MSP-MVS | | | 90.38 4 | 91.87 1 | 85.88 85 | 92.83 83 | 64.03 189 | 93.06 105 | 94.33 51 | 82.19 21 | 93.65 3 | 96.15 30 | 85.89 1 | 97.19 84 | 91.02 20 | 97.75 1 | 96.43 26 |
Zhenlong Yuan, Cong Liu, Fei Shen, Zhaoxin Li, Jingguo luo, Tianlu Mao and Zhaoqi Wang: MSP-MVS: Multi-granularity Segmentation Prior Guided Multi-View Stereo. AAAI2025 |
DPM-MVS | | | 90.70 2 | 90.52 7 | 91.24 1 | 89.68 157 | 76.68 2 | 97.29 1 | 95.35 10 | 82.87 15 | 91.58 10 | 97.22 4 | 79.93 5 | 99.10 9 | 83.12 82 | 97.64 2 | 97.94 1 |
|
OPU-MVS | | | | | 89.97 3 | 97.52 3 | 73.15 13 | 96.89 4 | | | | 97.00 9 | 83.82 2 | 99.15 2 | 95.72 1 | 97.63 3 | 97.62 2 |
|
DVP-MVS++ | | | 90.53 3 | 91.09 4 | 88.87 14 | 97.31 4 | 69.91 37 | 93.96 69 | 94.37 49 | 72.48 165 | 92.07 6 | 96.85 12 | 83.82 2 | 99.15 2 | 91.53 16 | 97.42 4 | 97.55 4 |
|
PC_three_1452 | | | | | | | | | | 80.91 36 | 94.07 2 | 96.83 14 | 83.57 4 | 99.12 5 | 95.70 2 | 97.42 4 | 97.55 4 |
|
HPM-MVS++ |  | | 89.37 13 | 89.95 12 | 87.64 29 | 95.10 34 | 68.23 75 | 95.24 32 | 94.49 41 | 82.43 19 | 88.90 24 | 96.35 24 | 71.89 34 | 98.63 24 | 88.76 36 | 96.40 6 | 96.06 36 |
|
SMA-MVS |  | | 88.14 16 | 88.29 19 | 87.67 28 | 93.21 75 | 68.72 62 | 93.85 79 | 94.03 60 | 74.18 127 | 91.74 9 | 96.67 16 | 65.61 69 | 98.42 32 | 89.24 30 | 96.08 7 | 95.88 43 |
Yufeng Yin; Xiaoyan Liu; Zichao Zhang: SMA-MVS: Segmentation-Guided Multi-Scale Anchor Deformation Patch Multi-View Stereo. IEEE Transactions on Circuits and Systems for Video Technology |
ETH3 D test6400 | | | 90.27 6 | 90.44 8 | 89.75 6 | 96.82 9 | 74.33 7 | 95.89 16 | 94.80 29 | 77.13 88 | 89.13 22 | 97.38 2 | 74.49 18 | 98.48 28 | 92.32 11 | 95.98 8 | 96.46 25 |
|
DELS-MVS | | | 90.05 7 | 90.09 10 | 89.94 4 | 93.14 78 | 73.88 8 | 97.01 3 | 94.40 47 | 88.32 2 | 85.71 46 | 94.91 69 | 74.11 20 | 98.91 17 | 87.26 51 | 95.94 9 | 97.03 10 |
Christian Sormann, Emanuele Santellani, Mattia Rossi, Andreas Kuhn, Friedrich Fraundorfer: DELS-MVS: Deep Epipolar Line Search for Multi-View Stereo. Winter Conference on Applications of Computer Vision (WACV), 2023 |
MCST-MVS | | | 91.08 1 | 91.46 2 | 89.94 4 | 97.66 2 | 73.37 9 | 97.13 2 | 95.58 8 | 89.33 1 | 85.77 44 | 96.26 27 | 72.84 27 | 99.38 1 | 92.64 6 | 95.93 10 | 97.08 9 |
|
CNVR-MVS | | | 90.32 5 | 90.89 6 | 88.61 19 | 96.76 10 | 70.65 26 | 96.47 12 | 94.83 26 | 84.83 9 | 89.07 23 | 96.80 15 | 70.86 35 | 99.06 15 | 92.64 6 | 95.71 11 | 96.12 35 |
|
PHI-MVS | | | 86.83 40 | 86.85 41 | 86.78 54 | 93.47 68 | 65.55 147 | 95.39 29 | 95.10 18 | 71.77 192 | 85.69 47 | 96.52 18 | 62.07 109 | 98.77 21 | 86.06 61 | 95.60 12 | 96.03 38 |
|
DeepPCF-MVS | | 81.17 1 | 89.72 9 | 91.38 3 | 84.72 127 | 93.00 81 | 58.16 292 | 96.72 7 | 94.41 45 | 86.50 6 | 90.25 18 | 97.83 1 | 75.46 14 | 98.67 23 | 92.78 5 | 95.49 13 | 97.32 6 |
|
SED-MVS | | | 89.94 8 | 90.36 9 | 88.70 16 | 96.45 14 | 69.38 47 | 96.89 4 | 94.44 43 | 71.65 195 | 92.11 4 | 97.21 5 | 76.79 9 | 99.11 6 | 92.34 8 | 95.36 14 | 97.62 2 |
|
IU-MVS | | | | | | 96.46 13 | 69.91 37 | | 95.18 14 | 80.75 37 | 95.28 1 | | | | 92.34 8 | 95.36 14 | 96.47 24 |
|
test_241102_TWO | | | | | | | | | 94.41 45 | 71.65 195 | 92.07 6 | 97.21 5 | 74.58 17 | 99.11 6 | 92.34 8 | 95.36 14 | 96.59 15 |
|
test_0728_THIRD | | | | | | | | | | 72.48 165 | 90.55 16 | 96.93 10 | 76.24 11 | 99.08 11 | 91.53 16 | 94.99 17 | 96.43 26 |
|
test9_res | | | | | | | | | | | | | | | 89.41 26 | 94.96 18 | 95.29 62 |
|
ACMMP_NAP | | | 86.05 50 | 85.80 53 | 86.80 53 | 91.58 121 | 67.53 93 | 91.79 160 | 93.49 81 | 74.93 118 | 84.61 57 | 95.30 49 | 59.42 136 | 97.92 45 | 86.13 59 | 94.92 19 | 94.94 81 |
|
DPE-MVS |  | | 88.77 15 | 89.21 15 | 87.45 36 | 96.26 22 | 67.56 91 | 94.17 55 | 94.15 57 | 68.77 246 | 90.74 14 | 97.27 3 | 76.09 12 | 98.49 27 | 90.58 23 | 94.91 20 | 96.30 29 |
Kehua Chen, Zhenlong Yuan, Tianlu Mao, Zhaoqi Wang: Dual-Level Precision Edges Guided Multi-View Stereo with Accurate Planarization. AAAI2025 |
DVP-MVS |  | | 89.41 12 | 89.73 13 | 88.45 21 | 96.40 17 | 69.99 33 | 96.64 8 | 94.52 39 | 71.92 181 | 90.55 16 | 96.93 10 | 73.77 22 | 99.08 11 | 91.91 14 | 94.90 21 | 96.29 30 |
Zhenlong Yuan, Jinguo Luo, Fei Shen, Zhaoxin Li, Cong Liu, Tianlu Mao, Zhaoqi Wang: DVP-MVS: Synergize Depth-Edge and Visibility Prior for Multi-View Stereo. AAAI2025 |
test_0728_SECOND | | | | | 88.70 16 | 96.45 14 | 70.43 29 | 96.64 8 | 94.37 49 | | | | | 99.15 2 | 91.91 14 | 94.90 21 | 96.51 20 |
|
train_agg | | | 87.21 31 | 87.42 31 | 86.60 60 | 94.18 46 | 67.28 100 | 94.16 56 | 93.51 78 | 71.87 186 | 85.52 48 | 95.33 47 | 68.19 41 | 97.27 82 | 89.09 31 | 94.90 21 | 95.25 69 |
|
DeepC-MVS_fast | | 79.48 2 | 87.95 20 | 88.00 20 | 87.79 27 | 95.86 29 | 68.32 70 | 95.74 20 | 94.11 59 | 83.82 12 | 83.49 69 | 96.19 29 | 64.53 81 | 98.44 30 | 83.42 81 | 94.88 24 | 96.61 14 |
Andreas Kuhn, Christian Sormann, Mattia Rossi, Oliver Erdler, Friedrich Fraundorfer: DeepC-MVS: Deep Confidence Prediction for Multi-View Stereo Reconstruction. 3DV 2020 |
MSC_two_6792asdad | | | | | 89.60 9 | 97.31 4 | 73.22 11 | | 95.05 21 | | | | | 99.07 13 | 92.01 12 | 94.77 25 | 96.51 20 |
|
No_MVS | | | | | 89.60 9 | 97.31 4 | 73.22 11 | | 95.05 21 | | | | | 99.07 13 | 92.01 12 | 94.77 25 | 96.51 20 |
|
TSAR-MVS + MP. | | | 88.11 18 | 88.64 16 | 86.54 64 | 91.73 117 | 68.04 79 | 90.36 216 | 93.55 77 | 82.89 14 | 91.29 12 | 92.89 120 | 72.27 31 | 96.03 133 | 87.99 40 | 94.77 25 | 95.54 51 |
Zhenlong Yuan, Jiakai Cao, Zhaoqi Wang, Zhaoxin Li: TSAR-MVS: Textureless-aware Segmentation and Correlative Refinement Guided Multi-View Stereo. Pattern Recognition |
test_prior3 | | | 87.38 27 | 87.70 24 | 86.42 69 | 94.71 39 | 67.35 98 | 95.10 37 | 93.10 100 | 75.40 109 | 85.25 54 | 95.61 40 | 67.94 45 | 96.84 107 | 87.47 46 | 94.77 25 | 95.05 76 |
|
test_prior2 | | | | | | | | 95.10 37 | | 75.40 109 | 85.25 54 | 95.61 40 | 67.94 45 | | 87.47 46 | 94.77 25 | |
|
agg_prior2 | | | | | | | | | | | | | | | 86.41 57 | 94.75 30 | 95.33 58 |
|
ETH3D cwj APD-0.16 | | | 87.06 34 | 87.18 35 | 86.71 56 | 91.99 108 | 67.48 96 | 92.97 110 | 94.21 54 | 71.48 206 | 85.72 45 | 96.32 26 | 68.13 43 | 98.00 42 | 89.06 32 | 94.70 31 | 94.65 92 |
|
MVS | | | 84.66 70 | 82.86 94 | 90.06 2 | 90.93 135 | 74.56 6 | 87.91 266 | 95.54 9 | 68.55 248 | 72.35 185 | 94.71 74 | 59.78 132 | 98.90 18 | 81.29 102 | 94.69 32 | 96.74 12 |
|
xxxxxxxxxxxxxcwj | | | 87.14 32 | 87.19 34 | 86.99 47 | 93.84 56 | 67.89 83 | 95.05 39 | 84.72 316 | 78.19 70 | 86.25 36 | 96.44 21 | 66.98 54 | 97.79 51 | 88.68 37 | 94.56 33 | 95.28 64 |
|
SF-MVS | | | 87.03 35 | 87.09 36 | 86.84 50 | 92.70 89 | 67.45 97 | 93.64 87 | 93.76 67 | 70.78 219 | 86.25 36 | 96.44 21 | 66.98 54 | 97.79 51 | 88.68 37 | 94.56 33 | 95.28 64 |
|
NCCC | | | 89.07 14 | 89.46 14 | 87.91 24 | 96.60 12 | 69.05 54 | 96.38 13 | 94.64 36 | 84.42 10 | 86.74 34 | 96.20 28 | 66.56 60 | 98.76 22 | 89.03 34 | 94.56 33 | 95.92 41 |
|
ETH3D-3000-0.1 | | | 87.61 24 | 87.89 21 | 86.75 55 | 93.58 64 | 67.21 102 | 94.31 53 | 94.14 58 | 72.92 156 | 87.13 30 | 96.62 17 | 67.81 49 | 97.94 43 | 90.13 24 | 94.42 36 | 95.09 74 |
|
3Dnovator | | 73.91 6 | 82.69 107 | 80.82 121 | 88.31 22 | 89.57 159 | 71.26 20 | 92.60 127 | 94.39 48 | 78.84 63 | 67.89 238 | 92.48 130 | 48.42 249 | 98.52 26 | 68.80 200 | 94.40 37 | 95.15 71 |
|
agg_prior1 | | | 87.02 36 | 87.26 33 | 86.28 76 | 94.16 50 | 66.97 111 | 94.08 63 | 93.31 88 | 71.85 188 | 84.49 59 | 95.39 45 | 68.91 38 | 96.75 111 | 88.84 35 | 94.32 38 | 95.13 72 |
|
CDPH-MVS | | | 85.71 56 | 85.46 57 | 86.46 67 | 94.75 38 | 67.19 103 | 93.89 77 | 92.83 109 | 70.90 215 | 83.09 72 | 95.28 50 | 63.62 93 | 97.36 73 | 80.63 105 | 94.18 39 | 94.84 85 |
|
MG-MVS | | | 87.11 33 | 86.27 44 | 89.62 8 | 97.79 1 | 76.27 4 | 94.96 44 | 94.49 41 | 78.74 66 | 83.87 68 | 92.94 117 | 64.34 83 | 96.94 103 | 75.19 140 | 94.09 40 | 95.66 47 |
|
9.14 | | | | 87.63 25 | | 93.86 55 | | 94.41 51 | 94.18 55 | 72.76 159 | 86.21 38 | 96.51 19 | 66.64 58 | 97.88 49 | 90.08 25 | 94.04 41 | |
|
原ACMM1 | | | | | 84.42 136 | 93.21 75 | 64.27 185 | | 93.40 87 | 65.39 271 | 79.51 107 | 92.50 127 | 58.11 149 | 96.69 113 | 65.27 235 | 93.96 42 | 92.32 167 |
|
MSLP-MVS++ | | | 86.27 46 | 85.91 51 | 87.35 38 | 92.01 106 | 68.97 57 | 95.04 41 | 92.70 112 | 79.04 61 | 81.50 83 | 96.50 20 | 58.98 143 | 96.78 109 | 83.49 80 | 93.93 43 | 96.29 30 |
|
CANet | | | 89.61 11 | 89.99 11 | 88.46 20 | 94.39 44 | 69.71 43 | 96.53 11 | 93.78 64 | 86.89 4 | 89.68 19 | 95.78 34 | 65.94 64 | 99.10 9 | 92.99 4 | 93.91 44 | 96.58 17 |
|
MP-MVS-pluss | | | 85.24 61 | 85.13 60 | 85.56 99 | 91.42 126 | 65.59 146 | 91.54 172 | 92.51 122 | 74.56 121 | 80.62 94 | 95.64 39 | 59.15 140 | 97.00 95 | 86.94 54 | 93.80 45 | 94.07 117 |
MP-MVS-pluss: MP-MVS-pluss. MP-MVS-pluss |
MVP-Stereo | | | 77.12 201 | 76.23 194 | 79.79 251 | 81.72 290 | 66.34 127 | 89.29 243 | 90.88 189 | 70.56 223 | 62.01 292 | 82.88 249 | 49.34 240 | 94.13 207 | 65.55 232 | 93.80 45 | 78.88 344 |
Qingsong Yan: MVP-Stereo: A Parallel Multi-View Patchmatch Stereo Method with Dilation Matching for Photogrammetric Application. |
GG-mvs-BLEND | | | | | 86.53 65 | 91.91 112 | 69.67 45 | 75.02 341 | 94.75 31 | | 78.67 121 | 90.85 154 | 77.91 7 | 94.56 190 | 72.25 165 | 93.74 47 | 95.36 57 |
|
ZNCC-MVS | | | 85.33 60 | 85.08 61 | 86.06 80 | 93.09 80 | 65.65 144 | 93.89 77 | 93.41 86 | 73.75 138 | 79.94 101 | 94.68 75 | 60.61 122 | 98.03 41 | 82.63 88 | 93.72 48 | 94.52 98 |
|
CSCG | | | 86.87 38 | 86.26 45 | 88.72 15 | 95.05 35 | 70.79 25 | 93.83 83 | 95.33 11 | 68.48 250 | 77.63 128 | 94.35 86 | 73.04 25 | 98.45 29 | 84.92 70 | 93.71 49 | 96.92 11 |
|
test12 | | | | | 87.09 44 | 94.60 41 | 68.86 58 | | 92.91 106 | | 82.67 76 | | 65.44 70 | 97.55 64 | | 93.69 50 | 94.84 85 |
|
PAPM | | | 85.89 53 | 85.46 57 | 87.18 41 | 88.20 196 | 72.42 14 | 92.41 134 | 92.77 110 | 82.11 22 | 80.34 97 | 93.07 114 | 68.27 40 | 95.02 172 | 78.39 123 | 93.59 51 | 94.09 115 |
|
SteuartSystems-ACMMP | | | 86.82 41 | 86.90 39 | 86.58 62 | 90.42 143 | 66.38 125 | 96.09 15 | 93.87 62 | 77.73 79 | 84.01 67 | 95.66 38 | 63.39 97 | 97.94 43 | 87.40 48 | 93.55 52 | 95.42 52 |
Skip Steuart: Steuart Systems R&D Blog. |
APDe-MVS | | | 87.54 25 | 87.84 22 | 86.65 59 | 96.07 25 | 66.30 128 | 94.84 46 | 93.78 64 | 69.35 236 | 88.39 25 | 96.34 25 | 67.74 50 | 97.66 58 | 90.62 22 | 93.44 53 | 96.01 39 |
|
CS-MVS-test | | | 86.14 49 | 87.01 37 | 83.52 158 | 92.63 91 | 59.36 278 | 95.49 26 | 91.92 142 | 80.09 42 | 85.46 50 | 95.53 43 | 61.82 112 | 95.77 141 | 86.77 56 | 93.37 54 | 95.41 53 |
|
PS-MVSNAJ | | | 88.14 16 | 87.61 26 | 89.71 7 | 92.06 103 | 76.72 1 | 95.75 19 | 93.26 90 | 83.86 11 | 89.55 20 | 96.06 31 | 53.55 204 | 97.89 48 | 91.10 18 | 93.31 55 | 94.54 96 |
|
MAR-MVS | | | 84.18 80 | 83.43 80 | 86.44 68 | 96.25 23 | 65.93 137 | 94.28 54 | 94.27 53 | 74.41 122 | 79.16 112 | 95.61 40 | 53.99 199 | 98.88 20 | 69.62 190 | 93.26 56 | 94.50 100 |
Zhenyu Xu, Yiguang Liu, Xuelei Shi, Ying Wang, Yunan Zheng: MARMVS: Matching Ambiguity Reduced Multiple View Stereo for Efficient Large Scale Scene Reconstruction. CVPR 2020 |
gg-mvs-nofinetune | | | 77.18 200 | 74.31 218 | 85.80 90 | 91.42 126 | 68.36 69 | 71.78 343 | 94.72 32 | 49.61 347 | 77.12 135 | 45.92 364 | 77.41 8 | 93.98 219 | 67.62 208 | 93.16 57 | 95.05 76 |
|
testtj | | | 86.62 43 | 86.66 42 | 86.50 66 | 96.95 8 | 65.70 142 | 94.41 51 | 93.45 82 | 67.74 252 | 86.19 39 | 96.39 23 | 64.38 82 | 97.91 46 | 87.33 49 | 93.14 58 | 95.90 42 |
|
ZD-MVS | | | | | | 96.63 11 | 65.50 149 | | 93.50 80 | 70.74 220 | 85.26 53 | 95.19 58 | 64.92 77 | 97.29 78 | 87.51 45 | 93.01 59 | |
|
APD-MVS |  | | 85.93 52 | 85.99 49 | 85.76 92 | 95.98 28 | 65.21 154 | 93.59 90 | 92.58 120 | 66.54 263 | 86.17 40 | 95.88 33 | 63.83 89 | 97.00 95 | 86.39 58 | 92.94 60 | 95.06 75 |
Yuesong Wang, Zhaojie Zeng and etc.: Adaptive Patch Deformation for Textureless-Resilient Multi-View Stereo. CVPR2023 |
新几何1 | | | | | 84.73 125 | 92.32 96 | 64.28 184 | | 91.46 165 | 59.56 315 | 79.77 104 | 92.90 119 | 56.95 164 | 96.57 116 | 63.40 244 | 92.91 61 | 93.34 138 |
|
DeepC-MVS | | 77.85 3 | 85.52 57 | 85.24 59 | 86.37 72 | 88.80 179 | 66.64 119 | 92.15 140 | 93.68 72 | 81.07 34 | 76.91 138 | 93.64 103 | 62.59 105 | 98.44 30 | 85.50 64 | 92.84 62 | 94.03 119 |
Andreas Kuhn, Christian Sormann, Mattia Rossi, Oliver Erdler, Friedrich Fraundorfer: DeepC-MVS: Deep Confidence Prediction for Multi-View Stereo Reconstruction. 3DV 2020 |
1121 | | | 81.25 127 | 80.05 132 | 84.87 122 | 92.30 97 | 64.31 182 | 87.91 266 | 91.39 167 | 59.44 316 | 79.94 101 | 92.91 118 | 57.09 157 | 97.01 93 | 66.63 215 | 92.81 63 | 93.29 141 |
|
xiu_mvs_v2_base | | | 87.92 21 | 87.38 32 | 89.55 12 | 91.41 128 | 76.43 3 | 95.74 20 | 93.12 99 | 83.53 13 | 89.55 20 | 95.95 32 | 53.45 208 | 97.68 54 | 91.07 19 | 92.62 64 | 94.54 96 |
|
MP-MVS |  | | 85.02 63 | 84.97 63 | 85.17 113 | 92.60 92 | 64.27 185 | 93.24 100 | 92.27 127 | 73.13 150 | 79.63 106 | 94.43 80 | 61.90 110 | 97.17 85 | 85.00 68 | 92.56 65 | 94.06 118 |
Rongxuan Tan, Qing Wang, et al.: MP-MVS: Multi-Scale Windows PatchMatch and Planar Prior Multi-View Stereo. |
zzz-MVS | | | 84.73 68 | 84.47 67 | 85.50 100 | 91.89 113 | 65.16 156 | 91.55 171 | 92.23 128 | 75.32 111 | 80.53 95 | 95.21 56 | 56.06 176 | 97.16 86 | 84.86 71 | 92.55 66 | 94.18 108 |
|
MTAPA | | | 83.91 85 | 83.38 84 | 85.50 100 | 91.89 113 | 65.16 156 | 81.75 309 | 92.23 128 | 75.32 111 | 80.53 95 | 95.21 56 | 56.06 176 | 97.16 86 | 84.86 71 | 92.55 66 | 94.18 108 |
|
GST-MVS | | | 84.63 71 | 84.29 71 | 85.66 97 | 92.82 85 | 65.27 152 | 93.04 107 | 93.13 98 | 73.20 148 | 78.89 114 | 94.18 93 | 59.41 137 | 97.85 50 | 81.45 98 | 92.48 68 | 93.86 127 |
|
HFP-MVS | | | 84.73 68 | 84.40 70 | 85.72 93 | 93.75 60 | 65.01 162 | 93.50 94 | 93.19 94 | 72.19 175 | 79.22 110 | 94.93 66 | 59.04 141 | 97.67 55 | 81.55 96 | 92.21 69 | 94.49 101 |
|
#test# | | | 84.98 65 | 84.74 66 | 85.72 93 | 93.75 60 | 65.01 162 | 94.09 62 | 93.19 94 | 73.55 144 | 79.22 110 | 94.93 66 | 59.04 141 | 97.67 55 | 82.66 86 | 92.21 69 | 94.49 101 |
|
ACMMPR | | | 84.37 73 | 84.06 72 | 85.28 109 | 93.56 65 | 64.37 180 | 93.50 94 | 93.15 97 | 72.19 175 | 78.85 119 | 94.86 70 | 56.69 168 | 97.45 67 | 81.55 96 | 92.20 71 | 94.02 120 |
|
MS-PatchMatch | | | 77.90 192 | 76.50 190 | 82.12 196 | 85.99 234 | 69.95 36 | 91.75 165 | 92.70 112 | 73.97 132 | 62.58 289 | 84.44 236 | 41.11 288 | 95.78 139 | 63.76 243 | 92.17 72 | 80.62 331 |
|
region2R | | | 84.36 74 | 84.03 73 | 85.36 107 | 93.54 66 | 64.31 182 | 93.43 97 | 92.95 105 | 72.16 178 | 78.86 118 | 94.84 71 | 56.97 163 | 97.53 65 | 81.38 100 | 92.11 73 | 94.24 106 |
|
CS-MVS | | | 85.80 54 | 86.65 43 | 83.27 166 | 92.00 107 | 58.92 283 | 95.31 30 | 91.86 146 | 79.97 43 | 84.82 56 | 95.40 44 | 62.26 107 | 95.51 160 | 86.11 60 | 92.08 74 | 95.37 56 |
|
patch_mono-2 | | | 89.71 10 | 90.99 5 | 85.85 88 | 96.04 26 | 63.70 197 | 95.04 41 | 95.19 13 | 86.74 5 | 91.53 11 | 95.15 59 | 73.86 21 | 97.58 63 | 93.38 3 | 92.00 75 | 96.28 32 |
|
dcpmvs_2 | | | 87.37 28 | 87.55 28 | 86.85 49 | 95.04 36 | 68.20 76 | 90.36 216 | 90.66 195 | 79.37 52 | 81.20 86 | 93.67 102 | 74.73 15 | 96.55 118 | 90.88 21 | 92.00 75 | 95.82 44 |
|
旧先验1 | | | | | | 91.94 109 | 60.74 256 | | 91.50 163 | | | 94.36 82 | 65.23 71 | | | 91.84 77 | 94.55 94 |
|
MVSFormer | | | 83.75 89 | 82.88 93 | 86.37 72 | 89.24 169 | 71.18 21 | 89.07 250 | 90.69 192 | 65.80 268 | 87.13 30 | 94.34 87 | 64.99 74 | 92.67 257 | 72.83 157 | 91.80 78 | 95.27 66 |
|
lupinMVS | | | 87.74 23 | 87.77 23 | 87.63 33 | 89.24 169 | 71.18 21 | 96.57 10 | 92.90 107 | 82.70 18 | 87.13 30 | 95.27 52 | 64.99 74 | 95.80 138 | 89.34 28 | 91.80 78 | 95.93 40 |
|
EPNet | | | 87.84 22 | 88.38 17 | 86.23 77 | 93.30 71 | 66.05 132 | 95.26 31 | 94.84 25 | 87.09 3 | 88.06 26 | 94.53 77 | 66.79 57 | 97.34 75 | 83.89 78 | 91.68 80 | 95.29 62 |
Wanjuan Su, Wenbing Tao: Efficient Edge-Preserving Multi-View Stereo Network for Depth Estimation. AAAI 2023 |
3Dnovator+ | | 73.60 7 | 82.10 116 | 80.60 126 | 86.60 60 | 90.89 137 | 66.80 116 | 95.20 33 | 93.44 84 | 74.05 129 | 67.42 244 | 92.49 129 | 49.46 239 | 97.65 59 | 70.80 179 | 91.68 80 | 95.33 58 |
|
XVS | | | 83.87 86 | 83.47 78 | 85.05 114 | 93.22 73 | 63.78 192 | 92.92 114 | 92.66 115 | 73.99 130 | 78.18 123 | 94.31 89 | 55.25 182 | 97.41 70 | 79.16 114 | 91.58 82 | 93.95 122 |
|
X-MVStestdata | | | 76.86 202 | 74.13 222 | 85.05 114 | 93.22 73 | 63.78 192 | 92.92 114 | 92.66 115 | 73.99 130 | 78.18 123 | 10.19 376 | 55.25 182 | 97.41 70 | 79.16 114 | 91.58 82 | 93.95 122 |
|
SD-MVS | | | 87.49 26 | 87.49 29 | 87.50 35 | 93.60 63 | 68.82 60 | 93.90 76 | 92.63 118 | 76.86 91 | 87.90 27 | 95.76 35 | 66.17 61 | 97.63 60 | 89.06 32 | 91.48 84 | 96.05 37 |
Zhenlong Yuan, Jiakai Cao, Zhaoxin Li, Hao Jiang and Zhaoqi Wang: SD-MVS: Segmentation-driven Deformation Multi-View Stereo with Spherical Refinement and EM optimization. AAAI2024 |
DROMVSNet | | | 84.53 72 | 85.04 62 | 83.01 170 | 89.34 164 | 61.37 243 | 94.42 50 | 91.09 181 | 77.91 76 | 83.24 70 | 94.20 92 | 58.37 146 | 95.40 161 | 85.35 66 | 91.41 85 | 92.27 172 |
|
PGM-MVS | | | 83.25 96 | 82.70 97 | 84.92 119 | 92.81 87 | 64.07 188 | 90.44 212 | 92.20 133 | 71.28 208 | 77.23 134 | 94.43 80 | 55.17 186 | 97.31 77 | 79.33 113 | 91.38 86 | 93.37 137 |
|
PVSNet_Blended | | | 86.73 42 | 86.86 40 | 86.31 75 | 93.76 58 | 67.53 93 | 96.33 14 | 93.61 74 | 82.34 20 | 81.00 91 | 93.08 112 | 63.19 100 | 97.29 78 | 87.08 52 | 91.38 86 | 94.13 113 |
|
HPM-MVS |  | | 83.25 96 | 82.95 91 | 84.17 143 | 92.25 99 | 62.88 218 | 90.91 197 | 91.86 146 | 70.30 225 | 77.12 135 | 93.96 98 | 56.75 166 | 96.28 122 | 82.04 92 | 91.34 88 | 93.34 138 |
Chunlin Ren, Qingshan Xu, Shikun Zhang, Jiaqi Yang: Hierarchical Prior Mining for Non-local Multi-View Stereo. ICCV 2023 |
EIA-MVS | | | 84.84 67 | 84.88 64 | 84.69 128 | 91.30 129 | 62.36 225 | 93.85 79 | 92.04 137 | 79.45 50 | 79.33 109 | 94.28 90 | 62.42 106 | 96.35 121 | 80.05 108 | 91.25 89 | 95.38 55 |
|
MVS_111021_HR | | | 86.19 48 | 85.80 53 | 87.37 37 | 93.17 77 | 69.79 40 | 93.99 68 | 93.76 67 | 79.08 60 | 78.88 117 | 93.99 97 | 62.25 108 | 98.15 38 | 85.93 62 | 91.15 90 | 94.15 112 |
|
test222 | | | | | | 89.77 155 | 61.60 239 | 89.55 237 | 89.42 240 | 56.83 329 | 77.28 133 | 92.43 131 | 52.76 211 | | | 91.14 91 | 93.09 148 |
|
jason | | | 86.40 44 | 86.17 47 | 87.11 43 | 86.16 232 | 70.54 28 | 95.71 23 | 92.19 134 | 82.00 24 | 84.58 58 | 94.34 87 | 61.86 111 | 95.53 159 | 87.76 42 | 90.89 92 | 95.27 66 |
jason: jason. |
mPP-MVS | | | 82.96 102 | 82.44 102 | 84.52 133 | 92.83 83 | 62.92 216 | 92.76 117 | 91.85 148 | 71.52 203 | 75.61 150 | 94.24 91 | 53.48 207 | 96.99 98 | 78.97 117 | 90.73 93 | 93.64 133 |
|
CP-MVS | | | 83.71 90 | 83.40 83 | 84.65 129 | 93.14 78 | 63.84 190 | 94.59 48 | 92.28 126 | 71.03 213 | 77.41 131 | 94.92 68 | 55.21 185 | 96.19 124 | 81.32 101 | 90.70 94 | 93.91 124 |
|
OpenMVS |  | 70.45 11 | 78.54 180 | 75.92 198 | 86.41 71 | 85.93 238 | 71.68 17 | 92.74 118 | 92.51 122 | 66.49 264 | 64.56 269 | 91.96 139 | 43.88 280 | 98.10 39 | 54.61 284 | 90.65 95 | 89.44 211 |
|
PAPM_NR | | | 82.97 101 | 81.84 108 | 86.37 72 | 94.10 52 | 66.76 117 | 87.66 270 | 92.84 108 | 69.96 229 | 74.07 163 | 93.57 105 | 63.10 102 | 97.50 66 | 70.66 182 | 90.58 96 | 94.85 82 |
|
testdata | | | | | 81.34 213 | 89.02 173 | 57.72 296 | | 89.84 226 | 58.65 320 | 85.32 52 | 94.09 94 | 57.03 159 | 93.28 235 | 69.34 193 | 90.56 97 | 93.03 150 |
|
Vis-MVSNet |  | | 80.92 135 | 79.98 136 | 83.74 151 | 88.48 184 | 61.80 234 | 93.44 96 | 88.26 282 | 73.96 133 | 77.73 126 | 91.76 142 | 49.94 235 | 94.76 179 | 65.84 227 | 90.37 98 | 94.65 92 |
Jingyang Zhang, Yao Yao, Shiwei Li, Zixin Luo, Tian Fang: Visibility-aware Multiview Stereo Network. BMVC 2020 |
CHOSEN 1792x2688 | | | 84.98 65 | 83.45 79 | 89.57 11 | 89.94 152 | 75.14 5 | 92.07 146 | 92.32 125 | 81.87 25 | 75.68 147 | 88.27 189 | 60.18 125 | 98.60 25 | 80.46 107 | 90.27 99 | 94.96 80 |
|
ETV-MVS | | | 86.01 51 | 86.11 48 | 85.70 96 | 90.21 148 | 67.02 110 | 93.43 97 | 91.92 142 | 81.21 32 | 84.13 65 | 94.07 96 | 60.93 119 | 95.63 149 | 89.28 29 | 89.81 100 | 94.46 103 |
|
QAPM | | | 79.95 151 | 77.39 180 | 87.64 29 | 89.63 158 | 71.41 19 | 93.30 99 | 93.70 71 | 65.34 273 | 67.39 246 | 91.75 143 | 47.83 255 | 98.96 16 | 57.71 275 | 89.81 100 | 92.54 162 |
|
CANet_DTU | | | 84.09 82 | 83.52 76 | 85.81 89 | 90.30 146 | 66.82 114 | 91.87 156 | 89.01 259 | 85.27 7 | 86.09 41 | 93.74 101 | 47.71 257 | 96.98 99 | 77.90 127 | 89.78 102 | 93.65 132 |
|
API-MVS | | | 82.28 111 | 80.53 127 | 87.54 34 | 96.13 24 | 70.59 27 | 93.63 88 | 91.04 186 | 65.72 270 | 75.45 152 | 92.83 123 | 56.11 175 | 98.89 19 | 64.10 240 | 89.75 103 | 93.15 146 |
|
test2506 | | | 83.29 94 | 82.92 92 | 84.37 138 | 88.39 189 | 63.18 209 | 92.01 149 | 91.35 169 | 77.66 81 | 78.49 122 | 91.42 146 | 64.58 80 | 95.09 170 | 73.19 153 | 89.23 104 | 94.85 82 |
|
ECVR-MVS |  | | 81.29 126 | 80.38 130 | 84.01 147 | 88.39 189 | 61.96 232 | 92.56 132 | 86.79 297 | 77.66 81 | 76.63 139 | 91.42 146 | 46.34 266 | 95.24 168 | 74.36 150 | 89.23 104 | 94.85 82 |
|
MVS_Test | | | 84.16 81 | 83.20 86 | 87.05 45 | 91.56 122 | 69.82 39 | 89.99 230 | 92.05 136 | 77.77 78 | 82.84 73 | 86.57 210 | 63.93 88 | 96.09 128 | 74.91 146 | 89.18 106 | 95.25 69 |
|
PAPR | | | 85.15 62 | 84.47 67 | 87.18 41 | 96.02 27 | 68.29 71 | 91.85 158 | 93.00 104 | 76.59 96 | 79.03 113 | 95.00 62 | 61.59 113 | 97.61 62 | 78.16 124 | 89.00 107 | 95.63 48 |
|
TSAR-MVS + GP. | | | 87.96 19 | 88.37 18 | 86.70 58 | 93.51 67 | 65.32 151 | 95.15 35 | 93.84 63 | 78.17 72 | 85.93 43 | 94.80 72 | 75.80 13 | 98.21 35 | 89.38 27 | 88.78 108 | 96.59 15 |
|
SR-MVS | | | 82.81 103 | 82.58 99 | 83.50 161 | 93.35 69 | 61.16 246 | 92.23 139 | 91.28 173 | 64.48 276 | 81.27 85 | 95.28 50 | 53.71 203 | 95.86 137 | 82.87 84 | 88.77 109 | 93.49 136 |
|
test1111 | | | 80.84 136 | 80.02 133 | 83.33 164 | 87.87 204 | 60.76 254 | 92.62 126 | 86.86 296 | 77.86 77 | 75.73 146 | 91.39 148 | 46.35 265 | 94.70 185 | 72.79 159 | 88.68 110 | 94.52 98 |
|
Regformer-1 | | | 87.24 30 | 87.60 27 | 86.15 79 | 95.14 32 | 65.83 140 | 93.95 72 | 95.12 16 | 82.11 22 | 84.25 61 | 95.73 36 | 67.88 48 | 98.35 33 | 85.60 63 | 88.64 111 | 94.26 105 |
|
Regformer-2 | | | 87.00 37 | 87.43 30 | 85.71 95 | 95.14 32 | 64.73 168 | 93.95 72 | 94.95 23 | 81.69 27 | 84.03 66 | 95.73 36 | 67.35 52 | 98.19 37 | 85.40 65 | 88.64 111 | 94.20 107 |
|
HPM-MVS_fast | | | 80.25 144 | 79.55 144 | 82.33 186 | 91.55 123 | 59.95 268 | 91.32 185 | 89.16 250 | 65.23 274 | 74.71 156 | 93.07 114 | 47.81 256 | 95.74 142 | 74.87 148 | 88.23 113 | 91.31 189 |
|
PVSNet_Blended_VisFu | | | 83.97 84 | 83.50 77 | 85.39 106 | 90.02 150 | 66.59 122 | 93.77 84 | 91.73 152 | 77.43 87 | 77.08 137 | 89.81 173 | 63.77 91 | 96.97 100 | 79.67 110 | 88.21 114 | 92.60 160 |
|
test1172 | | | 81.90 119 | 81.83 109 | 82.13 195 | 93.23 72 | 57.52 301 | 91.61 170 | 90.98 188 | 64.32 278 | 80.20 99 | 95.00 62 | 51.26 224 | 95.61 151 | 81.73 95 | 88.13 115 | 93.26 142 |
|
Vis-MVSNet (Re-imp) | | | 79.24 163 | 79.57 141 | 78.24 274 | 88.46 185 | 52.29 331 | 90.41 214 | 89.12 253 | 74.24 126 | 69.13 217 | 91.91 140 | 65.77 67 | 90.09 307 | 59.00 272 | 88.09 116 | 92.33 166 |
|
APD-MVS_3200maxsize | | | 81.64 122 | 81.32 114 | 82.59 180 | 92.36 95 | 58.74 285 | 91.39 179 | 91.01 187 | 63.35 284 | 79.72 105 | 94.62 76 | 51.82 217 | 96.14 126 | 79.71 109 | 87.93 117 | 92.89 155 |
|
Effi-MVS+ | | | 83.82 87 | 82.76 95 | 86.99 47 | 89.56 160 | 69.40 46 | 91.35 183 | 86.12 305 | 72.59 161 | 83.22 71 | 92.81 124 | 59.60 134 | 96.01 135 | 81.76 94 | 87.80 118 | 95.56 50 |
|
1314 | | | 80.70 137 | 78.95 154 | 85.94 84 | 87.77 206 | 67.56 91 | 87.91 266 | 92.55 121 | 72.17 177 | 67.44 243 | 93.09 111 | 50.27 232 | 97.04 92 | 71.68 174 | 87.64 119 | 93.23 144 |
|
PMMVS | | | 81.98 118 | 82.04 106 | 81.78 203 | 89.76 156 | 56.17 311 | 91.13 193 | 90.69 192 | 77.96 74 | 80.09 100 | 93.57 105 | 46.33 267 | 94.99 173 | 81.41 99 | 87.46 120 | 94.17 110 |
|
casdiffmvs | | | 85.37 59 | 84.87 65 | 86.84 50 | 88.25 194 | 69.07 53 | 93.04 107 | 91.76 151 | 81.27 31 | 80.84 93 | 92.07 138 | 64.23 84 | 96.06 131 | 84.98 69 | 87.43 121 | 95.39 54 |
|
UGNet | | | 79.87 152 | 78.68 155 | 83.45 163 | 89.96 151 | 61.51 240 | 92.13 141 | 90.79 190 | 76.83 93 | 78.85 119 | 86.33 213 | 38.16 303 | 96.17 125 | 67.93 205 | 87.17 122 | 92.67 158 |
Wanjuan Su, Qingshan Xu, Wenbing Tao: Uncertainty-guided Multi-view Stereo Network for Depth Estimation. IEEE Transactions on Circuits and Systems for Video Technology, 2022 |
MVS_111021_LR | | | 82.02 117 | 81.52 112 | 83.51 160 | 88.42 187 | 62.88 218 | 89.77 234 | 88.93 261 | 76.78 94 | 75.55 151 | 93.10 110 | 50.31 231 | 95.38 163 | 83.82 79 | 87.02 123 | 92.26 173 |
|
xiu_mvs_v1_base_debu | | | 82.16 113 | 81.12 116 | 85.26 110 | 86.42 226 | 68.72 62 | 92.59 129 | 90.44 201 | 73.12 151 | 84.20 62 | 94.36 82 | 38.04 305 | 95.73 143 | 84.12 75 | 86.81 124 | 91.33 185 |
|
xiu_mvs_v1_base | | | 82.16 113 | 81.12 116 | 85.26 110 | 86.42 226 | 68.72 62 | 92.59 129 | 90.44 201 | 73.12 151 | 84.20 62 | 94.36 82 | 38.04 305 | 95.73 143 | 84.12 75 | 86.81 124 | 91.33 185 |
|
xiu_mvs_v1_base_debi | | | 82.16 113 | 81.12 116 | 85.26 110 | 86.42 226 | 68.72 62 | 92.59 129 | 90.44 201 | 73.12 151 | 84.20 62 | 94.36 82 | 38.04 305 | 95.73 143 | 84.12 75 | 86.81 124 | 91.33 185 |
|
SR-MVS-dyc-post | | | 81.06 132 | 80.70 123 | 82.15 193 | 92.02 104 | 58.56 287 | 90.90 198 | 90.45 198 | 62.76 290 | 78.89 114 | 94.46 78 | 51.26 224 | 95.61 151 | 78.77 120 | 86.77 127 | 92.28 169 |
|
RE-MVS-def | | | | 80.48 128 | | 92.02 104 | 58.56 287 | 90.90 198 | 90.45 198 | 62.76 290 | 78.89 114 | 94.46 78 | 49.30 241 | | 78.77 120 | 86.77 127 | 92.28 169 |
|
baseline | | | 85.01 64 | 84.44 69 | 86.71 56 | 88.33 191 | 68.73 61 | 90.24 221 | 91.82 150 | 81.05 35 | 81.18 87 | 92.50 127 | 63.69 92 | 96.08 130 | 84.45 73 | 86.71 129 | 95.32 60 |
|
TESTMET0.1,1 | | | 82.41 109 | 81.98 107 | 83.72 154 | 88.08 197 | 63.74 194 | 92.70 121 | 93.77 66 | 79.30 53 | 77.61 129 | 87.57 201 | 58.19 148 | 94.08 210 | 73.91 152 | 86.68 130 | 93.33 140 |
|
IS-MVSNet | | | 80.14 146 | 79.41 146 | 82.33 186 | 87.91 202 | 60.08 267 | 91.97 153 | 88.27 280 | 72.90 157 | 71.44 195 | 91.73 144 | 61.44 114 | 93.66 229 | 62.47 253 | 86.53 131 | 93.24 143 |
|
CPTT-MVS | | | 79.59 157 | 79.16 152 | 80.89 229 | 91.54 124 | 59.80 270 | 92.10 143 | 88.54 275 | 60.42 308 | 72.96 171 | 93.28 109 | 48.27 250 | 92.80 251 | 78.89 119 | 86.50 132 | 90.06 202 |
|
BH-w/o | | | 80.49 141 | 79.30 149 | 84.05 146 | 90.83 139 | 64.36 181 | 93.60 89 | 89.42 240 | 74.35 124 | 69.09 218 | 90.15 168 | 55.23 184 | 95.61 151 | 64.61 237 | 86.43 133 | 92.17 174 |
|
PVSNet | | 73.49 8 | 80.05 148 | 78.63 156 | 84.31 140 | 90.92 136 | 64.97 164 | 92.47 133 | 91.05 185 | 79.18 56 | 72.43 183 | 90.51 160 | 37.05 317 | 94.06 212 | 68.06 203 | 86.00 134 | 93.90 126 |
|
mvs_anonymous | | | 81.36 125 | 79.99 135 | 85.46 102 | 90.39 145 | 68.40 68 | 86.88 280 | 90.61 197 | 74.41 122 | 70.31 206 | 84.67 233 | 63.79 90 | 92.32 272 | 73.13 154 | 85.70 135 | 95.67 46 |
|
DP-MVS Recon | | | 82.73 104 | 81.65 111 | 85.98 82 | 97.31 4 | 67.06 107 | 95.15 35 | 91.99 139 | 69.08 243 | 76.50 142 | 93.89 99 | 54.48 194 | 98.20 36 | 70.76 180 | 85.66 136 | 92.69 157 |
|
BH-RMVSNet | | | 79.46 161 | 77.65 172 | 84.89 120 | 91.68 119 | 65.66 143 | 93.55 91 | 88.09 284 | 72.93 155 | 73.37 168 | 91.12 151 | 46.20 269 | 96.12 127 | 56.28 280 | 85.61 137 | 92.91 154 |
|
abl_6 | | | 79.82 153 | 79.20 151 | 81.70 207 | 89.85 153 | 58.34 289 | 88.47 259 | 90.07 217 | 62.56 293 | 77.71 127 | 93.08 112 | 47.65 258 | 96.78 109 | 77.94 126 | 85.45 138 | 89.99 204 |
|
diffmvs | | | 84.28 76 | 83.83 74 | 85.61 98 | 87.40 212 | 68.02 80 | 90.88 200 | 89.24 245 | 80.54 39 | 81.64 82 | 92.52 126 | 59.83 131 | 94.52 194 | 87.32 50 | 85.11 139 | 94.29 104 |
|
Fast-Effi-MVS+ | | | 81.14 129 | 80.01 134 | 84.51 134 | 90.24 147 | 65.86 138 | 94.12 61 | 89.15 251 | 73.81 137 | 75.37 153 | 88.26 190 | 57.26 155 | 94.53 193 | 66.97 214 | 84.92 140 | 93.15 146 |
|
LFMVS | | | 84.34 75 | 82.73 96 | 89.18 13 | 94.76 37 | 73.25 10 | 94.99 43 | 91.89 145 | 71.90 183 | 82.16 78 | 93.49 107 | 47.98 254 | 97.05 90 | 82.55 89 | 84.82 141 | 97.25 7 |
|
BH-untuned | | | 78.68 176 | 77.08 182 | 83.48 162 | 89.84 154 | 63.74 194 | 92.70 121 | 88.59 273 | 71.57 201 | 66.83 252 | 88.65 182 | 51.75 219 | 95.39 162 | 59.03 271 | 84.77 142 | 91.32 188 |
|
test-LLR | | | 80.10 147 | 79.56 142 | 81.72 205 | 86.93 221 | 61.17 244 | 92.70 121 | 91.54 160 | 71.51 204 | 75.62 148 | 86.94 207 | 53.83 200 | 92.38 268 | 72.21 166 | 84.76 143 | 91.60 179 |
|
test-mter | | | 79.96 150 | 79.38 148 | 81.72 205 | 86.93 221 | 61.17 244 | 92.70 121 | 91.54 160 | 73.85 135 | 75.62 148 | 86.94 207 | 49.84 237 | 92.38 268 | 72.21 166 | 84.76 143 | 91.60 179 |
|
Regformer-3 | | | 85.80 54 | 85.92 50 | 85.46 102 | 94.17 48 | 65.09 161 | 92.95 112 | 95.11 17 | 81.13 33 | 81.68 81 | 95.04 60 | 65.82 66 | 98.32 34 | 83.02 83 | 84.36 145 | 92.97 152 |
|
Regformer-4 | | | 85.45 58 | 85.69 55 | 84.73 125 | 94.17 48 | 63.23 206 | 92.95 112 | 94.83 26 | 80.66 38 | 81.29 84 | 95.04 60 | 65.12 72 | 98.08 40 | 82.74 85 | 84.36 145 | 92.88 156 |
|
canonicalmvs | | | 86.85 39 | 86.25 46 | 88.66 18 | 91.80 116 | 71.92 15 | 93.54 92 | 91.71 154 | 80.26 41 | 87.55 28 | 95.25 54 | 63.59 95 | 96.93 105 | 88.18 39 | 84.34 147 | 97.11 8 |
|
alignmvs | | | 87.28 29 | 86.97 38 | 88.24 23 | 91.30 129 | 71.14 23 | 95.61 24 | 93.56 76 | 79.30 53 | 87.07 33 | 95.25 54 | 68.43 39 | 96.93 105 | 87.87 41 | 84.33 148 | 96.65 13 |
|
VNet | | | 86.20 47 | 85.65 56 | 87.84 26 | 93.92 54 | 69.99 33 | 95.73 22 | 95.94 6 | 78.43 68 | 86.00 42 | 93.07 114 | 58.22 147 | 97.00 95 | 85.22 67 | 84.33 148 | 96.52 19 |
|
UA-Net | | | 80.02 149 | 79.65 140 | 81.11 220 | 89.33 166 | 57.72 296 | 86.33 283 | 89.00 260 | 77.44 86 | 81.01 90 | 89.15 178 | 59.33 138 | 95.90 136 | 61.01 260 | 84.28 150 | 89.73 207 |
|
LCM-MVSNet-Re | | | 72.93 252 | 71.84 250 | 76.18 297 | 88.49 183 | 48.02 349 | 80.07 325 | 70.17 361 | 73.96 133 | 52.25 331 | 80.09 293 | 49.98 234 | 88.24 319 | 67.35 209 | 84.23 151 | 92.28 169 |
|
ACMMP |  | | 81.49 123 | 80.67 124 | 83.93 148 | 91.71 118 | 62.90 217 | 92.13 141 | 92.22 132 | 71.79 191 | 71.68 193 | 93.49 107 | 50.32 230 | 96.96 101 | 78.47 122 | 84.22 152 | 91.93 176 |
Qingshan Xu, Weihang Kong, Wenbing Tao, Marc Pollefeys: Multi-Scale Geometric Consistency Guided and Planar Prior Assisted Multi-View Stereo. IEEE Transactions on Pattern Analysis and Machine Intelligence |
114514_t | | | 79.17 164 | 77.67 171 | 83.68 155 | 95.32 31 | 65.53 148 | 92.85 116 | 91.60 159 | 63.49 283 | 67.92 236 | 90.63 158 | 46.65 262 | 95.72 147 | 67.01 213 | 83.54 153 | 89.79 205 |
|
EPMVS | | | 78.49 181 | 75.98 197 | 86.02 81 | 91.21 131 | 69.68 44 | 80.23 322 | 91.20 174 | 75.25 113 | 72.48 181 | 78.11 306 | 54.65 190 | 93.69 228 | 57.66 276 | 83.04 154 | 94.69 88 |
|
AdaColmap |  | | 78.94 168 | 77.00 185 | 84.76 124 | 96.34 19 | 65.86 138 | 92.66 125 | 87.97 287 | 62.18 296 | 70.56 200 | 92.37 133 | 43.53 281 | 97.35 74 | 64.50 238 | 82.86 155 | 91.05 193 |
|
CDS-MVSNet | | | 81.43 124 | 80.74 122 | 83.52 158 | 86.26 230 | 64.45 174 | 92.09 144 | 90.65 196 | 75.83 103 | 73.95 165 | 89.81 173 | 63.97 87 | 92.91 247 | 71.27 176 | 82.82 156 | 93.20 145 |
Khang Truong Giang, Soohwan Song, Sungho Jo: Curvature-guided dynamic scale networks for Multi-view Stereo. ICLR 2022 |
CHOSEN 280x420 | | | 77.35 198 | 76.95 186 | 78.55 269 | 87.07 218 | 62.68 222 | 69.71 349 | 82.95 332 | 68.80 245 | 71.48 194 | 87.27 206 | 66.03 63 | 84.00 343 | 76.47 134 | 82.81 157 | 88.95 212 |
|
PCF-MVS | | 73.15 9 | 79.29 162 | 77.63 173 | 84.29 141 | 86.06 233 | 65.96 136 | 87.03 276 | 91.10 180 | 69.86 231 | 69.79 214 | 90.64 156 | 57.54 154 | 96.59 114 | 64.37 239 | 82.29 158 | 90.32 199 |
Andreas Kuhn, Shan Lin, Oliver Erdler: Plane Completion and Filtering for Multi-View Stereo Reconstruction. GCPR 2019 |
WTY-MVS | | | 86.32 45 | 85.81 52 | 87.85 25 | 92.82 85 | 69.37 49 | 95.20 33 | 95.25 12 | 82.71 17 | 81.91 79 | 94.73 73 | 67.93 47 | 97.63 60 | 79.55 111 | 82.25 159 | 96.54 18 |
|
HY-MVS | | 76.49 5 | 84.28 76 | 83.36 85 | 87.02 46 | 92.22 100 | 67.74 87 | 84.65 289 | 94.50 40 | 79.15 57 | 82.23 77 | 87.93 196 | 66.88 56 | 96.94 103 | 80.53 106 | 82.20 160 | 96.39 28 |
|
VDD-MVS | | | 83.06 99 | 81.81 110 | 86.81 52 | 90.86 138 | 67.70 88 | 95.40 28 | 91.50 163 | 75.46 106 | 81.78 80 | 92.34 134 | 40.09 291 | 97.13 88 | 86.85 55 | 82.04 161 | 95.60 49 |
|
TAMVS | | | 80.37 142 | 79.45 145 | 83.13 169 | 85.14 247 | 63.37 203 | 91.23 188 | 90.76 191 | 74.81 120 | 72.65 176 | 88.49 183 | 60.63 121 | 92.95 242 | 69.41 192 | 81.95 162 | 93.08 149 |
|
test_yl | | | 84.28 76 | 83.16 87 | 87.64 29 | 94.52 42 | 69.24 50 | 95.78 17 | 95.09 19 | 69.19 240 | 81.09 88 | 92.88 121 | 57.00 161 | 97.44 68 | 81.11 103 | 81.76 163 | 96.23 33 |
|
DCV-MVSNet | | | 84.28 76 | 83.16 87 | 87.64 29 | 94.52 42 | 69.24 50 | 95.78 17 | 95.09 19 | 69.19 240 | 81.09 88 | 92.88 121 | 57.00 161 | 97.44 68 | 81.11 103 | 81.76 163 | 96.23 33 |
|
thisisatest0515 | | | 83.41 92 | 82.49 101 | 86.16 78 | 89.46 163 | 68.26 73 | 93.54 92 | 94.70 33 | 74.31 125 | 75.75 145 | 90.92 152 | 72.62 29 | 96.52 119 | 69.64 188 | 81.50 165 | 93.71 130 |
|
baseline2 | | | 83.68 91 | 83.42 82 | 84.48 135 | 87.37 213 | 66.00 134 | 90.06 225 | 95.93 7 | 79.71 48 | 69.08 219 | 90.39 163 | 77.92 6 | 96.28 122 | 78.91 118 | 81.38 166 | 91.16 191 |
|
PatchmatchNet |  | | 77.46 196 | 74.63 211 | 85.96 83 | 89.55 161 | 70.35 30 | 79.97 326 | 89.55 236 | 72.23 174 | 70.94 197 | 76.91 317 | 57.03 159 | 92.79 252 | 54.27 286 | 81.17 167 | 94.74 87 |
Fangjinhua Wang, Silvano Galliani, Christoph Vogel, Pablo Speciale, Marc Pollefeys: PatchmatchNet: Learned Multi-View Patchmatch Stereo. |
VDDNet | | | 80.50 140 | 78.26 161 | 87.21 40 | 86.19 231 | 69.79 40 | 94.48 49 | 91.31 170 | 60.42 308 | 79.34 108 | 90.91 153 | 38.48 301 | 96.56 117 | 82.16 90 | 81.05 168 | 95.27 66 |
|
EPNet_dtu | | | 78.80 172 | 79.26 150 | 77.43 283 | 88.06 198 | 49.71 344 | 91.96 154 | 91.95 141 | 77.67 80 | 76.56 141 | 91.28 150 | 58.51 145 | 90.20 305 | 56.37 279 | 80.95 169 | 92.39 164 |
Wanjuan Su, Wenbing Tao: Efficient Edge-Preserving Multi-View Stereo Network for Depth Estimation. AAAI 2023 |
sss | | | 82.71 106 | 82.38 103 | 83.73 153 | 89.25 168 | 59.58 273 | 92.24 138 | 94.89 24 | 77.96 74 | 79.86 103 | 92.38 132 | 56.70 167 | 97.05 90 | 77.26 130 | 80.86 170 | 94.55 94 |
|
GeoE | | | 78.90 169 | 77.43 176 | 83.29 165 | 88.95 175 | 62.02 230 | 92.31 135 | 86.23 303 | 70.24 226 | 71.34 196 | 89.27 176 | 54.43 195 | 94.04 215 | 63.31 245 | 80.81 171 | 93.81 129 |
|
TR-MVS | | | 78.77 174 | 77.37 181 | 82.95 171 | 90.49 142 | 60.88 250 | 93.67 86 | 90.07 217 | 70.08 228 | 74.51 157 | 91.37 149 | 45.69 271 | 95.70 148 | 60.12 266 | 80.32 172 | 92.29 168 |
|
TAPA-MVS | | 70.22 12 | 74.94 234 | 73.53 230 | 79.17 262 | 90.40 144 | 52.07 332 | 89.19 248 | 89.61 235 | 62.69 292 | 70.07 208 | 92.67 125 | 48.89 248 | 94.32 198 | 38.26 347 | 79.97 173 | 91.12 192 |
Andrea Romanoni, Matteo Matteucci: TAPA-MVS: Textureless-Aware PAtchMatch Multi-View Stereo. ICCV 2019 |
cascas | | | 78.18 185 | 75.77 200 | 85.41 105 | 87.14 217 | 69.11 52 | 92.96 111 | 91.15 178 | 66.71 262 | 70.47 201 | 86.07 216 | 37.49 311 | 96.48 120 | 70.15 185 | 79.80 174 | 90.65 196 |
|
HyFIR lowres test | | | 81.03 133 | 79.56 142 | 85.43 104 | 87.81 205 | 68.11 78 | 90.18 222 | 90.01 222 | 70.65 221 | 72.95 172 | 86.06 217 | 63.61 94 | 94.50 195 | 75.01 144 | 79.75 175 | 93.67 131 |
|
LS3D | | | 69.17 277 | 66.40 280 | 77.50 281 | 91.92 111 | 56.12 312 | 85.12 286 | 80.37 341 | 46.96 353 | 56.50 319 | 87.51 202 | 37.25 312 | 93.71 227 | 32.52 362 | 79.40 176 | 82.68 313 |
|
EI-MVSNet-Vis-set | | | 83.77 88 | 83.67 75 | 84.06 145 | 92.79 88 | 63.56 202 | 91.76 163 | 94.81 28 | 79.65 49 | 77.87 125 | 94.09 94 | 63.35 98 | 97.90 47 | 79.35 112 | 79.36 177 | 90.74 195 |
|
CVMVSNet | | | 74.04 242 | 74.27 219 | 73.33 314 | 85.33 243 | 43.94 360 | 89.53 239 | 88.39 276 | 54.33 336 | 70.37 204 | 90.13 169 | 49.17 244 | 84.05 341 | 61.83 257 | 79.36 177 | 91.99 175 |
|
EPP-MVSNet | | | 81.79 121 | 81.52 112 | 82.61 179 | 88.77 180 | 60.21 265 | 93.02 109 | 93.66 73 | 68.52 249 | 72.90 173 | 90.39 163 | 72.19 32 | 94.96 174 | 74.93 145 | 79.29 179 | 92.67 158 |
|
CLD-MVS | | | 82.73 104 | 82.35 104 | 83.86 149 | 87.90 203 | 67.65 90 | 95.45 27 | 92.18 135 | 85.06 8 | 72.58 178 | 92.27 135 | 52.46 214 | 95.78 139 | 84.18 74 | 79.06 180 | 88.16 227 |
Zhaoxin Li, Wangmeng Zuo, Zhaoqi Wang, Lei Zhang: Confidence-based Large-scale Dense Multi-view Stereo. IEEE Transaction on Image Processing, 2020 |
HQP3-MVS | | | | | | | | | 91.70 155 | | | | | | | 78.90 181 | |
|
HQP-MVS | | | 81.14 129 | 80.64 125 | 82.64 178 | 87.54 208 | 63.66 200 | 94.06 64 | 91.70 155 | 79.80 45 | 74.18 159 | 90.30 165 | 51.63 221 | 95.61 151 | 77.63 128 | 78.90 181 | 88.63 217 |
|
plane_prior | | | | | | | 62.42 223 | 93.85 79 | | 79.38 51 | | | | | | 78.80 183 | |
|
thres200 | | | 79.66 155 | 78.33 159 | 83.66 157 | 92.54 93 | 65.82 141 | 93.06 105 | 96.31 3 | 74.90 119 | 73.30 169 | 88.66 181 | 59.67 133 | 95.61 151 | 47.84 311 | 78.67 184 | 89.56 210 |
|
ET-MVSNet_ETH3D | | | 84.01 83 | 83.15 89 | 86.58 62 | 90.78 140 | 70.89 24 | 94.74 47 | 94.62 37 | 81.44 30 | 58.19 309 | 93.64 103 | 73.64 24 | 92.35 271 | 82.66 86 | 78.66 185 | 96.50 23 |
|
HQP_MVS | | | 80.34 143 | 79.75 139 | 82.12 196 | 86.94 219 | 62.42 223 | 93.13 103 | 91.31 170 | 78.81 64 | 72.53 179 | 89.14 179 | 50.66 228 | 95.55 157 | 76.74 131 | 78.53 186 | 88.39 223 |
|
plane_prior5 | | | | | | | | | 91.31 170 | | | | | 95.55 157 | 76.74 131 | 78.53 186 | 88.39 223 |
|
EI-MVSNet-UG-set | | | 83.14 98 | 82.96 90 | 83.67 156 | 92.28 98 | 63.19 208 | 91.38 181 | 94.68 34 | 79.22 55 | 76.60 140 | 93.75 100 | 62.64 104 | 97.76 53 | 78.07 125 | 78.01 188 | 90.05 203 |
|
OMC-MVS | | | 78.67 178 | 77.91 169 | 80.95 227 | 85.76 239 | 57.40 304 | 88.49 258 | 88.67 270 | 73.85 135 | 72.43 183 | 92.10 137 | 49.29 242 | 94.55 191 | 72.73 160 | 77.89 189 | 90.91 194 |
|
1112_ss | | | 80.56 139 | 79.83 138 | 82.77 174 | 88.65 181 | 60.78 252 | 92.29 136 | 88.36 277 | 72.58 162 | 72.46 182 | 94.95 64 | 65.09 73 | 93.42 234 | 66.38 221 | 77.71 190 | 94.10 114 |
|
OPM-MVS | | | 79.00 166 | 78.09 163 | 81.73 204 | 83.52 273 | 63.83 191 | 91.64 169 | 90.30 208 | 76.36 99 | 71.97 188 | 89.93 172 | 46.30 268 | 95.17 169 | 75.10 141 | 77.70 191 | 86.19 261 |
Ray L. Khuboni, Hongjun Xu: Octagram Propagation Matching for Multi-Scale View Stereopsis (OPM-MVS). |
PatchMatch-RL | | | 72.06 260 | 69.98 261 | 78.28 272 | 89.51 162 | 55.70 315 | 83.49 296 | 83.39 330 | 61.24 304 | 63.72 279 | 82.76 250 | 34.77 324 | 93.03 239 | 53.37 291 | 77.59 192 | 86.12 265 |
|
thres100view900 | | | 78.37 182 | 77.01 184 | 82.46 181 | 91.89 113 | 63.21 207 | 91.19 192 | 96.33 1 | 72.28 173 | 70.45 203 | 87.89 197 | 60.31 123 | 95.32 164 | 45.16 321 | 77.58 193 | 88.83 213 |
|
tfpn200view9 | | | 78.79 173 | 77.43 176 | 82.88 172 | 92.21 101 | 64.49 171 | 92.05 147 | 96.28 4 | 73.48 145 | 71.75 191 | 88.26 190 | 60.07 128 | 95.32 164 | 45.16 321 | 77.58 193 | 88.83 213 |
|
thres400 | | | 78.68 176 | 77.43 176 | 82.43 182 | 92.21 101 | 64.49 171 | 92.05 147 | 96.28 4 | 73.48 145 | 71.75 191 | 88.26 190 | 60.07 128 | 95.32 164 | 45.16 321 | 77.58 193 | 87.48 233 |
|
mvs-test1 | | | 78.74 175 | 77.95 167 | 81.14 218 | 83.22 275 | 57.13 306 | 93.96 69 | 87.78 288 | 75.42 107 | 72.68 175 | 90.80 155 | 45.08 275 | 94.54 192 | 75.08 142 | 77.49 196 | 91.74 178 |
|
CostFormer | | | 82.33 110 | 81.15 115 | 85.86 87 | 89.01 174 | 68.46 67 | 82.39 307 | 93.01 102 | 75.59 104 | 80.25 98 | 81.57 267 | 72.03 33 | 94.96 174 | 79.06 116 | 77.48 197 | 94.16 111 |
|
tpm2 | | | 79.80 154 | 77.95 167 | 85.34 108 | 88.28 192 | 68.26 73 | 81.56 312 | 91.42 166 | 70.11 227 | 77.59 130 | 80.50 285 | 67.40 51 | 94.26 203 | 67.34 210 | 77.35 198 | 93.51 135 |
|
Test_1112_low_res | | | 79.56 158 | 78.60 157 | 82.43 182 | 88.24 195 | 60.39 262 | 92.09 144 | 87.99 286 | 72.10 179 | 71.84 189 | 87.42 203 | 64.62 79 | 93.04 238 | 65.80 228 | 77.30 199 | 93.85 128 |
|
tpmrst | | | 80.57 138 | 79.14 153 | 84.84 123 | 90.10 149 | 68.28 72 | 81.70 310 | 89.72 233 | 77.63 83 | 75.96 144 | 79.54 298 | 64.94 76 | 92.71 254 | 75.43 138 | 77.28 200 | 93.55 134 |
|
Anonymous202405211 | | | 77.96 189 | 75.33 205 | 85.87 86 | 93.73 62 | 64.52 170 | 94.85 45 | 85.36 311 | 62.52 294 | 76.11 143 | 90.18 167 | 29.43 342 | 97.29 78 | 68.51 201 | 77.24 201 | 95.81 45 |
|
GA-MVS | | | 78.33 184 | 76.23 194 | 84.65 129 | 83.65 271 | 66.30 128 | 91.44 173 | 90.14 215 | 76.01 101 | 70.32 205 | 84.02 239 | 42.50 284 | 94.72 182 | 70.98 177 | 77.00 202 | 92.94 153 |
|
thisisatest0530 | | | 81.15 128 | 80.07 131 | 84.39 137 | 88.26 193 | 65.63 145 | 91.40 177 | 94.62 37 | 71.27 209 | 70.93 198 | 89.18 177 | 72.47 30 | 96.04 132 | 65.62 230 | 76.89 203 | 91.49 181 |
|
thres600view7 | | | 78.00 187 | 76.66 189 | 82.03 201 | 91.93 110 | 63.69 198 | 91.30 186 | 96.33 1 | 72.43 168 | 70.46 202 | 87.89 197 | 60.31 123 | 94.92 177 | 42.64 333 | 76.64 204 | 87.48 233 |
|
PLC |  | 68.80 14 | 75.23 230 | 73.68 229 | 79.86 249 | 92.93 82 | 58.68 286 | 90.64 209 | 88.30 278 | 60.90 305 | 64.43 273 | 90.53 159 | 42.38 285 | 94.57 188 | 56.52 278 | 76.54 205 | 86.33 256 |
Jie Liao, Yanping Fu, Qingan Yan, Chunxia xiao: Pyramid Multi-View Stereo with Local Consistency. Pacific Graphics 2019 |
MIMVSNet | | | 71.64 262 | 68.44 271 | 81.23 215 | 81.97 289 | 64.44 175 | 73.05 342 | 88.80 265 | 69.67 233 | 64.59 267 | 74.79 329 | 32.79 329 | 87.82 323 | 53.99 287 | 76.35 206 | 91.42 183 |
|
MVS-HIRNet | | | 60.25 321 | 55.55 327 | 74.35 307 | 84.37 261 | 56.57 310 | 71.64 344 | 74.11 354 | 34.44 364 | 45.54 353 | 42.24 367 | 31.11 338 | 89.81 308 | 40.36 341 | 76.10 207 | 76.67 352 |
|
CNLPA | | | 74.31 240 | 72.30 246 | 80.32 234 | 91.49 125 | 61.66 238 | 90.85 202 | 80.72 339 | 56.67 330 | 63.85 278 | 90.64 156 | 46.75 261 | 90.84 295 | 53.79 288 | 75.99 208 | 88.47 222 |
|
ab-mvs | | | 80.18 145 | 78.31 160 | 85.80 90 | 88.44 186 | 65.49 150 | 83.00 304 | 92.67 114 | 71.82 190 | 77.36 132 | 85.01 227 | 54.50 191 | 96.59 114 | 76.35 135 | 75.63 209 | 95.32 60 |
|
iter_conf05 | | | 83.27 95 | 82.70 97 | 84.98 117 | 93.32 70 | 71.84 16 | 94.16 56 | 81.76 335 | 82.74 16 | 73.83 166 | 88.40 186 | 72.77 28 | 94.61 186 | 82.10 91 | 75.21 210 | 88.48 220 |
|
FIs | | | 79.47 160 | 79.41 146 | 79.67 253 | 85.95 235 | 59.40 275 | 91.68 167 | 93.94 61 | 78.06 73 | 68.96 222 | 88.28 188 | 66.61 59 | 91.77 283 | 66.20 224 | 74.99 211 | 87.82 229 |
|
CMPMVS |  | 48.56 21 | 66.77 297 | 64.41 296 | 73.84 311 | 70.65 356 | 50.31 341 | 77.79 336 | 85.73 309 | 45.54 356 | 44.76 354 | 82.14 258 | 35.40 322 | 90.14 306 | 63.18 247 | 74.54 212 | 81.07 326 |
M. Jancosek, T. Pajdla: Multi-View Reconstruction Preserving Weakly-Supported Surfaces. CVPR 2011 |
XVG-OURS | | | 74.25 241 | 72.46 245 | 79.63 254 | 78.45 328 | 57.59 300 | 80.33 320 | 87.39 291 | 63.86 281 | 68.76 226 | 89.62 175 | 40.50 290 | 91.72 284 | 69.00 197 | 74.25 213 | 89.58 208 |
|
tpm cat1 | | | 75.30 229 | 72.21 247 | 84.58 132 | 88.52 182 | 67.77 86 | 78.16 335 | 88.02 285 | 61.88 301 | 68.45 231 | 76.37 321 | 60.65 120 | 94.03 217 | 53.77 289 | 74.11 214 | 91.93 176 |
|
XVG-OURS-SEG-HR | | | 74.70 236 | 73.08 235 | 79.57 256 | 78.25 329 | 57.33 305 | 80.49 318 | 87.32 292 | 63.22 286 | 68.76 226 | 90.12 171 | 44.89 277 | 91.59 286 | 70.55 183 | 74.09 215 | 89.79 205 |
|
FC-MVSNet-test | | | 77.99 188 | 78.08 164 | 77.70 278 | 84.89 252 | 55.51 316 | 90.27 219 | 93.75 70 | 76.87 90 | 66.80 253 | 87.59 200 | 65.71 68 | 90.23 304 | 62.89 250 | 73.94 216 | 87.37 236 |
|
PVSNet_BlendedMVS | | | 83.38 93 | 83.43 80 | 83.22 167 | 93.76 58 | 67.53 93 | 94.06 64 | 93.61 74 | 79.13 58 | 81.00 91 | 85.14 226 | 63.19 100 | 97.29 78 | 87.08 52 | 73.91 217 | 84.83 287 |
|
tttt0517 | | | 79.50 159 | 78.53 158 | 82.41 185 | 87.22 215 | 61.43 242 | 89.75 235 | 94.76 30 | 69.29 238 | 67.91 237 | 88.06 195 | 72.92 26 | 95.63 149 | 62.91 249 | 73.90 218 | 90.16 201 |
|
MDTV_nov1_ep13 | | | | 72.61 242 | | 89.06 172 | 68.48 66 | 80.33 320 | 90.11 216 | 71.84 189 | 71.81 190 | 75.92 325 | 53.01 210 | 93.92 222 | 48.04 308 | 73.38 219 | |
|
SCA | | | 75.82 221 | 72.76 239 | 85.01 116 | 86.63 223 | 70.08 32 | 81.06 316 | 89.19 248 | 71.60 200 | 70.01 209 | 77.09 315 | 45.53 272 | 90.25 300 | 60.43 263 | 73.27 220 | 94.68 89 |
|
CR-MVSNet | | | 73.79 246 | 70.82 258 | 82.70 176 | 83.15 277 | 67.96 81 | 70.25 346 | 84.00 324 | 73.67 142 | 69.97 211 | 72.41 336 | 57.82 151 | 89.48 311 | 52.99 292 | 73.13 221 | 90.64 197 |
|
RPMNet | | | 70.42 269 | 65.68 285 | 84.63 131 | 83.15 277 | 67.96 81 | 70.25 346 | 90.45 198 | 46.83 355 | 69.97 211 | 65.10 353 | 56.48 172 | 95.30 167 | 35.79 352 | 73.13 221 | 90.64 197 |
|
Fast-Effi-MVS+-dtu | | | 75.04 232 | 73.37 232 | 80.07 242 | 80.86 296 | 59.52 274 | 91.20 191 | 85.38 310 | 71.90 183 | 65.20 262 | 84.84 231 | 41.46 287 | 92.97 240 | 66.50 220 | 72.96 223 | 87.73 230 |
|
mvsmamba | | | 76.85 204 | 75.71 202 | 80.25 238 | 83.07 279 | 59.16 280 | 91.44 173 | 80.64 340 | 76.84 92 | 67.95 235 | 86.33 213 | 46.17 270 | 94.24 204 | 76.06 136 | 72.92 224 | 87.36 237 |
|
LPG-MVS_test | | | 75.82 221 | 74.58 213 | 79.56 257 | 84.31 262 | 59.37 276 | 90.44 212 | 89.73 231 | 69.49 234 | 64.86 264 | 88.42 184 | 38.65 299 | 94.30 199 | 72.56 162 | 72.76 225 | 85.01 285 |
|
LGP-MVS_train | | | | | 79.56 257 | 84.31 262 | 59.37 276 | | 89.73 231 | 69.49 234 | 64.86 264 | 88.42 184 | 38.65 299 | 94.30 199 | 72.56 162 | 72.76 225 | 85.01 285 |
|
EG-PatchMatch MVS | | | 68.55 283 | 65.41 288 | 77.96 277 | 78.69 325 | 62.93 214 | 89.86 232 | 89.17 249 | 60.55 307 | 50.27 339 | 77.73 309 | 22.60 356 | 94.06 212 | 47.18 314 | 72.65 227 | 76.88 351 |
|
bld_raw_conf005 | | | 75.32 228 | 73.81 228 | 79.87 248 | 82.38 284 | 58.28 291 | 90.86 201 | 78.04 345 | 75.22 114 | 66.60 255 | 85.65 222 | 38.81 296 | 94.20 205 | 74.18 151 | 72.54 228 | 87.14 242 |
|
EI-MVSNet | | | 78.97 167 | 78.22 162 | 81.25 214 | 85.33 243 | 62.73 221 | 89.53 239 | 93.21 91 | 72.39 170 | 72.14 186 | 90.13 169 | 60.99 117 | 94.72 182 | 67.73 207 | 72.49 229 | 86.29 257 |
|
MVSTER | | | 82.47 108 | 82.05 105 | 83.74 151 | 92.68 90 | 69.01 55 | 91.90 155 | 93.21 91 | 79.83 44 | 72.14 186 | 85.71 221 | 74.72 16 | 94.72 182 | 75.72 137 | 72.49 229 | 87.50 232 |
|
Anonymous20240529 | | | 76.84 205 | 74.15 221 | 84.88 121 | 91.02 133 | 64.95 165 | 93.84 82 | 91.09 181 | 53.57 337 | 73.00 170 | 87.42 203 | 35.91 321 | 97.32 76 | 69.14 196 | 72.41 231 | 92.36 165 |
|
D2MVS | | | 73.80 245 | 72.02 249 | 79.15 264 | 79.15 318 | 62.97 212 | 88.58 257 | 90.07 217 | 72.94 154 | 59.22 303 | 78.30 303 | 42.31 286 | 92.70 256 | 65.59 231 | 72.00 232 | 81.79 322 |
|
PS-MVSNAJss | | | 77.26 199 | 76.31 193 | 80.13 241 | 80.64 300 | 59.16 280 | 90.63 211 | 91.06 184 | 72.80 158 | 68.58 229 | 84.57 235 | 53.55 204 | 93.96 220 | 72.97 155 | 71.96 233 | 87.27 241 |
|
Effi-MVS+-dtu | | | 76.14 212 | 75.28 206 | 78.72 268 | 83.22 275 | 55.17 318 | 89.87 231 | 87.78 288 | 75.42 107 | 67.98 234 | 81.43 269 | 45.08 275 | 92.52 264 | 75.08 142 | 71.63 234 | 88.48 220 |
|
ACMMP++_ref | | | | | | | | | | | | | | | | 71.63 234 | |
|
ACMM | | 69.62 13 | 74.34 239 | 72.73 240 | 79.17 262 | 84.25 264 | 57.87 294 | 90.36 216 | 89.93 223 | 63.17 287 | 65.64 259 | 86.04 218 | 37.79 309 | 94.10 208 | 65.89 226 | 71.52 236 | 85.55 278 |
Qingshan Xu and Wenbing Tao: Multi-Scale Geometric Consistency Guided Multi-View Stereo. CVPR 2019 |
ACMP | | 71.68 10 | 75.58 226 | 74.23 220 | 79.62 255 | 84.97 251 | 59.64 271 | 90.80 204 | 89.07 256 | 70.39 224 | 62.95 285 | 87.30 205 | 38.28 302 | 93.87 224 | 72.89 156 | 71.45 237 | 85.36 281 |
Qingshan Xu and Wenbing Tao: Planar Prior Assisted PatchMatch Multi-View Stereo. AAAI 2020 |
dp | | | 75.01 233 | 72.09 248 | 83.76 150 | 89.28 167 | 66.22 131 | 79.96 327 | 89.75 228 | 71.16 210 | 67.80 240 | 77.19 314 | 51.81 218 | 92.54 263 | 50.39 297 | 71.44 238 | 92.51 163 |
|
tpm | | | 78.58 179 | 77.03 183 | 83.22 167 | 85.94 237 | 64.56 169 | 83.21 302 | 91.14 179 | 78.31 69 | 73.67 167 | 79.68 296 | 64.01 86 | 92.09 277 | 66.07 225 | 71.26 239 | 93.03 150 |
|
DP-MVS | | | 69.90 273 | 66.48 279 | 80.14 240 | 95.36 30 | 62.93 214 | 89.56 236 | 76.11 348 | 50.27 346 | 57.69 315 | 85.23 225 | 39.68 292 | 95.73 143 | 33.35 357 | 71.05 240 | 81.78 323 |
|
test_low_dy_conf_001 | | | 74.54 237 | 73.33 233 | 78.16 275 | 80.91 295 | 55.04 319 | 89.24 245 | 89.06 257 | 69.33 237 | 64.21 275 | 85.60 223 | 39.35 293 | 92.96 241 | 71.28 175 | 71.03 241 | 86.49 254 |
|
UniMVSNet_ETH3D | | | 72.74 256 | 70.53 259 | 79.36 259 | 78.62 327 | 56.64 309 | 85.01 287 | 89.20 247 | 63.77 282 | 64.84 266 | 84.44 236 | 34.05 326 | 91.86 281 | 63.94 241 | 70.89 242 | 89.57 209 |
|
MVS_0304 | | | 68.99 281 | 67.23 278 | 74.28 309 | 80.36 303 | 52.54 329 | 87.01 278 | 86.36 299 | 59.89 314 | 66.22 256 | 73.56 332 | 24.25 351 | 88.03 321 | 57.34 277 | 70.11 243 | 82.27 318 |
|
jajsoiax | | | 73.05 250 | 71.51 254 | 77.67 279 | 77.46 334 | 54.83 320 | 88.81 253 | 90.04 221 | 69.13 242 | 62.85 287 | 83.51 244 | 31.16 337 | 92.75 253 | 70.83 178 | 69.80 244 | 85.43 280 |
|
ACMMP++ | | | | | | | | | | | | | | | | 69.72 245 | |
|
mvs_tets | | | 72.71 257 | 71.11 255 | 77.52 280 | 77.41 335 | 54.52 322 | 88.45 260 | 89.76 227 | 68.76 247 | 62.70 288 | 83.26 247 | 29.49 341 | 92.71 254 | 70.51 184 | 69.62 246 | 85.34 282 |
|
tpmvs | | | 72.88 254 | 69.76 266 | 82.22 191 | 90.98 134 | 67.05 108 | 78.22 334 | 88.30 278 | 63.10 288 | 64.35 274 | 74.98 328 | 55.09 187 | 94.27 201 | 43.25 327 | 69.57 247 | 85.34 282 |
|
GBi-Net | | | 75.65 223 | 73.83 226 | 81.10 221 | 88.85 176 | 65.11 158 | 90.01 227 | 90.32 204 | 70.84 216 | 67.04 249 | 80.25 290 | 48.03 251 | 91.54 288 | 59.80 268 | 69.34 248 | 86.64 249 |
|
test1 | | | 75.65 223 | 73.83 226 | 81.10 221 | 88.85 176 | 65.11 158 | 90.01 227 | 90.32 204 | 70.84 216 | 67.04 249 | 80.25 290 | 48.03 251 | 91.54 288 | 59.80 268 | 69.34 248 | 86.64 249 |
|
FMVSNet3 | | | 77.73 193 | 76.04 196 | 82.80 173 | 91.20 132 | 68.99 56 | 91.87 156 | 91.99 139 | 73.35 147 | 67.04 249 | 83.19 248 | 56.62 169 | 92.14 274 | 59.80 268 | 69.34 248 | 87.28 240 |
|
MSDG | | | 69.54 275 | 65.73 284 | 80.96 226 | 85.11 249 | 63.71 196 | 84.19 291 | 83.28 331 | 56.95 327 | 54.50 322 | 84.03 238 | 31.50 335 | 96.03 133 | 42.87 331 | 69.13 251 | 83.14 306 |
|
JIA-IIPM | | | 66.06 300 | 62.45 307 | 76.88 292 | 81.42 293 | 54.45 323 | 57.49 364 | 88.67 270 | 49.36 348 | 63.86 277 | 46.86 363 | 56.06 176 | 90.25 300 | 49.53 301 | 68.83 252 | 85.95 269 |
|
OpenMVS_ROB |  | 61.12 18 | 66.39 298 | 62.92 304 | 76.80 293 | 76.51 338 | 57.77 295 | 89.22 246 | 83.41 329 | 55.48 334 | 53.86 326 | 77.84 308 | 26.28 350 | 93.95 221 | 34.90 354 | 68.76 253 | 78.68 346 |
|
FMVSNet2 | | | 76.07 213 | 74.01 224 | 82.26 190 | 88.85 176 | 67.66 89 | 91.33 184 | 91.61 158 | 70.84 216 | 65.98 257 | 82.25 256 | 48.03 251 | 92.00 279 | 58.46 273 | 68.73 254 | 87.10 243 |
|
test_djsdf | | | 73.76 247 | 72.56 243 | 77.39 284 | 77.00 337 | 53.93 324 | 89.07 250 | 90.69 192 | 65.80 268 | 63.92 276 | 82.03 259 | 43.14 283 | 92.67 257 | 72.83 157 | 68.53 255 | 85.57 277 |
|
F-COLMAP | | | 70.66 266 | 68.44 271 | 77.32 285 | 86.37 229 | 55.91 313 | 88.00 264 | 86.32 300 | 56.94 328 | 57.28 317 | 88.07 194 | 33.58 327 | 92.49 265 | 51.02 295 | 68.37 256 | 83.55 296 |
|
XVG-ACMP-BASELINE | | | 68.04 288 | 65.53 287 | 75.56 299 | 74.06 347 | 52.37 330 | 78.43 331 | 85.88 307 | 62.03 298 | 58.91 307 | 81.21 277 | 20.38 360 | 91.15 294 | 60.69 262 | 68.18 257 | 83.16 305 |
|
LTVRE_ROB | | 59.60 19 | 66.27 299 | 63.54 300 | 74.45 306 | 84.00 267 | 51.55 334 | 67.08 356 | 83.53 327 | 58.78 319 | 54.94 321 | 80.31 288 | 34.54 325 | 93.23 236 | 40.64 340 | 68.03 258 | 78.58 347 |
Andreas Kuhn, Heiko Hirschmüller, Daniel Scharstein, Helmut Mayer: A TV Prior for High-Quality Scalable Multi-View Stereo Reconstruction. International Journal of Computer Vision 2016 |
XXY-MVS | | | 77.94 190 | 76.44 191 | 82.43 182 | 82.60 282 | 64.44 175 | 92.01 149 | 91.83 149 | 73.59 143 | 70.00 210 | 85.82 219 | 54.43 195 | 94.76 179 | 69.63 189 | 68.02 259 | 88.10 228 |
|
ADS-MVSNet2 | | | 66.90 296 | 63.44 301 | 77.26 287 | 88.06 198 | 60.70 257 | 68.01 353 | 75.56 351 | 57.57 322 | 64.48 270 | 69.87 345 | 38.68 297 | 84.10 340 | 40.87 338 | 67.89 260 | 86.97 244 |
|
ADS-MVSNet | | | 68.54 284 | 64.38 297 | 81.03 225 | 88.06 198 | 66.90 113 | 68.01 353 | 84.02 323 | 57.57 322 | 64.48 270 | 69.87 345 | 38.68 297 | 89.21 313 | 40.87 338 | 67.89 260 | 86.97 244 |
|
test0.0.03 1 | | | 72.76 255 | 72.71 241 | 72.88 318 | 80.25 306 | 47.99 350 | 91.22 189 | 89.45 238 | 71.51 204 | 62.51 290 | 87.66 199 | 53.83 200 | 85.06 338 | 50.16 298 | 67.84 262 | 85.58 276 |
|
anonymousdsp | | | 71.14 265 | 69.37 267 | 76.45 294 | 72.95 349 | 54.71 321 | 84.19 291 | 88.88 262 | 61.92 300 | 62.15 291 | 79.77 295 | 38.14 304 | 91.44 293 | 68.90 199 | 67.45 263 | 83.21 304 |
|
VPA-MVSNet | | | 79.03 165 | 78.00 165 | 82.11 199 | 85.95 235 | 64.48 173 | 93.22 102 | 94.66 35 | 75.05 117 | 74.04 164 | 84.95 229 | 52.17 216 | 93.52 231 | 74.90 147 | 67.04 264 | 88.32 225 |
|
nrg030 | | | 80.93 134 | 79.86 137 | 84.13 144 | 83.69 270 | 68.83 59 | 93.23 101 | 91.20 174 | 75.55 105 | 75.06 154 | 88.22 193 | 63.04 103 | 94.74 181 | 81.88 93 | 66.88 265 | 88.82 215 |
|
FMVSNet1 | | | 72.71 257 | 69.91 264 | 81.10 221 | 83.60 272 | 65.11 158 | 90.01 227 | 90.32 204 | 63.92 280 | 63.56 280 | 80.25 290 | 36.35 320 | 91.54 288 | 54.46 285 | 66.75 266 | 86.64 249 |
|
PatchT | | | 69.11 278 | 65.37 289 | 80.32 234 | 82.07 288 | 63.68 199 | 67.96 355 | 87.62 290 | 50.86 344 | 69.37 215 | 65.18 352 | 57.09 157 | 88.53 317 | 41.59 336 | 66.60 267 | 88.74 216 |
|
IB-MVS | | 77.80 4 | 82.18 112 | 80.46 129 | 87.35 38 | 89.14 171 | 70.28 31 | 95.59 25 | 95.17 15 | 78.85 62 | 70.19 207 | 85.82 219 | 70.66 36 | 97.67 55 | 72.19 168 | 66.52 268 | 94.09 115 |
Christian Sormann, Mattia Rossi, Andreas Kuhn and Friedrich Fraundorfer: IB-MVS: An Iterative Algorithm for Deep Multi-View Stereo based on Binary Decisions. BMVC 2021 |
RRT_MVS | | | 74.44 238 | 72.97 237 | 78.84 267 | 82.36 285 | 57.66 298 | 89.83 233 | 88.79 267 | 70.61 222 | 64.58 268 | 84.89 230 | 39.24 294 | 92.65 260 | 70.11 186 | 66.34 269 | 86.21 260 |
|
pmmvs5 | | | 73.35 248 | 71.52 253 | 78.86 266 | 78.64 326 | 60.61 260 | 91.08 194 | 86.90 295 | 67.69 253 | 63.32 282 | 83.64 242 | 44.33 279 | 90.53 297 | 62.04 255 | 66.02 270 | 85.46 279 |
|
pmmvs4 | | | 73.92 244 | 71.81 251 | 80.25 238 | 79.17 317 | 65.24 153 | 87.43 273 | 87.26 294 | 67.64 256 | 63.46 281 | 83.91 241 | 48.96 247 | 91.53 291 | 62.94 248 | 65.49 271 | 83.96 292 |
|
cl22 | | | 77.94 190 | 76.78 187 | 81.42 211 | 87.57 207 | 64.93 166 | 90.67 207 | 88.86 264 | 72.45 167 | 67.63 242 | 82.68 252 | 64.07 85 | 92.91 247 | 71.79 170 | 65.30 272 | 86.44 255 |
|
miper_ehance_all_eth | | | 77.60 194 | 76.44 191 | 81.09 224 | 85.70 240 | 64.41 178 | 90.65 208 | 88.64 272 | 72.31 171 | 67.37 247 | 82.52 253 | 64.77 78 | 92.64 261 | 70.67 181 | 65.30 272 | 86.24 259 |
|
miper_enhance_ethall | | | 78.86 170 | 77.97 166 | 81.54 209 | 88.00 201 | 65.17 155 | 91.41 175 | 89.15 251 | 75.19 115 | 68.79 225 | 83.98 240 | 67.17 53 | 92.82 249 | 72.73 160 | 65.30 272 | 86.62 253 |
|
v1144 | | | 76.73 208 | 74.88 208 | 82.27 188 | 80.23 307 | 66.60 121 | 91.68 167 | 90.21 214 | 73.69 140 | 69.06 220 | 81.89 260 | 52.73 212 | 94.40 197 | 69.21 195 | 65.23 275 | 85.80 272 |
|
DSMNet-mixed | | | 56.78 325 | 54.44 328 | 63.79 342 | 63.21 365 | 29.44 373 | 64.43 358 | 64.10 368 | 42.12 361 | 51.32 335 | 71.60 341 | 31.76 334 | 75.04 362 | 36.23 349 | 65.20 276 | 86.87 247 |
|
v1192 | | | 75.98 218 | 73.92 225 | 82.15 193 | 79.73 309 | 66.24 130 | 91.22 189 | 89.75 228 | 72.67 160 | 68.49 230 | 81.42 270 | 49.86 236 | 94.27 201 | 67.08 212 | 65.02 277 | 85.95 269 |
|
v2v482 | | | 77.42 197 | 75.65 203 | 82.73 175 | 80.38 302 | 67.13 106 | 91.85 158 | 90.23 212 | 75.09 116 | 69.37 215 | 83.39 246 | 53.79 202 | 94.44 196 | 71.77 171 | 65.00 278 | 86.63 252 |
|
V42 | | | 76.46 210 | 74.55 214 | 82.19 192 | 79.14 319 | 67.82 85 | 90.26 220 | 89.42 240 | 73.75 138 | 68.63 228 | 81.89 260 | 51.31 223 | 94.09 209 | 71.69 173 | 64.84 279 | 84.66 288 |
|
ACMH | | 63.93 17 | 68.62 282 | 64.81 290 | 80.03 243 | 85.22 245 | 63.25 205 | 87.72 269 | 84.66 318 | 60.83 306 | 51.57 334 | 79.43 299 | 27.29 347 | 94.96 174 | 41.76 334 | 64.84 279 | 81.88 321 |
Qingshan Xu and Wenbing Tao: Multi-Scale Geometric Consistency Guided Multi-View Stereo. CVPR 2019 |
baseline1 | | | 81.84 120 | 81.03 120 | 84.28 142 | 91.60 120 | 66.62 120 | 91.08 194 | 91.66 157 | 81.87 25 | 74.86 155 | 91.67 145 | 69.98 37 | 94.92 177 | 71.76 172 | 64.75 281 | 91.29 190 |
|
v1240 | | | 75.21 231 | 72.98 236 | 81.88 202 | 79.20 316 | 66.00 134 | 90.75 206 | 89.11 254 | 71.63 199 | 67.41 245 | 81.22 275 | 47.36 259 | 93.87 224 | 65.46 233 | 64.72 282 | 85.77 273 |
|
IterMVS-LS | | | 76.49 209 | 75.18 207 | 80.43 233 | 84.49 258 | 62.74 220 | 90.64 209 | 88.80 265 | 72.40 169 | 65.16 263 | 81.72 263 | 60.98 118 | 92.27 273 | 67.74 206 | 64.65 283 | 86.29 257 |
Fangjinhua Wang, Silvano Galliani, Christoph Vogel, Marc Pollefeys: IterMVS: Iterative Probability Estimation for Efficient Multi-View Stereo. |
v1921920 | | | 75.63 225 | 73.49 231 | 82.06 200 | 79.38 314 | 66.35 126 | 91.07 196 | 89.48 237 | 71.98 180 | 67.99 233 | 81.22 275 | 49.16 245 | 93.90 223 | 66.56 217 | 64.56 284 | 85.92 271 |
|
v144192 | | | 76.05 216 | 74.03 223 | 82.12 196 | 79.50 313 | 66.55 123 | 91.39 179 | 89.71 234 | 72.30 172 | 68.17 232 | 81.33 272 | 51.75 219 | 94.03 217 | 67.94 204 | 64.19 285 | 85.77 273 |
|
Anonymous20231211 | | | 73.08 249 | 70.39 260 | 81.13 219 | 90.62 141 | 63.33 204 | 91.40 177 | 90.06 220 | 51.84 341 | 64.46 272 | 80.67 283 | 36.49 319 | 94.07 211 | 63.83 242 | 64.17 286 | 85.98 268 |
|
Patchmatch-test | | | 65.86 301 | 60.94 313 | 80.62 231 | 83.75 269 | 58.83 284 | 58.91 363 | 75.26 353 | 44.50 359 | 50.95 338 | 77.09 315 | 58.81 144 | 87.90 322 | 35.13 353 | 64.03 287 | 95.12 73 |
|
USDC | | | 67.43 295 | 64.51 294 | 76.19 296 | 77.94 332 | 55.29 317 | 78.38 332 | 85.00 314 | 73.17 149 | 48.36 345 | 80.37 287 | 21.23 358 | 92.48 266 | 52.15 293 | 64.02 288 | 80.81 329 |
|
VPNet | | | 78.82 171 | 77.53 175 | 82.70 176 | 84.52 257 | 66.44 124 | 93.93 74 | 92.23 128 | 80.46 40 | 72.60 177 | 88.38 187 | 49.18 243 | 93.13 237 | 72.47 164 | 63.97 289 | 88.55 219 |
|
Anonymous20231206 | | | 67.53 293 | 65.78 283 | 72.79 319 | 74.95 343 | 47.59 352 | 88.23 262 | 87.32 292 | 61.75 303 | 58.07 311 | 77.29 312 | 37.79 309 | 87.29 330 | 42.91 329 | 63.71 290 | 83.48 299 |
|
WR-MVS | | | 76.76 207 | 75.74 201 | 79.82 250 | 84.60 255 | 62.27 228 | 92.60 127 | 92.51 122 | 76.06 100 | 67.87 239 | 85.34 224 | 56.76 165 | 90.24 303 | 62.20 254 | 63.69 291 | 86.94 246 |
|
h-mvs33 | | | 83.01 100 | 82.56 100 | 84.35 139 | 89.34 164 | 62.02 230 | 92.72 119 | 93.76 67 | 81.45 28 | 82.73 74 | 92.25 136 | 60.11 126 | 97.13 88 | 87.69 43 | 62.96 292 | 93.91 124 |
|
test_part1 | | | 79.63 156 | 77.86 170 | 84.93 118 | 92.50 94 | 71.43 18 | 94.15 59 | 91.08 183 | 72.51 164 | 70.66 199 | 84.98 228 | 59.84 130 | 95.07 171 | 72.07 169 | 62.94 293 | 88.30 226 |
|
c3_l | | | 76.83 206 | 75.47 204 | 80.93 228 | 85.02 250 | 64.18 187 | 90.39 215 | 88.11 283 | 71.66 194 | 66.65 254 | 81.64 265 | 63.58 96 | 92.56 262 | 69.31 194 | 62.86 294 | 86.04 266 |
|
UniMVSNet_NR-MVSNet | | | 78.15 186 | 77.55 174 | 79.98 244 | 84.46 259 | 60.26 263 | 92.25 137 | 93.20 93 | 77.50 85 | 68.88 223 | 86.61 209 | 66.10 62 | 92.13 275 | 66.38 221 | 62.55 295 | 87.54 231 |
|
DU-MVS | | | 76.86 202 | 75.84 199 | 79.91 246 | 82.96 280 | 60.26 263 | 91.26 187 | 91.54 160 | 76.46 98 | 68.88 223 | 86.35 211 | 56.16 173 | 92.13 275 | 66.38 221 | 62.55 295 | 87.35 238 |
|
UniMVSNet (Re) | | | 77.58 195 | 76.78 187 | 79.98 244 | 84.11 265 | 60.80 251 | 91.76 163 | 93.17 96 | 76.56 97 | 69.93 213 | 84.78 232 | 63.32 99 | 92.36 270 | 64.89 236 | 62.51 297 | 86.78 248 |
|
v8 | | | 75.35 227 | 73.26 234 | 81.61 208 | 80.67 299 | 66.82 114 | 89.54 238 | 89.27 244 | 71.65 195 | 63.30 283 | 80.30 289 | 54.99 188 | 94.06 212 | 67.33 211 | 62.33 298 | 83.94 293 |
|
cl____ | | | 76.07 213 | 74.67 209 | 80.28 236 | 85.15 246 | 61.76 236 | 90.12 223 | 88.73 268 | 71.16 210 | 65.43 260 | 81.57 267 | 61.15 115 | 92.95 242 | 66.54 218 | 62.17 299 | 86.13 264 |
|
v10 | | | 74.77 235 | 72.54 244 | 81.46 210 | 80.33 305 | 66.71 118 | 89.15 249 | 89.08 255 | 70.94 214 | 63.08 284 | 79.86 294 | 52.52 213 | 94.04 215 | 65.70 229 | 62.17 299 | 83.64 295 |
|
DIV-MVS_self_test | | | 76.07 213 | 74.67 209 | 80.28 236 | 85.14 247 | 61.75 237 | 90.12 223 | 88.73 268 | 71.16 210 | 65.42 261 | 81.60 266 | 61.15 115 | 92.94 246 | 66.54 218 | 62.16 301 | 86.14 262 |
|
IterMVS-SCA-FT | | | 71.55 263 | 69.97 262 | 76.32 295 | 81.48 291 | 60.67 258 | 87.64 271 | 85.99 306 | 66.17 266 | 59.50 301 | 78.88 300 | 45.53 272 | 83.65 345 | 62.58 252 | 61.93 302 | 84.63 290 |
|
IterMVS | | | 72.65 259 | 70.83 257 | 78.09 276 | 82.17 286 | 62.96 213 | 87.64 271 | 86.28 301 | 71.56 202 | 60.44 297 | 78.85 301 | 45.42 274 | 86.66 332 | 63.30 246 | 61.83 303 | 84.65 289 |
Fangjinhua Wang, Silvano Galliani, Christoph Vogel, Marc Pollefeys: IterMVS: Iterative Probability Estimation for Efficient Multi-View Stereo. |
FMVSNet5 | | | 68.04 288 | 65.66 286 | 75.18 302 | 84.43 260 | 57.89 293 | 83.54 295 | 86.26 302 | 61.83 302 | 53.64 327 | 73.30 333 | 37.15 315 | 85.08 337 | 48.99 303 | 61.77 304 | 82.56 315 |
|
v7n | | | 71.31 264 | 68.65 269 | 79.28 260 | 76.40 339 | 60.77 253 | 86.71 281 | 89.45 238 | 64.17 279 | 58.77 308 | 78.24 304 | 44.59 278 | 93.54 230 | 57.76 274 | 61.75 305 | 83.52 298 |
|
v148 | | | 76.19 211 | 74.47 216 | 81.36 212 | 80.05 308 | 64.44 175 | 91.75 165 | 90.23 212 | 73.68 141 | 67.13 248 | 80.84 280 | 55.92 179 | 93.86 226 | 68.95 198 | 61.73 306 | 85.76 275 |
|
tfpnnormal | | | 70.10 270 | 67.36 276 | 78.32 271 | 83.45 274 | 60.97 249 | 88.85 252 | 92.77 110 | 64.85 275 | 60.83 296 | 78.53 302 | 43.52 282 | 93.48 232 | 31.73 363 | 61.70 307 | 80.52 332 |
|
ACMH+ | | 65.35 16 | 67.65 291 | 64.55 293 | 76.96 291 | 84.59 256 | 57.10 307 | 88.08 263 | 80.79 338 | 58.59 321 | 53.00 328 | 81.09 279 | 26.63 349 | 92.95 242 | 46.51 315 | 61.69 308 | 80.82 328 |
|
ITE_SJBPF | | | | | 70.43 331 | 74.44 345 | 47.06 354 | | 77.32 346 | 60.16 311 | 54.04 325 | 83.53 243 | 23.30 355 | 84.01 342 | 43.07 328 | 61.58 309 | 80.21 337 |
|
NR-MVSNet | | | 76.05 216 | 74.59 212 | 80.44 232 | 82.96 280 | 62.18 229 | 90.83 203 | 91.73 152 | 77.12 89 | 60.96 295 | 86.35 211 | 59.28 139 | 91.80 282 | 60.74 261 | 61.34 310 | 87.35 238 |
|
test_0402 | | | 64.54 306 | 61.09 312 | 74.92 303 | 84.10 266 | 60.75 255 | 87.95 265 | 79.71 343 | 52.03 340 | 52.41 330 | 77.20 313 | 32.21 333 | 91.64 285 | 23.14 366 | 61.03 311 | 72.36 358 |
|
Baseline_NR-MVSNet | | | 73.99 243 | 72.83 238 | 77.48 282 | 80.78 297 | 59.29 279 | 91.79 160 | 84.55 319 | 68.85 244 | 68.99 221 | 80.70 281 | 56.16 173 | 92.04 278 | 62.67 251 | 60.98 312 | 81.11 325 |
|
TranMVSNet+NR-MVSNet | | | 75.86 220 | 74.52 215 | 79.89 247 | 82.44 283 | 60.64 259 | 91.37 182 | 91.37 168 | 76.63 95 | 67.65 241 | 86.21 215 | 52.37 215 | 91.55 287 | 61.84 256 | 60.81 313 | 87.48 233 |
|
testgi | | | 64.48 307 | 62.87 305 | 69.31 333 | 71.24 352 | 40.62 364 | 85.49 285 | 79.92 342 | 65.36 272 | 54.18 324 | 83.49 245 | 23.74 354 | 84.55 339 | 41.60 335 | 60.79 314 | 82.77 308 |
|
eth_miper_zixun_eth | | | 75.96 219 | 74.40 217 | 80.66 230 | 84.66 254 | 63.02 211 | 89.28 244 | 88.27 280 | 71.88 185 | 65.73 258 | 81.65 264 | 59.45 135 | 92.81 250 | 68.13 202 | 60.53 315 | 86.14 262 |
|
COLMAP_ROB |  | 57.96 20 | 62.98 314 | 59.65 316 | 72.98 317 | 81.44 292 | 53.00 328 | 83.75 294 | 75.53 352 | 48.34 351 | 48.81 344 | 81.40 271 | 24.14 352 | 90.30 299 | 32.95 359 | 60.52 316 | 75.65 354 |
Johannes L. Schönberger, Enliang Zheng, Marc Pollefeys, Jan-Michael Frahm: Pixelwise View Selection for Unstructured Multi-View Stereo. ECCV 2016 |
AUN-MVS | | | 78.37 182 | 77.43 176 | 81.17 216 | 86.60 224 | 57.45 303 | 89.46 241 | 91.16 176 | 74.11 128 | 74.40 158 | 90.49 161 | 55.52 181 | 94.57 188 | 74.73 149 | 60.43 317 | 91.48 182 |
|
hse-mvs2 | | | 81.12 131 | 81.11 119 | 81.16 217 | 86.52 225 | 57.48 302 | 89.40 242 | 91.16 176 | 81.45 28 | 82.73 74 | 90.49 161 | 60.11 126 | 94.58 187 | 87.69 43 | 60.41 318 | 91.41 184 |
|
RPSCF | | | 64.24 308 | 61.98 310 | 71.01 330 | 76.10 341 | 45.00 357 | 75.83 339 | 75.94 349 | 46.94 354 | 58.96 306 | 84.59 234 | 31.40 336 | 82.00 357 | 47.76 312 | 60.33 319 | 86.04 266 |
|
miper_lstm_enhance | | | 73.05 250 | 71.73 252 | 77.03 288 | 83.80 268 | 58.32 290 | 81.76 308 | 88.88 262 | 69.80 232 | 61.01 294 | 78.23 305 | 57.19 156 | 87.51 328 | 65.34 234 | 59.53 320 | 85.27 284 |
|
CP-MVSNet | | | 70.50 268 | 69.91 264 | 72.26 323 | 80.71 298 | 51.00 338 | 87.23 275 | 90.30 208 | 67.84 251 | 59.64 300 | 82.69 251 | 50.23 233 | 82.30 355 | 51.28 294 | 59.28 321 | 83.46 300 |
|
PS-CasMVS | | | 69.86 274 | 69.13 268 | 72.07 326 | 80.35 304 | 50.57 340 | 87.02 277 | 89.75 228 | 67.27 258 | 59.19 304 | 82.28 255 | 46.58 263 | 82.24 356 | 50.69 296 | 59.02 322 | 83.39 302 |
|
pm-mvs1 | | | 72.89 253 | 71.09 256 | 78.26 273 | 79.10 320 | 57.62 299 | 90.80 204 | 89.30 243 | 67.66 254 | 62.91 286 | 81.78 262 | 49.11 246 | 92.95 242 | 60.29 265 | 58.89 323 | 84.22 291 |
|
Anonymous20240521 | | | 62.09 315 | 59.08 318 | 71.10 329 | 67.19 361 | 48.72 348 | 83.91 293 | 85.23 312 | 50.38 345 | 47.84 346 | 71.22 344 | 20.74 359 | 85.51 336 | 46.47 316 | 58.75 324 | 79.06 343 |
|
WR-MVS_H | | | 70.59 267 | 69.94 263 | 72.53 320 | 81.03 294 | 51.43 335 | 87.35 274 | 92.03 138 | 67.38 257 | 60.23 298 | 80.70 281 | 55.84 180 | 83.45 347 | 46.33 317 | 58.58 325 | 82.72 310 |
|
PEN-MVS | | | 69.46 276 | 68.56 270 | 72.17 325 | 79.27 315 | 49.71 344 | 86.90 279 | 89.24 245 | 67.24 261 | 59.08 305 | 82.51 254 | 47.23 260 | 83.54 346 | 48.42 306 | 57.12 326 | 83.25 303 |
|
EU-MVSNet | | | 64.01 309 | 63.01 303 | 67.02 340 | 74.40 346 | 38.86 369 | 83.27 300 | 86.19 304 | 45.11 357 | 54.27 323 | 81.15 278 | 36.91 318 | 80.01 360 | 48.79 305 | 57.02 327 | 82.19 320 |
|
AllTest | | | 61.66 316 | 58.06 320 | 72.46 321 | 79.57 310 | 51.42 336 | 80.17 323 | 68.61 363 | 51.25 342 | 45.88 349 | 81.23 273 | 19.86 361 | 86.58 333 | 38.98 344 | 57.01 328 | 79.39 340 |
|
TestCases | | | | | 72.46 321 | 79.57 310 | 51.42 336 | | 68.61 363 | 51.25 342 | 45.88 349 | 81.23 273 | 19.86 361 | 86.58 333 | 38.98 344 | 57.01 328 | 79.39 340 |
|
Patchmtry | | | 67.53 293 | 63.93 298 | 78.34 270 | 82.12 287 | 64.38 179 | 68.72 350 | 84.00 324 | 48.23 352 | 59.24 302 | 72.41 336 | 57.82 151 | 89.27 312 | 46.10 318 | 56.68 330 | 81.36 324 |
|
our_test_3 | | | 68.29 286 | 64.69 292 | 79.11 265 | 78.92 321 | 64.85 167 | 88.40 261 | 85.06 313 | 60.32 310 | 52.68 329 | 76.12 323 | 40.81 289 | 89.80 310 | 44.25 326 | 55.65 331 | 82.67 314 |
|
FPMVS | | | 45.64 331 | 43.10 334 | 53.23 349 | 51.42 373 | 36.46 370 | 64.97 357 | 71.91 358 | 29.13 366 | 27.53 366 | 61.55 358 | 9.83 371 | 65.01 370 | 16.00 370 | 55.58 332 | 58.22 365 |
|
DTE-MVSNet | | | 68.46 285 | 67.33 277 | 71.87 328 | 77.94 332 | 49.00 347 | 86.16 284 | 88.58 274 | 66.36 265 | 58.19 309 | 82.21 257 | 46.36 264 | 83.87 344 | 44.97 324 | 55.17 333 | 82.73 309 |
|
MIMVSNet1 | | | 60.16 322 | 57.33 323 | 68.67 334 | 69.71 358 | 44.13 359 | 78.92 329 | 84.21 320 | 55.05 335 | 44.63 355 | 71.85 340 | 23.91 353 | 81.54 359 | 32.63 361 | 55.03 334 | 80.35 333 |
|
pmmvs6 | | | 67.57 292 | 64.76 291 | 76.00 298 | 72.82 351 | 53.37 326 | 88.71 254 | 86.78 298 | 53.19 338 | 57.58 316 | 78.03 307 | 35.33 323 | 92.41 267 | 55.56 282 | 54.88 335 | 82.21 319 |
|
TinyColmap | | | 60.32 320 | 56.42 326 | 72.00 327 | 78.78 323 | 53.18 327 | 78.36 333 | 75.64 350 | 52.30 339 | 41.59 360 | 75.82 326 | 14.76 366 | 88.35 318 | 35.84 350 | 54.71 336 | 74.46 355 |
|
test20.03 | | | 63.83 310 | 62.65 306 | 67.38 339 | 70.58 357 | 39.94 365 | 86.57 282 | 84.17 321 | 63.29 285 | 51.86 332 | 77.30 311 | 37.09 316 | 82.47 353 | 38.87 346 | 54.13 337 | 79.73 338 |
|
OurMVSNet-221017-0 | | | 64.68 305 | 62.17 309 | 72.21 324 | 76.08 342 | 47.35 353 | 80.67 317 | 81.02 337 | 56.19 331 | 51.60 333 | 79.66 297 | 27.05 348 | 88.56 316 | 53.60 290 | 53.63 338 | 80.71 330 |
|
Patchmatch-RL test | | | 68.17 287 | 64.49 295 | 79.19 261 | 71.22 353 | 53.93 324 | 70.07 348 | 71.54 360 | 69.22 239 | 56.79 318 | 62.89 355 | 56.58 170 | 88.61 314 | 69.53 191 | 52.61 339 | 95.03 79 |
|
ppachtmachnet_test | | | 67.72 290 | 63.70 299 | 79.77 252 | 78.92 321 | 66.04 133 | 88.68 255 | 82.90 333 | 60.11 312 | 55.45 320 | 75.96 324 | 39.19 295 | 90.55 296 | 39.53 342 | 52.55 340 | 82.71 311 |
|
LF4IMVS | | | 54.01 328 | 52.12 329 | 59.69 343 | 62.41 367 | 39.91 367 | 68.59 351 | 68.28 365 | 42.96 360 | 44.55 356 | 75.18 327 | 14.09 368 | 68.39 366 | 41.36 337 | 51.68 341 | 70.78 359 |
|
N_pmnet | | | 50.55 329 | 49.11 332 | 54.88 347 | 77.17 336 | 4.02 383 | 84.36 290 | 2.00 382 | 48.59 349 | 45.86 351 | 68.82 347 | 32.22 332 | 82.80 352 | 31.58 364 | 51.38 342 | 77.81 349 |
|
pmmvs-eth3d | | | 65.53 303 | 62.32 308 | 75.19 301 | 69.39 359 | 59.59 272 | 82.80 305 | 83.43 328 | 62.52 294 | 51.30 336 | 72.49 334 | 32.86 328 | 87.16 331 | 55.32 283 | 50.73 343 | 78.83 345 |
|
CL-MVSNet_self_test | | | 69.92 272 | 68.09 274 | 75.41 300 | 73.25 348 | 55.90 314 | 90.05 226 | 89.90 224 | 69.96 229 | 61.96 293 | 76.54 318 | 51.05 226 | 87.64 325 | 49.51 302 | 50.59 344 | 82.70 312 |
|
PM-MVS | | | 59.40 323 | 56.59 324 | 67.84 335 | 63.63 364 | 41.86 361 | 76.76 337 | 63.22 369 | 59.01 318 | 51.07 337 | 72.27 339 | 11.72 369 | 83.25 349 | 61.34 258 | 50.28 345 | 78.39 348 |
|
MDA-MVSNet_test_wron | | | 63.78 311 | 60.16 314 | 74.64 304 | 78.15 330 | 60.41 261 | 83.49 296 | 84.03 322 | 56.17 333 | 39.17 362 | 71.59 342 | 37.22 313 | 83.24 350 | 42.87 331 | 48.73 346 | 80.26 335 |
|
YYNet1 | | | 63.76 312 | 60.14 315 | 74.62 305 | 78.06 331 | 60.19 266 | 83.46 298 | 83.99 326 | 56.18 332 | 39.25 361 | 71.56 343 | 37.18 314 | 83.34 348 | 42.90 330 | 48.70 347 | 80.32 334 |
|
KD-MVS_self_test | | | 60.87 319 | 58.60 319 | 67.68 337 | 66.13 362 | 39.93 366 | 75.63 340 | 84.70 317 | 57.32 325 | 49.57 342 | 68.45 348 | 29.55 340 | 82.87 351 | 48.09 307 | 47.94 348 | 80.25 336 |
|
SixPastTwentyTwo | | | 64.92 304 | 61.78 311 | 74.34 308 | 78.74 324 | 49.76 343 | 83.42 299 | 79.51 344 | 62.86 289 | 50.27 339 | 77.35 310 | 30.92 339 | 90.49 298 | 45.89 319 | 47.06 349 | 82.78 307 |
|
new_pmnet | | | 49.31 330 | 46.44 333 | 57.93 344 | 62.84 366 | 40.74 363 | 68.47 352 | 62.96 370 | 36.48 363 | 35.09 363 | 57.81 359 | 14.97 365 | 72.18 364 | 32.86 360 | 46.44 350 | 60.88 364 |
|
EGC-MVSNET | | | 42.35 332 | 38.09 335 | 55.11 346 | 74.57 344 | 46.62 355 | 71.63 345 | 55.77 372 | 0.04 377 | 0.24 378 | 62.70 356 | 14.24 367 | 74.91 363 | 17.59 369 | 46.06 351 | 43.80 366 |
|
TransMVSNet (Re) | | | 70.07 271 | 67.66 275 | 77.31 286 | 80.62 301 | 59.13 282 | 91.78 162 | 84.94 315 | 65.97 267 | 60.08 299 | 80.44 286 | 50.78 227 | 91.87 280 | 48.84 304 | 45.46 352 | 80.94 327 |
|
ambc | | | | | 69.61 332 | 61.38 368 | 41.35 362 | 49.07 367 | 85.86 308 | | 50.18 341 | 66.40 350 | 10.16 370 | 88.14 320 | 45.73 320 | 44.20 353 | 79.32 342 |
|
TDRefinement | | | 55.28 327 | 51.58 330 | 66.39 341 | 59.53 369 | 46.15 356 | 76.23 338 | 72.80 356 | 44.60 358 | 42.49 359 | 76.28 322 | 15.29 364 | 82.39 354 | 33.20 358 | 43.75 354 | 70.62 360 |
|
Gipuma |  | | 34.91 337 | 31.44 340 | 45.30 352 | 70.99 354 | 39.64 368 | 19.85 372 | 72.56 357 | 20.10 370 | 16.16 372 | 21.47 373 | 5.08 377 | 71.16 365 | 13.07 371 | 43.70 355 | 25.08 370 |
S. Galliani, K. Lasinger, K. Schindler: Massively Parallel Multiview Stereopsis by Surface Normal Diffusion. ICCV 2015 |
MDA-MVSNet-bldmvs | | | 61.54 318 | 57.70 322 | 73.05 316 | 79.53 312 | 57.00 308 | 83.08 303 | 81.23 336 | 57.57 322 | 34.91 364 | 72.45 335 | 32.79 329 | 86.26 335 | 35.81 351 | 41.95 356 | 75.89 353 |
|
new-patchmatchnet | | | 59.30 324 | 56.48 325 | 67.79 336 | 65.86 363 | 44.19 358 | 82.47 306 | 81.77 334 | 59.94 313 | 43.65 358 | 66.20 351 | 27.67 346 | 81.68 358 | 39.34 343 | 41.40 357 | 77.50 350 |
|
UnsupCasMVSNet_eth | | | 65.79 302 | 63.10 302 | 73.88 310 | 70.71 355 | 50.29 342 | 81.09 315 | 89.88 225 | 72.58 162 | 49.25 343 | 74.77 330 | 32.57 331 | 87.43 329 | 55.96 281 | 41.04 358 | 83.90 294 |
|
pmmvs3 | | | 55.51 326 | 51.50 331 | 67.53 338 | 57.90 370 | 50.93 339 | 80.37 319 | 73.66 355 | 40.63 362 | 44.15 357 | 64.75 354 | 16.30 363 | 78.97 361 | 44.77 325 | 40.98 359 | 72.69 356 |
|
UnsupCasMVSNet_bld | | | 61.60 317 | 57.71 321 | 73.29 315 | 68.73 360 | 51.64 333 | 78.61 330 | 89.05 258 | 57.20 326 | 46.11 348 | 61.96 357 | 28.70 344 | 88.60 315 | 50.08 299 | 38.90 360 | 79.63 339 |
|
PMVS |  | 26.43 22 | 31.84 338 | 28.16 341 | 42.89 353 | 25.87 381 | 27.58 374 | 50.92 366 | 49.78 375 | 21.37 369 | 14.17 373 | 40.81 369 | 2.01 380 | 66.62 367 | 9.61 373 | 38.88 361 | 34.49 369 |
Y. Furukawa, J. Ponce: Accurate, dense, and robust multiview stereopsis. PAMI (2010) |
K. test v3 | | | 63.09 313 | 59.61 317 | 73.53 313 | 76.26 340 | 49.38 346 | 83.27 300 | 77.15 347 | 64.35 277 | 47.77 347 | 72.32 338 | 28.73 343 | 87.79 324 | 49.93 300 | 36.69 362 | 83.41 301 |
|
KD-MVS_2432*1600 | | | 69.03 279 | 66.37 281 | 77.01 289 | 85.56 241 | 61.06 247 | 81.44 313 | 90.25 210 | 67.27 258 | 58.00 312 | 76.53 319 | 54.49 192 | 87.63 326 | 48.04 308 | 35.77 363 | 82.34 316 |
|
miper_refine_blended | | | 69.03 279 | 66.37 281 | 77.01 289 | 85.56 241 | 61.06 247 | 81.44 313 | 90.25 210 | 67.27 258 | 58.00 312 | 76.53 319 | 54.49 192 | 87.63 326 | 48.04 308 | 35.77 363 | 82.34 316 |
|
LCM-MVSNet | | | 40.54 333 | 35.79 336 | 54.76 348 | 36.92 378 | 30.81 372 | 51.41 365 | 69.02 362 | 22.07 368 | 24.63 367 | 45.37 365 | 4.56 378 | 65.81 368 | 33.67 356 | 34.50 365 | 67.67 361 |
|
test_method | | | 38.59 335 | 35.16 338 | 48.89 351 | 54.33 371 | 21.35 378 | 45.32 368 | 53.71 373 | 7.41 374 | 28.74 365 | 51.62 361 | 8.70 373 | 52.87 372 | 33.73 355 | 32.89 366 | 72.47 357 |
|
lessismore_v0 | | | | | 73.72 312 | 72.93 350 | 47.83 351 | | 61.72 371 | | 45.86 351 | 73.76 331 | 28.63 345 | 89.81 308 | 47.75 313 | 31.37 367 | 83.53 297 |
|
PVSNet_0 | | 68.08 15 | 71.81 261 | 68.32 273 | 82.27 188 | 84.68 253 | 62.31 227 | 88.68 255 | 90.31 207 | 75.84 102 | 57.93 314 | 80.65 284 | 37.85 308 | 94.19 206 | 69.94 187 | 29.05 368 | 90.31 200 |
|
DeepMVS_CX |  | | | | 34.71 355 | 51.45 372 | 24.73 377 | | 28.48 381 | 31.46 365 | 17.49 371 | 52.75 360 | 5.80 376 | 42.60 376 | 18.18 368 | 19.42 369 | 36.81 368 |
|
PMMVS2 | | | 37.93 336 | 33.61 339 | 50.92 350 | 46.31 375 | 24.76 376 | 60.55 362 | 50.05 374 | 28.94 367 | 20.93 368 | 47.59 362 | 4.41 379 | 65.13 369 | 25.14 365 | 18.55 370 | 62.87 363 |
|
MVE |  | 24.84 23 | 24.35 340 | 19.77 346 | 38.09 354 | 34.56 380 | 26.92 375 | 26.57 370 | 38.87 378 | 11.73 373 | 11.37 374 | 27.44 370 | 1.37 381 | 50.42 373 | 11.41 372 | 14.60 371 | 36.93 367 |
Simon Fuhrmann, Fabian Langguth, Michael Goesele: MVE - A Multi-View Reconstruction Environment. EUROGRAPHICS Workshops on Graphics and Cultural Heritage (2014) |
E-PMN | | | 24.61 339 | 24.00 343 | 26.45 356 | 43.74 376 | 18.44 380 | 60.86 360 | 39.66 376 | 15.11 371 | 9.53 375 | 22.10 372 | 6.52 375 | 46.94 374 | 8.31 374 | 10.14 372 | 13.98 372 |
|
EMVS | | | 23.76 341 | 23.20 345 | 25.46 357 | 41.52 377 | 16.90 381 | 60.56 361 | 38.79 379 | 14.62 372 | 8.99 376 | 20.24 375 | 7.35 374 | 45.82 375 | 7.25 375 | 9.46 373 | 13.64 373 |
|
tmp_tt | | | 22.26 342 | 23.75 344 | 17.80 358 | 5.23 382 | 12.06 382 | 35.26 369 | 39.48 377 | 2.82 376 | 18.94 369 | 44.20 366 | 22.23 357 | 24.64 377 | 36.30 348 | 9.31 374 | 16.69 371 |
|
ANet_high | | | 40.27 334 | 35.20 337 | 55.47 345 | 34.74 379 | 34.47 371 | 63.84 359 | 71.56 359 | 48.42 350 | 18.80 370 | 41.08 368 | 9.52 372 | 64.45 371 | 20.18 367 | 8.66 375 | 67.49 362 |
|
wuyk23d | | | 11.30 344 | 10.95 347 | 12.33 359 | 48.05 374 | 19.89 379 | 25.89 371 | 1.92 383 | 3.58 375 | 3.12 377 | 1.37 377 | 0.64 382 | 15.77 378 | 6.23 376 | 7.77 376 | 1.35 374 |
|
testmvs | | | 7.23 346 | 9.62 349 | 0.06 361 | 0.04 383 | 0.02 385 | 84.98 288 | 0.02 384 | 0.03 378 | 0.18 379 | 1.21 378 | 0.01 384 | 0.02 379 | 0.14 377 | 0.01 377 | 0.13 376 |
|
test_blank | | | 0.00 349 | 0.00 352 | 0.00 362 | 0.00 385 | 0.00 386 | 0.00 373 | 0.00 386 | 0.00 380 | 0.00 381 | 0.00 380 | 0.00 385 | 0.00 381 | 0.00 379 | 0.00 378 | 0.00 377 |
|
uanet_test | | | 0.00 349 | 0.00 352 | 0.00 362 | 0.00 385 | 0.00 386 | 0.00 373 | 0.00 386 | 0.00 380 | 0.00 381 | 0.00 380 | 0.00 385 | 0.00 381 | 0.00 379 | 0.00 378 | 0.00 377 |
|
DCPMVS | | | 0.00 349 | 0.00 352 | 0.00 362 | 0.00 385 | 0.00 386 | 0.00 373 | 0.00 386 | 0.00 380 | 0.00 381 | 0.00 380 | 0.00 385 | 0.00 381 | 0.00 379 | 0.00 378 | 0.00 377 |
|
cdsmvs_eth3d_5k | | | 19.86 343 | 26.47 342 | 0.00 362 | 0.00 385 | 0.00 386 | 0.00 373 | 93.45 82 | 0.00 380 | 0.00 381 | 95.27 52 | 49.56 238 | 0.00 381 | 0.00 379 | 0.00 378 | 0.00 377 |
|
pcd_1.5k_mvsjas | | | 4.46 348 | 5.95 351 | 0.00 362 | 0.00 385 | 0.00 386 | 0.00 373 | 0.00 386 | 0.00 380 | 0.00 381 | 0.00 380 | 53.55 204 | 0.00 381 | 0.00 379 | 0.00 378 | 0.00 377 |
|
sosnet-low-res | | | 0.00 349 | 0.00 352 | 0.00 362 | 0.00 385 | 0.00 386 | 0.00 373 | 0.00 386 | 0.00 380 | 0.00 381 | 0.00 380 | 0.00 385 | 0.00 381 | 0.00 379 | 0.00 378 | 0.00 377 |
|
sosnet | | | 0.00 349 | 0.00 352 | 0.00 362 | 0.00 385 | 0.00 386 | 0.00 373 | 0.00 386 | 0.00 380 | 0.00 381 | 0.00 380 | 0.00 385 | 0.00 381 | 0.00 379 | 0.00 378 | 0.00 377 |
|
uncertanet | | | 0.00 349 | 0.00 352 | 0.00 362 | 0.00 385 | 0.00 386 | 0.00 373 | 0.00 386 | 0.00 380 | 0.00 381 | 0.00 380 | 0.00 385 | 0.00 381 | 0.00 379 | 0.00 378 | 0.00 377 |
|
Regformer | | | 0.00 349 | 0.00 352 | 0.00 362 | 0.00 385 | 0.00 386 | 0.00 373 | 0.00 386 | 0.00 380 | 0.00 381 | 0.00 380 | 0.00 385 | 0.00 381 | 0.00 379 | 0.00 378 | 0.00 377 |
|
test123 | | | 6.92 347 | 9.21 350 | 0.08 360 | 0.03 384 | 0.05 384 | 81.65 311 | 0.01 385 | 0.02 379 | 0.14 380 | 0.85 379 | 0.03 383 | 0.02 379 | 0.12 378 | 0.00 378 | 0.16 375 |
|
ab-mvs-re | | | 7.91 345 | 10.55 348 | 0.00 362 | 0.00 385 | 0.00 386 | 0.00 373 | 0.00 386 | 0.00 380 | 0.00 381 | 94.95 64 | 0.00 385 | 0.00 381 | 0.00 379 | 0.00 378 | 0.00 377 |
|
uanet | | | 0.00 349 | 0.00 352 | 0.00 362 | 0.00 385 | 0.00 386 | 0.00 373 | 0.00 386 | 0.00 380 | 0.00 381 | 0.00 380 | 0.00 385 | 0.00 381 | 0.00 379 | 0.00 378 | 0.00 377 |
|
FOURS1 | | | | | | 93.95 53 | 61.77 235 | 93.96 69 | 91.92 142 | 62.14 297 | 86.57 35 | | | | | | |
|
test_one_0601 | | | | | | 96.32 20 | 69.74 42 | | 94.18 55 | 71.42 207 | 90.67 15 | 96.85 12 | 74.45 19 | | | | |
|
eth-test2 | | | | | | 0.00 385 | | | | | | | | | | | |
|
eth-test | | | | | | 0.00 385 | | | | | | | | | | | |
|
test_241102_ONE | | | | | | 96.45 14 | 69.38 47 | | 94.44 43 | 71.65 195 | 92.11 4 | 97.05 8 | 76.79 9 | 99.11 6 | | | |
|
save fliter | | | | | | 93.84 56 | 67.89 83 | 95.05 39 | 92.66 115 | 78.19 70 | | | | | | | |
|
test0726 | | | | | | 96.40 17 | 69.99 33 | 96.76 6 | 94.33 51 | 71.92 181 | 91.89 8 | 97.11 7 | 73.77 22 | | | | |
|
GSMVS | | | | | | | | | | | | | | | | | 94.68 89 |
|
test_part2 | | | | | | 96.29 21 | 68.16 77 | | | | 90.78 13 | | | | | | |
|
sam_mvs1 | | | | | | | | | | | | | 57.85 150 | | | | 94.68 89 |
|
sam_mvs | | | | | | | | | | | | | 54.91 189 | | | | |
|
MTGPA |  | | | | | | | | 92.23 128 | | | | | | | | |
|
test_post1 | | | | | | | | 78.95 328 | | | | 20.70 374 | 53.05 209 | 91.50 292 | 60.43 263 | | |
|
test_post | | | | | | | | | | | | 23.01 371 | 56.49 171 | 92.67 257 | | | |
|
patchmatchnet-post | | | | | | | | | | | | 67.62 349 | 57.62 153 | 90.25 300 | | | |
|
MTMP | | | | | | | | 93.77 84 | 32.52 380 | | | | | | | | |
|
gm-plane-assit | | | | | | 88.42 187 | 67.04 109 | | | 78.62 67 | | 91.83 141 | | 97.37 72 | 76.57 133 | | |
|
TEST9 | | | | | | 94.18 46 | 67.28 100 | 94.16 56 | 93.51 78 | 71.75 193 | 85.52 48 | 95.33 47 | 68.01 44 | 97.27 82 | | | |
|
test_8 | | | | | | 94.19 45 | 67.19 103 | 94.15 59 | 93.42 85 | 71.87 186 | 85.38 51 | 95.35 46 | 68.19 41 | 96.95 102 | | | |
|
agg_prior | | | | | | 94.16 50 | 66.97 111 | | 93.31 88 | | 84.49 59 | | | 96.75 111 | | | |
|
test_prior4 | | | | | | | 67.18 105 | 93.92 75 | | | | | | | | | |
|
test_prior | | | | | 86.42 69 | 94.71 39 | 67.35 98 | | 93.10 100 | | | | | 96.84 107 | | | 95.05 76 |
|
旧先验2 | | | | | | | | 92.00 152 | | 59.37 317 | 87.54 29 | | | 93.47 233 | 75.39 139 | | |
|
新几何2 | | | | | | | | 91.41 175 | | | | | | | | | |
|
无先验 | | | | | | | | 92.71 120 | 92.61 119 | 62.03 298 | | | | 97.01 93 | 66.63 215 | | 93.97 121 |
|
原ACMM2 | | | | | | | | 92.01 149 | | | | | | | | | |
|
testdata2 | | | | | | | | | | | | | | 96.09 128 | 61.26 259 | | |
|
segment_acmp | | | | | | | | | | | | | 65.94 64 | | | | |
|
testdata1 | | | | | | | | 89.21 247 | | 77.55 84 | | | | | | | |
|
plane_prior7 | | | | | | 86.94 219 | 61.51 240 | | | | | | | | | | |
|
plane_prior6 | | | | | | 87.23 214 | 62.32 226 | | | | | | 50.66 228 | | | | |
|
plane_prior4 | | | | | | | | | | | | 89.14 179 | | | | | |
|
plane_prior3 | | | | | | | 61.95 233 | | | 79.09 59 | 72.53 179 | | | | | | |
|
plane_prior2 | | | | | | | | 93.13 103 | | 78.81 64 | | | | | | | |
|
plane_prior1 | | | | | | 87.15 216 | | | | | | | | | | | |
|
n2 | | | | | | | | | 0.00 386 | | | | | | | | |
|
nn | | | | | | | | | 0.00 386 | | | | | | | | |
|
door-mid | | | | | | | | | 66.01 367 | | | | | | | | |
|
test11 | | | | | | | | | 93.01 102 | | | | | | | | |
|
door | | | | | | | | | 66.57 366 | | | | | | | | |
|
HQP5-MVS | | | | | | | 63.66 200 | | | | | | | | | | |
|
HQP-NCC | | | | | | 87.54 208 | | 94.06 64 | | 79.80 45 | 74.18 159 | | | | | | |
|
ACMP_Plane | | | | | | 87.54 208 | | 94.06 64 | | 79.80 45 | 74.18 159 | | | | | | |
|
BP-MVS | | | | | | | | | | | | | | | 77.63 128 | | |
|
HQP4-MVS | | | | | | | | | | | 74.18 159 | | | 95.61 151 | | | 88.63 217 |
|
HQP2-MVS | | | | | | | | | | | | | 51.63 221 | | | | |
|
NP-MVS | | | | | | 87.41 211 | 63.04 210 | | | | | 90.30 165 | | | | | |
|
MDTV_nov1_ep13_2view | | | | | | | 59.90 269 | 80.13 324 | | 67.65 255 | 72.79 174 | | 54.33 197 | | 59.83 267 | | 92.58 161 |
|
Test By Simon | | | | | | | | | | | | | 54.21 198 | | | | |
|