DeepPCF-MVS | | 95.94 2 | 97.71 73 | 98.98 12 | 93.92 265 | 99.63 79 | 81.76 344 | 99.96 26 | 98.56 78 | 99.47 1 | 99.19 73 | 99.99 1 | 94.16 79 | 100.00 1 | 99.92 12 | 99.93 60 | 100.00 1 |
|
CNVR-MVS | | | 99.40 1 | 99.26 1 | 99.84 6 | 99.98 2 | 99.51 6 | 99.98 9 | 98.69 58 | 98.20 3 | 99.93 1 | 99.98 2 | 96.82 23 | 100.00 1 | 99.75 24 | 100.00 1 | 99.99 23 |
|
NCCC | | | 99.37 2 | 99.25 2 | 99.71 13 | 99.96 8 | 99.15 20 | 99.97 19 | 98.62 70 | 98.02 6 | 99.90 2 | 99.95 3 | 97.33 17 | 100.00 1 | 99.54 32 | 100.00 1 | 100.00 1 |
|
SED-MVS | | | 99.28 5 | 99.11 7 | 99.77 8 | 99.93 24 | 99.30 11 | 99.96 26 | 98.43 113 | 97.27 23 | 99.80 15 | 99.94 4 | 96.71 24 | 100.00 1 | 100.00 1 | 100.00 1 | 100.00 1 |
|
test_241102_TWO | | | | | | | | | 98.43 113 | 97.27 23 | 99.80 15 | 99.94 4 | 97.18 21 | 100.00 1 | 100.00 1 | 100.00 1 | 100.00 1 |
|
test0726 | | | | | | 99.93 24 | 99.29 14 | 99.96 26 | 98.42 124 | 97.28 21 | 99.86 5 | 99.94 4 | 97.22 19 | | | | |
|
DPM-MVS | | | 98.83 18 | 98.46 25 | 99.97 1 | 99.33 97 | 99.92 1 | 99.96 26 | 98.44 105 | 97.96 7 | 99.55 46 | 99.94 4 | 97.18 21 | 100.00 1 | 93.81 192 | 99.94 54 | 99.98 48 |
|
SMA-MVS |  | | 98.76 20 | 98.48 24 | 99.62 18 | 99.87 51 | 98.87 30 | 99.86 100 | 98.38 139 | 93.19 154 | 99.77 24 | 99.94 4 | 95.54 42 | 100.00 1 | 99.74 26 | 99.99 21 | 100.00 1 |
Yufeng Yin; Xiaoyan Liu; Zichao Zhang: SMA-MVS: Segmentation-Guided Multi-Scale Anchor Deformation Patch Multi-View Stereo. IEEE Transactions on Circuits and Systems for Video Technology |
DPE-MVS |  | | 99.26 6 | 99.10 8 | 99.74 10 | 99.89 45 | 99.24 18 | 99.87 88 | 98.44 105 | 97.48 17 | 99.64 36 | 99.94 4 | 96.68 26 | 99.99 36 | 99.99 5 | 100.00 1 | 99.99 23 |
Kehua Chen, Zhenlong Yuan, Tianlu Mao, Zhaoqi Wang: Dual-Level Precision Edges Guided Multi-View Stereo with Accurate Planarization. AAAI2025 |
MSLP-MVS++ | | | 99.13 8 | 99.01 11 | 99.49 30 | 99.94 13 | 98.46 57 | 99.98 9 | 98.86 47 | 97.10 28 | 99.80 15 | 99.94 4 | 95.92 36 | 100.00 1 | 99.51 33 | 100.00 1 | 100.00 1 |
|
DVP-MVS++ | | | 99.26 6 | 99.09 9 | 99.77 8 | 99.91 39 | 99.31 9 | 99.95 43 | 98.43 113 | 96.48 47 | 99.80 15 | 99.93 11 | 97.44 14 | 100.00 1 | 99.92 12 | 99.98 32 | 100.00 1 |
|
test_one_0601 | | | | | | 99.94 13 | 99.30 11 | | 98.41 128 | 96.63 44 | 99.75 26 | 99.93 11 | 97.49 10 | | | | |
|
MCST-MVS | | | 99.32 3 | 99.14 4 | 99.86 5 | 99.97 3 | 99.59 5 | 99.97 19 | 98.64 66 | 98.47 2 | 99.13 75 | 99.92 13 | 96.38 30 | 100.00 1 | 99.74 26 | 100.00 1 | 100.00 1 |
|
DVP-MVS |  | | 99.30 4 | 99.16 3 | 99.73 11 | 99.93 24 | 99.29 14 | 99.95 43 | 98.32 150 | 97.28 21 | 99.83 11 | 99.91 14 | 97.22 19 | 100.00 1 | 99.99 5 | 100.00 1 | 99.89 79 |
Zhenlong Yuan, Jinguo Luo, Fei Shen, Zhaoxin Li, Cong Liu, Tianlu Mao, Zhaoqi Wang: DVP-MVS: Synergize Depth-Edge and Visibility Prior for Multi-View Stereo. AAAI2025 |
test_0728_THIRD | | | | | | | | | | 96.48 47 | 99.83 11 | 99.91 14 | 97.87 6 | 100.00 1 | 99.92 12 | 100.00 1 | 100.00 1 |
|
SteuartSystems-ACMMP | | | 99.02 12 | 98.97 13 | 99.18 46 | 98.72 132 | 97.71 75 | 99.98 9 | 98.44 105 | 96.85 34 | 99.80 15 | 99.91 14 | 97.57 8 | 99.85 95 | 99.44 37 | 99.99 21 | 99.99 23 |
Skip Steuart: Steuart Systems R&D Blog. |
DeepC-MVS_fast | | 96.59 1 | 98.81 19 | 98.54 22 | 99.62 18 | 99.90 42 | 98.85 32 | 99.24 215 | 98.47 99 | 98.14 4 | 99.08 76 | 99.91 14 | 93.09 106 | 100.00 1 | 99.04 51 | 99.99 21 | 100.00 1 |
Andreas Kuhn, Christian Sormann, Mattia Rossi, Oliver Erdler, Friedrich Fraundorfer: DeepC-MVS: Deep Confidence Prediction for Multi-View Stereo Reconstruction. 3DV 2020 |
tmp_tt | | | 65.23 337 | 62.94 340 | 72.13 352 | 44.90 381 | 50.03 377 | 81.05 368 | 89.42 372 | 38.45 371 | 48.51 373 | 99.90 18 | 54.09 355 | 78.70 373 | 91.84 222 | 18.26 375 | 87.64 359 |
|
SF-MVS | | | 98.67 23 | 98.40 27 | 99.50 28 | 99.77 65 | 98.67 45 | 99.90 76 | 98.21 164 | 93.53 144 | 99.81 13 | 99.89 19 | 94.70 62 | 99.86 94 | 99.84 18 | 99.93 60 | 99.96 61 |
|
9.14 | | | | 98.38 29 | | 99.87 51 | | 99.91 71 | 98.33 148 | 93.22 153 | 99.78 23 | 99.89 19 | 94.57 64 | 99.85 95 | 99.84 18 | 99.97 42 | |
|
test_241102_ONE | | | | | | 99.93 24 | 99.30 11 | | 98.43 113 | 97.26 25 | 99.80 15 | 99.88 21 | 96.71 24 | 100.00 1 | | | |
|
MSP-MVS | | | 99.09 9 | 99.12 5 | 98.98 69 | 99.93 24 | 97.24 94 | 99.95 43 | 98.42 124 | 97.50 16 | 99.52 51 | 99.88 21 | 97.43 16 | 99.71 124 | 99.50 34 | 99.98 32 | 100.00 1 |
Zhenlong Yuan, Cong Liu, Fei Shen, Zhaoxin Li, Jingguo luo, Tianlu Mao and Zhaoqi Wang: MSP-MVS: Multi-granularity Segmentation Prior Guided Multi-View Stereo. AAAI2025 |
MTAPA | | | 98.29 45 | 97.96 56 | 99.30 40 | 99.85 54 | 97.93 71 | 99.39 196 | 98.28 157 | 95.76 66 | 97.18 138 | 99.88 21 | 92.74 115 | 100.00 1 | 98.67 73 | 99.88 68 | 99.99 23 |
|
CDPH-MVS | | | 98.65 24 | 98.36 33 | 99.49 30 | 99.94 13 | 98.73 42 | 99.87 88 | 98.33 148 | 93.97 129 | 99.76 25 | 99.87 24 | 94.99 57 | 99.75 118 | 98.55 80 | 100.00 1 | 99.98 48 |
|
CP-MVS | | | 98.45 36 | 98.32 35 | 98.87 75 | 99.96 8 | 96.62 116 | 99.97 19 | 98.39 135 | 94.43 103 | 98.90 84 | 99.87 24 | 94.30 74 | 100.00 1 | 99.04 51 | 99.99 21 | 99.99 23 |
|
xiu_mvs_v2_base | | | 98.23 51 | 97.97 53 | 99.02 66 | 98.69 133 | 98.66 47 | 99.52 177 | 98.08 180 | 97.05 29 | 99.86 5 | 99.86 26 | 90.65 155 | 99.71 124 | 99.39 40 | 98.63 124 | 98.69 201 |
|
TEST9 | | | | | | 99.92 31 | 98.92 26 | 99.96 26 | 98.43 113 | 93.90 134 | 99.71 30 | 99.86 26 | 95.88 37 | 99.85 95 | | | |
|
train_agg | | | 98.88 17 | 98.65 18 | 99.59 21 | 99.92 31 | 98.92 26 | 99.96 26 | 98.43 113 | 94.35 108 | 99.71 30 | 99.86 26 | 95.94 34 | 99.85 95 | 99.69 31 | 99.98 32 | 99.99 23 |
|
LS3D | | | 95.84 138 | 95.11 148 | 98.02 124 | 99.85 54 | 95.10 170 | 98.74 268 | 98.50 97 | 87.22 288 | 93.66 198 | 99.86 26 | 87.45 190 | 99.95 61 | 90.94 235 | 99.81 78 | 99.02 187 |
|
MP-MVS-pluss | | | 98.07 56 | 97.64 66 | 99.38 39 | 99.74 69 | 98.41 58 | 99.74 138 | 98.18 168 | 93.35 148 | 96.45 155 | 99.85 30 | 92.64 117 | 99.97 51 | 98.91 59 | 99.89 66 | 99.77 95 |
MP-MVS-pluss: MP-MVS-pluss. MP-MVS-pluss |
test_8 | | | | | | 99.92 31 | 98.88 29 | 99.96 26 | 98.43 113 | 94.35 108 | 99.69 32 | 99.85 30 | 95.94 34 | 99.85 95 | | | |
|
HFP-MVS | | | 98.56 28 | 98.37 31 | 99.14 55 | 99.96 8 | 97.43 90 | 99.95 43 | 98.61 71 | 94.77 91 | 99.31 66 | 99.85 30 | 94.22 76 | 100.00 1 | 98.70 71 | 99.98 32 | 99.98 48 |
|
region2R | | | 98.54 29 | 98.37 31 | 99.05 62 | 99.96 8 | 97.18 97 | 99.96 26 | 98.55 84 | 94.87 89 | 99.45 55 | 99.85 30 | 94.07 81 | 100.00 1 | 98.67 73 | 100.00 1 | 99.98 48 |
|
PS-MVSNAJ | | | 98.44 37 | 98.20 40 | 99.16 51 | 98.80 128 | 98.92 26 | 99.54 175 | 98.17 169 | 97.34 19 | 99.85 7 | 99.85 30 | 91.20 143 | 99.89 83 | 99.41 39 | 99.67 85 | 98.69 201 |
|
HPM-MVS++ |  | | 99.07 10 | 98.88 15 | 99.63 15 | 99.90 42 | 99.02 23 | 99.95 43 | 98.56 78 | 97.56 15 | 99.44 56 | 99.85 30 | 95.38 46 | 100.00 1 | 99.31 41 | 99.99 21 | 99.87 82 |
|
旧先验1 | | | | | | 99.76 66 | 97.52 83 | | 98.64 66 | | | 99.85 30 | 95.63 41 | | | 99.94 54 | 99.99 23 |
|
原ACMM1 | | | | | 98.96 71 | 99.73 72 | 96.99 105 | | 98.51 93 | 94.06 124 | 99.62 39 | 99.85 30 | 94.97 58 | 99.96 54 | 95.11 159 | 99.95 49 | 99.92 76 |
|
testdata | | | | | 98.42 107 | 99.47 91 | 95.33 161 | | 98.56 78 | 93.78 137 | 99.79 22 | 99.85 30 | 93.64 93 | 99.94 69 | 94.97 163 | 99.94 54 | 100.00 1 |
|
APDe-MVS | | | 99.06 11 | 98.91 14 | 99.51 27 | 99.94 13 | 98.76 41 | 99.91 71 | 98.39 135 | 97.20 27 | 99.46 54 | 99.85 30 | 95.53 44 | 99.79 109 | 99.86 17 | 100.00 1 | 99.99 23 |
|
API-MVS | | | 97.86 62 | 97.66 65 | 98.47 102 | 99.52 87 | 95.41 159 | 99.47 186 | 98.87 46 | 91.68 207 | 98.84 85 | 99.85 30 | 92.34 126 | 99.99 36 | 98.44 83 | 99.96 46 | 100.00 1 |
|
ACMMPR | | | 98.50 32 | 98.32 35 | 99.05 62 | 99.96 8 | 97.18 97 | 99.95 43 | 98.60 72 | 94.77 91 | 99.31 66 | 99.84 41 | 93.73 90 | 100.00 1 | 98.70 71 | 99.98 32 | 99.98 48 |
|
DP-MVS Recon | | | 98.41 39 | 98.02 51 | 99.56 23 | 99.97 3 | 98.70 44 | 99.92 67 | 98.44 105 | 92.06 196 | 98.40 108 | 99.84 41 | 95.68 40 | 100.00 1 | 98.19 92 | 99.71 83 | 99.97 55 |
|
ZD-MVS | | | | | | 99.92 31 | 98.57 52 | | 98.52 90 | 92.34 188 | 99.31 66 | 99.83 43 | 95.06 52 | 99.80 107 | 99.70 30 | 99.97 42 | |
|
ACMMP_NAP | | | 98.49 33 | 98.14 44 | 99.54 25 | 99.66 78 | 98.62 51 | 99.85 103 | 98.37 142 | 94.68 96 | 99.53 49 | 99.83 43 | 92.87 111 | 100.00 1 | 98.66 75 | 99.84 71 | 99.99 23 |
|
test222 | | | | | | 99.55 85 | 97.41 92 | 99.34 202 | 98.55 84 | 91.86 201 | 99.27 70 | 99.83 43 | 93.84 88 | | | 99.95 49 | 99.99 23 |
|
ZNCC-MVS | | | 98.31 43 | 98.03 50 | 99.17 49 | 99.88 49 | 97.59 80 | 99.94 58 | 98.44 105 | 94.31 111 | 98.50 103 | 99.82 46 | 93.06 107 | 99.99 36 | 98.30 90 | 99.99 21 | 99.93 71 |
|
æ–°å‡ ä½•1 | | | | | 99.42 35 | 99.75 68 | 98.27 59 | | 98.63 69 | 92.69 171 | 99.55 46 | 99.82 46 | 94.40 67 | 100.00 1 | 91.21 227 | 99.94 54 | 99.99 23 |
|
CSCG | | | 97.10 92 | 97.04 86 | 97.27 159 | 99.89 45 | 91.92 243 | 99.90 76 | 99.07 32 | 88.67 267 | 95.26 180 | 99.82 46 | 93.17 105 | 99.98 42 | 98.15 95 | 99.47 99 | 99.90 78 |
|
MAR-MVS | | | 97.43 78 | 97.19 80 | 98.15 119 | 99.47 91 | 94.79 178 | 99.05 237 | 98.76 53 | 92.65 174 | 98.66 96 | 99.82 46 | 88.52 183 | 99.98 42 | 98.12 96 | 99.63 87 | 99.67 107 |
Zhenyu Xu, Yiguang Liu, Xuelei Shi, Ying Wang, Yunan Zheng: MARMVS: Matching Ambiguity Reduced Multiple View Stereo for Efficient Large Scale Scene Reconstruction. CVPR 2020 |
MP-MVS |  | | 98.23 51 | 97.97 53 | 99.03 64 | 99.94 13 | 97.17 100 | 99.95 43 | 98.39 135 | 94.70 95 | 98.26 115 | 99.81 50 | 91.84 137 | 100.00 1 | 98.85 63 | 99.97 42 | 99.93 71 |
Rongxuan Tan, Qing Wang, et al.: MP-MVS: Multi-Scale Windows PatchMatch and Planar Prior Multi-View Stereo. |
OPU-MVS | | | | | 99.93 2 | 99.89 45 | 99.80 2 | 99.96 26 | | | | 99.80 51 | 97.44 14 | 100.00 1 | 100.00 1 | 99.98 32 | 100.00 1 |
|
SR-MVS | | | 98.46 35 | 98.30 37 | 98.93 73 | 99.88 49 | 97.04 102 | 99.84 107 | 98.35 145 | 94.92 87 | 99.32 65 | 99.80 51 | 93.35 96 | 99.78 111 | 99.30 42 | 99.95 49 | 99.96 61 |
|
mPP-MVS | | | 98.39 41 | 98.20 40 | 98.97 70 | 99.97 3 | 96.92 108 | 99.95 43 | 98.38 139 | 95.04 83 | 98.61 99 | 99.80 51 | 93.39 95 | 100.00 1 | 98.64 76 | 100.00 1 | 99.98 48 |
|
PC_three_1452 | | | | | | | | | | 96.96 32 | 99.80 15 | 99.79 54 | 97.49 10 | 100.00 1 | 99.99 5 | 99.98 32 | 100.00 1 |
|
CS-MVS-test | | | 97.88 61 | 97.94 57 | 97.70 139 | 99.28 99 | 95.20 168 | 99.98 9 | 97.15 265 | 95.53 73 | 99.62 39 | 99.79 54 | 92.08 132 | 98.38 202 | 98.75 69 | 99.28 108 | 99.52 140 |
|
CPTT-MVS | | | 97.64 74 | 97.32 77 | 98.58 92 | 99.97 3 | 95.77 145 | 99.96 26 | 98.35 145 | 89.90 245 | 98.36 109 | 99.79 54 | 91.18 146 | 99.99 36 | 98.37 86 | 99.99 21 | 99.99 23 |
|
MVS_111021_LR | | | 98.42 38 | 98.38 29 | 98.53 99 | 99.39 94 | 95.79 144 | 99.87 88 | 99.86 2 | 96.70 42 | 98.78 88 | 99.79 54 | 92.03 133 | 99.90 79 | 99.17 45 | 99.86 70 | 99.88 80 |
|
XVS | | | 98.70 22 | 98.55 21 | 99.15 53 | 99.94 13 | 97.50 86 | 99.94 58 | 98.42 124 | 96.22 57 | 99.41 59 | 99.78 58 | 94.34 72 | 99.96 54 | 98.92 57 | 99.95 49 | 99.99 23 |
|
PHI-MVS | | | 98.41 39 | 98.21 39 | 99.03 64 | 99.86 53 | 97.10 101 | 99.98 9 | 98.80 52 | 90.78 232 | 99.62 39 | 99.78 58 | 95.30 47 | 100.00 1 | 99.80 21 | 99.93 60 | 99.99 23 |
|
APD-MVS_3200maxsize | | | 98.25 49 | 98.08 49 | 98.78 78 | 99.81 60 | 96.60 117 | 99.82 115 | 98.30 155 | 93.95 131 | 99.37 63 | 99.77 60 | 92.84 112 | 99.76 117 | 98.95 54 | 99.92 63 | 99.97 55 |
|
MVS_111021_HR | | | 98.72 21 | 98.62 20 | 99.01 67 | 99.36 96 | 97.18 97 | 99.93 64 | 99.90 1 | 96.81 39 | 98.67 95 | 99.77 60 | 93.92 84 | 99.89 83 | 99.27 43 | 99.94 54 | 99.96 61 |
|
patch_mono-2 | | | 98.24 50 | 99.12 5 | 95.59 201 | 99.67 77 | 86.91 317 | 99.95 43 | 98.89 43 | 97.60 12 | 99.90 2 | 99.76 62 | 96.54 28 | 99.98 42 | 99.94 11 | 99.82 76 | 99.88 80 |
|
EI-MVSNet-Vis-set | | | 98.27 46 | 98.11 47 | 98.75 80 | 99.83 57 | 96.59 118 | 99.40 192 | 98.51 93 | 95.29 79 | 98.51 102 | 99.76 62 | 93.60 94 | 99.71 124 | 98.53 81 | 99.52 96 | 99.95 68 |
|
test_prior2 | | | | | | | | 99.95 43 | | 95.78 65 | 99.73 28 | 99.76 62 | 96.00 33 | | 99.78 23 | 100.00 1 | |
|
SD-MVS | | | 98.92 15 | 98.70 17 | 99.56 23 | 99.70 76 | 98.73 42 | 99.94 58 | 98.34 147 | 96.38 52 | 99.81 13 | 99.76 62 | 94.59 63 | 99.98 42 | 99.84 18 | 99.96 46 | 99.97 55 |
Zhenlong Yuan, Jiakai Cao, Zhaoxin Li, Hao Jiang and Zhaoqi Wang: SD-MVS: Segmentation-driven Deformation Multi-View Stereo with Spherical Refinement and EM optimization. AAAI2024 |
PGM-MVS | | | 98.34 42 | 98.13 45 | 98.99 68 | 99.92 31 | 97.00 104 | 99.75 135 | 99.50 17 | 93.90 134 | 99.37 63 | 99.76 62 | 93.24 103 | 100.00 1 | 97.75 118 | 99.96 46 | 99.98 48 |
|
SR-MVS-dyc-post | | | 98.31 43 | 98.17 42 | 98.71 81 | 99.79 62 | 96.37 125 | 99.76 132 | 98.31 152 | 94.43 103 | 99.40 61 | 99.75 67 | 93.28 101 | 99.78 111 | 98.90 60 | 99.92 63 | 99.97 55 |
|
RE-MVS-def | | | | 98.13 45 | | 99.79 62 | 96.37 125 | 99.76 132 | 98.31 152 | 94.43 103 | 99.40 61 | 99.75 67 | 92.95 109 | | 98.90 60 | 99.92 63 | 99.97 55 |
|
CS-MVS | | | 97.79 69 | 97.91 59 | 97.43 150 | 99.10 104 | 94.42 184 | 99.99 3 | 97.10 270 | 95.07 82 | 99.68 33 | 99.75 67 | 92.95 109 | 98.34 206 | 98.38 85 | 99.14 113 | 99.54 136 |
|
EI-MVSNet-UG-set | | | 98.14 53 | 97.99 52 | 98.60 89 | 99.80 61 | 96.27 127 | 99.36 201 | 98.50 97 | 95.21 81 | 98.30 112 | 99.75 67 | 93.29 100 | 99.73 123 | 98.37 86 | 99.30 107 | 99.81 88 |
|
PAPR | | | 98.52 31 | 98.16 43 | 99.58 22 | 99.97 3 | 98.77 38 | 99.95 43 | 98.43 113 | 95.35 77 | 98.03 119 | 99.75 67 | 94.03 82 | 99.98 42 | 98.11 97 | 99.83 72 | 99.99 23 |
|
GST-MVS | | | 98.27 46 | 97.97 53 | 99.17 49 | 99.92 31 | 97.57 81 | 99.93 64 | 98.39 135 | 94.04 127 | 98.80 87 | 99.74 72 | 92.98 108 | 100.00 1 | 98.16 94 | 99.76 80 | 99.93 71 |
|
TSAR-MVS + MP. | | | 98.93 14 | 98.77 16 | 99.41 36 | 99.74 69 | 98.67 45 | 99.77 127 | 98.38 139 | 96.73 41 | 99.88 4 | 99.74 72 | 94.89 59 | 99.59 135 | 99.80 21 | 99.98 32 | 99.97 55 |
Zhenlong Yuan, Jiakai Cao, Zhaoqi Wang, Zhaoxin Li: TSAR-MVS: Textureless-aware Segmentation and Correlative Refinement Guided Multi-View Stereo. Pattern Recognition |
dcpmvs_2 | | | 97.42 82 | 98.09 48 | 95.42 206 | 99.58 84 | 87.24 313 | 99.23 216 | 96.95 287 | 94.28 113 | 98.93 83 | 99.73 74 | 94.39 70 | 99.16 156 | 99.89 16 | 99.82 76 | 99.86 84 |
|
APD-MVS |  | | 98.62 25 | 98.35 34 | 99.41 36 | 99.90 42 | 98.51 55 | 99.87 88 | 98.36 143 | 94.08 121 | 99.74 27 | 99.73 74 | 94.08 80 | 99.74 120 | 99.42 38 | 99.99 21 | 99.99 23 |
Yuesong Wang, Zhaojie Zeng and etc.: Adaptive Patch Deformation for Textureless-Resilient Multi-View Stereo. CVPR2023 |
MG-MVS | | | 98.91 16 | 98.65 18 | 99.68 14 | 99.94 13 | 99.07 22 | 99.64 160 | 99.44 19 | 97.33 20 | 99.00 80 | 99.72 76 | 94.03 82 | 99.98 42 | 98.73 70 | 100.00 1 | 100.00 1 |
|
AdaColmap |  | | 97.23 89 | 96.80 93 | 98.51 100 | 99.99 1 | 95.60 154 | 99.09 226 | 98.84 49 | 93.32 150 | 96.74 148 | 99.72 76 | 86.04 204 | 100.00 1 | 98.01 102 | 99.43 103 | 99.94 70 |
|
CANet | | | 98.27 46 | 97.82 62 | 99.63 15 | 99.72 74 | 99.10 21 | 99.98 9 | 98.51 93 | 97.00 31 | 98.52 101 | 99.71 78 | 87.80 186 | 99.95 61 | 99.75 24 | 99.38 104 | 99.83 86 |
|
ACMMP |  | | 97.74 72 | 97.44 72 | 98.66 85 | 99.92 31 | 96.13 136 | 99.18 220 | 99.45 18 | 94.84 90 | 96.41 158 | 99.71 78 | 91.40 140 | 99.99 36 | 97.99 104 | 98.03 143 | 99.87 82 |
Qingshan Xu, Weihang Kong, Wenbing Tao, Marc Pollefeys: Multi-Scale Geometric Consistency Guided and Planar Prior Assisted Multi-View Stereo. IEEE Transactions on Pattern Analysis and Machine Intelligence |
PAPM_NR | | | 98.12 54 | 97.93 58 | 98.70 82 | 99.94 13 | 96.13 136 | 99.82 115 | 98.43 113 | 94.56 99 | 97.52 130 | 99.70 80 | 94.40 67 | 99.98 42 | 97.00 134 | 99.98 32 | 99.99 23 |
|
OMC-MVS | | | 97.28 86 | 97.23 79 | 97.41 151 | 99.76 66 | 93.36 212 | 99.65 156 | 97.95 190 | 96.03 61 | 97.41 134 | 99.70 80 | 89.61 167 | 99.51 138 | 96.73 141 | 98.25 135 | 99.38 157 |
|
xiu_mvs_v1_base_debu | | | 97.43 78 | 97.06 83 | 98.55 94 | 97.74 185 | 98.14 60 | 99.31 206 | 97.86 201 | 96.43 49 | 99.62 39 | 99.69 82 | 85.56 207 | 99.68 128 | 99.05 48 | 98.31 131 | 97.83 211 |
|
xiu_mvs_v1_base | | | 97.43 78 | 97.06 83 | 98.55 94 | 97.74 185 | 98.14 60 | 99.31 206 | 97.86 201 | 96.43 49 | 99.62 39 | 99.69 82 | 85.56 207 | 99.68 128 | 99.05 48 | 98.31 131 | 97.83 211 |
|
xiu_mvs_v1_base_debi | | | 97.43 78 | 97.06 83 | 98.55 94 | 97.74 185 | 98.14 60 | 99.31 206 | 97.86 201 | 96.43 49 | 99.62 39 | 99.69 82 | 85.56 207 | 99.68 128 | 99.05 48 | 98.31 131 | 97.83 211 |
|
CNLPA | | | 97.76 71 | 97.38 73 | 98.92 74 | 99.53 86 | 96.84 110 | 99.87 88 | 98.14 176 | 93.78 137 | 96.55 153 | 99.69 82 | 92.28 127 | 99.98 42 | 97.13 129 | 99.44 102 | 99.93 71 |
|
mvsany_test1 | | | 97.82 66 | 97.90 60 | 97.55 143 | 98.77 130 | 93.04 217 | 99.80 121 | 97.93 192 | 96.95 33 | 99.61 45 | 99.68 86 | 90.92 150 | 99.83 104 | 99.18 44 | 98.29 134 | 99.80 90 |
|
cdsmvs_eth3d_5k | | | 23.43 345 | 31.24 348 | 0.00 362 | 0.00 385 | 0.00 386 | 0.00 373 | 98.09 178 | 0.00 380 | 0.00 381 | 99.67 87 | 83.37 226 | 0.00 381 | 0.00 379 | 0.00 379 | 0.00 377 |
|
lupinMVS | | | 97.85 63 | 97.60 68 | 98.62 87 | 97.28 214 | 97.70 77 | 99.99 3 | 97.55 225 | 95.50 75 | 99.43 57 | 99.67 87 | 90.92 150 | 98.71 176 | 98.40 84 | 99.62 88 | 99.45 150 |
|
114514_t | | | 97.41 83 | 96.83 91 | 99.14 55 | 99.51 89 | 97.83 72 | 99.89 83 | 98.27 159 | 88.48 271 | 99.06 77 | 99.66 89 | 90.30 160 | 99.64 134 | 96.32 145 | 99.97 42 | 99.96 61 |
|
PAPM | | | 98.60 26 | 98.42 26 | 99.14 55 | 96.05 250 | 98.96 24 | 99.90 76 | 99.35 24 | 96.68 43 | 98.35 110 | 99.66 89 | 96.45 29 | 98.51 186 | 99.45 36 | 99.89 66 | 99.96 61 |
|
CANet_DTU | | | 96.76 105 | 96.15 109 | 98.60 89 | 98.78 129 | 97.53 82 | 99.84 107 | 97.63 214 | 97.25 26 | 99.20 71 | 99.64 91 | 81.36 240 | 99.98 42 | 92.77 212 | 98.89 118 | 98.28 204 |
|
XVG-OURS | | | 94.82 161 | 94.74 158 | 95.06 218 | 98.00 169 | 89.19 291 | 99.08 228 | 97.55 225 | 94.10 120 | 94.71 184 | 99.62 92 | 80.51 251 | 99.74 120 | 96.04 149 | 93.06 218 | 96.25 225 |
|
MVS | | | 96.60 113 | 95.56 135 | 99.72 12 | 96.85 231 | 99.22 19 | 98.31 292 | 98.94 37 | 91.57 209 | 90.90 225 | 99.61 93 | 86.66 198 | 99.96 54 | 97.36 123 | 99.88 68 | 99.99 23 |
|
EIA-MVS | | | 97.53 76 | 97.46 71 | 97.76 136 | 98.04 168 | 94.84 175 | 99.98 9 | 97.61 219 | 94.41 106 | 97.90 123 | 99.59 94 | 92.40 124 | 98.87 164 | 98.04 101 | 99.13 114 | 99.59 124 |
|
XVG-OURS-SEG-HR | | | 94.79 162 | 94.70 159 | 95.08 217 | 98.05 167 | 89.19 291 | 99.08 228 | 97.54 227 | 93.66 141 | 94.87 183 | 99.58 95 | 78.78 264 | 99.79 109 | 97.31 124 | 93.40 213 | 96.25 225 |
|
HPM-MVS |  | | 97.96 57 | 97.72 64 | 98.68 83 | 99.84 56 | 96.39 124 | 99.90 76 | 98.17 169 | 92.61 176 | 98.62 98 | 99.57 96 | 91.87 136 | 99.67 131 | 98.87 62 | 99.99 21 | 99.99 23 |
Chunlin Ren, Qingshan Xu, Shikun Zhang, Jiaqi Yang: Hierarchical Prior Mining for Non-local Multi-View Stereo. ICCV 2023 |
TSAR-MVS + GP. | | | 98.60 26 | 98.51 23 | 98.86 76 | 99.73 72 | 96.63 115 | 99.97 19 | 97.92 195 | 98.07 5 | 98.76 91 | 99.55 97 | 95.00 56 | 99.94 69 | 99.91 15 | 97.68 148 | 99.99 23 |
|
DP-MVS | | | 94.54 171 | 93.42 188 | 97.91 128 | 99.46 93 | 94.04 191 | 98.93 249 | 97.48 235 | 81.15 338 | 90.04 234 | 99.55 97 | 87.02 195 | 99.95 61 | 88.97 261 | 98.11 139 | 99.73 99 |
|
MVSFormer | | | 96.94 97 | 96.60 98 | 97.95 125 | 97.28 214 | 97.70 77 | 99.55 173 | 97.27 255 | 91.17 221 | 99.43 57 | 99.54 99 | 90.92 150 | 96.89 286 | 94.67 175 | 99.62 88 | 99.25 174 |
|
jason | | | 97.24 88 | 96.86 90 | 98.38 110 | 95.73 263 | 97.32 93 | 99.97 19 | 97.40 243 | 95.34 78 | 98.60 100 | 99.54 99 | 87.70 187 | 98.56 183 | 97.94 107 | 99.47 99 | 99.25 174 |
jason: jason. |
HPM-MVS_fast | | | 97.80 68 | 97.50 70 | 98.68 83 | 99.79 62 | 96.42 121 | 99.88 85 | 98.16 173 | 91.75 206 | 98.94 82 | 99.54 99 | 91.82 138 | 99.65 133 | 97.62 120 | 99.99 21 | 99.99 23 |
|
DeepC-MVS | | 94.51 4 | 96.92 99 | 96.40 105 | 98.45 104 | 99.16 102 | 95.90 141 | 99.66 154 | 98.06 181 | 96.37 55 | 94.37 189 | 99.49 102 | 83.29 227 | 99.90 79 | 97.63 119 | 99.61 91 | 99.55 133 |
Andreas Kuhn, Christian Sormann, Mattia Rossi, Oliver Erdler, Friedrich Fraundorfer: DeepC-MVS: Deep Confidence Prediction for Multi-View Stereo Reconstruction. 3DV 2020 |
alignmvs | | | 97.81 67 | 97.33 76 | 99.25 41 | 98.77 130 | 98.66 47 | 99.99 3 | 98.44 105 | 94.40 107 | 98.41 106 | 99.47 103 | 93.65 92 | 99.42 148 | 98.57 79 | 94.26 205 | 99.67 107 |
|
TAPA-MVS | | 92.12 8 | 94.42 175 | 93.60 181 | 96.90 167 | 99.33 97 | 91.78 247 | 99.78 124 | 98.00 184 | 89.89 246 | 94.52 186 | 99.47 103 | 91.97 134 | 99.18 154 | 69.90 354 | 99.52 96 | 99.73 99 |
Andrea Romanoni, Matteo Matteucci: TAPA-MVS: Textureless-Aware PAtchMatch Multi-View Stereo. ICCV 2019 |
ETV-MVS | | | 97.92 60 | 97.80 63 | 98.25 114 | 98.14 164 | 96.48 119 | 99.98 9 | 97.63 214 | 95.61 70 | 99.29 69 | 99.46 105 | 92.55 120 | 98.82 166 | 99.02 53 | 98.54 125 | 99.46 148 |
|
ET-MVSNet_ETH3D | | | 94.37 177 | 93.28 194 | 97.64 140 | 98.30 151 | 97.99 67 | 99.99 3 | 97.61 219 | 94.35 108 | 71.57 358 | 99.45 106 | 96.23 31 | 95.34 332 | 96.91 139 | 85.14 274 | 99.59 124 |
|
canonicalmvs | | | 97.09 94 | 96.32 106 | 99.39 38 | 98.93 117 | 98.95 25 | 99.72 146 | 97.35 246 | 94.45 101 | 97.88 124 | 99.42 107 | 86.71 197 | 99.52 137 | 98.48 82 | 93.97 209 | 99.72 101 |
|
VDD-MVS | | | 93.77 191 | 92.94 198 | 96.27 188 | 98.55 139 | 90.22 277 | 98.77 267 | 97.79 206 | 90.85 230 | 96.82 146 | 99.42 107 | 61.18 347 | 99.77 114 | 98.95 54 | 94.13 206 | 98.82 195 |
|
1112_ss | | | 96.01 133 | 95.20 145 | 98.42 107 | 97.80 181 | 96.41 122 | 99.65 156 | 96.66 310 | 92.71 169 | 92.88 208 | 99.40 109 | 92.16 129 | 99.30 149 | 91.92 220 | 93.66 210 | 99.55 133 |
|
ab-mvs-re | | | 8.28 347 | 11.04 350 | 0.00 362 | 0.00 385 | 0.00 386 | 0.00 373 | 0.00 386 | 0.00 380 | 0.00 381 | 99.40 109 | 0.00 385 | 0.00 381 | 0.00 379 | 0.00 379 | 0.00 377 |
|
LFMVS | | | 94.75 165 | 93.56 184 | 98.30 112 | 99.03 107 | 95.70 150 | 98.74 268 | 97.98 187 | 87.81 281 | 98.47 104 | 99.39 111 | 67.43 326 | 99.53 136 | 98.01 102 | 95.20 198 | 99.67 107 |
|
WTY-MVS | | | 98.10 55 | 97.60 68 | 99.60 20 | 98.92 119 | 99.28 16 | 99.89 83 | 99.52 14 | 95.58 71 | 98.24 116 | 99.39 111 | 93.33 97 | 99.74 120 | 97.98 106 | 95.58 192 | 99.78 94 |
|
PMMVS | | | 96.76 105 | 96.76 94 | 96.76 171 | 98.28 154 | 92.10 238 | 99.91 71 | 97.98 187 | 94.12 119 | 99.53 49 | 99.39 111 | 86.93 196 | 98.73 173 | 96.95 137 | 97.73 146 | 99.45 150 |
|
EPNet | | | 98.49 33 | 98.40 27 | 98.77 79 | 99.62 80 | 96.80 112 | 99.90 76 | 99.51 16 | 97.60 12 | 99.20 71 | 99.36 114 | 93.71 91 | 99.91 77 | 97.99 104 | 98.71 123 | 99.61 121 |
Wanjuan Su, Wenbing Tao: Efficient Edge-Preserving Multi-View Stereo Network for Depth Estimation. AAAI 2023 |
DROMVSNet | | | 97.38 85 | 97.24 78 | 97.80 130 | 97.41 204 | 95.64 152 | 99.99 3 | 97.06 275 | 94.59 98 | 99.63 37 | 99.32 115 | 89.20 176 | 98.14 220 | 98.76 68 | 99.23 110 | 99.62 118 |
|
VDDNet | | | 93.12 206 | 91.91 221 | 96.76 171 | 96.67 241 | 92.65 228 | 98.69 273 | 98.21 164 | 82.81 332 | 97.75 127 | 99.28 116 | 61.57 345 | 99.48 145 | 98.09 99 | 94.09 207 | 98.15 206 |
|
diffmvs |  | | 97.00 95 | 96.64 97 | 98.09 121 | 97.64 194 | 96.17 135 | 99.81 117 | 97.19 259 | 94.67 97 | 98.95 81 | 99.28 116 | 86.43 200 | 98.76 171 | 98.37 86 | 97.42 154 | 99.33 165 |
Fangjinhua Wang, Qingshan Xu, Yew-Soon Ong, Marc Pollefeys: Lightweight and Accurate Multi-View Stereo With Confidence-Aware Diffusion Model. IEEE T-PAMI 2025 |
baseline | | | 96.43 118 | 95.98 115 | 97.76 136 | 97.34 208 | 95.17 169 | 99.51 179 | 97.17 262 | 93.92 133 | 96.90 143 | 99.28 116 | 85.37 211 | 98.64 180 | 97.50 121 | 96.86 169 | 99.46 148 |
|
UA-Net | | | 96.54 114 | 95.96 119 | 98.27 113 | 98.23 157 | 95.71 149 | 98.00 305 | 98.45 102 | 93.72 140 | 98.41 106 | 99.27 119 | 88.71 182 | 99.66 132 | 91.19 228 | 97.69 147 | 99.44 152 |
|
RPSCF | | | 91.80 236 | 92.79 202 | 88.83 325 | 98.15 163 | 69.87 361 | 98.11 301 | 96.60 313 | 83.93 324 | 94.33 190 | 99.27 119 | 79.60 258 | 99.46 147 | 91.99 218 | 93.16 216 | 97.18 221 |
|
PLC |  | 95.54 3 | 97.93 59 | 97.89 61 | 98.05 123 | 99.82 58 | 94.77 179 | 99.92 67 | 98.46 101 | 93.93 132 | 97.20 137 | 99.27 119 | 95.44 45 | 99.97 51 | 97.41 122 | 99.51 98 | 99.41 155 |
Jie Liao, Yanping Fu, Qingan Yan, Chunxia xiao: Pyramid Multi-View Stereo with Local Consistency. Pacific Graphics 2019 |
casdiffmvs |  | | 96.42 120 | 95.97 118 | 97.77 135 | 97.30 212 | 94.98 171 | 99.84 107 | 97.09 272 | 93.75 139 | 96.58 152 | 99.26 122 | 85.07 213 | 98.78 169 | 97.77 116 | 97.04 163 | 99.54 136 |
Fangjinhua Wang, Qingshan Xu, Yew-Soon Ong, Marc Pollefeys: Lightweight and Accurate Multi-View Stereo With Confidence-Aware Diffusion Model. IEEE T-PAMI 2025 |
BH-RMVSNet | | | 95.18 154 | 94.31 166 | 97.80 130 | 98.17 162 | 95.23 166 | 99.76 132 | 97.53 229 | 92.52 183 | 94.27 191 | 99.25 123 | 76.84 276 | 98.80 167 | 90.89 237 | 99.54 95 | 99.35 162 |
|
DELS-MVS | | | 98.54 29 | 98.22 38 | 99.50 28 | 99.15 103 | 98.65 49 | 100.00 1 | 98.58 74 | 97.70 10 | 98.21 117 | 99.24 124 | 92.58 119 | 99.94 69 | 98.63 78 | 99.94 54 | 99.92 76 |
Christian Sormann, Emanuele Santellani, Mattia Rossi, Andreas Kuhn, Friedrich Fraundorfer: DELS-MVS: Deep Epipolar Line Search for Multi-View Stereo. Winter Conference on Applications of Computer Vision (WACV), 2023 |
PCF-MVS | | 94.20 5 | 95.18 154 | 94.10 169 | 98.43 106 | 98.55 139 | 95.99 139 | 97.91 307 | 97.31 251 | 90.35 238 | 89.48 250 | 99.22 125 | 85.19 212 | 99.89 83 | 90.40 248 | 98.47 127 | 99.41 155 |
Andreas Kuhn, Shan Lin, Oliver Erdler: Plane Completion and Filtering for Multi-View Stereo Reconstruction. GCPR 2019 |
PVSNet | | 91.05 13 | 97.13 91 | 96.69 96 | 98.45 104 | 99.52 87 | 95.81 143 | 99.95 43 | 99.65 11 | 94.73 93 | 99.04 78 | 99.21 126 | 84.48 217 | 99.95 61 | 94.92 165 | 98.74 122 | 99.58 130 |
|
test_vis1_n_1920 | | | 95.44 150 | 95.31 141 | 95.82 198 | 98.50 143 | 88.74 296 | 99.98 9 | 97.30 252 | 97.84 8 | 99.85 7 | 99.19 127 | 66.82 328 | 99.97 51 | 98.82 64 | 99.46 101 | 98.76 198 |
|
casdiffmvs_mvg |  | | 96.43 118 | 95.94 122 | 97.89 129 | 97.44 203 | 95.47 156 | 99.86 100 | 97.29 253 | 93.35 148 | 96.03 165 | 99.19 127 | 85.39 210 | 98.72 175 | 97.89 110 | 97.04 163 | 99.49 146 |
Fangjinhua Wang, Qingshan Xu, Yew-Soon Ong, Marc Pollefeys: Lightweight and Accurate Multi-View Stereo With Confidence-Aware Diffusion Model. IEEE T-PAMI 2025 |
MSDG | | | 94.37 177 | 93.36 192 | 97.40 152 | 98.88 124 | 93.95 195 | 99.37 199 | 97.38 244 | 85.75 308 | 90.80 226 | 99.17 129 | 84.11 222 | 99.88 89 | 86.35 291 | 98.43 128 | 98.36 203 |
|
F-COLMAP | | | 96.93 98 | 96.95 89 | 96.87 168 | 99.71 75 | 91.74 248 | 99.85 103 | 97.95 190 | 93.11 157 | 95.72 173 | 99.16 130 | 92.35 125 | 99.94 69 | 95.32 157 | 99.35 106 | 98.92 189 |
|
Vis-MVSNet (Re-imp) | | | 96.32 123 | 95.98 115 | 97.35 157 | 97.93 173 | 94.82 176 | 99.47 186 | 98.15 175 | 91.83 202 | 95.09 181 | 99.11 131 | 91.37 141 | 97.47 248 | 93.47 200 | 97.43 152 | 99.74 98 |
|
CHOSEN 280x420 | | | 99.01 13 | 99.03 10 | 98.95 72 | 99.38 95 | 98.87 30 | 98.46 284 | 99.42 21 | 97.03 30 | 99.02 79 | 99.09 132 | 99.35 1 | 98.21 218 | 99.73 28 | 99.78 79 | 99.77 95 |
|
PVSNet_Blended | | | 97.94 58 | 97.64 66 | 98.83 77 | 99.59 81 | 96.99 105 | 100.00 1 | 99.10 29 | 95.38 76 | 98.27 113 | 99.08 133 | 89.00 178 | 99.95 61 | 99.12 46 | 99.25 109 | 99.57 131 |
|
sss | | | 97.57 75 | 97.03 87 | 99.18 46 | 98.37 149 | 98.04 65 | 99.73 143 | 99.38 22 | 93.46 146 | 98.76 91 | 99.06 134 | 91.21 142 | 99.89 83 | 96.33 144 | 97.01 165 | 99.62 118 |
|
thisisatest0515 | | | 97.41 83 | 97.02 88 | 98.59 91 | 97.71 192 | 97.52 83 | 99.97 19 | 98.54 87 | 91.83 202 | 97.45 133 | 99.04 135 | 97.50 9 | 99.10 158 | 94.75 172 | 96.37 176 | 99.16 179 |
|
EI-MVSNet | | | 93.73 193 | 93.40 191 | 94.74 229 | 96.80 234 | 92.69 225 | 99.06 233 | 97.67 212 | 88.96 259 | 91.39 219 | 99.02 136 | 88.75 181 | 97.30 257 | 91.07 230 | 87.85 252 | 94.22 258 |
|
CVMVSNet | | | 94.68 168 | 94.94 154 | 93.89 268 | 96.80 234 | 86.92 316 | 99.06 233 | 98.98 35 | 94.45 101 | 94.23 192 | 99.02 136 | 85.60 206 | 95.31 333 | 90.91 236 | 95.39 195 | 99.43 153 |
|
EPP-MVSNet | | | 96.69 110 | 96.60 98 | 96.96 165 | 97.74 185 | 93.05 216 | 99.37 199 | 98.56 78 | 88.75 265 | 95.83 171 | 99.01 138 | 96.01 32 | 98.56 183 | 96.92 138 | 97.20 159 | 99.25 174 |
|
COLMAP_ROB |  | 90.47 14 | 92.18 228 | 91.49 230 | 94.25 253 | 99.00 110 | 88.04 308 | 98.42 289 | 96.70 309 | 82.30 335 | 88.43 274 | 99.01 138 | 76.97 274 | 99.85 95 | 86.11 294 | 96.50 173 | 94.86 230 |
Johannes L. Schönberger, Enliang Zheng, Marc Pollefeys, Jan-Michael Frahm: Pixelwise View Selection for Unstructured Multi-View Stereo. ECCV 2016 |
3Dnovator | | 91.47 12 | 96.28 127 | 95.34 140 | 99.08 61 | 96.82 233 | 97.47 89 | 99.45 189 | 98.81 50 | 95.52 74 | 89.39 251 | 99.00 140 | 81.97 233 | 99.95 61 | 97.27 125 | 99.83 72 | 99.84 85 |
|
test_yl | | | 97.83 64 | 97.37 74 | 99.21 43 | 99.18 100 | 97.98 68 | 99.64 160 | 99.27 26 | 91.43 215 | 97.88 124 | 98.99 141 | 95.84 38 | 99.84 102 | 98.82 64 | 95.32 196 | 99.79 91 |
|
DCV-MVSNet | | | 97.83 64 | 97.37 74 | 99.21 43 | 99.18 100 | 97.98 68 | 99.64 160 | 99.27 26 | 91.43 215 | 97.88 124 | 98.99 141 | 95.84 38 | 99.84 102 | 98.82 64 | 95.32 196 | 99.79 91 |
|
1314 | | | 96.84 101 | 95.96 119 | 99.48 32 | 96.74 238 | 98.52 54 | 98.31 292 | 98.86 47 | 95.82 64 | 89.91 237 | 98.98 143 | 87.49 189 | 99.96 54 | 97.80 111 | 99.73 82 | 99.96 61 |
|
3Dnovator+ | | 91.53 11 | 96.31 124 | 95.24 143 | 99.52 26 | 96.88 230 | 98.64 50 | 99.72 146 | 98.24 161 | 95.27 80 | 88.42 276 | 98.98 143 | 82.76 229 | 99.94 69 | 97.10 131 | 99.83 72 | 99.96 61 |
|
thisisatest0530 | | | 97.10 92 | 96.72 95 | 98.22 115 | 97.60 196 | 96.70 113 | 99.92 67 | 98.54 87 | 91.11 224 | 97.07 140 | 98.97 145 | 97.47 12 | 99.03 159 | 93.73 197 | 96.09 179 | 98.92 189 |
|
baseline2 | | | 96.71 109 | 96.49 102 | 97.37 154 | 95.63 270 | 95.96 140 | 99.74 138 | 98.88 45 | 92.94 159 | 91.61 217 | 98.97 145 | 97.72 7 | 98.62 181 | 94.83 169 | 98.08 142 | 97.53 219 |
|
test_fmvs1 | | | 95.35 152 | 95.68 133 | 94.36 250 | 98.99 111 | 84.98 327 | 99.96 26 | 96.65 311 | 97.60 12 | 99.73 28 | 98.96 147 | 71.58 309 | 99.93 75 | 98.31 89 | 99.37 105 | 98.17 205 |
|
test2506 | | | 97.53 76 | 97.19 80 | 98.58 92 | 98.66 135 | 96.90 109 | 98.81 263 | 99.77 5 | 94.93 85 | 97.95 121 | 98.96 147 | 92.51 121 | 99.20 152 | 94.93 164 | 98.15 136 | 99.64 113 |
|
ECVR-MVS |  | | 95.66 145 | 95.05 150 | 97.51 146 | 98.66 135 | 93.71 200 | 98.85 260 | 98.45 102 | 94.93 85 | 96.86 144 | 98.96 147 | 75.22 292 | 99.20 152 | 95.34 156 | 98.15 136 | 99.64 113 |
|
gm-plane-assit | | | | | | 96.97 224 | 93.76 199 | | | 91.47 213 | | 98.96 147 | | 98.79 168 | 94.92 165 | | |
|
IS-MVSNet | | | 96.29 126 | 95.90 126 | 97.45 148 | 98.13 165 | 94.80 177 | 99.08 228 | 97.61 219 | 92.02 198 | 95.54 176 | 98.96 147 | 90.64 156 | 98.08 223 | 93.73 197 | 97.41 155 | 99.47 147 |
|
test1111 | | | 95.57 147 | 94.98 153 | 97.37 154 | 98.56 137 | 93.37 211 | 98.86 258 | 98.45 102 | 94.95 84 | 96.63 150 | 98.95 152 | 75.21 293 | 99.11 157 | 95.02 162 | 98.14 138 | 99.64 113 |
|
OpenMVS |  | 90.15 15 | 94.77 164 | 93.59 182 | 98.33 111 | 96.07 249 | 97.48 88 | 99.56 171 | 98.57 76 | 90.46 235 | 86.51 299 | 98.95 152 | 78.57 266 | 99.94 69 | 93.86 188 | 99.74 81 | 97.57 218 |
|
GeoE | | | 94.36 179 | 93.48 186 | 96.99 164 | 97.29 213 | 93.54 204 | 99.96 26 | 96.72 308 | 88.35 274 | 93.43 199 | 98.94 154 | 82.05 232 | 98.05 226 | 88.12 273 | 96.48 174 | 99.37 159 |
|
Vis-MVSNet |  | | 95.72 140 | 95.15 147 | 97.45 148 | 97.62 195 | 94.28 187 | 99.28 212 | 98.24 161 | 94.27 115 | 96.84 145 | 98.94 154 | 79.39 259 | 98.76 171 | 93.25 202 | 98.49 126 | 99.30 169 |
Jingyang Zhang, Yao Yao, Shiwei Li, Zixin Luo, Tian Fang: Visibility-aware Multiview Stereo Network. BMVC 2020 |
tttt0517 | | | 96.85 100 | 96.49 102 | 97.92 127 | 97.48 202 | 95.89 142 | 99.85 103 | 98.54 87 | 90.72 233 | 96.63 150 | 98.93 156 | 97.47 12 | 99.02 160 | 93.03 209 | 95.76 188 | 98.85 193 |
|
QAPM | | | 95.40 151 | 94.17 168 | 99.10 60 | 96.92 225 | 97.71 75 | 99.40 192 | 98.68 60 | 89.31 250 | 88.94 264 | 98.89 157 | 82.48 230 | 99.96 54 | 93.12 208 | 99.83 72 | 99.62 118 |
|
test_fmvs1_n | | | 94.25 182 | 94.36 163 | 93.92 265 | 97.68 193 | 83.70 332 | 99.90 76 | 96.57 314 | 97.40 18 | 99.67 34 | 98.88 158 | 61.82 344 | 99.92 76 | 98.23 91 | 99.13 114 | 98.14 208 |
|
VNet | | | 97.21 90 | 96.57 100 | 99.13 59 | 98.97 113 | 97.82 73 | 99.03 240 | 99.21 28 | 94.31 111 | 99.18 74 | 98.88 158 | 86.26 203 | 99.89 83 | 98.93 56 | 94.32 204 | 99.69 104 |
|
thres200 | | | 96.96 96 | 96.21 108 | 99.22 42 | 98.97 113 | 98.84 33 | 99.85 103 | 99.71 6 | 93.17 155 | 96.26 161 | 98.88 158 | 89.87 165 | 99.51 138 | 94.26 183 | 94.91 199 | 99.31 167 |
|
tfpn200view9 | | | 96.79 103 | 95.99 113 | 99.19 45 | 98.94 115 | 98.82 34 | 99.78 124 | 99.71 6 | 92.86 160 | 96.02 166 | 98.87 161 | 89.33 171 | 99.50 140 | 93.84 189 | 94.57 200 | 99.27 172 |
|
thres400 | | | 96.78 104 | 95.99 113 | 99.16 51 | 98.94 115 | 98.82 34 | 99.78 124 | 99.71 6 | 92.86 160 | 96.02 166 | 98.87 161 | 89.33 171 | 99.50 140 | 93.84 189 | 94.57 200 | 99.16 179 |
|
thres100view900 | | | 96.74 107 | 95.92 125 | 99.18 46 | 98.90 122 | 98.77 38 | 99.74 138 | 99.71 6 | 92.59 178 | 95.84 169 | 98.86 163 | 89.25 173 | 99.50 140 | 93.84 189 | 94.57 200 | 99.27 172 |
|
thres600view7 | | | 96.69 110 | 95.87 128 | 99.14 55 | 98.90 122 | 98.78 37 | 99.74 138 | 99.71 6 | 92.59 178 | 95.84 169 | 98.86 163 | 89.25 173 | 99.50 140 | 93.44 201 | 94.50 203 | 99.16 179 |
|
CHOSEN 1792x2688 | | | 96.81 102 | 96.53 101 | 97.64 140 | 98.91 121 | 93.07 214 | 99.65 156 | 99.80 3 | 95.64 69 | 95.39 177 | 98.86 163 | 84.35 220 | 99.90 79 | 96.98 135 | 99.16 112 | 99.95 68 |
|
CLD-MVS | | | 94.06 185 | 93.90 174 | 94.55 239 | 96.02 251 | 90.69 266 | 99.98 9 | 97.72 208 | 96.62 46 | 91.05 224 | 98.85 166 | 77.21 272 | 98.47 187 | 98.11 97 | 89.51 227 | 94.48 235 |
Zhaoxin Li, Wangmeng Zuo, Zhaoqi Wang, Lei Zhang: Confidence-based Large-scale Dense Multi-view Stereo. IEEE Transaction on Image Processing, 2020 |
test_vis1_n | | | 93.61 197 | 93.03 197 | 95.35 208 | 95.86 256 | 86.94 315 | 99.87 88 | 96.36 321 | 96.85 34 | 99.54 48 | 98.79 167 | 52.41 357 | 99.83 104 | 98.64 76 | 98.97 117 | 99.29 171 |
|
BH-w/o | | | 95.71 142 | 95.38 139 | 96.68 174 | 98.49 144 | 92.28 234 | 99.84 107 | 97.50 233 | 92.12 193 | 92.06 215 | 98.79 167 | 84.69 215 | 98.67 179 | 95.29 158 | 99.66 86 | 99.09 185 |
|
Anonymous202405211 | | | 93.10 207 | 91.99 219 | 96.40 183 | 99.10 104 | 89.65 288 | 98.88 254 | 97.93 192 | 83.71 326 | 94.00 194 | 98.75 169 | 68.79 318 | 99.88 89 | 95.08 161 | 91.71 220 | 99.68 105 |
|
TR-MVS | | | 94.54 171 | 93.56 184 | 97.49 147 | 97.96 171 | 94.34 186 | 98.71 271 | 97.51 232 | 90.30 240 | 94.51 187 | 98.69 170 | 75.56 287 | 98.77 170 | 92.82 211 | 95.99 181 | 99.35 162 |
|
BH-untuned | | | 95.18 154 | 94.83 156 | 96.22 189 | 98.36 150 | 91.22 260 | 99.80 121 | 97.32 250 | 90.91 228 | 91.08 222 | 98.67 171 | 83.51 224 | 98.54 185 | 94.23 184 | 99.61 91 | 98.92 189 |
|
OPM-MVS | | | 93.21 203 | 92.80 201 | 94.44 246 | 93.12 312 | 90.85 265 | 99.77 127 | 97.61 219 | 96.19 59 | 91.56 218 | 98.65 172 | 75.16 294 | 98.47 187 | 93.78 195 | 89.39 228 | 93.99 284 |
Ray L. Khuboni, Hongjun Xu: Octagram Propagation Matching for Multi-Scale View Stereopsis (OPM-MVS). |
NP-MVS | | | | | | 95.77 260 | 91.79 246 | | | | | 98.65 172 | | | | | |
|
HQP-MVS | | | 94.61 170 | 94.50 161 | 94.92 223 | 95.78 257 | 91.85 244 | 99.87 88 | 97.89 197 | 96.82 36 | 93.37 200 | 98.65 172 | 80.65 249 | 98.39 198 | 97.92 108 | 89.60 222 | 94.53 231 |
|
baseline1 | | | 95.78 139 | 94.86 155 | 98.54 97 | 98.47 145 | 98.07 63 | 99.06 233 | 97.99 185 | 92.68 172 | 94.13 193 | 98.62 175 | 93.28 101 | 98.69 178 | 93.79 194 | 85.76 267 | 98.84 194 |
|
HQP_MVS | | | 94.49 174 | 94.36 163 | 94.87 224 | 95.71 266 | 91.74 248 | 99.84 107 | 97.87 199 | 96.38 52 | 93.01 204 | 98.59 176 | 80.47 253 | 98.37 204 | 97.79 114 | 89.55 225 | 94.52 233 |
|
plane_prior4 | | | | | | | | | | | | 98.59 176 | | | | | |
|
Anonymous20240529 | | | 92.10 229 | 90.65 240 | 96.47 178 | 98.82 126 | 90.61 269 | 98.72 270 | 98.67 63 | 75.54 353 | 93.90 196 | 98.58 178 | 66.23 330 | 99.90 79 | 94.70 174 | 90.67 221 | 98.90 192 |
|
Effi-MVS+ | | | 96.30 125 | 95.69 131 | 98.16 116 | 97.85 178 | 96.26 128 | 97.41 313 | 97.21 258 | 90.37 237 | 98.65 97 | 98.58 178 | 86.61 199 | 98.70 177 | 97.11 130 | 97.37 156 | 99.52 140 |
|
EPNet_dtu | | | 95.71 142 | 95.39 138 | 96.66 175 | 98.92 119 | 93.41 209 | 99.57 169 | 98.90 42 | 96.19 59 | 97.52 130 | 98.56 180 | 92.65 116 | 97.36 250 | 77.89 337 | 98.33 130 | 99.20 177 |
Wanjuan Su, Wenbing Tao: Efficient Edge-Preserving Multi-View Stereo Network for Depth Estimation. AAAI 2023 |
test0.0.03 1 | | | 93.86 186 | 93.61 179 | 94.64 233 | 95.02 279 | 92.18 237 | 99.93 64 | 98.58 74 | 94.07 122 | 87.96 280 | 98.50 181 | 93.90 86 | 94.96 337 | 81.33 322 | 93.17 215 | 96.78 222 |
|
LPG-MVS_test | | | 92.96 209 | 92.71 203 | 93.71 273 | 95.43 272 | 88.67 298 | 99.75 135 | 97.62 216 | 92.81 164 | 90.05 232 | 98.49 182 | 75.24 290 | 98.40 196 | 95.84 153 | 89.12 229 | 94.07 276 |
|
LGP-MVS_train | | | | | 93.71 273 | 95.43 272 | 88.67 298 | | 97.62 216 | 92.81 164 | 90.05 232 | 98.49 182 | 75.24 290 | 98.40 196 | 95.84 153 | 89.12 229 | 94.07 276 |
|
PVSNet_Blended_VisFu | | | 97.27 87 | 96.81 92 | 98.66 85 | 98.81 127 | 96.67 114 | 99.92 67 | 98.64 66 | 94.51 100 | 96.38 159 | 98.49 182 | 89.05 177 | 99.88 89 | 97.10 131 | 98.34 129 | 99.43 153 |
|
testmvs | | | 40.60 343 | 44.45 346 | 29.05 360 | 19.49 384 | 14.11 385 | 99.68 151 | 18.47 383 | 20.74 376 | 64.59 361 | 98.48 185 | 10.95 381 | 17.09 380 | 56.66 370 | 11.01 376 | 55.94 373 |
|
tt0805 | | | 91.28 244 | 90.18 251 | 94.60 235 | 96.26 245 | 87.55 310 | 98.39 290 | 98.72 55 | 89.00 256 | 89.22 257 | 98.47 186 | 62.98 341 | 98.96 162 | 90.57 242 | 88.00 251 | 97.28 220 |
|
AllTest | | | 92.48 221 | 91.64 224 | 95.00 220 | 99.01 108 | 88.43 302 | 98.94 248 | 96.82 302 | 86.50 297 | 88.71 267 | 98.47 186 | 74.73 296 | 99.88 89 | 85.39 297 | 96.18 177 | 96.71 223 |
|
TestCases | | | | | 95.00 220 | 99.01 108 | 88.43 302 | | 96.82 302 | 86.50 297 | 88.71 267 | 98.47 186 | 74.73 296 | 99.88 89 | 85.39 297 | 96.18 177 | 96.71 223 |
|
h-mvs33 | | | 94.92 160 | 94.36 163 | 96.59 177 | 98.85 125 | 91.29 259 | 98.93 249 | 98.94 37 | 95.90 62 | 98.77 89 | 98.42 189 | 90.89 153 | 99.77 114 | 97.80 111 | 70.76 347 | 98.72 200 |
|
PatchMatch-RL | | | 96.04 132 | 95.40 137 | 97.95 125 | 99.59 81 | 95.22 167 | 99.52 177 | 99.07 32 | 93.96 130 | 96.49 154 | 98.35 190 | 82.28 231 | 99.82 106 | 90.15 251 | 99.22 111 | 98.81 196 |
|
CDS-MVSNet | | | 96.34 122 | 96.07 110 | 97.13 161 | 97.37 206 | 94.96 172 | 99.53 176 | 97.91 196 | 91.55 210 | 95.37 178 | 98.32 191 | 95.05 53 | 97.13 268 | 93.80 193 | 95.75 189 | 99.30 169 |
Khang Truong Giang, Soohwan Song, Sungho Jo: Curvature-guided dynamic scale networks for Multi-view Stereo. ICLR 2022 |
ACMP | | 92.05 9 | 92.74 214 | 92.42 212 | 93.73 271 | 95.91 255 | 88.72 297 | 99.81 117 | 97.53 229 | 94.13 118 | 87.00 293 | 98.23 192 | 74.07 300 | 98.47 187 | 96.22 147 | 88.86 234 | 93.99 284 |
Qingshan Xu and Wenbing Tao: Planar Prior Assisted PatchMatch Multi-View Stereo. AAAI 2020 |
testgi | | | 89.01 288 | 88.04 289 | 91.90 302 | 93.49 304 | 84.89 328 | 99.73 143 | 95.66 335 | 93.89 136 | 85.14 312 | 98.17 193 | 59.68 348 | 94.66 341 | 77.73 338 | 88.88 232 | 96.16 228 |
|
ITE_SJBPF | | | | | 92.38 295 | 95.69 268 | 85.14 325 | | 95.71 333 | 92.81 164 | 89.33 254 | 98.11 194 | 70.23 315 | 98.42 193 | 85.91 295 | 88.16 248 | 93.59 308 |
|
HyFIR lowres test | | | 96.66 112 | 96.43 104 | 97.36 156 | 99.05 106 | 93.91 196 | 99.70 148 | 99.80 3 | 90.54 234 | 96.26 161 | 98.08 195 | 92.15 130 | 98.23 217 | 96.84 140 | 95.46 193 | 99.93 71 |
|
TESTMET0.1,1 | | | 96.74 107 | 96.26 107 | 98.16 116 | 97.36 207 | 96.48 119 | 99.96 26 | 98.29 156 | 91.93 199 | 95.77 172 | 98.07 196 | 95.54 42 | 98.29 210 | 90.55 243 | 98.89 118 | 99.70 102 |
|
TAMVS | | | 95.85 137 | 95.58 134 | 96.65 176 | 97.07 218 | 93.50 205 | 99.17 221 | 97.82 205 | 91.39 219 | 95.02 182 | 98.01 197 | 92.20 128 | 97.30 257 | 93.75 196 | 95.83 186 | 99.14 182 |
|
hse-mvs2 | | | 94.38 176 | 94.08 170 | 95.31 211 | 98.27 155 | 90.02 282 | 99.29 211 | 98.56 78 | 95.90 62 | 98.77 89 | 98.00 198 | 90.89 153 | 98.26 216 | 97.80 111 | 69.20 353 | 97.64 216 |
|
AUN-MVS | | | 93.28 202 | 92.60 205 | 95.34 209 | 98.29 152 | 90.09 280 | 99.31 206 | 98.56 78 | 91.80 205 | 96.35 160 | 98.00 198 | 89.38 170 | 98.28 212 | 92.46 213 | 69.22 352 | 97.64 216 |
|
ACMM | | 91.95 10 | 92.88 211 | 92.52 210 | 93.98 264 | 95.75 262 | 89.08 294 | 99.77 127 | 97.52 231 | 93.00 158 | 89.95 236 | 97.99 200 | 76.17 284 | 98.46 190 | 93.63 199 | 88.87 233 | 94.39 246 |
Qingshan Xu and Wenbing Tao: Multi-Scale Geometric Consistency Guided Multi-View Stereo. CVPR 2019 |
iter_conf_final | | | 96.01 133 | 95.93 123 | 96.28 187 | 98.38 148 | 97.03 103 | 99.87 88 | 97.03 278 | 94.05 126 | 92.61 211 | 97.98 201 | 98.01 5 | 97.34 252 | 97.02 133 | 88.39 244 | 94.47 236 |
|
iter_conf05 | | | 96.07 130 | 95.95 121 | 96.44 182 | 98.43 146 | 97.52 83 | 99.91 71 | 96.85 298 | 94.16 117 | 92.49 213 | 97.98 201 | 98.20 4 | 97.34 252 | 97.26 126 | 88.29 245 | 94.45 242 |
|
Fast-Effi-MVS+ | | | 95.02 158 | 94.19 167 | 97.52 145 | 97.88 175 | 94.55 181 | 99.97 19 | 97.08 273 | 88.85 264 | 94.47 188 | 97.96 203 | 84.59 216 | 98.41 194 | 89.84 255 | 97.10 160 | 99.59 124 |
|
GG-mvs-BLEND | | | | | 98.54 97 | 98.21 158 | 98.01 66 | 93.87 350 | 98.52 90 | | 97.92 122 | 97.92 204 | 99.02 2 | 97.94 234 | 98.17 93 | 99.58 93 | 99.67 107 |
|
Fast-Effi-MVS+-dtu | | | 93.72 194 | 93.86 176 | 93.29 282 | 97.06 219 | 86.16 319 | 99.80 121 | 96.83 300 | 92.66 173 | 92.58 212 | 97.83 205 | 81.39 239 | 97.67 242 | 89.75 256 | 96.87 168 | 96.05 229 |
|
mvsmamba | | | 94.10 183 | 93.72 178 | 95.25 213 | 93.57 301 | 94.13 189 | 99.67 153 | 96.45 319 | 93.63 143 | 91.34 221 | 97.77 206 | 86.29 202 | 97.22 263 | 96.65 142 | 88.10 249 | 94.40 244 |
|
RRT_MVS | | | 93.14 205 | 92.92 199 | 93.78 270 | 93.31 308 | 90.04 281 | 99.66 154 | 97.69 210 | 92.53 182 | 88.91 265 | 97.76 207 | 84.36 218 | 96.93 284 | 95.10 160 | 86.99 261 | 94.37 247 |
|
ACMH+ | | 89.98 16 | 90.35 265 | 89.54 263 | 92.78 293 | 95.99 252 | 86.12 320 | 98.81 263 | 97.18 261 | 89.38 249 | 83.14 321 | 97.76 207 | 68.42 322 | 98.43 192 | 89.11 260 | 86.05 266 | 93.78 300 |
|
ACMH | | 89.72 17 | 90.64 258 | 89.63 260 | 93.66 277 | 95.64 269 | 88.64 300 | 98.55 279 | 97.45 236 | 89.03 254 | 81.62 328 | 97.61 209 | 69.75 316 | 98.41 194 | 89.37 257 | 87.62 257 | 93.92 290 |
Qingshan Xu and Wenbing Tao: Multi-Scale Geometric Consistency Guided Multi-View Stereo. CVPR 2019 |
bld_raw_dy_0_64 | | | 92.74 214 | 92.03 218 | 94.87 224 | 93.09 314 | 93.46 206 | 99.12 223 | 95.41 340 | 92.84 163 | 90.44 230 | 97.54 210 | 78.08 270 | 97.04 276 | 93.94 187 | 87.77 254 | 94.11 273 |
|
cascas | | | 94.64 169 | 93.61 179 | 97.74 138 | 97.82 180 | 96.26 128 | 99.96 26 | 97.78 207 | 85.76 306 | 94.00 194 | 97.54 210 | 76.95 275 | 99.21 151 | 97.23 127 | 95.43 194 | 97.76 215 |
|
nrg030 | | | 93.51 198 | 92.53 209 | 96.45 180 | 94.36 288 | 97.20 96 | 99.81 117 | 97.16 264 | 91.60 208 | 89.86 239 | 97.46 212 | 86.37 201 | 97.68 241 | 95.88 152 | 80.31 312 | 94.46 237 |
|
VPNet | | | 91.81 233 | 90.46 242 | 95.85 197 | 94.74 282 | 95.54 155 | 98.98 243 | 98.59 73 | 92.14 192 | 90.77 227 | 97.44 213 | 68.73 320 | 97.54 246 | 94.89 168 | 77.89 325 | 94.46 237 |
|
UniMVSNet_ETH3D | | | 90.06 274 | 88.58 281 | 94.49 243 | 94.67 284 | 88.09 307 | 97.81 309 | 97.57 224 | 83.91 325 | 88.44 272 | 97.41 214 | 57.44 351 | 97.62 244 | 91.41 225 | 88.59 240 | 97.77 214 |
|
HY-MVS | | 92.50 7 | 97.79 69 | 97.17 82 | 99.63 15 | 98.98 112 | 99.32 8 | 97.49 312 | 99.52 14 | 95.69 68 | 98.32 111 | 97.41 214 | 93.32 98 | 99.77 114 | 98.08 100 | 95.75 189 | 99.81 88 |
|
PVSNet_0 | | 88.03 19 | 91.80 236 | 90.27 248 | 96.38 185 | 98.27 155 | 90.46 273 | 99.94 58 | 99.61 12 | 93.99 128 | 86.26 305 | 97.39 216 | 71.13 313 | 99.89 83 | 98.77 67 | 67.05 357 | 98.79 197 |
|
FIs | | | 94.10 183 | 93.43 187 | 96.11 191 | 94.70 283 | 96.82 111 | 99.58 167 | 98.93 41 | 92.54 181 | 89.34 253 | 97.31 217 | 87.62 188 | 97.10 271 | 94.22 185 | 86.58 263 | 94.40 244 |
|
OurMVSNet-221017-0 | | | 89.81 277 | 89.48 267 | 90.83 310 | 91.64 335 | 81.21 346 | 98.17 299 | 95.38 342 | 91.48 212 | 85.65 310 | 97.31 217 | 72.66 304 | 97.29 260 | 88.15 271 | 84.83 276 | 93.97 286 |
|
FC-MVSNet-test | | | 93.81 189 | 93.15 196 | 95.80 199 | 94.30 290 | 96.20 133 | 99.42 191 | 98.89 43 | 92.33 189 | 89.03 263 | 97.27 219 | 87.39 191 | 96.83 290 | 93.20 203 | 86.48 264 | 94.36 248 |
|
USDC | | | 90.00 275 | 88.96 275 | 93.10 288 | 94.81 281 | 88.16 306 | 98.71 271 | 95.54 338 | 93.66 141 | 83.75 319 | 97.20 220 | 65.58 332 | 98.31 209 | 83.96 308 | 87.49 259 | 92.85 323 |
|
MVSTER | | | 95.53 148 | 95.22 144 | 96.45 180 | 98.56 137 | 97.72 74 | 99.91 71 | 97.67 212 | 92.38 187 | 91.39 219 | 97.14 221 | 97.24 18 | 97.30 257 | 94.80 170 | 87.85 252 | 94.34 252 |
|
LF4IMVS | | | 89.25 287 | 88.85 276 | 90.45 314 | 92.81 322 | 81.19 347 | 98.12 300 | 94.79 349 | 91.44 214 | 86.29 304 | 97.11 222 | 65.30 335 | 98.11 222 | 88.53 267 | 85.25 272 | 92.07 332 |
|
mvs_anonymous | | | 95.65 146 | 95.03 151 | 97.53 144 | 98.19 160 | 95.74 147 | 99.33 203 | 97.49 234 | 90.87 229 | 90.47 229 | 97.10 223 | 88.23 184 | 97.16 265 | 95.92 151 | 97.66 149 | 99.68 105 |
|
jajsoiax | | | 91.92 231 | 91.18 234 | 94.15 254 | 91.35 338 | 90.95 263 | 99.00 242 | 97.42 240 | 92.61 176 | 87.38 289 | 97.08 224 | 72.46 305 | 97.36 250 | 94.53 178 | 88.77 235 | 94.13 272 |
|
XXY-MVS | | | 91.82 232 | 90.46 242 | 95.88 195 | 93.91 296 | 95.40 160 | 98.87 257 | 97.69 210 | 88.63 269 | 87.87 281 | 97.08 224 | 74.38 299 | 97.89 235 | 91.66 223 | 84.07 283 | 94.35 251 |
|
LTVRE_ROB | | 88.28 18 | 90.29 268 | 89.05 274 | 94.02 260 | 95.08 277 | 90.15 279 | 97.19 317 | 97.43 238 | 84.91 319 | 83.99 317 | 97.06 226 | 74.00 301 | 98.28 212 | 84.08 305 | 87.71 255 | 93.62 307 |
Andreas Kuhn, Heiko Hirschmüller, Daniel Scharstein, Helmut Mayer: A TV Prior for High-Quality Scalable Multi-View Stereo Reconstruction. International Journal of Computer Vision 2016 |
mvs_tets | | | 91.81 233 | 91.08 235 | 94.00 262 | 91.63 336 | 90.58 270 | 98.67 275 | 97.43 238 | 92.43 186 | 87.37 290 | 97.05 227 | 71.76 307 | 97.32 256 | 94.75 172 | 88.68 237 | 94.11 273 |
|
MVS_Test | | | 96.46 117 | 95.74 130 | 98.61 88 | 98.18 161 | 97.23 95 | 99.31 206 | 97.15 265 | 91.07 225 | 98.84 85 | 97.05 227 | 88.17 185 | 98.97 161 | 94.39 179 | 97.50 151 | 99.61 121 |
|
ab-mvs | | | 94.69 166 | 93.42 188 | 98.51 100 | 98.07 166 | 96.26 128 | 96.49 329 | 98.68 60 | 90.31 239 | 94.54 185 | 97.00 229 | 76.30 282 | 99.71 124 | 95.98 150 | 93.38 214 | 99.56 132 |
|
PS-MVSNAJss | | | 93.64 196 | 93.31 193 | 94.61 234 | 92.11 329 | 92.19 236 | 99.12 223 | 97.38 244 | 92.51 184 | 88.45 271 | 96.99 230 | 91.20 143 | 97.29 260 | 94.36 180 | 87.71 255 | 94.36 248 |
|
IB-MVS | | 92.85 6 | 94.99 159 | 93.94 173 | 98.16 116 | 97.72 190 | 95.69 151 | 99.99 3 | 98.81 50 | 94.28 113 | 92.70 210 | 96.90 231 | 95.08 51 | 99.17 155 | 96.07 148 | 73.88 342 | 99.60 123 |
Christian Sormann, Mattia Rossi, Andreas Kuhn and Friedrich Fraundorfer: IB-MVS: An Iterative Algorithm for Deep Multi-View Stereo based on Binary Decisions. BMVC 2021 |
WR-MVS | | | 92.31 225 | 91.25 233 | 95.48 205 | 94.45 287 | 95.29 162 | 99.60 165 | 98.68 60 | 90.10 241 | 88.07 279 | 96.89 232 | 80.68 248 | 96.80 292 | 93.14 206 | 79.67 316 | 94.36 248 |
|
SixPastTwentyTwo | | | 88.73 289 | 88.01 290 | 90.88 308 | 91.85 333 | 82.24 339 | 98.22 297 | 95.18 347 | 88.97 258 | 82.26 324 | 96.89 232 | 71.75 308 | 96.67 297 | 84.00 306 | 82.98 287 | 93.72 305 |
|
UniMVSNet_NR-MVSNet | | | 92.95 210 | 92.11 215 | 95.49 202 | 94.61 285 | 95.28 163 | 99.83 113 | 99.08 31 | 91.49 211 | 89.21 258 | 96.86 234 | 87.14 193 | 96.73 294 | 93.20 203 | 77.52 328 | 94.46 237 |
|
XVG-ACMP-BASELINE | | | 91.22 247 | 90.75 238 | 92.63 294 | 93.73 299 | 85.61 322 | 98.52 283 | 97.44 237 | 92.77 167 | 89.90 238 | 96.85 235 | 66.64 329 | 98.39 198 | 92.29 215 | 88.61 238 | 93.89 292 |
|
TinyColmap | | | 87.87 296 | 86.51 297 | 91.94 301 | 95.05 278 | 85.57 323 | 97.65 311 | 94.08 355 | 84.40 322 | 81.82 327 | 96.85 235 | 62.14 343 | 98.33 207 | 80.25 328 | 86.37 265 | 91.91 336 |
|
EU-MVSNet | | | 90.14 273 | 90.34 246 | 89.54 320 | 92.55 324 | 81.06 348 | 98.69 273 | 98.04 183 | 91.41 218 | 86.59 298 | 96.84 237 | 80.83 246 | 93.31 353 | 86.20 292 | 81.91 295 | 94.26 255 |
|
TranMVSNet+NR-MVSNet | | | 91.68 240 | 90.61 241 | 94.87 224 | 93.69 300 | 93.98 194 | 99.69 149 | 98.65 64 | 91.03 226 | 88.44 272 | 96.83 238 | 80.05 256 | 96.18 315 | 90.26 250 | 76.89 336 | 94.45 242 |
|
test_fmvs2 | | | 89.47 282 | 89.70 259 | 88.77 328 | 94.54 286 | 75.74 356 | 99.83 113 | 94.70 352 | 94.71 94 | 91.08 222 | 96.82 239 | 54.46 354 | 97.78 239 | 92.87 210 | 88.27 246 | 92.80 324 |
|
GA-MVS | | | 93.83 187 | 92.84 200 | 96.80 169 | 95.73 263 | 93.57 202 | 99.88 85 | 97.24 257 | 92.57 180 | 92.92 206 | 96.66 240 | 78.73 265 | 97.67 242 | 87.75 276 | 94.06 208 | 99.17 178 |
|
CMPMVS |  | 61.59 21 | 84.75 310 | 85.14 304 | 83.57 339 | 90.32 346 | 62.54 366 | 96.98 323 | 97.59 223 | 74.33 357 | 69.95 360 | 96.66 240 | 64.17 337 | 98.32 208 | 87.88 275 | 88.41 243 | 89.84 351 |
M. Jancosek, T. Pajdla: Multi-View Reconstruction Preserving Weakly-Supported Surfaces. CVPR 2011 |
APD_test1 | | | 81.15 321 | 80.92 322 | 81.86 342 | 92.45 325 | 59.76 370 | 96.04 339 | 93.61 360 | 73.29 359 | 77.06 346 | 96.64 242 | 44.28 364 | 96.16 316 | 72.35 350 | 82.52 289 | 89.67 352 |
|
DU-MVS | | | 92.46 222 | 91.45 231 | 95.49 202 | 94.05 293 | 95.28 163 | 99.81 117 | 98.74 54 | 92.25 191 | 89.21 258 | 96.64 242 | 81.66 236 | 96.73 294 | 93.20 203 | 77.52 328 | 94.46 237 |
|
NR-MVSNet | | | 91.56 241 | 90.22 249 | 95.60 200 | 94.05 293 | 95.76 146 | 98.25 294 | 98.70 57 | 91.16 223 | 80.78 333 | 96.64 242 | 83.23 228 | 96.57 300 | 91.41 225 | 77.73 327 | 94.46 237 |
|
CP-MVSNet | | | 91.23 246 | 90.22 249 | 94.26 252 | 93.96 295 | 92.39 233 | 99.09 226 | 98.57 76 | 88.95 260 | 86.42 302 | 96.57 245 | 79.19 261 | 96.37 306 | 90.29 249 | 78.95 318 | 94.02 279 |
|
pmmvs4 | | | 92.10 229 | 91.07 236 | 95.18 215 | 92.82 321 | 94.96 172 | 99.48 185 | 96.83 300 | 87.45 284 | 88.66 270 | 96.56 246 | 83.78 223 | 96.83 290 | 89.29 258 | 84.77 277 | 93.75 301 |
|
PS-CasMVS | | | 90.63 259 | 89.51 265 | 93.99 263 | 93.83 297 | 91.70 252 | 98.98 243 | 98.52 90 | 88.48 271 | 86.15 306 | 96.53 247 | 75.46 288 | 96.31 310 | 88.83 262 | 78.86 320 | 93.95 287 |
|
test-LLR | | | 96.47 116 | 96.04 111 | 97.78 133 | 97.02 222 | 95.44 157 | 99.96 26 | 98.21 164 | 94.07 122 | 95.55 174 | 96.38 248 | 93.90 86 | 98.27 214 | 90.42 246 | 98.83 120 | 99.64 113 |
|
test-mter | | | 96.39 121 | 95.93 123 | 97.78 133 | 97.02 222 | 95.44 157 | 99.96 26 | 98.21 164 | 91.81 204 | 95.55 174 | 96.38 248 | 95.17 48 | 98.27 214 | 90.42 246 | 98.83 120 | 99.64 113 |
|
MS-PatchMatch | | | 90.65 257 | 90.30 247 | 91.71 304 | 94.22 291 | 85.50 324 | 98.24 295 | 97.70 209 | 88.67 267 | 86.42 302 | 96.37 250 | 67.82 324 | 98.03 227 | 83.62 310 | 99.62 88 | 91.60 337 |
|
PEN-MVS | | | 90.19 271 | 89.06 273 | 93.57 278 | 93.06 315 | 90.90 264 | 99.06 233 | 98.47 99 | 88.11 276 | 85.91 308 | 96.30 251 | 76.67 277 | 95.94 325 | 87.07 284 | 76.91 335 | 93.89 292 |
|
UGNet | | | 95.33 153 | 94.57 160 | 97.62 142 | 98.55 139 | 94.85 174 | 98.67 275 | 99.32 25 | 95.75 67 | 96.80 147 | 96.27 252 | 72.18 306 | 99.96 54 | 94.58 177 | 99.05 116 | 98.04 209 |
Wanjuan Su, Qingshan Xu, Wenbing Tao: Uncertainty-guided Multi-view Stereo Network for Depth Estimation. IEEE Transactions on Circuits and Systems for Video Technology, 2022 |
DTE-MVSNet | | | 89.40 283 | 88.24 287 | 92.88 291 | 92.66 323 | 89.95 284 | 99.10 225 | 98.22 163 | 87.29 286 | 85.12 313 | 96.22 253 | 76.27 283 | 95.30 334 | 83.56 311 | 75.74 339 | 93.41 310 |
|
FE-MVS | | | 95.70 144 | 95.01 152 | 97.79 132 | 98.21 158 | 94.57 180 | 95.03 345 | 98.69 58 | 88.90 262 | 97.50 132 | 96.19 254 | 92.60 118 | 99.49 144 | 89.99 253 | 97.94 145 | 99.31 167 |
|
TransMVSNet (Re) | | | 87.25 297 | 85.28 303 | 93.16 285 | 93.56 302 | 91.03 261 | 98.54 281 | 94.05 356 | 83.69 327 | 81.09 331 | 96.16 255 | 75.32 289 | 96.40 305 | 76.69 343 | 68.41 354 | 92.06 333 |
|
pm-mvs1 | | | 89.36 284 | 87.81 291 | 94.01 261 | 93.40 307 | 91.93 242 | 98.62 278 | 96.48 318 | 86.25 301 | 83.86 318 | 96.14 256 | 73.68 302 | 97.04 276 | 86.16 293 | 75.73 340 | 93.04 320 |
|
FA-MVS(test-final) | | | 95.86 136 | 95.09 149 | 98.15 119 | 97.74 185 | 95.62 153 | 96.31 333 | 98.17 169 | 91.42 217 | 96.26 161 | 96.13 257 | 90.56 157 | 99.47 146 | 92.18 217 | 97.07 161 | 99.35 162 |
|
Test_1112_low_res | | | 95.72 140 | 94.83 156 | 98.42 107 | 97.79 182 | 96.41 122 | 99.65 156 | 96.65 311 | 92.70 170 | 92.86 209 | 96.13 257 | 92.15 130 | 99.30 149 | 91.88 221 | 93.64 211 | 99.55 133 |
|
TDRefinement | | | 84.76 309 | 82.56 316 | 91.38 306 | 74.58 372 | 84.80 329 | 97.36 314 | 94.56 353 | 84.73 320 | 80.21 335 | 96.12 259 | 63.56 339 | 98.39 198 | 87.92 274 | 63.97 361 | 90.95 343 |
|
test_djsdf | | | 92.83 212 | 92.29 213 | 94.47 244 | 91.90 332 | 92.46 231 | 99.55 173 | 97.27 255 | 91.17 221 | 89.96 235 | 96.07 260 | 81.10 242 | 96.89 286 | 94.67 175 | 88.91 231 | 94.05 278 |
|
miper_enhance_ethall | | | 94.36 179 | 93.98 172 | 95.49 202 | 98.68 134 | 95.24 165 | 99.73 143 | 97.29 253 | 93.28 152 | 89.86 239 | 95.97 261 | 94.37 71 | 97.05 274 | 92.20 216 | 84.45 279 | 94.19 261 |
|
lessismore_v0 | | | | | 90.53 311 | 90.58 344 | 80.90 349 | | 95.80 331 | | 77.01 347 | 95.84 262 | 66.15 331 | 96.95 282 | 83.03 313 | 75.05 341 | 93.74 304 |
|
PVSNet_BlendedMVS | | | 96.05 131 | 95.82 129 | 96.72 173 | 99.59 81 | 96.99 105 | 99.95 43 | 99.10 29 | 94.06 124 | 98.27 113 | 95.80 263 | 89.00 178 | 99.95 61 | 99.12 46 | 87.53 258 | 93.24 316 |
|
ppachtmachnet_test | | | 89.58 281 | 88.35 284 | 93.25 284 | 92.40 326 | 90.44 274 | 99.33 203 | 96.73 307 | 85.49 312 | 85.90 309 | 95.77 264 | 81.09 243 | 96.00 324 | 76.00 345 | 82.49 290 | 93.30 314 |
|
pmmvs5 | | | 90.17 272 | 89.09 272 | 93.40 280 | 92.10 330 | 89.77 287 | 99.74 138 | 95.58 337 | 85.88 305 | 87.24 292 | 95.74 265 | 73.41 303 | 96.48 303 | 88.54 266 | 83.56 286 | 93.95 287 |
|
MDTV_nov1_ep13 | | | | 95.69 131 | | 97.90 174 | 94.15 188 | 95.98 340 | 98.44 105 | 93.12 156 | 97.98 120 | 95.74 265 | 95.10 50 | 98.58 182 | 90.02 252 | 96.92 167 | |
|
eth_miper_zixun_eth | | | 92.41 223 | 91.93 220 | 93.84 269 | 97.28 214 | 90.68 267 | 98.83 261 | 96.97 286 | 88.57 270 | 89.19 260 | 95.73 267 | 89.24 175 | 96.69 296 | 89.97 254 | 81.55 297 | 94.15 268 |
|
IterMVS-SCA-FT | | | 90.85 254 | 90.16 253 | 92.93 290 | 96.72 239 | 89.96 283 | 98.89 252 | 96.99 282 | 88.95 260 | 86.63 297 | 95.67 268 | 76.48 280 | 95.00 336 | 87.04 285 | 84.04 285 | 93.84 296 |
|
Baseline_NR-MVSNet | | | 90.33 266 | 89.51 265 | 92.81 292 | 92.84 319 | 89.95 284 | 99.77 127 | 93.94 357 | 84.69 321 | 89.04 262 | 95.66 269 | 81.66 236 | 96.52 301 | 90.99 233 | 76.98 334 | 91.97 335 |
|
cl22 | | | 93.77 191 | 93.25 195 | 95.33 210 | 99.49 90 | 94.43 183 | 99.61 164 | 98.09 178 | 90.38 236 | 89.16 261 | 95.61 270 | 90.56 157 | 97.34 252 | 91.93 219 | 84.45 279 | 94.21 260 |
|
K. test v3 | | | 88.05 293 | 87.24 295 | 90.47 313 | 91.82 334 | 82.23 340 | 98.96 246 | 97.42 240 | 89.05 253 | 76.93 348 | 95.60 271 | 68.49 321 | 95.42 330 | 85.87 296 | 81.01 306 | 93.75 301 |
|
SCA | | | 94.69 166 | 93.81 177 | 97.33 158 | 97.10 217 | 94.44 182 | 98.86 258 | 98.32 150 | 93.30 151 | 96.17 164 | 95.59 272 | 76.48 280 | 97.95 232 | 91.06 231 | 97.43 152 | 99.59 124 |
|
Patchmatch-test | | | 92.65 219 | 91.50 229 | 96.10 192 | 96.85 231 | 90.49 272 | 91.50 359 | 97.19 259 | 82.76 333 | 90.23 231 | 95.59 272 | 95.02 54 | 98.00 228 | 77.41 339 | 96.98 166 | 99.82 87 |
|
DIV-MVS_self_test | | | 92.32 224 | 91.60 225 | 94.47 244 | 97.31 211 | 92.74 222 | 99.58 167 | 96.75 306 | 86.99 292 | 87.64 283 | 95.54 274 | 89.55 168 | 96.50 302 | 88.58 265 | 82.44 291 | 94.17 262 |
|
Anonymous20231211 | | | 89.86 276 | 88.44 283 | 94.13 256 | 98.93 117 | 90.68 267 | 98.54 281 | 98.26 160 | 76.28 349 | 86.73 295 | 95.54 274 | 70.60 314 | 97.56 245 | 90.82 238 | 80.27 313 | 94.15 268 |
|
miper_ehance_all_eth | | | 93.16 204 | 92.60 205 | 94.82 228 | 97.57 197 | 93.56 203 | 99.50 181 | 97.07 274 | 88.75 265 | 88.85 266 | 95.52 276 | 90.97 149 | 96.74 293 | 90.77 239 | 84.45 279 | 94.17 262 |
|
cl____ | | | 92.31 225 | 91.58 226 | 94.52 240 | 97.33 210 | 92.77 220 | 99.57 169 | 96.78 305 | 86.97 293 | 87.56 285 | 95.51 277 | 89.43 169 | 96.62 298 | 88.60 264 | 82.44 291 | 94.16 267 |
|
tfpnnormal | | | 89.29 285 | 87.61 292 | 94.34 251 | 94.35 289 | 94.13 189 | 98.95 247 | 98.94 37 | 83.94 323 | 84.47 315 | 95.51 277 | 74.84 295 | 97.39 249 | 77.05 342 | 80.41 310 | 91.48 339 |
|
DeepMVS_CX |  | | | | 82.92 341 | 95.98 254 | 58.66 371 | | 96.01 328 | 92.72 168 | 78.34 342 | 95.51 277 | 58.29 350 | 98.08 223 | 82.57 315 | 85.29 271 | 92.03 334 |
|
c3_l | | | 92.53 220 | 91.87 222 | 94.52 240 | 97.40 205 | 92.99 218 | 99.40 192 | 96.93 292 | 87.86 279 | 88.69 269 | 95.44 280 | 89.95 164 | 96.44 304 | 90.45 245 | 80.69 309 | 94.14 271 |
|
IterMVS | | | 90.91 251 | 90.17 252 | 93.12 286 | 96.78 237 | 90.42 275 | 98.89 252 | 97.05 277 | 89.03 254 | 86.49 300 | 95.42 281 | 76.59 279 | 95.02 335 | 87.22 283 | 84.09 282 | 93.93 289 |
Fangjinhua Wang, Silvano Galliani, Christoph Vogel, Marc Pollefeys: IterMVS: Iterative Probability Estimation for Efficient Multi-View Stereo. |
UniMVSNet (Re) | | | 93.07 208 | 92.13 214 | 95.88 195 | 94.84 280 | 96.24 132 | 99.88 85 | 98.98 35 | 92.49 185 | 89.25 255 | 95.40 282 | 87.09 194 | 97.14 267 | 93.13 207 | 78.16 323 | 94.26 255 |
|
tpm2 | | | 95.47 149 | 95.18 146 | 96.35 186 | 96.91 226 | 91.70 252 | 96.96 324 | 97.93 192 | 88.04 278 | 98.44 105 | 95.40 282 | 93.32 98 | 97.97 229 | 94.00 186 | 95.61 191 | 99.38 157 |
|
pmmvs6 | | | 85.69 302 | 83.84 308 | 91.26 307 | 90.00 349 | 84.41 330 | 97.82 308 | 96.15 326 | 75.86 351 | 81.29 330 | 95.39 284 | 61.21 346 | 96.87 288 | 83.52 312 | 73.29 343 | 92.50 328 |
|
IterMVS-LS | | | 92.69 217 | 92.11 215 | 94.43 248 | 96.80 234 | 92.74 222 | 99.45 189 | 96.89 295 | 88.98 257 | 89.65 246 | 95.38 285 | 88.77 180 | 96.34 308 | 90.98 234 | 82.04 294 | 94.22 258 |
Fangjinhua Wang, Silvano Galliani, Christoph Vogel, Marc Pollefeys: IterMVS: Iterative Probability Estimation for Efficient Multi-View Stereo. |
Effi-MVS+-dtu | | | 94.53 173 | 95.30 142 | 92.22 297 | 97.77 183 | 82.54 337 | 99.59 166 | 97.06 275 | 94.92 87 | 95.29 179 | 95.37 286 | 85.81 205 | 97.89 235 | 94.80 170 | 97.07 161 | 96.23 227 |
|
v2v482 | | | 91.30 242 | 90.07 255 | 95.01 219 | 93.13 310 | 93.79 197 | 99.77 127 | 97.02 279 | 88.05 277 | 89.25 255 | 95.37 286 | 80.73 247 | 97.15 266 | 87.28 282 | 80.04 315 | 94.09 275 |
|
FMVSNet3 | | | 92.69 217 | 91.58 226 | 95.99 193 | 98.29 152 | 97.42 91 | 99.26 214 | 97.62 216 | 89.80 247 | 89.68 243 | 95.32 288 | 81.62 238 | 96.27 312 | 87.01 287 | 85.65 268 | 94.29 254 |
|
MVP-Stereo | | | 90.93 250 | 90.45 244 | 92.37 296 | 91.25 340 | 88.76 295 | 98.05 304 | 96.17 325 | 87.27 287 | 84.04 316 | 95.30 289 | 78.46 268 | 97.27 262 | 83.78 309 | 99.70 84 | 91.09 340 |
Qingsong Yan: MVP-Stereo: A Parallel Multi-View Patchmatch Stereo Method with Dilation Matching for Photogrammetric Application. |
anonymousdsp | | | 91.79 238 | 90.92 237 | 94.41 249 | 90.76 343 | 92.93 219 | 98.93 249 | 97.17 262 | 89.08 252 | 87.46 288 | 95.30 289 | 78.43 269 | 96.92 285 | 92.38 214 | 88.73 236 | 93.39 312 |
|
v1921920 | | | 90.46 262 | 89.12 271 | 94.50 242 | 92.96 318 | 92.46 231 | 99.49 183 | 96.98 284 | 86.10 302 | 89.61 248 | 95.30 289 | 78.55 267 | 97.03 279 | 82.17 318 | 80.89 308 | 94.01 281 |
|
VPA-MVSNet | | | 92.70 216 | 91.55 228 | 96.16 190 | 95.09 276 | 96.20 133 | 98.88 254 | 99.00 34 | 91.02 227 | 91.82 216 | 95.29 292 | 76.05 286 | 97.96 231 | 95.62 155 | 81.19 300 | 94.30 253 |
|
PatchmatchNet |  | | 95.94 135 | 95.45 136 | 97.39 153 | 97.83 179 | 94.41 185 | 96.05 338 | 98.40 132 | 92.86 160 | 97.09 139 | 95.28 293 | 94.21 78 | 98.07 225 | 89.26 259 | 98.11 139 | 99.70 102 |
Fangjinhua Wang, Silvano Galliani, Christoph Vogel, Pablo Speciale, Marc Pollefeys: PatchmatchNet: Learned Multi-View Patchmatch Stereo. |
miper_lstm_enhance | | | 91.81 233 | 91.39 232 | 93.06 289 | 97.34 208 | 89.18 293 | 99.38 197 | 96.79 304 | 86.70 296 | 87.47 287 | 95.22 294 | 90.00 163 | 95.86 326 | 88.26 269 | 81.37 299 | 94.15 268 |
|
test_0402 | | | 85.58 303 | 83.94 307 | 90.50 312 | 93.81 298 | 85.04 326 | 98.55 279 | 95.20 346 | 76.01 350 | 79.72 338 | 95.13 295 | 64.15 338 | 96.26 313 | 66.04 362 | 86.88 262 | 90.21 348 |
|
tpmrst | | | 96.27 128 | 95.98 115 | 97.13 161 | 97.96 171 | 93.15 213 | 96.34 332 | 98.17 169 | 92.07 194 | 98.71 94 | 95.12 296 | 93.91 85 | 98.73 173 | 94.91 167 | 96.62 170 | 99.50 144 |
|
V42 | | | 91.28 244 | 90.12 254 | 94.74 229 | 93.42 306 | 93.46 206 | 99.68 151 | 97.02 279 | 87.36 285 | 89.85 241 | 95.05 297 | 81.31 241 | 97.34 252 | 87.34 281 | 80.07 314 | 93.40 311 |
|
EPMVS | | | 96.53 115 | 96.01 112 | 98.09 121 | 98.43 146 | 96.12 138 | 96.36 331 | 99.43 20 | 93.53 144 | 97.64 128 | 95.04 298 | 94.41 66 | 98.38 202 | 91.13 229 | 98.11 139 | 99.75 97 |
|
v1192 | | | 90.62 260 | 89.25 269 | 94.72 231 | 93.13 310 | 93.07 214 | 99.50 181 | 97.02 279 | 86.33 300 | 89.56 249 | 95.01 299 | 79.22 260 | 97.09 273 | 82.34 317 | 81.16 301 | 94.01 281 |
|
v148 | | | 90.70 256 | 89.63 260 | 93.92 265 | 92.97 317 | 90.97 262 | 99.75 135 | 96.89 295 | 87.51 282 | 88.27 277 | 95.01 299 | 81.67 235 | 97.04 276 | 87.40 280 | 77.17 333 | 93.75 301 |
|
FMVSNet2 | | | 91.02 249 | 89.56 262 | 95.41 207 | 97.53 198 | 95.74 147 | 98.98 243 | 97.41 242 | 87.05 289 | 88.43 274 | 95.00 301 | 71.34 310 | 96.24 314 | 85.12 299 | 85.21 273 | 94.25 257 |
|
our_test_3 | | | 90.39 263 | 89.48 267 | 93.12 286 | 92.40 326 | 89.57 289 | 99.33 203 | 96.35 322 | 87.84 280 | 85.30 311 | 94.99 302 | 84.14 221 | 96.09 320 | 80.38 326 | 84.56 278 | 93.71 306 |
|
v1144 | | | 91.09 248 | 89.83 256 | 94.87 224 | 93.25 309 | 93.69 201 | 99.62 163 | 96.98 284 | 86.83 295 | 89.64 247 | 94.99 302 | 80.94 244 | 97.05 274 | 85.08 300 | 81.16 301 | 93.87 294 |
|
v144192 | | | 90.79 255 | 89.52 264 | 94.59 236 | 93.11 313 | 92.77 220 | 99.56 171 | 96.99 282 | 86.38 299 | 89.82 242 | 94.95 304 | 80.50 252 | 97.10 271 | 83.98 307 | 80.41 310 | 93.90 291 |
|
CostFormer | | | 96.10 129 | 95.88 127 | 96.78 170 | 97.03 221 | 92.55 230 | 97.08 321 | 97.83 204 | 90.04 244 | 98.72 93 | 94.89 305 | 95.01 55 | 98.29 210 | 96.54 143 | 95.77 187 | 99.50 144 |
|
v1240 | | | 90.20 270 | 88.79 278 | 94.44 246 | 93.05 316 | 92.27 235 | 99.38 197 | 96.92 293 | 85.89 304 | 89.36 252 | 94.87 306 | 77.89 271 | 97.03 279 | 80.66 325 | 81.08 304 | 94.01 281 |
|
v7n | | | 89.65 280 | 88.29 286 | 93.72 272 | 92.22 328 | 90.56 271 | 99.07 232 | 97.10 270 | 85.42 314 | 86.73 295 | 94.72 307 | 80.06 255 | 97.13 268 | 81.14 323 | 78.12 324 | 93.49 309 |
|
GBi-Net | | | 90.88 252 | 89.82 257 | 94.08 257 | 97.53 198 | 91.97 239 | 98.43 286 | 96.95 287 | 87.05 289 | 89.68 243 | 94.72 307 | 71.34 310 | 96.11 317 | 87.01 287 | 85.65 268 | 94.17 262 |
|
test1 | | | 90.88 252 | 89.82 257 | 94.08 257 | 97.53 198 | 91.97 239 | 98.43 286 | 96.95 287 | 87.05 289 | 89.68 243 | 94.72 307 | 71.34 310 | 96.11 317 | 87.01 287 | 85.65 268 | 94.17 262 |
|
FMVSNet1 | | | 88.50 290 | 86.64 296 | 94.08 257 | 95.62 271 | 91.97 239 | 98.43 286 | 96.95 287 | 83.00 330 | 86.08 307 | 94.72 307 | 59.09 349 | 96.11 317 | 81.82 321 | 84.07 283 | 94.17 262 |
|
dp | | | 95.05 157 | 94.43 162 | 96.91 166 | 97.99 170 | 92.73 224 | 96.29 334 | 97.98 187 | 89.70 248 | 95.93 168 | 94.67 311 | 93.83 89 | 98.45 191 | 86.91 290 | 96.53 172 | 99.54 136 |
|
test20.03 | | | 84.72 311 | 83.99 305 | 86.91 333 | 88.19 355 | 80.62 351 | 98.88 254 | 95.94 329 | 88.36 273 | 78.87 339 | 94.62 312 | 68.75 319 | 89.11 364 | 66.52 360 | 75.82 338 | 91.00 341 |
|
D2MVS | | | 92.76 213 | 92.59 208 | 93.27 283 | 95.13 275 | 89.54 290 | 99.69 149 | 99.38 22 | 92.26 190 | 87.59 284 | 94.61 313 | 85.05 214 | 97.79 237 | 91.59 224 | 88.01 250 | 92.47 329 |
|
v8 | | | 90.54 261 | 89.17 270 | 94.66 232 | 93.43 305 | 93.40 210 | 99.20 218 | 96.94 291 | 85.76 306 | 87.56 285 | 94.51 314 | 81.96 234 | 97.19 264 | 84.94 301 | 78.25 322 | 93.38 313 |
|
v10 | | | 90.25 269 | 88.82 277 | 94.57 238 | 93.53 303 | 93.43 208 | 99.08 228 | 96.87 297 | 85.00 316 | 87.34 291 | 94.51 314 | 80.93 245 | 97.02 281 | 82.85 314 | 79.23 317 | 93.26 315 |
|
ADS-MVSNet2 | | | 93.80 190 | 93.88 175 | 93.55 279 | 97.87 176 | 85.94 321 | 94.24 346 | 96.84 299 | 90.07 242 | 96.43 156 | 94.48 316 | 90.29 161 | 95.37 331 | 87.44 278 | 97.23 157 | 99.36 160 |
|
ADS-MVSNet | | | 94.79 162 | 94.02 171 | 97.11 163 | 97.87 176 | 93.79 197 | 94.24 346 | 98.16 173 | 90.07 242 | 96.43 156 | 94.48 316 | 90.29 161 | 98.19 219 | 87.44 278 | 97.23 157 | 99.36 160 |
|
WR-MVS_H | | | 91.30 242 | 90.35 245 | 94.15 254 | 94.17 292 | 92.62 229 | 99.17 221 | 98.94 37 | 88.87 263 | 86.48 301 | 94.46 318 | 84.36 218 | 96.61 299 | 88.19 270 | 78.51 321 | 93.21 317 |
|
LCM-MVSNet-Re | | | 92.31 225 | 92.60 205 | 91.43 305 | 97.53 198 | 79.27 354 | 99.02 241 | 91.83 366 | 92.07 194 | 80.31 334 | 94.38 319 | 83.50 225 | 95.48 329 | 97.22 128 | 97.58 150 | 99.54 136 |
|
tpmvs | | | 94.28 181 | 93.57 183 | 96.40 183 | 98.55 139 | 91.50 257 | 95.70 344 | 98.55 84 | 87.47 283 | 92.15 214 | 94.26 320 | 91.42 139 | 98.95 163 | 88.15 271 | 95.85 185 | 98.76 198 |
|
tpm | | | 93.70 195 | 93.41 190 | 94.58 237 | 95.36 274 | 87.41 312 | 97.01 322 | 96.90 294 | 90.85 230 | 96.72 149 | 94.14 321 | 90.40 159 | 96.84 289 | 90.75 240 | 88.54 241 | 99.51 142 |
|
Anonymous20231206 | | | 86.32 300 | 85.42 302 | 89.02 324 | 89.11 352 | 80.53 352 | 99.05 237 | 95.28 343 | 85.43 313 | 82.82 322 | 93.92 322 | 74.40 298 | 93.44 352 | 66.99 359 | 81.83 296 | 93.08 319 |
|
UnsupCasMVSNet_eth | | | 85.52 304 | 83.99 305 | 90.10 316 | 89.36 351 | 83.51 333 | 96.65 327 | 97.99 185 | 89.14 251 | 75.89 352 | 93.83 323 | 63.25 340 | 93.92 346 | 81.92 320 | 67.90 356 | 92.88 322 |
|
tpm cat1 | | | 93.51 198 | 92.52 210 | 96.47 178 | 97.77 183 | 91.47 258 | 96.13 336 | 98.06 181 | 80.98 339 | 92.91 207 | 93.78 324 | 89.66 166 | 98.87 164 | 87.03 286 | 96.39 175 | 99.09 185 |
|
EG-PatchMatch MVS | | | 85.35 307 | 83.81 309 | 89.99 318 | 90.39 345 | 81.89 342 | 98.21 298 | 96.09 327 | 81.78 337 | 74.73 354 | 93.72 325 | 51.56 359 | 97.12 270 | 79.16 333 | 88.61 238 | 90.96 342 |
|
test_method | | | 80.79 322 | 79.70 326 | 84.08 338 | 92.83 320 | 67.06 363 | 99.51 179 | 95.42 339 | 54.34 367 | 81.07 332 | 93.53 326 | 44.48 363 | 92.22 357 | 78.90 334 | 77.23 332 | 92.94 321 |
|
N_pmnet | | | 80.06 325 | 80.78 323 | 77.89 345 | 91.94 331 | 45.28 379 | 98.80 265 | 56.82 382 | 78.10 347 | 80.08 336 | 93.33 327 | 77.03 273 | 95.76 327 | 68.14 358 | 82.81 288 | 92.64 325 |
|
MDA-MVSNet-bldmvs | | | 84.09 314 | 81.52 320 | 91.81 303 | 91.32 339 | 88.00 309 | 98.67 275 | 95.92 330 | 80.22 341 | 55.60 369 | 93.32 328 | 68.29 323 | 93.60 351 | 73.76 347 | 76.61 337 | 93.82 298 |
|
CR-MVSNet | | | 93.45 201 | 92.62 204 | 95.94 194 | 96.29 243 | 92.66 226 | 92.01 357 | 96.23 323 | 92.62 175 | 96.94 141 | 93.31 329 | 91.04 147 | 96.03 322 | 79.23 330 | 95.96 182 | 99.13 183 |
|
Patchmtry | | | 89.70 279 | 88.49 282 | 93.33 281 | 96.24 246 | 89.94 286 | 91.37 360 | 96.23 323 | 78.22 346 | 87.69 282 | 93.31 329 | 91.04 147 | 96.03 322 | 80.18 329 | 82.10 293 | 94.02 279 |
|
MIMVSNet | | | 90.30 267 | 88.67 280 | 95.17 216 | 96.45 242 | 91.64 254 | 92.39 355 | 97.15 265 | 85.99 303 | 90.50 228 | 93.19 331 | 66.95 327 | 94.86 339 | 82.01 319 | 93.43 212 | 99.01 188 |
|
YYNet1 | | | 85.50 306 | 83.33 311 | 92.00 300 | 90.89 342 | 88.38 305 | 99.22 217 | 96.55 315 | 79.60 344 | 57.26 367 | 92.72 332 | 79.09 263 | 93.78 349 | 77.25 340 | 77.37 331 | 93.84 296 |
|
MVS_0304 | | | 89.28 286 | 88.31 285 | 92.21 298 | 97.05 220 | 86.53 318 | 97.76 310 | 99.57 13 | 85.58 311 | 93.86 197 | 92.71 333 | 51.04 360 | 96.30 311 | 84.49 303 | 92.72 219 | 93.79 299 |
|
MDA-MVSNet_test_wron | | | 85.51 305 | 83.32 312 | 92.10 299 | 90.96 341 | 88.58 301 | 99.20 218 | 96.52 316 | 79.70 343 | 57.12 368 | 92.69 334 | 79.11 262 | 93.86 348 | 77.10 341 | 77.46 330 | 93.86 295 |
|
MIMVSNet1 | | | 82.58 318 | 80.51 324 | 88.78 326 | 86.68 357 | 84.20 331 | 96.65 327 | 95.41 340 | 78.75 345 | 78.59 341 | 92.44 335 | 51.88 358 | 89.76 363 | 65.26 363 | 78.95 318 | 92.38 331 |
|
KD-MVS_2432*1600 | | | 88.00 294 | 86.10 298 | 93.70 275 | 96.91 226 | 94.04 191 | 97.17 318 | 97.12 268 | 84.93 317 | 81.96 325 | 92.41 336 | 92.48 122 | 94.51 342 | 79.23 330 | 52.68 368 | 92.56 326 |
|
miper_refine_blended | | | 88.00 294 | 86.10 298 | 93.70 275 | 96.91 226 | 94.04 191 | 97.17 318 | 97.12 268 | 84.93 317 | 81.96 325 | 92.41 336 | 92.48 122 | 94.51 342 | 79.23 330 | 52.68 368 | 92.56 326 |
|
FMVSNet5 | | | 88.32 291 | 87.47 293 | 90.88 308 | 96.90 229 | 88.39 304 | 97.28 315 | 95.68 334 | 82.60 334 | 84.67 314 | 92.40 338 | 79.83 257 | 91.16 360 | 76.39 344 | 81.51 298 | 93.09 318 |
|
EGC-MVSNET | | | 69.38 329 | 63.76 339 | 86.26 335 | 90.32 346 | 81.66 345 | 96.24 335 | 93.85 358 | 0.99 379 | 3.22 380 | 92.33 339 | 52.44 356 | 92.92 354 | 59.53 367 | 84.90 275 | 84.21 362 |
|
DSMNet-mixed | | | 88.28 292 | 88.24 287 | 88.42 330 | 89.64 350 | 75.38 358 | 98.06 303 | 89.86 369 | 85.59 310 | 88.20 278 | 92.14 340 | 76.15 285 | 91.95 358 | 78.46 335 | 96.05 180 | 97.92 210 |
|
patchmatchnet-post | | | | | | | | | | | | 91.70 341 | 95.12 49 | 97.95 232 | | | |
|
OpenMVS_ROB |  | 79.82 20 | 83.77 316 | 81.68 319 | 90.03 317 | 88.30 354 | 82.82 334 | 98.46 284 | 95.22 345 | 73.92 358 | 76.00 351 | 91.29 342 | 55.00 353 | 96.94 283 | 68.40 357 | 88.51 242 | 90.34 346 |
|
Anonymous20240521 | | | 85.15 308 | 83.81 309 | 89.16 323 | 88.32 353 | 82.69 335 | 98.80 265 | 95.74 332 | 79.72 342 | 81.53 329 | 90.99 343 | 65.38 334 | 94.16 344 | 72.69 349 | 81.11 303 | 90.63 345 |
|
Patchmatch-RL test | | | 86.90 298 | 85.98 301 | 89.67 319 | 84.45 360 | 75.59 357 | 89.71 364 | 92.43 363 | 86.89 294 | 77.83 345 | 90.94 344 | 94.22 76 | 93.63 350 | 87.75 276 | 69.61 349 | 99.79 91 |
|
CL-MVSNet_self_test | | | 84.50 312 | 83.15 314 | 88.53 329 | 86.00 358 | 81.79 343 | 98.82 262 | 97.35 246 | 85.12 315 | 83.62 320 | 90.91 345 | 76.66 278 | 91.40 359 | 69.53 355 | 60.36 365 | 92.40 330 |
|
FPMVS | | | 68.72 331 | 68.72 332 | 68.71 353 | 65.95 376 | 44.27 381 | 95.97 341 | 94.74 350 | 51.13 368 | 53.26 370 | 90.50 346 | 25.11 373 | 83.00 371 | 60.80 365 | 80.97 307 | 78.87 366 |
|
test_vis1_rt | | | 86.87 299 | 86.05 300 | 89.34 321 | 96.12 247 | 78.07 355 | 99.87 88 | 83.54 376 | 92.03 197 | 78.21 343 | 89.51 347 | 45.80 362 | 99.91 77 | 96.25 146 | 93.11 217 | 90.03 349 |
|
new_pmnet | | | 84.49 313 | 82.92 315 | 89.21 322 | 90.03 348 | 82.60 336 | 96.89 326 | 95.62 336 | 80.59 340 | 75.77 353 | 89.17 348 | 65.04 336 | 94.79 340 | 72.12 351 | 81.02 305 | 90.23 347 |
|
KD-MVS_self_test | | | 83.59 317 | 82.06 317 | 88.20 331 | 86.93 356 | 80.70 350 | 97.21 316 | 96.38 320 | 82.87 331 | 82.49 323 | 88.97 349 | 67.63 325 | 92.32 356 | 73.75 348 | 62.30 364 | 91.58 338 |
|
mvsany_test3 | | | 82.12 319 | 81.14 321 | 85.06 337 | 81.87 365 | 70.41 360 | 97.09 320 | 92.14 364 | 91.27 220 | 77.84 344 | 88.73 350 | 39.31 365 | 95.49 328 | 90.75 240 | 71.24 346 | 89.29 356 |
|
PM-MVS | | | 80.47 323 | 78.88 328 | 85.26 336 | 83.79 363 | 72.22 359 | 95.89 342 | 91.08 367 | 85.71 309 | 76.56 350 | 88.30 351 | 36.64 366 | 93.90 347 | 82.39 316 | 69.57 350 | 89.66 353 |
|
testf1 | | | 68.38 332 | 66.92 333 | 72.78 350 | 78.80 368 | 50.36 375 | 90.95 362 | 87.35 374 | 55.47 365 | 58.95 364 | 88.14 352 | 20.64 375 | 87.60 366 | 57.28 368 | 64.69 359 | 80.39 364 |
|
APD_test2 | | | 68.38 332 | 66.92 333 | 72.78 350 | 78.80 368 | 50.36 375 | 90.95 362 | 87.35 374 | 55.47 365 | 58.95 364 | 88.14 352 | 20.64 375 | 87.60 366 | 57.28 368 | 64.69 359 | 80.39 364 |
|
pmmvs3 | | | 80.27 324 | 77.77 329 | 87.76 332 | 80.32 367 | 82.43 338 | 98.23 296 | 91.97 365 | 72.74 360 | 78.75 340 | 87.97 354 | 57.30 352 | 90.99 361 | 70.31 353 | 62.37 363 | 89.87 350 |
|
pmmvs-eth3d | | | 84.03 315 | 81.97 318 | 90.20 315 | 84.15 361 | 87.09 314 | 98.10 302 | 94.73 351 | 83.05 329 | 74.10 356 | 87.77 355 | 65.56 333 | 94.01 345 | 81.08 324 | 69.24 351 | 89.49 354 |
|
test123 | | | 37.68 344 | 39.14 347 | 33.31 359 | 19.94 383 | 24.83 384 | 98.36 291 | 9.75 384 | 15.53 377 | 51.31 371 | 87.14 356 | 19.62 378 | 17.74 379 | 47.10 372 | 3.47 378 | 57.36 372 |
|
new-patchmatchnet | | | 81.19 320 | 79.34 327 | 86.76 334 | 82.86 364 | 80.36 353 | 97.92 306 | 95.27 344 | 82.09 336 | 72.02 357 | 86.87 357 | 62.81 342 | 90.74 362 | 71.10 352 | 63.08 362 | 89.19 357 |
|
test_fmvs3 | | | 79.99 326 | 80.17 325 | 79.45 344 | 84.02 362 | 62.83 364 | 99.05 237 | 93.49 361 | 88.29 275 | 80.06 337 | 86.65 358 | 28.09 370 | 88.00 365 | 88.63 263 | 73.27 344 | 87.54 360 |
|
ambc | | | | | 83.23 340 | 77.17 370 | 62.61 365 | 87.38 366 | 94.55 354 | | 76.72 349 | 86.65 358 | 30.16 367 | 96.36 307 | 84.85 302 | 69.86 348 | 90.73 344 |
|
PatchT | | | 90.38 264 | 88.75 279 | 95.25 213 | 95.99 252 | 90.16 278 | 91.22 361 | 97.54 227 | 76.80 348 | 97.26 136 | 86.01 360 | 91.88 135 | 96.07 321 | 66.16 361 | 95.91 184 | 99.51 142 |
|
RPMNet | | | 89.76 278 | 87.28 294 | 97.19 160 | 96.29 243 | 92.66 226 | 92.01 357 | 98.31 152 | 70.19 362 | 96.94 141 | 85.87 361 | 87.25 192 | 99.78 111 | 62.69 364 | 95.96 182 | 99.13 183 |
|
test_f | | | 78.40 328 | 77.59 330 | 80.81 343 | 80.82 366 | 62.48 367 | 96.96 324 | 93.08 362 | 83.44 328 | 74.57 355 | 84.57 362 | 27.95 371 | 92.63 355 | 84.15 304 | 72.79 345 | 87.32 361 |
|
UnsupCasMVSNet_bld | | | 79.97 327 | 77.03 331 | 88.78 326 | 85.62 359 | 81.98 341 | 93.66 351 | 97.35 246 | 75.51 354 | 70.79 359 | 83.05 363 | 48.70 361 | 94.91 338 | 78.31 336 | 60.29 366 | 89.46 355 |
|
LCM-MVSNet | | | 67.77 334 | 64.73 337 | 76.87 346 | 62.95 378 | 56.25 373 | 89.37 365 | 93.74 359 | 44.53 370 | 61.99 362 | 80.74 364 | 20.42 377 | 86.53 369 | 69.37 356 | 59.50 367 | 87.84 358 |
|
PMMVS2 | | | 67.15 335 | 64.15 338 | 76.14 347 | 70.56 375 | 62.07 368 | 93.89 349 | 87.52 373 | 58.09 364 | 60.02 363 | 78.32 365 | 22.38 374 | 84.54 370 | 59.56 366 | 47.03 370 | 81.80 363 |
|
JIA-IIPM | | | 91.76 239 | 90.70 239 | 94.94 222 | 96.11 248 | 87.51 311 | 93.16 353 | 98.13 177 | 75.79 352 | 97.58 129 | 77.68 366 | 92.84 112 | 97.97 229 | 88.47 268 | 96.54 171 | 99.33 165 |
|
PMVS |  | 49.05 23 | 53.75 339 | 51.34 343 | 60.97 356 | 40.80 382 | 34.68 382 | 74.82 370 | 89.62 371 | 37.55 372 | 28.67 378 | 72.12 367 | 7.09 382 | 81.63 372 | 43.17 374 | 68.21 355 | 66.59 370 |
Y. Furukawa, J. Ponce: Accurate, dense, and robust multiview stereopsis. PAMI (2010) |
MVS-HIRNet | | | 86.22 301 | 83.19 313 | 95.31 211 | 96.71 240 | 90.29 276 | 92.12 356 | 97.33 249 | 62.85 363 | 86.82 294 | 70.37 368 | 69.37 317 | 97.49 247 | 75.12 346 | 97.99 144 | 98.15 206 |
|
gg-mvs-nofinetune | | | 93.51 198 | 91.86 223 | 98.47 102 | 97.72 190 | 97.96 70 | 92.62 354 | 98.51 93 | 74.70 356 | 97.33 135 | 69.59 369 | 98.91 3 | 97.79 237 | 97.77 116 | 99.56 94 | 99.67 107 |
|
test_vis3_rt | | | 68.82 330 | 66.69 335 | 75.21 348 | 76.24 371 | 60.41 369 | 96.44 330 | 68.71 381 | 75.13 355 | 50.54 372 | 69.52 370 | 16.42 380 | 96.32 309 | 80.27 327 | 66.92 358 | 68.89 368 |
|
Gipuma |  | | 66.95 336 | 65.00 336 | 72.79 349 | 91.52 337 | 67.96 362 | 66.16 371 | 95.15 348 | 47.89 369 | 58.54 366 | 67.99 371 | 29.74 368 | 87.54 368 | 50.20 371 | 77.83 326 | 62.87 371 |
S. Galliani, K. Lasinger, K. Schindler: Massively Parallel Multiview Stereopsis by Surface Normal Diffusion. ICCV 2015 |
ANet_high | | | 56.10 338 | 52.24 341 | 67.66 354 | 49.27 380 | 56.82 372 | 83.94 367 | 82.02 377 | 70.47 361 | 33.28 377 | 64.54 372 | 17.23 379 | 69.16 375 | 45.59 373 | 23.85 374 | 77.02 367 |
|
E-PMN | | | 52.30 340 | 52.18 342 | 52.67 357 | 71.51 373 | 45.40 378 | 93.62 352 | 76.60 379 | 36.01 373 | 43.50 374 | 64.13 373 | 27.11 372 | 67.31 376 | 31.06 376 | 26.06 372 | 45.30 375 |
|
test_post | | | | | | | | | | | | 63.35 374 | 94.43 65 | 98.13 221 | | | |
|
MVE |  | 53.74 22 | 51.54 341 | 47.86 345 | 62.60 355 | 59.56 379 | 50.93 374 | 79.41 369 | 77.69 378 | 35.69 374 | 36.27 376 | 61.76 375 | 5.79 384 | 69.63 374 | 37.97 375 | 36.61 371 | 67.24 369 |
Simon Fuhrmann, Fabian Langguth, Michael Goesele: MVE - A Multi-View Reconstruction Environment. EUROGRAPHICS Workshops on Graphics and Cultural Heritage (2014) |
EMVS | | | 51.44 342 | 51.22 344 | 52.11 358 | 70.71 374 | 44.97 380 | 94.04 348 | 75.66 380 | 35.34 375 | 42.40 375 | 61.56 376 | 28.93 369 | 65.87 377 | 27.64 377 | 24.73 373 | 45.49 374 |
|
test_post1 | | | | | | | | 95.78 343 | | | | 59.23 377 | 93.20 104 | 97.74 240 | 91.06 231 | | |
|
X-MVStestdata | | | 93.83 187 | 92.06 217 | 99.15 53 | 99.94 13 | 97.50 86 | 99.94 58 | 98.42 124 | 96.22 57 | 99.41 59 | 41.37 378 | 94.34 72 | 99.96 54 | 98.92 57 | 99.95 49 | 99.99 23 |
|
wuyk23d | | | 20.37 346 | 20.84 349 | 18.99 361 | 65.34 377 | 27.73 383 | 50.43 372 | 7.67 385 | 9.50 378 | 8.01 379 | 6.34 379 | 6.13 383 | 26.24 378 | 23.40 378 | 10.69 377 | 2.99 376 |
|
test_blank | | | 0.00 349 | 0.00 352 | 0.00 362 | 0.00 385 | 0.00 386 | 0.00 373 | 0.00 386 | 0.00 380 | 0.00 381 | 0.02 380 | 0.00 385 | 0.00 381 | 0.00 379 | 0.00 379 | 0.00 377 |
|
uanet_test | | | 0.00 349 | 0.00 352 | 0.00 362 | 0.00 385 | 0.00 386 | 0.00 373 | 0.00 386 | 0.00 380 | 0.00 381 | 0.00 381 | 0.00 385 | 0.00 381 | 0.00 379 | 0.00 379 | 0.00 377 |
|
DCPMVS | | | 0.00 349 | 0.00 352 | 0.00 362 | 0.00 385 | 0.00 386 | 0.00 373 | 0.00 386 | 0.00 380 | 0.00 381 | 0.00 381 | 0.00 385 | 0.00 381 | 0.00 379 | 0.00 379 | 0.00 377 |
|
pcd_1.5k_mvsjas | | | 7.60 348 | 10.13 351 | 0.00 362 | 0.00 385 | 0.00 386 | 0.00 373 | 0.00 386 | 0.00 380 | 0.00 381 | 0.00 381 | 91.20 143 | 0.00 381 | 0.00 379 | 0.00 379 | 0.00 377 |
|
sosnet-low-res | | | 0.00 349 | 0.00 352 | 0.00 362 | 0.00 385 | 0.00 386 | 0.00 373 | 0.00 386 | 0.00 380 | 0.00 381 | 0.00 381 | 0.00 385 | 0.00 381 | 0.00 379 | 0.00 379 | 0.00 377 |
|
sosnet | | | 0.00 349 | 0.00 352 | 0.00 362 | 0.00 385 | 0.00 386 | 0.00 373 | 0.00 386 | 0.00 380 | 0.00 381 | 0.00 381 | 0.00 385 | 0.00 381 | 0.00 379 | 0.00 379 | 0.00 377 |
|
uncertanet | | | 0.00 349 | 0.00 352 | 0.00 362 | 0.00 385 | 0.00 386 | 0.00 373 | 0.00 386 | 0.00 380 | 0.00 381 | 0.00 381 | 0.00 385 | 0.00 381 | 0.00 379 | 0.00 379 | 0.00 377 |
|
Regformer | | | 0.00 349 | 0.00 352 | 0.00 362 | 0.00 385 | 0.00 386 | 0.00 373 | 0.00 386 | 0.00 380 | 0.00 381 | 0.00 381 | 0.00 385 | 0.00 381 | 0.00 379 | 0.00 379 | 0.00 377 |
|
uanet | | | 0.00 349 | 0.00 352 | 0.00 362 | 0.00 385 | 0.00 386 | 0.00 373 | 0.00 386 | 0.00 380 | 0.00 381 | 0.00 381 | 0.00 385 | 0.00 381 | 0.00 379 | 0.00 379 | 0.00 377 |
|
FOURS1 | | | | | | 99.92 31 | 97.66 79 | 99.95 43 | 98.36 143 | 95.58 71 | 99.52 51 | | | | | | |
|
MSC_two_6792asdad | | | | | 99.93 2 | 99.91 39 | 99.80 2 | | 98.41 128 | | | | | 100.00 1 | 99.96 9 | 100.00 1 | 100.00 1 |
|
No_MVS | | | | | 99.93 2 | 99.91 39 | 99.80 2 | | 98.41 128 | | | | | 100.00 1 | 99.96 9 | 100.00 1 | 100.00 1 |
|
eth-test2 | | | | | | 0.00 385 | | | | | | | | | | | |
|
eth-test | | | | | | 0.00 385 | | | | | | | | | | | |
|
IU-MVS | | | | | | 99.93 24 | 99.31 9 | | 98.41 128 | 97.71 9 | 99.84 10 | | | | 100.00 1 | 100.00 1 | 100.00 1 |
|
save fliter | | | | | | 99.82 58 | 98.79 36 | 99.96 26 | 98.40 132 | 97.66 11 | | | | | | | |
|
test_0728_SECOND | | | | | 99.82 7 | 99.94 13 | 99.47 7 | 99.95 43 | 98.43 113 | | | | | 100.00 1 | 99.99 5 | 100.00 1 | 100.00 1 |
|
GSMVS | | | | | | | | | | | | | | | | | 99.59 124 |
|
test_part2 | | | | | | 99.89 45 | 99.25 17 | | | | 99.49 53 | | | | | | |
|
sam_mvs1 | | | | | | | | | | | | | 94.72 61 | | | | 99.59 124 |
|
sam_mvs | | | | | | | | | | | | | 94.25 75 | | | | |
|
MTGPA |  | | | | | | | | 98.28 157 | | | | | | | | |
|
MTMP | | | | | | | | 99.87 88 | 96.49 317 | | | | | | | | |
|
test9_res | | | | | | | | | | | | | | | 99.71 29 | 99.99 21 | 100.00 1 |
|
agg_prior2 | | | | | | | | | | | | | | | 99.48 35 | 100.00 1 | 100.00 1 |
|
agg_prior | | | | | | 99.93 24 | 98.77 38 | | 98.43 113 | | 99.63 37 | | | 99.85 95 | | | |
|
test_prior4 | | | | | | | 98.05 64 | 99.94 58 | | | | | | | | | |
|
test_prior | | | | | 99.43 33 | 99.94 13 | 98.49 56 | | 98.65 64 | | | | | 99.80 107 | | | 99.99 23 |
|
旧先验2 | | | | | | | | 99.46 188 | | 94.21 116 | 99.85 7 | | | 99.95 61 | 96.96 136 | | |
|
æ–°å‡ ä½•2 | | | | | | | | 99.40 192 | | | | | | | | | |
|
æ— å…ˆéªŒ | | | | | | | | 99.49 183 | 98.71 56 | 93.46 146 | | | | 100.00 1 | 94.36 180 | | 99.99 23 |
|
原ACMM2 | | | | | | | | 99.90 76 | | | | | | | | | |
|
testdata2 | | | | | | | | | | | | | | 99.99 36 | 90.54 244 | | |
|
segment_acmp | | | | | | | | | | | | | 96.68 26 | | | | |
|
testdata1 | | | | | | | | 99.28 212 | | 96.35 56 | | | | | | | |
|
test12 | | | | | 99.43 33 | 99.74 69 | 98.56 53 | | 98.40 132 | | 99.65 35 | | 94.76 60 | 99.75 118 | | 99.98 32 | 99.99 23 |
|
plane_prior7 | | | | | | 95.71 266 | 91.59 256 | | | | | | | | | | |
|
plane_prior6 | | | | | | 95.76 261 | 91.72 251 | | | | | | 80.47 253 | | | | |
|
plane_prior5 | | | | | | | | | 97.87 199 | | | | | 98.37 204 | 97.79 114 | 89.55 225 | 94.52 233 |
|
plane_prior3 | | | | | | | 91.64 254 | | | 96.63 44 | 93.01 204 | | | | | | |
|
plane_prior2 | | | | | | | | 99.84 107 | | 96.38 52 | | | | | | | |
|
plane_prior1 | | | | | | 95.73 263 | | | | | | | | | | | |
|
plane_prior | | | | | | | 91.74 248 | 99.86 100 | | 96.76 40 | | | | | | 89.59 224 | |
|
n2 | | | | | | | | | 0.00 386 | | | | | | | | |
|
nn | | | | | | | | | 0.00 386 | | | | | | | | |
|
door-mid | | | | | | | | | 89.69 370 | | | | | | | | |
|
test11 | | | | | | | | | 98.44 105 | | | | | | | | |
|
door | | | | | | | | | 90.31 368 | | | | | | | | |
|
HQP5-MVS | | | | | | | 91.85 244 | | | | | | | | | | |
|
HQP-NCC | | | | | | 95.78 257 | | 99.87 88 | | 96.82 36 | 93.37 200 | | | | | | |
|
ACMP_Plane | | | | | | 95.78 257 | | 99.87 88 | | 96.82 36 | 93.37 200 | | | | | | |
|
BP-MVS | | | | | | | | | | | | | | | 97.92 108 | | |
|
HQP4-MVS | | | | | | | | | | | 93.37 200 | | | 98.39 198 | | | 94.53 231 |
|
HQP3-MVS | | | | | | | | | 97.89 197 | | | | | | | 89.60 222 | |
|
HQP2-MVS | | | | | | | | | | | | | 80.65 249 | | | | |
|
MDTV_nov1_ep13_2view | | | | | | | 96.26 128 | 96.11 337 | | 91.89 200 | 98.06 118 | | 94.40 67 | | 94.30 182 | | 99.67 107 |
|
ACMMP++_ref | | | | | | | | | | | | | | | | 87.04 260 | |
|
ACMMP++ | | | | | | | | | | | | | | | | 88.23 247 | |
|
Test By Simon | | | | | | | | | | | | | 92.82 114 | | | | |
|