This table lists the benchmark results for the high-res multi-view scenario. The following metrics are evaluated:

(*) For exact definitions, detailing how potentially incomplete ground truth is taken into account, see our paper.

The datasets are grouped into different categories, and result averages are computed for a category and method if results of the method are available for all datasets within the category. Note that the category "all" includes both the high-res multi-view and the low-res many-view scenarios.

Methods with suffix _ROB may participate in the Robust Vision Challenge.

Click a dataset result cell to show a visualization of the reconstruction. For training datasets, ground truth and accuracy / completeness visualizations are also available. The visualizations may not work with mobile browsers.




Method Infoallhigh-res
multi-view
indooroutdoorbotani.boulde.bridgedoorexhibi.lectur.living.loungeobserv.old co.statueterrac.
sort bysort bysort bysort bysort bysort bysort bysort bysort bysort bysorted bysort bysort bysort bysort bysort by
DeepPCF-MVS81.17 189.72 991.38 384.72 12793.00 8158.16 29296.72 794.41 4586.50 690.25 1897.83 175.46 1498.67 2392.78 595.49 1397.32 6
ETH3 D test640090.27 690.44 889.75 696.82 974.33 795.89 1694.80 2977.13 8989.13 2297.38 274.49 1898.48 2892.32 1195.98 896.46 25
DPE-MVScopyleft88.77 1589.21 1587.45 3696.26 2267.56 9294.17 5594.15 5768.77 24590.74 1497.27 376.09 1298.49 2790.58 2394.91 2096.30 29
Kehua Chen, Zhenlong Yuan, Tianlu Mao, Zhaoqi Wang: Dual-Level Precision Edges Guided Multi-View Stereo with Accurate Planarization. AAAI2025
DPM-MVS90.70 290.52 791.24 189.68 15876.68 297.29 195.35 1082.87 1591.58 1097.22 479.93 599.10 983.12 8297.64 297.94 1
SED-MVS89.94 890.36 988.70 1696.45 1469.38 4796.89 494.44 4371.65 19592.11 497.21 576.79 999.11 692.34 895.36 1497.62 2
test_241102_TWO94.41 4571.65 19592.07 697.21 574.58 1799.11 692.34 895.36 1496.59 15
test072696.40 1769.99 3396.76 694.33 5171.92 18191.89 897.11 773.77 22
test_241102_ONE96.45 1469.38 4794.44 4371.65 19592.11 497.05 876.79 999.11 6
OPU-MVS89.97 397.52 373.15 1396.89 497.00 983.82 299.15 295.72 197.63 397.62 2
DVP-MVScopyleft89.41 1289.73 1388.45 2196.40 1769.99 3396.64 894.52 3971.92 18190.55 1696.93 1073.77 2299.08 1191.91 1494.90 2196.29 30
Zhenlong Yuan, Jinguo Luo, Fei Shen, Zhaoxin Li, Cong Liu, Tianlu Mao, Zhaoqi Wang: DVP-MVS: Synergize Depth-Edge and Visibility Prior for Multi-View Stereo. AAAI2025
test_0728_THIRD72.48 16590.55 1696.93 1076.24 1199.08 1191.53 1694.99 1796.43 26
DVP-MVS++90.53 391.09 488.87 1497.31 469.91 3793.96 6994.37 4972.48 16592.07 696.85 1283.82 299.15 291.53 1697.42 497.55 4
test_one_060196.32 2069.74 4294.18 5571.42 20790.67 1596.85 1274.45 19
PC_three_145280.91 3694.07 296.83 1483.57 499.12 595.70 297.42 497.55 4
CNVR-MVS90.32 590.89 688.61 1996.76 1070.65 2696.47 1294.83 2684.83 989.07 2396.80 1570.86 3599.06 1592.64 695.71 1196.12 35
SMA-MVScopyleft88.14 1688.29 1987.67 2893.21 7568.72 6393.85 7994.03 6074.18 12791.74 996.67 1665.61 6998.42 3289.24 3096.08 795.88 43
Yufeng Yin; Xiaoyan Liu; Zichao Zhang: SMA-MVS: Segmentation-Guided Multi-Scale Anchor Deformation Patch Multi-View Stereo. IEEE Transactions on Circuits and Systems for Video Technology
ETH3D-3000-0.187.61 2487.89 2186.75 5593.58 6467.21 10394.31 5394.14 5872.92 15687.13 3096.62 1767.81 4997.94 4390.13 2494.42 3695.09 74
PHI-MVS86.83 4086.85 4186.78 5493.47 6865.55 14895.39 2995.10 1871.77 19285.69 4796.52 1862.07 10998.77 2186.06 6195.60 1296.03 38
9.1487.63 2593.86 5594.41 5194.18 5572.76 15986.21 3896.51 1966.64 5897.88 4990.08 2594.04 41
MSLP-MVS++86.27 4685.91 5187.35 3892.01 10768.97 5895.04 4192.70 11279.04 6181.50 8396.50 2058.98 14496.78 10983.49 8093.93 4396.29 30
xxxxxxxxxxxxxcwj87.14 3287.19 3486.99 4793.84 5667.89 8495.05 3984.72 31578.19 7186.25 3696.44 2166.98 5497.79 5188.68 3794.56 3395.28 64
SF-MVS87.03 3587.09 3686.84 5092.70 8967.45 9893.64 8793.76 6770.78 21986.25 3696.44 2166.98 5497.79 5188.68 3794.56 3395.28 64
testtj86.62 4386.66 4286.50 6696.95 865.70 14394.41 5193.45 8267.74 25286.19 3996.39 2364.38 8297.91 4687.33 4993.14 5895.90 42
HPM-MVS++copyleft89.37 1389.95 1287.64 2995.10 3468.23 7695.24 3294.49 4182.43 1988.90 2496.35 2471.89 3498.63 2488.76 3696.40 696.06 36
APDe-MVS87.54 2587.84 2286.65 5996.07 2566.30 12994.84 4693.78 6469.35 23688.39 2596.34 2567.74 5097.66 5890.62 2293.44 5396.01 39
ETH3D cwj APD-0.1687.06 3487.18 3586.71 5691.99 10967.48 9792.97 11094.21 5471.48 20685.72 4596.32 2668.13 4398.00 4289.06 3294.70 3194.65 92
MCST-MVS91.08 191.46 289.94 497.66 273.37 997.13 295.58 889.33 185.77 4496.26 2772.84 2799.38 192.64 695.93 1097.08 9
NCCC89.07 1489.46 1487.91 2496.60 1269.05 5596.38 1394.64 3684.42 1086.74 3496.20 2866.56 6098.76 2289.03 3494.56 3395.92 41
DeepC-MVS_fast79.48 287.95 2088.00 2087.79 2795.86 2968.32 7195.74 2094.11 5983.82 1283.49 6996.19 2964.53 8198.44 3083.42 8194.88 2496.61 14
Andreas Kuhn, Christian Sormann, Mattia Rossi, Oliver Erdler, Friedrich Fraundorfer: DeepC-MVS: Deep Confidence Prediction for Multi-View Stereo Reconstruction. 3DV 2020
MSP-MVS90.38 491.87 185.88 8592.83 8364.03 19093.06 10594.33 5182.19 2193.65 396.15 3085.89 197.19 8491.02 2097.75 196.43 26
Zhenlong Yuan, Cong Liu, Fei Shen, Zhaoxin Li, Jingguo luo, Tianlu Mao and Zhaoqi Wang: MSP-MVS: Multi-granularity Segmentation Prior Guided Multi-View Stereo. AAAI2025
PS-MVSNAJ88.14 1687.61 2689.71 792.06 10476.72 195.75 1993.26 9083.86 1189.55 2096.06 3153.55 20597.89 4891.10 1893.31 5594.54 96
xiu_mvs_v2_base87.92 2187.38 3289.55 1291.41 12976.43 395.74 2093.12 9983.53 1389.55 2095.95 3253.45 20997.68 5491.07 1992.62 6494.54 96
APD-MVScopyleft85.93 5285.99 4985.76 9295.98 2865.21 15593.59 9092.58 12066.54 26386.17 4095.88 3363.83 8997.00 9586.39 5892.94 6095.06 75
Yuesong Wang, Zhaojie Zeng and etc.: Adaptive Patch Deformation for Textureless-Resilient Multi-View Stereo. CVPR2023
CANet89.61 1189.99 1188.46 2094.39 4469.71 4396.53 1193.78 6486.89 489.68 1995.78 3465.94 6499.10 992.99 493.91 4496.58 17
SD-MVS87.49 2687.49 2987.50 3593.60 6368.82 6193.90 7692.63 11876.86 9287.90 2795.76 3566.17 6197.63 6089.06 3291.48 8496.05 37
Zhenlong Yuan, Jiakai Cao, Zhaoxin Li, Hao Jiang and Zhaoqi Wang: SD-MVS: Segmentation-driven Deformation Multi-View Stereo with Spherical Refinement and EM optimization. AAAI2024
Regformer-187.24 3087.60 2786.15 7995.14 3265.83 14193.95 7295.12 1682.11 2284.25 6195.73 3667.88 4898.35 3385.60 6388.64 11194.26 105
Regformer-287.00 3787.43 3085.71 9595.14 3264.73 16993.95 7294.95 2381.69 2784.03 6695.73 3667.35 5298.19 3785.40 6588.64 11194.20 107
SteuartSystems-ACMMP86.82 4186.90 3986.58 6290.42 14466.38 12696.09 1593.87 6277.73 8084.01 6795.66 3863.39 9797.94 4387.40 4893.55 5295.42 52
Skip Steuart: Steuart Systems R&D Blog.
MP-MVS-pluss85.24 6185.13 6085.56 9991.42 12765.59 14791.54 17392.51 12274.56 12180.62 9495.64 3959.15 14197.00 9586.94 5493.80 4594.07 117
MP-MVS-pluss: MP-MVS-pluss. MP-MVS-pluss
test_prior387.38 2787.70 2486.42 6994.71 3967.35 9995.10 3793.10 10075.40 11085.25 5495.61 4067.94 4596.84 10787.47 4694.77 2595.05 76
test_prior295.10 3775.40 11085.25 5495.61 4067.94 4587.47 4694.77 25
MAR-MVS84.18 8083.43 8086.44 6896.25 2365.93 13894.28 5494.27 5374.41 12279.16 11295.61 4053.99 20098.88 2069.62 19093.26 5694.50 100
Zhenyu Xu, Yiguang Liu, Xuelei Shi, Ying Wang, Yunan Zheng: MARMVS: Matching Ambiguity Reduced Multiple View Stereo for Efficient Large Scale Scene Reconstruction. CVPR 2020
CS-MVS-test86.14 4987.01 3783.52 15992.63 9259.36 27995.49 2691.92 14280.09 4285.46 5095.53 4361.82 11395.77 14186.77 5693.37 5495.41 53
CS-MVS85.80 5486.65 4383.27 16792.00 10858.92 28495.31 3091.86 14679.97 4384.82 5695.40 4462.26 10795.51 16086.11 6092.08 7495.37 56
agg_prior187.02 3687.26 3386.28 7694.16 5066.97 11294.08 6393.31 8871.85 18884.49 5995.39 4568.91 3896.75 11188.84 3594.32 3895.13 72
test_894.19 4567.19 10494.15 5993.42 8571.87 18685.38 5195.35 4668.19 4196.95 102
TEST994.18 4667.28 10194.16 5693.51 7871.75 19385.52 4895.33 4768.01 4497.27 82
train_agg87.21 3187.42 3186.60 6094.18 4667.28 10194.16 5693.51 7871.87 18685.52 4895.33 4768.19 4197.27 8289.09 3194.90 2195.25 69
ACMMP_NAP86.05 5085.80 5386.80 5391.58 12267.53 9491.79 16193.49 8174.93 11884.61 5795.30 4959.42 13797.92 4586.13 5994.92 1994.94 81
SR-MVS82.81 10382.58 9983.50 16293.35 6961.16 24792.23 14091.28 17364.48 27681.27 8595.28 5053.71 20495.86 13782.87 8488.77 10993.49 136
CDPH-MVS85.71 5685.46 5786.46 6794.75 3867.19 10493.89 7792.83 10970.90 21583.09 7295.28 5063.62 9397.36 7380.63 10594.18 3994.84 85
cdsmvs_eth3d_5k19.86 34326.47 3420.00 3620.00 3850.00 3860.00 37393.45 820.00 3800.00 38195.27 5249.56 2390.00 3810.00 3790.00 3780.00 377
lupinMVS87.74 2387.77 2387.63 3389.24 17071.18 2196.57 1092.90 10782.70 1887.13 3095.27 5264.99 7495.80 13889.34 2891.80 7895.93 40
canonicalmvs86.85 3986.25 4688.66 1891.80 11771.92 1593.54 9291.71 15480.26 4187.55 2895.25 5463.59 9596.93 10588.18 3984.34 14797.11 8
alignmvs87.28 2986.97 3888.24 2391.30 13071.14 2395.61 2493.56 7679.30 5387.07 3395.25 5468.43 3996.93 10587.87 4184.33 14896.65 13
zzz-MVS84.73 6884.47 6785.50 10091.89 11465.16 15791.55 17292.23 12875.32 11280.53 9595.21 5656.06 17797.16 8684.86 7192.55 6694.18 108
MTAPA83.91 8583.38 8485.50 10091.89 11465.16 15781.75 30992.23 12875.32 11280.53 9595.21 5656.06 17797.16 8684.86 7192.55 6694.18 108
ZD-MVS96.63 1165.50 15093.50 8070.74 22085.26 5395.19 5864.92 7797.29 7887.51 4593.01 59
patch_mono-289.71 1090.99 585.85 8896.04 2663.70 19895.04 4195.19 1386.74 591.53 1195.15 5973.86 2197.58 6393.38 392.00 7596.28 32
Regformer-385.80 5485.92 5085.46 10294.17 4865.09 16292.95 11295.11 1781.13 3381.68 8195.04 6065.82 6698.32 3483.02 8384.36 14592.97 152
Regformer-485.45 5885.69 5584.73 12594.17 4863.23 20792.95 11294.83 2680.66 3881.29 8495.04 6065.12 7298.08 4082.74 8584.36 14592.88 156
test117281.90 11981.83 10982.13 19693.23 7257.52 30291.61 17190.98 18864.32 27880.20 9995.00 6251.26 22595.61 15181.73 9588.13 11593.26 142
PAPR85.15 6284.47 6787.18 4196.02 2768.29 7291.85 15993.00 10476.59 9779.03 11395.00 6261.59 11497.61 6278.16 12589.00 10795.63 48
1112_ss80.56 14079.83 13982.77 17588.65 18260.78 25392.29 13788.36 27672.58 16272.46 18394.95 6465.09 7393.42 23466.38 22177.71 19094.10 114
ab-mvs-re7.91 34510.55 3480.00 3620.00 3850.00 3860.00 3730.00 3860.00 3800.00 38194.95 640.00 3850.00 3810.00 3790.00 3780.00 377
HFP-MVS84.73 6884.40 7085.72 9393.75 6065.01 16393.50 9493.19 9472.19 17579.22 11094.93 6659.04 14297.67 5581.55 9692.21 6994.49 101
#test#84.98 6584.74 6685.72 9393.75 6065.01 16394.09 6293.19 9473.55 14479.22 11094.93 6659.04 14297.67 5582.66 8692.21 6994.49 101
CP-MVS83.71 9083.40 8384.65 12993.14 7863.84 19194.59 4892.28 12671.03 21377.41 13194.92 6855.21 18696.19 12481.32 10190.70 9493.91 124
DELS-MVS90.05 790.09 1089.94 493.14 7873.88 897.01 394.40 4788.32 285.71 4694.91 6974.11 2098.91 1787.26 5195.94 997.03 10
Christian Sormann, Emanuele Santellani, Mattia Rossi, Andreas Kuhn, Friedrich Fraundorfer: DELS-MVS: Deep Epipolar Line Search for Multi-View Stereo. Winter Conference on Applications of Computer Vision (WACV), 2023
ACMMPR84.37 7384.06 7285.28 10993.56 6564.37 18193.50 9493.15 9772.19 17578.85 11994.86 7056.69 16997.45 6781.55 9692.20 7194.02 120
region2R84.36 7484.03 7385.36 10793.54 6664.31 18393.43 9792.95 10572.16 17878.86 11894.84 7156.97 16497.53 6581.38 10092.11 7394.24 106
TSAR-MVS + GP.87.96 1988.37 1886.70 5893.51 6765.32 15295.15 3593.84 6378.17 7385.93 4394.80 7275.80 1398.21 3589.38 2788.78 10896.59 15
WTY-MVS86.32 4585.81 5287.85 2592.82 8569.37 4995.20 3395.25 1282.71 1781.91 7994.73 7367.93 4797.63 6079.55 11182.25 15996.54 18
MVS84.66 7082.86 9490.06 290.93 13674.56 687.91 26595.54 968.55 24772.35 18694.71 7459.78 13398.90 1881.29 10294.69 3296.74 12
ZNCC-MVS85.33 6085.08 6186.06 8093.09 8065.65 14593.89 7793.41 8673.75 13879.94 10194.68 7560.61 12398.03 4182.63 8893.72 4894.52 98
APD-MVS_3200maxsize81.64 12381.32 11482.59 18192.36 9658.74 28691.39 18091.01 18763.35 28479.72 10594.62 7651.82 21896.14 12679.71 10987.93 11792.89 155
EPNet87.84 2288.38 1786.23 7793.30 7166.05 13395.26 3194.84 2587.09 388.06 2694.53 7766.79 5797.34 7583.89 7891.68 8095.29 62
Wanjuan Su, Wenbing Tao: Efficient Edge-Preserving Multi-View Stereo Network for Depth Estimation. AAAI 2023
SR-MVS-dyc-post81.06 13380.70 12482.15 19492.02 10558.56 28890.90 19990.45 19862.76 29078.89 11494.46 7851.26 22595.61 15178.77 12186.77 12792.28 169
RE-MVS-def80.48 12992.02 10558.56 28890.90 19990.45 19862.76 29078.89 11494.46 7849.30 24278.77 12186.77 12792.28 169
MP-MVScopyleft85.02 6384.97 6385.17 11392.60 9364.27 18693.24 10092.27 12773.13 15079.63 10694.43 8061.90 11097.17 8585.00 6892.56 6594.06 118
Rongxuan Tan, Qing Wang, et al.: MP-MVS: Multi-Scale Windows PatchMatch and Planar Prior Multi-View Stereo.
PGM-MVS83.25 9682.70 9784.92 11992.81 8764.07 18990.44 21292.20 13371.28 20877.23 13494.43 8055.17 18797.31 7779.33 11491.38 8693.37 137
xiu_mvs_v1_base_debu82.16 11381.12 11685.26 11086.42 22768.72 6392.59 13090.44 20173.12 15184.20 6294.36 8238.04 30495.73 14384.12 7586.81 12491.33 185
xiu_mvs_v1_base82.16 11381.12 11685.26 11086.42 22768.72 6392.59 13090.44 20173.12 15184.20 6294.36 8238.04 30495.73 14384.12 7586.81 12491.33 185
xiu_mvs_v1_base_debi82.16 11381.12 11685.26 11086.42 22768.72 6392.59 13090.44 20173.12 15184.20 6294.36 8238.04 30495.73 14384.12 7586.81 12491.33 185
旧先验191.94 11060.74 25791.50 16394.36 8265.23 7191.84 7794.55 94
CSCG86.87 3886.26 4588.72 1595.05 3570.79 2593.83 8395.33 1168.48 24977.63 12894.35 8673.04 2598.45 2984.92 7093.71 4996.92 11
MVSFormer83.75 8982.88 9386.37 7289.24 17071.18 2189.07 24990.69 19265.80 26887.13 3094.34 8764.99 7492.67 25672.83 15791.80 7895.27 66
jason86.40 4486.17 4787.11 4386.16 23370.54 2895.71 2392.19 13482.00 2484.58 5894.34 8761.86 11195.53 15987.76 4290.89 9295.27 66
jason: jason.
XVS83.87 8683.47 7885.05 11493.22 7363.78 19392.92 11592.66 11573.99 13078.18 12394.31 8955.25 18397.41 7079.16 11591.58 8293.95 122
EIA-MVS84.84 6784.88 6484.69 12891.30 13062.36 22693.85 7992.04 13779.45 5079.33 10994.28 9062.42 10696.35 12180.05 10891.25 8995.38 55
mPP-MVS82.96 10282.44 10284.52 13392.83 8362.92 21792.76 11891.85 14871.52 20375.61 15094.24 9153.48 20896.99 9878.97 11890.73 9393.64 133
DROMVSNet84.53 7285.04 6283.01 17189.34 16561.37 24494.42 5091.09 18177.91 7783.24 7094.20 9258.37 14795.40 16185.35 6691.41 8592.27 172
GST-MVS84.63 7184.29 7185.66 9792.82 8565.27 15393.04 10793.13 9873.20 14878.89 11494.18 9359.41 13897.85 5081.45 9892.48 6893.86 127
EI-MVSNet-Vis-set83.77 8883.67 7584.06 14692.79 8863.56 20391.76 16494.81 2879.65 4977.87 12594.09 9463.35 9897.90 4779.35 11379.36 17790.74 195
testdata81.34 21489.02 17457.72 29789.84 22658.65 32085.32 5294.09 9457.03 16093.28 23569.34 19390.56 9793.03 150
ETV-MVS86.01 5186.11 4885.70 9690.21 14967.02 11193.43 9791.92 14281.21 3284.13 6594.07 9660.93 12095.63 14989.28 2989.81 10094.46 103
MVS_111021_HR86.19 4885.80 5387.37 3793.17 7769.79 4093.99 6893.76 6779.08 6078.88 11793.99 9762.25 10898.15 3885.93 6291.15 9094.15 112
HPM-MVScopyleft83.25 9682.95 9184.17 14492.25 10062.88 21990.91 19891.86 14670.30 22577.12 13593.96 9856.75 16796.28 12282.04 9291.34 8893.34 138
Chunlin Ren, Qingshan Xu, Shikun Zhang, Jiaqi Yang: Hierarchical Prior Mining for Non-local Multi-View Stereo. ICCV 2023
DP-MVS Recon82.73 10481.65 11185.98 8297.31 467.06 10895.15 3591.99 13969.08 24276.50 14293.89 9954.48 19598.20 3670.76 17985.66 13692.69 157
EI-MVSNet-UG-set83.14 9882.96 9083.67 15792.28 9963.19 20991.38 18294.68 3479.22 5576.60 14093.75 10062.64 10497.76 5378.07 12678.01 18890.05 203
CANet_DTU84.09 8283.52 7685.81 8990.30 14766.82 11591.87 15789.01 25885.27 786.09 4193.74 10147.71 25896.98 9977.90 12889.78 10293.65 132
dcpmvs_287.37 2887.55 2886.85 4995.04 3668.20 7790.36 21690.66 19579.37 5281.20 8693.67 10274.73 1596.55 11890.88 2192.00 7595.82 44
ET-MVSNet_ETH3D84.01 8383.15 8986.58 6290.78 14170.89 2494.74 4794.62 3781.44 3058.19 30993.64 10373.64 2492.35 27082.66 8678.66 18596.50 23
DeepC-MVS77.85 385.52 5785.24 5986.37 7288.80 18066.64 12092.15 14193.68 7281.07 3476.91 13893.64 10362.59 10598.44 3085.50 6492.84 6294.03 119
Andreas Kuhn, Christian Sormann, Mattia Rossi, Oliver Erdler, Friedrich Fraundorfer: DeepC-MVS: Deep Confidence Prediction for Multi-View Stereo Reconstruction. 3DV 2020
PAPM_NR82.97 10181.84 10886.37 7294.10 5266.76 11887.66 27092.84 10869.96 22974.07 16493.57 10563.10 10297.50 6670.66 18190.58 9694.85 82
PMMVS81.98 11882.04 10681.78 20489.76 15756.17 31291.13 19490.69 19277.96 7580.09 10093.57 10546.33 26894.99 17381.41 9987.46 12094.17 110
LFMVS84.34 7582.73 9689.18 1394.76 3773.25 1094.99 4391.89 14571.90 18382.16 7893.49 10747.98 25597.05 9082.55 8984.82 14197.25 7
ACMMPcopyleft81.49 12480.67 12583.93 14991.71 11962.90 21892.13 14292.22 13271.79 19171.68 19493.49 10750.32 23196.96 10178.47 12384.22 15291.93 176
Qingshan Xu, Weihang Kong, Wenbing Tao, Marc Pollefeys: Multi-Scale Geometric Consistency Guided and Planar Prior Assisted Multi-View Stereo. IEEE Transactions on Pattern Analysis and Machine Intelligence
CPTT-MVS79.59 15879.16 15380.89 23091.54 12559.80 27192.10 14488.54 27460.42 30872.96 17293.28 10948.27 25192.80 25078.89 12086.50 13290.06 202
MVS_111021_LR82.02 11781.52 11283.51 16188.42 18862.88 21989.77 23488.93 26076.78 9575.55 15193.10 11050.31 23295.38 16383.82 7987.02 12392.26 173
131480.70 13878.95 15585.94 8487.77 20767.56 9287.91 26592.55 12172.17 17767.44 24493.09 11150.27 23397.04 9271.68 17487.64 11993.23 144
abl_679.82 15479.20 15281.70 20889.85 15458.34 29088.47 25890.07 21762.56 29377.71 12793.08 11247.65 25996.78 10977.94 12785.45 13889.99 204
PVSNet_Blended86.73 4286.86 4086.31 7593.76 5867.53 9496.33 1493.61 7482.34 2081.00 9193.08 11263.19 10097.29 7887.08 5291.38 8694.13 113
VNet86.20 4785.65 5687.84 2693.92 5469.99 3395.73 2295.94 678.43 6986.00 4293.07 11458.22 14897.00 9585.22 6784.33 14896.52 19
HPM-MVS_fast80.25 14579.55 14582.33 18791.55 12459.95 26991.32 18689.16 25065.23 27474.71 15793.07 11447.81 25795.74 14274.87 14988.23 11391.31 189
PAPM85.89 5385.46 5787.18 4188.20 19772.42 1492.41 13592.77 11082.11 2280.34 9793.07 11468.27 4095.02 17278.39 12493.59 5194.09 115
MG-MVS87.11 3386.27 4489.62 897.79 176.27 494.96 4494.49 4178.74 6783.87 6892.94 11764.34 8396.94 10375.19 14194.09 4095.66 47
112181.25 12880.05 13384.87 12292.30 9864.31 18387.91 26591.39 16759.44 31679.94 10192.91 11857.09 15897.01 9366.63 21592.81 6393.29 141
新几何184.73 12592.32 9764.28 18591.46 16559.56 31579.77 10492.90 11956.95 16596.57 11663.40 24492.91 6193.34 138
TSAR-MVS + MP.88.11 1888.64 1686.54 6491.73 11868.04 8090.36 21693.55 7782.89 1491.29 1292.89 12072.27 3196.03 13387.99 4094.77 2595.54 51
Zhenlong Yuan, Jiakai Cao, Zhaoqi Wang, Zhaoxin Li: TSAR-MVS: Textureless-aware Segmentation and Correlative Refinement Guided Multi-View Stereo. Pattern Recognition
test_yl84.28 7683.16 8787.64 2994.52 4269.24 5095.78 1795.09 1969.19 23981.09 8892.88 12157.00 16297.44 6881.11 10381.76 16396.23 33
DCV-MVSNet84.28 7683.16 8787.64 2994.52 4269.24 5095.78 1795.09 1969.19 23981.09 8892.88 12157.00 16297.44 6881.11 10381.76 16396.23 33
API-MVS82.28 11180.53 12887.54 3496.13 2470.59 2793.63 8891.04 18665.72 27075.45 15292.83 12356.11 17698.89 1964.10 24089.75 10393.15 146
Effi-MVS+83.82 8782.76 9586.99 4789.56 16169.40 4691.35 18486.12 30472.59 16183.22 7192.81 12459.60 13596.01 13581.76 9487.80 11895.56 50
TAPA-MVS70.22 1274.94 23473.53 23079.17 26290.40 14552.07 33289.19 24789.61 23562.69 29270.07 20992.67 12548.89 24994.32 19938.26 34779.97 17391.12 192
Andrea Romanoni, Matteo Matteucci: TAPA-MVS: Textureless-Aware PAtchMatch Multi-View Stereo. ICCV 2019
diffmvs84.28 7683.83 7485.61 9887.40 21368.02 8190.88 20189.24 24580.54 3981.64 8292.52 12659.83 13294.52 19587.32 5085.11 13994.29 104
原ACMM184.42 13693.21 7564.27 18693.40 8765.39 27179.51 10792.50 12758.11 15096.69 11365.27 23593.96 4292.32 167
baseline85.01 6484.44 6986.71 5688.33 19268.73 6290.24 22191.82 15081.05 3581.18 8792.50 12763.69 9296.08 13084.45 7386.71 12995.32 60
3Dnovator+73.60 782.10 11680.60 12786.60 6090.89 13866.80 11795.20 3393.44 8474.05 12967.42 24592.49 12949.46 24097.65 5970.80 17891.68 8095.33 58
3Dnovator73.91 682.69 10780.82 12288.31 2289.57 16071.26 2092.60 12894.39 4878.84 6467.89 23992.48 13048.42 25098.52 2668.80 20094.40 3795.15 71
test22289.77 15661.60 24089.55 23789.42 24056.83 32977.28 13392.43 13152.76 21291.14 9193.09 148
sss82.71 10682.38 10383.73 15489.25 16959.58 27492.24 13994.89 2477.96 7579.86 10392.38 13256.70 16897.05 9077.26 13180.86 17094.55 94
AdaColmapbinary78.94 16977.00 18684.76 12496.34 1965.86 13992.66 12687.97 28662.18 29670.56 20192.37 13343.53 28297.35 7464.50 23882.86 15591.05 193
VDD-MVS83.06 9981.81 11086.81 5290.86 13967.70 8995.40 2891.50 16375.46 10781.78 8092.34 13440.09 29297.13 8886.85 5582.04 16195.60 49
CLD-MVS82.73 10482.35 10483.86 15087.90 20467.65 9195.45 2792.18 13585.06 872.58 17992.27 13552.46 21595.78 13984.18 7479.06 18088.16 228
Zhaoxin Li, Wangmeng Zuo, Zhaoqi Wang, Lei Zhang: Confidence-based Large-scale Dense Multi-view Stereo. IEEE Transaction on Image Processing, 2020
h-mvs3383.01 10082.56 10084.35 13989.34 16562.02 23192.72 12093.76 6781.45 2882.73 7492.25 13660.11 12797.13 8887.69 4362.96 29293.91 124
OMC-MVS78.67 17977.91 17080.95 22885.76 24057.40 30588.49 25788.67 26973.85 13572.43 18492.10 13749.29 24394.55 19272.73 16077.89 18990.91 194
casdiffmvs85.37 5984.87 6586.84 5088.25 19569.07 5493.04 10791.76 15181.27 3180.84 9392.07 13864.23 8496.06 13184.98 6987.43 12195.39 54
OpenMVScopyleft70.45 1178.54 18175.92 19986.41 7185.93 23971.68 1792.74 11992.51 12266.49 26464.56 26991.96 13943.88 28198.10 3954.61 28490.65 9589.44 211
Vis-MVSNet (Re-imp)79.24 16479.57 14278.24 27488.46 18652.29 33190.41 21489.12 25374.24 12669.13 21891.91 14065.77 6790.09 30659.00 27288.09 11692.33 166
gm-plane-assit88.42 18867.04 11078.62 6891.83 14197.37 7276.57 134
Vis-MVSNetpermissive80.92 13679.98 13783.74 15288.48 18561.80 23593.44 9688.26 28173.96 13377.73 12691.76 14249.94 23694.76 17965.84 22790.37 9894.65 92
Jingyang Zhang, Yao Yao, Shiwei Li, Zixin Luo, Tian Fang: Visibility-aware Multiview Stereo Network. BMVC 2020
QAPM79.95 15277.39 18187.64 2989.63 15971.41 1993.30 9993.70 7165.34 27367.39 24791.75 14347.83 25698.96 1657.71 27589.81 10092.54 162
IS-MVSNet80.14 14779.41 14782.33 18787.91 20360.08 26891.97 15488.27 27972.90 15771.44 19691.73 14461.44 11593.66 22962.47 25386.53 13193.24 143
baseline181.84 12081.03 12084.28 14291.60 12166.62 12191.08 19591.66 15781.87 2574.86 15591.67 14569.98 3794.92 17771.76 17264.75 28191.29 190
test250683.29 9482.92 9284.37 13888.39 19063.18 21092.01 15091.35 16977.66 8278.49 12291.42 14664.58 8095.09 17073.19 15389.23 10494.85 82
ECVR-MVScopyleft81.29 12780.38 13184.01 14888.39 19061.96 23392.56 13386.79 29677.66 8276.63 13991.42 14646.34 26795.24 16874.36 15189.23 10494.85 82
test111180.84 13780.02 13483.33 16587.87 20560.76 25592.62 12786.86 29577.86 7875.73 14691.39 14846.35 26694.70 18572.79 15988.68 11094.52 98
TR-MVS78.77 17577.37 18282.95 17290.49 14360.88 25193.67 8690.07 21770.08 22874.51 15891.37 14945.69 27295.70 14860.12 26680.32 17292.29 168
EPNet_dtu78.80 17379.26 15177.43 28288.06 19949.71 34491.96 15591.95 14177.67 8176.56 14191.28 15058.51 14690.20 30456.37 27980.95 16992.39 164
Wanjuan Su, Wenbing Tao: Efficient Edge-Preserving Multi-View Stereo Network for Depth Estimation. AAAI 2023
BH-RMVSNet79.46 16277.65 17384.89 12091.68 12065.66 14493.55 9188.09 28372.93 15573.37 16991.12 15146.20 27096.12 12756.28 28085.61 13792.91 154
thisisatest051583.41 9282.49 10186.16 7889.46 16468.26 7493.54 9294.70 3374.31 12575.75 14590.92 15272.62 2996.52 11969.64 18881.50 16593.71 130
VDDNet80.50 14178.26 16287.21 4086.19 23269.79 4094.48 4991.31 17060.42 30879.34 10890.91 15338.48 30096.56 11782.16 9081.05 16895.27 66
GG-mvs-BLEND86.53 6591.91 11369.67 4575.02 34194.75 3178.67 12190.85 15477.91 794.56 19172.25 16593.74 4795.36 57
mvs-test178.74 17677.95 16881.14 21983.22 27657.13 30793.96 6987.78 28775.42 10872.68 17690.80 15545.08 27694.54 19375.08 14377.49 19691.74 178
CNLPA74.31 23972.30 24580.32 23591.49 12661.66 23990.85 20280.72 33956.67 33063.85 27790.64 15646.75 26290.84 29453.79 28875.99 20988.47 223
PCF-MVS73.15 979.29 16377.63 17484.29 14186.06 23465.96 13787.03 27691.10 18069.86 23169.79 21590.64 15657.54 15596.59 11464.37 23982.29 15890.32 199
Andreas Kuhn, Shan Lin, Oliver Erdler: Plane Completion and Filtering for Multi-View Stereo Reconstruction. GCPR 2019
114514_t79.17 16577.67 17283.68 15695.32 3165.53 14992.85 11791.60 15963.49 28367.92 23790.63 15846.65 26395.72 14767.01 21383.54 15389.79 205
PLCcopyleft68.80 1475.23 23073.68 22979.86 24992.93 8258.68 28790.64 20988.30 27760.90 30564.43 27390.53 15942.38 28694.57 18956.52 27876.54 20586.33 255
Jie Liao, Yanping Fu, Qingan Yan, Chunxia xiao: Pyramid Multi-View Stereo with Local Consistency. Pacific Graphics 2019
PVSNet73.49 880.05 14978.63 15784.31 14090.92 13764.97 16592.47 13491.05 18579.18 5672.43 18490.51 16037.05 31694.06 21268.06 20386.00 13493.90 126
hse-mvs281.12 13281.11 11981.16 21886.52 22657.48 30389.40 24291.16 17681.45 2882.73 7490.49 16160.11 12794.58 18887.69 4360.41 31891.41 184
AUN-MVS78.37 18377.43 17781.17 21786.60 22557.45 30489.46 24191.16 17674.11 12874.40 15990.49 16155.52 18294.57 18974.73 15060.43 31791.48 182
baseline283.68 9183.42 8284.48 13587.37 21466.00 13590.06 22595.93 779.71 4869.08 22090.39 16377.92 696.28 12278.91 11981.38 16691.16 191
EPP-MVSNet81.79 12181.52 11282.61 18088.77 18160.21 26693.02 10993.66 7368.52 24872.90 17490.39 16372.19 3294.96 17474.93 14679.29 17992.67 158
NP-MVS87.41 21263.04 21190.30 165
HQP-MVS81.14 13080.64 12682.64 17987.54 20963.66 20194.06 6491.70 15579.80 4574.18 16090.30 16551.63 22295.61 15177.63 12978.90 18188.63 218
Anonymous20240521177.96 19075.33 20685.87 8693.73 6264.52 17194.85 4585.36 31062.52 29476.11 14390.18 16729.43 34297.29 7868.51 20177.24 20195.81 45
BH-w/o80.49 14279.30 15084.05 14790.83 14064.36 18293.60 8989.42 24074.35 12469.09 21990.15 16855.23 18595.61 15164.61 23786.43 13392.17 174
EI-MVSNet78.97 16878.22 16381.25 21585.33 24462.73 22289.53 23993.21 9172.39 17072.14 18790.13 16960.99 11894.72 18267.73 20772.49 22986.29 256
CVMVSNet74.04 24174.27 22073.33 31485.33 24443.94 36089.53 23988.39 27554.33 33670.37 20590.13 16949.17 24584.05 34161.83 25779.36 17791.99 175
XVG-OURS-SEG-HR74.70 23673.08 23479.57 25678.25 32857.33 30680.49 31887.32 29163.22 28668.76 22790.12 17144.89 27891.59 28570.55 18274.09 21689.79 205
OPM-MVS79.00 16778.09 16481.73 20583.52 27463.83 19291.64 17090.30 20876.36 10071.97 18989.93 17246.30 26995.17 16975.10 14277.70 19186.19 260
Ray L. Khuboni, Hongjun Xu: Octagram Propagation Matching for Multi-Scale View Stereopsis (OPM-MVS).
PVSNet_Blended_VisFu83.97 8483.50 7785.39 10690.02 15166.59 12393.77 8491.73 15277.43 8877.08 13789.81 17363.77 9196.97 10079.67 11088.21 11492.60 160
CDS-MVSNet81.43 12580.74 12383.52 15986.26 23164.45 17592.09 14590.65 19675.83 10473.95 16689.81 17363.97 8792.91 24671.27 17582.82 15693.20 145
Khang Truong Giang, Soohwan Song, Sungho Jo: Curvature-guided dynamic scale networks for Multi-view Stereo. ICLR 2022
XVG-OURS74.25 24072.46 24479.63 25478.45 32757.59 30180.33 32087.39 29063.86 28168.76 22789.62 17540.50 29191.72 28369.00 19774.25 21489.58 208
GeoE78.90 17077.43 17783.29 16688.95 17662.02 23192.31 13686.23 30270.24 22671.34 19789.27 17654.43 19694.04 21563.31 24580.81 17193.81 129
thisisatest053081.15 12980.07 13284.39 13788.26 19465.63 14691.40 17894.62 3771.27 20970.93 19989.18 17772.47 3096.04 13265.62 23076.89 20391.49 181
UA-Net80.02 15079.65 14181.11 22189.33 16757.72 29786.33 28389.00 25977.44 8781.01 9089.15 17859.33 13995.90 13661.01 26084.28 15089.73 207
HQP_MVS80.34 14479.75 14082.12 19786.94 22062.42 22493.13 10391.31 17078.81 6572.53 18089.14 17950.66 22995.55 15776.74 13278.53 18688.39 224
plane_prior489.14 179
thres20079.66 15678.33 16083.66 15892.54 9465.82 14293.06 10596.31 374.90 11973.30 17088.66 18159.67 13495.61 15147.84 31178.67 18489.56 210
BH-untuned78.68 17777.08 18383.48 16389.84 15563.74 19592.70 12288.59 27271.57 20166.83 25388.65 18251.75 22095.39 16259.03 27184.77 14291.32 188
TAMVS80.37 14379.45 14683.13 17085.14 24863.37 20491.23 18990.76 19174.81 12072.65 17788.49 18360.63 12292.95 24169.41 19281.95 16293.08 149
LPG-MVS_test75.82 22274.58 21479.56 25784.31 26359.37 27790.44 21289.73 23169.49 23464.86 26488.42 18438.65 29894.30 20072.56 16272.76 22685.01 285
LGP-MVS_train79.56 25784.31 26359.37 27789.73 23169.49 23464.86 26488.42 18438.65 29894.30 20072.56 16272.76 22685.01 285
iter_conf_final81.74 12280.93 12184.18 14392.66 9169.10 5392.94 11482.80 33379.01 6274.85 15688.40 18661.83 11294.61 18679.36 11276.52 20688.83 213
iter_conf0583.27 9582.70 9784.98 11793.32 7071.84 1694.16 5681.76 33582.74 1673.83 16788.40 18672.77 2894.61 18682.10 9175.21 21188.48 221
VPNet78.82 17277.53 17682.70 17784.52 25866.44 12593.93 7492.23 12880.46 4072.60 17888.38 18849.18 24493.13 23772.47 16463.97 28988.55 220
FIs79.47 16179.41 14779.67 25385.95 23659.40 27691.68 16893.94 6178.06 7468.96 22388.28 18966.61 5991.77 28266.20 22474.99 21287.82 230
CHOSEN 1792x268884.98 6583.45 7989.57 1189.94 15375.14 592.07 14792.32 12581.87 2575.68 14788.27 19060.18 12698.60 2580.46 10790.27 9994.96 80
tfpn200view978.79 17477.43 17782.88 17392.21 10264.49 17292.05 14896.28 473.48 14571.75 19288.26 19160.07 12995.32 16445.16 32177.58 19388.83 213
Fast-Effi-MVS+81.14 13080.01 13584.51 13490.24 14865.86 13994.12 6189.15 25173.81 13775.37 15388.26 19157.26 15694.53 19466.97 21484.92 14093.15 146
thres40078.68 17777.43 17782.43 18392.21 10264.49 17292.05 14896.28 473.48 14571.75 19288.26 19160.07 12995.32 16445.16 32177.58 19387.48 234
nrg03080.93 13579.86 13884.13 14583.69 27168.83 6093.23 10191.20 17475.55 10675.06 15488.22 19463.04 10394.74 18181.88 9366.88 26588.82 216
F-COLMAP70.66 26668.44 27177.32 28486.37 23055.91 31488.00 26386.32 29956.94 32857.28 31788.07 19533.58 32792.49 26451.02 29568.37 25683.55 296
tttt051779.50 16078.53 15982.41 18687.22 21661.43 24389.75 23594.76 3069.29 23767.91 23888.06 19672.92 2695.63 14962.91 24973.90 21990.16 201
HY-MVS76.49 584.28 7683.36 8587.02 4692.22 10167.74 8884.65 28994.50 4079.15 5782.23 7787.93 19766.88 5696.94 10380.53 10682.20 16096.39 28
thres100view90078.37 18377.01 18582.46 18291.89 11463.21 20891.19 19396.33 172.28 17370.45 20487.89 19860.31 12495.32 16445.16 32177.58 19388.83 213
thres600view778.00 18876.66 19082.03 20291.93 11163.69 19991.30 18796.33 172.43 16870.46 20387.89 19860.31 12494.92 17742.64 33376.64 20487.48 234
test0.0.03 172.76 25472.71 24072.88 31880.25 30547.99 35091.22 19089.45 23871.51 20462.51 28987.66 20053.83 20185.06 33850.16 29867.84 26285.58 275
FC-MVSNet-test77.99 18978.08 16577.70 27784.89 25355.51 31790.27 21993.75 7076.87 9166.80 25487.59 20165.71 6890.23 30362.89 25073.94 21787.37 237
TESTMET0.1,182.41 10981.98 10783.72 15588.08 19863.74 19592.70 12293.77 6679.30 5377.61 12987.57 20258.19 14994.08 21073.91 15286.68 13093.33 140
LS3D69.17 27766.40 28077.50 28091.92 11256.12 31385.12 28680.37 34146.96 35356.50 31987.51 20337.25 31193.71 22732.52 36279.40 17682.68 313
Anonymous2024052976.84 20674.15 22284.88 12191.02 13464.95 16693.84 8291.09 18153.57 33773.00 17187.42 20435.91 32097.32 7669.14 19672.41 23192.36 165
Test_1112_low_res79.56 15978.60 15882.43 18388.24 19660.39 26392.09 14587.99 28572.10 17971.84 19087.42 20464.62 7993.04 23865.80 22877.30 19993.85 128
ACMP71.68 1075.58 22774.23 22179.62 25584.97 25259.64 27290.80 20489.07 25670.39 22462.95 28487.30 20638.28 30193.87 22472.89 15671.45 23785.36 280
Qingshan Xu and Wenbing Tao: Planar Prior Assisted PatchMatch Multi-View Stereo. AAAI 2020
CHOSEN 280x42077.35 19976.95 18778.55 26987.07 21962.68 22369.71 34982.95 33168.80 24471.48 19587.27 20766.03 6384.00 34376.47 13582.81 15788.95 212
test-LLR80.10 14879.56 14381.72 20686.93 22261.17 24592.70 12291.54 16071.51 20475.62 14886.94 20853.83 20192.38 26772.21 16684.76 14391.60 179
test-mter79.96 15179.38 14981.72 20686.93 22261.17 24592.70 12291.54 16073.85 13575.62 14886.94 20849.84 23892.38 26772.21 16684.76 14391.60 179
UniMVSNet_NR-MVSNet78.15 18777.55 17579.98 24584.46 26060.26 26492.25 13893.20 9377.50 8668.88 22486.61 21066.10 6292.13 27466.38 22162.55 29587.54 232
MVS_Test84.16 8183.20 8687.05 4591.56 12369.82 3989.99 23092.05 13677.77 7982.84 7386.57 21163.93 8896.09 12874.91 14789.18 10695.25 69
DU-MVS76.86 20375.84 20079.91 24782.96 28160.26 26491.26 18891.54 16076.46 9968.88 22486.35 21256.16 17492.13 27466.38 22162.55 29587.35 239
NR-MVSNet76.05 21774.59 21380.44 23382.96 28162.18 23090.83 20391.73 15277.12 9060.96 29586.35 21259.28 14091.80 28160.74 26161.34 31087.35 239
mvsmamba76.85 20575.71 20380.25 23983.07 28059.16 28191.44 17480.64 34076.84 9367.95 23686.33 21446.17 27194.24 20576.06 13772.92 22587.36 238
UGNet79.87 15378.68 15683.45 16489.96 15261.51 24192.13 14290.79 19076.83 9478.85 11986.33 21438.16 30296.17 12567.93 20587.17 12292.67 158
Wanjuan Su, Qingshan Xu, Wenbing Tao: Uncertainty-guided Multi-view Stereo Network for Depth Estimation. IEEE Transactions on Circuits and Systems for Video Technology, 2022
TranMVSNet+NR-MVSNet75.86 22174.52 21679.89 24882.44 28460.64 26091.37 18391.37 16876.63 9667.65 24286.21 21652.37 21691.55 28661.84 25660.81 31387.48 234
cascas78.18 18675.77 20185.41 10587.14 21869.11 5292.96 11191.15 17866.71 26270.47 20286.07 21737.49 31096.48 12070.15 18479.80 17490.65 196
HyFIR lowres test81.03 13479.56 14385.43 10487.81 20668.11 7990.18 22290.01 22270.65 22172.95 17386.06 21863.61 9494.50 19675.01 14579.75 17593.67 131
ACMM69.62 1374.34 23872.73 23979.17 26284.25 26557.87 29590.36 21689.93 22363.17 28765.64 25986.04 21937.79 30894.10 20865.89 22671.52 23685.55 277
Qingshan Xu and Wenbing Tao: Multi-Scale Geometric Consistency Guided Multi-View Stereo. CVPR 2019
XXY-MVS77.94 19176.44 19282.43 18382.60 28364.44 17692.01 15091.83 14973.59 14370.00 21185.82 22054.43 19694.76 17969.63 18968.02 25988.10 229
IB-MVS77.80 482.18 11280.46 13087.35 3889.14 17270.28 3195.59 2595.17 1578.85 6370.19 20885.82 22070.66 3697.67 5572.19 16866.52 26894.09 115
Christian Sormann, Mattia Rossi, Andreas Kuhn and Friedrich Fraundorfer: IB-MVS: An Iterative Algorithm for Deep Multi-View Stereo based on Binary Decisions. BMVC 2021
MVSTER82.47 10882.05 10583.74 15292.68 9069.01 5691.90 15693.21 9179.83 4472.14 18785.71 22274.72 1694.72 18275.72 13872.49 22987.50 233
WR-MVS76.76 20875.74 20279.82 25084.60 25662.27 22992.60 12892.51 12276.06 10167.87 24085.34 22356.76 16690.24 30262.20 25463.69 29186.94 246
DP-MVS69.90 27366.48 27980.14 24195.36 3062.93 21589.56 23676.11 34750.27 34657.69 31585.23 22439.68 29395.73 14333.35 35771.05 24081.78 323
PVSNet_BlendedMVS83.38 9383.43 8083.22 16893.76 5867.53 9494.06 6493.61 7479.13 5881.00 9185.14 22563.19 10097.29 7887.08 5273.91 21884.83 287
ab-mvs80.18 14678.31 16185.80 9088.44 18765.49 15183.00 30492.67 11471.82 19077.36 13285.01 22654.50 19296.59 11476.35 13675.63 21095.32 60
test_part179.63 15777.86 17184.93 11892.50 9571.43 1894.15 5991.08 18372.51 16470.66 20084.98 22759.84 13195.07 17172.07 16962.94 29388.30 227
VPA-MVSNet79.03 16678.00 16682.11 20085.95 23664.48 17493.22 10294.66 3575.05 11774.04 16584.95 22852.17 21793.52 23174.90 14867.04 26488.32 226
RRT_MVS74.44 23772.97 23678.84 26782.36 28557.66 29989.83 23388.79 26670.61 22264.58 26884.89 22939.24 29492.65 25970.11 18566.34 26986.21 259
Fast-Effi-MVS+-dtu75.04 23273.37 23280.07 24380.86 29559.52 27591.20 19285.38 30971.90 18365.20 26284.84 23041.46 28892.97 24066.50 22072.96 22487.73 231
UniMVSNet (Re)77.58 19676.78 18879.98 24584.11 26660.80 25291.76 16493.17 9676.56 9869.93 21484.78 23163.32 9992.36 26964.89 23662.51 29786.78 248
mvs_anonymous81.36 12679.99 13685.46 10290.39 14668.40 6986.88 28090.61 19774.41 12270.31 20784.67 23263.79 9092.32 27173.13 15485.70 13595.67 46
RPSCF64.24 30861.98 31071.01 33076.10 34145.00 35775.83 33975.94 34846.94 35458.96 30684.59 23331.40 33682.00 35747.76 31260.33 31986.04 265
PS-MVSNAJss77.26 20076.31 19480.13 24280.64 29959.16 28190.63 21191.06 18472.80 15868.58 23084.57 23453.55 20593.96 22072.97 15571.96 23387.27 242
UniMVSNet_ETH3D72.74 25570.53 25879.36 25978.62 32656.64 31085.01 28789.20 24763.77 28264.84 26684.44 23534.05 32591.86 28063.94 24170.89 24189.57 209
MS-PatchMatch77.90 19376.50 19182.12 19785.99 23569.95 3691.75 16692.70 11273.97 13262.58 28884.44 23541.11 28995.78 13963.76 24392.17 7280.62 331
bld_raw_dy_0_6471.59 26269.71 26677.22 28777.82 33358.12 29387.71 26973.66 35468.01 25061.90 29384.29 23733.68 32688.43 31769.91 18770.43 24285.11 284
MSDG69.54 27565.73 28480.96 22785.11 25063.71 19784.19 29183.28 33056.95 32754.50 32284.03 23831.50 33596.03 13342.87 33169.13 25183.14 306
GA-MVS78.33 18576.23 19584.65 12983.65 27266.30 12991.44 17490.14 21576.01 10270.32 20684.02 23942.50 28594.72 18270.98 17677.00 20292.94 153
miper_enhance_ethall78.86 17177.97 16781.54 21088.00 20265.17 15691.41 17689.15 25175.19 11568.79 22683.98 24067.17 5392.82 24872.73 16065.30 27286.62 253
pmmvs473.92 24371.81 25080.25 23979.17 31665.24 15487.43 27387.26 29367.64 25663.46 28083.91 24148.96 24891.53 29062.94 24865.49 27183.96 292
pmmvs573.35 24771.52 25278.86 26678.64 32560.61 26191.08 19586.90 29467.69 25363.32 28183.64 24244.33 28090.53 29662.04 25566.02 27085.46 278
ITE_SJBPF70.43 33174.44 34547.06 35477.32 34560.16 31154.04 32583.53 24323.30 35584.01 34243.07 32861.58 30980.21 337
jajsoiax73.05 24971.51 25377.67 27877.46 33454.83 32088.81 25290.04 22169.13 24162.85 28683.51 24431.16 33792.75 25270.83 17769.80 24485.43 279
testgi64.48 30762.87 30569.31 33371.24 35240.62 36485.49 28579.92 34265.36 27254.18 32483.49 24523.74 35484.55 33941.60 33560.79 31482.77 308
v2v48277.42 19875.65 20482.73 17680.38 30167.13 10791.85 15990.23 21275.09 11669.37 21683.39 24653.79 20394.44 19771.77 17165.00 27886.63 252
mvs_tets72.71 25671.11 25477.52 27977.41 33554.52 32288.45 25989.76 22768.76 24662.70 28783.26 24729.49 34192.71 25370.51 18369.62 24685.34 281
FMVSNet377.73 19476.04 19782.80 17491.20 13368.99 5791.87 15791.99 13973.35 14767.04 25083.19 24856.62 17092.14 27359.80 26869.34 24887.28 241
MVP-Stereo77.12 20276.23 19579.79 25181.72 29066.34 12889.29 24390.88 18970.56 22362.01 29182.88 24949.34 24194.13 20765.55 23293.80 4578.88 344
Qingsong Yan: MVP-Stereo: A Parallel Multi-View Patchmatch Stereo Method with Dilation Matching for Photogrammetric Application.
PatchMatch-RL72.06 25969.98 26078.28 27289.51 16355.70 31683.49 29683.39 32961.24 30463.72 27882.76 25034.77 32393.03 23953.37 29177.59 19286.12 264
CP-MVSNet70.50 26869.91 26372.26 32380.71 29751.00 33887.23 27590.30 20867.84 25159.64 30082.69 25150.23 23482.30 35551.28 29459.28 32183.46 300
cl2277.94 19176.78 18881.42 21287.57 20864.93 16790.67 20788.86 26372.45 16767.63 24382.68 25264.07 8592.91 24671.79 17065.30 27286.44 254
miper_ehance_all_eth77.60 19576.44 19281.09 22585.70 24164.41 17990.65 20888.64 27172.31 17167.37 24882.52 25364.77 7892.64 26070.67 18065.30 27286.24 258
PEN-MVS69.46 27668.56 27072.17 32579.27 31449.71 34486.90 27989.24 24567.24 26159.08 30582.51 25447.23 26183.54 34648.42 30657.12 32683.25 303
PS-CasMVS69.86 27469.13 26872.07 32680.35 30350.57 34087.02 27789.75 22867.27 25859.19 30482.28 25546.58 26482.24 35650.69 29659.02 32283.39 302
FMVSNet276.07 21474.01 22582.26 19188.85 17767.66 9091.33 18591.61 15870.84 21665.98 25782.25 25648.03 25292.00 27858.46 27368.73 25487.10 243
DTE-MVSNet68.46 28567.33 27771.87 32877.94 33149.00 34786.16 28488.58 27366.36 26558.19 30982.21 25746.36 26583.87 34444.97 32455.17 33382.73 309
CMPMVSbinary48.56 2166.77 29764.41 29673.84 31170.65 35650.31 34177.79 33685.73 30845.54 35644.76 35482.14 25835.40 32190.14 30563.18 24774.54 21381.07 326
M. Jancosek, T. Pajdla: Multi-View Reconstruction Preserving Weakly-Supported Surfaces. CVPR 2011
test_djsdf73.76 24672.56 24277.39 28377.00 33753.93 32489.07 24990.69 19265.80 26863.92 27582.03 25943.14 28492.67 25672.83 15768.53 25585.57 276
v114476.73 20974.88 20982.27 18980.23 30666.60 12291.68 16890.21 21473.69 14069.06 22181.89 26052.73 21394.40 19869.21 19565.23 27585.80 271
V4276.46 21174.55 21582.19 19379.14 31867.82 8690.26 22089.42 24073.75 13868.63 22981.89 26051.31 22494.09 20971.69 17364.84 27984.66 288
pm-mvs172.89 25271.09 25578.26 27379.10 31957.62 30090.80 20489.30 24367.66 25462.91 28581.78 26249.11 24792.95 24160.29 26558.89 32384.22 291
IterMVS-LS76.49 21075.18 20880.43 23484.49 25962.74 22190.64 20988.80 26472.40 16965.16 26381.72 26360.98 11992.27 27267.74 20664.65 28386.29 256
Fangjinhua Wang, Silvano Galliani, Christoph Vogel, Marc Pollefeys: IterMVS: Iterative Probability Estimation for Efficient Multi-View Stereo.
eth_miper_zixun_eth75.96 22074.40 21880.66 23184.66 25563.02 21289.28 24488.27 27971.88 18565.73 25881.65 26459.45 13692.81 24968.13 20260.53 31586.14 261
c3_l76.83 20775.47 20580.93 22985.02 25164.18 18890.39 21588.11 28271.66 19466.65 25581.64 26563.58 9692.56 26169.31 19462.86 29486.04 265
DIV-MVS_self_test76.07 21474.67 21080.28 23785.14 24861.75 23890.12 22388.73 26771.16 21065.42 26181.60 26661.15 11692.94 24566.54 21862.16 30186.14 261
cl____76.07 21474.67 21080.28 23785.15 24761.76 23790.12 22388.73 26771.16 21065.43 26081.57 26761.15 11692.95 24166.54 21862.17 29986.13 263
CostFormer82.33 11081.15 11585.86 8789.01 17568.46 6882.39 30793.01 10275.59 10580.25 9881.57 26772.03 3394.96 17479.06 11777.48 19794.16 111
Effi-MVS+-dtu76.14 21375.28 20778.72 26883.22 27655.17 31989.87 23187.78 28775.42 10867.98 23581.43 26945.08 27692.52 26375.08 14371.63 23488.48 221
v119275.98 21973.92 22682.15 19479.73 30866.24 13191.22 19089.75 22872.67 16068.49 23181.42 27049.86 23794.27 20267.08 21265.02 27785.95 268
COLMAP_ROBcopyleft57.96 2062.98 31459.65 31672.98 31781.44 29253.00 32883.75 29475.53 35148.34 35148.81 34481.40 27124.14 35290.30 29832.95 35960.52 31675.65 354
Johannes L. Schönberger, Enliang Zheng, Marc Pollefeys, Jan-Michael Frahm: Pixelwise View Selection for Unstructured Multi-View Stereo. ECCV 2016
v14419276.05 21774.03 22482.12 19779.50 31266.55 12491.39 18089.71 23472.30 17268.17 23381.33 27251.75 22094.03 21767.94 20464.19 28585.77 272
AllTest61.66 31658.06 32072.46 32179.57 30951.42 33680.17 32368.61 36351.25 34245.88 34981.23 27319.86 36186.58 33338.98 34457.01 32879.39 340
TestCases72.46 32179.57 30951.42 33668.61 36351.25 34245.88 34981.23 27319.86 36186.58 33338.98 34457.01 32879.39 340
v192192075.63 22673.49 23182.06 20179.38 31366.35 12791.07 19789.48 23771.98 18067.99 23481.22 27549.16 24693.90 22366.56 21764.56 28485.92 270
v124075.21 23172.98 23581.88 20379.20 31566.00 13590.75 20689.11 25471.63 19967.41 24681.22 27547.36 26093.87 22465.46 23364.72 28285.77 272
XVG-ACMP-BASELINE68.04 28865.53 28775.56 29974.06 34752.37 33078.43 33185.88 30662.03 29858.91 30781.21 27720.38 36091.15 29360.69 26268.18 25783.16 305
EU-MVSNet64.01 30963.01 30367.02 34074.40 34638.86 36983.27 30086.19 30345.11 35754.27 32381.15 27836.91 31780.01 36048.79 30557.02 32782.19 320
ACMH+65.35 1667.65 29164.55 29376.96 29184.59 25757.10 30888.08 26280.79 33858.59 32153.00 32881.09 27926.63 34992.95 24146.51 31561.69 30880.82 328
v14876.19 21274.47 21781.36 21380.05 30764.44 17691.75 16690.23 21273.68 14167.13 24980.84 28055.92 18093.86 22668.95 19861.73 30685.76 274
WR-MVS_H70.59 26769.94 26272.53 32081.03 29451.43 33587.35 27492.03 13867.38 25760.23 29880.70 28155.84 18183.45 34746.33 31758.58 32582.72 310
Baseline_NR-MVSNet73.99 24272.83 23777.48 28180.78 29659.29 28091.79 16184.55 31868.85 24368.99 22280.70 28156.16 17492.04 27762.67 25160.98 31281.11 325
Anonymous2023121173.08 24870.39 25981.13 22090.62 14263.33 20591.40 17890.06 22051.84 34164.46 27280.67 28336.49 31894.07 21163.83 24264.17 28685.98 267
PVSNet_068.08 1571.81 26068.32 27382.27 18984.68 25462.31 22888.68 25490.31 20775.84 10357.93 31480.65 28437.85 30794.19 20669.94 18629.05 36890.31 200
tpm279.80 15577.95 16885.34 10888.28 19368.26 7481.56 31291.42 16670.11 22777.59 13080.50 28567.40 5194.26 20467.34 21077.35 19893.51 135
TransMVSNet (Re)70.07 27167.66 27577.31 28580.62 30059.13 28391.78 16384.94 31465.97 26760.08 29980.44 28650.78 22891.87 27948.84 30445.46 35280.94 327
USDC67.43 29564.51 29476.19 29677.94 33155.29 31878.38 33285.00 31373.17 14948.36 34580.37 28721.23 35892.48 26552.15 29364.02 28880.81 329
LTVRE_ROB59.60 1966.27 29963.54 30074.45 30684.00 26851.55 33467.08 35683.53 32658.78 31954.94 32180.31 28834.54 32493.23 23640.64 34068.03 25878.58 347
Andreas Kuhn, Heiko Hirschmüller, Daniel Scharstein, Helmut Mayer: A TV Prior for High-Quality Scalable Multi-View Stereo Reconstruction. International Journal of Computer Vision 2016
v875.35 22873.26 23381.61 20980.67 29866.82 11589.54 23889.27 24471.65 19563.30 28280.30 28954.99 18994.06 21267.33 21162.33 29883.94 293
GBi-Net75.65 22473.83 22781.10 22288.85 17765.11 15990.01 22790.32 20470.84 21667.04 25080.25 29048.03 25291.54 28759.80 26869.34 24886.64 249
test175.65 22473.83 22781.10 22288.85 17765.11 15990.01 22790.32 20470.84 21667.04 25080.25 29048.03 25291.54 28759.80 26869.34 24886.64 249
FMVSNet172.71 25669.91 26381.10 22283.60 27365.11 15990.01 22790.32 20463.92 28063.56 27980.25 29036.35 31991.54 28754.46 28566.75 26686.64 249
LCM-MVSNet-Re72.93 25171.84 24976.18 29788.49 18448.02 34980.07 32570.17 36173.96 13352.25 33180.09 29349.98 23588.24 31967.35 20984.23 15192.28 169
v1074.77 23572.54 24381.46 21180.33 30466.71 11989.15 24889.08 25570.94 21463.08 28379.86 29452.52 21494.04 21565.70 22962.17 29983.64 295
anonymousdsp71.14 26569.37 26776.45 29472.95 34954.71 32184.19 29188.88 26161.92 30062.15 29079.77 29538.14 30391.44 29268.90 19967.45 26383.21 304
tpm78.58 18077.03 18483.22 16885.94 23864.56 17083.21 30291.14 17978.31 7073.67 16879.68 29664.01 8692.09 27666.07 22571.26 23993.03 150
OurMVSNet-221017-064.68 30562.17 30972.21 32476.08 34247.35 35380.67 31781.02 33756.19 33151.60 33379.66 29727.05 34888.56 31553.60 29053.63 33880.71 330
tpmrst80.57 13979.14 15484.84 12390.10 15068.28 7381.70 31089.72 23377.63 8475.96 14479.54 29864.94 7692.71 25375.43 13977.28 20093.55 134
ACMH63.93 1768.62 28264.81 29080.03 24485.22 24663.25 20687.72 26884.66 31760.83 30651.57 33479.43 29927.29 34794.96 17441.76 33464.84 27981.88 321
Qingshan Xu and Wenbing Tao: Multi-Scale Geometric Consistency Guided Multi-View Stereo. CVPR 2019
IterMVS-SCA-FT71.55 26369.97 26176.32 29581.48 29160.67 25987.64 27185.99 30566.17 26659.50 30178.88 30045.53 27383.65 34562.58 25261.93 30284.63 290
IterMVS72.65 25870.83 25678.09 27582.17 28662.96 21487.64 27186.28 30071.56 20260.44 29778.85 30145.42 27586.66 33263.30 24661.83 30384.65 289
Fangjinhua Wang, Silvano Galliani, Christoph Vogel, Marc Pollefeys: IterMVS: Iterative Probability Estimation for Efficient Multi-View Stereo.
tfpnnormal70.10 27067.36 27678.32 27183.45 27560.97 25088.85 25192.77 11064.85 27560.83 29678.53 30243.52 28393.48 23231.73 36361.70 30780.52 332
D2MVS73.80 24472.02 24879.15 26479.15 31762.97 21388.58 25690.07 21772.94 15459.22 30378.30 30342.31 28792.70 25565.59 23172.00 23281.79 322
v7n71.31 26468.65 26979.28 26076.40 33960.77 25486.71 28189.45 23864.17 27958.77 30878.24 30444.59 27993.54 23057.76 27461.75 30583.52 298
miper_lstm_enhance73.05 24971.73 25177.03 28883.80 26958.32 29181.76 30888.88 26169.80 23261.01 29478.23 30557.19 15787.51 32865.34 23459.53 32085.27 283
EPMVS78.49 18275.98 19886.02 8191.21 13269.68 4480.23 32291.20 17475.25 11472.48 18278.11 30654.65 19193.69 22857.66 27683.04 15494.69 88
pmmvs667.57 29264.76 29176.00 29872.82 35153.37 32688.71 25386.78 29753.19 33857.58 31678.03 30735.33 32292.41 26655.56 28254.88 33582.21 319
OpenMVS_ROBcopyleft61.12 1866.39 29862.92 30476.80 29376.51 33857.77 29689.22 24583.41 32855.48 33453.86 32677.84 30826.28 35093.95 22134.90 35468.76 25378.68 346
EG-PatchMatch MVS68.55 28365.41 28877.96 27678.69 32462.93 21589.86 23289.17 24960.55 30750.27 33977.73 30922.60 35694.06 21247.18 31472.65 22876.88 351
SixPastTwentyTwo64.92 30461.78 31174.34 30878.74 32349.76 34383.42 29979.51 34462.86 28950.27 33977.35 31030.92 33990.49 29745.89 31947.06 34982.78 307
test20.0363.83 31062.65 30667.38 33970.58 35739.94 36586.57 28284.17 32063.29 28551.86 33277.30 31137.09 31582.47 35338.87 34654.13 33779.73 338
Anonymous2023120667.53 29365.78 28372.79 31974.95 34347.59 35288.23 26187.32 29161.75 30358.07 31177.29 31237.79 30887.29 33042.91 32963.71 29083.48 299
test_040264.54 30661.09 31274.92 30384.10 26760.75 25687.95 26479.71 34352.03 34052.41 33077.20 31332.21 33391.64 28423.14 36661.03 31172.36 358
dp75.01 23372.09 24783.76 15189.28 16866.22 13279.96 32789.75 22871.16 21067.80 24177.19 31451.81 21992.54 26250.39 29771.44 23892.51 163
SCA75.82 22272.76 23885.01 11686.63 22470.08 3281.06 31689.19 24871.60 20070.01 21077.09 31545.53 27390.25 29960.43 26373.27 22194.68 89
Patchmatch-test65.86 30160.94 31380.62 23283.75 27058.83 28558.91 36375.26 35244.50 35950.95 33877.09 31558.81 14587.90 32235.13 35364.03 28795.12 73
PatchmatchNetpermissive77.46 19774.63 21285.96 8389.55 16270.35 3079.97 32689.55 23672.23 17470.94 19876.91 31757.03 16092.79 25154.27 28681.17 16794.74 87
Fangjinhua Wang, Silvano Galliani, Christoph Vogel, Pablo Speciale, Marc Pollefeys: PatchmatchNet: Learned Multi-View Patchmatch Stereo.
CL-MVSNet_self_test69.92 27268.09 27475.41 30073.25 34855.90 31590.05 22689.90 22469.96 22961.96 29276.54 31851.05 22787.64 32549.51 30250.59 34482.70 312
KD-MVS_2432*160069.03 27966.37 28177.01 28985.56 24261.06 24881.44 31390.25 21067.27 25858.00 31276.53 31954.49 19387.63 32648.04 30835.77 36382.34 316
miper_refine_blended69.03 27966.37 28177.01 28985.56 24261.06 24881.44 31390.25 21067.27 25858.00 31276.53 31954.49 19387.63 32648.04 30835.77 36382.34 316
tpm cat175.30 22972.21 24684.58 13288.52 18367.77 8778.16 33588.02 28461.88 30168.45 23276.37 32160.65 12194.03 21753.77 28974.11 21591.93 176
TDRefinement55.28 32751.58 33066.39 34159.53 36946.15 35676.23 33872.80 35644.60 35842.49 35976.28 32215.29 36482.39 35433.20 35843.75 35470.62 360
our_test_368.29 28664.69 29279.11 26578.92 32064.85 16888.40 26085.06 31260.32 31052.68 32976.12 32340.81 29089.80 30944.25 32655.65 33182.67 314
ppachtmachnet_test67.72 29063.70 29979.77 25278.92 32066.04 13488.68 25482.90 33260.11 31255.45 32075.96 32439.19 29590.55 29539.53 34252.55 34082.71 311
MDTV_nov1_ep1372.61 24189.06 17368.48 6780.33 32090.11 21671.84 18971.81 19175.92 32553.01 21193.92 22248.04 30873.38 220
TinyColmap60.32 32056.42 32672.00 32778.78 32253.18 32778.36 33375.64 34952.30 33941.59 36075.82 32614.76 36688.35 31835.84 35054.71 33674.46 355
LF4IMVS54.01 32852.12 32959.69 34362.41 36739.91 36768.59 35168.28 36542.96 36044.55 35675.18 32714.09 36868.39 36641.36 33751.68 34170.78 359
tpmvs72.88 25369.76 26582.22 19290.98 13567.05 10978.22 33488.30 27763.10 28864.35 27474.98 32855.09 18894.27 20243.25 32769.57 24785.34 281
MIMVSNet71.64 26168.44 27181.23 21681.97 28964.44 17673.05 34288.80 26469.67 23364.59 26774.79 32932.79 32987.82 32353.99 28776.35 20791.42 183
UnsupCasMVSNet_eth65.79 30263.10 30273.88 31070.71 35550.29 34281.09 31589.88 22572.58 16249.25 34374.77 33032.57 33187.43 32955.96 28141.04 35883.90 294
lessismore_v073.72 31272.93 35047.83 35161.72 37145.86 35173.76 33128.63 34589.81 30747.75 31331.37 36783.53 297
MVS_030468.99 28167.23 27874.28 30980.36 30252.54 32987.01 27886.36 29859.89 31466.22 25673.56 33224.25 35188.03 32157.34 27770.11 24382.27 318
FMVSNet568.04 28865.66 28675.18 30284.43 26157.89 29483.54 29586.26 30161.83 30253.64 32773.30 33337.15 31485.08 33748.99 30361.77 30482.56 315
pmmvs-eth3d65.53 30362.32 30875.19 30169.39 35959.59 27382.80 30583.43 32762.52 29451.30 33672.49 33432.86 32887.16 33155.32 28350.73 34378.83 345
MDA-MVSNet-bldmvs61.54 31857.70 32273.05 31679.53 31157.00 30983.08 30381.23 33657.57 32234.91 36472.45 33532.79 32986.26 33535.81 35141.95 35675.89 353
CR-MVSNet73.79 24570.82 25782.70 17783.15 27867.96 8270.25 34684.00 32373.67 14269.97 21272.41 33657.82 15289.48 31052.99 29273.13 22290.64 197
Patchmtry67.53 29363.93 29878.34 27082.12 28764.38 18068.72 35084.00 32348.23 35259.24 30272.41 33657.82 15289.27 31146.10 31856.68 33081.36 324
K. test v363.09 31359.61 31773.53 31376.26 34049.38 34683.27 30077.15 34664.35 27747.77 34772.32 33828.73 34387.79 32449.93 30036.69 36283.41 301
PM-MVS59.40 32356.59 32467.84 33563.63 36441.86 36176.76 33763.22 36959.01 31851.07 33772.27 33911.72 36983.25 34961.34 25850.28 34578.39 348
MIMVSNet160.16 32257.33 32368.67 33469.71 35844.13 35978.92 32984.21 31955.05 33544.63 35571.85 34023.91 35381.54 35932.63 36155.03 33480.35 333
DSMNet-mixed56.78 32554.44 32863.79 34263.21 36529.44 37364.43 35864.10 36842.12 36151.32 33571.60 34131.76 33475.04 36236.23 34965.20 27686.87 247
MDA-MVSNet_test_wron63.78 31160.16 31474.64 30478.15 32960.41 26283.49 29684.03 32156.17 33339.17 36271.59 34237.22 31283.24 35042.87 33148.73 34680.26 335
YYNet163.76 31260.14 31574.62 30578.06 33060.19 26783.46 29883.99 32556.18 33239.25 36171.56 34337.18 31383.34 34842.90 33048.70 34780.32 334
Anonymous2024052162.09 31559.08 31871.10 32967.19 36148.72 34883.91 29385.23 31150.38 34547.84 34671.22 34420.74 35985.51 33646.47 31658.75 32479.06 343
ADS-MVSNet266.90 29663.44 30177.26 28688.06 19960.70 25868.01 35375.56 35057.57 32264.48 27069.87 34538.68 29684.10 34040.87 33867.89 26086.97 244
ADS-MVSNet68.54 28464.38 29781.03 22688.06 19966.90 11468.01 35384.02 32257.57 32264.48 27069.87 34538.68 29689.21 31240.87 33867.89 26086.97 244
N_pmnet50.55 32949.11 33254.88 34777.17 3364.02 38384.36 2902.00 38248.59 34945.86 35168.82 34732.22 33282.80 35231.58 36451.38 34277.81 349
KD-MVS_self_test60.87 31958.60 31967.68 33766.13 36239.93 36675.63 34084.70 31657.32 32549.57 34268.45 34829.55 34082.87 35148.09 30747.94 34880.25 336
patchmatchnet-post67.62 34957.62 15490.25 299
ambc69.61 33261.38 36841.35 36249.07 36785.86 30750.18 34166.40 35010.16 37088.14 32045.73 32044.20 35379.32 342
new-patchmatchnet59.30 32456.48 32567.79 33665.86 36344.19 35882.47 30681.77 33459.94 31343.65 35866.20 35127.67 34681.68 35839.34 34341.40 35777.50 350
PatchT69.11 27865.37 28980.32 23582.07 28863.68 20067.96 35587.62 28950.86 34469.37 21665.18 35257.09 15888.53 31641.59 33666.60 26788.74 217
RPMNet70.42 26965.68 28584.63 13183.15 27867.96 8270.25 34690.45 19846.83 35569.97 21265.10 35356.48 17395.30 16735.79 35273.13 22290.64 197
pmmvs355.51 32651.50 33167.53 33857.90 37050.93 33980.37 31973.66 35440.63 36244.15 35764.75 35416.30 36378.97 36144.77 32540.98 35972.69 356
Patchmatch-RL test68.17 28764.49 29579.19 26171.22 35353.93 32470.07 34871.54 36069.22 23856.79 31862.89 35556.58 17188.61 31369.53 19152.61 33995.03 79
EGC-MVSNET42.35 33238.09 33555.11 34674.57 34446.62 35571.63 34555.77 3720.04 3770.24 37862.70 35614.24 36774.91 36317.59 36946.06 35143.80 366
UnsupCasMVSNet_bld61.60 31757.71 32173.29 31568.73 36051.64 33378.61 33089.05 25757.20 32646.11 34861.96 35728.70 34488.60 31450.08 29938.90 36079.63 339
FPMVS45.64 33143.10 33453.23 34951.42 37336.46 37064.97 35771.91 35829.13 36627.53 36661.55 3589.83 37165.01 37016.00 37055.58 33258.22 365
new_pmnet49.31 33046.44 33357.93 34462.84 36640.74 36368.47 35262.96 37036.48 36335.09 36357.81 35914.97 36572.18 36432.86 36046.44 35060.88 364
DeepMVS_CXcopyleft34.71 35551.45 37224.73 37728.48 38131.46 36517.49 37152.75 3605.80 37642.60 37618.18 36819.42 36936.81 368
test_method38.59 33535.16 33848.89 35154.33 37121.35 37845.32 36853.71 3737.41 37428.74 36551.62 3618.70 37352.87 37233.73 35532.89 36672.47 357
PMMVS237.93 33633.61 33950.92 35046.31 37524.76 37660.55 36250.05 37428.94 36720.93 36847.59 3624.41 37965.13 36925.14 36518.55 37062.87 363
JIA-IIPM66.06 30062.45 30776.88 29281.42 29354.45 32357.49 36488.67 26949.36 34863.86 27646.86 36356.06 17790.25 29949.53 30168.83 25285.95 268
gg-mvs-nofinetune77.18 20174.31 21985.80 9091.42 12768.36 7071.78 34394.72 3249.61 34777.12 13545.92 36477.41 893.98 21967.62 20893.16 5795.05 76
LCM-MVSNet40.54 33335.79 33654.76 34836.92 37830.81 37251.41 36569.02 36222.07 36824.63 36745.37 3654.56 37865.81 36833.67 35634.50 36567.67 361
tmp_tt22.26 34223.75 34417.80 3585.23 38212.06 38235.26 36939.48 3772.82 37618.94 36944.20 36622.23 35724.64 37736.30 3489.31 37416.69 371
MVS-HIRNet60.25 32155.55 32774.35 30784.37 26256.57 31171.64 34474.11 35334.44 36445.54 35342.24 36731.11 33889.81 30740.36 34176.10 20876.67 352
ANet_high40.27 33435.20 33755.47 34534.74 37934.47 37163.84 35971.56 35948.42 35018.80 37041.08 3689.52 37264.45 37120.18 3678.66 37567.49 362
PMVScopyleft26.43 2231.84 33828.16 34142.89 35325.87 38127.58 37450.92 36649.78 37521.37 36914.17 37340.81 3692.01 38066.62 3679.61 37338.88 36134.49 369
Y. Furukawa, J. Ponce: Accurate, dense, and robust multiview stereopsis. PAMI (2010)
MVEpermissive24.84 2324.35 34019.77 34638.09 35434.56 38026.92 37526.57 37038.87 37811.73 37311.37 37427.44 3701.37 38150.42 37311.41 37214.60 37136.93 367
Simon Fuhrmann, Fabian Langguth, Michael Goesele: MVE - A Multi-View Reconstruction Environment. EUROGRAPHICS Workshops on Graphics and Cultural Heritage (2014)
test_post23.01 37156.49 17292.67 256
E-PMN24.61 33924.00 34326.45 35643.74 37618.44 38060.86 36039.66 37615.11 3719.53 37522.10 3726.52 37546.94 3748.31 37410.14 37213.98 372
Gipumacopyleft34.91 33731.44 34045.30 35270.99 35439.64 36819.85 37272.56 35720.10 37016.16 37221.47 3735.08 37771.16 36513.07 37143.70 35525.08 370
S. Galliani, K. Lasinger, K. Schindler: Massively Parallel Multiview Stereopsis by Surface Normal Diffusion. ICCV 2015
test_post178.95 32820.70 37453.05 21091.50 29160.43 263
EMVS23.76 34123.20 34525.46 35741.52 37716.90 38160.56 36138.79 37914.62 3728.99 37620.24 3757.35 37445.82 3757.25 3759.46 37313.64 373
X-MVStestdata76.86 20374.13 22385.05 11493.22 7363.78 19392.92 11592.66 11573.99 13078.18 12310.19 37655.25 18397.41 7079.16 11591.58 8293.95 122
wuyk23d11.30 34410.95 34712.33 35948.05 37419.89 37925.89 3711.92 3833.58 3753.12 3771.37 3770.64 38215.77 3786.23 3767.77 3761.35 374
testmvs7.23 3469.62 3490.06 3610.04 3830.02 38584.98 2880.02 3840.03 3780.18 3791.21 3780.01 3840.02 3790.14 3770.01 3770.13 376
test1236.92 3479.21 3500.08 3600.03 3840.05 38481.65 3110.01 3850.02 3790.14 3800.85 3790.03 3830.02 3790.12 3780.00 3780.16 375
test_blank0.00 3490.00 3520.00 3620.00 3850.00 3860.00 3730.00 3860.00 3800.00 3810.00 3800.00 3850.00 3810.00 3790.00 3780.00 377
uanet_test0.00 3490.00 3520.00 3620.00 3850.00 3860.00 3730.00 3860.00 3800.00 3810.00 3800.00 3850.00 3810.00 3790.00 3780.00 377
DCPMVS0.00 3490.00 3520.00 3620.00 3850.00 3860.00 3730.00 3860.00 3800.00 3810.00 3800.00 3850.00 3810.00 3790.00 3780.00 377
pcd_1.5k_mvsjas4.46 3485.95 3510.00 3620.00 3850.00 3860.00 3730.00 3860.00 3800.00 3810.00 38053.55 2050.00 3810.00 3790.00 3780.00 377
sosnet-low-res0.00 3490.00 3520.00 3620.00 3850.00 3860.00 3730.00 3860.00 3800.00 3810.00 3800.00 3850.00 3810.00 3790.00 3780.00 377
sosnet0.00 3490.00 3520.00 3620.00 3850.00 3860.00 3730.00 3860.00 3800.00 3810.00 3800.00 3850.00 3810.00 3790.00 3780.00 377
uncertanet0.00 3490.00 3520.00 3620.00 3850.00 3860.00 3730.00 3860.00 3800.00 3810.00 3800.00 3850.00 3810.00 3790.00 3780.00 377
Regformer0.00 3490.00 3520.00 3620.00 3850.00 3860.00 3730.00 3860.00 3800.00 3810.00 3800.00 3850.00 3810.00 3790.00 3780.00 377
uanet0.00 3490.00 3520.00 3620.00 3850.00 3860.00 3730.00 3860.00 3800.00 3810.00 3800.00 3850.00 3810.00 3790.00 3780.00 377
FOURS193.95 5361.77 23693.96 6991.92 14262.14 29786.57 35
MSC_two_6792asdad89.60 997.31 473.22 1195.05 2199.07 1392.01 1294.77 2596.51 20
No_MVS89.60 997.31 473.22 1195.05 2199.07 1392.01 1294.77 2596.51 20
eth-test20.00 385
eth-test0.00 385
IU-MVS96.46 1369.91 3795.18 1480.75 3795.28 192.34 895.36 1496.47 24
save fliter93.84 5667.89 8495.05 3992.66 11578.19 71
test_0728_SECOND88.70 1696.45 1470.43 2996.64 894.37 4999.15 291.91 1494.90 2196.51 20
GSMVS94.68 89
test_part296.29 2168.16 7890.78 13
sam_mvs157.85 15194.68 89
sam_mvs54.91 190
MTGPAbinary92.23 128
MTMP93.77 8432.52 380
test9_res89.41 2694.96 1895.29 62
agg_prior286.41 5794.75 3095.33 58
agg_prior94.16 5066.97 11293.31 8884.49 5996.75 111
test_prior467.18 10693.92 75
test_prior86.42 6994.71 3967.35 9993.10 10096.84 10795.05 76
旧先验292.00 15359.37 31787.54 2993.47 23375.39 140
新几何291.41 176
无先验92.71 12192.61 11962.03 29897.01 9366.63 21593.97 121
原ACMM292.01 150
testdata296.09 12861.26 259
segment_acmp65.94 64
testdata189.21 24677.55 85
test1287.09 4494.60 4168.86 5992.91 10682.67 7665.44 7097.55 6493.69 5094.84 85
plane_prior786.94 22061.51 241
plane_prior687.23 21562.32 22750.66 229
plane_prior591.31 17095.55 15776.74 13278.53 18688.39 224
plane_prior361.95 23479.09 5972.53 180
plane_prior293.13 10378.81 65
plane_prior187.15 217
plane_prior62.42 22493.85 7979.38 5178.80 183
n20.00 386
nn0.00 386
door-mid66.01 367
test1193.01 102
door66.57 366
HQP5-MVS63.66 201
HQP-NCC87.54 20994.06 6479.80 4574.18 160
ACMP_Plane87.54 20994.06 6479.80 4574.18 160
BP-MVS77.63 129
HQP4-MVS74.18 16095.61 15188.63 218
HQP3-MVS91.70 15578.90 181
HQP2-MVS51.63 222
MDTV_nov1_ep13_2view59.90 27080.13 32467.65 25572.79 17554.33 19859.83 26792.58 161
ACMMP++_ref71.63 234
ACMMP++69.72 245
Test By Simon54.21 199