This table lists the benchmark results for the high-res multi-view scenario. The following metrics are evaluated:

(*) For exact definitions, detailing how potentially incomplete ground truth is taken into account, see our paper.

The datasets are grouped into different categories, and result averages are computed for a category and method if results of the method are available for all datasets within the category. Note that the category "all" includes both the high-res multi-view and the low-res many-view scenarios.

Methods with suffix _ROB may participate in the Robust Vision Challenge.

Click a dataset result cell to show a visualization of the reconstruction. For training datasets, ground truth and accuracy / completeness visualizations are also available. The visualizations may not work with mobile browsers.




Method Infoallhigh-res
multi-view
indooroutdoorbotani.boulde.bridgedoorexhibi.lectur.living.loungeobserv.old co.statueterrac.
sort bysort bysort bysort bysort bysort bysort bysort bysort bysort bysorted bysort bysort bysort bysort bysort by
DeepPCF-MVS95.94 297.71 8598.98 1193.92 27099.63 9381.76 34799.96 2598.56 7799.47 199.19 8099.99 194.16 90100.00 199.92 1299.93 67100.00 1
CNVR-MVS99.40 199.26 199.84 699.98 299.51 699.98 1098.69 5598.20 399.93 199.98 296.82 22100.00 199.75 26100.00 199.99 24
NCCC99.37 299.25 299.71 1399.96 899.15 2099.97 1898.62 6798.02 699.90 299.95 397.33 16100.00 199.54 37100.00 1100.00 1
SED-MVS99.28 599.11 699.77 899.93 2799.30 1199.96 2598.43 11697.27 2099.80 1699.94 496.71 23100.00 1100.00 1100.00 1100.00 1
test_241102_TWO98.43 11697.27 2099.80 1699.94 497.18 20100.00 1100.00 1100.00 1100.00 1
test072699.93 2799.29 1499.96 2598.42 12897.28 1899.86 499.94 497.22 18
DPM-MVS98.83 2298.46 3199.97 199.33 11199.92 199.96 2598.44 10897.96 799.55 4899.94 497.18 20100.00 193.81 19599.94 6199.98 55
SMA-MVScopyleft98.76 2798.48 3099.62 1899.87 5798.87 3199.86 10398.38 14393.19 15599.77 2599.94 495.54 43100.00 199.74 2899.99 22100.00 1
Yufeng Yin; Xiaoyan Liu; Zichao Zhang: SMA-MVS: Segmentation-Guided Multi-Scale Anchor Deformation Patch Multi-View Stereo. IEEE Transactions on Circuits and Systems for Video Technology
DPE-MVScopyleft99.26 699.10 799.74 1099.89 5099.24 1899.87 9298.44 10897.48 1599.64 3999.94 496.68 2599.99 4099.99 5100.00 199.99 24
Kehua Chen, Zhenlong Yuan, Tianlu Mao, Zhaoqi Wang: Dual-Level Precision Edges Guided Multi-View Stereo with Accurate Planarization. AAAI2025
MSLP-MVS++99.13 899.01 1099.49 3499.94 1498.46 6399.98 1098.86 4597.10 2599.80 1699.94 495.92 36100.00 199.51 38100.00 1100.00 1
DVP-MVS++.99.26 699.09 899.77 899.91 4499.31 999.95 4398.43 11696.48 4299.80 1699.93 1197.44 13100.00 199.92 1299.98 35100.00 1
test_one_060199.94 1499.30 1198.41 13296.63 3999.75 2799.93 1197.49 9
ETH3 D test640098.81 2398.54 2799.59 2199.93 2798.93 2699.93 6698.46 10594.56 10199.84 899.92 1394.32 8399.86 9499.96 999.98 35100.00 1
MCST-MVS99.32 399.14 499.86 599.97 399.59 599.97 1898.64 6398.47 299.13 8299.92 1396.38 29100.00 199.74 28100.00 1100.00 1
DVP-MVScopyleft99.30 499.16 399.73 1199.93 2799.29 1499.95 4398.32 15697.28 1899.83 1099.91 1597.22 18100.00 199.99 5100.00 199.89 94
Zhenlong Yuan, Jinguo Luo, Fei Shen, Zhaoxin Li, Cong Liu, Tianlu Mao, Zhaoqi Wang: DVP-MVS: Synergize Depth-Edge and Visibility Prior for Multi-View Stereo. AAAI2025
test_0728_THIRD96.48 4299.83 1099.91 1597.87 4100.00 199.92 12100.00 1100.00 1
SteuartSystems-ACMMP99.02 1298.97 1299.18 5798.72 14397.71 8799.98 1098.44 10896.85 3099.80 1699.91 1597.57 699.85 9899.44 4299.99 2299.99 24
Skip Steuart: Steuart Systems R&D Blog.
DeepC-MVS_fast96.59 198.81 2398.54 2799.62 1899.90 4798.85 3399.24 22198.47 10398.14 499.08 8399.91 1593.09 119100.00 199.04 5899.99 22100.00 1
Andreas Kuhn, Christian Sormann, Mattia Rossi, Oliver Erdler, Friedrich Fraundorfer: DeepC-MVS: Deep Confidence Prediction for Multi-View Stereo Reconstruction. 3DV 2020
ETH3D-3000-0.198.68 3098.42 3299.47 3799.83 6898.57 5599.90 7898.37 14693.81 13799.81 1299.90 1994.34 7999.86 9499.84 1799.98 3599.97 67
tmp_tt65.23 33062.94 33372.13 34544.90 37450.03 37081.05 36189.42 36938.45 36548.51 36799.90 1954.09 35878.70 36691.84 22418.26 36887.64 358
xxxxxxxxxxxxxcwj98.98 1598.79 1699.54 2699.82 7098.79 3799.96 2597.52 23997.66 1099.81 1299.89 2194.70 6899.86 9499.84 1799.93 6799.96 74
SF-MVS98.67 3198.40 3699.50 3299.77 7898.67 4899.90 7898.21 17393.53 14699.81 1299.89 2194.70 6899.86 9499.84 1799.93 6799.96 74
9.1498.38 3999.87 5799.91 7498.33 15493.22 15499.78 2499.89 2194.57 7199.85 9899.84 1799.97 48
test_241102_ONE99.93 2799.30 1198.43 11697.26 2299.80 1699.88 2496.71 23100.00 1
MSP-MVS99.09 999.12 598.98 8399.93 2797.24 10999.95 4398.42 12897.50 1499.52 5399.88 2497.43 1599.71 13399.50 3999.98 35100.00 1
Zhenlong Yuan, Cong Liu, Fei Shen, Zhaoxin Li, Jingguo luo, Tianlu Mao and Zhaoqi Wang: MSP-MVS: Multi-granularity Segmentation Prior Guided Multi-View Stereo. AAAI2025
zzz-MVS98.33 5698.00 6399.30 5099.85 6097.93 8299.80 12498.28 16395.76 6597.18 14599.88 2492.74 127100.00 198.67 8299.88 8099.99 24
MTAPA98.29 5997.96 6899.30 5099.85 6097.93 8299.39 20298.28 16395.76 6597.18 14599.88 2492.74 127100.00 198.67 8299.88 8099.99 24
ETH3D cwj APD-0.1698.40 5298.07 6099.40 4499.59 9598.41 6499.86 10398.24 16992.18 19499.73 2999.87 2893.47 10699.85 9899.74 2899.95 5599.93 85
CDPH-MVS98.65 3298.36 4399.49 3499.94 1498.73 4599.87 9298.33 15493.97 12999.76 2699.87 2894.99 6199.75 12598.55 89100.00 199.98 55
CP-MVS98.45 4798.32 4598.87 8999.96 896.62 13099.97 1898.39 13994.43 10698.90 9299.87 2894.30 84100.00 199.04 5899.99 2299.99 24
xiu_mvs_v2_base98.23 6497.97 6599.02 8098.69 14498.66 5099.52 18298.08 19097.05 2699.86 499.86 3190.65 16699.71 13399.39 4598.63 13498.69 207
TEST999.92 3698.92 2799.96 2598.43 11693.90 13499.71 3599.86 3195.88 3799.85 98
train_agg98.88 2098.65 2199.59 2199.92 3698.92 2799.96 2598.43 11694.35 11199.71 3599.86 3195.94 3499.85 9899.69 3599.98 3599.99 24
LS3D95.84 14795.11 15798.02 13999.85 6095.10 18498.74 27098.50 10187.22 28693.66 20399.86 3187.45 20199.95 6490.94 23899.81 9199.02 194
MP-MVS-pluss98.07 6997.64 7599.38 4799.74 8298.41 6499.74 14298.18 17893.35 15096.45 16299.85 3592.64 13099.97 5598.91 6699.89 7899.77 108
MP-MVS-pluss: MP-MVS-pluss. MP-MVS-pluss
test_899.92 3698.88 3099.96 2598.43 11694.35 11199.69 3799.85 3595.94 3499.85 98
agg_prior198.88 2098.66 2099.54 2699.93 2798.77 4099.96 2598.43 11694.63 9999.63 4099.85 3595.79 4099.85 9899.72 3299.99 2299.99 24
HFP-MVS98.56 3898.37 4199.14 6699.96 897.43 10499.95 4398.61 6994.77 9199.31 7099.85 3594.22 86100.00 198.70 8099.98 3599.98 55
region2R98.54 4098.37 4199.05 7699.96 897.18 11299.96 2598.55 8394.87 8999.45 5799.85 3594.07 92100.00 198.67 82100.00 199.98 55
PS-MVSNAJ98.44 4898.20 5199.16 6298.80 14098.92 2799.54 18098.17 17997.34 1699.85 699.85 3591.20 15599.89 8399.41 4499.67 9998.69 207
#test#98.59 3698.41 3499.14 6699.96 897.43 10499.95 4398.61 6995.00 8499.31 7099.85 3594.22 86100.00 198.78 7699.98 3599.98 55
HPM-MVS++copyleft99.07 1098.88 1499.63 1599.90 4799.02 2399.95 4398.56 7797.56 1399.44 5899.85 3595.38 48100.00 199.31 4799.99 2299.87 97
旧先验199.76 7997.52 9698.64 6399.85 3595.63 4299.94 6199.99 24
原ACMM198.96 8599.73 8696.99 11998.51 9794.06 12599.62 4399.85 3594.97 6299.96 5795.11 16199.95 5599.92 91
testdata98.42 12299.47 10595.33 17698.56 7793.78 13999.79 2399.85 3593.64 10499.94 7294.97 16399.94 61100.00 1
APDe-MVS99.06 1198.91 1399.51 3199.94 1498.76 4499.91 7498.39 13997.20 2499.46 5699.85 3595.53 4599.79 11399.86 16100.00 199.99 24
API-MVS97.86 7597.66 7498.47 11799.52 10195.41 17499.47 19198.87 4491.68 20998.84 9399.85 3592.34 13799.99 4098.44 9299.96 52100.00 1
testtj98.89 1998.69 1999.52 2999.94 1498.56 5799.90 7898.55 8395.14 8299.72 3399.84 4895.46 46100.00 199.65 3699.99 2299.99 24
ACMMPR98.50 4398.32 4599.05 7699.96 897.18 11299.95 4398.60 7194.77 9199.31 7099.84 4893.73 101100.00 198.70 8099.98 3599.98 55
DP-MVS Recon98.41 5098.02 6299.56 2499.97 398.70 4799.92 7098.44 10892.06 19998.40 11699.84 4895.68 41100.00 198.19 9999.71 9799.97 67
ZD-MVS99.92 3698.57 5598.52 9092.34 19099.31 7099.83 5195.06 5599.80 11099.70 3499.97 48
ACMMP_NAP98.49 4498.14 5599.54 2699.66 9298.62 5499.85 10698.37 14694.68 9699.53 5099.83 5192.87 123100.00 198.66 8599.84 8499.99 24
test22299.55 9997.41 10799.34 20898.55 8391.86 20399.27 7599.83 5193.84 9999.95 5599.99 24
112198.03 7097.57 8099.40 4499.74 8298.21 7098.31 29398.62 6792.78 16799.53 5099.83 5195.08 53100.00 194.36 18299.92 7199.99 24
ZNCC-MVS98.31 5798.03 6199.17 6099.88 5497.59 9299.94 6098.44 10894.31 11498.50 11199.82 5593.06 12099.99 4098.30 9899.99 2299.93 85
新几何199.42 4199.75 8198.27 6998.63 6692.69 17299.55 4899.82 5594.40 74100.00 191.21 22999.94 6199.99 24
CSCG97.10 10597.04 9997.27 16999.89 5091.92 25399.90 7899.07 3188.67 26695.26 18599.82 5593.17 11899.98 4698.15 10299.47 11399.90 93
MAR-MVS97.43 9197.19 9398.15 13499.47 10594.79 19399.05 24198.76 5192.65 17598.66 10499.82 5588.52 19499.98 4698.12 10399.63 10199.67 120
Zhenyu Xu, Yiguang Liu, Xuelei Shi, Ying Wang, Yunan Zheng: MARMVS: Matching Ambiguity Reduced Multiple View Stereo for Efficient Large Scale Scene Reconstruction. CVPR 2020
MP-MVScopyleft98.23 6497.97 6599.03 7899.94 1497.17 11599.95 4398.39 13994.70 9498.26 12399.81 5991.84 147100.00 198.85 7099.97 4899.93 85
Rongxuan Tan, Qing Wang, et al.: MP-MVS: Multi-Scale Windows PatchMatch and Planar Prior Multi-View Stereo.
test117298.38 5498.25 4898.77 9399.88 5496.56 13399.80 12498.36 14894.68 9699.20 7799.80 6093.28 11399.78 11599.34 4699.92 7199.98 55
OPU-MVS99.93 299.89 5099.80 299.96 2599.80 6097.44 13100.00 1100.00 199.98 35100.00 1
SR-MVS98.46 4698.30 4798.93 8799.88 5497.04 11799.84 11098.35 15194.92 8699.32 6999.80 6093.35 10899.78 11599.30 4899.95 5599.96 74
mPP-MVS98.39 5398.20 5198.97 8499.97 396.92 12299.95 4398.38 14395.04 8398.61 10799.80 6093.39 107100.00 198.64 86100.00 199.98 55
PC_three_145296.96 2999.80 1699.79 6497.49 9100.00 199.99 599.98 35100.00 1
Regformer-198.79 2598.60 2499.36 4899.85 6098.34 6699.87 9298.52 9096.05 5699.41 6199.79 6494.93 6399.76 12299.07 5399.90 7699.99 24
Regformer-298.78 2698.59 2599.36 4899.85 6098.32 6799.87 9298.52 9096.04 5799.41 6199.79 6494.92 6499.76 12299.05 5499.90 7699.98 55
CPTT-MVS97.64 8797.32 9098.58 10899.97 395.77 16299.96 2598.35 15189.90 24698.36 11799.79 6491.18 15899.99 4098.37 9499.99 2299.99 24
MVS_111021_LR98.42 4998.38 3998.53 11499.39 10895.79 16199.87 9299.86 296.70 3798.78 9699.79 6492.03 14399.90 7999.17 5099.86 8399.88 96
XVS98.70 2998.55 2699.15 6499.94 1497.50 9999.94 6098.42 12896.22 5299.41 6199.78 6994.34 7999.96 5798.92 6499.95 5599.99 24
PHI-MVS98.41 5098.21 5099.03 7899.86 5997.10 11699.98 1098.80 5090.78 23399.62 4399.78 6995.30 49100.00 199.80 2299.93 6799.99 24
Regformer-398.58 3798.41 3499.10 7299.84 6597.57 9399.66 15898.52 9095.79 6299.01 8799.77 7194.40 7499.75 12598.82 7299.83 8599.98 55
Regformer-498.56 3898.39 3899.08 7499.84 6597.52 9699.66 15898.52 9095.76 6599.01 8799.77 7194.33 8299.75 12598.80 7599.83 8599.98 55
APD-MVS_3200maxsize98.25 6398.08 5998.78 9299.81 7396.60 13199.82 11798.30 16193.95 13199.37 6799.77 7192.84 12499.76 12298.95 6199.92 7199.97 67
MVS_111021_HR98.72 2898.62 2399.01 8199.36 11097.18 11299.93 6699.90 196.81 3498.67 10399.77 7193.92 9599.89 8399.27 4999.94 6199.96 74
EI-MVSNet-Vis-set98.27 6098.11 5898.75 9599.83 6896.59 13299.40 19898.51 9795.29 7998.51 11099.76 7593.60 10599.71 13398.53 9099.52 11099.95 82
test_prior398.99 1498.84 1599.43 3899.94 1498.49 6199.95 4398.65 6095.78 6399.73 2999.76 7596.00 3299.80 11099.78 24100.00 199.99 24
test_prior299.95 4395.78 6399.73 2999.76 7596.00 3299.78 24100.00 1
SD-MVS98.92 1798.70 1899.56 2499.70 9098.73 4599.94 6098.34 15396.38 4799.81 1299.76 7594.59 7099.98 4699.84 1799.96 5299.97 67
Zhenlong Yuan, Jiakai Cao, Zhaoxin Li, Hao Jiang and Zhaoqi Wang: SD-MVS: Segmentation-driven Deformation Multi-View Stereo with Spherical Refinement and EM optimization. AAAI2024
PGM-MVS98.34 5598.13 5698.99 8299.92 3697.00 11899.75 13999.50 1693.90 13499.37 6799.76 7593.24 116100.00 197.75 12499.96 5299.98 55
SR-MVS-dyc-post98.31 5798.17 5398.71 9699.79 7596.37 14099.76 13698.31 15894.43 10699.40 6599.75 8093.28 11399.78 11598.90 6799.92 7199.97 67
RE-MVS-def98.13 5699.79 7596.37 14099.76 13698.31 15894.43 10699.40 6599.75 8092.95 12298.90 6799.92 7199.97 67
EI-MVSNet-UG-set98.14 6697.99 6498.60 10599.80 7496.27 14299.36 20798.50 10195.21 8198.30 12099.75 8093.29 11299.73 13298.37 9499.30 11999.81 102
PAPR98.52 4298.16 5499.58 2399.97 398.77 4099.95 4398.43 11695.35 7798.03 12899.75 8094.03 9399.98 4698.11 10499.83 8599.99 24
GST-MVS98.27 6097.97 6599.17 6099.92 3697.57 9399.93 6698.39 13994.04 12798.80 9599.74 8492.98 121100.00 198.16 10199.76 9399.93 85
TSAR-MVS + MP.98.93 1698.77 1799.41 4299.74 8298.67 4899.77 13198.38 14396.73 3699.88 399.74 8494.89 6599.59 14499.80 2299.98 3599.97 67
Zhenlong Yuan, Jiakai Cao, Zhaoqi Wang, Zhaoxin Li: TSAR-MVS: Textureless-aware Segmentation and Correlative Refinement Guided Multi-View Stereo. Pattern Recognition
APD-MVScopyleft98.62 3398.35 4499.41 4299.90 4798.51 6099.87 9298.36 14894.08 12299.74 2899.73 8694.08 9199.74 12999.42 4399.99 2299.99 24
Yuesong Wang, Zhaojie Zeng and etc.: Adaptive Patch Deformation for Textureless-Resilient Multi-View Stereo. CVPR2023
MG-MVS98.91 1898.65 2199.68 1499.94 1499.07 2299.64 16599.44 1897.33 1799.00 8999.72 8794.03 9399.98 4698.73 79100.00 1100.00 1
AdaColmapbinary97.23 10296.80 10698.51 11599.99 195.60 17099.09 23098.84 4793.32 15196.74 15599.72 8786.04 214100.00 198.01 10999.43 11699.94 84
CANet98.27 6097.82 7199.63 1599.72 8899.10 2199.98 1098.51 9797.00 2898.52 10999.71 8987.80 19799.95 6499.75 2699.38 11799.83 100
ACMMPcopyleft97.74 8397.44 8398.66 10099.92 3696.13 15199.18 22599.45 1794.84 9096.41 16599.71 8991.40 15199.99 4097.99 11198.03 15099.87 97
Qingshan Xu, Weihang Kong, Wenbing Tao, Marc Pollefeys: Multi-Scale Geometric Consistency Guided and Planar Prior Assisted Multi-View Stereo. IEEE Transactions on Pattern Analysis and Machine Intelligence
abl_697.67 8697.34 8898.66 10099.68 9196.11 15499.68 15598.14 18593.80 13899.27 7599.70 9188.65 19399.98 4697.46 12899.72 9699.89 94
PAPM_NR98.12 6797.93 6998.70 9799.94 1496.13 15199.82 11798.43 11694.56 10197.52 13899.70 9194.40 7499.98 4697.00 13999.98 3599.99 24
OMC-MVS97.28 9997.23 9297.41 16299.76 7993.36 22399.65 16197.95 20096.03 5897.41 14199.70 9189.61 17799.51 14796.73 14698.25 14499.38 167
xiu_mvs_v1_base_debu97.43 9197.06 9698.55 10997.74 19398.14 7199.31 21297.86 21096.43 4499.62 4399.69 9485.56 21899.68 13799.05 5498.31 14197.83 216
xiu_mvs_v1_base97.43 9197.06 9698.55 10997.74 19398.14 7199.31 21297.86 21096.43 4499.62 4399.69 9485.56 21899.68 13799.05 5498.31 14197.83 216
xiu_mvs_v1_base_debi97.43 9197.06 9698.55 10997.74 19398.14 7199.31 21297.86 21096.43 4499.62 4399.69 9485.56 21899.68 13799.05 5498.31 14197.83 216
CNLPA97.76 8297.38 8598.92 8899.53 10096.84 12399.87 9298.14 18593.78 13996.55 16099.69 9492.28 13899.98 4697.13 13599.44 11599.93 85
cdsmvs_eth3d_5k23.43 33831.24 3410.00 3550.00 3780.00 3790.00 36698.09 1880.00 3730.00 37499.67 9883.37 2360.00 3740.00 3720.00 3720.00 370
lupinMVS97.85 7697.60 7898.62 10397.28 22197.70 8999.99 597.55 23395.50 7599.43 5999.67 9890.92 16298.71 17998.40 9399.62 10299.45 160
114514_t97.41 9596.83 10499.14 6699.51 10397.83 8499.89 8698.27 16688.48 27099.06 8499.66 10090.30 17099.64 14396.32 14999.97 4899.96 74
PAPM98.60 3498.42 3299.14 6696.05 25598.96 2499.90 7899.35 2396.68 3898.35 11899.66 10096.45 2898.51 18999.45 4199.89 7899.96 74
CANet_DTU96.76 11896.15 12298.60 10598.78 14197.53 9599.84 11097.63 22297.25 2399.20 7799.64 10281.36 25199.98 4692.77 21598.89 12898.28 210
XVG-OURS94.82 16794.74 16495.06 22598.00 17589.19 30099.08 23297.55 23394.10 12194.71 18999.62 10380.51 26299.74 12996.04 15293.06 22296.25 229
MVS96.60 12695.56 14599.72 1296.85 23899.22 1998.31 29398.94 3691.57 21290.90 22799.61 10486.66 20999.96 5797.36 13099.88 8099.99 24
EIA-MVS97.53 8997.46 8297.76 14998.04 17494.84 19099.98 1097.61 22794.41 10997.90 13199.59 10592.40 13598.87 16798.04 10899.13 12599.59 135
XVG-OURS-SEG-HR94.79 16894.70 16595.08 22498.05 17389.19 30099.08 23297.54 23593.66 14394.87 18899.58 10678.78 27599.79 11397.31 13193.40 21896.25 229
HPM-MVScopyleft97.96 7197.72 7398.68 9899.84 6596.39 13999.90 7898.17 17992.61 17798.62 10699.57 10791.87 14699.67 14098.87 6999.99 2299.99 24
Chunlin Ren, Qingshan Xu, Shikun Zhang, Jiaqi Yang: Hierarchical Prior Mining for Non-local Multi-View Stereo. ICCV 2023
TSAR-MVS + GP.98.60 3498.51 2998.86 9099.73 8696.63 12999.97 1897.92 20498.07 598.76 9999.55 10895.00 6099.94 7299.91 1597.68 15499.99 24
DP-MVS94.54 17893.42 19397.91 14399.46 10794.04 20598.93 25397.48 24481.15 33690.04 23699.55 10887.02 20699.95 6488.97 26198.11 14599.73 112
MVSFormer96.94 11096.60 11197.95 14097.28 22197.70 8999.55 17897.27 26591.17 22299.43 5999.54 11090.92 16296.89 28694.67 17699.62 10299.25 181
jason97.24 10196.86 10398.38 12595.73 26797.32 10899.97 1897.40 25495.34 7898.60 10899.54 11087.70 19898.56 18697.94 11499.47 11399.25 181
jason: jason.
HPM-MVS_fast97.80 8097.50 8198.68 9899.79 7596.42 13699.88 8998.16 18291.75 20898.94 9199.54 11091.82 14899.65 14297.62 12699.99 2299.99 24
DeepC-MVS94.51 496.92 11296.40 11898.45 11999.16 11595.90 15899.66 15898.06 19196.37 5094.37 19499.49 11383.29 23799.90 7997.63 12599.61 10599.55 144
Andreas Kuhn, Christian Sormann, Mattia Rossi, Oliver Erdler, Friedrich Fraundorfer: DeepC-MVS: Deep Confidence Prediction for Multi-View Stereo Reconstruction. 3DV 2020
alignmvs97.81 7997.33 8999.25 5298.77 14298.66 5099.99 598.44 10894.40 11098.41 11499.47 11493.65 10399.42 15598.57 8894.26 21099.67 120
TAPA-MVS92.12 894.42 18293.60 18696.90 17799.33 11191.78 25799.78 12898.00 19489.89 24794.52 19199.47 11491.97 14499.18 15969.90 35099.52 11099.73 112
Andrea Romanoni, Matteo Matteucci: TAPA-MVS: Textureless-Aware PAtchMatch Multi-View Stereo. ICCV 2019
ETV-MVS97.92 7497.80 7298.25 12998.14 17096.48 13499.98 1097.63 22295.61 7199.29 7499.46 11692.55 13298.82 16999.02 6098.54 13599.46 158
ET-MVSNet_ETH3D94.37 18493.28 19997.64 15398.30 15697.99 7899.99 597.61 22794.35 11171.57 35599.45 11796.23 3095.34 33096.91 14485.14 27299.59 135
canonicalmvs97.09 10796.32 11999.39 4698.93 12898.95 2599.72 15097.35 25794.45 10497.88 13299.42 11886.71 20899.52 14698.48 9193.97 21499.72 114
VDD-MVS93.77 19692.94 20296.27 19898.55 14790.22 28798.77 26997.79 21590.85 23196.82 15399.42 11861.18 35199.77 11998.95 6194.13 21198.82 202
CS-MVS97.74 8397.61 7798.15 13497.52 20896.69 127100.00 197.11 27994.93 8599.73 2999.41 12091.68 14998.25 21998.84 7199.24 12199.52 151
1112_ss96.01 14495.20 15498.42 12297.80 18896.41 13799.65 16196.66 31892.71 17092.88 21399.40 12192.16 14099.30 15691.92 22293.66 21599.55 144
ab-mvs-re8.28 34011.04 3430.00 3550.00 3780.00 3790.00 3660.00 3790.00 3730.00 37499.40 1210.00 3780.00 3740.00 3720.00 3720.00 370
LFMVS94.75 17193.56 18998.30 12799.03 11995.70 16798.74 27097.98 19787.81 27998.47 11299.39 12367.43 33399.53 14598.01 10995.20 20399.67 120
WTY-MVS98.10 6897.60 7899.60 2098.92 13099.28 1699.89 8699.52 1395.58 7298.24 12499.39 12393.33 10999.74 12997.98 11395.58 19799.78 107
PMMVS96.76 11896.76 10796.76 18198.28 15992.10 24899.91 7497.98 19794.12 12099.53 5099.39 12386.93 20798.73 17796.95 14297.73 15299.45 160
EPNet98.49 4498.40 3698.77 9399.62 9496.80 12599.90 7899.51 1597.60 1299.20 7799.36 12693.71 10299.91 7897.99 11198.71 13399.61 132
Wanjuan Su, Wenbing Tao: Efficient Edge-Preserving Multi-View Stereo Network for Depth Estimation. AAAI 2023
DROMVSNet97.38 9797.24 9197.80 14497.41 21195.64 16999.99 597.06 28494.59 10099.63 4099.32 12789.20 18698.14 22398.76 7899.23 12299.62 129
VDDNet93.12 20991.91 22496.76 18196.67 24892.65 23898.69 27598.21 17382.81 33097.75 13599.28 12861.57 34999.48 15398.09 10694.09 21298.15 212
diffmvs97.00 10896.64 11098.09 13697.64 20096.17 15099.81 11997.19 26994.67 9898.95 9099.28 12886.43 21198.76 17598.37 9497.42 16099.33 174
baseline96.43 13195.98 12897.76 14997.34 21595.17 18399.51 18497.17 27293.92 13396.90 15199.28 12885.37 22198.64 18397.50 12796.86 17499.46 158
UA-Net96.54 12795.96 13398.27 12898.23 16495.71 16698.00 30798.45 10793.72 14298.41 11499.27 13188.71 19299.66 14191.19 23097.69 15399.44 162
RPSCF91.80 24092.79 20588.83 32798.15 16969.87 36098.11 30396.60 32083.93 32394.33 19599.27 13179.60 26999.46 15491.99 22093.16 22197.18 225
PLCcopyleft95.54 397.93 7397.89 7098.05 13899.82 7094.77 19499.92 7098.46 10593.93 13297.20 14499.27 13195.44 4799.97 5597.41 12999.51 11299.41 165
Jie Liao, Yanping Fu, Qingan Yan, Chunxia xiao: Pyramid Multi-View Stereo with Local Consistency. Pacific Graphics 2019
casdiffmvs96.42 13295.97 13197.77 14897.30 21994.98 18699.84 11097.09 28193.75 14196.58 15899.26 13485.07 22498.78 17297.77 12297.04 16999.54 148
CS-MVS-test97.44 9097.41 8497.53 15697.46 21094.66 196100.00 197.04 28894.69 9599.72 3399.25 13591.22 15398.29 21198.33 9798.95 12799.64 126
BH-RMVSNet95.18 16094.31 17197.80 14498.17 16895.23 18199.76 13697.53 23792.52 18494.27 19699.25 13576.84 28698.80 17090.89 24099.54 10999.35 172
DELS-MVS98.54 4098.22 4999.50 3299.15 11698.65 52100.00 198.58 7397.70 998.21 12599.24 13792.58 13199.94 7298.63 8799.94 6199.92 91
Christian Sormann, Emanuele Santellani, Mattia Rossi, Andreas Kuhn, Friedrich Fraundorfer: DELS-MVS: Deep Epipolar Line Search for Multi-View Stereo. Winter Conference on Applications of Computer Vision (WACV), 2023
PCF-MVS94.20 595.18 16094.10 17598.43 12198.55 14795.99 15697.91 30997.31 26290.35 23989.48 25299.22 13885.19 22399.89 8390.40 24998.47 13799.41 165
Andreas Kuhn, Shan Lin, Oliver Erdler: Plane Completion and Filtering for Multi-View Stereo Reconstruction. GCPR 2019
PVSNet91.05 1397.13 10496.69 10998.45 11999.52 10195.81 16099.95 4399.65 1094.73 9399.04 8599.21 13984.48 22899.95 6494.92 16498.74 13299.58 141
MSDG94.37 18493.36 19797.40 16398.88 13593.95 20999.37 20597.38 25585.75 30790.80 22899.17 14084.11 23299.88 8986.35 29098.43 13898.36 209
F-COLMAP96.93 11196.95 10296.87 17899.71 8991.74 25899.85 10697.95 20093.11 15895.72 17899.16 14192.35 13699.94 7295.32 15999.35 11898.92 196
Vis-MVSNet (Re-imp)96.32 13595.98 12897.35 16797.93 17994.82 19199.47 19198.15 18491.83 20495.09 18699.11 14291.37 15297.47 25193.47 20497.43 15899.74 111
CHOSEN 280x42099.01 1399.03 998.95 8699.38 10998.87 3198.46 28699.42 2097.03 2799.02 8699.09 14399.35 198.21 22199.73 3199.78 9299.77 108
PVSNet_Blended97.94 7297.64 7598.83 9199.59 9596.99 119100.00 199.10 2895.38 7698.27 12199.08 14489.00 18899.95 6499.12 5199.25 12099.57 142
sss97.57 8897.03 10099.18 5798.37 15498.04 7699.73 14799.38 2193.46 14898.76 9999.06 14591.21 15499.89 8396.33 14897.01 17099.62 129
thisisatest051597.41 9597.02 10198.59 10797.71 19997.52 9699.97 1898.54 8791.83 20497.45 14099.04 14697.50 899.10 16194.75 17296.37 18199.16 186
EI-MVSNet93.73 19893.40 19694.74 23596.80 24192.69 23599.06 23797.67 22088.96 25991.39 22299.02 14788.75 19197.30 25991.07 23287.85 25194.22 261
CVMVSNet94.68 17494.94 15993.89 27296.80 24186.92 32199.06 23798.98 3494.45 10494.23 19799.02 14785.60 21795.31 33190.91 23995.39 20099.43 163
EPP-MVSNet96.69 12396.60 11196.96 17597.74 19393.05 22799.37 20598.56 7788.75 26495.83 17699.01 14996.01 3198.56 18696.92 14397.20 16699.25 181
COLMAP_ROBcopyleft90.47 1492.18 23191.49 23394.25 25799.00 12288.04 31698.42 29196.70 31782.30 33388.43 27499.01 14976.97 28499.85 9886.11 29396.50 17894.86 234
Johannes L. Schönberger, Enliang Zheng, Marc Pollefeys, Jan-Michael Frahm: Pixelwise View Selection for Unstructured Multi-View Stereo. ECCV 2016
3Dnovator91.47 1296.28 13995.34 15099.08 7496.82 24097.47 10299.45 19498.81 4895.52 7489.39 25399.00 15181.97 24399.95 6497.27 13299.83 8599.84 99
test_yl97.83 7797.37 8699.21 5499.18 11397.98 7999.64 16599.27 2591.43 21897.88 13298.99 15295.84 3899.84 10798.82 7295.32 20199.79 104
DCV-MVSNet97.83 7797.37 8699.21 5499.18 11397.98 7999.64 16599.27 2591.43 21897.88 13298.99 15295.84 3899.84 10798.82 7295.32 20199.79 104
131496.84 11495.96 13399.48 3696.74 24598.52 5998.31 29398.86 4595.82 6189.91 23998.98 15487.49 20099.96 5797.80 11799.73 9599.96 74
3Dnovator+91.53 1196.31 13695.24 15299.52 2996.88 23798.64 5399.72 15098.24 16995.27 8088.42 27698.98 15482.76 23999.94 7297.10 13799.83 8599.96 74
thisisatest053097.10 10596.72 10898.22 13097.60 20296.70 12699.92 7098.54 8791.11 22597.07 14898.97 15697.47 1199.03 16293.73 20096.09 18498.92 196
baseline296.71 12296.49 11597.37 16595.63 27495.96 15799.74 14298.88 4392.94 16091.61 22098.97 15697.72 598.62 18494.83 16898.08 14997.53 224
gm-plane-assit96.97 23193.76 21391.47 21698.96 15898.79 17194.92 164
IS-MVSNet96.29 13895.90 13797.45 16098.13 17194.80 19299.08 23297.61 22792.02 20095.54 18198.96 15890.64 16798.08 22693.73 20097.41 16199.47 157
OpenMVScopyleft90.15 1594.77 17093.59 18798.33 12696.07 25497.48 10199.56 17698.57 7590.46 23686.51 30098.95 16078.57 27799.94 7293.86 19199.74 9497.57 223
GeoE94.36 18693.48 19196.99 17497.29 22093.54 21799.96 2596.72 31688.35 27393.43 20498.94 16182.05 24298.05 22988.12 27296.48 17999.37 169
Vis-MVSNetpermissive95.72 14995.15 15697.45 16097.62 20194.28 20299.28 21898.24 16994.27 11796.84 15298.94 16179.39 27098.76 17593.25 20698.49 13699.30 177
Jingyang Zhang, Yao Yao, Shiwei Li, Zixin Luo, Tian Fang: Visibility-aware Multiview Stereo Network. BMVC 2020
tttt051796.85 11396.49 11597.92 14297.48 20995.89 15999.85 10698.54 8790.72 23496.63 15798.93 16397.47 1199.02 16393.03 21395.76 19398.85 200
DWT-MVSNet_test97.31 9897.19 9397.66 15298.24 16394.67 19598.86 26298.20 17793.60 14598.09 12698.89 16497.51 798.78 17294.04 18997.28 16399.55 144
QAPM95.40 15794.17 17399.10 7296.92 23297.71 8799.40 19898.68 5689.31 25188.94 26598.89 16482.48 24099.96 5793.12 21299.83 8599.62 129
VNet97.21 10396.57 11399.13 7198.97 12497.82 8599.03 24399.21 2794.31 11499.18 8198.88 16686.26 21399.89 8398.93 6394.32 20999.69 117
thres20096.96 10996.21 12199.22 5398.97 12498.84 3499.85 10699.71 593.17 15696.26 16898.88 16689.87 17599.51 14794.26 18694.91 20499.31 176
tfpn200view996.79 11695.99 12699.19 5698.94 12698.82 3599.78 12899.71 592.86 16196.02 17198.87 16889.33 18199.50 14993.84 19294.57 20599.27 179
thres40096.78 11795.99 12699.16 6298.94 12698.82 3599.78 12899.71 592.86 16196.02 17198.87 16889.33 18199.50 14993.84 19294.57 20599.16 186
thres100view90096.74 12095.92 13699.18 5798.90 13398.77 4099.74 14299.71 592.59 17995.84 17498.86 17089.25 18399.50 14993.84 19294.57 20599.27 179
thres600view796.69 12395.87 13999.14 6698.90 13398.78 3999.74 14299.71 592.59 17995.84 17498.86 17089.25 18399.50 14993.44 20594.50 20899.16 186
CHOSEN 1792x268896.81 11596.53 11497.64 15398.91 13293.07 22599.65 16199.80 395.64 7095.39 18298.86 17084.35 23099.90 7996.98 14099.16 12499.95 82
CLD-MVS94.06 19093.90 18094.55 24496.02 25690.69 27699.98 1097.72 21796.62 4191.05 22698.85 17377.21 28298.47 19098.11 10489.51 23194.48 239
Zhaoxin Li, Wangmeng Zuo, Zhaoqi Wang, Lei Zhang: Confidence-based Large-scale Dense Multi-view Stereo. IEEE Transaction on Image Processing, 2020
BH-w/o95.71 15195.38 14996.68 18498.49 15192.28 24499.84 11097.50 24292.12 19692.06 21898.79 17484.69 22698.67 18295.29 16099.66 10099.09 192
Anonymous20240521193.10 21091.99 22296.40 19499.10 11789.65 29798.88 25897.93 20283.71 32594.00 19998.75 17568.79 32599.88 8995.08 16291.71 22499.68 118
mvs-test195.53 15495.97 13194.20 25897.77 19085.44 32999.95 4397.06 28494.92 8696.58 15898.72 17685.81 21598.98 16494.80 16998.11 14598.18 211
TR-MVS94.54 17893.56 18997.49 15997.96 17794.34 20198.71 27397.51 24190.30 24194.51 19298.69 17775.56 29798.77 17492.82 21495.99 18699.35 172
BH-untuned95.18 16094.83 16196.22 19998.36 15591.22 27099.80 12497.32 26190.91 22991.08 22598.67 17883.51 23498.54 18894.23 18799.61 10598.92 196
OPM-MVS93.21 20792.80 20494.44 25193.12 31390.85 27599.77 13197.61 22796.19 5491.56 22198.65 17975.16 30298.47 19093.78 19889.39 23293.99 287
Ray L. Khuboni, Hongjun Xu: Octagram Propagation Matching for Multi-Scale View Stereopsis (OPM-MVS).
NP-MVS95.77 26491.79 25698.65 179
HQP-MVS94.61 17694.50 16794.92 23095.78 26191.85 25499.87 9297.89 20696.82 3193.37 20598.65 17980.65 26098.39 20197.92 11589.60 22694.53 235
baseline195.78 14894.86 16098.54 11298.47 15298.07 7499.06 23797.99 19592.68 17394.13 19898.62 18293.28 11398.69 18193.79 19785.76 26598.84 201
HQP_MVS94.49 18194.36 16994.87 23195.71 27091.74 25899.84 11097.87 20896.38 4793.01 20998.59 18380.47 26498.37 20697.79 12089.55 22994.52 237
plane_prior498.59 183
Anonymous2024052992.10 23390.65 24496.47 18998.82 13890.61 27998.72 27298.67 5975.54 35193.90 20198.58 18566.23 33699.90 7994.70 17590.67 22598.90 199
Effi-MVS+96.30 13795.69 14298.16 13197.85 18596.26 14397.41 31597.21 26890.37 23898.65 10598.58 18586.61 21098.70 18097.11 13697.37 16299.52 151
EPNet_dtu95.71 15195.39 14896.66 18598.92 13093.41 22199.57 17498.90 4196.19 5497.52 13898.56 18792.65 12997.36 25477.89 33498.33 14099.20 184
Wanjuan Su, Wenbing Tao: Efficient Edge-Preserving Multi-View Stereo Network for Depth Estimation. AAAI 2023
test0.0.03 193.86 19193.61 18494.64 23995.02 28392.18 24799.93 6698.58 7394.07 12387.96 28198.50 18893.90 9794.96 33581.33 32093.17 22096.78 226
LPG-MVS_test92.96 21392.71 20693.71 27695.43 27688.67 30699.75 13997.62 22492.81 16490.05 23498.49 18975.24 30098.40 19995.84 15689.12 23394.07 279
LGP-MVS_train93.71 27695.43 27688.67 30697.62 22492.81 16490.05 23498.49 18975.24 30098.40 19995.84 15689.12 23394.07 279
PVSNet_Blended_VisFu97.27 10096.81 10598.66 10098.81 13996.67 12899.92 7098.64 6394.51 10396.38 16698.49 18989.05 18799.88 8997.10 13798.34 13999.43 163
testmvs40.60 33644.45 33929.05 35319.49 37714.11 37899.68 15518.47 37620.74 37064.59 35898.48 19210.95 37417.09 37356.66 36311.01 36955.94 366
AllTest92.48 22491.64 22795.00 22799.01 12088.43 31098.94 25296.82 31086.50 29588.71 26798.47 19374.73 30499.88 8985.39 29696.18 18296.71 227
TestCases95.00 22799.01 12088.43 31096.82 31086.50 29588.71 26798.47 19374.73 30499.88 8985.39 29696.18 18296.71 227
hse-mvs394.92 16694.36 16996.59 18898.85 13791.29 26998.93 25398.94 3695.90 5998.77 9798.42 19590.89 16499.77 11997.80 11770.76 34398.72 206
PatchMatch-RL96.04 14395.40 14797.95 14099.59 9595.22 18299.52 18299.07 3193.96 13096.49 16198.35 19682.28 24199.82 10990.15 25299.22 12398.81 203
CDS-MVSNet96.34 13496.07 12397.13 17197.37 21394.96 18799.53 18197.91 20591.55 21395.37 18398.32 19795.05 5697.13 27093.80 19695.75 19499.30 177
Khang Truong Giang, Soohwan Song, Sungho Jo: Curvature-guided dynamic scale networks for Multi-view Stereo. ICLR 2022
ACMP92.05 992.74 21892.42 21593.73 27495.91 26088.72 30599.81 11997.53 23794.13 11987.00 29498.23 19874.07 30898.47 19096.22 15088.86 23893.99 287
Qingshan Xu and Wenbing Tao: Planar Prior Assisted PatchMatch Multi-View Stereo. AAAI 2020
testgi89.01 29088.04 29191.90 30593.49 30684.89 33299.73 14795.66 33993.89 13685.14 31498.17 19959.68 35294.66 33977.73 33588.88 23696.16 232
ITE_SJBPF92.38 29895.69 27285.14 33095.71 33792.81 16489.33 25698.11 20070.23 32298.42 19685.91 29488.16 24993.59 311
HyFIR lowres test96.66 12596.43 11797.36 16699.05 11893.91 21099.70 15299.80 390.54 23596.26 16898.08 20192.15 14198.23 22096.84 14595.46 19899.93 85
TESTMET0.1,196.74 12096.26 12098.16 13197.36 21496.48 13499.96 2598.29 16291.93 20195.77 17798.07 20295.54 4398.29 21190.55 24498.89 12899.70 115
TAMVS95.85 14695.58 14496.65 18697.07 22593.50 21899.17 22697.82 21491.39 22195.02 18798.01 20392.20 13997.30 25993.75 19995.83 19199.14 189
hse-mvs294.38 18394.08 17695.31 21898.27 16190.02 29199.29 21798.56 7795.90 5998.77 9798.00 20490.89 16498.26 21897.80 11769.20 34997.64 221
AUN-MVS93.28 20692.60 20895.34 21698.29 15790.09 29099.31 21298.56 7791.80 20796.35 16798.00 20489.38 18098.28 21492.46 21669.22 34897.64 221
ACMM91.95 1092.88 21592.52 21393.98 26995.75 26689.08 30399.77 13197.52 23993.00 15989.95 23897.99 20676.17 29498.46 19393.63 20388.87 23794.39 248
Qingshan Xu and Wenbing Tao: Multi-Scale Geometric Consistency Guided Multi-View Stereo. CVPR 2019
Fast-Effi-MVS+95.02 16494.19 17297.52 15897.88 18194.55 19799.97 1897.08 28288.85 26394.47 19397.96 20784.59 22798.41 19789.84 25597.10 16799.59 135
GG-mvs-BLEND98.54 11298.21 16598.01 7793.87 34598.52 9097.92 13097.92 20899.02 297.94 23798.17 10099.58 10799.67 120
Fast-Effi-MVS+-dtu93.72 19993.86 18293.29 28597.06 22686.16 32399.80 12496.83 30892.66 17492.58 21697.83 20981.39 25097.67 24489.75 25696.87 17396.05 233
RRT_MVS95.23 15994.77 16396.61 18798.28 15998.32 6799.81 11997.41 25292.59 17991.28 22497.76 21095.02 5797.23 26593.65 20287.14 25894.28 257
ACMH+89.98 1690.35 26889.54 26592.78 29695.99 25786.12 32498.81 26697.18 27189.38 25083.14 32397.76 21068.42 32998.43 19589.11 26086.05 26493.78 303
ACMH89.72 1790.64 26189.63 26293.66 28095.64 27388.64 30898.55 28197.45 24589.03 25581.62 33097.61 21269.75 32398.41 19789.37 25787.62 25593.92 293
Qingshan Xu and Wenbing Tao: Multi-Scale Geometric Consistency Guided Multi-View Stereo. CVPR 2019
cascas94.64 17593.61 18497.74 15197.82 18796.26 14399.96 2597.78 21685.76 30594.00 19997.54 21376.95 28599.21 15897.23 13395.43 19997.76 220
nrg03093.51 20292.53 21296.45 19194.36 29197.20 11199.81 11997.16 27491.60 21189.86 24197.46 21486.37 21297.68 24395.88 15580.31 31094.46 240
VPNet91.81 23790.46 24695.85 20894.74 28695.54 17198.98 24798.59 7292.14 19590.77 22997.44 21568.73 32797.54 24894.89 16777.89 32494.46 240
UniMVSNet_ETH3D90.06 27788.58 28394.49 24894.67 28888.09 31597.81 31197.57 23283.91 32488.44 27297.41 21657.44 35597.62 24691.41 22788.59 24497.77 219
HY-MVS92.50 797.79 8197.17 9599.63 1598.98 12399.32 897.49 31499.52 1395.69 6998.32 11997.41 21693.32 11099.77 11998.08 10795.75 19499.81 102
PVSNet_088.03 1991.80 24090.27 25296.38 19698.27 16190.46 28399.94 6099.61 1193.99 12886.26 30797.39 21871.13 32099.89 8398.77 7767.05 35398.79 204
FIs94.10 18993.43 19296.11 20194.70 28796.82 12499.58 17298.93 4092.54 18389.34 25597.31 21987.62 19997.10 27394.22 18886.58 26194.40 247
OurMVSNet-221017-089.81 28089.48 26990.83 31391.64 33481.21 34898.17 30195.38 34591.48 21585.65 31297.31 21972.66 31297.29 26288.15 27084.83 27393.97 289
FC-MVSNet-test93.81 19493.15 20195.80 20994.30 29396.20 14899.42 19798.89 4292.33 19189.03 26497.27 22187.39 20296.83 29093.20 20786.48 26294.36 250
USDC90.00 27888.96 27793.10 29194.81 28588.16 31498.71 27395.54 34293.66 14383.75 32197.20 22265.58 33898.31 21083.96 30687.49 25792.85 326
MVSTER95.53 15495.22 15396.45 19198.56 14697.72 8699.91 7497.67 22092.38 18991.39 22297.14 22397.24 1797.30 25994.80 16987.85 25194.34 254
LF4IMVS89.25 28988.85 27890.45 31792.81 32281.19 34998.12 30294.79 35291.44 21786.29 30697.11 22465.30 34198.11 22588.53 26685.25 27092.07 334
mvs_anonymous95.65 15395.03 15897.53 15698.19 16695.74 16499.33 20997.49 24390.87 23090.47 23297.10 22588.23 19597.16 26795.92 15497.66 15599.68 118
jajsoiax91.92 23591.18 23794.15 25991.35 33790.95 27399.00 24597.42 25092.61 17787.38 29097.08 22672.46 31397.36 25494.53 17988.77 23994.13 276
XXY-MVS91.82 23690.46 24695.88 20693.91 29995.40 17598.87 26197.69 21988.63 26887.87 28297.08 22674.38 30797.89 23891.66 22584.07 28194.35 253
LTVRE_ROB88.28 1890.29 27189.05 27694.02 26595.08 28190.15 28997.19 31997.43 24884.91 31883.99 31997.06 22874.00 30998.28 21484.08 30387.71 25393.62 310
Andreas Kuhn, Heiko Hirschmüller, Daniel Scharstein, Helmut Mayer: A TV Prior for High-Quality Scalable Multi-View Stereo Reconstruction. International Journal of Computer Vision 2016
mvs_tets91.81 23791.08 23894.00 26791.63 33590.58 28098.67 27797.43 24892.43 18887.37 29197.05 22971.76 31597.32 25894.75 17288.68 24194.11 277
MVS_Test96.46 13095.74 14198.61 10498.18 16797.23 11099.31 21297.15 27591.07 22698.84 9397.05 22988.17 19698.97 16594.39 18197.50 15799.61 132
ab-mvs94.69 17293.42 19398.51 11598.07 17296.26 14396.49 32998.68 5690.31 24094.54 19097.00 23176.30 29299.71 13395.98 15393.38 21999.56 143
PS-MVSNAJss93.64 20193.31 19894.61 24092.11 32892.19 24699.12 22897.38 25592.51 18588.45 27196.99 23291.20 15597.29 26294.36 18287.71 25394.36 250
IB-MVS92.85 694.99 16593.94 17998.16 13197.72 19795.69 16899.99 598.81 4894.28 11692.70 21596.90 23395.08 5399.17 16096.07 15173.88 34199.60 134
Christian Sormann, Mattia Rossi, Andreas Kuhn and Friedrich Fraundorfer: IB-MVS: An Iterative Algorithm for Deep Multi-View Stereo based on Binary Decisions. BMVC 2021
WR-MVS92.31 22891.25 23695.48 21494.45 29095.29 17799.60 17098.68 5690.10 24288.07 28096.89 23480.68 25996.80 29293.14 21079.67 31494.36 250
SixPastTwentyTwo88.73 29188.01 29290.88 31191.85 33282.24 34298.22 29995.18 35088.97 25882.26 32696.89 23471.75 31696.67 29884.00 30482.98 28693.72 308
UniMVSNet_NR-MVSNet92.95 21492.11 21995.49 21194.61 28995.28 17899.83 11699.08 3091.49 21489.21 25996.86 23687.14 20496.73 29493.20 20777.52 32794.46 240
XVG-ACMP-BASELINE91.22 25090.75 24192.63 29793.73 30285.61 32698.52 28597.44 24792.77 16889.90 24096.85 23766.64 33598.39 20192.29 21888.61 24293.89 295
TinyColmap87.87 29886.51 29991.94 30495.05 28285.57 32797.65 31394.08 35784.40 32181.82 32996.85 23762.14 34898.33 20880.25 32586.37 26391.91 338
EU-MVSNet90.14 27690.34 25089.54 32392.55 32481.06 35098.69 27598.04 19391.41 22086.59 29996.84 23980.83 25793.31 35186.20 29181.91 29394.26 258
TranMVSNet+NR-MVSNet91.68 24490.61 24594.87 23193.69 30393.98 20899.69 15398.65 6091.03 22788.44 27296.83 24080.05 26796.18 31590.26 25176.89 33594.45 245
RRT_test8_iter0594.58 17794.11 17495.98 20497.88 18196.11 15499.89 8697.45 24591.66 21088.28 27796.71 24196.53 2797.40 25294.73 17483.85 28494.45 245
bset_n11_16_dypcd93.05 21292.30 21695.31 21890.23 34695.05 18599.44 19697.28 26492.51 18590.65 23096.68 24285.30 22296.71 29694.49 18084.14 27994.16 270
GA-MVS93.83 19292.84 20396.80 17995.73 26793.57 21599.88 8997.24 26792.57 18292.92 21196.66 24378.73 27697.67 24487.75 27594.06 21399.17 185
CMPMVSbinary61.59 2184.75 31185.14 30583.57 33890.32 34562.54 36496.98 32497.59 23174.33 35469.95 35796.66 24364.17 34398.32 20987.88 27488.41 24789.84 352
M. Jancosek, T. Pajdla: Multi-View Reconstruction Preserving Weakly-Supported Surfaces. CVPR 2011
DU-MVS92.46 22591.45 23495.49 21194.05 29695.28 17899.81 11998.74 5292.25 19389.21 25996.64 24581.66 24796.73 29493.20 20777.52 32794.46 240
NR-MVSNet91.56 24590.22 25395.60 21094.05 29695.76 16398.25 29698.70 5491.16 22480.78 33596.64 24583.23 23896.57 30191.41 22777.73 32694.46 240
CP-MVSNet91.23 24990.22 25394.26 25693.96 29892.39 24399.09 23098.57 7588.95 26086.42 30396.57 24779.19 27296.37 30790.29 25078.95 31794.02 282
pmmvs492.10 23391.07 23995.18 22292.82 32194.96 18799.48 19096.83 30887.45 28288.66 27096.56 24883.78 23396.83 29089.29 25884.77 27493.75 304
PS-CasMVS90.63 26289.51 26793.99 26893.83 30091.70 26298.98 24798.52 9088.48 27086.15 30896.53 24975.46 29896.31 31088.83 26278.86 31993.95 290
test-LLR96.47 12996.04 12497.78 14697.02 22995.44 17299.96 2598.21 17394.07 12395.55 17996.38 25093.90 9798.27 21690.42 24798.83 13099.64 126
test-mter96.39 13395.93 13597.78 14697.02 22995.44 17299.96 2598.21 17391.81 20695.55 17996.38 25095.17 5098.27 21690.42 24798.83 13099.64 126
MS-PatchMatch90.65 26090.30 25191.71 30794.22 29485.50 32898.24 29797.70 21888.67 26686.42 30396.37 25267.82 33198.03 23083.62 30899.62 10291.60 339
test_part192.15 23290.72 24296.44 19398.87 13697.46 10398.99 24698.26 16785.89 30286.34 30596.34 25381.71 24597.48 25091.06 23378.99 31694.37 249
PEN-MVS90.19 27489.06 27593.57 28193.06 31590.90 27499.06 23798.47 10388.11 27485.91 31096.30 25476.67 28795.94 32487.07 28376.91 33493.89 295
UGNet95.33 15894.57 16697.62 15598.55 14794.85 18998.67 27799.32 2495.75 6896.80 15496.27 25572.18 31499.96 5794.58 17899.05 12698.04 214
Wanjuan Su, Qingshan Xu, Wenbing Tao: Uncertainty-guided Multi-view Stereo Network for Depth Estimation. IEEE Transactions on Circuits and Systems for Video Technology, 2022
DTE-MVSNet89.40 28588.24 28992.88 29492.66 32389.95 29399.10 22998.22 17287.29 28485.12 31596.22 25676.27 29395.30 33283.56 30975.74 33893.41 313
TransMVSNet (Re)87.25 29985.28 30493.16 28893.56 30491.03 27198.54 28394.05 35883.69 32681.09 33396.16 25775.32 29996.40 30676.69 34068.41 35092.06 335
pm-mvs189.36 28687.81 29394.01 26693.40 30991.93 25298.62 28096.48 32486.25 29983.86 32096.14 25873.68 31097.04 27886.16 29275.73 33993.04 323
Test_1112_low_res95.72 14994.83 16198.42 12297.79 18996.41 13799.65 16196.65 31992.70 17192.86 21496.13 25992.15 14199.30 15691.88 22393.64 21699.55 144
TDRefinement84.76 31082.56 31791.38 30974.58 36584.80 33397.36 31694.56 35584.73 31980.21 33796.12 26063.56 34598.39 20187.92 27363.97 35490.95 345
test_djsdf92.83 21692.29 21794.47 24991.90 33192.46 24199.55 17897.27 26591.17 22289.96 23796.07 26181.10 25396.89 28694.67 17688.91 23594.05 281
miper_enhance_ethall94.36 18693.98 17895.49 21198.68 14595.24 18099.73 14797.29 26393.28 15389.86 24195.97 26294.37 7897.05 27692.20 21984.45 27694.19 264
lessismore_v090.53 31490.58 34380.90 35195.80 33577.01 34595.84 26366.15 33796.95 28383.03 31175.05 34093.74 307
PVSNet_BlendedMVS96.05 14295.82 14096.72 18399.59 9596.99 11999.95 4399.10 2894.06 12598.27 12195.80 26489.00 18899.95 6499.12 5187.53 25693.24 319
ppachtmachnet_test89.58 28488.35 28693.25 28792.40 32590.44 28499.33 20996.73 31585.49 31185.90 31195.77 26581.09 25496.00 32376.00 34282.49 28893.30 317
pmmvs590.17 27589.09 27493.40 28392.10 32989.77 29699.74 14295.58 34185.88 30487.24 29395.74 26673.41 31196.48 30488.54 26583.56 28593.95 290
MDTV_nov1_ep1395.69 14297.90 18094.15 20395.98 33698.44 10893.12 15797.98 12995.74 26695.10 5298.58 18590.02 25396.92 172
eth_miper_zixun_eth92.41 22691.93 22393.84 27397.28 22190.68 27798.83 26496.97 29688.57 26989.19 26195.73 26889.24 18596.69 29789.97 25481.55 29594.15 272
IterMVS-SCA-FT90.85 25790.16 25692.93 29396.72 24689.96 29298.89 25696.99 29288.95 26086.63 29895.67 26976.48 29095.00 33487.04 28484.04 28393.84 299
Baseline_NR-MVSNet90.33 26989.51 26792.81 29592.84 31989.95 29399.77 13193.94 35984.69 32089.04 26395.66 27081.66 24796.52 30290.99 23676.98 33391.97 337
cl-mvsnet293.77 19693.25 20095.33 21799.49 10494.43 19999.61 16998.09 18890.38 23789.16 26295.61 27190.56 16897.34 25691.93 22184.45 27694.21 263
K. test v388.05 29587.24 29790.47 31691.82 33382.23 34398.96 25097.42 25089.05 25476.93 34695.60 27268.49 32895.42 32885.87 29581.01 30493.75 304
SCA94.69 17293.81 18397.33 16897.10 22494.44 19898.86 26298.32 15693.30 15296.17 17095.59 27376.48 29097.95 23591.06 23397.43 15899.59 135
Patchmatch-test92.65 22291.50 23296.10 20296.85 23890.49 28291.50 35497.19 26982.76 33190.23 23395.59 27395.02 5798.00 23177.41 33696.98 17199.82 101
cl-mvsnet192.32 22791.60 22894.47 24997.31 21892.74 23299.58 17296.75 31486.99 29087.64 28495.54 27589.55 17896.50 30388.58 26482.44 28994.17 265
Anonymous2023121189.86 27988.44 28594.13 26198.93 12890.68 27798.54 28398.26 16776.28 34786.73 29695.54 27570.60 32197.56 24790.82 24180.27 31194.15 272
miper_ehance_all_eth93.16 20892.60 20894.82 23497.57 20393.56 21699.50 18697.07 28388.75 26488.85 26695.52 27790.97 16196.74 29390.77 24284.45 27694.17 265
cl-mvsnet____92.31 22891.58 22994.52 24597.33 21792.77 23099.57 17496.78 31386.97 29187.56 28695.51 27889.43 17996.62 29988.60 26382.44 28994.16 270
tfpnnormal89.29 28787.61 29494.34 25594.35 29294.13 20498.95 25198.94 3683.94 32284.47 31795.51 27874.84 30397.39 25377.05 33980.41 30891.48 341
DeepMVS_CXcopyleft82.92 34095.98 25958.66 36696.01 33292.72 16978.34 34395.51 27858.29 35498.08 22682.57 31385.29 26992.03 336
cl_fuxian92.53 22391.87 22594.52 24597.40 21292.99 22899.40 19896.93 30187.86 27788.69 26995.44 28189.95 17496.44 30590.45 24680.69 30794.14 275
IterMVS90.91 25490.17 25593.12 28996.78 24490.42 28598.89 25697.05 28789.03 25586.49 30195.42 28276.59 28995.02 33387.22 28284.09 28093.93 292
Fangjinhua Wang, Silvano Galliani, Christoph Vogel, Marc Pollefeys: IterMVS: Iterative Probability Estimation for Efficient Multi-View Stereo.
UniMVSNet (Re)93.07 21192.13 21895.88 20694.84 28496.24 14799.88 8998.98 3492.49 18789.25 25795.40 28387.09 20597.14 26993.13 21178.16 32294.26 258
tpm295.47 15695.18 15596.35 19796.91 23391.70 26296.96 32597.93 20288.04 27698.44 11395.40 28393.32 11097.97 23294.00 19095.61 19699.38 167
pmmvs685.69 30383.84 30991.26 31090.00 34884.41 33497.82 31096.15 33075.86 34981.29 33295.39 28561.21 35096.87 28883.52 31073.29 34292.50 330
IterMVS-LS92.69 22092.11 21994.43 25396.80 24192.74 23299.45 19496.89 30488.98 25789.65 24895.38 28688.77 19096.34 30990.98 23782.04 29294.22 261
Fangjinhua Wang, Silvano Galliani, Christoph Vogel, Marc Pollefeys: IterMVS: Iterative Probability Estimation for Efficient Multi-View Stereo.
Effi-MVS+-dtu94.53 18095.30 15192.22 30097.77 19082.54 34099.59 17197.06 28494.92 8695.29 18495.37 28785.81 21597.89 23894.80 16997.07 16896.23 231
v2v48291.30 24690.07 25895.01 22693.13 31193.79 21199.77 13197.02 28988.05 27589.25 25795.37 28780.73 25897.15 26887.28 28180.04 31394.09 278
FMVSNet392.69 22091.58 22995.99 20398.29 15797.42 10699.26 22097.62 22489.80 24889.68 24595.32 28981.62 24996.27 31287.01 28685.65 26694.29 256
MVP-Stereo90.93 25390.45 24892.37 29991.25 33988.76 30498.05 30696.17 32987.27 28584.04 31895.30 29078.46 27997.27 26483.78 30799.70 9891.09 342
Qingsong Yan: MVP-Stereo: A Parallel Multi-View Patchmatch Stereo Method with Dilation Matching for Photogrammetric Application.
anonymousdsp91.79 24290.92 24094.41 25490.76 34292.93 22998.93 25397.17 27289.08 25387.46 28995.30 29078.43 28096.92 28592.38 21788.73 24093.39 315
v192192090.46 26589.12 27394.50 24792.96 31892.46 24199.49 18896.98 29486.10 30089.61 25095.30 29078.55 27897.03 28082.17 31680.89 30694.01 284
VPA-MVSNet92.70 21991.55 23196.16 20095.09 28096.20 14898.88 25899.00 3391.02 22891.82 21995.29 29376.05 29697.96 23495.62 15881.19 29894.30 255
PatchmatchNetpermissive95.94 14595.45 14697.39 16497.83 18694.41 20096.05 33598.40 13692.86 16197.09 14795.28 29494.21 8998.07 22889.26 25998.11 14599.70 115
Fangjinhua Wang, Silvano Galliani, Christoph Vogel, Pablo Speciale, Marc Pollefeys: PatchmatchNet: Learned Multi-View Patchmatch Stereo.
miper_lstm_enhance91.81 23791.39 23593.06 29297.34 21589.18 30299.38 20396.79 31286.70 29487.47 28895.22 29590.00 17395.86 32588.26 26881.37 29794.15 272
test_040285.58 30483.94 30890.50 31593.81 30185.04 33198.55 28195.20 34976.01 34879.72 33995.13 29664.15 34496.26 31366.04 35886.88 26090.21 350
tpmrst96.27 14095.98 12897.13 17197.96 17793.15 22496.34 33198.17 17992.07 19798.71 10295.12 29793.91 9698.73 17794.91 16696.62 17599.50 155
V4291.28 24890.12 25794.74 23593.42 30893.46 21999.68 15597.02 28987.36 28389.85 24395.05 29881.31 25297.34 25687.34 28080.07 31293.40 314
EPMVS96.53 12896.01 12598.09 13698.43 15396.12 15396.36 33099.43 1993.53 14697.64 13695.04 29994.41 7398.38 20591.13 23198.11 14599.75 110
v119290.62 26389.25 27194.72 23793.13 31193.07 22599.50 18697.02 28986.33 29889.56 25195.01 30079.22 27197.09 27582.34 31581.16 29994.01 284
v14890.70 25989.63 26293.92 27092.97 31790.97 27299.75 13996.89 30487.51 28088.27 27895.01 30081.67 24697.04 27887.40 27977.17 33293.75 304
FMVSNet291.02 25289.56 26495.41 21597.53 20495.74 16498.98 24797.41 25287.05 28788.43 27495.00 30271.34 31796.24 31485.12 29885.21 27194.25 260
our_test_390.39 26689.48 26993.12 28992.40 32589.57 29899.33 20996.35 32687.84 27885.30 31394.99 30384.14 23196.09 31980.38 32484.56 27593.71 309
v114491.09 25189.83 25994.87 23193.25 31093.69 21499.62 16896.98 29486.83 29389.64 24994.99 30380.94 25597.05 27685.08 29981.16 29993.87 297
v14419290.79 25889.52 26694.59 24193.11 31492.77 23099.56 17696.99 29286.38 29789.82 24494.95 30580.50 26397.10 27383.98 30580.41 30893.90 294
CostFormer96.10 14195.88 13896.78 18097.03 22892.55 24097.08 32297.83 21390.04 24598.72 10194.89 30695.01 5998.29 21196.54 14795.77 19299.50 155
v124090.20 27388.79 28094.44 25193.05 31692.27 24599.38 20396.92 30285.89 30289.36 25494.87 30777.89 28197.03 28080.66 32381.08 30294.01 284
v7n89.65 28388.29 28893.72 27592.22 32790.56 28199.07 23697.10 28085.42 31386.73 29694.72 30880.06 26697.13 27081.14 32178.12 32393.49 312
GBi-Net90.88 25589.82 26094.08 26297.53 20491.97 24998.43 28896.95 29787.05 28789.68 24594.72 30871.34 31796.11 31687.01 28685.65 26694.17 265
test190.88 25589.82 26094.08 26297.53 20491.97 24998.43 28896.95 29787.05 28789.68 24594.72 30871.34 31796.11 31687.01 28685.65 26694.17 265
FMVSNet188.50 29286.64 29894.08 26295.62 27591.97 24998.43 28896.95 29783.00 32886.08 30994.72 30859.09 35396.11 31681.82 31984.07 28194.17 265
dp95.05 16394.43 16896.91 17697.99 17692.73 23496.29 33297.98 19789.70 24995.93 17394.67 31293.83 10098.45 19486.91 28996.53 17799.54 148
test20.0384.72 31283.99 30686.91 33488.19 35480.62 35398.88 25895.94 33388.36 27278.87 34094.62 31368.75 32689.11 36066.52 35675.82 33791.00 343
D2MVS92.76 21792.59 21193.27 28695.13 27989.54 29999.69 15399.38 2192.26 19287.59 28594.61 31485.05 22597.79 24091.59 22688.01 25092.47 331
v890.54 26489.17 27294.66 23893.43 30793.40 22299.20 22396.94 30085.76 30587.56 28694.51 31581.96 24497.19 26684.94 30078.25 32193.38 316
v1090.25 27288.82 27994.57 24393.53 30593.43 22099.08 23296.87 30685.00 31587.34 29294.51 31580.93 25697.02 28282.85 31279.23 31593.26 318
ADS-MVSNet293.80 19593.88 18193.55 28297.87 18385.94 32594.24 34196.84 30790.07 24396.43 16394.48 31790.29 17195.37 32987.44 27797.23 16499.36 170
ADS-MVSNet94.79 16894.02 17797.11 17397.87 18393.79 21194.24 34198.16 18290.07 24396.43 16394.48 31790.29 17198.19 22287.44 27797.23 16499.36 170
WR-MVS_H91.30 24690.35 24994.15 25994.17 29592.62 23999.17 22698.94 3688.87 26286.48 30294.46 31984.36 22996.61 30088.19 26978.51 32093.21 320
LCM-MVSNet-Re92.31 22892.60 20891.43 30897.53 20479.27 35699.02 24491.83 36392.07 19780.31 33694.38 32083.50 23595.48 32797.22 13497.58 15699.54 148
tpmvs94.28 18893.57 18896.40 19498.55 14791.50 26795.70 34098.55 8387.47 28192.15 21794.26 32191.42 15098.95 16688.15 27095.85 19098.76 205
tpm93.70 20093.41 19594.58 24295.36 27887.41 31997.01 32396.90 30390.85 23196.72 15694.14 32290.40 16996.84 28990.75 24388.54 24599.51 153
Anonymous2023120686.32 30185.42 30389.02 32689.11 35180.53 35499.05 24195.28 34685.43 31282.82 32493.92 32374.40 30693.44 35066.99 35581.83 29493.08 322
UnsupCasMVSNet_eth85.52 30583.99 30690.10 31989.36 35083.51 33696.65 32797.99 19589.14 25275.89 35093.83 32463.25 34693.92 34481.92 31867.90 35292.88 325
tpm cat193.51 20292.52 21396.47 18997.77 19091.47 26896.13 33398.06 19180.98 33792.91 21293.78 32589.66 17698.87 16787.03 28596.39 18099.09 192
EG-PatchMatch MVS85.35 30883.81 31089.99 32190.39 34481.89 34598.21 30096.09 33181.78 33574.73 35293.72 32651.56 36097.12 27279.16 33088.61 24290.96 344
test_method80.79 32179.70 32484.08 33792.83 32067.06 36299.51 18495.42 34354.34 36181.07 33493.53 32744.48 36392.22 35378.90 33177.23 33192.94 324
N_pmnet80.06 32480.78 32277.89 34191.94 33045.28 37298.80 26756.82 37578.10 34580.08 33893.33 32877.03 28395.76 32668.14 35482.81 28792.64 327
MDA-MVSNet-bldmvs84.09 31581.52 32191.81 30691.32 33888.00 31798.67 27795.92 33480.22 33955.60 36493.32 32968.29 33093.60 34973.76 34476.61 33693.82 301
CR-MVSNet93.45 20592.62 20795.94 20596.29 25092.66 23692.01 35296.23 32792.62 17696.94 14993.31 33091.04 15996.03 32179.23 32795.96 18799.13 190
Patchmtry89.70 28288.49 28493.33 28496.24 25289.94 29591.37 35596.23 32778.22 34487.69 28393.31 33091.04 15996.03 32180.18 32682.10 29194.02 282
MIMVSNet90.30 27088.67 28295.17 22396.45 24991.64 26492.39 35097.15 27585.99 30190.50 23193.19 33266.95 33494.86 33782.01 31793.43 21799.01 195
YYNet185.50 30783.33 31292.00 30390.89 34188.38 31399.22 22296.55 32179.60 34257.26 36292.72 33379.09 27493.78 34777.25 33777.37 33093.84 299
MVS_030489.28 28888.31 28792.21 30197.05 22786.53 32297.76 31299.57 1285.58 31093.86 20292.71 33451.04 36196.30 31184.49 30292.72 22393.79 302
MDA-MVSNet_test_wron85.51 30683.32 31392.10 30290.96 34088.58 30999.20 22396.52 32279.70 34157.12 36392.69 33579.11 27393.86 34677.10 33877.46 32993.86 298
MIMVSNet182.58 31980.51 32388.78 32886.68 35684.20 33596.65 32795.41 34478.75 34378.59 34292.44 33651.88 35989.76 35965.26 35978.95 31792.38 333
KD-MVS_2432*160088.00 29686.10 30093.70 27896.91 23394.04 20597.17 32097.12 27784.93 31681.96 32792.41 33792.48 13394.51 34079.23 32752.68 36192.56 328
miper_refine_blended88.00 29686.10 30093.70 27896.91 23394.04 20597.17 32097.12 27784.93 31681.96 32792.41 33792.48 13394.51 34079.23 32752.68 36192.56 328
FMVSNet588.32 29387.47 29590.88 31196.90 23688.39 31297.28 31795.68 33882.60 33284.67 31692.40 33979.83 26891.16 35676.39 34181.51 29693.09 321
DSMNet-mixed88.28 29488.24 28988.42 33189.64 34975.38 35898.06 30589.86 36685.59 30988.20 27992.14 34076.15 29591.95 35478.46 33296.05 18597.92 215
patchmatchnet-post91.70 34195.12 5197.95 235
OpenMVS_ROBcopyleft79.82 2083.77 31781.68 32090.03 32088.30 35382.82 33798.46 28695.22 34873.92 35576.00 34991.29 34255.00 35796.94 28468.40 35388.51 24690.34 348
Anonymous2024052185.15 30983.81 31089.16 32588.32 35282.69 33898.80 26795.74 33679.72 34081.53 33190.99 34365.38 34094.16 34272.69 34681.11 30190.63 347
Patchmatch-RL test86.90 30085.98 30289.67 32284.45 35975.59 35789.71 35792.43 36186.89 29277.83 34490.94 34494.22 8693.63 34887.75 27569.61 34599.79 104
CL-MVSNet_2432*160084.50 31383.15 31588.53 33086.00 35781.79 34698.82 26597.35 25785.12 31483.62 32290.91 34576.66 28891.40 35569.53 35160.36 35892.40 332
FPMVS68.72 32668.72 32968.71 34665.95 36944.27 37495.97 33794.74 35351.13 36253.26 36590.50 34625.11 36983.00 36460.80 36180.97 30578.87 360
new_pmnet84.49 31482.92 31689.21 32490.03 34782.60 33996.89 32695.62 34080.59 33875.77 35189.17 34765.04 34294.79 33872.12 34781.02 30390.23 349
DIV-MVS_2432*160083.59 31882.06 31888.20 33286.93 35580.70 35297.21 31896.38 32582.87 32982.49 32588.97 34867.63 33292.32 35273.75 34562.30 35791.58 340
PM-MVS80.47 32278.88 32685.26 33683.79 36172.22 35995.89 33891.08 36485.71 30876.56 34888.30 34936.64 36493.90 34582.39 31469.57 34689.66 353
pmmvs380.27 32377.77 32787.76 33380.32 36382.43 34198.23 29891.97 36272.74 35678.75 34187.97 35057.30 35690.99 35770.31 34962.37 35689.87 351
pmmvs-eth3d84.03 31681.97 31990.20 31884.15 36087.09 32098.10 30494.73 35483.05 32774.10 35387.77 35165.56 33994.01 34381.08 32269.24 34789.49 354
test12337.68 33739.14 34033.31 35219.94 37624.83 37798.36 2929.75 37715.53 37151.31 36687.14 35219.62 37217.74 37247.10 3653.47 37157.36 365
new-patchmatchnet81.19 32079.34 32586.76 33582.86 36280.36 35597.92 30895.27 34782.09 33472.02 35486.87 35362.81 34790.74 35871.10 34863.08 35589.19 356
ambc83.23 33977.17 36462.61 36387.38 35994.55 35676.72 34786.65 35430.16 36596.36 30884.85 30169.86 34490.73 346
PatchT90.38 26788.75 28195.25 22195.99 25790.16 28891.22 35697.54 23576.80 34697.26 14386.01 35591.88 14596.07 32066.16 35795.91 18999.51 153
RPMNet89.76 28187.28 29697.19 17096.29 25092.66 23692.01 35298.31 15870.19 35896.94 14985.87 35687.25 20399.78 11562.69 36095.96 18799.13 190
UnsupCasMVSNet_bld79.97 32577.03 32888.78 32885.62 35881.98 34493.66 34697.35 25775.51 35270.79 35683.05 35748.70 36294.91 33678.31 33360.29 35989.46 355
LCM-MVSNet67.77 32764.73 33176.87 34262.95 37156.25 36889.37 35893.74 36044.53 36461.99 35980.74 35820.42 37186.53 36269.37 35259.50 36087.84 357
PMMVS267.15 32864.15 33276.14 34370.56 36862.07 36593.89 34487.52 37058.09 36060.02 36078.32 35922.38 37084.54 36359.56 36247.03 36381.80 359
JIA-IIPM91.76 24390.70 24394.94 22996.11 25387.51 31893.16 34898.13 18775.79 35097.58 13777.68 36092.84 12497.97 23288.47 26796.54 17699.33 174
PMVScopyleft49.05 2353.75 33251.34 33660.97 34940.80 37534.68 37574.82 36389.62 36837.55 36628.67 37272.12 3617.09 37581.63 36543.17 36768.21 35166.59 363
Y. Furukawa, J. Ponce: Accurate, dense, and robust multiview stereopsis. PAMI (2010)
MVS-HIRNet86.22 30283.19 31495.31 21896.71 24790.29 28692.12 35197.33 26062.85 35986.82 29570.37 36269.37 32497.49 24975.12 34397.99 15198.15 212
gg-mvs-nofinetune93.51 20291.86 22698.47 11797.72 19797.96 8192.62 34998.51 9774.70 35397.33 14269.59 36398.91 397.79 24097.77 12299.56 10899.67 120
Gipumacopyleft66.95 32965.00 33072.79 34491.52 33667.96 36166.16 36495.15 35147.89 36358.54 36167.99 36429.74 36687.54 36150.20 36477.83 32562.87 364
S. Galliani, K. Lasinger, K. Schindler: Massively Parallel Multiview Stereopsis by Surface Normal Diffusion. ICCV 2015
ANet_high56.10 33152.24 33467.66 34749.27 37356.82 36783.94 36082.02 37170.47 35733.28 37164.54 36517.23 37369.16 36845.59 36623.85 36777.02 361
E-PMN52.30 33352.18 33552.67 35071.51 36645.40 37193.62 34776.60 37336.01 36743.50 36864.13 36627.11 36867.31 36931.06 36926.06 36545.30 368
test_post63.35 36794.43 7298.13 224
MVEpermissive53.74 2251.54 33447.86 33862.60 34859.56 37250.93 36979.41 36277.69 37235.69 36836.27 37061.76 3685.79 37769.63 36737.97 36836.61 36467.24 362
Simon Fuhrmann, Fabian Langguth, Michael Goesele: MVE - A Multi-View Reconstruction Environment. EUROGRAPHICS Workshops on Graphics and Cultural Heritage (2014)
EMVS51.44 33551.22 33752.11 35170.71 36744.97 37394.04 34375.66 37435.34 36942.40 36961.56 36928.93 36765.87 37027.64 37024.73 36645.49 367
test_post195.78 33959.23 37093.20 11797.74 24291.06 233
X-MVStestdata93.83 19292.06 22199.15 6499.94 1497.50 9999.94 6098.42 12896.22 5299.41 6141.37 37194.34 7999.96 5798.92 6499.95 5599.99 24
wuyk23d20.37 33920.84 34218.99 35465.34 37027.73 37650.43 3657.67 3789.50 3728.01 3736.34 3726.13 37626.24 37123.40 37110.69 3702.99 369
test_blank0.00 3420.00 3450.00 3550.00 3780.00 3790.00 3660.00 3790.00 3730.00 3740.02 3730.00 3780.00 3740.00 3720.00 3720.00 370
uanet_test0.00 3420.00 3450.00 3550.00 3780.00 3790.00 3660.00 3790.00 3730.00 3740.00 3740.00 3780.00 3740.00 3720.00 3720.00 370
pcd_1.5k_mvsjas7.60 34110.13 3440.00 3550.00 3780.00 3790.00 3660.00 3790.00 3730.00 3740.00 37491.20 1550.00 3740.00 3720.00 3720.00 370
sosnet-low-res0.00 3420.00 3450.00 3550.00 3780.00 3790.00 3660.00 3790.00 3730.00 3740.00 3740.00 3780.00 3740.00 3720.00 3720.00 370
sosnet0.00 3420.00 3450.00 3550.00 3780.00 3790.00 3660.00 3790.00 3730.00 3740.00 3740.00 3780.00 3740.00 3720.00 3720.00 370
uncertanet0.00 3420.00 3450.00 3550.00 3780.00 3790.00 3660.00 3790.00 3730.00 3740.00 3740.00 3780.00 3740.00 3720.00 3720.00 370
Regformer0.00 3420.00 3450.00 3550.00 3780.00 3790.00 3660.00 3790.00 3730.00 3740.00 3740.00 3780.00 3740.00 3720.00 3720.00 370
uanet0.00 3420.00 3450.00 3550.00 3780.00 3790.00 3660.00 3790.00 3730.00 3740.00 3740.00 3780.00 3740.00 3720.00 3720.00 370
FOURS199.92 3697.66 9199.95 4398.36 14895.58 7299.52 53
MSC_two_6792asdad99.93 299.91 4499.80 298.41 132100.00 199.96 9100.00 1100.00 1
No_MVS99.93 299.91 4499.80 298.41 132100.00 199.96 9100.00 1100.00 1
eth-test20.00 378
eth-test0.00 378
IU-MVS99.93 2799.31 998.41 13297.71 899.84 8100.00 1100.00 1100.00 1
save fliter99.82 7098.79 3799.96 2598.40 13697.66 10
test_0728_SECOND99.82 799.94 1499.47 799.95 4398.43 116100.00 199.99 5100.00 1100.00 1
GSMVS99.59 135
test_part299.89 5099.25 1799.49 55
sam_mvs194.72 6799.59 135
sam_mvs94.25 85
MTGPAbinary98.28 163
MTMP99.87 9296.49 323
test9_res99.71 3399.99 22100.00 1
agg_prior299.48 40100.00 1100.00 1
agg_prior99.93 2798.77 4098.43 11699.63 4099.85 98
test_prior498.05 7599.94 60
test_prior99.43 3899.94 1498.49 6198.65 6099.80 11099.99 24
旧先验299.46 19394.21 11899.85 699.95 6496.96 141
新几何299.40 198
无先验99.49 18898.71 5393.46 148100.00 194.36 18299.99 24
原ACMM299.90 78
testdata299.99 4090.54 245
segment_acmp96.68 25
testdata199.28 21896.35 51
test1299.43 3899.74 8298.56 5798.40 13699.65 3894.76 6699.75 12599.98 3599.99 24
plane_prior795.71 27091.59 266
plane_prior695.76 26591.72 26180.47 264
plane_prior597.87 20898.37 20697.79 12089.55 22994.52 237
plane_prior391.64 26496.63 3993.01 209
plane_prior299.84 11096.38 47
plane_prior195.73 267
plane_prior91.74 25899.86 10396.76 3589.59 228
n20.00 379
nn0.00 379
door-mid89.69 367
test1198.44 108
door90.31 365
HQP5-MVS91.85 254
HQP-NCC95.78 26199.87 9296.82 3193.37 205
ACMP_Plane95.78 26199.87 9296.82 3193.37 205
BP-MVS97.92 115
HQP4-MVS93.37 20598.39 20194.53 235
HQP3-MVS97.89 20689.60 226
HQP2-MVS80.65 260
MDTV_nov1_ep13_2view96.26 14396.11 33491.89 20298.06 12794.40 7494.30 18599.67 120
ACMMP++_ref87.04 259
ACMMP++88.23 248
Test By Simon92.82 126