This table lists the benchmark results for the high-res multi-view scenario. The following metrics are evaluated:

(*) For exact definitions, detailing how potentially incomplete ground truth is taken into account, see our paper.

The datasets are grouped into different categories, and result averages are computed for a category and method if results of the method are available for all datasets within the category. Note that the category "all" includes both the high-res multi-view and the low-res many-view scenarios.

Methods with suffix _ROB may participate in the Robust Vision Challenge.

Click a dataset result cell to show a visualization of the reconstruction. For training datasets, ground truth and accuracy / completeness visualizations are also available. The visualizations may not work with mobile browsers.




Method Infoallhigh-res
multi-view
indooroutdoorbotani.boulde.bridgedoorexhibi.lectur.living.loungeobserv.old co.statueterrac.
sort bysort bysorted bysort bysort bysort bysort bysort bysort bysort bysort bysort bysort bysort bysort bysort by
MSP-MVS90.38 591.87 185.88 8492.83 7564.03 18893.06 11094.33 5482.19 2893.65 396.15 3585.89 197.19 8291.02 3397.75 196.43 26
Zhenlong Yuan, Cong Liu, Fei Shen, Zhaoxin Li, Jingguo luo, Tianlu Mao and Zhaoqi Wang: MSP-MVS: Multi-granularity Segmentation Prior Guided Multi-View Stereo. AAAI2025
MM90.87 291.52 288.92 1392.12 9571.10 2597.02 396.04 688.70 291.57 1396.19 3370.12 4098.91 1796.83 195.06 1696.76 12
MCST-MVS91.08 191.46 389.94 497.66 273.37 897.13 295.58 1189.33 185.77 5196.26 3072.84 2699.38 192.64 1995.93 997.08 9
DeepPCF-MVS81.17 189.72 1091.38 484.72 12893.00 7258.16 30196.72 894.41 4886.50 890.25 2197.83 175.46 1498.67 2592.78 1895.49 1297.32 6
DVP-MVS++90.53 491.09 588.87 1497.31 469.91 4093.96 7094.37 5272.48 18192.07 896.85 1683.82 299.15 291.53 2997.42 497.55 4
patch_mono-289.71 1190.99 685.85 8796.04 2463.70 19895.04 4095.19 1986.74 791.53 1495.15 6273.86 2097.58 5993.38 1492.00 6796.28 32
CNVR-MVS90.32 690.89 788.61 1996.76 870.65 2996.47 1394.83 3084.83 1189.07 3196.80 1970.86 3699.06 1592.64 1995.71 1096.12 35
DPM-MVS90.70 390.52 891.24 189.68 15076.68 297.29 195.35 1582.87 2091.58 1297.22 379.93 599.10 983.12 9397.64 297.94 1
MVS_030490.01 890.50 988.53 2090.14 14170.94 2696.47 1395.72 1087.33 489.60 2896.26 3068.44 4598.74 2495.82 494.72 3095.90 42
SED-MVS89.94 990.36 1088.70 1696.45 1269.38 5196.89 594.44 4671.65 21192.11 697.21 476.79 999.11 692.34 2195.36 1397.62 2
DELS-MVS90.05 790.09 1189.94 493.14 6973.88 797.01 494.40 5088.32 385.71 5294.91 6874.11 1998.91 1787.26 5995.94 897.03 10
Christian Sormann, Emanuele Santellani, Mattia Rossi, Andreas Kuhn, Friedrich Fraundorfer: DELS-MVS: Deep Epipolar Line Search for Multi-View Stereo. Winter Conference on Applications of Computer Vision (WACV), 2023
CANet89.61 1289.99 1288.46 2194.39 3969.71 4796.53 1293.78 6686.89 689.68 2795.78 4065.94 6699.10 992.99 1693.91 4096.58 18
HPM-MVS++copyleft89.37 1489.95 1387.64 3195.10 3068.23 8295.24 3394.49 4482.43 2588.90 3296.35 2771.89 3498.63 2688.76 4796.40 696.06 36
DVP-MVScopyleft89.41 1389.73 1488.45 2296.40 1569.99 3696.64 994.52 4271.92 19790.55 1996.93 1173.77 2199.08 1191.91 2794.90 2196.29 30
Zhenlong Yuan, Jinguo Luo, Fei Shen, Zhaoxin Li, Cong Liu, Tianlu Mao, Zhaoqi Wang: DVP-MVS: Synergize Depth-Edge and Visibility Prior for Multi-View Stereo. AAAI2025
NCCC89.07 1589.46 1587.91 2596.60 1069.05 6096.38 1594.64 3984.42 1286.74 4396.20 3266.56 6298.76 2389.03 4694.56 3295.92 41
DPE-MVScopyleft88.77 1689.21 1687.45 4096.26 2067.56 9894.17 5794.15 5968.77 26190.74 1797.27 276.09 1298.49 2990.58 3794.91 2096.30 29
Kehua Chen, Zhenlong Yuan, Tianlu Mao, Zhaoqi Wang: Dual-Level Precision Edges Guided Multi-View Stereo with Accurate Planarization. AAAI2025
TSAR-MVS + MP.88.11 1988.64 1786.54 6791.73 10868.04 8690.36 22493.55 7982.89 1991.29 1592.89 11972.27 3196.03 13887.99 5094.77 2595.54 52
Zhenlong Yuan, Jiakai Cao, Zhaoqi Wang, Zhaoxin Li: TSAR-MVS: Textureless-aware Segmentation and Correlative Refinement Guided Multi-View Stereo. Pattern Recognition
test_fmvsm_n_192087.69 2588.50 1885.27 10887.05 22163.55 20593.69 8791.08 18384.18 1390.17 2397.04 867.58 5497.99 3995.72 590.03 9294.26 109
EPNet87.84 2388.38 1986.23 7793.30 6366.05 13595.26 3294.84 2987.09 588.06 3494.53 7766.79 5997.34 7383.89 8991.68 7295.29 64
Wanjuan Su, Wenbing Tao: Efficient Edge-Preserving Multi-View Stereo Network for Depth Estimation. AAAI 2023
TSAR-MVS + GP.87.96 2088.37 2086.70 6093.51 5965.32 15395.15 3693.84 6578.17 9085.93 5094.80 7175.80 1398.21 3489.38 4088.78 10196.59 16
SMA-MVScopyleft88.14 1788.29 2187.67 3093.21 6668.72 6893.85 7794.03 6274.18 14491.74 1196.67 2165.61 7098.42 3389.24 4396.08 795.88 43
Yufeng Yin; Xiaoyan Liu; Zichao Zhang: SMA-MVS: Segmentation-Guided Multi-Scale Anchor Deformation Patch Multi-View Stereo. IEEE Transactions on Circuits and Systems for Video Technology
fmvsm_l_conf0.5_n87.49 2788.19 2285.39 10286.95 22264.37 17894.30 5488.45 28480.51 4992.70 496.86 1569.98 4197.15 8695.83 388.08 10894.65 95
fmvsm_l_conf0.5_n_a87.44 2988.15 2385.30 10687.10 21964.19 18594.41 5288.14 29380.24 5692.54 596.97 1069.52 4397.17 8395.89 288.51 10494.56 98
DeepC-MVS_fast79.48 287.95 2188.00 2487.79 2895.86 2768.32 7695.74 2194.11 6083.82 1583.49 7396.19 3364.53 8498.44 3183.42 9294.88 2496.61 15
Andreas Kuhn, Christian Sormann, Mattia Rossi, Oliver Erdler, Friedrich Fraundorfer: DeepC-MVS: Deep Confidence Prediction for Multi-View Stereo Reconstruction. 3DV 2020
APDe-MVScopyleft87.54 2687.84 2586.65 6196.07 2366.30 13194.84 4593.78 6669.35 25288.39 3396.34 2867.74 5397.66 5490.62 3693.44 4996.01 39
Zhaojie Zeng, Yuesong Wang, Tao Guan: Matching Ambiguity-Resilient Multi-View Stereo via Adaptive Patch Deformation. Pattern Recognition
lupinMVS87.74 2487.77 2687.63 3589.24 16571.18 2296.57 1192.90 10682.70 2387.13 3995.27 5664.99 7595.80 14389.34 4191.80 7095.93 40
9.1487.63 2793.86 4794.41 5294.18 5772.76 17686.21 4696.51 2466.64 6097.88 4490.08 3894.04 37
PS-MVSNAJ88.14 1787.61 2889.71 692.06 9676.72 195.75 2093.26 9083.86 1489.55 2996.06 3653.55 21297.89 4391.10 3193.31 5194.54 101
dcpmvs_287.37 3087.55 2986.85 5395.04 3268.20 8390.36 22490.66 19579.37 6981.20 8993.67 10374.73 1596.55 11890.88 3492.00 6795.82 44
SD-MVS87.49 2787.49 3087.50 3993.60 5468.82 6693.90 7492.63 11776.86 10987.90 3595.76 4166.17 6397.63 5689.06 4591.48 7696.05 37
Zhenlong Yuan, Jiakai Cao, Zhaoxin Li, Hao Jiang and Zhaoqi Wang: SD-MVS: Segmentation-driven Deformation Multi-View Stereo with Spherical Refinement and EM optimization. AAAI2024
train_agg87.21 3287.42 3186.60 6394.18 4167.28 10594.16 5893.51 8071.87 20285.52 5495.33 5168.19 4897.27 8089.09 4494.90 2195.25 70
xiu_mvs_v2_base87.92 2287.38 3289.55 1191.41 11976.43 395.74 2193.12 9883.53 1789.55 2995.95 3853.45 21697.68 5091.07 3292.62 5894.54 101
test_fmvsmconf_n86.58 4187.17 3384.82 12185.28 25262.55 22994.26 5689.78 22883.81 1687.78 3696.33 2965.33 7296.98 9894.40 1187.55 11394.95 80
SF-MVS87.03 3487.09 3486.84 5492.70 8167.45 10393.64 9093.76 6970.78 23586.25 4596.44 2666.98 5797.79 4788.68 4894.56 3295.28 66
CS-MVS-test86.14 4887.01 3583.52 16692.63 8459.36 28995.49 2791.92 14180.09 5785.46 5695.53 4761.82 12195.77 14686.77 6593.37 5095.41 54
alignmvs87.28 3186.97 3688.24 2491.30 12071.14 2495.61 2593.56 7879.30 7087.07 4195.25 5868.43 4696.93 10587.87 5184.33 14296.65 14
fmvsm_s_conf0.5_n86.39 4386.91 3784.82 12187.36 21463.54 20694.74 4790.02 22282.52 2490.14 2496.92 1362.93 10997.84 4695.28 882.26 15893.07 152
SteuartSystems-ACMMP86.82 3886.90 3886.58 6590.42 13566.38 12896.09 1793.87 6477.73 9784.01 7195.66 4363.39 10097.94 4087.40 5793.55 4895.42 53
Skip Steuart: Steuart Systems R&D Blog.
PVSNet_Blended86.73 3986.86 3986.31 7693.76 4967.53 10096.33 1693.61 7682.34 2781.00 9493.08 11363.19 10497.29 7687.08 6191.38 7894.13 116
PHI-MVS86.83 3786.85 4086.78 5893.47 6065.55 14995.39 3095.10 2271.77 20785.69 5396.52 2362.07 11698.77 2286.06 7095.60 1196.03 38
CS-MVS85.80 5586.65 4183.27 17492.00 10058.92 29495.31 3191.86 14679.97 5884.82 6295.40 4962.26 11495.51 16486.11 6992.08 6695.37 57
testing1186.71 4086.44 4287.55 3793.54 5771.35 1993.65 8995.58 1181.36 4180.69 9792.21 13772.30 3096.46 12385.18 7683.43 14894.82 88
MG-MVS87.11 3386.27 4389.62 797.79 176.27 494.96 4394.49 4478.74 8583.87 7292.94 11764.34 8596.94 10375.19 15194.09 3695.66 47
CSCG86.87 3586.26 4488.72 1595.05 3170.79 2893.83 8295.33 1668.48 26577.63 13594.35 8673.04 2498.45 3084.92 8093.71 4596.92 11
canonicalmvs86.85 3686.25 4588.66 1891.80 10771.92 1493.54 9591.71 15480.26 5487.55 3795.25 5863.59 9896.93 10588.18 4984.34 14197.11 8
jason86.40 4286.17 4687.11 4786.16 23770.54 3195.71 2492.19 13282.00 3084.58 6494.34 8761.86 11895.53 16387.76 5290.89 8495.27 67
jason: jason.
ETV-MVS86.01 5086.11 4785.70 9490.21 14067.02 11493.43 10291.92 14181.21 4384.13 7094.07 9660.93 12995.63 15489.28 4289.81 9394.46 107
fmvsm_s_conf0.5_n_a85.75 5686.09 4884.72 12885.73 24663.58 20393.79 8389.32 24681.42 3990.21 2296.91 1462.41 11397.67 5194.48 1080.56 17792.90 158
test_fmvsmconf0.1_n85.71 5786.08 4984.62 13580.83 30562.33 23393.84 8088.81 27183.50 1887.00 4296.01 3763.36 10196.93 10594.04 1287.29 11694.61 97
APD-MVScopyleft85.93 5285.99 5085.76 9195.98 2665.21 15693.59 9392.58 11966.54 27986.17 4795.88 3963.83 9197.00 9486.39 6792.94 5595.06 75
Yuesong Wang, Zhaojie Zeng and etc.: Adaptive Patch Deformation for Textureless-Resilient Multi-View Stereo. CVPR2023
fmvsm_s_conf0.1_n85.61 6085.93 5184.68 13182.95 28963.48 20894.03 6889.46 24081.69 3389.86 2596.74 2061.85 11997.75 4994.74 982.01 16492.81 160
MSLP-MVS++86.27 4585.91 5287.35 4292.01 9968.97 6395.04 4092.70 11179.04 7981.50 8796.50 2558.98 15196.78 11083.49 9193.93 3996.29 30
WTY-MVS86.32 4485.81 5387.85 2692.82 7769.37 5395.20 3495.25 1782.71 2281.91 8494.73 7267.93 5297.63 5679.55 12082.25 15996.54 19
ACMMP_NAP86.05 4985.80 5486.80 5791.58 11267.53 10091.79 16893.49 8374.93 13584.61 6395.30 5359.42 14597.92 4186.13 6894.92 1994.94 81
MVS_111021_HR86.19 4785.80 5487.37 4193.17 6869.79 4493.99 6993.76 6979.08 7778.88 12393.99 9762.25 11598.15 3685.93 7191.15 8294.15 115
VNet86.20 4685.65 5687.84 2793.92 4669.99 3695.73 2395.94 778.43 8786.00 4993.07 11458.22 15697.00 9485.22 7484.33 14296.52 20
testing9986.01 5085.47 5787.63 3593.62 5371.25 2193.47 10095.23 1880.42 5280.60 9991.95 14171.73 3596.50 12180.02 11782.22 16095.13 73
CDPH-MVS85.71 5785.46 5886.46 6994.75 3467.19 10793.89 7592.83 10870.90 23183.09 7695.28 5463.62 9697.36 7180.63 11294.18 3594.84 85
PAPM85.89 5485.46 5887.18 4588.20 19372.42 1392.41 14092.77 10982.11 2980.34 10393.07 11468.27 4795.02 17678.39 13393.59 4794.09 118
testing9185.93 5285.31 6087.78 2993.59 5571.47 1793.50 9795.08 2580.26 5480.53 10091.93 14270.43 3896.51 12080.32 11582.13 16295.37 57
DeepC-MVS77.85 385.52 6185.24 6186.37 7388.80 17566.64 12292.15 14793.68 7481.07 4476.91 14593.64 10462.59 11198.44 3185.50 7292.84 5794.03 122
Andreas Kuhn, Christian Sormann, Mattia Rossi, Oliver Erdler, Friedrich Fraundorfer: DeepC-MVS: Deep Confidence Prediction for Multi-View Stereo Reconstruction. 3DV 2020
casdiffmvs_mvgpermissive85.66 5985.18 6287.09 4888.22 19269.35 5493.74 8691.89 14481.47 3580.10 10591.45 15164.80 8096.35 12487.23 6087.69 11195.58 50
Fangjinhua Wang, Qingshan Xu, Yew-Soon Ong, Marc Pollefeys: Lightweight and Accurate Multi-View Stereo With Confidence-Aware Diffusion Model. IEEE T-PAMI 2025
MP-MVS-pluss85.24 6485.13 6385.56 9791.42 11765.59 14791.54 17892.51 12174.56 13880.62 9895.64 4459.15 14997.00 9486.94 6393.80 4194.07 120
MP-MVS-pluss: MP-MVS-pluss. MP-MVS-pluss
ZNCC-MVS85.33 6385.08 6486.06 7993.09 7165.65 14593.89 7593.41 8773.75 15579.94 10794.68 7460.61 13298.03 3882.63 9693.72 4494.52 103
EC-MVSNet84.53 7585.04 6583.01 17889.34 15761.37 25394.42 5191.09 18177.91 9483.24 7494.20 9258.37 15495.40 16585.35 7391.41 7792.27 177
MP-MVScopyleft85.02 6784.97 6685.17 11292.60 8564.27 18393.24 10592.27 12673.13 16679.63 11194.43 8061.90 11797.17 8385.00 7892.56 5994.06 121
Rongxuan Tan, Qing Wang, et al.: MP-MVS: Multi-Scale Windows PatchMatch and Planar Prior Multi-View Stereo.
EIA-MVS84.84 7084.88 6784.69 13091.30 12062.36 23293.85 7792.04 13679.45 6679.33 11694.28 9062.42 11296.35 12480.05 11691.25 8195.38 56
casdiffmvspermissive85.37 6284.87 6886.84 5488.25 19069.07 5993.04 11291.76 15181.27 4280.84 9692.07 13964.23 8696.06 13684.98 7987.43 11595.39 55
Fangjinhua Wang, Qingshan Xu, Yew-Soon Ong, Marc Pollefeys: Lightweight and Accurate Multi-View Stereo With Confidence-Aware Diffusion Model. IEEE T-PAMI 2025
fmvsm_s_conf0.1_n_a84.76 7184.84 6984.53 13780.23 31563.50 20792.79 12088.73 27580.46 5089.84 2696.65 2260.96 12897.57 6193.80 1380.14 17992.53 167
testing22285.18 6584.69 7086.63 6292.91 7469.91 4092.61 13195.80 980.31 5380.38 10292.27 13468.73 4495.19 17375.94 14683.27 15094.81 89
PAPR85.15 6684.47 7187.18 4596.02 2568.29 7791.85 16693.00 10376.59 11679.03 11995.00 6361.59 12297.61 5878.16 13489.00 10095.63 48
baseline85.01 6884.44 7286.71 5988.33 18768.73 6790.24 22991.82 15081.05 4581.18 9092.50 12663.69 9496.08 13584.45 8486.71 12595.32 62
HFP-MVS84.73 7284.40 7385.72 9393.75 5165.01 16293.50 9793.19 9472.19 19179.22 11794.93 6659.04 15097.67 5181.55 10392.21 6294.49 106
GST-MVS84.63 7484.29 7485.66 9592.82 7765.27 15493.04 11293.13 9773.20 16478.89 12094.18 9359.41 14697.85 4581.45 10592.48 6193.86 130
ACMMPR84.37 7684.06 7585.28 10793.56 5664.37 17893.50 9793.15 9672.19 19178.85 12594.86 6956.69 17697.45 6581.55 10392.20 6394.02 123
region2R84.36 7784.03 7685.36 10493.54 5764.31 18193.43 10292.95 10472.16 19478.86 12494.84 7056.97 17197.53 6381.38 10792.11 6594.24 110
diffmvspermissive84.28 7983.83 7785.61 9687.40 21268.02 8790.88 20889.24 24980.54 4881.64 8692.52 12559.83 14094.52 20187.32 5885.11 13594.29 108
Fangjinhua Wang, Qingshan Xu, Yew-Soon Ong, Marc Pollefeys: Lightweight and Accurate Multi-View Stereo With Confidence-Aware Diffusion Model. IEEE T-PAMI 2025
ETVMVS84.22 8383.71 7885.76 9192.58 8668.25 8192.45 13995.53 1479.54 6579.46 11391.64 14970.29 3994.18 21469.16 20682.76 15694.84 85
EI-MVSNet-Vis-set83.77 9383.67 7984.06 15392.79 8063.56 20491.76 17194.81 3179.65 6477.87 13294.09 9463.35 10297.90 4279.35 12279.36 18690.74 203
test_fmvsmconf0.01_n83.70 9683.52 8084.25 14975.26 35761.72 24792.17 14687.24 30682.36 2684.91 6195.41 4855.60 18896.83 10992.85 1785.87 13194.21 111
CANet_DTU84.09 8683.52 8085.81 8890.30 13866.82 11791.87 16489.01 26385.27 986.09 4893.74 10147.71 26796.98 9877.90 13689.78 9593.65 135
PVSNet_Blended_VisFu83.97 8883.50 8285.39 10290.02 14366.59 12593.77 8491.73 15277.43 10577.08 14489.81 18163.77 9396.97 10079.67 11988.21 10692.60 164
test_fmvsmvis_n_192083.80 9283.48 8384.77 12582.51 29163.72 19691.37 18883.99 33781.42 3977.68 13495.74 4258.37 15497.58 5993.38 1486.87 11993.00 155
XVS83.87 9083.47 8485.05 11393.22 6463.78 19292.92 11792.66 11473.99 14778.18 12994.31 8955.25 19097.41 6879.16 12491.58 7493.95 125
CHOSEN 1792x268884.98 6983.45 8589.57 1089.94 14575.14 592.07 15392.32 12481.87 3175.68 15488.27 20060.18 13598.60 2780.46 11490.27 9194.96 79
PVSNet_BlendedMVS83.38 9983.43 8683.22 17593.76 4967.53 10094.06 6393.61 7679.13 7581.00 9485.14 24363.19 10497.29 7687.08 6173.91 23284.83 302
MAR-MVS84.18 8483.43 8686.44 7096.25 2165.93 14094.28 5594.27 5674.41 13979.16 11895.61 4553.99 20798.88 2169.62 20093.26 5294.50 105
Zhenyu Xu, Yiguang Liu, Xuelei Shi, Ying Wang, Yunan Zheng: MARMVS: Matching Ambiguity Reduced Multiple View Stereo for Efficient Large Scale Scene Reconstruction. CVPR 2020
baseline283.68 9783.42 8884.48 14087.37 21366.00 13790.06 23395.93 879.71 6369.08 23390.39 16977.92 696.28 12678.91 12881.38 17091.16 199
CP-MVS83.71 9583.40 8984.65 13293.14 6963.84 19094.59 4992.28 12571.03 22977.41 13894.92 6755.21 19396.19 12881.32 10890.70 8693.91 127
MTAPA83.91 8983.38 9085.50 9891.89 10565.16 15881.75 32492.23 12775.32 13080.53 10095.21 6056.06 18497.16 8584.86 8192.55 6094.18 112
HY-MVS76.49 584.28 7983.36 9187.02 5192.22 9267.74 9384.65 30194.50 4379.15 7482.23 8287.93 20966.88 5896.94 10380.53 11382.20 16196.39 28
MVS_Test84.16 8583.20 9287.05 5091.56 11369.82 4389.99 23892.05 13577.77 9682.84 7786.57 22863.93 9096.09 13274.91 15689.18 9995.25 70
test_yl84.28 7983.16 9387.64 3194.52 3769.24 5595.78 1895.09 2369.19 25581.09 9192.88 12057.00 16997.44 6681.11 11081.76 16696.23 33
DCV-MVSNet84.28 7983.16 9387.64 3194.52 3769.24 5595.78 1895.09 2369.19 25581.09 9192.88 12057.00 16997.44 6681.11 11081.76 16696.23 33
ET-MVSNet_ETH3D84.01 8783.15 9586.58 6590.78 13170.89 2794.74 4794.62 4081.44 3858.19 32793.64 10473.64 2392.35 27982.66 9578.66 19496.50 24
EI-MVSNet-UG-set83.14 10482.96 9683.67 16492.28 9063.19 21491.38 18794.68 3779.22 7276.60 14793.75 10062.64 11097.76 4878.07 13578.01 19790.05 212
HPM-MVScopyleft83.25 10282.95 9784.17 15192.25 9162.88 22490.91 20591.86 14670.30 24177.12 14293.96 9856.75 17496.28 12682.04 10091.34 8093.34 142
Chunlin Ren, Qingshan Xu, Shikun Zhang, Jiaqi Yang: Hierarchical Prior Mining for Non-local Multi-View Stereo. ICCV 2023
test250683.29 10082.92 9884.37 14488.39 18563.18 21592.01 15691.35 16977.66 9978.49 12891.42 15264.58 8395.09 17573.19 16389.23 9794.85 82
MVSFormer83.75 9482.88 9986.37 7389.24 16571.18 2289.07 25790.69 19265.80 28487.13 3994.34 8764.99 7592.67 26572.83 16791.80 7095.27 67
MVS84.66 7382.86 10090.06 290.93 12674.56 687.91 27595.54 1368.55 26372.35 19794.71 7359.78 14198.90 1981.29 10994.69 3196.74 13
Effi-MVS+83.82 9182.76 10186.99 5289.56 15369.40 5091.35 19086.12 31772.59 17883.22 7592.81 12359.60 14396.01 14081.76 10287.80 11095.56 51
LFMVS84.34 7882.73 10289.18 1294.76 3373.25 994.99 4291.89 14471.90 19982.16 8393.49 10847.98 26397.05 8982.55 9784.82 13797.25 7
iter_conf0583.27 10182.70 10384.98 11693.32 6271.84 1594.16 5881.76 34882.74 2173.83 17788.40 19672.77 2794.61 19282.10 9975.21 22188.48 235
PGM-MVS83.25 10282.70 10384.92 11792.81 7964.07 18790.44 22092.20 13171.28 22377.23 14194.43 8055.17 19497.31 7579.33 12391.38 7893.37 141
SR-MVS82.81 10982.58 10583.50 16993.35 6161.16 25692.23 14591.28 17364.48 29381.27 8895.28 5453.71 21195.86 14282.87 9488.77 10293.49 139
h-mvs3383.01 10682.56 10684.35 14589.34 15762.02 23992.72 12393.76 6981.45 3682.73 7992.25 13660.11 13697.13 8787.69 5362.96 31193.91 127
thisisatest051583.41 9882.49 10786.16 7889.46 15668.26 7993.54 9594.70 3674.31 14275.75 15290.92 15972.62 2896.52 11969.64 19881.50 16993.71 133
mPP-MVS82.96 10882.44 10884.52 13892.83 7562.92 22292.76 12191.85 14871.52 21975.61 15794.24 9153.48 21596.99 9778.97 12790.73 8593.64 136
sss82.71 11282.38 10983.73 16189.25 16259.58 28492.24 14494.89 2877.96 9279.86 10892.38 13156.70 17597.05 8977.26 13980.86 17494.55 99
CLD-MVS82.73 11082.35 11083.86 15787.90 20067.65 9695.45 2892.18 13385.06 1072.58 19092.27 13452.46 22395.78 14484.18 8579.06 18988.16 241
Zhaoxin Li, Wangmeng Zuo, Zhaoqi Wang, Lei Zhang: Confidence-based Large-scale Dense Multi-view Stereo. IEEE Transaction on Image Processing, 2020
MVSTER82.47 11482.05 11183.74 15992.68 8269.01 6191.90 16393.21 9179.83 5972.14 19885.71 24074.72 1694.72 18775.72 14772.49 24387.50 246
PMMVS81.98 12482.04 11281.78 21189.76 14956.17 32291.13 20190.69 19277.96 9280.09 10693.57 10646.33 27794.99 17881.41 10687.46 11494.17 113
test_vis1_n_192081.66 12882.01 11380.64 23882.24 29455.09 33094.76 4686.87 30881.67 3484.40 6694.63 7538.17 31694.67 19191.98 2683.34 14992.16 181
TESTMET0.1,182.41 11581.98 11483.72 16288.08 19463.74 19492.70 12593.77 6879.30 7077.61 13687.57 21558.19 15794.08 21873.91 16286.68 12693.33 144
PAPM_NR82.97 10781.84 11586.37 7394.10 4466.76 12087.66 28092.84 10769.96 24574.07 17493.57 10663.10 10797.50 6470.66 19190.58 8894.85 82
VDD-MVS83.06 10581.81 11686.81 5690.86 12967.70 9495.40 2991.50 16475.46 12781.78 8592.34 13340.09 30597.13 8786.85 6482.04 16395.60 49
DP-MVS Recon82.73 11081.65 11785.98 8197.31 467.06 11195.15 3691.99 13869.08 25876.50 14993.89 9954.48 20298.20 3570.76 18985.66 13392.69 161
MVS_111021_LR82.02 12381.52 11883.51 16888.42 18362.88 22489.77 24288.93 26776.78 11275.55 15893.10 11150.31 24095.38 16783.82 9087.02 11892.26 178
EPP-MVSNet81.79 12681.52 11882.61 18788.77 17660.21 27693.02 11493.66 7568.52 26472.90 18590.39 16972.19 3294.96 17974.93 15579.29 18892.67 162
APD-MVS_3200maxsize81.64 12981.32 12082.59 18892.36 8858.74 29691.39 18591.01 18863.35 30279.72 11094.62 7651.82 22696.14 13079.71 11887.93 10992.89 159
CostFormer82.33 11681.15 12185.86 8689.01 17068.46 7382.39 32193.01 10175.59 12580.25 10481.57 28672.03 3394.96 17979.06 12677.48 20594.16 114
xiu_mvs_v1_base_debu82.16 11981.12 12285.26 10986.42 23068.72 6892.59 13490.44 20273.12 16784.20 6794.36 8238.04 31995.73 14884.12 8686.81 12091.33 192
xiu_mvs_v1_base82.16 11981.12 12285.26 10986.42 23068.72 6892.59 13490.44 20273.12 16784.20 6794.36 8238.04 31995.73 14884.12 8686.81 12091.33 192
xiu_mvs_v1_base_debi82.16 11981.12 12285.26 10986.42 23068.72 6892.59 13490.44 20273.12 16784.20 6794.36 8238.04 31995.73 14884.12 8686.81 12091.33 192
hse-mvs281.12 13781.11 12581.16 22586.52 22957.48 31189.40 25091.16 17681.45 3682.73 7990.49 16760.11 13694.58 19487.69 5360.41 33891.41 191
baseline181.84 12581.03 12684.28 14891.60 11166.62 12391.08 20291.66 15881.87 3174.86 16491.67 14869.98 4194.92 18271.76 18164.75 29991.29 197
UWE-MVS80.81 14381.01 12780.20 24889.33 15957.05 31691.91 16294.71 3575.67 12475.01 16389.37 18563.13 10691.44 30267.19 22682.80 15592.12 182
iter_conf_final81.74 12780.93 12884.18 15092.66 8369.10 5892.94 11682.80 34679.01 8074.85 16588.40 19661.83 12094.61 19279.36 12176.52 21488.83 226
3Dnovator73.91 682.69 11380.82 12988.31 2389.57 15271.26 2092.60 13294.39 5178.84 8267.89 25492.48 12948.42 25898.52 2868.80 21194.40 3495.15 72
CDS-MVSNet81.43 13180.74 13083.52 16686.26 23464.45 17292.09 15190.65 19675.83 12373.95 17689.81 18163.97 8992.91 25571.27 18482.82 15393.20 147
Khang Truong Giang, Soohwan Song, Sungho Jo: Curvature-guided dynamic scale networks for Multi-view Stereo. ICLR 2022
SR-MVS-dyc-post81.06 13880.70 13182.15 20292.02 9758.56 29890.90 20690.45 19962.76 30978.89 12094.46 7851.26 23495.61 15678.77 13086.77 12392.28 174
ACMMPcopyleft81.49 13080.67 13283.93 15691.71 10962.90 22392.13 14892.22 13071.79 20671.68 20593.49 10850.32 23996.96 10178.47 13284.22 14691.93 184
Qingshan Xu, Weihang Kong, Wenbing Tao, Marc Pollefeys: Multi-Scale Geometric Consistency Guided and Planar Prior Assisted Multi-View Stereo. IEEE Transactions on Pattern Analysis and Machine Intelligence
HQP-MVS81.14 13580.64 13382.64 18687.54 20863.66 20194.06 6391.70 15679.80 6074.18 17090.30 17151.63 23095.61 15677.63 13778.90 19088.63 231
test_cas_vis1_n_192080.45 14980.61 13479.97 25778.25 34157.01 31894.04 6788.33 28779.06 7882.81 7893.70 10238.65 31191.63 29490.82 3579.81 18191.27 198
3Dnovator+73.60 782.10 12280.60 13586.60 6390.89 12866.80 11995.20 3493.44 8574.05 14667.42 26092.49 12849.46 24897.65 5570.80 18891.68 7295.33 60
API-MVS82.28 11780.53 13687.54 3896.13 2270.59 3093.63 9191.04 18765.72 28675.45 15992.83 12256.11 18398.89 2064.10 25589.75 9693.15 148
RE-MVS-def80.48 13792.02 9758.56 29890.90 20690.45 19962.76 30978.89 12094.46 7849.30 25078.77 13086.77 12392.28 174
IB-MVS77.80 482.18 11880.46 13887.35 4289.14 16770.28 3495.59 2695.17 2178.85 8170.19 22185.82 23870.66 3797.67 5172.19 17866.52 28494.09 118
Christian Sormann, Mattia Rossi, Andreas Kuhn and Friedrich Fraundorfer: IB-MVS: An Iterative Algorithm for Deep Multi-View Stereo based on Binary Decisions. BMVC 2021
ECVR-MVScopyleft81.29 13380.38 13984.01 15588.39 18561.96 24192.56 13786.79 31077.66 9976.63 14691.42 15246.34 27695.24 17274.36 16089.23 9794.85 82
thisisatest053081.15 13480.07 14084.39 14388.26 18965.63 14691.40 18394.62 4071.27 22470.93 21189.18 18772.47 2996.04 13765.62 24476.89 21191.49 188
test111180.84 14280.02 14183.33 17287.87 20160.76 26492.62 13086.86 30977.86 9575.73 15391.39 15446.35 27594.70 19072.79 16988.68 10394.52 103
Fast-Effi-MVS+81.14 13580.01 14284.51 13990.24 13965.86 14194.12 6289.15 25573.81 15475.37 16088.26 20157.26 16494.53 20066.97 22984.92 13693.15 148
mvs_anonymous81.36 13279.99 14385.46 9990.39 13768.40 7486.88 29190.61 19774.41 13970.31 22084.67 24963.79 9292.32 28073.13 16485.70 13295.67 46
Vis-MVSNetpermissive80.92 14179.98 14483.74 15988.48 18061.80 24393.44 10188.26 29273.96 15077.73 13391.76 14549.94 24494.76 18465.84 24190.37 9094.65 95
Jingyang Zhang, Yao Yao, Shiwei Li, Zixin Luo, Tian Fang: Visibility-aware Multiview Stereo Network. BMVC 2020
nrg03080.93 14079.86 14584.13 15283.69 27868.83 6593.23 10691.20 17475.55 12675.06 16288.22 20463.04 10894.74 18681.88 10166.88 28188.82 229
1112_ss80.56 14679.83 14682.77 18288.65 17760.78 26292.29 14288.36 28672.58 17972.46 19494.95 6465.09 7493.42 24266.38 23577.71 19994.10 117
HQP_MVS80.34 15179.75 14782.12 20486.94 22362.42 23093.13 10891.31 17078.81 8372.53 19189.14 18950.66 23795.55 16176.74 14078.53 19588.39 238
UA-Net80.02 15879.65 14881.11 22789.33 15957.72 30686.33 29489.00 26677.44 10481.01 9389.15 18859.33 14795.90 14161.01 27684.28 14489.73 218
Vis-MVSNet (Re-imp)79.24 17079.57 14978.24 28588.46 18152.29 34190.41 22289.12 25774.24 14369.13 23191.91 14365.77 6890.09 31759.00 28888.09 10792.33 171
test-LLR80.10 15679.56 15081.72 21386.93 22561.17 25492.70 12591.54 16171.51 22075.62 15586.94 22453.83 20892.38 27672.21 17684.76 13991.60 186
HyFIR lowres test81.03 13979.56 15085.43 10087.81 20468.11 8590.18 23090.01 22370.65 23772.95 18486.06 23663.61 9794.50 20275.01 15479.75 18393.67 134
HPM-MVS_fast80.25 15379.55 15282.33 19491.55 11459.95 27991.32 19289.16 25465.23 29074.71 16793.07 11447.81 26695.74 14774.87 15888.23 10591.31 196
TAMVS80.37 15079.45 15383.13 17785.14 25563.37 20991.23 19690.76 19174.81 13772.65 18888.49 19360.63 13192.95 25069.41 20281.95 16593.08 151
FIs79.47 16779.41 15479.67 26485.95 24059.40 28691.68 17593.94 6378.06 9168.96 23788.28 19966.61 6191.77 29166.20 23874.99 22287.82 243
IS-MVSNet80.14 15579.41 15482.33 19487.91 19960.08 27891.97 16088.27 29072.90 17471.44 20891.73 14761.44 12393.66 23762.47 26986.53 12793.24 145
test-mter79.96 15979.38 15681.72 21386.93 22561.17 25492.70 12591.54 16173.85 15275.62 15586.94 22449.84 24692.38 27672.21 17684.76 13991.60 186
BH-w/o80.49 14879.30 15784.05 15490.83 13064.36 18093.60 9289.42 24374.35 14169.09 23290.15 17655.23 19295.61 15664.61 25286.43 12992.17 180
EPNet_dtu78.80 18079.26 15877.43 29388.06 19549.71 35491.96 16191.95 14077.67 9876.56 14891.28 15658.51 15390.20 31556.37 29680.95 17392.39 169
Wanjuan Su, Wenbing Tao: Efficient Edge-Preserving Multi-View Stereo Network for Depth Estimation. AAAI 2023
CPTT-MVS79.59 16479.16 15980.89 23691.54 11559.80 28192.10 15088.54 28360.42 32772.96 18393.28 11048.27 25992.80 25978.89 12986.50 12890.06 211
tpmrst80.57 14579.14 16084.84 12090.10 14268.28 7881.70 32589.72 23577.63 10175.96 15179.54 31864.94 7792.71 26275.43 14977.28 20893.55 137
131480.70 14478.95 16185.94 8387.77 20667.56 9887.91 27592.55 12072.17 19367.44 25993.09 11250.27 24197.04 9271.68 18387.64 11293.23 146
SDMVSNet80.26 15278.88 16284.40 14289.25 16267.63 9785.35 29793.02 10076.77 11370.84 21287.12 22247.95 26496.09 13285.04 7774.55 22389.48 222
UGNet79.87 16178.68 16383.45 17189.96 14461.51 25092.13 14890.79 19076.83 11178.85 12586.33 23238.16 31796.17 12967.93 21887.17 11792.67 162
Wanjuan Su, Qingshan Xu, Wenbing Tao: Uncertainty-guided Multi-view Stereo Network for Depth Estimation. IEEE Transactions on Circuits and Systems for Video Technology, 2022
PVSNet73.49 880.05 15778.63 16484.31 14690.92 12764.97 16392.47 13891.05 18679.18 7372.43 19590.51 16637.05 33194.06 22068.06 21586.00 13093.90 129
Test_1112_low_res79.56 16578.60 16582.43 19088.24 19160.39 27392.09 15187.99 29772.10 19571.84 20187.42 21764.62 8293.04 24665.80 24277.30 20793.85 131
tttt051779.50 16678.53 16682.41 19387.22 21661.43 25289.75 24394.76 3269.29 25367.91 25288.06 20872.92 2595.63 15462.91 26573.90 23390.16 210
thres20079.66 16378.33 16783.66 16592.54 8765.82 14393.06 11096.31 374.90 13673.30 18188.66 19159.67 14295.61 15647.84 33078.67 19389.56 221
ab-mvs80.18 15478.31 16885.80 8988.44 18265.49 15283.00 31892.67 11371.82 20577.36 13985.01 24454.50 19996.59 11476.35 14475.63 21995.32 62
VDDNet80.50 14778.26 16987.21 4486.19 23569.79 4494.48 5091.31 17060.42 32779.34 11590.91 16038.48 31496.56 11782.16 9881.05 17295.27 67
EI-MVSNet78.97 17578.22 17081.25 22285.33 25062.73 22789.53 24793.21 9172.39 18672.14 19890.13 17760.99 12694.72 18767.73 22072.49 24386.29 270
OPM-MVS79.00 17478.09 17181.73 21283.52 28163.83 19191.64 17790.30 20976.36 11971.97 20089.93 18046.30 27895.17 17475.10 15277.70 20086.19 274
Ray L. Khuboni, Hongjun Xu: Octagram Propagation Matching for Multi-Scale View Stereopsis (OPM-MVS).
FC-MVSNet-test77.99 19578.08 17277.70 28884.89 26055.51 32790.27 22793.75 7276.87 10866.80 27087.59 21465.71 6990.23 31462.89 26673.94 23187.37 250
VPA-MVSNet79.03 17378.00 17382.11 20785.95 24064.48 17193.22 10794.66 3875.05 13474.04 17584.95 24552.17 22593.52 23974.90 15767.04 28088.32 240
miper_enhance_ethall78.86 17877.97 17481.54 21788.00 19865.17 15791.41 18189.15 25575.19 13268.79 24083.98 25867.17 5692.82 25772.73 17065.30 29086.62 267
tpm279.80 16277.95 17585.34 10588.28 18868.26 7981.56 32791.42 16770.11 24377.59 13780.50 30467.40 5594.26 21167.34 22377.35 20693.51 138
OMC-MVS78.67 18577.91 17680.95 23485.76 24557.40 31388.49 26688.67 27873.85 15272.43 19592.10 13849.29 25194.55 19972.73 17077.89 19890.91 202
114514_t79.17 17177.67 17783.68 16395.32 2965.53 15092.85 11991.60 16063.49 30067.92 25190.63 16446.65 27295.72 15267.01 22883.54 14789.79 216
BH-RMVSNet79.46 16877.65 17884.89 11891.68 11065.66 14493.55 9488.09 29572.93 17173.37 18091.12 15846.20 27996.12 13156.28 29785.61 13492.91 157
PCF-MVS73.15 979.29 16977.63 17984.29 14786.06 23865.96 13987.03 28791.10 18069.86 24769.79 22890.64 16257.54 16396.59 11464.37 25482.29 15790.32 208
Andreas Kuhn, Shan Lin, Oliver Erdler: Plane Completion and Filtering for Multi-View Stereo Reconstruction. GCPR 2019
UniMVSNet_NR-MVSNet78.15 19377.55 18079.98 25584.46 26760.26 27492.25 14393.20 9377.50 10368.88 23886.61 22766.10 6492.13 28366.38 23562.55 31587.54 245
VPNet78.82 17977.53 18182.70 18484.52 26566.44 12793.93 7292.23 12780.46 5072.60 18988.38 19849.18 25293.13 24572.47 17463.97 30888.55 234
GeoE78.90 17777.43 18283.29 17388.95 17162.02 23992.31 14186.23 31570.24 24271.34 20989.27 18654.43 20394.04 22363.31 26180.81 17693.81 132
AUN-MVS78.37 18977.43 18281.17 22486.60 22857.45 31289.46 24991.16 17674.11 14574.40 16990.49 16755.52 18994.57 19674.73 15960.43 33791.48 189
tfpn200view978.79 18177.43 18282.88 18092.21 9364.49 16992.05 15496.28 473.48 16171.75 20388.26 20160.07 13895.32 16845.16 34177.58 20288.83 226
thres40078.68 18377.43 18282.43 19092.21 9364.49 16992.05 15496.28 473.48 16171.75 20388.26 20160.07 13895.32 16845.16 34177.58 20287.48 247
QAPM79.95 16077.39 18687.64 3189.63 15171.41 1893.30 10493.70 7365.34 28967.39 26291.75 14647.83 26598.96 1657.71 29289.81 9392.54 166
TR-MVS78.77 18277.37 18782.95 17990.49 13460.88 26093.67 8890.07 21870.08 24474.51 16891.37 15545.69 28295.70 15360.12 28280.32 17892.29 173
FA-MVS(test-final)79.12 17277.23 18884.81 12490.54 13363.98 18981.35 33091.71 15471.09 22874.85 16582.94 26752.85 21997.05 8967.97 21681.73 16893.41 140
BH-untuned78.68 18377.08 18983.48 17089.84 14663.74 19492.70 12588.59 28171.57 21766.83 26988.65 19251.75 22895.39 16659.03 28784.77 13891.32 195
tpm78.58 18677.03 19083.22 17585.94 24264.56 16783.21 31591.14 17978.31 8873.67 17879.68 31664.01 8892.09 28566.07 23971.26 25393.03 153
thres100view90078.37 18977.01 19182.46 18991.89 10563.21 21391.19 20096.33 172.28 18970.45 21787.89 21060.31 13395.32 16845.16 34177.58 20288.83 226
AdaColmapbinary78.94 17677.00 19284.76 12696.34 1765.86 14192.66 12987.97 29962.18 31470.56 21492.37 13243.53 29397.35 7264.50 25382.86 15291.05 201
CHOSEN 280x42077.35 20576.95 19378.55 28087.07 22062.68 22869.71 37282.95 34468.80 26071.48 20787.27 22166.03 6584.00 35976.47 14382.81 15488.95 225
cl2277.94 19776.78 19481.42 21987.57 20764.93 16590.67 21588.86 27072.45 18367.63 25882.68 27164.07 8792.91 25571.79 17965.30 29086.44 268
UniMVSNet (Re)77.58 20276.78 19479.98 25584.11 27360.80 26191.76 17193.17 9576.56 11769.93 22784.78 24863.32 10392.36 27864.89 25162.51 31786.78 262
thres600view778.00 19476.66 19682.03 20991.93 10263.69 19991.30 19396.33 172.43 18470.46 21687.89 21060.31 13394.92 18242.64 35376.64 21287.48 247
MS-PatchMatch77.90 19976.50 19782.12 20485.99 23969.95 3991.75 17392.70 11173.97 14962.58 30584.44 25341.11 30295.78 14463.76 25892.17 6480.62 349
miper_ehance_all_eth77.60 20176.44 19881.09 23185.70 24764.41 17690.65 21688.64 28072.31 18767.37 26382.52 27264.77 8192.64 26970.67 19065.30 29086.24 272
XXY-MVS77.94 19776.44 19882.43 19082.60 29064.44 17392.01 15691.83 14973.59 16070.00 22485.82 23854.43 20394.76 18469.63 19968.02 27488.10 242
PS-MVSNAJss77.26 20676.31 20080.13 25080.64 30959.16 29190.63 21991.06 18572.80 17568.58 24484.57 25153.55 21293.96 22872.97 16571.96 24787.27 255
MVP-Stereo77.12 20976.23 20179.79 26281.72 29966.34 13089.29 25190.88 18970.56 23962.01 30882.88 26849.34 24994.13 21565.55 24693.80 4178.88 363
Qingsong Yan: MVP-Stereo: A Parallel Multi-View Patchmatch Stereo Method with Dilation Matching for Photogrammetric Application.
GA-MVS78.33 19176.23 20184.65 13283.65 27966.30 13191.44 17990.14 21676.01 12170.32 21984.02 25742.50 29794.72 18770.98 18677.00 21092.94 156
WB-MVSnew77.14 20876.18 20380.01 25486.18 23663.24 21291.26 19494.11 6071.72 20973.52 17987.29 22045.14 28793.00 24856.98 29479.42 18483.80 310
FMVSNet377.73 20076.04 20482.80 18191.20 12368.99 6291.87 16491.99 13873.35 16367.04 26583.19 26656.62 17792.14 28259.80 28469.34 26187.28 254
EPMVS78.49 18875.98 20586.02 8091.21 12269.68 4880.23 33991.20 17475.25 13172.48 19378.11 32654.65 19893.69 23657.66 29383.04 15194.69 91
OpenMVScopyleft70.45 1178.54 18775.92 20686.41 7285.93 24371.68 1692.74 12292.51 12166.49 28064.56 28491.96 14043.88 29298.10 3754.61 30290.65 8789.44 224
DU-MVS76.86 21275.84 20779.91 25882.96 28760.26 27491.26 19491.54 16176.46 11868.88 23886.35 23056.16 18192.13 28366.38 23562.55 31587.35 252
cascas78.18 19275.77 20885.41 10187.14 21869.11 5792.96 11591.15 17866.71 27870.47 21586.07 23537.49 32596.48 12270.15 19479.80 18290.65 204
WR-MVS76.76 21775.74 20979.82 26184.60 26362.27 23692.60 13292.51 12176.06 12067.87 25585.34 24156.76 17390.24 31362.20 27063.69 31086.94 260
mvsmamba76.85 21475.71 21080.25 24683.07 28659.16 29191.44 17980.64 35376.84 11067.95 25086.33 23246.17 28094.24 21276.06 14572.92 23987.36 251
v2v48277.42 20475.65 21182.73 18380.38 31167.13 11091.85 16690.23 21375.09 13369.37 22983.39 26453.79 21094.44 20371.77 18065.00 29686.63 266
c3_l76.83 21675.47 21280.93 23585.02 25864.18 18690.39 22388.11 29471.66 21066.65 27181.64 28463.58 9992.56 27069.31 20462.86 31286.04 279
sd_testset77.08 21075.37 21382.20 20089.25 16262.11 23882.06 32289.09 25976.77 11370.84 21287.12 22241.43 30195.01 17767.23 22574.55 22389.48 222
dmvs_re76.93 21175.36 21481.61 21587.78 20560.71 26780.00 34387.99 29779.42 6769.02 23589.47 18446.77 27094.32 20563.38 26074.45 22689.81 215
Anonymous20240521177.96 19675.33 21585.87 8593.73 5264.52 16894.85 4485.36 32362.52 31276.11 15090.18 17429.43 36097.29 7668.51 21377.24 20995.81 45
Effi-MVS+-dtu76.14 22275.28 21678.72 27983.22 28355.17 32989.87 23987.78 30075.42 12867.98 24981.43 28845.08 28892.52 27275.08 15371.63 24888.48 235
IterMVS-LS76.49 21975.18 21780.43 24184.49 26662.74 22690.64 21788.80 27272.40 18565.16 27881.72 28260.98 12792.27 28167.74 21964.65 30186.29 270
Fangjinhua Wang, Silvano Galliani, Christoph Vogel, Marc Pollefeys: IterMVS: Iterative Probability Estimation for Efficient Multi-View Stereo.
v114476.73 21874.88 21882.27 19680.23 31566.60 12491.68 17590.21 21573.69 15769.06 23481.89 27952.73 22194.40 20469.21 20565.23 29385.80 285
cl____76.07 22374.67 21980.28 24485.15 25461.76 24590.12 23188.73 27571.16 22565.43 27581.57 28661.15 12492.95 25066.54 23262.17 31986.13 277
DIV-MVS_self_test76.07 22374.67 21980.28 24485.14 25561.75 24690.12 23188.73 27571.16 22565.42 27681.60 28561.15 12492.94 25466.54 23262.16 32186.14 275
PatchmatchNetpermissive77.46 20374.63 22185.96 8289.55 15470.35 3379.97 34489.55 23872.23 19070.94 21076.91 33757.03 16792.79 26054.27 30481.17 17194.74 90
Fangjinhua Wang, Silvano Galliani, Christoph Vogel, Pablo Speciale, Marc Pollefeys: PatchmatchNet: Learned Multi-View Patchmatch Stereo.
NR-MVSNet76.05 22674.59 22280.44 24082.96 28762.18 23790.83 21091.73 15277.12 10760.96 31286.35 23059.28 14891.80 29060.74 27761.34 33087.35 252
LPG-MVS_test75.82 23274.58 22379.56 26884.31 27059.37 28790.44 22089.73 23369.49 25064.86 27988.42 19438.65 31194.30 20772.56 17272.76 24085.01 300
V4276.46 22074.55 22482.19 20179.14 32967.82 9190.26 22889.42 24373.75 15568.63 24381.89 27951.31 23394.09 21771.69 18264.84 29784.66 303
TranMVSNet+NR-MVSNet75.86 23174.52 22579.89 25982.44 29260.64 27091.37 18891.37 16876.63 11567.65 25786.21 23452.37 22491.55 29661.84 27260.81 33387.48 247
v14876.19 22174.47 22681.36 22080.05 31764.44 17391.75 17390.23 21373.68 15867.13 26480.84 29955.92 18693.86 23468.95 20961.73 32685.76 288
eth_miper_zixun_eth75.96 23074.40 22780.66 23784.66 26263.02 21789.28 25288.27 29071.88 20165.73 27381.65 28359.45 14492.81 25868.13 21460.53 33586.14 275
gg-mvs-nofinetune77.18 20774.31 22885.80 8991.42 11768.36 7571.78 36694.72 3449.61 36777.12 14245.92 39077.41 893.98 22767.62 22193.16 5395.05 76
CVMVSNet74.04 25274.27 22973.33 32785.33 25043.94 37789.53 24788.39 28554.33 35570.37 21890.13 17749.17 25384.05 35761.83 27379.36 18691.99 183
ACMP71.68 1075.58 23774.23 23079.62 26684.97 25959.64 28290.80 21189.07 26170.39 24062.95 30187.30 21938.28 31593.87 23272.89 16671.45 25185.36 295
Qingshan Xu and Wenbing Tao: Planar Prior Assisted PatchMatch Multi-View Stereo. AAAI 2020
Anonymous2024052976.84 21574.15 23184.88 11991.02 12464.95 16493.84 8091.09 18153.57 35673.00 18287.42 21735.91 33597.32 7469.14 20772.41 24592.36 170
X-MVStestdata76.86 21274.13 23285.05 11393.22 6463.78 19292.92 11792.66 11473.99 14778.18 12910.19 40555.25 19097.41 6879.16 12491.58 7493.95 125
v14419276.05 22674.03 23382.12 20479.50 32366.55 12691.39 18589.71 23672.30 18868.17 24781.33 29151.75 22894.03 22567.94 21764.19 30385.77 286
FMVSNet276.07 22374.01 23482.26 19888.85 17267.66 9591.33 19191.61 15970.84 23265.98 27282.25 27548.03 26092.00 28758.46 28968.73 26987.10 257
v119275.98 22873.92 23582.15 20279.73 31966.24 13391.22 19789.75 23072.67 17768.49 24581.42 28949.86 24594.27 20967.08 22765.02 29585.95 282
GBi-Net75.65 23473.83 23681.10 22888.85 17265.11 15990.01 23590.32 20570.84 23267.04 26580.25 30948.03 26091.54 29759.80 28469.34 26186.64 263
test175.65 23473.83 23681.10 22888.85 17265.11 15990.01 23590.32 20570.84 23267.04 26580.25 30948.03 26091.54 29759.80 28469.34 26186.64 263
test_fmvs174.07 25173.69 23875.22 31278.91 33347.34 36689.06 25974.69 36763.68 29979.41 11491.59 15024.36 36987.77 33685.22 7476.26 21690.55 207
PLCcopyleft68.80 1475.23 24073.68 23979.86 26092.93 7358.68 29790.64 21788.30 28860.90 32464.43 28890.53 16542.38 29894.57 19656.52 29576.54 21386.33 269
Jie Liao, Yanping Fu, Qingan Yan, Chunxia xiao: Pyramid Multi-View Stereo with Local Consistency. Pacific Graphics 2019
TAPA-MVS70.22 1274.94 24473.53 24079.17 27390.40 13652.07 34289.19 25589.61 23762.69 31170.07 22292.67 12448.89 25794.32 20538.26 36779.97 18091.12 200
Andrea Romanoni, Matteo Matteucci: TAPA-MVS: Textureless-Aware PAtchMatch Multi-View Stereo. ICCV 2019
v192192075.63 23673.49 24182.06 20879.38 32466.35 12991.07 20489.48 23971.98 19667.99 24881.22 29449.16 25493.90 23166.56 23164.56 30285.92 284
Fast-Effi-MVS+-dtu75.04 24273.37 24280.07 25180.86 30459.52 28591.20 19985.38 32271.90 19965.20 27784.84 24741.46 30092.97 24966.50 23472.96 23887.73 244
v875.35 23873.26 24381.61 21580.67 30866.82 11789.54 24689.27 24871.65 21163.30 29780.30 30854.99 19694.06 22067.33 22462.33 31883.94 308
XVG-OURS-SEG-HR74.70 24673.08 24479.57 26778.25 34157.33 31480.49 33587.32 30363.22 30468.76 24190.12 17944.89 28991.59 29570.55 19274.09 23089.79 216
FE-MVS75.97 22973.02 24584.82 12189.78 14765.56 14877.44 35591.07 18464.55 29272.66 18779.85 31446.05 28196.69 11254.97 30180.82 17592.21 179
v124075.21 24172.98 24681.88 21079.20 32666.00 13790.75 21389.11 25871.63 21567.41 26181.22 29447.36 26893.87 23265.46 24764.72 30085.77 286
RRT_MVS74.44 24772.97 24778.84 27882.36 29357.66 30889.83 24188.79 27470.61 23864.58 28384.89 24639.24 30792.65 26870.11 19566.34 28586.21 273
Baseline_NR-MVSNet73.99 25372.83 24877.48 29280.78 30659.29 29091.79 16884.55 33068.85 25968.99 23680.70 30056.16 18192.04 28662.67 26760.98 33281.11 343
SCA75.82 23272.76 24985.01 11586.63 22770.08 3581.06 33289.19 25271.60 21670.01 22377.09 33545.53 28390.25 31060.43 27973.27 23594.68 92
myMVS_eth3d72.58 27272.74 25072.10 33987.87 20149.45 35688.07 27189.01 26372.91 17263.11 29888.10 20563.63 9585.54 34932.73 38169.23 26481.32 341
ACMM69.62 1374.34 24872.73 25179.17 27384.25 27257.87 30490.36 22489.93 22463.17 30665.64 27486.04 23737.79 32394.10 21665.89 24071.52 25085.55 291
Qingshan Xu and Wenbing Tao: Multi-Scale Geometric Consistency Guided Multi-View Stereo. CVPR 2019
test0.0.03 172.76 26672.71 25272.88 33180.25 31447.99 36291.22 19789.45 24171.51 22062.51 30687.66 21353.83 20885.06 35350.16 31767.84 27785.58 289
MDTV_nov1_ep1372.61 25389.06 16868.48 7280.33 33790.11 21771.84 20471.81 20275.92 34553.01 21893.92 23048.04 32773.38 234
test_djsdf73.76 25772.56 25477.39 29477.00 35153.93 33589.07 25790.69 19265.80 28463.92 29082.03 27843.14 29692.67 26572.83 16768.53 27085.57 290
v1074.77 24572.54 25581.46 21880.33 31366.71 12189.15 25689.08 26070.94 23063.08 30079.86 31352.52 22294.04 22365.70 24362.17 31983.64 311
XVG-OURS74.25 25072.46 25679.63 26578.45 33957.59 31080.33 33787.39 30263.86 29768.76 24189.62 18340.50 30491.72 29269.00 20874.25 22889.58 219
CNLPA74.31 24972.30 25780.32 24291.49 11661.66 24890.85 20980.72 35256.67 34863.85 29290.64 16246.75 27190.84 30553.79 30675.99 21888.47 237
tpm cat175.30 23972.21 25884.58 13688.52 17867.77 9278.16 35388.02 29661.88 31968.45 24676.37 34160.65 13094.03 22553.77 30774.11 22991.93 184
dp75.01 24372.09 25983.76 15889.28 16166.22 13479.96 34589.75 23071.16 22567.80 25677.19 33451.81 22792.54 27150.39 31571.44 25292.51 168
D2MVS73.80 25572.02 26079.15 27579.15 32862.97 21888.58 26590.07 21872.94 17059.22 32178.30 32342.31 29992.70 26465.59 24572.00 24681.79 338
test_fmvs1_n72.69 27071.92 26174.99 31571.15 37047.08 36887.34 28575.67 36263.48 30178.08 13191.17 15720.16 38087.87 33384.65 8275.57 22090.01 213
LCM-MVSNet-Re72.93 26371.84 26276.18 30888.49 17948.02 36180.07 34270.17 37873.96 15052.25 35180.09 31249.98 24388.24 33067.35 22284.23 14592.28 174
pmmvs473.92 25471.81 26380.25 24679.17 32765.24 15587.43 28387.26 30567.64 27263.46 29583.91 25948.96 25691.53 30062.94 26465.49 28983.96 307
miper_lstm_enhance73.05 26171.73 26477.03 29983.80 27658.32 30081.76 32388.88 26869.80 24861.01 31178.23 32557.19 16587.51 34065.34 24859.53 34085.27 298
pmmvs573.35 25871.52 26578.86 27778.64 33760.61 27191.08 20286.90 30767.69 26963.32 29683.64 26044.33 29190.53 30762.04 27166.02 28785.46 293
jajsoiax73.05 26171.51 26677.67 28977.46 34854.83 33188.81 26190.04 22169.13 25762.85 30383.51 26231.16 35592.75 26170.83 18769.80 25785.43 294
mvs_tets72.71 26871.11 26777.52 29077.41 34954.52 33388.45 26789.76 22968.76 26262.70 30483.26 26529.49 35992.71 26270.51 19369.62 25985.34 296
pm-mvs172.89 26471.09 26878.26 28479.10 33057.62 30990.80 21189.30 24767.66 27062.91 30281.78 28149.11 25592.95 25060.29 28158.89 34384.22 306
testing370.38 28570.83 26969.03 35085.82 24443.93 37890.72 21490.56 19868.06 26660.24 31586.82 22664.83 7984.12 35526.33 38864.10 30579.04 362
IterMVS72.65 27170.83 26978.09 28682.17 29562.96 21987.64 28186.28 31371.56 21860.44 31478.85 32145.42 28586.66 34463.30 26261.83 32384.65 304
Fangjinhua Wang, Silvano Galliani, Christoph Vogel, Marc Pollefeys: IterMVS: Iterative Probability Estimation for Efficient Multi-View Stereo.
CR-MVSNet73.79 25670.82 27182.70 18483.15 28467.96 8870.25 36984.00 33573.67 15969.97 22572.41 35557.82 16089.48 32152.99 31073.13 23690.64 205
test_vis1_n71.63 27670.73 27274.31 32269.63 37647.29 36786.91 28972.11 37363.21 30575.18 16190.17 17520.40 37885.76 34884.59 8374.42 22789.87 214
tt080573.07 26070.73 27280.07 25178.37 34057.05 31687.78 27792.18 13361.23 32367.04 26586.49 22931.35 35494.58 19465.06 25067.12 27988.57 233
UniMVSNet_ETH3D72.74 26770.53 27479.36 27078.62 33856.64 32085.01 29989.20 25163.77 29864.84 28184.44 25334.05 34291.86 28963.94 25670.89 25589.57 220
Anonymous2023121173.08 25970.39 27581.13 22690.62 13263.33 21091.40 18390.06 22051.84 36164.46 28780.67 30236.49 33394.07 21963.83 25764.17 30485.98 281
PatchMatch-RL72.06 27369.98 27678.28 28389.51 15555.70 32683.49 30883.39 34261.24 32263.72 29382.76 26934.77 33993.03 24753.37 30977.59 20186.12 278
IterMVS-SCA-FT71.55 27869.97 27776.32 30681.48 30060.67 26987.64 28185.99 31866.17 28259.50 31978.88 32045.53 28383.65 36162.58 26861.93 32284.63 305
WR-MVS_H70.59 28269.94 27872.53 33381.03 30351.43 34587.35 28492.03 13767.38 27360.23 31680.70 30055.84 18783.45 36346.33 33758.58 34582.72 327
CP-MVSNet70.50 28369.91 27972.26 33680.71 30751.00 34887.23 28690.30 20967.84 26859.64 31882.69 27050.23 24282.30 37151.28 31259.28 34183.46 316
FMVSNet172.71 26869.91 27981.10 22883.60 28065.11 15990.01 23590.32 20563.92 29663.56 29480.25 30936.35 33491.54 29754.46 30366.75 28286.64 263
tpmvs72.88 26569.76 28182.22 19990.98 12567.05 11278.22 35288.30 28863.10 30764.35 28974.98 34855.09 19594.27 20943.25 34769.57 26085.34 296
bld_raw_dy_0_6471.59 27769.71 28277.22 29877.82 34758.12 30287.71 27973.66 36968.01 26761.90 31084.29 25533.68 34388.43 32869.91 19770.43 25685.11 299
Syy-MVS69.65 29169.52 28370.03 34687.87 20143.21 37988.07 27189.01 26372.91 17263.11 29888.10 20545.28 28685.54 34922.07 39269.23 26481.32 341
anonymousdsp71.14 28069.37 28476.45 30572.95 36554.71 33284.19 30388.88 26861.92 31862.15 30779.77 31538.14 31891.44 30268.90 21067.45 27883.21 320
PS-CasMVS69.86 29069.13 28572.07 34080.35 31250.57 35087.02 28889.75 23067.27 27459.19 32282.28 27446.58 27382.24 37250.69 31459.02 34283.39 318
v7n71.31 27968.65 28679.28 27176.40 35360.77 26386.71 29289.45 24164.17 29558.77 32678.24 32444.59 29093.54 23857.76 29161.75 32583.52 314
mvsany_test168.77 29868.56 28769.39 34873.57 36345.88 37380.93 33360.88 39159.65 33371.56 20690.26 17343.22 29575.05 38174.26 16162.70 31487.25 256
PEN-MVS69.46 29368.56 28772.17 33879.27 32549.71 35486.90 29089.24 24967.24 27759.08 32382.51 27347.23 26983.54 36248.42 32557.12 34683.25 319
MIMVSNet71.64 27568.44 28981.23 22381.97 29864.44 17373.05 36588.80 27269.67 24964.59 28274.79 34932.79 34687.82 33453.99 30576.35 21591.42 190
F-COLMAP70.66 28168.44 28977.32 29586.37 23355.91 32488.00 27386.32 31256.94 34657.28 33588.07 20733.58 34492.49 27351.02 31368.37 27183.55 312
PVSNet_068.08 1571.81 27468.32 29182.27 19684.68 26162.31 23588.68 26390.31 20875.84 12257.93 33280.65 30337.85 32294.19 21369.94 19629.05 39590.31 209
CL-MVSNet_self_test69.92 28868.09 29275.41 31173.25 36455.90 32590.05 23489.90 22569.96 24561.96 30976.54 33851.05 23587.64 33749.51 32150.59 36582.70 329
TransMVSNet (Re)70.07 28767.66 29377.31 29680.62 31059.13 29391.78 17084.94 32765.97 28360.08 31780.44 30550.78 23691.87 28848.84 32345.46 37380.94 345
tfpnnormal70.10 28667.36 29478.32 28283.45 28260.97 25988.85 26092.77 10964.85 29160.83 31378.53 32243.52 29493.48 24031.73 38461.70 32780.52 350
DTE-MVSNet68.46 30267.33 29571.87 34277.94 34549.00 35986.16 29588.58 28266.36 28158.19 32782.21 27646.36 27483.87 36044.97 34455.17 35382.73 326
DP-MVS69.90 28966.48 29680.14 24995.36 2862.93 22089.56 24476.11 36050.27 36657.69 33385.23 24239.68 30695.73 14833.35 37771.05 25481.78 339
dmvs_testset65.55 32166.45 29762.86 36279.87 31822.35 40576.55 35771.74 37577.42 10655.85 33887.77 21251.39 23280.69 37731.51 38765.92 28885.55 291
LS3D69.17 29466.40 29877.50 29191.92 10356.12 32385.12 29880.37 35446.96 37356.50 33787.51 21637.25 32693.71 23532.52 38379.40 18582.68 330
KD-MVS_2432*160069.03 29666.37 29977.01 30085.56 24861.06 25781.44 32890.25 21167.27 27458.00 33076.53 33954.49 20087.63 33848.04 32735.77 38782.34 333
miper_refine_blended69.03 29666.37 29977.01 30085.56 24861.06 25781.44 32890.25 21167.27 27458.00 33076.53 33954.49 20087.63 33848.04 32735.77 38782.34 333
Anonymous2023120667.53 31065.78 30172.79 33274.95 35847.59 36488.23 26987.32 30361.75 32158.07 32977.29 33237.79 32387.29 34242.91 34963.71 30983.48 315
MSDG69.54 29265.73 30280.96 23385.11 25763.71 19784.19 30383.28 34356.95 34554.50 34284.03 25631.50 35296.03 13842.87 35169.13 26683.14 322
RPMNet70.42 28465.68 30384.63 13483.15 28467.96 8870.25 36990.45 19946.83 37569.97 22565.10 37456.48 18095.30 17135.79 37273.13 23690.64 205
FMVSNet568.04 30565.66 30475.18 31484.43 26857.89 30383.54 30786.26 31461.83 32053.64 34773.30 35237.15 32985.08 35248.99 32261.77 32482.56 332
XVG-ACMP-BASELINE68.04 30565.53 30575.56 31074.06 36252.37 34078.43 34985.88 31962.03 31658.91 32581.21 29620.38 37991.15 30460.69 27868.18 27283.16 321
EG-PatchMatch MVS68.55 30065.41 30677.96 28778.69 33662.93 22089.86 24089.17 25360.55 32650.27 35977.73 32922.60 37494.06 22047.18 33372.65 24276.88 371
PatchT69.11 29565.37 30780.32 24282.07 29763.68 20067.96 37887.62 30150.86 36469.37 22965.18 37357.09 16688.53 32741.59 35666.60 28388.74 230
test_fmvs265.78 32064.84 30868.60 35266.54 38141.71 38183.27 31269.81 37954.38 35467.91 25284.54 25215.35 38581.22 37675.65 14866.16 28682.88 323
ACMH63.93 1768.62 29964.81 30980.03 25385.22 25363.25 21187.72 27884.66 32960.83 32551.57 35479.43 31927.29 36594.96 17941.76 35464.84 29781.88 337
Qingshan Xu and Wenbing Tao: Multi-Scale Geometric Consistency Guided Multi-View Stereo. CVPR 2019
pmmvs667.57 30964.76 31076.00 30972.82 36753.37 33788.71 26286.78 31153.19 35757.58 33478.03 32735.33 33892.41 27555.56 29954.88 35582.21 335
our_test_368.29 30364.69 31179.11 27678.92 33164.85 16688.40 26885.06 32560.32 32952.68 34976.12 34340.81 30389.80 32044.25 34655.65 35182.67 331
ACMH+65.35 1667.65 30864.55 31276.96 30284.59 26457.10 31588.08 27080.79 35158.59 33953.00 34881.09 29826.63 36792.95 25046.51 33561.69 32880.82 346
USDC67.43 31264.51 31376.19 30777.94 34555.29 32878.38 35085.00 32673.17 16548.36 36680.37 30621.23 37692.48 27452.15 31164.02 30780.81 347
Patchmatch-RL test68.17 30464.49 31479.19 27271.22 36953.93 33570.07 37171.54 37769.22 25456.79 33662.89 37756.58 17888.61 32469.53 20152.61 36095.03 78
CMPMVSbinary48.56 2166.77 31464.41 31573.84 32470.65 37350.31 35177.79 35485.73 32145.54 37744.76 37682.14 27735.40 33790.14 31663.18 26374.54 22581.07 344
M. Jancosek, T. Pajdla: Multi-View Reconstruction Preserving Weakly-Supported Surfaces. CVPR 2011
ADS-MVSNet68.54 30164.38 31681.03 23288.06 19566.90 11668.01 37684.02 33457.57 34064.48 28569.87 36538.68 30989.21 32340.87 35867.89 27586.97 258
Patchmtry67.53 31063.93 31778.34 28182.12 29664.38 17768.72 37384.00 33548.23 37259.24 32072.41 35557.82 16089.27 32246.10 33856.68 35081.36 340
ppachtmachnet_test67.72 30763.70 31879.77 26378.92 33166.04 13688.68 26382.90 34560.11 33155.45 33975.96 34439.19 30890.55 30639.53 36252.55 36182.71 328
LTVRE_ROB59.60 1966.27 31663.54 31974.45 31984.00 27551.55 34467.08 37983.53 33958.78 33754.94 34180.31 30734.54 34093.23 24440.64 36068.03 27378.58 366
Andreas Kuhn, Heiko Hirschmüller, Daniel Scharstein, Helmut Mayer: A TV Prior for High-Quality Scalable Multi-View Stereo Reconstruction. International Journal of Computer Vision 2016
ADS-MVSNet266.90 31363.44 32077.26 29788.06 19560.70 26868.01 37675.56 36457.57 34064.48 28569.87 36538.68 30984.10 35640.87 35867.89 27586.97 258
UnsupCasMVSNet_eth65.79 31963.10 32173.88 32370.71 37250.29 35281.09 33189.88 22672.58 17949.25 36474.77 35032.57 34887.43 34155.96 29841.04 38083.90 309
EU-MVSNet64.01 32863.01 32267.02 35874.40 36138.86 38983.27 31286.19 31645.11 37854.27 34381.15 29736.91 33280.01 37948.79 32457.02 34782.19 336
OpenMVS_ROBcopyleft61.12 1866.39 31562.92 32376.80 30476.51 35257.77 30589.22 25383.41 34155.48 35253.86 34677.84 32826.28 36893.95 22934.90 37468.76 26878.68 365
testgi64.48 32662.87 32469.31 34971.24 36840.62 38485.49 29679.92 35565.36 28854.18 34483.49 26323.74 37284.55 35441.60 35560.79 33482.77 325
test20.0363.83 32962.65 32567.38 35770.58 37439.94 38586.57 29384.17 33263.29 30351.86 35277.30 33137.09 33082.47 36938.87 36654.13 35779.73 356
JIA-IIPM66.06 31762.45 32676.88 30381.42 30254.45 33457.49 39188.67 27849.36 36863.86 29146.86 38956.06 18490.25 31049.53 32068.83 26785.95 282
pmmvs-eth3d65.53 32262.32 32775.19 31369.39 37759.59 28382.80 31983.43 34062.52 31251.30 35672.49 35332.86 34587.16 34355.32 30050.73 36478.83 364
OurMVSNet-221017-064.68 32462.17 32872.21 33776.08 35647.35 36580.67 33481.02 35056.19 34951.60 35379.66 31727.05 36688.56 32653.60 30853.63 35880.71 348
RPSCF64.24 32761.98 32971.01 34476.10 35545.00 37475.83 36175.94 36146.94 37458.96 32484.59 25031.40 35382.00 37347.76 33160.33 33986.04 279
SixPastTwentyTwo64.92 32361.78 33074.34 32178.74 33549.76 35383.42 31179.51 35762.86 30850.27 35977.35 33030.92 35790.49 30845.89 33947.06 37082.78 324
test_040264.54 32561.09 33174.92 31684.10 27460.75 26587.95 27479.71 35652.03 35952.41 35077.20 33332.21 35091.64 29323.14 39061.03 33172.36 379
Patchmatch-test65.86 31860.94 33280.62 23983.75 27758.83 29558.91 39075.26 36644.50 38050.95 35877.09 33558.81 15287.90 33235.13 37364.03 30695.12 74
MDA-MVSNet_test_wron63.78 33060.16 33374.64 31778.15 34360.41 27283.49 30884.03 33356.17 35139.17 38571.59 36137.22 32783.24 36642.87 35148.73 36780.26 353
YYNet163.76 33160.14 33474.62 31878.06 34460.19 27783.46 31083.99 33756.18 35039.25 38471.56 36237.18 32883.34 36442.90 35048.70 36880.32 352
COLMAP_ROBcopyleft57.96 2062.98 33359.65 33572.98 33081.44 30153.00 33983.75 30675.53 36548.34 37148.81 36581.40 29024.14 37090.30 30932.95 37960.52 33675.65 374
Johannes L. Schönberger, Enliang Zheng, Marc Pollefeys, Jan-Michael Frahm: Pixelwise View Selection for Unstructured Multi-View Stereo. ECCV 2016
K. test v363.09 33259.61 33673.53 32676.26 35449.38 35883.27 31277.15 35964.35 29447.77 36872.32 35728.73 36187.79 33549.93 31936.69 38683.41 317
Anonymous2024052162.09 33459.08 33771.10 34367.19 38048.72 36083.91 30585.23 32450.38 36547.84 36771.22 36420.74 37785.51 35146.47 33658.75 34479.06 361
KD-MVS_self_test60.87 33858.60 33867.68 35566.13 38239.93 38675.63 36284.70 32857.32 34349.57 36268.45 36829.55 35882.87 36748.09 32647.94 36980.25 354
AllTest61.66 33558.06 33972.46 33479.57 32051.42 34680.17 34068.61 38151.25 36245.88 37081.23 29219.86 38186.58 34538.98 36457.01 34879.39 358
UnsupCasMVSNet_bld61.60 33657.71 34073.29 32868.73 37851.64 34378.61 34889.05 26257.20 34446.11 36961.96 38028.70 36288.60 32550.08 31838.90 38479.63 357
MDA-MVSNet-bldmvs61.54 33757.70 34173.05 32979.53 32257.00 31983.08 31681.23 34957.57 34034.91 38872.45 35432.79 34686.26 34735.81 37141.95 37875.89 373
MIMVSNet160.16 34157.33 34268.67 35169.71 37544.13 37678.92 34784.21 33155.05 35344.63 37771.85 35923.91 37181.54 37532.63 38255.03 35480.35 351
test_vis1_rt59.09 34457.31 34364.43 36068.44 37946.02 37283.05 31748.63 40051.96 36049.57 36263.86 37616.30 38380.20 37871.21 18562.79 31367.07 385
PM-MVS59.40 34256.59 34467.84 35363.63 38441.86 38076.76 35663.22 38859.01 33651.07 35772.27 35811.72 39183.25 36561.34 27450.28 36678.39 367
new-patchmatchnet59.30 34356.48 34567.79 35465.86 38344.19 37582.47 32081.77 34759.94 33243.65 38066.20 37227.67 36481.68 37439.34 36341.40 37977.50 370
TinyColmap60.32 33956.42 34672.00 34178.78 33453.18 33878.36 35175.64 36352.30 35841.59 38375.82 34614.76 38888.35 32935.84 37054.71 35674.46 375
MVS-HIRNet60.25 34055.55 34774.35 32084.37 26956.57 32171.64 36774.11 36834.44 38845.54 37442.24 39531.11 35689.81 31840.36 36176.10 21776.67 372
test_fmvs356.82 34554.86 34862.69 36353.59 39435.47 39175.87 36065.64 38643.91 38155.10 34071.43 3636.91 39974.40 38468.64 21252.63 35978.20 368
DSMNet-mixed56.78 34654.44 34963.79 36163.21 38529.44 40064.43 38264.10 38742.12 38551.32 35571.60 36031.76 35175.04 38236.23 36965.20 29486.87 261
LF4IMVS54.01 34952.12 35059.69 36462.41 38739.91 38768.59 37468.28 38342.96 38444.55 37875.18 34714.09 39068.39 39041.36 35751.68 36270.78 380
TDRefinement55.28 34851.58 35166.39 35959.53 39146.15 37176.23 35972.80 37144.60 37942.49 38176.28 34215.29 38682.39 37033.20 37843.75 37570.62 381
pmmvs355.51 34751.50 35267.53 35657.90 39250.93 34980.37 33673.66 36940.63 38644.15 37964.75 37516.30 38378.97 38044.77 34540.98 38272.69 377
N_pmnet50.55 35049.11 35354.88 37077.17 3504.02 41384.36 3022.00 41148.59 36945.86 37268.82 36732.22 34982.80 36831.58 38551.38 36377.81 369
new_pmnet49.31 35146.44 35457.93 36562.84 38640.74 38368.47 37562.96 38936.48 38735.09 38757.81 38414.97 38772.18 38632.86 38046.44 37160.88 387
mvsany_test348.86 35246.35 35556.41 36646.00 40031.67 39662.26 38447.25 40143.71 38245.54 37468.15 36910.84 39264.44 39857.95 29035.44 38973.13 376
WB-MVS46.23 35444.94 35650.11 37462.13 38821.23 40776.48 35855.49 39345.89 37635.78 38661.44 38235.54 33672.83 3859.96 40121.75 39656.27 389
test_f46.58 35343.45 35755.96 36745.18 40132.05 39561.18 38549.49 39933.39 38942.05 38262.48 3797.00 39865.56 39447.08 33443.21 37770.27 382
SSC-MVS44.51 35643.35 35847.99 37861.01 39018.90 40974.12 36454.36 39443.42 38334.10 38960.02 38334.42 34170.39 3889.14 40319.57 39754.68 390
FPMVS45.64 35543.10 35953.23 37251.42 39736.46 39064.97 38171.91 37429.13 39227.53 39261.55 3819.83 39465.01 39616.00 39855.58 35258.22 388
EGC-MVSNET42.35 35738.09 36055.11 36974.57 35946.62 37071.63 36855.77 3920.04 4060.24 40762.70 37814.24 38974.91 38317.59 39546.06 37243.80 392
test_vis3_rt40.46 36037.79 36148.47 37744.49 40233.35 39466.56 38032.84 40832.39 39029.65 39039.13 3983.91 40668.65 38950.17 31640.99 38143.40 393
APD_test140.50 35937.31 36250.09 37551.88 39535.27 39259.45 38952.59 39621.64 39526.12 39357.80 3854.56 40366.56 39222.64 39139.09 38348.43 391
LCM-MVSNet40.54 35835.79 36354.76 37136.92 40730.81 39751.41 39469.02 38022.07 39424.63 39445.37 3914.56 40365.81 39333.67 37634.50 39067.67 383
ANet_high40.27 36135.20 36455.47 36834.74 40834.47 39363.84 38371.56 37648.42 37018.80 39741.08 3969.52 39564.45 39720.18 3938.66 40467.49 384
test_method38.59 36235.16 36548.89 37654.33 39321.35 40645.32 39753.71 3957.41 40328.74 39151.62 3878.70 39652.87 40133.73 37532.89 39172.47 378
PMMVS237.93 36333.61 36650.92 37346.31 39924.76 40360.55 38850.05 39728.94 39320.93 39547.59 3884.41 40565.13 39525.14 38918.55 39962.87 386
Gipumacopyleft34.91 36431.44 36745.30 37970.99 37139.64 38819.85 40172.56 37220.10 39716.16 40121.47 4025.08 40271.16 38713.07 39943.70 37625.08 399
S. Galliani, K. Lasinger, K. Schindler: Massively Parallel Multiview Stereopsis by Surface Normal Diffusion. ICCV 2015
testf132.77 36529.47 36842.67 38141.89 40430.81 39752.07 39243.45 40215.45 39818.52 39844.82 3922.12 40758.38 39916.05 39630.87 39338.83 394
APD_test232.77 36529.47 36842.67 38141.89 40430.81 39752.07 39243.45 40215.45 39818.52 39844.82 3922.12 40758.38 39916.05 39630.87 39338.83 394
PMVScopyleft26.43 2231.84 36728.16 37042.89 38025.87 41027.58 40150.92 39549.78 39821.37 39614.17 40240.81 3972.01 40966.62 3919.61 40238.88 38534.49 398
Y. Furukawa, J. Ponce: Accurate, dense, and robust multiview stereopsis. PAMI (2010)
cdsmvs_eth3d_5k19.86 37226.47 3710.00 3910.00 4140.00 4160.00 40293.45 840.00 4090.00 41095.27 5649.56 2470.00 4100.00 4090.00 4070.00 406
E-PMN24.61 36824.00 37226.45 38543.74 40318.44 41060.86 38639.66 40415.11 4009.53 40422.10 4016.52 40046.94 4038.31 40410.14 40113.98 401
tmp_tt22.26 37123.75 37317.80 3875.23 41112.06 41235.26 39839.48 4052.82 40518.94 39644.20 39422.23 37524.64 40636.30 3689.31 40316.69 400
EMVS23.76 37023.20 37425.46 38641.52 40616.90 41160.56 38738.79 40714.62 4018.99 40520.24 4047.35 39745.82 4047.25 4059.46 40213.64 402
MVEpermissive24.84 2324.35 36919.77 37538.09 38334.56 40926.92 40226.57 39938.87 40611.73 40211.37 40327.44 3991.37 41050.42 40211.41 40014.60 40036.93 396
Simon Fuhrmann, Fabian Langguth, Michael Goesele: MVE - A Multi-View Reconstruction Environment. EUROGRAPHICS Workshops on Graphics and Cultural Heritage (2014)
wuyk23d11.30 37310.95 37612.33 38848.05 39819.89 40825.89 4001.92 4123.58 4043.12 4061.37 4060.64 41115.77 4076.23 4067.77 4051.35 403
ab-mvs-re7.91 37410.55 3770.00 3910.00 4140.00 4160.00 4020.00 4150.00 4090.00 41094.95 640.00 4140.00 4100.00 4090.00 4070.00 406
testmvs7.23 3759.62 3780.06 3900.04 4120.02 41584.98 3000.02 4130.03 4070.18 4081.21 4070.01 4130.02 4080.14 4070.01 4060.13 405
test1236.92 3769.21 3790.08 3890.03 4130.05 41481.65 3260.01 4140.02 4080.14 4090.85 4080.03 4120.02 4080.12 4080.00 4070.16 404
pcd_1.5k_mvsjas4.46 3775.95 3800.00 3910.00 4140.00 4160.00 4020.00 4150.00 4090.00 4100.00 40953.55 2120.00 4100.00 4090.00 4070.00 406
test_blank0.00 3780.00 3810.00 3910.00 4140.00 4160.00 4020.00 4150.00 4090.00 4100.00 4090.00 4140.00 4100.00 4090.00 4070.00 406
uanet_test0.00 3780.00 3810.00 3910.00 4140.00 4160.00 4020.00 4150.00 4090.00 4100.00 4090.00 4140.00 4100.00 4090.00 4070.00 406
DCPMVS0.00 3780.00 3810.00 3910.00 4140.00 4160.00 4020.00 4150.00 4090.00 4100.00 4090.00 4140.00 4100.00 4090.00 4070.00 406
sosnet-low-res0.00 3780.00 3810.00 3910.00 4140.00 4160.00 4020.00 4150.00 4090.00 4100.00 4090.00 4140.00 4100.00 4090.00 4070.00 406
sosnet0.00 3780.00 3810.00 3910.00 4140.00 4160.00 4020.00 4150.00 4090.00 4100.00 4090.00 4140.00 4100.00 4090.00 4070.00 406
uncertanet0.00 3780.00 3810.00 3910.00 4140.00 4160.00 4020.00 4150.00 4090.00 4100.00 4090.00 4140.00 4100.00 4090.00 4070.00 406
Regformer0.00 3780.00 3810.00 3910.00 4140.00 4160.00 4020.00 4150.00 4090.00 4100.00 4090.00 4140.00 4100.00 4090.00 4070.00 406
uanet0.00 3780.00 3810.00 3910.00 4140.00 4160.00 4020.00 4150.00 4090.00 4100.00 4090.00 4140.00 4100.00 4090.00 4070.00 406
WAC-MVS49.45 35631.56 386
FOURS193.95 4561.77 24493.96 7091.92 14162.14 31586.57 44
MSC_two_6792asdad89.60 897.31 473.22 1095.05 2699.07 1392.01 2494.77 2596.51 21
PC_three_145280.91 4694.07 296.83 1883.57 499.12 595.70 797.42 497.55 4
No_MVS89.60 897.31 473.22 1095.05 2699.07 1392.01 2494.77 2596.51 21
test_one_060196.32 1869.74 4694.18 5771.42 22290.67 1896.85 1674.45 18
eth-test20.00 414
eth-test0.00 414
ZD-MVS96.63 965.50 15193.50 8270.74 23685.26 5995.19 6164.92 7897.29 7687.51 5593.01 54
IU-MVS96.46 1169.91 4095.18 2080.75 4795.28 192.34 2195.36 1396.47 25
OPU-MVS89.97 397.52 373.15 1296.89 597.00 983.82 299.15 295.72 597.63 397.62 2
test_241102_TWO94.41 4871.65 21192.07 897.21 474.58 1799.11 692.34 2195.36 1396.59 16
test_241102_ONE96.45 1269.38 5194.44 4671.65 21192.11 697.05 776.79 999.11 6
save fliter93.84 4867.89 9095.05 3992.66 11478.19 89
test_0728_THIRD72.48 18190.55 1996.93 1176.24 1199.08 1191.53 2994.99 1796.43 26
test_0728_SECOND88.70 1696.45 1270.43 3296.64 994.37 5299.15 291.91 2794.90 2196.51 21
test072696.40 1569.99 3696.76 794.33 5471.92 19791.89 1097.11 673.77 21
GSMVS94.68 92
test_part296.29 1968.16 8490.78 16
sam_mvs157.85 15994.68 92
sam_mvs54.91 197
ambc69.61 34761.38 38941.35 38249.07 39685.86 32050.18 36166.40 37110.16 39388.14 33145.73 34044.20 37479.32 360
MTGPAbinary92.23 127
test_post178.95 34620.70 40353.05 21791.50 30160.43 279
test_post23.01 40056.49 17992.67 265
patchmatchnet-post67.62 37057.62 16290.25 310
GG-mvs-BLEND86.53 6891.91 10469.67 4975.02 36394.75 3378.67 12790.85 16177.91 794.56 19872.25 17593.74 4395.36 59
MTMP93.77 8432.52 409
gm-plane-assit88.42 18367.04 11378.62 8691.83 14497.37 7076.57 142
test9_res89.41 3994.96 1895.29 64
TEST994.18 4167.28 10594.16 5893.51 8071.75 20885.52 5495.33 5168.01 5097.27 80
test_894.19 4067.19 10794.15 6193.42 8671.87 20285.38 5795.35 5068.19 4896.95 102
agg_prior286.41 6694.75 2995.33 60
agg_prior94.16 4366.97 11593.31 8984.49 6596.75 111
TestCases72.46 33479.57 32051.42 34668.61 38151.25 36245.88 37081.23 29219.86 38186.58 34538.98 36457.01 34879.39 358
test_prior467.18 10993.92 73
test_prior295.10 3875.40 12985.25 6095.61 4567.94 5187.47 5694.77 25
test_prior86.42 7194.71 3567.35 10493.10 9996.84 10895.05 76
旧先验292.00 15959.37 33587.54 3893.47 24175.39 150
新几何291.41 181
新几何184.73 12792.32 8964.28 18291.46 16659.56 33479.77 10992.90 11856.95 17296.57 11663.40 25992.91 5693.34 142
旧先验191.94 10160.74 26691.50 16494.36 8265.23 7391.84 6994.55 99
无先验92.71 12492.61 11862.03 31697.01 9366.63 23093.97 124
原ACMM292.01 156
原ACMM184.42 14193.21 6664.27 18393.40 8865.39 28779.51 11292.50 12658.11 15896.69 11265.27 24993.96 3892.32 172
test22289.77 14861.60 24989.55 24589.42 24356.83 34777.28 14092.43 13052.76 22091.14 8393.09 150
testdata296.09 13261.26 275
segment_acmp65.94 66
testdata81.34 22189.02 16957.72 30689.84 22758.65 33885.32 5894.09 9457.03 16793.28 24369.34 20390.56 8993.03 153
testdata189.21 25477.55 102
test1287.09 4894.60 3668.86 6492.91 10582.67 8165.44 7197.55 6293.69 4694.84 85
plane_prior786.94 22361.51 250
plane_prior687.23 21562.32 23450.66 237
plane_prior591.31 17095.55 16176.74 14078.53 19588.39 238
plane_prior489.14 189
plane_prior361.95 24279.09 7672.53 191
plane_prior293.13 10878.81 83
plane_prior187.15 217
plane_prior62.42 23093.85 7779.38 6878.80 192
n20.00 415
nn0.00 415
door-mid66.01 385
lessismore_v073.72 32572.93 36647.83 36361.72 39045.86 37273.76 35128.63 36389.81 31847.75 33231.37 39283.53 313
LGP-MVS_train79.56 26884.31 27059.37 28789.73 23369.49 25064.86 27988.42 19438.65 31194.30 20772.56 17272.76 24085.01 300
test1193.01 101
door66.57 384
HQP5-MVS63.66 201
HQP-NCC87.54 20894.06 6379.80 6074.18 170
ACMP_Plane87.54 20894.06 6379.80 6074.18 170
BP-MVS77.63 137
HQP4-MVS74.18 17095.61 15688.63 231
HQP3-MVS91.70 15678.90 190
HQP2-MVS51.63 230
NP-MVS87.41 21163.04 21690.30 171
MDTV_nov1_ep13_2view59.90 28080.13 34167.65 27172.79 18654.33 20559.83 28392.58 165
ACMMP++_ref71.63 248
ACMMP++69.72 258
Test By Simon54.21 206
ITE_SJBPF70.43 34574.44 36047.06 36977.32 35860.16 33054.04 34583.53 26123.30 37384.01 35843.07 34861.58 32980.21 355
DeepMVS_CXcopyleft34.71 38451.45 39624.73 40428.48 41031.46 39117.49 40052.75 3865.80 40142.60 40518.18 39419.42 39836.81 397