This table lists the benchmark results for the high-res multi-view scenario. The following metrics are evaluated:

(*) For exact definitions, detailing how potentially incomplete ground truth is taken into account, see our paper.

The datasets are grouped into different categories, and result averages are computed for a category and method if results of the method are available for all datasets within the category. Note that the category "all" includes both the high-res multi-view and the low-res many-view scenarios.

Methods with suffix _ROB may participate in the Robust Vision Challenge.

Click a dataset result cell to show a visualization of the reconstruction. For training datasets, ground truth and accuracy / completeness visualizations are also available. The visualizations may not work with mobile browsers.




Method Infoallhigh-res
multi-view
indooroutdoorbotani.boulde.bridgedoorexhibi.lectur.living.loungeobserv.old co.statueterrac.
sort bysort bysort bysort bysort bysort bysort bysort bysort bysort bysort bysort bysort bysort bysort bysorted by
DPM-MVS90.70 390.52 991.24 189.68 16076.68 297.29 195.35 1682.87 2491.58 1397.22 379.93 599.10 983.12 10497.64 297.94 1
SED-MVS89.94 990.36 1088.70 1896.45 1269.38 5596.89 694.44 4771.65 22192.11 797.21 476.79 999.11 692.34 2495.36 1497.62 2
OPU-MVS89.97 397.52 373.15 1496.89 697.00 983.82 299.15 295.72 597.63 397.62 2
DVP-MVS++90.53 491.09 588.87 1697.31 469.91 4293.96 7294.37 5372.48 19192.07 996.85 1683.82 299.15 291.53 3297.42 497.55 4
PC_three_145280.91 5094.07 296.83 1883.57 499.12 595.70 797.42 497.55 4
DeepPCF-MVS81.17 189.72 1091.38 484.72 13593.00 7558.16 31596.72 994.41 4986.50 890.25 2297.83 175.46 1498.67 2592.78 2195.49 1397.32 6
balanced_conf0389.08 1588.84 1789.81 693.66 5475.15 590.61 22893.43 8884.06 1486.20 5190.17 18572.42 3396.98 10393.09 1895.92 1097.29 7
LFMVS84.34 8782.73 11489.18 1394.76 3373.25 1194.99 4291.89 15571.90 20982.16 9393.49 11747.98 28197.05 9482.55 11084.82 14797.25 8
sasdasda86.85 3786.25 4888.66 2091.80 11371.92 1693.54 9791.71 16580.26 5887.55 3995.25 6363.59 10496.93 11188.18 5284.34 15297.11 9
canonicalmvs86.85 3786.25 4888.66 2091.80 11371.92 1693.54 9791.71 16580.26 5887.55 3995.25 6363.59 10496.93 11188.18 5284.34 15297.11 9
MCST-MVS91.08 191.46 389.94 497.66 273.37 1097.13 295.58 1189.33 185.77 5696.26 3272.84 2999.38 192.64 2295.93 997.08 11
DELS-MVS90.05 890.09 1189.94 493.14 7073.88 997.01 494.40 5188.32 385.71 5794.91 7574.11 2198.91 1887.26 6495.94 897.03 12
Christian Sormann, Emanuele Santellani, Mattia Rossi, Andreas Kuhn, Friedrich Fraundorfer: DELS-MVS: Deep Epipolar Line Search for Multi-View Stereo. Winter Conference on Applications of Computer Vision (WACV), 2023
MGCFI-Net85.59 6585.73 6085.17 11991.41 12762.44 23892.87 12491.31 18279.65 7086.99 4695.14 6962.90 11796.12 14387.13 6684.13 15996.96 13
CSCG86.87 3686.26 4788.72 1795.05 3170.79 2993.83 8495.33 1768.48 27477.63 14794.35 9373.04 2798.45 3084.92 8693.71 4796.92 14
MM90.87 291.52 288.92 1592.12 10071.10 2797.02 396.04 688.70 291.57 1496.19 3470.12 4598.91 1896.83 195.06 1796.76 15
MVS84.66 8182.86 11290.06 290.93 13674.56 787.91 28495.54 1468.55 27272.35 20894.71 8059.78 14898.90 2081.29 12194.69 3296.74 16
alignmvs87.28 3286.97 3788.24 2791.30 12971.14 2695.61 2593.56 8079.30 7787.07 4495.25 6368.43 5096.93 11187.87 5584.33 15496.65 17
DeepC-MVS_fast79.48 287.95 2288.00 2587.79 3195.86 2768.32 8095.74 2194.11 6183.82 1683.49 7996.19 3464.53 9098.44 3183.42 10394.88 2596.61 18
Andreas Kuhn, Christian Sormann, Mattia Rossi, Oliver Erdler, Friedrich Fraundorfer: DeepC-MVS: Deep Confidence Prediction for Multi-View Stereo Reconstruction. 3DV 2020
test_241102_TWO94.41 4971.65 22192.07 997.21 474.58 1899.11 692.34 2495.36 1496.59 19
TSAR-MVS + GP.87.96 2188.37 2186.70 6593.51 6165.32 16095.15 3693.84 6678.17 9885.93 5594.80 7875.80 1398.21 3489.38 4388.78 10796.59 19
CANet89.61 1289.99 1288.46 2494.39 3969.71 5096.53 1393.78 6786.89 689.68 2895.78 4265.94 7299.10 992.99 1993.91 4296.58 21
WTY-MVS86.32 4885.81 5787.85 2992.82 8169.37 5795.20 3495.25 1882.71 2581.91 9494.73 7967.93 5697.63 5879.55 13482.25 17396.54 22
VNet86.20 5085.65 6187.84 3093.92 4769.99 3895.73 2395.94 778.43 9586.00 5493.07 12358.22 16897.00 9985.22 8084.33 15496.52 23
MSC_two_6792asdad89.60 997.31 473.22 1295.05 2799.07 1392.01 2794.77 2696.51 24
No_MVS89.60 997.31 473.22 1295.05 2799.07 1392.01 2794.77 2696.51 24
test_0728_SECOND88.70 1896.45 1270.43 3396.64 1094.37 5399.15 291.91 3094.90 2296.51 24
ET-MVSNet_ETH3D84.01 9683.15 10686.58 7090.78 14170.89 2894.74 4794.62 4181.44 4258.19 34193.64 11373.64 2592.35 29082.66 10878.66 20896.50 27
MVSMamba_PlusPlus84.97 7783.65 8888.93 1490.17 15174.04 887.84 28692.69 11862.18 32681.47 9987.64 22371.47 4096.28 13684.69 8894.74 3196.47 28
IU-MVS96.46 1169.91 4295.18 2180.75 5195.28 192.34 2495.36 1496.47 28
MVS_030490.32 690.90 788.55 2394.05 4570.23 3697.00 593.73 7487.30 492.15 696.15 3666.38 6798.94 1796.71 294.67 3396.47 28
test_0728_THIRD72.48 19190.55 2096.93 1176.24 1199.08 1191.53 3294.99 1896.43 31
MSP-MVS90.38 591.87 185.88 9192.83 7964.03 19593.06 11494.33 5582.19 3193.65 396.15 3685.89 197.19 8691.02 3697.75 196.43 31
Zhenlong Yuan, Cong Liu, Fei Shen, Zhaoxin Li, Jingguo luo, Tianlu Mao and Zhaoqi Wang: MSP-MVS: Multi-granularity Segmentation Prior Guided Multi-View Stereo. AAAI2025
HY-MVS76.49 584.28 8883.36 10087.02 5592.22 9567.74 9884.65 31294.50 4479.15 8182.23 9287.93 21866.88 6296.94 10980.53 12682.20 17596.39 33
DPE-MVScopyleft88.77 1789.21 1687.45 4396.26 2067.56 10394.17 5994.15 6068.77 27090.74 1897.27 276.09 1298.49 2990.58 4094.91 2196.30 34
Kehua Chen, Zhenlong Yuan, Tianlu Mao, Zhaoqi Wang: Dual-Level Precision Edges Guided Multi-View Stereo with Accurate Planarization. AAAI2025
DVP-MVScopyleft89.41 1389.73 1488.45 2596.40 1569.99 3896.64 1094.52 4371.92 20790.55 2096.93 1173.77 2399.08 1191.91 3094.90 2296.29 35
Zhenlong Yuan, Jinguo Luo, Fei Shen, Zhaoxin Li, Cong Liu, Tianlu Mao, Zhaoqi Wang: DVP-MVS: Synergize Depth-Edge and Visibility Prior for Multi-View Stereo. AAAI2025
MSLP-MVS++86.27 4985.91 5687.35 4592.01 10568.97 6695.04 4092.70 11679.04 8781.50 9796.50 2658.98 16196.78 11783.49 10293.93 4196.29 35
patch_mono-289.71 1190.99 685.85 9496.04 2463.70 20595.04 4095.19 2086.74 791.53 1595.15 6873.86 2297.58 6193.38 1692.00 6996.28 37
test_yl84.28 8883.16 10487.64 3494.52 3769.24 5995.78 1895.09 2469.19 26481.09 10392.88 12957.00 18197.44 6881.11 12381.76 18096.23 38
DCV-MVSNet84.28 8883.16 10487.64 3494.52 3769.24 5995.78 1895.09 2469.19 26481.09 10392.88 12957.00 18197.44 6881.11 12381.76 18096.23 38
CNVR-MVS90.32 690.89 888.61 2296.76 870.65 3096.47 1494.83 3184.83 1189.07 3196.80 1970.86 4199.06 1592.64 2295.71 1196.12 40
HPM-MVS++copyleft89.37 1489.95 1387.64 3495.10 3068.23 8695.24 3394.49 4582.43 2888.90 3296.35 2971.89 3898.63 2688.76 5096.40 696.06 41
SD-MVS87.49 2887.49 3187.50 4293.60 5668.82 6993.90 7692.63 12376.86 11987.90 3795.76 4366.17 6997.63 5889.06 4891.48 7896.05 42
Zhenlong Yuan, Jiakai Cao, Zhaoxin Li, Hao Jiang and Zhaoqi Wang: SD-MVS: Segmentation-driven Deformation Multi-View Stereo with Spherical Refinement and EM optimization. AAAI2024
PHI-MVS86.83 3986.85 4186.78 6393.47 6265.55 15695.39 3095.10 2371.77 21785.69 5896.52 2462.07 12498.77 2386.06 7695.60 1296.03 43
APDe-MVScopyleft87.54 2787.84 2686.65 6696.07 2366.30 13894.84 4593.78 6769.35 26188.39 3496.34 3067.74 5797.66 5690.62 3993.44 5196.01 44
Zhaojie Zeng, Yuesong Wang, Tao Guan: Matching Ambiguity-Resilient Multi-View Stereo via Adaptive Patch Deformation. Pattern Recognition
lupinMVS87.74 2587.77 2787.63 3889.24 17571.18 2496.57 1292.90 11182.70 2687.13 4295.27 6164.99 8195.80 15689.34 4491.80 7295.93 45
NCCC89.07 1689.46 1587.91 2896.60 1069.05 6396.38 1594.64 4084.42 1286.74 4796.20 3366.56 6698.76 2489.03 4994.56 3495.92 46
SMA-MVScopyleft88.14 1888.29 2287.67 3393.21 6768.72 7293.85 7994.03 6374.18 15491.74 1296.67 2265.61 7698.42 3389.24 4696.08 795.88 47
Yufeng Yin; Xiaoyan Liu; Zichao Zhang: SMA-MVS: Segmentation-Guided Multi-Scale Anchor Deformation Patch Multi-View Stereo. IEEE Transactions on Circuits and Systems for Video Technology
dcpmvs_287.37 3187.55 3086.85 5895.04 3268.20 8790.36 23490.66 20879.37 7681.20 10193.67 11274.73 1696.55 12590.88 3792.00 6995.82 48
Anonymous20240521177.96 21075.33 22885.87 9293.73 5364.52 17594.85 4485.36 34062.52 32476.11 16290.18 18429.43 37697.29 7868.51 22777.24 22395.81 49
RRT-MVS82.61 12581.16 13286.96 5791.10 13368.75 7087.70 28992.20 13876.97 11772.68 19787.10 23451.30 25096.41 13283.56 10187.84 11795.74 50
mvs_anonymous81.36 14579.99 15685.46 10690.39 14768.40 7886.88 30190.61 21074.41 14970.31 23384.67 26063.79 9892.32 29273.13 17985.70 14195.67 51
MG-MVS87.11 3486.27 4689.62 897.79 176.27 494.96 4394.49 4578.74 9283.87 7792.94 12664.34 9196.94 10975.19 16594.09 3895.66 52
PAPR85.15 7284.47 7987.18 4996.02 2568.29 8191.85 17293.00 10876.59 12679.03 13195.00 7061.59 12997.61 6078.16 14889.00 10595.63 53
VDD-MVS83.06 11681.81 12786.81 6190.86 13967.70 9995.40 2991.50 17675.46 13781.78 9592.34 14240.09 32297.13 9286.85 7082.04 17795.60 54
casdiffmvs_mvgpermissive85.66 6385.18 6987.09 5288.22 20269.35 5893.74 8891.89 15581.47 3980.10 11791.45 16164.80 8696.35 13487.23 6587.69 11995.58 55
Fangjinhua Wang, Qingshan Xu, Yew-Soon Ong, Marc Pollefeys: Lightweight and Accurate Multi-View Stereo With Confidence-Aware Diffusion Model. IEEE T-PAMI 2025
Effi-MVS+83.82 10082.76 11386.99 5689.56 16369.40 5391.35 19586.12 33272.59 18883.22 8392.81 13259.60 15096.01 15381.76 11487.80 11895.56 56
TSAR-MVS + MP.88.11 2088.64 1886.54 7291.73 11568.04 9090.36 23493.55 8182.89 2391.29 1692.89 12872.27 3596.03 15187.99 5494.77 2695.54 57
Zhenlong Yuan, Jiakai Cao, Zhaoqi Wang, Zhaoxin Li: TSAR-MVS: Textureless-aware Segmentation and Correlative Refinement Guided Multi-View Stereo. Pattern Recognition
UBG86.83 3986.70 4287.20 4893.07 7369.81 4693.43 10595.56 1381.52 3881.50 9792.12 14773.58 2696.28 13684.37 9285.20 14495.51 58
SteuartSystems-ACMMP86.82 4186.90 3986.58 7090.42 14566.38 13596.09 1793.87 6577.73 10684.01 7695.66 4563.39 10797.94 4087.40 6293.55 5095.42 59
Skip Steuart: Steuart Systems R&D Blog.
SPE-MVS-test86.14 5287.01 3683.52 17792.63 8759.36 30495.49 2791.92 15280.09 6285.46 6195.53 5161.82 12895.77 15986.77 7193.37 5295.41 60
casdiffmvspermissive85.37 6884.87 7586.84 5988.25 20069.07 6293.04 11691.76 16281.27 4680.84 10892.07 14964.23 9296.06 14984.98 8587.43 12395.39 61
Fangjinhua Wang, Qingshan Xu, Yew-Soon Ong, Marc Pollefeys: Lightweight and Accurate Multi-View Stereo With Confidence-Aware Diffusion Model. IEEE T-PAMI 2025
EIA-MVS84.84 7884.88 7484.69 13791.30 12962.36 24193.85 7992.04 14579.45 7379.33 12894.28 9862.42 12096.35 13480.05 13091.25 8395.38 62
testing9185.93 5685.31 6787.78 3293.59 5771.47 1993.50 10095.08 2680.26 5880.53 11291.93 15270.43 4396.51 12780.32 12982.13 17695.37 63
CS-MVS85.80 5986.65 4483.27 18692.00 10658.92 30895.31 3191.86 15779.97 6384.82 6795.40 5462.26 12295.51 17786.11 7592.08 6895.37 63
GG-mvs-BLEND86.53 7391.91 11069.67 5275.02 37894.75 3478.67 13990.85 17177.91 794.56 21072.25 19193.74 4595.36 65
agg_prior286.41 7294.75 3095.33 66
3Dnovator+73.60 782.10 13480.60 14886.60 6890.89 13866.80 12695.20 3493.44 8774.05 15667.42 27392.49 13749.46 26697.65 5770.80 20491.68 7495.33 66
baseline85.01 7584.44 8086.71 6488.33 19768.73 7190.24 23991.82 16181.05 4981.18 10292.50 13563.69 10096.08 14884.45 9186.71 13395.32 68
ab-mvs80.18 16778.31 18285.80 9688.44 19265.49 15983.00 33192.67 11971.82 21577.36 15185.01 25654.50 21296.59 12176.35 15875.63 23295.32 68
test9_res89.41 4294.96 1995.29 70
EPNet87.84 2488.38 2086.23 8293.30 6466.05 14295.26 3294.84 3087.09 588.06 3594.53 8466.79 6397.34 7583.89 9791.68 7495.29 70
Wanjuan Su, Wenbing Tao: Efficient Edge-Preserving Multi-View Stereo Network for Depth Estimation. AAAI 2023
SF-MVS87.03 3587.09 3586.84 5992.70 8567.45 10893.64 9293.76 7070.78 24586.25 4996.44 2766.98 6197.79 4788.68 5194.56 3495.28 72
VDDNet80.50 16078.26 18387.21 4786.19 24869.79 4794.48 5091.31 18260.42 34079.34 12790.91 17038.48 33096.56 12482.16 11181.05 18695.27 73
MVSFormer83.75 10382.88 11186.37 7889.24 17571.18 2489.07 26690.69 20565.80 29387.13 4294.34 9464.99 8192.67 27772.83 18291.80 7295.27 73
jason86.40 4686.17 5087.11 5186.16 25070.54 3295.71 2492.19 14082.00 3384.58 6994.34 9461.86 12695.53 17687.76 5690.89 8695.27 73
jason: jason.
train_agg87.21 3387.42 3286.60 6894.18 4167.28 11094.16 6093.51 8271.87 21285.52 5995.33 5668.19 5297.27 8289.09 4794.90 2295.25 76
MVS_Test84.16 9483.20 10387.05 5491.56 12069.82 4589.99 24892.05 14477.77 10582.84 8686.57 24063.93 9696.09 14574.91 17089.18 10295.25 76
3Dnovator73.91 682.69 12480.82 14188.31 2689.57 16271.26 2292.60 13894.39 5278.84 8967.89 26692.48 13848.42 27698.52 2868.80 22594.40 3695.15 78
testing9986.01 5485.47 6387.63 3893.62 5571.25 2393.47 10395.23 1980.42 5680.60 11191.95 15171.73 3996.50 12880.02 13182.22 17495.13 79
Patchmatch-test65.86 33160.94 34680.62 25483.75 29158.83 30958.91 40975.26 38344.50 39750.95 37477.09 34958.81 16287.90 34635.13 38864.03 31895.12 80
mvsmamba81.55 14280.72 14384.03 16391.42 12466.93 12283.08 32889.13 27078.55 9467.50 27187.02 23551.79 24390.07 33187.48 6090.49 9295.10 81
APD-MVScopyleft85.93 5685.99 5485.76 9895.98 2665.21 16393.59 9592.58 12566.54 28886.17 5295.88 4163.83 9797.00 9986.39 7392.94 5795.06 82
Yuesong Wang, Zhaojie Zeng and etc.: Adaptive Patch Deformation for Textureless-Resilient Multi-View Stereo. CVPR2023
gg-mvs-nofinetune77.18 22174.31 24285.80 9691.42 12468.36 7971.78 38394.72 3549.61 38377.12 15445.92 40977.41 893.98 23867.62 23593.16 5595.05 83
test_prior86.42 7694.71 3567.35 10993.10 10396.84 11595.05 83
Patchmatch-RL test68.17 31764.49 32879.19 28671.22 38553.93 34770.07 38871.54 39469.22 26356.79 35162.89 39656.58 19088.61 33869.53 21552.61 37395.03 85
CHOSEN 1792x268884.98 7683.45 9489.57 1189.94 15575.14 692.07 15992.32 13181.87 3475.68 16688.27 20960.18 14298.60 2780.46 12790.27 9494.96 86
test_fmvsmconf_n86.58 4487.17 3484.82 12885.28 26562.55 23794.26 5889.78 24183.81 1787.78 3896.33 3165.33 7896.98 10394.40 1187.55 12194.95 87
ACMMP_NAP86.05 5385.80 5886.80 6291.58 11967.53 10591.79 17493.49 8574.93 14584.61 6895.30 5859.42 15297.92 4186.13 7494.92 2094.94 88
test250683.29 11182.92 11084.37 15188.39 19563.18 22392.01 16291.35 18177.66 10878.49 14091.42 16264.58 8995.09 18873.19 17889.23 10094.85 89
ECVR-MVScopyleft81.29 14680.38 15284.01 16488.39 19561.96 25092.56 14386.79 32477.66 10876.63 15891.42 16246.34 29495.24 18574.36 17489.23 10094.85 89
PAPM_NR82.97 11881.84 12686.37 7894.10 4466.76 12787.66 29092.84 11269.96 25474.07 18593.57 11563.10 11497.50 6670.66 20790.58 9094.85 89
ETVMVS84.22 9283.71 8685.76 9892.58 8968.25 8592.45 14595.53 1579.54 7279.46 12591.64 15970.29 4494.18 22569.16 22082.76 17094.84 92
CDPH-MVS85.71 6185.46 6486.46 7494.75 3467.19 11293.89 7792.83 11370.90 24183.09 8495.28 5963.62 10297.36 7380.63 12594.18 3794.84 92
test1287.09 5294.60 3668.86 6792.91 11082.67 9165.44 7797.55 6493.69 4894.84 92
testing1186.71 4386.44 4587.55 4093.54 5971.35 2193.65 9195.58 1181.36 4580.69 10992.21 14672.30 3496.46 13085.18 8283.43 16294.82 95
testing22285.18 7184.69 7886.63 6792.91 7769.91 4292.61 13795.80 980.31 5780.38 11492.27 14368.73 4995.19 18675.94 15983.27 16494.81 96
BP-MVS186.54 4586.68 4386.13 8587.80 21567.18 11492.97 11995.62 1079.92 6482.84 8694.14 10274.95 1596.46 13082.91 10688.96 10694.74 97
PatchmatchNetpermissive77.46 21774.63 23585.96 8989.55 16470.35 3479.97 35789.55 25172.23 20070.94 22376.91 35157.03 17992.79 27254.27 31881.17 18594.74 97
Fangjinhua Wang, Silvano Galliani, Christoph Vogel, Pablo Speciale, Marc Pollefeys: PatchmatchNet: Learned Multi-View Patchmatch Stereo.
EPMVS78.49 20275.98 21986.02 8791.21 13169.68 5180.23 35291.20 18775.25 14172.48 20478.11 33954.65 21193.69 24857.66 30783.04 16594.69 99
GSMVS94.68 100
sam_mvs157.85 17194.68 100
SCA75.82 24672.76 26285.01 12386.63 24070.08 3781.06 34589.19 26571.60 22670.01 23677.09 34945.53 30090.25 32360.43 29373.27 24794.68 100
fmvsm_l_conf0.5_n87.49 2888.19 2385.39 10986.95 23464.37 18594.30 5688.45 29780.51 5392.70 496.86 1569.98 4697.15 9195.83 488.08 11594.65 103
Vis-MVSNetpermissive80.92 15479.98 15783.74 16888.48 19061.80 25293.44 10488.26 30573.96 16077.73 14591.76 15549.94 26194.76 19765.84 25590.37 9394.65 103
Jingyang Zhang, Yao Yao, Shiwei Li, Zixin Luo, Tian Fang: Visibility-aware Multiview Stereo Network. BMVC 2020
test_fmvsmconf0.1_n85.71 6186.08 5384.62 14280.83 32062.33 24293.84 8288.81 28583.50 1987.00 4596.01 3963.36 10896.93 11194.04 1387.29 12494.61 105
fmvsm_l_conf0.5_n_a87.44 3088.15 2485.30 11387.10 23164.19 19294.41 5288.14 30680.24 6192.54 596.97 1069.52 4897.17 8795.89 388.51 11094.56 106
旧先验191.94 10760.74 27691.50 17694.36 8965.23 7991.84 7194.55 107
sss82.71 12382.38 12083.73 17089.25 17259.58 29992.24 15094.89 2977.96 10079.86 12092.38 14056.70 18797.05 9477.26 15380.86 18894.55 107
xiu_mvs_v2_base87.92 2387.38 3389.55 1291.41 12776.43 395.74 2193.12 10283.53 1889.55 2995.95 4053.45 23097.68 5191.07 3592.62 6094.54 109
PS-MVSNAJ88.14 1887.61 2989.71 792.06 10176.72 195.75 2093.26 9483.86 1589.55 2996.06 3853.55 22697.89 4391.10 3493.31 5394.54 109
test111180.84 15580.02 15483.33 18487.87 21160.76 27492.62 13686.86 32377.86 10375.73 16591.39 16446.35 29394.70 20372.79 18488.68 10994.52 111
ZNCC-MVS85.33 6985.08 7186.06 8693.09 7265.65 15293.89 7793.41 9073.75 16579.94 11994.68 8160.61 13998.03 3882.63 10993.72 4694.52 111
MAR-MVS84.18 9383.43 9586.44 7596.25 2165.93 14794.28 5794.27 5774.41 14979.16 13095.61 4753.99 22198.88 2269.62 21493.26 5494.50 113
Zhenyu Xu, Yiguang Liu, Xuelei Shi, Ying Wang, Yunan Zheng: MARMVS: Matching Ambiguity Reduced Multiple View Stereo for Efficient Large Scale Scene Reconstruction. CVPR 2020
HFP-MVS84.73 8084.40 8185.72 10093.75 5265.01 16993.50 10093.19 9872.19 20179.22 12994.93 7359.04 15997.67 5381.55 11592.21 6494.49 114
ETV-MVS86.01 5486.11 5185.70 10190.21 15067.02 12093.43 10591.92 15281.21 4784.13 7594.07 10560.93 13695.63 16789.28 4589.81 9694.46 115
reproduce-ours83.51 10783.33 10184.06 15992.18 9860.49 28390.74 22092.04 14564.35 30383.24 8095.59 4959.05 15797.27 8283.61 9989.17 10394.41 116
our_new_method83.51 10783.33 10184.06 15992.18 9860.49 28390.74 22092.04 14564.35 30383.24 8095.59 4959.05 15797.27 8283.61 9989.17 10394.41 116
diffmvspermissive84.28 8883.83 8585.61 10387.40 22468.02 9190.88 21489.24 26280.54 5281.64 9692.52 13459.83 14794.52 21387.32 6385.11 14594.29 118
Fangjinhua Wang, Qingshan Xu, Yew-Soon Ong, Marc Pollefeys: Lightweight and Accurate Multi-View Stereo With Confidence-Aware Diffusion Model. IEEE T-PAMI 2025
reproduce_model83.15 11482.96 10783.73 17092.02 10259.74 29690.37 23392.08 14363.70 31082.86 8595.48 5258.62 16397.17 8783.06 10588.42 11194.26 119
test_fmvsm_n_192087.69 2688.50 1985.27 11587.05 23363.55 21293.69 8991.08 19684.18 1390.17 2497.04 867.58 5897.99 3995.72 590.03 9594.26 119
region2R84.36 8684.03 8485.36 11193.54 5964.31 18893.43 10592.95 10972.16 20478.86 13694.84 7756.97 18397.53 6581.38 11992.11 6794.24 121
test_fmvsmconf0.01_n83.70 10583.52 8984.25 15675.26 37361.72 25692.17 15287.24 32082.36 2984.91 6695.41 5355.60 20196.83 11692.85 2085.87 14094.21 122
GDP-MVS85.54 6685.32 6686.18 8387.64 21867.95 9492.91 12392.36 13077.81 10483.69 7894.31 9672.84 2996.41 13280.39 12885.95 13994.19 123
MTAPA83.91 9883.38 9985.50 10591.89 11165.16 16581.75 33792.23 13475.32 14080.53 11295.21 6656.06 19797.16 9084.86 8792.55 6294.18 124
PMMVS81.98 13682.04 12381.78 22589.76 15956.17 33491.13 20790.69 20577.96 10080.09 11893.57 11546.33 29594.99 19181.41 11887.46 12294.17 125
CostFormer82.33 12881.15 13385.86 9389.01 18068.46 7782.39 33493.01 10675.59 13580.25 11681.57 29872.03 3794.96 19279.06 14077.48 21994.16 126
MVS_111021_HR86.19 5185.80 5887.37 4493.17 6969.79 4793.99 7193.76 7079.08 8478.88 13593.99 10662.25 12398.15 3685.93 7791.15 8494.15 127
PVSNet_Blended86.73 4286.86 4086.31 8193.76 5067.53 10596.33 1693.61 7882.34 3081.00 10693.08 12263.19 11197.29 7887.08 6791.38 8094.13 128
1112_ss80.56 15979.83 15982.77 19588.65 18760.78 27292.29 14888.36 29972.58 18972.46 20594.95 7165.09 8093.42 25466.38 24977.71 21394.10 129
IB-MVS77.80 482.18 13080.46 15187.35 4589.14 17770.28 3595.59 2695.17 2278.85 8870.19 23485.82 24970.66 4297.67 5372.19 19466.52 29594.09 130
Christian Sormann, Mattia Rossi, Andreas Kuhn and Friedrich Fraundorfer: IB-MVS: An Iterative Algorithm for Deep Multi-View Stereo based on Binary Decisions. BMVC 2021
PAPM85.89 5885.46 6487.18 4988.20 20372.42 1592.41 14692.77 11482.11 3280.34 11593.07 12368.27 5195.02 18978.39 14793.59 4994.09 130
MP-MVS-pluss85.24 7085.13 7085.56 10491.42 12465.59 15491.54 18492.51 12774.56 14880.62 11095.64 4659.15 15697.00 9986.94 6993.80 4394.07 132
MP-MVS-pluss: MP-MVS-pluss. MP-MVS-pluss
MP-MVScopyleft85.02 7484.97 7385.17 11992.60 8864.27 19093.24 10992.27 13373.13 17679.63 12394.43 8761.90 12597.17 8785.00 8492.56 6194.06 133
Rongxuan Tan, Qing Wang, et al.: MP-MVS: Multi-Scale Windows PatchMatch and Planar Prior Multi-View Stereo.
DeepC-MVS77.85 385.52 6785.24 6886.37 7888.80 18566.64 12992.15 15393.68 7681.07 4876.91 15793.64 11362.59 11998.44 3185.50 7892.84 5994.03 134
Andreas Kuhn, Christian Sormann, Mattia Rossi, Oliver Erdler, Friedrich Fraundorfer: DeepC-MVS: Deep Confidence Prediction for Multi-View Stereo Reconstruction. 3DV 2020
ACMMPR84.37 8584.06 8385.28 11493.56 5864.37 18593.50 10093.15 10072.19 20178.85 13794.86 7656.69 18897.45 6781.55 11592.20 6594.02 135
无先验92.71 13092.61 12462.03 32997.01 9866.63 24493.97 136
XVS83.87 9983.47 9385.05 12193.22 6563.78 19992.92 12192.66 12073.99 15778.18 14194.31 9655.25 20397.41 7079.16 13891.58 7693.95 137
X-MVStestdata76.86 22774.13 24685.05 12193.22 6563.78 19992.92 12192.66 12073.99 15778.18 14110.19 42455.25 20397.41 7079.16 13891.58 7693.95 137
h-mvs3383.01 11782.56 11784.35 15289.34 16762.02 24892.72 12993.76 7081.45 4082.73 8992.25 14560.11 14397.13 9287.69 5762.96 32393.91 139
CP-MVS83.71 10483.40 9884.65 13993.14 7063.84 19794.59 4992.28 13271.03 23977.41 15094.92 7455.21 20696.19 14081.32 12090.70 8893.91 139
PVSNet73.49 880.05 17078.63 17884.31 15390.92 13764.97 17092.47 14491.05 19979.18 8072.43 20690.51 17637.05 34794.06 23168.06 22986.00 13893.90 141
GST-MVS84.63 8284.29 8285.66 10292.82 8165.27 16193.04 11693.13 10173.20 17478.89 13294.18 10159.41 15397.85 4581.45 11792.48 6393.86 142
Test_1112_low_res79.56 17878.60 17982.43 20488.24 20160.39 28792.09 15787.99 31072.10 20571.84 21387.42 22764.62 8893.04 25865.80 25677.30 22193.85 143
GeoE78.90 19177.43 19683.29 18588.95 18162.02 24892.31 14786.23 33070.24 25171.34 22289.27 19754.43 21694.04 23463.31 27580.81 19093.81 144
thisisatest051583.41 10982.49 11886.16 8489.46 16668.26 8393.54 9794.70 3774.31 15275.75 16490.92 16972.62 3196.52 12669.64 21281.50 18393.71 145
HyFIR lowres test81.03 15279.56 16385.43 10787.81 21468.11 8990.18 24090.01 23670.65 24772.95 19486.06 24763.61 10394.50 21475.01 16879.75 19793.67 146
CANet_DTU84.09 9583.52 8985.81 9590.30 14866.82 12491.87 17089.01 27785.27 986.09 5393.74 11047.71 28596.98 10377.90 15089.78 9893.65 147
mPP-MVS82.96 11982.44 11984.52 14592.83 7962.92 23092.76 12791.85 15971.52 22975.61 16994.24 9953.48 22996.99 10278.97 14190.73 8793.64 148
tpmrst80.57 15879.14 17384.84 12790.10 15268.28 8281.70 33889.72 24877.63 11075.96 16379.54 33064.94 8392.71 27475.43 16377.28 22293.55 149
tpm279.80 17577.95 18985.34 11288.28 19868.26 8381.56 34091.42 17970.11 25277.59 14980.50 31667.40 5994.26 22367.34 23777.35 22093.51 150
SR-MVS82.81 12082.58 11683.50 18093.35 6361.16 26692.23 15191.28 18664.48 30281.27 10095.28 5953.71 22595.86 15582.87 10788.77 10893.49 151
FA-MVS(test-final)79.12 18677.23 20284.81 13190.54 14363.98 19681.35 34391.71 16571.09 23874.85 17782.94 27852.85 23397.05 9467.97 23081.73 18293.41 152
PGM-MVS83.25 11282.70 11584.92 12492.81 8364.07 19490.44 22992.20 13871.28 23377.23 15394.43 8755.17 20797.31 7779.33 13791.38 8093.37 153
新几何184.73 13492.32 9264.28 18991.46 17859.56 34779.77 12192.90 12756.95 18496.57 12363.40 27392.91 5893.34 154
HPM-MVScopyleft83.25 11282.95 10984.17 15792.25 9462.88 23290.91 21191.86 15770.30 25077.12 15493.96 10756.75 18696.28 13682.04 11291.34 8293.34 154
Chunlin Ren, Qingshan Xu, Shikun Zhang, Jiaqi Yang: Hierarchical Prior Mining for Non-local Multi-View Stereo. ICCV 2023
TESTMET0.1,182.41 12781.98 12583.72 17288.08 20463.74 20192.70 13193.77 6979.30 7777.61 14887.57 22558.19 16994.08 22973.91 17686.68 13493.33 156
IS-MVSNet80.14 16879.41 16782.33 20887.91 20960.08 29291.97 16688.27 30372.90 18471.44 22191.73 15761.44 13093.66 24962.47 28386.53 13593.24 157
MonoMVSNet76.99 22575.08 23182.73 19683.32 29763.24 21986.47 30486.37 32679.08 8466.31 28579.30 33249.80 26491.72 30479.37 13565.70 29993.23 158
131480.70 15778.95 17585.94 9087.77 21767.56 10387.91 28492.55 12672.17 20367.44 27293.09 12150.27 25897.04 9771.68 19987.64 12093.23 158
CDS-MVSNet81.43 14480.74 14283.52 17786.26 24764.45 17992.09 15790.65 20975.83 13373.95 18789.81 19263.97 9592.91 26771.27 20082.82 16793.20 160
Khang Truong Giang, Soohwan Song, Sungho Jo: Curvature-guided dynamic scale networks for Multi-view Stereo. ICLR 2022
Fast-Effi-MVS+81.14 14880.01 15584.51 14690.24 14965.86 14894.12 6489.15 26873.81 16475.37 17288.26 21057.26 17694.53 21266.97 24384.92 14693.15 161
API-MVS82.28 12980.53 14987.54 4196.13 2270.59 3193.63 9391.04 20065.72 29575.45 17192.83 13156.11 19698.89 2164.10 26989.75 9993.15 161
test22289.77 15861.60 25889.55 25489.42 25656.83 36277.28 15292.43 13952.76 23491.14 8593.09 163
TAMVS80.37 16379.45 16683.13 19085.14 26963.37 21691.23 20190.76 20474.81 14772.65 19988.49 20460.63 13892.95 26269.41 21681.95 17993.08 164
fmvsm_s_conf0.5_n86.39 4786.91 3884.82 12887.36 22663.54 21394.74 4790.02 23582.52 2790.14 2596.92 1362.93 11697.84 4695.28 882.26 17293.07 165
testdata81.34 23589.02 17957.72 31989.84 24058.65 35185.32 6394.09 10357.03 17993.28 25569.34 21790.56 9193.03 166
tpm78.58 20077.03 20483.22 18885.94 25564.56 17483.21 32791.14 19278.31 9673.67 18879.68 32864.01 9492.09 29766.07 25371.26 26493.03 166
test_fmvsmvis_n_192083.80 10183.48 9284.77 13282.51 30663.72 20391.37 19383.99 35581.42 4377.68 14695.74 4458.37 16697.58 6193.38 1686.87 12793.00 168
GA-MVS78.33 20576.23 21584.65 13983.65 29366.30 13891.44 18590.14 22976.01 13170.32 23284.02 26842.50 31494.72 20070.98 20277.00 22492.94 169
BH-RMVSNet79.46 18277.65 19284.89 12591.68 11765.66 15193.55 9688.09 30872.93 18173.37 19091.12 16846.20 29796.12 14356.28 31185.61 14392.91 170
fmvsm_s_conf0.5_n_a85.75 6086.09 5284.72 13585.73 25963.58 21093.79 8589.32 25981.42 4390.21 2396.91 1462.41 12197.67 5394.48 1080.56 19192.90 171
APD-MVS_3200maxsize81.64 14181.32 13182.59 20292.36 9158.74 31091.39 19091.01 20163.35 31479.72 12294.62 8351.82 24196.14 14279.71 13287.93 11692.89 172
fmvsm_s_conf0.1_n85.61 6485.93 5584.68 13882.95 30363.48 21594.03 7089.46 25381.69 3689.86 2696.74 2061.85 12797.75 4994.74 982.01 17892.81 173
DP-MVS Recon82.73 12181.65 12885.98 8897.31 467.06 11795.15 3691.99 14969.08 26776.50 16193.89 10854.48 21598.20 3570.76 20585.66 14292.69 174
UGNet79.87 17478.68 17783.45 18289.96 15461.51 25992.13 15490.79 20376.83 12178.85 13786.33 24438.16 33396.17 14167.93 23287.17 12592.67 175
Wanjuan Su, Qingshan Xu, Wenbing Tao: Uncertainty-guided Multi-view Stereo Network for Depth Estimation. IEEE Transactions on Circuits and Systems for Video Technology, 2022
EPP-MVSNet81.79 13881.52 12982.61 20188.77 18660.21 29093.02 11893.66 7768.52 27372.90 19590.39 17972.19 3694.96 19274.93 16979.29 20292.67 175
PVSNet_Blended_VisFu83.97 9783.50 9185.39 10990.02 15366.59 13293.77 8691.73 16377.43 11477.08 15689.81 19263.77 9996.97 10679.67 13388.21 11392.60 177
MDTV_nov1_ep13_2view59.90 29480.13 35467.65 27972.79 19654.33 21859.83 29792.58 178
QAPM79.95 17377.39 20087.64 3489.63 16171.41 2093.30 10893.70 7565.34 29867.39 27591.75 15647.83 28398.96 1657.71 30689.81 9692.54 179
fmvsm_s_conf0.1_n_a84.76 7984.84 7684.53 14480.23 33063.50 21492.79 12688.73 28880.46 5489.84 2796.65 2360.96 13597.57 6393.80 1480.14 19392.53 180
dp75.01 25772.09 27283.76 16789.28 17166.22 14179.96 35889.75 24371.16 23567.80 26877.19 34851.81 24292.54 28250.39 32971.44 26392.51 181
EPNet_dtu78.80 19479.26 17177.43 30688.06 20549.71 36891.96 16791.95 15177.67 10776.56 16091.28 16658.51 16490.20 32856.37 31080.95 18792.39 182
Wanjuan Su, Wenbing Tao: Efficient Edge-Preserving Multi-View Stereo Network for Depth Estimation. AAAI 2023
Anonymous2024052976.84 22974.15 24584.88 12691.02 13464.95 17193.84 8291.09 19453.57 37173.00 19287.42 22735.91 35197.32 7669.14 22172.41 25692.36 183
Vis-MVSNet (Re-imp)79.24 18479.57 16278.24 29888.46 19152.29 35390.41 23189.12 27174.24 15369.13 24491.91 15365.77 7490.09 33059.00 30288.09 11492.33 184
原ACMM184.42 14893.21 6764.27 19093.40 9165.39 29679.51 12492.50 13558.11 17096.69 11965.27 26393.96 4092.32 185
TR-MVS78.77 19677.37 20182.95 19290.49 14460.88 27093.67 9090.07 23170.08 25374.51 17991.37 16545.69 29995.70 16660.12 29680.32 19292.29 186
SR-MVS-dyc-post81.06 15180.70 14482.15 21692.02 10258.56 31290.90 21290.45 21262.76 32178.89 13294.46 8551.26 25195.61 16978.77 14486.77 13192.28 187
RE-MVS-def80.48 15092.02 10258.56 31290.90 21290.45 21262.76 32178.89 13294.46 8549.30 26878.77 14486.77 13192.28 187
LCM-MVSNet-Re72.93 27671.84 27576.18 32088.49 18948.02 37680.07 35570.17 39673.96 16052.25 36680.09 32449.98 26088.24 34467.35 23684.23 15792.28 187
EC-MVSNet84.53 8385.04 7283.01 19189.34 16761.37 26394.42 5191.09 19477.91 10283.24 8094.20 10058.37 16695.40 17885.35 7991.41 7992.27 190
MVS_111021_LR82.02 13581.52 12983.51 17988.42 19362.88 23289.77 25188.93 28176.78 12275.55 17093.10 12050.31 25795.38 18083.82 9887.02 12692.26 191
FE-MVS75.97 24373.02 25984.82 12889.78 15765.56 15577.44 36891.07 19764.55 30172.66 19879.85 32646.05 29896.69 11954.97 31580.82 18992.21 192
BH-w/o80.49 16179.30 17084.05 16290.83 14064.36 18793.60 9489.42 25674.35 15169.09 24590.15 18755.23 20595.61 16964.61 26686.43 13792.17 193
test_vis1_n_192081.66 14082.01 12480.64 25282.24 30855.09 34294.76 4686.87 32281.67 3784.40 7194.63 8238.17 33294.67 20491.98 2983.34 16392.16 194
UWE-MVS80.81 15681.01 13980.20 26289.33 16957.05 32891.91 16894.71 3675.67 13475.01 17589.37 19663.13 11391.44 31567.19 24082.80 16992.12 195
fmvsm_s_conf0.5_n_285.06 7385.60 6283.44 18386.92 23960.53 28294.41 5287.31 31883.30 2088.72 3396.72 2154.28 21997.75 4994.07 1284.68 15192.04 196
CVMVSNet74.04 26574.27 24373.33 34085.33 26343.94 39489.53 25688.39 29854.33 37070.37 23190.13 18849.17 27184.05 37161.83 28779.36 20091.99 197
tpm cat175.30 25372.21 27184.58 14388.52 18867.77 9778.16 36688.02 30961.88 33268.45 25976.37 35560.65 13794.03 23653.77 32174.11 24191.93 198
ACMMPcopyleft81.49 14380.67 14583.93 16591.71 11662.90 23192.13 15492.22 13771.79 21671.68 21793.49 11750.32 25696.96 10778.47 14684.22 15891.93 198
Qingshan Xu, Weihang Kong, Wenbing Tao, Marc Pollefeys: Multi-Scale Geometric Consistency Guided and Planar Prior Assisted Multi-View Stereo. IEEE Transactions on Pattern Analysis and Machine Intelligence
fmvsm_s_conf0.1_n_284.40 8484.78 7783.27 18685.25 26660.41 28594.13 6385.69 33883.05 2287.99 3696.37 2852.75 23597.68 5193.75 1584.05 16091.71 200
test-LLR80.10 16979.56 16381.72 22786.93 23761.17 26492.70 13191.54 17371.51 23075.62 16786.94 23653.83 22292.38 28772.21 19284.76 14991.60 201
test-mter79.96 17279.38 16981.72 22786.93 23761.17 26492.70 13191.54 17373.85 16275.62 16786.94 23649.84 26392.38 28772.21 19284.76 14991.60 201
thisisatest053081.15 14780.07 15384.39 15088.26 19965.63 15391.40 18894.62 4171.27 23470.93 22489.18 19872.47 3296.04 15065.62 25876.89 22591.49 203
AUN-MVS78.37 20377.43 19681.17 23886.60 24157.45 32489.46 25891.16 18974.11 15574.40 18090.49 17755.52 20294.57 20774.73 17360.43 34991.48 204
MIMVSNet71.64 28868.44 30181.23 23781.97 31264.44 18073.05 38088.80 28669.67 25864.59 29674.79 36432.79 36187.82 34853.99 31976.35 22891.42 205
hse-mvs281.12 15081.11 13781.16 23986.52 24257.48 32389.40 25991.16 18981.45 4082.73 8990.49 17760.11 14394.58 20587.69 5760.41 35091.41 206
xiu_mvs_v1_base_debu82.16 13181.12 13485.26 11686.42 24368.72 7292.59 14090.44 21573.12 17784.20 7294.36 8938.04 33595.73 16184.12 9486.81 12891.33 207
xiu_mvs_v1_base82.16 13181.12 13485.26 11686.42 24368.72 7292.59 14090.44 21573.12 17784.20 7294.36 8938.04 33595.73 16184.12 9486.81 12891.33 207
xiu_mvs_v1_base_debi82.16 13181.12 13485.26 11686.42 24368.72 7292.59 14090.44 21573.12 17784.20 7294.36 8938.04 33595.73 16184.12 9486.81 12891.33 207
BH-untuned78.68 19777.08 20383.48 18189.84 15663.74 20192.70 13188.59 29471.57 22766.83 28288.65 20351.75 24495.39 17959.03 30184.77 14891.32 210
HPM-MVS_fast80.25 16679.55 16582.33 20891.55 12159.95 29391.32 19789.16 26765.23 29974.71 17893.07 12347.81 28495.74 16074.87 17288.23 11291.31 211
baseline181.84 13781.03 13884.28 15591.60 11866.62 13091.08 20891.66 17081.87 3474.86 17691.67 15869.98 4694.92 19571.76 19764.75 31091.29 212
test_cas_vis1_n_192080.45 16280.61 14779.97 27178.25 35657.01 33094.04 6988.33 30079.06 8682.81 8893.70 11138.65 32791.63 30790.82 3879.81 19591.27 213
baseline283.68 10683.42 9784.48 14787.37 22566.00 14490.06 24395.93 879.71 6969.08 24690.39 17977.92 696.28 13678.91 14281.38 18491.16 214
TAPA-MVS70.22 1274.94 25873.53 25479.17 28790.40 14652.07 35489.19 26489.61 25062.69 32370.07 23592.67 13348.89 27594.32 21738.26 38279.97 19491.12 215
Andrea Romanoni, Matteo Matteucci: TAPA-MVS: Textureless-Aware PAtchMatch Multi-View Stereo. ICCV 2019
AdaColmapbinary78.94 19077.00 20684.76 13396.34 1765.86 14892.66 13587.97 31262.18 32670.56 22792.37 14143.53 31097.35 7464.50 26782.86 16691.05 216
OMC-MVS78.67 19977.91 19080.95 24885.76 25857.40 32588.49 27588.67 29173.85 16272.43 20692.10 14849.29 26994.55 21172.73 18677.89 21290.91 217
EI-MVSNet-Vis-set83.77 10283.67 8784.06 15992.79 8463.56 21191.76 17794.81 3279.65 7077.87 14494.09 10363.35 10997.90 4279.35 13679.36 20090.74 218
cascas78.18 20675.77 22285.41 10887.14 23069.11 6192.96 12091.15 19166.71 28770.47 22886.07 24637.49 34196.48 12970.15 21079.80 19690.65 219
CR-MVSNet73.79 26970.82 28482.70 19883.15 29967.96 9270.25 38684.00 35373.67 16969.97 23872.41 37157.82 17289.48 33552.99 32473.13 24890.64 220
RPMNet70.42 29665.68 31784.63 14183.15 29967.96 9270.25 38690.45 21246.83 39269.97 23865.10 39256.48 19395.30 18435.79 38773.13 24890.64 220
test_fmvs174.07 26473.69 25275.22 32478.91 34847.34 38189.06 26874.69 38463.68 31179.41 12691.59 16024.36 38687.77 35085.22 8076.26 22990.55 222
PCF-MVS73.15 979.29 18377.63 19384.29 15486.06 25165.96 14687.03 29791.10 19369.86 25669.79 24190.64 17257.54 17596.59 12164.37 26882.29 17190.32 223
Andreas Kuhn, Shan Lin, Oliver Erdler: Plane Completion and Filtering for Multi-View Stereo Reconstruction. GCPR 2019
PVSNet_068.08 1571.81 28768.32 30382.27 21084.68 27562.31 24488.68 27290.31 22175.84 13257.93 34680.65 31537.85 33894.19 22469.94 21129.05 41290.31 224
tttt051779.50 17978.53 18082.41 20787.22 22861.43 26289.75 25294.76 3369.29 26267.91 26488.06 21772.92 2895.63 16762.91 27973.90 24590.16 225
CPTT-MVS79.59 17779.16 17280.89 25091.54 12259.80 29592.10 15688.54 29660.42 34072.96 19393.28 11948.27 27792.80 27178.89 14386.50 13690.06 226
EI-MVSNet-UG-set83.14 11582.96 10783.67 17592.28 9363.19 22291.38 19294.68 3879.22 7976.60 15993.75 10962.64 11897.76 4878.07 14978.01 21190.05 227
test_fmvs1_n72.69 28371.92 27474.99 32771.15 38647.08 38387.34 29575.67 37963.48 31378.08 14391.17 16720.16 39887.87 34784.65 8975.57 23390.01 228
test_vis1_n71.63 28970.73 28574.31 33469.63 39247.29 38286.91 29972.11 39063.21 31775.18 17390.17 18520.40 39685.76 36284.59 9074.42 23989.87 229
dmvs_re76.93 22675.36 22781.61 22987.78 21660.71 27780.00 35687.99 31079.42 7469.02 24889.47 19546.77 28894.32 21763.38 27474.45 23889.81 230
XVG-OURS-SEG-HR74.70 26073.08 25879.57 28178.25 35657.33 32680.49 34887.32 31663.22 31668.76 25490.12 19044.89 30691.59 30870.55 20874.09 24289.79 231
114514_t79.17 18577.67 19183.68 17495.32 2965.53 15792.85 12591.60 17263.49 31267.92 26390.63 17446.65 29095.72 16567.01 24283.54 16189.79 231
UA-Net80.02 17179.65 16181.11 24189.33 16957.72 31986.33 30589.00 28077.44 11381.01 10589.15 19959.33 15495.90 15461.01 29084.28 15689.73 233
XVG-OURS74.25 26372.46 26979.63 27978.45 35457.59 32280.33 35087.39 31563.86 30868.76 25489.62 19440.50 32191.72 30469.00 22274.25 24089.58 234
UniMVSNet_ETH3D72.74 28070.53 28779.36 28478.62 35356.64 33285.01 31089.20 26463.77 30964.84 29584.44 26434.05 35891.86 30163.94 27070.89 26689.57 235
thres20079.66 17678.33 18183.66 17692.54 9065.82 15093.06 11496.31 374.90 14673.30 19188.66 20259.67 14995.61 16947.84 34578.67 20789.56 236
SDMVSNet80.26 16578.88 17684.40 14989.25 17267.63 10285.35 30893.02 10576.77 12370.84 22587.12 23247.95 28296.09 14585.04 8374.55 23589.48 237
sd_testset77.08 22475.37 22682.20 21489.25 17262.11 24782.06 33589.09 27376.77 12370.84 22587.12 23241.43 31895.01 19067.23 23974.55 23589.48 237
OpenMVScopyleft70.45 1178.54 20175.92 22086.41 7785.93 25671.68 1892.74 12892.51 12766.49 28964.56 29791.96 15043.88 30998.10 3754.61 31690.65 8989.44 239
CHOSEN 280x42077.35 21976.95 20778.55 29387.07 23262.68 23669.71 38982.95 36268.80 26971.48 22087.27 23166.03 7184.00 37376.47 15782.81 16888.95 240
thres100view90078.37 20377.01 20582.46 20391.89 11163.21 22191.19 20596.33 172.28 19970.45 23087.89 21960.31 14095.32 18145.16 35677.58 21688.83 241
tfpn200view978.79 19577.43 19682.88 19392.21 9664.49 17692.05 16096.28 473.48 17171.75 21588.26 21060.07 14595.32 18145.16 35677.58 21688.83 241
nrg03080.93 15379.86 15884.13 15883.69 29268.83 6893.23 11091.20 18775.55 13675.06 17488.22 21363.04 11594.74 19981.88 11366.88 29288.82 243
PatchT69.11 30765.37 32180.32 25782.07 31163.68 20767.96 39687.62 31450.86 38069.37 24265.18 39157.09 17888.53 34141.59 37166.60 29488.74 244
HQP4-MVS74.18 18195.61 16988.63 245
HQP-MVS81.14 14880.64 14682.64 20087.54 22063.66 20894.06 6591.70 16879.80 6674.18 18190.30 18151.63 24695.61 16977.63 15178.90 20488.63 245
tt080573.07 27370.73 28580.07 26578.37 35557.05 32887.78 28792.18 14161.23 33667.04 27886.49 24131.35 36994.58 20565.06 26467.12 29088.57 247
VPNet78.82 19377.53 19582.70 19884.52 27966.44 13493.93 7492.23 13480.46 5472.60 20088.38 20749.18 27093.13 25772.47 19063.97 32088.55 248
Effi-MVS+-dtu76.14 23675.28 22978.72 29283.22 29855.17 34189.87 24987.78 31375.42 13867.98 26281.43 30045.08 30592.52 28375.08 16771.63 25988.48 249
CNLPA74.31 26272.30 27080.32 25791.49 12361.66 25790.85 21580.72 36856.67 36363.85 30690.64 17246.75 28990.84 31853.79 32075.99 23188.47 250
HQP_MVS80.34 16479.75 16082.12 21886.94 23562.42 23993.13 11291.31 18278.81 9072.53 20289.14 20050.66 25495.55 17476.74 15478.53 20988.39 251
plane_prior591.31 18295.55 17476.74 15478.53 20988.39 251
VPA-MVSNet79.03 18778.00 18782.11 22185.95 25364.48 17893.22 11194.66 3975.05 14474.04 18684.95 25752.17 24093.52 25174.90 17167.04 29188.32 253
CLD-MVS82.73 12182.35 12183.86 16687.90 21067.65 10195.45 2892.18 14185.06 1072.58 20192.27 14352.46 23895.78 15784.18 9379.06 20388.16 254
Zhaoxin Li, Wangmeng Zuo, Zhaoqi Wang, Lei Zhang: Confidence-based Large-scale Dense Multi-view Stereo. IEEE Transaction on Image Processing, 2020
XXY-MVS77.94 21176.44 21282.43 20482.60 30564.44 18092.01 16291.83 16073.59 17070.00 23785.82 24954.43 21694.76 19769.63 21368.02 28588.10 255
WBMVS81.67 13980.98 14083.72 17293.07 7369.40 5394.33 5593.05 10476.84 12072.05 21184.14 26674.49 1993.88 24372.76 18568.09 28387.88 256
FIs79.47 18179.41 16779.67 27885.95 25359.40 30191.68 18193.94 6478.06 9968.96 25088.28 20866.61 6591.77 30366.20 25274.99 23487.82 257
Fast-Effi-MVS+-dtu75.04 25673.37 25680.07 26580.86 31959.52 30091.20 20485.38 33971.90 20965.20 29184.84 25841.46 31792.97 26166.50 24872.96 25087.73 258
UniMVSNet_NR-MVSNet78.15 20777.55 19479.98 26984.46 28160.26 28892.25 14993.20 9777.50 11268.88 25186.61 23966.10 7092.13 29566.38 24962.55 32787.54 259
MVSTER82.47 12682.05 12283.74 16892.68 8669.01 6491.90 16993.21 9579.83 6572.14 20985.71 25174.72 1794.72 20075.72 16172.49 25487.50 260
thres600view778.00 20876.66 21082.03 22391.93 10863.69 20691.30 19896.33 172.43 19470.46 22987.89 21960.31 14094.92 19542.64 36876.64 22687.48 261
thres40078.68 19777.43 19682.43 20492.21 9664.49 17692.05 16096.28 473.48 17171.75 21588.26 21060.07 14595.32 18145.16 35677.58 21687.48 261
TranMVSNet+NR-MVSNet75.86 24574.52 23979.89 27382.44 30760.64 28091.37 19391.37 18076.63 12567.65 26986.21 24552.37 23991.55 30961.84 28660.81 34587.48 261
FC-MVSNet-test77.99 20978.08 18677.70 30184.89 27455.51 33990.27 23793.75 7376.87 11866.80 28387.59 22465.71 7590.23 32762.89 28073.94 24387.37 264
DU-MVS76.86 22775.84 22179.91 27282.96 30160.26 28891.26 19991.54 17376.46 12868.88 25186.35 24256.16 19492.13 29566.38 24962.55 32787.35 265
NR-MVSNet76.05 24074.59 23680.44 25582.96 30162.18 24690.83 21691.73 16377.12 11660.96 32586.35 24259.28 15591.80 30260.74 29161.34 34287.35 265
FMVSNet377.73 21476.04 21882.80 19491.20 13268.99 6591.87 17091.99 14973.35 17367.04 27883.19 27756.62 18992.14 29459.80 29869.34 27187.28 267
PS-MVSNAJss77.26 22076.31 21480.13 26480.64 32459.16 30690.63 22791.06 19872.80 18568.58 25784.57 26253.55 22693.96 23972.97 18071.96 25887.27 268
mvsany_test168.77 31068.56 29969.39 36273.57 37945.88 39080.93 34660.88 41059.65 34671.56 21890.26 18343.22 31275.05 39774.26 17562.70 32687.25 269
FMVSNet276.07 23774.01 24882.26 21288.85 18267.66 10091.33 19691.61 17170.84 24265.98 28682.25 28748.03 27892.00 29958.46 30368.73 27987.10 270
ADS-MVSNet266.90 32663.44 33477.26 31088.06 20560.70 27868.01 39475.56 38157.57 35464.48 29869.87 38138.68 32584.10 37040.87 37367.89 28686.97 271
ADS-MVSNet68.54 31364.38 33081.03 24688.06 20566.90 12368.01 39484.02 35257.57 35464.48 29869.87 38138.68 32589.21 33740.87 37367.89 28686.97 271
WR-MVS76.76 23175.74 22379.82 27584.60 27762.27 24592.60 13892.51 12776.06 13067.87 26785.34 25356.76 18590.24 32662.20 28463.69 32286.94 273
DSMNet-mixed56.78 36254.44 36663.79 37663.21 40329.44 41964.43 40164.10 40642.12 40351.32 37171.60 37631.76 36675.04 39836.23 38465.20 30586.87 274
UniMVSNet (Re)77.58 21676.78 20879.98 26984.11 28760.80 27191.76 17793.17 9976.56 12769.93 24084.78 25963.32 11092.36 28964.89 26562.51 32986.78 275
GBi-Net75.65 24873.83 25081.10 24288.85 18265.11 16690.01 24590.32 21870.84 24267.04 27880.25 32148.03 27891.54 31059.80 29869.34 27186.64 276
test175.65 24873.83 25081.10 24288.85 18265.11 16690.01 24590.32 21870.84 24267.04 27880.25 32148.03 27891.54 31059.80 29869.34 27186.64 276
FMVSNet172.71 28169.91 29281.10 24283.60 29465.11 16690.01 24590.32 21863.92 30763.56 30880.25 32136.35 35091.54 31054.46 31766.75 29386.64 276
v2v48277.42 21875.65 22482.73 19680.38 32667.13 11691.85 17290.23 22675.09 14369.37 24283.39 27553.79 22494.44 21571.77 19665.00 30786.63 279
miper_enhance_ethall78.86 19277.97 18881.54 23188.00 20865.17 16491.41 18689.15 26875.19 14268.79 25383.98 26967.17 6092.82 26972.73 18665.30 30186.62 280
cl2277.94 21176.78 20881.42 23387.57 21964.93 17290.67 22388.86 28472.45 19367.63 27082.68 28264.07 9392.91 26771.79 19565.30 30186.44 281
PLCcopyleft68.80 1475.23 25473.68 25379.86 27492.93 7658.68 31190.64 22588.30 30160.90 33764.43 30190.53 17542.38 31594.57 20756.52 30976.54 22786.33 282
Jie Liao, Yanping Fu, Qingan Yan, Chunxia xiao: Pyramid Multi-View Stereo with Local Consistency. Pacific Graphics 2019
EI-MVSNet78.97 18978.22 18481.25 23685.33 26362.73 23589.53 25693.21 9572.39 19672.14 20990.13 18860.99 13394.72 20067.73 23472.49 25486.29 283
IterMVS-LS76.49 23375.18 23080.43 25684.49 28062.74 23490.64 22588.80 28672.40 19565.16 29281.72 29460.98 13492.27 29367.74 23364.65 31286.29 283
Fangjinhua Wang, Silvano Galliani, Christoph Vogel, Marc Pollefeys: IterMVS: Iterative Probability Estimation for Efficient Multi-View Stereo.
miper_ehance_all_eth77.60 21576.44 21281.09 24585.70 26064.41 18390.65 22488.64 29372.31 19767.37 27682.52 28364.77 8792.64 28070.67 20665.30 30186.24 285
OPM-MVS79.00 18878.09 18581.73 22683.52 29563.83 19891.64 18390.30 22276.36 12971.97 21289.93 19146.30 29695.17 18775.10 16677.70 21486.19 286
Ray L. Khuboni, Hongjun Xu: Octagram Propagation Matching for Multi-Scale View Stereopsis (OPM-MVS).
DIV-MVS_self_test76.07 23774.67 23380.28 25985.14 26961.75 25590.12 24188.73 28871.16 23565.42 29081.60 29761.15 13192.94 26666.54 24662.16 33386.14 287
eth_miper_zixun_eth75.96 24474.40 24180.66 25184.66 27663.02 22589.28 26188.27 30371.88 21165.73 28781.65 29559.45 15192.81 27068.13 22860.53 34786.14 287
cl____76.07 23774.67 23380.28 25985.15 26861.76 25490.12 24188.73 28871.16 23565.43 28981.57 29861.15 13192.95 26266.54 24662.17 33186.13 289
PatchMatch-RL72.06 28669.98 28978.28 29689.51 16555.70 33883.49 32083.39 36061.24 33563.72 30782.76 28034.77 35593.03 25953.37 32377.59 21586.12 290
c3_l76.83 23075.47 22580.93 24985.02 27264.18 19390.39 23288.11 30771.66 22066.65 28481.64 29663.58 10692.56 28169.31 21862.86 32486.04 291
RPSCF64.24 34161.98 34371.01 35876.10 37045.00 39175.83 37575.94 37846.94 39158.96 33884.59 26131.40 36882.00 38747.76 34660.33 35186.04 291
Anonymous2023121173.08 27270.39 28881.13 24090.62 14263.33 21791.40 18890.06 23351.84 37664.46 30080.67 31436.49 34994.07 23063.83 27164.17 31685.98 293
v119275.98 24273.92 24982.15 21679.73 33466.24 14091.22 20289.75 24372.67 18768.49 25881.42 30149.86 26294.27 22167.08 24165.02 30685.95 294
JIA-IIPM66.06 33062.45 34076.88 31581.42 31754.45 34657.49 41088.67 29149.36 38463.86 30546.86 40856.06 19790.25 32349.53 33468.83 27785.95 294
v192192075.63 25073.49 25582.06 22279.38 33966.35 13691.07 21089.48 25271.98 20667.99 26181.22 30649.16 27293.90 24266.56 24564.56 31385.92 296
reproduce_monomvs79.49 18079.11 17480.64 25292.91 7761.47 26191.17 20693.28 9383.09 2164.04 30382.38 28566.19 6894.57 20781.19 12257.71 35885.88 297
v114476.73 23274.88 23282.27 21080.23 33066.60 13191.68 18190.21 22873.69 16769.06 24781.89 29152.73 23694.40 21669.21 21965.23 30485.80 298
v14419276.05 24074.03 24782.12 21879.50 33866.55 13391.39 19089.71 24972.30 19868.17 26081.33 30351.75 24494.03 23667.94 23164.19 31585.77 299
v124075.21 25572.98 26081.88 22479.20 34166.00 14490.75 21989.11 27271.63 22567.41 27481.22 30647.36 28693.87 24465.46 26164.72 31185.77 299
v14876.19 23574.47 24081.36 23480.05 33264.44 18091.75 17990.23 22673.68 16867.13 27780.84 31155.92 19993.86 24668.95 22361.73 33885.76 301
test0.0.03 172.76 27972.71 26572.88 34480.25 32947.99 37791.22 20289.45 25471.51 23062.51 32087.66 22253.83 22285.06 36750.16 33167.84 28885.58 302
test_djsdf73.76 27072.56 26777.39 30777.00 36653.93 34789.07 26690.69 20565.80 29363.92 30482.03 29043.14 31392.67 27772.83 18268.53 28085.57 303
dmvs_testset65.55 33466.45 31062.86 37879.87 33322.35 42476.55 37071.74 39277.42 11555.85 35387.77 22151.39 24880.69 39131.51 40365.92 29885.55 304
ACMM69.62 1374.34 26172.73 26479.17 28784.25 28657.87 31790.36 23489.93 23763.17 31865.64 28886.04 24837.79 33994.10 22765.89 25471.52 26185.55 304
Qingshan Xu and Wenbing Tao: Multi-Scale Geometric Consistency Guided Multi-View Stereo. CVPR 2019
pmmvs573.35 27171.52 27878.86 29178.64 35260.61 28191.08 20886.90 32167.69 27763.32 31083.64 27144.33 30890.53 32062.04 28566.02 29785.46 306
jajsoiax73.05 27471.51 27977.67 30277.46 36354.83 34388.81 27090.04 23469.13 26662.85 31783.51 27331.16 37092.75 27370.83 20369.80 26785.43 307
ACMP71.68 1075.58 25174.23 24479.62 28084.97 27359.64 29790.80 21789.07 27570.39 24962.95 31587.30 22938.28 33193.87 24472.89 18171.45 26285.36 308
Qingshan Xu and Wenbing Tao: Planar Prior Assisted PatchMatch Multi-View Stereo. AAAI 2020
mvs_tets72.71 28171.11 28077.52 30377.41 36454.52 34588.45 27689.76 24268.76 27162.70 31883.26 27629.49 37592.71 27470.51 20969.62 26985.34 309
tpmvs72.88 27869.76 29482.22 21390.98 13567.05 11878.22 36588.30 30163.10 31964.35 30274.98 36255.09 20894.27 22143.25 36269.57 27085.34 309
miper_lstm_enhance73.05 27471.73 27777.03 31183.80 29058.32 31481.76 33688.88 28269.80 25761.01 32478.23 33857.19 17787.51 35465.34 26259.53 35285.27 311
LPG-MVS_test75.82 24674.58 23779.56 28284.31 28459.37 30290.44 22989.73 24669.49 25964.86 29388.42 20538.65 32794.30 21972.56 18872.76 25185.01 312
LGP-MVS_train79.56 28284.31 28459.37 30289.73 24669.49 25964.86 29388.42 20538.65 32794.30 21972.56 18872.76 25185.01 312
PVSNet_BlendedMVS83.38 11083.43 9583.22 18893.76 5067.53 10594.06 6593.61 7879.13 8281.00 10685.14 25563.19 11197.29 7887.08 6773.91 24484.83 314
V4276.46 23474.55 23882.19 21579.14 34467.82 9690.26 23889.42 25673.75 16568.63 25681.89 29151.31 24994.09 22871.69 19864.84 30884.66 315
IterMVS72.65 28470.83 28278.09 29982.17 30962.96 22787.64 29186.28 32871.56 22860.44 32878.85 33445.42 30286.66 35863.30 27661.83 33584.65 316
Fangjinhua Wang, Silvano Galliani, Christoph Vogel, Marc Pollefeys: IterMVS: Iterative Probability Estimation for Efficient Multi-View Stereo.
IterMVS-SCA-FT71.55 29069.97 29076.32 31881.48 31560.67 27987.64 29185.99 33366.17 29159.50 33378.88 33345.53 30083.65 37562.58 28261.93 33484.63 317
pm-mvs172.89 27771.09 28178.26 29779.10 34557.62 32190.80 21789.30 26067.66 27862.91 31681.78 29349.11 27392.95 26260.29 29558.89 35584.22 318
pmmvs473.92 26771.81 27680.25 26179.17 34265.24 16287.43 29387.26 31967.64 28063.46 30983.91 27048.96 27491.53 31362.94 27865.49 30083.96 319
v875.35 25273.26 25781.61 22980.67 32366.82 12489.54 25589.27 26171.65 22163.30 31180.30 32054.99 20994.06 23167.33 23862.33 33083.94 320
UnsupCasMVSNet_eth65.79 33263.10 33573.88 33670.71 38850.29 36681.09 34489.88 23972.58 18949.25 38074.77 36532.57 36387.43 35555.96 31241.04 39383.90 321
WB-MVSnew77.14 22276.18 21780.01 26886.18 24963.24 21991.26 19994.11 6171.72 21973.52 18987.29 23045.14 30493.00 26056.98 30879.42 19883.80 322
v1074.77 25972.54 26881.46 23280.33 32866.71 12889.15 26589.08 27470.94 24063.08 31479.86 32552.52 23794.04 23465.70 25762.17 33183.64 323
F-COLMAP70.66 29368.44 30177.32 30886.37 24655.91 33688.00 28286.32 32756.94 36157.28 35088.07 21633.58 35992.49 28451.02 32768.37 28183.55 324
lessismore_v073.72 33872.93 38247.83 37861.72 40945.86 38973.76 36628.63 37989.81 33247.75 34731.37 40883.53 325
v7n71.31 29168.65 29879.28 28576.40 36860.77 27386.71 30289.45 25464.17 30658.77 34078.24 33744.59 30793.54 25057.76 30561.75 33783.52 326
Anonymous2023120667.53 32365.78 31572.79 34574.95 37447.59 37988.23 27887.32 31661.75 33458.07 34377.29 34637.79 33987.29 35642.91 36463.71 32183.48 327
CP-MVSNet70.50 29569.91 29272.26 34980.71 32251.00 36287.23 29690.30 22267.84 27659.64 33282.69 28150.23 25982.30 38551.28 32659.28 35383.46 328
K. test v363.09 34659.61 35173.53 33976.26 36949.38 37283.27 32477.15 37664.35 30347.77 38572.32 37328.73 37787.79 34949.93 33336.69 40083.41 329
PS-CasMVS69.86 30269.13 29772.07 35380.35 32750.57 36487.02 29889.75 24367.27 28259.19 33682.28 28646.58 29182.24 38650.69 32859.02 35483.39 330
PEN-MVS69.46 30568.56 29972.17 35179.27 34049.71 36886.90 30089.24 26267.24 28559.08 33782.51 28447.23 28783.54 37648.42 34057.12 35983.25 331
anonymousdsp71.14 29269.37 29676.45 31772.95 38154.71 34484.19 31588.88 28261.92 33162.15 32179.77 32738.14 33491.44 31568.90 22467.45 28983.21 332
XVG-ACMP-BASELINE68.04 31865.53 31975.56 32274.06 37852.37 35278.43 36285.88 33462.03 32958.91 33981.21 30820.38 39791.15 31760.69 29268.18 28283.16 333
MSDG69.54 30465.73 31680.96 24785.11 27163.71 20484.19 31583.28 36156.95 36054.50 35784.03 26731.50 36796.03 15142.87 36669.13 27683.14 334
test_fmvs265.78 33364.84 32268.60 36666.54 39841.71 39883.27 32469.81 39754.38 36967.91 26484.54 26315.35 40381.22 39075.65 16266.16 29682.88 335
SixPastTwentyTwo64.92 33761.78 34474.34 33378.74 35049.76 36783.42 32379.51 37362.86 32050.27 37577.35 34430.92 37290.49 32145.89 35447.06 38382.78 336
testgi64.48 34062.87 33869.31 36371.24 38440.62 40185.49 30779.92 37165.36 29754.18 35983.49 27423.74 38984.55 36841.60 37060.79 34682.77 337
DTE-MVSNet68.46 31467.33 30871.87 35577.94 36049.00 37486.16 30688.58 29566.36 29058.19 34182.21 28846.36 29283.87 37444.97 35955.17 36682.73 338
WR-MVS_H70.59 29469.94 29172.53 34681.03 31851.43 35887.35 29492.03 14867.38 28160.23 33080.70 31255.84 20083.45 37746.33 35258.58 35782.72 339
ppachtmachnet_test67.72 32063.70 33279.77 27778.92 34666.04 14388.68 27282.90 36360.11 34455.45 35475.96 35839.19 32490.55 31939.53 37752.55 37482.71 340
CL-MVSNet_self_test69.92 30068.09 30475.41 32373.25 38055.90 33790.05 24489.90 23869.96 25461.96 32376.54 35251.05 25287.64 35149.51 33550.59 37882.70 341
LS3D69.17 30666.40 31177.50 30491.92 10956.12 33585.12 30980.37 37046.96 39056.50 35287.51 22637.25 34293.71 24732.52 39979.40 19982.68 342
our_test_368.29 31664.69 32579.11 29078.92 34664.85 17388.40 27785.06 34260.32 34252.68 36476.12 35740.81 32089.80 33444.25 36155.65 36482.67 343
FMVSNet568.04 31865.66 31875.18 32684.43 28257.89 31683.54 31986.26 32961.83 33353.64 36273.30 36737.15 34585.08 36648.99 33761.77 33682.56 344
KD-MVS_2432*160069.03 30866.37 31277.01 31285.56 26161.06 26781.44 34190.25 22467.27 28258.00 34476.53 35354.49 21387.63 35248.04 34235.77 40382.34 345
miper_refine_blended69.03 30866.37 31277.01 31285.56 26161.06 26781.44 34190.25 22467.27 28258.00 34476.53 35354.49 21387.63 35248.04 34235.77 40382.34 345
pmmvs667.57 32264.76 32476.00 32172.82 38353.37 34988.71 27186.78 32553.19 37257.58 34978.03 34035.33 35492.41 28655.56 31354.88 36882.21 347
EU-MVSNet64.01 34263.01 33667.02 37274.40 37738.86 40783.27 32486.19 33145.11 39554.27 35881.15 30936.91 34880.01 39348.79 33957.02 36082.19 348
ACMH63.93 1768.62 31164.81 32380.03 26785.22 26763.25 21887.72 28884.66 34660.83 33851.57 37079.43 33127.29 38294.96 19241.76 36964.84 30881.88 349
Qingshan Xu and Wenbing Tao: Multi-Scale Geometric Consistency Guided Multi-View Stereo. CVPR 2019
D2MVS73.80 26872.02 27379.15 28979.15 34362.97 22688.58 27490.07 23172.94 18059.22 33578.30 33642.31 31692.70 27665.59 25972.00 25781.79 350
DP-MVS69.90 30166.48 30980.14 26395.36 2862.93 22889.56 25376.11 37750.27 38257.69 34885.23 25439.68 32395.73 16133.35 39271.05 26581.78 351
Patchmtry67.53 32363.93 33178.34 29482.12 31064.38 18468.72 39184.00 35348.23 38959.24 33472.41 37157.82 17289.27 33646.10 35356.68 36381.36 352
Syy-MVS69.65 30369.52 29570.03 36087.87 21143.21 39688.07 28089.01 27772.91 18263.11 31288.10 21445.28 30385.54 36322.07 41069.23 27481.32 353
myMVS_eth3d72.58 28572.74 26372.10 35287.87 21149.45 37088.07 28089.01 27772.91 18263.11 31288.10 21463.63 10185.54 36332.73 39769.23 27481.32 353
Baseline_NR-MVSNet73.99 26672.83 26177.48 30580.78 32159.29 30591.79 17484.55 34868.85 26868.99 24980.70 31256.16 19492.04 29862.67 28160.98 34481.11 355
CMPMVSbinary48.56 2166.77 32764.41 32973.84 33770.65 38950.31 36577.79 36785.73 33745.54 39444.76 39382.14 28935.40 35390.14 32963.18 27774.54 23781.07 356
M. Jancosek, T. Pajdla: Multi-View Reconstruction Preserving Weakly-Supported Surfaces. CVPR 2011
TransMVSNet (Re)70.07 29967.66 30577.31 30980.62 32559.13 30791.78 17684.94 34465.97 29260.08 33180.44 31750.78 25391.87 30048.84 33845.46 38680.94 357
ACMH+65.35 1667.65 32164.55 32676.96 31484.59 27857.10 32788.08 27980.79 36758.59 35253.00 36381.09 31026.63 38492.95 26246.51 35061.69 34080.82 358
USDC67.43 32564.51 32776.19 31977.94 36055.29 34078.38 36385.00 34373.17 17548.36 38380.37 31821.23 39492.48 28552.15 32564.02 31980.81 359
OurMVSNet-221017-064.68 33862.17 34272.21 35076.08 37147.35 38080.67 34781.02 36656.19 36451.60 36979.66 32927.05 38388.56 34053.60 32253.63 37180.71 360
MS-PatchMatch77.90 21376.50 21182.12 21885.99 25269.95 4191.75 17992.70 11673.97 15962.58 31984.44 26441.11 31995.78 15763.76 27292.17 6680.62 361
tfpnnormal70.10 29867.36 30778.32 29583.45 29660.97 26988.85 26992.77 11464.85 30060.83 32678.53 33543.52 31193.48 25231.73 40061.70 33980.52 362
MIMVSNet160.16 35757.33 35868.67 36569.71 39144.13 39378.92 36084.21 34955.05 36844.63 39471.85 37523.91 38881.54 38932.63 39855.03 36780.35 363
YYNet163.76 34560.14 34974.62 33078.06 35960.19 29183.46 32283.99 35556.18 36539.25 40271.56 37837.18 34483.34 37842.90 36548.70 38180.32 364
MDA-MVSNet_test_wron63.78 34460.16 34874.64 32978.15 35860.41 28583.49 32084.03 35156.17 36639.17 40371.59 37737.22 34383.24 38042.87 36648.73 38080.26 365
KD-MVS_self_test60.87 35358.60 35367.68 36966.13 39939.93 40475.63 37784.70 34557.32 35849.57 37868.45 38629.55 37482.87 38148.09 34147.94 38280.25 366
ITE_SJBPF70.43 35974.44 37647.06 38477.32 37560.16 34354.04 36083.53 27223.30 39084.01 37243.07 36361.58 34180.21 367
test20.0363.83 34362.65 33967.38 37170.58 39039.94 40386.57 30384.17 35063.29 31551.86 36877.30 34537.09 34682.47 38338.87 38154.13 37079.73 368
UnsupCasMVSNet_bld61.60 35057.71 35573.29 34168.73 39451.64 35678.61 36189.05 27657.20 35946.11 38661.96 39928.70 37888.60 33950.08 33238.90 39879.63 369
AllTest61.66 34958.06 35472.46 34779.57 33551.42 35980.17 35368.61 39951.25 37845.88 38781.23 30419.86 39986.58 35938.98 37957.01 36179.39 370
TestCases72.46 34779.57 33551.42 35968.61 39951.25 37845.88 38781.23 30419.86 39986.58 35938.98 37957.01 36179.39 370
ambc69.61 36161.38 40841.35 39949.07 41585.86 33650.18 37766.40 38910.16 41288.14 34545.73 35544.20 38779.32 372
Anonymous2024052162.09 34859.08 35271.10 35767.19 39648.72 37583.91 31785.23 34150.38 38147.84 38471.22 38020.74 39585.51 36546.47 35158.75 35679.06 373
testing370.38 29770.83 28269.03 36485.82 25743.93 39590.72 22290.56 21168.06 27560.24 32986.82 23864.83 8584.12 36926.33 40564.10 31779.04 374
MVP-Stereo77.12 22376.23 21579.79 27681.72 31366.34 13789.29 26090.88 20270.56 24862.01 32282.88 27949.34 26794.13 22665.55 26093.80 4378.88 375
Qingsong Yan: MVP-Stereo: A Parallel Multi-View Patchmatch Stereo Method with Dilation Matching for Photogrammetric Application.
pmmvs-eth3d65.53 33562.32 34175.19 32569.39 39359.59 29882.80 33283.43 35862.52 32451.30 37272.49 36932.86 36087.16 35755.32 31450.73 37778.83 376
OpenMVS_ROBcopyleft61.12 1866.39 32862.92 33776.80 31676.51 36757.77 31889.22 26283.41 35955.48 36753.86 36177.84 34126.28 38593.95 24034.90 38968.76 27878.68 377
LTVRE_ROB59.60 1966.27 32963.54 33374.45 33184.00 28951.55 35767.08 39883.53 35758.78 35054.94 35680.31 31934.54 35693.23 25640.64 37568.03 28478.58 378
Andreas Kuhn, Heiko Hirschmüller, Daniel Scharstein, Helmut Mayer: A TV Prior for High-Quality Scalable Multi-View Stereo Reconstruction. International Journal of Computer Vision 2016
mmtdpeth68.33 31566.37 31274.21 33582.81 30451.73 35584.34 31480.42 36967.01 28671.56 21868.58 38530.52 37392.35 29075.89 16036.21 40178.56 379
PM-MVS59.40 35856.59 36067.84 36763.63 40241.86 39776.76 36963.22 40759.01 34951.07 37372.27 37411.72 41083.25 37961.34 28850.28 37978.39 380
test_fmvs356.82 36154.86 36562.69 38053.59 41335.47 41075.87 37465.64 40443.91 39855.10 35571.43 3796.91 41874.40 40068.64 22652.63 37278.20 381
mvs5depth61.03 35257.65 35771.18 35667.16 39747.04 38572.74 38177.49 37457.47 35760.52 32772.53 36822.84 39188.38 34249.15 33638.94 39778.11 382
N_pmnet50.55 36949.11 37154.88 38877.17 3654.02 43284.36 3132.00 43048.59 38545.86 38968.82 38432.22 36482.80 38231.58 40151.38 37677.81 383
new-patchmatchnet59.30 35956.48 36167.79 36865.86 40044.19 39282.47 33381.77 36459.94 34543.65 39766.20 39027.67 38181.68 38839.34 37841.40 39277.50 384
EG-PatchMatch MVS68.55 31265.41 32077.96 30078.69 35162.93 22889.86 25089.17 26660.55 33950.27 37577.73 34322.60 39294.06 23147.18 34872.65 25376.88 385
MVS-HIRNet60.25 35655.55 36374.35 33284.37 28356.57 33371.64 38474.11 38534.44 40645.54 39142.24 41431.11 37189.81 33240.36 37676.10 23076.67 386
MDA-MVSNet-bldmvs61.54 35157.70 35673.05 34279.53 33757.00 33183.08 32881.23 36557.57 35434.91 40772.45 37032.79 36186.26 36135.81 38641.95 39175.89 387
COLMAP_ROBcopyleft57.96 2062.98 34759.65 35072.98 34381.44 31653.00 35183.75 31875.53 38248.34 38748.81 38281.40 30224.14 38790.30 32232.95 39460.52 34875.65 388
Johannes L. Schönberger, Enliang Zheng, Marc Pollefeys, Jan-Michael Frahm: Pixelwise View Selection for Unstructured Multi-View Stereo. ECCV 2016
TinyColmap60.32 35556.42 36272.00 35478.78 34953.18 35078.36 36475.64 38052.30 37341.59 40175.82 36014.76 40688.35 34335.84 38554.71 36974.46 389
mamv465.18 33667.43 30658.44 38277.88 36249.36 37369.40 39070.99 39548.31 38857.78 34785.53 25259.01 16051.88 42073.67 17764.32 31474.07 390
ttmdpeth53.34 36749.96 37063.45 37762.07 40740.04 40272.06 38265.64 40442.54 40251.88 36777.79 34213.94 40976.48 39632.93 39530.82 41173.84 391
MVStest151.35 36846.89 37264.74 37465.06 40151.10 36167.33 39772.58 38830.20 41035.30 40574.82 36327.70 38069.89 40524.44 40724.57 41473.22 392
mvsany_test348.86 37146.35 37456.41 38446.00 41931.67 41562.26 40347.25 42043.71 39945.54 39168.15 38710.84 41164.44 41657.95 30435.44 40573.13 393
pmmvs355.51 36351.50 36967.53 37057.90 41150.93 36380.37 34973.66 38640.63 40444.15 39664.75 39316.30 40178.97 39444.77 36040.98 39572.69 394
test_method38.59 38135.16 38448.89 39554.33 41221.35 42545.32 41653.71 4147.41 42228.74 41051.62 4068.70 41552.87 41933.73 39032.89 40772.47 395
test_040264.54 33961.09 34574.92 32884.10 28860.75 27587.95 28379.71 37252.03 37452.41 36577.20 34732.21 36591.64 30623.14 40861.03 34372.36 396
LF4IMVS54.01 36652.12 36759.69 38162.41 40539.91 40568.59 39268.28 40142.96 40144.55 39575.18 36114.09 40868.39 40741.36 37251.68 37570.78 397
TDRefinement55.28 36451.58 36866.39 37359.53 41046.15 38876.23 37272.80 38744.60 39642.49 39976.28 35615.29 40482.39 38433.20 39343.75 38870.62 398
test_f46.58 37243.45 37655.96 38545.18 42032.05 41461.18 40449.49 41833.39 40742.05 40062.48 3987.00 41765.56 41247.08 34943.21 39070.27 399
LCM-MVSNet40.54 37735.79 38254.76 38936.92 42630.81 41651.41 41369.02 39822.07 41324.63 41345.37 4104.56 42265.81 41133.67 39134.50 40667.67 400
ANet_high40.27 38035.20 38355.47 38634.74 42734.47 41263.84 40271.56 39348.42 38618.80 41641.08 4159.52 41464.45 41520.18 4118.66 42367.49 401
test_vis1_rt59.09 36057.31 35964.43 37568.44 39546.02 38983.05 33048.63 41951.96 37549.57 37863.86 39516.30 40180.20 39271.21 20162.79 32567.07 402
kuosan60.86 35460.24 34762.71 37981.57 31446.43 38775.70 37685.88 33457.98 35348.95 38169.53 38358.42 16576.53 39528.25 40435.87 40265.15 403
PMMVS237.93 38233.61 38550.92 39246.31 41824.76 42260.55 40750.05 41628.94 41220.93 41447.59 4074.41 42465.13 41325.14 40618.55 41862.87 404
new_pmnet49.31 37046.44 37357.93 38362.84 40440.74 40068.47 39362.96 40836.48 40535.09 40657.81 40314.97 40572.18 40232.86 39646.44 38460.88 405
dongtai55.18 36555.46 36454.34 39076.03 37236.88 40876.07 37384.61 34751.28 37743.41 39864.61 39456.56 19167.81 40818.09 41328.50 41358.32 406
FPMVS45.64 37443.10 37853.23 39151.42 41636.46 40964.97 40071.91 39129.13 41127.53 41161.55 4009.83 41365.01 41416.00 41755.58 36558.22 407
WB-MVS46.23 37344.94 37550.11 39362.13 40621.23 42676.48 37155.49 41245.89 39335.78 40461.44 40135.54 35272.83 4019.96 42021.75 41556.27 408
SSC-MVS44.51 37543.35 37747.99 39761.01 40918.90 42874.12 37954.36 41343.42 40034.10 40860.02 40234.42 35770.39 4049.14 42219.57 41654.68 409
APD_test140.50 37837.31 38150.09 39451.88 41435.27 41159.45 40852.59 41521.64 41426.12 41257.80 4044.56 42266.56 41022.64 40939.09 39648.43 410
EGC-MVSNET42.35 37638.09 37955.11 38774.57 37546.62 38671.63 38555.77 4110.04 4250.24 42662.70 39714.24 40774.91 39917.59 41446.06 38543.80 411
test_vis3_rt40.46 37937.79 38048.47 39644.49 42133.35 41366.56 39932.84 42732.39 40829.65 40939.13 4173.91 42568.65 40650.17 33040.99 39443.40 412
testf132.77 38429.47 38742.67 40041.89 42330.81 41652.07 41143.45 42115.45 41718.52 41744.82 4112.12 42658.38 41716.05 41530.87 40938.83 413
APD_test232.77 38429.47 38742.67 40041.89 42330.81 41652.07 41143.45 42115.45 41718.52 41744.82 4112.12 42658.38 41716.05 41530.87 40938.83 413
MVEpermissive24.84 2324.35 38819.77 39438.09 40234.56 42826.92 42126.57 41838.87 42511.73 42111.37 42227.44 4181.37 42950.42 42111.41 41914.60 41936.93 415
Simon Fuhrmann, Fabian Langguth, Michael Goesele: MVE - A Multi-View Reconstruction Environment. EUROGRAPHICS Workshops on Graphics and Cultural Heritage (2014)
DeepMVS_CXcopyleft34.71 40351.45 41524.73 42328.48 42931.46 40917.49 41952.75 4055.80 42042.60 42418.18 41219.42 41736.81 416
PMVScopyleft26.43 2231.84 38628.16 38942.89 39925.87 42927.58 42050.92 41449.78 41721.37 41514.17 42140.81 4162.01 42866.62 4099.61 42138.88 39934.49 417
Y. Furukawa, J. Ponce: Accurate, dense, and robust multiview stereopsis. PAMI (2010)
Gipumacopyleft34.91 38331.44 38645.30 39870.99 38739.64 40619.85 42072.56 38920.10 41616.16 42021.47 4215.08 42171.16 40313.07 41843.70 38925.08 418
S. Galliani, K. Lasinger, K. Schindler: Massively Parallel Multiview Stereopsis by Surface Normal Diffusion. ICCV 2015
tmp_tt22.26 39023.75 39217.80 4065.23 43012.06 43135.26 41739.48 4242.82 42418.94 41544.20 41322.23 39324.64 42536.30 3839.31 42216.69 419
E-PMN24.61 38724.00 39126.45 40443.74 42218.44 42960.86 40539.66 42315.11 4199.53 42322.10 4206.52 41946.94 4228.31 42310.14 42013.98 420
EMVS23.76 38923.20 39325.46 40541.52 42516.90 43060.56 40638.79 42614.62 4208.99 42420.24 4237.35 41645.82 4237.25 4249.46 42113.64 421
wuyk23d11.30 39210.95 39512.33 40748.05 41719.89 42725.89 4191.92 4313.58 4233.12 4251.37 4250.64 43015.77 4266.23 4257.77 4241.35 422
test1236.92 3959.21 3980.08 4080.03 4320.05 43381.65 3390.01 4330.02 4270.14 4280.85 4270.03 4310.02 4270.12 4270.00 4260.16 423
testmvs7.23 3949.62 3970.06 4090.04 4310.02 43484.98 3110.02 4320.03 4260.18 4271.21 4260.01 4320.02 4270.14 4260.01 4250.13 424
mmdepth0.00 3970.00 4000.00 4100.00 4330.00 4350.00 4210.00 4340.00 4280.00 4290.00 4280.00 4330.00 4290.00 4280.00 4260.00 425
monomultidepth0.00 3970.00 4000.00 4100.00 4330.00 4350.00 4210.00 4340.00 4280.00 4290.00 4280.00 4330.00 4290.00 4280.00 4260.00 425
test_blank0.00 3970.00 4000.00 4100.00 4330.00 4350.00 4210.00 4340.00 4280.00 4290.00 4280.00 4330.00 4290.00 4280.00 4260.00 425
uanet_test0.00 3970.00 4000.00 4100.00 4330.00 4350.00 4210.00 4340.00 4280.00 4290.00 4280.00 4330.00 4290.00 4280.00 4260.00 425
DCPMVS0.00 3970.00 4000.00 4100.00 4330.00 4350.00 4210.00 4340.00 4280.00 4290.00 4280.00 4330.00 4290.00 4280.00 4260.00 425
cdsmvs_eth3d_5k19.86 39126.47 3900.00 4100.00 4330.00 4350.00 42193.45 860.00 4280.00 42995.27 6149.56 2650.00 4290.00 4280.00 4260.00 425
pcd_1.5k_mvsjas4.46 3965.95 3990.00 4100.00 4330.00 4350.00 4210.00 4340.00 4280.00 4290.00 42853.55 2260.00 4290.00 4280.00 4260.00 425
sosnet-low-res0.00 3970.00 4000.00 4100.00 4330.00 4350.00 4210.00 4340.00 4280.00 4290.00 4280.00 4330.00 4290.00 4280.00 4260.00 425
sosnet0.00 3970.00 4000.00 4100.00 4330.00 4350.00 4210.00 4340.00 4280.00 4290.00 4280.00 4330.00 4290.00 4280.00 4260.00 425
uncertanet0.00 3970.00 4000.00 4100.00 4330.00 4350.00 4210.00 4340.00 4280.00 4290.00 4280.00 4330.00 4290.00 4280.00 4260.00 425
Regformer0.00 3970.00 4000.00 4100.00 4330.00 4350.00 4210.00 4340.00 4280.00 4290.00 4280.00 4330.00 4290.00 4280.00 4260.00 425
ab-mvs-re7.91 39310.55 3960.00 4100.00 4330.00 4350.00 4210.00 4340.00 4280.00 42994.95 710.00 4330.00 4290.00 4280.00 4260.00 425
uanet0.00 3970.00 4000.00 4100.00 4330.00 4350.00 4210.00 4340.00 4280.00 4290.00 4280.00 4330.00 4290.00 4280.00 4260.00 425
WAC-MVS49.45 37031.56 402
FOURS193.95 4661.77 25393.96 7291.92 15262.14 32886.57 48
test_one_060196.32 1869.74 4994.18 5871.42 23290.67 1996.85 1674.45 20
eth-test20.00 433
eth-test0.00 433
ZD-MVS96.63 965.50 15893.50 8470.74 24685.26 6495.19 6764.92 8497.29 7887.51 5993.01 56
test_241102_ONE96.45 1269.38 5594.44 4771.65 22192.11 797.05 776.79 999.11 6
9.1487.63 2893.86 4894.41 5294.18 5872.76 18686.21 5096.51 2566.64 6497.88 4490.08 4194.04 39
save fliter93.84 4967.89 9595.05 3992.66 12078.19 97
test072696.40 1569.99 3896.76 894.33 5571.92 20791.89 1197.11 673.77 23
test_part296.29 1968.16 8890.78 17
sam_mvs54.91 210
MTGPAbinary92.23 134
test_post178.95 35920.70 42253.05 23191.50 31460.43 293
test_post23.01 41956.49 19292.67 277
patchmatchnet-post67.62 38857.62 17490.25 323
MTMP93.77 8632.52 428
gm-plane-assit88.42 19367.04 11978.62 9391.83 15497.37 7276.57 156
TEST994.18 4167.28 11094.16 6093.51 8271.75 21885.52 5995.33 5668.01 5497.27 82
test_894.19 4067.19 11294.15 6293.42 8971.87 21285.38 6295.35 5568.19 5296.95 108
agg_prior94.16 4366.97 12193.31 9284.49 7096.75 118
test_prior467.18 11493.92 75
test_prior295.10 3875.40 13985.25 6595.61 4767.94 5587.47 6194.77 26
旧先验292.00 16559.37 34887.54 4193.47 25375.39 164
新几何291.41 186
原ACMM292.01 162
testdata296.09 14561.26 289
segment_acmp65.94 72
testdata189.21 26377.55 111
plane_prior786.94 23561.51 259
plane_prior687.23 22762.32 24350.66 254
plane_prior489.14 200
plane_prior361.95 25179.09 8372.53 202
plane_prior293.13 11278.81 90
plane_prior187.15 229
plane_prior62.42 23993.85 7979.38 7578.80 206
n20.00 434
nn0.00 434
door-mid66.01 403
test1193.01 106
door66.57 402
HQP5-MVS63.66 208
HQP-NCC87.54 22094.06 6579.80 6674.18 181
ACMP_Plane87.54 22094.06 6579.80 6674.18 181
BP-MVS77.63 151
HQP3-MVS91.70 16878.90 204
HQP2-MVS51.63 246
NP-MVS87.41 22363.04 22490.30 181
MDTV_nov1_ep1372.61 26689.06 17868.48 7680.33 35090.11 23071.84 21471.81 21475.92 35953.01 23293.92 24148.04 34273.38 246
ACMMP++_ref71.63 259
ACMMP++69.72 268
Test By Simon54.21 220