| CNVR-MVS | | | 96.30 1 | 96.54 1 | 95.55 15 | 99.31 5 | 87.69 25 | 99.06 17 | 97.12 29 | 94.66 5 | 96.79 17 | 98.78 9 | 86.42 27 | 99.95 3 | 97.59 23 | 99.18 7 | 99.00 32 |
|
| DPM-MVS | | | 96.21 2 | 95.53 13 | 98.26 1 | 96.26 101 | 95.09 1 | 99.15 8 | 96.98 37 | 93.39 14 | 96.45 25 | 98.79 8 | 90.17 9 | 99.99 1 | 89.33 131 | 99.25 6 | 99.70 3 |
|
| MCST-MVS | | | 96.17 3 | 96.12 6 | 96.32 7 | 99.42 2 | 89.36 10 | 98.94 24 | 97.10 31 | 95.17 3 | 92.11 83 | 98.46 26 | 87.33 23 | 99.97 2 | 97.21 29 | 99.31 4 | 99.63 7 |
|
| DVP-MVS++ | | | 96.05 4 | 96.41 3 | 94.96 25 | 99.05 9 | 85.34 58 | 98.13 49 | 96.77 60 | 88.38 74 | 97.70 8 | 98.77 10 | 92.06 3 | 99.84 13 | 97.47 24 | 99.37 1 | 99.70 3 |
|
| SED-MVS | | | 95.88 5 | 96.22 4 | 94.87 26 | 99.03 15 | 85.03 71 | 99.12 12 | 96.78 54 | 88.72 66 | 97.79 6 | 98.91 2 | 88.48 16 | 99.82 19 | 98.15 11 | 98.97 17 | 99.74 1 |
|
| MM | | | 95.85 6 | 95.74 10 | 96.15 8 | 96.34 98 | 89.50 9 | 99.18 6 | 98.10 8 | 95.68 1 | 96.64 21 | 97.92 58 | 80.72 66 | 99.80 25 | 99.16 1 | 97.96 59 | 99.15 27 |
|
| NCCC | | | 95.63 7 | 95.94 8 | 94.69 33 | 99.21 6 | 85.15 68 | 99.16 7 | 96.96 40 | 94.11 9 | 95.59 34 | 98.64 17 | 85.07 31 | 99.91 4 | 95.61 46 | 99.10 9 | 99.00 32 |
|
| MSP-MVS | | | 95.62 8 | 96.54 1 | 92.86 98 | 98.31 48 | 80.10 179 | 97.42 102 | 96.78 54 | 92.20 22 | 97.11 14 | 98.29 33 | 93.46 1 | 99.10 101 | 96.01 39 | 99.30 5 | 99.38 14 |
| Zhenlong Yuan, Cong Liu, Fei Shen, Zhaoxin Li, Jingguo luo, Tianlu Mao and Zhaoqi Wang: MSP-MVS: Multi-granularity Segmentation Prior Guided Multi-View Stereo. AAAI2025 |
| DVP-MVS |  | | 95.58 9 | 95.91 9 | 94.57 35 | 99.05 9 | 85.18 63 | 99.06 17 | 96.46 102 | 88.75 64 | 96.69 18 | 98.76 12 | 87.69 21 | 99.76 31 | 97.90 17 | 98.85 21 | 98.77 41 |
| Zhenlong Yuan, Jinguo Luo, Fei Shen, Zhaoxin Li, Cong Liu, Tianlu Mao, Zhaoqi Wang: DVP-MVS: Synergize Depth-Edge and Visibility Prior for Multi-View Stereo. AAAI2025 |
| MVS_0304 | | | 95.58 9 | 95.44 15 | 96.01 10 | 97.63 70 | 89.26 12 | 99.27 3 | 96.59 87 | 94.71 4 | 97.08 15 | 97.99 52 | 78.69 95 | 99.86 10 | 99.15 2 | 97.85 63 | 98.91 36 |
|
| DPE-MVS |  | | 95.32 11 | 95.55 12 | 94.64 34 | 98.79 23 | 84.87 76 | 97.77 72 | 96.74 65 | 86.11 122 | 96.54 24 | 98.89 6 | 88.39 18 | 99.74 38 | 97.67 22 | 99.05 12 | 99.31 20 |
| Kehua Chen, Zhenlong Yuan, Tianlu Mao, Zhaoqi Wang: Dual-Level Precision Edges Guided Multi-View Stereo with Accurate Planarization. AAAI2025 |
| HPM-MVS++ |  | | 95.32 11 | 95.48 14 | 94.85 27 | 98.62 34 | 86.04 41 | 97.81 70 | 96.93 43 | 92.45 20 | 95.69 33 | 98.50 24 | 85.38 29 | 99.85 11 | 94.75 57 | 99.18 7 | 98.65 50 |
|
| patch_mono-2 | | | 95.14 13 | 96.08 7 | 92.33 121 | 98.44 43 | 77.84 245 | 98.43 36 | 97.21 22 | 92.58 19 | 97.68 10 | 97.65 76 | 86.88 24 | 99.83 17 | 98.25 9 | 97.60 70 | 99.33 18 |
|
| DELS-MVS | | | 94.98 14 | 94.49 24 | 96.44 6 | 96.42 97 | 90.59 7 | 99.21 5 | 97.02 35 | 94.40 8 | 91.46 91 | 97.08 106 | 83.32 49 | 99.69 49 | 92.83 86 | 98.70 31 | 99.04 30 |
| Christian Sormann, Emanuele Santellani, Mattia Rossi, Andreas Kuhn, Friedrich Fraundorfer: DELS-MVS: Deep Epipolar Line Search for Multi-View Stereo. Winter Conference on Applications of Computer Vision (WACV), 2023 |
| fmvsm_l_conf0.5_n_a | | | 94.91 15 | 95.30 16 | 93.72 62 | 94.50 163 | 84.30 84 | 99.14 10 | 96.00 144 | 91.94 28 | 97.91 5 | 98.60 18 | 84.78 33 | 99.77 29 | 98.84 5 | 96.03 109 | 97.08 154 |
|
| fmvsm_l_conf0.5_n | | | 94.89 16 | 95.24 17 | 93.86 53 | 94.42 165 | 84.61 79 | 99.13 11 | 96.15 133 | 92.06 25 | 97.92 3 | 98.52 23 | 84.52 35 | 99.74 38 | 98.76 6 | 95.67 115 | 97.22 146 |
|
| CANet | | | 94.89 16 | 94.64 22 | 95.63 13 | 97.55 76 | 88.12 18 | 99.06 17 | 96.39 112 | 94.07 10 | 95.34 36 | 97.80 67 | 76.83 126 | 99.87 8 | 97.08 31 | 97.64 69 | 98.89 37 |
|
| SD-MVS | | | 94.84 18 | 95.02 19 | 94.29 41 | 97.87 64 | 84.61 79 | 97.76 74 | 96.19 131 | 89.59 56 | 96.66 20 | 98.17 41 | 84.33 37 | 99.60 59 | 96.09 38 | 98.50 39 | 98.66 49 |
| Zhenlong Yuan, Jiakai Cao, Zhaoxin Li, Hao Jiang and Zhaoqi Wang: SD-MVS: Segmentation-driven Deformation Multi-View Stereo with Spherical Refinement and EM optimization. AAAI2024 |
| test_fmvsm_n_1920 | | | 94.81 19 | 95.60 11 | 92.45 114 | 95.29 134 | 80.96 153 | 99.29 2 | 97.21 22 | 94.50 7 | 97.29 13 | 98.44 27 | 82.15 58 | 99.78 28 | 98.56 7 | 97.68 68 | 96.61 172 |
|
| TSAR-MVS + MP. | | | 94.79 20 | 95.17 18 | 93.64 65 | 97.66 69 | 84.10 87 | 95.85 212 | 96.42 107 | 91.26 33 | 97.49 12 | 96.80 118 | 86.50 26 | 98.49 132 | 95.54 49 | 99.03 13 | 98.33 65 |
| Zhenlong Yuan, Jiakai Cao, Zhaoqi Wang, Zhaoxin Li: TSAR-MVS: Textureless-aware Segmentation and Correlative Refinement Guided Multi-View Stereo. Pattern Recognition |
| SMA-MVS |  | | 94.70 21 | 94.68 21 | 94.76 30 | 98.02 59 | 85.94 45 | 97.47 95 | 96.77 60 | 85.32 139 | 97.92 3 | 98.70 15 | 83.09 53 | 99.84 13 | 95.79 43 | 99.08 10 | 98.49 57 |
| Yufeng Yin; Xiaoyan Liu; Zichao Zhang: SMA-MVS: Segmentation-Guided Multi-Scale Anchor Deformation Patch Multi-View Stereo. IEEE Transactions on Circuits and Systems for Video Technology |
| DeepPCF-MVS | | 89.82 1 | 94.61 22 | 96.17 5 | 89.91 204 | 97.09 91 | 70.21 335 | 98.99 23 | 96.69 72 | 95.57 2 | 95.08 41 | 99.23 1 | 86.40 28 | 99.87 8 | 97.84 20 | 98.66 32 | 99.65 6 |
|
| balanced_conf03 | | | 94.60 23 | 94.30 29 | 95.48 16 | 96.45 96 | 88.82 14 | 96.33 186 | 95.58 168 | 91.12 35 | 95.84 32 | 93.87 196 | 83.47 48 | 98.37 141 | 97.26 27 | 98.81 24 | 99.24 23 |
|
| APDe-MVS |  | | 94.56 24 | 94.75 20 | 93.96 51 | 98.84 22 | 83.40 101 | 98.04 57 | 96.41 108 | 85.79 130 | 95.00 43 | 98.28 34 | 84.32 40 | 99.18 94 | 97.35 26 | 98.77 28 | 99.28 21 |
| Zhaojie Zeng, Yuesong Wang, Tao Guan: Matching Ambiguity-Resilient Multi-View Stereo via Adaptive Patch Deformation. Pattern Recognition |
| DeepC-MVS_fast | | 89.06 2 | 94.48 25 | 94.30 29 | 95.02 22 | 98.86 21 | 85.68 51 | 98.06 55 | 96.64 80 | 93.64 12 | 91.74 89 | 98.54 20 | 80.17 75 | 99.90 5 | 92.28 91 | 98.75 29 | 99.49 8 |
| Andreas Kuhn, Christian Sormann, Mattia Rossi, Oliver Erdler, Friedrich Fraundorfer: DeepC-MVS: Deep Confidence Prediction for Multi-View Stereo Reconstruction. 3DV 2020 |
| TSAR-MVS + GP. | | | 94.35 26 | 94.50 23 | 93.89 52 | 97.38 85 | 83.04 108 | 98.10 51 | 95.29 191 | 91.57 30 | 93.81 60 | 97.45 85 | 86.64 25 | 99.43 76 | 96.28 37 | 94.01 133 | 99.20 25 |
|
| train_agg | | | 94.28 27 | 94.45 25 | 93.74 59 | 98.64 31 | 83.71 93 | 97.82 68 | 96.65 77 | 84.50 163 | 95.16 37 | 98.09 45 | 84.33 37 | 99.36 81 | 95.91 42 | 98.96 19 | 98.16 77 |
|
| MSLP-MVS++ | | | 94.28 27 | 94.39 27 | 93.97 50 | 98.30 49 | 84.06 88 | 98.64 31 | 96.93 43 | 90.71 41 | 93.08 70 | 98.70 15 | 79.98 77 | 99.21 88 | 94.12 67 | 99.07 11 | 98.63 51 |
|
| MG-MVS | | | 94.25 29 | 93.72 35 | 95.85 12 | 99.38 3 | 89.35 11 | 97.98 59 | 98.09 9 | 89.99 52 | 92.34 79 | 96.97 110 | 81.30 64 | 98.99 107 | 88.54 138 | 98.88 20 | 99.20 25 |
|
| SF-MVS | | | 94.17 30 | 94.05 34 | 94.55 36 | 97.56 75 | 85.95 43 | 97.73 76 | 96.43 106 | 84.02 177 | 95.07 42 | 98.74 14 | 82.93 54 | 99.38 78 | 95.42 51 | 98.51 37 | 98.32 66 |
|
| PS-MVSNAJ | | | 94.17 30 | 93.52 41 | 96.10 9 | 95.65 123 | 92.35 2 | 98.21 44 | 95.79 158 | 92.42 21 | 96.24 27 | 98.18 38 | 71.04 216 | 99.17 95 | 96.77 34 | 97.39 79 | 96.79 165 |
|
| SteuartSystems-ACMMP | | | 94.13 32 | 94.44 26 | 93.20 84 | 95.41 128 | 81.35 144 | 99.02 21 | 96.59 87 | 89.50 58 | 94.18 55 | 98.36 30 | 83.68 47 | 99.45 75 | 94.77 56 | 98.45 42 | 98.81 40 |
| Skip Steuart: Steuart Systems R&D Blog. |
| EPNet | | | 94.06 33 | 94.15 32 | 93.76 58 | 97.27 88 | 84.35 82 | 98.29 41 | 97.64 14 | 94.57 6 | 95.36 35 | 96.88 113 | 79.96 78 | 99.12 100 | 91.30 101 | 96.11 106 | 97.82 105 |
| Wanjuan Su, Wenbing Tao: Efficient Edge-Preserving Multi-View Stereo Network for Depth Estimation. AAAI 2023 |
| test_fmvsmconf_n | | | 93.99 34 | 94.36 28 | 92.86 98 | 92.82 216 | 81.12 147 | 99.26 4 | 96.37 116 | 93.47 13 | 95.16 37 | 98.21 36 | 79.00 88 | 99.64 55 | 98.21 10 | 96.73 97 | 97.83 103 |
|
| xiu_mvs_v2_base | | | 93.92 35 | 93.26 45 | 95.91 11 | 95.07 142 | 92.02 6 | 98.19 45 | 95.68 164 | 92.06 25 | 96.01 31 | 98.14 42 | 70.83 220 | 98.96 109 | 96.74 36 | 96.57 99 | 96.76 168 |
|
| lupinMVS | | | 93.87 36 | 93.58 40 | 94.75 31 | 93.00 209 | 88.08 19 | 99.15 8 | 95.50 174 | 91.03 38 | 94.90 44 | 97.66 72 | 78.84 91 | 97.56 178 | 94.64 60 | 97.46 74 | 98.62 52 |
|
| fmvsm_s_conf0.5_n | | | 93.69 37 | 94.13 33 | 92.34 119 | 94.56 156 | 82.01 122 | 99.07 16 | 97.13 27 | 92.09 23 | 96.25 26 | 98.53 22 | 76.47 131 | 99.80 25 | 98.39 8 | 94.71 124 | 95.22 211 |
|
| APD-MVS |  | | 93.61 38 | 93.59 39 | 93.69 63 | 98.76 24 | 83.26 104 | 97.21 112 | 96.09 137 | 82.41 216 | 94.65 49 | 98.21 36 | 81.96 61 | 98.81 119 | 94.65 59 | 98.36 48 | 99.01 31 |
| Yuesong Wang, Zhaojie Zeng and etc.: Adaptive Patch Deformation for Textureless-Resilient Multi-View Stereo. CVPR2023 |
| PHI-MVS | | | 93.59 39 | 93.63 38 | 93.48 76 | 98.05 58 | 81.76 134 | 98.64 31 | 97.13 27 | 82.60 212 | 94.09 56 | 98.49 25 | 80.35 70 | 99.85 11 | 94.74 58 | 98.62 33 | 98.83 39 |
|
| bld_raw_conf03 | | | 93.57 40 | 93.09 49 | 94.98 24 | 95.96 112 | 87.69 25 | 95.60 223 | 95.42 183 | 89.51 57 | 93.95 58 | 93.63 203 | 79.64 80 | 98.15 151 | 95.61 46 | 98.53 35 | 99.11 28 |
|
| ACMMP_NAP | | | 93.46 41 | 93.23 46 | 94.17 46 | 97.16 89 | 84.28 85 | 96.82 153 | 96.65 77 | 86.24 120 | 94.27 53 | 97.99 52 | 77.94 105 | 99.83 17 | 93.39 74 | 98.57 34 | 98.39 63 |
|
| MVS_111021_HR | | | 93.41 42 | 93.39 44 | 93.47 78 | 97.34 86 | 82.83 110 | 97.56 87 | 98.27 6 | 89.16 62 | 89.71 116 | 97.14 102 | 79.77 79 | 99.56 66 | 93.65 72 | 97.94 60 | 98.02 85 |
|
| fmvsm_s_conf0.5_n_a | | | 93.34 43 | 93.71 36 | 92.22 128 | 93.38 198 | 81.71 137 | 98.86 25 | 96.98 37 | 91.64 29 | 96.85 16 | 98.55 19 | 75.58 149 | 99.77 29 | 97.88 19 | 93.68 138 | 95.18 212 |
|
| PVSNet_Blended | | | 93.13 44 | 92.98 50 | 93.57 70 | 97.47 77 | 83.86 90 | 99.32 1 | 96.73 66 | 91.02 39 | 89.53 121 | 96.21 129 | 76.42 133 | 99.57 64 | 94.29 64 | 95.81 114 | 97.29 144 |
|
| CDPH-MVS | | | 93.12 45 | 92.91 51 | 93.74 59 | 98.65 30 | 83.88 89 | 97.67 80 | 96.26 123 | 83.00 202 | 93.22 68 | 98.24 35 | 81.31 63 | 99.21 88 | 89.12 132 | 98.74 30 | 98.14 79 |
|
| dcpmvs_2 | | | 93.10 46 | 93.46 43 | 92.02 139 | 97.77 65 | 79.73 189 | 94.82 254 | 93.86 271 | 86.91 111 | 91.33 95 | 96.76 119 | 85.20 30 | 98.06 152 | 96.90 33 | 97.60 70 | 98.27 72 |
|
| test_fmvsmconf0.1_n | | | 93.08 47 | 93.22 47 | 92.65 107 | 88.45 311 | 80.81 158 | 99.00 22 | 95.11 196 | 93.21 15 | 94.00 57 | 97.91 60 | 76.84 124 | 99.59 60 | 97.91 16 | 96.55 100 | 97.54 124 |
|
| CS-MVS-test | | | 92.98 48 | 93.67 37 | 90.90 175 | 96.52 95 | 76.87 264 | 98.68 28 | 94.73 216 | 90.36 49 | 94.84 46 | 97.89 62 | 77.94 105 | 97.15 209 | 94.28 66 | 97.80 65 | 98.70 48 |
|
| alignmvs | | | 92.97 49 | 92.26 65 | 95.12 21 | 95.54 125 | 87.77 23 | 98.67 29 | 96.38 113 | 88.04 83 | 93.01 71 | 97.45 85 | 79.20 86 | 98.60 125 | 93.25 80 | 88.76 185 | 98.99 34 |
|
| fmvsm_s_conf0.1_n | | | 92.93 50 | 93.16 48 | 92.24 126 | 90.52 278 | 81.92 126 | 98.42 37 | 96.24 125 | 91.17 34 | 96.02 30 | 98.35 31 | 75.34 160 | 99.74 38 | 97.84 20 | 94.58 126 | 95.05 213 |
|
| HFP-MVS | | | 92.89 51 | 92.86 53 | 92.98 93 | 98.71 25 | 81.12 147 | 97.58 85 | 96.70 70 | 85.20 144 | 91.75 88 | 97.97 57 | 78.47 97 | 99.71 45 | 90.95 104 | 98.41 44 | 98.12 81 |
|
| PAPM | | | 92.87 52 | 92.40 61 | 94.30 40 | 92.25 234 | 87.85 22 | 96.40 181 | 96.38 113 | 91.07 37 | 88.72 136 | 96.90 111 | 82.11 59 | 97.37 195 | 90.05 122 | 97.70 67 | 97.67 115 |
|
| ZNCC-MVS | | | 92.75 53 | 92.60 58 | 93.23 83 | 98.24 51 | 81.82 132 | 97.63 81 | 96.50 98 | 85.00 150 | 91.05 100 | 97.74 69 | 78.38 98 | 99.80 25 | 90.48 113 | 98.34 49 | 98.07 83 |
|
| PAPR | | | 92.74 54 | 92.17 68 | 94.45 37 | 98.89 20 | 84.87 76 | 97.20 114 | 96.20 129 | 87.73 91 | 88.40 140 | 98.12 43 | 78.71 94 | 99.76 31 | 87.99 145 | 96.28 102 | 98.74 42 |
|
| CS-MVS | | | 92.73 55 | 93.48 42 | 90.48 187 | 96.27 100 | 75.93 284 | 98.55 34 | 94.93 203 | 89.32 59 | 94.54 51 | 97.67 71 | 78.91 90 | 97.02 213 | 93.80 69 | 97.32 81 | 98.49 57 |
|
| jason | | | 92.73 55 | 92.23 66 | 94.21 45 | 90.50 279 | 87.30 31 | 98.65 30 | 95.09 197 | 90.61 43 | 92.76 76 | 97.13 103 | 75.28 161 | 97.30 198 | 93.32 78 | 96.75 96 | 98.02 85 |
| jason: jason. |
| ETV-MVS | | | 92.72 57 | 92.87 52 | 92.28 125 | 94.54 158 | 81.89 128 | 97.98 59 | 95.21 194 | 89.77 55 | 93.11 69 | 96.83 115 | 77.23 120 | 97.50 186 | 95.74 44 | 95.38 118 | 97.44 133 |
|
| region2R | | | 92.72 57 | 92.70 55 | 92.79 101 | 98.68 26 | 80.53 168 | 97.53 90 | 96.51 96 | 85.22 142 | 91.94 86 | 97.98 55 | 77.26 116 | 99.67 53 | 90.83 108 | 98.37 47 | 98.18 75 |
|
| XVS | | | 92.69 59 | 92.71 54 | 92.63 109 | 98.52 37 | 80.29 171 | 97.37 106 | 96.44 104 | 87.04 109 | 91.38 92 | 97.83 66 | 77.24 118 | 99.59 60 | 90.46 114 | 98.07 55 | 98.02 85 |
|
| ACMMPR | | | 92.69 59 | 92.67 56 | 92.75 102 | 98.66 28 | 80.57 164 | 97.58 85 | 96.69 72 | 85.20 144 | 91.57 90 | 97.92 58 | 77.01 121 | 99.67 53 | 90.95 104 | 98.41 44 | 98.00 90 |
|
| WTY-MVS | | | 92.65 61 | 91.68 77 | 95.56 14 | 96.00 108 | 88.90 13 | 98.23 43 | 97.65 13 | 88.57 69 | 89.82 115 | 97.22 100 | 79.29 83 | 99.06 104 | 89.57 127 | 88.73 186 | 98.73 46 |
|
| MP-MVS |  | | 92.61 62 | 92.67 56 | 92.42 117 | 98.13 56 | 79.73 189 | 97.33 108 | 96.20 129 | 85.63 132 | 90.53 107 | 97.66 72 | 78.14 103 | 99.70 48 | 92.12 93 | 98.30 51 | 97.85 101 |
| Rongxuan Tan, Qing Wang, et al.: MP-MVS: Multi-Scale Windows PatchMatch and Planar Prior Multi-View Stereo. |
| MP-MVS-pluss | | | 92.58 63 | 92.35 62 | 93.29 80 | 97.30 87 | 82.53 114 | 96.44 177 | 96.04 142 | 84.68 158 | 89.12 127 | 98.37 29 | 77.48 114 | 99.74 38 | 93.31 79 | 98.38 46 | 97.59 122 |
| MP-MVS-pluss: MP-MVS-pluss. MP-MVS-pluss |
| CP-MVS | | | 92.54 64 | 92.60 58 | 92.34 119 | 98.50 40 | 79.90 182 | 98.40 38 | 96.40 110 | 84.75 154 | 90.48 109 | 98.09 45 | 77.40 115 | 99.21 88 | 91.15 103 | 98.23 53 | 97.92 96 |
|
| testing11 | | | 92.48 65 | 92.04 72 | 93.78 57 | 95.94 113 | 86.00 42 | 97.56 87 | 97.08 32 | 87.52 96 | 89.32 124 | 95.40 150 | 84.60 34 | 98.02 153 | 91.93 98 | 89.04 181 | 97.32 140 |
|
| MTAPA | | | 92.45 66 | 92.31 63 | 92.86 98 | 97.90 61 | 80.85 157 | 92.88 301 | 96.33 118 | 87.92 86 | 90.20 112 | 98.18 38 | 76.71 129 | 99.76 31 | 92.57 90 | 98.09 54 | 97.96 95 |
|
| GST-MVS | | | 92.43 67 | 92.22 67 | 93.04 91 | 98.17 54 | 81.64 139 | 97.40 104 | 96.38 113 | 84.71 157 | 90.90 103 | 97.40 90 | 77.55 113 | 99.76 31 | 89.75 125 | 97.74 66 | 97.72 111 |
|
| fmvsm_s_conf0.1_n_a | | | 92.38 68 | 92.49 60 | 92.06 136 | 88.08 315 | 81.62 140 | 97.97 61 | 96.01 143 | 90.62 42 | 96.58 22 | 98.33 32 | 74.09 179 | 99.71 45 | 97.23 28 | 93.46 143 | 94.86 217 |
|
| MVSMamba_PlusPlus | | | 92.37 69 | 91.55 80 | 94.83 28 | 95.37 130 | 87.69 25 | 95.60 223 | 95.42 183 | 74.65 322 | 93.95 58 | 92.81 214 | 83.11 51 | 97.70 169 | 94.49 61 | 98.53 35 | 99.11 28 |
|
| sasdasda | | | 92.27 70 | 91.22 86 | 95.41 17 | 95.80 118 | 88.31 15 | 97.09 130 | 94.64 224 | 88.49 71 | 92.99 72 | 97.31 92 | 72.68 194 | 98.57 127 | 93.38 76 | 88.58 188 | 99.36 16 |
|
| canonicalmvs | | | 92.27 70 | 91.22 86 | 95.41 17 | 95.80 118 | 88.31 15 | 97.09 130 | 94.64 224 | 88.49 71 | 92.99 72 | 97.31 92 | 72.68 194 | 98.57 127 | 93.38 76 | 88.58 188 | 99.36 16 |
|
| SR-MVS | | | 92.16 72 | 92.27 64 | 91.83 148 | 98.37 45 | 78.41 223 | 96.67 164 | 95.76 159 | 82.19 220 | 91.97 84 | 98.07 49 | 76.44 132 | 98.64 123 | 93.71 71 | 97.27 82 | 98.45 60 |
|
| test_fmvsmvis_n_1920 | | | 92.12 73 | 92.10 70 | 92.17 131 | 90.87 271 | 81.04 149 | 98.34 40 | 93.90 268 | 92.71 18 | 87.24 153 | 97.90 61 | 74.83 167 | 99.72 43 | 96.96 32 | 96.20 103 | 95.76 196 |
|
| VNet | | | 92.11 74 | 91.22 86 | 94.79 29 | 96.91 92 | 86.98 32 | 97.91 63 | 97.96 10 | 86.38 119 | 93.65 62 | 95.74 138 | 70.16 225 | 98.95 111 | 93.39 74 | 88.87 184 | 98.43 61 |
|
| CSCG | | | 92.02 75 | 91.65 78 | 93.12 87 | 98.53 36 | 80.59 163 | 97.47 95 | 97.18 25 | 77.06 305 | 84.64 180 | 97.98 55 | 83.98 43 | 99.52 69 | 90.72 110 | 97.33 80 | 99.23 24 |
|
| MGCFI-Net | | | 91.95 76 | 91.03 92 | 94.72 32 | 95.68 122 | 86.38 37 | 96.93 145 | 94.48 233 | 88.25 78 | 92.78 75 | 97.24 98 | 72.34 199 | 98.46 135 | 93.13 83 | 88.43 192 | 99.32 19 |
|
| PGM-MVS | | | 91.93 77 | 91.80 75 | 92.32 123 | 98.27 50 | 79.74 188 | 95.28 234 | 97.27 20 | 83.83 185 | 90.89 104 | 97.78 68 | 76.12 139 | 99.56 66 | 88.82 135 | 97.93 62 | 97.66 116 |
|
| testing99 | | | 91.91 78 | 91.35 83 | 93.60 68 | 95.98 110 | 85.70 49 | 97.31 109 | 96.92 45 | 86.82 113 | 88.91 130 | 95.25 153 | 84.26 41 | 97.89 163 | 88.80 136 | 87.94 198 | 97.21 148 |
|
| testing91 | | | 91.90 79 | 91.31 85 | 93.66 64 | 95.99 109 | 85.68 51 | 97.39 105 | 96.89 46 | 86.75 117 | 88.85 132 | 95.23 156 | 83.93 44 | 97.90 162 | 88.91 133 | 87.89 199 | 97.41 135 |
|
| mPP-MVS | | | 91.88 80 | 91.82 74 | 92.07 135 | 98.38 44 | 78.63 217 | 97.29 110 | 96.09 137 | 85.12 146 | 88.45 139 | 97.66 72 | 75.53 150 | 99.68 51 | 89.83 123 | 98.02 58 | 97.88 97 |
|
| EI-MVSNet-Vis-set | | | 91.84 81 | 91.77 76 | 92.04 138 | 97.60 72 | 81.17 146 | 96.61 165 | 96.87 48 | 88.20 80 | 89.19 125 | 97.55 84 | 78.69 95 | 99.14 97 | 90.29 119 | 90.94 168 | 95.80 194 |
|
| EIA-MVS | | | 91.73 82 | 92.05 71 | 90.78 180 | 94.52 159 | 76.40 273 | 98.06 55 | 95.34 189 | 89.19 61 | 88.90 131 | 97.28 97 | 77.56 112 | 97.73 168 | 90.77 109 | 96.86 93 | 98.20 74 |
|
| EC-MVSNet | | | 91.73 82 | 92.11 69 | 90.58 184 | 93.54 190 | 77.77 248 | 98.07 54 | 94.40 242 | 87.44 98 | 92.99 72 | 97.11 105 | 74.59 173 | 96.87 223 | 93.75 70 | 97.08 85 | 97.11 152 |
|
| DP-MVS Recon | | | 91.72 84 | 90.85 93 | 94.34 39 | 99.50 1 | 85.00 73 | 98.51 35 | 95.96 148 | 80.57 244 | 88.08 145 | 97.63 78 | 76.84 124 | 99.89 7 | 85.67 162 | 94.88 121 | 98.13 80 |
|
| CHOSEN 280x420 | | | 91.71 85 | 91.85 73 | 91.29 163 | 94.94 146 | 82.69 111 | 87.89 348 | 96.17 132 | 85.94 127 | 87.27 152 | 94.31 183 | 90.27 8 | 95.65 278 | 94.04 68 | 95.86 112 | 95.53 202 |
|
| HY-MVS | | 84.06 6 | 91.63 86 | 90.37 106 | 95.39 19 | 96.12 105 | 88.25 17 | 90.22 329 | 97.58 15 | 88.33 76 | 90.50 108 | 91.96 230 | 79.26 84 | 99.06 104 | 90.29 119 | 89.07 180 | 98.88 38 |
|
| HPM-MVS |  | | 91.62 87 | 91.53 81 | 91.89 143 | 97.88 63 | 79.22 201 | 96.99 135 | 95.73 162 | 82.07 222 | 89.50 123 | 97.19 101 | 75.59 148 | 98.93 114 | 90.91 106 | 97.94 60 | 97.54 124 |
| Chunlin Ren, Qingshan Xu, Shikun Zhang, Jiaqi Yang: Hierarchical Prior Mining for Non-local Multi-View Stereo. ICCV 2023 |
| MVS_111021_LR | | | 91.60 88 | 91.64 79 | 91.47 159 | 95.74 120 | 78.79 214 | 96.15 196 | 96.77 60 | 88.49 71 | 88.64 137 | 97.07 107 | 72.33 200 | 99.19 93 | 93.13 83 | 96.48 101 | 96.43 177 |
|
| DeepC-MVS | | 86.58 3 | 91.53 89 | 91.06 91 | 92.94 95 | 94.52 159 | 81.89 128 | 95.95 204 | 95.98 146 | 90.76 40 | 83.76 191 | 96.76 119 | 73.24 190 | 99.71 45 | 91.67 100 | 96.96 88 | 97.22 146 |
| Andreas Kuhn, Christian Sormann, Mattia Rossi, Oliver Erdler, Friedrich Fraundorfer: DeepC-MVS: Deep Confidence Prediction for Multi-View Stereo Reconstruction. 3DV 2020 |
| test_yl | | | 91.46 90 | 90.53 100 | 94.24 43 | 97.41 81 | 85.18 63 | 98.08 52 | 97.72 11 | 80.94 235 | 89.85 113 | 96.14 130 | 75.61 146 | 98.81 119 | 90.42 117 | 88.56 190 | 98.74 42 |
|
| DCV-MVSNet | | | 91.46 90 | 90.53 100 | 94.24 43 | 97.41 81 | 85.18 63 | 98.08 52 | 97.72 11 | 80.94 235 | 89.85 113 | 96.14 130 | 75.61 146 | 98.81 119 | 90.42 117 | 88.56 190 | 98.74 42 |
|
| PAPM_NR | | | 91.46 90 | 90.82 94 | 93.37 79 | 98.50 40 | 81.81 133 | 95.03 250 | 96.13 134 | 84.65 159 | 86.10 164 | 97.65 76 | 79.24 85 | 99.75 36 | 83.20 190 | 96.88 91 | 98.56 54 |
|
| MVSFormer | | | 91.36 93 | 90.57 99 | 93.73 61 | 93.00 209 | 88.08 19 | 94.80 256 | 94.48 233 | 80.74 240 | 94.90 44 | 97.13 103 | 78.84 91 | 95.10 306 | 83.77 179 | 97.46 74 | 98.02 85 |
|
| EI-MVSNet-UG-set | | | 91.35 94 | 91.22 86 | 91.73 150 | 97.39 83 | 80.68 161 | 96.47 174 | 96.83 51 | 87.92 86 | 88.30 143 | 97.36 91 | 77.84 108 | 99.13 99 | 89.43 130 | 89.45 176 | 95.37 206 |
|
| SR-MVS-dyc-post | | | 91.29 95 | 91.45 82 | 90.80 178 | 97.76 67 | 76.03 279 | 96.20 194 | 95.44 179 | 80.56 245 | 90.72 105 | 97.84 64 | 75.76 145 | 98.61 124 | 91.99 96 | 96.79 94 | 97.75 109 |
|
| PVSNet_Blended_VisFu | | | 91.24 96 | 90.77 95 | 92.66 106 | 95.09 140 | 82.40 118 | 97.77 72 | 95.87 155 | 88.26 77 | 86.39 160 | 93.94 194 | 76.77 127 | 99.27 84 | 88.80 136 | 94.00 134 | 96.31 183 |
|
| APD-MVS_3200maxsize | | | 91.23 97 | 91.35 83 | 90.89 176 | 97.89 62 | 76.35 274 | 96.30 188 | 95.52 173 | 79.82 263 | 91.03 101 | 97.88 63 | 74.70 169 | 98.54 129 | 92.11 94 | 96.89 90 | 97.77 108 |
|
| diffmvs |  | | 91.17 98 | 90.74 96 | 92.44 116 | 93.11 208 | 82.50 116 | 96.25 191 | 93.62 286 | 87.79 89 | 90.40 110 | 95.93 134 | 73.44 188 | 97.42 190 | 93.62 73 | 92.55 153 | 97.41 135 |
| Fangjinhua Wang, Qingshan Xu, Yew-Soon Ong, Marc Pollefeys: Lightweight and Accurate Multi-View Stereo With Confidence-Aware Diffusion Model. IEEE T-PAMI 2025 |
| casdiffmvs_mvg |  | | 91.13 99 | 90.45 103 | 93.17 86 | 92.99 212 | 83.58 97 | 97.46 97 | 94.56 230 | 87.69 92 | 87.19 154 | 94.98 171 | 74.50 174 | 97.60 175 | 91.88 99 | 92.79 150 | 98.34 64 |
| Fangjinhua Wang, Qingshan Xu, Yew-Soon Ong, Marc Pollefeys: Lightweight and Accurate Multi-View Stereo With Confidence-Aware Diffusion Model. IEEE T-PAMI 2025 |
| testing222 | | | 91.09 100 | 90.49 102 | 92.87 97 | 95.82 116 | 85.04 70 | 96.51 172 | 97.28 19 | 86.05 125 | 89.13 126 | 95.34 152 | 80.16 76 | 96.62 235 | 85.82 160 | 88.31 194 | 96.96 157 |
|
| test_fmvsmconf0.01_n | | | 91.08 101 | 90.68 97 | 92.29 124 | 82.43 369 | 80.12 178 | 97.94 62 | 93.93 264 | 92.07 24 | 91.97 84 | 97.60 79 | 67.56 234 | 99.53 68 | 97.09 30 | 95.56 117 | 97.21 148 |
|
| CHOSEN 1792x2688 | | | 91.07 102 | 90.21 110 | 93.64 65 | 95.18 138 | 83.53 98 | 96.26 190 | 96.13 134 | 88.92 63 | 84.90 174 | 93.10 212 | 72.86 192 | 99.62 58 | 88.86 134 | 95.67 115 | 97.79 107 |
|
| ETVMVS | | | 90.99 103 | 90.26 107 | 93.19 85 | 95.81 117 | 85.64 53 | 96.97 140 | 97.18 25 | 85.43 136 | 88.77 135 | 94.86 173 | 82.00 60 | 96.37 242 | 82.70 195 | 88.60 187 | 97.57 123 |
|
| CANet_DTU | | | 90.98 104 | 90.04 115 | 93.83 54 | 94.76 152 | 86.23 39 | 96.32 187 | 93.12 311 | 93.11 16 | 93.71 61 | 96.82 117 | 63.08 263 | 99.48 73 | 84.29 172 | 95.12 120 | 95.77 195 |
|
| test2506 | | | 90.96 105 | 90.39 104 | 92.65 107 | 93.54 190 | 82.46 117 | 96.37 182 | 97.35 17 | 86.78 115 | 87.55 148 | 95.25 153 | 77.83 109 | 97.50 186 | 84.07 174 | 94.80 122 | 97.98 92 |
|
| thisisatest0515 | | | 90.95 106 | 90.26 107 | 93.01 92 | 94.03 181 | 84.27 86 | 97.91 63 | 96.67 74 | 83.18 196 | 86.87 158 | 95.51 148 | 88.66 15 | 97.85 164 | 80.46 207 | 89.01 182 | 96.92 161 |
|
| casdiffmvs |  | | 90.95 106 | 90.39 104 | 92.63 109 | 92.82 216 | 82.53 114 | 96.83 151 | 94.47 236 | 87.69 92 | 88.47 138 | 95.56 147 | 74.04 180 | 97.54 182 | 90.90 107 | 92.74 151 | 97.83 103 |
| Fangjinhua Wang, Qingshan Xu, Yew-Soon Ong, Marc Pollefeys: Lightweight and Accurate Multi-View Stereo With Confidence-Aware Diffusion Model. IEEE T-PAMI 2025 |
| sss | | | 90.87 108 | 89.96 118 | 93.60 68 | 94.15 173 | 83.84 92 | 97.14 123 | 98.13 7 | 85.93 128 | 89.68 117 | 96.09 132 | 71.67 208 | 99.30 83 | 87.69 148 | 89.16 179 | 97.66 116 |
|
| baseline | | | 90.76 109 | 90.10 113 | 92.74 103 | 92.90 215 | 82.56 113 | 94.60 258 | 94.56 230 | 87.69 92 | 89.06 129 | 95.67 142 | 73.76 183 | 97.51 185 | 90.43 116 | 92.23 159 | 98.16 77 |
|
| Effi-MVS+ | | | 90.70 110 | 89.90 121 | 93.09 89 | 93.61 187 | 83.48 99 | 95.20 240 | 92.79 317 | 83.22 195 | 91.82 87 | 95.70 140 | 71.82 207 | 97.48 188 | 91.25 102 | 93.67 139 | 98.32 66 |
|
| iter_conf05 | | | 90.65 111 | 89.59 124 | 93.82 55 | 95.37 130 | 87.90 21 | 91.32 320 | 93.55 290 | 74.65 322 | 83.45 193 | 92.81 214 | 83.11 51 | 97.70 169 | 94.49 61 | 97.57 72 | 95.85 193 |
|
| MAR-MVS | | | 90.63 112 | 90.22 109 | 91.86 145 | 98.47 42 | 78.20 233 | 97.18 116 | 96.61 83 | 83.87 184 | 88.18 144 | 98.18 38 | 68.71 229 | 99.75 36 | 83.66 184 | 97.15 84 | 97.63 119 |
| Zhenyu Xu, Yiguang Liu, Xuelei Shi, Ying Wang, Yunan Zheng: MARMVS: Matching Ambiguity Reduced Multiple View Stereo for Efficient Large Scale Scene Reconstruction. CVPR 2020 |
| MVS | | | 90.60 113 | 88.64 138 | 96.50 5 | 94.25 169 | 90.53 8 | 93.33 290 | 97.21 22 | 77.59 296 | 78.88 246 | 97.31 92 | 71.52 211 | 99.69 49 | 89.60 126 | 98.03 57 | 99.27 22 |
|
| xiu_mvs_v1_base_debu | | | 90.54 114 | 89.54 125 | 93.55 71 | 92.31 227 | 87.58 28 | 96.99 135 | 94.87 207 | 87.23 104 | 93.27 65 | 97.56 81 | 57.43 305 | 98.32 143 | 92.72 87 | 93.46 143 | 94.74 221 |
|
| xiu_mvs_v1_base | | | 90.54 114 | 89.54 125 | 93.55 71 | 92.31 227 | 87.58 28 | 96.99 135 | 94.87 207 | 87.23 104 | 93.27 65 | 97.56 81 | 57.43 305 | 98.32 143 | 92.72 87 | 93.46 143 | 94.74 221 |
|
| xiu_mvs_v1_base_debi | | | 90.54 114 | 89.54 125 | 93.55 71 | 92.31 227 | 87.58 28 | 96.99 135 | 94.87 207 | 87.23 104 | 93.27 65 | 97.56 81 | 57.43 305 | 98.32 143 | 92.72 87 | 93.46 143 | 94.74 221 |
|
| mvsmamba | | | 90.53 117 | 90.08 114 | 91.88 144 | 94.81 150 | 80.93 154 | 93.94 276 | 94.45 238 | 88.24 79 | 87.02 157 | 92.35 221 | 68.04 231 | 95.80 267 | 94.86 55 | 97.03 87 | 98.92 35 |
|
| baseline2 | | | 90.39 118 | 90.21 110 | 90.93 173 | 90.86 272 | 80.99 151 | 95.20 240 | 97.41 16 | 86.03 126 | 80.07 236 | 94.61 178 | 90.58 6 | 97.47 189 | 87.29 152 | 89.86 174 | 94.35 227 |
|
| ACMMP |  | | 90.39 118 | 89.97 117 | 91.64 153 | 97.58 74 | 78.21 232 | 96.78 156 | 96.72 68 | 84.73 156 | 84.72 178 | 97.23 99 | 71.22 213 | 99.63 57 | 88.37 143 | 92.41 156 | 97.08 154 |
| Qingshan Xu, Weihang Kong, Wenbing Tao, Marc Pollefeys: Multi-Scale Geometric Consistency Guided and Planar Prior Assisted Multi-View Stereo. IEEE Transactions on Pattern Analysis and Machine Intelligence |
| HPM-MVS_fast | | | 90.38 120 | 90.17 112 | 91.03 171 | 97.61 71 | 77.35 257 | 97.15 122 | 95.48 175 | 79.51 269 | 88.79 133 | 96.90 111 | 71.64 210 | 98.81 119 | 87.01 156 | 97.44 76 | 96.94 158 |
|
| MVS_Test | | | 90.29 121 | 89.18 129 | 93.62 67 | 95.23 135 | 84.93 74 | 94.41 261 | 94.66 221 | 84.31 168 | 90.37 111 | 91.02 243 | 75.13 163 | 97.82 165 | 83.11 192 | 94.42 128 | 98.12 81 |
|
| API-MVS | | | 90.18 122 | 88.97 132 | 93.80 56 | 98.66 28 | 82.95 109 | 97.50 94 | 95.63 167 | 75.16 317 | 86.31 161 | 97.69 70 | 72.49 197 | 99.90 5 | 81.26 203 | 96.07 107 | 98.56 54 |
|
| PVSNet_BlendedMVS | | | 90.05 123 | 89.96 118 | 90.33 191 | 97.47 77 | 83.86 90 | 98.02 58 | 96.73 66 | 87.98 84 | 89.53 121 | 89.61 264 | 76.42 133 | 99.57 64 | 94.29 64 | 79.59 263 | 87.57 328 |
|
| ET-MVSNet_ETH3D | | | 90.01 124 | 89.03 130 | 92.95 94 | 94.38 166 | 86.77 34 | 98.14 46 | 96.31 120 | 89.30 60 | 63.33 359 | 96.72 122 | 90.09 10 | 93.63 338 | 90.70 111 | 82.29 250 | 98.46 59 |
|
| test_vis1_n_1920 | | | 89.95 125 | 90.59 98 | 88.03 243 | 92.36 226 | 68.98 344 | 99.12 12 | 94.34 245 | 93.86 11 | 93.64 63 | 97.01 109 | 51.54 335 | 99.59 60 | 96.76 35 | 96.71 98 | 95.53 202 |
|
| test_cas_vis1_n_1920 | | | 89.90 126 | 90.02 116 | 89.54 212 | 90.14 287 | 74.63 294 | 98.71 27 | 94.43 240 | 93.04 17 | 92.40 77 | 96.35 127 | 53.41 331 | 99.08 103 | 95.59 48 | 96.16 104 | 94.90 215 |
|
| TESTMET0.1,1 | | | 89.83 127 | 89.34 128 | 91.31 161 | 92.54 224 | 80.19 176 | 97.11 126 | 96.57 90 | 86.15 121 | 86.85 159 | 91.83 234 | 79.32 82 | 96.95 217 | 81.30 202 | 92.35 157 | 96.77 167 |
|
| EPP-MVSNet | | | 89.76 128 | 89.72 123 | 89.87 205 | 93.78 183 | 76.02 281 | 97.22 111 | 96.51 96 | 79.35 271 | 85.11 170 | 95.01 169 | 84.82 32 | 97.10 211 | 87.46 151 | 88.21 196 | 96.50 175 |
|
| CPTT-MVS | | | 89.72 129 | 89.87 122 | 89.29 215 | 98.33 47 | 73.30 305 | 97.70 78 | 95.35 188 | 75.68 313 | 87.40 149 | 97.44 88 | 70.43 222 | 98.25 146 | 89.56 128 | 96.90 89 | 96.33 182 |
|
| thisisatest0530 | | | 89.65 130 | 89.02 131 | 91.53 157 | 93.46 196 | 80.78 159 | 96.52 170 | 96.67 74 | 81.69 228 | 83.79 190 | 94.90 172 | 88.85 14 | 97.68 171 | 77.80 231 | 87.49 204 | 96.14 186 |
|
| 3Dnovator+ | | 82.88 8 | 89.63 131 | 87.85 151 | 94.99 23 | 94.49 164 | 86.76 35 | 97.84 67 | 95.74 161 | 86.10 123 | 75.47 288 | 96.02 133 | 65.00 254 | 99.51 71 | 82.91 194 | 97.07 86 | 98.72 47 |
|
| CDS-MVSNet | | | 89.50 132 | 88.96 133 | 91.14 169 | 91.94 251 | 80.93 154 | 97.09 130 | 95.81 157 | 84.26 173 | 84.72 178 | 94.20 188 | 80.31 71 | 95.64 279 | 83.37 189 | 88.96 183 | 96.85 164 |
| Khang Truong Giang, Soohwan Song, Sungho Jo: Curvature-guided dynamic scale networks for Multi-view Stereo. ICLR 2022 |
| PMMVS | | | 89.46 133 | 89.92 120 | 88.06 241 | 94.64 153 | 69.57 341 | 96.22 192 | 94.95 202 | 87.27 103 | 91.37 94 | 96.54 125 | 65.88 246 | 97.39 193 | 88.54 138 | 93.89 135 | 97.23 145 |
|
| HyFIR lowres test | | | 89.36 134 | 88.60 139 | 91.63 155 | 94.91 148 | 80.76 160 | 95.60 223 | 95.53 171 | 82.56 213 | 84.03 184 | 91.24 240 | 78.03 104 | 96.81 227 | 87.07 155 | 88.41 193 | 97.32 140 |
|
| 3Dnovator | | 82.32 10 | 89.33 135 | 87.64 156 | 94.42 38 | 93.73 186 | 85.70 49 | 97.73 76 | 96.75 64 | 86.73 118 | 76.21 277 | 95.93 134 | 62.17 267 | 99.68 51 | 81.67 201 | 97.81 64 | 97.88 97 |
|
| h-mvs33 | | | 89.30 136 | 88.95 134 | 90.36 190 | 95.07 142 | 76.04 278 | 96.96 142 | 97.11 30 | 90.39 47 | 92.22 81 | 95.10 166 | 74.70 169 | 98.86 116 | 93.14 81 | 65.89 353 | 96.16 185 |
|
| LFMVS | | | 89.27 137 | 87.64 156 | 94.16 48 | 97.16 89 | 85.52 56 | 97.18 116 | 94.66 221 | 79.17 277 | 89.63 119 | 96.57 124 | 55.35 322 | 98.22 147 | 89.52 129 | 89.54 175 | 98.74 42 |
|
| MVSTER | | | 89.25 138 | 88.92 135 | 90.24 193 | 95.98 110 | 84.66 78 | 96.79 155 | 95.36 186 | 87.19 107 | 80.33 231 | 90.61 250 | 90.02 11 | 95.97 256 | 85.38 165 | 78.64 272 | 90.09 271 |
|
| CostFormer | | | 89.08 139 | 88.39 143 | 91.15 168 | 93.13 206 | 79.15 204 | 88.61 341 | 96.11 136 | 83.14 197 | 89.58 120 | 86.93 301 | 83.83 46 | 96.87 223 | 88.22 144 | 85.92 218 | 97.42 134 |
|
| PVSNet | | 82.34 9 | 89.02 140 | 87.79 153 | 92.71 105 | 95.49 126 | 81.50 142 | 97.70 78 | 97.29 18 | 87.76 90 | 85.47 168 | 95.12 165 | 56.90 311 | 98.90 115 | 80.33 208 | 94.02 132 | 97.71 113 |
|
| test-mter | | | 88.95 141 | 88.60 139 | 89.98 200 | 92.26 232 | 77.23 259 | 97.11 126 | 95.96 148 | 85.32 139 | 86.30 162 | 91.38 237 | 76.37 135 | 96.78 229 | 80.82 204 | 91.92 161 | 95.94 190 |
|
| 1314 | | | 88.94 142 | 87.20 169 | 94.17 46 | 93.21 201 | 85.73 48 | 93.33 290 | 96.64 80 | 82.89 204 | 75.98 280 | 96.36 126 | 66.83 242 | 99.39 77 | 83.52 188 | 96.02 110 | 97.39 138 |
|
| UA-Net | | | 88.92 143 | 88.48 142 | 90.24 193 | 94.06 178 | 77.18 261 | 93.04 298 | 94.66 221 | 87.39 100 | 91.09 99 | 93.89 195 | 74.92 166 | 98.18 150 | 75.83 258 | 91.43 165 | 95.35 207 |
|
| thres200 | | | 88.92 143 | 87.65 155 | 92.73 104 | 96.30 99 | 85.62 54 | 97.85 66 | 98.86 1 | 84.38 167 | 84.82 175 | 93.99 193 | 75.12 164 | 98.01 154 | 70.86 298 | 86.67 208 | 94.56 226 |
|
| Vis-MVSNet (Re-imp) | | | 88.88 145 | 88.87 137 | 88.91 222 | 93.89 182 | 74.43 297 | 96.93 145 | 94.19 253 | 84.39 166 | 83.22 197 | 95.67 142 | 78.24 100 | 94.70 316 | 78.88 226 | 94.40 129 | 97.61 121 |
|
| baseline1 | | | 88.85 146 | 87.49 162 | 92.93 96 | 95.21 137 | 86.85 33 | 95.47 229 | 94.61 227 | 87.29 102 | 83.11 199 | 94.99 170 | 80.70 67 | 96.89 221 | 82.28 197 | 73.72 295 | 95.05 213 |
|
| AdaColmap |  | | 88.81 147 | 87.61 159 | 92.39 118 | 99.33 4 | 79.95 180 | 96.70 163 | 95.58 168 | 77.51 297 | 83.05 200 | 96.69 123 | 61.90 273 | 99.72 43 | 84.29 172 | 93.47 142 | 97.50 130 |
|
| OMC-MVS | | | 88.80 148 | 88.16 147 | 90.72 181 | 95.30 133 | 77.92 242 | 94.81 255 | 94.51 232 | 86.80 114 | 84.97 173 | 96.85 114 | 67.53 235 | 98.60 125 | 85.08 166 | 87.62 201 | 95.63 198 |
|
| 114514_t | | | 88.79 149 | 87.57 160 | 92.45 114 | 98.21 53 | 81.74 135 | 96.99 135 | 95.45 178 | 75.16 317 | 82.48 203 | 95.69 141 | 68.59 230 | 98.50 131 | 80.33 208 | 95.18 119 | 97.10 153 |
|
| mvs_anonymous | | | 88.68 150 | 87.62 158 | 91.86 145 | 94.80 151 | 81.69 138 | 93.53 286 | 94.92 204 | 82.03 223 | 78.87 247 | 90.43 253 | 75.77 144 | 95.34 292 | 85.04 167 | 93.16 147 | 98.55 56 |
|
| Vis-MVSNet |  | | 88.67 151 | 87.82 152 | 91.24 165 | 92.68 218 | 78.82 211 | 96.95 143 | 93.85 272 | 87.55 95 | 87.07 156 | 95.13 164 | 63.43 261 | 97.21 203 | 77.58 238 | 96.15 105 | 97.70 114 |
| Jingyang Zhang, Yao Yao, Shiwei Li, Zixin Luo, Tian Fang: Visibility-aware Multiview Stereo Network. BMVC 2020 |
| IS-MVSNet | | | 88.67 151 | 88.16 147 | 90.20 195 | 93.61 187 | 76.86 265 | 96.77 158 | 93.07 312 | 84.02 177 | 83.62 192 | 95.60 145 | 74.69 172 | 96.24 248 | 78.43 230 | 93.66 140 | 97.49 131 |
|
| IB-MVS | | 85.34 4 | 88.67 151 | 87.14 172 | 93.26 81 | 93.12 207 | 84.32 83 | 98.76 26 | 97.27 20 | 87.19 107 | 79.36 242 | 90.45 252 | 83.92 45 | 98.53 130 | 84.41 171 | 69.79 321 | 96.93 159 |
| Christian Sormann, Mattia Rossi, Andreas Kuhn and Friedrich Fraundorfer: IB-MVS: An Iterative Algorithm for Deep Multi-View Stereo based on Binary Decisions. BMVC 2021 |
| 1112_ss | | | 88.60 154 | 87.47 164 | 92.00 140 | 93.21 201 | 80.97 152 | 96.47 174 | 92.46 320 | 83.64 190 | 80.86 224 | 97.30 95 | 80.24 73 | 97.62 174 | 77.60 237 | 85.49 223 | 97.40 137 |
|
| tttt0517 | | | 88.57 155 | 88.19 146 | 89.71 211 | 93.00 209 | 75.99 282 | 95.67 218 | 96.67 74 | 80.78 239 | 81.82 216 | 94.40 182 | 88.97 13 | 97.58 177 | 76.05 256 | 86.31 212 | 95.57 200 |
|
| UWE-MVS | | | 88.56 156 | 88.91 136 | 87.50 257 | 94.17 172 | 72.19 316 | 95.82 214 | 97.05 34 | 84.96 151 | 84.78 176 | 93.51 206 | 81.33 62 | 94.75 314 | 79.43 219 | 89.17 178 | 95.57 200 |
|
| tfpn200view9 | | | 88.48 157 | 87.15 170 | 92.47 113 | 96.21 102 | 85.30 61 | 97.44 98 | 98.85 2 | 83.37 193 | 83.99 185 | 93.82 197 | 75.36 157 | 97.93 156 | 69.04 306 | 86.24 215 | 94.17 228 |
|
| test-LLR | | | 88.48 157 | 87.98 149 | 89.98 200 | 92.26 232 | 77.23 259 | 97.11 126 | 95.96 148 | 83.76 187 | 86.30 162 | 91.38 237 | 72.30 201 | 96.78 229 | 80.82 204 | 91.92 161 | 95.94 190 |
|
| TAMVS | | | 88.48 157 | 87.79 153 | 90.56 185 | 91.09 266 | 79.18 202 | 96.45 176 | 95.88 153 | 83.64 190 | 83.12 198 | 93.33 207 | 75.94 142 | 95.74 274 | 82.40 196 | 88.27 195 | 96.75 169 |
|
| thres400 | | | 88.42 160 | 87.15 170 | 92.23 127 | 96.21 102 | 85.30 61 | 97.44 98 | 98.85 2 | 83.37 193 | 83.99 185 | 93.82 197 | 75.36 157 | 97.93 156 | 69.04 306 | 86.24 215 | 93.45 244 |
|
| tpmrst | | | 88.36 161 | 87.38 166 | 91.31 161 | 94.36 167 | 79.92 181 | 87.32 352 | 95.26 193 | 85.32 139 | 88.34 141 | 86.13 317 | 80.60 69 | 96.70 231 | 83.78 178 | 85.34 226 | 97.30 143 |
|
| ECVR-MVS |  | | 88.35 162 | 87.25 168 | 91.65 152 | 93.54 190 | 79.40 196 | 96.56 169 | 90.78 348 | 86.78 115 | 85.57 167 | 95.25 153 | 57.25 309 | 97.56 178 | 84.73 170 | 94.80 122 | 97.98 92 |
|
| thres100view900 | | | 88.30 163 | 86.95 176 | 92.33 121 | 96.10 106 | 84.90 75 | 97.14 123 | 98.85 2 | 82.69 210 | 83.41 194 | 93.66 201 | 75.43 154 | 97.93 156 | 69.04 306 | 86.24 215 | 94.17 228 |
|
| VDD-MVS | | | 88.28 164 | 87.02 175 | 92.06 136 | 95.09 140 | 80.18 177 | 97.55 89 | 94.45 238 | 83.09 198 | 89.10 128 | 95.92 136 | 47.97 349 | 98.49 132 | 93.08 85 | 86.91 207 | 97.52 129 |
|
| BH-w/o | | | 88.24 165 | 87.47 164 | 90.54 186 | 95.03 145 | 78.54 218 | 97.41 103 | 93.82 273 | 84.08 175 | 78.23 251 | 94.51 181 | 69.34 228 | 97.21 203 | 80.21 212 | 94.58 126 | 95.87 192 |
|
| hse-mvs2 | | | 88.22 166 | 88.21 145 | 88.25 237 | 93.54 190 | 73.41 302 | 95.41 232 | 95.89 152 | 90.39 47 | 92.22 81 | 94.22 186 | 74.70 169 | 96.66 234 | 93.14 81 | 64.37 358 | 94.69 225 |
|
| test1111 | | | 88.11 167 | 87.04 174 | 91.35 160 | 93.15 204 | 78.79 214 | 96.57 167 | 90.78 348 | 86.88 112 | 85.04 171 | 95.20 159 | 57.23 310 | 97.39 193 | 83.88 176 | 94.59 125 | 97.87 99 |
|
| thres600view7 | | | 88.06 168 | 86.70 181 | 92.15 133 | 96.10 106 | 85.17 67 | 97.14 123 | 98.85 2 | 82.70 209 | 83.41 194 | 93.66 201 | 75.43 154 | 97.82 165 | 67.13 315 | 85.88 219 | 93.45 244 |
|
| Test_1112_low_res | | | 88.03 169 | 86.73 179 | 91.94 142 | 93.15 204 | 80.88 156 | 96.44 177 | 92.41 322 | 83.59 192 | 80.74 226 | 91.16 241 | 80.18 74 | 97.59 176 | 77.48 240 | 85.40 224 | 97.36 139 |
|
| PLC |  | 83.97 7 | 88.00 170 | 87.38 166 | 89.83 207 | 98.02 59 | 76.46 271 | 97.16 120 | 94.43 240 | 79.26 276 | 81.98 213 | 96.28 128 | 69.36 227 | 99.27 84 | 77.71 235 | 92.25 158 | 93.77 238 |
| Jie Liao, Yanping Fu, Qingan Yan, Chunxia xiao: Pyramid Multi-View Stereo with Local Consistency. Pacific Graphics 2019 |
| CLD-MVS | | | 87.97 171 | 87.48 163 | 89.44 213 | 92.16 239 | 80.54 167 | 98.14 46 | 94.92 204 | 91.41 31 | 79.43 241 | 95.40 150 | 62.34 266 | 97.27 201 | 90.60 112 | 82.90 242 | 90.50 262 |
| Zhaoxin Li, Wangmeng Zuo, Zhaoqi Wang, Lei Zhang: Confidence-based Large-scale Dense Multi-view Stereo. IEEE Transaction on Image Processing, 2020 |
| Fast-Effi-MVS+ | | | 87.93 172 | 86.94 177 | 90.92 174 | 94.04 179 | 79.16 203 | 98.26 42 | 93.72 282 | 81.29 231 | 83.94 188 | 92.90 213 | 69.83 226 | 96.68 232 | 76.70 248 | 91.74 163 | 96.93 159 |
|
| HQP-MVS | | | 87.91 173 | 87.55 161 | 88.98 221 | 92.08 243 | 78.48 219 | 97.63 81 | 94.80 212 | 90.52 44 | 82.30 206 | 94.56 179 | 65.40 250 | 97.32 196 | 87.67 149 | 83.01 239 | 91.13 255 |
|
| test_fmvs1 | | | 87.79 174 | 88.52 141 | 85.62 292 | 92.98 213 | 64.31 361 | 97.88 65 | 92.42 321 | 87.95 85 | 92.24 80 | 95.82 137 | 47.94 350 | 98.44 139 | 95.31 52 | 94.09 130 | 94.09 232 |
|
| UGNet | | | 87.73 175 | 86.55 182 | 91.27 164 | 95.16 139 | 79.11 205 | 96.35 184 | 96.23 126 | 88.14 81 | 87.83 147 | 90.48 251 | 50.65 338 | 99.09 102 | 80.13 213 | 94.03 131 | 95.60 199 |
| Wanjuan Su, Qingshan Xu, Wenbing Tao: Uncertainty-guided Multi-view Stereo Network for Depth Estimation. IEEE Transactions on Circuits and Systems for Video Technology, 2022 |
| FA-MVS(test-final) | | | 87.71 176 | 86.23 184 | 92.17 131 | 94.19 171 | 80.55 165 | 87.16 354 | 96.07 140 | 82.12 221 | 85.98 165 | 88.35 279 | 72.04 205 | 98.49 132 | 80.26 210 | 89.87 173 | 97.48 132 |
|
| EPNet_dtu | | | 87.65 177 | 87.89 150 | 86.93 270 | 94.57 155 | 71.37 329 | 96.72 159 | 96.50 98 | 88.56 70 | 87.12 155 | 95.02 168 | 75.91 143 | 94.01 331 | 66.62 318 | 90.00 172 | 95.42 205 |
| Wanjuan Su, Wenbing Tao: Efficient Edge-Preserving Multi-View Stereo Network for Depth Estimation. AAAI 2023 |
| mvsany_test1 | | | 87.58 178 | 88.22 144 | 85.67 290 | 89.78 291 | 67.18 351 | 95.25 237 | 87.93 369 | 83.96 180 | 88.79 133 | 97.06 108 | 72.52 196 | 94.53 321 | 92.21 92 | 86.45 211 | 95.30 209 |
|
| HQP_MVS | | | 87.50 179 | 87.09 173 | 88.74 226 | 91.86 252 | 77.96 239 | 97.18 116 | 94.69 217 | 89.89 53 | 81.33 219 | 94.15 189 | 64.77 255 | 97.30 198 | 87.08 153 | 82.82 243 | 90.96 257 |
|
| EPMVS | | | 87.47 180 | 85.90 187 | 92.18 130 | 95.41 128 | 82.26 121 | 87.00 355 | 96.28 121 | 85.88 129 | 84.23 182 | 85.57 323 | 75.07 165 | 96.26 246 | 71.14 296 | 92.50 154 | 98.03 84 |
|
| tpm2 | | | 87.35 181 | 86.26 183 | 90.62 183 | 92.93 214 | 78.67 216 | 88.06 347 | 95.99 145 | 79.33 272 | 87.40 149 | 86.43 312 | 80.28 72 | 96.40 240 | 80.23 211 | 85.73 222 | 96.79 165 |
|
| ab-mvs | | | 87.08 182 | 84.94 203 | 93.48 76 | 93.34 199 | 83.67 95 | 88.82 338 | 95.70 163 | 81.18 232 | 84.55 181 | 90.14 259 | 62.72 264 | 98.94 113 | 85.49 164 | 82.54 247 | 97.85 101 |
|
| SDMVSNet | | | 87.02 183 | 85.61 189 | 91.24 165 | 94.14 174 | 83.30 103 | 93.88 278 | 95.98 146 | 84.30 170 | 79.63 239 | 92.01 226 | 58.23 295 | 97.68 171 | 90.28 121 | 82.02 251 | 92.75 247 |
|
| CNLPA | | | 86.96 184 | 85.37 194 | 91.72 151 | 97.59 73 | 79.34 199 | 97.21 112 | 91.05 343 | 74.22 325 | 78.90 245 | 96.75 121 | 67.21 239 | 98.95 111 | 74.68 268 | 90.77 169 | 96.88 163 |
|
| BH-untuned | | | 86.95 185 | 85.94 186 | 89.99 199 | 94.52 159 | 77.46 254 | 96.78 156 | 93.37 300 | 81.80 225 | 76.62 268 | 93.81 199 | 66.64 243 | 97.02 213 | 76.06 255 | 93.88 136 | 95.48 204 |
|
| QAPM | | | 86.88 186 | 84.51 207 | 93.98 49 | 94.04 179 | 85.89 46 | 97.19 115 | 96.05 141 | 73.62 330 | 75.12 291 | 95.62 144 | 62.02 270 | 99.74 38 | 70.88 297 | 96.06 108 | 96.30 184 |
|
| BH-RMVSNet | | | 86.84 187 | 85.28 195 | 91.49 158 | 95.35 132 | 80.26 174 | 96.95 143 | 92.21 324 | 82.86 206 | 81.77 218 | 95.46 149 | 59.34 287 | 97.64 173 | 69.79 304 | 93.81 137 | 96.57 174 |
|
| PatchmatchNet |  | | 86.83 188 | 85.12 200 | 91.95 141 | 94.12 176 | 82.27 120 | 86.55 359 | 95.64 166 | 84.59 161 | 82.98 201 | 84.99 335 | 77.26 116 | 95.96 259 | 68.61 309 | 91.34 166 | 97.64 118 |
| Fangjinhua Wang, Silvano Galliani, Christoph Vogel, Pablo Speciale, Marc Pollefeys: PatchmatchNet: Learned Multi-View Patchmatch Stereo. |
| nrg030 | | | 86.79 189 | 85.43 192 | 90.87 177 | 88.76 305 | 85.34 58 | 97.06 133 | 94.33 246 | 84.31 168 | 80.45 229 | 91.98 229 | 72.36 198 | 96.36 243 | 88.48 141 | 71.13 308 | 90.93 259 |
|
| PCF-MVS | | 84.09 5 | 86.77 190 | 85.00 202 | 92.08 134 | 92.06 246 | 83.07 107 | 92.14 309 | 94.47 236 | 79.63 267 | 76.90 264 | 94.78 175 | 71.15 214 | 99.20 92 | 72.87 282 | 91.05 167 | 93.98 234 |
| Andreas Kuhn, Shan Lin, Oliver Erdler: Plane Completion and Filtering for Multi-View Stereo Reconstruction. GCPR 2019 |
| FIs | | | 86.73 191 | 86.10 185 | 88.61 228 | 90.05 288 | 80.21 175 | 96.14 197 | 96.95 41 | 85.56 135 | 78.37 250 | 92.30 222 | 76.73 128 | 95.28 296 | 79.51 217 | 79.27 266 | 90.35 264 |
|
| cascas | | | 86.50 192 | 84.48 209 | 92.55 112 | 92.64 222 | 85.95 43 | 97.04 134 | 95.07 199 | 75.32 315 | 80.50 227 | 91.02 243 | 54.33 329 | 97.98 155 | 86.79 157 | 87.62 201 | 93.71 239 |
|
| VDDNet | | | 86.44 193 | 84.51 207 | 92.22 128 | 91.56 255 | 81.83 131 | 97.10 129 | 94.64 224 | 69.50 357 | 87.84 146 | 95.19 160 | 48.01 348 | 97.92 161 | 89.82 124 | 86.92 206 | 96.89 162 |
|
| GeoE | | | 86.36 194 | 85.20 196 | 89.83 207 | 93.17 203 | 76.13 276 | 97.53 90 | 92.11 325 | 79.58 268 | 80.99 222 | 94.01 192 | 66.60 244 | 96.17 251 | 73.48 280 | 89.30 177 | 97.20 150 |
|
| test_fmvs1_n | | | 86.34 195 | 86.72 180 | 85.17 299 | 87.54 322 | 63.64 366 | 96.91 147 | 92.37 323 | 87.49 97 | 91.33 95 | 95.58 146 | 40.81 375 | 98.46 135 | 95.00 54 | 93.49 141 | 93.41 246 |
|
| TR-MVS | | | 86.30 196 | 84.93 204 | 90.42 188 | 94.63 154 | 77.58 252 | 96.57 167 | 93.82 273 | 80.30 253 | 82.42 205 | 95.16 162 | 58.74 291 | 97.55 180 | 74.88 266 | 87.82 200 | 96.13 187 |
|
| X-MVStestdata | | | 86.26 197 | 84.14 216 | 92.63 109 | 98.52 37 | 80.29 171 | 97.37 106 | 96.44 104 | 87.04 109 | 91.38 92 | 20.73 410 | 77.24 118 | 99.59 60 | 90.46 114 | 98.07 55 | 98.02 85 |
|
| AUN-MVS | | | 86.25 198 | 85.57 190 | 88.26 236 | 93.57 189 | 73.38 303 | 95.45 230 | 95.88 153 | 83.94 181 | 85.47 168 | 94.21 187 | 73.70 186 | 96.67 233 | 83.54 186 | 64.41 357 | 94.73 224 |
|
| OpenMVS |  | 79.58 14 | 86.09 199 | 83.62 223 | 93.50 74 | 90.95 268 | 86.71 36 | 97.44 98 | 95.83 156 | 75.35 314 | 72.64 312 | 95.72 139 | 57.42 308 | 99.64 55 | 71.41 291 | 95.85 113 | 94.13 231 |
|
| FE-MVS | | | 86.06 200 | 84.15 215 | 91.78 149 | 94.33 168 | 79.81 183 | 84.58 371 | 96.61 83 | 76.69 307 | 85.00 172 | 87.38 292 | 70.71 221 | 98.37 141 | 70.39 301 | 91.70 164 | 97.17 151 |
|
| FC-MVSNet-test | | | 85.96 201 | 85.39 193 | 87.66 250 | 89.38 302 | 78.02 236 | 95.65 220 | 96.87 48 | 85.12 146 | 77.34 257 | 91.94 232 | 76.28 137 | 94.74 315 | 77.09 243 | 78.82 270 | 90.21 267 |
|
| miper_enhance_ethall | | | 85.95 202 | 85.20 196 | 88.19 240 | 94.85 149 | 79.76 185 | 96.00 201 | 94.06 261 | 82.98 203 | 77.74 255 | 88.76 272 | 79.42 81 | 95.46 288 | 80.58 206 | 72.42 302 | 89.36 284 |
|
| OPM-MVS | | | 85.84 203 | 85.10 201 | 88.06 241 | 88.34 312 | 77.83 246 | 95.72 216 | 94.20 252 | 87.89 88 | 80.45 229 | 94.05 191 | 58.57 292 | 97.26 202 | 83.88 176 | 82.76 245 | 89.09 291 |
| Ray L. Khuboni, Hongjun Xu: Octagram Propagation Matching for Multi-Scale View Stereopsis (OPM-MVS). |
| EI-MVSNet | | | 85.80 204 | 85.20 196 | 87.59 253 | 91.55 256 | 77.41 255 | 95.13 244 | 95.36 186 | 80.43 250 | 80.33 231 | 94.71 176 | 73.72 184 | 95.97 256 | 76.96 246 | 78.64 272 | 89.39 279 |
|
| GA-MVS | | | 85.79 205 | 84.04 217 | 91.02 172 | 89.47 300 | 80.27 173 | 96.90 148 | 94.84 210 | 85.57 133 | 80.88 223 | 89.08 267 | 56.56 315 | 96.47 239 | 77.72 234 | 85.35 225 | 96.34 180 |
|
| XVG-OURS-SEG-HR | | | 85.74 206 | 85.16 199 | 87.49 259 | 90.22 283 | 71.45 328 | 91.29 321 | 94.09 259 | 81.37 230 | 83.90 189 | 95.22 157 | 60.30 280 | 97.53 184 | 85.58 163 | 84.42 230 | 93.50 242 |
|
| SCA | | | 85.63 207 | 83.64 222 | 91.60 156 | 92.30 230 | 81.86 130 | 92.88 301 | 95.56 170 | 84.85 152 | 82.52 202 | 85.12 333 | 58.04 298 | 95.39 289 | 73.89 276 | 87.58 203 | 97.54 124 |
|
| test_vis1_n | | | 85.60 208 | 85.70 188 | 85.33 296 | 84.79 353 | 64.98 359 | 96.83 151 | 91.61 334 | 87.36 101 | 91.00 102 | 94.84 174 | 36.14 381 | 97.18 205 | 95.66 45 | 93.03 148 | 93.82 237 |
|
| tpm | | | 85.55 209 | 84.47 210 | 88.80 225 | 90.19 284 | 75.39 289 | 88.79 339 | 94.69 217 | 84.83 153 | 83.96 187 | 85.21 329 | 78.22 101 | 94.68 318 | 76.32 254 | 78.02 280 | 96.34 180 |
|
| mamv4 | | | 85.50 210 | 86.76 178 | 81.72 337 | 93.23 200 | 54.93 391 | 89.95 331 | 92.94 314 | 69.96 354 | 79.00 244 | 92.20 224 | 80.69 68 | 94.22 327 | 92.06 95 | 90.77 169 | 96.01 188 |
|
| UniMVSNet_NR-MVSNet | | | 85.49 211 | 84.59 206 | 88.21 239 | 89.44 301 | 79.36 197 | 96.71 161 | 96.41 108 | 85.22 142 | 78.11 252 | 90.98 245 | 76.97 123 | 95.14 303 | 79.14 223 | 68.30 335 | 90.12 269 |
|
| gg-mvs-nofinetune | | | 85.48 212 | 82.90 234 | 93.24 82 | 94.51 162 | 85.82 47 | 79.22 383 | 96.97 39 | 61.19 381 | 87.33 151 | 53.01 399 | 90.58 6 | 96.07 252 | 86.07 159 | 97.23 83 | 97.81 106 |
|
| VPA-MVSNet | | | 85.32 213 | 83.83 218 | 89.77 210 | 90.25 282 | 82.63 112 | 96.36 183 | 97.07 33 | 83.03 201 | 81.21 221 | 89.02 269 | 61.58 274 | 96.31 245 | 85.02 168 | 70.95 310 | 90.36 263 |
|
| UniMVSNet (Re) | | | 85.31 214 | 84.23 213 | 88.55 229 | 89.75 292 | 80.55 165 | 96.72 159 | 96.89 46 | 85.42 137 | 78.40 249 | 88.93 270 | 75.38 156 | 95.52 286 | 78.58 228 | 68.02 338 | 89.57 278 |
|
| XVG-OURS | | | 85.18 215 | 84.38 211 | 87.59 253 | 90.42 281 | 71.73 325 | 91.06 324 | 94.07 260 | 82.00 224 | 83.29 196 | 95.08 167 | 56.42 316 | 97.55 180 | 83.70 183 | 83.42 235 | 93.49 243 |
|
| cl22 | | | 85.11 216 | 84.17 214 | 87.92 244 | 95.06 144 | 78.82 211 | 95.51 227 | 94.22 251 | 79.74 265 | 76.77 265 | 87.92 286 | 75.96 141 | 95.68 275 | 79.93 215 | 72.42 302 | 89.27 286 |
|
| TAPA-MVS | | 81.61 12 | 85.02 217 | 83.67 220 | 89.06 218 | 96.79 93 | 73.27 308 | 95.92 206 | 94.79 214 | 74.81 320 | 80.47 228 | 96.83 115 | 71.07 215 | 98.19 149 | 49.82 380 | 92.57 152 | 95.71 197 |
| Andrea Romanoni, Matteo Matteucci: TAPA-MVS: Textureless-Aware PAtchMatch Multi-View Stereo. ICCV 2019 |
| PatchMatch-RL | | | 85.00 218 | 83.66 221 | 89.02 220 | 95.86 115 | 74.55 296 | 92.49 305 | 93.60 287 | 79.30 274 | 79.29 243 | 91.47 235 | 58.53 293 | 98.45 137 | 70.22 302 | 92.17 160 | 94.07 233 |
|
| PS-MVSNAJss | | | 84.91 219 | 84.30 212 | 86.74 271 | 85.89 341 | 74.40 298 | 94.95 251 | 94.16 255 | 83.93 182 | 76.45 270 | 90.11 260 | 71.04 216 | 95.77 269 | 83.16 191 | 79.02 269 | 90.06 273 |
|
| CVMVSNet | | | 84.83 220 | 85.57 190 | 82.63 331 | 91.55 256 | 60.38 377 | 95.13 244 | 95.03 200 | 80.60 243 | 82.10 212 | 94.71 176 | 66.40 245 | 90.19 371 | 74.30 273 | 90.32 171 | 97.31 142 |
|
| FMVSNet3 | | | 84.71 221 | 82.71 238 | 90.70 182 | 94.55 157 | 87.71 24 | 95.92 206 | 94.67 220 | 81.73 227 | 75.82 283 | 88.08 284 | 66.99 240 | 94.47 322 | 71.23 293 | 75.38 288 | 89.91 275 |
|
| VPNet | | | 84.69 222 | 82.92 233 | 90.01 198 | 89.01 304 | 83.45 100 | 96.71 161 | 95.46 177 | 85.71 131 | 79.65 238 | 92.18 225 | 56.66 314 | 96.01 255 | 83.05 193 | 67.84 341 | 90.56 261 |
|
| sd_testset | | | 84.62 223 | 83.11 231 | 89.17 216 | 94.14 174 | 77.78 247 | 91.54 319 | 94.38 243 | 84.30 170 | 79.63 239 | 92.01 226 | 52.28 333 | 96.98 215 | 77.67 236 | 82.02 251 | 92.75 247 |
|
| Effi-MVS+-dtu | | | 84.61 224 | 84.90 205 | 83.72 321 | 91.96 249 | 63.14 369 | 94.95 251 | 93.34 301 | 85.57 133 | 79.79 237 | 87.12 298 | 61.99 271 | 95.61 282 | 83.55 185 | 85.83 220 | 92.41 251 |
|
| miper_ehance_all_eth | | | 84.57 225 | 83.60 224 | 87.50 257 | 92.64 222 | 78.25 228 | 95.40 233 | 93.47 292 | 79.28 275 | 76.41 271 | 87.64 289 | 76.53 130 | 95.24 298 | 78.58 228 | 72.42 302 | 89.01 296 |
|
| DU-MVS | | | 84.57 225 | 83.33 229 | 88.28 235 | 88.76 305 | 79.36 197 | 96.43 179 | 95.41 185 | 85.42 137 | 78.11 252 | 90.82 246 | 67.61 232 | 95.14 303 | 79.14 223 | 68.30 335 | 90.33 265 |
|
| F-COLMAP | | | 84.50 227 | 83.44 228 | 87.67 249 | 95.22 136 | 72.22 314 | 95.95 204 | 93.78 278 | 75.74 312 | 76.30 274 | 95.18 161 | 59.50 285 | 98.45 137 | 72.67 284 | 86.59 210 | 92.35 252 |
|
| Anonymous202405211 | | | 84.41 228 | 81.93 249 | 91.85 147 | 96.78 94 | 78.41 223 | 97.44 98 | 91.34 338 | 70.29 352 | 84.06 183 | 94.26 185 | 41.09 373 | 98.96 109 | 79.46 218 | 82.65 246 | 98.17 76 |
|
| WR-MVS | | | 84.32 229 | 82.96 232 | 88.41 231 | 89.38 302 | 80.32 170 | 96.59 166 | 96.25 124 | 83.97 179 | 76.63 267 | 90.36 254 | 67.53 235 | 94.86 312 | 75.82 259 | 70.09 319 | 90.06 273 |
|
| dp | | | 84.30 230 | 82.31 243 | 90.28 192 | 94.24 170 | 77.97 238 | 86.57 358 | 95.53 171 | 79.94 262 | 80.75 225 | 85.16 331 | 71.49 212 | 96.39 241 | 63.73 333 | 83.36 236 | 96.48 176 |
|
| LPG-MVS_test | | | 84.20 231 | 83.49 227 | 86.33 277 | 90.88 269 | 73.06 309 | 95.28 234 | 94.13 256 | 82.20 218 | 76.31 272 | 93.20 208 | 54.83 327 | 96.95 217 | 83.72 181 | 80.83 256 | 88.98 297 |
|
| dmvs_re | | | 84.10 232 | 82.90 234 | 87.70 248 | 91.41 260 | 73.28 306 | 90.59 327 | 93.19 305 | 85.02 148 | 77.96 254 | 93.68 200 | 57.92 303 | 96.18 250 | 75.50 261 | 80.87 255 | 93.63 240 |
|
| WB-MVSnew | | | 84.08 233 | 83.51 226 | 85.80 286 | 91.34 261 | 76.69 269 | 95.62 222 | 96.27 122 | 81.77 226 | 81.81 217 | 92.81 214 | 58.23 295 | 94.70 316 | 66.66 317 | 87.06 205 | 85.99 352 |
|
| ACMP | | 81.66 11 | 84.00 234 | 83.22 230 | 86.33 277 | 91.53 258 | 72.95 312 | 95.91 208 | 93.79 277 | 83.70 189 | 73.79 298 | 92.22 223 | 54.31 330 | 96.89 221 | 83.98 175 | 79.74 261 | 89.16 289 |
| Qingshan Xu and Wenbing Tao: Planar Prior Assisted PatchMatch Multi-View Stereo. AAAI 2020 |
| IterMVS-LS | | | 83.93 235 | 82.80 237 | 87.31 263 | 91.46 259 | 77.39 256 | 95.66 219 | 93.43 295 | 80.44 248 | 75.51 287 | 87.26 295 | 73.72 184 | 95.16 302 | 76.99 244 | 70.72 312 | 89.39 279 |
| Fangjinhua Wang, Silvano Galliani, Christoph Vogel, Marc Pollefeys: IterMVS: Iterative Probability Estimation for Efficient Multi-View Stereo. |
| XXY-MVS | | | 83.84 236 | 82.00 248 | 89.35 214 | 87.13 324 | 81.38 143 | 95.72 216 | 94.26 248 | 80.15 257 | 75.92 282 | 90.63 249 | 61.96 272 | 96.52 237 | 78.98 225 | 73.28 300 | 90.14 268 |
|
| c3_l | | | 83.80 237 | 82.65 239 | 87.25 265 | 92.10 242 | 77.74 250 | 95.25 237 | 93.04 313 | 78.58 286 | 76.01 279 | 87.21 297 | 75.25 162 | 95.11 305 | 77.54 239 | 68.89 329 | 88.91 302 |
|
| LCM-MVSNet-Re | | | 83.75 238 | 83.54 225 | 84.39 314 | 93.54 190 | 64.14 363 | 92.51 304 | 84.03 385 | 83.90 183 | 66.14 348 | 86.59 306 | 67.36 237 | 92.68 345 | 84.89 169 | 92.87 149 | 96.35 179 |
|
| ACMM | | 80.70 13 | 83.72 239 | 82.85 236 | 86.31 280 | 91.19 263 | 72.12 318 | 95.88 209 | 94.29 247 | 80.44 248 | 77.02 262 | 91.96 230 | 55.24 323 | 97.14 210 | 79.30 221 | 80.38 258 | 89.67 277 |
| Qingshan Xu and Wenbing Tao: Multi-Scale Geometric Consistency Guided Multi-View Stereo. CVPR 2019 |
| tpm cat1 | | | 83.63 240 | 81.38 257 | 90.39 189 | 93.53 195 | 78.19 234 | 85.56 366 | 95.09 197 | 70.78 350 | 78.51 248 | 83.28 349 | 74.80 168 | 97.03 212 | 66.77 316 | 84.05 231 | 95.95 189 |
|
| CR-MVSNet | | | 83.53 241 | 81.36 258 | 90.06 197 | 90.16 285 | 79.75 186 | 79.02 385 | 91.12 340 | 84.24 174 | 82.27 210 | 80.35 363 | 75.45 152 | 93.67 337 | 63.37 336 | 86.25 213 | 96.75 169 |
|
| v2v482 | | | 83.46 242 | 81.86 250 | 88.25 237 | 86.19 335 | 79.65 191 | 96.34 185 | 94.02 262 | 81.56 229 | 77.32 258 | 88.23 281 | 65.62 247 | 96.03 253 | 77.77 232 | 69.72 323 | 89.09 291 |
|
| NR-MVSNet | | | 83.35 243 | 81.52 256 | 88.84 223 | 88.76 305 | 81.31 145 | 94.45 260 | 95.16 195 | 84.65 159 | 67.81 337 | 90.82 246 | 70.36 223 | 94.87 311 | 74.75 267 | 66.89 350 | 90.33 265 |
|
| Fast-Effi-MVS+-dtu | | | 83.33 244 | 82.60 240 | 85.50 294 | 89.55 298 | 69.38 342 | 96.09 200 | 91.38 335 | 82.30 217 | 75.96 281 | 91.41 236 | 56.71 312 | 95.58 284 | 75.13 265 | 84.90 228 | 91.54 253 |
|
| cl____ | | | 83.27 245 | 82.12 245 | 86.74 271 | 92.20 235 | 75.95 283 | 95.11 246 | 93.27 303 | 78.44 289 | 74.82 293 | 87.02 300 | 74.19 177 | 95.19 300 | 74.67 269 | 69.32 325 | 89.09 291 |
|
| DIV-MVS_self_test | | | 83.27 245 | 82.12 245 | 86.74 271 | 92.19 236 | 75.92 285 | 95.11 246 | 93.26 304 | 78.44 289 | 74.81 294 | 87.08 299 | 74.19 177 | 95.19 300 | 74.66 270 | 69.30 326 | 89.11 290 |
|
| TranMVSNet+NR-MVSNet | | | 83.24 247 | 81.71 252 | 87.83 245 | 87.71 319 | 78.81 213 | 96.13 199 | 94.82 211 | 84.52 162 | 76.18 278 | 90.78 248 | 64.07 258 | 94.60 319 | 74.60 271 | 66.59 352 | 90.09 271 |
|
| Anonymous20240529 | | | 83.15 248 | 80.60 268 | 90.80 178 | 95.74 120 | 78.27 227 | 96.81 154 | 94.92 204 | 60.10 386 | 81.89 215 | 92.54 219 | 45.82 357 | 98.82 118 | 79.25 222 | 78.32 278 | 95.31 208 |
|
| eth_miper_zixun_eth | | | 83.12 249 | 82.01 247 | 86.47 276 | 91.85 254 | 74.80 292 | 94.33 264 | 93.18 307 | 79.11 278 | 75.74 286 | 87.25 296 | 72.71 193 | 95.32 294 | 76.78 247 | 67.13 347 | 89.27 286 |
|
| MS-PatchMatch | | | 83.05 250 | 81.82 251 | 86.72 275 | 89.64 296 | 79.10 206 | 94.88 253 | 94.59 229 | 79.70 266 | 70.67 325 | 89.65 263 | 50.43 340 | 96.82 226 | 70.82 300 | 95.99 111 | 84.25 365 |
|
| V42 | | | 83.04 251 | 81.53 255 | 87.57 255 | 86.27 334 | 79.09 207 | 95.87 210 | 94.11 258 | 80.35 252 | 77.22 260 | 86.79 304 | 65.32 252 | 96.02 254 | 77.74 233 | 70.14 315 | 87.61 327 |
|
| tpmvs | | | 83.04 251 | 80.77 264 | 89.84 206 | 95.43 127 | 77.96 239 | 85.59 365 | 95.32 190 | 75.31 316 | 76.27 275 | 83.70 345 | 73.89 181 | 97.41 191 | 59.53 347 | 81.93 253 | 94.14 230 |
|
| test_djsdf | | | 83.00 253 | 82.45 242 | 84.64 307 | 84.07 361 | 69.78 338 | 94.80 256 | 94.48 233 | 80.74 240 | 75.41 289 | 87.70 288 | 61.32 277 | 95.10 306 | 83.77 179 | 79.76 259 | 89.04 294 |
|
| v1144 | | | 82.90 254 | 81.27 259 | 87.78 247 | 86.29 333 | 79.07 208 | 96.14 197 | 93.93 264 | 80.05 259 | 77.38 256 | 86.80 303 | 65.50 248 | 95.93 261 | 75.21 264 | 70.13 316 | 88.33 314 |
|
| test0.0.03 1 | | | 82.79 255 | 82.48 241 | 83.74 320 | 86.81 327 | 72.22 314 | 96.52 170 | 95.03 200 | 83.76 187 | 73.00 308 | 93.20 208 | 72.30 201 | 88.88 374 | 64.15 331 | 77.52 281 | 90.12 269 |
|
| FMVSNet2 | | | 82.79 255 | 80.44 270 | 89.83 207 | 92.66 219 | 85.43 57 | 95.42 231 | 94.35 244 | 79.06 280 | 74.46 295 | 87.28 293 | 56.38 317 | 94.31 325 | 69.72 305 | 74.68 292 | 89.76 276 |
|
| D2MVS | | | 82.67 257 | 81.55 254 | 86.04 284 | 87.77 318 | 76.47 270 | 95.21 239 | 96.58 89 | 82.66 211 | 70.26 328 | 85.46 326 | 60.39 279 | 95.80 267 | 76.40 252 | 79.18 267 | 85.83 355 |
|
| MVP-Stereo | | | 82.65 258 | 81.67 253 | 85.59 293 | 86.10 338 | 78.29 226 | 93.33 290 | 92.82 316 | 77.75 294 | 69.17 335 | 87.98 285 | 59.28 288 | 95.76 270 | 71.77 288 | 96.88 91 | 82.73 373 |
| Qingsong Yan: MVP-Stereo: A Parallel Multi-View Patchmatch Stereo Method with Dilation Matching for Photogrammetric Application. |
| pmmvs4 | | | 82.54 259 | 80.79 263 | 87.79 246 | 86.11 337 | 80.49 169 | 93.55 285 | 93.18 307 | 77.29 300 | 73.35 304 | 89.40 266 | 65.26 253 | 95.05 309 | 75.32 263 | 73.61 296 | 87.83 322 |
|
| v144192 | | | 82.43 260 | 80.73 265 | 87.54 256 | 85.81 342 | 78.22 229 | 95.98 202 | 93.78 278 | 79.09 279 | 77.11 261 | 86.49 308 | 64.66 257 | 95.91 262 | 74.20 274 | 69.42 324 | 88.49 308 |
|
| GBi-Net | | | 82.42 261 | 80.43 271 | 88.39 232 | 92.66 219 | 81.95 123 | 94.30 266 | 93.38 297 | 79.06 280 | 75.82 283 | 85.66 319 | 56.38 317 | 93.84 333 | 71.23 293 | 75.38 288 | 89.38 281 |
|
| test1 | | | 82.42 261 | 80.43 271 | 88.39 232 | 92.66 219 | 81.95 123 | 94.30 266 | 93.38 297 | 79.06 280 | 75.82 283 | 85.66 319 | 56.38 317 | 93.84 333 | 71.23 293 | 75.38 288 | 89.38 281 |
|
| v148 | | | 82.41 263 | 80.89 262 | 86.99 269 | 86.18 336 | 76.81 266 | 96.27 189 | 93.82 273 | 80.49 247 | 75.28 290 | 86.11 318 | 67.32 238 | 95.75 271 | 75.48 262 | 67.03 349 | 88.42 312 |
|
| v1192 | | | 82.31 264 | 80.55 269 | 87.60 252 | 85.94 339 | 78.47 222 | 95.85 212 | 93.80 276 | 79.33 272 | 76.97 263 | 86.51 307 | 63.33 262 | 95.87 263 | 73.11 281 | 70.13 316 | 88.46 310 |
|
| LS3D | | | 82.22 265 | 79.94 279 | 89.06 218 | 97.43 80 | 74.06 301 | 93.20 296 | 92.05 326 | 61.90 376 | 73.33 305 | 95.21 158 | 59.35 286 | 99.21 88 | 54.54 367 | 92.48 155 | 93.90 236 |
|
| jajsoiax | | | 82.12 266 | 81.15 261 | 85.03 301 | 84.19 359 | 70.70 331 | 94.22 270 | 93.95 263 | 83.07 199 | 73.48 300 | 89.75 262 | 49.66 344 | 95.37 291 | 82.24 198 | 79.76 259 | 89.02 295 |
|
| v1921920 | | | 82.02 267 | 80.23 273 | 87.41 260 | 85.62 343 | 77.92 242 | 95.79 215 | 93.69 283 | 78.86 283 | 76.67 266 | 86.44 310 | 62.50 265 | 95.83 265 | 72.69 283 | 69.77 322 | 88.47 309 |
|
| myMVS_eth3d | | | 81.93 268 | 82.18 244 | 81.18 340 | 92.13 240 | 67.18 351 | 93.97 274 | 94.23 249 | 82.43 214 | 73.39 301 | 93.57 204 | 76.98 122 | 87.86 378 | 50.53 378 | 82.34 248 | 88.51 306 |
|
| v8 | | | 81.88 269 | 80.06 277 | 87.32 262 | 86.63 328 | 79.04 209 | 94.41 261 | 93.65 285 | 78.77 284 | 73.19 307 | 85.57 323 | 66.87 241 | 95.81 266 | 73.84 278 | 67.61 343 | 87.11 336 |
|
| mvs_tets | | | 81.74 270 | 80.71 266 | 84.84 302 | 84.22 358 | 70.29 334 | 93.91 277 | 93.78 278 | 82.77 208 | 73.37 303 | 89.46 265 | 47.36 354 | 95.31 295 | 81.99 199 | 79.55 265 | 88.92 301 |
|
| v1240 | | | 81.70 271 | 79.83 281 | 87.30 264 | 85.50 344 | 77.70 251 | 95.48 228 | 93.44 293 | 78.46 288 | 76.53 269 | 86.44 310 | 60.85 278 | 95.84 264 | 71.59 290 | 70.17 314 | 88.35 313 |
|
| PVSNet_0 | | 77.72 15 | 81.70 271 | 78.95 288 | 89.94 203 | 90.77 275 | 76.72 268 | 95.96 203 | 96.95 41 | 85.01 149 | 70.24 329 | 88.53 277 | 52.32 332 | 98.20 148 | 86.68 158 | 44.08 396 | 94.89 216 |
|
| miper_lstm_enhance | | | 81.66 273 | 80.66 267 | 84.67 306 | 91.19 263 | 71.97 321 | 91.94 311 | 93.19 305 | 77.86 293 | 72.27 315 | 85.26 327 | 73.46 187 | 93.42 341 | 73.71 279 | 67.05 348 | 88.61 304 |
|
| DP-MVS | | | 81.47 274 | 78.28 291 | 91.04 170 | 98.14 55 | 78.48 219 | 95.09 249 | 86.97 372 | 61.14 382 | 71.12 322 | 92.78 218 | 59.59 283 | 99.38 78 | 53.11 371 | 86.61 209 | 95.27 210 |
|
| v10 | | | 81.43 275 | 79.53 283 | 87.11 267 | 86.38 330 | 78.87 210 | 94.31 265 | 93.43 295 | 77.88 292 | 73.24 306 | 85.26 327 | 65.44 249 | 95.75 271 | 72.14 287 | 67.71 342 | 86.72 340 |
|
| pmmvs5 | | | 81.34 276 | 79.54 282 | 86.73 274 | 85.02 351 | 76.91 263 | 96.22 192 | 91.65 332 | 77.65 295 | 73.55 299 | 88.61 274 | 55.70 320 | 94.43 323 | 74.12 275 | 73.35 299 | 88.86 303 |
|
| ADS-MVSNet | | | 81.26 277 | 78.36 290 | 89.96 202 | 93.78 183 | 79.78 184 | 79.48 381 | 93.60 287 | 73.09 336 | 80.14 233 | 79.99 366 | 62.15 268 | 95.24 298 | 59.49 348 | 83.52 233 | 94.85 218 |
|
| Baseline_NR-MVSNet | | | 81.22 278 | 80.07 276 | 84.68 305 | 85.32 349 | 75.12 291 | 96.48 173 | 88.80 364 | 76.24 311 | 77.28 259 | 86.40 313 | 67.61 232 | 94.39 324 | 75.73 260 | 66.73 351 | 84.54 362 |
|
| tt0805 | | | 81.20 279 | 79.06 287 | 87.61 251 | 86.50 329 | 72.97 311 | 93.66 281 | 95.48 175 | 74.11 326 | 76.23 276 | 91.99 228 | 41.36 372 | 97.40 192 | 77.44 241 | 74.78 291 | 92.45 250 |
|
| WR-MVS_H | | | 81.02 280 | 80.09 274 | 83.79 318 | 88.08 315 | 71.26 330 | 94.46 259 | 96.54 93 | 80.08 258 | 72.81 311 | 86.82 302 | 70.36 223 | 92.65 346 | 64.18 330 | 67.50 344 | 87.46 333 |
|
| CP-MVSNet | | | 81.01 281 | 80.08 275 | 83.79 318 | 87.91 317 | 70.51 332 | 94.29 269 | 95.65 165 | 80.83 237 | 72.54 314 | 88.84 271 | 63.71 259 | 92.32 349 | 68.58 310 | 68.36 334 | 88.55 305 |
|
| anonymousdsp | | | 80.98 282 | 79.97 278 | 84.01 315 | 81.73 371 | 70.44 333 | 92.49 305 | 93.58 289 | 77.10 304 | 72.98 309 | 86.31 314 | 57.58 304 | 94.90 310 | 79.32 220 | 78.63 274 | 86.69 341 |
|
| UniMVSNet_ETH3D | | | 80.86 283 | 78.75 289 | 87.22 266 | 86.31 332 | 72.02 319 | 91.95 310 | 93.76 281 | 73.51 331 | 75.06 292 | 90.16 258 | 43.04 366 | 95.66 276 | 76.37 253 | 78.55 275 | 93.98 234 |
|
| testing3 | | | 80.74 284 | 81.17 260 | 79.44 349 | 91.15 265 | 63.48 367 | 97.16 120 | 95.76 159 | 80.83 237 | 71.36 319 | 93.15 211 | 78.22 101 | 87.30 383 | 43.19 391 | 79.67 262 | 87.55 331 |
|
| IterMVS | | | 80.67 285 | 79.16 285 | 85.20 298 | 89.79 290 | 76.08 277 | 92.97 300 | 91.86 328 | 80.28 254 | 71.20 321 | 85.14 332 | 57.93 302 | 91.34 361 | 72.52 285 | 70.74 311 | 88.18 317 |
| Fangjinhua Wang, Silvano Galliani, Christoph Vogel, Marc Pollefeys: IterMVS: Iterative Probability Estimation for Efficient Multi-View Stereo. |
| MSDG | | | 80.62 286 | 77.77 296 | 89.14 217 | 93.43 197 | 77.24 258 | 91.89 312 | 90.18 352 | 69.86 356 | 68.02 336 | 91.94 232 | 52.21 334 | 98.84 117 | 59.32 350 | 83.12 237 | 91.35 254 |
|
| IterMVS-SCA-FT | | | 80.51 287 | 79.10 286 | 84.73 304 | 89.63 297 | 74.66 293 | 92.98 299 | 91.81 330 | 80.05 259 | 71.06 323 | 85.18 330 | 58.04 298 | 91.40 360 | 72.48 286 | 70.70 313 | 88.12 318 |
|
| PS-CasMVS | | | 80.27 288 | 79.18 284 | 83.52 324 | 87.56 321 | 69.88 337 | 94.08 272 | 95.29 191 | 80.27 255 | 72.08 316 | 88.51 278 | 59.22 289 | 92.23 351 | 67.49 312 | 68.15 337 | 88.45 311 |
|
| pm-mvs1 | | | 80.05 289 | 78.02 294 | 86.15 282 | 85.42 345 | 75.81 286 | 95.11 246 | 92.69 319 | 77.13 302 | 70.36 327 | 87.43 291 | 58.44 294 | 95.27 297 | 71.36 292 | 64.25 359 | 87.36 334 |
|
| RPMNet | | | 79.85 290 | 75.92 309 | 91.64 153 | 90.16 285 | 79.75 186 | 79.02 385 | 95.44 179 | 58.43 391 | 82.27 210 | 72.55 388 | 73.03 191 | 98.41 140 | 46.10 387 | 86.25 213 | 96.75 169 |
|
| PatchT | | | 79.75 291 | 76.85 303 | 88.42 230 | 89.55 298 | 75.49 288 | 77.37 389 | 94.61 227 | 63.07 372 | 82.46 204 | 73.32 385 | 75.52 151 | 93.41 342 | 51.36 374 | 84.43 229 | 96.36 178 |
|
| Anonymous20231211 | | | 79.72 292 | 77.19 300 | 87.33 261 | 95.59 124 | 77.16 262 | 95.18 243 | 94.18 254 | 59.31 389 | 72.57 313 | 86.20 316 | 47.89 351 | 95.66 276 | 74.53 272 | 69.24 327 | 89.18 288 |
|
| test_fmvs2 | | | 79.59 293 | 79.90 280 | 78.67 352 | 82.86 368 | 55.82 388 | 95.20 240 | 89.55 356 | 81.09 233 | 80.12 235 | 89.80 261 | 34.31 386 | 93.51 340 | 87.82 146 | 78.36 277 | 86.69 341 |
|
| ADS-MVSNet2 | | | 79.57 294 | 77.53 297 | 85.71 289 | 93.78 183 | 72.13 317 | 79.48 381 | 86.11 378 | 73.09 336 | 80.14 233 | 79.99 366 | 62.15 268 | 90.14 372 | 59.49 348 | 83.52 233 | 94.85 218 |
|
| FMVSNet1 | | | 79.50 295 | 76.54 305 | 88.39 232 | 88.47 310 | 81.95 123 | 94.30 266 | 93.38 297 | 73.14 335 | 72.04 317 | 85.66 319 | 43.86 360 | 93.84 333 | 65.48 325 | 72.53 301 | 89.38 281 |
|
| PEN-MVS | | | 79.47 296 | 78.26 292 | 83.08 327 | 86.36 331 | 68.58 345 | 93.85 279 | 94.77 215 | 79.76 264 | 71.37 318 | 88.55 275 | 59.79 281 | 92.46 347 | 64.50 329 | 65.40 354 | 88.19 316 |
|
| XVG-ACMP-BASELINE | | | 79.38 297 | 77.90 295 | 83.81 317 | 84.98 352 | 67.14 355 | 89.03 337 | 93.18 307 | 80.26 256 | 72.87 310 | 88.15 283 | 38.55 377 | 96.26 246 | 76.05 256 | 78.05 279 | 88.02 319 |
|
| v7n | | | 79.32 298 | 77.34 298 | 85.28 297 | 84.05 362 | 72.89 313 | 93.38 288 | 93.87 270 | 75.02 319 | 70.68 324 | 84.37 339 | 59.58 284 | 95.62 281 | 67.60 311 | 67.50 344 | 87.32 335 |
|
| MIMVSNet | | | 79.18 299 | 75.99 308 | 88.72 227 | 87.37 323 | 80.66 162 | 79.96 380 | 91.82 329 | 77.38 299 | 74.33 296 | 81.87 355 | 41.78 369 | 90.74 367 | 66.36 323 | 83.10 238 | 94.76 220 |
|
| JIA-IIPM | | | 79.00 300 | 77.20 299 | 84.40 313 | 89.74 294 | 64.06 364 | 75.30 393 | 95.44 179 | 62.15 375 | 81.90 214 | 59.08 397 | 78.92 89 | 95.59 283 | 66.51 321 | 85.78 221 | 93.54 241 |
|
| USDC | | | 78.65 301 | 76.25 306 | 85.85 285 | 87.58 320 | 74.60 295 | 89.58 333 | 90.58 351 | 84.05 176 | 63.13 360 | 88.23 281 | 40.69 376 | 96.86 225 | 66.57 320 | 75.81 286 | 86.09 350 |
|
| DTE-MVSNet | | | 78.37 302 | 77.06 301 | 82.32 334 | 85.22 350 | 67.17 354 | 93.40 287 | 93.66 284 | 78.71 285 | 70.53 326 | 88.29 280 | 59.06 290 | 92.23 351 | 61.38 343 | 63.28 363 | 87.56 329 |
|
| Patchmatch-test | | | 78.25 303 | 74.72 317 | 88.83 224 | 91.20 262 | 74.10 300 | 73.91 396 | 88.70 367 | 59.89 387 | 66.82 343 | 85.12 333 | 78.38 98 | 94.54 320 | 48.84 383 | 79.58 264 | 97.86 100 |
|
| tfpnnormal | | | 78.14 304 | 75.42 311 | 86.31 280 | 88.33 313 | 79.24 200 | 94.41 261 | 96.22 127 | 73.51 331 | 69.81 331 | 85.52 325 | 55.43 321 | 95.75 271 | 47.65 385 | 67.86 340 | 83.95 368 |
|
| ACMH | | 75.40 17 | 77.99 305 | 74.96 313 | 87.10 268 | 90.67 276 | 76.41 272 | 93.19 297 | 91.64 333 | 72.47 342 | 63.44 358 | 87.61 290 | 43.34 363 | 97.16 206 | 58.34 352 | 73.94 294 | 87.72 323 |
| Qingshan Xu and Wenbing Tao: Multi-Scale Geometric Consistency Guided Multi-View Stereo. CVPR 2019 |
| LTVRE_ROB | | 73.68 18 | 77.99 305 | 75.74 310 | 84.74 303 | 90.45 280 | 72.02 319 | 86.41 360 | 91.12 340 | 72.57 341 | 66.63 345 | 87.27 294 | 54.95 326 | 96.98 215 | 56.29 362 | 75.98 283 | 85.21 359 |
| Andreas Kuhn, Heiko Hirschmüller, Daniel Scharstein, Helmut Mayer: A TV Prior for High-Quality Scalable Multi-View Stereo Reconstruction. International Journal of Computer Vision 2016 |
| Syy-MVS | | | 77.97 307 | 78.05 293 | 77.74 356 | 92.13 240 | 56.85 384 | 93.97 274 | 94.23 249 | 82.43 214 | 73.39 301 | 93.57 204 | 57.95 301 | 87.86 378 | 32.40 398 | 82.34 248 | 88.51 306 |
|
| our_test_3 | | | 77.90 308 | 75.37 312 | 85.48 295 | 85.39 346 | 76.74 267 | 93.63 282 | 91.67 331 | 73.39 334 | 65.72 350 | 84.65 338 | 58.20 297 | 93.13 344 | 57.82 354 | 67.87 339 | 86.57 343 |
|
| RPSCF | | | 77.73 309 | 76.63 304 | 81.06 341 | 88.66 309 | 55.76 389 | 87.77 349 | 87.88 370 | 64.82 370 | 74.14 297 | 92.79 217 | 49.22 345 | 96.81 227 | 67.47 313 | 76.88 282 | 90.62 260 |
|
| KD-MVS_2432*1600 | | | 77.63 310 | 74.92 315 | 85.77 287 | 90.86 272 | 79.44 194 | 88.08 345 | 93.92 266 | 76.26 309 | 67.05 341 | 82.78 351 | 72.15 203 | 91.92 354 | 61.53 340 | 41.62 399 | 85.94 353 |
|
| miper_refine_blended | | | 77.63 310 | 74.92 315 | 85.77 287 | 90.86 272 | 79.44 194 | 88.08 345 | 93.92 266 | 76.26 309 | 67.05 341 | 82.78 351 | 72.15 203 | 91.92 354 | 61.53 340 | 41.62 399 | 85.94 353 |
|
| ACMH+ | | 76.62 16 | 77.47 312 | 74.94 314 | 85.05 300 | 91.07 267 | 71.58 327 | 93.26 294 | 90.01 353 | 71.80 345 | 64.76 353 | 88.55 275 | 41.62 370 | 96.48 238 | 62.35 339 | 71.00 309 | 87.09 337 |
|
| Patchmtry | | | 77.36 313 | 74.59 318 | 85.67 290 | 89.75 292 | 75.75 287 | 77.85 388 | 91.12 340 | 60.28 384 | 71.23 320 | 80.35 363 | 75.45 152 | 93.56 339 | 57.94 353 | 67.34 346 | 87.68 325 |
|
| ppachtmachnet_test | | | 77.19 314 | 74.22 322 | 86.13 283 | 85.39 346 | 78.22 229 | 93.98 273 | 91.36 337 | 71.74 346 | 67.11 340 | 84.87 336 | 56.67 313 | 93.37 343 | 52.21 372 | 64.59 356 | 86.80 339 |
|
| OurMVSNet-221017-0 | | | 77.18 315 | 76.06 307 | 80.55 344 | 83.78 365 | 60.00 379 | 90.35 328 | 91.05 343 | 77.01 306 | 66.62 346 | 87.92 286 | 47.73 352 | 94.03 330 | 71.63 289 | 68.44 333 | 87.62 326 |
|
| TransMVSNet (Re) | | | 76.94 316 | 74.38 320 | 84.62 308 | 85.92 340 | 75.25 290 | 95.28 234 | 89.18 361 | 73.88 329 | 67.22 338 | 86.46 309 | 59.64 282 | 94.10 329 | 59.24 351 | 52.57 384 | 84.50 363 |
|
| EU-MVSNet | | | 76.92 317 | 76.95 302 | 76.83 360 | 84.10 360 | 54.73 392 | 91.77 314 | 92.71 318 | 72.74 339 | 69.57 332 | 88.69 273 | 58.03 300 | 87.43 382 | 64.91 328 | 70.00 320 | 88.33 314 |
|
| Patchmatch-RL test | | | 76.65 318 | 74.01 325 | 84.55 309 | 77.37 385 | 64.23 362 | 78.49 387 | 82.84 389 | 78.48 287 | 64.63 354 | 73.40 384 | 76.05 140 | 91.70 359 | 76.99 244 | 57.84 372 | 97.72 111 |
|
| FMVSNet5 | | | 76.46 319 | 74.16 323 | 83.35 326 | 90.05 288 | 76.17 275 | 89.58 333 | 89.85 354 | 71.39 348 | 65.29 352 | 80.42 362 | 50.61 339 | 87.70 381 | 61.05 345 | 69.24 327 | 86.18 348 |
|
| SixPastTwentyTwo | | | 76.04 320 | 74.32 321 | 81.22 339 | 84.54 355 | 61.43 375 | 91.16 322 | 89.30 360 | 77.89 291 | 64.04 355 | 86.31 314 | 48.23 346 | 94.29 326 | 63.54 335 | 63.84 361 | 87.93 321 |
|
| AllTest | | | 75.92 321 | 73.06 329 | 84.47 310 | 92.18 237 | 67.29 349 | 91.07 323 | 84.43 383 | 67.63 361 | 63.48 356 | 90.18 256 | 38.20 378 | 97.16 206 | 57.04 358 | 73.37 297 | 88.97 299 |
|
| CL-MVSNet_self_test | | | 75.81 322 | 74.14 324 | 80.83 343 | 78.33 381 | 67.79 348 | 94.22 270 | 93.52 291 | 77.28 301 | 69.82 330 | 81.54 357 | 61.47 276 | 89.22 373 | 57.59 356 | 53.51 380 | 85.48 357 |
|
| COLMAP_ROB |  | 73.24 19 | 75.74 323 | 73.00 330 | 83.94 316 | 92.38 225 | 69.08 343 | 91.85 313 | 86.93 373 | 61.48 379 | 65.32 351 | 90.27 255 | 42.27 368 | 96.93 220 | 50.91 376 | 75.63 287 | 85.80 356 |
| Johannes L. Schönberger, Enliang Zheng, Marc Pollefeys, Jan-Michael Frahm: Pixelwise View Selection for Unstructured Multi-View Stereo. ECCV 2016 |
| CMPMVS |  | 54.94 21 | 75.71 324 | 74.56 319 | 79.17 351 | 79.69 377 | 55.98 386 | 89.59 332 | 93.30 302 | 60.28 384 | 53.85 388 | 89.07 268 | 47.68 353 | 96.33 244 | 76.55 249 | 81.02 254 | 85.22 358 |
| M. Jancosek, T. Pajdla: Multi-View Reconstruction Preserving Weakly-Supported Surfaces. CVPR 2011 |
| Anonymous20231206 | | | 75.29 325 | 73.64 326 | 80.22 345 | 80.75 372 | 63.38 368 | 93.36 289 | 90.71 350 | 73.09 336 | 67.12 339 | 83.70 345 | 50.33 341 | 90.85 366 | 53.63 370 | 70.10 318 | 86.44 344 |
|
| EG-PatchMatch MVS | | | 74.92 326 | 72.02 334 | 83.62 322 | 83.76 366 | 73.28 306 | 93.62 283 | 92.04 327 | 68.57 359 | 58.88 377 | 83.80 344 | 31.87 390 | 95.57 285 | 56.97 360 | 78.67 271 | 82.00 379 |
|
| testgi | | | 74.88 327 | 73.40 327 | 79.32 350 | 80.13 376 | 61.75 372 | 93.21 295 | 86.64 376 | 79.49 270 | 66.56 347 | 91.06 242 | 35.51 384 | 88.67 375 | 56.79 361 | 71.25 307 | 87.56 329 |
|
| pmmvs6 | | | 74.65 328 | 71.67 335 | 83.60 323 | 79.13 379 | 69.94 336 | 93.31 293 | 90.88 347 | 61.05 383 | 65.83 349 | 84.15 342 | 43.43 362 | 94.83 313 | 66.62 318 | 60.63 368 | 86.02 351 |
|
| test_vis1_rt | | | 73.96 329 | 72.40 332 | 78.64 353 | 83.91 363 | 61.16 376 | 95.63 221 | 68.18 405 | 76.32 308 | 60.09 374 | 74.77 379 | 29.01 394 | 97.54 182 | 87.74 147 | 75.94 284 | 77.22 388 |
|
| K. test v3 | | | 73.62 330 | 71.59 336 | 79.69 347 | 82.98 367 | 59.85 380 | 90.85 326 | 88.83 363 | 77.13 302 | 58.90 376 | 82.11 353 | 43.62 361 | 91.72 358 | 65.83 324 | 54.10 379 | 87.50 332 |
|
| pmmvs-eth3d | | | 73.59 331 | 70.66 339 | 82.38 332 | 76.40 389 | 73.38 303 | 89.39 336 | 89.43 358 | 72.69 340 | 60.34 373 | 77.79 372 | 46.43 356 | 91.26 363 | 66.42 322 | 57.06 373 | 82.51 374 |
|
| kuosan | | | 73.55 332 | 72.39 333 | 77.01 358 | 89.68 295 | 66.72 356 | 85.24 368 | 93.44 293 | 67.76 360 | 60.04 375 | 83.40 348 | 71.90 206 | 84.25 390 | 45.34 388 | 54.75 375 | 80.06 384 |
|
| MDA-MVSNet_test_wron | | | 73.54 333 | 70.43 341 | 82.86 328 | 84.55 354 | 71.85 322 | 91.74 315 | 91.32 339 | 67.63 361 | 46.73 392 | 81.09 360 | 55.11 324 | 90.42 370 | 55.91 364 | 59.76 369 | 86.31 346 |
|
| YYNet1 | | | 73.53 334 | 70.43 341 | 82.85 329 | 84.52 356 | 71.73 325 | 91.69 316 | 91.37 336 | 67.63 361 | 46.79 391 | 81.21 359 | 55.04 325 | 90.43 369 | 55.93 363 | 59.70 370 | 86.38 345 |
|
| UnsupCasMVSNet_eth | | | 73.25 335 | 70.57 340 | 81.30 338 | 77.53 383 | 66.33 357 | 87.24 353 | 93.89 269 | 80.38 251 | 57.90 381 | 81.59 356 | 42.91 367 | 90.56 368 | 65.18 327 | 48.51 389 | 87.01 338 |
|
| DSMNet-mixed | | | 73.13 336 | 72.45 331 | 75.19 366 | 77.51 384 | 46.82 397 | 85.09 369 | 82.01 390 | 67.61 365 | 69.27 334 | 81.33 358 | 50.89 337 | 86.28 385 | 54.54 367 | 83.80 232 | 92.46 249 |
|
| OpenMVS_ROB |  | 68.52 20 | 73.02 337 | 69.57 344 | 83.37 325 | 80.54 375 | 71.82 323 | 93.60 284 | 88.22 368 | 62.37 374 | 61.98 366 | 83.15 350 | 35.31 385 | 95.47 287 | 45.08 389 | 75.88 285 | 82.82 371 |
|
| test_0402 | | | 72.68 338 | 69.54 345 | 82.09 335 | 88.67 308 | 71.81 324 | 92.72 303 | 86.77 375 | 61.52 378 | 62.21 365 | 83.91 343 | 43.22 364 | 93.76 336 | 34.60 396 | 72.23 305 | 80.72 383 |
|
| TinyColmap | | | 72.41 339 | 68.99 348 | 82.68 330 | 88.11 314 | 69.59 340 | 88.41 342 | 85.20 380 | 65.55 367 | 57.91 380 | 84.82 337 | 30.80 392 | 95.94 260 | 51.38 373 | 68.70 330 | 82.49 376 |
|
| test20.03 | | | 72.36 340 | 71.15 337 | 75.98 364 | 77.79 382 | 59.16 381 | 92.40 307 | 89.35 359 | 74.09 327 | 61.50 368 | 84.32 340 | 48.09 347 | 85.54 388 | 50.63 377 | 62.15 366 | 83.24 369 |
|
| LF4IMVS | | | 72.36 340 | 70.82 338 | 76.95 359 | 79.18 378 | 56.33 385 | 86.12 362 | 86.11 378 | 69.30 358 | 63.06 361 | 86.66 305 | 33.03 388 | 92.25 350 | 65.33 326 | 68.64 331 | 82.28 377 |
|
| Anonymous20240521 | | | 72.06 342 | 69.91 343 | 78.50 354 | 77.11 386 | 61.67 374 | 91.62 318 | 90.97 345 | 65.52 368 | 62.37 364 | 79.05 369 | 36.32 380 | 90.96 365 | 57.75 355 | 68.52 332 | 82.87 370 |
|
| dmvs_testset | | | 72.00 343 | 73.36 328 | 67.91 372 | 83.83 364 | 31.90 412 | 85.30 367 | 77.12 397 | 82.80 207 | 63.05 362 | 92.46 220 | 61.54 275 | 82.55 394 | 42.22 393 | 71.89 306 | 89.29 285 |
|
| MDA-MVSNet-bldmvs | | | 71.45 344 | 67.94 350 | 81.98 336 | 85.33 348 | 68.50 346 | 92.35 308 | 88.76 365 | 70.40 351 | 42.99 395 | 81.96 354 | 46.57 355 | 91.31 362 | 48.75 384 | 54.39 378 | 86.11 349 |
|
| MVS-HIRNet | | | 71.36 345 | 67.00 351 | 84.46 312 | 90.58 277 | 69.74 339 | 79.15 384 | 87.74 371 | 46.09 396 | 61.96 367 | 50.50 400 | 45.14 358 | 95.64 279 | 53.74 369 | 88.11 197 | 88.00 320 |
|
| KD-MVS_self_test | | | 70.97 346 | 69.31 346 | 75.95 365 | 76.24 391 | 55.39 390 | 87.45 350 | 90.94 346 | 70.20 353 | 62.96 363 | 77.48 373 | 44.01 359 | 88.09 376 | 61.25 344 | 53.26 381 | 84.37 364 |
|
| test_fmvs3 | | | 69.56 347 | 69.19 347 | 70.67 370 | 69.01 396 | 47.05 396 | 90.87 325 | 86.81 374 | 71.31 349 | 66.79 344 | 77.15 374 | 16.40 401 | 83.17 392 | 81.84 200 | 62.51 365 | 81.79 381 |
|
| dongtai | | | 69.47 348 | 68.98 349 | 70.93 369 | 86.87 326 | 58.45 382 | 88.19 344 | 93.18 307 | 63.98 371 | 56.04 384 | 80.17 365 | 70.97 219 | 79.24 396 | 33.46 397 | 47.94 391 | 75.09 390 |
|
| MIMVSNet1 | | | 69.44 349 | 66.65 353 | 77.84 355 | 76.48 388 | 62.84 370 | 87.42 351 | 88.97 362 | 66.96 366 | 57.75 382 | 79.72 368 | 32.77 389 | 85.83 387 | 46.32 386 | 63.42 362 | 84.85 361 |
|
| PM-MVS | | | 69.32 350 | 66.93 352 | 76.49 361 | 73.60 393 | 55.84 387 | 85.91 363 | 79.32 395 | 74.72 321 | 61.09 370 | 78.18 371 | 21.76 397 | 91.10 364 | 70.86 298 | 56.90 374 | 82.51 374 |
|
| TDRefinement | | | 69.20 351 | 65.78 355 | 79.48 348 | 66.04 401 | 62.21 371 | 88.21 343 | 86.12 377 | 62.92 373 | 61.03 371 | 85.61 322 | 33.23 387 | 94.16 328 | 55.82 365 | 53.02 382 | 82.08 378 |
|
| new-patchmatchnet | | | 68.85 352 | 65.93 354 | 77.61 357 | 73.57 394 | 63.94 365 | 90.11 330 | 88.73 366 | 71.62 347 | 55.08 386 | 73.60 383 | 40.84 374 | 87.22 384 | 51.35 375 | 48.49 390 | 81.67 382 |
|
| UnsupCasMVSNet_bld | | | 68.60 353 | 64.50 357 | 80.92 342 | 74.63 392 | 67.80 347 | 83.97 373 | 92.94 314 | 65.12 369 | 54.63 387 | 68.23 393 | 35.97 382 | 92.17 353 | 60.13 346 | 44.83 394 | 82.78 372 |
|
| mvsany_test3 | | | 67.19 354 | 65.34 356 | 72.72 368 | 63.08 402 | 48.57 395 | 83.12 376 | 78.09 396 | 72.07 343 | 61.21 369 | 77.11 375 | 22.94 396 | 87.78 380 | 78.59 227 | 51.88 385 | 81.80 380 |
|
| new_pmnet | | | 66.18 355 | 63.18 358 | 75.18 367 | 76.27 390 | 61.74 373 | 83.79 374 | 84.66 382 | 56.64 393 | 51.57 389 | 71.85 391 | 31.29 391 | 87.93 377 | 49.98 379 | 62.55 364 | 75.86 389 |
|
| pmmvs3 | | | 65.75 356 | 62.18 359 | 76.45 362 | 67.12 400 | 64.54 360 | 88.68 340 | 85.05 381 | 54.77 395 | 57.54 383 | 73.79 382 | 29.40 393 | 86.21 386 | 55.49 366 | 47.77 392 | 78.62 386 |
|
| test_f | | | 64.01 357 | 62.13 360 | 69.65 371 | 63.00 403 | 45.30 402 | 83.66 375 | 80.68 392 | 61.30 380 | 55.70 385 | 72.62 387 | 14.23 403 | 84.64 389 | 69.84 303 | 58.11 371 | 79.00 385 |
|
| N_pmnet | | | 61.30 358 | 60.20 361 | 64.60 377 | 84.32 357 | 17.00 418 | 91.67 317 | 10.98 416 | 61.77 377 | 58.45 379 | 78.55 370 | 49.89 343 | 91.83 357 | 42.27 392 | 63.94 360 | 84.97 360 |
|
| WB-MVS | | | 57.26 359 | 56.22 362 | 60.39 383 | 69.29 395 | 35.91 410 | 86.39 361 | 70.06 403 | 59.84 388 | 46.46 393 | 72.71 386 | 51.18 336 | 78.11 397 | 15.19 407 | 34.89 402 | 67.14 396 |
|
| test_method | | | 56.77 360 | 54.53 364 | 63.49 379 | 76.49 387 | 40.70 405 | 75.68 392 | 74.24 399 | 19.47 407 | 48.73 390 | 71.89 390 | 19.31 398 | 65.80 407 | 57.46 357 | 47.51 393 | 83.97 367 |
|
| APD_test1 | | | 56.56 361 | 53.58 365 | 65.50 374 | 67.93 399 | 46.51 399 | 77.24 391 | 72.95 400 | 38.09 398 | 42.75 396 | 75.17 378 | 13.38 404 | 82.78 393 | 40.19 394 | 54.53 377 | 67.23 395 |
|
| SSC-MVS | | | 56.01 362 | 54.96 363 | 59.17 384 | 68.42 397 | 34.13 411 | 84.98 370 | 69.23 404 | 58.08 392 | 45.36 394 | 71.67 392 | 50.30 342 | 77.46 398 | 14.28 408 | 32.33 403 | 65.91 397 |
|
| FPMVS | | | 55.09 363 | 52.93 366 | 61.57 381 | 55.98 405 | 40.51 406 | 83.11 377 | 83.41 388 | 37.61 399 | 34.95 400 | 71.95 389 | 14.40 402 | 76.95 399 | 29.81 399 | 65.16 355 | 67.25 394 |
|
| test_vis3_rt | | | 54.10 364 | 51.04 367 | 63.27 380 | 58.16 404 | 46.08 401 | 84.17 372 | 49.32 415 | 56.48 394 | 36.56 399 | 49.48 402 | 8.03 411 | 91.91 356 | 67.29 314 | 49.87 386 | 51.82 401 |
|
| LCM-MVSNet | | | 52.52 365 | 48.24 368 | 65.35 375 | 47.63 412 | 41.45 404 | 72.55 397 | 83.62 387 | 31.75 400 | 37.66 398 | 57.92 398 | 9.19 410 | 76.76 400 | 49.26 381 | 44.60 395 | 77.84 387 |
|
| EGC-MVSNET | | | 52.46 366 | 47.56 369 | 67.15 373 | 81.98 370 | 60.11 378 | 82.54 378 | 72.44 401 | 0.11 413 | 0.70 414 | 74.59 380 | 25.11 395 | 83.26 391 | 29.04 400 | 61.51 367 | 58.09 398 |
|
| PMMVS2 | | | 50.90 367 | 46.31 370 | 64.67 376 | 55.53 406 | 46.67 398 | 77.30 390 | 71.02 402 | 40.89 397 | 34.16 401 | 59.32 396 | 9.83 409 | 76.14 402 | 40.09 395 | 28.63 404 | 71.21 391 |
|
| ANet_high | | | 46.22 368 | 41.28 375 | 61.04 382 | 39.91 414 | 46.25 400 | 70.59 398 | 76.18 398 | 58.87 390 | 23.09 406 | 48.00 403 | 12.58 406 | 66.54 406 | 28.65 401 | 13.62 407 | 70.35 392 |
|
| testf1 | | | 45.70 369 | 42.41 371 | 55.58 385 | 53.29 409 | 40.02 407 | 68.96 399 | 62.67 409 | 27.45 402 | 29.85 402 | 61.58 394 | 5.98 412 | 73.83 404 | 28.49 402 | 43.46 397 | 52.90 399 |
|
| APD_test2 | | | 45.70 369 | 42.41 371 | 55.58 385 | 53.29 409 | 40.02 407 | 68.96 399 | 62.67 409 | 27.45 402 | 29.85 402 | 61.58 394 | 5.98 412 | 73.83 404 | 28.49 402 | 43.46 397 | 52.90 399 |
|
| Gipuma |  | | 45.11 371 | 42.05 373 | 54.30 387 | 80.69 373 | 51.30 394 | 35.80 405 | 83.81 386 | 28.13 401 | 27.94 405 | 34.53 405 | 11.41 408 | 76.70 401 | 21.45 404 | 54.65 376 | 34.90 405 |
| S. Galliani, K. Lasinger, K. Schindler: Massively Parallel Multiview Stereopsis by Surface Normal Diffusion. ICCV 2015 |
| tmp_tt | | | 41.54 372 | 41.93 374 | 40.38 390 | 20.10 416 | 26.84 414 | 61.93 402 | 59.09 411 | 14.81 409 | 28.51 404 | 80.58 361 | 35.53 383 | 48.33 411 | 63.70 334 | 13.11 408 | 45.96 404 |
|
| PMVS |  | 34.80 23 | 39.19 373 | 35.53 376 | 50.18 388 | 29.72 415 | 30.30 413 | 59.60 403 | 66.20 408 | 26.06 404 | 17.91 408 | 49.53 401 | 3.12 414 | 74.09 403 | 18.19 406 | 49.40 387 | 46.14 402 |
| Y. Furukawa, J. Ponce: Accurate, dense, and robust multiview stereopsis. PAMI (2010) |
| MVE |  | 35.65 22 | 33.85 374 | 29.49 379 | 46.92 389 | 41.86 413 | 36.28 409 | 50.45 404 | 56.52 412 | 18.75 408 | 18.28 407 | 37.84 404 | 2.41 415 | 58.41 408 | 18.71 405 | 20.62 405 | 46.06 403 |
| Simon Fuhrmann, Fabian Langguth, Michael Goesele: MVE - A Multi-View Reconstruction Environment. EUROGRAPHICS Workshops on Graphics and Cultural Heritage (2014) |
| E-PMN | | | 32.70 375 | 32.39 377 | 33.65 391 | 53.35 408 | 25.70 415 | 74.07 395 | 53.33 413 | 21.08 405 | 17.17 409 | 33.63 407 | 11.85 407 | 54.84 409 | 12.98 409 | 14.04 406 | 20.42 406 |
|
| EMVS | | | 31.70 376 | 31.45 378 | 32.48 392 | 50.72 411 | 23.95 416 | 74.78 394 | 52.30 414 | 20.36 406 | 16.08 410 | 31.48 408 | 12.80 405 | 53.60 410 | 11.39 410 | 13.10 409 | 19.88 407 |
|
| cdsmvs_eth3d_5k | | | 21.43 377 | 28.57 380 | 0.00 396 | 0.00 419 | 0.00 421 | 0.00 407 | 95.93 151 | 0.00 414 | 0.00 415 | 97.66 72 | 63.57 260 | 0.00 415 | 0.00 414 | 0.00 413 | 0.00 411 |
|
| wuyk23d | | | 14.10 378 | 13.89 381 | 14.72 393 | 55.23 407 | 22.91 417 | 33.83 406 | 3.56 417 | 4.94 410 | 4.11 411 | 2.28 413 | 2.06 416 | 19.66 412 | 10.23 411 | 8.74 410 | 1.59 410 |
|
| testmvs | | | 9.92 379 | 12.94 382 | 0.84 395 | 0.65 417 | 0.29 420 | 93.78 280 | 0.39 418 | 0.42 411 | 2.85 412 | 15.84 411 | 0.17 418 | 0.30 414 | 2.18 412 | 0.21 411 | 1.91 409 |
|
| test123 | | | 9.07 380 | 11.73 383 | 1.11 394 | 0.50 418 | 0.77 419 | 89.44 335 | 0.20 419 | 0.34 412 | 2.15 413 | 10.72 412 | 0.34 417 | 0.32 413 | 1.79 413 | 0.08 412 | 2.23 408 |
|
| ab-mvs-re | | | 8.11 381 | 10.81 384 | 0.00 396 | 0.00 419 | 0.00 421 | 0.00 407 | 0.00 420 | 0.00 414 | 0.00 415 | 97.30 95 | 0.00 419 | 0.00 415 | 0.00 414 | 0.00 413 | 0.00 411 |
|
| pcd_1.5k_mvsjas | | | 5.92 382 | 7.89 385 | 0.00 396 | 0.00 419 | 0.00 421 | 0.00 407 | 0.00 420 | 0.00 414 | 0.00 415 | 0.00 414 | 71.04 216 | 0.00 415 | 0.00 414 | 0.00 413 | 0.00 411 |
|
| test_blank | | | 0.00 383 | 0.00 386 | 0.00 396 | 0.00 419 | 0.00 421 | 0.00 407 | 0.00 420 | 0.00 414 | 0.00 415 | 0.00 414 | 0.00 419 | 0.00 415 | 0.00 414 | 0.00 413 | 0.00 411 |
|
| uanet_test | | | 0.00 383 | 0.00 386 | 0.00 396 | 0.00 419 | 0.00 421 | 0.00 407 | 0.00 420 | 0.00 414 | 0.00 415 | 0.00 414 | 0.00 419 | 0.00 415 | 0.00 414 | 0.00 413 | 0.00 411 |
|
| DCPMVS | | | 0.00 383 | 0.00 386 | 0.00 396 | 0.00 419 | 0.00 421 | 0.00 407 | 0.00 420 | 0.00 414 | 0.00 415 | 0.00 414 | 0.00 419 | 0.00 415 | 0.00 414 | 0.00 413 | 0.00 411 |
|
| sosnet-low-res | | | 0.00 383 | 0.00 386 | 0.00 396 | 0.00 419 | 0.00 421 | 0.00 407 | 0.00 420 | 0.00 414 | 0.00 415 | 0.00 414 | 0.00 419 | 0.00 415 | 0.00 414 | 0.00 413 | 0.00 411 |
|
| sosnet | | | 0.00 383 | 0.00 386 | 0.00 396 | 0.00 419 | 0.00 421 | 0.00 407 | 0.00 420 | 0.00 414 | 0.00 415 | 0.00 414 | 0.00 419 | 0.00 415 | 0.00 414 | 0.00 413 | 0.00 411 |
|
| uncertanet | | | 0.00 383 | 0.00 386 | 0.00 396 | 0.00 419 | 0.00 421 | 0.00 407 | 0.00 420 | 0.00 414 | 0.00 415 | 0.00 414 | 0.00 419 | 0.00 415 | 0.00 414 | 0.00 413 | 0.00 411 |
|
| Regformer | | | 0.00 383 | 0.00 386 | 0.00 396 | 0.00 419 | 0.00 421 | 0.00 407 | 0.00 420 | 0.00 414 | 0.00 415 | 0.00 414 | 0.00 419 | 0.00 415 | 0.00 414 | 0.00 413 | 0.00 411 |
|
| uanet | | | 0.00 383 | 0.00 386 | 0.00 396 | 0.00 419 | 0.00 421 | 0.00 407 | 0.00 420 | 0.00 414 | 0.00 415 | 0.00 414 | 0.00 419 | 0.00 415 | 0.00 414 | 0.00 413 | 0.00 411 |
|
| WAC-MVS | | | | | | | 67.18 351 | | | | | | | | 49.00 382 | | |
|
| FOURS1 | | | | | | 98.51 39 | 78.01 237 | 98.13 49 | 96.21 128 | 83.04 200 | 94.39 52 | | | | | | |
|
| MSC_two_6792asdad | | | | | 97.14 3 | 99.05 9 | 92.19 4 | | 96.83 51 | | | | | 99.81 22 | 98.08 14 | 98.81 24 | 99.43 11 |
|
| PC_three_1452 | | | | | | | | | | 91.12 35 | 98.33 2 | 98.42 28 | 92.51 2 | 99.81 22 | 98.96 4 | 99.37 1 | 99.70 3 |
|
| No_MVS | | | | | 97.14 3 | 99.05 9 | 92.19 4 | | 96.83 51 | | | | | 99.81 22 | 98.08 14 | 98.81 24 | 99.43 11 |
|
| test_one_0601 | | | | | | 98.91 18 | 84.56 81 | | 96.70 70 | 88.06 82 | 96.57 23 | 98.77 10 | 88.04 19 | | | | |
|
| eth-test2 | | | | | | 0.00 419 | | | | | | | | | | | |
|
| eth-test | | | | | | 0.00 419 | | | | | | | | | | | |
|
| ZD-MVS | | | | | | 99.09 8 | 83.22 105 | | 96.60 86 | 82.88 205 | 93.61 64 | 98.06 50 | 82.93 54 | 99.14 97 | 95.51 50 | 98.49 40 | |
|
| RE-MVS-def | | | | 91.18 90 | | 97.76 67 | 76.03 279 | 96.20 194 | 95.44 179 | 80.56 245 | 90.72 105 | 97.84 64 | 73.36 189 | | 91.99 96 | 96.79 94 | 97.75 109 |
|
| IU-MVS | | | | | | 99.03 15 | 85.34 58 | | 96.86 50 | 92.05 27 | 98.74 1 | | | | 98.15 11 | 98.97 17 | 99.42 13 |
|
| OPU-MVS | | | | | 97.30 2 | 99.19 7 | 92.31 3 | 99.12 12 | | | | 98.54 20 | 92.06 3 | 99.84 13 | 99.11 3 | 99.37 1 | 99.74 1 |
|
| test_241102_TWO | | | | | | | | | 96.78 54 | 88.72 66 | 97.70 8 | 98.91 2 | 87.86 20 | 99.82 19 | 98.15 11 | 99.00 15 | 99.47 9 |
|
| test_241102_ONE | | | | | | 99.03 15 | 85.03 71 | | 96.78 54 | 88.72 66 | 97.79 6 | 98.90 5 | 88.48 16 | 99.82 19 | | | |
|
| 9.14 | | | | 94.26 31 | | 98.10 57 | | 98.14 46 | 96.52 95 | 84.74 155 | 94.83 47 | 98.80 7 | 82.80 56 | 99.37 80 | 95.95 41 | 98.42 43 | |
|
| save fliter | | | | | | 98.24 51 | 83.34 102 | 98.61 33 | 96.57 90 | 91.32 32 | | | | | | | |
|
| test_0728_THIRD | | | | | | | | | | 88.38 74 | 96.69 18 | 98.76 12 | 89.64 12 | 99.76 31 | 97.47 24 | 98.84 23 | 99.38 14 |
|
| test_0728_SECOND | | | | | 95.14 20 | 99.04 14 | 86.14 40 | 99.06 17 | 96.77 60 | | | | | 99.84 13 | 97.90 17 | 98.85 21 | 99.45 10 |
|
| test0726 | | | | | | 99.05 9 | 85.18 63 | 99.11 15 | 96.78 54 | 88.75 64 | 97.65 11 | 98.91 2 | 87.69 21 | | | | |
|
| GSMVS | | | | | | | | | | | | | | | | | 97.54 124 |
|
| test_part2 | | | | | | 98.90 19 | 85.14 69 | | | | 96.07 29 | | | | | | |
|
| sam_mvs1 | | | | | | | | | | | | | 77.59 111 | | | | 97.54 124 |
|
| sam_mvs | | | | | | | | | | | | | 75.35 159 | | | | |
|
| ambc | | | | | 76.02 363 | 68.11 398 | 51.43 393 | 64.97 401 | 89.59 355 | | 60.49 372 | 74.49 381 | 17.17 400 | 92.46 347 | 61.50 342 | 52.85 383 | 84.17 366 |
|
| MTGPA |  | | | | | | | | 96.33 118 | | | | | | | | |
|
| test_post1 | | | | | | | | 85.88 364 | | | | 30.24 409 | 73.77 182 | 95.07 308 | 73.89 276 | | |
|
| test_post | | | | | | | | | | | | 33.80 406 | 76.17 138 | 95.97 256 | | | |
|
| patchmatchnet-post | | | | | | | | | | | | 77.09 376 | 77.78 110 | 95.39 289 | | | |
|
| GG-mvs-BLEND | | | | | 93.49 75 | 94.94 146 | 86.26 38 | 81.62 379 | 97.00 36 | | 88.32 142 | 94.30 184 | 91.23 5 | 96.21 249 | 88.49 140 | 97.43 77 | 98.00 90 |
|
| MTMP | | | | | | | | 97.53 90 | 68.16 406 | | | | | | | | |
|
| gm-plane-assit | | | | | | 92.27 231 | 79.64 192 | | | 84.47 165 | | 95.15 163 | | 97.93 156 | 85.81 161 | | |
|
| test9_res | | | | | | | | | | | | | | | 96.00 40 | 99.03 13 | 98.31 68 |
|
| TEST9 | | | | | | 98.64 31 | 83.71 93 | 97.82 68 | 96.65 77 | 84.29 172 | 95.16 37 | 98.09 45 | 84.39 36 | 99.36 81 | | | |
|
| test_8 | | | | | | 98.63 33 | 83.64 96 | 97.81 70 | 96.63 82 | 84.50 163 | 95.10 40 | 98.11 44 | 84.33 37 | 99.23 86 | | | |
|
| agg_prior2 | | | | | | | | | | | | | | | 94.30 63 | 99.00 15 | 98.57 53 |
|
| agg_prior | | | | | | 98.59 35 | 83.13 106 | | 96.56 92 | | 94.19 54 | | | 99.16 96 | | | |
|
| TestCases | | | | | 84.47 310 | 92.18 237 | 67.29 349 | | 84.43 383 | 67.63 361 | 63.48 356 | 90.18 256 | 38.20 378 | 97.16 206 | 57.04 358 | 73.37 297 | 88.97 299 |
|
| test_prior4 | | | | | | | 82.34 119 | 97.75 75 | | | | | | | | | |
|
| test_prior2 | | | | | | | | 98.37 39 | | 86.08 124 | 94.57 50 | 98.02 51 | 83.14 50 | | 95.05 53 | 98.79 27 | |
|
| test_prior | | | | | 93.09 89 | 98.68 26 | 81.91 127 | | 96.40 110 | | | | | 99.06 104 | | | 98.29 70 |
|
| 旧先验2 | | | | | | | | 96.97 140 | | 74.06 328 | 96.10 28 | | | 97.76 167 | 88.38 142 | | |
|
| æ–°å‡ ä½•2 | | | | | | | | 96.42 180 | | | | | | | | | |
|
| æ–°å‡ ä½•1 | | | | | 93.12 87 | 97.44 79 | 81.60 141 | | 96.71 69 | 74.54 324 | 91.22 98 | 97.57 80 | 79.13 87 | 99.51 71 | 77.40 242 | 98.46 41 | 98.26 73 |
|
| 旧先验1 | | | | | | 97.39 83 | 79.58 193 | | 96.54 93 | | | 98.08 48 | 84.00 42 | | | 97.42 78 | 97.62 120 |
|
| æ— å…ˆéªŒ | | | | | | | | 96.87 149 | 96.78 54 | 77.39 298 | | | | 99.52 69 | 79.95 214 | | 98.43 61 |
|
| 原ACMM2 | | | | | | | | 96.84 150 | | | | | | | | | |
|
| 原ACMM1 | | | | | 91.22 167 | 97.77 65 | 78.10 235 | | 96.61 83 | 81.05 234 | 91.28 97 | 97.42 89 | 77.92 107 | 98.98 108 | 79.85 216 | 98.51 37 | 96.59 173 |
|
| test222 | | | | | | 96.15 104 | 78.41 223 | 95.87 210 | 96.46 102 | 71.97 344 | 89.66 118 | 97.45 85 | 76.33 136 | | | 98.24 52 | 98.30 69 |
|
| testdata2 | | | | | | | | | | | | | | 99.48 73 | 76.45 251 | | |
|
| segment_acmp | | | | | | | | | | | | | 82.69 57 | | | | |
|
| testdata | | | | | 90.13 196 | 95.92 114 | 74.17 299 | | 96.49 101 | 73.49 333 | 94.82 48 | 97.99 52 | 78.80 93 | 97.93 156 | 83.53 187 | 97.52 73 | 98.29 70 |
|
| testdata1 | | | | | | | | 95.57 226 | | 87.44 98 | | | | | | | |
|
| test12 | | | | | 94.25 42 | 98.34 46 | 85.55 55 | | 96.35 117 | | 92.36 78 | | 80.84 65 | 99.22 87 | | 98.31 50 | 97.98 92 |
|
| plane_prior7 | | | | | | 91.86 252 | 77.55 253 | | | | | | | | | | |
|
| plane_prior6 | | | | | | 91.98 248 | 77.92 242 | | | | | | 64.77 255 | | | | |
|
| plane_prior5 | | | | | | | | | 94.69 217 | | | | | 97.30 198 | 87.08 153 | 82.82 243 | 90.96 257 |
|
| plane_prior4 | | | | | | | | | | | | 94.15 189 | | | | | |
|
| plane_prior3 | | | | | | | 77.75 249 | | | 90.17 51 | 81.33 219 | | | | | | |
|
| plane_prior2 | | | | | | | | 97.18 116 | | 89.89 53 | | | | | | | |
|
| plane_prior1 | | | | | | 91.95 250 | | | | | | | | | | | |
|
| plane_prior | | | | | | | 77.96 239 | 97.52 93 | | 90.36 49 | | | | | | 82.96 241 | |
|
| n2 | | | | | | | | | 0.00 420 | | | | | | | | |
|
| nn | | | | | | | | | 0.00 420 | | | | | | | | |
|
| door-mid | | | | | | | | | 79.75 394 | | | | | | | | |
|
| lessismore_v0 | | | | | 79.98 346 | 80.59 374 | 58.34 383 | | 80.87 391 | | 58.49 378 | 83.46 347 | 43.10 365 | 93.89 332 | 63.11 337 | 48.68 388 | 87.72 323 |
|
| LGP-MVS_train | | | | | 86.33 277 | 90.88 269 | 73.06 309 | | 94.13 256 | 82.20 218 | 76.31 272 | 93.20 208 | 54.83 327 | 96.95 217 | 83.72 181 | 80.83 256 | 88.98 297 |
|
| test11 | | | | | | | | | 96.50 98 | | | | | | | | |
|
| door | | | | | | | | | 80.13 393 | | | | | | | | |
|
| HQP5-MVS | | | | | | | 78.48 219 | | | | | | | | | | |
|
| HQP-NCC | | | | | | 92.08 243 | | 97.63 81 | | 90.52 44 | 82.30 206 | | | | | | |
|
| ACMP_Plane | | | | | | 92.08 243 | | 97.63 81 | | 90.52 44 | 82.30 206 | | | | | | |
|
| BP-MVS | | | | | | | | | | | | | | | 87.67 149 | | |
|
| HQP4-MVS | | | | | | | | | | | 82.30 206 | | | 97.32 196 | | | 91.13 255 |
|
| HQP3-MVS | | | | | | | | | 94.80 212 | | | | | | | 83.01 239 | |
|
| HQP2-MVS | | | | | | | | | | | | | 65.40 250 | | | | |
|
| NP-MVS | | | | | | 92.04 247 | 78.22 229 | | | | | 94.56 179 | | | | | |
|
| MDTV_nov1_ep13_2view | | | | | | | 81.74 135 | 86.80 356 | | 80.65 242 | 85.65 166 | | 74.26 176 | | 76.52 250 | | 96.98 156 |
|
| MDTV_nov1_ep13 | | | | 83.69 219 | | 94.09 177 | 81.01 150 | 86.78 357 | 96.09 137 | 83.81 186 | 84.75 177 | 84.32 340 | 74.44 175 | 96.54 236 | 63.88 332 | 85.07 227 | |
|
| ACMMP++_ref | | | | | | | | | | | | | | | | 78.45 276 | |
|
| ACMMP++ | | | | | | | | | | | | | | | | 79.05 268 | |
|
| Test By Simon | | | | | | | | | | | | | 71.65 209 | | | | |
|
| ITE_SJBPF | | | | | 82.38 332 | 87.00 325 | 65.59 358 | | 89.55 356 | 79.99 261 | 69.37 333 | 91.30 239 | 41.60 371 | 95.33 293 | 62.86 338 | 74.63 293 | 86.24 347 |
|
| DeepMVS_CX |  | | | | 64.06 378 | 78.53 380 | 43.26 403 | | 68.11 407 | 69.94 355 | 38.55 397 | 76.14 377 | 18.53 399 | 79.34 395 | 43.72 390 | 41.62 399 | 69.57 393 |
|