This table lists the benchmark results for the high-res multi-view scenario. The following metrics are evaluated:

(*) For exact definitions, detailing how potentially incomplete ground truth is taken into account, see our paper.

The datasets are grouped into different categories, and result averages are computed for a category and method if results of the method are available for all datasets within the category. Note that the category "all" includes both the high-res multi-view and the low-res many-view scenarios.

Methods with suffix _ROB may participate in the Robust Vision Challenge.

Click a dataset result cell to show a visualization of the reconstruction. For training datasets, ground truth and accuracy / completeness visualizations are also available. The visualizations may not work with mobile browsers.




Method Infoallhigh-res
multi-view
indooroutdoorbotani.boulde.bridgedoorexhibi.lectur.living.loungeobserv.old co.statueterrac.
sort bysorted bysort bysort bysort bysort bysort bysort bysort bysort bysort bysort bysort bysort bysort bysort by
DVP-MVS++90.23 191.01 187.89 2494.34 2771.25 5995.06 194.23 378.38 3392.78 495.74 682.45 397.49 489.42 996.68 294.95 11
SED-MVS90.08 290.85 287.77 2695.30 270.98 6693.57 794.06 1077.24 5393.10 195.72 882.99 197.44 789.07 1496.63 494.88 15
DVP-MVScopyleft89.60 390.35 387.33 4095.27 571.25 5993.49 992.73 6477.33 5092.12 995.78 480.98 997.40 989.08 1296.41 1293.33 90
Zhenlong Yuan, Jinguo Luo, Fei Shen, Zhaoxin Li, Cong Liu, Tianlu Mao, Zhaoqi Wang: DVP-MVS: Synergize Depth-Edge and Visibility Prior for Multi-View Stereo. AAAI2025
MSP-MVS89.51 489.91 588.30 1094.28 3073.46 1792.90 1694.11 680.27 1091.35 1494.16 4078.35 1396.77 2489.59 894.22 6094.67 27
Zhenlong Yuan, Cong Liu, Fei Shen, Zhaoxin Li, Jingguo luo, Tianlu Mao and Zhaoqi Wang: MSP-MVS: Multi-granularity Segmentation Prior Guided Multi-View Stereo. AAAI2025
DPE-MVScopyleft89.48 589.98 488.01 1694.80 1172.69 3191.59 4394.10 875.90 9092.29 795.66 1081.67 697.38 1187.44 3396.34 1593.95 58
Kehua Chen, Zhenlong Yuan, Tianlu Mao, Zhaoqi Wang: Dual-Level Precision Edges Guided Multi-View Stereo with Accurate Planarization. AAAI2025
MM89.16 689.23 788.97 490.79 9573.65 1092.66 2391.17 12486.57 187.39 4194.97 1871.70 5397.68 192.19 195.63 2895.57 1
APDe-MVScopyleft89.15 789.63 687.73 2894.49 1871.69 5293.83 493.96 1375.70 9491.06 1696.03 176.84 1497.03 1789.09 1195.65 2794.47 37
Zhaojie Zeng, Yuesong Wang, Tao Guan: Matching Ambiguity-Resilient Multi-View Stereo via Adaptive Patch Deformation. Pattern Recognition
SMA-MVScopyleft89.08 889.23 788.61 694.25 3173.73 992.40 2493.63 2174.77 11592.29 795.97 274.28 2997.24 1388.58 2196.91 194.87 17
Yufeng Yin; Xiaoyan Liu; Zichao Zhang: SMA-MVS: Segmentation-Guided Multi-Scale Anchor Deformation Patch Multi-View Stereo. IEEE Transactions on Circuits and Systems for Video Technology
HPM-MVS++copyleft89.02 989.15 988.63 595.01 976.03 192.38 2792.85 5980.26 1187.78 3394.27 3575.89 1996.81 2387.45 3296.44 993.05 105
CNVR-MVS88.93 1089.13 1088.33 894.77 1273.82 890.51 6293.00 4680.90 788.06 2994.06 4576.43 1696.84 2188.48 2495.99 1894.34 43
SteuartSystems-ACMMP88.72 1188.86 1188.32 992.14 7272.96 2593.73 593.67 2080.19 1288.10 2894.80 1973.76 3397.11 1587.51 3195.82 2194.90 14
Skip Steuart: Steuart Systems R&D Blog.
SF-MVS88.46 1288.74 1287.64 3592.78 6471.95 4992.40 2494.74 275.71 9289.16 1995.10 1675.65 2196.19 4687.07 3496.01 1794.79 22
DeepPCF-MVS80.84 188.10 1388.56 1386.73 5392.24 7169.03 10389.57 9093.39 3077.53 4689.79 1894.12 4278.98 1296.58 3585.66 4095.72 2494.58 32
SD-MVS88.06 1488.50 1486.71 5492.60 6972.71 2991.81 4193.19 3577.87 3690.32 1794.00 4974.83 2393.78 14087.63 3094.27 5993.65 75
Zhenlong Yuan, Jiakai Cao, Zhaoxin Li, Hao Jiang and Zhaoqi Wang: SD-MVS: Segmentation-driven Deformation Multi-View Stereo with Spherical Refinement and EM optimization. AAAI2024
NCCC88.06 1488.01 1888.24 1194.41 2273.62 1191.22 5492.83 6081.50 585.79 5593.47 6373.02 4097.00 1884.90 4694.94 4094.10 51
ACMMP_NAP88.05 1688.08 1787.94 1993.70 4173.05 2290.86 5793.59 2376.27 8488.14 2795.09 1771.06 6396.67 2987.67 2996.37 1494.09 52
TSAR-MVS + MP.88.02 1788.11 1687.72 3093.68 4372.13 4691.41 5092.35 8174.62 11988.90 2293.85 5575.75 2096.00 5487.80 2894.63 4895.04 9
Zhenlong Yuan, Jiakai Cao, Zhaoqi Wang, Zhaoxin Li: TSAR-MVS: Textureless-aware Segmentation and Correlative Refinement Guided Multi-View Stereo. Pattern Recognition
ZNCC-MVS87.94 1887.85 1988.20 1294.39 2473.33 1993.03 1493.81 1776.81 6685.24 6094.32 3371.76 5196.93 1985.53 4395.79 2294.32 44
MP-MVScopyleft87.71 1987.64 2187.93 2194.36 2673.88 692.71 2292.65 6977.57 4283.84 9094.40 3272.24 4596.28 4385.65 4195.30 3593.62 78
Rongxuan Tan, Qing Wang, et al.: MP-MVS: Multi-Scale Windows PatchMatch and Planar Prior Multi-View Stereo.
MVS_030487.69 2087.55 2488.12 1389.45 12971.76 5191.47 4989.54 17282.14 386.65 4994.28 3468.28 9597.46 690.81 295.31 3495.15 7
MP-MVS-pluss87.67 2187.72 2087.54 3693.64 4472.04 4889.80 8193.50 2575.17 10586.34 5195.29 1570.86 6596.00 5488.78 1996.04 1694.58 32
MP-MVS-pluss: MP-MVS-pluss. MP-MVS-pluss
HFP-MVS87.58 2287.47 2687.94 1994.58 1673.54 1593.04 1293.24 3376.78 6884.91 6594.44 3070.78 6696.61 3284.53 5494.89 4293.66 71
reproduce-ours87.47 2387.61 2287.07 4593.27 5071.60 5391.56 4693.19 3574.98 10888.96 2095.54 1271.20 6196.54 3686.28 3793.49 6593.06 103
our_new_method87.47 2387.61 2287.07 4593.27 5071.60 5391.56 4693.19 3574.98 10888.96 2095.54 1271.20 6196.54 3686.28 3793.49 6593.06 103
ACMMPR87.44 2587.23 3088.08 1594.64 1373.59 1293.04 1293.20 3476.78 6884.66 7294.52 2368.81 9096.65 3084.53 5494.90 4194.00 56
APD-MVScopyleft87.44 2587.52 2587.19 4294.24 3272.39 3991.86 4092.83 6073.01 15888.58 2494.52 2373.36 3496.49 3884.26 5795.01 3792.70 115
Yuesong Wang, Zhaojie Zeng and etc.: Adaptive Patch Deformation for Textureless-Resilient Multi-View Stereo. CVPR2023
GST-MVS87.42 2787.26 2887.89 2494.12 3672.97 2492.39 2693.43 2876.89 6484.68 6993.99 5170.67 6896.82 2284.18 6195.01 3793.90 61
region2R87.42 2787.20 3188.09 1494.63 1473.55 1393.03 1493.12 4076.73 7184.45 7794.52 2369.09 8496.70 2784.37 5694.83 4594.03 55
MCST-MVS87.37 2987.25 2987.73 2894.53 1772.46 3889.82 7993.82 1673.07 15684.86 6892.89 7776.22 1796.33 4184.89 4895.13 3694.40 40
reproduce_model87.28 3087.39 2786.95 4893.10 5671.24 6391.60 4293.19 3574.69 11688.80 2395.61 1170.29 7296.44 3986.20 3993.08 6993.16 98
MTAPA87.23 3187.00 3287.90 2294.18 3574.25 586.58 19292.02 9279.45 1985.88 5394.80 1968.07 9696.21 4586.69 3695.34 3293.23 93
XVS87.18 3286.91 3788.00 1794.42 2073.33 1992.78 1892.99 4979.14 2183.67 9394.17 3967.45 10396.60 3383.06 6994.50 5194.07 53
HPM-MVScopyleft87.11 3386.98 3487.50 3893.88 3972.16 4592.19 3393.33 3176.07 8783.81 9193.95 5469.77 7896.01 5385.15 4494.66 4794.32 44
Chunlin Ren, Qingshan Xu, Shikun Zhang, Jiaqi Yang: Hierarchical Prior Mining for Non-local Multi-View Stereo. ICCV 2023
CP-MVS87.11 3386.92 3687.68 3494.20 3473.86 793.98 392.82 6376.62 7483.68 9294.46 2767.93 9895.95 5784.20 6094.39 5593.23 93
DeepC-MVS79.81 287.08 3586.88 3887.69 3391.16 8472.32 4390.31 7193.94 1477.12 5882.82 10494.23 3872.13 4797.09 1684.83 4995.37 3193.65 75
Andreas Kuhn, Christian Sormann, Mattia Rossi, Oliver Erdler, Friedrich Fraundorfer: DeepC-MVS: Deep Confidence Prediction for Multi-View Stereo Reconstruction. 3DV 2020
DeepC-MVS_fast79.65 386.91 3686.62 4087.76 2793.52 4672.37 4191.26 5193.04 4176.62 7484.22 8193.36 6671.44 5796.76 2580.82 9495.33 3394.16 49
Andreas Kuhn, Christian Sormann, Mattia Rossi, Oliver Erdler, Friedrich Fraundorfer: DeepC-MVS: Deep Confidence Prediction for Multi-View Stereo Reconstruction. 3DV 2020
balanced_conf0386.78 3786.99 3386.15 6291.24 8367.61 14490.51 6292.90 5677.26 5287.44 4091.63 10471.27 6096.06 4985.62 4295.01 3794.78 23
SR-MVS86.73 3886.67 3986.91 4994.11 3772.11 4792.37 2892.56 7474.50 12086.84 4894.65 2267.31 10595.77 5984.80 5092.85 7292.84 113
CS-MVS86.69 3986.95 3585.90 7090.76 9667.57 14692.83 1793.30 3279.67 1784.57 7692.27 8971.47 5695.02 9284.24 5993.46 6795.13 8
PGM-MVS86.68 4086.27 4487.90 2294.22 3373.38 1890.22 7393.04 4175.53 9683.86 8994.42 3167.87 10096.64 3182.70 7994.57 5093.66 71
mPP-MVS86.67 4186.32 4387.72 3094.41 2273.55 1392.74 2092.22 8776.87 6582.81 10594.25 3766.44 11396.24 4482.88 7494.28 5893.38 87
CANet86.45 4286.10 4987.51 3790.09 10770.94 7089.70 8592.59 7381.78 481.32 12091.43 11270.34 7097.23 1484.26 5793.36 6894.37 41
train_agg86.43 4386.20 4587.13 4493.26 5272.96 2588.75 11991.89 10068.69 24585.00 6393.10 7074.43 2695.41 7384.97 4595.71 2593.02 107
PHI-MVS86.43 4386.17 4787.24 4190.88 9270.96 6892.27 3294.07 972.45 16285.22 6191.90 9669.47 8096.42 4083.28 6895.94 1994.35 42
CSCG86.41 4586.19 4687.07 4592.91 6172.48 3790.81 5893.56 2473.95 13183.16 9991.07 12475.94 1895.19 8179.94 10294.38 5693.55 82
SPE-MVS-test86.29 4686.48 4185.71 7291.02 8867.21 15992.36 2993.78 1878.97 2883.51 9691.20 11970.65 6995.15 8381.96 8394.89 4294.77 24
EC-MVSNet86.01 4786.38 4284.91 9589.31 13866.27 17292.32 3093.63 2179.37 2084.17 8391.88 9769.04 8895.43 7083.93 6393.77 6393.01 108
MVSMamba_PlusPlus85.99 4885.96 5286.05 6591.09 8567.64 14389.63 8892.65 6972.89 16184.64 7391.71 10071.85 4996.03 5084.77 5194.45 5494.49 36
casdiffmvs_mvgpermissive85.99 4886.09 5085.70 7387.65 20867.22 15888.69 12393.04 4179.64 1885.33 5992.54 8673.30 3594.50 11183.49 6591.14 9595.37 2
Fangjinhua Wang, Qingshan Xu, Yew-Soon Ong, Marc Pollefeys: Lightweight and Accurate Multi-View Stereo With Confidence-Aware Diffusion Model. IEEE T-PAMI 2025
APD-MVS_3200maxsize85.97 5085.88 5386.22 6092.69 6669.53 9291.93 3792.99 4973.54 14385.94 5294.51 2665.80 12395.61 6283.04 7192.51 7693.53 84
test_fmvsmconf_n85.92 5186.04 5185.57 7585.03 26169.51 9389.62 8990.58 13973.42 14787.75 3594.02 4772.85 4193.24 16590.37 390.75 9993.96 57
sasdasda85.91 5285.87 5486.04 6689.84 11769.44 9890.45 6893.00 4676.70 7288.01 3191.23 11673.28 3693.91 13481.50 8688.80 12794.77 24
canonicalmvs85.91 5285.87 5486.04 6689.84 11769.44 9890.45 6893.00 4676.70 7288.01 3191.23 11673.28 3693.91 13481.50 8688.80 12794.77 24
ACMMPcopyleft85.89 5485.39 6187.38 3993.59 4572.63 3392.74 2093.18 3976.78 6880.73 12993.82 5664.33 13396.29 4282.67 8090.69 10093.23 93
Qingshan Xu, Weihang Kong, Wenbing Tao, Marc Pollefeys: Multi-Scale Geometric Consistency Guided and Planar Prior Assisted Multi-View Stereo. IEEE Transactions on Pattern Analysis and Machine Intelligence
SR-MVS-dyc-post85.77 5585.61 5886.23 5993.06 5870.63 7691.88 3892.27 8373.53 14485.69 5694.45 2865.00 13195.56 6382.75 7591.87 8492.50 124
CDPH-MVS85.76 5685.29 6687.17 4393.49 4771.08 6488.58 12792.42 7968.32 25284.61 7493.48 6172.32 4496.15 4879.00 10595.43 3094.28 46
TSAR-MVS + GP.85.71 5785.33 6386.84 5091.34 8172.50 3689.07 10987.28 23676.41 7785.80 5490.22 14374.15 3195.37 7881.82 8491.88 8392.65 119
dcpmvs_285.63 5886.15 4884.06 13291.71 7864.94 20186.47 19591.87 10273.63 13986.60 5093.02 7576.57 1591.87 22283.36 6692.15 8095.35 3
test_fmvsmconf0.1_n85.61 5985.65 5785.50 7682.99 30869.39 10089.65 8690.29 15273.31 15087.77 3494.15 4171.72 5293.23 16690.31 490.67 10193.89 62
alignmvs85.48 6085.32 6485.96 6989.51 12669.47 9589.74 8392.47 7576.17 8587.73 3791.46 11170.32 7193.78 14081.51 8588.95 12494.63 31
3Dnovator+77.84 485.48 6084.47 7688.51 791.08 8673.49 1693.18 1193.78 1880.79 876.66 20293.37 6560.40 19696.75 2677.20 12493.73 6495.29 5
MSLP-MVS++85.43 6285.76 5684.45 10891.93 7570.24 7990.71 5992.86 5877.46 4884.22 8192.81 8167.16 10792.94 18580.36 9894.35 5790.16 202
DELS-MVS85.41 6385.30 6585.77 7188.49 16967.93 13685.52 22593.44 2778.70 2983.63 9589.03 17174.57 2495.71 6180.26 10094.04 6193.66 71
Christian Sormann, Emanuele Santellani, Mattia Rossi, Andreas Kuhn, Friedrich Fraundorfer: DELS-MVS: Deep Epipolar Line Search for Multi-View Stereo. Winter Conference on Applications of Computer Vision (WACV), 2023
HPM-MVS_fast85.35 6484.95 7086.57 5693.69 4270.58 7892.15 3591.62 11073.89 13482.67 10794.09 4362.60 15295.54 6580.93 9292.93 7193.57 80
test_fmvsm_n_192085.29 6585.34 6285.13 8686.12 24069.93 8688.65 12590.78 13569.97 21388.27 2693.98 5271.39 5891.54 23488.49 2390.45 10393.91 59
MVS_111021_HR85.14 6684.75 7186.32 5891.65 7972.70 3085.98 20890.33 14976.11 8682.08 11091.61 10671.36 5994.17 12381.02 9192.58 7592.08 141
casdiffmvspermissive85.11 6785.14 6785.01 8987.20 22265.77 18487.75 15692.83 6077.84 3784.36 8092.38 8872.15 4693.93 13381.27 9090.48 10295.33 4
Fangjinhua Wang, Qingshan Xu, Yew-Soon Ong, Marc Pollefeys: Lightweight and Accurate Multi-View Stereo With Confidence-Aware Diffusion Model. IEEE T-PAMI 2025
UA-Net85.08 6884.96 6985.45 7792.07 7368.07 13389.78 8290.86 13482.48 284.60 7593.20 6969.35 8195.22 8071.39 18290.88 9893.07 102
MGCFI-Net85.06 6985.51 5983.70 14689.42 13063.01 24289.43 9392.62 7276.43 7687.53 3891.34 11472.82 4293.42 16081.28 8988.74 13094.66 30
DPM-MVS84.93 7084.29 7786.84 5090.20 10573.04 2387.12 17493.04 4169.80 21782.85 10391.22 11873.06 3996.02 5276.72 13294.63 4891.46 158
baseline84.93 7084.98 6884.80 9987.30 22065.39 19287.30 17092.88 5777.62 4084.04 8692.26 9071.81 5093.96 12781.31 8890.30 10595.03 10
ETV-MVS84.90 7284.67 7285.59 7489.39 13368.66 12088.74 12192.64 7179.97 1584.10 8485.71 26069.32 8295.38 7580.82 9491.37 9292.72 114
test_fmvsmconf0.01_n84.73 7384.52 7585.34 7980.25 34969.03 10389.47 9189.65 16973.24 15486.98 4694.27 3566.62 10993.23 16690.26 589.95 11393.78 68
fmvsm_l_conf0.5_n84.47 7484.54 7384.27 11885.42 25168.81 10988.49 12987.26 23768.08 25488.03 3093.49 6072.04 4891.77 22488.90 1789.14 12392.24 135
BP-MVS184.32 7583.71 8186.17 6187.84 19867.85 13789.38 9889.64 17077.73 3883.98 8792.12 9356.89 22095.43 7084.03 6291.75 8795.24 6
EI-MVSNet-Vis-set84.19 7683.81 8085.31 8088.18 18067.85 13787.66 15889.73 16780.05 1482.95 10089.59 15670.74 6794.82 10080.66 9784.72 18093.28 92
fmvsm_l_conf0.5_n_a84.13 7784.16 7884.06 13285.38 25268.40 12488.34 13686.85 24767.48 26187.48 3993.40 6470.89 6491.61 22888.38 2589.22 12192.16 139
test_fmvsmvis_n_192084.02 7883.87 7984.49 10784.12 27769.37 10188.15 14487.96 22070.01 21183.95 8893.23 6868.80 9191.51 23788.61 2089.96 11292.57 120
nrg03083.88 7983.53 8384.96 9186.77 23069.28 10290.46 6792.67 6674.79 11482.95 10091.33 11572.70 4393.09 17980.79 9679.28 25892.50 124
EI-MVSNet-UG-set83.81 8083.38 8685.09 8787.87 19667.53 14787.44 16689.66 16879.74 1682.23 10989.41 16570.24 7394.74 10379.95 10183.92 19492.99 110
fmvsm_s_conf0.5_n83.80 8183.71 8184.07 13086.69 23267.31 15389.46 9283.07 30271.09 18786.96 4793.70 5869.02 8991.47 23988.79 1884.62 18293.44 86
CPTT-MVS83.73 8283.33 8884.92 9493.28 4970.86 7292.09 3690.38 14568.75 24479.57 14192.83 7960.60 19293.04 18380.92 9391.56 9090.86 175
EPNet83.72 8382.92 9586.14 6484.22 27569.48 9491.05 5685.27 26781.30 676.83 19791.65 10266.09 11895.56 6376.00 13893.85 6293.38 87
Wanjuan Su, Wenbing Tao: Efficient Edge-Preserving Multi-View Stereo Network for Depth Estimation. AAAI 2023
patch_mono-283.65 8484.54 7380.99 22590.06 11265.83 18184.21 25488.74 20671.60 17785.01 6292.44 8774.51 2583.50 34482.15 8292.15 8093.64 77
HQP_MVS83.64 8583.14 8985.14 8490.08 10868.71 11691.25 5292.44 7679.12 2378.92 15091.00 12960.42 19495.38 7578.71 10986.32 16191.33 159
fmvsm_s_conf0.5_n_a83.63 8683.41 8584.28 11686.14 23968.12 13189.43 9382.87 30770.27 20687.27 4393.80 5769.09 8491.58 23088.21 2683.65 20293.14 100
Effi-MVS+83.62 8783.08 9085.24 8288.38 17567.45 14888.89 11489.15 18875.50 9782.27 10888.28 19269.61 7994.45 11377.81 11887.84 14093.84 65
fmvsm_s_conf0.1_n83.56 8883.38 8684.10 12484.86 26367.28 15489.40 9783.01 30370.67 19587.08 4493.96 5368.38 9391.45 24088.56 2284.50 18393.56 81
OPM-MVS83.50 8982.95 9485.14 8488.79 15970.95 6989.13 10891.52 11377.55 4580.96 12791.75 9960.71 18794.50 11179.67 10486.51 15989.97 218
Ray L. Khuboni, Hongjun Xu: Octagram Propagation Matching for Multi-Scale View Stereopsis (OPM-MVS).
Vis-MVSNetpermissive83.46 9082.80 9785.43 7890.25 10468.74 11490.30 7290.13 15676.33 8380.87 12892.89 7761.00 18494.20 12172.45 17690.97 9693.35 89
Jingyang Zhang, Yao Yao, Shiwei Li, Zixin Luo, Tian Fang: Visibility-aware Multiview Stereo Network. BMVC 2020
MG-MVS83.41 9183.45 8483.28 15892.74 6562.28 25488.17 14289.50 17475.22 10181.49 11992.74 8566.75 10895.11 8672.85 17091.58 8992.45 127
EPP-MVSNet83.40 9283.02 9284.57 10390.13 10664.47 21192.32 3090.73 13674.45 12379.35 14491.10 12269.05 8795.12 8472.78 17187.22 14894.13 50
3Dnovator76.31 583.38 9382.31 10386.59 5587.94 19372.94 2890.64 6092.14 9177.21 5575.47 22792.83 7958.56 20394.72 10473.24 16792.71 7492.13 140
fmvsm_s_conf0.1_n_a83.32 9482.99 9384.28 11683.79 28568.07 13389.34 10082.85 30869.80 21787.36 4294.06 4568.34 9491.56 23287.95 2783.46 20793.21 96
EIA-MVS83.31 9582.80 9784.82 9789.59 12265.59 18788.21 14092.68 6574.66 11878.96 14886.42 24769.06 8695.26 7975.54 14490.09 10993.62 78
h-mvs3383.15 9682.19 10486.02 6890.56 9870.85 7388.15 14489.16 18776.02 8884.67 7091.39 11361.54 17095.50 6682.71 7775.48 30691.72 148
MVS_Test83.15 9683.06 9183.41 15586.86 22663.21 23886.11 20692.00 9474.31 12482.87 10289.44 16470.03 7493.21 16877.39 12388.50 13593.81 66
IS-MVSNet83.15 9682.81 9684.18 12289.94 11563.30 23691.59 4388.46 21279.04 2579.49 14292.16 9165.10 12894.28 11667.71 21891.86 8694.95 11
DP-MVS Recon83.11 9982.09 10786.15 6294.44 1970.92 7188.79 11792.20 8870.53 20079.17 14691.03 12764.12 13596.03 5068.39 21590.14 10891.50 154
PAPM_NR83.02 10082.41 10084.82 9792.47 7066.37 17087.93 15191.80 10573.82 13577.32 18590.66 13467.90 9994.90 9670.37 19289.48 11893.19 97
VDD-MVS83.01 10182.36 10284.96 9191.02 8866.40 16988.91 11388.11 21577.57 4284.39 7993.29 6752.19 25693.91 13477.05 12788.70 13194.57 34
MVSFormer82.85 10282.05 10885.24 8287.35 21470.21 8090.50 6490.38 14568.55 24781.32 12089.47 15961.68 16793.46 15778.98 10690.26 10692.05 142
OMC-MVS82.69 10381.97 11184.85 9688.75 16167.42 14987.98 14790.87 13374.92 11079.72 13991.65 10262.19 16293.96 12775.26 14886.42 16093.16 98
PVSNet_Blended_VisFu82.62 10481.83 11384.96 9190.80 9469.76 9088.74 12191.70 10969.39 22578.96 14888.46 18765.47 12594.87 9974.42 15388.57 13290.24 200
MVS_111021_LR82.61 10582.11 10584.11 12388.82 15671.58 5585.15 22886.16 25874.69 11680.47 13191.04 12562.29 15990.55 26280.33 9990.08 11090.20 201
HQP-MVS82.61 10582.02 10984.37 11089.33 13566.98 16289.17 10392.19 8976.41 7777.23 18890.23 14260.17 19795.11 8677.47 12185.99 16991.03 169
RRT-MVS82.60 10782.10 10684.10 12487.98 19262.94 24787.45 16591.27 12077.42 4979.85 13790.28 13956.62 22294.70 10679.87 10388.15 13994.67 27
CLD-MVS82.31 10881.65 11484.29 11588.47 17067.73 14185.81 21692.35 8175.78 9178.33 16486.58 24264.01 13694.35 11476.05 13787.48 14590.79 176
Zhaoxin Li, Wangmeng Zuo, Zhaoqi Wang, Lei Zhang: Confidence-based Large-scale Dense Multi-view Stereo. IEEE Transaction on Image Processing, 2020
VNet82.21 10982.41 10081.62 20690.82 9360.93 26984.47 24589.78 16476.36 8284.07 8591.88 9764.71 13290.26 26470.68 18988.89 12593.66 71
diffmvspermissive82.10 11081.88 11282.76 18883.00 30663.78 22483.68 26289.76 16572.94 15982.02 11189.85 14865.96 12290.79 25882.38 8187.30 14793.71 70
Fangjinhua Wang, Qingshan Xu, Yew-Soon Ong, Marc Pollefeys: Lightweight and Accurate Multi-View Stereo With Confidence-Aware Diffusion Model. IEEE T-PAMI 2025
LPG-MVS_test82.08 11181.27 11784.50 10589.23 14268.76 11290.22 7391.94 9875.37 9976.64 20391.51 10854.29 23794.91 9478.44 11183.78 19589.83 223
FIs82.07 11282.42 9981.04 22488.80 15858.34 29688.26 13993.49 2676.93 6378.47 16191.04 12569.92 7692.34 20569.87 19984.97 17792.44 128
PS-MVSNAJss82.07 11281.31 11684.34 11386.51 23567.27 15589.27 10191.51 11471.75 17279.37 14390.22 14363.15 14694.27 11777.69 11982.36 22191.49 155
API-MVS81.99 11481.23 11884.26 12090.94 9070.18 8591.10 5589.32 17971.51 17978.66 15588.28 19265.26 12695.10 8964.74 24591.23 9487.51 287
UniMVSNet_NR-MVSNet81.88 11581.54 11582.92 17788.46 17163.46 23287.13 17392.37 8080.19 1278.38 16289.14 16771.66 5593.05 18170.05 19576.46 28992.25 133
MAR-MVS81.84 11680.70 12685.27 8191.32 8271.53 5689.82 7990.92 13069.77 21978.50 15986.21 25162.36 15894.52 11065.36 23992.05 8289.77 226
Zhenyu Xu, Yiguang Liu, Xuelei Shi, Ying Wang, Yunan Zheng: MARMVS: Matching Ambiguity Reduced Multiple View Stereo for Efficient Large Scale Scene Reconstruction. CVPR 2020
LFMVS81.82 11781.23 11883.57 15091.89 7663.43 23489.84 7881.85 31977.04 6183.21 9793.10 7052.26 25593.43 15971.98 17789.95 11393.85 63
hse-mvs281.72 11880.94 12484.07 13088.72 16267.68 14285.87 21287.26 23776.02 8884.67 7088.22 19561.54 17093.48 15582.71 7773.44 33491.06 167
GeoE81.71 11981.01 12383.80 14589.51 12664.45 21288.97 11188.73 20771.27 18378.63 15689.76 15066.32 11593.20 17169.89 19886.02 16893.74 69
xiu_mvs_v2_base81.69 12081.05 12183.60 14889.15 14568.03 13584.46 24790.02 15870.67 19581.30 12386.53 24563.17 14594.19 12275.60 14388.54 13388.57 266
PS-MVSNAJ81.69 12081.02 12283.70 14689.51 12668.21 13084.28 25390.09 15770.79 19281.26 12485.62 26563.15 14694.29 11575.62 14288.87 12688.59 265
PAPR81.66 12280.89 12583.99 14090.27 10364.00 21986.76 18891.77 10868.84 24377.13 19589.50 15767.63 10194.88 9867.55 22088.52 13493.09 101
UniMVSNet (Re)81.60 12381.11 12083.09 16888.38 17564.41 21387.60 15993.02 4578.42 3278.56 15888.16 19669.78 7793.26 16469.58 20276.49 28891.60 149
FC-MVSNet-test81.52 12482.02 10980.03 24588.42 17455.97 33587.95 14993.42 2977.10 5977.38 18390.98 13169.96 7591.79 22368.46 21484.50 18392.33 129
VDDNet81.52 12480.67 12784.05 13590.44 10164.13 21889.73 8485.91 26171.11 18683.18 9893.48 6150.54 28293.49 15473.40 16488.25 13794.54 35
ACMP74.13 681.51 12680.57 12884.36 11189.42 13068.69 11989.97 7791.50 11774.46 12275.04 24990.41 13853.82 24294.54 10877.56 12082.91 21389.86 222
Qingshan Xu and Wenbing Tao: Planar Prior Assisted PatchMatch Multi-View Stereo. AAAI 2020
jason81.39 12780.29 13584.70 10186.63 23469.90 8885.95 20986.77 24863.24 31281.07 12689.47 15961.08 18392.15 21178.33 11490.07 11192.05 142
jason: jason.
lupinMVS81.39 12780.27 13684.76 10087.35 21470.21 8085.55 22186.41 25262.85 31981.32 12088.61 18261.68 16792.24 20978.41 11390.26 10691.83 145
test_yl81.17 12980.47 13183.24 16189.13 14663.62 22586.21 20389.95 16172.43 16581.78 11689.61 15457.50 21393.58 14870.75 18786.90 15292.52 122
DCV-MVSNet81.17 12980.47 13183.24 16189.13 14663.62 22586.21 20389.95 16172.43 16581.78 11689.61 15457.50 21393.58 14870.75 18786.90 15292.52 122
DU-MVS81.12 13180.52 13082.90 17887.80 20063.46 23287.02 17791.87 10279.01 2678.38 16289.07 16965.02 12993.05 18170.05 19576.46 28992.20 136
PVSNet_Blended80.98 13280.34 13382.90 17888.85 15365.40 19084.43 24992.00 9467.62 25878.11 16985.05 27966.02 12094.27 11771.52 17989.50 11789.01 247
FA-MVS(test-final)80.96 13379.91 14184.10 12488.30 17865.01 19984.55 24490.01 15973.25 15379.61 14087.57 20958.35 20594.72 10471.29 18386.25 16392.56 121
QAPM80.88 13479.50 15085.03 8888.01 19168.97 10791.59 4392.00 9466.63 27375.15 24592.16 9157.70 21095.45 6863.52 25188.76 12990.66 182
TranMVSNet+NR-MVSNet80.84 13580.31 13482.42 19387.85 19762.33 25287.74 15791.33 11980.55 977.99 17389.86 14765.23 12792.62 19167.05 22775.24 31692.30 131
UGNet80.83 13679.59 14884.54 10488.04 18868.09 13289.42 9588.16 21476.95 6276.22 21389.46 16149.30 29793.94 13068.48 21390.31 10491.60 149
Wanjuan Su, Qingshan Xu, Wenbing Tao: Uncertainty-guided Multi-view Stereo Network for Depth Estimation. IEEE Transactions on Circuits and Systems for Video Technology, 2022
Fast-Effi-MVS+80.81 13779.92 14083.47 15188.85 15364.51 20885.53 22389.39 17770.79 19278.49 16085.06 27867.54 10293.58 14867.03 22886.58 15792.32 130
XVG-OURS-SEG-HR80.81 13779.76 14483.96 14285.60 24868.78 11183.54 26890.50 14270.66 19876.71 20191.66 10160.69 18891.26 24576.94 12881.58 22991.83 145
xiu_mvs_v1_base_debu80.80 13979.72 14584.03 13787.35 21470.19 8285.56 21888.77 20269.06 23781.83 11288.16 19650.91 27692.85 18778.29 11587.56 14289.06 242
xiu_mvs_v1_base80.80 13979.72 14584.03 13787.35 21470.19 8285.56 21888.77 20269.06 23781.83 11288.16 19650.91 27692.85 18778.29 11587.56 14289.06 242
xiu_mvs_v1_base_debi80.80 13979.72 14584.03 13787.35 21470.19 8285.56 21888.77 20269.06 23781.83 11288.16 19650.91 27692.85 18778.29 11587.56 14289.06 242
ACMM73.20 880.78 14279.84 14383.58 14989.31 13868.37 12589.99 7691.60 11170.28 20577.25 18689.66 15253.37 24793.53 15374.24 15682.85 21488.85 255
Qingshan Xu and Wenbing Tao: Multi-Scale Geometric Consistency Guided Multi-View Stereo. CVPR 2019
114514_t80.68 14379.51 14984.20 12194.09 3867.27 15589.64 8791.11 12758.75 35674.08 26390.72 13358.10 20695.04 9169.70 20089.42 11990.30 198
CANet_DTU80.61 14479.87 14282.83 18085.60 24863.17 24187.36 16788.65 20876.37 8175.88 22088.44 18853.51 24593.07 18073.30 16589.74 11692.25 133
VPA-MVSNet80.60 14580.55 12980.76 23188.07 18760.80 27286.86 18291.58 11275.67 9580.24 13389.45 16363.34 14090.25 26570.51 19179.22 25991.23 162
mvsmamba80.60 14579.38 15284.27 11889.74 12067.24 15787.47 16386.95 24370.02 21075.38 23388.93 17251.24 27392.56 19475.47 14689.22 12193.00 109
PVSNet_BlendedMVS80.60 14580.02 13882.36 19588.85 15365.40 19086.16 20592.00 9469.34 22778.11 16986.09 25566.02 12094.27 11771.52 17982.06 22487.39 289
AdaColmapbinary80.58 14879.42 15184.06 13293.09 5768.91 10889.36 9988.97 19769.27 22875.70 22389.69 15157.20 21795.77 5963.06 25688.41 13687.50 288
EI-MVSNet80.52 14979.98 13982.12 19684.28 27363.19 24086.41 19688.95 19874.18 12878.69 15387.54 21266.62 10992.43 19972.57 17480.57 24290.74 180
XVG-OURS80.41 15079.23 15883.97 14185.64 24769.02 10583.03 27990.39 14471.09 18777.63 17991.49 11054.62 23691.35 24375.71 14083.47 20691.54 152
SDMVSNet80.38 15180.18 13780.99 22589.03 15164.94 20180.45 31189.40 17675.19 10376.61 20589.98 14560.61 19187.69 30876.83 13083.55 20490.33 196
PCF-MVS73.52 780.38 15178.84 16685.01 8987.71 20568.99 10683.65 26391.46 11863.00 31677.77 17790.28 13966.10 11795.09 9061.40 27588.22 13890.94 173
Andreas Kuhn, Shan Lin, Oliver Erdler: Plane Completion and Filtering for Multi-View Stereo Reconstruction. GCPR 2019
X-MVStestdata80.37 15377.83 18988.00 1794.42 2073.33 1992.78 1892.99 4979.14 2183.67 9312.47 41967.45 10396.60 3383.06 6994.50 5194.07 53
test_djsdf80.30 15479.32 15583.27 15983.98 28165.37 19390.50 6490.38 14568.55 24776.19 21488.70 17856.44 22393.46 15778.98 10680.14 24890.97 172
v2v48280.23 15579.29 15683.05 17183.62 28964.14 21787.04 17689.97 16073.61 14078.18 16887.22 22061.10 18293.82 13876.11 13576.78 28691.18 163
NR-MVSNet80.23 15579.38 15282.78 18687.80 20063.34 23586.31 20091.09 12879.01 2672.17 28789.07 16967.20 10692.81 19066.08 23475.65 30292.20 136
Anonymous2024052980.19 15778.89 16584.10 12490.60 9764.75 20588.95 11290.90 13165.97 28180.59 13091.17 12149.97 28793.73 14669.16 20682.70 21893.81 66
IterMVS-LS80.06 15879.38 15282.11 19785.89 24363.20 23986.79 18589.34 17874.19 12775.45 23086.72 23266.62 10992.39 20172.58 17376.86 28390.75 179
Fangjinhua Wang, Silvano Galliani, Christoph Vogel, Marc Pollefeys: IterMVS: Iterative Probability Estimation for Efficient Multi-View Stereo.
Effi-MVS+-dtu80.03 15978.57 17084.42 10985.13 25968.74 11488.77 11888.10 21674.99 10774.97 25083.49 31157.27 21693.36 16173.53 16180.88 23691.18 163
v114480.03 15979.03 16283.01 17383.78 28664.51 20887.11 17590.57 14171.96 17178.08 17186.20 25261.41 17493.94 13074.93 14977.23 27790.60 185
v879.97 16179.02 16382.80 18384.09 27864.50 21087.96 14890.29 15274.13 13075.24 24286.81 22962.88 15193.89 13774.39 15475.40 31190.00 214
OpenMVScopyleft72.83 1079.77 16278.33 17784.09 12885.17 25569.91 8790.57 6190.97 12966.70 26772.17 28791.91 9554.70 23493.96 12761.81 27290.95 9788.41 270
v1079.74 16378.67 16782.97 17684.06 27964.95 20087.88 15490.62 13873.11 15575.11 24686.56 24361.46 17394.05 12673.68 15975.55 30489.90 220
ECVR-MVScopyleft79.61 16479.26 15780.67 23390.08 10854.69 35087.89 15377.44 35974.88 11180.27 13292.79 8248.96 30392.45 19868.55 21292.50 7794.86 18
BH-RMVSNet79.61 16478.44 17383.14 16689.38 13465.93 17884.95 23487.15 24073.56 14278.19 16789.79 14956.67 22193.36 16159.53 29086.74 15590.13 204
v119279.59 16678.43 17483.07 17083.55 29164.52 20786.93 18090.58 13970.83 19177.78 17685.90 25659.15 20093.94 13073.96 15877.19 27990.76 178
ab-mvs79.51 16778.97 16481.14 22188.46 17160.91 27083.84 25989.24 18470.36 20279.03 14788.87 17563.23 14490.21 26665.12 24182.57 21992.28 132
WR-MVS79.49 16879.22 15980.27 24188.79 15958.35 29585.06 23188.61 21078.56 3077.65 17888.34 19063.81 13990.66 26164.98 24377.22 27891.80 147
v14419279.47 16978.37 17582.78 18683.35 29463.96 22086.96 17890.36 14869.99 21277.50 18085.67 26360.66 18993.77 14274.27 15576.58 28790.62 183
BH-untuned79.47 16978.60 16982.05 19889.19 14465.91 17986.07 20788.52 21172.18 16775.42 23187.69 20661.15 18193.54 15260.38 28286.83 15486.70 308
test111179.43 17179.18 16080.15 24389.99 11353.31 36387.33 16977.05 36375.04 10680.23 13492.77 8448.97 30292.33 20668.87 20992.40 7994.81 21
mvs_anonymous79.42 17279.11 16180.34 23984.45 27257.97 30282.59 28187.62 22967.40 26276.17 21788.56 18568.47 9289.59 27770.65 19086.05 16793.47 85
thisisatest053079.40 17377.76 19484.31 11487.69 20765.10 19887.36 16784.26 28270.04 20977.42 18288.26 19449.94 28894.79 10270.20 19384.70 18193.03 106
tttt051779.40 17377.91 18683.90 14488.10 18563.84 22288.37 13584.05 28471.45 18076.78 19989.12 16849.93 29094.89 9770.18 19483.18 21192.96 111
V4279.38 17578.24 17982.83 18081.10 34165.50 18985.55 22189.82 16371.57 17878.21 16686.12 25460.66 18993.18 17475.64 14175.46 30889.81 225
jajsoiax79.29 17677.96 18483.27 15984.68 26666.57 16889.25 10290.16 15569.20 23375.46 22989.49 15845.75 32893.13 17776.84 12980.80 23890.11 206
v192192079.22 17778.03 18382.80 18383.30 29663.94 22186.80 18490.33 14969.91 21577.48 18185.53 26658.44 20493.75 14473.60 16076.85 28490.71 181
AUN-MVS79.21 17877.60 19984.05 13588.71 16367.61 14485.84 21487.26 23769.08 23677.23 18888.14 20053.20 24993.47 15675.50 14573.45 33391.06 167
TAPA-MVS73.13 979.15 17977.94 18582.79 18589.59 12262.99 24688.16 14391.51 11465.77 28277.14 19491.09 12360.91 18593.21 16850.26 35387.05 15092.17 138
Andrea Romanoni, Matteo Matteucci: TAPA-MVS: Textureless-Aware PAtchMatch Multi-View Stereo. ICCV 2019
mvs_tets79.13 18077.77 19383.22 16384.70 26566.37 17089.17 10390.19 15469.38 22675.40 23289.46 16144.17 33893.15 17576.78 13180.70 24090.14 203
UniMVSNet_ETH3D79.10 18178.24 17981.70 20586.85 22760.24 28187.28 17188.79 20174.25 12676.84 19690.53 13749.48 29391.56 23267.98 21682.15 22293.29 91
CDS-MVSNet79.07 18277.70 19683.17 16587.60 20968.23 12984.40 25186.20 25767.49 26076.36 21086.54 24461.54 17090.79 25861.86 27187.33 14690.49 190
Khang Truong Giang, Soohwan Song, Sungho Jo: Curvature-guided dynamic scale networks for Multi-view Stereo. ICLR 2022
MVSTER79.01 18377.88 18882.38 19483.07 30364.80 20484.08 25888.95 19869.01 24078.69 15387.17 22354.70 23492.43 19974.69 15080.57 24289.89 221
v124078.99 18477.78 19282.64 18983.21 29863.54 22986.62 19190.30 15169.74 22277.33 18485.68 26257.04 21893.76 14373.13 16876.92 28190.62 183
Anonymous2023121178.97 18577.69 19782.81 18290.54 9964.29 21590.11 7591.51 11465.01 29376.16 21888.13 20150.56 28193.03 18469.68 20177.56 27691.11 165
v7n78.97 18577.58 20083.14 16683.45 29365.51 18888.32 13791.21 12273.69 13872.41 28386.32 25057.93 20793.81 13969.18 20575.65 30290.11 206
TAMVS78.89 18777.51 20183.03 17287.80 20067.79 14084.72 23885.05 27167.63 25776.75 20087.70 20562.25 16090.82 25758.53 30187.13 14990.49 190
c3_l78.75 18877.91 18681.26 21782.89 31061.56 26384.09 25789.13 19069.97 21375.56 22584.29 29366.36 11492.09 21373.47 16375.48 30690.12 205
tt080578.73 18977.83 18981.43 21185.17 25560.30 28089.41 9690.90 13171.21 18477.17 19388.73 17746.38 31793.21 16872.57 17478.96 26090.79 176
v14878.72 19077.80 19181.47 21082.73 31361.96 25886.30 20188.08 21773.26 15276.18 21585.47 26862.46 15692.36 20371.92 17873.82 33090.09 208
VPNet78.69 19178.66 16878.76 26888.31 17755.72 33984.45 24886.63 25076.79 6778.26 16590.55 13659.30 19989.70 27666.63 22977.05 28090.88 174
ET-MVSNet_ETH3D78.63 19276.63 22284.64 10286.73 23169.47 9585.01 23284.61 27569.54 22366.51 34986.59 24050.16 28591.75 22576.26 13484.24 19192.69 117
anonymousdsp78.60 19377.15 20782.98 17580.51 34767.08 16087.24 17289.53 17365.66 28475.16 24487.19 22252.52 25092.25 20877.17 12579.34 25789.61 230
miper_ehance_all_eth78.59 19477.76 19481.08 22382.66 31561.56 26383.65 26389.15 18868.87 24275.55 22683.79 30466.49 11292.03 21473.25 16676.39 29189.64 229
WR-MVS_H78.51 19578.49 17178.56 27388.02 18956.38 32988.43 13092.67 6677.14 5773.89 26487.55 21166.25 11689.24 28458.92 29673.55 33290.06 212
GBi-Net78.40 19677.40 20281.40 21387.60 20963.01 24288.39 13289.28 18071.63 17475.34 23587.28 21654.80 23091.11 24862.72 25879.57 25290.09 208
test178.40 19677.40 20281.40 21387.60 20963.01 24288.39 13289.28 18071.63 17475.34 23587.28 21654.80 23091.11 24862.72 25879.57 25290.09 208
Vis-MVSNet (Re-imp)78.36 19878.45 17278.07 28488.64 16551.78 37386.70 18979.63 34474.14 12975.11 24690.83 13261.29 17889.75 27458.10 30691.60 8892.69 117
Anonymous20240521178.25 19977.01 20981.99 20091.03 8760.67 27484.77 23783.90 28670.65 19980.00 13691.20 11941.08 35791.43 24165.21 24085.26 17593.85 63
CP-MVSNet78.22 20078.34 17677.84 28687.83 19954.54 35287.94 15091.17 12477.65 3973.48 26988.49 18662.24 16188.43 29962.19 26674.07 32590.55 187
BH-w/o78.21 20177.33 20580.84 22988.81 15765.13 19784.87 23587.85 22569.75 22074.52 25884.74 28561.34 17693.11 17858.24 30585.84 17184.27 345
FMVSNet278.20 20277.21 20681.20 21987.60 20962.89 24887.47 16389.02 19371.63 17475.29 24187.28 21654.80 23091.10 25162.38 26379.38 25689.61 230
MVS78.19 20376.99 21181.78 20385.66 24666.99 16184.66 23990.47 14355.08 37672.02 28985.27 27163.83 13894.11 12566.10 23389.80 11584.24 346
Baseline_NR-MVSNet78.15 20478.33 17777.61 29185.79 24456.21 33386.78 18685.76 26373.60 14177.93 17487.57 20965.02 12988.99 28867.14 22675.33 31387.63 283
CNLPA78.08 20576.79 21681.97 20190.40 10271.07 6587.59 16084.55 27666.03 28072.38 28489.64 15357.56 21286.04 32159.61 28983.35 20888.79 258
cl2278.07 20677.01 20981.23 21882.37 32261.83 26083.55 26787.98 21968.96 24175.06 24883.87 30061.40 17591.88 22173.53 16176.39 29189.98 217
PLCcopyleft70.83 1178.05 20776.37 22783.08 16991.88 7767.80 13988.19 14189.46 17564.33 30169.87 31388.38 18953.66 24393.58 14858.86 29782.73 21687.86 279
Jie Liao, Yanping Fu, Qingan Yan, Chunxia xiao: Pyramid Multi-View Stereo with Local Consistency. Pacific Graphics 2019
Fast-Effi-MVS+-dtu78.02 20876.49 22382.62 19083.16 30266.96 16486.94 17987.45 23472.45 16271.49 29584.17 29754.79 23391.58 23067.61 21980.31 24589.30 238
PS-CasMVS78.01 20978.09 18277.77 28887.71 20554.39 35488.02 14691.22 12177.50 4773.26 27188.64 18160.73 18688.41 30061.88 27073.88 32990.53 188
HY-MVS69.67 1277.95 21077.15 20780.36 23887.57 21360.21 28283.37 27087.78 22766.11 27775.37 23487.06 22763.27 14290.48 26361.38 27682.43 22090.40 194
eth_miper_zixun_eth77.92 21176.69 22081.61 20883.00 30661.98 25783.15 27389.20 18669.52 22474.86 25284.35 29261.76 16692.56 19471.50 18172.89 33890.28 199
FMVSNet377.88 21276.85 21480.97 22786.84 22862.36 25186.52 19488.77 20271.13 18575.34 23586.66 23854.07 24091.10 25162.72 25879.57 25289.45 234
miper_enhance_ethall77.87 21376.86 21380.92 22881.65 32961.38 26582.68 28088.98 19565.52 28675.47 22782.30 33165.76 12492.00 21672.95 16976.39 29189.39 235
FE-MVS77.78 21475.68 23384.08 12988.09 18666.00 17683.13 27487.79 22668.42 25178.01 17285.23 27345.50 33195.12 8459.11 29485.83 17291.11 165
PEN-MVS77.73 21577.69 19777.84 28687.07 22553.91 35787.91 15291.18 12377.56 4473.14 27388.82 17661.23 17989.17 28559.95 28572.37 34090.43 192
cl____77.72 21676.76 21780.58 23482.49 31960.48 27783.09 27587.87 22369.22 23174.38 26185.22 27462.10 16391.53 23571.09 18475.41 31089.73 228
DIV-MVS_self_test77.72 21676.76 21780.58 23482.48 32060.48 27783.09 27587.86 22469.22 23174.38 26185.24 27262.10 16391.53 23571.09 18475.40 31189.74 227
sd_testset77.70 21877.40 20278.60 27189.03 15160.02 28379.00 33085.83 26275.19 10376.61 20589.98 14554.81 22985.46 32962.63 26283.55 20490.33 196
PAPM77.68 21976.40 22681.51 20987.29 22161.85 25983.78 26089.59 17164.74 29571.23 29688.70 17862.59 15393.66 14752.66 33887.03 15189.01 247
CHOSEN 1792x268877.63 22075.69 23283.44 15289.98 11468.58 12278.70 33587.50 23256.38 37175.80 22286.84 22858.67 20291.40 24261.58 27485.75 17390.34 195
HyFIR lowres test77.53 22175.40 24083.94 14389.59 12266.62 16680.36 31288.64 20956.29 37276.45 20785.17 27557.64 21193.28 16361.34 27783.10 21291.91 144
FMVSNet177.44 22276.12 22981.40 21386.81 22963.01 24288.39 13289.28 18070.49 20174.39 26087.28 21649.06 30191.11 24860.91 27978.52 26390.09 208
TR-MVS77.44 22276.18 22881.20 21988.24 17963.24 23784.61 24286.40 25367.55 25977.81 17586.48 24654.10 23993.15 17557.75 30982.72 21787.20 294
1112_ss77.40 22476.43 22580.32 24089.11 15060.41 27983.65 26387.72 22862.13 32973.05 27486.72 23262.58 15489.97 27062.11 26980.80 23890.59 186
thisisatest051577.33 22575.38 24183.18 16485.27 25463.80 22382.11 28683.27 29665.06 29175.91 21983.84 30249.54 29294.27 11767.24 22486.19 16491.48 156
test250677.30 22676.49 22379.74 25190.08 10852.02 36787.86 15563.10 40574.88 11180.16 13592.79 8238.29 37192.35 20468.74 21192.50 7794.86 18
pm-mvs177.25 22776.68 22178.93 26684.22 27558.62 29386.41 19688.36 21371.37 18173.31 27088.01 20261.22 18089.15 28664.24 24973.01 33789.03 246
LCM-MVSNet-Re77.05 22876.94 21277.36 29587.20 22251.60 37480.06 31580.46 33475.20 10267.69 33186.72 23262.48 15588.98 28963.44 25389.25 12091.51 153
DTE-MVSNet76.99 22976.80 21577.54 29486.24 23753.06 36687.52 16190.66 13777.08 6072.50 28188.67 18060.48 19389.52 27857.33 31370.74 35290.05 213
baseline176.98 23076.75 21977.66 28988.13 18355.66 34085.12 22981.89 31773.04 15776.79 19888.90 17362.43 15787.78 30763.30 25571.18 35089.55 232
LS3D76.95 23174.82 24883.37 15690.45 10067.36 15289.15 10786.94 24461.87 33169.52 31690.61 13551.71 26994.53 10946.38 37486.71 15688.21 273
GA-MVS76.87 23275.17 24581.97 20182.75 31262.58 24981.44 29586.35 25572.16 16974.74 25382.89 32246.20 32292.02 21568.85 21081.09 23491.30 161
mamv476.81 23378.23 18172.54 34386.12 24065.75 18578.76 33482.07 31664.12 30372.97 27591.02 12867.97 9768.08 40783.04 7178.02 27083.80 353
DP-MVS76.78 23474.57 25083.42 15393.29 4869.46 9788.55 12883.70 28863.98 30870.20 30488.89 17454.01 24194.80 10146.66 37181.88 22786.01 320
cascas76.72 23574.64 24982.99 17485.78 24565.88 18082.33 28389.21 18560.85 33772.74 27781.02 34247.28 31093.75 14467.48 22185.02 17689.34 237
testing9176.54 23675.66 23579.18 26388.43 17355.89 33681.08 29883.00 30473.76 13775.34 23584.29 29346.20 32290.07 26864.33 24784.50 18391.58 151
131476.53 23775.30 24480.21 24283.93 28262.32 25384.66 23988.81 20060.23 34170.16 30784.07 29955.30 22790.73 26067.37 22283.21 21087.59 286
thres100view90076.50 23875.55 23779.33 25989.52 12556.99 31885.83 21583.23 29773.94 13276.32 21187.12 22451.89 26591.95 21748.33 36283.75 19889.07 240
thres600view776.50 23875.44 23879.68 25389.40 13257.16 31585.53 22383.23 29773.79 13676.26 21287.09 22551.89 26591.89 22048.05 36783.72 20190.00 214
thres40076.50 23875.37 24279.86 24889.13 14657.65 30985.17 22683.60 28973.41 14876.45 20786.39 24852.12 25791.95 21748.33 36283.75 19890.00 214
MonoMVSNet76.49 24175.80 23078.58 27281.55 33258.45 29486.36 19986.22 25674.87 11374.73 25483.73 30651.79 26888.73 29470.78 18672.15 34388.55 267
tfpn200view976.42 24275.37 24279.55 25889.13 14657.65 30985.17 22683.60 28973.41 14876.45 20786.39 24852.12 25791.95 21748.33 36283.75 19889.07 240
Test_1112_low_res76.40 24375.44 23879.27 26089.28 14058.09 29881.69 29087.07 24159.53 34872.48 28286.67 23761.30 17789.33 28160.81 28180.15 24790.41 193
F-COLMAP76.38 24474.33 25682.50 19289.28 14066.95 16588.41 13189.03 19264.05 30666.83 34188.61 18246.78 31492.89 18657.48 31078.55 26287.67 282
LTVRE_ROB69.57 1376.25 24574.54 25281.41 21288.60 16664.38 21479.24 32589.12 19170.76 19469.79 31587.86 20349.09 30093.20 17156.21 32380.16 24686.65 309
Andreas Kuhn, Heiko Hirschmüller, Daniel Scharstein, Helmut Mayer: A TV Prior for High-Quality Scalable Multi-View Stereo Reconstruction. International Journal of Computer Vision 2016
MVP-Stereo76.12 24674.46 25481.13 22285.37 25369.79 8984.42 25087.95 22165.03 29267.46 33485.33 27053.28 24891.73 22758.01 30783.27 20981.85 372
Qingsong Yan: MVP-Stereo: A Parallel Multi-View Patchmatch Stereo Method with Dilation Matching for Photogrammetric Application.
XVG-ACMP-BASELINE76.11 24774.27 25781.62 20683.20 29964.67 20683.60 26689.75 16669.75 22071.85 29087.09 22532.78 38492.11 21269.99 19780.43 24488.09 275
testing9976.09 24875.12 24679.00 26488.16 18155.50 34280.79 30281.40 32373.30 15175.17 24384.27 29544.48 33690.02 26964.28 24884.22 19291.48 156
ACMH+68.96 1476.01 24974.01 25882.03 19988.60 16665.31 19488.86 11587.55 23070.25 20767.75 33087.47 21441.27 35593.19 17358.37 30375.94 29987.60 284
ACMH67.68 1675.89 25073.93 26081.77 20488.71 16366.61 16788.62 12689.01 19469.81 21666.78 34286.70 23641.95 35491.51 23755.64 32478.14 26987.17 295
Qingshan Xu and Wenbing Tao: Multi-Scale Geometric Consistency Guided Multi-View Stereo. CVPR 2019
IB-MVS68.01 1575.85 25173.36 26783.31 15784.76 26466.03 17483.38 26985.06 27070.21 20869.40 31781.05 34145.76 32794.66 10765.10 24275.49 30589.25 239
Christian Sormann, Mattia Rossi, Andreas Kuhn and Friedrich Fraundorfer: IB-MVS: An Iterative Algorithm for Deep Multi-View Stereo based on Binary Decisions. BMVC 2021
baseline275.70 25273.83 26381.30 21683.26 29761.79 26182.57 28280.65 33066.81 26466.88 34083.42 31257.86 20992.19 21063.47 25279.57 25289.91 219
WTY-MVS75.65 25375.68 23375.57 31186.40 23656.82 32077.92 34782.40 31265.10 29076.18 21587.72 20463.13 14980.90 35960.31 28381.96 22589.00 249
thres20075.55 25474.47 25378.82 26787.78 20357.85 30583.07 27783.51 29272.44 16475.84 22184.42 28852.08 26091.75 22547.41 36983.64 20386.86 304
test_vis1_n_192075.52 25575.78 23174.75 32479.84 35557.44 31383.26 27185.52 26562.83 32079.34 14586.17 25345.10 33379.71 36378.75 10881.21 23387.10 301
EPNet_dtu75.46 25674.86 24777.23 29882.57 31754.60 35186.89 18183.09 30171.64 17366.25 35185.86 25855.99 22488.04 30454.92 32786.55 15889.05 245
Wanjuan Su, Wenbing Tao: Efficient Edge-Preserving Multi-View Stereo Network for Depth Estimation. AAAI 2023
IterMVS-SCA-FT75.43 25773.87 26280.11 24482.69 31464.85 20381.57 29283.47 29369.16 23470.49 30184.15 29851.95 26388.15 30269.23 20472.14 34487.34 291
XXY-MVS75.41 25875.56 23674.96 32083.59 29057.82 30680.59 30883.87 28766.54 27474.93 25188.31 19163.24 14380.09 36262.16 26776.85 28486.97 302
reproduce_monomvs75.40 25974.38 25578.46 27883.92 28357.80 30783.78 26086.94 24473.47 14672.25 28684.47 28738.74 36789.27 28375.32 14770.53 35388.31 271
TransMVSNet (Re)75.39 26074.56 25177.86 28585.50 25057.10 31786.78 18686.09 26072.17 16871.53 29487.34 21563.01 15089.31 28256.84 31861.83 37987.17 295
CostFormer75.24 26173.90 26179.27 26082.65 31658.27 29780.80 30182.73 31061.57 33275.33 23983.13 31755.52 22591.07 25464.98 24378.34 26888.45 268
testing1175.14 26274.01 25878.53 27588.16 18156.38 32980.74 30580.42 33570.67 19572.69 28083.72 30743.61 34289.86 27162.29 26583.76 19789.36 236
D2MVS74.82 26373.21 26879.64 25579.81 35662.56 25080.34 31387.35 23564.37 30068.86 32282.66 32646.37 31890.10 26767.91 21781.24 23286.25 313
pmmvs674.69 26473.39 26678.61 27081.38 33657.48 31286.64 19087.95 22164.99 29470.18 30586.61 23950.43 28389.52 27862.12 26870.18 35588.83 256
tfpnnormal74.39 26573.16 26978.08 28386.10 24258.05 29984.65 24187.53 23170.32 20471.22 29785.63 26454.97 22889.86 27143.03 38575.02 31886.32 312
IterMVS74.29 26672.94 27278.35 27981.53 33363.49 23181.58 29182.49 31168.06 25569.99 31083.69 30851.66 27085.54 32765.85 23671.64 34786.01 320
Fangjinhua Wang, Silvano Galliani, Christoph Vogel, Marc Pollefeys: IterMVS: Iterative Probability Estimation for Efficient Multi-View Stereo.
OurMVSNet-221017-074.26 26772.42 27879.80 25083.76 28759.59 28885.92 21186.64 24966.39 27566.96 33987.58 20839.46 36391.60 22965.76 23769.27 35888.22 272
SCA74.22 26872.33 27979.91 24784.05 28062.17 25579.96 31879.29 34766.30 27672.38 28480.13 35251.95 26388.60 29759.25 29277.67 27588.96 251
mmtdpeth74.16 26973.01 27177.60 29383.72 28861.13 26685.10 23085.10 26972.06 17077.21 19280.33 35043.84 34085.75 32377.14 12652.61 39785.91 323
miper_lstm_enhance74.11 27073.11 27077.13 29980.11 35159.62 28772.23 37586.92 24666.76 26670.40 30282.92 32156.93 21982.92 34869.06 20772.63 33988.87 254
testing22274.04 27172.66 27578.19 28187.89 19555.36 34381.06 29979.20 34871.30 18274.65 25683.57 31039.11 36688.67 29651.43 34585.75 17390.53 188
EG-PatchMatch MVS74.04 27171.82 28380.71 23284.92 26267.42 14985.86 21388.08 21766.04 27964.22 36383.85 30135.10 38092.56 19457.44 31180.83 23782.16 371
pmmvs474.03 27371.91 28280.39 23781.96 32568.32 12681.45 29482.14 31459.32 34969.87 31385.13 27652.40 25388.13 30360.21 28474.74 32184.73 342
MS-PatchMatch73.83 27472.67 27477.30 29783.87 28466.02 17581.82 28784.66 27461.37 33568.61 32582.82 32447.29 30988.21 30159.27 29184.32 19077.68 387
test_cas_vis1_n_192073.76 27573.74 26473.81 33275.90 37659.77 28580.51 30982.40 31258.30 35881.62 11885.69 26144.35 33776.41 38176.29 13378.61 26185.23 333
sss73.60 27673.64 26573.51 33482.80 31155.01 34876.12 35481.69 32062.47 32574.68 25585.85 25957.32 21578.11 37060.86 28080.93 23587.39 289
RPMNet73.51 27770.49 29982.58 19181.32 33965.19 19575.92 35692.27 8357.60 36472.73 27876.45 37952.30 25495.43 7048.14 36677.71 27387.11 299
WBMVS73.43 27872.81 27375.28 31787.91 19450.99 38078.59 33881.31 32565.51 28874.47 25984.83 28246.39 31686.68 31458.41 30277.86 27188.17 274
SixPastTwentyTwo73.37 27971.26 29279.70 25285.08 26057.89 30485.57 21783.56 29171.03 18965.66 35385.88 25742.10 35292.57 19359.11 29463.34 37788.65 264
CR-MVSNet73.37 27971.27 29179.67 25481.32 33965.19 19575.92 35680.30 33759.92 34472.73 27881.19 33952.50 25186.69 31359.84 28677.71 27387.11 299
MSDG73.36 28170.99 29480.49 23684.51 27165.80 18280.71 30686.13 25965.70 28365.46 35483.74 30544.60 33490.91 25651.13 34676.89 28284.74 341
tpm273.26 28271.46 28778.63 26983.34 29556.71 32380.65 30780.40 33656.63 37073.55 26882.02 33651.80 26791.24 24656.35 32278.42 26687.95 276
RPSCF73.23 28371.46 28778.54 27482.50 31859.85 28482.18 28582.84 30958.96 35371.15 29889.41 16545.48 33284.77 33658.82 29871.83 34691.02 171
PatchmatchNetpermissive73.12 28471.33 29078.49 27783.18 30060.85 27179.63 32078.57 35164.13 30271.73 29179.81 35751.20 27485.97 32257.40 31276.36 29688.66 263
Fangjinhua Wang, Silvano Galliani, Christoph Vogel, Pablo Speciale, Marc Pollefeys: PatchmatchNet: Learned Multi-View Patchmatch Stereo.
UBG73.08 28572.27 28075.51 31388.02 18951.29 37878.35 34277.38 36065.52 28673.87 26582.36 32945.55 32986.48 31755.02 32684.39 18988.75 260
COLMAP_ROBcopyleft66.92 1773.01 28670.41 30180.81 23087.13 22465.63 18688.30 13884.19 28362.96 31763.80 36787.69 20638.04 37292.56 19446.66 37174.91 31984.24 346
Johannes L. Schönberger, Enliang Zheng, Marc Pollefeys, Jan-Michael Frahm: Pixelwise View Selection for Unstructured Multi-View Stereo. ECCV 2016
CVMVSNet72.99 28772.58 27674.25 32884.28 27350.85 38186.41 19683.45 29444.56 39673.23 27287.54 21249.38 29585.70 32465.90 23578.44 26586.19 315
test-LLR72.94 28872.43 27774.48 32581.35 33758.04 30078.38 33977.46 35766.66 26869.95 31179.00 36348.06 30679.24 36466.13 23184.83 17886.15 316
test_040272.79 28970.44 30079.84 24988.13 18365.99 17785.93 21084.29 28065.57 28567.40 33685.49 26746.92 31392.61 19235.88 39974.38 32480.94 377
tpmrst72.39 29072.13 28173.18 33880.54 34649.91 38579.91 31979.08 34963.11 31471.69 29279.95 35455.32 22682.77 34965.66 23873.89 32886.87 303
PatchMatch-RL72.38 29170.90 29576.80 30288.60 16667.38 15179.53 32176.17 36962.75 32269.36 31882.00 33745.51 33084.89 33553.62 33380.58 24178.12 386
CL-MVSNet_self_test72.37 29271.46 28775.09 31979.49 36253.53 35980.76 30485.01 27269.12 23570.51 30082.05 33557.92 20884.13 33952.27 34066.00 37187.60 284
tpm72.37 29271.71 28474.35 32782.19 32352.00 36879.22 32677.29 36164.56 29772.95 27683.68 30951.35 27183.26 34758.33 30475.80 30087.81 280
ETVMVS72.25 29471.05 29375.84 30787.77 20451.91 37079.39 32374.98 37269.26 22973.71 26682.95 32040.82 35986.14 32046.17 37584.43 18889.47 233
UWE-MVS72.13 29571.49 28674.03 33086.66 23347.70 38981.40 29676.89 36563.60 31175.59 22484.22 29639.94 36285.62 32648.98 35986.13 16688.77 259
PVSNet64.34 1872.08 29670.87 29675.69 30986.21 23856.44 32774.37 36980.73 32962.06 33070.17 30682.23 33342.86 34683.31 34654.77 32884.45 18787.32 292
WB-MVSnew71.96 29771.65 28572.89 33984.67 26951.88 37182.29 28477.57 35662.31 32673.67 26783.00 31953.49 24681.10 35845.75 37882.13 22385.70 326
pmmvs571.55 29870.20 30475.61 31077.83 36956.39 32881.74 28980.89 32657.76 36267.46 33484.49 28649.26 29885.32 33157.08 31575.29 31485.11 337
test-mter71.41 29970.39 30274.48 32581.35 33758.04 30078.38 33977.46 35760.32 34069.95 31179.00 36336.08 37879.24 36466.13 23184.83 17886.15 316
K. test v371.19 30068.51 31279.21 26283.04 30557.78 30884.35 25276.91 36472.90 16062.99 37082.86 32339.27 36491.09 25361.65 27352.66 39688.75 260
dmvs_re71.14 30170.58 29772.80 34081.96 32559.68 28675.60 36079.34 34668.55 24769.27 32080.72 34749.42 29476.54 37852.56 33977.79 27282.19 370
tpmvs71.09 30269.29 30776.49 30382.04 32456.04 33478.92 33281.37 32464.05 30667.18 33878.28 36949.74 29189.77 27349.67 35672.37 34083.67 354
AllTest70.96 30368.09 31879.58 25685.15 25763.62 22584.58 24379.83 34162.31 32660.32 37986.73 23032.02 38588.96 29150.28 35171.57 34886.15 316
test_fmvs170.93 30470.52 29872.16 34573.71 38755.05 34780.82 30078.77 35051.21 38878.58 15784.41 28931.20 38976.94 37675.88 13980.12 24984.47 344
test_fmvs1_n70.86 30570.24 30372.73 34172.51 39855.28 34581.27 29779.71 34351.49 38778.73 15284.87 28127.54 39477.02 37576.06 13679.97 25085.88 324
Patchmtry70.74 30669.16 30975.49 31480.72 34354.07 35674.94 36780.30 33758.34 35770.01 30881.19 33952.50 25186.54 31553.37 33571.09 35185.87 325
MIMVSNet70.69 30769.30 30674.88 32184.52 27056.35 33175.87 35879.42 34564.59 29667.76 32982.41 32841.10 35681.54 35546.64 37381.34 23086.75 307
tpm cat170.57 30868.31 31477.35 29682.41 32157.95 30378.08 34480.22 33952.04 38368.54 32677.66 37452.00 26287.84 30651.77 34172.07 34586.25 313
OpenMVS_ROBcopyleft64.09 1970.56 30968.19 31577.65 29080.26 34859.41 29085.01 23282.96 30658.76 35565.43 35582.33 33037.63 37491.23 24745.34 38176.03 29882.32 368
pmmvs-eth3d70.50 31067.83 32378.52 27677.37 37266.18 17381.82 28781.51 32158.90 35463.90 36680.42 34942.69 34786.28 31958.56 30065.30 37383.11 360
USDC70.33 31168.37 31376.21 30580.60 34556.23 33279.19 32786.49 25160.89 33661.29 37585.47 26831.78 38789.47 28053.37 33576.21 29782.94 364
Patchmatch-RL test70.24 31267.78 32577.61 29177.43 37159.57 28971.16 37970.33 38662.94 31868.65 32472.77 39150.62 28085.49 32869.58 20266.58 36887.77 281
CMPMVSbinary51.72 2170.19 31368.16 31676.28 30473.15 39457.55 31179.47 32283.92 28548.02 39256.48 39284.81 28343.13 34486.42 31862.67 26181.81 22884.89 339
M. Jancosek, T. Pajdla: Multi-View Reconstruction Preserving Weakly-Supported Surfaces. CVPR 2011
ppachtmachnet_test70.04 31467.34 33278.14 28279.80 35761.13 26679.19 32780.59 33159.16 35165.27 35679.29 36046.75 31587.29 31049.33 35766.72 36686.00 322
gg-mvs-nofinetune69.95 31567.96 31975.94 30683.07 30354.51 35377.23 35170.29 38763.11 31470.32 30362.33 40043.62 34188.69 29553.88 33287.76 14184.62 343
TESTMET0.1,169.89 31669.00 31072.55 34279.27 36556.85 31978.38 33974.71 37657.64 36368.09 32877.19 37637.75 37376.70 37763.92 25084.09 19384.10 349
test_vis1_n69.85 31769.21 30871.77 34772.66 39755.27 34681.48 29376.21 36852.03 38475.30 24083.20 31628.97 39276.22 38374.60 15178.41 26783.81 352
FMVSNet569.50 31867.96 31974.15 32982.97 30955.35 34480.01 31782.12 31562.56 32463.02 36881.53 33836.92 37581.92 35348.42 36174.06 32685.17 336
mvs5depth69.45 31967.45 33175.46 31573.93 38555.83 33779.19 32783.23 29766.89 26371.63 29383.32 31333.69 38385.09 33259.81 28755.34 39385.46 329
PMMVS69.34 32068.67 31171.35 35275.67 37862.03 25675.17 36273.46 37950.00 38968.68 32379.05 36152.07 26178.13 36961.16 27882.77 21573.90 393
our_test_369.14 32167.00 33475.57 31179.80 35758.80 29177.96 34577.81 35459.55 34762.90 37178.25 37047.43 30883.97 34051.71 34267.58 36583.93 351
EPMVS69.02 32268.16 31671.59 34879.61 36049.80 38777.40 34966.93 39762.82 32170.01 30879.05 36145.79 32677.86 37256.58 32075.26 31587.13 298
KD-MVS_self_test68.81 32367.59 32972.46 34474.29 38445.45 39577.93 34687.00 24263.12 31363.99 36578.99 36542.32 34984.77 33656.55 32164.09 37687.16 297
Anonymous2024052168.80 32467.22 33373.55 33374.33 38354.11 35583.18 27285.61 26458.15 35961.68 37480.94 34430.71 39081.27 35757.00 31673.34 33685.28 332
Anonymous2023120668.60 32567.80 32471.02 35580.23 35050.75 38278.30 34380.47 33356.79 36966.11 35282.63 32746.35 31978.95 36643.62 38475.70 30183.36 357
MIMVSNet168.58 32666.78 33673.98 33180.07 35251.82 37280.77 30384.37 27764.40 29959.75 38282.16 33436.47 37683.63 34342.73 38670.33 35486.48 311
testing368.56 32767.67 32771.22 35487.33 21942.87 40483.06 27871.54 38470.36 20269.08 32184.38 29030.33 39185.69 32537.50 39775.45 30985.09 338
EU-MVSNet68.53 32867.61 32871.31 35378.51 36847.01 39284.47 24584.27 28142.27 39966.44 35084.79 28440.44 36083.76 34158.76 29968.54 36383.17 358
PatchT68.46 32967.85 32170.29 35880.70 34443.93 40272.47 37474.88 37360.15 34270.55 29976.57 37849.94 28881.59 35450.58 34774.83 32085.34 331
test_fmvs268.35 33067.48 33070.98 35669.50 40151.95 36980.05 31676.38 36749.33 39074.65 25684.38 29023.30 40375.40 39174.51 15275.17 31785.60 327
Syy-MVS68.05 33167.85 32168.67 36784.68 26640.97 41078.62 33673.08 38166.65 27166.74 34379.46 35852.11 25982.30 35132.89 40276.38 29482.75 365
test0.0.03 168.00 33267.69 32668.90 36477.55 37047.43 39075.70 35972.95 38366.66 26866.56 34582.29 33248.06 30675.87 38644.97 38274.51 32383.41 356
TDRefinement67.49 33364.34 34376.92 30073.47 39161.07 26884.86 23682.98 30559.77 34558.30 38685.13 27626.06 39587.89 30547.92 36860.59 38481.81 373
test20.0367.45 33466.95 33568.94 36375.48 38044.84 40077.50 34877.67 35566.66 26863.01 36983.80 30347.02 31278.40 36842.53 38868.86 36283.58 355
UnsupCasMVSNet_eth67.33 33565.99 33971.37 35073.48 39051.47 37675.16 36385.19 26865.20 28960.78 37780.93 34642.35 34877.20 37457.12 31453.69 39585.44 330
TinyColmap67.30 33664.81 34174.76 32381.92 32756.68 32480.29 31481.49 32260.33 33956.27 39383.22 31424.77 39987.66 30945.52 37969.47 35779.95 382
myMVS_eth3d67.02 33766.29 33869.21 36284.68 26642.58 40578.62 33673.08 38166.65 27166.74 34379.46 35831.53 38882.30 35139.43 39476.38 29482.75 365
dp66.80 33865.43 34070.90 35779.74 35948.82 38875.12 36574.77 37459.61 34664.08 36477.23 37542.89 34580.72 36048.86 36066.58 36883.16 359
MDA-MVSNet-bldmvs66.68 33963.66 34875.75 30879.28 36460.56 27673.92 37178.35 35264.43 29850.13 40179.87 35644.02 33983.67 34246.10 37656.86 38783.03 362
testgi66.67 34066.53 33767.08 37475.62 37941.69 40975.93 35576.50 36666.11 27765.20 35986.59 24035.72 37974.71 39343.71 38373.38 33584.84 340
CHOSEN 280x42066.51 34164.71 34271.90 34681.45 33463.52 23057.98 40968.95 39353.57 37962.59 37276.70 37746.22 32175.29 39255.25 32579.68 25176.88 389
PM-MVS66.41 34264.14 34473.20 33773.92 38656.45 32678.97 33164.96 40363.88 31064.72 36080.24 35119.84 40783.44 34566.24 23064.52 37579.71 383
JIA-IIPM66.32 34362.82 35476.82 30177.09 37361.72 26265.34 40275.38 37058.04 36164.51 36162.32 40142.05 35386.51 31651.45 34469.22 35982.21 369
KD-MVS_2432*160066.22 34463.89 34673.21 33575.47 38153.42 36170.76 38284.35 27864.10 30466.52 34778.52 36734.55 38184.98 33350.40 34950.33 40081.23 375
miper_refine_blended66.22 34463.89 34673.21 33575.47 38153.42 36170.76 38284.35 27864.10 30466.52 34778.52 36734.55 38184.98 33350.40 34950.33 40081.23 375
ADS-MVSNet266.20 34663.33 34974.82 32279.92 35358.75 29267.55 39475.19 37153.37 38065.25 35775.86 38242.32 34980.53 36141.57 38968.91 36085.18 334
YYNet165.03 34762.91 35271.38 34975.85 37756.60 32569.12 39074.66 37757.28 36754.12 39577.87 37245.85 32574.48 39449.95 35461.52 38183.05 361
MDA-MVSNet_test_wron65.03 34762.92 35171.37 35075.93 37556.73 32169.09 39174.73 37557.28 36754.03 39677.89 37145.88 32474.39 39549.89 35561.55 38082.99 363
Patchmatch-test64.82 34963.24 35069.57 36079.42 36349.82 38663.49 40669.05 39251.98 38559.95 38180.13 35250.91 27670.98 40040.66 39173.57 33187.90 278
ADS-MVSNet64.36 35062.88 35368.78 36679.92 35347.17 39167.55 39471.18 38553.37 38065.25 35775.86 38242.32 34973.99 39641.57 38968.91 36085.18 334
LF4IMVS64.02 35162.19 35569.50 36170.90 39953.29 36476.13 35377.18 36252.65 38258.59 38480.98 34323.55 40276.52 37953.06 33766.66 36778.68 385
UnsupCasMVSNet_bld63.70 35261.53 35870.21 35973.69 38851.39 37772.82 37381.89 31755.63 37457.81 38871.80 39338.67 36878.61 36749.26 35852.21 39880.63 379
test_fmvs363.36 35361.82 35667.98 37162.51 41046.96 39377.37 35074.03 37845.24 39567.50 33378.79 36612.16 41572.98 39972.77 17266.02 37083.99 350
dmvs_testset62.63 35464.11 34558.19 38478.55 36724.76 42275.28 36165.94 40067.91 25660.34 37876.01 38153.56 24473.94 39731.79 40367.65 36475.88 391
mvsany_test162.30 35561.26 35965.41 37669.52 40054.86 34966.86 39649.78 41646.65 39368.50 32783.21 31549.15 29966.28 40856.93 31760.77 38275.11 392
new-patchmatchnet61.73 35661.73 35761.70 38072.74 39624.50 42369.16 38978.03 35361.40 33356.72 39175.53 38538.42 36976.48 38045.95 37757.67 38684.13 348
PVSNet_057.27 2061.67 35759.27 36068.85 36579.61 36057.44 31368.01 39273.44 38055.93 37358.54 38570.41 39644.58 33577.55 37347.01 37035.91 40871.55 396
test_vis1_rt60.28 35858.42 36165.84 37567.25 40455.60 34170.44 38460.94 40844.33 39759.00 38366.64 39824.91 39868.67 40562.80 25769.48 35673.25 394
ttmdpeth59.91 35957.10 36368.34 36967.13 40546.65 39474.64 36867.41 39648.30 39162.52 37385.04 28020.40 40575.93 38542.55 38745.90 40682.44 367
MVS-HIRNet59.14 36057.67 36263.57 37881.65 32943.50 40371.73 37665.06 40239.59 40351.43 39857.73 40638.34 37082.58 35039.53 39273.95 32764.62 402
pmmvs357.79 36154.26 36668.37 36864.02 40956.72 32275.12 36565.17 40140.20 40152.93 39769.86 39720.36 40675.48 38945.45 38055.25 39472.90 395
DSMNet-mixed57.77 36256.90 36460.38 38267.70 40335.61 41369.18 38853.97 41432.30 41257.49 38979.88 35540.39 36168.57 40638.78 39572.37 34076.97 388
MVStest156.63 36352.76 36968.25 37061.67 41153.25 36571.67 37768.90 39438.59 40450.59 40083.05 31825.08 39770.66 40136.76 39838.56 40780.83 378
WB-MVS54.94 36454.72 36555.60 39073.50 38920.90 42474.27 37061.19 40759.16 35150.61 39974.15 38747.19 31175.78 38717.31 41535.07 40970.12 397
LCM-MVSNet54.25 36549.68 37567.97 37253.73 41945.28 39866.85 39780.78 32835.96 40839.45 40962.23 4028.70 41978.06 37148.24 36551.20 39980.57 380
mvsany_test353.99 36651.45 37161.61 38155.51 41544.74 40163.52 40545.41 42043.69 39858.11 38776.45 37917.99 40863.76 41154.77 32847.59 40276.34 390
SSC-MVS53.88 36753.59 36754.75 39272.87 39519.59 42573.84 37260.53 40957.58 36549.18 40373.45 39046.34 32075.47 39016.20 41832.28 41169.20 398
FPMVS53.68 36851.64 37059.81 38365.08 40751.03 37969.48 38769.58 39041.46 40040.67 40772.32 39216.46 41170.00 40424.24 41165.42 37258.40 407
APD_test153.31 36949.93 37463.42 37965.68 40650.13 38471.59 37866.90 39834.43 40940.58 40871.56 3948.65 42076.27 38234.64 40155.36 39263.86 403
N_pmnet52.79 37053.26 36851.40 39478.99 3667.68 42869.52 3863.89 42751.63 38657.01 39074.98 38640.83 35865.96 40937.78 39664.67 37480.56 381
test_f52.09 37150.82 37255.90 38853.82 41842.31 40859.42 40858.31 41236.45 40756.12 39470.96 39512.18 41457.79 41453.51 33456.57 38967.60 399
EGC-MVSNET52.07 37247.05 37667.14 37383.51 29260.71 27380.50 31067.75 3950.07 4220.43 42375.85 38424.26 40081.54 35528.82 40562.25 37859.16 405
new_pmnet50.91 37350.29 37352.78 39368.58 40234.94 41563.71 40456.63 41339.73 40244.95 40465.47 39921.93 40458.48 41334.98 40056.62 38864.92 401
ANet_high50.57 37446.10 37863.99 37748.67 42239.13 41170.99 38180.85 32761.39 33431.18 41157.70 40717.02 41073.65 39831.22 40415.89 41979.18 384
test_vis3_rt49.26 37547.02 37756.00 38754.30 41645.27 39966.76 39848.08 41736.83 40644.38 40553.20 4107.17 42264.07 41056.77 31955.66 39058.65 406
testf145.72 37641.96 38057.00 38556.90 41345.32 39666.14 39959.26 41026.19 41330.89 41260.96 4044.14 42370.64 40226.39 40946.73 40455.04 408
APD_test245.72 37641.96 38057.00 38556.90 41345.32 39666.14 39959.26 41026.19 41330.89 41260.96 4044.14 42370.64 40226.39 40946.73 40455.04 408
dongtai45.42 37845.38 37945.55 39673.36 39226.85 42067.72 39334.19 42254.15 37849.65 40256.41 40925.43 39662.94 41219.45 41328.09 41346.86 412
Gipumacopyleft45.18 37941.86 38255.16 39177.03 37451.52 37532.50 41580.52 33232.46 41127.12 41435.02 4159.52 41875.50 38822.31 41260.21 38538.45 414
S. Galliani, K. Lasinger, K. Schindler: Massively Parallel Multiview Stereopsis by Surface Normal Diffusion. ICCV 2015
PMVScopyleft37.38 2244.16 38040.28 38455.82 38940.82 42442.54 40765.12 40363.99 40434.43 40924.48 41557.12 4083.92 42576.17 38417.10 41655.52 39148.75 410
Y. Furukawa, J. Ponce: Accurate, dense, and robust multiview stereopsis. PAMI (2010)
PMMVS240.82 38138.86 38546.69 39553.84 41716.45 42648.61 41249.92 41537.49 40531.67 41060.97 4038.14 42156.42 41528.42 40630.72 41267.19 400
kuosan39.70 38240.40 38337.58 39964.52 40826.98 41865.62 40133.02 42346.12 39442.79 40648.99 41224.10 40146.56 42012.16 42126.30 41439.20 413
E-PMN31.77 38330.64 38635.15 40052.87 42027.67 41757.09 41047.86 41824.64 41516.40 42033.05 41611.23 41654.90 41614.46 41918.15 41722.87 416
test_method31.52 38429.28 38838.23 39827.03 4266.50 42920.94 41762.21 4064.05 42022.35 41852.50 41113.33 41247.58 41827.04 40834.04 41060.62 404
EMVS30.81 38529.65 38734.27 40150.96 42125.95 42156.58 41146.80 41924.01 41615.53 42130.68 41712.47 41354.43 41712.81 42017.05 41822.43 417
MVEpermissive26.22 2330.37 38625.89 39043.81 39744.55 42335.46 41428.87 41639.07 42118.20 41718.58 41940.18 4142.68 42647.37 41917.07 41723.78 41648.60 411
Simon Fuhrmann, Fabian Langguth, Michael Goesele: MVE - A Multi-View Reconstruction Environment. EUROGRAPHICS Workshops on Graphics and Cultural Heritage (2014)
cdsmvs_eth3d_5k19.96 38726.61 3890.00 4070.00 4300.00 4320.00 41889.26 1830.00 4250.00 42688.61 18261.62 1690.00 4260.00 4250.00 4240.00 422
tmp_tt18.61 38821.40 39110.23 4044.82 42710.11 42734.70 41430.74 4251.48 42123.91 41726.07 41828.42 39313.41 42327.12 40715.35 4207.17 418
wuyk23d16.82 38915.94 39219.46 40358.74 41231.45 41639.22 4133.74 4286.84 4196.04 4222.70 4221.27 42724.29 42210.54 42214.40 4212.63 419
ab-mvs-re7.23 3909.64 3930.00 4070.00 4300.00 4320.00 4180.00 4310.00 4250.00 42686.72 2320.00 4300.00 4260.00 4250.00 4240.00 422
test1236.12 3918.11 3940.14 4050.06 4290.09 43071.05 3800.03 4300.04 4240.25 4251.30 4240.05 4280.03 4250.21 4240.01 4230.29 420
testmvs6.04 3928.02 3950.10 4060.08 4280.03 43169.74 3850.04 4290.05 4230.31 4241.68 4230.02 4290.04 4240.24 4230.02 4220.25 421
pcd_1.5k_mvsjas5.26 3937.02 3960.00 4070.00 4300.00 4320.00 4180.00 4310.00 4250.00 4260.00 42563.15 1460.00 4260.00 4250.00 4240.00 422
mmdepth0.00 3940.00 3970.00 4070.00 4300.00 4320.00 4180.00 4310.00 4250.00 4260.00 4250.00 4300.00 4260.00 4250.00 4240.00 422
monomultidepth0.00 3940.00 3970.00 4070.00 4300.00 4320.00 4180.00 4310.00 4250.00 4260.00 4250.00 4300.00 4260.00 4250.00 4240.00 422
test_blank0.00 3940.00 3970.00 4070.00 4300.00 4320.00 4180.00 4310.00 4250.00 4260.00 4250.00 4300.00 4260.00 4250.00 4240.00 422
uanet_test0.00 3940.00 3970.00 4070.00 4300.00 4320.00 4180.00 4310.00 4250.00 4260.00 4250.00 4300.00 4260.00 4250.00 4240.00 422
DCPMVS0.00 3940.00 3970.00 4070.00 4300.00 4320.00 4180.00 4310.00 4250.00 4260.00 4250.00 4300.00 4260.00 4250.00 4240.00 422
sosnet-low-res0.00 3940.00 3970.00 4070.00 4300.00 4320.00 4180.00 4310.00 4250.00 4260.00 4250.00 4300.00 4260.00 4250.00 4240.00 422
sosnet0.00 3940.00 3970.00 4070.00 4300.00 4320.00 4180.00 4310.00 4250.00 4260.00 4250.00 4300.00 4260.00 4250.00 4240.00 422
uncertanet0.00 3940.00 3970.00 4070.00 4300.00 4320.00 4180.00 4310.00 4250.00 4260.00 4250.00 4300.00 4260.00 4250.00 4240.00 422
Regformer0.00 3940.00 3970.00 4070.00 4300.00 4320.00 4180.00 4310.00 4250.00 4260.00 4250.00 4300.00 4260.00 4250.00 4240.00 422
uanet0.00 3940.00 3970.00 4070.00 4300.00 4320.00 4180.00 4310.00 4250.00 4260.00 4250.00 4300.00 4260.00 4250.00 4240.00 422
WAC-MVS42.58 40539.46 393
FOURS195.00 1072.39 3995.06 193.84 1574.49 12191.30 15
MSC_two_6792asdad89.16 194.34 2775.53 292.99 4997.53 289.67 696.44 994.41 38
PC_three_145268.21 25392.02 1294.00 4982.09 595.98 5684.58 5396.68 294.95 11
No_MVS89.16 194.34 2775.53 292.99 4997.53 289.67 696.44 994.41 38
test_one_060195.07 771.46 5794.14 578.27 3592.05 1195.74 680.83 11
eth-test20.00 430
eth-test0.00 430
ZD-MVS94.38 2572.22 4492.67 6670.98 19087.75 3594.07 4474.01 3296.70 2784.66 5294.84 44
RE-MVS-def85.48 6093.06 5870.63 7691.88 3892.27 8373.53 14485.69 5694.45 2863.87 13782.75 7591.87 8492.50 124
IU-MVS95.30 271.25 5992.95 5566.81 26492.39 688.94 1696.63 494.85 20
OPU-MVS89.06 394.62 1575.42 493.57 794.02 4782.45 396.87 2083.77 6496.48 894.88 15
test_241102_TWO94.06 1077.24 5392.78 495.72 881.26 897.44 789.07 1496.58 694.26 47
test_241102_ONE95.30 270.98 6694.06 1077.17 5693.10 195.39 1482.99 197.27 12
9.1488.26 1592.84 6391.52 4894.75 173.93 13388.57 2594.67 2175.57 2295.79 5886.77 3595.76 23
save fliter93.80 4072.35 4290.47 6691.17 12474.31 124
test_0728_THIRD78.38 3392.12 995.78 481.46 797.40 989.42 996.57 794.67 27
test_0728_SECOND87.71 3295.34 171.43 5893.49 994.23 397.49 489.08 1296.41 1294.21 48
test072695.27 571.25 5993.60 694.11 677.33 5092.81 395.79 380.98 9
GSMVS88.96 251
test_part295.06 872.65 3291.80 13
sam_mvs151.32 27288.96 251
sam_mvs50.01 286
ambc75.24 31873.16 39350.51 38363.05 40787.47 23364.28 36277.81 37317.80 40989.73 27557.88 30860.64 38385.49 328
MTGPAbinary92.02 92
test_post178.90 3335.43 42148.81 30585.44 33059.25 292
test_post5.46 42050.36 28484.24 338
patchmatchnet-post74.00 38851.12 27588.60 297
GG-mvs-BLEND75.38 31681.59 33155.80 33879.32 32469.63 38967.19 33773.67 38943.24 34388.90 29350.41 34884.50 18381.45 374
MTMP92.18 3432.83 424
gm-plane-assit81.40 33553.83 35862.72 32380.94 34492.39 20163.40 254
test9_res84.90 4695.70 2692.87 112
TEST993.26 5272.96 2588.75 11991.89 10068.44 25085.00 6393.10 7074.36 2895.41 73
test_893.13 5472.57 3588.68 12491.84 10468.69 24584.87 6793.10 7074.43 2695.16 82
agg_prior282.91 7395.45 2992.70 115
agg_prior92.85 6271.94 5091.78 10784.41 7894.93 93
TestCases79.58 25685.15 25763.62 22579.83 34162.31 32660.32 37986.73 23032.02 38588.96 29150.28 35171.57 34886.15 316
test_prior472.60 3489.01 110
test_prior288.85 11675.41 9884.91 6593.54 5974.28 2983.31 6795.86 20
test_prior86.33 5792.61 6869.59 9192.97 5495.48 6793.91 59
旧先验286.56 19358.10 36087.04 4588.98 28974.07 157
新几何286.29 202
新几何183.42 15393.13 5470.71 7485.48 26657.43 36681.80 11591.98 9463.28 14192.27 20764.60 24692.99 7087.27 293
旧先验191.96 7465.79 18386.37 25493.08 7469.31 8392.74 7388.74 262
无先验87.48 16288.98 19560.00 34394.12 12467.28 22388.97 250
原ACMM286.86 182
原ACMM184.35 11293.01 6068.79 11092.44 7663.96 30981.09 12591.57 10766.06 11995.45 6867.19 22594.82 4688.81 257
test22291.50 8068.26 12884.16 25583.20 30054.63 37779.74 13891.63 10458.97 20191.42 9186.77 306
testdata291.01 25562.37 264
segment_acmp73.08 38
testdata79.97 24690.90 9164.21 21684.71 27359.27 35085.40 5892.91 7662.02 16589.08 28768.95 20891.37 9286.63 310
testdata184.14 25675.71 92
test1286.80 5292.63 6770.70 7591.79 10682.71 10671.67 5496.16 4794.50 5193.54 83
plane_prior790.08 10868.51 123
plane_prior689.84 11768.70 11860.42 194
plane_prior592.44 7695.38 7578.71 10986.32 16191.33 159
plane_prior491.00 129
plane_prior368.60 12178.44 3178.92 150
plane_prior291.25 5279.12 23
plane_prior189.90 116
plane_prior68.71 11690.38 7077.62 4086.16 165
n20.00 431
nn0.00 431
door-mid69.98 388
lessismore_v078.97 26581.01 34257.15 31665.99 39961.16 37682.82 32439.12 36591.34 24459.67 28846.92 40388.43 269
LGP-MVS_train84.50 10589.23 14268.76 11291.94 9875.37 9976.64 20391.51 10854.29 23794.91 9478.44 11183.78 19589.83 223
test1192.23 86
door69.44 391
HQP5-MVS66.98 162
HQP-NCC89.33 13589.17 10376.41 7777.23 188
ACMP_Plane89.33 13589.17 10376.41 7777.23 188
BP-MVS77.47 121
HQP4-MVS77.24 18795.11 8691.03 169
HQP3-MVS92.19 8985.99 169
HQP2-MVS60.17 197
NP-MVS89.62 12168.32 12690.24 141
MDTV_nov1_ep13_2view37.79 41275.16 36355.10 37566.53 34649.34 29653.98 33187.94 277
MDTV_nov1_ep1369.97 30583.18 30053.48 36077.10 35280.18 34060.45 33869.33 31980.44 34848.89 30486.90 31251.60 34378.51 264
ACMMP++_ref81.95 226
ACMMP++81.25 231
Test By Simon64.33 133
ITE_SJBPF78.22 28081.77 32860.57 27583.30 29569.25 23067.54 33287.20 22136.33 37787.28 31154.34 33074.62 32286.80 305
DeepMVS_CXcopyleft27.40 40240.17 42526.90 41924.59 42617.44 41823.95 41648.61 4139.77 41726.48 42118.06 41424.47 41528.83 415