This table lists the benchmark results for the high-res multi-view scenario. The following metrics are evaluated:

(*) For exact definitions, detailing how potentially incomplete ground truth is taken into account, see our paper.

The datasets are grouped into different categories, and result averages are computed for a category and method if results of the method are available for all datasets within the category. Note that the category "all" includes both the high-res multi-view and the low-res many-view scenarios.

Methods with suffix _ROB may participate in the Robust Vision Challenge.

Click a dataset result cell to show a visualization of the reconstruction. For training datasets, ground truth and accuracy / completeness visualizations are also available. The visualizations may not work with mobile browsers.




Method Infoallhigh-res
multi-view
indooroutdoorbotani.boulde.bridgedoorexhibi.lectur.living.loungeobserv.old co.statueterrac.
sort bysort bysort bysort bysort bysort bysort bysort bysort bysort bysorted bysort bysort bysort bysort bysort by
DeepPCF-MVS95.94 297.71 8398.98 1093.92 26599.63 8881.76 34099.96 2398.56 7799.47 199.19 7499.99 194.16 87100.00 199.92 999.93 63100.00 1
CNVR-MVS99.40 199.26 199.84 499.98 299.51 499.98 898.69 5598.20 399.93 199.98 296.82 19100.00 199.75 22100.00 199.99 20
NCCC99.37 299.25 299.71 1099.96 899.15 1699.97 1698.62 6798.02 699.90 299.95 397.33 13100.00 199.54 33100.00 1100.00 1
SED-MVS99.28 599.11 699.77 699.93 2699.30 899.96 2398.43 11697.27 2099.80 1699.94 496.71 20100.00 1100.00 1100.00 1100.00 1
test_241102_TWO98.43 11697.27 2099.80 1699.94 497.18 17100.00 1100.00 1100.00 1100.00 1
test072699.93 2699.29 1099.96 2398.42 12797.28 1899.86 499.94 497.22 15
DPM-MVS98.83 2198.46 3099.97 199.33 10699.92 199.96 2398.44 10897.96 799.55 4399.94 497.18 17100.00 193.81 18999.94 5799.98 51
SMA-MVScopyleft98.76 2698.48 2999.62 1599.87 5298.87 2799.86 9998.38 13993.19 14999.77 2399.94 495.54 40100.00 199.74 2499.99 20100.00 1
Yufeng Yin; Xiaoyan Liu; Zichao Zhang: SMA-MVS: Segmentation-Guided Multi-Scale Anchor Deformation Patch Multi-View Stereo. IEEE Transactions on Circuits and Systems for Video Technology
DPE-MVScopyleft99.26 699.10 799.74 799.89 4599.24 1499.87 8898.44 10897.48 1599.64 3599.94 496.68 2299.99 3699.99 5100.00 199.99 20
Kehua Chen, Zhenlong Yuan, Tianlu Mao, Zhaoqi Wang: Dual-Level Precision Edges Guided Multi-View Stereo with Accurate Planarization. AAAI2025
MSLP-MVS++99.13 799.01 999.49 3199.94 1498.46 5999.98 898.86 4597.10 2599.80 1699.94 495.92 33100.00 199.51 34100.00 1100.00 1
ETH3 D test640098.81 2298.54 2699.59 1899.93 2698.93 2299.93 6298.46 10594.56 9599.84 899.92 1194.32 8099.86 9099.96 899.98 33100.00 1
MCST-MVS99.32 399.14 499.86 399.97 399.59 399.97 1698.64 6398.47 299.13 7699.92 1196.38 26100.00 199.74 24100.00 1100.00 1
DVP-MVS99.30 499.16 399.73 899.93 2699.29 1099.95 4198.32 15197.28 1899.83 1099.91 1397.22 15100.00 199.99 5100.00 199.89 90
Zhenlong Yuan, Jinguo Luo, Fei Shen, Zhaoxin Li, Cong Liu, Tianlu Mao, Zhaoqi Wang: DVP-MVS: Synergize Depth-Edge and Visibility Prior for Multi-View Stereo. AAAI2025
test_0728_THIRD96.48 4099.83 1099.91 1397.87 4100.00 199.92 9100.00 1100.00 1
SteuartSystems-ACMMP99.02 1198.97 1199.18 5498.72 13897.71 8399.98 898.44 10896.85 2999.80 1699.91 1397.57 699.85 9499.44 3899.99 2099.99 20
Skip Steuart: Steuart Systems R&D Blog.
DeepC-MVS_fast96.59 198.81 2298.54 2699.62 1599.90 4298.85 2999.24 21798.47 10398.14 499.08 7799.91 1393.09 116100.00 199.04 5499.99 20100.00 1
Andreas Kuhn, Christian Sormann, Mattia Rossi, Oliver Erdler, Friedrich Fraundorfer: DeepC-MVS: Deep Confidence Prediction for Multi-View Stereo Reconstruction. 3DV 2020
ETH3D-3000-0.198.68 2998.42 3199.47 3499.83 6398.57 5199.90 7498.37 14293.81 13199.81 1299.90 1794.34 7699.86 9099.84 1399.98 3399.97 63
tmp_tt65.23 32762.94 33072.13 34044.90 36750.03 36381.05 35789.42 36238.45 35948.51 36199.90 1754.09 35378.70 36091.84 21818.26 36287.64 352
xxxxxxxxxxxxxcwj98.98 1498.79 1599.54 2399.82 6598.79 3399.96 2397.52 23497.66 1099.81 1299.89 1994.70 6599.86 9099.84 1399.93 6399.96 70
SF-MVS98.67 3098.40 3599.50 2999.77 7398.67 4499.90 7498.21 16893.53 14099.81 1299.89 1994.70 6599.86 9099.84 1399.93 6399.96 70
9.1498.38 3899.87 5299.91 7098.33 14993.22 14899.78 2299.89 1994.57 6899.85 9499.84 1399.97 44
test_241102_ONE99.93 2699.30 898.43 11697.26 2299.80 1699.88 2296.71 20100.00 1
MSP-MVS99.09 899.12 598.98 8099.93 2697.24 10499.95 4198.42 12797.50 1499.52 4899.88 2297.43 1299.71 12999.50 3599.98 33100.00 1
Zhenlong Yuan, Cong Liu, Fei Shen, Zhaoxin Li, Jingguo luo, Tianlu Mao and Zhaoqi Wang: MSP-MVS: Multi-granularity Segmentation Prior Guided Multi-View Stereo. AAAI2025
zzz-MVS98.33 5598.00 6299.30 4799.85 5597.93 7899.80 12098.28 15895.76 6297.18 13999.88 2292.74 124100.00 198.67 7799.88 7699.99 20
MTAPA98.29 5897.96 6799.30 4799.85 5597.93 7899.39 19898.28 15895.76 6297.18 13999.88 2292.74 124100.00 198.67 7799.88 7699.99 20
ETH3D cwj APD-0.1698.40 5198.07 5999.40 4199.59 9098.41 6099.86 9998.24 16492.18 18899.73 2699.87 2693.47 10399.85 9499.74 2499.95 5199.93 81
CDPH-MVS98.65 3198.36 4299.49 3199.94 1498.73 4199.87 8898.33 14993.97 12399.76 2499.87 2694.99 5899.75 12198.55 84100.00 199.98 51
CP-MVS98.45 4698.32 4498.87 8699.96 896.62 12499.97 1698.39 13594.43 10098.90 8699.87 2694.30 81100.00 199.04 5499.99 2099.99 20
xiu_mvs_v2_base98.23 6397.97 6499.02 7798.69 13998.66 4699.52 17898.08 18597.05 2699.86 499.86 2990.65 16199.71 12999.39 4198.63 12898.69 201
TEST999.92 3598.92 2399.96 2398.43 11693.90 12899.71 3099.86 2995.88 3499.85 94
train_agg98.88 1998.65 2099.59 1899.92 3598.92 2399.96 2398.43 11694.35 10599.71 3099.86 2995.94 3199.85 9499.69 3199.98 3399.99 20
LS3D95.84 14495.11 15498.02 13599.85 5595.10 17898.74 26698.50 10187.22 28093.66 19799.86 2987.45 19699.95 6090.94 23299.81 8799.02 188
MP-MVS-pluss98.07 6897.64 7499.38 4499.74 7798.41 6099.74 13898.18 17393.35 14496.45 15699.85 3392.64 12799.97 5198.91 6299.89 7499.77 104
MP-MVS-pluss: MP-MVS-pluss. MP-MVS-pluss
test_899.92 3598.88 2699.96 2398.43 11694.35 10599.69 3299.85 3395.94 3199.85 94
agg_prior198.88 1998.66 1999.54 2399.93 2698.77 3699.96 2398.43 11694.63 9499.63 3699.85 3395.79 3799.85 9499.72 2899.99 2099.99 20
HFP-MVS98.56 3798.37 4099.14 6399.96 897.43 9999.95 4198.61 6994.77 8699.31 6499.85 3394.22 83100.00 198.70 7599.98 3399.98 51
region2R98.54 3998.37 4099.05 7399.96 897.18 10799.96 2398.55 8394.87 8499.45 5199.85 3394.07 89100.00 198.67 77100.00 199.98 51
PS-MVSNAJ98.44 4798.20 5099.16 5998.80 13598.92 2399.54 17698.17 17497.34 1699.85 699.85 3391.20 15099.89 7999.41 4099.67 9598.69 201
#test#98.59 3598.41 3399.14 6399.96 897.43 9999.95 4198.61 6995.00 8099.31 6499.85 3394.22 83100.00 198.78 7299.98 3399.98 51
HPM-MVS++copyleft99.07 998.88 1399.63 1299.90 4299.02 1999.95 4198.56 7797.56 1399.44 5299.85 3395.38 45100.00 199.31 4399.99 2099.87 93
旧先验199.76 7497.52 9198.64 6399.85 3395.63 3999.94 5799.99 20
原ACMM198.96 8299.73 8196.99 11498.51 9794.06 11999.62 3899.85 3394.97 5999.96 5395.11 15599.95 5199.92 87
testdata98.42 11999.47 10095.33 17098.56 7793.78 13399.79 2199.85 3393.64 10199.94 6894.97 15799.94 57100.00 1
APDe-MVS99.06 1098.91 1299.51 2899.94 1498.76 4099.91 7098.39 13597.20 2499.46 5099.85 3395.53 4299.79 10999.86 12100.00 199.99 20
API-MVS97.86 7497.66 7398.47 11499.52 9695.41 16899.47 18798.87 4491.68 20398.84 8799.85 3392.34 13499.99 3698.44 8799.96 48100.00 1
testtj98.89 1898.69 1899.52 2699.94 1498.56 5399.90 7498.55 8395.14 7899.72 2999.84 4695.46 43100.00 199.65 3299.99 2099.99 20
ACMMPR98.50 4298.32 4499.05 7399.96 897.18 10799.95 4198.60 7194.77 8699.31 6499.84 4693.73 98100.00 198.70 7599.98 3399.98 51
DP-MVS Recon98.41 4998.02 6199.56 2199.97 398.70 4399.92 6698.44 10892.06 19398.40 11099.84 4695.68 38100.00 198.19 9399.71 9399.97 63
ZD-MVS99.92 3598.57 5198.52 9092.34 18499.31 6499.83 4995.06 5299.80 10699.70 3099.97 44
ACMMP_NAP98.49 4398.14 5499.54 2399.66 8798.62 5099.85 10298.37 14294.68 9199.53 4599.83 4992.87 120100.00 198.66 8099.84 8099.99 20
test22299.55 9497.41 10299.34 20498.55 8391.86 19799.27 6999.83 4993.84 9699.95 5199.99 20
112198.03 6997.57 7899.40 4199.74 7798.21 6698.31 28998.62 6792.78 16199.53 4599.83 4995.08 50100.00 194.36 17699.92 6799.99 20
ZNCC-MVS98.31 5698.03 6099.17 5799.88 4997.59 8799.94 5698.44 10894.31 10898.50 10599.82 5393.06 11799.99 3698.30 9299.99 2099.93 81
新几何199.42 3899.75 7698.27 6598.63 6692.69 16699.55 4399.82 5394.40 71100.00 191.21 22399.94 5799.99 20
CSCG97.10 10297.04 9697.27 16499.89 4591.92 24699.90 7499.07 3188.67 26095.26 17999.82 5393.17 11599.98 4298.15 9699.47 10999.90 89
MAR-MVS97.43 8997.19 9098.15 13199.47 10094.79 18799.05 23798.76 5192.65 16998.66 9899.82 5388.52 18999.98 4298.12 9799.63 9799.67 117
Zhenyu Xu, Yiguang Liu, Xuelei Shi, Ying Wang, Yunan Zheng: MARMVS: Matching Ambiguity Reduced Multiple View Stereo for Efficient Large Scale Scene Reconstruction. CVPR 2020
MP-MVScopyleft98.23 6397.97 6499.03 7599.94 1497.17 11099.95 4198.39 13594.70 9098.26 11799.81 5791.84 144100.00 198.85 6699.97 4499.93 81
Rongxuan Tan, Qing Wang, et al.: MP-MVS: Multi-Scale Windows PatchMatch and Planar Prior Multi-View Stereo.
test117298.38 5398.25 4798.77 9099.88 4996.56 12799.80 12098.36 14494.68 9199.20 7199.80 5893.28 11099.78 11199.34 4299.92 6799.98 51
OPU-MVS99.93 299.89 4599.80 299.96 2399.80 5897.44 11100.00 1100.00 199.98 33100.00 1
SR-MVS98.46 4598.30 4698.93 8499.88 4997.04 11299.84 10698.35 14694.92 8199.32 6399.80 5893.35 10599.78 11199.30 4499.95 5199.96 70
mPP-MVS98.39 5298.20 5098.97 8199.97 396.92 11799.95 4198.38 13995.04 7998.61 10199.80 5893.39 104100.00 198.64 81100.00 199.98 51
Regformer-198.79 2498.60 2399.36 4599.85 5598.34 6299.87 8898.52 9096.05 5399.41 5599.79 6294.93 6099.76 11899.07 4999.90 7299.99 20
Regformer-298.78 2598.59 2499.36 4599.85 5598.32 6399.87 8898.52 9096.04 5499.41 5599.79 6294.92 6199.76 11899.05 5099.90 7299.98 51
CPTT-MVS97.64 8597.32 8898.58 10599.97 395.77 15799.96 2398.35 14689.90 24098.36 11199.79 6291.18 15399.99 3698.37 8999.99 2099.99 20
MVS_111021_LR98.42 4898.38 3898.53 11199.39 10395.79 15699.87 8899.86 296.70 3698.78 9099.79 6292.03 14099.90 7599.17 4699.86 7999.88 92
XVS98.70 2898.55 2599.15 6199.94 1497.50 9499.94 5698.42 12796.22 4999.41 5599.78 6694.34 7699.96 5398.92 6099.95 5199.99 20
PHI-MVS98.41 4998.21 4999.03 7599.86 5497.10 11199.98 898.80 5090.78 22799.62 3899.78 6695.30 46100.00 199.80 1899.93 6399.99 20
Regformer-398.58 3698.41 3399.10 6999.84 6097.57 8899.66 15498.52 9095.79 5999.01 8199.77 6894.40 7199.75 12198.82 6799.83 8199.98 51
Regformer-498.56 3798.39 3799.08 7199.84 6097.52 9199.66 15498.52 9095.76 6299.01 8199.77 6894.33 7999.75 12198.80 7099.83 8199.98 51
APD-MVS_3200maxsize98.25 6298.08 5898.78 8999.81 6896.60 12599.82 11398.30 15693.95 12599.37 6199.77 6892.84 12199.76 11898.95 5799.92 6799.97 63
MVS_111021_HR98.72 2798.62 2299.01 7899.36 10597.18 10799.93 6299.90 196.81 3398.67 9799.77 6893.92 9299.89 7999.27 4599.94 5799.96 70
EI-MVSNet-Vis-set98.27 5998.11 5798.75 9299.83 6396.59 12699.40 19498.51 9795.29 7598.51 10499.76 7293.60 10299.71 12998.53 8599.52 10699.95 78
test_prior398.99 1398.84 1499.43 3599.94 1498.49 5799.95 4198.65 6095.78 6099.73 2699.76 7296.00 2999.80 10699.78 20100.00 199.99 20
test_prior299.95 4195.78 6099.73 2699.76 7296.00 2999.78 20100.00 1
SD-MVS98.92 1698.70 1799.56 2199.70 8598.73 4199.94 5698.34 14896.38 4499.81 1299.76 7294.59 6799.98 4299.84 1399.96 4899.97 63
Zhenlong Yuan, Jiakai Cao, Zhaoxin Li, Hao Jiang and Zhaoqi Wang: SD-MVS: Segmentation-driven Deformation Multi-View Stereo with Spherical Refinement and EM optimization. AAAI2024
PGM-MVS98.34 5498.13 5598.99 7999.92 3597.00 11399.75 13599.50 1693.90 12899.37 6199.76 7293.24 113100.00 197.75 11899.96 4899.98 51
SR-MVS-dyc-post98.31 5698.17 5298.71 9399.79 7096.37 13499.76 13298.31 15394.43 10099.40 5999.75 7793.28 11099.78 11198.90 6399.92 6799.97 63
RE-MVS-def98.13 5599.79 7096.37 13499.76 13298.31 15394.43 10099.40 5999.75 7792.95 11998.90 6399.92 6799.97 63
EI-MVSNet-UG-set98.14 6597.99 6398.60 10299.80 6996.27 13699.36 20398.50 10195.21 7798.30 11499.75 7793.29 10999.73 12898.37 8999.30 11599.81 98
PAPR98.52 4198.16 5399.58 2099.97 398.77 3699.95 4198.43 11695.35 7398.03 12299.75 7794.03 9099.98 4298.11 9899.83 8199.99 20
GST-MVS98.27 5997.97 6499.17 5799.92 3597.57 8899.93 6298.39 13594.04 12198.80 8999.74 8192.98 118100.00 198.16 9599.76 8999.93 81
TSAR-MVS + MP.98.93 1598.77 1699.41 3999.74 7798.67 4499.77 12798.38 13996.73 3599.88 399.74 8194.89 6299.59 14099.80 1899.98 3399.97 63
Zhenlong Yuan, Jiakai Cao, Zhaoqi Wang, Zhaoxin Li: TSAR-MVS: Textureless-aware Segmentation and Correlative Refinement Guided Multi-View Stereo. Pattern Recognition
APD-MVScopyleft98.62 3298.35 4399.41 3999.90 4298.51 5699.87 8898.36 14494.08 11699.74 2599.73 8394.08 8899.74 12599.42 3999.99 2099.99 20
Yuesong Wang, Zhaojie Zeng and etc.: Adaptive Patch Deformation for Textureless-Resilient Multi-View Stereo. CVPR2023
MG-MVS98.91 1798.65 2099.68 1199.94 1499.07 1899.64 16199.44 1897.33 1799.00 8399.72 8494.03 9099.98 4298.73 74100.00 1100.00 1
AdaColmapbinary97.23 9996.80 10398.51 11299.99 195.60 16499.09 22698.84 4793.32 14596.74 14999.72 8486.04 209100.00 198.01 10399.43 11299.94 80
CANet98.27 5997.82 7099.63 1299.72 8399.10 1799.98 898.51 9797.00 2898.52 10399.71 8687.80 19299.95 6099.75 2299.38 11399.83 96
ACMMPcopyleft97.74 8297.44 8198.66 9799.92 3596.13 14599.18 22199.45 1794.84 8596.41 15999.71 8691.40 14799.99 3697.99 10598.03 14499.87 93
Qingshan Xu, Weihang Kong, Wenbing Tao, Marc Pollefeys: Multi-Scale Geometric Consistency Guided and Planar Prior Assisted Multi-View Stereo. IEEE Transactions on Pattern Analysis and Machine Intelligence
abl_697.67 8497.34 8698.66 9799.68 8696.11 14899.68 15198.14 18093.80 13299.27 6999.70 8888.65 18899.98 4297.46 12299.72 9299.89 90
PAPM_NR98.12 6697.93 6898.70 9499.94 1496.13 14599.82 11398.43 11694.56 9597.52 13299.70 8894.40 7199.98 4297.00 13399.98 3399.99 20
OMC-MVS97.28 9697.23 8997.41 15799.76 7493.36 21699.65 15797.95 19596.03 5597.41 13599.70 8889.61 17399.51 14396.73 14098.25 13899.38 161
xiu_mvs_v1_base_debu97.43 8997.06 9398.55 10697.74 18898.14 6799.31 20897.86 20596.43 4199.62 3899.69 9185.56 21399.68 13399.05 5098.31 13597.83 210
xiu_mvs_v1_base97.43 8997.06 9398.55 10697.74 18898.14 6799.31 20897.86 20596.43 4199.62 3899.69 9185.56 21399.68 13399.05 5098.31 13597.83 210
xiu_mvs_v1_base_debi97.43 8997.06 9398.55 10697.74 18898.14 6799.31 20897.86 20596.43 4199.62 3899.69 9185.56 21399.68 13399.05 5098.31 13597.83 210
CNLPA97.76 8197.38 8298.92 8599.53 9596.84 11899.87 8898.14 18093.78 13396.55 15499.69 9192.28 13599.98 4297.13 12999.44 11199.93 81
cdsmvs_eth3d_5k23.43 33531.24 3380.00 3500.00 3710.00 3720.00 36298.09 1830.00 3670.00 36899.67 9583.37 2310.00 3680.00 3660.00 3660.00 364
lupinMVS97.85 7597.60 7698.62 10097.28 21497.70 8599.99 497.55 22895.50 7199.43 5399.67 9590.92 15798.71 17598.40 8899.62 9899.45 154
114514_t97.41 9396.83 10199.14 6399.51 9897.83 8099.89 8298.27 16188.48 26499.06 7899.66 9790.30 16599.64 13996.32 14399.97 4499.96 70
PAPM98.60 3398.42 3199.14 6396.05 24898.96 2099.90 7499.35 2396.68 3798.35 11299.66 9796.45 2598.51 18599.45 3799.89 7499.96 70
CANet_DTU96.76 11596.15 11998.60 10298.78 13697.53 9099.84 10697.63 21797.25 2399.20 7199.64 9981.36 24699.98 4292.77 20998.89 12298.28 204
XVG-OURS94.82 16494.74 16195.06 22098.00 17089.19 29399.08 22897.55 22894.10 11594.71 18399.62 10080.51 25799.74 12596.04 14693.06 21696.25 223
MVS96.60 12395.56 14299.72 996.85 23199.22 1598.31 28998.94 3691.57 20690.90 22199.61 10186.66 20499.96 5397.36 12499.88 7699.99 20
EIA-MVS97.53 8797.46 8097.76 14598.04 16994.84 18499.98 897.61 22294.41 10397.90 12599.59 10292.40 13298.87 16398.04 10299.13 12099.59 130
XVG-OURS-SEG-HR94.79 16594.70 16295.08 21998.05 16889.19 29399.08 22897.54 23093.66 13794.87 18299.58 10378.78 27099.79 10997.31 12593.40 21296.25 223
HPM-MVScopyleft97.96 7097.72 7298.68 9599.84 6096.39 13399.90 7498.17 17492.61 17198.62 10099.57 10491.87 14399.67 13698.87 6599.99 2099.99 20
Chunlin Ren, Qingshan Xu, Shikun Zhang, Jiaqi Yang: Hierarchical Prior Mining for Non-local Multi-View Stereo. ICCV 2023
TSAR-MVS + GP.98.60 3398.51 2898.86 8799.73 8196.63 12399.97 1697.92 19998.07 598.76 9399.55 10595.00 5799.94 6899.91 1197.68 14899.99 20
DP-MVS94.54 17593.42 19097.91 14099.46 10294.04 19898.93 24997.48 23981.15 33090.04 23099.55 10587.02 20199.95 6088.97 25598.11 13999.73 108
MVSFormer96.94 10796.60 10897.95 13797.28 21497.70 8599.55 17497.27 26091.17 21699.43 5399.54 10790.92 15796.89 28094.67 17099.62 9899.25 175
jason97.24 9896.86 10098.38 12295.73 26097.32 10399.97 1697.40 24995.34 7498.60 10299.54 10787.70 19398.56 18297.94 10899.47 10999.25 175
jason: jason.
HPM-MVS_fast97.80 7997.50 7998.68 9599.79 7096.42 13099.88 8598.16 17791.75 20298.94 8599.54 10791.82 14599.65 13897.62 12099.99 2099.99 20
DeepC-MVS94.51 496.92 10996.40 11598.45 11699.16 11095.90 15399.66 15498.06 18696.37 4794.37 18899.49 11083.29 23299.90 7597.63 11999.61 10199.55 139
Andreas Kuhn, Christian Sormann, Mattia Rossi, Oliver Erdler, Friedrich Fraundorfer: DeepC-MVS: Deep Confidence Prediction for Multi-View Stereo Reconstruction. 3DV 2020
alignmvs97.81 7897.33 8799.25 4998.77 13798.66 4699.99 498.44 10894.40 10498.41 10899.47 11193.65 10099.42 15198.57 8394.26 20499.67 117
TAPA-MVS92.12 894.42 17993.60 18396.90 17299.33 10691.78 25099.78 12498.00 18989.89 24194.52 18599.47 11191.97 14199.18 15569.90 34499.52 10699.73 108
Andrea Romanoni, Matteo Matteucci: TAPA-MVS: Textureless-Aware PAtchMatch Multi-View Stereo. ICCV 2019
ETV-MVS97.92 7397.80 7198.25 12698.14 16596.48 12899.98 897.63 21795.61 6899.29 6899.46 11392.55 12998.82 16599.02 5698.54 12999.46 152
ET-MVSNet_ETH3D94.37 18193.28 19697.64 14998.30 15197.99 7499.99 497.61 22294.35 10571.57 34999.45 11496.23 2795.34 32496.91 13885.14 26699.59 130
canonicalmvs97.09 10496.32 11699.39 4398.93 12398.95 2199.72 14697.35 25294.45 9897.88 12699.42 11586.71 20399.52 14298.48 8693.97 20899.72 110
VDD-MVS93.77 19392.94 19996.27 19398.55 14290.22 28098.77 26597.79 21090.85 22596.82 14799.42 11561.18 34699.77 11598.95 5794.13 20598.82 196
1112_ss96.01 14195.20 15198.42 11997.80 18396.41 13199.65 15796.66 31192.71 16492.88 20799.40 11792.16 13799.30 15291.92 21693.66 20999.55 139
ab-mvs-re8.28 33711.04 3400.00 3500.00 3710.00 3720.00 3620.00 3720.00 3670.00 36899.40 1170.00 3730.00 3680.00 3660.00 3660.00 364
LFMVS94.75 16893.56 18698.30 12499.03 11495.70 16298.74 26697.98 19287.81 27398.47 10699.39 11967.43 32899.53 14198.01 10395.20 19799.67 117
WTY-MVS98.10 6797.60 7699.60 1798.92 12599.28 1299.89 8299.52 1395.58 6998.24 11899.39 11993.33 10699.74 12597.98 10795.58 19199.78 103
PMMVS96.76 11596.76 10496.76 17698.28 15492.10 24199.91 7097.98 19294.12 11499.53 4599.39 11986.93 20298.73 17396.95 13697.73 14699.45 154
EPNet98.49 4398.40 3598.77 9099.62 8996.80 12099.90 7499.51 1597.60 1299.20 7199.36 12293.71 9999.91 7497.99 10598.71 12799.61 127
Wanjuan Su, Wenbing Tao: Efficient Edge-Preserving Multi-View Stereo Network for Depth Estimation. AAAI 2023
CS-MVS97.52 8897.36 8598.00 13697.47 20496.11 148100.00 197.08 27694.74 8899.65 3399.33 12389.89 17098.22 21598.79 7199.25 11699.68 114
VDDNet93.12 20691.91 22196.76 17696.67 24192.65 23198.69 27198.21 16882.81 32497.75 12999.28 12461.57 34499.48 14998.09 10094.09 20698.15 206
diffmvs97.00 10596.64 10798.09 13297.64 19596.17 14499.81 11597.19 26494.67 9398.95 8499.28 12486.43 20698.76 17198.37 8997.42 15499.33 168
baseline96.43 12895.98 12597.76 14597.34 20895.17 17799.51 18097.17 26793.92 12796.90 14599.28 12485.37 21698.64 17997.50 12196.86 16899.46 152
UA-Net96.54 12495.96 13098.27 12598.23 15995.71 16198.00 30398.45 10793.72 13698.41 10899.27 12788.71 18799.66 13791.19 22497.69 14799.44 156
RPSCF91.80 23792.79 20288.83 32298.15 16469.87 35398.11 29996.60 31383.93 31794.33 18999.27 12779.60 26499.46 15091.99 21493.16 21597.18 219
PLCcopyleft95.54 397.93 7297.89 6998.05 13499.82 6594.77 18899.92 6698.46 10593.93 12697.20 13899.27 12795.44 4499.97 5197.41 12399.51 10899.41 159
Jie Liao, Yanping Fu, Qingan Yan, Chunxia xiao: Pyramid Multi-View Stereo with Local Consistency. Pacific Graphics 2019
casdiffmvs96.42 12995.97 12897.77 14497.30 21294.98 18099.84 10697.09 27593.75 13596.58 15299.26 13085.07 21998.78 16897.77 11697.04 16399.54 143
BH-RMVSNet95.18 15794.31 16897.80 14198.17 16395.23 17599.76 13297.53 23292.52 17894.27 19099.25 13176.84 28198.80 16690.89 23499.54 10599.35 166
DELS-MVS98.54 3998.22 4899.50 2999.15 11198.65 48100.00 198.58 7397.70 998.21 11999.24 13292.58 12899.94 6898.63 8299.94 5799.92 87
Christian Sormann, Emanuele Santellani, Mattia Rossi, Andreas Kuhn, Friedrich Fraundorfer: DELS-MVS: Deep Epipolar Line Search for Multi-View Stereo. Winter Conference on Applications of Computer Vision (WACV), 2023
PCF-MVS94.20 595.18 15794.10 17298.43 11898.55 14295.99 15197.91 30597.31 25790.35 23389.48 24699.22 13385.19 21899.89 7990.40 24398.47 13199.41 159
Andreas Kuhn, Shan Lin, Oliver Erdler: Plane Completion and Filtering for Multi-View Stereo Reconstruction. GCPR 2019
PVSNet91.05 1397.13 10196.69 10698.45 11699.52 9695.81 15599.95 4199.65 1094.73 8999.04 7999.21 13484.48 22399.95 6094.92 15898.74 12699.58 136
MSDG94.37 18193.36 19497.40 15898.88 13093.95 20299.37 20197.38 25085.75 30190.80 22299.17 13584.11 22799.88 8586.35 28498.43 13298.36 203
F-COLMAP96.93 10896.95 9996.87 17399.71 8491.74 25199.85 10297.95 19593.11 15295.72 17299.16 13692.35 13399.94 6895.32 15399.35 11498.92 190
Vis-MVSNet (Re-imp)96.32 13295.98 12597.35 16297.93 17494.82 18599.47 18798.15 17991.83 19895.09 18099.11 13791.37 14897.47 24593.47 19897.43 15299.74 107
CHOSEN 280x42099.01 1299.03 898.95 8399.38 10498.87 2798.46 28299.42 2097.03 2799.02 8099.09 13899.35 198.21 21699.73 2799.78 8899.77 104
PVSNet_Blended97.94 7197.64 7498.83 8899.59 9096.99 114100.00 199.10 2895.38 7298.27 11599.08 13989.00 18399.95 6099.12 4799.25 11699.57 137
sss97.57 8697.03 9799.18 5498.37 14998.04 7299.73 14399.38 2193.46 14298.76 9399.06 14091.21 14999.89 7996.33 14297.01 16499.62 125
thisisatest051597.41 9397.02 9898.59 10497.71 19497.52 9199.97 1698.54 8791.83 19897.45 13499.04 14197.50 899.10 15794.75 16696.37 17599.16 180
EI-MVSNet93.73 19593.40 19394.74 23096.80 23492.69 22899.06 23397.67 21588.96 25391.39 21699.02 14288.75 18697.30 25391.07 22687.85 24594.22 255
CVMVSNet94.68 17194.94 15693.89 26796.80 23486.92 31499.06 23398.98 3494.45 9894.23 19199.02 14285.60 21295.31 32590.91 23395.39 19499.43 157
EPP-MVSNet96.69 12096.60 10896.96 17097.74 18893.05 22099.37 20198.56 7788.75 25895.83 17099.01 14496.01 2898.56 18296.92 13797.20 16099.25 175
COLMAP_ROBcopyleft90.47 1492.18 22891.49 23094.25 25299.00 11788.04 30998.42 28796.70 31082.30 32788.43 26899.01 14476.97 27999.85 9486.11 28796.50 17294.86 228
Johannes L. Schönberger, Enliang Zheng, Marc Pollefeys, Jan-Michael Frahm: Pixelwise View Selection for Unstructured Multi-View Stereo. ECCV 2016
3Dnovator91.47 1296.28 13695.34 14799.08 7196.82 23397.47 9799.45 19098.81 4895.52 7089.39 24799.00 14681.97 23899.95 6097.27 12699.83 8199.84 95
test_yl97.83 7697.37 8399.21 5199.18 10897.98 7599.64 16199.27 2591.43 21297.88 12698.99 14795.84 3599.84 10398.82 6795.32 19599.79 100
DCV-MVSNet97.83 7697.37 8399.21 5199.18 10897.98 7599.64 16199.27 2591.43 21297.88 12698.99 14795.84 3599.84 10398.82 6795.32 19599.79 100
131496.84 11195.96 13099.48 3396.74 23898.52 5598.31 28998.86 4595.82 5889.91 23398.98 14987.49 19599.96 5397.80 11199.73 9199.96 70
3Dnovator+91.53 1196.31 13395.24 14999.52 2696.88 23098.64 4999.72 14698.24 16495.27 7688.42 27098.98 14982.76 23499.94 6897.10 13199.83 8199.96 70
thisisatest053097.10 10296.72 10598.22 12797.60 19796.70 12199.92 6698.54 8791.11 21997.07 14298.97 15197.47 999.03 15893.73 19496.09 17898.92 190
baseline296.71 11996.49 11297.37 16095.63 26795.96 15299.74 13898.88 4392.94 15491.61 21498.97 15197.72 598.62 18094.83 16298.08 14397.53 218
gm-plane-assit96.97 22493.76 20691.47 21098.96 15398.79 16794.92 158
IS-MVSNet96.29 13595.90 13497.45 15598.13 16694.80 18699.08 22897.61 22292.02 19495.54 17598.96 15390.64 16298.08 22093.73 19497.41 15599.47 151
OpenMVScopyleft90.15 1594.77 16793.59 18498.33 12396.07 24797.48 9699.56 17298.57 7590.46 23086.51 29498.95 15578.57 27299.94 6893.86 18599.74 9097.57 217
GeoE94.36 18393.48 18896.99 16997.29 21393.54 21099.96 2396.72 30988.35 26793.43 19898.94 15682.05 23798.05 22388.12 26696.48 17399.37 163
Vis-MVSNetpermissive95.72 14695.15 15397.45 15597.62 19694.28 19599.28 21498.24 16494.27 11196.84 14698.94 15679.39 26598.76 17193.25 20098.49 13099.30 171
Jingyang Zhang, Yao Yao, Shiwei Li, Zixin Luo, Tian Fang: Visibility-aware Multiview Stereo Network. BMVC 2020
tttt051796.85 11096.49 11297.92 13997.48 20395.89 15499.85 10298.54 8790.72 22896.63 15198.93 15897.47 999.02 15993.03 20795.76 18798.85 194
DWT-MVSNet_test97.31 9597.19 9097.66 14898.24 15894.67 18998.86 25898.20 17293.60 13998.09 12098.89 15997.51 798.78 16894.04 18397.28 15799.55 139
QAPM95.40 15494.17 17099.10 6996.92 22597.71 8399.40 19498.68 5689.31 24588.94 25998.89 15982.48 23599.96 5393.12 20699.83 8199.62 125
VNet97.21 10096.57 11099.13 6898.97 11997.82 8199.03 23999.21 2794.31 10899.18 7598.88 16186.26 20899.89 7998.93 5994.32 20399.69 113
thres20096.96 10696.21 11899.22 5098.97 11998.84 3099.85 10299.71 593.17 15096.26 16298.88 16189.87 17199.51 14394.26 18094.91 19899.31 170
tfpn200view996.79 11395.99 12399.19 5398.94 12198.82 3199.78 12499.71 592.86 15596.02 16598.87 16389.33 17799.50 14593.84 18694.57 19999.27 173
thres40096.78 11495.99 12399.16 5998.94 12198.82 3199.78 12499.71 592.86 15596.02 16598.87 16389.33 17799.50 14593.84 18694.57 19999.16 180
thres100view90096.74 11795.92 13399.18 5498.90 12898.77 3699.74 13899.71 592.59 17395.84 16898.86 16589.25 17999.50 14593.84 18694.57 19999.27 173
thres600view796.69 12095.87 13699.14 6398.90 12898.78 3599.74 13899.71 592.59 17395.84 16898.86 16589.25 17999.50 14593.44 19994.50 20299.16 180
CHOSEN 1792x268896.81 11296.53 11197.64 14998.91 12793.07 21899.65 15799.80 395.64 6795.39 17698.86 16584.35 22599.90 7596.98 13499.16 11999.95 78
CLD-MVS94.06 18793.90 17794.55 23996.02 24990.69 26999.98 897.72 21296.62 3991.05 22098.85 16877.21 27798.47 18698.11 9889.51 22594.48 233
Zhaoxin Li, Wangmeng Zuo, Zhaoqi Wang, Lei Zhang: Confidence-based Large-scale Dense Multi-view Stereo. IEEE Transaction on Image Processing, 2020
BH-w/o95.71 14895.38 14696.68 17998.49 14692.28 23799.84 10697.50 23792.12 19092.06 21298.79 16984.69 22198.67 17895.29 15499.66 9699.09 186
Anonymous20240521193.10 20791.99 21996.40 18999.10 11289.65 29098.88 25497.93 19783.71 31994.00 19398.75 17068.79 32099.88 8595.08 15691.71 21899.68 114
mvs-test195.53 15195.97 12894.20 25397.77 18585.44 32299.95 4197.06 27994.92 8196.58 15298.72 17185.81 21098.98 16094.80 16398.11 13998.18 205
TR-MVS94.54 17593.56 18697.49 15497.96 17294.34 19498.71 26997.51 23690.30 23594.51 18698.69 17275.56 29298.77 17092.82 20895.99 18099.35 166
BH-untuned95.18 15794.83 15896.22 19498.36 15091.22 26399.80 12097.32 25690.91 22391.08 21998.67 17383.51 22998.54 18494.23 18199.61 10198.92 190
OPM-MVS93.21 20492.80 20194.44 24693.12 30690.85 26899.77 12797.61 22296.19 5191.56 21598.65 17475.16 29798.47 18693.78 19289.39 22693.99 281
NP-MVS95.77 25791.79 24998.65 174
HQP-MVS94.61 17394.50 16494.92 22595.78 25491.85 24799.87 8897.89 20196.82 3093.37 19998.65 17480.65 25598.39 19797.92 10989.60 22094.53 229
baseline195.78 14594.86 15798.54 10998.47 14798.07 7099.06 23397.99 19092.68 16794.13 19298.62 17793.28 11098.69 17793.79 19185.76 25998.84 195
HQP_MVS94.49 17894.36 16694.87 22695.71 26391.74 25199.84 10697.87 20396.38 4493.01 20398.59 17880.47 25998.37 20297.79 11489.55 22394.52 231
plane_prior498.59 178
Anonymous2024052992.10 23090.65 24196.47 18498.82 13390.61 27298.72 26898.67 5975.54 34593.90 19598.58 18066.23 33199.90 7594.70 16990.67 21998.90 193
Effi-MVS+96.30 13495.69 13998.16 12897.85 18096.26 13797.41 31197.21 26390.37 23298.65 9998.58 18086.61 20598.70 17697.11 13097.37 15699.52 146
EPNet_dtu95.71 14895.39 14596.66 18098.92 12593.41 21499.57 17098.90 4196.19 5197.52 13298.56 18292.65 12697.36 24877.89 32898.33 13499.20 178
Wanjuan Su, Wenbing Tao: Efficient Edge-Preserving Multi-View Stereo Network for Depth Estimation. AAAI 2023
test0.0.03 193.86 18893.61 18194.64 23495.02 27692.18 24099.93 6298.58 7394.07 11787.96 27598.50 18393.90 9494.96 32981.33 31493.17 21496.78 220
LPG-MVS_test92.96 21092.71 20393.71 27195.43 26988.67 29999.75 13597.62 21992.81 15890.05 22898.49 18475.24 29598.40 19595.84 15089.12 22794.07 273
LGP-MVS_train93.71 27195.43 26988.67 29997.62 21992.81 15890.05 22898.49 18475.24 29598.40 19595.84 15089.12 22794.07 273
PVSNet_Blended_VisFu97.27 9796.81 10298.66 9798.81 13496.67 12299.92 6698.64 6394.51 9796.38 16098.49 18489.05 18299.88 8597.10 13198.34 13399.43 157
testmvs40.60 33344.45 33629.05 34819.49 37014.11 37199.68 15118.47 36920.74 36464.59 35298.48 18710.95 36917.09 36756.66 35711.01 36355.94 360
AllTest92.48 22191.64 22495.00 22299.01 11588.43 30398.94 24896.82 30386.50 28988.71 26198.47 18874.73 29999.88 8585.39 29096.18 17696.71 221
TestCases95.00 22299.01 11588.43 30396.82 30386.50 28988.71 26198.47 18874.73 29999.88 8585.39 29096.18 17696.71 221
hse-mvs394.92 16394.36 16696.59 18398.85 13291.29 26298.93 24998.94 3695.90 5698.77 9198.42 19090.89 15999.77 11597.80 11170.76 33798.72 200
PatchMatch-RL96.04 14095.40 14497.95 13799.59 9095.22 17699.52 17899.07 3193.96 12496.49 15598.35 19182.28 23699.82 10590.15 24699.22 11898.81 197
CDS-MVSNet96.34 13196.07 12097.13 16697.37 20694.96 18199.53 17797.91 20091.55 20795.37 17798.32 19295.05 5397.13 26493.80 19095.75 18899.30 171
Khang Truong Giang, Soohwan Song, Sungho Jo: Curvature-guided dynamic scale networks for Multi-view Stereo. ICLR 2022
ACMP92.05 992.74 21592.42 21293.73 26995.91 25388.72 29899.81 11597.53 23294.13 11387.00 28898.23 19374.07 30398.47 18696.22 14488.86 23293.99 281
Qingshan Xu and Wenbing Tao: Planar Prior Assisted PatchMatch Multi-View Stereo. AAAI 2020
testgi89.01 28788.04 28891.90 30093.49 29984.89 32599.73 14395.66 33293.89 13085.14 30898.17 19459.68 34794.66 33377.73 32988.88 23096.16 226
ITE_SJBPF92.38 29395.69 26585.14 32395.71 33092.81 15889.33 25098.11 19570.23 31798.42 19285.91 28888.16 24393.59 305
HyFIR lowres test96.66 12296.43 11497.36 16199.05 11393.91 20399.70 14899.80 390.54 22996.26 16298.08 19692.15 13898.23 21496.84 13995.46 19299.93 81
TESTMET0.1,196.74 11796.26 11798.16 12897.36 20796.48 12899.96 2398.29 15791.93 19595.77 17198.07 19795.54 4098.29 20790.55 23898.89 12299.70 111
TAMVS95.85 14395.58 14196.65 18197.07 21893.50 21199.17 22297.82 20991.39 21595.02 18198.01 19892.20 13697.30 25393.75 19395.83 18599.14 183
hse-mvs294.38 18094.08 17395.31 21398.27 15690.02 28499.29 21398.56 7795.90 5698.77 9198.00 19990.89 15998.26 21397.80 11169.20 34397.64 215
AUN-MVS93.28 20392.60 20595.34 21198.29 15290.09 28399.31 20898.56 7791.80 20196.35 16198.00 19989.38 17698.28 20992.46 21069.22 34297.64 215
ACMM91.95 1092.88 21292.52 21093.98 26495.75 25989.08 29699.77 12797.52 23493.00 15389.95 23297.99 20176.17 28998.46 18993.63 19788.87 23194.39 242
Qingshan Xu and Wenbing Tao: Multi-Scale Geometric Consistency Guided Multi-View Stereo. CVPR 2019
Fast-Effi-MVS+95.02 16194.19 16997.52 15397.88 17694.55 19099.97 1697.08 27688.85 25794.47 18797.96 20284.59 22298.41 19389.84 24997.10 16199.59 130
GG-mvs-BLEND98.54 10998.21 16098.01 7393.87 34198.52 9097.92 12497.92 20399.02 297.94 23198.17 9499.58 10399.67 117
Fast-Effi-MVS+-dtu93.72 19693.86 17993.29 28097.06 21986.16 31699.80 12096.83 30192.66 16892.58 21097.83 20481.39 24597.67 23889.75 25096.87 16796.05 227
RRT_MVS95.23 15694.77 16096.61 18298.28 15498.32 6399.81 11597.41 24792.59 17391.28 21897.76 20595.02 5497.23 25993.65 19687.14 25294.28 251
ACMH+89.98 1690.35 26589.54 26292.78 29195.99 25086.12 31798.81 26297.18 26689.38 24483.14 31797.76 20568.42 32498.43 19189.11 25486.05 25893.78 297
ACMH89.72 1790.64 25889.63 25993.66 27595.64 26688.64 30198.55 27797.45 24089.03 24981.62 32497.61 20769.75 31898.41 19389.37 25187.62 24993.92 287
Qingshan Xu and Wenbing Tao: Multi-Scale Geometric Consistency Guided Multi-View Stereo. CVPR 2019
cascas94.64 17293.61 18197.74 14797.82 18296.26 13799.96 2397.78 21185.76 29994.00 19397.54 20876.95 28099.21 15497.23 12795.43 19397.76 214
nrg03093.51 19992.53 20996.45 18694.36 28497.20 10699.81 11597.16 26991.60 20589.86 23597.46 20986.37 20797.68 23795.88 14980.31 30494.46 234
VPNet91.81 23490.46 24395.85 20394.74 27995.54 16598.98 24398.59 7292.14 18990.77 22397.44 21068.73 32297.54 24294.89 16177.89 31894.46 234
UniMVSNet_ETH3D90.06 27488.58 28094.49 24394.67 28188.09 30897.81 30797.57 22783.91 31888.44 26697.41 21157.44 35097.62 24091.41 22188.59 23897.77 213
HY-MVS92.50 797.79 8097.17 9299.63 1298.98 11899.32 697.49 31099.52 1395.69 6698.32 11397.41 21193.32 10799.77 11598.08 10195.75 18899.81 98
PVSNet_088.03 1991.80 23790.27 24996.38 19198.27 15690.46 27699.94 5699.61 1193.99 12286.26 30197.39 21371.13 31599.89 7998.77 7367.05 34798.79 198
FIs94.10 18693.43 18996.11 19694.70 28096.82 11999.58 16898.93 4092.54 17789.34 24997.31 21487.62 19497.10 26794.22 18286.58 25594.40 241
OurMVSNet-221017-089.81 27789.48 26690.83 30891.64 32781.21 34198.17 29795.38 33891.48 20985.65 30697.31 21472.66 30797.29 25688.15 26484.83 26793.97 283
FC-MVSNet-test93.81 19193.15 19895.80 20494.30 28696.20 14299.42 19398.89 4292.33 18589.03 25897.27 21687.39 19796.83 28493.20 20186.48 25694.36 244
USDC90.00 27588.96 27493.10 28694.81 27888.16 30798.71 26995.54 33593.66 13783.75 31597.20 21765.58 33398.31 20683.96 30087.49 25192.85 320
MVSTER95.53 15195.22 15096.45 18698.56 14197.72 8299.91 7097.67 21592.38 18391.39 21697.14 21897.24 1497.30 25394.80 16387.85 24594.34 248
LF4IMVS89.25 28688.85 27590.45 31292.81 31581.19 34298.12 29894.79 34591.44 21186.29 30097.11 21965.30 33698.11 21988.53 26085.25 26492.07 328
mvs_anonymous95.65 15095.03 15597.53 15298.19 16195.74 15999.33 20597.49 23890.87 22490.47 22697.10 22088.23 19097.16 26195.92 14897.66 14999.68 114
jajsoiax91.92 23291.18 23494.15 25491.35 33090.95 26699.00 24197.42 24592.61 17187.38 28497.08 22172.46 30897.36 24894.53 17388.77 23394.13 270
XXY-MVS91.82 23390.46 24395.88 20193.91 29295.40 16998.87 25797.69 21488.63 26287.87 27697.08 22174.38 30297.89 23291.66 21984.07 27594.35 247
LTVRE_ROB88.28 1890.29 26889.05 27394.02 26095.08 27490.15 28297.19 31597.43 24384.91 31283.99 31397.06 22374.00 30498.28 20984.08 29787.71 24793.62 304
Andreas Kuhn, Heiko Hirschmüller, Daniel Scharstein, Helmut Mayer: A TV Prior for High-Quality Scalable Multi-View Stereo Reconstruction. International Journal of Computer Vision 2016
mvs_tets91.81 23491.08 23594.00 26291.63 32890.58 27398.67 27397.43 24392.43 18287.37 28597.05 22471.76 31097.32 25294.75 16688.68 23594.11 271
MVS_Test96.46 12795.74 13898.61 10198.18 16297.23 10599.31 20897.15 27091.07 22098.84 8797.05 22488.17 19198.97 16194.39 17597.50 15199.61 127
ab-mvs94.69 16993.42 19098.51 11298.07 16796.26 13796.49 32598.68 5690.31 23494.54 18497.00 22676.30 28799.71 12995.98 14793.38 21399.56 138
PS-MVSNAJss93.64 19893.31 19594.61 23592.11 32192.19 23999.12 22497.38 25092.51 17988.45 26596.99 22791.20 15097.29 25694.36 17687.71 24794.36 244
IB-MVS92.85 694.99 16293.94 17698.16 12897.72 19295.69 16399.99 498.81 4894.28 11092.70 20996.90 22895.08 5099.17 15696.07 14573.88 33599.60 129
Christian Sormann, Mattia Rossi, Andreas Kuhn and Friedrich Fraundorfer: IB-MVS: An Iterative Algorithm for Deep Multi-View Stereo based on Binary Decisions. BMVC 2021
WR-MVS92.31 22591.25 23395.48 20994.45 28395.29 17199.60 16698.68 5690.10 23688.07 27496.89 22980.68 25496.80 28693.14 20479.67 30894.36 244
SixPastTwentyTwo88.73 28888.01 28990.88 30691.85 32582.24 33598.22 29595.18 34388.97 25282.26 32096.89 22971.75 31196.67 29284.00 29882.98 28093.72 302
UniMVSNet_NR-MVSNet92.95 21192.11 21695.49 20694.61 28295.28 17299.83 11299.08 3091.49 20889.21 25396.86 23187.14 19996.73 28893.20 20177.52 32194.46 234
XVG-ACMP-BASELINE91.22 24790.75 23892.63 29293.73 29585.61 31998.52 28197.44 24292.77 16289.90 23496.85 23266.64 33098.39 19792.29 21288.61 23693.89 289
TinyColmap87.87 29586.51 29691.94 29995.05 27585.57 32097.65 30994.08 35084.40 31581.82 32396.85 23262.14 34398.33 20480.25 31986.37 25791.91 332
EU-MVSNet90.14 27390.34 24789.54 31892.55 31781.06 34398.69 27198.04 18891.41 21486.59 29396.84 23480.83 25293.31 34586.20 28581.91 28794.26 252
TranMVSNet+NR-MVSNet91.68 24190.61 24294.87 22693.69 29693.98 20199.69 14998.65 6091.03 22188.44 26696.83 23580.05 26296.18 30990.26 24576.89 32994.45 239
RRT_test8_iter0594.58 17494.11 17195.98 19997.88 17696.11 14899.89 8297.45 24091.66 20488.28 27196.71 23696.53 2497.40 24694.73 16883.85 27894.45 239
bset_n11_16_dypcd93.05 20992.30 21395.31 21390.23 33995.05 17999.44 19297.28 25992.51 17990.65 22496.68 23785.30 21796.71 29094.49 17484.14 27394.16 264
GA-MVS93.83 18992.84 20096.80 17495.73 26093.57 20899.88 8597.24 26292.57 17692.92 20596.66 23878.73 27197.67 23887.75 26994.06 20799.17 179
CMPMVSbinary61.59 2184.75 30885.14 30283.57 33390.32 33862.54 35796.98 32097.59 22674.33 34869.95 35196.66 23864.17 33898.32 20587.88 26888.41 24189.84 346
M. Jancosek, T. Pajdla: Multi-View Reconstruction Preserving Weakly-Supported Surfaces. CVPR 2011
DU-MVS92.46 22291.45 23195.49 20694.05 28995.28 17299.81 11598.74 5292.25 18789.21 25396.64 24081.66 24296.73 28893.20 20177.52 32194.46 234
NR-MVSNet91.56 24290.22 25095.60 20594.05 28995.76 15898.25 29298.70 5491.16 21880.78 32996.64 24083.23 23396.57 29591.41 22177.73 32094.46 234
CP-MVSNet91.23 24690.22 25094.26 25193.96 29192.39 23699.09 22698.57 7588.95 25486.42 29796.57 24279.19 26796.37 30190.29 24478.95 31194.02 276
pmmvs492.10 23091.07 23695.18 21792.82 31494.96 18199.48 18696.83 30187.45 27688.66 26496.56 24383.78 22896.83 28489.29 25284.77 26893.75 298
PS-CasMVS90.63 25989.51 26493.99 26393.83 29391.70 25598.98 24398.52 9088.48 26486.15 30296.53 24475.46 29396.31 30488.83 25678.86 31393.95 284
test-LLR96.47 12696.04 12197.78 14297.02 22295.44 16699.96 2398.21 16894.07 11795.55 17396.38 24593.90 9498.27 21190.42 24198.83 12499.64 123
test-mter96.39 13095.93 13297.78 14297.02 22295.44 16699.96 2398.21 16891.81 20095.55 17396.38 24595.17 4798.27 21190.42 24198.83 12499.64 123
MS-PatchMatch90.65 25790.30 24891.71 30294.22 28785.50 32198.24 29397.70 21388.67 26086.42 29796.37 24767.82 32698.03 22483.62 30299.62 9891.60 333
test_part192.15 22990.72 23996.44 18898.87 13197.46 9898.99 24298.26 16285.89 29686.34 29996.34 24881.71 24097.48 24491.06 22778.99 31094.37 243
PEN-MVS90.19 27189.06 27293.57 27693.06 30890.90 26799.06 23398.47 10388.11 26885.91 30496.30 24976.67 28295.94 31887.07 27776.91 32893.89 289
UGNet95.33 15594.57 16397.62 15198.55 14294.85 18398.67 27399.32 2495.75 6596.80 14896.27 25072.18 30999.96 5394.58 17299.05 12198.04 208
Wanjuan Su, Qingshan Xu, Wenbing Tao: Uncertainty-guided Multi-view Stereo Network for Depth Estimation. IEEE Transactions on Circuits and Systems for Video Technology, 2022
DTE-MVSNet89.40 28288.24 28692.88 28992.66 31689.95 28699.10 22598.22 16787.29 27885.12 30996.22 25176.27 28895.30 32683.56 30375.74 33293.41 307
TransMVSNet (Re)87.25 29685.28 30193.16 28393.56 29791.03 26498.54 27994.05 35183.69 32081.09 32796.16 25275.32 29496.40 30076.69 33468.41 34492.06 329
pm-mvs189.36 28387.81 29094.01 26193.40 30291.93 24598.62 27696.48 31786.25 29383.86 31496.14 25373.68 30597.04 27286.16 28675.73 33393.04 317
Test_1112_low_res95.72 14694.83 15898.42 11997.79 18496.41 13199.65 15796.65 31292.70 16592.86 20896.13 25492.15 13899.30 15291.88 21793.64 21099.55 139
TDRefinement84.76 30782.56 31491.38 30474.58 35884.80 32697.36 31294.56 34884.73 31380.21 33196.12 25563.56 34098.39 19787.92 26763.97 34890.95 339
test_djsdf92.83 21392.29 21494.47 24491.90 32492.46 23499.55 17497.27 26091.17 21689.96 23196.07 25681.10 24896.89 28094.67 17088.91 22994.05 275
miper_enhance_ethall94.36 18393.98 17595.49 20698.68 14095.24 17499.73 14397.29 25893.28 14789.86 23595.97 25794.37 7597.05 27092.20 21384.45 27094.19 258
lessismore_v090.53 30990.58 33680.90 34495.80 32877.01 33995.84 25866.15 33296.95 27783.03 30575.05 33493.74 301
PVSNet_BlendedMVS96.05 13995.82 13796.72 17899.59 9096.99 11499.95 4199.10 2894.06 11998.27 11595.80 25989.00 18399.95 6099.12 4787.53 25093.24 313
ppachtmachnet_test89.58 28188.35 28393.25 28292.40 31890.44 27799.33 20596.73 30885.49 30585.90 30595.77 26081.09 24996.00 31776.00 33682.49 28293.30 311
pmmvs590.17 27289.09 27193.40 27892.10 32289.77 28999.74 13895.58 33485.88 29887.24 28795.74 26173.41 30696.48 29888.54 25983.56 27993.95 284
MDTV_nov1_ep1395.69 13997.90 17594.15 19695.98 33298.44 10893.12 15197.98 12395.74 26195.10 4998.58 18190.02 24796.92 166
eth_miper_zixun_eth92.41 22391.93 22093.84 26897.28 21490.68 27098.83 26096.97 28988.57 26389.19 25595.73 26389.24 18196.69 29189.97 24881.55 28994.15 266
IterMVS-SCA-FT90.85 25490.16 25392.93 28896.72 23989.96 28598.89 25296.99 28588.95 25486.63 29295.67 26476.48 28595.00 32887.04 27884.04 27793.84 293
Baseline_NR-MVSNet90.33 26689.51 26492.81 29092.84 31289.95 28699.77 12793.94 35284.69 31489.04 25795.66 26581.66 24296.52 29690.99 23076.98 32791.97 331
cl-mvsnet293.77 19393.25 19795.33 21299.49 9994.43 19299.61 16598.09 18390.38 23189.16 25695.61 26690.56 16397.34 25091.93 21584.45 27094.21 257
K. test v388.05 29287.24 29490.47 31191.82 32682.23 33698.96 24697.42 24589.05 24876.93 34095.60 26768.49 32395.42 32285.87 28981.01 29893.75 298
SCA94.69 16993.81 18097.33 16397.10 21794.44 19198.86 25898.32 15193.30 14696.17 16495.59 26876.48 28597.95 22991.06 22797.43 15299.59 130
Patchmatch-test92.65 21991.50 22996.10 19796.85 23190.49 27591.50 35097.19 26482.76 32590.23 22795.59 26895.02 5498.00 22577.41 33096.98 16599.82 97
cl-mvsnet192.32 22491.60 22594.47 24497.31 21192.74 22599.58 16896.75 30786.99 28487.64 27895.54 27089.55 17496.50 29788.58 25882.44 28394.17 259
Anonymous2023121189.86 27688.44 28294.13 25698.93 12390.68 27098.54 27998.26 16276.28 34186.73 29095.54 27070.60 31697.56 24190.82 23580.27 30594.15 266
miper_ehance_all_eth93.16 20592.60 20594.82 22997.57 19893.56 20999.50 18297.07 27888.75 25888.85 26095.52 27290.97 15696.74 28790.77 23684.45 27094.17 259
cl-mvsnet____92.31 22591.58 22694.52 24097.33 21092.77 22399.57 17096.78 30686.97 28587.56 28095.51 27389.43 17596.62 29388.60 25782.44 28394.16 264
tfpnnormal89.29 28487.61 29194.34 25094.35 28594.13 19798.95 24798.94 3683.94 31684.47 31195.51 27374.84 29897.39 24777.05 33380.41 30291.48 335
DeepMVS_CXcopyleft82.92 33595.98 25258.66 35996.01 32592.72 16378.34 33795.51 27358.29 34998.08 22082.57 30785.29 26392.03 330
cl_fuxian92.53 22091.87 22294.52 24097.40 20592.99 22199.40 19496.93 29487.86 27188.69 26395.44 27689.95 16996.44 29990.45 24080.69 30194.14 269
IterMVS90.91 25190.17 25293.12 28496.78 23790.42 27898.89 25297.05 28189.03 24986.49 29595.42 27776.59 28495.02 32787.22 27684.09 27493.93 286
Fangjinhua Wang, Silvano Galliani, Christoph Vogel, Marc Pollefeys: IterMVS: Iterative Probability Estimation for Efficient Multi-View Stereo.
UniMVSNet (Re)93.07 20892.13 21595.88 20194.84 27796.24 14199.88 8598.98 3492.49 18189.25 25195.40 27887.09 20097.14 26393.13 20578.16 31694.26 252
tpm295.47 15395.18 15296.35 19296.91 22691.70 25596.96 32197.93 19788.04 27098.44 10795.40 27893.32 10797.97 22694.00 18495.61 19099.38 161
pmmvs685.69 30083.84 30691.26 30590.00 34184.41 32797.82 30696.15 32375.86 34381.29 32695.39 28061.21 34596.87 28283.52 30473.29 33692.50 324
IterMVS-LS92.69 21792.11 21694.43 24896.80 23492.74 22599.45 19096.89 29788.98 25189.65 24295.38 28188.77 18596.34 30390.98 23182.04 28694.22 255
Fangjinhua Wang, Silvano Galliani, Christoph Vogel, Marc Pollefeys: IterMVS: Iterative Probability Estimation for Efficient Multi-View Stereo.
Effi-MVS+-dtu94.53 17795.30 14892.22 29597.77 18582.54 33399.59 16797.06 27994.92 8195.29 17895.37 28285.81 21097.89 23294.80 16397.07 16296.23 225
v2v48291.30 24390.07 25595.01 22193.13 30493.79 20499.77 12797.02 28288.05 26989.25 25195.37 28280.73 25397.15 26287.28 27580.04 30794.09 272
FMVSNet392.69 21791.58 22695.99 19898.29 15297.42 10199.26 21697.62 21989.80 24289.68 23995.32 28481.62 24496.27 30687.01 28085.65 26094.29 250
MVP-Stereo90.93 25090.45 24592.37 29491.25 33288.76 29798.05 30296.17 32287.27 27984.04 31295.30 28578.46 27497.27 25883.78 30199.70 9491.09 336
Qingsong Yan: MVP-Stereo: A Parallel Multi-View Patchmatch Stereo Method with Dilation Matching for Photogrammetric Application.
anonymousdsp91.79 23990.92 23794.41 24990.76 33592.93 22298.93 24997.17 26789.08 24787.46 28395.30 28578.43 27596.92 27992.38 21188.73 23493.39 309
v192192090.46 26289.12 27094.50 24292.96 31192.46 23499.49 18496.98 28786.10 29489.61 24495.30 28578.55 27397.03 27482.17 31080.89 30094.01 278
VPA-MVSNet92.70 21691.55 22896.16 19595.09 27396.20 14298.88 25499.00 3391.02 22291.82 21395.29 28876.05 29197.96 22895.62 15281.19 29294.30 249
PatchmatchNetpermissive95.94 14295.45 14397.39 15997.83 18194.41 19396.05 33198.40 13292.86 15597.09 14195.28 28994.21 8698.07 22289.26 25398.11 13999.70 111
Fangjinhua Wang, Silvano Galliani, Christoph Vogel, Pablo Speciale, Marc Pollefeys: PatchmatchNet: Learned Multi-View Patchmatch Stereo.
miper_lstm_enhance91.81 23491.39 23293.06 28797.34 20889.18 29599.38 19996.79 30586.70 28887.47 28295.22 29090.00 16895.86 31988.26 26281.37 29194.15 266
test_040285.58 30183.94 30590.50 31093.81 29485.04 32498.55 27795.20 34276.01 34279.72 33395.13 29164.15 33996.26 30766.04 35286.88 25490.21 344
tpmrst96.27 13795.98 12597.13 16697.96 17293.15 21796.34 32798.17 17492.07 19198.71 9695.12 29293.91 9398.73 17394.91 16096.62 16999.50 149
V4291.28 24590.12 25494.74 23093.42 30193.46 21299.68 15197.02 28287.36 27789.85 23795.05 29381.31 24797.34 25087.34 27480.07 30693.40 308
EPMVS96.53 12596.01 12298.09 13298.43 14896.12 14796.36 32699.43 1993.53 14097.64 13095.04 29494.41 7098.38 20191.13 22598.11 13999.75 106
v119290.62 26089.25 26894.72 23293.13 30493.07 21899.50 18297.02 28286.33 29289.56 24595.01 29579.22 26697.09 26982.34 30981.16 29394.01 278
v14890.70 25689.63 25993.92 26592.97 31090.97 26599.75 13596.89 29787.51 27488.27 27295.01 29581.67 24197.04 27287.40 27377.17 32693.75 298
FMVSNet291.02 24989.56 26195.41 21097.53 19995.74 15998.98 24397.41 24787.05 28188.43 26895.00 29771.34 31296.24 30885.12 29285.21 26594.25 254
our_test_390.39 26389.48 26693.12 28492.40 31889.57 29199.33 20596.35 31987.84 27285.30 30794.99 29884.14 22696.09 31380.38 31884.56 26993.71 303
v114491.09 24889.83 25694.87 22693.25 30393.69 20799.62 16496.98 28786.83 28789.64 24394.99 29880.94 25097.05 27085.08 29381.16 29393.87 291
v14419290.79 25589.52 26394.59 23693.11 30792.77 22399.56 17296.99 28586.38 29189.82 23894.95 30080.50 25897.10 26783.98 29980.41 30293.90 288
CostFormer96.10 13895.88 13596.78 17597.03 22192.55 23397.08 31897.83 20890.04 23998.72 9594.89 30195.01 5698.29 20796.54 14195.77 18699.50 149
v124090.20 27088.79 27794.44 24693.05 30992.27 23899.38 19996.92 29585.89 29689.36 24894.87 30277.89 27697.03 27480.66 31781.08 29694.01 278
v7n89.65 28088.29 28593.72 27092.22 32090.56 27499.07 23297.10 27485.42 30786.73 29094.72 30380.06 26197.13 26481.14 31578.12 31793.49 306
GBi-Net90.88 25289.82 25794.08 25797.53 19991.97 24298.43 28496.95 29087.05 28189.68 23994.72 30371.34 31296.11 31087.01 28085.65 26094.17 259
test190.88 25289.82 25794.08 25797.53 19991.97 24298.43 28496.95 29087.05 28189.68 23994.72 30371.34 31296.11 31087.01 28085.65 26094.17 259
FMVSNet188.50 28986.64 29594.08 25795.62 26891.97 24298.43 28496.95 29083.00 32286.08 30394.72 30359.09 34896.11 31081.82 31384.07 27594.17 259
dp95.05 16094.43 16596.91 17197.99 17192.73 22796.29 32897.98 19289.70 24395.93 16794.67 30793.83 9798.45 19086.91 28396.53 17199.54 143
test20.0384.72 30983.99 30386.91 32988.19 34780.62 34698.88 25495.94 32688.36 26678.87 33494.62 30868.75 32189.11 35466.52 35075.82 33191.00 337
D2MVS92.76 21492.59 20893.27 28195.13 27289.54 29299.69 14999.38 2192.26 18687.59 27994.61 30985.05 22097.79 23491.59 22088.01 24492.47 325
v890.54 26189.17 26994.66 23393.43 30093.40 21599.20 21996.94 29385.76 29987.56 28094.51 31081.96 23997.19 26084.94 29478.25 31593.38 310
v1090.25 26988.82 27694.57 23893.53 29893.43 21399.08 22896.87 29985.00 30987.34 28694.51 31080.93 25197.02 27682.85 30679.23 30993.26 312
ADS-MVSNet293.80 19293.88 17893.55 27797.87 17885.94 31894.24 33796.84 30090.07 23796.43 15794.48 31290.29 16695.37 32387.44 27197.23 15899.36 164
ADS-MVSNet94.79 16594.02 17497.11 16897.87 17893.79 20494.24 33798.16 17790.07 23796.43 15794.48 31290.29 16698.19 21787.44 27197.23 15899.36 164
WR-MVS_H91.30 24390.35 24694.15 25494.17 28892.62 23299.17 22298.94 3688.87 25686.48 29694.46 31484.36 22496.61 29488.19 26378.51 31493.21 314
LCM-MVSNet-Re92.31 22592.60 20591.43 30397.53 19979.27 34999.02 24091.83 35692.07 19180.31 33094.38 31583.50 23095.48 32197.22 12897.58 15099.54 143
tpmvs94.28 18593.57 18596.40 18998.55 14291.50 26095.70 33698.55 8387.47 27592.15 21194.26 31691.42 14698.95 16288.15 26495.85 18498.76 199
tpm93.70 19793.41 19294.58 23795.36 27187.41 31297.01 31996.90 29690.85 22596.72 15094.14 31790.40 16496.84 28390.75 23788.54 23999.51 147
Anonymous2023120686.32 29885.42 30089.02 32189.11 34480.53 34799.05 23795.28 33985.43 30682.82 31893.92 31874.40 30193.44 34466.99 34981.83 28893.08 316
UnsupCasMVSNet_eth85.52 30283.99 30390.10 31489.36 34383.51 32996.65 32397.99 19089.14 24675.89 34493.83 31963.25 34193.92 33881.92 31267.90 34692.88 319
tpm cat193.51 19992.52 21096.47 18497.77 18591.47 26196.13 32998.06 18680.98 33192.91 20693.78 32089.66 17298.87 16387.03 27996.39 17499.09 186
EG-PatchMatch MVS85.35 30583.81 30789.99 31690.39 33781.89 33898.21 29696.09 32481.78 32974.73 34693.72 32151.56 35597.12 26679.16 32488.61 23690.96 338
test_method80.79 31879.70 32184.08 33292.83 31367.06 35599.51 18095.42 33654.34 35581.07 32893.53 32244.48 35892.22 34778.90 32577.23 32592.94 318
N_pmnet80.06 32180.78 31977.89 33691.94 32345.28 36598.80 26356.82 36878.10 33980.08 33293.33 32377.03 27895.76 32068.14 34882.81 28192.64 321
MDA-MVSNet-bldmvs84.09 31281.52 31891.81 30191.32 33188.00 31098.67 27395.92 32780.22 33355.60 35893.32 32468.29 32593.60 34373.76 33876.61 33093.82 295
CR-MVSNet93.45 20292.62 20495.94 20096.29 24392.66 22992.01 34896.23 32092.62 17096.94 14393.31 32591.04 15496.03 31579.23 32195.96 18199.13 184
Patchmtry89.70 27988.49 28193.33 27996.24 24589.94 28891.37 35196.23 32078.22 33887.69 27793.31 32591.04 15496.03 31580.18 32082.10 28594.02 276
MIMVSNet90.30 26788.67 27995.17 21896.45 24291.64 25792.39 34697.15 27085.99 29590.50 22593.19 32766.95 32994.86 33182.01 31193.43 21199.01 189
YYNet185.50 30483.33 30992.00 29890.89 33488.38 30699.22 21896.55 31479.60 33657.26 35692.72 32879.09 26993.78 34177.25 33177.37 32493.84 293
MVS_030489.28 28588.31 28492.21 29697.05 22086.53 31597.76 30899.57 1285.58 30493.86 19692.71 32951.04 35696.30 30584.49 29692.72 21793.79 296
MDA-MVSNet_test_wron85.51 30383.32 31092.10 29790.96 33388.58 30299.20 21996.52 31579.70 33557.12 35792.69 33079.11 26893.86 34077.10 33277.46 32393.86 292
MIMVSNet182.58 31680.51 32088.78 32386.68 34984.20 32896.65 32395.41 33778.75 33778.59 33692.44 33151.88 35489.76 35365.26 35378.95 31192.38 327
KD-MVS_2432*160088.00 29386.10 29793.70 27396.91 22694.04 19897.17 31697.12 27284.93 31081.96 32192.41 33292.48 13094.51 33479.23 32152.68 35592.56 322
miper_refine_blended88.00 29386.10 29793.70 27396.91 22694.04 19897.17 31697.12 27284.93 31081.96 32192.41 33292.48 13094.51 33479.23 32152.68 35592.56 322
FMVSNet588.32 29087.47 29290.88 30696.90 22988.39 30597.28 31395.68 33182.60 32684.67 31092.40 33479.83 26391.16 35076.39 33581.51 29093.09 315
DSMNet-mixed88.28 29188.24 28688.42 32689.64 34275.38 35198.06 30189.86 35985.59 30388.20 27392.14 33576.15 29091.95 34878.46 32696.05 17997.92 209
patchmatchnet-post91.70 33695.12 4897.95 229
OpenMVS_ROBcopyleft79.82 2083.77 31481.68 31790.03 31588.30 34682.82 33098.46 28295.22 34173.92 34976.00 34391.29 33755.00 35296.94 27868.40 34788.51 24090.34 342
Anonymous2024052185.15 30683.81 30789.16 32088.32 34582.69 33198.80 26395.74 32979.72 33481.53 32590.99 33865.38 33594.16 33672.69 34081.11 29590.63 341
Patchmatch-RL test86.90 29785.98 29989.67 31784.45 35275.59 35089.71 35392.43 35486.89 28677.83 33890.94 33994.22 8393.63 34287.75 26969.61 33999.79 100
CL-MVSNet_2432*160084.50 31083.15 31288.53 32586.00 35081.79 33998.82 26197.35 25285.12 30883.62 31690.91 34076.66 28391.40 34969.53 34560.36 35292.40 326
FPMVS68.72 32368.72 32668.71 34165.95 36244.27 36795.97 33394.74 34651.13 35653.26 35990.50 34125.11 36483.00 35860.80 35580.97 29978.87 354
new_pmnet84.49 31182.92 31389.21 31990.03 34082.60 33296.89 32295.62 33380.59 33275.77 34589.17 34265.04 33794.79 33272.12 34181.02 29790.23 343
DIV-MVS_2432*160083.59 31582.06 31588.20 32786.93 34880.70 34597.21 31496.38 31882.87 32382.49 31988.97 34367.63 32792.32 34673.75 33962.30 35191.58 334
PM-MVS80.47 31978.88 32385.26 33183.79 35472.22 35295.89 33491.08 35785.71 30276.56 34288.30 34436.64 35993.90 33982.39 30869.57 34089.66 347
pmmvs380.27 32077.77 32487.76 32880.32 35682.43 33498.23 29491.97 35572.74 35078.75 33587.97 34557.30 35190.99 35170.31 34362.37 35089.87 345
pmmvs-eth3d84.03 31381.97 31690.20 31384.15 35387.09 31398.10 30094.73 34783.05 32174.10 34787.77 34665.56 33494.01 33781.08 31669.24 34189.49 348
test12337.68 33439.14 33733.31 34719.94 36924.83 37098.36 2889.75 37015.53 36551.31 36087.14 34719.62 36717.74 36647.10 3593.47 36557.36 359
new-patchmatchnet81.19 31779.34 32286.76 33082.86 35580.36 34897.92 30495.27 34082.09 32872.02 34886.87 34862.81 34290.74 35271.10 34263.08 34989.19 350
ambc83.23 33477.17 35762.61 35687.38 35594.55 34976.72 34186.65 34930.16 36096.36 30284.85 29569.86 33890.73 340
PatchT90.38 26488.75 27895.25 21695.99 25090.16 28191.22 35297.54 23076.80 34097.26 13786.01 35091.88 14296.07 31466.16 35195.91 18399.51 147
RPMNet89.76 27887.28 29397.19 16596.29 24392.66 22992.01 34898.31 15370.19 35296.94 14385.87 35187.25 19899.78 11162.69 35495.96 18199.13 184
UnsupCasMVSNet_bld79.97 32277.03 32588.78 32385.62 35181.98 33793.66 34297.35 25275.51 34670.79 35083.05 35248.70 35794.91 33078.31 32760.29 35389.46 349
LCM-MVSNet67.77 32464.73 32876.87 33762.95 36456.25 36189.37 35493.74 35344.53 35861.99 35380.74 35320.42 36686.53 35669.37 34659.50 35487.84 351
PMMVS267.15 32564.15 32976.14 33870.56 36162.07 35893.89 34087.52 36358.09 35460.02 35478.32 35422.38 36584.54 35759.56 35647.03 35781.80 353
JIA-IIPM91.76 24090.70 24094.94 22496.11 24687.51 31193.16 34498.13 18275.79 34497.58 13177.68 35592.84 12197.97 22688.47 26196.54 17099.33 168
PMVScopyleft49.05 2353.75 32951.34 33360.97 34440.80 36834.68 36874.82 35989.62 36137.55 36028.67 36672.12 3567.09 37081.63 35943.17 36168.21 34566.59 357
Y. Furukawa, J. Ponce: Accurate, dense, and robust multiview stereopsis. PAMI (2010)
MVS-HIRNet86.22 29983.19 31195.31 21396.71 24090.29 27992.12 34797.33 25562.85 35386.82 28970.37 35769.37 31997.49 24375.12 33797.99 14598.15 206
gg-mvs-nofinetune93.51 19991.86 22398.47 11497.72 19297.96 7792.62 34598.51 9774.70 34797.33 13669.59 35898.91 397.79 23497.77 11699.56 10499.67 117
Gipumacopyleft66.95 32665.00 32772.79 33991.52 32967.96 35466.16 36095.15 34447.89 35758.54 35567.99 35929.74 36187.54 35550.20 35877.83 31962.87 358
S. Galliani, K. Lasinger, K. Schindler: Massively Parallel Multiview Stereopsis by Surface Normal Diffusion. ICCV 2015
ANet_high56.10 32852.24 33167.66 34249.27 36656.82 36083.94 35682.02 36470.47 35133.28 36564.54 36017.23 36869.16 36245.59 36023.85 36177.02 355
E-PMN52.30 33052.18 33252.67 34571.51 35945.40 36493.62 34376.60 36636.01 36143.50 36264.13 36127.11 36367.31 36331.06 36326.06 35945.30 362
test_post63.35 36294.43 6998.13 218
MVEpermissive53.74 2251.54 33147.86 33562.60 34359.56 36550.93 36279.41 35877.69 36535.69 36236.27 36461.76 3635.79 37269.63 36137.97 36236.61 35867.24 356
Simon Fuhrmann, Fabian Langguth, Michael Goesele: MVE - A Multi-View Reconstruction Environment. EUROGRAPHICS Workshops on Graphics and Cultural Heritage (2014)
EMVS51.44 33251.22 33452.11 34670.71 36044.97 36694.04 33975.66 36735.34 36342.40 36361.56 36428.93 36265.87 36427.64 36424.73 36045.49 361
test_post195.78 33559.23 36593.20 11497.74 23691.06 227
X-MVStestdata93.83 18992.06 21899.15 6199.94 1497.50 9499.94 5698.42 12796.22 4999.41 5541.37 36694.34 7699.96 5398.92 6099.95 5199.99 20
wuyk23d20.37 33620.84 33918.99 34965.34 36327.73 36950.43 3617.67 3719.50 3668.01 3676.34 3676.13 37126.24 36523.40 36510.69 3642.99 363
uanet_test0.00 3390.00 3420.00 3500.00 3710.00 3720.00 3620.00 3720.00 3670.00 3680.00 3680.00 3730.00 3680.00 3660.00 3660.00 364
pcd_1.5k_mvsjas7.60 33810.13 3410.00 3500.00 3710.00 3720.00 3620.00 3720.00 3670.00 3680.00 36891.20 1500.00 3680.00 3660.00 3660.00 364
sosnet-low-res0.00 3390.00 3420.00 3500.00 3710.00 3720.00 3620.00 3720.00 3670.00 3680.00 3680.00 3730.00 3680.00 3660.00 3660.00 364
sosnet0.00 3390.00 3420.00 3500.00 3710.00 3720.00 3620.00 3720.00 3670.00 3680.00 3680.00 3730.00 3680.00 3660.00 3660.00 364
uncertanet0.00 3390.00 3420.00 3500.00 3710.00 3720.00 3620.00 3720.00 3670.00 3680.00 3680.00 3730.00 3680.00 3660.00 3660.00 364
Regformer0.00 3390.00 3420.00 3500.00 3710.00 3720.00 3620.00 3720.00 3670.00 3680.00 3680.00 3730.00 3680.00 3660.00 3660.00 364
uanet0.00 3390.00 3420.00 3500.00 3710.00 3720.00 3620.00 3720.00 3670.00 3680.00 3680.00 3730.00 3680.00 3660.00 3660.00 364
IU-MVS99.93 2699.31 798.41 13197.71 899.84 8100.00 1100.00 1100.00 1
save fliter99.82 6598.79 3399.96 2398.40 13297.66 10
test_0728_SECOND99.82 599.94 1499.47 599.95 4198.43 116100.00 199.99 5100.00 1100.00 1
GSMVS99.59 130
test_part299.89 4599.25 1399.49 49
sam_mvs194.72 6499.59 130
sam_mvs94.25 82
MTGPAbinary98.28 158
MTMP99.87 8896.49 316
test9_res99.71 2999.99 20100.00 1
agg_prior299.48 36100.00 1100.00 1
agg_prior99.93 2698.77 3698.43 11699.63 3699.85 94
test_prior498.05 7199.94 56
test_prior99.43 3599.94 1498.49 5798.65 6099.80 10699.99 20
旧先验299.46 18994.21 11299.85 699.95 6096.96 135
新几何299.40 194
无先验99.49 18498.71 5393.46 142100.00 194.36 17699.99 20
原ACMM299.90 74
testdata299.99 3690.54 239
segment_acmp96.68 22
testdata199.28 21496.35 48
test1299.43 3599.74 7798.56 5398.40 13299.65 3394.76 6399.75 12199.98 3399.99 20
plane_prior795.71 26391.59 259
plane_prior695.76 25891.72 25480.47 259
plane_prior597.87 20398.37 20297.79 11489.55 22394.52 231
plane_prior391.64 25796.63 3893.01 203
plane_prior299.84 10696.38 44
plane_prior195.73 260
plane_prior91.74 25199.86 9996.76 3489.59 222
n20.00 372
nn0.00 372
door-mid89.69 360
test1198.44 108
door90.31 358
HQP5-MVS91.85 247
HQP-NCC95.78 25499.87 8896.82 3093.37 199
ACMP_Plane95.78 25499.87 8896.82 3093.37 199
BP-MVS97.92 109
HQP4-MVS93.37 19998.39 19794.53 229
HQP3-MVS97.89 20189.60 220
HQP2-MVS80.65 255
MDTV_nov1_ep13_2view96.26 13796.11 33091.89 19698.06 12194.40 7194.30 17999.67 117
ACMMP++_ref87.04 253
ACMMP++88.23 242
Test By Simon92.82 123