This table lists the benchmark results for the high-res multi-view scenario. The following metrics are evaluated:

(*) For exact definitions, detailing how potentially incomplete ground truth is taken into account, see our paper.

The datasets are grouped into different categories, and result averages are computed for a category and method if results of the method are available for all datasets within the category. Note that the category "all" includes both the high-res multi-view and the low-res many-view scenarios.

Methods with suffix _ROB may participate in the Robust Vision Challenge.

Click a dataset result cell to show a visualization of the reconstruction. For training datasets, ground truth and accuracy / completeness visualizations are also available. The visualizations may not work with mobile browsers.




Method Infoallhigh-res
multi-view
indooroutdoorbotani.boulde.bridgedoorexhibi.lectur.living.loungeobserv.old co.statueterrac.
sort bysort bysort bysort bysort bysort bysort bysort bysorted bysort bysort bysort bysort bysort bysort bysort by
MCST-MVS91.08 191.46 389.94 497.66 273.37 1097.13 295.58 1189.33 185.77 5696.26 3272.84 2999.38 192.64 2295.93 997.08 11
MM90.87 291.52 288.92 1592.12 10071.10 2797.02 396.04 688.70 291.57 1496.19 3470.12 4598.91 1896.83 195.06 1796.76 15
DELS-MVS90.05 890.09 1189.94 493.14 7073.88 997.01 494.40 5188.32 385.71 5794.91 7574.11 2198.91 1887.26 6495.94 897.03 12
Christian Sormann, Emanuele Santellani, Mattia Rossi, Andreas Kuhn, Friedrich Fraundorfer: DELS-MVS: Deep Epipolar Line Search for Multi-View Stereo. Winter Conference on Applications of Computer Vision (WACV), 2023
MVS_030490.32 690.90 788.55 2394.05 4570.23 3697.00 593.73 7487.30 492.15 696.15 3666.38 6798.94 1796.71 294.67 3396.47 28
EPNet87.84 2488.38 2086.23 8293.30 6466.05 14295.26 3294.84 3087.09 588.06 3594.53 8466.79 6397.34 7583.89 9791.68 7495.29 70
Wanjuan Su, Wenbing Tao: Efficient Edge-Preserving Multi-View Stereo Network for Depth Estimation. AAAI 2023
CANet89.61 1289.99 1288.46 2494.39 3969.71 5096.53 1393.78 6786.89 689.68 2895.78 4265.94 7299.10 992.99 1993.91 4296.58 21
patch_mono-289.71 1190.99 685.85 9496.04 2463.70 20595.04 4095.19 2086.74 791.53 1595.15 6873.86 2297.58 6193.38 1692.00 6996.28 37
DeepPCF-MVS81.17 189.72 1091.38 484.72 13593.00 7558.16 31596.72 994.41 4986.50 890.25 2297.83 175.46 1498.67 2592.78 2195.49 1397.32 6
CANet_DTU84.09 9583.52 8985.81 9590.30 14866.82 12491.87 17089.01 27785.27 986.09 5393.74 11047.71 28596.98 10377.90 15089.78 9893.65 147
CLD-MVS82.73 12182.35 12183.86 16687.90 21067.65 10195.45 2892.18 14185.06 1072.58 20192.27 14352.46 23895.78 15784.18 9379.06 20388.16 254
Zhaoxin Li, Wangmeng Zuo, Zhaoqi Wang, Lei Zhang: Confidence-based Large-scale Dense Multi-view Stereo. IEEE Transaction on Image Processing, 2020
CNVR-MVS90.32 690.89 888.61 2296.76 870.65 3096.47 1494.83 3184.83 1189.07 3196.80 1970.86 4199.06 1592.64 2295.71 1196.12 40
NCCC89.07 1689.46 1587.91 2896.60 1069.05 6396.38 1594.64 4084.42 1286.74 4796.20 3366.56 6698.76 2489.03 4994.56 3495.92 46
test_fmvsm_n_192087.69 2688.50 1985.27 11587.05 23363.55 21293.69 8991.08 19684.18 1390.17 2497.04 867.58 5897.99 3995.72 590.03 9594.26 119
balanced_conf0389.08 1588.84 1789.81 693.66 5475.15 590.61 22893.43 8884.06 1486.20 5190.17 18572.42 3396.98 10393.09 1895.92 1097.29 7
PS-MVSNAJ88.14 1887.61 2989.71 792.06 10176.72 195.75 2093.26 9483.86 1589.55 2996.06 3853.55 22697.89 4391.10 3493.31 5394.54 109
DeepC-MVS_fast79.48 287.95 2288.00 2587.79 3195.86 2768.32 8095.74 2194.11 6183.82 1683.49 7996.19 3464.53 9098.44 3183.42 10394.88 2596.61 18
Andreas Kuhn, Christian Sormann, Mattia Rossi, Oliver Erdler, Friedrich Fraundorfer: DeepC-MVS: Deep Confidence Prediction for Multi-View Stereo Reconstruction. 3DV 2020
test_fmvsmconf_n86.58 4487.17 3484.82 12885.28 26562.55 23794.26 5889.78 24183.81 1787.78 3896.33 3165.33 7896.98 10394.40 1187.55 12194.95 87
xiu_mvs_v2_base87.92 2387.38 3389.55 1291.41 12776.43 395.74 2193.12 10283.53 1889.55 2995.95 4053.45 23097.68 5191.07 3592.62 6094.54 109
test_fmvsmconf0.1_n85.71 6186.08 5384.62 14280.83 32062.33 24293.84 8288.81 28583.50 1987.00 4596.01 3963.36 10896.93 11194.04 1387.29 12494.61 105
fmvsm_s_conf0.5_n_285.06 7385.60 6283.44 18386.92 23960.53 28294.41 5287.31 31883.30 2088.72 3396.72 2154.28 21997.75 4994.07 1284.68 15192.04 196
reproduce_monomvs79.49 18079.11 17480.64 25292.91 7761.47 26191.17 20693.28 9383.09 2164.04 30382.38 28566.19 6894.57 20781.19 12257.71 35885.88 297
fmvsm_s_conf0.1_n_284.40 8484.78 7783.27 18685.25 26660.41 28594.13 6385.69 33883.05 2287.99 3696.37 2852.75 23597.68 5193.75 1584.05 16091.71 200
TSAR-MVS + MP.88.11 2088.64 1886.54 7291.73 11568.04 9090.36 23493.55 8182.89 2391.29 1692.89 12872.27 3596.03 15187.99 5494.77 2695.54 57
Zhenlong Yuan, Jiakai Cao, Zhaoqi Wang, Zhaoxin Li: TSAR-MVS: Textureless-aware Segmentation and Correlative Refinement Guided Multi-View Stereo. Pattern Recognition
DPM-MVS90.70 390.52 991.24 189.68 16076.68 297.29 195.35 1682.87 2491.58 1397.22 379.93 599.10 983.12 10497.64 297.94 1
WTY-MVS86.32 4885.81 5787.85 2992.82 8169.37 5795.20 3495.25 1882.71 2581.91 9494.73 7967.93 5697.63 5879.55 13482.25 17396.54 22
lupinMVS87.74 2587.77 2787.63 3889.24 17571.18 2496.57 1292.90 11182.70 2687.13 4295.27 6164.99 8195.80 15689.34 4491.80 7295.93 45
fmvsm_s_conf0.5_n86.39 4786.91 3884.82 12887.36 22663.54 21394.74 4790.02 23582.52 2790.14 2596.92 1362.93 11697.84 4695.28 882.26 17293.07 165
HPM-MVS++copyleft89.37 1489.95 1387.64 3495.10 3068.23 8695.24 3394.49 4582.43 2888.90 3296.35 2971.89 3898.63 2688.76 5096.40 696.06 41
test_fmvsmconf0.01_n83.70 10583.52 8984.25 15675.26 37361.72 25692.17 15287.24 32082.36 2984.91 6695.41 5355.60 20196.83 11692.85 2085.87 14094.21 122
PVSNet_Blended86.73 4286.86 4086.31 8193.76 5067.53 10596.33 1693.61 7882.34 3081.00 10693.08 12263.19 11197.29 7887.08 6791.38 8094.13 128
MSP-MVS90.38 591.87 185.88 9192.83 7964.03 19593.06 11494.33 5582.19 3193.65 396.15 3685.89 197.19 8691.02 3697.75 196.43 31
Zhenlong Yuan, Cong Liu, Fei Shen, Zhaoxin Li, Jingguo luo, Tianlu Mao and Zhaoqi Wang: MSP-MVS: Multi-granularity Segmentation Prior Guided Multi-View Stereo. AAAI2025
PAPM85.89 5885.46 6487.18 4988.20 20372.42 1592.41 14692.77 11482.11 3280.34 11593.07 12368.27 5195.02 18978.39 14793.59 4994.09 130
jason86.40 4686.17 5087.11 5186.16 25070.54 3295.71 2492.19 14082.00 3384.58 6994.34 9461.86 12695.53 17687.76 5690.89 8695.27 73
jason: jason.
baseline181.84 13781.03 13884.28 15591.60 11866.62 13091.08 20891.66 17081.87 3474.86 17691.67 15869.98 4694.92 19571.76 19764.75 31091.29 212
CHOSEN 1792x268884.98 7683.45 9489.57 1189.94 15575.14 692.07 15992.32 13181.87 3475.68 16688.27 20960.18 14298.60 2780.46 12790.27 9494.96 86
fmvsm_s_conf0.1_n85.61 6485.93 5584.68 13882.95 30363.48 21594.03 7089.46 25381.69 3689.86 2696.74 2061.85 12797.75 4994.74 982.01 17892.81 173
test_vis1_n_192081.66 14082.01 12480.64 25282.24 30855.09 34294.76 4686.87 32281.67 3784.40 7194.63 8238.17 33294.67 20491.98 2983.34 16392.16 194
UBG86.83 3986.70 4287.20 4893.07 7369.81 4693.43 10595.56 1381.52 3881.50 9792.12 14773.58 2696.28 13684.37 9285.20 14495.51 58
casdiffmvs_mvgpermissive85.66 6385.18 6987.09 5288.22 20269.35 5893.74 8891.89 15581.47 3980.10 11791.45 16164.80 8696.35 13487.23 6587.69 11995.58 55
Fangjinhua Wang, Qingshan Xu, Yew-Soon Ong, Marc Pollefeys: Lightweight and Accurate Multi-View Stereo With Confidence-Aware Diffusion Model. IEEE T-PAMI 2025
h-mvs3383.01 11782.56 11784.35 15289.34 16762.02 24892.72 12993.76 7081.45 4082.73 8992.25 14560.11 14397.13 9287.69 5762.96 32393.91 139
hse-mvs281.12 15081.11 13781.16 23986.52 24257.48 32389.40 25991.16 18981.45 4082.73 8990.49 17760.11 14394.58 20587.69 5760.41 35091.41 206
ET-MVSNet_ETH3D84.01 9683.15 10686.58 7090.78 14170.89 2894.74 4794.62 4181.44 4258.19 34193.64 11373.64 2592.35 29082.66 10878.66 20896.50 27
fmvsm_s_conf0.5_n_a85.75 6086.09 5284.72 13585.73 25963.58 21093.79 8589.32 25981.42 4390.21 2396.91 1462.41 12197.67 5394.48 1080.56 19192.90 171
test_fmvsmvis_n_192083.80 10183.48 9284.77 13282.51 30663.72 20391.37 19383.99 35581.42 4377.68 14695.74 4458.37 16697.58 6193.38 1686.87 12793.00 168
testing1186.71 4386.44 4587.55 4093.54 5971.35 2193.65 9195.58 1181.36 4580.69 10992.21 14672.30 3496.46 13085.18 8283.43 16294.82 95
casdiffmvspermissive85.37 6884.87 7586.84 5988.25 20069.07 6293.04 11691.76 16281.27 4680.84 10892.07 14964.23 9296.06 14984.98 8587.43 12395.39 61
Fangjinhua Wang, Qingshan Xu, Yew-Soon Ong, Marc Pollefeys: Lightweight and Accurate Multi-View Stereo With Confidence-Aware Diffusion Model. IEEE T-PAMI 2025
ETV-MVS86.01 5486.11 5185.70 10190.21 15067.02 12093.43 10591.92 15281.21 4784.13 7594.07 10560.93 13695.63 16789.28 4589.81 9694.46 115
DeepC-MVS77.85 385.52 6785.24 6886.37 7888.80 18566.64 12992.15 15393.68 7681.07 4876.91 15793.64 11362.59 11998.44 3185.50 7892.84 5994.03 134
Andreas Kuhn, Christian Sormann, Mattia Rossi, Oliver Erdler, Friedrich Fraundorfer: DeepC-MVS: Deep Confidence Prediction for Multi-View Stereo Reconstruction. 3DV 2020
baseline85.01 7584.44 8086.71 6488.33 19768.73 7190.24 23991.82 16181.05 4981.18 10292.50 13563.69 10096.08 14884.45 9186.71 13395.32 68
PC_three_145280.91 5094.07 296.83 1883.57 499.12 595.70 797.42 497.55 4
IU-MVS96.46 1169.91 4295.18 2180.75 5195.28 192.34 2495.36 1496.47 28
diffmvspermissive84.28 8883.83 8585.61 10387.40 22468.02 9190.88 21489.24 26280.54 5281.64 9692.52 13459.83 14794.52 21387.32 6385.11 14594.29 118
Fangjinhua Wang, Qingshan Xu, Yew-Soon Ong, Marc Pollefeys: Lightweight and Accurate Multi-View Stereo With Confidence-Aware Diffusion Model. IEEE T-PAMI 2025
fmvsm_l_conf0.5_n87.49 2888.19 2385.39 10986.95 23464.37 18594.30 5688.45 29780.51 5392.70 496.86 1569.98 4697.15 9195.83 488.08 11594.65 103
fmvsm_s_conf0.1_n_a84.76 7984.84 7684.53 14480.23 33063.50 21492.79 12688.73 28880.46 5489.84 2796.65 2360.96 13597.57 6393.80 1480.14 19392.53 180
VPNet78.82 19377.53 19582.70 19884.52 27966.44 13493.93 7492.23 13480.46 5472.60 20088.38 20749.18 27093.13 25772.47 19063.97 32088.55 248
testing9986.01 5485.47 6387.63 3893.62 5571.25 2393.47 10395.23 1980.42 5680.60 11191.95 15171.73 3996.50 12880.02 13182.22 17495.13 79
testing22285.18 7184.69 7886.63 6792.91 7769.91 4292.61 13795.80 980.31 5780.38 11492.27 14368.73 4995.19 18675.94 15983.27 16494.81 96
testing9185.93 5685.31 6787.78 3293.59 5771.47 1993.50 10095.08 2680.26 5880.53 11291.93 15270.43 4396.51 12780.32 12982.13 17695.37 63
sasdasda86.85 3786.25 4888.66 2091.80 11371.92 1693.54 9791.71 16580.26 5887.55 3995.25 6363.59 10496.93 11188.18 5284.34 15297.11 9
canonicalmvs86.85 3786.25 4888.66 2091.80 11371.92 1693.54 9791.71 16580.26 5887.55 3995.25 6363.59 10496.93 11188.18 5284.34 15297.11 9
fmvsm_l_conf0.5_n_a87.44 3088.15 2485.30 11387.10 23164.19 19294.41 5288.14 30680.24 6192.54 596.97 1069.52 4897.17 8795.89 388.51 11094.56 106
SPE-MVS-test86.14 5287.01 3683.52 17792.63 8759.36 30495.49 2791.92 15280.09 6285.46 6195.53 5161.82 12895.77 15986.77 7193.37 5295.41 60
CS-MVS85.80 5986.65 4483.27 18692.00 10658.92 30895.31 3191.86 15779.97 6384.82 6795.40 5462.26 12295.51 17786.11 7592.08 6895.37 63
BP-MVS186.54 4586.68 4386.13 8587.80 21567.18 11492.97 11995.62 1079.92 6482.84 8694.14 10274.95 1596.46 13082.91 10688.96 10694.74 97
MVSTER82.47 12682.05 12283.74 16892.68 8669.01 6491.90 16993.21 9579.83 6572.14 20985.71 25174.72 1794.72 20075.72 16172.49 25487.50 260
HQP-NCC87.54 22094.06 6579.80 6674.18 181
ACMP_Plane87.54 22094.06 6579.80 6674.18 181
HQP-MVS81.14 14880.64 14682.64 20087.54 22063.66 20894.06 6591.70 16879.80 6674.18 18190.30 18151.63 24695.61 16977.63 15178.90 20488.63 245
baseline283.68 10683.42 9784.48 14787.37 22566.00 14490.06 24395.93 879.71 6969.08 24690.39 17977.92 696.28 13678.91 14281.38 18491.16 214
MGCFI-Net85.59 6585.73 6085.17 11991.41 12762.44 23892.87 12491.31 18279.65 7086.99 4695.14 6962.90 11796.12 14387.13 6684.13 15996.96 13
EI-MVSNet-Vis-set83.77 10283.67 8784.06 15992.79 8463.56 21191.76 17794.81 3279.65 7077.87 14494.09 10363.35 10997.90 4279.35 13679.36 20090.74 218
ETVMVS84.22 9283.71 8685.76 9892.58 8968.25 8592.45 14595.53 1579.54 7279.46 12591.64 15970.29 4494.18 22569.16 22082.76 17094.84 92
EIA-MVS84.84 7884.88 7484.69 13791.30 12962.36 24193.85 7992.04 14579.45 7379.33 12894.28 9862.42 12096.35 13480.05 13091.25 8395.38 62
dmvs_re76.93 22675.36 22781.61 22987.78 21660.71 27780.00 35687.99 31079.42 7469.02 24889.47 19546.77 28894.32 21763.38 27474.45 23889.81 230
plane_prior62.42 23993.85 7979.38 7578.80 206
dcpmvs_287.37 3187.55 3086.85 5895.04 3268.20 8790.36 23490.66 20879.37 7681.20 10193.67 11274.73 1696.55 12590.88 3792.00 6995.82 48
alignmvs87.28 3286.97 3788.24 2791.30 12971.14 2695.61 2593.56 8079.30 7787.07 4495.25 6368.43 5096.93 11187.87 5584.33 15496.65 17
TESTMET0.1,182.41 12781.98 12583.72 17288.08 20463.74 20192.70 13193.77 6979.30 7777.61 14887.57 22558.19 16994.08 22973.91 17686.68 13493.33 156
EI-MVSNet-UG-set83.14 11582.96 10783.67 17592.28 9363.19 22291.38 19294.68 3879.22 7976.60 15993.75 10962.64 11897.76 4878.07 14978.01 21190.05 227
PVSNet73.49 880.05 17078.63 17884.31 15390.92 13764.97 17092.47 14491.05 19979.18 8072.43 20690.51 17637.05 34794.06 23168.06 22986.00 13893.90 141
HY-MVS76.49 584.28 8883.36 10087.02 5592.22 9567.74 9884.65 31294.50 4479.15 8182.23 9287.93 21866.88 6296.94 10980.53 12682.20 17596.39 33
PVSNet_BlendedMVS83.38 11083.43 9583.22 18893.76 5067.53 10594.06 6593.61 7879.13 8281.00 10685.14 25563.19 11197.29 7887.08 6773.91 24484.83 314
plane_prior361.95 25179.09 8372.53 202
MonoMVSNet76.99 22575.08 23182.73 19683.32 29763.24 21986.47 30486.37 32679.08 8466.31 28579.30 33249.80 26491.72 30479.37 13565.70 29993.23 158
MVS_111021_HR86.19 5185.80 5887.37 4493.17 6969.79 4793.99 7193.76 7079.08 8478.88 13593.99 10662.25 12398.15 3685.93 7791.15 8494.15 127
test_cas_vis1_n_192080.45 16280.61 14779.97 27178.25 35657.01 33094.04 6988.33 30079.06 8682.81 8893.70 11138.65 32791.63 30790.82 3879.81 19591.27 213
MSLP-MVS++86.27 4985.91 5687.35 4592.01 10568.97 6695.04 4092.70 11679.04 8781.50 9796.50 2658.98 16196.78 11783.49 10293.93 4196.29 35
IB-MVS77.80 482.18 13080.46 15187.35 4589.14 17770.28 3595.59 2695.17 2278.85 8870.19 23485.82 24970.66 4297.67 5372.19 19466.52 29594.09 130
Christian Sormann, Mattia Rossi, Andreas Kuhn and Friedrich Fraundorfer: IB-MVS: An Iterative Algorithm for Deep Multi-View Stereo based on Binary Decisions. BMVC 2021
3Dnovator73.91 682.69 12480.82 14188.31 2689.57 16271.26 2292.60 13894.39 5278.84 8967.89 26692.48 13848.42 27698.52 2868.80 22594.40 3695.15 78
HQP_MVS80.34 16479.75 16082.12 21886.94 23562.42 23993.13 11291.31 18278.81 9072.53 20289.14 20050.66 25495.55 17476.74 15478.53 20988.39 251
plane_prior293.13 11278.81 90
MG-MVS87.11 3486.27 4689.62 897.79 176.27 494.96 4394.49 4578.74 9283.87 7792.94 12664.34 9196.94 10975.19 16594.09 3895.66 52
gm-plane-assit88.42 19367.04 11978.62 9391.83 15497.37 7276.57 156
mvsmamba81.55 14280.72 14384.03 16391.42 12466.93 12283.08 32889.13 27078.55 9467.50 27187.02 23551.79 24390.07 33187.48 6090.49 9295.10 81
VNet86.20 5085.65 6187.84 3093.92 4769.99 3895.73 2395.94 778.43 9586.00 5493.07 12358.22 16897.00 9985.22 8084.33 15496.52 23
tpm78.58 20077.03 20483.22 18885.94 25564.56 17483.21 32791.14 19278.31 9673.67 18879.68 32864.01 9492.09 29766.07 25371.26 26493.03 166
save fliter93.84 4967.89 9595.05 3992.66 12078.19 97
TSAR-MVS + GP.87.96 2188.37 2186.70 6593.51 6165.32 16095.15 3693.84 6678.17 9885.93 5594.80 7875.80 1398.21 3489.38 4388.78 10796.59 19
FIs79.47 18179.41 16779.67 27885.95 25359.40 30191.68 18193.94 6478.06 9968.96 25088.28 20866.61 6591.77 30366.20 25274.99 23487.82 257
sss82.71 12382.38 12083.73 17089.25 17259.58 29992.24 15094.89 2977.96 10079.86 12092.38 14056.70 18797.05 9477.26 15380.86 18894.55 107
PMMVS81.98 13682.04 12381.78 22589.76 15956.17 33491.13 20790.69 20577.96 10080.09 11893.57 11546.33 29594.99 19181.41 11887.46 12294.17 125
EC-MVSNet84.53 8385.04 7283.01 19189.34 16761.37 26394.42 5191.09 19477.91 10283.24 8094.20 10058.37 16695.40 17885.35 7991.41 7992.27 190
test111180.84 15580.02 15483.33 18487.87 21160.76 27492.62 13686.86 32377.86 10375.73 16591.39 16446.35 29394.70 20372.79 18488.68 10994.52 111
GDP-MVS85.54 6685.32 6686.18 8387.64 21867.95 9492.91 12392.36 13077.81 10483.69 7894.31 9672.84 2996.41 13280.39 12885.95 13994.19 123
MVS_Test84.16 9483.20 10387.05 5491.56 12069.82 4589.99 24892.05 14477.77 10582.84 8686.57 24063.93 9696.09 14574.91 17089.18 10295.25 76
SteuartSystems-ACMMP86.82 4186.90 3986.58 7090.42 14566.38 13596.09 1793.87 6577.73 10684.01 7695.66 4563.39 10797.94 4087.40 6293.55 5095.42 59
Skip Steuart: Steuart Systems R&D Blog.
EPNet_dtu78.80 19479.26 17177.43 30688.06 20549.71 36891.96 16791.95 15177.67 10776.56 16091.28 16658.51 16490.20 32856.37 31080.95 18792.39 182
Wanjuan Su, Wenbing Tao: Efficient Edge-Preserving Multi-View Stereo Network for Depth Estimation. AAAI 2023
test250683.29 11182.92 11084.37 15188.39 19563.18 22392.01 16291.35 18177.66 10878.49 14091.42 16264.58 8995.09 18873.19 17889.23 10094.85 89
ECVR-MVScopyleft81.29 14680.38 15284.01 16488.39 19561.96 25092.56 14386.79 32477.66 10876.63 15891.42 16246.34 29495.24 18574.36 17489.23 10094.85 89
tpmrst80.57 15879.14 17384.84 12790.10 15268.28 8281.70 33889.72 24877.63 11075.96 16379.54 33064.94 8392.71 27475.43 16377.28 22293.55 149
testdata189.21 26377.55 111
UniMVSNet_NR-MVSNet78.15 20777.55 19479.98 26984.46 28160.26 28892.25 14993.20 9777.50 11268.88 25186.61 23966.10 7092.13 29566.38 24962.55 32787.54 259
UA-Net80.02 17179.65 16181.11 24189.33 16957.72 31986.33 30589.00 28077.44 11381.01 10589.15 19959.33 15495.90 15461.01 29084.28 15689.73 233
PVSNet_Blended_VisFu83.97 9783.50 9185.39 10990.02 15366.59 13293.77 8691.73 16377.43 11477.08 15689.81 19263.77 9996.97 10679.67 13388.21 11392.60 177
dmvs_testset65.55 33466.45 31062.86 37879.87 33322.35 42476.55 37071.74 39277.42 11555.85 35387.77 22151.39 24880.69 39131.51 40365.92 29885.55 304
NR-MVSNet76.05 24074.59 23680.44 25582.96 30162.18 24690.83 21691.73 16377.12 11660.96 32586.35 24259.28 15591.80 30260.74 29161.34 34287.35 265
RRT-MVS82.61 12581.16 13286.96 5791.10 13368.75 7087.70 28992.20 13876.97 11772.68 19787.10 23451.30 25096.41 13283.56 10187.84 11795.74 50
FC-MVSNet-test77.99 20978.08 18677.70 30184.89 27455.51 33990.27 23793.75 7376.87 11866.80 28387.59 22465.71 7590.23 32762.89 28073.94 24387.37 264
SD-MVS87.49 2887.49 3187.50 4293.60 5668.82 6993.90 7692.63 12376.86 11987.90 3795.76 4366.17 6997.63 5889.06 4891.48 7896.05 42
Zhenlong Yuan, Jiakai Cao, Zhaoxin Li, Hao Jiang and Zhaoqi Wang: SD-MVS: Segmentation-driven Deformation Multi-View Stereo with Spherical Refinement and EM optimization. AAAI2024
WBMVS81.67 13980.98 14083.72 17293.07 7369.40 5394.33 5593.05 10476.84 12072.05 21184.14 26674.49 1993.88 24372.76 18568.09 28387.88 256
UGNet79.87 17478.68 17783.45 18289.96 15461.51 25992.13 15490.79 20376.83 12178.85 13786.33 24438.16 33396.17 14167.93 23287.17 12592.67 175
Wanjuan Su, Qingshan Xu, Wenbing Tao: Uncertainty-guided Multi-view Stereo Network for Depth Estimation. IEEE Transactions on Circuits and Systems for Video Technology, 2022
MVS_111021_LR82.02 13581.52 12983.51 17988.42 19362.88 23289.77 25188.93 28176.78 12275.55 17093.10 12050.31 25795.38 18083.82 9887.02 12692.26 191
SDMVSNet80.26 16578.88 17684.40 14989.25 17267.63 10285.35 30893.02 10576.77 12370.84 22587.12 23247.95 28296.09 14585.04 8374.55 23589.48 237
sd_testset77.08 22475.37 22682.20 21489.25 17262.11 24782.06 33589.09 27376.77 12370.84 22587.12 23241.43 31895.01 19067.23 23974.55 23589.48 237
TranMVSNet+NR-MVSNet75.86 24574.52 23979.89 27382.44 30760.64 28091.37 19391.37 18076.63 12567.65 26986.21 24552.37 23991.55 30961.84 28660.81 34587.48 261
PAPR85.15 7284.47 7987.18 4996.02 2568.29 8191.85 17293.00 10876.59 12679.03 13195.00 7061.59 12997.61 6078.16 14889.00 10595.63 53
UniMVSNet (Re)77.58 21676.78 20879.98 26984.11 28760.80 27191.76 17793.17 9976.56 12769.93 24084.78 25963.32 11092.36 28964.89 26562.51 32986.78 275
DU-MVS76.86 22775.84 22179.91 27282.96 30160.26 28891.26 19991.54 17376.46 12868.88 25186.35 24256.16 19492.13 29566.38 24962.55 32787.35 265
OPM-MVS79.00 18878.09 18581.73 22683.52 29563.83 19891.64 18390.30 22276.36 12971.97 21289.93 19146.30 29695.17 18775.10 16677.70 21486.19 286
Ray L. Khuboni, Hongjun Xu: Octagram Propagation Matching for Multi-Scale View Stereopsis (OPM-MVS).
WR-MVS76.76 23175.74 22379.82 27584.60 27762.27 24592.60 13892.51 12776.06 13067.87 26785.34 25356.76 18590.24 32662.20 28463.69 32286.94 273
GA-MVS78.33 20576.23 21584.65 13983.65 29366.30 13891.44 18590.14 22976.01 13170.32 23284.02 26842.50 31494.72 20070.98 20277.00 22492.94 169
PVSNet_068.08 1571.81 28768.32 30382.27 21084.68 27562.31 24488.68 27290.31 22175.84 13257.93 34680.65 31537.85 33894.19 22469.94 21129.05 41290.31 224
CDS-MVSNet81.43 14480.74 14283.52 17786.26 24764.45 17992.09 15790.65 20975.83 13373.95 18789.81 19263.97 9592.91 26771.27 20082.82 16793.20 160
Khang Truong Giang, Soohwan Song, Sungho Jo: Curvature-guided dynamic scale networks for Multi-view Stereo. ICLR 2022
UWE-MVS80.81 15681.01 13980.20 26289.33 16957.05 32891.91 16894.71 3675.67 13475.01 17589.37 19663.13 11391.44 31567.19 24082.80 16992.12 195
CostFormer82.33 12881.15 13385.86 9389.01 18068.46 7782.39 33493.01 10675.59 13580.25 11681.57 29872.03 3794.96 19279.06 14077.48 21994.16 126
nrg03080.93 15379.86 15884.13 15883.69 29268.83 6893.23 11091.20 18775.55 13675.06 17488.22 21363.04 11594.74 19981.88 11366.88 29288.82 243
VDD-MVS83.06 11681.81 12786.81 6190.86 13967.70 9995.40 2991.50 17675.46 13781.78 9592.34 14240.09 32297.13 9286.85 7082.04 17795.60 54
Effi-MVS+-dtu76.14 23675.28 22978.72 29283.22 29855.17 34189.87 24987.78 31375.42 13867.98 26281.43 30045.08 30592.52 28375.08 16771.63 25988.48 249
test_prior295.10 3875.40 13985.25 6595.61 4767.94 5587.47 6194.77 26
MTAPA83.91 9883.38 9985.50 10591.89 11165.16 16581.75 33792.23 13475.32 14080.53 11295.21 6656.06 19797.16 9084.86 8792.55 6294.18 124
EPMVS78.49 20275.98 21986.02 8791.21 13169.68 5180.23 35291.20 18775.25 14172.48 20478.11 33954.65 21193.69 24857.66 30783.04 16594.69 99
miper_enhance_ethall78.86 19277.97 18881.54 23188.00 20865.17 16491.41 18689.15 26875.19 14268.79 25383.98 26967.17 6092.82 26972.73 18665.30 30186.62 280
v2v48277.42 21875.65 22482.73 19680.38 32667.13 11691.85 17290.23 22675.09 14369.37 24283.39 27553.79 22494.44 21571.77 19665.00 30786.63 279
VPA-MVSNet79.03 18778.00 18782.11 22185.95 25364.48 17893.22 11194.66 3975.05 14474.04 18684.95 25752.17 24093.52 25174.90 17167.04 29188.32 253
ACMMP_NAP86.05 5385.80 5886.80 6291.58 11967.53 10591.79 17493.49 8574.93 14584.61 6895.30 5859.42 15297.92 4186.13 7494.92 2094.94 88
thres20079.66 17678.33 18183.66 17692.54 9065.82 15093.06 11496.31 374.90 14673.30 19188.66 20259.67 14995.61 16947.84 34578.67 20789.56 236
TAMVS80.37 16379.45 16683.13 19085.14 26963.37 21691.23 20190.76 20474.81 14772.65 19988.49 20460.63 13892.95 26269.41 21681.95 17993.08 164
MP-MVS-pluss85.24 7085.13 7085.56 10491.42 12465.59 15491.54 18492.51 12774.56 14880.62 11095.64 4659.15 15697.00 9986.94 6993.80 4394.07 132
MP-MVS-pluss: MP-MVS-pluss. MP-MVS-pluss
mvs_anonymous81.36 14579.99 15685.46 10690.39 14768.40 7886.88 30190.61 21074.41 14970.31 23384.67 26063.79 9892.32 29273.13 17985.70 14195.67 51
MAR-MVS84.18 9383.43 9586.44 7596.25 2165.93 14794.28 5794.27 5774.41 14979.16 13095.61 4753.99 22198.88 2269.62 21493.26 5494.50 113
Zhenyu Xu, Yiguang Liu, Xuelei Shi, Ying Wang, Yunan Zheng: MARMVS: Matching Ambiguity Reduced Multiple View Stereo for Efficient Large Scale Scene Reconstruction. CVPR 2020
BH-w/o80.49 16179.30 17084.05 16290.83 14064.36 18793.60 9489.42 25674.35 15169.09 24590.15 18755.23 20595.61 16964.61 26686.43 13792.17 193
thisisatest051583.41 10982.49 11886.16 8489.46 16668.26 8393.54 9794.70 3774.31 15275.75 16490.92 16972.62 3196.52 12669.64 21281.50 18393.71 145
Vis-MVSNet (Re-imp)79.24 18479.57 16278.24 29888.46 19152.29 35390.41 23189.12 27174.24 15369.13 24491.91 15365.77 7490.09 33059.00 30288.09 11492.33 184
SMA-MVScopyleft88.14 1888.29 2287.67 3393.21 6768.72 7293.85 7994.03 6374.18 15491.74 1296.67 2265.61 7698.42 3389.24 4696.08 795.88 47
Yufeng Yin; Xiaoyan Liu; Zichao Zhang: SMA-MVS: Segmentation-Guided Multi-Scale Anchor Deformation Patch Multi-View Stereo. IEEE Transactions on Circuits and Systems for Video Technology
AUN-MVS78.37 20377.43 19681.17 23886.60 24157.45 32489.46 25891.16 18974.11 15574.40 18090.49 17755.52 20294.57 20774.73 17360.43 34991.48 204
3Dnovator+73.60 782.10 13480.60 14886.60 6890.89 13866.80 12695.20 3493.44 8774.05 15667.42 27392.49 13749.46 26697.65 5770.80 20491.68 7495.33 66
XVS83.87 9983.47 9385.05 12193.22 6563.78 19992.92 12192.66 12073.99 15778.18 14194.31 9655.25 20397.41 7079.16 13891.58 7693.95 137
X-MVStestdata76.86 22774.13 24685.05 12193.22 6563.78 19992.92 12192.66 12073.99 15778.18 14110.19 42455.25 20397.41 7079.16 13891.58 7693.95 137
MS-PatchMatch77.90 21376.50 21182.12 21885.99 25269.95 4191.75 17992.70 11673.97 15962.58 31984.44 26441.11 31995.78 15763.76 27292.17 6680.62 361
LCM-MVSNet-Re72.93 27671.84 27576.18 32088.49 18948.02 37680.07 35570.17 39673.96 16052.25 36680.09 32449.98 26088.24 34467.35 23684.23 15792.28 187
Vis-MVSNetpermissive80.92 15479.98 15783.74 16888.48 19061.80 25293.44 10488.26 30573.96 16077.73 14591.76 15549.94 26194.76 19765.84 25590.37 9394.65 103
Jingyang Zhang, Yao Yao, Shiwei Li, Zixin Luo, Tian Fang: Visibility-aware Multiview Stereo Network. BMVC 2020
test-mter79.96 17279.38 16981.72 22786.93 23761.17 26492.70 13191.54 17373.85 16275.62 16786.94 23649.84 26392.38 28772.21 19284.76 14991.60 201
OMC-MVS78.67 19977.91 19080.95 24885.76 25857.40 32588.49 27588.67 29173.85 16272.43 20692.10 14849.29 26994.55 21172.73 18677.89 21290.91 217
Fast-Effi-MVS+81.14 14880.01 15584.51 14690.24 14965.86 14894.12 6489.15 26873.81 16475.37 17288.26 21057.26 17694.53 21266.97 24384.92 14693.15 161
ZNCC-MVS85.33 6985.08 7186.06 8693.09 7265.65 15293.89 7793.41 9073.75 16579.94 11994.68 8160.61 13998.03 3882.63 10993.72 4694.52 111
V4276.46 23474.55 23882.19 21579.14 34467.82 9690.26 23889.42 25673.75 16568.63 25681.89 29151.31 24994.09 22871.69 19864.84 30884.66 315
v114476.73 23274.88 23282.27 21080.23 33066.60 13191.68 18190.21 22873.69 16769.06 24781.89 29152.73 23694.40 21669.21 21965.23 30485.80 298
v14876.19 23574.47 24081.36 23480.05 33264.44 18091.75 17990.23 22673.68 16867.13 27780.84 31155.92 19993.86 24668.95 22361.73 33885.76 301
CR-MVSNet73.79 26970.82 28482.70 19883.15 29967.96 9270.25 38684.00 35373.67 16969.97 23872.41 37157.82 17289.48 33552.99 32473.13 24890.64 220
XXY-MVS77.94 21176.44 21282.43 20482.60 30564.44 18092.01 16291.83 16073.59 17070.00 23785.82 24954.43 21694.76 19769.63 21368.02 28588.10 255
tfpn200view978.79 19577.43 19682.88 19392.21 9664.49 17692.05 16096.28 473.48 17171.75 21588.26 21060.07 14595.32 18145.16 35677.58 21688.83 241
thres40078.68 19777.43 19682.43 20492.21 9664.49 17692.05 16096.28 473.48 17171.75 21588.26 21060.07 14595.32 18145.16 35677.58 21687.48 261
FMVSNet377.73 21476.04 21882.80 19491.20 13268.99 6591.87 17091.99 14973.35 17367.04 27883.19 27756.62 18992.14 29459.80 29869.34 27187.28 267
GST-MVS84.63 8284.29 8285.66 10292.82 8165.27 16193.04 11693.13 10173.20 17478.89 13294.18 10159.41 15397.85 4581.45 11792.48 6393.86 142
USDC67.43 32564.51 32776.19 31977.94 36055.29 34078.38 36385.00 34373.17 17548.36 38380.37 31821.23 39492.48 28552.15 32564.02 31980.81 359
MP-MVScopyleft85.02 7484.97 7385.17 11992.60 8864.27 19093.24 10992.27 13373.13 17679.63 12394.43 8761.90 12597.17 8785.00 8492.56 6194.06 133
Rongxuan Tan, Qing Wang, et al.: MP-MVS: Multi-Scale Windows PatchMatch and Planar Prior Multi-View Stereo.
xiu_mvs_v1_base_debu82.16 13181.12 13485.26 11686.42 24368.72 7292.59 14090.44 21573.12 17784.20 7294.36 8938.04 33595.73 16184.12 9486.81 12891.33 207
xiu_mvs_v1_base82.16 13181.12 13485.26 11686.42 24368.72 7292.59 14090.44 21573.12 17784.20 7294.36 8938.04 33595.73 16184.12 9486.81 12891.33 207
xiu_mvs_v1_base_debi82.16 13181.12 13485.26 11686.42 24368.72 7292.59 14090.44 21573.12 17784.20 7294.36 8938.04 33595.73 16184.12 9486.81 12891.33 207
D2MVS73.80 26872.02 27379.15 28979.15 34362.97 22688.58 27490.07 23172.94 18059.22 33578.30 33642.31 31692.70 27665.59 25972.00 25781.79 350
BH-RMVSNet79.46 18277.65 19284.89 12591.68 11765.66 15193.55 9688.09 30872.93 18173.37 19091.12 16846.20 29796.12 14356.28 31185.61 14392.91 170
Syy-MVS69.65 30369.52 29570.03 36087.87 21143.21 39688.07 28089.01 27772.91 18263.11 31288.10 21445.28 30385.54 36322.07 41069.23 27481.32 353
myMVS_eth3d72.58 28572.74 26372.10 35287.87 21149.45 37088.07 28089.01 27772.91 18263.11 31288.10 21463.63 10185.54 36332.73 39769.23 27481.32 353
IS-MVSNet80.14 16879.41 16782.33 20887.91 20960.08 29291.97 16688.27 30372.90 18471.44 22191.73 15761.44 13093.66 24962.47 28386.53 13593.24 157
PS-MVSNAJss77.26 22076.31 21480.13 26480.64 32459.16 30690.63 22791.06 19872.80 18568.58 25784.57 26253.55 22693.96 23972.97 18071.96 25887.27 268
9.1487.63 2893.86 4894.41 5294.18 5872.76 18686.21 5096.51 2566.64 6497.88 4490.08 4194.04 39
v119275.98 24273.92 24982.15 21679.73 33466.24 14091.22 20289.75 24372.67 18768.49 25881.42 30149.86 26294.27 22167.08 24165.02 30685.95 294
Effi-MVS+83.82 10082.76 11386.99 5689.56 16369.40 5391.35 19586.12 33272.59 18883.22 8392.81 13259.60 15096.01 15381.76 11487.80 11895.56 56
UnsupCasMVSNet_eth65.79 33263.10 33573.88 33670.71 38850.29 36681.09 34489.88 23972.58 18949.25 38074.77 36532.57 36387.43 35555.96 31241.04 39383.90 321
1112_ss80.56 15979.83 15982.77 19588.65 18760.78 27292.29 14888.36 29972.58 18972.46 20594.95 7165.09 8093.42 25466.38 24977.71 21394.10 129
DVP-MVS++90.53 491.09 588.87 1697.31 469.91 4293.96 7294.37 5372.48 19192.07 996.85 1683.82 299.15 291.53 3297.42 497.55 4
test_0728_THIRD72.48 19190.55 2096.93 1176.24 1199.08 1191.53 3294.99 1896.43 31
cl2277.94 21176.78 20881.42 23387.57 21964.93 17290.67 22388.86 28472.45 19367.63 27082.68 28264.07 9392.91 26771.79 19565.30 30186.44 281
thres600view778.00 20876.66 21082.03 22391.93 10863.69 20691.30 19896.33 172.43 19470.46 22987.89 21960.31 14094.92 19542.64 36876.64 22687.48 261
IterMVS-LS76.49 23375.18 23080.43 25684.49 28062.74 23490.64 22588.80 28672.40 19565.16 29281.72 29460.98 13492.27 29367.74 23364.65 31286.29 283
Fangjinhua Wang, Silvano Galliani, Christoph Vogel, Marc Pollefeys: IterMVS: Iterative Probability Estimation for Efficient Multi-View Stereo.
EI-MVSNet78.97 18978.22 18481.25 23685.33 26362.73 23589.53 25693.21 9572.39 19672.14 20990.13 18860.99 13394.72 20067.73 23472.49 25486.29 283
miper_ehance_all_eth77.60 21576.44 21281.09 24585.70 26064.41 18390.65 22488.64 29372.31 19767.37 27682.52 28364.77 8792.64 28070.67 20665.30 30186.24 285
v14419276.05 24074.03 24782.12 21879.50 33866.55 13391.39 19089.71 24972.30 19868.17 26081.33 30351.75 24494.03 23667.94 23164.19 31585.77 299
thres100view90078.37 20377.01 20582.46 20391.89 11163.21 22191.19 20596.33 172.28 19970.45 23087.89 21960.31 14095.32 18145.16 35677.58 21688.83 241
PatchmatchNetpermissive77.46 21774.63 23585.96 8989.55 16470.35 3479.97 35789.55 25172.23 20070.94 22376.91 35157.03 17992.79 27254.27 31881.17 18594.74 97
Fangjinhua Wang, Silvano Galliani, Christoph Vogel, Pablo Speciale, Marc Pollefeys: PatchmatchNet: Learned Multi-View Patchmatch Stereo.
HFP-MVS84.73 8084.40 8185.72 10093.75 5265.01 16993.50 10093.19 9872.19 20179.22 12994.93 7359.04 15997.67 5381.55 11592.21 6494.49 114
ACMMPR84.37 8584.06 8385.28 11493.56 5864.37 18593.50 10093.15 10072.19 20178.85 13794.86 7656.69 18897.45 6781.55 11592.20 6594.02 135
131480.70 15778.95 17585.94 9087.77 21767.56 10387.91 28492.55 12672.17 20367.44 27293.09 12150.27 25897.04 9771.68 19987.64 12093.23 158
region2R84.36 8684.03 8485.36 11193.54 5964.31 18893.43 10592.95 10972.16 20478.86 13694.84 7756.97 18397.53 6581.38 11992.11 6794.24 121
Test_1112_low_res79.56 17878.60 17982.43 20488.24 20160.39 28792.09 15787.99 31072.10 20571.84 21387.42 22764.62 8893.04 25865.80 25677.30 22193.85 143
v192192075.63 25073.49 25582.06 22279.38 33966.35 13691.07 21089.48 25271.98 20667.99 26181.22 30649.16 27293.90 24266.56 24564.56 31385.92 296
DVP-MVScopyleft89.41 1389.73 1488.45 2596.40 1569.99 3896.64 1094.52 4371.92 20790.55 2096.93 1173.77 2399.08 1191.91 3094.90 2296.29 35
Zhenlong Yuan, Jinguo Luo, Fei Shen, Zhaoxin Li, Cong Liu, Tianlu Mao, Zhaoqi Wang: DVP-MVS: Synergize Depth-Edge and Visibility Prior for Multi-View Stereo. AAAI2025
test072696.40 1569.99 3896.76 894.33 5571.92 20791.89 1197.11 673.77 23
Fast-Effi-MVS+-dtu75.04 25673.37 25680.07 26580.86 31959.52 30091.20 20485.38 33971.90 20965.20 29184.84 25841.46 31792.97 26166.50 24872.96 25087.73 258
LFMVS84.34 8782.73 11489.18 1394.76 3373.25 1194.99 4291.89 15571.90 20982.16 9393.49 11747.98 28197.05 9482.55 11084.82 14797.25 8
eth_miper_zixun_eth75.96 24474.40 24180.66 25184.66 27663.02 22589.28 26188.27 30371.88 21165.73 28781.65 29559.45 15192.81 27068.13 22860.53 34786.14 287
train_agg87.21 3387.42 3286.60 6894.18 4167.28 11094.16 6093.51 8271.87 21285.52 5995.33 5668.19 5297.27 8289.09 4794.90 2295.25 76
test_894.19 4067.19 11294.15 6293.42 8971.87 21285.38 6295.35 5568.19 5296.95 108
MDTV_nov1_ep1372.61 26689.06 17868.48 7680.33 35090.11 23071.84 21471.81 21475.92 35953.01 23293.92 24148.04 34273.38 246
ab-mvs80.18 16778.31 18285.80 9688.44 19265.49 15983.00 33192.67 11971.82 21577.36 15185.01 25654.50 21296.59 12176.35 15875.63 23295.32 68
ACMMPcopyleft81.49 14380.67 14583.93 16591.71 11662.90 23192.13 15492.22 13771.79 21671.68 21793.49 11750.32 25696.96 10778.47 14684.22 15891.93 198
Qingshan Xu, Weihang Kong, Wenbing Tao, Marc Pollefeys: Multi-Scale Geometric Consistency Guided and Planar Prior Assisted Multi-View Stereo. IEEE Transactions on Pattern Analysis and Machine Intelligence
PHI-MVS86.83 3986.85 4186.78 6393.47 6265.55 15695.39 3095.10 2371.77 21785.69 5896.52 2462.07 12498.77 2386.06 7695.60 1296.03 43
TEST994.18 4167.28 11094.16 6093.51 8271.75 21885.52 5995.33 5668.01 5497.27 82
WB-MVSnew77.14 22276.18 21780.01 26886.18 24963.24 21991.26 19994.11 6171.72 21973.52 18987.29 23045.14 30493.00 26056.98 30879.42 19883.80 322
c3_l76.83 23075.47 22580.93 24985.02 27264.18 19390.39 23288.11 30771.66 22066.65 28481.64 29663.58 10692.56 28169.31 21862.86 32486.04 291
SED-MVS89.94 990.36 1088.70 1896.45 1269.38 5596.89 694.44 4771.65 22192.11 797.21 476.79 999.11 692.34 2495.36 1497.62 2
test_241102_TWO94.41 4971.65 22192.07 997.21 474.58 1899.11 692.34 2495.36 1496.59 19
test_241102_ONE96.45 1269.38 5594.44 4771.65 22192.11 797.05 776.79 999.11 6
v875.35 25273.26 25781.61 22980.67 32366.82 12489.54 25589.27 26171.65 22163.30 31180.30 32054.99 20994.06 23167.33 23862.33 33083.94 320
v124075.21 25572.98 26081.88 22479.20 34166.00 14490.75 21989.11 27271.63 22567.41 27481.22 30647.36 28693.87 24465.46 26164.72 31185.77 299
SCA75.82 24672.76 26285.01 12386.63 24070.08 3781.06 34589.19 26571.60 22670.01 23677.09 34945.53 30090.25 32360.43 29373.27 24794.68 100
BH-untuned78.68 19777.08 20383.48 18189.84 15663.74 20192.70 13188.59 29471.57 22766.83 28288.65 20351.75 24495.39 17959.03 30184.77 14891.32 210
IterMVS72.65 28470.83 28278.09 29982.17 30962.96 22787.64 29186.28 32871.56 22860.44 32878.85 33445.42 30286.66 35863.30 27661.83 33584.65 316
Fangjinhua Wang, Silvano Galliani, Christoph Vogel, Marc Pollefeys: IterMVS: Iterative Probability Estimation for Efficient Multi-View Stereo.
mPP-MVS82.96 11982.44 11984.52 14592.83 7962.92 23092.76 12791.85 15971.52 22975.61 16994.24 9953.48 22996.99 10278.97 14190.73 8793.64 148
test-LLR80.10 16979.56 16381.72 22786.93 23761.17 26492.70 13191.54 17371.51 23075.62 16786.94 23653.83 22292.38 28772.21 19284.76 14991.60 201
test0.0.03 172.76 27972.71 26572.88 34480.25 32947.99 37791.22 20289.45 25471.51 23062.51 32087.66 22253.83 22285.06 36750.16 33167.84 28885.58 302
test_one_060196.32 1869.74 4994.18 5871.42 23290.67 1996.85 1674.45 20
PGM-MVS83.25 11282.70 11584.92 12492.81 8364.07 19490.44 22992.20 13871.28 23377.23 15394.43 8755.17 20797.31 7779.33 13791.38 8093.37 153
thisisatest053081.15 14780.07 15384.39 15088.26 19965.63 15391.40 18894.62 4171.27 23470.93 22489.18 19872.47 3296.04 15065.62 25876.89 22591.49 203
cl____76.07 23774.67 23380.28 25985.15 26861.76 25490.12 24188.73 28871.16 23565.43 28981.57 29861.15 13192.95 26266.54 24662.17 33186.13 289
DIV-MVS_self_test76.07 23774.67 23380.28 25985.14 26961.75 25590.12 24188.73 28871.16 23565.42 29081.60 29761.15 13192.94 26666.54 24662.16 33386.14 287
dp75.01 25772.09 27283.76 16789.28 17166.22 14179.96 35889.75 24371.16 23567.80 26877.19 34851.81 24292.54 28250.39 32971.44 26392.51 181
FA-MVS(test-final)79.12 18677.23 20284.81 13190.54 14363.98 19681.35 34391.71 16571.09 23874.85 17782.94 27852.85 23397.05 9467.97 23081.73 18293.41 152
CP-MVS83.71 10483.40 9884.65 13993.14 7063.84 19794.59 4992.28 13271.03 23977.41 15094.92 7455.21 20696.19 14081.32 12090.70 8893.91 139
v1074.77 25972.54 26881.46 23280.33 32866.71 12889.15 26589.08 27470.94 24063.08 31479.86 32552.52 23794.04 23465.70 25762.17 33183.64 323
CDPH-MVS85.71 6185.46 6486.46 7494.75 3467.19 11293.89 7792.83 11370.90 24183.09 8495.28 5963.62 10297.36 7380.63 12594.18 3794.84 92
GBi-Net75.65 24873.83 25081.10 24288.85 18265.11 16690.01 24590.32 21870.84 24267.04 27880.25 32148.03 27891.54 31059.80 29869.34 27186.64 276
test175.65 24873.83 25081.10 24288.85 18265.11 16690.01 24590.32 21870.84 24267.04 27880.25 32148.03 27891.54 31059.80 29869.34 27186.64 276
FMVSNet276.07 23774.01 24882.26 21288.85 18267.66 10091.33 19691.61 17170.84 24265.98 28682.25 28748.03 27892.00 29958.46 30368.73 27987.10 270
SF-MVS87.03 3587.09 3586.84 5992.70 8567.45 10893.64 9293.76 7070.78 24586.25 4996.44 2766.98 6197.79 4788.68 5194.56 3495.28 72
ZD-MVS96.63 965.50 15893.50 8470.74 24685.26 6495.19 6764.92 8497.29 7887.51 5993.01 56
HyFIR lowres test81.03 15279.56 16385.43 10787.81 21468.11 8990.18 24090.01 23670.65 24772.95 19486.06 24763.61 10394.50 21475.01 16879.75 19793.67 146
MVP-Stereo77.12 22376.23 21579.79 27681.72 31366.34 13789.29 26090.88 20270.56 24862.01 32282.88 27949.34 26794.13 22665.55 26093.80 4378.88 375
Qingsong Yan: MVP-Stereo: A Parallel Multi-View Patchmatch Stereo Method with Dilation Matching for Photogrammetric Application.
ACMP71.68 1075.58 25174.23 24479.62 28084.97 27359.64 29790.80 21789.07 27570.39 24962.95 31587.30 22938.28 33193.87 24472.89 18171.45 26285.36 308
Qingshan Xu and Wenbing Tao: Planar Prior Assisted PatchMatch Multi-View Stereo. AAAI 2020
HPM-MVScopyleft83.25 11282.95 10984.17 15792.25 9462.88 23290.91 21191.86 15770.30 25077.12 15493.96 10756.75 18696.28 13682.04 11291.34 8293.34 154
Chunlin Ren, Qingshan Xu, Shikun Zhang, Jiaqi Yang: Hierarchical Prior Mining for Non-local Multi-View Stereo. ICCV 2023
GeoE78.90 19177.43 19683.29 18588.95 18162.02 24892.31 14786.23 33070.24 25171.34 22289.27 19754.43 21694.04 23463.31 27580.81 19093.81 144
tpm279.80 17577.95 18985.34 11288.28 19868.26 8381.56 34091.42 17970.11 25277.59 14980.50 31667.40 5994.26 22367.34 23777.35 22093.51 150
TR-MVS78.77 19677.37 20182.95 19290.49 14460.88 27093.67 9090.07 23170.08 25374.51 17991.37 16545.69 29995.70 16660.12 29680.32 19292.29 186
CL-MVSNet_self_test69.92 30068.09 30475.41 32373.25 38055.90 33790.05 24489.90 23869.96 25461.96 32376.54 35251.05 25287.64 35149.51 33550.59 37882.70 341
PAPM_NR82.97 11881.84 12686.37 7894.10 4466.76 12787.66 29092.84 11269.96 25474.07 18593.57 11563.10 11497.50 6670.66 20790.58 9094.85 89
PCF-MVS73.15 979.29 18377.63 19384.29 15486.06 25165.96 14687.03 29791.10 19369.86 25669.79 24190.64 17257.54 17596.59 12164.37 26882.29 17190.32 223
Andreas Kuhn, Shan Lin, Oliver Erdler: Plane Completion and Filtering for Multi-View Stereo Reconstruction. GCPR 2019
miper_lstm_enhance73.05 27471.73 27777.03 31183.80 29058.32 31481.76 33688.88 28269.80 25761.01 32478.23 33857.19 17787.51 35465.34 26259.53 35285.27 311
MIMVSNet71.64 28868.44 30181.23 23781.97 31264.44 18073.05 38088.80 28669.67 25864.59 29674.79 36432.79 36187.82 34853.99 31976.35 22891.42 205
LPG-MVS_test75.82 24674.58 23779.56 28284.31 28459.37 30290.44 22989.73 24669.49 25964.86 29388.42 20538.65 32794.30 21972.56 18872.76 25185.01 312
LGP-MVS_train79.56 28284.31 28459.37 30289.73 24669.49 25964.86 29388.42 20538.65 32794.30 21972.56 18872.76 25185.01 312
APDe-MVScopyleft87.54 2787.84 2686.65 6696.07 2366.30 13894.84 4593.78 6769.35 26188.39 3496.34 3067.74 5797.66 5690.62 3993.44 5196.01 44
Zhaojie Zeng, Yuesong Wang, Tao Guan: Matching Ambiguity-Resilient Multi-View Stereo via Adaptive Patch Deformation. Pattern Recognition
tttt051779.50 17978.53 18082.41 20787.22 22861.43 26289.75 25294.76 3369.29 26267.91 26488.06 21772.92 2895.63 16762.91 27973.90 24590.16 225
Patchmatch-RL test68.17 31764.49 32879.19 28671.22 38553.93 34770.07 38871.54 39469.22 26356.79 35162.89 39656.58 19088.61 33869.53 21552.61 37395.03 85
test_yl84.28 8883.16 10487.64 3494.52 3769.24 5995.78 1895.09 2469.19 26481.09 10392.88 12957.00 18197.44 6881.11 12381.76 18096.23 38
DCV-MVSNet84.28 8883.16 10487.64 3494.52 3769.24 5995.78 1895.09 2469.19 26481.09 10392.88 12957.00 18197.44 6881.11 12381.76 18096.23 38
jajsoiax73.05 27471.51 27977.67 30277.46 36354.83 34388.81 27090.04 23469.13 26662.85 31783.51 27331.16 37092.75 27370.83 20369.80 26785.43 307
DP-MVS Recon82.73 12181.65 12885.98 8897.31 467.06 11795.15 3691.99 14969.08 26776.50 16193.89 10854.48 21598.20 3570.76 20585.66 14292.69 174
Baseline_NR-MVSNet73.99 26672.83 26177.48 30580.78 32159.29 30591.79 17484.55 34868.85 26868.99 24980.70 31256.16 19492.04 29862.67 28160.98 34481.11 355
CHOSEN 280x42077.35 21976.95 20778.55 29387.07 23262.68 23669.71 38982.95 36268.80 26971.48 22087.27 23166.03 7184.00 37376.47 15782.81 16888.95 240
DPE-MVScopyleft88.77 1789.21 1687.45 4396.26 2067.56 10394.17 5994.15 6068.77 27090.74 1897.27 276.09 1298.49 2990.58 4094.91 2196.30 34
Kehua Chen, Zhenlong Yuan, Tianlu Mao, Zhaoqi Wang: Dual-Level Precision Edges Guided Multi-View Stereo with Accurate Planarization. AAAI2025
mvs_tets72.71 28171.11 28077.52 30377.41 36454.52 34588.45 27689.76 24268.76 27162.70 31883.26 27629.49 37592.71 27470.51 20969.62 26985.34 309
MVS84.66 8182.86 11290.06 290.93 13674.56 787.91 28495.54 1468.55 27272.35 20894.71 8059.78 14898.90 2081.29 12194.69 3296.74 16
EPP-MVSNet81.79 13881.52 12982.61 20188.77 18660.21 29093.02 11893.66 7768.52 27372.90 19590.39 17972.19 3694.96 19274.93 16979.29 20292.67 175
CSCG86.87 3686.26 4788.72 1795.05 3170.79 2993.83 8495.33 1768.48 27477.63 14794.35 9373.04 2798.45 3084.92 8693.71 4796.92 14
testing370.38 29770.83 28269.03 36485.82 25743.93 39590.72 22290.56 21168.06 27560.24 32986.82 23864.83 8584.12 36926.33 40564.10 31779.04 374
CP-MVSNet70.50 29569.91 29272.26 34980.71 32251.00 36287.23 29690.30 22267.84 27659.64 33282.69 28150.23 25982.30 38551.28 32659.28 35383.46 328
pmmvs573.35 27171.52 27878.86 29178.64 35260.61 28191.08 20886.90 32167.69 27763.32 31083.64 27144.33 30890.53 32062.04 28566.02 29785.46 306
pm-mvs172.89 27771.09 28178.26 29779.10 34557.62 32190.80 21789.30 26067.66 27862.91 31681.78 29349.11 27392.95 26260.29 29558.89 35584.22 318
MDTV_nov1_ep13_2view59.90 29480.13 35467.65 27972.79 19654.33 21859.83 29792.58 178
pmmvs473.92 26771.81 27680.25 26179.17 34265.24 16287.43 29387.26 31967.64 28063.46 30983.91 27048.96 27491.53 31362.94 27865.49 30083.96 319
WR-MVS_H70.59 29469.94 29172.53 34681.03 31851.43 35887.35 29492.03 14867.38 28160.23 33080.70 31255.84 20083.45 37746.33 35258.58 35782.72 339
KD-MVS_2432*160069.03 30866.37 31277.01 31285.56 26161.06 26781.44 34190.25 22467.27 28258.00 34476.53 35354.49 21387.63 35248.04 34235.77 40382.34 345
miper_refine_blended69.03 30866.37 31277.01 31285.56 26161.06 26781.44 34190.25 22467.27 28258.00 34476.53 35354.49 21387.63 35248.04 34235.77 40382.34 345
PS-CasMVS69.86 30269.13 29772.07 35380.35 32750.57 36487.02 29889.75 24367.27 28259.19 33682.28 28646.58 29182.24 38650.69 32859.02 35483.39 330
PEN-MVS69.46 30568.56 29972.17 35179.27 34049.71 36886.90 30089.24 26267.24 28559.08 33782.51 28447.23 28783.54 37648.42 34057.12 35983.25 331
mmtdpeth68.33 31566.37 31274.21 33582.81 30451.73 35584.34 31480.42 36967.01 28671.56 21868.58 38530.52 37392.35 29075.89 16036.21 40178.56 379
cascas78.18 20675.77 22285.41 10887.14 23069.11 6192.96 12091.15 19166.71 28770.47 22886.07 24637.49 34196.48 12970.15 21079.80 19690.65 219
APD-MVScopyleft85.93 5685.99 5485.76 9895.98 2665.21 16393.59 9592.58 12566.54 28886.17 5295.88 4163.83 9797.00 9986.39 7392.94 5795.06 82
Yuesong Wang, Zhaojie Zeng and etc.: Adaptive Patch Deformation for Textureless-Resilient Multi-View Stereo. CVPR2023
OpenMVScopyleft70.45 1178.54 20175.92 22086.41 7785.93 25671.68 1892.74 12892.51 12766.49 28964.56 29791.96 15043.88 30998.10 3754.61 31690.65 8989.44 239
DTE-MVSNet68.46 31467.33 30871.87 35577.94 36049.00 37486.16 30688.58 29566.36 29058.19 34182.21 28846.36 29283.87 37444.97 35955.17 36682.73 338
IterMVS-SCA-FT71.55 29069.97 29076.32 31881.48 31560.67 27987.64 29185.99 33366.17 29159.50 33378.88 33345.53 30083.65 37562.58 28261.93 33484.63 317
TransMVSNet (Re)70.07 29967.66 30577.31 30980.62 32559.13 30791.78 17684.94 34465.97 29260.08 33180.44 31750.78 25391.87 30048.84 33845.46 38680.94 357
MVSFormer83.75 10382.88 11186.37 7889.24 17571.18 2489.07 26690.69 20565.80 29387.13 4294.34 9464.99 8192.67 27772.83 18291.80 7295.27 73
test_djsdf73.76 27072.56 26777.39 30777.00 36653.93 34789.07 26690.69 20565.80 29363.92 30482.03 29043.14 31392.67 27772.83 18268.53 28085.57 303
API-MVS82.28 12980.53 14987.54 4196.13 2270.59 3193.63 9391.04 20065.72 29575.45 17192.83 13156.11 19698.89 2164.10 26989.75 9993.15 161
原ACMM184.42 14893.21 6764.27 19093.40 9165.39 29679.51 12492.50 13558.11 17096.69 11965.27 26393.96 4092.32 185
testgi64.48 34062.87 33869.31 36371.24 38440.62 40185.49 30779.92 37165.36 29754.18 35983.49 27423.74 38984.55 36841.60 37060.79 34682.77 337
QAPM79.95 17377.39 20087.64 3489.63 16171.41 2093.30 10893.70 7565.34 29867.39 27591.75 15647.83 28398.96 1657.71 30689.81 9692.54 179
HPM-MVS_fast80.25 16679.55 16582.33 20891.55 12159.95 29391.32 19789.16 26765.23 29974.71 17893.07 12347.81 28495.74 16074.87 17288.23 11291.31 211
tfpnnormal70.10 29867.36 30778.32 29583.45 29660.97 26988.85 26992.77 11464.85 30060.83 32678.53 33543.52 31193.48 25231.73 40061.70 33980.52 362
FE-MVS75.97 24373.02 25984.82 12889.78 15765.56 15577.44 36891.07 19764.55 30172.66 19879.85 32646.05 29896.69 11954.97 31580.82 18992.21 192
SR-MVS82.81 12082.58 11683.50 18093.35 6361.16 26692.23 15191.28 18664.48 30281.27 10095.28 5953.71 22595.86 15582.87 10788.77 10893.49 151
reproduce-ours83.51 10783.33 10184.06 15992.18 9860.49 28390.74 22092.04 14564.35 30383.24 8095.59 4959.05 15797.27 8283.61 9989.17 10394.41 116
our_new_method83.51 10783.33 10184.06 15992.18 9860.49 28390.74 22092.04 14564.35 30383.24 8095.59 4959.05 15797.27 8283.61 9989.17 10394.41 116
K. test v363.09 34659.61 35173.53 33976.26 36949.38 37283.27 32477.15 37664.35 30347.77 38572.32 37328.73 37787.79 34949.93 33336.69 40083.41 329
v7n71.31 29168.65 29879.28 28576.40 36860.77 27386.71 30289.45 25464.17 30658.77 34078.24 33744.59 30793.54 25057.76 30561.75 33783.52 326
FMVSNet172.71 28169.91 29281.10 24283.60 29465.11 16690.01 24590.32 21863.92 30763.56 30880.25 32136.35 35091.54 31054.46 31766.75 29386.64 276
XVG-OURS74.25 26372.46 26979.63 27978.45 35457.59 32280.33 35087.39 31563.86 30868.76 25489.62 19440.50 32191.72 30469.00 22274.25 24089.58 234
UniMVSNet_ETH3D72.74 28070.53 28779.36 28478.62 35356.64 33285.01 31089.20 26463.77 30964.84 29584.44 26434.05 35891.86 30163.94 27070.89 26689.57 235
reproduce_model83.15 11482.96 10783.73 17092.02 10259.74 29690.37 23392.08 14363.70 31082.86 8595.48 5258.62 16397.17 8783.06 10588.42 11194.26 119
test_fmvs174.07 26473.69 25275.22 32478.91 34847.34 38189.06 26874.69 38463.68 31179.41 12691.59 16024.36 38687.77 35085.22 8076.26 22990.55 222
114514_t79.17 18577.67 19183.68 17495.32 2965.53 15792.85 12591.60 17263.49 31267.92 26390.63 17446.65 29095.72 16567.01 24283.54 16189.79 231
test_fmvs1_n72.69 28371.92 27474.99 32771.15 38647.08 38387.34 29575.67 37963.48 31378.08 14391.17 16720.16 39887.87 34784.65 8975.57 23390.01 228
APD-MVS_3200maxsize81.64 14181.32 13182.59 20292.36 9158.74 31091.39 19091.01 20163.35 31479.72 12294.62 8351.82 24196.14 14279.71 13287.93 11692.89 172
test20.0363.83 34362.65 33967.38 37170.58 39039.94 40386.57 30384.17 35063.29 31551.86 36877.30 34537.09 34682.47 38338.87 38154.13 37079.73 368
XVG-OURS-SEG-HR74.70 26073.08 25879.57 28178.25 35657.33 32680.49 34887.32 31663.22 31668.76 25490.12 19044.89 30691.59 30870.55 20874.09 24289.79 231
test_vis1_n71.63 28970.73 28574.31 33469.63 39247.29 38286.91 29972.11 39063.21 31775.18 17390.17 18520.40 39685.76 36284.59 9074.42 23989.87 229
ACMM69.62 1374.34 26172.73 26479.17 28784.25 28657.87 31790.36 23489.93 23763.17 31865.64 28886.04 24837.79 33994.10 22765.89 25471.52 26185.55 304
Qingshan Xu and Wenbing Tao: Multi-Scale Geometric Consistency Guided Multi-View Stereo. CVPR 2019
tpmvs72.88 27869.76 29482.22 21390.98 13567.05 11878.22 36588.30 30163.10 31964.35 30274.98 36255.09 20894.27 22143.25 36269.57 27085.34 309
SixPastTwentyTwo64.92 33761.78 34474.34 33378.74 35049.76 36783.42 32379.51 37362.86 32050.27 37577.35 34430.92 37290.49 32145.89 35447.06 38382.78 336
SR-MVS-dyc-post81.06 15180.70 14482.15 21692.02 10258.56 31290.90 21290.45 21262.76 32178.89 13294.46 8551.26 25195.61 16978.77 14486.77 13192.28 187
RE-MVS-def80.48 15092.02 10258.56 31290.90 21290.45 21262.76 32178.89 13294.46 8549.30 26878.77 14486.77 13192.28 187
TAPA-MVS70.22 1274.94 25873.53 25479.17 28790.40 14652.07 35489.19 26489.61 25062.69 32370.07 23592.67 13348.89 27594.32 21738.26 38279.97 19491.12 215
Andrea Romanoni, Matteo Matteucci: TAPA-MVS: Textureless-Aware PAtchMatch Multi-View Stereo. ICCV 2019
Anonymous20240521177.96 21075.33 22885.87 9293.73 5364.52 17594.85 4485.36 34062.52 32476.11 16290.18 18429.43 37697.29 7868.51 22777.24 22395.81 49
pmmvs-eth3d65.53 33562.32 34175.19 32569.39 39359.59 29882.80 33283.43 35862.52 32451.30 37272.49 36932.86 36087.16 35755.32 31450.73 37778.83 376
MVSMamba_PlusPlus84.97 7783.65 8888.93 1490.17 15174.04 887.84 28692.69 11862.18 32681.47 9987.64 22371.47 4096.28 13684.69 8894.74 3196.47 28
AdaColmapbinary78.94 19077.00 20684.76 13396.34 1765.86 14892.66 13587.97 31262.18 32670.56 22792.37 14143.53 31097.35 7464.50 26782.86 16691.05 216
FOURS193.95 4661.77 25393.96 7291.92 15262.14 32886.57 48
无先验92.71 13092.61 12462.03 32997.01 9866.63 24493.97 136
XVG-ACMP-BASELINE68.04 31865.53 31975.56 32274.06 37852.37 35278.43 36285.88 33462.03 32958.91 33981.21 30820.38 39791.15 31760.69 29268.18 28283.16 333
anonymousdsp71.14 29269.37 29676.45 31772.95 38154.71 34484.19 31588.88 28261.92 33162.15 32179.77 32738.14 33491.44 31568.90 22467.45 28983.21 332
tpm cat175.30 25372.21 27184.58 14388.52 18867.77 9778.16 36688.02 30961.88 33268.45 25976.37 35560.65 13794.03 23653.77 32174.11 24191.93 198
FMVSNet568.04 31865.66 31875.18 32684.43 28257.89 31683.54 31986.26 32961.83 33353.64 36273.30 36737.15 34585.08 36648.99 33761.77 33682.56 344
Anonymous2023120667.53 32365.78 31572.79 34574.95 37447.59 37988.23 27887.32 31661.75 33458.07 34377.29 34637.79 33987.29 35642.91 36463.71 32183.48 327
PatchMatch-RL72.06 28669.98 28978.28 29689.51 16555.70 33883.49 32083.39 36061.24 33563.72 30782.76 28034.77 35593.03 25953.37 32377.59 21586.12 290
tt080573.07 27370.73 28580.07 26578.37 35557.05 32887.78 28792.18 14161.23 33667.04 27886.49 24131.35 36994.58 20565.06 26467.12 29088.57 247
PLCcopyleft68.80 1475.23 25473.68 25379.86 27492.93 7658.68 31190.64 22588.30 30160.90 33764.43 30190.53 17542.38 31594.57 20756.52 30976.54 22786.33 282
Jie Liao, Yanping Fu, Qingan Yan, Chunxia xiao: Pyramid Multi-View Stereo with Local Consistency. Pacific Graphics 2019
ACMH63.93 1768.62 31164.81 32380.03 26785.22 26763.25 21887.72 28884.66 34660.83 33851.57 37079.43 33127.29 38294.96 19241.76 36964.84 30881.88 349
Qingshan Xu and Wenbing Tao: Multi-Scale Geometric Consistency Guided Multi-View Stereo. CVPR 2019
EG-PatchMatch MVS68.55 31265.41 32077.96 30078.69 35162.93 22889.86 25089.17 26660.55 33950.27 37577.73 34322.60 39294.06 23147.18 34872.65 25376.88 385
VDDNet80.50 16078.26 18387.21 4786.19 24869.79 4794.48 5091.31 18260.42 34079.34 12790.91 17038.48 33096.56 12482.16 11181.05 18695.27 73
CPTT-MVS79.59 17779.16 17280.89 25091.54 12259.80 29592.10 15688.54 29660.42 34072.96 19393.28 11948.27 27792.80 27178.89 14386.50 13690.06 226
our_test_368.29 31664.69 32579.11 29078.92 34664.85 17388.40 27785.06 34260.32 34252.68 36476.12 35740.81 32089.80 33444.25 36155.65 36482.67 343
ITE_SJBPF70.43 35974.44 37647.06 38477.32 37560.16 34354.04 36083.53 27223.30 39084.01 37243.07 36361.58 34180.21 367
ppachtmachnet_test67.72 32063.70 33279.77 27778.92 34666.04 14388.68 27282.90 36360.11 34455.45 35475.96 35839.19 32490.55 31939.53 37752.55 37482.71 340
new-patchmatchnet59.30 35956.48 36167.79 36865.86 40044.19 39282.47 33381.77 36459.94 34543.65 39766.20 39027.67 38181.68 38839.34 37841.40 39277.50 384
mvsany_test168.77 31068.56 29969.39 36273.57 37945.88 39080.93 34660.88 41059.65 34671.56 21890.26 18343.22 31275.05 39774.26 17562.70 32687.25 269
新几何184.73 13492.32 9264.28 18991.46 17859.56 34779.77 12192.90 12756.95 18496.57 12363.40 27392.91 5893.34 154
旧先验292.00 16559.37 34887.54 4193.47 25375.39 164
PM-MVS59.40 35856.59 36067.84 36763.63 40241.86 39776.76 36963.22 40759.01 34951.07 37372.27 37411.72 41083.25 37961.34 28850.28 37978.39 380
LTVRE_ROB59.60 1966.27 32963.54 33374.45 33184.00 28951.55 35767.08 39883.53 35758.78 35054.94 35680.31 31934.54 35693.23 25640.64 37568.03 28478.58 378
Andreas Kuhn, Heiko Hirschmüller, Daniel Scharstein, Helmut Mayer: A TV Prior for High-Quality Scalable Multi-View Stereo Reconstruction. International Journal of Computer Vision 2016
testdata81.34 23589.02 17957.72 31989.84 24058.65 35185.32 6394.09 10357.03 17993.28 25569.34 21790.56 9193.03 166
ACMH+65.35 1667.65 32164.55 32676.96 31484.59 27857.10 32788.08 27980.79 36758.59 35253.00 36381.09 31026.63 38492.95 26246.51 35061.69 34080.82 358
kuosan60.86 35460.24 34762.71 37981.57 31446.43 38775.70 37685.88 33457.98 35348.95 38169.53 38358.42 16576.53 39528.25 40435.87 40265.15 403
ADS-MVSNet266.90 32663.44 33477.26 31088.06 20560.70 27868.01 39475.56 38157.57 35464.48 29869.87 38138.68 32584.10 37040.87 37367.89 28686.97 271
ADS-MVSNet68.54 31364.38 33081.03 24688.06 20566.90 12368.01 39484.02 35257.57 35464.48 29869.87 38138.68 32589.21 33740.87 37367.89 28686.97 271
MDA-MVSNet-bldmvs61.54 35157.70 35673.05 34279.53 33757.00 33183.08 32881.23 36557.57 35434.91 40772.45 37032.79 36186.26 36135.81 38641.95 39175.89 387
mvs5depth61.03 35257.65 35771.18 35667.16 39747.04 38572.74 38177.49 37457.47 35760.52 32772.53 36822.84 39188.38 34249.15 33638.94 39778.11 382
KD-MVS_self_test60.87 35358.60 35367.68 36966.13 39939.93 40475.63 37784.70 34557.32 35849.57 37868.45 38629.55 37482.87 38148.09 34147.94 38280.25 366
UnsupCasMVSNet_bld61.60 35057.71 35573.29 34168.73 39451.64 35678.61 36189.05 27657.20 35946.11 38661.96 39928.70 37888.60 33950.08 33238.90 39879.63 369
MSDG69.54 30465.73 31680.96 24785.11 27163.71 20484.19 31583.28 36156.95 36054.50 35784.03 26731.50 36796.03 15142.87 36669.13 27683.14 334
F-COLMAP70.66 29368.44 30177.32 30886.37 24655.91 33688.00 28286.32 32756.94 36157.28 35088.07 21633.58 35992.49 28451.02 32768.37 28183.55 324
test22289.77 15861.60 25889.55 25489.42 25656.83 36277.28 15292.43 13952.76 23491.14 8593.09 163
CNLPA74.31 26272.30 27080.32 25791.49 12361.66 25790.85 21580.72 36856.67 36363.85 30690.64 17246.75 28990.84 31853.79 32075.99 23188.47 250
OurMVSNet-221017-064.68 33862.17 34272.21 35076.08 37147.35 38080.67 34781.02 36656.19 36451.60 36979.66 32927.05 38388.56 34053.60 32253.63 37180.71 360
YYNet163.76 34560.14 34974.62 33078.06 35960.19 29183.46 32283.99 35556.18 36539.25 40271.56 37837.18 34483.34 37842.90 36548.70 38180.32 364
MDA-MVSNet_test_wron63.78 34460.16 34874.64 32978.15 35860.41 28583.49 32084.03 35156.17 36639.17 40371.59 37737.22 34383.24 38042.87 36648.73 38080.26 365
OpenMVS_ROBcopyleft61.12 1866.39 32862.92 33776.80 31676.51 36757.77 31889.22 26283.41 35955.48 36753.86 36177.84 34126.28 38593.95 24034.90 38968.76 27878.68 377
MIMVSNet160.16 35757.33 35868.67 36569.71 39144.13 39378.92 36084.21 34955.05 36844.63 39471.85 37523.91 38881.54 38932.63 39855.03 36780.35 363
test_fmvs265.78 33364.84 32268.60 36666.54 39841.71 39883.27 32469.81 39754.38 36967.91 26484.54 26315.35 40381.22 39075.65 16266.16 29682.88 335
CVMVSNet74.04 26574.27 24373.33 34085.33 26343.94 39489.53 25688.39 29854.33 37070.37 23190.13 18849.17 27184.05 37161.83 28779.36 20091.99 197
Anonymous2024052976.84 22974.15 24584.88 12691.02 13464.95 17193.84 8291.09 19453.57 37173.00 19287.42 22735.91 35197.32 7669.14 22172.41 25692.36 183
pmmvs667.57 32264.76 32476.00 32172.82 38353.37 34988.71 27186.78 32553.19 37257.58 34978.03 34035.33 35492.41 28655.56 31354.88 36882.21 347
TinyColmap60.32 35556.42 36272.00 35478.78 34953.18 35078.36 36475.64 38052.30 37341.59 40175.82 36014.76 40688.35 34335.84 38554.71 36974.46 389
test_040264.54 33961.09 34574.92 32884.10 28860.75 27587.95 28379.71 37252.03 37452.41 36577.20 34732.21 36591.64 30623.14 40861.03 34372.36 396
test_vis1_rt59.09 36057.31 35964.43 37568.44 39546.02 38983.05 33048.63 41951.96 37549.57 37863.86 39516.30 40180.20 39271.21 20162.79 32567.07 402
Anonymous2023121173.08 27270.39 28881.13 24090.62 14263.33 21791.40 18890.06 23351.84 37664.46 30080.67 31436.49 34994.07 23063.83 27164.17 31685.98 293
dongtai55.18 36555.46 36454.34 39076.03 37236.88 40876.07 37384.61 34751.28 37743.41 39864.61 39456.56 19167.81 40818.09 41328.50 41358.32 406
AllTest61.66 34958.06 35472.46 34779.57 33551.42 35980.17 35368.61 39951.25 37845.88 38781.23 30419.86 39986.58 35938.98 37957.01 36179.39 370
TestCases72.46 34779.57 33551.42 35968.61 39951.25 37845.88 38781.23 30419.86 39986.58 35938.98 37957.01 36179.39 370
PatchT69.11 30765.37 32180.32 25782.07 31163.68 20767.96 39687.62 31450.86 38069.37 24265.18 39157.09 17888.53 34141.59 37166.60 29488.74 244
Anonymous2024052162.09 34859.08 35271.10 35767.19 39648.72 37583.91 31785.23 34150.38 38147.84 38471.22 38020.74 39585.51 36546.47 35158.75 35679.06 373
DP-MVS69.90 30166.48 30980.14 26395.36 2862.93 22889.56 25376.11 37750.27 38257.69 34885.23 25439.68 32395.73 16133.35 39271.05 26581.78 351
gg-mvs-nofinetune77.18 22174.31 24285.80 9691.42 12468.36 7971.78 38394.72 3549.61 38377.12 15445.92 40977.41 893.98 23867.62 23593.16 5595.05 83
JIA-IIPM66.06 33062.45 34076.88 31581.42 31754.45 34657.49 41088.67 29149.36 38463.86 30546.86 40856.06 19790.25 32349.53 33468.83 27785.95 294
N_pmnet50.55 36949.11 37154.88 38877.17 3654.02 43284.36 3132.00 43048.59 38545.86 38968.82 38432.22 36482.80 38231.58 40151.38 37677.81 383
ANet_high40.27 38035.20 38355.47 38634.74 42734.47 41263.84 40271.56 39348.42 38618.80 41641.08 4159.52 41464.45 41520.18 4118.66 42367.49 401
COLMAP_ROBcopyleft57.96 2062.98 34759.65 35072.98 34381.44 31653.00 35183.75 31875.53 38248.34 38748.81 38281.40 30224.14 38790.30 32232.95 39460.52 34875.65 388
Johannes L. Schönberger, Enliang Zheng, Marc Pollefeys, Jan-Michael Frahm: Pixelwise View Selection for Unstructured Multi-View Stereo. ECCV 2016
mamv465.18 33667.43 30658.44 38277.88 36249.36 37369.40 39070.99 39548.31 38857.78 34785.53 25259.01 16051.88 42073.67 17764.32 31474.07 390
Patchmtry67.53 32363.93 33178.34 29482.12 31064.38 18468.72 39184.00 35348.23 38959.24 33472.41 37157.82 17289.27 33646.10 35356.68 36381.36 352
LS3D69.17 30666.40 31177.50 30491.92 10956.12 33585.12 30980.37 37046.96 39056.50 35287.51 22637.25 34293.71 24732.52 39979.40 19982.68 342
RPSCF64.24 34161.98 34371.01 35876.10 37045.00 39175.83 37575.94 37846.94 39158.96 33884.59 26131.40 36882.00 38747.76 34660.33 35186.04 291
RPMNet70.42 29665.68 31784.63 14183.15 29967.96 9270.25 38690.45 21246.83 39269.97 23865.10 39256.48 19395.30 18435.79 38773.13 24890.64 220
WB-MVS46.23 37344.94 37550.11 39362.13 40621.23 42676.48 37155.49 41245.89 39335.78 40461.44 40135.54 35272.83 4019.96 42021.75 41556.27 408
CMPMVSbinary48.56 2166.77 32764.41 32973.84 33770.65 38950.31 36577.79 36785.73 33745.54 39444.76 39382.14 28935.40 35390.14 32963.18 27774.54 23781.07 356
M. Jancosek, T. Pajdla: Multi-View Reconstruction Preserving Weakly-Supported Surfaces. CVPR 2011
EU-MVSNet64.01 34263.01 33667.02 37274.40 37738.86 40783.27 32486.19 33145.11 39554.27 35881.15 30936.91 34880.01 39348.79 33957.02 36082.19 348
TDRefinement55.28 36451.58 36866.39 37359.53 41046.15 38876.23 37272.80 38744.60 39642.49 39976.28 35615.29 40482.39 38433.20 39343.75 38870.62 398
Patchmatch-test65.86 33160.94 34680.62 25483.75 29158.83 30958.91 40975.26 38344.50 39750.95 37477.09 34958.81 16287.90 34635.13 38864.03 31895.12 80
test_fmvs356.82 36154.86 36562.69 38053.59 41335.47 41075.87 37465.64 40443.91 39855.10 35571.43 3796.91 41874.40 40068.64 22652.63 37278.20 381
mvsany_test348.86 37146.35 37456.41 38446.00 41931.67 41562.26 40347.25 42043.71 39945.54 39168.15 38710.84 41164.44 41657.95 30435.44 40573.13 393
SSC-MVS44.51 37543.35 37747.99 39761.01 40918.90 42874.12 37954.36 41343.42 40034.10 40860.02 40234.42 35770.39 4049.14 42219.57 41654.68 409
LF4IMVS54.01 36652.12 36759.69 38162.41 40539.91 40568.59 39268.28 40142.96 40144.55 39575.18 36114.09 40868.39 40741.36 37251.68 37570.78 397
ttmdpeth53.34 36749.96 37063.45 37762.07 40740.04 40272.06 38265.64 40442.54 40251.88 36777.79 34213.94 40976.48 39632.93 39530.82 41173.84 391
DSMNet-mixed56.78 36254.44 36663.79 37663.21 40329.44 41964.43 40164.10 40642.12 40351.32 37171.60 37631.76 36675.04 39836.23 38465.20 30586.87 274
pmmvs355.51 36351.50 36967.53 37057.90 41150.93 36380.37 34973.66 38640.63 40444.15 39664.75 39316.30 40178.97 39444.77 36040.98 39572.69 394
new_pmnet49.31 37046.44 37357.93 38362.84 40440.74 40068.47 39362.96 40836.48 40535.09 40657.81 40314.97 40572.18 40232.86 39646.44 38460.88 405
MVS-HIRNet60.25 35655.55 36374.35 33284.37 28356.57 33371.64 38474.11 38534.44 40645.54 39142.24 41431.11 37189.81 33240.36 37676.10 23076.67 386
test_f46.58 37243.45 37655.96 38545.18 42032.05 41461.18 40449.49 41833.39 40742.05 40062.48 3987.00 41765.56 41247.08 34943.21 39070.27 399
test_vis3_rt40.46 37937.79 38048.47 39644.49 42133.35 41366.56 39932.84 42732.39 40829.65 40939.13 4173.91 42568.65 40650.17 33040.99 39443.40 412
DeepMVS_CXcopyleft34.71 40351.45 41524.73 42328.48 42931.46 40917.49 41952.75 4055.80 42042.60 42418.18 41219.42 41736.81 416
MVStest151.35 36846.89 37264.74 37465.06 40151.10 36167.33 39772.58 38830.20 41035.30 40574.82 36327.70 38069.89 40524.44 40724.57 41473.22 392
FPMVS45.64 37443.10 37853.23 39151.42 41636.46 40964.97 40071.91 39129.13 41127.53 41161.55 4009.83 41365.01 41416.00 41755.58 36558.22 407
PMMVS237.93 38233.61 38550.92 39246.31 41824.76 42260.55 40750.05 41628.94 41220.93 41447.59 4074.41 42465.13 41325.14 40618.55 41862.87 404
LCM-MVSNet40.54 37735.79 38254.76 38936.92 42630.81 41651.41 41369.02 39822.07 41324.63 41345.37 4104.56 42265.81 41133.67 39134.50 40667.67 400
APD_test140.50 37837.31 38150.09 39451.88 41435.27 41159.45 40852.59 41521.64 41426.12 41257.80 4044.56 42266.56 41022.64 40939.09 39648.43 410
PMVScopyleft26.43 2231.84 38628.16 38942.89 39925.87 42927.58 42050.92 41449.78 41721.37 41514.17 42140.81 4162.01 42866.62 4099.61 42138.88 39934.49 417
Y. Furukawa, J. Ponce: Accurate, dense, and robust multiview stereopsis. PAMI (2010)
Gipumacopyleft34.91 38331.44 38645.30 39870.99 38739.64 40619.85 42072.56 38920.10 41616.16 42021.47 4215.08 42171.16 40313.07 41843.70 38925.08 418
S. Galliani, K. Lasinger, K. Schindler: Massively Parallel Multiview Stereopsis by Surface Normal Diffusion. ICCV 2015
testf132.77 38429.47 38742.67 40041.89 42330.81 41652.07 41143.45 42115.45 41718.52 41744.82 4112.12 42658.38 41716.05 41530.87 40938.83 413
APD_test232.77 38429.47 38742.67 40041.89 42330.81 41652.07 41143.45 42115.45 41718.52 41744.82 4112.12 42658.38 41716.05 41530.87 40938.83 413
E-PMN24.61 38724.00 39126.45 40443.74 42218.44 42960.86 40539.66 42315.11 4199.53 42322.10 4206.52 41946.94 4228.31 42310.14 42013.98 420
EMVS23.76 38923.20 39325.46 40541.52 42516.90 43060.56 40638.79 42614.62 4208.99 42420.24 4237.35 41645.82 4237.25 4249.46 42113.64 421
MVEpermissive24.84 2324.35 38819.77 39438.09 40234.56 42826.92 42126.57 41838.87 42511.73 42111.37 42227.44 4181.37 42950.42 42111.41 41914.60 41936.93 415
Simon Fuhrmann, Fabian Langguth, Michael Goesele: MVE - A Multi-View Reconstruction Environment. EUROGRAPHICS Workshops on Graphics and Cultural Heritage (2014)
test_method38.59 38135.16 38448.89 39554.33 41221.35 42545.32 41653.71 4147.41 42228.74 41051.62 4068.70 41552.87 41933.73 39032.89 40772.47 395
wuyk23d11.30 39210.95 39512.33 40748.05 41719.89 42725.89 4191.92 4313.58 4233.12 4251.37 4250.64 43015.77 4266.23 4257.77 4241.35 422
tmp_tt22.26 39023.75 39217.80 4065.23 43012.06 43135.26 41739.48 4242.82 42418.94 41544.20 41322.23 39324.64 42536.30 3839.31 42216.69 419
EGC-MVSNET42.35 37638.09 37955.11 38774.57 37546.62 38671.63 38555.77 4110.04 4250.24 42662.70 39714.24 40774.91 39917.59 41446.06 38543.80 411
testmvs7.23 3949.62 3970.06 4090.04 4310.02 43484.98 3110.02 4320.03 4260.18 4271.21 4260.01 4320.02 4270.14 4260.01 4250.13 424
test1236.92 3959.21 3980.08 4080.03 4320.05 43381.65 3390.01 4330.02 4270.14 4280.85 4270.03 4310.02 4270.12 4270.00 4260.16 423
mmdepth0.00 3970.00 4000.00 4100.00 4330.00 4350.00 4210.00 4340.00 4280.00 4290.00 4280.00 4330.00 4290.00 4280.00 4260.00 425
monomultidepth0.00 3970.00 4000.00 4100.00 4330.00 4350.00 4210.00 4340.00 4280.00 4290.00 4280.00 4330.00 4290.00 4280.00 4260.00 425
test_blank0.00 3970.00 4000.00 4100.00 4330.00 4350.00 4210.00 4340.00 4280.00 4290.00 4280.00 4330.00 4290.00 4280.00 4260.00 425
uanet_test0.00 3970.00 4000.00 4100.00 4330.00 4350.00 4210.00 4340.00 4280.00 4290.00 4280.00 4330.00 4290.00 4280.00 4260.00 425
DCPMVS0.00 3970.00 4000.00 4100.00 4330.00 4350.00 4210.00 4340.00 4280.00 4290.00 4280.00 4330.00 4290.00 4280.00 4260.00 425
cdsmvs_eth3d_5k19.86 39126.47 3900.00 4100.00 4330.00 4350.00 42193.45 860.00 4280.00 42995.27 6149.56 2650.00 4290.00 4280.00 4260.00 425
pcd_1.5k_mvsjas4.46 3965.95 3990.00 4100.00 4330.00 4350.00 4210.00 4340.00 4280.00 4290.00 42853.55 2260.00 4290.00 4280.00 4260.00 425
sosnet-low-res0.00 3970.00 4000.00 4100.00 4330.00 4350.00 4210.00 4340.00 4280.00 4290.00 4280.00 4330.00 4290.00 4280.00 4260.00 425
sosnet0.00 3970.00 4000.00 4100.00 4330.00 4350.00 4210.00 4340.00 4280.00 4290.00 4280.00 4330.00 4290.00 4280.00 4260.00 425
uncertanet0.00 3970.00 4000.00 4100.00 4330.00 4350.00 4210.00 4340.00 4280.00 4290.00 4280.00 4330.00 4290.00 4280.00 4260.00 425
Regformer0.00 3970.00 4000.00 4100.00 4330.00 4350.00 4210.00 4340.00 4280.00 4290.00 4280.00 4330.00 4290.00 4280.00 4260.00 425
ab-mvs-re7.91 39310.55 3960.00 4100.00 4330.00 4350.00 4210.00 4340.00 4280.00 42994.95 710.00 4330.00 4290.00 4280.00 4260.00 425
uanet0.00 3970.00 4000.00 4100.00 4330.00 4350.00 4210.00 4340.00 4280.00 4290.00 4280.00 4330.00 4290.00 4280.00 4260.00 425
WAC-MVS49.45 37031.56 402
MSC_two_6792asdad89.60 997.31 473.22 1295.05 2799.07 1392.01 2794.77 2696.51 24
No_MVS89.60 997.31 473.22 1295.05 2799.07 1392.01 2794.77 2696.51 24
eth-test20.00 433
eth-test0.00 433
OPU-MVS89.97 397.52 373.15 1496.89 697.00 983.82 299.15 295.72 597.63 397.62 2
test_0728_SECOND88.70 1896.45 1270.43 3396.64 1094.37 5399.15 291.91 3094.90 2296.51 24
GSMVS94.68 100
test_part296.29 1968.16 8890.78 17
sam_mvs157.85 17194.68 100
sam_mvs54.91 210
ambc69.61 36161.38 40841.35 39949.07 41585.86 33650.18 37766.40 38910.16 41288.14 34545.73 35544.20 38779.32 372
MTGPAbinary92.23 134
test_post178.95 35920.70 42253.05 23191.50 31460.43 293
test_post23.01 41956.49 19292.67 277
patchmatchnet-post67.62 38857.62 17490.25 323
GG-mvs-BLEND86.53 7391.91 11069.67 5275.02 37894.75 3478.67 13990.85 17177.91 794.56 21072.25 19193.74 4595.36 65
MTMP93.77 8632.52 428
test9_res89.41 4294.96 1995.29 70
agg_prior286.41 7294.75 3095.33 66
agg_prior94.16 4366.97 12193.31 9284.49 7096.75 118
test_prior467.18 11493.92 75
test_prior86.42 7694.71 3567.35 10993.10 10396.84 11595.05 83
新几何291.41 186
旧先验191.94 10760.74 27691.50 17694.36 8965.23 7991.84 7194.55 107
原ACMM292.01 162
testdata296.09 14561.26 289
segment_acmp65.94 72
test1287.09 5294.60 3668.86 6792.91 11082.67 9165.44 7797.55 6493.69 4894.84 92
plane_prior786.94 23561.51 259
plane_prior687.23 22762.32 24350.66 254
plane_prior591.31 18295.55 17476.74 15478.53 20988.39 251
plane_prior489.14 200
plane_prior187.15 229
n20.00 434
nn0.00 434
door-mid66.01 403
lessismore_v073.72 33872.93 38247.83 37861.72 40945.86 38973.76 36628.63 37989.81 33247.75 34731.37 40883.53 325
test1193.01 106
door66.57 402
HQP5-MVS63.66 208
BP-MVS77.63 151
HQP4-MVS74.18 18195.61 16988.63 245
HQP3-MVS91.70 16878.90 204
HQP2-MVS51.63 246
NP-MVS87.41 22363.04 22490.30 181
ACMMP++_ref71.63 259
ACMMP++69.72 268
Test By Simon54.21 220