This table lists the benchmark results for the high-res multi-view scenario. The following metrics are evaluated:

(*) For exact definitions, detailing how potentially incomplete ground truth is taken into account, see our paper.

The datasets are grouped into different categories, and result averages are computed for a category and method if results of the method are available for all datasets within the category. Note that the category "all" includes both the high-res multi-view and the low-res many-view scenarios.

Methods with suffix _ROB may participate in the Robust Vision Challenge.

Click a dataset result cell to show a visualization of the reconstruction. For training datasets, ground truth and accuracy / completeness visualizations are also available. The visualizations may not work with mobile browsers.




Method Infoallhigh-res
multi-view
indooroutdoorbotani.boulde.bridgedoorexhibi.lectur.living.loungeobserv.old co.statueterrac.
sort bysort bysort bysort bysort bysort bysort bysort bysort bysort bysort bysort bysort bysort bysorted bysort by
MSP-MVS90.38 591.87 185.88 8792.83 7764.03 19093.06 11394.33 5482.19 3093.65 396.15 3785.89 197.19 8491.02 3597.75 196.43 29
Zhenlong Yuan, Cong Liu, Fei Shen, Zhaoxin Li, Jingguo luo, Tianlu Mao and Zhaoqi Wang: MSP-MVS: Multi-granularity Segmentation Prior Guided Multi-View Stereo. AAAI2025
DPM-MVS90.70 390.52 891.24 189.68 15276.68 297.29 295.35 1582.87 2291.58 1397.22 379.93 599.10 983.12 9697.64 297.94 1
OPU-MVS89.97 397.52 373.15 1296.89 697.00 983.82 299.15 295.72 597.63 397.62 2
DVP-MVS++90.53 491.09 588.87 1697.31 469.91 4393.96 7194.37 5272.48 18392.07 996.85 1683.82 299.15 291.53 3197.42 497.55 4
PC_three_145280.91 4894.07 296.83 1883.57 499.12 595.70 797.42 497.55 4
HPM-MVS++copyleft89.37 1489.95 1387.64 3495.10 3068.23 8495.24 3494.49 4482.43 2788.90 3396.35 2971.89 3498.63 2688.76 4996.40 696.06 39
SMA-MVScopyleft88.14 1788.29 2187.67 3393.21 6868.72 7093.85 7894.03 6274.18 14691.74 1296.67 2165.61 7098.42 3389.24 4596.08 795.88 46
Yufeng Yin; Xiaoyan Liu; Zichao Zhang: SMA-MVS: Segmentation-Guided Multi-Scale Anchor Deformation Patch Multi-View Stereo. IEEE Transactions on Circuits and Systems for Video Technology
DELS-MVS90.05 790.09 1189.94 493.14 7173.88 797.01 594.40 5088.32 485.71 5494.91 7174.11 1998.91 1787.26 6295.94 897.03 13
Christian Sormann, Emanuele Santellani, Mattia Rossi, Andreas Kuhn, Friedrich Fraundorfer: DELS-MVS: Deep Epipolar Line Search for Multi-View Stereo. Winter Conference on Applications of Computer Vision (WACV), 2023
MCST-MVS91.08 191.46 389.94 497.66 273.37 897.13 395.58 1189.33 285.77 5396.26 3272.84 2699.38 192.64 1995.93 997.08 12
iter_conf05_1186.99 3586.27 4389.15 1393.74 5272.45 1397.56 187.04 30888.32 492.60 596.57 2332.61 34797.45 6692.21 2495.80 1097.53 6
CNVR-MVS90.32 690.89 788.61 2296.76 870.65 3296.47 1494.83 3084.83 1389.07 3296.80 1970.86 3699.06 1592.64 1995.71 1196.12 38
PHI-MVS86.83 3986.85 4086.78 6193.47 6265.55 15195.39 3195.10 2271.77 20985.69 5596.52 2462.07 11798.77 2286.06 7395.60 1296.03 41
DeepPCF-MVS81.17 189.72 1091.38 484.72 13193.00 7458.16 30396.72 994.41 4886.50 1090.25 2297.83 175.46 1498.67 2592.78 1895.49 1397.32 8
SED-MVS89.94 990.36 1088.70 1896.45 1269.38 5496.89 694.44 4671.65 21392.11 797.21 476.79 999.11 692.34 2195.36 1497.62 2
IU-MVS96.46 1169.91 4395.18 2080.75 4995.28 192.34 2195.36 1496.47 28
test_241102_TWO94.41 4871.65 21392.07 997.21 474.58 1799.11 692.34 2195.36 1496.59 19
MM90.87 291.52 288.92 1592.12 9671.10 2897.02 496.04 688.70 391.57 1496.19 3570.12 4098.91 1796.83 195.06 1796.76 15
test_0728_THIRD72.48 18390.55 2096.93 1176.24 1199.08 1191.53 3194.99 1896.43 29
test9_res89.41 4194.96 1995.29 67
ACMMP_NAP86.05 5185.80 5686.80 6091.58 11467.53 10291.79 17093.49 8374.93 13784.61 6595.30 5559.42 14597.92 4186.13 7194.92 2094.94 84
DPE-MVScopyleft88.77 1689.21 1687.45 4396.26 2067.56 10094.17 5894.15 5968.77 26390.74 1897.27 276.09 1298.49 2990.58 3994.91 2196.30 32
Kehua Chen, Zhenlong Yuan, Tianlu Mao, Zhaoqi Wang: Dual-Level Precision Edges Guided Multi-View Stereo with Accurate Planarization. AAAI2025
DVP-MVScopyleft89.41 1389.73 1488.45 2596.40 1569.99 3996.64 1094.52 4271.92 19990.55 2096.93 1173.77 2199.08 1191.91 2994.90 2296.29 33
Zhenlong Yuan, Jinguo Luo, Fei Shen, Zhaoxin Li, Cong Liu, Tianlu Mao, Zhaoqi Wang: DVP-MVS: Synergize Depth-Edge and Visibility Prior for Multi-View Stereo. AAAI2025
test_0728_SECOND88.70 1896.45 1270.43 3596.64 1094.37 5299.15 291.91 2994.90 2296.51 24
train_agg87.21 3287.42 3186.60 6694.18 4167.28 10794.16 5993.51 8071.87 20485.52 5695.33 5368.19 4897.27 8289.09 4694.90 2295.25 73
DeepC-MVS_fast79.48 287.95 2188.00 2487.79 3195.86 2768.32 7895.74 2294.11 6083.82 1783.49 7596.19 3564.53 8498.44 3183.42 9594.88 2596.61 18
Andreas Kuhn, Christian Sormann, Mattia Rossi, Oliver Erdler, Friedrich Fraundorfer: DeepC-MVS: Deep Confidence Prediction for Multi-View Stereo Reconstruction. 3DV 2020
MSC_two_6792asdad89.60 897.31 473.22 1095.05 2699.07 1392.01 2694.77 2696.51 24
No_MVS89.60 897.31 473.22 1095.05 2699.07 1392.01 2694.77 2696.51 24
TSAR-MVS + MP.88.11 1988.64 1786.54 7091.73 11068.04 8890.36 22693.55 7982.89 2191.29 1692.89 12272.27 3196.03 14187.99 5394.77 2695.54 55
Zhenlong Yuan, Jiakai Cao, Zhaoqi Wang, Zhaoxin Li: TSAR-MVS: Textureless-aware Segmentation and Correlative Refinement Guided Multi-View Stereo. Pattern Recognition
test_prior295.10 3975.40 13185.25 6295.61 4767.94 5187.47 5994.77 26
agg_prior286.41 6994.75 3095.33 63
MVS_030490.01 890.50 988.53 2390.14 14370.94 2996.47 1495.72 1087.33 689.60 2996.26 3268.44 4598.74 2495.82 494.72 3195.90 45
MVS84.66 7582.86 10290.06 290.93 12874.56 687.91 27795.54 1368.55 26572.35 19994.71 7659.78 14198.90 1981.29 11294.69 3296.74 16
SF-MVS87.03 3487.09 3486.84 5792.70 8367.45 10593.64 9193.76 6970.78 23786.25 4796.44 2866.98 5797.79 4788.68 5094.56 3395.28 69
NCCC89.07 1589.46 1587.91 2896.60 1069.05 6296.38 1694.64 3984.42 1486.74 4596.20 3466.56 6298.76 2389.03 4894.56 3395.92 44
3Dnovator73.91 682.69 11680.82 13088.31 2689.57 15471.26 2392.60 13494.39 5178.84 8467.89 25692.48 13248.42 25898.52 2868.80 21294.40 3595.15 75
CDPH-MVS85.71 5985.46 6086.46 7294.75 3467.19 10993.89 7692.83 10870.90 23383.09 7895.28 5663.62 9697.36 7380.63 11594.18 3694.84 88
MG-MVS87.11 3386.27 4389.62 797.79 176.27 494.96 4494.49 4478.74 8783.87 7492.94 12064.34 8596.94 10575.19 15394.09 3795.66 50
9.1487.63 2793.86 4794.41 5394.18 5772.76 17886.21 4896.51 2566.64 6097.88 4490.08 4094.04 38
原ACMM184.42 14493.21 6864.27 18593.40 8865.39 28879.51 11492.50 12958.11 15896.69 11565.27 25093.96 3992.32 175
MSLP-MVS++86.27 4785.91 5487.35 4592.01 10068.97 6595.04 4192.70 11179.04 8281.50 8996.50 2658.98 15196.78 11383.49 9493.93 4096.29 33
CANet89.61 1289.99 1288.46 2494.39 3969.71 5096.53 1393.78 6686.89 889.68 2895.78 4265.94 6699.10 992.99 1693.91 4196.58 21
MP-MVS-pluss85.24 6685.13 6585.56 10091.42 11965.59 14991.54 18092.51 12174.56 14080.62 10095.64 4659.15 14997.00 9686.94 6693.80 4294.07 123
MP-MVS-pluss: MP-MVS-pluss. MP-MVS-pluss
MVP-Stereo77.12 21176.23 20379.79 26481.72 30166.34 13289.29 25390.88 19070.56 24162.01 31082.88 26949.34 24994.13 21765.55 24793.80 4278.88 364
Qingsong Yan: MVP-Stereo: A Parallel Multi-View Patchmatch Stereo Method with Dilation Matching for Photogrammetric Application.
GG-mvs-BLEND86.53 7191.91 10569.67 5275.02 36494.75 3378.67 12990.85 16477.91 794.56 20072.25 17793.74 4495.36 62
ZNCC-MVS85.33 6585.08 6686.06 8293.09 7365.65 14793.89 7693.41 8773.75 15779.94 10994.68 7760.61 13298.03 3882.63 9993.72 4594.52 106
CSCG86.87 3686.26 4588.72 1795.05 3170.79 3193.83 8395.33 1668.48 26777.63 13794.35 8973.04 2498.45 3084.92 8393.71 4696.92 14
test1287.09 5194.60 3668.86 6692.91 10582.67 8365.44 7197.55 6393.69 4794.84 88
PAPM85.89 5685.46 6087.18 4888.20 19572.42 1492.41 14292.77 10982.11 3180.34 10593.07 11768.27 4795.02 17978.39 13593.59 4894.09 121
SteuartSystems-ACMMP86.82 4086.90 3886.58 6890.42 13766.38 13096.09 1893.87 6477.73 9984.01 7395.66 4563.39 10197.94 4087.40 6093.55 4995.42 56
Skip Steuart: Steuart Systems R&D Blog.
APDe-MVScopyleft87.54 2687.84 2586.65 6496.07 2366.30 13394.84 4693.78 6669.35 25488.39 3496.34 3067.74 5397.66 5490.62 3893.44 5096.01 42
Zhaojie Zeng, Yuesong Wang, Tao Guan: Matching Ambiguity-Resilient Multi-View Stereo via Adaptive Patch Deformation. Pattern Recognition
CS-MVS-test86.14 5087.01 3583.52 16892.63 8559.36 29195.49 2891.92 14180.09 6085.46 5895.53 4961.82 12195.77 14986.77 6893.37 5195.41 57
PS-MVSNAJ88.14 1787.61 2889.71 692.06 9776.72 195.75 2193.26 9083.86 1689.55 3096.06 3853.55 21297.89 4391.10 3393.31 5294.54 104
MAR-MVS84.18 8683.43 8886.44 7396.25 2165.93 14294.28 5694.27 5674.41 14179.16 12095.61 4753.99 20798.88 2169.62 20193.26 5394.50 108
Zhenyu Xu, Yiguang Liu, Xuelei Shi, Ying Wang, Yunan Zheng: MARMVS: Matching Ambiguity Reduced Multiple View Stereo for Efficient Large Scale Scene Reconstruction. CVPR 2020
gg-mvs-nofinetune77.18 20974.31 23085.80 9291.42 11968.36 7771.78 36794.72 3449.61 36877.12 14445.92 39177.41 893.98 22967.62 22293.16 5495.05 79
ZD-MVS96.63 965.50 15393.50 8270.74 23885.26 6195.19 6464.92 7897.29 7887.51 5893.01 55
APD-MVScopyleft85.93 5485.99 5285.76 9495.98 2665.21 15893.59 9492.58 11966.54 28086.17 4995.88 4163.83 9197.00 9686.39 7092.94 5695.06 78
Yuesong Wang, Zhaojie Zeng and etc.: Adaptive Patch Deformation for Textureless-Resilient Multi-View Stereo. CVPR2023
新几何184.73 13092.32 9064.28 18491.46 16759.56 33579.77 11192.90 12156.95 17296.57 11963.40 26092.91 5793.34 145
DeepC-MVS77.85 385.52 6385.24 6386.37 7688.80 17766.64 12492.15 14993.68 7481.07 4676.91 14793.64 10762.59 11298.44 3185.50 7592.84 5894.03 125
Andreas Kuhn, Christian Sormann, Mattia Rossi, Oliver Erdler, Friedrich Fraundorfer: DeepC-MVS: Deep Confidence Prediction for Multi-View Stereo Reconstruction. 3DV 2020
xiu_mvs_v2_base87.92 2287.38 3289.55 1191.41 12176.43 395.74 2293.12 9883.53 1989.55 3095.95 4053.45 21697.68 5091.07 3492.62 5994.54 104
MP-MVScopyleft85.02 6984.97 6885.17 11592.60 8664.27 18593.24 10792.27 12673.13 16879.63 11394.43 8361.90 11897.17 8585.00 8192.56 6094.06 124
Rongxuan Tan, Qing Wang, et al.: MP-MVS: Multi-Scale Windows PatchMatch and Planar Prior Multi-View Stereo.
MTAPA83.91 9183.38 9285.50 10191.89 10665.16 16081.75 32592.23 12775.32 13280.53 10295.21 6356.06 18497.16 8784.86 8492.55 6194.18 115
GST-MVS84.63 7684.29 7685.66 9892.82 7965.27 15693.04 11593.13 9773.20 16678.89 12294.18 9659.41 14697.85 4581.45 10892.48 6293.86 133
HFP-MVS84.73 7484.40 7585.72 9693.75 5165.01 16493.50 9993.19 9472.19 19379.22 11994.93 6959.04 15097.67 5181.55 10692.21 6394.49 109
ACMMPR84.37 7884.06 7785.28 11093.56 5864.37 18093.50 9993.15 9672.19 19378.85 12794.86 7256.69 17697.45 6681.55 10692.20 6494.02 126
MS-PatchMatch77.90 20176.50 19982.12 20685.99 24169.95 4291.75 17592.70 11173.97 15162.58 30784.44 25541.11 30295.78 14763.76 25992.17 6580.62 350
region2R84.36 7984.03 7885.36 10793.54 5964.31 18393.43 10492.95 10472.16 19678.86 12694.84 7356.97 17197.53 6481.38 11092.11 6694.24 113
CS-MVS85.80 5786.65 4183.27 17692.00 10158.92 29695.31 3291.86 14679.97 6184.82 6495.40 5162.26 11595.51 16786.11 7292.08 6795.37 60
patch_mono-289.71 1190.99 685.85 9096.04 2463.70 20095.04 4195.19 1986.74 991.53 1595.15 6573.86 2097.58 5993.38 1492.00 6896.28 35
dcpmvs_287.37 3087.55 2986.85 5695.04 3268.20 8590.36 22690.66 19679.37 7281.20 9193.67 10674.73 1596.55 12190.88 3692.00 6895.82 47
旧先验191.94 10260.74 26891.50 16594.36 8565.23 7391.84 7094.55 102
MVSFormer83.75 9682.88 10186.37 7689.24 16771.18 2589.07 25990.69 19365.80 28587.13 4194.34 9064.99 7592.67 26772.83 16991.80 7195.27 70
lupinMVS87.74 2487.77 2687.63 3889.24 16771.18 2596.57 1292.90 10682.70 2587.13 4195.27 5864.99 7595.80 14689.34 4391.80 7195.93 43
EPNet87.84 2388.38 1986.23 8093.30 6566.05 13795.26 3394.84 2987.09 788.06 3594.53 8066.79 5997.34 7583.89 9291.68 7395.29 67
Wanjuan Su, Wenbing Tao: Efficient Edge-Preserving Multi-View Stereo Network for Depth Estimation. AAAI 2023
3Dnovator+73.60 782.10 12580.60 13786.60 6690.89 13066.80 12195.20 3593.44 8574.05 14867.42 26292.49 13149.46 24897.65 5570.80 19091.68 7395.33 63
XVS83.87 9283.47 8685.05 11693.22 6663.78 19492.92 11992.66 11473.99 14978.18 13194.31 9255.25 19097.41 7079.16 12691.58 7593.95 128
X-MVStestdata76.86 21474.13 23485.05 11693.22 6663.78 19492.92 11992.66 11473.99 14978.18 13110.19 40655.25 19097.41 7079.16 12691.58 7593.95 128
SD-MVS87.49 2787.49 3087.50 4293.60 5668.82 6893.90 7592.63 11776.86 11187.90 3695.76 4366.17 6397.63 5689.06 4791.48 7796.05 40
Zhenlong Yuan, Jiakai Cao, Zhaoxin Li, Hao Jiang and Zhaoqi Wang: SD-MVS: Segmentation-driven Deformation Multi-View Stereo with Spherical Refinement and EM optimization. AAAI2024
EC-MVSNet84.53 7785.04 6783.01 18089.34 15961.37 25594.42 5291.09 18277.91 9683.24 7694.20 9558.37 15495.40 16885.35 7691.41 7892.27 180
PGM-MVS83.25 10482.70 10584.92 12092.81 8164.07 18990.44 22292.20 13171.28 22577.23 14394.43 8355.17 19497.31 7779.33 12591.38 7993.37 144
PVSNet_Blended86.73 4186.86 3986.31 7993.76 4967.53 10296.33 1793.61 7682.34 2981.00 9693.08 11663.19 10597.29 7887.08 6491.38 7994.13 119
HPM-MVScopyleft83.25 10482.95 9984.17 15392.25 9262.88 22690.91 20791.86 14670.30 24377.12 14493.96 10156.75 17496.28 12982.04 10391.34 8193.34 145
Chunlin Ren, Qingshan Xu, Shikun Zhang, Jiaqi Yang: Hierarchical Prior Mining for Non-local Multi-View Stereo. ICCV 2023
EIA-MVS84.84 7284.88 6984.69 13391.30 12262.36 23493.85 7892.04 13679.45 6979.33 11894.28 9362.42 11396.35 12780.05 11991.25 8295.38 59
MVS_111021_HR86.19 4985.80 5687.37 4493.17 7069.79 4793.99 7093.76 6979.08 8078.88 12593.99 10062.25 11698.15 3685.93 7491.15 8394.15 118
test22289.77 15061.60 25189.55 24789.42 24456.83 34877.28 14292.43 13352.76 22091.14 8493.09 153
jason86.40 4486.17 4887.11 5086.16 23970.54 3495.71 2592.19 13282.00 3284.58 6694.34 9061.86 11995.53 16687.76 5590.89 8595.27 70
jason: jason.
mPP-MVS82.96 11082.44 11084.52 14192.83 7762.92 22492.76 12391.85 14871.52 22175.61 15994.24 9453.48 21596.99 9978.97 12990.73 8693.64 139
CP-MVS83.71 9783.40 9184.65 13593.14 7163.84 19294.59 5092.28 12571.03 23177.41 14094.92 7055.21 19396.19 13181.32 11190.70 8793.91 130
OpenMVScopyleft70.45 1178.54 18975.92 20886.41 7585.93 24571.68 1992.74 12492.51 12166.49 28164.56 28691.96 14343.88 29298.10 3754.61 30390.65 8889.44 227
PAPM_NR82.97 10981.84 11786.37 7694.10 4466.76 12287.66 28192.84 10769.96 24774.07 17693.57 10963.10 10897.50 6570.66 19390.58 8994.85 85
testdata81.34 22389.02 17157.72 30789.84 22858.65 33985.32 6094.09 9757.03 16793.28 24569.34 20490.56 9093.03 156
Vis-MVSNetpermissive80.92 14379.98 14683.74 16188.48 18261.80 24593.44 10388.26 29373.96 15277.73 13591.76 14849.94 24494.76 18765.84 24290.37 9194.65 98
Jingyang Zhang, Yao Yao, Shiwei Li, Zixin Luo, Tian Fang: Visibility-aware Multiview Stereo Network. BMVC 2020
CHOSEN 1792x268884.98 7183.45 8789.57 1089.94 14775.14 592.07 15592.32 12481.87 3375.68 15688.27 20260.18 13598.60 2780.46 11790.27 9294.96 82
test_fmvsm_n_192087.69 2588.50 1885.27 11187.05 22363.55 20793.69 8891.08 18484.18 1590.17 2497.04 867.58 5497.99 3995.72 590.03 9394.26 112
ETV-MVS86.01 5286.11 4985.70 9790.21 14267.02 11693.43 10491.92 14181.21 4584.13 7294.07 9960.93 12995.63 15789.28 4489.81 9494.46 110
QAPM79.95 16277.39 18887.64 3489.63 15371.41 2193.30 10693.70 7365.34 29067.39 26491.75 14947.83 26598.96 1657.71 29389.81 9492.54 169
CANet_DTU84.09 8883.52 8285.81 9190.30 14066.82 11991.87 16689.01 26485.27 1186.09 5093.74 10447.71 26796.98 10077.90 13889.78 9693.65 138
API-MVS82.28 12080.53 13887.54 4196.13 2270.59 3393.63 9291.04 18865.72 28775.45 16192.83 12556.11 18398.89 2064.10 25689.75 9793.15 151
test250683.29 10282.92 10084.37 14788.39 18763.18 21792.01 15891.35 17077.66 10178.49 13091.42 15564.58 8395.09 17873.19 16589.23 9894.85 85
ECVR-MVScopyleft81.29 13580.38 14184.01 15788.39 18761.96 24392.56 13986.79 31277.66 10176.63 14891.42 15546.34 27695.24 17574.36 16289.23 9894.85 85
MVS_Test84.16 8783.20 9487.05 5391.56 11569.82 4689.99 24092.05 13577.77 9882.84 7986.57 23063.93 9096.09 13574.91 15889.18 10095.25 73
PAPR85.15 6884.47 7387.18 4896.02 2568.29 7991.85 16893.00 10376.59 11879.03 12195.00 6661.59 12297.61 5878.16 13689.00 10195.63 51
TSAR-MVS + GP.87.96 2088.37 2086.70 6393.51 6165.32 15595.15 3793.84 6578.17 9285.93 5294.80 7475.80 1398.21 3489.38 4288.78 10296.59 19
SR-MVS82.81 11282.58 10783.50 17193.35 6361.16 25892.23 14791.28 17464.48 29481.27 9095.28 5653.71 21195.86 14582.87 9788.77 10393.49 142
test111180.84 14480.02 14383.33 17487.87 20360.76 26692.62 13286.86 31177.86 9775.73 15591.39 15746.35 27594.70 19372.79 17188.68 10494.52 106
fmvsm_l_conf0.5_n_a87.44 2988.15 2385.30 10987.10 22164.19 18794.41 5388.14 29480.24 5992.54 696.97 1069.52 4397.17 8595.89 288.51 10594.56 101
HPM-MVS_fast80.25 15579.55 15482.33 19691.55 11659.95 28191.32 19489.16 25565.23 29174.71 16893.07 11747.81 26695.74 15074.87 16088.23 10691.31 199
PVSNet_Blended_VisFu83.97 9083.50 8485.39 10590.02 14566.59 12793.77 8591.73 15277.43 10777.08 14689.81 18463.77 9396.97 10279.67 12288.21 10792.60 167
Vis-MVSNet (Re-imp)79.24 17279.57 15178.24 28788.46 18352.29 34290.41 22489.12 25874.24 14569.13 23391.91 14665.77 6890.09 31959.00 28988.09 10892.33 174
fmvsm_l_conf0.5_n87.49 2788.19 2285.39 10586.95 22464.37 18094.30 5588.45 28580.51 5192.70 496.86 1569.98 4197.15 8895.83 388.08 10994.65 98
APD-MVS_3200maxsize81.64 13181.32 12282.59 19092.36 8958.74 29891.39 18791.01 18963.35 30379.72 11294.62 7951.82 22696.14 13379.71 12187.93 11092.89 162
Effi-MVS+83.82 9382.76 10386.99 5589.56 15569.40 5391.35 19286.12 31972.59 18083.22 7792.81 12659.60 14396.01 14381.76 10587.80 11195.56 54
casdiffmvs_mvgpermissive85.66 6185.18 6487.09 5188.22 19469.35 5793.74 8791.89 14481.47 3780.10 10791.45 15464.80 8096.35 12787.23 6387.69 11295.58 53
Fangjinhua Wang, Qingshan Xu, Yew-Soon Ong, Marc Pollefeys: Lightweight and Accurate Multi-View Stereo With Confidence-Aware Diffusion Model. IEEE T-PAMI 2025
131480.70 14678.95 16385.94 8687.77 20867.56 10087.91 27792.55 12072.17 19567.44 26193.09 11550.27 24197.04 9471.68 18587.64 11393.23 149
test_fmvsmconf_n86.58 4387.17 3384.82 12485.28 25462.55 23194.26 5789.78 22983.81 1887.78 3796.33 3165.33 7296.98 10094.40 1187.55 11494.95 83
PMMVS81.98 12782.04 11481.78 21389.76 15156.17 32391.13 20390.69 19377.96 9480.09 10893.57 10946.33 27794.99 18181.41 10987.46 11594.17 116
casdiffmvspermissive85.37 6484.87 7086.84 5788.25 19269.07 6193.04 11591.76 15181.27 4480.84 9892.07 14264.23 8696.06 13984.98 8287.43 11695.39 58
Fangjinhua Wang, Qingshan Xu, Yew-Soon Ong, Marc Pollefeys: Lightweight and Accurate Multi-View Stereo With Confidence-Aware Diffusion Model. IEEE T-PAMI 2025
test_fmvsmconf0.1_n85.71 5986.08 5184.62 13880.83 30762.33 23593.84 8188.81 27283.50 2087.00 4496.01 3963.36 10296.93 10794.04 1287.29 11794.61 100
UGNet79.87 16378.68 16583.45 17389.96 14661.51 25292.13 15090.79 19176.83 11378.85 12786.33 23438.16 31796.17 13267.93 21987.17 11892.67 165
Wanjuan Su, Qingshan Xu, Wenbing Tao: Uncertainty-guided Multi-view Stereo Network for Depth Estimation. IEEE Transactions on Circuits and Systems for Video Technology, 2022
MVS_111021_LR82.02 12681.52 12083.51 17088.42 18562.88 22689.77 24488.93 26876.78 11475.55 16093.10 11450.31 24095.38 17083.82 9387.02 11992.26 181
test_fmvsmvis_n_192083.80 9483.48 8584.77 12882.51 29363.72 19891.37 19083.99 33981.42 4177.68 13695.74 4458.37 15497.58 5993.38 1486.87 12093.00 158
xiu_mvs_v1_base_debu82.16 12281.12 12485.26 11286.42 23268.72 7092.59 13690.44 20373.12 16984.20 6994.36 8538.04 31995.73 15184.12 8986.81 12191.33 195
xiu_mvs_v1_base82.16 12281.12 12485.26 11286.42 23268.72 7092.59 13690.44 20373.12 16984.20 6994.36 8538.04 31995.73 15184.12 8986.81 12191.33 195
xiu_mvs_v1_base_debi82.16 12281.12 12485.26 11286.42 23268.72 7092.59 13690.44 20373.12 16984.20 6994.36 8538.04 31995.73 15184.12 8986.81 12191.33 195
SR-MVS-dyc-post81.06 14080.70 13382.15 20492.02 9858.56 30090.90 20890.45 20062.76 31078.89 12294.46 8151.26 23495.61 15978.77 13286.77 12492.28 177
RE-MVS-def80.48 13992.02 9858.56 30090.90 20890.45 20062.76 31078.89 12294.46 8149.30 25078.77 13286.77 12492.28 177
baseline85.01 7084.44 7486.71 6288.33 18968.73 6990.24 23191.82 15081.05 4781.18 9292.50 12963.69 9496.08 13884.45 8786.71 12695.32 65
TESTMET0.1,182.41 11881.98 11683.72 16488.08 19663.74 19692.70 12793.77 6879.30 7377.61 13887.57 21758.19 15794.08 22073.91 16486.68 12793.33 147
IS-MVSNet80.14 15779.41 15682.33 19687.91 20160.08 28091.97 16288.27 29172.90 17671.44 21091.73 15061.44 12393.66 23962.47 27086.53 12893.24 148
CPTT-MVS79.59 16679.16 16180.89 23891.54 11759.80 28392.10 15288.54 28460.42 32872.96 18593.28 11348.27 25992.80 26178.89 13186.50 12990.06 214
BH-w/o80.49 15079.30 15984.05 15690.83 13264.36 18293.60 9389.42 24474.35 14369.09 23490.15 17955.23 19295.61 15964.61 25386.43 13092.17 183
PVSNet73.49 880.05 15978.63 16684.31 14990.92 12964.97 16592.47 14091.05 18779.18 7672.43 19790.51 16937.05 33194.06 22268.06 21686.00 13193.90 132
test_fmvsmconf0.01_n83.70 9883.52 8284.25 15275.26 35861.72 24992.17 14887.24 30782.36 2884.91 6395.41 5055.60 18896.83 11292.85 1785.87 13294.21 114
mvs_anonymous81.36 13479.99 14585.46 10290.39 13968.40 7686.88 29290.61 19874.41 14170.31 22284.67 25163.79 9292.32 28273.13 16685.70 13395.67 49
DP-MVS Recon82.73 11381.65 11985.98 8497.31 467.06 11395.15 3791.99 13869.08 26076.50 15193.89 10254.48 20298.20 3570.76 19185.66 13492.69 164
BH-RMVSNet79.46 17077.65 18084.89 12191.68 11265.66 14693.55 9588.09 29672.93 17373.37 18291.12 16146.20 27996.12 13456.28 29885.61 13592.91 160
diffmvspermissive84.28 8183.83 7985.61 9987.40 21468.02 8990.88 21089.24 25080.54 5081.64 8892.52 12859.83 14094.52 20387.32 6185.11 13694.29 111
Fangjinhua Wang, Qingshan Xu, Yew-Soon Ong, Marc Pollefeys: Lightweight and Accurate Multi-View Stereo With Confidence-Aware Diffusion Model. IEEE T-PAMI 2025
Fast-Effi-MVS+81.14 13780.01 14484.51 14290.24 14165.86 14394.12 6389.15 25673.81 15675.37 16288.26 20357.26 16494.53 20266.97 23084.92 13793.15 151
LFMVS84.34 8082.73 10489.18 1294.76 3373.25 994.99 4391.89 14471.90 20182.16 8593.49 11147.98 26397.05 9182.55 10084.82 13897.25 9
BH-untuned78.68 18577.08 19183.48 17289.84 14863.74 19692.70 12788.59 28271.57 21966.83 27188.65 19551.75 22895.39 16959.03 28884.77 13991.32 198
test-LLR80.10 15879.56 15281.72 21586.93 22761.17 25692.70 12791.54 16271.51 22275.62 15786.94 22653.83 20892.38 27872.21 17884.76 14091.60 189
test-mter79.96 16179.38 15881.72 21586.93 22761.17 25692.70 12791.54 16273.85 15475.62 15786.94 22649.84 24692.38 27872.21 17884.76 14091.60 189
sasdasda86.85 3786.25 4688.66 2091.80 10871.92 1693.54 9691.71 15480.26 5687.55 3895.25 6063.59 9896.93 10788.18 5184.34 14297.11 10
canonicalmvs86.85 3786.25 4688.66 2091.80 10871.92 1693.54 9691.71 15480.26 5687.55 3895.25 6063.59 9896.93 10788.18 5184.34 14297.11 10
alignmvs87.28 3186.97 3688.24 2791.30 12271.14 2795.61 2693.56 7879.30 7387.07 4395.25 6068.43 4696.93 10787.87 5484.33 14496.65 17
VNet86.20 4885.65 5887.84 3093.92 4669.99 3995.73 2495.94 778.43 8986.00 5193.07 11758.22 15697.00 9685.22 7784.33 14496.52 23
UA-Net80.02 16079.65 15081.11 22989.33 16157.72 30786.33 29589.00 26777.44 10681.01 9589.15 19159.33 14795.90 14461.01 27784.28 14689.73 221
LCM-MVSNet-Re72.93 26571.84 26476.18 30988.49 18148.02 36280.07 34370.17 37973.96 15252.25 35280.09 31349.98 24388.24 33167.35 22384.23 14792.28 177
ACMMPcopyleft81.49 13280.67 13483.93 15891.71 11162.90 22592.13 15092.22 13071.79 20871.68 20793.49 11150.32 23996.96 10378.47 13484.22 14891.93 187
Qingshan Xu, Weihang Kong, Wenbing Tao, Marc Pollefeys: Multi-Scale Geometric Consistency Guided and Planar Prior Assisted Multi-View Stereo. IEEE Transactions on Pattern Analysis and Machine Intelligence
114514_t79.17 17377.67 17983.68 16595.32 2965.53 15292.85 12191.60 16163.49 30167.92 25390.63 16746.65 27295.72 15567.01 22983.54 14989.79 219
testing1186.71 4286.44 4287.55 4093.54 5971.35 2293.65 9095.58 1181.36 4380.69 9992.21 14072.30 3096.46 12685.18 7983.43 15094.82 91
test_vis1_n_192081.66 13082.01 11580.64 24082.24 29655.09 33194.76 4786.87 31081.67 3684.40 6894.63 7838.17 31694.67 19491.98 2883.34 15192.16 184
testing22285.18 6784.69 7286.63 6592.91 7669.91 4392.61 13395.80 980.31 5580.38 10492.27 13768.73 4495.19 17675.94 14883.27 15294.81 92
EPMVS78.49 19075.98 20786.02 8391.21 12469.68 5180.23 34091.20 17575.25 13372.48 19578.11 32754.65 19893.69 23857.66 29483.04 15394.69 94
AdaColmapbinary78.94 17877.00 19484.76 12996.34 1765.86 14392.66 13187.97 30062.18 31570.56 21692.37 13543.53 29397.35 7464.50 25482.86 15491.05 204
CDS-MVSNet81.43 13380.74 13283.52 16886.26 23664.45 17492.09 15390.65 19775.83 12573.95 17889.81 18463.97 8992.91 25771.27 18682.82 15593.20 150
Khang Truong Giang, Soohwan Song, Sungho Jo: Curvature-guided dynamic scale networks for Multi-view Stereo. ICLR 2022
CHOSEN 280x42077.35 20776.95 19578.55 28287.07 22262.68 23069.71 37382.95 34668.80 26271.48 20987.27 22366.03 6584.00 36076.47 14582.81 15688.95 228
UWE-MVS80.81 14581.01 12980.20 25089.33 16157.05 31791.91 16494.71 3575.67 12675.01 16589.37 18863.13 10791.44 30467.19 22782.80 15792.12 185
ETVMVS84.22 8583.71 8085.76 9492.58 8768.25 8392.45 14195.53 1479.54 6879.46 11591.64 15270.29 3994.18 21669.16 20782.76 15894.84 88
PCF-MVS73.15 979.29 17177.63 18184.29 15086.06 24065.96 14187.03 28891.10 18169.86 24969.79 23090.64 16557.54 16396.59 11764.37 25582.29 15990.32 211
Andreas Kuhn, Shan Lin, Oliver Erdler: Plane Completion and Filtering for Multi-View Stereo Reconstruction. GCPR 2019
fmvsm_s_conf0.5_n86.39 4586.91 3784.82 12487.36 21663.54 20894.74 4890.02 22382.52 2690.14 2596.92 1362.93 11097.84 4695.28 882.26 16093.07 155
WTY-MVS86.32 4685.81 5587.85 2992.82 7969.37 5695.20 3595.25 1782.71 2481.91 8694.73 7567.93 5297.63 5679.55 12382.25 16196.54 22
testing9986.01 5285.47 5987.63 3893.62 5571.25 2493.47 10295.23 1880.42 5480.60 10191.95 14471.73 3596.50 12480.02 12082.22 16295.13 76
HY-MVS76.49 584.28 8183.36 9387.02 5492.22 9367.74 9584.65 30294.50 4379.15 7782.23 8487.93 21166.88 5896.94 10580.53 11682.20 16396.39 31
testing9185.93 5485.31 6287.78 3293.59 5771.47 2093.50 9995.08 2580.26 5680.53 10291.93 14570.43 3896.51 12380.32 11882.13 16495.37 60
VDD-MVS83.06 10781.81 11886.81 5990.86 13167.70 9695.40 3091.50 16575.46 12981.78 8792.34 13640.09 30597.13 8986.85 6782.04 16595.60 52
fmvsm_s_conf0.1_n85.61 6285.93 5384.68 13482.95 29163.48 21094.03 6989.46 24181.69 3589.86 2696.74 2061.85 12097.75 4994.74 982.01 16692.81 163
TAMVS80.37 15279.45 15583.13 17985.14 25763.37 21191.23 19890.76 19274.81 13972.65 19088.49 19660.63 13192.95 25269.41 20381.95 16793.08 154
test_yl84.28 8183.16 9587.64 3494.52 3769.24 5895.78 1995.09 2369.19 25781.09 9392.88 12357.00 16997.44 6881.11 11381.76 16896.23 36
DCV-MVSNet84.28 8183.16 9587.64 3494.52 3769.24 5895.78 1995.09 2369.19 25781.09 9392.88 12357.00 16997.44 6881.11 11381.76 16896.23 36
FA-MVS(test-final)79.12 17477.23 19084.81 12790.54 13563.98 19181.35 33191.71 15471.09 23074.85 16782.94 26852.85 21997.05 9167.97 21781.73 17093.41 143
thisisatest051583.41 10082.49 10986.16 8189.46 15868.26 8193.54 9694.70 3674.31 14475.75 15490.92 16272.62 2896.52 12269.64 19981.50 17193.71 136
baseline283.68 9983.42 9084.48 14387.37 21566.00 13990.06 23595.93 879.71 6669.08 23590.39 17277.92 696.28 12978.91 13081.38 17291.16 202
PatchmatchNetpermissive77.46 20574.63 22385.96 8589.55 15670.35 3679.97 34589.55 23972.23 19270.94 21276.91 33857.03 16792.79 26254.27 30581.17 17394.74 93
Fangjinhua Wang, Silvano Galliani, Christoph Vogel, Pablo Speciale, Marc Pollefeys: PatchmatchNet: Learned Multi-View Patchmatch Stereo.
VDDNet80.50 14978.26 17187.21 4786.19 23769.79 4794.48 5191.31 17160.42 32879.34 11790.91 16338.48 31496.56 12082.16 10181.05 17495.27 70
EPNet_dtu78.80 18279.26 16077.43 29588.06 19749.71 35591.96 16391.95 14077.67 10076.56 15091.28 15958.51 15390.20 31756.37 29780.95 17592.39 172
Wanjuan Su, Wenbing Tao: Efficient Edge-Preserving Multi-View Stereo Network for Depth Estimation. AAAI 2023
sss82.71 11582.38 11183.73 16389.25 16459.58 28692.24 14694.89 2877.96 9479.86 11092.38 13456.70 17597.05 9177.26 14180.86 17694.55 102
FE-MVS75.97 23173.02 24784.82 12489.78 14965.56 15077.44 35691.07 18564.55 29372.66 18979.85 31546.05 28196.69 11554.97 30280.82 17792.21 182
GeoE78.90 17977.43 18483.29 17588.95 17362.02 24192.31 14386.23 31770.24 24471.34 21189.27 18954.43 20394.04 22563.31 26280.81 17893.81 135
fmvsm_s_conf0.5_n_a85.75 5886.09 5084.72 13185.73 24863.58 20593.79 8489.32 24781.42 4190.21 2396.91 1462.41 11497.67 5194.48 1080.56 17992.90 161
TR-MVS78.77 18477.37 18982.95 18190.49 13660.88 26293.67 8990.07 21970.08 24674.51 17091.37 15845.69 28295.70 15660.12 28380.32 18092.29 176
fmvsm_s_conf0.1_n_a84.76 7384.84 7184.53 14080.23 31763.50 20992.79 12288.73 27680.46 5289.84 2796.65 2260.96 12897.57 6193.80 1380.14 18192.53 170
TAPA-MVS70.22 1274.94 24673.53 24279.17 27590.40 13852.07 34389.19 25789.61 23862.69 31270.07 22492.67 12748.89 25794.32 20738.26 36879.97 18291.12 203
Andrea Romanoni, Matteo Matteucci: TAPA-MVS: Textureless-Aware PAtchMatch Multi-View Stereo. ICCV 2019
test_cas_vis1_n_192080.45 15180.61 13679.97 25978.25 34357.01 31994.04 6888.33 28879.06 8182.81 8093.70 10538.65 31191.63 29690.82 3779.81 18391.27 201
cascas78.18 19475.77 21085.41 10487.14 22069.11 6092.96 11891.15 17966.71 27970.47 21786.07 23737.49 32596.48 12570.15 19679.80 18490.65 207
HyFIR lowres test81.03 14179.56 15285.43 10387.81 20668.11 8790.18 23290.01 22470.65 23972.95 18686.06 23863.61 9794.50 20475.01 15679.75 18593.67 137
WB-MVSnew77.14 21076.18 20580.01 25686.18 23863.24 21491.26 19694.11 6071.72 21173.52 18187.29 22245.14 28793.00 25056.98 29579.42 18683.80 311
LS3D69.17 29566.40 29977.50 29391.92 10456.12 32485.12 29980.37 35546.96 37456.50 33887.51 21837.25 32693.71 23732.52 38479.40 18782.68 331
EI-MVSNet-Vis-set83.77 9583.67 8184.06 15592.79 8263.56 20691.76 17394.81 3179.65 6777.87 13494.09 9763.35 10397.90 4279.35 12479.36 18890.74 206
CVMVSNet74.04 25474.27 23173.33 32885.33 25243.94 37889.53 24988.39 28654.33 35670.37 22090.13 18049.17 25384.05 35861.83 27479.36 18891.99 186
EPP-MVSNet81.79 12981.52 12082.61 18988.77 17860.21 27893.02 11793.66 7568.52 26672.90 18790.39 17272.19 3294.96 18274.93 15779.29 19092.67 165
CLD-MVS82.73 11382.35 11283.86 15987.90 20267.65 9895.45 2992.18 13385.06 1272.58 19292.27 13752.46 22395.78 14784.18 8879.06 19188.16 243
Zhaoxin Li, Wangmeng Zuo, Zhaoqi Wang, Lei Zhang: Confidence-based Large-scale Dense Multi-view Stereo. IEEE Transaction on Image Processing, 2020
HQP3-MVS91.70 15778.90 192
HQP-MVS81.14 13780.64 13582.64 18887.54 21063.66 20394.06 6491.70 15779.80 6374.18 17290.30 17451.63 23095.61 15977.63 13978.90 19288.63 233
plane_prior62.42 23293.85 7879.38 7178.80 194
thres20079.66 16578.33 16983.66 16792.54 8865.82 14593.06 11396.31 374.90 13873.30 18388.66 19459.67 14295.61 15947.84 33178.67 19589.56 224
ET-MVSNet_ETH3D84.01 8983.15 9786.58 6890.78 13370.89 3094.74 4894.62 4081.44 4058.19 32893.64 10773.64 2392.35 28182.66 9878.66 19696.50 27
HQP_MVS80.34 15379.75 14982.12 20686.94 22562.42 23293.13 11191.31 17178.81 8572.53 19389.14 19250.66 23795.55 16476.74 14278.53 19788.39 240
plane_prior591.31 17195.55 16476.74 14278.53 19788.39 240
EI-MVSNet-UG-set83.14 10682.96 9883.67 16692.28 9163.19 21691.38 18994.68 3779.22 7576.60 14993.75 10362.64 11197.76 4878.07 13778.01 19990.05 215
OMC-MVS78.67 18777.91 17880.95 23685.76 24757.40 31488.49 26888.67 27973.85 15472.43 19792.10 14149.29 25194.55 20172.73 17277.89 20090.91 205
1112_ss80.56 14879.83 14882.77 18488.65 17960.78 26492.29 14488.36 28772.58 18172.46 19694.95 6765.09 7493.42 24466.38 23677.71 20194.10 120
OPM-MVS79.00 17678.09 17381.73 21483.52 28363.83 19391.64 17990.30 21076.36 12171.97 20289.93 18346.30 27895.17 17775.10 15477.70 20286.19 276
Ray L. Khuboni, Hongjun Xu: Octagram Propagation Matching for Multi-Scale View Stereopsis (OPM-MVS).
PatchMatch-RL72.06 27569.98 27878.28 28589.51 15755.70 32783.49 30983.39 34461.24 32363.72 29582.76 27034.77 33993.03 24953.37 31077.59 20386.12 280
thres100view90078.37 19177.01 19382.46 19191.89 10663.21 21591.19 20296.33 172.28 19170.45 21987.89 21260.31 13395.32 17145.16 34277.58 20488.83 229
tfpn200view978.79 18377.43 18482.88 18292.21 9464.49 17192.05 15696.28 473.48 16371.75 20588.26 20360.07 13895.32 17145.16 34277.58 20488.83 229
thres40078.68 18577.43 18482.43 19292.21 9464.49 17192.05 15696.28 473.48 16371.75 20588.26 20360.07 13895.32 17145.16 34277.58 20487.48 249
CostFormer82.33 11981.15 12385.86 8989.01 17268.46 7582.39 32293.01 10175.59 12780.25 10681.57 28772.03 3394.96 18279.06 12877.48 20794.16 117
tpm279.80 16477.95 17785.34 10888.28 19068.26 8181.56 32891.42 16870.11 24577.59 13980.50 30567.40 5594.26 21367.34 22477.35 20893.51 141
Test_1112_low_res79.56 16778.60 16782.43 19288.24 19360.39 27592.09 15387.99 29872.10 19771.84 20387.42 21964.62 8293.04 24865.80 24377.30 20993.85 134
tpmrst80.57 14779.14 16284.84 12390.10 14468.28 8081.70 32689.72 23677.63 10375.96 15379.54 31964.94 7792.71 26475.43 15177.28 21093.55 140
bld_raw_dy_0_6482.84 11180.75 13189.09 1493.74 5272.16 1593.16 11077.36 35989.69 174.55 16996.48 2732.35 34997.56 6292.21 2477.24 21197.53 6
Anonymous20240521177.96 19875.33 21785.87 8893.73 5464.52 17094.85 4585.36 32562.52 31376.11 15290.18 17729.43 36197.29 7868.51 21477.24 21195.81 48
GA-MVS78.33 19376.23 20384.65 13583.65 28166.30 13391.44 18190.14 21776.01 12370.32 22184.02 25842.50 29794.72 19070.98 18877.00 21392.94 159
thisisatest053081.15 13680.07 14284.39 14688.26 19165.63 14891.40 18594.62 4071.27 22670.93 21389.18 19072.47 2996.04 14065.62 24576.89 21491.49 191
thres600view778.00 19676.66 19882.03 21191.93 10363.69 20191.30 19596.33 172.43 18670.46 21887.89 21260.31 13394.92 18542.64 35476.64 21587.48 249
PLCcopyleft68.80 1475.23 24273.68 24179.86 26292.93 7558.68 29990.64 21988.30 28960.90 32564.43 29090.53 16842.38 29894.57 19856.52 29676.54 21686.33 271
Jie Liao, Yanping Fu, Qingan Yan, Chunxia xiao: Pyramid Multi-View Stereo with Local Consistency. Pacific Graphics 2019
MIMVSNet71.64 27768.44 29081.23 22581.97 30064.44 17573.05 36688.80 27369.67 25164.59 28474.79 35032.79 34587.82 33553.99 30676.35 21791.42 193
test_fmvs174.07 25373.69 24075.22 31378.91 33547.34 36789.06 26174.69 36963.68 30079.41 11691.59 15324.36 37087.77 33785.22 7776.26 21890.55 210
MVS-HIRNet60.25 34155.55 34874.35 32184.37 27156.57 32271.64 36874.11 37034.44 38945.54 37542.24 39631.11 35789.81 32040.36 36276.10 21976.67 373
CNLPA74.31 25172.30 25980.32 24491.49 11861.66 25090.85 21180.72 35356.67 34963.85 29490.64 16546.75 27190.84 30753.79 30775.99 22088.47 239
ab-mvs80.18 15678.31 17085.80 9288.44 18465.49 15483.00 31992.67 11371.82 20777.36 14185.01 24654.50 19996.59 11776.35 14675.63 22195.32 65
test_fmvs1_n72.69 27271.92 26374.99 31671.15 37147.08 36987.34 28675.67 36463.48 30278.08 13391.17 16020.16 38187.87 33484.65 8575.57 22290.01 216
iter_conf0583.27 10382.70 10584.98 11993.32 6471.84 1894.16 5981.76 34982.74 2373.83 17988.40 19972.77 2794.61 19582.10 10275.21 22388.48 237
FIs79.47 16979.41 15679.67 26685.95 24259.40 28891.68 17793.94 6378.06 9368.96 23988.28 20166.61 6191.77 29366.20 23974.99 22487.82 245
SDMVSNet80.26 15478.88 16484.40 14589.25 16467.63 9985.35 29893.02 10076.77 11570.84 21487.12 22447.95 26496.09 13585.04 8074.55 22589.48 225
sd_testset77.08 21275.37 21582.20 20289.25 16462.11 24082.06 32389.09 26076.77 11570.84 21487.12 22441.43 30195.01 18067.23 22674.55 22589.48 225
CMPMVSbinary48.56 2166.77 31564.41 31673.84 32570.65 37450.31 35277.79 35585.73 32345.54 37844.76 37782.14 27835.40 33790.14 31863.18 26474.54 22781.07 345
M. Jancosek, T. Pajdla: Multi-View Reconstruction Preserving Weakly-Supported Surfaces. CVPR 2011
dmvs_re76.93 21375.36 21681.61 21787.78 20760.71 26980.00 34487.99 29879.42 7069.02 23789.47 18746.77 27094.32 20763.38 26174.45 22889.81 218
test_vis1_n71.63 27870.73 27474.31 32369.63 37747.29 36886.91 29072.11 37463.21 30675.18 16390.17 17820.40 37985.76 34984.59 8674.42 22989.87 217
XVG-OURS74.25 25272.46 25879.63 26778.45 34157.59 31180.33 33887.39 30363.86 29868.76 24389.62 18640.50 30491.72 29469.00 20974.25 23089.58 222
tpm cat175.30 24172.21 26084.58 13988.52 18067.77 9478.16 35488.02 29761.88 32068.45 24876.37 34260.65 13094.03 22753.77 30874.11 23191.93 187
XVG-OURS-SEG-HR74.70 24873.08 24679.57 26978.25 34357.33 31580.49 33687.32 30463.22 30568.76 24390.12 18244.89 28991.59 29770.55 19474.09 23289.79 219
FC-MVSNet-test77.99 19778.08 17477.70 29084.89 26255.51 32890.27 22993.75 7276.87 11066.80 27287.59 21665.71 6990.23 31662.89 26773.94 23387.37 252
PVSNet_BlendedMVS83.38 10183.43 8883.22 17793.76 4967.53 10294.06 6493.61 7679.13 7881.00 9685.14 24563.19 10597.29 7887.08 6473.91 23484.83 303
tttt051779.50 16878.53 16882.41 19587.22 21861.43 25489.75 24594.76 3269.29 25567.91 25488.06 21072.92 2595.63 15762.91 26673.90 23590.16 213
MDTV_nov1_ep1372.61 25589.06 17068.48 7480.33 33890.11 21871.84 20671.81 20475.92 34653.01 21893.92 23248.04 32873.38 236
SCA75.82 23472.76 25185.01 11886.63 22970.08 3881.06 33389.19 25371.60 21870.01 22577.09 33645.53 28390.25 31260.43 28073.27 23794.68 95
CR-MVSNet73.79 25870.82 27382.70 18683.15 28667.96 9070.25 37084.00 33773.67 16169.97 22772.41 35657.82 16089.48 32352.99 31173.13 23890.64 208
RPMNet70.42 28565.68 30484.63 13783.15 28667.96 9070.25 37090.45 20046.83 37669.97 22765.10 37556.48 18095.30 17435.79 37373.13 23890.64 208
Fast-Effi-MVS+-dtu75.04 24473.37 24480.07 25380.86 30659.52 28791.20 20185.38 32471.90 20165.20 27984.84 24941.46 30092.97 25166.50 23572.96 24087.73 246
mvsmamba76.85 21675.71 21280.25 24883.07 28859.16 29391.44 18180.64 35476.84 11267.95 25286.33 23446.17 28094.24 21476.06 14772.92 24187.36 253
LPG-MVS_test75.82 23474.58 22579.56 27084.31 27259.37 28990.44 22289.73 23469.49 25264.86 28188.42 19738.65 31194.30 20972.56 17472.76 24285.01 301
LGP-MVS_train79.56 27084.31 27259.37 28989.73 23469.49 25264.86 28188.42 19738.65 31194.30 20972.56 17472.76 24285.01 301
EG-PatchMatch MVS68.55 30165.41 30777.96 28978.69 33862.93 22289.86 24289.17 25460.55 32750.27 36077.73 33022.60 37594.06 22247.18 33472.65 24476.88 372
EI-MVSNet78.97 17778.22 17281.25 22485.33 25262.73 22989.53 24993.21 9172.39 18872.14 20090.13 18060.99 12694.72 19067.73 22172.49 24586.29 272
MVSTER82.47 11782.05 11383.74 16192.68 8469.01 6391.90 16593.21 9179.83 6272.14 20085.71 24274.72 1694.72 19075.72 14972.49 24587.50 248
Anonymous2024052976.84 21774.15 23384.88 12291.02 12664.95 16693.84 8191.09 18253.57 35773.00 18487.42 21935.91 33597.32 7669.14 20872.41 24792.36 173
D2MVS73.80 25772.02 26279.15 27779.15 33062.97 22088.58 26790.07 21972.94 17259.22 32278.30 32442.31 29992.70 26665.59 24672.00 24881.79 339
PS-MVSNAJss77.26 20876.31 20280.13 25280.64 31159.16 29390.63 22191.06 18672.80 17768.58 24684.57 25353.55 21293.96 23072.97 16771.96 24987.27 257
Effi-MVS+-dtu76.14 22475.28 21878.72 28183.22 28555.17 33089.87 24187.78 30175.42 13067.98 25181.43 28945.08 28892.52 27475.08 15571.63 25088.48 237
ACMMP++_ref71.63 250
ACMM69.62 1374.34 25072.73 25379.17 27584.25 27457.87 30590.36 22689.93 22563.17 30765.64 27686.04 23937.79 32394.10 21865.89 24171.52 25285.55 293
Qingshan Xu and Wenbing Tao: Multi-Scale Geometric Consistency Guided Multi-View Stereo. CVPR 2019
ACMP71.68 1075.58 23974.23 23279.62 26884.97 26159.64 28490.80 21389.07 26270.39 24262.95 30387.30 22138.28 31593.87 23472.89 16871.45 25385.36 297
Qingshan Xu and Wenbing Tao: Planar Prior Assisted PatchMatch Multi-View Stereo. AAAI 2020
dp75.01 24572.09 26183.76 16089.28 16366.22 13679.96 34689.75 23171.16 22767.80 25877.19 33551.81 22792.54 27350.39 31671.44 25492.51 171
tpm78.58 18877.03 19283.22 17785.94 24464.56 16983.21 31691.14 18078.31 9073.67 18079.68 31764.01 8892.09 28766.07 24071.26 25593.03 156
DP-MVS69.90 29066.48 29780.14 25195.36 2862.93 22289.56 24676.11 36250.27 36757.69 33485.23 24439.68 30695.73 15133.35 37871.05 25681.78 340
UniMVSNet_ETH3D72.74 26970.53 27679.36 27278.62 34056.64 32185.01 30089.20 25263.77 29964.84 28384.44 25534.05 34291.86 29163.94 25770.89 25789.57 223
jajsoiax73.05 26371.51 26877.67 29177.46 34954.83 33288.81 26390.04 22269.13 25962.85 30583.51 26331.16 35692.75 26370.83 18969.80 25885.43 296
ACMMP++69.72 259
mvs_tets72.71 27071.11 26977.52 29277.41 35054.52 33488.45 26989.76 23068.76 26462.70 30683.26 26629.49 36092.71 26470.51 19569.62 26085.34 298
tpmvs72.88 26769.76 28382.22 20190.98 12767.05 11478.22 35388.30 28963.10 30864.35 29174.98 34955.09 19594.27 21143.25 34869.57 26185.34 298
GBi-Net75.65 23673.83 23881.10 23088.85 17465.11 16190.01 23790.32 20670.84 23467.04 26780.25 31048.03 26091.54 29959.80 28569.34 26286.64 265
test175.65 23673.83 23881.10 23088.85 17465.11 16190.01 23790.32 20670.84 23467.04 26780.25 31048.03 26091.54 29959.80 28569.34 26286.64 265
FMVSNet377.73 20276.04 20682.80 18391.20 12568.99 6491.87 16691.99 13873.35 16567.04 26783.19 26756.62 17792.14 28459.80 28569.34 26287.28 256
Syy-MVS69.65 29269.52 28470.03 34787.87 20343.21 38088.07 27389.01 26472.91 17463.11 30088.10 20745.28 28685.54 35022.07 39369.23 26581.32 342
myMVS_eth3d72.58 27472.74 25272.10 34087.87 20349.45 35788.07 27389.01 26472.91 17463.11 30088.10 20763.63 9585.54 35032.73 38269.23 26581.32 342
MSDG69.54 29365.73 30380.96 23585.11 25963.71 19984.19 30483.28 34556.95 34654.50 34384.03 25731.50 35396.03 14142.87 35269.13 26783.14 323
JIA-IIPM66.06 31862.45 32776.88 30481.42 30454.45 33557.49 39288.67 27949.36 36963.86 29346.86 39056.06 18490.25 31249.53 32168.83 26885.95 284
OpenMVS_ROBcopyleft61.12 1866.39 31662.92 32476.80 30576.51 35357.77 30689.22 25583.41 34355.48 35353.86 34777.84 32926.28 36993.95 23134.90 37568.76 26978.68 366
FMVSNet276.07 22574.01 23682.26 20088.85 17467.66 9791.33 19391.61 16070.84 23465.98 27482.25 27648.03 26092.00 28958.46 29068.73 27087.10 259
test_djsdf73.76 25972.56 25677.39 29677.00 35253.93 33689.07 25990.69 19365.80 28563.92 29282.03 27943.14 29692.67 26772.83 16968.53 27185.57 292
F-COLMAP70.66 28268.44 29077.32 29786.37 23555.91 32588.00 27586.32 31456.94 34757.28 33688.07 20933.58 34392.49 27551.02 31468.37 27283.55 313
XVG-ACMP-BASELINE68.04 30665.53 30675.56 31174.06 36352.37 34178.43 35085.88 32162.03 31758.91 32681.21 29720.38 38091.15 30660.69 27968.18 27383.16 322
LTVRE_ROB59.60 1966.27 31763.54 32074.45 32084.00 27751.55 34567.08 38083.53 34158.78 33854.94 34280.31 30834.54 34093.23 24640.64 36168.03 27478.58 367
Andreas Kuhn, Heiko Hirschmüller, Daniel Scharstein, Helmut Mayer: A TV Prior for High-Quality Scalable Multi-View Stereo Reconstruction. International Journal of Computer Vision 2016
XXY-MVS77.94 19976.44 20082.43 19282.60 29264.44 17592.01 15891.83 14973.59 16270.00 22685.82 24054.43 20394.76 18769.63 20068.02 27588.10 244
ADS-MVSNet266.90 31463.44 32177.26 29988.06 19760.70 27068.01 37775.56 36657.57 34164.48 28769.87 36638.68 30984.10 35740.87 35967.89 27686.97 260
ADS-MVSNet68.54 30264.38 31781.03 23488.06 19766.90 11868.01 37784.02 33657.57 34164.48 28769.87 36638.68 30989.21 32540.87 35967.89 27686.97 260
test0.0.03 172.76 26872.71 25472.88 33280.25 31647.99 36391.22 19989.45 24271.51 22262.51 30887.66 21553.83 20885.06 35450.16 31867.84 27885.58 291
anonymousdsp71.14 28169.37 28576.45 30672.95 36654.71 33384.19 30488.88 26961.92 31962.15 30979.77 31638.14 31891.44 30468.90 21167.45 27983.21 321
tt080573.07 26270.73 27480.07 25378.37 34257.05 31787.78 27992.18 13361.23 32467.04 26786.49 23131.35 35594.58 19665.06 25167.12 28088.57 235
VPA-MVSNet79.03 17578.00 17582.11 20985.95 24264.48 17393.22 10994.66 3875.05 13674.04 17784.95 24752.17 22593.52 24174.90 15967.04 28188.32 242
nrg03080.93 14279.86 14784.13 15483.69 28068.83 6793.23 10891.20 17575.55 12875.06 16488.22 20663.04 10994.74 18981.88 10466.88 28288.82 231
FMVSNet172.71 27069.91 28181.10 23083.60 28265.11 16190.01 23790.32 20663.92 29763.56 29680.25 31036.35 33491.54 29954.46 30466.75 28386.64 265
PatchT69.11 29665.37 30880.32 24482.07 29963.68 20267.96 37987.62 30250.86 36569.37 23165.18 37457.09 16688.53 32941.59 35766.60 28488.74 232
IB-MVS77.80 482.18 12180.46 14087.35 4589.14 16970.28 3795.59 2795.17 2178.85 8370.19 22385.82 24070.66 3797.67 5172.19 18066.52 28594.09 121
Christian Sormann, Mattia Rossi, Andreas Kuhn and Friedrich Fraundorfer: IB-MVS: An Iterative Algorithm for Deep Multi-View Stereo based on Binary Decisions. BMVC 2021
RRT_MVS74.44 24972.97 24978.84 28082.36 29557.66 30989.83 24388.79 27570.61 24064.58 28584.89 24839.24 30792.65 27070.11 19766.34 28686.21 275
test_fmvs265.78 32164.84 30968.60 35366.54 38241.71 38283.27 31369.81 38054.38 35567.91 25484.54 25415.35 38681.22 37775.65 15066.16 28782.88 324
pmmvs573.35 26071.52 26778.86 27978.64 33960.61 27391.08 20486.90 30967.69 27063.32 29883.64 26144.33 29190.53 30962.04 27266.02 28885.46 295
dmvs_testset65.55 32266.45 29862.86 36379.87 32022.35 40676.55 35871.74 37677.42 10855.85 33987.77 21451.39 23280.69 37831.51 38865.92 28985.55 293
pmmvs473.92 25671.81 26580.25 24879.17 32965.24 15787.43 28487.26 30667.64 27363.46 29783.91 26048.96 25691.53 30262.94 26565.49 29083.96 308
cl2277.94 19976.78 19681.42 22187.57 20964.93 16790.67 21788.86 27172.45 18567.63 26082.68 27264.07 8792.91 25771.79 18165.30 29186.44 270
miper_ehance_all_eth77.60 20376.44 20081.09 23385.70 24964.41 17890.65 21888.64 28172.31 18967.37 26582.52 27364.77 8192.64 27170.67 19265.30 29186.24 274
miper_enhance_ethall78.86 18077.97 17681.54 21988.00 20065.17 15991.41 18389.15 25675.19 13468.79 24283.98 25967.17 5692.82 25972.73 17265.30 29186.62 269
v114476.73 22074.88 22082.27 19880.23 31766.60 12691.68 17790.21 21673.69 15969.06 23681.89 28052.73 22194.40 20669.21 20665.23 29485.80 287
DSMNet-mixed56.78 34754.44 35063.79 36263.21 38629.44 40164.43 38364.10 38842.12 38651.32 35671.60 36131.76 35275.04 38336.23 37065.20 29586.87 263
v119275.98 23073.92 23782.15 20479.73 32166.24 13591.22 19989.75 23172.67 17968.49 24781.42 29049.86 24594.27 21167.08 22865.02 29685.95 284
v2v48277.42 20675.65 21382.73 18580.38 31367.13 11291.85 16890.23 21475.09 13569.37 23183.39 26553.79 21094.44 20571.77 18265.00 29786.63 268
V4276.46 22274.55 22682.19 20379.14 33167.82 9390.26 23089.42 24473.75 15768.63 24581.89 28051.31 23394.09 21971.69 18464.84 29884.66 304
ACMH63.93 1768.62 30064.81 31080.03 25585.22 25563.25 21387.72 28084.66 33160.83 32651.57 35579.43 32027.29 36694.96 18241.76 35564.84 29881.88 338
Qingshan Xu and Wenbing Tao: Multi-Scale Geometric Consistency Guided Multi-View Stereo. CVPR 2019
baseline181.84 12881.03 12884.28 15191.60 11366.62 12591.08 20491.66 15981.87 3374.86 16691.67 15169.98 4194.92 18571.76 18364.75 30091.29 200
v124075.21 24372.98 24881.88 21279.20 32866.00 13990.75 21589.11 25971.63 21767.41 26381.22 29547.36 26893.87 23465.46 24864.72 30185.77 288
IterMVS-LS76.49 22175.18 21980.43 24384.49 26862.74 22890.64 21988.80 27372.40 18765.16 28081.72 28360.98 12792.27 28367.74 22064.65 30286.29 272
Fangjinhua Wang, Silvano Galliani, Christoph Vogel, Marc Pollefeys: IterMVS: Iterative Probability Estimation for Efficient Multi-View Stereo.
v192192075.63 23873.49 24382.06 21079.38 32666.35 13191.07 20689.48 24071.98 19867.99 25081.22 29549.16 25493.90 23366.56 23264.56 30385.92 286
v14419276.05 22874.03 23582.12 20679.50 32566.55 12891.39 18789.71 23772.30 19068.17 24981.33 29251.75 22894.03 22767.94 21864.19 30485.77 288
Anonymous2023121173.08 26170.39 27781.13 22890.62 13463.33 21291.40 18590.06 22151.84 36264.46 28980.67 30336.49 33394.07 22163.83 25864.17 30585.98 283
testing370.38 28670.83 27169.03 35185.82 24643.93 37990.72 21690.56 19968.06 26860.24 31686.82 22864.83 7984.12 35626.33 38964.10 30679.04 363
Patchmatch-test65.86 31960.94 33380.62 24183.75 27958.83 29758.91 39175.26 36844.50 38150.95 35977.09 33658.81 15287.90 33335.13 37464.03 30795.12 77
USDC67.43 31364.51 31476.19 30877.94 34755.29 32978.38 35185.00 32873.17 16748.36 36780.37 30721.23 37792.48 27652.15 31264.02 30880.81 348
VPNet78.82 18177.53 18382.70 18684.52 26766.44 12993.93 7392.23 12780.46 5272.60 19188.38 20049.18 25293.13 24772.47 17663.97 30988.55 236
Anonymous2023120667.53 31165.78 30272.79 33374.95 35947.59 36588.23 27187.32 30461.75 32258.07 33077.29 33337.79 32387.29 34342.91 35063.71 31083.48 316
WR-MVS76.76 21975.74 21179.82 26384.60 26562.27 23892.60 13492.51 12176.06 12267.87 25785.34 24356.76 17390.24 31562.20 27163.69 31186.94 262
h-mvs3383.01 10882.56 10884.35 14889.34 15962.02 24192.72 12593.76 6981.45 3882.73 8192.25 13960.11 13697.13 8987.69 5662.96 31293.91 130
c3_l76.83 21875.47 21480.93 23785.02 26064.18 18890.39 22588.11 29571.66 21266.65 27381.64 28563.58 10092.56 27269.31 20562.86 31386.04 281
test_vis1_rt59.09 34557.31 34464.43 36168.44 38046.02 37383.05 31848.63 40151.96 36149.57 36363.86 37716.30 38480.20 37971.21 18762.79 31467.07 386
mvsany_test168.77 29968.56 28869.39 34973.57 36445.88 37480.93 33460.88 39259.65 33471.56 20890.26 17643.22 29575.05 38274.26 16362.70 31587.25 258
UniMVSNet_NR-MVSNet78.15 19577.55 18279.98 25784.46 26960.26 27692.25 14593.20 9377.50 10568.88 24086.61 22966.10 6492.13 28566.38 23662.55 31687.54 247
DU-MVS76.86 21475.84 20979.91 26082.96 28960.26 27691.26 19691.54 16276.46 12068.88 24086.35 23256.16 18192.13 28566.38 23662.55 31687.35 254
UniMVSNet (Re)77.58 20476.78 19679.98 25784.11 27560.80 26391.76 17393.17 9576.56 11969.93 22984.78 25063.32 10492.36 28064.89 25262.51 31886.78 264
v875.35 24073.26 24581.61 21780.67 31066.82 11989.54 24889.27 24971.65 21363.30 29980.30 30954.99 19694.06 22267.33 22562.33 31983.94 309
cl____76.07 22574.67 22180.28 24685.15 25661.76 24790.12 23388.73 27671.16 22765.43 27781.57 28761.15 12492.95 25266.54 23362.17 32086.13 279
v1074.77 24772.54 25781.46 22080.33 31566.71 12389.15 25889.08 26170.94 23263.08 30279.86 31452.52 22294.04 22565.70 24462.17 32083.64 312
DIV-MVS_self_test76.07 22574.67 22180.28 24685.14 25761.75 24890.12 23388.73 27671.16 22765.42 27881.60 28661.15 12492.94 25666.54 23362.16 32286.14 277
IterMVS-SCA-FT71.55 27969.97 27976.32 30781.48 30260.67 27187.64 28285.99 32066.17 28359.50 32078.88 32145.53 28383.65 36262.58 26961.93 32384.63 306
IterMVS72.65 27370.83 27178.09 28882.17 29762.96 22187.64 28286.28 31571.56 22060.44 31578.85 32245.42 28586.66 34563.30 26361.83 32484.65 305
Fangjinhua Wang, Silvano Galliani, Christoph Vogel, Marc Pollefeys: IterMVS: Iterative Probability Estimation for Efficient Multi-View Stereo.
FMVSNet568.04 30665.66 30575.18 31584.43 27057.89 30483.54 30886.26 31661.83 32153.64 34873.30 35337.15 32985.08 35348.99 32361.77 32582.56 333
v7n71.31 28068.65 28779.28 27376.40 35460.77 26586.71 29389.45 24264.17 29658.77 32778.24 32544.59 29093.54 24057.76 29261.75 32683.52 315
v14876.19 22374.47 22881.36 22280.05 31964.44 17591.75 17590.23 21473.68 16067.13 26680.84 30055.92 18693.86 23668.95 21061.73 32785.76 290
tfpnnormal70.10 28767.36 29578.32 28483.45 28460.97 26188.85 26292.77 10964.85 29260.83 31478.53 32343.52 29493.48 24231.73 38561.70 32880.52 351
ACMH+65.35 1667.65 30964.55 31376.96 30384.59 26657.10 31688.08 27280.79 35258.59 34053.00 34981.09 29926.63 36892.95 25246.51 33661.69 32980.82 347
ITE_SJBPF70.43 34674.44 36147.06 37077.32 36060.16 33154.04 34683.53 26223.30 37484.01 35943.07 34961.58 33080.21 356
NR-MVSNet76.05 22874.59 22480.44 24282.96 28962.18 23990.83 21291.73 15277.12 10960.96 31386.35 23259.28 14891.80 29260.74 27861.34 33187.35 254
test_040264.54 32661.09 33274.92 31784.10 27660.75 26787.95 27679.71 35752.03 36052.41 35177.20 33432.21 35191.64 29523.14 39161.03 33272.36 380
Baseline_NR-MVSNet73.99 25572.83 25077.48 29480.78 30859.29 29291.79 17084.55 33268.85 26168.99 23880.70 30156.16 18192.04 28862.67 26860.98 33381.11 344
TranMVSNet+NR-MVSNet75.86 23374.52 22779.89 26182.44 29460.64 27291.37 19091.37 16976.63 11767.65 25986.21 23652.37 22491.55 29861.84 27360.81 33487.48 249
testgi64.48 32762.87 32569.31 35071.24 36940.62 38585.49 29779.92 35665.36 28954.18 34583.49 26423.74 37384.55 35541.60 35660.79 33582.77 326
eth_miper_zixun_eth75.96 23274.40 22980.66 23984.66 26463.02 21989.28 25488.27 29171.88 20365.73 27581.65 28459.45 14492.81 26068.13 21560.53 33686.14 277
COLMAP_ROBcopyleft57.96 2062.98 33459.65 33672.98 33181.44 30353.00 34083.75 30775.53 36748.34 37248.81 36681.40 29124.14 37190.30 31132.95 38060.52 33775.65 375
Johannes L. Schönberger, Enliang Zheng, Marc Pollefeys, Jan-Michael Frahm: Pixelwise View Selection for Unstructured Multi-View Stereo. ECCV 2016
AUN-MVS78.37 19177.43 18481.17 22686.60 23057.45 31389.46 25191.16 17774.11 14774.40 17190.49 17055.52 18994.57 19874.73 16160.43 33891.48 192
hse-mvs281.12 13981.11 12781.16 22786.52 23157.48 31289.40 25291.16 17781.45 3882.73 8190.49 17060.11 13694.58 19687.69 5660.41 33991.41 194
RPSCF64.24 32861.98 33071.01 34576.10 35645.00 37575.83 36275.94 36346.94 37558.96 32584.59 25231.40 35482.00 37447.76 33260.33 34086.04 281
miper_lstm_enhance73.05 26371.73 26677.03 30083.80 27858.32 30281.76 32488.88 26969.80 25061.01 31278.23 32657.19 16587.51 34165.34 24959.53 34185.27 300
CP-MVSNet70.50 28469.91 28172.26 33780.71 30951.00 34987.23 28790.30 21067.84 26959.64 31982.69 27150.23 24282.30 37251.28 31359.28 34283.46 317
PS-CasMVS69.86 29169.13 28672.07 34180.35 31450.57 35187.02 28989.75 23167.27 27559.19 32382.28 27546.58 27382.24 37350.69 31559.02 34383.39 319
pm-mvs172.89 26671.09 27078.26 28679.10 33257.62 31090.80 21389.30 24867.66 27162.91 30481.78 28249.11 25592.95 25260.29 28258.89 34484.22 307
Anonymous2024052162.09 33559.08 33871.10 34467.19 38148.72 36183.91 30685.23 32650.38 36647.84 36871.22 36520.74 37885.51 35246.47 33758.75 34579.06 362
WR-MVS_H70.59 28369.94 28072.53 33481.03 30551.43 34687.35 28592.03 13767.38 27460.23 31780.70 30155.84 18783.45 36446.33 33858.58 34682.72 328
PEN-MVS69.46 29468.56 28872.17 33979.27 32749.71 35586.90 29189.24 25067.24 27859.08 32482.51 27447.23 26983.54 36348.42 32657.12 34783.25 320
EU-MVSNet64.01 32963.01 32367.02 35974.40 36238.86 39083.27 31386.19 31845.11 37954.27 34481.15 29836.91 33280.01 38048.79 32557.02 34882.19 337
AllTest61.66 33658.06 34072.46 33579.57 32251.42 34780.17 34168.61 38251.25 36345.88 37181.23 29319.86 38286.58 34638.98 36557.01 34979.39 359
TestCases72.46 33579.57 32251.42 34768.61 38251.25 36345.88 37181.23 29319.86 38286.58 34638.98 36557.01 34979.39 359
Patchmtry67.53 31163.93 31878.34 28382.12 29864.38 17968.72 37484.00 33748.23 37359.24 32172.41 35657.82 16089.27 32446.10 33956.68 35181.36 341
our_test_368.29 30464.69 31279.11 27878.92 33364.85 16888.40 27085.06 32760.32 33052.68 35076.12 34440.81 30389.80 32244.25 34755.65 35282.67 332
FPMVS45.64 35643.10 36053.23 37351.42 39836.46 39164.97 38271.91 37529.13 39327.53 39361.55 3829.83 39565.01 39716.00 39955.58 35358.22 389
DTE-MVSNet68.46 30367.33 29671.87 34377.94 34749.00 36086.16 29688.58 28366.36 28258.19 32882.21 27746.36 27483.87 36144.97 34555.17 35482.73 327
MIMVSNet160.16 34257.33 34368.67 35269.71 37644.13 37778.92 34884.21 33355.05 35444.63 37871.85 36023.91 37281.54 37632.63 38355.03 35580.35 352
pmmvs667.57 31064.76 31176.00 31072.82 36853.37 33888.71 26486.78 31353.19 35857.58 33578.03 32835.33 33892.41 27755.56 30054.88 35682.21 336
TinyColmap60.32 34056.42 34772.00 34278.78 33653.18 33978.36 35275.64 36552.30 35941.59 38475.82 34714.76 38988.35 33035.84 37154.71 35774.46 376
test20.0363.83 33062.65 32667.38 35870.58 37539.94 38686.57 29484.17 33463.29 30451.86 35377.30 33237.09 33082.47 37038.87 36754.13 35879.73 357
OurMVSNet-221017-064.68 32562.17 32972.21 33876.08 35747.35 36680.67 33581.02 35156.19 35051.60 35479.66 31827.05 36788.56 32853.60 30953.63 35980.71 349
test_fmvs356.82 34654.86 34962.69 36453.59 39535.47 39275.87 36165.64 38743.91 38255.10 34171.43 3646.91 40074.40 38568.64 21352.63 36078.20 369
Patchmatch-RL test68.17 30564.49 31579.19 27471.22 37053.93 33670.07 37271.54 37869.22 25656.79 33762.89 37856.58 17888.61 32669.53 20252.61 36195.03 81
ppachtmachnet_test67.72 30863.70 31979.77 26578.92 33366.04 13888.68 26582.90 34760.11 33255.45 34075.96 34539.19 30890.55 30839.53 36352.55 36282.71 329
LF4IMVS54.01 35052.12 35159.69 36562.41 38839.91 38868.59 37568.28 38442.96 38544.55 37975.18 34814.09 39168.39 39141.36 35851.68 36370.78 381
N_pmnet50.55 35149.11 35454.88 37177.17 3514.02 41484.36 3032.00 41248.59 37045.86 37368.82 36832.22 35082.80 36931.58 38651.38 36477.81 370
pmmvs-eth3d65.53 32362.32 32875.19 31469.39 37859.59 28582.80 32083.43 34262.52 31351.30 35772.49 35432.86 34487.16 34455.32 30150.73 36578.83 365
CL-MVSNet_self_test69.92 28968.09 29375.41 31273.25 36555.90 32690.05 23689.90 22669.96 24761.96 31176.54 33951.05 23587.64 33849.51 32250.59 36682.70 330
PM-MVS59.40 34356.59 34567.84 35463.63 38541.86 38176.76 35763.22 38959.01 33751.07 35872.27 35911.72 39283.25 36661.34 27550.28 36778.39 368
MDA-MVSNet_test_wron63.78 33160.16 33474.64 31878.15 34560.41 27483.49 30984.03 33556.17 35239.17 38671.59 36237.22 32783.24 36742.87 35248.73 36880.26 354
YYNet163.76 33260.14 33574.62 31978.06 34660.19 27983.46 31183.99 33956.18 35139.25 38571.56 36337.18 32883.34 36542.90 35148.70 36980.32 353
KD-MVS_self_test60.87 33958.60 33967.68 35666.13 38339.93 38775.63 36384.70 33057.32 34449.57 36368.45 36929.55 35982.87 36848.09 32747.94 37080.25 355
SixPastTwentyTwo64.92 32461.78 33174.34 32278.74 33749.76 35483.42 31279.51 35862.86 30950.27 36077.35 33130.92 35890.49 31045.89 34047.06 37182.78 325
new_pmnet49.31 35246.44 35557.93 36662.84 38740.74 38468.47 37662.96 39036.48 38835.09 38857.81 38514.97 38872.18 38732.86 38146.44 37260.88 388
EGC-MVSNET42.35 35838.09 36155.11 37074.57 36046.62 37171.63 36955.77 3930.04 4070.24 40862.70 37914.24 39074.91 38417.59 39646.06 37343.80 393
TransMVSNet (Re)70.07 28867.66 29477.31 29880.62 31259.13 29591.78 17284.94 32965.97 28460.08 31880.44 30650.78 23691.87 29048.84 32445.46 37480.94 346
ambc69.61 34861.38 39041.35 38349.07 39785.86 32250.18 36266.40 37210.16 39488.14 33245.73 34144.20 37579.32 361
TDRefinement55.28 34951.58 35266.39 36059.53 39246.15 37276.23 36072.80 37244.60 38042.49 38276.28 34315.29 38782.39 37133.20 37943.75 37670.62 382
Gipumacopyleft34.91 36531.44 36845.30 38070.99 37239.64 38919.85 40272.56 37320.10 39816.16 40221.47 4035.08 40371.16 38813.07 40043.70 37725.08 400
S. Galliani, K. Lasinger, K. Schindler: Massively Parallel Multiview Stereopsis by Surface Normal Diffusion. ICCV 2015
test_f46.58 35443.45 35855.96 36845.18 40232.05 39661.18 38649.49 40033.39 39042.05 38362.48 3807.00 39965.56 39547.08 33543.21 37870.27 383
MDA-MVSNet-bldmvs61.54 33857.70 34273.05 33079.53 32457.00 32083.08 31781.23 35057.57 34134.91 38972.45 35532.79 34586.26 34835.81 37241.95 37975.89 374
new-patchmatchnet59.30 34456.48 34667.79 35565.86 38444.19 37682.47 32181.77 34859.94 33343.65 38166.20 37327.67 36581.68 37539.34 36441.40 38077.50 371
UnsupCasMVSNet_eth65.79 32063.10 32273.88 32470.71 37350.29 35381.09 33289.88 22772.58 18149.25 36574.77 35132.57 34887.43 34255.96 29941.04 38183.90 310
test_vis3_rt40.46 36137.79 36248.47 37844.49 40333.35 39566.56 38132.84 40932.39 39129.65 39139.13 3993.91 40768.65 39050.17 31740.99 38243.40 394
pmmvs355.51 34851.50 35367.53 35757.90 39350.93 35080.37 33773.66 37140.63 38744.15 38064.75 37616.30 38478.97 38144.77 34640.98 38372.69 378
APD_test140.50 36037.31 36350.09 37651.88 39635.27 39359.45 39052.59 39721.64 39626.12 39457.80 3864.56 40466.56 39322.64 39239.09 38448.43 392
UnsupCasMVSNet_bld61.60 33757.71 34173.29 32968.73 37951.64 34478.61 34989.05 26357.20 34546.11 37061.96 38128.70 36388.60 32750.08 31938.90 38579.63 358
PMVScopyleft26.43 2231.84 36828.16 37142.89 38125.87 41127.58 40250.92 39649.78 39921.37 39714.17 40340.81 3982.01 41066.62 3929.61 40338.88 38634.49 399
Y. Furukawa, J. Ponce: Accurate, dense, and robust multiview stereopsis. PAMI (2010)
K. test v363.09 33359.61 33773.53 32776.26 35549.38 35983.27 31377.15 36164.35 29547.77 36972.32 35828.73 36287.79 33649.93 32036.69 38783.41 318
KD-MVS_2432*160069.03 29766.37 30077.01 30185.56 25061.06 25981.44 32990.25 21267.27 27558.00 33176.53 34054.49 20087.63 33948.04 32835.77 38882.34 334
miper_refine_blended69.03 29766.37 30077.01 30185.56 25061.06 25981.44 32990.25 21267.27 27558.00 33176.53 34054.49 20087.63 33948.04 32835.77 38882.34 334
mvsany_test348.86 35346.35 35656.41 36746.00 40131.67 39762.26 38547.25 40243.71 38345.54 37568.15 37010.84 39364.44 39957.95 29135.44 39073.13 377
LCM-MVSNet40.54 35935.79 36454.76 37236.92 40830.81 39851.41 39569.02 38122.07 39524.63 39545.37 3924.56 40465.81 39433.67 37734.50 39167.67 384
test_method38.59 36335.16 36648.89 37754.33 39421.35 40745.32 39853.71 3967.41 40428.74 39251.62 3888.70 39752.87 40233.73 37632.89 39272.47 379
lessismore_v073.72 32672.93 36747.83 36461.72 39145.86 37373.76 35228.63 36489.81 32047.75 33331.37 39383.53 314
testf132.77 36629.47 36942.67 38241.89 40530.81 39852.07 39343.45 40315.45 39918.52 39944.82 3932.12 40858.38 40016.05 39730.87 39438.83 395
APD_test232.77 36629.47 36942.67 38241.89 40530.81 39852.07 39343.45 40315.45 39918.52 39944.82 3932.12 40858.38 40016.05 39730.87 39438.83 395
PVSNet_068.08 1571.81 27668.32 29282.27 19884.68 26362.31 23788.68 26590.31 20975.84 12457.93 33380.65 30437.85 32294.19 21569.94 19829.05 39690.31 212
WB-MVS46.23 35544.94 35750.11 37562.13 38921.23 40876.48 35955.49 39445.89 37735.78 38761.44 38335.54 33672.83 3869.96 40221.75 39756.27 390
SSC-MVS44.51 35743.35 35947.99 37961.01 39118.90 41074.12 36554.36 39543.42 38434.10 39060.02 38434.42 34170.39 3899.14 40419.57 39854.68 391
DeepMVS_CXcopyleft34.71 38551.45 39724.73 40528.48 41131.46 39217.49 40152.75 3875.80 40242.60 40618.18 39519.42 39936.81 398
PMMVS237.93 36433.61 36750.92 37446.31 40024.76 40460.55 38950.05 39828.94 39420.93 39647.59 3894.41 40665.13 39625.14 39018.55 40062.87 387
MVEpermissive24.84 2324.35 37019.77 37638.09 38434.56 41026.92 40326.57 40038.87 40711.73 40311.37 40427.44 4001.37 41150.42 40311.41 40114.60 40136.93 397
Simon Fuhrmann, Fabian Langguth, Michael Goesele: MVE - A Multi-View Reconstruction Environment. EUROGRAPHICS Workshops on Graphics and Cultural Heritage (2014)
E-PMN24.61 36924.00 37326.45 38643.74 40418.44 41160.86 38739.66 40515.11 4019.53 40522.10 4026.52 40146.94 4048.31 40510.14 40213.98 402
EMVS23.76 37123.20 37525.46 38741.52 40716.90 41260.56 38838.79 40814.62 4028.99 40620.24 4057.35 39845.82 4057.25 4069.46 40313.64 403
tmp_tt22.26 37223.75 37417.80 3885.23 41212.06 41335.26 39939.48 4062.82 40618.94 39744.20 39522.23 37624.64 40736.30 3699.31 40416.69 401
ANet_high40.27 36235.20 36555.47 36934.74 40934.47 39463.84 38471.56 37748.42 37118.80 39841.08 3979.52 39664.45 39820.18 3948.66 40567.49 385
wuyk23d11.30 37410.95 37712.33 38948.05 39919.89 40925.89 4011.92 4133.58 4053.12 4071.37 4070.64 41215.77 4086.23 4077.77 4061.35 404
testmvs7.23 3769.62 3790.06 3910.04 4130.02 41684.98 3010.02 4140.03 4080.18 4091.21 4080.01 4140.02 4090.14 4080.01 4070.13 406
test_blank0.00 3790.00 3820.00 3920.00 4150.00 4170.00 4030.00 4160.00 4100.00 4110.00 4100.00 4150.00 4110.00 4100.00 4080.00 407
uanet_test0.00 3790.00 3820.00 3920.00 4150.00 4170.00 4030.00 4160.00 4100.00 4110.00 4100.00 4150.00 4110.00 4100.00 4080.00 407
DCPMVS0.00 3790.00 3820.00 3920.00 4150.00 4170.00 4030.00 4160.00 4100.00 4110.00 4100.00 4150.00 4110.00 4100.00 4080.00 407
cdsmvs_eth3d_5k19.86 37326.47 3720.00 3920.00 4150.00 4170.00 40393.45 840.00 4100.00 41195.27 5849.56 2470.00 4110.00 4100.00 4080.00 407
pcd_1.5k_mvsjas4.46 3785.95 3810.00 3920.00 4150.00 4170.00 4030.00 4160.00 4100.00 4110.00 41053.55 2120.00 4110.00 4100.00 4080.00 407
sosnet-low-res0.00 3790.00 3820.00 3920.00 4150.00 4170.00 4030.00 4160.00 4100.00 4110.00 4100.00 4150.00 4110.00 4100.00 4080.00 407
sosnet0.00 3790.00 3820.00 3920.00 4150.00 4170.00 4030.00 4160.00 4100.00 4110.00 4100.00 4150.00 4110.00 4100.00 4080.00 407
uncertanet0.00 3790.00 3820.00 3920.00 4150.00 4170.00 4030.00 4160.00 4100.00 4110.00 4100.00 4150.00 4110.00 4100.00 4080.00 407
Regformer0.00 3790.00 3820.00 3920.00 4150.00 4170.00 4030.00 4160.00 4100.00 4110.00 4100.00 4150.00 4110.00 4100.00 4080.00 407
test1236.92 3779.21 3800.08 3900.03 4140.05 41581.65 3270.01 4150.02 4090.14 4100.85 4090.03 4130.02 4090.12 4090.00 4080.16 405
ab-mvs-re7.91 37510.55 3780.00 3920.00 4150.00 4170.00 4030.00 4160.00 4100.00 41194.95 670.00 4150.00 4110.00 4100.00 4080.00 407
uanet0.00 3790.00 3820.00 3920.00 4150.00 4170.00 4030.00 4160.00 4100.00 4110.00 4100.00 4150.00 4110.00 4100.00 4080.00 407
WAC-MVS49.45 35731.56 387
FOURS193.95 4561.77 24693.96 7191.92 14162.14 31686.57 46
test_one_060196.32 1869.74 4994.18 5771.42 22490.67 1996.85 1674.45 18
eth-test20.00 415
eth-test0.00 415
test_241102_ONE96.45 1269.38 5494.44 4671.65 21392.11 797.05 776.79 999.11 6
save fliter93.84 4867.89 9295.05 4092.66 11478.19 91
test072696.40 1569.99 3996.76 894.33 5471.92 19991.89 1197.11 673.77 21
GSMVS94.68 95
test_part296.29 1968.16 8690.78 17
sam_mvs157.85 15994.68 95
sam_mvs54.91 197
MTGPAbinary92.23 127
test_post178.95 34720.70 40453.05 21791.50 30360.43 280
test_post23.01 40156.49 17992.67 267
patchmatchnet-post67.62 37157.62 16290.25 312
MTMP93.77 8532.52 410
gm-plane-assit88.42 18567.04 11578.62 8891.83 14797.37 7276.57 144
TEST994.18 4167.28 10794.16 5993.51 8071.75 21085.52 5695.33 5368.01 5097.27 82
test_894.19 4067.19 10994.15 6293.42 8671.87 20485.38 5995.35 5268.19 4896.95 104
agg_prior94.16 4366.97 11793.31 8984.49 6796.75 114
test_prior467.18 11193.92 74
test_prior86.42 7494.71 3567.35 10693.10 9996.84 11195.05 79
旧先验292.00 16159.37 33687.54 4093.47 24375.39 152
新几何291.41 183
无先验92.71 12692.61 11862.03 31797.01 9566.63 23193.97 127
原ACMM292.01 158
testdata296.09 13561.26 276
segment_acmp65.94 66
testdata189.21 25677.55 104
plane_prior786.94 22561.51 252
plane_prior687.23 21762.32 23650.66 237
plane_prior489.14 192
plane_prior361.95 24479.09 7972.53 193
plane_prior293.13 11178.81 85
plane_prior187.15 219
n20.00 416
nn0.00 416
door-mid66.01 386
test1193.01 101
door66.57 385
HQP5-MVS63.66 203
HQP-NCC87.54 21094.06 6479.80 6374.18 172
ACMP_Plane87.54 21094.06 6479.80 6374.18 172
BP-MVS77.63 139
HQP4-MVS74.18 17295.61 15988.63 233
HQP2-MVS51.63 230
NP-MVS87.41 21363.04 21890.30 174
MDTV_nov1_ep13_2view59.90 28280.13 34267.65 27272.79 18854.33 20559.83 28492.58 168
Test By Simon54.21 206