This table lists the benchmark results for the high-res multi-view scenario. The following metrics are evaluated:

(*) For exact definitions, detailing how potentially incomplete ground truth is taken into account, see our paper.

The datasets are grouped into different categories, and result averages are computed for a category and method if results of the method are available for all datasets within the category. Note that the category "all" includes both the high-res multi-view and the low-res many-view scenarios.

Methods with suffix _ROB may participate in the Robust Vision Challenge.

Click a dataset result cell to show a visualization of the reconstruction. For training datasets, ground truth and accuracy / completeness visualizations are also available. The visualizations may not work with mobile browsers.




Method Infoallhigh-res
multi-view
indooroutdoorbotani.boulde.bridgedoorexhibi.lectur.living.loungeobserv.old co.statueterrac.
sort bysort bysort bysort bysort bysort bysort bysort bysort bysort bysorted bysort bysort bysort bysort bysort by
DeepPCF-MVS95.94 297.71 8298.98 1293.92 28799.63 7981.76 37099.96 3598.56 9299.47 199.19 8499.99 194.16 84100.00 199.92 1299.93 60100.00 1
CNVR-MVS99.40 199.26 199.84 699.98 299.51 699.98 1598.69 6898.20 799.93 199.98 296.82 22100.00 199.75 28100.00 199.99 23
NCCC99.37 299.25 299.71 1499.96 899.15 2199.97 2898.62 8198.02 1399.90 399.95 397.33 16100.00 199.54 39100.00 1100.00 1
SED-MVS99.28 599.11 799.77 899.93 2499.30 1299.96 3598.43 13197.27 3499.80 1899.94 496.71 23100.00 1100.00 1100.00 1100.00 1
test_241102_TWO98.43 13197.27 3499.80 1899.94 497.18 20100.00 1100.00 1100.00 1100.00 1
test072699.93 2499.29 1599.96 3598.42 14397.28 3299.86 799.94 497.22 18
DPM-MVS98.83 2198.46 3099.97 199.33 9899.92 199.96 3598.44 12397.96 1499.55 5599.94 497.18 20100.00 193.81 21499.94 5499.98 48
SMA-MVScopyleft98.76 2498.48 2999.62 2099.87 5198.87 3299.86 11898.38 15993.19 17099.77 2899.94 495.54 42100.00 199.74 3099.99 21100.00 1
Yufeng Yin; Xiaoyan Liu; Zichao Zhang: SMA-MVS: Segmentation-Guided Multi-Scale Anchor Deformation Patch Multi-View Stereo. IEEE Transactions on Circuits and Systems for Video Technology
DPE-MVScopyleft99.26 699.10 899.74 1199.89 4599.24 1999.87 10698.44 12397.48 2799.64 4399.94 496.68 2599.99 3699.99 5100.00 199.99 23
Kehua Chen, Zhenlong Yuan, Tianlu Mao, Zhaoqi Wang: Dual-Level Precision Edges Guided Multi-View Stereo with Accurate Planarization. AAAI2025
MSLP-MVS++99.13 899.01 1199.49 3299.94 1398.46 5999.98 1598.86 5397.10 4099.80 1899.94 495.92 36100.00 199.51 40100.00 1100.00 1
DVP-MVS++99.26 699.09 999.77 899.91 3999.31 1099.95 5398.43 13196.48 6199.80 1899.93 1197.44 13100.00 199.92 1299.98 32100.00 1
test_one_060199.94 1399.30 1298.41 14896.63 5699.75 3099.93 1197.49 9
MCST-MVS99.32 399.14 499.86 599.97 399.59 599.97 2898.64 7698.47 299.13 8699.92 1396.38 30100.00 199.74 30100.00 1100.00 1
DVP-MVScopyleft99.30 499.16 399.73 1299.93 2499.29 1599.95 5398.32 17297.28 3299.83 1399.91 1497.22 18100.00 199.99 5100.00 199.89 84
Zhenlong Yuan, Jinguo Luo, Fei Shen, Zhaoxin Li, Cong Liu, Tianlu Mao, Zhaoqi Wang: DVP-MVS: Synergize Depth-Edge and Visibility Prior for Multi-View Stereo. AAAI2025
test_0728_THIRD96.48 6199.83 1399.91 1497.87 5100.00 199.92 12100.00 1100.00 1
SteuartSystems-ACMMP99.02 1298.97 1399.18 5098.72 14097.71 7999.98 1598.44 12396.85 4699.80 1899.91 1497.57 799.85 10899.44 4699.99 2199.99 23
Skip Steuart: Steuart Systems R&D Blog.
DeepC-MVS_fast96.59 198.81 2398.54 2699.62 2099.90 4298.85 3499.24 24198.47 11598.14 1099.08 8799.91 1493.09 113100.00 199.04 6399.99 21100.00 1
Andreas Kuhn, Christian Sormann, Mattia Rossi, Oliver Erdler, Friedrich Fraundorfer: DeepC-MVS: Deep Confidence Prediction for Multi-View Stereo Reconstruction. 3DV 2020
tmp_tt65.23 36662.94 36972.13 38144.90 41050.03 40681.05 39789.42 40138.45 40048.51 40299.90 1854.09 38578.70 40291.84 24518.26 40487.64 386
SF-MVS98.67 2798.40 3299.50 3099.77 6598.67 4799.90 9198.21 18693.53 15999.81 1599.89 1994.70 6699.86 10799.84 2299.93 6099.96 64
9.1498.38 3499.87 5199.91 8498.33 17093.22 16999.78 2799.89 1994.57 6899.85 10899.84 2299.97 42
test_241102_ONE99.93 2499.30 1298.43 13197.26 3699.80 1899.88 2196.71 23100.00 1
MSP-MVS99.09 999.12 598.98 7399.93 2497.24 9899.95 5398.42 14397.50 2699.52 6099.88 2197.43 1599.71 13899.50 4199.98 32100.00 1
Zhenlong Yuan, Cong Liu, Fei Shen, Zhaoxin Li, Jingguo luo, Tianlu Mao and Zhaoqi Wang: MSP-MVS: Multi-granularity Segmentation Prior Guided Multi-View Stereo. AAAI2025
MTAPA98.29 5197.96 6299.30 4299.85 5497.93 7399.39 22298.28 17995.76 8297.18 15799.88 2192.74 124100.00 198.67 8899.88 6999.99 23
CDPH-MVS98.65 2898.36 3899.49 3299.94 1398.73 4499.87 10698.33 17093.97 14499.76 2999.87 2494.99 5899.75 13298.55 95100.00 199.98 48
CP-MVS98.45 4098.32 4098.87 7999.96 896.62 12199.97 2898.39 15594.43 11998.90 9599.87 2494.30 78100.00 199.04 6399.99 2199.99 23
xiu_mvs_v2_base98.23 5797.97 5999.02 7098.69 14198.66 4999.52 20398.08 20397.05 4199.86 799.86 2690.65 16799.71 13899.39 5098.63 13998.69 218
TEST999.92 3198.92 2899.96 3598.43 13193.90 14999.71 3599.86 2695.88 3799.85 108
train_agg98.88 1998.65 2099.59 2399.92 3198.92 2899.96 3598.43 13194.35 12499.71 3599.86 2695.94 3499.85 10899.69 3599.98 3299.99 23
LS3D95.84 15895.11 16898.02 13599.85 5495.10 18598.74 29398.50 11287.22 31693.66 21999.86 2687.45 20599.95 6990.94 25899.81 7999.02 201
MP-MVS-pluss98.07 6297.64 7499.38 4199.74 6998.41 6099.74 15998.18 19093.35 16496.45 17699.85 3092.64 12699.97 5398.91 7499.89 6799.77 101
MP-MVS-pluss: MP-MVS-pluss. MP-MVS-pluss
test_899.92 3198.88 3199.96 3598.43 13194.35 12499.69 3799.85 3095.94 3499.85 108
HFP-MVS98.56 3298.37 3699.14 5999.96 897.43 9499.95 5398.61 8294.77 10799.31 7799.85 3094.22 80100.00 198.70 8699.98 3299.98 48
region2R98.54 3398.37 3699.05 6699.96 897.18 10199.96 3598.55 9894.87 10599.45 6599.85 3094.07 86100.00 198.67 88100.00 199.98 48
PS-MVSNAJ98.44 4198.20 4699.16 5598.80 13698.92 2899.54 20198.17 19197.34 2999.85 999.85 3091.20 15499.89 9699.41 4899.67 8698.69 218
HPM-MVS++copyleft99.07 1098.88 1699.63 1799.90 4299.02 2599.95 5398.56 9297.56 2599.44 6699.85 3095.38 47100.00 199.31 5199.99 2199.87 87
旧先验199.76 6697.52 8798.64 7699.85 3095.63 4199.94 5499.99 23
原ACMM198.96 7599.73 7296.99 10998.51 10794.06 14099.62 4799.85 3094.97 5999.96 6195.11 18099.95 4999.92 81
testdata98.42 11399.47 9295.33 17598.56 9293.78 15299.79 2699.85 3093.64 9999.94 7794.97 18499.94 54100.00 1
APDe-MVScopyleft99.06 1198.91 1499.51 2999.94 1398.76 4399.91 8498.39 15597.20 3899.46 6499.85 3095.53 4499.79 12399.86 21100.00 199.99 23
Zhaojie Zeng, Yuesong Wang, Tao Guan: Matching Ambiguity-Resilient Multi-View Stereo via Adaptive Patch Deformation. Pattern Recognition
API-MVS97.86 6897.66 7398.47 10899.52 8895.41 17299.47 21298.87 5291.68 22898.84 9799.85 3092.34 13799.99 3698.44 9899.96 46100.00 1
ACMMPR98.50 3698.32 4099.05 6699.96 897.18 10199.95 5398.60 8494.77 10799.31 7799.84 4193.73 96100.00 198.70 8699.98 3299.98 48
DP-MVS Recon98.41 4598.02 5799.56 2599.97 398.70 4699.92 7998.44 12392.06 21798.40 12299.84 4195.68 40100.00 198.19 10799.71 8499.97 58
ZD-MVS99.92 3198.57 5498.52 10492.34 20999.31 7799.83 4395.06 5399.80 12199.70 3499.97 42
ACMMP_NAP98.49 3798.14 5099.54 2799.66 7898.62 5399.85 12198.37 16294.68 11299.53 5899.83 4392.87 119100.00 198.66 9099.84 7299.99 23
test22299.55 8697.41 9699.34 22898.55 9891.86 22299.27 8199.83 4393.84 9499.95 4999.99 23
ZNCC-MVS98.31 4998.03 5699.17 5399.88 4997.59 8499.94 6998.44 12394.31 12798.50 11799.82 4693.06 11499.99 3698.30 10599.99 2199.93 76
新几何199.42 3799.75 6898.27 6198.63 8092.69 18999.55 5599.82 4694.40 71100.00 191.21 25099.94 5499.99 23
CSCG97.10 10697.04 9897.27 18199.89 4591.92 26599.90 9199.07 3488.67 29595.26 20199.82 4693.17 11299.98 4398.15 11099.47 10599.90 83
MAR-MVS97.43 8997.19 9298.15 12799.47 9294.79 19499.05 26298.76 6392.65 19298.66 11099.82 4688.52 19799.98 4398.12 11199.63 8999.67 115
Zhenyu Xu, Yiguang Liu, Xuelei Shi, Ying Wang, Yunan Zheng: MARMVS: Matching Ambiguity Reduced Multiple View Stereo for Efficient Large Scale Scene Reconstruction. CVPR 2020
MP-MVScopyleft98.23 5797.97 5999.03 6899.94 1397.17 10499.95 5398.39 15594.70 11198.26 12999.81 5091.84 148100.00 198.85 7899.97 4299.93 76
Rongxuan Tan, Qing Wang, et al.: MP-MVS: Multi-Scale Windows PatchMatch and Planar Prior Multi-View Stereo.
MM98.83 2198.53 2799.76 1099.59 8199.33 899.99 599.76 698.39 399.39 7399.80 5190.49 17199.96 6199.89 1699.43 11199.98 48
iter_conf05_1196.12 14995.46 15598.10 12998.62 14795.52 167100.00 196.30 34896.54 6099.81 1599.80 5169.19 34699.10 17698.92 7099.91 6699.68 111
bld_raw_dy_0_6494.22 20592.97 22297.98 13698.62 14795.09 18699.89 9993.09 38996.55 5992.59 23299.80 5168.57 35099.19 17198.92 7088.69 26499.68 111
OPU-MVS99.93 299.89 4599.80 299.96 3599.80 5197.44 13100.00 1100.00 199.98 32100.00 1
SR-MVS98.46 3998.30 4398.93 7799.88 4997.04 10799.84 12698.35 16594.92 10399.32 7699.80 5193.35 10399.78 12599.30 5299.95 4999.96 64
mPP-MVS98.39 4798.20 4698.97 7499.97 396.92 11299.95 5398.38 15995.04 9998.61 11399.80 5193.39 101100.00 198.64 91100.00 199.98 48
PC_three_145296.96 4499.80 1899.79 5797.49 9100.00 199.99 599.98 32100.00 1
CS-MVS-test97.88 6797.94 6397.70 15699.28 10095.20 18299.98 1597.15 29195.53 8999.62 4799.79 5792.08 14398.38 22498.75 8499.28 11899.52 149
CPTT-MVS97.64 8497.32 8798.58 9899.97 395.77 15399.96 3598.35 16589.90 27298.36 12399.79 5791.18 15799.99 3698.37 10199.99 2199.99 23
MVS_111021_LR98.42 4498.38 3498.53 10599.39 9595.79 15299.87 10699.86 296.70 5498.78 10199.79 5792.03 14499.90 9199.17 5799.86 7199.88 85
XVS98.70 2698.55 2599.15 5799.94 1397.50 9099.94 6998.42 14396.22 7399.41 6999.78 6194.34 7699.96 6198.92 7099.95 4999.99 23
PHI-MVS98.41 4598.21 4599.03 6899.86 5397.10 10699.98 1598.80 6290.78 25899.62 4799.78 6195.30 48100.00 199.80 2599.93 6099.99 23
APD-MVS_3200maxsize98.25 5598.08 5598.78 8299.81 6096.60 12299.82 13698.30 17793.95 14699.37 7499.77 6392.84 12099.76 13198.95 6799.92 6399.97 58
MVS_111021_HR98.72 2598.62 2299.01 7199.36 9797.18 10199.93 7699.90 196.81 5198.67 10999.77 6393.92 8999.89 9699.27 5399.94 5499.96 64
fmvsm_l_conf0.5_n98.94 1598.84 1799.25 4499.17 10697.81 7799.98 1598.86 5398.25 499.90 399.76 6594.21 8299.97 5399.87 1999.52 10099.98 48
patch_mono-298.24 5699.12 595.59 22499.67 7786.91 34399.95 5398.89 4997.60 2299.90 399.76 6596.54 2899.98 4399.94 1199.82 7799.88 85
EI-MVSNet-Vis-set98.27 5298.11 5398.75 8599.83 5796.59 12399.40 21898.51 10795.29 9598.51 11699.76 6593.60 10099.71 13898.53 9699.52 10099.95 71
test_prior299.95 5395.78 8199.73 3399.76 6596.00 3399.78 27100.00 1
SD-MVS98.92 1798.70 1999.56 2599.70 7698.73 4499.94 6998.34 16996.38 6799.81 1599.76 6594.59 6799.98 4399.84 2299.96 4699.97 58
Zhenlong Yuan, Jiakai Cao, Zhaoxin Li, Hao Jiang and Zhaoqi Wang: SD-MVS: Segmentation-driven Deformation Multi-View Stereo with Spherical Refinement and EM optimization. AAAI2024
PGM-MVS98.34 4898.13 5198.99 7299.92 3197.00 10899.75 15699.50 1893.90 14999.37 7499.76 6593.24 110100.00 197.75 13599.96 4699.98 48
fmvsm_l_conf0.5_n_a99.00 1498.91 1499.28 4399.21 10297.91 7499.98 1598.85 5698.25 499.92 299.75 7194.72 6499.97 5399.87 1999.64 8899.95 71
SR-MVS-dyc-post98.31 4998.17 4898.71 8699.79 6296.37 13199.76 15398.31 17494.43 11999.40 7199.75 7193.28 10899.78 12598.90 7599.92 6399.97 58
RE-MVS-def98.13 5199.79 6296.37 13199.76 15398.31 17494.43 11999.40 7199.75 7192.95 11798.90 7599.92 6399.97 58
CS-MVS97.79 7697.91 6597.43 17199.10 10994.42 20099.99 597.10 29695.07 9899.68 3899.75 7192.95 11798.34 22898.38 10099.14 12499.54 145
MVS_030498.87 2098.61 2399.67 1699.18 10399.13 2299.87 10699.65 1298.17 898.75 10699.75 7192.76 12399.94 7799.88 1899.44 10999.94 74
EI-MVSNet-UG-set98.14 5997.99 5898.60 9599.80 6196.27 13399.36 22798.50 11295.21 9798.30 12699.75 7193.29 10799.73 13798.37 10199.30 11799.81 94
PAPR98.52 3598.16 4999.58 2499.97 398.77 4099.95 5398.43 13195.35 9398.03 13599.75 7194.03 8799.98 4398.11 11299.83 7399.99 23
GST-MVS98.27 5297.97 5999.17 5399.92 3197.57 8599.93 7698.39 15594.04 14298.80 10099.74 7892.98 116100.00 198.16 10999.76 8199.93 76
TSAR-MVS + MP.98.93 1698.77 1899.41 3899.74 6998.67 4799.77 14898.38 15996.73 5399.88 699.74 7894.89 6099.59 14999.80 2599.98 3299.97 58
Zhenlong Yuan, Jiakai Cao, Zhaoqi Wang, Zhaoxin Li: TSAR-MVS: Textureless-aware Segmentation and Correlative Refinement Guided Multi-View Stereo. Pattern Recognition
test_fmvsm_n_192098.44 4198.61 2397.92 14199.27 10195.18 183100.00 198.90 4798.05 1299.80 1899.73 8092.64 12699.99 3699.58 3899.51 10398.59 221
dcpmvs_297.42 9398.09 5495.42 22999.58 8587.24 33999.23 24296.95 31294.28 12998.93 9499.73 8094.39 7499.16 17499.89 1699.82 7799.86 89
APD-MVScopyleft98.62 2998.35 3999.41 3899.90 4298.51 5799.87 10698.36 16394.08 13799.74 3299.73 8094.08 8599.74 13499.42 4799.99 2199.99 23
Yuesong Wang, Zhaojie Zeng and etc.: Adaptive Patch Deformation for Textureless-Resilient Multi-View Stereo. CVPR2023
MG-MVS98.91 1898.65 2099.68 1599.94 1399.07 2499.64 18599.44 2097.33 3199.00 9199.72 8394.03 8799.98 4398.73 85100.00 1100.00 1
AdaColmapbinary97.23 10196.80 10898.51 10699.99 195.60 16499.09 25198.84 5893.32 16696.74 16999.72 8386.04 221100.00 198.01 11799.43 11199.94 74
CANet98.27 5297.82 6999.63 1799.72 7499.10 2399.98 1598.51 10797.00 4398.52 11599.71 8587.80 20099.95 6999.75 2899.38 11399.83 91
ACMMPcopyleft97.74 7997.44 8198.66 9099.92 3196.13 14399.18 24699.45 1994.84 10696.41 17999.71 8591.40 15199.99 3697.99 11998.03 15899.87 87
Qingshan Xu, Weihang Kong, Wenbing Tao, Marc Pollefeys: Multi-Scale Geometric Consistency Guided and Planar Prior Assisted Multi-View Stereo. IEEE Transactions on Pattern Analysis and Machine Intelligence
PAPM_NR98.12 6097.93 6498.70 8799.94 1396.13 14399.82 13698.43 13194.56 11597.52 14799.70 8794.40 7199.98 4397.00 15199.98 3299.99 23
OMC-MVS97.28 9897.23 9097.41 17299.76 6693.36 23499.65 18197.95 21496.03 7797.41 15199.70 8789.61 18199.51 15296.73 16098.25 15099.38 166
fmvsm_s_conf0.5_n_a97.73 8197.72 7197.77 15198.63 14694.26 20699.96 3598.92 4697.18 3999.75 3099.69 8987.00 21299.97 5399.46 4498.89 13199.08 197
fmvsm_s_conf0.5_n97.80 7497.85 6897.67 15799.06 11194.41 20199.98 1598.97 4097.34 2999.63 4499.69 8987.27 20799.97 5399.62 3799.06 12898.62 220
xiu_mvs_v1_base_debu97.43 8997.06 9598.55 10097.74 20398.14 6299.31 23297.86 22596.43 6499.62 4799.69 8985.56 22499.68 14299.05 6098.31 14697.83 234
xiu_mvs_v1_base97.43 8997.06 9598.55 10097.74 20398.14 6299.31 23297.86 22596.43 6499.62 4799.69 8985.56 22499.68 14299.05 6098.31 14697.83 234
xiu_mvs_v1_base_debi97.43 8997.06 9598.55 10097.74 20398.14 6299.31 23297.86 22596.43 6499.62 4799.69 8985.56 22499.68 14299.05 6098.31 14697.83 234
CNLPA97.76 7897.38 8398.92 7899.53 8796.84 11499.87 10698.14 19993.78 15296.55 17499.69 8992.28 13899.98 4397.13 14799.44 10999.93 76
mvsany_test197.82 7297.90 6697.55 16498.77 13893.04 23999.80 14297.93 21696.95 4599.61 5399.68 9590.92 16299.83 11899.18 5698.29 14999.80 96
cdsmvs_eth3d_5k23.43 37431.24 3770.00 3910.00 4140.00 4160.00 40298.09 2010.00 4090.00 41099.67 9683.37 2450.00 4100.00 4090.00 4080.00 406
lupinMVS97.85 6997.60 7698.62 9397.28 23697.70 8199.99 597.55 24995.50 9199.43 6799.67 9690.92 16298.71 19798.40 9999.62 9099.45 159
114514_t97.41 9496.83 10699.14 5999.51 9097.83 7599.89 9998.27 18188.48 29999.06 8899.66 9890.30 17399.64 14896.32 16499.97 4299.96 64
PAPM98.60 3098.42 3199.14 5996.05 27498.96 2699.90 9199.35 2596.68 5598.35 12499.66 9896.45 2998.51 20899.45 4599.89 6799.96 64
fmvsm_s_conf0.1_n97.30 9797.21 9197.60 16397.38 22794.40 20399.90 9198.64 7696.47 6399.51 6299.65 10084.99 23299.93 8599.22 5599.09 12798.46 222
fmvsm_s_conf0.1_n_a97.09 10896.90 10397.63 16195.65 29494.21 20899.83 13398.50 11296.27 7299.65 4199.64 10184.72 23399.93 8599.04 6398.84 13498.74 215
test_fmvsmconf_n98.43 4398.32 4098.78 8298.12 18396.41 12799.99 598.83 5998.22 699.67 3999.64 10191.11 15899.94 7799.67 3699.62 9099.98 48
CANet_DTU96.76 12396.15 12898.60 9598.78 13797.53 8699.84 12697.63 23897.25 3799.20 8299.64 10181.36 25999.98 4392.77 23498.89 13198.28 227
XVG-OURS94.82 18194.74 17995.06 24198.00 18789.19 31799.08 25397.55 24994.10 13694.71 20599.62 10480.51 27199.74 13496.04 16893.06 24396.25 252
MVS96.60 13195.56 15499.72 1396.85 25499.22 2098.31 31898.94 4191.57 23090.90 25299.61 10586.66 21599.96 6197.36 14199.88 6999.99 23
test_fmvsmvis_n_192097.67 8397.59 7897.91 14397.02 24395.34 17499.95 5398.45 11897.87 1597.02 16199.59 10689.64 18099.98 4399.41 4899.34 11698.42 224
EIA-MVS97.53 8697.46 8097.76 15398.04 18694.84 19199.98 1597.61 24394.41 12297.90 13999.59 10692.40 13598.87 18498.04 11699.13 12599.59 132
XVG-OURS-SEG-HR94.79 18394.70 18095.08 24098.05 18589.19 31799.08 25397.54 25193.66 15694.87 20499.58 10878.78 28799.79 12397.31 14293.40 23896.25 252
HPM-MVScopyleft97.96 6397.72 7198.68 8899.84 5696.39 13099.90 9198.17 19192.61 19498.62 11299.57 10991.87 14799.67 14598.87 7799.99 2199.99 23
Chunlin Ren, Qingshan Xu, Shikun Zhang, Jiaqi Yang: Hierarchical Prior Mining for Non-local Multi-View Stereo. ICCV 2023
TSAR-MVS + GP.98.60 3098.51 2898.86 8099.73 7296.63 12099.97 2897.92 21998.07 1198.76 10499.55 11095.00 5799.94 7799.91 1597.68 16399.99 23
DP-MVS94.54 19293.42 21197.91 14399.46 9494.04 21298.93 27497.48 25981.15 36690.04 26099.55 11087.02 21199.95 6988.97 28498.11 15499.73 105
MVSFormer96.94 11496.60 11697.95 13897.28 23697.70 8199.55 19997.27 28091.17 24499.43 6799.54 11290.92 16296.89 30994.67 19699.62 9099.25 184
jason97.24 10096.86 10598.38 11695.73 28897.32 9799.97 2897.40 26795.34 9498.60 11499.54 11287.70 20198.56 20597.94 12299.47 10599.25 184
jason: jason.
HPM-MVS_fast97.80 7497.50 7998.68 8899.79 6296.42 12699.88 10398.16 19591.75 22798.94 9399.54 11291.82 14999.65 14797.62 13899.99 2199.99 23
DeepC-MVS94.51 496.92 11696.40 12398.45 11099.16 10795.90 14999.66 17998.06 20496.37 7094.37 21099.49 11583.29 24699.90 9197.63 13799.61 9499.55 141
Andreas Kuhn, Christian Sormann, Mattia Rossi, Oliver Erdler, Friedrich Fraundorfer: DeepC-MVS: Deep Confidence Prediction for Multi-View Stereo Reconstruction. 3DV 2020
alignmvs97.81 7397.33 8699.25 4498.77 13898.66 4999.99 598.44 12394.40 12398.41 12099.47 11693.65 9899.42 16298.57 9494.26 23099.67 115
TAPA-MVS92.12 894.42 19793.60 20496.90 19099.33 9891.78 26999.78 14598.00 20889.89 27394.52 20799.47 11691.97 14599.18 17269.90 38099.52 10099.73 105
Andrea Romanoni, Matteo Matteucci: TAPA-MVS: Textureless-Aware PAtchMatch Multi-View Stereo. ICCV 2019
ETV-MVS97.92 6697.80 7098.25 12198.14 18196.48 12499.98 1597.63 23895.61 8699.29 8099.46 11892.55 13098.82 18799.02 6698.54 14099.46 157
ET-MVSNet_ETH3D94.37 19993.28 21797.64 15998.30 16797.99 6999.99 597.61 24394.35 12471.57 38599.45 11996.23 3195.34 35596.91 15885.14 30099.59 132
test_fmvsmconf0.1_n97.74 7997.44 8198.64 9295.76 28596.20 13999.94 6998.05 20698.17 898.89 9699.42 12087.65 20299.90 9199.50 4199.60 9699.82 92
canonicalmvs97.09 10896.32 12499.39 4098.93 12398.95 2799.72 16797.35 27094.45 11797.88 14199.42 12086.71 21499.52 15198.48 9793.97 23499.72 107
VDD-MVS93.77 21592.94 22396.27 21098.55 15290.22 30398.77 29297.79 23090.85 25496.82 16799.42 12061.18 37799.77 12898.95 6794.13 23198.82 210
1112_ss96.01 15495.20 16598.42 11397.80 19996.41 12799.65 18196.66 33592.71 18792.88 22999.40 12392.16 14099.30 16391.92 24393.66 23599.55 141
ab-mvs-re8.28 37611.04 3790.00 3910.00 4140.00 4160.00 4020.00 4150.00 4090.00 41099.40 1230.00 4140.00 4100.00 4090.00 4080.00 406
LFMVS94.75 18693.56 20798.30 11999.03 11395.70 15898.74 29397.98 21187.81 30998.47 11899.39 12567.43 35699.53 15098.01 11795.20 21999.67 115
WTY-MVS98.10 6197.60 7699.60 2298.92 12599.28 1799.89 9999.52 1595.58 8798.24 13099.39 12593.33 10499.74 13497.98 12195.58 21099.78 100
PMMVS96.76 12396.76 10996.76 19498.28 17092.10 26099.91 8497.98 21194.12 13599.53 5899.39 12586.93 21398.73 19496.95 15697.73 16199.45 159
EPNet98.49 3798.40 3298.77 8499.62 8096.80 11799.90 9199.51 1797.60 2299.20 8299.36 12893.71 9799.91 8997.99 11998.71 13899.61 129
Wanjuan Su, Wenbing Tao: Efficient Edge-Preserving Multi-View Stereo Network for Depth Estimation. AAAI 2023
test_fmvsmconf0.01_n96.39 14095.74 14898.32 11891.47 36495.56 16599.84 12697.30 27697.74 1897.89 14099.35 12979.62 27899.85 10899.25 5499.24 12099.55 141
EC-MVSNet97.38 9697.24 8997.80 14697.41 22595.64 16299.99 597.06 30194.59 11499.63 4499.32 13089.20 19098.14 24498.76 8399.23 12199.62 126
VDDNet93.12 23291.91 24796.76 19496.67 26492.65 25098.69 29998.21 18682.81 35997.75 14499.28 13161.57 37599.48 15998.09 11494.09 23298.15 229
diffmvspermissive97.00 11296.64 11498.09 13197.64 21496.17 14299.81 13897.19 28594.67 11398.95 9299.28 13186.43 21798.76 19298.37 10197.42 16999.33 174
Fangjinhua Wang, Qingshan Xu, Yew-Soon Ong, Marc Pollefeys: Lightweight and Accurate Multi-View Stereo With Confidence-Aware Diffusion Model. IEEE T-PAMI 2025
baseline96.43 13795.98 13497.76 15397.34 23095.17 18499.51 20597.17 28893.92 14896.90 16499.28 13185.37 22898.64 20297.50 13996.86 18499.46 157
UA-Net96.54 13395.96 13898.27 12098.23 17395.71 15798.00 33298.45 11893.72 15598.41 12099.27 13488.71 19699.66 14691.19 25197.69 16299.44 161
RPSCF91.80 26292.79 22888.83 35098.15 18069.87 38898.11 32896.60 33883.93 35194.33 21199.27 13479.60 27999.46 16191.99 24193.16 24197.18 246
PLCcopyleft95.54 397.93 6597.89 6798.05 13499.82 5894.77 19599.92 7998.46 11793.93 14797.20 15699.27 13495.44 4699.97 5397.41 14099.51 10399.41 164
Jie Liao, Yanping Fu, Qingan Yan, Chunxia xiao: Pyramid Multi-View Stereo with Local Consistency. Pacific Graphics 2019
casdiffmvspermissive96.42 13995.97 13797.77 15197.30 23494.98 18799.84 12697.09 29893.75 15496.58 17399.26 13785.07 23098.78 19097.77 13397.04 17899.54 145
Fangjinhua Wang, Qingshan Xu, Yew-Soon Ong, Marc Pollefeys: Lightweight and Accurate Multi-View Stereo With Confidence-Aware Diffusion Model. IEEE T-PAMI 2025
BH-RMVSNet95.18 17494.31 18797.80 14698.17 17995.23 18099.76 15397.53 25392.52 20294.27 21399.25 13876.84 30198.80 18890.89 26099.54 9999.35 171
DELS-MVS98.54 3398.22 4499.50 3099.15 10898.65 51100.00 198.58 8797.70 2098.21 13199.24 13992.58 12999.94 7798.63 9399.94 5499.92 81
Christian Sormann, Emanuele Santellani, Mattia Rossi, Andreas Kuhn, Friedrich Fraundorfer: DELS-MVS: Deep Epipolar Line Search for Multi-View Stereo. Winter Conference on Applications of Computer Vision (WACV), 2023
PCF-MVS94.20 595.18 17494.10 19198.43 11298.55 15295.99 14797.91 33497.31 27590.35 26589.48 27699.22 14085.19 22999.89 9690.40 27198.47 14299.41 164
Andreas Kuhn, Shan Lin, Oliver Erdler: Plane Completion and Filtering for Multi-View Stereo Reconstruction. GCPR 2019
PVSNet91.05 1397.13 10596.69 11398.45 11099.52 8895.81 15199.95 5399.65 1294.73 10999.04 8999.21 14184.48 23699.95 6994.92 18698.74 13799.58 138
test_vis1_n_192095.44 17095.31 16195.82 22098.50 15788.74 32299.98 1597.30 27697.84 1699.85 999.19 14266.82 35899.97 5398.82 7999.46 10798.76 213
casdiffmvs_mvgpermissive96.43 13795.94 14197.89 14597.44 22495.47 16899.86 11897.29 27893.35 16496.03 18699.19 14285.39 22798.72 19697.89 12697.04 17899.49 155
Fangjinhua Wang, Qingshan Xu, Yew-Soon Ong, Marc Pollefeys: Lightweight and Accurate Multi-View Stereo With Confidence-Aware Diffusion Model. IEEE T-PAMI 2025
MSDG94.37 19993.36 21597.40 17398.88 13293.95 21699.37 22597.38 26885.75 33690.80 25399.17 14484.11 24199.88 10286.35 31598.43 14398.36 226
F-COLMAP96.93 11596.95 10196.87 19199.71 7591.74 27099.85 12197.95 21493.11 17395.72 19499.16 14592.35 13699.94 7795.32 17899.35 11598.92 204
Vis-MVSNet (Re-imp)96.32 14395.98 13497.35 17897.93 19194.82 19299.47 21298.15 19891.83 22395.09 20299.11 14691.37 15297.47 27393.47 22297.43 16799.74 104
CHOSEN 280x42099.01 1399.03 1098.95 7699.38 9698.87 3298.46 31099.42 2297.03 4299.02 9099.09 14799.35 198.21 24199.73 3299.78 8099.77 101
test_cas_vis1_n_192096.59 13296.23 12697.65 15898.22 17494.23 20799.99 597.25 28297.77 1799.58 5499.08 14877.10 29699.97 5397.64 13699.45 10898.74 215
PVSNet_Blended97.94 6497.64 7498.83 8199.59 8196.99 109100.00 199.10 3195.38 9298.27 12799.08 14889.00 19299.95 6999.12 5899.25 11999.57 139
sss97.57 8597.03 9999.18 5098.37 16298.04 6799.73 16499.38 2393.46 16198.76 10499.06 15091.21 15399.89 9696.33 16397.01 18099.62 126
thisisatest051597.41 9497.02 10098.59 9797.71 21097.52 8799.97 2898.54 10191.83 22397.45 15099.04 15197.50 899.10 17694.75 19396.37 19299.16 189
EI-MVSNet93.73 21793.40 21494.74 25196.80 25792.69 24799.06 25897.67 23688.96 28791.39 24599.02 15288.75 19597.30 28191.07 25387.85 27994.22 286
CVMVSNet94.68 18994.94 17493.89 29096.80 25786.92 34299.06 25898.98 3894.45 11794.23 21499.02 15285.60 22395.31 35690.91 25995.39 21499.43 162
EPP-MVSNet96.69 12896.60 11696.96 18897.74 20393.05 23899.37 22598.56 9288.75 29395.83 19299.01 15496.01 3298.56 20596.92 15797.20 17499.25 184
COLMAP_ROBcopyleft90.47 1492.18 25491.49 25694.25 27599.00 11688.04 33498.42 31596.70 33482.30 36288.43 30099.01 15476.97 29999.85 10886.11 31896.50 18894.86 259
Johannes L. Schönberger, Enliang Zheng, Marc Pollefeys, Jan-Michael Frahm: Pixelwise View Selection for Unstructured Multi-View Stereo. ECCV 2016
3Dnovator91.47 1296.28 14795.34 16099.08 6596.82 25697.47 9399.45 21598.81 6095.52 9089.39 27799.00 15681.97 25299.95 6997.27 14399.83 7399.84 90
test_yl97.83 7097.37 8499.21 4799.18 10397.98 7099.64 18599.27 2791.43 23797.88 14198.99 15795.84 3899.84 11698.82 7995.32 21699.79 97
DCV-MVSNet97.83 7097.37 8499.21 4799.18 10397.98 7099.64 18599.27 2791.43 23797.88 14198.99 15795.84 3899.84 11698.82 7995.32 21699.79 97
131496.84 11895.96 13899.48 3496.74 26198.52 5698.31 31898.86 5395.82 8089.91 26398.98 15987.49 20499.96 6197.80 12899.73 8399.96 64
3Dnovator+91.53 1196.31 14495.24 16399.52 2896.88 25398.64 5299.72 16798.24 18395.27 9688.42 30298.98 15982.76 24899.94 7797.10 14999.83 7399.96 64
thisisatest053097.10 10696.72 11198.22 12297.60 21696.70 11899.92 7998.54 10191.11 24797.07 16098.97 16197.47 1199.03 17893.73 21996.09 19598.92 204
baseline296.71 12796.49 12097.37 17595.63 29695.96 14899.74 15998.88 5192.94 17691.61 24398.97 16197.72 698.62 20394.83 19098.08 15797.53 244
test_fmvs195.35 17295.68 15294.36 27298.99 11784.98 35299.96 3596.65 33697.60 2299.73 3398.96 16371.58 33699.93 8598.31 10499.37 11498.17 228
test250697.53 8697.19 9298.58 9898.66 14496.90 11398.81 28899.77 594.93 10197.95 13798.96 16392.51 13199.20 16994.93 18598.15 15199.64 121
ECVR-MVScopyleft95.66 16595.05 17097.51 16798.66 14493.71 22198.85 28598.45 11894.93 10196.86 16598.96 16375.22 31999.20 16995.34 17798.15 15199.64 121
gm-plane-assit96.97 24693.76 22091.47 23598.96 16398.79 18994.92 186
IS-MVSNet96.29 14695.90 14497.45 16998.13 18294.80 19399.08 25397.61 24392.02 21995.54 19798.96 16390.64 16898.08 24793.73 21997.41 17099.47 156
test111195.57 16794.98 17397.37 17598.56 14993.37 23398.86 28398.45 11894.95 10096.63 17198.95 16875.21 32099.11 17595.02 18398.14 15399.64 121
OpenMVScopyleft90.15 1594.77 18593.59 20598.33 11796.07 27397.48 9299.56 19798.57 8990.46 26286.51 32598.95 16878.57 29099.94 7793.86 21099.74 8297.57 243
GeoE94.36 20193.48 20996.99 18797.29 23593.54 22799.96 3596.72 33388.35 30293.43 22098.94 17082.05 25198.05 25088.12 29696.48 19099.37 168
Vis-MVSNetpermissive95.72 16095.15 16797.45 16997.62 21594.28 20599.28 23898.24 18394.27 13196.84 16698.94 17079.39 28098.76 19293.25 22498.49 14199.30 178
Jingyang Zhang, Yao Yao, Shiwei Li, Zixin Luo, Tian Fang: Visibility-aware Multiview Stereo Network. BMVC 2020
tttt051796.85 11796.49 12097.92 14197.48 22395.89 15099.85 12198.54 10190.72 25996.63 17198.93 17297.47 1199.02 17993.03 23195.76 20698.85 208
QAPM95.40 17194.17 19099.10 6496.92 24897.71 7999.40 21898.68 7089.31 27888.94 29098.89 17382.48 24999.96 6193.12 23099.83 7399.62 126
test_fmvs1_n94.25 20494.36 18493.92 28797.68 21183.70 35899.90 9196.57 33997.40 2899.67 3998.88 17461.82 37499.92 8898.23 10699.13 12598.14 231
VNet97.21 10296.57 11899.13 6398.97 11997.82 7699.03 26599.21 2994.31 12799.18 8598.88 17486.26 22099.89 9698.93 6994.32 22899.69 110
thres20096.96 11396.21 12799.22 4698.97 11998.84 3599.85 12199.71 793.17 17196.26 18298.88 17489.87 17899.51 15294.26 20494.91 22199.31 176
tfpn200view996.79 12095.99 13299.19 4998.94 12198.82 3699.78 14599.71 792.86 17996.02 18798.87 17789.33 18599.50 15493.84 21194.57 22499.27 182
thres40096.78 12295.99 13299.16 5598.94 12198.82 3699.78 14599.71 792.86 17996.02 18798.87 17789.33 18599.50 15493.84 21194.57 22499.16 189
thres100view90096.74 12595.92 14399.18 5098.90 13098.77 4099.74 15999.71 792.59 19695.84 19098.86 17989.25 18799.50 15493.84 21194.57 22499.27 182
thres600view796.69 12895.87 14699.14 5998.90 13098.78 3999.74 15999.71 792.59 19695.84 19098.86 17989.25 18799.50 15493.44 22394.50 22799.16 189
CHOSEN 1792x268896.81 11996.53 11997.64 15998.91 12993.07 23699.65 18199.80 395.64 8595.39 19898.86 17984.35 23999.90 9196.98 15399.16 12399.95 71
CLD-MVS94.06 20893.90 19794.55 26196.02 27590.69 29199.98 1597.72 23296.62 5891.05 25198.85 18277.21 29598.47 20998.11 11289.51 25494.48 264
Zhaoxin Li, Wangmeng Zuo, Zhaoqi Wang, Lei Zhang: Confidence-based Large-scale Dense Multi-view Stereo. IEEE Transaction on Image Processing, 2020
testing22297.08 11096.75 11098.06 13398.56 14996.82 11599.85 12198.61 8292.53 20098.84 9798.84 18393.36 10298.30 23295.84 17294.30 22999.05 199
test_vis1_n93.61 22193.03 22195.35 23195.86 28086.94 34199.87 10696.36 34696.85 4699.54 5798.79 18452.41 38799.83 11898.64 9198.97 13099.29 180
BH-w/o95.71 16295.38 15996.68 19798.49 15892.28 25699.84 12697.50 25792.12 21492.06 24198.79 18484.69 23498.67 20195.29 17999.66 8799.09 195
Anonymous20240521193.10 23391.99 24596.40 20699.10 10989.65 31498.88 27997.93 21683.71 35394.00 21698.75 18668.79 34799.88 10295.08 18291.71 24499.68 111
testing9197.16 10496.90 10397.97 13798.35 16595.67 16199.91 8498.42 14392.91 17897.33 15398.72 18794.81 6299.21 16696.98 15394.63 22399.03 200
testing9997.17 10396.91 10297.95 13898.35 16595.70 15899.91 8498.43 13192.94 17697.36 15298.72 18794.83 6199.21 16697.00 15194.64 22298.95 203
testing1197.48 8897.27 8898.10 12998.36 16396.02 14699.92 7998.45 11893.45 16398.15 13398.70 18995.48 4599.22 16597.85 12795.05 22099.07 198
TR-MVS94.54 19293.56 20797.49 16897.96 18994.34 20498.71 29697.51 25690.30 26794.51 20898.69 19075.56 31498.77 19192.82 23395.99 19799.35 171
Syy-MVS90.00 30190.63 26788.11 35797.68 21174.66 38599.71 16998.35 16590.79 25692.10 23998.67 19179.10 28593.09 37763.35 39195.95 20096.59 250
myMVS_eth3d94.46 19694.76 17893.55 30197.68 21190.97 28499.71 16998.35 16590.79 25692.10 23998.67 19192.46 13493.09 37787.13 30795.95 20096.59 250
BH-untuned95.18 17494.83 17696.22 21198.36 16391.22 28299.80 14297.32 27490.91 25291.08 24998.67 19183.51 24398.54 20794.23 20599.61 9498.92 204
OPM-MVS93.21 22892.80 22794.44 26893.12 33890.85 29099.77 14897.61 24396.19 7591.56 24498.65 19475.16 32198.47 20993.78 21789.39 25593.99 311
Ray L. Khuboni, Hongjun Xu: Octagram Propagation Matching for Multi-Scale View Stereopsis (OPM-MVS).
NP-MVS95.77 28491.79 26898.65 194
HQP-MVS94.61 19194.50 18294.92 24695.78 28191.85 26699.87 10697.89 22196.82 4893.37 22198.65 19480.65 26998.39 22097.92 12389.60 24994.53 260
testing393.92 20994.23 18892.99 31597.54 21890.23 30299.99 599.16 3090.57 26091.33 24898.63 19792.99 11592.52 38182.46 34095.39 21496.22 255
baseline195.78 15994.86 17598.54 10398.47 15998.07 6599.06 25897.99 20992.68 19094.13 21598.62 19893.28 10898.69 19993.79 21685.76 29398.84 209
ETVMVS97.03 11196.64 11498.20 12398.67 14397.12 10599.89 9998.57 8991.10 24898.17 13298.59 19993.86 9398.19 24295.64 17595.24 21899.28 181
HQP_MVS94.49 19594.36 18494.87 24795.71 29191.74 27099.84 12697.87 22396.38 6793.01 22598.59 19980.47 27398.37 22697.79 13189.55 25294.52 262
plane_prior498.59 199
Anonymous2024052992.10 25590.65 26696.47 20198.82 13490.61 29498.72 29598.67 7375.54 38293.90 21898.58 20266.23 36099.90 9194.70 19590.67 24798.90 207
Effi-MVS+96.30 14595.69 15098.16 12497.85 19696.26 13497.41 34197.21 28490.37 26498.65 11198.58 20286.61 21698.70 19897.11 14897.37 17199.52 149
dmvs_re93.20 22993.15 21993.34 30496.54 26583.81 35798.71 29698.51 10791.39 24192.37 23798.56 20478.66 28997.83 26193.89 20989.74 24898.38 225
EPNet_dtu95.71 16295.39 15896.66 19898.92 12593.41 23199.57 19598.90 4796.19 7597.52 14798.56 20492.65 12597.36 27577.89 36398.33 14599.20 187
Wanjuan Su, Wenbing Tao: Efficient Edge-Preserving Multi-View Stereo Network for Depth Estimation. AAAI 2023
dmvs_testset83.79 34286.07 32676.94 37292.14 35448.60 40796.75 35590.27 39789.48 27678.65 36798.55 20679.25 28186.65 39566.85 38682.69 31595.57 258
test0.0.03 193.86 21093.61 20294.64 25595.02 30592.18 25999.93 7698.58 8794.07 13887.96 30698.50 20793.90 9194.96 36081.33 34793.17 24096.78 247
LPG-MVS_test92.96 23592.71 23093.71 29595.43 29888.67 32499.75 15697.62 24092.81 18290.05 25898.49 20875.24 31798.40 21895.84 17289.12 25694.07 303
LGP-MVS_train93.71 29595.43 29888.67 32497.62 24092.81 18290.05 25898.49 20875.24 31798.40 21895.84 17289.12 25694.07 303
PVSNet_Blended_VisFu97.27 9996.81 10798.66 9098.81 13596.67 11999.92 7998.64 7694.51 11696.38 18098.49 20889.05 19199.88 10297.10 14998.34 14499.43 162
testmvs40.60 37244.45 37529.05 38919.49 41314.11 41599.68 17618.47 41220.74 40564.59 39098.48 21110.95 41017.09 40956.66 39811.01 40555.94 402
tt080591.28 27090.18 27894.60 25796.26 26987.55 33698.39 31698.72 6589.00 28489.22 28398.47 21262.98 37198.96 18190.57 26588.00 27897.28 245
AllTest92.48 24791.64 25095.00 24399.01 11488.43 32898.94 27396.82 32786.50 32588.71 29398.47 21274.73 32399.88 10285.39 32296.18 19396.71 248
TestCases95.00 24399.01 11488.43 32896.82 32786.50 32588.71 29398.47 21274.73 32399.88 10285.39 32296.18 19396.71 248
h-mvs3394.92 18094.36 18496.59 20098.85 13391.29 28198.93 27498.94 4195.90 7898.77 10298.42 21590.89 16599.77 12897.80 12870.76 37498.72 217
PatchMatch-RL96.04 15395.40 15797.95 13899.59 8195.22 18199.52 20399.07 3493.96 14596.49 17598.35 21682.28 25099.82 12090.15 27499.22 12298.81 211
UWE-MVS96.79 12096.72 11197.00 18698.51 15693.70 22299.71 16998.60 8492.96 17597.09 15898.34 21796.67 2798.85 18692.11 24096.50 18898.44 223
CDS-MVSNet96.34 14296.07 12997.13 18397.37 22894.96 18899.53 20297.91 22091.55 23195.37 19998.32 21895.05 5497.13 29293.80 21595.75 20799.30 178
Khang Truong Giang, Soohwan Song, Sungho Jo: Curvature-guided dynamic scale networks for Multi-view Stereo. ICLR 2022
ACMP92.05 992.74 24192.42 23993.73 29395.91 27988.72 32399.81 13897.53 25394.13 13487.00 31998.23 21974.07 32798.47 20996.22 16688.86 26193.99 311
Qingshan Xu and Wenbing Tao: Planar Prior Assisted PatchMatch Multi-View Stereo. AAAI 2020
testgi89.01 31488.04 31591.90 32793.49 33084.89 35399.73 16495.66 36193.89 15185.14 33898.17 22059.68 37894.66 36477.73 36488.88 25996.16 256
WB-MVSnew92.90 23792.77 22993.26 30896.95 24793.63 22499.71 16998.16 19591.49 23294.28 21298.14 22181.33 26096.48 32679.47 35595.46 21189.68 378
ITE_SJBPF92.38 32195.69 29385.14 35095.71 35992.81 18289.33 28098.11 22270.23 34398.42 21585.91 32088.16 27593.59 334
HyFIR lowres test96.66 13096.43 12297.36 17799.05 11293.91 21799.70 17399.80 390.54 26196.26 18298.08 22392.15 14198.23 24096.84 15995.46 21199.93 76
TESTMET0.1,196.74 12596.26 12598.16 12497.36 22996.48 12499.96 3598.29 17891.93 22095.77 19398.07 22495.54 4298.29 23390.55 26698.89 13199.70 108
TAMVS95.85 15795.58 15396.65 19997.07 24093.50 22899.17 24797.82 22991.39 24195.02 20398.01 22592.20 13997.30 28193.75 21895.83 20499.14 192
hse-mvs294.38 19894.08 19295.31 23498.27 17190.02 30899.29 23798.56 9295.90 7898.77 10298.00 22690.89 16598.26 23997.80 12869.20 38097.64 239
AUN-MVS93.28 22792.60 23295.34 23298.29 16890.09 30699.31 23298.56 9291.80 22696.35 18198.00 22689.38 18498.28 23592.46 23569.22 37997.64 239
ACMM91.95 1092.88 23892.52 23793.98 28695.75 28789.08 32099.77 14897.52 25593.00 17489.95 26297.99 22876.17 31098.46 21293.63 22188.87 26094.39 274
Qingshan Xu and Wenbing Tao: Multi-Scale Geometric Consistency Guided Multi-View Stereo. CVPR 2019
iter_conf0596.07 15195.95 14096.44 20598.43 16097.52 8799.91 8496.85 32394.16 13392.49 23697.98 22998.20 497.34 27797.26 14488.29 27294.45 270
Fast-Effi-MVS+95.02 17894.19 18997.52 16697.88 19394.55 19799.97 2897.08 29988.85 29294.47 20997.96 23084.59 23598.41 21689.84 27897.10 17599.59 132
GG-mvs-BLEND98.54 10398.21 17598.01 6893.87 37998.52 10497.92 13897.92 23199.02 297.94 25898.17 10899.58 9799.67 115
SDMVSNet94.80 18293.96 19597.33 17998.92 12595.42 17199.59 19198.99 3792.41 20692.55 23497.85 23275.81 31398.93 18397.90 12591.62 24597.64 239
sd_testset93.55 22292.83 22695.74 22298.92 12590.89 28998.24 32198.85 5692.41 20692.55 23497.85 23271.07 34198.68 20093.93 20891.62 24597.64 239
Fast-Effi-MVS+-dtu93.72 21893.86 19993.29 30697.06 24186.16 34499.80 14296.83 32592.66 19192.58 23397.83 23481.39 25897.67 26789.75 27996.87 18396.05 257
mvsmamba94.10 20693.72 20195.25 23693.57 32794.13 21099.67 17896.45 34493.63 15891.34 24797.77 23586.29 21997.22 28796.65 16188.10 27694.40 272
RRT_MVS93.14 23192.92 22493.78 29293.31 33490.04 30799.66 17997.69 23492.53 20088.91 29197.76 23684.36 23796.93 30795.10 18186.99 28794.37 275
ACMH+89.98 1690.35 29189.54 29092.78 31995.99 27686.12 34598.81 28897.18 28789.38 27783.14 34797.76 23668.42 35298.43 21489.11 28386.05 29293.78 326
ACMH89.72 1790.64 28489.63 28793.66 29995.64 29588.64 32698.55 30597.45 26089.03 28281.62 35497.61 23869.75 34498.41 21689.37 28087.62 28393.92 317
Qingshan Xu and Wenbing Tao: Multi-Scale Geometric Consistency Guided Multi-View Stereo. CVPR 2019
cascas94.64 19093.61 20297.74 15597.82 19896.26 13499.96 3597.78 23185.76 33494.00 21697.54 23976.95 30099.21 16697.23 14595.43 21397.76 238
nrg03093.51 22392.53 23696.45 20394.36 31497.20 10099.81 13897.16 29091.60 22989.86 26597.46 24086.37 21897.68 26695.88 17180.31 33994.46 265
VPNet91.81 25990.46 26995.85 21994.74 30895.54 16698.98 26898.59 8692.14 21390.77 25497.44 24168.73 34997.54 27194.89 18977.89 35294.46 265
UniMVSNet_ETH3D90.06 30088.58 30894.49 26594.67 31088.09 33397.81 33797.57 24883.91 35288.44 29897.41 24257.44 38197.62 26991.41 24888.59 26897.77 237
HY-MVS92.50 797.79 7697.17 9499.63 1798.98 11899.32 997.49 33999.52 1595.69 8498.32 12597.41 24293.32 10599.77 12898.08 11595.75 20799.81 94
PVSNet_088.03 1991.80 26290.27 27596.38 20898.27 17190.46 29899.94 6999.61 1493.99 14386.26 33197.39 24471.13 34099.89 9698.77 8267.05 38598.79 212
FIs94.10 20693.43 21096.11 21394.70 30996.82 11599.58 19398.93 4592.54 19989.34 27997.31 24587.62 20397.10 29594.22 20686.58 28994.40 272
OurMVSNet-221017-089.81 30489.48 29490.83 33591.64 36181.21 37298.17 32695.38 36791.48 23485.65 33697.31 24572.66 33197.29 28488.15 29484.83 30293.97 313
FC-MVSNet-test93.81 21393.15 21995.80 22194.30 31696.20 13999.42 21798.89 4992.33 21089.03 28997.27 24787.39 20696.83 31393.20 22586.48 29094.36 276
USDC90.00 30188.96 30293.10 31394.81 30788.16 33298.71 29695.54 36493.66 15683.75 34597.20 24865.58 36298.31 23183.96 33287.49 28592.85 349
MVSTER95.53 16895.22 16496.45 20398.56 14997.72 7899.91 8497.67 23692.38 20891.39 24597.14 24997.24 1797.30 28194.80 19187.85 27994.34 280
LF4IMVS89.25 31388.85 30390.45 33992.81 34781.19 37398.12 32794.79 37491.44 23686.29 33097.11 25065.30 36598.11 24688.53 29085.25 29892.07 358
mvs_anonymous95.65 16695.03 17197.53 16598.19 17795.74 15599.33 22997.49 25890.87 25390.47 25697.10 25188.23 19897.16 28995.92 17097.66 16499.68 111
jajsoiax91.92 25791.18 26094.15 27691.35 36590.95 28799.00 26797.42 26492.61 19487.38 31597.08 25272.46 33297.36 27594.53 19988.77 26294.13 300
XXY-MVS91.82 25890.46 26995.88 21793.91 32295.40 17398.87 28297.69 23488.63 29787.87 30797.08 25274.38 32697.89 25991.66 24684.07 30994.35 279
LTVRE_ROB88.28 1890.29 29489.05 30194.02 28295.08 30390.15 30597.19 34597.43 26284.91 34683.99 34397.06 25474.00 32898.28 23584.08 32987.71 28193.62 333
Andreas Kuhn, Heiko Hirschmüller, Daniel Scharstein, Helmut Mayer: A TV Prior for High-Quality Scalable Multi-View Stereo Reconstruction. International Journal of Computer Vision 2016
mvs_tets91.81 25991.08 26194.00 28491.63 36290.58 29598.67 30197.43 26292.43 20587.37 31697.05 25571.76 33497.32 28094.75 19388.68 26594.11 301
MVS_Test96.46 13695.74 14898.61 9498.18 17897.23 9999.31 23297.15 29191.07 24998.84 9797.05 25588.17 19998.97 18094.39 20097.50 16699.61 129
ab-mvs94.69 18793.42 21198.51 10698.07 18496.26 13496.49 35898.68 7090.31 26694.54 20697.00 25776.30 30899.71 13895.98 16993.38 23999.56 140
PS-MVSNAJss93.64 22093.31 21694.61 25692.11 35592.19 25899.12 24997.38 26892.51 20388.45 29796.99 25891.20 15497.29 28494.36 20187.71 28194.36 276
IB-MVS92.85 694.99 17993.94 19698.16 12497.72 20895.69 16099.99 598.81 6094.28 12992.70 23196.90 25995.08 5299.17 17396.07 16773.88 36999.60 131
Christian Sormann, Mattia Rossi, Andreas Kuhn and Friedrich Fraundorfer: IB-MVS: An Iterative Algorithm for Deep Multi-View Stereo based on Binary Decisions. BMVC 2021
WR-MVS92.31 25191.25 25995.48 22894.45 31395.29 17699.60 19098.68 7090.10 26888.07 30596.89 26080.68 26896.80 31593.14 22879.67 34394.36 276
SixPastTwentyTwo88.73 31588.01 31690.88 33391.85 35982.24 36598.22 32495.18 37288.97 28682.26 35096.89 26071.75 33596.67 32084.00 33082.98 31393.72 331
UniMVSNet_NR-MVSNet92.95 23692.11 24295.49 22594.61 31195.28 17799.83 13399.08 3391.49 23289.21 28496.86 26287.14 20996.73 31793.20 22577.52 35594.46 265
XVG-ACMP-BASELINE91.22 27390.75 26492.63 32093.73 32585.61 34798.52 30997.44 26192.77 18589.90 26496.85 26366.64 35998.39 22092.29 23788.61 26693.89 319
TinyColmap87.87 32286.51 32391.94 32695.05 30485.57 34897.65 33894.08 38184.40 34981.82 35396.85 26362.14 37398.33 22980.25 35386.37 29191.91 362
EU-MVSNet90.14 29990.34 27389.54 34592.55 34981.06 37498.69 29998.04 20791.41 24086.59 32496.84 26580.83 26693.31 37686.20 31681.91 32294.26 283
TranMVSNet+NR-MVSNet91.68 26690.61 26894.87 24793.69 32693.98 21599.69 17498.65 7491.03 25088.44 29896.83 26680.05 27696.18 33890.26 27376.89 36394.45 270
test_fmvs289.47 30989.70 28688.77 35394.54 31275.74 38299.83 13394.70 37794.71 11091.08 24996.82 26754.46 38497.78 26492.87 23288.27 27392.80 350
GA-MVS93.83 21192.84 22596.80 19295.73 28893.57 22599.88 10397.24 28392.57 19892.92 22796.66 26878.73 28897.67 26787.75 29994.06 23399.17 188
CMPMVSbinary61.59 2184.75 33685.14 33183.57 36590.32 37362.54 39396.98 35197.59 24774.33 38669.95 38796.66 26864.17 36798.32 23087.88 29888.41 27189.84 377
M. Jancosek, T. Pajdla: Multi-View Reconstruction Preserving Weakly-Supported Surfaces. CVPR 2011
APD_test181.15 34880.92 34981.86 36892.45 35059.76 39796.04 36893.61 38773.29 38877.06 37396.64 27044.28 39396.16 33972.35 37682.52 31689.67 379
DU-MVS92.46 24891.45 25795.49 22594.05 31995.28 17799.81 13898.74 6492.25 21289.21 28496.64 27081.66 25596.73 31793.20 22577.52 35594.46 265
NR-MVSNet91.56 26790.22 27695.60 22394.05 31995.76 15498.25 32098.70 6791.16 24680.78 35996.64 27083.23 24796.57 32391.41 24877.73 35494.46 265
CP-MVSNet91.23 27290.22 27694.26 27493.96 32192.39 25599.09 25198.57 8988.95 28886.42 32896.57 27379.19 28396.37 33090.29 27278.95 34594.02 306
pmmvs492.10 25591.07 26295.18 23892.82 34694.96 18899.48 21196.83 32587.45 31288.66 29696.56 27483.78 24296.83 31389.29 28184.77 30393.75 327
PS-CasMVS90.63 28589.51 29293.99 28593.83 32391.70 27498.98 26898.52 10488.48 29986.15 33296.53 27575.46 31596.31 33488.83 28578.86 34793.95 314
test-LLR96.47 13596.04 13097.78 14997.02 24395.44 16999.96 3598.21 18694.07 13895.55 19596.38 27693.90 9198.27 23790.42 26998.83 13599.64 121
test-mter96.39 14095.93 14297.78 14997.02 24395.44 16999.96 3598.21 18691.81 22595.55 19596.38 27695.17 4998.27 23790.42 26998.83 13599.64 121
MS-PatchMatch90.65 28390.30 27491.71 32994.22 31785.50 34998.24 32197.70 23388.67 29586.42 32896.37 27867.82 35498.03 25183.62 33499.62 9091.60 363
PEN-MVS90.19 29789.06 30093.57 30093.06 34090.90 28899.06 25898.47 11588.11 30485.91 33496.30 27976.67 30295.94 34887.07 30876.91 36293.89 319
UGNet95.33 17394.57 18197.62 16298.55 15294.85 19098.67 30199.32 2695.75 8396.80 16896.27 28072.18 33399.96 6194.58 19899.05 12998.04 232
Wanjuan Su, Qingshan Xu, Wenbing Tao: Uncertainty-guided Multi-view Stereo Network for Depth Estimation. IEEE Transactions on Circuits and Systems for Video Technology, 2022
DTE-MVSNet89.40 31088.24 31392.88 31792.66 34889.95 31099.10 25098.22 18587.29 31485.12 33996.22 28176.27 30995.30 35783.56 33575.74 36693.41 336
FE-MVS95.70 16495.01 17297.79 14898.21 17594.57 19695.03 37498.69 6888.90 29097.50 14996.19 28292.60 12899.49 15889.99 27697.94 16099.31 176
TransMVSNet (Re)87.25 32385.28 33093.16 31093.56 32891.03 28398.54 30794.05 38383.69 35481.09 35796.16 28375.32 31696.40 32976.69 36968.41 38192.06 359
pm-mvs189.36 31187.81 31794.01 28393.40 33391.93 26498.62 30496.48 34386.25 32983.86 34496.14 28473.68 32997.04 30086.16 31775.73 36793.04 346
FA-MVS(test-final)95.86 15695.09 16998.15 12797.74 20395.62 16396.31 36298.17 19191.42 23996.26 18296.13 28590.56 16999.47 16092.18 23997.07 17699.35 171
Test_1112_low_res95.72 16094.83 17698.42 11397.79 20096.41 12799.65 18196.65 33692.70 18892.86 23096.13 28592.15 14199.30 16391.88 24493.64 23699.55 141
TDRefinement84.76 33582.56 34391.38 33174.58 40184.80 35497.36 34294.56 37884.73 34780.21 36196.12 28763.56 36998.39 22087.92 29763.97 39090.95 369
test_djsdf92.83 23992.29 24094.47 26691.90 35892.46 25399.55 19997.27 28091.17 24489.96 26196.07 28881.10 26296.89 30994.67 19688.91 25894.05 305
miper_enhance_ethall94.36 20193.98 19495.49 22598.68 14295.24 17999.73 16497.29 27893.28 16889.86 26595.97 28994.37 7597.05 29892.20 23884.45 30594.19 289
lessismore_v090.53 33690.58 37180.90 37595.80 35777.01 37495.84 29066.15 36196.95 30583.03 33775.05 36893.74 330
PVSNet_BlendedMVS96.05 15295.82 14796.72 19699.59 8196.99 10999.95 5399.10 3194.06 14098.27 12795.80 29189.00 19299.95 6999.12 5887.53 28493.24 342
ppachtmachnet_test89.58 30888.35 31193.25 30992.40 35190.44 29999.33 22996.73 33285.49 33985.90 33595.77 29281.09 26396.00 34776.00 37182.49 31793.30 340
pmmvs590.17 29889.09 29993.40 30392.10 35689.77 31399.74 15995.58 36385.88 33387.24 31895.74 29373.41 33096.48 32688.54 28983.56 31293.95 314
MDTV_nov1_ep1395.69 15097.90 19294.15 20995.98 36998.44 12393.12 17297.98 13695.74 29395.10 5198.58 20490.02 27596.92 182
eth_miper_zixun_eth92.41 24991.93 24693.84 29197.28 23690.68 29298.83 28696.97 31188.57 29889.19 28695.73 29589.24 18996.69 31989.97 27781.55 32494.15 296
IterMVS-SCA-FT90.85 28090.16 28092.93 31696.72 26289.96 30998.89 27796.99 30788.95 28886.63 32395.67 29676.48 30695.00 35987.04 30984.04 31193.84 323
Baseline_NR-MVSNet90.33 29289.51 29292.81 31892.84 34489.95 31099.77 14893.94 38484.69 34889.04 28895.66 29781.66 25596.52 32490.99 25676.98 36191.97 361
cl2293.77 21593.25 21895.33 23399.49 9194.43 19999.61 18998.09 20190.38 26389.16 28795.61 29890.56 16997.34 27791.93 24284.45 30594.21 288
K. test v388.05 31987.24 32190.47 33891.82 36082.23 36698.96 27197.42 26489.05 28176.93 37595.60 29968.49 35195.42 35385.87 32181.01 33393.75 327
SCA94.69 18793.81 20097.33 17997.10 23994.44 19898.86 28398.32 17293.30 16796.17 18595.59 30076.48 30697.95 25691.06 25497.43 16799.59 132
Patchmatch-test92.65 24591.50 25596.10 21496.85 25490.49 29791.50 38897.19 28582.76 36090.23 25795.59 30095.02 5598.00 25277.41 36596.98 18199.82 92
DIV-MVS_self_test92.32 25091.60 25194.47 26697.31 23392.74 24499.58 19396.75 33186.99 32087.64 30995.54 30289.55 18296.50 32588.58 28882.44 31894.17 290
Anonymous2023121189.86 30388.44 31094.13 27898.93 12390.68 29298.54 30798.26 18276.28 37886.73 32195.54 30270.60 34297.56 27090.82 26180.27 34094.15 296
miper_ehance_all_eth93.16 23092.60 23294.82 25097.57 21793.56 22699.50 20797.07 30088.75 29388.85 29295.52 30490.97 16196.74 31690.77 26284.45 30594.17 290
cl____92.31 25191.58 25294.52 26297.33 23292.77 24299.57 19596.78 33086.97 32187.56 31195.51 30589.43 18396.62 32188.60 28782.44 31894.16 295
tfpnnormal89.29 31287.61 31894.34 27394.35 31594.13 21098.95 27298.94 4183.94 35084.47 34195.51 30574.84 32297.39 27477.05 36880.41 33791.48 365
DeepMVS_CXcopyleft82.92 36795.98 27858.66 39896.01 35492.72 18678.34 36995.51 30558.29 38098.08 24782.57 33985.29 29792.03 360
c3_l92.53 24691.87 24894.52 26297.40 22692.99 24099.40 21896.93 31787.86 30788.69 29595.44 30889.95 17796.44 32890.45 26880.69 33694.14 299
IterMVS90.91 27790.17 27993.12 31196.78 26090.42 30098.89 27797.05 30389.03 28286.49 32695.42 30976.59 30495.02 35887.22 30684.09 30893.93 316
Fangjinhua Wang, Silvano Galliani, Christoph Vogel, Marc Pollefeys: IterMVS: Iterative Probability Estimation for Efficient Multi-View Stereo.
UniMVSNet (Re)93.07 23492.13 24195.88 21794.84 30696.24 13899.88 10398.98 3892.49 20489.25 28195.40 31087.09 21097.14 29193.13 22978.16 35094.26 283
tpm295.47 16995.18 16696.35 20996.91 24991.70 27496.96 35297.93 21688.04 30698.44 11995.40 31093.32 10597.97 25394.00 20795.61 20999.38 166
pmmvs685.69 32883.84 33591.26 33290.00 37684.41 35597.82 33696.15 35275.86 38081.29 35695.39 31261.21 37696.87 31183.52 33673.29 37092.50 354
IterMVS-LS92.69 24392.11 24294.43 27096.80 25792.74 24499.45 21596.89 32088.98 28589.65 27295.38 31388.77 19496.34 33290.98 25782.04 32194.22 286
Fangjinhua Wang, Silvano Galliani, Christoph Vogel, Marc Pollefeys: IterMVS: Iterative Probability Estimation for Efficient Multi-View Stereo.
Effi-MVS+-dtu94.53 19495.30 16292.22 32397.77 20182.54 36399.59 19197.06 30194.92 10395.29 20095.37 31485.81 22297.89 25994.80 19197.07 17696.23 254
v2v48291.30 26890.07 28295.01 24293.13 33693.79 21899.77 14897.02 30488.05 30589.25 28195.37 31480.73 26797.15 29087.28 30580.04 34294.09 302
FMVSNet392.69 24391.58 25295.99 21598.29 16897.42 9599.26 24097.62 24089.80 27489.68 26995.32 31681.62 25796.27 33587.01 31185.65 29494.29 282
MVP-Stereo90.93 27690.45 27192.37 32291.25 36788.76 32198.05 33196.17 35187.27 31584.04 34295.30 31778.46 29297.27 28683.78 33399.70 8591.09 366
Qingsong Yan: MVP-Stereo: A Parallel Multi-View Patchmatch Stereo Method with Dilation Matching for Photogrammetric Application.
anonymousdsp91.79 26490.92 26394.41 27190.76 37092.93 24198.93 27497.17 28889.08 28087.46 31495.30 31778.43 29396.92 30892.38 23688.73 26393.39 338
v192192090.46 28889.12 29894.50 26492.96 34392.46 25399.49 20996.98 30986.10 33089.61 27495.30 31778.55 29197.03 30282.17 34380.89 33594.01 308
VPA-MVSNet92.70 24291.55 25496.16 21295.09 30296.20 13998.88 27999.00 3691.02 25191.82 24295.29 32076.05 31297.96 25595.62 17681.19 32794.30 281
PatchmatchNetpermissive95.94 15595.45 15697.39 17497.83 19794.41 20196.05 36798.40 15292.86 17997.09 15895.28 32194.21 8298.07 24989.26 28298.11 15499.70 108
Fangjinhua Wang, Silvano Galliani, Christoph Vogel, Pablo Speciale, Marc Pollefeys: PatchmatchNet: Learned Multi-View Patchmatch Stereo.
miper_lstm_enhance91.81 25991.39 25893.06 31497.34 23089.18 31999.38 22396.79 32986.70 32487.47 31395.22 32290.00 17695.86 34988.26 29281.37 32694.15 296
test_040285.58 32983.94 33490.50 33793.81 32485.04 35198.55 30595.20 37176.01 37979.72 36495.13 32364.15 36896.26 33666.04 38986.88 28890.21 374
tpmrst96.27 14895.98 13497.13 18397.96 18993.15 23596.34 36198.17 19192.07 21598.71 10895.12 32493.91 9098.73 19494.91 18896.62 18599.50 153
V4291.28 27090.12 28194.74 25193.42 33293.46 22999.68 17697.02 30487.36 31389.85 26795.05 32581.31 26197.34 27787.34 30480.07 34193.40 337
EPMVS96.53 13496.01 13198.09 13198.43 16096.12 14596.36 36099.43 2193.53 15997.64 14595.04 32694.41 7098.38 22491.13 25298.11 15499.75 103
v119290.62 28689.25 29694.72 25393.13 33693.07 23699.50 20797.02 30486.33 32889.56 27595.01 32779.22 28297.09 29782.34 34281.16 32894.01 308
v14890.70 28289.63 28793.92 28792.97 34290.97 28499.75 15696.89 32087.51 31088.27 30395.01 32781.67 25497.04 30087.40 30377.17 36093.75 327
FMVSNet291.02 27589.56 28995.41 23097.53 21995.74 15598.98 26897.41 26687.05 31788.43 30095.00 32971.34 33796.24 33785.12 32485.21 29994.25 285
our_test_390.39 28989.48 29493.12 31192.40 35189.57 31599.33 22996.35 34787.84 30885.30 33794.99 33084.14 24096.09 34380.38 35184.56 30493.71 332
v114491.09 27489.83 28394.87 24793.25 33593.69 22399.62 18896.98 30986.83 32389.64 27394.99 33080.94 26497.05 29885.08 32581.16 32893.87 321
v14419290.79 28189.52 29194.59 25893.11 33992.77 24299.56 19796.99 30786.38 32789.82 26894.95 33280.50 27297.10 29583.98 33180.41 33793.90 318
CostFormer96.10 15095.88 14596.78 19397.03 24292.55 25297.08 34997.83 22890.04 27198.72 10794.89 33395.01 5698.29 23396.54 16295.77 20599.50 153
v124090.20 29688.79 30594.44 26893.05 34192.27 25799.38 22396.92 31885.89 33289.36 27894.87 33477.89 29497.03 30280.66 35081.08 33194.01 308
v7n89.65 30788.29 31293.72 29492.22 35390.56 29699.07 25797.10 29685.42 34186.73 32194.72 33580.06 27597.13 29281.14 34878.12 35193.49 335
GBi-Net90.88 27889.82 28494.08 27997.53 21991.97 26198.43 31296.95 31287.05 31789.68 26994.72 33571.34 33796.11 34087.01 31185.65 29494.17 290
test190.88 27889.82 28494.08 27997.53 21991.97 26198.43 31296.95 31287.05 31789.68 26994.72 33571.34 33796.11 34087.01 31185.65 29494.17 290
FMVSNet188.50 31686.64 32294.08 27995.62 29791.97 26198.43 31296.95 31283.00 35786.08 33394.72 33559.09 37996.11 34081.82 34684.07 30994.17 290
dp95.05 17794.43 18396.91 18997.99 18892.73 24696.29 36397.98 21189.70 27595.93 18994.67 33993.83 9598.45 21386.91 31496.53 18799.54 145
test20.0384.72 33783.99 33286.91 35988.19 38280.62 37798.88 27995.94 35588.36 30178.87 36594.62 34068.75 34889.11 39066.52 38775.82 36591.00 367
D2MVS92.76 24092.59 23593.27 30795.13 30189.54 31699.69 17499.38 2392.26 21187.59 31094.61 34185.05 23197.79 26291.59 24788.01 27792.47 355
v890.54 28789.17 29794.66 25493.43 33193.40 23299.20 24496.94 31685.76 33487.56 31194.51 34281.96 25397.19 28884.94 32678.25 34993.38 339
v1090.25 29588.82 30494.57 26093.53 32993.43 23099.08 25396.87 32285.00 34387.34 31794.51 34280.93 26597.02 30482.85 33879.23 34493.26 341
ADS-MVSNet293.80 21493.88 19893.55 30197.87 19485.94 34694.24 37596.84 32490.07 26996.43 17794.48 34490.29 17495.37 35487.44 30197.23 17299.36 169
ADS-MVSNet94.79 18394.02 19397.11 18597.87 19493.79 21894.24 37598.16 19590.07 26996.43 17794.48 34490.29 17498.19 24287.44 30197.23 17299.36 169
WR-MVS_H91.30 26890.35 27294.15 27694.17 31892.62 25199.17 24798.94 4188.87 29186.48 32794.46 34684.36 23796.61 32288.19 29378.51 34893.21 343
LCM-MVSNet-Re92.31 25192.60 23291.43 33097.53 21979.27 38099.02 26691.83 39492.07 21580.31 36094.38 34783.50 24495.48 35297.22 14697.58 16599.54 145
tpmvs94.28 20393.57 20696.40 20698.55 15291.50 27995.70 37398.55 9887.47 31192.15 23894.26 34891.42 15098.95 18288.15 29495.85 20398.76 213
tpm93.70 21993.41 21394.58 25995.36 30087.41 33897.01 35096.90 31990.85 25496.72 17094.14 34990.40 17296.84 31290.75 26388.54 26999.51 151
Anonymous2023120686.32 32685.42 32989.02 34989.11 37980.53 37899.05 26295.28 36885.43 34082.82 34893.92 35074.40 32593.44 37566.99 38581.83 32393.08 345
UnsupCasMVSNet_eth85.52 33083.99 33290.10 34189.36 37883.51 35996.65 35697.99 20989.14 27975.89 37993.83 35163.25 37093.92 36981.92 34567.90 38492.88 348
tpm cat193.51 22392.52 23796.47 20197.77 20191.47 28096.13 36598.06 20480.98 36792.91 22893.78 35289.66 17998.87 18487.03 31096.39 19199.09 195
EG-PatchMatch MVS85.35 33383.81 33689.99 34390.39 37281.89 36898.21 32596.09 35381.78 36474.73 38193.72 35351.56 38997.12 29479.16 35988.61 26690.96 368
test_method80.79 34979.70 35384.08 36492.83 34567.06 39099.51 20595.42 36554.34 39681.07 35893.53 35444.48 39292.22 38378.90 36077.23 35992.94 347
N_pmnet80.06 35280.78 35077.89 37191.94 35745.28 40998.80 29056.82 41178.10 37680.08 36293.33 35577.03 29795.76 35068.14 38482.81 31492.64 351
MDA-MVSNet-bldmvs84.09 34081.52 34791.81 32891.32 36688.00 33598.67 30195.92 35680.22 37055.60 39893.32 35668.29 35393.60 37473.76 37376.61 36493.82 325
CR-MVSNet93.45 22692.62 23195.94 21696.29 26792.66 24892.01 38696.23 34992.62 19396.94 16293.31 35791.04 15996.03 34579.23 35695.96 19899.13 193
Patchmtry89.70 30688.49 30993.33 30596.24 27089.94 31291.37 38996.23 34978.22 37587.69 30893.31 35791.04 15996.03 34580.18 35482.10 32094.02 306
MIMVSNet90.30 29388.67 30795.17 23996.45 26691.64 27692.39 38497.15 29185.99 33190.50 25593.19 35966.95 35794.86 36282.01 34493.43 23799.01 202
YYNet185.50 33283.33 33892.00 32590.89 36988.38 33199.22 24396.55 34079.60 37357.26 39692.72 36079.09 28693.78 37277.25 36677.37 35893.84 323
MDA-MVSNet_test_wron85.51 33183.32 33992.10 32490.96 36888.58 32799.20 24496.52 34179.70 37257.12 39792.69 36179.11 28493.86 37177.10 36777.46 35793.86 322
MIMVSNet182.58 34580.51 35188.78 35186.68 38484.20 35696.65 35695.41 36678.75 37478.59 36892.44 36251.88 38889.76 38965.26 39078.95 34592.38 357
KD-MVS_2432*160088.00 32086.10 32493.70 29796.91 24994.04 21297.17 34697.12 29484.93 34481.96 35192.41 36392.48 13294.51 36579.23 35652.68 39792.56 352
miper_refine_blended88.00 32086.10 32493.70 29796.91 24994.04 21297.17 34697.12 29484.93 34481.96 35192.41 36392.48 13294.51 36579.23 35652.68 39792.56 352
FMVSNet588.32 31787.47 31990.88 33396.90 25288.39 33097.28 34395.68 36082.60 36184.67 34092.40 36579.83 27791.16 38676.39 37081.51 32593.09 344
EGC-MVSNET69.38 35863.76 36886.26 36190.32 37381.66 37196.24 36493.85 3850.99 4083.22 40992.33 36652.44 38692.92 37959.53 39584.90 30184.21 389
DSMNet-mixed88.28 31888.24 31388.42 35589.64 37775.38 38498.06 33089.86 39885.59 33888.20 30492.14 36776.15 31191.95 38478.46 36196.05 19697.92 233
patchmatchnet-post91.70 36895.12 5097.95 256
OpenMVS_ROBcopyleft79.82 2083.77 34381.68 34690.03 34288.30 38182.82 36098.46 31095.22 37073.92 38776.00 37891.29 36955.00 38396.94 30668.40 38388.51 27090.34 372
Anonymous2024052185.15 33483.81 33689.16 34888.32 38082.69 36198.80 29095.74 35879.72 37181.53 35590.99 37065.38 36494.16 36772.69 37581.11 33090.63 371
Patchmatch-RL test86.90 32485.98 32889.67 34484.45 38775.59 38389.71 39392.43 39186.89 32277.83 37290.94 37194.22 8093.63 37387.75 29969.61 37699.79 97
CL-MVSNet_self_test84.50 33883.15 34188.53 35486.00 38581.79 36998.82 28797.35 27085.12 34283.62 34690.91 37276.66 30391.40 38569.53 38160.36 39492.40 356
WB-MVS76.28 35677.28 35873.29 37681.18 39354.68 40197.87 33594.19 38081.30 36569.43 38890.70 37377.02 29882.06 39935.71 40468.11 38383.13 390
FPMVS68.72 36068.72 36168.71 38265.95 40544.27 41195.97 37094.74 37551.13 39753.26 39990.50 37425.11 40283.00 39860.80 39380.97 33478.87 395
SSC-MVS75.42 35776.40 36072.49 38080.68 39553.62 40297.42 34094.06 38280.42 36968.75 38990.14 37576.54 30581.66 40033.25 40566.34 38782.19 391
test_vis1_rt86.87 32586.05 32789.34 34696.12 27178.07 38199.87 10683.54 40592.03 21878.21 37089.51 37645.80 39199.91 8996.25 16593.11 24290.03 375
new_pmnet84.49 33982.92 34289.21 34790.03 37582.60 36296.89 35495.62 36280.59 36875.77 38089.17 37765.04 36694.79 36372.12 37781.02 33290.23 373
KD-MVS_self_test83.59 34482.06 34488.20 35686.93 38380.70 37697.21 34496.38 34582.87 35882.49 34988.97 37867.63 35592.32 38273.75 37462.30 39391.58 364
mvsany_test382.12 34681.14 34885.06 36381.87 39270.41 38797.09 34892.14 39291.27 24377.84 37188.73 37939.31 39495.49 35190.75 26371.24 37389.29 383
PM-MVS80.47 35078.88 35585.26 36283.79 39072.22 38695.89 37191.08 39585.71 33776.56 37788.30 38036.64 39593.90 37082.39 34169.57 37789.66 380
testf168.38 36166.92 36272.78 37878.80 39750.36 40490.95 39187.35 40355.47 39458.95 39388.14 38120.64 40487.60 39257.28 39664.69 38880.39 393
APD_test268.38 36166.92 36272.78 37878.80 39750.36 40490.95 39187.35 40355.47 39458.95 39388.14 38120.64 40487.60 39257.28 39664.69 38880.39 393
pmmvs380.27 35177.77 35687.76 35880.32 39682.43 36498.23 32391.97 39372.74 38978.75 36687.97 38357.30 38290.99 38770.31 37962.37 39289.87 376
pmmvs-eth3d84.03 34181.97 34590.20 34084.15 38887.09 34098.10 32994.73 37683.05 35674.10 38387.77 38465.56 36394.01 36881.08 34969.24 37889.49 381
test12337.68 37339.14 37633.31 38819.94 41224.83 41498.36 3179.75 41315.53 40651.31 40087.14 38519.62 40717.74 40847.10 4003.47 40757.36 401
new-patchmatchnet81.19 34779.34 35486.76 36082.86 39180.36 37997.92 33395.27 36982.09 36372.02 38486.87 38662.81 37290.74 38871.10 37863.08 39189.19 384
test_fmvs379.99 35380.17 35279.45 37084.02 38962.83 39199.05 26293.49 38888.29 30380.06 36386.65 38728.09 39988.00 39188.63 28673.27 37187.54 387
ambc83.23 36677.17 39962.61 39287.38 39594.55 37976.72 37686.65 38730.16 39696.36 33184.85 32769.86 37590.73 370
PatchT90.38 29088.75 30695.25 23695.99 27690.16 30491.22 39097.54 25176.80 37797.26 15586.01 38991.88 14696.07 34466.16 38895.91 20299.51 151
RPMNet89.76 30587.28 32097.19 18296.29 26792.66 24892.01 38698.31 17470.19 39196.94 16285.87 39087.25 20899.78 12562.69 39295.96 19899.13 193
test_f78.40 35577.59 35780.81 36980.82 39462.48 39496.96 35293.08 39083.44 35574.57 38284.57 39127.95 40092.63 38084.15 32872.79 37287.32 388
UnsupCasMVSNet_bld79.97 35477.03 35988.78 35185.62 38681.98 36793.66 38097.35 27075.51 38370.79 38683.05 39248.70 39094.91 36178.31 36260.29 39589.46 382
LCM-MVSNet67.77 36364.73 36676.87 37362.95 40756.25 40089.37 39493.74 38644.53 39961.99 39180.74 39320.42 40686.53 39669.37 38259.50 39687.84 385
PMMVS267.15 36464.15 36776.14 37470.56 40462.07 39593.89 37887.52 40258.09 39360.02 39278.32 39422.38 40384.54 39759.56 39447.03 39981.80 392
JIA-IIPM91.76 26590.70 26594.94 24596.11 27287.51 33793.16 38298.13 20075.79 38197.58 14677.68 39592.84 12097.97 25388.47 29196.54 18699.33 174
PMVScopyleft49.05 2353.75 36851.34 37260.97 38540.80 41134.68 41274.82 39989.62 40037.55 40128.67 40772.12 3967.09 41181.63 40143.17 40268.21 38266.59 399
Y. Furukawa, J. Ponce: Accurate, dense, and robust multiview stereopsis. PAMI (2010)
MVS-HIRNet86.22 32783.19 34095.31 23496.71 26390.29 30192.12 38597.33 27362.85 39286.82 32070.37 39769.37 34597.49 27275.12 37297.99 15998.15 229
gg-mvs-nofinetune93.51 22391.86 24998.47 10897.72 20897.96 7292.62 38398.51 10774.70 38597.33 15369.59 39898.91 397.79 26297.77 13399.56 9899.67 115
test_vis3_rt68.82 35966.69 36475.21 37576.24 40060.41 39696.44 35968.71 41075.13 38450.54 40169.52 39916.42 40996.32 33380.27 35266.92 38668.89 397
Gipumacopyleft66.95 36565.00 36572.79 37791.52 36367.96 38966.16 40095.15 37347.89 39858.54 39567.99 40029.74 39787.54 39450.20 39977.83 35362.87 400
S. Galliani, K. Lasinger, K. Schindler: Massively Parallel Multiview Stereopsis by Surface Normal Diffusion. ICCV 2015
ANet_high56.10 36752.24 37067.66 38349.27 40956.82 39983.94 39682.02 40670.47 39033.28 40664.54 40117.23 40869.16 40445.59 40123.85 40377.02 396
E-PMN52.30 36952.18 37152.67 38671.51 40245.40 40893.62 38176.60 40836.01 40243.50 40364.13 40227.11 40167.31 40531.06 40626.06 40145.30 404
test_post63.35 40394.43 6998.13 245
MVEpermissive53.74 2251.54 37047.86 37462.60 38459.56 40850.93 40379.41 39877.69 40735.69 40336.27 40561.76 4045.79 41369.63 40337.97 40336.61 40067.24 398
Simon Fuhrmann, Fabian Langguth, Michael Goesele: MVE - A Multi-View Reconstruction Environment. EUROGRAPHICS Workshops on Graphics and Cultural Heritage (2014)
EMVS51.44 37151.22 37352.11 38770.71 40344.97 41094.04 37775.66 40935.34 40442.40 40461.56 40528.93 39865.87 40627.64 40724.73 40245.49 403
test_post195.78 37259.23 40693.20 11197.74 26591.06 254
X-MVStestdata93.83 21192.06 24499.15 5799.94 1397.50 9099.94 6998.42 14396.22 7399.41 6941.37 40794.34 7699.96 6198.92 7099.95 4999.99 23
wuyk23d20.37 37520.84 37818.99 39065.34 40627.73 41350.43 4017.67 4149.50 4078.01 4086.34 4086.13 41226.24 40723.40 40810.69 4062.99 405
test_blank0.00 3780.00 3810.00 3910.00 4140.00 4160.00 4020.00 4150.00 4090.00 4100.02 4090.00 4140.00 4100.00 4090.00 4080.00 406
uanet_test0.00 3780.00 3810.00 3910.00 4140.00 4160.00 4020.00 4150.00 4090.00 4100.00 4100.00 4140.00 4100.00 4090.00 4080.00 406
DCPMVS0.00 3780.00 3810.00 3910.00 4140.00 4160.00 4020.00 4150.00 4090.00 4100.00 4100.00 4140.00 4100.00 4090.00 4080.00 406
pcd_1.5k_mvsjas7.60 37710.13 3800.00 3910.00 4140.00 4160.00 4020.00 4150.00 4090.00 4100.00 41091.20 1540.00 4100.00 4090.00 4080.00 406
sosnet-low-res0.00 3780.00 3810.00 3910.00 4140.00 4160.00 4020.00 4150.00 4090.00 4100.00 4100.00 4140.00 4100.00 4090.00 4080.00 406
sosnet0.00 3780.00 3810.00 3910.00 4140.00 4160.00 4020.00 4150.00 4090.00 4100.00 4100.00 4140.00 4100.00 4090.00 4080.00 406
uncertanet0.00 3780.00 3810.00 3910.00 4140.00 4160.00 4020.00 4150.00 4090.00 4100.00 4100.00 4140.00 4100.00 4090.00 4080.00 406
Regformer0.00 3780.00 3810.00 3910.00 4140.00 4160.00 4020.00 4150.00 4090.00 4100.00 4100.00 4140.00 4100.00 4090.00 4080.00 406
uanet0.00 3780.00 3810.00 3910.00 4140.00 4160.00 4020.00 4150.00 4090.00 4100.00 4100.00 4140.00 4100.00 4090.00 4080.00 406
WAC-MVS90.97 28486.10 319
FOURS199.92 3197.66 8399.95 5398.36 16395.58 8799.52 60
MSC_two_6792asdad99.93 299.91 3999.80 298.41 148100.00 199.96 9100.00 1100.00 1
No_MVS99.93 299.91 3999.80 298.41 148100.00 199.96 9100.00 1100.00 1
eth-test20.00 414
eth-test0.00 414
IU-MVS99.93 2499.31 1098.41 14897.71 1999.84 12100.00 1100.00 1100.00 1
save fliter99.82 5898.79 3899.96 3598.40 15297.66 21
test_0728_SECOND99.82 799.94 1399.47 799.95 5398.43 131100.00 199.99 5100.00 1100.00 1
GSMVS99.59 132
test_part299.89 4599.25 1899.49 63
sam_mvs194.72 6499.59 132
sam_mvs94.25 79
MTGPAbinary98.28 179
MTMP99.87 10696.49 342
test9_res99.71 3399.99 21100.00 1
agg_prior299.48 43100.00 1100.00 1
agg_prior99.93 2498.77 4098.43 13199.63 4499.85 108
test_prior498.05 6699.94 69
test_prior99.43 3599.94 1398.49 5898.65 7499.80 12199.99 23
旧先验299.46 21494.21 13299.85 999.95 6996.96 155
新几何299.40 218
无先验99.49 20998.71 6693.46 161100.00 194.36 20199.99 23
原ACMM299.90 91
testdata299.99 3690.54 267
segment_acmp96.68 25
testdata199.28 23896.35 71
test1299.43 3599.74 6998.56 5598.40 15299.65 4194.76 6399.75 13299.98 3299.99 23
plane_prior795.71 29191.59 278
plane_prior695.76 28591.72 27380.47 273
plane_prior597.87 22398.37 22697.79 13189.55 25294.52 262
plane_prior391.64 27696.63 5693.01 225
plane_prior299.84 12696.38 67
plane_prior195.73 288
plane_prior91.74 27099.86 11896.76 5289.59 251
n20.00 415
nn0.00 415
door-mid89.69 399
test1198.44 123
door90.31 396
HQP5-MVS91.85 266
HQP-NCC95.78 28199.87 10696.82 4893.37 221
ACMP_Plane95.78 28199.87 10696.82 4893.37 221
BP-MVS97.92 123
HQP4-MVS93.37 22198.39 22094.53 260
HQP3-MVS97.89 22189.60 249
HQP2-MVS80.65 269
MDTV_nov1_ep13_2view96.26 13496.11 36691.89 22198.06 13494.40 7194.30 20399.67 115
ACMMP++_ref87.04 286
ACMMP++88.23 274
Test By Simon92.82 122