MSP-MVS | | | 90.38 4 | 91.87 1 | 85.88 88 | 92.83 83 | 64.03 194 | 93.06 105 | 94.33 51 | 82.19 21 | 93.65 3 | 96.15 30 | 85.89 1 | 97.19 84 | 91.02 20 | 97.75 1 | 96.43 26 |
Zhenlong Yuan, Cong Liu, Fei Shen, Zhaoxin Li, Jingguo luo, Tianlu Mao and Zhaoqi Wang: MSP-MVS: Multi-granularity Segmentation Prior Guided Multi-View Stereo. AAAI2025 |
MCST-MVS | | | 91.08 1 | 91.46 2 | 89.94 4 | 97.66 2 | 73.37 9 | 97.13 2 | 95.58 8 | 89.33 1 | 85.77 44 | 96.26 27 | 72.84 27 | 99.38 1 | 92.64 6 | 95.93 10 | 97.08 9 |
|
DeepPCF-MVS | | 81.17 1 | 89.72 9 | 91.38 3 | 84.72 132 | 93.00 81 | 58.16 298 | 96.72 7 | 94.41 45 | 86.50 6 | 90.25 18 | 97.83 1 | 75.46 14 | 98.67 23 | 92.78 5 | 95.49 13 | 97.32 6 |
|
DVP-MVS++ | | | 90.53 3 | 91.09 4 | 88.87 14 | 97.31 4 | 69.91 37 | 93.96 69 | 94.37 49 | 72.48 165 | 92.07 6 | 96.85 12 | 83.82 2 | 99.15 2 | 91.53 16 | 97.42 4 | 97.55 4 |
|
patch_mono-2 | | | 89.71 10 | 90.99 5 | 85.85 91 | 96.04 26 | 63.70 204 | 95.04 41 | 95.19 13 | 86.74 5 | 91.53 11 | 95.15 59 | 73.86 21 | 97.58 63 | 93.38 3 | 92.00 75 | 96.28 32 |
|
CNVR-MVS | | | 90.32 5 | 90.89 6 | 88.61 19 | 96.76 10 | 70.65 26 | 96.47 12 | 94.83 26 | 84.83 9 | 89.07 23 | 96.80 15 | 70.86 35 | 99.06 15 | 92.64 6 | 95.71 11 | 96.12 35 |
|
DPM-MVS | | | 90.70 2 | 90.52 7 | 91.24 1 | 89.68 162 | 76.68 2 | 97.29 1 | 95.35 10 | 82.87 15 | 91.58 10 | 97.22 4 | 79.93 5 | 99.10 9 | 83.12 82 | 97.64 2 | 97.94 1 |
|
ETH3 D test6400 | | | 90.27 6 | 90.44 8 | 89.75 6 | 96.82 9 | 74.33 7 | 95.89 16 | 94.80 29 | 77.13 89 | 89.13 22 | 97.38 2 | 74.49 18 | 98.48 28 | 92.32 11 | 95.98 8 | 96.46 25 |
|
SED-MVS | | | 89.94 8 | 90.36 9 | 88.70 16 | 96.45 14 | 69.38 47 | 96.89 4 | 94.44 43 | 71.65 195 | 92.11 4 | 97.21 5 | 76.79 9 | 99.11 6 | 92.34 8 | 95.36 14 | 97.62 2 |
|
DELS-MVS | | | 90.05 7 | 90.09 10 | 89.94 4 | 93.14 78 | 73.88 8 | 97.01 3 | 94.40 47 | 88.32 2 | 85.71 46 | 94.91 69 | 74.11 20 | 98.91 17 | 87.26 51 | 95.94 9 | 97.03 10 |
Christian Sormann, Emanuele Santellani, Mattia Rossi, Andreas Kuhn, Friedrich Fraundorfer: DELS-MVS: Deep Epipolar Line Search for Multi-View Stereo. Winter Conference on Applications of Computer Vision (WACV), 2023 |
CANet | | | 89.61 11 | 89.99 11 | 88.46 20 | 94.39 44 | 69.71 43 | 96.53 11 | 93.78 64 | 86.89 4 | 89.68 19 | 95.78 34 | 65.94 64 | 99.10 9 | 92.99 4 | 93.91 44 | 96.58 17 |
|
HPM-MVS++ |  | | 89.37 13 | 89.95 12 | 87.64 29 | 95.10 34 | 68.23 77 | 95.24 32 | 94.49 41 | 82.43 19 | 88.90 24 | 96.35 24 | 71.89 34 | 98.63 24 | 88.76 36 | 96.40 6 | 96.06 36 |
|
DVP-MVS |  | | 89.41 12 | 89.73 13 | 88.45 21 | 96.40 17 | 69.99 33 | 96.64 8 | 94.52 39 | 71.92 181 | 90.55 16 | 96.93 10 | 73.77 22 | 99.08 11 | 91.91 14 | 94.90 21 | 96.29 30 |
Zhenlong Yuan, Jinguo Luo, Fei Shen, Zhaoxin Li, Cong Liu, Tianlu Mao, Zhaoqi Wang: DVP-MVS: Synergize Depth-Edge and Visibility Prior for Multi-View Stereo. AAAI2025 |
NCCC | | | 89.07 14 | 89.46 14 | 87.91 24 | 96.60 12 | 69.05 55 | 96.38 13 | 94.64 36 | 84.42 10 | 86.74 34 | 96.20 28 | 66.56 60 | 98.76 22 | 89.03 34 | 94.56 33 | 95.92 41 |
|
DPE-MVS |  | | 88.77 15 | 89.21 15 | 87.45 36 | 96.26 22 | 67.56 93 | 94.17 55 | 94.15 57 | 68.77 250 | 90.74 14 | 97.27 3 | 76.09 12 | 98.49 27 | 90.58 23 | 94.91 20 | 96.30 29 |
Kehua Chen, Zhenlong Yuan, Tianlu Mao, Zhaoqi Wang: Dual-Level Precision Edges Guided Multi-View Stereo with Accurate Planarization. AAAI2025 |
TSAR-MVS + MP. | | | 88.11 18 | 88.64 16 | 86.54 64 | 91.73 118 | 68.04 81 | 90.36 216 | 93.55 77 | 82.89 14 | 91.29 12 | 92.89 120 | 72.27 31 | 96.03 139 | 87.99 40 | 94.77 25 | 95.54 51 |
Zhenlong Yuan, Jiakai Cao, Zhaoqi Wang, Zhaoxin Li: TSAR-MVS: Textureless-aware Segmentation and Correlative Refinement Guided Multi-View Stereo. Pattern Recognition |
EPNet | | | 87.84 22 | 88.38 17 | 86.23 78 | 93.30 71 | 66.05 137 | 95.26 31 | 94.84 25 | 87.09 3 | 88.06 26 | 94.53 77 | 66.79 57 | 97.34 75 | 83.89 78 | 91.68 80 | 95.29 62 |
Wanjuan Su, Wenbing Tao: Efficient Edge-Preserving Multi-View Stereo Network for Depth Estimation. AAAI 2023 |
TSAR-MVS + GP. | | | 87.96 19 | 88.37 18 | 86.70 58 | 93.51 67 | 65.32 156 | 95.15 35 | 93.84 63 | 78.17 73 | 85.93 43 | 94.80 72 | 75.80 13 | 98.21 35 | 89.38 27 | 88.78 108 | 96.59 15 |
|
SMA-MVS |  | | 88.14 16 | 88.29 19 | 87.67 28 | 93.21 75 | 68.72 63 | 93.85 79 | 94.03 60 | 74.18 127 | 91.74 9 | 96.67 16 | 65.61 69 | 98.42 32 | 89.24 30 | 96.08 7 | 95.88 43 |
Yufeng Yin; Xiaoyan Liu; Zichao Zhang: SMA-MVS: Segmentation-Guided Multi-Scale Anchor Deformation Patch Multi-View Stereo. IEEE Transactions on Circuits and Systems for Video Technology |
DeepC-MVS_fast | | 79.48 2 | 87.95 20 | 88.00 20 | 87.79 27 | 95.86 29 | 68.32 71 | 95.74 20 | 94.11 59 | 83.82 12 | 83.49 69 | 96.19 29 | 64.53 81 | 98.44 30 | 83.42 81 | 94.88 24 | 96.61 14 |
Andreas Kuhn, Christian Sormann, Mattia Rossi, Oliver Erdler, Friedrich Fraundorfer: DeepC-MVS: Deep Confidence Prediction for Multi-View Stereo Reconstruction. 3DV 2020 |
ETH3D-3000-0.1 | | | 87.61 24 | 87.89 21 | 86.75 55 | 93.58 64 | 67.21 106 | 94.31 53 | 94.14 58 | 72.92 156 | 87.13 30 | 96.62 17 | 67.81 49 | 97.94 43 | 90.13 24 | 94.42 36 | 95.09 74 |
|
APDe-MVS | | | 87.54 25 | 87.84 22 | 86.65 59 | 96.07 25 | 66.30 132 | 94.84 46 | 93.78 64 | 69.35 241 | 88.39 25 | 96.34 25 | 67.74 50 | 97.66 58 | 90.62 22 | 93.44 53 | 96.01 39 |
|
lupinMVS | | | 87.74 23 | 87.77 23 | 87.63 33 | 89.24 175 | 71.18 21 | 96.57 10 | 92.90 107 | 82.70 18 | 87.13 30 | 95.27 52 | 64.99 74 | 95.80 144 | 89.34 28 | 91.80 78 | 95.93 40 |
|
test_prior3 | | | 87.38 27 | 87.70 24 | 86.42 69 | 94.71 39 | 67.35 102 | 95.10 37 | 93.10 100 | 75.40 110 | 85.25 54 | 95.61 40 | 67.94 45 | 96.84 111 | 87.47 46 | 94.77 25 | 95.05 76 |
|
9.14 | | | | 87.63 25 | | 93.86 55 | | 94.41 51 | 94.18 55 | 72.76 159 | 86.21 38 | 96.51 19 | 66.64 58 | 97.88 49 | 90.08 25 | 94.04 41 | |
|
PS-MVSNAJ | | | 88.14 16 | 87.61 26 | 89.71 7 | 92.06 104 | 76.72 1 | 95.75 19 | 93.26 90 | 83.86 11 | 89.55 20 | 96.06 31 | 53.55 205 | 97.89 48 | 91.10 18 | 93.31 55 | 94.54 96 |
|
Regformer-1 | | | 87.24 30 | 87.60 27 | 86.15 80 | 95.14 32 | 65.83 145 | 93.95 72 | 95.12 16 | 82.11 22 | 84.25 61 | 95.73 36 | 67.88 48 | 98.35 33 | 85.60 63 | 88.64 111 | 94.26 105 |
|
dcpmvs_2 | | | 87.37 28 | 87.55 28 | 86.85 49 | 95.04 36 | 68.20 78 | 90.36 216 | 90.66 200 | 79.37 52 | 81.20 86 | 93.67 102 | 74.73 15 | 96.55 123 | 90.88 21 | 92.00 75 | 95.82 44 |
|
SD-MVS | | | 87.49 26 | 87.49 29 | 87.50 35 | 93.60 63 | 68.82 61 | 93.90 76 | 92.63 118 | 76.86 92 | 87.90 27 | 95.76 35 | 66.17 61 | 97.63 60 | 89.06 32 | 91.48 84 | 96.05 37 |
Zhenlong Yuan, Jiakai Cao, Zhaoxin Li, Hao Jiang and Zhaoqi Wang: SD-MVS: Segmentation-driven Deformation Multi-View Stereo with Spherical Refinement and EM optimization. AAAI2024 |
Regformer-2 | | | 87.00 37 | 87.43 30 | 85.71 98 | 95.14 32 | 64.73 173 | 93.95 72 | 94.95 23 | 81.69 27 | 84.03 66 | 95.73 36 | 67.35 52 | 98.19 37 | 85.40 65 | 88.64 111 | 94.20 107 |
|
train_agg | | | 87.21 31 | 87.42 31 | 86.60 60 | 94.18 46 | 67.28 104 | 94.16 56 | 93.51 78 | 71.87 186 | 85.52 48 | 95.33 47 | 68.19 41 | 97.27 82 | 89.09 31 | 94.90 21 | 95.25 69 |
|
xiu_mvs_v2_base | | | 87.92 21 | 87.38 32 | 89.55 12 | 91.41 129 | 76.43 3 | 95.74 20 | 93.12 99 | 83.53 13 | 89.55 20 | 95.95 32 | 53.45 209 | 97.68 54 | 91.07 19 | 92.62 64 | 94.54 96 |
|
agg_prior1 | | | 87.02 36 | 87.26 33 | 86.28 77 | 94.16 50 | 66.97 115 | 94.08 63 | 93.31 88 | 71.85 188 | 84.49 59 | 95.39 45 | 68.91 38 | 96.75 116 | 88.84 35 | 94.32 38 | 95.13 72 |
|
xxxxxxxxxxxxxcwj | | | 87.14 32 | 87.19 34 | 86.99 47 | 93.84 56 | 67.89 85 | 95.05 39 | 84.72 321 | 78.19 71 | 86.25 36 | 96.44 21 | 66.98 54 | 97.79 51 | 88.68 37 | 94.56 33 | 95.28 64 |
|
ETH3D cwj APD-0.16 | | | 87.06 34 | 87.18 35 | 86.71 56 | 91.99 109 | 67.48 100 | 92.97 110 | 94.21 54 | 71.48 206 | 85.72 45 | 96.32 26 | 68.13 43 | 98.00 42 | 89.06 32 | 94.70 31 | 94.65 92 |
|
SF-MVS | | | 87.03 35 | 87.09 36 | 86.84 50 | 92.70 89 | 67.45 101 | 93.64 87 | 93.76 67 | 70.78 223 | 86.25 36 | 96.44 21 | 66.98 54 | 97.79 51 | 88.68 37 | 94.56 33 | 95.28 64 |
|
CS-MVS-test | | | 86.14 49 | 87.01 37 | 83.52 165 | 92.63 92 | 59.36 285 | 95.49 26 | 91.92 143 | 80.09 42 | 85.46 50 | 95.53 43 | 61.82 113 | 95.77 147 | 86.77 56 | 93.37 54 | 95.41 53 |
|
alignmvs | | | 87.28 29 | 86.97 38 | 88.24 23 | 91.30 130 | 71.14 23 | 95.61 24 | 93.56 76 | 79.30 53 | 87.07 33 | 95.25 54 | 68.43 39 | 96.93 109 | 87.87 41 | 84.33 148 | 96.65 13 |
|
SteuartSystems-ACMMP | | | 86.82 41 | 86.90 39 | 86.58 62 | 90.42 146 | 66.38 129 | 96.09 15 | 93.87 62 | 77.73 80 | 84.01 67 | 95.66 38 | 63.39 97 | 97.94 43 | 87.40 48 | 93.55 52 | 95.42 52 |
Skip Steuart: Steuart Systems R&D Blog. |
PVSNet_Blended | | | 86.73 42 | 86.86 40 | 86.31 76 | 93.76 58 | 67.53 96 | 96.33 14 | 93.61 74 | 82.34 20 | 81.00 91 | 93.08 112 | 63.19 100 | 97.29 78 | 87.08 52 | 91.38 86 | 94.13 113 |
|
PHI-MVS | | | 86.83 40 | 86.85 41 | 86.78 54 | 93.47 68 | 65.55 152 | 95.39 29 | 95.10 18 | 71.77 192 | 85.69 47 | 96.52 18 | 62.07 109 | 98.77 21 | 86.06 61 | 95.60 12 | 96.03 38 |
|
testtj | | | 86.62 43 | 86.66 42 | 86.50 66 | 96.95 8 | 65.70 147 | 94.41 51 | 93.45 82 | 67.74 257 | 86.19 39 | 96.39 23 | 64.38 82 | 97.91 46 | 87.33 49 | 93.14 58 | 95.90 42 |
|
CS-MVS | | | 85.80 54 | 86.65 43 | 83.27 173 | 92.00 108 | 58.92 290 | 95.31 30 | 91.86 149 | 79.97 43 | 84.82 56 | 95.40 44 | 62.26 107 | 95.51 166 | 86.11 60 | 92.08 74 | 95.37 56 |
|
MG-MVS | | | 87.11 33 | 86.27 44 | 89.62 8 | 97.79 1 | 76.27 4 | 94.96 44 | 94.49 41 | 78.74 67 | 83.87 68 | 92.94 117 | 64.34 83 | 96.94 107 | 75.19 141 | 94.09 40 | 95.66 47 |
|
CSCG | | | 86.87 38 | 86.26 45 | 88.72 15 | 95.05 35 | 70.79 25 | 93.83 83 | 95.33 11 | 68.48 254 | 77.63 128 | 94.35 86 | 73.04 25 | 98.45 29 | 84.92 70 | 93.71 49 | 96.92 11 |
|
canonicalmvs | | | 86.85 39 | 86.25 46 | 88.66 18 | 91.80 117 | 71.92 15 | 93.54 92 | 91.71 157 | 80.26 41 | 87.55 28 | 95.25 54 | 63.59 95 | 96.93 109 | 88.18 39 | 84.34 147 | 97.11 8 |
|
jason | | | 86.40 44 | 86.17 47 | 87.11 43 | 86.16 239 | 70.54 28 | 95.71 23 | 92.19 135 | 82.00 24 | 84.58 58 | 94.34 87 | 61.86 111 | 95.53 165 | 87.76 42 | 90.89 92 | 95.27 66 |
jason: jason. |
ETV-MVS | | | 86.01 51 | 86.11 48 | 85.70 99 | 90.21 151 | 67.02 114 | 93.43 97 | 91.92 143 | 81.21 32 | 84.13 65 | 94.07 96 | 60.93 120 | 95.63 155 | 89.28 29 | 89.81 100 | 94.46 103 |
|
APD-MVS |  | | 85.93 52 | 85.99 49 | 85.76 95 | 95.98 28 | 65.21 159 | 93.59 90 | 92.58 120 | 66.54 269 | 86.17 40 | 95.88 33 | 63.83 89 | 97.00 99 | 86.39 58 | 92.94 60 | 95.06 75 |
Yuesong Wang, Zhaojie Zeng and etc.: Adaptive Patch Deformation for Textureless-Resilient Multi-View Stereo. CVPR2023 |
Regformer-3 | | | 85.80 54 | 85.92 50 | 85.46 105 | 94.17 48 | 65.09 166 | 92.95 112 | 95.11 17 | 81.13 33 | 81.68 81 | 95.04 60 | 65.82 66 | 98.32 34 | 83.02 83 | 84.36 145 | 92.97 156 |
|
MSLP-MVS++ | | | 86.27 46 | 85.91 51 | 87.35 38 | 92.01 107 | 68.97 58 | 95.04 41 | 92.70 112 | 79.04 61 | 81.50 83 | 96.50 20 | 58.98 144 | 96.78 113 | 83.49 80 | 93.93 43 | 96.29 30 |
|
WTY-MVS | | | 86.32 45 | 85.81 52 | 87.85 25 | 92.82 85 | 69.37 49 | 95.20 33 | 95.25 12 | 82.71 17 | 81.91 79 | 94.73 73 | 67.93 47 | 97.63 60 | 79.55 111 | 82.25 159 | 96.54 18 |
|
ACMMP_NAP | | | 86.05 50 | 85.80 53 | 86.80 53 | 91.58 122 | 67.53 96 | 91.79 161 | 93.49 81 | 74.93 118 | 84.61 57 | 95.30 49 | 59.42 137 | 97.92 45 | 86.13 59 | 94.92 19 | 94.94 81 |
|
MVS_111021_HR | | | 86.19 48 | 85.80 53 | 87.37 37 | 93.17 77 | 69.79 40 | 93.99 68 | 93.76 67 | 79.08 60 | 78.88 117 | 93.99 97 | 62.25 108 | 98.15 38 | 85.93 62 | 91.15 90 | 94.15 112 |
|
Regformer-4 | | | 85.45 58 | 85.69 55 | 84.73 130 | 94.17 48 | 63.23 213 | 92.95 112 | 94.83 26 | 80.66 38 | 81.29 84 | 95.04 60 | 65.12 72 | 98.08 40 | 82.74 85 | 84.36 145 | 92.88 160 |
|
VNet | | | 86.20 47 | 85.65 56 | 87.84 26 | 93.92 54 | 69.99 33 | 95.73 22 | 95.94 6 | 78.43 69 | 86.00 42 | 93.07 114 | 58.22 148 | 97.00 99 | 85.22 67 | 84.33 148 | 96.52 19 |
|
CDPH-MVS | | | 85.71 56 | 85.46 57 | 86.46 67 | 94.75 38 | 67.19 107 | 93.89 77 | 92.83 109 | 70.90 218 | 83.09 72 | 95.28 50 | 63.62 93 | 97.36 73 | 80.63 105 | 94.18 39 | 94.84 85 |
|
PAPM | | | 85.89 53 | 85.46 57 | 87.18 41 | 88.20 202 | 72.42 14 | 92.41 135 | 92.77 110 | 82.11 22 | 80.34 97 | 93.07 114 | 68.27 40 | 95.02 178 | 78.39 124 | 93.59 51 | 94.09 115 |
|
DeepC-MVS | | 77.85 3 | 85.52 57 | 85.24 59 | 86.37 72 | 88.80 185 | 66.64 123 | 92.15 141 | 93.68 72 | 81.07 34 | 76.91 138 | 93.64 103 | 62.59 105 | 98.44 30 | 85.50 64 | 92.84 62 | 94.03 119 |
Andreas Kuhn, Christian Sormann, Mattia Rossi, Oliver Erdler, Friedrich Fraundorfer: DeepC-MVS: Deep Confidence Prediction for Multi-View Stereo Reconstruction. 3DV 2020 |
MP-MVS-pluss | | | 85.24 61 | 85.13 60 | 85.56 102 | 91.42 127 | 65.59 151 | 91.54 173 | 92.51 122 | 74.56 121 | 80.62 94 | 95.64 39 | 59.15 141 | 97.00 99 | 86.94 54 | 93.80 45 | 94.07 117 |
MP-MVS-pluss: MP-MVS-pluss. MP-MVS-pluss |
ZNCC-MVS | | | 85.33 60 | 85.08 61 | 86.06 81 | 93.09 80 | 65.65 149 | 93.89 77 | 93.41 86 | 73.75 138 | 79.94 101 | 94.68 75 | 60.61 123 | 98.03 41 | 82.63 88 | 93.72 48 | 94.52 98 |
|
DROMVSNet | | | 84.53 72 | 85.04 62 | 83.01 177 | 89.34 169 | 61.37 250 | 94.42 50 | 91.09 186 | 77.91 77 | 83.24 70 | 94.20 92 | 58.37 147 | 95.40 167 | 85.35 66 | 91.41 85 | 92.27 177 |
|
MP-MVS |  | | 85.02 63 | 84.97 63 | 85.17 117 | 92.60 93 | 64.27 190 | 93.24 100 | 92.27 128 | 73.13 150 | 79.63 106 | 94.43 80 | 61.90 110 | 97.17 85 | 85.00 68 | 92.56 65 | 94.06 118 |
Rongxuan Tan, Qing Wang, et al.: MP-MVS: Multi-Scale Windows PatchMatch and Planar Prior Multi-View Stereo. |
EIA-MVS | | | 84.84 67 | 84.88 64 | 84.69 133 | 91.30 130 | 62.36 232 | 93.85 79 | 92.04 138 | 79.45 50 | 79.33 109 | 94.28 90 | 62.42 106 | 96.35 127 | 80.05 108 | 91.25 89 | 95.38 55 |
|
casdiffmvs | | | 85.37 59 | 84.87 65 | 86.84 50 | 88.25 200 | 69.07 54 | 93.04 107 | 91.76 154 | 81.27 31 | 80.84 93 | 92.07 138 | 64.23 84 | 96.06 137 | 84.98 69 | 87.43 121 | 95.39 54 |
|
#test# | | | 84.98 65 | 84.74 66 | 85.72 96 | 93.75 60 | 65.01 167 | 94.09 62 | 93.19 94 | 73.55 144 | 79.22 110 | 94.93 66 | 59.04 142 | 97.67 55 | 82.66 86 | 92.21 69 | 94.49 101 |
|
zzz-MVS | | | 84.73 68 | 84.47 67 | 85.50 103 | 91.89 114 | 65.16 161 | 91.55 172 | 92.23 129 | 75.32 112 | 80.53 95 | 95.21 56 | 56.06 177 | 97.16 86 | 84.86 71 | 92.55 66 | 94.18 108 |
|
PAPR | | | 85.15 62 | 84.47 67 | 87.18 41 | 96.02 27 | 68.29 73 | 91.85 159 | 93.00 104 | 76.59 97 | 79.03 113 | 95.00 62 | 61.59 114 | 97.61 62 | 78.16 125 | 89.00 107 | 95.63 48 |
|
baseline | | | 85.01 64 | 84.44 69 | 86.71 56 | 88.33 197 | 68.73 62 | 90.24 221 | 91.82 153 | 81.05 35 | 81.18 87 | 92.50 127 | 63.69 92 | 96.08 136 | 84.45 73 | 86.71 129 | 95.32 60 |
|
HFP-MVS | | | 84.73 68 | 84.40 70 | 85.72 96 | 93.75 60 | 65.01 167 | 93.50 94 | 93.19 94 | 72.19 175 | 79.22 110 | 94.93 66 | 59.04 142 | 97.67 55 | 81.55 96 | 92.21 69 | 94.49 101 |
|
GST-MVS | | | 84.63 71 | 84.29 71 | 85.66 100 | 92.82 85 | 65.27 157 | 93.04 107 | 93.13 98 | 73.20 148 | 78.89 114 | 94.18 93 | 59.41 138 | 97.85 50 | 81.45 98 | 92.48 68 | 93.86 127 |
|
ACMMPR | | | 84.37 73 | 84.06 72 | 85.28 113 | 93.56 65 | 64.37 185 | 93.50 94 | 93.15 97 | 72.19 175 | 78.85 119 | 94.86 70 | 56.69 169 | 97.45 67 | 81.55 96 | 92.20 71 | 94.02 120 |
|
region2R | | | 84.36 74 | 84.03 73 | 85.36 110 | 93.54 66 | 64.31 187 | 93.43 97 | 92.95 105 | 72.16 178 | 78.86 118 | 94.84 71 | 56.97 164 | 97.53 65 | 81.38 100 | 92.11 73 | 94.24 106 |
|
diffmvs | | | 84.28 76 | 83.83 74 | 85.61 101 | 87.40 219 | 68.02 82 | 90.88 201 | 89.24 251 | 80.54 39 | 81.64 82 | 92.52 126 | 59.83 132 | 94.52 201 | 87.32 50 | 85.11 139 | 94.29 104 |
|
EI-MVSNet-Vis-set | | | 83.77 88 | 83.67 75 | 84.06 152 | 92.79 88 | 63.56 209 | 91.76 164 | 94.81 28 | 79.65 49 | 77.87 125 | 94.09 94 | 63.35 98 | 97.90 47 | 79.35 113 | 79.36 183 | 90.74 201 |
|
CANet_DTU | | | 84.09 82 | 83.52 76 | 85.81 92 | 90.30 149 | 66.82 118 | 91.87 157 | 89.01 264 | 85.27 7 | 86.09 41 | 93.74 101 | 47.71 263 | 96.98 103 | 77.90 128 | 89.78 102 | 93.65 133 |
|
PVSNet_Blended_VisFu | | | 83.97 84 | 83.50 77 | 85.39 109 | 90.02 154 | 66.59 126 | 93.77 84 | 91.73 155 | 77.43 88 | 77.08 137 | 89.81 173 | 63.77 91 | 96.97 104 | 79.67 110 | 88.21 114 | 92.60 165 |
|
XVS | | | 83.87 86 | 83.47 78 | 85.05 118 | 93.22 73 | 63.78 199 | 92.92 115 | 92.66 115 | 73.99 130 | 78.18 123 | 94.31 89 | 55.25 183 | 97.41 70 | 79.16 115 | 91.58 82 | 93.95 122 |
|
CHOSEN 1792x2688 | | | 84.98 65 | 83.45 79 | 89.57 11 | 89.94 157 | 75.14 5 | 92.07 147 | 92.32 126 | 81.87 25 | 75.68 147 | 88.27 190 | 60.18 126 | 98.60 25 | 80.46 107 | 90.27 99 | 94.96 80 |
|
PVSNet_BlendedMVS | | | 83.38 93 | 83.43 80 | 83.22 174 | 93.76 58 | 67.53 96 | 94.06 64 | 93.61 74 | 79.13 58 | 81.00 91 | 85.14 225 | 63.19 100 | 97.29 78 | 87.08 52 | 73.91 224 | 84.83 293 |
|
MAR-MVS | | | 84.18 80 | 83.43 80 | 86.44 68 | 96.25 23 | 65.93 142 | 94.28 54 | 94.27 53 | 74.41 122 | 79.16 112 | 95.61 40 | 53.99 200 | 98.88 20 | 69.62 190 | 93.26 56 | 94.50 100 |
Zhenyu Xu, Yiguang Liu, Xuelei Shi, Ying Wang, Yunan Zheng: MARMVS: Matching Ambiguity Reduced Multiple View Stereo for Efficient Large Scale Scene Reconstruction. CVPR 2020 |
baseline2 | | | 83.68 91 | 83.42 82 | 84.48 140 | 87.37 220 | 66.00 139 | 90.06 225 | 95.93 7 | 79.71 48 | 69.08 226 | 90.39 163 | 77.92 6 | 96.28 128 | 78.91 119 | 81.38 169 | 91.16 197 |
|
CP-MVS | | | 83.71 90 | 83.40 83 | 84.65 134 | 93.14 78 | 63.84 197 | 94.59 48 | 92.28 127 | 71.03 215 | 77.41 131 | 94.92 68 | 55.21 186 | 96.19 130 | 81.32 101 | 90.70 94 | 93.91 124 |
|
MTAPA | | | 83.91 85 | 83.38 84 | 85.50 103 | 91.89 114 | 65.16 161 | 81.75 309 | 92.23 129 | 75.32 112 | 80.53 95 | 95.21 56 | 56.06 177 | 97.16 86 | 84.86 71 | 92.55 66 | 94.18 108 |
|
HY-MVS | | 76.49 5 | 84.28 76 | 83.36 85 | 87.02 46 | 92.22 101 | 67.74 89 | 84.65 289 | 94.50 40 | 79.15 57 | 82.23 77 | 87.93 197 | 66.88 56 | 96.94 107 | 80.53 106 | 82.20 160 | 96.39 28 |
|
MVS_Test | | | 84.16 81 | 83.20 86 | 87.05 45 | 91.56 123 | 69.82 39 | 89.99 230 | 92.05 137 | 77.77 79 | 82.84 73 | 86.57 211 | 63.93 88 | 96.09 134 | 74.91 147 | 89.18 106 | 95.25 69 |
|
test_yl | | | 84.28 76 | 83.16 87 | 87.64 29 | 94.52 42 | 69.24 50 | 95.78 17 | 95.09 19 | 69.19 244 | 81.09 88 | 92.88 121 | 57.00 162 | 97.44 68 | 81.11 103 | 81.76 163 | 96.23 33 |
|
DCV-MVSNet | | | 84.28 76 | 83.16 87 | 87.64 29 | 94.52 42 | 69.24 50 | 95.78 17 | 95.09 19 | 69.19 244 | 81.09 88 | 92.88 121 | 57.00 162 | 97.44 68 | 81.11 103 | 81.76 163 | 96.23 33 |
|
ET-MVSNet_ETH3D | | | 84.01 83 | 83.15 89 | 86.58 62 | 90.78 141 | 70.89 24 | 94.74 47 | 94.62 37 | 81.44 30 | 58.19 315 | 93.64 103 | 73.64 24 | 92.35 276 | 82.66 86 | 78.66 191 | 96.50 23 |
|
EI-MVSNet-UG-set | | | 83.14 98 | 82.96 90 | 83.67 163 | 92.28 99 | 63.19 215 | 91.38 182 | 94.68 34 | 79.22 55 | 76.60 140 | 93.75 100 | 62.64 104 | 97.76 53 | 78.07 126 | 78.01 194 | 90.05 209 |
|
HPM-MVS |  | | 83.25 96 | 82.95 91 | 84.17 149 | 92.25 100 | 62.88 225 | 90.91 198 | 91.86 149 | 70.30 229 | 77.12 135 | 93.96 98 | 56.75 167 | 96.28 128 | 82.04 92 | 91.34 88 | 93.34 142 |
Chunlin Ren, Qingshan Xu, Shikun Zhang, Jiaqi Yang: Hierarchical Prior Mining for Non-local Multi-View Stereo. ICCV 2023 |
test2506 | | | 83.29 94 | 82.92 92 | 84.37 143 | 88.39 195 | 63.18 216 | 92.01 150 | 91.35 174 | 77.66 82 | 78.49 122 | 91.42 146 | 64.58 80 | 95.09 176 | 73.19 153 | 89.23 104 | 94.85 82 |
|
MVSFormer | | | 83.75 89 | 82.88 93 | 86.37 72 | 89.24 175 | 71.18 21 | 89.07 249 | 90.69 197 | 65.80 274 | 87.13 30 | 94.34 87 | 64.99 74 | 92.67 262 | 72.83 157 | 91.80 78 | 95.27 66 |
|
MVS | | | 84.66 70 | 82.86 94 | 90.06 2 | 90.93 136 | 74.56 6 | 87.91 265 | 95.54 9 | 68.55 252 | 72.35 192 | 94.71 74 | 59.78 133 | 98.90 18 | 81.29 102 | 94.69 32 | 96.74 12 |
|
Effi-MVS+ | | | 83.82 87 | 82.76 95 | 86.99 47 | 89.56 165 | 69.40 46 | 91.35 184 | 86.12 310 | 72.59 161 | 83.22 71 | 92.81 124 | 59.60 135 | 96.01 141 | 81.76 94 | 87.80 118 | 95.56 50 |
|
LFMVS | | | 84.34 75 | 82.73 96 | 89.18 13 | 94.76 37 | 73.25 10 | 94.99 43 | 91.89 148 | 71.90 183 | 82.16 78 | 93.49 107 | 47.98 260 | 97.05 90 | 82.55 89 | 84.82 141 | 97.25 7 |
|
iter_conf05 | | | 83.27 95 | 82.70 97 | 84.98 121 | 93.32 70 | 71.84 16 | 94.16 56 | 81.76 341 | 82.74 16 | 73.83 172 | 88.40 186 | 72.77 28 | 94.61 192 | 82.10 91 | 75.21 217 | 88.48 227 |
|
PGM-MVS | | | 83.25 96 | 82.70 97 | 84.92 123 | 92.81 87 | 64.07 193 | 90.44 212 | 92.20 134 | 71.28 208 | 77.23 134 | 94.43 80 | 55.17 187 | 97.31 77 | 79.33 114 | 91.38 86 | 93.37 141 |
|
SR-MVS | | | 82.81 103 | 82.58 99 | 83.50 168 | 93.35 69 | 61.16 253 | 92.23 140 | 91.28 178 | 64.48 282 | 81.27 85 | 95.28 50 | 53.71 204 | 95.86 143 | 82.87 84 | 88.77 109 | 93.49 138 |
|
h-mvs33 | | | 83.01 100 | 82.56 100 | 84.35 144 | 89.34 169 | 62.02 237 | 92.72 120 | 93.76 67 | 81.45 28 | 82.73 74 | 92.25 136 | 60.11 127 | 97.13 88 | 87.69 43 | 62.96 298 | 93.91 124 |
|
thisisatest0515 | | | 83.41 92 | 82.49 101 | 86.16 79 | 89.46 168 | 68.26 75 | 93.54 92 | 94.70 33 | 74.31 125 | 75.75 145 | 90.92 152 | 72.62 29 | 96.52 124 | 69.64 188 | 81.50 168 | 93.71 131 |
|
mPP-MVS | | | 82.96 102 | 82.44 102 | 84.52 138 | 92.83 83 | 62.92 223 | 92.76 118 | 91.85 151 | 71.52 203 | 75.61 150 | 94.24 91 | 53.48 208 | 96.99 102 | 78.97 118 | 90.73 93 | 93.64 134 |
|
sss | | | 82.71 106 | 82.38 103 | 83.73 160 | 89.25 174 | 59.58 280 | 92.24 139 | 94.89 24 | 77.96 75 | 79.86 103 | 92.38 132 | 56.70 168 | 97.05 90 | 77.26 131 | 80.86 174 | 94.55 94 |
|
CLD-MVS | | | 82.73 104 | 82.35 104 | 83.86 156 | 87.90 209 | 67.65 92 | 95.45 27 | 92.18 136 | 85.06 8 | 72.58 185 | 92.27 135 | 52.46 219 | 95.78 145 | 84.18 74 | 79.06 186 | 88.16 234 |
Zhaoxin Li, Wangmeng Zuo, Zhaoqi Wang, Lei Zhang: Confidence-based Large-scale Dense Multi-view Stereo. IEEE Transaction on Image Processing, 2020 |
MVSTER | | | 82.47 108 | 82.05 105 | 83.74 158 | 92.68 90 | 69.01 56 | 91.90 156 | 93.21 91 | 79.83 44 | 72.14 193 | 85.71 222 | 74.72 16 | 94.72 188 | 75.72 138 | 72.49 235 | 87.50 239 |
|
PMMVS | | | 81.98 118 | 82.04 106 | 81.78 210 | 89.76 161 | 56.17 318 | 91.13 194 | 90.69 197 | 77.96 75 | 80.09 100 | 93.57 105 | 46.33 274 | 94.99 179 | 81.41 99 | 87.46 120 | 94.17 110 |
|
TESTMET0.1,1 | | | 82.41 109 | 81.98 107 | 83.72 161 | 88.08 203 | 63.74 201 | 92.70 122 | 93.77 66 | 79.30 53 | 77.61 129 | 87.57 202 | 58.19 149 | 94.08 216 | 73.91 152 | 86.68 130 | 93.33 144 |
|
PAPM_NR | | | 82.97 101 | 81.84 108 | 86.37 72 | 94.10 52 | 66.76 121 | 87.66 270 | 92.84 108 | 69.96 233 | 74.07 169 | 93.57 105 | 63.10 102 | 97.50 66 | 70.66 181 | 90.58 96 | 94.85 82 |
|
test1172 | | | 81.90 119 | 81.83 109 | 82.13 202 | 93.23 72 | 57.52 308 | 91.61 171 | 90.98 193 | 64.32 284 | 80.20 99 | 95.00 62 | 51.26 229 | 95.61 157 | 81.73 95 | 88.13 115 | 93.26 146 |
|
VDD-MVS | | | 83.06 99 | 81.81 110 | 86.81 52 | 90.86 139 | 67.70 90 | 95.40 28 | 91.50 168 | 75.46 107 | 81.78 80 | 92.34 134 | 40.09 298 | 97.13 88 | 86.85 55 | 82.04 161 | 95.60 49 |
|
DP-MVS Recon | | | 82.73 104 | 81.65 111 | 85.98 85 | 97.31 4 | 67.06 111 | 95.15 35 | 91.99 140 | 69.08 247 | 76.50 142 | 93.89 99 | 54.48 195 | 98.20 36 | 70.76 179 | 85.66 136 | 92.69 162 |
|
MVS_111021_LR | | | 82.02 117 | 81.52 112 | 83.51 167 | 88.42 193 | 62.88 225 | 89.77 234 | 88.93 266 | 76.78 95 | 75.55 151 | 93.10 110 | 50.31 236 | 95.38 169 | 83.82 79 | 87.02 123 | 92.26 178 |
|
EPP-MVSNet | | | 81.79 121 | 81.52 112 | 82.61 186 | 88.77 186 | 60.21 272 | 93.02 109 | 93.66 73 | 68.52 253 | 72.90 180 | 90.39 163 | 72.19 32 | 94.96 180 | 74.93 146 | 79.29 185 | 92.67 163 |
|
APD-MVS_3200maxsize | | | 81.64 123 | 81.32 114 | 82.59 187 | 92.36 96 | 58.74 292 | 91.39 180 | 91.01 192 | 63.35 290 | 79.72 105 | 94.62 76 | 51.82 222 | 96.14 132 | 79.71 109 | 87.93 117 | 92.89 159 |
|
CostFormer | | | 82.33 110 | 81.15 115 | 85.86 90 | 89.01 180 | 68.46 68 | 82.39 307 | 93.01 102 | 75.59 105 | 80.25 98 | 81.57 273 | 72.03 33 | 94.96 180 | 79.06 117 | 77.48 203 | 94.16 111 |
|
xiu_mvs_v1_base_debu | | | 82.16 113 | 81.12 116 | 85.26 114 | 86.42 233 | 68.72 63 | 92.59 130 | 90.44 207 | 73.12 151 | 84.20 62 | 94.36 82 | 38.04 310 | 95.73 149 | 84.12 75 | 86.81 124 | 91.33 191 |
|
xiu_mvs_v1_base | | | 82.16 113 | 81.12 116 | 85.26 114 | 86.42 233 | 68.72 63 | 92.59 130 | 90.44 207 | 73.12 151 | 84.20 62 | 94.36 82 | 38.04 310 | 95.73 149 | 84.12 75 | 86.81 124 | 91.33 191 |
|
xiu_mvs_v1_base_debi | | | 82.16 113 | 81.12 116 | 85.26 114 | 86.42 233 | 68.72 63 | 92.59 130 | 90.44 207 | 73.12 151 | 84.20 62 | 94.36 82 | 38.04 310 | 95.73 149 | 84.12 75 | 86.81 124 | 91.33 191 |
|
hse-mvs2 | | | 81.12 132 | 81.11 119 | 81.16 224 | 86.52 232 | 57.48 309 | 89.40 242 | 91.16 181 | 81.45 28 | 82.73 74 | 90.49 161 | 60.11 127 | 94.58 194 | 87.69 43 | 60.41 324 | 91.41 190 |
|
baseline1 | | | 81.84 120 | 81.03 120 | 84.28 147 | 91.60 121 | 66.62 124 | 91.08 195 | 91.66 162 | 81.87 25 | 74.86 155 | 91.67 145 | 69.98 37 | 94.92 183 | 71.76 172 | 64.75 287 | 91.29 196 |
|
iter_conf_final | | | 81.74 122 | 80.93 121 | 84.18 148 | 92.66 91 | 69.10 53 | 92.94 114 | 82.80 339 | 79.01 62 | 74.85 156 | 88.40 186 | 61.83 112 | 94.61 192 | 79.36 112 | 76.52 212 | 88.83 219 |
|
3Dnovator | | 73.91 6 | 82.69 107 | 80.82 122 | 88.31 22 | 89.57 164 | 71.26 20 | 92.60 128 | 94.39 48 | 78.84 64 | 67.89 245 | 92.48 130 | 48.42 255 | 98.52 26 | 68.80 200 | 94.40 37 | 95.15 71 |
|
CDS-MVSNet | | | 81.43 125 | 80.74 123 | 83.52 165 | 86.26 237 | 64.45 179 | 92.09 145 | 90.65 201 | 75.83 104 | 73.95 171 | 89.81 173 | 63.97 87 | 92.91 252 | 71.27 175 | 82.82 156 | 93.20 149 |
Khang Truong Giang, Soohwan Song, Sungho Jo: Curvature-guided dynamic scale networks for Multi-view Stereo. ICLR 2022 |
SR-MVS-dyc-post | | | 81.06 133 | 80.70 124 | 82.15 200 | 92.02 105 | 58.56 294 | 90.90 199 | 90.45 204 | 62.76 296 | 78.89 114 | 94.46 78 | 51.26 229 | 95.61 157 | 78.77 121 | 86.77 127 | 92.28 174 |
|
ACMMP |  | | 81.49 124 | 80.67 125 | 83.93 155 | 91.71 119 | 62.90 224 | 92.13 142 | 92.22 133 | 71.79 191 | 71.68 200 | 93.49 107 | 50.32 235 | 96.96 105 | 78.47 123 | 84.22 152 | 91.93 181 |
Qingshan Xu, Weihang Kong, Wenbing Tao, Marc Pollefeys: Multi-Scale Geometric Consistency Guided and Planar Prior Assisted Multi-View Stereo. IEEE Transactions on Pattern Analysis and Machine Intelligence |
HQP-MVS | | | 81.14 130 | 80.64 126 | 82.64 185 | 87.54 215 | 63.66 207 | 94.06 64 | 91.70 160 | 79.80 45 | 74.18 165 | 90.30 165 | 51.63 226 | 95.61 157 | 77.63 129 | 78.90 187 | 88.63 224 |
|
3Dnovator+ | | 73.60 7 | 82.10 116 | 80.60 127 | 86.60 60 | 90.89 138 | 66.80 120 | 95.20 33 | 93.44 84 | 74.05 129 | 67.42 251 | 92.49 129 | 49.46 245 | 97.65 59 | 70.80 178 | 91.68 80 | 95.33 58 |
|
API-MVS | | | 82.28 111 | 80.53 128 | 87.54 34 | 96.13 24 | 70.59 27 | 93.63 88 | 91.04 191 | 65.72 276 | 75.45 152 | 92.83 123 | 56.11 176 | 98.89 19 | 64.10 246 | 89.75 103 | 93.15 150 |
|
RE-MVS-def | | | | 80.48 129 | | 92.02 105 | 58.56 294 | 90.90 199 | 90.45 204 | 62.76 296 | 78.89 114 | 94.46 78 | 49.30 247 | | 78.77 121 | 86.77 127 | 92.28 174 |
|
IB-MVS | | 77.80 4 | 82.18 112 | 80.46 130 | 87.35 38 | 89.14 177 | 70.28 31 | 95.59 25 | 95.17 15 | 78.85 63 | 70.19 214 | 85.82 220 | 70.66 36 | 97.67 55 | 72.19 168 | 66.52 274 | 94.09 115 |
Christian Sormann, Mattia Rossi, Andreas Kuhn and Friedrich Fraundorfer: IB-MVS: An Iterative Algorithm for Deep Multi-View Stereo based on Binary Decisions. BMVC 2021 |
ECVR-MVS |  | | 81.29 127 | 80.38 131 | 84.01 154 | 88.39 195 | 61.96 239 | 92.56 133 | 86.79 302 | 77.66 82 | 76.63 139 | 91.42 146 | 46.34 273 | 95.24 174 | 74.36 151 | 89.23 104 | 94.85 82 |
|
thisisatest0530 | | | 81.15 129 | 80.07 132 | 84.39 142 | 88.26 199 | 65.63 150 | 91.40 178 | 94.62 37 | 71.27 209 | 70.93 205 | 89.18 177 | 72.47 30 | 96.04 138 | 65.62 236 | 76.89 209 | 91.49 187 |
|
1121 | | | 81.25 128 | 80.05 133 | 84.87 126 | 92.30 98 | 64.31 187 | 87.91 265 | 91.39 172 | 59.44 322 | 79.94 101 | 92.91 118 | 57.09 158 | 97.01 96 | 66.63 219 | 92.81 63 | 93.29 145 |
|
test1111 | | | 80.84 137 | 80.02 134 | 83.33 171 | 87.87 211 | 60.76 261 | 92.62 127 | 86.86 301 | 77.86 78 | 75.73 146 | 91.39 148 | 46.35 272 | 94.70 191 | 72.79 159 | 88.68 110 | 94.52 98 |
|
Fast-Effi-MVS+ | | | 81.14 130 | 80.01 135 | 84.51 139 | 90.24 150 | 65.86 143 | 94.12 61 | 89.15 257 | 73.81 137 | 75.37 153 | 88.26 191 | 57.26 156 | 94.53 200 | 66.97 217 | 84.92 140 | 93.15 150 |
|
mvs_anonymous | | | 81.36 126 | 79.99 136 | 85.46 105 | 90.39 148 | 68.40 69 | 86.88 280 | 90.61 202 | 74.41 122 | 70.31 213 | 84.67 232 | 63.79 90 | 92.32 277 | 73.13 154 | 85.70 135 | 95.67 46 |
|
Vis-MVSNet |  | | 80.92 136 | 79.98 137 | 83.74 158 | 88.48 190 | 61.80 241 | 93.44 96 | 88.26 287 | 73.96 133 | 77.73 126 | 91.76 142 | 49.94 241 | 94.76 185 | 65.84 232 | 90.37 98 | 94.65 92 |
Jingyang Zhang, Yao Yao, Shiwei Li, Zixin Luo, Tian Fang: Visibility-aware Multiview Stereo Network. BMVC 2020 |
nrg030 | | | 80.93 135 | 79.86 138 | 84.13 150 | 83.69 277 | 68.83 60 | 93.23 101 | 91.20 179 | 75.55 106 | 75.06 154 | 88.22 194 | 63.04 103 | 94.74 187 | 81.88 93 | 66.88 271 | 88.82 222 |
|
1112_ss | | | 80.56 140 | 79.83 139 | 82.77 181 | 88.65 187 | 60.78 259 | 92.29 137 | 88.36 282 | 72.58 162 | 72.46 189 | 94.95 64 | 65.09 73 | 93.42 240 | 66.38 225 | 77.71 196 | 94.10 114 |
|
HQP_MVS | | | 80.34 144 | 79.75 140 | 82.12 203 | 86.94 226 | 62.42 230 | 93.13 103 | 91.31 175 | 78.81 65 | 72.53 186 | 89.14 179 | 50.66 233 | 95.55 163 | 76.74 132 | 78.53 192 | 88.39 230 |
|
UA-Net | | | 80.02 150 | 79.65 141 | 81.11 227 | 89.33 172 | 57.72 303 | 86.33 283 | 89.00 265 | 77.44 87 | 81.01 90 | 89.15 178 | 59.33 139 | 95.90 142 | 61.01 266 | 84.28 150 | 89.73 213 |
|
Vis-MVSNet (Re-imp) | | | 79.24 165 | 79.57 142 | 78.24 280 | 88.46 191 | 52.29 337 | 90.41 214 | 89.12 259 | 74.24 126 | 69.13 224 | 91.91 140 | 65.77 67 | 90.09 312 | 59.00 278 | 88.09 116 | 92.33 171 |
|
test-LLR | | | 80.10 148 | 79.56 143 | 81.72 212 | 86.93 228 | 61.17 251 | 92.70 122 | 91.54 165 | 71.51 204 | 75.62 148 | 86.94 208 | 53.83 201 | 92.38 273 | 72.21 166 | 84.76 143 | 91.60 185 |
|
HyFIR lowres test | | | 81.03 134 | 79.56 143 | 85.43 107 | 87.81 212 | 68.11 80 | 90.18 222 | 90.01 228 | 70.65 225 | 72.95 179 | 86.06 218 | 63.61 94 | 94.50 202 | 75.01 145 | 79.75 181 | 93.67 132 |
|
HPM-MVS_fast | | | 80.25 145 | 79.55 145 | 82.33 193 | 91.55 124 | 59.95 275 | 91.32 186 | 89.16 256 | 65.23 280 | 74.71 160 | 93.07 114 | 47.81 262 | 95.74 148 | 74.87 149 | 88.23 113 | 91.31 195 |
|
TAMVS | | | 80.37 143 | 79.45 146 | 83.13 176 | 85.14 254 | 63.37 210 | 91.23 189 | 90.76 196 | 74.81 120 | 72.65 183 | 88.49 183 | 60.63 122 | 92.95 247 | 69.41 192 | 81.95 162 | 93.08 153 |
|
FIs | | | 79.47 161 | 79.41 147 | 79.67 259 | 85.95 242 | 59.40 282 | 91.68 168 | 93.94 61 | 78.06 74 | 68.96 229 | 88.28 189 | 66.61 59 | 91.77 288 | 66.20 228 | 74.99 218 | 87.82 236 |
|
IS-MVSNet | | | 80.14 147 | 79.41 147 | 82.33 193 | 87.91 208 | 60.08 274 | 91.97 154 | 88.27 285 | 72.90 157 | 71.44 202 | 91.73 144 | 61.44 115 | 93.66 235 | 62.47 259 | 86.53 131 | 93.24 147 |
|
test-mter | | | 79.96 151 | 79.38 149 | 81.72 212 | 86.93 228 | 61.17 251 | 92.70 122 | 91.54 165 | 73.85 135 | 75.62 148 | 86.94 208 | 49.84 243 | 92.38 273 | 72.21 166 | 84.76 143 | 91.60 185 |
|
BH-w/o | | | 80.49 142 | 79.30 150 | 84.05 153 | 90.83 140 | 64.36 186 | 93.60 89 | 89.42 246 | 74.35 124 | 69.09 225 | 90.15 168 | 55.23 185 | 95.61 157 | 64.61 243 | 86.43 133 | 92.17 179 |
|
EPNet_dtu | | | 78.80 177 | 79.26 151 | 77.43 288 | 88.06 204 | 49.71 350 | 91.96 155 | 91.95 142 | 77.67 81 | 76.56 141 | 91.28 150 | 58.51 146 | 90.20 310 | 56.37 285 | 80.95 173 | 92.39 169 |
Wanjuan Su, Wenbing Tao: Efficient Edge-Preserving Multi-View Stereo Network for Depth Estimation. AAAI 2023 |
abl_6 | | | 79.82 154 | 79.20 152 | 81.70 214 | 89.85 158 | 58.34 296 | 88.47 258 | 90.07 223 | 62.56 299 | 77.71 127 | 93.08 112 | 47.65 264 | 96.78 113 | 77.94 127 | 85.45 138 | 89.99 210 |
|
CPTT-MVS | | | 79.59 158 | 79.16 153 | 80.89 236 | 91.54 125 | 59.80 277 | 92.10 144 | 88.54 280 | 60.42 314 | 72.96 178 | 93.28 109 | 48.27 256 | 92.80 256 | 78.89 120 | 86.50 132 | 90.06 208 |
|
tpmrst | | | 80.57 139 | 79.14 154 | 84.84 127 | 90.10 152 | 68.28 74 | 81.70 310 | 89.72 239 | 77.63 84 | 75.96 144 | 79.54 304 | 64.94 76 | 92.71 259 | 75.43 139 | 77.28 206 | 93.55 135 |
|
1314 | | | 80.70 138 | 78.95 155 | 85.94 87 | 87.77 213 | 67.56 93 | 87.91 265 | 92.55 121 | 72.17 177 | 67.44 250 | 93.09 111 | 50.27 237 | 97.04 94 | 71.68 174 | 87.64 119 | 93.23 148 |
|
UGNet | | | 79.87 153 | 78.68 156 | 83.45 170 | 89.96 156 | 61.51 247 | 92.13 142 | 90.79 195 | 76.83 94 | 78.85 119 | 86.33 214 | 38.16 308 | 96.17 131 | 67.93 207 | 87.17 122 | 92.67 163 |
Wanjuan Su, Qingshan Xu, Wenbing Tao: Uncertainty-guided Multi-view Stereo Network for Depth Estimation. IEEE Transactions on Circuits and Systems for Video Technology, 2022 |
PVSNet | | 73.49 8 | 80.05 149 | 78.63 157 | 84.31 145 | 90.92 137 | 64.97 169 | 92.47 134 | 91.05 190 | 79.18 56 | 72.43 190 | 90.51 160 | 37.05 322 | 94.06 218 | 68.06 203 | 86.00 134 | 93.90 126 |
|
Test_1112_low_res | | | 79.56 159 | 78.60 158 | 82.43 189 | 88.24 201 | 60.39 269 | 92.09 145 | 87.99 291 | 72.10 179 | 71.84 196 | 87.42 204 | 64.62 79 | 93.04 244 | 65.80 233 | 77.30 205 | 93.85 128 |
|
tttt0517 | | | 79.50 160 | 78.53 159 | 82.41 192 | 87.22 222 | 61.43 249 | 89.75 235 | 94.76 30 | 69.29 242 | 67.91 244 | 88.06 196 | 72.92 26 | 95.63 155 | 62.91 255 | 73.90 225 | 90.16 207 |
|
thres200 | | | 79.66 156 | 78.33 160 | 83.66 164 | 92.54 94 | 65.82 146 | 93.06 105 | 96.31 3 | 74.90 119 | 73.30 176 | 88.66 181 | 59.67 134 | 95.61 157 | 47.84 317 | 78.67 190 | 89.56 216 |
|
ab-mvs | | | 80.18 146 | 78.31 161 | 85.80 93 | 88.44 192 | 65.49 155 | 83.00 304 | 92.67 114 | 71.82 190 | 77.36 132 | 85.01 226 | 54.50 192 | 96.59 119 | 76.35 136 | 75.63 216 | 95.32 60 |
|
VDDNet | | | 80.50 141 | 78.26 162 | 87.21 40 | 86.19 238 | 69.79 40 | 94.48 49 | 91.31 175 | 60.42 314 | 79.34 108 | 90.91 153 | 38.48 306 | 96.56 122 | 82.16 90 | 81.05 172 | 95.27 66 |
|
EI-MVSNet | | | 78.97 172 | 78.22 163 | 81.25 221 | 85.33 250 | 62.73 228 | 89.53 239 | 93.21 91 | 72.39 170 | 72.14 193 | 90.13 169 | 60.99 118 | 94.72 188 | 67.73 209 | 72.49 235 | 86.29 262 |
|
OPM-MVS | | | 79.00 171 | 78.09 164 | 81.73 211 | 83.52 280 | 63.83 198 | 91.64 170 | 90.30 214 | 76.36 100 | 71.97 195 | 89.93 172 | 46.30 275 | 95.17 175 | 75.10 142 | 77.70 197 | 86.19 266 |
Ray L. Khuboni, Hongjun Xu: Octagram Propagation Matching for Multi-Scale View Stereopsis (OPM-MVS). |
FC-MVSNet-test | | | 77.99 194 | 78.08 165 | 77.70 283 | 84.89 259 | 55.51 323 | 90.27 219 | 93.75 70 | 76.87 91 | 66.80 260 | 87.59 201 | 65.71 68 | 90.23 309 | 62.89 256 | 73.94 223 | 87.37 243 |
|
VPA-MVSNet | | | 79.03 170 | 78.00 166 | 82.11 206 | 85.95 242 | 64.48 178 | 93.22 102 | 94.66 35 | 75.05 117 | 74.04 170 | 84.95 228 | 52.17 221 | 93.52 237 | 74.90 148 | 67.04 270 | 88.32 232 |
|
miper_enhance_ethall | | | 78.86 175 | 77.97 167 | 81.54 216 | 88.00 207 | 65.17 160 | 91.41 176 | 89.15 257 | 75.19 115 | 68.79 232 | 83.98 240 | 67.17 53 | 92.82 254 | 72.73 160 | 65.30 278 | 86.62 259 |
|
mvs-test1 | | | 78.74 180 | 77.95 168 | 81.14 225 | 83.22 282 | 57.13 313 | 93.96 69 | 87.78 293 | 75.42 108 | 72.68 182 | 90.80 155 | 45.08 282 | 94.54 199 | 75.08 143 | 77.49 202 | 91.74 184 |
|
tpm2 | | | 79.80 155 | 77.95 168 | 85.34 111 | 88.28 198 | 68.26 75 | 81.56 312 | 91.42 171 | 70.11 231 | 77.59 130 | 80.50 291 | 67.40 51 | 94.26 210 | 67.34 212 | 77.35 204 | 93.51 136 |
|
OMC-MVS | | | 78.67 183 | 77.91 170 | 80.95 234 | 85.76 246 | 57.40 311 | 88.49 257 | 88.67 275 | 73.85 135 | 72.43 190 | 92.10 137 | 49.29 248 | 94.55 198 | 72.73 160 | 77.89 195 | 90.91 200 |
|
test_part1 | | | 79.63 157 | 77.86 171 | 84.93 122 | 92.50 95 | 71.43 18 | 94.15 59 | 91.08 188 | 72.51 164 | 70.66 206 | 84.98 227 | 59.84 131 | 95.07 177 | 72.07 169 | 62.94 299 | 88.30 233 |
|
114514_t | | | 79.17 167 | 77.67 172 | 83.68 162 | 95.32 31 | 65.53 153 | 92.85 117 | 91.60 164 | 63.49 289 | 67.92 243 | 90.63 158 | 46.65 269 | 95.72 153 | 67.01 216 | 83.54 153 | 89.79 211 |
|
BH-RMVSNet | | | 79.46 162 | 77.65 173 | 84.89 124 | 91.68 120 | 65.66 148 | 93.55 91 | 88.09 289 | 72.93 155 | 73.37 175 | 91.12 151 | 46.20 276 | 96.12 133 | 56.28 286 | 85.61 137 | 92.91 158 |
|
PCF-MVS | | 73.15 9 | 79.29 164 | 77.63 174 | 84.29 146 | 86.06 240 | 65.96 141 | 87.03 276 | 91.10 185 | 69.86 236 | 69.79 221 | 90.64 156 | 57.54 155 | 96.59 119 | 64.37 245 | 82.29 158 | 90.32 205 |
Andreas Kuhn, Shan Lin, Oliver Erdler: Plane Completion and Filtering for Multi-View Stereo Reconstruction. GCPR 2019 |
UniMVSNet_NR-MVSNet | | | 78.15 192 | 77.55 175 | 79.98 251 | 84.46 266 | 60.26 270 | 92.25 138 | 93.20 93 | 77.50 86 | 68.88 230 | 86.61 210 | 66.10 62 | 92.13 280 | 66.38 225 | 62.55 301 | 87.54 238 |
|
VPNet | | | 78.82 176 | 77.53 176 | 82.70 183 | 84.52 264 | 66.44 128 | 93.93 74 | 92.23 129 | 80.46 40 | 72.60 184 | 88.38 188 | 49.18 249 | 93.13 243 | 72.47 164 | 63.97 295 | 88.55 226 |
|
GeoE | | | 78.90 174 | 77.43 177 | 83.29 172 | 88.95 181 | 62.02 237 | 92.31 136 | 86.23 308 | 70.24 230 | 71.34 203 | 89.27 176 | 54.43 196 | 94.04 221 | 63.31 251 | 80.81 175 | 93.81 129 |
|
AUN-MVS | | | 78.37 188 | 77.43 177 | 81.17 223 | 86.60 231 | 57.45 310 | 89.46 241 | 91.16 181 | 74.11 128 | 74.40 164 | 90.49 161 | 55.52 182 | 94.57 195 | 74.73 150 | 60.43 323 | 91.48 188 |
|
tfpn200view9 | | | 78.79 178 | 77.43 177 | 82.88 179 | 92.21 102 | 64.49 176 | 92.05 148 | 96.28 4 | 73.48 145 | 71.75 198 | 88.26 191 | 60.07 129 | 95.32 170 | 45.16 327 | 77.58 199 | 88.83 219 |
|
thres400 | | | 78.68 181 | 77.43 177 | 82.43 189 | 92.21 102 | 64.49 176 | 92.05 148 | 96.28 4 | 73.48 145 | 71.75 198 | 88.26 191 | 60.07 129 | 95.32 170 | 45.16 327 | 77.58 199 | 87.48 240 |
|
QAPM | | | 79.95 152 | 77.39 181 | 87.64 29 | 89.63 163 | 71.41 19 | 93.30 99 | 93.70 71 | 65.34 279 | 67.39 253 | 91.75 143 | 47.83 261 | 98.96 16 | 57.71 281 | 89.81 100 | 92.54 167 |
|
TR-MVS | | | 78.77 179 | 77.37 182 | 82.95 178 | 90.49 145 | 60.88 257 | 93.67 86 | 90.07 223 | 70.08 232 | 74.51 162 | 91.37 149 | 45.69 278 | 95.70 154 | 60.12 272 | 80.32 178 | 92.29 173 |
|
FA-MVS(test-final) | | | 79.12 168 | 77.23 183 | 84.81 128 | 90.54 143 | 63.98 195 | 81.35 315 | 91.71 157 | 71.09 213 | 74.85 156 | 82.94 249 | 52.85 213 | 97.05 90 | 67.97 204 | 81.73 165 | 93.41 139 |
|
FA-MVS_test | | | 79.34 163 | 77.11 184 | 86.03 82 | 90.07 153 | 67.55 95 | 81.35 315 | 91.90 147 | 70.96 216 | 74.72 159 | 82.94 249 | 52.85 213 | 97.05 90 | 67.97 204 | 81.22 170 | 93.50 137 |
|
BH-untuned | | | 78.68 181 | 77.08 185 | 83.48 169 | 89.84 159 | 63.74 201 | 92.70 122 | 88.59 278 | 71.57 201 | 66.83 259 | 88.65 182 | 51.75 224 | 95.39 168 | 59.03 277 | 84.77 142 | 91.32 194 |
|
tpm | | | 78.58 184 | 77.03 186 | 83.22 174 | 85.94 244 | 64.56 174 | 83.21 302 | 91.14 184 | 78.31 70 | 73.67 173 | 79.68 302 | 64.01 86 | 92.09 282 | 66.07 230 | 71.26 245 | 93.03 154 |
|
thres100view900 | | | 78.37 188 | 77.01 187 | 82.46 188 | 91.89 114 | 63.21 214 | 91.19 193 | 96.33 1 | 72.28 173 | 70.45 210 | 87.89 198 | 60.31 124 | 95.32 170 | 45.16 327 | 77.58 199 | 88.83 219 |
|
AdaColmap |  | | 78.94 173 | 77.00 188 | 84.76 129 | 96.34 19 | 65.86 143 | 92.66 126 | 87.97 292 | 62.18 302 | 70.56 207 | 92.37 133 | 43.53 288 | 97.35 74 | 64.50 244 | 82.86 155 | 91.05 199 |
|
CHOSEN 280x420 | | | 77.35 204 | 76.95 189 | 78.55 275 | 87.07 225 | 62.68 229 | 69.71 355 | 82.95 337 | 68.80 249 | 71.48 201 | 87.27 207 | 66.03 63 | 84.00 349 | 76.47 135 | 82.81 157 | 88.95 218 |
|
FA-MVS_test4 | | | 79.23 166 | 76.85 190 | 86.35 75 | 90.54 143 | 68.30 72 | 80.92 319 | 92.46 125 | 71.09 213 | 73.41 174 | 82.30 259 | 53.25 210 | 97.01 96 | 66.20 228 | 81.51 167 | 93.74 130 |
|
FA-MVS_test2 | | | 79.09 169 | 76.79 191 | 85.99 84 | 90.00 155 | 67.53 96 | 80.62 321 | 91.91 146 | 70.80 222 | 74.42 163 | 82.52 255 | 52.82 215 | 97.04 94 | 67.31 214 | 80.67 177 | 93.41 139 |
|
cl22 | | | 77.94 196 | 76.78 192 | 81.42 218 | 87.57 214 | 64.93 171 | 90.67 207 | 88.86 269 | 72.45 167 | 67.63 249 | 82.68 254 | 64.07 85 | 92.91 252 | 71.79 170 | 65.30 278 | 86.44 260 |
|
UniMVSNet (Re) | | | 77.58 201 | 76.78 192 | 79.98 251 | 84.11 272 | 60.80 258 | 91.76 164 | 93.17 96 | 76.56 98 | 69.93 220 | 84.78 231 | 63.32 99 | 92.36 275 | 64.89 242 | 62.51 303 | 86.78 254 |
|
thres600view7 | | | 78.00 193 | 76.66 194 | 82.03 208 | 91.93 111 | 63.69 205 | 91.30 187 | 96.33 1 | 72.43 168 | 70.46 209 | 87.89 198 | 60.31 124 | 94.92 183 | 42.64 339 | 76.64 210 | 87.48 240 |
|
MS-PatchMatch | | | 77.90 198 | 76.50 195 | 82.12 203 | 85.99 241 | 69.95 36 | 91.75 166 | 92.70 112 | 73.97 132 | 62.58 294 | 84.44 235 | 41.11 295 | 95.78 145 | 63.76 249 | 92.17 72 | 80.62 337 |
|
miper_ehance_all_eth | | | 77.60 200 | 76.44 196 | 81.09 231 | 85.70 247 | 64.41 183 | 90.65 208 | 88.64 277 | 72.31 171 | 67.37 254 | 82.52 255 | 64.77 78 | 92.64 266 | 70.67 180 | 65.30 278 | 86.24 264 |
|
XXY-MVS | | | 77.94 196 | 76.44 196 | 82.43 189 | 82.60 289 | 64.44 180 | 92.01 150 | 91.83 152 | 73.59 143 | 70.00 217 | 85.82 220 | 54.43 196 | 94.76 185 | 69.63 189 | 68.02 265 | 88.10 235 |
|
PS-MVSNAJss | | | 77.26 205 | 76.31 198 | 80.13 248 | 80.64 305 | 59.16 287 | 90.63 211 | 91.06 189 | 72.80 158 | 68.58 236 | 84.57 234 | 53.55 205 | 93.96 226 | 72.97 155 | 71.96 239 | 87.27 248 |
|
FA-MVS_test3 | | | 78.53 186 | 76.27 199 | 85.30 112 | 89.34 169 | 66.26 134 | 80.03 330 | 91.71 157 | 69.92 235 | 74.58 161 | 82.47 258 | 50.02 239 | 96.78 113 | 66.64 218 | 81.73 165 | 92.87 161 |
|
MVP-Stereo | | | 77.12 208 | 76.23 200 | 79.79 257 | 81.72 296 | 66.34 131 | 89.29 243 | 90.88 194 | 70.56 227 | 62.01 297 | 82.88 251 | 49.34 246 | 94.13 213 | 65.55 238 | 93.80 45 | 78.88 350 |
Qingsong Yan: MVP-Stereo: A Parallel Multi-View Patchmatch Stereo Method with Dilation Matching for Photogrammetric Application. |
GA-MVS | | | 78.33 190 | 76.23 200 | 84.65 134 | 83.65 278 | 66.30 132 | 91.44 174 | 90.14 221 | 76.01 102 | 70.32 212 | 84.02 239 | 42.50 291 | 94.72 188 | 70.98 176 | 77.00 208 | 92.94 157 |
|
FMVSNet3 | | | 77.73 199 | 76.04 202 | 82.80 180 | 91.20 133 | 68.99 57 | 91.87 157 | 91.99 140 | 73.35 147 | 67.04 256 | 83.19 248 | 56.62 170 | 92.14 279 | 59.80 274 | 69.34 254 | 87.28 247 |
|
EPMVS | | | 78.49 187 | 75.98 203 | 86.02 83 | 91.21 132 | 69.68 44 | 80.23 326 | 91.20 179 | 75.25 114 | 72.48 188 | 78.11 312 | 54.65 191 | 93.69 234 | 57.66 282 | 83.04 154 | 94.69 88 |
|
OpenMVS |  | 70.45 11 | 78.54 185 | 75.92 204 | 86.41 71 | 85.93 245 | 71.68 17 | 92.74 119 | 92.51 122 | 66.49 270 | 64.56 275 | 91.96 139 | 43.88 287 | 98.10 39 | 54.61 290 | 90.65 95 | 89.44 217 |
|
DU-MVS | | | 76.86 209 | 75.84 205 | 79.91 253 | 82.96 287 | 60.26 270 | 91.26 188 | 91.54 165 | 76.46 99 | 68.88 230 | 86.35 212 | 56.16 174 | 92.13 280 | 66.38 225 | 62.55 301 | 87.35 245 |
|
cascas | | | 78.18 191 | 75.77 206 | 85.41 108 | 87.14 224 | 69.11 52 | 92.96 111 | 91.15 183 | 66.71 268 | 70.47 208 | 86.07 217 | 37.49 316 | 96.48 126 | 70.15 184 | 79.80 180 | 90.65 202 |
|
WR-MVS | | | 76.76 214 | 75.74 207 | 79.82 256 | 84.60 262 | 62.27 235 | 92.60 128 | 92.51 122 | 76.06 101 | 67.87 246 | 85.34 223 | 56.76 166 | 90.24 308 | 62.20 260 | 63.69 297 | 86.94 252 |
|
mvsmamba | | | 76.85 211 | 75.71 208 | 80.25 245 | 83.07 286 | 59.16 287 | 91.44 174 | 80.64 346 | 76.84 93 | 67.95 242 | 86.33 214 | 46.17 277 | 94.24 211 | 76.06 137 | 72.92 231 | 87.36 244 |
|
v2v482 | | | 77.42 203 | 75.65 209 | 82.73 182 | 80.38 307 | 67.13 110 | 91.85 159 | 90.23 218 | 75.09 116 | 69.37 222 | 83.39 246 | 53.79 203 | 94.44 203 | 71.77 171 | 65.00 284 | 86.63 258 |
|
c3_l | | | 76.83 213 | 75.47 210 | 80.93 235 | 85.02 257 | 64.18 192 | 90.39 215 | 88.11 288 | 71.66 194 | 66.65 261 | 81.64 271 | 63.58 96 | 92.56 267 | 69.31 194 | 62.86 300 | 86.04 271 |
|
Anonymous202405211 | | | 77.96 195 | 75.33 211 | 85.87 89 | 93.73 62 | 64.52 175 | 94.85 45 | 85.36 316 | 62.52 300 | 76.11 143 | 90.18 167 | 29.43 348 | 97.29 78 | 68.51 201 | 77.24 207 | 95.81 45 |
|
Effi-MVS+-dtu | | | 76.14 219 | 75.28 212 | 78.72 274 | 83.22 282 | 55.17 325 | 89.87 231 | 87.78 293 | 75.42 108 | 67.98 241 | 81.43 275 | 45.08 282 | 92.52 269 | 75.08 143 | 71.63 240 | 88.48 227 |
|
IterMVS-LS | | | 76.49 216 | 75.18 213 | 80.43 240 | 84.49 265 | 62.74 227 | 90.64 209 | 88.80 270 | 72.40 169 | 65.16 269 | 81.72 269 | 60.98 119 | 92.27 278 | 67.74 208 | 64.65 289 | 86.29 262 |
Fangjinhua Wang, Silvano Galliani, Christoph Vogel, Marc Pollefeys: IterMVS: Iterative Probability Estimation for Efficient Multi-View Stereo. |
FA-MVS(test) | | | 77.26 205 | 74.98 214 | 84.09 151 | 87.88 210 | 63.98 195 | 78.42 337 | 90.50 203 | 67.69 258 | 74.85 156 | 82.30 259 | 46.75 267 | 96.50 125 | 65.71 234 | 80.76 176 | 91.79 183 |
|
v1144 | | | 76.73 215 | 74.88 215 | 82.27 195 | 80.23 312 | 66.60 125 | 91.68 168 | 90.21 220 | 73.69 140 | 69.06 227 | 81.89 266 | 52.73 217 | 94.40 204 | 69.21 195 | 65.23 281 | 85.80 277 |
|
cl____ | | | 76.07 220 | 74.67 216 | 80.28 243 | 85.15 253 | 61.76 243 | 90.12 223 | 88.73 273 | 71.16 210 | 65.43 266 | 81.57 273 | 61.15 116 | 92.95 247 | 66.54 222 | 62.17 305 | 86.13 269 |
|
DIV-MVS_self_test | | | 76.07 220 | 74.67 216 | 80.28 243 | 85.14 254 | 61.75 244 | 90.12 223 | 88.73 273 | 71.16 210 | 65.42 267 | 81.60 272 | 61.15 116 | 92.94 251 | 66.54 222 | 62.16 307 | 86.14 267 |
|
PatchmatchNet |  | | 77.46 202 | 74.63 218 | 85.96 86 | 89.55 166 | 70.35 30 | 79.97 331 | 89.55 242 | 72.23 174 | 70.94 204 | 76.91 323 | 57.03 160 | 92.79 257 | 54.27 292 | 81.17 171 | 94.74 87 |
Fangjinhua Wang, Silvano Galliani, Christoph Vogel, Pablo Speciale, Marc Pollefeys: PatchmatchNet: Learned Multi-View Patchmatch Stereo. |
NR-MVSNet | | | 76.05 223 | 74.59 219 | 80.44 239 | 82.96 287 | 62.18 236 | 90.83 203 | 91.73 155 | 77.12 90 | 60.96 301 | 86.35 212 | 59.28 140 | 91.80 287 | 60.74 267 | 61.34 316 | 87.35 245 |
|
LPG-MVS_test | | | 75.82 228 | 74.58 220 | 79.56 263 | 84.31 269 | 59.37 283 | 90.44 212 | 89.73 237 | 69.49 239 | 64.86 270 | 88.42 184 | 38.65 304 | 94.30 206 | 72.56 162 | 72.76 232 | 85.01 291 |
|
V42 | | | 76.46 217 | 74.55 221 | 82.19 199 | 79.14 324 | 67.82 87 | 90.26 220 | 89.42 246 | 73.75 138 | 68.63 235 | 81.89 266 | 51.31 228 | 94.09 215 | 71.69 173 | 64.84 285 | 84.66 294 |
|
TranMVSNet+NR-MVSNet | | | 75.86 227 | 74.52 222 | 79.89 254 | 82.44 290 | 60.64 266 | 91.37 183 | 91.37 173 | 76.63 96 | 67.65 248 | 86.21 216 | 52.37 220 | 91.55 292 | 61.84 262 | 60.81 319 | 87.48 240 |
|
v148 | | | 76.19 218 | 74.47 223 | 81.36 219 | 80.05 313 | 64.44 180 | 91.75 166 | 90.23 218 | 73.68 141 | 67.13 255 | 80.84 286 | 55.92 180 | 93.86 232 | 68.95 198 | 61.73 312 | 85.76 280 |
|
eth_miper_zixun_eth | | | 75.96 226 | 74.40 224 | 80.66 237 | 84.66 261 | 63.02 218 | 89.28 244 | 88.27 285 | 71.88 185 | 65.73 264 | 81.65 270 | 59.45 136 | 92.81 255 | 68.13 202 | 60.53 321 | 86.14 267 |
|
gg-mvs-nofinetune | | | 77.18 207 | 74.31 225 | 85.80 93 | 91.42 127 | 68.36 70 | 71.78 349 | 94.72 32 | 49.61 353 | 77.12 135 | 45.92 370 | 77.41 8 | 93.98 225 | 67.62 210 | 93.16 57 | 95.05 76 |
|
CVMVSNet | | | 74.04 247 | 74.27 226 | 73.33 320 | 85.33 250 | 43.94 366 | 89.53 239 | 88.39 281 | 54.33 342 | 70.37 211 | 90.13 169 | 49.17 250 | 84.05 347 | 61.83 263 | 79.36 183 | 91.99 180 |
|
ACMP | | 71.68 10 | 75.58 233 | 74.23 227 | 79.62 261 | 84.97 258 | 59.64 278 | 90.80 204 | 89.07 262 | 70.39 228 | 62.95 290 | 87.30 206 | 38.28 307 | 93.87 230 | 72.89 156 | 71.45 243 | 85.36 286 |
Qingshan Xu and Wenbing Tao: Planar Prior Assisted PatchMatch Multi-View Stereo. AAAI 2020 |
Anonymous20240529 | | | 76.84 212 | 74.15 228 | 84.88 125 | 91.02 134 | 64.95 170 | 93.84 82 | 91.09 186 | 53.57 343 | 73.00 177 | 87.42 204 | 35.91 326 | 97.32 76 | 69.14 196 | 72.41 237 | 92.36 170 |
|
X-MVStestdata | | | 76.86 209 | 74.13 229 | 85.05 118 | 93.22 73 | 63.78 199 | 92.92 115 | 92.66 115 | 73.99 130 | 78.18 123 | 10.19 382 | 55.25 183 | 97.41 70 | 79.16 115 | 91.58 82 | 93.95 122 |
|
v144192 | | | 76.05 223 | 74.03 230 | 82.12 203 | 79.50 318 | 66.55 127 | 91.39 180 | 89.71 240 | 72.30 172 | 68.17 239 | 81.33 278 | 51.75 224 | 94.03 223 | 67.94 206 | 64.19 291 | 85.77 278 |
|
FMVSNet2 | | | 76.07 220 | 74.01 231 | 82.26 197 | 88.85 182 | 67.66 91 | 91.33 185 | 91.61 163 | 70.84 219 | 65.98 263 | 82.25 262 | 48.03 257 | 92.00 284 | 58.46 279 | 68.73 260 | 87.10 249 |
|
v1192 | | | 75.98 225 | 73.92 232 | 82.15 200 | 79.73 314 | 66.24 135 | 91.22 190 | 89.75 234 | 72.67 160 | 68.49 237 | 81.42 276 | 49.86 242 | 94.27 208 | 67.08 215 | 65.02 283 | 85.95 274 |
|
GBi-Net | | | 75.65 230 | 73.83 233 | 81.10 228 | 88.85 182 | 65.11 163 | 90.01 227 | 90.32 210 | 70.84 219 | 67.04 256 | 80.25 296 | 48.03 257 | 91.54 293 | 59.80 274 | 69.34 254 | 86.64 255 |
|
test1 | | | 75.65 230 | 73.83 233 | 81.10 228 | 88.85 182 | 65.11 163 | 90.01 227 | 90.32 210 | 70.84 219 | 67.04 256 | 80.25 296 | 48.03 257 | 91.54 293 | 59.80 274 | 69.34 254 | 86.64 255 |
|
PLC |  | 68.80 14 | 75.23 236 | 73.68 235 | 79.86 255 | 92.93 82 | 58.68 293 | 90.64 209 | 88.30 283 | 60.90 311 | 64.43 279 | 90.53 159 | 42.38 292 | 94.57 195 | 56.52 284 | 76.54 211 | 86.33 261 |
Jie Liao, Yanping Fu, Qingan Yan, Chunxia xiao: Pyramid Multi-View Stereo with Local Consistency. Pacific Graphics 2019 |
TAPA-MVS | | 70.22 12 | 74.94 240 | 73.53 236 | 79.17 268 | 90.40 147 | 52.07 338 | 89.19 247 | 89.61 241 | 62.69 298 | 70.07 215 | 92.67 125 | 48.89 254 | 94.32 205 | 38.26 353 | 79.97 179 | 91.12 198 |
Andrea Romanoni, Matteo Matteucci: TAPA-MVS: Textureless-Aware PAtchMatch Multi-View Stereo. ICCV 2019 |
v1921920 | | | 75.63 232 | 73.49 237 | 82.06 207 | 79.38 319 | 66.35 130 | 91.07 197 | 89.48 243 | 71.98 180 | 67.99 240 | 81.22 281 | 49.16 251 | 93.90 229 | 66.56 221 | 64.56 290 | 85.92 276 |
|
Fast-Effi-MVS+-dtu | | | 75.04 238 | 73.37 238 | 80.07 249 | 80.86 301 | 59.52 281 | 91.20 192 | 85.38 315 | 71.90 183 | 65.20 268 | 84.84 230 | 41.46 294 | 92.97 246 | 66.50 224 | 72.96 230 | 87.73 237 |
|
v8 | | | 75.35 234 | 73.26 239 | 81.61 215 | 80.67 304 | 66.82 118 | 89.54 238 | 89.27 250 | 71.65 195 | 63.30 288 | 80.30 295 | 54.99 189 | 94.06 218 | 67.33 213 | 62.33 304 | 83.94 299 |
|
XVG-OURS-SEG-HR | | | 74.70 242 | 73.08 240 | 79.57 262 | 78.25 334 | 57.33 312 | 80.49 322 | 87.32 297 | 63.22 292 | 68.76 233 | 90.12 171 | 44.89 284 | 91.59 291 | 70.55 182 | 74.09 222 | 89.79 211 |
|
v1240 | | | 75.21 237 | 72.98 241 | 81.88 209 | 79.20 321 | 66.00 139 | 90.75 206 | 89.11 260 | 71.63 199 | 67.41 252 | 81.22 281 | 47.36 265 | 93.87 230 | 65.46 239 | 64.72 288 | 85.77 278 |
|
RRT_MVS | | | 74.44 243 | 72.97 242 | 78.84 273 | 82.36 291 | 57.66 305 | 89.83 233 | 88.79 272 | 70.61 226 | 64.58 274 | 84.89 229 | 39.24 300 | 92.65 265 | 70.11 185 | 66.34 275 | 86.21 265 |
|
Baseline_NR-MVSNet | | | 73.99 248 | 72.83 243 | 77.48 287 | 80.78 302 | 59.29 286 | 91.79 161 | 84.55 324 | 68.85 248 | 68.99 228 | 80.70 287 | 56.16 174 | 92.04 283 | 62.67 257 | 60.98 318 | 81.11 331 |
|
SCA | | | 75.82 228 | 72.76 244 | 85.01 120 | 86.63 230 | 70.08 32 | 81.06 318 | 89.19 254 | 71.60 200 | 70.01 216 | 77.09 321 | 45.53 279 | 90.25 305 | 60.43 269 | 73.27 227 | 94.68 89 |
|
ACMM | | 69.62 13 | 74.34 244 | 72.73 245 | 79.17 268 | 84.25 271 | 57.87 301 | 90.36 216 | 89.93 229 | 63.17 293 | 65.64 265 | 86.04 219 | 37.79 314 | 94.10 214 | 65.89 231 | 71.52 242 | 85.55 283 |
Qingshan Xu and Wenbing Tao: Multi-Scale Geometric Consistency Guided Multi-View Stereo. CVPR 2019 |
test0.0.03 1 | | | 72.76 260 | 72.71 246 | 72.88 324 | 80.25 311 | 47.99 356 | 91.22 190 | 89.45 244 | 71.51 204 | 62.51 295 | 87.66 200 | 53.83 201 | 85.06 344 | 50.16 304 | 67.84 268 | 85.58 281 |
|
MDTV_nov1_ep13 | | | | 72.61 247 | | 89.06 178 | 68.48 67 | 80.33 324 | 90.11 222 | 71.84 189 | 71.81 197 | 75.92 331 | 53.01 212 | 93.92 228 | 48.04 314 | 73.38 226 | |
|
test_djsdf | | | 73.76 252 | 72.56 248 | 77.39 289 | 77.00 343 | 53.93 330 | 89.07 249 | 90.69 197 | 65.80 274 | 63.92 281 | 82.03 265 | 43.14 290 | 92.67 262 | 72.83 157 | 68.53 261 | 85.57 282 |
|
v10 | | | 74.77 241 | 72.54 249 | 81.46 217 | 80.33 310 | 66.71 122 | 89.15 248 | 89.08 261 | 70.94 217 | 63.08 289 | 79.86 300 | 52.52 218 | 94.04 221 | 65.70 235 | 62.17 305 | 83.64 301 |
|
XVG-OURS | | | 74.25 246 | 72.46 250 | 79.63 260 | 78.45 333 | 57.59 307 | 80.33 324 | 87.39 296 | 63.86 287 | 68.76 233 | 89.62 175 | 40.50 297 | 91.72 289 | 69.00 197 | 74.25 220 | 89.58 214 |
|
CNLPA | | | 74.31 245 | 72.30 251 | 80.32 241 | 91.49 126 | 61.66 245 | 90.85 202 | 80.72 345 | 56.67 336 | 63.85 283 | 90.64 156 | 46.75 267 | 90.84 300 | 53.79 294 | 75.99 215 | 88.47 229 |
|
tpm cat1 | | | 75.30 235 | 72.21 252 | 84.58 137 | 88.52 188 | 67.77 88 | 78.16 341 | 88.02 290 | 61.88 307 | 68.45 238 | 76.37 327 | 60.65 121 | 94.03 223 | 53.77 295 | 74.11 221 | 91.93 181 |
|
dp | | | 75.01 239 | 72.09 253 | 83.76 157 | 89.28 173 | 66.22 136 | 79.96 332 | 89.75 234 | 71.16 210 | 67.80 247 | 77.19 320 | 51.81 223 | 92.54 268 | 50.39 303 | 71.44 244 | 92.51 168 |
|
D2MVS | | | 73.80 250 | 72.02 254 | 79.15 270 | 79.15 323 | 62.97 219 | 88.58 256 | 90.07 223 | 72.94 154 | 59.22 309 | 78.30 309 | 42.31 293 | 92.70 261 | 65.59 237 | 72.00 238 | 81.79 328 |
|
LCM-MVSNet-Re | | | 72.93 257 | 71.84 255 | 76.18 303 | 88.49 189 | 48.02 355 | 80.07 329 | 70.17 367 | 73.96 133 | 52.25 337 | 80.09 299 | 49.98 240 | 88.24 325 | 67.35 211 | 84.23 151 | 92.28 174 |
|
pmmvs4 | | | 73.92 249 | 71.81 256 | 80.25 245 | 79.17 322 | 65.24 158 | 87.43 273 | 87.26 299 | 67.64 262 | 63.46 286 | 83.91 241 | 48.96 253 | 91.53 296 | 62.94 254 | 65.49 277 | 83.96 298 |
|
miper_lstm_enhance | | | 73.05 255 | 71.73 257 | 77.03 294 | 83.80 275 | 58.32 297 | 81.76 308 | 88.88 267 | 69.80 237 | 61.01 300 | 78.23 311 | 57.19 157 | 87.51 334 | 65.34 240 | 59.53 326 | 85.27 289 |
|
pmmvs5 | | | 73.35 253 | 71.52 258 | 78.86 272 | 78.64 331 | 60.61 267 | 91.08 195 | 86.90 300 | 67.69 258 | 63.32 287 | 83.64 242 | 44.33 286 | 90.53 302 | 62.04 261 | 66.02 276 | 85.46 284 |
|
jajsoiax | | | 73.05 255 | 71.51 259 | 77.67 284 | 77.46 340 | 54.83 326 | 88.81 252 | 90.04 227 | 69.13 246 | 62.85 292 | 83.51 244 | 31.16 343 | 92.75 258 | 70.83 177 | 69.80 250 | 85.43 285 |
|
mvs_tets | | | 72.71 262 | 71.11 260 | 77.52 285 | 77.41 341 | 54.52 328 | 88.45 259 | 89.76 233 | 68.76 251 | 62.70 293 | 83.26 247 | 29.49 347 | 92.71 259 | 70.51 183 | 69.62 252 | 85.34 287 |
|
pm-mvs1 | | | 72.89 258 | 71.09 261 | 78.26 279 | 79.10 325 | 57.62 306 | 90.80 204 | 89.30 249 | 67.66 260 | 62.91 291 | 81.78 268 | 49.11 252 | 92.95 247 | 60.29 271 | 58.89 329 | 84.22 297 |
|
IterMVS | | | 72.65 264 | 70.83 262 | 78.09 281 | 82.17 292 | 62.96 220 | 87.64 271 | 86.28 306 | 71.56 202 | 60.44 303 | 78.85 307 | 45.42 281 | 86.66 338 | 63.30 252 | 61.83 309 | 84.65 295 |
Fangjinhua Wang, Silvano Galliani, Christoph Vogel, Marc Pollefeys: IterMVS: Iterative Probability Estimation for Efficient Multi-View Stereo. |
CR-MVSNet | | | 73.79 251 | 70.82 263 | 82.70 183 | 83.15 284 | 67.96 83 | 70.25 352 | 84.00 329 | 73.67 142 | 69.97 218 | 72.41 342 | 57.82 152 | 89.48 316 | 52.99 298 | 73.13 228 | 90.64 203 |
|
UniMVSNet_ETH3D | | | 72.74 261 | 70.53 264 | 79.36 265 | 78.62 332 | 56.64 316 | 85.01 287 | 89.20 253 | 63.77 288 | 64.84 272 | 84.44 235 | 34.05 331 | 91.86 286 | 63.94 247 | 70.89 247 | 89.57 215 |
|
Anonymous20231211 | | | 73.08 254 | 70.39 265 | 81.13 226 | 90.62 142 | 63.33 211 | 91.40 178 | 90.06 226 | 51.84 347 | 64.46 278 | 80.67 289 | 36.49 324 | 94.07 217 | 63.83 248 | 64.17 292 | 85.98 273 |
|
PatchMatch-RL | | | 72.06 265 | 69.98 266 | 78.28 278 | 89.51 167 | 55.70 322 | 83.49 296 | 83.39 335 | 61.24 310 | 63.72 284 | 82.76 252 | 34.77 329 | 93.03 245 | 53.37 297 | 77.59 198 | 86.12 270 |
|
IterMVS-SCA-FT | | | 71.55 269 | 69.97 267 | 76.32 301 | 81.48 297 | 60.67 265 | 87.64 271 | 85.99 311 | 66.17 272 | 59.50 307 | 78.88 306 | 45.53 279 | 83.65 351 | 62.58 258 | 61.93 308 | 84.63 296 |
|
WR-MVS_H | | | 70.59 273 | 69.94 268 | 72.53 326 | 81.03 300 | 51.43 341 | 87.35 274 | 92.03 139 | 67.38 263 | 60.23 304 | 80.70 287 | 55.84 181 | 83.45 353 | 46.33 323 | 58.58 331 | 82.72 316 |
|
CP-MVSNet | | | 70.50 274 | 69.91 269 | 72.26 329 | 80.71 303 | 51.00 344 | 87.23 275 | 90.30 214 | 67.84 256 | 59.64 306 | 82.69 253 | 50.23 238 | 82.30 361 | 51.28 300 | 59.28 327 | 83.46 306 |
|
FMVSNet1 | | | 72.71 262 | 69.91 269 | 81.10 228 | 83.60 279 | 65.11 163 | 90.01 227 | 90.32 210 | 63.92 286 | 63.56 285 | 80.25 296 | 36.35 325 | 91.54 293 | 54.46 291 | 66.75 272 | 86.64 255 |
|
tpmvs | | | 72.88 259 | 69.76 271 | 82.22 198 | 90.98 135 | 67.05 112 | 78.22 340 | 88.30 283 | 63.10 294 | 64.35 280 | 74.98 334 | 55.09 188 | 94.27 208 | 43.25 333 | 69.57 253 | 85.34 287 |
|
bld_raw_dy_0_64 | | | 71.59 268 | 69.71 272 | 77.22 293 | 77.82 339 | 58.12 299 | 87.71 269 | 73.66 360 | 68.01 255 | 61.90 299 | 84.29 237 | 33.68 332 | 88.43 323 | 69.91 187 | 70.43 248 | 85.11 290 |
|
anonymousdsp | | | 71.14 271 | 69.37 273 | 76.45 300 | 72.95 355 | 54.71 327 | 84.19 291 | 88.88 267 | 61.92 306 | 62.15 296 | 79.77 301 | 38.14 309 | 91.44 298 | 68.90 199 | 67.45 269 | 83.21 310 |
|
PS-CasMVS | | | 69.86 280 | 69.13 274 | 72.07 332 | 80.35 309 | 50.57 346 | 87.02 277 | 89.75 234 | 67.27 264 | 59.19 310 | 82.28 261 | 46.58 270 | 82.24 362 | 50.69 302 | 59.02 328 | 83.39 308 |
|
v7n | | | 71.31 270 | 68.65 275 | 79.28 266 | 76.40 345 | 60.77 260 | 86.71 281 | 89.45 244 | 64.17 285 | 58.77 314 | 78.24 310 | 44.59 285 | 93.54 236 | 57.76 280 | 61.75 311 | 83.52 304 |
|
PEN-MVS | | | 69.46 282 | 68.56 276 | 72.17 331 | 79.27 320 | 49.71 350 | 86.90 279 | 89.24 251 | 67.24 267 | 59.08 311 | 82.51 257 | 47.23 266 | 83.54 352 | 48.42 312 | 57.12 332 | 83.25 309 |
|
MIMVSNet | | | 71.64 267 | 68.44 277 | 81.23 222 | 81.97 295 | 64.44 180 | 73.05 348 | 88.80 270 | 69.67 238 | 64.59 273 | 74.79 335 | 32.79 335 | 87.82 329 | 53.99 293 | 76.35 213 | 91.42 189 |
|
F-COLMAP | | | 70.66 272 | 68.44 277 | 77.32 290 | 86.37 236 | 55.91 320 | 88.00 263 | 86.32 305 | 56.94 334 | 57.28 323 | 88.07 195 | 33.58 333 | 92.49 270 | 51.02 301 | 68.37 262 | 83.55 302 |
|
PVSNet_0 | | 68.08 15 | 71.81 266 | 68.32 279 | 82.27 195 | 84.68 260 | 62.31 234 | 88.68 254 | 90.31 213 | 75.84 103 | 57.93 320 | 80.65 290 | 37.85 313 | 94.19 212 | 69.94 186 | 29.05 374 | 90.31 206 |
|
CL-MVSNet_self_test | | | 69.92 278 | 68.09 280 | 75.41 306 | 73.25 354 | 55.90 321 | 90.05 226 | 89.90 230 | 69.96 233 | 61.96 298 | 76.54 324 | 51.05 231 | 87.64 331 | 49.51 308 | 50.59 350 | 82.70 318 |
|
TransMVSNet (Re) | | | 70.07 277 | 67.66 281 | 77.31 291 | 80.62 306 | 59.13 289 | 91.78 163 | 84.94 320 | 65.97 273 | 60.08 305 | 80.44 292 | 50.78 232 | 91.87 285 | 48.84 310 | 45.46 358 | 80.94 333 |
|
tfpnnormal | | | 70.10 276 | 67.36 282 | 78.32 277 | 83.45 281 | 60.97 256 | 88.85 251 | 92.77 110 | 64.85 281 | 60.83 302 | 78.53 308 | 43.52 289 | 93.48 238 | 31.73 369 | 61.70 313 | 80.52 338 |
|
DTE-MVSNet | | | 68.46 291 | 67.33 283 | 71.87 334 | 77.94 337 | 49.00 353 | 86.16 284 | 88.58 279 | 66.36 271 | 58.19 315 | 82.21 263 | 46.36 271 | 83.87 350 | 44.97 330 | 55.17 339 | 82.73 315 |
|
MVS_0304 | | | 68.99 287 | 67.23 284 | 74.28 315 | 80.36 308 | 52.54 335 | 87.01 278 | 86.36 304 | 59.89 320 | 66.22 262 | 73.56 338 | 24.25 357 | 88.03 327 | 57.34 283 | 70.11 249 | 82.27 324 |
|
DP-MVS | | | 69.90 279 | 66.48 285 | 80.14 247 | 95.36 30 | 62.93 221 | 89.56 236 | 76.11 353 | 50.27 352 | 57.69 321 | 85.23 224 | 39.68 299 | 95.73 149 | 33.35 363 | 71.05 246 | 81.78 329 |
|
LS3D | | | 69.17 283 | 66.40 286 | 77.50 286 | 91.92 112 | 56.12 319 | 85.12 286 | 80.37 347 | 46.96 359 | 56.50 325 | 87.51 203 | 37.25 317 | 93.71 233 | 32.52 368 | 79.40 182 | 82.68 319 |
|
KD-MVS_2432*1600 | | | 69.03 285 | 66.37 287 | 77.01 295 | 85.56 248 | 61.06 254 | 81.44 313 | 90.25 216 | 67.27 264 | 58.00 318 | 76.53 325 | 54.49 193 | 87.63 332 | 48.04 314 | 35.77 369 | 82.34 322 |
|
miper_refine_blended | | | 69.03 285 | 66.37 287 | 77.01 295 | 85.56 248 | 61.06 254 | 81.44 313 | 90.25 216 | 67.27 264 | 58.00 318 | 76.53 325 | 54.49 193 | 87.63 332 | 48.04 314 | 35.77 369 | 82.34 322 |
|
Anonymous20231206 | | | 67.53 299 | 65.78 289 | 72.79 325 | 74.95 349 | 47.59 358 | 88.23 261 | 87.32 297 | 61.75 309 | 58.07 317 | 77.29 318 | 37.79 314 | 87.29 336 | 42.91 335 | 63.71 296 | 83.48 305 |
|
MSDG | | | 69.54 281 | 65.73 290 | 80.96 233 | 85.11 256 | 63.71 203 | 84.19 291 | 83.28 336 | 56.95 333 | 54.50 328 | 84.03 238 | 31.50 341 | 96.03 139 | 42.87 337 | 69.13 257 | 83.14 312 |
|
RPMNet | | | 70.42 275 | 65.68 291 | 84.63 136 | 83.15 284 | 67.96 83 | 70.25 352 | 90.45 204 | 46.83 361 | 69.97 218 | 65.10 359 | 56.48 173 | 95.30 173 | 35.79 358 | 73.13 228 | 90.64 203 |
|
FMVSNet5 | | | 68.04 294 | 65.66 292 | 75.18 308 | 84.43 267 | 57.89 300 | 83.54 295 | 86.26 307 | 61.83 308 | 53.64 333 | 73.30 339 | 37.15 320 | 85.08 343 | 48.99 309 | 61.77 310 | 82.56 321 |
|
XVG-ACMP-BASELINE | | | 68.04 294 | 65.53 293 | 75.56 305 | 74.06 353 | 52.37 336 | 78.43 336 | 85.88 312 | 62.03 304 | 58.91 313 | 81.21 283 | 20.38 366 | 91.15 299 | 60.69 268 | 68.18 263 | 83.16 311 |
|
EG-PatchMatch MVS | | | 68.55 289 | 65.41 294 | 77.96 282 | 78.69 330 | 62.93 221 | 89.86 232 | 89.17 255 | 60.55 313 | 50.27 345 | 77.73 315 | 22.60 362 | 94.06 218 | 47.18 320 | 72.65 234 | 76.88 357 |
|
PatchT | | | 69.11 284 | 65.37 295 | 80.32 241 | 82.07 294 | 63.68 206 | 67.96 361 | 87.62 295 | 50.86 350 | 69.37 222 | 65.18 358 | 57.09 158 | 88.53 322 | 41.59 342 | 66.60 273 | 88.74 223 |
|
ACMH | | 63.93 17 | 68.62 288 | 64.81 296 | 80.03 250 | 85.22 252 | 63.25 212 | 87.72 268 | 84.66 323 | 60.83 312 | 51.57 340 | 79.43 305 | 27.29 353 | 94.96 180 | 41.76 340 | 64.84 285 | 81.88 327 |
Qingshan Xu and Wenbing Tao: Multi-Scale Geometric Consistency Guided Multi-View Stereo. CVPR 2019 |
pmmvs6 | | | 67.57 298 | 64.76 297 | 76.00 304 | 72.82 357 | 53.37 332 | 88.71 253 | 86.78 303 | 53.19 344 | 57.58 322 | 78.03 313 | 35.33 328 | 92.41 272 | 55.56 288 | 54.88 341 | 82.21 325 |
|
our_test_3 | | | 68.29 292 | 64.69 298 | 79.11 271 | 78.92 326 | 64.85 172 | 88.40 260 | 85.06 318 | 60.32 316 | 52.68 335 | 76.12 329 | 40.81 296 | 89.80 315 | 44.25 332 | 55.65 337 | 82.67 320 |
|
ACMH+ | | 65.35 16 | 67.65 297 | 64.55 299 | 76.96 297 | 84.59 263 | 57.10 314 | 88.08 262 | 80.79 344 | 58.59 327 | 53.00 334 | 81.09 285 | 26.63 355 | 92.95 247 | 46.51 321 | 61.69 314 | 80.82 334 |
|
USDC | | | 67.43 301 | 64.51 300 | 76.19 302 | 77.94 337 | 55.29 324 | 78.38 338 | 85.00 319 | 73.17 149 | 48.36 351 | 80.37 293 | 21.23 364 | 92.48 271 | 52.15 299 | 64.02 294 | 80.81 335 |
|
Patchmatch-RL test | | | 68.17 293 | 64.49 301 | 79.19 267 | 71.22 359 | 53.93 330 | 70.07 354 | 71.54 366 | 69.22 243 | 56.79 324 | 62.89 361 | 56.58 171 | 88.61 319 | 69.53 191 | 52.61 345 | 95.03 79 |
|
CMPMVS |  | 48.56 21 | 66.77 303 | 64.41 302 | 73.84 317 | 70.65 362 | 50.31 347 | 77.79 342 | 85.73 314 | 45.54 362 | 44.76 360 | 82.14 264 | 35.40 327 | 90.14 311 | 63.18 253 | 74.54 219 | 81.07 332 |
M. Jancosek, T. Pajdla: Multi-View Reconstruction Preserving Weakly-Supported Surfaces. CVPR 2011 |
ADS-MVSNet | | | 68.54 290 | 64.38 303 | 81.03 232 | 88.06 204 | 66.90 117 | 68.01 359 | 84.02 328 | 57.57 328 | 64.48 276 | 69.87 351 | 38.68 302 | 89.21 318 | 40.87 344 | 67.89 266 | 86.97 250 |
|
Patchmtry | | | 67.53 299 | 63.93 304 | 78.34 276 | 82.12 293 | 64.38 184 | 68.72 356 | 84.00 329 | 48.23 358 | 59.24 308 | 72.41 342 | 57.82 152 | 89.27 317 | 46.10 324 | 56.68 336 | 81.36 330 |
|
ppachtmachnet_test | | | 67.72 296 | 63.70 305 | 79.77 258 | 78.92 326 | 66.04 138 | 88.68 254 | 82.90 338 | 60.11 318 | 55.45 326 | 75.96 330 | 39.19 301 | 90.55 301 | 39.53 348 | 52.55 346 | 82.71 317 |
|
LTVRE_ROB | | 59.60 19 | 66.27 305 | 63.54 306 | 74.45 312 | 84.00 274 | 51.55 340 | 67.08 362 | 83.53 332 | 58.78 325 | 54.94 327 | 80.31 294 | 34.54 330 | 93.23 242 | 40.64 346 | 68.03 264 | 78.58 353 |
Andreas Kuhn, Heiko Hirschmüller, Daniel Scharstein, Helmut Mayer: A TV Prior for High-Quality Scalable Multi-View Stereo Reconstruction. International Journal of Computer Vision 2016 |
ADS-MVSNet2 | | | 66.90 302 | 63.44 307 | 77.26 292 | 88.06 204 | 60.70 264 | 68.01 359 | 75.56 356 | 57.57 328 | 64.48 276 | 69.87 351 | 38.68 302 | 84.10 346 | 40.87 344 | 67.89 266 | 86.97 250 |
|
UnsupCasMVSNet_eth | | | 65.79 308 | 63.10 308 | 73.88 316 | 70.71 361 | 50.29 348 | 81.09 317 | 89.88 231 | 72.58 162 | 49.25 349 | 74.77 336 | 32.57 337 | 87.43 335 | 55.96 287 | 41.04 364 | 83.90 300 |
|
EU-MVSNet | | | 64.01 315 | 63.01 309 | 67.02 346 | 74.40 352 | 38.86 375 | 83.27 300 | 86.19 309 | 45.11 363 | 54.27 329 | 81.15 284 | 36.91 323 | 80.01 366 | 48.79 311 | 57.02 333 | 82.19 326 |
|
OpenMVS_ROB |  | 61.12 18 | 66.39 304 | 62.92 310 | 76.80 299 | 76.51 344 | 57.77 302 | 89.22 245 | 83.41 334 | 55.48 340 | 53.86 332 | 77.84 314 | 26.28 356 | 93.95 227 | 34.90 360 | 68.76 259 | 78.68 352 |
|
testgi | | | 64.48 313 | 62.87 311 | 69.31 339 | 71.24 358 | 40.62 370 | 85.49 285 | 79.92 348 | 65.36 278 | 54.18 330 | 83.49 245 | 23.74 360 | 84.55 345 | 41.60 341 | 60.79 320 | 82.77 314 |
|
test20.03 | | | 63.83 316 | 62.65 312 | 67.38 345 | 70.58 363 | 39.94 371 | 86.57 282 | 84.17 326 | 63.29 291 | 51.86 338 | 77.30 317 | 37.09 321 | 82.47 359 | 38.87 352 | 54.13 343 | 79.73 344 |
|
JIA-IIPM | | | 66.06 306 | 62.45 313 | 76.88 298 | 81.42 299 | 54.45 329 | 57.49 370 | 88.67 275 | 49.36 354 | 63.86 282 | 46.86 369 | 56.06 177 | 90.25 305 | 49.53 307 | 68.83 258 | 85.95 274 |
|
pmmvs-eth3d | | | 65.53 309 | 62.32 314 | 75.19 307 | 69.39 365 | 59.59 279 | 82.80 305 | 83.43 333 | 62.52 300 | 51.30 342 | 72.49 340 | 32.86 334 | 87.16 337 | 55.32 289 | 50.73 349 | 78.83 351 |
|
OurMVSNet-221017-0 | | | 64.68 311 | 62.17 315 | 72.21 330 | 76.08 348 | 47.35 359 | 80.67 320 | 81.02 343 | 56.19 337 | 51.60 339 | 79.66 303 | 27.05 354 | 88.56 321 | 53.60 296 | 53.63 344 | 80.71 336 |
|
RPSCF | | | 64.24 314 | 61.98 316 | 71.01 336 | 76.10 347 | 45.00 363 | 75.83 345 | 75.94 354 | 46.94 360 | 58.96 312 | 84.59 233 | 31.40 342 | 82.00 363 | 47.76 318 | 60.33 325 | 86.04 271 |
|
SixPastTwentyTwo | | | 64.92 310 | 61.78 317 | 74.34 314 | 78.74 329 | 49.76 349 | 83.42 299 | 79.51 350 | 62.86 295 | 50.27 345 | 77.35 316 | 30.92 345 | 90.49 303 | 45.89 325 | 47.06 355 | 82.78 313 |
|
test_0402 | | | 64.54 312 | 61.09 318 | 74.92 309 | 84.10 273 | 60.75 262 | 87.95 264 | 79.71 349 | 52.03 346 | 52.41 336 | 77.20 319 | 32.21 339 | 91.64 290 | 23.14 372 | 61.03 317 | 72.36 364 |
|
Patchmatch-test | | | 65.86 307 | 60.94 319 | 80.62 238 | 83.75 276 | 58.83 291 | 58.91 369 | 75.26 358 | 44.50 365 | 50.95 344 | 77.09 321 | 58.81 145 | 87.90 328 | 35.13 359 | 64.03 293 | 95.12 73 |
|
MDA-MVSNet_test_wron | | | 63.78 317 | 60.16 320 | 74.64 310 | 78.15 335 | 60.41 268 | 83.49 296 | 84.03 327 | 56.17 339 | 39.17 368 | 71.59 348 | 37.22 318 | 83.24 356 | 42.87 337 | 48.73 352 | 80.26 341 |
|
YYNet1 | | | 63.76 318 | 60.14 321 | 74.62 311 | 78.06 336 | 60.19 273 | 83.46 298 | 83.99 331 | 56.18 338 | 39.25 367 | 71.56 349 | 37.18 319 | 83.34 354 | 42.90 336 | 48.70 353 | 80.32 340 |
|
COLMAP_ROB |  | 57.96 20 | 62.98 320 | 59.65 322 | 72.98 323 | 81.44 298 | 53.00 334 | 83.75 294 | 75.53 357 | 48.34 357 | 48.81 350 | 81.40 277 | 24.14 358 | 90.30 304 | 32.95 365 | 60.52 322 | 75.65 360 |
Johannes L. Schönberger, Enliang Zheng, Marc Pollefeys, Jan-Michael Frahm: Pixelwise View Selection for Unstructured Multi-View Stereo. ECCV 2016 |
K. test v3 | | | 63.09 319 | 59.61 323 | 73.53 319 | 76.26 346 | 49.38 352 | 83.27 300 | 77.15 352 | 64.35 283 | 47.77 353 | 72.32 344 | 28.73 349 | 87.79 330 | 49.93 306 | 36.69 368 | 83.41 307 |
|
Anonymous20240521 | | | 62.09 321 | 59.08 324 | 71.10 335 | 67.19 367 | 48.72 354 | 83.91 293 | 85.23 317 | 50.38 351 | 47.84 352 | 71.22 350 | 20.74 365 | 85.51 342 | 46.47 322 | 58.75 330 | 79.06 349 |
|
KD-MVS_self_test | | | 60.87 325 | 58.60 325 | 67.68 343 | 66.13 368 | 39.93 372 | 75.63 346 | 84.70 322 | 57.32 331 | 49.57 348 | 68.45 354 | 29.55 346 | 82.87 357 | 48.09 313 | 47.94 354 | 80.25 342 |
|
AllTest | | | 61.66 322 | 58.06 326 | 72.46 327 | 79.57 315 | 51.42 342 | 80.17 327 | 68.61 369 | 51.25 348 | 45.88 355 | 81.23 279 | 19.86 367 | 86.58 339 | 38.98 350 | 57.01 334 | 79.39 346 |
|
UnsupCasMVSNet_bld | | | 61.60 323 | 57.71 327 | 73.29 321 | 68.73 366 | 51.64 339 | 78.61 335 | 89.05 263 | 57.20 332 | 46.11 354 | 61.96 363 | 28.70 350 | 88.60 320 | 50.08 305 | 38.90 366 | 79.63 345 |
|
MDA-MVSNet-bldmvs | | | 61.54 324 | 57.70 328 | 73.05 322 | 79.53 317 | 57.00 315 | 83.08 303 | 81.23 342 | 57.57 328 | 34.91 370 | 72.45 341 | 32.79 335 | 86.26 341 | 35.81 357 | 41.95 362 | 75.89 359 |
|
MIMVSNet1 | | | 60.16 328 | 57.33 329 | 68.67 340 | 69.71 364 | 44.13 365 | 78.92 334 | 84.21 325 | 55.05 341 | 44.63 361 | 71.85 346 | 23.91 359 | 81.54 365 | 32.63 367 | 55.03 340 | 80.35 339 |
|
PM-MVS | | | 59.40 329 | 56.59 330 | 67.84 341 | 63.63 370 | 41.86 367 | 76.76 343 | 63.22 375 | 59.01 324 | 51.07 343 | 72.27 345 | 11.72 375 | 83.25 355 | 61.34 264 | 50.28 351 | 78.39 354 |
|
new-patchmatchnet | | | 59.30 330 | 56.48 331 | 67.79 342 | 65.86 369 | 44.19 364 | 82.47 306 | 81.77 340 | 59.94 319 | 43.65 364 | 66.20 357 | 27.67 352 | 81.68 364 | 39.34 349 | 41.40 363 | 77.50 356 |
|
TinyColmap | | | 60.32 326 | 56.42 332 | 72.00 333 | 78.78 328 | 53.18 333 | 78.36 339 | 75.64 355 | 52.30 345 | 41.59 366 | 75.82 332 | 14.76 372 | 88.35 324 | 35.84 356 | 54.71 342 | 74.46 361 |
|
MVS-HIRNet | | | 60.25 327 | 55.55 333 | 74.35 313 | 84.37 268 | 56.57 317 | 71.64 350 | 74.11 359 | 34.44 370 | 45.54 359 | 42.24 373 | 31.11 344 | 89.81 313 | 40.36 347 | 76.10 214 | 76.67 358 |
|
DSMNet-mixed | | | 56.78 331 | 54.44 334 | 63.79 348 | 63.21 371 | 29.44 379 | 64.43 364 | 64.10 374 | 42.12 367 | 51.32 341 | 71.60 347 | 31.76 340 | 75.04 368 | 36.23 355 | 65.20 282 | 86.87 253 |
|
LF4IMVS | | | 54.01 334 | 52.12 335 | 59.69 349 | 62.41 373 | 39.91 373 | 68.59 357 | 68.28 371 | 42.96 366 | 44.55 362 | 75.18 333 | 14.09 374 | 68.39 372 | 41.36 343 | 51.68 347 | 70.78 365 |
|
TDRefinement | | | 55.28 333 | 51.58 336 | 66.39 347 | 59.53 375 | 46.15 362 | 76.23 344 | 72.80 362 | 44.60 364 | 42.49 365 | 76.28 328 | 15.29 370 | 82.39 360 | 33.20 364 | 43.75 360 | 70.62 366 |
|
pmmvs3 | | | 55.51 332 | 51.50 337 | 67.53 344 | 57.90 376 | 50.93 345 | 80.37 323 | 73.66 360 | 40.63 368 | 44.15 363 | 64.75 360 | 16.30 369 | 78.97 367 | 44.77 331 | 40.98 365 | 72.69 362 |
|
N_pmnet | | | 50.55 335 | 49.11 338 | 54.88 353 | 77.17 342 | 4.02 389 | 84.36 290 | 2.00 388 | 48.59 355 | 45.86 357 | 68.82 353 | 32.22 338 | 82.80 358 | 31.58 370 | 51.38 348 | 77.81 355 |
|
new_pmnet | | | 49.31 336 | 46.44 339 | 57.93 350 | 62.84 372 | 40.74 369 | 68.47 358 | 62.96 376 | 36.48 369 | 35.09 369 | 57.81 365 | 14.97 371 | 72.18 370 | 32.86 366 | 46.44 356 | 60.88 370 |
|
FPMVS | | | 45.64 337 | 43.10 340 | 53.23 355 | 51.42 379 | 36.46 376 | 64.97 363 | 71.91 364 | 29.13 372 | 27.53 372 | 61.55 364 | 9.83 377 | 65.01 376 | 16.00 376 | 55.58 338 | 58.22 371 |
|
EGC-MVSNET | | | 42.35 338 | 38.09 341 | 55.11 352 | 74.57 350 | 46.62 361 | 71.63 351 | 55.77 378 | 0.04 383 | 0.24 384 | 62.70 362 | 14.24 373 | 74.91 369 | 17.59 375 | 46.06 357 | 43.80 372 |
|
LCM-MVSNet | | | 40.54 339 | 35.79 342 | 54.76 354 | 36.92 384 | 30.81 378 | 51.41 371 | 69.02 368 | 22.07 374 | 24.63 373 | 45.37 371 | 4.56 384 | 65.81 374 | 33.67 362 | 34.50 371 | 67.67 367 |
|
ANet_high | | | 40.27 340 | 35.20 343 | 55.47 351 | 34.74 385 | 34.47 377 | 63.84 365 | 71.56 365 | 48.42 356 | 18.80 376 | 41.08 374 | 9.52 378 | 64.45 377 | 20.18 373 | 8.66 381 | 67.49 368 |
|
test_method | | | 38.59 341 | 35.16 344 | 48.89 357 | 54.33 377 | 21.35 384 | 45.32 374 | 53.71 379 | 7.41 380 | 28.74 371 | 51.62 367 | 8.70 379 | 52.87 378 | 33.73 361 | 32.89 372 | 72.47 363 |
|
PMMVS2 | | | 37.93 342 | 33.61 345 | 50.92 356 | 46.31 381 | 24.76 382 | 60.55 368 | 50.05 380 | 28.94 373 | 20.93 374 | 47.59 368 | 4.41 385 | 65.13 375 | 25.14 371 | 18.55 376 | 62.87 369 |
|
Gipuma |  | | 34.91 343 | 31.44 346 | 45.30 358 | 70.99 360 | 39.64 374 | 19.85 378 | 72.56 363 | 20.10 376 | 16.16 378 | 21.47 379 | 5.08 383 | 71.16 371 | 13.07 377 | 43.70 361 | 25.08 376 |
S. Galliani, K. Lasinger, K. Schindler: Massively Parallel Multiview Stereopsis by Surface Normal Diffusion. ICCV 2015 |
PMVS |  | 26.43 22 | 31.84 344 | 28.16 347 | 42.89 359 | 25.87 387 | 27.58 380 | 50.92 372 | 49.78 381 | 21.37 375 | 14.17 379 | 40.81 375 | 2.01 386 | 66.62 373 | 9.61 379 | 38.88 367 | 34.49 375 |
Y. Furukawa, J. Ponce: Accurate, dense, and robust multiview stereopsis. PAMI (2010) |
cdsmvs_eth3d_5k | | | 19.86 349 | 26.47 348 | 0.00 368 | 0.00 391 | 0.00 392 | 0.00 379 | 93.45 82 | 0.00 386 | 0.00 387 | 95.27 52 | 49.56 244 | 0.00 387 | 0.00 385 | 0.00 384 | 0.00 383 |
|
E-PMN | | | 24.61 345 | 24.00 349 | 26.45 362 | 43.74 382 | 18.44 386 | 60.86 366 | 39.66 382 | 15.11 377 | 9.53 381 | 22.10 378 | 6.52 381 | 46.94 380 | 8.31 380 | 10.14 378 | 13.98 378 |
|
tmp_tt | | | 22.26 348 | 23.75 350 | 17.80 364 | 5.23 388 | 12.06 388 | 35.26 375 | 39.48 383 | 2.82 382 | 18.94 375 | 44.20 372 | 22.23 363 | 24.64 383 | 36.30 354 | 9.31 380 | 16.69 377 |
|
EMVS | | | 23.76 347 | 23.20 351 | 25.46 363 | 41.52 383 | 16.90 387 | 60.56 367 | 38.79 385 | 14.62 378 | 8.99 382 | 20.24 381 | 7.35 380 | 45.82 381 | 7.25 381 | 9.46 379 | 13.64 379 |
|
MVE |  | 24.84 23 | 24.35 346 | 19.77 352 | 38.09 360 | 34.56 386 | 26.92 381 | 26.57 376 | 38.87 384 | 11.73 379 | 11.37 380 | 27.44 376 | 1.37 387 | 50.42 379 | 11.41 378 | 14.60 377 | 36.93 373 |
Simon Fuhrmann, Fabian Langguth, Michael Goesele: MVE - A Multi-View Reconstruction Environment. EUROGRAPHICS Workshops on Graphics and Cultural Heritage (2014) |
wuyk23d | | | 11.30 350 | 10.95 353 | 12.33 365 | 48.05 380 | 19.89 385 | 25.89 377 | 1.92 389 | 3.58 381 | 3.12 383 | 1.37 383 | 0.64 388 | 15.77 384 | 6.23 382 | 7.77 382 | 1.35 380 |
|
ab-mvs-re | | | 7.91 351 | 10.55 354 | 0.00 368 | 0.00 391 | 0.00 392 | 0.00 379 | 0.00 392 | 0.00 386 | 0.00 387 | 94.95 64 | 0.00 391 | 0.00 387 | 0.00 385 | 0.00 384 | 0.00 383 |
|
testmvs | | | 7.23 352 | 9.62 355 | 0.06 367 | 0.04 389 | 0.02 391 | 84.98 288 | 0.02 390 | 0.03 384 | 0.18 385 | 1.21 384 | 0.01 390 | 0.02 385 | 0.14 383 | 0.01 383 | 0.13 382 |
|
test123 | | | 6.92 353 | 9.21 356 | 0.08 366 | 0.03 390 | 0.05 390 | 81.65 311 | 0.01 391 | 0.02 385 | 0.14 386 | 0.85 385 | 0.03 389 | 0.02 385 | 0.12 384 | 0.00 384 | 0.16 381 |
|
pcd_1.5k_mvsjas | | | 4.46 354 | 5.95 357 | 0.00 368 | 0.00 391 | 0.00 392 | 0.00 379 | 0.00 392 | 0.00 386 | 0.00 387 | 0.00 386 | 53.55 205 | 0.00 387 | 0.00 385 | 0.00 384 | 0.00 383 |
|
test_blank | | | 0.00 355 | 0.00 358 | 0.00 368 | 0.00 391 | 0.00 392 | 0.00 379 | 0.00 392 | 0.00 386 | 0.00 387 | 0.00 386 | 0.00 391 | 0.00 387 | 0.00 385 | 0.00 384 | 0.00 383 |
|
uanet_test | | | 0.00 355 | 0.00 358 | 0.00 368 | 0.00 391 | 0.00 392 | 0.00 379 | 0.00 392 | 0.00 386 | 0.00 387 | 0.00 386 | 0.00 391 | 0.00 387 | 0.00 385 | 0.00 384 | 0.00 383 |
|
DCPMVS | | | 0.00 355 | 0.00 358 | 0.00 368 | 0.00 391 | 0.00 392 | 0.00 379 | 0.00 392 | 0.00 386 | 0.00 387 | 0.00 386 | 0.00 391 | 0.00 387 | 0.00 385 | 0.00 384 | 0.00 383 |
|
sosnet-low-res | | | 0.00 355 | 0.00 358 | 0.00 368 | 0.00 391 | 0.00 392 | 0.00 379 | 0.00 392 | 0.00 386 | 0.00 387 | 0.00 386 | 0.00 391 | 0.00 387 | 0.00 385 | 0.00 384 | 0.00 383 |
|
sosnet | | | 0.00 355 | 0.00 358 | 0.00 368 | 0.00 391 | 0.00 392 | 0.00 379 | 0.00 392 | 0.00 386 | 0.00 387 | 0.00 386 | 0.00 391 | 0.00 387 | 0.00 385 | 0.00 384 | 0.00 383 |
|
uncertanet | | | 0.00 355 | 0.00 358 | 0.00 368 | 0.00 391 | 0.00 392 | 0.00 379 | 0.00 392 | 0.00 386 | 0.00 387 | 0.00 386 | 0.00 391 | 0.00 387 | 0.00 385 | 0.00 384 | 0.00 383 |
|
Regformer | | | 0.00 355 | 0.00 358 | 0.00 368 | 0.00 391 | 0.00 392 | 0.00 379 | 0.00 392 | 0.00 386 | 0.00 387 | 0.00 386 | 0.00 391 | 0.00 387 | 0.00 385 | 0.00 384 | 0.00 383 |
|
uanet | | | 0.00 355 | 0.00 358 | 0.00 368 | 0.00 391 | 0.00 392 | 0.00 379 | 0.00 392 | 0.00 386 | 0.00 387 | 0.00 386 | 0.00 391 | 0.00 387 | 0.00 385 | 0.00 384 | 0.00 383 |
|
FOURS1 | | | | | | 93.95 53 | 61.77 242 | 93.96 69 | 91.92 143 | 62.14 303 | 86.57 35 | | | | | | |
|
MSC_two_6792asdad | | | | | 89.60 9 | 97.31 4 | 73.22 11 | | 95.05 21 | | | | | 99.07 13 | 92.01 12 | 94.77 25 | 96.51 20 |
|
PC_three_1452 | | | | | | | | | | 80.91 36 | 94.07 2 | 96.83 14 | 83.57 4 | 99.12 5 | 95.70 2 | 97.42 4 | 97.55 4 |
|
No_MVS | | | | | 89.60 9 | 97.31 4 | 73.22 11 | | 95.05 21 | | | | | 99.07 13 | 92.01 12 | 94.77 25 | 96.51 20 |
|
test_one_0601 | | | | | | 96.32 20 | 69.74 42 | | 94.18 55 | 71.42 207 | 90.67 15 | 96.85 12 | 74.45 19 | | | | |
|
eth-test2 | | | | | | 0.00 391 | | | | | | | | | | | |
|
eth-test | | | | | | 0.00 391 | | | | | | | | | | | |
|
ZD-MVS | | | | | | 96.63 11 | 65.50 154 | | 93.50 80 | 70.74 224 | 85.26 53 | 95.19 58 | 64.92 77 | 97.29 78 | 87.51 45 | 93.01 59 | |
|
IU-MVS | | | | | | 96.46 13 | 69.91 37 | | 95.18 14 | 80.75 37 | 95.28 1 | | | | 92.34 8 | 95.36 14 | 96.47 24 |
|
OPU-MVS | | | | | 89.97 3 | 97.52 3 | 73.15 13 | 96.89 4 | | | | 97.00 9 | 83.82 2 | 99.15 2 | 95.72 1 | 97.63 3 | 97.62 2 |
|
test_241102_TWO | | | | | | | | | 94.41 45 | 71.65 195 | 92.07 6 | 97.21 5 | 74.58 17 | 99.11 6 | 92.34 8 | 95.36 14 | 96.59 15 |
|
test_241102_ONE | | | | | | 96.45 14 | 69.38 47 | | 94.44 43 | 71.65 195 | 92.11 4 | 97.05 8 | 76.79 9 | 99.11 6 | | | |
|
save fliter | | | | | | 93.84 56 | 67.89 85 | 95.05 39 | 92.66 115 | 78.19 71 | | | | | | | |
|
test_0728_THIRD | | | | | | | | | | 72.48 165 | 90.55 16 | 96.93 10 | 76.24 11 | 99.08 11 | 91.53 16 | 94.99 17 | 96.43 26 |
|
test_0728_SECOND | | | | | 88.70 16 | 96.45 14 | 70.43 29 | 96.64 8 | 94.37 49 | | | | | 99.15 2 | 91.91 14 | 94.90 21 | 96.51 20 |
|
test0726 | | | | | | 96.40 17 | 69.99 33 | 96.76 6 | 94.33 51 | 71.92 181 | 91.89 8 | 97.11 7 | 73.77 22 | | | | |
|
GSMVS | | | | | | | | | | | | | | | | | 94.68 89 |
|
test_part2 | | | | | | 96.29 21 | 68.16 79 | | | | 90.78 13 | | | | | | |
|
sam_mvs1 | | | | | | | | | | | | | 57.85 151 | | | | 94.68 89 |
|
sam_mvs | | | | | | | | | | | | | 54.91 190 | | | | |
|
ambc | | | | | 69.61 338 | 61.38 374 | 41.35 368 | 49.07 373 | 85.86 313 | | 50.18 347 | 66.40 356 | 10.16 376 | 88.14 326 | 45.73 326 | 44.20 359 | 79.32 348 |
|
MTGPA |  | | | | | | | | 92.23 129 | | | | | | | | |
|
test_post1 | | | | | | | | 78.95 333 | | | | 20.70 380 | 53.05 211 | 91.50 297 | 60.43 269 | | |
|
test_post | | | | | | | | | | | | 23.01 377 | 56.49 172 | 92.67 262 | | | |
|
patchmatchnet-post | | | | | | | | | | | | 67.62 355 | 57.62 154 | 90.25 305 | | | |
|
GG-mvs-BLEND | | | | | 86.53 65 | 91.91 113 | 69.67 45 | 75.02 347 | 94.75 31 | | 78.67 121 | 90.85 154 | 77.91 7 | 94.56 197 | 72.25 165 | 93.74 47 | 95.36 57 |
|
MTMP | | | | | | | | 93.77 84 | 32.52 386 | | | | | | | | |
|
gm-plane-assit | | | | | | 88.42 193 | 67.04 113 | | | 78.62 68 | | 91.83 141 | | 97.37 72 | 76.57 134 | | |
|
test9_res | | | | | | | | | | | | | | | 89.41 26 | 94.96 18 | 95.29 62 |
|
TEST9 | | | | | | 94.18 46 | 67.28 104 | 94.16 56 | 93.51 78 | 71.75 193 | 85.52 48 | 95.33 47 | 68.01 44 | 97.27 82 | | | |
|
test_8 | | | | | | 94.19 45 | 67.19 107 | 94.15 59 | 93.42 85 | 71.87 186 | 85.38 51 | 95.35 46 | 68.19 41 | 96.95 106 | | | |
|
agg_prior2 | | | | | | | | | | | | | | | 86.41 57 | 94.75 30 | 95.33 58 |
|
agg_prior | | | | | | 94.16 50 | 66.97 115 | | 93.31 88 | | 84.49 59 | | | 96.75 116 | | | |
|
TestCases | | | | | 72.46 327 | 79.57 315 | 51.42 342 | | 68.61 369 | 51.25 348 | 45.88 355 | 81.23 279 | 19.86 367 | 86.58 339 | 38.98 350 | 57.01 334 | 79.39 346 |
|
test_prior4 | | | | | | | 67.18 109 | 93.92 75 | | | | | | | | | |
|
test_prior2 | | | | | | | | 95.10 37 | | 75.40 110 | 85.25 54 | 95.61 40 | 67.94 45 | | 87.47 46 | 94.77 25 | |
|
test_prior | | | | | 86.42 69 | 94.71 39 | 67.35 102 | | 93.10 100 | | | | | 96.84 111 | | | 95.05 76 |
|
旧先验2 | | | | | | | | 92.00 153 | | 59.37 323 | 87.54 29 | | | 93.47 239 | 75.39 140 | | |
|
æ–°å‡ ä½•2 | | | | | | | | 91.41 176 | | | | | | | | | |
|
æ–°å‡ ä½•1 | | | | | 84.73 130 | 92.32 97 | 64.28 189 | | 91.46 170 | 59.56 321 | 79.77 104 | 92.90 119 | 56.95 165 | 96.57 121 | 63.40 250 | 92.91 61 | 93.34 142 |
|
旧先验1 | | | | | | 91.94 110 | 60.74 263 | | 91.50 168 | | | 94.36 82 | 65.23 71 | | | 91.84 77 | 94.55 94 |
|
æ— å…ˆéªŒ | | | | | | | | 92.71 121 | 92.61 119 | 62.03 304 | | | | 97.01 96 | 66.63 219 | | 93.97 121 |
|
原ACMM2 | | | | | | | | 92.01 150 | | | | | | | | | |
|
原ACMM1 | | | | | 84.42 141 | 93.21 75 | 64.27 190 | | 93.40 87 | 65.39 277 | 79.51 107 | 92.50 127 | 58.11 150 | 96.69 118 | 65.27 241 | 93.96 42 | 92.32 172 |
|
test222 | | | | | | 89.77 160 | 61.60 246 | 89.55 237 | 89.42 246 | 56.83 335 | 77.28 133 | 92.43 131 | 52.76 216 | | | 91.14 91 | 93.09 152 |
|
testdata2 | | | | | | | | | | | | | | 96.09 134 | 61.26 265 | | |
|
segment_acmp | | | | | | | | | | | | | 65.94 64 | | | | |
|
testdata | | | | | 81.34 220 | 89.02 179 | 57.72 303 | | 89.84 232 | 58.65 326 | 85.32 52 | 94.09 94 | 57.03 160 | 93.28 241 | 69.34 193 | 90.56 97 | 93.03 154 |
|
testdata1 | | | | | | | | 89.21 246 | | 77.55 85 | | | | | | | |
|
test12 | | | | | 87.09 44 | 94.60 41 | 68.86 59 | | 92.91 106 | | 82.67 76 | | 65.44 70 | 97.55 64 | | 93.69 50 | 94.84 85 |
|
plane_prior7 | | | | | | 86.94 226 | 61.51 247 | | | | | | | | | | |
|
plane_prior6 | | | | | | 87.23 221 | 62.32 233 | | | | | | 50.66 233 | | | | |
|
plane_prior5 | | | | | | | | | 91.31 175 | | | | | 95.55 163 | 76.74 132 | 78.53 192 | 88.39 230 |
|
plane_prior4 | | | | | | | | | | | | 89.14 179 | | | | | |
|
plane_prior3 | | | | | | | 61.95 240 | | | 79.09 59 | 72.53 186 | | | | | | |
|
plane_prior2 | | | | | | | | 93.13 103 | | 78.81 65 | | | | | | | |
|
plane_prior1 | | | | | | 87.15 223 | | | | | | | | | | | |
|
plane_prior | | | | | | | 62.42 230 | 93.85 79 | | 79.38 51 | | | | | | 78.80 189 | |
|
n2 | | | | | | | | | 0.00 392 | | | | | | | | |
|
nn | | | | | | | | | 0.00 392 | | | | | | | | |
|
door-mid | | | | | | | | | 66.01 373 | | | | | | | | |
|
lessismore_v0 | | | | | 73.72 318 | 72.93 356 | 47.83 357 | | 61.72 377 | | 45.86 357 | 73.76 337 | 28.63 351 | 89.81 313 | 47.75 319 | 31.37 373 | 83.53 303 |
|
LGP-MVS_train | | | | | 79.56 263 | 84.31 269 | 59.37 283 | | 89.73 237 | 69.49 239 | 64.86 270 | 88.42 184 | 38.65 304 | 94.30 206 | 72.56 162 | 72.76 232 | 85.01 291 |
|
test11 | | | | | | | | | 93.01 102 | | | | | | | | |
|
door | | | | | | | | | 66.57 372 | | | | | | | | |
|
HQP5-MVS | | | | | | | 63.66 207 | | | | | | | | | | |
|
HQP-NCC | | | | | | 87.54 215 | | 94.06 64 | | 79.80 45 | 74.18 165 | | | | | | |
|
ACMP_Plane | | | | | | 87.54 215 | | 94.06 64 | | 79.80 45 | 74.18 165 | | | | | | |
|
BP-MVS | | | | | | | | | | | | | | | 77.63 129 | | |
|
HQP4-MVS | | | | | | | | | | | 74.18 165 | | | 95.61 157 | | | 88.63 224 |
|
HQP3-MVS | | | | | | | | | 91.70 160 | | | | | | | 78.90 187 | |
|
HQP2-MVS | | | | | | | | | | | | | 51.63 226 | | | | |
|
NP-MVS | | | | | | 87.41 218 | 63.04 217 | | | | | 90.30 165 | | | | | |
|
MDTV_nov1_ep13_2view | | | | | | | 59.90 276 | 80.13 328 | | 67.65 261 | 72.79 181 | | 54.33 198 | | 59.83 273 | | 92.58 166 |
|
ACMMP++_ref | | | | | | | | | | | | | | | | 71.63 240 | |
|
ACMMP++ | | | | | | | | | | | | | | | | 69.72 251 | |
|
Test By Simon | | | | | | | | | | | | | 54.21 199 | | | | |
|
ITE_SJBPF | | | | | 70.43 337 | 74.44 351 | 47.06 360 | | 77.32 351 | 60.16 317 | 54.04 331 | 83.53 243 | 23.30 361 | 84.01 348 | 43.07 334 | 61.58 315 | 80.21 343 |
|
DeepMVS_CX |  | | | | 34.71 361 | 51.45 378 | 24.73 383 | | 28.48 387 | 31.46 371 | 17.49 377 | 52.75 366 | 5.80 382 | 42.60 382 | 18.18 374 | 19.42 375 | 36.81 374 |
|