This table lists the benchmark results for the high-res multi-view scenario. The following metrics are evaluated:

(*) For exact definitions, detailing how potentially incomplete ground truth is taken into account, see our paper.

The datasets are grouped into different categories, and result averages are computed for a category and method if results of the method are available for all datasets within the category. Note that the category "all" includes both the high-res multi-view and the low-res many-view scenarios.

Methods with suffix _ROB may participate in the Robust Vision Challenge.

Click a dataset result cell to show a visualization of the reconstruction. For training datasets, ground truth and accuracy / completeness visualizations are also available. The visualizations may not work with mobile browsers.




Method Infoallhigh-res
multi-view
indooroutdoorbotani.boulde.bridgedoorexhibi.lectur.living.loungeobserv.old co.statueterrac.
sort bysort bysort bysort bysort bysort bysort bysorted bysort bysort bysort bysort bysort bysort bysort bysort by
thres100view90078.37 20377.01 20582.46 20391.89 11163.21 22191.19 20596.33 172.28 19970.45 23087.89 21960.31 14095.32 18145.16 35677.58 21688.83 241
thres600view778.00 20876.66 21082.03 22391.93 10863.69 20691.30 19896.33 172.43 19470.46 22987.89 21960.31 14094.92 19542.64 36876.64 22687.48 261
thres20079.66 17678.33 18183.66 17692.54 9065.82 15093.06 11496.31 374.90 14673.30 19188.66 20259.67 14995.61 16947.84 34578.67 20789.56 236
tfpn200view978.79 19577.43 19682.88 19392.21 9664.49 17692.05 16096.28 473.48 17171.75 21588.26 21060.07 14595.32 18145.16 35677.58 21688.83 241
thres40078.68 19777.43 19682.43 20492.21 9664.49 17692.05 16096.28 473.48 17171.75 21588.26 21060.07 14595.32 18145.16 35677.58 21687.48 261
MM90.87 291.52 288.92 1592.12 10071.10 2797.02 396.04 688.70 291.57 1496.19 3470.12 4598.91 1896.83 195.06 1796.76 15
VNet86.20 5085.65 6187.84 3093.92 4769.99 3895.73 2395.94 778.43 9586.00 5493.07 12358.22 16897.00 9985.22 8084.33 15496.52 23
baseline283.68 10683.42 9784.48 14787.37 22566.00 14490.06 24395.93 879.71 6969.08 24690.39 17977.92 696.28 13678.91 14281.38 18491.16 214
testing22285.18 7184.69 7886.63 6792.91 7769.91 4292.61 13795.80 980.31 5780.38 11492.27 14368.73 4995.19 18675.94 15983.27 16494.81 96
BP-MVS186.54 4586.68 4386.13 8587.80 21567.18 11492.97 11995.62 1079.92 6482.84 8694.14 10274.95 1596.46 13082.91 10688.96 10694.74 97
testing1186.71 4386.44 4587.55 4093.54 5971.35 2193.65 9195.58 1181.36 4580.69 10992.21 14672.30 3496.46 13085.18 8283.43 16294.82 95
MCST-MVS91.08 191.46 389.94 497.66 273.37 1097.13 295.58 1189.33 185.77 5696.26 3272.84 2999.38 192.64 2295.93 997.08 11
UBG86.83 3986.70 4287.20 4893.07 7369.81 4693.43 10595.56 1381.52 3881.50 9792.12 14773.58 2696.28 13684.37 9285.20 14495.51 58
MVS84.66 8182.86 11290.06 290.93 13674.56 787.91 28495.54 1468.55 27272.35 20894.71 8059.78 14898.90 2081.29 12194.69 3296.74 16
ETVMVS84.22 9283.71 8685.76 9892.58 8968.25 8592.45 14595.53 1579.54 7279.46 12591.64 15970.29 4494.18 22569.16 22082.76 17094.84 92
DPM-MVS90.70 390.52 991.24 189.68 16076.68 297.29 195.35 1682.87 2491.58 1397.22 379.93 599.10 983.12 10497.64 297.94 1
CSCG86.87 3686.26 4788.72 1795.05 3170.79 2993.83 8495.33 1768.48 27477.63 14794.35 9373.04 2798.45 3084.92 8693.71 4796.92 14
WTY-MVS86.32 4885.81 5787.85 2992.82 8169.37 5795.20 3495.25 1882.71 2581.91 9494.73 7967.93 5697.63 5879.55 13482.25 17396.54 22
testing9986.01 5485.47 6387.63 3893.62 5571.25 2393.47 10395.23 1980.42 5680.60 11191.95 15171.73 3996.50 12880.02 13182.22 17495.13 79
patch_mono-289.71 1190.99 685.85 9496.04 2463.70 20595.04 4095.19 2086.74 791.53 1595.15 6873.86 2297.58 6193.38 1692.00 6996.28 37
IU-MVS96.46 1169.91 4295.18 2180.75 5195.28 192.34 2495.36 1496.47 28
IB-MVS77.80 482.18 13080.46 15187.35 4589.14 17770.28 3595.59 2695.17 2278.85 8870.19 23485.82 24970.66 4297.67 5372.19 19466.52 29594.09 130
Christian Sormann, Mattia Rossi, Andreas Kuhn and Friedrich Fraundorfer: IB-MVS: An Iterative Algorithm for Deep Multi-View Stereo based on Binary Decisions. BMVC 2021
PHI-MVS86.83 3986.85 4186.78 6393.47 6265.55 15695.39 3095.10 2371.77 21785.69 5896.52 2462.07 12498.77 2386.06 7695.60 1296.03 43
test_yl84.28 8883.16 10487.64 3494.52 3769.24 5995.78 1895.09 2469.19 26481.09 10392.88 12957.00 18197.44 6881.11 12381.76 18096.23 38
DCV-MVSNet84.28 8883.16 10487.64 3494.52 3769.24 5995.78 1895.09 2469.19 26481.09 10392.88 12957.00 18197.44 6881.11 12381.76 18096.23 38
testing9185.93 5685.31 6787.78 3293.59 5771.47 1993.50 10095.08 2680.26 5880.53 11291.93 15270.43 4396.51 12780.32 12982.13 17695.37 63
MSC_two_6792asdad89.60 997.31 473.22 1295.05 2799.07 1392.01 2794.77 2696.51 24
No_MVS89.60 997.31 473.22 1295.05 2799.07 1392.01 2794.77 2696.51 24
sss82.71 12382.38 12083.73 17089.25 17259.58 29992.24 15094.89 2977.96 10079.86 12092.38 14056.70 18797.05 9477.26 15380.86 18894.55 107
EPNet87.84 2488.38 2086.23 8293.30 6466.05 14295.26 3294.84 3087.09 588.06 3594.53 8466.79 6397.34 7583.89 9791.68 7495.29 70
Wanjuan Su, Wenbing Tao: Efficient Edge-Preserving Multi-View Stereo Network for Depth Estimation. AAAI 2023
CNVR-MVS90.32 690.89 888.61 2296.76 870.65 3096.47 1494.83 3184.83 1189.07 3196.80 1970.86 4199.06 1592.64 2295.71 1196.12 40
EI-MVSNet-Vis-set83.77 10283.67 8784.06 15992.79 8463.56 21191.76 17794.81 3279.65 7077.87 14494.09 10363.35 10997.90 4279.35 13679.36 20090.74 218
tttt051779.50 17978.53 18082.41 20787.22 22861.43 26289.75 25294.76 3369.29 26267.91 26488.06 21772.92 2895.63 16762.91 27973.90 24590.16 225
GG-mvs-BLEND86.53 7391.91 11069.67 5275.02 37894.75 3478.67 13990.85 17177.91 794.56 21072.25 19193.74 4595.36 65
gg-mvs-nofinetune77.18 22174.31 24285.80 9691.42 12468.36 7971.78 38394.72 3549.61 38377.12 15445.92 40977.41 893.98 23867.62 23593.16 5595.05 83
UWE-MVS80.81 15681.01 13980.20 26289.33 16957.05 32891.91 16894.71 3675.67 13475.01 17589.37 19663.13 11391.44 31567.19 24082.80 16992.12 195
thisisatest051583.41 10982.49 11886.16 8489.46 16668.26 8393.54 9794.70 3774.31 15275.75 16490.92 16972.62 3196.52 12669.64 21281.50 18393.71 145
EI-MVSNet-UG-set83.14 11582.96 10783.67 17592.28 9363.19 22291.38 19294.68 3879.22 7976.60 15993.75 10962.64 11897.76 4878.07 14978.01 21190.05 227
VPA-MVSNet79.03 18778.00 18782.11 22185.95 25364.48 17893.22 11194.66 3975.05 14474.04 18684.95 25752.17 24093.52 25174.90 17167.04 29188.32 253
NCCC89.07 1689.46 1587.91 2896.60 1069.05 6396.38 1594.64 4084.42 1286.74 4796.20 3366.56 6698.76 2489.03 4994.56 3495.92 46
ET-MVSNet_ETH3D84.01 9683.15 10686.58 7090.78 14170.89 2894.74 4794.62 4181.44 4258.19 34193.64 11373.64 2592.35 29082.66 10878.66 20896.50 27
thisisatest053081.15 14780.07 15384.39 15088.26 19965.63 15391.40 18894.62 4171.27 23470.93 22489.18 19872.47 3296.04 15065.62 25876.89 22591.49 203
DVP-MVScopyleft89.41 1389.73 1488.45 2596.40 1569.99 3896.64 1094.52 4371.92 20790.55 2096.93 1173.77 2399.08 1191.91 3094.90 2296.29 35
Zhenlong Yuan, Jinguo Luo, Fei Shen, Zhaoxin Li, Cong Liu, Tianlu Mao, Zhaoqi Wang: DVP-MVS: Synergize Depth-Edge and Visibility Prior for Multi-View Stereo. AAAI2025
HY-MVS76.49 584.28 8883.36 10087.02 5592.22 9567.74 9884.65 31294.50 4479.15 8182.23 9287.93 21866.88 6296.94 10980.53 12682.20 17596.39 33
HPM-MVS++copyleft89.37 1489.95 1387.64 3495.10 3068.23 8695.24 3394.49 4582.43 2888.90 3296.35 2971.89 3898.63 2688.76 5096.40 696.06 41
MG-MVS87.11 3486.27 4689.62 897.79 176.27 494.96 4394.49 4578.74 9283.87 7792.94 12664.34 9196.94 10975.19 16594.09 3895.66 52
SED-MVS89.94 990.36 1088.70 1896.45 1269.38 5596.89 694.44 4771.65 22192.11 797.21 476.79 999.11 692.34 2495.36 1497.62 2
test_241102_ONE96.45 1269.38 5594.44 4771.65 22192.11 797.05 776.79 999.11 6
test_241102_TWO94.41 4971.65 22192.07 997.21 474.58 1899.11 692.34 2495.36 1496.59 19
DeepPCF-MVS81.17 189.72 1091.38 484.72 13593.00 7558.16 31596.72 994.41 4986.50 890.25 2297.83 175.46 1498.67 2592.78 2195.49 1397.32 6
DELS-MVS90.05 890.09 1189.94 493.14 7073.88 997.01 494.40 5188.32 385.71 5794.91 7574.11 2198.91 1887.26 6495.94 897.03 12
Christian Sormann, Emanuele Santellani, Mattia Rossi, Andreas Kuhn, Friedrich Fraundorfer: DELS-MVS: Deep Epipolar Line Search for Multi-View Stereo. Winter Conference on Applications of Computer Vision (WACV), 2023
3Dnovator73.91 682.69 12480.82 14188.31 2689.57 16271.26 2292.60 13894.39 5278.84 8967.89 26692.48 13848.42 27698.52 2868.80 22594.40 3695.15 78
DVP-MVS++90.53 491.09 588.87 1697.31 469.91 4293.96 7294.37 5372.48 19192.07 996.85 1683.82 299.15 291.53 3297.42 497.55 4
test_0728_SECOND88.70 1896.45 1270.43 3396.64 1094.37 5399.15 291.91 3094.90 2296.51 24
test072696.40 1569.99 3896.76 894.33 5571.92 20791.89 1197.11 673.77 23
MSP-MVS90.38 591.87 185.88 9192.83 7964.03 19593.06 11494.33 5582.19 3193.65 396.15 3685.89 197.19 8691.02 3697.75 196.43 31
Zhenlong Yuan, Cong Liu, Fei Shen, Zhaoxin Li, Jingguo luo, Tianlu Mao and Zhaoqi Wang: MSP-MVS: Multi-granularity Segmentation Prior Guided Multi-View Stereo. AAAI2025
MAR-MVS84.18 9383.43 9586.44 7596.25 2165.93 14794.28 5794.27 5774.41 14979.16 13095.61 4753.99 22198.88 2269.62 21493.26 5494.50 113
Zhenyu Xu, Yiguang Liu, Xuelei Shi, Ying Wang, Yunan Zheng: MARMVS: Matching Ambiguity Reduced Multiple View Stereo for Efficient Large Scale Scene Reconstruction. CVPR 2020
test_one_060196.32 1869.74 4994.18 5871.42 23290.67 1996.85 1674.45 20
9.1487.63 2893.86 4894.41 5294.18 5872.76 18686.21 5096.51 2566.64 6497.88 4490.08 4194.04 39
DPE-MVScopyleft88.77 1789.21 1687.45 4396.26 2067.56 10394.17 5994.15 6068.77 27090.74 1897.27 276.09 1298.49 2990.58 4094.91 2196.30 34
Kehua Chen, Zhenlong Yuan, Tianlu Mao, Zhaoqi Wang: Dual-Level Precision Edges Guided Multi-View Stereo with Accurate Planarization. AAAI2025
WB-MVSnew77.14 22276.18 21780.01 26886.18 24963.24 21991.26 19994.11 6171.72 21973.52 18987.29 23045.14 30493.00 26056.98 30879.42 19883.80 322
DeepC-MVS_fast79.48 287.95 2288.00 2587.79 3195.86 2768.32 8095.74 2194.11 6183.82 1683.49 7996.19 3464.53 9098.44 3183.42 10394.88 2596.61 18
Andreas Kuhn, Christian Sormann, Mattia Rossi, Oliver Erdler, Friedrich Fraundorfer: DeepC-MVS: Deep Confidence Prediction for Multi-View Stereo Reconstruction. 3DV 2020
SMA-MVScopyleft88.14 1888.29 2287.67 3393.21 6768.72 7293.85 7994.03 6374.18 15491.74 1296.67 2265.61 7698.42 3389.24 4696.08 795.88 47
Yufeng Yin; Xiaoyan Liu; Zichao Zhang: SMA-MVS: Segmentation-Guided Multi-Scale Anchor Deformation Patch Multi-View Stereo. IEEE Transactions on Circuits and Systems for Video Technology
FIs79.47 18179.41 16779.67 27885.95 25359.40 30191.68 18193.94 6478.06 9968.96 25088.28 20866.61 6591.77 30366.20 25274.99 23487.82 257
SteuartSystems-ACMMP86.82 4186.90 3986.58 7090.42 14566.38 13596.09 1793.87 6577.73 10684.01 7695.66 4563.39 10797.94 4087.40 6293.55 5095.42 59
Skip Steuart: Steuart Systems R&D Blog.
TSAR-MVS + GP.87.96 2188.37 2186.70 6593.51 6165.32 16095.15 3693.84 6678.17 9885.93 5594.80 7875.80 1398.21 3489.38 4388.78 10796.59 19
CANet89.61 1289.99 1288.46 2494.39 3969.71 5096.53 1393.78 6786.89 689.68 2895.78 4265.94 7299.10 992.99 1993.91 4296.58 21
APDe-MVScopyleft87.54 2787.84 2686.65 6696.07 2366.30 13894.84 4593.78 6769.35 26188.39 3496.34 3067.74 5797.66 5690.62 3993.44 5196.01 44
Zhaojie Zeng, Yuesong Wang, Tao Guan: Matching Ambiguity-Resilient Multi-View Stereo via Adaptive Patch Deformation. Pattern Recognition
TESTMET0.1,182.41 12781.98 12583.72 17288.08 20463.74 20192.70 13193.77 6979.30 7777.61 14887.57 22558.19 16994.08 22973.91 17686.68 13493.33 156
h-mvs3383.01 11782.56 11784.35 15289.34 16762.02 24892.72 12993.76 7081.45 4082.73 8992.25 14560.11 14397.13 9287.69 5762.96 32393.91 139
SF-MVS87.03 3587.09 3586.84 5992.70 8567.45 10893.64 9293.76 7070.78 24586.25 4996.44 2766.98 6197.79 4788.68 5194.56 3495.28 72
MVS_111021_HR86.19 5185.80 5887.37 4493.17 6969.79 4793.99 7193.76 7079.08 8478.88 13593.99 10662.25 12398.15 3685.93 7791.15 8494.15 127
FC-MVSNet-test77.99 20978.08 18677.70 30184.89 27455.51 33990.27 23793.75 7376.87 11866.80 28387.59 22465.71 7590.23 32762.89 28073.94 24387.37 264
MVS_030490.32 690.90 788.55 2394.05 4570.23 3697.00 593.73 7487.30 492.15 696.15 3666.38 6798.94 1796.71 294.67 3396.47 28
QAPM79.95 17377.39 20087.64 3489.63 16171.41 2093.30 10893.70 7565.34 29867.39 27591.75 15647.83 28398.96 1657.71 30689.81 9692.54 179
DeepC-MVS77.85 385.52 6785.24 6886.37 7888.80 18566.64 12992.15 15393.68 7681.07 4876.91 15793.64 11362.59 11998.44 3185.50 7892.84 5994.03 134
Andreas Kuhn, Christian Sormann, Mattia Rossi, Oliver Erdler, Friedrich Fraundorfer: DeepC-MVS: Deep Confidence Prediction for Multi-View Stereo Reconstruction. 3DV 2020
EPP-MVSNet81.79 13881.52 12982.61 20188.77 18660.21 29093.02 11893.66 7768.52 27372.90 19590.39 17972.19 3694.96 19274.93 16979.29 20292.67 175
PVSNet_BlendedMVS83.38 11083.43 9583.22 18893.76 5067.53 10594.06 6593.61 7879.13 8281.00 10685.14 25563.19 11197.29 7887.08 6773.91 24484.83 314
PVSNet_Blended86.73 4286.86 4086.31 8193.76 5067.53 10596.33 1693.61 7882.34 3081.00 10693.08 12263.19 11197.29 7887.08 6791.38 8094.13 128
alignmvs87.28 3286.97 3788.24 2791.30 12971.14 2695.61 2593.56 8079.30 7787.07 4495.25 6368.43 5096.93 11187.87 5584.33 15496.65 17
TSAR-MVS + MP.88.11 2088.64 1886.54 7291.73 11568.04 9090.36 23493.55 8182.89 2391.29 1692.89 12872.27 3596.03 15187.99 5494.77 2695.54 57
Zhenlong Yuan, Jiakai Cao, Zhaoqi Wang, Zhaoxin Li: TSAR-MVS: Textureless-aware Segmentation and Correlative Refinement Guided Multi-View Stereo. Pattern Recognition
TEST994.18 4167.28 11094.16 6093.51 8271.75 21885.52 5995.33 5668.01 5497.27 82
train_agg87.21 3387.42 3286.60 6894.18 4167.28 11094.16 6093.51 8271.87 21285.52 5995.33 5668.19 5297.27 8289.09 4794.90 2295.25 76
ZD-MVS96.63 965.50 15893.50 8470.74 24685.26 6495.19 6764.92 8497.29 7887.51 5993.01 56
ACMMP_NAP86.05 5385.80 5886.80 6291.58 11967.53 10591.79 17493.49 8574.93 14584.61 6895.30 5859.42 15297.92 4186.13 7494.92 2094.94 88
cdsmvs_eth3d_5k19.86 39126.47 3900.00 4100.00 4330.00 4350.00 42193.45 860.00 4280.00 42995.27 6149.56 2650.00 4290.00 4280.00 4260.00 425
3Dnovator+73.60 782.10 13480.60 14886.60 6890.89 13866.80 12695.20 3493.44 8774.05 15667.42 27392.49 13749.46 26697.65 5770.80 20491.68 7495.33 66
balanced_conf0389.08 1588.84 1789.81 693.66 5475.15 590.61 22893.43 8884.06 1486.20 5190.17 18572.42 3396.98 10393.09 1895.92 1097.29 7
test_894.19 4067.19 11294.15 6293.42 8971.87 21285.38 6295.35 5568.19 5296.95 108
ZNCC-MVS85.33 6985.08 7186.06 8693.09 7265.65 15293.89 7793.41 9073.75 16579.94 11994.68 8160.61 13998.03 3882.63 10993.72 4694.52 111
原ACMM184.42 14893.21 6764.27 19093.40 9165.39 29679.51 12492.50 13558.11 17096.69 11965.27 26393.96 4092.32 185
agg_prior94.16 4366.97 12193.31 9284.49 7096.75 118
reproduce_monomvs79.49 18079.11 17480.64 25292.91 7761.47 26191.17 20693.28 9383.09 2164.04 30382.38 28566.19 6894.57 20781.19 12257.71 35885.88 297
PS-MVSNAJ88.14 1887.61 2989.71 792.06 10176.72 195.75 2093.26 9483.86 1589.55 2996.06 3853.55 22697.89 4391.10 3493.31 5394.54 109
EI-MVSNet78.97 18978.22 18481.25 23685.33 26362.73 23589.53 25693.21 9572.39 19672.14 20990.13 18860.99 13394.72 20067.73 23472.49 25486.29 283
MVSTER82.47 12682.05 12283.74 16892.68 8669.01 6491.90 16993.21 9579.83 6572.14 20985.71 25174.72 1794.72 20075.72 16172.49 25487.50 260
UniMVSNet_NR-MVSNet78.15 20777.55 19479.98 26984.46 28160.26 28892.25 14993.20 9777.50 11268.88 25186.61 23966.10 7092.13 29566.38 24962.55 32787.54 259
HFP-MVS84.73 8084.40 8185.72 10093.75 5265.01 16993.50 10093.19 9872.19 20179.22 12994.93 7359.04 15997.67 5381.55 11592.21 6494.49 114
UniMVSNet (Re)77.58 21676.78 20879.98 26984.11 28760.80 27191.76 17793.17 9976.56 12769.93 24084.78 25963.32 11092.36 28964.89 26562.51 32986.78 275
ACMMPR84.37 8584.06 8385.28 11493.56 5864.37 18593.50 10093.15 10072.19 20178.85 13794.86 7656.69 18897.45 6781.55 11592.20 6594.02 135
GST-MVS84.63 8284.29 8285.66 10292.82 8165.27 16193.04 11693.13 10173.20 17478.89 13294.18 10159.41 15397.85 4581.45 11792.48 6393.86 142
xiu_mvs_v2_base87.92 2387.38 3389.55 1291.41 12776.43 395.74 2193.12 10283.53 1889.55 2995.95 4053.45 23097.68 5191.07 3592.62 6094.54 109
test_prior86.42 7694.71 3567.35 10993.10 10396.84 11595.05 83
WBMVS81.67 13980.98 14083.72 17293.07 7369.40 5394.33 5593.05 10476.84 12072.05 21184.14 26674.49 1993.88 24372.76 18568.09 28387.88 256
SDMVSNet80.26 16578.88 17684.40 14989.25 17267.63 10285.35 30893.02 10576.77 12370.84 22587.12 23247.95 28296.09 14585.04 8374.55 23589.48 237
test1193.01 106
CostFormer82.33 12881.15 13385.86 9389.01 18068.46 7782.39 33493.01 10675.59 13580.25 11681.57 29872.03 3794.96 19279.06 14077.48 21994.16 126
PAPR85.15 7284.47 7987.18 4996.02 2568.29 8191.85 17293.00 10876.59 12679.03 13195.00 7061.59 12997.61 6078.16 14889.00 10595.63 53
region2R84.36 8684.03 8485.36 11193.54 5964.31 18893.43 10592.95 10972.16 20478.86 13694.84 7756.97 18397.53 6581.38 11992.11 6794.24 121
test1287.09 5294.60 3668.86 6792.91 11082.67 9165.44 7797.55 6493.69 4894.84 92
lupinMVS87.74 2587.77 2787.63 3889.24 17571.18 2496.57 1292.90 11182.70 2687.13 4295.27 6164.99 8195.80 15689.34 4491.80 7295.93 45
PAPM_NR82.97 11881.84 12686.37 7894.10 4466.76 12787.66 29092.84 11269.96 25474.07 18593.57 11563.10 11497.50 6670.66 20790.58 9094.85 89
CDPH-MVS85.71 6185.46 6486.46 7494.75 3467.19 11293.89 7792.83 11370.90 24183.09 8495.28 5963.62 10297.36 7380.63 12594.18 3794.84 92
tfpnnormal70.10 29867.36 30778.32 29583.45 29660.97 26988.85 26992.77 11464.85 30060.83 32678.53 33543.52 31193.48 25231.73 40061.70 33980.52 362
PAPM85.89 5885.46 6487.18 4988.20 20372.42 1592.41 14692.77 11482.11 3280.34 11593.07 12368.27 5195.02 18978.39 14793.59 4994.09 130
MS-PatchMatch77.90 21376.50 21182.12 21885.99 25269.95 4191.75 17992.70 11673.97 15962.58 31984.44 26441.11 31995.78 15763.76 27292.17 6680.62 361
MSLP-MVS++86.27 4985.91 5687.35 4592.01 10568.97 6695.04 4092.70 11679.04 8781.50 9796.50 2658.98 16196.78 11783.49 10293.93 4196.29 35
MVSMamba_PlusPlus84.97 7783.65 8888.93 1490.17 15174.04 887.84 28692.69 11862.18 32681.47 9987.64 22371.47 4096.28 13684.69 8894.74 3196.47 28
ab-mvs80.18 16778.31 18285.80 9688.44 19265.49 15983.00 33192.67 11971.82 21577.36 15185.01 25654.50 21296.59 12176.35 15875.63 23295.32 68
save fliter93.84 4967.89 9595.05 3992.66 12078.19 97
XVS83.87 9983.47 9385.05 12193.22 6563.78 19992.92 12192.66 12073.99 15778.18 14194.31 9655.25 20397.41 7079.16 13891.58 7693.95 137
X-MVStestdata76.86 22774.13 24685.05 12193.22 6563.78 19992.92 12192.66 12073.99 15778.18 14110.19 42455.25 20397.41 7079.16 13891.58 7693.95 137
SD-MVS87.49 2887.49 3187.50 4293.60 5668.82 6993.90 7692.63 12376.86 11987.90 3795.76 4366.17 6997.63 5889.06 4891.48 7896.05 42
Zhenlong Yuan, Jiakai Cao, Zhaoxin Li, Hao Jiang and Zhaoqi Wang: SD-MVS: Segmentation-driven Deformation Multi-View Stereo with Spherical Refinement and EM optimization. AAAI2024
无先验92.71 13092.61 12462.03 32997.01 9866.63 24493.97 136
APD-MVScopyleft85.93 5685.99 5485.76 9895.98 2665.21 16393.59 9592.58 12566.54 28886.17 5295.88 4163.83 9797.00 9986.39 7392.94 5795.06 82
Yuesong Wang, Zhaojie Zeng and etc.: Adaptive Patch Deformation for Textureless-Resilient Multi-View Stereo. CVPR2023
131480.70 15778.95 17585.94 9087.77 21767.56 10387.91 28492.55 12672.17 20367.44 27293.09 12150.27 25897.04 9771.68 19987.64 12093.23 158
MP-MVS-pluss85.24 7085.13 7085.56 10491.42 12465.59 15491.54 18492.51 12774.56 14880.62 11095.64 4659.15 15697.00 9986.94 6993.80 4394.07 132
MP-MVS-pluss: MP-MVS-pluss. MP-MVS-pluss
WR-MVS76.76 23175.74 22379.82 27584.60 27762.27 24592.60 13892.51 12776.06 13067.87 26785.34 25356.76 18590.24 32662.20 28463.69 32286.94 273
OpenMVScopyleft70.45 1178.54 20175.92 22086.41 7785.93 25671.68 1892.74 12892.51 12766.49 28964.56 29791.96 15043.88 30998.10 3754.61 31690.65 8989.44 239
GDP-MVS85.54 6685.32 6686.18 8387.64 21867.95 9492.91 12392.36 13077.81 10483.69 7894.31 9672.84 2996.41 13280.39 12885.95 13994.19 123
CHOSEN 1792x268884.98 7683.45 9489.57 1189.94 15575.14 692.07 15992.32 13181.87 3475.68 16688.27 20960.18 14298.60 2780.46 12790.27 9494.96 86
CP-MVS83.71 10483.40 9884.65 13993.14 7063.84 19794.59 4992.28 13271.03 23977.41 15094.92 7455.21 20696.19 14081.32 12090.70 8893.91 139
MP-MVScopyleft85.02 7484.97 7385.17 11992.60 8864.27 19093.24 10992.27 13373.13 17679.63 12394.43 8761.90 12597.17 8785.00 8492.56 6194.06 133
Rongxuan Tan, Qing Wang, et al.: MP-MVS: Multi-Scale Windows PatchMatch and Planar Prior Multi-View Stereo.
MTGPAbinary92.23 134
MTAPA83.91 9883.38 9985.50 10591.89 11165.16 16581.75 33792.23 13475.32 14080.53 11295.21 6656.06 19797.16 9084.86 8792.55 6294.18 124
VPNet78.82 19377.53 19582.70 19884.52 27966.44 13493.93 7492.23 13480.46 5472.60 20088.38 20749.18 27093.13 25772.47 19063.97 32088.55 248
ACMMPcopyleft81.49 14380.67 14583.93 16591.71 11662.90 23192.13 15492.22 13771.79 21671.68 21793.49 11750.32 25696.96 10778.47 14684.22 15891.93 198
Qingshan Xu, Weihang Kong, Wenbing Tao, Marc Pollefeys: Multi-Scale Geometric Consistency Guided and Planar Prior Assisted Multi-View Stereo. IEEE Transactions on Pattern Analysis and Machine Intelligence
RRT-MVS82.61 12581.16 13286.96 5791.10 13368.75 7087.70 28992.20 13876.97 11772.68 19787.10 23451.30 25096.41 13283.56 10187.84 11795.74 50
PGM-MVS83.25 11282.70 11584.92 12492.81 8364.07 19490.44 22992.20 13871.28 23377.23 15394.43 8755.17 20797.31 7779.33 13791.38 8093.37 153
jason86.40 4686.17 5087.11 5186.16 25070.54 3295.71 2492.19 14082.00 3384.58 6994.34 9461.86 12695.53 17687.76 5690.89 8695.27 73
jason: jason.
tt080573.07 27370.73 28580.07 26578.37 35557.05 32887.78 28792.18 14161.23 33667.04 27886.49 24131.35 36994.58 20565.06 26467.12 29088.57 247
CLD-MVS82.73 12182.35 12183.86 16687.90 21067.65 10195.45 2892.18 14185.06 1072.58 20192.27 14352.46 23895.78 15784.18 9379.06 20388.16 254
Zhaoxin Li, Wangmeng Zuo, Zhaoqi Wang, Lei Zhang: Confidence-based Large-scale Dense Multi-view Stereo. IEEE Transaction on Image Processing, 2020
reproduce_model83.15 11482.96 10783.73 17092.02 10259.74 29690.37 23392.08 14363.70 31082.86 8595.48 5258.62 16397.17 8783.06 10588.42 11194.26 119
MVS_Test84.16 9483.20 10387.05 5491.56 12069.82 4589.99 24892.05 14477.77 10582.84 8686.57 24063.93 9696.09 14574.91 17089.18 10295.25 76
reproduce-ours83.51 10783.33 10184.06 15992.18 9860.49 28390.74 22092.04 14564.35 30383.24 8095.59 4959.05 15797.27 8283.61 9989.17 10394.41 116
our_new_method83.51 10783.33 10184.06 15992.18 9860.49 28390.74 22092.04 14564.35 30383.24 8095.59 4959.05 15797.27 8283.61 9989.17 10394.41 116
EIA-MVS84.84 7884.88 7484.69 13791.30 12962.36 24193.85 7992.04 14579.45 7379.33 12894.28 9862.42 12096.35 13480.05 13091.25 8395.38 62
WR-MVS_H70.59 29469.94 29172.53 34681.03 31851.43 35887.35 29492.03 14867.38 28160.23 33080.70 31255.84 20083.45 37746.33 35258.58 35782.72 339
FMVSNet377.73 21476.04 21882.80 19491.20 13268.99 6591.87 17091.99 14973.35 17367.04 27883.19 27756.62 18992.14 29459.80 29869.34 27187.28 267
DP-MVS Recon82.73 12181.65 12885.98 8897.31 467.06 11795.15 3691.99 14969.08 26776.50 16193.89 10854.48 21598.20 3570.76 20585.66 14292.69 174
EPNet_dtu78.80 19479.26 17177.43 30688.06 20549.71 36891.96 16791.95 15177.67 10776.56 16091.28 16658.51 16490.20 32856.37 31080.95 18792.39 182
Wanjuan Su, Wenbing Tao: Efficient Edge-Preserving Multi-View Stereo Network for Depth Estimation. AAAI 2023
FOURS193.95 4661.77 25393.96 7291.92 15262.14 32886.57 48
ETV-MVS86.01 5486.11 5185.70 10190.21 15067.02 12093.43 10591.92 15281.21 4784.13 7594.07 10560.93 13695.63 16789.28 4589.81 9694.46 115
SPE-MVS-test86.14 5287.01 3683.52 17792.63 8759.36 30495.49 2791.92 15280.09 6285.46 6195.53 5161.82 12895.77 15986.77 7193.37 5295.41 60
LFMVS84.34 8782.73 11489.18 1394.76 3373.25 1194.99 4291.89 15571.90 20982.16 9393.49 11747.98 28197.05 9482.55 11084.82 14797.25 8
casdiffmvs_mvgpermissive85.66 6385.18 6987.09 5288.22 20269.35 5893.74 8891.89 15581.47 3980.10 11791.45 16164.80 8696.35 13487.23 6587.69 11995.58 55
Fangjinhua Wang, Qingshan Xu, Yew-Soon Ong, Marc Pollefeys: Lightweight and Accurate Multi-View Stereo With Confidence-Aware Diffusion Model. IEEE T-PAMI 2025
CS-MVS85.80 5986.65 4483.27 18692.00 10658.92 30895.31 3191.86 15779.97 6384.82 6795.40 5462.26 12295.51 17786.11 7592.08 6895.37 63
HPM-MVScopyleft83.25 11282.95 10984.17 15792.25 9462.88 23290.91 21191.86 15770.30 25077.12 15493.96 10756.75 18696.28 13682.04 11291.34 8293.34 154
Chunlin Ren, Qingshan Xu, Shikun Zhang, Jiaqi Yang: Hierarchical Prior Mining for Non-local Multi-View Stereo. ICCV 2023
mPP-MVS82.96 11982.44 11984.52 14592.83 7962.92 23092.76 12791.85 15971.52 22975.61 16994.24 9953.48 22996.99 10278.97 14190.73 8793.64 148
XXY-MVS77.94 21176.44 21282.43 20482.60 30564.44 18092.01 16291.83 16073.59 17070.00 23785.82 24954.43 21694.76 19769.63 21368.02 28588.10 255
baseline85.01 7584.44 8086.71 6488.33 19768.73 7190.24 23991.82 16181.05 4981.18 10292.50 13563.69 10096.08 14884.45 9186.71 13395.32 68
casdiffmvspermissive85.37 6884.87 7586.84 5988.25 20069.07 6293.04 11691.76 16281.27 4680.84 10892.07 14964.23 9296.06 14984.98 8587.43 12395.39 61
Fangjinhua Wang, Qingshan Xu, Yew-Soon Ong, Marc Pollefeys: Lightweight and Accurate Multi-View Stereo With Confidence-Aware Diffusion Model. IEEE T-PAMI 2025
NR-MVSNet76.05 24074.59 23680.44 25582.96 30162.18 24690.83 21691.73 16377.12 11660.96 32586.35 24259.28 15591.80 30260.74 29161.34 34287.35 265
PVSNet_Blended_VisFu83.97 9783.50 9185.39 10990.02 15366.59 13293.77 8691.73 16377.43 11477.08 15689.81 19263.77 9996.97 10679.67 13388.21 11392.60 177
sasdasda86.85 3786.25 4888.66 2091.80 11371.92 1693.54 9791.71 16580.26 5887.55 3995.25 6363.59 10496.93 11188.18 5284.34 15297.11 9
FA-MVS(test-final)79.12 18677.23 20284.81 13190.54 14363.98 19681.35 34391.71 16571.09 23874.85 17782.94 27852.85 23397.05 9467.97 23081.73 18293.41 152
canonicalmvs86.85 3786.25 4888.66 2091.80 11371.92 1693.54 9791.71 16580.26 5887.55 3995.25 6363.59 10496.93 11188.18 5284.34 15297.11 9
HQP3-MVS91.70 16878.90 204
HQP-MVS81.14 14880.64 14682.64 20087.54 22063.66 20894.06 6591.70 16879.80 6674.18 18190.30 18151.63 24695.61 16977.63 15178.90 20488.63 245
baseline181.84 13781.03 13884.28 15591.60 11866.62 13091.08 20891.66 17081.87 3474.86 17691.67 15869.98 4694.92 19571.76 19764.75 31091.29 212
FMVSNet276.07 23774.01 24882.26 21288.85 18267.66 10091.33 19691.61 17170.84 24265.98 28682.25 28748.03 27892.00 29958.46 30368.73 27987.10 270
114514_t79.17 18577.67 19183.68 17495.32 2965.53 15792.85 12591.60 17263.49 31267.92 26390.63 17446.65 29095.72 16567.01 24283.54 16189.79 231
test-LLR80.10 16979.56 16381.72 22786.93 23761.17 26492.70 13191.54 17371.51 23075.62 16786.94 23653.83 22292.38 28772.21 19284.76 14991.60 201
test-mter79.96 17279.38 16981.72 22786.93 23761.17 26492.70 13191.54 17373.85 16275.62 16786.94 23649.84 26392.38 28772.21 19284.76 14991.60 201
DU-MVS76.86 22775.84 22179.91 27282.96 30160.26 28891.26 19991.54 17376.46 12868.88 25186.35 24256.16 19492.13 29566.38 24962.55 32787.35 265
旧先验191.94 10760.74 27691.50 17694.36 8965.23 7991.84 7194.55 107
VDD-MVS83.06 11681.81 12786.81 6190.86 13967.70 9995.40 2991.50 17675.46 13781.78 9592.34 14240.09 32297.13 9286.85 7082.04 17795.60 54
新几何184.73 13492.32 9264.28 18991.46 17859.56 34779.77 12192.90 12756.95 18496.57 12363.40 27392.91 5893.34 154
tpm279.80 17577.95 18985.34 11288.28 19868.26 8381.56 34091.42 17970.11 25277.59 14980.50 31667.40 5994.26 22367.34 23777.35 22093.51 150
TranMVSNet+NR-MVSNet75.86 24574.52 23979.89 27382.44 30760.64 28091.37 19391.37 18076.63 12567.65 26986.21 24552.37 23991.55 30961.84 28660.81 34587.48 261
test250683.29 11182.92 11084.37 15188.39 19563.18 22392.01 16291.35 18177.66 10878.49 14091.42 16264.58 8995.09 18873.19 17889.23 10094.85 89
MGCFI-Net85.59 6585.73 6085.17 11991.41 12762.44 23892.87 12491.31 18279.65 7086.99 4695.14 6962.90 11796.12 14387.13 6684.13 15996.96 13
VDDNet80.50 16078.26 18387.21 4786.19 24869.79 4794.48 5091.31 18260.42 34079.34 12790.91 17038.48 33096.56 12482.16 11181.05 18695.27 73
HQP_MVS80.34 16479.75 16082.12 21886.94 23562.42 23993.13 11291.31 18278.81 9072.53 20289.14 20050.66 25495.55 17476.74 15478.53 20988.39 251
plane_prior591.31 18295.55 17476.74 15478.53 20988.39 251
SR-MVS82.81 12082.58 11683.50 18093.35 6361.16 26692.23 15191.28 18664.48 30281.27 10095.28 5953.71 22595.86 15582.87 10788.77 10893.49 151
nrg03080.93 15379.86 15884.13 15883.69 29268.83 6893.23 11091.20 18775.55 13675.06 17488.22 21363.04 11594.74 19981.88 11366.88 29288.82 243
EPMVS78.49 20275.98 21986.02 8791.21 13169.68 5180.23 35291.20 18775.25 14172.48 20478.11 33954.65 21193.69 24857.66 30783.04 16594.69 99
hse-mvs281.12 15081.11 13781.16 23986.52 24257.48 32389.40 25991.16 18981.45 4082.73 8990.49 17760.11 14394.58 20587.69 5760.41 35091.41 206
AUN-MVS78.37 20377.43 19681.17 23886.60 24157.45 32489.46 25891.16 18974.11 15574.40 18090.49 17755.52 20294.57 20774.73 17360.43 34991.48 204
cascas78.18 20675.77 22285.41 10887.14 23069.11 6192.96 12091.15 19166.71 28770.47 22886.07 24637.49 34196.48 12970.15 21079.80 19690.65 219
tpm78.58 20077.03 20483.22 18885.94 25564.56 17483.21 32791.14 19278.31 9673.67 18879.68 32864.01 9492.09 29766.07 25371.26 26493.03 166
PCF-MVS73.15 979.29 18377.63 19384.29 15486.06 25165.96 14687.03 29791.10 19369.86 25669.79 24190.64 17257.54 17596.59 12164.37 26882.29 17190.32 223
Andreas Kuhn, Shan Lin, Oliver Erdler: Plane Completion and Filtering for Multi-View Stereo Reconstruction. GCPR 2019
Anonymous2024052976.84 22974.15 24584.88 12691.02 13464.95 17193.84 8291.09 19453.57 37173.00 19287.42 22735.91 35197.32 7669.14 22172.41 25692.36 183
EC-MVSNet84.53 8385.04 7283.01 19189.34 16761.37 26394.42 5191.09 19477.91 10283.24 8094.20 10058.37 16695.40 17885.35 7991.41 7992.27 190
test_fmvsm_n_192087.69 2688.50 1985.27 11587.05 23363.55 21293.69 8991.08 19684.18 1390.17 2497.04 867.58 5897.99 3995.72 590.03 9594.26 119
FE-MVS75.97 24373.02 25984.82 12889.78 15765.56 15577.44 36891.07 19764.55 30172.66 19879.85 32646.05 29896.69 11954.97 31580.82 18992.21 192
PS-MVSNAJss77.26 22076.31 21480.13 26480.64 32459.16 30690.63 22791.06 19872.80 18568.58 25784.57 26253.55 22693.96 23972.97 18071.96 25887.27 268
PVSNet73.49 880.05 17078.63 17884.31 15390.92 13764.97 17092.47 14491.05 19979.18 8072.43 20690.51 17637.05 34794.06 23168.06 22986.00 13893.90 141
API-MVS82.28 12980.53 14987.54 4196.13 2270.59 3193.63 9391.04 20065.72 29575.45 17192.83 13156.11 19698.89 2164.10 26989.75 9993.15 161
APD-MVS_3200maxsize81.64 14181.32 13182.59 20292.36 9158.74 31091.39 19091.01 20163.35 31479.72 12294.62 8351.82 24196.14 14279.71 13287.93 11692.89 172
MVP-Stereo77.12 22376.23 21579.79 27681.72 31366.34 13789.29 26090.88 20270.56 24862.01 32282.88 27949.34 26794.13 22665.55 26093.80 4378.88 375
Qingsong Yan: MVP-Stereo: A Parallel Multi-View Patchmatch Stereo Method with Dilation Matching for Photogrammetric Application.
UGNet79.87 17478.68 17783.45 18289.96 15461.51 25992.13 15490.79 20376.83 12178.85 13786.33 24438.16 33396.17 14167.93 23287.17 12592.67 175
Wanjuan Su, Qingshan Xu, Wenbing Tao: Uncertainty-guided Multi-view Stereo Network for Depth Estimation. IEEE Transactions on Circuits and Systems for Video Technology, 2022
TAMVS80.37 16379.45 16683.13 19085.14 26963.37 21691.23 20190.76 20474.81 14772.65 19988.49 20460.63 13892.95 26269.41 21681.95 17993.08 164
MVSFormer83.75 10382.88 11186.37 7889.24 17571.18 2489.07 26690.69 20565.80 29387.13 4294.34 9464.99 8192.67 27772.83 18291.80 7295.27 73
test_djsdf73.76 27072.56 26777.39 30777.00 36653.93 34789.07 26690.69 20565.80 29363.92 30482.03 29043.14 31392.67 27772.83 18268.53 28085.57 303
PMMVS81.98 13682.04 12381.78 22589.76 15956.17 33491.13 20790.69 20577.96 10080.09 11893.57 11546.33 29594.99 19181.41 11887.46 12294.17 125
dcpmvs_287.37 3187.55 3086.85 5895.04 3268.20 8790.36 23490.66 20879.37 7681.20 10193.67 11274.73 1696.55 12590.88 3792.00 6995.82 48
CDS-MVSNet81.43 14480.74 14283.52 17786.26 24764.45 17992.09 15790.65 20975.83 13373.95 18789.81 19263.97 9592.91 26771.27 20082.82 16793.20 160
Khang Truong Giang, Soohwan Song, Sungho Jo: Curvature-guided dynamic scale networks for Multi-view Stereo. ICLR 2022
mvs_anonymous81.36 14579.99 15685.46 10690.39 14768.40 7886.88 30190.61 21074.41 14970.31 23384.67 26063.79 9892.32 29273.13 17985.70 14195.67 51
testing370.38 29770.83 28269.03 36485.82 25743.93 39590.72 22290.56 21168.06 27560.24 32986.82 23864.83 8584.12 36926.33 40564.10 31779.04 374
SR-MVS-dyc-post81.06 15180.70 14482.15 21692.02 10258.56 31290.90 21290.45 21262.76 32178.89 13294.46 8551.26 25195.61 16978.77 14486.77 13192.28 187
RE-MVS-def80.48 15092.02 10258.56 31290.90 21290.45 21262.76 32178.89 13294.46 8549.30 26878.77 14486.77 13192.28 187
RPMNet70.42 29665.68 31784.63 14183.15 29967.96 9270.25 38690.45 21246.83 39269.97 23865.10 39256.48 19395.30 18435.79 38773.13 24890.64 220
xiu_mvs_v1_base_debu82.16 13181.12 13485.26 11686.42 24368.72 7292.59 14090.44 21573.12 17784.20 7294.36 8938.04 33595.73 16184.12 9486.81 12891.33 207
xiu_mvs_v1_base82.16 13181.12 13485.26 11686.42 24368.72 7292.59 14090.44 21573.12 17784.20 7294.36 8938.04 33595.73 16184.12 9486.81 12891.33 207
xiu_mvs_v1_base_debi82.16 13181.12 13485.26 11686.42 24368.72 7292.59 14090.44 21573.12 17784.20 7294.36 8938.04 33595.73 16184.12 9486.81 12891.33 207
GBi-Net75.65 24873.83 25081.10 24288.85 18265.11 16690.01 24590.32 21870.84 24267.04 27880.25 32148.03 27891.54 31059.80 29869.34 27186.64 276
test175.65 24873.83 25081.10 24288.85 18265.11 16690.01 24590.32 21870.84 24267.04 27880.25 32148.03 27891.54 31059.80 29869.34 27186.64 276
FMVSNet172.71 28169.91 29281.10 24283.60 29465.11 16690.01 24590.32 21863.92 30763.56 30880.25 32136.35 35091.54 31054.46 31766.75 29386.64 276
PVSNet_068.08 1571.81 28768.32 30382.27 21084.68 27562.31 24488.68 27290.31 22175.84 13257.93 34680.65 31537.85 33894.19 22469.94 21129.05 41290.31 224
OPM-MVS79.00 18878.09 18581.73 22683.52 29563.83 19891.64 18390.30 22276.36 12971.97 21289.93 19146.30 29695.17 18775.10 16677.70 21486.19 286
Ray L. Khuboni, Hongjun Xu: Octagram Propagation Matching for Multi-Scale View Stereopsis (OPM-MVS).
CP-MVSNet70.50 29569.91 29272.26 34980.71 32251.00 36287.23 29690.30 22267.84 27659.64 33282.69 28150.23 25982.30 38551.28 32659.28 35383.46 328
KD-MVS_2432*160069.03 30866.37 31277.01 31285.56 26161.06 26781.44 34190.25 22467.27 28258.00 34476.53 35354.49 21387.63 35248.04 34235.77 40382.34 345
miper_refine_blended69.03 30866.37 31277.01 31285.56 26161.06 26781.44 34190.25 22467.27 28258.00 34476.53 35354.49 21387.63 35248.04 34235.77 40382.34 345
v14876.19 23574.47 24081.36 23480.05 33264.44 18091.75 17990.23 22673.68 16867.13 27780.84 31155.92 19993.86 24668.95 22361.73 33885.76 301
v2v48277.42 21875.65 22482.73 19680.38 32667.13 11691.85 17290.23 22675.09 14369.37 24283.39 27553.79 22494.44 21571.77 19665.00 30786.63 279
v114476.73 23274.88 23282.27 21080.23 33066.60 13191.68 18190.21 22873.69 16769.06 24781.89 29152.73 23694.40 21669.21 21965.23 30485.80 298
GA-MVS78.33 20576.23 21584.65 13983.65 29366.30 13891.44 18590.14 22976.01 13170.32 23284.02 26842.50 31494.72 20070.98 20277.00 22492.94 169
MDTV_nov1_ep1372.61 26689.06 17868.48 7680.33 35090.11 23071.84 21471.81 21475.92 35953.01 23293.92 24148.04 34273.38 246
D2MVS73.80 26872.02 27379.15 28979.15 34362.97 22688.58 27490.07 23172.94 18059.22 33578.30 33642.31 31692.70 27665.59 25972.00 25781.79 350
TR-MVS78.77 19677.37 20182.95 19290.49 14460.88 27093.67 9090.07 23170.08 25374.51 17991.37 16545.69 29995.70 16660.12 29680.32 19292.29 186
Anonymous2023121173.08 27270.39 28881.13 24090.62 14263.33 21791.40 18890.06 23351.84 37664.46 30080.67 31436.49 34994.07 23063.83 27164.17 31685.98 293
jajsoiax73.05 27471.51 27977.67 30277.46 36354.83 34388.81 27090.04 23469.13 26662.85 31783.51 27331.16 37092.75 27370.83 20369.80 26785.43 307
fmvsm_s_conf0.5_n86.39 4786.91 3884.82 12887.36 22663.54 21394.74 4790.02 23582.52 2790.14 2596.92 1362.93 11697.84 4695.28 882.26 17293.07 165
HyFIR lowres test81.03 15279.56 16385.43 10787.81 21468.11 8990.18 24090.01 23670.65 24772.95 19486.06 24763.61 10394.50 21475.01 16879.75 19793.67 146
ACMM69.62 1374.34 26172.73 26479.17 28784.25 28657.87 31790.36 23489.93 23763.17 31865.64 28886.04 24837.79 33994.10 22765.89 25471.52 26185.55 304
Qingshan Xu and Wenbing Tao: Multi-Scale Geometric Consistency Guided Multi-View Stereo. CVPR 2019
CL-MVSNet_self_test69.92 30068.09 30475.41 32373.25 38055.90 33790.05 24489.90 23869.96 25461.96 32376.54 35251.05 25287.64 35149.51 33550.59 37882.70 341
UnsupCasMVSNet_eth65.79 33263.10 33573.88 33670.71 38850.29 36681.09 34489.88 23972.58 18949.25 38074.77 36532.57 36387.43 35555.96 31241.04 39383.90 321
testdata81.34 23589.02 17957.72 31989.84 24058.65 35185.32 6394.09 10357.03 17993.28 25569.34 21790.56 9193.03 166
test_fmvsmconf_n86.58 4487.17 3484.82 12885.28 26562.55 23794.26 5889.78 24183.81 1787.78 3896.33 3165.33 7896.98 10394.40 1187.55 12194.95 87
mvs_tets72.71 28171.11 28077.52 30377.41 36454.52 34588.45 27689.76 24268.76 27162.70 31883.26 27629.49 37592.71 27470.51 20969.62 26985.34 309
v119275.98 24273.92 24982.15 21679.73 33466.24 14091.22 20289.75 24372.67 18768.49 25881.42 30149.86 26294.27 22167.08 24165.02 30685.95 294
PS-CasMVS69.86 30269.13 29772.07 35380.35 32750.57 36487.02 29889.75 24367.27 28259.19 33682.28 28646.58 29182.24 38650.69 32859.02 35483.39 330
dp75.01 25772.09 27283.76 16789.28 17166.22 14179.96 35889.75 24371.16 23567.80 26877.19 34851.81 24292.54 28250.39 32971.44 26392.51 181
LPG-MVS_test75.82 24674.58 23779.56 28284.31 28459.37 30290.44 22989.73 24669.49 25964.86 29388.42 20538.65 32794.30 21972.56 18872.76 25185.01 312
LGP-MVS_train79.56 28284.31 28459.37 30289.73 24669.49 25964.86 29388.42 20538.65 32794.30 21972.56 18872.76 25185.01 312
tpmrst80.57 15879.14 17384.84 12790.10 15268.28 8281.70 33889.72 24877.63 11075.96 16379.54 33064.94 8392.71 27475.43 16377.28 22293.55 149
v14419276.05 24074.03 24782.12 21879.50 33866.55 13391.39 19089.71 24972.30 19868.17 26081.33 30351.75 24494.03 23667.94 23164.19 31585.77 299
TAPA-MVS70.22 1274.94 25873.53 25479.17 28790.40 14652.07 35489.19 26489.61 25062.69 32370.07 23592.67 13348.89 27594.32 21738.26 38279.97 19491.12 215
Andrea Romanoni, Matteo Matteucci: TAPA-MVS: Textureless-Aware PAtchMatch Multi-View Stereo. ICCV 2019
PatchmatchNetpermissive77.46 21774.63 23585.96 8989.55 16470.35 3479.97 35789.55 25172.23 20070.94 22376.91 35157.03 17992.79 27254.27 31881.17 18594.74 97
Fangjinhua Wang, Silvano Galliani, Christoph Vogel, Pablo Speciale, Marc Pollefeys: PatchmatchNet: Learned Multi-View Patchmatch Stereo.
v192192075.63 25073.49 25582.06 22279.38 33966.35 13691.07 21089.48 25271.98 20667.99 26181.22 30649.16 27293.90 24266.56 24564.56 31385.92 296
fmvsm_s_conf0.1_n85.61 6485.93 5584.68 13882.95 30363.48 21594.03 7089.46 25381.69 3689.86 2696.74 2061.85 12797.75 4994.74 982.01 17892.81 173
v7n71.31 29168.65 29879.28 28576.40 36860.77 27386.71 30289.45 25464.17 30658.77 34078.24 33744.59 30793.54 25057.76 30561.75 33783.52 326
test0.0.03 172.76 27972.71 26572.88 34480.25 32947.99 37791.22 20289.45 25471.51 23062.51 32087.66 22253.83 22285.06 36750.16 33167.84 28885.58 302
test22289.77 15861.60 25889.55 25489.42 25656.83 36277.28 15292.43 13952.76 23491.14 8593.09 163
V4276.46 23474.55 23882.19 21579.14 34467.82 9690.26 23889.42 25673.75 16568.63 25681.89 29151.31 24994.09 22871.69 19864.84 30884.66 315
BH-w/o80.49 16179.30 17084.05 16290.83 14064.36 18793.60 9489.42 25674.35 15169.09 24590.15 18755.23 20595.61 16964.61 26686.43 13792.17 193
fmvsm_s_conf0.5_n_a85.75 6086.09 5284.72 13585.73 25963.58 21093.79 8589.32 25981.42 4390.21 2396.91 1462.41 12197.67 5394.48 1080.56 19192.90 171
pm-mvs172.89 27771.09 28178.26 29779.10 34557.62 32190.80 21789.30 26067.66 27862.91 31681.78 29349.11 27392.95 26260.29 29558.89 35584.22 318
v875.35 25273.26 25781.61 22980.67 32366.82 12489.54 25589.27 26171.65 22163.30 31180.30 32054.99 20994.06 23167.33 23862.33 33083.94 320
diffmvspermissive84.28 8883.83 8585.61 10387.40 22468.02 9190.88 21489.24 26280.54 5281.64 9692.52 13459.83 14794.52 21387.32 6385.11 14594.29 118
Fangjinhua Wang, Qingshan Xu, Yew-Soon Ong, Marc Pollefeys: Lightweight and Accurate Multi-View Stereo With Confidence-Aware Diffusion Model. IEEE T-PAMI 2025
PEN-MVS69.46 30568.56 29972.17 35179.27 34049.71 36886.90 30089.24 26267.24 28559.08 33782.51 28447.23 28783.54 37648.42 34057.12 35983.25 331
UniMVSNet_ETH3D72.74 28070.53 28779.36 28478.62 35356.64 33285.01 31089.20 26463.77 30964.84 29584.44 26434.05 35891.86 30163.94 27070.89 26689.57 235
SCA75.82 24672.76 26285.01 12386.63 24070.08 3781.06 34589.19 26571.60 22670.01 23677.09 34945.53 30090.25 32360.43 29373.27 24794.68 100
EG-PatchMatch MVS68.55 31265.41 32077.96 30078.69 35162.93 22889.86 25089.17 26660.55 33950.27 37577.73 34322.60 39294.06 23147.18 34872.65 25376.88 385
HPM-MVS_fast80.25 16679.55 16582.33 20891.55 12159.95 29391.32 19789.16 26765.23 29974.71 17893.07 12347.81 28495.74 16074.87 17288.23 11291.31 211
miper_enhance_ethall78.86 19277.97 18881.54 23188.00 20865.17 16491.41 18689.15 26875.19 14268.79 25383.98 26967.17 6092.82 26972.73 18665.30 30186.62 280
Fast-Effi-MVS+81.14 14880.01 15584.51 14690.24 14965.86 14894.12 6489.15 26873.81 16475.37 17288.26 21057.26 17694.53 21266.97 24384.92 14693.15 161
mvsmamba81.55 14280.72 14384.03 16391.42 12466.93 12283.08 32889.13 27078.55 9467.50 27187.02 23551.79 24390.07 33187.48 6090.49 9295.10 81
Vis-MVSNet (Re-imp)79.24 18479.57 16278.24 29888.46 19152.29 35390.41 23189.12 27174.24 15369.13 24491.91 15365.77 7490.09 33059.00 30288.09 11492.33 184
v124075.21 25572.98 26081.88 22479.20 34166.00 14490.75 21989.11 27271.63 22567.41 27481.22 30647.36 28693.87 24465.46 26164.72 31185.77 299
sd_testset77.08 22475.37 22682.20 21489.25 17262.11 24782.06 33589.09 27376.77 12370.84 22587.12 23241.43 31895.01 19067.23 23974.55 23589.48 237
v1074.77 25972.54 26881.46 23280.33 32866.71 12889.15 26589.08 27470.94 24063.08 31479.86 32552.52 23794.04 23465.70 25762.17 33183.64 323
ACMP71.68 1075.58 25174.23 24479.62 28084.97 27359.64 29790.80 21789.07 27570.39 24962.95 31587.30 22938.28 33193.87 24472.89 18171.45 26285.36 308
Qingshan Xu and Wenbing Tao: Planar Prior Assisted PatchMatch Multi-View Stereo. AAAI 2020
UnsupCasMVSNet_bld61.60 35057.71 35573.29 34168.73 39451.64 35678.61 36189.05 27657.20 35946.11 38661.96 39928.70 37888.60 33950.08 33238.90 39879.63 369
Syy-MVS69.65 30369.52 29570.03 36087.87 21143.21 39688.07 28089.01 27772.91 18263.11 31288.10 21445.28 30385.54 36322.07 41069.23 27481.32 353
myMVS_eth3d72.58 28572.74 26372.10 35287.87 21149.45 37088.07 28089.01 27772.91 18263.11 31288.10 21463.63 10185.54 36332.73 39769.23 27481.32 353
CANet_DTU84.09 9583.52 8985.81 9590.30 14866.82 12491.87 17089.01 27785.27 986.09 5393.74 11047.71 28596.98 10377.90 15089.78 9893.65 147
UA-Net80.02 17179.65 16181.11 24189.33 16957.72 31986.33 30589.00 28077.44 11381.01 10589.15 19959.33 15495.90 15461.01 29084.28 15689.73 233
MVS_111021_LR82.02 13581.52 12983.51 17988.42 19362.88 23289.77 25188.93 28176.78 12275.55 17093.10 12050.31 25795.38 18083.82 9887.02 12692.26 191
miper_lstm_enhance73.05 27471.73 27777.03 31183.80 29058.32 31481.76 33688.88 28269.80 25761.01 32478.23 33857.19 17787.51 35465.34 26259.53 35285.27 311
anonymousdsp71.14 29269.37 29676.45 31772.95 38154.71 34484.19 31588.88 28261.92 33162.15 32179.77 32738.14 33491.44 31568.90 22467.45 28983.21 332
cl2277.94 21176.78 20881.42 23387.57 21964.93 17290.67 22388.86 28472.45 19367.63 27082.68 28264.07 9392.91 26771.79 19565.30 30186.44 281
test_fmvsmconf0.1_n85.71 6186.08 5384.62 14280.83 32062.33 24293.84 8288.81 28583.50 1987.00 4596.01 3963.36 10896.93 11194.04 1387.29 12494.61 105
MIMVSNet71.64 28868.44 30181.23 23781.97 31264.44 18073.05 38088.80 28669.67 25864.59 29674.79 36432.79 36187.82 34853.99 31976.35 22891.42 205
IterMVS-LS76.49 23375.18 23080.43 25684.49 28062.74 23490.64 22588.80 28672.40 19565.16 29281.72 29460.98 13492.27 29367.74 23364.65 31286.29 283
Fangjinhua Wang, Silvano Galliani, Christoph Vogel, Marc Pollefeys: IterMVS: Iterative Probability Estimation for Efficient Multi-View Stereo.
fmvsm_s_conf0.1_n_a84.76 7984.84 7684.53 14480.23 33063.50 21492.79 12688.73 28880.46 5489.84 2796.65 2360.96 13597.57 6393.80 1480.14 19392.53 180
cl____76.07 23774.67 23380.28 25985.15 26861.76 25490.12 24188.73 28871.16 23565.43 28981.57 29861.15 13192.95 26266.54 24662.17 33186.13 289
DIV-MVS_self_test76.07 23774.67 23380.28 25985.14 26961.75 25590.12 24188.73 28871.16 23565.42 29081.60 29761.15 13192.94 26666.54 24662.16 33386.14 287
JIA-IIPM66.06 33062.45 34076.88 31581.42 31754.45 34657.49 41088.67 29149.36 38463.86 30546.86 40856.06 19790.25 32349.53 33468.83 27785.95 294
OMC-MVS78.67 19977.91 19080.95 24885.76 25857.40 32588.49 27588.67 29173.85 16272.43 20692.10 14849.29 26994.55 21172.73 18677.89 21290.91 217
miper_ehance_all_eth77.60 21576.44 21281.09 24585.70 26064.41 18390.65 22488.64 29372.31 19767.37 27682.52 28364.77 8792.64 28070.67 20665.30 30186.24 285
BH-untuned78.68 19777.08 20383.48 18189.84 15663.74 20192.70 13188.59 29471.57 22766.83 28288.65 20351.75 24495.39 17959.03 30184.77 14891.32 210
DTE-MVSNet68.46 31467.33 30871.87 35577.94 36049.00 37486.16 30688.58 29566.36 29058.19 34182.21 28846.36 29283.87 37444.97 35955.17 36682.73 338
CPTT-MVS79.59 17779.16 17280.89 25091.54 12259.80 29592.10 15688.54 29660.42 34072.96 19393.28 11948.27 27792.80 27178.89 14386.50 13690.06 226
fmvsm_l_conf0.5_n87.49 2888.19 2385.39 10986.95 23464.37 18594.30 5688.45 29780.51 5392.70 496.86 1569.98 4697.15 9195.83 488.08 11594.65 103
CVMVSNet74.04 26574.27 24373.33 34085.33 26343.94 39489.53 25688.39 29854.33 37070.37 23190.13 18849.17 27184.05 37161.83 28779.36 20091.99 197
1112_ss80.56 15979.83 15982.77 19588.65 18760.78 27292.29 14888.36 29972.58 18972.46 20594.95 7165.09 8093.42 25466.38 24977.71 21394.10 129
test_cas_vis1_n_192080.45 16280.61 14779.97 27178.25 35657.01 33094.04 6988.33 30079.06 8682.81 8893.70 11138.65 32791.63 30790.82 3879.81 19591.27 213
tpmvs72.88 27869.76 29482.22 21390.98 13567.05 11878.22 36588.30 30163.10 31964.35 30274.98 36255.09 20894.27 22143.25 36269.57 27085.34 309
PLCcopyleft68.80 1475.23 25473.68 25379.86 27492.93 7658.68 31190.64 22588.30 30160.90 33764.43 30190.53 17542.38 31594.57 20756.52 30976.54 22786.33 282
Jie Liao, Yanping Fu, Qingan Yan, Chunxia xiao: Pyramid Multi-View Stereo with Local Consistency. Pacific Graphics 2019
eth_miper_zixun_eth75.96 24474.40 24180.66 25184.66 27663.02 22589.28 26188.27 30371.88 21165.73 28781.65 29559.45 15192.81 27068.13 22860.53 34786.14 287
IS-MVSNet80.14 16879.41 16782.33 20887.91 20960.08 29291.97 16688.27 30372.90 18471.44 22191.73 15761.44 13093.66 24962.47 28386.53 13593.24 157
Vis-MVSNetpermissive80.92 15479.98 15783.74 16888.48 19061.80 25293.44 10488.26 30573.96 16077.73 14591.76 15549.94 26194.76 19765.84 25590.37 9394.65 103
Jingyang Zhang, Yao Yao, Shiwei Li, Zixin Luo, Tian Fang: Visibility-aware Multiview Stereo Network. BMVC 2020
fmvsm_l_conf0.5_n_a87.44 3088.15 2485.30 11387.10 23164.19 19294.41 5288.14 30680.24 6192.54 596.97 1069.52 4897.17 8795.89 388.51 11094.56 106
c3_l76.83 23075.47 22580.93 24985.02 27264.18 19390.39 23288.11 30771.66 22066.65 28481.64 29663.58 10692.56 28169.31 21862.86 32486.04 291
BH-RMVSNet79.46 18277.65 19284.89 12591.68 11765.66 15193.55 9688.09 30872.93 18173.37 19091.12 16846.20 29796.12 14356.28 31185.61 14392.91 170
tpm cat175.30 25372.21 27184.58 14388.52 18867.77 9778.16 36688.02 30961.88 33268.45 25976.37 35560.65 13794.03 23653.77 32174.11 24191.93 198
dmvs_re76.93 22675.36 22781.61 22987.78 21660.71 27780.00 35687.99 31079.42 7469.02 24889.47 19546.77 28894.32 21763.38 27474.45 23889.81 230
Test_1112_low_res79.56 17878.60 17982.43 20488.24 20160.39 28792.09 15787.99 31072.10 20571.84 21387.42 22764.62 8893.04 25865.80 25677.30 22193.85 143
AdaColmapbinary78.94 19077.00 20684.76 13396.34 1765.86 14892.66 13587.97 31262.18 32670.56 22792.37 14143.53 31097.35 7464.50 26782.86 16691.05 216
Effi-MVS+-dtu76.14 23675.28 22978.72 29283.22 29855.17 34189.87 24987.78 31375.42 13867.98 26281.43 30045.08 30592.52 28375.08 16771.63 25988.48 249
PatchT69.11 30765.37 32180.32 25782.07 31163.68 20767.96 39687.62 31450.86 38069.37 24265.18 39157.09 17888.53 34141.59 37166.60 29488.74 244
XVG-OURS74.25 26372.46 26979.63 27978.45 35457.59 32280.33 35087.39 31563.86 30868.76 25489.62 19440.50 32191.72 30469.00 22274.25 24089.58 234
Anonymous2023120667.53 32365.78 31572.79 34574.95 37447.59 37988.23 27887.32 31661.75 33458.07 34377.29 34637.79 33987.29 35642.91 36463.71 32183.48 327
XVG-OURS-SEG-HR74.70 26073.08 25879.57 28178.25 35657.33 32680.49 34887.32 31663.22 31668.76 25490.12 19044.89 30691.59 30870.55 20874.09 24289.79 231
fmvsm_s_conf0.5_n_285.06 7385.60 6283.44 18386.92 23960.53 28294.41 5287.31 31883.30 2088.72 3396.72 2154.28 21997.75 4994.07 1284.68 15192.04 196
pmmvs473.92 26771.81 27680.25 26179.17 34265.24 16287.43 29387.26 31967.64 28063.46 30983.91 27048.96 27491.53 31362.94 27865.49 30083.96 319
test_fmvsmconf0.01_n83.70 10583.52 8984.25 15675.26 37361.72 25692.17 15287.24 32082.36 2984.91 6695.41 5355.60 20196.83 11692.85 2085.87 14094.21 122
pmmvs573.35 27171.52 27878.86 29178.64 35260.61 28191.08 20886.90 32167.69 27763.32 31083.64 27144.33 30890.53 32062.04 28566.02 29785.46 306
test_vis1_n_192081.66 14082.01 12480.64 25282.24 30855.09 34294.76 4686.87 32281.67 3784.40 7194.63 8238.17 33294.67 20491.98 2983.34 16392.16 194
test111180.84 15580.02 15483.33 18487.87 21160.76 27492.62 13686.86 32377.86 10375.73 16591.39 16446.35 29394.70 20372.79 18488.68 10994.52 111
ECVR-MVScopyleft81.29 14680.38 15284.01 16488.39 19561.96 25092.56 14386.79 32477.66 10876.63 15891.42 16246.34 29495.24 18574.36 17489.23 10094.85 89
pmmvs667.57 32264.76 32476.00 32172.82 38353.37 34988.71 27186.78 32553.19 37257.58 34978.03 34035.33 35492.41 28655.56 31354.88 36882.21 347
MonoMVSNet76.99 22575.08 23182.73 19683.32 29763.24 21986.47 30486.37 32679.08 8466.31 28579.30 33249.80 26491.72 30479.37 13565.70 29993.23 158
F-COLMAP70.66 29368.44 30177.32 30886.37 24655.91 33688.00 28286.32 32756.94 36157.28 35088.07 21633.58 35992.49 28451.02 32768.37 28183.55 324
IterMVS72.65 28470.83 28278.09 29982.17 30962.96 22787.64 29186.28 32871.56 22860.44 32878.85 33445.42 30286.66 35863.30 27661.83 33584.65 316
Fangjinhua Wang, Silvano Galliani, Christoph Vogel, Marc Pollefeys: IterMVS: Iterative Probability Estimation for Efficient Multi-View Stereo.
FMVSNet568.04 31865.66 31875.18 32684.43 28257.89 31683.54 31986.26 32961.83 33353.64 36273.30 36737.15 34585.08 36648.99 33761.77 33682.56 344
GeoE78.90 19177.43 19683.29 18588.95 18162.02 24892.31 14786.23 33070.24 25171.34 22289.27 19754.43 21694.04 23463.31 27580.81 19093.81 144
EU-MVSNet64.01 34263.01 33667.02 37274.40 37738.86 40783.27 32486.19 33145.11 39554.27 35881.15 30936.91 34880.01 39348.79 33957.02 36082.19 348
Effi-MVS+83.82 10082.76 11386.99 5689.56 16369.40 5391.35 19586.12 33272.59 18883.22 8392.81 13259.60 15096.01 15381.76 11487.80 11895.56 56
IterMVS-SCA-FT71.55 29069.97 29076.32 31881.48 31560.67 27987.64 29185.99 33366.17 29159.50 33378.88 33345.53 30083.65 37562.58 28261.93 33484.63 317
kuosan60.86 35460.24 34762.71 37981.57 31446.43 38775.70 37685.88 33457.98 35348.95 38169.53 38358.42 16576.53 39528.25 40435.87 40265.15 403
XVG-ACMP-BASELINE68.04 31865.53 31975.56 32274.06 37852.37 35278.43 36285.88 33462.03 32958.91 33981.21 30820.38 39791.15 31760.69 29268.18 28283.16 333
ambc69.61 36161.38 40841.35 39949.07 41585.86 33650.18 37766.40 38910.16 41288.14 34545.73 35544.20 38779.32 372
CMPMVSbinary48.56 2166.77 32764.41 32973.84 33770.65 38950.31 36577.79 36785.73 33745.54 39444.76 39382.14 28935.40 35390.14 32963.18 27774.54 23781.07 356
M. Jancosek, T. Pajdla: Multi-View Reconstruction Preserving Weakly-Supported Surfaces. CVPR 2011
fmvsm_s_conf0.1_n_284.40 8484.78 7783.27 18685.25 26660.41 28594.13 6385.69 33883.05 2287.99 3696.37 2852.75 23597.68 5193.75 1584.05 16091.71 200
Fast-Effi-MVS+-dtu75.04 25673.37 25680.07 26580.86 31959.52 30091.20 20485.38 33971.90 20965.20 29184.84 25841.46 31792.97 26166.50 24872.96 25087.73 258
Anonymous20240521177.96 21075.33 22885.87 9293.73 5364.52 17594.85 4485.36 34062.52 32476.11 16290.18 18429.43 37697.29 7868.51 22777.24 22395.81 49
Anonymous2024052162.09 34859.08 35271.10 35767.19 39648.72 37583.91 31785.23 34150.38 38147.84 38471.22 38020.74 39585.51 36546.47 35158.75 35679.06 373
our_test_368.29 31664.69 32579.11 29078.92 34664.85 17388.40 27785.06 34260.32 34252.68 36476.12 35740.81 32089.80 33444.25 36155.65 36482.67 343
USDC67.43 32564.51 32776.19 31977.94 36055.29 34078.38 36385.00 34373.17 17548.36 38380.37 31821.23 39492.48 28552.15 32564.02 31980.81 359
TransMVSNet (Re)70.07 29967.66 30577.31 30980.62 32559.13 30791.78 17684.94 34465.97 29260.08 33180.44 31750.78 25391.87 30048.84 33845.46 38680.94 357
KD-MVS_self_test60.87 35358.60 35367.68 36966.13 39939.93 40475.63 37784.70 34557.32 35849.57 37868.45 38629.55 37482.87 38148.09 34147.94 38280.25 366
ACMH63.93 1768.62 31164.81 32380.03 26785.22 26763.25 21887.72 28884.66 34660.83 33851.57 37079.43 33127.29 38294.96 19241.76 36964.84 30881.88 349
Qingshan Xu and Wenbing Tao: Multi-Scale Geometric Consistency Guided Multi-View Stereo. CVPR 2019
dongtai55.18 36555.46 36454.34 39076.03 37236.88 40876.07 37384.61 34751.28 37743.41 39864.61 39456.56 19167.81 40818.09 41328.50 41358.32 406
Baseline_NR-MVSNet73.99 26672.83 26177.48 30580.78 32159.29 30591.79 17484.55 34868.85 26868.99 24980.70 31256.16 19492.04 29862.67 28160.98 34481.11 355
MIMVSNet160.16 35757.33 35868.67 36569.71 39144.13 39378.92 36084.21 34955.05 36844.63 39471.85 37523.91 38881.54 38932.63 39855.03 36780.35 363
test20.0363.83 34362.65 33967.38 37170.58 39039.94 40386.57 30384.17 35063.29 31551.86 36877.30 34537.09 34682.47 38338.87 38154.13 37079.73 368
MDA-MVSNet_test_wron63.78 34460.16 34874.64 32978.15 35860.41 28583.49 32084.03 35156.17 36639.17 40371.59 37737.22 34383.24 38042.87 36648.73 38080.26 365
ADS-MVSNet68.54 31364.38 33081.03 24688.06 20566.90 12368.01 39484.02 35257.57 35464.48 29869.87 38138.68 32589.21 33740.87 37367.89 28686.97 271
CR-MVSNet73.79 26970.82 28482.70 19883.15 29967.96 9270.25 38684.00 35373.67 16969.97 23872.41 37157.82 17289.48 33552.99 32473.13 24890.64 220
Patchmtry67.53 32363.93 33178.34 29482.12 31064.38 18468.72 39184.00 35348.23 38959.24 33472.41 37157.82 17289.27 33646.10 35356.68 36381.36 352
test_fmvsmvis_n_192083.80 10183.48 9284.77 13282.51 30663.72 20391.37 19383.99 35581.42 4377.68 14695.74 4458.37 16697.58 6193.38 1686.87 12793.00 168
YYNet163.76 34560.14 34974.62 33078.06 35960.19 29183.46 32283.99 35556.18 36539.25 40271.56 37837.18 34483.34 37842.90 36548.70 38180.32 364
LTVRE_ROB59.60 1966.27 32963.54 33374.45 33184.00 28951.55 35767.08 39883.53 35758.78 35054.94 35680.31 31934.54 35693.23 25640.64 37568.03 28478.58 378
Andreas Kuhn, Heiko Hirschmüller, Daniel Scharstein, Helmut Mayer: A TV Prior for High-Quality Scalable Multi-View Stereo Reconstruction. International Journal of Computer Vision 2016
pmmvs-eth3d65.53 33562.32 34175.19 32569.39 39359.59 29882.80 33283.43 35862.52 32451.30 37272.49 36932.86 36087.16 35755.32 31450.73 37778.83 376
OpenMVS_ROBcopyleft61.12 1866.39 32862.92 33776.80 31676.51 36757.77 31889.22 26283.41 35955.48 36753.86 36177.84 34126.28 38593.95 24034.90 38968.76 27878.68 377
PatchMatch-RL72.06 28669.98 28978.28 29689.51 16555.70 33883.49 32083.39 36061.24 33563.72 30782.76 28034.77 35593.03 25953.37 32377.59 21586.12 290
MSDG69.54 30465.73 31680.96 24785.11 27163.71 20484.19 31583.28 36156.95 36054.50 35784.03 26731.50 36796.03 15142.87 36669.13 27683.14 334
CHOSEN 280x42077.35 21976.95 20778.55 29387.07 23262.68 23669.71 38982.95 36268.80 26971.48 22087.27 23166.03 7184.00 37376.47 15782.81 16888.95 240
ppachtmachnet_test67.72 32063.70 33279.77 27778.92 34666.04 14388.68 27282.90 36360.11 34455.45 35475.96 35839.19 32490.55 31939.53 37752.55 37482.71 340
new-patchmatchnet59.30 35956.48 36167.79 36865.86 40044.19 39282.47 33381.77 36459.94 34543.65 39766.20 39027.67 38181.68 38839.34 37841.40 39277.50 384
MDA-MVSNet-bldmvs61.54 35157.70 35673.05 34279.53 33757.00 33183.08 32881.23 36557.57 35434.91 40772.45 37032.79 36186.26 36135.81 38641.95 39175.89 387
OurMVSNet-221017-064.68 33862.17 34272.21 35076.08 37147.35 38080.67 34781.02 36656.19 36451.60 36979.66 32927.05 38388.56 34053.60 32253.63 37180.71 360
ACMH+65.35 1667.65 32164.55 32676.96 31484.59 27857.10 32788.08 27980.79 36758.59 35253.00 36381.09 31026.63 38492.95 26246.51 35061.69 34080.82 358
CNLPA74.31 26272.30 27080.32 25791.49 12361.66 25790.85 21580.72 36856.67 36363.85 30690.64 17246.75 28990.84 31853.79 32075.99 23188.47 250
mmtdpeth68.33 31566.37 31274.21 33582.81 30451.73 35584.34 31480.42 36967.01 28671.56 21868.58 38530.52 37392.35 29075.89 16036.21 40178.56 379
LS3D69.17 30666.40 31177.50 30491.92 10956.12 33585.12 30980.37 37046.96 39056.50 35287.51 22637.25 34293.71 24732.52 39979.40 19982.68 342
testgi64.48 34062.87 33869.31 36371.24 38440.62 40185.49 30779.92 37165.36 29754.18 35983.49 27423.74 38984.55 36841.60 37060.79 34682.77 337
test_040264.54 33961.09 34574.92 32884.10 28860.75 27587.95 28379.71 37252.03 37452.41 36577.20 34732.21 36591.64 30623.14 40861.03 34372.36 396
SixPastTwentyTwo64.92 33761.78 34474.34 33378.74 35049.76 36783.42 32379.51 37362.86 32050.27 37577.35 34430.92 37290.49 32145.89 35447.06 38382.78 336
mvs5depth61.03 35257.65 35771.18 35667.16 39747.04 38572.74 38177.49 37457.47 35760.52 32772.53 36822.84 39188.38 34249.15 33638.94 39778.11 382
ITE_SJBPF70.43 35974.44 37647.06 38477.32 37560.16 34354.04 36083.53 27223.30 39084.01 37243.07 36361.58 34180.21 367
K. test v363.09 34659.61 35173.53 33976.26 36949.38 37283.27 32477.15 37664.35 30347.77 38572.32 37328.73 37787.79 34949.93 33336.69 40083.41 329
DP-MVS69.90 30166.48 30980.14 26395.36 2862.93 22889.56 25376.11 37750.27 38257.69 34885.23 25439.68 32395.73 16133.35 39271.05 26581.78 351
RPSCF64.24 34161.98 34371.01 35876.10 37045.00 39175.83 37575.94 37846.94 39158.96 33884.59 26131.40 36882.00 38747.76 34660.33 35186.04 291
test_fmvs1_n72.69 28371.92 27474.99 32771.15 38647.08 38387.34 29575.67 37963.48 31378.08 14391.17 16720.16 39887.87 34784.65 8975.57 23390.01 228
TinyColmap60.32 35556.42 36272.00 35478.78 34953.18 35078.36 36475.64 38052.30 37341.59 40175.82 36014.76 40688.35 34335.84 38554.71 36974.46 389
ADS-MVSNet266.90 32663.44 33477.26 31088.06 20560.70 27868.01 39475.56 38157.57 35464.48 29869.87 38138.68 32584.10 37040.87 37367.89 28686.97 271
COLMAP_ROBcopyleft57.96 2062.98 34759.65 35072.98 34381.44 31653.00 35183.75 31875.53 38248.34 38748.81 38281.40 30224.14 38790.30 32232.95 39460.52 34875.65 388
Johannes L. Schönberger, Enliang Zheng, Marc Pollefeys, Jan-Michael Frahm: Pixelwise View Selection for Unstructured Multi-View Stereo. ECCV 2016
Patchmatch-test65.86 33160.94 34680.62 25483.75 29158.83 30958.91 40975.26 38344.50 39750.95 37477.09 34958.81 16287.90 34635.13 38864.03 31895.12 80
test_fmvs174.07 26473.69 25275.22 32478.91 34847.34 38189.06 26874.69 38463.68 31179.41 12691.59 16024.36 38687.77 35085.22 8076.26 22990.55 222
MVS-HIRNet60.25 35655.55 36374.35 33284.37 28356.57 33371.64 38474.11 38534.44 40645.54 39142.24 41431.11 37189.81 33240.36 37676.10 23076.67 386
pmmvs355.51 36351.50 36967.53 37057.90 41150.93 36380.37 34973.66 38640.63 40444.15 39664.75 39316.30 40178.97 39444.77 36040.98 39572.69 394
TDRefinement55.28 36451.58 36866.39 37359.53 41046.15 38876.23 37272.80 38744.60 39642.49 39976.28 35615.29 40482.39 38433.20 39343.75 38870.62 398
MVStest151.35 36846.89 37264.74 37465.06 40151.10 36167.33 39772.58 38830.20 41035.30 40574.82 36327.70 38069.89 40524.44 40724.57 41473.22 392
Gipumacopyleft34.91 38331.44 38645.30 39870.99 38739.64 40619.85 42072.56 38920.10 41616.16 42021.47 4215.08 42171.16 40313.07 41843.70 38925.08 418
S. Galliani, K. Lasinger, K. Schindler: Massively Parallel Multiview Stereopsis by Surface Normal Diffusion. ICCV 2015
test_vis1_n71.63 28970.73 28574.31 33469.63 39247.29 38286.91 29972.11 39063.21 31775.18 17390.17 18520.40 39685.76 36284.59 9074.42 23989.87 229
FPMVS45.64 37443.10 37853.23 39151.42 41636.46 40964.97 40071.91 39129.13 41127.53 41161.55 4009.83 41365.01 41416.00 41755.58 36558.22 407
dmvs_testset65.55 33466.45 31062.86 37879.87 33322.35 42476.55 37071.74 39277.42 11555.85 35387.77 22151.39 24880.69 39131.51 40365.92 29885.55 304
ANet_high40.27 38035.20 38355.47 38634.74 42734.47 41263.84 40271.56 39348.42 38618.80 41641.08 4159.52 41464.45 41520.18 4118.66 42367.49 401
Patchmatch-RL test68.17 31764.49 32879.19 28671.22 38553.93 34770.07 38871.54 39469.22 26356.79 35162.89 39656.58 19088.61 33869.53 21552.61 37395.03 85
mamv465.18 33667.43 30658.44 38277.88 36249.36 37369.40 39070.99 39548.31 38857.78 34785.53 25259.01 16051.88 42073.67 17764.32 31474.07 390
LCM-MVSNet-Re72.93 27671.84 27576.18 32088.49 18948.02 37680.07 35570.17 39673.96 16052.25 36680.09 32449.98 26088.24 34467.35 23684.23 15792.28 187
test_fmvs265.78 33364.84 32268.60 36666.54 39841.71 39883.27 32469.81 39754.38 36967.91 26484.54 26315.35 40381.22 39075.65 16266.16 29682.88 335
LCM-MVSNet40.54 37735.79 38254.76 38936.92 42630.81 41651.41 41369.02 39822.07 41324.63 41345.37 4104.56 42265.81 41133.67 39134.50 40667.67 400
AllTest61.66 34958.06 35472.46 34779.57 33551.42 35980.17 35368.61 39951.25 37845.88 38781.23 30419.86 39986.58 35938.98 37957.01 36179.39 370
TestCases72.46 34779.57 33551.42 35968.61 39951.25 37845.88 38781.23 30419.86 39986.58 35938.98 37957.01 36179.39 370
LF4IMVS54.01 36652.12 36759.69 38162.41 40539.91 40568.59 39268.28 40142.96 40144.55 39575.18 36114.09 40868.39 40741.36 37251.68 37570.78 397
door66.57 402
door-mid66.01 403
ttmdpeth53.34 36749.96 37063.45 37762.07 40740.04 40272.06 38265.64 40442.54 40251.88 36777.79 34213.94 40976.48 39632.93 39530.82 41173.84 391
test_fmvs356.82 36154.86 36562.69 38053.59 41335.47 41075.87 37465.64 40443.91 39855.10 35571.43 3796.91 41874.40 40068.64 22652.63 37278.20 381
DSMNet-mixed56.78 36254.44 36663.79 37663.21 40329.44 41964.43 40164.10 40642.12 40351.32 37171.60 37631.76 36675.04 39836.23 38465.20 30586.87 274
PM-MVS59.40 35856.59 36067.84 36763.63 40241.86 39776.76 36963.22 40759.01 34951.07 37372.27 37411.72 41083.25 37961.34 28850.28 37978.39 380
new_pmnet49.31 37046.44 37357.93 38362.84 40440.74 40068.47 39362.96 40836.48 40535.09 40657.81 40314.97 40572.18 40232.86 39646.44 38460.88 405
lessismore_v073.72 33872.93 38247.83 37861.72 40945.86 38973.76 36628.63 37989.81 33247.75 34731.37 40883.53 325
mvsany_test168.77 31068.56 29969.39 36273.57 37945.88 39080.93 34660.88 41059.65 34671.56 21890.26 18343.22 31275.05 39774.26 17562.70 32687.25 269
EGC-MVSNET42.35 37638.09 37955.11 38774.57 37546.62 38671.63 38555.77 4110.04 4250.24 42662.70 39714.24 40774.91 39917.59 41446.06 38543.80 411
WB-MVS46.23 37344.94 37550.11 39362.13 40621.23 42676.48 37155.49 41245.89 39335.78 40461.44 40135.54 35272.83 4019.96 42021.75 41556.27 408
SSC-MVS44.51 37543.35 37747.99 39761.01 40918.90 42874.12 37954.36 41343.42 40034.10 40860.02 40234.42 35770.39 4049.14 42219.57 41654.68 409
test_method38.59 38135.16 38448.89 39554.33 41221.35 42545.32 41653.71 4147.41 42228.74 41051.62 4068.70 41552.87 41933.73 39032.89 40772.47 395
APD_test140.50 37837.31 38150.09 39451.88 41435.27 41159.45 40852.59 41521.64 41426.12 41257.80 4044.56 42266.56 41022.64 40939.09 39648.43 410
PMMVS237.93 38233.61 38550.92 39246.31 41824.76 42260.55 40750.05 41628.94 41220.93 41447.59 4074.41 42465.13 41325.14 40618.55 41862.87 404
PMVScopyleft26.43 2231.84 38628.16 38942.89 39925.87 42927.58 42050.92 41449.78 41721.37 41514.17 42140.81 4162.01 42866.62 4099.61 42138.88 39934.49 417
Y. Furukawa, J. Ponce: Accurate, dense, and robust multiview stereopsis. PAMI (2010)
test_f46.58 37243.45 37655.96 38545.18 42032.05 41461.18 40449.49 41833.39 40742.05 40062.48 3987.00 41765.56 41247.08 34943.21 39070.27 399
test_vis1_rt59.09 36057.31 35964.43 37568.44 39546.02 38983.05 33048.63 41951.96 37549.57 37863.86 39516.30 40180.20 39271.21 20162.79 32567.07 402
mvsany_test348.86 37146.35 37456.41 38446.00 41931.67 41562.26 40347.25 42043.71 39945.54 39168.15 38710.84 41164.44 41657.95 30435.44 40573.13 393
testf132.77 38429.47 38742.67 40041.89 42330.81 41652.07 41143.45 42115.45 41718.52 41744.82 4112.12 42658.38 41716.05 41530.87 40938.83 413
APD_test232.77 38429.47 38742.67 40041.89 42330.81 41652.07 41143.45 42115.45 41718.52 41744.82 4112.12 42658.38 41716.05 41530.87 40938.83 413
E-PMN24.61 38724.00 39126.45 40443.74 42218.44 42960.86 40539.66 42315.11 4199.53 42322.10 4206.52 41946.94 4228.31 42310.14 42013.98 420
tmp_tt22.26 39023.75 39217.80 4065.23 43012.06 43135.26 41739.48 4242.82 42418.94 41544.20 41322.23 39324.64 42536.30 3839.31 42216.69 419
MVEpermissive24.84 2324.35 38819.77 39438.09 40234.56 42826.92 42126.57 41838.87 42511.73 42111.37 42227.44 4181.37 42950.42 42111.41 41914.60 41936.93 415
Simon Fuhrmann, Fabian Langguth, Michael Goesele: MVE - A Multi-View Reconstruction Environment. EUROGRAPHICS Workshops on Graphics and Cultural Heritage (2014)
EMVS23.76 38923.20 39325.46 40541.52 42516.90 43060.56 40638.79 42614.62 4208.99 42420.24 4237.35 41645.82 4237.25 4249.46 42113.64 421
test_vis3_rt40.46 37937.79 38048.47 39644.49 42133.35 41366.56 39932.84 42732.39 40829.65 40939.13 4173.91 42568.65 40650.17 33040.99 39443.40 412
MTMP93.77 8632.52 428
DeepMVS_CXcopyleft34.71 40351.45 41524.73 42328.48 42931.46 40917.49 41952.75 4055.80 42042.60 42418.18 41219.42 41736.81 416
N_pmnet50.55 36949.11 37154.88 38877.17 3654.02 43284.36 3132.00 43048.59 38545.86 38968.82 38432.22 36482.80 38231.58 40151.38 37677.81 383
wuyk23d11.30 39210.95 39512.33 40748.05 41719.89 42725.89 4191.92 4313.58 4233.12 4251.37 4250.64 43015.77 4266.23 4257.77 4241.35 422
testmvs7.23 3949.62 3970.06 4090.04 4310.02 43484.98 3110.02 4320.03 4260.18 4271.21 4260.01 4320.02 4270.14 4260.01 4250.13 424
test1236.92 3959.21 3980.08 4080.03 4320.05 43381.65 3390.01 4330.02 4270.14 4280.85 4270.03 4310.02 4270.12 4270.00 4260.16 423
mmdepth0.00 3970.00 4000.00 4100.00 4330.00 4350.00 4210.00 4340.00 4280.00 4290.00 4280.00 4330.00 4290.00 4280.00 4260.00 425
monomultidepth0.00 3970.00 4000.00 4100.00 4330.00 4350.00 4210.00 4340.00 4280.00 4290.00 4280.00 4330.00 4290.00 4280.00 4260.00 425
test_blank0.00 3970.00 4000.00 4100.00 4330.00 4350.00 4210.00 4340.00 4280.00 4290.00 4280.00 4330.00 4290.00 4280.00 4260.00 425
uanet_test0.00 3970.00 4000.00 4100.00 4330.00 4350.00 4210.00 4340.00 4280.00 4290.00 4280.00 4330.00 4290.00 4280.00 4260.00 425
DCPMVS0.00 3970.00 4000.00 4100.00 4330.00 4350.00 4210.00 4340.00 4280.00 4290.00 4280.00 4330.00 4290.00 4280.00 4260.00 425
pcd_1.5k_mvsjas4.46 3965.95 3990.00 4100.00 4330.00 4350.00 4210.00 4340.00 4280.00 4290.00 42853.55 2260.00 4290.00 4280.00 4260.00 425
sosnet-low-res0.00 3970.00 4000.00 4100.00 4330.00 4350.00 4210.00 4340.00 4280.00 4290.00 4280.00 4330.00 4290.00 4280.00 4260.00 425
sosnet0.00 3970.00 4000.00 4100.00 4330.00 4350.00 4210.00 4340.00 4280.00 4290.00 4280.00 4330.00 4290.00 4280.00 4260.00 425
uncertanet0.00 3970.00 4000.00 4100.00 4330.00 4350.00 4210.00 4340.00 4280.00 4290.00 4280.00 4330.00 4290.00 4280.00 4260.00 425
Regformer0.00 3970.00 4000.00 4100.00 4330.00 4350.00 4210.00 4340.00 4280.00 4290.00 4280.00 4330.00 4290.00 4280.00 4260.00 425
n20.00 434
nn0.00 434
ab-mvs-re7.91 39310.55 3960.00 4100.00 4330.00 4350.00 4210.00 4340.00 4280.00 42994.95 710.00 4330.00 4290.00 4280.00 4260.00 425
uanet0.00 3970.00 4000.00 4100.00 4330.00 4350.00 4210.00 4340.00 4280.00 4290.00 4280.00 4330.00 4290.00 4280.00 4260.00 425
WAC-MVS49.45 37031.56 402
PC_three_145280.91 5094.07 296.83 1883.57 499.12 595.70 797.42 497.55 4
eth-test20.00 433
eth-test0.00 433
OPU-MVS89.97 397.52 373.15 1496.89 697.00 983.82 299.15 295.72 597.63 397.62 2
test_0728_THIRD72.48 19190.55 2096.93 1176.24 1199.08 1191.53 3294.99 1896.43 31
GSMVS94.68 100
test_part296.29 1968.16 8890.78 17
sam_mvs157.85 17194.68 100
sam_mvs54.91 210
test_post178.95 35920.70 42253.05 23191.50 31460.43 293
test_post23.01 41956.49 19292.67 277
patchmatchnet-post67.62 38857.62 17490.25 323
gm-plane-assit88.42 19367.04 11978.62 9391.83 15497.37 7276.57 156
test9_res89.41 4294.96 1995.29 70
agg_prior286.41 7294.75 3095.33 66
test_prior467.18 11493.92 75
test_prior295.10 3875.40 13985.25 6595.61 4767.94 5587.47 6194.77 26
旧先验292.00 16559.37 34887.54 4193.47 25375.39 164
新几何291.41 186
原ACMM292.01 162
testdata296.09 14561.26 289
segment_acmp65.94 72
testdata189.21 26377.55 111
plane_prior786.94 23561.51 259
plane_prior687.23 22762.32 24350.66 254
plane_prior489.14 200
plane_prior361.95 25179.09 8372.53 202
plane_prior293.13 11278.81 90
plane_prior187.15 229
plane_prior62.42 23993.85 7979.38 7578.80 206
HQP5-MVS63.66 208
HQP-NCC87.54 22094.06 6579.80 6674.18 181
ACMP_Plane87.54 22094.06 6579.80 6674.18 181
BP-MVS77.63 151
HQP4-MVS74.18 18195.61 16988.63 245
HQP2-MVS51.63 246
NP-MVS87.41 22363.04 22490.30 181
MDTV_nov1_ep13_2view59.90 29480.13 35467.65 27972.79 19654.33 21859.83 29792.58 178
ACMMP++_ref71.63 259
ACMMP++69.72 268
Test By Simon54.21 220