This table lists the benchmark results for the high-res multi-view scenario. The following metrics are evaluated:

(*) For exact definitions, detailing how potentially incomplete ground truth is taken into account, see our paper.

The datasets are grouped into different categories, and result averages are computed for a category and method if results of the method are available for all datasets within the category. Note that the category "all" includes both the high-res multi-view and the low-res many-view scenarios.

Methods with suffix _ROB may participate in the Robust Vision Challenge.

Click a dataset result cell to show a visualization of the reconstruction. For training datasets, ground truth and accuracy / completeness visualizations are also available. The visualizations may not work with mobile browsers.




Method Infoallhigh-res
multi-view
indooroutdoorbotani.boulde.bridgedoorexhibi.lectur.living.loungeobserv.old co.statueterrac.
sort bysort bysorted bysort bysort bysort bysort bysort bysort bysort bysort bysort bysort bysort bysort bysort by
MSP-MVS90.38 591.87 185.88 8892.83 7764.03 19293.06 11394.33 5482.19 2893.65 396.15 3585.89 197.19 8491.02 3397.75 196.43 30
Zhenlong Yuan, Cong Liu, Fei Shen, Zhaoxin Li, Jingguo luo, Tianlu Mao and Zhaoqi Wang: MSP-MVS: Multi-granularity Segmentation Prior Guided Multi-View Stereo. AAAI2025
MM90.87 291.52 288.92 1592.12 9671.10 2897.02 396.04 688.70 291.57 1396.19 3370.12 3998.91 1796.83 195.06 1696.76 15
MCST-MVS91.08 191.46 389.94 497.66 273.37 1097.13 295.58 1189.33 185.77 5596.26 3072.84 2699.38 192.64 1995.93 997.08 10
DeepPCF-MVS81.17 189.72 1091.38 484.72 13293.00 7458.16 30696.72 894.41 4886.50 890.25 2397.83 175.46 1498.67 2592.78 1895.49 1297.32 6
DVP-MVS++90.53 491.09 588.87 1697.31 469.91 4393.96 7294.37 5272.48 18492.07 896.85 1683.82 299.15 291.53 2997.42 497.55 4
patch_mono-289.71 1190.99 685.85 9196.04 2463.70 20295.04 4195.19 1986.74 791.53 1495.15 6373.86 2097.58 5993.38 1492.00 7096.28 36
CNVR-MVS90.32 690.89 788.61 2296.76 870.65 3296.47 1394.83 3084.83 1289.07 3396.80 1970.86 3599.06 1592.64 1995.71 1096.12 39
DPM-MVS90.70 390.52 891.24 189.68 15376.68 297.29 195.35 1582.87 2191.58 1297.22 379.93 599.10 983.12 9897.64 297.94 1
MVS_030490.01 890.50 988.53 2390.14 14470.94 2996.47 1395.72 1087.33 489.60 3096.26 3068.44 4698.74 2495.82 494.72 3195.90 46
SED-MVS89.94 990.36 1088.70 1896.45 1269.38 5496.89 594.44 4671.65 21492.11 697.21 476.79 999.11 692.34 2195.36 1397.62 2
DELS-MVS90.05 790.09 1189.94 493.14 7073.88 997.01 494.40 5088.32 385.71 5694.91 7074.11 1998.91 1787.26 6295.94 897.03 11
Christian Sormann, Emanuele Santellani, Mattia Rossi, Andreas Kuhn, Friedrich Fraundorfer: DELS-MVS: Deep Epipolar Line Search for Multi-View Stereo. Winter Conference on Applications of Computer Vision (WACV), 2023
CANet89.61 1289.99 1288.46 2494.39 3969.71 5096.53 1293.78 6686.89 689.68 2995.78 4065.94 7099.10 992.99 1693.91 4296.58 21
HPM-MVS++copyleft89.37 1489.95 1387.64 3495.10 3068.23 8595.24 3394.49 4482.43 2588.90 3496.35 2771.89 3398.63 2688.76 4996.40 696.06 40
DVP-MVScopyleft89.41 1389.73 1488.45 2596.40 1569.99 3996.64 994.52 4271.92 20090.55 1996.93 1173.77 2199.08 1191.91 2794.90 2196.29 34
Zhenlong Yuan, Jinguo Luo, Fei Shen, Zhaoxin Li, Cong Liu, Tianlu Mao, Zhaoqi Wang: DVP-MVS: Synergize Depth-Edge and Visibility Prior for Multi-View Stereo. AAAI2025
NCCC89.07 1589.46 1587.91 2896.60 1069.05 6296.38 1594.64 3984.42 1386.74 4796.20 3266.56 6698.76 2389.03 4894.56 3395.92 45
DPE-MVScopyleft88.77 1789.21 1687.45 4396.26 2067.56 10194.17 6094.15 5968.77 26490.74 1797.27 276.09 1298.49 2990.58 3794.91 2096.30 33
Kehua Chen, Zhenlong Yuan, Tianlu Mao, Zhaoqi Wang: Dual-Level Precision Edges Guided Multi-View Stereo with Accurate Planarization. AAAI2025
MVSMamba_pp88.94 1688.82 1789.29 1394.04 4574.01 894.81 4892.74 11185.13 1090.37 2190.13 18168.40 4897.38 7089.42 4094.34 3696.47 28
TSAR-MVS + MP.88.11 2188.64 1886.54 7091.73 11068.04 8990.36 22793.55 7982.89 2091.29 1592.89 12172.27 3096.03 14387.99 5394.77 2595.54 56
Zhenlong Yuan, Jiakai Cao, Zhaoqi Wang, Zhaoxin Li: TSAR-MVS: Textureless-aware Segmentation and Correlative Refinement Guided Multi-View Stereo. Pattern Recognition
test_fmvsm_n_192087.69 2788.50 1985.27 11287.05 22463.55 20993.69 8991.08 18784.18 1490.17 2597.04 867.58 5797.99 3995.72 590.03 9594.26 114
mamv488.66 1888.41 2089.39 1294.02 4674.04 794.94 4592.69 11480.90 4790.32 2290.30 17468.33 4997.28 8189.47 3994.74 3096.84 14
EPNet87.84 2588.38 2186.23 8093.30 6466.05 13995.26 3294.84 2987.09 588.06 3694.53 7966.79 6397.34 7483.89 9491.68 7595.29 68
Wanjuan Su, Wenbing Tao: Efficient Edge-Preserving Multi-View Stereo Network for Depth Estimation. AAAI 2023
TSAR-MVS + GP.87.96 2288.37 2286.70 6393.51 6165.32 15795.15 3693.84 6578.17 9385.93 5494.80 7375.80 1398.21 3489.38 4288.78 10496.59 19
SMA-MVScopyleft88.14 1988.29 2387.67 3393.21 6768.72 7093.85 7994.03 6274.18 14791.74 1196.67 2165.61 7498.42 3389.24 4596.08 795.88 47
Yufeng Yin; Xiaoyan Liu; Zichao Zhang: SMA-MVS: Segmentation-Guided Multi-Scale Anchor Deformation Patch Multi-View Stereo. IEEE Transactions on Circuits and Systems for Video Technology
fmvsm_l_conf0.5_n87.49 2988.19 2485.39 10686.95 22564.37 18294.30 5788.45 29080.51 5192.70 496.86 1569.98 4097.15 8895.83 388.08 11294.65 100
fmvsm_l_conf0.5_n_a87.44 3188.15 2585.30 11087.10 22264.19 18994.41 5588.14 29980.24 5992.54 596.97 1069.52 4297.17 8595.89 288.51 10794.56 103
DeepC-MVS_fast79.48 287.95 2388.00 2687.79 3195.86 2768.32 7995.74 2194.11 6083.82 1683.49 7796.19 3364.53 8898.44 3183.42 9794.88 2496.61 18
Andreas Kuhn, Christian Sormann, Mattia Rossi, Oliver Erdler, Friedrich Fraundorfer: DeepC-MVS: Deep Confidence Prediction for Multi-View Stereo Reconstruction. 3DV 2020
APDe-MVScopyleft87.54 2887.84 2786.65 6496.07 2366.30 13594.84 4793.78 6669.35 25588.39 3596.34 2867.74 5697.66 5490.62 3693.44 5196.01 43
Zhaojie Zeng, Yuesong Wang, Tao Guan: Matching Ambiguity-Resilient Multi-View Stereo via Adaptive Patch Deformation. Pattern Recognition
lupinMVS87.74 2687.77 2887.63 3889.24 16871.18 2596.57 1192.90 10682.70 2387.13 4295.27 5664.99 7995.80 14889.34 4391.80 7395.93 44
9.1487.63 2993.86 4994.41 5594.18 5772.76 17986.21 5096.51 2466.64 6497.88 4490.08 3894.04 39
PS-MVSNAJ88.14 1987.61 3089.71 692.06 9776.72 195.75 2093.26 9083.86 1589.55 3196.06 3653.55 21997.89 4391.10 3193.31 5394.54 106
dcpmvs_287.37 3287.55 3186.85 5695.04 3268.20 8690.36 22790.66 19979.37 7381.20 9493.67 10574.73 1596.55 12290.88 3492.00 7095.82 48
SD-MVS87.49 2987.49 3287.50 4293.60 5668.82 6893.90 7692.63 11976.86 11287.90 3795.76 4166.17 6797.63 5689.06 4791.48 7996.05 41
Zhenlong Yuan, Jiakai Cao, Zhaoxin Li, Hao Jiang and Zhaoqi Wang: SD-MVS: Segmentation-driven Deformation Multi-View Stereo with Spherical Refinement and EM optimization. AAAI2024
train_agg87.21 3487.42 3386.60 6694.18 4167.28 10894.16 6193.51 8071.87 20585.52 5895.33 5168.19 5197.27 8289.09 4694.90 2195.25 74
xiu_mvs_v2_base87.92 2487.38 3489.55 1191.41 12176.43 395.74 2193.12 9883.53 1889.55 3195.95 3853.45 22397.68 5091.07 3292.62 6094.54 106
test_fmvsmconf_n86.58 4487.17 3584.82 12585.28 25662.55 23394.26 5989.78 23483.81 1787.78 3896.33 2965.33 7696.98 10094.40 1187.55 11794.95 84
SF-MVS87.03 3687.09 3686.84 5792.70 8367.45 10693.64 9293.76 6970.78 23986.25 4996.44 2666.98 6197.79 4788.68 5094.56 3395.28 70
CS-MVS-test86.14 5187.01 3783.52 17192.63 8559.36 29495.49 2791.92 14380.09 6085.46 6095.53 4761.82 12695.77 15186.77 6993.37 5295.41 58
alignmvs87.28 3386.97 3888.24 2791.30 12371.14 2795.61 2593.56 7879.30 7487.07 4495.25 5868.43 4796.93 10887.87 5484.33 14796.65 17
fmvsm_s_conf0.5_n86.39 4686.91 3984.82 12587.36 21763.54 21094.74 5090.02 22782.52 2490.14 2696.92 1362.93 11497.84 4695.28 882.26 16493.07 157
SteuartSystems-ACMMP86.82 4186.90 4086.58 6890.42 13866.38 13296.09 1793.87 6477.73 10084.01 7595.66 4363.39 10597.94 4087.40 6093.55 5095.42 57
Skip Steuart: Steuart Systems R&D Blog.
PVSNet_Blended86.73 4286.86 4186.31 7993.76 5167.53 10396.33 1693.61 7682.34 2781.00 9993.08 11563.19 10997.29 7787.08 6591.38 8194.13 121
PHI-MVS86.83 4086.85 4286.78 6193.47 6265.55 15395.39 3095.10 2271.77 21085.69 5796.52 2362.07 12298.77 2286.06 7495.60 1196.03 42
CS-MVS85.80 5886.65 4383.27 17992.00 10158.92 29995.31 3191.86 14879.97 6184.82 6695.40 4962.26 12095.51 17086.11 7392.08 6995.37 61
testing1186.71 4386.44 4487.55 4093.54 5971.35 2293.65 9195.58 1181.36 4180.69 10292.21 13972.30 2996.46 12785.18 8083.43 15494.82 93
MG-MVS87.11 3586.27 4589.62 797.79 176.27 494.96 4494.49 4478.74 8883.87 7692.94 11964.34 8996.94 10675.19 15594.09 3895.66 51
CSCG86.87 3786.26 4688.72 1795.05 3170.79 3193.83 8495.33 1668.48 26877.63 14194.35 8873.04 2498.45 3084.92 8493.71 4796.92 13
sasdasda86.85 3886.25 4788.66 2091.80 10871.92 1693.54 9791.71 15680.26 5687.55 3995.25 5863.59 10296.93 10888.18 5184.34 14597.11 8
canonicalmvs86.85 3886.25 4788.66 2091.80 10871.92 1693.54 9791.71 15680.26 5687.55 3995.25 5863.59 10296.93 10888.18 5184.34 14597.11 8
jason86.40 4586.17 4987.11 5086.16 24170.54 3495.71 2492.19 13482.00 3084.58 6894.34 8961.86 12495.53 16987.76 5590.89 8795.27 71
jason: jason.
ETV-MVS86.01 5386.11 5085.70 9890.21 14367.02 11793.43 10591.92 14381.21 4384.13 7494.07 9860.93 13495.63 15989.28 4489.81 9694.46 112
fmvsm_s_conf0.5_n_a85.75 5986.09 5184.72 13285.73 25063.58 20793.79 8589.32 25281.42 3990.21 2496.91 1462.41 11997.67 5194.48 1080.56 18392.90 163
test_fmvsmconf0.1_n85.71 6086.08 5284.62 13980.83 31062.33 23893.84 8288.81 27883.50 1987.00 4596.01 3763.36 10696.93 10894.04 1287.29 12094.61 102
APD-MVScopyleft85.93 5585.99 5385.76 9595.98 2665.21 16093.59 9592.58 12166.54 28186.17 5195.88 3963.83 9597.00 9686.39 7192.94 5795.06 79
Yuesong Wang, Zhaojie Zeng and etc.: Adaptive Patch Deformation for Textureless-Resilient Multi-View Stereo. CVPR2023
fmvsm_s_conf0.1_n85.61 6385.93 5484.68 13582.95 29463.48 21294.03 7089.46 24681.69 3389.86 2796.74 2061.85 12597.75 4994.74 982.01 17092.81 165
MSLP-MVS++86.27 4885.91 5587.35 4592.01 10068.97 6595.04 4192.70 11279.04 8381.50 9196.50 2558.98 15696.78 11483.49 9693.93 4196.29 34
WTY-MVS86.32 4785.81 5687.85 2992.82 7969.37 5695.20 3495.25 1782.71 2281.91 8894.73 7467.93 5597.63 5679.55 12482.25 16596.54 22
ACMMP_NAP86.05 5285.80 5786.80 6091.58 11467.53 10391.79 17193.49 8374.93 13884.61 6795.30 5359.42 15097.92 4186.13 7294.92 1994.94 85
MVS_111021_HR86.19 5085.80 5787.37 4493.17 6969.79 4793.99 7193.76 6979.08 8178.88 12893.99 9962.25 12198.15 3685.93 7591.15 8594.15 120
MGCFI-Net85.59 6485.73 5985.17 11691.41 12162.44 23492.87 12191.31 17379.65 6786.99 4695.14 6462.90 11596.12 13587.13 6484.13 15296.96 12
VNet86.20 4985.65 6087.84 3093.92 4869.99 3995.73 2395.94 778.43 9086.00 5393.07 11658.22 16297.00 9685.22 7884.33 14796.52 23
testing9986.01 5385.47 6187.63 3893.62 5571.25 2493.47 10395.23 1880.42 5480.60 10491.95 14371.73 3496.50 12580.02 12182.22 16695.13 77
CDPH-MVS85.71 6085.46 6286.46 7294.75 3467.19 11093.89 7792.83 10870.90 23583.09 8095.28 5463.62 10097.36 7280.63 11694.18 3794.84 90
PAPM85.89 5785.46 6287.18 4888.20 19672.42 1592.41 14392.77 10982.11 2980.34 10893.07 11668.27 5095.02 18378.39 13693.59 4994.09 123
testing9185.93 5585.31 6487.78 3293.59 5771.47 1993.50 10095.08 2580.26 5680.53 10591.93 14470.43 3796.51 12480.32 11982.13 16895.37 61
DeepC-MVS77.85 385.52 6585.24 6586.37 7688.80 17866.64 12592.15 15093.68 7481.07 4476.91 15193.64 10662.59 11798.44 3185.50 7692.84 5994.03 127
Andreas Kuhn, Christian Sormann, Mattia Rossi, Oliver Erdler, Friedrich Fraundorfer: DeepC-MVS: Deep Confidence Prediction for Multi-View Stereo Reconstruction. 3DV 2020
casdiffmvs_mvgpermissive85.66 6285.18 6687.09 5188.22 19569.35 5793.74 8891.89 14681.47 3580.10 11091.45 15364.80 8496.35 12887.23 6387.69 11595.58 54
Fangjinhua Wang, Qingshan Xu, Yew-Soon Ong, Marc Pollefeys: Lightweight and Accurate Multi-View Stereo With Confidence-Aware Diffusion Model. IEEE T-PAMI 2025
MP-MVS-pluss85.24 6885.13 6785.56 10191.42 11965.59 15191.54 18192.51 12374.56 14180.62 10395.64 4459.15 15497.00 9686.94 6793.80 4394.07 125
MP-MVS-pluss: MP-MVS-pluss. MP-MVS-pluss
ZNCC-MVS85.33 6785.08 6886.06 8393.09 7265.65 14993.89 7793.41 8773.75 15879.94 11294.68 7660.61 13798.03 3882.63 10193.72 4694.52 108
EC-MVSNet84.53 7985.04 6983.01 18389.34 16061.37 25894.42 5491.09 18577.91 9783.24 7894.20 9458.37 16095.40 17185.35 7791.41 8092.27 182
MP-MVScopyleft85.02 7184.97 7085.17 11692.60 8664.27 18793.24 10892.27 12873.13 16979.63 11694.43 8261.90 12397.17 8585.00 8292.56 6194.06 126
Rongxuan Tan, Qing Wang, et al.: MP-MVS: Multi-Scale Windows PatchMatch and Planar Prior Multi-View Stereo.
EIA-MVS84.84 7484.88 7184.69 13491.30 12362.36 23793.85 7992.04 13879.45 7079.33 12194.28 9262.42 11896.35 12880.05 12091.25 8495.38 60
casdiffmvspermissive85.37 6684.87 7286.84 5788.25 19369.07 6193.04 11591.76 15381.27 4280.84 10192.07 14164.23 9096.06 14184.98 8387.43 11995.39 59
Fangjinhua Wang, Qingshan Xu, Yew-Soon Ong, Marc Pollefeys: Lightweight and Accurate Multi-View Stereo With Confidence-Aware Diffusion Model. IEEE T-PAMI 2025
fmvsm_s_conf0.1_n_a84.76 7584.84 7384.53 14180.23 32063.50 21192.79 12388.73 28180.46 5289.84 2896.65 2260.96 13397.57 6193.80 1380.14 18592.53 172
testing22285.18 6984.69 7486.63 6592.91 7669.91 4392.61 13495.80 980.31 5580.38 10792.27 13668.73 4595.19 18075.94 15083.27 15694.81 94
PAPR85.15 7084.47 7587.18 4896.02 2568.29 8091.85 16993.00 10376.59 11979.03 12495.00 6561.59 12797.61 5878.16 13789.00 10395.63 52
baseline85.01 7284.44 7686.71 6288.33 19068.73 6990.24 23291.82 15281.05 4581.18 9592.50 12863.69 9896.08 14084.45 8886.71 12995.32 66
HFP-MVS84.73 7684.40 7785.72 9793.75 5365.01 16693.50 10093.19 9472.19 19479.22 12294.93 6859.04 15597.67 5181.55 10792.21 6594.49 111
GST-MVS84.63 7884.29 7885.66 9992.82 7965.27 15893.04 11593.13 9773.20 16778.89 12594.18 9559.41 15197.85 4581.45 10992.48 6393.86 135
ACMMPR84.37 8084.06 7985.28 11193.56 5864.37 18293.50 10093.15 9672.19 19478.85 13094.86 7156.69 18297.45 6581.55 10792.20 6694.02 128
region2R84.36 8184.03 8085.36 10893.54 5964.31 18593.43 10592.95 10472.16 19778.86 12994.84 7256.97 17797.53 6381.38 11192.11 6894.24 115
diffmvspermissive84.28 8383.83 8185.61 10087.40 21568.02 9090.88 21189.24 25580.54 5081.64 9092.52 12759.83 14594.52 20687.32 6185.11 13994.29 113
Fangjinhua Wang, Qingshan Xu, Yew-Soon Ong, Marc Pollefeys: Lightweight and Accurate Multi-View Stereo With Confidence-Aware Diffusion Model. IEEE T-PAMI 2025
ETVMVS84.22 8783.71 8285.76 9592.58 8768.25 8492.45 14295.53 1479.54 6979.46 11891.64 15170.29 3894.18 21969.16 20982.76 16294.84 90
EI-MVSNet-Vis-set83.77 9883.67 8384.06 15792.79 8263.56 20891.76 17494.81 3179.65 6777.87 13894.09 9663.35 10797.90 4279.35 12579.36 19290.74 208
test_fmvsmconf0.01_n83.70 10183.52 8484.25 15475.26 36261.72 25292.17 14987.24 31282.36 2684.91 6595.41 4855.60 19596.83 11392.85 1785.87 13594.21 116
CANet_DTU84.09 9083.52 8485.81 9290.30 14166.82 12091.87 16789.01 27085.27 986.09 5293.74 10347.71 27496.98 10077.90 13989.78 9893.65 140
PVSNet_Blended_VisFu83.97 9383.50 8685.39 10690.02 14666.59 12993.77 8691.73 15477.43 10877.08 15089.81 18663.77 9796.97 10279.67 12388.21 11092.60 169
test_fmvsmvis_n_192083.80 9783.48 8784.77 12982.51 29663.72 20091.37 19183.99 34581.42 3977.68 14095.74 4258.37 16097.58 5993.38 1486.87 12393.00 160
XVS83.87 9583.47 8885.05 11893.22 6563.78 19692.92 11992.66 11673.99 15078.18 13494.31 9155.25 19797.41 6879.16 12791.58 7793.95 130
CHOSEN 1792x268884.98 7383.45 8989.57 1089.94 14875.14 592.07 15692.32 12681.87 3175.68 16088.27 20460.18 14098.60 2780.46 11890.27 9494.96 83
iter_conf0583.65 10383.44 9084.28 15286.17 24068.61 7495.08 3989.82 23380.90 4778.08 13690.49 16969.08 4395.22 17984.29 8977.07 21689.02 230
PVSNet_BlendedMVS83.38 10583.43 9183.22 18093.76 5167.53 10394.06 6593.61 7679.13 7981.00 9985.14 24763.19 10997.29 7787.08 6573.91 23784.83 304
MAR-MVS84.18 8883.43 9186.44 7396.25 2165.93 14494.28 5894.27 5674.41 14279.16 12395.61 4553.99 21498.88 2169.62 20393.26 5494.50 110
Zhenyu Xu, Yiguang Liu, Xuelei Shi, Ying Wang, Yunan Zheng: MARMVS: Matching Ambiguity Reduced Multiple View Stereo for Efficient Large Scale Scene Reconstruction. CVPR 2020
baseline283.68 10283.42 9384.48 14487.37 21666.00 14190.06 23695.93 879.71 6669.08 23790.39 17277.92 696.28 13078.91 13181.38 17691.16 204
CP-MVS83.71 10083.40 9484.65 13693.14 7063.84 19494.59 5292.28 12771.03 23377.41 14494.92 6955.21 20096.19 13281.32 11290.70 8993.91 132
MTAPA83.91 9483.38 9585.50 10291.89 10665.16 16281.75 32692.23 12975.32 13380.53 10595.21 6156.06 19197.16 8784.86 8592.55 6294.18 117
iter_conf05_1184.06 9183.37 9686.15 8293.04 7366.63 12687.84 27990.21 21971.10 23181.47 9289.48 18968.80 4496.96 10375.97 14992.39 6494.87 86
HY-MVS76.49 584.28 8383.36 9787.02 5492.22 9367.74 9684.65 30394.50 4379.15 7882.23 8687.93 21366.88 6296.94 10680.53 11782.20 16796.39 32
MVS_Test84.16 8983.20 9887.05 5391.56 11569.82 4689.99 24192.05 13777.77 9982.84 8186.57 23263.93 9496.09 13774.91 16089.18 10295.25 74
test_yl84.28 8383.16 9987.64 3494.52 3769.24 5895.78 1895.09 2369.19 25881.09 9692.88 12257.00 17597.44 6681.11 11481.76 17296.23 37
DCV-MVSNet84.28 8383.16 9987.64 3494.52 3769.24 5895.78 1895.09 2369.19 25881.09 9692.88 12257.00 17597.44 6681.11 11481.76 17296.23 37
ET-MVSNet_ETH3D84.01 9283.15 10186.58 6890.78 13470.89 3094.74 5094.62 4081.44 3858.19 33093.64 10673.64 2392.35 28382.66 10078.66 20096.50 27
EI-MVSNet-UG-set83.14 10982.96 10283.67 16992.28 9163.19 21891.38 19094.68 3779.22 7676.60 15393.75 10262.64 11697.76 4878.07 13878.01 20390.05 217
HPM-MVScopyleft83.25 10782.95 10384.17 15592.25 9262.88 22890.91 20891.86 14870.30 24477.12 14893.96 10056.75 18096.28 13082.04 10491.34 8393.34 147
Chunlin Ren, Qingshan Xu, Shikun Zhang, Jiaqi Yang: Hierarchical Prior Mining for Non-local Multi-View Stereo. ICCV 2023
test250683.29 10682.92 10484.37 14888.39 18863.18 21992.01 15991.35 17277.66 10278.49 13391.42 15464.58 8795.09 18273.19 16789.23 10094.85 87
MVSFormer83.75 9982.88 10586.37 7689.24 16871.18 2589.07 25990.69 19665.80 28687.13 4294.34 8964.99 7992.67 27072.83 17191.80 7395.27 71
MVS84.66 7782.86 10690.06 290.93 12974.56 687.91 27795.54 1368.55 26672.35 20194.71 7559.78 14698.90 1981.29 11394.69 3296.74 16
Effi-MVS+83.82 9682.76 10786.99 5589.56 15669.40 5391.35 19386.12 32372.59 18183.22 7992.81 12559.60 14896.01 14581.76 10687.80 11495.56 55
LFMVS84.34 8282.73 10889.18 1494.76 3373.25 1194.99 4391.89 14671.90 20282.16 8793.49 11047.98 27097.05 9182.55 10284.82 14197.25 7
PGM-MVS83.25 10782.70 10984.92 12192.81 8164.07 19190.44 22392.20 13371.28 22677.23 14794.43 8255.17 20197.31 7679.33 12691.38 8193.37 146
SR-MVS82.81 11482.58 11083.50 17493.35 6361.16 26192.23 14891.28 17764.48 29581.27 9395.28 5453.71 21895.86 14782.87 9988.77 10593.49 144
h-mvs3383.01 11182.56 11184.35 14989.34 16062.02 24492.72 12693.76 6981.45 3682.73 8392.25 13860.11 14197.13 8987.69 5662.96 31493.91 132
thisisatest051583.41 10482.49 11286.16 8189.46 15968.26 8293.54 9794.70 3674.31 14575.75 15890.92 16172.62 2796.52 12369.64 20181.50 17593.71 138
mPP-MVS82.96 11382.44 11384.52 14292.83 7762.92 22692.76 12491.85 15071.52 22275.61 16394.24 9353.48 22296.99 9978.97 13090.73 8893.64 141
sss82.71 11782.38 11483.73 16589.25 16559.58 28992.24 14794.89 2877.96 9579.86 11392.38 13356.70 18197.05 9177.26 14280.86 18094.55 104
CLD-MVS82.73 11582.35 11583.86 16187.90 20367.65 9995.45 2892.18 13585.06 1172.58 19492.27 13652.46 23095.78 14984.18 9079.06 19588.16 245
Zhaoxin Li, Wangmeng Zuo, Zhaoqi Wang, Lei Zhang: Confidence-based Large-scale Dense Multi-view Stereo. IEEE Transaction on Image Processing, 2020
MVSTER82.47 11982.05 11683.74 16392.68 8469.01 6391.90 16693.21 9179.83 6272.14 20285.71 24474.72 1694.72 19475.72 15172.49 24887.50 250
PMMVS81.98 12982.04 11781.78 21689.76 15256.17 32591.13 20490.69 19677.96 9580.09 11193.57 10846.33 28494.99 18581.41 11087.46 11894.17 118
test_vis1_n_192081.66 13282.01 11880.64 24382.24 29855.09 33394.76 4986.87 31481.67 3484.40 7094.63 7738.17 32294.67 19891.98 2683.34 15592.16 186
TESTMET0.1,182.41 12081.98 11983.72 16688.08 19763.74 19892.70 12893.77 6879.30 7477.61 14287.57 21958.19 16394.08 22373.91 16686.68 13093.33 149
PAPM_NR82.97 11281.84 12086.37 7694.10 4466.76 12387.66 28292.84 10769.96 24874.07 17993.57 10863.10 11297.50 6470.66 19690.58 9194.85 87
VDD-MVS83.06 11081.81 12186.81 5990.86 13267.70 9795.40 2991.50 16775.46 13081.78 8992.34 13540.09 31297.13 8986.85 6882.04 16995.60 53
DP-MVS Recon82.73 11581.65 12285.98 8597.31 467.06 11495.15 3691.99 14069.08 26176.50 15593.89 10154.48 20998.20 3570.76 19485.66 13792.69 166
MVS_111021_LR82.02 12881.52 12383.51 17388.42 18662.88 22889.77 24488.93 27476.78 11575.55 16493.10 11350.31 24795.38 17383.82 9587.02 12292.26 183
EPP-MVSNet81.79 13181.52 12382.61 19288.77 17960.21 28193.02 11793.66 7568.52 26772.90 18990.39 17272.19 3194.96 18674.93 15979.29 19492.67 167
APD-MVS_3200maxsize81.64 13381.32 12582.59 19392.36 8958.74 30191.39 18891.01 19263.35 30479.72 11594.62 7851.82 23396.14 13479.71 12287.93 11392.89 164
CostFormer82.33 12181.15 12685.86 9089.01 17368.46 7682.39 32393.01 10175.59 12880.25 10981.57 28972.03 3294.96 18679.06 12977.48 21194.16 119
xiu_mvs_v1_base_debu82.16 12481.12 12785.26 11386.42 23368.72 7092.59 13790.44 20673.12 17084.20 7194.36 8438.04 32595.73 15384.12 9186.81 12491.33 197
xiu_mvs_v1_base82.16 12481.12 12785.26 11386.42 23368.72 7092.59 13790.44 20673.12 17084.20 7194.36 8438.04 32595.73 15384.12 9186.81 12491.33 197
xiu_mvs_v1_base_debi82.16 12481.12 12785.26 11386.42 23368.72 7092.59 13790.44 20673.12 17084.20 7194.36 8438.04 32595.73 15384.12 9186.81 12491.33 197
hse-mvs281.12 14181.11 13081.16 23086.52 23257.48 31489.40 25291.16 18081.45 3682.73 8390.49 16960.11 14194.58 19987.69 5660.41 34191.41 196
baseline181.84 13081.03 13184.28 15291.60 11366.62 12791.08 20591.66 16181.87 3174.86 17091.67 15069.98 4094.92 18971.76 18664.75 30291.29 202
UWE-MVS80.81 14781.01 13280.20 25389.33 16257.05 31991.91 16594.71 3575.67 12775.01 16989.37 19163.13 11191.44 30667.19 22982.80 16192.12 187
3Dnovator73.91 682.69 11880.82 13388.31 2689.57 15571.26 2392.60 13594.39 5178.84 8567.89 25892.48 13148.42 26598.52 2868.80 21494.40 3595.15 76
CDS-MVSNet81.43 13580.74 13483.52 17186.26 23764.45 17692.09 15490.65 20075.83 12673.95 18189.81 18663.97 9392.91 26071.27 18982.82 15993.20 152
Khang Truong Giang, Soohwan Song, Sungho Jo: Curvature-guided dynamic scale networks for Multi-view Stereo. ICLR 2022
SR-MVS-dyc-post81.06 14280.70 13582.15 20792.02 9858.56 30390.90 20990.45 20362.76 31178.89 12594.46 8051.26 24195.61 16178.77 13386.77 12792.28 179
ACMMPcopyleft81.49 13480.67 13683.93 16091.71 11162.90 22792.13 15192.22 13271.79 20971.68 20993.49 11050.32 24696.96 10378.47 13584.22 15191.93 189
Qingshan Xu, Weihang Kong, Wenbing Tao, Marc Pollefeys: Multi-Scale Geometric Consistency Guided and Planar Prior Assisted Multi-View Stereo. IEEE Transactions on Pattern Analysis and Machine Intelligence
HQP-MVS81.14 13980.64 13782.64 19187.54 21163.66 20594.06 6591.70 15979.80 6374.18 17590.30 17451.63 23795.61 16177.63 14078.90 19688.63 236
test_cas_vis1_n_192080.45 15380.61 13879.97 26278.25 34657.01 32194.04 6988.33 29379.06 8282.81 8293.70 10438.65 31791.63 29890.82 3579.81 18791.27 203
3Dnovator+73.60 782.10 12780.60 13986.60 6690.89 13166.80 12295.20 3493.44 8574.05 14967.42 26492.49 13049.46 25597.65 5570.80 19391.68 7595.33 64
API-MVS82.28 12280.53 14087.54 4196.13 2270.59 3393.63 9391.04 19165.72 28875.45 16592.83 12456.11 19098.89 2064.10 25889.75 9993.15 153
RE-MVS-def80.48 14192.02 9858.56 30390.90 20990.45 20362.76 31178.89 12594.46 8049.30 25778.77 13386.77 12792.28 179
IB-MVS77.80 482.18 12380.46 14287.35 4589.14 17070.28 3795.59 2695.17 2178.85 8470.19 22585.82 24270.66 3697.67 5172.19 18266.52 28894.09 123
Christian Sormann, Mattia Rossi, Andreas Kuhn and Friedrich Fraundorfer: IB-MVS: An Iterative Algorithm for Deep Multi-View Stereo based on Binary Decisions. BMVC 2021
ECVR-MVScopyleft81.29 13780.38 14384.01 15988.39 18861.96 24692.56 14086.79 31677.66 10276.63 15291.42 15446.34 28395.24 17874.36 16489.23 10094.85 87
thisisatest053081.15 13880.07 14484.39 14788.26 19265.63 15091.40 18694.62 4071.27 22770.93 21589.18 19372.47 2896.04 14265.62 24776.89 21891.49 193
test111180.84 14680.02 14583.33 17787.87 20460.76 26992.62 13386.86 31577.86 9875.73 15991.39 15646.35 28294.70 19772.79 17388.68 10694.52 108
Fast-Effi-MVS+81.14 13980.01 14684.51 14390.24 14265.86 14594.12 6489.15 26273.81 15775.37 16688.26 20557.26 17094.53 20566.97 23284.92 14093.15 153
mvs_anonymous81.36 13679.99 14785.46 10390.39 14068.40 7786.88 29390.61 20174.41 14270.31 22484.67 25263.79 9692.32 28473.13 16885.70 13695.67 50
Vis-MVSNetpermissive80.92 14579.98 14883.74 16388.48 18361.80 24893.44 10488.26 29873.96 15377.73 13991.76 14749.94 25194.76 19165.84 24490.37 9394.65 100
Jingyang Zhang, Yao Yao, Shiwei Li, Zixin Luo, Tian Fang: Visibility-aware Multiview Stereo Network. BMVC 2020
nrg03080.93 14479.86 14984.13 15683.69 28368.83 6793.23 10991.20 17875.55 12975.06 16888.22 20863.04 11394.74 19381.88 10566.88 28588.82 234
1112_ss80.56 15079.83 15082.77 18788.65 18060.78 26792.29 14588.36 29272.58 18272.46 19894.95 6665.09 7893.42 24766.38 23877.71 20594.10 122
HQP_MVS80.34 15579.75 15182.12 20986.94 22662.42 23593.13 11191.31 17378.81 8672.53 19589.14 19550.66 24495.55 16776.74 14378.53 20188.39 242
UA-Net80.02 16279.65 15281.11 23289.33 16257.72 31086.33 29689.00 27377.44 10781.01 9889.15 19459.33 15295.90 14661.01 27984.28 14989.73 223
Vis-MVSNet (Re-imp)79.24 17479.57 15378.24 28988.46 18452.29 34490.41 22589.12 26474.24 14669.13 23591.91 14565.77 7290.09 32159.00 29188.09 11192.33 176
test-LLR80.10 16079.56 15481.72 21886.93 22861.17 25992.70 12891.54 16471.51 22375.62 16186.94 22853.83 21592.38 28072.21 18084.76 14391.60 191
HyFIR lowres test81.03 14379.56 15485.43 10487.81 20768.11 8890.18 23390.01 22870.65 24172.95 18886.06 24063.61 10194.50 20775.01 15879.75 18993.67 139
HPM-MVS_fast80.25 15779.55 15682.33 19991.55 11659.95 28491.32 19589.16 26065.23 29274.71 17293.07 11647.81 27395.74 15274.87 16288.23 10991.31 201
TAMVS80.37 15479.45 15783.13 18285.14 25963.37 21391.23 19990.76 19574.81 14072.65 19288.49 19960.63 13692.95 25569.41 20581.95 17193.08 156
FIs79.47 17179.41 15879.67 26985.95 24459.40 29191.68 17893.94 6378.06 9468.96 24188.28 20366.61 6591.77 29566.20 24174.99 22787.82 247
IS-MVSNet80.14 15979.41 15882.33 19987.91 20260.08 28391.97 16388.27 29672.90 17771.44 21291.73 14961.44 12893.66 24262.47 27286.53 13193.24 150
test-mter79.96 16379.38 16081.72 21886.93 22861.17 25992.70 12891.54 16473.85 15575.62 16186.94 22849.84 25392.38 28072.21 18084.76 14391.60 191
BH-w/o80.49 15279.30 16184.05 15890.83 13364.36 18493.60 9489.42 24974.35 14469.09 23690.15 18055.23 19995.61 16164.61 25586.43 13392.17 185
EPNet_dtu78.80 18479.26 16277.43 29788.06 19849.71 35791.96 16491.95 14277.67 10176.56 15491.28 15858.51 15890.20 31956.37 29980.95 17992.39 174
Wanjuan Su, Wenbing Tao: Efficient Edge-Preserving Multi-View Stereo Network for Depth Estimation. AAAI 2023
CPTT-MVS79.59 16879.16 16380.89 24191.54 11759.80 28692.10 15388.54 28960.42 32972.96 18793.28 11248.27 26692.80 26478.89 13286.50 13290.06 216
tpmrst80.57 14979.14 16484.84 12490.10 14568.28 8181.70 32789.72 24177.63 10475.96 15779.54 32164.94 8192.71 26775.43 15377.28 21493.55 142
131480.70 14878.95 16585.94 8787.77 20967.56 10187.91 27792.55 12272.17 19667.44 26393.09 11450.27 24897.04 9471.68 18887.64 11693.23 151
SDMVSNet80.26 15678.88 16684.40 14689.25 16567.63 10085.35 29993.02 10076.77 11670.84 21687.12 22647.95 27196.09 13785.04 8174.55 22889.48 227
UGNet79.87 16578.68 16783.45 17689.96 14761.51 25592.13 15190.79 19476.83 11478.85 13086.33 23638.16 32396.17 13367.93 22187.17 12192.67 167
Wanjuan Su, Qingshan Xu, Wenbing Tao: Uncertainty-guided Multi-view Stereo Network for Depth Estimation. IEEE Transactions on Circuits and Systems for Video Technology, 2022
PVSNet73.49 880.05 16178.63 16884.31 15090.92 13064.97 16792.47 14191.05 19079.18 7772.43 19990.51 16837.05 33794.06 22568.06 21886.00 13493.90 134
Test_1112_low_res79.56 16978.60 16982.43 19588.24 19460.39 27892.09 15487.99 30372.10 19871.84 20587.42 22164.62 8693.04 25165.80 24577.30 21393.85 136
tttt051779.50 17078.53 17082.41 19887.22 21961.43 25789.75 24594.76 3269.29 25667.91 25688.06 21272.92 2595.63 15962.91 26873.90 23890.16 215
thres20079.66 16778.33 17183.66 17092.54 8865.82 14793.06 11396.31 374.90 13973.30 18588.66 19759.67 14795.61 16147.84 33378.67 19989.56 226
ab-mvs80.18 15878.31 17285.80 9388.44 18565.49 15683.00 32092.67 11571.82 20877.36 14585.01 24854.50 20696.59 11876.35 14775.63 22595.32 66
VDDNet80.50 15178.26 17387.21 4786.19 23869.79 4794.48 5391.31 17360.42 32979.34 12090.91 16238.48 32096.56 12182.16 10381.05 17895.27 71
EI-MVSNet78.97 17978.22 17481.25 22785.33 25462.73 23189.53 24993.21 9172.39 18972.14 20290.13 18160.99 13194.72 19467.73 22372.49 24886.29 274
OPM-MVS79.00 17878.09 17581.73 21783.52 28663.83 19591.64 18090.30 21376.36 12271.97 20489.93 18546.30 28595.17 18175.10 15677.70 20686.19 277
Ray L. Khuboni, Hongjun Xu: Octagram Propagation Matching for Multi-Scale View Stereopsis (OPM-MVS).
FC-MVSNet-test77.99 19978.08 17677.70 29284.89 26555.51 33090.27 23093.75 7276.87 11166.80 27487.59 21865.71 7390.23 31862.89 26973.94 23687.37 254
VPA-MVSNet79.03 17778.00 17782.11 21285.95 24464.48 17593.22 11094.66 3875.05 13774.04 18084.95 24952.17 23293.52 24474.90 16167.04 28488.32 244
miper_enhance_ethall78.86 18277.97 17881.54 22288.00 20165.17 16191.41 18489.15 26275.19 13568.79 24483.98 26167.17 6092.82 26272.73 17465.30 29386.62 271
tpm279.80 16677.95 17985.34 10988.28 19168.26 8281.56 32991.42 17070.11 24677.59 14380.50 30767.40 5994.26 21667.34 22677.35 21293.51 143
OMC-MVS78.67 18977.91 18080.95 23985.76 24957.40 31688.49 26888.67 28473.85 15572.43 19992.10 14049.29 25894.55 20472.73 17477.89 20490.91 207
114514_t79.17 17577.67 18183.68 16895.32 2965.53 15492.85 12291.60 16363.49 30267.92 25590.63 16646.65 27995.72 15767.01 23183.54 15389.79 221
BH-RMVSNet79.46 17277.65 18284.89 12291.68 11265.66 14893.55 9688.09 30172.93 17473.37 18491.12 16046.20 28696.12 13556.28 30085.61 13892.91 162
PCF-MVS73.15 979.29 17377.63 18384.29 15186.06 24265.96 14387.03 28991.10 18469.86 25069.79 23290.64 16457.54 16996.59 11864.37 25782.29 16390.32 213
Andreas Kuhn, Shan Lin, Oliver Erdler: Plane Completion and Filtering for Multi-View Stereo Reconstruction. GCPR 2019
UniMVSNet_NR-MVSNet78.15 19777.55 18479.98 26084.46 27260.26 27992.25 14693.20 9377.50 10668.88 24286.61 23166.10 6892.13 28766.38 23862.55 31887.54 249
VPNet78.82 18377.53 18582.70 18984.52 27066.44 13193.93 7492.23 12980.46 5272.60 19388.38 20249.18 25993.13 25072.47 17863.97 31188.55 239
GeoE78.90 18177.43 18683.29 17888.95 17462.02 24492.31 14486.23 32170.24 24571.34 21389.27 19254.43 21094.04 22863.31 26480.81 18293.81 137
AUN-MVS78.37 19377.43 18681.17 22986.60 23157.45 31589.46 25191.16 18074.11 14874.40 17490.49 16955.52 19694.57 20174.73 16360.43 34091.48 194
tfpn200view978.79 18577.43 18682.88 18592.21 9464.49 17392.05 15796.28 473.48 16471.75 20788.26 20560.07 14395.32 17445.16 34477.58 20888.83 232
thres40078.68 18777.43 18682.43 19592.21 9464.49 17392.05 15796.28 473.48 16471.75 20788.26 20560.07 14395.32 17445.16 34477.58 20887.48 251
QAPM79.95 16477.39 19087.64 3489.63 15471.41 2093.30 10793.70 7365.34 29167.39 26691.75 14847.83 27298.96 1657.71 29589.81 9692.54 171
TR-MVS78.77 18677.37 19182.95 18490.49 13760.88 26593.67 9090.07 22370.08 24774.51 17391.37 15745.69 28995.70 15860.12 28580.32 18492.29 178
FA-MVS(test-final)79.12 17677.23 19284.81 12890.54 13663.98 19381.35 33291.71 15671.09 23274.85 17182.94 27052.85 22697.05 9167.97 21981.73 17493.41 145
BH-untuned78.68 18777.08 19383.48 17589.84 14963.74 19892.70 12888.59 28771.57 22066.83 27388.65 19851.75 23595.39 17259.03 29084.77 14291.32 200
tpm78.58 19077.03 19483.22 18085.94 24664.56 17183.21 31791.14 18378.31 9173.67 18279.68 31964.01 9292.09 28966.07 24271.26 25893.03 158
thres100view90078.37 19377.01 19582.46 19491.89 10663.21 21791.19 20396.33 172.28 19270.45 22187.89 21460.31 13895.32 17445.16 34477.58 20888.83 232
AdaColmapbinary78.94 18077.00 19684.76 13096.34 1765.86 14592.66 13287.97 30562.18 31670.56 21892.37 13443.53 30097.35 7364.50 25682.86 15891.05 206
CHOSEN 280x42077.35 20976.95 19778.55 28487.07 22362.68 23269.71 37782.95 35268.80 26371.48 21187.27 22566.03 6984.00 36276.47 14682.81 16088.95 231
cl2277.94 20176.78 19881.42 22487.57 21064.93 16990.67 21888.86 27772.45 18667.63 26282.68 27464.07 9192.91 26071.79 18465.30 29386.44 272
UniMVSNet (Re)77.58 20676.78 19879.98 26084.11 27860.80 26691.76 17493.17 9576.56 12069.93 23184.78 25163.32 10892.36 28264.89 25462.51 32086.78 266
thres600view778.00 19876.66 20082.03 21491.93 10363.69 20391.30 19696.33 172.43 18770.46 22087.89 21460.31 13894.92 18942.64 35676.64 21987.48 251
MS-PatchMatch77.90 20376.50 20182.12 20985.99 24369.95 4291.75 17692.70 11273.97 15262.58 30884.44 25641.11 30995.78 14963.76 26192.17 6780.62 352
miper_ehance_all_eth77.60 20576.44 20281.09 23685.70 25164.41 18090.65 21988.64 28672.31 19067.37 26782.52 27564.77 8592.64 27370.67 19565.30 29386.24 276
XXY-MVS77.94 20176.44 20282.43 19582.60 29564.44 17792.01 15991.83 15173.59 16370.00 22885.82 24254.43 21094.76 19169.63 20268.02 27888.10 246
PS-MVSNAJss77.26 21076.31 20480.13 25580.64 31459.16 29690.63 22291.06 18972.80 17868.58 24884.57 25453.55 21993.96 23372.97 16971.96 25287.27 259
MVP-Stereo77.12 21376.23 20579.79 26781.72 30366.34 13489.29 25390.88 19370.56 24262.01 31282.88 27149.34 25694.13 22065.55 24993.80 4378.88 366
Qingsong Yan: MVP-Stereo: A Parallel Multi-View Patchmatch Stereo Method with Dilation Matching for Photogrammetric Application.
GA-MVS78.33 19576.23 20584.65 13683.65 28466.30 13591.44 18290.14 22176.01 12470.32 22384.02 26042.50 30494.72 19470.98 19177.00 21792.94 161
WB-MVSnew77.14 21276.18 20780.01 25986.18 23963.24 21691.26 19794.11 6071.72 21273.52 18387.29 22445.14 29493.00 25356.98 29779.42 19083.80 313
FMVSNet377.73 20476.04 20882.80 18691.20 12668.99 6491.87 16791.99 14073.35 16667.04 26983.19 26956.62 18392.14 28659.80 28769.34 26587.28 258
EPMVS78.49 19275.98 20986.02 8491.21 12569.68 5180.23 34191.20 17875.25 13472.48 19778.11 32954.65 20593.69 24157.66 29683.04 15794.69 96
OpenMVScopyleft70.45 1178.54 19175.92 21086.41 7585.93 24771.68 1892.74 12592.51 12366.49 28264.56 28791.96 14243.88 29998.10 3754.61 30590.65 9089.44 229
DU-MVS76.86 21775.84 21179.91 26382.96 29260.26 27991.26 19791.54 16476.46 12168.88 24286.35 23456.16 18892.13 28766.38 23862.55 31887.35 256
cascas78.18 19675.77 21285.41 10587.14 22169.11 6092.96 11891.15 18266.71 28070.47 21986.07 23937.49 33196.48 12670.15 19979.80 18890.65 209
WR-MVS76.76 22275.74 21379.82 26684.60 26862.27 24192.60 13592.51 12376.06 12367.87 25985.34 24556.76 17990.24 31762.20 27363.69 31386.94 264
mvsmamba76.85 21975.71 21480.25 25183.07 29159.16 29691.44 18280.64 35976.84 11367.95 25486.33 23646.17 28794.24 21776.06 14872.92 24487.36 255
v2v48277.42 20875.65 21582.73 18880.38 31667.13 11391.85 16990.23 21775.09 13669.37 23383.39 26753.79 21794.44 20871.77 18565.00 29986.63 270
c3_l76.83 22175.47 21680.93 24085.02 26264.18 19090.39 22688.11 30071.66 21366.65 27581.64 28763.58 10492.56 27469.31 20762.86 31586.04 282
sd_testset77.08 21475.37 21782.20 20589.25 16562.11 24382.06 32489.09 26676.77 11670.84 21687.12 22641.43 30895.01 18467.23 22874.55 22889.48 227
dmvs_re76.93 21575.36 21881.61 22087.78 20860.71 27280.00 34587.99 30379.42 7169.02 23989.47 19046.77 27794.32 21063.38 26374.45 23189.81 220
Anonymous20240521177.96 20075.33 21985.87 8993.73 5464.52 17294.85 4685.36 33062.52 31476.11 15690.18 17829.43 36597.29 7768.51 21677.24 21595.81 49
Effi-MVS+-dtu76.14 22775.28 22078.72 28383.22 28855.17 33289.87 24287.78 30675.42 13167.98 25381.43 29145.08 29592.52 27675.08 15771.63 25388.48 240
IterMVS-LS76.49 22475.18 22180.43 24684.49 27162.74 23090.64 22088.80 27972.40 18865.16 28281.72 28560.98 13292.27 28567.74 22264.65 30486.29 274
Fangjinhua Wang, Silvano Galliani, Christoph Vogel, Marc Pollefeys: IterMVS: Iterative Probability Estimation for Efficient Multi-View Stereo.
v114476.73 22374.88 22282.27 20180.23 32066.60 12891.68 17890.21 21973.69 16069.06 23881.89 28252.73 22894.40 20969.21 20865.23 29685.80 288
cl____76.07 22874.67 22380.28 24985.15 25861.76 25090.12 23488.73 28171.16 22865.43 27981.57 28961.15 12992.95 25566.54 23562.17 32286.13 280
DIV-MVS_self_test76.07 22874.67 22380.28 24985.14 25961.75 25190.12 23488.73 28171.16 22865.42 28081.60 28861.15 12992.94 25966.54 23562.16 32486.14 278
bld_raw_dy_0_6476.92 21674.65 22583.71 16784.96 26471.37 2173.29 36989.16 26050.14 37162.32 31084.19 25867.48 5895.61 16172.10 18388.25 10884.14 309
PatchmatchNetpermissive77.46 20774.63 22685.96 8689.55 15770.35 3679.97 34689.55 24472.23 19370.94 21476.91 34057.03 17392.79 26554.27 30781.17 17794.74 95
Fangjinhua Wang, Silvano Galliani, Christoph Vogel, Pablo Speciale, Marc Pollefeys: PatchmatchNet: Learned Multi-View Patchmatch Stereo.
NR-MVSNet76.05 23174.59 22780.44 24582.96 29262.18 24290.83 21391.73 15477.12 11060.96 31586.35 23459.28 15391.80 29460.74 28061.34 33387.35 256
LPG-MVS_test75.82 23774.58 22879.56 27384.31 27559.37 29290.44 22389.73 23969.49 25364.86 28388.42 20038.65 31794.30 21272.56 17672.76 24585.01 302
V4276.46 22574.55 22982.19 20679.14 33467.82 9490.26 23189.42 24973.75 15868.63 24781.89 28251.31 24094.09 22271.69 18764.84 30084.66 305
TranMVSNet+NR-MVSNet75.86 23674.52 23079.89 26482.44 29760.64 27591.37 19191.37 17176.63 11867.65 26186.21 23852.37 23191.55 30061.84 27560.81 33687.48 251
v14876.19 22674.47 23181.36 22580.05 32264.44 17791.75 17690.23 21773.68 16167.13 26880.84 30255.92 19393.86 23968.95 21261.73 32985.76 291
eth_miper_zixun_eth75.96 23574.40 23280.66 24284.66 26763.02 22189.28 25488.27 29671.88 20465.73 27781.65 28659.45 14992.81 26368.13 21760.53 33886.14 278
gg-mvs-nofinetune77.18 21174.31 23385.80 9391.42 11968.36 7871.78 37194.72 3449.61 37277.12 14845.92 39577.41 893.98 23267.62 22493.16 5595.05 80
CVMVSNet74.04 25674.27 23473.33 33085.33 25443.94 38189.53 24988.39 29154.33 35870.37 22290.13 18149.17 26084.05 36061.83 27679.36 19291.99 188
ACMP71.68 1075.58 24274.23 23579.62 27184.97 26359.64 28790.80 21489.07 26870.39 24362.95 30487.30 22338.28 32193.87 23772.89 17071.45 25685.36 298
Qingshan Xu and Wenbing Tao: Planar Prior Assisted PatchMatch Multi-View Stereo. AAAI 2020
Anonymous2024052976.84 22074.15 23684.88 12391.02 12764.95 16893.84 8291.09 18553.57 35973.00 18687.42 22135.91 34197.32 7569.14 21072.41 25092.36 175
X-MVStestdata76.86 21774.13 23785.05 11893.22 6563.78 19692.92 11992.66 11673.99 15078.18 13410.19 41055.25 19797.41 6879.16 12791.58 7793.95 130
v14419276.05 23174.03 23882.12 20979.50 32866.55 13091.39 18889.71 24272.30 19168.17 25181.33 29451.75 23594.03 23067.94 22064.19 30685.77 289
FMVSNet276.07 22874.01 23982.26 20388.85 17567.66 9891.33 19491.61 16270.84 23665.98 27682.25 27848.03 26792.00 29158.46 29268.73 27387.10 261
v119275.98 23373.92 24082.15 20779.73 32466.24 13791.22 20089.75 23672.67 18068.49 24981.42 29249.86 25294.27 21467.08 23065.02 29885.95 285
GBi-Net75.65 23973.83 24181.10 23388.85 17565.11 16390.01 23890.32 20970.84 23667.04 26980.25 31248.03 26791.54 30159.80 28769.34 26586.64 267
test175.65 23973.83 24181.10 23388.85 17565.11 16390.01 23890.32 20970.84 23667.04 26980.25 31248.03 26791.54 30159.80 28769.34 26586.64 267
test_fmvs174.07 25573.69 24375.22 31578.91 33847.34 36989.06 26174.69 37363.68 30179.41 11991.59 15224.36 37487.77 33985.22 7876.26 22290.55 212
PLCcopyleft68.80 1475.23 24573.68 24479.86 26592.93 7558.68 30290.64 22088.30 29460.90 32664.43 29190.53 16742.38 30594.57 20156.52 29876.54 22086.33 273
Jie Liao, Yanping Fu, Qingan Yan, Chunxia xiao: Pyramid Multi-View Stereo with Local Consistency. Pacific Graphics 2019
TAPA-MVS70.22 1274.94 24973.53 24579.17 27890.40 13952.07 34589.19 25789.61 24362.69 31370.07 22692.67 12648.89 26494.32 21038.26 37079.97 18691.12 205
Andrea Romanoni, Matteo Matteucci: TAPA-MVS: Textureless-Aware PAtchMatch Multi-View Stereo. ICCV 2019
v192192075.63 24173.49 24682.06 21379.38 32966.35 13391.07 20789.48 24571.98 19967.99 25281.22 29749.16 26193.90 23666.56 23464.56 30585.92 287
Fast-Effi-MVS+-dtu75.04 24773.37 24780.07 25680.86 30959.52 29091.20 20285.38 32971.90 20265.20 28184.84 25041.46 30792.97 25466.50 23772.96 24387.73 248
v875.35 24373.26 24881.61 22080.67 31366.82 12089.54 24889.27 25471.65 21463.30 30080.30 31154.99 20394.06 22567.33 22762.33 32183.94 311
XVG-OURS-SEG-HR74.70 25173.08 24979.57 27278.25 34657.33 31780.49 33787.32 30963.22 30668.76 24590.12 18444.89 29691.59 29970.55 19774.09 23589.79 221
FE-MVS75.97 23473.02 25084.82 12589.78 15065.56 15277.44 35791.07 18864.55 29472.66 19179.85 31746.05 28896.69 11654.97 30480.82 18192.21 184
v124075.21 24672.98 25181.88 21579.20 33166.00 14190.75 21689.11 26571.63 21867.41 26581.22 29747.36 27593.87 23765.46 25064.72 30385.77 289
Baseline_NR-MVSNet73.99 25772.83 25277.48 29680.78 31159.29 29591.79 17184.55 33868.85 26268.99 24080.70 30356.16 18892.04 29062.67 27060.98 33581.11 346
SCA75.82 23772.76 25385.01 12086.63 23070.08 3881.06 33489.19 25871.60 21970.01 22777.09 33845.53 29090.25 31460.43 28273.27 24094.68 97
myMVS_eth3d72.58 27672.74 25472.10 34287.87 20449.45 35988.07 27389.01 27072.91 17563.11 30188.10 20963.63 9985.54 35232.73 38469.23 26881.32 344
ACMM69.62 1374.34 25272.73 25579.17 27884.25 27757.87 30890.36 22789.93 22963.17 30865.64 27886.04 24137.79 32994.10 22165.89 24371.52 25585.55 294
Qingshan Xu and Wenbing Tao: Multi-Scale Geometric Consistency Guided Multi-View Stereo. CVPR 2019
test0.0.03 172.76 27072.71 25672.88 33480.25 31947.99 36591.22 20089.45 24771.51 22362.51 30987.66 21753.83 21585.06 35650.16 32067.84 28185.58 292
MDTV_nov1_ep1372.61 25789.06 17168.48 7580.33 33990.11 22271.84 20771.81 20675.92 34853.01 22593.92 23548.04 33073.38 239
test_djsdf73.76 26172.56 25877.39 29877.00 35553.93 33889.07 25990.69 19665.80 28663.92 29382.03 28143.14 30392.67 27072.83 17168.53 27485.57 293
v1074.77 25072.54 25981.46 22380.33 31866.71 12489.15 25889.08 26770.94 23463.08 30379.86 31652.52 22994.04 22865.70 24662.17 32283.64 314
XVG-OURS74.25 25472.46 26079.63 27078.45 34457.59 31380.33 33987.39 30863.86 29968.76 24589.62 18840.50 31191.72 29669.00 21174.25 23389.58 224
CNLPA74.31 25372.30 26180.32 24791.49 11861.66 25390.85 21280.72 35856.67 35163.85 29590.64 16446.75 27890.84 30953.79 30975.99 22488.47 241
tpm cat175.30 24472.21 26284.58 14088.52 18167.77 9578.16 35588.02 30261.88 32168.45 25076.37 34460.65 13594.03 23053.77 31074.11 23491.93 189
dp75.01 24872.09 26383.76 16289.28 16466.22 13879.96 34789.75 23671.16 22867.80 26077.19 33751.81 23492.54 27550.39 31871.44 25792.51 173
D2MVS73.80 25972.02 26479.15 28079.15 33362.97 22288.58 26790.07 22372.94 17359.22 32478.30 32642.31 30692.70 26965.59 24872.00 25181.79 341
test_fmvs1_n72.69 27471.92 26574.99 31871.15 37547.08 37187.34 28775.67 36863.48 30378.08 13691.17 15920.16 38587.87 33684.65 8675.57 22690.01 218
LCM-MVSNet-Re72.93 26771.84 26676.18 31188.49 18248.02 36480.07 34470.17 38373.96 15352.25 35480.09 31549.98 25088.24 33367.35 22584.23 15092.28 179
pmmvs473.92 25871.81 26780.25 25179.17 33265.24 15987.43 28587.26 31167.64 27463.46 29883.91 26248.96 26391.53 30462.94 26765.49 29283.96 310
miper_lstm_enhance73.05 26571.73 26877.03 30283.80 28158.32 30581.76 32588.88 27569.80 25161.01 31478.23 32857.19 17187.51 34365.34 25159.53 34385.27 301
pmmvs573.35 26271.52 26978.86 28278.64 34260.61 27691.08 20586.90 31367.69 27163.32 29983.64 26344.33 29890.53 31162.04 27466.02 29085.46 296
jajsoiax73.05 26571.51 27077.67 29377.46 35254.83 33488.81 26390.04 22669.13 26062.85 30683.51 26531.16 36092.75 26670.83 19269.80 26185.43 297
mvs_tets72.71 27271.11 27177.52 29477.41 35354.52 33688.45 26989.76 23568.76 26562.70 30783.26 26829.49 36492.71 26770.51 19869.62 26385.34 299
pm-mvs172.89 26871.09 27278.26 28879.10 33557.62 31290.80 21489.30 25367.66 27262.91 30581.78 28449.11 26292.95 25560.29 28458.89 34684.22 308
testing370.38 28870.83 27369.03 35385.82 24843.93 38290.72 21790.56 20268.06 26960.24 31886.82 23064.83 8384.12 35826.33 39264.10 30879.04 365
IterMVS72.65 27570.83 27378.09 29082.17 29962.96 22387.64 28386.28 31971.56 22160.44 31778.85 32445.42 29286.66 34763.30 26561.83 32684.65 306
Fangjinhua Wang, Silvano Galliani, Christoph Vogel, Marc Pollefeys: IterMVS: Iterative Probability Estimation for Efficient Multi-View Stereo.
CR-MVSNet73.79 26070.82 27582.70 18983.15 28967.96 9170.25 37484.00 34373.67 16269.97 22972.41 35857.82 16689.48 32552.99 31373.13 24190.64 210
test_vis1_n71.63 28070.73 27674.31 32569.63 38147.29 37086.91 29172.11 37863.21 30775.18 16790.17 17920.40 38385.76 35184.59 8774.42 23289.87 219
tt080573.07 26470.73 27680.07 25678.37 34557.05 31987.78 28092.18 13561.23 32567.04 26986.49 23331.35 35994.58 19965.06 25367.12 28388.57 238
UniMVSNet_ETH3D72.74 27170.53 27879.36 27578.62 34356.64 32385.01 30189.20 25763.77 30064.84 28584.44 25634.05 34891.86 29363.94 25970.89 26089.57 225
Anonymous2023121173.08 26370.39 27981.13 23190.62 13563.33 21491.40 18690.06 22551.84 36464.46 29080.67 30536.49 33994.07 22463.83 26064.17 30785.98 284
PatchMatch-RL72.06 27769.98 28078.28 28789.51 15855.70 32983.49 31083.39 35061.24 32463.72 29682.76 27234.77 34593.03 25253.37 31277.59 20786.12 281
IterMVS-SCA-FT71.55 28169.97 28176.32 30981.48 30560.67 27487.64 28385.99 32466.17 28459.50 32278.88 32345.53 29083.65 36462.58 27161.93 32584.63 307
WR-MVS_H70.59 28569.94 28272.53 33681.03 30851.43 34887.35 28692.03 13967.38 27560.23 31980.70 30355.84 19483.45 36646.33 34058.58 34882.72 330
CP-MVSNet70.50 28669.91 28372.26 33980.71 31251.00 35187.23 28890.30 21367.84 27059.64 32182.69 27350.23 24982.30 37451.28 31559.28 34483.46 319
FMVSNet172.71 27269.91 28381.10 23383.60 28565.11 16390.01 23890.32 20963.92 29863.56 29780.25 31236.35 34091.54 30154.46 30666.75 28686.64 267
tpmvs72.88 26969.76 28582.22 20490.98 12867.05 11578.22 35488.30 29463.10 30964.35 29274.98 35155.09 20294.27 21443.25 35069.57 26485.34 299
Syy-MVS69.65 29469.52 28670.03 34987.87 20443.21 38388.07 27389.01 27072.91 17563.11 30188.10 20945.28 29385.54 35222.07 39669.23 26881.32 344
anonymousdsp71.14 28369.37 28776.45 30872.95 37054.71 33584.19 30588.88 27561.92 32062.15 31179.77 31838.14 32491.44 30668.90 21367.45 28283.21 323
PS-CasMVS69.86 29369.13 28872.07 34380.35 31750.57 35387.02 29089.75 23667.27 27659.19 32582.28 27746.58 28082.24 37550.69 31759.02 34583.39 321
v7n71.31 28268.65 28979.28 27676.40 35760.77 26886.71 29489.45 24764.17 29758.77 32978.24 32744.59 29793.54 24357.76 29461.75 32883.52 317
mvsany_test168.77 30168.56 29069.39 35173.57 36845.88 37780.93 33560.88 39659.65 33571.56 21090.26 17743.22 30275.05 38574.26 16562.70 31787.25 260
PEN-MVS69.46 29668.56 29072.17 34179.27 33049.71 35786.90 29289.24 25567.24 27959.08 32682.51 27647.23 27683.54 36548.42 32857.12 34983.25 322
MIMVSNet71.64 27968.44 29281.23 22881.97 30264.44 17773.05 37088.80 27969.67 25264.59 28674.79 35232.79 35187.82 33753.99 30876.35 22191.42 195
F-COLMAP70.66 28468.44 29277.32 29986.37 23655.91 32788.00 27586.32 31856.94 34957.28 33888.07 21133.58 34992.49 27751.02 31668.37 27583.55 315
PVSNet_068.08 1571.81 27868.32 29482.27 20184.68 26662.31 24088.68 26590.31 21275.84 12557.93 33580.65 30637.85 32894.19 21869.94 20029.05 39990.31 214
CL-MVSNet_self_test69.92 29168.09 29575.41 31473.25 36955.90 32890.05 23789.90 23069.96 24861.96 31376.54 34151.05 24287.64 34049.51 32450.59 36882.70 332
TransMVSNet (Re)70.07 29067.66 29677.31 30080.62 31559.13 29891.78 17384.94 33465.97 28560.08 32080.44 30850.78 24391.87 29248.84 32645.46 37680.94 348
tfpnnormal70.10 28967.36 29778.32 28683.45 28760.97 26488.85 26292.77 10964.85 29360.83 31678.53 32543.52 30193.48 24531.73 38761.70 33080.52 353
DTE-MVSNet68.46 30567.33 29871.87 34577.94 35049.00 36286.16 29788.58 28866.36 28358.19 33082.21 27946.36 28183.87 36344.97 34755.17 35682.73 329
DP-MVS69.90 29266.48 29980.14 25495.36 2862.93 22489.56 24676.11 36650.27 37057.69 33685.23 24639.68 31395.73 15333.35 38071.05 25981.78 342
dmvs_testset65.55 32466.45 30062.86 36579.87 32322.35 41076.55 35971.74 38077.42 10955.85 34187.77 21651.39 23980.69 38031.51 39065.92 29185.55 294
LS3D69.17 29766.40 30177.50 29591.92 10456.12 32685.12 30080.37 36046.96 37856.50 34087.51 22037.25 33293.71 24032.52 38679.40 19182.68 333
KD-MVS_2432*160069.03 29966.37 30277.01 30385.56 25261.06 26281.44 33090.25 21567.27 27658.00 33376.53 34254.49 20787.63 34148.04 33035.77 39182.34 336
miper_refine_blended69.03 29966.37 30277.01 30385.56 25261.06 26281.44 33090.25 21567.27 27658.00 33376.53 34254.49 20787.63 34148.04 33035.77 39182.34 336
Anonymous2023120667.53 31365.78 30472.79 33574.95 36347.59 36788.23 27187.32 30961.75 32358.07 33277.29 33537.79 32987.29 34542.91 35263.71 31283.48 318
MSDG69.54 29565.73 30580.96 23885.11 26163.71 20184.19 30583.28 35156.95 34854.50 34584.03 25931.50 35796.03 14342.87 35469.13 27083.14 325
RPMNet70.42 28765.68 30684.63 13883.15 28967.96 9170.25 37490.45 20346.83 38069.97 22965.10 37856.48 18795.30 17735.79 37573.13 24190.64 210
FMVSNet568.04 30865.66 30775.18 31784.43 27357.89 30783.54 30986.26 32061.83 32253.64 35073.30 35537.15 33585.08 35548.99 32561.77 32782.56 335
XVG-ACMP-BASELINE68.04 30865.53 30875.56 31374.06 36752.37 34378.43 35185.88 32562.03 31858.91 32881.21 29920.38 38491.15 30860.69 28168.18 27683.16 324
EG-PatchMatch MVS68.55 30365.41 30977.96 29178.69 34162.93 22489.86 24389.17 25960.55 32850.27 36277.73 33222.60 37994.06 22547.18 33672.65 24776.88 374
PatchT69.11 29865.37 31080.32 24782.07 30163.68 20467.96 38387.62 30750.86 36869.37 23365.18 37757.09 17288.53 33141.59 35966.60 28788.74 235
test_fmvs265.78 32364.84 31168.60 35566.54 38641.71 38583.27 31469.81 38454.38 35767.91 25684.54 25515.35 39081.22 37975.65 15266.16 28982.88 326
ACMH63.93 1768.62 30264.81 31280.03 25885.22 25763.25 21587.72 28184.66 33660.83 32751.57 35779.43 32227.29 37094.96 18641.76 35764.84 30081.88 340
Qingshan Xu and Wenbing Tao: Multi-Scale Geometric Consistency Guided Multi-View Stereo. CVPR 2019
pmmvs667.57 31264.76 31376.00 31272.82 37253.37 34088.71 26486.78 31753.19 36057.58 33778.03 33035.33 34492.41 27955.56 30254.88 35882.21 338
our_test_368.29 30664.69 31479.11 28178.92 33664.85 17088.40 27085.06 33260.32 33152.68 35276.12 34640.81 31089.80 32444.25 34955.65 35482.67 334
ACMH+65.35 1667.65 31164.55 31576.96 30584.59 26957.10 31888.08 27280.79 35758.59 34153.00 35181.09 30126.63 37292.95 25546.51 33861.69 33180.82 349
USDC67.43 31564.51 31676.19 31077.94 35055.29 33178.38 35285.00 33373.17 16848.36 37080.37 30921.23 38192.48 27852.15 31464.02 31080.81 350
Patchmatch-RL test68.17 30764.49 31779.19 27771.22 37453.93 33870.07 37671.54 38269.22 25756.79 33962.89 38256.58 18488.61 32869.53 20452.61 36395.03 82
CMPMVSbinary48.56 2166.77 31764.41 31873.84 32770.65 37850.31 35477.79 35685.73 32845.54 38244.76 38082.14 28035.40 34390.14 32063.18 26674.54 23081.07 347
M. Jancosek, T. Pajdla: Multi-View Reconstruction Preserving Weakly-Supported Surfaces. CVPR 2011
ADS-MVSNet68.54 30464.38 31981.03 23788.06 19866.90 11968.01 38184.02 34257.57 34364.48 28869.87 36838.68 31589.21 32740.87 36167.89 27986.97 262
Patchmtry67.53 31363.93 32078.34 28582.12 30064.38 18168.72 37884.00 34348.23 37759.24 32372.41 35857.82 16689.27 32646.10 34156.68 35381.36 343
ppachtmachnet_test67.72 31063.70 32179.77 26878.92 33666.04 14088.68 26582.90 35360.11 33355.45 34275.96 34739.19 31490.55 31039.53 36552.55 36482.71 331
LTVRE_ROB59.60 1966.27 31963.54 32274.45 32284.00 28051.55 34767.08 38483.53 34758.78 33954.94 34480.31 31034.54 34693.23 24940.64 36368.03 27778.58 369
Andreas Kuhn, Heiko Hirschmüller, Daniel Scharstein, Helmut Mayer: A TV Prior for High-Quality Scalable Multi-View Stereo Reconstruction. International Journal of Computer Vision 2016
ADS-MVSNet266.90 31663.44 32377.26 30188.06 19860.70 27368.01 38175.56 37057.57 34364.48 28869.87 36838.68 31584.10 35940.87 36167.89 27986.97 262
UnsupCasMVSNet_eth65.79 32263.10 32473.88 32670.71 37750.29 35581.09 33389.88 23172.58 18249.25 36774.77 35332.57 35387.43 34455.96 30141.04 38383.90 312
EU-MVSNet64.01 33163.01 32567.02 36174.40 36638.86 39383.27 31486.19 32245.11 38354.27 34681.15 30036.91 33880.01 38248.79 32757.02 35082.19 339
OpenMVS_ROBcopyleft61.12 1866.39 31862.92 32676.80 30776.51 35657.77 30989.22 25583.41 34955.48 35553.86 34977.84 33126.28 37393.95 23434.90 37768.76 27278.68 368
testgi64.48 32962.87 32769.31 35271.24 37340.62 38885.49 29879.92 36165.36 29054.18 34783.49 26623.74 37784.55 35741.60 35860.79 33782.77 328
test20.0363.83 33262.65 32867.38 36070.58 37939.94 38986.57 29584.17 34063.29 30551.86 35577.30 33437.09 33682.47 37238.87 36954.13 36079.73 359
JIA-IIPM66.06 32062.45 32976.88 30681.42 30754.45 33757.49 39688.67 28449.36 37363.86 29446.86 39456.06 19190.25 31449.53 32368.83 27185.95 285
pmmvs-eth3d65.53 32562.32 33075.19 31669.39 38259.59 28882.80 32183.43 34862.52 31451.30 35972.49 35632.86 35087.16 34655.32 30350.73 36778.83 367
OurMVSNet-221017-064.68 32762.17 33172.21 34076.08 36047.35 36880.67 33681.02 35656.19 35251.60 35679.66 32027.05 37188.56 33053.60 31153.63 36180.71 351
RPSCF64.24 33061.98 33271.01 34776.10 35945.00 37875.83 36475.94 36746.94 37958.96 32784.59 25331.40 35882.00 37647.76 33460.33 34286.04 282
SixPastTwentyTwo64.92 32661.78 33374.34 32478.74 34049.76 35683.42 31379.51 36362.86 31050.27 36277.35 33330.92 36290.49 31245.89 34247.06 37382.78 327
test_040264.54 32861.09 33474.92 31984.10 27960.75 27087.95 27679.71 36252.03 36252.41 35377.20 33632.21 35591.64 29723.14 39461.03 33472.36 382
Patchmatch-test65.86 32160.94 33580.62 24483.75 28258.83 30058.91 39575.26 37244.50 38550.95 36177.09 33858.81 15787.90 33535.13 37664.03 30995.12 78
kuosan60.86 34260.24 33662.71 36681.57 30446.43 37475.70 36585.88 32557.98 34248.95 36869.53 37058.42 15976.53 38428.25 39135.87 39065.15 389
MDA-MVSNet_test_wron63.78 33360.16 33774.64 32078.15 34860.41 27783.49 31084.03 34156.17 35439.17 39071.59 36437.22 33383.24 36942.87 35448.73 37080.26 356
YYNet163.76 33460.14 33874.62 32178.06 34960.19 28283.46 31283.99 34556.18 35339.25 38971.56 36537.18 33483.34 36742.90 35348.70 37180.32 355
COLMAP_ROBcopyleft57.96 2062.98 33659.65 33972.98 33381.44 30653.00 34283.75 30875.53 37148.34 37648.81 36981.40 29324.14 37590.30 31332.95 38260.52 33975.65 377
Johannes L. Schönberger, Enliang Zheng, Marc Pollefeys, Jan-Michael Frahm: Pixelwise View Selection for Unstructured Multi-View Stereo. ECCV 2016
K. test v363.09 33559.61 34073.53 32976.26 35849.38 36183.27 31477.15 36564.35 29647.77 37272.32 36028.73 36687.79 33849.93 32236.69 38983.41 320
Anonymous2024052162.09 33759.08 34171.10 34667.19 38548.72 36383.91 30785.23 33150.38 36947.84 37171.22 36720.74 38285.51 35446.47 33958.75 34779.06 364
KD-MVS_self_test60.87 34158.60 34267.68 35866.13 38739.93 39075.63 36684.70 33557.32 34649.57 36568.45 37229.55 36382.87 37048.09 32947.94 37280.25 357
AllTest61.66 33858.06 34372.46 33779.57 32551.42 34980.17 34268.61 38651.25 36645.88 37481.23 29519.86 38686.58 34838.98 36757.01 35179.39 361
UnsupCasMVSNet_bld61.60 33957.71 34473.29 33168.73 38351.64 34678.61 35089.05 26957.20 34746.11 37361.96 38528.70 36788.60 32950.08 32138.90 38779.63 360
MDA-MVSNet-bldmvs61.54 34057.70 34573.05 33279.53 32757.00 32283.08 31881.23 35557.57 34334.91 39372.45 35732.79 35186.26 35035.81 37441.95 38175.89 376
MIMVSNet160.16 34557.33 34668.67 35469.71 38044.13 38078.92 34984.21 33955.05 35644.63 38171.85 36223.91 37681.54 37832.63 38555.03 35780.35 354
test_vis1_rt59.09 34857.31 34764.43 36368.44 38446.02 37683.05 31948.63 40551.96 36349.57 36563.86 38116.30 38880.20 38171.21 19062.79 31667.07 388
PM-MVS59.40 34656.59 34867.84 35663.63 38941.86 38476.76 35863.22 39359.01 33851.07 36072.27 36111.72 39683.25 36861.34 27750.28 36978.39 370
new-patchmatchnet59.30 34756.48 34967.79 35765.86 38844.19 37982.47 32281.77 35459.94 33443.65 38466.20 37627.67 36981.68 37739.34 36641.40 38277.50 373
TinyColmap60.32 34356.42 35072.00 34478.78 33953.18 34178.36 35375.64 36952.30 36141.59 38875.82 34914.76 39388.35 33235.84 37354.71 35974.46 378
MVS-HIRNet60.25 34455.55 35174.35 32384.37 27456.57 32471.64 37274.11 37434.44 39345.54 37842.24 40031.11 36189.81 32240.36 36476.10 22376.67 375
dongtai55.18 35355.46 35254.34 37676.03 36136.88 39476.07 36284.61 33751.28 36543.41 38564.61 38056.56 18567.81 39518.09 39928.50 40058.32 392
test_fmvs356.82 34954.86 35362.69 36753.59 39935.47 39675.87 36365.64 39143.91 38655.10 34371.43 3666.91 40474.40 38868.64 21552.63 36278.20 371
DSMNet-mixed56.78 35054.44 35463.79 36463.21 39029.44 40564.43 38764.10 39242.12 39051.32 35871.60 36331.76 35675.04 38636.23 37265.20 29786.87 265
LF4IMVS54.01 35452.12 35559.69 36862.41 39239.91 39168.59 37968.28 38842.96 38944.55 38275.18 35014.09 39568.39 39441.36 36051.68 36570.78 383
TDRefinement55.28 35251.58 35666.39 36259.53 39646.15 37576.23 36172.80 37644.60 38442.49 38676.28 34515.29 39182.39 37333.20 38143.75 37870.62 384
pmmvs355.51 35151.50 35767.53 35957.90 39750.93 35280.37 33873.66 37540.63 39144.15 38364.75 37916.30 38878.97 38344.77 34840.98 38572.69 380
N_pmnet50.55 35549.11 35854.88 37477.17 3544.02 41884.36 3042.00 41648.59 37445.86 37668.82 37132.22 35482.80 37131.58 38851.38 36677.81 372
new_pmnet49.31 35646.44 35957.93 36962.84 39140.74 38768.47 38062.96 39436.48 39235.09 39257.81 38914.97 39272.18 39032.86 38346.44 37460.88 391
mvsany_test348.86 35746.35 36056.41 37046.00 40531.67 40162.26 38947.25 40643.71 38745.54 37868.15 37310.84 39764.44 40357.95 29335.44 39373.13 379
WB-MVS46.23 35944.94 36150.11 37962.13 39321.23 41276.48 36055.49 39845.89 38135.78 39161.44 38735.54 34272.83 3899.96 40621.75 40156.27 394
test_f46.58 35843.45 36255.96 37145.18 40632.05 40061.18 39049.49 40433.39 39442.05 38762.48 3847.00 40365.56 39947.08 33743.21 38070.27 385
SSC-MVS44.51 36143.35 36347.99 38361.01 39518.90 41474.12 36854.36 39943.42 38834.10 39460.02 38834.42 34770.39 3929.14 40819.57 40254.68 395
FPMVS45.64 36043.10 36453.23 37751.42 40236.46 39564.97 38671.91 37929.13 39727.53 39761.55 3869.83 39965.01 40116.00 40355.58 35558.22 393
EGC-MVSNET42.35 36238.09 36555.11 37374.57 36446.62 37371.63 37355.77 3970.04 4110.24 41262.70 38314.24 39474.91 38717.59 40046.06 37543.80 397
test_vis3_rt40.46 36537.79 36648.47 38244.49 40733.35 39966.56 38532.84 41332.39 39529.65 39539.13 4033.91 41168.65 39350.17 31940.99 38443.40 398
APD_test140.50 36437.31 36750.09 38051.88 40035.27 39759.45 39452.59 40121.64 40026.12 39857.80 3904.56 40866.56 39722.64 39539.09 38648.43 396
LCM-MVSNet40.54 36335.79 36854.76 37536.92 41230.81 40251.41 39969.02 38522.07 39924.63 39945.37 3964.56 40865.81 39833.67 37934.50 39467.67 386
ANet_high40.27 36635.20 36955.47 37234.74 41334.47 39863.84 38871.56 38148.42 37518.80 40241.08 4019.52 40064.45 40220.18 3978.66 40967.49 387
test_method38.59 36735.16 37048.89 38154.33 39821.35 41145.32 40253.71 4007.41 40828.74 39651.62 3928.70 40152.87 40633.73 37832.89 39572.47 381
PMMVS237.93 36833.61 37150.92 37846.31 40424.76 40860.55 39350.05 40228.94 39820.93 40047.59 3934.41 41065.13 40025.14 39318.55 40462.87 390
Gipumacopyleft34.91 36931.44 37245.30 38470.99 37639.64 39219.85 40672.56 37720.10 40216.16 40621.47 4075.08 40771.16 39113.07 40443.70 37925.08 404
S. Galliani, K. Lasinger, K. Schindler: Massively Parallel Multiview Stereopsis by Surface Normal Diffusion. ICCV 2015
testf132.77 37029.47 37342.67 38641.89 40930.81 40252.07 39743.45 40715.45 40318.52 40344.82 3972.12 41258.38 40416.05 40130.87 39738.83 399
APD_test232.77 37029.47 37342.67 38641.89 40930.81 40252.07 39743.45 40715.45 40318.52 40344.82 3972.12 41258.38 40416.05 40130.87 39738.83 399
PMVScopyleft26.43 2231.84 37228.16 37542.89 38525.87 41527.58 40650.92 40049.78 40321.37 40114.17 40740.81 4022.01 41466.62 3969.61 40738.88 38834.49 403
Y. Furukawa, J. Ponce: Accurate, dense, and robust multiview stereopsis. PAMI (2010)
cdsmvs_eth3d_5k19.86 37726.47 3760.00 3960.00 4190.00 4210.00 40793.45 840.00 4140.00 41595.27 5649.56 2540.00 4150.00 4140.00 4120.00 411
E-PMN24.61 37324.00 37726.45 39043.74 40818.44 41560.86 39139.66 40915.11 4059.53 40922.10 4066.52 40546.94 4088.31 40910.14 40613.98 406
tmp_tt22.26 37623.75 37817.80 3925.23 41612.06 41735.26 40339.48 4102.82 41018.94 40144.20 39922.23 38024.64 41136.30 3719.31 40816.69 405
EMVS23.76 37523.20 37925.46 39141.52 41116.90 41660.56 39238.79 41214.62 4068.99 41020.24 4097.35 40245.82 4097.25 4109.46 40713.64 407
MVEpermissive24.84 2324.35 37419.77 38038.09 38834.56 41426.92 40726.57 40438.87 41111.73 40711.37 40827.44 4041.37 41550.42 40711.41 40514.60 40536.93 401
Simon Fuhrmann, Fabian Langguth, Michael Goesele: MVE - A Multi-View Reconstruction Environment. EUROGRAPHICS Workshops on Graphics and Cultural Heritage (2014)
wuyk23d11.30 37810.95 38112.33 39348.05 40319.89 41325.89 4051.92 4173.58 4093.12 4111.37 4110.64 41615.77 4126.23 4117.77 4101.35 408
ab-mvs-re7.91 37910.55 3820.00 3960.00 4190.00 4210.00 4070.00 4200.00 4140.00 41594.95 660.00 4190.00 4150.00 4140.00 4120.00 411
testmvs7.23 3809.62 3830.06 3950.04 4170.02 42084.98 3020.02 4180.03 4120.18 4131.21 4120.01 4180.02 4130.14 4120.01 4110.13 410
test1236.92 3819.21 3840.08 3940.03 4180.05 41981.65 3280.01 4190.02 4130.14 4140.85 4130.03 4170.02 4130.12 4130.00 4120.16 409
pcd_1.5k_mvsjas4.46 3825.95 3850.00 3960.00 4190.00 4210.00 4070.00 4200.00 4140.00 4150.00 41453.55 2190.00 4150.00 4140.00 4120.00 411
test_blank0.00 3830.00 3860.00 3960.00 4190.00 4210.00 4070.00 4200.00 4140.00 4150.00 4140.00 4190.00 4150.00 4140.00 4120.00 411
uanet_test0.00 3830.00 3860.00 3960.00 4190.00 4210.00 4070.00 4200.00 4140.00 4150.00 4140.00 4190.00 4150.00 4140.00 4120.00 411
DCPMVS0.00 3830.00 3860.00 3960.00 4190.00 4210.00 4070.00 4200.00 4140.00 4150.00 4140.00 4190.00 4150.00 4140.00 4120.00 411
sosnet-low-res0.00 3830.00 3860.00 3960.00 4190.00 4210.00 4070.00 4200.00 4140.00 4150.00 4140.00 4190.00 4150.00 4140.00 4120.00 411
sosnet0.00 3830.00 3860.00 3960.00 4190.00 4210.00 4070.00 4200.00 4140.00 4150.00 4140.00 4190.00 4150.00 4140.00 4120.00 411
uncertanet0.00 3830.00 3860.00 3960.00 4190.00 4210.00 4070.00 4200.00 4140.00 4150.00 4140.00 4190.00 4150.00 4140.00 4120.00 411
Regformer0.00 3830.00 3860.00 3960.00 4190.00 4210.00 4070.00 4200.00 4140.00 4150.00 4140.00 4190.00 4150.00 4140.00 4120.00 411
uanet0.00 3830.00 3860.00 3960.00 4190.00 4210.00 4070.00 4200.00 4140.00 4150.00 4140.00 4190.00 4150.00 4140.00 4120.00 411
WAC-MVS49.45 35931.56 389
FOURS193.95 4761.77 24993.96 7291.92 14362.14 31786.57 48
MSC_two_6792asdad89.60 897.31 473.22 1295.05 2699.07 1392.01 2494.77 2596.51 24
PC_three_145280.91 4694.07 296.83 1883.57 499.12 595.70 797.42 497.55 4
No_MVS89.60 897.31 473.22 1295.05 2699.07 1392.01 2494.77 2596.51 24
test_one_060196.32 1869.74 4994.18 5771.42 22590.67 1896.85 1674.45 18
eth-test20.00 419
eth-test0.00 419
ZD-MVS96.63 965.50 15593.50 8270.74 24085.26 6395.19 6264.92 8297.29 7787.51 5893.01 56
IU-MVS96.46 1169.91 4395.18 2080.75 4995.28 192.34 2195.36 1396.47 28
OPU-MVS89.97 397.52 373.15 1496.89 597.00 983.82 299.15 295.72 597.63 397.62 2
test_241102_TWO94.41 4871.65 21492.07 897.21 474.58 1799.11 692.34 2195.36 1396.59 19
test_241102_ONE96.45 1269.38 5494.44 4671.65 21492.11 697.05 776.79 999.11 6
save fliter93.84 5067.89 9395.05 4092.66 11678.19 92
test_0728_THIRD72.48 18490.55 1996.93 1176.24 1199.08 1191.53 2994.99 1796.43 30
test_0728_SECOND88.70 1896.45 1270.43 3596.64 994.37 5299.15 291.91 2794.90 2196.51 24
test072696.40 1569.99 3996.76 794.33 5471.92 20091.89 1097.11 673.77 21
GSMVS94.68 97
test_part296.29 1968.16 8790.78 16
sam_mvs157.85 16594.68 97
sam_mvs54.91 204
ambc69.61 35061.38 39441.35 38649.07 40185.86 32750.18 36466.40 37510.16 39888.14 33445.73 34344.20 37779.32 363
MTGPAbinary92.23 129
test_post178.95 34820.70 40853.05 22491.50 30560.43 282
test_post23.01 40556.49 18692.67 270
patchmatchnet-post67.62 37457.62 16890.25 314
GG-mvs-BLEND86.53 7191.91 10569.67 5275.02 36794.75 3378.67 13290.85 16377.91 794.56 20372.25 17993.74 4595.36 63
MTMP93.77 8632.52 414
gm-plane-assit88.42 18667.04 11678.62 8991.83 14697.37 7176.57 145
test9_res89.41 4194.96 1895.29 68
TEST994.18 4167.28 10894.16 6193.51 8071.75 21185.52 5895.33 5168.01 5397.27 82
test_894.19 4067.19 11094.15 6393.42 8671.87 20585.38 6195.35 5068.19 5196.95 105
agg_prior286.41 7094.75 2995.33 64
agg_prior94.16 4366.97 11893.31 8984.49 6996.75 115
TestCases72.46 33779.57 32551.42 34968.61 38651.25 36645.88 37481.23 29519.86 38686.58 34838.98 36757.01 35179.39 361
test_prior467.18 11293.92 75
test_prior295.10 3875.40 13285.25 6495.61 4567.94 5487.47 5994.77 25
test_prior86.42 7494.71 3567.35 10793.10 9996.84 11295.05 80
旧先验292.00 16259.37 33787.54 4193.47 24675.39 154
新几何291.41 184
新几何184.73 13192.32 9064.28 18691.46 16959.56 33679.77 11492.90 12056.95 17896.57 12063.40 26292.91 5893.34 147
旧先验191.94 10260.74 27191.50 16794.36 8465.23 7791.84 7294.55 104
无先验92.71 12792.61 12062.03 31897.01 9566.63 23393.97 129
原ACMM292.01 159
原ACMM184.42 14593.21 6764.27 18793.40 8865.39 28979.51 11792.50 12858.11 16496.69 11665.27 25293.96 4092.32 177
test22289.77 15161.60 25489.55 24789.42 24956.83 35077.28 14692.43 13252.76 22791.14 8693.09 155
testdata296.09 13761.26 278
segment_acmp65.94 70
testdata81.34 22689.02 17257.72 31089.84 23258.65 34085.32 6294.09 9657.03 17393.28 24869.34 20690.56 9293.03 158
testdata189.21 25677.55 105
test1287.09 5194.60 3668.86 6692.91 10582.67 8565.44 7597.55 6293.69 4894.84 90
plane_prior786.94 22661.51 255
plane_prior687.23 21862.32 23950.66 244
plane_prior591.31 17395.55 16776.74 14378.53 20188.39 242
plane_prior489.14 195
plane_prior361.95 24779.09 8072.53 195
plane_prior293.13 11178.81 86
plane_prior187.15 220
plane_prior62.42 23593.85 7979.38 7278.80 198
n20.00 420
nn0.00 420
door-mid66.01 390
lessismore_v073.72 32872.93 37147.83 36661.72 39545.86 37673.76 35428.63 36889.81 32247.75 33531.37 39683.53 316
LGP-MVS_train79.56 27384.31 27559.37 29289.73 23969.49 25364.86 28388.42 20038.65 31794.30 21272.56 17672.76 24585.01 302
test1193.01 101
door66.57 389
HQP5-MVS63.66 205
HQP-NCC87.54 21194.06 6579.80 6374.18 175
ACMP_Plane87.54 21194.06 6579.80 6374.18 175
BP-MVS77.63 140
HQP4-MVS74.18 17595.61 16188.63 236
HQP3-MVS91.70 15978.90 196
HQP2-MVS51.63 237
NP-MVS87.41 21463.04 22090.30 174
MDTV_nov1_ep13_2view59.90 28580.13 34367.65 27372.79 19054.33 21259.83 28692.58 170
ACMMP++_ref71.63 253
ACMMP++69.72 262
Test By Simon54.21 213
ITE_SJBPF70.43 34874.44 36547.06 37277.32 36460.16 33254.04 34883.53 26423.30 37884.01 36143.07 35161.58 33280.21 358
DeepMVS_CXcopyleft34.71 38951.45 40124.73 40928.48 41531.46 39617.49 40552.75 3915.80 40642.60 41018.18 39819.42 40336.81 402