| MCST-MVS | | | 83.01 1 | 83.30 2 | 82.15 10 | 92.84 2 | 57.58 18 | 93.77 1 | 91.10 10 | 75.95 3 | 77.10 37 | 93.09 27 | 54.15 37 | 95.57 12 | 85.80 10 | 85.87 40 | 93.31 11 |
|
| MM | | | 82.69 2 | 83.29 3 | 80.89 23 | 84.38 83 | 55.40 60 | 92.16 10 | 89.85 20 | 75.28 4 | 82.41 11 | 93.86 8 | 54.30 34 | 93.98 23 | 90.29 1 | 87.13 22 | 93.30 12 |
|
| DVP-MVS++ | | | 82.44 3 | 82.38 6 | 82.62 4 | 91.77 4 | 57.49 19 | 84.98 135 | 88.88 32 | 58.00 215 | 83.60 6 | 93.39 18 | 67.21 2 | 96.39 4 | 81.64 31 | 91.98 4 | 93.98 5 |
|
| DPM-MVS | | | 82.39 4 | 82.36 7 | 82.49 5 | 80.12 193 | 59.50 5 | 92.24 8 | 90.72 14 | 69.37 32 | 83.22 8 | 94.47 2 | 63.81 5 | 93.18 32 | 74.02 85 | 93.25 2 | 94.80 1 |
|
| DELS-MVS | | | 82.32 5 | 82.50 5 | 81.79 12 | 86.80 45 | 56.89 31 | 92.77 2 | 86.30 87 | 77.83 1 | 77.88 33 | 92.13 41 | 60.24 6 | 94.78 19 | 78.97 45 | 89.61 8 | 93.69 8 |
| Christian Sormann, Emanuele Santellani, Mattia Rossi, Andreas Kuhn, Friedrich Fraundorfer: DELS-MVS: Deep Epipolar Line Search for Multi-View Stereo. Winter Conference on Applications of Computer Vision (WACV), 2023 |
| MSP-MVS | | | 82.30 6 | 83.47 1 | 78.80 59 | 82.99 119 | 52.71 133 | 85.04 132 | 88.63 43 | 66.08 70 | 86.77 3 | 92.75 32 | 72.05 1 | 91.46 70 | 83.35 20 | 93.53 1 | 92.23 37 |
| Zhenlong Yuan, Cong Liu, Fei Shen, Zhaoxin Li, Jingguo luo, Tianlu Mao and Zhaoqi Wang: MSP-MVS: Multi-granularity Segmentation Prior Guided Multi-View Stereo. AAAI2025 |
| MVS_0304 | | | 82.10 7 | 82.64 4 | 80.47 28 | 86.63 47 | 54.69 84 | 92.20 9 | 86.66 80 | 74.48 5 | 82.63 10 | 93.80 9 | 50.83 59 | 93.70 28 | 90.11 2 | 86.44 35 | 93.01 21 |
|
| SED-MVS | | | 81.92 8 | 81.75 9 | 82.44 7 | 89.48 17 | 56.89 31 | 92.48 3 | 88.94 30 | 57.50 229 | 84.61 4 | 94.09 3 | 58.81 11 | 96.37 6 | 82.28 26 | 87.60 19 | 94.06 3 |
|
| CNVR-MVS | | | 81.76 9 | 81.90 8 | 81.33 18 | 90.04 10 | 57.70 16 | 91.71 11 | 88.87 34 | 70.31 24 | 77.64 36 | 93.87 7 | 52.58 44 | 93.91 26 | 84.17 15 | 87.92 17 | 92.39 33 |
|
| DVP-MVS |  | | 81.30 10 | 81.00 13 | 82.20 8 | 89.40 20 | 57.45 21 | 92.34 5 | 89.99 18 | 57.71 223 | 81.91 14 | 93.64 12 | 55.17 29 | 96.44 2 | 81.68 29 | 87.13 22 | 92.72 28 |
| Zhenlong Yuan, Jinguo Luo, Fei Shen, Zhaoxin Li, Cong Liu, Tianlu Mao, Zhaoqi Wang: DVP-MVS: Synergize Depth-Edge and Visibility Prior for Multi-View Stereo. AAAI2025 |
| CANet | | | 80.90 11 | 81.17 12 | 80.09 38 | 87.62 39 | 54.21 96 | 91.60 14 | 86.47 83 | 73.13 8 | 79.89 25 | 93.10 25 | 49.88 68 | 92.98 33 | 84.09 17 | 84.75 52 | 93.08 19 |
|
| patch_mono-2 | | | 80.84 12 | 81.59 10 | 78.62 66 | 90.34 9 | 53.77 103 | 88.08 53 | 88.36 50 | 76.17 2 | 79.40 27 | 91.09 64 | 55.43 26 | 90.09 109 | 85.01 12 | 80.40 84 | 91.99 47 |
|
| DeepPCF-MVS | | 69.37 1 | 80.65 13 | 81.56 11 | 77.94 84 | 85.46 64 | 49.56 202 | 90.99 21 | 86.66 80 | 70.58 22 | 80.07 24 | 95.30 1 | 56.18 23 | 90.97 86 | 82.57 25 | 86.22 38 | 93.28 13 |
|
| HPM-MVS++ |  | | 80.50 14 | 80.71 14 | 79.88 40 | 87.34 41 | 55.20 67 | 89.93 29 | 87.55 67 | 66.04 73 | 79.46 26 | 93.00 30 | 53.10 41 | 91.76 64 | 80.40 37 | 89.56 9 | 92.68 29 |
|
| CSCG | | | 80.41 15 | 79.72 16 | 82.49 5 | 89.12 25 | 57.67 17 | 89.29 40 | 91.54 5 | 59.19 191 | 71.82 81 | 90.05 92 | 59.72 9 | 96.04 10 | 78.37 51 | 88.40 14 | 93.75 7 |
|
| balanced_conf03 | | | 80.28 16 | 79.73 15 | 81.90 11 | 86.47 49 | 59.34 6 | 80.45 252 | 89.51 22 | 69.76 28 | 71.05 93 | 86.66 158 | 58.68 14 | 93.24 31 | 84.64 14 | 90.40 6 | 93.14 18 |
|
| PS-MVSNAJ | | | 80.06 17 | 79.52 18 | 81.68 14 | 85.58 60 | 60.97 3 | 91.69 12 | 87.02 72 | 70.62 21 | 80.75 21 | 93.22 24 | 37.77 202 | 92.50 48 | 82.75 23 | 86.25 37 | 91.57 60 |
|
| xiu_mvs_v2_base | | | 79.86 18 | 79.31 19 | 81.53 15 | 85.03 73 | 60.73 4 | 91.65 13 | 86.86 75 | 70.30 25 | 80.77 20 | 93.07 29 | 37.63 207 | 92.28 54 | 82.73 24 | 85.71 41 | 91.57 60 |
|
| DPE-MVS |  | | 79.82 19 | 79.66 17 | 80.29 31 | 89.27 24 | 55.08 72 | 88.70 46 | 87.92 56 | 55.55 259 | 81.21 19 | 93.69 11 | 56.51 21 | 94.27 22 | 78.36 52 | 85.70 42 | 91.51 63 |
| Kehua Chen, Zhenlong Yuan, Tianlu Mao, Zhaoqi Wang: Dual-Level Precision Edges Guided Multi-View Stereo with Accurate Planarization. AAAI2025 |
| NCCC | | | 79.57 20 | 79.23 20 | 80.59 25 | 89.50 15 | 56.99 28 | 91.38 16 | 88.17 52 | 67.71 46 | 73.81 56 | 92.75 32 | 46.88 89 | 93.28 30 | 78.79 48 | 84.07 57 | 91.50 64 |
|
| dcpmvs_2 | | | 79.33 21 | 78.94 21 | 80.49 26 | 89.75 12 | 56.54 38 | 84.83 142 | 83.68 153 | 67.85 43 | 69.36 104 | 90.24 84 | 60.20 7 | 92.10 59 | 84.14 16 | 80.40 84 | 92.82 25 |
|
| testing11 | | | 79.18 22 | 78.85 22 | 80.16 34 | 88.33 30 | 56.99 28 | 88.31 51 | 92.06 1 | 72.82 9 | 70.62 100 | 88.37 123 | 57.69 15 | 92.30 52 | 75.25 75 | 76.24 128 | 91.20 73 |
|
| SMA-MVS |  | | 79.10 23 | 78.76 23 | 80.12 36 | 84.42 81 | 55.87 51 | 87.58 67 | 86.76 77 | 61.48 148 | 80.26 23 | 93.10 25 | 46.53 94 | 92.41 50 | 79.97 38 | 88.77 11 | 92.08 41 |
| Yufeng Yin; Xiaoyan Liu; Zichao Zhang: SMA-MVS: Segmentation-Guided Multi-Scale Anchor Deformation Patch Multi-View Stereo. IEEE Transactions on Circuits and Systems for Video Technology |
| LFMVS | | | 78.52 24 | 77.14 42 | 82.67 3 | 89.58 13 | 58.90 8 | 91.27 19 | 88.05 54 | 63.22 119 | 74.63 48 | 90.83 73 | 41.38 168 | 94.40 20 | 75.42 73 | 79.90 93 | 94.72 2 |
|
| testing99 | | | 78.45 25 | 77.78 33 | 80.45 29 | 88.28 33 | 56.81 34 | 87.95 58 | 91.49 6 | 71.72 13 | 70.84 95 | 88.09 131 | 57.29 18 | 92.63 46 | 69.24 111 | 75.13 141 | 91.91 48 |
|
| APDe-MVS |  | | 78.44 26 | 78.20 26 | 79.19 47 | 88.56 26 | 54.55 89 | 89.76 33 | 87.77 60 | 55.91 254 | 78.56 30 | 92.49 37 | 48.20 75 | 92.65 44 | 79.49 40 | 83.04 61 | 90.39 90 |
| Zhaojie Zeng, Yuesong Wang, Tao Guan: Matching Ambiguity-Resilient Multi-View Stereo via Adaptive Patch Deformation. Pattern Recognition |
| MG-MVS | | | 78.42 27 | 76.99 44 | 82.73 2 | 93.17 1 | 64.46 1 | 89.93 29 | 88.51 48 | 64.83 90 | 73.52 59 | 88.09 131 | 48.07 76 | 92.19 55 | 62.24 157 | 84.53 54 | 91.53 62 |
|
| lupinMVS | | | 78.38 28 | 78.11 28 | 79.19 47 | 83.02 117 | 55.24 64 | 91.57 15 | 84.82 125 | 69.12 33 | 76.67 39 | 92.02 46 | 44.82 121 | 90.23 106 | 80.83 36 | 80.09 88 | 92.08 41 |
|
| EPNet | | | 78.36 29 | 78.49 24 | 77.97 82 | 85.49 63 | 52.04 146 | 89.36 38 | 84.07 146 | 73.22 7 | 77.03 38 | 91.72 54 | 49.32 72 | 90.17 108 | 73.46 92 | 82.77 62 | 91.69 55 |
| Wanjuan Su, Wenbing Tao: Efficient Edge-Preserving Multi-View Stereo Network for Depth Estimation. AAAI 2023 |
| TSAR-MVS + MP. | | | 78.31 30 | 78.26 25 | 78.48 70 | 81.33 166 | 56.31 44 | 81.59 232 | 86.41 84 | 69.61 30 | 81.72 16 | 88.16 130 | 55.09 31 | 88.04 177 | 74.12 84 | 86.31 36 | 91.09 76 |
| Zhenlong Yuan, Jiakai Cao, Zhaoqi Wang, Zhaoxin Li: TSAR-MVS: Textureless-aware Segmentation and Correlative Refinement Guided Multi-View Stereo. Pattern Recognition |
| testing91 | | | 78.30 31 | 77.54 36 | 80.61 24 | 88.16 35 | 57.12 27 | 87.94 59 | 91.07 13 | 71.43 16 | 70.75 96 | 88.04 135 | 55.82 25 | 92.65 44 | 69.61 108 | 75.00 145 | 92.05 43 |
|
| sasdasda | | | 78.17 32 | 77.86 31 | 79.12 52 | 84.30 84 | 54.22 94 | 87.71 61 | 84.57 134 | 67.70 47 | 77.70 34 | 92.11 44 | 50.90 55 | 89.95 112 | 78.18 55 | 77.54 111 | 93.20 15 |
|
| canonicalmvs | | | 78.17 32 | 77.86 31 | 79.12 52 | 84.30 84 | 54.22 94 | 87.71 61 | 84.57 134 | 67.70 47 | 77.70 34 | 92.11 44 | 50.90 55 | 89.95 112 | 78.18 55 | 77.54 111 | 93.20 15 |
|
| alignmvs | | | 78.08 34 | 77.98 29 | 78.39 74 | 83.53 100 | 53.22 121 | 89.77 32 | 85.45 101 | 66.11 68 | 76.59 41 | 91.99 48 | 54.07 38 | 89.05 135 | 77.34 61 | 77.00 116 | 92.89 23 |
|
| DeepC-MVS_fast | | 67.50 3 | 78.00 35 | 77.63 34 | 79.13 51 | 88.52 27 | 55.12 69 | 89.95 28 | 85.98 92 | 68.31 35 | 71.33 88 | 92.75 32 | 45.52 107 | 90.37 99 | 71.15 102 | 85.14 48 | 91.91 48 |
| Andreas Kuhn, Christian Sormann, Mattia Rossi, Oliver Erdler, Friedrich Fraundorfer: DeepC-MVS: Deep Confidence Prediction for Multi-View Stereo Reconstruction. 3DV 2020 |
| VNet | | | 77.99 36 | 77.92 30 | 78.19 78 | 87.43 40 | 50.12 190 | 90.93 22 | 91.41 8 | 67.48 50 | 75.12 43 | 90.15 90 | 46.77 91 | 91.00 83 | 73.52 91 | 78.46 105 | 93.44 9 |
|
| TSAR-MVS + GP. | | | 77.82 37 | 77.59 35 | 78.49 69 | 85.25 69 | 50.27 189 | 90.02 26 | 90.57 15 | 56.58 248 | 74.26 53 | 91.60 59 | 54.26 35 | 92.16 56 | 75.87 67 | 79.91 92 | 93.05 20 |
|
| casdiffmvs_mvg |  | | 77.75 38 | 77.28 39 | 79.16 49 | 80.42 189 | 54.44 91 | 87.76 60 | 85.46 100 | 71.67 14 | 71.38 87 | 88.35 125 | 51.58 48 | 91.22 76 | 79.02 44 | 79.89 94 | 91.83 52 |
| Fangjinhua Wang, Qingshan Xu, Yew-Soon Ong, Marc Pollefeys: Lightweight and Accurate Multi-View Stereo With Confidence-Aware Diffusion Model. IEEE T-PAMI 2025 |
| testing222 | | | 77.70 39 | 77.22 41 | 79.14 50 | 86.95 43 | 54.89 78 | 87.18 77 | 91.96 2 | 72.29 11 | 71.17 92 | 88.70 117 | 55.19 28 | 91.24 75 | 65.18 143 | 76.32 127 | 91.29 71 |
|
| SF-MVS | | | 77.64 40 | 77.42 38 | 78.32 76 | 83.75 97 | 52.47 138 | 86.63 90 | 87.80 57 | 58.78 203 | 74.63 48 | 92.38 38 | 47.75 81 | 91.35 72 | 78.18 55 | 86.85 29 | 91.15 75 |
|
| PHI-MVS | | | 77.49 41 | 77.00 43 | 78.95 54 | 85.33 67 | 50.69 172 | 88.57 48 | 88.59 46 | 58.14 212 | 73.60 57 | 93.31 21 | 43.14 145 | 93.79 27 | 73.81 89 | 88.53 13 | 92.37 34 |
|
| WTY-MVS | | | 77.47 42 | 77.52 37 | 77.30 95 | 88.33 30 | 46.25 279 | 88.46 49 | 90.32 16 | 71.40 17 | 72.32 77 | 91.72 54 | 53.44 39 | 92.37 51 | 66.28 130 | 75.42 135 | 93.28 13 |
|
| bld_raw_conf03 | | | 77.39 43 | 76.21 54 | 80.94 22 | 85.57 61 | 58.25 10 | 74.47 300 | 87.61 65 | 65.51 78 | 65.24 141 | 85.42 172 | 55.43 26 | 92.75 42 | 79.53 39 | 87.13 22 | 91.80 53 |
|
| casdiffmvs |  | | 77.36 44 | 76.85 45 | 78.88 57 | 80.40 190 | 54.66 87 | 87.06 80 | 85.88 93 | 72.11 12 | 71.57 84 | 88.63 122 | 50.89 58 | 90.35 100 | 76.00 66 | 79.11 100 | 91.63 57 |
| Fangjinhua Wang, Qingshan Xu, Yew-Soon Ong, Marc Pollefeys: Lightweight and Accurate Multi-View Stereo With Confidence-Aware Diffusion Model. IEEE T-PAMI 2025 |
| CS-MVS-test | | | 77.20 45 | 77.25 40 | 77.05 101 | 84.60 78 | 49.04 215 | 89.42 36 | 85.83 95 | 65.90 74 | 72.85 68 | 91.98 50 | 45.10 112 | 91.27 73 | 75.02 77 | 84.56 53 | 90.84 82 |
|
| ETV-MVS | | | 77.17 46 | 76.74 46 | 78.48 70 | 81.80 146 | 54.55 89 | 86.13 98 | 85.33 106 | 68.20 37 | 73.10 64 | 90.52 78 | 45.23 111 | 90.66 92 | 79.37 41 | 80.95 76 | 90.22 96 |
|
| SteuartSystems-ACMMP | | | 77.08 47 | 76.33 51 | 79.34 45 | 80.98 170 | 55.31 62 | 89.76 33 | 86.91 74 | 62.94 124 | 71.65 82 | 91.56 60 | 42.33 152 | 92.56 47 | 77.14 62 | 83.69 59 | 90.15 100 |
| Skip Steuart: Steuart Systems R&D Blog. |
| jason | | | 77.01 48 | 76.45 49 | 78.69 63 | 79.69 198 | 54.74 80 | 90.56 24 | 83.99 149 | 68.26 36 | 74.10 54 | 90.91 70 | 42.14 156 | 89.99 111 | 79.30 42 | 79.12 99 | 91.36 68 |
| jason: jason. |
| train_agg | | | 76.91 49 | 76.40 50 | 78.45 72 | 85.68 56 | 55.42 57 | 87.59 65 | 84.00 147 | 57.84 220 | 72.99 65 | 90.98 67 | 44.99 115 | 88.58 154 | 78.19 53 | 85.32 46 | 91.34 70 |
|
| MVS | | | 76.91 49 | 75.48 62 | 81.23 19 | 84.56 79 | 55.21 66 | 80.23 258 | 91.64 4 | 58.65 205 | 65.37 140 | 91.48 62 | 45.72 104 | 95.05 16 | 72.11 99 | 89.52 10 | 93.44 9 |
|
| DeepC-MVS | | 67.15 4 | 76.90 51 | 76.27 52 | 78.80 59 | 80.70 182 | 55.02 73 | 86.39 92 | 86.71 78 | 66.96 55 | 67.91 114 | 89.97 94 | 48.03 77 | 91.41 71 | 75.60 70 | 84.14 56 | 89.96 106 |
| Andreas Kuhn, Christian Sormann, Mattia Rossi, Oliver Erdler, Friedrich Fraundorfer: DeepC-MVS: Deep Confidence Prediction for Multi-View Stereo Reconstruction. 3DV 2020 |
| baseline | | | 76.86 52 | 76.24 53 | 78.71 62 | 80.47 188 | 54.20 98 | 83.90 168 | 84.88 124 | 71.38 18 | 71.51 85 | 89.15 110 | 50.51 60 | 90.55 96 | 75.71 68 | 78.65 103 | 91.39 66 |
|
| CS-MVS | | | 76.77 53 | 76.70 47 | 76.99 106 | 83.55 99 | 48.75 224 | 88.60 47 | 85.18 114 | 66.38 63 | 72.47 75 | 91.62 58 | 45.53 106 | 90.99 85 | 74.48 80 | 82.51 64 | 91.23 72 |
|
| PAPM | | | 76.76 54 | 76.07 56 | 78.81 58 | 80.20 191 | 59.11 7 | 86.86 86 | 86.23 88 | 68.60 34 | 70.18 103 | 88.84 115 | 51.57 49 | 87.16 206 | 65.48 136 | 86.68 32 | 90.15 100 |
|
| MAR-MVS | | | 76.76 54 | 75.60 60 | 80.21 32 | 90.87 7 | 54.68 85 | 89.14 41 | 89.11 27 | 62.95 123 | 70.54 101 | 92.33 39 | 41.05 169 | 94.95 17 | 57.90 201 | 86.55 34 | 91.00 79 |
| Zhenyu Xu, Yiguang Liu, Xuelei Shi, Ying Wang, Yunan Zheng: MARMVS: Matching Ambiguity Reduced Multiple View Stereo for Efficient Large Scale Scene Reconstruction. CVPR 2020 |
| PVSNet_Blended | | | 76.53 56 | 76.54 48 | 76.50 116 | 85.91 53 | 51.83 152 | 88.89 44 | 84.24 143 | 67.82 44 | 69.09 106 | 89.33 107 | 46.70 92 | 88.13 173 | 75.43 71 | 81.48 75 | 89.55 114 |
|
| ACMMP_NAP | | | 76.43 57 | 75.66 59 | 78.73 61 | 81.92 143 | 54.67 86 | 84.06 164 | 85.35 105 | 61.10 155 | 72.99 65 | 91.50 61 | 40.25 178 | 91.00 83 | 76.84 63 | 86.98 27 | 90.51 89 |
|
| MVS_111021_HR | | | 76.39 58 | 75.38 65 | 79.42 44 | 85.33 67 | 56.47 40 | 88.15 52 | 84.97 121 | 65.15 88 | 66.06 131 | 89.88 95 | 43.79 132 | 92.16 56 | 75.03 76 | 80.03 91 | 89.64 112 |
|
| CHOSEN 1792x2688 | | | 76.24 59 | 74.03 84 | 82.88 1 | 83.09 114 | 62.84 2 | 85.73 109 | 85.39 103 | 69.79 27 | 64.87 149 | 83.49 196 | 41.52 167 | 93.69 29 | 70.55 104 | 81.82 71 | 92.12 40 |
|
| SD-MVS | | | 76.18 60 | 74.85 73 | 80.18 33 | 85.39 65 | 56.90 30 | 85.75 107 | 82.45 178 | 56.79 243 | 74.48 51 | 91.81 52 | 43.72 135 | 90.75 90 | 74.61 79 | 78.65 103 | 92.91 22 |
| Zhenlong Yuan, Jiakai Cao, Zhaoxin Li, Hao Jiang and Zhaoqi Wang: SD-MVS: Segmentation-driven Deformation Multi-View Stereo with Spherical Refinement and EM optimization. AAAI2024 |
| APD-MVS |  | | 76.15 61 | 75.68 58 | 77.54 90 | 88.52 27 | 53.44 112 | 87.26 76 | 85.03 120 | 53.79 275 | 74.91 46 | 91.68 56 | 43.80 131 | 90.31 102 | 74.36 81 | 81.82 71 | 88.87 131 |
| Yuesong Wang, Zhaojie Zeng and etc.: Adaptive Patch Deformation for Textureless-Resilient Multi-View Stereo. CVPR2023 |
| VDD-MVS | | | 76.08 62 | 74.97 71 | 79.44 43 | 84.27 87 | 53.33 118 | 91.13 20 | 85.88 93 | 65.33 85 | 72.37 76 | 89.34 105 | 32.52 273 | 92.76 41 | 77.90 58 | 75.96 129 | 92.22 39 |
|
| CDPH-MVS | | | 76.05 63 | 75.19 67 | 78.62 66 | 86.51 48 | 54.98 75 | 87.32 71 | 84.59 133 | 58.62 206 | 70.75 96 | 90.85 72 | 43.10 147 | 90.63 94 | 70.50 105 | 84.51 55 | 90.24 95 |
|
| fmvsm_l_conf0.5_n | | | 75.95 64 | 76.16 55 | 75.31 149 | 76.01 264 | 48.44 235 | 84.98 135 | 71.08 336 | 63.50 113 | 81.70 17 | 93.52 15 | 50.00 64 | 87.18 205 | 87.80 5 | 76.87 119 | 90.32 93 |
|
| EIA-MVS | | | 75.92 65 | 75.18 68 | 78.13 79 | 85.14 70 | 51.60 157 | 87.17 78 | 85.32 107 | 64.69 91 | 68.56 110 | 90.53 77 | 45.79 103 | 91.58 67 | 67.21 123 | 82.18 68 | 91.20 73 |
|
| fmvsm_l_conf0.5_n_a | | | 75.88 66 | 76.07 56 | 75.31 149 | 76.08 260 | 48.34 238 | 85.24 123 | 70.62 339 | 63.13 121 | 81.45 18 | 93.62 14 | 49.98 66 | 87.40 201 | 87.76 6 | 76.77 120 | 90.20 98 |
|
| test_yl | | | 75.85 67 | 74.83 74 | 78.91 55 | 88.08 37 | 51.94 148 | 91.30 17 | 89.28 24 | 57.91 217 | 71.19 90 | 89.20 108 | 42.03 159 | 92.77 39 | 69.41 109 | 75.07 143 | 92.01 45 |
|
| DCV-MVSNet | | | 75.85 67 | 74.83 74 | 78.91 55 | 88.08 37 | 51.94 148 | 91.30 17 | 89.28 24 | 57.91 217 | 71.19 90 | 89.20 108 | 42.03 159 | 92.77 39 | 69.41 109 | 75.07 143 | 92.01 45 |
|
| MVS_Test | | | 75.85 67 | 74.93 72 | 78.62 66 | 84.08 89 | 55.20 67 | 83.99 166 | 85.17 115 | 68.07 40 | 73.38 61 | 82.76 208 | 50.44 61 | 89.00 138 | 65.90 132 | 80.61 80 | 91.64 56 |
|
| ZNCC-MVS | | | 75.82 70 | 75.02 70 | 78.23 77 | 83.88 95 | 53.80 102 | 86.91 85 | 86.05 91 | 59.71 177 | 67.85 115 | 90.55 76 | 42.23 154 | 91.02 82 | 72.66 97 | 85.29 47 | 89.87 109 |
|
| ETVMVS | | | 75.80 71 | 75.44 63 | 76.89 110 | 86.23 51 | 50.38 182 | 85.55 116 | 91.42 7 | 71.30 19 | 68.80 108 | 87.94 137 | 56.42 22 | 89.24 129 | 56.54 213 | 74.75 147 | 91.07 77 |
|
| CLD-MVS | | | 75.60 72 | 75.39 64 | 76.24 120 | 80.69 183 | 52.40 139 | 90.69 23 | 86.20 89 | 74.40 6 | 65.01 147 | 88.93 112 | 42.05 158 | 90.58 95 | 76.57 64 | 73.96 151 | 85.73 199 |
| Zhaoxin Li, Wangmeng Zuo, Zhaoqi Wang, Lei Zhang: Confidence-based Large-scale Dense Multi-view Stereo. IEEE Transaction on Image Processing, 2020 |
| test_fmvsm_n_1920 | | | 75.56 73 | 75.54 61 | 75.61 137 | 74.60 282 | 49.51 205 | 81.82 224 | 74.08 310 | 66.52 61 | 80.40 22 | 93.46 17 | 46.95 88 | 89.72 119 | 86.69 7 | 75.30 136 | 87.61 162 |
|
| MP-MVS-pluss | | | 75.54 74 | 75.03 69 | 77.04 102 | 81.37 165 | 52.65 135 | 84.34 155 | 84.46 136 | 61.16 152 | 69.14 105 | 91.76 53 | 39.98 185 | 88.99 140 | 78.19 53 | 84.89 51 | 89.48 117 |
| MP-MVS-pluss: MP-MVS-pluss. MP-MVS-pluss |
| EC-MVSNet | | | 75.30 75 | 75.20 66 | 75.62 136 | 80.98 170 | 49.00 216 | 87.43 68 | 84.68 131 | 63.49 114 | 70.97 94 | 90.15 90 | 42.86 149 | 91.14 80 | 74.33 82 | 81.90 70 | 86.71 181 |
|
| MVSMamba_PlusPlus | | | 75.28 76 | 73.39 87 | 80.96 21 | 80.85 177 | 58.25 10 | 74.47 300 | 87.61 65 | 50.53 299 | 65.24 141 | 83.41 198 | 57.38 16 | 92.83 36 | 73.92 87 | 87.13 22 | 91.80 53 |
|
| Effi-MVS+ | | | 75.24 77 | 73.61 86 | 80.16 34 | 81.92 143 | 57.42 23 | 85.21 124 | 76.71 288 | 60.68 166 | 73.32 62 | 89.34 105 | 47.30 84 | 91.63 66 | 68.28 117 | 79.72 95 | 91.42 65 |
|
| ET-MVSNet_ETH3D | | | 75.23 78 | 74.08 82 | 78.67 64 | 84.52 80 | 55.59 53 | 88.92 43 | 89.21 26 | 68.06 41 | 53.13 296 | 90.22 86 | 49.71 69 | 87.62 195 | 72.12 98 | 70.82 179 | 92.82 25 |
|
| PAPR | | | 75.20 79 | 74.13 80 | 78.41 73 | 88.31 32 | 55.10 71 | 84.31 156 | 85.66 97 | 63.76 106 | 67.55 116 | 90.73 74 | 43.48 140 | 89.40 126 | 66.36 129 | 77.03 115 | 90.73 84 |
|
| baseline2 | | | 75.15 80 | 74.54 78 | 76.98 107 | 81.67 153 | 51.74 154 | 83.84 170 | 91.94 3 | 69.97 26 | 58.98 224 | 86.02 164 | 59.73 8 | 91.73 65 | 68.37 116 | 70.40 184 | 87.48 164 |
|
| diffmvs |  | | 75.11 81 | 74.65 76 | 76.46 117 | 78.52 223 | 53.35 116 | 83.28 189 | 79.94 221 | 70.51 23 | 71.64 83 | 88.72 116 | 46.02 100 | 86.08 240 | 77.52 59 | 75.75 133 | 89.96 106 |
| Fangjinhua Wang, Qingshan Xu, Yew-Soon Ong, Marc Pollefeys: Lightweight and Accurate Multi-View Stereo With Confidence-Aware Diffusion Model. IEEE T-PAMI 2025 |
| MP-MVS |  | | 74.99 82 | 74.33 79 | 76.95 108 | 82.89 124 | 53.05 127 | 85.63 112 | 83.50 158 | 57.86 219 | 67.25 118 | 90.24 84 | 43.38 142 | 88.85 148 | 76.03 65 | 82.23 67 | 88.96 128 |
| Rongxuan Tan, Qing Wang, et al.: MP-MVS: Multi-Scale Windows PatchMatch and Planar Prior Multi-View Stereo. |
| GST-MVS | | | 74.87 83 | 73.90 85 | 77.77 85 | 83.30 107 | 53.45 111 | 85.75 107 | 85.29 109 | 59.22 190 | 66.50 127 | 89.85 96 | 40.94 171 | 90.76 89 | 70.94 103 | 83.35 60 | 89.10 126 |
|
| iter_conf05 | | | 74.57 84 | 72.83 96 | 79.80 41 | 80.85 177 | 58.10 12 | 74.55 299 | 82.97 170 | 50.53 299 | 63.52 174 | 83.41 198 | 57.38 16 | 92.83 36 | 73.92 87 | 88.34 15 | 88.48 145 |
|
| fmvsm_s_conf0.5_n | | | 74.48 85 | 74.12 81 | 75.56 139 | 76.96 249 | 47.85 255 | 85.32 121 | 69.80 346 | 64.16 97 | 78.74 28 | 93.48 16 | 45.51 108 | 89.29 128 | 86.48 8 | 66.62 210 | 89.55 114 |
|
| 3Dnovator | | 64.70 6 | 74.46 86 | 72.48 100 | 80.41 30 | 82.84 127 | 55.40 60 | 83.08 194 | 88.61 45 | 67.61 49 | 59.85 207 | 88.66 118 | 34.57 254 | 93.97 24 | 58.42 191 | 88.70 12 | 91.85 51 |
|
| test_fmvsmconf_n | | | 74.41 87 | 74.05 83 | 75.49 143 | 74.16 288 | 48.38 236 | 82.66 202 | 72.57 323 | 67.05 54 | 75.11 44 | 92.88 31 | 46.35 95 | 87.81 182 | 83.93 18 | 71.71 170 | 90.28 94 |
|
| HFP-MVS | | | 74.37 88 | 73.13 94 | 78.10 80 | 84.30 84 | 53.68 105 | 85.58 113 | 84.36 138 | 56.82 241 | 65.78 136 | 90.56 75 | 40.70 176 | 90.90 87 | 69.18 112 | 80.88 77 | 89.71 110 |
|
| VDDNet | | | 74.37 88 | 72.13 110 | 81.09 20 | 79.58 199 | 56.52 39 | 90.02 26 | 86.70 79 | 52.61 285 | 71.23 89 | 87.20 149 | 31.75 283 | 93.96 25 | 74.30 83 | 75.77 132 | 92.79 27 |
|
| MSLP-MVS++ | | | 74.21 90 | 72.25 106 | 80.11 37 | 81.45 163 | 56.47 40 | 86.32 94 | 79.65 229 | 58.19 211 | 66.36 128 | 92.29 40 | 36.11 236 | 90.66 92 | 67.39 121 | 82.49 65 | 93.18 17 |
|
| API-MVS | | | 74.17 91 | 72.07 112 | 80.49 26 | 90.02 11 | 58.55 9 | 87.30 73 | 84.27 140 | 57.51 228 | 65.77 137 | 87.77 140 | 41.61 165 | 95.97 11 | 51.71 247 | 82.63 63 | 86.94 172 |
|
| MGCFI-Net | | | 74.07 92 | 74.64 77 | 72.34 222 | 82.90 123 | 43.33 312 | 80.04 261 | 79.96 220 | 65.61 76 | 74.93 45 | 91.85 51 | 48.01 78 | 80.86 296 | 71.41 100 | 77.10 114 | 92.84 24 |
|
| IB-MVS | | 68.87 2 | 74.01 93 | 72.03 115 | 79.94 39 | 83.04 116 | 55.50 55 | 90.24 25 | 88.65 41 | 67.14 52 | 61.38 195 | 81.74 232 | 53.21 40 | 94.28 21 | 60.45 176 | 62.41 251 | 90.03 104 |
| Christian Sormann, Mattia Rossi, Andreas Kuhn and Friedrich Fraundorfer: IB-MVS: An Iterative Algorithm for Deep Multi-View Stereo based on Binary Decisions. BMVC 2021 |
| h-mvs33 | | | 73.95 94 | 72.89 95 | 77.15 100 | 80.17 192 | 50.37 183 | 84.68 146 | 83.33 159 | 68.08 38 | 71.97 79 | 88.65 121 | 42.50 150 | 91.15 79 | 78.82 46 | 57.78 291 | 89.91 108 |
|
| HY-MVS | | 67.03 5 | 73.90 95 | 73.14 92 | 76.18 125 | 84.70 77 | 47.36 262 | 75.56 289 | 86.36 86 | 66.27 65 | 70.66 99 | 83.91 188 | 51.05 53 | 89.31 127 | 67.10 124 | 72.61 163 | 91.88 50 |
|
| CostFormer | | | 73.89 96 | 72.30 105 | 78.66 65 | 82.36 138 | 56.58 35 | 75.56 289 | 85.30 108 | 66.06 71 | 70.50 102 | 76.88 282 | 57.02 19 | 89.06 134 | 68.27 118 | 68.74 195 | 90.33 92 |
|
| fmvsm_s_conf0.1_n | | | 73.80 97 | 73.26 89 | 75.43 144 | 73.28 296 | 47.80 256 | 84.57 151 | 69.43 348 | 63.34 116 | 78.40 31 | 93.29 22 | 44.73 124 | 89.22 131 | 85.99 9 | 66.28 217 | 89.26 119 |
|
| ACMMPR | | | 73.76 98 | 72.61 97 | 77.24 99 | 83.92 93 | 52.96 130 | 85.58 113 | 84.29 139 | 56.82 241 | 65.12 143 | 90.45 79 | 37.24 219 | 90.18 107 | 69.18 112 | 80.84 78 | 88.58 139 |
|
| region2R | | | 73.75 99 | 72.55 99 | 77.33 94 | 83.90 94 | 52.98 129 | 85.54 117 | 84.09 145 | 56.83 240 | 65.10 144 | 90.45 79 | 37.34 216 | 90.24 105 | 68.89 114 | 80.83 79 | 88.77 135 |
|
| CANet_DTU | | | 73.71 100 | 73.14 92 | 75.40 145 | 82.61 134 | 50.05 191 | 84.67 148 | 79.36 237 | 69.72 29 | 75.39 42 | 90.03 93 | 29.41 296 | 85.93 246 | 67.99 119 | 79.11 100 | 90.22 96 |
|
| test_fmvsmconf0.1_n | | | 73.69 101 | 73.15 90 | 75.34 147 | 70.71 325 | 48.26 241 | 82.15 214 | 71.83 328 | 66.75 57 | 74.47 52 | 92.59 36 | 44.89 118 | 87.78 187 | 83.59 19 | 71.35 174 | 89.97 105 |
|
| fmvsm_s_conf0.5_n_a | | | 73.68 102 | 73.15 90 | 75.29 152 | 75.45 271 | 48.05 248 | 83.88 169 | 68.84 350 | 63.43 115 | 78.60 29 | 93.37 20 | 45.32 109 | 88.92 145 | 85.39 11 | 64.04 230 | 88.89 130 |
|
| thisisatest0515 | | | 73.64 103 | 72.20 107 | 77.97 82 | 81.63 154 | 53.01 128 | 86.69 89 | 88.81 37 | 62.53 130 | 64.06 162 | 85.65 168 | 52.15 47 | 92.50 48 | 58.43 189 | 69.84 187 | 88.39 146 |
|
| MVSFormer | | | 73.53 104 | 72.19 108 | 77.57 89 | 83.02 117 | 55.24 64 | 81.63 229 | 81.44 195 | 50.28 301 | 76.67 39 | 90.91 70 | 44.82 121 | 86.11 235 | 60.83 168 | 80.09 88 | 91.36 68 |
|
| PVSNet_BlendedMVS | | | 73.42 105 | 73.30 88 | 73.76 191 | 85.91 53 | 51.83 152 | 86.18 97 | 84.24 143 | 65.40 82 | 69.09 106 | 80.86 240 | 46.70 92 | 88.13 173 | 75.43 71 | 65.92 219 | 81.33 273 |
|
| PVSNet_Blended_VisFu | | | 73.40 106 | 72.44 101 | 76.30 118 | 81.32 167 | 54.70 83 | 85.81 103 | 78.82 247 | 63.70 107 | 64.53 155 | 85.38 173 | 47.11 87 | 87.38 202 | 67.75 120 | 77.55 110 | 86.81 180 |
|
| MVSTER | | | 73.25 107 | 72.33 103 | 76.01 130 | 85.54 62 | 53.76 104 | 83.52 175 | 87.16 70 | 67.06 53 | 63.88 167 | 81.66 233 | 52.77 42 | 90.44 97 | 64.66 145 | 64.69 226 | 83.84 233 |
|
| EI-MVSNet-Vis-set | | | 73.19 108 | 72.60 98 | 74.99 161 | 82.56 135 | 49.80 198 | 82.55 207 | 89.00 29 | 66.17 67 | 65.89 134 | 88.98 111 | 43.83 130 | 92.29 53 | 65.38 142 | 69.01 193 | 82.87 251 |
|
| PMMVS | | | 72.98 109 | 72.05 113 | 75.78 134 | 83.57 98 | 48.60 227 | 84.08 162 | 82.85 173 | 61.62 144 | 68.24 112 | 90.33 83 | 28.35 300 | 87.78 187 | 72.71 96 | 76.69 121 | 90.95 80 |
|
| XVS | | | 72.92 110 | 71.62 117 | 76.81 111 | 83.41 102 | 52.48 136 | 84.88 140 | 83.20 165 | 58.03 213 | 63.91 165 | 89.63 100 | 35.50 243 | 89.78 116 | 65.50 134 | 80.50 82 | 88.16 147 |
|
| test2506 | | | 72.91 111 | 72.43 102 | 74.32 174 | 80.12 193 | 44.18 303 | 83.19 191 | 84.77 128 | 64.02 99 | 65.97 132 | 87.43 146 | 47.67 82 | 88.72 149 | 59.08 182 | 79.66 96 | 90.08 102 |
|
| TESTMET0.1,1 | | | 72.86 112 | 72.33 103 | 74.46 168 | 81.98 142 | 50.77 170 | 85.13 127 | 85.47 99 | 66.09 69 | 67.30 117 | 83.69 193 | 37.27 217 | 83.57 277 | 65.06 144 | 78.97 102 | 89.05 127 |
|
| fmvsm_s_conf0.1_n_a | | | 72.82 113 | 72.05 113 | 75.12 157 | 70.95 324 | 47.97 251 | 82.72 201 | 68.43 352 | 62.52 131 | 78.17 32 | 93.08 28 | 44.21 127 | 88.86 146 | 84.82 13 | 63.54 236 | 88.54 141 |
|
| Fast-Effi-MVS+ | | | 72.73 114 | 71.15 126 | 77.48 91 | 82.75 129 | 54.76 79 | 86.77 88 | 80.64 208 | 63.05 122 | 65.93 133 | 84.01 186 | 44.42 126 | 89.03 136 | 56.45 217 | 76.36 126 | 88.64 137 |
|
| MTAPA | | | 72.73 114 | 71.22 124 | 77.27 97 | 81.54 160 | 53.57 107 | 67.06 345 | 81.31 197 | 59.41 184 | 68.39 111 | 90.96 69 | 36.07 238 | 89.01 137 | 73.80 90 | 82.45 66 | 89.23 121 |
|
| PGM-MVS | | | 72.60 116 | 71.20 125 | 76.80 113 | 82.95 120 | 52.82 132 | 83.07 195 | 82.14 180 | 56.51 249 | 63.18 175 | 89.81 97 | 35.68 242 | 89.76 118 | 67.30 122 | 80.19 87 | 87.83 156 |
|
| HPM-MVS |  | | 72.60 116 | 71.50 119 | 75.89 132 | 82.02 141 | 51.42 162 | 80.70 250 | 83.05 167 | 56.12 253 | 64.03 163 | 89.53 101 | 37.55 210 | 88.37 162 | 70.48 106 | 80.04 90 | 87.88 155 |
| Chunlin Ren, Qingshan Xu, Shikun Zhang, Jiaqi Yang: Hierarchical Prior Mining for Non-local Multi-View Stereo. ICCV 2023 |
| CP-MVS | | | 72.59 118 | 71.46 120 | 76.00 131 | 82.93 122 | 52.32 142 | 86.93 84 | 82.48 177 | 55.15 263 | 63.65 169 | 90.44 82 | 35.03 250 | 88.53 158 | 68.69 115 | 77.83 109 | 87.15 170 |
|
| baseline1 | | | 72.51 119 | 72.12 111 | 73.69 194 | 85.05 71 | 44.46 296 | 83.51 179 | 86.13 90 | 71.61 15 | 64.64 151 | 87.97 136 | 55.00 32 | 89.48 124 | 59.07 183 | 56.05 304 | 87.13 171 |
|
| EI-MVSNet-UG-set | | | 72.37 120 | 71.73 116 | 74.29 175 | 81.60 156 | 49.29 210 | 81.85 222 | 88.64 42 | 65.29 87 | 65.05 145 | 88.29 128 | 43.18 143 | 91.83 63 | 63.74 148 | 67.97 200 | 81.75 261 |
|
| MS-PatchMatch | | | 72.34 121 | 71.26 123 | 75.61 137 | 82.38 137 | 55.55 54 | 88.00 54 | 89.95 19 | 65.38 83 | 56.51 269 | 80.74 242 | 32.28 276 | 92.89 34 | 57.95 200 | 88.10 16 | 78.39 308 |
|
| HQP-MVS | | | 72.34 121 | 71.44 121 | 75.03 159 | 79.02 210 | 51.56 158 | 88.00 54 | 83.68 153 | 65.45 79 | 64.48 156 | 85.13 174 | 37.35 214 | 88.62 152 | 66.70 125 | 73.12 157 | 84.91 212 |
|
| mvs_anonymous | | | 72.29 123 | 70.74 129 | 76.94 109 | 82.85 126 | 54.72 82 | 78.43 276 | 81.54 193 | 63.77 105 | 61.69 192 | 79.32 252 | 51.11 52 | 85.31 253 | 62.15 159 | 75.79 131 | 90.79 83 |
|
| 3Dnovator+ | | 62.71 7 | 72.29 123 | 70.50 133 | 77.65 88 | 83.40 105 | 51.29 166 | 87.32 71 | 86.40 85 | 59.01 198 | 58.49 237 | 88.32 127 | 32.40 274 | 91.27 73 | 57.04 210 | 82.15 69 | 90.38 91 |
|
| nrg030 | | | 72.27 125 | 71.56 118 | 74.42 170 | 75.93 265 | 50.60 174 | 86.97 82 | 83.21 164 | 62.75 126 | 67.15 119 | 84.38 182 | 50.07 63 | 86.66 221 | 71.19 101 | 62.37 252 | 85.99 193 |
|
| UWE-MVS | | | 72.17 126 | 72.15 109 | 72.21 224 | 82.26 139 | 44.29 300 | 86.83 87 | 89.58 21 | 65.58 77 | 65.82 135 | 85.06 176 | 45.02 114 | 84.35 268 | 54.07 229 | 75.18 138 | 87.99 154 |
|
| VPNet | | | 72.07 127 | 71.42 122 | 74.04 181 | 78.64 221 | 47.17 266 | 89.91 31 | 87.97 55 | 72.56 10 | 64.66 150 | 85.04 177 | 41.83 163 | 88.33 166 | 61.17 166 | 60.97 258 | 86.62 182 |
|
| DP-MVS Recon | | | 71.99 128 | 70.31 138 | 77.01 104 | 90.65 8 | 53.44 112 | 89.37 37 | 82.97 170 | 56.33 251 | 63.56 172 | 89.47 102 | 34.02 259 | 92.15 58 | 54.05 230 | 72.41 164 | 85.43 206 |
|
| test_fmvsmconf0.01_n | | | 71.97 129 | 70.95 128 | 75.04 158 | 66.21 350 | 47.87 254 | 80.35 255 | 70.08 343 | 65.85 75 | 72.69 70 | 91.68 56 | 39.99 184 | 87.67 191 | 82.03 28 | 69.66 189 | 89.58 113 |
|
| SDMVSNet | | | 71.89 130 | 70.62 132 | 75.70 135 | 81.70 150 | 51.61 156 | 73.89 304 | 88.72 40 | 66.58 58 | 61.64 193 | 82.38 221 | 37.63 207 | 89.48 124 | 77.44 60 | 65.60 220 | 86.01 191 |
|
| QAPM | | | 71.88 131 | 69.33 154 | 79.52 42 | 82.20 140 | 54.30 93 | 86.30 95 | 88.77 38 | 56.61 247 | 59.72 209 | 87.48 144 | 33.90 261 | 95.36 13 | 47.48 275 | 81.49 74 | 88.90 129 |
|
| ECVR-MVS |  | | 71.81 132 | 71.00 127 | 74.26 176 | 80.12 193 | 43.49 308 | 84.69 145 | 82.16 179 | 64.02 99 | 64.64 151 | 87.43 146 | 35.04 249 | 89.21 132 | 61.24 165 | 79.66 96 | 90.08 102 |
|
| PAPM_NR | | | 71.80 133 | 69.98 145 | 77.26 98 | 81.54 160 | 53.34 117 | 78.60 275 | 85.25 112 | 53.46 278 | 60.53 203 | 88.66 118 | 45.69 105 | 89.24 129 | 56.49 214 | 79.62 98 | 89.19 123 |
|
| mPP-MVS | | | 71.79 134 | 70.38 136 | 76.04 129 | 82.65 133 | 52.06 145 | 84.45 152 | 81.78 190 | 55.59 258 | 62.05 190 | 89.68 99 | 33.48 265 | 88.28 170 | 65.45 139 | 78.24 108 | 87.77 158 |
|
| xiu_mvs_v1_base_debu | | | 71.60 135 | 70.29 139 | 75.55 140 | 77.26 243 | 53.15 122 | 85.34 118 | 79.37 234 | 55.83 255 | 72.54 71 | 90.19 87 | 22.38 343 | 86.66 221 | 73.28 93 | 76.39 123 | 86.85 176 |
|
| xiu_mvs_v1_base | | | 71.60 135 | 70.29 139 | 75.55 140 | 77.26 243 | 53.15 122 | 85.34 118 | 79.37 234 | 55.83 255 | 72.54 71 | 90.19 87 | 22.38 343 | 86.66 221 | 73.28 93 | 76.39 123 | 86.85 176 |
|
| xiu_mvs_v1_base_debi | | | 71.60 135 | 70.29 139 | 75.55 140 | 77.26 243 | 53.15 122 | 85.34 118 | 79.37 234 | 55.83 255 | 72.54 71 | 90.19 87 | 22.38 343 | 86.66 221 | 73.28 93 | 76.39 123 | 86.85 176 |
|
| hse-mvs2 | | | 71.44 138 | 70.68 130 | 73.73 193 | 76.34 254 | 47.44 261 | 79.45 268 | 79.47 233 | 68.08 38 | 71.97 79 | 86.01 166 | 42.50 150 | 86.93 214 | 78.82 46 | 53.46 327 | 86.83 179 |
|
| test_fmvsmvis_n_1920 | | | 71.29 139 | 70.38 136 | 74.00 183 | 71.04 323 | 48.79 223 | 79.19 271 | 64.62 360 | 62.75 126 | 66.73 120 | 91.99 48 | 40.94 171 | 88.35 164 | 83.00 21 | 73.18 156 | 84.85 214 |
|
| EPP-MVSNet | | | 71.14 140 | 70.07 144 | 74.33 173 | 79.18 207 | 46.52 272 | 83.81 171 | 86.49 82 | 56.32 252 | 57.95 243 | 84.90 180 | 54.23 36 | 89.14 133 | 58.14 196 | 69.65 190 | 87.33 167 |
|
| VPA-MVSNet | | | 71.12 141 | 70.66 131 | 72.49 217 | 78.75 216 | 44.43 298 | 87.64 63 | 90.02 17 | 63.97 102 | 65.02 146 | 81.58 235 | 42.14 156 | 87.42 200 | 63.42 150 | 63.38 240 | 85.63 203 |
|
| 1314 | | | 71.11 142 | 69.41 151 | 76.22 121 | 79.32 203 | 50.49 177 | 80.23 258 | 85.14 118 | 59.44 183 | 58.93 226 | 88.89 114 | 33.83 263 | 89.60 123 | 61.49 163 | 77.42 113 | 88.57 140 |
|
| test1111 | | | 71.06 143 | 70.42 135 | 72.97 206 | 79.48 200 | 41.49 330 | 84.82 143 | 82.74 174 | 64.20 96 | 62.98 178 | 87.43 146 | 35.20 246 | 87.92 179 | 58.54 188 | 78.42 106 | 89.49 116 |
|
| tpmrst | | | 71.04 144 | 69.77 147 | 74.86 163 | 83.19 111 | 55.86 52 | 75.64 288 | 78.73 251 | 67.88 42 | 64.99 148 | 73.73 311 | 49.96 67 | 79.56 315 | 65.92 131 | 67.85 202 | 89.14 125 |
|
| MVP-Stereo | | | 70.97 145 | 70.44 134 | 72.59 214 | 76.03 263 | 51.36 163 | 85.02 134 | 86.99 73 | 60.31 170 | 56.53 268 | 78.92 257 | 40.11 182 | 90.00 110 | 60.00 180 | 90.01 7 | 76.41 330 |
| Qingsong Yan: MVP-Stereo: A Parallel Multi-View Patchmatch Stereo Method with Dilation Matching for Photogrammetric Application. |
| HQP_MVS | | | 70.96 146 | 69.91 146 | 74.12 179 | 77.95 231 | 49.57 200 | 85.76 105 | 82.59 175 | 63.60 110 | 62.15 188 | 83.28 202 | 36.04 239 | 88.30 168 | 65.46 137 | 72.34 165 | 84.49 216 |
|
| SR-MVS | | | 70.92 147 | 69.73 148 | 74.50 167 | 83.38 106 | 50.48 178 | 84.27 157 | 79.35 238 | 48.96 311 | 66.57 126 | 90.45 79 | 33.65 264 | 87.11 207 | 66.42 127 | 74.56 148 | 85.91 196 |
|
| tpm2 | | | 70.82 148 | 68.44 163 | 77.98 81 | 80.78 180 | 56.11 46 | 74.21 303 | 81.28 199 | 60.24 171 | 68.04 113 | 75.27 300 | 52.26 46 | 88.50 159 | 55.82 221 | 68.03 199 | 89.33 118 |
|
| ACMMP |  | | 70.81 149 | 69.29 155 | 75.39 146 | 81.52 162 | 51.92 150 | 83.43 182 | 83.03 168 | 56.67 246 | 58.80 231 | 88.91 113 | 31.92 281 | 88.58 154 | 65.89 133 | 73.39 155 | 85.67 200 |
| Qingshan Xu, Weihang Kong, Wenbing Tao, Marc Pollefeys: Multi-Scale Geometric Consistency Guided and Planar Prior Assisted Multi-View Stereo. IEEE Transactions on Pattern Analysis and Machine Intelligence |
| OPM-MVS | | | 70.75 150 | 69.58 149 | 74.26 176 | 75.55 270 | 51.34 164 | 86.05 100 | 83.29 163 | 61.94 140 | 62.95 179 | 85.77 167 | 34.15 258 | 88.44 160 | 65.44 140 | 71.07 176 | 82.99 248 |
| Ray L. Khuboni, Hongjun Xu: Octagram Propagation Matching for Multi-Scale View Stereopsis (OPM-MVS). |
| ab-mvs | | | 70.65 151 | 69.11 157 | 75.29 152 | 80.87 176 | 46.23 280 | 73.48 308 | 85.24 113 | 59.99 173 | 66.65 122 | 80.94 239 | 43.13 146 | 88.69 150 | 63.58 149 | 68.07 198 | 90.95 80 |
|
| Vis-MVSNet |  | | 70.61 152 | 69.34 153 | 74.42 170 | 80.95 175 | 48.49 232 | 86.03 101 | 77.51 272 | 58.74 204 | 65.55 139 | 87.78 139 | 34.37 256 | 85.95 245 | 52.53 245 | 80.61 80 | 88.80 133 |
| Jingyang Zhang, Yao Yao, Shiwei Li, Zixin Luo, Tian Fang: Visibility-aware Multiview Stereo Network. BMVC 2020 |
| sss | | | 70.49 153 | 70.13 143 | 71.58 243 | 81.59 157 | 39.02 341 | 80.78 249 | 84.71 130 | 59.34 186 | 66.61 124 | 88.09 131 | 37.17 220 | 85.52 249 | 61.82 162 | 71.02 177 | 90.20 98 |
|
| CDS-MVSNet | | | 70.48 154 | 69.43 150 | 73.64 195 | 77.56 238 | 48.83 222 | 83.51 179 | 77.45 273 | 63.27 118 | 62.33 185 | 85.54 171 | 43.85 129 | 83.29 281 | 57.38 209 | 74.00 150 | 88.79 134 |
| Khang Truong Giang, Soohwan Song, Sungho Jo: Curvature-guided dynamic scale networks for Multi-view Stereo. ICLR 2022 |
| thisisatest0530 | | | 70.47 155 | 68.56 161 | 76.20 123 | 79.78 197 | 51.52 160 | 83.49 181 | 88.58 47 | 57.62 226 | 58.60 233 | 82.79 207 | 51.03 54 | 91.48 69 | 52.84 239 | 62.36 253 | 85.59 204 |
|
| XXY-MVS | | | 70.18 156 | 69.28 156 | 72.89 209 | 77.64 235 | 42.88 317 | 85.06 131 | 87.50 68 | 62.58 129 | 62.66 183 | 82.34 224 | 43.64 137 | 89.83 115 | 58.42 191 | 63.70 235 | 85.96 195 |
|
| Anonymous202405211 | | | 70.11 157 | 67.88 173 | 76.79 114 | 87.20 42 | 47.24 265 | 89.49 35 | 77.38 275 | 54.88 268 | 66.14 129 | 86.84 154 | 20.93 352 | 91.54 68 | 56.45 217 | 71.62 171 | 91.59 58 |
|
| PCF-MVS | | 61.03 10 | 70.10 158 | 68.40 164 | 75.22 156 | 77.15 247 | 51.99 147 | 79.30 270 | 82.12 181 | 56.47 250 | 61.88 191 | 86.48 162 | 43.98 128 | 87.24 204 | 55.37 222 | 72.79 162 | 86.43 186 |
| Andreas Kuhn, Shan Lin, Oliver Erdler: Plane Completion and Filtering for Multi-View Stereo Reconstruction. GCPR 2019 |
| BH-RMVSNet | | | 70.08 159 | 68.01 170 | 76.27 119 | 84.21 88 | 51.22 168 | 87.29 74 | 79.33 240 | 58.96 200 | 63.63 170 | 86.77 155 | 33.29 267 | 90.30 104 | 44.63 293 | 73.96 151 | 87.30 169 |
|
| 1112_ss | | | 70.05 160 | 69.37 152 | 72.10 226 | 80.77 181 | 42.78 318 | 85.12 130 | 76.75 285 | 59.69 178 | 61.19 197 | 92.12 42 | 47.48 83 | 83.84 272 | 53.04 237 | 68.21 197 | 89.66 111 |
|
| BH-w/o | | | 70.02 161 | 68.51 162 | 74.56 166 | 82.77 128 | 50.39 181 | 86.60 91 | 78.14 262 | 59.77 176 | 59.65 210 | 85.57 170 | 39.27 190 | 87.30 203 | 49.86 258 | 74.94 146 | 85.99 193 |
|
| FIs | | | 70.00 162 | 70.24 142 | 69.30 275 | 77.93 233 | 38.55 344 | 83.99 166 | 87.72 62 | 66.86 56 | 57.66 250 | 84.17 185 | 52.28 45 | 85.31 253 | 52.72 244 | 68.80 194 | 84.02 224 |
|
| OpenMVS |  | 61.00 11 | 69.99 163 | 67.55 182 | 77.30 95 | 78.37 227 | 54.07 100 | 84.36 154 | 85.76 96 | 57.22 234 | 56.71 265 | 87.67 142 | 30.79 289 | 92.83 36 | 43.04 300 | 84.06 58 | 85.01 210 |
|
| GeoE | | | 69.96 164 | 67.88 173 | 76.22 121 | 81.11 169 | 51.71 155 | 84.15 160 | 76.74 287 | 59.83 175 | 60.91 198 | 84.38 182 | 41.56 166 | 88.10 175 | 51.67 248 | 70.57 182 | 88.84 132 |
|
| HyFIR lowres test | | | 69.94 165 | 67.58 180 | 77.04 102 | 77.11 248 | 57.29 24 | 81.49 237 | 79.11 243 | 58.27 210 | 58.86 229 | 80.41 243 | 42.33 152 | 86.96 212 | 61.91 160 | 68.68 196 | 86.87 174 |
|
| 114514_t | | | 69.87 166 | 67.88 173 | 75.85 133 | 88.38 29 | 52.35 141 | 86.94 83 | 83.68 153 | 53.70 276 | 55.68 275 | 85.60 169 | 30.07 294 | 91.20 77 | 55.84 220 | 71.02 177 | 83.99 226 |
|
| miper_enhance_ethall | | | 69.77 167 | 68.90 159 | 72.38 220 | 78.93 213 | 49.91 194 | 83.29 188 | 78.85 245 | 64.90 89 | 59.37 217 | 79.46 250 | 52.77 42 | 85.16 258 | 63.78 147 | 58.72 273 | 82.08 256 |
|
| Anonymous20240529 | | | 69.71 168 | 67.28 188 | 77.00 105 | 83.78 96 | 50.36 184 | 88.87 45 | 85.10 119 | 47.22 320 | 64.03 163 | 83.37 200 | 27.93 304 | 92.10 59 | 57.78 204 | 67.44 204 | 88.53 142 |
|
| TR-MVS | | | 69.71 168 | 67.85 176 | 75.27 154 | 82.94 121 | 48.48 233 | 87.40 70 | 80.86 205 | 57.15 236 | 64.61 153 | 87.08 151 | 32.67 272 | 89.64 122 | 46.38 284 | 71.55 173 | 87.68 161 |
|
| EI-MVSNet | | | 69.70 170 | 68.70 160 | 72.68 212 | 75.00 276 | 48.90 220 | 79.54 265 | 87.16 70 | 61.05 156 | 63.88 167 | 83.74 191 | 45.87 101 | 90.44 97 | 57.42 208 | 64.68 227 | 78.70 301 |
|
| test-LLR | | | 69.65 171 | 69.01 158 | 71.60 241 | 78.67 218 | 48.17 243 | 85.13 127 | 79.72 226 | 59.18 193 | 63.13 176 | 82.58 215 | 36.91 225 | 80.24 306 | 60.56 172 | 75.17 139 | 86.39 187 |
|
| APD-MVS_3200maxsize | | | 69.62 172 | 68.23 168 | 73.80 190 | 81.58 158 | 48.22 242 | 81.91 220 | 79.50 232 | 48.21 315 | 64.24 161 | 89.75 98 | 31.91 282 | 87.55 197 | 63.08 151 | 73.85 153 | 85.64 202 |
|
| v2v482 | | | 69.55 173 | 67.64 179 | 75.26 155 | 72.32 310 | 53.83 101 | 84.93 139 | 81.94 184 | 65.37 84 | 60.80 200 | 79.25 253 | 41.62 164 | 88.98 141 | 63.03 152 | 59.51 266 | 82.98 249 |
|
| TAMVS | | | 69.51 174 | 68.16 169 | 73.56 198 | 76.30 257 | 48.71 226 | 82.57 205 | 77.17 278 | 62.10 136 | 61.32 196 | 84.23 184 | 41.90 161 | 83.46 279 | 54.80 226 | 73.09 159 | 88.50 143 |
|
| mvsmamba | | | 69.38 175 | 67.52 184 | 74.95 162 | 82.86 125 | 52.22 144 | 67.36 343 | 76.75 285 | 61.14 153 | 49.43 317 | 82.04 229 | 37.26 218 | 84.14 269 | 73.93 86 | 76.91 117 | 88.50 143 |
|
| WB-MVSnew | | | 69.36 176 | 68.24 167 | 72.72 211 | 79.26 205 | 49.40 207 | 85.72 110 | 88.85 35 | 61.33 149 | 64.59 154 | 82.38 221 | 34.57 254 | 87.53 198 | 46.82 281 | 70.63 180 | 81.22 277 |
|
| PVSNet | | 62.49 8 | 69.27 177 | 67.81 177 | 73.64 195 | 84.41 82 | 51.85 151 | 84.63 149 | 77.80 266 | 66.42 62 | 59.80 208 | 84.95 179 | 22.14 347 | 80.44 304 | 55.03 223 | 75.11 142 | 88.62 138 |
|
| MVS_111021_LR | | | 69.07 178 | 67.91 171 | 72.54 215 | 77.27 242 | 49.56 202 | 79.77 263 | 73.96 313 | 59.33 188 | 60.73 201 | 87.82 138 | 30.19 293 | 81.53 289 | 69.94 107 | 72.19 167 | 86.53 183 |
|
| GA-MVS | | | 69.04 179 | 66.70 197 | 76.06 128 | 75.11 273 | 52.36 140 | 83.12 193 | 80.23 215 | 63.32 117 | 60.65 202 | 79.22 254 | 30.98 288 | 88.37 162 | 61.25 164 | 66.41 213 | 87.46 165 |
|
| cascas | | | 69.01 180 | 66.13 209 | 77.66 87 | 79.36 201 | 55.41 59 | 86.99 81 | 83.75 152 | 56.69 245 | 58.92 227 | 81.35 236 | 24.31 332 | 92.10 59 | 53.23 234 | 70.61 181 | 85.46 205 |
|
| FA-MVS(test-final) | | | 69.00 181 | 66.60 200 | 76.19 124 | 83.48 101 | 47.96 253 | 74.73 296 | 82.07 182 | 57.27 233 | 62.18 187 | 78.47 261 | 36.09 237 | 92.89 34 | 53.76 233 | 71.32 175 | 87.73 159 |
|
| cl22 | | | 68.85 182 | 67.69 178 | 72.35 221 | 78.07 230 | 49.98 193 | 82.45 210 | 78.48 257 | 62.50 132 | 58.46 238 | 77.95 263 | 49.99 65 | 85.17 257 | 62.55 154 | 58.72 273 | 81.90 259 |
|
| FMVSNet3 | | | 68.84 183 | 67.40 186 | 73.19 203 | 85.05 71 | 48.53 230 | 85.71 111 | 85.36 104 | 60.90 162 | 57.58 252 | 79.15 255 | 42.16 155 | 86.77 217 | 47.25 277 | 63.40 237 | 84.27 220 |
|
| UniMVSNet_NR-MVSNet | | | 68.82 184 | 68.29 166 | 70.40 261 | 75.71 268 | 42.59 320 | 84.23 158 | 86.78 76 | 66.31 64 | 58.51 234 | 82.45 218 | 51.57 49 | 84.64 266 | 53.11 235 | 55.96 305 | 83.96 230 |
|
| v1144 | | | 68.81 185 | 66.82 193 | 74.80 164 | 72.34 309 | 53.46 109 | 84.68 146 | 81.77 191 | 64.25 95 | 60.28 204 | 77.91 264 | 40.23 179 | 88.95 142 | 60.37 177 | 59.52 265 | 81.97 257 |
|
| IS-MVSNet | | | 68.80 186 | 67.55 182 | 72.54 215 | 78.50 224 | 43.43 310 | 81.03 242 | 79.35 238 | 59.12 196 | 57.27 260 | 86.71 156 | 46.05 99 | 87.70 190 | 44.32 295 | 75.60 134 | 86.49 184 |
|
| PS-MVSNAJss | | | 68.78 187 | 67.17 190 | 73.62 197 | 73.01 300 | 48.33 240 | 84.95 138 | 84.81 126 | 59.30 189 | 58.91 228 | 79.84 248 | 37.77 202 | 88.86 146 | 62.83 153 | 63.12 246 | 83.67 236 |
|
| thres200 | | | 68.71 188 | 67.27 189 | 73.02 204 | 84.73 76 | 46.76 269 | 85.03 133 | 87.73 61 | 62.34 134 | 59.87 206 | 83.45 197 | 43.15 144 | 88.32 167 | 31.25 348 | 67.91 201 | 83.98 228 |
|
| UGNet | | | 68.71 188 | 67.11 191 | 73.50 199 | 80.55 187 | 47.61 258 | 84.08 162 | 78.51 256 | 59.45 182 | 65.68 138 | 82.73 211 | 23.78 334 | 85.08 260 | 52.80 240 | 76.40 122 | 87.80 157 |
| Wanjuan Su, Qingshan Xu, Wenbing Tao: Uncertainty-guided Multi-view Stereo Network for Depth Estimation. IEEE Transactions on Circuits and Systems for Video Technology, 2022 |
| miper_ehance_all_eth | | | 68.70 190 | 67.58 180 | 72.08 227 | 76.91 250 | 49.48 206 | 82.47 209 | 78.45 258 | 62.68 128 | 58.28 242 | 77.88 265 | 50.90 55 | 85.01 261 | 61.91 160 | 58.72 273 | 81.75 261 |
|
| test_vis1_n_1920 | | | 68.59 191 | 68.31 165 | 69.44 274 | 69.16 336 | 41.51 329 | 84.63 149 | 68.58 351 | 58.80 202 | 73.26 63 | 88.37 123 | 25.30 323 | 80.60 301 | 79.10 43 | 67.55 203 | 86.23 189 |
|
| EPMVS | | | 68.45 192 | 65.44 228 | 77.47 92 | 84.91 74 | 56.17 45 | 71.89 324 | 81.91 187 | 61.72 143 | 60.85 199 | 72.49 325 | 36.21 235 | 87.06 209 | 47.32 276 | 71.62 171 | 89.17 124 |
|
| test-mter | | | 68.36 193 | 67.29 187 | 71.60 241 | 78.67 218 | 48.17 243 | 85.13 127 | 79.72 226 | 53.38 279 | 63.13 176 | 82.58 215 | 27.23 310 | 80.24 306 | 60.56 172 | 75.17 139 | 86.39 187 |
|
| tpm | | | 68.36 193 | 67.48 185 | 70.97 253 | 79.93 196 | 51.34 164 | 76.58 286 | 78.75 250 | 67.73 45 | 63.54 173 | 74.86 302 | 48.33 74 | 72.36 359 | 53.93 231 | 63.71 234 | 89.21 122 |
|
| tttt0517 | | | 68.33 195 | 66.29 205 | 74.46 168 | 78.08 229 | 49.06 212 | 80.88 247 | 89.08 28 | 54.40 273 | 54.75 282 | 80.77 241 | 51.31 51 | 90.33 101 | 49.35 262 | 58.01 285 | 83.99 226 |
|
| BH-untuned | | | 68.28 196 | 66.40 202 | 73.91 185 | 81.62 155 | 50.01 192 | 85.56 115 | 77.39 274 | 57.63 225 | 57.47 257 | 83.69 193 | 36.36 234 | 87.08 208 | 44.81 291 | 73.08 160 | 84.65 215 |
|
| SR-MVS-dyc-post | | | 68.27 197 | 66.87 192 | 72.48 218 | 80.96 172 | 48.14 245 | 81.54 233 | 76.98 281 | 46.42 327 | 62.75 181 | 89.42 103 | 31.17 287 | 86.09 239 | 60.52 174 | 72.06 168 | 83.19 244 |
|
| v148 | | | 68.24 198 | 66.35 203 | 73.88 186 | 71.76 313 | 51.47 161 | 84.23 158 | 81.90 188 | 63.69 108 | 58.94 225 | 76.44 287 | 43.72 135 | 87.78 187 | 60.63 170 | 55.86 307 | 82.39 254 |
|
| AUN-MVS | | | 68.20 199 | 66.35 203 | 73.76 191 | 76.37 253 | 47.45 260 | 79.52 267 | 79.52 231 | 60.98 158 | 62.34 184 | 86.02 164 | 36.59 233 | 86.94 213 | 62.32 156 | 53.47 326 | 86.89 173 |
|
| c3_l | | | 67.97 200 | 66.66 198 | 71.91 238 | 76.20 259 | 49.31 209 | 82.13 216 | 78.00 264 | 61.99 138 | 57.64 251 | 76.94 279 | 49.41 70 | 84.93 262 | 60.62 171 | 57.01 295 | 81.49 265 |
|
| v1192 | | | 67.96 201 | 65.74 220 | 74.63 165 | 71.79 312 | 53.43 114 | 84.06 164 | 80.99 204 | 63.19 120 | 59.56 213 | 77.46 271 | 37.50 213 | 88.65 151 | 58.20 195 | 58.93 272 | 81.79 260 |
|
| v144192 | | | 67.86 202 | 65.76 219 | 74.16 178 | 71.68 314 | 53.09 125 | 84.14 161 | 80.83 206 | 62.85 125 | 59.21 222 | 77.28 274 | 39.30 189 | 88.00 178 | 58.67 187 | 57.88 289 | 81.40 270 |
|
| HPM-MVS_fast | | | 67.86 202 | 66.28 206 | 72.61 213 | 80.67 184 | 48.34 238 | 81.18 240 | 75.95 296 | 50.81 298 | 59.55 214 | 88.05 134 | 27.86 305 | 85.98 242 | 58.83 185 | 73.58 154 | 83.51 237 |
|
| AdaColmap |  | | 67.86 202 | 65.48 225 | 75.00 160 | 88.15 36 | 54.99 74 | 86.10 99 | 76.63 290 | 49.30 308 | 57.80 246 | 86.65 159 | 29.39 297 | 88.94 144 | 45.10 290 | 70.21 185 | 81.06 278 |
|
| sd_testset | | | 67.79 205 | 65.95 214 | 73.32 200 | 81.70 150 | 46.33 277 | 68.99 336 | 80.30 214 | 66.58 58 | 61.64 193 | 82.38 221 | 30.45 291 | 87.63 193 | 55.86 219 | 65.60 220 | 86.01 191 |
|
| UniMVSNet (Re) | | | 67.71 206 | 66.80 194 | 70.45 259 | 74.44 283 | 42.93 316 | 82.42 211 | 84.90 123 | 63.69 108 | 59.63 211 | 80.99 238 | 47.18 85 | 85.23 256 | 51.17 252 | 56.75 296 | 83.19 244 |
|
| V42 | | | 67.66 207 | 65.60 224 | 73.86 187 | 70.69 327 | 53.63 106 | 81.50 235 | 78.61 254 | 63.85 104 | 59.49 216 | 77.49 270 | 37.98 199 | 87.65 192 | 62.33 155 | 58.43 276 | 80.29 288 |
|
| dmvs_re | | | 67.61 208 | 66.00 212 | 72.42 219 | 81.86 145 | 43.45 309 | 64.67 351 | 80.00 218 | 69.56 31 | 60.07 205 | 85.00 178 | 34.71 252 | 87.63 193 | 51.48 249 | 66.68 208 | 86.17 190 |
|
| WR-MVS | | | 67.58 209 | 66.76 195 | 70.04 268 | 75.92 266 | 45.06 294 | 86.23 96 | 85.28 110 | 64.31 94 | 58.50 236 | 81.00 237 | 44.80 123 | 82.00 288 | 49.21 264 | 55.57 310 | 83.06 247 |
|
| tfpn200view9 | | | 67.57 210 | 66.13 209 | 71.89 239 | 84.05 90 | 45.07 291 | 83.40 184 | 87.71 63 | 60.79 163 | 57.79 247 | 82.76 208 | 43.53 138 | 87.80 184 | 28.80 355 | 66.36 214 | 82.78 252 |
|
| FMVSNet2 | | | 67.57 210 | 65.79 218 | 72.90 207 | 82.71 130 | 47.97 251 | 85.15 126 | 84.93 122 | 58.55 207 | 56.71 265 | 78.26 262 | 36.72 230 | 86.67 220 | 46.15 286 | 62.94 248 | 84.07 223 |
|
| FC-MVSNet-test | | | 67.49 212 | 67.91 171 | 66.21 306 | 76.06 261 | 33.06 364 | 80.82 248 | 87.18 69 | 64.44 93 | 54.81 280 | 82.87 205 | 50.40 62 | 82.60 283 | 48.05 272 | 66.55 212 | 82.98 249 |
|
| v1921920 | | | 67.45 213 | 65.23 232 | 74.10 180 | 71.51 317 | 52.90 131 | 83.75 173 | 80.44 211 | 62.48 133 | 59.12 223 | 77.13 275 | 36.98 223 | 87.90 180 | 57.53 206 | 58.14 283 | 81.49 265 |
|
| cl____ | | | 67.43 214 | 65.93 215 | 71.95 235 | 76.33 255 | 48.02 249 | 82.58 204 | 79.12 242 | 61.30 151 | 56.72 264 | 76.92 280 | 46.12 97 | 86.44 228 | 57.98 198 | 56.31 299 | 81.38 272 |
|
| DIV-MVS_self_test | | | 67.43 214 | 65.93 215 | 71.94 236 | 76.33 255 | 48.01 250 | 82.57 205 | 79.11 243 | 61.31 150 | 56.73 263 | 76.92 280 | 46.09 98 | 86.43 229 | 57.98 198 | 56.31 299 | 81.39 271 |
|
| gg-mvs-nofinetune | | | 67.43 214 | 64.53 239 | 76.13 126 | 85.95 52 | 47.79 257 | 64.38 352 | 88.28 51 | 39.34 356 | 66.62 123 | 41.27 391 | 58.69 13 | 89.00 138 | 49.64 260 | 86.62 33 | 91.59 58 |
|
| thres400 | | | 67.40 217 | 66.13 209 | 71.19 249 | 84.05 90 | 45.07 291 | 83.40 184 | 87.71 63 | 60.79 163 | 57.79 247 | 82.76 208 | 43.53 138 | 87.80 184 | 28.80 355 | 66.36 214 | 80.71 283 |
|
| UA-Net | | | 67.32 218 | 66.23 207 | 70.59 257 | 78.85 214 | 41.23 333 | 73.60 306 | 75.45 300 | 61.54 146 | 66.61 124 | 84.53 181 | 38.73 195 | 86.57 226 | 42.48 305 | 74.24 149 | 83.98 228 |
|
| v8 | | | 67.25 219 | 64.99 235 | 74.04 181 | 72.89 303 | 53.31 119 | 82.37 212 | 80.11 217 | 61.54 146 | 54.29 287 | 76.02 296 | 42.89 148 | 88.41 161 | 58.43 189 | 56.36 297 | 80.39 287 |
|
| NR-MVSNet | | | 67.25 219 | 65.99 213 | 71.04 252 | 73.27 297 | 43.91 304 | 85.32 121 | 84.75 129 | 66.05 72 | 53.65 294 | 82.11 227 | 45.05 113 | 85.97 244 | 47.55 274 | 56.18 302 | 83.24 242 |
|
| Test_1112_low_res | | | 67.18 221 | 66.23 207 | 70.02 269 | 78.75 216 | 41.02 334 | 83.43 182 | 73.69 315 | 57.29 232 | 58.45 239 | 82.39 220 | 45.30 110 | 80.88 295 | 50.50 254 | 66.26 218 | 88.16 147 |
|
| CPTT-MVS | | | 67.15 222 | 65.84 217 | 71.07 251 | 80.96 172 | 50.32 186 | 81.94 219 | 74.10 309 | 46.18 330 | 57.91 244 | 87.64 143 | 29.57 295 | 81.31 291 | 64.10 146 | 70.18 186 | 81.56 264 |
|
| test_cas_vis1_n_1920 | | | 67.10 223 | 66.60 200 | 68.59 287 | 65.17 358 | 43.23 313 | 83.23 190 | 69.84 345 | 55.34 262 | 70.67 98 | 87.71 141 | 24.70 330 | 76.66 339 | 78.57 50 | 64.20 229 | 85.89 197 |
|
| GBi-Net | | | 67.09 224 | 65.47 226 | 71.96 232 | 82.71 130 | 46.36 274 | 83.52 175 | 83.31 160 | 58.55 207 | 57.58 252 | 76.23 291 | 36.72 230 | 86.20 231 | 47.25 277 | 63.40 237 | 83.32 239 |
|
| test1 | | | 67.09 224 | 65.47 226 | 71.96 232 | 82.71 130 | 46.36 274 | 83.52 175 | 83.31 160 | 58.55 207 | 57.58 252 | 76.23 291 | 36.72 230 | 86.20 231 | 47.25 277 | 63.40 237 | 83.32 239 |
|
| PatchmatchNet |  | | 67.07 226 | 63.63 245 | 77.40 93 | 83.10 112 | 58.03 13 | 72.11 322 | 77.77 267 | 58.85 201 | 59.37 217 | 70.83 338 | 37.84 201 | 84.93 262 | 42.96 301 | 69.83 188 | 89.26 119 |
| Fangjinhua Wang, Silvano Galliani, Christoph Vogel, Pablo Speciale, Marc Pollefeys: PatchmatchNet: Learned Multi-View Patchmatch Stereo. |
| v1240 | | | 66.99 227 | 64.68 237 | 73.93 184 | 71.38 320 | 52.66 134 | 83.39 186 | 79.98 219 | 61.97 139 | 58.44 240 | 77.11 276 | 35.25 245 | 87.81 182 | 56.46 216 | 58.15 281 | 81.33 273 |
|
| eth_miper_zixun_eth | | | 66.98 228 | 65.28 231 | 72.06 228 | 75.61 269 | 50.40 180 | 81.00 243 | 76.97 284 | 62.00 137 | 56.99 262 | 76.97 278 | 44.84 120 | 85.58 248 | 58.75 186 | 54.42 318 | 80.21 289 |
|
| TranMVSNet+NR-MVSNet | | | 66.94 229 | 65.61 223 | 70.93 254 | 73.45 293 | 43.38 311 | 83.02 197 | 84.25 141 | 65.31 86 | 58.33 241 | 81.90 231 | 39.92 186 | 85.52 249 | 49.43 261 | 54.89 314 | 83.89 232 |
|
| thres100view900 | | | 66.87 230 | 65.42 229 | 71.24 247 | 83.29 108 | 43.15 314 | 81.67 228 | 87.78 58 | 59.04 197 | 55.92 273 | 82.18 226 | 43.73 133 | 87.80 184 | 28.80 355 | 66.36 214 | 82.78 252 |
|
| DU-MVS | | | 66.84 231 | 65.74 220 | 70.16 264 | 73.27 297 | 42.59 320 | 81.50 235 | 82.92 172 | 63.53 112 | 58.51 234 | 82.11 227 | 40.75 173 | 84.64 266 | 53.11 235 | 55.96 305 | 83.24 242 |
|
| IterMVS-LS | | | 66.63 232 | 65.36 230 | 70.42 260 | 75.10 274 | 48.90 220 | 81.45 238 | 76.69 289 | 61.05 156 | 55.71 274 | 77.10 277 | 45.86 102 | 83.65 276 | 57.44 207 | 57.88 289 | 78.70 301 |
| Fangjinhua Wang, Silvano Galliani, Christoph Vogel, Marc Pollefeys: IterMVS: Iterative Probability Estimation for Efficient Multi-View Stereo. |
| v10 | | | 66.61 233 | 64.20 242 | 73.83 189 | 72.59 306 | 53.37 115 | 81.88 221 | 79.91 223 | 61.11 154 | 54.09 289 | 75.60 298 | 40.06 183 | 88.26 171 | 56.47 215 | 56.10 303 | 79.86 293 |
|
| Fast-Effi-MVS+-dtu | | | 66.53 234 | 64.10 243 | 73.84 188 | 72.41 308 | 52.30 143 | 84.73 144 | 75.66 297 | 59.51 181 | 56.34 270 | 79.11 256 | 28.11 302 | 85.85 247 | 57.74 205 | 63.29 241 | 83.35 238 |
|
| thres600view7 | | | 66.46 235 | 65.12 233 | 70.47 258 | 83.41 102 | 43.80 306 | 82.15 214 | 87.78 58 | 59.37 185 | 56.02 272 | 82.21 225 | 43.73 133 | 86.90 215 | 26.51 367 | 64.94 223 | 80.71 283 |
|
| LPG-MVS_test | | | 66.44 236 | 64.58 238 | 72.02 229 | 74.42 284 | 48.60 227 | 83.07 195 | 80.64 208 | 54.69 270 | 53.75 292 | 83.83 189 | 25.73 321 | 86.98 210 | 60.33 178 | 64.71 224 | 80.48 285 |
|
| tpm cat1 | | | 66.28 237 | 62.78 247 | 76.77 115 | 81.40 164 | 57.14 26 | 70.03 331 | 77.19 277 | 53.00 282 | 58.76 232 | 70.73 341 | 46.17 96 | 86.73 219 | 43.27 299 | 64.46 228 | 86.44 185 |
|
| EPNet_dtu | | | 66.25 238 | 66.71 196 | 64.87 316 | 78.66 220 | 34.12 359 | 82.80 200 | 75.51 298 | 61.75 142 | 64.47 159 | 86.90 153 | 37.06 221 | 72.46 358 | 43.65 298 | 69.63 191 | 88.02 153 |
| Wanjuan Su, Wenbing Tao: Efficient Edge-Preserving Multi-View Stereo Network for Depth Estimation. AAAI 2023 |
| Effi-MVS+-dtu | | | 66.24 239 | 64.96 236 | 70.08 266 | 75.17 272 | 49.64 199 | 82.01 217 | 74.48 307 | 62.15 135 | 57.83 245 | 76.08 295 | 30.59 290 | 83.79 273 | 65.40 141 | 60.93 259 | 76.81 323 |
|
| ACMP | | 61.11 9 | 66.24 239 | 64.33 240 | 72.00 231 | 74.89 278 | 49.12 211 | 83.18 192 | 79.83 224 | 55.41 261 | 52.29 301 | 82.68 212 | 25.83 319 | 86.10 237 | 60.89 167 | 63.94 233 | 80.78 281 |
| Qingshan Xu and Wenbing Tao: Planar Prior Assisted PatchMatch Multi-View Stereo. AAAI 2020 |
| Anonymous20231211 | | | 66.08 241 | 63.67 244 | 73.31 201 | 83.07 115 | 48.75 224 | 86.01 102 | 84.67 132 | 45.27 334 | 56.54 267 | 76.67 285 | 28.06 303 | 88.95 142 | 52.78 241 | 59.95 261 | 82.23 255 |
|
| OMC-MVS | | | 65.97 242 | 65.06 234 | 68.71 284 | 72.97 301 | 42.58 322 | 78.61 274 | 75.35 301 | 54.72 269 | 59.31 219 | 86.25 163 | 33.30 266 | 77.88 328 | 57.99 197 | 67.05 206 | 85.66 201 |
|
| X-MVStestdata | | | 65.85 243 | 62.20 251 | 76.81 111 | 83.41 102 | 52.48 136 | 84.88 140 | 83.20 165 | 58.03 213 | 63.91 165 | 4.82 410 | 35.50 243 | 89.78 116 | 65.50 134 | 80.50 82 | 88.16 147 |
|
| Vis-MVSNet (Re-imp) | | | 65.52 244 | 65.63 222 | 65.17 314 | 77.49 239 | 30.54 371 | 75.49 292 | 77.73 268 | 59.34 186 | 52.26 303 | 86.69 157 | 49.38 71 | 80.53 303 | 37.07 319 | 75.28 137 | 84.42 218 |
|
| Baseline_NR-MVSNet | | | 65.49 245 | 64.27 241 | 69.13 276 | 74.37 286 | 41.65 327 | 83.39 186 | 78.85 245 | 59.56 180 | 59.62 212 | 76.88 282 | 40.75 173 | 87.44 199 | 49.99 256 | 55.05 312 | 78.28 310 |
|
| FMVSNet1 | | | 64.57 246 | 62.11 252 | 71.96 232 | 77.32 241 | 46.36 274 | 83.52 175 | 83.31 160 | 52.43 287 | 54.42 285 | 76.23 291 | 27.80 306 | 86.20 231 | 42.59 304 | 61.34 257 | 83.32 239 |
|
| dp | | | 64.41 247 | 61.58 255 | 72.90 207 | 82.40 136 | 54.09 99 | 72.53 314 | 76.59 291 | 60.39 169 | 55.68 275 | 70.39 342 | 35.18 247 | 76.90 337 | 39.34 311 | 61.71 255 | 87.73 159 |
|
| ACMM | | 58.35 12 | 64.35 248 | 62.01 253 | 71.38 245 | 74.21 287 | 48.51 231 | 82.25 213 | 79.66 228 | 47.61 318 | 54.54 284 | 80.11 244 | 25.26 324 | 86.00 241 | 51.26 250 | 63.16 244 | 79.64 294 |
| Qingshan Xu and Wenbing Tao: Multi-Scale Geometric Consistency Guided Multi-View Stereo. CVPR 2019 |
| FE-MVS | | | 64.15 249 | 60.43 269 | 75.30 151 | 80.85 177 | 49.86 196 | 68.28 340 | 78.37 259 | 50.26 304 | 59.31 219 | 73.79 310 | 26.19 317 | 91.92 62 | 40.19 308 | 66.67 209 | 84.12 221 |
|
| pm-mvs1 | | | 64.12 250 | 62.56 248 | 68.78 282 | 71.68 314 | 38.87 342 | 82.89 199 | 81.57 192 | 55.54 260 | 53.89 291 | 77.82 266 | 37.73 205 | 86.74 218 | 48.46 270 | 53.49 325 | 80.72 282 |
|
| miper_lstm_enhance | | | 63.91 251 | 62.30 250 | 68.75 283 | 75.06 275 | 46.78 268 | 69.02 335 | 81.14 200 | 59.68 179 | 52.76 298 | 72.39 328 | 40.71 175 | 77.99 326 | 56.81 212 | 53.09 328 | 81.48 267 |
|
| SCA | | | 63.84 252 | 60.01 273 | 75.32 148 | 78.58 222 | 57.92 14 | 61.61 363 | 77.53 271 | 56.71 244 | 57.75 249 | 70.77 339 | 31.97 279 | 79.91 312 | 48.80 266 | 56.36 297 | 88.13 150 |
|
| test_djsdf | | | 63.84 252 | 61.56 256 | 70.70 256 | 68.78 338 | 44.69 295 | 81.63 229 | 81.44 195 | 50.28 301 | 52.27 302 | 76.26 290 | 26.72 313 | 86.11 235 | 60.83 168 | 55.84 308 | 81.29 276 |
|
| IterMVS | | | 63.77 254 | 61.67 254 | 70.08 266 | 72.68 305 | 51.24 167 | 80.44 253 | 75.51 298 | 60.51 168 | 51.41 306 | 73.70 314 | 32.08 278 | 78.91 316 | 54.30 228 | 54.35 319 | 80.08 291 |
| Fangjinhua Wang, Silvano Galliani, Christoph Vogel, Marc Pollefeys: IterMVS: Iterative Probability Estimation for Efficient Multi-View Stereo. |
| myMVS_eth3d | | | 63.52 255 | 63.56 246 | 63.40 323 | 81.73 148 | 34.28 357 | 80.97 244 | 81.02 202 | 60.93 160 | 55.06 278 | 82.64 213 | 48.00 80 | 80.81 297 | 23.42 377 | 58.32 277 | 75.10 340 |
|
| D2MVS | | | 63.49 256 | 61.39 258 | 69.77 270 | 69.29 335 | 48.93 219 | 78.89 273 | 77.71 269 | 60.64 167 | 49.70 316 | 72.10 333 | 27.08 311 | 83.48 278 | 54.48 227 | 62.65 249 | 76.90 322 |
|
| tt0805 | | | 63.39 257 | 61.31 260 | 69.64 271 | 69.36 334 | 38.87 342 | 78.00 277 | 85.48 98 | 48.82 312 | 55.66 277 | 81.66 233 | 24.38 331 | 86.37 230 | 49.04 265 | 59.36 269 | 83.68 235 |
|
| pmmvs4 | | | 63.34 258 | 61.07 263 | 70.16 264 | 70.14 329 | 50.53 176 | 79.97 262 | 71.41 335 | 55.08 264 | 54.12 288 | 78.58 259 | 32.79 271 | 82.09 287 | 50.33 255 | 57.22 294 | 77.86 314 |
|
| jajsoiax | | | 63.21 259 | 60.84 264 | 70.32 262 | 68.33 343 | 44.45 297 | 81.23 239 | 81.05 201 | 53.37 280 | 50.96 311 | 77.81 267 | 17.49 366 | 85.49 251 | 59.31 181 | 58.05 284 | 81.02 279 |
|
| MIMVSNet | | | 63.12 260 | 60.29 270 | 71.61 240 | 75.92 266 | 46.65 270 | 65.15 348 | 81.94 184 | 59.14 195 | 54.65 283 | 69.47 345 | 25.74 320 | 80.63 300 | 41.03 307 | 69.56 192 | 87.55 163 |
|
| CL-MVSNet_self_test | | | 62.98 261 | 61.14 262 | 68.50 289 | 65.86 353 | 42.96 315 | 84.37 153 | 82.98 169 | 60.98 158 | 53.95 290 | 72.70 324 | 40.43 177 | 83.71 275 | 41.10 306 | 47.93 342 | 78.83 300 |
|
| mvs_tets | | | 62.96 262 | 60.55 266 | 70.19 263 | 68.22 346 | 44.24 302 | 80.90 246 | 80.74 207 | 52.99 283 | 50.82 313 | 77.56 268 | 16.74 369 | 85.44 252 | 59.04 184 | 57.94 286 | 80.89 280 |
|
| TransMVSNet (Re) | | | 62.82 263 | 60.76 265 | 69.02 277 | 73.98 290 | 41.61 328 | 86.36 93 | 79.30 241 | 56.90 238 | 52.53 299 | 76.44 287 | 41.85 162 | 87.60 196 | 38.83 312 | 40.61 366 | 77.86 314 |
|
| pmmvs5 | | | 62.80 264 | 61.18 261 | 67.66 293 | 69.53 333 | 42.37 325 | 82.65 203 | 75.19 302 | 54.30 274 | 52.03 304 | 78.51 260 | 31.64 284 | 80.67 299 | 48.60 268 | 58.15 281 | 79.95 292 |
|
| test0.0.03 1 | | | 62.54 265 | 62.44 249 | 62.86 327 | 72.28 311 | 29.51 379 | 82.93 198 | 78.78 248 | 59.18 193 | 53.07 297 | 82.41 219 | 36.91 225 | 77.39 332 | 37.45 315 | 58.96 271 | 81.66 263 |
|
| UniMVSNet_ETH3D | | | 62.51 266 | 60.49 267 | 68.57 288 | 68.30 344 | 40.88 336 | 73.89 304 | 79.93 222 | 51.81 293 | 54.77 281 | 79.61 249 | 24.80 328 | 81.10 292 | 49.93 257 | 61.35 256 | 83.73 234 |
|
| v7n | | | 62.50 267 | 59.27 278 | 72.20 225 | 67.25 349 | 49.83 197 | 77.87 279 | 80.12 216 | 52.50 286 | 48.80 322 | 73.07 319 | 32.10 277 | 87.90 180 | 46.83 280 | 54.92 313 | 78.86 299 |
|
| CR-MVSNet | | | 62.47 268 | 59.04 280 | 72.77 210 | 73.97 291 | 56.57 36 | 60.52 366 | 71.72 330 | 60.04 172 | 57.49 255 | 65.86 356 | 38.94 192 | 80.31 305 | 42.86 302 | 59.93 262 | 81.42 268 |
|
| tpmvs | | | 62.45 269 | 59.42 276 | 71.53 244 | 83.93 92 | 54.32 92 | 70.03 331 | 77.61 270 | 51.91 290 | 53.48 295 | 68.29 350 | 37.91 200 | 86.66 221 | 33.36 338 | 58.27 279 | 73.62 350 |
|
| EG-PatchMatch MVS | | | 62.40 270 | 59.59 274 | 70.81 255 | 73.29 295 | 49.05 213 | 85.81 103 | 84.78 127 | 51.85 292 | 44.19 341 | 73.48 317 | 15.52 374 | 89.85 114 | 40.16 309 | 67.24 205 | 73.54 351 |
|
| XVG-OURS-SEG-HR | | | 62.02 271 | 59.54 275 | 69.46 273 | 65.30 356 | 45.88 282 | 65.06 349 | 73.57 317 | 46.45 326 | 57.42 258 | 83.35 201 | 26.95 312 | 78.09 322 | 53.77 232 | 64.03 231 | 84.42 218 |
|
| XVG-OURS | | | 61.88 272 | 59.34 277 | 69.49 272 | 65.37 355 | 46.27 278 | 64.80 350 | 73.49 318 | 47.04 322 | 57.41 259 | 82.85 206 | 25.15 325 | 78.18 320 | 53.00 238 | 64.98 222 | 84.01 225 |
|
| TAPA-MVS | | 56.12 14 | 61.82 273 | 60.18 272 | 66.71 302 | 78.48 225 | 37.97 348 | 75.19 294 | 76.41 293 | 46.82 323 | 57.04 261 | 86.52 161 | 27.67 308 | 77.03 334 | 26.50 368 | 67.02 207 | 85.14 208 |
| Andrea Romanoni, Matteo Matteucci: TAPA-MVS: Textureless-Aware PAtchMatch Multi-View Stereo. ICCV 2019 |
| Syy-MVS | | | 61.51 274 | 61.35 259 | 62.00 330 | 81.73 148 | 30.09 374 | 80.97 244 | 81.02 202 | 60.93 160 | 55.06 278 | 82.64 213 | 35.09 248 | 80.81 297 | 16.40 393 | 58.32 277 | 75.10 340 |
|
| tfpnnormal | | | 61.47 275 | 59.09 279 | 68.62 286 | 76.29 258 | 41.69 326 | 81.14 241 | 85.16 116 | 54.48 272 | 51.32 307 | 73.63 315 | 32.32 275 | 86.89 216 | 21.78 381 | 55.71 309 | 77.29 320 |
|
| PVSNet_0 | | 57.04 13 | 61.19 276 | 57.24 289 | 73.02 204 | 77.45 240 | 50.31 187 | 79.43 269 | 77.36 276 | 63.96 103 | 47.51 331 | 72.45 327 | 25.03 326 | 83.78 274 | 52.76 243 | 19.22 399 | 84.96 211 |
|
| PLC |  | 52.38 18 | 60.89 277 | 58.97 281 | 66.68 304 | 81.77 147 | 45.70 286 | 78.96 272 | 74.04 312 | 43.66 345 | 47.63 328 | 83.19 204 | 23.52 337 | 77.78 331 | 37.47 314 | 60.46 260 | 76.55 329 |
| Jie Liao, Yanping Fu, Qingan Yan, Chunxia xiao: Pyramid Multi-View Stereo with Local Consistency. Pacific Graphics 2019 |
| CVMVSNet | | | 60.85 278 | 60.44 268 | 62.07 328 | 75.00 276 | 32.73 366 | 79.54 265 | 73.49 318 | 36.98 364 | 56.28 271 | 83.74 191 | 29.28 298 | 69.53 367 | 46.48 283 | 63.23 242 | 83.94 231 |
|
| CNLPA | | | 60.59 279 | 58.44 283 | 67.05 299 | 79.21 206 | 47.26 264 | 79.75 264 | 64.34 362 | 42.46 351 | 51.90 305 | 83.94 187 | 27.79 307 | 75.41 344 | 37.12 317 | 59.49 267 | 78.47 305 |
|
| anonymousdsp | | | 60.46 280 | 57.65 286 | 68.88 278 | 63.63 367 | 45.09 290 | 72.93 312 | 78.63 253 | 46.52 325 | 51.12 308 | 72.80 323 | 21.46 350 | 83.07 282 | 57.79 203 | 53.97 320 | 78.47 305 |
|
| testing3 | | | 59.97 281 | 60.19 271 | 59.32 342 | 77.60 236 | 30.01 376 | 81.75 226 | 81.79 189 | 53.54 277 | 50.34 314 | 79.94 245 | 48.99 73 | 76.91 335 | 17.19 391 | 50.59 335 | 71.03 365 |
|
| ACMH | | 53.70 16 | 59.78 282 | 55.94 300 | 71.28 246 | 76.59 252 | 48.35 237 | 80.15 260 | 76.11 294 | 49.74 306 | 41.91 352 | 73.45 318 | 16.50 371 | 90.31 102 | 31.42 346 | 57.63 292 | 75.17 338 |
| Qingshan Xu and Wenbing Tao: Multi-Scale Geometric Consistency Guided Multi-View Stereo. CVPR 2019 |
| pmmvs6 | | | 59.64 283 | 57.15 290 | 67.09 297 | 66.01 351 | 36.86 352 | 80.50 251 | 78.64 252 | 45.05 336 | 49.05 320 | 73.94 309 | 27.28 309 | 86.10 237 | 43.96 297 | 49.94 337 | 78.31 309 |
|
| MSDG | | | 59.44 284 | 55.14 304 | 72.32 223 | 74.69 279 | 50.71 171 | 74.39 302 | 73.58 316 | 44.44 340 | 43.40 346 | 77.52 269 | 19.45 356 | 90.87 88 | 31.31 347 | 57.49 293 | 75.38 336 |
|
| RPMNet | | | 59.29 285 | 54.25 308 | 74.42 170 | 73.97 291 | 56.57 36 | 60.52 366 | 76.98 281 | 35.72 368 | 57.49 255 | 58.87 376 | 37.73 205 | 85.26 255 | 27.01 366 | 59.93 262 | 81.42 268 |
|
| DP-MVS | | | 59.24 286 | 56.12 298 | 68.63 285 | 88.24 34 | 50.35 185 | 82.51 208 | 64.43 361 | 41.10 353 | 46.70 335 | 78.77 258 | 24.75 329 | 88.57 157 | 22.26 379 | 56.29 301 | 66.96 371 |
|
| OpenMVS_ROB |  | 53.19 17 | 59.20 287 | 56.00 299 | 68.83 280 | 71.13 322 | 44.30 299 | 83.64 174 | 75.02 303 | 46.42 327 | 46.48 337 | 73.03 320 | 18.69 360 | 88.14 172 | 27.74 363 | 61.80 254 | 74.05 347 |
|
| IterMVS-SCA-FT | | | 59.12 288 | 58.81 282 | 60.08 340 | 70.68 328 | 45.07 291 | 80.42 254 | 74.25 308 | 43.54 346 | 50.02 315 | 73.73 311 | 31.97 279 | 56.74 384 | 51.06 253 | 53.60 324 | 78.42 307 |
|
| our_test_3 | | | 59.11 289 | 55.08 305 | 71.18 250 | 71.42 318 | 53.29 120 | 81.96 218 | 74.52 306 | 48.32 313 | 42.08 350 | 69.28 347 | 28.14 301 | 82.15 285 | 34.35 335 | 45.68 356 | 78.11 313 |
|
| Anonymous20231206 | | | 59.08 290 | 57.59 287 | 63.55 321 | 68.77 339 | 32.14 369 | 80.26 257 | 79.78 225 | 50.00 305 | 49.39 318 | 72.39 328 | 26.64 314 | 78.36 319 | 33.12 341 | 57.94 286 | 80.14 290 |
|
| KD-MVS_2432*1600 | | | 59.04 291 | 56.44 295 | 66.86 300 | 79.07 208 | 45.87 283 | 72.13 320 | 80.42 212 | 55.03 265 | 48.15 324 | 71.01 336 | 36.73 228 | 78.05 324 | 35.21 329 | 30.18 386 | 76.67 324 |
|
| miper_refine_blended | | | 59.04 291 | 56.44 295 | 66.86 300 | 79.07 208 | 45.87 283 | 72.13 320 | 80.42 212 | 55.03 265 | 48.15 324 | 71.01 336 | 36.73 228 | 78.05 324 | 35.21 329 | 30.18 386 | 76.67 324 |
|
| WR-MVS_H | | | 58.91 293 | 58.04 285 | 61.54 334 | 69.07 337 | 33.83 361 | 76.91 283 | 81.99 183 | 51.40 295 | 48.17 323 | 74.67 303 | 40.23 179 | 74.15 347 | 31.78 345 | 48.10 340 | 76.64 327 |
|
| LCM-MVSNet-Re | | | 58.82 294 | 56.54 293 | 65.68 308 | 79.31 204 | 29.09 382 | 61.39 365 | 45.79 381 | 60.73 165 | 37.65 369 | 72.47 326 | 31.42 285 | 81.08 293 | 49.66 259 | 70.41 183 | 86.87 174 |
|
| Patchmatch-RL test | | | 58.72 295 | 54.32 307 | 71.92 237 | 63.91 365 | 44.25 301 | 61.73 362 | 55.19 373 | 57.38 231 | 49.31 319 | 54.24 382 | 37.60 209 | 80.89 294 | 62.19 158 | 47.28 347 | 90.63 85 |
|
| FMVSNet5 | | | 58.61 296 | 56.45 294 | 65.10 315 | 77.20 246 | 39.74 338 | 74.77 295 | 77.12 279 | 50.27 303 | 43.28 347 | 67.71 351 | 26.15 318 | 76.90 337 | 36.78 322 | 54.78 315 | 78.65 303 |
|
| ppachtmachnet_test | | | 58.56 297 | 54.34 306 | 71.24 247 | 71.42 318 | 54.74 80 | 81.84 223 | 72.27 325 | 49.02 310 | 45.86 340 | 68.99 348 | 26.27 315 | 83.30 280 | 30.12 350 | 43.23 361 | 75.69 333 |
|
| ACMH+ | | 54.58 15 | 58.55 298 | 55.24 302 | 68.50 289 | 74.68 280 | 45.80 285 | 80.27 256 | 70.21 342 | 47.15 321 | 42.77 349 | 75.48 299 | 16.73 370 | 85.98 242 | 35.10 333 | 54.78 315 | 73.72 349 |
|
| CP-MVSNet | | | 58.54 299 | 57.57 288 | 61.46 335 | 68.50 341 | 33.96 360 | 76.90 284 | 78.60 255 | 51.67 294 | 47.83 326 | 76.60 286 | 34.99 251 | 72.79 356 | 35.45 326 | 47.58 344 | 77.64 318 |
|
| PEN-MVS | | | 58.35 300 | 57.15 290 | 61.94 331 | 67.55 348 | 34.39 356 | 77.01 282 | 78.35 260 | 51.87 291 | 47.72 327 | 76.73 284 | 33.91 260 | 73.75 351 | 34.03 336 | 47.17 348 | 77.68 316 |
|
| PS-CasMVS | | | 58.12 301 | 57.03 292 | 61.37 336 | 68.24 345 | 33.80 362 | 76.73 285 | 78.01 263 | 51.20 296 | 47.54 330 | 76.20 294 | 32.85 269 | 72.76 357 | 35.17 331 | 47.37 346 | 77.55 319 |
|
| dmvs_testset | | | 57.65 302 | 58.21 284 | 55.97 353 | 74.62 281 | 9.82 412 | 63.75 354 | 63.34 364 | 67.23 51 | 48.89 321 | 83.68 195 | 39.12 191 | 76.14 340 | 23.43 376 | 59.80 264 | 81.96 258 |
|
| UnsupCasMVSNet_eth | | | 57.56 303 | 55.15 303 | 64.79 317 | 64.57 363 | 33.12 363 | 73.17 311 | 83.87 151 | 58.98 199 | 41.75 353 | 70.03 343 | 22.54 342 | 79.92 310 | 46.12 287 | 35.31 375 | 81.32 275 |
|
| CHOSEN 280x420 | | | 57.53 304 | 56.38 297 | 60.97 338 | 74.01 289 | 48.10 247 | 46.30 384 | 54.31 375 | 48.18 316 | 50.88 312 | 77.43 272 | 38.37 198 | 59.16 381 | 54.83 224 | 63.14 245 | 75.66 334 |
|
| DTE-MVSNet | | | 57.03 305 | 55.73 301 | 60.95 339 | 65.94 352 | 32.57 367 | 75.71 287 | 77.09 280 | 51.16 297 | 46.65 336 | 76.34 289 | 32.84 270 | 73.22 355 | 30.94 349 | 44.87 357 | 77.06 321 |
|
| PatchMatch-RL | | | 56.66 306 | 53.75 311 | 65.37 313 | 77.91 234 | 45.28 289 | 69.78 333 | 60.38 368 | 41.35 352 | 47.57 329 | 73.73 311 | 16.83 368 | 76.91 335 | 36.99 320 | 59.21 270 | 73.92 348 |
|
| PatchT | | | 56.60 307 | 52.97 314 | 67.48 294 | 72.94 302 | 46.16 281 | 57.30 374 | 73.78 314 | 38.77 358 | 54.37 286 | 57.26 379 | 37.52 211 | 78.06 323 | 32.02 343 | 52.79 329 | 78.23 312 |
|
| Patchmtry | | | 56.56 308 | 52.95 315 | 67.42 295 | 72.53 307 | 50.59 175 | 59.05 370 | 71.72 330 | 37.86 362 | 46.92 333 | 65.86 356 | 38.94 192 | 80.06 309 | 36.94 321 | 46.72 352 | 71.60 361 |
|
| test_0402 | | | 56.45 309 | 53.03 313 | 66.69 303 | 76.78 251 | 50.31 187 | 81.76 225 | 69.61 347 | 42.79 349 | 43.88 342 | 72.13 331 | 22.82 341 | 86.46 227 | 16.57 392 | 50.94 334 | 63.31 379 |
|
| LS3D | | | 56.40 310 | 53.82 310 | 64.12 318 | 81.12 168 | 45.69 287 | 73.42 309 | 66.14 356 | 35.30 372 | 43.24 348 | 79.88 246 | 22.18 346 | 79.62 314 | 19.10 387 | 64.00 232 | 67.05 370 |
|
| ADS-MVSNet | | | 56.17 311 | 51.95 321 | 68.84 279 | 80.60 185 | 53.07 126 | 55.03 377 | 70.02 344 | 44.72 337 | 51.00 309 | 61.19 368 | 22.83 339 | 78.88 317 | 28.54 358 | 53.63 322 | 74.57 344 |
|
| XVG-ACMP-BASELINE | | | 56.03 312 | 52.85 316 | 65.58 309 | 61.91 372 | 40.95 335 | 63.36 355 | 72.43 324 | 45.20 335 | 46.02 338 | 74.09 307 | 9.20 385 | 78.12 321 | 45.13 289 | 58.27 279 | 77.66 317 |
|
| pmmvs-eth3d | | | 55.97 313 | 52.78 317 | 65.54 310 | 61.02 374 | 46.44 273 | 75.36 293 | 67.72 354 | 49.61 307 | 43.65 344 | 67.58 352 | 21.63 349 | 77.04 333 | 44.11 296 | 44.33 358 | 73.15 355 |
|
| F-COLMAP | | | 55.96 314 | 53.65 312 | 62.87 326 | 72.76 304 | 42.77 319 | 74.70 298 | 70.37 341 | 40.03 354 | 41.11 358 | 79.36 251 | 17.77 365 | 73.70 352 | 32.80 342 | 53.96 321 | 72.15 357 |
|
| CMPMVS |  | 40.41 21 | 55.34 315 | 52.64 318 | 63.46 322 | 60.88 375 | 43.84 305 | 61.58 364 | 71.06 337 | 30.43 380 | 36.33 371 | 74.63 304 | 24.14 333 | 75.44 343 | 48.05 272 | 66.62 210 | 71.12 364 |
| M. Jancosek, T. Pajdla: Multi-View Reconstruction Preserving Weakly-Supported Surfaces. CVPR 2011 |
| test20.03 | | | 55.22 316 | 54.07 309 | 58.68 345 | 63.14 369 | 25.00 388 | 77.69 280 | 74.78 305 | 52.64 284 | 43.43 345 | 72.39 328 | 26.21 316 | 74.76 346 | 29.31 353 | 47.05 350 | 76.28 331 |
|
| ADS-MVSNet2 | | | 55.21 317 | 51.44 322 | 66.51 305 | 80.60 185 | 49.56 202 | 55.03 377 | 65.44 357 | 44.72 337 | 51.00 309 | 61.19 368 | 22.83 339 | 75.41 344 | 28.54 358 | 53.63 322 | 74.57 344 |
|
| SixPastTwentyTwo | | | 54.37 318 | 50.10 327 | 67.21 296 | 70.70 326 | 41.46 331 | 74.73 296 | 64.69 359 | 47.56 319 | 39.12 364 | 69.49 344 | 18.49 363 | 84.69 265 | 31.87 344 | 34.20 381 | 75.48 335 |
|
| USDC | | | 54.36 319 | 51.23 323 | 63.76 320 | 64.29 364 | 37.71 349 | 62.84 360 | 73.48 320 | 56.85 239 | 35.47 374 | 71.94 334 | 9.23 384 | 78.43 318 | 38.43 313 | 48.57 339 | 75.13 339 |
|
| testgi | | | 54.25 320 | 52.57 319 | 59.29 343 | 62.76 370 | 21.65 396 | 72.21 319 | 70.47 340 | 53.25 281 | 41.94 351 | 77.33 273 | 14.28 375 | 77.95 327 | 29.18 354 | 51.72 333 | 78.28 310 |
|
| K. test v3 | | | 54.04 321 | 49.42 333 | 67.92 292 | 68.55 340 | 42.57 323 | 75.51 291 | 63.07 365 | 52.07 288 | 39.21 363 | 64.59 360 | 19.34 357 | 82.21 284 | 37.11 318 | 25.31 391 | 78.97 298 |
|
| UnsupCasMVSNet_bld | | | 53.86 322 | 50.53 326 | 63.84 319 | 63.52 368 | 34.75 355 | 71.38 325 | 81.92 186 | 46.53 324 | 38.95 365 | 57.93 377 | 20.55 353 | 80.20 308 | 39.91 310 | 34.09 382 | 76.57 328 |
|
| YYNet1 | | | 53.82 323 | 49.96 329 | 65.41 312 | 70.09 331 | 48.95 217 | 72.30 317 | 71.66 332 | 44.25 342 | 31.89 384 | 63.07 364 | 23.73 335 | 73.95 349 | 33.26 339 | 39.40 368 | 73.34 352 |
|
| MDA-MVSNet_test_wron | | | 53.82 323 | 49.95 330 | 65.43 311 | 70.13 330 | 49.05 213 | 72.30 317 | 71.65 333 | 44.23 343 | 31.85 385 | 63.13 363 | 23.68 336 | 74.01 348 | 33.25 340 | 39.35 369 | 73.23 354 |
|
| test_fmvs1 | | | 53.60 325 | 52.54 320 | 56.78 349 | 58.07 378 | 30.26 372 | 68.95 337 | 42.19 387 | 32.46 375 | 63.59 171 | 82.56 217 | 11.55 378 | 60.81 375 | 58.25 194 | 55.27 311 | 79.28 295 |
|
| Patchmatch-test | | | 53.33 326 | 48.17 336 | 68.81 281 | 73.31 294 | 42.38 324 | 42.98 388 | 58.23 370 | 32.53 374 | 38.79 366 | 70.77 339 | 39.66 187 | 73.51 353 | 25.18 370 | 52.06 332 | 90.55 86 |
|
| LTVRE_ROB | | 45.45 19 | 52.73 327 | 49.74 331 | 61.69 333 | 69.78 332 | 34.99 354 | 44.52 385 | 67.60 355 | 43.11 348 | 43.79 343 | 74.03 308 | 18.54 362 | 81.45 290 | 28.39 360 | 57.94 286 | 68.62 368 |
| Andreas Kuhn, Heiko Hirschmüller, Daniel Scharstein, Helmut Mayer: A TV Prior for High-Quality Scalable Multi-View Stereo Reconstruction. International Journal of Computer Vision 2016 |
| EU-MVSNet | | | 52.63 328 | 50.72 325 | 58.37 346 | 62.69 371 | 28.13 385 | 72.60 313 | 75.97 295 | 30.94 379 | 40.76 360 | 72.11 332 | 20.16 354 | 70.80 363 | 35.11 332 | 46.11 354 | 76.19 332 |
|
| test_fmvs1_n | | | 52.55 329 | 51.19 324 | 56.65 350 | 51.90 388 | 30.14 373 | 67.66 341 | 42.84 386 | 32.27 376 | 62.30 186 | 82.02 230 | 9.12 386 | 60.84 374 | 57.82 202 | 54.75 317 | 78.99 297 |
|
| OurMVSNet-221017-0 | | | 52.39 330 | 48.73 334 | 63.35 324 | 65.21 357 | 38.42 345 | 68.54 339 | 64.95 358 | 38.19 359 | 39.57 362 | 71.43 335 | 13.23 377 | 79.92 310 | 37.16 316 | 40.32 367 | 71.72 360 |
|
| JIA-IIPM | | | 52.33 331 | 47.77 339 | 66.03 307 | 71.20 321 | 46.92 267 | 40.00 393 | 76.48 292 | 37.10 363 | 46.73 334 | 37.02 393 | 32.96 268 | 77.88 328 | 35.97 324 | 52.45 331 | 73.29 353 |
|
| Anonymous20240521 | | | 51.65 332 | 48.42 335 | 61.34 337 | 56.43 382 | 39.65 340 | 73.57 307 | 73.47 321 | 36.64 366 | 36.59 370 | 63.98 361 | 10.75 381 | 72.25 360 | 35.35 327 | 49.01 338 | 72.11 358 |
|
| MDA-MVSNet-bldmvs | | | 51.56 333 | 47.75 340 | 63.00 325 | 71.60 316 | 47.32 263 | 69.70 334 | 72.12 326 | 43.81 344 | 27.65 392 | 63.38 362 | 21.97 348 | 75.96 341 | 27.30 365 | 32.19 383 | 65.70 376 |
|
| test_vis1_n | | | 51.19 334 | 49.66 332 | 55.76 354 | 51.26 389 | 29.85 377 | 67.20 344 | 38.86 392 | 32.12 377 | 59.50 215 | 79.86 247 | 8.78 387 | 58.23 382 | 56.95 211 | 52.46 330 | 79.19 296 |
|
| COLMAP_ROB |  | 43.60 20 | 50.90 335 | 48.05 337 | 59.47 341 | 67.81 347 | 40.57 337 | 71.25 326 | 62.72 367 | 36.49 367 | 36.19 372 | 73.51 316 | 13.48 376 | 73.92 350 | 20.71 383 | 50.26 336 | 63.92 378 |
| Johannes L. Schönberger, Enliang Zheng, Marc Pollefeys, Jan-Michael Frahm: Pixelwise View Selection for Unstructured Multi-View Stereo. ECCV 2016 |
| MIMVSNet1 | | | 50.35 336 | 47.81 338 | 57.96 347 | 61.53 373 | 27.80 386 | 67.40 342 | 74.06 311 | 43.25 347 | 33.31 383 | 65.38 359 | 16.03 372 | 71.34 361 | 21.80 380 | 47.55 345 | 74.75 342 |
|
| kuosan | | | 50.20 337 | 50.09 328 | 50.52 361 | 73.09 299 | 29.09 382 | 65.25 347 | 74.89 304 | 48.27 314 | 41.34 355 | 60.85 370 | 43.45 141 | 67.48 369 | 18.59 389 | 25.07 392 | 55.01 384 |
|
| KD-MVS_self_test | | | 49.24 338 | 46.85 341 | 56.44 351 | 54.32 383 | 22.87 391 | 57.39 373 | 73.36 322 | 44.36 341 | 37.98 368 | 59.30 375 | 18.97 359 | 71.17 362 | 33.48 337 | 42.44 362 | 75.26 337 |
|
| MVS-HIRNet | | | 49.01 339 | 44.71 343 | 61.92 332 | 76.06 261 | 46.61 271 | 63.23 357 | 54.90 374 | 24.77 387 | 33.56 379 | 36.60 395 | 21.28 351 | 75.88 342 | 29.49 352 | 62.54 250 | 63.26 380 |
|
| new-patchmatchnet | | | 48.21 340 | 46.55 342 | 53.18 357 | 57.73 380 | 18.19 404 | 70.24 329 | 71.02 338 | 45.70 331 | 33.70 378 | 60.23 371 | 18.00 364 | 69.86 366 | 27.97 362 | 34.35 379 | 71.49 363 |
|
| TinyColmap | | | 48.15 341 | 44.49 345 | 59.13 344 | 65.73 354 | 38.04 346 | 63.34 356 | 62.86 366 | 38.78 357 | 29.48 387 | 67.23 354 | 6.46 395 | 73.30 354 | 24.59 372 | 41.90 364 | 66.04 374 |
|
| AllTest | | | 47.32 342 | 44.66 344 | 55.32 355 | 65.08 359 | 37.50 350 | 62.96 359 | 54.25 376 | 35.45 370 | 33.42 380 | 72.82 321 | 9.98 382 | 59.33 378 | 24.13 373 | 43.84 359 | 69.13 366 |
|
| PM-MVS | | | 46.92 343 | 43.76 350 | 56.41 352 | 52.18 387 | 32.26 368 | 63.21 358 | 38.18 393 | 37.99 361 | 40.78 359 | 66.20 355 | 5.09 398 | 65.42 371 | 48.19 271 | 41.99 363 | 71.54 362 |
|
| test_fmvs2 | | | 45.89 344 | 44.32 346 | 50.62 360 | 45.85 397 | 24.70 389 | 58.87 372 | 37.84 395 | 25.22 385 | 52.46 300 | 74.56 305 | 7.07 390 | 54.69 385 | 49.28 263 | 47.70 343 | 72.48 356 |
|
| RPSCF | | | 45.77 345 | 44.13 347 | 50.68 359 | 57.67 381 | 29.66 378 | 54.92 379 | 45.25 383 | 26.69 384 | 45.92 339 | 75.92 297 | 17.43 367 | 45.70 395 | 27.44 364 | 45.95 355 | 76.67 324 |
|
| pmmvs3 | | | 45.53 346 | 41.55 352 | 57.44 348 | 48.97 393 | 39.68 339 | 70.06 330 | 57.66 371 | 28.32 382 | 34.06 377 | 57.29 378 | 8.50 388 | 66.85 370 | 34.86 334 | 34.26 380 | 65.80 375 |
|
| dongtai | | | 43.51 347 | 44.07 348 | 41.82 370 | 63.75 366 | 21.90 394 | 63.80 353 | 72.05 327 | 39.59 355 | 33.35 382 | 54.54 381 | 41.04 170 | 57.30 383 | 10.75 399 | 17.77 400 | 46.26 393 |
|
| mvsany_test1 | | | 43.38 348 | 42.57 351 | 45.82 365 | 50.96 390 | 26.10 387 | 55.80 375 | 27.74 405 | 27.15 383 | 47.41 332 | 74.39 306 | 18.67 361 | 44.95 396 | 44.66 292 | 36.31 373 | 66.40 373 |
|
| mamv4 | | | 42.60 349 | 44.05 349 | 38.26 375 | 59.21 377 | 38.00 347 | 44.14 387 | 39.03 391 | 25.03 386 | 40.61 361 | 68.39 349 | 37.01 222 | 24.28 409 | 46.62 282 | 36.43 372 | 52.50 387 |
|
| N_pmnet | | | 41.25 350 | 39.77 353 | 45.66 366 | 68.50 341 | 0.82 418 | 72.51 315 | 0.38 417 | 35.61 369 | 35.26 375 | 61.51 367 | 20.07 355 | 67.74 368 | 23.51 375 | 40.63 365 | 68.42 369 |
|
| TDRefinement | | | 40.91 351 | 38.37 355 | 48.55 363 | 50.45 391 | 33.03 365 | 58.98 371 | 50.97 379 | 28.50 381 | 29.89 386 | 67.39 353 | 6.21 397 | 54.51 386 | 17.67 390 | 35.25 376 | 58.11 381 |
|
| test_vis1_rt | | | 40.29 352 | 38.64 354 | 45.25 367 | 48.91 394 | 30.09 374 | 59.44 369 | 27.07 406 | 24.52 388 | 38.48 367 | 51.67 387 | 6.71 393 | 49.44 390 | 44.33 294 | 46.59 353 | 56.23 382 |
|
| DSMNet-mixed | | | 38.35 353 | 35.36 358 | 47.33 364 | 48.11 395 | 14.91 408 | 37.87 394 | 36.60 396 | 19.18 392 | 34.37 376 | 59.56 374 | 15.53 373 | 53.01 388 | 20.14 385 | 46.89 351 | 74.07 346 |
|
| test_fmvs3 | | | 37.95 354 | 35.75 357 | 44.55 368 | 35.50 403 | 18.92 400 | 48.32 381 | 34.00 400 | 18.36 394 | 41.31 357 | 61.58 366 | 2.29 405 | 48.06 394 | 42.72 303 | 37.71 371 | 66.66 372 |
|
| WB-MVS | | | 37.41 355 | 36.37 356 | 40.54 373 | 54.23 384 | 10.43 411 | 65.29 346 | 43.75 384 | 34.86 373 | 27.81 391 | 54.63 380 | 24.94 327 | 63.21 372 | 6.81 406 | 15.00 401 | 47.98 392 |
|
| FPMVS | | | 35.40 356 | 33.67 360 | 40.57 372 | 46.34 396 | 28.74 384 | 41.05 390 | 57.05 372 | 20.37 391 | 22.27 395 | 53.38 384 | 6.87 392 | 44.94 397 | 8.62 400 | 47.11 349 | 48.01 391 |
|
| SSC-MVS | | | 35.20 357 | 34.30 359 | 37.90 376 | 52.58 386 | 8.65 414 | 61.86 361 | 41.64 388 | 31.81 378 | 25.54 393 | 52.94 386 | 23.39 338 | 59.28 380 | 6.10 407 | 12.86 402 | 45.78 395 |
|
| ANet_high | | | 34.39 358 | 29.59 364 | 48.78 362 | 30.34 407 | 22.28 392 | 55.53 376 | 63.79 363 | 38.11 360 | 15.47 399 | 36.56 396 | 6.94 391 | 59.98 377 | 13.93 395 | 5.64 410 | 64.08 377 |
|
| EGC-MVSNET | | | 33.75 359 | 30.42 363 | 43.75 369 | 64.94 361 | 36.21 353 | 60.47 368 | 40.70 390 | 0.02 411 | 0.10 412 | 53.79 383 | 7.39 389 | 60.26 376 | 11.09 398 | 35.23 377 | 34.79 397 |
|
| new_pmnet | | | 33.56 360 | 31.89 362 | 38.59 374 | 49.01 392 | 20.42 397 | 51.01 380 | 37.92 394 | 20.58 389 | 23.45 394 | 46.79 389 | 6.66 394 | 49.28 392 | 20.00 386 | 31.57 385 | 46.09 394 |
|
| LF4IMVS | | | 33.04 361 | 32.55 361 | 34.52 379 | 40.96 398 | 22.03 393 | 44.45 386 | 35.62 397 | 20.42 390 | 28.12 390 | 62.35 365 | 5.03 399 | 31.88 408 | 21.61 382 | 34.42 378 | 49.63 390 |
|
| LCM-MVSNet | | | 28.07 362 | 23.85 370 | 40.71 371 | 27.46 412 | 18.93 399 | 30.82 400 | 46.19 380 | 12.76 399 | 16.40 397 | 34.70 398 | 1.90 408 | 48.69 393 | 20.25 384 | 24.22 393 | 54.51 385 |
|
| mvsany_test3 | | | 28.00 363 | 25.98 365 | 34.05 380 | 28.97 408 | 15.31 406 | 34.54 397 | 18.17 411 | 16.24 395 | 29.30 388 | 53.37 385 | 2.79 403 | 33.38 407 | 30.01 351 | 20.41 398 | 53.45 386 |
|
| Gipuma |  | | 27.47 364 | 24.26 369 | 37.12 378 | 60.55 376 | 29.17 381 | 11.68 405 | 60.00 369 | 14.18 397 | 10.52 406 | 15.12 407 | 2.20 407 | 63.01 373 | 8.39 401 | 35.65 374 | 19.18 403 |
| S. Galliani, K. Lasinger, K. Schindler: Massively Parallel Multiview Stereopsis by Surface Normal Diffusion. ICCV 2015 |
| test_f | | | 27.12 365 | 24.85 366 | 33.93 381 | 26.17 413 | 15.25 407 | 30.24 401 | 22.38 410 | 12.53 400 | 28.23 389 | 49.43 388 | 2.59 404 | 34.34 406 | 25.12 371 | 26.99 389 | 52.20 388 |
|
| PMMVS2 | | | 26.71 366 | 22.98 371 | 37.87 377 | 36.89 401 | 8.51 415 | 42.51 389 | 29.32 404 | 19.09 393 | 13.01 401 | 37.54 392 | 2.23 406 | 53.11 387 | 14.54 394 | 11.71 403 | 51.99 389 |
|
| APD_test1 | | | 26.46 367 | 24.41 368 | 32.62 384 | 37.58 400 | 21.74 395 | 40.50 392 | 30.39 402 | 11.45 401 | 16.33 398 | 43.76 390 | 1.63 410 | 41.62 398 | 11.24 397 | 26.82 390 | 34.51 398 |
|
| PMVS |  | 19.57 22 | 25.07 368 | 22.43 373 | 32.99 383 | 23.12 414 | 22.98 390 | 40.98 391 | 35.19 398 | 15.99 396 | 11.95 405 | 35.87 397 | 1.47 411 | 49.29 391 | 5.41 409 | 31.90 384 | 26.70 402 |
| Y. Furukawa, J. Ponce: Accurate, dense, and robust multiview stereopsis. PAMI (2010) |
| test_vis3_rt | | | 24.79 369 | 22.95 372 | 30.31 385 | 28.59 409 | 18.92 400 | 37.43 395 | 17.27 413 | 12.90 398 | 21.28 396 | 29.92 402 | 1.02 412 | 36.35 401 | 28.28 361 | 29.82 388 | 35.65 396 |
|
| test_method | | | 24.09 370 | 21.07 374 | 33.16 382 | 27.67 411 | 8.35 416 | 26.63 402 | 35.11 399 | 3.40 408 | 14.35 400 | 36.98 394 | 3.46 402 | 35.31 403 | 19.08 388 | 22.95 394 | 55.81 383 |
|
| testf1 | | | 21.11 371 | 19.08 375 | 27.18 387 | 30.56 405 | 18.28 402 | 33.43 398 | 24.48 407 | 8.02 405 | 12.02 403 | 33.50 399 | 0.75 414 | 35.09 404 | 7.68 402 | 21.32 395 | 28.17 400 |
|
| APD_test2 | | | 21.11 371 | 19.08 375 | 27.18 387 | 30.56 405 | 18.28 402 | 33.43 398 | 24.48 407 | 8.02 405 | 12.02 403 | 33.50 399 | 0.75 414 | 35.09 404 | 7.68 402 | 21.32 395 | 28.17 400 |
|
| E-PMN | | | 19.16 373 | 18.40 377 | 21.44 389 | 36.19 402 | 13.63 409 | 47.59 382 | 30.89 401 | 10.73 402 | 5.91 409 | 16.59 405 | 3.66 401 | 39.77 399 | 5.95 408 | 8.14 405 | 10.92 405 |
|
| EMVS | | | 18.42 374 | 17.66 378 | 20.71 390 | 34.13 404 | 12.64 410 | 46.94 383 | 29.94 403 | 10.46 404 | 5.58 410 | 14.93 408 | 4.23 400 | 38.83 400 | 5.24 410 | 7.51 407 | 10.67 406 |
|
| cdsmvs_eth3d_5k | | | 18.33 375 | 24.44 367 | 0.00 396 | 0.00 418 | 0.00 420 | 0.00 407 | 89.40 23 | 0.00 412 | 0.00 415 | 92.02 46 | 38.55 196 | 0.00 413 | 0.00 414 | 0.00 411 | 0.00 411 |
|
| MVE |  | 16.60 23 | 17.34 376 | 13.39 379 | 29.16 386 | 28.43 410 | 19.72 398 | 13.73 404 | 23.63 409 | 7.23 407 | 7.96 407 | 21.41 403 | 0.80 413 | 36.08 402 | 6.97 404 | 10.39 404 | 31.69 399 |
| Simon Fuhrmann, Fabian Langguth, Michael Goesele: MVE - A Multi-View Reconstruction Environment. EUROGRAPHICS Workshops on Graphics and Cultural Heritage (2014) |
| tmp_tt | | | 9.44 377 | 10.68 380 | 5.73 393 | 2.49 416 | 4.21 417 | 10.48 406 | 18.04 412 | 0.34 410 | 12.59 402 | 20.49 404 | 11.39 379 | 7.03 412 | 13.84 396 | 6.46 409 | 5.95 407 |
|
| wuyk23d | | | 9.11 378 | 8.77 382 | 10.15 392 | 40.18 399 | 16.76 405 | 20.28 403 | 1.01 416 | 2.58 409 | 2.66 411 | 0.98 411 | 0.23 416 | 12.49 411 | 4.08 411 | 6.90 408 | 1.19 408 |
|
| ab-mvs-re | | | 7.68 379 | 10.24 381 | 0.00 396 | 0.00 418 | 0.00 420 | 0.00 407 | 0.00 418 | 0.00 412 | 0.00 415 | 92.12 42 | 0.00 417 | 0.00 413 | 0.00 414 | 0.00 411 | 0.00 411 |
|
| testmvs | | | 6.14 380 | 8.18 383 | 0.01 394 | 0.01 417 | 0.00 420 | 73.40 310 | 0.00 418 | 0.00 412 | 0.02 413 | 0.15 412 | 0.00 417 | 0.00 413 | 0.02 412 | 0.00 411 | 0.02 409 |
|
| test123 | | | 6.01 381 | 8.01 384 | 0.01 394 | 0.00 418 | 0.01 419 | 71.93 323 | 0.00 418 | 0.00 412 | 0.02 413 | 0.11 413 | 0.00 417 | 0.00 413 | 0.02 412 | 0.00 411 | 0.02 409 |
|
| pcd_1.5k_mvsjas | | | 3.15 382 | 4.20 385 | 0.00 396 | 0.00 418 | 0.00 420 | 0.00 407 | 0.00 418 | 0.00 412 | 0.00 415 | 0.00 414 | 37.77 202 | 0.00 413 | 0.00 414 | 0.00 411 | 0.00 411 |
|
| test_blank | | | 0.00 383 | 0.00 386 | 0.00 396 | 0.00 418 | 0.00 420 | 0.00 407 | 0.00 418 | 0.00 412 | 0.00 415 | 0.00 414 | 0.00 417 | 0.00 413 | 0.00 414 | 0.00 411 | 0.00 411 |
|
| uanet_test | | | 0.00 383 | 0.00 386 | 0.00 396 | 0.00 418 | 0.00 420 | 0.00 407 | 0.00 418 | 0.00 412 | 0.00 415 | 0.00 414 | 0.00 417 | 0.00 413 | 0.00 414 | 0.00 411 | 0.00 411 |
|
| DCPMVS | | | 0.00 383 | 0.00 386 | 0.00 396 | 0.00 418 | 0.00 420 | 0.00 407 | 0.00 418 | 0.00 412 | 0.00 415 | 0.00 414 | 0.00 417 | 0.00 413 | 0.00 414 | 0.00 411 | 0.00 411 |
|
| sosnet-low-res | | | 0.00 383 | 0.00 386 | 0.00 396 | 0.00 418 | 0.00 420 | 0.00 407 | 0.00 418 | 0.00 412 | 0.00 415 | 0.00 414 | 0.00 417 | 0.00 413 | 0.00 414 | 0.00 411 | 0.00 411 |
|
| sosnet | | | 0.00 383 | 0.00 386 | 0.00 396 | 0.00 418 | 0.00 420 | 0.00 407 | 0.00 418 | 0.00 412 | 0.00 415 | 0.00 414 | 0.00 417 | 0.00 413 | 0.00 414 | 0.00 411 | 0.00 411 |
|
| uncertanet | | | 0.00 383 | 0.00 386 | 0.00 396 | 0.00 418 | 0.00 420 | 0.00 407 | 0.00 418 | 0.00 412 | 0.00 415 | 0.00 414 | 0.00 417 | 0.00 413 | 0.00 414 | 0.00 411 | 0.00 411 |
|
| Regformer | | | 0.00 383 | 0.00 386 | 0.00 396 | 0.00 418 | 0.00 420 | 0.00 407 | 0.00 418 | 0.00 412 | 0.00 415 | 0.00 414 | 0.00 417 | 0.00 413 | 0.00 414 | 0.00 411 | 0.00 411 |
|
| uanet | | | 0.00 383 | 0.00 386 | 0.00 396 | 0.00 418 | 0.00 420 | 0.00 407 | 0.00 418 | 0.00 412 | 0.00 415 | 0.00 414 | 0.00 417 | 0.00 413 | 0.00 414 | 0.00 411 | 0.00 411 |
|
| WAC-MVS | | | | | | | 34.28 357 | | | | | | | | 22.56 378 | | |
|
| FOURS1 | | | | | | 83.24 109 | 49.90 195 | 84.98 135 | 78.76 249 | 47.71 317 | 73.42 60 | | | | | | |
|
| MSC_two_6792asdad | | | | | 81.53 15 | 91.77 4 | 56.03 48 | | 91.10 10 | | | | | 96.22 8 | 81.46 33 | 86.80 30 | 92.34 35 |
|
| PC_three_1452 | | | | | | | | | | 66.58 58 | 87.27 2 | 93.70 10 | 66.82 4 | 94.95 17 | 89.74 4 | 91.98 4 | 93.98 5 |
|
| No_MVS | | | | | 81.53 15 | 91.77 4 | 56.03 48 | | 91.10 10 | | | | | 96.22 8 | 81.46 33 | 86.80 30 | 92.34 35 |
|
| test_one_0601 | | | | | | 89.39 22 | 57.29 24 | | 88.09 53 | 57.21 235 | 82.06 13 | 93.39 18 | 54.94 33 | | | | |
|
| eth-test2 | | | | | | 0.00 418 | | | | | | | | | | | |
|
| eth-test | | | | | | 0.00 418 | | | | | | | | | | | |
|
| ZD-MVS | | | | | | 89.55 14 | 53.46 109 | | 84.38 137 | 57.02 237 | 73.97 55 | 91.03 65 | 44.57 125 | 91.17 78 | 75.41 74 | 81.78 73 | |
|
| RE-MVS-def | | | | 66.66 198 | | 80.96 172 | 48.14 245 | 81.54 233 | 76.98 281 | 46.42 327 | 62.75 181 | 89.42 103 | 29.28 298 | | 60.52 174 | 72.06 168 | 83.19 244 |
|
| IU-MVS | | | | | | 89.48 17 | 57.49 19 | | 91.38 9 | 66.22 66 | 88.26 1 | | | | 82.83 22 | 87.60 19 | 92.44 32 |
|
| OPU-MVS | | | | | 81.71 13 | 92.05 3 | 55.97 50 | 92.48 3 | | | | 94.01 5 | 67.21 2 | 95.10 15 | 89.82 3 | 92.55 3 | 94.06 3 |
|
| test_241102_TWO | | | | | | | | | 88.76 39 | 57.50 229 | 83.60 6 | 94.09 3 | 56.14 24 | 96.37 6 | 82.28 26 | 87.43 21 | 92.55 30 |
|
| test_241102_ONE | | | | | | 89.48 17 | 56.89 31 | | 88.94 30 | 57.53 227 | 84.61 4 | 93.29 22 | 58.81 11 | 96.45 1 | | | |
|
| 9.14 | | | | 78.19 27 | | 85.67 58 | | 88.32 50 | 88.84 36 | 59.89 174 | 74.58 50 | 92.62 35 | 46.80 90 | 92.66 43 | 81.40 35 | 85.62 43 | |
|
| save fliter | | | | | | 85.35 66 | 56.34 43 | 89.31 39 | 81.46 194 | 61.55 145 | | | | | | | |
|
| test_0728_THIRD | | | | | | | | | | 58.00 215 | 81.91 14 | 93.64 12 | 56.54 20 | 96.44 2 | 81.64 31 | 86.86 28 | 92.23 37 |
|
| test_0728_SECOND | | | | | 82.20 8 | 89.50 15 | 57.73 15 | 92.34 5 | 88.88 32 | | | | | 96.39 4 | 81.68 29 | 87.13 22 | 92.47 31 |
|
| test0726 | | | | | | 89.40 20 | 57.45 21 | 92.32 7 | 88.63 43 | 57.71 223 | 83.14 9 | 93.96 6 | 55.17 29 | | | | |
|
| GSMVS | | | | | | | | | | | | | | | | | 88.13 150 |
|
| test_part2 | | | | | | 89.33 23 | 55.48 56 | | | | 82.27 12 | | | | | | |
|
| sam_mvs1 | | | | | | | | | | | | | 38.86 194 | | | | 88.13 150 |
|
| sam_mvs | | | | | | | | | | | | | 35.99 241 | | | | |
|
| ambc | | | | | 62.06 329 | 53.98 385 | 29.38 380 | 35.08 396 | 79.65 229 | | 41.37 354 | 59.96 372 | 6.27 396 | 82.15 285 | 35.34 328 | 38.22 370 | 74.65 343 |
|
| MTGPA |  | | | | | | | | 81.31 197 | | | | | | | | |
|
| test_post1 | | | | | | | | 70.84 328 | | | | 14.72 409 | 34.33 257 | 83.86 271 | 48.80 266 | | |
|
| test_post | | | | | | | | | | | | 16.22 406 | 37.52 211 | 84.72 264 | | | |
|
| patchmatchnet-post | | | | | | | | | | | | 59.74 373 | 38.41 197 | 79.91 312 | | | |
|
| GG-mvs-BLEND | | | | | 77.77 85 | 86.68 46 | 50.61 173 | 68.67 338 | 88.45 49 | | 68.73 109 | 87.45 145 | 59.15 10 | 90.67 91 | 54.83 224 | 87.67 18 | 92.03 44 |
|
| MTMP | | | | | | | | 87.27 75 | 15.34 414 | | | | | | | | |
|
| gm-plane-assit | | | | | | 83.24 109 | 54.21 96 | | | 70.91 20 | | 88.23 129 | | 95.25 14 | 66.37 128 | | |
|
| test9_res | | | | | | | | | | | | | | | 78.72 49 | 85.44 45 | 91.39 66 |
|
| TEST9 | | | | | | 85.68 56 | 55.42 57 | 87.59 65 | 84.00 147 | 57.72 222 | 72.99 65 | 90.98 67 | 44.87 119 | 88.58 154 | | | |
|
| test_8 | | | | | | 85.72 55 | 55.31 62 | 87.60 64 | 83.88 150 | 57.84 220 | 72.84 69 | 90.99 66 | 44.99 115 | 88.34 165 | | | |
|
| agg_prior2 | | | | | | | | | | | | | | | 75.65 69 | 85.11 49 | 91.01 78 |
|
| agg_prior | | | | | | 85.64 59 | 54.92 76 | | 83.61 157 | | 72.53 74 | | | 88.10 175 | | | |
|
| TestCases | | | | | 55.32 355 | 65.08 359 | 37.50 350 | | 54.25 376 | 35.45 370 | 33.42 380 | 72.82 321 | 9.98 382 | 59.33 378 | 24.13 373 | 43.84 359 | 69.13 366 |
|
| test_prior4 | | | | | | | 56.39 42 | 87.15 79 | | | | | | | | | |
|
| test_prior2 | | | | | | | | 89.04 42 | | 61.88 141 | 73.55 58 | 91.46 63 | 48.01 78 | | 74.73 78 | 85.46 44 | |
|
| test_prior | | | | | 78.39 74 | 86.35 50 | 54.91 77 | | 85.45 101 | | | | | 89.70 120 | | | 90.55 86 |
|
| 旧先验2 | | | | | | | | 81.73 227 | | 45.53 333 | 74.66 47 | | | 70.48 365 | 58.31 193 | | |
|
| æ–°å‡ ä½•2 | | | | | | | | 81.61 231 | | | | | | | | | |
|
| æ–°å‡ ä½•1 | | | | | 73.30 202 | 83.10 112 | 53.48 108 | | 71.43 334 | 45.55 332 | 66.14 129 | 87.17 150 | 33.88 262 | 80.54 302 | 48.50 269 | 80.33 86 | 85.88 198 |
|
| 旧先验1 | | | | | | 81.57 159 | 47.48 259 | | 71.83 328 | | | 88.66 118 | 36.94 224 | | | 78.34 107 | 88.67 136 |
|
| æ— å…ˆéªŒ | | | | | | | | 85.19 125 | 78.00 264 | 49.08 309 | | | | 85.13 259 | 52.78 241 | | 87.45 166 |
|
| 原ACMM2 | | | | | | | | 83.77 172 | | | | | | | | | |
|
| 原ACMM1 | | | | | 76.13 126 | 84.89 75 | 54.59 88 | | 85.26 111 | 51.98 289 | 66.70 121 | 87.07 152 | 40.15 181 | 89.70 120 | 51.23 251 | 85.06 50 | 84.10 222 |
|
| test222 | | | | | | 79.36 201 | 50.97 169 | 77.99 278 | 67.84 353 | 42.54 350 | 62.84 180 | 86.53 160 | 30.26 292 | | | 76.91 117 | 85.23 207 |
|
| testdata2 | | | | | | | | | | | | | | 77.81 330 | 45.64 288 | | |
|
| segment_acmp | | | | | | | | | | | | | 44.97 117 | | | | |
|
| testdata | | | | | 67.08 298 | 77.59 237 | 45.46 288 | | 69.20 349 | 44.47 339 | 71.50 86 | 88.34 126 | 31.21 286 | 70.76 364 | 52.20 246 | 75.88 130 | 85.03 209 |
|
| testdata1 | | | | | | | | 77.55 281 | | 64.14 98 | | | | | | | |
|
| test12 | | | | | 79.24 46 | 86.89 44 | 56.08 47 | | 85.16 116 | | 72.27 78 | | 47.15 86 | 91.10 81 | | 85.93 39 | 90.54 88 |
|
| plane_prior7 | | | | | | 77.95 231 | 48.46 234 | | | | | | | | | | |
|
| plane_prior6 | | | | | | 78.42 226 | 49.39 208 | | | | | | 36.04 239 | | | | |
|
| plane_prior5 | | | | | | | | | 82.59 175 | | | | | 88.30 168 | 65.46 137 | 72.34 165 | 84.49 216 |
|
| plane_prior4 | | | | | | | | | | | | 83.28 202 | | | | | |
|
| plane_prior3 | | | | | | | 48.95 217 | | | 64.01 101 | 62.15 188 | | | | | | |
|
| plane_prior2 | | | | | | | | 85.76 105 | | 63.60 110 | | | | | | | |
|
| plane_prior1 | | | | | | 78.31 228 | | | | | | | | | | | |
|
| plane_prior | | | | | | | 49.57 200 | 87.43 68 | | 64.57 92 | | | | | | 72.84 161 | |
|
| n2 | | | | | | | | | 0.00 418 | | | | | | | | |
|
| nn | | | | | | | | | 0.00 418 | | | | | | | | |
|
| door-mid | | | | | | | | | 41.31 389 | | | | | | | | |
|
| lessismore_v0 | | | | | 67.98 291 | 64.76 362 | 41.25 332 | | 45.75 382 | | 36.03 373 | 65.63 358 | 19.29 358 | 84.11 270 | 35.67 325 | 21.24 397 | 78.59 304 |
|
| LGP-MVS_train | | | | | 72.02 229 | 74.42 284 | 48.60 227 | | 80.64 208 | 54.69 270 | 53.75 292 | 83.83 189 | 25.73 321 | 86.98 210 | 60.33 178 | 64.71 224 | 80.48 285 |
|
| test11 | | | | | | | | | 84.25 141 | | | | | | | | |
|
| door | | | | | | | | | 43.27 385 | | | | | | | | |
|
| HQP5-MVS | | | | | | | 51.56 158 | | | | | | | | | | |
|
| HQP-NCC | | | | | | 79.02 210 | | 88.00 54 | | 65.45 79 | 64.48 156 | | | | | | |
|
| ACMP_Plane | | | | | | 79.02 210 | | 88.00 54 | | 65.45 79 | 64.48 156 | | | | | | |
|
| BP-MVS | | | | | | | | | | | | | | | 66.70 125 | | |
|
| HQP4-MVS | | | | | | | | | | | 64.47 159 | | | 88.61 153 | | | 84.91 212 |
|
| HQP3-MVS | | | | | | | | | 83.68 153 | | | | | | | 73.12 157 | |
|
| HQP2-MVS | | | | | | | | | | | | | 37.35 214 | | | | |
|
| NP-MVS | | | | | | 78.76 215 | 50.43 179 | | | | | 85.12 175 | | | | | |
|
| MDTV_nov1_ep13_2view | | | | | | | 43.62 307 | 71.13 327 | | 54.95 267 | 59.29 221 | | 36.76 227 | | 46.33 285 | | 87.32 168 |
|
| MDTV_nov1_ep13 | | | | 61.56 256 | | 81.68 152 | 55.12 69 | 72.41 316 | 78.18 261 | 59.19 191 | 58.85 230 | 69.29 346 | 34.69 253 | 86.16 234 | 36.76 323 | 62.96 247 | |
|
| ACMMP++_ref | | | | | | | | | | | | | | | | 63.20 243 | |
|
| ACMMP++ | | | | | | | | | | | | | | | | 59.38 268 | |
|
| Test By Simon | | | | | | | | | | | | | 39.38 188 | | | | |
|
| ITE_SJBPF | | | | | 51.84 358 | 58.03 379 | 31.94 370 | | 53.57 378 | 36.67 365 | 41.32 356 | 75.23 301 | 11.17 380 | 51.57 389 | 25.81 369 | 48.04 341 | 72.02 359 |
|
| DeepMVS_CX |  | | | | 13.10 391 | 21.34 415 | 8.99 413 | | 10.02 415 | 10.59 403 | 7.53 408 | 30.55 401 | 1.82 409 | 14.55 410 | 6.83 405 | 7.52 406 | 15.75 404 |
|