This table lists the benchmark results for the high-res multi-view scenario. The following metrics are evaluated:

(*) For exact definitions, detailing how potentially incomplete ground truth is taken into account, see our paper.

The datasets are grouped into different categories, and result averages are computed for a category and method if results of the method are available for all datasets within the category. Note that the category "all" includes both the high-res multi-view and the low-res many-view scenarios.

Methods with suffix _ROB may participate in the Robust Vision Challenge.

Click a dataset result cell to show a visualization of the reconstruction. For training datasets, ground truth and accuracy / completeness visualizations are also available. The visualizations may not work with mobile browsers.




Method Infoallhigh-res
multi-view
indooroutdoorbotani.boulde.bridgedoorexhibi.lectur.living.loungeobserv.old co.statueterrac.
sort bysorted bysort bysort bysort bysort bysort bysort bysort bysort bysort bysort bysort bysort bysort bysort by
MCST-MVS83.01 183.30 282.15 1092.84 257.58 1893.77 191.10 1075.95 377.10 3793.09 2754.15 3795.57 1285.80 1085.87 4093.31 11
MM82.69 283.29 380.89 2384.38 8355.40 6092.16 1089.85 2075.28 482.41 1193.86 854.30 3493.98 2390.29 187.13 2293.30 12
DVP-MVS++82.44 382.38 682.62 491.77 457.49 1984.98 13588.88 3258.00 21583.60 693.39 1867.21 296.39 481.64 3191.98 493.98 5
DPM-MVS82.39 482.36 782.49 580.12 19359.50 592.24 890.72 1469.37 3283.22 894.47 263.81 593.18 3274.02 8593.25 294.80 1
DELS-MVS82.32 582.50 581.79 1286.80 4556.89 3192.77 286.30 8777.83 177.88 3392.13 4160.24 694.78 1978.97 4589.61 893.69 8
Christian Sormann, Emanuele Santellani, Mattia Rossi, Andreas Kuhn, Friedrich Fraundorfer: DELS-MVS: Deep Epipolar Line Search for Multi-View Stereo. Winter Conference on Applications of Computer Vision (WACV), 2023
MSP-MVS82.30 683.47 178.80 5982.99 11952.71 13385.04 13288.63 4366.08 7086.77 392.75 3272.05 191.46 7083.35 2093.53 192.23 37
Zhenlong Yuan, Cong Liu, Fei Shen, Zhaoxin Li, Jingguo luo, Tianlu Mao and Zhaoqi Wang: MSP-MVS: Multi-granularity Segmentation Prior Guided Multi-View Stereo. AAAI2025
MVS_030482.10 782.64 480.47 2886.63 4754.69 8492.20 986.66 8074.48 582.63 1093.80 950.83 5993.70 2890.11 286.44 3593.01 21
SED-MVS81.92 881.75 982.44 789.48 1756.89 3192.48 388.94 3057.50 22984.61 494.09 358.81 1196.37 682.28 2687.60 1994.06 3
CNVR-MVS81.76 981.90 881.33 1890.04 1057.70 1691.71 1188.87 3470.31 2477.64 3693.87 752.58 4493.91 2684.17 1587.92 1792.39 33
DVP-MVScopyleft81.30 1081.00 1382.20 889.40 2057.45 2192.34 589.99 1857.71 22381.91 1493.64 1255.17 2996.44 281.68 2987.13 2292.72 28
Zhenlong Yuan, Jinguo Luo, Fei Shen, Zhaoxin Li, Cong Liu, Tianlu Mao, Zhaoqi Wang: DVP-MVS: Synergize Depth-Edge and Visibility Prior for Multi-View Stereo. AAAI2025
CANet80.90 1181.17 1280.09 3887.62 3954.21 9691.60 1486.47 8373.13 879.89 2593.10 2549.88 6892.98 3384.09 1784.75 5293.08 19
patch_mono-280.84 1281.59 1078.62 6690.34 953.77 10388.08 5388.36 5076.17 279.40 2791.09 6455.43 2690.09 10985.01 1280.40 8491.99 47
DeepPCF-MVS69.37 180.65 1381.56 1177.94 8485.46 6449.56 20290.99 2186.66 8070.58 2280.07 2495.30 156.18 2390.97 8682.57 2586.22 3893.28 13
HPM-MVS++copyleft80.50 1480.71 1479.88 4087.34 4155.20 6789.93 2987.55 6766.04 7379.46 2693.00 3053.10 4191.76 6480.40 3789.56 992.68 29
CSCG80.41 1579.72 1682.49 589.12 2557.67 1789.29 4091.54 559.19 19171.82 8190.05 9259.72 996.04 1078.37 5188.40 1493.75 7
balanced_conf0380.28 1679.73 1581.90 1186.47 4959.34 680.45 25289.51 2269.76 2871.05 9386.66 15858.68 1493.24 3184.64 1490.40 693.14 18
PS-MVSNAJ80.06 1779.52 1881.68 1485.58 6060.97 391.69 1287.02 7270.62 2180.75 2193.22 2437.77 20292.50 4882.75 2386.25 3791.57 60
xiu_mvs_v2_base79.86 1879.31 1981.53 1585.03 7360.73 491.65 1386.86 7570.30 2580.77 2093.07 2937.63 20792.28 5482.73 2485.71 4191.57 60
DPE-MVScopyleft79.82 1979.66 1780.29 3189.27 2455.08 7288.70 4687.92 5655.55 25981.21 1993.69 1156.51 2194.27 2278.36 5285.70 4291.51 63
Kehua Chen, Zhenlong Yuan, Tianlu Mao, Zhaoqi Wang: Dual-Level Precision Edges Guided Multi-View Stereo with Accurate Planarization. AAAI2025
NCCC79.57 2079.23 2080.59 2589.50 1556.99 2891.38 1688.17 5267.71 4673.81 5692.75 3246.88 8993.28 3078.79 4884.07 5791.50 64
dcpmvs_279.33 2178.94 2180.49 2689.75 1256.54 3884.83 14283.68 15367.85 4369.36 10490.24 8460.20 792.10 5984.14 1680.40 8492.82 25
testing1179.18 2278.85 2280.16 3488.33 3056.99 2888.31 5192.06 172.82 970.62 10088.37 12357.69 1592.30 5275.25 7576.24 12891.20 73
SMA-MVScopyleft79.10 2378.76 2380.12 3684.42 8155.87 5187.58 6786.76 7761.48 14880.26 2393.10 2546.53 9492.41 5079.97 3888.77 1192.08 41
Yufeng Yin; Xiaoyan Liu; Zichao Zhang: SMA-MVS: Segmentation-Guided Multi-Scale Anchor Deformation Patch Multi-View Stereo. IEEE Transactions on Circuits and Systems for Video Technology
LFMVS78.52 2477.14 4282.67 389.58 1358.90 891.27 1988.05 5463.22 11974.63 4890.83 7341.38 16894.40 2075.42 7379.90 9394.72 2
testing9978.45 2577.78 3380.45 2988.28 3356.81 3487.95 5891.49 671.72 1370.84 9588.09 13157.29 1892.63 4669.24 11175.13 14191.91 48
APDe-MVScopyleft78.44 2678.20 2679.19 4788.56 2654.55 8989.76 3387.77 6055.91 25478.56 3092.49 3748.20 7592.65 4479.49 4083.04 6190.39 90
Zhaojie Zeng, Yuesong Wang, Tao Guan: Matching Ambiguity-Resilient Multi-View Stereo via Adaptive Patch Deformation. Pattern Recognition
MG-MVS78.42 2776.99 4482.73 293.17 164.46 189.93 2988.51 4864.83 9073.52 5988.09 13148.07 7692.19 5562.24 15784.53 5491.53 62
lupinMVS78.38 2878.11 2879.19 4783.02 11755.24 6491.57 1584.82 12569.12 3376.67 3992.02 4644.82 12190.23 10680.83 3680.09 8892.08 41
EPNet78.36 2978.49 2477.97 8285.49 6352.04 14689.36 3884.07 14673.22 777.03 3891.72 5449.32 7290.17 10873.46 9282.77 6291.69 55
Wanjuan Su, Wenbing Tao: Efficient Edge-Preserving Multi-View Stereo Network for Depth Estimation. AAAI 2023
TSAR-MVS + MP.78.31 3078.26 2578.48 7081.33 16656.31 4481.59 23286.41 8469.61 3081.72 1688.16 13055.09 3188.04 17774.12 8486.31 3691.09 76
Zhenlong Yuan, Jiakai Cao, Zhaoqi Wang, Zhaoxin Li: TSAR-MVS: Textureless-aware Segmentation and Correlative Refinement Guided Multi-View Stereo. Pattern Recognition
testing9178.30 3177.54 3680.61 2488.16 3557.12 2787.94 5991.07 1371.43 1670.75 9688.04 13555.82 2592.65 4469.61 10875.00 14592.05 43
sasdasda78.17 3277.86 3179.12 5284.30 8454.22 9487.71 6184.57 13467.70 4777.70 3492.11 4450.90 5589.95 11278.18 5577.54 11193.20 15
canonicalmvs78.17 3277.86 3179.12 5284.30 8454.22 9487.71 6184.57 13467.70 4777.70 3492.11 4450.90 5589.95 11278.18 5577.54 11193.20 15
alignmvs78.08 3477.98 2978.39 7483.53 10053.22 12189.77 3285.45 10166.11 6876.59 4191.99 4854.07 3889.05 13577.34 6177.00 11692.89 23
DeepC-MVS_fast67.50 378.00 3577.63 3479.13 5188.52 2755.12 6989.95 2885.98 9268.31 3571.33 8892.75 3245.52 10790.37 9971.15 10285.14 4891.91 48
Andreas Kuhn, Christian Sormann, Mattia Rossi, Oliver Erdler, Friedrich Fraundorfer: DeepC-MVS: Deep Confidence Prediction for Multi-View Stereo Reconstruction. 3DV 2020
VNet77.99 3677.92 3078.19 7887.43 4050.12 19090.93 2291.41 867.48 5075.12 4390.15 9046.77 9191.00 8373.52 9178.46 10593.44 9
TSAR-MVS + GP.77.82 3777.59 3578.49 6985.25 6950.27 18990.02 2690.57 1556.58 24874.26 5391.60 5954.26 3592.16 5675.87 6779.91 9293.05 20
casdiffmvs_mvgpermissive77.75 3877.28 3979.16 4980.42 18954.44 9187.76 6085.46 10071.67 1471.38 8788.35 12551.58 4891.22 7679.02 4479.89 9491.83 52
Fangjinhua Wang, Qingshan Xu, Yew-Soon Ong, Marc Pollefeys: Lightweight and Accurate Multi-View Stereo With Confidence-Aware Diffusion Model. IEEE T-PAMI 2025
testing22277.70 3977.22 4179.14 5086.95 4354.89 7887.18 7791.96 272.29 1171.17 9288.70 11755.19 2891.24 7565.18 14376.32 12791.29 71
SF-MVS77.64 4077.42 3878.32 7683.75 9752.47 13886.63 9087.80 5758.78 20374.63 4892.38 3847.75 8191.35 7278.18 5586.85 2991.15 75
PHI-MVS77.49 4177.00 4378.95 5485.33 6750.69 17288.57 4888.59 4658.14 21273.60 5793.31 2143.14 14593.79 2773.81 8988.53 1392.37 34
WTY-MVS77.47 4277.52 3777.30 9588.33 3046.25 27988.46 4990.32 1671.40 1772.32 7791.72 5453.44 3992.37 5166.28 13075.42 13593.28 13
bld_raw_conf0377.39 4376.21 5480.94 2285.57 6158.25 1074.47 30087.61 6565.51 7865.24 14185.42 17255.43 2692.75 4279.53 3987.13 2291.80 53
casdiffmvspermissive77.36 4476.85 4578.88 5780.40 19054.66 8787.06 8085.88 9372.11 1271.57 8488.63 12250.89 5890.35 10076.00 6679.11 10091.63 57
Fangjinhua Wang, Qingshan Xu, Yew-Soon Ong, Marc Pollefeys: Lightweight and Accurate Multi-View Stereo With Confidence-Aware Diffusion Model. IEEE T-PAMI 2025
CS-MVS-test77.20 4577.25 4077.05 10184.60 7849.04 21589.42 3685.83 9565.90 7472.85 6891.98 5045.10 11291.27 7375.02 7784.56 5390.84 82
ETV-MVS77.17 4676.74 4678.48 7081.80 14654.55 8986.13 9885.33 10668.20 3773.10 6490.52 7845.23 11190.66 9279.37 4180.95 7690.22 96
SteuartSystems-ACMMP77.08 4776.33 5179.34 4580.98 17055.31 6289.76 3386.91 7462.94 12471.65 8291.56 6042.33 15292.56 4777.14 6283.69 5990.15 100
Skip Steuart: Steuart Systems R&D Blog.
jason77.01 4876.45 4978.69 6379.69 19854.74 8090.56 2483.99 14968.26 3674.10 5490.91 7042.14 15689.99 11179.30 4279.12 9991.36 68
jason: jason.
train_agg76.91 4976.40 5078.45 7285.68 5655.42 5787.59 6584.00 14757.84 22072.99 6590.98 6744.99 11588.58 15478.19 5385.32 4691.34 70
MVS76.91 4975.48 6281.23 1984.56 7955.21 6680.23 25891.64 458.65 20565.37 14091.48 6245.72 10495.05 1672.11 9989.52 1093.44 9
DeepC-MVS67.15 476.90 5176.27 5278.80 5980.70 18255.02 7386.39 9286.71 7866.96 5567.91 11489.97 9448.03 7791.41 7175.60 7084.14 5689.96 106
Andreas Kuhn, Christian Sormann, Mattia Rossi, Oliver Erdler, Friedrich Fraundorfer: DeepC-MVS: Deep Confidence Prediction for Multi-View Stereo Reconstruction. 3DV 2020
baseline76.86 5276.24 5378.71 6280.47 18854.20 9883.90 16884.88 12471.38 1871.51 8589.15 11050.51 6090.55 9675.71 6878.65 10391.39 66
CS-MVS76.77 5376.70 4776.99 10683.55 9948.75 22488.60 4785.18 11466.38 6372.47 7591.62 5845.53 10690.99 8574.48 8082.51 6491.23 72
PAPM76.76 5476.07 5678.81 5880.20 19159.11 786.86 8686.23 8868.60 3470.18 10388.84 11551.57 4987.16 20665.48 13686.68 3290.15 100
MAR-MVS76.76 5475.60 6080.21 3290.87 754.68 8589.14 4189.11 2762.95 12370.54 10192.33 3941.05 16994.95 1757.90 20186.55 3491.00 79
Zhenyu Xu, Yiguang Liu, Xuelei Shi, Ying Wang, Yunan Zheng: MARMVS: Matching Ambiguity Reduced Multiple View Stereo for Efficient Large Scale Scene Reconstruction. CVPR 2020
PVSNet_Blended76.53 5676.54 4876.50 11685.91 5351.83 15288.89 4484.24 14367.82 4469.09 10689.33 10746.70 9288.13 17375.43 7181.48 7589.55 114
ACMMP_NAP76.43 5775.66 5978.73 6181.92 14354.67 8684.06 16485.35 10561.10 15572.99 6591.50 6140.25 17891.00 8376.84 6386.98 2790.51 89
MVS_111021_HR76.39 5875.38 6579.42 4485.33 6756.47 4088.15 5284.97 12165.15 8866.06 13189.88 9543.79 13292.16 5675.03 7680.03 9189.64 112
CHOSEN 1792x268876.24 5974.03 8482.88 183.09 11462.84 285.73 10985.39 10369.79 2764.87 14983.49 19641.52 16793.69 2970.55 10481.82 7192.12 40
SD-MVS76.18 6074.85 7380.18 3385.39 6556.90 3085.75 10782.45 17856.79 24374.48 5191.81 5243.72 13590.75 9074.61 7978.65 10392.91 22
Zhenlong Yuan, Jiakai Cao, Zhaoxin Li, Hao Jiang and Zhaoqi Wang: SD-MVS: Segmentation-driven Deformation Multi-View Stereo with Spherical Refinement and EM optimization. AAAI2024
APD-MVScopyleft76.15 6175.68 5877.54 9088.52 2753.44 11287.26 7685.03 12053.79 27574.91 4691.68 5643.80 13190.31 10274.36 8181.82 7188.87 131
Yuesong Wang, Zhaojie Zeng and etc.: Adaptive Patch Deformation for Textureless-Resilient Multi-View Stereo. CVPR2023
VDD-MVS76.08 6274.97 7179.44 4384.27 8753.33 11891.13 2085.88 9365.33 8572.37 7689.34 10532.52 27392.76 4177.90 5875.96 12992.22 39
CDPH-MVS76.05 6375.19 6778.62 6686.51 4854.98 7587.32 7184.59 13358.62 20670.75 9690.85 7243.10 14790.63 9470.50 10584.51 5590.24 95
fmvsm_l_conf0.5_n75.95 6476.16 5575.31 14976.01 26448.44 23584.98 13571.08 33663.50 11381.70 1793.52 1550.00 6487.18 20587.80 576.87 11990.32 93
EIA-MVS75.92 6575.18 6878.13 7985.14 7051.60 15787.17 7885.32 10764.69 9168.56 11090.53 7745.79 10391.58 6767.21 12382.18 6891.20 73
fmvsm_l_conf0.5_n_a75.88 6676.07 5675.31 14976.08 26048.34 23885.24 12370.62 33963.13 12181.45 1893.62 1449.98 6687.40 20187.76 676.77 12090.20 98
test_yl75.85 6774.83 7478.91 5588.08 3751.94 14891.30 1789.28 2457.91 21771.19 9089.20 10842.03 15992.77 3969.41 10975.07 14392.01 45
DCV-MVSNet75.85 6774.83 7478.91 5588.08 3751.94 14891.30 1789.28 2457.91 21771.19 9089.20 10842.03 15992.77 3969.41 10975.07 14392.01 45
MVS_Test75.85 6774.93 7278.62 6684.08 8955.20 6783.99 16685.17 11568.07 4073.38 6182.76 20850.44 6189.00 13865.90 13280.61 8091.64 56
ZNCC-MVS75.82 7075.02 7078.23 7783.88 9553.80 10286.91 8586.05 9159.71 17767.85 11590.55 7642.23 15491.02 8272.66 9785.29 4789.87 109
ETVMVS75.80 7175.44 6376.89 11086.23 5150.38 18285.55 11691.42 771.30 1968.80 10887.94 13756.42 2289.24 12956.54 21374.75 14791.07 77
CLD-MVS75.60 7275.39 6476.24 12080.69 18352.40 13990.69 2386.20 8974.40 665.01 14788.93 11242.05 15890.58 9576.57 6473.96 15185.73 199
Zhaoxin Li, Wangmeng Zuo, Zhaoqi Wang, Lei Zhang: Confidence-based Large-scale Dense Multi-view Stereo. IEEE Transaction on Image Processing, 2020
test_fmvsm_n_192075.56 7375.54 6175.61 13774.60 28249.51 20581.82 22474.08 31066.52 6180.40 2293.46 1746.95 8889.72 11986.69 775.30 13687.61 162
MP-MVS-pluss75.54 7475.03 6977.04 10281.37 16552.65 13584.34 15584.46 13661.16 15269.14 10591.76 5339.98 18588.99 14078.19 5384.89 5189.48 117
MP-MVS-pluss: MP-MVS-pluss. MP-MVS-pluss
EC-MVSNet75.30 7575.20 6675.62 13680.98 17049.00 21687.43 6884.68 13163.49 11470.97 9490.15 9042.86 14991.14 8074.33 8281.90 7086.71 181
MVSMamba_PlusPlus75.28 7673.39 8780.96 2180.85 17758.25 1074.47 30087.61 6550.53 29965.24 14183.41 19857.38 1692.83 3673.92 8787.13 2291.80 53
Effi-MVS+75.24 7773.61 8680.16 3481.92 14357.42 2385.21 12476.71 28860.68 16673.32 6289.34 10547.30 8491.63 6668.28 11779.72 9591.42 65
ET-MVSNet_ETH3D75.23 7874.08 8278.67 6484.52 8055.59 5388.92 4389.21 2668.06 4153.13 29690.22 8649.71 6987.62 19572.12 9870.82 17992.82 25
PAPR75.20 7974.13 8078.41 7388.31 3255.10 7184.31 15685.66 9763.76 10667.55 11690.73 7443.48 14089.40 12666.36 12977.03 11590.73 84
baseline275.15 8074.54 7876.98 10781.67 15351.74 15483.84 17091.94 369.97 2658.98 22486.02 16459.73 891.73 6568.37 11670.40 18487.48 164
diffmvspermissive75.11 8174.65 7676.46 11778.52 22353.35 11683.28 18979.94 22170.51 2371.64 8388.72 11646.02 10086.08 24077.52 5975.75 13389.96 106
Fangjinhua Wang, Qingshan Xu, Yew-Soon Ong, Marc Pollefeys: Lightweight and Accurate Multi-View Stereo With Confidence-Aware Diffusion Model. IEEE T-PAMI 2025
MP-MVScopyleft74.99 8274.33 7976.95 10882.89 12453.05 12785.63 11283.50 15857.86 21967.25 11890.24 8443.38 14288.85 14876.03 6582.23 6788.96 128
Rongxuan Tan, Qing Wang, et al.: MP-MVS: Multi-Scale Windows PatchMatch and Planar Prior Multi-View Stereo.
GST-MVS74.87 8373.90 8577.77 8583.30 10753.45 11185.75 10785.29 10959.22 19066.50 12789.85 9640.94 17190.76 8970.94 10383.35 6089.10 126
iter_conf0574.57 8472.83 9679.80 4180.85 17758.10 1274.55 29982.97 17050.53 29963.52 17483.41 19857.38 1692.83 3673.92 8788.34 1588.48 145
fmvsm_s_conf0.5_n74.48 8574.12 8175.56 13976.96 24947.85 25585.32 12169.80 34664.16 9778.74 2893.48 1645.51 10889.29 12886.48 866.62 21089.55 114
3Dnovator64.70 674.46 8672.48 10080.41 3082.84 12755.40 6083.08 19488.61 4567.61 4959.85 20788.66 11834.57 25493.97 2458.42 19188.70 1291.85 51
test_fmvsmconf_n74.41 8774.05 8375.49 14374.16 28848.38 23682.66 20272.57 32367.05 5475.11 4492.88 3146.35 9587.81 18283.93 1871.71 17090.28 94
HFP-MVS74.37 8873.13 9478.10 8084.30 8453.68 10585.58 11384.36 13856.82 24165.78 13690.56 7540.70 17690.90 8769.18 11280.88 7789.71 110
VDDNet74.37 8872.13 11081.09 2079.58 19956.52 3990.02 2686.70 7952.61 28571.23 8987.20 14931.75 28393.96 2574.30 8375.77 13292.79 27
MSLP-MVS++74.21 9072.25 10680.11 3781.45 16356.47 4086.32 9479.65 22958.19 21166.36 12892.29 4036.11 23690.66 9267.39 12182.49 6593.18 17
API-MVS74.17 9172.07 11280.49 2690.02 1158.55 987.30 7384.27 14057.51 22865.77 13787.77 14041.61 16595.97 1151.71 24782.63 6386.94 172
MGCFI-Net74.07 9274.64 7772.34 22282.90 12343.33 31280.04 26179.96 22065.61 7674.93 4591.85 5148.01 7880.86 29671.41 10077.10 11492.84 24
IB-MVS68.87 274.01 9372.03 11579.94 3983.04 11655.50 5590.24 2588.65 4167.14 5261.38 19581.74 23253.21 4094.28 2160.45 17662.41 25190.03 104
Christian Sormann, Mattia Rossi, Andreas Kuhn and Friedrich Fraundorfer: IB-MVS: An Iterative Algorithm for Deep Multi-View Stereo based on Binary Decisions. BMVC 2021
h-mvs3373.95 9472.89 9577.15 10080.17 19250.37 18384.68 14683.33 15968.08 3871.97 7988.65 12142.50 15091.15 7978.82 4657.78 29189.91 108
HY-MVS67.03 573.90 9573.14 9276.18 12584.70 7747.36 26275.56 28986.36 8666.27 6570.66 9983.91 18851.05 5389.31 12767.10 12472.61 16391.88 50
CostFormer73.89 9672.30 10578.66 6582.36 13856.58 3575.56 28985.30 10866.06 7170.50 10276.88 28257.02 1989.06 13468.27 11868.74 19590.33 92
fmvsm_s_conf0.1_n73.80 9773.26 8975.43 14473.28 29647.80 25684.57 15169.43 34863.34 11678.40 3193.29 2244.73 12489.22 13185.99 966.28 21789.26 119
ACMMPR73.76 9872.61 9777.24 9983.92 9352.96 13085.58 11384.29 13956.82 24165.12 14390.45 7937.24 21990.18 10769.18 11280.84 7888.58 139
region2R73.75 9972.55 9977.33 9483.90 9452.98 12985.54 11784.09 14556.83 24065.10 14490.45 7937.34 21690.24 10568.89 11480.83 7988.77 135
CANet_DTU73.71 10073.14 9275.40 14582.61 13450.05 19184.67 14879.36 23769.72 2975.39 4290.03 9329.41 29685.93 24667.99 11979.11 10090.22 96
test_fmvsmconf0.1_n73.69 10173.15 9075.34 14770.71 32548.26 24182.15 21471.83 32866.75 5774.47 5292.59 3644.89 11887.78 18783.59 1971.35 17489.97 105
fmvsm_s_conf0.5_n_a73.68 10273.15 9075.29 15275.45 27148.05 24883.88 16968.84 35063.43 11578.60 2993.37 2045.32 10988.92 14585.39 1164.04 23088.89 130
thisisatest051573.64 10372.20 10777.97 8281.63 15453.01 12886.69 8988.81 3762.53 13064.06 16285.65 16852.15 4792.50 4858.43 18969.84 18788.39 146
MVSFormer73.53 10472.19 10877.57 8983.02 11755.24 6481.63 22981.44 19550.28 30176.67 3990.91 7044.82 12186.11 23560.83 16880.09 8891.36 68
PVSNet_BlendedMVS73.42 10573.30 8873.76 19185.91 5351.83 15286.18 9784.24 14365.40 8269.09 10680.86 24046.70 9288.13 17375.43 7165.92 21981.33 273
PVSNet_Blended_VisFu73.40 10672.44 10176.30 11881.32 16754.70 8385.81 10378.82 24763.70 10764.53 15585.38 17347.11 8787.38 20267.75 12077.55 11086.81 180
MVSTER73.25 10772.33 10376.01 13085.54 6253.76 10483.52 17587.16 7067.06 5363.88 16781.66 23352.77 4290.44 9764.66 14564.69 22683.84 233
EI-MVSNet-Vis-set73.19 10872.60 9874.99 16182.56 13549.80 19882.55 20789.00 2966.17 6765.89 13488.98 11143.83 13092.29 5365.38 14269.01 19382.87 251
PMMVS72.98 10972.05 11375.78 13483.57 9848.60 22784.08 16282.85 17361.62 14468.24 11290.33 8328.35 30087.78 18772.71 9676.69 12190.95 80
XVS72.92 11071.62 11776.81 11183.41 10252.48 13684.88 14083.20 16558.03 21363.91 16589.63 10035.50 24389.78 11665.50 13480.50 8288.16 147
test250672.91 11172.43 10274.32 17480.12 19344.18 30383.19 19184.77 12864.02 9965.97 13287.43 14647.67 8288.72 14959.08 18279.66 9690.08 102
TESTMET0.1,172.86 11272.33 10374.46 16881.98 14250.77 17085.13 12785.47 9966.09 6967.30 11783.69 19337.27 21783.57 27765.06 14478.97 10289.05 127
fmvsm_s_conf0.1_n_a72.82 11372.05 11375.12 15770.95 32447.97 25182.72 20168.43 35262.52 13178.17 3293.08 2844.21 12788.86 14684.82 1363.54 23688.54 141
Fast-Effi-MVS+72.73 11471.15 12677.48 9182.75 12954.76 7986.77 8880.64 20863.05 12265.93 13384.01 18644.42 12689.03 13656.45 21776.36 12688.64 137
MTAPA72.73 11471.22 12477.27 9781.54 16053.57 10767.06 34581.31 19759.41 18468.39 11190.96 6936.07 23889.01 13773.80 9082.45 6689.23 121
PGM-MVS72.60 11671.20 12576.80 11382.95 12052.82 13283.07 19582.14 18056.51 24963.18 17589.81 9735.68 24289.76 11867.30 12280.19 8787.83 156
HPM-MVScopyleft72.60 11671.50 11975.89 13282.02 14151.42 16280.70 25083.05 16756.12 25364.03 16389.53 10137.55 21088.37 16270.48 10680.04 9087.88 155
Chunlin Ren, Qingshan Xu, Shikun Zhang, Jiaqi Yang: Hierarchical Prior Mining for Non-local Multi-View Stereo. ICCV 2023
CP-MVS72.59 11871.46 12076.00 13182.93 12252.32 14286.93 8482.48 17755.15 26363.65 16990.44 8235.03 25088.53 15868.69 11577.83 10987.15 170
baseline172.51 11972.12 11173.69 19485.05 7144.46 29683.51 17986.13 9071.61 1564.64 15187.97 13655.00 3289.48 12459.07 18356.05 30487.13 171
EI-MVSNet-UG-set72.37 12071.73 11674.29 17581.60 15649.29 21081.85 22288.64 4265.29 8765.05 14588.29 12843.18 14391.83 6363.74 14867.97 20081.75 261
MS-PatchMatch72.34 12171.26 12375.61 13782.38 13755.55 5488.00 5489.95 1965.38 8356.51 26980.74 24232.28 27692.89 3457.95 20088.10 1678.39 308
HQP-MVS72.34 12171.44 12175.03 15979.02 21051.56 15888.00 5483.68 15365.45 7964.48 15685.13 17437.35 21488.62 15266.70 12573.12 15784.91 212
mvs_anonymous72.29 12370.74 12976.94 10982.85 12654.72 8278.43 27681.54 19363.77 10561.69 19279.32 25251.11 5285.31 25362.15 15975.79 13190.79 83
3Dnovator+62.71 772.29 12370.50 13377.65 8883.40 10551.29 16687.32 7186.40 8559.01 19858.49 23788.32 12732.40 27491.27 7357.04 21082.15 6990.38 91
nrg03072.27 12571.56 11874.42 17075.93 26550.60 17486.97 8283.21 16462.75 12667.15 11984.38 18250.07 6386.66 22171.19 10162.37 25285.99 193
UWE-MVS72.17 12672.15 10972.21 22482.26 13944.29 30086.83 8789.58 2165.58 7765.82 13585.06 17645.02 11484.35 26854.07 22975.18 13887.99 154
VPNet72.07 12771.42 12274.04 18178.64 22147.17 26689.91 3187.97 5572.56 1064.66 15085.04 17741.83 16388.33 16661.17 16660.97 25886.62 182
DP-MVS Recon71.99 12870.31 13877.01 10490.65 853.44 11289.37 3782.97 17056.33 25163.56 17289.47 10234.02 25992.15 5854.05 23072.41 16485.43 206
test_fmvsmconf0.01_n71.97 12970.95 12875.04 15866.21 35047.87 25480.35 25570.08 34365.85 7572.69 7091.68 5639.99 18487.67 19182.03 2869.66 18989.58 113
SDMVSNet71.89 13070.62 13275.70 13581.70 15051.61 15673.89 30488.72 4066.58 5861.64 19382.38 22137.63 20789.48 12477.44 6065.60 22086.01 191
QAPM71.88 13169.33 15479.52 4282.20 14054.30 9386.30 9588.77 3856.61 24759.72 20987.48 14433.90 26195.36 1347.48 27581.49 7488.90 129
ECVR-MVScopyleft71.81 13271.00 12774.26 17680.12 19343.49 30884.69 14582.16 17964.02 9964.64 15187.43 14635.04 24989.21 13261.24 16579.66 9690.08 102
PAPM_NR71.80 13369.98 14577.26 9881.54 16053.34 11778.60 27585.25 11253.46 27860.53 20388.66 11845.69 10589.24 12956.49 21479.62 9889.19 123
mPP-MVS71.79 13470.38 13676.04 12982.65 13352.06 14584.45 15281.78 19055.59 25862.05 19089.68 9933.48 26588.28 17065.45 13978.24 10887.77 158
xiu_mvs_v1_base_debu71.60 13570.29 13975.55 14077.26 24353.15 12285.34 11879.37 23455.83 25572.54 7190.19 8722.38 34386.66 22173.28 9376.39 12386.85 176
xiu_mvs_v1_base71.60 13570.29 13975.55 14077.26 24353.15 12285.34 11879.37 23455.83 25572.54 7190.19 8722.38 34386.66 22173.28 9376.39 12386.85 176
xiu_mvs_v1_base_debi71.60 13570.29 13975.55 14077.26 24353.15 12285.34 11879.37 23455.83 25572.54 7190.19 8722.38 34386.66 22173.28 9376.39 12386.85 176
hse-mvs271.44 13870.68 13073.73 19376.34 25447.44 26179.45 26879.47 23368.08 3871.97 7986.01 16642.50 15086.93 21478.82 4653.46 32786.83 179
test_fmvsmvis_n_192071.29 13970.38 13674.00 18371.04 32348.79 22379.19 27164.62 36062.75 12666.73 12091.99 4840.94 17188.35 16483.00 2173.18 15684.85 214
EPP-MVSNet71.14 14070.07 14474.33 17379.18 20746.52 27283.81 17186.49 8256.32 25257.95 24384.90 18054.23 3689.14 13358.14 19669.65 19087.33 167
VPA-MVSNet71.12 14170.66 13172.49 21778.75 21644.43 29887.64 6390.02 1763.97 10265.02 14681.58 23542.14 15687.42 20063.42 15063.38 24085.63 203
131471.11 14269.41 15176.22 12179.32 20350.49 17780.23 25885.14 11859.44 18358.93 22688.89 11433.83 26389.60 12361.49 16377.42 11388.57 140
test111171.06 14370.42 13572.97 20679.48 20041.49 33084.82 14382.74 17464.20 9662.98 17887.43 14635.20 24687.92 17958.54 18878.42 10689.49 116
tpmrst71.04 14469.77 14774.86 16383.19 11155.86 5275.64 28878.73 25167.88 4264.99 14873.73 31149.96 6779.56 31565.92 13167.85 20289.14 125
MVP-Stereo70.97 14570.44 13472.59 21476.03 26351.36 16385.02 13486.99 7360.31 17056.53 26878.92 25740.11 18290.00 11060.00 18090.01 776.41 330
Qingsong Yan: MVP-Stereo: A Parallel Multi-View Patchmatch Stereo Method with Dilation Matching for Photogrammetric Application.
HQP_MVS70.96 14669.91 14674.12 17977.95 23149.57 20085.76 10582.59 17563.60 11062.15 18883.28 20236.04 23988.30 16865.46 13772.34 16584.49 216
SR-MVS70.92 14769.73 14874.50 16783.38 10650.48 17884.27 15779.35 23848.96 31166.57 12690.45 7933.65 26487.11 20766.42 12774.56 14885.91 196
tpm270.82 14868.44 16377.98 8180.78 18056.11 4674.21 30381.28 19960.24 17168.04 11375.27 30052.26 4688.50 15955.82 22168.03 19989.33 118
ACMMPcopyleft70.81 14969.29 15575.39 14681.52 16251.92 15083.43 18283.03 16856.67 24658.80 23188.91 11331.92 28188.58 15465.89 13373.39 15585.67 200
Qingshan Xu, Weihang Kong, Wenbing Tao, Marc Pollefeys: Multi-Scale Geometric Consistency Guided and Planar Prior Assisted Multi-View Stereo. IEEE Transactions on Pattern Analysis and Machine Intelligence
OPM-MVS70.75 15069.58 14974.26 17675.55 27051.34 16486.05 10083.29 16361.94 14062.95 17985.77 16734.15 25888.44 16065.44 14071.07 17682.99 248
Ray L. Khuboni, Hongjun Xu: Octagram Propagation Matching for Multi-Scale View Stereopsis (OPM-MVS).
ab-mvs70.65 15169.11 15775.29 15280.87 17646.23 28073.48 30885.24 11359.99 17366.65 12280.94 23943.13 14688.69 15063.58 14968.07 19890.95 80
Vis-MVSNetpermissive70.61 15269.34 15374.42 17080.95 17548.49 23286.03 10177.51 27258.74 20465.55 13987.78 13934.37 25685.95 24552.53 24580.61 8088.80 133
Jingyang Zhang, Yao Yao, Shiwei Li, Zixin Luo, Tian Fang: Visibility-aware Multiview Stereo Network. BMVC 2020
sss70.49 15370.13 14371.58 24381.59 15739.02 34180.78 24984.71 13059.34 18666.61 12488.09 13137.17 22085.52 24961.82 16271.02 17790.20 98
CDS-MVSNet70.48 15469.43 15073.64 19577.56 23848.83 22283.51 17977.45 27363.27 11862.33 18585.54 17143.85 12983.29 28157.38 20974.00 15088.79 134
Khang Truong Giang, Soohwan Song, Sungho Jo: Curvature-guided dynamic scale networks for Multi-view Stereo. ICLR 2022
thisisatest053070.47 15568.56 16176.20 12379.78 19751.52 16083.49 18188.58 4757.62 22658.60 23382.79 20751.03 5491.48 6952.84 23962.36 25385.59 204
XXY-MVS70.18 15669.28 15672.89 20977.64 23542.88 31785.06 13187.50 6862.58 12962.66 18382.34 22443.64 13789.83 11558.42 19163.70 23585.96 195
Anonymous20240521170.11 15767.88 17376.79 11487.20 4247.24 26589.49 3577.38 27554.88 26866.14 12986.84 15420.93 35291.54 6856.45 21771.62 17191.59 58
PCF-MVS61.03 1070.10 15868.40 16475.22 15677.15 24751.99 14779.30 27082.12 18156.47 25061.88 19186.48 16243.98 12887.24 20455.37 22272.79 16286.43 186
Andreas Kuhn, Shan Lin, Oliver Erdler: Plane Completion and Filtering for Multi-View Stereo Reconstruction. GCPR 2019
BH-RMVSNet70.08 15968.01 17076.27 11984.21 8851.22 16887.29 7479.33 24058.96 20063.63 17086.77 15533.29 26790.30 10444.63 29373.96 15187.30 169
1112_ss70.05 16069.37 15272.10 22680.77 18142.78 31885.12 13076.75 28559.69 17861.19 19792.12 4247.48 8383.84 27253.04 23768.21 19789.66 111
BH-w/o70.02 16168.51 16274.56 16682.77 12850.39 18186.60 9178.14 26259.77 17659.65 21085.57 17039.27 19087.30 20349.86 25874.94 14685.99 193
FIs70.00 16270.24 14269.30 27577.93 23338.55 34483.99 16687.72 6266.86 5657.66 25084.17 18552.28 4585.31 25352.72 24468.80 19484.02 224
OpenMVScopyleft61.00 1169.99 16367.55 18277.30 9578.37 22754.07 10084.36 15485.76 9657.22 23456.71 26587.67 14230.79 28992.83 3643.04 30084.06 5885.01 210
GeoE69.96 16467.88 17376.22 12181.11 16951.71 15584.15 16076.74 28759.83 17560.91 19884.38 18241.56 16688.10 17551.67 24870.57 18288.84 132
HyFIR lowres test69.94 16567.58 18077.04 10277.11 24857.29 2481.49 23779.11 24358.27 21058.86 22980.41 24342.33 15286.96 21261.91 16068.68 19686.87 174
114514_t69.87 16667.88 17375.85 13388.38 2952.35 14186.94 8383.68 15353.70 27655.68 27585.60 16930.07 29491.20 7755.84 22071.02 17783.99 226
miper_enhance_ethall69.77 16768.90 15972.38 22078.93 21349.91 19483.29 18878.85 24564.90 8959.37 21779.46 25052.77 4285.16 25863.78 14758.72 27382.08 256
Anonymous2024052969.71 16867.28 18877.00 10583.78 9650.36 18488.87 4585.10 11947.22 32064.03 16383.37 20027.93 30492.10 5957.78 20467.44 20488.53 142
TR-MVS69.71 16867.85 17675.27 15482.94 12148.48 23387.40 7080.86 20557.15 23664.61 15387.08 15132.67 27289.64 12246.38 28471.55 17387.68 161
EI-MVSNet69.70 17068.70 16072.68 21275.00 27648.90 22079.54 26587.16 7061.05 15663.88 16783.74 19145.87 10190.44 9757.42 20864.68 22778.70 301
test-LLR69.65 17169.01 15871.60 24178.67 21848.17 24385.13 12779.72 22659.18 19363.13 17682.58 21536.91 22580.24 30660.56 17275.17 13986.39 187
APD-MVS_3200maxsize69.62 17268.23 16873.80 19081.58 15848.22 24281.91 22079.50 23248.21 31564.24 16189.75 9831.91 28287.55 19763.08 15173.85 15385.64 202
v2v48269.55 17367.64 17975.26 15572.32 31053.83 10184.93 13981.94 18465.37 8460.80 20079.25 25341.62 16488.98 14163.03 15259.51 26682.98 249
TAMVS69.51 17468.16 16973.56 19876.30 25748.71 22682.57 20577.17 27862.10 13661.32 19684.23 18441.90 16183.46 27954.80 22673.09 15988.50 143
mvsmamba69.38 17567.52 18474.95 16282.86 12552.22 14467.36 34376.75 28561.14 15349.43 31782.04 22937.26 21884.14 26973.93 8676.91 11788.50 143
WB-MVSnew69.36 17668.24 16772.72 21179.26 20549.40 20785.72 11088.85 3561.33 14964.59 15482.38 22134.57 25487.53 19846.82 28170.63 18081.22 277
PVSNet62.49 869.27 17767.81 17773.64 19584.41 8251.85 15184.63 14977.80 26666.42 6259.80 20884.95 17922.14 34780.44 30455.03 22375.11 14288.62 138
MVS_111021_LR69.07 17867.91 17172.54 21577.27 24249.56 20279.77 26373.96 31359.33 18860.73 20187.82 13830.19 29381.53 28969.94 10772.19 16786.53 183
GA-MVS69.04 17966.70 19776.06 12875.11 27352.36 14083.12 19380.23 21563.32 11760.65 20279.22 25430.98 28888.37 16261.25 16466.41 21387.46 165
cascas69.01 18066.13 20977.66 8779.36 20155.41 5986.99 8183.75 15256.69 24558.92 22781.35 23624.31 33292.10 5953.23 23470.61 18185.46 205
FA-MVS(test-final)69.00 18166.60 20076.19 12483.48 10147.96 25374.73 29682.07 18257.27 23362.18 18778.47 26136.09 23792.89 3453.76 23371.32 17587.73 159
cl2268.85 18267.69 17872.35 22178.07 23049.98 19382.45 21078.48 25762.50 13258.46 23877.95 26349.99 6585.17 25762.55 15458.72 27381.90 259
FMVSNet368.84 18367.40 18673.19 20385.05 7148.53 23085.71 11185.36 10460.90 16257.58 25279.15 25542.16 15586.77 21747.25 27763.40 23784.27 220
UniMVSNet_NR-MVSNet68.82 18468.29 16670.40 26175.71 26842.59 32084.23 15886.78 7666.31 6458.51 23482.45 21851.57 4984.64 26653.11 23555.96 30583.96 230
v114468.81 18566.82 19374.80 16472.34 30953.46 10984.68 14681.77 19164.25 9560.28 20477.91 26440.23 17988.95 14260.37 17759.52 26581.97 257
IS-MVSNet68.80 18667.55 18272.54 21578.50 22443.43 31081.03 24279.35 23859.12 19657.27 26086.71 15646.05 9987.70 19044.32 29575.60 13486.49 184
PS-MVSNAJss68.78 18767.17 19073.62 19773.01 30048.33 24084.95 13884.81 12659.30 18958.91 22879.84 24837.77 20288.86 14662.83 15363.12 24683.67 236
thres20068.71 18867.27 18973.02 20484.73 7646.76 26985.03 13387.73 6162.34 13459.87 20683.45 19743.15 14488.32 16731.25 34867.91 20183.98 228
UGNet68.71 18867.11 19173.50 19980.55 18747.61 25884.08 16278.51 25659.45 18265.68 13882.73 21123.78 33485.08 26052.80 24076.40 12287.80 157
Wanjuan Su, Qingshan Xu, Wenbing Tao: Uncertainty-guided Multi-view Stereo Network for Depth Estimation. IEEE Transactions on Circuits and Systems for Video Technology, 2022
miper_ehance_all_eth68.70 19067.58 18072.08 22776.91 25049.48 20682.47 20978.45 25862.68 12858.28 24277.88 26550.90 5585.01 26161.91 16058.72 27381.75 261
test_vis1_n_192068.59 19168.31 16569.44 27469.16 33641.51 32984.63 14968.58 35158.80 20273.26 6388.37 12325.30 32380.60 30179.10 4367.55 20386.23 189
EPMVS68.45 19265.44 22877.47 9284.91 7456.17 4571.89 32481.91 18761.72 14360.85 19972.49 32536.21 23587.06 20947.32 27671.62 17189.17 124
test-mter68.36 19367.29 18771.60 24178.67 21848.17 24385.13 12779.72 22653.38 27963.13 17682.58 21527.23 31080.24 30660.56 17275.17 13986.39 187
tpm68.36 19367.48 18570.97 25379.93 19651.34 16476.58 28678.75 25067.73 4563.54 17374.86 30248.33 7472.36 35953.93 23163.71 23489.21 122
tttt051768.33 19566.29 20574.46 16878.08 22949.06 21280.88 24789.08 2854.40 27354.75 28280.77 24151.31 5190.33 10149.35 26258.01 28583.99 226
BH-untuned68.28 19666.40 20273.91 18581.62 15550.01 19285.56 11577.39 27457.63 22557.47 25783.69 19336.36 23487.08 20844.81 29173.08 16084.65 215
SR-MVS-dyc-post68.27 19766.87 19272.48 21880.96 17248.14 24581.54 23376.98 28146.42 32762.75 18189.42 10331.17 28786.09 23960.52 17472.06 16883.19 244
v14868.24 19866.35 20373.88 18671.76 31351.47 16184.23 15881.90 18863.69 10858.94 22576.44 28743.72 13587.78 18760.63 17055.86 30782.39 254
AUN-MVS68.20 19966.35 20373.76 19176.37 25347.45 26079.52 26779.52 23160.98 15862.34 18486.02 16436.59 23386.94 21362.32 15653.47 32686.89 173
c3_l67.97 20066.66 19871.91 23876.20 25949.31 20982.13 21678.00 26461.99 13857.64 25176.94 27949.41 7084.93 26260.62 17157.01 29581.49 265
v119267.96 20165.74 22074.63 16571.79 31253.43 11484.06 16480.99 20463.19 12059.56 21377.46 27137.50 21388.65 15158.20 19558.93 27281.79 260
v14419267.86 20265.76 21974.16 17871.68 31453.09 12584.14 16180.83 20662.85 12559.21 22277.28 27439.30 18988.00 17858.67 18757.88 28981.40 270
HPM-MVS_fast67.86 20266.28 20672.61 21380.67 18448.34 23881.18 24075.95 29650.81 29859.55 21488.05 13427.86 30585.98 24258.83 18573.58 15483.51 237
AdaColmapbinary67.86 20265.48 22575.00 16088.15 3654.99 7486.10 9976.63 29049.30 30857.80 24686.65 15929.39 29788.94 14445.10 29070.21 18581.06 278
sd_testset67.79 20565.95 21473.32 20081.70 15046.33 27768.99 33680.30 21466.58 5861.64 19382.38 22130.45 29187.63 19355.86 21965.60 22086.01 191
UniMVSNet (Re)67.71 20666.80 19470.45 25974.44 28342.93 31682.42 21184.90 12363.69 10859.63 21180.99 23847.18 8585.23 25651.17 25256.75 29683.19 244
V4267.66 20765.60 22473.86 18770.69 32753.63 10681.50 23578.61 25463.85 10459.49 21677.49 27037.98 19987.65 19262.33 15558.43 27680.29 288
dmvs_re67.61 20866.00 21272.42 21981.86 14543.45 30964.67 35180.00 21869.56 3160.07 20585.00 17834.71 25287.63 19351.48 24966.68 20886.17 190
WR-MVS67.58 20966.76 19570.04 26875.92 26645.06 29486.23 9685.28 11064.31 9458.50 23681.00 23744.80 12382.00 28849.21 26455.57 31083.06 247
tfpn200view967.57 21066.13 20971.89 23984.05 9045.07 29183.40 18487.71 6360.79 16357.79 24782.76 20843.53 13887.80 18428.80 35566.36 21482.78 252
FMVSNet267.57 21065.79 21872.90 20782.71 13047.97 25185.15 12684.93 12258.55 20756.71 26578.26 26236.72 23086.67 22046.15 28662.94 24884.07 223
FC-MVSNet-test67.49 21267.91 17166.21 30676.06 26133.06 36480.82 24887.18 6964.44 9354.81 28082.87 20550.40 6282.60 28348.05 27266.55 21282.98 249
v192192067.45 21365.23 23274.10 18071.51 31752.90 13183.75 17380.44 21162.48 13359.12 22377.13 27536.98 22387.90 18057.53 20658.14 28381.49 265
cl____67.43 21465.93 21571.95 23576.33 25548.02 24982.58 20479.12 24261.30 15156.72 26476.92 28046.12 9786.44 22857.98 19856.31 29981.38 272
DIV-MVS_self_test67.43 21465.93 21571.94 23676.33 25548.01 25082.57 20579.11 24361.31 15056.73 26376.92 28046.09 9886.43 22957.98 19856.31 29981.39 271
gg-mvs-nofinetune67.43 21464.53 23976.13 12685.95 5247.79 25764.38 35288.28 5139.34 35666.62 12341.27 39158.69 1389.00 13849.64 26086.62 3391.59 58
thres40067.40 21766.13 20971.19 24984.05 9045.07 29183.40 18487.71 6360.79 16357.79 24782.76 20843.53 13887.80 18428.80 35566.36 21480.71 283
UA-Net67.32 21866.23 20770.59 25778.85 21441.23 33373.60 30675.45 30061.54 14666.61 12484.53 18138.73 19586.57 22642.48 30574.24 14983.98 228
v867.25 21964.99 23574.04 18172.89 30353.31 11982.37 21280.11 21761.54 14654.29 28776.02 29642.89 14888.41 16158.43 18956.36 29780.39 287
NR-MVSNet67.25 21965.99 21371.04 25273.27 29743.91 30485.32 12184.75 12966.05 7253.65 29482.11 22745.05 11385.97 24447.55 27456.18 30283.24 242
Test_1112_low_res67.18 22166.23 20770.02 26978.75 21641.02 33483.43 18273.69 31557.29 23258.45 23982.39 22045.30 11080.88 29550.50 25466.26 21888.16 147
CPTT-MVS67.15 22265.84 21771.07 25180.96 17250.32 18681.94 21974.10 30946.18 33057.91 24487.64 14329.57 29581.31 29164.10 14670.18 18681.56 264
test_cas_vis1_n_192067.10 22366.60 20068.59 28765.17 35843.23 31383.23 19069.84 34555.34 26270.67 9887.71 14124.70 33076.66 33978.57 5064.20 22985.89 197
GBi-Net67.09 22465.47 22671.96 23282.71 13046.36 27483.52 17583.31 16058.55 20757.58 25276.23 29136.72 23086.20 23147.25 27763.40 23783.32 239
test167.09 22465.47 22671.96 23282.71 13046.36 27483.52 17583.31 16058.55 20757.58 25276.23 29136.72 23086.20 23147.25 27763.40 23783.32 239
PatchmatchNetpermissive67.07 22663.63 24577.40 9383.10 11258.03 1372.11 32277.77 26758.85 20159.37 21770.83 33837.84 20184.93 26242.96 30169.83 18889.26 119
Fangjinhua Wang, Silvano Galliani, Christoph Vogel, Pablo Speciale, Marc Pollefeys: PatchmatchNet: Learned Multi-View Patchmatch Stereo.
v124066.99 22764.68 23773.93 18471.38 32052.66 13483.39 18679.98 21961.97 13958.44 24077.11 27635.25 24587.81 18256.46 21658.15 28181.33 273
eth_miper_zixun_eth66.98 22865.28 23172.06 22875.61 26950.40 18081.00 24376.97 28462.00 13756.99 26276.97 27844.84 12085.58 24858.75 18654.42 31880.21 289
TranMVSNet+NR-MVSNet66.94 22965.61 22370.93 25473.45 29343.38 31183.02 19784.25 14165.31 8658.33 24181.90 23139.92 18685.52 24949.43 26154.89 31483.89 232
thres100view90066.87 23065.42 22971.24 24783.29 10843.15 31481.67 22887.78 5859.04 19755.92 27382.18 22643.73 13387.80 18428.80 35566.36 21482.78 252
DU-MVS66.84 23165.74 22070.16 26473.27 29742.59 32081.50 23582.92 17263.53 11258.51 23482.11 22740.75 17384.64 26653.11 23555.96 30583.24 242
IterMVS-LS66.63 23265.36 23070.42 26075.10 27448.90 22081.45 23876.69 28961.05 15655.71 27477.10 27745.86 10283.65 27657.44 20757.88 28978.70 301
Fangjinhua Wang, Silvano Galliani, Christoph Vogel, Marc Pollefeys: IterMVS: Iterative Probability Estimation for Efficient Multi-View Stereo.
v1066.61 23364.20 24273.83 18972.59 30653.37 11581.88 22179.91 22361.11 15454.09 28975.60 29840.06 18388.26 17156.47 21556.10 30379.86 293
Fast-Effi-MVS+-dtu66.53 23464.10 24373.84 18872.41 30852.30 14384.73 14475.66 29759.51 18156.34 27079.11 25628.11 30285.85 24757.74 20563.29 24183.35 238
thres600view766.46 23565.12 23370.47 25883.41 10243.80 30682.15 21487.78 5859.37 18556.02 27282.21 22543.73 13386.90 21526.51 36764.94 22380.71 283
LPG-MVS_test66.44 23664.58 23872.02 22974.42 28448.60 22783.07 19580.64 20854.69 27053.75 29283.83 18925.73 32186.98 21060.33 17864.71 22480.48 285
tpm cat166.28 23762.78 24776.77 11581.40 16457.14 2670.03 33177.19 27753.00 28258.76 23270.73 34146.17 9686.73 21943.27 29964.46 22886.44 185
EPNet_dtu66.25 23866.71 19664.87 31678.66 22034.12 35982.80 20075.51 29861.75 14264.47 15986.90 15337.06 22172.46 35843.65 29869.63 19188.02 153
Wanjuan Su, Wenbing Tao: Efficient Edge-Preserving Multi-View Stereo Network for Depth Estimation. AAAI 2023
Effi-MVS+-dtu66.24 23964.96 23670.08 26675.17 27249.64 19982.01 21774.48 30762.15 13557.83 24576.08 29530.59 29083.79 27365.40 14160.93 25976.81 323
ACMP61.11 966.24 23964.33 24072.00 23174.89 27849.12 21183.18 19279.83 22455.41 26152.29 30182.68 21225.83 31986.10 23760.89 16763.94 23380.78 281
Qingshan Xu and Wenbing Tao: Planar Prior Assisted PatchMatch Multi-View Stereo. AAAI 2020
Anonymous2023121166.08 24163.67 24473.31 20183.07 11548.75 22486.01 10284.67 13245.27 33456.54 26776.67 28528.06 30388.95 14252.78 24159.95 26182.23 255
OMC-MVS65.97 24265.06 23468.71 28472.97 30142.58 32278.61 27475.35 30154.72 26959.31 21986.25 16333.30 26677.88 32857.99 19767.05 20685.66 201
X-MVStestdata65.85 24362.20 25176.81 11183.41 10252.48 13684.88 14083.20 16558.03 21363.91 1654.82 41035.50 24389.78 11665.50 13480.50 8288.16 147
Vis-MVSNet (Re-imp)65.52 24465.63 22265.17 31477.49 23930.54 37175.49 29277.73 26859.34 18652.26 30386.69 15749.38 7180.53 30337.07 31975.28 13784.42 218
Baseline_NR-MVSNet65.49 24564.27 24169.13 27674.37 28641.65 32783.39 18678.85 24559.56 18059.62 21276.88 28240.75 17387.44 19949.99 25655.05 31278.28 310
FMVSNet164.57 24662.11 25271.96 23277.32 24146.36 27483.52 17583.31 16052.43 28754.42 28576.23 29127.80 30686.20 23142.59 30461.34 25783.32 239
dp64.41 24761.58 25572.90 20782.40 13654.09 9972.53 31476.59 29160.39 16955.68 27570.39 34235.18 24776.90 33739.34 31161.71 25587.73 159
ACMM58.35 1264.35 24862.01 25371.38 24574.21 28748.51 23182.25 21379.66 22847.61 31854.54 28480.11 24425.26 32486.00 24151.26 25063.16 24479.64 294
Qingshan Xu and Wenbing Tao: Multi-Scale Geometric Consistency Guided Multi-View Stereo. CVPR 2019
FE-MVS64.15 24960.43 26975.30 15180.85 17749.86 19668.28 34078.37 25950.26 30459.31 21973.79 31026.19 31791.92 6240.19 30866.67 20984.12 221
pm-mvs164.12 25062.56 24868.78 28271.68 31438.87 34282.89 19981.57 19255.54 26053.89 29177.82 26637.73 20586.74 21848.46 27053.49 32580.72 282
miper_lstm_enhance63.91 25162.30 25068.75 28375.06 27546.78 26869.02 33581.14 20059.68 17952.76 29872.39 32840.71 17577.99 32656.81 21253.09 32881.48 267
SCA63.84 25260.01 27375.32 14878.58 22257.92 1461.61 36377.53 27156.71 24457.75 24970.77 33931.97 27979.91 31248.80 26656.36 29788.13 150
test_djsdf63.84 25261.56 25670.70 25668.78 33844.69 29581.63 22981.44 19550.28 30152.27 30276.26 29026.72 31386.11 23560.83 16855.84 30881.29 276
IterMVS63.77 25461.67 25470.08 26672.68 30551.24 16780.44 25375.51 29860.51 16851.41 30673.70 31432.08 27878.91 31654.30 22854.35 31980.08 291
Fangjinhua Wang, Silvano Galliani, Christoph Vogel, Marc Pollefeys: IterMVS: Iterative Probability Estimation for Efficient Multi-View Stereo.
myMVS_eth3d63.52 25563.56 24663.40 32381.73 14834.28 35780.97 24481.02 20260.93 16055.06 27882.64 21348.00 8080.81 29723.42 37758.32 27775.10 340
D2MVS63.49 25661.39 25869.77 27069.29 33548.93 21978.89 27377.71 26960.64 16749.70 31672.10 33327.08 31183.48 27854.48 22762.65 24976.90 322
tt080563.39 25761.31 26069.64 27169.36 33438.87 34278.00 27785.48 9848.82 31255.66 27781.66 23324.38 33186.37 23049.04 26559.36 26983.68 235
pmmvs463.34 25861.07 26370.16 26470.14 32950.53 17679.97 26271.41 33555.08 26454.12 28878.58 25932.79 27182.09 28750.33 25557.22 29477.86 314
jajsoiax63.21 25960.84 26470.32 26268.33 34344.45 29781.23 23981.05 20153.37 28050.96 31177.81 26717.49 36685.49 25159.31 18158.05 28481.02 279
MIMVSNet63.12 26060.29 27071.61 24075.92 26646.65 27065.15 34881.94 18459.14 19554.65 28369.47 34525.74 32080.63 30041.03 30769.56 19287.55 163
CL-MVSNet_self_test62.98 26161.14 26268.50 28965.86 35342.96 31584.37 15382.98 16960.98 15853.95 29072.70 32440.43 17783.71 27541.10 30647.93 34278.83 300
mvs_tets62.96 26260.55 26670.19 26368.22 34644.24 30280.90 24680.74 20752.99 28350.82 31377.56 26816.74 36985.44 25259.04 18457.94 28680.89 280
TransMVSNet (Re)62.82 26360.76 26569.02 27773.98 29041.61 32886.36 9379.30 24156.90 23852.53 29976.44 28741.85 16287.60 19638.83 31240.61 36677.86 314
pmmvs562.80 26461.18 26167.66 29369.53 33342.37 32582.65 20375.19 30254.30 27452.03 30478.51 26031.64 28480.67 29948.60 26858.15 28179.95 292
test0.0.03 162.54 26562.44 24962.86 32772.28 31129.51 37982.93 19878.78 24859.18 19353.07 29782.41 21936.91 22577.39 33237.45 31558.96 27181.66 263
UniMVSNet_ETH3D62.51 26660.49 26768.57 28868.30 34440.88 33673.89 30479.93 22251.81 29354.77 28179.61 24924.80 32881.10 29249.93 25761.35 25683.73 234
v7n62.50 26759.27 27872.20 22567.25 34949.83 19777.87 27980.12 21652.50 28648.80 32273.07 31932.10 27787.90 18046.83 28054.92 31378.86 299
CR-MVSNet62.47 26859.04 28072.77 21073.97 29156.57 3660.52 36671.72 33060.04 17257.49 25565.86 35638.94 19280.31 30542.86 30259.93 26281.42 268
tpmvs62.45 26959.42 27671.53 24483.93 9254.32 9270.03 33177.61 27051.91 29053.48 29568.29 35037.91 20086.66 22133.36 33858.27 27973.62 350
EG-PatchMatch MVS62.40 27059.59 27470.81 25573.29 29549.05 21385.81 10384.78 12751.85 29244.19 34173.48 31715.52 37489.85 11440.16 30967.24 20573.54 351
XVG-OURS-SEG-HR62.02 27159.54 27569.46 27365.30 35645.88 28265.06 34973.57 31746.45 32657.42 25883.35 20126.95 31278.09 32253.77 23264.03 23184.42 218
XVG-OURS61.88 27259.34 27769.49 27265.37 35546.27 27864.80 35073.49 31847.04 32257.41 25982.85 20625.15 32578.18 32053.00 23864.98 22284.01 225
TAPA-MVS56.12 1461.82 27360.18 27266.71 30278.48 22537.97 34875.19 29476.41 29346.82 32357.04 26186.52 16127.67 30877.03 33426.50 36867.02 20785.14 208
Andrea Romanoni, Matteo Matteucci: TAPA-MVS: Textureless-Aware PAtchMatch Multi-View Stereo. ICCV 2019
Syy-MVS61.51 27461.35 25962.00 33081.73 14830.09 37480.97 24481.02 20260.93 16055.06 27882.64 21335.09 24880.81 29716.40 39358.32 27775.10 340
tfpnnormal61.47 27559.09 27968.62 28676.29 25841.69 32681.14 24185.16 11654.48 27251.32 30773.63 31532.32 27586.89 21621.78 38155.71 30977.29 320
PVSNet_057.04 1361.19 27657.24 28973.02 20477.45 24050.31 18779.43 26977.36 27663.96 10347.51 33172.45 32725.03 32683.78 27452.76 24319.22 39984.96 211
PLCcopyleft52.38 1860.89 27758.97 28166.68 30481.77 14745.70 28678.96 27274.04 31243.66 34547.63 32883.19 20423.52 33777.78 33137.47 31460.46 26076.55 329
Jie Liao, Yanping Fu, Qingan Yan, Chunxia xiao: Pyramid Multi-View Stereo with Local Consistency. Pacific Graphics 2019
CVMVSNet60.85 27860.44 26862.07 32875.00 27632.73 36679.54 26573.49 31836.98 36456.28 27183.74 19129.28 29869.53 36746.48 28363.23 24283.94 231
CNLPA60.59 27958.44 28367.05 29979.21 20647.26 26479.75 26464.34 36242.46 35151.90 30583.94 18727.79 30775.41 34437.12 31759.49 26778.47 305
anonymousdsp60.46 28057.65 28668.88 27863.63 36745.09 29072.93 31278.63 25346.52 32551.12 30872.80 32321.46 35083.07 28257.79 20353.97 32078.47 305
testing359.97 28160.19 27159.32 34277.60 23630.01 37681.75 22681.79 18953.54 27750.34 31479.94 24548.99 7376.91 33517.19 39150.59 33571.03 365
ACMH53.70 1659.78 28255.94 30071.28 24676.59 25248.35 23780.15 26076.11 29449.74 30641.91 35273.45 31816.50 37190.31 10231.42 34657.63 29275.17 338
Qingshan Xu and Wenbing Tao: Multi-Scale Geometric Consistency Guided Multi-View Stereo. CVPR 2019
pmmvs659.64 28357.15 29067.09 29766.01 35136.86 35280.50 25178.64 25245.05 33649.05 32073.94 30927.28 30986.10 23743.96 29749.94 33778.31 309
MSDG59.44 28455.14 30472.32 22374.69 27950.71 17174.39 30273.58 31644.44 34043.40 34677.52 26919.45 35690.87 8831.31 34757.49 29375.38 336
RPMNet59.29 28554.25 30874.42 17073.97 29156.57 3660.52 36676.98 28135.72 36857.49 25558.87 37637.73 20585.26 25527.01 36659.93 26281.42 268
DP-MVS59.24 28656.12 29868.63 28588.24 3450.35 18582.51 20864.43 36141.10 35346.70 33578.77 25824.75 32988.57 15722.26 37956.29 30166.96 371
OpenMVS_ROBcopyleft53.19 1759.20 28756.00 29968.83 28071.13 32244.30 29983.64 17475.02 30346.42 32746.48 33773.03 32018.69 36088.14 17227.74 36361.80 25474.05 347
IterMVS-SCA-FT59.12 28858.81 28260.08 34070.68 32845.07 29180.42 25474.25 30843.54 34650.02 31573.73 31131.97 27956.74 38451.06 25353.60 32478.42 307
our_test_359.11 28955.08 30571.18 25071.42 31853.29 12081.96 21874.52 30648.32 31342.08 35069.28 34728.14 30182.15 28534.35 33545.68 35678.11 313
Anonymous2023120659.08 29057.59 28763.55 32168.77 33932.14 36980.26 25779.78 22550.00 30549.39 31872.39 32826.64 31478.36 31933.12 34157.94 28680.14 290
KD-MVS_2432*160059.04 29156.44 29566.86 30079.07 20845.87 28372.13 32080.42 21255.03 26548.15 32471.01 33636.73 22878.05 32435.21 32930.18 38676.67 324
miper_refine_blended59.04 29156.44 29566.86 30079.07 20845.87 28372.13 32080.42 21255.03 26548.15 32471.01 33636.73 22878.05 32435.21 32930.18 38676.67 324
WR-MVS_H58.91 29358.04 28561.54 33469.07 33733.83 36176.91 28381.99 18351.40 29548.17 32374.67 30340.23 17974.15 34731.78 34548.10 34076.64 327
LCM-MVSNet-Re58.82 29456.54 29365.68 30879.31 20429.09 38261.39 36545.79 38160.73 16537.65 36972.47 32631.42 28581.08 29349.66 25970.41 18386.87 174
Patchmatch-RL test58.72 29554.32 30771.92 23763.91 36544.25 30161.73 36255.19 37357.38 23149.31 31954.24 38237.60 20980.89 29462.19 15847.28 34790.63 85
FMVSNet558.61 29656.45 29465.10 31577.20 24639.74 33874.77 29577.12 27950.27 30343.28 34767.71 35126.15 31876.90 33736.78 32254.78 31578.65 303
ppachtmachnet_test58.56 29754.34 30671.24 24771.42 31854.74 8081.84 22372.27 32549.02 31045.86 34068.99 34826.27 31583.30 28030.12 35043.23 36175.69 333
ACMH+54.58 1558.55 29855.24 30268.50 28974.68 28045.80 28580.27 25670.21 34247.15 32142.77 34975.48 29916.73 37085.98 24235.10 33354.78 31573.72 349
CP-MVSNet58.54 29957.57 28861.46 33568.50 34133.96 36076.90 28478.60 25551.67 29447.83 32676.60 28634.99 25172.79 35635.45 32647.58 34477.64 318
PEN-MVS58.35 30057.15 29061.94 33167.55 34834.39 35677.01 28278.35 26051.87 29147.72 32776.73 28433.91 26073.75 35134.03 33647.17 34877.68 316
PS-CasMVS58.12 30157.03 29261.37 33668.24 34533.80 36276.73 28578.01 26351.20 29647.54 33076.20 29432.85 26972.76 35735.17 33147.37 34677.55 319
dmvs_testset57.65 30258.21 28455.97 35374.62 2819.82 41263.75 35463.34 36467.23 5148.89 32183.68 19539.12 19176.14 34023.43 37659.80 26481.96 258
UnsupCasMVSNet_eth57.56 30355.15 30364.79 31764.57 36333.12 36373.17 31183.87 15158.98 19941.75 35370.03 34322.54 34279.92 31046.12 28735.31 37581.32 275
CHOSEN 280x42057.53 30456.38 29760.97 33874.01 28948.10 24746.30 38454.31 37548.18 31650.88 31277.43 27238.37 19859.16 38154.83 22463.14 24575.66 334
DTE-MVSNet57.03 30555.73 30160.95 33965.94 35232.57 36775.71 28777.09 28051.16 29746.65 33676.34 28932.84 27073.22 35530.94 34944.87 35777.06 321
PatchMatch-RL56.66 30653.75 31165.37 31377.91 23445.28 28969.78 33360.38 36841.35 35247.57 32973.73 31116.83 36876.91 33536.99 32059.21 27073.92 348
PatchT56.60 30752.97 31467.48 29472.94 30246.16 28157.30 37473.78 31438.77 35854.37 28657.26 37937.52 21178.06 32332.02 34352.79 32978.23 312
Patchmtry56.56 30852.95 31567.42 29572.53 30750.59 17559.05 37071.72 33037.86 36246.92 33365.86 35638.94 19280.06 30936.94 32146.72 35271.60 361
test_040256.45 30953.03 31366.69 30376.78 25150.31 18781.76 22569.61 34742.79 34943.88 34272.13 33122.82 34186.46 22716.57 39250.94 33463.31 379
LS3D56.40 31053.82 31064.12 31881.12 16845.69 28773.42 30966.14 35635.30 37243.24 34879.88 24622.18 34679.62 31419.10 38764.00 23267.05 370
ADS-MVSNet56.17 31151.95 32168.84 27980.60 18553.07 12655.03 37770.02 34444.72 33751.00 30961.19 36822.83 33978.88 31728.54 35853.63 32274.57 344
XVG-ACMP-BASELINE56.03 31252.85 31665.58 30961.91 37240.95 33563.36 35572.43 32445.20 33546.02 33874.09 3079.20 38578.12 32145.13 28958.27 27977.66 317
pmmvs-eth3d55.97 31352.78 31765.54 31061.02 37446.44 27375.36 29367.72 35449.61 30743.65 34467.58 35221.63 34977.04 33344.11 29644.33 35873.15 355
F-COLMAP55.96 31453.65 31262.87 32672.76 30442.77 31974.70 29870.37 34140.03 35441.11 35879.36 25117.77 36573.70 35232.80 34253.96 32172.15 357
CMPMVSbinary40.41 2155.34 31552.64 31863.46 32260.88 37543.84 30561.58 36471.06 33730.43 38036.33 37174.63 30424.14 33375.44 34348.05 27266.62 21071.12 364
M. Jancosek, T. Pajdla: Multi-View Reconstruction Preserving Weakly-Supported Surfaces. CVPR 2011
test20.0355.22 31654.07 30958.68 34563.14 36925.00 38877.69 28074.78 30552.64 28443.43 34572.39 32826.21 31674.76 34629.31 35347.05 35076.28 331
ADS-MVSNet255.21 31751.44 32266.51 30580.60 18549.56 20255.03 37765.44 35744.72 33751.00 30961.19 36822.83 33975.41 34428.54 35853.63 32274.57 344
SixPastTwentyTwo54.37 31850.10 32767.21 29670.70 32641.46 33174.73 29664.69 35947.56 31939.12 36469.49 34418.49 36384.69 26531.87 34434.20 38175.48 335
USDC54.36 31951.23 32363.76 32064.29 36437.71 34962.84 36073.48 32056.85 23935.47 37471.94 3349.23 38478.43 31838.43 31348.57 33975.13 339
testgi54.25 32052.57 31959.29 34362.76 37021.65 39672.21 31970.47 34053.25 28141.94 35177.33 27314.28 37577.95 32729.18 35451.72 33378.28 310
K. test v354.04 32149.42 33367.92 29268.55 34042.57 32375.51 29163.07 36552.07 28839.21 36364.59 36019.34 35782.21 28437.11 31825.31 39178.97 298
UnsupCasMVSNet_bld53.86 32250.53 32663.84 31963.52 36834.75 35571.38 32581.92 18646.53 32438.95 36557.93 37720.55 35380.20 30839.91 31034.09 38276.57 328
YYNet153.82 32349.96 32965.41 31270.09 33148.95 21772.30 31771.66 33244.25 34231.89 38463.07 36423.73 33573.95 34933.26 33939.40 36873.34 352
MDA-MVSNet_test_wron53.82 32349.95 33065.43 31170.13 33049.05 21372.30 31771.65 33344.23 34331.85 38563.13 36323.68 33674.01 34833.25 34039.35 36973.23 354
test_fmvs153.60 32552.54 32056.78 34958.07 37830.26 37268.95 33742.19 38732.46 37563.59 17182.56 21711.55 37860.81 37558.25 19455.27 31179.28 295
Patchmatch-test53.33 32648.17 33668.81 28173.31 29442.38 32442.98 38858.23 37032.53 37438.79 36670.77 33939.66 18773.51 35325.18 37052.06 33290.55 86
LTVRE_ROB45.45 1952.73 32749.74 33161.69 33369.78 33234.99 35444.52 38567.60 35543.11 34843.79 34374.03 30818.54 36281.45 29028.39 36057.94 28668.62 368
Andreas Kuhn, Heiko Hirschmüller, Daniel Scharstein, Helmut Mayer: A TV Prior for High-Quality Scalable Multi-View Stereo Reconstruction. International Journal of Computer Vision 2016
EU-MVSNet52.63 32850.72 32558.37 34662.69 37128.13 38572.60 31375.97 29530.94 37940.76 36072.11 33220.16 35470.80 36335.11 33246.11 35476.19 332
test_fmvs1_n52.55 32951.19 32456.65 35051.90 38830.14 37367.66 34142.84 38632.27 37662.30 18682.02 2309.12 38660.84 37457.82 20254.75 31778.99 297
OurMVSNet-221017-052.39 33048.73 33463.35 32465.21 35738.42 34568.54 33964.95 35838.19 35939.57 36271.43 33513.23 37779.92 31037.16 31640.32 36771.72 360
JIA-IIPM52.33 33147.77 33966.03 30771.20 32146.92 26740.00 39376.48 29237.10 36346.73 33437.02 39332.96 26877.88 32835.97 32452.45 33173.29 353
Anonymous2024052151.65 33248.42 33561.34 33756.43 38239.65 34073.57 30773.47 32136.64 36636.59 37063.98 36110.75 38172.25 36035.35 32749.01 33872.11 358
MDA-MVSNet-bldmvs51.56 33347.75 34063.00 32571.60 31647.32 26369.70 33472.12 32643.81 34427.65 39263.38 36221.97 34875.96 34127.30 36532.19 38365.70 376
test_vis1_n51.19 33449.66 33255.76 35451.26 38929.85 37767.20 34438.86 39232.12 37759.50 21579.86 2478.78 38758.23 38256.95 21152.46 33079.19 296
COLMAP_ROBcopyleft43.60 2050.90 33548.05 33759.47 34167.81 34740.57 33771.25 32662.72 36736.49 36736.19 37273.51 31613.48 37673.92 35020.71 38350.26 33663.92 378
Johannes L. Schönberger, Enliang Zheng, Marc Pollefeys, Jan-Michael Frahm: Pixelwise View Selection for Unstructured Multi-View Stereo. ECCV 2016
MIMVSNet150.35 33647.81 33857.96 34761.53 37327.80 38667.40 34274.06 31143.25 34733.31 38365.38 35916.03 37271.34 36121.80 38047.55 34574.75 342
kuosan50.20 33750.09 32850.52 36173.09 29929.09 38265.25 34774.89 30448.27 31441.34 35560.85 37043.45 14167.48 36918.59 38925.07 39255.01 384
KD-MVS_self_test49.24 33846.85 34156.44 35154.32 38322.87 39157.39 37373.36 32244.36 34137.98 36859.30 37518.97 35971.17 36233.48 33742.44 36275.26 337
MVS-HIRNet49.01 33944.71 34361.92 33276.06 26146.61 27163.23 35754.90 37424.77 38733.56 37936.60 39521.28 35175.88 34229.49 35262.54 25063.26 380
new-patchmatchnet48.21 34046.55 34253.18 35757.73 38018.19 40470.24 32971.02 33845.70 33133.70 37860.23 37118.00 36469.86 36627.97 36234.35 37971.49 363
TinyColmap48.15 34144.49 34559.13 34465.73 35438.04 34663.34 35662.86 36638.78 35729.48 38767.23 3546.46 39573.30 35424.59 37241.90 36466.04 374
AllTest47.32 34244.66 34455.32 35565.08 35937.50 35062.96 35954.25 37635.45 37033.42 38072.82 3219.98 38259.33 37824.13 37343.84 35969.13 366
PM-MVS46.92 34343.76 35056.41 35252.18 38732.26 36863.21 35838.18 39337.99 36140.78 35966.20 3555.09 39865.42 37148.19 27141.99 36371.54 362
test_fmvs245.89 34444.32 34650.62 36045.85 39724.70 38958.87 37237.84 39525.22 38552.46 30074.56 3057.07 39054.69 38549.28 26347.70 34372.48 356
RPSCF45.77 34544.13 34750.68 35957.67 38129.66 37854.92 37945.25 38326.69 38445.92 33975.92 29717.43 36745.70 39527.44 36445.95 35576.67 324
pmmvs345.53 34641.55 35257.44 34848.97 39339.68 33970.06 33057.66 37128.32 38234.06 37757.29 3788.50 38866.85 37034.86 33434.26 38065.80 375
dongtai43.51 34744.07 34841.82 37063.75 36621.90 39463.80 35372.05 32739.59 35533.35 38254.54 38141.04 17057.30 38310.75 39917.77 40046.26 393
mvsany_test143.38 34842.57 35145.82 36550.96 39026.10 38755.80 37527.74 40527.15 38347.41 33274.39 30618.67 36144.95 39644.66 29236.31 37366.40 373
mamv442.60 34944.05 34938.26 37559.21 37738.00 34744.14 38739.03 39125.03 38640.61 36168.39 34937.01 22224.28 40946.62 28236.43 37252.50 387
N_pmnet41.25 35039.77 35345.66 36668.50 3410.82 41872.51 3150.38 41735.61 36935.26 37561.51 36720.07 35567.74 36823.51 37540.63 36568.42 369
TDRefinement40.91 35138.37 35548.55 36350.45 39133.03 36558.98 37150.97 37928.50 38129.89 38667.39 3536.21 39754.51 38617.67 39035.25 37658.11 381
test_vis1_rt40.29 35238.64 35445.25 36748.91 39430.09 37459.44 36927.07 40624.52 38838.48 36751.67 3876.71 39349.44 39044.33 29446.59 35356.23 382
DSMNet-mixed38.35 35335.36 35847.33 36448.11 39514.91 40837.87 39436.60 39619.18 39234.37 37659.56 37415.53 37353.01 38820.14 38546.89 35174.07 346
test_fmvs337.95 35435.75 35744.55 36835.50 40318.92 40048.32 38134.00 40018.36 39441.31 35761.58 3662.29 40548.06 39442.72 30337.71 37166.66 372
WB-MVS37.41 35536.37 35640.54 37354.23 38410.43 41165.29 34643.75 38434.86 37327.81 39154.63 38024.94 32763.21 3726.81 40615.00 40147.98 392
FPMVS35.40 35633.67 36040.57 37246.34 39628.74 38441.05 39057.05 37220.37 39122.27 39553.38 3846.87 39244.94 3978.62 40047.11 34948.01 391
SSC-MVS35.20 35734.30 35937.90 37652.58 3868.65 41461.86 36141.64 38831.81 37825.54 39352.94 38623.39 33859.28 3806.10 40712.86 40245.78 395
ANet_high34.39 35829.59 36448.78 36230.34 40722.28 39255.53 37663.79 36338.11 36015.47 39936.56 3966.94 39159.98 37713.93 3955.64 41064.08 377
EGC-MVSNET33.75 35930.42 36343.75 36964.94 36136.21 35360.47 36840.70 3900.02 4110.10 41253.79 3837.39 38960.26 37611.09 39835.23 37734.79 397
new_pmnet33.56 36031.89 36238.59 37449.01 39220.42 39751.01 38037.92 39420.58 38923.45 39446.79 3896.66 39449.28 39220.00 38631.57 38546.09 394
LF4IMVS33.04 36132.55 36134.52 37940.96 39822.03 39344.45 38635.62 39720.42 39028.12 39062.35 3655.03 39931.88 40821.61 38234.42 37849.63 390
LCM-MVSNet28.07 36223.85 37040.71 37127.46 41218.93 39930.82 40046.19 38012.76 39916.40 39734.70 3981.90 40848.69 39320.25 38424.22 39354.51 385
mvsany_test328.00 36325.98 36534.05 38028.97 40815.31 40634.54 39718.17 41116.24 39529.30 38853.37 3852.79 40333.38 40730.01 35120.41 39853.45 386
Gipumacopyleft27.47 36424.26 36937.12 37860.55 37629.17 38111.68 40560.00 36914.18 39710.52 40615.12 4072.20 40763.01 3738.39 40135.65 37419.18 403
S. Galliani, K. Lasinger, K. Schindler: Massively Parallel Multiview Stereopsis by Surface Normal Diffusion. ICCV 2015
test_f27.12 36524.85 36633.93 38126.17 41315.25 40730.24 40122.38 41012.53 40028.23 38949.43 3882.59 40434.34 40625.12 37126.99 38952.20 388
PMMVS226.71 36622.98 37137.87 37736.89 4018.51 41542.51 38929.32 40419.09 39313.01 40137.54 3922.23 40653.11 38714.54 39411.71 40351.99 389
APD_test126.46 36724.41 36832.62 38437.58 40021.74 39540.50 39230.39 40211.45 40116.33 39843.76 3901.63 41041.62 39811.24 39726.82 39034.51 398
PMVScopyleft19.57 2225.07 36822.43 37332.99 38323.12 41422.98 39040.98 39135.19 39815.99 39611.95 40535.87 3971.47 41149.29 3915.41 40931.90 38426.70 402
Y. Furukawa, J. Ponce: Accurate, dense, and robust multiview stereopsis. PAMI (2010)
test_vis3_rt24.79 36922.95 37230.31 38528.59 40918.92 40037.43 39517.27 41312.90 39821.28 39629.92 4021.02 41236.35 40128.28 36129.82 38835.65 396
test_method24.09 37021.07 37433.16 38227.67 4118.35 41626.63 40235.11 3993.40 40814.35 40036.98 3943.46 40235.31 40319.08 38822.95 39455.81 383
testf121.11 37119.08 37527.18 38730.56 40518.28 40233.43 39824.48 4078.02 40512.02 40333.50 3990.75 41435.09 4047.68 40221.32 39528.17 400
APD_test221.11 37119.08 37527.18 38730.56 40518.28 40233.43 39824.48 4078.02 40512.02 40333.50 3990.75 41435.09 4047.68 40221.32 39528.17 400
E-PMN19.16 37318.40 37721.44 38936.19 40213.63 40947.59 38230.89 40110.73 4025.91 40916.59 4053.66 40139.77 3995.95 4088.14 40510.92 405
EMVS18.42 37417.66 37820.71 39034.13 40412.64 41046.94 38329.94 40310.46 4045.58 41014.93 4084.23 40038.83 4005.24 4107.51 40710.67 406
cdsmvs_eth3d_5k18.33 37524.44 3670.00 3960.00 4180.00 4200.00 40789.40 230.00 4120.00 41592.02 4638.55 1960.00 4130.00 4140.00 4110.00 411
MVEpermissive16.60 2317.34 37613.39 37929.16 38628.43 41019.72 39813.73 40423.63 4097.23 4077.96 40721.41 4030.80 41336.08 4026.97 40410.39 40431.69 399
Simon Fuhrmann, Fabian Langguth, Michael Goesele: MVE - A Multi-View Reconstruction Environment. EUROGRAPHICS Workshops on Graphics and Cultural Heritage (2014)
tmp_tt9.44 37710.68 3805.73 3932.49 4164.21 41710.48 40618.04 4120.34 41012.59 40220.49 40411.39 3797.03 41213.84 3966.46 4095.95 407
wuyk23d9.11 3788.77 38210.15 39240.18 39916.76 40520.28 4031.01 4162.58 4092.66 4110.98 4110.23 41612.49 4114.08 4116.90 4081.19 408
ab-mvs-re7.68 37910.24 3810.00 3960.00 4180.00 4200.00 4070.00 4180.00 4120.00 41592.12 420.00 4170.00 4130.00 4140.00 4110.00 411
testmvs6.14 3808.18 3830.01 3940.01 4170.00 42073.40 3100.00 4180.00 4120.02 4130.15 4120.00 4170.00 4130.02 4120.00 4110.02 409
test1236.01 3818.01 3840.01 3940.00 4180.01 41971.93 3230.00 4180.00 4120.02 4130.11 4130.00 4170.00 4130.02 4120.00 4110.02 409
pcd_1.5k_mvsjas3.15 3824.20 3850.00 3960.00 4180.00 4200.00 4070.00 4180.00 4120.00 4150.00 41437.77 2020.00 4130.00 4140.00 4110.00 411
test_blank0.00 3830.00 3860.00 3960.00 4180.00 4200.00 4070.00 4180.00 4120.00 4150.00 4140.00 4170.00 4130.00 4140.00 4110.00 411
uanet_test0.00 3830.00 3860.00 3960.00 4180.00 4200.00 4070.00 4180.00 4120.00 4150.00 4140.00 4170.00 4130.00 4140.00 4110.00 411
DCPMVS0.00 3830.00 3860.00 3960.00 4180.00 4200.00 4070.00 4180.00 4120.00 4150.00 4140.00 4170.00 4130.00 4140.00 4110.00 411
sosnet-low-res0.00 3830.00 3860.00 3960.00 4180.00 4200.00 4070.00 4180.00 4120.00 4150.00 4140.00 4170.00 4130.00 4140.00 4110.00 411
sosnet0.00 3830.00 3860.00 3960.00 4180.00 4200.00 4070.00 4180.00 4120.00 4150.00 4140.00 4170.00 4130.00 4140.00 4110.00 411
uncertanet0.00 3830.00 3860.00 3960.00 4180.00 4200.00 4070.00 4180.00 4120.00 4150.00 4140.00 4170.00 4130.00 4140.00 4110.00 411
Regformer0.00 3830.00 3860.00 3960.00 4180.00 4200.00 4070.00 4180.00 4120.00 4150.00 4140.00 4170.00 4130.00 4140.00 4110.00 411
uanet0.00 3830.00 3860.00 3960.00 4180.00 4200.00 4070.00 4180.00 4120.00 4150.00 4140.00 4170.00 4130.00 4140.00 4110.00 411
WAC-MVS34.28 35722.56 378
FOURS183.24 10949.90 19584.98 13578.76 24947.71 31773.42 60
MSC_two_6792asdad81.53 1591.77 456.03 4891.10 1096.22 881.46 3386.80 3092.34 35
PC_three_145266.58 5887.27 293.70 1066.82 494.95 1789.74 491.98 493.98 5
No_MVS81.53 1591.77 456.03 4891.10 1096.22 881.46 3386.80 3092.34 35
test_one_060189.39 2257.29 2488.09 5357.21 23582.06 1393.39 1854.94 33
eth-test20.00 418
eth-test0.00 418
ZD-MVS89.55 1453.46 10984.38 13757.02 23773.97 5591.03 6544.57 12591.17 7875.41 7481.78 73
RE-MVS-def66.66 19880.96 17248.14 24581.54 23376.98 28146.42 32762.75 18189.42 10329.28 29860.52 17472.06 16883.19 244
IU-MVS89.48 1757.49 1991.38 966.22 6688.26 182.83 2287.60 1992.44 32
OPU-MVS81.71 1392.05 355.97 5092.48 394.01 567.21 295.10 1589.82 392.55 394.06 3
test_241102_TWO88.76 3957.50 22983.60 694.09 356.14 2496.37 682.28 2687.43 2192.55 30
test_241102_ONE89.48 1756.89 3188.94 3057.53 22784.61 493.29 2258.81 1196.45 1
9.1478.19 2785.67 5888.32 5088.84 3659.89 17474.58 5092.62 3546.80 9092.66 4381.40 3585.62 43
save fliter85.35 6656.34 4389.31 3981.46 19461.55 145
test_0728_THIRD58.00 21581.91 1493.64 1256.54 2096.44 281.64 3186.86 2892.23 37
test_0728_SECOND82.20 889.50 1557.73 1592.34 588.88 3296.39 481.68 2987.13 2292.47 31
test072689.40 2057.45 2192.32 788.63 4357.71 22383.14 993.96 655.17 29
GSMVS88.13 150
test_part289.33 2355.48 5682.27 12
sam_mvs138.86 19488.13 150
sam_mvs35.99 241
ambc62.06 32953.98 38529.38 38035.08 39679.65 22941.37 35459.96 3726.27 39682.15 28535.34 32838.22 37074.65 343
MTGPAbinary81.31 197
test_post170.84 32814.72 40934.33 25783.86 27148.80 266
test_post16.22 40637.52 21184.72 264
patchmatchnet-post59.74 37338.41 19779.91 312
GG-mvs-BLEND77.77 8586.68 4650.61 17368.67 33888.45 4968.73 10987.45 14559.15 1090.67 9154.83 22487.67 1892.03 44
MTMP87.27 7515.34 414
gm-plane-assit83.24 10954.21 9670.91 2088.23 12995.25 1466.37 128
test9_res78.72 4985.44 4591.39 66
TEST985.68 5655.42 5787.59 6584.00 14757.72 22272.99 6590.98 6744.87 11988.58 154
test_885.72 5555.31 6287.60 6483.88 15057.84 22072.84 6990.99 6644.99 11588.34 165
agg_prior275.65 6985.11 4991.01 78
agg_prior85.64 5954.92 7683.61 15772.53 7488.10 175
TestCases55.32 35565.08 35937.50 35054.25 37635.45 37033.42 38072.82 3219.98 38259.33 37824.13 37343.84 35969.13 366
test_prior456.39 4287.15 79
test_prior289.04 4261.88 14173.55 5891.46 6348.01 7874.73 7885.46 44
test_prior78.39 7486.35 5054.91 7785.45 10189.70 12090.55 86
旧先验281.73 22745.53 33374.66 4770.48 36558.31 193
新几何281.61 231
新几何173.30 20283.10 11253.48 10871.43 33445.55 33266.14 12987.17 15033.88 26280.54 30248.50 26980.33 8685.88 198
旧先验181.57 15947.48 25971.83 32888.66 11836.94 22478.34 10788.67 136
无先验85.19 12578.00 26449.08 30985.13 25952.78 24187.45 166
原ACMM283.77 172
原ACMM176.13 12684.89 7554.59 8885.26 11151.98 28966.70 12187.07 15240.15 18189.70 12051.23 25185.06 5084.10 222
test22279.36 20150.97 16977.99 27867.84 35342.54 35062.84 18086.53 16030.26 29276.91 11785.23 207
testdata277.81 33045.64 288
segment_acmp44.97 117
testdata67.08 29877.59 23745.46 28869.20 34944.47 33971.50 8688.34 12631.21 28670.76 36452.20 24675.88 13085.03 209
testdata177.55 28164.14 98
test1279.24 4686.89 4456.08 4785.16 11672.27 7847.15 8691.10 8185.93 3990.54 88
plane_prior777.95 23148.46 234
plane_prior678.42 22649.39 20836.04 239
plane_prior582.59 17588.30 16865.46 13772.34 16584.49 216
plane_prior483.28 202
plane_prior348.95 21764.01 10162.15 188
plane_prior285.76 10563.60 110
plane_prior178.31 228
plane_prior49.57 20087.43 6864.57 9272.84 161
n20.00 418
nn0.00 418
door-mid41.31 389
lessismore_v067.98 29164.76 36241.25 33245.75 38236.03 37365.63 35819.29 35884.11 27035.67 32521.24 39778.59 304
LGP-MVS_train72.02 22974.42 28448.60 22780.64 20854.69 27053.75 29283.83 18925.73 32186.98 21060.33 17864.71 22480.48 285
test1184.25 141
door43.27 385
HQP5-MVS51.56 158
HQP-NCC79.02 21088.00 5465.45 7964.48 156
ACMP_Plane79.02 21088.00 5465.45 7964.48 156
BP-MVS66.70 125
HQP4-MVS64.47 15988.61 15384.91 212
HQP3-MVS83.68 15373.12 157
HQP2-MVS37.35 214
NP-MVS78.76 21550.43 17985.12 175
MDTV_nov1_ep13_2view43.62 30771.13 32754.95 26759.29 22136.76 22746.33 28587.32 168
MDTV_nov1_ep1361.56 25681.68 15255.12 6972.41 31678.18 26159.19 19158.85 23069.29 34634.69 25386.16 23436.76 32362.96 247
ACMMP++_ref63.20 243
ACMMP++59.38 268
Test By Simon39.38 188
ITE_SJBPF51.84 35858.03 37931.94 37053.57 37836.67 36541.32 35675.23 30111.17 38051.57 38925.81 36948.04 34172.02 359
DeepMVS_CXcopyleft13.10 39121.34 4158.99 41310.02 41510.59 4037.53 40830.55 4011.82 40914.55 4106.83 4057.52 40615.75 404