 | 20.36 217 | 16.52 205 | 36.65 171 | 26.96 208 | 50.76 160 | 60.47 193 | 63.16 195 | 64.73 209 | 72.00 186 |
Andreas Kuhn, Heiko Hirschmüller, Daniel Scharstein, Helmut Mayer: A TV Prior for High-Quality Scalable Multi-View Stereo Reconstruction. International Journal of Computer Vision 2016 |
SixPastTwentyTwo | | | 49.11 198 | 49.22 201 | 48.99 190 | 58.54 198 | 64.14 201 | 47.18 198 | 47.75 184 | 31.15 203 | 24.42 194 | 41.01 145 | 26.55 209 | 44.04 180 | 54.76 206 | 58.70 203 | 71.99 205 | 68.21 194 |
|
testgi | | | 48.51 199 | 50.53 197 | 46.16 199 | 64.78 171 | 67.15 193 | 41.54 207 | 54.81 158 | 29.12 206 | 17.03 203 | 32.07 187 | 31.98 195 | 20.15 209 | 65.26 181 | 67.00 181 | 78.67 189 | 61.10 209 |
|
N_pmnet | | | 47.67 200 | 47.00 204 | 48.45 193 | 54.72 203 | 62.78 203 | 46.95 199 | 51.25 175 | 36.01 193 | 26.09 193 | 26.59 200 | 25.93 212 | 35.50 192 | 55.67 205 | 59.01 201 | 76.22 195 | 63.04 204 |
|
FC-MVSNet-test | | | 47.24 201 | 54.37 184 | 38.93 206 | 59.49 193 | 58.25 209 | 34.48 213 | 53.36 167 | 45.66 157 | 6.66 219 | 50.62 96 | 42.02 150 | 16.62 213 | 58.39 195 | 61.21 199 | 62.99 210 | 64.40 202 |
|
test20.03 | | | 47.23 202 | 48.69 202 | 45.53 201 | 63.28 178 | 64.39 199 | 41.01 208 | 56.93 136 | 29.16 205 | 15.21 208 | 23.90 201 | 30.76 202 | 17.51 212 | 64.63 185 | 65.26 187 | 79.21 187 | 62.71 206 |
|
EU-MVSNet | | | 44.84 203 | 47.85 203 | 41.32 205 | 49.26 209 | 56.59 210 | 43.07 206 | 47.64 186 | 33.03 198 | 13.82 210 | 36.78 169 | 30.99 201 | 24.37 203 | 53.80 207 | 55.57 207 | 69.78 207 | 68.21 194 |
|
MDA-MVSNet-bldmvs | | | 44.15 204 | 42.27 209 | 46.34 198 | 38.34 214 | 62.31 204 | 46.28 200 | 55.74 146 | 29.83 204 | 20.98 200 | 27.11 199 | 16.45 220 | 41.98 184 | 41.11 213 | 57.47 204 | 74.72 200 | 61.65 208 |
|
new-patchmatchnet | | | 42.21 205 | 42.97 206 | 41.33 204 | 53.05 205 | 59.89 206 | 39.38 209 | 49.61 177 | 28.26 208 | 12.10 215 | 22.17 206 | 21.54 214 | 19.22 210 | 50.96 208 | 56.04 206 | 74.61 201 | 61.92 207 |
|
pmmvs3 | | | 41.86 206 | 42.29 208 | 41.36 203 | 39.80 213 | 52.66 212 | 38.93 211 | 35.85 214 | 23.40 214 | 20.22 201 | 19.30 209 | 20.84 216 | 40.56 186 | 55.98 204 | 58.79 202 | 72.80 204 | 65.03 201 |
|
MIMVSNet1 | | | 40.84 207 | 43.46 205 | 37.79 207 | 32.14 215 | 58.92 208 | 39.24 210 | 50.83 176 | 27.00 209 | 11.29 216 | 16.76 214 | 26.53 210 | 17.75 211 | 57.14 200 | 61.12 200 | 75.46 197 | 56.78 210 |
|
FPMVS | | | 39.11 208 | 36.39 210 | 42.28 202 | 55.97 201 | 45.94 214 | 46.23 201 | 41.57 204 | 35.73 194 | 22.61 196 | 23.46 203 | 19.82 217 | 28.32 200 | 43.57 210 | 40.67 212 | 58.96 212 | 45.54 212 |
|
new_pmnet | | | 33.19 209 | 35.52 211 | 30.47 209 | 27.55 219 | 45.31 215 | 29.29 215 | 30.92 215 | 29.00 207 | 9.88 218 | 18.77 210 | 17.64 219 | 26.77 201 | 44.07 209 | 45.98 211 | 58.41 213 | 47.87 211 |
|
PMVS |  | 27.44 18 | 32.08 210 | 29.07 213 | 35.60 208 | 48.33 211 | 24.79 217 | 26.97 216 | 41.34 206 | 20.45 216 | 22.50 197 | 17.11 213 | 18.64 218 | 20.44 208 | 41.99 212 | 38.06 213 | 54.02 214 | 42.44 213 |
Y. Furukawa, J. Ponce: Accurate, dense, and robust multiview stereopsis. PAMI (2010) |
test_method | | | 28.15 211 | 34.48 212 | 20.76 212 | 6.76 223 | 21.18 219 | 21.03 217 | 18.41 218 | 36.77 187 | 17.52 202 | 15.67 215 | 31.63 198 | 24.05 204 | 41.03 214 | 26.69 216 | 36.82 217 | 68.38 193 |
|
Gipuma |  | | 24.91 212 | 24.61 214 | 25.26 211 | 31.47 216 | 21.59 218 | 18.06 218 | 37.53 211 | 25.43 212 | 10.03 217 | 4.18 220 | 4.25 224 | 14.85 214 | 43.20 211 | 47.03 210 | 39.62 216 | 26.55 217 |
S. Galliani, K. Lasinger, K. Schindler: Massively Parallel Multiview Stereopsis by Surface Normal Diffusion. ICCV 2015 |
PMMVS2 | | | 20.45 213 | 22.31 215 | 18.27 215 | 20.52 220 | 26.73 216 | 14.85 220 | 28.43 217 | 13.69 218 | 0.79 224 | 10.35 216 | 9.10 221 | 3.83 219 | 27.64 216 | 32.87 214 | 41.17 215 | 35.81 214 |
|
E-PMN | | | 15.08 214 | 11.65 217 | 19.08 213 | 28.73 217 | 12.31 222 | 6.95 223 | 36.87 213 | 10.71 220 | 3.63 222 | 5.13 217 | 2.22 227 | 13.81 216 | 11.34 219 | 18.50 218 | 24.49 219 | 21.32 218 |
|
EMVS | | | 14.40 215 | 10.71 218 | 18.70 214 | 28.15 218 | 12.09 223 | 7.06 222 | 36.89 212 | 11.00 219 | 3.56 223 | 4.95 218 | 2.27 226 | 13.91 215 | 10.13 220 | 16.06 219 | 22.63 220 | 18.51 219 |
|
MVE |  | 15.98 19 | 14.37 216 | 16.36 216 | 12.04 217 | 7.72 222 | 20.24 220 | 5.90 224 | 29.05 216 | 8.28 221 | 3.92 221 | 4.72 219 | 2.42 225 | 9.57 217 | 18.89 218 | 31.46 215 | 16.07 222 | 28.53 216 |
Simon Fuhrmann, Fabian Langguth, Michael Goesele: MVE - A Multi-View Reconstruction Environment. EUROGRAPHICS Workshops on Graphics and Cultural Heritage (2014) |
testmvs | | | 0.05 217 | 0.08 219 | 0.01 218 | 0.00 225 | 0.01 225 | 0.03 226 | 0.01 222 | 0.05 222 | 0.00 226 | 0.14 222 | 0.01 228 | 0.03 222 | 0.05 221 | 0.05 220 | 0.01 223 | 0.24 221 |
|
test123 | | | 0.05 217 | 0.08 219 | 0.01 218 | 0.00 225 | 0.01 225 | 0.01 227 | 0.00 223 | 0.05 222 | 0.00 226 | 0.16 221 | 0.00 229 | 0.04 220 | 0.02 222 | 0.05 220 | 0.00 224 | 0.26 220 |
|
uanet_test | | | 0.00 219 | 0.00 221 | 0.00 220 | 0.00 225 | 0.00 227 | 0.00 228 | 0.00 223 | 0.00 224 | 0.00 226 | 0.00 223 | 0.00 229 | 0.00 223 | 0.00 223 | 0.00 222 | 0.00 224 | 0.00 222 |
|
sosnet-low-res | | | 0.00 219 | 0.00 221 | 0.00 220 | 0.00 225 | 0.00 227 | 0.00 228 | 0.00 223 | 0.00 224 | 0.00 226 | 0.00 223 | 0.00 229 | 0.00 223 | 0.00 223 | 0.00 222 | 0.00 224 | 0.00 222 |
|
sosnet | | | 0.00 219 | 0.00 221 | 0.00 220 | 0.00 225 | 0.00 227 | 0.00 228 | 0.00 223 | 0.00 224 | 0.00 226 | 0.00 223 | 0.00 229 | 0.00 223 | 0.00 223 | 0.00 222 | 0.00 224 | 0.00 222 |
|
RE-MVS-def | | | | | | | | | | | 31.47 182 | | | | | | | |
|
9.14 | | | | | | | | | | | | | 84.47 7 | | | | | |
|
SR-MVS | | | | | | 86.33 45 | | | 67.54 44 | | | | 80.78 20 | | | | | |
|
Anonymous202405211 | | | | 66.35 122 | | 78.00 89 | 84.41 85 | 74.85 78 | 63.18 75 | 51.00 134 | | 31.37 189 | 53.73 123 | 69.67 64 | 76.28 96 | 76.84 93 | 83.21 152 | 90.85 70 |
|
our_test_3 | | | | | | 63.32 177 | 71.07 184 | 55.90 184 | | | | | | | | | | |
|
ambc | | | | 42.30 207 | | 50.36 208 | 49.51 213 | 35.47 212 | | 32.04 202 | 23.53 195 | 17.36 211 | 8.95 222 | 29.06 197 | 64.88 183 | 56.26 205 | 61.29 211 | 67.12 197 |
|
MTAPA | | | | | | | | | | | 78.32 11 | | 79.42 24 | | | | | |
|
MTMP | | | | | | | | | | | 76.04 15 | | 76.65 28 | | | | | |
|
Patchmatch-RL test | | | | | | | | 2.17 225 | | | | | | | | | | |
|
tmp_tt | | | | | 16.09 216 | 13.07 221 | 8.12 224 | 13.61 221 | 2.08 220 | 55.09 121 | 30.10 186 | 40.26 150 | 22.83 213 | 5.35 218 | 29.91 215 | 25.25 217 | 32.33 218 | |
|
XVS | | | | | | 82.43 54 | 86.27 70 | 75.70 68 | | | 61.07 61 | | 72.27 38 | | | | 85.67 100 | |
|
X-MVStestdata | | | | | | 82.43 54 | 86.27 70 | 75.70 68 | | | 61.07 61 | | 72.27 38 | | | | 85.67 100 | |
|
mPP-MVS | | | | | | 86.96 40 | | | | | | | 70.61 48 | | | | | |
|
NP-MVS | | | | | | | | | | 81.60 34 | | | | | | | | |
|
Patchmtry | | | | | | | 78.06 139 | 67.53 136 | 43.18 198 | | 41.40 138 | | | | | | | |
|
DeepMVS_CX |  | | | | | | 19.81 221 | 17.01 219 | 10.02 219 | 23.61 213 | 5.85 220 | 17.21 212 | 8.03 223 | 21.13 207 | 22.60 217 | | 21.42 221 | 30.01 215 |
|