This table lists the benchmark results for the high-res multi-view scenario. The following metrics are evaluated:

(*) For exact definitions, detailing how potentially incomplete ground truth is taken into account, see our paper.

The datasets are grouped into different categories, and result averages are computed for a category and method if results of the method are available for all datasets within the category. Note that the category "all" includes both the high-res multi-view and the low-res many-view scenarios.

Methods with suffix _ROB may participate in the Robust Vision Challenge.

Click a dataset result cell to show a visualization of the reconstruction. For training datasets, ground truth and accuracy / completeness visualizations are also available. The visualizations may not work with mobile browsers.




Method Infoallhigh-res
multi-view
indooroutdoorbotani.boulde.bridgedoorexhibi.lectur.living.loungeobserv.old co.statueterrac.
sort bysort bysort bysort bysort bysort bysort bysort bysort bysort bysort bysort bysort bysort bysorted bysort by
MSP-MVS90.38 591.87 185.88 9092.83 7964.03 19493.06 11294.33 5582.19 2993.65 396.15 3485.89 197.19 8491.02 3497.75 196.43 31
Zhenlong Yuan, Cong Liu, Fei Shen, Zhaoxin Li, Jingguo luo, Tianlu Mao and Zhaoqi Wang: MSP-MVS: Multi-granularity Segmentation Prior Guided Multi-View Stereo. AAAI2025
DPM-MVS90.70 390.52 991.24 189.68 16076.68 297.29 195.35 1682.87 2291.58 1397.22 379.93 599.10 983.12 10297.64 297.94 1
OPU-MVS89.97 397.52 373.15 1496.89 697.00 983.82 299.15 295.72 597.63 397.62 2
DVP-MVS++90.53 491.09 588.87 1697.31 469.91 4293.96 7094.37 5372.48 18892.07 996.85 1683.82 299.15 291.53 3097.42 497.55 4
PC_three_145280.91 4894.07 296.83 1883.57 499.12 595.70 797.42 497.55 4
HPM-MVS++copyleft89.37 1489.95 1387.64 3495.10 3068.23 8695.24 3394.49 4582.43 2688.90 3296.35 2771.89 3798.63 2688.76 4896.40 696.06 41
SMA-MVScopyleft88.14 1888.29 2287.67 3393.21 6768.72 7293.85 7794.03 6374.18 15191.74 1296.67 2165.61 7598.42 3389.24 4496.08 795.88 47
Yufeng Yin; Xiaoyan Liu; Zichao Zhang: SMA-MVS: Segmentation-Guided Multi-Scale Anchor Deformation Patch Multi-View Stereo. IEEE Transactions on Circuits and Systems for Video Technology
DELS-MVS90.05 890.09 1189.94 493.14 7073.88 997.01 494.40 5188.32 385.71 5594.91 7374.11 2198.91 1887.26 6295.94 897.03 12
Christian Sormann, Emanuele Santellani, Mattia Rossi, Andreas Kuhn, Friedrich Fraundorfer: DELS-MVS: Deep Epipolar Line Search for Multi-View Stereo. Winter Conference on Applications of Computer Vision (WACV), 2023
MCST-MVS91.08 191.46 389.94 497.66 273.37 1097.13 295.58 1189.33 185.77 5496.26 3072.84 2999.38 192.64 2095.93 997.08 11
balanced_conf0389.08 1588.84 1789.81 693.66 5475.15 590.61 22593.43 8884.06 1486.20 4990.17 18272.42 3296.98 10193.09 1695.92 1097.29 7
CNVR-MVS90.32 690.89 888.61 2296.76 870.65 3096.47 1494.83 3184.83 1189.07 3196.80 1970.86 4099.06 1592.64 2095.71 1196.12 40
PHI-MVS86.83 3986.85 4186.78 6393.47 6265.55 15595.39 3095.10 2371.77 21485.69 5696.52 2362.07 12398.77 2386.06 7495.60 1296.03 43
DeepPCF-MVS81.17 189.72 1091.38 484.72 13493.00 7558.16 31296.72 994.41 4986.50 890.25 2297.83 175.46 1498.67 2592.78 1995.49 1397.32 6
SED-MVS89.94 990.36 1088.70 1896.45 1269.38 5596.89 694.44 4771.65 21892.11 797.21 476.79 999.11 692.34 2295.36 1497.62 2
IU-MVS96.46 1169.91 4295.18 2180.75 4995.28 192.34 2295.36 1496.47 28
test_241102_TWO94.41 4971.65 21892.07 997.21 474.58 1899.11 692.34 2295.36 1496.59 19
MM90.87 291.52 288.92 1592.12 10071.10 2797.02 396.04 688.70 291.57 1496.19 3270.12 4498.91 1896.83 195.06 1796.76 15
test_0728_THIRD72.48 18890.55 2096.93 1176.24 1199.08 1191.53 3094.99 1896.43 31
test9_res89.41 4094.96 1995.29 70
ACMMP_NAP86.05 5385.80 5886.80 6291.58 11967.53 10491.79 17193.49 8574.93 14284.61 6695.30 5659.42 15197.92 4186.13 7294.92 2094.94 88
DPE-MVScopyleft88.77 1789.21 1687.45 4396.26 2067.56 10294.17 5894.15 6068.77 26790.74 1897.27 276.09 1298.49 2990.58 3894.91 2196.30 34
Kehua Chen, Zhenlong Yuan, Tianlu Mao, Zhaoqi Wang: Dual-Level Precision Edges Guided Multi-View Stereo with Accurate Planarization. AAAI2025
DVP-MVScopyleft89.41 1389.73 1488.45 2596.40 1569.99 3896.64 1094.52 4371.92 20490.55 2096.93 1173.77 2399.08 1191.91 2894.90 2296.29 35
Zhenlong Yuan, Jinguo Luo, Fei Shen, Zhaoxin Li, Cong Liu, Tianlu Mao, Zhaoqi Wang: DVP-MVS: Synergize Depth-Edge and Visibility Prior for Multi-View Stereo. AAAI2025
test_0728_SECOND88.70 1896.45 1270.43 3396.64 1094.37 5399.15 291.91 2894.90 2296.51 24
train_agg87.21 3387.42 3286.60 6894.18 4167.28 10994.16 5993.51 8271.87 20985.52 5795.33 5468.19 5197.27 8089.09 4594.90 2295.25 76
DeepC-MVS_fast79.48 287.95 2288.00 2587.79 3195.86 2768.32 8095.74 2194.11 6183.82 1683.49 7696.19 3264.53 8998.44 3183.42 10194.88 2596.61 18
Andreas Kuhn, Christian Sormann, Mattia Rossi, Oliver Erdler, Friedrich Fraundorfer: DeepC-MVS: Deep Confidence Prediction for Multi-View Stereo Reconstruction. 3DV 2020
MSC_two_6792asdad89.60 997.31 473.22 1295.05 2799.07 1392.01 2594.77 2696.51 24
No_MVS89.60 997.31 473.22 1295.05 2799.07 1392.01 2594.77 2696.51 24
TSAR-MVS + MP.88.11 2088.64 1886.54 7291.73 11568.04 9090.36 23193.55 8182.89 2191.29 1692.89 12572.27 3496.03 14887.99 5294.77 2695.54 57
Zhenlong Yuan, Jiakai Cao, Zhaoqi Wang, Zhaoxin Li: TSAR-MVS: Textureless-aware Segmentation and Correlative Refinement Guided Multi-View Stereo. Pattern Recognition
test_prior295.10 3875.40 13685.25 6395.61 4567.94 5487.47 5994.77 26
agg_prior286.41 7094.75 3095.33 66
MVSMamba_PlusPlus84.97 7583.65 8588.93 1490.17 15174.04 887.84 28392.69 11862.18 32381.47 9687.64 22071.47 3996.28 13384.69 8694.74 3196.47 28
MVS84.66 7982.86 10990.06 290.93 13674.56 787.91 28195.54 1468.55 26972.35 20594.71 7859.78 14798.90 2081.29 11994.69 3296.74 16
MVS_030490.32 690.90 788.55 2394.05 4570.23 3697.00 593.73 7487.30 492.15 696.15 3466.38 6698.94 1796.71 294.67 3396.47 28
SF-MVS87.03 3587.09 3586.84 5992.70 8567.45 10793.64 9093.76 7070.78 24286.25 4796.44 2666.98 6097.79 4788.68 4994.56 3495.28 72
NCCC89.07 1689.46 1587.91 2896.60 1069.05 6396.38 1594.64 4084.42 1286.74 4596.20 3166.56 6598.76 2489.03 4794.56 3495.92 46
3Dnovator73.91 682.69 12180.82 13888.31 2689.57 16271.26 2292.60 13594.39 5278.84 8767.89 26392.48 13548.42 27398.52 2868.80 22294.40 3695.15 78
CDPH-MVS85.71 6185.46 6386.46 7494.75 3467.19 11193.89 7592.83 11370.90 23883.09 8195.28 5763.62 10197.36 7180.63 12394.18 3794.84 92
MG-MVS87.11 3486.27 4689.62 897.79 176.27 494.96 4394.49 4578.74 9083.87 7592.94 12364.34 9096.94 10775.19 16294.09 3895.66 52
9.1487.63 2893.86 4894.41 5294.18 5872.76 18386.21 4896.51 2466.64 6397.88 4490.08 3994.04 39
原ACMM184.42 14793.21 6764.27 18993.40 9165.39 29379.51 12192.50 13258.11 16996.69 11765.27 26093.96 4092.32 184
MSLP-MVS++86.27 4985.91 5687.35 4592.01 10568.97 6695.04 4092.70 11679.04 8581.50 9496.50 2558.98 16096.78 11583.49 10093.93 4196.29 35
CANet89.61 1289.99 1288.46 2494.39 3969.71 5096.53 1393.78 6786.89 689.68 2895.78 4065.94 7199.10 992.99 1793.91 4296.58 21
MP-MVS-pluss85.24 6985.13 6885.56 10391.42 12465.59 15391.54 18192.51 12774.56 14580.62 10795.64 4459.15 15597.00 9786.94 6793.80 4394.07 131
MP-MVS-pluss: MP-MVS-pluss. MP-MVS-pluss
MVP-Stereo77.12 22076.23 21279.79 27381.72 31066.34 13689.29 25790.88 20170.56 24562.01 31982.88 27649.34 26494.13 22365.55 25793.80 4378.88 372
Qingsong Yan: MVP-Stereo: A Parallel Multi-View Patchmatch Stereo Method with Dilation Matching for Photogrammetric Application.
GG-mvs-BLEND86.53 7391.91 11069.67 5275.02 37594.75 3478.67 13690.85 16877.91 794.56 20772.25 18893.74 4595.36 65
ZNCC-MVS85.33 6885.08 6986.06 8593.09 7265.65 15193.89 7593.41 9073.75 16279.94 11694.68 7960.61 13898.03 3882.63 10793.72 4694.52 111
CSCG86.87 3686.26 4788.72 1795.05 3170.79 2993.83 8295.33 1768.48 27177.63 14494.35 9173.04 2798.45 3084.92 8493.71 4796.92 14
test1287.09 5294.60 3668.86 6792.91 11082.67 8865.44 7697.55 6293.69 4894.84 92
PAPM85.89 5885.46 6387.18 4988.20 20372.42 1592.41 14392.77 11482.11 3080.34 11293.07 12068.27 5095.02 18678.39 14493.59 4994.09 129
SteuartSystems-ACMMP86.82 4186.90 3986.58 7090.42 14566.38 13496.09 1793.87 6577.73 10384.01 7495.66 4363.39 10697.94 4087.40 6093.55 5095.42 59
Skip Steuart: Steuart Systems R&D Blog.
APDe-MVScopyleft87.54 2787.84 2686.65 6696.07 2366.30 13794.84 4593.78 6769.35 25888.39 3396.34 2867.74 5697.66 5490.62 3793.44 5196.01 44
Zhaojie Zeng, Yuesong Wang, Tao Guan: Matching Ambiguity-Resilient Multi-View Stereo via Adaptive Patch Deformation. Pattern Recognition
SPE-MVS-test86.14 5287.01 3683.52 17692.63 8759.36 30195.49 2791.92 15180.09 6085.46 5995.53 4961.82 12795.77 15686.77 6993.37 5295.41 60
PS-MVSNAJ88.14 1887.61 2989.71 792.06 10176.72 195.75 2093.26 9483.86 1589.55 2996.06 3653.55 22497.89 4391.10 3293.31 5394.54 109
MAR-MVS84.18 9083.43 9286.44 7596.25 2165.93 14694.28 5694.27 5774.41 14679.16 12795.61 4553.99 21998.88 2269.62 21193.26 5494.50 113
Zhenyu Xu, Yiguang Liu, Xuelei Shi, Ying Wang, Yunan Zheng: MARMVS: Matching Ambiguity Reduced Multiple View Stereo for Efficient Large Scale Scene Reconstruction. CVPR 2020
gg-mvs-nofinetune77.18 21874.31 23985.80 9591.42 12468.36 7971.78 38094.72 3549.61 38077.12 15145.92 40677.41 893.98 23567.62 23293.16 5595.05 83
ZD-MVS96.63 965.50 15793.50 8470.74 24385.26 6295.19 6564.92 8397.29 7687.51 5793.01 56
APD-MVScopyleft85.93 5685.99 5485.76 9795.98 2665.21 16293.59 9392.58 12566.54 28586.17 5095.88 3963.83 9697.00 9786.39 7192.94 5795.06 82
Yuesong Wang, Zhaojie Zeng and etc.: Adaptive Patch Deformation for Textureless-Resilient Multi-View Stereo. CVPR2023
新几何184.73 13392.32 9264.28 18891.46 17759.56 34479.77 11892.90 12456.95 18396.57 12163.40 27092.91 5893.34 153
DeepC-MVS77.85 385.52 6685.24 6686.37 7888.80 18566.64 12892.15 15093.68 7681.07 4676.91 15493.64 11062.59 11898.44 3185.50 7692.84 5994.03 133
Andreas Kuhn, Christian Sormann, Mattia Rossi, Oliver Erdler, Friedrich Fraundorfer: DeepC-MVS: Deep Confidence Prediction for Multi-View Stereo Reconstruction. 3DV 2020
xiu_mvs_v2_base87.92 2387.38 3389.55 1291.41 12776.43 395.74 2193.12 10283.53 1889.55 2995.95 3853.45 22897.68 5091.07 3392.62 6094.54 109
MP-MVScopyleft85.02 7284.97 7185.17 11892.60 8864.27 18993.24 10792.27 13273.13 17379.63 12094.43 8561.90 12497.17 8585.00 8292.56 6194.06 132
Rongxuan Tan, Qing Wang, et al.: MP-MVS: Multi-Scale Windows PatchMatch and Planar Prior Multi-View Stereo.
MTAPA83.91 9583.38 9685.50 10491.89 11165.16 16481.75 33492.23 13375.32 13780.53 10995.21 6456.06 19697.16 8884.86 8592.55 6294.18 123
GST-MVS84.63 8084.29 7985.66 10192.82 8165.27 16093.04 11493.13 10173.20 17178.89 12994.18 9859.41 15297.85 4581.45 11592.48 6393.86 141
HFP-MVS84.73 7884.40 7885.72 9993.75 5265.01 16893.50 9893.19 9872.19 19879.22 12694.93 7159.04 15897.67 5181.55 11392.21 6494.49 114
ACMMPR84.37 8284.06 8085.28 11393.56 5864.37 18493.50 9893.15 10072.19 19878.85 13494.86 7456.69 18797.45 6581.55 11392.20 6594.02 134
MS-PatchMatch77.90 21076.50 20882.12 21585.99 25069.95 4191.75 17692.70 11673.97 15662.58 31684.44 26141.11 31695.78 15463.76 26992.17 6680.62 358
region2R84.36 8384.03 8185.36 11093.54 5964.31 18793.43 10392.95 10972.16 20178.86 13394.84 7556.97 18297.53 6381.38 11792.11 6794.24 121
CS-MVS85.80 5986.65 4483.27 18492.00 10658.92 30595.31 3191.86 15679.97 6184.82 6595.40 5262.26 12195.51 17486.11 7392.08 6895.37 63
patch_mono-289.71 1190.99 685.85 9396.04 2463.70 20495.04 4095.19 2086.74 791.53 1595.15 6673.86 2297.58 5993.38 1492.00 6996.28 37
dcpmvs_287.37 3187.55 3086.85 5895.04 3268.20 8790.36 23190.66 20779.37 7481.20 9893.67 10974.73 1696.55 12390.88 3592.00 6995.82 48
旧先验191.94 10760.74 27591.50 17594.36 8765.23 7891.84 7194.55 107
MVSFormer83.75 10082.88 10886.37 7889.24 17571.18 2489.07 26390.69 20465.80 29087.13 4094.34 9264.99 8092.67 27472.83 17991.80 7295.27 73
lupinMVS87.74 2587.77 2787.63 3889.24 17571.18 2496.57 1292.90 11182.70 2487.13 4095.27 5964.99 8095.80 15389.34 4291.80 7295.93 45
EPNet87.84 2488.38 2086.23 8293.30 6466.05 14195.26 3294.84 3087.09 588.06 3494.53 8266.79 6297.34 7383.89 9591.68 7495.29 70
Wanjuan Su, Wenbing Tao: Efficient Edge-Preserving Multi-View Stereo Network for Depth Estimation. AAAI 2023
3Dnovator+73.60 782.10 13180.60 14586.60 6890.89 13866.80 12595.20 3493.44 8774.05 15367.42 27092.49 13449.46 26397.65 5570.80 20191.68 7495.33 66
XVS83.87 9683.47 9085.05 12093.22 6563.78 19892.92 11992.66 12073.99 15478.18 13894.31 9455.25 20297.41 6879.16 13591.58 7693.95 136
X-MVStestdata76.86 22474.13 24385.05 12093.22 6563.78 19892.92 11992.66 12073.99 15478.18 13810.19 42155.25 20297.41 6879.16 13591.58 7693.95 136
SD-MVS87.49 2887.49 3187.50 4293.60 5668.82 6993.90 7492.63 12376.86 11687.90 3595.76 4166.17 6897.63 5689.06 4691.48 7896.05 42
Zhenlong Yuan, Jiakai Cao, Zhaoxin Li, Hao Jiang and Zhaoqi Wang: SD-MVS: Segmentation-driven Deformation Multi-View Stereo with Spherical Refinement and EM optimization. AAAI2024
EC-MVSNet84.53 8185.04 7083.01 18889.34 16761.37 26294.42 5191.09 19377.91 10083.24 7794.20 9758.37 16595.40 17585.35 7791.41 7992.27 189
PGM-MVS83.25 10982.70 11284.92 12392.81 8364.07 19390.44 22692.20 13771.28 23077.23 15094.43 8555.17 20697.31 7579.33 13491.38 8093.37 152
PVSNet_Blended86.73 4286.86 4086.31 8193.76 5067.53 10496.33 1693.61 7882.34 2881.00 10393.08 11963.19 11097.29 7687.08 6591.38 8094.13 127
HPM-MVScopyleft83.25 10982.95 10684.17 15692.25 9462.88 23190.91 20891.86 15670.30 24777.12 15193.96 10456.75 18596.28 13382.04 11091.34 8293.34 153
Chunlin Ren, Qingshan Xu, Shikun Zhang, Jiaqi Yang: Hierarchical Prior Mining for Non-local Multi-View Stereo. ICCV 2023
EIA-MVS84.84 7684.88 7284.69 13691.30 12962.36 24093.85 7792.04 14479.45 7179.33 12594.28 9562.42 11996.35 13180.05 12791.25 8395.38 62
MVS_111021_HR86.19 5185.80 5887.37 4493.17 6969.79 4793.99 6993.76 7079.08 8278.88 13293.99 10362.25 12298.15 3685.93 7591.15 8494.15 126
test22289.77 15861.60 25789.55 25189.42 25556.83 35977.28 14992.43 13652.76 23291.14 8593.09 162
jason86.40 4686.17 5087.11 5186.16 24870.54 3295.71 2492.19 13982.00 3184.58 6794.34 9261.86 12595.53 17387.76 5490.89 8695.27 73
jason: jason.
mPP-MVS82.96 11682.44 11684.52 14492.83 7962.92 22992.76 12491.85 15871.52 22675.61 16694.24 9653.48 22796.99 10078.97 13890.73 8793.64 147
CP-MVS83.71 10183.40 9584.65 13893.14 7063.84 19694.59 4992.28 13171.03 23677.41 14794.92 7255.21 20596.19 13781.32 11890.70 8893.91 138
OpenMVScopyleft70.45 1178.54 19875.92 21786.41 7785.93 25471.68 1892.74 12592.51 12766.49 28664.56 29491.96 14743.88 30698.10 3754.61 31390.65 8989.44 236
PAPM_NR82.97 11581.84 12386.37 7894.10 4466.76 12687.66 28792.84 11269.96 25174.07 18293.57 11263.10 11397.50 6470.66 20490.58 9094.85 89
testdata81.34 23289.02 17957.72 31689.84 23958.65 34885.32 6194.09 10057.03 17893.28 25269.34 21490.56 9193.03 165
mvsmamba81.55 13980.72 14084.03 16291.42 12466.93 12183.08 32589.13 26978.55 9267.50 26887.02 23251.79 24090.07 32887.48 5890.49 9295.10 81
Vis-MVSNetpermissive80.92 15179.98 15483.74 16788.48 19061.80 25193.44 10288.26 30473.96 15777.73 14291.76 15249.94 25894.76 19465.84 25290.37 9394.65 103
Jingyang Zhang, Yao Yao, Shiwei Li, Zixin Luo, Tian Fang: Visibility-aware Multiview Stereo Network. BMVC 2020
CHOSEN 1792x268884.98 7483.45 9189.57 1189.94 15575.14 692.07 15692.32 13081.87 3275.68 16388.27 20660.18 14198.60 2780.46 12590.27 9494.96 86
test_fmvsm_n_192087.69 2688.50 1985.27 11487.05 23263.55 21193.69 8791.08 19584.18 1390.17 2497.04 867.58 5797.99 3995.72 590.03 9594.26 119
ETV-MVS86.01 5486.11 5185.70 10090.21 15067.02 11993.43 10391.92 15181.21 4584.13 7394.07 10260.93 13595.63 16489.28 4389.81 9694.46 115
QAPM79.95 17077.39 19787.64 3489.63 16171.41 2093.30 10693.70 7565.34 29567.39 27291.75 15347.83 28098.96 1657.71 30389.81 9692.54 178
CANet_DTU84.09 9283.52 8685.81 9490.30 14866.82 12391.87 16789.01 27685.27 986.09 5193.74 10747.71 28296.98 10177.90 14789.78 9893.65 146
API-MVS82.28 12680.53 14687.54 4196.13 2270.59 3193.63 9191.04 19965.72 29275.45 16892.83 12856.11 19598.89 2164.10 26689.75 9993.15 160
test250683.29 10882.92 10784.37 15088.39 19563.18 22292.01 15991.35 18077.66 10578.49 13791.42 15964.58 8895.09 18573.19 17589.23 10094.85 89
ECVR-MVScopyleft81.29 14380.38 14984.01 16388.39 19561.96 24992.56 14086.79 32277.66 10576.63 15591.42 15946.34 29195.24 18274.36 17189.23 10094.85 89
MVS_Test84.16 9183.20 10087.05 5491.56 12069.82 4589.99 24592.05 14377.77 10282.84 8386.57 23763.93 9596.09 14274.91 16789.18 10295.25 76
reproduce-ours83.51 10483.33 9884.06 15892.18 9860.49 28190.74 21792.04 14464.35 30083.24 7795.59 4759.05 15697.27 8083.61 9789.17 10394.41 116
our_new_method83.51 10483.33 9884.06 15892.18 9860.49 28190.74 21792.04 14464.35 30083.24 7795.59 4759.05 15697.27 8083.61 9789.17 10394.41 116
PAPR85.15 7184.47 7687.18 4996.02 2568.29 8191.85 16993.00 10876.59 12379.03 12895.00 6861.59 12897.61 5878.16 14589.00 10595.63 53
BP-MVS186.54 4586.68 4386.13 8487.80 21567.18 11392.97 11795.62 1079.92 6282.84 8394.14 9974.95 1596.46 12882.91 10488.96 10694.74 97
TSAR-MVS + GP.87.96 2188.37 2186.70 6593.51 6165.32 15995.15 3693.84 6678.17 9685.93 5394.80 7675.80 1398.21 3489.38 4188.78 10796.59 19
SR-MVS82.81 11782.58 11383.50 17993.35 6361.16 26592.23 14891.28 18564.48 29981.27 9795.28 5753.71 22395.86 15282.87 10588.77 10893.49 150
test111180.84 15280.02 15183.33 18287.87 21160.76 27392.62 13386.86 32177.86 10175.73 16291.39 16146.35 29094.70 20072.79 18188.68 10994.52 111
fmvsm_l_conf0.5_n_a87.44 3088.15 2485.30 11287.10 23064.19 19194.41 5288.14 30580.24 5992.54 596.97 1069.52 4797.17 8595.89 388.51 11094.56 106
reproduce_model83.15 11182.96 10483.73 16992.02 10259.74 29390.37 23092.08 14263.70 30782.86 8295.48 5058.62 16297.17 8583.06 10388.42 11194.26 119
HPM-MVS_fast80.25 16379.55 16282.33 20591.55 12159.95 29091.32 19489.16 26665.23 29674.71 17593.07 12047.81 28195.74 15774.87 16988.23 11291.31 208
PVSNet_Blended_VisFu83.97 9483.50 8885.39 10890.02 15366.59 13193.77 8491.73 16277.43 11177.08 15389.81 18963.77 9896.97 10479.67 13088.21 11392.60 176
Vis-MVSNet (Re-imp)79.24 18179.57 15978.24 29588.46 19152.29 35090.41 22889.12 27074.24 15069.13 24191.91 15065.77 7390.09 32759.00 29988.09 11492.33 183
fmvsm_l_conf0.5_n87.49 2888.19 2385.39 10886.95 23364.37 18494.30 5588.45 29680.51 5192.70 496.86 1569.98 4597.15 8995.83 488.08 11594.65 103
APD-MVS_3200maxsize81.64 13881.32 12882.59 19992.36 9158.74 30791.39 18791.01 20063.35 31179.72 11994.62 8151.82 23896.14 13979.71 12987.93 11692.89 171
RRT-MVS82.61 12281.16 12986.96 5791.10 13368.75 7087.70 28692.20 13776.97 11472.68 19487.10 23151.30 24796.41 13083.56 9987.84 11795.74 50
Effi-MVS+83.82 9782.76 11086.99 5689.56 16369.40 5391.35 19286.12 33072.59 18583.22 8092.81 12959.60 14996.01 15081.76 11287.80 11895.56 56
casdiffmvs_mvgpermissive85.66 6385.18 6787.09 5288.22 20269.35 5893.74 8691.89 15481.47 3780.10 11491.45 15864.80 8596.35 13187.23 6387.69 11995.58 55
Fangjinhua Wang, Qingshan Xu, Yew-Soon Ong, Marc Pollefeys: Lightweight and Accurate Multi-View Stereo With Confidence-Aware Diffusion Model. IEEE T-PAMI 2025
131480.70 15478.95 17285.94 8987.77 21767.56 10287.91 28192.55 12672.17 20067.44 26993.09 11850.27 25597.04 9571.68 19687.64 12093.23 157
test_fmvsmconf_n86.58 4487.17 3484.82 12785.28 26362.55 23694.26 5789.78 24083.81 1787.78 3696.33 2965.33 7796.98 10194.40 1187.55 12194.95 87
PMMVS81.98 13382.04 12081.78 22289.76 15956.17 33191.13 20490.69 20477.96 9880.09 11593.57 11246.33 29294.99 18881.41 11687.46 12294.17 124
casdiffmvspermissive85.37 6784.87 7386.84 5988.25 20069.07 6293.04 11491.76 16181.27 4480.84 10592.07 14664.23 9196.06 14684.98 8387.43 12395.39 61
Fangjinhua Wang, Qingshan Xu, Yew-Soon Ong, Marc Pollefeys: Lightweight and Accurate Multi-View Stereo With Confidence-Aware Diffusion Model. IEEE T-PAMI 2025
test_fmvsmconf0.1_n85.71 6186.08 5384.62 14180.83 31762.33 24193.84 8088.81 28483.50 1987.00 4396.01 3763.36 10796.93 10994.04 1287.29 12494.61 105
UGNet79.87 17178.68 17483.45 18189.96 15461.51 25892.13 15190.79 20276.83 11878.85 13486.33 24138.16 33096.17 13867.93 22987.17 12592.67 174
Wanjuan Su, Qingshan Xu, Wenbing Tao: Uncertainty-guided Multi-view Stereo Network for Depth Estimation. IEEE Transactions on Circuits and Systems for Video Technology, 2022
MVS_111021_LR82.02 13281.52 12683.51 17888.42 19362.88 23189.77 24888.93 28076.78 11975.55 16793.10 11750.31 25495.38 17783.82 9687.02 12692.26 190
test_fmvsmvis_n_192083.80 9883.48 8984.77 13182.51 30363.72 20291.37 19083.99 35281.42 4177.68 14395.74 4258.37 16597.58 5993.38 1486.87 12793.00 167
xiu_mvs_v1_base_debu82.16 12881.12 13185.26 11586.42 24168.72 7292.59 13790.44 21473.12 17484.20 7094.36 8738.04 33295.73 15884.12 9286.81 12891.33 204
xiu_mvs_v1_base82.16 12881.12 13185.26 11586.42 24168.72 7292.59 13790.44 21473.12 17484.20 7094.36 8738.04 33295.73 15884.12 9286.81 12891.33 204
xiu_mvs_v1_base_debi82.16 12881.12 13185.26 11586.42 24168.72 7292.59 13790.44 21473.12 17484.20 7094.36 8738.04 33295.73 15884.12 9286.81 12891.33 204
SR-MVS-dyc-post81.06 14880.70 14182.15 21392.02 10258.56 30990.90 20990.45 21162.76 31878.89 12994.46 8351.26 24895.61 16678.77 14186.77 13192.28 186
RE-MVS-def80.48 14792.02 10258.56 30990.90 20990.45 21162.76 31878.89 12994.46 8349.30 26578.77 14186.77 13192.28 186
baseline85.01 7384.44 7786.71 6488.33 19768.73 7190.24 23691.82 16081.05 4781.18 9992.50 13263.69 9996.08 14584.45 8986.71 13395.32 68
TESTMET0.1,182.41 12481.98 12283.72 17188.08 20463.74 20092.70 12893.77 6979.30 7577.61 14587.57 22258.19 16894.08 22673.91 17386.68 13493.33 155
IS-MVSNet80.14 16579.41 16482.33 20587.91 20960.08 28991.97 16388.27 30272.90 18171.44 21891.73 15461.44 12993.66 24662.47 28086.53 13593.24 156
CPTT-MVS79.59 17479.16 16980.89 24791.54 12259.80 29292.10 15388.54 29560.42 33772.96 19093.28 11648.27 27492.80 26878.89 14086.50 13690.06 223
BH-w/o80.49 15879.30 16784.05 16190.83 14064.36 18693.60 9289.42 25574.35 14869.09 24290.15 18455.23 20495.61 16664.61 26386.43 13792.17 192
PVSNet73.49 880.05 16778.63 17584.31 15290.92 13764.97 16992.47 14191.05 19879.18 7872.43 20390.51 17337.05 34494.06 22868.06 22686.00 13893.90 140
test_fmvsmconf0.01_n83.70 10283.52 8684.25 15575.26 37061.72 25592.17 14987.24 31882.36 2784.91 6495.41 5155.60 20096.83 11492.85 1885.87 13994.21 122
mvs_anonymous81.36 14279.99 15385.46 10590.39 14768.40 7886.88 29890.61 20974.41 14670.31 23084.67 25763.79 9792.32 28973.13 17685.70 14095.67 51
DP-MVS Recon82.73 11881.65 12585.98 8797.31 467.06 11695.15 3691.99 14869.08 26476.50 15893.89 10554.48 21498.20 3570.76 20285.66 14192.69 173
BH-RMVSNet79.46 17977.65 18984.89 12491.68 11765.66 15093.55 9488.09 30772.93 17873.37 18791.12 16546.20 29496.12 14056.28 30885.61 14292.91 169
UBG86.83 3986.70 4287.20 4893.07 7369.81 4693.43 10395.56 1381.52 3681.50 9492.12 14473.58 2696.28 13384.37 9085.20 14395.51 58
diffmvspermissive84.28 8583.83 8285.61 10287.40 22368.02 9190.88 21189.24 26180.54 5081.64 9392.52 13159.83 14694.52 21087.32 6185.11 14494.29 118
Fangjinhua Wang, Qingshan Xu, Yew-Soon Ong, Marc Pollefeys: Lightweight and Accurate Multi-View Stereo With Confidence-Aware Diffusion Model. IEEE T-PAMI 2025
Fast-Effi-MVS+81.14 14580.01 15284.51 14590.24 14965.86 14794.12 6289.15 26773.81 16175.37 16988.26 20757.26 17594.53 20966.97 24084.92 14593.15 160
LFMVS84.34 8482.73 11189.18 1394.76 3373.25 1194.99 4291.89 15471.90 20682.16 9093.49 11447.98 27897.05 9282.55 10884.82 14697.25 8
BH-untuned78.68 19477.08 20083.48 18089.84 15663.74 20092.70 12888.59 29371.57 22466.83 27988.65 20051.75 24195.39 17659.03 29884.77 14791.32 207
test-LLR80.10 16679.56 16081.72 22486.93 23661.17 26392.70 12891.54 17271.51 22775.62 16486.94 23353.83 22092.38 28472.21 18984.76 14891.60 198
test-mter79.96 16979.38 16681.72 22486.93 23661.17 26392.70 12891.54 17273.85 15975.62 16486.94 23349.84 26092.38 28472.21 18984.76 14891.60 198
sasdasda86.85 3786.25 4888.66 2091.80 11371.92 1693.54 9591.71 16480.26 5687.55 3795.25 6163.59 10396.93 10988.18 5084.34 15097.11 9
canonicalmvs86.85 3786.25 4888.66 2091.80 11371.92 1693.54 9591.71 16480.26 5687.55 3795.25 6163.59 10396.93 10988.18 5084.34 15097.11 9
alignmvs87.28 3286.97 3788.24 2791.30 12971.14 2695.61 2593.56 8079.30 7587.07 4295.25 6168.43 4996.93 10987.87 5384.33 15296.65 17
VNet86.20 5085.65 6187.84 3093.92 4769.99 3895.73 2395.94 778.43 9386.00 5293.07 12058.22 16797.00 9785.22 7884.33 15296.52 23
UA-Net80.02 16879.65 15881.11 23889.33 16957.72 31686.33 30289.00 27977.44 11081.01 10289.15 19659.33 15395.90 15161.01 28784.28 15489.73 230
LCM-MVSNet-Re72.93 27371.84 27276.18 31788.49 18948.02 37380.07 35270.17 39373.96 15752.25 36380.09 32149.98 25788.24 34167.35 23384.23 15592.28 186
ACMMPcopyleft81.49 14080.67 14283.93 16491.71 11662.90 23092.13 15192.22 13671.79 21371.68 21493.49 11450.32 25396.96 10578.47 14384.22 15691.93 196
Qingshan Xu, Weihang Kong, Wenbing Tao, Marc Pollefeys: Multi-Scale Geometric Consistency Guided and Planar Prior Assisted Multi-View Stereo. IEEE Transactions on Pattern Analysis and Machine Intelligence
MGCFI-Net85.59 6585.73 6085.17 11891.41 12762.44 23792.87 12191.31 18179.65 6886.99 4495.14 6762.90 11696.12 14087.13 6484.13 15796.96 13
114514_t79.17 18277.67 18883.68 17395.32 2965.53 15692.85 12291.60 17163.49 30967.92 26090.63 17146.65 28795.72 16267.01 23983.54 15889.79 228
testing1186.71 4386.44 4587.55 4093.54 5971.35 2193.65 8995.58 1181.36 4380.69 10692.21 14372.30 3396.46 12885.18 8083.43 15994.82 95
test_vis1_n_192081.66 13782.01 12180.64 24982.24 30555.09 33994.76 4686.87 32081.67 3584.40 6994.63 8038.17 32994.67 20191.98 2783.34 16092.16 193
testing22285.18 7084.69 7586.63 6792.91 7769.91 4292.61 13495.80 980.31 5580.38 11192.27 14068.73 4895.19 18375.94 15683.27 16194.81 96
EPMVS78.49 19975.98 21686.02 8691.21 13169.68 5180.23 34991.20 18675.25 13872.48 20178.11 33654.65 21093.69 24557.66 30483.04 16294.69 99
AdaColmapbinary78.94 18777.00 20384.76 13296.34 1765.86 14792.66 13287.97 31162.18 32370.56 22492.37 13843.53 30797.35 7264.50 26482.86 16391.05 213
CDS-MVSNet81.43 14180.74 13983.52 17686.26 24564.45 17892.09 15490.65 20875.83 13073.95 18489.81 18963.97 9492.91 26471.27 19782.82 16493.20 159
Khang Truong Giang, Soohwan Song, Sungho Jo: Curvature-guided dynamic scale networks for Multi-view Stereo. ICLR 2022
CHOSEN 280x42077.35 21676.95 20478.55 29087.07 23162.68 23569.71 38682.95 35968.80 26671.48 21787.27 22866.03 7084.00 37076.47 15482.81 16588.95 237
UWE-MVS80.81 15381.01 13680.20 25989.33 16957.05 32591.91 16594.71 3675.67 13175.01 17289.37 19363.13 11291.44 31267.19 23782.80 16692.12 194
ETVMVS84.22 8983.71 8385.76 9792.58 8968.25 8592.45 14295.53 1579.54 7079.46 12291.64 15670.29 4394.18 22269.16 21782.76 16794.84 92
PCF-MVS73.15 979.29 18077.63 19084.29 15386.06 24965.96 14587.03 29491.10 19269.86 25369.79 23890.64 16957.54 17496.59 11964.37 26582.29 16890.32 220
Andreas Kuhn, Shan Lin, Oliver Erdler: Plane Completion and Filtering for Multi-View Stereo Reconstruction. GCPR 2019
fmvsm_s_conf0.5_n86.39 4786.91 3884.82 12787.36 22563.54 21294.74 4790.02 23482.52 2590.14 2596.92 1362.93 11597.84 4695.28 882.26 16993.07 164
WTY-MVS86.32 4885.81 5787.85 2992.82 8169.37 5795.20 3495.25 1882.71 2381.91 9194.73 7767.93 5597.63 5679.55 13182.25 17096.54 22
testing9986.01 5485.47 6287.63 3893.62 5571.25 2393.47 10195.23 1980.42 5480.60 10891.95 14871.73 3896.50 12680.02 12882.22 17195.13 79
HY-MVS76.49 584.28 8583.36 9787.02 5592.22 9567.74 9784.65 30994.50 4479.15 7982.23 8987.93 21566.88 6196.94 10780.53 12482.20 17296.39 33
testing9185.93 5685.31 6587.78 3293.59 5771.47 1993.50 9895.08 2680.26 5680.53 10991.93 14970.43 4296.51 12580.32 12682.13 17395.37 63
VDD-MVS83.06 11381.81 12486.81 6190.86 13967.70 9895.40 2991.50 17575.46 13481.78 9292.34 13940.09 31997.13 9086.85 6882.04 17495.60 54
fmvsm_s_conf0.1_n85.61 6485.93 5584.68 13782.95 30063.48 21494.03 6889.46 25281.69 3489.86 2696.74 2061.85 12697.75 4994.74 982.01 17592.81 172
TAMVS80.37 16079.45 16383.13 18785.14 26663.37 21591.23 19890.76 20374.81 14472.65 19688.49 20160.63 13792.95 25969.41 21381.95 17693.08 163
test_yl84.28 8583.16 10187.64 3494.52 3769.24 5995.78 1895.09 2469.19 26181.09 10092.88 12657.00 18097.44 6681.11 12181.76 17796.23 38
DCV-MVSNet84.28 8583.16 10187.64 3494.52 3769.24 5995.78 1895.09 2469.19 26181.09 10092.88 12657.00 18097.44 6681.11 12181.76 17796.23 38
FA-MVS(test-final)79.12 18377.23 19984.81 13090.54 14363.98 19581.35 34091.71 16471.09 23574.85 17482.94 27552.85 23197.05 9267.97 22781.73 17993.41 151
thisisatest051583.41 10682.49 11586.16 8389.46 16668.26 8393.54 9594.70 3774.31 14975.75 16190.92 16672.62 3096.52 12469.64 20981.50 18093.71 144
baseline283.68 10383.42 9484.48 14687.37 22466.00 14390.06 24095.93 879.71 6769.08 24390.39 17677.92 696.28 13378.91 13981.38 18191.16 211
PatchmatchNetpermissive77.46 21474.63 23285.96 8889.55 16470.35 3479.97 35489.55 25072.23 19770.94 22076.91 34857.03 17892.79 26954.27 31581.17 18294.74 97
Fangjinhua Wang, Silvano Galliani, Christoph Vogel, Pablo Speciale, Marc Pollefeys: PatchmatchNet: Learned Multi-View Patchmatch Stereo.
VDDNet80.50 15778.26 18087.21 4786.19 24669.79 4794.48 5091.31 18160.42 33779.34 12490.91 16738.48 32796.56 12282.16 10981.05 18395.27 73
EPNet_dtu78.80 19179.26 16877.43 30388.06 20549.71 36591.96 16491.95 15077.67 10476.56 15791.28 16358.51 16390.20 32556.37 30780.95 18492.39 181
Wanjuan Su, Wenbing Tao: Efficient Edge-Preserving Multi-View Stereo Network for Depth Estimation. AAAI 2023
sss82.71 12082.38 11783.73 16989.25 17259.58 29692.24 14794.89 2977.96 9879.86 11792.38 13756.70 18697.05 9277.26 15080.86 18594.55 107
FE-MVS75.97 24073.02 25684.82 12789.78 15765.56 15477.44 36591.07 19664.55 29872.66 19579.85 32346.05 29596.69 11754.97 31280.82 18692.21 191
GeoE78.90 18877.43 19383.29 18388.95 18162.02 24792.31 14486.23 32870.24 24871.34 21989.27 19454.43 21594.04 23163.31 27280.81 18793.81 143
fmvsm_s_conf0.5_n_a85.75 6086.09 5284.72 13485.73 25763.58 20993.79 8389.32 25881.42 4190.21 2396.91 1462.41 12097.67 5194.48 1080.56 18892.90 170
TR-MVS78.77 19377.37 19882.95 18990.49 14460.88 26993.67 8890.07 23070.08 25074.51 17691.37 16245.69 29695.70 16360.12 29380.32 18992.29 185
fmvsm_s_conf0.1_n_a84.76 7784.84 7484.53 14380.23 32763.50 21392.79 12388.73 28780.46 5289.84 2796.65 2260.96 13497.57 6193.80 1380.14 19092.53 179
TAPA-MVS70.22 1274.94 25573.53 25179.17 28490.40 14652.07 35189.19 26189.61 24962.69 32070.07 23292.67 13048.89 27294.32 21438.26 37979.97 19191.12 212
Andrea Romanoni, Matteo Matteucci: TAPA-MVS: Textureless-Aware PAtchMatch Multi-View Stereo. ICCV 2019
test_cas_vis1_n_192080.45 15980.61 14479.97 26878.25 35357.01 32794.04 6788.33 29979.06 8482.81 8593.70 10838.65 32491.63 30490.82 3679.81 19291.27 210
cascas78.18 20375.77 21985.41 10787.14 22969.11 6192.96 11891.15 19066.71 28470.47 22586.07 24337.49 33896.48 12770.15 20779.80 19390.65 216
HyFIR lowres test81.03 14979.56 16085.43 10687.81 21468.11 8990.18 23790.01 23570.65 24472.95 19186.06 24463.61 10294.50 21175.01 16579.75 19493.67 145
WB-MVSnew77.14 21976.18 21480.01 26586.18 24763.24 21891.26 19694.11 6171.72 21673.52 18687.29 22745.14 30193.00 25756.98 30579.42 19583.80 319
LS3D69.17 30366.40 30877.50 30191.92 10956.12 33285.12 30680.37 36746.96 38756.50 34987.51 22337.25 33993.71 24432.52 39679.40 19682.68 339
EI-MVSNet-Vis-set83.77 9983.67 8484.06 15892.79 8463.56 21091.76 17494.81 3279.65 6877.87 14194.09 10063.35 10897.90 4279.35 13379.36 19790.74 215
CVMVSNet74.04 26274.27 24073.33 33785.33 26143.94 39189.53 25388.39 29754.33 36770.37 22890.13 18549.17 26884.05 36861.83 28479.36 19791.99 195
EPP-MVSNet81.79 13581.52 12682.61 19888.77 18660.21 28793.02 11693.66 7768.52 27072.90 19290.39 17672.19 3594.96 18974.93 16679.29 19992.67 174
CLD-MVS82.73 11882.35 11883.86 16587.90 21067.65 10095.45 2892.18 14085.06 1072.58 19892.27 14052.46 23595.78 15484.18 9179.06 20088.16 251
Zhaoxin Li, Wangmeng Zuo, Zhaoqi Wang, Lei Zhang: Confidence-based Large-scale Dense Multi-view Stereo. IEEE Transaction on Image Processing, 2020
HQP3-MVS91.70 16778.90 201
HQP-MVS81.14 14580.64 14382.64 19787.54 21963.66 20794.06 6391.70 16779.80 6474.18 17890.30 17851.63 24395.61 16677.63 14878.90 20188.63 242
plane_prior62.42 23893.85 7779.38 7378.80 203
thres20079.66 17378.33 17883.66 17592.54 9065.82 14993.06 11296.31 374.90 14373.30 18888.66 19959.67 14895.61 16647.84 34278.67 20489.56 233
ET-MVSNet_ETH3D84.01 9383.15 10386.58 7090.78 14170.89 2894.74 4794.62 4181.44 4058.19 33893.64 11073.64 2592.35 28782.66 10678.66 20596.50 27
HQP_MVS80.34 16179.75 15782.12 21586.94 23462.42 23893.13 11091.31 18178.81 8872.53 19989.14 19750.66 25195.55 17176.74 15178.53 20688.39 248
plane_prior591.31 18195.55 17176.74 15178.53 20688.39 248
EI-MVSNet-UG-set83.14 11282.96 10483.67 17492.28 9363.19 22191.38 18994.68 3879.22 7776.60 15693.75 10662.64 11797.76 4878.07 14678.01 20890.05 224
OMC-MVS78.67 19677.91 18780.95 24585.76 25657.40 32288.49 27288.67 29073.85 15972.43 20392.10 14549.29 26694.55 20872.73 18377.89 20990.91 214
1112_ss80.56 15679.83 15682.77 19288.65 18760.78 27192.29 14588.36 29872.58 18672.46 20294.95 6965.09 7993.42 25166.38 24677.71 21094.10 128
OPM-MVS79.00 18578.09 18281.73 22383.52 29263.83 19791.64 18090.30 22176.36 12671.97 20989.93 18846.30 29395.17 18475.10 16377.70 21186.19 283
Ray L. Khuboni, Hongjun Xu: Octagram Propagation Matching for Multi-Scale View Stereopsis (OPM-MVS).
PatchMatch-RL72.06 28369.98 28678.28 29389.51 16555.70 33583.49 31783.39 35761.24 33263.72 30482.76 27734.77 35293.03 25653.37 32077.59 21286.12 287
thres100view90078.37 20077.01 20282.46 20091.89 11163.21 22091.19 20296.33 172.28 19670.45 22787.89 21660.31 13995.32 17845.16 35377.58 21388.83 238
tfpn200view978.79 19277.43 19382.88 19092.21 9664.49 17592.05 15796.28 473.48 16871.75 21288.26 20760.07 14495.32 17845.16 35377.58 21388.83 238
thres40078.68 19477.43 19382.43 20192.21 9664.49 17592.05 15796.28 473.48 16871.75 21288.26 20760.07 14495.32 17845.16 35377.58 21387.48 258
CostFormer82.33 12581.15 13085.86 9289.01 18068.46 7782.39 33193.01 10675.59 13280.25 11381.57 29572.03 3694.96 18979.06 13777.48 21694.16 125
tpm279.80 17277.95 18685.34 11188.28 19868.26 8381.56 33791.42 17870.11 24977.59 14680.50 31367.40 5894.26 22067.34 23477.35 21793.51 149
Test_1112_low_res79.56 17578.60 17682.43 20188.24 20160.39 28492.09 15487.99 30972.10 20271.84 21087.42 22464.62 8793.04 25565.80 25377.30 21893.85 142
tpmrst80.57 15579.14 17084.84 12690.10 15268.28 8281.70 33589.72 24777.63 10775.96 16079.54 32764.94 8292.71 27175.43 16077.28 21993.55 148
Anonymous20240521177.96 20775.33 22585.87 9193.73 5364.52 17494.85 4485.36 33762.52 32176.11 15990.18 18129.43 37397.29 7668.51 22477.24 22095.81 49
GA-MVS78.33 20276.23 21284.65 13883.65 29066.30 13791.44 18290.14 22876.01 12870.32 22984.02 26542.50 31194.72 19770.98 19977.00 22192.94 168
thisisatest053081.15 14480.07 15084.39 14988.26 19965.63 15291.40 18594.62 4171.27 23170.93 22189.18 19572.47 3196.04 14765.62 25576.89 22291.49 200
thres600view778.00 20576.66 20782.03 22091.93 10863.69 20591.30 19596.33 172.43 19170.46 22687.89 21660.31 13994.92 19242.64 36576.64 22387.48 258
PLCcopyleft68.80 1475.23 25173.68 25079.86 27192.93 7658.68 30890.64 22288.30 30060.90 33464.43 29890.53 17242.38 31294.57 20456.52 30676.54 22486.33 279
Jie Liao, Yanping Fu, Qingan Yan, Chunxia xiao: Pyramid Multi-View Stereo with Local Consistency. Pacific Graphics 2019
MIMVSNet71.64 28568.44 29881.23 23481.97 30964.44 17973.05 37788.80 28569.67 25564.59 29374.79 36132.79 35887.82 34553.99 31676.35 22591.42 202
test_fmvs174.07 26173.69 24975.22 32178.91 34547.34 37889.06 26574.69 38163.68 30879.41 12391.59 15724.36 38387.77 34785.22 7876.26 22690.55 219
MVS-HIRNet60.25 35355.55 36074.35 32984.37 28056.57 33071.64 38174.11 38234.44 40345.54 38842.24 41131.11 36889.81 32940.36 37376.10 22776.67 383
CNLPA74.31 25972.30 26780.32 25491.49 12361.66 25690.85 21280.72 36556.67 36063.85 30390.64 16946.75 28690.84 31553.79 31775.99 22888.47 247
ab-mvs80.18 16478.31 17985.80 9588.44 19265.49 15883.00 32892.67 11971.82 21277.36 14885.01 25354.50 21196.59 11976.35 15575.63 22995.32 68
test_fmvs1_n72.69 28071.92 27174.99 32471.15 38347.08 38087.34 29275.67 37663.48 31078.08 14091.17 16420.16 39587.87 34484.65 8775.57 23090.01 225
FIs79.47 17879.41 16479.67 27585.95 25159.40 29891.68 17893.94 6478.06 9768.96 24788.28 20566.61 6491.77 30066.20 24974.99 23187.82 254
SDMVSNet80.26 16278.88 17384.40 14889.25 17267.63 10185.35 30593.02 10576.77 12070.84 22287.12 22947.95 27996.09 14285.04 8174.55 23289.48 234
sd_testset77.08 22175.37 22382.20 21189.25 17262.11 24682.06 33289.09 27276.77 12070.84 22287.12 22941.43 31595.01 18767.23 23674.55 23289.48 234
CMPMVSbinary48.56 2166.77 32464.41 32673.84 33470.65 38650.31 36277.79 36485.73 33545.54 39144.76 39082.14 28635.40 35090.14 32663.18 27474.54 23481.07 353
M. Jancosek, T. Pajdla: Multi-View Reconstruction Preserving Weakly-Supported Surfaces. CVPR 2011
dmvs_re76.93 22375.36 22481.61 22687.78 21660.71 27680.00 35387.99 30979.42 7269.02 24589.47 19246.77 28594.32 21463.38 27174.45 23589.81 227
test_vis1_n71.63 28670.73 28274.31 33169.63 38947.29 37986.91 29672.11 38763.21 31475.18 17090.17 18220.40 39385.76 35984.59 8874.42 23689.87 226
XVG-OURS74.25 26072.46 26679.63 27678.45 35157.59 31980.33 34787.39 31463.86 30568.76 25189.62 19140.50 31891.72 30169.00 21974.25 23789.58 231
tpm cat175.30 25072.21 26884.58 14288.52 18867.77 9678.16 36388.02 30861.88 32968.45 25676.37 35260.65 13694.03 23353.77 31874.11 23891.93 196
XVG-OURS-SEG-HR74.70 25773.08 25579.57 27878.25 35357.33 32380.49 34587.32 31563.22 31368.76 25190.12 18744.89 30391.59 30570.55 20574.09 23989.79 228
FC-MVSNet-test77.99 20678.08 18377.70 29884.89 27155.51 33690.27 23493.75 7376.87 11566.80 28087.59 22165.71 7490.23 32462.89 27773.94 24087.37 261
PVSNet_BlendedMVS83.38 10783.43 9283.22 18593.76 5067.53 10494.06 6393.61 7879.13 8081.00 10385.14 25263.19 11097.29 7687.08 6573.91 24184.83 311
tttt051779.50 17678.53 17782.41 20487.22 22761.43 26189.75 24994.76 3369.29 25967.91 26188.06 21472.92 2895.63 16462.91 27673.90 24290.16 222
MDTV_nov1_ep1372.61 26389.06 17868.48 7680.33 34790.11 22971.84 21171.81 21175.92 35653.01 23093.92 23848.04 33973.38 243
SCA75.82 24372.76 25985.01 12286.63 23870.08 3781.06 34289.19 26471.60 22370.01 23377.09 34645.53 29790.25 32060.43 29073.27 24494.68 100
CR-MVSNet73.79 26670.82 28182.70 19583.15 29667.96 9270.25 38384.00 35073.67 16669.97 23572.41 36857.82 17189.48 33252.99 32173.13 24590.64 217
RPMNet70.42 29365.68 31484.63 14083.15 29667.96 9270.25 38390.45 21146.83 38969.97 23565.10 38956.48 19295.30 18135.79 38473.13 24590.64 217
Fast-Effi-MVS+-dtu75.04 25373.37 25380.07 26280.86 31659.52 29791.20 20185.38 33671.90 20665.20 28884.84 25541.46 31492.97 25866.50 24572.96 24787.73 255
LPG-MVS_test75.82 24374.58 23479.56 27984.31 28159.37 29990.44 22689.73 24569.49 25664.86 29088.42 20238.65 32494.30 21672.56 18572.76 24885.01 309
LGP-MVS_train79.56 27984.31 28159.37 29989.73 24569.49 25664.86 29088.42 20238.65 32494.30 21672.56 18572.76 24885.01 309
EG-PatchMatch MVS68.55 30965.41 31777.96 29778.69 34862.93 22789.86 24789.17 26560.55 33650.27 37277.73 34022.60 38994.06 22847.18 34572.65 25076.88 382
EI-MVSNet78.97 18678.22 18181.25 23385.33 26162.73 23489.53 25393.21 9572.39 19372.14 20690.13 18560.99 13294.72 19767.73 23172.49 25186.29 280
MVSTER82.47 12382.05 11983.74 16792.68 8669.01 6491.90 16693.21 9579.83 6372.14 20685.71 24874.72 1794.72 19775.72 15872.49 25187.50 257
Anonymous2024052976.84 22674.15 24284.88 12591.02 13464.95 17093.84 8091.09 19353.57 36873.00 18987.42 22435.91 34897.32 7469.14 21872.41 25392.36 182
D2MVS73.80 26572.02 27079.15 28679.15 34062.97 22588.58 27190.07 23072.94 17759.22 33278.30 33342.31 31392.70 27365.59 25672.00 25481.79 347
PS-MVSNAJss77.26 21776.31 21180.13 26180.64 32159.16 30390.63 22491.06 19772.80 18268.58 25484.57 25953.55 22493.96 23672.97 17771.96 25587.27 265
Effi-MVS+-dtu76.14 23375.28 22678.72 28983.22 29555.17 33889.87 24687.78 31275.42 13567.98 25981.43 29745.08 30292.52 28075.08 16471.63 25688.48 246
ACMMP++_ref71.63 256
ACMM69.62 1374.34 25872.73 26179.17 28484.25 28357.87 31490.36 23189.93 23663.17 31565.64 28586.04 24537.79 33694.10 22465.89 25171.52 25885.55 301
Qingshan Xu and Wenbing Tao: Multi-Scale Geometric Consistency Guided Multi-View Stereo. CVPR 2019
ACMP71.68 1075.58 24874.23 24179.62 27784.97 27059.64 29490.80 21489.07 27470.39 24662.95 31287.30 22638.28 32893.87 24172.89 17871.45 25985.36 305
Qingshan Xu and Wenbing Tao: Planar Prior Assisted PatchMatch Multi-View Stereo. AAAI 2020
dp75.01 25472.09 26983.76 16689.28 17166.22 14079.96 35589.75 24271.16 23267.80 26577.19 34551.81 23992.54 27950.39 32671.44 26092.51 180
tpm78.58 19777.03 20183.22 18585.94 25364.56 17383.21 32491.14 19178.31 9473.67 18579.68 32564.01 9392.09 29466.07 25071.26 26193.03 165
DP-MVS69.90 29866.48 30680.14 26095.36 2862.93 22789.56 25076.11 37450.27 37957.69 34585.23 25139.68 32095.73 15833.35 38971.05 26281.78 348
UniMVSNet_ETH3D72.74 27770.53 28479.36 28178.62 35056.64 32985.01 30789.20 26363.77 30664.84 29284.44 26134.05 35591.86 29863.94 26770.89 26389.57 232
jajsoiax73.05 27171.51 27677.67 29977.46 36054.83 34088.81 26790.04 23369.13 26362.85 31483.51 27031.16 36792.75 27070.83 20069.80 26485.43 304
ACMMP++69.72 265
mvs_tets72.71 27871.11 27777.52 30077.41 36154.52 34288.45 27389.76 24168.76 26862.70 31583.26 27329.49 37292.71 27170.51 20669.62 26685.34 306
tpmvs72.88 27569.76 29182.22 21090.98 13567.05 11778.22 36288.30 30063.10 31664.35 29974.98 35955.09 20794.27 21843.25 35969.57 26785.34 306
GBi-Net75.65 24573.83 24781.10 23988.85 18265.11 16590.01 24290.32 21770.84 23967.04 27580.25 31848.03 27591.54 30759.80 29569.34 26886.64 273
test175.65 24573.83 24781.10 23988.85 18265.11 16590.01 24290.32 21770.84 23967.04 27580.25 31848.03 27591.54 30759.80 29569.34 26886.64 273
FMVSNet377.73 21176.04 21582.80 19191.20 13268.99 6591.87 16791.99 14873.35 17067.04 27583.19 27456.62 18892.14 29159.80 29569.34 26887.28 264
Syy-MVS69.65 30069.52 29270.03 35787.87 21143.21 39388.07 27789.01 27672.91 17963.11 30988.10 21145.28 30085.54 36022.07 40769.23 27181.32 350
myMVS_eth3d72.58 28272.74 26072.10 34987.87 21149.45 36788.07 27789.01 27672.91 17963.11 30988.10 21163.63 10085.54 36032.73 39469.23 27181.32 350
MSDG69.54 30165.73 31380.96 24485.11 26863.71 20384.19 31283.28 35856.95 35754.50 35484.03 26431.50 36496.03 14842.87 36369.13 27383.14 331
JIA-IIPM66.06 32762.45 33776.88 31281.42 31454.45 34357.49 40788.67 29049.36 38163.86 30246.86 40556.06 19690.25 32049.53 33168.83 27485.95 291
OpenMVS_ROBcopyleft61.12 1866.39 32562.92 33476.80 31376.51 36457.77 31589.22 25983.41 35655.48 36453.86 35877.84 33826.28 38293.95 23734.90 38668.76 27578.68 374
FMVSNet276.07 23474.01 24582.26 20988.85 18267.66 9991.33 19391.61 17070.84 23965.98 28382.25 28448.03 27592.00 29658.46 30068.73 27687.10 267
test_djsdf73.76 26772.56 26477.39 30477.00 36353.93 34489.07 26390.69 20465.80 29063.92 30182.03 28743.14 31092.67 27472.83 17968.53 27785.57 300
F-COLMAP70.66 29068.44 29877.32 30586.37 24455.91 33388.00 27986.32 32556.94 35857.28 34788.07 21333.58 35692.49 28151.02 32468.37 27883.55 321
XVG-ACMP-BASELINE68.04 31565.53 31675.56 31974.06 37552.37 34978.43 35985.88 33262.03 32658.91 33681.21 30520.38 39491.15 31460.69 28968.18 27983.16 330
WBMVS81.67 13680.98 13783.72 17193.07 7369.40 5394.33 5493.05 10476.84 11772.05 20884.14 26374.49 1993.88 24072.76 18268.09 28087.88 253
LTVRE_ROB59.60 1966.27 32663.54 33074.45 32884.00 28651.55 35467.08 39583.53 35458.78 34754.94 35380.31 31634.54 35393.23 25340.64 37268.03 28178.58 375
Andreas Kuhn, Heiko Hirschmüller, Daniel Scharstein, Helmut Mayer: A TV Prior for High-Quality Scalable Multi-View Stereo Reconstruction. International Journal of Computer Vision 2016
XXY-MVS77.94 20876.44 20982.43 20182.60 30264.44 17992.01 15991.83 15973.59 16770.00 23485.82 24654.43 21594.76 19469.63 21068.02 28288.10 252
ADS-MVSNet266.90 32363.44 33177.26 30788.06 20560.70 27768.01 39175.56 37857.57 35164.48 29569.87 37838.68 32284.10 36740.87 37067.89 28386.97 268
ADS-MVSNet68.54 31064.38 32781.03 24388.06 20566.90 12268.01 39184.02 34957.57 35164.48 29569.87 37838.68 32289.21 33440.87 37067.89 28386.97 268
test0.0.03 172.76 27672.71 26272.88 34180.25 32647.99 37491.22 19989.45 25371.51 22762.51 31787.66 21953.83 22085.06 36450.16 32867.84 28585.58 299
anonymousdsp71.14 28969.37 29376.45 31472.95 37854.71 34184.19 31288.88 28161.92 32862.15 31879.77 32438.14 33191.44 31268.90 22167.45 28683.21 329
tt080573.07 27070.73 28280.07 26278.37 35257.05 32587.78 28492.18 14061.23 33367.04 27586.49 23831.35 36694.58 20265.06 26167.12 28788.57 244
VPA-MVSNet79.03 18478.00 18482.11 21885.95 25164.48 17793.22 10994.66 3975.05 14174.04 18384.95 25452.17 23793.52 24874.90 16867.04 28888.32 250
nrg03080.93 15079.86 15584.13 15783.69 28968.83 6893.23 10891.20 18675.55 13375.06 17188.22 21063.04 11494.74 19681.88 11166.88 28988.82 240
FMVSNet172.71 27869.91 28981.10 23983.60 29165.11 16590.01 24290.32 21763.92 30463.56 30580.25 31836.35 34791.54 30754.46 31466.75 29086.64 273
PatchT69.11 30465.37 31880.32 25482.07 30863.68 20667.96 39387.62 31350.86 37769.37 23965.18 38857.09 17788.53 33841.59 36866.60 29188.74 241
IB-MVS77.80 482.18 12780.46 14887.35 4589.14 17770.28 3595.59 2695.17 2278.85 8670.19 23185.82 24670.66 4197.67 5172.19 19166.52 29294.09 129
Christian Sormann, Mattia Rossi, Andreas Kuhn and Friedrich Fraundorfer: IB-MVS: An Iterative Algorithm for Deep Multi-View Stereo based on Binary Decisions. BMVC 2021
test_fmvs265.78 33064.84 31968.60 36366.54 39541.71 39583.27 32169.81 39454.38 36667.91 26184.54 26015.35 40081.22 38775.65 15966.16 29382.88 332
pmmvs573.35 26871.52 27578.86 28878.64 34960.61 28091.08 20586.90 31967.69 27463.32 30783.64 26844.33 30590.53 31762.04 28266.02 29485.46 303
dmvs_testset65.55 33166.45 30762.86 37579.87 33022.35 42176.55 36771.74 38977.42 11255.85 35087.77 21851.39 24580.69 38831.51 40065.92 29585.55 301
MonoMVSNet76.99 22275.08 22882.73 19383.32 29463.24 21886.47 30186.37 32479.08 8266.31 28279.30 32949.80 26191.72 30179.37 13265.70 29693.23 157
pmmvs473.92 26471.81 27380.25 25879.17 33965.24 16187.43 29087.26 31767.64 27763.46 30683.91 26748.96 27191.53 31062.94 27565.49 29783.96 316
cl2277.94 20876.78 20581.42 23087.57 21864.93 17190.67 22088.86 28372.45 19067.63 26782.68 27964.07 9292.91 26471.79 19265.30 29886.44 278
miper_ehance_all_eth77.60 21276.44 20981.09 24285.70 25864.41 18290.65 22188.64 29272.31 19467.37 27382.52 28064.77 8692.64 27770.67 20365.30 29886.24 282
miper_enhance_ethall78.86 18977.97 18581.54 22888.00 20865.17 16391.41 18389.15 26775.19 13968.79 25083.98 26667.17 5992.82 26672.73 18365.30 29886.62 277
v114476.73 22974.88 22982.27 20780.23 32766.60 13091.68 17890.21 22773.69 16469.06 24481.89 28852.73 23394.40 21369.21 21665.23 30185.80 295
DSMNet-mixed56.78 35954.44 36363.79 37363.21 40029.44 41664.43 39864.10 40342.12 40051.32 36871.60 37331.76 36375.04 39536.23 38165.20 30286.87 271
v119275.98 23973.92 24682.15 21379.73 33166.24 13991.22 19989.75 24272.67 18468.49 25581.42 29849.86 25994.27 21867.08 23865.02 30385.95 291
v2v48277.42 21575.65 22182.73 19380.38 32367.13 11591.85 16990.23 22575.09 14069.37 23983.39 27253.79 22294.44 21271.77 19365.00 30486.63 276
V4276.46 23174.55 23582.19 21279.14 34167.82 9590.26 23589.42 25573.75 16268.63 25381.89 28851.31 24694.09 22571.69 19564.84 30584.66 312
ACMH63.93 1768.62 30864.81 32080.03 26485.22 26463.25 21787.72 28584.66 34360.83 33551.57 36779.43 32827.29 37994.96 18941.76 36664.84 30581.88 346
Qingshan Xu and Wenbing Tao: Multi-Scale Geometric Consistency Guided Multi-View Stereo. CVPR 2019
baseline181.84 13481.03 13584.28 15491.60 11866.62 12991.08 20591.66 16981.87 3274.86 17391.67 15569.98 4594.92 19271.76 19464.75 30791.29 209
v124075.21 25272.98 25781.88 22179.20 33866.00 14390.75 21689.11 27171.63 22267.41 27181.22 30347.36 28393.87 24165.46 25864.72 30885.77 296
IterMVS-LS76.49 23075.18 22780.43 25384.49 27762.74 23390.64 22288.80 28572.40 19265.16 28981.72 29160.98 13392.27 29067.74 23064.65 30986.29 280
Fangjinhua Wang, Silvano Galliani, Christoph Vogel, Marc Pollefeys: IterMVS: Iterative Probability Estimation for Efficient Multi-View Stereo.
v192192075.63 24773.49 25282.06 21979.38 33666.35 13591.07 20789.48 25171.98 20367.99 25881.22 30349.16 26993.90 23966.56 24264.56 31085.92 293
mamv465.18 33367.43 30358.44 37977.88 35949.36 37069.40 38770.99 39248.31 38557.78 34485.53 24959.01 15951.88 41773.67 17464.32 31174.07 387
v14419276.05 23774.03 24482.12 21579.50 33566.55 13291.39 18789.71 24872.30 19568.17 25781.33 30051.75 24194.03 23367.94 22864.19 31285.77 296
Anonymous2023121173.08 26970.39 28581.13 23790.62 14263.33 21691.40 18590.06 23251.84 37364.46 29780.67 31136.49 34694.07 22763.83 26864.17 31385.98 290
testing370.38 29470.83 27969.03 36185.82 25543.93 39290.72 21990.56 21068.06 27260.24 32686.82 23564.83 8484.12 36626.33 40264.10 31479.04 371
Patchmatch-test65.86 32860.94 34380.62 25183.75 28858.83 30658.91 40675.26 38044.50 39450.95 37177.09 34658.81 16187.90 34335.13 38564.03 31595.12 80
USDC67.43 32264.51 32476.19 31677.94 35755.29 33778.38 36085.00 34073.17 17248.36 38080.37 31521.23 39192.48 28252.15 32264.02 31680.81 356
VPNet78.82 19077.53 19282.70 19584.52 27666.44 13393.93 7292.23 13380.46 5272.60 19788.38 20449.18 26793.13 25472.47 18763.97 31788.55 245
Anonymous2023120667.53 32065.78 31272.79 34274.95 37147.59 37688.23 27587.32 31561.75 33158.07 34077.29 34337.79 33687.29 35342.91 36163.71 31883.48 324
WR-MVS76.76 22875.74 22079.82 27284.60 27462.27 24492.60 13592.51 12776.06 12767.87 26485.34 25056.76 18490.24 32362.20 28163.69 31986.94 270
h-mvs3383.01 11482.56 11484.35 15189.34 16762.02 24792.72 12693.76 7081.45 3882.73 8692.25 14260.11 14297.13 9087.69 5562.96 32093.91 138
c3_l76.83 22775.47 22280.93 24685.02 26964.18 19290.39 22988.11 30671.66 21766.65 28181.64 29363.58 10592.56 27869.31 21562.86 32186.04 288
test_vis1_rt59.09 35757.31 35664.43 37268.44 39246.02 38683.05 32748.63 41651.96 37249.57 37563.86 39216.30 39880.20 38971.21 19862.79 32267.07 399
mvsany_test168.77 30768.56 29669.39 35973.57 37645.88 38780.93 34360.88 40759.65 34371.56 21590.26 18043.22 30975.05 39474.26 17262.70 32387.25 266
UniMVSNet_NR-MVSNet78.15 20477.55 19179.98 26684.46 27860.26 28592.25 14693.20 9777.50 10968.88 24886.61 23666.10 6992.13 29266.38 24662.55 32487.54 256
DU-MVS76.86 22475.84 21879.91 26982.96 29860.26 28591.26 19691.54 17276.46 12568.88 24886.35 23956.16 19392.13 29266.38 24662.55 32487.35 262
UniMVSNet (Re)77.58 21376.78 20579.98 26684.11 28460.80 27091.76 17493.17 9976.56 12469.93 23784.78 25663.32 10992.36 28664.89 26262.51 32686.78 272
v875.35 24973.26 25481.61 22680.67 32066.82 12389.54 25289.27 26071.65 21863.30 30880.30 31754.99 20894.06 22867.33 23562.33 32783.94 317
cl____76.07 23474.67 23080.28 25685.15 26561.76 25390.12 23888.73 28771.16 23265.43 28681.57 29561.15 13092.95 25966.54 24362.17 32886.13 286
v1074.77 25672.54 26581.46 22980.33 32566.71 12789.15 26289.08 27370.94 23763.08 31179.86 32252.52 23494.04 23165.70 25462.17 32883.64 320
DIV-MVS_self_test76.07 23474.67 23080.28 25685.14 26661.75 25490.12 23888.73 28771.16 23265.42 28781.60 29461.15 13092.94 26366.54 24362.16 33086.14 284
IterMVS-SCA-FT71.55 28769.97 28776.32 31581.48 31260.67 27887.64 28885.99 33166.17 28859.50 33078.88 33045.53 29783.65 37262.58 27961.93 33184.63 314
IterMVS72.65 28170.83 27978.09 29682.17 30662.96 22687.64 28886.28 32671.56 22560.44 32578.85 33145.42 29986.66 35563.30 27361.83 33284.65 313
Fangjinhua Wang, Silvano Galliani, Christoph Vogel, Marc Pollefeys: IterMVS: Iterative Probability Estimation for Efficient Multi-View Stereo.
FMVSNet568.04 31565.66 31575.18 32384.43 27957.89 31383.54 31686.26 32761.83 33053.64 35973.30 36437.15 34285.08 36348.99 33461.77 33382.56 341
v7n71.31 28868.65 29579.28 28276.40 36560.77 27286.71 29989.45 25364.17 30358.77 33778.24 33444.59 30493.54 24757.76 30261.75 33483.52 323
v14876.19 23274.47 23781.36 23180.05 32964.44 17991.75 17690.23 22573.68 16567.13 27480.84 30855.92 19893.86 24368.95 22061.73 33585.76 298
tfpnnormal70.10 29567.36 30478.32 29283.45 29360.97 26888.85 26692.77 11464.85 29760.83 32378.53 33243.52 30893.48 24931.73 39761.70 33680.52 359
ACMH+65.35 1667.65 31864.55 32376.96 31184.59 27557.10 32488.08 27680.79 36458.59 34953.00 36081.09 30726.63 38192.95 25946.51 34761.69 33780.82 355
ITE_SJBPF70.43 35674.44 37347.06 38177.32 37260.16 34054.04 35783.53 26923.30 38784.01 36943.07 36061.58 33880.21 364
NR-MVSNet76.05 23774.59 23380.44 25282.96 29862.18 24590.83 21391.73 16277.12 11360.96 32286.35 23959.28 15491.80 29960.74 28861.34 33987.35 262
test_040264.54 33661.09 34274.92 32584.10 28560.75 27487.95 28079.71 36952.03 37152.41 36277.20 34432.21 36291.64 30323.14 40561.03 34072.36 393
Baseline_NR-MVSNet73.99 26372.83 25877.48 30280.78 31859.29 30291.79 17184.55 34568.85 26568.99 24680.70 30956.16 19392.04 29562.67 27860.98 34181.11 352
TranMVSNet+NR-MVSNet75.86 24274.52 23679.89 27082.44 30460.64 27991.37 19091.37 17976.63 12267.65 26686.21 24252.37 23691.55 30661.84 28360.81 34287.48 258
testgi64.48 33762.87 33569.31 36071.24 38140.62 39885.49 30479.92 36865.36 29454.18 35683.49 27123.74 38684.55 36541.60 36760.79 34382.77 334
eth_miper_zixun_eth75.96 24174.40 23880.66 24884.66 27363.02 22489.28 25888.27 30271.88 20865.73 28481.65 29259.45 15092.81 26768.13 22560.53 34486.14 284
COLMAP_ROBcopyleft57.96 2062.98 34459.65 34772.98 34081.44 31353.00 34883.75 31575.53 37948.34 38448.81 37981.40 29924.14 38490.30 31932.95 39160.52 34575.65 385
Johannes L. Schönberger, Enliang Zheng, Marc Pollefeys, Jan-Michael Frahm: Pixelwise View Selection for Unstructured Multi-View Stereo. ECCV 2016
AUN-MVS78.37 20077.43 19381.17 23586.60 23957.45 32189.46 25591.16 18874.11 15274.40 17790.49 17455.52 20194.57 20474.73 17060.43 34691.48 201
hse-mvs281.12 14781.11 13481.16 23686.52 24057.48 32089.40 25691.16 18881.45 3882.73 8690.49 17460.11 14294.58 20287.69 5560.41 34791.41 203
RPSCF64.24 33861.98 34071.01 35576.10 36745.00 38875.83 37275.94 37546.94 38858.96 33584.59 25831.40 36582.00 38447.76 34360.33 34886.04 288
miper_lstm_enhance73.05 27171.73 27477.03 30883.80 28758.32 31181.76 33388.88 28169.80 25461.01 32178.23 33557.19 17687.51 35165.34 25959.53 34985.27 308
CP-MVSNet70.50 29269.91 28972.26 34680.71 31951.00 35987.23 29390.30 22167.84 27359.64 32982.69 27850.23 25682.30 38251.28 32359.28 35083.46 325
PS-CasMVS69.86 29969.13 29472.07 35080.35 32450.57 36187.02 29589.75 24267.27 27959.19 33382.28 28346.58 28882.24 38350.69 32559.02 35183.39 327
pm-mvs172.89 27471.09 27878.26 29479.10 34257.62 31890.80 21489.30 25967.66 27562.91 31381.78 29049.11 27092.95 25960.29 29258.89 35284.22 315
Anonymous2024052162.09 34559.08 34971.10 35467.19 39348.72 37283.91 31485.23 33850.38 37847.84 38171.22 37720.74 39285.51 36246.47 34858.75 35379.06 370
WR-MVS_H70.59 29169.94 28872.53 34381.03 31551.43 35587.35 29192.03 14767.38 27860.23 32780.70 30955.84 19983.45 37446.33 34958.58 35482.72 336
reproduce_monomvs79.49 17779.11 17180.64 24992.91 7761.47 26091.17 20393.28 9383.09 2064.04 30082.38 28266.19 6794.57 20481.19 12057.71 35585.88 294
PEN-MVS69.46 30268.56 29672.17 34879.27 33749.71 36586.90 29789.24 26167.24 28259.08 33482.51 28147.23 28483.54 37348.42 33757.12 35683.25 328
EU-MVSNet64.01 33963.01 33367.02 36974.40 37438.86 40483.27 32186.19 32945.11 39254.27 35581.15 30636.91 34580.01 39048.79 33657.02 35782.19 345
AllTest61.66 34658.06 35172.46 34479.57 33251.42 35680.17 35068.61 39651.25 37545.88 38481.23 30119.86 39686.58 35638.98 37657.01 35879.39 367
TestCases72.46 34479.57 33251.42 35668.61 39651.25 37545.88 38481.23 30119.86 39686.58 35638.98 37657.01 35879.39 367
Patchmtry67.53 32063.93 32878.34 29182.12 30764.38 18368.72 38884.00 35048.23 38659.24 33172.41 36857.82 17189.27 33346.10 35056.68 36081.36 349
our_test_368.29 31364.69 32279.11 28778.92 34364.85 17288.40 27485.06 33960.32 33952.68 36176.12 35440.81 31789.80 33144.25 35855.65 36182.67 340
FPMVS45.64 37143.10 37553.23 38851.42 41336.46 40664.97 39771.91 38829.13 40827.53 40861.55 3979.83 41065.01 41116.00 41455.58 36258.22 404
DTE-MVSNet68.46 31167.33 30571.87 35277.94 35749.00 37186.16 30388.58 29466.36 28758.19 33882.21 28546.36 28983.87 37144.97 35655.17 36382.73 335
MIMVSNet160.16 35457.33 35568.67 36269.71 38844.13 39078.92 35784.21 34655.05 36544.63 39171.85 37223.91 38581.54 38632.63 39555.03 36480.35 360
pmmvs667.57 31964.76 32176.00 31872.82 38053.37 34688.71 26886.78 32353.19 36957.58 34678.03 33735.33 35192.41 28355.56 31054.88 36582.21 344
TinyColmap60.32 35256.42 35972.00 35178.78 34653.18 34778.36 36175.64 37752.30 37041.59 39875.82 35714.76 40388.35 34035.84 38254.71 36674.46 386
test20.0363.83 34062.65 33667.38 36870.58 38739.94 40086.57 30084.17 34763.29 31251.86 36577.30 34237.09 34382.47 38038.87 37854.13 36779.73 365
OurMVSNet-221017-064.68 33562.17 33972.21 34776.08 36847.35 37780.67 34481.02 36356.19 36151.60 36679.66 32627.05 38088.56 33753.60 31953.63 36880.71 357
test_fmvs356.82 35854.86 36262.69 37753.59 41035.47 40775.87 37165.64 40143.91 39555.10 35271.43 3766.91 41574.40 39768.64 22352.63 36978.20 378
Patchmatch-RL test68.17 31464.49 32579.19 28371.22 38253.93 34470.07 38571.54 39169.22 26056.79 34862.89 39356.58 18988.61 33569.53 21252.61 37095.03 85
ppachtmachnet_test67.72 31763.70 32979.77 27478.92 34366.04 14288.68 26982.90 36060.11 34155.45 35175.96 35539.19 32190.55 31639.53 37452.55 37182.71 337
LF4IMVS54.01 36352.12 36459.69 37862.41 40239.91 40268.59 38968.28 39842.96 39844.55 39275.18 35814.09 40568.39 40441.36 36951.68 37270.78 394
N_pmnet50.55 36649.11 36854.88 38577.17 3624.02 42984.36 3102.00 42748.59 38245.86 38668.82 38132.22 36182.80 37931.58 39851.38 37377.81 380
pmmvs-eth3d65.53 33262.32 33875.19 32269.39 39059.59 29582.80 32983.43 35562.52 32151.30 36972.49 36632.86 35787.16 35455.32 31150.73 37478.83 373
CL-MVSNet_self_test69.92 29768.09 30175.41 32073.25 37755.90 33490.05 24189.90 23769.96 25161.96 32076.54 34951.05 24987.64 34849.51 33250.59 37582.70 338
PM-MVS59.40 35556.59 35767.84 36463.63 39941.86 39476.76 36663.22 40459.01 34651.07 37072.27 37111.72 40783.25 37661.34 28550.28 37678.39 377
MDA-MVSNet_test_wron63.78 34160.16 34574.64 32678.15 35560.41 28383.49 31784.03 34856.17 36339.17 40071.59 37437.22 34083.24 37742.87 36348.73 37780.26 362
YYNet163.76 34260.14 34674.62 32778.06 35660.19 28883.46 31983.99 35256.18 36239.25 39971.56 37537.18 34183.34 37542.90 36248.70 37880.32 361
KD-MVS_self_test60.87 35058.60 35067.68 36666.13 39639.93 40175.63 37484.70 34257.32 35549.57 37568.45 38329.55 37182.87 37848.09 33847.94 37980.25 363
SixPastTwentyTwo64.92 33461.78 34174.34 33078.74 34749.76 36483.42 32079.51 37062.86 31750.27 37277.35 34130.92 36990.49 31845.89 35147.06 38082.78 333
new_pmnet49.31 36746.44 37057.93 38062.84 40140.74 39768.47 39062.96 40536.48 40235.09 40357.81 40014.97 40272.18 39932.86 39346.44 38160.88 402
EGC-MVSNET42.35 37338.09 37655.11 38474.57 37246.62 38371.63 38255.77 4080.04 4220.24 42362.70 39414.24 40474.91 39617.59 41146.06 38243.80 408
TransMVSNet (Re)70.07 29667.66 30277.31 30680.62 32259.13 30491.78 17384.94 34165.97 28960.08 32880.44 31450.78 25091.87 29748.84 33545.46 38380.94 354
ambc69.61 35861.38 40541.35 39649.07 41285.86 33450.18 37466.40 38610.16 40988.14 34245.73 35244.20 38479.32 369
TDRefinement55.28 36151.58 36566.39 37059.53 40746.15 38576.23 36972.80 38444.60 39342.49 39676.28 35315.29 40182.39 38133.20 39043.75 38570.62 395
Gipumacopyleft34.91 38031.44 38345.30 39570.99 38439.64 40319.85 41772.56 38620.10 41316.16 41721.47 4185.08 41871.16 40013.07 41543.70 38625.08 415
S. Galliani, K. Lasinger, K. Schindler: Massively Parallel Multiview Stereopsis by Surface Normal Diffusion. ICCV 2015
test_f46.58 36943.45 37355.96 38245.18 41732.05 41161.18 40149.49 41533.39 40442.05 39762.48 3957.00 41465.56 40947.08 34643.21 38770.27 396
MDA-MVSNet-bldmvs61.54 34857.70 35373.05 33979.53 33457.00 32883.08 32581.23 36257.57 35134.91 40472.45 36732.79 35886.26 35835.81 38341.95 38875.89 384
new-patchmatchnet59.30 35656.48 35867.79 36565.86 39744.19 38982.47 33081.77 36159.94 34243.65 39466.20 38727.67 37881.68 38539.34 37541.40 38977.50 381
UnsupCasMVSNet_eth65.79 32963.10 33273.88 33370.71 38550.29 36381.09 34189.88 23872.58 18649.25 37774.77 36232.57 36087.43 35255.96 30941.04 39083.90 318
test_vis3_rt40.46 37637.79 37748.47 39344.49 41833.35 41066.56 39632.84 42432.39 40529.65 40639.13 4143.91 42268.65 40350.17 32740.99 39143.40 409
pmmvs355.51 36051.50 36667.53 36757.90 40850.93 36080.37 34673.66 38340.63 40144.15 39364.75 39016.30 39878.97 39144.77 35740.98 39272.69 391
APD_test140.50 37537.31 37850.09 39151.88 41135.27 40859.45 40552.59 41221.64 41126.12 40957.80 4014.56 41966.56 40722.64 40639.09 39348.43 407
mvs5depth61.03 34957.65 35471.18 35367.16 39447.04 38272.74 37877.49 37157.47 35460.52 32472.53 36522.84 38888.38 33949.15 33338.94 39478.11 379
UnsupCasMVSNet_bld61.60 34757.71 35273.29 33868.73 39151.64 35378.61 35889.05 27557.20 35646.11 38361.96 39628.70 37588.60 33650.08 32938.90 39579.63 366
PMVScopyleft26.43 2231.84 38328.16 38642.89 39625.87 42627.58 41750.92 41149.78 41421.37 41214.17 41840.81 4132.01 42566.62 4069.61 41838.88 39634.49 414
Y. Furukawa, J. Ponce: Accurate, dense, and robust multiview stereopsis. PAMI (2010)
K. test v363.09 34359.61 34873.53 33676.26 36649.38 36983.27 32177.15 37364.35 30047.77 38272.32 37028.73 37487.79 34649.93 33036.69 39783.41 326
mmtdpeth68.33 31266.37 30974.21 33282.81 30151.73 35284.34 31180.42 36667.01 28371.56 21568.58 38230.52 37092.35 28775.89 15736.21 39878.56 376
kuosan60.86 35160.24 34462.71 37681.57 31146.43 38475.70 37385.88 33257.98 35048.95 37869.53 38058.42 16476.53 39228.25 40135.87 39965.15 400
KD-MVS_2432*160069.03 30566.37 30977.01 30985.56 25961.06 26681.44 33890.25 22367.27 27958.00 34176.53 35054.49 21287.63 34948.04 33935.77 40082.34 342
miper_refine_blended69.03 30566.37 30977.01 30985.56 25961.06 26681.44 33890.25 22367.27 27958.00 34176.53 35054.49 21287.63 34948.04 33935.77 40082.34 342
mvsany_test348.86 36846.35 37156.41 38146.00 41631.67 41262.26 40047.25 41743.71 39645.54 38868.15 38410.84 40864.44 41357.95 30135.44 40273.13 390
LCM-MVSNet40.54 37435.79 37954.76 38636.92 42330.81 41351.41 41069.02 39522.07 41024.63 41045.37 4074.56 41965.81 40833.67 38834.50 40367.67 397
test_method38.59 37835.16 38148.89 39254.33 40921.35 42245.32 41353.71 4117.41 41928.74 40751.62 4038.70 41252.87 41633.73 38732.89 40472.47 392
lessismore_v073.72 33572.93 37947.83 37561.72 40645.86 38673.76 36328.63 37689.81 32947.75 34431.37 40583.53 322
testf132.77 38129.47 38442.67 39741.89 42030.81 41352.07 40843.45 41815.45 41418.52 41444.82 4082.12 42358.38 41416.05 41230.87 40638.83 410
APD_test232.77 38129.47 38442.67 39741.89 42030.81 41352.07 40843.45 41815.45 41418.52 41444.82 4082.12 42358.38 41416.05 41230.87 40638.83 410
ttmdpeth53.34 36449.96 36763.45 37462.07 40440.04 39972.06 37965.64 40142.54 39951.88 36477.79 33913.94 40676.48 39332.93 39230.82 40873.84 388
PVSNet_068.08 1571.81 28468.32 30082.27 20784.68 27262.31 24388.68 26990.31 22075.84 12957.93 34380.65 31237.85 33594.19 22169.94 20829.05 40990.31 221
dongtai55.18 36255.46 36154.34 38776.03 36936.88 40576.07 37084.61 34451.28 37443.41 39564.61 39156.56 19067.81 40518.09 41028.50 41058.32 403
MVStest151.35 36546.89 36964.74 37165.06 39851.10 35867.33 39472.58 38530.20 40735.30 40274.82 36027.70 37769.89 40224.44 40424.57 41173.22 389
WB-MVS46.23 37044.94 37250.11 39062.13 40321.23 42376.48 36855.49 40945.89 39035.78 40161.44 39835.54 34972.83 3989.96 41721.75 41256.27 405
SSC-MVS44.51 37243.35 37447.99 39461.01 40618.90 42574.12 37654.36 41043.42 39734.10 40560.02 39934.42 35470.39 4019.14 41919.57 41354.68 406
DeepMVS_CXcopyleft34.71 40051.45 41224.73 42028.48 42631.46 40617.49 41652.75 4025.80 41742.60 42118.18 40919.42 41436.81 413
PMMVS237.93 37933.61 38250.92 38946.31 41524.76 41960.55 40450.05 41328.94 40920.93 41147.59 4044.41 42165.13 41025.14 40318.55 41562.87 401
MVEpermissive24.84 2324.35 38519.77 39138.09 39934.56 42526.92 41826.57 41538.87 42211.73 41811.37 41927.44 4151.37 42650.42 41811.41 41614.60 41636.93 412
Simon Fuhrmann, Fabian Langguth, Michael Goesele: MVE - A Multi-View Reconstruction Environment. EUROGRAPHICS Workshops on Graphics and Cultural Heritage (2014)
E-PMN24.61 38424.00 38826.45 40143.74 41918.44 42660.86 40239.66 42015.11 4169.53 42022.10 4176.52 41646.94 4198.31 42010.14 41713.98 417
EMVS23.76 38623.20 39025.46 40241.52 42216.90 42760.56 40338.79 42314.62 4178.99 42120.24 4207.35 41345.82 4207.25 4219.46 41813.64 418
tmp_tt22.26 38723.75 38917.80 4035.23 42712.06 42835.26 41439.48 4212.82 42118.94 41244.20 41022.23 39024.64 42236.30 3809.31 41916.69 416
ANet_high40.27 37735.20 38055.47 38334.74 42434.47 40963.84 39971.56 39048.42 38318.80 41341.08 4129.52 41164.45 41220.18 4088.66 42067.49 398
wuyk23d11.30 38910.95 39212.33 40448.05 41419.89 42425.89 4161.92 4283.58 4203.12 4221.37 4220.64 42715.77 4236.23 4227.77 4211.35 419
testmvs7.23 3919.62 3940.06 4060.04 4280.02 43184.98 3080.02 4290.03 4230.18 4241.21 4230.01 4290.02 4240.14 4230.01 4220.13 421
mmdepth0.00 3940.00 3970.00 4070.00 4300.00 4320.00 4180.00 4310.00 4250.00 4260.00 4250.00 4300.00 4260.00 4250.00 4230.00 422
monomultidepth0.00 3940.00 3970.00 4070.00 4300.00 4320.00 4180.00 4310.00 4250.00 4260.00 4250.00 4300.00 4260.00 4250.00 4230.00 422
test_blank0.00 3940.00 3970.00 4070.00 4300.00 4320.00 4180.00 4310.00 4250.00 4260.00 4250.00 4300.00 4260.00 4250.00 4230.00 422
uanet_test0.00 3940.00 3970.00 4070.00 4300.00 4320.00 4180.00 4310.00 4250.00 4260.00 4250.00 4300.00 4260.00 4250.00 4230.00 422
DCPMVS0.00 3940.00 3970.00 4070.00 4300.00 4320.00 4180.00 4310.00 4250.00 4260.00 4250.00 4300.00 4260.00 4250.00 4230.00 422
cdsmvs_eth3d_5k19.86 38826.47 3870.00 4070.00 4300.00 4320.00 41893.45 860.00 4250.00 42695.27 5949.56 2620.00 4260.00 4250.00 4230.00 422
pcd_1.5k_mvsjas4.46 3935.95 3960.00 4070.00 4300.00 4320.00 4180.00 4310.00 4250.00 4260.00 42553.55 2240.00 4260.00 4250.00 4230.00 422
sosnet-low-res0.00 3940.00 3970.00 4070.00 4300.00 4320.00 4180.00 4310.00 4250.00 4260.00 4250.00 4300.00 4260.00 4250.00 4230.00 422
sosnet0.00 3940.00 3970.00 4070.00 4300.00 4320.00 4180.00 4310.00 4250.00 4260.00 4250.00 4300.00 4260.00 4250.00 4230.00 422
uncertanet0.00 3940.00 3970.00 4070.00 4300.00 4320.00 4180.00 4310.00 4250.00 4260.00 4250.00 4300.00 4260.00 4250.00 4230.00 422
Regformer0.00 3940.00 3970.00 4070.00 4300.00 4320.00 4180.00 4310.00 4250.00 4260.00 4250.00 4300.00 4260.00 4250.00 4230.00 422
test1236.92 3929.21 3950.08 4050.03 4290.05 43081.65 3360.01 4300.02 4240.14 4250.85 4240.03 4280.02 4240.12 4240.00 4230.16 420
ab-mvs-re7.91 39010.55 3930.00 4070.00 4300.00 4320.00 4180.00 4310.00 4250.00 42694.95 690.00 4300.00 4260.00 4250.00 4230.00 422
uanet0.00 3940.00 3970.00 4070.00 4300.00 4320.00 4180.00 4310.00 4250.00 4260.00 4250.00 4300.00 4260.00 4250.00 4230.00 422
WAC-MVS49.45 36731.56 399
FOURS193.95 4661.77 25293.96 7091.92 15162.14 32586.57 46
test_one_060196.32 1869.74 4994.18 5871.42 22990.67 1996.85 1674.45 20
eth-test20.00 430
eth-test0.00 430
test_241102_ONE96.45 1269.38 5594.44 4771.65 21892.11 797.05 776.79 999.11 6
save fliter93.84 4967.89 9495.05 3992.66 12078.19 95
test072696.40 1569.99 3896.76 894.33 5571.92 20491.89 1197.11 673.77 23
GSMVS94.68 100
test_part296.29 1968.16 8890.78 17
sam_mvs157.85 17094.68 100
sam_mvs54.91 209
MTGPAbinary92.23 133
test_post178.95 35620.70 41953.05 22991.50 31160.43 290
test_post23.01 41656.49 19192.67 274
patchmatchnet-post67.62 38557.62 17390.25 320
MTMP93.77 8432.52 425
gm-plane-assit88.42 19367.04 11878.62 9191.83 15197.37 7076.57 153
TEST994.18 4167.28 10994.16 5993.51 8271.75 21585.52 5795.33 5468.01 5397.27 80
test_894.19 4067.19 11194.15 6193.42 8971.87 20985.38 6095.35 5368.19 5196.95 106
agg_prior94.16 4366.97 12093.31 9284.49 6896.75 116
test_prior467.18 11393.92 73
test_prior86.42 7694.71 3567.35 10893.10 10396.84 11395.05 83
旧先验292.00 16259.37 34587.54 3993.47 25075.39 161
新几何291.41 183
无先验92.71 12792.61 12462.03 32697.01 9666.63 24193.97 135
原ACMM292.01 159
testdata296.09 14261.26 286
segment_acmp65.94 71
testdata189.21 26077.55 108
plane_prior786.94 23461.51 258
plane_prior687.23 22662.32 24250.66 251
plane_prior489.14 197
plane_prior361.95 25079.09 8172.53 199
plane_prior293.13 11078.81 88
plane_prior187.15 228
n20.00 431
nn0.00 431
door-mid66.01 400
test1193.01 106
door66.57 399
HQP5-MVS63.66 207
HQP-NCC87.54 21994.06 6379.80 6474.18 178
ACMP_Plane87.54 21994.06 6379.80 6474.18 178
BP-MVS77.63 148
HQP4-MVS74.18 17895.61 16688.63 242
HQP2-MVS51.63 243
NP-MVS87.41 22263.04 22390.30 178
MDTV_nov1_ep13_2view59.90 29180.13 35167.65 27672.79 19354.33 21759.83 29492.58 177
Test By Simon54.21 218