DeepPCF-MVS | | 95.94 2 | 97.71 85 | 98.98 11 | 93.92 270 | 99.63 93 | 81.76 347 | 99.96 25 | 98.56 77 | 99.47 1 | 99.19 80 | 99.99 1 | 94.16 90 | 100.00 1 | 99.92 12 | 99.93 67 | 100.00 1 |
|
CNVR-MVS | | | 99.40 1 | 99.26 1 | 99.84 6 | 99.98 2 | 99.51 6 | 99.98 10 | 98.69 55 | 98.20 3 | 99.93 1 | 99.98 2 | 96.82 22 | 100.00 1 | 99.75 26 | 100.00 1 | 99.99 24 |
|
NCCC | | | 99.37 2 | 99.25 2 | 99.71 13 | 99.96 8 | 99.15 20 | 99.97 18 | 98.62 67 | 98.02 6 | 99.90 2 | 99.95 3 | 97.33 16 | 100.00 1 | 99.54 37 | 100.00 1 | 100.00 1 |
|
SED-MVS | | | 99.28 5 | 99.11 6 | 99.77 8 | 99.93 27 | 99.30 11 | 99.96 25 | 98.43 116 | 97.27 20 | 99.80 16 | 99.94 4 | 96.71 23 | 100.00 1 | 100.00 1 | 100.00 1 | 100.00 1 |
|
test_241102_TWO | | | | | | | | | 98.43 116 | 97.27 20 | 99.80 16 | 99.94 4 | 97.18 20 | 100.00 1 | 100.00 1 | 100.00 1 | 100.00 1 |
|
test0726 | | | | | | 99.93 27 | 99.29 14 | 99.96 25 | 98.42 128 | 97.28 18 | 99.86 4 | 99.94 4 | 97.22 18 | | | | |
|
DPM-MVS | | | 98.83 22 | 98.46 31 | 99.97 1 | 99.33 111 | 99.92 1 | 99.96 25 | 98.44 108 | 97.96 7 | 99.55 48 | 99.94 4 | 97.18 20 | 100.00 1 | 93.81 195 | 99.94 61 | 99.98 55 |
|
SMA-MVS |  | | 98.76 27 | 98.48 30 | 99.62 18 | 99.87 57 | 98.87 31 | 99.86 103 | 98.38 143 | 93.19 155 | 99.77 25 | 99.94 4 | 95.54 43 | 100.00 1 | 99.74 28 | 99.99 22 | 100.00 1 |
Yufeng Yin; Xiaoyan Liu; Zichao Zhang: SMA-MVS: Segmentation-Guided Multi-Scale Anchor Deformation Patch Multi-View Stereo. IEEE Transactions on Circuits and Systems for Video Technology |
DPE-MVS |  | | 99.26 6 | 99.10 7 | 99.74 10 | 99.89 50 | 99.24 18 | 99.87 92 | 98.44 108 | 97.48 15 | 99.64 39 | 99.94 4 | 96.68 25 | 99.99 40 | 99.99 5 | 100.00 1 | 99.99 24 |
Kehua Chen, Zhenlong Yuan, Tianlu Mao, Zhaoqi Wang: Dual-Level Precision Edges Guided Multi-View Stereo with Accurate Planarization. AAAI2025 |
MSLP-MVS++ | | | 99.13 8 | 99.01 10 | 99.49 34 | 99.94 14 | 98.46 63 | 99.98 10 | 98.86 45 | 97.10 25 | 99.80 16 | 99.94 4 | 95.92 36 | 100.00 1 | 99.51 38 | 100.00 1 | 100.00 1 |
|
DVP-MVS++. | | | 99.26 6 | 99.09 8 | 99.77 8 | 99.91 44 | 99.31 9 | 99.95 43 | 98.43 116 | 96.48 42 | 99.80 16 | 99.93 11 | 97.44 13 | 100.00 1 | 99.92 12 | 99.98 35 | 100.00 1 |
|
test_one_0601 | | | | | | 99.94 14 | 99.30 11 | | 98.41 132 | 96.63 39 | 99.75 27 | 99.93 11 | 97.49 9 | | | | |
|
ETH3 D test6400 | | | 98.81 23 | 98.54 27 | 99.59 21 | 99.93 27 | 98.93 26 | 99.93 66 | 98.46 105 | 94.56 101 | 99.84 8 | 99.92 13 | 94.32 83 | 99.86 94 | 99.96 9 | 99.98 35 | 100.00 1 |
|
MCST-MVS | | | 99.32 3 | 99.14 4 | 99.86 5 | 99.97 3 | 99.59 5 | 99.97 18 | 98.64 63 | 98.47 2 | 99.13 82 | 99.92 13 | 96.38 29 | 100.00 1 | 99.74 28 | 100.00 1 | 100.00 1 |
|
DVP-MVS |  | | 99.30 4 | 99.16 3 | 99.73 11 | 99.93 27 | 99.29 14 | 99.95 43 | 98.32 156 | 97.28 18 | 99.83 10 | 99.91 15 | 97.22 18 | 100.00 1 | 99.99 5 | 100.00 1 | 99.89 94 |
Zhenlong Yuan, Jinguo Luo, Fei Shen, Zhaoxin Li, Cong Liu, Tianlu Mao, Zhaoqi Wang: DVP-MVS: Synergize Depth-Edge and Visibility Prior for Multi-View Stereo. AAAI2025 |
test_0728_THIRD | | | | | | | | | | 96.48 42 | 99.83 10 | 99.91 15 | 97.87 4 | 100.00 1 | 99.92 12 | 100.00 1 | 100.00 1 |
|
SteuartSystems-ACMMP | | | 99.02 12 | 98.97 12 | 99.18 57 | 98.72 143 | 97.71 87 | 99.98 10 | 98.44 108 | 96.85 30 | 99.80 16 | 99.91 15 | 97.57 6 | 99.85 98 | 99.44 42 | 99.99 22 | 99.99 24 |
Skip Steuart: Steuart Systems R&D Blog. |
DeepC-MVS_fast | | 96.59 1 | 98.81 23 | 98.54 27 | 99.62 18 | 99.90 47 | 98.85 33 | 99.24 221 | 98.47 103 | 98.14 4 | 99.08 83 | 99.91 15 | 93.09 119 | 100.00 1 | 99.04 58 | 99.99 22 | 100.00 1 |
Andreas Kuhn, Christian Sormann, Mattia Rossi, Oliver Erdler, Friedrich Fraundorfer: DeepC-MVS: Deep Confidence Prediction for Multi-View Stereo Reconstruction. 3DV 2020 |
ETH3D-3000-0.1 | | | 98.68 30 | 98.42 32 | 99.47 37 | 99.83 68 | 98.57 55 | 99.90 78 | 98.37 146 | 93.81 137 | 99.81 12 | 99.90 19 | 94.34 79 | 99.86 94 | 99.84 17 | 99.98 35 | 99.97 67 |
|
tmp_tt | | | 65.23 330 | 62.94 333 | 72.13 345 | 44.90 374 | 50.03 370 | 81.05 361 | 89.42 369 | 38.45 365 | 48.51 367 | 99.90 19 | 54.09 358 | 78.70 366 | 91.84 224 | 18.26 368 | 87.64 358 |
|
xxxxxxxxxxxxxcwj | | | 98.98 15 | 98.79 16 | 99.54 26 | 99.82 70 | 98.79 37 | 99.96 25 | 97.52 239 | 97.66 10 | 99.81 12 | 99.89 21 | 94.70 68 | 99.86 94 | 99.84 17 | 99.93 67 | 99.96 74 |
|
SF-MVS | | | 98.67 31 | 98.40 36 | 99.50 32 | 99.77 78 | 98.67 48 | 99.90 78 | 98.21 173 | 93.53 146 | 99.81 12 | 99.89 21 | 94.70 68 | 99.86 94 | 99.84 17 | 99.93 67 | 99.96 74 |
|
9.14 | | | | 98.38 39 | | 99.87 57 | | 99.91 74 | 98.33 154 | 93.22 154 | 99.78 24 | 99.89 21 | 94.57 71 | 99.85 98 | 99.84 17 | 99.97 48 | |
|
test_241102_ONE | | | | | | 99.93 27 | 99.30 11 | | 98.43 116 | 97.26 22 | 99.80 16 | 99.88 24 | 96.71 23 | 100.00 1 | | | |
|
MSP-MVS | | | 99.09 9 | 99.12 5 | 98.98 83 | 99.93 27 | 97.24 109 | 99.95 43 | 98.42 128 | 97.50 14 | 99.52 53 | 99.88 24 | 97.43 15 | 99.71 133 | 99.50 39 | 99.98 35 | 100.00 1 |
Zhenlong Yuan, Cong Liu, Fei Shen, Zhaoxin Li, Jingguo luo, Tianlu Mao and Zhaoqi Wang: MSP-MVS: Multi-granularity Segmentation Prior Guided Multi-View Stereo. AAAI2025 |
zzz-MVS | | | 98.33 56 | 98.00 63 | 99.30 50 | 99.85 60 | 97.93 82 | 99.80 124 | 98.28 163 | 95.76 65 | 97.18 145 | 99.88 24 | 92.74 127 | 100.00 1 | 98.67 82 | 99.88 80 | 99.99 24 |
|
MTAPA | | | 98.29 59 | 97.96 68 | 99.30 50 | 99.85 60 | 97.93 82 | 99.39 202 | 98.28 163 | 95.76 65 | 97.18 145 | 99.88 24 | 92.74 127 | 100.00 1 | 98.67 82 | 99.88 80 | 99.99 24 |
|
ETH3D cwj APD-0.16 | | | 98.40 52 | 98.07 60 | 99.40 44 | 99.59 95 | 98.41 64 | 99.86 103 | 98.24 169 | 92.18 194 | 99.73 29 | 99.87 28 | 93.47 106 | 99.85 98 | 99.74 28 | 99.95 55 | 99.93 85 |
|
CDPH-MVS | | | 98.65 32 | 98.36 43 | 99.49 34 | 99.94 14 | 98.73 45 | 99.87 92 | 98.33 154 | 93.97 129 | 99.76 26 | 99.87 28 | 94.99 61 | 99.75 125 | 98.55 89 | 100.00 1 | 99.98 55 |
|
CP-MVS | | | 98.45 47 | 98.32 45 | 98.87 89 | 99.96 8 | 96.62 130 | 99.97 18 | 98.39 139 | 94.43 106 | 98.90 92 | 99.87 28 | 94.30 84 | 100.00 1 | 99.04 58 | 99.99 22 | 99.99 24 |
|
xiu_mvs_v2_base | | | 98.23 64 | 97.97 65 | 99.02 80 | 98.69 144 | 98.66 50 | 99.52 182 | 98.08 190 | 97.05 26 | 99.86 4 | 99.86 31 | 90.65 166 | 99.71 133 | 99.39 45 | 98.63 134 | 98.69 207 |
|
TEST9 | | | | | | 99.92 36 | 98.92 27 | 99.96 25 | 98.43 116 | 93.90 134 | 99.71 35 | 99.86 31 | 95.88 37 | 99.85 98 | | | |
|
train_agg | | | 98.88 20 | 98.65 21 | 99.59 21 | 99.92 36 | 98.92 27 | 99.96 25 | 98.43 116 | 94.35 111 | 99.71 35 | 99.86 31 | 95.94 34 | 99.85 98 | 99.69 35 | 99.98 35 | 99.99 24 |
|
LS3D | | | 95.84 147 | 95.11 157 | 98.02 139 | 99.85 60 | 95.10 184 | 98.74 270 | 98.50 101 | 87.22 286 | 93.66 203 | 99.86 31 | 87.45 201 | 99.95 64 | 90.94 238 | 99.81 91 | 99.02 194 |
|
MP-MVS-pluss | | | 98.07 69 | 97.64 75 | 99.38 47 | 99.74 82 | 98.41 64 | 99.74 142 | 98.18 178 | 93.35 150 | 96.45 162 | 99.85 35 | 92.64 130 | 99.97 55 | 98.91 66 | 99.89 78 | 99.77 108 |
MP-MVS-pluss: MP-MVS-pluss. MP-MVS-pluss |
test_8 | | | | | | 99.92 36 | 98.88 30 | 99.96 25 | 98.43 116 | 94.35 111 | 99.69 37 | 99.85 35 | 95.94 34 | 99.85 98 | | | |
|
agg_prior1 | | | 98.88 20 | 98.66 20 | 99.54 26 | 99.93 27 | 98.77 40 | 99.96 25 | 98.43 116 | 94.63 99 | 99.63 40 | 99.85 35 | 95.79 40 | 99.85 98 | 99.72 32 | 99.99 22 | 99.99 24 |
|
HFP-MVS | | | 98.56 38 | 98.37 41 | 99.14 66 | 99.96 8 | 97.43 104 | 99.95 43 | 98.61 69 | 94.77 91 | 99.31 70 | 99.85 35 | 94.22 86 | 100.00 1 | 98.70 80 | 99.98 35 | 99.98 55 |
|
region2R | | | 98.54 40 | 98.37 41 | 99.05 76 | 99.96 8 | 97.18 112 | 99.96 25 | 98.55 83 | 94.87 89 | 99.45 57 | 99.85 35 | 94.07 92 | 100.00 1 | 98.67 82 | 100.00 1 | 99.98 55 |
|
PS-MVSNAJ | | | 98.44 48 | 98.20 51 | 99.16 62 | 98.80 140 | 98.92 27 | 99.54 180 | 98.17 179 | 97.34 16 | 99.85 6 | 99.85 35 | 91.20 155 | 99.89 83 | 99.41 44 | 99.67 99 | 98.69 207 |
|
#test# | | | 98.59 36 | 98.41 34 | 99.14 66 | 99.96 8 | 97.43 104 | 99.95 43 | 98.61 69 | 95.00 84 | 99.31 70 | 99.85 35 | 94.22 86 | 100.00 1 | 98.78 76 | 99.98 35 | 99.98 55 |
|
HPM-MVS++ |  | | 99.07 10 | 98.88 14 | 99.63 15 | 99.90 47 | 99.02 23 | 99.95 43 | 98.56 77 | 97.56 13 | 99.44 58 | 99.85 35 | 95.38 48 | 100.00 1 | 99.31 47 | 99.99 22 | 99.87 97 |
|
旧先验1 | | | | | | 99.76 79 | 97.52 96 | | 98.64 63 | | | 99.85 35 | 95.63 42 | | | 99.94 61 | 99.99 24 |
|
原ACMM1 | | | | | 98.96 85 | 99.73 86 | 96.99 119 | | 98.51 97 | 94.06 125 | 99.62 43 | 99.85 35 | 94.97 62 | 99.96 57 | 95.11 161 | 99.95 55 | 99.92 91 |
|
testdata | | | | | 98.42 122 | 99.47 105 | 95.33 176 | | 98.56 77 | 93.78 139 | 99.79 23 | 99.85 35 | 93.64 104 | 99.94 72 | 94.97 163 | 99.94 61 | 100.00 1 |
|
APDe-MVS | | | 99.06 11 | 98.91 13 | 99.51 31 | 99.94 14 | 98.76 44 | 99.91 74 | 98.39 139 | 97.20 24 | 99.46 56 | 99.85 35 | 95.53 45 | 99.79 113 | 99.86 16 | 100.00 1 | 99.99 24 |
|
API-MVS | | | 97.86 75 | 97.66 74 | 98.47 117 | 99.52 101 | 95.41 174 | 99.47 191 | 98.87 44 | 91.68 209 | 98.84 93 | 99.85 35 | 92.34 137 | 99.99 40 | 98.44 92 | 99.96 52 | 100.00 1 |
|
testtj | | | 98.89 19 | 98.69 19 | 99.52 29 | 99.94 14 | 98.56 57 | 99.90 78 | 98.55 83 | 95.14 82 | 99.72 33 | 99.84 48 | 95.46 46 | 100.00 1 | 99.65 36 | 99.99 22 | 99.99 24 |
|
ACMMPR | | | 98.50 43 | 98.32 45 | 99.05 76 | 99.96 8 | 97.18 112 | 99.95 43 | 98.60 71 | 94.77 91 | 99.31 70 | 99.84 48 | 93.73 101 | 100.00 1 | 98.70 80 | 99.98 35 | 99.98 55 |
|
DP-MVS Recon | | | 98.41 50 | 98.02 62 | 99.56 24 | 99.97 3 | 98.70 47 | 99.92 70 | 98.44 108 | 92.06 199 | 98.40 116 | 99.84 48 | 95.68 41 | 100.00 1 | 98.19 99 | 99.71 97 | 99.97 67 |
|
ZD-MVS | | | | | | 99.92 36 | 98.57 55 | | 98.52 90 | 92.34 190 | 99.31 70 | 99.83 51 | 95.06 55 | 99.80 110 | 99.70 34 | 99.97 48 | |
|
ACMMP_NAP | | | 98.49 44 | 98.14 55 | 99.54 26 | 99.66 92 | 98.62 54 | 99.85 106 | 98.37 146 | 94.68 96 | 99.53 50 | 99.83 51 | 92.87 123 | 100.00 1 | 98.66 85 | 99.84 84 | 99.99 24 |
|
test222 | | | | | | 99.55 99 | 97.41 107 | 99.34 208 | 98.55 83 | 91.86 203 | 99.27 75 | 99.83 51 | 93.84 99 | | | 99.95 55 | 99.99 24 |
|
1121 | | | 98.03 70 | 97.57 80 | 99.40 44 | 99.74 82 | 98.21 70 | 98.31 293 | 98.62 67 | 92.78 167 | 99.53 50 | 99.83 51 | 95.08 53 | 100.00 1 | 94.36 182 | 99.92 71 | 99.99 24 |
|
ZNCC-MVS | | | 98.31 57 | 98.03 61 | 99.17 60 | 99.88 54 | 97.59 92 | 99.94 60 | 98.44 108 | 94.31 114 | 98.50 111 | 99.82 55 | 93.06 120 | 99.99 40 | 98.30 98 | 99.99 22 | 99.93 85 |
|
æ–°å‡ ä½•1 | | | | | 99.42 41 | 99.75 81 | 98.27 69 | | 98.63 66 | 92.69 172 | 99.55 48 | 99.82 55 | 94.40 74 | 100.00 1 | 91.21 229 | 99.94 61 | 99.99 24 |
|
CSCG | | | 97.10 105 | 97.04 99 | 97.27 169 | 99.89 50 | 91.92 253 | 99.90 78 | 99.07 31 | 88.67 266 | 95.26 185 | 99.82 55 | 93.17 118 | 99.98 46 | 98.15 102 | 99.47 113 | 99.90 93 |
|
MAR-MVS | | | 97.43 91 | 97.19 93 | 98.15 134 | 99.47 105 | 94.79 193 | 99.05 241 | 98.76 51 | 92.65 175 | 98.66 104 | 99.82 55 | 88.52 194 | 99.98 46 | 98.12 103 | 99.63 101 | 99.67 120 |
Zhenyu Xu, Yiguang Liu, Xuelei Shi, Ying Wang, Yunan Zheng: MARMVS: Matching Ambiguity Reduced Multiple View Stereo for Efficient Large Scale Scene Reconstruction. CVPR 2020 |
MP-MVS |  | | 98.23 64 | 97.97 65 | 99.03 78 | 99.94 14 | 97.17 115 | 99.95 43 | 98.39 139 | 94.70 94 | 98.26 123 | 99.81 59 | 91.84 147 | 100.00 1 | 98.85 70 | 99.97 48 | 99.93 85 |
Rongxuan Tan, Qing Wang, et al.: MP-MVS: Multi-Scale Windows PatchMatch and Planar Prior Multi-View Stereo. |
test1172 | | | 98.38 54 | 98.25 48 | 98.77 93 | 99.88 54 | 96.56 133 | 99.80 124 | 98.36 148 | 94.68 96 | 99.20 77 | 99.80 60 | 93.28 113 | 99.78 115 | 99.34 46 | 99.92 71 | 99.98 55 |
|
OPU-MVS | | | | | 99.93 2 | 99.89 50 | 99.80 2 | 99.96 25 | | | | 99.80 60 | 97.44 13 | 100.00 1 | 100.00 1 | 99.98 35 | 100.00 1 |
|
SR-MVS | | | 98.46 46 | 98.30 47 | 98.93 87 | 99.88 54 | 97.04 117 | 99.84 110 | 98.35 151 | 94.92 86 | 99.32 69 | 99.80 60 | 93.35 108 | 99.78 115 | 99.30 48 | 99.95 55 | 99.96 74 |
|
mPP-MVS | | | 98.39 53 | 98.20 51 | 98.97 84 | 99.97 3 | 96.92 122 | 99.95 43 | 98.38 143 | 95.04 83 | 98.61 107 | 99.80 60 | 93.39 107 | 100.00 1 | 98.64 86 | 100.00 1 | 99.98 55 |
|
PC_three_1452 | | | | | | | | | | 96.96 29 | 99.80 16 | 99.79 64 | 97.49 9 | 100.00 1 | 99.99 5 | 99.98 35 | 100.00 1 |
|
Regformer-1 | | | 98.79 25 | 98.60 24 | 99.36 48 | 99.85 60 | 98.34 66 | 99.87 92 | 98.52 90 | 96.05 56 | 99.41 61 | 99.79 64 | 94.93 63 | 99.76 122 | 99.07 53 | 99.90 76 | 99.99 24 |
|
Regformer-2 | | | 98.78 26 | 98.59 25 | 99.36 48 | 99.85 60 | 98.32 67 | 99.87 92 | 98.52 90 | 96.04 57 | 99.41 61 | 99.79 64 | 94.92 64 | 99.76 122 | 99.05 54 | 99.90 76 | 99.98 55 |
|
CPTT-MVS | | | 97.64 87 | 97.32 90 | 98.58 108 | 99.97 3 | 95.77 162 | 99.96 25 | 98.35 151 | 89.90 246 | 98.36 117 | 99.79 64 | 91.18 158 | 99.99 40 | 98.37 94 | 99.99 22 | 99.99 24 |
|
MVS_111021_LR | | | 98.42 49 | 98.38 39 | 98.53 114 | 99.39 108 | 95.79 161 | 99.87 92 | 99.86 2 | 96.70 37 | 98.78 96 | 99.79 64 | 92.03 143 | 99.90 79 | 99.17 50 | 99.86 83 | 99.88 96 |
|
XVS | | | 98.70 29 | 98.55 26 | 99.15 64 | 99.94 14 | 97.50 99 | 99.94 60 | 98.42 128 | 96.22 52 | 99.41 61 | 99.78 69 | 94.34 79 | 99.96 57 | 98.92 64 | 99.95 55 | 99.99 24 |
|
PHI-MVS | | | 98.41 50 | 98.21 50 | 99.03 78 | 99.86 59 | 97.10 116 | 99.98 10 | 98.80 50 | 90.78 233 | 99.62 43 | 99.78 69 | 95.30 49 | 100.00 1 | 99.80 22 | 99.93 67 | 99.99 24 |
|
Regformer-3 | | | 98.58 37 | 98.41 34 | 99.10 72 | 99.84 65 | 97.57 93 | 99.66 158 | 98.52 90 | 95.79 62 | 99.01 87 | 99.77 71 | 94.40 74 | 99.75 125 | 98.82 72 | 99.83 85 | 99.98 55 |
|
Regformer-4 | | | 98.56 38 | 98.39 38 | 99.08 74 | 99.84 65 | 97.52 96 | 99.66 158 | 98.52 90 | 95.76 65 | 99.01 87 | 99.77 71 | 94.33 82 | 99.75 125 | 98.80 75 | 99.83 85 | 99.98 55 |
|
APD-MVS_3200maxsize | | | 98.25 63 | 98.08 59 | 98.78 92 | 99.81 73 | 96.60 131 | 99.82 117 | 98.30 161 | 93.95 131 | 99.37 67 | 99.77 71 | 92.84 124 | 99.76 122 | 98.95 61 | 99.92 71 | 99.97 67 |
|
MVS_111021_HR | | | 98.72 28 | 98.62 23 | 99.01 81 | 99.36 110 | 97.18 112 | 99.93 66 | 99.90 1 | 96.81 34 | 98.67 103 | 99.77 71 | 93.92 95 | 99.89 83 | 99.27 49 | 99.94 61 | 99.96 74 |
|
EI-MVSNet-Vis-set | | | 98.27 60 | 98.11 58 | 98.75 95 | 99.83 68 | 96.59 132 | 99.40 198 | 98.51 97 | 95.29 79 | 98.51 110 | 99.76 75 | 93.60 105 | 99.71 133 | 98.53 90 | 99.52 110 | 99.95 82 |
|
test_prior3 | | | 98.99 14 | 98.84 15 | 99.43 38 | 99.94 14 | 98.49 61 | 99.95 43 | 98.65 60 | 95.78 63 | 99.73 29 | 99.76 75 | 96.00 32 | 99.80 110 | 99.78 24 | 100.00 1 | 99.99 24 |
|
test_prior2 | | | | | | | | 99.95 43 | | 95.78 63 | 99.73 29 | 99.76 75 | 96.00 32 | | 99.78 24 | 100.00 1 | |
|
SD-MVS | | | 98.92 17 | 98.70 18 | 99.56 24 | 99.70 90 | 98.73 45 | 99.94 60 | 98.34 153 | 96.38 47 | 99.81 12 | 99.76 75 | 94.59 70 | 99.98 46 | 99.84 17 | 99.96 52 | 99.97 67 |
Zhenlong Yuan, Jiakai Cao, Zhaoxin Li, Hao Jiang and Zhaoqi Wang: SD-MVS: Segmentation-driven Deformation Multi-View Stereo with Spherical Refinement and EM optimization. AAAI2024 |
PGM-MVS | | | 98.34 55 | 98.13 56 | 98.99 82 | 99.92 36 | 97.00 118 | 99.75 139 | 99.50 16 | 93.90 134 | 99.37 67 | 99.76 75 | 93.24 116 | 100.00 1 | 97.75 124 | 99.96 52 | 99.98 55 |
|
SR-MVS-dyc-post | | | 98.31 57 | 98.17 53 | 98.71 96 | 99.79 75 | 96.37 140 | 99.76 136 | 98.31 158 | 94.43 106 | 99.40 65 | 99.75 80 | 93.28 113 | 99.78 115 | 98.90 67 | 99.92 71 | 99.97 67 |
|
RE-MVS-def | | | | 98.13 56 | | 99.79 75 | 96.37 140 | 99.76 136 | 98.31 158 | 94.43 106 | 99.40 65 | 99.75 80 | 92.95 122 | | 98.90 67 | 99.92 71 | 99.97 67 |
|
EI-MVSNet-UG-set | | | 98.14 66 | 97.99 64 | 98.60 105 | 99.80 74 | 96.27 142 | 99.36 207 | 98.50 101 | 95.21 81 | 98.30 120 | 99.75 80 | 93.29 112 | 99.73 132 | 98.37 94 | 99.30 119 | 99.81 102 |
|
PAPR | | | 98.52 42 | 98.16 54 | 99.58 23 | 99.97 3 | 98.77 40 | 99.95 43 | 98.43 116 | 95.35 77 | 98.03 128 | 99.75 80 | 94.03 93 | 99.98 46 | 98.11 104 | 99.83 85 | 99.99 24 |
|
GST-MVS | | | 98.27 60 | 97.97 65 | 99.17 60 | 99.92 36 | 97.57 93 | 99.93 66 | 98.39 139 | 94.04 127 | 98.80 95 | 99.74 84 | 92.98 121 | 100.00 1 | 98.16 101 | 99.76 93 | 99.93 85 |
|
TSAR-MVS + MP. | | | 98.93 16 | 98.77 17 | 99.41 42 | 99.74 82 | 98.67 48 | 99.77 131 | 98.38 143 | 96.73 36 | 99.88 3 | 99.74 84 | 94.89 65 | 99.59 144 | 99.80 22 | 99.98 35 | 99.97 67 |
Zhenlong Yuan, Jiakai Cao, Zhaoqi Wang, Zhaoxin Li: TSAR-MVS: Textureless-aware Segmentation and Correlative Refinement Guided Multi-View Stereo. Pattern Recognition |
APD-MVS |  | | 98.62 33 | 98.35 44 | 99.41 42 | 99.90 47 | 98.51 60 | 99.87 92 | 98.36 148 | 94.08 122 | 99.74 28 | 99.73 86 | 94.08 91 | 99.74 129 | 99.42 43 | 99.99 22 | 99.99 24 |
Yuesong Wang, Zhaojie Zeng and etc.: Adaptive Patch Deformation for Textureless-Resilient Multi-View Stereo. CVPR2023 |
MG-MVS | | | 98.91 18 | 98.65 21 | 99.68 14 | 99.94 14 | 99.07 22 | 99.64 165 | 99.44 18 | 97.33 17 | 99.00 89 | 99.72 87 | 94.03 93 | 99.98 46 | 98.73 79 | 100.00 1 | 100.00 1 |
|
AdaColmap |  | | 97.23 102 | 96.80 106 | 98.51 115 | 99.99 1 | 95.60 170 | 99.09 230 | 98.84 47 | 93.32 151 | 96.74 155 | 99.72 87 | 86.04 214 | 100.00 1 | 98.01 109 | 99.43 116 | 99.94 84 |
|
CANet | | | 98.27 60 | 97.82 71 | 99.63 15 | 99.72 88 | 99.10 21 | 99.98 10 | 98.51 97 | 97.00 28 | 98.52 109 | 99.71 89 | 87.80 197 | 99.95 64 | 99.75 26 | 99.38 117 | 99.83 100 |
|
ACMMP |  | | 97.74 83 | 97.44 83 | 98.66 100 | 99.92 36 | 96.13 151 | 99.18 225 | 99.45 17 | 94.84 90 | 96.41 165 | 99.71 89 | 91.40 151 | 99.99 40 | 97.99 111 | 98.03 150 | 99.87 97 |
Qingshan Xu, Weihang Kong, Wenbing Tao, Marc Pollefeys: Multi-Scale Geometric Consistency Guided and Planar Prior Assisted Multi-View Stereo. IEEE Transactions on Pattern Analysis and Machine Intelligence |
abl_6 | | | 97.67 86 | 97.34 88 | 98.66 100 | 99.68 91 | 96.11 154 | 99.68 155 | 98.14 185 | 93.80 138 | 99.27 75 | 99.70 91 | 88.65 193 | 99.98 46 | 97.46 128 | 99.72 96 | 99.89 94 |
|
PAPM_NR | | | 98.12 67 | 97.93 69 | 98.70 97 | 99.94 14 | 96.13 151 | 99.82 117 | 98.43 116 | 94.56 101 | 97.52 138 | 99.70 91 | 94.40 74 | 99.98 46 | 97.00 139 | 99.98 35 | 99.99 24 |
|
OMC-MVS | | | 97.28 99 | 97.23 92 | 97.41 162 | 99.76 79 | 93.36 223 | 99.65 161 | 97.95 200 | 96.03 58 | 97.41 141 | 99.70 91 | 89.61 177 | 99.51 147 | 96.73 146 | 98.25 144 | 99.38 167 |
|
xiu_mvs_v1_base_debu | | | 97.43 91 | 97.06 96 | 98.55 109 | 97.74 193 | 98.14 71 | 99.31 212 | 97.86 210 | 96.43 44 | 99.62 43 | 99.69 94 | 85.56 218 | 99.68 137 | 99.05 54 | 98.31 141 | 97.83 216 |
|
xiu_mvs_v1_base | | | 97.43 91 | 97.06 96 | 98.55 109 | 97.74 193 | 98.14 71 | 99.31 212 | 97.86 210 | 96.43 44 | 99.62 43 | 99.69 94 | 85.56 218 | 99.68 137 | 99.05 54 | 98.31 141 | 97.83 216 |
|
xiu_mvs_v1_base_debi | | | 97.43 91 | 97.06 96 | 98.55 109 | 97.74 193 | 98.14 71 | 99.31 212 | 97.86 210 | 96.43 44 | 99.62 43 | 99.69 94 | 85.56 218 | 99.68 137 | 99.05 54 | 98.31 141 | 97.83 216 |
|
CNLPA | | | 97.76 82 | 97.38 85 | 98.92 88 | 99.53 100 | 96.84 123 | 99.87 92 | 98.14 185 | 93.78 139 | 96.55 160 | 99.69 94 | 92.28 138 | 99.98 46 | 97.13 135 | 99.44 115 | 99.93 85 |
|
cdsmvs_eth3d_5k | | | 23.43 338 | 31.24 341 | 0.00 355 | 0.00 378 | 0.00 379 | 0.00 366 | 98.09 188 | 0.00 373 | 0.00 374 | 99.67 98 | 83.37 236 | 0.00 374 | 0.00 372 | 0.00 372 | 0.00 370 |
|
lupinMVS | | | 97.85 76 | 97.60 78 | 98.62 103 | 97.28 221 | 97.70 89 | 99.99 5 | 97.55 233 | 95.50 75 | 99.43 59 | 99.67 98 | 90.92 162 | 98.71 179 | 98.40 93 | 99.62 102 | 99.45 160 |
|
114514_t | | | 97.41 95 | 96.83 104 | 99.14 66 | 99.51 103 | 97.83 84 | 99.89 86 | 98.27 166 | 88.48 270 | 99.06 84 | 99.66 100 | 90.30 170 | 99.64 143 | 96.32 149 | 99.97 48 | 99.96 74 |
|
PAPM | | | 98.60 34 | 98.42 32 | 99.14 66 | 96.05 255 | 98.96 24 | 99.90 78 | 99.35 23 | 96.68 38 | 98.35 118 | 99.66 100 | 96.45 28 | 98.51 189 | 99.45 41 | 99.89 78 | 99.96 74 |
|
CANet_DTU | | | 96.76 118 | 96.15 122 | 98.60 105 | 98.78 141 | 97.53 95 | 99.84 110 | 97.63 222 | 97.25 23 | 99.20 77 | 99.64 102 | 81.36 251 | 99.98 46 | 92.77 215 | 98.89 128 | 98.28 210 |
|
XVG-OURS | | | 94.82 167 | 94.74 164 | 95.06 225 | 98.00 175 | 89.19 300 | 99.08 232 | 97.55 233 | 94.10 121 | 94.71 189 | 99.62 103 | 80.51 262 | 99.74 129 | 96.04 152 | 93.06 222 | 96.25 229 |
|
MVS | | | 96.60 126 | 95.56 145 | 99.72 12 | 96.85 238 | 99.22 19 | 98.31 293 | 98.94 36 | 91.57 212 | 90.90 227 | 99.61 104 | 86.66 209 | 99.96 57 | 97.36 130 | 99.88 80 | 99.99 24 |
|
EIA-MVS | | | 97.53 89 | 97.46 82 | 97.76 149 | 98.04 174 | 94.84 190 | 99.98 10 | 97.61 227 | 94.41 109 | 97.90 131 | 99.59 105 | 92.40 135 | 98.87 167 | 98.04 108 | 99.13 125 | 99.59 135 |
|
XVG-OURS-SEG-HR | | | 94.79 168 | 94.70 165 | 95.08 224 | 98.05 173 | 89.19 300 | 99.08 232 | 97.54 235 | 93.66 143 | 94.87 188 | 99.58 106 | 78.78 275 | 99.79 113 | 97.31 131 | 93.40 218 | 96.25 229 |
|
HPM-MVS |  | | 97.96 71 | 97.72 73 | 98.68 98 | 99.84 65 | 96.39 139 | 99.90 78 | 98.17 179 | 92.61 177 | 98.62 106 | 99.57 107 | 91.87 146 | 99.67 140 | 98.87 69 | 99.99 22 | 99.99 24 |
Chunlin Ren, Qingshan Xu, Shikun Zhang, Jiaqi Yang: Hierarchical Prior Mining for Non-local Multi-View Stereo. ICCV 2023 |
TSAR-MVS + GP. | | | 98.60 34 | 98.51 29 | 98.86 90 | 99.73 86 | 96.63 129 | 99.97 18 | 97.92 204 | 98.07 5 | 98.76 99 | 99.55 108 | 95.00 60 | 99.94 72 | 99.91 15 | 97.68 154 | 99.99 24 |
|
DP-MVS | | | 94.54 178 | 93.42 193 | 97.91 143 | 99.46 107 | 94.04 205 | 98.93 253 | 97.48 244 | 81.15 336 | 90.04 236 | 99.55 108 | 87.02 206 | 99.95 64 | 88.97 261 | 98.11 145 | 99.73 112 |
|
MVSFormer | | | 96.94 110 | 96.60 111 | 97.95 140 | 97.28 221 | 97.70 89 | 99.55 178 | 97.27 265 | 91.17 222 | 99.43 59 | 99.54 110 | 90.92 162 | 96.89 286 | 94.67 176 | 99.62 102 | 99.25 181 |
|
jason | | | 97.24 101 | 96.86 103 | 98.38 125 | 95.73 267 | 97.32 108 | 99.97 18 | 97.40 254 | 95.34 78 | 98.60 108 | 99.54 110 | 87.70 198 | 98.56 186 | 97.94 114 | 99.47 113 | 99.25 181 |
jason: jason. |
HPM-MVS_fast | | | 97.80 80 | 97.50 81 | 98.68 98 | 99.79 75 | 96.42 136 | 99.88 89 | 98.16 182 | 91.75 208 | 98.94 91 | 99.54 110 | 91.82 148 | 99.65 142 | 97.62 126 | 99.99 22 | 99.99 24 |
|
DeepC-MVS | | 94.51 4 | 96.92 112 | 96.40 118 | 98.45 119 | 99.16 115 | 95.90 158 | 99.66 158 | 98.06 191 | 96.37 50 | 94.37 194 | 99.49 113 | 83.29 237 | 99.90 79 | 97.63 125 | 99.61 105 | 99.55 144 |
Andreas Kuhn, Christian Sormann, Mattia Rossi, Oliver Erdler, Friedrich Fraundorfer: DeepC-MVS: Deep Confidence Prediction for Multi-View Stereo Reconstruction. 3DV 2020 |
alignmvs | | | 97.81 79 | 97.33 89 | 99.25 52 | 98.77 142 | 98.66 50 | 99.99 5 | 98.44 108 | 94.40 110 | 98.41 114 | 99.47 114 | 93.65 103 | 99.42 155 | 98.57 88 | 94.26 210 | 99.67 120 |
|
TAPA-MVS | | 92.12 8 | 94.42 182 | 93.60 186 | 96.90 177 | 99.33 111 | 91.78 257 | 99.78 128 | 98.00 194 | 89.89 247 | 94.52 191 | 99.47 114 | 91.97 144 | 99.18 159 | 69.90 350 | 99.52 110 | 99.73 112 |
Andrea Romanoni, Matteo Matteucci: TAPA-MVS: Textureless-Aware PAtchMatch Multi-View Stereo. ICCV 2019 |
ETV-MVS | | | 97.92 74 | 97.80 72 | 98.25 129 | 98.14 170 | 96.48 134 | 99.98 10 | 97.63 222 | 95.61 71 | 99.29 74 | 99.46 116 | 92.55 132 | 98.82 169 | 99.02 60 | 98.54 135 | 99.46 158 |
|
ET-MVSNet_ETH3D | | | 94.37 184 | 93.28 199 | 97.64 153 | 98.30 156 | 97.99 78 | 99.99 5 | 97.61 227 | 94.35 111 | 71.57 355 | 99.45 117 | 96.23 30 | 95.34 330 | 96.91 144 | 85.14 272 | 99.59 135 |
|
canonicalmvs | | | 97.09 107 | 96.32 119 | 99.39 46 | 98.93 128 | 98.95 25 | 99.72 150 | 97.35 257 | 94.45 104 | 97.88 132 | 99.42 118 | 86.71 208 | 99.52 146 | 98.48 91 | 93.97 214 | 99.72 114 |
|
VDD-MVS | | | 93.77 196 | 92.94 202 | 96.27 198 | 98.55 147 | 90.22 287 | 98.77 269 | 97.79 215 | 90.85 231 | 96.82 153 | 99.42 118 | 61.18 351 | 99.77 119 | 98.95 61 | 94.13 211 | 98.82 202 |
|
CS-MVS | | | 97.74 83 | 97.61 77 | 98.15 134 | 97.52 208 | 96.69 127 | 100.00 1 | 97.11 279 | 94.93 85 | 99.73 29 | 99.41 120 | 91.68 149 | 98.25 219 | 98.84 71 | 99.24 121 | 99.52 151 |
|
1112_ss | | | 96.01 144 | 95.20 154 | 98.42 122 | 97.80 188 | 96.41 137 | 99.65 161 | 96.66 318 | 92.71 170 | 92.88 213 | 99.40 121 | 92.16 140 | 99.30 156 | 91.92 222 | 93.66 215 | 99.55 144 |
|
ab-mvs-re | | | 8.28 340 | 11.04 343 | 0.00 355 | 0.00 378 | 0.00 379 | 0.00 366 | 0.00 379 | 0.00 373 | 0.00 374 | 99.40 121 | 0.00 378 | 0.00 374 | 0.00 372 | 0.00 372 | 0.00 370 |
|
LFMVS | | | 94.75 171 | 93.56 189 | 98.30 127 | 99.03 119 | 95.70 167 | 98.74 270 | 97.98 197 | 87.81 279 | 98.47 112 | 99.39 123 | 67.43 333 | 99.53 145 | 98.01 109 | 95.20 203 | 99.67 120 |
|
WTY-MVS | | | 98.10 68 | 97.60 78 | 99.60 20 | 98.92 130 | 99.28 16 | 99.89 86 | 99.52 13 | 95.58 72 | 98.24 124 | 99.39 123 | 93.33 109 | 99.74 129 | 97.98 113 | 95.58 197 | 99.78 107 |
|
PMMVS | | | 96.76 118 | 96.76 107 | 96.76 181 | 98.28 159 | 92.10 248 | 99.91 74 | 97.98 197 | 94.12 120 | 99.53 50 | 99.39 123 | 86.93 207 | 98.73 177 | 96.95 142 | 97.73 152 | 99.45 160 |
|
EPNet | | | 98.49 44 | 98.40 36 | 98.77 93 | 99.62 94 | 96.80 125 | 99.90 78 | 99.51 15 | 97.60 12 | 99.20 77 | 99.36 126 | 93.71 102 | 99.91 78 | 97.99 111 | 98.71 133 | 99.61 132 |
Wanjuan Su, Wenbing Tao: Efficient Edge-Preserving Multi-View Stereo Network for Depth Estimation. AAAI 2023 |
DROMVSNet | | | 97.38 97 | 97.24 91 | 97.80 144 | 97.41 211 | 95.64 169 | 99.99 5 | 97.06 284 | 94.59 100 | 99.63 40 | 99.32 127 | 89.20 186 | 98.14 223 | 98.76 78 | 99.23 122 | 99.62 129 |
|
VDDNet | | | 93.12 209 | 91.91 224 | 96.76 181 | 96.67 248 | 92.65 238 | 98.69 275 | 98.21 173 | 82.81 330 | 97.75 135 | 99.28 128 | 61.57 349 | 99.48 153 | 98.09 106 | 94.09 212 | 98.15 212 |
|
diffmvs | | | 97.00 108 | 96.64 110 | 98.09 136 | 97.64 200 | 96.17 150 | 99.81 119 | 97.19 269 | 94.67 98 | 98.95 90 | 99.28 128 | 86.43 211 | 98.76 175 | 98.37 94 | 97.42 160 | 99.33 174 |
|
baseline | | | 96.43 131 | 95.98 128 | 97.76 149 | 97.34 215 | 95.17 183 | 99.51 184 | 97.17 272 | 93.92 133 | 96.90 151 | 99.28 128 | 85.37 221 | 98.64 183 | 97.50 127 | 96.86 174 | 99.46 158 |
|
UA-Net | | | 96.54 127 | 95.96 133 | 98.27 128 | 98.23 164 | 95.71 166 | 98.00 307 | 98.45 107 | 93.72 142 | 98.41 114 | 99.27 131 | 88.71 192 | 99.66 141 | 91.19 230 | 97.69 153 | 99.44 162 |
|
RPSCF | | | 91.80 240 | 92.79 205 | 88.83 327 | 98.15 169 | 69.87 360 | 98.11 303 | 96.60 320 | 83.93 323 | 94.33 195 | 99.27 131 | 79.60 269 | 99.46 154 | 91.99 220 | 93.16 221 | 97.18 225 |
|
PLC |  | 95.54 3 | 97.93 73 | 97.89 70 | 98.05 138 | 99.82 70 | 94.77 194 | 99.92 70 | 98.46 105 | 93.93 132 | 97.20 144 | 99.27 131 | 95.44 47 | 99.97 55 | 97.41 129 | 99.51 112 | 99.41 165 |
Jie Liao, Yanping Fu, Qingan Yan, Chunxia xiao: Pyramid Multi-View Stereo with Local Consistency. Pacific Graphics 2019 |
casdiffmvs | | | 96.42 132 | 95.97 131 | 97.77 148 | 97.30 219 | 94.98 186 | 99.84 110 | 97.09 281 | 93.75 141 | 96.58 158 | 99.26 134 | 85.07 224 | 98.78 172 | 97.77 122 | 97.04 169 | 99.54 148 |
|
CS-MVS-test | | | 97.44 90 | 97.41 84 | 97.53 156 | 97.46 210 | 94.66 196 | 100.00 1 | 97.04 288 | 94.69 95 | 99.72 33 | 99.25 135 | 91.22 153 | 98.29 211 | 98.33 97 | 98.95 127 | 99.64 126 |
|
BH-RMVSNet | | | 95.18 160 | 94.31 171 | 97.80 144 | 98.17 168 | 95.23 181 | 99.76 136 | 97.53 237 | 92.52 184 | 94.27 196 | 99.25 135 | 76.84 286 | 98.80 170 | 90.89 240 | 99.54 109 | 99.35 172 |
|
DELS-MVS | | | 98.54 40 | 98.22 49 | 99.50 32 | 99.15 116 | 98.65 52 | 100.00 1 | 98.58 73 | 97.70 9 | 98.21 125 | 99.24 137 | 92.58 131 | 99.94 72 | 98.63 87 | 99.94 61 | 99.92 91 |
Christian Sormann, Emanuele Santellani, Mattia Rossi, Andreas Kuhn, Friedrich Fraundorfer: DELS-MVS: Deep Epipolar Line Search for Multi-View Stereo. Winter Conference on Applications of Computer Vision (WACV), 2023 |
PCF-MVS | | 94.20 5 | 95.18 160 | 94.10 175 | 98.43 121 | 98.55 147 | 95.99 156 | 97.91 309 | 97.31 262 | 90.35 239 | 89.48 252 | 99.22 138 | 85.19 223 | 99.89 83 | 90.40 249 | 98.47 137 | 99.41 165 |
Andreas Kuhn, Shan Lin, Oliver Erdler: Plane Completion and Filtering for Multi-View Stereo Reconstruction. GCPR 2019 |
PVSNet | | 91.05 13 | 97.13 104 | 96.69 109 | 98.45 119 | 99.52 101 | 95.81 160 | 99.95 43 | 99.65 10 | 94.73 93 | 99.04 85 | 99.21 139 | 84.48 228 | 99.95 64 | 94.92 164 | 98.74 132 | 99.58 141 |
|
MSDG | | | 94.37 184 | 93.36 197 | 97.40 163 | 98.88 135 | 93.95 209 | 99.37 205 | 97.38 255 | 85.75 307 | 90.80 228 | 99.17 140 | 84.11 232 | 99.88 89 | 86.35 290 | 98.43 138 | 98.36 209 |
|
F-COLMAP | | | 96.93 111 | 96.95 102 | 96.87 178 | 99.71 89 | 91.74 258 | 99.85 106 | 97.95 200 | 93.11 158 | 95.72 178 | 99.16 141 | 92.35 136 | 99.94 72 | 95.32 159 | 99.35 118 | 98.92 196 |
|
Vis-MVSNet (Re-imp) | | | 96.32 135 | 95.98 128 | 97.35 167 | 97.93 179 | 94.82 191 | 99.47 191 | 98.15 184 | 91.83 204 | 95.09 186 | 99.11 142 | 91.37 152 | 97.47 251 | 93.47 204 | 97.43 158 | 99.74 111 |
|
CHOSEN 280x420 | | | 99.01 13 | 99.03 9 | 98.95 86 | 99.38 109 | 98.87 31 | 98.46 286 | 99.42 20 | 97.03 27 | 99.02 86 | 99.09 143 | 99.35 1 | 98.21 221 | 99.73 31 | 99.78 92 | 99.77 108 |
|
PVSNet_Blended | | | 97.94 72 | 97.64 75 | 98.83 91 | 99.59 95 | 96.99 119 | 100.00 1 | 99.10 28 | 95.38 76 | 98.27 121 | 99.08 144 | 89.00 188 | 99.95 64 | 99.12 51 | 99.25 120 | 99.57 142 |
|
sss | | | 97.57 88 | 97.03 100 | 99.18 57 | 98.37 154 | 98.04 76 | 99.73 147 | 99.38 21 | 93.46 148 | 98.76 99 | 99.06 145 | 91.21 154 | 99.89 83 | 96.33 148 | 97.01 170 | 99.62 129 |
|
thisisatest0515 | | | 97.41 95 | 97.02 101 | 98.59 107 | 97.71 199 | 97.52 96 | 99.97 18 | 98.54 87 | 91.83 204 | 97.45 140 | 99.04 146 | 97.50 8 | 99.10 161 | 94.75 172 | 96.37 181 | 99.16 186 |
|
EI-MVSNet | | | 93.73 198 | 93.40 196 | 94.74 235 | 96.80 241 | 92.69 235 | 99.06 237 | 97.67 220 | 88.96 259 | 91.39 222 | 99.02 147 | 88.75 191 | 97.30 259 | 91.07 232 | 87.85 251 | 94.22 261 |
|
CVMVSNet | | | 94.68 174 | 94.94 159 | 93.89 272 | 96.80 241 | 86.92 321 | 99.06 237 | 98.98 34 | 94.45 104 | 94.23 197 | 99.02 147 | 85.60 217 | 95.31 331 | 90.91 239 | 95.39 200 | 99.43 163 |
|
EPP-MVSNet | | | 96.69 123 | 96.60 111 | 96.96 175 | 97.74 193 | 93.05 227 | 99.37 205 | 98.56 77 | 88.75 264 | 95.83 176 | 99.01 149 | 96.01 31 | 98.56 186 | 96.92 143 | 97.20 166 | 99.25 181 |
|
COLMAP_ROB |  | 90.47 14 | 92.18 231 | 91.49 233 | 94.25 257 | 99.00 122 | 88.04 316 | 98.42 291 | 96.70 317 | 82.30 333 | 88.43 274 | 99.01 149 | 76.97 284 | 99.85 98 | 86.11 293 | 96.50 178 | 94.86 234 |
Johannes L. Schönberger, Enliang Zheng, Marc Pollefeys, Jan-Michael Frahm: Pixelwise View Selection for Unstructured Multi-View Stereo. ECCV 2016 |
3Dnovator | | 91.47 12 | 96.28 139 | 95.34 150 | 99.08 74 | 96.82 240 | 97.47 102 | 99.45 194 | 98.81 48 | 95.52 74 | 89.39 253 | 99.00 151 | 81.97 243 | 99.95 64 | 97.27 132 | 99.83 85 | 99.84 99 |
|
test_yl | | | 97.83 77 | 97.37 86 | 99.21 54 | 99.18 113 | 97.98 79 | 99.64 165 | 99.27 25 | 91.43 218 | 97.88 132 | 98.99 152 | 95.84 38 | 99.84 107 | 98.82 72 | 95.32 201 | 99.79 104 |
|
DCV-MVSNet | | | 97.83 77 | 97.37 86 | 99.21 54 | 99.18 113 | 97.98 79 | 99.64 165 | 99.27 25 | 91.43 218 | 97.88 132 | 98.99 152 | 95.84 38 | 99.84 107 | 98.82 72 | 95.32 201 | 99.79 104 |
|
1314 | | | 96.84 114 | 95.96 133 | 99.48 36 | 96.74 245 | 98.52 59 | 98.31 293 | 98.86 45 | 95.82 61 | 89.91 239 | 98.98 154 | 87.49 200 | 99.96 57 | 97.80 117 | 99.73 95 | 99.96 74 |
|
3Dnovator+ | | 91.53 11 | 96.31 136 | 95.24 152 | 99.52 29 | 96.88 237 | 98.64 53 | 99.72 150 | 98.24 169 | 95.27 80 | 88.42 276 | 98.98 154 | 82.76 239 | 99.94 72 | 97.10 137 | 99.83 85 | 99.96 74 |
|
thisisatest0530 | | | 97.10 105 | 96.72 108 | 98.22 130 | 97.60 202 | 96.70 126 | 99.92 70 | 98.54 87 | 91.11 225 | 97.07 148 | 98.97 156 | 97.47 11 | 99.03 162 | 93.73 200 | 96.09 184 | 98.92 196 |
|
baseline2 | | | 96.71 122 | 96.49 115 | 97.37 165 | 95.63 274 | 95.96 157 | 99.74 142 | 98.88 43 | 92.94 160 | 91.61 220 | 98.97 156 | 97.72 5 | 98.62 184 | 94.83 168 | 98.08 149 | 97.53 224 |
|
gm-plane-assit | | | | | | 96.97 231 | 93.76 213 | | | 91.47 216 | | 98.96 158 | | 98.79 171 | 94.92 164 | | |
|
IS-MVSNet | | | 96.29 138 | 95.90 137 | 97.45 160 | 98.13 171 | 94.80 192 | 99.08 232 | 97.61 227 | 92.02 200 | 95.54 181 | 98.96 158 | 90.64 167 | 98.08 226 | 93.73 200 | 97.41 161 | 99.47 157 |
|
OpenMVS |  | 90.15 15 | 94.77 170 | 93.59 187 | 98.33 126 | 96.07 254 | 97.48 101 | 99.56 176 | 98.57 75 | 90.46 236 | 86.51 300 | 98.95 160 | 78.57 277 | 99.94 72 | 93.86 191 | 99.74 94 | 97.57 223 |
|
GeoE | | | 94.36 186 | 93.48 191 | 96.99 174 | 97.29 220 | 93.54 217 | 99.96 25 | 96.72 316 | 88.35 273 | 93.43 204 | 98.94 161 | 82.05 242 | 98.05 229 | 88.12 272 | 96.48 179 | 99.37 169 |
|
Vis-MVSNet |  | | 95.72 149 | 95.15 156 | 97.45 160 | 97.62 201 | 94.28 202 | 99.28 218 | 98.24 169 | 94.27 117 | 96.84 152 | 98.94 161 | 79.39 270 | 98.76 175 | 93.25 206 | 98.49 136 | 99.30 177 |
Jingyang Zhang, Yao Yao, Shiwei Li, Zixin Luo, Tian Fang: Visibility-aware Multiview Stereo Network. BMVC 2020 |
tttt0517 | | | 96.85 113 | 96.49 115 | 97.92 142 | 97.48 209 | 95.89 159 | 99.85 106 | 98.54 87 | 90.72 234 | 96.63 157 | 98.93 163 | 97.47 11 | 99.02 163 | 93.03 213 | 95.76 193 | 98.85 200 |
|
DWT-MVSNet_test | | | 97.31 98 | 97.19 93 | 97.66 152 | 98.24 163 | 94.67 195 | 98.86 262 | 98.20 177 | 93.60 145 | 98.09 126 | 98.89 164 | 97.51 7 | 98.78 172 | 94.04 189 | 97.28 163 | 99.55 144 |
|
QAPM | | | 95.40 157 | 94.17 173 | 99.10 72 | 96.92 232 | 97.71 87 | 99.40 198 | 98.68 56 | 89.31 251 | 88.94 265 | 98.89 164 | 82.48 240 | 99.96 57 | 93.12 212 | 99.83 85 | 99.62 129 |
|
VNet | | | 97.21 103 | 96.57 113 | 99.13 71 | 98.97 124 | 97.82 85 | 99.03 243 | 99.21 27 | 94.31 114 | 99.18 81 | 98.88 166 | 86.26 213 | 99.89 83 | 98.93 63 | 94.32 209 | 99.69 117 |
|
thres200 | | | 96.96 109 | 96.21 121 | 99.22 53 | 98.97 124 | 98.84 34 | 99.85 106 | 99.71 5 | 93.17 156 | 96.26 168 | 98.88 166 | 89.87 175 | 99.51 147 | 94.26 186 | 94.91 204 | 99.31 176 |
|
tfpn200view9 | | | 96.79 116 | 95.99 126 | 99.19 56 | 98.94 126 | 98.82 35 | 99.78 128 | 99.71 5 | 92.86 161 | 96.02 171 | 98.87 168 | 89.33 181 | 99.50 149 | 93.84 192 | 94.57 205 | 99.27 179 |
|
thres400 | | | 96.78 117 | 95.99 126 | 99.16 62 | 98.94 126 | 98.82 35 | 99.78 128 | 99.71 5 | 92.86 161 | 96.02 171 | 98.87 168 | 89.33 181 | 99.50 149 | 93.84 192 | 94.57 205 | 99.16 186 |
|
thres100view900 | | | 96.74 120 | 95.92 136 | 99.18 57 | 98.90 133 | 98.77 40 | 99.74 142 | 99.71 5 | 92.59 179 | 95.84 174 | 98.86 170 | 89.25 183 | 99.50 149 | 93.84 192 | 94.57 205 | 99.27 179 |
|
thres600view7 | | | 96.69 123 | 95.87 139 | 99.14 66 | 98.90 133 | 98.78 39 | 99.74 142 | 99.71 5 | 92.59 179 | 95.84 174 | 98.86 170 | 89.25 183 | 99.50 149 | 93.44 205 | 94.50 208 | 99.16 186 |
|
CHOSEN 1792x2688 | | | 96.81 115 | 96.53 114 | 97.64 153 | 98.91 132 | 93.07 225 | 99.65 161 | 99.80 3 | 95.64 70 | 95.39 182 | 98.86 170 | 84.35 230 | 99.90 79 | 96.98 140 | 99.16 124 | 99.95 82 |
|
CLD-MVS | | | 94.06 190 | 93.90 180 | 94.55 244 | 96.02 256 | 90.69 276 | 99.98 10 | 97.72 217 | 96.62 41 | 91.05 226 | 98.85 173 | 77.21 282 | 98.47 190 | 98.11 104 | 89.51 231 | 94.48 239 |
Zhaoxin Li, Wangmeng Zuo, Zhaoqi Wang, Lei Zhang: Confidence-based Large-scale Dense Multi-view Stereo. IEEE Transaction on Image Processing, 2020 |
BH-w/o | | | 95.71 151 | 95.38 149 | 96.68 184 | 98.49 151 | 92.28 244 | 99.84 110 | 97.50 242 | 92.12 196 | 92.06 218 | 98.79 174 | 84.69 226 | 98.67 182 | 95.29 160 | 99.66 100 | 99.09 192 |
|
Anonymous202405211 | | | 93.10 210 | 91.99 222 | 96.40 194 | 99.10 117 | 89.65 297 | 98.88 258 | 97.93 202 | 83.71 325 | 94.00 199 | 98.75 175 | 68.79 325 | 99.88 89 | 95.08 162 | 91.71 224 | 99.68 118 |
|
mvs-test1 | | | 95.53 154 | 95.97 131 | 94.20 258 | 97.77 190 | 85.44 329 | 99.95 43 | 97.06 284 | 94.92 86 | 96.58 158 | 98.72 176 | 85.81 215 | 98.98 164 | 94.80 169 | 98.11 145 | 98.18 211 |
|
TR-MVS | | | 94.54 178 | 93.56 189 | 97.49 159 | 97.96 177 | 94.34 201 | 98.71 273 | 97.51 241 | 90.30 241 | 94.51 192 | 98.69 177 | 75.56 297 | 98.77 174 | 92.82 214 | 95.99 186 | 99.35 172 |
|
BH-untuned | | | 95.18 160 | 94.83 161 | 96.22 199 | 98.36 155 | 91.22 270 | 99.80 124 | 97.32 261 | 90.91 229 | 91.08 225 | 98.67 178 | 83.51 234 | 98.54 188 | 94.23 187 | 99.61 105 | 98.92 196 |
|
OPM-MVS | | | 93.21 207 | 92.80 204 | 94.44 251 | 93.12 313 | 90.85 275 | 99.77 131 | 97.61 227 | 96.19 54 | 91.56 221 | 98.65 179 | 75.16 302 | 98.47 190 | 93.78 198 | 89.39 232 | 93.99 287 |
Ray L. Khuboni, Hongjun Xu: Octagram Propagation Matching for Multi-Scale View Stereopsis (OPM-MVS). |
NP-MVS | | | | | | 95.77 264 | 91.79 256 | | | | | 98.65 179 | | | | | |
|
HQP-MVS | | | 94.61 176 | 94.50 167 | 94.92 230 | 95.78 261 | 91.85 254 | 99.87 92 | 97.89 206 | 96.82 31 | 93.37 205 | 98.65 179 | 80.65 260 | 98.39 201 | 97.92 115 | 89.60 226 | 94.53 235 |
|
baseline1 | | | 95.78 148 | 94.86 160 | 98.54 112 | 98.47 152 | 98.07 74 | 99.06 237 | 97.99 195 | 92.68 173 | 94.13 198 | 98.62 182 | 93.28 113 | 98.69 181 | 93.79 197 | 85.76 265 | 98.84 201 |
|
HQP_MVS | | | 94.49 181 | 94.36 169 | 94.87 231 | 95.71 270 | 91.74 258 | 99.84 110 | 97.87 208 | 96.38 47 | 93.01 209 | 98.59 183 | 80.47 264 | 98.37 206 | 97.79 120 | 89.55 229 | 94.52 237 |
|
plane_prior4 | | | | | | | | | | | | 98.59 183 | | | | | |
|
Anonymous20240529 | | | 92.10 233 | 90.65 244 | 96.47 189 | 98.82 138 | 90.61 279 | 98.72 272 | 98.67 59 | 75.54 351 | 93.90 201 | 98.58 185 | 66.23 336 | 99.90 79 | 94.70 175 | 90.67 225 | 98.90 199 |
|
Effi-MVS+ | | | 96.30 137 | 95.69 142 | 98.16 131 | 97.85 185 | 96.26 143 | 97.41 315 | 97.21 268 | 90.37 238 | 98.65 105 | 98.58 185 | 86.61 210 | 98.70 180 | 97.11 136 | 97.37 162 | 99.52 151 |
|
EPNet_dtu | | | 95.71 151 | 95.39 148 | 96.66 185 | 98.92 130 | 93.41 221 | 99.57 174 | 98.90 41 | 96.19 54 | 97.52 138 | 98.56 187 | 92.65 129 | 97.36 254 | 77.89 334 | 98.33 140 | 99.20 184 |
Wanjuan Su, Wenbing Tao: Efficient Edge-Preserving Multi-View Stereo Network for Depth Estimation. AAAI 2023 |
test0.0.03 1 | | | 93.86 191 | 93.61 184 | 94.64 239 | 95.02 283 | 92.18 247 | 99.93 66 | 98.58 73 | 94.07 123 | 87.96 281 | 98.50 188 | 93.90 97 | 94.96 335 | 81.33 320 | 93.17 220 | 96.78 226 |
|
LPG-MVS_test | | | 92.96 213 | 92.71 206 | 93.71 276 | 95.43 276 | 88.67 306 | 99.75 139 | 97.62 224 | 92.81 164 | 90.05 234 | 98.49 189 | 75.24 300 | 98.40 199 | 95.84 156 | 89.12 233 | 94.07 279 |
|
LGP-MVS_train | | | | | 93.71 276 | 95.43 276 | 88.67 306 | | 97.62 224 | 92.81 164 | 90.05 234 | 98.49 189 | 75.24 300 | 98.40 199 | 95.84 156 | 89.12 233 | 94.07 279 |
|
PVSNet_Blended_VisFu | | | 97.27 100 | 96.81 105 | 98.66 100 | 98.81 139 | 96.67 128 | 99.92 70 | 98.64 63 | 94.51 103 | 96.38 166 | 98.49 189 | 89.05 187 | 99.88 89 | 97.10 137 | 98.34 139 | 99.43 163 |
|
testmvs | | | 40.60 336 | 44.45 339 | 29.05 353 | 19.49 377 | 14.11 378 | 99.68 155 | 18.47 376 | 20.74 370 | 64.59 358 | 98.48 192 | 10.95 374 | 17.09 373 | 56.66 363 | 11.01 369 | 55.94 366 |
|
AllTest | | | 92.48 224 | 91.64 227 | 95.00 227 | 99.01 120 | 88.43 310 | 98.94 252 | 96.82 310 | 86.50 295 | 88.71 267 | 98.47 193 | 74.73 304 | 99.88 89 | 85.39 296 | 96.18 182 | 96.71 227 |
|
TestCases | | | | | 95.00 227 | 99.01 120 | 88.43 310 | | 96.82 310 | 86.50 295 | 88.71 267 | 98.47 193 | 74.73 304 | 99.88 89 | 85.39 296 | 96.18 182 | 96.71 227 |
|
hse-mvs3 | | | 94.92 166 | 94.36 169 | 96.59 188 | 98.85 137 | 91.29 269 | 98.93 253 | 98.94 36 | 95.90 59 | 98.77 97 | 98.42 195 | 90.89 164 | 99.77 119 | 97.80 117 | 70.76 343 | 98.72 206 |
|
PatchMatch-RL | | | 96.04 143 | 95.40 147 | 97.95 140 | 99.59 95 | 95.22 182 | 99.52 182 | 99.07 31 | 93.96 130 | 96.49 161 | 98.35 196 | 82.28 241 | 99.82 109 | 90.15 252 | 99.22 123 | 98.81 203 |
|
CDS-MVSNet | | | 96.34 134 | 96.07 123 | 97.13 171 | 97.37 213 | 94.96 187 | 99.53 181 | 97.91 205 | 91.55 213 | 95.37 183 | 98.32 197 | 95.05 56 | 97.13 270 | 93.80 196 | 95.75 194 | 99.30 177 |
Khang Truong Giang, Soohwan Song, Sungho Jo: Curvature-guided dynamic scale networks for Multi-view Stereo. ICLR 2022 |
ACMP | | 92.05 9 | 92.74 218 | 92.42 215 | 93.73 274 | 95.91 260 | 88.72 305 | 99.81 119 | 97.53 237 | 94.13 119 | 87.00 294 | 98.23 198 | 74.07 308 | 98.47 190 | 96.22 150 | 88.86 238 | 93.99 287 |
Qingshan Xu and Wenbing Tao: Planar Prior Assisted PatchMatch Multi-View Stereo. AAAI 2020 |
testgi | | | 89.01 290 | 88.04 291 | 91.90 305 | 93.49 306 | 84.89 332 | 99.73 147 | 95.66 339 | 93.89 136 | 85.14 314 | 98.17 199 | 59.68 352 | 94.66 339 | 77.73 335 | 88.88 236 | 96.16 232 |
|
ITE_SJBPF | | | | | 92.38 298 | 95.69 272 | 85.14 330 | | 95.71 337 | 92.81 164 | 89.33 256 | 98.11 200 | 70.23 322 | 98.42 196 | 85.91 294 | 88.16 249 | 93.59 311 |
|
HyFIR lowres test | | | 96.66 125 | 96.43 117 | 97.36 166 | 99.05 118 | 93.91 210 | 99.70 152 | 99.80 3 | 90.54 235 | 96.26 168 | 98.08 201 | 92.15 141 | 98.23 220 | 96.84 145 | 95.46 198 | 99.93 85 |
|
TESTMET0.1,1 | | | 96.74 120 | 96.26 120 | 98.16 131 | 97.36 214 | 96.48 134 | 99.96 25 | 98.29 162 | 91.93 201 | 95.77 177 | 98.07 202 | 95.54 43 | 98.29 211 | 90.55 244 | 98.89 128 | 99.70 115 |
|
TAMVS | | | 95.85 146 | 95.58 144 | 96.65 186 | 97.07 225 | 93.50 218 | 99.17 226 | 97.82 214 | 91.39 221 | 95.02 187 | 98.01 203 | 92.20 139 | 97.30 259 | 93.75 199 | 95.83 191 | 99.14 189 |
|
hse-mvs2 | | | 94.38 183 | 94.08 176 | 95.31 218 | 98.27 161 | 90.02 291 | 99.29 217 | 98.56 77 | 95.90 59 | 98.77 97 | 98.00 204 | 90.89 164 | 98.26 218 | 97.80 117 | 69.20 349 | 97.64 221 |
|
AUN-MVS | | | 93.28 206 | 92.60 208 | 95.34 216 | 98.29 157 | 90.09 290 | 99.31 212 | 98.56 77 | 91.80 207 | 96.35 167 | 98.00 204 | 89.38 180 | 98.28 214 | 92.46 216 | 69.22 348 | 97.64 221 |
|
ACMM | | 91.95 10 | 92.88 215 | 92.52 213 | 93.98 269 | 95.75 266 | 89.08 303 | 99.77 131 | 97.52 239 | 93.00 159 | 89.95 238 | 97.99 206 | 76.17 294 | 98.46 193 | 93.63 203 | 88.87 237 | 94.39 248 |
Qingshan Xu and Wenbing Tao: Multi-Scale Geometric Consistency Guided Multi-View Stereo. CVPR 2019 |
Fast-Effi-MVS+ | | | 95.02 164 | 94.19 172 | 97.52 158 | 97.88 181 | 94.55 197 | 99.97 18 | 97.08 282 | 88.85 263 | 94.47 193 | 97.96 207 | 84.59 227 | 98.41 197 | 89.84 255 | 97.10 167 | 99.59 135 |
|
GG-mvs-BLEND | | | | | 98.54 112 | 98.21 165 | 98.01 77 | 93.87 345 | 98.52 90 | | 97.92 130 | 97.92 208 | 99.02 2 | 97.94 237 | 98.17 100 | 99.58 107 | 99.67 120 |
|
Fast-Effi-MVS+-dtu | | | 93.72 199 | 93.86 182 | 93.29 285 | 97.06 226 | 86.16 323 | 99.80 124 | 96.83 308 | 92.66 174 | 92.58 216 | 97.83 209 | 81.39 250 | 97.67 244 | 89.75 256 | 96.87 173 | 96.05 233 |
|
RRT_MVS | | | 95.23 159 | 94.77 163 | 96.61 187 | 98.28 159 | 98.32 67 | 99.81 119 | 97.41 252 | 92.59 179 | 91.28 224 | 97.76 210 | 95.02 57 | 97.23 265 | 93.65 202 | 87.14 258 | 94.28 257 |
|
ACMH+ | | 89.98 16 | 90.35 268 | 89.54 265 | 92.78 296 | 95.99 257 | 86.12 324 | 98.81 266 | 97.18 271 | 89.38 250 | 83.14 323 | 97.76 210 | 68.42 329 | 98.43 195 | 89.11 260 | 86.05 264 | 93.78 303 |
|
ACMH | | 89.72 17 | 90.64 261 | 89.63 262 | 93.66 280 | 95.64 273 | 88.64 308 | 98.55 281 | 97.45 245 | 89.03 255 | 81.62 330 | 97.61 212 | 69.75 323 | 98.41 197 | 89.37 257 | 87.62 255 | 93.92 293 |
Qingshan Xu and Wenbing Tao: Multi-Scale Geometric Consistency Guided Multi-View Stereo. CVPR 2019 |
cascas | | | 94.64 175 | 93.61 184 | 97.74 151 | 97.82 187 | 96.26 143 | 99.96 25 | 97.78 216 | 85.76 305 | 94.00 199 | 97.54 213 | 76.95 285 | 99.21 158 | 97.23 133 | 95.43 199 | 97.76 220 |
|
nrg030 | | | 93.51 202 | 92.53 212 | 96.45 191 | 94.36 291 | 97.20 111 | 99.81 119 | 97.16 274 | 91.60 211 | 89.86 241 | 97.46 214 | 86.37 212 | 97.68 243 | 95.88 155 | 80.31 310 | 94.46 240 |
|
VPNet | | | 91.81 237 | 90.46 246 | 95.85 208 | 94.74 286 | 95.54 171 | 98.98 247 | 98.59 72 | 92.14 195 | 90.77 229 | 97.44 215 | 68.73 327 | 97.54 248 | 94.89 167 | 77.89 324 | 94.46 240 |
|
UniMVSNet_ETH3D | | | 90.06 277 | 88.58 283 | 94.49 248 | 94.67 288 | 88.09 315 | 97.81 311 | 97.57 232 | 83.91 324 | 88.44 272 | 97.41 216 | 57.44 355 | 97.62 246 | 91.41 227 | 88.59 244 | 97.77 219 |
|
HY-MVS | | 92.50 7 | 97.79 81 | 97.17 95 | 99.63 15 | 98.98 123 | 99.32 8 | 97.49 314 | 99.52 13 | 95.69 69 | 98.32 119 | 97.41 216 | 93.32 110 | 99.77 119 | 98.08 107 | 95.75 194 | 99.81 102 |
|
PVSNet_0 | | 88.03 19 | 91.80 240 | 90.27 252 | 96.38 196 | 98.27 161 | 90.46 283 | 99.94 60 | 99.61 11 | 93.99 128 | 86.26 307 | 97.39 218 | 71.13 320 | 99.89 83 | 98.77 77 | 67.05 353 | 98.79 204 |
|
FIs | | | 94.10 189 | 93.43 192 | 96.11 201 | 94.70 287 | 96.82 124 | 99.58 172 | 98.93 40 | 92.54 183 | 89.34 255 | 97.31 219 | 87.62 199 | 97.10 273 | 94.22 188 | 86.58 261 | 94.40 247 |
|
OurMVSNet-221017-0 | | | 89.81 280 | 89.48 269 | 90.83 313 | 91.64 334 | 81.21 348 | 98.17 301 | 95.38 345 | 91.48 215 | 85.65 312 | 97.31 219 | 72.66 312 | 97.29 262 | 88.15 270 | 84.83 273 | 93.97 289 |
|
FC-MVSNet-test | | | 93.81 194 | 93.15 201 | 95.80 209 | 94.30 293 | 96.20 148 | 99.42 197 | 98.89 42 | 92.33 191 | 89.03 264 | 97.27 221 | 87.39 202 | 96.83 290 | 93.20 207 | 86.48 262 | 94.36 250 |
|
USDC | | | 90.00 278 | 88.96 277 | 93.10 291 | 94.81 285 | 88.16 314 | 98.71 273 | 95.54 342 | 93.66 143 | 83.75 321 | 97.20 222 | 65.58 338 | 98.31 210 | 83.96 306 | 87.49 257 | 92.85 326 |
|
MVSTER | | | 95.53 154 | 95.22 153 | 96.45 191 | 98.56 146 | 97.72 86 | 99.91 74 | 97.67 220 | 92.38 189 | 91.39 222 | 97.14 223 | 97.24 17 | 97.30 259 | 94.80 169 | 87.85 251 | 94.34 254 |
|
LF4IMVS | | | 89.25 289 | 88.85 278 | 90.45 317 | 92.81 322 | 81.19 349 | 98.12 302 | 94.79 352 | 91.44 217 | 86.29 306 | 97.11 224 | 65.30 341 | 98.11 225 | 88.53 266 | 85.25 270 | 92.07 334 |
|
mvs_anonymous | | | 95.65 153 | 95.03 158 | 97.53 156 | 98.19 166 | 95.74 164 | 99.33 209 | 97.49 243 | 90.87 230 | 90.47 232 | 97.10 225 | 88.23 195 | 97.16 267 | 95.92 154 | 97.66 155 | 99.68 118 |
|
jajsoiax | | | 91.92 235 | 91.18 237 | 94.15 259 | 91.35 337 | 90.95 273 | 99.00 245 | 97.42 250 | 92.61 177 | 87.38 290 | 97.08 226 | 72.46 313 | 97.36 254 | 94.53 179 | 88.77 239 | 94.13 276 |
|
XXY-MVS | | | 91.82 236 | 90.46 246 | 95.88 206 | 93.91 299 | 95.40 175 | 98.87 261 | 97.69 219 | 88.63 268 | 87.87 282 | 97.08 226 | 74.38 307 | 97.89 238 | 91.66 225 | 84.07 281 | 94.35 253 |
|
LTVRE_ROB | | 88.28 18 | 90.29 271 | 89.05 276 | 94.02 265 | 95.08 281 | 90.15 289 | 97.19 319 | 97.43 248 | 84.91 318 | 83.99 319 | 97.06 228 | 74.00 309 | 98.28 214 | 84.08 303 | 87.71 253 | 93.62 310 |
Andreas Kuhn, Heiko Hirschmüller, Daniel Scharstein, Helmut Mayer: A TV Prior for High-Quality Scalable Multi-View Stereo Reconstruction. International Journal of Computer Vision 2016 |
mvs_tets | | | 91.81 237 | 91.08 238 | 94.00 267 | 91.63 335 | 90.58 280 | 98.67 277 | 97.43 248 | 92.43 188 | 87.37 291 | 97.05 229 | 71.76 315 | 97.32 258 | 94.75 172 | 88.68 241 | 94.11 277 |
|
MVS_Test | | | 96.46 130 | 95.74 141 | 98.61 104 | 98.18 167 | 97.23 110 | 99.31 212 | 97.15 275 | 91.07 226 | 98.84 93 | 97.05 229 | 88.17 196 | 98.97 165 | 94.39 181 | 97.50 157 | 99.61 132 |
|
ab-mvs | | | 94.69 172 | 93.42 193 | 98.51 115 | 98.07 172 | 96.26 143 | 96.49 329 | 98.68 56 | 90.31 240 | 94.54 190 | 97.00 231 | 76.30 292 | 99.71 133 | 95.98 153 | 93.38 219 | 99.56 143 |
|
PS-MVSNAJss | | | 93.64 201 | 93.31 198 | 94.61 240 | 92.11 328 | 92.19 246 | 99.12 228 | 97.38 255 | 92.51 185 | 88.45 271 | 96.99 232 | 91.20 155 | 97.29 262 | 94.36 182 | 87.71 253 | 94.36 250 |
|
IB-MVS | | 92.85 6 | 94.99 165 | 93.94 179 | 98.16 131 | 97.72 197 | 95.69 168 | 99.99 5 | 98.81 48 | 94.28 116 | 92.70 215 | 96.90 233 | 95.08 53 | 99.17 160 | 96.07 151 | 73.88 341 | 99.60 134 |
Christian Sormann, Mattia Rossi, Andreas Kuhn and Friedrich Fraundorfer: IB-MVS: An Iterative Algorithm for Deep Multi-View Stereo based on Binary Decisions. BMVC 2021 |
WR-MVS | | | 92.31 228 | 91.25 236 | 95.48 214 | 94.45 290 | 95.29 177 | 99.60 170 | 98.68 56 | 90.10 242 | 88.07 280 | 96.89 234 | 80.68 259 | 96.80 292 | 93.14 210 | 79.67 314 | 94.36 250 |
|
SixPastTwentyTwo | | | 88.73 291 | 88.01 292 | 90.88 311 | 91.85 332 | 82.24 342 | 98.22 299 | 95.18 350 | 88.97 258 | 82.26 326 | 96.89 234 | 71.75 316 | 96.67 298 | 84.00 304 | 82.98 286 | 93.72 308 |
|
UniMVSNet_NR-MVSNet | | | 92.95 214 | 92.11 219 | 95.49 211 | 94.61 289 | 95.28 178 | 99.83 116 | 99.08 30 | 91.49 214 | 89.21 259 | 96.86 236 | 87.14 204 | 96.73 294 | 93.20 207 | 77.52 327 | 94.46 240 |
|
XVG-ACMP-BASELINE | | | 91.22 250 | 90.75 241 | 92.63 297 | 93.73 302 | 85.61 326 | 98.52 285 | 97.44 247 | 92.77 168 | 89.90 240 | 96.85 237 | 66.64 335 | 98.39 201 | 92.29 218 | 88.61 242 | 93.89 295 |
|
TinyColmap | | | 87.87 298 | 86.51 299 | 91.94 304 | 95.05 282 | 85.57 327 | 97.65 313 | 94.08 357 | 84.40 321 | 81.82 329 | 96.85 237 | 62.14 348 | 98.33 208 | 80.25 325 | 86.37 263 | 91.91 338 |
|
EU-MVSNet | | | 90.14 276 | 90.34 250 | 89.54 323 | 92.55 324 | 81.06 350 | 98.69 275 | 98.04 193 | 91.41 220 | 86.59 299 | 96.84 239 | 80.83 257 | 93.31 351 | 86.20 291 | 81.91 293 | 94.26 258 |
|
TranMVSNet+NR-MVSNet | | | 91.68 244 | 90.61 245 | 94.87 231 | 93.69 303 | 93.98 208 | 99.69 153 | 98.65 60 | 91.03 227 | 88.44 272 | 96.83 240 | 80.05 267 | 96.18 315 | 90.26 251 | 76.89 335 | 94.45 245 |
|
RRT_test8_iter05 | | | 94.58 177 | 94.11 174 | 95.98 204 | 97.88 181 | 96.11 154 | 99.89 86 | 97.45 245 | 91.66 210 | 88.28 277 | 96.71 241 | 96.53 27 | 97.40 252 | 94.73 174 | 83.85 284 | 94.45 245 |
|
bset_n11_16_dypcd | | | 93.05 212 | 92.30 216 | 95.31 218 | 90.23 346 | 95.05 185 | 99.44 196 | 97.28 264 | 92.51 185 | 90.65 230 | 96.68 242 | 85.30 222 | 96.71 296 | 94.49 180 | 84.14 279 | 94.16 270 |
|
GA-MVS | | | 93.83 192 | 92.84 203 | 96.80 179 | 95.73 267 | 93.57 215 | 99.88 89 | 97.24 267 | 92.57 182 | 92.92 211 | 96.66 243 | 78.73 276 | 97.67 244 | 87.75 275 | 94.06 213 | 99.17 185 |
|
CMPMVS |  | 61.59 21 | 84.75 311 | 85.14 305 | 83.57 338 | 90.32 345 | 62.54 364 | 96.98 324 | 97.59 231 | 74.33 354 | 69.95 357 | 96.66 243 | 64.17 343 | 98.32 209 | 87.88 274 | 88.41 247 | 89.84 352 |
M. Jancosek, T. Pajdla: Multi-View Reconstruction Preserving Weakly-Supported Surfaces. CVPR 2011 |
DU-MVS | | | 92.46 225 | 91.45 234 | 95.49 211 | 94.05 296 | 95.28 178 | 99.81 119 | 98.74 52 | 92.25 193 | 89.21 259 | 96.64 245 | 81.66 247 | 96.73 294 | 93.20 207 | 77.52 327 | 94.46 240 |
|
NR-MVSNet | | | 91.56 245 | 90.22 253 | 95.60 210 | 94.05 296 | 95.76 163 | 98.25 296 | 98.70 54 | 91.16 224 | 80.78 335 | 96.64 245 | 83.23 238 | 96.57 301 | 91.41 227 | 77.73 326 | 94.46 240 |
|
CP-MVSNet | | | 91.23 249 | 90.22 253 | 94.26 256 | 93.96 298 | 92.39 243 | 99.09 230 | 98.57 75 | 88.95 260 | 86.42 303 | 96.57 247 | 79.19 272 | 96.37 307 | 90.29 250 | 78.95 317 | 94.02 282 |
|
pmmvs4 | | | 92.10 233 | 91.07 239 | 95.18 222 | 92.82 321 | 94.96 187 | 99.48 190 | 96.83 308 | 87.45 282 | 88.66 270 | 96.56 248 | 83.78 233 | 96.83 290 | 89.29 258 | 84.77 274 | 93.75 304 |
|
PS-CasMVS | | | 90.63 262 | 89.51 267 | 93.99 268 | 93.83 300 | 91.70 262 | 98.98 247 | 98.52 90 | 88.48 270 | 86.15 308 | 96.53 249 | 75.46 298 | 96.31 310 | 88.83 262 | 78.86 319 | 93.95 290 |
|
test-LLR | | | 96.47 129 | 96.04 124 | 97.78 146 | 97.02 229 | 95.44 172 | 99.96 25 | 98.21 173 | 94.07 123 | 95.55 179 | 96.38 250 | 93.90 97 | 98.27 216 | 90.42 247 | 98.83 130 | 99.64 126 |
|
test-mter | | | 96.39 133 | 95.93 135 | 97.78 146 | 97.02 229 | 95.44 172 | 99.96 25 | 98.21 173 | 91.81 206 | 95.55 179 | 96.38 250 | 95.17 50 | 98.27 216 | 90.42 247 | 98.83 130 | 99.64 126 |
|
MS-PatchMatch | | | 90.65 260 | 90.30 251 | 91.71 307 | 94.22 294 | 85.50 328 | 98.24 297 | 97.70 218 | 88.67 266 | 86.42 303 | 96.37 252 | 67.82 331 | 98.03 230 | 83.62 308 | 99.62 102 | 91.60 339 |
|
test_part1 | | | 92.15 232 | 90.72 242 | 96.44 193 | 98.87 136 | 97.46 103 | 98.99 246 | 98.26 167 | 85.89 302 | 86.34 305 | 96.34 253 | 81.71 245 | 97.48 250 | 91.06 233 | 78.99 316 | 94.37 249 |
|
PEN-MVS | | | 90.19 274 | 89.06 275 | 93.57 281 | 93.06 315 | 90.90 274 | 99.06 237 | 98.47 103 | 88.11 274 | 85.91 310 | 96.30 254 | 76.67 287 | 95.94 324 | 87.07 283 | 76.91 334 | 93.89 295 |
|
UGNet | | | 95.33 158 | 94.57 166 | 97.62 155 | 98.55 147 | 94.85 189 | 98.67 277 | 99.32 24 | 95.75 68 | 96.80 154 | 96.27 255 | 72.18 314 | 99.96 57 | 94.58 178 | 99.05 126 | 98.04 214 |
Wanjuan Su, Qingshan Xu, Wenbing Tao: Uncertainty-guided Multi-view Stereo Network for Depth Estimation. IEEE Transactions on Circuits and Systems for Video Technology, 2022 |
DTE-MVSNet | | | 89.40 285 | 88.24 289 | 92.88 294 | 92.66 323 | 89.95 293 | 99.10 229 | 98.22 172 | 87.29 284 | 85.12 315 | 96.22 256 | 76.27 293 | 95.30 332 | 83.56 309 | 75.74 338 | 93.41 313 |
|
TransMVSNet (Re) | | | 87.25 299 | 85.28 304 | 93.16 288 | 93.56 304 | 91.03 271 | 98.54 283 | 94.05 358 | 83.69 326 | 81.09 333 | 96.16 257 | 75.32 299 | 96.40 306 | 76.69 340 | 68.41 350 | 92.06 335 |
|
pm-mvs1 | | | 89.36 286 | 87.81 293 | 94.01 266 | 93.40 309 | 91.93 252 | 98.62 280 | 96.48 324 | 86.25 299 | 83.86 320 | 96.14 258 | 73.68 310 | 97.04 278 | 86.16 292 | 75.73 339 | 93.04 323 |
|
Test_1112_low_res | | | 95.72 149 | 94.83 161 | 98.42 122 | 97.79 189 | 96.41 137 | 99.65 161 | 96.65 319 | 92.70 171 | 92.86 214 | 96.13 259 | 92.15 141 | 99.30 156 | 91.88 223 | 93.64 216 | 99.55 144 |
|
TDRefinement | | | 84.76 310 | 82.56 317 | 91.38 309 | 74.58 365 | 84.80 333 | 97.36 316 | 94.56 355 | 84.73 319 | 80.21 337 | 96.12 260 | 63.56 345 | 98.39 201 | 87.92 273 | 63.97 354 | 90.95 345 |
|
test_djsdf | | | 92.83 216 | 92.29 217 | 94.47 249 | 91.90 331 | 92.46 241 | 99.55 178 | 97.27 265 | 91.17 222 | 89.96 237 | 96.07 261 | 81.10 253 | 96.89 286 | 94.67 176 | 88.91 235 | 94.05 281 |
|
miper_enhance_ethall | | | 94.36 186 | 93.98 178 | 95.49 211 | 98.68 145 | 95.24 180 | 99.73 147 | 97.29 263 | 93.28 153 | 89.86 241 | 95.97 262 | 94.37 78 | 97.05 276 | 92.20 219 | 84.45 276 | 94.19 264 |
|
lessismore_v0 | | | | | 90.53 314 | 90.58 343 | 80.90 351 | | 95.80 335 | | 77.01 345 | 95.84 263 | 66.15 337 | 96.95 283 | 83.03 311 | 75.05 340 | 93.74 307 |
|
PVSNet_BlendedMVS | | | 96.05 142 | 95.82 140 | 96.72 183 | 99.59 95 | 96.99 119 | 99.95 43 | 99.10 28 | 94.06 125 | 98.27 121 | 95.80 264 | 89.00 188 | 99.95 64 | 99.12 51 | 87.53 256 | 93.24 319 |
|
ppachtmachnet_test | | | 89.58 284 | 88.35 286 | 93.25 287 | 92.40 325 | 90.44 284 | 99.33 209 | 96.73 315 | 85.49 311 | 85.90 311 | 95.77 265 | 81.09 254 | 96.00 323 | 76.00 342 | 82.49 288 | 93.30 317 |
|
pmmvs5 | | | 90.17 275 | 89.09 274 | 93.40 283 | 92.10 329 | 89.77 296 | 99.74 142 | 95.58 341 | 85.88 304 | 87.24 293 | 95.74 266 | 73.41 311 | 96.48 304 | 88.54 265 | 83.56 285 | 93.95 290 |
|
MDTV_nov1_ep13 | | | | 95.69 142 | | 97.90 180 | 94.15 203 | 95.98 336 | 98.44 108 | 93.12 157 | 97.98 129 | 95.74 266 | 95.10 52 | 98.58 185 | 90.02 253 | 96.92 172 | |
|
eth_miper_zixun_eth | | | 92.41 226 | 91.93 223 | 93.84 273 | 97.28 221 | 90.68 277 | 98.83 264 | 96.97 296 | 88.57 269 | 89.19 261 | 95.73 268 | 89.24 185 | 96.69 297 | 89.97 254 | 81.55 295 | 94.15 272 |
|
IterMVS-SCA-FT | | | 90.85 257 | 90.16 256 | 92.93 293 | 96.72 246 | 89.96 292 | 98.89 256 | 96.99 292 | 88.95 260 | 86.63 298 | 95.67 269 | 76.48 290 | 95.00 334 | 87.04 284 | 84.04 283 | 93.84 299 |
|
Baseline_NR-MVSNet | | | 90.33 269 | 89.51 267 | 92.81 295 | 92.84 319 | 89.95 293 | 99.77 131 | 93.94 359 | 84.69 320 | 89.04 263 | 95.66 270 | 81.66 247 | 96.52 302 | 90.99 236 | 76.98 333 | 91.97 337 |
|
cl-mvsnet2 | | | 93.77 196 | 93.25 200 | 95.33 217 | 99.49 104 | 94.43 199 | 99.61 169 | 98.09 188 | 90.38 237 | 89.16 262 | 95.61 271 | 90.56 168 | 97.34 256 | 91.93 221 | 84.45 276 | 94.21 263 |
|
K. test v3 | | | 88.05 295 | 87.24 297 | 90.47 316 | 91.82 333 | 82.23 343 | 98.96 250 | 97.42 250 | 89.05 254 | 76.93 346 | 95.60 272 | 68.49 328 | 95.42 328 | 85.87 295 | 81.01 304 | 93.75 304 |
|
SCA | | | 94.69 172 | 93.81 183 | 97.33 168 | 97.10 224 | 94.44 198 | 98.86 262 | 98.32 156 | 93.30 152 | 96.17 170 | 95.59 273 | 76.48 290 | 97.95 235 | 91.06 233 | 97.43 158 | 99.59 135 |
|
Patchmatch-test | | | 92.65 222 | 91.50 232 | 96.10 202 | 96.85 238 | 90.49 282 | 91.50 354 | 97.19 269 | 82.76 331 | 90.23 233 | 95.59 273 | 95.02 57 | 98.00 231 | 77.41 336 | 96.98 171 | 99.82 101 |
|
cl-mvsnet1 | | | 92.32 227 | 91.60 228 | 94.47 249 | 97.31 218 | 92.74 232 | 99.58 172 | 96.75 314 | 86.99 290 | 87.64 284 | 95.54 275 | 89.55 178 | 96.50 303 | 88.58 264 | 82.44 289 | 94.17 265 |
|
Anonymous20231211 | | | 89.86 279 | 88.44 285 | 94.13 261 | 98.93 128 | 90.68 277 | 98.54 283 | 98.26 167 | 76.28 347 | 86.73 296 | 95.54 275 | 70.60 321 | 97.56 247 | 90.82 241 | 80.27 311 | 94.15 272 |
|
miper_ehance_all_eth | | | 93.16 208 | 92.60 208 | 94.82 234 | 97.57 203 | 93.56 216 | 99.50 186 | 97.07 283 | 88.75 264 | 88.85 266 | 95.52 277 | 90.97 161 | 96.74 293 | 90.77 242 | 84.45 276 | 94.17 265 |
|
cl-mvsnet____ | | | 92.31 228 | 91.58 229 | 94.52 245 | 97.33 217 | 92.77 230 | 99.57 174 | 96.78 313 | 86.97 291 | 87.56 286 | 95.51 278 | 89.43 179 | 96.62 299 | 88.60 263 | 82.44 289 | 94.16 270 |
|
tfpnnormal | | | 89.29 287 | 87.61 294 | 94.34 255 | 94.35 292 | 94.13 204 | 98.95 251 | 98.94 36 | 83.94 322 | 84.47 317 | 95.51 278 | 74.84 303 | 97.39 253 | 77.05 339 | 80.41 308 | 91.48 341 |
|
DeepMVS_CX |  | | | | 82.92 340 | 95.98 259 | 58.66 366 | | 96.01 332 | 92.72 169 | 78.34 343 | 95.51 278 | 58.29 354 | 98.08 226 | 82.57 313 | 85.29 269 | 92.03 336 |
|
cl_fuxian | | | 92.53 223 | 91.87 225 | 94.52 245 | 97.40 212 | 92.99 228 | 99.40 198 | 96.93 301 | 87.86 277 | 88.69 269 | 95.44 281 | 89.95 174 | 96.44 305 | 90.45 246 | 80.69 307 | 94.14 275 |
|
IterMVS | | | 90.91 254 | 90.17 255 | 93.12 289 | 96.78 244 | 90.42 285 | 98.89 256 | 97.05 287 | 89.03 255 | 86.49 301 | 95.42 282 | 76.59 289 | 95.02 333 | 87.22 282 | 84.09 280 | 93.93 292 |
Fangjinhua Wang, Silvano Galliani, Christoph Vogel, Marc Pollefeys: IterMVS: Iterative Probability Estimation for Efficient Multi-View Stereo. |
UniMVSNet (Re) | | | 93.07 211 | 92.13 218 | 95.88 206 | 94.84 284 | 96.24 147 | 99.88 89 | 98.98 34 | 92.49 187 | 89.25 257 | 95.40 283 | 87.09 205 | 97.14 269 | 93.13 211 | 78.16 322 | 94.26 258 |
|
tpm2 | | | 95.47 156 | 95.18 155 | 96.35 197 | 96.91 233 | 91.70 262 | 96.96 325 | 97.93 202 | 88.04 276 | 98.44 113 | 95.40 283 | 93.32 110 | 97.97 232 | 94.00 190 | 95.61 196 | 99.38 167 |
|
pmmvs6 | | | 85.69 303 | 83.84 309 | 91.26 310 | 90.00 348 | 84.41 334 | 97.82 310 | 96.15 330 | 75.86 349 | 81.29 332 | 95.39 285 | 61.21 350 | 96.87 288 | 83.52 310 | 73.29 342 | 92.50 330 |
|
IterMVS-LS | | | 92.69 220 | 92.11 219 | 94.43 253 | 96.80 241 | 92.74 232 | 99.45 194 | 96.89 304 | 88.98 257 | 89.65 248 | 95.38 286 | 88.77 190 | 96.34 309 | 90.98 237 | 82.04 292 | 94.22 261 |
Fangjinhua Wang, Silvano Galliani, Christoph Vogel, Marc Pollefeys: IterMVS: Iterative Probability Estimation for Efficient Multi-View Stereo. |
Effi-MVS+-dtu | | | 94.53 180 | 95.30 151 | 92.22 300 | 97.77 190 | 82.54 340 | 99.59 171 | 97.06 284 | 94.92 86 | 95.29 184 | 95.37 287 | 85.81 215 | 97.89 238 | 94.80 169 | 97.07 168 | 96.23 231 |
|
v2v482 | | | 91.30 246 | 90.07 258 | 95.01 226 | 93.13 311 | 93.79 211 | 99.77 131 | 97.02 289 | 88.05 275 | 89.25 257 | 95.37 287 | 80.73 258 | 97.15 268 | 87.28 281 | 80.04 313 | 94.09 278 |
|
FMVSNet3 | | | 92.69 220 | 91.58 229 | 95.99 203 | 98.29 157 | 97.42 106 | 99.26 220 | 97.62 224 | 89.80 248 | 89.68 245 | 95.32 289 | 81.62 249 | 96.27 312 | 87.01 286 | 85.65 266 | 94.29 256 |
|
MVP-Stereo | | | 90.93 253 | 90.45 248 | 92.37 299 | 91.25 339 | 88.76 304 | 98.05 306 | 96.17 329 | 87.27 285 | 84.04 318 | 95.30 290 | 78.46 279 | 97.27 264 | 83.78 307 | 99.70 98 | 91.09 342 |
Qingsong Yan: MVP-Stereo: A Parallel Multi-View Patchmatch Stereo Method with Dilation Matching for Photogrammetric Application. |
anonymousdsp | | | 91.79 242 | 90.92 240 | 94.41 254 | 90.76 342 | 92.93 229 | 98.93 253 | 97.17 272 | 89.08 253 | 87.46 289 | 95.30 290 | 78.43 280 | 96.92 285 | 92.38 217 | 88.73 240 | 93.39 315 |
|
v1921920 | | | 90.46 265 | 89.12 273 | 94.50 247 | 92.96 318 | 92.46 241 | 99.49 188 | 96.98 294 | 86.10 300 | 89.61 250 | 95.30 290 | 78.55 278 | 97.03 280 | 82.17 316 | 80.89 306 | 94.01 284 |
|
VPA-MVSNet | | | 92.70 219 | 91.55 231 | 96.16 200 | 95.09 280 | 96.20 148 | 98.88 258 | 99.00 33 | 91.02 228 | 91.82 219 | 95.29 293 | 76.05 296 | 97.96 234 | 95.62 158 | 81.19 298 | 94.30 255 |
|
PatchmatchNet |  | | 95.94 145 | 95.45 146 | 97.39 164 | 97.83 186 | 94.41 200 | 96.05 335 | 98.40 136 | 92.86 161 | 97.09 147 | 95.28 294 | 94.21 89 | 98.07 228 | 89.26 259 | 98.11 145 | 99.70 115 |
Fangjinhua Wang, Silvano Galliani, Christoph Vogel, Pablo Speciale, Marc Pollefeys: PatchmatchNet: Learned Multi-View Patchmatch Stereo. |
miper_lstm_enhance | | | 91.81 237 | 91.39 235 | 93.06 292 | 97.34 215 | 89.18 302 | 99.38 203 | 96.79 312 | 86.70 294 | 87.47 288 | 95.22 295 | 90.00 173 | 95.86 325 | 88.26 268 | 81.37 297 | 94.15 272 |
|
test_0402 | | | 85.58 304 | 83.94 308 | 90.50 315 | 93.81 301 | 85.04 331 | 98.55 281 | 95.20 349 | 76.01 348 | 79.72 339 | 95.13 296 | 64.15 344 | 96.26 313 | 66.04 358 | 86.88 260 | 90.21 350 |
|
tpmrst | | | 96.27 140 | 95.98 128 | 97.13 171 | 97.96 177 | 93.15 224 | 96.34 331 | 98.17 179 | 92.07 197 | 98.71 102 | 95.12 297 | 93.91 96 | 98.73 177 | 94.91 166 | 96.62 175 | 99.50 155 |
|
V42 | | | 91.28 248 | 90.12 257 | 94.74 235 | 93.42 308 | 93.46 219 | 99.68 155 | 97.02 289 | 87.36 283 | 89.85 243 | 95.05 298 | 81.31 252 | 97.34 256 | 87.34 280 | 80.07 312 | 93.40 314 |
|
EPMVS | | | 96.53 128 | 96.01 125 | 98.09 136 | 98.43 153 | 96.12 153 | 96.36 330 | 99.43 19 | 93.53 146 | 97.64 136 | 95.04 299 | 94.41 73 | 98.38 205 | 91.13 231 | 98.11 145 | 99.75 110 |
|
v1192 | | | 90.62 263 | 89.25 271 | 94.72 237 | 93.13 311 | 93.07 225 | 99.50 186 | 97.02 289 | 86.33 298 | 89.56 251 | 95.01 300 | 79.22 271 | 97.09 275 | 82.34 315 | 81.16 299 | 94.01 284 |
|
v148 | | | 90.70 259 | 89.63 262 | 93.92 270 | 92.97 317 | 90.97 272 | 99.75 139 | 96.89 304 | 87.51 280 | 88.27 278 | 95.01 300 | 81.67 246 | 97.04 278 | 87.40 279 | 77.17 332 | 93.75 304 |
|
FMVSNet2 | | | 91.02 252 | 89.56 264 | 95.41 215 | 97.53 204 | 95.74 164 | 98.98 247 | 97.41 252 | 87.05 287 | 88.43 274 | 95.00 302 | 71.34 317 | 96.24 314 | 85.12 298 | 85.21 271 | 94.25 260 |
|
our_test_3 | | | 90.39 266 | 89.48 269 | 93.12 289 | 92.40 325 | 89.57 298 | 99.33 209 | 96.35 326 | 87.84 278 | 85.30 313 | 94.99 303 | 84.14 231 | 96.09 319 | 80.38 324 | 84.56 275 | 93.71 309 |
|
v1144 | | | 91.09 251 | 89.83 259 | 94.87 231 | 93.25 310 | 93.69 214 | 99.62 168 | 96.98 294 | 86.83 293 | 89.64 249 | 94.99 303 | 80.94 255 | 97.05 276 | 85.08 299 | 81.16 299 | 93.87 297 |
|
v144192 | | | 90.79 258 | 89.52 266 | 94.59 241 | 93.11 314 | 92.77 230 | 99.56 176 | 96.99 292 | 86.38 297 | 89.82 244 | 94.95 305 | 80.50 263 | 97.10 273 | 83.98 305 | 80.41 308 | 93.90 294 |
|
CostFormer | | | 96.10 141 | 95.88 138 | 96.78 180 | 97.03 228 | 92.55 240 | 97.08 322 | 97.83 213 | 90.04 245 | 98.72 101 | 94.89 306 | 95.01 59 | 98.29 211 | 96.54 147 | 95.77 192 | 99.50 155 |
|
v1240 | | | 90.20 273 | 88.79 280 | 94.44 251 | 93.05 316 | 92.27 245 | 99.38 203 | 96.92 302 | 85.89 302 | 89.36 254 | 94.87 307 | 77.89 281 | 97.03 280 | 80.66 323 | 81.08 302 | 94.01 284 |
|
v7n | | | 89.65 283 | 88.29 288 | 93.72 275 | 92.22 327 | 90.56 281 | 99.07 236 | 97.10 280 | 85.42 313 | 86.73 296 | 94.72 308 | 80.06 266 | 97.13 270 | 81.14 321 | 78.12 323 | 93.49 312 |
|
GBi-Net | | | 90.88 255 | 89.82 260 | 94.08 262 | 97.53 204 | 91.97 249 | 98.43 288 | 96.95 297 | 87.05 287 | 89.68 245 | 94.72 308 | 71.34 317 | 96.11 316 | 87.01 286 | 85.65 266 | 94.17 265 |
|
test1 | | | 90.88 255 | 89.82 260 | 94.08 262 | 97.53 204 | 91.97 249 | 98.43 288 | 96.95 297 | 87.05 287 | 89.68 245 | 94.72 308 | 71.34 317 | 96.11 316 | 87.01 286 | 85.65 266 | 94.17 265 |
|
FMVSNet1 | | | 88.50 292 | 86.64 298 | 94.08 262 | 95.62 275 | 91.97 249 | 98.43 288 | 96.95 297 | 83.00 328 | 86.08 309 | 94.72 308 | 59.09 353 | 96.11 316 | 81.82 319 | 84.07 281 | 94.17 265 |
|
dp | | | 95.05 163 | 94.43 168 | 96.91 176 | 97.99 176 | 92.73 234 | 96.29 332 | 97.98 197 | 89.70 249 | 95.93 173 | 94.67 312 | 93.83 100 | 98.45 194 | 86.91 289 | 96.53 177 | 99.54 148 |
|
test20.03 | | | 84.72 312 | 83.99 306 | 86.91 334 | 88.19 354 | 80.62 353 | 98.88 258 | 95.94 333 | 88.36 272 | 78.87 340 | 94.62 313 | 68.75 326 | 89.11 360 | 66.52 356 | 75.82 337 | 91.00 343 |
|
D2MVS | | | 92.76 217 | 92.59 211 | 93.27 286 | 95.13 279 | 89.54 299 | 99.69 153 | 99.38 21 | 92.26 192 | 87.59 285 | 94.61 314 | 85.05 225 | 97.79 240 | 91.59 226 | 88.01 250 | 92.47 331 |
|
v8 | | | 90.54 264 | 89.17 272 | 94.66 238 | 93.43 307 | 93.40 222 | 99.20 223 | 96.94 300 | 85.76 305 | 87.56 286 | 94.51 315 | 81.96 244 | 97.19 266 | 84.94 300 | 78.25 321 | 93.38 316 |
|
v10 | | | 90.25 272 | 88.82 279 | 94.57 243 | 93.53 305 | 93.43 220 | 99.08 232 | 96.87 306 | 85.00 315 | 87.34 292 | 94.51 315 | 80.93 256 | 97.02 282 | 82.85 312 | 79.23 315 | 93.26 318 |
|
ADS-MVSNet2 | | | 93.80 195 | 93.88 181 | 93.55 282 | 97.87 183 | 85.94 325 | 94.24 341 | 96.84 307 | 90.07 243 | 96.43 163 | 94.48 317 | 90.29 171 | 95.37 329 | 87.44 277 | 97.23 164 | 99.36 170 |
|
ADS-MVSNet | | | 94.79 168 | 94.02 177 | 97.11 173 | 97.87 183 | 93.79 211 | 94.24 341 | 98.16 182 | 90.07 243 | 96.43 163 | 94.48 317 | 90.29 171 | 98.19 222 | 87.44 277 | 97.23 164 | 99.36 170 |
|
WR-MVS_H | | | 91.30 246 | 90.35 249 | 94.15 259 | 94.17 295 | 92.62 239 | 99.17 226 | 98.94 36 | 88.87 262 | 86.48 302 | 94.46 319 | 84.36 229 | 96.61 300 | 88.19 269 | 78.51 320 | 93.21 320 |
|
LCM-MVSNet-Re | | | 92.31 228 | 92.60 208 | 91.43 308 | 97.53 204 | 79.27 356 | 99.02 244 | 91.83 363 | 92.07 197 | 80.31 336 | 94.38 320 | 83.50 235 | 95.48 327 | 97.22 134 | 97.58 156 | 99.54 148 |
|
tpmvs | | | 94.28 188 | 93.57 188 | 96.40 194 | 98.55 147 | 91.50 267 | 95.70 340 | 98.55 83 | 87.47 281 | 92.15 217 | 94.26 321 | 91.42 150 | 98.95 166 | 88.15 270 | 95.85 190 | 98.76 205 |
|
tpm | | | 93.70 200 | 93.41 195 | 94.58 242 | 95.36 278 | 87.41 319 | 97.01 323 | 96.90 303 | 90.85 231 | 96.72 156 | 94.14 322 | 90.40 169 | 96.84 289 | 90.75 243 | 88.54 245 | 99.51 153 |
|
Anonymous20231206 | | | 86.32 301 | 85.42 303 | 89.02 326 | 89.11 351 | 80.53 354 | 99.05 241 | 95.28 346 | 85.43 312 | 82.82 324 | 93.92 323 | 74.40 306 | 93.44 350 | 66.99 355 | 81.83 294 | 93.08 322 |
|
UnsupCasMVSNet_eth | | | 85.52 305 | 83.99 306 | 90.10 319 | 89.36 350 | 83.51 336 | 96.65 327 | 97.99 195 | 89.14 252 | 75.89 350 | 93.83 324 | 63.25 346 | 93.92 344 | 81.92 318 | 67.90 352 | 92.88 325 |
|
tpm cat1 | | | 93.51 202 | 92.52 213 | 96.47 189 | 97.77 190 | 91.47 268 | 96.13 333 | 98.06 191 | 80.98 337 | 92.91 212 | 93.78 325 | 89.66 176 | 98.87 167 | 87.03 285 | 96.39 180 | 99.09 192 |
|
EG-PatchMatch MVS | | | 85.35 308 | 83.81 310 | 89.99 321 | 90.39 344 | 81.89 345 | 98.21 300 | 96.09 331 | 81.78 335 | 74.73 352 | 93.72 326 | 51.56 360 | 97.12 272 | 79.16 330 | 88.61 242 | 90.96 344 |
|
test_method | | | 80.79 321 | 79.70 324 | 84.08 337 | 92.83 320 | 67.06 362 | 99.51 184 | 95.42 343 | 54.34 361 | 81.07 334 | 93.53 327 | 44.48 363 | 92.22 353 | 78.90 331 | 77.23 331 | 92.94 324 |
|
N_pmnet | | | 80.06 324 | 80.78 322 | 77.89 341 | 91.94 330 | 45.28 372 | 98.80 267 | 56.82 375 | 78.10 345 | 80.08 338 | 93.33 328 | 77.03 283 | 95.76 326 | 68.14 354 | 82.81 287 | 92.64 327 |
|
MDA-MVSNet-bldmvs | | | 84.09 315 | 81.52 321 | 91.81 306 | 91.32 338 | 88.00 317 | 98.67 277 | 95.92 334 | 80.22 339 | 55.60 364 | 93.32 329 | 68.29 330 | 93.60 349 | 73.76 344 | 76.61 336 | 93.82 301 |
|
CR-MVSNet | | | 93.45 205 | 92.62 207 | 95.94 205 | 96.29 250 | 92.66 236 | 92.01 352 | 96.23 327 | 92.62 176 | 96.94 149 | 93.31 330 | 91.04 159 | 96.03 321 | 79.23 327 | 95.96 187 | 99.13 190 |
|
Patchmtry | | | 89.70 282 | 88.49 284 | 93.33 284 | 96.24 252 | 89.94 295 | 91.37 355 | 96.23 327 | 78.22 344 | 87.69 283 | 93.31 330 | 91.04 159 | 96.03 321 | 80.18 326 | 82.10 291 | 94.02 282 |
|
MIMVSNet | | | 90.30 270 | 88.67 282 | 95.17 223 | 96.45 249 | 91.64 264 | 92.39 350 | 97.15 275 | 85.99 301 | 90.50 231 | 93.19 332 | 66.95 334 | 94.86 337 | 82.01 317 | 93.43 217 | 99.01 195 |
|
YYNet1 | | | 85.50 307 | 83.33 312 | 92.00 303 | 90.89 341 | 88.38 313 | 99.22 222 | 96.55 321 | 79.60 342 | 57.26 362 | 92.72 333 | 79.09 274 | 93.78 347 | 77.25 337 | 77.37 330 | 93.84 299 |
|
MVS_0304 | | | 89.28 288 | 88.31 287 | 92.21 301 | 97.05 227 | 86.53 322 | 97.76 312 | 99.57 12 | 85.58 310 | 93.86 202 | 92.71 334 | 51.04 361 | 96.30 311 | 84.49 302 | 92.72 223 | 93.79 302 |
|
MDA-MVSNet_test_wron | | | 85.51 306 | 83.32 313 | 92.10 302 | 90.96 340 | 88.58 309 | 99.20 223 | 96.52 322 | 79.70 341 | 57.12 363 | 92.69 335 | 79.11 273 | 93.86 346 | 77.10 338 | 77.46 329 | 93.86 298 |
|
MIMVSNet1 | | | 82.58 319 | 80.51 323 | 88.78 328 | 86.68 356 | 84.20 335 | 96.65 327 | 95.41 344 | 78.75 343 | 78.59 342 | 92.44 336 | 51.88 359 | 89.76 359 | 65.26 359 | 78.95 317 | 92.38 333 |
|
KD-MVS_2432*1600 | | | 88.00 296 | 86.10 300 | 93.70 278 | 96.91 233 | 94.04 205 | 97.17 320 | 97.12 277 | 84.93 316 | 81.96 327 | 92.41 337 | 92.48 133 | 94.51 340 | 79.23 327 | 52.68 361 | 92.56 328 |
|
miper_refine_blended | | | 88.00 296 | 86.10 300 | 93.70 278 | 96.91 233 | 94.04 205 | 97.17 320 | 97.12 277 | 84.93 316 | 81.96 327 | 92.41 337 | 92.48 133 | 94.51 340 | 79.23 327 | 52.68 361 | 92.56 328 |
|
FMVSNet5 | | | 88.32 293 | 87.47 295 | 90.88 311 | 96.90 236 | 88.39 312 | 97.28 317 | 95.68 338 | 82.60 332 | 84.67 316 | 92.40 339 | 79.83 268 | 91.16 356 | 76.39 341 | 81.51 296 | 93.09 321 |
|
DSMNet-mixed | | | 88.28 294 | 88.24 289 | 88.42 331 | 89.64 349 | 75.38 358 | 98.06 305 | 89.86 366 | 85.59 309 | 88.20 279 | 92.14 340 | 76.15 295 | 91.95 354 | 78.46 332 | 96.05 185 | 97.92 215 |
|
patchmatchnet-post | | | | | | | | | | | | 91.70 341 | 95.12 51 | 97.95 235 | | | |
|
OpenMVS_ROB |  | 79.82 20 | 83.77 317 | 81.68 320 | 90.03 320 | 88.30 353 | 82.82 337 | 98.46 286 | 95.22 348 | 73.92 355 | 76.00 349 | 91.29 342 | 55.00 357 | 96.94 284 | 68.40 353 | 88.51 246 | 90.34 348 |
|
Anonymous20240521 | | | 85.15 309 | 83.81 310 | 89.16 325 | 88.32 352 | 82.69 338 | 98.80 267 | 95.74 336 | 79.72 340 | 81.53 331 | 90.99 343 | 65.38 340 | 94.16 342 | 72.69 346 | 81.11 301 | 90.63 347 |
|
Patchmatch-RL test | | | 86.90 300 | 85.98 302 | 89.67 322 | 84.45 359 | 75.59 357 | 89.71 357 | 92.43 361 | 86.89 292 | 77.83 344 | 90.94 344 | 94.22 86 | 93.63 348 | 87.75 275 | 69.61 345 | 99.79 104 |
|
CL-MVSNet_2432*1600 | | | 84.50 313 | 83.15 315 | 88.53 330 | 86.00 357 | 81.79 346 | 98.82 265 | 97.35 257 | 85.12 314 | 83.62 322 | 90.91 345 | 76.66 288 | 91.40 355 | 69.53 351 | 60.36 358 | 92.40 332 |
|
FPMVS | | | 68.72 326 | 68.72 329 | 68.71 346 | 65.95 369 | 44.27 374 | 95.97 337 | 94.74 353 | 51.13 362 | 53.26 365 | 90.50 346 | 25.11 369 | 83.00 364 | 60.80 361 | 80.97 305 | 78.87 360 |
|
new_pmnet | | | 84.49 314 | 82.92 316 | 89.21 324 | 90.03 347 | 82.60 339 | 96.89 326 | 95.62 340 | 80.59 338 | 75.77 351 | 89.17 347 | 65.04 342 | 94.79 338 | 72.12 347 | 81.02 303 | 90.23 349 |
|
DIV-MVS_2432*1600 | | | 83.59 318 | 82.06 318 | 88.20 332 | 86.93 355 | 80.70 352 | 97.21 318 | 96.38 325 | 82.87 329 | 82.49 325 | 88.97 348 | 67.63 332 | 92.32 352 | 73.75 345 | 62.30 357 | 91.58 340 |
|
PM-MVS | | | 80.47 322 | 78.88 326 | 85.26 336 | 83.79 361 | 72.22 359 | 95.89 338 | 91.08 364 | 85.71 308 | 76.56 348 | 88.30 349 | 36.64 364 | 93.90 345 | 82.39 314 | 69.57 346 | 89.66 353 |
|
pmmvs3 | | | 80.27 323 | 77.77 327 | 87.76 333 | 80.32 363 | 82.43 341 | 98.23 298 | 91.97 362 | 72.74 356 | 78.75 341 | 87.97 350 | 57.30 356 | 90.99 357 | 70.31 349 | 62.37 356 | 89.87 351 |
|
pmmvs-eth3d | | | 84.03 316 | 81.97 319 | 90.20 318 | 84.15 360 | 87.09 320 | 98.10 304 | 94.73 354 | 83.05 327 | 74.10 353 | 87.77 351 | 65.56 339 | 94.01 343 | 81.08 322 | 69.24 347 | 89.49 354 |
|
test123 | | | 37.68 337 | 39.14 340 | 33.31 352 | 19.94 376 | 24.83 377 | 98.36 292 | 9.75 377 | 15.53 371 | 51.31 366 | 87.14 352 | 19.62 372 | 17.74 372 | 47.10 365 | 3.47 371 | 57.36 365 |
|
new-patchmatchnet | | | 81.19 320 | 79.34 325 | 86.76 335 | 82.86 362 | 80.36 355 | 97.92 308 | 95.27 347 | 82.09 334 | 72.02 354 | 86.87 353 | 62.81 347 | 90.74 358 | 71.10 348 | 63.08 355 | 89.19 356 |
|
ambc | | | | | 83.23 339 | 77.17 364 | 62.61 363 | 87.38 359 | 94.55 356 | | 76.72 347 | 86.65 354 | 30.16 365 | 96.36 308 | 84.85 301 | 69.86 344 | 90.73 346 |
|
PatchT | | | 90.38 267 | 88.75 281 | 95.25 221 | 95.99 257 | 90.16 288 | 91.22 356 | 97.54 235 | 76.80 346 | 97.26 143 | 86.01 355 | 91.88 145 | 96.07 320 | 66.16 357 | 95.91 189 | 99.51 153 |
|
RPMNet | | | 89.76 281 | 87.28 296 | 97.19 170 | 96.29 250 | 92.66 236 | 92.01 352 | 98.31 158 | 70.19 358 | 96.94 149 | 85.87 356 | 87.25 203 | 99.78 115 | 62.69 360 | 95.96 187 | 99.13 190 |
|
UnsupCasMVSNet_bld | | | 79.97 325 | 77.03 328 | 88.78 328 | 85.62 358 | 81.98 344 | 93.66 346 | 97.35 257 | 75.51 352 | 70.79 356 | 83.05 357 | 48.70 362 | 94.91 336 | 78.31 333 | 60.29 359 | 89.46 355 |
|
LCM-MVSNet | | | 67.77 327 | 64.73 331 | 76.87 342 | 62.95 371 | 56.25 368 | 89.37 358 | 93.74 360 | 44.53 364 | 61.99 359 | 80.74 358 | 20.42 371 | 86.53 362 | 69.37 352 | 59.50 360 | 87.84 357 |
|
PMMVS2 | | | 67.15 328 | 64.15 332 | 76.14 343 | 70.56 368 | 62.07 365 | 93.89 344 | 87.52 370 | 58.09 360 | 60.02 360 | 78.32 359 | 22.38 370 | 84.54 363 | 59.56 362 | 47.03 363 | 81.80 359 |
|
JIA-IIPM | | | 91.76 243 | 90.70 243 | 94.94 229 | 96.11 253 | 87.51 318 | 93.16 348 | 98.13 187 | 75.79 350 | 97.58 137 | 77.68 360 | 92.84 124 | 97.97 232 | 88.47 267 | 96.54 176 | 99.33 174 |
|
PMVS |  | 49.05 23 | 53.75 332 | 51.34 336 | 60.97 349 | 40.80 375 | 34.68 375 | 74.82 363 | 89.62 368 | 37.55 366 | 28.67 372 | 72.12 361 | 7.09 375 | 81.63 365 | 43.17 367 | 68.21 351 | 66.59 363 |
Y. Furukawa, J. Ponce: Accurate, dense, and robust multiview stereopsis. PAMI (2010) |
MVS-HIRNet | | | 86.22 302 | 83.19 314 | 95.31 218 | 96.71 247 | 90.29 286 | 92.12 351 | 97.33 260 | 62.85 359 | 86.82 295 | 70.37 362 | 69.37 324 | 97.49 249 | 75.12 343 | 97.99 151 | 98.15 212 |
|
gg-mvs-nofinetune | | | 93.51 202 | 91.86 226 | 98.47 117 | 97.72 197 | 97.96 81 | 92.62 349 | 98.51 97 | 74.70 353 | 97.33 142 | 69.59 363 | 98.91 3 | 97.79 240 | 97.77 122 | 99.56 108 | 99.67 120 |
|
Gipuma |  | | 66.95 329 | 65.00 330 | 72.79 344 | 91.52 336 | 67.96 361 | 66.16 364 | 95.15 351 | 47.89 363 | 58.54 361 | 67.99 364 | 29.74 366 | 87.54 361 | 50.20 364 | 77.83 325 | 62.87 364 |
S. Galliani, K. Lasinger, K. Schindler: Massively Parallel Multiview Stereopsis by Surface Normal Diffusion. ICCV 2015 |
ANet_high | | | 56.10 331 | 52.24 334 | 67.66 347 | 49.27 373 | 56.82 367 | 83.94 360 | 82.02 371 | 70.47 357 | 33.28 371 | 64.54 365 | 17.23 373 | 69.16 368 | 45.59 366 | 23.85 367 | 77.02 361 |
|
E-PMN | | | 52.30 333 | 52.18 335 | 52.67 350 | 71.51 366 | 45.40 371 | 93.62 347 | 76.60 373 | 36.01 367 | 43.50 368 | 64.13 366 | 27.11 368 | 67.31 369 | 31.06 369 | 26.06 365 | 45.30 368 |
|
test_post | | | | | | | | | | | | 63.35 367 | 94.43 72 | 98.13 224 | | | |
|
MVE |  | 53.74 22 | 51.54 334 | 47.86 338 | 62.60 348 | 59.56 372 | 50.93 369 | 79.41 362 | 77.69 372 | 35.69 368 | 36.27 370 | 61.76 368 | 5.79 377 | 69.63 367 | 37.97 368 | 36.61 364 | 67.24 362 |
Simon Fuhrmann, Fabian Langguth, Michael Goesele: MVE - A Multi-View Reconstruction Environment. EUROGRAPHICS Workshops on Graphics and Cultural Heritage (2014) |
EMVS | | | 51.44 335 | 51.22 337 | 52.11 351 | 70.71 367 | 44.97 373 | 94.04 343 | 75.66 374 | 35.34 369 | 42.40 369 | 61.56 369 | 28.93 367 | 65.87 370 | 27.64 370 | 24.73 366 | 45.49 367 |
|
test_post1 | | | | | | | | 95.78 339 | | | | 59.23 370 | 93.20 117 | 97.74 242 | 91.06 233 | | |
|
X-MVStestdata | | | 93.83 192 | 92.06 221 | 99.15 64 | 99.94 14 | 97.50 99 | 99.94 60 | 98.42 128 | 96.22 52 | 99.41 61 | 41.37 371 | 94.34 79 | 99.96 57 | 98.92 64 | 99.95 55 | 99.99 24 |
|
wuyk23d | | | 20.37 339 | 20.84 342 | 18.99 354 | 65.34 370 | 27.73 376 | 50.43 365 | 7.67 378 | 9.50 372 | 8.01 373 | 6.34 372 | 6.13 376 | 26.24 371 | 23.40 371 | 10.69 370 | 2.99 369 |
|
test_blank | | | 0.00 342 | 0.00 345 | 0.00 355 | 0.00 378 | 0.00 379 | 0.00 366 | 0.00 379 | 0.00 373 | 0.00 374 | 0.02 373 | 0.00 378 | 0.00 374 | 0.00 372 | 0.00 372 | 0.00 370 |
|
uanet_test | | | 0.00 342 | 0.00 345 | 0.00 355 | 0.00 378 | 0.00 379 | 0.00 366 | 0.00 379 | 0.00 373 | 0.00 374 | 0.00 374 | 0.00 378 | 0.00 374 | 0.00 372 | 0.00 372 | 0.00 370 |
|
pcd_1.5k_mvsjas | | | 7.60 341 | 10.13 344 | 0.00 355 | 0.00 378 | 0.00 379 | 0.00 366 | 0.00 379 | 0.00 373 | 0.00 374 | 0.00 374 | 91.20 155 | 0.00 374 | 0.00 372 | 0.00 372 | 0.00 370 |
|
sosnet-low-res | | | 0.00 342 | 0.00 345 | 0.00 355 | 0.00 378 | 0.00 379 | 0.00 366 | 0.00 379 | 0.00 373 | 0.00 374 | 0.00 374 | 0.00 378 | 0.00 374 | 0.00 372 | 0.00 372 | 0.00 370 |
|
sosnet | | | 0.00 342 | 0.00 345 | 0.00 355 | 0.00 378 | 0.00 379 | 0.00 366 | 0.00 379 | 0.00 373 | 0.00 374 | 0.00 374 | 0.00 378 | 0.00 374 | 0.00 372 | 0.00 372 | 0.00 370 |
|
uncertanet | | | 0.00 342 | 0.00 345 | 0.00 355 | 0.00 378 | 0.00 379 | 0.00 366 | 0.00 379 | 0.00 373 | 0.00 374 | 0.00 374 | 0.00 378 | 0.00 374 | 0.00 372 | 0.00 372 | 0.00 370 |
|
Regformer | | | 0.00 342 | 0.00 345 | 0.00 355 | 0.00 378 | 0.00 379 | 0.00 366 | 0.00 379 | 0.00 373 | 0.00 374 | 0.00 374 | 0.00 378 | 0.00 374 | 0.00 372 | 0.00 372 | 0.00 370 |
|
uanet | | | 0.00 342 | 0.00 345 | 0.00 355 | 0.00 378 | 0.00 379 | 0.00 366 | 0.00 379 | 0.00 373 | 0.00 374 | 0.00 374 | 0.00 378 | 0.00 374 | 0.00 372 | 0.00 372 | 0.00 370 |
|
FOURS1 | | | | | | 99.92 36 | 97.66 91 | 99.95 43 | 98.36 148 | 95.58 72 | 99.52 53 | | | | | | |
|
MSC_two_6792asdad | | | | | 99.93 2 | 99.91 44 | 99.80 2 | | 98.41 132 | | | | | 100.00 1 | 99.96 9 | 100.00 1 | 100.00 1 |
|
No_MVS | | | | | 99.93 2 | 99.91 44 | 99.80 2 | | 98.41 132 | | | | | 100.00 1 | 99.96 9 | 100.00 1 | 100.00 1 |
|
eth-test2 | | | | | | 0.00 378 | | | | | | | | | | | |
|
eth-test | | | | | | 0.00 378 | | | | | | | | | | | |
|
IU-MVS | | | | | | 99.93 27 | 99.31 9 | | 98.41 132 | 97.71 8 | 99.84 8 | | | | 100.00 1 | 100.00 1 | 100.00 1 |
|
save fliter | | | | | | 99.82 70 | 98.79 37 | 99.96 25 | 98.40 136 | 97.66 10 | | | | | | | |
|
test_0728_SECOND | | | | | 99.82 7 | 99.94 14 | 99.47 7 | 99.95 43 | 98.43 116 | | | | | 100.00 1 | 99.99 5 | 100.00 1 | 100.00 1 |
|
GSMVS | | | | | | | | | | | | | | | | | 99.59 135 |
|
test_part2 | | | | | | 99.89 50 | 99.25 17 | | | | 99.49 55 | | | | | | |
|
sam_mvs1 | | | | | | | | | | | | | 94.72 67 | | | | 99.59 135 |
|
sam_mvs | | | | | | | | | | | | | 94.25 85 | | | | |
|
MTGPA |  | | | | | | | | 98.28 163 | | | | | | | | |
|
MTMP | | | | | | | | 99.87 92 | 96.49 323 | | | | | | | | |
|
test9_res | | | | | | | | | | | | | | | 99.71 33 | 99.99 22 | 100.00 1 |
|
agg_prior2 | | | | | | | | | | | | | | | 99.48 40 | 100.00 1 | 100.00 1 |
|
agg_prior | | | | | | 99.93 27 | 98.77 40 | | 98.43 116 | | 99.63 40 | | | 99.85 98 | | | |
|
test_prior4 | | | | | | | 98.05 75 | 99.94 60 | | | | | | | | | |
|
test_prior | | | | | 99.43 38 | 99.94 14 | 98.49 61 | | 98.65 60 | | | | | 99.80 110 | | | 99.99 24 |
|
旧先验2 | | | | | | | | 99.46 193 | | 94.21 118 | 99.85 6 | | | 99.95 64 | 96.96 141 | | |
|
æ–°å‡ ä½•2 | | | | | | | | 99.40 198 | | | | | | | | | |
|
æ— å…ˆéªŒ | | | | | | | | 99.49 188 | 98.71 53 | 93.46 148 | | | | 100.00 1 | 94.36 182 | | 99.99 24 |
|
原ACMM2 | | | | | | | | 99.90 78 | | | | | | | | | |
|
testdata2 | | | | | | | | | | | | | | 99.99 40 | 90.54 245 | | |
|
segment_acmp | | | | | | | | | | | | | 96.68 25 | | | | |
|
testdata1 | | | | | | | | 99.28 218 | | 96.35 51 | | | | | | | |
|
test12 | | | | | 99.43 38 | 99.74 82 | 98.56 57 | | 98.40 136 | | 99.65 38 | | 94.76 66 | 99.75 125 | | 99.98 35 | 99.99 24 |
|
plane_prior7 | | | | | | 95.71 270 | 91.59 266 | | | | | | | | | | |
|
plane_prior6 | | | | | | 95.76 265 | 91.72 261 | | | | | | 80.47 264 | | | | |
|
plane_prior5 | | | | | | | | | 97.87 208 | | | | | 98.37 206 | 97.79 120 | 89.55 229 | 94.52 237 |
|
plane_prior3 | | | | | | | 91.64 264 | | | 96.63 39 | 93.01 209 | | | | | | |
|
plane_prior2 | | | | | | | | 99.84 110 | | 96.38 47 | | | | | | | |
|
plane_prior1 | | | | | | 95.73 267 | | | | | | | | | | | |
|
plane_prior | | | | | | | 91.74 258 | 99.86 103 | | 96.76 35 | | | | | | 89.59 228 | |
|
n2 | | | | | | | | | 0.00 379 | | | | | | | | |
|
nn | | | | | | | | | 0.00 379 | | | | | | | | |
|
door-mid | | | | | | | | | 89.69 367 | | | | | | | | |
|
test11 | | | | | | | | | 98.44 108 | | | | | | | | |
|
door | | | | | | | | | 90.31 365 | | | | | | | | |
|
HQP5-MVS | | | | | | | 91.85 254 | | | | | | | | | | |
|
HQP-NCC | | | | | | 95.78 261 | | 99.87 92 | | 96.82 31 | 93.37 205 | | | | | | |
|
ACMP_Plane | | | | | | 95.78 261 | | 99.87 92 | | 96.82 31 | 93.37 205 | | | | | | |
|
BP-MVS | | | | | | | | | | | | | | | 97.92 115 | | |
|
HQP4-MVS | | | | | | | | | | | 93.37 205 | | | 98.39 201 | | | 94.53 235 |
|
HQP3-MVS | | | | | | | | | 97.89 206 | | | | | | | 89.60 226 | |
|
HQP2-MVS | | | | | | | | | | | | | 80.65 260 | | | | |
|
MDTV_nov1_ep13_2view | | | | | | | 96.26 143 | 96.11 334 | | 91.89 202 | 98.06 127 | | 94.40 74 | | 94.30 185 | | 99.67 120 |
|
ACMMP++_ref | | | | | | | | | | | | | | | | 87.04 259 | |
|
ACMMP++ | | | | | | | | | | | | | | | | 88.23 248 | |
|
Test By Simon | | | | | | | | | | | | | 92.82 126 | | | | |
|