This table lists the benchmark results for the high-res multi-view scenario. The following metrics are evaluated:

(*) For exact definitions, detailing how potentially incomplete ground truth is taken into account, see our paper.

The datasets are grouped into different categories, and result averages are computed for a category and method if results of the method are available for all datasets within the category. Note that the category "all" includes both the high-res multi-view and the low-res many-view scenarios.

Methods with suffix _ROB may participate in the Robust Vision Challenge.

Click a dataset result cell to show a visualization of the reconstruction. For training datasets, ground truth and accuracy / completeness visualizations are also available. The visualizations may not work with mobile browsers.




Method Infoallhigh-res
multi-view
indooroutdoorbotani.boulde.bridgedoorexhibi.lectur.living.loungeobserv.old co.statueterrac.
sort bysorted bysort bysort bysort bysort bysort bysort bysort bysort bysort bysort bysort bysort bysort bysort by
MCST-MVS91.08 191.46 389.94 497.66 273.37 1297.13 295.58 1089.33 185.77 5496.26 3072.84 2699.38 192.64 2095.93 997.08 11
MM90.87 291.52 288.92 1692.12 9671.10 2997.02 396.04 688.70 291.57 1496.19 3270.12 4298.91 1896.83 195.06 1796.76 15
DPM-MVS90.70 390.52 991.24 189.68 15576.68 297.29 195.35 1482.87 2191.58 1397.22 379.93 599.10 983.12 10097.64 297.94 1
DVP-MVS++90.53 491.09 588.87 1797.31 469.91 4493.96 6994.37 5172.48 18392.07 996.85 1683.82 299.15 291.53 3097.42 497.55 4
MSP-MVS90.38 591.87 185.88 8992.83 7764.03 19293.06 11094.33 5382.19 2893.65 396.15 3485.89 197.19 8291.02 3497.75 196.43 32
Zhenlong Yuan, Cong Liu, Fei Shen, Zhaoxin Li, Jingguo luo, Tianlu Mao and Zhaoqi Wang: MSP-MVS: Multi-granularity Segmentation Prior Guided Multi-View Stereo. AAAI2025
MVS_030490.32 690.90 788.55 2494.05 4570.23 3897.00 593.73 7287.30 492.15 696.15 3466.38 6598.94 1796.71 294.67 3496.47 28
CNVR-MVS90.32 690.89 888.61 2396.76 870.65 3296.47 1494.83 2984.83 1189.07 3196.80 1970.86 3899.06 1592.64 2095.71 1196.12 41
DELS-MVS90.05 890.09 1189.94 493.14 7073.88 1197.01 494.40 4988.32 385.71 5594.91 7074.11 1998.91 1887.26 6395.94 897.03 12
Christian Sormann, Emanuele Santellani, Mattia Rossi, Andreas Kuhn, Friedrich Fraundorfer: DELS-MVS: Deep Epipolar Line Search for Multi-View Stereo. Winter Conference on Applications of Computer Vision (WACV), 2023
SED-MVS89.94 990.36 1088.70 1996.45 1269.38 5596.89 694.44 4571.65 21392.11 797.21 476.79 999.11 692.34 2295.36 1497.62 2
DeepPCF-MVS81.17 189.72 1091.38 484.72 13393.00 7458.16 30596.72 994.41 4786.50 890.25 2297.83 175.46 1498.67 2592.78 1995.49 1397.32 6
patch_mono-289.71 1190.99 685.85 9296.04 2463.70 20295.04 4095.19 1886.74 791.53 1595.15 6373.86 2097.58 5993.38 1492.00 7196.28 38
CANet89.61 1289.99 1288.46 2594.39 3969.71 5196.53 1393.78 6586.89 689.68 2895.78 4065.94 6999.10 992.99 1793.91 4396.58 21
DVP-MVScopyleft89.41 1389.73 1488.45 2696.40 1569.99 4096.64 1094.52 4171.92 19990.55 2096.93 1173.77 2199.08 1191.91 2894.90 2296.29 36
Zhenlong Yuan, Jinguo Luo, Fei Shen, Zhaoxin Li, Cong Liu, Tianlu Mao, Zhaoqi Wang: DVP-MVS: Synergize Depth-Edge and Visibility Prior for Multi-View Stereo. AAAI2025
HPM-MVS++copyleft89.37 1489.95 1387.64 3595.10 3068.23 8595.24 3394.49 4382.43 2588.90 3296.35 2771.89 3498.63 2688.76 4996.40 696.06 42
balanced_conf0389.08 1588.84 1789.81 693.66 5475.15 590.61 21993.43 8684.06 1486.20 4990.17 17772.42 2996.98 9893.09 1695.92 1097.29 7
NCCC89.07 1689.46 1587.91 2996.60 1069.05 6396.38 1594.64 3884.42 1286.74 4596.20 3166.56 6498.76 2489.03 4894.56 3595.92 47
DPE-MVScopyleft88.77 1789.21 1687.45 4596.26 2067.56 10194.17 5794.15 5868.77 26290.74 1897.27 276.09 1298.49 2990.58 3894.91 2196.30 35
Kehua Chen, Zhenlong Yuan, Tianlu Mao, Zhaoqi Wang: Dual-Level Precision Edges Guided Multi-View Stereo with Accurate Planarization. AAAI2025
SMA-MVScopyleft88.14 1888.29 2287.67 3493.21 6768.72 7193.85 7694.03 6174.18 14691.74 1296.67 2165.61 7398.42 3389.24 4596.08 795.88 48
Yufeng Yin; Xiaoyan Liu; Zichao Zhang: SMA-MVS: Segmentation-Guided Multi-Scale Anchor Deformation Patch Multi-View Stereo. IEEE Transactions on Circuits and Systems for Video Technology
PS-MVSNAJ88.14 1887.61 2989.71 792.06 9776.72 195.75 2093.26 9183.86 1589.55 2996.06 3653.55 21997.89 4391.10 3293.31 5594.54 107
TSAR-MVS + MP.88.11 2088.64 1886.54 7291.73 11068.04 8990.36 22493.55 7982.89 2091.29 1692.89 12172.27 3196.03 14487.99 5394.77 2695.54 57
Zhenlong Yuan, Jiakai Cao, Zhaoqi Wang, Zhaoxin Li: TSAR-MVS: Textureless-aware Segmentation and Correlative Refinement Guided Multi-View Stereo. Pattern Recognition
TSAR-MVS + GP.87.96 2188.37 2186.70 6593.51 6165.32 15795.15 3693.84 6478.17 9385.93 5394.80 7375.80 1398.21 3489.38 4288.78 10696.59 19
DeepC-MVS_fast79.48 287.95 2288.00 2587.79 3295.86 2768.32 7995.74 2194.11 5983.82 1683.49 7696.19 3264.53 8798.44 3183.42 9994.88 2596.61 18
Andreas Kuhn, Christian Sormann, Mattia Rossi, Oliver Erdler, Friedrich Fraundorfer: DeepC-MVS: Deep Confidence Prediction for Multi-View Stereo Reconstruction. 3DV 2020
xiu_mvs_v2_base87.92 2387.38 3389.55 1291.41 12276.43 395.74 2193.12 9983.53 1889.55 2995.95 3853.45 22397.68 5091.07 3392.62 6294.54 107
EPNet87.84 2488.38 2086.23 8293.30 6466.05 13995.26 3294.84 2887.09 588.06 3494.53 7966.79 6197.34 7383.89 9691.68 7695.29 69
Wanjuan Su, Wenbing Tao: Efficient Edge-Preserving Multi-View Stereo Network for Depth Estimation. AAAI 2023
lupinMVS87.74 2587.77 2787.63 3989.24 17071.18 2696.57 1292.90 10782.70 2387.13 4095.27 5664.99 7895.80 14989.34 4391.80 7495.93 46
test_fmvsm_n_192087.69 2688.50 1985.27 11387.05 22663.55 20993.69 8691.08 18884.18 1390.17 2497.04 867.58 5697.99 3995.72 590.03 9794.26 115
APDe-MVScopyleft87.54 2787.84 2686.65 6696.07 2366.30 13594.84 4593.78 6569.35 25388.39 3396.34 2867.74 5597.66 5490.62 3793.44 5396.01 45
Zhaojie Zeng, Yuesong Wang, Tao Guan: Matching Ambiguity-Resilient Multi-View Stereo via Adaptive Patch Deformation. Pattern Recognition
fmvsm_l_conf0.5_n87.49 2888.19 2385.39 10786.95 22764.37 18294.30 5488.45 29080.51 5092.70 496.86 1569.98 4397.15 8695.83 488.08 11394.65 101
SD-MVS87.49 2887.49 3187.50 4493.60 5668.82 6993.90 7392.63 12076.86 11287.90 3595.76 4166.17 6697.63 5689.06 4791.48 8096.05 43
Zhenlong Yuan, Jiakai Cao, Zhaoxin Li, Hao Jiang and Zhaoqi Wang: SD-MVS: Segmentation-driven Deformation Multi-View Stereo with Spherical Refinement and EM optimization. AAAI2024
fmvsm_l_conf0.5_n_a87.44 3088.15 2485.30 11187.10 22464.19 18994.41 5288.14 29980.24 5892.54 596.97 1069.52 4597.17 8395.89 388.51 10994.56 104
dcpmvs_287.37 3187.55 3086.85 5895.04 3268.20 8690.36 22490.66 20079.37 7281.20 9493.67 10574.73 1596.55 12190.88 3592.00 7195.82 49
alignmvs87.28 3286.97 3788.24 2891.30 12471.14 2895.61 2593.56 7879.30 7387.07 4295.25 5868.43 4896.93 10687.87 5484.33 14896.65 17
train_agg87.21 3387.42 3286.60 6894.18 4167.28 10894.16 5893.51 8071.87 20485.52 5795.33 5168.19 5097.27 8089.09 4694.90 2295.25 75
bld_raw_conf0387.15 3486.52 4389.06 1493.04 7374.04 887.84 27692.69 11480.90 4781.47 9189.48 18769.08 4696.67 11689.42 4094.74 3196.47 28
MG-MVS87.11 3586.27 4589.62 897.79 176.27 494.96 4394.49 4378.74 8783.87 7592.94 11964.34 8896.94 10475.19 15594.09 3995.66 52
SF-MVS87.03 3687.09 3586.84 5992.70 8367.45 10693.64 8993.76 6870.78 23786.25 4796.44 2666.98 5997.79 4788.68 5094.56 3595.28 71
CSCG86.87 3786.26 4688.72 1895.05 3170.79 3193.83 8195.33 1568.48 26677.63 14094.35 8873.04 2498.45 3084.92 8593.71 4896.92 14
sasdasda86.85 3886.25 4788.66 2191.80 10871.92 1893.54 9491.71 15780.26 5587.55 3795.25 5863.59 10196.93 10688.18 5184.34 14697.11 9
canonicalmvs86.85 3886.25 4788.66 2191.80 10871.92 1893.54 9491.71 15780.26 5587.55 3795.25 5863.59 10196.93 10688.18 5184.34 14697.11 9
PHI-MVS86.83 4086.85 4186.78 6393.47 6265.55 15395.39 3095.10 2171.77 20985.69 5696.52 2362.07 12198.77 2386.06 7595.60 1296.03 44
SteuartSystems-ACMMP86.82 4186.90 3986.58 7090.42 13966.38 13296.09 1793.87 6377.73 10084.01 7495.66 4363.39 10497.94 4087.40 6193.55 5195.42 58
Skip Steuart: Steuart Systems R&D Blog.
PVSNet_Blended86.73 4286.86 4086.31 8193.76 5067.53 10396.33 1693.61 7682.34 2781.00 9993.08 11563.19 10897.29 7687.08 6691.38 8294.13 122
testing1186.71 4386.44 4487.55 4293.54 5971.35 2393.65 8895.58 1081.36 4180.69 10292.21 13972.30 3096.46 12685.18 8183.43 15594.82 94
test_fmvsmconf_n86.58 4487.17 3484.82 12685.28 25762.55 23394.26 5689.78 23383.81 1787.78 3696.33 2965.33 7596.98 9894.40 1187.55 11894.95 86
jason86.40 4586.17 4987.11 5286.16 24270.54 3495.71 2492.19 13582.00 3084.58 6794.34 8961.86 12395.53 16987.76 5590.89 8895.27 72
jason: jason.
fmvsm_s_conf0.5_n86.39 4686.91 3884.82 12687.36 21963.54 21094.74 4790.02 22782.52 2490.14 2596.92 1362.93 11397.84 4695.28 882.26 16593.07 158
WTY-MVS86.32 4785.81 5687.85 3092.82 7969.37 5795.20 3495.25 1682.71 2281.91 8794.73 7467.93 5497.63 5679.55 12682.25 16696.54 22
MSLP-MVS++86.27 4885.91 5587.35 4792.01 10068.97 6695.04 4092.70 11279.04 8281.50 9096.50 2558.98 15696.78 11283.49 9893.93 4296.29 36
VNet86.20 4985.65 6087.84 3193.92 4769.99 4095.73 2395.94 778.43 9086.00 5293.07 11658.22 16297.00 9485.22 7984.33 14896.52 23
MVS_111021_HR86.19 5085.80 5787.37 4693.17 6969.79 4893.99 6893.76 6879.08 8078.88 12893.99 9962.25 12098.15 3685.93 7691.15 8694.15 121
CS-MVS-test86.14 5187.01 3683.52 17192.63 8559.36 29495.49 2791.92 14480.09 5985.46 5995.53 4761.82 12595.77 15286.77 7093.37 5495.41 59
ACMMP_NAP86.05 5285.80 5786.80 6291.58 11467.53 10391.79 16893.49 8374.93 13784.61 6695.30 5359.42 14997.92 4186.13 7394.92 2094.94 87
testing9986.01 5385.47 6187.63 3993.62 5571.25 2593.47 10095.23 1780.42 5380.60 10491.95 14371.73 3596.50 12480.02 12382.22 16795.13 78
ETV-MVS86.01 5386.11 5085.70 9990.21 14467.02 11793.43 10291.92 14481.21 4384.13 7394.07 9860.93 13395.63 16089.28 4489.81 9894.46 113
testing9185.93 5585.31 6487.78 3393.59 5771.47 2193.50 9795.08 2480.26 5580.53 10591.93 14470.43 4096.51 12380.32 12182.13 16995.37 62
APD-MVScopyleft85.93 5585.99 5385.76 9695.98 2665.21 16093.59 9292.58 12266.54 27986.17 5095.88 3963.83 9497.00 9486.39 7292.94 5995.06 81
Yuesong Wang, Zhaojie Zeng and etc.: Adaptive Patch Deformation for Textureless-Resilient Multi-View Stereo. CVPR2023
PAPM85.89 5785.46 6287.18 5088.20 19872.42 1792.41 14092.77 11082.11 2980.34 10893.07 11668.27 4995.02 18278.39 13893.59 5094.09 124
CS-MVS85.80 5886.65 4283.27 17992.00 10158.92 29895.31 3191.86 14979.97 6084.82 6595.40 4962.26 11995.51 17086.11 7492.08 7095.37 62
fmvsm_s_conf0.5_n_a85.75 5986.09 5184.72 13385.73 25163.58 20793.79 8289.32 25181.42 3990.21 2396.91 1462.41 11897.67 5194.48 1080.56 18492.90 164
test_fmvsmconf0.1_n85.71 6086.08 5284.62 14080.83 30962.33 23893.84 7988.81 27783.50 1987.00 4396.01 3763.36 10596.93 10694.04 1287.29 12194.61 103
CDPH-MVS85.71 6085.46 6286.46 7494.75 3467.19 11093.89 7492.83 10970.90 23383.09 7995.28 5463.62 9997.36 7180.63 11894.18 3894.84 91
casdiffmvs_mvgpermissive85.66 6285.18 6687.09 5388.22 19769.35 5893.74 8591.89 14781.47 3580.10 11091.45 15364.80 8396.35 12787.23 6487.69 11695.58 55
Fangjinhua Wang, Qingshan Xu, Yew-Soon Ong, Marc Pollefeys: Lightweight and Accurate Multi-View Stereo With Confidence-Aware Diffusion Model. IEEE T-PAMI 2025
fmvsm_s_conf0.1_n85.61 6385.93 5484.68 13682.95 29363.48 21294.03 6789.46 24581.69 3389.86 2696.74 2061.85 12497.75 4994.74 982.01 17192.81 166
MGCFI-Net85.59 6485.73 5985.17 11791.41 12262.44 23492.87 11891.31 17479.65 6686.99 4495.14 6462.90 11496.12 13687.13 6584.13 15396.96 13
DeepC-MVS77.85 385.52 6585.24 6586.37 7888.80 18066.64 12692.15 14793.68 7481.07 4476.91 15093.64 10662.59 11698.44 3185.50 7792.84 6194.03 128
Andreas Kuhn, Christian Sormann, Mattia Rossi, Oliver Erdler, Friedrich Fraundorfer: DeepC-MVS: Deep Confidence Prediction for Multi-View Stereo Reconstruction. 3DV 2020
casdiffmvspermissive85.37 6684.87 7286.84 5988.25 19569.07 6293.04 11291.76 15481.27 4280.84 10192.07 14164.23 8996.06 14284.98 8487.43 12095.39 60
Fangjinhua Wang, Qingshan Xu, Yew-Soon Ong, Marc Pollefeys: Lightweight and Accurate Multi-View Stereo With Confidence-Aware Diffusion Model. IEEE T-PAMI 2025
ZNCC-MVS85.33 6785.08 6886.06 8493.09 7265.65 14993.89 7493.41 8873.75 15779.94 11294.68 7660.61 13698.03 3882.63 10393.72 4794.52 109
MP-MVS-pluss85.24 6885.13 6785.56 10291.42 11965.59 15191.54 17892.51 12474.56 14080.62 10395.64 4459.15 15397.00 9486.94 6893.80 4494.07 126
MP-MVS-pluss: MP-MVS-pluss. MP-MVS-pluss
testing22285.18 6984.69 7486.63 6792.91 7669.91 4492.61 13195.80 980.31 5480.38 10792.27 13668.73 4795.19 17975.94 15083.27 15794.81 95
PAPR85.15 7084.47 7587.18 5096.02 2568.29 8091.85 16693.00 10476.59 11879.03 12495.00 6561.59 12697.61 5878.16 13989.00 10595.63 53
MP-MVScopyleft85.02 7184.97 7085.17 11792.60 8664.27 18793.24 10592.27 12973.13 16879.63 11694.43 8261.90 12297.17 8385.00 8392.56 6394.06 127
Rongxuan Tan, Qing Wang, et al.: MP-MVS: Multi-Scale Windows PatchMatch and Planar Prior Multi-View Stereo.
baseline85.01 7284.44 7686.71 6488.33 19268.73 7090.24 22991.82 15381.05 4581.18 9592.50 12863.69 9796.08 14184.45 9186.71 13095.32 67
CHOSEN 1792x268884.98 7383.45 9089.57 1189.94 15075.14 692.07 15392.32 12781.87 3175.68 15988.27 20260.18 13998.60 2780.46 12090.27 9694.96 85
MVSMamba_PlusPlus84.97 7483.65 8488.93 1590.17 14574.04 887.84 27692.69 11462.18 31481.47 9187.64 21671.47 3696.28 12984.69 8794.74 3196.47 28
EIA-MVS84.84 7584.88 7184.69 13591.30 12462.36 23793.85 7692.04 13979.45 6979.33 12194.28 9262.42 11796.35 12780.05 12291.25 8595.38 61
fmvsm_s_conf0.1_n_a84.76 7684.84 7384.53 14280.23 31963.50 21192.79 12088.73 28080.46 5189.84 2796.65 2260.96 13297.57 6193.80 1380.14 18692.53 174
HFP-MVS84.73 7784.40 7785.72 9893.75 5265.01 16693.50 9793.19 9572.19 19379.22 12294.93 6859.04 15497.67 5181.55 10992.21 6694.49 112
MVS84.66 7882.86 10590.06 290.93 13074.56 787.91 27495.54 1268.55 26472.35 20194.71 7559.78 14598.90 2081.29 11594.69 3396.74 16
GST-MVS84.63 7984.29 7885.66 10092.82 7965.27 15893.04 11293.13 9873.20 16678.89 12594.18 9559.41 15097.85 4581.45 11192.48 6593.86 136
EC-MVSNet84.53 8085.04 6983.01 18389.34 16261.37 25894.42 5191.09 18677.91 9783.24 7794.20 9458.37 16095.40 17185.35 7891.41 8192.27 184
ACMMPR84.37 8184.06 7985.28 11293.56 5864.37 18293.50 9793.15 9772.19 19378.85 13094.86 7156.69 18297.45 6581.55 10992.20 6794.02 129
region2R84.36 8284.03 8085.36 10993.54 5964.31 18593.43 10292.95 10572.16 19678.86 12994.84 7256.97 17797.53 6381.38 11392.11 6994.24 116
LFMVS84.34 8382.73 10789.18 1394.76 3373.25 1394.99 4291.89 14771.90 20182.16 8693.49 11047.98 27197.05 8982.55 10484.82 14297.25 8
test_yl84.28 8483.16 9887.64 3594.52 3769.24 5995.78 1895.09 2269.19 25681.09 9692.88 12257.00 17597.44 6681.11 11681.76 17396.23 39
DCV-MVSNet84.28 8483.16 9887.64 3594.52 3769.24 5995.78 1895.09 2269.19 25681.09 9692.88 12257.00 17597.44 6681.11 11681.76 17396.23 39
diffmvspermissive84.28 8483.83 8185.61 10187.40 21768.02 9090.88 20789.24 25480.54 4981.64 8992.52 12759.83 14494.52 20587.32 6285.11 14094.29 114
Fangjinhua Wang, Qingshan Xu, Yew-Soon Ong, Marc Pollefeys: Lightweight and Accurate Multi-View Stereo With Confidence-Aware Diffusion Model. IEEE T-PAMI 2025
HY-MVS76.49 584.28 8483.36 9687.02 5692.22 9367.74 9684.65 30194.50 4279.15 7782.23 8587.93 21166.88 6096.94 10480.53 11982.20 16896.39 34
ETVMVS84.22 8883.71 8285.76 9692.58 8768.25 8492.45 13995.53 1379.54 6879.46 11891.64 15170.29 4194.18 21769.16 20982.76 16394.84 91
MAR-MVS84.18 8983.43 9186.44 7596.25 2165.93 14494.28 5594.27 5574.41 14179.16 12395.61 4553.99 21498.88 2269.62 20393.26 5694.50 111
Zhenyu Xu, Yiguang Liu, Xuelei Shi, Ying Wang, Yunan Zheng: MARMVS: Matching Ambiguity Reduced Multiple View Stereo for Efficient Large Scale Scene Reconstruction. CVPR 2020
MVS_Test84.16 9083.20 9787.05 5591.56 11569.82 4789.99 23892.05 13877.77 9982.84 8086.57 23363.93 9396.09 13874.91 16089.18 10495.25 75
CANet_DTU84.09 9183.52 8585.81 9390.30 14266.82 12191.87 16489.01 26985.27 986.09 5193.74 10347.71 27596.98 9877.90 14189.78 10093.65 141
ET-MVSNet_ETH3D84.01 9283.15 10086.58 7090.78 13570.89 3094.74 4794.62 3981.44 3858.19 32993.64 10673.64 2392.35 28182.66 10278.66 20196.50 27
PVSNet_Blended_VisFu83.97 9383.50 8785.39 10790.02 14866.59 12993.77 8391.73 15577.43 10877.08 14989.81 18463.77 9696.97 10179.67 12588.21 11192.60 170
MTAPA83.91 9483.38 9585.50 10391.89 10665.16 16281.75 32692.23 13075.32 13280.53 10595.21 6156.06 19197.16 8584.86 8692.55 6494.18 118
XVS83.87 9583.47 8985.05 11993.22 6563.78 19692.92 11692.66 11773.99 14978.18 13494.31 9155.25 19797.41 6879.16 12991.58 7893.95 131
Effi-MVS+83.82 9682.76 10686.99 5789.56 15869.40 5491.35 18986.12 32372.59 18083.22 7892.81 12559.60 14796.01 14681.76 10887.80 11595.56 56
test_fmvsmvis_n_192083.80 9783.48 8884.77 13082.51 29563.72 20091.37 18783.99 34581.42 3977.68 13995.74 4258.37 16097.58 5993.38 1486.87 12493.00 161
EI-MVSNet-Vis-set83.77 9883.67 8384.06 15792.79 8263.56 20891.76 17194.81 3079.65 6677.87 13794.09 9663.35 10697.90 4279.35 12779.36 19390.74 210
MVSFormer83.75 9982.88 10486.37 7889.24 17071.18 2689.07 25690.69 19765.80 28487.13 4094.34 8964.99 7892.67 26872.83 17291.80 7495.27 72
CP-MVS83.71 10083.40 9484.65 13793.14 7063.84 19494.59 4992.28 12871.03 23177.41 14394.92 6955.21 20096.19 13381.32 11490.70 9093.91 133
test_fmvsmconf0.01_n83.70 10183.52 8584.25 15475.26 36261.72 25292.17 14687.24 31282.36 2684.91 6495.41 4855.60 19596.83 11192.85 1885.87 13694.21 117
baseline283.68 10283.42 9384.48 14587.37 21866.00 14190.06 23395.93 879.71 6569.08 23790.39 17177.92 696.28 12978.91 13381.38 17791.16 206
thisisatest051583.41 10382.49 11186.16 8389.46 16168.26 8293.54 9494.70 3574.31 14475.75 15790.92 16172.62 2796.52 12269.64 20181.50 17693.71 139
PVSNet_BlendedMVS83.38 10483.43 9183.22 18093.76 5067.53 10394.06 6293.61 7679.13 7881.00 9985.14 24863.19 10897.29 7687.08 6673.91 23784.83 304
test250683.29 10582.92 10384.37 14988.39 19063.18 21992.01 15691.35 17377.66 10278.49 13391.42 15464.58 8695.09 18173.19 16889.23 10294.85 88
PGM-MVS83.25 10682.70 10884.92 12292.81 8164.07 19190.44 22092.20 13471.28 22577.23 14694.43 8255.17 20197.31 7579.33 12891.38 8293.37 147
HPM-MVScopyleft83.25 10682.95 10284.17 15592.25 9262.88 22890.91 20491.86 14970.30 24277.12 14793.96 10056.75 18096.28 12982.04 10691.34 8493.34 148
Chunlin Ren, Qingshan Xu, Shikun Zhang, Jiaqi Yang: Hierarchical Prior Mining for Non-local Multi-View Stereo. ICCV 2023
iter_conf0583.18 10881.72 12187.58 4190.17 14573.92 1083.37 31288.63 28662.18 31473.79 18187.64 21671.47 3696.28 12984.69 8793.54 5292.54 172
EI-MVSNet-UG-set83.14 10982.96 10183.67 16992.28 9163.19 21891.38 18694.68 3679.22 7576.60 15293.75 10262.64 11597.76 4878.07 14078.01 20490.05 219
VDD-MVS83.06 11081.81 12086.81 6190.86 13367.70 9795.40 2991.50 16875.46 12981.78 8892.34 13540.09 31297.13 8786.85 6982.04 17095.60 54
h-mvs3383.01 11182.56 11084.35 15089.34 16262.02 24492.72 12393.76 6881.45 3682.73 8292.25 13860.11 14097.13 8787.69 5662.96 31493.91 133
PAPM_NR82.97 11281.84 11986.37 7894.10 4466.76 12487.66 28092.84 10869.96 24674.07 17893.57 10863.10 11197.50 6470.66 19690.58 9294.85 88
mPP-MVS82.96 11382.44 11284.52 14392.83 7762.92 22692.76 12191.85 15171.52 22175.61 16294.24 9353.48 22296.99 9778.97 13290.73 8993.64 142
SR-MVS82.81 11482.58 10983.50 17493.35 6361.16 26192.23 14591.28 17864.48 29381.27 9395.28 5453.71 21895.86 14882.87 10188.77 10793.49 145
DP-MVS Recon82.73 11581.65 12285.98 8697.31 467.06 11495.15 3691.99 14169.08 25976.50 15493.89 10154.48 20998.20 3570.76 19485.66 13892.69 167
CLD-MVS82.73 11582.35 11483.86 16287.90 20567.65 9995.45 2892.18 13685.06 1072.58 19492.27 13652.46 23095.78 15084.18 9279.06 19688.16 246
Zhaoxin Li, Wangmeng Zuo, Zhaoqi Wang, Lei Zhang: Confidence-based Large-scale Dense Multi-view Stereo. IEEE Transaction on Image Processing, 2020
sss82.71 11782.38 11383.73 16689.25 16759.58 28992.24 14494.89 2777.96 9579.86 11392.38 13356.70 18197.05 8977.26 14480.86 18194.55 105
3Dnovator73.91 682.69 11880.82 13388.31 2789.57 15771.26 2492.60 13294.39 5078.84 8467.89 25792.48 13148.42 26698.52 2868.80 21494.40 3795.15 77
MVSTER82.47 11982.05 11583.74 16492.68 8469.01 6491.90 16393.21 9279.83 6172.14 20285.71 24474.72 1694.72 19375.72 15172.49 24787.50 251
TESTMET0.1,182.41 12081.98 11883.72 16788.08 19963.74 19892.70 12593.77 6779.30 7377.61 14187.57 21958.19 16394.08 22173.91 16686.68 13193.33 150
CostFormer82.33 12181.15 12685.86 9189.01 17568.46 7682.39 32393.01 10275.59 12780.25 10981.57 28972.03 3394.96 18579.06 13177.48 21294.16 120
API-MVS82.28 12280.53 14187.54 4396.13 2270.59 3393.63 9091.04 19265.72 28675.45 16492.83 12456.11 19098.89 2164.10 25889.75 10193.15 154
IB-MVS77.80 482.18 12380.46 14387.35 4789.14 17270.28 3795.59 2695.17 2078.85 8370.19 22585.82 24270.66 3997.67 5172.19 18366.52 28794.09 124
Christian Sormann, Mattia Rossi, Andreas Kuhn and Friedrich Fraundorfer: IB-MVS: An Iterative Algorithm for Deep Multi-View Stereo based on Binary Decisions. BMVC 2021
xiu_mvs_v1_base_debu82.16 12481.12 12785.26 11486.42 23568.72 7192.59 13490.44 20773.12 16984.20 7094.36 8438.04 32595.73 15484.12 9386.81 12591.33 199
xiu_mvs_v1_base82.16 12481.12 12785.26 11486.42 23568.72 7192.59 13490.44 20773.12 16984.20 7094.36 8438.04 32595.73 15484.12 9386.81 12591.33 199
xiu_mvs_v1_base_debi82.16 12481.12 12785.26 11486.42 23568.72 7192.59 13490.44 20773.12 16984.20 7094.36 8438.04 32595.73 15484.12 9386.81 12591.33 199
3Dnovator+73.60 782.10 12780.60 14086.60 6890.89 13266.80 12395.20 3493.44 8574.05 14867.42 26492.49 13049.46 25697.65 5570.80 19391.68 7695.33 65
MVS_111021_LR82.02 12881.52 12383.51 17388.42 18862.88 22889.77 24188.93 27376.78 11475.55 16393.10 11350.31 24895.38 17383.82 9787.02 12392.26 185
PMMVS81.98 12982.04 11681.78 21689.76 15456.17 32491.13 20090.69 19777.96 9580.09 11193.57 10846.33 28594.99 18481.41 11287.46 11994.17 119
baseline181.84 13081.03 13184.28 15391.60 11366.62 12791.08 20191.66 16281.87 3174.86 16991.67 15069.98 4394.92 18871.76 18664.75 30191.29 204
EPP-MVSNet81.79 13181.52 12382.61 19288.77 18160.21 28193.02 11493.66 7568.52 26572.90 18990.39 17172.19 3294.96 18574.93 15979.29 19592.67 168
test_vis1_n_192081.66 13282.01 11780.64 24382.24 29755.09 33294.76 4686.87 31481.67 3484.40 6994.63 7738.17 32294.67 19791.98 2783.34 15692.16 188
APD-MVS_3200maxsize81.64 13381.32 12582.59 19392.36 8958.74 30091.39 18491.01 19363.35 30279.72 11594.62 7851.82 23396.14 13579.71 12487.93 11492.89 165
mvsmamba81.55 13480.72 13584.03 15991.42 11966.93 11983.08 31789.13 26278.55 8967.50 26287.02 22851.79 23590.07 32087.48 5990.49 9495.10 80
ACMMPcopyleft81.49 13580.67 13783.93 16191.71 11162.90 22792.13 14892.22 13371.79 20871.68 20993.49 11050.32 24796.96 10278.47 13784.22 15291.93 191
Qingshan Xu, Weihang Kong, Wenbing Tao, Marc Pollefeys: Multi-Scale Geometric Consistency Guided and Planar Prior Assisted Multi-View Stereo. IEEE Transactions on Pattern Analysis and Machine Intelligence
CDS-MVSNet81.43 13680.74 13483.52 17186.26 23964.45 17692.09 15190.65 20175.83 12573.95 18089.81 18463.97 9292.91 25871.27 18982.82 16093.20 153
Khang Truong Giang, Soohwan Song, Sungho Jo: Curvature-guided dynamic scale networks for Multi-view Stereo. ICLR 2022
mvs_anonymous81.36 13779.99 14885.46 10490.39 14168.40 7786.88 29190.61 20274.41 14170.31 22484.67 25363.79 9592.32 28273.13 16985.70 13795.67 51
ECVR-MVScopyleft81.29 13880.38 14484.01 16088.39 19061.96 24692.56 13786.79 31677.66 10276.63 15191.42 15446.34 28495.24 17874.36 16489.23 10294.85 88
thisisatest053081.15 13980.07 14584.39 14888.26 19465.63 15091.40 18294.62 3971.27 22670.93 21589.18 19172.47 2896.04 14365.62 24776.89 21891.49 195
Fast-Effi-MVS+81.14 14080.01 14784.51 14490.24 14365.86 14594.12 6189.15 26073.81 15675.37 16588.26 20357.26 17094.53 20466.97 23284.92 14193.15 154
HQP-MVS81.14 14080.64 13882.64 19187.54 21363.66 20594.06 6291.70 16079.80 6274.18 17490.30 17351.63 23895.61 16277.63 14278.90 19788.63 237
hse-mvs281.12 14281.11 13081.16 23086.52 23457.48 31389.40 24991.16 18181.45 3682.73 8290.49 16960.11 14094.58 19887.69 5660.41 34191.41 198
SR-MVS-dyc-post81.06 14380.70 13682.15 20792.02 9858.56 30290.90 20590.45 20462.76 30978.89 12594.46 8051.26 24295.61 16278.77 13586.77 12892.28 181
HyFIR lowres test81.03 14479.56 15585.43 10587.81 20968.11 8890.18 23090.01 22870.65 23972.95 18886.06 24063.61 10094.50 20675.01 15879.75 19093.67 140
nrg03080.93 14579.86 15084.13 15683.69 28368.83 6893.23 10691.20 17975.55 12875.06 16788.22 20663.04 11294.74 19281.88 10766.88 28488.82 235
Vis-MVSNetpermissive80.92 14679.98 14983.74 16488.48 18561.80 24893.44 10188.26 29873.96 15277.73 13891.76 14749.94 25294.76 19065.84 24490.37 9594.65 101
Jingyang Zhang, Yao Yao, Shiwei Li, Zixin Luo, Tian Fang: Visibility-aware Multiview Stereo Network. BMVC 2020
test111180.84 14780.02 14683.33 17787.87 20660.76 26992.62 13086.86 31577.86 9875.73 15891.39 15646.35 28394.70 19672.79 17488.68 10894.52 109
UWE-MVS80.81 14881.01 13280.20 25289.33 16457.05 31891.91 16294.71 3475.67 12675.01 16889.37 18963.13 11091.44 30467.19 22982.80 16292.12 189
131480.70 14978.95 16685.94 8887.77 21167.56 10187.91 27492.55 12372.17 19567.44 26393.09 11450.27 24997.04 9271.68 18887.64 11793.23 152
tpmrst80.57 15079.14 16584.84 12590.10 14768.28 8181.70 32789.72 24077.63 10475.96 15679.54 32164.94 8092.71 26575.43 15377.28 21593.55 143
1112_ss80.56 15179.83 15182.77 18788.65 18260.78 26792.29 14288.36 29272.58 18172.46 19894.95 6665.09 7793.42 24566.38 23877.71 20694.10 123
VDDNet80.50 15278.26 17487.21 4986.19 24069.79 4894.48 5091.31 17460.42 32979.34 12090.91 16238.48 32096.56 12082.16 10581.05 17995.27 72
BH-w/o80.49 15379.30 16284.05 15890.83 13464.36 18493.60 9189.42 24874.35 14369.09 23690.15 17955.23 19995.61 16264.61 25586.43 13492.17 187
test_cas_vis1_n_192080.45 15480.61 13979.97 26178.25 34557.01 32094.04 6688.33 29379.06 8182.81 8193.70 10438.65 31791.63 29690.82 3679.81 18891.27 205
TAMVS80.37 15579.45 15883.13 18285.14 26063.37 21391.23 19590.76 19674.81 13972.65 19288.49 19760.63 13592.95 25369.41 20581.95 17293.08 157
HQP_MVS80.34 15679.75 15282.12 20986.94 22862.42 23593.13 10891.31 17478.81 8572.53 19589.14 19350.66 24595.55 16776.74 14578.53 20288.39 243
SDMVSNet80.26 15778.88 16784.40 14789.25 16767.63 10085.35 29793.02 10176.77 11570.84 21687.12 22647.95 27296.09 13885.04 8274.55 22889.48 229
HPM-MVS_fast80.25 15879.55 15782.33 19991.55 11659.95 28491.32 19189.16 25965.23 29074.71 17193.07 11647.81 27495.74 15374.87 16288.23 11091.31 203
ab-mvs80.18 15978.31 17385.80 9488.44 18765.49 15683.00 32092.67 11671.82 20777.36 14485.01 24954.50 20696.59 11776.35 14975.63 22595.32 67
IS-MVSNet80.14 16079.41 15982.33 19987.91 20460.08 28391.97 16088.27 29672.90 17671.44 21291.73 14961.44 12793.66 24062.47 27286.53 13293.24 151
test-LLR80.10 16179.56 15581.72 21886.93 23061.17 25992.70 12591.54 16571.51 22275.62 16086.94 22953.83 21592.38 27872.21 18184.76 14491.60 193
PVSNet73.49 880.05 16278.63 16984.31 15190.92 13164.97 16792.47 13891.05 19179.18 7672.43 19990.51 16837.05 33794.06 22368.06 21886.00 13593.90 135
UA-Net80.02 16379.65 15381.11 23289.33 16457.72 30986.33 29489.00 27277.44 10781.01 9889.15 19259.33 15195.90 14761.01 27984.28 15089.73 225
test-mter79.96 16479.38 16181.72 21886.93 23061.17 25992.70 12591.54 16573.85 15475.62 16086.94 22949.84 25492.38 27872.21 18184.76 14491.60 193
QAPM79.95 16577.39 19187.64 3589.63 15671.41 2293.30 10493.70 7365.34 28967.39 26691.75 14847.83 27398.96 1657.71 29589.81 9892.54 172
UGNet79.87 16678.68 16883.45 17689.96 14961.51 25592.13 14890.79 19576.83 11378.85 13086.33 23738.16 32396.17 13467.93 22187.17 12292.67 168
Wanjuan Su, Qingshan Xu, Wenbing Tao: Uncertainty-guided Multi-view Stereo Network for Depth Estimation. IEEE Transactions on Circuits and Systems for Video Technology, 2022
tpm279.80 16777.95 18085.34 11088.28 19368.26 8281.56 32991.42 17170.11 24477.59 14280.50 30767.40 5794.26 21567.34 22677.35 21393.51 144
thres20079.66 16878.33 17283.66 17092.54 8865.82 14793.06 11096.31 374.90 13873.30 18588.66 19559.67 14695.61 16247.84 33378.67 20089.56 228
CPTT-MVS79.59 16979.16 16480.89 24191.54 11759.80 28692.10 15088.54 28960.42 32972.96 18793.28 11248.27 26792.80 26278.89 13486.50 13390.06 218
Test_1112_low_res79.56 17078.60 17082.43 19588.24 19660.39 27892.09 15187.99 30372.10 19771.84 20587.42 22164.62 8593.04 24965.80 24577.30 21493.85 137
tttt051779.50 17178.53 17182.41 19887.22 22161.43 25789.75 24294.76 3169.29 25467.91 25588.06 21072.92 2595.63 16062.91 26873.90 23890.16 217
FIs79.47 17279.41 15979.67 26885.95 24559.40 29191.68 17593.94 6278.06 9468.96 24188.28 20166.61 6391.77 29366.20 24174.99 22787.82 248
BH-RMVSNet79.46 17377.65 18384.89 12391.68 11265.66 14893.55 9388.09 30172.93 17373.37 18491.12 16046.20 28796.12 13656.28 30085.61 13992.91 163
PCF-MVS73.15 979.29 17477.63 18484.29 15286.06 24365.96 14387.03 28791.10 18569.86 24869.79 23290.64 16457.54 16996.59 11764.37 25782.29 16490.32 215
Andreas Kuhn, Shan Lin, Oliver Erdler: Plane Completion and Filtering for Multi-View Stereo Reconstruction. GCPR 2019
Vis-MVSNet (Re-imp)79.24 17579.57 15478.24 28888.46 18652.29 34390.41 22289.12 26374.24 14569.13 23591.91 14565.77 7190.09 31959.00 29188.09 11292.33 178
114514_t79.17 17677.67 18283.68 16895.32 2965.53 15492.85 11991.60 16463.49 30067.92 25490.63 16646.65 28095.72 15867.01 23183.54 15489.79 223
FA-MVS(test-final)79.12 17777.23 19384.81 12990.54 13763.98 19381.35 33291.71 15771.09 23074.85 17082.94 27052.85 22697.05 8967.97 21981.73 17593.41 146
VPA-MVSNet79.03 17878.00 17882.11 21285.95 24564.48 17593.22 10794.66 3775.05 13674.04 17984.95 25052.17 23293.52 24274.90 16167.04 28388.32 245
OPM-MVS79.00 17978.09 17681.73 21783.52 28663.83 19591.64 17790.30 21476.36 12171.97 20489.93 18346.30 28695.17 18075.10 15677.70 20786.19 277
Ray L. Khuboni, Hongjun Xu: Octagram Propagation Matching for Multi-Scale View Stereopsis (OPM-MVS).
EI-MVSNet78.97 18078.22 17581.25 22785.33 25562.73 23189.53 24693.21 9272.39 18872.14 20290.13 18060.99 13094.72 19367.73 22372.49 24786.29 274
AdaColmapbinary78.94 18177.00 19784.76 13196.34 1765.86 14592.66 12987.97 30562.18 31470.56 21892.37 13443.53 30097.35 7264.50 25682.86 15991.05 208
GeoE78.90 18277.43 18783.29 17888.95 17662.02 24492.31 14186.23 32170.24 24371.34 21389.27 19054.43 21094.04 22663.31 26480.81 18393.81 138
miper_enhance_ethall78.86 18377.97 17981.54 22288.00 20365.17 16191.41 18089.15 26075.19 13468.79 24483.98 26167.17 5892.82 26072.73 17565.30 29286.62 271
VPNet78.82 18477.53 18682.70 18984.52 27066.44 13193.93 7192.23 13080.46 5172.60 19388.38 20049.18 26093.13 24872.47 17963.97 31188.55 240
EPNet_dtu78.80 18579.26 16377.43 29688.06 20049.71 35691.96 16191.95 14377.67 10176.56 15391.28 15858.51 15890.20 31756.37 29980.95 18092.39 176
Wanjuan Su, Wenbing Tao: Efficient Edge-Preserving Multi-View Stereo Network for Depth Estimation. AAAI 2023
tfpn200view978.79 18677.43 18782.88 18592.21 9464.49 17392.05 15496.28 473.48 16371.75 20788.26 20360.07 14295.32 17445.16 34477.58 20988.83 233
TR-MVS78.77 18777.37 19282.95 18490.49 13860.88 26593.67 8790.07 22370.08 24574.51 17291.37 15745.69 28995.70 15960.12 28580.32 18592.29 180
thres40078.68 18877.43 18782.43 19592.21 9464.49 17392.05 15496.28 473.48 16371.75 20788.26 20360.07 14295.32 17445.16 34477.58 20987.48 252
BH-untuned78.68 18877.08 19483.48 17589.84 15163.74 19892.70 12588.59 28771.57 21966.83 27388.65 19651.75 23695.39 17259.03 29084.77 14391.32 202
OMC-MVS78.67 19077.91 18180.95 23985.76 25057.40 31588.49 26588.67 28373.85 15472.43 19992.10 14049.29 25994.55 20372.73 17577.89 20590.91 209
tpm78.58 19177.03 19583.22 18085.94 24764.56 17183.21 31691.14 18478.31 9173.67 18279.68 31964.01 9192.09 28766.07 24271.26 25793.03 159
OpenMVScopyleft70.45 1178.54 19275.92 21186.41 7785.93 24871.68 2092.74 12292.51 12466.49 28064.56 28791.96 14243.88 29998.10 3754.61 30590.65 9189.44 231
EPMVS78.49 19375.98 21086.02 8591.21 12669.68 5280.23 34191.20 17975.25 13372.48 19778.11 32954.65 20593.69 23957.66 29683.04 15894.69 97
AUN-MVS78.37 19477.43 18781.17 22986.60 23357.45 31489.46 24891.16 18174.11 14774.40 17390.49 16955.52 19694.57 20074.73 16360.43 34091.48 196
thres100view90078.37 19477.01 19682.46 19491.89 10663.21 21791.19 19996.33 172.28 19170.45 22187.89 21260.31 13795.32 17445.16 34477.58 20988.83 233
GA-MVS78.33 19676.23 20684.65 13783.65 28466.30 13591.44 17990.14 22176.01 12370.32 22384.02 26042.50 30494.72 19370.98 19177.00 21792.94 162
cascas78.18 19775.77 21385.41 10687.14 22369.11 6192.96 11591.15 18366.71 27870.47 21986.07 23937.49 33196.48 12570.15 19979.80 18990.65 211
UniMVSNet_NR-MVSNet78.15 19877.55 18579.98 25984.46 27260.26 27992.25 14393.20 9477.50 10668.88 24286.61 23266.10 6792.13 28566.38 23862.55 31887.54 250
thres600view778.00 19976.66 20182.03 21491.93 10363.69 20391.30 19296.33 172.43 18670.46 22087.89 21260.31 13794.92 18842.64 35676.64 21987.48 252
FC-MVSNet-test77.99 20078.08 17777.70 29184.89 26555.51 32990.27 22793.75 7176.87 11166.80 27487.59 21865.71 7290.23 31662.89 26973.94 23687.37 255
Anonymous20240521177.96 20175.33 21985.87 9093.73 5364.52 17294.85 4485.36 33062.52 31276.11 15590.18 17629.43 36597.29 7668.51 21677.24 21695.81 50
cl2277.94 20276.78 19981.42 22487.57 21264.93 16990.67 21488.86 27672.45 18567.63 26182.68 27464.07 9092.91 25871.79 18465.30 29286.44 272
XXY-MVS77.94 20276.44 20382.43 19582.60 29464.44 17792.01 15691.83 15273.59 16270.00 22885.82 24254.43 21094.76 19069.63 20268.02 27788.10 247
MS-PatchMatch77.90 20476.50 20282.12 20985.99 24469.95 4391.75 17392.70 11273.97 15162.58 30884.44 25741.11 30995.78 15063.76 26192.17 6880.62 351
FMVSNet377.73 20576.04 20982.80 18691.20 12768.99 6591.87 16491.99 14173.35 16567.04 26983.19 26956.62 18392.14 28459.80 28769.34 26487.28 258
miper_ehance_all_eth77.60 20676.44 20381.09 23685.70 25264.41 18090.65 21588.64 28572.31 18967.37 26782.52 27564.77 8492.64 27170.67 19565.30 29286.24 276
UniMVSNet (Re)77.58 20776.78 19979.98 25984.11 27860.80 26691.76 17193.17 9676.56 11969.93 23184.78 25263.32 10792.36 28064.89 25462.51 32086.78 266
PatchmatchNetpermissive77.46 20874.63 22585.96 8789.55 15970.35 3679.97 34689.55 24372.23 19270.94 21476.91 34057.03 17392.79 26354.27 30781.17 17894.74 96
Fangjinhua Wang, Silvano Galliani, Christoph Vogel, Pablo Speciale, Marc Pollefeys: PatchmatchNet: Learned Multi-View Patchmatch Stereo.
v2v48277.42 20975.65 21582.73 18880.38 31567.13 11391.85 16690.23 21875.09 13569.37 23383.39 26753.79 21794.44 20771.77 18565.00 29886.63 270
CHOSEN 280x42077.35 21076.95 19878.55 28387.07 22562.68 23269.71 37682.95 35268.80 26171.48 21187.27 22566.03 6884.00 36176.47 14882.81 16188.95 232
PS-MVSNAJss77.26 21176.31 20580.13 25480.64 31359.16 29690.63 21891.06 19072.80 17768.58 24884.57 25553.55 21993.96 23172.97 17071.96 25187.27 259
gg-mvs-nofinetune77.18 21274.31 23285.80 9491.42 11968.36 7871.78 37094.72 3349.61 37177.12 14745.92 39577.41 893.98 23067.62 22493.16 5795.05 82
WB-MVSnew77.14 21376.18 20880.01 25886.18 24163.24 21691.26 19394.11 5971.72 21173.52 18387.29 22445.14 29493.00 25156.98 29779.42 19183.80 312
MVP-Stereo77.12 21476.23 20679.79 26681.72 30266.34 13489.29 25090.88 19470.56 24062.01 31182.88 27149.34 25794.13 21865.55 24993.80 4478.88 365
Qingsong Yan: MVP-Stereo: A Parallel Multi-View Patchmatch Stereo Method with Dilation Matching for Photogrammetric Application.
sd_testset77.08 21575.37 21782.20 20589.25 16762.11 24382.06 32489.09 26576.77 11570.84 21687.12 22641.43 30895.01 18367.23 22874.55 22889.48 229
dmvs_re76.93 21675.36 21881.61 22087.78 21060.71 27280.00 34587.99 30379.42 7069.02 23989.47 18846.77 27894.32 20963.38 26374.45 23189.81 222
X-MVStestdata76.86 21774.13 23685.05 11993.22 6563.78 19692.92 11692.66 11773.99 14978.18 13410.19 41055.25 19797.41 6879.16 12991.58 7893.95 131
DU-MVS76.86 21775.84 21279.91 26282.96 29160.26 27991.26 19391.54 16576.46 12068.88 24286.35 23556.16 18892.13 28566.38 23862.55 31887.35 256
Anonymous2024052976.84 21974.15 23584.88 12491.02 12864.95 16893.84 7991.09 18653.57 35973.00 18687.42 22135.91 34197.32 7469.14 21072.41 24992.36 177
c3_l76.83 22075.47 21680.93 24085.02 26364.18 19090.39 22388.11 30071.66 21266.65 27581.64 28763.58 10392.56 27269.31 20762.86 31586.04 282
WR-MVS76.76 22175.74 21479.82 26584.60 26862.27 24192.60 13292.51 12476.06 12267.87 25885.34 24656.76 17990.24 31562.20 27363.69 31386.94 264
v114476.73 22274.88 22282.27 20180.23 31966.60 12891.68 17590.21 22073.69 15969.06 23881.89 28252.73 22894.40 20869.21 20865.23 29585.80 288
IterMVS-LS76.49 22375.18 22180.43 24684.49 27162.74 23090.64 21688.80 27872.40 18765.16 28281.72 28560.98 13192.27 28367.74 22264.65 30386.29 274
Fangjinhua Wang, Silvano Galliani, Christoph Vogel, Marc Pollefeys: IterMVS: Iterative Probability Estimation for Efficient Multi-View Stereo.
V4276.46 22474.55 22882.19 20679.14 33367.82 9490.26 22889.42 24873.75 15768.63 24781.89 28251.31 24194.09 22071.69 18764.84 29984.66 305
v14876.19 22574.47 23081.36 22580.05 32164.44 17791.75 17390.23 21873.68 16067.13 26880.84 30255.92 19393.86 23768.95 21261.73 32985.76 291
Effi-MVS+-dtu76.14 22675.28 22078.72 28283.22 28855.17 33189.87 23987.78 30675.42 13067.98 25381.43 29145.08 29592.52 27475.08 15771.63 25288.48 241
cl____76.07 22774.67 22380.28 24985.15 25961.76 25090.12 23188.73 28071.16 22765.43 27981.57 28961.15 12892.95 25366.54 23562.17 32286.13 280
DIV-MVS_self_test76.07 22774.67 22380.28 24985.14 26061.75 25190.12 23188.73 28071.16 22765.42 28081.60 28861.15 12892.94 25766.54 23562.16 32486.14 278
FMVSNet276.07 22774.01 23882.26 20388.85 17767.66 9891.33 19091.61 16370.84 23465.98 27682.25 27848.03 26892.00 28958.46 29268.73 27287.10 261
v14419276.05 23074.03 23782.12 20979.50 32766.55 13091.39 18489.71 24172.30 19068.17 25181.33 29451.75 23694.03 22867.94 22064.19 30685.77 289
NR-MVSNet76.05 23074.59 22680.44 24582.96 29162.18 24290.83 20991.73 15577.12 11060.96 31486.35 23559.28 15291.80 29260.74 28061.34 33387.35 256
v119275.98 23273.92 23982.15 20779.73 32366.24 13791.22 19689.75 23572.67 17968.49 24981.42 29249.86 25394.27 21367.08 23065.02 29785.95 285
FE-MVS75.97 23373.02 24984.82 12689.78 15265.56 15277.44 35791.07 18964.55 29272.66 19179.85 31746.05 28896.69 11454.97 30480.82 18292.21 186
eth_miper_zixun_eth75.96 23474.40 23180.66 24284.66 26763.02 22189.28 25188.27 29671.88 20365.73 27781.65 28659.45 14892.81 26168.13 21760.53 33886.14 278
TranMVSNet+NR-MVSNet75.86 23574.52 22979.89 26382.44 29660.64 27591.37 18791.37 17276.63 11767.65 26086.21 23852.37 23191.55 29861.84 27560.81 33687.48 252
SCA75.82 23672.76 25285.01 12186.63 23270.08 3981.06 33489.19 25771.60 21870.01 22777.09 33845.53 29090.25 31260.43 28273.27 24094.68 98
LPG-MVS_test75.82 23674.58 22779.56 27284.31 27559.37 29290.44 22089.73 23869.49 25164.86 28388.42 19838.65 31794.30 21172.56 17772.76 24485.01 302
GBi-Net75.65 23873.83 24081.10 23388.85 17765.11 16390.01 23590.32 21070.84 23467.04 26980.25 31248.03 26891.54 29959.80 28769.34 26486.64 267
test175.65 23873.83 24081.10 23388.85 17765.11 16390.01 23590.32 21070.84 23467.04 26980.25 31248.03 26891.54 29959.80 28769.34 26486.64 267
v192192075.63 24073.49 24582.06 21379.38 32866.35 13391.07 20389.48 24471.98 19867.99 25281.22 29749.16 26293.90 23466.56 23464.56 30485.92 287
ACMP71.68 1075.58 24174.23 23479.62 27084.97 26459.64 28790.80 21089.07 26770.39 24162.95 30487.30 22338.28 32193.87 23572.89 17171.45 25585.36 298
Qingshan Xu and Wenbing Tao: Planar Prior Assisted PatchMatch Multi-View Stereo. AAAI 2020
v875.35 24273.26 24781.61 22080.67 31266.82 12189.54 24589.27 25371.65 21363.30 30080.30 31154.99 20394.06 22367.33 22762.33 32183.94 310
tpm cat175.30 24372.21 26184.58 14188.52 18367.77 9578.16 35588.02 30261.88 32168.45 25076.37 34460.65 13494.03 22853.77 31074.11 23491.93 191
PLCcopyleft68.80 1475.23 24473.68 24379.86 26492.93 7558.68 30190.64 21688.30 29460.90 32664.43 29190.53 16742.38 30594.57 20056.52 29876.54 22086.33 273
Jie Liao, Yanping Fu, Qingan Yan, Chunxia xiao: Pyramid Multi-View Stereo with Local Consistency. Pacific Graphics 2019
v124075.21 24572.98 25081.88 21579.20 33066.00 14190.75 21289.11 26471.63 21767.41 26581.22 29747.36 27693.87 23565.46 25064.72 30285.77 289
Fast-Effi-MVS+-dtu75.04 24673.37 24680.07 25580.86 30859.52 29091.20 19885.38 32971.90 20165.20 28184.84 25141.46 30792.97 25266.50 23772.96 24387.73 249
dp75.01 24772.09 26283.76 16389.28 16666.22 13879.96 34789.75 23571.16 22767.80 25977.19 33751.81 23492.54 27350.39 31871.44 25692.51 175
TAPA-MVS70.22 1274.94 24873.53 24479.17 27790.40 14052.07 34489.19 25489.61 24262.69 31170.07 22692.67 12648.89 26594.32 20938.26 37079.97 18791.12 207
Andrea Romanoni, Matteo Matteucci: TAPA-MVS: Textureless-Aware PAtchMatch Multi-View Stereo. ICCV 2019
v1074.77 24972.54 25881.46 22380.33 31766.71 12589.15 25589.08 26670.94 23263.08 30379.86 31652.52 22994.04 22665.70 24662.17 32283.64 313
XVG-OURS-SEG-HR74.70 25073.08 24879.57 27178.25 34557.33 31680.49 33787.32 30963.22 30468.76 24590.12 18244.89 29691.59 29770.55 19774.09 23589.79 223
ACMM69.62 1374.34 25172.73 25479.17 27784.25 27757.87 30790.36 22489.93 22963.17 30665.64 27886.04 24137.79 32994.10 21965.89 24371.52 25485.55 294
Qingshan Xu and Wenbing Tao: Multi-Scale Geometric Consistency Guided Multi-View Stereo. CVPR 2019
CNLPA74.31 25272.30 26080.32 24791.49 11861.66 25390.85 20880.72 35856.67 35163.85 29590.64 16446.75 27990.84 30753.79 30975.99 22488.47 242
XVG-OURS74.25 25372.46 25979.63 26978.45 34357.59 31280.33 33987.39 30863.86 29768.76 24589.62 18640.50 31191.72 29469.00 21174.25 23389.58 226
test_fmvs174.07 25473.69 24275.22 31478.91 33747.34 36989.06 25874.69 37263.68 29979.41 11991.59 15224.36 37487.77 33885.22 7976.26 22290.55 214
CVMVSNet74.04 25574.27 23373.33 32985.33 25543.94 38189.53 24688.39 29154.33 35870.37 22290.13 18049.17 26184.05 35961.83 27679.36 19391.99 190
Baseline_NR-MVSNet73.99 25672.83 25177.48 29580.78 31059.29 29591.79 16884.55 33868.85 26068.99 24080.70 30356.16 18892.04 28862.67 27060.98 33581.11 345
pmmvs473.92 25771.81 26680.25 25179.17 33165.24 15987.43 28387.26 31167.64 27263.46 29883.91 26248.96 26491.53 30262.94 26765.49 29183.96 309
D2MVS73.80 25872.02 26379.15 27979.15 33262.97 22288.58 26490.07 22372.94 17259.22 32378.30 32642.31 30692.70 26765.59 24872.00 25081.79 340
CR-MVSNet73.79 25970.82 27482.70 18983.15 28967.96 9170.25 37384.00 34373.67 16169.97 22972.41 35857.82 16689.48 32452.99 31373.13 24190.64 212
test_djsdf73.76 26072.56 25777.39 29777.00 35553.93 33789.07 25690.69 19765.80 28463.92 29382.03 28143.14 30392.67 26872.83 17268.53 27385.57 293
pmmvs573.35 26171.52 26878.86 28178.64 34160.61 27691.08 20186.90 31367.69 26963.32 29983.64 26344.33 29890.53 30962.04 27466.02 28985.46 296
Anonymous2023121173.08 26270.39 27881.13 23190.62 13663.33 21491.40 18290.06 22551.84 36464.46 29080.67 30536.49 33994.07 22263.83 26064.17 30785.98 284
tt080573.07 26370.73 27580.07 25578.37 34457.05 31887.78 27892.18 13661.23 32567.04 26986.49 23431.35 35994.58 19865.06 25367.12 28288.57 239
miper_lstm_enhance73.05 26471.73 26777.03 30183.80 28158.32 30481.76 32588.88 27469.80 24961.01 31378.23 32857.19 17187.51 34265.34 25159.53 34385.27 301
jajsoiax73.05 26471.51 26977.67 29277.46 35254.83 33388.81 26090.04 22669.13 25862.85 30683.51 26531.16 36092.75 26470.83 19269.80 26085.43 297
LCM-MVSNet-Re72.93 26671.84 26576.18 31088.49 18448.02 36480.07 34470.17 38373.96 15252.25 35480.09 31549.98 25188.24 33267.35 22584.23 15192.28 181
pm-mvs172.89 26771.09 27178.26 28779.10 33457.62 31190.80 21089.30 25267.66 27062.91 30581.78 28449.11 26392.95 25360.29 28458.89 34684.22 308
tpmvs72.88 26869.76 28482.22 20490.98 12967.05 11578.22 35488.30 29463.10 30764.35 29274.98 35155.09 20294.27 21343.25 35069.57 26385.34 299
test0.0.03 172.76 26972.71 25572.88 33380.25 31847.99 36591.22 19689.45 24671.51 22262.51 30987.66 21553.83 21585.06 35550.16 32067.84 28085.58 292
UniMVSNet_ETH3D72.74 27070.53 27779.36 27478.62 34256.64 32285.01 29989.20 25663.77 29864.84 28584.44 25734.05 34891.86 29163.94 25970.89 25989.57 227
mvs_tets72.71 27171.11 27077.52 29377.41 35354.52 33588.45 26689.76 23468.76 26362.70 30783.26 26829.49 36492.71 26570.51 19869.62 26285.34 299
FMVSNet172.71 27169.91 28281.10 23383.60 28565.11 16390.01 23590.32 21063.92 29663.56 29780.25 31236.35 34091.54 29954.46 30666.75 28586.64 267
test_fmvs1_n72.69 27371.92 26474.99 31771.15 37547.08 37187.34 28575.67 36763.48 30178.08 13691.17 15920.16 38587.87 33584.65 8975.57 22690.01 220
IterMVS72.65 27470.83 27278.09 28982.17 29862.96 22387.64 28186.28 31971.56 22060.44 31678.85 32445.42 29286.66 34663.30 26561.83 32684.65 306
Fangjinhua Wang, Silvano Galliani, Christoph Vogel, Marc Pollefeys: IterMVS: Iterative Probability Estimation for Efficient Multi-View Stereo.
myMVS_eth3d72.58 27572.74 25372.10 34187.87 20649.45 35888.07 27089.01 26972.91 17463.11 30188.10 20763.63 9885.54 35132.73 38469.23 26781.32 343
PatchMatch-RL72.06 27669.98 27978.28 28689.51 16055.70 32883.49 30883.39 35061.24 32463.72 29682.76 27234.77 34593.03 25053.37 31277.59 20886.12 281
PVSNet_068.08 1571.81 27768.32 29382.27 20184.68 26662.31 24088.68 26290.31 21375.84 12457.93 33480.65 30637.85 32894.19 21669.94 20029.05 39990.31 216
MIMVSNet71.64 27868.44 29181.23 22881.97 30164.44 17773.05 36988.80 27869.67 25064.59 28674.79 35232.79 35187.82 33653.99 30876.35 22191.42 197
test_vis1_n71.63 27970.73 27574.31 32469.63 38147.29 37086.91 28972.11 37763.21 30575.18 16690.17 17720.40 38385.76 35084.59 9074.42 23289.87 221
IterMVS-SCA-FT71.55 28069.97 28076.32 30881.48 30460.67 27487.64 28185.99 32466.17 28259.50 32178.88 32345.53 29083.65 36362.58 27161.93 32584.63 307
v7n71.31 28168.65 28879.28 27576.40 35760.77 26886.71 29289.45 24664.17 29558.77 32878.24 32744.59 29793.54 24157.76 29461.75 32883.52 316
anonymousdsp71.14 28269.37 28676.45 30772.95 37054.71 33484.19 30388.88 27461.92 32062.15 31079.77 31838.14 32491.44 30468.90 21367.45 28183.21 322
F-COLMAP70.66 28368.44 29177.32 29886.37 23855.91 32688.00 27286.32 31856.94 34957.28 33888.07 20933.58 34992.49 27551.02 31668.37 27483.55 314
WR-MVS_H70.59 28469.94 28172.53 33581.03 30751.43 34787.35 28492.03 14067.38 27360.23 31880.70 30355.84 19483.45 36546.33 34058.58 34882.72 329
CP-MVSNet70.50 28569.91 28272.26 33880.71 31151.00 35087.23 28690.30 21467.84 26859.64 32082.69 27350.23 25082.30 37351.28 31559.28 34483.46 318
RPMNet70.42 28665.68 30684.63 13983.15 28967.96 9170.25 37390.45 20446.83 38069.97 22965.10 37856.48 18795.30 17735.79 37573.13 24190.64 212
testing370.38 28770.83 27269.03 35285.82 24943.93 38290.72 21390.56 20368.06 26760.24 31786.82 23164.83 8284.12 35726.33 39264.10 30879.04 364
tfpnnormal70.10 28867.36 29778.32 28583.45 28760.97 26488.85 25992.77 11064.85 29160.83 31578.53 32543.52 30193.48 24331.73 38761.70 33080.52 352
TransMVSNet (Re)70.07 28967.66 29577.31 29980.62 31459.13 29791.78 17084.94 33465.97 28360.08 31980.44 30850.78 24491.87 29048.84 32645.46 37680.94 347
CL-MVSNet_self_test69.92 29068.09 29475.41 31373.25 36955.90 32790.05 23489.90 23069.96 24661.96 31276.54 34151.05 24387.64 33949.51 32450.59 36882.70 331
DP-MVS69.90 29166.48 29980.14 25395.36 2862.93 22489.56 24376.11 36550.27 37057.69 33685.23 24739.68 31395.73 15433.35 38071.05 25881.78 341
PS-CasMVS69.86 29269.13 28772.07 34280.35 31650.57 35287.02 28889.75 23567.27 27459.19 32482.28 27746.58 28182.24 37450.69 31759.02 34583.39 320
Syy-MVS69.65 29369.52 28570.03 34887.87 20643.21 38388.07 27089.01 26972.91 17463.11 30188.10 20745.28 29385.54 35122.07 39669.23 26781.32 343
MSDG69.54 29465.73 30580.96 23885.11 26263.71 20184.19 30383.28 35156.95 34854.50 34584.03 25931.50 35796.03 14442.87 35469.13 26983.14 324
PEN-MVS69.46 29568.56 28972.17 34079.27 32949.71 35686.90 29089.24 25467.24 27759.08 32582.51 27647.23 27783.54 36448.42 32857.12 34983.25 321
LS3D69.17 29666.40 30177.50 29491.92 10456.12 32585.12 29880.37 35946.96 37856.50 34087.51 22037.25 33293.71 23832.52 38679.40 19282.68 332
PatchT69.11 29765.37 31080.32 24782.07 30063.68 20467.96 38387.62 30750.86 36869.37 23365.18 37757.09 17288.53 33041.59 35966.60 28688.74 236
KD-MVS_2432*160069.03 29866.37 30277.01 30285.56 25361.06 26281.44 33090.25 21667.27 27458.00 33276.53 34254.49 20787.63 34048.04 33035.77 39182.34 335
miper_refine_blended69.03 29866.37 30277.01 30285.56 25361.06 26281.44 33090.25 21667.27 27458.00 33276.53 34254.49 20787.63 34048.04 33035.77 39182.34 335
mvsany_test168.77 30068.56 28969.39 35073.57 36845.88 37780.93 33560.88 39659.65 33571.56 21090.26 17543.22 30275.05 38474.26 16562.70 31787.25 260
ACMH63.93 1768.62 30164.81 31280.03 25785.22 25863.25 21587.72 27984.66 33660.83 32751.57 35779.43 32227.29 37094.96 18541.76 35764.84 29981.88 339
Qingshan Xu and Wenbing Tao: Multi-Scale Geometric Consistency Guided Multi-View Stereo. CVPR 2019
EG-PatchMatch MVS68.55 30265.41 30977.96 29078.69 34062.93 22489.86 24089.17 25860.55 32850.27 36277.73 33222.60 37994.06 22347.18 33672.65 24676.88 373
ADS-MVSNet68.54 30364.38 31981.03 23788.06 20066.90 12068.01 38184.02 34257.57 34364.48 28869.87 36838.68 31589.21 32640.87 36167.89 27886.97 262
DTE-MVSNet68.46 30467.33 29871.87 34477.94 34949.00 36286.16 29588.58 28866.36 28158.19 32982.21 27946.36 28283.87 36244.97 34755.17 35682.73 328
our_test_368.29 30564.69 31479.11 28078.92 33564.85 17088.40 26785.06 33260.32 33152.68 35276.12 34640.81 31089.80 32344.25 34955.65 35482.67 333
Patchmatch-RL test68.17 30664.49 31779.19 27671.22 37453.93 33770.07 37571.54 38169.22 25556.79 33962.89 38256.58 18488.61 32769.53 20452.61 36395.03 84
XVG-ACMP-BASELINE68.04 30765.53 30875.56 31274.06 36752.37 34278.43 35185.88 32562.03 31858.91 32781.21 29920.38 38491.15 30660.69 28168.18 27583.16 323
FMVSNet568.04 30765.66 30775.18 31684.43 27357.89 30683.54 30786.26 32061.83 32253.64 35073.30 35537.15 33585.08 35448.99 32561.77 32782.56 334
ppachtmachnet_test67.72 30963.70 32179.77 26778.92 33566.04 14088.68 26282.90 35360.11 33355.45 34275.96 34739.19 31490.55 30839.53 36552.55 36482.71 330
ACMH+65.35 1667.65 31064.55 31576.96 30484.59 26957.10 31788.08 26980.79 35758.59 34153.00 35181.09 30126.63 37292.95 25346.51 33861.69 33180.82 348
pmmvs667.57 31164.76 31376.00 31172.82 37253.37 33988.71 26186.78 31753.19 36057.58 33778.03 33035.33 34492.41 27755.56 30254.88 35882.21 337
Anonymous2023120667.53 31265.78 30472.79 33474.95 36347.59 36788.23 26887.32 30961.75 32358.07 33177.29 33537.79 32987.29 34442.91 35263.71 31283.48 317
Patchmtry67.53 31263.93 32078.34 28482.12 29964.38 18168.72 37884.00 34348.23 37759.24 32272.41 35857.82 16689.27 32546.10 34156.68 35381.36 342
USDC67.43 31464.51 31676.19 30977.94 34955.29 33078.38 35285.00 33373.17 16748.36 37080.37 30921.23 38192.48 27652.15 31464.02 31080.81 349
ADS-MVSNet266.90 31563.44 32377.26 30088.06 20060.70 27368.01 38175.56 36957.57 34364.48 28869.87 36838.68 31584.10 35840.87 36167.89 27886.97 262
CMPMVSbinary48.56 2166.77 31664.41 31873.84 32670.65 37850.31 35377.79 35685.73 32845.54 38244.76 38082.14 28035.40 34390.14 31863.18 26674.54 23081.07 346
M. Jancosek, T. Pajdla: Multi-View Reconstruction Preserving Weakly-Supported Surfaces. CVPR 2011
OpenMVS_ROBcopyleft61.12 1866.39 31762.92 32676.80 30676.51 35657.77 30889.22 25283.41 34955.48 35553.86 34977.84 33126.28 37393.95 23234.90 37768.76 27178.68 367
LTVRE_ROB59.60 1966.27 31863.54 32274.45 32184.00 28051.55 34667.08 38483.53 34758.78 33954.94 34480.31 31034.54 34693.23 24740.64 36368.03 27678.58 368
Andreas Kuhn, Heiko Hirschmüller, Daniel Scharstein, Helmut Mayer: A TV Prior for High-Quality Scalable Multi-View Stereo Reconstruction. International Journal of Computer Vision 2016
JIA-IIPM66.06 31962.45 32976.88 30581.42 30654.45 33657.49 39688.67 28349.36 37263.86 29446.86 39456.06 19190.25 31249.53 32368.83 27085.95 285
Patchmatch-test65.86 32060.94 33580.62 24483.75 28258.83 29958.91 39575.26 37144.50 38550.95 36177.09 33858.81 15787.90 33435.13 37664.03 30995.12 79
UnsupCasMVSNet_eth65.79 32163.10 32473.88 32570.71 37750.29 35481.09 33389.88 23172.58 18149.25 36774.77 35332.57 35387.43 34355.96 30141.04 38383.90 311
test_fmvs265.78 32264.84 31168.60 35466.54 38641.71 38583.27 31369.81 38454.38 35767.91 25584.54 25615.35 39081.22 37875.65 15266.16 28882.88 325
dmvs_testset65.55 32366.45 30062.86 36479.87 32222.35 41076.55 35971.74 37977.42 10955.85 34187.77 21451.39 24080.69 37931.51 39065.92 29085.55 294
pmmvs-eth3d65.53 32462.32 33075.19 31569.39 38259.59 28882.80 32183.43 34862.52 31251.30 35972.49 35632.86 35087.16 34555.32 30350.73 36778.83 366
mamv465.18 32567.43 29658.44 36877.88 35149.36 36169.40 37770.99 38248.31 37657.78 33585.53 24559.01 15551.88 40673.67 16764.32 30574.07 378
SixPastTwentyTwo64.92 32661.78 33374.34 32378.74 33949.76 35583.42 31179.51 36262.86 30850.27 36277.35 33330.92 36290.49 31045.89 34247.06 37382.78 326
OurMVSNet-221017-064.68 32762.17 33172.21 33976.08 36047.35 36880.67 33681.02 35656.19 35251.60 35679.66 32027.05 37188.56 32953.60 31153.63 36180.71 350
test_040264.54 32861.09 33474.92 31884.10 27960.75 27087.95 27379.71 36152.03 36252.41 35377.20 33632.21 35591.64 29523.14 39461.03 33472.36 382
testgi64.48 32962.87 32769.31 35171.24 37340.62 38885.49 29679.92 36065.36 28854.18 34783.49 26623.74 37784.55 35641.60 35860.79 33782.77 327
RPSCF64.24 33061.98 33271.01 34676.10 35945.00 37875.83 36475.94 36646.94 37958.96 32684.59 25431.40 35882.00 37547.76 33460.33 34286.04 282
EU-MVSNet64.01 33163.01 32567.02 36074.40 36638.86 39383.27 31386.19 32245.11 38354.27 34681.15 30036.91 33880.01 38148.79 32757.02 35082.19 338
test20.0363.83 33262.65 32867.38 35970.58 37939.94 38986.57 29384.17 34063.29 30351.86 35577.30 33437.09 33682.47 37138.87 36954.13 36079.73 358
MDA-MVSNet_test_wron63.78 33360.16 33774.64 31978.15 34760.41 27783.49 30884.03 34156.17 35439.17 39071.59 36437.22 33383.24 36842.87 35448.73 37080.26 355
YYNet163.76 33460.14 33874.62 32078.06 34860.19 28283.46 31083.99 34556.18 35339.25 38971.56 36537.18 33483.34 36642.90 35348.70 37180.32 354
K. test v363.09 33559.61 34073.53 32876.26 35849.38 36083.27 31377.15 36464.35 29447.77 37272.32 36028.73 36687.79 33749.93 32236.69 38983.41 319
COLMAP_ROBcopyleft57.96 2062.98 33659.65 33972.98 33281.44 30553.00 34183.75 30675.53 37048.34 37548.81 36981.40 29324.14 37590.30 31132.95 38260.52 33975.65 376
Johannes L. Schönberger, Enliang Zheng, Marc Pollefeys, Jan-Michael Frahm: Pixelwise View Selection for Unstructured Multi-View Stereo. ECCV 2016
Anonymous2024052162.09 33759.08 34171.10 34567.19 38548.72 36383.91 30585.23 33150.38 36947.84 37171.22 36720.74 38285.51 35346.47 33958.75 34779.06 363
AllTest61.66 33858.06 34372.46 33679.57 32451.42 34880.17 34268.61 38651.25 36645.88 37481.23 29519.86 38686.58 34738.98 36757.01 35179.39 360
UnsupCasMVSNet_bld61.60 33957.71 34473.29 33068.73 38351.64 34578.61 35089.05 26857.20 34746.11 37361.96 38528.70 36788.60 32850.08 32138.90 38779.63 359
MDA-MVSNet-bldmvs61.54 34057.70 34573.05 33179.53 32657.00 32183.08 31781.23 35557.57 34334.91 39372.45 35732.79 35186.26 34935.81 37441.95 38175.89 375
KD-MVS_self_test60.87 34158.60 34267.68 35766.13 38739.93 39075.63 36684.70 33557.32 34649.57 36568.45 37229.55 36382.87 36948.09 32947.94 37280.25 356
kuosan60.86 34260.24 33662.71 36581.57 30346.43 37475.70 36585.88 32557.98 34248.95 36869.53 37058.42 15976.53 38328.25 39135.87 39065.15 389
TinyColmap60.32 34356.42 35072.00 34378.78 33853.18 34078.36 35375.64 36852.30 36141.59 38875.82 34914.76 39388.35 33135.84 37354.71 35974.46 377
MVS-HIRNet60.25 34455.55 35174.35 32284.37 27456.57 32371.64 37174.11 37334.44 39345.54 37842.24 40031.11 36189.81 32140.36 36476.10 22376.67 374
MIMVSNet160.16 34557.33 34668.67 35369.71 38044.13 38078.92 34984.21 33955.05 35644.63 38171.85 36223.91 37681.54 37732.63 38555.03 35780.35 353
PM-MVS59.40 34656.59 34867.84 35563.63 38941.86 38476.76 35863.22 39359.01 33851.07 36072.27 36111.72 39683.25 36761.34 27750.28 36978.39 369
new-patchmatchnet59.30 34756.48 34967.79 35665.86 38844.19 37982.47 32281.77 35459.94 33443.65 38466.20 37627.67 36981.68 37639.34 36641.40 38277.50 372
test_vis1_rt59.09 34857.31 34764.43 36268.44 38446.02 37683.05 31948.63 40551.96 36349.57 36563.86 38116.30 38880.20 38071.21 19062.79 31667.07 388
test_fmvs356.82 34954.86 35362.69 36653.59 39935.47 39675.87 36365.64 39143.91 38655.10 34371.43 3666.91 40474.40 38768.64 21552.63 36278.20 370
DSMNet-mixed56.78 35054.44 35463.79 36363.21 39029.44 40564.43 38764.10 39242.12 39051.32 35871.60 36331.76 35675.04 38536.23 37265.20 29686.87 265
pmmvs355.51 35151.50 35767.53 35857.90 39750.93 35180.37 33873.66 37440.63 39144.15 38364.75 37916.30 38878.97 38244.77 34840.98 38572.69 380
TDRefinement55.28 35251.58 35666.39 36159.53 39646.15 37576.23 36172.80 37544.60 38442.49 38676.28 34515.29 39182.39 37233.20 38143.75 37870.62 384
dongtai55.18 35355.46 35254.34 37676.03 36136.88 39476.07 36284.61 33751.28 36543.41 38564.61 38056.56 18567.81 39418.09 39928.50 40058.32 392
LF4IMVS54.01 35452.12 35559.69 36762.41 39239.91 39168.59 37968.28 38842.96 38944.55 38275.18 35014.09 39568.39 39341.36 36051.68 36570.78 383
N_pmnet50.55 35549.11 35854.88 37477.17 3544.02 41884.36 3022.00 41648.59 37345.86 37668.82 37132.22 35482.80 37031.58 38851.38 36677.81 371
new_pmnet49.31 35646.44 35957.93 36962.84 39140.74 38768.47 38062.96 39436.48 39235.09 39257.81 38914.97 39272.18 38932.86 38346.44 37460.88 391
mvsany_test348.86 35746.35 36056.41 37046.00 40531.67 40162.26 38947.25 40643.71 38745.54 37868.15 37310.84 39764.44 40257.95 29335.44 39373.13 379
test_f46.58 35843.45 36255.96 37145.18 40632.05 40061.18 39049.49 40433.39 39442.05 38762.48 3847.00 40365.56 39847.08 33743.21 38070.27 385
WB-MVS46.23 35944.94 36150.11 37962.13 39321.23 41276.48 36055.49 39845.89 38135.78 39161.44 38735.54 34272.83 3889.96 40621.75 40156.27 394
FPMVS45.64 36043.10 36453.23 37751.42 40236.46 39564.97 38671.91 37829.13 39727.53 39761.55 3869.83 39965.01 40016.00 40355.58 35558.22 393
SSC-MVS44.51 36143.35 36347.99 38361.01 39518.90 41474.12 36854.36 39943.42 38834.10 39460.02 38834.42 34770.39 3919.14 40819.57 40254.68 395
EGC-MVSNET42.35 36238.09 36555.11 37374.57 36446.62 37371.63 37255.77 3970.04 4110.24 41262.70 38314.24 39474.91 38617.59 40046.06 37543.80 397
LCM-MVSNet40.54 36335.79 36854.76 37536.92 41230.81 40251.41 39969.02 38522.07 39924.63 39945.37 3964.56 40865.81 39733.67 37934.50 39467.67 386
APD_test140.50 36437.31 36750.09 38051.88 40035.27 39759.45 39452.59 40121.64 40026.12 39857.80 3904.56 40866.56 39622.64 39539.09 38648.43 396
test_vis3_rt40.46 36537.79 36648.47 38244.49 40733.35 39966.56 38532.84 41332.39 39529.65 39539.13 4033.91 41168.65 39250.17 31940.99 38443.40 398
ANet_high40.27 36635.20 36955.47 37234.74 41334.47 39863.84 38871.56 38048.42 37418.80 40241.08 4019.52 40064.45 40120.18 3978.66 40967.49 387
test_method38.59 36735.16 37048.89 38154.33 39821.35 41145.32 40253.71 4007.41 40828.74 39651.62 3928.70 40152.87 40533.73 37832.89 39572.47 381
PMMVS237.93 36833.61 37150.92 37846.31 40424.76 40860.55 39350.05 40228.94 39820.93 40047.59 3934.41 41065.13 39925.14 39318.55 40462.87 390
Gipumacopyleft34.91 36931.44 37245.30 38470.99 37639.64 39219.85 40672.56 37620.10 40216.16 40621.47 4075.08 40771.16 39013.07 40443.70 37925.08 404
S. Galliani, K. Lasinger, K. Schindler: Massively Parallel Multiview Stereopsis by Surface Normal Diffusion. ICCV 2015
testf132.77 37029.47 37342.67 38641.89 40930.81 40252.07 39743.45 40715.45 40318.52 40344.82 3972.12 41258.38 40316.05 40130.87 39738.83 399
APD_test232.77 37029.47 37342.67 38641.89 40930.81 40252.07 39743.45 40715.45 40318.52 40344.82 3972.12 41258.38 40316.05 40130.87 39738.83 399
PMVScopyleft26.43 2231.84 37228.16 37542.89 38525.87 41527.58 40650.92 40049.78 40321.37 40114.17 40740.81 4022.01 41466.62 3959.61 40738.88 38834.49 403
Y. Furukawa, J. Ponce: Accurate, dense, and robust multiview stereopsis. PAMI (2010)
E-PMN24.61 37324.00 37726.45 39043.74 40818.44 41560.86 39139.66 40915.11 4059.53 40922.10 4066.52 40546.94 4088.31 40910.14 40613.98 406
MVEpermissive24.84 2324.35 37419.77 38038.09 38834.56 41426.92 40726.57 40438.87 41111.73 40711.37 40827.44 4041.37 41550.42 40711.41 40514.60 40536.93 401
Simon Fuhrmann, Fabian Langguth, Michael Goesele: MVE - A Multi-View Reconstruction Environment. EUROGRAPHICS Workshops on Graphics and Cultural Heritage (2014)
EMVS23.76 37523.20 37925.46 39141.52 41116.90 41660.56 39238.79 41214.62 4068.99 41020.24 4097.35 40245.82 4097.25 4109.46 40713.64 407
tmp_tt22.26 37623.75 37817.80 3925.23 41612.06 41735.26 40339.48 4102.82 41018.94 40144.20 39922.23 38024.64 41136.30 3719.31 40816.69 405
cdsmvs_eth3d_5k19.86 37726.47 3760.00 3960.00 4190.00 4210.00 40793.45 840.00 4140.00 41595.27 5649.56 2550.00 4150.00 4140.00 4120.00 411
wuyk23d11.30 37810.95 38112.33 39348.05 40319.89 41325.89 4051.92 4173.58 4093.12 4111.37 4110.64 41615.77 4126.23 4117.77 4101.35 408
ab-mvs-re7.91 37910.55 3820.00 3960.00 4190.00 4210.00 4070.00 4200.00 4140.00 41594.95 660.00 4190.00 4150.00 4140.00 4120.00 411
testmvs7.23 3809.62 3830.06 3950.04 4170.02 42084.98 3000.02 4180.03 4120.18 4131.21 4120.01 4180.02 4130.14 4120.01 4110.13 410
test1236.92 3819.21 3840.08 3940.03 4180.05 41981.65 3280.01 4190.02 4130.14 4140.85 4130.03 4170.02 4130.12 4130.00 4120.16 409
pcd_1.5k_mvsjas4.46 3825.95 3850.00 3960.00 4190.00 4210.00 4070.00 4200.00 4140.00 4150.00 41453.55 2190.00 4150.00 4140.00 4120.00 411
test_blank0.00 3830.00 3860.00 3960.00 4190.00 4210.00 4070.00 4200.00 4140.00 4150.00 4140.00 4190.00 4150.00 4140.00 4120.00 411
uanet_test0.00 3830.00 3860.00 3960.00 4190.00 4210.00 4070.00 4200.00 4140.00 4150.00 4140.00 4190.00 4150.00 4140.00 4120.00 411
DCPMVS0.00 3830.00 3860.00 3960.00 4190.00 4210.00 4070.00 4200.00 4140.00 4150.00 4140.00 4190.00 4150.00 4140.00 4120.00 411
sosnet-low-res0.00 3830.00 3860.00 3960.00 4190.00 4210.00 4070.00 4200.00 4140.00 4150.00 4140.00 4190.00 4150.00 4140.00 4120.00 411
sosnet0.00 3830.00 3860.00 3960.00 4190.00 4210.00 4070.00 4200.00 4140.00 4150.00 4140.00 4190.00 4150.00 4140.00 4120.00 411
uncertanet0.00 3830.00 3860.00 3960.00 4190.00 4210.00 4070.00 4200.00 4140.00 4150.00 4140.00 4190.00 4150.00 4140.00 4120.00 411
Regformer0.00 3830.00 3860.00 3960.00 4190.00 4210.00 4070.00 4200.00 4140.00 4150.00 4140.00 4190.00 4150.00 4140.00 4120.00 411
uanet0.00 3830.00 3860.00 3960.00 4190.00 4210.00 4070.00 4200.00 4140.00 4150.00 4140.00 4190.00 4150.00 4140.00 4120.00 411
WAC-MVS49.45 35831.56 389
FOURS193.95 4661.77 24993.96 6991.92 14462.14 31786.57 46
MSC_two_6792asdad89.60 997.31 473.22 1495.05 2599.07 1392.01 2594.77 2696.51 24
PC_three_145280.91 4694.07 296.83 1883.57 499.12 595.70 797.42 497.55 4
No_MVS89.60 997.31 473.22 1495.05 2599.07 1392.01 2594.77 2696.51 24
test_one_060196.32 1869.74 5094.18 5671.42 22490.67 1996.85 1674.45 18
eth-test20.00 419
eth-test0.00 419
ZD-MVS96.63 965.50 15593.50 8270.74 23885.26 6295.19 6264.92 8197.29 7687.51 5893.01 58
RE-MVS-def80.48 14292.02 9858.56 30290.90 20590.45 20462.76 30978.89 12594.46 8049.30 25878.77 13586.77 12892.28 181
IU-MVS96.46 1169.91 4495.18 1980.75 4895.28 192.34 2295.36 1496.47 28
OPU-MVS89.97 397.52 373.15 1696.89 697.00 983.82 299.15 295.72 597.63 397.62 2
test_241102_TWO94.41 4771.65 21392.07 997.21 474.58 1799.11 692.34 2295.36 1496.59 19
test_241102_ONE96.45 1269.38 5594.44 4571.65 21392.11 797.05 776.79 999.11 6
9.1487.63 2893.86 4894.41 5294.18 5672.76 17886.21 4896.51 2466.64 6297.88 4490.08 3994.04 40
save fliter93.84 4967.89 9395.05 3992.66 11778.19 92
test_0728_THIRD72.48 18390.55 2096.93 1176.24 1199.08 1191.53 3094.99 1896.43 32
test_0728_SECOND88.70 1996.45 1270.43 3596.64 1094.37 5199.15 291.91 2894.90 2296.51 24
test072696.40 1569.99 4096.76 894.33 5371.92 19991.89 1197.11 673.77 21
GSMVS94.68 98
test_part296.29 1968.16 8790.78 17
sam_mvs157.85 16594.68 98
sam_mvs54.91 204
ambc69.61 34961.38 39441.35 38649.07 40185.86 32750.18 36466.40 37510.16 39888.14 33345.73 34344.20 37779.32 362
MTGPAbinary92.23 130
test_post178.95 34820.70 40853.05 22491.50 30360.43 282
test_post23.01 40556.49 18692.67 268
patchmatchnet-post67.62 37457.62 16890.25 312
GG-mvs-BLEND86.53 7391.91 10569.67 5375.02 36794.75 3278.67 13290.85 16377.91 794.56 20272.25 18093.74 4695.36 64
MTMP93.77 8332.52 414
gm-plane-assit88.42 18867.04 11678.62 8891.83 14697.37 7076.57 147
test9_res89.41 4194.96 1995.29 69
TEST994.18 4167.28 10894.16 5893.51 8071.75 21085.52 5795.33 5168.01 5297.27 80
test_894.19 4067.19 11094.15 6093.42 8771.87 20485.38 6095.35 5068.19 5096.95 103
agg_prior286.41 7194.75 3095.33 65
agg_prior94.16 4366.97 11893.31 9084.49 6896.75 113
TestCases72.46 33679.57 32451.42 34868.61 38651.25 36645.88 37481.23 29519.86 38686.58 34738.98 36757.01 35179.39 360
test_prior467.18 11293.92 72
test_prior295.10 3875.40 13185.25 6395.61 4567.94 5387.47 6094.77 26
test_prior86.42 7694.71 3567.35 10793.10 10096.84 11095.05 82
旧先验292.00 15959.37 33787.54 3993.47 24475.39 154
新几何291.41 180
新几何184.73 13292.32 9064.28 18691.46 17059.56 33679.77 11492.90 12056.95 17896.57 11963.40 26292.91 6093.34 148
旧先验191.94 10260.74 27191.50 16894.36 8465.23 7691.84 7394.55 105
无先验92.71 12492.61 12162.03 31897.01 9366.63 23393.97 130
原ACMM292.01 156
原ACMM184.42 14693.21 6764.27 18793.40 8965.39 28779.51 11792.50 12858.11 16496.69 11465.27 25293.96 4192.32 179
test22289.77 15361.60 25489.55 24489.42 24856.83 35077.28 14592.43 13252.76 22791.14 8793.09 156
testdata296.09 13861.26 278
segment_acmp65.94 69
testdata81.34 22689.02 17457.72 30989.84 23258.65 34085.32 6194.09 9657.03 17393.28 24669.34 20690.56 9393.03 159
testdata189.21 25377.55 105
test1287.09 5394.60 3668.86 6792.91 10682.67 8465.44 7497.55 6293.69 4994.84 91
plane_prior786.94 22861.51 255
plane_prior687.23 22062.32 23950.66 245
plane_prior591.31 17495.55 16776.74 14578.53 20288.39 243
plane_prior489.14 193
plane_prior361.95 24779.09 7972.53 195
plane_prior293.13 10878.81 85
plane_prior187.15 222
plane_prior62.42 23593.85 7679.38 7178.80 199
n20.00 420
nn0.00 420
door-mid66.01 390
lessismore_v073.72 32772.93 37147.83 36661.72 39545.86 37673.76 35428.63 36889.81 32147.75 33531.37 39683.53 315
LGP-MVS_train79.56 27284.31 27559.37 29289.73 23869.49 25164.86 28388.42 19838.65 31794.30 21172.56 17772.76 24485.01 302
test1193.01 102
door66.57 389
HQP5-MVS63.66 205
HQP-NCC87.54 21394.06 6279.80 6274.18 174
ACMP_Plane87.54 21394.06 6279.80 6274.18 174
BP-MVS77.63 142
HQP4-MVS74.18 17495.61 16288.63 237
HQP3-MVS91.70 16078.90 197
HQP2-MVS51.63 238
NP-MVS87.41 21663.04 22090.30 173
MDTV_nov1_ep13_2view59.90 28580.13 34367.65 27172.79 19054.33 21259.83 28692.58 171
MDTV_nov1_ep1372.61 25689.06 17368.48 7580.33 33990.11 22271.84 20671.81 20675.92 34853.01 22593.92 23348.04 33073.38 239
ACMMP++_ref71.63 252
ACMMP++69.72 261
Test By Simon54.21 213
ITE_SJBPF70.43 34774.44 36547.06 37277.32 36360.16 33254.04 34883.53 26423.30 37884.01 36043.07 35161.58 33280.21 357
DeepMVS_CXcopyleft34.71 38951.45 40124.73 40928.48 41531.46 39617.49 40552.75 3915.80 40642.60 41018.18 39819.42 40336.81 402