This table lists the benchmark results for the high-res multi-view scenario. The following metrics are evaluated:

(*) For exact definitions, detailing how potentially incomplete ground truth is taken into account, see our paper.

The datasets are grouped into different categories, and result averages are computed for a category and method if results of the method are available for all datasets within the category. Note that the category "all" includes both the high-res multi-view and the low-res many-view scenarios.

Methods with suffix _ROB may participate in the Robust Vision Challenge.

Click a dataset result cell to show a visualization of the reconstruction. For training datasets, ground truth and accuracy / completeness visualizations are also available. The visualizations may not work with mobile browsers.




Method Infoallhigh-res
multi-view
indooroutdoorbotani.boulde.bridgedoorexhibi.lectur.living.loungeobserv.old co.statueterrac.
sort bysort bysort bysort bysorted bysort bysort bysort bysort bysort bysort bysort bysort bysort bysort bysort by
MG-MVS87.11 3486.27 4689.62 897.79 176.27 494.96 4394.49 4578.74 9283.87 7792.94 12664.34 9196.94 10975.19 16594.09 3895.66 52
MCST-MVS91.08 191.46 389.94 497.66 273.37 1097.13 295.58 1189.33 185.77 5696.26 3272.84 2999.38 192.64 2295.93 997.08 11
OPU-MVS89.97 397.52 373.15 1496.89 697.00 983.82 299.15 295.72 597.63 397.62 2
DVP-MVS++90.53 491.09 588.87 1697.31 469.91 4293.96 7294.37 5372.48 19192.07 996.85 1683.82 299.15 291.53 3297.42 497.55 4
MSC_two_6792asdad89.60 997.31 473.22 1295.05 2799.07 1392.01 2794.77 2696.51 24
No_MVS89.60 997.31 473.22 1295.05 2799.07 1392.01 2794.77 2696.51 24
DP-MVS Recon82.73 12181.65 12885.98 8897.31 467.06 11795.15 3691.99 14969.08 26776.50 16193.89 10854.48 21598.20 3570.76 20585.66 14292.69 174
CNVR-MVS90.32 690.89 888.61 2296.76 870.65 3096.47 1494.83 3184.83 1189.07 3196.80 1970.86 4199.06 1592.64 2295.71 1196.12 40
ZD-MVS96.63 965.50 15893.50 8470.74 24685.26 6495.19 6764.92 8497.29 7887.51 5993.01 56
NCCC89.07 1689.46 1587.91 2896.60 1069.05 6396.38 1594.64 4084.42 1286.74 4796.20 3366.56 6698.76 2489.03 4994.56 3495.92 46
IU-MVS96.46 1169.91 4295.18 2180.75 5195.28 192.34 2495.36 1496.47 28
SED-MVS89.94 990.36 1088.70 1896.45 1269.38 5596.89 694.44 4771.65 22192.11 797.21 476.79 999.11 692.34 2495.36 1497.62 2
test_241102_ONE96.45 1269.38 5594.44 4771.65 22192.11 797.05 776.79 999.11 6
test_0728_SECOND88.70 1896.45 1270.43 3396.64 1094.37 5399.15 291.91 3094.90 2296.51 24
DVP-MVScopyleft89.41 1389.73 1488.45 2596.40 1569.99 3896.64 1094.52 4371.92 20790.55 2096.93 1173.77 2399.08 1191.91 3094.90 2296.29 35
Zhenlong Yuan, Jinguo Luo, Fei Shen, Zhaoxin Li, Cong Liu, Tianlu Mao, Zhaoqi Wang: DVP-MVS: Synergize Depth-Edge and Visibility Prior for Multi-View Stereo. AAAI2025
test072696.40 1569.99 3896.76 894.33 5571.92 20791.89 1197.11 673.77 23
AdaColmapbinary78.94 19077.00 20684.76 13396.34 1765.86 14892.66 13587.97 31262.18 32670.56 22792.37 14143.53 31097.35 7464.50 26782.86 16691.05 216
test_one_060196.32 1869.74 4994.18 5871.42 23290.67 1996.85 1674.45 20
test_part296.29 1968.16 8890.78 17
DPE-MVScopyleft88.77 1789.21 1687.45 4396.26 2067.56 10394.17 5994.15 6068.77 27090.74 1897.27 276.09 1298.49 2990.58 4094.91 2196.30 34
Kehua Chen, Zhenlong Yuan, Tianlu Mao, Zhaoqi Wang: Dual-Level Precision Edges Guided Multi-View Stereo with Accurate Planarization. AAAI2025
MAR-MVS84.18 9383.43 9586.44 7596.25 2165.93 14794.28 5794.27 5774.41 14979.16 13095.61 4753.99 22198.88 2269.62 21493.26 5494.50 113
Zhenyu Xu, Yiguang Liu, Xuelei Shi, Ying Wang, Yunan Zheng: MARMVS: Matching Ambiguity Reduced Multiple View Stereo for Efficient Large Scale Scene Reconstruction. CVPR 2020
API-MVS82.28 12980.53 14987.54 4196.13 2270.59 3193.63 9391.04 20065.72 29575.45 17192.83 13156.11 19698.89 2164.10 26989.75 9993.15 161
APDe-MVScopyleft87.54 2787.84 2686.65 6696.07 2366.30 13894.84 4593.78 6769.35 26188.39 3496.34 3067.74 5797.66 5690.62 3993.44 5196.01 44
Zhaojie Zeng, Yuesong Wang, Tao Guan: Matching Ambiguity-Resilient Multi-View Stereo via Adaptive Patch Deformation. Pattern Recognition
patch_mono-289.71 1190.99 685.85 9496.04 2463.70 20595.04 4095.19 2086.74 791.53 1595.15 6873.86 2297.58 6193.38 1692.00 6996.28 37
PAPR85.15 7284.47 7987.18 4996.02 2568.29 8191.85 17293.00 10876.59 12679.03 13195.00 7061.59 12997.61 6078.16 14889.00 10595.63 53
APD-MVScopyleft85.93 5685.99 5485.76 9895.98 2665.21 16393.59 9592.58 12566.54 28886.17 5295.88 4163.83 9797.00 9986.39 7392.94 5795.06 82
Yuesong Wang, Zhaojie Zeng and etc.: Adaptive Patch Deformation for Textureless-Resilient Multi-View Stereo. CVPR2023
DeepC-MVS_fast79.48 287.95 2288.00 2587.79 3195.86 2768.32 8095.74 2194.11 6183.82 1683.49 7996.19 3464.53 9098.44 3183.42 10394.88 2596.61 18
Andreas Kuhn, Christian Sormann, Mattia Rossi, Oliver Erdler, Friedrich Fraundorfer: DeepC-MVS: Deep Confidence Prediction for Multi-View Stereo Reconstruction. 3DV 2020
DP-MVS69.90 30166.48 30980.14 26395.36 2862.93 22889.56 25376.11 37750.27 38257.69 34885.23 25439.68 32395.73 16133.35 39271.05 26581.78 351
114514_t79.17 18577.67 19183.68 17495.32 2965.53 15792.85 12591.60 17263.49 31267.92 26390.63 17446.65 29095.72 16567.01 24283.54 16189.79 231
HPM-MVS++copyleft89.37 1489.95 1387.64 3495.10 3068.23 8695.24 3394.49 4582.43 2888.90 3296.35 2971.89 3898.63 2688.76 5096.40 696.06 41
CSCG86.87 3686.26 4788.72 1795.05 3170.79 2993.83 8495.33 1768.48 27477.63 14794.35 9373.04 2798.45 3084.92 8693.71 4796.92 14
dcpmvs_287.37 3187.55 3086.85 5895.04 3268.20 8790.36 23490.66 20879.37 7681.20 10193.67 11274.73 1696.55 12590.88 3792.00 6995.82 48
LFMVS84.34 8782.73 11489.18 1394.76 3373.25 1194.99 4291.89 15571.90 20982.16 9393.49 11747.98 28197.05 9482.55 11084.82 14797.25 8
CDPH-MVS85.71 6185.46 6486.46 7494.75 3467.19 11293.89 7792.83 11370.90 24183.09 8495.28 5963.62 10297.36 7380.63 12594.18 3794.84 92
test_prior86.42 7694.71 3567.35 10993.10 10396.84 11595.05 83
test1287.09 5294.60 3668.86 6792.91 11082.67 9165.44 7797.55 6493.69 4894.84 92
test_yl84.28 8883.16 10487.64 3494.52 3769.24 5995.78 1895.09 2469.19 26481.09 10392.88 12957.00 18197.44 6881.11 12381.76 18096.23 38
DCV-MVSNet84.28 8883.16 10487.64 3494.52 3769.24 5995.78 1895.09 2469.19 26481.09 10392.88 12957.00 18197.44 6881.11 12381.76 18096.23 38
CANet89.61 1289.99 1288.46 2494.39 3969.71 5096.53 1393.78 6786.89 689.68 2895.78 4265.94 7299.10 992.99 1993.91 4296.58 21
test_894.19 4067.19 11294.15 6293.42 8971.87 21285.38 6295.35 5568.19 5296.95 108
TEST994.18 4167.28 11094.16 6093.51 8271.75 21885.52 5995.33 5668.01 5497.27 82
train_agg87.21 3387.42 3286.60 6894.18 4167.28 11094.16 6093.51 8271.87 21285.52 5995.33 5668.19 5297.27 8289.09 4794.90 2295.25 76
agg_prior94.16 4366.97 12193.31 9284.49 7096.75 118
PAPM_NR82.97 11881.84 12686.37 7894.10 4466.76 12787.66 29092.84 11269.96 25474.07 18593.57 11563.10 11497.50 6670.66 20790.58 9094.85 89
MVS_030490.32 690.90 788.55 2394.05 4570.23 3697.00 593.73 7487.30 492.15 696.15 3666.38 6798.94 1796.71 294.67 3396.47 28
FOURS193.95 4661.77 25393.96 7291.92 15262.14 32886.57 48
VNet86.20 5085.65 6187.84 3093.92 4769.99 3895.73 2395.94 778.43 9586.00 5493.07 12358.22 16897.00 9985.22 8084.33 15496.52 23
9.1487.63 2893.86 4894.41 5294.18 5872.76 18686.21 5096.51 2566.64 6497.88 4490.08 4194.04 39
save fliter93.84 4967.89 9595.05 3992.66 12078.19 97
PVSNet_BlendedMVS83.38 11083.43 9583.22 18893.76 5067.53 10594.06 6593.61 7879.13 8281.00 10685.14 25563.19 11197.29 7887.08 6773.91 24484.83 314
PVSNet_Blended86.73 4286.86 4086.31 8193.76 5067.53 10596.33 1693.61 7882.34 3081.00 10693.08 12263.19 11197.29 7887.08 6791.38 8094.13 128
HFP-MVS84.73 8084.40 8185.72 10093.75 5265.01 16993.50 10093.19 9872.19 20179.22 12994.93 7359.04 15997.67 5381.55 11592.21 6494.49 114
Anonymous20240521177.96 21075.33 22885.87 9293.73 5364.52 17594.85 4485.36 34062.52 32476.11 16290.18 18429.43 37697.29 7868.51 22777.24 22395.81 49
balanced_conf0389.08 1588.84 1789.81 693.66 5475.15 590.61 22893.43 8884.06 1486.20 5190.17 18572.42 3396.98 10393.09 1895.92 1097.29 7
testing9986.01 5485.47 6387.63 3893.62 5571.25 2393.47 10395.23 1980.42 5680.60 11191.95 15171.73 3996.50 12880.02 13182.22 17495.13 79
SD-MVS87.49 2887.49 3187.50 4293.60 5668.82 6993.90 7692.63 12376.86 11987.90 3795.76 4366.17 6997.63 5889.06 4891.48 7896.05 42
Zhenlong Yuan, Jiakai Cao, Zhaoxin Li, Hao Jiang and Zhaoqi Wang: SD-MVS: Segmentation-driven Deformation Multi-View Stereo with Spherical Refinement and EM optimization. AAAI2024
testing9185.93 5685.31 6787.78 3293.59 5771.47 1993.50 10095.08 2680.26 5880.53 11291.93 15270.43 4396.51 12780.32 12982.13 17695.37 63
ACMMPR84.37 8584.06 8385.28 11493.56 5864.37 18593.50 10093.15 10072.19 20178.85 13794.86 7656.69 18897.45 6781.55 11592.20 6594.02 135
testing1186.71 4386.44 4587.55 4093.54 5971.35 2193.65 9195.58 1181.36 4580.69 10992.21 14672.30 3496.46 13085.18 8283.43 16294.82 95
region2R84.36 8684.03 8485.36 11193.54 5964.31 18893.43 10592.95 10972.16 20478.86 13694.84 7756.97 18397.53 6581.38 11992.11 6794.24 121
TSAR-MVS + GP.87.96 2188.37 2186.70 6593.51 6165.32 16095.15 3693.84 6678.17 9885.93 5594.80 7875.80 1398.21 3489.38 4388.78 10796.59 19
PHI-MVS86.83 3986.85 4186.78 6393.47 6265.55 15695.39 3095.10 2371.77 21785.69 5896.52 2462.07 12498.77 2386.06 7695.60 1296.03 43
SR-MVS82.81 12082.58 11683.50 18093.35 6361.16 26692.23 15191.28 18664.48 30281.27 10095.28 5953.71 22595.86 15582.87 10788.77 10893.49 151
EPNet87.84 2488.38 2086.23 8293.30 6466.05 14295.26 3294.84 3087.09 588.06 3594.53 8466.79 6397.34 7583.89 9791.68 7495.29 70
Wanjuan Su, Wenbing Tao: Efficient Edge-Preserving Multi-View Stereo Network for Depth Estimation. AAAI 2023
XVS83.87 9983.47 9385.05 12193.22 6563.78 19992.92 12192.66 12073.99 15778.18 14194.31 9655.25 20397.41 7079.16 13891.58 7693.95 137
X-MVStestdata76.86 22774.13 24685.05 12193.22 6563.78 19992.92 12192.66 12073.99 15778.18 14110.19 42455.25 20397.41 7079.16 13891.58 7693.95 137
SMA-MVScopyleft88.14 1888.29 2287.67 3393.21 6768.72 7293.85 7994.03 6374.18 15491.74 1296.67 2265.61 7698.42 3389.24 4696.08 795.88 47
Yufeng Yin; Xiaoyan Liu; Zichao Zhang: SMA-MVS: Segmentation-Guided Multi-Scale Anchor Deformation Patch Multi-View Stereo. IEEE Transactions on Circuits and Systems for Video Technology
原ACMM184.42 14893.21 6764.27 19093.40 9165.39 29679.51 12492.50 13558.11 17096.69 11965.27 26393.96 4092.32 185
MVS_111021_HR86.19 5185.80 5887.37 4493.17 6969.79 4793.99 7193.76 7079.08 8478.88 13593.99 10662.25 12398.15 3685.93 7791.15 8494.15 127
CP-MVS83.71 10483.40 9884.65 13993.14 7063.84 19794.59 4992.28 13271.03 23977.41 15094.92 7455.21 20696.19 14081.32 12090.70 8893.91 139
DELS-MVS90.05 890.09 1189.94 493.14 7073.88 997.01 494.40 5188.32 385.71 5794.91 7574.11 2198.91 1887.26 6495.94 897.03 12
Christian Sormann, Emanuele Santellani, Mattia Rossi, Andreas Kuhn, Friedrich Fraundorfer: DELS-MVS: Deep Epipolar Line Search for Multi-View Stereo. Winter Conference on Applications of Computer Vision (WACV), 2023
ZNCC-MVS85.33 6985.08 7186.06 8693.09 7265.65 15293.89 7793.41 9073.75 16579.94 11994.68 8160.61 13998.03 3882.63 10993.72 4694.52 111
WBMVS81.67 13980.98 14083.72 17293.07 7369.40 5394.33 5593.05 10476.84 12072.05 21184.14 26674.49 1993.88 24372.76 18568.09 28387.88 256
UBG86.83 3986.70 4287.20 4893.07 7369.81 4693.43 10595.56 1381.52 3881.50 9792.12 14773.58 2696.28 13684.37 9285.20 14495.51 58
DeepPCF-MVS81.17 189.72 1091.38 484.72 13593.00 7558.16 31596.72 994.41 4986.50 890.25 2297.83 175.46 1498.67 2592.78 2195.49 1397.32 6
PLCcopyleft68.80 1475.23 25473.68 25379.86 27492.93 7658.68 31190.64 22588.30 30160.90 33764.43 30190.53 17542.38 31594.57 20756.52 30976.54 22786.33 282
Jie Liao, Yanping Fu, Qingan Yan, Chunxia xiao: Pyramid Multi-View Stereo with Local Consistency. Pacific Graphics 2019
reproduce_monomvs79.49 18079.11 17480.64 25292.91 7761.47 26191.17 20693.28 9383.09 2164.04 30382.38 28566.19 6894.57 20781.19 12257.71 35885.88 297
testing22285.18 7184.69 7886.63 6792.91 7769.91 4292.61 13795.80 980.31 5780.38 11492.27 14368.73 4995.19 18675.94 15983.27 16494.81 96
MSP-MVS90.38 591.87 185.88 9192.83 7964.03 19593.06 11494.33 5582.19 3193.65 396.15 3685.89 197.19 8691.02 3697.75 196.43 31
Zhenlong Yuan, Cong Liu, Fei Shen, Zhaoxin Li, Jingguo luo, Tianlu Mao and Zhaoqi Wang: MSP-MVS: Multi-granularity Segmentation Prior Guided Multi-View Stereo. AAAI2025
mPP-MVS82.96 11982.44 11984.52 14592.83 7962.92 23092.76 12791.85 15971.52 22975.61 16994.24 9953.48 22996.99 10278.97 14190.73 8793.64 148
GST-MVS84.63 8284.29 8285.66 10292.82 8165.27 16193.04 11693.13 10173.20 17478.89 13294.18 10159.41 15397.85 4581.45 11792.48 6393.86 142
WTY-MVS86.32 4885.81 5787.85 2992.82 8169.37 5795.20 3495.25 1882.71 2581.91 9494.73 7967.93 5697.63 5879.55 13482.25 17396.54 22
PGM-MVS83.25 11282.70 11584.92 12492.81 8364.07 19490.44 22992.20 13871.28 23377.23 15394.43 8755.17 20797.31 7779.33 13791.38 8093.37 153
EI-MVSNet-Vis-set83.77 10283.67 8784.06 15992.79 8463.56 21191.76 17794.81 3279.65 7077.87 14494.09 10363.35 10997.90 4279.35 13679.36 20090.74 218
SF-MVS87.03 3587.09 3586.84 5992.70 8567.45 10893.64 9293.76 7070.78 24586.25 4996.44 2766.98 6197.79 4788.68 5194.56 3495.28 72
MVSTER82.47 12682.05 12283.74 16892.68 8669.01 6491.90 16993.21 9579.83 6572.14 20985.71 25174.72 1794.72 20075.72 16172.49 25487.50 260
SPE-MVS-test86.14 5287.01 3683.52 17792.63 8759.36 30495.49 2791.92 15280.09 6285.46 6195.53 5161.82 12895.77 15986.77 7193.37 5295.41 60
MP-MVScopyleft85.02 7484.97 7385.17 11992.60 8864.27 19093.24 10992.27 13373.13 17679.63 12394.43 8761.90 12597.17 8785.00 8492.56 6194.06 133
Rongxuan Tan, Qing Wang, et al.: MP-MVS: Multi-Scale Windows PatchMatch and Planar Prior Multi-View Stereo.
ETVMVS84.22 9283.71 8685.76 9892.58 8968.25 8592.45 14595.53 1579.54 7279.46 12591.64 15970.29 4494.18 22569.16 22082.76 17094.84 92
thres20079.66 17678.33 18183.66 17692.54 9065.82 15093.06 11496.31 374.90 14673.30 19188.66 20259.67 14995.61 16947.84 34578.67 20789.56 236
APD-MVS_3200maxsize81.64 14181.32 13182.59 20292.36 9158.74 31091.39 19091.01 20163.35 31479.72 12294.62 8351.82 24196.14 14279.71 13287.93 11692.89 172
新几何184.73 13492.32 9264.28 18991.46 17859.56 34779.77 12192.90 12756.95 18496.57 12363.40 27392.91 5893.34 154
EI-MVSNet-UG-set83.14 11582.96 10783.67 17592.28 9363.19 22291.38 19294.68 3879.22 7976.60 15993.75 10962.64 11897.76 4878.07 14978.01 21190.05 227
HPM-MVScopyleft83.25 11282.95 10984.17 15792.25 9462.88 23290.91 21191.86 15770.30 25077.12 15493.96 10756.75 18696.28 13682.04 11291.34 8293.34 154
Chunlin Ren, Qingshan Xu, Shikun Zhang, Jiaqi Yang: Hierarchical Prior Mining for Non-local Multi-View Stereo. ICCV 2023
HY-MVS76.49 584.28 8883.36 10087.02 5592.22 9567.74 9884.65 31294.50 4479.15 8182.23 9287.93 21866.88 6296.94 10980.53 12682.20 17596.39 33
tfpn200view978.79 19577.43 19682.88 19392.21 9664.49 17692.05 16096.28 473.48 17171.75 21588.26 21060.07 14595.32 18145.16 35677.58 21688.83 241
thres40078.68 19777.43 19682.43 20492.21 9664.49 17692.05 16096.28 473.48 17171.75 21588.26 21060.07 14595.32 18145.16 35677.58 21687.48 261
reproduce-ours83.51 10783.33 10184.06 15992.18 9860.49 28390.74 22092.04 14564.35 30383.24 8095.59 4959.05 15797.27 8283.61 9989.17 10394.41 116
our_new_method83.51 10783.33 10184.06 15992.18 9860.49 28390.74 22092.04 14564.35 30383.24 8095.59 4959.05 15797.27 8283.61 9989.17 10394.41 116
MM90.87 291.52 288.92 1592.12 10071.10 2797.02 396.04 688.70 291.57 1496.19 3470.12 4598.91 1896.83 195.06 1796.76 15
PS-MVSNAJ88.14 1887.61 2989.71 792.06 10176.72 195.75 2093.26 9483.86 1589.55 2996.06 3853.55 22697.89 4391.10 3493.31 5394.54 109
reproduce_model83.15 11482.96 10783.73 17092.02 10259.74 29690.37 23392.08 14363.70 31082.86 8595.48 5258.62 16397.17 8783.06 10588.42 11194.26 119
SR-MVS-dyc-post81.06 15180.70 14482.15 21692.02 10258.56 31290.90 21290.45 21262.76 32178.89 13294.46 8551.26 25195.61 16978.77 14486.77 13192.28 187
RE-MVS-def80.48 15092.02 10258.56 31290.90 21290.45 21262.76 32178.89 13294.46 8549.30 26878.77 14486.77 13192.28 187
MSLP-MVS++86.27 4985.91 5687.35 4592.01 10568.97 6695.04 4092.70 11679.04 8781.50 9796.50 2658.98 16196.78 11783.49 10293.93 4196.29 35
CS-MVS85.80 5986.65 4483.27 18692.00 10658.92 30895.31 3191.86 15779.97 6384.82 6795.40 5462.26 12295.51 17786.11 7592.08 6895.37 63
旧先验191.94 10760.74 27691.50 17694.36 8965.23 7991.84 7194.55 107
thres600view778.00 20876.66 21082.03 22391.93 10863.69 20691.30 19896.33 172.43 19470.46 22987.89 21960.31 14094.92 19542.64 36876.64 22687.48 261
LS3D69.17 30666.40 31177.50 30491.92 10956.12 33585.12 30980.37 37046.96 39056.50 35287.51 22637.25 34293.71 24732.52 39979.40 19982.68 342
GG-mvs-BLEND86.53 7391.91 11069.67 5275.02 37894.75 3478.67 13990.85 17177.91 794.56 21072.25 19193.74 4595.36 65
thres100view90078.37 20377.01 20582.46 20391.89 11163.21 22191.19 20596.33 172.28 19970.45 23087.89 21960.31 14095.32 18145.16 35677.58 21688.83 241
MTAPA83.91 9883.38 9985.50 10591.89 11165.16 16581.75 33792.23 13475.32 14080.53 11295.21 6656.06 19797.16 9084.86 8792.55 6294.18 124
sasdasda86.85 3786.25 4888.66 2091.80 11371.92 1693.54 9791.71 16580.26 5887.55 3995.25 6363.59 10496.93 11188.18 5284.34 15297.11 9
canonicalmvs86.85 3786.25 4888.66 2091.80 11371.92 1693.54 9791.71 16580.26 5887.55 3995.25 6363.59 10496.93 11188.18 5284.34 15297.11 9
TSAR-MVS + MP.88.11 2088.64 1886.54 7291.73 11568.04 9090.36 23493.55 8182.89 2391.29 1692.89 12872.27 3596.03 15187.99 5494.77 2695.54 57
Zhenlong Yuan, Jiakai Cao, Zhaoqi Wang, Zhaoxin Li: TSAR-MVS: Textureless-aware Segmentation and Correlative Refinement Guided Multi-View Stereo. Pattern Recognition
ACMMPcopyleft81.49 14380.67 14583.93 16591.71 11662.90 23192.13 15492.22 13771.79 21671.68 21793.49 11750.32 25696.96 10778.47 14684.22 15891.93 198
Qingshan Xu, Weihang Kong, Wenbing Tao, Marc Pollefeys: Multi-Scale Geometric Consistency Guided and Planar Prior Assisted Multi-View Stereo. IEEE Transactions on Pattern Analysis and Machine Intelligence
BH-RMVSNet79.46 18277.65 19284.89 12591.68 11765.66 15193.55 9688.09 30872.93 18173.37 19091.12 16846.20 29796.12 14356.28 31185.61 14392.91 170
baseline181.84 13781.03 13884.28 15591.60 11866.62 13091.08 20891.66 17081.87 3474.86 17691.67 15869.98 4694.92 19571.76 19764.75 31091.29 212
ACMMP_NAP86.05 5385.80 5886.80 6291.58 11967.53 10591.79 17493.49 8574.93 14584.61 6895.30 5859.42 15297.92 4186.13 7494.92 2094.94 88
MVS_Test84.16 9483.20 10387.05 5491.56 12069.82 4589.99 24892.05 14477.77 10582.84 8686.57 24063.93 9696.09 14574.91 17089.18 10295.25 76
HPM-MVS_fast80.25 16679.55 16582.33 20891.55 12159.95 29391.32 19789.16 26765.23 29974.71 17893.07 12347.81 28495.74 16074.87 17288.23 11291.31 211
CPTT-MVS79.59 17779.16 17280.89 25091.54 12259.80 29592.10 15688.54 29660.42 34072.96 19393.28 11948.27 27792.80 27178.89 14386.50 13690.06 226
CNLPA74.31 26272.30 27080.32 25791.49 12361.66 25790.85 21580.72 36856.67 36363.85 30690.64 17246.75 28990.84 31853.79 32075.99 23188.47 250
MP-MVS-pluss85.24 7085.13 7085.56 10491.42 12465.59 15491.54 18492.51 12774.56 14880.62 11095.64 4659.15 15697.00 9986.94 6993.80 4394.07 132
MP-MVS-pluss: MP-MVS-pluss. MP-MVS-pluss
gg-mvs-nofinetune77.18 22174.31 24285.80 9691.42 12468.36 7971.78 38394.72 3549.61 38377.12 15445.92 40977.41 893.98 23867.62 23593.16 5595.05 83
mvsmamba81.55 14280.72 14384.03 16391.42 12466.93 12283.08 32889.13 27078.55 9467.50 27187.02 23551.79 24390.07 33187.48 6090.49 9295.10 81
MGCFI-Net85.59 6585.73 6085.17 11991.41 12762.44 23892.87 12491.31 18279.65 7086.99 4695.14 6962.90 11796.12 14387.13 6684.13 15996.96 13
xiu_mvs_v2_base87.92 2387.38 3389.55 1291.41 12776.43 395.74 2193.12 10283.53 1889.55 2995.95 4053.45 23097.68 5191.07 3592.62 6094.54 109
EIA-MVS84.84 7884.88 7484.69 13791.30 12962.36 24193.85 7992.04 14579.45 7379.33 12894.28 9862.42 12096.35 13480.05 13091.25 8395.38 62
alignmvs87.28 3286.97 3788.24 2791.30 12971.14 2695.61 2593.56 8079.30 7787.07 4495.25 6368.43 5096.93 11187.87 5584.33 15496.65 17
EPMVS78.49 20275.98 21986.02 8791.21 13169.68 5180.23 35291.20 18775.25 14172.48 20478.11 33954.65 21193.69 24857.66 30783.04 16594.69 99
FMVSNet377.73 21476.04 21882.80 19491.20 13268.99 6591.87 17091.99 14973.35 17367.04 27883.19 27756.62 18992.14 29459.80 29869.34 27187.28 267
RRT-MVS82.61 12581.16 13286.96 5791.10 13368.75 7087.70 28992.20 13876.97 11772.68 19787.10 23451.30 25096.41 13283.56 10187.84 11795.74 50
Anonymous2024052976.84 22974.15 24584.88 12691.02 13464.95 17193.84 8291.09 19453.57 37173.00 19287.42 22735.91 35197.32 7669.14 22172.41 25692.36 183
tpmvs72.88 27869.76 29482.22 21390.98 13567.05 11878.22 36588.30 30163.10 31964.35 30274.98 36255.09 20894.27 22143.25 36269.57 27085.34 309
MVS84.66 8182.86 11290.06 290.93 13674.56 787.91 28495.54 1468.55 27272.35 20894.71 8059.78 14898.90 2081.29 12194.69 3296.74 16
PVSNet73.49 880.05 17078.63 17884.31 15390.92 13764.97 17092.47 14491.05 19979.18 8072.43 20690.51 17637.05 34794.06 23168.06 22986.00 13893.90 141
3Dnovator+73.60 782.10 13480.60 14886.60 6890.89 13866.80 12695.20 3493.44 8774.05 15667.42 27392.49 13749.46 26697.65 5770.80 20491.68 7495.33 66
VDD-MVS83.06 11681.81 12786.81 6190.86 13967.70 9995.40 2991.50 17675.46 13781.78 9592.34 14240.09 32297.13 9286.85 7082.04 17795.60 54
BH-w/o80.49 16179.30 17084.05 16290.83 14064.36 18793.60 9489.42 25674.35 15169.09 24590.15 18755.23 20595.61 16964.61 26686.43 13792.17 193
ET-MVSNet_ETH3D84.01 9683.15 10686.58 7090.78 14170.89 2894.74 4794.62 4181.44 4258.19 34193.64 11373.64 2592.35 29082.66 10878.66 20896.50 27
Anonymous2023121173.08 27270.39 28881.13 24090.62 14263.33 21791.40 18890.06 23351.84 37664.46 30080.67 31436.49 34994.07 23063.83 27164.17 31685.98 293
FA-MVS(test-final)79.12 18677.23 20284.81 13190.54 14363.98 19681.35 34391.71 16571.09 23874.85 17782.94 27852.85 23397.05 9467.97 23081.73 18293.41 152
TR-MVS78.77 19677.37 20182.95 19290.49 14460.88 27093.67 9090.07 23170.08 25374.51 17991.37 16545.69 29995.70 16660.12 29680.32 19292.29 186
SteuartSystems-ACMMP86.82 4186.90 3986.58 7090.42 14566.38 13596.09 1793.87 6577.73 10684.01 7695.66 4563.39 10797.94 4087.40 6293.55 5095.42 59
Skip Steuart: Steuart Systems R&D Blog.
TAPA-MVS70.22 1274.94 25873.53 25479.17 28790.40 14652.07 35489.19 26489.61 25062.69 32370.07 23592.67 13348.89 27594.32 21738.26 38279.97 19491.12 215
Andrea Romanoni, Matteo Matteucci: TAPA-MVS: Textureless-Aware PAtchMatch Multi-View Stereo. ICCV 2019
mvs_anonymous81.36 14579.99 15685.46 10690.39 14768.40 7886.88 30190.61 21074.41 14970.31 23384.67 26063.79 9892.32 29273.13 17985.70 14195.67 51
CANet_DTU84.09 9583.52 8985.81 9590.30 14866.82 12491.87 17089.01 27785.27 986.09 5393.74 11047.71 28596.98 10377.90 15089.78 9893.65 147
Fast-Effi-MVS+81.14 14880.01 15584.51 14690.24 14965.86 14894.12 6489.15 26873.81 16475.37 17288.26 21057.26 17694.53 21266.97 24384.92 14693.15 161
ETV-MVS86.01 5486.11 5185.70 10190.21 15067.02 12093.43 10591.92 15281.21 4784.13 7594.07 10560.93 13695.63 16789.28 4589.81 9694.46 115
MVSMamba_PlusPlus84.97 7783.65 8888.93 1490.17 15174.04 887.84 28692.69 11862.18 32681.47 9987.64 22371.47 4096.28 13684.69 8894.74 3196.47 28
tpmrst80.57 15879.14 17384.84 12790.10 15268.28 8281.70 33889.72 24877.63 11075.96 16379.54 33064.94 8392.71 27475.43 16377.28 22293.55 149
PVSNet_Blended_VisFu83.97 9783.50 9185.39 10990.02 15366.59 13293.77 8691.73 16377.43 11477.08 15689.81 19263.77 9996.97 10679.67 13388.21 11392.60 177
UGNet79.87 17478.68 17783.45 18289.96 15461.51 25992.13 15490.79 20376.83 12178.85 13786.33 24438.16 33396.17 14167.93 23287.17 12592.67 175
Wanjuan Su, Qingshan Xu, Wenbing Tao: Uncertainty-guided Multi-view Stereo Network for Depth Estimation. IEEE Transactions on Circuits and Systems for Video Technology, 2022
CHOSEN 1792x268884.98 7683.45 9489.57 1189.94 15575.14 692.07 15992.32 13181.87 3475.68 16688.27 20960.18 14298.60 2780.46 12790.27 9494.96 86
BH-untuned78.68 19777.08 20383.48 18189.84 15663.74 20192.70 13188.59 29471.57 22766.83 28288.65 20351.75 24495.39 17959.03 30184.77 14891.32 210
FE-MVS75.97 24373.02 25984.82 12889.78 15765.56 15577.44 36891.07 19764.55 30172.66 19879.85 32646.05 29896.69 11954.97 31580.82 18992.21 192
test22289.77 15861.60 25889.55 25489.42 25656.83 36277.28 15292.43 13952.76 23491.14 8593.09 163
PMMVS81.98 13682.04 12381.78 22589.76 15956.17 33491.13 20790.69 20577.96 10080.09 11893.57 11546.33 29594.99 19181.41 11887.46 12294.17 125
DPM-MVS90.70 390.52 991.24 189.68 16076.68 297.29 195.35 1682.87 2491.58 1397.22 379.93 599.10 983.12 10497.64 297.94 1
QAPM79.95 17377.39 20087.64 3489.63 16171.41 2093.30 10893.70 7565.34 29867.39 27591.75 15647.83 28398.96 1657.71 30689.81 9692.54 179
3Dnovator73.91 682.69 12480.82 14188.31 2689.57 16271.26 2292.60 13894.39 5278.84 8967.89 26692.48 13848.42 27698.52 2868.80 22594.40 3695.15 78
Effi-MVS+83.82 10082.76 11386.99 5689.56 16369.40 5391.35 19586.12 33272.59 18883.22 8392.81 13259.60 15096.01 15381.76 11487.80 11895.56 56
PatchmatchNetpermissive77.46 21774.63 23585.96 8989.55 16470.35 3479.97 35789.55 25172.23 20070.94 22376.91 35157.03 17992.79 27254.27 31881.17 18594.74 97
Fangjinhua Wang, Silvano Galliani, Christoph Vogel, Pablo Speciale, Marc Pollefeys: PatchmatchNet: Learned Multi-View Patchmatch Stereo.
PatchMatch-RL72.06 28669.98 28978.28 29689.51 16555.70 33883.49 32083.39 36061.24 33563.72 30782.76 28034.77 35593.03 25953.37 32377.59 21586.12 290
thisisatest051583.41 10982.49 11886.16 8489.46 16668.26 8393.54 9794.70 3774.31 15275.75 16490.92 16972.62 3196.52 12669.64 21281.50 18393.71 145
h-mvs3383.01 11782.56 11784.35 15289.34 16762.02 24892.72 12993.76 7081.45 4082.73 8992.25 14560.11 14397.13 9287.69 5762.96 32393.91 139
EC-MVSNet84.53 8385.04 7283.01 19189.34 16761.37 26394.42 5191.09 19477.91 10283.24 8094.20 10058.37 16695.40 17885.35 7991.41 7992.27 190
UWE-MVS80.81 15681.01 13980.20 26289.33 16957.05 32891.91 16894.71 3675.67 13475.01 17589.37 19663.13 11391.44 31567.19 24082.80 16992.12 195
UA-Net80.02 17179.65 16181.11 24189.33 16957.72 31986.33 30589.00 28077.44 11381.01 10589.15 19959.33 15495.90 15461.01 29084.28 15689.73 233
dp75.01 25772.09 27283.76 16789.28 17166.22 14179.96 35889.75 24371.16 23567.80 26877.19 34851.81 24292.54 28250.39 32971.44 26392.51 181
SDMVSNet80.26 16578.88 17684.40 14989.25 17267.63 10285.35 30893.02 10576.77 12370.84 22587.12 23247.95 28296.09 14585.04 8374.55 23589.48 237
sd_testset77.08 22475.37 22682.20 21489.25 17262.11 24782.06 33589.09 27376.77 12370.84 22587.12 23241.43 31895.01 19067.23 23974.55 23589.48 237
sss82.71 12382.38 12083.73 17089.25 17259.58 29992.24 15094.89 2977.96 10079.86 12092.38 14056.70 18797.05 9477.26 15380.86 18894.55 107
MVSFormer83.75 10382.88 11186.37 7889.24 17571.18 2489.07 26690.69 20565.80 29387.13 4294.34 9464.99 8192.67 27772.83 18291.80 7295.27 73
lupinMVS87.74 2587.77 2787.63 3889.24 17571.18 2496.57 1292.90 11182.70 2687.13 4295.27 6164.99 8195.80 15689.34 4491.80 7295.93 45
IB-MVS77.80 482.18 13080.46 15187.35 4589.14 17770.28 3595.59 2695.17 2278.85 8870.19 23485.82 24970.66 4297.67 5372.19 19466.52 29594.09 130
Christian Sormann, Mattia Rossi, Andreas Kuhn and Friedrich Fraundorfer: IB-MVS: An Iterative Algorithm for Deep Multi-View Stereo based on Binary Decisions. BMVC 2021
MDTV_nov1_ep1372.61 26689.06 17868.48 7680.33 35090.11 23071.84 21471.81 21475.92 35953.01 23293.92 24148.04 34273.38 246
testdata81.34 23589.02 17957.72 31989.84 24058.65 35185.32 6394.09 10357.03 17993.28 25569.34 21790.56 9193.03 166
CostFormer82.33 12881.15 13385.86 9389.01 18068.46 7782.39 33493.01 10675.59 13580.25 11681.57 29872.03 3794.96 19279.06 14077.48 21994.16 126
GeoE78.90 19177.43 19683.29 18588.95 18162.02 24892.31 14786.23 33070.24 25171.34 22289.27 19754.43 21694.04 23463.31 27580.81 19093.81 144
GBi-Net75.65 24873.83 25081.10 24288.85 18265.11 16690.01 24590.32 21870.84 24267.04 27880.25 32148.03 27891.54 31059.80 29869.34 27186.64 276
test175.65 24873.83 25081.10 24288.85 18265.11 16690.01 24590.32 21870.84 24267.04 27880.25 32148.03 27891.54 31059.80 29869.34 27186.64 276
FMVSNet276.07 23774.01 24882.26 21288.85 18267.66 10091.33 19691.61 17170.84 24265.98 28682.25 28748.03 27892.00 29958.46 30368.73 27987.10 270
DeepC-MVS77.85 385.52 6785.24 6886.37 7888.80 18566.64 12992.15 15393.68 7681.07 4876.91 15793.64 11362.59 11998.44 3185.50 7892.84 5994.03 134
Andreas Kuhn, Christian Sormann, Mattia Rossi, Oliver Erdler, Friedrich Fraundorfer: DeepC-MVS: Deep Confidence Prediction for Multi-View Stereo Reconstruction. 3DV 2020
EPP-MVSNet81.79 13881.52 12982.61 20188.77 18660.21 29093.02 11893.66 7768.52 27372.90 19590.39 17972.19 3694.96 19274.93 16979.29 20292.67 175
1112_ss80.56 15979.83 15982.77 19588.65 18760.78 27292.29 14888.36 29972.58 18972.46 20594.95 7165.09 8093.42 25466.38 24977.71 21394.10 129
tpm cat175.30 25372.21 27184.58 14388.52 18867.77 9778.16 36688.02 30961.88 33268.45 25976.37 35560.65 13794.03 23653.77 32174.11 24191.93 198
LCM-MVSNet-Re72.93 27671.84 27576.18 32088.49 18948.02 37680.07 35570.17 39673.96 16052.25 36680.09 32449.98 26088.24 34467.35 23684.23 15792.28 187
Vis-MVSNetpermissive80.92 15479.98 15783.74 16888.48 19061.80 25293.44 10488.26 30573.96 16077.73 14591.76 15549.94 26194.76 19765.84 25590.37 9394.65 103
Jingyang Zhang, Yao Yao, Shiwei Li, Zixin Luo, Tian Fang: Visibility-aware Multiview Stereo Network. BMVC 2020
Vis-MVSNet (Re-imp)79.24 18479.57 16278.24 29888.46 19152.29 35390.41 23189.12 27174.24 15369.13 24491.91 15365.77 7490.09 33059.00 30288.09 11492.33 184
ab-mvs80.18 16778.31 18285.80 9688.44 19265.49 15983.00 33192.67 11971.82 21577.36 15185.01 25654.50 21296.59 12176.35 15875.63 23295.32 68
gm-plane-assit88.42 19367.04 11978.62 9391.83 15497.37 7276.57 156
MVS_111021_LR82.02 13581.52 12983.51 17988.42 19362.88 23289.77 25188.93 28176.78 12275.55 17093.10 12050.31 25795.38 18083.82 9887.02 12692.26 191
test250683.29 11182.92 11084.37 15188.39 19563.18 22392.01 16291.35 18177.66 10878.49 14091.42 16264.58 8995.09 18873.19 17889.23 10094.85 89
ECVR-MVScopyleft81.29 14680.38 15284.01 16488.39 19561.96 25092.56 14386.79 32477.66 10876.63 15891.42 16246.34 29495.24 18574.36 17489.23 10094.85 89
baseline85.01 7584.44 8086.71 6488.33 19768.73 7190.24 23991.82 16181.05 4981.18 10292.50 13563.69 10096.08 14884.45 9186.71 13395.32 68
tpm279.80 17577.95 18985.34 11288.28 19868.26 8381.56 34091.42 17970.11 25277.59 14980.50 31667.40 5994.26 22367.34 23777.35 22093.51 150
thisisatest053081.15 14780.07 15384.39 15088.26 19965.63 15391.40 18894.62 4171.27 23470.93 22489.18 19872.47 3296.04 15065.62 25876.89 22591.49 203
casdiffmvspermissive85.37 6884.87 7586.84 5988.25 20069.07 6293.04 11691.76 16281.27 4680.84 10892.07 14964.23 9296.06 14984.98 8587.43 12395.39 61
Fangjinhua Wang, Qingshan Xu, Yew-Soon Ong, Marc Pollefeys: Lightweight and Accurate Multi-View Stereo With Confidence-Aware Diffusion Model. IEEE T-PAMI 2025
Test_1112_low_res79.56 17878.60 17982.43 20488.24 20160.39 28792.09 15787.99 31072.10 20571.84 21387.42 22764.62 8893.04 25865.80 25677.30 22193.85 143
casdiffmvs_mvgpermissive85.66 6385.18 6987.09 5288.22 20269.35 5893.74 8891.89 15581.47 3980.10 11791.45 16164.80 8696.35 13487.23 6587.69 11995.58 55
Fangjinhua Wang, Qingshan Xu, Yew-Soon Ong, Marc Pollefeys: Lightweight and Accurate Multi-View Stereo With Confidence-Aware Diffusion Model. IEEE T-PAMI 2025
PAPM85.89 5885.46 6487.18 4988.20 20372.42 1592.41 14692.77 11482.11 3280.34 11593.07 12368.27 5195.02 18978.39 14793.59 4994.09 130
TESTMET0.1,182.41 12781.98 12583.72 17288.08 20463.74 20192.70 13193.77 6979.30 7777.61 14887.57 22558.19 16994.08 22973.91 17686.68 13493.33 156
ADS-MVSNet266.90 32663.44 33477.26 31088.06 20560.70 27868.01 39475.56 38157.57 35464.48 29869.87 38138.68 32584.10 37040.87 37367.89 28686.97 271
ADS-MVSNet68.54 31364.38 33081.03 24688.06 20566.90 12368.01 39484.02 35257.57 35464.48 29869.87 38138.68 32589.21 33740.87 37367.89 28686.97 271
EPNet_dtu78.80 19479.26 17177.43 30688.06 20549.71 36891.96 16791.95 15177.67 10776.56 16091.28 16658.51 16490.20 32856.37 31080.95 18792.39 182
Wanjuan Su, Wenbing Tao: Efficient Edge-Preserving Multi-View Stereo Network for Depth Estimation. AAAI 2023
miper_enhance_ethall78.86 19277.97 18881.54 23188.00 20865.17 16491.41 18689.15 26875.19 14268.79 25383.98 26967.17 6092.82 26972.73 18665.30 30186.62 280
IS-MVSNet80.14 16879.41 16782.33 20887.91 20960.08 29291.97 16688.27 30372.90 18471.44 22191.73 15761.44 13093.66 24962.47 28386.53 13593.24 157
CLD-MVS82.73 12182.35 12183.86 16687.90 21067.65 10195.45 2892.18 14185.06 1072.58 20192.27 14352.46 23895.78 15784.18 9379.06 20388.16 254
Zhaoxin Li, Wangmeng Zuo, Zhaoqi Wang, Lei Zhang: Confidence-based Large-scale Dense Multi-view Stereo. IEEE Transaction on Image Processing, 2020
Syy-MVS69.65 30369.52 29570.03 36087.87 21143.21 39688.07 28089.01 27772.91 18263.11 31288.10 21445.28 30385.54 36322.07 41069.23 27481.32 353
myMVS_eth3d72.58 28572.74 26372.10 35287.87 21149.45 37088.07 28089.01 27772.91 18263.11 31288.10 21463.63 10185.54 36332.73 39769.23 27481.32 353
test111180.84 15580.02 15483.33 18487.87 21160.76 27492.62 13686.86 32377.86 10375.73 16591.39 16446.35 29394.70 20372.79 18488.68 10994.52 111
HyFIR lowres test81.03 15279.56 16385.43 10787.81 21468.11 8990.18 24090.01 23670.65 24772.95 19486.06 24763.61 10394.50 21475.01 16879.75 19793.67 146
BP-MVS186.54 4586.68 4386.13 8587.80 21567.18 11492.97 11995.62 1079.92 6482.84 8694.14 10274.95 1596.46 13082.91 10688.96 10694.74 97
dmvs_re76.93 22675.36 22781.61 22987.78 21660.71 27780.00 35687.99 31079.42 7469.02 24889.47 19546.77 28894.32 21763.38 27474.45 23889.81 230
131480.70 15778.95 17585.94 9087.77 21767.56 10387.91 28492.55 12672.17 20367.44 27293.09 12150.27 25897.04 9771.68 19987.64 12093.23 158
GDP-MVS85.54 6685.32 6686.18 8387.64 21867.95 9492.91 12392.36 13077.81 10483.69 7894.31 9672.84 2996.41 13280.39 12885.95 13994.19 123
cl2277.94 21176.78 20881.42 23387.57 21964.93 17290.67 22388.86 28472.45 19367.63 27082.68 28264.07 9392.91 26771.79 19565.30 30186.44 281
HQP-NCC87.54 22094.06 6579.80 6674.18 181
ACMP_Plane87.54 22094.06 6579.80 6674.18 181
HQP-MVS81.14 14880.64 14682.64 20087.54 22063.66 20894.06 6591.70 16879.80 6674.18 18190.30 18151.63 24695.61 16977.63 15178.90 20488.63 245
NP-MVS87.41 22363.04 22490.30 181
diffmvspermissive84.28 8883.83 8585.61 10387.40 22468.02 9190.88 21489.24 26280.54 5281.64 9692.52 13459.83 14794.52 21387.32 6385.11 14594.29 118
Fangjinhua Wang, Qingshan Xu, Yew-Soon Ong, Marc Pollefeys: Lightweight and Accurate Multi-View Stereo With Confidence-Aware Diffusion Model. IEEE T-PAMI 2025
baseline283.68 10683.42 9784.48 14787.37 22566.00 14490.06 24395.93 879.71 6969.08 24690.39 17977.92 696.28 13678.91 14281.38 18491.16 214
fmvsm_s_conf0.5_n86.39 4786.91 3884.82 12887.36 22663.54 21394.74 4790.02 23582.52 2790.14 2596.92 1362.93 11697.84 4695.28 882.26 17293.07 165
plane_prior687.23 22762.32 24350.66 254
tttt051779.50 17978.53 18082.41 20787.22 22861.43 26289.75 25294.76 3369.29 26267.91 26488.06 21772.92 2895.63 16762.91 27973.90 24590.16 225
plane_prior187.15 229
cascas78.18 20675.77 22285.41 10887.14 23069.11 6192.96 12091.15 19166.71 28770.47 22886.07 24637.49 34196.48 12970.15 21079.80 19690.65 219
fmvsm_l_conf0.5_n_a87.44 3088.15 2485.30 11387.10 23164.19 19294.41 5288.14 30680.24 6192.54 596.97 1069.52 4897.17 8795.89 388.51 11094.56 106
CHOSEN 280x42077.35 21976.95 20778.55 29387.07 23262.68 23669.71 38982.95 36268.80 26971.48 22087.27 23166.03 7184.00 37376.47 15782.81 16888.95 240
test_fmvsm_n_192087.69 2688.50 1985.27 11587.05 23363.55 21293.69 8991.08 19684.18 1390.17 2497.04 867.58 5897.99 3995.72 590.03 9594.26 119
fmvsm_l_conf0.5_n87.49 2888.19 2385.39 10986.95 23464.37 18594.30 5688.45 29780.51 5392.70 496.86 1569.98 4697.15 9195.83 488.08 11594.65 103
HQP_MVS80.34 16479.75 16082.12 21886.94 23562.42 23993.13 11291.31 18278.81 9072.53 20289.14 20050.66 25495.55 17476.74 15478.53 20988.39 251
plane_prior786.94 23561.51 259
test-LLR80.10 16979.56 16381.72 22786.93 23761.17 26492.70 13191.54 17371.51 23075.62 16786.94 23653.83 22292.38 28772.21 19284.76 14991.60 201
test-mter79.96 17279.38 16981.72 22786.93 23761.17 26492.70 13191.54 17373.85 16275.62 16786.94 23649.84 26392.38 28772.21 19284.76 14991.60 201
fmvsm_s_conf0.5_n_285.06 7385.60 6283.44 18386.92 23960.53 28294.41 5287.31 31883.30 2088.72 3396.72 2154.28 21997.75 4994.07 1284.68 15192.04 196
SCA75.82 24672.76 26285.01 12386.63 24070.08 3781.06 34589.19 26571.60 22670.01 23677.09 34945.53 30090.25 32360.43 29373.27 24794.68 100
AUN-MVS78.37 20377.43 19681.17 23886.60 24157.45 32489.46 25891.16 18974.11 15574.40 18090.49 17755.52 20294.57 20774.73 17360.43 34991.48 204
hse-mvs281.12 15081.11 13781.16 23986.52 24257.48 32389.40 25991.16 18981.45 4082.73 8990.49 17760.11 14394.58 20587.69 5760.41 35091.41 206
xiu_mvs_v1_base_debu82.16 13181.12 13485.26 11686.42 24368.72 7292.59 14090.44 21573.12 17784.20 7294.36 8938.04 33595.73 16184.12 9486.81 12891.33 207
xiu_mvs_v1_base82.16 13181.12 13485.26 11686.42 24368.72 7292.59 14090.44 21573.12 17784.20 7294.36 8938.04 33595.73 16184.12 9486.81 12891.33 207
xiu_mvs_v1_base_debi82.16 13181.12 13485.26 11686.42 24368.72 7292.59 14090.44 21573.12 17784.20 7294.36 8938.04 33595.73 16184.12 9486.81 12891.33 207
F-COLMAP70.66 29368.44 30177.32 30886.37 24655.91 33688.00 28286.32 32756.94 36157.28 35088.07 21633.58 35992.49 28451.02 32768.37 28183.55 324
CDS-MVSNet81.43 14480.74 14283.52 17786.26 24764.45 17992.09 15790.65 20975.83 13373.95 18789.81 19263.97 9592.91 26771.27 20082.82 16793.20 160
Khang Truong Giang, Soohwan Song, Sungho Jo: Curvature-guided dynamic scale networks for Multi-view Stereo. ICLR 2022
VDDNet80.50 16078.26 18387.21 4786.19 24869.79 4794.48 5091.31 18260.42 34079.34 12790.91 17038.48 33096.56 12482.16 11181.05 18695.27 73
WB-MVSnew77.14 22276.18 21780.01 26886.18 24963.24 21991.26 19994.11 6171.72 21973.52 18987.29 23045.14 30493.00 26056.98 30879.42 19883.80 322
jason86.40 4686.17 5087.11 5186.16 25070.54 3295.71 2492.19 14082.00 3384.58 6994.34 9461.86 12695.53 17687.76 5690.89 8695.27 73
jason: jason.
PCF-MVS73.15 979.29 18377.63 19384.29 15486.06 25165.96 14687.03 29791.10 19369.86 25669.79 24190.64 17257.54 17596.59 12164.37 26882.29 17190.32 223
Andreas Kuhn, Shan Lin, Oliver Erdler: Plane Completion and Filtering for Multi-View Stereo Reconstruction. GCPR 2019
MS-PatchMatch77.90 21376.50 21182.12 21885.99 25269.95 4191.75 17992.70 11673.97 15962.58 31984.44 26441.11 31995.78 15763.76 27292.17 6680.62 361
FIs79.47 18179.41 16779.67 27885.95 25359.40 30191.68 18193.94 6478.06 9968.96 25088.28 20866.61 6591.77 30366.20 25274.99 23487.82 257
VPA-MVSNet79.03 18778.00 18782.11 22185.95 25364.48 17893.22 11194.66 3975.05 14474.04 18684.95 25752.17 24093.52 25174.90 17167.04 29188.32 253
tpm78.58 20077.03 20483.22 18885.94 25564.56 17483.21 32791.14 19278.31 9673.67 18879.68 32864.01 9492.09 29766.07 25371.26 26493.03 166
OpenMVScopyleft70.45 1178.54 20175.92 22086.41 7785.93 25671.68 1892.74 12892.51 12766.49 28964.56 29791.96 15043.88 30998.10 3754.61 31690.65 8989.44 239
testing370.38 29770.83 28269.03 36485.82 25743.93 39590.72 22290.56 21168.06 27560.24 32986.82 23864.83 8584.12 36926.33 40564.10 31779.04 374
OMC-MVS78.67 19977.91 19080.95 24885.76 25857.40 32588.49 27588.67 29173.85 16272.43 20692.10 14849.29 26994.55 21172.73 18677.89 21290.91 217
fmvsm_s_conf0.5_n_a85.75 6086.09 5284.72 13585.73 25963.58 21093.79 8589.32 25981.42 4390.21 2396.91 1462.41 12197.67 5394.48 1080.56 19192.90 171
miper_ehance_all_eth77.60 21576.44 21281.09 24585.70 26064.41 18390.65 22488.64 29372.31 19767.37 27682.52 28364.77 8792.64 28070.67 20665.30 30186.24 285
KD-MVS_2432*160069.03 30866.37 31277.01 31285.56 26161.06 26781.44 34190.25 22467.27 28258.00 34476.53 35354.49 21387.63 35248.04 34235.77 40382.34 345
miper_refine_blended69.03 30866.37 31277.01 31285.56 26161.06 26781.44 34190.25 22467.27 28258.00 34476.53 35354.49 21387.63 35248.04 34235.77 40382.34 345
EI-MVSNet78.97 18978.22 18481.25 23685.33 26362.73 23589.53 25693.21 9572.39 19672.14 20990.13 18860.99 13394.72 20067.73 23472.49 25486.29 283
CVMVSNet74.04 26574.27 24373.33 34085.33 26343.94 39489.53 25688.39 29854.33 37070.37 23190.13 18849.17 27184.05 37161.83 28779.36 20091.99 197
test_fmvsmconf_n86.58 4487.17 3484.82 12885.28 26562.55 23794.26 5889.78 24183.81 1787.78 3896.33 3165.33 7896.98 10394.40 1187.55 12194.95 87
fmvsm_s_conf0.1_n_284.40 8484.78 7783.27 18685.25 26660.41 28594.13 6385.69 33883.05 2287.99 3696.37 2852.75 23597.68 5193.75 1584.05 16091.71 200
ACMH63.93 1768.62 31164.81 32380.03 26785.22 26763.25 21887.72 28884.66 34660.83 33851.57 37079.43 33127.29 38294.96 19241.76 36964.84 30881.88 349
Qingshan Xu and Wenbing Tao: Multi-Scale Geometric Consistency Guided Multi-View Stereo. CVPR 2019
cl____76.07 23774.67 23380.28 25985.15 26861.76 25490.12 24188.73 28871.16 23565.43 28981.57 29861.15 13192.95 26266.54 24662.17 33186.13 289
DIV-MVS_self_test76.07 23774.67 23380.28 25985.14 26961.75 25590.12 24188.73 28871.16 23565.42 29081.60 29761.15 13192.94 26666.54 24662.16 33386.14 287
TAMVS80.37 16379.45 16683.13 19085.14 26963.37 21691.23 20190.76 20474.81 14772.65 19988.49 20460.63 13892.95 26269.41 21681.95 17993.08 164
MSDG69.54 30465.73 31680.96 24785.11 27163.71 20484.19 31583.28 36156.95 36054.50 35784.03 26731.50 36796.03 15142.87 36669.13 27683.14 334
c3_l76.83 23075.47 22580.93 24985.02 27264.18 19390.39 23288.11 30771.66 22066.65 28481.64 29663.58 10692.56 28169.31 21862.86 32486.04 291
ACMP71.68 1075.58 25174.23 24479.62 28084.97 27359.64 29790.80 21789.07 27570.39 24962.95 31587.30 22938.28 33193.87 24472.89 18171.45 26285.36 308
Qingshan Xu and Wenbing Tao: Planar Prior Assisted PatchMatch Multi-View Stereo. AAAI 2020
FC-MVSNet-test77.99 20978.08 18677.70 30184.89 27455.51 33990.27 23793.75 7376.87 11866.80 28387.59 22465.71 7590.23 32762.89 28073.94 24387.37 264
PVSNet_068.08 1571.81 28768.32 30382.27 21084.68 27562.31 24488.68 27290.31 22175.84 13257.93 34680.65 31537.85 33894.19 22469.94 21129.05 41290.31 224
eth_miper_zixun_eth75.96 24474.40 24180.66 25184.66 27663.02 22589.28 26188.27 30371.88 21165.73 28781.65 29559.45 15192.81 27068.13 22860.53 34786.14 287
WR-MVS76.76 23175.74 22379.82 27584.60 27762.27 24592.60 13892.51 12776.06 13067.87 26785.34 25356.76 18590.24 32662.20 28463.69 32286.94 273
ACMH+65.35 1667.65 32164.55 32676.96 31484.59 27857.10 32788.08 27980.79 36758.59 35253.00 36381.09 31026.63 38492.95 26246.51 35061.69 34080.82 358
VPNet78.82 19377.53 19582.70 19884.52 27966.44 13493.93 7492.23 13480.46 5472.60 20088.38 20749.18 27093.13 25772.47 19063.97 32088.55 248
IterMVS-LS76.49 23375.18 23080.43 25684.49 28062.74 23490.64 22588.80 28672.40 19565.16 29281.72 29460.98 13492.27 29367.74 23364.65 31286.29 283
Fangjinhua Wang, Silvano Galliani, Christoph Vogel, Marc Pollefeys: IterMVS: Iterative Probability Estimation for Efficient Multi-View Stereo.
UniMVSNet_NR-MVSNet78.15 20777.55 19479.98 26984.46 28160.26 28892.25 14993.20 9777.50 11268.88 25186.61 23966.10 7092.13 29566.38 24962.55 32787.54 259
FMVSNet568.04 31865.66 31875.18 32684.43 28257.89 31683.54 31986.26 32961.83 33353.64 36273.30 36737.15 34585.08 36648.99 33761.77 33682.56 344
MVS-HIRNet60.25 35655.55 36374.35 33284.37 28356.57 33371.64 38474.11 38534.44 40645.54 39142.24 41431.11 37189.81 33240.36 37676.10 23076.67 386
LPG-MVS_test75.82 24674.58 23779.56 28284.31 28459.37 30290.44 22989.73 24669.49 25964.86 29388.42 20538.65 32794.30 21972.56 18872.76 25185.01 312
LGP-MVS_train79.56 28284.31 28459.37 30289.73 24669.49 25964.86 29388.42 20538.65 32794.30 21972.56 18872.76 25185.01 312
ACMM69.62 1374.34 26172.73 26479.17 28784.25 28657.87 31790.36 23489.93 23763.17 31865.64 28886.04 24837.79 33994.10 22765.89 25471.52 26185.55 304
Qingshan Xu and Wenbing Tao: Multi-Scale Geometric Consistency Guided Multi-View Stereo. CVPR 2019
UniMVSNet (Re)77.58 21676.78 20879.98 26984.11 28760.80 27191.76 17793.17 9976.56 12769.93 24084.78 25963.32 11092.36 28964.89 26562.51 32986.78 275
test_040264.54 33961.09 34574.92 32884.10 28860.75 27587.95 28379.71 37252.03 37452.41 36577.20 34732.21 36591.64 30623.14 40861.03 34372.36 396
LTVRE_ROB59.60 1966.27 32963.54 33374.45 33184.00 28951.55 35767.08 39883.53 35758.78 35054.94 35680.31 31934.54 35693.23 25640.64 37568.03 28478.58 378
Andreas Kuhn, Heiko Hirschmüller, Daniel Scharstein, Helmut Mayer: A TV Prior for High-Quality Scalable Multi-View Stereo Reconstruction. International Journal of Computer Vision 2016
miper_lstm_enhance73.05 27471.73 27777.03 31183.80 29058.32 31481.76 33688.88 28269.80 25761.01 32478.23 33857.19 17787.51 35465.34 26259.53 35285.27 311
Patchmatch-test65.86 33160.94 34680.62 25483.75 29158.83 30958.91 40975.26 38344.50 39750.95 37477.09 34958.81 16287.90 34635.13 38864.03 31895.12 80
nrg03080.93 15379.86 15884.13 15883.69 29268.83 6893.23 11091.20 18775.55 13675.06 17488.22 21363.04 11594.74 19981.88 11366.88 29288.82 243
GA-MVS78.33 20576.23 21584.65 13983.65 29366.30 13891.44 18590.14 22976.01 13170.32 23284.02 26842.50 31494.72 20070.98 20277.00 22492.94 169
FMVSNet172.71 28169.91 29281.10 24283.60 29465.11 16690.01 24590.32 21863.92 30763.56 30880.25 32136.35 35091.54 31054.46 31766.75 29386.64 276
OPM-MVS79.00 18878.09 18581.73 22683.52 29563.83 19891.64 18390.30 22276.36 12971.97 21289.93 19146.30 29695.17 18775.10 16677.70 21486.19 286
Ray L. Khuboni, Hongjun Xu: Octagram Propagation Matching for Multi-Scale View Stereopsis (OPM-MVS).
tfpnnormal70.10 29867.36 30778.32 29583.45 29660.97 26988.85 26992.77 11464.85 30060.83 32678.53 33543.52 31193.48 25231.73 40061.70 33980.52 362
MonoMVSNet76.99 22575.08 23182.73 19683.32 29763.24 21986.47 30486.37 32679.08 8466.31 28579.30 33249.80 26491.72 30479.37 13565.70 29993.23 158
Effi-MVS+-dtu76.14 23675.28 22978.72 29283.22 29855.17 34189.87 24987.78 31375.42 13867.98 26281.43 30045.08 30592.52 28375.08 16771.63 25988.48 249
CR-MVSNet73.79 26970.82 28482.70 19883.15 29967.96 9270.25 38684.00 35373.67 16969.97 23872.41 37157.82 17289.48 33552.99 32473.13 24890.64 220
RPMNet70.42 29665.68 31784.63 14183.15 29967.96 9270.25 38690.45 21246.83 39269.97 23865.10 39256.48 19395.30 18435.79 38773.13 24890.64 220
DU-MVS76.86 22775.84 22179.91 27282.96 30160.26 28891.26 19991.54 17376.46 12868.88 25186.35 24256.16 19492.13 29566.38 24962.55 32787.35 265
NR-MVSNet76.05 24074.59 23680.44 25582.96 30162.18 24690.83 21691.73 16377.12 11660.96 32586.35 24259.28 15591.80 30260.74 29161.34 34287.35 265
fmvsm_s_conf0.1_n85.61 6485.93 5584.68 13882.95 30363.48 21594.03 7089.46 25381.69 3689.86 2696.74 2061.85 12797.75 4994.74 982.01 17892.81 173
mmtdpeth68.33 31566.37 31274.21 33582.81 30451.73 35584.34 31480.42 36967.01 28671.56 21868.58 38530.52 37392.35 29075.89 16036.21 40178.56 379
XXY-MVS77.94 21176.44 21282.43 20482.60 30564.44 18092.01 16291.83 16073.59 17070.00 23785.82 24954.43 21694.76 19769.63 21368.02 28588.10 255
test_fmvsmvis_n_192083.80 10183.48 9284.77 13282.51 30663.72 20391.37 19383.99 35581.42 4377.68 14695.74 4458.37 16697.58 6193.38 1686.87 12793.00 168
TranMVSNet+NR-MVSNet75.86 24574.52 23979.89 27382.44 30760.64 28091.37 19391.37 18076.63 12567.65 26986.21 24552.37 23991.55 30961.84 28660.81 34587.48 261
test_vis1_n_192081.66 14082.01 12480.64 25282.24 30855.09 34294.76 4686.87 32281.67 3784.40 7194.63 8238.17 33294.67 20491.98 2983.34 16392.16 194
IterMVS72.65 28470.83 28278.09 29982.17 30962.96 22787.64 29186.28 32871.56 22860.44 32878.85 33445.42 30286.66 35863.30 27661.83 33584.65 316
Fangjinhua Wang, Silvano Galliani, Christoph Vogel, Marc Pollefeys: IterMVS: Iterative Probability Estimation for Efficient Multi-View Stereo.
Patchmtry67.53 32363.93 33178.34 29482.12 31064.38 18468.72 39184.00 35348.23 38959.24 33472.41 37157.82 17289.27 33646.10 35356.68 36381.36 352
PatchT69.11 30765.37 32180.32 25782.07 31163.68 20767.96 39687.62 31450.86 38069.37 24265.18 39157.09 17888.53 34141.59 37166.60 29488.74 244
MIMVSNet71.64 28868.44 30181.23 23781.97 31264.44 18073.05 38088.80 28669.67 25864.59 29674.79 36432.79 36187.82 34853.99 31976.35 22891.42 205
MVP-Stereo77.12 22376.23 21579.79 27681.72 31366.34 13789.29 26090.88 20270.56 24862.01 32282.88 27949.34 26794.13 22665.55 26093.80 4378.88 375
Qingsong Yan: MVP-Stereo: A Parallel Multi-View Patchmatch Stereo Method with Dilation Matching for Photogrammetric Application.
kuosan60.86 35460.24 34762.71 37981.57 31446.43 38775.70 37685.88 33457.98 35348.95 38169.53 38358.42 16576.53 39528.25 40435.87 40265.15 403
IterMVS-SCA-FT71.55 29069.97 29076.32 31881.48 31560.67 27987.64 29185.99 33366.17 29159.50 33378.88 33345.53 30083.65 37562.58 28261.93 33484.63 317
COLMAP_ROBcopyleft57.96 2062.98 34759.65 35072.98 34381.44 31653.00 35183.75 31875.53 38248.34 38748.81 38281.40 30224.14 38790.30 32232.95 39460.52 34875.65 388
Johannes L. Schönberger, Enliang Zheng, Marc Pollefeys, Jan-Michael Frahm: Pixelwise View Selection for Unstructured Multi-View Stereo. ECCV 2016
JIA-IIPM66.06 33062.45 34076.88 31581.42 31754.45 34657.49 41088.67 29149.36 38463.86 30546.86 40856.06 19790.25 32349.53 33468.83 27785.95 294
WR-MVS_H70.59 29469.94 29172.53 34681.03 31851.43 35887.35 29492.03 14867.38 28160.23 33080.70 31255.84 20083.45 37746.33 35258.58 35782.72 339
Fast-Effi-MVS+-dtu75.04 25673.37 25680.07 26580.86 31959.52 30091.20 20485.38 33971.90 20965.20 29184.84 25841.46 31792.97 26166.50 24872.96 25087.73 258
test_fmvsmconf0.1_n85.71 6186.08 5384.62 14280.83 32062.33 24293.84 8288.81 28583.50 1987.00 4596.01 3963.36 10896.93 11194.04 1387.29 12494.61 105
Baseline_NR-MVSNet73.99 26672.83 26177.48 30580.78 32159.29 30591.79 17484.55 34868.85 26868.99 24980.70 31256.16 19492.04 29862.67 28160.98 34481.11 355
CP-MVSNet70.50 29569.91 29272.26 34980.71 32251.00 36287.23 29690.30 22267.84 27659.64 33282.69 28150.23 25982.30 38551.28 32659.28 35383.46 328
v875.35 25273.26 25781.61 22980.67 32366.82 12489.54 25589.27 26171.65 22163.30 31180.30 32054.99 20994.06 23167.33 23862.33 33083.94 320
PS-MVSNAJss77.26 22076.31 21480.13 26480.64 32459.16 30690.63 22791.06 19872.80 18568.58 25784.57 26253.55 22693.96 23972.97 18071.96 25887.27 268
TransMVSNet (Re)70.07 29967.66 30577.31 30980.62 32559.13 30791.78 17684.94 34465.97 29260.08 33180.44 31750.78 25391.87 30048.84 33845.46 38680.94 357
v2v48277.42 21875.65 22482.73 19680.38 32667.13 11691.85 17290.23 22675.09 14369.37 24283.39 27553.79 22494.44 21571.77 19665.00 30786.63 279
PS-CasMVS69.86 30269.13 29772.07 35380.35 32750.57 36487.02 29889.75 24367.27 28259.19 33682.28 28646.58 29182.24 38650.69 32859.02 35483.39 330
v1074.77 25972.54 26881.46 23280.33 32866.71 12889.15 26589.08 27470.94 24063.08 31479.86 32552.52 23794.04 23465.70 25762.17 33183.64 323
test0.0.03 172.76 27972.71 26572.88 34480.25 32947.99 37791.22 20289.45 25471.51 23062.51 32087.66 22253.83 22285.06 36750.16 33167.84 28885.58 302
fmvsm_s_conf0.1_n_a84.76 7984.84 7684.53 14480.23 33063.50 21492.79 12688.73 28880.46 5489.84 2796.65 2360.96 13597.57 6393.80 1480.14 19392.53 180
v114476.73 23274.88 23282.27 21080.23 33066.60 13191.68 18190.21 22873.69 16769.06 24781.89 29152.73 23694.40 21669.21 21965.23 30485.80 298
v14876.19 23574.47 24081.36 23480.05 33264.44 18091.75 17990.23 22673.68 16867.13 27780.84 31155.92 19993.86 24668.95 22361.73 33885.76 301
dmvs_testset65.55 33466.45 31062.86 37879.87 33322.35 42476.55 37071.74 39277.42 11555.85 35387.77 22151.39 24880.69 39131.51 40365.92 29885.55 304
v119275.98 24273.92 24982.15 21679.73 33466.24 14091.22 20289.75 24372.67 18768.49 25881.42 30149.86 26294.27 22167.08 24165.02 30685.95 294
AllTest61.66 34958.06 35472.46 34779.57 33551.42 35980.17 35368.61 39951.25 37845.88 38781.23 30419.86 39986.58 35938.98 37957.01 36179.39 370
TestCases72.46 34779.57 33551.42 35968.61 39951.25 37845.88 38781.23 30419.86 39986.58 35938.98 37957.01 36179.39 370
MDA-MVSNet-bldmvs61.54 35157.70 35673.05 34279.53 33757.00 33183.08 32881.23 36557.57 35434.91 40772.45 37032.79 36186.26 36135.81 38641.95 39175.89 387
v14419276.05 24074.03 24782.12 21879.50 33866.55 13391.39 19089.71 24972.30 19868.17 26081.33 30351.75 24494.03 23667.94 23164.19 31585.77 299
v192192075.63 25073.49 25582.06 22279.38 33966.35 13691.07 21089.48 25271.98 20667.99 26181.22 30649.16 27293.90 24266.56 24564.56 31385.92 296
PEN-MVS69.46 30568.56 29972.17 35179.27 34049.71 36886.90 30089.24 26267.24 28559.08 33782.51 28447.23 28783.54 37648.42 34057.12 35983.25 331
v124075.21 25572.98 26081.88 22479.20 34166.00 14490.75 21989.11 27271.63 22567.41 27481.22 30647.36 28693.87 24465.46 26164.72 31185.77 299
pmmvs473.92 26771.81 27680.25 26179.17 34265.24 16287.43 29387.26 31967.64 28063.46 30983.91 27048.96 27491.53 31362.94 27865.49 30083.96 319
D2MVS73.80 26872.02 27379.15 28979.15 34362.97 22688.58 27490.07 23172.94 18059.22 33578.30 33642.31 31692.70 27665.59 25972.00 25781.79 350
V4276.46 23474.55 23882.19 21579.14 34467.82 9690.26 23889.42 25673.75 16568.63 25681.89 29151.31 24994.09 22871.69 19864.84 30884.66 315
pm-mvs172.89 27771.09 28178.26 29779.10 34557.62 32190.80 21789.30 26067.66 27862.91 31681.78 29349.11 27392.95 26260.29 29558.89 35584.22 318
our_test_368.29 31664.69 32579.11 29078.92 34664.85 17388.40 27785.06 34260.32 34252.68 36476.12 35740.81 32089.80 33444.25 36155.65 36482.67 343
ppachtmachnet_test67.72 32063.70 33279.77 27778.92 34666.04 14388.68 27282.90 36360.11 34455.45 35475.96 35839.19 32490.55 31939.53 37752.55 37482.71 340
test_fmvs174.07 26473.69 25275.22 32478.91 34847.34 38189.06 26874.69 38463.68 31179.41 12691.59 16024.36 38687.77 35085.22 8076.26 22990.55 222
TinyColmap60.32 35556.42 36272.00 35478.78 34953.18 35078.36 36475.64 38052.30 37341.59 40175.82 36014.76 40688.35 34335.84 38554.71 36974.46 389
SixPastTwentyTwo64.92 33761.78 34474.34 33378.74 35049.76 36783.42 32379.51 37362.86 32050.27 37577.35 34430.92 37290.49 32145.89 35447.06 38382.78 336
EG-PatchMatch MVS68.55 31265.41 32077.96 30078.69 35162.93 22889.86 25089.17 26660.55 33950.27 37577.73 34322.60 39294.06 23147.18 34872.65 25376.88 385
pmmvs573.35 27171.52 27878.86 29178.64 35260.61 28191.08 20886.90 32167.69 27763.32 31083.64 27144.33 30890.53 32062.04 28566.02 29785.46 306
UniMVSNet_ETH3D72.74 28070.53 28779.36 28478.62 35356.64 33285.01 31089.20 26463.77 30964.84 29584.44 26434.05 35891.86 30163.94 27070.89 26689.57 235
XVG-OURS74.25 26372.46 26979.63 27978.45 35457.59 32280.33 35087.39 31563.86 30868.76 25489.62 19440.50 32191.72 30469.00 22274.25 24089.58 234
tt080573.07 27370.73 28580.07 26578.37 35557.05 32887.78 28792.18 14161.23 33667.04 27886.49 24131.35 36994.58 20565.06 26467.12 29088.57 247
test_cas_vis1_n_192080.45 16280.61 14779.97 27178.25 35657.01 33094.04 6988.33 30079.06 8682.81 8893.70 11138.65 32791.63 30790.82 3879.81 19591.27 213
XVG-OURS-SEG-HR74.70 26073.08 25879.57 28178.25 35657.33 32680.49 34887.32 31663.22 31668.76 25490.12 19044.89 30691.59 30870.55 20874.09 24289.79 231
MDA-MVSNet_test_wron63.78 34460.16 34874.64 32978.15 35860.41 28583.49 32084.03 35156.17 36639.17 40371.59 37737.22 34383.24 38042.87 36648.73 38080.26 365
YYNet163.76 34560.14 34974.62 33078.06 35960.19 29183.46 32283.99 35556.18 36539.25 40271.56 37837.18 34483.34 37842.90 36548.70 38180.32 364
DTE-MVSNet68.46 31467.33 30871.87 35577.94 36049.00 37486.16 30688.58 29566.36 29058.19 34182.21 28846.36 29283.87 37444.97 35955.17 36682.73 338
USDC67.43 32564.51 32776.19 31977.94 36055.29 34078.38 36385.00 34373.17 17548.36 38380.37 31821.23 39492.48 28552.15 32564.02 31980.81 359
mamv465.18 33667.43 30658.44 38277.88 36249.36 37369.40 39070.99 39548.31 38857.78 34785.53 25259.01 16051.88 42073.67 17764.32 31474.07 390
jajsoiax73.05 27471.51 27977.67 30277.46 36354.83 34388.81 27090.04 23469.13 26662.85 31783.51 27331.16 37092.75 27370.83 20369.80 26785.43 307
mvs_tets72.71 28171.11 28077.52 30377.41 36454.52 34588.45 27689.76 24268.76 27162.70 31883.26 27629.49 37592.71 27470.51 20969.62 26985.34 309
N_pmnet50.55 36949.11 37154.88 38877.17 3654.02 43284.36 3132.00 43048.59 38545.86 38968.82 38432.22 36482.80 38231.58 40151.38 37677.81 383
test_djsdf73.76 27072.56 26777.39 30777.00 36653.93 34789.07 26690.69 20565.80 29363.92 30482.03 29043.14 31392.67 27772.83 18268.53 28085.57 303
OpenMVS_ROBcopyleft61.12 1866.39 32862.92 33776.80 31676.51 36757.77 31889.22 26283.41 35955.48 36753.86 36177.84 34126.28 38593.95 24034.90 38968.76 27878.68 377
v7n71.31 29168.65 29879.28 28576.40 36860.77 27386.71 30289.45 25464.17 30658.77 34078.24 33744.59 30793.54 25057.76 30561.75 33783.52 326
K. test v363.09 34659.61 35173.53 33976.26 36949.38 37283.27 32477.15 37664.35 30347.77 38572.32 37328.73 37787.79 34949.93 33336.69 40083.41 329
RPSCF64.24 34161.98 34371.01 35876.10 37045.00 39175.83 37575.94 37846.94 39158.96 33884.59 26131.40 36882.00 38747.76 34660.33 35186.04 291
OurMVSNet-221017-064.68 33862.17 34272.21 35076.08 37147.35 38080.67 34781.02 36656.19 36451.60 36979.66 32927.05 38388.56 34053.60 32253.63 37180.71 360
dongtai55.18 36555.46 36454.34 39076.03 37236.88 40876.07 37384.61 34751.28 37743.41 39864.61 39456.56 19167.81 40818.09 41328.50 41358.32 406
test_fmvsmconf0.01_n83.70 10583.52 8984.25 15675.26 37361.72 25692.17 15287.24 32082.36 2984.91 6695.41 5355.60 20196.83 11692.85 2085.87 14094.21 122
Anonymous2023120667.53 32365.78 31572.79 34574.95 37447.59 37988.23 27887.32 31661.75 33458.07 34377.29 34637.79 33987.29 35642.91 36463.71 32183.48 327
EGC-MVSNET42.35 37638.09 37955.11 38774.57 37546.62 38671.63 38555.77 4110.04 4250.24 42662.70 39714.24 40774.91 39917.59 41446.06 38543.80 411
ITE_SJBPF70.43 35974.44 37647.06 38477.32 37560.16 34354.04 36083.53 27223.30 39084.01 37243.07 36361.58 34180.21 367
EU-MVSNet64.01 34263.01 33667.02 37274.40 37738.86 40783.27 32486.19 33145.11 39554.27 35881.15 30936.91 34880.01 39348.79 33957.02 36082.19 348
XVG-ACMP-BASELINE68.04 31865.53 31975.56 32274.06 37852.37 35278.43 36285.88 33462.03 32958.91 33981.21 30820.38 39791.15 31760.69 29268.18 28283.16 333
mvsany_test168.77 31068.56 29969.39 36273.57 37945.88 39080.93 34660.88 41059.65 34671.56 21890.26 18343.22 31275.05 39774.26 17562.70 32687.25 269
CL-MVSNet_self_test69.92 30068.09 30475.41 32373.25 38055.90 33790.05 24489.90 23869.96 25461.96 32376.54 35251.05 25287.64 35149.51 33550.59 37882.70 341
anonymousdsp71.14 29269.37 29676.45 31772.95 38154.71 34484.19 31588.88 28261.92 33162.15 32179.77 32738.14 33491.44 31568.90 22467.45 28983.21 332
lessismore_v073.72 33872.93 38247.83 37861.72 40945.86 38973.76 36628.63 37989.81 33247.75 34731.37 40883.53 325
pmmvs667.57 32264.76 32476.00 32172.82 38353.37 34988.71 27186.78 32553.19 37257.58 34978.03 34035.33 35492.41 28655.56 31354.88 36882.21 347
testgi64.48 34062.87 33869.31 36371.24 38440.62 40185.49 30779.92 37165.36 29754.18 35983.49 27423.74 38984.55 36841.60 37060.79 34682.77 337
Patchmatch-RL test68.17 31764.49 32879.19 28671.22 38553.93 34770.07 38871.54 39469.22 26356.79 35162.89 39656.58 19088.61 33869.53 21552.61 37395.03 85
test_fmvs1_n72.69 28371.92 27474.99 32771.15 38647.08 38387.34 29575.67 37963.48 31378.08 14391.17 16720.16 39887.87 34784.65 8975.57 23390.01 228
Gipumacopyleft34.91 38331.44 38645.30 39870.99 38739.64 40619.85 42072.56 38920.10 41616.16 42021.47 4215.08 42171.16 40313.07 41843.70 38925.08 418
S. Galliani, K. Lasinger, K. Schindler: Massively Parallel Multiview Stereopsis by Surface Normal Diffusion. ICCV 2015
UnsupCasMVSNet_eth65.79 33263.10 33573.88 33670.71 38850.29 36681.09 34489.88 23972.58 18949.25 38074.77 36532.57 36387.43 35555.96 31241.04 39383.90 321
CMPMVSbinary48.56 2166.77 32764.41 32973.84 33770.65 38950.31 36577.79 36785.73 33745.54 39444.76 39382.14 28935.40 35390.14 32963.18 27774.54 23781.07 356
M. Jancosek, T. Pajdla: Multi-View Reconstruction Preserving Weakly-Supported Surfaces. CVPR 2011
test20.0363.83 34362.65 33967.38 37170.58 39039.94 40386.57 30384.17 35063.29 31551.86 36877.30 34537.09 34682.47 38338.87 38154.13 37079.73 368
MIMVSNet160.16 35757.33 35868.67 36569.71 39144.13 39378.92 36084.21 34955.05 36844.63 39471.85 37523.91 38881.54 38932.63 39855.03 36780.35 363
test_vis1_n71.63 28970.73 28574.31 33469.63 39247.29 38286.91 29972.11 39063.21 31775.18 17390.17 18520.40 39685.76 36284.59 9074.42 23989.87 229
pmmvs-eth3d65.53 33562.32 34175.19 32569.39 39359.59 29882.80 33283.43 35862.52 32451.30 37272.49 36932.86 36087.16 35755.32 31450.73 37778.83 376
UnsupCasMVSNet_bld61.60 35057.71 35573.29 34168.73 39451.64 35678.61 36189.05 27657.20 35946.11 38661.96 39928.70 37888.60 33950.08 33238.90 39879.63 369
test_vis1_rt59.09 36057.31 35964.43 37568.44 39546.02 38983.05 33048.63 41951.96 37549.57 37863.86 39516.30 40180.20 39271.21 20162.79 32567.07 402
Anonymous2024052162.09 34859.08 35271.10 35767.19 39648.72 37583.91 31785.23 34150.38 38147.84 38471.22 38020.74 39585.51 36546.47 35158.75 35679.06 373
mvs5depth61.03 35257.65 35771.18 35667.16 39747.04 38572.74 38177.49 37457.47 35760.52 32772.53 36822.84 39188.38 34249.15 33638.94 39778.11 382
test_fmvs265.78 33364.84 32268.60 36666.54 39841.71 39883.27 32469.81 39754.38 36967.91 26484.54 26315.35 40381.22 39075.65 16266.16 29682.88 335
KD-MVS_self_test60.87 35358.60 35367.68 36966.13 39939.93 40475.63 37784.70 34557.32 35849.57 37868.45 38629.55 37482.87 38148.09 34147.94 38280.25 366
new-patchmatchnet59.30 35956.48 36167.79 36865.86 40044.19 39282.47 33381.77 36459.94 34543.65 39766.20 39027.67 38181.68 38839.34 37841.40 39277.50 384
MVStest151.35 36846.89 37264.74 37465.06 40151.10 36167.33 39772.58 38830.20 41035.30 40574.82 36327.70 38069.89 40524.44 40724.57 41473.22 392
PM-MVS59.40 35856.59 36067.84 36763.63 40241.86 39776.76 36963.22 40759.01 34951.07 37372.27 37411.72 41083.25 37961.34 28850.28 37978.39 380
DSMNet-mixed56.78 36254.44 36663.79 37663.21 40329.44 41964.43 40164.10 40642.12 40351.32 37171.60 37631.76 36675.04 39836.23 38465.20 30586.87 274
new_pmnet49.31 37046.44 37357.93 38362.84 40440.74 40068.47 39362.96 40836.48 40535.09 40657.81 40314.97 40572.18 40232.86 39646.44 38460.88 405
LF4IMVS54.01 36652.12 36759.69 38162.41 40539.91 40568.59 39268.28 40142.96 40144.55 39575.18 36114.09 40868.39 40741.36 37251.68 37570.78 397
WB-MVS46.23 37344.94 37550.11 39362.13 40621.23 42676.48 37155.49 41245.89 39335.78 40461.44 40135.54 35272.83 4019.96 42021.75 41556.27 408
ttmdpeth53.34 36749.96 37063.45 37762.07 40740.04 40272.06 38265.64 40442.54 40251.88 36777.79 34213.94 40976.48 39632.93 39530.82 41173.84 391
ambc69.61 36161.38 40841.35 39949.07 41585.86 33650.18 37766.40 38910.16 41288.14 34545.73 35544.20 38779.32 372
SSC-MVS44.51 37543.35 37747.99 39761.01 40918.90 42874.12 37954.36 41343.42 40034.10 40860.02 40234.42 35770.39 4049.14 42219.57 41654.68 409
TDRefinement55.28 36451.58 36866.39 37359.53 41046.15 38876.23 37272.80 38744.60 39642.49 39976.28 35615.29 40482.39 38433.20 39343.75 38870.62 398
pmmvs355.51 36351.50 36967.53 37057.90 41150.93 36380.37 34973.66 38640.63 40444.15 39664.75 39316.30 40178.97 39444.77 36040.98 39572.69 394
test_method38.59 38135.16 38448.89 39554.33 41221.35 42545.32 41653.71 4147.41 42228.74 41051.62 4068.70 41552.87 41933.73 39032.89 40772.47 395
test_fmvs356.82 36154.86 36562.69 38053.59 41335.47 41075.87 37465.64 40443.91 39855.10 35571.43 3796.91 41874.40 40068.64 22652.63 37278.20 381
APD_test140.50 37837.31 38150.09 39451.88 41435.27 41159.45 40852.59 41521.64 41426.12 41257.80 4044.56 42266.56 41022.64 40939.09 39648.43 410
DeepMVS_CXcopyleft34.71 40351.45 41524.73 42328.48 42931.46 40917.49 41952.75 4055.80 42042.60 42418.18 41219.42 41736.81 416
FPMVS45.64 37443.10 37853.23 39151.42 41636.46 40964.97 40071.91 39129.13 41127.53 41161.55 4009.83 41365.01 41416.00 41755.58 36558.22 407
wuyk23d11.30 39210.95 39512.33 40748.05 41719.89 42725.89 4191.92 4313.58 4233.12 4251.37 4250.64 43015.77 4266.23 4257.77 4241.35 422
PMMVS237.93 38233.61 38550.92 39246.31 41824.76 42260.55 40750.05 41628.94 41220.93 41447.59 4074.41 42465.13 41325.14 40618.55 41862.87 404
mvsany_test348.86 37146.35 37456.41 38446.00 41931.67 41562.26 40347.25 42043.71 39945.54 39168.15 38710.84 41164.44 41657.95 30435.44 40573.13 393
test_f46.58 37243.45 37655.96 38545.18 42032.05 41461.18 40449.49 41833.39 40742.05 40062.48 3987.00 41765.56 41247.08 34943.21 39070.27 399
test_vis3_rt40.46 37937.79 38048.47 39644.49 42133.35 41366.56 39932.84 42732.39 40829.65 40939.13 4173.91 42568.65 40650.17 33040.99 39443.40 412
E-PMN24.61 38724.00 39126.45 40443.74 42218.44 42960.86 40539.66 42315.11 4199.53 42322.10 4206.52 41946.94 4228.31 42310.14 42013.98 420
testf132.77 38429.47 38742.67 40041.89 42330.81 41652.07 41143.45 42115.45 41718.52 41744.82 4112.12 42658.38 41716.05 41530.87 40938.83 413
APD_test232.77 38429.47 38742.67 40041.89 42330.81 41652.07 41143.45 42115.45 41718.52 41744.82 4112.12 42658.38 41716.05 41530.87 40938.83 413
EMVS23.76 38923.20 39325.46 40541.52 42516.90 43060.56 40638.79 42614.62 4208.99 42420.24 4237.35 41645.82 4237.25 4249.46 42113.64 421
LCM-MVSNet40.54 37735.79 38254.76 38936.92 42630.81 41651.41 41369.02 39822.07 41324.63 41345.37 4104.56 42265.81 41133.67 39134.50 40667.67 400
ANet_high40.27 38035.20 38355.47 38634.74 42734.47 41263.84 40271.56 39348.42 38618.80 41641.08 4159.52 41464.45 41520.18 4118.66 42367.49 401
MVEpermissive24.84 2324.35 38819.77 39438.09 40234.56 42826.92 42126.57 41838.87 42511.73 42111.37 42227.44 4181.37 42950.42 42111.41 41914.60 41936.93 415
Simon Fuhrmann, Fabian Langguth, Michael Goesele: MVE - A Multi-View Reconstruction Environment. EUROGRAPHICS Workshops on Graphics and Cultural Heritage (2014)
PMVScopyleft26.43 2231.84 38628.16 38942.89 39925.87 42927.58 42050.92 41449.78 41721.37 41514.17 42140.81 4162.01 42866.62 4099.61 42138.88 39934.49 417
Y. Furukawa, J. Ponce: Accurate, dense, and robust multiview stereopsis. PAMI (2010)
tmp_tt22.26 39023.75 39217.80 4065.23 43012.06 43135.26 41739.48 4242.82 42418.94 41544.20 41322.23 39324.64 42536.30 3839.31 42216.69 419
testmvs7.23 3949.62 3970.06 4090.04 4310.02 43484.98 3110.02 4320.03 4260.18 4271.21 4260.01 4320.02 4270.14 4260.01 4250.13 424
test1236.92 3959.21 3980.08 4080.03 4320.05 43381.65 3390.01 4330.02 4270.14 4280.85 4270.03 4310.02 4270.12 4270.00 4260.16 423
mmdepth0.00 3970.00 4000.00 4100.00 4330.00 4350.00 4210.00 4340.00 4280.00 4290.00 4280.00 4330.00 4290.00 4280.00 4260.00 425
monomultidepth0.00 3970.00 4000.00 4100.00 4330.00 4350.00 4210.00 4340.00 4280.00 4290.00 4280.00 4330.00 4290.00 4280.00 4260.00 425
test_blank0.00 3970.00 4000.00 4100.00 4330.00 4350.00 4210.00 4340.00 4280.00 4290.00 4280.00 4330.00 4290.00 4280.00 4260.00 425
eth-test20.00 433
eth-test0.00 433
uanet_test0.00 3970.00 4000.00 4100.00 4330.00 4350.00 4210.00 4340.00 4280.00 4290.00 4280.00 4330.00 4290.00 4280.00 4260.00 425
DCPMVS0.00 3970.00 4000.00 4100.00 4330.00 4350.00 4210.00 4340.00 4280.00 4290.00 4280.00 4330.00 4290.00 4280.00 4260.00 425
cdsmvs_eth3d_5k19.86 39126.47 3900.00 4100.00 4330.00 4350.00 42193.45 860.00 4280.00 42995.27 6149.56 2650.00 4290.00 4280.00 4260.00 425
pcd_1.5k_mvsjas4.46 3965.95 3990.00 4100.00 4330.00 4350.00 4210.00 4340.00 4280.00 4290.00 42853.55 2260.00 4290.00 4280.00 4260.00 425
sosnet-low-res0.00 3970.00 4000.00 4100.00 4330.00 4350.00 4210.00 4340.00 4280.00 4290.00 4280.00 4330.00 4290.00 4280.00 4260.00 425
sosnet0.00 3970.00 4000.00 4100.00 4330.00 4350.00 4210.00 4340.00 4280.00 4290.00 4280.00 4330.00 4290.00 4280.00 4260.00 425
uncertanet0.00 3970.00 4000.00 4100.00 4330.00 4350.00 4210.00 4340.00 4280.00 4290.00 4280.00 4330.00 4290.00 4280.00 4260.00 425
Regformer0.00 3970.00 4000.00 4100.00 4330.00 4350.00 4210.00 4340.00 4280.00 4290.00 4280.00 4330.00 4290.00 4280.00 4260.00 425
ab-mvs-re7.91 39310.55 3960.00 4100.00 4330.00 4350.00 4210.00 4340.00 4280.00 42994.95 710.00 4330.00 4290.00 4280.00 4260.00 425
uanet0.00 3970.00 4000.00 4100.00 4330.00 4350.00 4210.00 4340.00 4280.00 4290.00 4280.00 4330.00 4290.00 4280.00 4260.00 425
WAC-MVS49.45 37031.56 402
PC_three_145280.91 5094.07 296.83 1883.57 499.12 595.70 797.42 497.55 4
test_241102_TWO94.41 4971.65 22192.07 997.21 474.58 1899.11 692.34 2495.36 1496.59 19
test_0728_THIRD72.48 19190.55 2096.93 1176.24 1199.08 1191.53 3294.99 1896.43 31
GSMVS94.68 100
sam_mvs157.85 17194.68 100
sam_mvs54.91 210
MTGPAbinary92.23 134
test_post178.95 35920.70 42253.05 23191.50 31460.43 293
test_post23.01 41956.49 19292.67 277
patchmatchnet-post67.62 38857.62 17490.25 323
MTMP93.77 8632.52 428
test9_res89.41 4294.96 1995.29 70
agg_prior286.41 7294.75 3095.33 66
test_prior467.18 11493.92 75
test_prior295.10 3875.40 13985.25 6595.61 4767.94 5587.47 6194.77 26
旧先验292.00 16559.37 34887.54 4193.47 25375.39 164
新几何291.41 186
无先验92.71 13092.61 12462.03 32997.01 9866.63 24493.97 136
原ACMM292.01 162
testdata296.09 14561.26 289
segment_acmp65.94 72
testdata189.21 26377.55 111
plane_prior591.31 18295.55 17476.74 15478.53 20988.39 251
plane_prior489.14 200
plane_prior361.95 25179.09 8372.53 202
plane_prior293.13 11278.81 90
plane_prior62.42 23993.85 7979.38 7578.80 206
n20.00 434
nn0.00 434
door-mid66.01 403
test1193.01 106
door66.57 402
HQP5-MVS63.66 208
BP-MVS77.63 151
HQP4-MVS74.18 18195.61 16988.63 245
HQP3-MVS91.70 16878.90 204
HQP2-MVS51.63 246
MDTV_nov1_ep13_2view59.90 29480.13 35467.65 27972.79 19654.33 21859.83 29792.58 178
ACMMP++_ref71.63 259
ACMMP++69.72 268
Test By Simon54.21 220