This table lists the benchmark results for the high-res multi-view scenario. The following metrics are evaluated:

(*) For exact definitions, detailing how potentially incomplete ground truth is taken into account, see our paper.

The datasets are grouped into different categories, and result averages are computed for a category and method if results of the method are available for all datasets within the category. Note that the category "all" includes both the high-res multi-view and the low-res many-view scenarios.

Methods with suffix _ROB may participate in the Robust Vision Challenge.

Click a dataset result cell to show a visualization of the reconstruction. For training datasets, ground truth and accuracy / completeness visualizations are also available. The visualizations may not work with mobile browsers.




Method Infoallhigh-res
multi-view
indooroutdoorbotani.boulde.bridgedoorexhibi.lectur.living.loungeobserv.old co.statueterrac.
sort bysorted bysort bysort bysort bysort bysort bysort bysort bysort bysort bysort bysort bysort bysort bysort by
CNVR-MVS96.30 196.54 195.55 1599.31 587.69 2599.06 1797.12 2994.66 596.79 1798.78 986.42 2799.95 397.59 2399.18 799.00 32
DPM-MVS96.21 295.53 1398.26 196.26 10195.09 199.15 896.98 3793.39 1496.45 2598.79 890.17 999.99 189.33 13199.25 699.70 3
MCST-MVS96.17 396.12 696.32 799.42 289.36 1098.94 2497.10 3195.17 392.11 8398.46 2687.33 2399.97 297.21 2999.31 499.63 7
DVP-MVS++96.05 496.41 394.96 2599.05 985.34 5898.13 4996.77 6088.38 7497.70 898.77 1092.06 399.84 1397.47 2499.37 199.70 3
SED-MVS95.88 596.22 494.87 2699.03 1585.03 7199.12 1296.78 5488.72 6697.79 698.91 288.48 1699.82 1998.15 1198.97 1799.74 1
MM95.85 695.74 1096.15 896.34 9889.50 999.18 698.10 895.68 196.64 2197.92 5880.72 6699.80 2599.16 197.96 5999.15 27
NCCC95.63 795.94 894.69 3399.21 685.15 6899.16 796.96 4094.11 995.59 3498.64 1785.07 3199.91 495.61 4699.10 999.00 32
MSP-MVS95.62 896.54 192.86 9898.31 4880.10 17997.42 10296.78 5492.20 2297.11 1498.29 3393.46 199.10 10196.01 3999.30 599.38 14
Zhenlong Yuan, Cong Liu, Fei Shen, Zhaoxin Li, Jingguo luo, Tianlu Mao and Zhaoqi Wang: MSP-MVS: Multi-granularity Segmentation Prior Guided Multi-View Stereo. AAAI2025
DVP-MVScopyleft95.58 995.91 994.57 3599.05 985.18 6399.06 1796.46 10288.75 6496.69 1898.76 1287.69 2199.76 3197.90 1798.85 2198.77 41
Zhenlong Yuan, Jinguo Luo, Fei Shen, Zhaoxin Li, Cong Liu, Tianlu Mao, Zhaoqi Wang: DVP-MVS: Synergize Depth-Edge and Visibility Prior for Multi-View Stereo. AAAI2025
MVS_030495.58 995.44 1596.01 1097.63 7089.26 1299.27 396.59 8794.71 497.08 1597.99 5278.69 9599.86 1099.15 297.85 6398.91 36
DPE-MVScopyleft95.32 1195.55 1294.64 3498.79 2384.87 7697.77 7296.74 6586.11 12296.54 2498.89 688.39 1899.74 3897.67 2299.05 1299.31 20
Kehua Chen, Zhenlong Yuan, Tianlu Mao, Zhaoqi Wang: Dual-Level Precision Edges Guided Multi-View Stereo with Accurate Planarization. AAAI2025
HPM-MVS++copyleft95.32 1195.48 1494.85 2798.62 3486.04 4197.81 7096.93 4392.45 2095.69 3398.50 2485.38 2999.85 1194.75 5799.18 798.65 50
patch_mono-295.14 1396.08 792.33 12198.44 4377.84 24598.43 3697.21 2292.58 1997.68 1097.65 7686.88 2499.83 1798.25 997.60 7099.33 18
DELS-MVS94.98 1494.49 2496.44 696.42 9790.59 799.21 597.02 3594.40 891.46 9197.08 10683.32 4999.69 4992.83 8698.70 3199.04 30
Christian Sormann, Emanuele Santellani, Mattia Rossi, Andreas Kuhn, Friedrich Fraundorfer: DELS-MVS: Deep Epipolar Line Search for Multi-View Stereo. Winter Conference on Applications of Computer Vision (WACV), 2023
fmvsm_l_conf0.5_n_a94.91 1595.30 1693.72 6294.50 16384.30 8499.14 1096.00 14491.94 2897.91 598.60 1884.78 3399.77 2998.84 596.03 10997.08 154
fmvsm_l_conf0.5_n94.89 1695.24 1793.86 5394.42 16584.61 7999.13 1196.15 13392.06 2597.92 398.52 2384.52 3599.74 3898.76 695.67 11597.22 146
CANet94.89 1694.64 2295.63 1397.55 7688.12 1899.06 1796.39 11294.07 1095.34 3697.80 6776.83 12699.87 897.08 3197.64 6998.89 37
SD-MVS94.84 1895.02 1994.29 4197.87 6484.61 7997.76 7496.19 13189.59 5696.66 2098.17 4184.33 3799.60 5996.09 3898.50 3998.66 49
Zhenlong Yuan, Jiakai Cao, Zhaoxin Li, Hao Jiang and Zhaoqi Wang: SD-MVS: Segmentation-driven Deformation Multi-View Stereo with Spherical Refinement and EM optimization. AAAI2024
test_fmvsm_n_192094.81 1995.60 1192.45 11495.29 13480.96 15399.29 297.21 2294.50 797.29 1398.44 2782.15 5899.78 2898.56 797.68 6896.61 172
TSAR-MVS + MP.94.79 2095.17 1893.64 6597.66 6984.10 8795.85 21296.42 10791.26 3397.49 1296.80 11886.50 2698.49 13295.54 4999.03 1398.33 65
Zhenlong Yuan, Jiakai Cao, Zhaoqi Wang, Zhaoxin Li: TSAR-MVS: Textureless-aware Segmentation and Correlative Refinement Guided Multi-View Stereo. Pattern Recognition
SMA-MVScopyleft94.70 2194.68 2194.76 3098.02 5985.94 4597.47 9596.77 6085.32 13997.92 398.70 1583.09 5399.84 1395.79 4399.08 1098.49 57
Yufeng Yin; Xiaoyan Liu; Zichao Zhang: SMA-MVS: Segmentation-Guided Multi-Scale Anchor Deformation Patch Multi-View Stereo. IEEE Transactions on Circuits and Systems for Video Technology
DeepPCF-MVS89.82 194.61 2296.17 589.91 20497.09 9170.21 33598.99 2396.69 7295.57 295.08 4199.23 186.40 2899.87 897.84 2098.66 3299.65 6
balanced_conf0394.60 2394.30 2995.48 1696.45 9688.82 1496.33 18695.58 16891.12 3595.84 3293.87 19683.47 4898.37 14197.26 2798.81 2499.24 23
APDe-MVScopyleft94.56 2494.75 2093.96 5198.84 2283.40 10198.04 5796.41 10885.79 13095.00 4398.28 3484.32 4099.18 9497.35 2698.77 2899.28 21
Zhaojie Zeng, Yuesong Wang, Tao Guan: Matching Ambiguity-Resilient Multi-View Stereo via Adaptive Patch Deformation. Pattern Recognition
DeepC-MVS_fast89.06 294.48 2594.30 2995.02 2298.86 2185.68 5198.06 5596.64 8093.64 1291.74 8998.54 2080.17 7599.90 592.28 9198.75 2999.49 8
Andreas Kuhn, Christian Sormann, Mattia Rossi, Oliver Erdler, Friedrich Fraundorfer: DeepC-MVS: Deep Confidence Prediction for Multi-View Stereo Reconstruction. 3DV 2020
TSAR-MVS + GP.94.35 2694.50 2393.89 5297.38 8583.04 10898.10 5195.29 19191.57 3093.81 6097.45 8586.64 2599.43 7696.28 3794.01 13399.20 25
train_agg94.28 2794.45 2593.74 5998.64 3183.71 9397.82 6896.65 7784.50 16395.16 3798.09 4584.33 3799.36 8195.91 4298.96 1998.16 77
MSLP-MVS++94.28 2794.39 2793.97 5098.30 4984.06 8898.64 3196.93 4390.71 4193.08 7098.70 1579.98 7799.21 8894.12 6799.07 1198.63 51
MG-MVS94.25 2993.72 3595.85 1299.38 389.35 1197.98 5998.09 989.99 5292.34 7996.97 11081.30 6498.99 10788.54 13898.88 2099.20 25
SF-MVS94.17 3094.05 3494.55 3697.56 7585.95 4397.73 7696.43 10684.02 17795.07 4298.74 1482.93 5499.38 7895.42 5198.51 3798.32 66
PS-MVSNAJ94.17 3093.52 4196.10 995.65 12392.35 298.21 4495.79 15892.42 2196.24 2798.18 3871.04 21699.17 9596.77 3497.39 7996.79 165
SteuartSystems-ACMMP94.13 3294.44 2693.20 8495.41 12881.35 14499.02 2196.59 8789.50 5894.18 5598.36 3083.68 4799.45 7594.77 5698.45 4298.81 40
Skip Steuart: Steuart Systems R&D Blog.
EPNet94.06 3394.15 3293.76 5897.27 8884.35 8298.29 4197.64 1494.57 695.36 3596.88 11379.96 7899.12 10091.30 10196.11 10697.82 105
Wanjuan Su, Wenbing Tao: Efficient Edge-Preserving Multi-View Stereo Network for Depth Estimation. AAAI 2023
test_fmvsmconf_n93.99 3494.36 2892.86 9892.82 21681.12 14799.26 496.37 11693.47 1395.16 3798.21 3679.00 8899.64 5598.21 1096.73 9797.83 103
xiu_mvs_v2_base93.92 3593.26 4595.91 1195.07 14292.02 698.19 4595.68 16492.06 2596.01 3198.14 4270.83 22098.96 10996.74 3696.57 9996.76 168
lupinMVS93.87 3693.58 4094.75 3193.00 20988.08 1999.15 895.50 17491.03 3894.90 4497.66 7278.84 9197.56 17894.64 6097.46 7498.62 52
fmvsm_s_conf0.5_n93.69 3794.13 3392.34 11994.56 15682.01 12299.07 1697.13 2792.09 2396.25 2698.53 2276.47 13199.80 2598.39 894.71 12495.22 211
APD-MVScopyleft93.61 3893.59 3993.69 6398.76 2483.26 10497.21 11296.09 13782.41 21694.65 4998.21 3681.96 6198.81 11994.65 5998.36 4899.01 31
Yuesong Wang, Zhaojie Zeng and etc.: Adaptive Patch Deformation for Textureless-Resilient Multi-View Stereo. CVPR2023
PHI-MVS93.59 3993.63 3893.48 7698.05 5881.76 13498.64 3197.13 2782.60 21294.09 5698.49 2580.35 7099.85 1194.74 5898.62 3398.83 39
bld_raw_conf0393.57 4093.09 4994.98 2495.96 11287.69 2595.60 22395.42 18389.51 5793.95 5893.63 20379.64 8098.15 15195.61 4698.53 3599.11 28
ACMMP_NAP93.46 4193.23 4694.17 4697.16 8984.28 8596.82 15396.65 7786.24 12094.27 5397.99 5277.94 10599.83 1793.39 7498.57 3498.39 63
MVS_111021_HR93.41 4293.39 4493.47 7897.34 8682.83 11097.56 8798.27 689.16 6289.71 11697.14 10279.77 7999.56 6693.65 7297.94 6098.02 85
fmvsm_s_conf0.5_n_a93.34 4393.71 3692.22 12893.38 19881.71 13798.86 2596.98 3791.64 2996.85 1698.55 1975.58 14999.77 2997.88 1993.68 13895.18 212
PVSNet_Blended93.13 4492.98 5093.57 7097.47 7783.86 9099.32 196.73 6691.02 3989.53 12196.21 12976.42 13399.57 6494.29 6495.81 11497.29 144
CDPH-MVS93.12 4592.91 5193.74 5998.65 3083.88 8997.67 8096.26 12383.00 20293.22 6898.24 3581.31 6399.21 8889.12 13298.74 3098.14 79
dcpmvs_293.10 4693.46 4392.02 13997.77 6579.73 18994.82 25493.86 27186.91 11191.33 9596.76 11985.20 3098.06 15296.90 3397.60 7098.27 72
test_fmvsmconf0.1_n93.08 4793.22 4792.65 10788.45 31180.81 15899.00 2295.11 19693.21 1594.00 5797.91 6076.84 12499.59 6097.91 1696.55 10097.54 124
CS-MVS-test92.98 4893.67 3790.90 17596.52 9576.87 26498.68 2894.73 21690.36 4994.84 4697.89 6277.94 10597.15 20994.28 6697.80 6598.70 48
alignmvs92.97 4992.26 6595.12 2195.54 12587.77 2398.67 2996.38 11388.04 8393.01 7197.45 8579.20 8698.60 12593.25 8088.76 18598.99 34
fmvsm_s_conf0.1_n92.93 5093.16 4892.24 12690.52 27881.92 12698.42 3796.24 12591.17 3496.02 3098.35 3175.34 16099.74 3897.84 2094.58 12695.05 213
HFP-MVS92.89 5192.86 5392.98 9398.71 2581.12 14797.58 8596.70 7085.20 14491.75 8897.97 5778.47 9799.71 4590.95 10498.41 4498.12 81
PAPM92.87 5292.40 6194.30 4092.25 23487.85 2296.40 18196.38 11391.07 3788.72 13696.90 11182.11 5997.37 19590.05 12297.70 6797.67 115
ZNCC-MVS92.75 5392.60 5893.23 8398.24 5181.82 13297.63 8196.50 9885.00 15091.05 10097.74 6978.38 9899.80 2590.48 11398.34 4998.07 83
PAPR92.74 5492.17 6894.45 3798.89 2084.87 7697.20 11496.20 12987.73 9188.40 14098.12 4378.71 9499.76 3187.99 14596.28 10298.74 42
CS-MVS92.73 5593.48 4290.48 18796.27 10075.93 28498.55 3494.93 20389.32 5994.54 5197.67 7178.91 9097.02 21393.80 6997.32 8198.49 57
jason92.73 5592.23 6694.21 4590.50 27987.30 3198.65 3095.09 19790.61 4392.76 7697.13 10375.28 16197.30 19893.32 7896.75 9698.02 85
jason: jason.
ETV-MVS92.72 5792.87 5292.28 12594.54 15881.89 12897.98 5995.21 19489.77 5593.11 6996.83 11577.23 12097.50 18695.74 4495.38 11897.44 133
region2R92.72 5792.70 5592.79 10198.68 2680.53 16897.53 9096.51 9685.22 14291.94 8697.98 5577.26 11699.67 5390.83 10898.37 4798.18 75
XVS92.69 5992.71 5492.63 10998.52 3780.29 17197.37 10696.44 10487.04 10991.38 9297.83 6677.24 11899.59 6090.46 11498.07 5598.02 85
ACMMPR92.69 5992.67 5692.75 10298.66 2880.57 16497.58 8596.69 7285.20 14491.57 9097.92 5877.01 12199.67 5390.95 10498.41 4498.00 90
WTY-MVS92.65 6191.68 7795.56 1496.00 10888.90 1398.23 4397.65 1388.57 6989.82 11597.22 10079.29 8399.06 10489.57 12788.73 18698.73 46
MP-MVScopyleft92.61 6292.67 5692.42 11798.13 5679.73 18997.33 10896.20 12985.63 13290.53 10797.66 7278.14 10399.70 4892.12 9398.30 5197.85 101
Rongxuan Tan, Qing Wang, et al.: MP-MVS: Multi-Scale Windows PatchMatch and Planar Prior Multi-View Stereo.
MP-MVS-pluss92.58 6392.35 6293.29 8097.30 8782.53 11496.44 17796.04 14284.68 15889.12 12798.37 2977.48 11499.74 3893.31 7998.38 4697.59 122
MP-MVS-pluss: MP-MVS-pluss. MP-MVS-pluss
CP-MVS92.54 6492.60 5892.34 11998.50 4079.90 18298.40 3896.40 11084.75 15490.48 10998.09 4577.40 11599.21 8891.15 10398.23 5397.92 96
testing1192.48 6592.04 7293.78 5795.94 11386.00 4297.56 8797.08 3287.52 9689.32 12495.40 15084.60 3498.02 15391.93 9889.04 18197.32 140
MTAPA92.45 6692.31 6392.86 9897.90 6180.85 15792.88 30196.33 11887.92 8690.20 11298.18 3876.71 12999.76 3192.57 9098.09 5497.96 95
GST-MVS92.43 6792.22 6793.04 9198.17 5481.64 13997.40 10496.38 11384.71 15790.90 10397.40 9077.55 11399.76 3189.75 12597.74 6697.72 111
fmvsm_s_conf0.1_n_a92.38 6892.49 6092.06 13688.08 31581.62 14097.97 6196.01 14390.62 4296.58 2298.33 3274.09 17999.71 4597.23 2893.46 14394.86 217
MVSMamba_PlusPlus92.37 6991.55 8094.83 2895.37 13087.69 2595.60 22395.42 18374.65 32293.95 5892.81 21483.11 5197.70 16994.49 6198.53 3599.11 28
sasdasda92.27 7091.22 8695.41 1795.80 11888.31 1597.09 13094.64 22488.49 7192.99 7297.31 9272.68 19498.57 12793.38 7688.58 18899.36 16
canonicalmvs92.27 7091.22 8695.41 1795.80 11888.31 1597.09 13094.64 22488.49 7192.99 7297.31 9272.68 19498.57 12793.38 7688.58 18899.36 16
SR-MVS92.16 7292.27 6491.83 14898.37 4578.41 22396.67 16495.76 15982.19 22091.97 8498.07 4976.44 13298.64 12393.71 7197.27 8298.45 60
test_fmvsmvis_n_192092.12 7392.10 7092.17 13190.87 27181.04 14998.34 4093.90 26892.71 1887.24 15397.90 6174.83 16799.72 4396.96 3296.20 10395.76 196
VNet92.11 7491.22 8694.79 2996.91 9286.98 3297.91 6397.96 1086.38 11993.65 6295.74 13870.16 22598.95 11193.39 7488.87 18498.43 61
CSCG92.02 7591.65 7893.12 8798.53 3680.59 16397.47 9597.18 2577.06 30584.64 18097.98 5583.98 4399.52 6990.72 11097.33 8099.23 24
MGCFI-Net91.95 7691.03 9294.72 3295.68 12286.38 3796.93 14594.48 23388.25 7892.78 7597.24 9872.34 19998.46 13593.13 8388.43 19299.32 19
PGM-MVS91.93 7791.80 7592.32 12398.27 5079.74 18895.28 23497.27 2083.83 18590.89 10497.78 6876.12 13999.56 6688.82 13597.93 6297.66 116
testing9991.91 7891.35 8393.60 6895.98 11085.70 4997.31 10996.92 4586.82 11388.91 13095.25 15384.26 4197.89 16388.80 13687.94 19897.21 148
testing9191.90 7991.31 8593.66 6495.99 10985.68 5197.39 10596.89 4686.75 11788.85 13295.23 15683.93 4497.90 16288.91 13387.89 19997.41 135
mPP-MVS91.88 8091.82 7492.07 13598.38 4478.63 21797.29 11096.09 13785.12 14688.45 13997.66 7275.53 15099.68 5189.83 12398.02 5897.88 97
EI-MVSNet-Vis-set91.84 8191.77 7692.04 13897.60 7281.17 14696.61 16596.87 4888.20 8089.19 12597.55 8478.69 9599.14 9790.29 11990.94 16895.80 194
EIA-MVS91.73 8292.05 7190.78 18094.52 15976.40 27398.06 5595.34 18989.19 6188.90 13197.28 9777.56 11297.73 16890.77 10996.86 9398.20 74
EC-MVSNet91.73 8292.11 6990.58 18493.54 19077.77 24898.07 5494.40 24287.44 9892.99 7297.11 10574.59 17396.87 22393.75 7097.08 8597.11 152
DP-MVS Recon91.72 8490.85 9394.34 3999.50 185.00 7398.51 3595.96 14880.57 24488.08 14597.63 7876.84 12499.89 785.67 16294.88 12198.13 80
CHOSEN 280x42091.71 8591.85 7391.29 16394.94 14682.69 11187.89 34896.17 13285.94 12787.27 15294.31 18390.27 895.65 27894.04 6895.86 11295.53 202
HY-MVS84.06 691.63 8690.37 10695.39 1996.12 10588.25 1790.22 32997.58 1588.33 7690.50 10891.96 23079.26 8499.06 10490.29 11989.07 18098.88 38
HPM-MVScopyleft91.62 8791.53 8191.89 14397.88 6379.22 20196.99 13595.73 16282.07 22289.50 12397.19 10175.59 14898.93 11490.91 10697.94 6097.54 124
Chunlin Ren, Qingshan Xu, Shikun Zhang, Jiaqi Yang: Hierarchical Prior Mining for Non-local Multi-View Stereo. ICCV 2023
MVS_111021_LR91.60 8891.64 7991.47 15995.74 12078.79 21496.15 19696.77 6088.49 7188.64 13797.07 10772.33 20099.19 9393.13 8396.48 10196.43 177
DeepC-MVS86.58 391.53 8991.06 9192.94 9594.52 15981.89 12895.95 20495.98 14690.76 4083.76 19196.76 11973.24 19099.71 4591.67 10096.96 8897.22 146
Andreas Kuhn, Christian Sormann, Mattia Rossi, Oliver Erdler, Friedrich Fraundorfer: DeepC-MVS: Deep Confidence Prediction for Multi-View Stereo Reconstruction. 3DV 2020
test_yl91.46 9090.53 10094.24 4397.41 8185.18 6398.08 5297.72 1180.94 23589.85 11396.14 13075.61 14698.81 11990.42 11788.56 19098.74 42
DCV-MVSNet91.46 9090.53 10094.24 4397.41 8185.18 6398.08 5297.72 1180.94 23589.85 11396.14 13075.61 14698.81 11990.42 11788.56 19098.74 42
PAPM_NR91.46 9090.82 9493.37 7998.50 4081.81 13395.03 25096.13 13484.65 15986.10 16497.65 7679.24 8599.75 3683.20 19096.88 9198.56 54
MVSFormer91.36 9390.57 9993.73 6193.00 20988.08 1994.80 25694.48 23380.74 24094.90 4497.13 10378.84 9195.10 30683.77 17997.46 7498.02 85
EI-MVSNet-UG-set91.35 9491.22 8691.73 15097.39 8380.68 16196.47 17496.83 5187.92 8688.30 14397.36 9177.84 10899.13 9989.43 13089.45 17695.37 206
SR-MVS-dyc-post91.29 9591.45 8290.80 17897.76 6776.03 27996.20 19495.44 17980.56 24590.72 10597.84 6475.76 14598.61 12491.99 9696.79 9497.75 109
PVSNet_Blended_VisFu91.24 9690.77 9592.66 10695.09 14082.40 11897.77 7295.87 15588.26 7786.39 16093.94 19476.77 12799.27 8488.80 13694.00 13496.31 183
APD-MVS_3200maxsize91.23 9791.35 8390.89 17697.89 6276.35 27496.30 18895.52 17379.82 26391.03 10197.88 6374.70 16998.54 12992.11 9496.89 9097.77 108
diffmvspermissive91.17 9890.74 9692.44 11693.11 20882.50 11696.25 19193.62 28687.79 8990.40 11095.93 13473.44 18897.42 19093.62 7392.55 15397.41 135
Fangjinhua Wang, Qingshan Xu, Yew-Soon Ong, Marc Pollefeys: Lightweight and Accurate Multi-View Stereo With Confidence-Aware Diffusion Model. IEEE T-PAMI 2025
casdiffmvs_mvgpermissive91.13 9990.45 10393.17 8692.99 21283.58 9797.46 9794.56 23087.69 9287.19 15494.98 17174.50 17497.60 17591.88 9992.79 15098.34 64
Fangjinhua Wang, Qingshan Xu, Yew-Soon Ong, Marc Pollefeys: Lightweight and Accurate Multi-View Stereo With Confidence-Aware Diffusion Model. IEEE T-PAMI 2025
testing22291.09 10090.49 10292.87 9795.82 11685.04 7096.51 17297.28 1986.05 12589.13 12695.34 15280.16 7696.62 23585.82 16088.31 19496.96 157
test_fmvsmconf0.01_n91.08 10190.68 9792.29 12482.43 36980.12 17897.94 6293.93 26492.07 2491.97 8497.60 7967.56 23499.53 6897.09 3095.56 11797.21 148
CHOSEN 1792x268891.07 10290.21 11093.64 6595.18 13883.53 9896.26 19096.13 13488.92 6384.90 17493.10 21272.86 19299.62 5888.86 13495.67 11597.79 107
ETVMVS90.99 10390.26 10793.19 8595.81 11785.64 5396.97 14097.18 2585.43 13688.77 13594.86 17382.00 6096.37 24282.70 19588.60 18797.57 123
CANet_DTU90.98 10490.04 11593.83 5494.76 15286.23 3996.32 18793.12 31193.11 1693.71 6196.82 11763.08 26399.48 7384.29 17295.12 12095.77 195
test250690.96 10590.39 10492.65 10793.54 19082.46 11796.37 18297.35 1786.78 11587.55 14895.25 15377.83 10997.50 18684.07 17494.80 12297.98 92
thisisatest051590.95 10690.26 10793.01 9294.03 18184.27 8697.91 6396.67 7483.18 19686.87 15895.51 14888.66 1597.85 16480.46 20789.01 18296.92 161
casdiffmvspermissive90.95 10690.39 10492.63 10992.82 21682.53 11496.83 15194.47 23687.69 9288.47 13895.56 14774.04 18097.54 18290.90 10792.74 15197.83 103
Fangjinhua Wang, Qingshan Xu, Yew-Soon Ong, Marc Pollefeys: Lightweight and Accurate Multi-View Stereo With Confidence-Aware Diffusion Model. IEEE T-PAMI 2025
sss90.87 10889.96 11893.60 6894.15 17383.84 9297.14 12398.13 785.93 12889.68 11796.09 13271.67 20899.30 8387.69 14889.16 17997.66 116
baseline90.76 10990.10 11392.74 10392.90 21582.56 11394.60 25894.56 23087.69 9289.06 12995.67 14273.76 18397.51 18590.43 11692.23 15998.16 77
Effi-MVS+90.70 11089.90 12193.09 8993.61 18783.48 9995.20 24092.79 31783.22 19591.82 8795.70 14071.82 20797.48 18891.25 10293.67 13998.32 66
iter_conf0590.65 11189.59 12493.82 5595.37 13087.90 2191.32 32093.55 29074.65 32283.45 19392.81 21483.11 5197.70 16994.49 6197.57 7295.85 193
MAR-MVS90.63 11290.22 10991.86 14598.47 4278.20 23397.18 11696.61 8383.87 18488.18 14498.18 3868.71 22999.75 3683.66 18497.15 8497.63 119
Zhenyu Xu, Yiguang Liu, Xuelei Shi, Ying Wang, Yunan Zheng: MARMVS: Matching Ambiguity Reduced Multiple View Stereo for Efficient Large Scale Scene Reconstruction. CVPR 2020
MVS90.60 11388.64 13896.50 594.25 16990.53 893.33 29097.21 2277.59 29678.88 24697.31 9271.52 21199.69 4989.60 12698.03 5799.27 22
xiu_mvs_v1_base_debu90.54 11489.54 12593.55 7192.31 22787.58 2896.99 13594.87 20787.23 10493.27 6597.56 8157.43 30598.32 14392.72 8793.46 14394.74 221
xiu_mvs_v1_base90.54 11489.54 12593.55 7192.31 22787.58 2896.99 13594.87 20787.23 10493.27 6597.56 8157.43 30598.32 14392.72 8793.46 14394.74 221
xiu_mvs_v1_base_debi90.54 11489.54 12593.55 7192.31 22787.58 2896.99 13594.87 20787.23 10493.27 6597.56 8157.43 30598.32 14392.72 8793.46 14394.74 221
mvsmamba90.53 11790.08 11491.88 14494.81 15080.93 15493.94 27694.45 23888.24 7987.02 15792.35 22168.04 23195.80 26794.86 5597.03 8798.92 35
baseline290.39 11890.21 11090.93 17390.86 27280.99 15195.20 24097.41 1686.03 12680.07 23694.61 17890.58 697.47 18987.29 15289.86 17494.35 227
ACMMPcopyleft90.39 11889.97 11791.64 15397.58 7478.21 23296.78 15696.72 6884.73 15684.72 17897.23 9971.22 21399.63 5788.37 14392.41 15697.08 154
Qingshan Xu, Weihang Kong, Wenbing Tao, Marc Pollefeys: Multi-Scale Geometric Consistency Guided and Planar Prior Assisted Multi-View Stereo. IEEE Transactions on Pattern Analysis and Machine Intelligence
HPM-MVS_fast90.38 12090.17 11291.03 17197.61 7177.35 25797.15 12295.48 17579.51 26988.79 13396.90 11171.64 21098.81 11987.01 15697.44 7696.94 158
MVS_Test90.29 12189.18 12993.62 6795.23 13584.93 7494.41 26194.66 22184.31 16890.37 11191.02 24375.13 16397.82 16583.11 19294.42 12898.12 81
API-MVS90.18 12288.97 13293.80 5698.66 2882.95 10997.50 9495.63 16775.16 31786.31 16197.69 7072.49 19799.90 581.26 20396.07 10798.56 54
PVSNet_BlendedMVS90.05 12389.96 11890.33 19197.47 7783.86 9098.02 5896.73 6687.98 8489.53 12189.61 26476.42 13399.57 6494.29 6479.59 26387.57 328
ET-MVSNet_ETH3D90.01 12489.03 13092.95 9494.38 16686.77 3498.14 4696.31 12089.30 6063.33 35996.72 12290.09 1093.63 33890.70 11182.29 25098.46 59
test_vis1_n_192089.95 12590.59 9888.03 24392.36 22668.98 34499.12 1294.34 24593.86 1193.64 6397.01 10951.54 33599.59 6096.76 3596.71 9895.53 202
test_cas_vis1_n_192089.90 12690.02 11689.54 21290.14 28774.63 29498.71 2794.43 24093.04 1792.40 7796.35 12753.41 33199.08 10395.59 4896.16 10494.90 215
TESTMET0.1,189.83 12789.34 12891.31 16192.54 22480.19 17697.11 12696.57 9086.15 12186.85 15991.83 23479.32 8296.95 21781.30 20292.35 15796.77 167
EPP-MVSNet89.76 12889.72 12389.87 20593.78 18376.02 28197.22 11196.51 9679.35 27185.11 17095.01 16984.82 3297.10 21187.46 15188.21 19696.50 175
CPTT-MVS89.72 12989.87 12289.29 21598.33 4773.30 30597.70 7895.35 18875.68 31387.40 14997.44 8870.43 22298.25 14689.56 12896.90 8996.33 182
thisisatest053089.65 13089.02 13191.53 15793.46 19680.78 15996.52 17096.67 7481.69 22883.79 19094.90 17288.85 1497.68 17177.80 23187.49 20496.14 186
3Dnovator+82.88 889.63 13187.85 15194.99 2394.49 16486.76 3597.84 6795.74 16186.10 12375.47 28896.02 13365.00 25499.51 7182.91 19497.07 8698.72 47
CDS-MVSNet89.50 13288.96 13391.14 16991.94 25180.93 15497.09 13095.81 15784.26 17384.72 17894.20 18880.31 7195.64 27983.37 18988.96 18396.85 164
Khang Truong Giang, Soohwan Song, Sungho Jo: Curvature-guided dynamic scale networks for Multi-view Stereo. ICLR 2022
PMMVS89.46 13389.92 12088.06 24194.64 15369.57 34196.22 19294.95 20287.27 10391.37 9496.54 12565.88 24697.39 19388.54 13893.89 13597.23 145
HyFIR lowres test89.36 13488.60 13991.63 15594.91 14880.76 16095.60 22395.53 17182.56 21384.03 18491.24 24078.03 10496.81 22787.07 15588.41 19397.32 140
3Dnovator82.32 1089.33 13587.64 15694.42 3893.73 18685.70 4997.73 7696.75 6486.73 11876.21 27795.93 13462.17 26799.68 5181.67 20197.81 6497.88 97
h-mvs3389.30 13688.95 13490.36 19095.07 14276.04 27896.96 14297.11 3090.39 4792.22 8195.10 16674.70 16998.86 11693.14 8165.89 35396.16 185
LFMVS89.27 13787.64 15694.16 4897.16 8985.52 5697.18 11694.66 22179.17 27789.63 11996.57 12455.35 32298.22 14789.52 12989.54 17598.74 42
MVSTER89.25 13888.92 13590.24 19395.98 11084.66 7896.79 15595.36 18687.19 10780.33 23190.61 25090.02 1195.97 25685.38 16578.64 27290.09 271
CostFormer89.08 13988.39 14391.15 16893.13 20679.15 20488.61 34196.11 13683.14 19789.58 12086.93 30183.83 4696.87 22388.22 14485.92 21897.42 134
PVSNet82.34 989.02 14087.79 15392.71 10595.49 12681.50 14297.70 7897.29 1887.76 9085.47 16895.12 16556.90 31198.90 11580.33 20894.02 13297.71 113
test-mter88.95 14188.60 13989.98 20092.26 23277.23 25997.11 12695.96 14885.32 13986.30 16291.38 23776.37 13596.78 22980.82 20491.92 16195.94 190
131488.94 14287.20 16994.17 4693.21 20185.73 4893.33 29096.64 8082.89 20475.98 28096.36 12666.83 24299.39 7783.52 18896.02 11097.39 138
UA-Net88.92 14388.48 14290.24 19394.06 17877.18 26193.04 29894.66 22187.39 10091.09 9993.89 19574.92 16698.18 15075.83 25891.43 16595.35 207
thres20088.92 14387.65 15592.73 10496.30 9985.62 5497.85 6698.86 184.38 16784.82 17593.99 19375.12 16498.01 15470.86 29886.67 20894.56 226
Vis-MVSNet (Re-imp)88.88 14588.87 13788.91 22293.89 18274.43 29796.93 14594.19 25384.39 16683.22 19795.67 14278.24 10094.70 31678.88 22694.40 12997.61 121
baseline188.85 14687.49 16292.93 9695.21 13786.85 3395.47 22994.61 22787.29 10283.11 19994.99 17080.70 6796.89 22182.28 19773.72 29595.05 213
AdaColmapbinary88.81 14787.61 15992.39 11899.33 479.95 18096.70 16395.58 16877.51 29783.05 20096.69 12361.90 27399.72 4384.29 17293.47 14297.50 130
OMC-MVS88.80 14888.16 14790.72 18195.30 13377.92 24294.81 25594.51 23286.80 11484.97 17396.85 11467.53 23598.60 12585.08 16687.62 20195.63 198
114514_t88.79 14987.57 16092.45 11498.21 5381.74 13596.99 13595.45 17875.16 31782.48 20395.69 14168.59 23098.50 13180.33 20895.18 11997.10 153
mvs_anonymous88.68 15087.62 15891.86 14594.80 15181.69 13893.53 28694.92 20482.03 22378.87 24790.43 25375.77 14495.34 29285.04 16793.16 14798.55 56
Vis-MVSNetpermissive88.67 15187.82 15291.24 16592.68 21878.82 21196.95 14393.85 27287.55 9587.07 15695.13 16463.43 26197.21 20377.58 23896.15 10597.70 114
Jingyang Zhang, Yao Yao, Shiwei Li, Zixin Luo, Tian Fang: Visibility-aware Multiview Stereo Network. BMVC 2020
IS-MVSNet88.67 15188.16 14790.20 19593.61 18776.86 26596.77 15893.07 31284.02 17783.62 19295.60 14574.69 17296.24 24878.43 23093.66 14097.49 131
IB-MVS85.34 488.67 15187.14 17293.26 8193.12 20784.32 8398.76 2697.27 2087.19 10779.36 24290.45 25283.92 4598.53 13084.41 17169.79 32196.93 159
Christian Sormann, Mattia Rossi, Andreas Kuhn and Friedrich Fraundorfer: IB-MVS: An Iterative Algorithm for Deep Multi-View Stereo based on Binary Decisions. BMVC 2021
1112_ss88.60 15487.47 16492.00 14093.21 20180.97 15296.47 17492.46 32083.64 19080.86 22497.30 9580.24 7397.62 17477.60 23785.49 22397.40 137
tttt051788.57 15588.19 14689.71 21193.00 20975.99 28295.67 21896.67 7480.78 23981.82 21694.40 18288.97 1397.58 17776.05 25686.31 21295.57 200
UWE-MVS88.56 15688.91 13687.50 25794.17 17272.19 31695.82 21497.05 3484.96 15184.78 17693.51 20681.33 6294.75 31479.43 21989.17 17895.57 200
tfpn200view988.48 15787.15 17092.47 11396.21 10285.30 6197.44 9898.85 283.37 19383.99 18593.82 19775.36 15797.93 15669.04 30686.24 21594.17 228
test-LLR88.48 15787.98 14989.98 20092.26 23277.23 25997.11 12695.96 14883.76 18786.30 16291.38 23772.30 20196.78 22980.82 20491.92 16195.94 190
TAMVS88.48 15787.79 15390.56 18591.09 26679.18 20296.45 17695.88 15383.64 19083.12 19893.33 20775.94 14295.74 27482.40 19688.27 19596.75 169
thres40088.42 16087.15 17092.23 12796.21 10285.30 6197.44 9898.85 283.37 19383.99 18593.82 19775.36 15797.93 15669.04 30686.24 21593.45 244
tpmrst88.36 16187.38 16691.31 16194.36 16779.92 18187.32 35295.26 19385.32 13988.34 14186.13 31780.60 6996.70 23183.78 17885.34 22697.30 143
ECVR-MVScopyleft88.35 16287.25 16891.65 15293.54 19079.40 19696.56 16990.78 34886.78 11585.57 16795.25 15357.25 30997.56 17884.73 17094.80 12297.98 92
thres100view90088.30 16386.95 17692.33 12196.10 10684.90 7597.14 12398.85 282.69 21083.41 19493.66 20175.43 15497.93 15669.04 30686.24 21594.17 228
VDD-MVS88.28 16487.02 17592.06 13695.09 14080.18 17797.55 8994.45 23883.09 19889.10 12895.92 13647.97 34998.49 13293.08 8586.91 20797.52 129
BH-w/o88.24 16587.47 16490.54 18695.03 14578.54 21897.41 10393.82 27384.08 17578.23 25194.51 18169.34 22897.21 20380.21 21294.58 12695.87 192
hse-mvs288.22 16688.21 14588.25 23793.54 19073.41 30295.41 23295.89 15290.39 4792.22 8194.22 18674.70 16996.66 23493.14 8164.37 35894.69 225
test111188.11 16787.04 17491.35 16093.15 20478.79 21496.57 16790.78 34886.88 11285.04 17195.20 15957.23 31097.39 19383.88 17694.59 12597.87 99
thres600view788.06 16886.70 18192.15 13396.10 10685.17 6797.14 12398.85 282.70 20983.41 19493.66 20175.43 15497.82 16567.13 31585.88 21993.45 244
Test_1112_low_res88.03 16986.73 17991.94 14293.15 20480.88 15696.44 17792.41 32283.59 19280.74 22691.16 24180.18 7497.59 17677.48 24085.40 22497.36 139
PLCcopyleft83.97 788.00 17087.38 16689.83 20798.02 5976.46 27197.16 12094.43 24079.26 27681.98 21396.28 12869.36 22799.27 8477.71 23592.25 15893.77 238
Jie Liao, Yanping Fu, Qingan Yan, Chunxia xiao: Pyramid Multi-View Stereo with Local Consistency. Pacific Graphics 2019
CLD-MVS87.97 17187.48 16389.44 21392.16 23980.54 16798.14 4694.92 20491.41 3179.43 24195.40 15062.34 26697.27 20190.60 11282.90 24290.50 262
Zhaoxin Li, Wangmeng Zuo, Zhaoqi Wang, Lei Zhang: Confidence-based Large-scale Dense Multi-view Stereo. IEEE Transaction on Image Processing, 2020
Fast-Effi-MVS+87.93 17286.94 17790.92 17494.04 17979.16 20398.26 4293.72 28281.29 23183.94 18892.90 21369.83 22696.68 23276.70 24891.74 16396.93 159
HQP-MVS87.91 17387.55 16188.98 22192.08 24378.48 21997.63 8194.80 21290.52 4482.30 20694.56 17965.40 25097.32 19687.67 14983.01 23991.13 255
test_fmvs187.79 17488.52 14185.62 29292.98 21364.31 36197.88 6592.42 32187.95 8592.24 8095.82 13747.94 35098.44 13995.31 5294.09 13094.09 232
UGNet87.73 17586.55 18291.27 16495.16 13979.11 20596.35 18496.23 12688.14 8187.83 14790.48 25150.65 33899.09 10280.13 21394.03 13195.60 199
Wanjuan Su, Qingshan Xu, Wenbing Tao: Uncertainty-guided Multi-view Stereo Network for Depth Estimation. IEEE Transactions on Circuits and Systems for Video Technology, 2022
FA-MVS(test-final)87.71 17686.23 18492.17 13194.19 17180.55 16587.16 35496.07 14082.12 22185.98 16588.35 27972.04 20598.49 13280.26 21089.87 17397.48 132
EPNet_dtu87.65 17787.89 15086.93 27094.57 15571.37 32996.72 15996.50 9888.56 7087.12 15595.02 16875.91 14394.01 33166.62 31890.00 17295.42 205
Wanjuan Su, Wenbing Tao: Efficient Edge-Preserving Multi-View Stereo Network for Depth Estimation. AAAI 2023
mvsany_test187.58 17888.22 14485.67 29089.78 29167.18 35195.25 23787.93 36983.96 18088.79 13397.06 10872.52 19694.53 32192.21 9286.45 21195.30 209
HQP_MVS87.50 17987.09 17388.74 22691.86 25277.96 23997.18 11694.69 21789.89 5381.33 21994.15 18964.77 25597.30 19887.08 15382.82 24390.96 257
EPMVS87.47 18085.90 18792.18 13095.41 12882.26 12187.00 35596.28 12185.88 12984.23 18285.57 32375.07 16596.26 24671.14 29692.50 15498.03 84
tpm287.35 18186.26 18390.62 18392.93 21478.67 21688.06 34795.99 14579.33 27287.40 14986.43 31280.28 7296.40 24080.23 21185.73 22296.79 165
ab-mvs87.08 18284.94 20393.48 7693.34 19983.67 9588.82 33895.70 16381.18 23284.55 18190.14 25962.72 26498.94 11385.49 16482.54 24797.85 101
SDMVSNet87.02 18385.61 18991.24 16594.14 17483.30 10393.88 27895.98 14684.30 17079.63 23992.01 22658.23 29597.68 17190.28 12182.02 25192.75 247
CNLPA86.96 18485.37 19491.72 15197.59 7379.34 19997.21 11291.05 34374.22 32578.90 24596.75 12167.21 23998.95 11174.68 26890.77 16996.88 163
BH-untuned86.95 18585.94 18689.99 19994.52 15977.46 25496.78 15693.37 30081.80 22576.62 26893.81 19966.64 24397.02 21376.06 25593.88 13695.48 204
QAPM86.88 18684.51 20793.98 4994.04 17985.89 4697.19 11596.05 14173.62 33075.12 29195.62 14462.02 27099.74 3870.88 29796.06 10896.30 184
BH-RMVSNet86.84 18785.28 19591.49 15895.35 13280.26 17496.95 14392.21 32482.86 20681.77 21895.46 14959.34 28797.64 17369.79 30493.81 13796.57 174
PatchmatchNetpermissive86.83 18885.12 20091.95 14194.12 17682.27 12086.55 35995.64 16684.59 16182.98 20184.99 33577.26 11695.96 25968.61 30991.34 16697.64 118
Fangjinhua Wang, Silvano Galliani, Christoph Vogel, Pablo Speciale, Marc Pollefeys: PatchmatchNet: Learned Multi-View Patchmatch Stereo.
nrg03086.79 18985.43 19290.87 17788.76 30585.34 5897.06 13394.33 24684.31 16880.45 22991.98 22972.36 19896.36 24388.48 14171.13 30890.93 259
PCF-MVS84.09 586.77 19085.00 20292.08 13492.06 24683.07 10792.14 30994.47 23679.63 26776.90 26494.78 17571.15 21499.20 9272.87 28291.05 16793.98 234
Andreas Kuhn, Shan Lin, Oliver Erdler: Plane Completion and Filtering for Multi-View Stereo Reconstruction. GCPR 2019
FIs86.73 19186.10 18588.61 22890.05 28880.21 17596.14 19796.95 4185.56 13578.37 25092.30 22276.73 12895.28 29679.51 21779.27 26690.35 264
cascas86.50 19284.48 20992.55 11292.64 22285.95 4397.04 13495.07 19975.32 31580.50 22791.02 24354.33 32997.98 15586.79 15787.62 20193.71 239
VDDNet86.44 19384.51 20792.22 12891.56 25581.83 13197.10 12994.64 22469.50 35787.84 14695.19 16048.01 34897.92 16189.82 12486.92 20696.89 162
GeoE86.36 19485.20 19689.83 20793.17 20376.13 27697.53 9092.11 32579.58 26880.99 22294.01 19266.60 24496.17 25173.48 28089.30 17797.20 150
test_fmvs1_n86.34 19586.72 18085.17 29987.54 32263.64 36696.91 14792.37 32387.49 9791.33 9595.58 14640.81 37598.46 13595.00 5493.49 14193.41 246
TR-MVS86.30 19684.93 20490.42 18894.63 15477.58 25296.57 16793.82 27380.30 25382.42 20595.16 16258.74 29197.55 18074.88 26687.82 20096.13 187
X-MVStestdata86.26 19784.14 21692.63 10998.52 3780.29 17197.37 10696.44 10487.04 10991.38 9220.73 41077.24 11899.59 6090.46 11498.07 5598.02 85
AUN-MVS86.25 19885.57 19088.26 23693.57 18973.38 30395.45 23095.88 15383.94 18185.47 16894.21 18773.70 18696.67 23383.54 18664.41 35794.73 224
OpenMVScopyleft79.58 1486.09 19983.62 22393.50 7490.95 26886.71 3697.44 9895.83 15675.35 31472.64 31295.72 13957.42 30899.64 5571.41 29195.85 11394.13 231
FE-MVS86.06 20084.15 21591.78 14994.33 16879.81 18384.58 37196.61 8376.69 30785.00 17287.38 29270.71 22198.37 14170.39 30191.70 16497.17 151
FC-MVSNet-test85.96 20185.39 19387.66 25089.38 30278.02 23695.65 22096.87 4885.12 14677.34 25791.94 23276.28 13794.74 31577.09 24378.82 27090.21 267
miper_enhance_ethall85.95 20285.20 19688.19 24094.85 14979.76 18596.00 20194.06 26182.98 20377.74 25588.76 27279.42 8195.46 28880.58 20672.42 30289.36 284
OPM-MVS85.84 20385.10 20188.06 24188.34 31277.83 24695.72 21694.20 25287.89 8880.45 22994.05 19158.57 29297.26 20283.88 17682.76 24589.09 291
Ray L. Khuboni, Hongjun Xu: Octagram Propagation Matching for Multi-Scale View Stereopsis (OPM-MVS).
EI-MVSNet85.80 20485.20 19687.59 25391.55 25677.41 25595.13 24495.36 18680.43 25080.33 23194.71 17673.72 18495.97 25676.96 24678.64 27289.39 279
GA-MVS85.79 20584.04 21791.02 17289.47 30080.27 17396.90 14894.84 21085.57 13380.88 22389.08 26756.56 31596.47 23977.72 23485.35 22596.34 180
XVG-OURS-SEG-HR85.74 20685.16 19987.49 25990.22 28371.45 32891.29 32194.09 25981.37 23083.90 18995.22 15760.30 28097.53 18485.58 16384.42 23093.50 242
SCA85.63 20783.64 22291.60 15692.30 23081.86 13092.88 30195.56 17084.85 15282.52 20285.12 33358.04 29895.39 28973.89 27687.58 20397.54 124
test_vis1_n85.60 20885.70 18885.33 29684.79 35364.98 35996.83 15191.61 33487.36 10191.00 10294.84 17436.14 38197.18 20595.66 4593.03 14893.82 237
tpm85.55 20984.47 21088.80 22590.19 28475.39 28988.79 33994.69 21784.83 15383.96 18785.21 32978.22 10194.68 31876.32 25478.02 28096.34 180
mamv485.50 21086.76 17881.72 33793.23 20054.93 39189.95 33192.94 31469.96 35479.00 24492.20 22480.69 6894.22 32792.06 9590.77 16996.01 188
UniMVSNet_NR-MVSNet85.49 21184.59 20688.21 23989.44 30179.36 19796.71 16196.41 10885.22 14278.11 25290.98 24576.97 12395.14 30379.14 22368.30 33590.12 269
gg-mvs-nofinetune85.48 21282.90 23493.24 8294.51 16285.82 4779.22 38396.97 3961.19 38187.33 15153.01 39990.58 696.07 25286.07 15997.23 8397.81 106
VPA-MVSNet85.32 21383.83 21889.77 21090.25 28282.63 11296.36 18397.07 3383.03 20181.21 22189.02 26961.58 27496.31 24585.02 16870.95 31090.36 263
UniMVSNet (Re)85.31 21484.23 21388.55 22989.75 29280.55 16596.72 15996.89 4685.42 13778.40 24988.93 27075.38 15695.52 28678.58 22868.02 33889.57 278
XVG-OURS85.18 21584.38 21187.59 25390.42 28171.73 32591.06 32494.07 26082.00 22483.29 19695.08 16756.42 31697.55 18083.70 18383.42 23593.49 243
cl2285.11 21684.17 21487.92 24495.06 14478.82 21195.51 22794.22 25179.74 26576.77 26587.92 28675.96 14195.68 27579.93 21572.42 30289.27 286
TAPA-MVS81.61 1285.02 21783.67 22089.06 21896.79 9373.27 30895.92 20694.79 21474.81 32080.47 22896.83 11571.07 21598.19 14949.82 38092.57 15295.71 197
Andrea Romanoni, Matteo Matteucci: TAPA-MVS: Textureless-Aware PAtchMatch Multi-View Stereo. ICCV 2019
PatchMatch-RL85.00 21883.66 22189.02 22095.86 11574.55 29692.49 30593.60 28779.30 27479.29 24391.47 23558.53 29398.45 13770.22 30292.17 16094.07 233
PS-MVSNAJss84.91 21984.30 21286.74 27185.89 34174.40 29894.95 25194.16 25583.93 18276.45 27090.11 26071.04 21695.77 26983.16 19179.02 26990.06 273
CVMVSNet84.83 22085.57 19082.63 33191.55 25660.38 37795.13 24495.03 20080.60 24382.10 21294.71 17666.40 24590.19 37174.30 27390.32 17197.31 142
FMVSNet384.71 22182.71 23890.70 18294.55 15787.71 2495.92 20694.67 22081.73 22775.82 28388.08 28466.99 24094.47 32271.23 29375.38 28889.91 275
VPNet84.69 22282.92 23390.01 19889.01 30483.45 10096.71 16195.46 17785.71 13179.65 23892.18 22556.66 31496.01 25583.05 19367.84 34190.56 261
sd_testset84.62 22383.11 23189.17 21694.14 17477.78 24791.54 31994.38 24384.30 17079.63 23992.01 22652.28 33396.98 21577.67 23682.02 25192.75 247
Effi-MVS+-dtu84.61 22484.90 20583.72 32191.96 24963.14 36994.95 25193.34 30185.57 13379.79 23787.12 29861.99 27195.61 28283.55 18585.83 22092.41 251
miper_ehance_all_eth84.57 22583.60 22487.50 25792.64 22278.25 22895.40 23393.47 29279.28 27576.41 27187.64 28976.53 13095.24 29878.58 22872.42 30289.01 296
DU-MVS84.57 22583.33 22988.28 23588.76 30579.36 19796.43 17995.41 18585.42 13778.11 25290.82 24667.61 23295.14 30379.14 22368.30 33590.33 265
F-COLMAP84.50 22783.44 22887.67 24995.22 13672.22 31495.95 20493.78 27875.74 31276.30 27495.18 16159.50 28598.45 13772.67 28486.59 21092.35 252
Anonymous20240521184.41 22881.93 24991.85 14796.78 9478.41 22397.44 9891.34 33870.29 35284.06 18394.26 18541.09 37398.96 10979.46 21882.65 24698.17 76
WR-MVS84.32 22982.96 23288.41 23189.38 30280.32 17096.59 16696.25 12483.97 17976.63 26790.36 25467.53 23594.86 31275.82 25970.09 31990.06 273
dp84.30 23082.31 24390.28 19294.24 17077.97 23886.57 35895.53 17179.94 26280.75 22585.16 33171.49 21296.39 24163.73 33383.36 23696.48 176
LPG-MVS_test84.20 23183.49 22786.33 27790.88 26973.06 30995.28 23494.13 25682.20 21876.31 27293.20 20854.83 32796.95 21783.72 18180.83 25688.98 297
dmvs_re84.10 23282.90 23487.70 24891.41 26073.28 30690.59 32793.19 30585.02 14877.96 25493.68 20057.92 30396.18 25075.50 26180.87 25593.63 240
WB-MVSnew84.08 23383.51 22685.80 28691.34 26176.69 26995.62 22296.27 12281.77 22681.81 21792.81 21458.23 29594.70 31666.66 31787.06 20585.99 352
ACMP81.66 1184.00 23483.22 23086.33 27791.53 25872.95 31295.91 20893.79 27783.70 18973.79 29892.22 22354.31 33096.89 22183.98 17579.74 26189.16 289
Qingshan Xu and Wenbing Tao: Planar Prior Assisted PatchMatch Multi-View Stereo. AAAI 2020
IterMVS-LS83.93 23582.80 23787.31 26391.46 25977.39 25695.66 21993.43 29580.44 24875.51 28787.26 29573.72 18495.16 30276.99 24470.72 31289.39 279
Fangjinhua Wang, Silvano Galliani, Christoph Vogel, Marc Pollefeys: IterMVS: Iterative Probability Estimation for Efficient Multi-View Stereo.
XXY-MVS83.84 23682.00 24889.35 21487.13 32481.38 14395.72 21694.26 24880.15 25775.92 28290.63 24961.96 27296.52 23778.98 22573.28 30090.14 268
c3_l83.80 23782.65 23987.25 26592.10 24277.74 25095.25 23793.04 31378.58 28676.01 27987.21 29775.25 16295.11 30577.54 23968.89 32988.91 302
LCM-MVSNet-Re83.75 23883.54 22584.39 31493.54 19064.14 36392.51 30484.03 38583.90 18366.14 34886.59 30667.36 23792.68 34584.89 16992.87 14996.35 179
ACMM80.70 1383.72 23982.85 23686.31 28091.19 26372.12 31895.88 20994.29 24780.44 24877.02 26291.96 23055.24 32397.14 21079.30 22180.38 25889.67 277
Qingshan Xu and Wenbing Tao: Multi-Scale Geometric Consistency Guided Multi-View Stereo. CVPR 2019
tpm cat183.63 24081.38 25790.39 18993.53 19578.19 23485.56 36695.09 19770.78 35078.51 24883.28 34974.80 16897.03 21266.77 31684.05 23195.95 189
CR-MVSNet83.53 24181.36 25890.06 19790.16 28579.75 18679.02 38591.12 34084.24 17482.27 21080.35 36375.45 15293.67 33763.37 33686.25 21396.75 169
v2v48283.46 24281.86 25088.25 23786.19 33579.65 19196.34 18594.02 26281.56 22977.32 25888.23 28165.62 24796.03 25377.77 23269.72 32389.09 291
NR-MVSNet83.35 24381.52 25688.84 22388.76 30581.31 14594.45 26095.16 19584.65 15967.81 33790.82 24670.36 22394.87 31174.75 26766.89 35090.33 265
Fast-Effi-MVS+-dtu83.33 24482.60 24085.50 29489.55 29869.38 34296.09 20091.38 33582.30 21775.96 28191.41 23656.71 31295.58 28475.13 26584.90 22891.54 253
cl____83.27 24582.12 24586.74 27192.20 23575.95 28395.11 24693.27 30378.44 28974.82 29387.02 30074.19 17795.19 30074.67 26969.32 32589.09 291
DIV-MVS_self_test83.27 24582.12 24586.74 27192.19 23675.92 28595.11 24693.26 30478.44 28974.81 29487.08 29974.19 17795.19 30074.66 27069.30 32689.11 290
TranMVSNet+NR-MVSNet83.24 24781.71 25287.83 24587.71 31978.81 21396.13 19994.82 21184.52 16276.18 27890.78 24864.07 25894.60 31974.60 27166.59 35290.09 271
Anonymous2024052983.15 24880.60 26890.80 17895.74 12078.27 22796.81 15494.92 20460.10 38681.89 21592.54 21945.82 35798.82 11879.25 22278.32 27895.31 208
eth_miper_zixun_eth83.12 24982.01 24786.47 27691.85 25474.80 29294.33 26493.18 30779.11 27875.74 28687.25 29672.71 19395.32 29476.78 24767.13 34789.27 286
MS-PatchMatch83.05 25081.82 25186.72 27589.64 29679.10 20694.88 25394.59 22979.70 26670.67 32589.65 26350.43 34096.82 22670.82 30095.99 11184.25 365
V4283.04 25181.53 25587.57 25586.27 33479.09 20795.87 21094.11 25880.35 25277.22 26086.79 30465.32 25296.02 25477.74 23370.14 31587.61 327
tpmvs83.04 25180.77 26489.84 20695.43 12777.96 23985.59 36595.32 19075.31 31676.27 27583.70 34573.89 18197.41 19159.53 34781.93 25394.14 230
test_djsdf83.00 25382.45 24284.64 30784.07 36169.78 33894.80 25694.48 23380.74 24075.41 28987.70 28861.32 27795.10 30683.77 17979.76 25989.04 294
v114482.90 25481.27 25987.78 24786.29 33379.07 20896.14 19793.93 26480.05 25977.38 25686.80 30365.50 24895.93 26175.21 26470.13 31688.33 314
test0.0.03 182.79 25582.48 24183.74 32086.81 32772.22 31496.52 17095.03 20083.76 18773.00 30893.20 20872.30 20188.88 37464.15 33177.52 28190.12 269
FMVSNet282.79 25580.44 27089.83 20792.66 21985.43 5795.42 23194.35 24479.06 28074.46 29587.28 29356.38 31794.31 32569.72 30574.68 29289.76 276
D2MVS82.67 25781.55 25486.04 28487.77 31876.47 27095.21 23996.58 8982.66 21170.26 32885.46 32660.39 27995.80 26776.40 25279.18 26785.83 355
MVP-Stereo82.65 25881.67 25385.59 29386.10 33878.29 22693.33 29092.82 31677.75 29469.17 33587.98 28559.28 28895.76 27071.77 28896.88 9182.73 373
Qingsong Yan: MVP-Stereo: A Parallel Multi-View Patchmatch Stereo Method with Dilation Matching for Photogrammetric Application.
pmmvs482.54 25980.79 26387.79 24686.11 33780.49 16993.55 28593.18 30777.29 30073.35 30489.40 26665.26 25395.05 30975.32 26373.61 29687.83 322
v14419282.43 26080.73 26587.54 25685.81 34278.22 22995.98 20293.78 27879.09 27977.11 26186.49 30864.66 25795.91 26274.20 27469.42 32488.49 308
GBi-Net82.42 26180.43 27188.39 23292.66 21981.95 12394.30 26693.38 29779.06 28075.82 28385.66 31956.38 31793.84 33371.23 29375.38 28889.38 281
test182.42 26180.43 27188.39 23292.66 21981.95 12394.30 26693.38 29779.06 28075.82 28385.66 31956.38 31793.84 33371.23 29375.38 28889.38 281
v14882.41 26380.89 26286.99 26986.18 33676.81 26696.27 18993.82 27380.49 24775.28 29086.11 31867.32 23895.75 27175.48 26267.03 34988.42 312
v119282.31 26480.55 26987.60 25285.94 33978.47 22295.85 21293.80 27679.33 27276.97 26386.51 30763.33 26295.87 26373.11 28170.13 31688.46 310
LS3D82.22 26579.94 27989.06 21897.43 8074.06 30193.20 29692.05 32661.90 37673.33 30595.21 15859.35 28699.21 8854.54 36792.48 15593.90 236
jajsoiax82.12 26681.15 26185.03 30184.19 35970.70 33194.22 27093.95 26383.07 19973.48 30089.75 26249.66 34495.37 29182.24 19879.76 25989.02 295
v192192082.02 26780.23 27387.41 26085.62 34377.92 24295.79 21593.69 28378.86 28376.67 26686.44 31062.50 26595.83 26572.69 28369.77 32288.47 309
myMVS_eth3d81.93 26882.18 24481.18 34092.13 24067.18 35193.97 27494.23 24982.43 21473.39 30193.57 20476.98 12287.86 37850.53 37882.34 24888.51 306
v881.88 26980.06 27787.32 26286.63 32879.04 20994.41 26193.65 28578.77 28473.19 30785.57 32366.87 24195.81 26673.84 27867.61 34387.11 336
mvs_tets81.74 27080.71 26684.84 30284.22 35870.29 33493.91 27793.78 27882.77 20873.37 30389.46 26547.36 35495.31 29581.99 19979.55 26588.92 301
v124081.70 27179.83 28187.30 26485.50 34477.70 25195.48 22893.44 29378.46 28876.53 26986.44 31060.85 27895.84 26471.59 29070.17 31488.35 313
PVSNet_077.72 1581.70 27178.95 28889.94 20390.77 27576.72 26895.96 20396.95 4185.01 14970.24 32988.53 27752.32 33298.20 14886.68 15844.08 39694.89 216
miper_lstm_enhance81.66 27380.66 26784.67 30691.19 26371.97 32191.94 31193.19 30577.86 29372.27 31585.26 32773.46 18793.42 34173.71 27967.05 34888.61 304
DP-MVS81.47 27478.28 29191.04 17098.14 5578.48 21995.09 24986.97 37261.14 38271.12 32292.78 21859.59 28399.38 7853.11 37186.61 20995.27 210
v1081.43 27579.53 28387.11 26786.38 33078.87 21094.31 26593.43 29577.88 29273.24 30685.26 32765.44 24995.75 27172.14 28767.71 34286.72 340
pmmvs581.34 27679.54 28286.73 27485.02 35176.91 26396.22 19291.65 33277.65 29573.55 29988.61 27455.70 32094.43 32374.12 27573.35 29988.86 303
ADS-MVSNet81.26 27778.36 29089.96 20293.78 18379.78 18479.48 38193.60 28773.09 33680.14 23379.99 36662.15 26895.24 29859.49 34883.52 23394.85 218
Baseline_NR-MVSNet81.22 27880.07 27684.68 30585.32 34975.12 29196.48 17388.80 36476.24 31177.28 25986.40 31367.61 23294.39 32475.73 26066.73 35184.54 362
tt080581.20 27979.06 28787.61 25186.50 32972.97 31193.66 28195.48 17574.11 32676.23 27691.99 22841.36 37297.40 19277.44 24174.78 29192.45 250
WR-MVS_H81.02 28080.09 27483.79 31888.08 31571.26 33094.46 25996.54 9380.08 25872.81 31186.82 30270.36 22392.65 34664.18 33067.50 34487.46 333
CP-MVSNet81.01 28180.08 27583.79 31887.91 31770.51 33294.29 26995.65 16580.83 23772.54 31488.84 27163.71 25992.32 34968.58 31068.36 33488.55 305
anonymousdsp80.98 28279.97 27884.01 31581.73 37170.44 33392.49 30593.58 28977.10 30472.98 30986.31 31457.58 30494.90 31079.32 22078.63 27486.69 341
UniMVSNet_ETH3D80.86 28378.75 28987.22 26686.31 33272.02 31991.95 31093.76 28173.51 33175.06 29290.16 25843.04 36695.66 27676.37 25378.55 27593.98 234
testing380.74 28481.17 26079.44 34991.15 26563.48 36797.16 12095.76 15980.83 23771.36 31993.15 21178.22 10187.30 38343.19 39179.67 26287.55 331
IterMVS80.67 28579.16 28585.20 29889.79 29076.08 27792.97 30091.86 32880.28 25471.20 32185.14 33257.93 30291.34 36172.52 28570.74 31188.18 317
Fangjinhua Wang, Silvano Galliani, Christoph Vogel, Marc Pollefeys: IterMVS: Iterative Probability Estimation for Efficient Multi-View Stereo.
MSDG80.62 28677.77 29689.14 21793.43 19777.24 25891.89 31290.18 35269.86 35668.02 33691.94 23252.21 33498.84 11759.32 35083.12 23791.35 254
IterMVS-SCA-FT80.51 28779.10 28684.73 30489.63 29774.66 29392.98 29991.81 33080.05 25971.06 32385.18 33058.04 29891.40 36072.48 28670.70 31388.12 318
PS-CasMVS80.27 28879.18 28483.52 32487.56 32169.88 33794.08 27295.29 19180.27 25572.08 31688.51 27859.22 28992.23 35167.49 31268.15 33788.45 311
pm-mvs180.05 28978.02 29486.15 28285.42 34575.81 28695.11 24692.69 31977.13 30270.36 32787.43 29158.44 29495.27 29771.36 29264.25 35987.36 334
RPMNet79.85 29075.92 30991.64 15390.16 28579.75 18679.02 38595.44 17958.43 39182.27 21072.55 38873.03 19198.41 14046.10 38786.25 21396.75 169
PatchT79.75 29176.85 30388.42 23089.55 29875.49 28877.37 38994.61 22763.07 37282.46 20473.32 38575.52 15193.41 34251.36 37484.43 22996.36 178
Anonymous2023121179.72 29277.19 30087.33 26195.59 12477.16 26295.18 24394.18 25459.31 38972.57 31386.20 31647.89 35195.66 27674.53 27269.24 32789.18 288
test_fmvs279.59 29379.90 28078.67 35282.86 36855.82 38895.20 24089.55 35681.09 23380.12 23589.80 26134.31 38693.51 34087.82 14678.36 27786.69 341
ADS-MVSNet279.57 29477.53 29785.71 28993.78 18372.13 31779.48 38186.11 37873.09 33680.14 23379.99 36662.15 26890.14 37259.49 34883.52 23394.85 218
FMVSNet179.50 29576.54 30588.39 23288.47 31081.95 12394.30 26693.38 29773.14 33572.04 31785.66 31943.86 36093.84 33365.48 32572.53 30189.38 281
PEN-MVS79.47 29678.26 29283.08 32786.36 33168.58 34593.85 27994.77 21579.76 26471.37 31888.55 27559.79 28192.46 34764.50 32965.40 35488.19 316
XVG-ACMP-BASELINE79.38 29777.90 29583.81 31784.98 35267.14 35589.03 33793.18 30780.26 25672.87 31088.15 28338.55 37796.26 24676.05 25678.05 27988.02 319
v7n79.32 29877.34 29885.28 29784.05 36272.89 31393.38 28893.87 27075.02 31970.68 32484.37 33959.58 28495.62 28167.60 31167.50 34487.32 335
MIMVSNet79.18 29975.99 30888.72 22787.37 32380.66 16279.96 38091.82 32977.38 29974.33 29681.87 35541.78 36990.74 36766.36 32383.10 23894.76 220
JIA-IIPM79.00 30077.20 29984.40 31389.74 29464.06 36475.30 39395.44 17962.15 37581.90 21459.08 39778.92 8995.59 28366.51 32185.78 22193.54 241
USDC78.65 30176.25 30685.85 28587.58 32074.60 29589.58 33390.58 35184.05 17663.13 36088.23 28140.69 37696.86 22566.57 32075.81 28686.09 350
DTE-MVSNet78.37 30277.06 30182.32 33485.22 35067.17 35493.40 28793.66 28478.71 28570.53 32688.29 28059.06 29092.23 35161.38 34363.28 36387.56 329
Patchmatch-test78.25 30374.72 31788.83 22491.20 26274.10 30073.91 39688.70 36759.89 38766.82 34385.12 33378.38 9894.54 32048.84 38379.58 26497.86 100
tfpnnormal78.14 30475.42 31186.31 28088.33 31379.24 20094.41 26196.22 12773.51 33169.81 33185.52 32555.43 32195.75 27147.65 38567.86 34083.95 368
ACMH75.40 1777.99 30574.96 31387.10 26890.67 27676.41 27293.19 29791.64 33372.47 34263.44 35887.61 29043.34 36397.16 20658.34 35273.94 29487.72 323
Qingshan Xu and Wenbing Tao: Multi-Scale Geometric Consistency Guided Multi-View Stereo. CVPR 2019
LTVRE_ROB73.68 1877.99 30575.74 31084.74 30390.45 28072.02 31986.41 36091.12 34072.57 34166.63 34587.27 29454.95 32696.98 21556.29 36275.98 28385.21 359
Andreas Kuhn, Heiko Hirschmüller, Daniel Scharstein, Helmut Mayer: A TV Prior for High-Quality Scalable Multi-View Stereo Reconstruction. International Journal of Computer Vision 2016
Syy-MVS77.97 30778.05 29377.74 35692.13 24056.85 38493.97 27494.23 24982.43 21473.39 30193.57 20457.95 30187.86 37832.40 39882.34 24888.51 306
our_test_377.90 30875.37 31285.48 29585.39 34676.74 26793.63 28291.67 33173.39 33465.72 35084.65 33858.20 29793.13 34457.82 35467.87 33986.57 343
RPSCF77.73 30976.63 30481.06 34188.66 30955.76 38987.77 34987.88 37064.82 37074.14 29792.79 21749.22 34596.81 22767.47 31376.88 28290.62 260
KD-MVS_2432*160077.63 31074.92 31585.77 28790.86 27279.44 19488.08 34593.92 26676.26 30967.05 34182.78 35172.15 20391.92 35461.53 34041.62 39985.94 353
miper_refine_blended77.63 31074.92 31585.77 28790.86 27279.44 19488.08 34593.92 26676.26 30967.05 34182.78 35172.15 20391.92 35461.53 34041.62 39985.94 353
ACMH+76.62 1677.47 31274.94 31485.05 30091.07 26771.58 32793.26 29490.01 35371.80 34564.76 35388.55 27541.62 37096.48 23862.35 33971.00 30987.09 337
Patchmtry77.36 31374.59 31885.67 29089.75 29275.75 28777.85 38891.12 34060.28 38471.23 32080.35 36375.45 15293.56 33957.94 35367.34 34687.68 325
ppachtmachnet_test77.19 31474.22 32286.13 28385.39 34678.22 22993.98 27391.36 33771.74 34667.11 34084.87 33656.67 31393.37 34352.21 37264.59 35686.80 339
OurMVSNet-221017-077.18 31576.06 30780.55 34483.78 36560.00 37990.35 32891.05 34377.01 30666.62 34687.92 28647.73 35294.03 33071.63 28968.44 33387.62 326
TransMVSNet (Re)76.94 31674.38 32084.62 30885.92 34075.25 29095.28 23489.18 36173.88 32967.22 33886.46 30959.64 28294.10 32959.24 35152.57 38484.50 363
EU-MVSNet76.92 31776.95 30276.83 36084.10 36054.73 39291.77 31492.71 31872.74 33969.57 33288.69 27358.03 30087.43 38264.91 32870.00 32088.33 314
Patchmatch-RL test76.65 31874.01 32584.55 30977.37 38564.23 36278.49 38782.84 38978.48 28764.63 35473.40 38476.05 14091.70 35976.99 24457.84 37297.72 111
FMVSNet576.46 31974.16 32383.35 32690.05 28876.17 27589.58 33389.85 35471.39 34865.29 35280.42 36250.61 33987.70 38161.05 34569.24 32786.18 348
SixPastTwentyTwo76.04 32074.32 32181.22 33984.54 35561.43 37591.16 32289.30 36077.89 29164.04 35586.31 31448.23 34694.29 32663.54 33563.84 36187.93 321
AllTest75.92 32173.06 32984.47 31092.18 23767.29 34991.07 32384.43 38367.63 36163.48 35690.18 25638.20 37897.16 20657.04 35873.37 29788.97 299
CL-MVSNet_self_test75.81 32274.14 32480.83 34378.33 38167.79 34894.22 27093.52 29177.28 30169.82 33081.54 35761.47 27689.22 37357.59 35653.51 38085.48 357
COLMAP_ROBcopyleft73.24 1975.74 32373.00 33083.94 31692.38 22569.08 34391.85 31386.93 37361.48 37965.32 35190.27 25542.27 36896.93 22050.91 37675.63 28785.80 356
Johannes L. Schönberger, Enliang Zheng, Marc Pollefeys, Jan-Michael Frahm: Pixelwise View Selection for Unstructured Multi-View Stereo. ECCV 2016
CMPMVSbinary54.94 2175.71 32474.56 31979.17 35179.69 37755.98 38689.59 33293.30 30260.28 38453.85 38889.07 26847.68 35396.33 24476.55 24981.02 25485.22 358
M. Jancosek, T. Pajdla: Multi-View Reconstruction Preserving Weakly-Supported Surfaces. CVPR 2011
Anonymous2023120675.29 32573.64 32680.22 34580.75 37263.38 36893.36 28990.71 35073.09 33667.12 33983.70 34550.33 34190.85 36653.63 37070.10 31886.44 344
EG-PatchMatch MVS74.92 32672.02 33483.62 32283.76 36673.28 30693.62 28392.04 32768.57 35958.88 37783.80 34431.87 39095.57 28556.97 36078.67 27182.00 379
testgi74.88 32773.40 32779.32 35080.13 37661.75 37293.21 29586.64 37679.49 27066.56 34791.06 24235.51 38488.67 37556.79 36171.25 30787.56 329
pmmvs674.65 32871.67 33583.60 32379.13 37969.94 33693.31 29390.88 34761.05 38365.83 34984.15 34243.43 36294.83 31366.62 31860.63 36886.02 351
test_vis1_rt73.96 32972.40 33278.64 35383.91 36361.16 37695.63 22168.18 40576.32 30860.09 37474.77 37929.01 39497.54 18287.74 14775.94 28477.22 388
K. test v373.62 33071.59 33679.69 34782.98 36759.85 38090.85 32688.83 36377.13 30258.90 37682.11 35343.62 36191.72 35865.83 32454.10 37987.50 332
pmmvs-eth3d73.59 33170.66 33982.38 33276.40 38973.38 30389.39 33689.43 35872.69 34060.34 37377.79 37246.43 35691.26 36366.42 32257.06 37382.51 374
kuosan73.55 33272.39 33377.01 35889.68 29566.72 35685.24 36893.44 29367.76 36060.04 37583.40 34871.90 20684.25 39045.34 38854.75 37580.06 384
MDA-MVSNet_test_wron73.54 33370.43 34182.86 32884.55 35471.85 32291.74 31591.32 33967.63 36146.73 39281.09 36055.11 32490.42 37055.91 36459.76 36986.31 346
YYNet173.53 33470.43 34182.85 32984.52 35671.73 32591.69 31691.37 33667.63 36146.79 39181.21 35955.04 32590.43 36955.93 36359.70 37086.38 345
UnsupCasMVSNet_eth73.25 33570.57 34081.30 33877.53 38366.33 35787.24 35393.89 26980.38 25157.90 38181.59 35642.91 36790.56 36865.18 32748.51 38987.01 338
DSMNet-mixed73.13 33672.45 33175.19 36677.51 38446.82 39785.09 36982.01 39067.61 36569.27 33481.33 35850.89 33786.28 38554.54 36783.80 23292.46 249
OpenMVS_ROBcopyleft68.52 2073.02 33769.57 34483.37 32580.54 37571.82 32393.60 28488.22 36862.37 37461.98 36683.15 35035.31 38595.47 28745.08 38975.88 28582.82 371
test_040272.68 33869.54 34582.09 33588.67 30871.81 32492.72 30386.77 37561.52 37862.21 36583.91 34343.22 36493.76 33634.60 39672.23 30580.72 383
TinyColmap72.41 33968.99 34882.68 33088.11 31469.59 34088.41 34285.20 38065.55 36757.91 38084.82 33730.80 39295.94 26051.38 37368.70 33082.49 376
test20.0372.36 34071.15 33775.98 36477.79 38259.16 38192.40 30789.35 35974.09 32761.50 36884.32 34048.09 34785.54 38850.63 37762.15 36683.24 369
LF4IMVS72.36 34070.82 33876.95 35979.18 37856.33 38586.12 36286.11 37869.30 35863.06 36186.66 30533.03 38892.25 35065.33 32668.64 33182.28 377
Anonymous2024052172.06 34269.91 34378.50 35477.11 38661.67 37491.62 31890.97 34565.52 36862.37 36479.05 36936.32 38090.96 36557.75 35568.52 33282.87 370
dmvs_testset72.00 34373.36 32867.91 37283.83 36431.90 41285.30 36777.12 39782.80 20763.05 36292.46 22061.54 27582.55 39442.22 39371.89 30689.29 285
MDA-MVSNet-bldmvs71.45 34467.94 35081.98 33685.33 34868.50 34692.35 30888.76 36570.40 35142.99 39581.96 35446.57 35591.31 36248.75 38454.39 37886.11 349
MVS-HIRNet71.36 34567.00 35184.46 31290.58 27769.74 33979.15 38487.74 37146.09 39661.96 36750.50 40045.14 35895.64 27953.74 36988.11 19788.00 320
KD-MVS_self_test70.97 34669.31 34675.95 36576.24 39155.39 39087.45 35090.94 34670.20 35362.96 36377.48 37344.01 35988.09 37661.25 34453.26 38184.37 364
test_fmvs369.56 34769.19 34770.67 37069.01 39647.05 39690.87 32586.81 37471.31 34966.79 34477.15 37416.40 40183.17 39281.84 20062.51 36581.79 381
dongtai69.47 34868.98 34970.93 36986.87 32658.45 38288.19 34493.18 30763.98 37156.04 38480.17 36570.97 21979.24 39633.46 39747.94 39175.09 390
MIMVSNet169.44 34966.65 35377.84 35576.48 38862.84 37087.42 35188.97 36266.96 36657.75 38279.72 36832.77 38985.83 38746.32 38663.42 36284.85 361
PM-MVS69.32 35066.93 35276.49 36173.60 39355.84 38785.91 36379.32 39574.72 32161.09 37078.18 37121.76 39791.10 36470.86 29856.90 37482.51 374
TDRefinement69.20 35165.78 35579.48 34866.04 40162.21 37188.21 34386.12 37762.92 37361.03 37185.61 32233.23 38794.16 32855.82 36553.02 38282.08 378
new-patchmatchnet68.85 35265.93 35477.61 35773.57 39463.94 36590.11 33088.73 36671.62 34755.08 38673.60 38340.84 37487.22 38451.35 37548.49 39081.67 382
UnsupCasMVSNet_bld68.60 35364.50 35780.92 34274.63 39267.80 34783.97 37392.94 31465.12 36954.63 38768.23 39335.97 38292.17 35360.13 34644.83 39482.78 372
mvsany_test367.19 35465.34 35672.72 36863.08 40248.57 39583.12 37678.09 39672.07 34361.21 36977.11 37522.94 39687.78 38078.59 22751.88 38581.80 380
new_pmnet66.18 35563.18 35875.18 36776.27 39061.74 37383.79 37484.66 38256.64 39351.57 38971.85 39131.29 39187.93 37749.98 37962.55 36475.86 389
pmmvs365.75 35662.18 35976.45 36267.12 40064.54 36088.68 34085.05 38154.77 39557.54 38373.79 38229.40 39386.21 38655.49 36647.77 39278.62 386
test_f64.01 35762.13 36069.65 37163.00 40345.30 40283.66 37580.68 39261.30 38055.70 38572.62 38714.23 40384.64 38969.84 30358.11 37179.00 385
N_pmnet61.30 35860.20 36164.60 37784.32 35717.00 41891.67 31710.98 41661.77 37758.45 37978.55 37049.89 34391.83 35742.27 39263.94 36084.97 360
WB-MVS57.26 35956.22 36260.39 38369.29 39535.91 41086.39 36170.06 40359.84 38846.46 39372.71 38651.18 33678.11 39715.19 40734.89 40267.14 396
test_method56.77 36054.53 36463.49 37976.49 38740.70 40575.68 39274.24 39919.47 40748.73 39071.89 39019.31 39865.80 40757.46 35747.51 39383.97 367
APD_test156.56 36153.58 36565.50 37467.93 39946.51 39977.24 39172.95 40038.09 39842.75 39675.17 37813.38 40482.78 39340.19 39454.53 37767.23 395
SSC-MVS56.01 36254.96 36359.17 38468.42 39734.13 41184.98 37069.23 40458.08 39245.36 39471.67 39250.30 34277.46 39814.28 40832.33 40365.91 397
FPMVS55.09 36352.93 36661.57 38155.98 40540.51 40683.11 37783.41 38837.61 39934.95 40071.95 38914.40 40276.95 39929.81 39965.16 35567.25 394
test_vis3_rt54.10 36451.04 36763.27 38058.16 40446.08 40184.17 37249.32 41556.48 39436.56 39949.48 4028.03 41191.91 35667.29 31449.87 38651.82 401
LCM-MVSNet52.52 36548.24 36865.35 37547.63 41241.45 40472.55 39783.62 38731.75 40037.66 39857.92 3989.19 41076.76 40049.26 38144.60 39577.84 387
EGC-MVSNET52.46 36647.56 36967.15 37381.98 37060.11 37882.54 37872.44 4010.11 4130.70 41474.59 38025.11 39583.26 39129.04 40061.51 36758.09 398
PMMVS250.90 36746.31 37064.67 37655.53 40646.67 39877.30 39071.02 40240.89 39734.16 40159.32 3969.83 40976.14 40240.09 39528.63 40471.21 391
ANet_high46.22 36841.28 37561.04 38239.91 41446.25 40070.59 39876.18 39858.87 39023.09 40648.00 40312.58 40666.54 40628.65 40113.62 40770.35 392
testf145.70 36942.41 37155.58 38553.29 40940.02 40768.96 39962.67 40927.45 40229.85 40261.58 3945.98 41273.83 40428.49 40243.46 39752.90 399
APD_test245.70 36942.41 37155.58 38553.29 40940.02 40768.96 39962.67 40927.45 40229.85 40261.58 3945.98 41273.83 40428.49 40243.46 39752.90 399
Gipumacopyleft45.11 37142.05 37354.30 38780.69 37351.30 39435.80 40583.81 38628.13 40127.94 40534.53 40511.41 40876.70 40121.45 40454.65 37634.90 405
S. Galliani, K. Lasinger, K. Schindler: Massively Parallel Multiview Stereopsis by Surface Normal Diffusion. ICCV 2015
tmp_tt41.54 37241.93 37440.38 39020.10 41626.84 41461.93 40259.09 41114.81 40928.51 40480.58 36135.53 38348.33 41163.70 33413.11 40845.96 404
PMVScopyleft34.80 2339.19 37335.53 37650.18 38829.72 41530.30 41359.60 40366.20 40826.06 40417.91 40849.53 4013.12 41474.09 40318.19 40649.40 38746.14 402
Y. Furukawa, J. Ponce: Accurate, dense, and robust multiview stereopsis. PAMI (2010)
MVEpermissive35.65 2233.85 37429.49 37946.92 38941.86 41336.28 40950.45 40456.52 41218.75 40818.28 40737.84 4042.41 41558.41 40818.71 40520.62 40546.06 403
Simon Fuhrmann, Fabian Langguth, Michael Goesele: MVE - A Multi-View Reconstruction Environment. EUROGRAPHICS Workshops on Graphics and Cultural Heritage (2014)
E-PMN32.70 37532.39 37733.65 39153.35 40825.70 41574.07 39553.33 41321.08 40517.17 40933.63 40711.85 40754.84 40912.98 40914.04 40620.42 406
EMVS31.70 37631.45 37832.48 39250.72 41123.95 41674.78 39452.30 41420.36 40616.08 41031.48 40812.80 40553.60 41011.39 41013.10 40919.88 407
cdsmvs_eth3d_5k21.43 37728.57 3800.00 3960.00 4190.00 4210.00 40795.93 1510.00 4140.00 41597.66 7263.57 2600.00 4150.00 4140.00 4130.00 411
wuyk23d14.10 37813.89 38114.72 39355.23 40722.91 41733.83 4063.56 4174.94 4104.11 4112.28 4132.06 41619.66 41210.23 4118.74 4101.59 410
testmvs9.92 37912.94 3820.84 3950.65 4170.29 42093.78 2800.39 4180.42 4112.85 41215.84 4110.17 4180.30 4142.18 4120.21 4111.91 409
test1239.07 38011.73 3831.11 3940.50 4180.77 41989.44 3350.20 4190.34 4122.15 41310.72 4120.34 4170.32 4131.79 4130.08 4122.23 408
ab-mvs-re8.11 38110.81 3840.00 3960.00 4190.00 4210.00 4070.00 4200.00 4140.00 41597.30 950.00 4190.00 4150.00 4140.00 4130.00 411
pcd_1.5k_mvsjas5.92 3827.89 3850.00 3960.00 4190.00 4210.00 4070.00 4200.00 4140.00 4150.00 41471.04 2160.00 4150.00 4140.00 4130.00 411
test_blank0.00 3830.00 3860.00 3960.00 4190.00 4210.00 4070.00 4200.00 4140.00 4150.00 4140.00 4190.00 4150.00 4140.00 4130.00 411
uanet_test0.00 3830.00 3860.00 3960.00 4190.00 4210.00 4070.00 4200.00 4140.00 4150.00 4140.00 4190.00 4150.00 4140.00 4130.00 411
DCPMVS0.00 3830.00 3860.00 3960.00 4190.00 4210.00 4070.00 4200.00 4140.00 4150.00 4140.00 4190.00 4150.00 4140.00 4130.00 411
sosnet-low-res0.00 3830.00 3860.00 3960.00 4190.00 4210.00 4070.00 4200.00 4140.00 4150.00 4140.00 4190.00 4150.00 4140.00 4130.00 411
sosnet0.00 3830.00 3860.00 3960.00 4190.00 4210.00 4070.00 4200.00 4140.00 4150.00 4140.00 4190.00 4150.00 4140.00 4130.00 411
uncertanet0.00 3830.00 3860.00 3960.00 4190.00 4210.00 4070.00 4200.00 4140.00 4150.00 4140.00 4190.00 4150.00 4140.00 4130.00 411
Regformer0.00 3830.00 3860.00 3960.00 4190.00 4210.00 4070.00 4200.00 4140.00 4150.00 4140.00 4190.00 4150.00 4140.00 4130.00 411
uanet0.00 3830.00 3860.00 3960.00 4190.00 4210.00 4070.00 4200.00 4140.00 4150.00 4140.00 4190.00 4150.00 4140.00 4130.00 411
WAC-MVS67.18 35149.00 382
FOURS198.51 3978.01 23798.13 4996.21 12883.04 20094.39 52
MSC_two_6792asdad97.14 399.05 992.19 496.83 5199.81 2298.08 1498.81 2499.43 11
PC_three_145291.12 3598.33 298.42 2892.51 299.81 2298.96 499.37 199.70 3
No_MVS97.14 399.05 992.19 496.83 5199.81 2298.08 1498.81 2499.43 11
test_one_060198.91 1884.56 8196.70 7088.06 8296.57 2398.77 1088.04 19
eth-test20.00 419
eth-test0.00 419
ZD-MVS99.09 883.22 10596.60 8682.88 20593.61 6498.06 5082.93 5499.14 9795.51 5098.49 40
RE-MVS-def91.18 9097.76 6776.03 27996.20 19495.44 17980.56 24590.72 10597.84 6473.36 18991.99 9696.79 9497.75 109
IU-MVS99.03 1585.34 5896.86 5092.05 2798.74 198.15 1198.97 1799.42 13
OPU-MVS97.30 299.19 792.31 399.12 1298.54 2092.06 399.84 1399.11 399.37 199.74 1
test_241102_TWO96.78 5488.72 6697.70 898.91 287.86 2099.82 1998.15 1199.00 1599.47 9
test_241102_ONE99.03 1585.03 7196.78 5488.72 6697.79 698.90 588.48 1699.82 19
9.1494.26 3198.10 5798.14 4696.52 9584.74 15594.83 4798.80 782.80 5699.37 8095.95 4198.42 43
save fliter98.24 5183.34 10298.61 3396.57 9091.32 32
test_0728_THIRD88.38 7496.69 1898.76 1289.64 1299.76 3197.47 2498.84 2399.38 14
test_0728_SECOND95.14 2099.04 1486.14 4099.06 1796.77 6099.84 1397.90 1798.85 2199.45 10
test072699.05 985.18 6399.11 1596.78 5488.75 6497.65 1198.91 287.69 21
GSMVS97.54 124
test_part298.90 1985.14 6996.07 29
sam_mvs177.59 11197.54 124
sam_mvs75.35 159
ambc76.02 36368.11 39851.43 39364.97 40189.59 35560.49 37274.49 38117.17 40092.46 34761.50 34252.85 38384.17 366
MTGPAbinary96.33 118
test_post185.88 36430.24 40973.77 18295.07 30873.89 276
test_post33.80 40676.17 13895.97 256
patchmatchnet-post77.09 37677.78 11095.39 289
GG-mvs-BLEND93.49 7594.94 14686.26 3881.62 37997.00 3688.32 14294.30 18491.23 596.21 24988.49 14097.43 7798.00 90
MTMP97.53 9068.16 406
gm-plane-assit92.27 23179.64 19284.47 16595.15 16397.93 15685.81 161
test9_res96.00 4099.03 1398.31 68
TEST998.64 3183.71 9397.82 6896.65 7784.29 17295.16 3798.09 4584.39 3699.36 81
test_898.63 3383.64 9697.81 7096.63 8284.50 16395.10 4098.11 4484.33 3799.23 86
agg_prior294.30 6399.00 1598.57 53
agg_prior98.59 3583.13 10696.56 9294.19 5499.16 96
TestCases84.47 31092.18 23767.29 34984.43 38367.63 36163.48 35690.18 25638.20 37897.16 20657.04 35873.37 29788.97 299
test_prior482.34 11997.75 75
test_prior298.37 3986.08 12494.57 5098.02 5183.14 5095.05 5398.79 27
test_prior93.09 8998.68 2681.91 12796.40 11099.06 10498.29 70
旧先验296.97 14074.06 32896.10 2897.76 16788.38 142
新几何296.42 180
新几何193.12 8797.44 7981.60 14196.71 6974.54 32491.22 9897.57 8079.13 8799.51 7177.40 24298.46 4198.26 73
旧先验197.39 8379.58 19396.54 9398.08 4884.00 4297.42 7897.62 120
无先验96.87 14996.78 5477.39 29899.52 6979.95 21498.43 61
原ACMM296.84 150
原ACMM191.22 16797.77 6578.10 23596.61 8381.05 23491.28 9797.42 8977.92 10798.98 10879.85 21698.51 3796.59 173
test22296.15 10478.41 22395.87 21096.46 10271.97 34489.66 11897.45 8576.33 13698.24 5298.30 69
testdata299.48 7376.45 251
segment_acmp82.69 57
testdata90.13 19695.92 11474.17 29996.49 10173.49 33394.82 4897.99 5278.80 9397.93 15683.53 18797.52 7398.29 70
testdata195.57 22687.44 98
test1294.25 4298.34 4685.55 5596.35 11792.36 7880.84 6599.22 8798.31 5097.98 92
plane_prior791.86 25277.55 253
plane_prior691.98 24877.92 24264.77 255
plane_prior594.69 21797.30 19887.08 15382.82 24390.96 257
plane_prior494.15 189
plane_prior377.75 24990.17 5181.33 219
plane_prior297.18 11689.89 53
plane_prior191.95 250
plane_prior77.96 23997.52 9390.36 4982.96 241
n20.00 420
nn0.00 420
door-mid79.75 394
lessismore_v079.98 34680.59 37458.34 38380.87 39158.49 37883.46 34743.10 36593.89 33263.11 33748.68 38887.72 323
LGP-MVS_train86.33 27790.88 26973.06 30994.13 25682.20 21876.31 27293.20 20854.83 32796.95 21783.72 18180.83 25688.98 297
test1196.50 98
door80.13 393
HQP5-MVS78.48 219
HQP-NCC92.08 24397.63 8190.52 4482.30 206
ACMP_Plane92.08 24397.63 8190.52 4482.30 206
BP-MVS87.67 149
HQP4-MVS82.30 20697.32 19691.13 255
HQP3-MVS94.80 21283.01 239
HQP2-MVS65.40 250
NP-MVS92.04 24778.22 22994.56 179
MDTV_nov1_ep13_2view81.74 13586.80 35680.65 24285.65 16674.26 17676.52 25096.98 156
MDTV_nov1_ep1383.69 21994.09 17781.01 15086.78 35796.09 13783.81 18684.75 17784.32 34074.44 17596.54 23663.88 33285.07 227
ACMMP++_ref78.45 276
ACMMP++79.05 268
Test By Simon71.65 209
ITE_SJBPF82.38 33287.00 32565.59 35889.55 35679.99 26169.37 33391.30 23941.60 37195.33 29362.86 33874.63 29386.24 347
DeepMVS_CXcopyleft64.06 37878.53 38043.26 40368.11 40769.94 35538.55 39776.14 37718.53 39979.34 39543.72 39041.62 39969.57 393