This table lists the benchmark results for the high-res multi-view scenario. The following metrics are evaluated:

(*) For exact definitions, detailing how potentially incomplete ground truth is taken into account, see our paper.

The datasets are grouped into different categories, and result averages are computed for a category and method if results of the method are available for all datasets within the category. Note that the category "all" includes both the high-res multi-view and the low-res many-view scenarios.

Methods with suffix _ROB may participate in the Robust Vision Challenge.

Click a dataset result cell to show a visualization of the reconstruction. For training datasets, ground truth and accuracy / completeness visualizations are also available. The visualizations may not work with mobile browsers.




Method Infoallhigh-res
multi-view
indooroutdoorbotani.boulde.bridgedoorexhibi.lectur.living.loungeobserv.old co.statueterrac.
sort bysort bysort bysort bysort bysort bysort bysort bysort bysort bysorted bysort bysort bysort bysort bysort by
DeepPCF-MVS69.37 180.65 1381.56 1177.94 8185.46 6449.56 19990.99 2286.66 7870.58 2480.07 2495.30 156.18 2090.97 8482.57 2686.22 3593.28 15
DPM-MVS82.39 482.36 682.49 580.12 18959.50 592.24 990.72 1469.37 3383.22 994.47 263.81 593.18 3374.02 8493.25 294.80 1
SED-MVS81.92 781.75 982.44 789.48 1756.89 2992.48 488.94 3057.50 22884.61 494.09 358.81 1196.37 682.28 2787.60 1894.06 3
test_241102_TWO88.76 3957.50 22883.60 694.09 356.14 2196.37 682.28 2787.43 2092.55 29
OPU-MVS81.71 1492.05 355.97 4892.48 494.01 567.21 295.10 1589.82 292.55 394.06 3
iter_conf05_1179.47 2078.68 2381.84 1287.91 4057.01 2493.27 279.49 22774.74 683.40 894.00 621.51 34494.70 2184.07 1789.68 793.82 7
bld_raw_dy_0_6475.36 7373.18 8681.89 1187.91 4057.01 2486.77 8967.69 35078.56 165.01 14393.99 722.18 33994.84 1984.07 1772.45 15893.82 7
test072689.40 2057.45 1792.32 888.63 4357.71 22283.14 1093.96 855.17 25
CNVR-MVS81.76 881.90 881.33 1990.04 1057.70 1291.71 1188.87 3470.31 2677.64 3693.87 952.58 4093.91 2884.17 1487.92 1692.39 32
MM82.69 283.29 380.89 2284.38 8355.40 5992.16 1089.85 2075.28 582.41 1193.86 1054.30 3093.98 2590.29 187.13 2193.30 14
PC_three_145266.58 5987.27 293.70 1166.82 494.95 1789.74 391.98 493.98 5
DPE-MVScopyleft79.82 1879.66 1680.29 2989.27 2455.08 7188.70 4787.92 5655.55 25881.21 1993.69 1256.51 1894.27 2478.36 5285.70 3991.51 60
Kehua Chen, Zhenlong Yuan, Tianlu Mao, Zhaoqi Wang: Dual-Level Precision Edges Guided Multi-View Stereo with Accurate Planarization. AAAI2025
DVP-MVScopyleft81.30 1081.00 1382.20 889.40 2057.45 1792.34 689.99 1857.71 22281.91 1493.64 1355.17 2596.44 281.68 3087.13 2192.72 26
Zhenlong Yuan, Jinguo Luo, Fei Shen, Zhaoxin Li, Cong Liu, Tianlu Mao, Zhaoqi Wang: DVP-MVS: Synergize Depth-Edge and Visibility Prior for Multi-View Stereo. AAAI2025
test_0728_THIRD58.00 21481.91 1493.64 1356.54 1796.44 281.64 3286.86 2592.23 36
MVS_030481.58 982.05 780.20 3182.36 13554.70 8291.13 2088.95 2974.49 780.04 2593.64 1352.40 4193.27 3288.85 486.56 3192.61 28
fmvsm_l_conf0.5_n_a75.88 6476.07 5475.31 14776.08 25648.34 23585.24 12570.62 33363.13 12081.45 1893.62 1649.98 6187.40 20187.76 676.77 11490.20 95
fmvsm_l_conf0.5_n75.95 6276.16 5375.31 14776.01 26048.44 23284.98 13771.08 32963.50 11281.70 1793.52 1750.00 5987.18 20587.80 576.87 11390.32 90
fmvsm_s_conf0.5_n74.48 8274.12 7875.56 13776.96 24547.85 25285.32 12369.80 34064.16 9678.74 2993.48 1845.51 10389.29 12686.48 866.62 20689.55 111
test_fmvsm_n_192075.56 7175.54 5975.61 13574.60 27949.51 20281.82 22774.08 30466.52 6280.40 2293.46 1946.95 8389.72 11786.69 775.30 13087.61 157
DVP-MVS++82.44 382.38 582.62 491.77 457.49 1584.98 13788.88 3258.00 21483.60 693.39 2067.21 296.39 481.64 3291.98 493.98 5
test_one_060189.39 2257.29 2088.09 5357.21 23482.06 1393.39 2054.94 29
fmvsm_s_conf0.5_n_a73.68 9873.15 8775.29 15075.45 26748.05 24583.88 17168.84 34563.43 11478.60 3093.37 2245.32 10488.92 14485.39 1164.04 22688.89 127
PHI-MVS77.49 4077.00 4278.95 5185.33 6750.69 16988.57 4988.59 4658.14 21173.60 5693.31 2343.14 13993.79 2973.81 8588.53 1392.37 33
fmvsm_s_conf0.1_n73.80 9373.26 8575.43 14273.28 29447.80 25384.57 15369.43 34263.34 11578.40 3293.29 2444.73 11989.22 12985.99 966.28 21389.26 116
test_241102_ONE89.48 1756.89 2988.94 3057.53 22684.61 493.29 2458.81 1196.45 1
PS-MVSNAJ80.06 1679.52 1781.68 1585.58 6160.97 391.69 1287.02 7070.62 2380.75 2193.22 2637.77 19592.50 4682.75 2486.25 3491.57 57
SMA-MVScopyleft79.10 2378.76 2280.12 3584.42 8155.87 5087.58 6886.76 7561.48 14880.26 2393.10 2746.53 8992.41 4879.97 3988.77 1192.08 40
Yufeng Yin; Xiaoyan Liu; Zichao Zhang: SMA-MVS: Segmentation-Guided Multi-Scale Anchor Deformation Patch Multi-View Stereo. IEEE Transactions on Circuits and Systems for Video Technology
CANet80.90 1181.17 1280.09 3787.62 4254.21 9491.60 1486.47 8073.13 1079.89 2693.10 2749.88 6392.98 3484.09 1684.75 4993.08 19
MCST-MVS83.01 183.30 282.15 1092.84 257.58 1493.77 191.10 1075.95 477.10 3793.09 2954.15 3395.57 1285.80 1085.87 3793.31 13
fmvsm_s_conf0.1_n_a72.82 11072.05 11075.12 15570.95 32147.97 24882.72 20468.43 34762.52 13178.17 3393.08 3044.21 12288.86 14584.82 1363.54 23288.54 138
xiu_mvs_v2_base79.86 1779.31 1881.53 1685.03 7360.73 491.65 1386.86 7370.30 2780.77 2093.07 3137.63 20092.28 5282.73 2585.71 3891.57 57
HPM-MVS++copyleft80.50 1480.71 1479.88 3987.34 4455.20 6689.93 3087.55 6566.04 7479.46 2793.00 3253.10 3791.76 6280.40 3889.56 992.68 27
test_fmvsmconf_n74.41 8474.05 8075.49 14174.16 28548.38 23382.66 20572.57 31767.05 5575.11 4492.88 3346.35 9087.81 18183.93 1971.71 16590.28 91
MSP-MVS82.30 683.47 178.80 5682.99 11852.71 13185.04 13488.63 4366.08 7186.77 392.75 3472.05 191.46 6883.35 2193.53 192.23 36
Zhenlong Yuan, Cong Liu, Fei Shen, Zhaoxin Li, Jingguo luo, Tianlu Mao and Zhaoqi Wang: MSP-MVS: Multi-granularity Segmentation Prior Guided Multi-View Stereo. AAAI2025
NCCC79.57 1979.23 1980.59 2489.50 1556.99 2691.38 1688.17 5267.71 4873.81 5592.75 3446.88 8493.28 3178.79 4884.07 5491.50 61
DeepC-MVS_fast67.50 378.00 3477.63 3379.13 4988.52 2755.12 6889.95 2985.98 8968.31 3771.33 8792.75 3445.52 10290.37 9871.15 9785.14 4591.91 47
Andreas Kuhn, Christian Sormann, Mattia Rossi, Oliver Erdler, Friedrich Fraundorfer: DeepC-MVS: Deep Confidence Prediction for Multi-View Stereo Reconstruction. 3DV 2020
9.1478.19 2785.67 5988.32 5188.84 3659.89 17374.58 4992.62 3746.80 8592.66 4181.40 3685.62 40
test_fmvsmconf0.1_n73.69 9773.15 8775.34 14570.71 32248.26 23882.15 21771.83 32166.75 5874.47 5192.59 3844.89 11387.78 18683.59 2071.35 16989.97 102
APDe-MVScopyleft78.44 2678.20 2679.19 4588.56 2654.55 8889.76 3487.77 6055.91 25378.56 3192.49 3948.20 7092.65 4279.49 4083.04 5890.39 87
Zhaojie Zeng, Yuesong Wang, Tao Guan: Matching Ambiguity-Resilient Multi-View Stereo via Adaptive Patch Deformation. Pattern Recognition
SF-MVS77.64 3977.42 3778.32 7383.75 9652.47 13686.63 9287.80 5758.78 20274.63 4792.38 4047.75 7591.35 7078.18 5586.85 2691.15 72
MAR-MVS76.76 5275.60 5880.21 3090.87 754.68 8489.14 4289.11 2662.95 12270.54 9992.33 4141.05 16394.95 1757.90 19886.55 3291.00 76
Zhenyu Xu, Yiguang Liu, Xuelei Shi, Ying Wang, Yunan Zheng: MARMVS: Matching Ambiguity Reduced Multiple View Stereo for Efficient Large Scale Scene Reconstruction. CVPR 2020
MSLP-MVS++74.21 8772.25 10280.11 3681.45 16156.47 3886.32 9679.65 22358.19 21066.36 12692.29 4236.11 22790.66 9167.39 11782.49 6293.18 18
DELS-MVS82.32 582.50 481.79 1386.80 4856.89 2992.77 386.30 8477.83 277.88 3492.13 4360.24 694.78 2078.97 4589.61 893.69 10
Christian Sormann, Emanuele Santellani, Mattia Rossi, Andreas Kuhn, Friedrich Fraundorfer: DELS-MVS: Deep Epipolar Line Search for Multi-View Stereo. Winter Conference on Applications of Computer Vision (WACV), 2023
1112_ss70.05 15769.37 14972.10 22380.77 17742.78 31685.12 13276.75 28059.69 17761.19 19492.12 4447.48 7883.84 27153.04 23568.21 19289.66 108
ab-mvs-re7.68 37410.24 3760.00 3910.00 4130.00 4150.00 4020.00 4130.00 4070.00 41092.12 440.00 4120.00 4080.00 4090.00 4060.00 406
canonicalmvs78.17 3277.86 3179.12 5084.30 8454.22 9387.71 6384.57 13167.70 4977.70 3592.11 4650.90 5289.95 11178.18 5577.54 10893.20 17
cdsmvs_eth3d_5k18.33 37024.44 3620.00 3910.00 4130.00 4150.00 40289.40 220.00 4070.00 41092.02 4738.55 1890.00 4080.00 4090.00 4060.00 406
lupinMVS78.38 2878.11 2879.19 4583.02 11655.24 6391.57 1584.82 12269.12 3476.67 3992.02 4744.82 11690.23 10580.83 3780.09 8592.08 40
test_fmvsmvis_n_192071.29 13670.38 13374.00 18071.04 32048.79 22079.19 27364.62 35662.75 12566.73 11891.99 4940.94 16488.35 16383.00 2273.18 15084.85 210
alignmvs78.08 3377.98 2978.39 7183.53 9953.22 11989.77 3385.45 9866.11 6976.59 4191.99 4954.07 3489.05 13477.34 6077.00 11192.89 22
CS-MVS-test77.20 4377.25 3977.05 9984.60 7849.04 21289.42 3785.83 9265.90 7572.85 6791.98 5145.10 10791.27 7175.02 7684.56 5090.84 79
SD-MVS76.18 5874.85 7180.18 3285.39 6556.90 2885.75 10982.45 17356.79 24274.48 5091.81 5243.72 13090.75 8974.61 7878.65 10092.91 21
Zhenlong Yuan, Jiakai Cao, Zhaoxin Li, Hao Jiang and Zhaoqi Wang: SD-MVS: Segmentation-driven Deformation Multi-View Stereo with Spherical Refinement and EM optimization. AAAI2024
MP-MVS-pluss75.54 7275.03 6777.04 10081.37 16352.65 13384.34 15784.46 13261.16 15269.14 10391.76 5339.98 17888.99 13978.19 5384.89 4889.48 114
MP-MVS-pluss: MP-MVS-pluss. MP-MVS-pluss
EPNet78.36 2978.49 2477.97 7985.49 6352.04 14389.36 3984.07 14273.22 977.03 3891.72 5449.32 6790.17 10773.46 8882.77 5991.69 52
Wanjuan Su, Wenbing Tao: Efficient Edge-Preserving Multi-View Stereo Network for Depth Estimation. AAAI 2023
WTY-MVS77.47 4177.52 3677.30 9388.33 3046.25 27788.46 5090.32 1671.40 1972.32 7691.72 5453.44 3592.37 4966.28 12675.42 12993.28 15
test_fmvsmconf0.01_n71.97 12670.95 12575.04 15666.21 34747.87 25180.35 25870.08 33765.85 7672.69 6991.68 5639.99 17787.67 19082.03 2969.66 18489.58 110
APD-MVScopyleft76.15 5975.68 5677.54 8788.52 2753.44 11087.26 7785.03 11753.79 27574.91 4591.68 5643.80 12690.31 10174.36 8081.82 6888.87 128
Yuesong Wang, Zhaojie Zeng and etc.: Adaptive Patch Deformation for Textureless-Resilient Multi-View Stereo. CVPR2023
CS-MVS76.77 5176.70 4676.99 10483.55 9848.75 22188.60 4885.18 11166.38 6472.47 7491.62 5845.53 10190.99 8374.48 7982.51 6191.23 69
TSAR-MVS + GP.77.82 3677.59 3478.49 6685.25 6950.27 18690.02 2790.57 1556.58 24774.26 5291.60 5954.26 3192.16 5475.87 6679.91 8993.05 20
SteuartSystems-ACMMP77.08 4576.33 5079.34 4380.98 16855.31 6189.76 3486.91 7262.94 12371.65 8191.56 6042.33 14692.56 4577.14 6183.69 5690.15 97
Skip Steuart: Steuart Systems R&D Blog.
ACMMP_NAP76.43 5575.66 5778.73 5881.92 14154.67 8584.06 16685.35 10261.10 15472.99 6491.50 6140.25 17191.00 8176.84 6286.98 2490.51 86
MVS76.91 4775.48 6081.23 2084.56 7955.21 6580.23 26191.64 458.65 20465.37 13891.48 6245.72 9995.05 1672.11 9589.52 1093.44 11
test_prior289.04 4361.88 14173.55 5791.46 6348.01 7374.73 7785.46 41
patch_mono-280.84 1281.59 1078.62 6390.34 953.77 10188.08 5488.36 5076.17 379.40 2891.09 6455.43 2390.09 10885.01 1280.40 8191.99 46
ZD-MVS89.55 1453.46 10784.38 13357.02 23673.97 5491.03 6544.57 12091.17 7675.41 7381.78 70
test_885.72 5655.31 6187.60 6583.88 14657.84 21972.84 6890.99 6644.99 11088.34 164
TEST985.68 5755.42 5687.59 6684.00 14357.72 22172.99 6490.98 6744.87 11488.58 153
train_agg76.91 4776.40 4978.45 6985.68 5755.42 5687.59 6684.00 14357.84 21972.99 6490.98 6744.99 11088.58 15378.19 5385.32 4391.34 67
MTAPA72.73 11171.22 12177.27 9581.54 15853.57 10567.06 34381.31 19259.41 18368.39 10990.96 6936.07 22989.01 13673.80 8682.45 6389.23 118
MVSFormer73.53 10072.19 10577.57 8683.02 11655.24 6381.63 23281.44 19050.28 29976.67 3990.91 7044.82 11686.11 23560.83 16580.09 8591.36 65
jason77.01 4676.45 4878.69 6079.69 19454.74 7990.56 2583.99 14568.26 3874.10 5390.91 7042.14 15089.99 11079.30 4279.12 9691.36 65
jason: jason.
CDPH-MVS76.05 6175.19 6578.62 6386.51 5054.98 7487.32 7284.59 13058.62 20570.75 9490.85 7243.10 14190.63 9370.50 10184.51 5290.24 92
LFMVS78.52 2477.14 4182.67 389.58 1358.90 791.27 1988.05 5463.22 11874.63 4790.83 7341.38 16294.40 2275.42 7279.90 9094.72 2
PAPR75.20 7774.13 7778.41 7088.31 3255.10 7084.31 15885.66 9463.76 10567.55 11490.73 7443.48 13589.40 12466.36 12577.03 11090.73 81
HFP-MVS74.37 8573.13 9178.10 7784.30 8453.68 10385.58 11584.36 13456.82 24065.78 13490.56 7540.70 16990.90 8569.18 10880.88 7489.71 107
ZNCC-MVS75.82 6875.02 6878.23 7483.88 9453.80 10086.91 8686.05 8859.71 17667.85 11390.55 7642.23 14891.02 8072.66 9385.29 4489.87 106
EIA-MVS75.92 6375.18 6678.13 7685.14 7051.60 15487.17 7985.32 10464.69 9068.56 10890.53 7745.79 9891.58 6567.21 11982.18 6591.20 70
ETV-MVS77.17 4476.74 4578.48 6781.80 14454.55 8886.13 10085.33 10368.20 3973.10 6390.52 7845.23 10690.66 9179.37 4180.95 7390.22 93
SR-MVS70.92 14469.73 14574.50 16483.38 10550.48 17584.27 15979.35 23348.96 30966.57 12490.45 7933.65 25587.11 20766.42 12374.56 14285.91 191
region2R73.75 9572.55 9577.33 9183.90 9352.98 12785.54 11984.09 14156.83 23965.10 14090.45 7937.34 20990.24 10468.89 11080.83 7688.77 132
ACMMPR73.76 9472.61 9377.24 9783.92 9252.96 12885.58 11584.29 13556.82 24065.12 13990.45 7937.24 21190.18 10669.18 10880.84 7588.58 136
CP-MVS72.59 11571.46 11776.00 12982.93 12152.32 14086.93 8582.48 17255.15 26263.65 16790.44 8235.03 24188.53 15768.69 11177.83 10687.15 165
PMMVS72.98 10672.05 11075.78 13283.57 9748.60 22484.08 16482.85 16861.62 14468.24 11090.33 8328.35 29287.78 18672.71 9276.69 11590.95 77
dcpmvs_279.33 2178.94 2080.49 2589.75 1256.54 3684.83 14483.68 14967.85 4569.36 10290.24 8460.20 792.10 5784.14 1580.40 8192.82 23
MP-MVScopyleft74.99 8074.33 7676.95 10682.89 12253.05 12585.63 11483.50 15457.86 21867.25 11690.24 8443.38 13688.85 14776.03 6482.23 6488.96 125
Rongxuan Tan, Qing Wang, et al.: MP-MVS: Multi-Scale Windows PatchMatch and Planar Prior Multi-View Stereo.
ET-MVSNet_ETH3D75.23 7674.08 7978.67 6184.52 8055.59 5288.92 4489.21 2568.06 4353.13 29490.22 8649.71 6487.62 19572.12 9470.82 17492.82 23
xiu_mvs_v1_base_debu71.60 13270.29 13675.55 13877.26 23953.15 12085.34 12079.37 22955.83 25472.54 7090.19 8722.38 33586.66 22173.28 8976.39 11786.85 171
xiu_mvs_v1_base71.60 13270.29 13675.55 13877.26 23953.15 12085.34 12079.37 22955.83 25472.54 7090.19 8722.38 33586.66 22173.28 8976.39 11786.85 171
xiu_mvs_v1_base_debi71.60 13270.29 13675.55 13877.26 23953.15 12085.34 12079.37 22955.83 25472.54 7090.19 8722.38 33586.66 22173.28 8976.39 11786.85 171
VNet77.99 3577.92 3078.19 7587.43 4350.12 18790.93 2391.41 867.48 5175.12 4390.15 9046.77 8691.00 8173.52 8778.46 10293.44 11
EC-MVSNet75.30 7475.20 6475.62 13480.98 16849.00 21387.43 6984.68 12863.49 11370.97 9290.15 9042.86 14391.14 7874.33 8181.90 6786.71 176
CSCG80.41 1579.72 1582.49 589.12 2557.67 1389.29 4191.54 559.19 19071.82 8090.05 9259.72 996.04 1078.37 5188.40 1493.75 9
CANet_DTU73.71 9673.14 8975.40 14382.61 13150.05 18884.67 15079.36 23269.72 3075.39 4290.03 9329.41 28885.93 24667.99 11579.11 9790.22 93
DeepC-MVS67.15 476.90 4976.27 5178.80 5680.70 17855.02 7286.39 9486.71 7666.96 5667.91 11289.97 9448.03 7291.41 6975.60 6984.14 5389.96 103
Andreas Kuhn, Christian Sormann, Mattia Rossi, Oliver Erdler, Friedrich Fraundorfer: DeepC-MVS: Deep Confidence Prediction for Multi-View Stereo Reconstruction. 3DV 2020
MVS_111021_HR76.39 5675.38 6379.42 4285.33 6756.47 3888.15 5384.97 11865.15 8766.06 12989.88 9543.79 12792.16 5475.03 7580.03 8889.64 109
GST-MVS74.87 8173.90 8277.77 8283.30 10653.45 10985.75 10985.29 10659.22 18966.50 12589.85 9640.94 16490.76 8870.94 9983.35 5789.10 123
PGM-MVS72.60 11371.20 12276.80 11182.95 11952.82 13083.07 19882.14 17556.51 24863.18 17289.81 9735.68 23389.76 11667.30 11880.19 8487.83 151
APD-MVS_3200maxsize69.62 16968.23 16573.80 18781.58 15648.22 23981.91 22379.50 22648.21 31264.24 15889.75 9831.91 27387.55 19763.08 14873.85 14785.64 197
mPP-MVS71.79 13170.38 13376.04 12782.65 13052.06 14284.45 15481.78 18555.59 25762.05 18789.68 9933.48 25688.28 16965.45 13578.24 10587.77 153
XVS72.92 10771.62 11476.81 10983.41 10152.48 13484.88 14283.20 16158.03 21263.91 16389.63 10035.50 23489.78 11465.50 13080.50 7988.16 142
HPM-MVScopyleft72.60 11371.50 11675.89 13082.02 13951.42 15980.70 25483.05 16356.12 25264.03 16189.53 10137.55 20388.37 16170.48 10280.04 8787.88 150
Chunlin Ren, Qingshan Xu, Shikun Zhang, Jiaqi Yang: Hierarchical Prior Mining for Non-local Multi-View Stereo. ICCV 2023
DP-MVS Recon71.99 12570.31 13577.01 10290.65 853.44 11089.37 3882.97 16656.33 25063.56 17089.47 10234.02 25092.15 5654.05 22872.41 15985.43 201
SR-MVS-dyc-post68.27 19366.87 18872.48 21680.96 17048.14 24281.54 23676.98 27646.42 32462.75 17889.42 10331.17 27886.09 23960.52 17172.06 16383.19 240
RE-MVS-def66.66 19480.96 17048.14 24281.54 23676.98 27646.42 32462.75 17889.42 10329.28 29060.52 17172.06 16383.19 240
Effi-MVS+75.24 7573.61 8380.16 3381.92 14157.42 1985.21 12676.71 28260.68 16573.32 6189.34 10547.30 7991.63 6468.28 11379.72 9291.42 62
VDD-MVS76.08 6074.97 6979.44 4184.27 8653.33 11691.13 2085.88 9065.33 8472.37 7589.34 10532.52 26492.76 4077.90 5775.96 12392.22 38
PVSNet_Blended76.53 5476.54 4776.50 11485.91 5451.83 14988.89 4584.24 13967.82 4669.09 10489.33 10746.70 8788.13 17275.43 7081.48 7289.55 111
test_yl75.85 6574.83 7278.91 5288.08 3751.94 14591.30 1789.28 2357.91 21671.19 8989.20 10842.03 15392.77 3869.41 10575.07 13792.01 44
DCV-MVSNet75.85 6574.83 7278.91 5288.08 3751.94 14591.30 1789.28 2357.91 21671.19 8989.20 10842.03 15392.77 3869.41 10575.07 13792.01 44
baseline76.86 5076.24 5278.71 5980.47 18454.20 9683.90 17084.88 12171.38 2071.51 8489.15 11050.51 5590.55 9575.71 6778.65 10091.39 63
EI-MVSNet-Vis-set73.19 10572.60 9474.99 15982.56 13249.80 19582.55 21089.00 2866.17 6865.89 13288.98 11143.83 12592.29 5165.38 13869.01 18882.87 247
CLD-MVS75.60 7075.39 6276.24 11880.69 17952.40 13790.69 2486.20 8674.40 865.01 14388.93 11242.05 15290.58 9476.57 6373.96 14585.73 194
Zhaoxin Li, Wangmeng Zuo, Zhaoqi Wang, Lei Zhang: Confidence-based Large-scale Dense Multi-view Stereo. IEEE Transaction on Image Processing, 2020
ACMMPcopyleft70.81 14669.29 15275.39 14481.52 16051.92 14783.43 18483.03 16456.67 24558.80 22888.91 11331.92 27288.58 15365.89 12973.39 14985.67 195
Qingshan Xu, Weihang Kong, Wenbing Tao, Marc Pollefeys: Multi-Scale Geometric Consistency Guided and Planar Prior Assisted Multi-View Stereo. IEEE Transactions on Pattern Analysis and Machine Intelligence
131471.11 13969.41 14876.22 11979.32 19950.49 17480.23 26185.14 11559.44 18258.93 22388.89 11433.83 25489.60 12161.49 16077.42 10988.57 137
PAPM76.76 5276.07 5478.81 5580.20 18759.11 686.86 8786.23 8568.60 3670.18 10188.84 11551.57 4687.16 20665.48 13286.68 2990.15 97
diffmvspermissive75.11 7974.65 7476.46 11578.52 21953.35 11483.28 19279.94 21570.51 2571.64 8288.72 11646.02 9586.08 24077.52 5875.75 12789.96 103
Fangjinhua Wang, Qingshan Xu, Yew-Soon Ong, Marc Pollefeys: Lightweight and Accurate Multi-View Stereo With Confidence-Aware Diffusion Model. IEEE T-PAMI 2025
testing22277.70 3877.22 4079.14 4886.95 4654.89 7787.18 7891.96 272.29 1371.17 9188.70 11755.19 2491.24 7365.18 13976.32 12191.29 68
旧先验181.57 15747.48 25671.83 32188.66 11836.94 21578.34 10488.67 133
PAPM_NR71.80 13069.98 14277.26 9681.54 15853.34 11578.60 27785.25 10953.46 27860.53 20088.66 11845.69 10089.24 12756.49 21179.62 9589.19 120
3Dnovator64.70 674.46 8372.48 9680.41 2882.84 12455.40 5983.08 19788.61 4567.61 5059.85 20488.66 11834.57 24593.97 2658.42 18888.70 1291.85 50
h-mvs3373.95 9072.89 9277.15 9880.17 18850.37 18084.68 14883.33 15568.08 4071.97 7888.65 12142.50 14491.15 7778.82 4657.78 28889.91 105
casdiffmvspermissive77.36 4276.85 4478.88 5480.40 18654.66 8687.06 8185.88 9072.11 1471.57 8388.63 12250.89 5490.35 9976.00 6579.11 9791.63 54
Fangjinhua Wang, Qingshan Xu, Yew-Soon Ong, Marc Pollefeys: Lightweight and Accurate Multi-View Stereo With Confidence-Aware Diffusion Model. IEEE T-PAMI 2025
testing1179.18 2278.85 2180.16 3388.33 3056.99 2688.31 5292.06 172.82 1170.62 9888.37 12357.69 1492.30 5075.25 7476.24 12291.20 70
test_vis1_n_192068.59 18768.31 16269.44 27269.16 33341.51 32784.63 15168.58 34658.80 20173.26 6288.37 12325.30 31580.60 29979.10 4367.55 19986.23 184
casdiffmvs_mvgpermissive77.75 3777.28 3879.16 4780.42 18554.44 9087.76 6285.46 9771.67 1671.38 8688.35 12551.58 4591.22 7479.02 4479.89 9191.83 51
Fangjinhua Wang, Qingshan Xu, Yew-Soon Ong, Marc Pollefeys: Lightweight and Accurate Multi-View Stereo With Confidence-Aware Diffusion Model. IEEE T-PAMI 2025
testdata67.08 29677.59 23345.46 28769.20 34444.47 33671.50 8588.34 12631.21 27770.76 36252.20 24475.88 12485.03 205
3Dnovator+62.71 772.29 12070.50 13077.65 8583.40 10451.29 16387.32 7286.40 8259.01 19758.49 23488.32 12732.40 26591.27 7157.04 20782.15 6690.38 88
EI-MVSNet-UG-set72.37 11771.73 11374.29 17281.60 15449.29 20781.85 22588.64 4265.29 8665.05 14188.29 12843.18 13791.83 6163.74 14467.97 19581.75 258
gm-plane-assit83.24 10854.21 9470.91 2288.23 12995.25 1466.37 124
TSAR-MVS + MP.78.31 3078.26 2578.48 6781.33 16456.31 4281.59 23586.41 8169.61 3181.72 1688.16 13055.09 2788.04 17674.12 8386.31 3391.09 73
Zhenlong Yuan, Jiakai Cao, Zhaoqi Wang, Zhaoxin Li: TSAR-MVS: Textureless-aware Segmentation and Correlative Refinement Guided Multi-View Stereo. Pattern Recognition
testing9978.45 2577.78 3280.45 2788.28 3356.81 3287.95 5991.49 671.72 1570.84 9388.09 13157.29 1592.63 4469.24 10775.13 13591.91 47
sss70.49 15070.13 14071.58 24181.59 15539.02 33980.78 25384.71 12759.34 18566.61 12288.09 13137.17 21285.52 24961.82 15971.02 17290.20 95
MG-MVS78.42 2776.99 4382.73 293.17 164.46 189.93 3088.51 4864.83 8973.52 5888.09 13148.07 7192.19 5362.24 15484.53 5191.53 59
HPM-MVS_fast67.86 19866.28 20272.61 21180.67 18048.34 23581.18 24475.95 29150.81 29859.55 21188.05 13427.86 29785.98 24258.83 18273.58 14883.51 233
testing9178.30 3177.54 3580.61 2388.16 3557.12 2387.94 6091.07 1371.43 1870.75 9488.04 13555.82 2292.65 4269.61 10475.00 13992.05 42
baseline172.51 11672.12 10873.69 19185.05 7144.46 29583.51 18186.13 8771.61 1764.64 14887.97 13655.00 2889.48 12259.07 18056.05 30187.13 166
ETVMVS75.80 6975.44 6176.89 10886.23 5250.38 17985.55 11891.42 771.30 2168.80 10687.94 13756.42 1989.24 12756.54 21074.75 14191.07 74
MVS_111021_LR69.07 17467.91 16872.54 21377.27 23849.56 19979.77 26573.96 30759.33 18760.73 19887.82 13830.19 28481.53 28869.94 10372.19 16286.53 178
Vis-MVSNetpermissive70.61 14969.34 15074.42 16780.95 17348.49 22986.03 10377.51 26758.74 20365.55 13787.78 13934.37 24785.95 24552.53 24380.61 7788.80 130
Jingyang Zhang, Yao Yao, Shiwei Li, Zixin Luo, Tian Fang: Visibility-aware Multiview Stereo Network. BMVC 2020
API-MVS74.17 8872.07 10980.49 2590.02 1158.55 887.30 7484.27 13657.51 22765.77 13587.77 14041.61 15995.97 1151.71 24582.63 6086.94 167
test_cas_vis1_n_192067.10 21966.60 19668.59 28565.17 35543.23 31183.23 19369.84 33955.34 26170.67 9687.71 14124.70 32276.66 33778.57 5064.20 22585.89 192
OpenMVScopyleft61.00 1169.99 16067.55 17977.30 9378.37 22354.07 9884.36 15685.76 9357.22 23356.71 26287.67 14230.79 28092.83 3743.04 29784.06 5585.01 206
CPTT-MVS67.15 21865.84 21371.07 24980.96 17050.32 18381.94 22274.10 30346.18 32757.91 24187.64 14329.57 28781.31 29064.10 14270.18 18181.56 261
QAPM71.88 12869.33 15179.52 4082.20 13854.30 9286.30 9788.77 3856.61 24659.72 20687.48 14433.90 25295.36 1347.48 27381.49 7188.90 126
GG-mvs-BLEND77.77 8286.68 4950.61 17068.67 33788.45 4968.73 10787.45 14559.15 1090.67 9054.83 22187.67 1792.03 43
test250672.91 10872.43 9874.32 17180.12 18944.18 30283.19 19484.77 12564.02 9865.97 13087.43 14647.67 7688.72 14859.08 17979.66 9390.08 99
test111171.06 14070.42 13272.97 20479.48 19641.49 32884.82 14582.74 16964.20 9562.98 17587.43 14635.20 23787.92 17858.54 18578.42 10389.49 113
ECVR-MVScopyleft71.81 12971.00 12474.26 17380.12 18943.49 30784.69 14782.16 17464.02 9864.64 14887.43 14635.04 24089.21 13061.24 16279.66 9390.08 99
VDDNet74.37 8572.13 10781.09 2179.58 19556.52 3790.02 2786.70 7752.61 28571.23 8887.20 14931.75 27493.96 2774.30 8275.77 12692.79 25
新几何173.30 19983.10 11153.48 10671.43 32745.55 32966.14 12787.17 15033.88 25380.54 30048.50 26780.33 8385.88 193
TR-MVS69.71 16567.85 17375.27 15282.94 12048.48 23087.40 7180.86 20057.15 23564.61 15087.08 15132.67 26389.64 12046.38 28171.55 16887.68 156
原ACMM176.13 12484.89 7554.59 8785.26 10851.98 28966.70 11987.07 15240.15 17489.70 11851.23 24985.06 4784.10 218
EPNet_dtu66.25 23566.71 19264.87 31478.66 21634.12 35682.80 20375.51 29361.75 14264.47 15686.90 15337.06 21372.46 35643.65 29569.63 18688.02 148
Wanjuan Su, Wenbing Tao: Efficient Edge-Preserving Multi-View Stereo Network for Depth Estimation. AAAI 2023
Anonymous20240521170.11 15467.88 17076.79 11287.20 4547.24 26389.49 3677.38 27054.88 26766.14 12786.84 15420.93 34791.54 6656.45 21471.62 16691.59 55
BH-RMVSNet70.08 15668.01 16776.27 11784.21 8751.22 16587.29 7579.33 23558.96 19963.63 16886.77 15533.29 25890.30 10344.63 29073.96 14587.30 164
IS-MVSNet68.80 18267.55 17972.54 21378.50 22043.43 30981.03 24679.35 23359.12 19557.27 25786.71 15646.05 9487.70 18944.32 29275.60 12886.49 179
Vis-MVSNet (Re-imp)65.52 24165.63 21865.17 31277.49 23530.54 36875.49 29477.73 26359.34 18552.26 30286.69 15749.38 6680.53 30137.07 31675.28 13184.42 214
AdaColmapbinary67.86 19865.48 22175.00 15888.15 3654.99 7386.10 10176.63 28449.30 30657.80 24386.65 15829.39 28988.94 14345.10 28770.21 18081.06 276
test22279.36 19750.97 16677.99 28067.84 34842.54 34762.84 17786.53 15930.26 28376.91 11285.23 202
TAPA-MVS56.12 1461.82 27160.18 27066.71 30078.48 22137.97 34575.19 29676.41 28746.82 32057.04 25886.52 16027.67 30077.03 33226.50 36567.02 20385.14 203
Andrea Romanoni, Matteo Matteucci: TAPA-MVS: Textureless-Aware PAtchMatch Multi-View Stereo. ICCV 2019
PCF-MVS61.03 1070.10 15568.40 16175.22 15477.15 24351.99 14479.30 27282.12 17656.47 24961.88 18886.48 16143.98 12387.24 20455.37 21972.79 15686.43 181
Andreas Kuhn, Shan Lin, Oliver Erdler: Plane Completion and Filtering for Multi-View Stereo Reconstruction. GCPR 2019
OMC-MVS65.97 23965.06 23068.71 28272.97 29842.58 32078.61 27675.35 29654.72 26859.31 21686.25 16233.30 25777.88 32657.99 19467.05 20285.66 196
AUN-MVS68.20 19566.35 19973.76 18876.37 24947.45 25779.52 26979.52 22560.98 15762.34 18186.02 16336.59 22486.94 21362.32 15353.47 32486.89 168
baseline275.15 7874.54 7576.98 10581.67 15151.74 15183.84 17291.94 369.97 2858.98 22186.02 16359.73 891.73 6368.37 11270.40 17987.48 159
hse-mvs271.44 13570.68 12773.73 19076.34 25047.44 25879.45 27079.47 22868.08 4071.97 7886.01 16542.50 14486.93 21478.82 4653.46 32586.83 174
OPM-MVS70.75 14769.58 14674.26 17375.55 26651.34 16186.05 10283.29 15961.94 14062.95 17685.77 16634.15 24988.44 15965.44 13671.07 17182.99 244
Ray L. Khuboni, Hongjun Xu: Octagram Propagation Matching for Multi-Scale View Stereopsis (OPM-MVS).
thisisatest051573.64 9972.20 10477.97 7981.63 15253.01 12686.69 9188.81 3762.53 13064.06 15985.65 16752.15 4492.50 4658.43 18669.84 18288.39 141
114514_t69.87 16367.88 17075.85 13188.38 2952.35 13986.94 8483.68 14953.70 27655.68 27285.60 16830.07 28591.20 7555.84 21771.02 17283.99 222
BH-w/o70.02 15868.51 15974.56 16382.77 12550.39 17886.60 9378.14 25759.77 17559.65 20785.57 16939.27 18387.30 20349.86 25674.94 14085.99 188
CDS-MVSNet70.48 15169.43 14773.64 19277.56 23448.83 21983.51 18177.45 26863.27 11762.33 18285.54 17043.85 12483.29 28057.38 20674.00 14488.79 131
Khang Truong Giang, Soohwan Song, Sungho Jo: Curvature-guided dynamic scale networks for Multi-view Stereo. ICLR 2022
PVSNet_Blended_VisFu73.40 10372.44 9776.30 11681.32 16554.70 8285.81 10578.82 24263.70 10664.53 15285.38 17147.11 8287.38 20267.75 11677.55 10786.81 175
HQP-MVS72.34 11871.44 11875.03 15779.02 20651.56 15588.00 5583.68 14965.45 7864.48 15385.13 17237.35 20788.62 15166.70 12173.12 15184.91 208
NP-MVS78.76 21150.43 17685.12 173
UWE-MVS72.17 12372.15 10672.21 22182.26 13744.29 29986.83 8889.58 2165.58 7765.82 13385.06 17445.02 10984.35 26854.07 22775.18 13287.99 149
VPNet72.07 12471.42 11974.04 17878.64 21747.17 26489.91 3287.97 5572.56 1264.66 14785.04 17541.83 15788.33 16561.17 16360.97 25586.62 177
dmvs_re67.61 20466.00 20872.42 21781.86 14343.45 30864.67 34880.00 21369.56 3260.07 20285.00 17634.71 24387.63 19351.48 24766.68 20486.17 185
PVSNet62.49 869.27 17367.81 17473.64 19284.41 8251.85 14884.63 15177.80 26166.42 6359.80 20584.95 17722.14 34180.44 30255.03 22075.11 13688.62 135
EPP-MVSNet71.14 13770.07 14174.33 17079.18 20346.52 27083.81 17386.49 7956.32 25157.95 24084.90 17854.23 3289.14 13258.14 19369.65 18587.33 162
UA-Net67.32 21466.23 20370.59 25578.85 21041.23 33173.60 30575.45 29561.54 14666.61 12284.53 17938.73 18886.57 22642.48 30274.24 14383.98 224
GeoE69.96 16167.88 17076.22 11981.11 16751.71 15284.15 16276.74 28159.83 17460.91 19584.38 18041.56 16088.10 17451.67 24670.57 17788.84 129
nrg03072.27 12271.56 11574.42 16775.93 26150.60 17186.97 8383.21 16062.75 12567.15 11784.38 18050.07 5886.66 22171.19 9662.37 24985.99 188
iter_conf0573.51 10172.24 10377.33 9187.93 3955.97 4887.90 6170.81 33268.72 3564.04 16084.36 18247.54 7790.87 8671.11 9867.75 19885.13 204
TAMVS69.51 17168.16 16673.56 19576.30 25348.71 22382.57 20877.17 27362.10 13661.32 19384.23 18341.90 15583.46 27854.80 22373.09 15388.50 140
FIs70.00 15970.24 13969.30 27377.93 22938.55 34283.99 16887.72 6266.86 5757.66 24784.17 18452.28 4285.31 25352.72 24268.80 18984.02 220
Fast-Effi-MVS+72.73 11171.15 12377.48 8882.75 12654.76 7886.77 8980.64 20363.05 12165.93 13184.01 18544.42 12189.03 13556.45 21476.36 12088.64 134
CNLPA60.59 27758.44 28167.05 29779.21 20247.26 26179.75 26664.34 35842.46 34851.90 30483.94 18627.79 29975.41 34237.12 31459.49 26478.47 303
HY-MVS67.03 573.90 9173.14 8976.18 12384.70 7747.36 25975.56 29186.36 8366.27 6670.66 9783.91 18751.05 5089.31 12567.10 12072.61 15791.88 49
LPG-MVS_test66.44 23364.58 23572.02 22674.42 28148.60 22483.07 19880.64 20354.69 26953.75 29083.83 18825.73 31386.98 21060.33 17564.71 22080.48 283
LGP-MVS_train72.02 22674.42 28148.60 22480.64 20354.69 26953.75 29083.83 18825.73 31386.98 21060.33 17564.71 22080.48 283
EI-MVSNet69.70 16768.70 15772.68 21075.00 27348.90 21779.54 26787.16 6861.05 15563.88 16583.74 19045.87 9690.44 9657.42 20564.68 22378.70 299
CVMVSNet60.85 27660.44 26662.07 32675.00 27332.73 36379.54 26773.49 31236.98 36056.28 26883.74 19029.28 29069.53 36546.48 28063.23 23983.94 227
TESTMET0.1,172.86 10972.33 9974.46 16581.98 14050.77 16785.13 12985.47 9666.09 7067.30 11583.69 19237.27 21083.57 27665.06 14078.97 9989.05 124
BH-untuned68.28 19266.40 19873.91 18281.62 15350.01 18985.56 11777.39 26957.63 22457.47 25483.69 19236.36 22587.08 20844.81 28873.08 15484.65 211
dmvs_testset57.65 30058.21 28255.97 35174.62 2789.82 40763.75 35063.34 36067.23 5248.89 31983.68 19439.12 18476.14 33823.43 37359.80 26181.96 255
CHOSEN 1792x268876.24 5774.03 8182.88 183.09 11362.84 285.73 11185.39 10069.79 2964.87 14683.49 19541.52 16193.69 3070.55 10081.82 6892.12 39
thres20068.71 18467.27 18573.02 20284.73 7646.76 26785.03 13587.73 6162.34 13459.87 20383.45 19643.15 13888.32 16631.25 34567.91 19683.98 224
Anonymous2024052969.71 16567.28 18477.00 10383.78 9550.36 18188.87 4685.10 11647.22 31764.03 16183.37 19727.93 29692.10 5757.78 20167.44 20088.53 139
XVG-OURS-SEG-HR62.02 26959.54 27369.46 27165.30 35345.88 28165.06 34673.57 31146.45 32357.42 25583.35 19826.95 30478.09 32053.77 23064.03 22784.42 214
HQP_MVS70.96 14369.91 14374.12 17677.95 22749.57 19785.76 10782.59 17063.60 10962.15 18583.28 19936.04 23088.30 16765.46 13372.34 16084.49 212
plane_prior483.28 199
PLCcopyleft52.38 1860.89 27558.97 27966.68 30281.77 14545.70 28578.96 27474.04 30643.66 34247.63 32683.19 20123.52 32977.78 32937.47 31160.46 25776.55 327
Jie Liao, Yanping Fu, Qingan Yan, Chunxia xiao: Pyramid Multi-View Stereo with Local Consistency. Pacific Graphics 2019
FC-MVSNet-test67.49 20867.91 16866.21 30476.06 25733.06 36180.82 25287.18 6764.44 9254.81 27882.87 20250.40 5782.60 28248.05 27066.55 20882.98 245
XVG-OURS61.88 27059.34 27569.49 27065.37 35246.27 27664.80 34773.49 31247.04 31957.41 25682.85 20325.15 31778.18 31853.00 23664.98 21884.01 221
thisisatest053070.47 15268.56 15876.20 12179.78 19351.52 15783.49 18388.58 4757.62 22558.60 23082.79 20451.03 5191.48 6752.84 23762.36 25085.59 199
tfpn200view967.57 20666.13 20571.89 23684.05 8945.07 29083.40 18687.71 6360.79 16257.79 24482.76 20543.53 13387.80 18328.80 35266.36 21082.78 249
thres40067.40 21366.13 20571.19 24784.05 8945.07 29083.40 18687.71 6360.79 16257.79 24482.76 20543.53 13387.80 18328.80 35266.36 21080.71 281
MVS_Test75.85 6574.93 7078.62 6384.08 8855.20 6683.99 16885.17 11268.07 4273.38 6082.76 20550.44 5689.00 13765.90 12880.61 7791.64 53
UGNet68.71 18467.11 18773.50 19680.55 18347.61 25584.08 16478.51 25159.45 18165.68 13682.73 20823.78 32685.08 26052.80 23876.40 11687.80 152
Wanjuan Su, Qingshan Xu, Wenbing Tao: Uncertainty-guided Multi-view Stereo Network for Depth Estimation. IEEE Transactions on Circuits and Systems for Video Technology, 2022
ACMP61.11 966.24 23664.33 23772.00 22874.89 27549.12 20883.18 19579.83 21855.41 26052.29 30082.68 20925.83 31186.10 23760.89 16463.94 22980.78 279
Qingshan Xu and Wenbing Tao: Planar Prior Assisted PatchMatch Multi-View Stereo. AAAI 2020
Syy-MVS61.51 27261.35 25662.00 32881.73 14630.09 37180.97 24881.02 19760.93 15955.06 27682.64 21035.09 23980.81 29516.40 38958.32 27475.10 338
myMVS_eth3d63.52 25363.56 24363.40 32181.73 14634.28 35480.97 24881.02 19760.93 15955.06 27682.64 21048.00 7480.81 29523.42 37458.32 27475.10 338
test-LLR69.65 16869.01 15571.60 23978.67 21448.17 24085.13 12979.72 22059.18 19263.13 17382.58 21236.91 21680.24 30460.56 16975.17 13386.39 182
test-mter68.36 18967.29 18371.60 23978.67 21448.17 24085.13 12979.72 22053.38 27963.13 17382.58 21227.23 30280.24 30460.56 16975.17 13386.39 182
test_fmvs153.60 32352.54 31856.78 34758.07 37330.26 36968.95 33642.19 38332.46 37163.59 16982.56 21411.55 37360.81 37258.25 19155.27 30979.28 293
UniMVSNet_NR-MVSNet68.82 18068.29 16370.40 25975.71 26442.59 31884.23 16086.78 7466.31 6558.51 23182.45 21551.57 4684.64 26653.11 23355.96 30283.96 226
test0.0.03 162.54 26362.44 24662.86 32572.28 30829.51 37682.93 20178.78 24359.18 19253.07 29582.41 21636.91 21677.39 33037.45 31258.96 26881.66 260
Test_1112_low_res67.18 21766.23 20370.02 26778.75 21241.02 33283.43 18473.69 30957.29 23158.45 23682.39 21745.30 10580.88 29450.50 25266.26 21488.16 142
WB-MVSnew69.36 17268.24 16472.72 20979.26 20149.40 20485.72 11288.85 3561.33 14964.59 15182.38 21834.57 24587.53 19846.82 27970.63 17581.22 275
SDMVSNet71.89 12770.62 12975.70 13381.70 14851.61 15373.89 30388.72 4066.58 5961.64 19082.38 21837.63 20089.48 12277.44 5965.60 21686.01 186
sd_testset67.79 20165.95 21073.32 19781.70 14846.33 27568.99 33580.30 20966.58 5961.64 19082.38 21830.45 28287.63 19355.86 21665.60 21686.01 186
XXY-MVS70.18 15369.28 15372.89 20777.64 23142.88 31585.06 13387.50 6662.58 12962.66 18082.34 22143.64 13289.83 11358.42 18863.70 23185.96 190
thres600view766.46 23265.12 22970.47 25683.41 10143.80 30582.15 21787.78 5859.37 18456.02 26982.21 22243.73 12886.90 21526.51 36464.94 21980.71 281
thres100view90066.87 22765.42 22571.24 24583.29 10743.15 31281.67 23187.78 5859.04 19655.92 27082.18 22343.73 12887.80 18328.80 35266.36 21082.78 249
DU-MVS66.84 22865.74 21670.16 26273.27 29542.59 31881.50 23882.92 16763.53 11158.51 23182.11 22440.75 16684.64 26653.11 23355.96 30283.24 238
NR-MVSNet67.25 21565.99 20971.04 25073.27 29543.91 30385.32 12384.75 12666.05 7353.65 29282.11 22445.05 10885.97 24447.55 27256.18 29983.24 238
test_fmvs1_n52.55 32751.19 32256.65 34851.90 38330.14 37067.66 34042.84 38232.27 37262.30 18382.02 2269.12 38160.84 37157.82 19954.75 31578.99 295
TranMVSNet+NR-MVSNet66.94 22565.61 21970.93 25273.45 29143.38 31083.02 20084.25 13765.31 8558.33 23881.90 22739.92 17985.52 24949.43 25954.89 31283.89 228
IB-MVS68.87 274.01 8972.03 11279.94 3883.04 11555.50 5490.24 2688.65 4167.14 5361.38 19281.74 22853.21 3694.28 2360.45 17362.41 24890.03 101
Christian Sormann, Mattia Rossi, Andreas Kuhn and Friedrich Fraundorfer: IB-MVS: An Iterative Algorithm for Deep Multi-View Stereo based on Binary Decisions. BMVC 2021
tt080563.39 25561.31 25769.64 26969.36 33138.87 34078.00 27985.48 9548.82 31055.66 27581.66 22924.38 32386.37 23049.04 26359.36 26683.68 231
MVSTER73.25 10472.33 9976.01 12885.54 6253.76 10283.52 17787.16 6867.06 5463.88 16581.66 22952.77 3890.44 9664.66 14164.69 22283.84 229
VPA-MVSNet71.12 13870.66 12872.49 21578.75 21244.43 29787.64 6490.02 1763.97 10165.02 14281.58 23142.14 15087.42 20063.42 14663.38 23785.63 198
mvsmamba66.93 22664.88 23373.09 20175.06 27147.26 26183.36 19069.21 34362.64 12855.68 27281.43 23229.72 28689.20 13163.35 14763.50 23382.79 248
cascas69.01 17666.13 20577.66 8479.36 19755.41 5886.99 8283.75 14856.69 24458.92 22481.35 23324.31 32492.10 5753.23 23270.61 17685.46 200
WR-MVS67.58 20566.76 19170.04 26675.92 26245.06 29386.23 9885.28 10764.31 9358.50 23381.00 23444.80 11882.00 28749.21 26255.57 30783.06 243
UniMVSNet (Re)67.71 20266.80 19070.45 25774.44 28042.93 31482.42 21484.90 12063.69 10759.63 20880.99 23547.18 8085.23 25651.17 25056.75 29383.19 240
ab-mvs70.65 14869.11 15475.29 15080.87 17446.23 27873.48 30785.24 11059.99 17266.65 12080.94 23643.13 14088.69 14963.58 14568.07 19390.95 77
PVSNet_BlendedMVS73.42 10273.30 8473.76 18885.91 5451.83 14986.18 9984.24 13965.40 8169.09 10480.86 23746.70 8788.13 17275.43 7065.92 21581.33 271
tttt051768.33 19166.29 20174.46 16578.08 22549.06 20980.88 25189.08 2754.40 27254.75 28080.77 23851.31 4890.33 10049.35 26058.01 28283.99 222
MS-PatchMatch72.34 11871.26 12075.61 13582.38 13455.55 5388.00 5589.95 1965.38 8256.51 26680.74 23932.28 26792.89 3557.95 19788.10 1578.39 306
HyFIR lowres test69.94 16267.58 17777.04 10077.11 24457.29 2081.49 24079.11 23858.27 20958.86 22680.41 24042.33 14686.96 21261.91 15768.68 19186.87 169
ACMM58.35 1264.35 24562.01 25071.38 24374.21 28448.51 22882.25 21679.66 22247.61 31554.54 28280.11 24125.26 31686.00 24151.26 24863.16 24179.64 292
Qingshan Xu and Wenbing Tao: Multi-Scale Geometric Consistency Guided Multi-View Stereo. CVPR 2019
testing359.97 27960.19 26959.32 34077.60 23230.01 37381.75 22981.79 18453.54 27750.34 31379.94 24248.99 6876.91 33317.19 38750.59 33371.03 363
LS3D56.40 30853.82 30864.12 31681.12 16645.69 28673.42 30866.14 35235.30 36843.24 34679.88 24322.18 33979.62 31219.10 38464.00 22867.05 368
test_vis1_n51.19 33249.66 32955.76 35251.26 38429.85 37467.20 34238.86 38732.12 37359.50 21279.86 2448.78 38258.23 37956.95 20852.46 32879.19 294
PS-MVSNAJss68.78 18367.17 18673.62 19473.01 29748.33 23784.95 14084.81 12359.30 18858.91 22579.84 24537.77 19588.86 14562.83 15063.12 24383.67 232
UniMVSNet_ETH3D62.51 26460.49 26568.57 28668.30 34140.88 33473.89 30379.93 21651.81 29354.77 27979.61 24624.80 32081.10 29149.93 25561.35 25383.73 230
miper_enhance_ethall69.77 16468.90 15672.38 21878.93 20949.91 19183.29 19178.85 24064.90 8859.37 21479.46 24752.77 3885.16 25863.78 14358.72 27082.08 253
F-COLMAP55.96 31253.65 31062.87 32472.76 30142.77 31774.70 30070.37 33540.03 35141.11 35579.36 24817.77 36073.70 35032.80 33953.96 31972.15 355
mvs_anonymous72.29 12070.74 12676.94 10782.85 12354.72 8178.43 27881.54 18863.77 10461.69 18979.32 24951.11 4985.31 25362.15 15675.79 12590.79 80
RRT_MVS63.68 25261.01 26171.70 23773.48 29045.98 28081.19 24376.08 28954.33 27352.84 29679.27 25022.21 33887.65 19154.13 22655.54 30881.46 265
v2v48269.55 17067.64 17675.26 15372.32 30753.83 9984.93 14181.94 17965.37 8360.80 19779.25 25141.62 15888.98 14063.03 14959.51 26382.98 245
GA-MVS69.04 17566.70 19376.06 12675.11 26952.36 13883.12 19680.23 21063.32 11660.65 19979.22 25230.98 27988.37 16161.25 16166.41 20987.46 160
FMVSNet368.84 17967.40 18273.19 20085.05 7148.53 22785.71 11385.36 10160.90 16157.58 24979.15 25342.16 14986.77 21747.25 27563.40 23484.27 216
Fast-Effi-MVS+-dtu66.53 23164.10 24073.84 18572.41 30552.30 14184.73 14675.66 29259.51 18056.34 26779.11 25428.11 29485.85 24757.74 20263.29 23883.35 234
MVP-Stereo70.97 14270.44 13172.59 21276.03 25951.36 16085.02 13686.99 7160.31 16956.53 26578.92 25540.11 17590.00 10960.00 17790.01 676.41 328
Qingsong Yan: MVP-Stereo: A Parallel Multi-View Patchmatch Stereo Method with Dilation Matching for Photogrammetric Application.
DP-MVS59.24 28456.12 29668.63 28388.24 3450.35 18282.51 21164.43 35741.10 35046.70 33378.77 25624.75 32188.57 15622.26 37656.29 29866.96 369
pmmvs463.34 25661.07 26070.16 26270.14 32650.53 17379.97 26471.41 32855.08 26354.12 28678.58 25732.79 26282.09 28650.33 25357.22 29177.86 312
pmmvs562.80 26261.18 25867.66 29169.53 33042.37 32382.65 20675.19 29754.30 27452.03 30378.51 25831.64 27580.67 29748.60 26658.15 27879.95 290
FA-MVS(test-final)69.00 17766.60 19676.19 12283.48 10047.96 25074.73 29882.07 17757.27 23262.18 18478.47 25936.09 22892.89 3553.76 23171.32 17087.73 154
FMVSNet267.57 20665.79 21472.90 20582.71 12747.97 24885.15 12884.93 11958.55 20656.71 26278.26 26036.72 22186.67 22046.15 28362.94 24584.07 219
cl2268.85 17867.69 17572.35 21978.07 22649.98 19082.45 21378.48 25262.50 13258.46 23577.95 26149.99 6085.17 25762.55 15158.72 27081.90 256
v114468.81 18166.82 18974.80 16172.34 30653.46 10784.68 14881.77 18664.25 9460.28 20177.91 26240.23 17288.95 14160.37 17459.52 26281.97 254
miper_ehance_all_eth68.70 18667.58 17772.08 22476.91 24649.48 20382.47 21278.45 25362.68 12758.28 23977.88 26350.90 5285.01 26161.91 15758.72 27081.75 258
pm-mvs164.12 24762.56 24568.78 28071.68 31138.87 34082.89 20281.57 18755.54 25953.89 28977.82 26437.73 19886.74 21848.46 26853.49 32380.72 280
jajsoiax63.21 25760.84 26270.32 26068.33 34044.45 29681.23 24281.05 19653.37 28050.96 31077.81 26517.49 36185.49 25159.31 17858.05 28181.02 277
mvs_tets62.96 26060.55 26470.19 26168.22 34344.24 30180.90 25080.74 20252.99 28350.82 31277.56 26616.74 36485.44 25259.04 18157.94 28380.89 278
MSDG59.44 28255.14 30272.32 22074.69 27650.71 16874.39 30173.58 31044.44 33743.40 34477.52 26719.45 35190.87 8631.31 34457.49 29075.38 334
V4267.66 20365.60 22073.86 18470.69 32453.63 10481.50 23878.61 24963.85 10359.49 21377.49 26837.98 19287.65 19162.33 15258.43 27380.29 286
v119267.96 19765.74 21674.63 16271.79 30953.43 11284.06 16680.99 19963.19 11959.56 21077.46 26937.50 20688.65 15058.20 19258.93 26981.79 257
CHOSEN 280x42057.53 30256.38 29560.97 33674.01 28648.10 24446.30 38054.31 37148.18 31350.88 31177.43 27038.37 19159.16 37854.83 22163.14 24275.66 332
testgi54.25 31852.57 31759.29 34162.76 36621.65 39172.21 31870.47 33453.25 28141.94 34977.33 27114.28 37077.95 32529.18 35151.72 33178.28 308
v14419267.86 19865.76 21574.16 17571.68 31153.09 12384.14 16380.83 20162.85 12459.21 21977.28 27239.30 18288.00 17758.67 18457.88 28681.40 268
v192192067.45 20965.23 22874.10 17771.51 31452.90 12983.75 17580.44 20662.48 13359.12 22077.13 27336.98 21487.90 17957.53 20358.14 28081.49 262
v124066.99 22364.68 23473.93 18171.38 31752.66 13283.39 18879.98 21461.97 13958.44 23777.11 27435.25 23687.81 18156.46 21358.15 27881.33 271
IterMVS-LS66.63 22965.36 22670.42 25875.10 27048.90 21781.45 24176.69 28361.05 15555.71 27177.10 27545.86 9783.65 27557.44 20457.88 28678.70 299
Fangjinhua Wang, Silvano Galliani, Christoph Vogel, Marc Pollefeys: IterMVS: Iterative Probability Estimation for Efficient Multi-View Stereo.
eth_miper_zixun_eth66.98 22465.28 22772.06 22575.61 26550.40 17781.00 24776.97 27962.00 13756.99 25976.97 27644.84 11585.58 24858.75 18354.42 31680.21 287
c3_l67.97 19666.66 19471.91 23576.20 25549.31 20682.13 21978.00 25961.99 13857.64 24876.94 27749.41 6584.93 26260.62 16857.01 29281.49 262
cl____67.43 21065.93 21171.95 23276.33 25148.02 24682.58 20779.12 23761.30 15156.72 26176.92 27846.12 9286.44 22857.98 19556.31 29681.38 270
DIV-MVS_self_test67.43 21065.93 21171.94 23376.33 25148.01 24782.57 20879.11 23861.31 15056.73 26076.92 27846.09 9386.43 22957.98 19556.31 29681.39 269
Baseline_NR-MVSNet65.49 24264.27 23869.13 27474.37 28341.65 32583.39 18878.85 24059.56 17959.62 20976.88 28040.75 16687.44 19949.99 25455.05 31078.28 308
CostFormer73.89 9272.30 10178.66 6282.36 13556.58 3375.56 29185.30 10566.06 7270.50 10076.88 28057.02 1689.06 13368.27 11468.74 19090.33 89
PEN-MVS58.35 29857.15 28861.94 32967.55 34534.39 35377.01 28478.35 25551.87 29147.72 32576.73 28233.91 25173.75 34934.03 33347.17 34677.68 314
Anonymous2023121166.08 23863.67 24173.31 19883.07 11448.75 22186.01 10484.67 12945.27 33156.54 26476.67 28328.06 29588.95 14152.78 23959.95 25882.23 252
CP-MVSNet58.54 29757.57 28661.46 33368.50 33833.96 35776.90 28678.60 25051.67 29447.83 32476.60 28434.99 24272.79 35435.45 32347.58 34277.64 316
v14868.24 19466.35 19973.88 18371.76 31051.47 15884.23 16081.90 18363.69 10758.94 22276.44 28543.72 13087.78 18660.63 16755.86 30482.39 251
TransMVSNet (Re)62.82 26160.76 26369.02 27573.98 28741.61 32686.36 9579.30 23656.90 23752.53 29876.44 28541.85 15687.60 19638.83 30940.61 36477.86 312
DTE-MVSNet57.03 30355.73 29960.95 33765.94 34932.57 36475.71 28977.09 27551.16 29746.65 33476.34 28732.84 26173.22 35330.94 34644.87 35577.06 319
test_djsdf63.84 24961.56 25370.70 25468.78 33544.69 29481.63 23281.44 19050.28 29952.27 30176.26 28826.72 30586.11 23560.83 16555.84 30581.29 274
GBi-Net67.09 22065.47 22271.96 22982.71 12746.36 27283.52 17783.31 15658.55 20657.58 24976.23 28936.72 22186.20 23147.25 27563.40 23483.32 235
test167.09 22065.47 22271.96 22982.71 12746.36 27283.52 17783.31 15658.55 20657.58 24976.23 28936.72 22186.20 23147.25 27563.40 23483.32 235
FMVSNet164.57 24362.11 24971.96 22977.32 23746.36 27283.52 17783.31 15652.43 28754.42 28376.23 28927.80 29886.20 23142.59 30161.34 25483.32 235
PS-CasMVS58.12 29957.03 29061.37 33468.24 34233.80 35976.73 28778.01 25851.20 29647.54 32876.20 29232.85 26072.76 35535.17 32847.37 34477.55 317
Effi-MVS+-dtu66.24 23664.96 23270.08 26475.17 26849.64 19682.01 22074.48 30162.15 13557.83 24276.08 29330.59 28183.79 27265.40 13760.93 25676.81 321
v867.25 21564.99 23174.04 17872.89 30053.31 11782.37 21580.11 21261.54 14654.29 28576.02 29442.89 14288.41 16058.43 18656.36 29480.39 285
RPSCF45.77 34244.13 34450.68 35757.67 37629.66 37554.92 37545.25 37926.69 38045.92 33775.92 29517.43 36245.70 39127.44 36145.95 35376.67 322
v1066.61 23064.20 23973.83 18672.59 30353.37 11381.88 22479.91 21761.11 15354.09 28775.60 29640.06 17688.26 17056.47 21256.10 30079.86 291
ACMH+54.58 1558.55 29655.24 30068.50 28774.68 27745.80 28480.27 25970.21 33647.15 31842.77 34775.48 29716.73 36585.98 24235.10 33054.78 31373.72 347
tpm270.82 14568.44 16077.98 7880.78 17656.11 4474.21 30281.28 19460.24 17068.04 11175.27 29852.26 4388.50 15855.82 21868.03 19489.33 115
ITE_SJBPF51.84 35658.03 37431.94 36753.57 37436.67 36141.32 35375.23 29911.17 37551.57 38525.81 36648.04 33972.02 357
tpm68.36 18967.48 18170.97 25179.93 19251.34 16176.58 28878.75 24567.73 4763.54 17174.86 30048.33 6972.36 35753.93 22963.71 23089.21 119
WR-MVS_H58.91 29158.04 28361.54 33269.07 33433.83 35876.91 28581.99 17851.40 29548.17 32174.67 30140.23 17274.15 34531.78 34248.10 33876.64 325
CMPMVSbinary40.41 2155.34 31352.64 31663.46 32060.88 37143.84 30461.58 36071.06 33030.43 37636.33 36774.63 30224.14 32575.44 34148.05 27066.62 20671.12 362
M. Jancosek, T. Pajdla: Multi-View Reconstruction Preserving Weakly-Supported Surfaces. CVPR 2011
test_fmvs245.89 34144.32 34350.62 35845.85 39224.70 38558.87 36837.84 39025.22 38152.46 29974.56 3037.07 38554.69 38149.28 26147.70 34172.48 354
mvsany_test143.38 34442.57 34645.82 36250.96 38526.10 38355.80 37127.74 40027.15 37947.41 33074.39 30418.67 35644.95 39244.66 28936.31 37066.40 371
XVG-ACMP-BASELINE56.03 31052.85 31465.58 30761.91 36840.95 33363.36 35172.43 31845.20 33246.02 33674.09 3059.20 38078.12 31945.13 28658.27 27677.66 315
LTVRE_ROB45.45 1952.73 32549.74 32861.69 33169.78 32934.99 35144.52 38167.60 35143.11 34543.79 34174.03 30618.54 35781.45 28928.39 35757.94 28368.62 366
Andreas Kuhn, Heiko Hirschmüller, Daniel Scharstein, Helmut Mayer: A TV Prior for High-Quality Scalable Multi-View Stereo Reconstruction. International Journal of Computer Vision 2016
pmmvs659.64 28157.15 28867.09 29566.01 34836.86 34980.50 25578.64 24745.05 33349.05 31873.94 30727.28 30186.10 23743.96 29449.94 33578.31 307
FE-MVS64.15 24660.43 26775.30 14980.85 17549.86 19368.28 33978.37 25450.26 30259.31 21673.79 30826.19 30991.92 6040.19 30566.67 20584.12 217
IterMVS-SCA-FT59.12 28658.81 28060.08 33870.68 32545.07 29080.42 25774.25 30243.54 34350.02 31473.73 30931.97 27056.74 38051.06 25153.60 32278.42 305
tpmrst71.04 14169.77 14474.86 16083.19 11055.86 5175.64 29078.73 24667.88 4464.99 14573.73 30949.96 6279.56 31365.92 12767.85 19789.14 122
PatchMatch-RL56.66 30453.75 30965.37 31177.91 23045.28 28869.78 33260.38 36441.35 34947.57 32773.73 30916.83 36376.91 33336.99 31759.21 26773.92 346
IterMVS63.77 25161.67 25170.08 26472.68 30251.24 16480.44 25675.51 29360.51 16751.41 30573.70 31232.08 26978.91 31454.30 22554.35 31780.08 289
Fangjinhua Wang, Silvano Galliani, Christoph Vogel, Marc Pollefeys: IterMVS: Iterative Probability Estimation for Efficient Multi-View Stereo.
tfpnnormal61.47 27359.09 27768.62 28476.29 25441.69 32481.14 24585.16 11354.48 27151.32 30673.63 31332.32 26686.89 21621.78 37855.71 30677.29 318
COLMAP_ROBcopyleft43.60 2050.90 33348.05 33459.47 33967.81 34440.57 33571.25 32562.72 36336.49 36336.19 36873.51 31413.48 37173.92 34820.71 38050.26 33463.92 376
Johannes L. Schönberger, Enliang Zheng, Marc Pollefeys, Jan-Michael Frahm: Pixelwise View Selection for Unstructured Multi-View Stereo. ECCV 2016
EG-PatchMatch MVS62.40 26859.59 27270.81 25373.29 29349.05 21085.81 10584.78 12451.85 29244.19 33973.48 31515.52 36989.85 11240.16 30667.24 20173.54 349
ACMH53.70 1659.78 28055.94 29871.28 24476.59 24848.35 23480.15 26376.11 28849.74 30441.91 35073.45 31616.50 36690.31 10131.42 34357.63 28975.17 336
Qingshan Xu and Wenbing Tao: Multi-Scale Geometric Consistency Guided Multi-View Stereo. CVPR 2019
v7n62.50 26559.27 27672.20 22267.25 34649.83 19477.87 28180.12 21152.50 28648.80 32073.07 31732.10 26887.90 17946.83 27854.92 31178.86 297
OpenMVS_ROBcopyleft53.19 1759.20 28556.00 29768.83 27871.13 31944.30 29883.64 17675.02 29846.42 32446.48 33573.03 31818.69 35588.14 17127.74 36061.80 25174.05 345
AllTest47.32 33944.66 34155.32 35365.08 35637.50 34762.96 35554.25 37235.45 36633.42 37672.82 3199.98 37759.33 37524.13 37043.84 35769.13 364
TestCases55.32 35365.08 35637.50 34754.25 37235.45 36633.42 37672.82 3199.98 37759.33 37524.13 37043.84 35769.13 364
anonymousdsp60.46 27857.65 28468.88 27663.63 36345.09 28972.93 31178.63 24846.52 32251.12 30772.80 32121.46 34583.07 28157.79 20053.97 31878.47 303
CL-MVSNet_self_test62.98 25961.14 25968.50 28765.86 35042.96 31384.37 15582.98 16560.98 15753.95 28872.70 32240.43 17083.71 27441.10 30347.93 34078.83 298
EPMVS68.45 18865.44 22477.47 8984.91 7456.17 4371.89 32381.91 18261.72 14360.85 19672.49 32336.21 22687.06 20947.32 27471.62 16689.17 121
LCM-MVSNet-Re58.82 29256.54 29165.68 30679.31 20029.09 37961.39 36145.79 37760.73 16437.65 36572.47 32431.42 27681.08 29249.66 25770.41 17886.87 169
PVSNet_057.04 1361.19 27457.24 28773.02 20277.45 23650.31 18479.43 27177.36 27163.96 10247.51 32972.45 32525.03 31883.78 27352.76 24119.22 39584.96 207
miper_lstm_enhance63.91 24862.30 24768.75 28175.06 27146.78 26669.02 33481.14 19559.68 17852.76 29772.39 32640.71 16877.99 32456.81 20953.09 32681.48 264
Anonymous2023120659.08 28857.59 28563.55 31968.77 33632.14 36680.26 26079.78 21950.00 30349.39 31672.39 32626.64 30678.36 31733.12 33857.94 28380.14 288
test20.0355.22 31454.07 30758.68 34363.14 36525.00 38477.69 28274.78 29952.64 28443.43 34372.39 32626.21 30874.76 34429.31 35047.05 34876.28 329
test_040256.45 30753.03 31166.69 30176.78 24750.31 18481.76 22869.61 34142.79 34643.88 34072.13 32922.82 33386.46 22716.57 38850.94 33263.31 377
EU-MVSNet52.63 32650.72 32358.37 34462.69 36728.13 38172.60 31275.97 29030.94 37540.76 35772.11 33020.16 34970.80 36135.11 32946.11 35276.19 330
D2MVS63.49 25461.39 25569.77 26869.29 33248.93 21678.89 27577.71 26460.64 16649.70 31572.10 33127.08 30383.48 27754.48 22462.65 24676.90 320
USDC54.36 31751.23 32163.76 31864.29 36137.71 34662.84 35673.48 31456.85 23835.47 37071.94 3329.23 37978.43 31638.43 31048.57 33775.13 337
OurMVSNet-221017-052.39 32848.73 33163.35 32265.21 35438.42 34368.54 33864.95 35438.19 35539.57 35871.43 33313.23 37279.92 30837.16 31340.32 36571.72 358
KD-MVS_2432*160059.04 28956.44 29366.86 29879.07 20445.87 28272.13 31980.42 20755.03 26448.15 32271.01 33436.73 21978.05 32235.21 32630.18 38376.67 322
miper_refine_blended59.04 28956.44 29366.86 29879.07 20445.87 28272.13 31980.42 20755.03 26448.15 32271.01 33436.73 21978.05 32235.21 32630.18 38376.67 322
PatchmatchNetpermissive67.07 22263.63 24277.40 9083.10 11158.03 972.11 32177.77 26258.85 20059.37 21470.83 33637.84 19484.93 26242.96 29869.83 18389.26 116
Fangjinhua Wang, Silvano Galliani, Christoph Vogel, Pablo Speciale, Marc Pollefeys: PatchmatchNet: Learned Multi-View Patchmatch Stereo.
SCA63.84 24960.01 27175.32 14678.58 21857.92 1061.61 35977.53 26656.71 24357.75 24670.77 33731.97 27079.91 31048.80 26456.36 29488.13 145
Patchmatch-test53.33 32448.17 33368.81 27973.31 29242.38 32242.98 38358.23 36632.53 37038.79 36270.77 33739.66 18073.51 35125.18 36752.06 33090.55 83
tpm cat166.28 23462.78 24476.77 11381.40 16257.14 2270.03 33077.19 27253.00 28258.76 22970.73 33946.17 9186.73 21943.27 29664.46 22486.44 180
dp64.41 24461.58 25272.90 20582.40 13354.09 9772.53 31376.59 28560.39 16855.68 27270.39 34035.18 23876.90 33539.34 30861.71 25287.73 154
UnsupCasMVSNet_eth57.56 30155.15 30164.79 31564.57 36033.12 36073.17 31083.87 14758.98 19841.75 35170.03 34122.54 33479.92 30846.12 28435.31 37281.32 273
SixPastTwentyTwo54.37 31650.10 32567.21 29470.70 32341.46 32974.73 29864.69 35547.56 31639.12 36069.49 34218.49 35884.69 26531.87 34134.20 37875.48 333
MIMVSNet63.12 25860.29 26871.61 23875.92 26246.65 26865.15 34581.94 17959.14 19454.65 28169.47 34325.74 31280.63 29841.03 30469.56 18787.55 158
MDTV_nov1_ep1361.56 25381.68 15055.12 6872.41 31578.18 25659.19 19058.85 22769.29 34434.69 24486.16 23436.76 32062.96 244
our_test_359.11 28755.08 30371.18 24871.42 31553.29 11881.96 22174.52 30048.32 31142.08 34869.28 34528.14 29382.15 28434.35 33245.68 35478.11 311
ppachtmachnet_test58.56 29554.34 30471.24 24571.42 31554.74 7981.84 22672.27 31949.02 30845.86 33868.99 34626.27 30783.30 27930.12 34743.23 35975.69 331
tpmvs62.45 26759.42 27471.53 24283.93 9154.32 9170.03 33077.61 26551.91 29053.48 29368.29 34737.91 19386.66 22133.36 33558.27 27673.62 348
FMVSNet558.61 29456.45 29265.10 31377.20 24239.74 33674.77 29777.12 27450.27 30143.28 34567.71 34826.15 31076.90 33536.78 31954.78 31378.65 301
pmmvs-eth3d55.97 31152.78 31565.54 30861.02 37046.44 27175.36 29567.72 34949.61 30543.65 34267.58 34921.63 34377.04 33144.11 29344.33 35673.15 353
TDRefinement40.91 34638.37 35048.55 36050.45 38633.03 36258.98 36750.97 37528.50 37729.89 38167.39 3506.21 39254.51 38217.67 38635.25 37358.11 379
TinyColmap48.15 33844.49 34259.13 34265.73 35138.04 34463.34 35262.86 36238.78 35329.48 38267.23 3516.46 39073.30 35224.59 36941.90 36266.04 372
PM-MVS46.92 34043.76 34556.41 35052.18 38232.26 36563.21 35438.18 38837.99 35740.78 35666.20 3525.09 39365.42 36848.19 26941.99 36171.54 360
CR-MVSNet62.47 26659.04 27872.77 20873.97 28856.57 3460.52 36271.72 32360.04 17157.49 25265.86 35338.94 18580.31 30342.86 29959.93 25981.42 266
Patchmtry56.56 30652.95 31367.42 29372.53 30450.59 17259.05 36671.72 32337.86 35846.92 33165.86 35338.94 18580.06 30736.94 31846.72 35071.60 359
lessismore_v067.98 28964.76 35941.25 33045.75 37836.03 36965.63 35519.29 35384.11 26935.67 32221.24 39378.59 302
MIMVSNet150.35 33447.81 33557.96 34561.53 36927.80 38267.40 34174.06 30543.25 34433.31 37865.38 35616.03 36771.34 35921.80 37747.55 34374.75 340
K. test v354.04 31949.42 33067.92 29068.55 33742.57 32175.51 29363.07 36152.07 28839.21 35964.59 35719.34 35282.21 28337.11 31525.31 38878.97 296
Anonymous2024052151.65 33048.42 33261.34 33556.43 37739.65 33873.57 30673.47 31536.64 36236.59 36663.98 35810.75 37672.25 35835.35 32449.01 33672.11 356
MDA-MVSNet-bldmvs51.56 33147.75 33763.00 32371.60 31347.32 26069.70 33372.12 32043.81 34127.65 38763.38 35921.97 34275.96 33927.30 36232.19 38065.70 374
MDA-MVSNet_test_wron53.82 32149.95 32765.43 30970.13 32749.05 21072.30 31671.65 32644.23 34031.85 38063.13 36023.68 32874.01 34633.25 33739.35 36773.23 352
YYNet153.82 32149.96 32665.41 31070.09 32848.95 21472.30 31671.66 32544.25 33931.89 37963.07 36123.73 32773.95 34733.26 33639.40 36673.34 350
LF4IMVS33.04 35632.55 35634.52 37440.96 39322.03 38944.45 38235.62 39220.42 38528.12 38562.35 3625.03 39431.88 40421.61 37934.42 37549.63 386
test_fmvs337.95 34935.75 35244.55 36535.50 39818.92 39548.32 37734.00 39518.36 38941.31 35461.58 3632.29 40048.06 39042.72 30037.71 36966.66 370
N_pmnet41.25 34539.77 34845.66 36368.50 3380.82 41372.51 3140.38 41235.61 36535.26 37161.51 36420.07 35067.74 36623.51 37240.63 36368.42 367
ADS-MVSNet255.21 31551.44 32066.51 30380.60 18149.56 19955.03 37365.44 35344.72 33451.00 30861.19 36522.83 33175.41 34228.54 35553.63 32074.57 342
ADS-MVSNet56.17 30951.95 31968.84 27780.60 18153.07 12455.03 37370.02 33844.72 33451.00 30861.19 36522.83 33178.88 31528.54 35553.63 32074.57 342
new-patchmatchnet48.21 33746.55 33953.18 35557.73 37518.19 39970.24 32871.02 33145.70 32833.70 37460.23 36718.00 35969.86 36427.97 35934.35 37671.49 361
ambc62.06 32753.98 38029.38 37735.08 39179.65 22341.37 35259.96 3686.27 39182.15 28435.34 32538.22 36874.65 341
patchmatchnet-post59.74 36938.41 19079.91 310
DSMNet-mixed38.35 34835.36 35347.33 36148.11 39014.91 40337.87 38936.60 39119.18 38734.37 37259.56 37015.53 36853.01 38420.14 38246.89 34974.07 344
KD-MVS_self_test49.24 33546.85 33856.44 34954.32 37822.87 38757.39 36973.36 31644.36 33837.98 36459.30 37118.97 35471.17 36033.48 33442.44 36075.26 335
RPMNet59.29 28354.25 30674.42 16773.97 28856.57 3460.52 36276.98 27635.72 36457.49 25258.87 37237.73 19885.26 25527.01 36359.93 25981.42 266
UnsupCasMVSNet_bld53.86 32050.53 32463.84 31763.52 36434.75 35271.38 32481.92 18146.53 32138.95 36157.93 37320.55 34880.20 30639.91 30734.09 37976.57 326
pmmvs345.53 34341.55 34757.44 34648.97 38839.68 33770.06 32957.66 36728.32 37834.06 37357.29 3748.50 38366.85 36734.86 33134.26 37765.80 373
PatchT56.60 30552.97 31267.48 29272.94 29946.16 27957.30 37073.78 30838.77 35454.37 28457.26 37537.52 20478.06 32132.02 34052.79 32778.23 310
WB-MVS37.41 35036.37 35140.54 36954.23 37910.43 40665.29 34443.75 38034.86 36927.81 38654.63 37624.94 31963.21 3696.81 40115.00 39647.98 388
Patchmatch-RL test58.72 29354.32 30571.92 23463.91 36244.25 30061.73 35855.19 36957.38 23049.31 31754.24 37737.60 20280.89 29362.19 15547.28 34590.63 82
EGC-MVSNET33.75 35430.42 35843.75 36664.94 35836.21 35060.47 36440.70 3860.02 4060.10 40753.79 3787.39 38460.26 37311.09 39435.23 37434.79 392
FPMVS35.40 35133.67 35540.57 36846.34 39128.74 38041.05 38557.05 36820.37 38622.27 39053.38 3796.87 38744.94 3938.62 39547.11 34748.01 387
mvsany_test328.00 35825.98 36034.05 37528.97 40315.31 40134.54 39218.17 40616.24 39029.30 38353.37 3802.79 39833.38 40330.01 34820.41 39453.45 383
SSC-MVS35.20 35234.30 35437.90 37152.58 3818.65 40961.86 35741.64 38431.81 37425.54 38852.94 38123.39 33059.28 3776.10 40212.86 39745.78 390
test_vis1_rt40.29 34738.64 34945.25 36448.91 38930.09 37159.44 36527.07 40124.52 38338.48 36351.67 3826.71 38849.44 38644.33 29146.59 35156.23 380
test_f27.12 36024.85 36133.93 37626.17 40815.25 40230.24 39622.38 40512.53 39528.23 38449.43 3832.59 39934.34 40225.12 36826.99 38652.20 384
new_pmnet33.56 35531.89 35738.59 37049.01 38720.42 39251.01 37637.92 38920.58 38423.45 38946.79 3846.66 38949.28 38820.00 38331.57 38246.09 389
APD_test126.46 36224.41 36332.62 37937.58 39521.74 39040.50 38730.39 39711.45 39616.33 39343.76 3851.63 40541.62 39411.24 39326.82 38734.51 393
gg-mvs-nofinetune67.43 21064.53 23676.13 12485.95 5347.79 25464.38 34988.28 5139.34 35266.62 12141.27 38658.69 1389.00 13749.64 25886.62 3091.59 55
PMMVS226.71 36122.98 36637.87 37236.89 3968.51 41042.51 38429.32 39919.09 38813.01 39637.54 3872.23 40153.11 38314.54 39011.71 39851.99 385
JIA-IIPM52.33 32947.77 33666.03 30571.20 31846.92 26540.00 38876.48 28637.10 35946.73 33237.02 38832.96 25977.88 32635.97 32152.45 32973.29 351
test_method24.09 36521.07 36933.16 37727.67 4068.35 41126.63 39735.11 3943.40 40314.35 39536.98 3893.46 39735.31 39919.08 38522.95 39055.81 381
MVS-HIRNet49.01 33644.71 34061.92 33076.06 25746.61 26963.23 35354.90 37024.77 38233.56 37536.60 39021.28 34675.88 34029.49 34962.54 24763.26 378
ANet_high34.39 35329.59 35948.78 35930.34 40222.28 38855.53 37263.79 35938.11 35615.47 39436.56 3916.94 38659.98 37413.93 3915.64 40564.08 375
PMVScopyleft19.57 2225.07 36322.43 36832.99 37823.12 40922.98 38640.98 38635.19 39315.99 39111.95 40035.87 3921.47 40649.29 3875.41 40431.90 38126.70 397
Y. Furukawa, J. Ponce: Accurate, dense, and robust multiview stereopsis. PAMI (2010)
LCM-MVSNet28.07 35723.85 36540.71 36727.46 40718.93 39430.82 39546.19 37612.76 39416.40 39234.70 3931.90 40348.69 38920.25 38124.22 38954.51 382
testf121.11 36619.08 37027.18 38230.56 40018.28 39733.43 39324.48 4028.02 40012.02 39833.50 3940.75 40935.09 4007.68 39721.32 39128.17 395
APD_test221.11 36619.08 37027.18 38230.56 40018.28 39733.43 39324.48 4028.02 40012.02 39833.50 3940.75 40935.09 4007.68 39721.32 39128.17 395
DeepMVS_CXcopyleft13.10 38621.34 4108.99 40810.02 41010.59 3987.53 40330.55 3961.82 40414.55 4056.83 4007.52 40115.75 399
test_vis3_rt24.79 36422.95 36730.31 38028.59 40418.92 39537.43 39017.27 40812.90 39321.28 39129.92 3971.02 40736.35 39728.28 35829.82 38535.65 391
MVEpermissive16.60 2317.34 37113.39 37429.16 38128.43 40519.72 39313.73 39923.63 4047.23 4027.96 40221.41 3980.80 40836.08 3986.97 39910.39 39931.69 394
Simon Fuhrmann, Fabian Langguth, Michael Goesele: MVE - A Multi-View Reconstruction Environment. EUROGRAPHICS Workshops on Graphics and Cultural Heritage (2014)
tmp_tt9.44 37210.68 3755.73 3882.49 4114.21 41210.48 40118.04 4070.34 40512.59 39720.49 39911.39 3747.03 40713.84 3926.46 4045.95 402
E-PMN19.16 36818.40 37221.44 38436.19 39713.63 40447.59 37830.89 39610.73 3975.91 40416.59 4003.66 39639.77 3955.95 4038.14 40010.92 400
test_post16.22 40137.52 20484.72 264
Gipumacopyleft27.47 35924.26 36437.12 37360.55 37229.17 37811.68 40060.00 36514.18 39210.52 40115.12 4022.20 40263.01 3708.39 39635.65 37119.18 398
S. Galliani, K. Lasinger, K. Schindler: Massively Parallel Multiview Stereopsis by Surface Normal Diffusion. ICCV 2015
EMVS18.42 36917.66 37320.71 38534.13 39912.64 40546.94 37929.94 39810.46 3995.58 40514.93 4034.23 39538.83 3965.24 4057.51 40210.67 401
test_post170.84 32714.72 40434.33 24883.86 27048.80 264
X-MVStestdata65.85 24062.20 24876.81 10983.41 10152.48 13484.88 14283.20 16158.03 21263.91 1634.82 40535.50 23489.78 11465.50 13080.50 7988.16 142
wuyk23d9.11 3738.77 37710.15 38740.18 39416.76 40020.28 3981.01 4112.58 4042.66 4060.98 4060.23 41112.49 4064.08 4066.90 4031.19 403
testmvs6.14 3758.18 3780.01 3890.01 4120.00 41573.40 3090.00 4130.00 4070.02 4080.15 4070.00 4120.00 4080.02 4070.00 4060.02 404
test1236.01 3768.01 3790.01 3890.00 4130.01 41471.93 3220.00 4130.00 4070.02 4080.11 4080.00 4120.00 4080.02 4070.00 4060.02 404
test_blank0.00 3780.00 3810.00 3910.00 4130.00 4150.00 4020.00 4130.00 4070.00 4100.00 4090.00 4120.00 4080.00 4090.00 4060.00 406
uanet_test0.00 3780.00 3810.00 3910.00 4130.00 4150.00 4020.00 4130.00 4070.00 4100.00 4090.00 4120.00 4080.00 4090.00 4060.00 406
DCPMVS0.00 3780.00 3810.00 3910.00 4130.00 4150.00 4020.00 4130.00 4070.00 4100.00 4090.00 4120.00 4080.00 4090.00 4060.00 406
pcd_1.5k_mvsjas3.15 3774.20 3800.00 3910.00 4130.00 4150.00 4020.00 4130.00 4070.00 4100.00 40937.77 1950.00 4080.00 4090.00 4060.00 406
sosnet-low-res0.00 3780.00 3810.00 3910.00 4130.00 4150.00 4020.00 4130.00 4070.00 4100.00 4090.00 4120.00 4080.00 4090.00 4060.00 406
sosnet0.00 3780.00 3810.00 3910.00 4130.00 4150.00 4020.00 4130.00 4070.00 4100.00 4090.00 4120.00 4080.00 4090.00 4060.00 406
uncertanet0.00 3780.00 3810.00 3910.00 4130.00 4150.00 4020.00 4130.00 4070.00 4100.00 4090.00 4120.00 4080.00 4090.00 4060.00 406
Regformer0.00 3780.00 3810.00 3910.00 4130.00 4150.00 4020.00 4130.00 4070.00 4100.00 4090.00 4120.00 4080.00 4090.00 4060.00 406
uanet0.00 3780.00 3810.00 3910.00 4130.00 4150.00 4020.00 4130.00 4070.00 4100.00 4090.00 4120.00 4080.00 4090.00 4060.00 406
WAC-MVS34.28 35422.56 375
FOURS183.24 10849.90 19284.98 13778.76 24447.71 31473.42 59
MSC_two_6792asdad81.53 1691.77 456.03 4691.10 1096.22 881.46 3486.80 2792.34 34
No_MVS81.53 1691.77 456.03 4691.10 1096.22 881.46 3486.80 2792.34 34
eth-test20.00 413
eth-test0.00 413
IU-MVS89.48 1757.49 1591.38 966.22 6788.26 182.83 2387.60 1892.44 31
save fliter85.35 6656.34 4189.31 4081.46 18961.55 145
test_0728_SECOND82.20 889.50 1557.73 1192.34 688.88 3296.39 481.68 3087.13 2192.47 30
GSMVS88.13 145
test_part289.33 2355.48 5582.27 12
sam_mvs138.86 18788.13 145
sam_mvs35.99 232
MTGPAbinary81.31 192
MTMP87.27 7615.34 409
test9_res78.72 4985.44 4291.39 63
agg_prior275.65 6885.11 4691.01 75
agg_prior85.64 6054.92 7583.61 15372.53 7388.10 174
test_prior456.39 4087.15 80
test_prior78.39 7186.35 5154.91 7685.45 9889.70 11890.55 83
旧先验281.73 23045.53 33074.66 4670.48 36358.31 190
新几何281.61 234
无先验85.19 12778.00 25949.08 30785.13 25952.78 23987.45 161
原ACMM283.77 174
testdata277.81 32845.64 285
segment_acmp44.97 112
testdata177.55 28364.14 97
test1279.24 4486.89 4756.08 4585.16 11372.27 7747.15 8191.10 7985.93 3690.54 85
plane_prior777.95 22748.46 231
plane_prior678.42 22249.39 20536.04 230
plane_prior582.59 17088.30 16765.46 13372.34 16084.49 212
plane_prior348.95 21464.01 10062.15 185
plane_prior285.76 10763.60 109
plane_prior178.31 224
plane_prior49.57 19787.43 6964.57 9172.84 155
n20.00 413
nn0.00 413
door-mid41.31 385
test1184.25 137
door43.27 381
HQP5-MVS51.56 155
HQP-NCC79.02 20688.00 5565.45 7864.48 153
ACMP_Plane79.02 20688.00 5565.45 7864.48 153
BP-MVS66.70 121
HQP4-MVS64.47 15688.61 15284.91 208
HQP3-MVS83.68 14973.12 151
HQP2-MVS37.35 207
MDTV_nov1_ep13_2view43.62 30671.13 32654.95 26659.29 21836.76 21846.33 28287.32 163
ACMMP++_ref63.20 240
ACMMP++59.38 265
Test By Simon39.38 181