This table lists the benchmark results for the high-res multi-view scenario. The following metrics are evaluated:

(*) For exact definitions, detailing how potentially incomplete ground truth is taken into account, see our paper.

The datasets are grouped into different categories, and result averages are computed for a category and method if results of the method are available for all datasets within the category. Note that the category "all" includes both the high-res multi-view and the low-res many-view scenarios.

Methods with suffix _ROB may participate in the Robust Vision Challenge.

Click a dataset result cell to show a visualization of the reconstruction. For training datasets, ground truth and accuracy / completeness visualizations are also available. The visualizations may not work with mobile browsers.




Method Infoallhigh-res
multi-view
indooroutdoorbotani.boulde.bridgedoorexhibi.lectur.living.loungeobserv.old co.statueterrac.
sort bysorted bysort bysort bysort bysort bysort bysort bysort bysort bysort bysort bysort bysort bysort bysort by
MSLP-MVS++99.89 199.85 299.99 12100.00 199.96 24100.00 199.95 1999.11 8100.00 1100.00 199.60 16100.00 1100.00 1100.00 1100.00 1
NCCC99.86 299.82 3100.00 1100.00 199.99 5100.00 199.71 6199.07 11100.00 1100.00 199.59 19100.00 1100.00 1100.00 1100.00 1
CHOSEN 280x42099.85 399.87 199.80 10599.99 4999.97 2199.97 24399.98 1698.96 32100.00 1100.00 199.96 399.42 263100.00 1100.00 1100.00 1
MCST-MVS99.85 399.80 4100.00 1100.00 199.99 5100.00 199.73 5699.19 5100.00 1100.00 199.31 63100.00 1100.00 1100.00 1100.00 1
CNVR-MVS99.85 399.80 4100.00 1100.00 199.99 5100.00 199.77 4899.07 11100.00 1100.00 199.39 56100.00 1100.00 1100.00 1100.00 1
APDe-MVScopyleft99.84 699.78 799.99 12100.00 199.98 17100.00 199.44 11699.06 13100.00 1100.00 199.56 2299.99 95100.00 1100.00 1100.00 1
Zhaojie Zeng, Yuesong Wang, Tao Guan: Matching Ambiguity-Resilient Multi-View Stereo via Adaptive Patch Deformation. Pattern Recognition
SED-MVS99.83 799.77 9100.00 1100.00 199.99 5100.00 199.42 14099.03 21100.00 1100.00 199.50 36100.00 1100.00 1100.00 1100.00 1
DVP-MVScopyleft99.83 799.78 7100.00 1100.00 199.99 5100.00 199.42 14099.04 16100.00 1100.00 199.53 28100.00 1100.00 1100.00 1100.00 1
Zhenlong Yuan, Jinguo Luo, Fei Shen, Zhaoxin Li, Cong Liu, Tianlu Mao, Zhaoqi Wang: DVP-MVS: Synergize Depth-Edge and Visibility Prior for Multi-View Stereo. AAAI2025
TSAR-MVS + MP.99.82 999.77 999.99 12100.00 199.96 24100.00 199.43 12499.05 15100.00 1100.00 199.45 4499.99 95100.00 1100.00 1100.00 1
Zhenlong Yuan, Jiakai Cao, Zhaoqi Wang, Zhaoxin Li: TSAR-MVS: Textureless-aware Segmentation and Correlative Refinement Guided Multi-View Stereo. Pattern Recognition
HPM-MVS++copyleft99.82 999.76 1299.99 1299.99 4999.98 17100.00 199.83 3998.88 4499.96 121100.00 199.21 76100.00 1100.00 1100.00 199.99 107
DVP-MVS++99.81 1199.75 14100.00 1100.00 199.99 5100.00 199.42 14098.79 60100.00 1100.00 199.54 25100.00 1100.00 1100.00 1100.00 1
MSP-MVS99.81 1199.77 999.94 63100.00 199.86 79100.00 199.42 14098.87 47100.00 1100.00 199.65 1499.96 139100.00 1100.00 1100.00 1
Zhenlong Yuan, Cong Liu, Fei Shen, Zhaoxin Li, Jingguo luo, Tianlu Mao and Zhaoqi Wang: MSP-MVS: Multi-granularity Segmentation Prior Guided Multi-View Stereo. AAAI2025
SD-MVS99.81 1199.75 1499.99 1299.99 4999.96 24100.00 199.42 14099.01 26100.00 1100.00 199.33 58100.00 1100.00 1100.00 1100.00 1
Zhenlong Yuan, Jiakai Cao, Zhaoxin Li, Hao Jiang and Zhaoqi Wang: SD-MVS: Segmentation-driven Deformation Multi-View Stereo with Spherical Refinement and EM optimization. AAAI2024
DPE-MVScopyleft99.79 1499.73 1799.99 1299.99 4999.98 17100.00 199.42 14098.91 41100.00 1100.00 199.22 75100.00 1100.00 1100.00 1100.00 1
Kehua Chen, Zhenlong Yuan, Tianlu Mao, Zhaoqi Wang: Dual-Level Precision Edges Guided Multi-View Stereo with Accurate Planarization. AAAI2025
XVS99.79 1499.73 1799.98 23100.00 199.94 41100.00 199.75 5298.67 67100.00 1100.00 199.16 80100.00 1100.00 1100.00 1100.00 1
SteuartSystems-ACMMP99.78 1699.71 2099.98 2399.76 14899.95 32100.00 199.42 14098.69 65100.00 1100.00 199.52 3199.99 95100.00 1100.00 1100.00 1
Skip Steuart: Steuart Systems R&D Blog.
PAPM99.78 1699.76 1299.85 8799.01 28999.95 32100.00 199.75 5299.37 399.99 106100.00 199.76 1099.60 222100.00 1100.00 1100.00 1
DP-MVS Recon99.76 1899.69 2299.98 23100.00 199.95 32100.00 199.52 7297.99 11099.99 106100.00 199.72 11100.00 199.96 85100.00 1100.00 1
PAPR99.76 1899.68 2599.99 12100.00 199.96 24100.00 199.47 7998.16 96100.00 1100.00 199.51 32100.00 1100.00 1100.00 1100.00 1
DeepC-MVS_fast98.92 199.75 2099.67 2799.99 1299.99 4999.96 2499.73 30299.52 7299.06 13100.00 1100.00 198.80 118100.00 199.95 91100.00 1100.00 1
Andreas Kuhn, Christian Sormann, Mattia Rossi, Oliver Erdler, Friedrich Fraundorfer: DeepC-MVS: Deep Confidence Prediction for Multi-View Stereo Reconstruction. 3DV 2020
MG-MVS99.75 2099.68 2599.97 31100.00 199.91 5399.98 23799.47 7999.09 10100.00 1100.00 198.59 128100.00 199.95 91100.00 1100.00 1
HFP-MVS99.74 2299.67 2799.96 42100.00 199.89 67100.00 199.76 4997.95 118100.00 1100.00 199.31 63100.00 199.99 61100.00 1100.00 1
ACMMPR99.74 2299.67 2799.96 42100.00 199.89 67100.00 199.76 4997.95 118100.00 1100.00 199.29 69100.00 199.99 61100.00 1100.00 1
PAPM_NR99.74 2299.66 3099.99 12100.00 199.96 24100.00 199.47 7997.87 123100.00 1100.00 199.60 16100.00 1100.00 1100.00 1100.00 1
CDPH-MVS99.73 2599.64 3499.99 12100.00 199.97 21100.00 199.42 14098.02 108100.00 1100.00 199.32 6199.99 95100.00 1100.00 1100.00 1
MVS_030499.72 2699.65 3199.93 6799.99 4999.79 90100.00 199.91 3599.17 6100.00 1100.00 197.84 154100.00 1100.00 199.95 120100.00 1
region2R99.72 2699.64 3499.97 31100.00 199.90 60100.00 199.74 5597.86 124100.00 1100.00 199.19 78100.00 199.99 61100.00 1100.00 1
API-MVS99.72 2699.70 2199.79 10899.97 9099.37 14999.96 24999.94 2298.48 75100.00 1100.00 198.92 107100.00 1100.00 1100.00 1100.00 1
CNLPA99.72 2699.65 3199.91 7199.97 9099.72 98100.00 199.47 7998.43 7899.88 167100.00 199.14 83100.00 199.97 83100.00 1100.00 1
ZNCC-MVS99.71 3099.62 4199.97 3199.99 4999.90 60100.00 199.79 4597.97 11499.97 117100.00 198.97 98100.00 199.94 93100.00 1100.00 1
train_agg99.71 3099.63 3899.97 31100.00 199.95 32100.00 199.42 14097.70 135100.00 1100.00 199.51 3299.97 126100.00 1100.00 1100.00 1
MVS_111021_HR99.71 3099.63 3899.93 6799.95 9699.83 85100.00 1100.00 198.89 43100.00 1100.00 197.85 15299.95 151100.00 1100.00 1100.00 1
EI-MVSNet-Vis-set99.70 3399.64 3499.87 81100.00 199.64 10999.98 23799.44 11698.35 8699.99 106100.00 199.04 9399.96 13999.98 73100.00 1100.00 1
MVS_111021_LR99.70 3399.65 3199.88 8099.96 9599.70 103100.00 199.97 1798.96 32100.00 1100.00 197.93 14699.95 15199.99 61100.00 1100.00 1
PLCcopyleft98.56 299.70 3399.74 1699.58 147100.00 198.79 195100.00 199.54 7198.58 7299.96 121100.00 199.59 19100.00 1100.00 1100.00 199.94 133
Jie Liao, Yanping Fu, Qingan Yan, Chunxia xiao: Pyramid Multi-View Stereo with Local Consistency. Pacific Graphics 2019
SMA-MVScopyleft99.69 3699.59 4499.98 2399.99 4999.93 45100.00 199.43 12497.50 164100.00 1100.00 199.43 49100.00 1100.00 1100.00 1100.00 1
Yufeng Yin; Xiaoyan Liu; Zichao Zhang: SMA-MVS: Segmentation-Guided Multi-Scale Anchor Deformation Patch Multi-View Stereo. IEEE Transactions on Circuits and Systems for Video Technology
EI-MVSNet-UG-set99.69 3699.63 3899.87 8199.99 4999.64 10999.95 25599.44 11698.35 86100.00 1100.00 198.98 9799.97 12699.98 73100.00 1100.00 1
PGM-MVS99.69 3699.61 4299.95 5199.99 4999.85 82100.00 199.58 6797.69 137100.00 1100.00 199.44 45100.00 199.79 119100.00 1100.00 1
mPP-MVS99.69 3699.60 4399.97 31100.00 199.91 53100.00 199.42 14097.91 120100.00 1100.00 199.04 93100.00 1100.00 1100.00 1100.00 1
SR-MVS99.68 4099.58 4699.98 23100.00 199.95 32100.00 199.64 6497.59 153100.00 1100.00 198.99 9699.99 95100.00 1100.00 1100.00 1
MTAPA99.68 4099.59 4499.97 3199.99 4999.91 53100.00 199.42 14098.32 8899.94 151100.00 198.65 124100.00 199.96 85100.00 1100.00 1
APD-MVScopyleft99.68 4099.58 4699.97 3199.99 4999.96 24100.00 199.42 14097.53 159100.00 1100.00 199.27 7299.97 126100.00 1100.00 1100.00 1
Yuesong Wang, Zhaojie Zeng and etc.: Adaptive Patch Deformation for Textureless-Resilient Multi-View Stereo. CVPR2023
ACMMP_NAP99.67 4399.57 4999.97 3199.98 8699.92 50100.00 199.42 14097.83 125100.00 1100.00 198.89 110100.00 199.98 73100.00 1100.00 1
CP-MVS99.67 4399.58 4699.95 51100.00 199.84 84100.00 199.42 14097.77 130100.00 1100.00 199.07 87100.00 1100.00 1100.00 1100.00 1
SF-MVS99.66 4599.57 4999.95 5199.99 4999.85 82100.00 199.42 14097.67 138100.00 1100.00 199.05 9099.99 95100.00 1100.00 1100.00 1
APD-MVS_3200maxsize99.65 4699.55 5699.97 3199.99 4999.91 53100.00 199.48 7897.54 157100.00 1100.00 198.97 9899.99 9599.98 73100.00 1100.00 1
ACMMPcopyleft99.65 4699.57 4999.89 7699.99 4999.66 10799.75 29699.73 5698.16 9699.75 192100.00 198.90 109100.00 199.96 8599.88 133100.00 1
Qingshan Xu, Weihang Kong, Wenbing Tao, Marc Pollefeys: Multi-Scale Geometric Consistency Guided and Planar Prior Assisted Multi-View Stereo. IEEE Transactions on Pattern Analysis and Machine Intelligence
GST-MVS99.64 4899.53 5999.95 51100.00 199.86 79100.00 199.79 4597.72 13399.95 149100.00 198.39 135100.00 199.96 8599.99 102100.00 1
PS-MVSNAJ99.64 4899.57 4999.85 8799.78 14599.81 8799.95 25599.42 14098.38 80100.00 1100.00 198.75 120100.00 199.88 10399.99 10299.74 237
F-COLMAP99.64 4899.64 3499.67 13199.99 4999.07 175100.00 199.44 11698.30 8999.90 162100.00 199.18 7999.99 9599.91 98100.00 199.94 133
fmvsm_l_conf0.5_n_a99.63 5199.55 5699.86 8499.83 12099.58 117100.00 199.36 21498.98 30100.00 1100.00 197.85 15299.99 95100.00 199.94 123100.00 1
fmvsm_l_conf0.5_n99.63 5199.56 5499.86 8499.81 12799.59 114100.00 199.36 21498.98 30100.00 1100.00 197.92 14799.99 95100.00 199.95 120100.00 1
MM99.63 5199.52 6199.94 6399.99 4999.82 86100.00 199.97 1799.11 8100.00 1100.00 196.65 204100.00 1100.00 199.97 115100.00 1
SR-MVS-dyc-post99.63 5199.52 6199.97 3199.99 4999.91 53100.00 199.42 14097.62 145100.00 1100.00 198.65 12499.99 9599.99 61100.00 1100.00 1
DPM-MVS99.63 5199.51 63100.00 199.90 108100.00 1100.00 199.43 12499.00 27100.00 1100.00 199.58 21100.00 197.64 270100.00 1100.00 1
EPNet99.62 5699.69 2299.42 16699.99 4998.37 221100.00 199.89 3798.83 53100.00 1100.00 198.97 98100.00 199.90 9999.61 16099.89 167
Wanjuan Su, Wenbing Tao: Efficient Edge-Preserving Multi-View Stereo Network for Depth Estimation. AAAI 2023
DELS-MVS99.62 5699.56 5499.82 9499.92 10499.45 139100.00 199.78 4798.92 3999.73 194100.00 197.70 162100.00 199.93 95100.00 1100.00 1
Christian Sormann, Emanuele Santellani, Mattia Rossi, Andreas Kuhn, Friedrich Fraundorfer: DELS-MVS: Deep Epipolar Line Search for Multi-View Stereo. Winter Conference on Applications of Computer Vision (WACV), 2023
MP-MVS-pluss99.61 5899.50 6499.97 3199.98 8699.92 50100.00 199.42 14097.53 15999.77 189100.00 198.77 119100.00 199.99 61100.00 199.99 107
MP-MVS-pluss: MP-MVS-pluss. MP-MVS-pluss
MP-MVScopyleft99.61 5899.49 6699.98 2399.99 4999.94 41100.00 199.42 14097.82 12699.99 106100.00 198.20 138100.00 199.99 61100.00 1100.00 1
Rongxuan Tan, Qing Wang, et al.: MP-MVS: Multi-Scale Windows PatchMatch and Planar Prior Multi-View Stereo.
TSAR-MVS + GP.99.61 5899.69 2299.35 17799.99 4998.06 246100.00 199.36 21499.83 2100.00 1100.00 198.95 10299.99 95100.00 199.11 168100.00 1
HPM-MVS_fast99.60 6199.49 6699.91 7199.99 4999.78 91100.00 199.42 14097.09 194100.00 1100.00 198.95 10299.96 13999.98 73100.00 1100.00 1
HPM-MVScopyleft99.59 6299.50 6499.89 76100.00 199.70 103100.00 199.42 14097.46 168100.00 1100.00 198.60 12799.96 13999.99 61100.00 1100.00 1
Chunlin Ren, Qingshan Xu, Shikun Zhang, Jiaqi Yang: Hierarchical Prior Mining for Non-local Multi-View Stereo. ICCV 2023
mvsany_test199.57 6399.48 6999.85 8799.86 11599.54 122100.00 199.36 21498.94 37100.00 1100.00 197.97 144100.00 199.88 10399.28 165100.00 1
test_fmvsmconf_n99.56 6499.46 7099.86 8499.68 16199.58 117100.00 199.31 24098.92 3999.88 167100.00 197.35 18199.99 9599.98 7399.99 102100.00 1
test_fmvsm_n_192099.55 6599.49 6699.73 12299.85 11699.19 167100.00 199.41 18698.87 47100.00 1100.00 197.34 182100.00 199.98 7399.90 130100.00 1
WTY-MVS99.54 6699.40 7299.95 5199.81 12799.93 45100.00 1100.00 197.98 11299.84 171100.00 198.94 10499.98 11999.86 10798.21 20999.94 133
test_yl99.51 6799.37 7799.95 5199.82 12199.90 60100.00 199.47 7997.48 166100.00 1100.00 199.80 4100.00 199.98 7397.75 23799.94 133
DCV-MVSNet99.51 6799.37 7799.95 5199.82 12199.90 60100.00 199.47 7997.48 166100.00 1100.00 199.80 4100.00 199.98 7397.75 23799.94 133
xiu_mvs_v2_base99.51 6799.41 7199.82 9499.70 15699.73 9799.92 26299.40 19098.15 98100.00 1100.00 198.50 132100.00 199.85 10999.13 16799.74 237
HY-MVS96.53 999.50 7099.35 8299.96 4299.81 12799.93 4599.64 314100.00 197.97 11499.84 17199.85 24798.94 10499.99 9599.86 10798.23 20899.95 128
PHI-MVS99.50 7099.39 7399.82 94100.00 199.45 139100.00 199.94 2296.38 253100.00 1100.00 198.18 139100.00 1100.00 1100.00 1100.00 1
CPTT-MVS99.49 7299.38 7499.85 87100.00 199.54 122100.00 199.42 14097.58 15499.98 112100.00 197.43 179100.00 199.99 61100.00 1100.00 1
MAR-MVS99.49 7299.36 8099.89 7699.97 9099.66 10799.74 29799.95 1997.89 121100.00 1100.00 196.71 203100.00 1100.00 1100.00 1100.00 1
Zhenyu Xu, Yiguang Liu, Xuelei Shi, Ying Wang, Yunan Zheng: MARMVS: Matching Ambiguity Reduced Multiple View Stereo for Efficient Large Scale Scene Reconstruction. CVPR 2020
test250699.48 7499.38 7499.75 11899.89 11099.51 12899.45 335100.00 198.38 8099.83 174100.00 198.86 11199.81 19999.25 19698.78 17699.94 133
PVSNet_Blended99.48 7499.36 8099.83 9299.98 8699.60 112100.00 1100.00 197.79 128100.00 1100.00 196.57 20699.99 95100.00 199.88 13399.90 160
test_fmvsmvis_n_192099.46 7699.37 7799.73 12298.88 30699.18 169100.00 199.26 27598.85 4999.79 186100.00 197.70 162100.00 199.98 7399.86 137100.00 1
sss99.45 7799.34 8499.80 10599.76 14899.50 130100.00 199.91 3597.72 13399.98 11299.94 22798.45 133100.00 199.53 18098.75 17999.89 167
AdaColmapbinary99.44 7899.26 9099.95 51100.00 199.86 7999.70 30799.99 1398.53 7399.90 162100.00 195.34 222100.00 199.92 96100.00 1100.00 1
balanced_conf0399.43 7999.28 8699.85 8799.68 16199.68 10599.97 24399.28 25797.03 19999.96 12199.97 19897.90 14899.93 16799.77 126100.00 199.94 133
thisisatest051599.42 8099.31 8599.74 11999.59 20099.55 120100.00 199.46 9496.65 23599.92 157100.00 199.44 4599.85 19099.09 20799.63 15999.81 211
CANet99.40 8199.24 9499.89 7699.99 4999.76 93100.00 199.73 5698.40 7999.78 188100.00 195.28 22399.96 139100.00 199.99 10299.96 122
MVSMamba_PlusPlus99.39 8299.25 9199.80 10599.68 16199.59 11499.99 21199.30 24496.66 23399.96 12199.97 19897.89 14999.92 17099.76 128100.00 199.90 160
114514_t99.39 8299.25 9199.81 10099.97 9099.48 137100.00 199.42 14095.53 284100.00 1100.00 198.37 13699.95 15199.97 83100.00 1100.00 1
alignmvs99.38 8499.21 9899.91 7199.73 15399.92 50100.00 199.51 7697.61 149100.00 1100.00 199.06 8899.93 16799.83 11397.12 24999.90 160
131499.38 8499.19 10399.96 4298.88 30699.89 6799.24 35699.93 3098.88 4498.79 258100.00 197.02 188100.00 1100.00 1100.00 1100.00 1
thisisatest053099.37 8699.27 8799.69 12899.59 20099.41 144100.00 199.46 9496.46 24699.90 162100.00 199.44 4599.85 19098.97 21099.58 16199.80 226
bld_raw_conf0399.36 8799.21 9899.79 10899.65 17999.59 11499.99 21199.30 24496.58 23999.96 12199.97 19897.73 15999.89 17699.75 133100.00 199.90 160
xiu_mvs_v1_base_debu99.35 8899.21 9899.79 10899.67 17099.71 9999.78 28799.36 21498.13 100100.00 1100.00 197.00 192100.00 199.83 11399.07 16999.66 246
xiu_mvs_v1_base99.35 8899.21 9899.79 10899.67 17099.71 9999.78 28799.36 21498.13 100100.00 1100.00 197.00 192100.00 199.83 11399.07 16999.66 246
xiu_mvs_v1_base_debi99.35 8899.21 9899.79 10899.67 17099.71 9999.78 28799.36 21498.13 100100.00 1100.00 197.00 192100.00 199.83 11399.07 16999.66 246
ETV-MVS99.34 9199.24 9499.64 13699.58 20599.33 151100.00 199.25 27797.57 15599.96 121100.00 197.44 17899.79 20299.70 14599.65 15699.81 211
tttt051799.34 9199.23 9799.67 13199.57 20999.38 146100.00 199.46 9496.33 25799.89 165100.00 199.44 4599.84 19298.93 21299.46 16499.78 232
CS-MVS99.33 9399.27 8799.50 15599.99 4999.00 185100.00 199.13 32297.26 18599.96 121100.00 197.79 15799.64 22099.64 16299.67 15499.87 189
PVSNet_Blended_VisFu99.33 9399.18 10699.78 11399.82 12199.49 133100.00 199.95 1997.36 17599.63 200100.00 196.45 21099.95 15199.79 11999.65 15699.89 167
fmvsm_s_conf0.5_n_a99.32 9599.15 10899.81 10099.80 13899.47 138100.00 199.35 22598.22 91100.00 1100.00 195.21 22799.99 9599.96 8599.86 13799.98 109
iter_conf0599.32 9599.15 10899.82 9499.68 16199.61 11199.16 37099.27 26796.66 23399.96 12199.97 19897.89 14999.92 17099.76 128100.00 199.94 133
HyFIR lowres test99.32 9599.24 9499.58 14799.95 9699.26 158100.00 199.99 1396.72 22699.29 22399.91 23499.49 3899.47 25599.74 13498.08 216100.00 1
CS-MVS-test99.31 9899.27 8799.43 16499.99 4998.77 196100.00 199.19 29997.24 18699.96 121100.00 197.56 17099.70 21799.68 15399.81 14599.82 202
LS3D99.31 9899.13 11099.87 8199.99 4999.71 9999.55 32599.46 9497.32 18099.82 182100.00 196.85 19999.97 12699.14 202100.00 199.92 147
PVSNet94.91 1899.30 10099.25 9199.44 162100.00 198.32 227100.00 199.86 3898.04 107100.00 1100.00 196.10 213100.00 199.55 17599.73 149100.00 1
lupinMVS99.29 10199.16 10799.69 12899.45 24699.49 133100.00 199.15 31397.45 16999.97 117100.00 196.76 20099.76 20999.67 156100.00 199.81 211
CSCG99.28 10299.35 8299.05 20299.99 4997.15 290100.00 199.47 7997.44 17099.42 211100.00 197.83 156100.00 199.99 61100.00 1100.00 1
thres20099.27 10399.04 11899.96 4299.81 12799.90 60100.00 199.94 2297.31 18299.83 17499.96 21597.04 185100.00 199.62 16697.88 22699.98 109
OMC-MVS99.27 10399.38 7498.96 21099.95 9697.06 294100.00 199.40 19098.83 5399.88 167100.00 197.01 18999.86 18499.47 18399.84 14299.97 116
testing1199.26 10599.19 10399.46 15999.64 18598.61 207100.00 199.43 12496.94 20499.92 15799.94 22799.43 4999.97 12699.67 15697.79 23599.82 202
EIA-MVS99.26 10599.19 10399.45 16199.63 18798.75 197100.00 199.27 26796.93 20599.95 149100.00 197.47 17599.79 20299.74 13499.72 15099.82 202
tfpn200view999.26 10599.03 11999.96 4299.81 12799.89 67100.00 199.94 2297.23 18799.83 17499.96 21597.04 185100.00 199.59 17097.85 22899.98 109
thres40099.26 10599.03 11999.95 5199.81 12799.89 67100.00 199.94 2297.23 18799.83 17499.96 21597.04 185100.00 199.59 17097.85 22899.97 116
test_fmvsmconf0.1_n99.25 10999.05 11799.82 9498.92 30299.55 120100.00 199.23 28698.91 4199.75 19299.97 19894.79 23599.94 16399.94 9399.99 10299.97 116
thres100view90099.25 10999.01 12199.95 5199.81 12799.87 76100.00 199.94 2297.13 19299.83 17499.96 21597.01 189100.00 199.59 17097.85 22899.98 109
EPMVS99.25 10999.13 11099.60 14199.60 19699.20 16699.60 320100.00 196.93 20599.92 15799.36 31999.05 9099.71 21698.77 22198.94 17399.90 160
thres600view799.24 11299.00 12399.95 5199.81 12799.87 76100.00 199.94 2297.13 19299.83 17499.96 21597.01 189100.00 199.54 17897.77 23699.97 116
MVS99.22 11398.96 12999.98 2399.00 29399.95 3299.24 35699.94 2298.14 9998.88 248100.00 195.63 220100.00 199.85 109100.00 1100.00 1
fmvsm_s_conf0.5_n99.21 11499.01 12199.83 9299.84 11799.53 124100.00 199.38 20598.29 90100.00 1100.00 193.62 24999.99 9599.99 6199.93 12699.98 109
EC-MVSNet99.19 11599.09 11599.48 15899.42 25099.07 175100.00 199.21 29596.95 20399.96 121100.00 196.88 19899.48 25399.64 16299.79 14899.88 180
testing9199.18 11699.10 11399.41 16799.60 19698.43 213100.00 199.43 12496.76 21999.82 18299.92 23299.05 9099.98 11999.62 16697.67 24199.81 211
testing9999.18 11699.10 11399.41 16799.60 19698.43 213100.00 199.43 12496.76 21999.84 17199.92 23299.06 8899.98 11999.62 16697.67 24199.81 211
UWE-MVS99.18 11699.06 11699.51 15299.67 17098.80 194100.00 199.43 12496.80 21699.93 15699.86 24299.79 699.94 16397.78 26698.33 20199.80 226
ETVMVS99.16 11998.98 12699.69 12899.67 17099.56 119100.00 199.45 10296.36 25499.98 11299.95 22298.65 12499.64 22099.11 20697.63 24499.88 180
FE-MVS99.16 11998.99 12599.66 13499.65 17999.18 16999.58 32299.43 12495.24 29499.91 16099.59 29999.37 5799.97 12698.31 24499.81 14599.83 197
testing22299.14 12198.94 13499.73 12299.67 17099.51 128100.00 199.43 12496.90 21099.99 10699.90 23698.55 13099.86 18498.85 21697.18 24899.81 211
PMMVS99.12 12298.97 12899.58 14799.57 20998.98 187100.00 199.30 24497.14 19199.96 121100.00 196.53 20999.82 19699.70 14598.49 18599.94 133
jason99.11 12398.96 12999.59 14399.17 27399.31 154100.00 199.13 32297.38 17499.83 174100.00 195.54 22199.72 21599.57 17499.97 11599.74 237
jason: jason.
EPP-MVSNet99.10 12499.00 12399.40 17199.51 22998.68 20399.92 26299.43 12495.47 29099.65 199100.00 199.51 3299.76 20999.53 18098.00 21799.75 236
TESTMET0.1,199.08 12598.96 12999.44 16299.63 18799.38 146100.00 199.45 10295.53 28499.48 207100.00 199.71 1299.02 28296.84 29599.99 10299.91 149
IS-MVSNet99.08 12598.91 13899.59 14399.65 17999.38 14699.78 28799.24 28296.70 22899.51 205100.00 198.44 13499.52 24798.47 23898.39 19399.88 180
UA-Net99.06 12798.83 14499.74 11999.52 22499.40 14599.08 38299.45 10297.64 14299.83 174100.00 195.80 21699.94 16398.35 24299.80 14799.88 180
3Dnovator95.63 1499.06 12798.76 15199.96 4298.86 31099.90 6099.98 23799.93 3098.95 3598.49 277100.00 192.91 260100.00 199.71 142100.00 1100.00 1
mvsmamba99.05 12998.98 12699.27 19199.57 20998.10 242100.00 199.28 25795.92 27099.96 12199.97 19896.73 20299.89 17699.72 13899.65 15699.81 211
patch_mono-299.04 13099.79 696.81 32799.92 10490.47 375100.00 199.41 18698.95 35100.00 1100.00 199.78 7100.00 1100.00 1100.00 199.95 128
VNet99.04 13098.75 15299.90 7499.81 12799.75 9499.50 33199.47 7998.36 84100.00 199.99 18494.66 237100.00 199.90 9997.09 25099.96 122
sasdasda99.03 13298.73 15499.94 6399.75 15099.95 32100.00 199.30 24497.64 142100.00 1100.00 195.22 22599.97 12699.76 12896.90 25599.91 149
canonicalmvs99.03 13298.73 15499.94 6399.75 15099.95 32100.00 199.30 24497.64 142100.00 1100.00 195.22 22599.97 12699.76 12896.90 25599.91 149
test-LLR99.03 13298.91 13899.40 17199.40 25799.28 156100.00 199.45 10296.70 22899.42 21199.12 32899.31 6399.01 28396.82 29699.99 10299.91 149
PatchmatchNetpermissive99.03 13298.96 12999.26 19299.49 23798.33 22599.38 34399.45 10296.64 23699.96 12199.58 30199.49 3899.50 25197.63 27199.00 17299.93 145
Fangjinhua Wang, Silvano Galliani, Christoph Vogel, Pablo Speciale, Marc Pollefeys: PatchmatchNet: Learned Multi-View Patchmatch Stereo.
3Dnovator+95.58 1599.03 13298.71 15899.96 4298.99 29699.89 67100.00 199.51 7698.96 3298.32 285100.00 192.78 262100.00 199.87 106100.00 1100.00 1
CANet_DTU99.02 13798.90 14199.41 16799.88 11298.71 201100.00 199.29 25198.84 51100.00 1100.00 194.02 244100.00 198.08 25399.96 11899.52 252
PatchMatch-RL99.02 13798.78 14999.74 11999.99 4999.29 155100.00 1100.00 198.38 8099.89 16599.81 25693.14 25899.99 9597.85 26499.98 11299.95 128
MGCFI-Net99.01 13998.70 16099.93 6799.74 15299.94 41100.00 199.29 25197.60 152100.00 1100.00 195.10 22999.96 13999.74 13496.85 25799.91 149
FA-MVS(test-final)99.00 14098.75 15299.73 12299.63 18799.43 14299.83 27799.43 12495.84 27699.52 20499.37 31897.84 15499.96 13997.63 27199.68 15299.79 229
CHOSEN 1792x268899.00 14098.91 13899.25 19399.90 10897.79 266100.00 199.99 1398.79 6098.28 288100.00 193.63 24899.95 15199.66 16099.95 120100.00 1
DeepC-MVS97.84 599.00 14098.80 14899.60 14199.93 10199.03 180100.00 199.40 19098.61 7199.33 221100.00 192.23 27199.95 15199.74 13499.96 11899.83 197
Andreas Kuhn, Christian Sormann, Mattia Rossi, Oliver Erdler, Friedrich Fraundorfer: DeepC-MVS: Deep Confidence Prediction for Multi-View Stereo Reconstruction. 3DV 2020
baseline298.99 14398.93 13699.18 19799.26 27099.15 172100.00 199.46 9496.71 22796.79 343100.00 199.42 5299.25 27498.75 22399.94 12399.15 258
QAPM98.99 14398.66 16199.96 4299.01 28999.87 7699.88 27199.93 3097.99 11098.68 262100.00 193.17 256100.00 199.32 192100.00 1100.00 1
Vis-MVSNet (Re-imp)98.99 14398.89 14299.29 18699.64 18598.89 19199.98 23799.31 24096.74 22399.48 207100.00 198.11 14199.10 27898.39 24098.34 19899.89 167
tpmrst98.98 14698.93 13699.14 19999.61 19497.74 26799.52 32999.36 21496.05 26799.98 11299.64 28799.04 9399.86 18498.94 21198.19 21199.82 202
test-mter98.96 14798.82 14599.40 17199.40 25799.28 156100.00 199.45 10295.44 29399.42 21199.12 32899.70 1399.01 28396.82 29699.99 10299.91 149
diffmvspermissive98.96 14798.73 15499.63 13799.54 21499.16 171100.00 199.18 30697.33 17999.96 121100.00 194.60 23899.91 17399.66 16098.33 20199.82 202
Fangjinhua Wang, Qingshan Xu, Yew-Soon Ong, Marc Pollefeys: Lightweight and Accurate Multi-View Stereo With Confidence-Aware Diffusion Model. IEEE T-PAMI 2025
CDS-MVSNet98.96 14798.95 13399.01 20699.48 23998.36 22399.93 26199.37 20896.79 21799.31 22299.83 25099.77 998.91 29298.07 25597.98 21899.77 233
Khang Truong Giang, Soohwan Song, Sungho Jo: Curvature-guided dynamic scale networks for Multi-view Stereo. ICLR 2022
mamv498.95 15099.11 11298.46 23599.68 16195.67 31699.14 37599.27 26796.43 24799.94 15199.97 19897.79 15799.88 18299.77 126100.00 199.84 193
MVSFormer98.94 15198.82 14599.28 18999.45 24699.49 133100.00 199.13 32295.46 29199.97 117100.00 196.76 20098.59 32098.63 230100.00 199.74 237
MVS_Test98.93 15298.65 16299.77 11699.62 19299.50 13099.99 21199.19 29995.52 28699.96 12199.86 24296.54 20899.98 11998.65 22898.48 18699.82 202
baseline198.91 15398.61 16699.81 10099.71 15499.77 9299.78 28799.44 11697.51 16398.81 25699.99 18498.25 13799.76 20998.60 23395.41 27099.89 167
1112_ss98.91 15398.71 15899.51 15299.69 15798.75 19799.99 21199.15 31396.82 21498.84 253100.00 197.45 17699.89 17698.66 22697.75 23799.89 167
MSDG98.90 15598.63 16499.70 12799.92 10499.25 160100.00 199.37 20895.71 27899.40 217100.00 196.58 20599.95 15196.80 29899.94 12399.91 149
dcpmvs_298.87 15699.53 5996.90 32199.87 11490.88 37499.94 25999.07 34198.20 94100.00 1100.00 198.69 12399.86 184100.00 1100.00 199.95 128
DP-MVS98.86 15798.54 17299.81 10099.97 9099.45 13999.52 32999.40 19094.35 31898.36 281100.00 196.13 21299.97 12699.12 205100.00 1100.00 1
CostFormer98.84 15898.77 15099.04 20499.41 25297.58 27299.67 31299.35 22594.66 30799.96 12199.36 31999.28 7199.74 21299.41 18697.81 23299.81 211
Test_1112_low_res98.83 15998.60 16899.51 15299.69 15798.75 19799.99 21199.14 31896.81 21598.84 25399.06 33297.45 17699.89 17698.66 22697.75 23799.89 167
BH-w/o98.82 16098.81 14798.88 21599.62 19296.71 301100.00 199.28 25797.09 19498.81 256100.00 194.91 23399.96 13999.54 178100.00 199.96 122
mvs_anonymous98.80 16198.60 16899.38 17599.57 20999.24 162100.00 199.21 29595.87 27198.92 24599.82 25396.39 21199.03 28199.13 20498.50 18499.88 180
fmvsm_s_conf0.1_n98.77 16298.42 18099.82 9499.47 24299.52 127100.00 199.27 26797.53 159100.00 1100.00 189.73 30399.96 13999.84 11299.93 12699.97 116
TAMVS98.76 16398.73 15498.86 21699.44 24897.69 26899.57 32399.34 23196.57 24099.12 23399.81 25698.83 11599.16 27697.97 26197.91 22499.73 241
OpenMVScopyleft95.20 1798.76 16398.41 18199.78 11398.89 30599.81 8799.99 21199.76 4998.02 10898.02 303100.00 191.44 277100.00 199.63 16599.97 11599.55 250
dp98.72 16598.61 16699.03 20599.53 21797.39 27899.45 33599.39 20395.62 28199.94 15199.52 30998.83 11599.82 19696.77 30198.42 19099.89 167
fmvsm_s_conf0.1_n_a98.71 16698.36 18899.78 11399.09 27999.42 143100.00 199.26 27597.42 172100.00 1100.00 189.78 30199.96 13999.82 11899.85 14099.97 116
PVSNet_BlendedMVS98.71 16698.62 16598.98 20999.98 8699.60 112100.00 1100.00 197.23 187100.00 199.03 33796.57 20699.99 95100.00 194.75 29497.35 361
ADS-MVSNet98.70 16898.51 17599.28 18999.51 22998.39 21899.24 35699.44 11695.52 28699.96 12199.70 27197.57 16899.58 22897.11 28798.54 18299.88 180
baseline98.69 16998.45 17999.41 16799.52 22498.67 204100.00 199.17 31197.03 19999.13 232100.00 193.17 25699.74 21299.70 14598.34 19899.81 211
PCF-MVS98.23 398.69 16998.37 18699.62 13899.78 14599.02 18199.23 36199.06 34996.43 24798.08 297100.00 194.72 23699.95 15198.16 25199.91 12999.90 160
Andreas Kuhn, Shan Lin, Oliver Erdler: Plane Completion and Filtering for Multi-View Stereo Reconstruction. GCPR 2019
casdiffmvspermissive98.65 17198.38 18499.46 15999.52 22498.74 200100.00 199.15 31396.91 20899.05 240100.00 192.75 26399.83 19399.70 14598.38 19599.81 211
Fangjinhua Wang, Qingshan Xu, Yew-Soon Ong, Marc Pollefeys: Lightweight and Accurate Multi-View Stereo With Confidence-Aware Diffusion Model. IEEE T-PAMI 2025
casdiffmvs_mvgpermissive98.64 17298.39 18399.40 17199.50 23398.60 208100.00 199.22 28996.85 21299.10 234100.00 192.75 26399.78 20699.71 14298.35 19799.81 211
Fangjinhua Wang, Qingshan Xu, Yew-Soon Ong, Marc Pollefeys: Lightweight and Accurate Multi-View Stereo With Confidence-Aware Diffusion Model. IEEE T-PAMI 2025
tpm298.64 17298.58 17098.81 21999.42 25097.12 29199.69 30999.37 20893.63 33599.94 15199.67 27998.96 10199.47 25598.62 23297.95 22299.83 197
BH-untuned98.64 17298.65 16298.60 22999.59 20096.17 307100.00 199.28 25796.67 23298.41 280100.00 194.52 23999.83 19399.41 186100.00 199.81 211
test_cas_vis1_n_192098.63 17598.25 19299.77 11699.69 15799.32 152100.00 199.31 24098.84 5199.96 121100.00 187.42 33199.99 9599.14 20299.86 137100.00 1
test_fmvsmconf0.01_n98.60 17698.24 19599.67 13196.90 37499.21 16599.99 21199.04 35498.80 5799.57 20299.96 21590.12 29599.91 17399.89 10199.89 13199.90 160
tpmvs98.59 17798.38 18499.23 19499.69 15797.90 25899.31 35199.47 7994.52 31299.68 19899.28 32397.64 16599.89 17697.71 26898.17 21399.89 167
Effi-MVS+98.58 17898.24 19599.61 13999.60 19699.26 15897.85 39899.10 33196.22 26299.97 11799.89 23793.75 24699.77 20799.43 18498.34 19899.81 211
MVSTER98.58 17898.52 17498.77 22199.65 17999.68 105100.00 199.29 25195.63 28098.65 26399.80 25999.78 798.88 29898.59 23495.31 27497.73 309
CVMVSNet98.56 18098.47 17898.82 21799.11 27697.67 26999.74 29799.47 7997.57 15599.06 239100.00 195.72 21898.97 28898.21 25097.33 24799.83 197
kuosan98.55 18198.53 17398.62 22799.66 17796.16 308100.00 199.44 11693.93 32899.81 18599.98 18997.58 16699.81 19998.08 25398.28 20499.89 167
AllTest98.55 18198.40 18298.99 20799.93 10197.35 281100.00 199.40 19097.08 19699.09 23599.98 18993.37 25299.95 15196.94 29199.84 14299.68 244
DeepPCF-MVS98.03 498.54 18399.72 1994.98 35099.99 4984.94 389100.00 199.42 14099.98 1100.00 1100.00 198.11 141100.00 1100.00 1100.00 1100.00 1
EPNet_dtu98.53 18498.23 19899.43 16499.92 10499.01 18399.96 24999.47 7998.80 5799.96 12199.96 21598.56 12999.30 27187.78 38199.68 152100.00 1
Wanjuan Su, Wenbing Tao: Efficient Edge-Preserving Multi-View Stereo Network for Depth Estimation. AAAI 2023
myMVS_eth3d98.52 18598.51 17598.53 23299.50 23397.98 251100.00 199.57 6896.23 26098.07 298100.00 199.09 8697.81 36696.17 30997.96 22099.82 202
Vis-MVSNetpermissive98.52 18598.25 19299.34 17899.68 16198.55 21099.68 31199.41 18697.34 17899.94 151100.00 190.38 29499.70 21799.03 20998.84 17499.76 235
Jingyang Zhang, Yao Yao, Shiwei Li, Zixin Luo, Tian Fang: Visibility-aware Multiview Stereo Network. BMVC 2020
Effi-MVS+-dtu98.51 18798.86 14397.47 29799.77 14794.21 347100.00 198.94 36597.61 14999.91 16098.75 35595.89 21499.51 24999.36 18899.48 16398.68 264
SDMVSNet98.49 18898.08 20599.73 12299.82 12199.53 12499.99 21199.45 10297.62 14599.38 21899.86 24290.06 29899.88 18299.92 9696.61 26099.79 229
BH-RMVSNet98.46 18998.08 20599.59 14399.61 19499.19 167100.00 199.28 25797.06 19898.95 244100.00 188.99 31399.82 19698.83 219100.00 199.77 233
testing398.44 19098.37 18698.65 22599.51 22998.32 227100.00 199.62 6696.43 24797.93 30799.99 18499.11 8497.81 36694.88 32997.80 23399.82 202
ECVR-MVScopyleft98.43 19198.14 20199.32 18399.89 11098.21 23599.46 333100.00 198.38 8099.47 210100.00 187.91 32499.80 20199.35 18998.78 17699.94 133
cascas98.43 19198.07 20799.50 15599.65 17999.02 181100.00 199.22 28994.21 32199.72 19599.98 18992.03 27499.93 16799.68 15398.12 21499.54 251
test111198.42 19398.12 20299.29 18699.88 11298.15 23799.46 333100.00 198.36 8499.42 211100.00 187.91 32499.79 20299.31 19398.78 17699.94 133
ab-mvs98.42 19398.02 21199.61 13999.71 15499.00 18599.10 37999.64 6496.70 22899.04 24199.81 25690.64 28899.98 11999.64 16297.93 22399.84 193
UGNet98.41 19598.11 20399.31 18599.54 21498.55 21099.18 364100.00 198.64 7099.79 18699.04 33587.61 329100.00 199.30 19499.89 13199.40 255
Wanjuan Su, Qingshan Xu, Wenbing Tao: Uncertainty-guided Multi-view Stereo Network for Depth Estimation. IEEE Transactions on Circuits and Systems for Video Technology, 2022
Fast-Effi-MVS+98.40 19698.02 21199.55 15199.63 18799.06 177100.00 199.15 31395.07 29699.42 21199.95 22293.26 25599.73 21497.44 27798.24 20799.87 189
Fast-Effi-MVS+-dtu98.38 19798.56 17197.82 28899.58 20594.44 344100.00 199.16 31296.75 22199.51 20599.63 29195.03 23199.60 22297.71 26899.67 15499.42 254
test_fmvs198.37 19898.04 20999.34 17899.84 11798.07 244100.00 199.00 36098.85 49100.00 1100.00 185.11 35199.96 13999.69 15299.88 133100.00 1
miper_enhance_ethall98.33 19998.27 19198.51 23399.66 17799.04 179100.00 199.22 28997.53 15998.51 27599.38 31799.49 3898.75 30898.02 25792.61 31397.76 271
SCA98.30 20097.98 21399.23 19499.41 25298.25 23299.99 21199.45 10296.91 20899.76 19199.58 30189.65 30599.54 24198.31 24498.79 17599.91 149
XVG-OURS98.30 20098.36 18898.13 26399.58 20595.91 311100.00 199.36 21498.69 6599.23 225100.00 191.20 28099.92 17099.34 19097.82 23198.56 267
dongtai98.29 20298.25 19298.42 23999.58 20595.86 313100.00 199.44 11693.46 34099.69 19799.97 19897.53 17199.51 24996.28 30898.27 20699.89 167
COLMAP_ROBcopyleft97.10 798.29 20298.17 20098.65 22599.94 9997.39 27899.30 35299.40 19095.64 27997.75 316100.00 192.69 26799.95 15198.89 21499.92 12898.62 266
Johannes L. Schönberger, Enliang Zheng, Marc Pollefeys, Jan-Michael Frahm: Pixelwise View Selection for Unstructured Multi-View Stereo. ECCV 2016
ADS-MVSNet298.28 20498.51 17597.62 29399.51 22995.03 32499.24 35699.41 18695.52 28699.96 12199.70 27197.57 16897.94 36397.11 28798.54 18299.88 180
XVG-OURS-SEG-HR98.27 20598.31 19098.14 26099.59 20095.92 310100.00 199.36 21498.48 7599.21 226100.00 189.27 31099.94 16399.76 12899.17 16698.56 267
tpm98.24 20698.22 19998.32 24799.13 27595.79 31499.53 32899.12 32895.20 29599.96 12199.36 31997.58 16699.28 27397.41 27996.67 25899.88 180
cl2298.23 20798.11 20398.58 23199.82 12199.01 183100.00 199.28 25796.92 20798.33 28499.21 32598.09 14398.97 28898.72 22492.61 31397.76 271
TR-MVS98.14 20897.74 22099.33 18199.59 20098.28 23099.27 35399.21 29596.42 25099.15 23199.94 22788.87 31699.79 20298.88 21598.29 20399.93 145
test0.0.03 198.12 20998.03 21098.39 24199.11 27698.07 244100.00 199.93 3096.70 22896.91 33999.95 22299.31 6398.19 34391.93 35598.44 18898.91 262
GeoE98.06 21097.65 22599.29 18699.47 24298.41 215100.00 199.19 29994.85 30198.88 248100.00 191.21 27999.59 22497.02 28998.19 21199.88 180
tpm cat198.05 21197.76 21998.92 21299.50 23397.10 29399.77 29299.30 24490.20 37599.72 19598.71 35697.71 16199.86 18496.75 30298.20 21099.81 211
PS-MVSNAJss98.03 21298.06 20897.94 28297.63 35597.33 28499.89 26999.23 28696.27 25998.03 30199.59 29998.75 12098.78 30398.52 23694.61 29797.70 323
CR-MVSNet98.02 21397.71 22398.93 21199.31 26498.86 19299.13 37699.00 36096.53 24399.96 12198.98 34196.94 19598.10 35391.18 36098.40 19199.84 193
EI-MVSNet97.98 21497.93 21498.16 25999.11 27697.84 26399.74 29799.29 25194.39 31798.65 263100.00 197.21 18398.88 29897.62 27395.31 27497.75 281
FIs97.95 21597.73 22298.62 22798.53 32299.24 162100.00 199.43 12496.74 22397.87 31199.82 25395.27 22498.89 29598.78 22093.07 30897.74 303
Anonymous20240521197.87 21697.53 22798.90 21399.81 12796.70 30299.35 34699.46 9492.98 35198.83 25599.99 18490.63 289100.00 199.70 14597.03 251100.00 1
FC-MVSNet-test97.84 21797.63 22698.45 23798.30 33299.05 178100.00 199.43 12496.63 23897.61 32299.82 25395.19 22898.57 32398.64 22993.05 30997.73 309
Patchmatch-test97.83 21897.42 23099.06 20099.08 28097.66 27098.66 39299.21 29593.65 33498.25 29299.58 30199.47 4299.57 22990.25 36998.59 18199.95 128
sd_testset97.81 21997.48 22898.79 22099.82 12196.80 29999.32 34899.45 10297.62 14599.38 21899.86 24285.56 34999.77 20799.72 13896.61 26099.79 229
miper_ehance_all_eth97.81 21997.66 22498.23 25299.49 23798.37 22199.99 21199.11 32994.78 30298.25 29299.21 32598.18 13998.57 32397.35 28392.61 31397.76 271
test_vis1_n_192097.77 22197.24 24299.34 17899.79 14298.04 248100.00 199.25 27798.88 44100.00 1100.00 177.52 382100.00 199.88 10399.85 140100.00 1
HQP-MVS97.73 22297.85 21697.39 29999.07 28194.82 328100.00 199.40 19099.04 1699.17 22799.97 19888.61 31999.57 22999.79 11995.58 26497.77 269
GA-MVS97.72 22397.27 24099.06 20099.24 27197.93 257100.00 199.24 28295.80 27798.99 24399.64 28789.77 30299.36 26695.12 32697.62 24599.89 167
HQP_MVS97.71 22497.82 21897.37 30099.00 29394.80 331100.00 199.40 19099.00 2799.08 23799.97 19888.58 32199.55 23899.79 11995.57 26897.76 271
nrg03097.64 22597.27 24098.75 22298.34 32799.53 124100.00 199.22 28996.21 26398.27 29099.95 22294.40 24098.98 28699.23 19989.78 34997.75 281
TAPA-MVS96.40 1097.64 22597.37 23498.45 23799.94 9995.70 315100.00 199.40 19097.65 14099.53 203100.00 199.31 6399.66 21980.48 396100.00 1100.00 1
Andrea Romanoni, Matteo Matteucci: TAPA-MVS: Textureless-Aware PAtchMatch Multi-View Stereo. ICCV 2019
CLD-MVS97.64 22597.74 22097.36 30199.01 28994.76 336100.00 199.34 23199.30 499.00 24299.97 19887.49 33099.57 22999.96 8595.58 26497.75 281
Zhaoxin Li, Wangmeng Zuo, Zhaoqi Wang, Lei Zhang: Confidence-based Large-scale Dense Multi-view Stereo. IEEE Transaction on Image Processing, 2020
D2MVS97.63 22897.83 21797.05 31298.83 31394.60 340100.00 199.82 4096.89 21198.28 28899.03 33794.05 24299.47 25598.58 23594.97 29297.09 367
c3_l97.58 22997.42 23098.06 27099.48 23998.16 23699.96 24999.10 33194.54 31198.13 29699.20 32797.87 15198.25 34297.28 28491.20 33797.75 281
IterMVS-LS97.56 23097.44 22997.92 28599.38 26197.90 25899.89 26999.10 33194.41 31698.32 28599.54 30897.21 18398.11 35097.50 27591.62 32997.75 281
Fangjinhua Wang, Silvano Galliani, Christoph Vogel, Marc Pollefeys: IterMVS: Iterative Probability Estimation for Efficient Multi-View Stereo.
test_djsdf97.55 23197.38 23398.07 26697.50 36397.99 250100.00 199.13 32295.46 29198.47 27899.85 24792.01 27598.59 32098.63 23095.36 27297.62 344
dmvs_re97.54 23297.88 21596.54 33299.55 21390.35 37699.86 27399.46 9497.00 20199.41 216100.00 190.78 28799.30 27199.60 16995.24 27999.96 122
cl____97.54 23297.32 23698.18 25699.47 24298.14 239100.00 199.10 33194.16 32497.60 32399.63 29197.52 17298.65 31496.47 30391.97 32597.76 271
IB-MVS96.24 1297.54 23296.95 24799.33 18199.67 17098.10 242100.00 199.47 7997.42 17299.26 22499.69 27498.83 11599.89 17699.43 18478.77 393100.00 1
Christian Sormann, Mattia Rossi, Andreas Kuhn and Friedrich Fraundorfer: IB-MVS: An Iterative Algorithm for Deep Multi-View Stereo based on Binary Decisions. BMVC 2021
DIV-MVS_self_test97.52 23597.35 23598.05 27499.46 24598.11 240100.00 199.10 33194.21 32197.62 32199.63 29197.65 16498.29 33996.47 30391.98 32497.76 271
eth_miper_zixun_eth97.47 23697.28 23898.06 27099.41 25297.94 25699.62 31899.08 33794.46 31598.19 29599.56 30596.91 19798.50 32896.78 29991.49 33297.74 303
test_fmvs1_n97.43 23796.86 25099.15 19899.68 16197.48 27599.99 21198.98 36398.82 55100.00 1100.00 174.85 38799.96 13999.67 15699.70 151100.00 1
LFMVS97.42 23896.62 25999.81 10099.80 13899.50 13099.16 37099.56 7094.48 314100.00 1100.00 179.35 377100.00 199.89 10197.37 24699.94 133
miper_lstm_enhance97.40 23997.28 23897.75 29099.48 23997.52 273100.00 199.07 34194.08 32598.01 30499.61 29797.38 18097.98 36196.44 30691.47 33497.76 271
RPSCF97.37 24098.24 19594.76 35399.80 13884.57 39099.99 21199.05 35194.95 29999.82 182100.00 194.03 243100.00 198.15 25298.38 19599.70 242
ACMM97.17 697.37 24097.40 23297.29 30599.01 28994.64 339100.00 199.25 27798.07 10698.44 27999.98 18987.38 33299.55 23899.25 19695.19 28297.69 327
Qingshan Xu and Wenbing Tao: Multi-Scale Geometric Consistency Guided Multi-View Stereo. CVPR 2019
LPG-MVS_test97.31 24297.32 23697.28 30698.85 31194.60 340100.00 199.37 20897.35 17698.85 25199.98 18986.66 33899.56 23399.55 17595.26 27697.70 323
FMVSNet397.30 24396.95 24798.37 24399.65 17999.25 16099.71 30599.28 25794.23 31998.53 27298.91 34893.30 25498.11 35095.31 32293.60 30297.73 309
UniMVSNet (Re)97.29 24496.85 25198.59 23098.49 32399.13 173100.00 199.42 14096.52 24498.24 29498.90 34994.93 23298.89 29597.54 27487.61 36797.75 281
OPM-MVS97.21 24597.18 24597.32 30498.08 34294.66 337100.00 199.28 25798.65 6998.92 24599.98 18986.03 34599.56 23398.28 24895.41 27097.72 315
Ray L. Khuboni, Hongjun Xu: Octagram Propagation Matching for Multi-Scale View Stereopsis (OPM-MVS).
ACMP97.00 897.19 24697.16 24697.27 30898.97 29894.58 343100.00 199.32 23597.97 11497.45 32799.98 18985.79 34799.56 23399.70 14595.24 27997.67 333
Qingshan Xu and Wenbing Tao: Planar Prior Assisted PatchMatch Multi-View Stereo. AAAI 2020
pmmvs497.17 24796.80 25298.27 24997.68 35498.64 206100.00 199.18 30694.22 32098.55 27099.71 26893.67 24798.47 33195.66 31692.57 31697.71 322
anonymousdsp97.16 24896.88 24998.00 27897.08 37398.06 24699.81 28199.15 31394.58 30997.84 31299.62 29590.49 29198.60 31897.98 25895.32 27397.33 362
UniMVSNet_NR-MVSNet97.16 24896.80 25298.22 25398.38 32698.41 215100.00 199.45 10296.14 26597.76 31399.64 28795.05 23098.50 32897.98 25886.84 37197.75 281
XXY-MVS97.14 25096.63 25898.67 22498.65 31698.92 19099.54 32799.29 25195.57 28397.63 31999.83 25087.79 32899.35 26898.39 24092.95 31097.75 281
WR-MVS97.09 25196.64 25798.46 23598.43 32499.09 17499.97 24399.33 23395.62 28197.76 31399.67 27991.17 28198.56 32598.49 23789.28 35597.74 303
JIA-IIPM97.09 25196.34 27399.36 17698.88 30698.59 20999.81 28199.43 12484.81 39199.96 12190.34 40198.55 13099.52 24797.00 29098.28 20499.98 109
jajsoiax97.07 25396.79 25497.89 28697.28 37197.12 29199.95 25599.19 29996.55 24197.31 33099.69 27487.35 33498.91 29298.70 22595.12 28797.66 334
MIMVSNet97.06 25496.73 25598.05 27499.38 26196.64 30498.47 39499.35 22593.41 34199.48 20798.53 36389.66 30497.70 37294.16 33898.11 21599.80 226
X-MVStestdata97.04 25596.06 28499.98 23100.00 199.94 41100.00 199.75 5298.67 67100.00 166.97 41299.16 80100.00 1100.00 1100.00 1100.00 1
h-mvs3397.03 25696.53 26298.51 23399.79 14295.90 31299.45 33599.45 10298.21 92100.00 199.78 26297.49 17399.99 9599.72 13874.92 39599.65 249
VPA-MVSNet97.03 25696.43 26898.82 21798.64 31799.32 15299.38 34399.47 7996.73 22598.91 24798.94 34687.00 33699.40 26499.23 19989.59 35097.76 271
WB-MVSnew97.02 25897.24 24296.37 33699.44 24897.36 280100.00 199.43 12496.12 26699.35 22099.89 23793.60 25098.42 33488.91 38098.39 19393.33 395
mvs_tets97.00 25996.69 25697.94 28297.41 37097.27 28699.60 32099.18 30696.51 24597.35 32999.69 27486.53 34098.91 29298.84 21795.09 28897.65 338
gg-mvs-nofinetune96.95 26096.10 28299.50 15599.41 25299.36 15099.07 38499.52 7283.69 39399.96 12183.60 409100.00 199.20 27599.68 15399.99 10299.96 122
Anonymous2024052996.93 26196.22 27899.05 20299.79 14297.30 28599.16 37099.47 7988.51 38198.69 261100.00 183.50 362100.00 199.83 11397.02 25299.83 197
DU-MVS96.93 26196.49 26598.22 25398.31 33098.41 215100.00 199.37 20896.41 25197.76 31399.65 28392.14 27298.50 32897.98 25886.84 37197.75 281
Patchmtry96.81 26396.37 27198.14 26099.31 26498.55 21098.91 38799.00 36090.45 37197.92 30898.98 34196.94 19598.12 34894.27 33591.53 33197.75 281
hse-mvs296.79 26496.38 27098.04 27699.68 16195.54 31899.81 28199.42 14098.21 92100.00 199.80 25997.49 17399.46 25999.72 13873.27 39899.12 259
ACMH96.25 1196.77 26596.62 25997.21 30998.96 29994.43 34599.64 31499.33 23397.43 17196.55 34899.97 19883.52 36199.54 24199.07 20895.13 28697.66 334
Qingshan Xu and Wenbing Tao: Multi-Scale Geometric Consistency Guided Multi-View Stereo. CVPR 2019
IterMVS96.76 26696.46 26797.63 29199.41 25296.89 29699.99 21199.13 32294.74 30597.59 32499.66 28189.63 30798.28 34095.71 31492.31 31997.72 315
Fangjinhua Wang, Silvano Galliani, Christoph Vogel, Marc Pollefeys: IterMVS: Iterative Probability Estimation for Efficient Multi-View Stereo.
CP-MVSNet96.73 26796.25 27698.18 25698.21 33798.67 20499.77 29299.32 23595.06 29797.20 33399.65 28390.10 29698.19 34398.06 25688.90 35897.66 334
WR-MVS_H96.73 26796.32 27597.95 28198.26 33497.88 26099.72 30499.43 12495.06 29796.99 33698.68 35893.02 25998.53 32697.43 27888.33 36397.43 357
IterMVS-SCA-FT96.72 26996.42 26997.62 29399.40 25796.83 29899.99 21199.14 31894.65 30897.55 32599.72 26689.65 30598.31 33895.62 31892.05 32297.73 309
v2v48296.70 27096.18 27998.27 24998.04 34398.39 218100.00 199.13 32294.19 32398.58 26899.08 33190.48 29298.67 31295.69 31590.44 34597.75 281
test_vis1_n96.69 27195.81 29499.32 18399.14 27497.98 25199.97 24398.98 36398.45 77100.00 1100.00 166.44 39899.99 9599.78 12599.57 162100.00 1
V4296.65 27296.16 28198.11 26598.17 34098.23 23399.99 21199.09 33693.97 32698.74 26099.05 33491.09 28298.82 30195.46 32089.90 34797.27 363
EU-MVSNet96.63 27396.53 26296.94 31997.59 35996.87 29799.76 29499.47 7996.35 25596.85 34199.78 26292.57 26896.27 38695.33 32191.08 33897.68 329
NR-MVSNet96.63 27396.04 28598.38 24298.31 33098.98 18799.22 36399.35 22595.87 27194.43 37199.65 28392.73 26598.40 33596.78 29988.05 36497.75 281
XVG-ACMP-BASELINE96.60 27596.52 26496.84 32598.41 32593.29 35699.99 21199.32 23597.76 13298.51 27599.29 32281.95 36899.54 24198.40 23995.03 28997.68 329
VDD-MVS96.58 27695.99 28798.34 24599.52 22495.33 31999.18 36499.38 20596.64 23699.77 189100.00 172.51 392100.00 1100.00 196.94 25499.70 242
tt080596.52 27796.23 27797.40 29899.30 26793.55 35299.32 34899.45 10296.75 22197.88 31099.99 18479.99 37599.59 22497.39 28195.98 26399.06 261
LCM-MVSNet-Re96.52 27797.21 24494.44 35499.27 26885.80 38799.85 27596.61 40495.98 26892.75 37898.48 36593.97 24597.55 37399.58 17398.43 18999.98 109
our_test_396.51 27996.35 27296.98 31797.61 35795.05 32399.98 23799.01 35994.68 30696.77 34599.06 33295.87 21598.14 34691.81 35692.37 31897.75 281
MVP-Stereo96.51 27996.48 26696.60 33195.65 38594.25 34698.84 38998.16 38195.85 27595.23 36299.04 33592.54 26999.13 27792.98 34899.98 11296.43 379
Qingsong Yan: MVP-Stereo: A Parallel Multi-View Patchmatch Stereo Method with Dilation Matching for Photogrammetric Application.
v114496.51 27995.97 28998.13 26397.98 34698.04 24899.99 21199.08 33793.51 33998.62 26698.98 34190.98 28698.62 31593.79 34290.79 34197.74 303
ACMH+96.20 1396.49 28296.33 27497.00 31599.06 28593.80 35099.81 28199.31 24097.32 18095.89 35999.97 19882.62 36699.54 24198.34 24394.63 29697.65 338
TranMVSNet+NR-MVSNet96.45 28396.01 28697.79 28998.00 34597.62 271100.00 199.35 22595.98 26897.31 33099.64 28790.09 29798.00 36096.89 29486.80 37497.75 281
ET-MVSNet_ETH3D96.41 28495.48 31499.20 19699.81 12799.75 94100.00 199.02 35797.30 18478.33 401100.00 197.73 15997.94 36399.70 14587.41 36899.92 147
VPNet96.41 28495.76 29998.33 24698.61 31898.30 22999.48 33299.45 10296.98 20298.87 25099.88 23981.57 36998.93 29099.22 20187.82 36697.76 271
PVSNet_093.57 1996.41 28495.74 30098.41 24099.84 11795.22 321100.00 1100.00 198.08 10597.55 32599.78 26284.40 354100.00 1100.00 181.99 386100.00 1
v14419296.40 28795.81 29498.17 25897.89 34998.11 24099.99 21199.06 34993.39 34298.75 25999.09 33090.43 29398.66 31393.10 34790.55 34497.75 281
VDDNet96.39 28895.55 30998.90 21399.27 26897.45 27699.15 37399.92 3491.28 36499.98 112100.00 173.55 388100.00 199.85 10996.98 25399.24 256
tfpnnormal96.36 28995.69 30598.37 24398.55 32098.71 20199.69 30999.45 10293.16 34996.69 34799.71 26888.44 32398.99 28594.17 33691.38 33597.41 358
v896.35 29095.73 30198.21 25598.11 34198.23 23399.94 25999.07 34192.66 35798.29 28799.00 34091.46 27698.77 30694.17 33688.83 36097.62 344
PS-CasMVS96.34 29195.78 29898.03 27798.18 33998.27 23199.71 30599.32 23594.75 30396.82 34299.65 28386.98 33798.15 34597.74 26788.85 35997.66 334
LTVRE_ROB95.29 1696.32 29296.10 28296.99 31698.55 32093.88 34999.45 33599.28 25794.50 31396.46 34999.52 30984.86 35299.48 25397.26 28595.03 28997.59 348
Andreas Kuhn, Heiko Hirschmüller, Daniel Scharstein, Helmut Mayer: A TV Prior for High-Quality Scalable Multi-View Stereo Reconstruction. International Journal of Computer Vision 2016
Anonymous2023121196.29 29395.70 30298.07 26699.80 13897.49 27499.15 37399.40 19089.11 37897.75 31699.45 31488.93 31598.98 28698.26 24989.47 35297.73 309
v14896.29 29395.84 29397.63 29197.74 35296.53 305100.00 199.07 34193.52 33898.01 30499.42 31691.22 27898.60 31896.37 30787.22 37097.75 281
AUN-MVS96.26 29595.67 30698.06 27099.68 16195.60 31799.82 28099.42 14096.78 21899.88 16799.80 25994.84 23499.47 25597.48 27673.29 39799.12 259
FMVSNet296.22 29695.60 30898.06 27099.53 21798.33 22599.45 33599.27 26793.71 33098.03 30198.84 35184.23 35698.10 35393.97 34093.40 30597.73 309
LF4IMVS96.19 29796.18 27996.23 33998.26 33492.09 366100.00 197.89 39197.82 12697.94 30699.87 24082.71 36599.38 26597.41 27993.71 30197.20 364
v119296.18 29895.49 31298.26 25198.01 34498.15 23799.99 21199.08 33793.36 34398.54 27198.97 34489.47 30898.89 29591.15 36190.82 34097.75 281
testgi96.18 29895.93 29096.93 32098.98 29794.20 348100.00 199.07 34197.16 19096.06 35699.86 24284.08 35997.79 36990.38 36897.80 23398.81 263
Syy-MVS96.17 30096.57 26195.00 34899.50 23387.37 385100.00 199.57 6896.23 26098.07 298100.00 192.41 27097.81 36685.34 38697.96 22099.82 202
ppachtmachnet_test96.17 30095.89 29197.02 31497.61 35795.24 32099.99 21199.24 28293.31 34596.71 34699.62 29594.34 24198.07 35589.87 37092.30 32097.75 281
v192192096.16 30295.50 31098.14 26097.88 35097.96 25499.99 21199.07 34193.33 34498.60 26799.24 32489.37 30998.71 31091.28 35990.74 34297.75 281
Baseline_NR-MVSNet96.16 30295.70 30297.56 29698.28 33396.79 300100.00 197.86 39291.93 36197.63 31999.47 31392.14 27298.35 33797.13 28686.83 37397.54 351
v1096.14 30495.50 31098.07 26698.19 33897.96 25499.83 27799.07 34192.10 36098.07 29898.94 34691.07 28398.61 31692.41 35489.82 34897.63 342
OurMVSNet-221017-096.14 30495.98 28896.62 33097.49 36593.44 35499.92 26298.16 38195.86 27397.65 31899.95 22285.71 34898.78 30394.93 32894.18 30097.64 341
GBi-Net96.07 30695.80 29696.89 32299.53 21794.87 32599.18 36499.27 26793.71 33098.53 27298.81 35284.23 35698.07 35595.31 32293.60 30297.72 315
test196.07 30695.80 29696.89 32299.53 21794.87 32599.18 36499.27 26793.71 33098.53 27298.81 35284.23 35698.07 35595.31 32293.60 30297.72 315
v7n96.06 30895.42 31897.99 28097.58 36097.35 28199.86 27399.11 32992.81 35697.91 30999.49 31190.99 28598.92 29192.51 35188.49 36297.70 323
PEN-MVS96.01 30995.48 31497.58 29597.74 35297.26 28799.90 26699.29 25194.55 31096.79 34399.55 30687.38 33297.84 36596.92 29387.24 36997.65 338
v124095.96 31095.25 31998.07 26697.91 34897.87 26299.96 24999.07 34193.24 34798.64 26598.96 34588.98 31498.61 31689.58 37490.92 33997.75 281
pmmvs595.94 31195.61 30796.95 31897.42 36894.66 337100.00 198.08 38593.60 33697.05 33599.43 31587.02 33598.46 33295.76 31292.12 32197.72 315
PatchT95.90 31294.95 32698.75 22299.03 28798.39 21899.08 38299.32 23585.52 38999.96 12194.99 39397.94 14598.05 35980.20 39798.47 18799.81 211
USDC95.90 31295.70 30296.50 33398.60 31992.56 364100.00 198.30 37997.77 13096.92 33799.94 22781.25 37299.45 26093.54 34494.96 29397.49 354
pm-mvs195.76 31495.01 32498.00 27898.23 33697.45 27699.24 35699.04 35493.13 35095.93 35899.72 26686.28 34198.84 30095.62 31887.92 36597.72 315
SixPastTwentyTwo95.71 31595.49 31296.38 33597.42 36893.01 35799.84 27698.23 38094.75 30395.98 35799.97 19885.35 35098.43 33394.71 33093.17 30797.69 327
MS-PatchMatch95.66 31695.87 29295.05 34697.80 35189.25 37998.88 38899.30 24496.35 25596.86 34099.01 33981.35 37199.43 26193.30 34699.98 11296.46 378
DTE-MVSNet95.52 31794.99 32597.08 31197.49 36596.45 306100.00 199.25 27793.82 32996.17 35499.57 30487.81 32797.18 37494.57 33186.26 37697.62 344
TinyColmap95.50 31895.12 32396.64 32998.69 31593.00 35899.40 34197.75 39496.40 25296.14 35599.87 24079.47 37699.50 25193.62 34394.72 29597.40 359
K. test v395.46 31995.14 32296.40 33497.53 36293.40 35599.99 21199.23 28695.49 28992.70 37999.73 26584.26 35598.12 34893.94 34193.38 30697.68 329
FMVSNet595.32 32095.43 31794.99 34999.39 26092.99 35999.25 35599.24 28290.45 37197.44 32898.45 36695.78 21794.39 39587.02 38291.88 32697.59 348
UniMVSNet_ETH3D95.28 32194.41 32797.89 28698.91 30395.14 32299.13 37699.35 22592.11 35997.17 33499.66 28170.28 39599.36 26697.88 26395.18 28399.16 257
RPMNet95.26 32293.82 33099.56 15099.31 26498.86 19299.13 37699.42 14079.82 39899.96 12195.13 39195.69 21999.98 11977.54 40198.40 19199.84 193
DSMNet-mixed95.18 32395.21 32195.08 34596.03 38090.21 37799.65 31393.64 41092.91 35298.34 28397.40 38290.05 29995.51 39291.02 36297.86 22799.51 253
test_fmvs295.17 32495.23 32095.01 34798.95 30188.99 38199.99 21197.77 39397.79 12898.58 26899.70 27173.36 38999.34 26995.88 31195.03 28996.70 375
TransMVSNet (Re)94.78 32593.72 33197.93 28498.34 32797.88 26099.23 36197.98 38991.60 36294.55 36899.71 26887.89 32698.36 33689.30 37684.92 37797.56 350
FMVSNet194.45 32693.63 33396.89 32298.87 30994.87 32599.18 36499.27 26790.95 36897.31 33098.81 35272.89 39198.07 35592.61 34992.81 31197.72 315
test_040294.35 32793.70 33296.32 33797.92 34793.60 35199.61 31998.85 37288.19 38494.68 36799.48 31280.01 37498.58 32289.39 37595.15 28596.77 373
UnsupCasMVSNet_eth94.25 32893.89 32995.34 34497.63 35592.13 36599.73 30299.36 21494.88 30092.78 37698.63 36082.72 36496.53 38294.57 33184.73 37897.36 360
KD-MVS_2432*160094.15 32993.08 33897.35 30299.53 21797.83 26499.63 31699.19 29992.88 35396.29 35197.68 37998.84 11396.70 37889.73 37163.92 40297.53 352
miper_refine_blended94.15 32993.08 33897.35 30299.53 21797.83 26499.63 31699.19 29992.88 35396.29 35197.68 37998.84 11396.70 37889.73 37163.92 40297.53 352
MVS-HIRNet94.12 33192.73 34498.29 24899.33 26395.95 30999.38 34399.19 29974.54 40198.26 29186.34 40586.07 34399.06 28091.60 35899.87 13699.85 192
new_pmnet94.11 33293.47 33596.04 34196.60 37792.82 36099.97 24398.91 36890.21 37495.26 36198.05 37785.89 34698.14 34684.28 38892.01 32397.16 365
pmmvs693.64 33392.87 34195.94 34297.47 36791.41 37198.92 38699.02 35787.84 38595.01 36499.61 29777.24 38398.77 30694.33 33486.41 37597.63 342
Patchmatch-RL test93.49 33493.63 33393.05 36591.78 39683.41 39198.21 39696.95 40191.58 36391.05 38197.64 38199.40 5595.83 39094.11 33981.95 38799.91 149
Anonymous2023120693.45 33593.17 33794.30 35795.00 39089.69 37899.98 23798.43 37893.30 34694.50 37098.59 36190.52 29095.73 39177.46 40290.73 34397.48 356
Anonymous2024052193.29 33692.76 34394.90 35295.64 38691.27 37299.97 24398.82 37387.04 38694.71 36698.19 37283.86 36096.80 37784.04 38992.56 31796.64 376
dmvs_testset93.27 33795.48 31486.65 37798.74 31468.42 40699.92 26298.91 36896.19 26493.28 375100.00 191.06 28491.67 40289.64 37391.54 33099.86 191
test20.0393.11 33892.85 34293.88 36295.19 38991.83 367100.00 198.87 37193.68 33392.76 37798.88 35089.20 31192.71 40077.88 40089.19 35697.09 367
test_vis1_rt93.10 33992.93 34093.58 36399.63 18785.07 38899.99 21193.71 40997.49 16590.96 38297.10 38360.40 40099.95 15199.24 19897.90 22595.72 385
APD_test193.07 34094.14 32889.85 37199.18 27272.49 39999.76 29498.90 37092.86 35596.35 35099.94 22775.56 38599.91 17386.73 38397.98 21897.15 366
EG-PatchMatch MVS92.94 34192.49 34594.29 35895.87 38287.07 38699.07 38498.11 38493.19 34888.98 38898.66 35970.89 39399.08 27992.43 35395.21 28196.72 374
MDA-MVSNet_test_wron92.61 34291.09 35097.19 31096.71 37697.26 287100.00 199.14 31888.61 38067.90 40798.32 37189.03 31296.57 38190.47 36789.59 35097.74 303
YYNet192.44 34390.92 35197.03 31396.20 37897.06 29499.99 21199.14 31888.21 38367.93 40698.43 36888.63 31896.28 38590.64 36389.08 35797.74 303
MIMVSNet191.96 34491.20 34794.23 35994.94 39191.69 36999.34 34799.22 28988.23 38294.18 37298.45 36675.52 38693.41 39979.37 39891.49 33297.60 347
TDRefinement91.93 34590.48 35396.27 33881.60 40992.65 36399.10 37997.61 39793.96 32793.77 37399.85 24780.03 37399.53 24697.82 26570.59 39996.63 377
OpenMVS_ROBcopyleft88.34 2091.89 34691.12 34894.19 36095.55 38787.63 38499.26 35498.03 38686.61 38890.65 38696.82 38570.14 39698.78 30386.54 38496.50 26296.15 380
N_pmnet91.88 34793.37 33687.40 37697.24 37266.33 40999.90 26691.05 41289.77 37795.65 36098.58 36290.05 29998.11 35085.39 38592.72 31297.75 281
pmmvs-eth3d91.73 34890.67 35294.92 35191.63 39892.71 36299.90 26698.54 37791.19 36588.08 39095.50 38979.31 37896.13 38790.55 36681.32 38995.91 384
MDA-MVSNet-bldmvs91.65 34989.94 35796.79 32896.72 37596.70 30299.42 34098.94 36588.89 37966.97 40998.37 36981.43 37095.91 38989.24 37789.46 35397.75 281
KD-MVS_self_test91.16 35090.09 35594.35 35694.44 39291.27 37299.74 29799.08 33790.82 36994.53 36994.91 39486.11 34294.78 39482.67 39168.52 40096.99 369
CL-MVSNet_self_test91.07 35190.35 35493.24 36493.27 39389.16 38099.55 32599.25 27792.34 35895.23 36297.05 38488.86 31793.59 39880.67 39566.95 40196.96 370
test_method91.04 35291.10 34990.85 36898.34 32777.63 395100.00 198.93 36776.69 39996.25 35398.52 36470.44 39497.98 36189.02 37991.74 32796.92 371
CMPMVSbinary66.12 2290.65 35392.04 34686.46 37896.18 37966.87 40898.03 39799.38 20583.38 39485.49 39699.55 30677.59 38198.80 30294.44 33394.31 29993.72 393
M. Jancosek, T. Pajdla: Multi-View Reconstruction Preserving Weakly-Supported Surfaces. CVPR 2011
pmmvs390.62 35489.36 36094.40 35590.53 40391.49 370100.00 196.73 40284.21 39293.65 37496.65 38682.56 36794.83 39382.28 39277.62 39496.89 372
new-patchmatchnet90.30 35589.46 35992.84 36690.77 40188.55 38399.83 27798.80 37490.07 37687.86 39195.00 39278.77 37994.30 39684.86 38779.15 39195.68 387
UnsupCasMVSNet_bld89.50 35688.00 36293.99 36195.30 38888.86 38298.52 39399.28 25785.50 39087.80 39294.11 39561.63 39996.96 37690.63 36479.26 39096.15 380
mvsany_test389.36 35788.96 36190.56 36991.95 39578.97 39499.74 29796.59 40596.84 21389.25 38796.07 38752.59 40297.11 37595.17 32582.44 38595.58 388
PM-MVS88.39 35887.41 36391.31 36791.73 39782.02 39399.79 28696.62 40391.06 36790.71 38595.73 38848.60 40495.96 38890.56 36581.91 38895.97 383
WB-MVS88.24 35990.09 35582.68 38491.56 39969.51 404100.00 198.73 37590.72 37087.29 39398.12 37392.87 26185.01 40662.19 40789.34 35493.54 394
SSC-MVS87.61 36089.47 35882.04 38590.63 40268.77 40599.99 21198.66 37690.34 37386.70 39498.08 37492.72 26684.12 40759.41 41088.71 36193.22 398
test_fmvs387.19 36187.02 36487.71 37592.69 39476.64 39699.96 24997.27 39893.55 33790.82 38494.03 39638.00 41092.19 40193.49 34583.35 38494.32 390
test_f86.87 36286.06 36589.28 37291.45 40076.37 39799.87 27297.11 39991.10 36688.46 38993.05 39838.31 40996.66 38091.77 35783.46 38394.82 389
Gipumacopyleft84.73 36383.50 36888.40 37497.50 36382.21 39288.87 40399.05 35165.81 40385.71 39590.49 40053.70 40196.31 38478.64 39991.74 32786.67 402
S. Galliani, K. Lasinger, K. Schindler: Massively Parallel Multiview Stereopsis by Surface Normal Diffusion. ICCV 2015
testf184.40 36484.79 36683.23 38295.71 38358.71 41598.79 39097.75 39481.58 39584.94 39798.07 37545.33 40697.73 37077.09 40383.85 38093.24 396
APD_test284.40 36484.79 36683.23 38295.71 38358.71 41598.79 39097.75 39481.58 39584.94 39798.07 37545.33 40697.73 37077.09 40383.85 38093.24 396
testmvs80.17 36681.95 36974.80 38958.54 41659.58 414100.00 187.14 41576.09 40099.61 201100.00 167.06 39774.19 41298.84 21750.30 40690.64 401
test_vis3_rt79.61 36778.19 37283.86 38188.68 40469.56 40399.81 28182.19 41786.78 38768.57 40584.51 40825.06 41498.26 34189.18 37878.94 39283.75 405
EGC-MVSNET79.46 36874.04 37695.72 34396.00 38192.73 36199.09 38199.04 3545.08 41316.72 41398.71 35673.03 39098.74 30982.05 39396.64 25995.69 386
test12379.44 36979.23 37180.05 38780.03 41071.72 400100.00 177.93 41862.52 40494.81 36599.69 27478.21 38074.53 41192.57 35027.33 41193.90 391
PMMVS279.15 37077.28 37384.76 38082.34 40872.66 39899.70 30795.11 40871.68 40284.78 39990.87 39932.05 41289.99 40375.53 40563.45 40491.64 399
LCM-MVSNet79.01 37176.93 37485.27 37978.28 41168.01 40796.57 40098.03 38655.10 40782.03 40093.27 39731.99 41393.95 39782.72 39074.37 39693.84 392
FPMVS77.92 37279.45 37073.34 39176.87 41246.81 41898.24 39599.05 35159.89 40673.55 40298.34 37036.81 41186.55 40480.96 39491.35 33686.65 403
tmp_tt75.80 37374.26 37580.43 38652.91 41853.67 41787.42 40597.98 38961.80 40567.04 408100.00 176.43 38496.40 38396.47 30328.26 41091.23 400
E-PMN70.72 37470.06 37772.69 39283.92 40765.48 41199.95 25592.72 41149.88 40972.30 40386.26 40647.17 40577.43 40953.83 41144.49 40775.17 409
EMVS69.88 37569.09 37872.24 39384.70 40665.82 41099.96 24987.08 41649.82 41071.51 40484.74 40749.30 40375.32 41050.97 41243.71 40875.59 408
MVEpermissive68.59 2167.22 37664.68 38074.84 38874.67 41462.32 41395.84 40190.87 41350.98 40858.72 41081.05 41012.20 41878.95 40861.06 40956.75 40583.24 406
Simon Fuhrmann, Fabian Langguth, Michael Goesele: MVE - A Multi-View Reconstruction Environment. EUROGRAPHICS Workshops on Graphics and Cultural Heritage (2014)
ANet_high66.05 37763.44 38173.88 39061.14 41563.45 41295.68 40287.18 41479.93 39747.35 41180.68 41122.35 41572.33 41361.24 40835.42 40985.88 404
PMVScopyleft60.66 2365.98 37865.05 37968.75 39455.06 41738.40 41988.19 40496.98 40048.30 41144.82 41288.52 40312.22 41786.49 40567.58 40683.79 38281.35 407
Y. Furukawa, J. Ponce: Accurate, dense, and robust multiview stereopsis. PAMI (2010)
wuyk23d28.28 37929.73 38323.92 39575.89 41332.61 42066.50 40612.88 41916.09 41214.59 41416.59 41312.35 41632.36 41439.36 41313.36 4126.79 410
cdsmvs_eth3d_5k24.41 38032.55 3820.00 3960.00 4190.00 4210.00 40799.39 2030.00 4140.00 415100.00 193.55 2510.00 4150.00 4140.00 4130.00 411
ab-mvs-re8.33 38111.11 3840.00 3960.00 4190.00 4210.00 4070.00 4200.00 4140.00 415100.00 10.00 4190.00 4150.00 4140.00 4130.00 411
pcd_1.5k_mvsjas8.24 38210.99 3850.00 3960.00 4190.00 4210.00 4070.00 4200.00 4140.00 4150.14 41598.75 1200.00 4150.00 4140.00 4130.00 411
test_blank0.07 3830.09 3860.00 3960.00 4190.00 4210.00 4070.00 4200.00 4140.00 4150.79 4140.00 4190.00 4150.00 4140.00 4130.00 411
uanet_test0.01 3840.02 3870.00 3960.00 4190.00 4210.00 4070.00 4200.00 4140.00 4150.14 4150.00 4190.00 4150.00 4140.00 4130.00 411
DCPMVS0.01 3840.02 3870.00 3960.00 4190.00 4210.00 4070.00 4200.00 4140.00 4150.14 4150.00 4190.00 4150.00 4140.00 4130.00 411
sosnet-low-res0.01 3840.02 3870.00 3960.00 4190.00 4210.00 4070.00 4200.00 4140.00 4150.14 4150.00 4190.00 4150.00 4140.00 4130.00 411
sosnet0.01 3840.02 3870.00 3960.00 4190.00 4210.00 4070.00 4200.00 4140.00 4150.14 4150.00 4190.00 4150.00 4140.00 4130.00 411
uncertanet0.01 3840.02 3870.00 3960.00 4190.00 4210.00 4070.00 4200.00 4140.00 4150.14 4150.00 4190.00 4150.00 4140.00 4130.00 411
Regformer0.01 3840.02 3870.00 3960.00 4190.00 4210.00 4070.00 4200.00 4140.00 4150.14 4150.00 4190.00 4150.00 4140.00 4130.00 411
uanet0.01 3840.02 3870.00 3960.00 4190.00 4210.00 4070.00 4200.00 4140.00 4150.14 4150.00 4190.00 4150.00 4140.00 4130.00 411
WAC-MVS97.98 25195.74 313
FOURS1100.00 199.97 21100.00 199.42 14098.52 74100.00 1
MSC_two_6792asdad100.00 1100.00 1100.00 199.42 140100.00 1100.00 1100.00 1100.00 1
PC_three_145298.80 57100.00 1100.00 199.54 25100.00 1100.00 1100.00 1100.00 1
No_MVS100.00 1100.00 1100.00 199.42 140100.00 1100.00 1100.00 1100.00 1
test_one_0601100.00 199.99 599.42 14098.72 64100.00 1100.00 199.60 16
eth-test20.00 419
eth-test0.00 419
ZD-MVS100.00 199.98 1799.80 4397.31 182100.00 1100.00 199.32 6199.99 95100.00 1100.00 1
RE-MVS-def99.55 5699.99 4999.91 53100.00 199.42 14097.62 145100.00 1100.00 198.94 10499.99 61100.00 1100.00 1
IU-MVS100.00 199.99 599.42 14099.12 7100.00 1100.00 1100.00 1100.00 1
OPU-MVS100.00 1100.00 1100.00 1100.00 1100.00 199.54 25100.00 1100.00 1100.00 1100.00 1
test_241102_TWO99.42 14099.03 21100.00 1100.00 199.56 22100.00 1100.00 1100.00 1100.00 1
test_241102_ONE100.00 199.99 599.42 14099.03 21100.00 1100.00 199.50 36100.00 1
9.1499.57 4999.99 49100.00 199.42 14097.54 157100.00 1100.00 199.15 8299.99 95100.00 1100.00 1
save fliter99.99 4999.93 45100.00 199.42 14098.93 38
test_0728_THIRD98.79 60100.00 1100.00 199.61 15100.00 1100.00 1100.00 1100.00 1
test_0728_SECOND100.00 199.99 4999.99 5100.00 199.42 140100.00 1100.00 1100.00 1100.00 1
test0726100.00 199.99 5100.00 199.42 14099.04 16100.00 1100.00 199.53 28
GSMVS99.91 149
test_part2100.00 199.99 5100.00 1
sam_mvs199.29 6999.91 149
sam_mvs99.33 58
ambc88.45 37386.84 40570.76 40297.79 39998.02 38890.91 38395.14 39038.69 40898.51 32794.97 32784.23 37996.09 382
MTGPAbinary99.42 140
test_post199.32 34888.24 40499.33 5899.59 22498.31 244
test_post89.05 40299.49 3899.59 224
patchmatchnet-post97.79 37899.41 5499.54 241
GG-mvs-BLEND99.59 14399.54 21499.49 13399.17 36999.52 7299.96 12199.68 278100.00 199.33 27099.71 14299.99 10299.96 122
MTMP100.00 199.18 306
gm-plane-assit99.52 22497.26 28795.86 273100.00 199.43 26198.76 222
test9_res100.00 1100.00 1100.00 1
TEST9100.00 199.95 32100.00 199.42 14097.65 140100.00 1100.00 199.53 2899.97 126
test_8100.00 199.91 53100.00 199.42 14097.70 135100.00 1100.00 199.51 3299.98 119
agg_prior2100.00 1100.00 1100.00 1
agg_prior100.00 199.88 7499.42 140100.00 199.97 126
TestCases98.99 20799.93 10197.35 28199.40 19097.08 19699.09 23599.98 18993.37 25299.95 15196.94 29199.84 14299.68 244
test_prior499.93 45100.00 1
test_prior2100.00 198.82 55100.00 1100.00 199.47 42100.00 1100.00 1
test_prior99.90 74100.00 199.75 9499.73 5699.97 126100.00 1
旧先验2100.00 198.11 104100.00 1100.00 199.67 156
新几何2100.00 1
新几何199.99 12100.00 199.96 2499.81 4297.89 121100.00 1100.00 199.20 77100.00 197.91 262100.00 1100.00 1
旧先验199.99 4999.88 7499.82 40100.00 199.27 72100.00 1100.00 1
无先验100.00 199.80 4397.98 112100.00 199.33 191100.00 1
原ACMM2100.00 1
原ACMM199.93 67100.00 199.80 8999.66 6398.18 95100.00 1100.00 199.43 49100.00 199.50 182100.00 1100.00 1
test22299.99 4999.90 60100.00 199.69 6297.66 139100.00 1100.00 199.30 68100.00 1100.00 1
testdata2100.00 197.36 282
segment_acmp99.55 24
testdata99.66 13499.99 4998.97 18999.73 5697.96 117100.00 1100.00 199.42 52100.00 199.28 195100.00 1100.00 1
testdata1100.00 198.77 63
test1299.95 5199.99 4999.89 6799.42 140100.00 199.24 7499.97 126100.00 1100.00 1
plane_prior799.00 29394.78 335
plane_prior699.06 28594.80 33188.58 321
plane_prior599.40 19099.55 23899.79 11995.57 26897.76 271
plane_prior499.97 198
plane_prior394.79 33499.03 2199.08 237
plane_prior2100.00 199.00 27
plane_prior199.02 288
plane_prior94.80 331100.00 199.03 2195.58 264
n20.00 420
nn0.00 420
door-mid96.32 406
lessismore_v096.05 34097.55 36191.80 36899.22 28991.87 38099.91 23483.50 36298.68 31192.48 35290.42 34697.68 329
LGP-MVS_train97.28 30698.85 31194.60 34099.37 20897.35 17698.85 25199.98 18986.66 33899.56 23399.55 17595.26 27697.70 323
test1199.42 140
door96.13 407
HQP5-MVS94.82 328
HQP-NCC99.07 281100.00 199.04 1699.17 227
ACMP_Plane99.07 281100.00 199.04 1699.17 227
BP-MVS99.79 119
HQP4-MVS99.17 22799.57 22997.77 269
HQP3-MVS99.40 19095.58 264
HQP2-MVS88.61 319
NP-MVS99.07 28194.81 33099.97 198
MDTV_nov1_ep13_2view99.24 16299.56 32496.31 25899.96 12198.86 11198.92 21399.89 167
MDTV_nov1_ep1398.94 13499.53 21798.36 22399.39 34299.46 9496.54 24299.99 10699.63 29198.92 10799.86 18498.30 24798.71 180
ACMMP++_ref94.58 298
ACMMP++95.17 284
Test By Simon99.10 85
ITE_SJBPF96.84 32598.96 29993.49 35398.12 38398.12 10398.35 28299.97 19884.45 35399.56 23395.63 31795.25 27897.49 354
DeepMVS_CXcopyleft89.98 37098.90 30471.46 40199.18 30697.61 14996.92 33799.83 25086.07 34399.83 19396.02 31097.65 24398.65 265