This table lists the benchmark results for the high-res multi-view scenario. The following metrics are evaluated:

(*) For exact definitions, detailing how potentially incomplete ground truth is taken into account, see our paper.

The datasets are grouped into different categories, and result averages are computed for a category and method if results of the method are available for all datasets within the category. Note that the category "all" includes both the high-res multi-view and the low-res many-view scenarios.

Methods with suffix _ROB may participate in the Robust Vision Challenge.

Click a dataset result cell to show a visualization of the reconstruction. For training datasets, ground truth and accuracy / completeness visualizations are also available. The visualizations may not work with mobile browsers.




Method Infoallhigh-res
multi-view
indooroutdoorbotani.boulde.bridgedoorexhibi.lectur.living.loungeobserv.old co.statueterrac.
sort bysort bysort bysort bysort bysort bysort bysort bysort bysort bysorted bysort bysort bysort bysort bysort by
DeepPCF-MVS95.94 297.71 8798.98 1293.92 27799.63 9481.76 35599.96 2598.56 7999.47 199.19 8199.99 194.16 91100.00 199.92 1399.93 67100.00 1
CNVR-MVS99.40 199.26 199.84 699.98 299.51 699.98 998.69 5798.20 399.93 199.98 296.82 23100.00 199.75 28100.00 199.99 24
NCCC99.37 299.25 299.71 1399.96 899.15 2099.97 1898.62 6998.02 699.90 299.95 397.33 17100.00 199.54 39100.00 1100.00 1
SED-MVS99.28 599.11 799.77 899.93 2799.30 1199.96 2598.43 12097.27 2199.80 1799.94 496.71 24100.00 1100.00 1100.00 1100.00 1
test_241102_TWO98.43 12097.27 2199.80 1799.94 497.18 21100.00 1100.00 1100.00 1100.00 1
test072699.93 2799.29 1499.96 2598.42 13297.28 1999.86 599.94 497.22 19
DPM-MVS98.83 2298.46 3299.97 199.33 11399.92 199.96 2598.44 11297.96 799.55 4999.94 497.18 21100.00 193.81 20399.94 6199.98 55
SMA-MVScopyleft98.76 2798.48 3199.62 1899.87 5798.87 3199.86 10598.38 14793.19 16399.77 2699.94 495.54 44100.00 199.74 3099.99 22100.00 1
Yufeng Yin; Xiaoyan Liu; Zichao Zhang: SMA-MVS: Segmentation-Guided Multi-Scale Anchor Deformation Patch Multi-View Stereo. IEEE Transactions on Circuits and Systems for Video Technology
DPE-MVScopyleft99.26 699.10 899.74 1099.89 5099.24 1899.87 9398.44 11297.48 1699.64 3999.94 496.68 2699.99 4099.99 5100.00 199.99 24
Kehua Chen, Zhenlong Yuan, Tianlu Mao, Zhaoqi Wang: Dual-Level Precision Edges Guided Multi-View Stereo with Accurate Planarization. AAAI2025
MSLP-MVS++99.13 899.01 1199.49 3499.94 1498.46 6399.98 998.86 4797.10 2699.80 1799.94 495.92 37100.00 199.51 40100.00 1100.00 1
DVP-MVS++99.26 699.09 999.77 899.91 4499.31 999.95 4398.43 12096.48 4399.80 1799.93 1197.44 14100.00 199.92 1399.98 35100.00 1
test_one_060199.94 1499.30 1198.41 13696.63 4099.75 2899.93 1197.49 10
ETH3 D test640098.81 2398.54 2899.59 2199.93 2798.93 2699.93 6798.46 10794.56 10599.84 999.92 1394.32 8499.86 9599.96 999.98 35100.00 1
MCST-MVS99.32 399.14 499.86 599.97 399.59 599.97 1898.64 6598.47 299.13 8399.92 1396.38 30100.00 199.74 30100.00 1100.00 1
DVP-MVScopyleft99.30 499.16 399.73 1199.93 2799.29 1499.95 4398.32 16097.28 1999.83 1199.91 1597.22 19100.00 199.99 5100.00 199.89 94
Zhenlong Yuan, Jinguo Luo, Fei Shen, Zhaoxin Li, Cong Liu, Tianlu Mao, Zhaoqi Wang: DVP-MVS: Synergize Depth-Edge and Visibility Prior for Multi-View Stereo. AAAI2025
test_0728_THIRD96.48 4399.83 1199.91 1597.87 6100.00 199.92 13100.00 1100.00 1
SteuartSystems-ACMMP99.02 1298.97 1399.18 5798.72 14797.71 8699.98 998.44 11296.85 3199.80 1799.91 1597.57 899.85 9999.44 4499.99 2299.99 24
Skip Steuart: Steuart Systems R&D Blog.
DeepC-MVS_fast96.59 198.81 2398.54 2899.62 1899.90 4798.85 3399.24 22498.47 10598.14 499.08 8499.91 1593.09 120100.00 199.04 6099.99 22100.00 1
Andreas Kuhn, Christian Sormann, Mattia Rossi, Oliver Erdler, Friedrich Fraundorfer: DeepC-MVS: Deep Confidence Prediction for Multi-View Stereo Reconstruction. 3DV 2020
ETH3D-3000-0.198.68 3098.42 3399.47 3799.83 6898.57 5599.90 8098.37 15093.81 14499.81 1399.90 1994.34 8099.86 9599.84 1999.98 3599.97 67
tmp_tt65.23 33962.94 34272.13 35444.90 38350.03 37981.05 37089.42 37838.45 37348.51 37599.90 1954.09 36678.70 37591.84 23218.26 37787.64 366
xxxxxxxxxxxxxcwj98.98 1598.79 1799.54 2699.82 7098.79 3799.96 2597.52 24497.66 1099.81 1399.89 2194.70 6899.86 9599.84 1999.93 6799.96 74
SF-MVS98.67 3198.40 3799.50 3299.77 7898.67 4899.90 8098.21 17793.53 15399.81 1399.89 2194.70 6899.86 9599.84 1999.93 6799.96 74
9.1498.38 4099.87 5799.91 7598.33 15893.22 16299.78 2599.89 2194.57 7199.85 9999.84 1999.97 48
test_241102_ONE99.93 2799.30 1198.43 12097.26 2399.80 1799.88 2496.71 24100.00 1
MSP-MVS99.09 999.12 598.98 8399.93 2797.24 10999.95 4398.42 13297.50 1599.52 5499.88 2497.43 1699.71 13499.50 4199.98 35100.00 1
Zhenlong Yuan, Cong Liu, Fei Shen, Zhaoxin Li, Jingguo luo, Tianlu Mao and Zhaoqi Wang: MSP-MVS: Multi-granularity Segmentation Prior Guided Multi-View Stereo. AAAI2025
zzz-MVS98.33 5698.00 6599.30 5099.85 6097.93 8199.80 12598.28 16795.76 6697.18 14799.88 2492.74 129100.00 198.67 8499.88 8099.99 24
MTAPA98.29 5997.96 7099.30 5099.85 6097.93 8199.39 20598.28 16795.76 6697.18 14799.88 2492.74 129100.00 198.67 8499.88 8099.99 24
ETH3D cwj APD-0.1698.40 5298.07 6299.40 4499.59 9698.41 6499.86 10598.24 17392.18 20399.73 3099.87 2893.47 10799.85 9999.74 3099.95 5599.93 85
CDPH-MVS98.65 3298.36 4499.49 3499.94 1498.73 4599.87 9398.33 15893.97 13699.76 2799.87 2894.99 6199.75 12698.55 91100.00 199.98 55
CP-MVS98.45 4798.32 4698.87 8999.96 896.62 13199.97 1898.39 14394.43 11098.90 9499.87 2894.30 85100.00 199.04 6099.99 2299.99 24
xiu_mvs_v2_base98.23 6597.97 6799.02 8098.69 14898.66 5099.52 18698.08 19397.05 2799.86 599.86 3190.65 16899.71 13499.39 4798.63 13698.69 211
TEST999.92 3698.92 2799.96 2598.43 12093.90 14199.71 3499.86 3195.88 3899.85 99
train_agg98.88 2098.65 2299.59 2199.92 3698.92 2799.96 2598.43 12094.35 11599.71 3499.86 3195.94 3599.85 9999.69 3799.98 3599.99 24
LS3D95.84 15195.11 16198.02 13999.85 6095.10 18598.74 27898.50 10387.22 29493.66 20799.86 3187.45 20399.95 6590.94 24699.81 9399.02 198
MP-MVS-pluss98.07 7097.64 7999.38 4799.74 8298.41 6499.74 14398.18 18193.35 15796.45 16699.85 3592.64 13299.97 5698.91 6899.89 7899.77 110
MP-MVS-pluss: MP-MVS-pluss. MP-MVS-pluss
test_899.92 3698.88 3099.96 2598.43 12094.35 11599.69 3699.85 3595.94 3599.85 99
agg_prior198.88 2098.66 2199.54 2699.93 2798.77 4099.96 2598.43 12094.63 10399.63 4099.85 3595.79 4199.85 9999.72 3499.99 2299.99 24
HFP-MVS98.56 3898.37 4299.14 6699.96 897.43 10499.95 4398.61 7194.77 9699.31 7199.85 3594.22 87100.00 198.70 8299.98 3599.98 55
region2R98.54 4098.37 4299.05 7699.96 897.18 11299.96 2598.55 8594.87 9499.45 5899.85 3594.07 93100.00 198.67 84100.00 199.98 55
PS-MVSNAJ98.44 4898.20 5299.16 6298.80 14498.92 2799.54 18498.17 18297.34 1799.85 799.85 3591.20 15799.89 8499.41 4699.67 10198.69 211
#test#98.59 3698.41 3599.14 6699.96 897.43 10499.95 4398.61 7195.00 8799.31 7199.85 3594.22 87100.00 198.78 7799.98 3599.98 55
HPM-MVS++copyleft99.07 1098.88 1599.63 1599.90 4799.02 2399.95 4398.56 7997.56 1499.44 5999.85 3595.38 49100.00 199.31 4999.99 2299.87 98
旧先验199.76 7997.52 9598.64 6599.85 3595.63 4399.94 6199.99 24
原ACMM198.96 8599.73 8696.99 12098.51 9994.06 13199.62 4399.85 3594.97 6299.96 5895.11 16899.95 5599.92 91
testdata98.42 12399.47 10795.33 17698.56 7993.78 14699.79 2499.85 3593.64 10599.94 7394.97 17299.94 61100.00 1
APDe-MVS99.06 1198.91 1499.51 3199.94 1498.76 4499.91 7598.39 14397.20 2599.46 5799.85 3595.53 4699.79 11499.86 18100.00 199.99 24
API-MVS97.86 7797.66 7898.47 11899.52 10395.41 17499.47 19598.87 4691.68 21898.84 9599.85 3592.34 14099.99 4098.44 9499.96 52100.00 1
testtj98.89 1998.69 2099.52 2999.94 1498.56 5799.90 8098.55 8595.14 8499.72 3399.84 4895.46 47100.00 199.65 3899.99 2299.99 24
ACMMPR98.50 4398.32 4699.05 7699.96 897.18 11299.95 4398.60 7394.77 9699.31 7199.84 4893.73 102100.00 198.70 8299.98 3599.98 55
DP-MVS Recon98.41 5098.02 6499.56 2499.97 398.70 4799.92 7198.44 11292.06 20898.40 11899.84 4895.68 42100.00 198.19 10199.71 9999.97 67
ZD-MVS99.92 3698.57 5598.52 9292.34 19899.31 7199.83 5195.06 5699.80 11199.70 3699.97 48
ACMMP_NAP98.49 4498.14 5699.54 2699.66 9398.62 5499.85 10898.37 15094.68 10099.53 5199.83 5192.87 125100.00 198.66 8799.84 8499.99 24
test22299.55 10197.41 10799.34 21198.55 8591.86 21299.27 7699.83 5193.84 10099.95 5599.99 24
112198.03 7197.57 8399.40 4499.74 8298.21 6998.31 30198.62 6992.78 17699.53 5199.83 5195.08 54100.00 194.36 19099.92 7199.99 24
ZNCC-MVS98.31 5798.03 6399.17 6099.88 5497.59 9199.94 6198.44 11294.31 11898.50 11399.82 5593.06 12199.99 4098.30 10099.99 2299.93 85
新几何199.42 4199.75 8198.27 6898.63 6892.69 18199.55 4999.82 5594.40 74100.00 191.21 23799.94 6199.99 24
CSCG97.10 10797.04 10197.27 17199.89 5091.92 25799.90 8099.07 3288.67 27495.26 18999.82 5593.17 11999.98 4698.15 10499.47 11599.90 93
MAR-MVS97.43 9397.19 9598.15 13599.47 10794.79 19399.05 24698.76 5392.65 18498.66 10699.82 5588.52 19699.98 4698.12 10599.63 10399.67 122
Zhenyu Xu, Yiguang Liu, Xuelei Shi, Ying Wang, Yunan Zheng: MARMVS: Matching Ambiguity Reduced Multiple View Stereo for Efficient Large Scale Scene Reconstruction. CVPR 2020
MP-MVScopyleft98.23 6597.97 6799.03 7899.94 1497.17 11599.95 4398.39 14394.70 9998.26 12599.81 5991.84 151100.00 198.85 7299.97 4899.93 85
Rongxuan Tan, Qing Wang, et al.: MP-MVS: Multi-Scale Windows PatchMatch and Planar Prior Multi-View Stereo.
test117298.38 5498.25 4998.77 9399.88 5496.56 13499.80 12598.36 15294.68 10099.20 7899.80 6093.28 11499.78 11699.34 4899.92 7199.98 55
OPU-MVS99.93 299.89 5099.80 299.96 2599.80 6097.44 14100.00 1100.00 199.98 35100.00 1
SR-MVS98.46 4698.30 4898.93 8799.88 5497.04 11799.84 11298.35 15594.92 9199.32 7099.80 6093.35 10999.78 11699.30 5099.95 5599.96 74
mPP-MVS98.39 5398.20 5298.97 8499.97 396.92 12399.95 4398.38 14795.04 8698.61 10999.80 6093.39 108100.00 198.64 88100.00 199.98 55
PC_three_145296.96 3099.80 1799.79 6497.49 10100.00 199.99 599.98 35100.00 1
CS-MVS-test97.88 7697.94 7197.70 15299.28 11595.20 18399.98 997.15 27795.53 7599.62 4399.79 6492.08 14698.38 20998.75 8099.28 12299.52 155
Regformer-198.79 2598.60 2599.36 4899.85 6098.34 6699.87 9398.52 9296.05 5799.41 6299.79 6494.93 6399.76 12399.07 5599.90 7699.99 24
Regformer-298.78 2698.59 2699.36 4899.85 6098.32 6799.87 9398.52 9296.04 5899.41 6299.79 6494.92 6499.76 12399.05 5699.90 7699.98 55
CPTT-MVS97.64 8997.32 9298.58 10899.97 395.77 16299.96 2598.35 15589.90 25498.36 11999.79 6491.18 16099.99 4098.37 9799.99 2299.99 24
MVS_111021_LR98.42 4998.38 4098.53 11599.39 11095.79 16199.87 9399.86 296.70 3898.78 9899.79 6492.03 14799.90 8099.17 5299.86 8399.88 96
XVS98.70 2998.55 2799.15 6499.94 1497.50 9999.94 6198.42 13296.22 5399.41 6299.78 7094.34 8099.96 5898.92 6699.95 5599.99 24
PHI-MVS98.41 5098.21 5199.03 7899.86 5997.10 11699.98 998.80 5290.78 24199.62 4399.78 7095.30 50100.00 199.80 2499.93 6799.99 24
Regformer-398.58 3798.41 3599.10 7299.84 6597.57 9299.66 16098.52 9295.79 6399.01 8899.77 7294.40 7499.75 12698.82 7399.83 8599.98 55
Regformer-498.56 3898.39 3999.08 7499.84 6597.52 9599.66 16098.52 9295.76 6699.01 8899.77 7294.33 8399.75 12698.80 7699.83 8599.98 55
APD-MVS_3200maxsize98.25 6398.08 6198.78 9299.81 7396.60 13299.82 11998.30 16593.95 13899.37 6899.77 7292.84 12699.76 12398.95 6399.92 7199.97 67
MVS_111021_HR98.72 2898.62 2499.01 8199.36 11297.18 11299.93 6799.90 196.81 3598.67 10599.77 7293.92 9699.89 8499.27 5199.94 6199.96 74
patch_mono-298.24 6499.12 595.59 21399.67 9286.91 32999.95 4398.89 4397.60 1299.90 299.76 7696.54 2899.98 4699.94 1299.82 9199.88 96
EI-MVSNet-Vis-set98.27 6098.11 5998.75 9599.83 6896.59 13399.40 20198.51 9995.29 8198.51 11299.76 7693.60 10699.71 13498.53 9299.52 11299.95 82
test_prior398.99 1498.84 1699.43 3899.94 1498.49 6199.95 4398.65 6295.78 6499.73 3099.76 7696.00 3399.80 11199.78 26100.00 199.99 24
test_prior299.95 4395.78 6499.73 3099.76 7696.00 3399.78 26100.00 1
SD-MVS98.92 1798.70 1999.56 2499.70 9098.73 4599.94 6198.34 15796.38 4899.81 1399.76 7694.59 7099.98 4699.84 1999.96 5299.97 67
Zhenlong Yuan, Jiakai Cao, Zhaoxin Li, Hao Jiang and Zhaoqi Wang: SD-MVS: Segmentation-driven Deformation Multi-View Stereo with Spherical Refinement and EM optimization. AAAI2024
PGM-MVS98.34 5598.13 5798.99 8299.92 3697.00 11999.75 14099.50 1793.90 14199.37 6899.76 7693.24 117100.00 197.75 12699.96 5299.98 55
SR-MVS-dyc-post98.31 5798.17 5498.71 9699.79 7596.37 14199.76 13798.31 16294.43 11099.40 6699.75 8293.28 11499.78 11698.90 6999.92 7199.97 67
RE-MVS-def98.13 5799.79 7596.37 14199.76 13798.31 16294.43 11099.40 6699.75 8292.95 12398.90 6999.92 7199.97 67
CS-MVS97.79 8397.91 7397.43 16299.10 12094.42 19899.99 397.10 28295.07 8599.68 3799.75 8292.95 12398.34 21398.38 9699.14 12799.54 151
EI-MVSNet-UG-set98.14 6797.99 6698.60 10599.80 7496.27 14399.36 21098.50 10395.21 8398.30 12299.75 8293.29 11399.73 13398.37 9799.30 12199.81 104
PAPR98.52 4298.16 5599.58 2399.97 398.77 4099.95 4398.43 12095.35 7998.03 12999.75 8294.03 9499.98 4698.11 10699.83 8599.99 24
GST-MVS98.27 6097.97 6799.17 6099.92 3697.57 9299.93 6798.39 14394.04 13498.80 9799.74 8792.98 122100.00 198.16 10399.76 9599.93 85
TSAR-MVS + MP.98.93 1698.77 1899.41 4299.74 8298.67 4899.77 13298.38 14796.73 3799.88 499.74 8794.89 6599.59 14599.80 2499.98 3599.97 67
Zhenlong Yuan, Jiakai Cao, Zhaoqi Wang, Zhaoxin Li: TSAR-MVS: Textureless-aware Segmentation and Correlative Refinement Guided Multi-View Stereo. Pattern Recognition
dcpmvs_297.42 9798.09 6095.42 21899.58 10087.24 32699.23 22596.95 30094.28 12098.93 9399.73 8994.39 7899.16 16499.89 1799.82 9199.86 100
APD-MVScopyleft98.62 3398.35 4599.41 4299.90 4798.51 6099.87 9398.36 15294.08 12899.74 2999.73 8994.08 9299.74 13099.42 4599.99 2299.99 24
Yuesong Wang, Zhaojie Zeng and etc.: Adaptive Patch Deformation for Textureless-Resilient Multi-View Stereo. CVPR2023
MG-MVS98.91 1898.65 2299.68 1499.94 1499.07 2299.64 16899.44 1997.33 1899.00 9099.72 9194.03 9499.98 4698.73 81100.00 1100.00 1
AdaColmapbinary97.23 10496.80 10898.51 11699.99 195.60 17099.09 23598.84 4993.32 15996.74 15899.72 9186.04 217100.00 198.01 11199.43 11899.94 84
CANet98.27 6097.82 7599.63 1599.72 8899.10 2199.98 998.51 9997.00 2998.52 11199.71 9387.80 19999.95 6599.75 2899.38 11999.83 102
ACMMPcopyleft97.74 8697.44 8698.66 10099.92 3696.13 15299.18 22999.45 1894.84 9596.41 16999.71 9391.40 15499.99 4097.99 11398.03 15599.87 98
Qingshan Xu, Weihang Kong, Wenbing Tao, Marc Pollefeys: Multi-Scale Geometric Consistency Guided and Planar Prior Assisted Multi-View Stereo. IEEE Transactions on Pattern Analysis and Machine Intelligence
abl_697.67 8897.34 9098.66 10099.68 9196.11 15599.68 15698.14 18893.80 14599.27 7699.70 9588.65 19599.98 4697.46 13099.72 9899.89 94
PAPM_NR98.12 6897.93 7298.70 9799.94 1496.13 15299.82 11998.43 12094.56 10597.52 14099.70 9594.40 7499.98 4697.00 14399.98 3599.99 24
OMC-MVS97.28 10197.23 9497.41 16399.76 7993.36 22699.65 16497.95 20396.03 5997.41 14399.70 9589.61 17999.51 14896.73 15098.25 14699.38 171
xiu_mvs_v1_base_debu97.43 9397.06 9898.55 11097.74 19998.14 7099.31 21597.86 21396.43 4599.62 4399.69 9885.56 22199.68 13899.05 5698.31 14397.83 220
xiu_mvs_v1_base97.43 9397.06 9898.55 11097.74 19998.14 7099.31 21597.86 21396.43 4599.62 4399.69 9885.56 22199.68 13899.05 5698.31 14397.83 220
xiu_mvs_v1_base_debi97.43 9397.06 9898.55 11097.74 19998.14 7099.31 21597.86 21396.43 4599.62 4399.69 9885.56 22199.68 13899.05 5698.31 14397.83 220
CNLPA97.76 8597.38 8798.92 8899.53 10296.84 12599.87 9398.14 18893.78 14696.55 16499.69 9892.28 14199.98 4697.13 13899.44 11799.93 85
cdsmvs_eth3d_5k23.43 34731.24 3500.00 3640.00 3870.00 3880.00 37598.09 1910.00 3820.00 38399.67 10283.37 2390.00 3830.00 3810.00 3810.00 379
lupinMVS97.85 7897.60 8198.62 10397.28 22597.70 8899.99 397.55 23895.50 7799.43 6099.67 10290.92 16498.71 18398.40 9599.62 10499.45 164
114514_t97.41 9896.83 10699.14 6699.51 10597.83 8399.89 8898.27 17088.48 27899.06 8599.66 10490.30 17299.64 14496.32 15499.97 4899.96 74
PAPM98.60 3498.42 3399.14 6696.05 25998.96 2499.90 8099.35 2496.68 3998.35 12099.66 10496.45 2998.51 19399.45 4399.89 7899.96 74
CANet_DTU96.76 12096.15 12498.60 10598.78 14597.53 9499.84 11297.63 22797.25 2499.20 7899.64 10681.36 25599.98 4692.77 22398.89 13098.28 214
XVG-OURS94.82 17294.74 16995.06 22998.00 18289.19 30699.08 23797.55 23894.10 12794.71 19399.62 10780.51 26699.74 13096.04 15793.06 22696.25 233
MVS96.60 12895.56 14999.72 1296.85 24299.22 1998.31 30198.94 3791.57 22090.90 23499.61 10886.66 21199.96 5897.36 13299.88 8099.99 24
EIA-MVS97.53 9197.46 8597.76 14998.04 18194.84 19099.98 997.61 23294.41 11397.90 13399.59 10992.40 13898.87 17298.04 11099.13 12899.59 139
XVG-OURS-SEG-HR94.79 17394.70 17095.08 22898.05 18089.19 30699.08 23797.54 24093.66 15094.87 19299.58 11078.78 27999.79 11497.31 13393.40 22296.25 233
HPM-MVScopyleft97.96 7297.72 7798.68 9899.84 6596.39 14099.90 8098.17 18292.61 18698.62 10899.57 11191.87 15099.67 14198.87 7199.99 2299.99 24
Chunlin Ren, Qingshan Xu, Shikun Zhang, Jiaqi Yang: Hierarchical Prior Mining for Non-local Multi-View Stereo. ICCV 2023
TSAR-MVS + GP.98.60 3498.51 3098.86 9099.73 8696.63 13099.97 1897.92 20798.07 598.76 10199.55 11295.00 6099.94 7399.91 1697.68 15999.99 24
DP-MVS94.54 18293.42 19897.91 14399.46 10994.04 20598.93 25997.48 24981.15 34490.04 24399.55 11287.02 20899.95 6588.97 26998.11 15099.73 114
MVSFormer96.94 11296.60 11397.95 14097.28 22597.70 8899.55 18297.27 26791.17 23099.43 6099.54 11490.92 16496.89 29594.67 18599.62 10499.25 185
jason97.24 10396.86 10598.38 12695.73 27197.32 10899.97 1897.40 25795.34 8098.60 11099.54 11487.70 20098.56 19097.94 11699.47 11599.25 185
jason: jason.
HPM-MVS_fast97.80 8297.50 8498.68 9899.79 7596.42 13799.88 9098.16 18591.75 21798.94 9299.54 11491.82 15299.65 14397.62 12899.99 2299.99 24
DeepC-MVS94.51 496.92 11496.40 12098.45 12099.16 11895.90 15899.66 16098.06 19496.37 5194.37 19899.49 11783.29 24099.90 8097.63 12799.61 10799.55 148
Andreas Kuhn, Christian Sormann, Mattia Rossi, Oliver Erdler, Friedrich Fraundorfer: DeepC-MVS: Deep Confidence Prediction for Multi-View Stereo Reconstruction. 3DV 2020
alignmvs97.81 8197.33 9199.25 5298.77 14698.66 5099.99 398.44 11294.40 11498.41 11699.47 11893.65 10499.42 15698.57 9094.26 21499.67 122
TAPA-MVS92.12 894.42 18693.60 19196.90 17999.33 11391.78 26199.78 12998.00 19789.89 25594.52 19599.47 11891.97 14899.18 16269.90 35899.52 11299.73 114
Andrea Romanoni, Matteo Matteucci: TAPA-MVS: Textureless-Aware PAtchMatch Multi-View Stereo. ICCV 2019
ETV-MVS97.92 7597.80 7698.25 13098.14 17796.48 13599.98 997.63 22795.61 7299.29 7599.46 12092.55 13498.82 17499.02 6298.54 13799.46 162
ET-MVSNet_ETH3D94.37 18893.28 20497.64 15398.30 16597.99 7799.99 397.61 23294.35 11571.57 36399.45 12196.23 3195.34 33896.91 14885.14 28299.59 139
canonicalmvs97.09 10996.32 12199.39 4698.93 13298.95 2599.72 15197.35 26094.45 10897.88 13499.42 12286.71 21099.52 14798.48 9393.97 21899.72 116
VDD-MVS93.77 20192.94 20796.27 20198.55 15490.22 29298.77 27797.79 21890.85 23996.82 15699.42 12261.18 35999.77 12098.95 6394.13 21598.82 206
1112_ss96.01 14795.20 15898.42 12397.80 19496.41 13899.65 16496.66 32392.71 17992.88 21799.40 12492.16 14399.30 15791.92 23093.66 21999.55 148
ab-mvs-re8.28 34911.04 3520.00 3640.00 3870.00 3880.00 3750.00 3880.00 3820.00 38399.40 1240.00 3870.00 3830.00 3810.00 3810.00 379
LFMVS94.75 17693.56 19498.30 12899.03 12395.70 16798.74 27897.98 20087.81 28798.47 11499.39 12667.43 34199.53 14698.01 11195.20 20799.67 122
WTY-MVS98.10 6997.60 8199.60 2098.92 13499.28 1699.89 8899.52 1495.58 7398.24 12699.39 12693.33 11099.74 13097.98 11595.58 20199.78 109
PMMVS96.76 12096.76 10996.76 18398.28 16892.10 25299.91 7597.98 20094.12 12699.53 5199.39 12686.93 20998.73 18196.95 14697.73 15799.45 164
EPNet98.49 4498.40 3798.77 9399.62 9596.80 12799.90 8099.51 1697.60 1299.20 7899.36 12993.71 10399.91 7997.99 11398.71 13599.61 136
Wanjuan Su, Wenbing Tao: Efficient Edge-Preserving Multi-View Stereo Network for Depth Estimation. AAAI 2023
DROMVSNet97.38 10097.24 9397.80 14497.41 21595.64 16999.99 397.06 28794.59 10499.63 4099.32 13089.20 18898.14 22798.76 7999.23 12499.62 133
VDDNet93.12 21691.91 23296.76 18396.67 25292.65 24198.69 28398.21 17782.81 33897.75 13799.28 13161.57 35799.48 15498.09 10894.09 21698.15 216
diffmvs97.00 11096.64 11298.09 13697.64 20696.17 15199.81 12197.19 27194.67 10298.95 9199.28 13186.43 21398.76 17998.37 9797.42 16599.33 178
baseline96.43 13395.98 13097.76 14997.34 21995.17 18499.51 18897.17 27493.92 14096.90 15399.28 13185.37 22498.64 18797.50 12996.86 17899.46 162
UA-Net96.54 12995.96 13598.27 12998.23 17195.71 16698.00 31598.45 10993.72 14998.41 11699.27 13488.71 19499.66 14291.19 23897.69 15899.44 166
RPSCF91.80 24892.79 21288.83 33598.15 17669.87 36998.11 31196.60 32583.93 33194.33 19999.27 13479.60 27399.46 15591.99 22893.16 22597.18 229
PLCcopyleft95.54 397.93 7497.89 7498.05 13899.82 7094.77 19499.92 7198.46 10793.93 13997.20 14699.27 13495.44 4899.97 5697.41 13199.51 11499.41 169
Jie Liao, Yanping Fu, Qingan Yan, Chunxia xiao: Pyramid Multi-View Stereo with Local Consistency. Pacific Graphics 2019
casdiffmvs96.42 13495.97 13397.77 14897.30 22394.98 18699.84 11297.09 28493.75 14896.58 16299.26 13785.07 22698.78 17797.77 12497.04 17399.54 151
BH-RMVSNet95.18 16594.31 17697.80 14498.17 17595.23 18199.76 13797.53 24292.52 19394.27 20099.25 13876.84 29298.80 17590.89 24899.54 11199.35 176
DELS-MVS98.54 4098.22 5099.50 3299.15 11998.65 52100.00 198.58 7597.70 998.21 12799.24 13992.58 13399.94 7398.63 8999.94 6199.92 91
Christian Sormann, Emanuele Santellani, Mattia Rossi, Andreas Kuhn, Friedrich Fraundorfer: DELS-MVS: Deep Epipolar Line Search for Multi-View Stereo. Winter Conference on Applications of Computer Vision (WACV), 2023
PCF-MVS94.20 595.18 16594.10 17998.43 12298.55 15495.99 15697.91 31797.31 26590.35 24789.48 25999.22 14085.19 22599.89 8490.40 25798.47 13999.41 169
Andreas Kuhn, Shan Lin, Oliver Erdler: Plane Completion and Filtering for Multi-View Stereo Reconstruction. GCPR 2019
PVSNet91.05 1397.13 10696.69 11198.45 12099.52 10395.81 16099.95 4399.65 1194.73 9899.04 8699.21 14184.48 23099.95 6594.92 17498.74 13499.58 145
MSDG94.37 18893.36 20297.40 16498.88 13993.95 20999.37 20897.38 25885.75 31590.80 23599.17 14284.11 23599.88 9086.35 29898.43 14098.36 213
F-COLMAP96.93 11396.95 10496.87 18099.71 8991.74 26299.85 10897.95 20393.11 16695.72 18299.16 14392.35 13999.94 7395.32 16699.35 12098.92 200
Vis-MVSNet (Re-imp)96.32 13795.98 13097.35 16997.93 18694.82 19199.47 19598.15 18791.83 21395.09 19099.11 14491.37 15597.47 25593.47 21297.43 16399.74 113
CHOSEN 280x42099.01 1399.03 1098.95 8699.38 11198.87 3198.46 29499.42 2197.03 2899.02 8799.09 14599.35 198.21 22599.73 3399.78 9499.77 110
PVSNet_Blended97.94 7397.64 7998.83 9199.59 9696.99 120100.00 199.10 2995.38 7898.27 12399.08 14689.00 19099.95 6599.12 5399.25 12399.57 146
sss97.57 9097.03 10299.18 5798.37 16398.04 7599.73 14899.38 2293.46 15598.76 10199.06 14791.21 15699.89 8496.33 15397.01 17499.62 133
thisisatest051597.41 9897.02 10398.59 10797.71 20597.52 9599.97 1898.54 8991.83 21397.45 14299.04 14897.50 999.10 16694.75 18296.37 18599.16 190
EI-MVSNet93.73 20393.40 20194.74 24096.80 24592.69 23899.06 24297.67 22488.96 26791.39 22899.02 14988.75 19397.30 26491.07 24087.85 26094.22 269
CVMVSNet94.68 17994.94 16593.89 27996.80 24586.92 32899.06 24298.98 3594.45 10894.23 20199.02 14985.60 22095.31 33990.91 24795.39 20499.43 167
EPP-MVSNet96.69 12596.60 11396.96 17797.74 19993.05 23099.37 20898.56 7988.75 27295.83 18099.01 15196.01 3298.56 19096.92 14797.20 17099.25 185
COLMAP_ROBcopyleft90.47 1492.18 23991.49 24194.25 26399.00 12688.04 32298.42 29996.70 32282.30 34188.43 28399.01 15176.97 29099.85 9986.11 30196.50 18294.86 238
Johannes L. Schönberger, Enliang Zheng, Marc Pollefeys, Jan-Michael Frahm: Pixelwise View Selection for Unstructured Multi-View Stereo. ECCV 2016
3Dnovator91.47 1296.28 14195.34 15499.08 7496.82 24497.47 10299.45 19898.81 5095.52 7689.39 26099.00 15381.97 24799.95 6597.27 13499.83 8599.84 101
test_yl97.83 7997.37 8899.21 5499.18 11697.98 7899.64 16899.27 2691.43 22697.88 13498.99 15495.84 3999.84 10898.82 7395.32 20599.79 106
DCV-MVSNet97.83 7997.37 8899.21 5499.18 11697.98 7899.64 16899.27 2691.43 22697.88 13498.99 15495.84 3999.84 10898.82 7395.32 20599.79 106
131496.84 11695.96 13599.48 3696.74 24998.52 5998.31 30198.86 4795.82 6289.91 24698.98 15687.49 20299.96 5897.80 11999.73 9799.96 74
3Dnovator+91.53 1196.31 13895.24 15699.52 2996.88 24198.64 5399.72 15198.24 17395.27 8288.42 28598.98 15682.76 24299.94 7397.10 14099.83 8599.96 74
thisisatest053097.10 10796.72 11098.22 13197.60 20896.70 12899.92 7198.54 8991.11 23397.07 15098.97 15897.47 1299.03 16793.73 20896.09 18898.92 200
baseline296.71 12496.49 11797.37 16695.63 27895.96 15799.74 14398.88 4592.94 16891.61 22698.97 15897.72 798.62 18894.83 17898.08 15497.53 228
test250697.53 9197.19 9598.58 10898.66 15096.90 12498.81 27399.77 594.93 8997.95 13198.96 16092.51 13599.20 16094.93 17398.15 14799.64 128
ECVR-MVScopyleft95.66 15795.05 16297.51 15898.66 15093.71 21498.85 27098.45 10994.93 8996.86 15498.96 16075.22 30899.20 16095.34 16598.15 14799.64 128
gm-plane-assit96.97 23593.76 21391.47 22498.96 16098.79 17694.92 174
IS-MVSNet96.29 14095.90 14197.45 16098.13 17894.80 19299.08 23797.61 23292.02 20995.54 18598.96 16090.64 16998.08 23093.73 20897.41 16699.47 161
test111195.57 15994.98 16497.37 16698.56 15293.37 22598.86 26898.45 10994.95 8896.63 16098.95 16475.21 30999.11 16595.02 17198.14 14999.64 128
OpenMVScopyleft90.15 1594.77 17593.59 19298.33 12796.07 25897.48 10199.56 18098.57 7790.46 24486.51 30898.95 16478.57 28199.94 7393.86 19999.74 9697.57 227
GeoE94.36 19093.48 19696.99 17697.29 22493.54 21899.96 2596.72 32188.35 28193.43 20898.94 16682.05 24698.05 23388.12 28096.48 18399.37 173
Vis-MVSNetpermissive95.72 15395.15 16097.45 16097.62 20794.28 20199.28 22198.24 17394.27 12296.84 15598.94 16679.39 27498.76 17993.25 21498.49 13899.30 181
Jingyang Zhang, Yao Yao, Shiwei Li, Zixin Luo, Tian Fang: Visibility-aware Multiview Stereo Network. BMVC 2020
tttt051796.85 11596.49 11797.92 14297.48 21495.89 15999.85 10898.54 8990.72 24296.63 16098.93 16897.47 1299.02 16893.03 22195.76 19798.85 204
QAPM95.40 16394.17 17899.10 7296.92 23697.71 8699.40 20198.68 5889.31 25988.94 27398.89 16982.48 24399.96 5893.12 22099.83 8599.62 133
VNet97.21 10596.57 11599.13 7198.97 12897.82 8499.03 24899.21 2894.31 11899.18 8298.88 17086.26 21699.89 8498.93 6594.32 21399.69 119
thres20096.96 11196.21 12399.22 5398.97 12898.84 3499.85 10899.71 693.17 16496.26 17298.88 17089.87 17799.51 14894.26 19494.91 20899.31 180
tfpn200view996.79 11895.99 12899.19 5698.94 13098.82 3599.78 12999.71 692.86 16996.02 17598.87 17289.33 18399.50 15093.84 20094.57 20999.27 183
thres40096.78 11995.99 12899.16 6298.94 13098.82 3599.78 12999.71 692.86 16996.02 17598.87 17289.33 18399.50 15093.84 20094.57 20999.16 190
thres100view90096.74 12295.92 14099.18 5798.90 13798.77 4099.74 14399.71 692.59 18895.84 17898.86 17489.25 18599.50 15093.84 20094.57 20999.27 183
thres600view796.69 12595.87 14399.14 6698.90 13798.78 3999.74 14399.71 692.59 18895.84 17898.86 17489.25 18599.50 15093.44 21394.50 21299.16 190
CHOSEN 1792x268896.81 11796.53 11697.64 15398.91 13693.07 22899.65 16499.80 395.64 7195.39 18698.86 17484.35 23399.90 8096.98 14499.16 12699.95 82
CLD-MVS94.06 19593.90 18494.55 25096.02 26090.69 28099.98 997.72 22096.62 4291.05 23398.85 17777.21 28898.47 19498.11 10689.51 23594.48 243
Zhaoxin Li, Wangmeng Zuo, Zhaoqi Wang, Lei Zhang: Confidence-based Large-scale Dense Multi-view Stereo. IEEE Transaction on Image Processing, 2020
BH-w/o95.71 15595.38 15396.68 18698.49 15892.28 24799.84 11297.50 24792.12 20592.06 22498.79 17884.69 22898.67 18695.29 16799.66 10299.09 196
Anonymous20240521193.10 21791.99 23096.40 19699.10 12089.65 30398.88 26497.93 20583.71 33394.00 20398.75 17968.79 33399.88 9095.08 17091.71 22899.68 120
mvs-test195.53 16095.97 13394.20 26497.77 19685.44 33799.95 4397.06 28794.92 9196.58 16298.72 18085.81 21898.98 16994.80 17998.11 15098.18 215
TR-MVS94.54 18293.56 19497.49 15997.96 18494.34 20098.71 28197.51 24690.30 24994.51 19698.69 18175.56 30398.77 17892.82 22295.99 19099.35 176
BH-untuned95.18 16594.83 16796.22 20298.36 16491.22 27499.80 12597.32 26490.91 23791.08 23298.67 18283.51 23798.54 19294.23 19599.61 10798.92 200
OPM-MVS93.21 21292.80 21194.44 25793.12 32190.85 27999.77 13297.61 23296.19 5591.56 22798.65 18375.16 31098.47 19493.78 20689.39 23693.99 295
Ray L. Khuboni, Hongjun Xu: Octagram Propagation Matching for Multi-Scale View Stereopsis (OPM-MVS).
NP-MVS95.77 26891.79 26098.65 183
HQP-MVS94.61 18194.50 17294.92 23495.78 26591.85 25899.87 9397.89 20996.82 3293.37 20998.65 18380.65 26498.39 20597.92 11789.60 23094.53 239
baseline195.78 15294.86 16698.54 11398.47 15998.07 7399.06 24297.99 19892.68 18294.13 20298.62 18693.28 11498.69 18593.79 20585.76 27598.84 205
HQP_MVS94.49 18594.36 17494.87 23595.71 27491.74 26299.84 11297.87 21196.38 4893.01 21398.59 18780.47 26898.37 21197.79 12289.55 23394.52 241
plane_prior498.59 187
Anonymous2024052992.10 24190.65 25296.47 19098.82 14290.61 28498.72 28098.67 6175.54 35993.90 20598.58 18966.23 34499.90 8094.70 18490.67 22998.90 203
Effi-MVS+96.30 13995.69 14698.16 13297.85 19196.26 14497.41 32397.21 27090.37 24698.65 10798.58 18986.61 21298.70 18497.11 13997.37 16799.52 155
EPNet_dtu95.71 15595.39 15296.66 18798.92 13493.41 22399.57 17898.90 4296.19 5597.52 14098.56 19192.65 13197.36 25777.89 34298.33 14299.20 188
Wanjuan Su, Wenbing Tao: Efficient Edge-Preserving Multi-View Stereo Network for Depth Estimation. AAAI 2023
test0.0.03 193.86 19693.61 18994.64 24495.02 28792.18 25199.93 6798.58 7594.07 12987.96 28998.50 19293.90 9894.96 34381.33 32893.17 22496.78 230
LPG-MVS_test92.96 21992.71 21393.71 28495.43 28088.67 31299.75 14097.62 22992.81 17390.05 24198.49 19375.24 30698.40 20395.84 16189.12 23794.07 287
LGP-MVS_train93.71 28495.43 28088.67 31297.62 22992.81 17390.05 24198.49 19375.24 30698.40 20395.84 16189.12 23794.07 287
PVSNet_Blended_VisFu97.27 10296.81 10798.66 10098.81 14396.67 12999.92 7198.64 6594.51 10796.38 17098.49 19389.05 18999.88 9097.10 14098.34 14199.43 167
testmvs40.60 34544.45 34829.05 36219.49 38614.11 38799.68 15618.47 38520.74 37864.59 36698.48 19610.95 38317.09 38256.66 37211.01 37855.94 375
AllTest92.48 23291.64 23595.00 23199.01 12488.43 31698.94 25896.82 31586.50 30388.71 27698.47 19774.73 31299.88 9085.39 30496.18 18696.71 231
TestCases95.00 23199.01 12488.43 31696.82 31586.50 30388.71 27698.47 19774.73 31299.88 9085.39 30496.18 18696.71 231
h-mvs3394.92 17194.36 17496.59 18998.85 14191.29 27398.93 25998.94 3795.90 6098.77 9998.42 19990.89 16699.77 12097.80 11970.76 35298.72 210
PatchMatch-RL96.04 14695.40 15197.95 14099.59 9695.22 18299.52 18699.07 3293.96 13796.49 16598.35 20082.28 24599.82 11090.15 26099.22 12598.81 207
CDS-MVSNet96.34 13696.07 12597.13 17397.37 21794.96 18799.53 18597.91 20891.55 22195.37 18798.32 20195.05 5797.13 27693.80 20495.75 19899.30 181
Khang Truong Giang, Soohwan Song, Sungho Jo: Curvature-guided dynamic scale networks for Multi-view Stereo. ICLR 2022
ACMP92.05 992.74 22592.42 22293.73 28295.91 26488.72 31199.81 12197.53 24294.13 12587.00 30298.23 20274.07 31698.47 19496.22 15588.86 24293.99 295
Qingshan Xu and Wenbing Tao: Planar Prior Assisted PatchMatch Multi-View Stereo. AAAI 2020
testgi89.01 29888.04 29991.90 31393.49 31184.89 34099.73 14895.66 34593.89 14385.14 32298.17 20359.68 36094.66 34777.73 34388.88 24096.16 236
ITE_SJBPF92.38 30695.69 27685.14 33895.71 34392.81 17389.33 26398.11 20470.23 33098.42 20085.91 30288.16 25593.59 319
HyFIR lowres test96.66 12796.43 11997.36 16899.05 12293.91 21099.70 15399.80 390.54 24396.26 17298.08 20592.15 14498.23 22496.84 14995.46 20299.93 85
TESTMET0.1,196.74 12296.26 12298.16 13297.36 21896.48 13599.96 2598.29 16691.93 21095.77 18198.07 20695.54 4498.29 21790.55 25298.89 13099.70 117
TAMVS95.85 15095.58 14896.65 18897.07 22993.50 21999.17 23097.82 21791.39 22995.02 19198.01 20792.20 14297.30 26493.75 20795.83 19599.14 193
hse-mvs294.38 18794.08 18095.31 22298.27 16990.02 29799.29 22098.56 7995.90 6098.77 9998.00 20890.89 16698.26 22397.80 11969.20 35897.64 225
AUN-MVS93.28 21192.60 21595.34 22098.29 16690.09 29599.31 21598.56 7991.80 21696.35 17198.00 20889.38 18298.28 21992.46 22469.22 35797.64 225
ACMM91.95 1092.88 22192.52 22093.98 27695.75 27089.08 30999.77 13297.52 24493.00 16789.95 24597.99 21076.17 30098.46 19793.63 21188.87 24194.39 254
Qingshan Xu and Wenbing Tao: Multi-Scale Geometric Consistency Guided Multi-View Stereo. CVPR 2019
iter_conf_final96.01 14795.93 13896.28 20098.38 16297.03 11899.87 9397.03 29194.05 13392.61 22097.98 21198.01 597.34 25997.02 14288.39 25294.47 244
iter_conf0596.07 14495.95 13796.44 19498.43 16097.52 9599.91 7596.85 31194.16 12492.49 22297.98 21198.20 497.34 25997.26 13588.29 25394.45 250
Fast-Effi-MVS+95.02 16994.19 17797.52 15797.88 18894.55 19599.97 1897.08 28588.85 27194.47 19797.96 21384.59 22998.41 20189.84 26397.10 17199.59 139
GG-mvs-BLEND98.54 11398.21 17298.01 7693.87 35498.52 9297.92 13297.92 21499.02 297.94 24198.17 10299.58 10999.67 122
Fast-Effi-MVS+-dtu93.72 20493.86 18693.29 29397.06 23086.16 33199.80 12596.83 31392.66 18392.58 22197.83 21581.39 25497.67 24889.75 26496.87 17796.05 237
test_low_dy_conf_00193.16 21392.88 20994.01 27293.16 31890.65 28399.58 17597.66 22692.21 20291.34 23097.80 21682.45 24497.05 28293.64 21088.05 25794.32 263
mvsmamba94.10 19393.72 18895.25 22493.57 30894.13 20399.67 15996.45 33093.63 15291.34 23097.77 21786.29 21597.22 27096.65 15188.10 25694.40 252
RRT_MVS93.14 21592.92 20893.78 28193.31 31690.04 29699.66 16097.69 22292.53 19288.91 27497.76 21884.36 23196.93 29395.10 16986.99 26994.37 255
ACMH+89.98 1690.35 27689.54 27392.78 30495.99 26186.12 33298.81 27397.18 27389.38 25883.14 33197.76 21868.42 33798.43 19989.11 26886.05 27493.78 311
bld_raw_conf00592.79 22392.18 22494.61 24593.38 31592.27 24898.99 25195.20 35693.34 15889.25 26497.67 22078.03 28697.21 27195.81 16387.99 25994.35 260
ACMH89.72 1790.64 26989.63 27093.66 28895.64 27788.64 31498.55 28997.45 25089.03 26381.62 33897.61 22169.75 33198.41 20189.37 26587.62 26593.92 301
Qingshan Xu and Wenbing Tao: Multi-Scale Geometric Consistency Guided Multi-View Stereo. CVPR 2019
bld_raw_dy_0_6492.74 22592.03 22994.87 23593.09 32393.46 22099.12 23295.41 35092.84 17290.44 23997.54 22278.08 28597.04 28593.94 19887.77 26294.11 284
cascas94.64 18093.61 18997.74 15197.82 19396.26 14499.96 2597.78 21985.76 31394.00 20397.54 22276.95 29199.21 15997.23 13695.43 20397.76 224
nrg03093.51 20792.53 21996.45 19294.36 29597.20 11199.81 12197.16 27691.60 21989.86 24897.46 22486.37 21497.68 24795.88 16080.31 31994.46 245
VPNet91.81 24590.46 25495.85 21094.74 29095.54 17198.98 25398.59 7492.14 20490.77 23697.44 22568.73 33597.54 25294.89 17777.89 33394.46 245
UniMVSNet_ETH3D90.06 28588.58 29194.49 25494.67 29288.09 32197.81 31997.57 23783.91 33288.44 28197.41 22657.44 36397.62 25091.41 23588.59 24897.77 223
HY-MVS92.50 797.79 8397.17 9799.63 1598.98 12799.32 897.49 32299.52 1495.69 7098.32 12197.41 22693.32 11199.77 12098.08 10995.75 19899.81 104
PVSNet_088.03 1991.80 24890.27 26096.38 19898.27 16990.46 28899.94 6199.61 1293.99 13586.26 31597.39 22871.13 32899.89 8498.77 7867.05 36298.79 208
FIs94.10 19393.43 19796.11 20494.70 29196.82 12699.58 17598.93 4192.54 19189.34 26297.31 22987.62 20197.10 27994.22 19686.58 27194.40 252
OurMVSNet-221017-089.81 28889.48 27790.83 32191.64 34381.21 35798.17 30995.38 35291.48 22385.65 32097.31 22972.66 32097.29 26788.15 27884.83 28493.97 297
FC-MVSNet-test93.81 19993.15 20695.80 21194.30 29796.20 14999.42 20098.89 4392.33 19989.03 27297.27 23187.39 20496.83 29993.20 21586.48 27294.36 257
USDC90.00 28688.96 28593.10 29994.81 28988.16 32098.71 28195.54 34893.66 15083.75 32997.20 23265.58 34698.31 21683.96 31487.49 26792.85 334
MVSTER95.53 16095.22 15796.45 19298.56 15297.72 8599.91 7597.67 22492.38 19791.39 22897.14 23397.24 1897.30 26494.80 17987.85 26094.34 262
LF4IMVS89.25 29788.85 28690.45 32592.81 33181.19 35898.12 31094.79 36091.44 22586.29 31497.11 23465.30 34998.11 22988.53 27485.25 28092.07 342
mvs_anonymous95.65 15895.03 16397.53 15698.19 17395.74 16499.33 21297.49 24890.87 23890.47 23897.10 23588.23 19797.16 27395.92 15997.66 16099.68 120
jajsoiax91.92 24391.18 24594.15 26591.35 34690.95 27799.00 25097.42 25492.61 18687.38 29897.08 23672.46 32197.36 25794.53 18888.77 24394.13 283
XXY-MVS91.82 24490.46 25495.88 20893.91 30395.40 17598.87 26797.69 22288.63 27687.87 29097.08 23674.38 31597.89 24291.66 23384.07 29194.35 260
LTVRE_ROB88.28 1890.29 27989.05 28494.02 27195.08 28590.15 29497.19 32797.43 25284.91 32683.99 32797.06 23874.00 31798.28 21984.08 31187.71 26393.62 318
Andreas Kuhn, Heiko Hirschmüller, Daniel Scharstein, Helmut Mayer: A TV Prior for High-Quality Scalable Multi-View Stereo Reconstruction. International Journal of Computer Vision 2016
mvs_tets91.81 24591.08 24694.00 27491.63 34490.58 28598.67 28597.43 25292.43 19687.37 29997.05 23971.76 32397.32 26394.75 18288.68 24594.11 284
MVS_Test96.46 13295.74 14598.61 10498.18 17497.23 11099.31 21597.15 27791.07 23498.84 9597.05 23988.17 19898.97 17094.39 18997.50 16299.61 136
ab-mvs94.69 17793.42 19898.51 11698.07 17996.26 14496.49 33798.68 5890.31 24894.54 19497.00 24176.30 29899.71 13495.98 15893.38 22399.56 147
PS-MVSNAJss93.64 20693.31 20394.61 24592.11 33792.19 25099.12 23297.38 25892.51 19488.45 28096.99 24291.20 15797.29 26794.36 19087.71 26394.36 257
IB-MVS92.85 694.99 17093.94 18398.16 13297.72 20395.69 16899.99 398.81 5094.28 12092.70 21996.90 24395.08 5499.17 16396.07 15673.88 35099.60 138
Christian Sormann, Mattia Rossi, Andreas Kuhn and Friedrich Fraundorfer: IB-MVS: An Iterative Algorithm for Deep Multi-View Stereo based on Binary Decisions. BMVC 2021
WR-MVS92.31 23691.25 24495.48 21794.45 29495.29 17799.60 17398.68 5890.10 25088.07 28896.89 24480.68 26396.80 30193.14 21879.67 32394.36 257
SixPastTwentyTwo88.73 29988.01 30090.88 31991.85 34182.24 35098.22 30795.18 35888.97 26682.26 33496.89 24471.75 32496.67 30684.00 31282.98 29593.72 316
UniMVSNet_NR-MVSNet92.95 22092.11 22695.49 21494.61 29395.28 17899.83 11899.08 3191.49 22289.21 26796.86 24687.14 20696.73 30393.20 21577.52 33694.46 245
XVG-ACMP-BASELINE91.22 25890.75 24992.63 30593.73 30685.61 33498.52 29397.44 25192.77 17789.90 24796.85 24766.64 34398.39 20592.29 22688.61 24693.89 303
TinyColmap87.87 30686.51 30791.94 31295.05 28685.57 33597.65 32194.08 36584.40 32981.82 33796.85 24762.14 35698.33 21480.25 33386.37 27391.91 346
EU-MVSNet90.14 28490.34 25889.54 33192.55 33381.06 35998.69 28398.04 19691.41 22886.59 30796.84 24980.83 26193.31 35986.20 29981.91 30294.26 266
TranMVSNet+NR-MVSNet91.68 25290.61 25394.87 23593.69 30793.98 20899.69 15498.65 6291.03 23588.44 28196.83 25080.05 27196.18 32390.26 25976.89 34494.45 250
GA-MVS93.83 19792.84 21096.80 18195.73 27193.57 21699.88 9097.24 26992.57 19092.92 21596.66 25178.73 28097.67 24887.75 28394.06 21799.17 189
CMPMVSbinary61.59 2184.75 31985.14 31383.57 34790.32 35462.54 37396.98 33297.59 23674.33 36269.95 36596.66 25164.17 35198.32 21587.88 28288.41 25189.84 360
M. Jancosek, T. Pajdla: Multi-View Reconstruction Preserving Weakly-Supported Surfaces. CVPR 2011
DU-MVS92.46 23391.45 24295.49 21494.05 30095.28 17899.81 12198.74 5492.25 20189.21 26796.64 25381.66 25196.73 30393.20 21577.52 33694.46 245
NR-MVSNet91.56 25390.22 26195.60 21294.05 30095.76 16398.25 30498.70 5691.16 23280.78 34396.64 25383.23 24196.57 30991.41 23577.73 33594.46 245
CP-MVSNet91.23 25790.22 26194.26 26293.96 30292.39 24699.09 23598.57 7788.95 26886.42 31196.57 25579.19 27696.37 31590.29 25878.95 32694.02 290
pmmvs492.10 24191.07 24795.18 22692.82 33094.96 18799.48 19496.83 31387.45 29088.66 27996.56 25683.78 23696.83 29989.29 26684.77 28593.75 312
PS-CasMVS90.63 27089.51 27593.99 27593.83 30491.70 26698.98 25398.52 9288.48 27886.15 31696.53 25775.46 30496.31 31888.83 27078.86 32893.95 298
test-LLR96.47 13196.04 12697.78 14697.02 23395.44 17299.96 2598.21 17794.07 12995.55 18396.38 25893.90 9898.27 22190.42 25598.83 13299.64 128
test-mter96.39 13595.93 13897.78 14697.02 23395.44 17299.96 2598.21 17791.81 21595.55 18396.38 25895.17 5198.27 22190.42 25598.83 13299.64 128
MS-PatchMatch90.65 26890.30 25991.71 31594.22 29885.50 33698.24 30597.70 22188.67 27486.42 31196.37 26067.82 33998.03 23483.62 31699.62 10491.60 347
test_part192.15 24090.72 25096.44 19498.87 14097.46 10398.99 25198.26 17185.89 31086.34 31396.34 26181.71 24997.48 25491.06 24178.99 32594.37 255
PEN-MVS90.19 28289.06 28393.57 28993.06 32490.90 27899.06 24298.47 10588.11 28285.91 31896.30 26276.67 29395.94 33287.07 29176.91 34393.89 303
UGNet95.33 16494.57 17197.62 15598.55 15494.85 18998.67 28599.32 2595.75 6996.80 15796.27 26372.18 32299.96 5894.58 18799.05 12998.04 218
Wanjuan Su, Qingshan Xu, Wenbing Tao: Uncertainty-guided Multi-view Stereo Network for Depth Estimation. IEEE Transactions on Circuits and Systems for Video Technology, 2022
DTE-MVSNet89.40 29388.24 29792.88 30292.66 33289.95 29999.10 23498.22 17687.29 29285.12 32396.22 26476.27 29995.30 34083.56 31775.74 34793.41 321
TransMVSNet (Re)87.25 30785.28 31293.16 29693.56 30991.03 27598.54 29194.05 36683.69 33481.09 34196.16 26575.32 30596.40 31476.69 34868.41 35992.06 343
pm-mvs189.36 29487.81 30194.01 27293.40 31491.93 25698.62 28896.48 32986.25 30783.86 32896.14 26673.68 31897.04 28586.16 30075.73 34893.04 331
Test_1112_low_res95.72 15394.83 16798.42 12397.79 19596.41 13899.65 16496.65 32492.70 18092.86 21896.13 26792.15 14499.30 15791.88 23193.64 22099.55 148
TDRefinement84.76 31882.56 32591.38 31774.58 37484.80 34197.36 32494.56 36384.73 32780.21 34596.12 26863.56 35398.39 20587.92 28163.97 36390.95 353
test_djsdf92.83 22292.29 22394.47 25591.90 34092.46 24499.55 18297.27 26791.17 23089.96 24496.07 26981.10 25796.89 29594.67 18588.91 23994.05 289
miper_enhance_ethall94.36 19093.98 18295.49 21498.68 14995.24 18099.73 14897.29 26693.28 16189.86 24895.97 27094.37 7997.05 28292.20 22784.45 28794.19 272
lessismore_v090.53 32290.58 35280.90 36095.80 34177.01 35395.84 27166.15 34596.95 29183.03 31975.05 34993.74 315
PVSNet_BlendedMVS96.05 14595.82 14496.72 18599.59 9696.99 12099.95 4399.10 2994.06 13198.27 12395.80 27289.00 19099.95 6599.12 5387.53 26693.24 327
ppachtmachnet_test89.58 29288.35 29493.25 29592.40 33490.44 28999.33 21296.73 32085.49 31985.90 31995.77 27381.09 25896.00 33176.00 35082.49 29793.30 325
pmmvs590.17 28389.09 28293.40 29192.10 33889.77 30299.74 14395.58 34785.88 31287.24 30195.74 27473.41 31996.48 31288.54 27383.56 29493.95 298
MDTV_nov1_ep1395.69 14697.90 18794.15 20295.98 34598.44 11293.12 16597.98 13095.74 27495.10 5398.58 18990.02 26196.92 176
eth_miper_zixun_eth92.41 23491.93 23193.84 28097.28 22590.68 28198.83 27196.97 29988.57 27789.19 26995.73 27689.24 18796.69 30589.97 26281.55 30494.15 279
IterMVS-SCA-FT90.85 26590.16 26492.93 30196.72 25089.96 29898.89 26296.99 29588.95 26886.63 30695.67 27776.48 29695.00 34287.04 29284.04 29393.84 307
Baseline_NR-MVSNet90.33 27789.51 27592.81 30392.84 32889.95 29999.77 13293.94 36784.69 32889.04 27195.66 27881.66 25196.52 31090.99 24476.98 34291.97 345
cl2293.77 20193.25 20595.33 22199.49 10694.43 19799.61 17298.09 19190.38 24589.16 27095.61 27990.56 17097.34 25991.93 22984.45 28794.21 271
K. test v388.05 30387.24 30590.47 32491.82 34282.23 35198.96 25697.42 25489.05 26276.93 35495.60 28068.49 33695.42 33685.87 30381.01 31393.75 312
SCA94.69 17793.81 18797.33 17097.10 22894.44 19698.86 26898.32 16093.30 16096.17 17495.59 28176.48 29697.95 23991.06 24197.43 16399.59 139
Patchmatch-test92.65 23091.50 24096.10 20596.85 24290.49 28791.50 36397.19 27182.76 33990.23 24095.59 28195.02 5898.00 23577.41 34496.98 17599.82 103
DIV-MVS_self_test92.32 23591.60 23694.47 25597.31 22292.74 23599.58 17596.75 31986.99 29887.64 29295.54 28389.55 18096.50 31188.58 27282.44 29894.17 273
Anonymous2023121189.86 28788.44 29394.13 26798.93 13290.68 28198.54 29198.26 17176.28 35586.73 30495.54 28370.60 32997.56 25190.82 24980.27 32094.15 279
miper_ehance_all_eth93.16 21392.60 21594.82 23997.57 20993.56 21799.50 19097.07 28688.75 27288.85 27595.52 28590.97 16396.74 30290.77 25084.45 28794.17 273
cl____92.31 23691.58 23794.52 25197.33 22192.77 23399.57 17896.78 31886.97 29987.56 29495.51 28689.43 18196.62 30788.60 27182.44 29894.16 278
tfpnnormal89.29 29587.61 30294.34 26194.35 29694.13 20398.95 25798.94 3783.94 33084.47 32595.51 28674.84 31197.39 25677.05 34780.41 31791.48 349
DeepMVS_CXcopyleft82.92 34995.98 26358.66 37596.01 33892.72 17878.34 35195.51 28658.29 36298.08 23082.57 32185.29 27992.03 344
c3_l92.53 23191.87 23394.52 25197.40 21692.99 23199.40 20196.93 30587.86 28588.69 27895.44 28989.95 17696.44 31390.45 25480.69 31694.14 282
IterMVS90.91 26290.17 26393.12 29796.78 24890.42 29098.89 26297.05 29089.03 26386.49 30995.42 29076.59 29595.02 34187.22 29084.09 29093.93 300
Fangjinhua Wang, Silvano Galliani, Christoph Vogel, Marc Pollefeys: IterMVS: Iterative Probability Estimation for Efficient Multi-View Stereo.
UniMVSNet (Re)93.07 21892.13 22595.88 20894.84 28896.24 14899.88 9098.98 3592.49 19589.25 26495.40 29187.09 20797.14 27593.13 21978.16 33194.26 266
tpm295.47 16295.18 15996.35 19996.91 23791.70 26696.96 33397.93 20588.04 28498.44 11595.40 29193.32 11197.97 23694.00 19795.61 20099.38 171
pmmvs685.69 31183.84 31791.26 31890.00 35784.41 34297.82 31896.15 33675.86 35781.29 34095.39 29361.21 35896.87 29783.52 31873.29 35192.50 338
IterMVS-LS92.69 22892.11 22694.43 25996.80 24592.74 23599.45 19896.89 30888.98 26589.65 25595.38 29488.77 19296.34 31790.98 24582.04 30194.22 269
Fangjinhua Wang, Silvano Galliani, Christoph Vogel, Marc Pollefeys: IterMVS: Iterative Probability Estimation for Efficient Multi-View Stereo.
Effi-MVS+-dtu94.53 18495.30 15592.22 30897.77 19682.54 34899.59 17497.06 28794.92 9195.29 18895.37 29585.81 21897.89 24294.80 17997.07 17296.23 235
v2v48291.30 25490.07 26695.01 23093.13 31993.79 21199.77 13297.02 29288.05 28389.25 26495.37 29580.73 26297.15 27487.28 28980.04 32294.09 286
FMVSNet392.69 22891.58 23795.99 20698.29 16697.42 10699.26 22397.62 22989.80 25689.68 25295.32 29781.62 25396.27 32087.01 29485.65 27694.29 265
MVP-Stereo90.93 26190.45 25692.37 30791.25 34888.76 31098.05 31496.17 33587.27 29384.04 32695.30 29878.46 28397.27 26983.78 31599.70 10091.09 350
Qingsong Yan: MVP-Stereo: A Parallel Multi-View Patchmatch Stereo Method with Dilation Matching for Photogrammetric Application.
anonymousdsp91.79 25090.92 24894.41 26090.76 35192.93 23298.93 25997.17 27489.08 26187.46 29795.30 29878.43 28496.92 29492.38 22588.73 24493.39 323
v192192090.46 27389.12 28194.50 25392.96 32792.46 24499.49 19296.98 29786.10 30889.61 25795.30 29878.55 28297.03 28882.17 32480.89 31594.01 292
VPA-MVSNet92.70 22791.55 23996.16 20395.09 28496.20 14998.88 26499.00 3491.02 23691.82 22595.29 30176.05 30297.96 23895.62 16481.19 30794.30 264
PatchmatchNetpermissive95.94 14995.45 15097.39 16597.83 19294.41 19996.05 34498.40 14092.86 16997.09 14995.28 30294.21 9098.07 23289.26 26798.11 15099.70 117
Fangjinhua Wang, Silvano Galliani, Christoph Vogel, Pablo Speciale, Marc Pollefeys: PatchmatchNet: Learned Multi-View Patchmatch Stereo.
miper_lstm_enhance91.81 24591.39 24393.06 30097.34 21989.18 30899.38 20696.79 31786.70 30287.47 29695.22 30390.00 17595.86 33388.26 27681.37 30694.15 279
test_040285.58 31283.94 31690.50 32393.81 30585.04 33998.55 28995.20 35676.01 35679.72 34795.13 30464.15 35296.26 32166.04 36686.88 27090.21 358
tpmrst96.27 14295.98 13097.13 17397.96 18493.15 22796.34 33998.17 18292.07 20698.71 10495.12 30593.91 9798.73 18194.91 17696.62 17999.50 159
V4291.28 25690.12 26594.74 24093.42 31393.46 22099.68 15697.02 29287.36 29189.85 25095.05 30681.31 25697.34 25987.34 28880.07 32193.40 322
EPMVS96.53 13096.01 12798.09 13698.43 16096.12 15496.36 33899.43 2093.53 15397.64 13895.04 30794.41 7398.38 20991.13 23998.11 15099.75 112
v119290.62 27189.25 27994.72 24293.13 31993.07 22899.50 19097.02 29286.33 30689.56 25895.01 30879.22 27597.09 28182.34 32381.16 30894.01 292
v14890.70 26789.63 27093.92 27792.97 32690.97 27699.75 14096.89 30887.51 28888.27 28695.01 30881.67 25097.04 28587.40 28777.17 34193.75 312
FMVSNet291.02 26089.56 27295.41 21997.53 21095.74 16498.98 25397.41 25687.05 29588.43 28395.00 31071.34 32596.24 32285.12 30685.21 28194.25 268
our_test_390.39 27489.48 27793.12 29792.40 33489.57 30499.33 21296.35 33287.84 28685.30 32194.99 31184.14 23496.09 32780.38 33284.56 28693.71 317
v114491.09 25989.83 26794.87 23593.25 31793.69 21599.62 17196.98 29786.83 30189.64 25694.99 31180.94 25997.05 28285.08 30781.16 30893.87 305
v14419290.79 26689.52 27494.59 24793.11 32292.77 23399.56 18096.99 29586.38 30589.82 25194.95 31380.50 26797.10 27983.98 31380.41 31793.90 302
CostFormer96.10 14395.88 14296.78 18297.03 23292.55 24397.08 33097.83 21690.04 25398.72 10394.89 31495.01 5998.29 21796.54 15295.77 19699.50 159
v124090.20 28188.79 28894.44 25793.05 32592.27 24899.38 20696.92 30685.89 31089.36 26194.87 31577.89 28797.03 28880.66 33181.08 31194.01 292
v7n89.65 29188.29 29693.72 28392.22 33690.56 28699.07 24197.10 28285.42 32186.73 30494.72 31680.06 27097.13 27681.14 32978.12 33293.49 320
GBi-Net90.88 26389.82 26894.08 26897.53 21091.97 25398.43 29696.95 30087.05 29589.68 25294.72 31671.34 32596.11 32487.01 29485.65 27694.17 273
test190.88 26389.82 26894.08 26897.53 21091.97 25398.43 29696.95 30087.05 29589.68 25294.72 31671.34 32596.11 32487.01 29485.65 27694.17 273
FMVSNet188.50 30086.64 30694.08 26895.62 27991.97 25398.43 29696.95 30083.00 33686.08 31794.72 31659.09 36196.11 32481.82 32784.07 29194.17 273
dp95.05 16894.43 17396.91 17897.99 18392.73 23796.29 34097.98 20089.70 25795.93 17794.67 32093.83 10198.45 19886.91 29796.53 18199.54 151
test20.0384.72 32083.99 31486.91 34288.19 36380.62 36298.88 26495.94 33988.36 28078.87 34894.62 32168.75 33489.11 36966.52 36475.82 34691.00 351
D2MVS92.76 22492.59 21893.27 29495.13 28389.54 30599.69 15499.38 2292.26 20087.59 29394.61 32285.05 22797.79 24491.59 23488.01 25892.47 339
v890.54 27289.17 28094.66 24393.43 31293.40 22499.20 22796.94 30485.76 31387.56 29494.51 32381.96 24897.19 27284.94 30878.25 33093.38 324
v1090.25 28088.82 28794.57 24993.53 31093.43 22299.08 23796.87 31085.00 32387.34 30094.51 32380.93 26097.02 29082.85 32079.23 32493.26 326
ADS-MVSNet293.80 20093.88 18593.55 29097.87 18985.94 33394.24 35096.84 31290.07 25196.43 16794.48 32590.29 17395.37 33787.44 28597.23 16899.36 174
ADS-MVSNet94.79 17394.02 18197.11 17597.87 18993.79 21194.24 35098.16 18590.07 25196.43 16794.48 32590.29 17398.19 22687.44 28597.23 16899.36 174
WR-MVS_H91.30 25490.35 25794.15 26594.17 29992.62 24299.17 23098.94 3788.87 27086.48 31094.46 32784.36 23196.61 30888.19 27778.51 32993.21 328
LCM-MVSNet-Re92.31 23692.60 21591.43 31697.53 21079.27 36599.02 24991.83 37292.07 20680.31 34494.38 32883.50 23895.48 33597.22 13797.58 16199.54 151
tpmvs94.28 19293.57 19396.40 19698.55 15491.50 27195.70 34998.55 8587.47 28992.15 22394.26 32991.42 15398.95 17188.15 27895.85 19498.76 209
tpm93.70 20593.41 20094.58 24895.36 28287.41 32597.01 33196.90 30790.85 23996.72 15994.14 33090.40 17196.84 29890.75 25188.54 24999.51 157
Anonymous2023120686.32 30985.42 31189.02 33489.11 36080.53 36399.05 24695.28 35385.43 32082.82 33293.92 33174.40 31493.44 35866.99 36381.83 30393.08 330
UnsupCasMVSNet_eth85.52 31383.99 31490.10 32789.36 35983.51 34496.65 33597.99 19889.14 26075.89 35893.83 33263.25 35493.92 35281.92 32667.90 36192.88 333
tpm cat193.51 20792.52 22096.47 19097.77 19691.47 27296.13 34298.06 19480.98 34592.91 21693.78 33389.66 17898.87 17287.03 29396.39 18499.09 196
EG-PatchMatch MVS85.35 31683.81 31889.99 32990.39 35381.89 35398.21 30896.09 33781.78 34374.73 36093.72 33451.56 36997.12 27879.16 33888.61 24690.96 352
test_method80.79 32979.70 33284.08 34692.83 32967.06 37199.51 18895.42 34954.34 36981.07 34293.53 33544.48 37292.22 36278.90 33977.23 34092.94 332
N_pmnet80.06 33280.78 33077.89 35091.94 33945.28 38198.80 27556.82 38478.10 35380.08 34693.33 33677.03 28995.76 33468.14 36282.81 29692.64 335
MDA-MVSNet-bldmvs84.09 32381.52 32991.81 31491.32 34788.00 32398.67 28595.92 34080.22 34755.60 37293.32 33768.29 33893.60 35773.76 35276.61 34593.82 309
CR-MVSNet93.45 21092.62 21495.94 20796.29 25492.66 23992.01 36196.23 33392.62 18596.94 15193.31 33891.04 16196.03 32979.23 33595.96 19199.13 194
Patchmtry89.70 29088.49 29293.33 29296.24 25689.94 30191.37 36496.23 33378.22 35287.69 29193.31 33891.04 16196.03 32980.18 33482.10 30094.02 290
MIMVSNet90.30 27888.67 29095.17 22796.45 25391.64 26892.39 35997.15 27785.99 30990.50 23793.19 34066.95 34294.86 34582.01 32593.43 22199.01 199
YYNet185.50 31583.33 32092.00 31190.89 35088.38 31999.22 22696.55 32679.60 35057.26 37092.72 34179.09 27893.78 35577.25 34577.37 33993.84 307
MVS_030489.28 29688.31 29592.21 30997.05 23186.53 33097.76 32099.57 1385.58 31893.86 20692.71 34251.04 37096.30 31984.49 31092.72 22793.79 310
MDA-MVSNet_test_wron85.51 31483.32 32192.10 31090.96 34988.58 31599.20 22796.52 32779.70 34957.12 37192.69 34379.11 27793.86 35477.10 34677.46 33893.86 306
MIMVSNet182.58 32780.51 33188.78 33686.68 36584.20 34396.65 33595.41 35078.75 35178.59 35092.44 34451.88 36889.76 36865.26 36778.95 32692.38 341
KD-MVS_2432*160088.00 30486.10 30893.70 28696.91 23794.04 20597.17 32897.12 28084.93 32481.96 33592.41 34592.48 13694.51 34879.23 33552.68 37092.56 336
miper_refine_blended88.00 30486.10 30893.70 28696.91 23794.04 20597.17 32897.12 28084.93 32481.96 33592.41 34592.48 13694.51 34879.23 33552.68 37092.56 336
FMVSNet588.32 30187.47 30390.88 31996.90 24088.39 31897.28 32595.68 34482.60 34084.67 32492.40 34779.83 27291.16 36576.39 34981.51 30593.09 329
EGC-MVSNET69.38 33463.76 34186.26 34490.32 35481.66 35696.24 34193.85 3680.99 3813.22 38292.33 34852.44 36792.92 36059.53 37184.90 28384.21 367
DSMNet-mixed88.28 30288.24 29788.42 33989.64 35875.38 36798.06 31389.86 37585.59 31788.20 28792.14 34976.15 30191.95 36378.46 34096.05 18997.92 219
patchmatchnet-post91.70 35095.12 5297.95 239
OpenMVS_ROBcopyleft79.82 2083.77 32581.68 32890.03 32888.30 36282.82 34598.46 29495.22 35573.92 36376.00 35791.29 35155.00 36596.94 29268.40 36188.51 25090.34 356
Anonymous2024052185.15 31783.81 31889.16 33388.32 36182.69 34698.80 27595.74 34279.72 34881.53 33990.99 35265.38 34894.16 35072.69 35481.11 31090.63 355
Patchmatch-RL test86.90 30885.98 31089.67 33084.45 36875.59 36689.71 36692.43 37086.89 30077.83 35290.94 35394.22 8793.63 35687.75 28369.61 35499.79 106
CL-MVSNet_self_test84.50 32183.15 32388.53 33886.00 36681.79 35498.82 27297.35 26085.12 32283.62 33090.91 35476.66 29491.40 36469.53 35960.36 36792.40 340
FPMVS68.72 33568.72 33768.71 35565.95 37844.27 38395.97 34694.74 36151.13 37053.26 37390.50 35525.11 37883.00 37360.80 36980.97 31478.87 369
new_pmnet84.49 32282.92 32489.21 33290.03 35682.60 34796.89 33495.62 34680.59 34675.77 35989.17 35665.04 35094.79 34672.12 35581.02 31290.23 357
KD-MVS_self_test83.59 32682.06 32688.20 34086.93 36480.70 36197.21 32696.38 33182.87 33782.49 33388.97 35767.63 34092.32 36173.75 35362.30 36691.58 348
PM-MVS80.47 33078.88 33485.26 34583.79 37072.22 36895.89 34791.08 37385.71 31676.56 35688.30 35836.64 37393.90 35382.39 32269.57 35589.66 361
pmmvs380.27 33177.77 33587.76 34180.32 37282.43 34998.23 30691.97 37172.74 36478.75 34987.97 35957.30 36490.99 36670.31 35762.37 36589.87 359
pmmvs-eth3d84.03 32481.97 32790.20 32684.15 36987.09 32798.10 31294.73 36283.05 33574.10 36187.77 36065.56 34794.01 35181.08 33069.24 35689.49 362
test12337.68 34639.14 34933.31 36119.94 38524.83 38698.36 3009.75 38615.53 37951.31 37487.14 36119.62 38117.74 38147.10 3743.47 38057.36 374
new-patchmatchnet81.19 32879.34 33386.76 34382.86 37180.36 36497.92 31695.27 35482.09 34272.02 36286.87 36262.81 35590.74 36771.10 35663.08 36489.19 364
ambc83.23 34877.17 37362.61 37287.38 36894.55 36476.72 35586.65 36330.16 37496.36 31684.85 30969.86 35390.73 354
PatchT90.38 27588.75 28995.25 22495.99 26190.16 29391.22 36597.54 24076.80 35497.26 14586.01 36491.88 14996.07 32866.16 36595.91 19399.51 157
RPMNet89.76 28987.28 30497.19 17296.29 25492.66 23992.01 36198.31 16270.19 36696.94 15185.87 36587.25 20599.78 11662.69 36895.96 19199.13 194
UnsupCasMVSNet_bld79.97 33377.03 33688.78 33685.62 36781.98 35293.66 35597.35 26075.51 36070.79 36483.05 36648.70 37194.91 34478.31 34160.29 36889.46 363
LCM-MVSNet67.77 33664.73 33976.87 35162.95 38056.25 37789.37 36793.74 36944.53 37261.99 36780.74 36720.42 38086.53 37169.37 36059.50 36987.84 365
PMMVS267.15 33764.15 34076.14 35270.56 37762.07 37493.89 35387.52 37958.09 36860.02 36878.32 36822.38 37984.54 37259.56 37047.03 37281.80 368
JIA-IIPM91.76 25190.70 25194.94 23396.11 25787.51 32493.16 35798.13 19075.79 35897.58 13977.68 36992.84 12697.97 23688.47 27596.54 18099.33 178
PMVScopyleft49.05 2353.75 34151.34 34560.97 35840.80 38434.68 38474.82 37289.62 37737.55 37428.67 38072.12 3707.09 38481.63 37443.17 37668.21 36066.59 372
Y. Furukawa, J. Ponce: Accurate, dense, and robust multiview stereopsis. PAMI (2010)
MVS-HIRNet86.22 31083.19 32295.31 22296.71 25190.29 29192.12 36097.33 26362.85 36786.82 30370.37 37169.37 33297.49 25375.12 35197.99 15698.15 216
gg-mvs-nofinetune93.51 20791.86 23498.47 11897.72 20397.96 8092.62 35898.51 9974.70 36197.33 14469.59 37298.91 397.79 24497.77 12499.56 11099.67 122
Gipumacopyleft66.95 33865.00 33872.79 35391.52 34567.96 37066.16 37395.15 35947.89 37158.54 36967.99 37329.74 37587.54 37050.20 37377.83 33462.87 373
S. Galliani, K. Lasinger, K. Schindler: Massively Parallel Multiview Stereopsis by Surface Normal Diffusion. ICCV 2015
ANet_high56.10 34052.24 34367.66 35649.27 38256.82 37683.94 36982.02 38070.47 36533.28 37964.54 37417.23 38269.16 37745.59 37523.85 37677.02 370
E-PMN52.30 34252.18 34452.67 35971.51 37545.40 38093.62 35676.60 38236.01 37543.50 37664.13 37527.11 37767.31 37831.06 37826.06 37445.30 377
test_post63.35 37694.43 7298.13 228
MVEpermissive53.74 2251.54 34347.86 34762.60 35759.56 38150.93 37879.41 37177.69 38135.69 37636.27 37861.76 3775.79 38669.63 37637.97 37736.61 37367.24 371
Simon Fuhrmann, Fabian Langguth, Michael Goesele: MVE - A Multi-View Reconstruction Environment. EUROGRAPHICS Workshops on Graphics and Cultural Heritage (2014)
EMVS51.44 34451.22 34652.11 36070.71 37644.97 38294.04 35275.66 38335.34 37742.40 37761.56 37828.93 37665.87 37927.64 37924.73 37545.49 376
test_post195.78 34859.23 37993.20 11897.74 24691.06 241
X-MVStestdata93.83 19792.06 22899.15 6499.94 1497.50 9999.94 6198.42 13296.22 5399.41 6241.37 38094.34 8099.96 5898.92 6699.95 5599.99 24
wuyk23d20.37 34820.84 35118.99 36365.34 37927.73 38550.43 3747.67 3879.50 3808.01 3816.34 3816.13 38526.24 38023.40 38010.69 3792.99 378
test_blank0.00 3510.00 3540.00 3640.00 3870.00 3880.00 3750.00 3880.00 3820.00 3830.02 3820.00 3870.00 3830.00 3810.00 3810.00 379
uanet_test0.00 3510.00 3540.00 3640.00 3870.00 3880.00 3750.00 3880.00 3820.00 3830.00 3830.00 3870.00 3830.00 3810.00 3810.00 379
DCPMVS0.00 3510.00 3540.00 3640.00 3870.00 3880.00 3750.00 3880.00 3820.00 3830.00 3830.00 3870.00 3830.00 3810.00 3810.00 379
pcd_1.5k_mvsjas7.60 35010.13 3530.00 3640.00 3870.00 3880.00 3750.00 3880.00 3820.00 3830.00 38391.20 1570.00 3830.00 3810.00 3810.00 379
sosnet-low-res0.00 3510.00 3540.00 3640.00 3870.00 3880.00 3750.00 3880.00 3820.00 3830.00 3830.00 3870.00 3830.00 3810.00 3810.00 379
sosnet0.00 3510.00 3540.00 3640.00 3870.00 3880.00 3750.00 3880.00 3820.00 3830.00 3830.00 3870.00 3830.00 3810.00 3810.00 379
uncertanet0.00 3510.00 3540.00 3640.00 3870.00 3880.00 3750.00 3880.00 3820.00 3830.00 3830.00 3870.00 3830.00 3810.00 3810.00 379
Regformer0.00 3510.00 3540.00 3640.00 3870.00 3880.00 3750.00 3880.00 3820.00 3830.00 3830.00 3870.00 3830.00 3810.00 3810.00 379
uanet0.00 3510.00 3540.00 3640.00 3870.00 3880.00 3750.00 3880.00 3820.00 3830.00 3830.00 3870.00 3830.00 3810.00 3810.00 379
FOURS199.92 3697.66 9099.95 4398.36 15295.58 7399.52 54
MSC_two_6792asdad99.93 299.91 4499.80 298.41 136100.00 199.96 9100.00 1100.00 1
No_MVS99.93 299.91 4499.80 298.41 136100.00 199.96 9100.00 1100.00 1
eth-test20.00 387
eth-test0.00 387
IU-MVS99.93 2799.31 998.41 13697.71 899.84 9100.00 1100.00 1100.00 1
save fliter99.82 7098.79 3799.96 2598.40 14097.66 10
test_0728_SECOND99.82 799.94 1499.47 799.95 4398.43 120100.00 199.99 5100.00 1100.00 1
GSMVS99.59 139
test_part299.89 5099.25 1799.49 56
sam_mvs194.72 6799.59 139
sam_mvs94.25 86
MTGPAbinary98.28 167
MTMP99.87 9396.49 328
test9_res99.71 3599.99 22100.00 1
agg_prior299.48 42100.00 1100.00 1
agg_prior99.93 2798.77 4098.43 12099.63 4099.85 99
test_prior498.05 7499.94 61
test_prior99.43 3899.94 1498.49 6198.65 6299.80 11199.99 24
旧先验299.46 19794.21 12399.85 799.95 6596.96 145
新几何299.40 201
无先验99.49 19298.71 5593.46 155100.00 194.36 19099.99 24
原ACMM299.90 80
testdata299.99 4090.54 253
segment_acmp96.68 26
testdata199.28 22196.35 52
test1299.43 3899.74 8298.56 5798.40 14099.65 3894.76 6699.75 12699.98 3599.99 24
plane_prior795.71 27491.59 270
plane_prior695.76 26991.72 26580.47 268
plane_prior597.87 21198.37 21197.79 12289.55 23394.52 241
plane_prior391.64 26896.63 4093.01 213
plane_prior299.84 11296.38 48
plane_prior195.73 271
plane_prior91.74 26299.86 10596.76 3689.59 232
n20.00 388
nn0.00 388
door-mid89.69 376
test1198.44 112
door90.31 374
HQP5-MVS91.85 258
HQP-NCC95.78 26599.87 9396.82 3293.37 209
ACMP_Plane95.78 26599.87 9396.82 3293.37 209
BP-MVS97.92 117
HQP4-MVS93.37 20998.39 20594.53 239
HQP3-MVS97.89 20989.60 230
HQP2-MVS80.65 264
MDTV_nov1_ep13_2view96.26 14496.11 34391.89 21198.06 12894.40 7494.30 19399.67 122
ACMMP++_ref87.04 268
ACMMP++88.23 254
Test By Simon92.82 128