This table lists the benchmark results for the high-res multi-view scenario. The following metrics are evaluated:

(*) For exact definitions, detailing how potentially incomplete ground truth is taken into account, see our paper.

The datasets are grouped into different categories, and result averages are computed for a category and method if results of the method are available for all datasets within the category. Note that the category "all" includes both the high-res multi-view and the low-res many-view scenarios.

Methods with suffix _ROB may participate in the Robust Vision Challenge.

Click a dataset result cell to show a visualization of the reconstruction. For training datasets, ground truth and accuracy / completeness visualizations are also available. The visualizations may not work with mobile browsers.




Method Infoallhigh-res
multi-view
indooroutdoorbotani.boulde.bridgedoorexhibi.lectur.living.loungeobserv.old co.statueterrac.
sort bysort bysort bysort bysort bysort bysort bysort bysort bysort bysort bysort bysort bysort bysort bysorted by
DPM-MVS90.70 290.52 791.24 189.68 15876.68 297.29 195.35 1082.87 1591.58 1097.22 479.93 599.10 983.12 8297.64 297.94 1
SED-MVS89.94 890.36 988.70 1696.45 1469.38 4796.89 494.44 4371.65 19592.11 497.21 576.79 999.11 692.34 895.36 1497.62 2
OPU-MVS89.97 397.52 373.15 1396.89 497.00 983.82 299.15 295.72 197.63 397.62 2
DVP-MVS++90.53 391.09 488.87 1497.31 469.91 3793.96 6994.37 4972.48 16592.07 696.85 1283.82 299.15 291.53 1697.42 497.55 4
PC_three_145280.91 3694.07 296.83 1483.57 499.12 595.70 297.42 497.55 4
DeepPCF-MVS81.17 189.72 991.38 384.72 12793.00 8158.16 29296.72 794.41 4586.50 690.25 1897.83 175.46 1498.67 2392.78 595.49 1397.32 6
LFMVS84.34 7582.73 9689.18 1394.76 3773.25 1094.99 4391.89 14571.90 18382.16 7893.49 10747.98 25597.05 9082.55 8984.82 14197.25 7
canonicalmvs86.85 3986.25 4688.66 1891.80 11771.92 1593.54 9291.71 15480.26 4187.55 2895.25 5463.59 9596.93 10588.18 3984.34 14797.11 8
MCST-MVS91.08 191.46 289.94 497.66 273.37 997.13 295.58 889.33 185.77 4496.26 2772.84 2799.38 192.64 695.93 1097.08 9
DELS-MVS90.05 790.09 1089.94 493.14 7873.88 897.01 394.40 4788.32 285.71 4694.91 6974.11 2098.91 1787.26 5195.94 997.03 10
Christian Sormann, Emanuele Santellani, Mattia Rossi, Andreas Kuhn, Friedrich Fraundorfer: DELS-MVS: Deep Epipolar Line Search for Multi-View Stereo. Winter Conference on Applications of Computer Vision (WACV), 2023
CSCG86.87 3886.26 4588.72 1595.05 3570.79 2593.83 8395.33 1168.48 24977.63 12894.35 8673.04 2598.45 2984.92 7093.71 4996.92 11
MVS84.66 7082.86 9490.06 290.93 13674.56 687.91 26595.54 968.55 24772.35 18694.71 7459.78 13398.90 1881.29 10294.69 3296.74 12
alignmvs87.28 2986.97 3888.24 2391.30 13071.14 2395.61 2493.56 7679.30 5387.07 3395.25 5468.43 3996.93 10587.87 4184.33 14896.65 13
DeepC-MVS_fast79.48 287.95 2088.00 2087.79 2795.86 2968.32 7195.74 2094.11 5983.82 1283.49 6996.19 2964.53 8198.44 3083.42 8194.88 2496.61 14
Andreas Kuhn, Christian Sormann, Mattia Rossi, Oliver Erdler, Friedrich Fraundorfer: DeepC-MVS: Deep Confidence Prediction for Multi-View Stereo Reconstruction. 3DV 2020
test_241102_TWO94.41 4571.65 19592.07 697.21 574.58 1799.11 692.34 895.36 1496.59 15
TSAR-MVS + GP.87.96 1988.37 1886.70 5893.51 6765.32 15295.15 3593.84 6378.17 7385.93 4394.80 7275.80 1398.21 3589.38 2788.78 10896.59 15
CANet89.61 1189.99 1188.46 2094.39 4469.71 4396.53 1193.78 6486.89 489.68 1995.78 3465.94 6499.10 992.99 493.91 4496.58 17
WTY-MVS86.32 4585.81 5287.85 2592.82 8569.37 4995.20 3395.25 1282.71 1781.91 7994.73 7367.93 4797.63 6079.55 11182.25 15996.54 18
VNet86.20 4785.65 5687.84 2693.92 5469.99 3395.73 2295.94 678.43 6986.00 4293.07 11458.22 14897.00 9585.22 6784.33 14896.52 19
MSC_two_6792asdad89.60 997.31 473.22 1195.05 2199.07 1392.01 1294.77 2596.51 20
No_MVS89.60 997.31 473.22 1195.05 2199.07 1392.01 1294.77 2596.51 20
test_0728_SECOND88.70 1696.45 1470.43 2996.64 894.37 4999.15 291.91 1494.90 2196.51 20
ET-MVSNet_ETH3D84.01 8383.15 8986.58 6290.78 14170.89 2494.74 4794.62 3781.44 3058.19 30993.64 10373.64 2492.35 27082.66 8678.66 18596.50 23
IU-MVS96.46 1369.91 3795.18 1480.75 3795.28 192.34 895.36 1496.47 24
ETH3 D test640090.27 690.44 889.75 696.82 974.33 795.89 1694.80 2977.13 8989.13 2297.38 274.49 1898.48 2892.32 1195.98 896.46 25
test_0728_THIRD72.48 16590.55 1696.93 1076.24 1199.08 1191.53 1694.99 1796.43 26
MSP-MVS90.38 491.87 185.88 8592.83 8364.03 19093.06 10594.33 5182.19 2193.65 396.15 3085.89 197.19 8491.02 2097.75 196.43 26
Zhenlong Yuan, Cong Liu, Fei Shen, Zhaoxin Li, Jingguo luo, Tianlu Mao and Zhaoqi Wang: MSP-MVS: Multi-granularity Segmentation Prior Guided Multi-View Stereo. AAAI2025
HY-MVS76.49 584.28 7683.36 8587.02 4692.22 10167.74 8884.65 28994.50 4079.15 5782.23 7787.93 19766.88 5696.94 10380.53 10682.20 16096.39 28
DPE-MVScopyleft88.77 1589.21 1587.45 3696.26 2267.56 9294.17 5594.15 5768.77 24590.74 1497.27 376.09 1298.49 2790.58 2394.91 2096.30 29
Kehua Chen, Zhenlong Yuan, Tianlu Mao, Zhaoqi Wang: Dual-Level Precision Edges Guided Multi-View Stereo with Accurate Planarization. AAAI2025
DVP-MVScopyleft89.41 1289.73 1388.45 2196.40 1769.99 3396.64 894.52 3971.92 18190.55 1696.93 1073.77 2299.08 1191.91 1494.90 2196.29 30
Zhenlong Yuan, Jinguo Luo, Fei Shen, Zhaoxin Li, Cong Liu, Tianlu Mao, Zhaoqi Wang: DVP-MVS: Synergize Depth-Edge and Visibility Prior for Multi-View Stereo. AAAI2025
MSLP-MVS++86.27 4685.91 5187.35 3892.01 10768.97 5895.04 4192.70 11279.04 6181.50 8396.50 2058.98 14496.78 10983.49 8093.93 4396.29 30
patch_mono-289.71 1090.99 585.85 8896.04 2663.70 19895.04 4195.19 1386.74 591.53 1195.15 5973.86 2197.58 6393.38 392.00 7596.28 32
test_yl84.28 7683.16 8787.64 2994.52 4269.24 5095.78 1795.09 1969.19 23981.09 8892.88 12157.00 16297.44 6881.11 10381.76 16396.23 33
DCV-MVSNet84.28 7683.16 8787.64 2994.52 4269.24 5095.78 1795.09 1969.19 23981.09 8892.88 12157.00 16297.44 6881.11 10381.76 16396.23 33
CNVR-MVS90.32 590.89 688.61 1996.76 1070.65 2696.47 1294.83 2684.83 989.07 2396.80 1570.86 3599.06 1592.64 695.71 1196.12 35
HPM-MVS++copyleft89.37 1389.95 1287.64 2995.10 3468.23 7695.24 3294.49 4182.43 1988.90 2496.35 2471.89 3498.63 2488.76 3696.40 696.06 36
SD-MVS87.49 2687.49 2987.50 3593.60 6368.82 6193.90 7692.63 11876.86 9287.90 2795.76 3566.17 6197.63 6089.06 3291.48 8496.05 37
Zhenlong Yuan, Jiakai Cao, Zhaoxin Li, Hao Jiang and Zhaoqi Wang: SD-MVS: Segmentation-driven Deformation Multi-View Stereo with Spherical Refinement and EM optimization. AAAI2024
PHI-MVS86.83 4086.85 4186.78 5493.47 6865.55 14895.39 2995.10 1871.77 19285.69 4796.52 1862.07 10998.77 2186.06 6195.60 1296.03 38
APDe-MVS87.54 2587.84 2286.65 5996.07 2566.30 12994.84 4693.78 6469.35 23688.39 2596.34 2567.74 5097.66 5890.62 2293.44 5396.01 39
lupinMVS87.74 2387.77 2387.63 3389.24 17071.18 2196.57 1092.90 10782.70 1887.13 3095.27 5264.99 7495.80 13889.34 2891.80 7895.93 40
NCCC89.07 1489.46 1487.91 2496.60 1269.05 5596.38 1394.64 3684.42 1086.74 3496.20 2866.56 6098.76 2289.03 3494.56 3395.92 41
testtj86.62 4386.66 4286.50 6696.95 865.70 14394.41 5193.45 8267.74 25286.19 3996.39 2364.38 8297.91 4687.33 4993.14 5895.90 42
SMA-MVScopyleft88.14 1688.29 1987.67 2893.21 7568.72 6393.85 7994.03 6074.18 12791.74 996.67 1665.61 6998.42 3289.24 3096.08 795.88 43
Yufeng Yin; Xiaoyan Liu; Zichao Zhang: SMA-MVS: Segmentation-Guided Multi-Scale Anchor Deformation Patch Multi-View Stereo. IEEE Transactions on Circuits and Systems for Video Technology
dcpmvs_287.37 2887.55 2886.85 4995.04 3668.20 7790.36 21690.66 19579.37 5281.20 8693.67 10274.73 1596.55 11890.88 2192.00 7595.82 44
Anonymous20240521177.96 19075.33 20685.87 8693.73 6264.52 17194.85 4585.36 31062.52 29476.11 14390.18 16729.43 34297.29 7868.51 20177.24 20195.81 45
mvs_anonymous81.36 12679.99 13685.46 10290.39 14668.40 6986.88 28090.61 19774.41 12270.31 20784.67 23263.79 9092.32 27173.13 15485.70 13595.67 46
MG-MVS87.11 3386.27 4489.62 897.79 176.27 494.96 4494.49 4178.74 6783.87 6892.94 11764.34 8396.94 10375.19 14194.09 4095.66 47
PAPR85.15 6284.47 6787.18 4196.02 2768.29 7291.85 15993.00 10476.59 9779.03 11395.00 6261.59 11497.61 6278.16 12589.00 10795.63 48
VDD-MVS83.06 9981.81 11086.81 5290.86 13967.70 8995.40 2891.50 16375.46 10781.78 8092.34 13440.09 29297.13 8886.85 5582.04 16195.60 49
Effi-MVS+83.82 8782.76 9586.99 4789.56 16169.40 4691.35 18486.12 30472.59 16183.22 7192.81 12459.60 13596.01 13581.76 9487.80 11895.56 50
TSAR-MVS + MP.88.11 1888.64 1686.54 6491.73 11868.04 8090.36 21693.55 7782.89 1491.29 1292.89 12072.27 3196.03 13387.99 4094.77 2595.54 51
Zhenlong Yuan, Jiakai Cao, Zhaoqi Wang, Zhaoxin Li: TSAR-MVS: Textureless-aware Segmentation and Correlative Refinement Guided Multi-View Stereo. Pattern Recognition
SteuartSystems-ACMMP86.82 4186.90 3986.58 6290.42 14466.38 12696.09 1593.87 6277.73 8084.01 6795.66 3863.39 9797.94 4387.40 4893.55 5295.42 52
Skip Steuart: Steuart Systems R&D Blog.
CS-MVS-test86.14 4987.01 3783.52 15992.63 9259.36 27995.49 2691.92 14280.09 4285.46 5095.53 4361.82 11395.77 14186.77 5693.37 5495.41 53
casdiffmvs85.37 5984.87 6586.84 5088.25 19569.07 5493.04 10791.76 15181.27 3180.84 9392.07 13864.23 8496.06 13184.98 6987.43 12195.39 54
EIA-MVS84.84 6784.88 6484.69 12891.30 13062.36 22693.85 7992.04 13779.45 5079.33 10994.28 9062.42 10696.35 12180.05 10891.25 8995.38 55
CS-MVS85.80 5486.65 4383.27 16792.00 10858.92 28495.31 3091.86 14679.97 4384.82 5695.40 4462.26 10795.51 16086.11 6092.08 7495.37 56
GG-mvs-BLEND86.53 6591.91 11369.67 4575.02 34194.75 3178.67 12190.85 15477.91 794.56 19172.25 16593.74 4795.36 57
agg_prior286.41 5794.75 3095.33 58
3Dnovator+73.60 782.10 11680.60 12786.60 6090.89 13866.80 11795.20 3393.44 8474.05 12967.42 24592.49 12949.46 24097.65 5970.80 17891.68 8095.33 58
baseline85.01 6484.44 6986.71 5688.33 19268.73 6290.24 22191.82 15081.05 3581.18 8792.50 12763.69 9296.08 13084.45 7386.71 12995.32 60
ab-mvs80.18 14678.31 16185.80 9088.44 18765.49 15183.00 30492.67 11471.82 19077.36 13285.01 22654.50 19296.59 11476.35 13675.63 21095.32 60
test9_res89.41 2694.96 1895.29 62
EPNet87.84 2288.38 1786.23 7793.30 7166.05 13395.26 3194.84 2587.09 388.06 2694.53 7766.79 5797.34 7583.89 7891.68 8095.29 62
Wanjuan Su, Wenbing Tao: Efficient Edge-Preserving Multi-View Stereo Network for Depth Estimation. AAAI 2023
xxxxxxxxxxxxxcwj87.14 3287.19 3486.99 4793.84 5667.89 8495.05 3984.72 31578.19 7186.25 3696.44 2166.98 5497.79 5188.68 3794.56 3395.28 64
SF-MVS87.03 3587.09 3686.84 5092.70 8967.45 9893.64 8793.76 6770.78 21986.25 3696.44 2166.98 5497.79 5188.68 3794.56 3395.28 64
VDDNet80.50 14178.26 16287.21 4086.19 23269.79 4094.48 4991.31 17060.42 30879.34 10890.91 15338.48 30096.56 11782.16 9081.05 16895.27 66
MVSFormer83.75 8982.88 9386.37 7289.24 17071.18 2189.07 24990.69 19265.80 26887.13 3094.34 8764.99 7492.67 25672.83 15791.80 7895.27 66
jason86.40 4486.17 4787.11 4386.16 23370.54 2895.71 2392.19 13482.00 2484.58 5894.34 8761.86 11195.53 15987.76 4290.89 9295.27 66
jason: jason.
train_agg87.21 3187.42 3186.60 6094.18 4667.28 10194.16 5693.51 7871.87 18685.52 4895.33 4768.19 4197.27 8289.09 3194.90 2195.25 69
MVS_Test84.16 8183.20 8687.05 4591.56 12369.82 3989.99 23092.05 13677.77 7982.84 7386.57 21163.93 8896.09 12874.91 14789.18 10695.25 69
3Dnovator73.91 682.69 10780.82 12288.31 2289.57 16071.26 2092.60 12894.39 4878.84 6467.89 23992.48 13048.42 25098.52 2668.80 20094.40 3795.15 71
agg_prior187.02 3687.26 3386.28 7694.16 5066.97 11294.08 6393.31 8871.85 18884.49 5995.39 4568.91 3896.75 11188.84 3594.32 3895.13 72
Patchmatch-test65.86 30160.94 31380.62 23283.75 27058.83 28558.91 36375.26 35244.50 35950.95 33877.09 31558.81 14587.90 32235.13 35364.03 28795.12 73
ETH3D-3000-0.187.61 2487.89 2186.75 5593.58 6467.21 10394.31 5394.14 5872.92 15687.13 3096.62 1767.81 4997.94 4390.13 2494.42 3695.09 74
APD-MVScopyleft85.93 5285.99 4985.76 9295.98 2865.21 15593.59 9092.58 12066.54 26386.17 4095.88 3363.83 8997.00 9586.39 5892.94 6095.06 75
Yuesong Wang, Zhaojie Zeng and etc.: Adaptive Patch Deformation for Textureless-Resilient Multi-View Stereo. CVPR2023
gg-mvs-nofinetune77.18 20174.31 21985.80 9091.42 12768.36 7071.78 34394.72 3249.61 34777.12 13545.92 36477.41 893.98 21967.62 20893.16 5795.05 76
test_prior387.38 2787.70 2486.42 6994.71 3967.35 9995.10 3793.10 10075.40 11085.25 5495.61 4067.94 4596.84 10787.47 4694.77 2595.05 76
test_prior86.42 6994.71 3967.35 9993.10 10096.84 10795.05 76
Patchmatch-RL test68.17 28764.49 29579.19 26171.22 35353.93 32470.07 34871.54 36069.22 23856.79 31862.89 35556.58 17188.61 31369.53 19152.61 33995.03 79
CHOSEN 1792x268884.98 6583.45 7989.57 1189.94 15375.14 592.07 14792.32 12581.87 2575.68 14788.27 19060.18 12698.60 2580.46 10790.27 9994.96 80
ACMMP_NAP86.05 5085.80 5386.80 5391.58 12267.53 9491.79 16193.49 8174.93 11884.61 5795.30 4959.42 13797.92 4586.13 5994.92 1994.94 81
test250683.29 9482.92 9284.37 13888.39 19063.18 21092.01 15091.35 16977.66 8278.49 12291.42 14664.58 8095.09 17073.19 15389.23 10494.85 82
ECVR-MVScopyleft81.29 12780.38 13184.01 14888.39 19061.96 23392.56 13386.79 29677.66 8276.63 13991.42 14646.34 26795.24 16874.36 15189.23 10494.85 82
PAPM_NR82.97 10181.84 10886.37 7294.10 5266.76 11887.66 27092.84 10869.96 22974.07 16493.57 10563.10 10297.50 6670.66 18190.58 9694.85 82
CDPH-MVS85.71 5685.46 5786.46 6794.75 3867.19 10493.89 7792.83 10970.90 21583.09 7295.28 5063.62 9397.36 7380.63 10594.18 3994.84 85
test1287.09 4494.60 4168.86 5992.91 10682.67 7665.44 7097.55 6493.69 5094.84 85
PatchmatchNetpermissive77.46 19774.63 21285.96 8389.55 16270.35 3079.97 32689.55 23672.23 17470.94 19876.91 31757.03 16092.79 25154.27 28681.17 16794.74 87
Fangjinhua Wang, Silvano Galliani, Christoph Vogel, Pablo Speciale, Marc Pollefeys: PatchmatchNet: Learned Multi-View Patchmatch Stereo.
EPMVS78.49 18275.98 19886.02 8191.21 13269.68 4480.23 32291.20 17475.25 11472.48 18278.11 30654.65 19193.69 22857.66 27683.04 15494.69 88
GSMVS94.68 89
sam_mvs157.85 15194.68 89
SCA75.82 22272.76 23885.01 11686.63 22470.08 3281.06 31689.19 24871.60 20070.01 21077.09 31545.53 27390.25 29960.43 26373.27 22194.68 89
ETH3D cwj APD-0.1687.06 3487.18 3586.71 5691.99 10967.48 9792.97 11094.21 5471.48 20685.72 4596.32 2668.13 4398.00 4289.06 3294.70 3194.65 92
Vis-MVSNetpermissive80.92 13679.98 13783.74 15288.48 18561.80 23593.44 9688.26 28173.96 13377.73 12691.76 14249.94 23694.76 17965.84 22790.37 9894.65 92
Jingyang Zhang, Yao Yao, Shiwei Li, Zixin Luo, Tian Fang: Visibility-aware Multiview Stereo Network. BMVC 2020
旧先验191.94 11060.74 25791.50 16394.36 8265.23 7191.84 7794.55 94
sss82.71 10682.38 10383.73 15489.25 16959.58 27492.24 13994.89 2477.96 7579.86 10392.38 13256.70 16897.05 9077.26 13180.86 17094.55 94
xiu_mvs_v2_base87.92 2187.38 3289.55 1291.41 12976.43 395.74 2093.12 9983.53 1389.55 2095.95 3253.45 20997.68 5491.07 1992.62 6494.54 96
PS-MVSNAJ88.14 1687.61 2689.71 792.06 10476.72 195.75 1993.26 9083.86 1189.55 2096.06 3153.55 20597.89 4891.10 1893.31 5594.54 96
test111180.84 13780.02 13483.33 16587.87 20560.76 25592.62 12786.86 29577.86 7875.73 14691.39 14846.35 26694.70 18572.79 15988.68 11094.52 98
ZNCC-MVS85.33 6085.08 6186.06 8093.09 8065.65 14593.89 7793.41 8673.75 13879.94 10194.68 7560.61 12398.03 4182.63 8893.72 4894.52 98
MAR-MVS84.18 8083.43 8086.44 6896.25 2365.93 13894.28 5494.27 5374.41 12279.16 11295.61 4053.99 20098.88 2069.62 19093.26 5694.50 100
Zhenyu Xu, Yiguang Liu, Xuelei Shi, Ying Wang, Yunan Zheng: MARMVS: Matching Ambiguity Reduced Multiple View Stereo for Efficient Large Scale Scene Reconstruction. CVPR 2020
HFP-MVS84.73 6884.40 7085.72 9393.75 6065.01 16393.50 9493.19 9472.19 17579.22 11094.93 6659.04 14297.67 5581.55 9692.21 6994.49 101
#test#84.98 6584.74 6685.72 9393.75 6065.01 16394.09 6293.19 9473.55 14479.22 11094.93 6659.04 14297.67 5582.66 8692.21 6994.49 101
ETV-MVS86.01 5186.11 4885.70 9690.21 14967.02 11193.43 9791.92 14281.21 3284.13 6594.07 9660.93 12095.63 14989.28 2989.81 10094.46 103
diffmvs84.28 7683.83 7485.61 9887.40 21368.02 8190.88 20189.24 24580.54 3981.64 8292.52 12659.83 13294.52 19587.32 5085.11 13994.29 104
Regformer-187.24 3087.60 2786.15 7995.14 3265.83 14193.95 7295.12 1682.11 2284.25 6195.73 3667.88 4898.35 3385.60 6388.64 11194.26 105
region2R84.36 7484.03 7385.36 10793.54 6664.31 18393.43 9792.95 10572.16 17878.86 11894.84 7156.97 16497.53 6581.38 10092.11 7394.24 106
Regformer-287.00 3787.43 3085.71 9595.14 3264.73 16993.95 7294.95 2381.69 2784.03 6695.73 3667.35 5298.19 3785.40 6588.64 11194.20 107
zzz-MVS84.73 6884.47 6785.50 10091.89 11465.16 15791.55 17292.23 12875.32 11280.53 9595.21 5656.06 17797.16 8684.86 7192.55 6694.18 108
MTAPA83.91 8583.38 8485.50 10091.89 11465.16 15781.75 30992.23 12875.32 11280.53 9595.21 5656.06 17797.16 8684.86 7192.55 6694.18 108
PMMVS81.98 11882.04 10681.78 20489.76 15756.17 31291.13 19490.69 19277.96 7580.09 10093.57 10546.33 26894.99 17381.41 9987.46 12094.17 110
CostFormer82.33 11081.15 11585.86 8789.01 17568.46 6882.39 30793.01 10275.59 10580.25 9881.57 26772.03 3394.96 17479.06 11777.48 19794.16 111
MVS_111021_HR86.19 4885.80 5387.37 3793.17 7769.79 4093.99 6893.76 6779.08 6078.88 11793.99 9762.25 10898.15 3885.93 6291.15 9094.15 112
PVSNet_Blended86.73 4286.86 4086.31 7593.76 5867.53 9496.33 1493.61 7482.34 2081.00 9193.08 11263.19 10097.29 7887.08 5291.38 8694.13 113
1112_ss80.56 14079.83 13982.77 17588.65 18260.78 25392.29 13788.36 27672.58 16272.46 18394.95 6465.09 7393.42 23466.38 22177.71 19094.10 114
IB-MVS77.80 482.18 11280.46 13087.35 3889.14 17270.28 3195.59 2595.17 1578.85 6370.19 20885.82 22070.66 3697.67 5572.19 16866.52 26894.09 115
Christian Sormann, Mattia Rossi, Andreas Kuhn and Friedrich Fraundorfer: IB-MVS: An Iterative Algorithm for Deep Multi-View Stereo based on Binary Decisions. BMVC 2021
PAPM85.89 5385.46 5787.18 4188.20 19772.42 1492.41 13592.77 11082.11 2280.34 9793.07 11468.27 4095.02 17278.39 12493.59 5194.09 115
MP-MVS-pluss85.24 6185.13 6085.56 9991.42 12765.59 14791.54 17392.51 12274.56 12180.62 9495.64 3959.15 14197.00 9586.94 5493.80 4594.07 117
MP-MVS-pluss: MP-MVS-pluss. MP-MVS-pluss
MP-MVScopyleft85.02 6384.97 6385.17 11392.60 9364.27 18693.24 10092.27 12773.13 15079.63 10694.43 8061.90 11097.17 8585.00 6892.56 6594.06 118
Rongxuan Tan, Qing Wang, et al.: MP-MVS: Multi-Scale Windows PatchMatch and Planar Prior Multi-View Stereo.
DeepC-MVS77.85 385.52 5785.24 5986.37 7288.80 18066.64 12092.15 14193.68 7281.07 3476.91 13893.64 10362.59 10598.44 3085.50 6492.84 6294.03 119
Andreas Kuhn, Christian Sormann, Mattia Rossi, Oliver Erdler, Friedrich Fraundorfer: DeepC-MVS: Deep Confidence Prediction for Multi-View Stereo Reconstruction. 3DV 2020
ACMMPR84.37 7384.06 7285.28 10993.56 6564.37 18193.50 9493.15 9772.19 17578.85 11994.86 7056.69 16997.45 6781.55 9692.20 7194.02 120
无先验92.71 12192.61 11962.03 29897.01 9366.63 21593.97 121
XVS83.87 8683.47 7885.05 11493.22 7363.78 19392.92 11592.66 11573.99 13078.18 12394.31 8955.25 18397.41 7079.16 11591.58 8293.95 122
X-MVStestdata76.86 20374.13 22385.05 11493.22 7363.78 19392.92 11592.66 11573.99 13078.18 12310.19 37655.25 18397.41 7079.16 11591.58 8293.95 122
h-mvs3383.01 10082.56 10084.35 13989.34 16562.02 23192.72 12093.76 6781.45 2882.73 7492.25 13660.11 12797.13 8887.69 4362.96 29293.91 124
CP-MVS83.71 9083.40 8384.65 12993.14 7863.84 19194.59 4892.28 12671.03 21377.41 13194.92 6855.21 18696.19 12481.32 10190.70 9493.91 124
PVSNet73.49 880.05 14978.63 15784.31 14090.92 13764.97 16592.47 13491.05 18579.18 5672.43 18490.51 16037.05 31694.06 21268.06 20386.00 13493.90 126
GST-MVS84.63 7184.29 7185.66 9792.82 8565.27 15393.04 10793.13 9873.20 14878.89 11494.18 9359.41 13897.85 5081.45 9892.48 6893.86 127
Test_1112_low_res79.56 15978.60 15882.43 18388.24 19660.39 26392.09 14587.99 28572.10 17971.84 19087.42 20464.62 7993.04 23865.80 22877.30 19993.85 128
GeoE78.90 17077.43 17783.29 16688.95 17662.02 23192.31 13686.23 30270.24 22671.34 19789.27 17654.43 19694.04 21563.31 24580.81 17193.81 129
thisisatest051583.41 9282.49 10186.16 7889.46 16468.26 7493.54 9294.70 3374.31 12575.75 14590.92 15272.62 2996.52 11969.64 18881.50 16593.71 130
HyFIR lowres test81.03 13479.56 14385.43 10487.81 20668.11 7990.18 22290.01 22270.65 22172.95 17386.06 21863.61 9494.50 19675.01 14579.75 17593.67 131
CANet_DTU84.09 8283.52 7685.81 8990.30 14766.82 11591.87 15789.01 25885.27 786.09 4193.74 10147.71 25896.98 9977.90 12889.78 10293.65 132
mPP-MVS82.96 10282.44 10284.52 13392.83 8362.92 21792.76 11891.85 14871.52 20375.61 15094.24 9153.48 20896.99 9878.97 11890.73 9393.64 133
tpmrst80.57 13979.14 15484.84 12390.10 15068.28 7381.70 31089.72 23377.63 8475.96 14479.54 29864.94 7692.71 25375.43 13977.28 20093.55 134
tpm279.80 15577.95 16885.34 10888.28 19368.26 7481.56 31291.42 16670.11 22777.59 13080.50 28567.40 5194.26 20467.34 21077.35 19893.51 135
SR-MVS82.81 10382.58 9983.50 16293.35 6961.16 24792.23 14091.28 17364.48 27681.27 8595.28 5053.71 20495.86 13782.87 8488.77 10993.49 136
PGM-MVS83.25 9682.70 9784.92 11992.81 8764.07 18990.44 21292.20 13371.28 20877.23 13494.43 8055.17 18797.31 7779.33 11491.38 8693.37 137
新几何184.73 12592.32 9764.28 18591.46 16559.56 31579.77 10492.90 11956.95 16596.57 11663.40 24492.91 6193.34 138
HPM-MVScopyleft83.25 9682.95 9184.17 14492.25 10062.88 21990.91 19891.86 14670.30 22577.12 13593.96 9856.75 16796.28 12282.04 9291.34 8893.34 138
Chunlin Ren, Qingshan Xu, Shikun Zhang, Jiaqi Yang: Hierarchical Prior Mining for Non-local Multi-View Stereo. ICCV 2023
TESTMET0.1,182.41 10981.98 10783.72 15588.08 19863.74 19592.70 12293.77 6679.30 5377.61 12987.57 20258.19 14994.08 21073.91 15286.68 13093.33 140
112181.25 12880.05 13384.87 12292.30 9864.31 18387.91 26591.39 16759.44 31679.94 10192.91 11857.09 15897.01 9366.63 21592.81 6393.29 141
test117281.90 11981.83 10982.13 19693.23 7257.52 30291.61 17190.98 18864.32 27880.20 9995.00 6251.26 22595.61 15181.73 9588.13 11593.26 142
IS-MVSNet80.14 14779.41 14782.33 18787.91 20360.08 26891.97 15488.27 27972.90 15771.44 19691.73 14461.44 11593.66 22962.47 25386.53 13193.24 143
131480.70 13878.95 15585.94 8487.77 20767.56 9287.91 26592.55 12172.17 17767.44 24493.09 11150.27 23397.04 9271.68 17487.64 11993.23 144
CDS-MVSNet81.43 12580.74 12383.52 15986.26 23164.45 17592.09 14590.65 19675.83 10473.95 16689.81 17363.97 8792.91 24671.27 17582.82 15693.20 145
Khang Truong Giang, Soohwan Song, Sungho Jo: Curvature-guided dynamic scale networks for Multi-view Stereo. ICLR 2022
Fast-Effi-MVS+81.14 13080.01 13584.51 13490.24 14865.86 13994.12 6189.15 25173.81 13775.37 15388.26 19157.26 15694.53 19466.97 21484.92 14093.15 146
API-MVS82.28 11180.53 12887.54 3496.13 2470.59 2793.63 8891.04 18665.72 27075.45 15292.83 12356.11 17698.89 1964.10 24089.75 10393.15 146
test22289.77 15661.60 24089.55 23789.42 24056.83 32977.28 13392.43 13152.76 21291.14 9193.09 148
TAMVS80.37 14379.45 14683.13 17085.14 24863.37 20491.23 18990.76 19174.81 12072.65 17788.49 18360.63 12292.95 24169.41 19281.95 16293.08 149
testdata81.34 21489.02 17457.72 29789.84 22658.65 32085.32 5294.09 9457.03 16093.28 23569.34 19390.56 9793.03 150
tpm78.58 18077.03 18483.22 16885.94 23864.56 17083.21 30291.14 17978.31 7073.67 16879.68 29664.01 8692.09 27666.07 22571.26 23993.03 150
Regformer-385.80 5485.92 5085.46 10294.17 4865.09 16292.95 11295.11 1781.13 3381.68 8195.04 6065.82 6698.32 3483.02 8384.36 14592.97 152
GA-MVS78.33 18576.23 19584.65 12983.65 27266.30 12991.44 17490.14 21576.01 10270.32 20684.02 23942.50 28594.72 18270.98 17677.00 20292.94 153
BH-RMVSNet79.46 16277.65 17384.89 12091.68 12065.66 14493.55 9188.09 28372.93 15573.37 16991.12 15146.20 27096.12 12756.28 28085.61 13792.91 154
APD-MVS_3200maxsize81.64 12381.32 11482.59 18192.36 9658.74 28691.39 18091.01 18763.35 28479.72 10594.62 7651.82 21896.14 12679.71 10987.93 11792.89 155
Regformer-485.45 5885.69 5584.73 12594.17 4863.23 20792.95 11294.83 2680.66 3881.29 8495.04 6065.12 7298.08 4082.74 8584.36 14592.88 156
DP-MVS Recon82.73 10481.65 11185.98 8297.31 467.06 10895.15 3591.99 13969.08 24276.50 14293.89 9954.48 19598.20 3670.76 17985.66 13692.69 157
UGNet79.87 15378.68 15683.45 16489.96 15261.51 24192.13 14290.79 19076.83 9478.85 11986.33 21438.16 30296.17 12567.93 20587.17 12292.67 158
Wanjuan Su, Qingshan Xu, Wenbing Tao: Uncertainty-guided Multi-view Stereo Network for Depth Estimation. IEEE Transactions on Circuits and Systems for Video Technology, 2022
EPP-MVSNet81.79 12181.52 11282.61 18088.77 18160.21 26693.02 10993.66 7368.52 24872.90 17490.39 16372.19 3294.96 17474.93 14679.29 17992.67 158
PVSNet_Blended_VisFu83.97 8483.50 7785.39 10690.02 15166.59 12393.77 8491.73 15277.43 8877.08 13789.81 17363.77 9196.97 10079.67 11088.21 11492.60 160
MDTV_nov1_ep13_2view59.90 27080.13 32467.65 25572.79 17554.33 19859.83 26792.58 161
QAPM79.95 15277.39 18187.64 2989.63 15971.41 1993.30 9993.70 7165.34 27367.39 24791.75 14347.83 25698.96 1657.71 27589.81 10092.54 162
dp75.01 23372.09 24783.76 15189.28 16866.22 13279.96 32789.75 22871.16 21067.80 24177.19 31451.81 21992.54 26250.39 29771.44 23892.51 163
EPNet_dtu78.80 17379.26 15177.43 28288.06 19949.71 34491.96 15591.95 14177.67 8176.56 14191.28 15058.51 14690.20 30456.37 27980.95 16992.39 164
Wanjuan Su, Wenbing Tao: Efficient Edge-Preserving Multi-View Stereo Network for Depth Estimation. AAAI 2023
Anonymous2024052976.84 20674.15 22284.88 12191.02 13464.95 16693.84 8291.09 18153.57 33773.00 17187.42 20435.91 32097.32 7669.14 19672.41 23192.36 165
Vis-MVSNet (Re-imp)79.24 16479.57 14278.24 27488.46 18652.29 33190.41 21489.12 25374.24 12669.13 21891.91 14065.77 6790.09 30659.00 27288.09 11692.33 166
原ACMM184.42 13693.21 7564.27 18693.40 8765.39 27179.51 10792.50 12758.11 15096.69 11365.27 23593.96 4292.32 167
TR-MVS78.77 17577.37 18282.95 17290.49 14360.88 25193.67 8690.07 21770.08 22874.51 15891.37 14945.69 27295.70 14860.12 26680.32 17292.29 168
SR-MVS-dyc-post81.06 13380.70 12482.15 19492.02 10558.56 28890.90 19990.45 19862.76 29078.89 11494.46 7851.26 22595.61 15178.77 12186.77 12792.28 169
RE-MVS-def80.48 12992.02 10558.56 28890.90 19990.45 19862.76 29078.89 11494.46 7849.30 24278.77 12186.77 12792.28 169
LCM-MVSNet-Re72.93 25171.84 24976.18 29788.49 18448.02 34980.07 32570.17 36173.96 13352.25 33180.09 29349.98 23588.24 31967.35 20984.23 15192.28 169
DROMVSNet84.53 7285.04 6283.01 17189.34 16561.37 24494.42 5091.09 18177.91 7783.24 7094.20 9258.37 14795.40 16185.35 6691.41 8592.27 172
MVS_111021_LR82.02 11781.52 11283.51 16188.42 18862.88 21989.77 23488.93 26076.78 9575.55 15193.10 11050.31 23295.38 16383.82 7987.02 12392.26 173
BH-w/o80.49 14279.30 15084.05 14790.83 14064.36 18293.60 8989.42 24074.35 12469.09 21990.15 16855.23 18595.61 15164.61 23786.43 13392.17 174
CVMVSNet74.04 24174.27 22073.33 31485.33 24443.94 36089.53 23988.39 27554.33 33670.37 20590.13 16949.17 24584.05 34161.83 25779.36 17791.99 175
tpm cat175.30 22972.21 24684.58 13288.52 18367.77 8778.16 33588.02 28461.88 30168.45 23276.37 32160.65 12194.03 21753.77 28974.11 21591.93 176
ACMMPcopyleft81.49 12480.67 12583.93 14991.71 11962.90 21892.13 14292.22 13271.79 19171.68 19493.49 10750.32 23196.96 10178.47 12384.22 15291.93 176
Qingshan Xu, Weihang Kong, Wenbing Tao, Marc Pollefeys: Multi-Scale Geometric Consistency Guided and Planar Prior Assisted Multi-View Stereo. IEEE Transactions on Pattern Analysis and Machine Intelligence
mvs-test178.74 17677.95 16881.14 21983.22 27657.13 30793.96 6987.78 28775.42 10872.68 17690.80 15545.08 27694.54 19375.08 14377.49 19691.74 178
test-LLR80.10 14879.56 14381.72 20686.93 22261.17 24592.70 12291.54 16071.51 20475.62 14886.94 20853.83 20192.38 26772.21 16684.76 14391.60 179
test-mter79.96 15179.38 14981.72 20686.93 22261.17 24592.70 12291.54 16073.85 13575.62 14886.94 20849.84 23892.38 26772.21 16684.76 14391.60 179
thisisatest053081.15 12980.07 13284.39 13788.26 19465.63 14691.40 17894.62 3771.27 20970.93 19989.18 17772.47 3096.04 13265.62 23076.89 20391.49 181
AUN-MVS78.37 18377.43 17781.17 21786.60 22557.45 30489.46 24191.16 17674.11 12874.40 15990.49 16155.52 18294.57 18974.73 15060.43 31791.48 182
MIMVSNet71.64 26168.44 27181.23 21681.97 28964.44 17673.05 34288.80 26469.67 23364.59 26774.79 32932.79 32987.82 32353.99 28776.35 20791.42 183
hse-mvs281.12 13281.11 11981.16 21886.52 22657.48 30389.40 24291.16 17681.45 2882.73 7490.49 16160.11 12794.58 18887.69 4360.41 31891.41 184
xiu_mvs_v1_base_debu82.16 11381.12 11685.26 11086.42 22768.72 6392.59 13090.44 20173.12 15184.20 6294.36 8238.04 30495.73 14384.12 7586.81 12491.33 185
xiu_mvs_v1_base82.16 11381.12 11685.26 11086.42 22768.72 6392.59 13090.44 20173.12 15184.20 6294.36 8238.04 30495.73 14384.12 7586.81 12491.33 185
xiu_mvs_v1_base_debi82.16 11381.12 11685.26 11086.42 22768.72 6392.59 13090.44 20173.12 15184.20 6294.36 8238.04 30495.73 14384.12 7586.81 12491.33 185
BH-untuned78.68 17777.08 18383.48 16389.84 15563.74 19592.70 12288.59 27271.57 20166.83 25388.65 18251.75 22095.39 16259.03 27184.77 14291.32 188
HPM-MVS_fast80.25 14579.55 14582.33 18791.55 12459.95 26991.32 18689.16 25065.23 27474.71 15793.07 11447.81 25795.74 14274.87 14988.23 11391.31 189
baseline181.84 12081.03 12084.28 14291.60 12166.62 12191.08 19591.66 15781.87 2574.86 15591.67 14569.98 3794.92 17771.76 17264.75 28191.29 190
baseline283.68 9183.42 8284.48 13587.37 21466.00 13590.06 22595.93 779.71 4869.08 22090.39 16377.92 696.28 12278.91 11981.38 16691.16 191
TAPA-MVS70.22 1274.94 23473.53 23079.17 26290.40 14552.07 33289.19 24789.61 23562.69 29270.07 20992.67 12548.89 24994.32 19938.26 34779.97 17391.12 192
Andrea Romanoni, Matteo Matteucci: TAPA-MVS: Textureless-Aware PAtchMatch Multi-View Stereo. ICCV 2019
AdaColmapbinary78.94 16977.00 18684.76 12496.34 1965.86 13992.66 12687.97 28662.18 29670.56 20192.37 13343.53 28297.35 7464.50 23882.86 15591.05 193
OMC-MVS78.67 17977.91 17080.95 22885.76 24057.40 30588.49 25788.67 26973.85 13572.43 18492.10 13749.29 24394.55 19272.73 16077.89 18990.91 194
EI-MVSNet-Vis-set83.77 8883.67 7584.06 14692.79 8863.56 20391.76 16494.81 2879.65 4977.87 12594.09 9463.35 9897.90 4779.35 11379.36 17790.74 195
cascas78.18 18675.77 20185.41 10587.14 21869.11 5292.96 11191.15 17866.71 26270.47 20286.07 21737.49 31096.48 12070.15 18479.80 17490.65 196
CR-MVSNet73.79 24570.82 25782.70 17783.15 27867.96 8270.25 34684.00 32373.67 14269.97 21272.41 33657.82 15289.48 31052.99 29273.13 22290.64 197
RPMNet70.42 26965.68 28584.63 13183.15 27867.96 8270.25 34690.45 19846.83 35569.97 21265.10 35356.48 17395.30 16735.79 35273.13 22290.64 197
PCF-MVS73.15 979.29 16377.63 17484.29 14186.06 23465.96 13787.03 27691.10 18069.86 23169.79 21590.64 15657.54 15596.59 11464.37 23982.29 15890.32 199
Andreas Kuhn, Shan Lin, Oliver Erdler: Plane Completion and Filtering for Multi-View Stereo Reconstruction. GCPR 2019
PVSNet_068.08 1571.81 26068.32 27382.27 18984.68 25462.31 22888.68 25490.31 20775.84 10357.93 31480.65 28437.85 30794.19 20669.94 18629.05 36890.31 200
tttt051779.50 16078.53 15982.41 18687.22 21661.43 24389.75 23594.76 3069.29 23767.91 23888.06 19672.92 2695.63 14962.91 24973.90 21990.16 201
CPTT-MVS79.59 15879.16 15380.89 23091.54 12559.80 27192.10 14488.54 27460.42 30872.96 17293.28 10948.27 25192.80 25078.89 12086.50 13290.06 202
EI-MVSNet-UG-set83.14 9882.96 9083.67 15792.28 9963.19 20991.38 18294.68 3479.22 5576.60 14093.75 10062.64 10497.76 5378.07 12678.01 18890.05 203
abl_679.82 15479.20 15281.70 20889.85 15458.34 29088.47 25890.07 21762.56 29377.71 12793.08 11247.65 25996.78 10977.94 12785.45 13889.99 204
XVG-OURS-SEG-HR74.70 23673.08 23479.57 25678.25 32857.33 30680.49 31887.32 29163.22 28668.76 22790.12 17144.89 27891.59 28570.55 18274.09 21689.79 205
114514_t79.17 16577.67 17283.68 15695.32 3165.53 14992.85 11791.60 15963.49 28367.92 23790.63 15846.65 26395.72 14767.01 21383.54 15389.79 205
UA-Net80.02 15079.65 14181.11 22189.33 16757.72 29786.33 28389.00 25977.44 8781.01 9089.15 17859.33 13995.90 13661.01 26084.28 15089.73 207
XVG-OURS74.25 24072.46 24479.63 25478.45 32757.59 30180.33 32087.39 29063.86 28168.76 22789.62 17540.50 29191.72 28369.00 19774.25 21489.58 208
UniMVSNet_ETH3D72.74 25570.53 25879.36 25978.62 32656.64 31085.01 28789.20 24763.77 28264.84 26684.44 23534.05 32591.86 28063.94 24170.89 24189.57 209
thres20079.66 15678.33 16083.66 15892.54 9465.82 14293.06 10596.31 374.90 11973.30 17088.66 18159.67 13495.61 15147.84 31178.67 18489.56 210
OpenMVScopyleft70.45 1178.54 18175.92 19986.41 7185.93 23971.68 1792.74 11992.51 12266.49 26464.56 26991.96 13943.88 28198.10 3954.61 28490.65 9589.44 211
CHOSEN 280x42077.35 19976.95 18778.55 26987.07 21962.68 22369.71 34982.95 33168.80 24471.48 19587.27 20766.03 6384.00 34376.47 13582.81 15788.95 212
iter_conf_final81.74 12280.93 12184.18 14392.66 9169.10 5392.94 11482.80 33379.01 6274.85 15688.40 18661.83 11294.61 18679.36 11276.52 20688.83 213
thres100view90078.37 18377.01 18582.46 18291.89 11463.21 20891.19 19396.33 172.28 17370.45 20487.89 19860.31 12495.32 16445.16 32177.58 19388.83 213
tfpn200view978.79 17477.43 17782.88 17392.21 10264.49 17292.05 14896.28 473.48 14571.75 19288.26 19160.07 12995.32 16445.16 32177.58 19388.83 213
nrg03080.93 13579.86 13884.13 14583.69 27168.83 6093.23 10191.20 17475.55 10675.06 15488.22 19463.04 10394.74 18181.88 9366.88 26588.82 216
PatchT69.11 27865.37 28980.32 23582.07 28863.68 20067.96 35587.62 28950.86 34469.37 21665.18 35257.09 15888.53 31641.59 33666.60 26788.74 217
HQP4-MVS74.18 16095.61 15188.63 218
HQP-MVS81.14 13080.64 12682.64 17987.54 20963.66 20194.06 6491.70 15579.80 4574.18 16090.30 16551.63 22295.61 15177.63 12978.90 18188.63 218
VPNet78.82 17277.53 17682.70 17784.52 25866.44 12593.93 7492.23 12880.46 4072.60 17888.38 18849.18 24493.13 23772.47 16463.97 28988.55 220
Effi-MVS+-dtu76.14 21375.28 20778.72 26883.22 27655.17 31989.87 23187.78 28775.42 10867.98 23581.43 26945.08 27692.52 26375.08 14371.63 23488.48 221
iter_conf0583.27 9582.70 9784.98 11793.32 7071.84 1694.16 5681.76 33582.74 1673.83 16788.40 18672.77 2894.61 18682.10 9175.21 21188.48 221
CNLPA74.31 23972.30 24580.32 23591.49 12661.66 23990.85 20280.72 33956.67 33063.85 27790.64 15646.75 26290.84 29453.79 28875.99 20988.47 223
HQP_MVS80.34 14479.75 14082.12 19786.94 22062.42 22493.13 10391.31 17078.81 6572.53 18089.14 17950.66 22995.55 15776.74 13278.53 18688.39 224
plane_prior591.31 17095.55 15776.74 13278.53 18688.39 224
VPA-MVSNet79.03 16678.00 16682.11 20085.95 23664.48 17493.22 10294.66 3575.05 11774.04 16584.95 22852.17 21793.52 23174.90 14867.04 26488.32 226
test_part179.63 15777.86 17184.93 11892.50 9571.43 1894.15 5991.08 18372.51 16470.66 20084.98 22759.84 13195.07 17172.07 16962.94 29388.30 227
CLD-MVS82.73 10482.35 10483.86 15087.90 20467.65 9195.45 2792.18 13585.06 872.58 17992.27 13552.46 21595.78 13984.18 7479.06 18088.16 228
Zhaoxin Li, Wangmeng Zuo, Zhaoqi Wang, Lei Zhang: Confidence-based Large-scale Dense Multi-view Stereo. IEEE Transaction on Image Processing, 2020
XXY-MVS77.94 19176.44 19282.43 18382.60 28364.44 17692.01 15091.83 14973.59 14370.00 21185.82 22054.43 19694.76 17969.63 18968.02 25988.10 229
FIs79.47 16179.41 14779.67 25385.95 23659.40 27691.68 16893.94 6178.06 7468.96 22388.28 18966.61 5991.77 28266.20 22474.99 21287.82 230
Fast-Effi-MVS+-dtu75.04 23273.37 23280.07 24380.86 29559.52 27591.20 19285.38 30971.90 18365.20 26284.84 23041.46 28892.97 24066.50 22072.96 22487.73 231
UniMVSNet_NR-MVSNet78.15 18777.55 17579.98 24584.46 26060.26 26492.25 13893.20 9377.50 8668.88 22486.61 21066.10 6292.13 27466.38 22162.55 29587.54 232
MVSTER82.47 10882.05 10583.74 15292.68 9069.01 5691.90 15693.21 9179.83 4472.14 18785.71 22274.72 1694.72 18275.72 13872.49 22987.50 233
thres600view778.00 18876.66 19082.03 20291.93 11163.69 19991.30 18796.33 172.43 16870.46 20387.89 19860.31 12494.92 17742.64 33376.64 20487.48 234
thres40078.68 17777.43 17782.43 18392.21 10264.49 17292.05 14896.28 473.48 14571.75 19288.26 19160.07 12995.32 16445.16 32177.58 19387.48 234
TranMVSNet+NR-MVSNet75.86 22174.52 21679.89 24882.44 28460.64 26091.37 18391.37 16876.63 9667.65 24286.21 21652.37 21691.55 28661.84 25660.81 31387.48 234
FC-MVSNet-test77.99 18978.08 16577.70 27784.89 25355.51 31790.27 21993.75 7076.87 9166.80 25487.59 20165.71 6890.23 30362.89 25073.94 21787.37 237
mvsmamba76.85 20575.71 20380.25 23983.07 28059.16 28191.44 17480.64 34076.84 9367.95 23686.33 21446.17 27194.24 20576.06 13772.92 22587.36 238
DU-MVS76.86 20375.84 20079.91 24782.96 28160.26 26491.26 18891.54 16076.46 9968.88 22486.35 21256.16 17492.13 27466.38 22162.55 29587.35 239
NR-MVSNet76.05 21774.59 21380.44 23382.96 28162.18 23090.83 20391.73 15277.12 9060.96 29586.35 21259.28 14091.80 28160.74 26161.34 31087.35 239
FMVSNet377.73 19476.04 19782.80 17491.20 13368.99 5791.87 15791.99 13973.35 14767.04 25083.19 24856.62 17092.14 27359.80 26869.34 24887.28 241
PS-MVSNAJss77.26 20076.31 19480.13 24280.64 29959.16 28190.63 21191.06 18472.80 15868.58 23084.57 23453.55 20593.96 22072.97 15571.96 23387.27 242
FMVSNet276.07 21474.01 22582.26 19188.85 17767.66 9091.33 18591.61 15870.84 21665.98 25782.25 25648.03 25292.00 27858.46 27368.73 25487.10 243
ADS-MVSNet266.90 29663.44 30177.26 28688.06 19960.70 25868.01 35375.56 35057.57 32264.48 27069.87 34538.68 29684.10 34040.87 33867.89 26086.97 244
ADS-MVSNet68.54 28464.38 29781.03 22688.06 19966.90 11468.01 35384.02 32257.57 32264.48 27069.87 34538.68 29689.21 31240.87 33867.89 26086.97 244
WR-MVS76.76 20875.74 20279.82 25084.60 25662.27 22992.60 12892.51 12276.06 10167.87 24085.34 22356.76 16690.24 30262.20 25463.69 29186.94 246
DSMNet-mixed56.78 32554.44 32863.79 34263.21 36529.44 37364.43 35864.10 36842.12 36151.32 33571.60 34131.76 33475.04 36236.23 34965.20 27686.87 247
UniMVSNet (Re)77.58 19676.78 18879.98 24584.11 26660.80 25291.76 16493.17 9676.56 9869.93 21484.78 23163.32 9992.36 26964.89 23662.51 29786.78 248
GBi-Net75.65 22473.83 22781.10 22288.85 17765.11 15990.01 22790.32 20470.84 21667.04 25080.25 29048.03 25291.54 28759.80 26869.34 24886.64 249
test175.65 22473.83 22781.10 22288.85 17765.11 15990.01 22790.32 20470.84 21667.04 25080.25 29048.03 25291.54 28759.80 26869.34 24886.64 249
FMVSNet172.71 25669.91 26381.10 22283.60 27365.11 15990.01 22790.32 20463.92 28063.56 27980.25 29036.35 31991.54 28754.46 28566.75 26686.64 249
v2v48277.42 19875.65 20482.73 17680.38 30167.13 10791.85 15990.23 21275.09 11669.37 21683.39 24653.79 20394.44 19771.77 17165.00 27886.63 252
miper_enhance_ethall78.86 17177.97 16781.54 21088.00 20265.17 15691.41 17689.15 25175.19 11568.79 22683.98 24067.17 5392.82 24872.73 16065.30 27286.62 253
cl2277.94 19176.78 18881.42 21287.57 20864.93 16790.67 20788.86 26372.45 16767.63 24382.68 25264.07 8592.91 24671.79 17065.30 27286.44 254
PLCcopyleft68.80 1475.23 23073.68 22979.86 24992.93 8258.68 28790.64 20988.30 27760.90 30564.43 27390.53 15942.38 28694.57 18956.52 27876.54 20586.33 255
Jie Liao, Yanping Fu, Qingan Yan, Chunxia xiao: Pyramid Multi-View Stereo with Local Consistency. Pacific Graphics 2019
EI-MVSNet78.97 16878.22 16381.25 21585.33 24462.73 22289.53 23993.21 9172.39 17072.14 18790.13 16960.99 11894.72 18267.73 20772.49 22986.29 256
IterMVS-LS76.49 21075.18 20880.43 23484.49 25962.74 22190.64 20988.80 26472.40 16965.16 26381.72 26360.98 11992.27 27267.74 20664.65 28386.29 256
Fangjinhua Wang, Silvano Galliani, Christoph Vogel, Marc Pollefeys: IterMVS: Iterative Probability Estimation for Efficient Multi-View Stereo.
miper_ehance_all_eth77.60 19576.44 19281.09 22585.70 24164.41 17990.65 20888.64 27172.31 17167.37 24882.52 25364.77 7892.64 26070.67 18065.30 27286.24 258
RRT_MVS74.44 23772.97 23678.84 26782.36 28557.66 29989.83 23388.79 26670.61 22264.58 26884.89 22939.24 29492.65 25970.11 18566.34 26986.21 259
OPM-MVS79.00 16778.09 16481.73 20583.52 27463.83 19291.64 17090.30 20876.36 10071.97 18989.93 17246.30 26995.17 16975.10 14277.70 19186.19 260
Ray L. Khuboni, Hongjun Xu: Octagram Propagation Matching for Multi-Scale View Stereopsis (OPM-MVS).
DIV-MVS_self_test76.07 21474.67 21080.28 23785.14 24861.75 23890.12 22388.73 26771.16 21065.42 26181.60 26661.15 11692.94 24566.54 21862.16 30186.14 261
eth_miper_zixun_eth75.96 22074.40 21880.66 23184.66 25563.02 21289.28 24488.27 27971.88 18565.73 25881.65 26459.45 13692.81 24968.13 20260.53 31586.14 261
cl____76.07 21474.67 21080.28 23785.15 24761.76 23790.12 22388.73 26771.16 21065.43 26081.57 26761.15 11692.95 24166.54 21862.17 29986.13 263
PatchMatch-RL72.06 25969.98 26078.28 27289.51 16355.70 31683.49 29683.39 32961.24 30463.72 27882.76 25034.77 32393.03 23953.37 29177.59 19286.12 264
c3_l76.83 20775.47 20580.93 22985.02 25164.18 18890.39 21588.11 28271.66 19466.65 25581.64 26563.58 9692.56 26169.31 19462.86 29486.04 265
RPSCF64.24 30861.98 31071.01 33076.10 34145.00 35775.83 33975.94 34846.94 35458.96 30684.59 23331.40 33682.00 35747.76 31260.33 31986.04 265
Anonymous2023121173.08 24870.39 25981.13 22090.62 14263.33 20591.40 17890.06 22051.84 34164.46 27280.67 28336.49 31894.07 21163.83 24264.17 28685.98 267
v119275.98 21973.92 22682.15 19479.73 30866.24 13191.22 19089.75 22872.67 16068.49 23181.42 27049.86 23794.27 20267.08 21265.02 27785.95 268
JIA-IIPM66.06 30062.45 30776.88 29281.42 29354.45 32357.49 36488.67 26949.36 34863.86 27646.86 36356.06 17790.25 29949.53 30168.83 25285.95 268
v192192075.63 22673.49 23182.06 20179.38 31366.35 12791.07 19789.48 23771.98 18067.99 23481.22 27549.16 24693.90 22366.56 21764.56 28485.92 270
v114476.73 20974.88 20982.27 18980.23 30666.60 12291.68 16890.21 21473.69 14069.06 22181.89 26052.73 21394.40 19869.21 19565.23 27585.80 271
v14419276.05 21774.03 22482.12 19779.50 31266.55 12491.39 18089.71 23472.30 17268.17 23381.33 27251.75 22094.03 21767.94 20464.19 28585.77 272
v124075.21 23172.98 23581.88 20379.20 31566.00 13590.75 20689.11 25471.63 19967.41 24681.22 27547.36 26093.87 22465.46 23364.72 28285.77 272
v14876.19 21274.47 21781.36 21380.05 30764.44 17691.75 16690.23 21273.68 14167.13 24980.84 28055.92 18093.86 22668.95 19861.73 30685.76 274
test0.0.03 172.76 25472.71 24072.88 31880.25 30547.99 35091.22 19089.45 23871.51 20462.51 28987.66 20053.83 20185.06 33850.16 29867.84 26285.58 275
test_djsdf73.76 24672.56 24277.39 28377.00 33753.93 32489.07 24990.69 19265.80 26863.92 27582.03 25943.14 28492.67 25672.83 15768.53 25585.57 276
ACMM69.62 1374.34 23872.73 23979.17 26284.25 26557.87 29590.36 21689.93 22363.17 28765.64 25986.04 21937.79 30894.10 20865.89 22671.52 23685.55 277
Qingshan Xu and Wenbing Tao: Multi-Scale Geometric Consistency Guided Multi-View Stereo. CVPR 2019
pmmvs573.35 24771.52 25278.86 26678.64 32560.61 26191.08 19586.90 29467.69 25363.32 28183.64 24244.33 28090.53 29662.04 25566.02 27085.46 278
jajsoiax73.05 24971.51 25377.67 27877.46 33454.83 32088.81 25290.04 22169.13 24162.85 28683.51 24431.16 33792.75 25270.83 17769.80 24485.43 279
ACMP71.68 1075.58 22774.23 22179.62 25584.97 25259.64 27290.80 20489.07 25670.39 22462.95 28487.30 20638.28 30193.87 22472.89 15671.45 23785.36 280
Qingshan Xu and Wenbing Tao: Planar Prior Assisted PatchMatch Multi-View Stereo. AAAI 2020
mvs_tets72.71 25671.11 25477.52 27977.41 33554.52 32288.45 25989.76 22768.76 24662.70 28783.26 24729.49 34192.71 25370.51 18369.62 24685.34 281
tpmvs72.88 25369.76 26582.22 19290.98 13567.05 10978.22 33488.30 27763.10 28864.35 27474.98 32855.09 18894.27 20243.25 32769.57 24785.34 281
miper_lstm_enhance73.05 24971.73 25177.03 28883.80 26958.32 29181.76 30888.88 26169.80 23261.01 29478.23 30557.19 15787.51 32865.34 23459.53 32085.27 283
bld_raw_dy_0_6471.59 26269.71 26677.22 28777.82 33358.12 29387.71 26973.66 35468.01 25061.90 29384.29 23733.68 32688.43 31769.91 18770.43 24285.11 284
LPG-MVS_test75.82 22274.58 21479.56 25784.31 26359.37 27790.44 21289.73 23169.49 23464.86 26488.42 18438.65 29894.30 20072.56 16272.76 22685.01 285
LGP-MVS_train79.56 25784.31 26359.37 27789.73 23169.49 23464.86 26488.42 18438.65 29894.30 20072.56 16272.76 22685.01 285
PVSNet_BlendedMVS83.38 9383.43 8083.22 16893.76 5867.53 9494.06 6493.61 7479.13 5881.00 9185.14 22563.19 10097.29 7887.08 5273.91 21884.83 287
V4276.46 21174.55 21582.19 19379.14 31867.82 8690.26 22089.42 24073.75 13868.63 22981.89 26051.31 22494.09 20971.69 17364.84 27984.66 288
IterMVS72.65 25870.83 25678.09 27582.17 28662.96 21487.64 27186.28 30071.56 20260.44 29778.85 30145.42 27586.66 33263.30 24661.83 30384.65 289
Fangjinhua Wang, Silvano Galliani, Christoph Vogel, Marc Pollefeys: IterMVS: Iterative Probability Estimation for Efficient Multi-View Stereo.
IterMVS-SCA-FT71.55 26369.97 26176.32 29581.48 29160.67 25987.64 27185.99 30566.17 26659.50 30178.88 30045.53 27383.65 34562.58 25261.93 30284.63 290
pm-mvs172.89 25271.09 25578.26 27379.10 31957.62 30090.80 20489.30 24367.66 25462.91 28581.78 26249.11 24792.95 24160.29 26558.89 32384.22 291
pmmvs473.92 24371.81 25080.25 23979.17 31665.24 15487.43 27387.26 29367.64 25663.46 28083.91 24148.96 24891.53 29062.94 24865.49 27183.96 292
v875.35 22873.26 23381.61 20980.67 29866.82 11589.54 23889.27 24471.65 19563.30 28280.30 28954.99 18994.06 21267.33 21162.33 29883.94 293
UnsupCasMVSNet_eth65.79 30263.10 30273.88 31070.71 35550.29 34281.09 31589.88 22572.58 16249.25 34374.77 33032.57 33187.43 32955.96 28141.04 35883.90 294
v1074.77 23572.54 24381.46 21180.33 30466.71 11989.15 24889.08 25570.94 21463.08 28379.86 29452.52 21494.04 21565.70 22962.17 29983.64 295
F-COLMAP70.66 26668.44 27177.32 28486.37 23055.91 31488.00 26386.32 29956.94 32857.28 31788.07 19533.58 32792.49 26451.02 29568.37 25683.55 296
lessismore_v073.72 31272.93 35047.83 35161.72 37145.86 35173.76 33128.63 34589.81 30747.75 31331.37 36783.53 297
v7n71.31 26468.65 26979.28 26076.40 33960.77 25486.71 28189.45 23864.17 27958.77 30878.24 30444.59 27993.54 23057.76 27461.75 30583.52 298
Anonymous2023120667.53 29365.78 28372.79 31974.95 34347.59 35288.23 26187.32 29161.75 30358.07 31177.29 31237.79 30887.29 33042.91 32963.71 29083.48 299
CP-MVSNet70.50 26869.91 26372.26 32380.71 29751.00 33887.23 27590.30 20867.84 25159.64 30082.69 25150.23 23482.30 35551.28 29459.28 32183.46 300
K. test v363.09 31359.61 31773.53 31376.26 34049.38 34683.27 30077.15 34664.35 27747.77 34772.32 33828.73 34387.79 32449.93 30036.69 36283.41 301
PS-CasMVS69.86 27469.13 26872.07 32680.35 30350.57 34087.02 27789.75 22867.27 25859.19 30482.28 25546.58 26482.24 35650.69 29659.02 32283.39 302
PEN-MVS69.46 27668.56 27072.17 32579.27 31449.71 34486.90 27989.24 24567.24 26159.08 30582.51 25447.23 26183.54 34648.42 30657.12 32683.25 303
anonymousdsp71.14 26569.37 26776.45 29472.95 34954.71 32184.19 29188.88 26161.92 30062.15 29079.77 29538.14 30391.44 29268.90 19967.45 26383.21 304
XVG-ACMP-BASELINE68.04 28865.53 28775.56 29974.06 34752.37 33078.43 33185.88 30662.03 29858.91 30781.21 27720.38 36091.15 29360.69 26268.18 25783.16 305
MSDG69.54 27565.73 28480.96 22785.11 25063.71 19784.19 29183.28 33056.95 32754.50 32284.03 23831.50 33596.03 13342.87 33169.13 25183.14 306
SixPastTwentyTwo64.92 30461.78 31174.34 30878.74 32349.76 34383.42 29979.51 34462.86 28950.27 33977.35 31030.92 33990.49 29745.89 31947.06 34982.78 307
testgi64.48 30762.87 30569.31 33371.24 35240.62 36485.49 28579.92 34265.36 27254.18 32483.49 24523.74 35484.55 33941.60 33560.79 31482.77 308
DTE-MVSNet68.46 28567.33 27771.87 32877.94 33149.00 34786.16 28488.58 27366.36 26558.19 30982.21 25746.36 26583.87 34444.97 32455.17 33382.73 309
WR-MVS_H70.59 26769.94 26272.53 32081.03 29451.43 33587.35 27492.03 13867.38 25760.23 29880.70 28155.84 18183.45 34746.33 31758.58 32582.72 310
ppachtmachnet_test67.72 29063.70 29979.77 25278.92 32066.04 13488.68 25482.90 33260.11 31255.45 32075.96 32439.19 29590.55 29539.53 34252.55 34082.71 311
CL-MVSNet_self_test69.92 27268.09 27475.41 30073.25 34855.90 31590.05 22689.90 22469.96 22961.96 29276.54 31851.05 22787.64 32549.51 30250.59 34482.70 312
LS3D69.17 27766.40 28077.50 28091.92 11256.12 31385.12 28680.37 34146.96 35356.50 31987.51 20337.25 31193.71 22732.52 36279.40 17682.68 313
our_test_368.29 28664.69 29279.11 26578.92 32064.85 16888.40 26085.06 31260.32 31052.68 32976.12 32340.81 29089.80 30944.25 32655.65 33182.67 314
FMVSNet568.04 28865.66 28675.18 30284.43 26157.89 29483.54 29586.26 30161.83 30253.64 32773.30 33337.15 31485.08 33748.99 30361.77 30482.56 315
KD-MVS_2432*160069.03 27966.37 28177.01 28985.56 24261.06 24881.44 31390.25 21067.27 25858.00 31276.53 31954.49 19387.63 32648.04 30835.77 36382.34 316
miper_refine_blended69.03 27966.37 28177.01 28985.56 24261.06 24881.44 31390.25 21067.27 25858.00 31276.53 31954.49 19387.63 32648.04 30835.77 36382.34 316
MVS_030468.99 28167.23 27874.28 30980.36 30252.54 32987.01 27886.36 29859.89 31466.22 25673.56 33224.25 35188.03 32157.34 27770.11 24382.27 318
pmmvs667.57 29264.76 29176.00 29872.82 35153.37 32688.71 25386.78 29753.19 33857.58 31678.03 30735.33 32292.41 26655.56 28254.88 33582.21 319
EU-MVSNet64.01 30963.01 30367.02 34074.40 34638.86 36983.27 30086.19 30345.11 35754.27 32381.15 27836.91 31780.01 36048.79 30557.02 32782.19 320
ACMH63.93 1768.62 28264.81 29080.03 24485.22 24663.25 20687.72 26884.66 31760.83 30651.57 33479.43 29927.29 34794.96 17441.76 33464.84 27981.88 321
Qingshan Xu and Wenbing Tao: Multi-Scale Geometric Consistency Guided Multi-View Stereo. CVPR 2019
D2MVS73.80 24472.02 24879.15 26479.15 31762.97 21388.58 25690.07 21772.94 15459.22 30378.30 30342.31 28792.70 25565.59 23172.00 23281.79 322
DP-MVS69.90 27366.48 27980.14 24195.36 3062.93 21589.56 23676.11 34750.27 34657.69 31585.23 22439.68 29395.73 14333.35 35771.05 24081.78 323
Patchmtry67.53 29363.93 29878.34 27082.12 28764.38 18068.72 35084.00 32348.23 35259.24 30272.41 33657.82 15289.27 31146.10 31856.68 33081.36 324
Baseline_NR-MVSNet73.99 24272.83 23777.48 28180.78 29659.29 28091.79 16184.55 31868.85 24368.99 22280.70 28156.16 17492.04 27762.67 25160.98 31281.11 325
CMPMVSbinary48.56 2166.77 29764.41 29673.84 31170.65 35650.31 34177.79 33685.73 30845.54 35644.76 35482.14 25835.40 32190.14 30563.18 24774.54 21381.07 326
M. Jancosek, T. Pajdla: Multi-View Reconstruction Preserving Weakly-Supported Surfaces. CVPR 2011
TransMVSNet (Re)70.07 27167.66 27577.31 28580.62 30059.13 28391.78 16384.94 31465.97 26760.08 29980.44 28650.78 22891.87 27948.84 30445.46 35280.94 327
ACMH+65.35 1667.65 29164.55 29376.96 29184.59 25757.10 30888.08 26280.79 33858.59 32153.00 32881.09 27926.63 34992.95 24146.51 31561.69 30880.82 328
USDC67.43 29564.51 29476.19 29677.94 33155.29 31878.38 33285.00 31373.17 14948.36 34580.37 28721.23 35892.48 26552.15 29364.02 28880.81 329
OurMVSNet-221017-064.68 30562.17 30972.21 32476.08 34247.35 35380.67 31781.02 33756.19 33151.60 33379.66 29727.05 34888.56 31553.60 29053.63 33880.71 330
MS-PatchMatch77.90 19376.50 19182.12 19785.99 23569.95 3691.75 16692.70 11273.97 13262.58 28884.44 23541.11 28995.78 13963.76 24392.17 7280.62 331
tfpnnormal70.10 27067.36 27678.32 27183.45 27560.97 25088.85 25192.77 11064.85 27560.83 29678.53 30243.52 28393.48 23231.73 36361.70 30780.52 332
MIMVSNet160.16 32257.33 32368.67 33469.71 35844.13 35978.92 32984.21 31955.05 33544.63 35571.85 34023.91 35381.54 35932.63 36155.03 33480.35 333
YYNet163.76 31260.14 31574.62 30578.06 33060.19 26783.46 29883.99 32556.18 33239.25 36171.56 34337.18 31383.34 34842.90 33048.70 34780.32 334
MDA-MVSNet_test_wron63.78 31160.16 31474.64 30478.15 32960.41 26283.49 29684.03 32156.17 33339.17 36271.59 34237.22 31283.24 35042.87 33148.73 34680.26 335
KD-MVS_self_test60.87 31958.60 31967.68 33766.13 36239.93 36675.63 34084.70 31657.32 32549.57 34268.45 34829.55 34082.87 35148.09 30747.94 34880.25 336
ITE_SJBPF70.43 33174.44 34547.06 35477.32 34560.16 31154.04 32583.53 24323.30 35584.01 34243.07 32861.58 30980.21 337
test20.0363.83 31062.65 30667.38 33970.58 35739.94 36586.57 28284.17 32063.29 28551.86 33277.30 31137.09 31582.47 35338.87 34654.13 33779.73 338
UnsupCasMVSNet_bld61.60 31757.71 32173.29 31568.73 36051.64 33378.61 33089.05 25757.20 32646.11 34861.96 35728.70 34488.60 31450.08 29938.90 36079.63 339
AllTest61.66 31658.06 32072.46 32179.57 30951.42 33680.17 32368.61 36351.25 34245.88 34981.23 27319.86 36186.58 33338.98 34457.01 32879.39 340
TestCases72.46 32179.57 30951.42 33668.61 36351.25 34245.88 34981.23 27319.86 36186.58 33338.98 34457.01 32879.39 340
ambc69.61 33261.38 36841.35 36249.07 36785.86 30750.18 34166.40 35010.16 37088.14 32045.73 32044.20 35379.32 342
Anonymous2024052162.09 31559.08 31871.10 32967.19 36148.72 34883.91 29385.23 31150.38 34547.84 34671.22 34420.74 35985.51 33646.47 31658.75 32479.06 343
MVP-Stereo77.12 20276.23 19579.79 25181.72 29066.34 12889.29 24390.88 18970.56 22362.01 29182.88 24949.34 24194.13 20765.55 23293.80 4578.88 344
Qingsong Yan: MVP-Stereo: A Parallel Multi-View Patchmatch Stereo Method with Dilation Matching for Photogrammetric Application.
pmmvs-eth3d65.53 30362.32 30875.19 30169.39 35959.59 27382.80 30583.43 32762.52 29451.30 33672.49 33432.86 32887.16 33155.32 28350.73 34378.83 345
OpenMVS_ROBcopyleft61.12 1866.39 29862.92 30476.80 29376.51 33857.77 29689.22 24583.41 32855.48 33453.86 32677.84 30826.28 35093.95 22134.90 35468.76 25378.68 346
LTVRE_ROB59.60 1966.27 29963.54 30074.45 30684.00 26851.55 33467.08 35683.53 32658.78 31954.94 32180.31 28834.54 32493.23 23640.64 34068.03 25878.58 347
Andreas Kuhn, Heiko Hirschmüller, Daniel Scharstein, Helmut Mayer: A TV Prior for High-Quality Scalable Multi-View Stereo Reconstruction. International Journal of Computer Vision 2016
PM-MVS59.40 32356.59 32467.84 33563.63 36441.86 36176.76 33763.22 36959.01 31851.07 33772.27 33911.72 36983.25 34961.34 25850.28 34578.39 348
N_pmnet50.55 32949.11 33254.88 34777.17 3364.02 38384.36 2902.00 38248.59 34945.86 35168.82 34732.22 33282.80 35231.58 36451.38 34277.81 349
new-patchmatchnet59.30 32456.48 32567.79 33665.86 36344.19 35882.47 30681.77 33459.94 31343.65 35866.20 35127.67 34681.68 35839.34 34341.40 35777.50 350
EG-PatchMatch MVS68.55 28365.41 28877.96 27678.69 32462.93 21589.86 23289.17 24960.55 30750.27 33977.73 30922.60 35694.06 21247.18 31472.65 22876.88 351
MVS-HIRNet60.25 32155.55 32774.35 30784.37 26256.57 31171.64 34474.11 35334.44 36445.54 35342.24 36731.11 33889.81 30740.36 34176.10 20876.67 352
MDA-MVSNet-bldmvs61.54 31857.70 32273.05 31679.53 31157.00 30983.08 30381.23 33657.57 32234.91 36472.45 33532.79 32986.26 33535.81 35141.95 35675.89 353
COLMAP_ROBcopyleft57.96 2062.98 31459.65 31672.98 31781.44 29253.00 32883.75 29475.53 35148.34 35148.81 34481.40 27124.14 35290.30 29832.95 35960.52 31675.65 354
Johannes L. Schönberger, Enliang Zheng, Marc Pollefeys, Jan-Michael Frahm: Pixelwise View Selection for Unstructured Multi-View Stereo. ECCV 2016
TinyColmap60.32 32056.42 32672.00 32778.78 32253.18 32778.36 33375.64 34952.30 33941.59 36075.82 32614.76 36688.35 31835.84 35054.71 33674.46 355
pmmvs355.51 32651.50 33167.53 33857.90 37050.93 33980.37 31973.66 35440.63 36244.15 35764.75 35416.30 36378.97 36144.77 32540.98 35972.69 356
test_method38.59 33535.16 33848.89 35154.33 37121.35 37845.32 36853.71 3737.41 37428.74 36551.62 3618.70 37352.87 37233.73 35532.89 36672.47 357
test_040264.54 30661.09 31274.92 30384.10 26760.75 25687.95 26479.71 34352.03 34052.41 33077.20 31332.21 33391.64 28423.14 36661.03 31172.36 358
LF4IMVS54.01 32852.12 32959.69 34362.41 36739.91 36768.59 35168.28 36542.96 36044.55 35675.18 32714.09 36868.39 36641.36 33751.68 34170.78 359
TDRefinement55.28 32751.58 33066.39 34159.53 36946.15 35676.23 33872.80 35644.60 35842.49 35976.28 32215.29 36482.39 35433.20 35843.75 35470.62 360
LCM-MVSNet40.54 33335.79 33654.76 34836.92 37830.81 37251.41 36569.02 36222.07 36824.63 36745.37 3654.56 37865.81 36833.67 35634.50 36567.67 361
ANet_high40.27 33435.20 33755.47 34534.74 37934.47 37163.84 35971.56 35948.42 35018.80 37041.08 3689.52 37264.45 37120.18 3678.66 37567.49 362
PMMVS237.93 33633.61 33950.92 35046.31 37524.76 37660.55 36250.05 37428.94 36720.93 36847.59 3624.41 37965.13 36925.14 36518.55 37062.87 363
new_pmnet49.31 33046.44 33357.93 34462.84 36640.74 36368.47 35262.96 37036.48 36335.09 36357.81 35914.97 36572.18 36432.86 36046.44 35060.88 364
FPMVS45.64 33143.10 33453.23 34951.42 37336.46 37064.97 35771.91 35829.13 36627.53 36661.55 3589.83 37165.01 37016.00 37055.58 33258.22 365
EGC-MVSNET42.35 33238.09 33555.11 34674.57 34446.62 35571.63 34555.77 3720.04 3770.24 37862.70 35614.24 36774.91 36317.59 36946.06 35143.80 366
MVEpermissive24.84 2324.35 34019.77 34638.09 35434.56 38026.92 37526.57 37038.87 37811.73 37311.37 37427.44 3701.37 38150.42 37311.41 37214.60 37136.93 367
Simon Fuhrmann, Fabian Langguth, Michael Goesele: MVE - A Multi-View Reconstruction Environment. EUROGRAPHICS Workshops on Graphics and Cultural Heritage (2014)
DeepMVS_CXcopyleft34.71 35551.45 37224.73 37728.48 38131.46 36517.49 37152.75 3605.80 37642.60 37618.18 36819.42 36936.81 368
PMVScopyleft26.43 2231.84 33828.16 34142.89 35325.87 38127.58 37450.92 36649.78 37521.37 36914.17 37340.81 3692.01 38066.62 3679.61 37338.88 36134.49 369
Y. Furukawa, J. Ponce: Accurate, dense, and robust multiview stereopsis. PAMI (2010)
Gipumacopyleft34.91 33731.44 34045.30 35270.99 35439.64 36819.85 37272.56 35720.10 37016.16 37221.47 3735.08 37771.16 36513.07 37143.70 35525.08 370
S. Galliani, K. Lasinger, K. Schindler: Massively Parallel Multiview Stereopsis by Surface Normal Diffusion. ICCV 2015
tmp_tt22.26 34223.75 34417.80 3585.23 38212.06 38235.26 36939.48 3772.82 37618.94 36944.20 36622.23 35724.64 37736.30 3489.31 37416.69 371
E-PMN24.61 33924.00 34326.45 35643.74 37618.44 38060.86 36039.66 37615.11 3719.53 37522.10 3726.52 37546.94 3748.31 37410.14 37213.98 372
EMVS23.76 34123.20 34525.46 35741.52 37716.90 38160.56 36138.79 37914.62 3728.99 37620.24 3757.35 37445.82 3757.25 3759.46 37313.64 373
wuyk23d11.30 34410.95 34712.33 35948.05 37419.89 37925.89 3711.92 3833.58 3753.12 3771.37 3770.64 38215.77 3786.23 3767.77 3761.35 374
test1236.92 3479.21 3500.08 3600.03 3840.05 38481.65 3110.01 3850.02 3790.14 3800.85 3790.03 3830.02 3790.12 3780.00 3780.16 375
testmvs7.23 3469.62 3490.06 3610.04 3830.02 38584.98 2880.02 3840.03 3780.18 3791.21 3780.01 3840.02 3790.14 3770.01 3770.13 376
test_blank0.00 3490.00 3520.00 3620.00 3850.00 3860.00 3730.00 3860.00 3800.00 3810.00 3800.00 3850.00 3810.00 3790.00 3780.00 377
uanet_test0.00 3490.00 3520.00 3620.00 3850.00 3860.00 3730.00 3860.00 3800.00 3810.00 3800.00 3850.00 3810.00 3790.00 3780.00 377
DCPMVS0.00 3490.00 3520.00 3620.00 3850.00 3860.00 3730.00 3860.00 3800.00 3810.00 3800.00 3850.00 3810.00 3790.00 3780.00 377
cdsmvs_eth3d_5k19.86 34326.47 3420.00 3620.00 3850.00 3860.00 37393.45 820.00 3800.00 38195.27 5249.56 2390.00 3810.00 3790.00 3780.00 377
pcd_1.5k_mvsjas4.46 3485.95 3510.00 3620.00 3850.00 3860.00 3730.00 3860.00 3800.00 3810.00 38053.55 2050.00 3810.00 3790.00 3780.00 377
sosnet-low-res0.00 3490.00 3520.00 3620.00 3850.00 3860.00 3730.00 3860.00 3800.00 3810.00 3800.00 3850.00 3810.00 3790.00 3780.00 377
sosnet0.00 3490.00 3520.00 3620.00 3850.00 3860.00 3730.00 3860.00 3800.00 3810.00 3800.00 3850.00 3810.00 3790.00 3780.00 377
uncertanet0.00 3490.00 3520.00 3620.00 3850.00 3860.00 3730.00 3860.00 3800.00 3810.00 3800.00 3850.00 3810.00 3790.00 3780.00 377
Regformer0.00 3490.00 3520.00 3620.00 3850.00 3860.00 3730.00 3860.00 3800.00 3810.00 3800.00 3850.00 3810.00 3790.00 3780.00 377
ab-mvs-re7.91 34510.55 3480.00 3620.00 3850.00 3860.00 3730.00 3860.00 3800.00 38194.95 640.00 3850.00 3810.00 3790.00 3780.00 377
uanet0.00 3490.00 3520.00 3620.00 3850.00 3860.00 3730.00 3860.00 3800.00 3810.00 3800.00 3850.00 3810.00 3790.00 3780.00 377
FOURS193.95 5361.77 23693.96 6991.92 14262.14 29786.57 35
test_one_060196.32 2069.74 4294.18 5571.42 20790.67 1596.85 1274.45 19
eth-test20.00 385
eth-test0.00 385
ZD-MVS96.63 1165.50 15093.50 8070.74 22085.26 5395.19 5864.92 7797.29 7887.51 4593.01 59
test_241102_ONE96.45 1469.38 4794.44 4371.65 19592.11 497.05 876.79 999.11 6
9.1487.63 2593.86 5594.41 5194.18 5572.76 15986.21 3896.51 1966.64 5897.88 4990.08 2594.04 41
save fliter93.84 5667.89 8495.05 3992.66 11578.19 71
test072696.40 1769.99 3396.76 694.33 5171.92 18191.89 897.11 773.77 22
test_part296.29 2168.16 7890.78 13
sam_mvs54.91 190
MTGPAbinary92.23 128
test_post178.95 32820.70 37453.05 21091.50 29160.43 263
test_post23.01 37156.49 17292.67 256
patchmatchnet-post67.62 34957.62 15490.25 299
MTMP93.77 8432.52 380
gm-plane-assit88.42 18867.04 11078.62 6891.83 14197.37 7276.57 134
TEST994.18 4667.28 10194.16 5693.51 7871.75 19385.52 4895.33 4768.01 4497.27 82
test_894.19 4567.19 10494.15 5993.42 8571.87 18685.38 5195.35 4668.19 4196.95 102
agg_prior94.16 5066.97 11293.31 8884.49 5996.75 111
test_prior467.18 10693.92 75
test_prior295.10 3775.40 11085.25 5495.61 4067.94 4587.47 4694.77 25
旧先验292.00 15359.37 31787.54 2993.47 23375.39 140
新几何291.41 176
原ACMM292.01 150
testdata296.09 12861.26 259
segment_acmp65.94 64
testdata189.21 24677.55 85
plane_prior786.94 22061.51 241
plane_prior687.23 21562.32 22750.66 229
plane_prior489.14 179
plane_prior361.95 23479.09 5972.53 180
plane_prior293.13 10378.81 65
plane_prior187.15 217
plane_prior62.42 22493.85 7979.38 5178.80 183
n20.00 386
nn0.00 386
door-mid66.01 367
test1193.01 102
door66.57 366
HQP5-MVS63.66 201
HQP-NCC87.54 20994.06 6479.80 4574.18 160
ACMP_Plane87.54 20994.06 6479.80 4574.18 160
BP-MVS77.63 129
HQP3-MVS91.70 15578.90 181
HQP2-MVS51.63 222
NP-MVS87.41 21263.04 21190.30 165
MDTV_nov1_ep1372.61 24189.06 17368.48 6780.33 32090.11 21671.84 18971.81 19175.92 32553.01 21193.92 22248.04 30873.38 220
ACMMP++_ref71.63 234
ACMMP++69.72 245
Test By Simon54.21 199