This table lists the benchmark results for the high-res multi-view scenario. The following metrics are evaluated:

(*) For exact definitions, detailing how potentially incomplete ground truth is taken into account, see our paper.

The datasets are grouped into different categories, and result averages are computed for a category and method if results of the method are available for all datasets within the category. Note that the category "all" includes both the high-res multi-view and the low-res many-view scenarios.

Methods with suffix _ROB may participate in the Robust Vision Challenge.

Click a dataset result cell to show a visualization of the reconstruction. For training datasets, ground truth and accuracy / completeness visualizations are also available. The visualizations may not work with mobile browsers.




Method Infoallhigh-res
multi-view
indooroutdoorbotani.boulde.bridgedoorexhibi.lectur.living.loungeobserv.old co.statueterrac.
sort bysorted bysort bysort bysort bysort bysort bysort bysort bysort bysort bysort bysort bysort bysort bysort by
CNVR-MVS99.40 199.26 199.84 699.98 299.51 699.98 1598.69 6898.20 899.93 199.98 296.82 21100.00 199.75 28100.00 199.99 23
NCCC99.37 299.25 299.71 1599.96 899.15 2299.97 2898.62 8198.02 1399.90 399.95 397.33 15100.00 199.54 39100.00 1100.00 1
MCST-MVS99.32 399.14 499.86 599.97 399.59 599.97 2898.64 7698.47 399.13 8999.92 1396.38 29100.00 199.74 30100.00 1100.00 1
DVP-MVScopyleft99.30 499.16 399.73 1299.93 2499.29 1599.95 5398.32 17497.28 3299.83 1399.91 1497.22 17100.00 199.99 5100.00 199.89 84
Zhenlong Yuan, Jinguo Luo, Fei Shen, Zhaoxin Li, Cong Liu, Tianlu Mao, Zhaoqi Wang: DVP-MVS: Synergize Depth-Edge and Visibility Prior for Multi-View Stereo. AAAI2025
SED-MVS99.28 599.11 799.77 899.93 2499.30 1299.96 3598.43 13397.27 3499.80 1799.94 496.71 22100.00 1100.00 1100.00 1100.00 1
DVP-MVS++99.26 699.09 999.77 899.91 3999.31 1099.95 5398.43 13396.48 5999.80 1799.93 1197.44 12100.00 199.92 1399.98 32100.00 1
DPE-MVScopyleft99.26 699.10 899.74 1199.89 4599.24 1999.87 10498.44 12597.48 2799.64 4399.94 496.68 2499.99 3699.99 5100.00 199.99 23
Kehua Chen, Zhenlong Yuan, Tianlu Mao, Zhaoqi Wang: Dual-Level Precision Edges Guided Multi-View Stereo with Accurate Planarization. AAAI2025
MSLP-MVS++99.13 899.01 1199.49 3299.94 1398.46 6199.98 1598.86 5397.10 4099.80 1799.94 495.92 35100.00 199.51 40100.00 1100.00 1
MSP-MVS99.09 999.12 598.98 7799.93 2497.24 10399.95 5398.42 14597.50 2699.52 6099.88 2197.43 1499.71 13899.50 4199.98 32100.00 1
Zhenlong Yuan, Cong Liu, Fei Shen, Zhaoxin Li, Jingguo luo, Tianlu Mao and Zhaoqi Wang: MSP-MVS: Multi-granularity Segmentation Prior Guided Multi-View Stereo. AAAI2025
HPM-MVS++copyleft99.07 1098.88 1699.63 1799.90 4299.02 2599.95 5398.56 9297.56 2599.44 6699.85 3095.38 46100.00 199.31 5199.99 2199.87 87
MVS_030499.06 1198.84 1799.72 1399.76 6699.21 2199.99 499.34 2598.70 299.44 6699.75 6993.24 11399.99 3699.94 1199.41 11699.95 71
APDe-MVScopyleft99.06 1198.91 1499.51 2999.94 1398.76 4599.91 8498.39 15797.20 3899.46 6499.85 3095.53 4399.79 12399.86 21100.00 199.99 23
Zhaojie Zeng, Yuesong Wang, Tao Guan: Matching Ambiguity-Resilient Multi-View Stereo via Adaptive Patch Deformation. Pattern Recognition
SteuartSystems-ACMMP99.02 1398.97 1399.18 5298.72 14297.71 8499.98 1598.44 12596.85 4699.80 1799.91 1497.57 699.85 10899.44 4699.99 2199.99 23
Skip Steuart: Steuart Systems R&D Blog.
CHOSEN 280x42099.01 1499.03 1098.95 8099.38 9798.87 3398.46 31299.42 2197.03 4299.02 9399.09 14799.35 198.21 24799.73 3299.78 8399.77 101
fmvsm_l_conf0.5_n_a99.00 1598.91 1499.28 4599.21 10397.91 7999.98 1598.85 5698.25 599.92 299.75 6994.72 6499.97 5499.87 1999.64 9199.95 71
fmvsm_l_conf0.5_n98.94 1698.84 1799.25 4699.17 10697.81 8299.98 1598.86 5398.25 599.90 399.76 6394.21 8599.97 5499.87 1999.52 10499.98 48
TSAR-MVS + MP.98.93 1798.77 1999.41 3899.74 7098.67 4999.77 14598.38 16196.73 5399.88 699.74 7694.89 5999.59 14999.80 2599.98 3299.97 58
Zhenlong Yuan, Jiakai Cao, Zhaoqi Wang, Zhaoxin Li: TSAR-MVS: Textureless-aware Segmentation and Correlative Refinement Guided Multi-View Stereo. Pattern Recognition
SD-MVS98.92 1898.70 2099.56 2599.70 7798.73 4699.94 6998.34 17196.38 6599.81 1599.76 6394.59 6799.98 4499.84 2299.96 4699.97 58
Zhenlong Yuan, Jiakai Cao, Zhaoxin Li, Hao Jiang and Zhaoqi Wang: SD-MVS: Segmentation-driven Deformation Multi-View Stereo with Spherical Refinement and EM optimization. AAAI2024
MG-MVS98.91 1998.65 2199.68 1699.94 1399.07 2499.64 18299.44 1997.33 3199.00 9499.72 8194.03 9099.98 4498.73 89100.00 1100.00 1
train_agg98.88 2098.65 2199.59 2399.92 3198.92 2999.96 3598.43 13394.35 12499.71 3599.86 2695.94 3399.85 10899.69 3599.98 3299.99 23
MM98.83 2198.53 2799.76 1099.59 8299.33 899.99 499.76 698.39 499.39 7499.80 5190.49 17699.96 6299.89 1799.43 11499.98 48
DPM-MVS98.83 2198.46 3099.97 199.33 9999.92 199.96 3598.44 12597.96 1499.55 5599.94 497.18 19100.00 193.81 21799.94 5599.98 48
DeepC-MVS_fast96.59 198.81 2398.54 2699.62 2099.90 4298.85 3599.24 24398.47 11798.14 1099.08 9099.91 1493.09 117100.00 199.04 6499.99 21100.00 1
Andreas Kuhn, Christian Sormann, Mattia Rossi, Oliver Erdler, Friedrich Fraundorfer: DeepC-MVS: Deep Confidence Prediction for Multi-View Stereo Reconstruction. 3DV 2020
SMA-MVScopyleft98.76 2498.48 2999.62 2099.87 5198.87 3399.86 11598.38 16193.19 17099.77 2799.94 495.54 41100.00 199.74 3099.99 21100.00 1
Yufeng Yin; Xiaoyan Liu; Zichao Zhang: SMA-MVS: Segmentation-Guided Multi-Scale Anchor Deformation Patch Multi-View Stereo. IEEE Transactions on Circuits and Systems for Video Technology
MVS_111021_HR98.72 2598.62 2399.01 7499.36 9897.18 10699.93 7699.90 196.81 5198.67 11199.77 6193.92 9299.89 9699.27 5399.94 5599.96 64
XVS98.70 2698.55 2599.15 5999.94 1397.50 9599.94 6998.42 14596.22 7199.41 7099.78 5994.34 7699.96 6298.92 7599.95 5099.99 23
SF-MVS98.67 2798.40 3299.50 3099.77 6598.67 4999.90 9098.21 18893.53 15999.81 1599.89 1994.70 6699.86 10799.84 2299.93 6199.96 64
CDPH-MVS98.65 2898.36 3899.49 3299.94 1398.73 4699.87 10498.33 17293.97 14599.76 2899.87 2494.99 5799.75 13298.55 99100.00 199.98 48
APD-MVScopyleft98.62 2998.35 3999.41 3899.90 4298.51 5999.87 10498.36 16594.08 13799.74 3199.73 7894.08 8899.74 13499.42 4799.99 2199.99 23
Yuesong Wang, Zhaojie Zeng and etc.: Adaptive Patch Deformation for Textureless-Resilient Multi-View Stereo. CVPR2023
TSAR-MVS + GP.98.60 3098.51 2898.86 8599.73 7396.63 12599.97 2897.92 22198.07 1198.76 10799.55 10895.00 5699.94 7899.91 1697.68 16899.99 23
PAPM98.60 3098.42 3199.14 6196.05 28198.96 2699.90 9099.35 2496.68 5598.35 12799.66 9696.45 2898.51 21499.45 4599.89 6799.96 64
HFP-MVS98.56 3298.37 3699.14 6199.96 897.43 9999.95 5398.61 8294.77 10599.31 7899.85 3094.22 83100.00 198.70 9099.98 3299.98 48
region2R98.54 3398.37 3699.05 6999.96 897.18 10699.96 3598.55 9894.87 10399.45 6599.85 3094.07 89100.00 198.67 92100.00 199.98 48
DELS-MVS98.54 3398.22 4499.50 3099.15 10898.65 53100.00 198.58 8797.70 2098.21 13499.24 13992.58 13299.94 7898.63 9799.94 5599.92 81
Christian Sormann, Emanuele Santellani, Mattia Rossi, Andreas Kuhn, Friedrich Fraundorfer: DELS-MVS: Deep Epipolar Line Search for Multi-View Stereo. Winter Conference on Applications of Computer Vision (WACV), 2023
PAPR98.52 3598.16 4999.58 2499.97 398.77 4299.95 5398.43 13395.35 9198.03 13899.75 6994.03 9099.98 4498.11 11899.83 7599.99 23
ACMMPR98.50 3698.32 4099.05 6999.96 897.18 10699.95 5398.60 8494.77 10599.31 7899.84 4193.73 99100.00 198.70 9099.98 3299.98 48
ACMMP_NAP98.49 3798.14 5099.54 2799.66 7998.62 5599.85 11898.37 16494.68 11099.53 5899.83 4392.87 123100.00 198.66 9499.84 7499.99 23
EPNet98.49 3798.40 3298.77 8999.62 8196.80 12299.90 9099.51 1697.60 2299.20 8599.36 12893.71 10099.91 8997.99 12598.71 14399.61 130
Wanjuan Su, Wenbing Tao: Efficient Edge-Preserving Multi-View Stereo Network for Depth Estimation. AAAI 2023
SR-MVS98.46 3998.30 4398.93 8299.88 4997.04 11299.84 12398.35 16794.92 10199.32 7799.80 5193.35 10699.78 12599.30 5299.95 5099.96 64
CP-MVS98.45 4098.32 4098.87 8499.96 896.62 12699.97 2898.39 15794.43 11998.90 9899.87 2494.30 79100.00 199.04 6499.99 2199.99 23
test_fmvsm_n_192098.44 4198.61 2497.92 14599.27 10295.18 187100.00 198.90 4798.05 1299.80 1799.73 7892.64 12999.99 3699.58 3899.51 10798.59 227
PS-MVSNAJ98.44 4198.20 4699.16 5798.80 13898.92 2999.54 20198.17 19397.34 2999.85 999.85 3091.20 15799.89 9699.41 4899.67 8998.69 224
test_fmvsmconf_n98.43 4398.32 4098.78 8798.12 18996.41 13299.99 498.83 5998.22 799.67 3999.64 9991.11 16199.94 7899.67 3699.62 9499.98 48
MVS_111021_LR98.42 4498.38 3498.53 11199.39 9695.79 15799.87 10499.86 296.70 5498.78 10499.79 5592.03 14799.90 9199.17 5799.86 7399.88 85
DP-MVS Recon98.41 4598.02 5799.56 2599.97 398.70 4899.92 7998.44 12592.06 21798.40 12599.84 4195.68 39100.00 198.19 11399.71 8799.97 58
PHI-MVS98.41 4598.21 4599.03 7199.86 5397.10 11199.98 1598.80 6290.78 25899.62 4799.78 5995.30 47100.00 199.80 2599.93 6199.99 23
mPP-MVS98.39 4798.20 4698.97 7899.97 396.92 11799.95 5398.38 16195.04 9798.61 11599.80 5193.39 104100.00 198.64 95100.00 199.98 48
PGM-MVS98.34 4898.13 5198.99 7599.92 3197.00 11399.75 15399.50 1793.90 15099.37 7599.76 6393.24 113100.00 197.75 14199.96 4699.98 48
SR-MVS-dyc-post98.31 4998.17 4898.71 9299.79 6296.37 13699.76 15098.31 17694.43 11999.40 7299.75 6993.28 11199.78 12598.90 7899.92 6499.97 58
ZNCC-MVS98.31 4998.03 5699.17 5599.88 4997.59 8999.94 6998.44 12594.31 12798.50 11999.82 4693.06 11899.99 3698.30 11199.99 2199.93 76
MTAPA98.29 5197.96 6399.30 4499.85 5497.93 7899.39 22498.28 18195.76 8097.18 16299.88 2192.74 127100.00 198.67 9299.88 7199.99 23
balanced_conf0398.27 5297.99 5899.11 6698.64 14998.43 6299.47 21297.79 23294.56 11399.74 3198.35 21794.33 7899.25 16799.12 5899.96 4699.64 121
GST-MVS98.27 5297.97 6099.17 5599.92 3197.57 9199.93 7698.39 15794.04 14298.80 10399.74 7692.98 120100.00 198.16 11599.76 8499.93 76
CANet98.27 5297.82 7099.63 1799.72 7599.10 2399.98 1598.51 10897.00 4398.52 11799.71 8387.80 20799.95 7099.75 2899.38 11799.83 91
EI-MVSNet-Vis-set98.27 5298.11 5398.75 9099.83 5796.59 12899.40 22098.51 10895.29 9398.51 11899.76 6393.60 10399.71 13898.53 10099.52 10499.95 71
APD-MVS_3200maxsize98.25 5698.08 5598.78 8799.81 6096.60 12799.82 13398.30 17993.95 14799.37 7599.77 6192.84 12499.76 13198.95 7299.92 6499.97 58
patch_mono-298.24 5799.12 595.59 22899.67 7886.91 34699.95 5398.89 4997.60 2299.90 399.76 6396.54 2799.98 4499.94 1199.82 7999.88 85
xiu_mvs_v2_base98.23 5897.97 6099.02 7398.69 14398.66 5199.52 20398.08 20597.05 4199.86 799.86 2690.65 17199.71 13899.39 5098.63 14498.69 224
MP-MVScopyleft98.23 5897.97 6099.03 7199.94 1397.17 10999.95 5398.39 15794.70 10998.26 13299.81 5091.84 151100.00 198.85 8199.97 4299.93 76
Rongxuan Tan, Qing Wang, et al.: MP-MVS: Multi-Scale Windows PatchMatch and Planar Prior Multi-View Stereo.
EI-MVSNet-UG-set98.14 6097.99 5898.60 10199.80 6196.27 13899.36 22998.50 11495.21 9598.30 12999.75 6993.29 11099.73 13798.37 10799.30 12199.81 94
PAPM_NR98.12 6197.93 6598.70 9399.94 1396.13 14899.82 13398.43 13394.56 11397.52 15299.70 8594.40 7199.98 4497.00 15699.98 3299.99 23
WTY-MVS98.10 6297.60 7799.60 2298.92 12699.28 1799.89 9899.52 1495.58 8598.24 13399.39 12593.33 10799.74 13497.98 12795.58 21599.78 100
MP-MVS-pluss98.07 6397.64 7599.38 4299.74 7098.41 6399.74 15698.18 19293.35 16496.45 18199.85 3092.64 12999.97 5498.91 7799.89 6799.77 101
MP-MVS-pluss: MP-MVS-pluss. MP-MVS-pluss
HPM-MVScopyleft97.96 6497.72 7298.68 9499.84 5696.39 13599.90 9098.17 19392.61 19598.62 11499.57 10791.87 15099.67 14598.87 8099.99 2199.99 23
Chunlin Ren, Qingshan Xu, Shikun Zhang, Jiaqi Yang: Hierarchical Prior Mining for Non-local Multi-View Stereo. ICCV 2023
PVSNet_Blended97.94 6597.64 7598.83 8699.59 8296.99 114100.00 199.10 3195.38 9098.27 13099.08 14889.00 19899.95 7099.12 5899.25 12399.57 142
PLCcopyleft95.54 397.93 6697.89 6898.05 13999.82 5894.77 19899.92 7998.46 11993.93 14897.20 16199.27 13495.44 4599.97 5497.41 14699.51 10799.41 169
Jie Liao, Yanping Fu, Qingan Yan, Chunxia xiao: Pyramid Multi-View Stereo with Local Consistency. Pacific Graphics 2019
ETV-MVS97.92 6797.80 7198.25 12798.14 18796.48 12999.98 1597.63 24495.61 8499.29 8199.46 11692.55 13398.82 19299.02 6998.54 14599.46 162
CS-MVS-test97.88 6897.94 6497.70 16099.28 10195.20 18699.98 1597.15 30095.53 8799.62 4799.79 5592.08 14698.38 23098.75 8899.28 12299.52 153
API-MVS97.86 6997.66 7498.47 11499.52 8995.41 17699.47 21298.87 5291.68 22898.84 10099.85 3092.34 14099.99 3698.44 10399.96 46100.00 1
lupinMVS97.85 7097.60 7798.62 9997.28 24397.70 8699.99 497.55 25595.50 8999.43 6899.67 9490.92 16598.71 20398.40 10499.62 9499.45 164
MVSMamba_PlusPlus97.83 7197.45 8298.99 7598.60 15198.15 6599.58 19197.74 23590.34 26699.26 8398.32 22094.29 8099.23 16899.03 6799.89 6799.58 139
test_yl97.83 7197.37 8799.21 4999.18 10497.98 7599.64 18299.27 2791.43 23797.88 14498.99 15795.84 3799.84 11698.82 8295.32 22199.79 97
DCV-MVSNet97.83 7197.37 8799.21 4999.18 10497.98 7599.64 18299.27 2791.43 23797.88 14498.99 15795.84 3799.84 11698.82 8295.32 22199.79 97
mvsany_test197.82 7497.90 6797.55 16898.77 14093.04 24299.80 13997.93 21896.95 4599.61 5399.68 9390.92 16599.83 11899.18 5698.29 15499.80 96
bld_raw_conf0397.82 7497.45 8298.94 8198.51 16098.15 6599.58 19197.74 23594.01 14399.26 8398.38 21690.66 17099.09 18298.99 7199.89 6799.58 139
alignmvs97.81 7697.33 8999.25 4698.77 14098.66 5199.99 498.44 12594.40 12398.41 12399.47 11493.65 10199.42 16498.57 9894.26 23599.67 115
fmvsm_s_conf0.5_n97.80 7797.85 6997.67 16199.06 11194.41 20499.98 1598.97 4097.34 2999.63 4499.69 8787.27 21499.97 5499.62 3799.06 13298.62 226
HPM-MVS_fast97.80 7797.50 8098.68 9499.79 6296.42 13199.88 10198.16 19791.75 22798.94 9699.54 11091.82 15299.65 14797.62 14499.99 2199.99 23
CS-MVS97.79 7997.91 6697.43 17699.10 10994.42 20399.99 497.10 30595.07 9699.68 3899.75 6992.95 12198.34 23498.38 10599.14 12899.54 148
HY-MVS92.50 797.79 7997.17 9799.63 1798.98 11899.32 997.49 34499.52 1495.69 8298.32 12897.41 24793.32 10899.77 12898.08 12195.75 21299.81 94
CNLPA97.76 8197.38 8698.92 8399.53 8896.84 11999.87 10498.14 20193.78 15396.55 17999.69 8792.28 14199.98 4497.13 15299.44 11399.93 76
test_fmvsmconf0.1_n97.74 8297.44 8498.64 9895.76 29296.20 14499.94 6998.05 20898.17 998.89 9999.42 11887.65 20999.90 9199.50 4199.60 10099.82 92
ACMMPcopyleft97.74 8297.44 8498.66 9699.92 3196.13 14899.18 24899.45 1894.84 10496.41 18499.71 8391.40 15499.99 3697.99 12598.03 16399.87 87
Qingshan Xu, Weihang Kong, Wenbing Tao, Marc Pollefeys: Multi-Scale Geometric Consistency Guided and Planar Prior Assisted Multi-View Stereo. IEEE Transactions on Pattern Analysis and Machine Intelligence
fmvsm_s_conf0.5_n_a97.73 8497.72 7297.77 15598.63 15094.26 21099.96 3598.92 4697.18 3999.75 2999.69 8787.00 21999.97 5499.46 4498.89 13699.08 203
DeepPCF-MVS95.94 297.71 8598.98 1293.92 29199.63 8081.76 37499.96 3598.56 9299.47 199.19 8799.99 194.16 87100.00 199.92 1399.93 61100.00 1
test_fmvsmvis_n_192097.67 8697.59 7997.91 14797.02 25095.34 17899.95 5398.45 12097.87 1597.02 16699.59 10489.64 18699.98 4499.41 4899.34 12098.42 230
CPTT-MVS97.64 8797.32 9098.58 10499.97 395.77 15899.96 3598.35 16789.90 27598.36 12699.79 5591.18 16099.99 3698.37 10799.99 2199.99 23
sss97.57 8897.03 10299.18 5298.37 16798.04 7299.73 16199.38 2293.46 16198.76 10799.06 15091.21 15699.89 9696.33 16797.01 18599.62 127
test250697.53 8997.19 9598.58 10498.66 14696.90 11898.81 29099.77 594.93 9997.95 14098.96 16392.51 13499.20 17494.93 18898.15 15699.64 121
EIA-MVS97.53 8997.46 8197.76 15798.04 19294.84 19499.98 1597.61 24994.41 12297.90 14299.59 10492.40 13898.87 18998.04 12299.13 12999.59 133
testing1197.48 9197.27 9198.10 13598.36 16896.02 15199.92 7998.45 12093.45 16398.15 13698.70 18995.48 4499.22 17097.85 13395.05 22599.07 204
xiu_mvs_v1_base_debu97.43 9297.06 9898.55 10697.74 21098.14 6799.31 23497.86 22796.43 6299.62 4799.69 8785.56 23299.68 14299.05 6198.31 15197.83 241
xiu_mvs_v1_base97.43 9297.06 9898.55 10697.74 21098.14 6799.31 23497.86 22796.43 6299.62 4799.69 8785.56 23299.68 14299.05 6198.31 15197.83 241
xiu_mvs_v1_base_debi97.43 9297.06 9898.55 10697.74 21098.14 6799.31 23497.86 22796.43 6299.62 4799.69 8785.56 23299.68 14299.05 6198.31 15197.83 241
MAR-MVS97.43 9297.19 9598.15 13399.47 9394.79 19799.05 26498.76 6392.65 19398.66 11299.82 4688.52 20399.98 4498.12 11799.63 9399.67 115
Zhenyu Xu, Yiguang Liu, Xuelei Shi, Ying Wang, Yunan Zheng: MARMVS: Matching Ambiguity Reduced Multiple View Stereo for Efficient Large Scale Scene Reconstruction. CVPR 2020
dcpmvs_297.42 9698.09 5495.42 23399.58 8687.24 34299.23 24496.95 32194.28 13098.93 9799.73 7894.39 7499.16 17899.89 1799.82 7999.86 89
thisisatest051597.41 9797.02 10398.59 10397.71 21797.52 9399.97 2898.54 10191.83 22397.45 15599.04 15197.50 799.10 18194.75 19696.37 19799.16 195
114514_t97.41 9796.83 11199.14 6199.51 9197.83 8099.89 9898.27 18388.48 30299.06 9199.66 9690.30 17999.64 14896.32 16899.97 4299.96 64
EC-MVSNet97.38 9997.24 9297.80 15097.41 23295.64 16799.99 497.06 31094.59 11299.63 4499.32 13089.20 19698.14 25098.76 8799.23 12599.62 127
iter_conf0597.35 10096.89 10998.73 9198.60 15197.59 8998.26 32497.46 26690.34 26695.94 19498.32 22094.29 8099.23 16899.03 6799.82 7999.36 174
fmvsm_s_conf0.1_n97.30 10197.21 9497.60 16797.38 23494.40 20699.90 9098.64 7696.47 6199.51 6299.65 9884.99 24099.93 8599.22 5599.09 13198.46 228
OMC-MVS97.28 10297.23 9397.41 17799.76 6693.36 23799.65 17897.95 21696.03 7597.41 15699.70 8589.61 18799.51 15396.73 16598.25 15599.38 171
PVSNet_Blended_VisFu97.27 10396.81 11298.66 9698.81 13796.67 12499.92 7998.64 7694.51 11596.38 18598.49 20889.05 19799.88 10297.10 15498.34 14999.43 167
jason97.24 10496.86 11098.38 12295.73 29597.32 10299.97 2897.40 27495.34 9298.60 11699.54 11087.70 20898.56 21197.94 12899.47 10999.25 190
jason: jason.
AdaColmapbinary97.23 10596.80 11398.51 11299.99 195.60 16999.09 25398.84 5893.32 16696.74 17499.72 8186.04 229100.00 198.01 12399.43 11499.94 75
VNet97.21 10696.57 12499.13 6598.97 11997.82 8199.03 26799.21 2994.31 12799.18 8898.88 17486.26 22899.89 9698.93 7494.32 23399.69 112
testing9997.17 10796.91 10597.95 14298.35 17095.70 16399.91 8498.43 13392.94 17797.36 15798.72 18794.83 6099.21 17197.00 15694.64 22798.95 209
testing9197.16 10896.90 10697.97 14198.35 17095.67 16699.91 8498.42 14592.91 17997.33 15898.72 18794.81 6199.21 17196.98 15894.63 22899.03 206
PVSNet91.05 1397.13 10996.69 11998.45 11699.52 8995.81 15699.95 5399.65 1294.73 10799.04 9299.21 14184.48 24499.95 7094.92 18998.74 14299.58 139
thisisatest053097.10 11096.72 11798.22 12897.60 22396.70 12399.92 7998.54 10191.11 24797.07 16598.97 16197.47 1099.03 18393.73 22296.09 20098.92 210
CSCG97.10 11097.04 10197.27 18699.89 4591.92 26899.90 9099.07 3488.67 29895.26 20899.82 4693.17 11699.98 4498.15 11699.47 10999.90 83
sasdasda97.09 11296.32 13099.39 4098.93 12398.95 2799.72 16497.35 27794.45 11697.88 14499.42 11886.71 22199.52 15198.48 10193.97 23999.72 107
fmvsm_s_conf0.1_n_a97.09 11296.90 10697.63 16595.65 30194.21 21299.83 13098.50 11496.27 7099.65 4199.64 9984.72 24199.93 8599.04 6498.84 13998.74 221
canonicalmvs97.09 11296.32 13099.39 4098.93 12398.95 2799.72 16497.35 27794.45 11697.88 14499.42 11886.71 22199.52 15198.48 10193.97 23999.72 107
testing22297.08 11596.75 11598.06 13898.56 15396.82 12099.85 11898.61 8292.53 20198.84 10098.84 18393.36 10598.30 23895.84 17694.30 23499.05 205
ETVMVS97.03 11696.64 12098.20 12998.67 14597.12 11099.89 9898.57 8991.10 24898.17 13598.59 19993.86 9698.19 24895.64 17995.24 22399.28 187
MGCFI-Net97.00 11796.22 13499.34 4398.86 13498.80 3999.67 17697.30 28494.31 12797.77 14899.41 12286.36 22799.50 15598.38 10593.90 24199.72 107
diffmvspermissive97.00 11796.64 12098.09 13697.64 22196.17 14799.81 13597.19 29494.67 11198.95 9599.28 13186.43 22598.76 19798.37 10797.42 17499.33 180
Fangjinhua Wang, Qingshan Xu, Yew-Soon Ong, Marc Pollefeys: Lightweight and Accurate Multi-View Stereo With Confidence-Aware Diffusion Model. IEEE T-PAMI 2025
thres20096.96 11996.21 13599.22 4898.97 11998.84 3699.85 11899.71 793.17 17196.26 18798.88 17489.87 18499.51 15394.26 20794.91 22699.31 182
mvsmamba96.94 12096.73 11697.55 16897.99 19494.37 20799.62 18597.70 23893.13 17298.42 12297.92 23588.02 20698.75 19998.78 8599.01 13499.52 153
MVSFormer96.94 12096.60 12297.95 14297.28 24397.70 8699.55 19997.27 28991.17 24499.43 6899.54 11090.92 16596.89 31394.67 19999.62 9499.25 190
F-COLMAP96.93 12296.95 10496.87 19699.71 7691.74 27399.85 11897.95 21693.11 17495.72 20199.16 14592.35 13999.94 7895.32 18299.35 11998.92 210
DeepC-MVS94.51 496.92 12396.40 12998.45 11699.16 10795.90 15499.66 17798.06 20696.37 6894.37 21799.49 11383.29 25399.90 9197.63 14399.61 9899.55 144
Andreas Kuhn, Christian Sormann, Mattia Rossi, Oliver Erdler, Friedrich Fraundorfer: DeepC-MVS: Deep Confidence Prediction for Multi-View Stereo Reconstruction. 3DV 2020
tttt051796.85 12496.49 12697.92 14597.48 23095.89 15599.85 11898.54 10190.72 25996.63 17698.93 17297.47 1099.02 18493.03 23495.76 21198.85 214
131496.84 12595.96 14699.48 3496.74 26898.52 5898.31 32198.86 5395.82 7889.91 26798.98 15987.49 21199.96 6297.80 13499.73 8699.96 64
CHOSEN 1792x268896.81 12696.53 12597.64 16398.91 13093.07 23999.65 17899.80 395.64 8395.39 20598.86 17984.35 24699.90 9196.98 15899.16 12799.95 71
UWE-MVS96.79 12796.72 11797.00 19198.51 16093.70 22599.71 16798.60 8492.96 17697.09 16398.34 21996.67 2698.85 19192.11 24396.50 19398.44 229
tfpn200view996.79 12795.99 14099.19 5198.94 12198.82 3799.78 14299.71 792.86 18096.02 19298.87 17789.33 19199.50 15593.84 21494.57 22999.27 188
thres40096.78 12995.99 14099.16 5798.94 12198.82 3799.78 14299.71 792.86 18096.02 19298.87 17789.33 19199.50 15593.84 21494.57 22999.16 195
CANet_DTU96.76 13096.15 13698.60 10198.78 13997.53 9299.84 12397.63 24497.25 3799.20 8599.64 9981.36 26699.98 4492.77 23798.89 13698.28 233
PMMVS96.76 13096.76 11496.76 19998.28 17592.10 26399.91 8497.98 21394.12 13599.53 5899.39 12586.93 22098.73 20096.95 16197.73 16699.45 164
thres100view90096.74 13295.92 15099.18 5298.90 13198.77 4299.74 15699.71 792.59 19795.84 19798.86 17989.25 19399.50 15593.84 21494.57 22999.27 188
TESTMET0.1,196.74 13296.26 13298.16 13097.36 23696.48 12999.96 3598.29 18091.93 22095.77 20098.07 22995.54 4198.29 23990.55 26998.89 13699.70 110
baseline296.71 13496.49 12697.37 18095.63 30395.96 15399.74 15698.88 5192.94 17791.61 24898.97 16197.72 598.62 20994.83 19398.08 16297.53 251
thres600view796.69 13595.87 15399.14 6198.90 13198.78 4199.74 15699.71 792.59 19795.84 19798.86 17989.25 19399.50 15593.44 22694.50 23299.16 195
EPP-MVSNet96.69 13596.60 12296.96 19397.74 21093.05 24199.37 22798.56 9288.75 29695.83 19999.01 15496.01 3198.56 21196.92 16297.20 17999.25 190
HyFIR lowres test96.66 13796.43 12897.36 18299.05 11293.91 22099.70 17199.80 390.54 26196.26 18798.08 22892.15 14498.23 24696.84 16495.46 21699.93 76
MVS96.60 13895.56 16199.72 1396.85 26199.22 2098.31 32198.94 4191.57 23090.90 25699.61 10386.66 22399.96 6297.36 14799.88 7199.99 23
test_cas_vis1_n_192096.59 13996.23 13397.65 16298.22 17994.23 21199.99 497.25 29197.77 1799.58 5499.08 14877.10 30399.97 5497.64 14299.45 11298.74 221
UA-Net96.54 14095.96 14698.27 12698.23 17895.71 16298.00 33798.45 12093.72 15698.41 12399.27 13488.71 20299.66 14691.19 25497.69 16799.44 166
EPMVS96.53 14196.01 13998.09 13698.43 16596.12 15096.36 36599.43 2093.53 15997.64 15095.04 33194.41 7098.38 23091.13 25598.11 15999.75 103
test-LLR96.47 14296.04 13897.78 15397.02 25095.44 17399.96 3598.21 18894.07 13895.55 20296.38 28193.90 9498.27 24390.42 27298.83 14099.64 121
MVS_Test96.46 14395.74 15598.61 10098.18 18397.23 10499.31 23497.15 30091.07 24998.84 10097.05 26088.17 20598.97 18594.39 20397.50 17199.61 130
casdiffmvs_mvgpermissive96.43 14495.94 14897.89 14997.44 23195.47 17299.86 11597.29 28793.35 16496.03 19199.19 14285.39 23598.72 20297.89 13297.04 18399.49 160
Fangjinhua Wang, Qingshan Xu, Yew-Soon Ong, Marc Pollefeys: Lightweight and Accurate Multi-View Stereo With Confidence-Aware Diffusion Model. IEEE T-PAMI 2025
baseline96.43 14495.98 14297.76 15797.34 23795.17 18899.51 20597.17 29793.92 14996.90 16999.28 13185.37 23698.64 20897.50 14596.86 18999.46 162
casdiffmvspermissive96.42 14695.97 14597.77 15597.30 24194.98 19099.84 12397.09 30793.75 15596.58 17899.26 13785.07 23898.78 19597.77 13997.04 18399.54 148
Fangjinhua Wang, Qingshan Xu, Yew-Soon Ong, Marc Pollefeys: Lightweight and Accurate Multi-View Stereo With Confidence-Aware Diffusion Model. IEEE T-PAMI 2025
test_fmvsmconf0.01_n96.39 14795.74 15598.32 12491.47 36995.56 17099.84 12397.30 28497.74 1897.89 14399.35 12979.62 28599.85 10899.25 5499.24 12499.55 144
test-mter96.39 14795.93 14997.78 15397.02 25095.44 17399.96 3598.21 18891.81 22595.55 20296.38 28195.17 4898.27 24390.42 27298.83 14099.64 121
CDS-MVSNet96.34 14996.07 13797.13 18897.37 23594.96 19199.53 20297.91 22291.55 23195.37 20698.32 22095.05 5397.13 29693.80 21895.75 21299.30 184
Khang Truong Giang, Soohwan Song, Sungho Jo: Curvature-guided dynamic scale networks for Multi-view Stereo. ICLR 2022
Vis-MVSNet (Re-imp)96.32 15095.98 14297.35 18397.93 19894.82 19599.47 21298.15 20091.83 22395.09 20999.11 14691.37 15597.47 27993.47 22597.43 17299.74 104
3Dnovator+91.53 1196.31 15195.24 16999.52 2896.88 26098.64 5499.72 16498.24 18595.27 9488.42 30698.98 15982.76 25599.94 7897.10 15499.83 7599.96 64
Effi-MVS+96.30 15295.69 15798.16 13097.85 20396.26 13997.41 34697.21 29390.37 26498.65 11398.58 20286.61 22498.70 20497.11 15397.37 17699.52 153
IS-MVSNet96.29 15395.90 15197.45 17498.13 18894.80 19699.08 25597.61 24992.02 21995.54 20498.96 16390.64 17298.08 25393.73 22297.41 17599.47 161
3Dnovator91.47 1296.28 15495.34 16699.08 6896.82 26397.47 9899.45 21798.81 6095.52 8889.39 28199.00 15681.97 25999.95 7097.27 14999.83 7599.84 90
tpmrst96.27 15595.98 14297.13 18897.96 19693.15 23896.34 36698.17 19392.07 21598.71 11095.12 32993.91 9398.73 20094.91 19196.62 19099.50 158
CostFormer96.10 15695.88 15296.78 19897.03 24992.55 25597.08 35497.83 23090.04 27398.72 10994.89 33895.01 5598.29 23996.54 16695.77 21099.50 158
PVSNet_BlendedMVS96.05 15795.82 15496.72 20199.59 8296.99 11499.95 5399.10 3194.06 14098.27 13095.80 29689.00 19899.95 7099.12 5887.53 29093.24 347
PatchMatch-RL96.04 15895.40 16397.95 14299.59 8295.22 18599.52 20399.07 3493.96 14696.49 18098.35 21782.28 25799.82 12090.15 27799.22 12698.81 217
1112_ss96.01 15995.20 17198.42 11997.80 20696.41 13299.65 17896.66 34392.71 18892.88 23699.40 12392.16 14399.30 16591.92 24693.66 24299.55 144
PatchmatchNetpermissive95.94 16095.45 16297.39 17997.83 20494.41 20496.05 37298.40 15492.86 18097.09 16395.28 32694.21 8598.07 25589.26 28598.11 15999.70 110
Fangjinhua Wang, Silvano Galliani, Christoph Vogel, Pablo Speciale, Marc Pollefeys: PatchmatchNet: Learned Multi-View Patchmatch Stereo.
FA-MVS(test-final)95.86 16195.09 17598.15 13397.74 21095.62 16896.31 36798.17 19391.42 23996.26 18796.13 29090.56 17499.47 16292.18 24297.07 18199.35 177
TAMVS95.85 16295.58 16096.65 20497.07 24793.50 23199.17 24997.82 23191.39 24195.02 21098.01 23092.20 14297.30 28693.75 22195.83 20999.14 198
LS3D95.84 16395.11 17498.02 14099.85 5495.10 18998.74 29598.50 11487.22 31993.66 22699.86 2687.45 21299.95 7090.94 26199.81 8299.02 207
baseline195.78 16494.86 18198.54 10998.47 16498.07 7099.06 26097.99 21192.68 19194.13 22298.62 19893.28 11198.69 20593.79 21985.76 29898.84 215
Test_1112_low_res95.72 16594.83 18298.42 11997.79 20796.41 13299.65 17896.65 34492.70 18992.86 23796.13 29092.15 14499.30 16591.88 24793.64 24399.55 144
Vis-MVSNetpermissive95.72 16595.15 17397.45 17497.62 22294.28 20999.28 24098.24 18594.27 13296.84 17198.94 17079.39 28798.76 19793.25 22798.49 14699.30 184
Jingyang Zhang, Yao Yao, Shiwei Li, Zixin Luo, Tian Fang: Visibility-aware Multiview Stereo Network. BMVC 2020
EPNet_dtu95.71 16795.39 16496.66 20398.92 12693.41 23499.57 19598.90 4796.19 7397.52 15298.56 20492.65 12897.36 28177.89 36798.33 15099.20 193
Wanjuan Su, Wenbing Tao: Efficient Edge-Preserving Multi-View Stereo Network for Depth Estimation. AAAI 2023
BH-w/o95.71 16795.38 16596.68 20298.49 16392.28 25999.84 12397.50 26392.12 21492.06 24698.79 18484.69 24298.67 20795.29 18399.66 9099.09 201
FE-MVS95.70 16995.01 17897.79 15298.21 18094.57 19995.03 37998.69 6888.90 29397.50 15496.19 28792.60 13199.49 16089.99 27997.94 16599.31 182
ECVR-MVScopyleft95.66 17095.05 17697.51 17298.66 14693.71 22498.85 28798.45 12094.93 9996.86 17098.96 16375.22 32699.20 17495.34 18198.15 15699.64 121
mvs_anonymous95.65 17195.03 17797.53 17098.19 18295.74 16099.33 23197.49 26490.87 25390.47 26097.10 25688.23 20497.16 29395.92 17497.66 16999.68 113
test111195.57 17294.98 17997.37 18098.56 15393.37 23698.86 28598.45 12094.95 9896.63 17698.95 16875.21 32799.11 17995.02 18698.14 15899.64 121
MVSTER95.53 17395.22 17096.45 20898.56 15397.72 8399.91 8497.67 24192.38 20891.39 25097.14 25497.24 1697.30 28694.80 19487.85 28594.34 285
tpm295.47 17495.18 17296.35 21396.91 25691.70 27796.96 35797.93 21888.04 30998.44 12195.40 31593.32 10897.97 25994.00 21095.61 21499.38 171
test_vis1_n_192095.44 17595.31 16795.82 22498.50 16288.74 32599.98 1597.30 28497.84 1699.85 999.19 14266.82 36399.97 5498.82 8299.46 11198.76 219
QAPM95.40 17694.17 19699.10 6796.92 25597.71 8499.40 22098.68 7089.31 28188.94 29498.89 17382.48 25699.96 6293.12 23399.83 7599.62 127
test_fmvs195.35 17795.68 15994.36 27698.99 11784.98 35699.96 3596.65 34497.60 2299.73 3398.96 16371.58 34399.93 8598.31 11099.37 11898.17 234
UGNet95.33 17894.57 18797.62 16698.55 15694.85 19398.67 30399.32 2695.75 8196.80 17396.27 28572.18 34099.96 6294.58 20199.05 13398.04 238
Wanjuan Su, Qingshan Xu, Wenbing Tao: Uncertainty-guided Multi-view Stereo Network for Depth Estimation. IEEE Transactions on Circuits and Systems for Video Technology, 2022
mamv495.24 17996.90 10690.25 34498.65 14872.11 39198.28 32397.64 24389.99 27495.93 19598.25 22394.74 6399.11 17999.01 7099.64 9199.53 152
BH-untuned95.18 18094.83 18296.22 21598.36 16891.22 28599.80 13997.32 28290.91 25291.08 25398.67 19183.51 25098.54 21394.23 20899.61 9898.92 210
BH-RMVSNet95.18 18094.31 19397.80 15098.17 18495.23 18499.76 15097.53 25992.52 20294.27 22099.25 13876.84 30898.80 19390.89 26399.54 10399.35 177
PCF-MVS94.20 595.18 18094.10 19798.43 11898.55 15695.99 15297.91 33997.31 28390.35 26589.48 28099.22 14085.19 23799.89 9690.40 27498.47 14799.41 169
Andreas Kuhn, Shan Lin, Oliver Erdler: Plane Completion and Filtering for Multi-View Stereo Reconstruction. GCPR 2019
dp95.05 18394.43 18996.91 19497.99 19492.73 24996.29 36897.98 21389.70 27895.93 19594.67 34493.83 9898.45 21986.91 31796.53 19299.54 148
Fast-Effi-MVS+95.02 18494.19 19597.52 17197.88 20094.55 20099.97 2897.08 30888.85 29594.47 21697.96 23484.59 24398.41 22289.84 28197.10 18099.59 133
IB-MVS92.85 694.99 18593.94 20298.16 13097.72 21595.69 16599.99 498.81 6094.28 13092.70 23896.90 26495.08 5199.17 17796.07 17173.88 37499.60 132
Christian Sormann, Mattia Rossi, Andreas Kuhn and Friedrich Fraundorfer: IB-MVS: An Iterative Algorithm for Deep Multi-View Stereo based on Binary Decisions. BMVC 2021
h-mvs3394.92 18694.36 19096.59 20598.85 13591.29 28498.93 27698.94 4195.90 7698.77 10598.42 21590.89 16899.77 12897.80 13470.76 37998.72 223
XVG-OURS94.82 18794.74 18595.06 24498.00 19389.19 32099.08 25597.55 25594.10 13694.71 21299.62 10280.51 27899.74 13496.04 17293.06 25196.25 260
SDMVSNet94.80 18893.96 20197.33 18498.92 12695.42 17599.59 18998.99 3792.41 20692.55 24097.85 23875.81 32098.93 18897.90 13191.62 25497.64 246
ADS-MVSNet94.79 18994.02 19997.11 19097.87 20193.79 22194.24 38098.16 19790.07 27196.43 18294.48 34990.29 18098.19 24887.44 30497.23 17799.36 174
XVG-OURS-SEG-HR94.79 18994.70 18695.08 24398.05 19189.19 32099.08 25597.54 25793.66 15794.87 21199.58 10678.78 29499.79 12397.31 14893.40 24696.25 260
OpenMVScopyleft90.15 1594.77 19193.59 21098.33 12396.07 28097.48 9799.56 19798.57 8990.46 26286.51 32998.95 16878.57 29799.94 7893.86 21399.74 8597.57 250
LFMVS94.75 19293.56 21298.30 12599.03 11395.70 16398.74 29597.98 21387.81 31298.47 12099.39 12567.43 36199.53 15098.01 12395.20 22499.67 115
SCA94.69 19393.81 20697.33 18497.10 24694.44 20198.86 28598.32 17493.30 16796.17 19095.59 30576.48 31397.95 26291.06 25797.43 17299.59 133
ab-mvs94.69 19393.42 21698.51 11298.07 19096.26 13996.49 36398.68 7090.31 26894.54 21397.00 26276.30 31599.71 13895.98 17393.38 24799.56 143
CVMVSNet94.68 19594.94 18093.89 29496.80 26486.92 34599.06 26098.98 3894.45 11694.23 22199.02 15285.60 23195.31 36090.91 26295.39 21999.43 167
cascas94.64 19693.61 20797.74 15997.82 20596.26 13999.96 3597.78 23485.76 33794.00 22397.54 24476.95 30799.21 17197.23 15095.43 21897.76 245
HQP-MVS94.61 19794.50 18894.92 24995.78 28891.85 26999.87 10497.89 22396.82 4893.37 22898.65 19480.65 27698.39 22697.92 12989.60 25894.53 268
TR-MVS94.54 19893.56 21297.49 17397.96 19694.34 20898.71 29897.51 26290.30 26994.51 21598.69 19075.56 32198.77 19692.82 23695.99 20299.35 177
DP-MVS94.54 19893.42 21697.91 14799.46 9594.04 21598.93 27697.48 26581.15 37190.04 26499.55 10887.02 21899.95 7088.97 28798.11 15999.73 105
Effi-MVS+-dtu94.53 20095.30 16892.22 32797.77 20882.54 36799.59 18997.06 31094.92 10195.29 20795.37 31985.81 23097.89 26594.80 19497.07 18196.23 262
HQP_MVS94.49 20194.36 19094.87 25095.71 29891.74 27399.84 12397.87 22596.38 6593.01 23298.59 19980.47 28098.37 23297.79 13789.55 26194.52 270
myMVS_eth3d94.46 20294.76 18493.55 30497.68 21890.97 28799.71 16798.35 16790.79 25692.10 24498.67 19192.46 13793.09 38287.13 31095.95 20596.59 258
TAPA-MVS92.12 894.42 20393.60 20996.90 19599.33 9991.78 27299.78 14298.00 21089.89 27694.52 21499.47 11491.97 14899.18 17669.90 38599.52 10499.73 105
Andrea Romanoni, Matteo Matteucci: TAPA-MVS: Textureless-Aware PAtchMatch Multi-View Stereo. ICCV 2019
hse-mvs294.38 20494.08 19895.31 23898.27 17690.02 31099.29 23998.56 9295.90 7698.77 10598.00 23190.89 16898.26 24597.80 13469.20 38597.64 246
ET-MVSNet_ETH3D94.37 20593.28 22297.64 16398.30 17297.99 7499.99 497.61 24994.35 12471.57 39099.45 11796.23 3095.34 35996.91 16385.14 30599.59 133
MSDG94.37 20593.36 22097.40 17898.88 13393.95 21999.37 22797.38 27585.75 33990.80 25799.17 14484.11 24899.88 10286.35 31898.43 14898.36 232
GeoE94.36 20793.48 21496.99 19297.29 24293.54 23099.96 3596.72 34188.35 30593.43 22798.94 17082.05 25898.05 25688.12 29996.48 19599.37 173
miper_enhance_ethall94.36 20793.98 20095.49 22998.68 14495.24 18399.73 16197.29 28793.28 16889.86 26995.97 29494.37 7597.05 30292.20 24184.45 31094.19 294
tpmvs94.28 20993.57 21196.40 21098.55 15691.50 28295.70 37898.55 9887.47 31492.15 24394.26 35391.42 15398.95 18788.15 29795.85 20898.76 219
test_fmvs1_n94.25 21094.36 19093.92 29197.68 21883.70 36299.90 9096.57 34797.40 2899.67 3998.88 17461.82 37999.92 8898.23 11299.13 12998.14 237
FIs94.10 21193.43 21596.11 21794.70 31696.82 12099.58 19198.93 4592.54 20089.34 28397.31 25087.62 21097.10 29994.22 20986.58 29494.40 279
CLD-MVS94.06 21293.90 20394.55 26596.02 28290.69 29499.98 1597.72 23796.62 5891.05 25598.85 18277.21 30298.47 21598.11 11889.51 26394.48 272
Zhaoxin Li, Wangmeng Zuo, Zhaoqi Wang, Lei Zhang: Confidence-based Large-scale Dense Multi-view Stereo. IEEE Transaction on Image Processing, 2020
testing393.92 21394.23 19492.99 31897.54 22590.23 30599.99 499.16 3090.57 26091.33 25298.63 19792.99 11992.52 38682.46 34495.39 21996.22 263
test0.0.03 193.86 21493.61 20794.64 25995.02 31292.18 26299.93 7698.58 8794.07 13887.96 31098.50 20793.90 9494.96 36481.33 35193.17 24896.78 255
X-MVStestdata93.83 21592.06 24899.15 5999.94 1397.50 9599.94 6998.42 14596.22 7199.41 7041.37 41294.34 7699.96 6298.92 7599.95 5099.99 23
GA-MVS93.83 21592.84 22896.80 19795.73 29593.57 22899.88 10197.24 29292.57 19992.92 23496.66 27378.73 29597.67 27387.75 30294.06 23899.17 194
FC-MVSNet-test93.81 21793.15 22495.80 22594.30 32396.20 14499.42 21998.89 4992.33 21089.03 29397.27 25287.39 21396.83 31793.20 22886.48 29594.36 281
ADS-MVSNet293.80 21893.88 20493.55 30497.87 20185.94 35094.24 38096.84 33290.07 27196.43 18294.48 34990.29 18095.37 35887.44 30497.23 17799.36 174
cl2293.77 21993.25 22395.33 23799.49 9294.43 20299.61 18798.09 20390.38 26389.16 29195.61 30390.56 17497.34 28391.93 24584.45 31094.21 293
VDD-MVS93.77 21992.94 22796.27 21498.55 15690.22 30698.77 29497.79 23290.85 25496.82 17299.42 11861.18 38299.77 12898.95 7294.13 23698.82 216
EI-MVSNet93.73 22193.40 21994.74 25596.80 26492.69 25099.06 26097.67 24188.96 29091.39 25099.02 15288.75 20197.30 28691.07 25687.85 28594.22 291
Fast-Effi-MVS+-dtu93.72 22293.86 20593.29 30997.06 24886.16 34899.80 13996.83 33392.66 19292.58 23997.83 24081.39 26597.67 27389.75 28296.87 18896.05 265
tpm93.70 22393.41 21894.58 26395.36 30787.41 34197.01 35596.90 32890.85 25496.72 17594.14 35490.40 17796.84 31690.75 26688.54 27799.51 156
PS-MVSNAJss93.64 22493.31 22194.61 26092.11 36092.19 26199.12 25197.38 27592.51 20388.45 30196.99 26391.20 15797.29 28994.36 20487.71 28794.36 281
test_vis1_n93.61 22593.03 22695.35 23595.86 28786.94 34499.87 10496.36 35396.85 4699.54 5798.79 18452.41 39299.83 11898.64 9598.97 13599.29 186
sd_testset93.55 22692.83 22995.74 22698.92 12690.89 29298.24 32698.85 5692.41 20692.55 24097.85 23871.07 34898.68 20693.93 21191.62 25497.64 246
gg-mvs-nofinetune93.51 22791.86 25398.47 11497.72 21597.96 7792.62 38898.51 10874.70 39097.33 15869.59 40398.91 397.79 26897.77 13999.56 10299.67 115
nrg03093.51 22792.53 24096.45 20894.36 32197.20 10599.81 13597.16 29991.60 22989.86 26997.46 24586.37 22697.68 27295.88 17580.31 34494.46 273
tpm cat193.51 22792.52 24196.47 20697.77 20891.47 28396.13 37098.06 20680.98 37292.91 23593.78 35789.66 18598.87 18987.03 31396.39 19699.09 201
CR-MVSNet93.45 23092.62 23495.94 22096.29 27492.66 25192.01 39196.23 35592.62 19496.94 16793.31 36291.04 16296.03 34979.23 36095.96 20399.13 199
AUN-MVS93.28 23192.60 23595.34 23698.29 17390.09 30999.31 23498.56 9291.80 22696.35 18698.00 23189.38 19098.28 24192.46 23869.22 38497.64 246
OPM-MVS93.21 23292.80 23094.44 27293.12 34390.85 29399.77 14597.61 24996.19 7391.56 24998.65 19475.16 32898.47 21593.78 22089.39 26493.99 316
Ray L. Khuboni, Hongjun Xu: Octagram Propagation Matching for Multi-Scale View Stereopsis (OPM-MVS).
dmvs_re93.20 23393.15 22493.34 30796.54 27283.81 36198.71 29898.51 10891.39 24192.37 24298.56 20478.66 29697.83 26793.89 21289.74 25798.38 231
kuosan93.17 23492.60 23594.86 25398.40 16689.54 31898.44 31498.53 10484.46 35288.49 30097.92 23590.57 17397.05 30283.10 34093.49 24497.99 239
miper_ehance_all_eth93.16 23592.60 23594.82 25497.57 22493.56 22999.50 20797.07 30988.75 29688.85 29595.52 30990.97 16496.74 32090.77 26584.45 31094.17 295
VDDNet93.12 23691.91 25196.76 19996.67 27192.65 25398.69 30198.21 18882.81 36497.75 14999.28 13161.57 38099.48 16198.09 12094.09 23798.15 235
Anonymous20240521193.10 23791.99 24996.40 21099.10 10989.65 31698.88 28197.93 21883.71 35794.00 22398.75 18668.79 35399.88 10295.08 18591.71 25399.68 113
UniMVSNet (Re)93.07 23892.13 24595.88 22194.84 31396.24 14399.88 10198.98 3892.49 20489.25 28595.40 31587.09 21797.14 29593.13 23278.16 35594.26 288
LPG-MVS_test92.96 23992.71 23393.71 29895.43 30588.67 32799.75 15397.62 24692.81 18390.05 26298.49 20875.24 32498.40 22495.84 17689.12 26594.07 308
UniMVSNet_NR-MVSNet92.95 24092.11 24695.49 22994.61 31895.28 18199.83 13099.08 3391.49 23289.21 28896.86 26787.14 21696.73 32193.20 22877.52 36094.46 273
WB-MVSnew92.90 24192.77 23293.26 31196.95 25493.63 22799.71 16798.16 19791.49 23294.28 21998.14 22681.33 26796.48 33079.47 35995.46 21689.68 383
ACMM91.95 1092.88 24292.52 24193.98 29095.75 29489.08 32399.77 14597.52 26193.00 17589.95 26697.99 23376.17 31798.46 21893.63 22488.87 26994.39 280
Qingshan Xu and Wenbing Tao: Multi-Scale Geometric Consistency Guided Multi-View Stereo. CVPR 2019
test_djsdf92.83 24392.29 24494.47 27091.90 36392.46 25699.55 19997.27 28991.17 24489.96 26596.07 29381.10 26996.89 31394.67 19988.91 26794.05 310
D2MVS92.76 24492.59 23993.27 31095.13 30889.54 31899.69 17299.38 2292.26 21187.59 31494.61 34685.05 23997.79 26891.59 25088.01 28392.47 360
ACMP92.05 992.74 24592.42 24393.73 29695.91 28688.72 32699.81 13597.53 25994.13 13487.00 32398.23 22474.07 33498.47 21596.22 17088.86 27093.99 316
Qingshan Xu and Wenbing Tao: Planar Prior Assisted PatchMatch Multi-View Stereo. AAAI 2020
VPA-MVSNet92.70 24691.55 25896.16 21695.09 30996.20 14498.88 28199.00 3691.02 25191.82 24795.29 32576.05 31997.96 26195.62 18081.19 33294.30 286
FMVSNet392.69 24791.58 25695.99 21998.29 17397.42 10099.26 24297.62 24689.80 27789.68 27395.32 32181.62 26496.27 33987.01 31485.65 29994.29 287
IterMVS-LS92.69 24792.11 24694.43 27496.80 26492.74 24799.45 21796.89 32988.98 28889.65 27695.38 31888.77 20096.34 33690.98 26082.04 32694.22 291
Fangjinhua Wang, Silvano Galliani, Christoph Vogel, Marc Pollefeys: IterMVS: Iterative Probability Estimation for Efficient Multi-View Stereo.
Patchmatch-test92.65 24991.50 25996.10 21896.85 26190.49 30091.50 39397.19 29482.76 36590.23 26195.59 30595.02 5498.00 25877.41 36996.98 18699.82 92
c3_l92.53 25091.87 25294.52 26697.40 23392.99 24399.40 22096.93 32687.86 31088.69 29895.44 31389.95 18396.44 33290.45 27180.69 34194.14 304
AllTest92.48 25191.64 25495.00 24699.01 11488.43 33198.94 27596.82 33586.50 32888.71 29698.47 21274.73 33099.88 10285.39 32596.18 19896.71 256
DU-MVS92.46 25291.45 26195.49 22994.05 32695.28 18199.81 13598.74 6492.25 21289.21 28896.64 27581.66 26296.73 32193.20 22877.52 36094.46 273
eth_miper_zixun_eth92.41 25391.93 25093.84 29597.28 24390.68 29598.83 28896.97 32088.57 30189.19 29095.73 30089.24 19596.69 32389.97 28081.55 32994.15 301
DIV-MVS_self_test92.32 25491.60 25594.47 27097.31 24092.74 24799.58 19196.75 33986.99 32387.64 31395.54 30789.55 18896.50 32988.58 29182.44 32394.17 295
cl____92.31 25591.58 25694.52 26697.33 23992.77 24599.57 19596.78 33886.97 32487.56 31595.51 31089.43 18996.62 32588.60 29082.44 32394.16 300
LCM-MVSNet-Re92.31 25592.60 23591.43 33497.53 22679.27 38499.02 26891.83 39992.07 21580.31 36594.38 35283.50 25195.48 35697.22 15197.58 17099.54 148
WR-MVS92.31 25591.25 26395.48 23294.45 32095.29 18099.60 18898.68 7090.10 27088.07 30996.89 26580.68 27596.80 31993.14 23179.67 34894.36 281
COLMAP_ROBcopyleft90.47 1492.18 25891.49 26094.25 27999.00 11688.04 33798.42 31896.70 34282.30 36788.43 30499.01 15476.97 30699.85 10886.11 32196.50 19394.86 267
Johannes L. Schönberger, Enliang Zheng, Marc Pollefeys, Jan-Michael Frahm: Pixelwise View Selection for Unstructured Multi-View Stereo. ECCV 2016
Anonymous2024052992.10 25990.65 27196.47 20698.82 13690.61 29798.72 29798.67 7375.54 38793.90 22598.58 20266.23 36599.90 9194.70 19890.67 25698.90 213
pmmvs492.10 25991.07 26795.18 24192.82 35194.96 19199.48 21196.83 33387.45 31588.66 29996.56 27983.78 24996.83 31789.29 28484.77 30893.75 332
jajsoiax91.92 26191.18 26494.15 28091.35 37090.95 29099.00 26997.42 27192.61 19587.38 31997.08 25772.46 33997.36 28194.53 20288.77 27194.13 305
XXY-MVS91.82 26290.46 27495.88 22193.91 32995.40 17798.87 28497.69 24088.63 30087.87 31197.08 25774.38 33397.89 26591.66 24984.07 31494.35 284
miper_lstm_enhance91.81 26391.39 26293.06 31797.34 23789.18 32299.38 22596.79 33786.70 32787.47 31795.22 32790.00 18295.86 35388.26 29581.37 33194.15 301
mvs_tets91.81 26391.08 26694.00 28891.63 36790.58 29898.67 30397.43 26992.43 20587.37 32097.05 26071.76 34197.32 28594.75 19688.68 27394.11 306
VPNet91.81 26390.46 27495.85 22394.74 31595.54 17198.98 27098.59 8692.14 21390.77 25897.44 24668.73 35597.54 27794.89 19277.89 35794.46 273
RPSCF91.80 26692.79 23188.83 35598.15 18669.87 39398.11 33396.60 34683.93 35594.33 21899.27 13479.60 28699.46 16391.99 24493.16 24997.18 253
PVSNet_088.03 1991.80 26690.27 28096.38 21298.27 17690.46 30199.94 6999.61 1393.99 14486.26 33597.39 24971.13 34799.89 9698.77 8667.05 39098.79 218
anonymousdsp91.79 26890.92 26894.41 27590.76 37592.93 24498.93 27697.17 29789.08 28387.46 31895.30 32278.43 30096.92 31292.38 23988.73 27293.39 343
JIA-IIPM91.76 26990.70 27094.94 24896.11 27987.51 34093.16 38798.13 20275.79 38697.58 15177.68 40092.84 12497.97 25988.47 29496.54 19199.33 180
TranMVSNet+NR-MVSNet91.68 27090.61 27394.87 25093.69 33393.98 21899.69 17298.65 7491.03 25088.44 30296.83 27180.05 28396.18 34290.26 27676.89 36894.45 278
NR-MVSNet91.56 27190.22 28195.60 22794.05 32695.76 15998.25 32598.70 6791.16 24680.78 36496.64 27583.23 25496.57 32791.41 25177.73 35994.46 273
dongtai91.55 27291.13 26592.82 32198.16 18586.35 34799.47 21298.51 10883.24 36085.07 34497.56 24390.33 17894.94 36576.09 37591.73 25297.18 253
v2v48291.30 27390.07 28795.01 24593.13 34193.79 22199.77 14597.02 31388.05 30889.25 28595.37 31980.73 27497.15 29487.28 30880.04 34794.09 307
WR-MVS_H91.30 27390.35 27794.15 28094.17 32592.62 25499.17 24998.94 4188.87 29486.48 33194.46 35184.36 24596.61 32688.19 29678.51 35393.21 348
tt080591.28 27590.18 28394.60 26196.26 27687.55 33998.39 31998.72 6589.00 28789.22 28798.47 21262.98 37698.96 18690.57 26888.00 28497.28 252
V4291.28 27590.12 28694.74 25593.42 33893.46 23299.68 17497.02 31387.36 31689.85 27195.05 33081.31 26897.34 28387.34 30780.07 34693.40 342
CP-MVSNet91.23 27790.22 28194.26 27893.96 32892.39 25899.09 25398.57 8988.95 29186.42 33296.57 27879.19 29096.37 33490.29 27578.95 35094.02 311
XVG-ACMP-BASELINE91.22 27890.75 26992.63 32493.73 33285.61 35198.52 31197.44 26892.77 18689.90 26896.85 26866.64 36498.39 22692.29 24088.61 27493.89 324
v114491.09 27989.83 28894.87 25093.25 34093.69 22699.62 18596.98 31886.83 32689.64 27794.99 33580.94 27197.05 30285.08 32881.16 33393.87 326
FMVSNet291.02 28089.56 29495.41 23497.53 22695.74 16098.98 27097.41 27387.05 32088.43 30495.00 33471.34 34496.24 34185.12 32785.21 30494.25 290
MVP-Stereo90.93 28190.45 27692.37 32691.25 37288.76 32498.05 33696.17 35787.27 31884.04 34795.30 32278.46 29997.27 29183.78 33699.70 8891.09 371
Qingsong Yan: MVP-Stereo: A Parallel Multi-View Patchmatch Stereo Method with Dilation Matching for Photogrammetric Application.
IterMVS90.91 28290.17 28493.12 31496.78 26790.42 30398.89 27997.05 31289.03 28586.49 33095.42 31476.59 31195.02 36287.22 30984.09 31393.93 321
Fangjinhua Wang, Silvano Galliani, Christoph Vogel, Marc Pollefeys: IterMVS: Iterative Probability Estimation for Efficient Multi-View Stereo.
GBi-Net90.88 28389.82 28994.08 28397.53 22691.97 26498.43 31596.95 32187.05 32089.68 27394.72 34071.34 34496.11 34487.01 31485.65 29994.17 295
test190.88 28389.82 28994.08 28397.53 22691.97 26498.43 31596.95 32187.05 32089.68 27394.72 34071.34 34496.11 34487.01 31485.65 29994.17 295
IterMVS-SCA-FT90.85 28590.16 28592.93 31996.72 26989.96 31198.89 27996.99 31688.95 29186.63 32795.67 30176.48 31395.00 36387.04 31284.04 31693.84 328
v14419290.79 28689.52 29694.59 26293.11 34492.77 24599.56 19796.99 31686.38 33089.82 27294.95 33780.50 27997.10 29983.98 33480.41 34293.90 323
v14890.70 28789.63 29293.92 29192.97 34790.97 28799.75 15396.89 32987.51 31388.27 30795.01 33281.67 26197.04 30587.40 30677.17 36593.75 332
MS-PatchMatch90.65 28890.30 27991.71 33394.22 32485.50 35398.24 32697.70 23888.67 29886.42 33296.37 28367.82 35998.03 25783.62 33799.62 9491.60 368
ACMH89.72 1790.64 28989.63 29293.66 30295.64 30288.64 32998.55 30797.45 26789.03 28581.62 35997.61 24269.75 35198.41 22289.37 28387.62 28993.92 322
Qingshan Xu and Wenbing Tao: Multi-Scale Geometric Consistency Guided Multi-View Stereo. CVPR 2019
PS-CasMVS90.63 29089.51 29793.99 28993.83 33091.70 27798.98 27098.52 10588.48 30286.15 33696.53 28075.46 32296.31 33888.83 28878.86 35293.95 319
v119290.62 29189.25 30194.72 25793.13 34193.07 23999.50 20797.02 31386.33 33189.56 27995.01 33279.22 28997.09 30182.34 34681.16 33394.01 313
v890.54 29289.17 30294.66 25893.43 33793.40 23599.20 24696.94 32585.76 33787.56 31594.51 34781.96 26097.19 29284.94 32978.25 35493.38 344
v192192090.46 29389.12 30394.50 26892.96 34892.46 25699.49 20996.98 31886.10 33389.61 27895.30 32278.55 29897.03 30782.17 34780.89 34094.01 313
our_test_390.39 29489.48 29993.12 31492.40 35689.57 31799.33 23196.35 35487.84 31185.30 34194.99 33584.14 24796.09 34780.38 35584.56 30993.71 337
PatchT90.38 29588.75 31195.25 24095.99 28390.16 30791.22 39597.54 25776.80 38297.26 16086.01 39491.88 14996.07 34866.16 39395.91 20799.51 156
ACMH+89.98 1690.35 29689.54 29592.78 32395.99 28386.12 34998.81 29097.18 29689.38 28083.14 35297.76 24168.42 35798.43 22089.11 28686.05 29793.78 331
Baseline_NR-MVSNet90.33 29789.51 29792.81 32292.84 34989.95 31299.77 14593.94 39084.69 35189.04 29295.66 30281.66 26296.52 32890.99 25976.98 36691.97 366
MIMVSNet90.30 29888.67 31295.17 24296.45 27391.64 27992.39 38997.15 30085.99 33490.50 25993.19 36466.95 36294.86 36782.01 34893.43 24599.01 208
LTVRE_ROB88.28 1890.29 29989.05 30694.02 28695.08 31090.15 30897.19 35097.43 26984.91 34983.99 34897.06 25974.00 33598.28 24184.08 33287.71 28793.62 338
Andreas Kuhn, Heiko Hirschmüller, Daniel Scharstein, Helmut Mayer: A TV Prior for High-Quality Scalable Multi-View Stereo Reconstruction. International Journal of Computer Vision 2016
v1090.25 30088.82 30994.57 26493.53 33593.43 23399.08 25596.87 33185.00 34687.34 32194.51 34780.93 27297.02 30982.85 34279.23 34993.26 346
v124090.20 30188.79 31094.44 27293.05 34692.27 26099.38 22596.92 32785.89 33589.36 28294.87 33977.89 30197.03 30780.66 35481.08 33694.01 313
PEN-MVS90.19 30289.06 30593.57 30393.06 34590.90 29199.06 26098.47 11788.11 30785.91 33896.30 28476.67 30995.94 35287.07 31176.91 36793.89 324
pmmvs590.17 30389.09 30493.40 30692.10 36189.77 31599.74 15695.58 36985.88 33687.24 32295.74 29873.41 33796.48 33088.54 29283.56 31793.95 319
EU-MVSNet90.14 30490.34 27889.54 35092.55 35481.06 37898.69 30198.04 20991.41 24086.59 32896.84 27080.83 27393.31 38186.20 31981.91 32794.26 288
UniMVSNet_ETH3D90.06 30588.58 31394.49 26994.67 31788.09 33697.81 34297.57 25483.91 35688.44 30297.41 24757.44 38697.62 27591.41 25188.59 27697.77 244
Syy-MVS90.00 30690.63 27288.11 36297.68 21874.66 38999.71 16798.35 16790.79 25692.10 24498.67 19179.10 29293.09 38263.35 39695.95 20596.59 258
USDC90.00 30688.96 30793.10 31694.81 31488.16 33598.71 29895.54 37093.66 15783.75 35097.20 25365.58 36798.31 23783.96 33587.49 29192.85 354
Anonymous2023121189.86 30888.44 31594.13 28298.93 12390.68 29598.54 30998.26 18476.28 38386.73 32595.54 30770.60 34997.56 27690.82 26480.27 34594.15 301
OurMVSNet-221017-089.81 30989.48 29990.83 33991.64 36681.21 37698.17 33195.38 37391.48 23485.65 34097.31 25072.66 33897.29 28988.15 29784.83 30793.97 318
RPMNet89.76 31087.28 32597.19 18796.29 27492.66 25192.01 39198.31 17670.19 39696.94 16785.87 39587.25 21599.78 12562.69 39795.96 20399.13 199
Patchmtry89.70 31188.49 31493.33 30896.24 27789.94 31491.37 39496.23 35578.22 38087.69 31293.31 36291.04 16296.03 34980.18 35882.10 32594.02 311
v7n89.65 31288.29 31793.72 29792.22 35890.56 29999.07 25997.10 30585.42 34486.73 32594.72 34080.06 28297.13 29681.14 35278.12 35693.49 340
ppachtmachnet_test89.58 31388.35 31693.25 31292.40 35690.44 30299.33 23196.73 34085.49 34285.90 33995.77 29781.09 27096.00 35176.00 37682.49 32293.30 345
test_fmvs289.47 31489.70 29188.77 35894.54 31975.74 38699.83 13094.70 38394.71 10891.08 25396.82 27254.46 38997.78 27092.87 23588.27 28092.80 355
DTE-MVSNet89.40 31588.24 31892.88 32092.66 35389.95 31299.10 25298.22 18787.29 31785.12 34396.22 28676.27 31695.30 36183.56 33875.74 37193.41 341
pm-mvs189.36 31687.81 32294.01 28793.40 33991.93 26798.62 30696.48 35186.25 33283.86 34996.14 28973.68 33697.04 30586.16 32075.73 37293.04 351
tfpnnormal89.29 31787.61 32394.34 27794.35 32294.13 21498.95 27498.94 4183.94 35484.47 34695.51 31074.84 32997.39 28077.05 37280.41 34291.48 370
LF4IMVS89.25 31888.85 30890.45 34392.81 35281.19 37798.12 33294.79 38091.44 23686.29 33497.11 25565.30 37098.11 25288.53 29385.25 30392.07 363
testgi89.01 31988.04 32091.90 33193.49 33684.89 35799.73 16195.66 36793.89 15285.14 34298.17 22559.68 38394.66 36977.73 36888.88 26896.16 264
SixPastTwentyTwo88.73 32088.01 32190.88 33791.85 36482.24 36998.22 32995.18 37888.97 28982.26 35596.89 26571.75 34296.67 32484.00 33382.98 31893.72 336
FMVSNet188.50 32186.64 32794.08 28395.62 30491.97 26498.43 31596.95 32183.00 36286.08 33794.72 34059.09 38496.11 34481.82 35084.07 31494.17 295
FMVSNet588.32 32287.47 32490.88 33796.90 25988.39 33397.28 34895.68 36682.60 36684.67 34592.40 37079.83 28491.16 39176.39 37481.51 33093.09 349
DSMNet-mixed88.28 32388.24 31888.42 36089.64 38275.38 38898.06 33589.86 40385.59 34188.20 30892.14 37276.15 31891.95 38978.46 36596.05 20197.92 240
K. test v388.05 32487.24 32690.47 34291.82 36582.23 37098.96 27397.42 27189.05 28476.93 38095.60 30468.49 35695.42 35785.87 32481.01 33893.75 332
KD-MVS_2432*160088.00 32586.10 32993.70 30096.91 25694.04 21597.17 35197.12 30384.93 34781.96 35692.41 36892.48 13594.51 37079.23 36052.68 40292.56 357
miper_refine_blended88.00 32586.10 32993.70 30096.91 25694.04 21597.17 35197.12 30384.93 34781.96 35692.41 36892.48 13594.51 37079.23 36052.68 40292.56 357
TinyColmap87.87 32786.51 32891.94 33095.05 31185.57 35297.65 34394.08 38784.40 35381.82 35896.85 26862.14 37898.33 23580.25 35786.37 29691.91 367
TransMVSNet (Re)87.25 32885.28 33593.16 31393.56 33491.03 28698.54 30994.05 38983.69 35881.09 36296.16 28875.32 32396.40 33376.69 37368.41 38692.06 364
Patchmatch-RL test86.90 32985.98 33389.67 34984.45 39275.59 38789.71 39892.43 39686.89 32577.83 37790.94 37694.22 8393.63 37887.75 30269.61 38199.79 97
test_vis1_rt86.87 33086.05 33289.34 35196.12 27878.07 38599.87 10483.54 41092.03 21878.21 37589.51 38145.80 39699.91 8996.25 16993.11 25090.03 380
Anonymous2023120686.32 33185.42 33489.02 35489.11 38480.53 38299.05 26495.28 37485.43 34382.82 35393.92 35574.40 33293.44 38066.99 39081.83 32893.08 350
MVS-HIRNet86.22 33283.19 34595.31 23896.71 27090.29 30492.12 39097.33 28162.85 39786.82 32470.37 40269.37 35297.49 27875.12 37797.99 16498.15 235
pmmvs685.69 33383.84 34091.26 33690.00 38184.41 35997.82 34196.15 35875.86 38581.29 36195.39 31761.21 38196.87 31583.52 33973.29 37592.50 359
test_040285.58 33483.94 33990.50 34193.81 33185.04 35598.55 30795.20 37776.01 38479.72 36995.13 32864.15 37396.26 34066.04 39486.88 29390.21 379
UnsupCasMVSNet_eth85.52 33583.99 33790.10 34689.36 38383.51 36396.65 36197.99 21189.14 28275.89 38493.83 35663.25 37593.92 37481.92 34967.90 38992.88 353
MDA-MVSNet_test_wron85.51 33683.32 34492.10 32890.96 37388.58 33099.20 24696.52 34979.70 37757.12 40292.69 36679.11 29193.86 37677.10 37177.46 36293.86 327
YYNet185.50 33783.33 34392.00 32990.89 37488.38 33499.22 24596.55 34879.60 37857.26 40192.72 36579.09 29393.78 37777.25 37077.37 36393.84 328
EG-PatchMatch MVS85.35 33883.81 34189.99 34890.39 37781.89 37298.21 33096.09 35981.78 36974.73 38693.72 35851.56 39497.12 29879.16 36388.61 27490.96 373
Anonymous2024052185.15 33983.81 34189.16 35388.32 38582.69 36598.80 29295.74 36479.72 37681.53 36090.99 37565.38 36994.16 37272.69 38081.11 33590.63 376
TDRefinement84.76 34082.56 34891.38 33574.58 40684.80 35897.36 34794.56 38484.73 35080.21 36696.12 29263.56 37498.39 22687.92 30063.97 39590.95 374
CMPMVSbinary61.59 2184.75 34185.14 33683.57 37090.32 37862.54 39896.98 35697.59 25374.33 39169.95 39296.66 27364.17 37298.32 23687.88 30188.41 27989.84 382
M. Jancosek, T. Pajdla: Multi-View Reconstruction Preserving Weakly-Supported Surfaces. CVPR 2011
test20.0384.72 34283.99 33786.91 36488.19 38780.62 38198.88 28195.94 36188.36 30478.87 37094.62 34568.75 35489.11 39566.52 39275.82 37091.00 372
CL-MVSNet_self_test84.50 34383.15 34688.53 35986.00 39081.79 37398.82 28997.35 27785.12 34583.62 35190.91 37776.66 31091.40 39069.53 38660.36 39992.40 361
new_pmnet84.49 34482.92 34789.21 35290.03 38082.60 36696.89 35995.62 36880.59 37375.77 38589.17 38265.04 37194.79 36872.12 38281.02 33790.23 378
MDA-MVSNet-bldmvs84.09 34581.52 35291.81 33291.32 37188.00 33898.67 30395.92 36280.22 37555.60 40393.32 36168.29 35893.60 37973.76 37876.61 36993.82 330
pmmvs-eth3d84.03 34681.97 35090.20 34584.15 39387.09 34398.10 33494.73 38283.05 36174.10 38887.77 38965.56 36894.01 37381.08 35369.24 38389.49 386
dmvs_testset83.79 34786.07 33176.94 37792.14 35948.60 41296.75 36090.27 40289.48 27978.65 37298.55 20679.25 28886.65 40066.85 39182.69 32095.57 266
OpenMVS_ROBcopyleft79.82 2083.77 34881.68 35190.03 34788.30 38682.82 36498.46 31295.22 37673.92 39276.00 38391.29 37455.00 38896.94 31168.40 38888.51 27890.34 377
KD-MVS_self_test83.59 34982.06 34988.20 36186.93 38880.70 38097.21 34996.38 35282.87 36382.49 35488.97 38367.63 36092.32 38773.75 37962.30 39891.58 369
MIMVSNet182.58 35080.51 35688.78 35686.68 38984.20 36096.65 36195.41 37278.75 37978.59 37392.44 36751.88 39389.76 39465.26 39578.95 35092.38 362
mvsany_test382.12 35181.14 35385.06 36881.87 39770.41 39297.09 35392.14 39791.27 24377.84 37688.73 38439.31 39995.49 35590.75 26671.24 37889.29 388
new-patchmatchnet81.19 35279.34 35986.76 36582.86 39680.36 38397.92 33895.27 37582.09 36872.02 38986.87 39162.81 37790.74 39371.10 38363.08 39689.19 389
APD_test181.15 35380.92 35481.86 37392.45 35559.76 40296.04 37393.61 39373.29 39377.06 37896.64 27544.28 39896.16 34372.35 38182.52 32189.67 384
test_method80.79 35479.70 35884.08 36992.83 35067.06 39599.51 20595.42 37154.34 40181.07 36393.53 35944.48 39792.22 38878.90 36477.23 36492.94 352
PM-MVS80.47 35578.88 36085.26 36783.79 39572.22 39095.89 37691.08 40085.71 34076.56 38288.30 38536.64 40093.90 37582.39 34569.57 38289.66 385
pmmvs380.27 35677.77 36187.76 36380.32 40182.43 36898.23 32891.97 39872.74 39478.75 37187.97 38857.30 38790.99 39270.31 38462.37 39789.87 381
N_pmnet80.06 35780.78 35577.89 37691.94 36245.28 41498.80 29256.82 41678.10 38180.08 36793.33 36077.03 30495.76 35468.14 38982.81 31992.64 356
test_fmvs379.99 35880.17 35779.45 37584.02 39462.83 39699.05 26493.49 39488.29 30680.06 36886.65 39228.09 40488.00 39688.63 28973.27 37687.54 392
UnsupCasMVSNet_bld79.97 35977.03 36488.78 35685.62 39181.98 37193.66 38597.35 27775.51 38870.79 39183.05 39748.70 39594.91 36678.31 36660.29 40089.46 387
test_f78.40 36077.59 36280.81 37480.82 39962.48 39996.96 35793.08 39583.44 35974.57 38784.57 39627.95 40592.63 38584.15 33172.79 37787.32 393
WB-MVS76.28 36177.28 36373.29 38181.18 39854.68 40697.87 34094.19 38681.30 37069.43 39390.70 37877.02 30582.06 40435.71 40968.11 38883.13 395
SSC-MVS75.42 36276.40 36572.49 38580.68 40053.62 40797.42 34594.06 38880.42 37468.75 39490.14 38076.54 31281.66 40533.25 41066.34 39282.19 396
EGC-MVSNET69.38 36363.76 37386.26 36690.32 37881.66 37596.24 36993.85 3910.99 4133.22 41492.33 37152.44 39192.92 38459.53 40084.90 30684.21 394
test_vis3_rt68.82 36466.69 36975.21 38076.24 40560.41 40196.44 36468.71 41575.13 38950.54 40669.52 40416.42 41496.32 33780.27 35666.92 39168.89 402
FPMVS68.72 36568.72 36668.71 38765.95 41044.27 41695.97 37594.74 38151.13 40253.26 40490.50 37925.11 40783.00 40360.80 39880.97 33978.87 400
testf168.38 36666.92 36772.78 38378.80 40250.36 40990.95 39687.35 40855.47 39958.95 39888.14 38620.64 40987.60 39757.28 40164.69 39380.39 398
APD_test268.38 36666.92 36772.78 38378.80 40250.36 40990.95 39687.35 40855.47 39958.95 39888.14 38620.64 40987.60 39757.28 40164.69 39380.39 398
LCM-MVSNet67.77 36864.73 37176.87 37862.95 41256.25 40589.37 39993.74 39244.53 40461.99 39680.74 39820.42 41186.53 40169.37 38759.50 40187.84 390
PMMVS267.15 36964.15 37276.14 37970.56 40962.07 40093.89 38387.52 40758.09 39860.02 39778.32 39922.38 40884.54 40259.56 39947.03 40481.80 397
Gipumacopyleft66.95 37065.00 37072.79 38291.52 36867.96 39466.16 40595.15 37947.89 40358.54 40067.99 40529.74 40287.54 39950.20 40477.83 35862.87 405
S. Galliani, K. Lasinger, K. Schindler: Massively Parallel Multiview Stereopsis by Surface Normal Diffusion. ICCV 2015
tmp_tt65.23 37162.94 37472.13 38644.90 41550.03 41181.05 40289.42 40638.45 40548.51 40799.90 1854.09 39078.70 40791.84 24818.26 40987.64 391
ANet_high56.10 37252.24 37567.66 38849.27 41456.82 40483.94 40182.02 41170.47 39533.28 41164.54 40617.23 41369.16 40945.59 40623.85 40877.02 401
PMVScopyleft49.05 2353.75 37351.34 37760.97 39040.80 41634.68 41774.82 40489.62 40537.55 40628.67 41272.12 4017.09 41681.63 40643.17 40768.21 38766.59 404
Y. Furukawa, J. Ponce: Accurate, dense, and robust multiview stereopsis. PAMI (2010)
E-PMN52.30 37452.18 37652.67 39171.51 40745.40 41393.62 38676.60 41336.01 40743.50 40864.13 40727.11 40667.31 41031.06 41126.06 40645.30 409
MVEpermissive53.74 2251.54 37547.86 37962.60 38959.56 41350.93 40879.41 40377.69 41235.69 40836.27 41061.76 4095.79 41869.63 40837.97 40836.61 40567.24 403
Simon Fuhrmann, Fabian Langguth, Michael Goesele: MVE - A Multi-View Reconstruction Environment. EUROGRAPHICS Workshops on Graphics and Cultural Heritage (2014)
EMVS51.44 37651.22 37852.11 39270.71 40844.97 41594.04 38275.66 41435.34 40942.40 40961.56 41028.93 40365.87 41127.64 41224.73 40745.49 408
testmvs40.60 37744.45 38029.05 39419.49 41814.11 42099.68 17418.47 41720.74 41064.59 39598.48 21110.95 41517.09 41456.66 40311.01 41055.94 407
test12337.68 37839.14 38133.31 39319.94 41724.83 41998.36 3209.75 41815.53 41151.31 40587.14 39019.62 41217.74 41347.10 4053.47 41257.36 406
cdsmvs_eth3d_5k23.43 37931.24 3820.00 3960.00 4190.00 4210.00 40798.09 2030.00 4140.00 41599.67 9483.37 2520.00 4150.00 4140.00 4130.00 411
wuyk23d20.37 38020.84 38318.99 39565.34 41127.73 41850.43 4067.67 4199.50 4128.01 4136.34 4136.13 41726.24 41223.40 41310.69 4112.99 410
ab-mvs-re8.28 38111.04 3840.00 3960.00 4190.00 4210.00 4070.00 4200.00 4140.00 41599.40 1230.00 4190.00 4150.00 4140.00 4130.00 411
pcd_1.5k_mvsjas7.60 38210.13 3850.00 3960.00 4190.00 4210.00 4070.00 4200.00 4140.00 4150.00 41591.20 1570.00 4150.00 4140.00 4130.00 411
test_blank0.00 3830.00 3860.00 3960.00 4190.00 4210.00 4070.00 4200.00 4140.00 4150.02 4140.00 4190.00 4150.00 4140.00 4130.00 411
uanet_test0.00 3830.00 3860.00 3960.00 4190.00 4210.00 4070.00 4200.00 4140.00 4150.00 4150.00 4190.00 4150.00 4140.00 4130.00 411
DCPMVS0.00 3830.00 3860.00 3960.00 4190.00 4210.00 4070.00 4200.00 4140.00 4150.00 4150.00 4190.00 4150.00 4140.00 4130.00 411
sosnet-low-res0.00 3830.00 3860.00 3960.00 4190.00 4210.00 4070.00 4200.00 4140.00 4150.00 4150.00 4190.00 4150.00 4140.00 4130.00 411
sosnet0.00 3830.00 3860.00 3960.00 4190.00 4210.00 4070.00 4200.00 4140.00 4150.00 4150.00 4190.00 4150.00 4140.00 4130.00 411
uncertanet0.00 3830.00 3860.00 3960.00 4190.00 4210.00 4070.00 4200.00 4140.00 4150.00 4150.00 4190.00 4150.00 4140.00 4130.00 411
Regformer0.00 3830.00 3860.00 3960.00 4190.00 4210.00 4070.00 4200.00 4140.00 4150.00 4150.00 4190.00 4150.00 4140.00 4130.00 411
uanet0.00 3830.00 3860.00 3960.00 4190.00 4210.00 4070.00 4200.00 4140.00 4150.00 4150.00 4190.00 4150.00 4140.00 4130.00 411
WAC-MVS90.97 28786.10 322
FOURS199.92 3197.66 8899.95 5398.36 16595.58 8599.52 60
MSC_two_6792asdad99.93 299.91 3999.80 298.41 150100.00 199.96 9100.00 1100.00 1
PC_three_145296.96 4499.80 1799.79 5597.49 8100.00 199.99 599.98 32100.00 1
No_MVS99.93 299.91 3999.80 298.41 150100.00 199.96 9100.00 1100.00 1
test_one_060199.94 1399.30 1298.41 15096.63 5699.75 2999.93 1197.49 8
eth-test20.00 419
eth-test0.00 419
ZD-MVS99.92 3198.57 5698.52 10592.34 20999.31 7899.83 4395.06 5299.80 12199.70 3499.97 42
RE-MVS-def98.13 5199.79 6296.37 13699.76 15098.31 17694.43 11999.40 7299.75 6992.95 12198.90 7899.92 6499.97 58
IU-MVS99.93 2499.31 1098.41 15097.71 1999.84 12100.00 1100.00 1100.00 1
OPU-MVS99.93 299.89 4599.80 299.96 3599.80 5197.44 12100.00 1100.00 199.98 32100.00 1
test_241102_TWO98.43 13397.27 3499.80 1799.94 497.18 19100.00 1100.00 1100.00 1100.00 1
test_241102_ONE99.93 2499.30 1298.43 13397.26 3699.80 1799.88 2196.71 22100.00 1
9.1498.38 3499.87 5199.91 8498.33 17293.22 16999.78 2699.89 1994.57 6899.85 10899.84 2299.97 42
save fliter99.82 5898.79 4099.96 3598.40 15497.66 21
test_0728_THIRD96.48 5999.83 1399.91 1497.87 4100.00 199.92 13100.00 1100.00 1
test_0728_SECOND99.82 799.94 1399.47 799.95 5398.43 133100.00 199.99 5100.00 1100.00 1
test072699.93 2499.29 1599.96 3598.42 14597.28 3299.86 799.94 497.22 17
GSMVS99.59 133
test_part299.89 4599.25 1899.49 63
sam_mvs194.72 6499.59 133
sam_mvs94.25 82
ambc83.23 37177.17 40462.61 39787.38 40094.55 38576.72 38186.65 39230.16 40196.36 33584.85 33069.86 38090.73 375
MTGPAbinary98.28 181
test_post195.78 37759.23 41193.20 11597.74 27191.06 257
test_post63.35 40894.43 6998.13 251
patchmatchnet-post91.70 37395.12 4997.95 262
GG-mvs-BLEND98.54 10998.21 18098.01 7393.87 38498.52 10597.92 14197.92 23599.02 297.94 26498.17 11499.58 10199.67 115
MTMP99.87 10496.49 350
gm-plane-assit96.97 25393.76 22391.47 23598.96 16398.79 19494.92 189
test9_res99.71 3399.99 21100.00 1
TEST999.92 3198.92 2999.96 3598.43 13393.90 15099.71 3599.86 2695.88 3699.85 108
test_899.92 3198.88 3299.96 3598.43 13394.35 12499.69 3799.85 3095.94 3399.85 108
agg_prior299.48 43100.00 1100.00 1
agg_prior99.93 2498.77 4298.43 13399.63 4499.85 108
TestCases95.00 24699.01 11488.43 33196.82 33586.50 32888.71 29698.47 21274.73 33099.88 10285.39 32596.18 19896.71 256
test_prior498.05 7199.94 69
test_prior299.95 5395.78 7999.73 3399.76 6396.00 3299.78 27100.00 1
test_prior99.43 3599.94 1398.49 6098.65 7499.80 12199.99 23
旧先验299.46 21694.21 13399.85 999.95 7096.96 160
新几何299.40 220
新几何199.42 3799.75 6998.27 6498.63 8092.69 19099.55 5599.82 4694.40 71100.00 191.21 25399.94 5599.99 23
旧先验199.76 6697.52 9398.64 7699.85 3095.63 4099.94 5599.99 23
无先验99.49 20998.71 6693.46 161100.00 194.36 20499.99 23
原ACMM299.90 90
原ACMM198.96 7999.73 7396.99 11498.51 10894.06 14099.62 4799.85 3094.97 5899.96 6295.11 18499.95 5099.92 81
test22299.55 8797.41 10199.34 23098.55 9891.86 22299.27 8299.83 4393.84 9799.95 5099.99 23
testdata299.99 3690.54 270
segment_acmp96.68 24
testdata98.42 11999.47 9395.33 17998.56 9293.78 15399.79 2599.85 3093.64 10299.94 7894.97 18799.94 55100.00 1
testdata199.28 24096.35 69
test1299.43 3599.74 7098.56 5798.40 15499.65 4194.76 6299.75 13299.98 3299.99 23
plane_prior795.71 29891.59 281
plane_prior695.76 29291.72 27680.47 280
plane_prior597.87 22598.37 23297.79 13789.55 26194.52 270
plane_prior498.59 199
plane_prior391.64 27996.63 5693.01 232
plane_prior299.84 12396.38 65
plane_prior195.73 295
plane_prior91.74 27399.86 11596.76 5289.59 260
n20.00 420
nn0.00 420
door-mid89.69 404
lessismore_v090.53 34090.58 37680.90 37995.80 36377.01 37995.84 29566.15 36696.95 31083.03 34175.05 37393.74 335
LGP-MVS_train93.71 29895.43 30588.67 32797.62 24692.81 18390.05 26298.49 20875.24 32498.40 22495.84 17689.12 26594.07 308
test1198.44 125
door90.31 401
HQP5-MVS91.85 269
HQP-NCC95.78 28899.87 10496.82 4893.37 228
ACMP_Plane95.78 28899.87 10496.82 4893.37 228
BP-MVS97.92 129
HQP4-MVS93.37 22898.39 22694.53 268
HQP3-MVS97.89 22389.60 258
HQP2-MVS80.65 276
NP-MVS95.77 29191.79 27198.65 194
MDTV_nov1_ep13_2view96.26 13996.11 37191.89 22198.06 13794.40 7194.30 20699.67 115
MDTV_nov1_ep1395.69 15797.90 19994.15 21395.98 37498.44 12593.12 17397.98 13995.74 29895.10 5098.58 21090.02 27896.92 187
ACMMP++_ref87.04 292
ACMMP++88.23 281
Test By Simon92.82 126
ITE_SJBPF92.38 32595.69 30085.14 35495.71 36592.81 18389.33 28498.11 22770.23 35098.42 22185.91 32388.16 28293.59 339
DeepMVS_CXcopyleft82.92 37295.98 28558.66 40396.01 36092.72 18778.34 37495.51 31058.29 38598.08 25382.57 34385.29 30292.03 365