This table lists the benchmark results for the high-res multi-view scenario. The following metrics are evaluated:

(*) For exact definitions, detailing how potentially incomplete ground truth is taken into account, see our paper.

The datasets are grouped into different categories, and result averages are computed for a category and method if results of the method are available for all datasets within the category. Note that the category "all" includes both the high-res multi-view and the low-res many-view scenarios.

Methods with suffix _ROB may participate in the Robust Vision Challenge.

Click a dataset result cell to show a visualization of the reconstruction. For training datasets, ground truth and accuracy / completeness visualizations are also available. The visualizations may not work with mobile browsers.




Method Infoallhigh-res
multi-view
indooroutdoorbotani.boulde.bridgedoorexhibi.lectur.living.loungeobserv.old co.statueterrac.
sort bysort bysort bysort bysort bysort bysort bysort bysort bysort bysorted bysort bysort bysort bysort bysort by
DeepPCF-MVS69.37 180.65 1181.56 977.94 7385.46 5849.56 19090.99 1986.66 6870.58 1580.07 1995.30 156.18 1790.97 7682.57 1286.22 3293.28 12
DPM-MVS82.39 382.36 582.49 580.12 17559.50 592.24 890.72 969.37 2383.22 894.47 263.81 593.18 2974.02 6693.25 294.80 1
SED-MVS81.92 681.75 782.44 789.48 1756.89 2592.48 388.94 2257.50 20184.61 494.09 358.81 1196.37 682.28 1387.60 1794.06 3
test_241102_TWO88.76 3057.50 20183.60 694.09 356.14 1896.37 682.28 1387.43 1992.55 25
OPU-MVS81.71 1292.05 355.97 4392.48 394.01 567.21 295.10 1589.82 192.55 394.06 3
test072689.40 2057.45 1792.32 788.63 3357.71 19583.14 993.96 655.17 20
CNVR-MVS81.76 781.90 681.33 1790.04 1057.70 1291.71 988.87 2670.31 1777.64 2693.87 752.58 3493.91 2584.17 587.92 1592.39 28
PC_three_145266.58 4687.27 293.70 866.82 494.95 1789.74 291.98 493.98 5
DPE-MVScopyleft79.82 1679.66 1480.29 2489.27 2455.08 6588.70 4487.92 4655.55 23181.21 1593.69 956.51 1694.27 2278.36 3685.70 3691.51 54
Kehua Chen, Zhenlong Yuan, Tianlu Mao, Zhaoqi Wang: Dual-Level Precision Edges Guided Multi-View Stereo with Accurate Planarization. AAAI2025
DVP-MVScopyleft81.30 881.00 1182.20 889.40 2057.45 1792.34 589.99 1357.71 19581.91 1293.64 1055.17 2096.44 281.68 1587.13 2092.72 23
Zhenlong Yuan, Jinguo Luo, Fei Shen, Zhaoxin Li, Cong Liu, Tianlu Mao, Zhaoqi Wang: DVP-MVS: Synergize Depth-Edge and Visibility Prior for Multi-View Stereo. AAAI2025
test_0728_THIRD58.00 18781.91 1293.64 1056.54 1596.44 281.64 1786.86 2392.23 32
DVP-MVS++82.44 282.38 482.62 491.77 457.49 1584.98 12488.88 2458.00 18783.60 693.39 1267.21 296.39 481.64 1791.98 493.98 5
test_one_060189.39 2257.29 2088.09 4357.21 20782.06 1193.39 1254.94 24
PHI-MVS77.49 3377.00 3578.95 4385.33 6150.69 16188.57 4688.59 3658.14 18473.60 4493.31 1443.14 12093.79 2673.81 6788.53 1292.37 29
test_241102_ONE89.48 1756.89 2588.94 2257.53 19984.61 493.29 1558.81 1196.45 1
PS-MVSNAJ80.06 1479.52 1581.68 1385.58 5560.97 391.69 1087.02 6070.62 1480.75 1793.22 1637.77 17392.50 4082.75 1086.25 3191.57 51
SMA-MVScopyleft79.10 1978.76 1980.12 2884.42 7555.87 4587.58 6286.76 6561.48 12380.26 1893.10 1746.53 7792.41 4279.97 2488.77 1092.08 36
Yufeng Yin; Xiaoyan Liu; Zichao Zhang: SMA-MVS: Segmentation-Guided Multi-Scale Anchor Deformation Patch Multi-View Stereo. IEEE Transactions on Circuits and Systems for Video Technology
CANet80.90 981.17 1080.09 3087.62 3754.21 8691.60 1286.47 7073.13 679.89 2093.10 1749.88 5492.98 3084.09 784.75 4693.08 16
MCST-MVS83.01 183.30 282.15 1092.84 257.58 1493.77 191.10 675.95 377.10 2793.09 1954.15 2795.57 1285.80 385.87 3493.31 11
xiu_mvs_v2_base79.86 1579.31 1681.53 1485.03 6760.73 491.65 1186.86 6370.30 1880.77 1693.07 2037.63 17892.28 4582.73 1185.71 3591.57 51
HPM-MVS++copyleft80.50 1280.71 1279.88 3287.34 3955.20 6089.93 2787.55 5566.04 5879.46 2193.00 2153.10 3191.76 5580.40 2389.56 892.68 24
MSP-MVS82.30 583.47 178.80 4882.99 11152.71 12485.04 12188.63 3366.08 5586.77 392.75 2272.05 191.46 6183.35 893.53 192.23 32
Zhenlong Yuan, Cong Liu, Fei Shen, Zhaoxin Li, Jingguo luo, Tianlu Mao and Zhaoqi Wang: MSP-MVS: Multi-granularity Segmentation Prior Guided Multi-View Stereo. AAAI2025
NCCC79.57 1779.23 1780.59 2089.50 1556.99 2391.38 1488.17 4267.71 3873.81 4392.75 2246.88 7293.28 2878.79 3384.07 5191.50 55
DeepC-MVS_fast67.50 378.00 2877.63 2879.13 4188.52 2755.12 6289.95 2685.98 7968.31 2771.33 7492.75 2245.52 8990.37 9171.15 7985.14 4291.91 42
Andreas Kuhn, Christian Sormann, Mattia Rossi, Oliver Erdler, Friedrich Fraundorfer: DeepC-MVS: Deep Confidence Prediction for Multi-View Stereo Reconstruction. 3DV 2020
9.1478.19 2385.67 5388.32 4888.84 2759.89 14674.58 3892.62 2546.80 7392.66 3781.40 2185.62 37
APDe-MVS78.44 2178.20 2279.19 3888.56 2654.55 8089.76 3187.77 5055.91 22678.56 2392.49 2648.20 6092.65 3879.49 2583.04 5590.39 78
SF-MVS77.64 3277.42 3178.32 6583.75 8952.47 12986.63 8387.80 4758.78 17574.63 3692.38 2747.75 6491.35 6378.18 3986.85 2491.15 64
MAR-MVS76.76 4575.60 4980.21 2590.87 754.68 7689.14 3989.11 1962.95 9970.54 8192.33 2841.05 14494.95 1757.90 17886.55 2991.00 67
Zhenyu Xu, Yiguang Liu, Xuelei Shi, Ying Wang, Yunan Zheng: MARMVS: Matching Ambiguity Reduced Multiple View Stereo for Efficient Large Scale Scene Reconstruction. CVPR 2020
MSLP-MVS++74.21 7372.25 8580.11 2981.45 14756.47 3386.32 8779.65 20858.19 18366.36 10692.29 2936.11 20490.66 8467.39 9782.49 5993.18 15
DELS-MVS82.32 482.50 381.79 1186.80 4256.89 2592.77 286.30 7477.83 177.88 2492.13 3060.24 694.78 1978.97 3089.61 793.69 8
Christian Sormann, Emanuele Santellani, Mattia Rossi, Andreas Kuhn, Friedrich Fraundorfer: DELS-MVS: Deep Epipolar Line Search for Multi-View Stereo. Winter Conference on Applications of Computer Vision (WACV), 2023
1112_ss70.05 13669.37 12872.10 19980.77 16342.78 29285.12 11976.75 26459.69 15061.19 17092.12 3147.48 6783.84 24753.04 21368.21 17589.66 95
ab-mvs-re7.68 34510.24 3470.00 3620.00 3840.00 3850.00 3730.00 3840.00 3780.00 38192.12 310.00 3830.00 3790.00 3790.00 3770.00 377
canonicalmvs78.17 2677.86 2779.12 4284.30 7754.22 8587.71 5784.57 12167.70 3977.70 2592.11 3350.90 4589.95 10478.18 3977.54 10593.20 14
cdsmvs_eth3d_5k18.33 34124.44 3330.00 3620.00 3840.00 3850.00 37389.40 150.00 3780.00 38192.02 3438.55 1670.00 3790.00 3790.00 3770.00 377
lupinMVS78.38 2378.11 2479.19 3883.02 10955.24 5791.57 1384.82 11269.12 2476.67 2992.02 3444.82 9990.23 9880.83 2280.09 8292.08 36
alignmvs78.08 2777.98 2578.39 6383.53 9253.22 11289.77 3085.45 8866.11 5376.59 3191.99 3654.07 2889.05 12277.34 4377.00 10892.89 19
CS-MVS-test77.20 3677.25 3377.05 9184.60 7249.04 20189.42 3485.83 8265.90 5972.85 5591.98 3745.10 9291.27 6475.02 5884.56 4790.84 70
SD-MVS76.18 5174.85 6080.18 2685.39 5956.90 2485.75 10082.45 16356.79 21574.48 3991.81 3843.72 11190.75 8274.61 6078.65 9792.91 18
Zhenlong Yuan, Jiakai Cao, Zhaoxin Li, Hao Jiang and Zhaoqi Wang: SD-MVS: Segmentation-driven Deformation Multi-View Stereo with Spherical Refinement and EM optimization. AAAI2024
MP-MVS-pluss75.54 6175.03 5677.04 9281.37 14952.65 12684.34 14384.46 12261.16 12669.14 8591.76 3939.98 15788.99 12778.19 3784.89 4589.48 99
MP-MVS-pluss: MP-MVS-pluss. MP-MVS-pluss
EPNet78.36 2478.49 2077.97 7185.49 5752.04 13689.36 3684.07 13273.22 577.03 2891.72 4049.32 5890.17 10073.46 7082.77 5691.69 46
Wanjuan Su, Wenbing Tao: Efficient Edge-Preserving Multi-View Stereo Network for Depth Estimation. AAAI 2023
WTY-MVS77.47 3477.52 3077.30 8588.33 3046.25 25588.46 4790.32 1171.40 1172.32 6391.72 4053.44 2992.37 4366.28 10675.42 12293.28 12
APD-MVScopyleft76.15 5275.68 4777.54 7988.52 2753.44 10387.26 7185.03 10753.79 24774.91 3491.68 4243.80 10790.31 9474.36 6281.82 6588.87 111
Yuesong Wang, Zhaojie Zeng and etc.: Adaptive Patch Deformation for Textureless-Resilient Multi-View Stereo. CVPR2023
CS-MVS76.77 4476.70 3976.99 9683.55 9148.75 20988.60 4585.18 10166.38 4872.47 6191.62 4345.53 8890.99 7574.48 6182.51 5891.23 62
TSAR-MVS + GP.77.82 3077.59 2978.49 5885.25 6350.27 17790.02 2490.57 1056.58 22074.26 4091.60 4454.26 2592.16 4775.87 4979.91 8693.05 17
SteuartSystems-ACMMP77.08 3876.33 4379.34 3680.98 15455.31 5589.76 3186.91 6262.94 10071.65 6891.56 4542.33 12792.56 3977.14 4483.69 5390.15 85
Skip Steuart: Steuart Systems R&D Blog.
ACMMP_NAP76.43 4875.66 4878.73 5081.92 13254.67 7784.06 15285.35 9261.10 12872.99 5291.50 4640.25 15191.00 7376.84 4586.98 2290.51 77
MVS76.91 4075.48 5081.23 1884.56 7355.21 5980.23 23791.64 258.65 17765.37 11891.48 4745.72 8695.05 1672.11 7789.52 993.44 9
test_prior289.04 4061.88 11673.55 4591.46 4848.01 6374.73 5985.46 38
patch_mono-280.84 1081.59 878.62 5590.34 953.77 9388.08 5088.36 4076.17 279.40 2291.09 4955.43 1990.09 10185.01 480.40 7891.99 41
ZD-MVS89.55 1453.46 10084.38 12357.02 20973.97 4291.03 5044.57 10291.17 6875.41 5681.78 67
test_885.72 5055.31 5587.60 5983.88 13657.84 19272.84 5690.99 5144.99 9488.34 149
TEST985.68 5155.42 5187.59 6084.00 13357.72 19472.99 5290.98 5244.87 9788.58 139
train_agg76.91 4076.40 4278.45 6185.68 5155.42 5187.59 6084.00 13357.84 19272.99 5290.98 5244.99 9488.58 13978.19 3785.32 4091.34 61
MTAPA72.73 9371.22 10277.27 8781.54 14453.57 9767.06 31881.31 18159.41 15668.39 9090.96 5436.07 20689.01 12473.80 6882.45 6089.23 102
MVSFormer73.53 8372.19 8877.57 7883.02 10955.24 5781.63 21181.44 17950.28 27176.67 2990.91 5544.82 9986.11 21260.83 14580.09 8291.36 59
jason77.01 3976.45 4178.69 5279.69 18054.74 7290.56 2283.99 13568.26 2874.10 4190.91 5542.14 13189.99 10379.30 2779.12 9391.36 59
jason: jason.
CDPH-MVS76.05 5475.19 5478.62 5586.51 4454.98 6887.32 6684.59 12058.62 17870.75 7990.85 5743.10 12290.63 8670.50 8384.51 4990.24 81
LFMVS78.52 2077.14 3482.67 389.58 1358.90 791.27 1788.05 4463.22 9674.63 3690.83 5841.38 14394.40 2075.42 5579.90 8794.72 2
PAPR75.20 6574.13 6678.41 6288.31 3155.10 6484.31 14485.66 8463.76 8667.55 9590.73 5943.48 11689.40 11566.36 10577.03 10790.73 72
HFP-MVS74.37 7173.13 7478.10 6984.30 7753.68 9585.58 10584.36 12456.82 21365.78 11490.56 6040.70 14990.90 7769.18 8880.88 7189.71 94
ZNCC-MVS75.82 5975.02 5778.23 6683.88 8753.80 9286.91 7986.05 7859.71 14967.85 9490.55 6142.23 12991.02 7272.66 7585.29 4189.87 93
EIA-MVS75.92 5575.18 5578.13 6885.14 6451.60 14687.17 7285.32 9464.69 7268.56 8990.53 6245.79 8591.58 5867.21 9982.18 6291.20 63
ETV-MVS77.17 3776.74 3878.48 5981.80 13454.55 8086.13 9185.33 9368.20 2973.10 5190.52 6345.23 9190.66 8479.37 2680.95 7090.22 82
SR-MVS70.92 12369.73 12374.50 14583.38 9850.48 16784.27 14579.35 21748.96 28166.57 10490.45 6433.65 23087.11 18466.42 10374.56 13085.91 169
region2R73.75 8072.55 7877.33 8383.90 8652.98 12085.54 10884.09 13156.83 21265.10 12090.45 6437.34 18690.24 9768.89 9080.83 7388.77 115
ACMMPR73.76 7972.61 7677.24 8983.92 8552.96 12185.58 10584.29 12556.82 21365.12 11990.45 6437.24 18890.18 9969.18 8880.84 7288.58 119
CP-MVS72.59 9771.46 9876.00 12182.93 11452.32 13386.93 7882.48 16255.15 23463.65 14590.44 6735.03 21888.53 14368.69 9177.83 10387.15 145
PMMVS72.98 8972.05 9275.78 12483.57 9048.60 21284.08 15082.85 15861.62 11968.24 9190.33 6828.35 26687.78 17072.71 7476.69 11090.95 68
dcpmvs_279.33 1878.94 1880.49 2189.75 1256.54 3184.83 13083.68 13967.85 3569.36 8490.24 6960.20 792.10 5084.14 680.40 7892.82 20
MP-MVScopyleft74.99 6874.33 6576.95 9882.89 11553.05 11885.63 10483.50 14457.86 19167.25 9790.24 6943.38 11788.85 13376.03 4782.23 6188.96 109
Rongxuan Tan, Qing Wang, et al.: MP-MVS: Multi-Scale Windows PatchMatch and Planar Prior Multi-View Stereo.
ET-MVSNet_ETH3D75.23 6474.08 6778.67 5384.52 7455.59 4788.92 4189.21 1868.06 3353.13 26790.22 7149.71 5587.62 17572.12 7670.82 15892.82 20
xiu_mvs_v1_base_debu71.60 11170.29 11475.55 12777.26 22353.15 11385.34 10979.37 21355.83 22772.54 5790.19 7222.38 30686.66 19873.28 7176.39 11286.85 151
xiu_mvs_v1_base71.60 11170.29 11475.55 12777.26 22353.15 11385.34 10979.37 21355.83 22772.54 5790.19 7222.38 30686.66 19873.28 7176.39 11286.85 151
xiu_mvs_v1_base_debi71.60 11170.29 11475.55 12777.26 22353.15 11385.34 10979.37 21355.83 22772.54 5790.19 7222.38 30686.66 19873.28 7176.39 11286.85 151
VNet77.99 2977.92 2678.19 6787.43 3850.12 17890.93 2091.41 467.48 4175.12 3390.15 7546.77 7491.00 7373.52 6978.46 9993.44 9
DROMVSNet75.30 6275.20 5375.62 12580.98 15449.00 20287.43 6384.68 11863.49 9370.97 7890.15 7542.86 12491.14 7074.33 6381.90 6486.71 156
CSCG80.41 1379.72 1382.49 589.12 2557.67 1389.29 3891.54 359.19 16371.82 6790.05 7759.72 996.04 1078.37 3588.40 1393.75 7
CANet_DTU73.71 8173.14 7275.40 13082.61 12450.05 17984.67 13779.36 21669.72 2175.39 3290.03 7829.41 26285.93 22367.99 9579.11 9490.22 82
DeepC-MVS67.15 476.90 4276.27 4478.80 4880.70 16455.02 6686.39 8586.71 6666.96 4467.91 9389.97 7948.03 6291.41 6275.60 5284.14 5089.96 90
Andreas Kuhn, Christian Sormann, Mattia Rossi, Oliver Erdler, Friedrich Fraundorfer: DeepC-MVS: Deep Confidence Prediction for Multi-View Stereo Reconstruction. 3DV 2020
MVS_111021_HR76.39 4975.38 5279.42 3585.33 6156.47 3388.15 4984.97 10865.15 6966.06 11089.88 8043.79 10892.16 4775.03 5780.03 8589.64 96
GST-MVS74.87 6973.90 6977.77 7483.30 9953.45 10285.75 10085.29 9659.22 16266.50 10589.85 8140.94 14590.76 8170.94 8183.35 5489.10 107
PGM-MVS72.60 9571.20 10376.80 10382.95 11252.82 12383.07 18282.14 16556.51 22163.18 15089.81 8235.68 21089.76 10967.30 9880.19 8187.83 132
APD-MVS_3200maxsize69.62 14868.23 14373.80 16781.58 14248.22 22381.91 20479.50 21148.21 28464.24 13689.75 8331.91 24887.55 17763.08 12873.85 13585.64 174
mPP-MVS71.79 11070.38 11276.04 11982.65 12352.06 13584.45 14081.78 17455.59 23062.05 16589.68 8433.48 23188.28 15465.45 11578.24 10287.77 134
XVS72.92 9071.62 9576.81 10083.41 9452.48 12784.88 12883.20 15158.03 18563.91 14189.63 8535.50 21189.78 10765.50 11080.50 7688.16 124
HPM-MVScopyleft72.60 9571.50 9775.89 12282.02 13051.42 15180.70 23183.05 15356.12 22564.03 13989.53 8637.55 18088.37 14770.48 8480.04 8487.88 131
Chunlin Ren, Qingshan Xu, Shikun Zhang, Jiaqi Yang: Hierarchical Prior Mining for Non-local Multi-View Stereo. ICCV 2023
DP-MVS Recon71.99 10670.31 11377.01 9490.65 853.44 10389.37 3582.97 15656.33 22363.56 14889.47 8734.02 22592.15 4954.05 20672.41 14585.43 178
SR-MVS-dyc-post68.27 17166.87 16672.48 19480.96 15648.14 22681.54 21576.98 26046.42 29662.75 15689.42 8831.17 25386.09 21660.52 15172.06 14983.19 216
RE-MVS-def66.66 17280.96 15648.14 22681.54 21576.98 26046.42 29662.75 15689.42 8829.28 26460.52 15172.06 14983.19 216
Effi-MVS+75.24 6373.61 7080.16 2781.92 13257.42 1985.21 11376.71 26660.68 13773.32 4989.34 9047.30 6891.63 5768.28 9379.72 8991.42 56
VDD-MVS76.08 5374.97 5879.44 3484.27 7953.33 10991.13 1885.88 8065.33 6672.37 6289.34 9032.52 23992.76 3677.90 4175.96 11692.22 34
PVSNet_Blended76.53 4776.54 4076.50 10685.91 4851.83 14288.89 4284.24 12967.82 3669.09 8689.33 9246.70 7588.13 15775.43 5381.48 6989.55 97
test_yl75.85 5674.83 6178.91 4488.08 3451.94 13891.30 1589.28 1657.91 18971.19 7689.20 9342.03 13492.77 3469.41 8675.07 12792.01 39
DCV-MVSNet75.85 5674.83 6178.91 4488.08 3451.94 13891.30 1589.28 1657.91 18971.19 7689.20 9342.03 13492.77 3469.41 8675.07 12792.01 39
baseline76.86 4376.24 4578.71 5180.47 17054.20 8883.90 15684.88 11171.38 1271.51 7189.15 9550.51 4890.55 8875.71 5078.65 9791.39 57
EI-MVSNet-Vis-set73.19 8872.60 7774.99 14082.56 12549.80 18682.55 19289.00 2166.17 5265.89 11388.98 9643.83 10692.29 4465.38 11969.01 17182.87 223
CLD-MVS75.60 6075.39 5176.24 11080.69 16552.40 13090.69 2186.20 7674.40 465.01 12388.93 9742.05 13390.58 8776.57 4673.96 13385.73 171
Zhaoxin Li, Wangmeng Zuo, Zhaoqi Wang, Lei Zhang: Confidence-based Large-scale Dense Multi-view Stereo. IEEE Transaction on Image Processing, 2020
ACMMPcopyleft70.81 12569.29 13175.39 13181.52 14651.92 14083.43 16983.03 15456.67 21858.80 20388.91 9831.92 24788.58 13965.89 10973.39 13785.67 172
Qingshan Xu, Weihang Kong, Wenbing Tao, Marc Pollefeys: Multi-Scale Geometric Consistency Guided and Planar Prior Assisted Multi-View Stereo. IEEE Transactions on Pattern Analysis and Machine Intelligence
131471.11 11869.41 12776.22 11179.32 18550.49 16680.23 23785.14 10559.44 15558.93 19888.89 9933.83 22989.60 11361.49 14077.42 10688.57 120
PAPM76.76 4576.07 4678.81 4780.20 17359.11 686.86 8086.23 7568.60 2670.18 8388.84 10051.57 3987.16 18365.48 11286.68 2790.15 85
diffmvspermissive75.11 6774.65 6376.46 10778.52 20453.35 10783.28 17779.94 20070.51 1671.64 6988.72 10146.02 8286.08 21777.52 4275.75 12089.96 90
Fangjinhua Wang, Qingshan Xu, Yew-Soon Ong, Marc Pollefeys: Lightweight and Accurate Multi-View Stereo With Confidence-Aware Diffusion Model. IEEE T-PAMI 2025
旧先验181.57 14347.48 23571.83 30488.66 10236.94 19278.34 10188.67 116
PAPM_NR71.80 10969.98 12077.26 8881.54 14453.34 10878.60 25285.25 9953.46 24960.53 17688.66 10245.69 8789.24 11756.49 19179.62 9289.19 104
3Dnovator64.70 674.46 7072.48 7980.41 2382.84 11755.40 5483.08 18188.61 3567.61 4059.85 17988.66 10234.57 22193.97 2358.42 16888.70 1191.85 44
h-mvs3373.95 7672.89 7577.15 9080.17 17450.37 17184.68 13583.33 14568.08 3071.97 6588.65 10542.50 12591.15 6978.82 3157.78 26289.91 92
casdiffmvspermissive77.36 3576.85 3778.88 4680.40 17254.66 7887.06 7485.88 8072.11 871.57 7088.63 10650.89 4790.35 9276.00 4879.11 9491.63 48
Fangjinhua Wang, Qingshan Xu, Yew-Soon Ong, Marc Pollefeys: Lightweight and Accurate Multi-View Stereo With Confidence-Aware Diffusion Model. IEEE T-PAMI 2025
test_vis1_n_192068.59 16568.31 14169.44 24869.16 30741.51 30384.63 13868.58 32258.80 17473.26 5088.37 10725.30 28980.60 27379.10 2867.55 18286.23 164
casdiffmvs_mvgpermissive77.75 3177.28 3279.16 4080.42 17154.44 8287.76 5685.46 8771.67 971.38 7388.35 10851.58 3891.22 6679.02 2979.89 8891.83 45
Fangjinhua Wang, Qingshan Xu, Yew-Soon Ong, Marc Pollefeys: Lightweight and Accurate Multi-View Stereo With Confidence-Aware Diffusion Model. IEEE T-PAMI 2025
testdata67.08 27277.59 21745.46 26569.20 32044.47 30871.50 7288.34 10931.21 25270.76 33552.20 22275.88 11785.03 182
3Dnovator+62.71 772.29 10270.50 10977.65 7783.40 9751.29 15587.32 6686.40 7259.01 17058.49 20988.32 11032.40 24091.27 6457.04 18782.15 6390.38 79
EI-MVSNet-UG-set72.37 9971.73 9474.29 15381.60 14049.29 19681.85 20688.64 3265.29 6865.05 12188.29 11143.18 11891.83 5463.74 12467.97 17881.75 233
gm-plane-assit83.24 10154.21 8670.91 1388.23 11295.25 1466.37 104
TSAR-MVS + MP.78.31 2578.26 2178.48 5981.33 15056.31 3781.59 21486.41 7169.61 2281.72 1488.16 11355.09 2288.04 16174.12 6586.31 3091.09 65
Zhenlong Yuan, Jiakai Cao, Zhaoqi Wang, Zhaoxin Li: TSAR-MVS: Textureless-aware Segmentation and Correlative Refinement Guided Multi-View Stereo. Pattern Recognition
sss70.49 12970.13 11871.58 21781.59 14139.02 31580.78 23084.71 11759.34 15866.61 10288.09 11437.17 18985.52 22661.82 13971.02 15690.20 84
MG-MVS78.42 2276.99 3682.73 293.17 164.46 189.93 2788.51 3864.83 7173.52 4688.09 11448.07 6192.19 4662.24 13484.53 4891.53 53
HPM-MVS_fast67.86 17666.28 17972.61 18980.67 16648.34 22181.18 22375.95 27550.81 26959.55 18688.05 11627.86 27185.98 21958.83 16273.58 13683.51 209
baseline172.51 9872.12 9073.69 17185.05 6544.46 27483.51 16686.13 7771.61 1064.64 12787.97 11755.00 2389.48 11459.07 16056.05 27587.13 146
MVS_111021_LR69.07 15267.91 14672.54 19177.27 22249.56 19079.77 24173.96 29159.33 16060.73 17487.82 11830.19 25881.53 26469.94 8572.19 14886.53 158
Vis-MVSNetpermissive70.61 12869.34 12974.42 14880.95 15948.49 21786.03 9477.51 25158.74 17665.55 11787.78 11934.37 22285.95 22252.53 22180.61 7488.80 113
Jingyang Zhang, Yao Yao, Shiwei Li, Zixin Luo, Tian Fang: Visibility-aware Multiview Stereo Network. BMVC 2020
API-MVS74.17 7472.07 9180.49 2190.02 1158.55 887.30 6884.27 12657.51 20065.77 11587.77 12041.61 14095.97 1151.71 22382.63 5786.94 147
OpenMVScopyleft61.00 1169.99 13967.55 15777.30 8578.37 20854.07 9084.36 14285.76 8357.22 20656.71 23787.67 12130.79 25592.83 3343.04 27384.06 5285.01 183
CPTT-MVS67.15 19465.84 18871.07 22580.96 15650.32 17481.94 20374.10 28846.18 29957.91 21687.64 12229.57 26181.31 26664.10 12270.18 16581.56 236
QAPM71.88 10769.33 13079.52 3382.20 12954.30 8486.30 8888.77 2956.61 21959.72 18187.48 12333.90 22795.36 1347.48 25081.49 6888.90 110
GG-mvs-BLEND77.77 7486.68 4350.61 16268.67 31288.45 3968.73 8887.45 12459.15 1090.67 8354.83 20087.67 1692.03 38
test250672.91 9172.43 8174.32 15280.12 17544.18 28083.19 17884.77 11564.02 7965.97 11187.43 12547.67 6588.72 13459.08 15979.66 9090.08 87
test111171.06 11970.42 11172.97 18379.48 18241.49 30484.82 13182.74 15964.20 7762.98 15387.43 12535.20 21487.92 16358.54 16578.42 10089.49 98
ECVR-MVScopyleft71.81 10871.00 10574.26 15480.12 17543.49 28584.69 13482.16 16464.02 7964.64 12787.43 12535.04 21789.21 11861.24 14279.66 9090.08 87
VDDNet74.37 7172.13 8981.09 1979.58 18156.52 3290.02 2486.70 6752.61 25671.23 7587.20 12831.75 24993.96 2474.30 6475.77 11992.79 22
新几何173.30 17883.10 10453.48 9971.43 30945.55 30166.14 10887.17 12933.88 22880.54 27448.50 24480.33 8085.88 170
TR-MVS69.71 14467.85 15175.27 13582.94 11348.48 21887.40 6580.86 18757.15 20864.61 12987.08 13032.67 23889.64 11246.38 25771.55 15387.68 137
原ACMM176.13 11684.89 6954.59 7985.26 9851.98 26066.70 9987.07 13140.15 15489.70 11051.23 22685.06 4484.10 194
EPNet_dtu66.25 21066.71 17064.87 29078.66 20134.12 33182.80 18775.51 27761.75 11764.47 13486.90 13237.06 19072.46 32943.65 27169.63 16988.02 130
Wanjuan Su, Wenbing Tao: Efficient Edge-Preserving Multi-View Stereo Network for Depth Estimation. AAAI 2023
Anonymous20240521170.11 13367.88 14876.79 10487.20 4047.24 24289.49 3377.38 25454.88 23966.14 10886.84 13320.93 31691.54 5956.45 19471.62 15191.59 49
BH-RMVSNet70.08 13568.01 14576.27 10984.21 8051.22 15787.29 6979.33 21958.96 17263.63 14686.77 13433.29 23390.30 9644.63 26673.96 13387.30 144
IS-MVSNet68.80 16067.55 15772.54 19178.50 20543.43 28681.03 22579.35 21759.12 16857.27 23286.71 13546.05 8187.70 17244.32 26875.60 12186.49 159
Vis-MVSNet (Re-imp)65.52 21665.63 19365.17 28877.49 21930.54 34375.49 27177.73 24759.34 15852.26 27686.69 13649.38 5780.53 27537.07 29375.28 12384.42 190
AdaColmapbinary67.86 17665.48 19675.00 13988.15 3354.99 6786.10 9276.63 26849.30 27857.80 21886.65 13729.39 26388.94 13145.10 26370.21 16481.06 250
test22279.36 18350.97 15877.99 25567.84 32342.54 32062.84 15586.53 13830.26 25776.91 10985.23 179
TAPA-MVS56.12 1461.82 24560.18 24266.71 27678.48 20637.97 32175.19 27376.41 27146.82 29257.04 23386.52 13927.67 27477.03 30726.50 34267.02 18685.14 180
Andrea Romanoni, Matteo Matteucci: TAPA-MVS: Textureless-Aware PAtchMatch Multi-View Stereo. ICCV 2019
PCF-MVS61.03 1070.10 13468.40 14075.22 13777.15 22751.99 13779.30 24882.12 16656.47 22261.88 16686.48 14043.98 10487.24 18255.37 19872.79 14386.43 161
Andreas Kuhn, Shan Lin, Oliver Erdler: Plane Completion and Filtering for Multi-View Stereo Reconstruction. GCPR 2019
OMC-MVS65.97 21465.06 20568.71 25872.97 27442.58 29678.61 25175.35 28054.72 24059.31 19186.25 14133.30 23277.88 30157.99 17467.05 18585.66 173
AUN-MVS68.20 17366.35 17673.76 16876.37 23247.45 23679.52 24579.52 21060.98 13162.34 15986.02 14236.59 20186.94 19062.32 13353.47 29886.89 148
baseline275.15 6674.54 6476.98 9781.67 13751.74 14483.84 15791.94 169.97 1958.98 19686.02 14259.73 891.73 5668.37 9270.40 16387.48 139
hse-mvs271.44 11570.68 10773.73 17076.34 23347.44 23779.45 24679.47 21268.08 3071.97 6586.01 14442.50 12586.93 19178.82 3153.46 29986.83 154
OPM-MVS70.75 12669.58 12574.26 15475.55 24751.34 15386.05 9383.29 14961.94 11562.95 15485.77 14534.15 22488.44 14565.44 11671.07 15582.99 220
Ray L. Khuboni, Hongjun Xu: Octagram Propagation Matching for Multi-Scale View Stereopsis (OPM-MVS).
thisisatest051573.64 8272.20 8777.97 7181.63 13853.01 11986.69 8288.81 2862.53 10664.06 13785.65 14652.15 3792.50 4058.43 16669.84 16688.39 123
114514_t69.87 14267.88 14875.85 12388.38 2952.35 13286.94 7783.68 13953.70 24855.68 24785.60 14730.07 25991.20 6755.84 19671.02 15683.99 198
BH-w/o70.02 13768.51 13874.56 14482.77 11850.39 17086.60 8478.14 24159.77 14859.65 18285.57 14839.27 16287.30 18149.86 23374.94 12985.99 166
CDS-MVSNet70.48 13069.43 12673.64 17277.56 21848.83 20883.51 16677.45 25263.27 9562.33 16085.54 14943.85 10583.29 25657.38 18674.00 13288.79 114
Khang Truong Giang, Soohwan Song, Sungho Jo: Curvature-guided dynamic scale networks for Multi-view Stereo. ICLR 2022
PVSNet_Blended_VisFu73.40 8672.44 8076.30 10881.32 15154.70 7585.81 9678.82 22663.70 8764.53 13085.38 15047.11 7187.38 18067.75 9677.55 10486.81 155
HQP-MVS72.34 10071.44 9975.03 13879.02 19151.56 14788.00 5183.68 13965.45 6064.48 13185.13 15137.35 18488.62 13766.70 10173.12 13884.91 185
NP-MVS78.76 19650.43 16885.12 152
VPNet72.07 10571.42 10074.04 15978.64 20247.17 24389.91 2987.97 4572.56 764.66 12685.04 15341.83 13888.33 15061.17 14360.97 23086.62 157
PVSNet62.49 869.27 15167.81 15273.64 17284.41 7651.85 14184.63 13877.80 24566.42 4759.80 18084.95 15422.14 31180.44 27655.03 19975.11 12688.62 118
EPP-MVSNet71.14 11670.07 11974.33 15179.18 18846.52 24983.81 15886.49 6956.32 22457.95 21584.90 15554.23 2689.14 12058.14 17369.65 16887.33 142
UA-Net67.32 19066.23 18070.59 23178.85 19541.23 30773.60 28175.45 27961.54 12166.61 10284.53 15638.73 16686.57 20342.48 27974.24 13183.98 200
GeoE69.96 14067.88 14876.22 11181.11 15351.71 14584.15 14876.74 26559.83 14760.91 17184.38 15741.56 14188.10 15951.67 22470.57 16088.84 112
nrg03072.27 10471.56 9674.42 14875.93 24250.60 16386.97 7683.21 15062.75 10267.15 9884.38 15750.07 5186.66 19871.19 7862.37 22485.99 166
iter_conf_final71.46 11469.68 12476.81 10086.03 4653.49 9884.73 13274.37 28660.27 14266.28 10784.36 15935.14 21690.87 7865.41 11770.51 16186.05 165
iter_conf0573.51 8472.24 8677.33 8387.93 3655.97 4387.90 5570.81 31368.72 2564.04 13884.36 15947.54 6690.87 7871.11 8067.75 18185.13 181
TAMVS69.51 15068.16 14473.56 17576.30 23648.71 21182.57 19077.17 25762.10 11161.32 16984.23 16141.90 13683.46 25454.80 20273.09 14088.50 122
FIs70.00 13870.24 11769.30 24977.93 21438.55 31883.99 15487.72 5266.86 4557.66 22284.17 16252.28 3585.31 23052.72 22068.80 17284.02 196
Fast-Effi-MVS+72.73 9371.15 10477.48 8082.75 11954.76 7186.77 8180.64 19063.05 9865.93 11284.01 16344.42 10389.03 12356.45 19476.36 11588.64 117
CNLPA60.59 25058.44 25367.05 27379.21 18747.26 24079.75 24264.34 33142.46 32151.90 27883.94 16427.79 27375.41 31437.12 29159.49 23978.47 278
HY-MVS67.03 573.90 7773.14 7276.18 11584.70 7147.36 23875.56 26886.36 7366.27 5070.66 8083.91 16551.05 4389.31 11667.10 10072.61 14491.88 43
LPG-MVS_test66.44 20864.58 21072.02 20274.42 25948.60 21283.07 18280.64 19054.69 24153.75 26383.83 16625.73 28786.98 18760.33 15564.71 19880.48 257
LGP-MVS_train72.02 20274.42 25948.60 21280.64 19054.69 24153.75 26383.83 16625.73 28786.98 18760.33 15564.71 19880.48 257
EI-MVSNet69.70 14668.70 13672.68 18875.00 25348.90 20679.54 24387.16 5861.05 12963.88 14383.74 16845.87 8390.44 8957.42 18564.68 20178.70 274
CVMVSNet60.85 24960.44 23962.07 30175.00 25332.73 33879.54 24373.49 29636.98 33356.28 24383.74 16829.28 26469.53 33846.48 25663.23 21483.94 203
TESTMET0.1,172.86 9272.33 8274.46 14681.98 13150.77 15985.13 11685.47 8666.09 5467.30 9683.69 17037.27 18783.57 25265.06 12078.97 9689.05 108
BH-untuned68.28 17066.40 17573.91 16281.62 13950.01 18085.56 10777.39 25357.63 19757.47 22983.69 17036.36 20287.08 18544.81 26473.08 14184.65 187
CHOSEN 1792x268876.24 5074.03 6882.88 183.09 10662.84 285.73 10285.39 9069.79 2064.87 12583.49 17241.52 14293.69 2770.55 8281.82 6592.12 35
thres20068.71 16267.27 16373.02 18184.73 7046.76 24685.03 12287.73 5162.34 10959.87 17883.45 17343.15 11988.32 15131.25 32267.91 17983.98 200
Anonymous2024052969.71 14467.28 16277.00 9583.78 8850.36 17288.87 4385.10 10647.22 28964.03 13983.37 17427.93 27092.10 5057.78 18167.44 18388.53 121
XVG-OURS-SEG-HR62.02 24359.54 24569.46 24765.30 32745.88 25965.06 32073.57 29546.45 29557.42 23083.35 17526.95 27878.09 29553.77 20864.03 20384.42 190
HQP_MVS70.96 12269.91 12174.12 15777.95 21249.57 18885.76 9882.59 16063.60 9062.15 16383.28 17636.04 20788.30 15265.46 11372.34 14684.49 188
plane_prior483.28 176
PLCcopyleft52.38 1860.89 24858.97 25166.68 27881.77 13545.70 26378.96 24974.04 29043.66 31547.63 29883.19 17823.52 30177.78 30437.47 28860.46 23276.55 302
Jie Liao, Yanping Fu, Qingan Yan, Chunxia xiao: Pyramid Multi-View Stereo with Local Consistency. Pacific Graphics 2019
FC-MVSNet-test67.49 18467.91 14666.21 28076.06 23933.06 33680.82 22987.18 5764.44 7454.81 25182.87 17950.40 5082.60 25848.05 24766.55 18982.98 221
XVG-OURS61.88 24459.34 24769.49 24665.37 32646.27 25464.80 32173.49 29647.04 29157.41 23182.85 18025.15 29178.18 29353.00 21464.98 19684.01 197
thisisatest053070.47 13168.56 13776.20 11379.78 17951.52 14983.49 16888.58 3757.62 19858.60 20582.79 18151.03 4491.48 6052.84 21562.36 22585.59 176
tfpn200view967.57 18266.13 18271.89 21284.05 8245.07 26983.40 17187.71 5360.79 13457.79 21982.76 18243.53 11487.80 16728.80 32966.36 19182.78 225
thres40067.40 18966.13 18271.19 22384.05 8245.07 26983.40 17187.71 5360.79 13457.79 21982.76 18243.53 11487.80 16728.80 32966.36 19180.71 255
MVS_Test75.85 5674.93 5978.62 5584.08 8155.20 6083.99 15485.17 10268.07 3273.38 4882.76 18250.44 4989.00 12565.90 10880.61 7491.64 47
UGNet68.71 16267.11 16573.50 17680.55 16947.61 23484.08 15078.51 23559.45 15465.68 11682.73 18523.78 29885.08 23752.80 21676.40 11187.80 133
Wanjuan Su, Qingshan Xu, Wenbing Tao: Uncertainty-guided Multi-view Stereo Network for Depth Estimation. IEEE Transactions on Circuits and Systems for Video Technology, 2022
ACMP61.11 966.24 21164.33 21272.00 20474.89 25549.12 19783.18 17979.83 20355.41 23352.29 27482.68 18625.83 28586.10 21460.89 14463.94 20580.78 253
Qingshan Xu and Wenbing Tao: Planar Prior Assisted PatchMatch Multi-View Stereo. AAAI 2020
test-LLR69.65 14769.01 13471.60 21578.67 19948.17 22485.13 11679.72 20559.18 16563.13 15182.58 18736.91 19380.24 27860.56 14975.17 12486.39 162
test-mter68.36 16767.29 16171.60 21578.67 19948.17 22485.13 11679.72 20553.38 25063.13 15182.58 18727.23 27680.24 27860.56 14975.17 12486.39 162
test_fmvs153.60 29652.54 29156.78 32158.07 34630.26 34468.95 31142.19 35532.46 34363.59 14782.56 18911.55 34460.81 34458.25 17155.27 28379.28 268
UniMVSNet_NR-MVSNet68.82 15868.29 14270.40 23575.71 24542.59 29484.23 14686.78 6466.31 4958.51 20682.45 19051.57 3984.64 24353.11 21155.96 27683.96 202
test0.0.03 162.54 23762.44 22062.86 30072.28 28429.51 34982.93 18578.78 22759.18 16553.07 26882.41 19136.91 19377.39 30537.45 28958.96 24381.66 235
Test_1112_low_res67.18 19366.23 18070.02 24378.75 19741.02 30883.43 16973.69 29357.29 20458.45 21182.39 19245.30 9080.88 27050.50 22966.26 19488.16 124
XXY-MVS70.18 13269.28 13272.89 18677.64 21642.88 29185.06 12087.50 5662.58 10562.66 15882.34 19343.64 11389.83 10658.42 16863.70 20785.96 168
thres600view766.46 20765.12 20470.47 23283.41 9443.80 28382.15 19987.78 4859.37 15756.02 24482.21 19443.73 10986.90 19226.51 34164.94 19780.71 255
thres100view90066.87 20265.42 20071.24 22183.29 10043.15 28881.67 21087.78 4859.04 16955.92 24582.18 19543.73 10987.80 16728.80 32966.36 19182.78 225
DU-MVS66.84 20365.74 19170.16 23873.27 27142.59 29481.50 21782.92 15763.53 9258.51 20682.11 19640.75 14684.64 24353.11 21155.96 27683.24 214
NR-MVSNet67.25 19165.99 18571.04 22673.27 27143.91 28185.32 11284.75 11666.05 5753.65 26582.11 19645.05 9385.97 22147.55 24956.18 27383.24 214
test_fmvs1_n52.55 30051.19 29556.65 32251.90 35430.14 34567.66 31542.84 35432.27 34462.30 16182.02 1989.12 35260.84 34357.82 17954.75 28978.99 270
TranMVSNet+NR-MVSNet66.94 20065.61 19470.93 22873.45 26843.38 28783.02 18484.25 12765.31 6758.33 21381.90 19939.92 15885.52 22649.43 23654.89 28683.89 204
IB-MVS68.87 274.01 7572.03 9379.94 3183.04 10855.50 4990.24 2388.65 3167.14 4261.38 16881.74 20053.21 3094.28 2160.45 15362.41 22390.03 89
Christian Sormann, Mattia Rossi, Andreas Kuhn and Friedrich Fraundorfer: IB-MVS: An Iterative Algorithm for Deep Multi-View Stereo based on Binary Decisions. BMVC 2021
tt080563.39 22961.31 23069.64 24569.36 30538.87 31678.00 25485.48 8548.82 28255.66 25081.66 20124.38 29586.37 20749.04 24059.36 24183.68 207
MVSTER73.25 8772.33 8276.01 12085.54 5653.76 9483.52 16287.16 5867.06 4363.88 14381.66 20152.77 3290.44 8964.66 12164.69 20083.84 205
VPA-MVSNet71.12 11770.66 10872.49 19378.75 19744.43 27687.64 5890.02 1263.97 8265.02 12281.58 20342.14 13187.42 17963.42 12663.38 21285.63 175
mvsmamba66.93 20164.88 20873.09 18075.06 25147.26 24083.36 17569.21 31962.64 10455.68 24781.43 20429.72 26089.20 11963.35 12763.50 20882.79 224
cascas69.01 15466.13 18277.66 7679.36 18355.41 5386.99 7583.75 13856.69 21758.92 19981.35 20524.31 29692.10 5053.23 21070.61 15985.46 177
WR-MVS67.58 18166.76 16970.04 24275.92 24345.06 27286.23 8985.28 9764.31 7558.50 20881.00 20644.80 10182.00 26349.21 23955.57 28183.06 219
UniMVSNet (Re)67.71 17966.80 16870.45 23374.44 25842.93 29082.42 19684.90 11063.69 8859.63 18380.99 20747.18 6985.23 23351.17 22756.75 26783.19 216
ab-mvs70.65 12769.11 13375.29 13480.87 16046.23 25673.48 28385.24 10059.99 14566.65 10080.94 20843.13 12188.69 13563.58 12568.07 17690.95 68
PVSNet_BlendedMVS73.42 8573.30 7173.76 16885.91 4851.83 14286.18 9084.24 12965.40 6369.09 8680.86 20946.70 7588.13 15775.43 5365.92 19581.33 246
tttt051768.33 16966.29 17874.46 14678.08 21049.06 19880.88 22889.08 2054.40 24454.75 25380.77 21051.31 4190.33 9349.35 23758.01 25683.99 198
MS-PatchMatch72.34 10071.26 10175.61 12682.38 12755.55 4888.00 5189.95 1465.38 6456.51 24180.74 21132.28 24292.89 3157.95 17788.10 1478.39 281
HyFIR lowres test69.94 14167.58 15577.04 9277.11 22857.29 2081.49 21979.11 22258.27 18258.86 20180.41 21242.33 12786.96 18961.91 13768.68 17486.87 149
ACMM58.35 1264.35 22062.01 22471.38 21974.21 26248.51 21682.25 19879.66 20747.61 28754.54 25580.11 21325.26 29086.00 21851.26 22563.16 21679.64 266
Qingshan Xu and Wenbing Tao: Multi-Scale Geometric Consistency Guided Multi-View Stereo. CVPR 2019
LS3D56.40 28153.82 28164.12 29281.12 15245.69 26473.42 28466.14 32635.30 34143.24 31979.88 21422.18 31079.62 28619.10 35864.00 20467.05 341
test_vis1_n51.19 30549.66 30255.76 32551.26 35529.85 34767.20 31738.86 35832.12 34559.50 18779.86 2158.78 35358.23 35056.95 18852.46 30279.19 269
PS-MVSNAJss68.78 16167.17 16473.62 17473.01 27348.33 22284.95 12684.81 11359.30 16158.91 20079.84 21637.77 17388.86 13262.83 13063.12 21883.67 208
UniMVSNet_ETH3D62.51 23860.49 23868.57 26168.30 31540.88 31073.89 28079.93 20151.81 26454.77 25279.61 21724.80 29381.10 26749.93 23261.35 22883.73 206
miper_enhance_ethall69.77 14368.90 13572.38 19578.93 19449.91 18283.29 17678.85 22464.90 7059.37 18979.46 21852.77 3285.16 23563.78 12358.72 24582.08 229
F-COLMAP55.96 28553.65 28362.87 29972.76 27742.77 29374.70 27770.37 31540.03 32441.11 32879.36 21917.77 32973.70 32332.80 31653.96 29372.15 329
mvs_anonymous72.29 10270.74 10676.94 9982.85 11654.72 7478.43 25381.54 17763.77 8561.69 16779.32 22051.11 4285.31 23062.15 13675.79 11890.79 71
RRT_MVS63.68 22761.01 23471.70 21373.48 26745.98 25881.19 22276.08 27354.33 24552.84 26979.27 22122.21 30987.65 17354.13 20555.54 28281.46 240
v2v48269.55 14967.64 15475.26 13672.32 28353.83 9184.93 12781.94 16965.37 6560.80 17379.25 22241.62 13988.98 12863.03 12959.51 23882.98 221
GA-MVS69.04 15366.70 17176.06 11875.11 24952.36 13183.12 18080.23 19663.32 9460.65 17579.22 22330.98 25488.37 14761.25 14166.41 19087.46 140
FMVSNet368.84 15767.40 16073.19 17985.05 6548.53 21585.71 10385.36 9160.90 13357.58 22479.15 22442.16 13086.77 19447.25 25263.40 20984.27 192
Fast-Effi-MVS+-dtu66.53 20664.10 21573.84 16572.41 28152.30 13484.73 13275.66 27659.51 15356.34 24279.11 22528.11 26885.85 22457.74 18263.29 21383.35 210
MVP-Stereo70.97 12170.44 11072.59 19076.03 24151.36 15285.02 12386.99 6160.31 14156.53 24078.92 22640.11 15590.00 10260.00 15790.01 676.41 303
Qingsong Yan: MVP-Stereo: A Parallel Multi-View Patchmatch Stereo Method with Dilation Matching for Photogrammetric Application.
DP-MVS59.24 25756.12 26868.63 25988.24 3250.35 17382.51 19364.43 33041.10 32346.70 30678.77 22724.75 29488.57 14222.26 35056.29 27266.96 342
pmmvs463.34 23061.07 23370.16 23870.14 30050.53 16579.97 24071.41 31055.08 23554.12 25978.58 22832.79 23782.09 26250.33 23057.22 26577.86 287
pmmvs562.80 23661.18 23167.66 26769.53 30442.37 29982.65 18875.19 28154.30 24652.03 27778.51 22931.64 25080.67 27148.60 24358.15 25279.95 264
FA-MVS(test-final)69.00 15566.60 17476.19 11483.48 9347.96 23274.73 27582.07 16757.27 20562.18 16278.47 23036.09 20592.89 3153.76 20971.32 15487.73 135
FMVSNet267.57 18265.79 18972.90 18482.71 12047.97 23185.15 11584.93 10958.55 17956.71 23778.26 23136.72 19886.67 19746.15 25962.94 22084.07 195
cl2268.85 15667.69 15372.35 19678.07 21149.98 18182.45 19578.48 23662.50 10758.46 21077.95 23249.99 5285.17 23462.55 13158.72 24581.90 231
v114468.81 15966.82 16774.80 14272.34 28253.46 10084.68 13581.77 17564.25 7660.28 17777.91 23340.23 15288.95 12960.37 15459.52 23781.97 230
miper_ehance_all_eth68.70 16467.58 15572.08 20076.91 22949.48 19382.47 19478.45 23762.68 10358.28 21477.88 23450.90 4585.01 23861.91 13758.72 24581.75 233
pm-mvs164.12 22262.56 21968.78 25671.68 28738.87 31682.89 18681.57 17655.54 23253.89 26277.82 23537.73 17686.74 19548.46 24553.49 29780.72 254
jajsoiax63.21 23160.84 23570.32 23668.33 31444.45 27581.23 22181.05 18553.37 25150.96 28477.81 23617.49 33085.49 22859.31 15858.05 25581.02 251
mvs_tets62.96 23460.55 23770.19 23768.22 31744.24 27980.90 22780.74 18952.99 25450.82 28677.56 23716.74 33485.44 22959.04 16157.94 25780.89 252
MSDG59.44 25555.14 27572.32 19774.69 25650.71 16074.39 27873.58 29444.44 30943.40 31777.52 23819.45 32090.87 7831.31 32157.49 26475.38 309
V4267.66 18065.60 19573.86 16470.69 29853.63 9681.50 21778.61 23363.85 8459.49 18877.49 23937.98 17087.65 17362.33 13258.43 24980.29 260
v119267.96 17565.74 19174.63 14371.79 28553.43 10584.06 15280.99 18663.19 9759.56 18577.46 24037.50 18388.65 13658.20 17258.93 24481.79 232
CHOSEN 280x42057.53 27456.38 26760.97 31174.01 26348.10 22846.30 35154.31 34448.18 28550.88 28577.43 24138.37 16959.16 34954.83 20063.14 21775.66 307
testgi54.25 29152.57 29059.29 31562.76 33921.65 36472.21 29470.47 31453.25 25241.94 32277.33 24214.28 34177.95 30029.18 32851.72 30578.28 283
v14419267.86 17665.76 19074.16 15671.68 28753.09 11684.14 14980.83 18862.85 10159.21 19477.28 24339.30 16188.00 16258.67 16457.88 26081.40 243
v192192067.45 18565.23 20374.10 15871.51 29052.90 12283.75 16080.44 19362.48 10859.12 19577.13 24436.98 19187.90 16457.53 18358.14 25481.49 237
v124066.99 19864.68 20973.93 16171.38 29352.66 12583.39 17379.98 19961.97 11458.44 21277.11 24535.25 21387.81 16656.46 19358.15 25281.33 246
IterMVS-LS66.63 20465.36 20170.42 23475.10 25048.90 20681.45 22076.69 26761.05 12955.71 24677.10 24645.86 8483.65 25157.44 18457.88 26078.70 274
Fangjinhua Wang, Silvano Galliani, Christoph Vogel, Marc Pollefeys: IterMVS: Iterative Probability Estimation for Efficient Multi-View Stereo.
bld_raw_dy_0_6459.75 25357.01 26267.96 26566.73 32145.30 26677.59 25859.97 33850.49 27047.15 30377.03 24717.45 33179.06 28856.92 18959.76 23679.51 267
eth_miper_zixun_eth66.98 19965.28 20272.06 20175.61 24650.40 16981.00 22676.97 26362.00 11256.99 23476.97 24844.84 9885.58 22558.75 16354.42 29080.21 261
c3_l67.97 17466.66 17271.91 21176.20 23849.31 19582.13 20078.00 24361.99 11357.64 22376.94 24949.41 5684.93 23960.62 14857.01 26681.49 237
cl____67.43 18665.93 18671.95 20876.33 23448.02 22982.58 18979.12 22161.30 12556.72 23676.92 25046.12 7986.44 20557.98 17556.31 27081.38 245
DIV-MVS_self_test67.43 18665.93 18671.94 20976.33 23448.01 23082.57 19079.11 22261.31 12456.73 23576.92 25046.09 8086.43 20657.98 17556.31 27081.39 244
Baseline_NR-MVSNet65.49 21764.27 21369.13 25074.37 26141.65 30183.39 17378.85 22459.56 15259.62 18476.88 25240.75 14687.44 17849.99 23155.05 28478.28 283
CostFormer73.89 7872.30 8478.66 5482.36 12856.58 2875.56 26885.30 9566.06 5670.50 8276.88 25257.02 1489.06 12168.27 9468.74 17390.33 80
PEN-MVS58.35 27157.15 25961.94 30367.55 31934.39 33077.01 26078.35 23951.87 26247.72 29776.73 25433.91 22673.75 32234.03 31047.17 31977.68 289
Anonymous2023121166.08 21363.67 21673.31 17783.07 10748.75 20986.01 9584.67 11945.27 30356.54 23976.67 25528.06 26988.95 12952.78 21759.95 23382.23 228
CP-MVSNet58.54 27057.57 25761.46 30768.50 31233.96 33276.90 26278.60 23451.67 26547.83 29676.60 25634.99 21972.79 32735.45 30047.58 31577.64 291
v14868.24 17266.35 17673.88 16371.76 28651.47 15084.23 14681.90 17363.69 8858.94 19776.44 25743.72 11187.78 17060.63 14755.86 27882.39 227
TransMVSNet (Re)62.82 23560.76 23669.02 25173.98 26441.61 30286.36 8679.30 22056.90 21052.53 27176.44 25741.85 13787.60 17638.83 28640.61 33777.86 287
DTE-MVSNet57.03 27555.73 27160.95 31265.94 32332.57 33975.71 26677.09 25951.16 26846.65 30776.34 25932.84 23673.22 32630.94 32344.87 32877.06 294
test_djsdf63.84 22461.56 22770.70 23068.78 30944.69 27381.63 21181.44 17950.28 27152.27 27576.26 26026.72 27986.11 21260.83 14555.84 27981.29 249
GBi-Net67.09 19565.47 19771.96 20582.71 12046.36 25183.52 16283.31 14658.55 17957.58 22476.23 26136.72 19886.20 20847.25 25263.40 20983.32 211
test167.09 19565.47 19771.96 20582.71 12046.36 25183.52 16283.31 14658.55 17957.58 22476.23 26136.72 19886.20 20847.25 25263.40 20983.32 211
FMVSNet164.57 21862.11 22371.96 20577.32 22146.36 25183.52 16283.31 14652.43 25854.42 25676.23 26127.80 27286.20 20842.59 27861.34 22983.32 211
PS-CasMVS58.12 27257.03 26161.37 30868.24 31633.80 33476.73 26378.01 24251.20 26747.54 30076.20 26432.85 23572.76 32835.17 30547.37 31777.55 292
Effi-MVS+-dtu66.24 21164.96 20770.08 24075.17 24849.64 18782.01 20174.48 28562.15 11057.83 21776.08 26530.59 25683.79 24865.40 11860.93 23176.81 296
v867.25 19164.99 20674.04 15972.89 27653.31 11082.37 19780.11 19861.54 12154.29 25876.02 26642.89 12388.41 14658.43 16656.36 26880.39 259
RPSCF45.77 31544.13 31750.68 33057.67 34929.66 34854.92 34645.25 35226.69 35145.92 31075.92 26717.43 33245.70 36227.44 33845.95 32676.67 297
v1066.61 20564.20 21473.83 16672.59 27953.37 10681.88 20579.91 20261.11 12754.09 26075.60 26840.06 15688.26 15556.47 19256.10 27479.86 265
ACMH+54.58 1558.55 26955.24 27268.50 26274.68 25745.80 26280.27 23570.21 31647.15 29042.77 32075.48 26916.73 33585.98 21935.10 30754.78 28773.72 320
tpm270.82 12468.44 13977.98 7080.78 16256.11 3974.21 27981.28 18360.24 14368.04 9275.27 27052.26 3688.50 14455.82 19768.03 17789.33 100
ITE_SJBPF51.84 32958.03 34731.94 34253.57 34736.67 33441.32 32675.23 27111.17 34651.57 35625.81 34348.04 31272.02 331
tpm68.36 16767.48 15970.97 22779.93 17851.34 15376.58 26478.75 22967.73 3763.54 14974.86 27248.33 5972.36 33053.93 20763.71 20689.21 103
WR-MVS_H58.91 26458.04 25461.54 30669.07 30833.83 33376.91 26181.99 16851.40 26648.17 29374.67 27340.23 15274.15 31831.78 31948.10 31176.64 300
CMPMVSbinary40.41 2155.34 28652.64 28963.46 29660.88 34443.84 28261.58 33171.06 31130.43 34736.33 34074.63 27424.14 29775.44 31348.05 24766.62 18871.12 336
M. Jancosek, T. Pajdla: Multi-View Reconstruction Preserving Weakly-Supported Surfaces. CVPR 2011
test_fmvs245.89 31444.32 31650.62 33145.85 36324.70 35858.87 33937.84 36125.22 35252.46 27374.56 2757.07 35654.69 35249.28 23847.70 31472.48 328
mvsany_test143.38 31742.57 31945.82 33550.96 35626.10 35655.80 34227.74 37127.15 35047.41 30274.39 27618.67 32544.95 36344.66 26536.31 34366.40 344
XVG-ACMP-BASELINE56.03 28352.85 28765.58 28361.91 34140.95 30963.36 32372.43 30145.20 30446.02 30974.09 2779.20 35178.12 29445.13 26258.27 25077.66 290
LTVRE_ROB45.45 1952.73 29849.74 30161.69 30569.78 30334.99 32844.52 35267.60 32543.11 31843.79 31474.03 27818.54 32681.45 26528.39 33457.94 25768.62 339
Andreas Kuhn, Heiko Hirschmüller, Daniel Scharstein, Helmut Mayer: A TV Prior for High-Quality Scalable Multi-View Stereo Reconstruction. International Journal of Computer Vision 2016
pmmvs659.64 25457.15 25967.09 27166.01 32236.86 32580.50 23278.64 23145.05 30549.05 29173.94 27927.28 27586.10 21443.96 27049.94 30878.31 282
FE-MVS64.15 22160.43 24075.30 13380.85 16149.86 18468.28 31478.37 23850.26 27459.31 19173.79 28026.19 28391.92 5340.19 28266.67 18784.12 193
IterMVS-SCA-FT59.12 25958.81 25260.08 31370.68 29945.07 26980.42 23474.25 28743.54 31650.02 28773.73 28131.97 24556.74 35151.06 22853.60 29678.42 280
tpmrst71.04 12069.77 12274.86 14183.19 10355.86 4675.64 26778.73 23067.88 3464.99 12473.73 28149.96 5379.56 28765.92 10767.85 18089.14 106
PatchMatch-RL56.66 27753.75 28265.37 28777.91 21545.28 26769.78 30860.38 33641.35 32247.57 29973.73 28116.83 33376.91 30836.99 29459.21 24273.92 319
IterMVS63.77 22661.67 22570.08 24072.68 27851.24 15680.44 23375.51 27760.51 13951.41 27973.70 28432.08 24478.91 28954.30 20454.35 29180.08 263
Fangjinhua Wang, Silvano Galliani, Christoph Vogel, Marc Pollefeys: IterMVS: Iterative Probability Estimation for Efficient Multi-View Stereo.
tfpnnormal61.47 24659.09 24968.62 26076.29 23741.69 30081.14 22485.16 10354.48 24351.32 28073.63 28532.32 24186.89 19321.78 35255.71 28077.29 293
COLMAP_ROBcopyleft43.60 2050.90 30648.05 30759.47 31467.81 31840.57 31171.25 30162.72 33536.49 33636.19 34173.51 28613.48 34273.92 32120.71 35450.26 30763.92 349
Johannes L. Schönberger, Enliang Zheng, Marc Pollefeys, Jan-Michael Frahm: Pixelwise View Selection for Unstructured Multi-View Stereo. ECCV 2016
EG-PatchMatch MVS62.40 24259.59 24470.81 22973.29 27049.05 19985.81 9684.78 11451.85 26344.19 31273.48 28715.52 33989.85 10540.16 28367.24 18473.54 322
ACMH53.70 1659.78 25255.94 27071.28 22076.59 23148.35 22080.15 23976.11 27249.74 27641.91 32373.45 28816.50 33690.31 9431.42 32057.63 26375.17 311
Qingshan Xu and Wenbing Tao: Multi-Scale Geometric Consistency Guided Multi-View Stereo. CVPR 2019
v7n62.50 23959.27 24872.20 19867.25 32049.83 18577.87 25680.12 19752.50 25748.80 29273.07 28932.10 24387.90 16446.83 25554.92 28578.86 272
OpenMVS_ROBcopyleft53.19 1759.20 25856.00 26968.83 25471.13 29544.30 27783.64 16175.02 28246.42 29646.48 30873.03 29018.69 32488.14 15627.74 33761.80 22674.05 318
AllTest47.32 31244.66 31455.32 32665.08 32937.50 32362.96 32754.25 34535.45 33933.42 34972.82 2919.98 34859.33 34724.13 34743.84 33069.13 337
TestCases55.32 32665.08 32937.50 32354.25 34535.45 33933.42 34972.82 2919.98 34859.33 34724.13 34743.84 33069.13 337
anonymousdsp60.46 25157.65 25568.88 25263.63 33645.09 26872.93 28778.63 23246.52 29451.12 28172.80 29321.46 31483.07 25757.79 18053.97 29278.47 278
CL-MVSNet_self_test62.98 23361.14 23268.50 26265.86 32442.96 28984.37 14182.98 15560.98 13153.95 26172.70 29440.43 15083.71 25041.10 28047.93 31378.83 273
EPMVS68.45 16665.44 19977.47 8184.91 6856.17 3871.89 29981.91 17261.72 11860.85 17272.49 29536.21 20387.06 18647.32 25171.62 15189.17 105
LCM-MVSNet-Re58.82 26556.54 26365.68 28279.31 18629.09 35261.39 33245.79 35060.73 13637.65 33872.47 29631.42 25181.08 26849.66 23470.41 16286.87 149
PVSNet_057.04 1361.19 24757.24 25873.02 18177.45 22050.31 17579.43 24777.36 25563.96 8347.51 30172.45 29725.03 29283.78 24952.76 21919.22 36884.96 184
miper_lstm_enhance63.91 22362.30 22168.75 25775.06 25146.78 24569.02 31081.14 18459.68 15152.76 27072.39 29840.71 14877.99 29956.81 19053.09 30081.48 239
Anonymous2023120659.08 26157.59 25663.55 29568.77 31032.14 34180.26 23679.78 20450.00 27549.39 28972.39 29826.64 28078.36 29233.12 31557.94 25780.14 262
test20.0355.22 28754.07 28058.68 31763.14 33825.00 35777.69 25774.78 28352.64 25543.43 31672.39 29826.21 28274.76 31629.31 32747.05 32176.28 304
test_040256.45 28053.03 28466.69 27776.78 23050.31 17581.76 20869.61 31842.79 31943.88 31372.13 30122.82 30486.46 20416.57 36150.94 30663.31 350
EU-MVSNet52.63 29950.72 29658.37 31862.69 34028.13 35472.60 28875.97 27430.94 34640.76 33072.11 30220.16 31870.80 33435.11 30646.11 32576.19 305
D2MVS63.49 22861.39 22969.77 24469.29 30648.93 20578.89 25077.71 24860.64 13849.70 28872.10 30327.08 27783.48 25354.48 20362.65 22176.90 295
USDC54.36 29051.23 29463.76 29464.29 33437.71 32262.84 32873.48 29856.85 21135.47 34371.94 3049.23 35078.43 29138.43 28748.57 31075.13 312
OurMVSNet-221017-052.39 30148.73 30463.35 29765.21 32838.42 31968.54 31364.95 32838.19 32839.57 33171.43 30513.23 34379.92 28237.16 29040.32 33871.72 332
KD-MVS_2432*160059.04 26256.44 26566.86 27479.07 18945.87 26072.13 29580.42 19455.03 23648.15 29471.01 30636.73 19678.05 29735.21 30330.18 35676.67 297
miper_refine_blended59.04 26256.44 26566.86 27479.07 18945.87 26072.13 29580.42 19455.03 23648.15 29471.01 30636.73 19678.05 29735.21 30330.18 35676.67 297
PatchmatchNetpermissive67.07 19763.63 21777.40 8283.10 10458.03 972.11 29777.77 24658.85 17359.37 18970.83 30837.84 17284.93 23942.96 27569.83 16789.26 101
Fangjinhua Wang, Silvano Galliani, Christoph Vogel, Pablo Speciale, Marc Pollefeys: PatchmatchNet: Learned Multi-View Patchmatch Stereo.
SCA63.84 22460.01 24375.32 13278.58 20357.92 1061.61 33077.53 25056.71 21657.75 22170.77 30931.97 24579.91 28448.80 24156.36 26888.13 127
Patchmatch-test53.33 29748.17 30668.81 25573.31 26942.38 29842.98 35458.23 33932.53 34238.79 33570.77 30939.66 15973.51 32425.18 34452.06 30490.55 74
tpm cat166.28 20962.78 21876.77 10581.40 14857.14 2270.03 30677.19 25653.00 25358.76 20470.73 31146.17 7886.73 19643.27 27264.46 20286.44 160
dp64.41 21961.58 22672.90 18482.40 12654.09 8972.53 28976.59 26960.39 14055.68 24770.39 31235.18 21576.90 30939.34 28561.71 22787.73 135
UnsupCasMVSNet_eth57.56 27355.15 27464.79 29164.57 33333.12 33573.17 28683.87 13758.98 17141.75 32470.03 31322.54 30579.92 28246.12 26035.31 34581.32 248
SixPastTwentyTwo54.37 28950.10 29867.21 27070.70 29741.46 30574.73 27564.69 32947.56 28839.12 33369.49 31418.49 32784.69 24231.87 31834.20 35175.48 308
MIMVSNet63.12 23260.29 24171.61 21475.92 24346.65 24765.15 31981.94 16959.14 16754.65 25469.47 31525.74 28680.63 27241.03 28169.56 17087.55 138
MDTV_nov1_ep1361.56 22781.68 13655.12 6272.41 29178.18 24059.19 16358.85 20269.29 31634.69 22086.16 21136.76 29762.96 219
our_test_359.11 26055.08 27671.18 22471.42 29153.29 11181.96 20274.52 28448.32 28342.08 32169.28 31728.14 26782.15 26034.35 30945.68 32778.11 286
ppachtmachnet_test58.56 26854.34 27771.24 22171.42 29154.74 7281.84 20772.27 30249.02 28045.86 31168.99 31826.27 28183.30 25530.12 32443.23 33275.69 306
tpmvs62.45 24159.42 24671.53 21883.93 8454.32 8370.03 30677.61 24951.91 26153.48 26668.29 31937.91 17186.66 19833.36 31258.27 25073.62 321
MVS_030456.72 27655.17 27361.37 30870.71 29636.80 32675.74 26568.75 32144.11 31352.53 27168.20 32015.05 34074.53 31742.98 27458.44 24872.79 327
FMVSNet558.61 26756.45 26465.10 28977.20 22639.74 31274.77 27477.12 25850.27 27343.28 31867.71 32126.15 28476.90 30936.78 29654.78 28778.65 276
pmmvs-eth3d55.97 28452.78 28865.54 28461.02 34346.44 25075.36 27267.72 32449.61 27743.65 31567.58 32221.63 31377.04 30644.11 26944.33 32973.15 326
TDRefinement40.91 31938.37 32348.55 33350.45 35733.03 33758.98 33850.97 34828.50 34829.89 35467.39 3236.21 36354.51 35317.67 36035.25 34658.11 352
TinyColmap48.15 31144.49 31559.13 31665.73 32538.04 32063.34 32462.86 33438.78 32629.48 35567.23 3246.46 36173.30 32524.59 34641.90 33566.04 345
PM-MVS46.92 31343.76 31856.41 32452.18 35332.26 34063.21 32638.18 35937.99 33040.78 32966.20 3255.09 36465.42 34148.19 24641.99 33471.54 334
CR-MVSNet62.47 24059.04 25072.77 18773.97 26556.57 2960.52 33371.72 30560.04 14457.49 22765.86 32638.94 16380.31 27742.86 27659.93 23481.42 241
Patchmtry56.56 27952.95 28667.42 26972.53 28050.59 16459.05 33771.72 30537.86 33146.92 30465.86 32638.94 16380.06 28136.94 29546.72 32371.60 333
lessismore_v067.98 26464.76 33241.25 30645.75 35136.03 34265.63 32819.29 32284.11 24535.67 29921.24 36678.59 277
MIMVSNet150.35 30747.81 30857.96 31961.53 34227.80 35567.40 31674.06 28943.25 31733.31 35165.38 32916.03 33771.34 33221.80 35147.55 31674.75 313
K. test v354.04 29249.42 30367.92 26668.55 31142.57 29775.51 27063.07 33352.07 25939.21 33264.59 33019.34 32182.21 25937.11 29225.31 36178.97 271
Anonymous2024052151.65 30348.42 30561.34 31056.43 35039.65 31473.57 28273.47 29936.64 33536.59 33963.98 33110.75 34772.25 33135.35 30149.01 30972.11 330
MDA-MVSNet-bldmvs51.56 30447.75 31063.00 29871.60 28947.32 23969.70 30972.12 30343.81 31427.65 35963.38 33221.97 31275.96 31127.30 33932.19 35365.70 347
MDA-MVSNet_test_wron53.82 29449.95 30065.43 28570.13 30149.05 19972.30 29271.65 30844.23 31231.85 35363.13 33323.68 30074.01 31933.25 31439.35 34073.23 325
YYNet153.82 29449.96 29965.41 28670.09 30248.95 20372.30 29271.66 30744.25 31131.89 35263.07 33423.73 29973.95 32033.26 31339.40 33973.34 323
LF4IMVS33.04 32732.55 32734.52 34540.96 36422.03 36244.45 35335.62 36320.42 35628.12 35862.35 3355.03 36531.88 37521.61 35334.42 34849.63 359
test_fmvs337.95 32235.75 32444.55 33835.50 36918.92 36848.32 34834.00 36618.36 36041.31 32761.58 3362.29 37148.06 36142.72 27737.71 34266.66 343
N_pmnet41.25 31839.77 32145.66 33668.50 3120.82 38372.51 2900.38 38335.61 33835.26 34461.51 33720.07 31967.74 33923.51 34940.63 33668.42 340
ADS-MVSNet255.21 28851.44 29366.51 27980.60 16749.56 19055.03 34465.44 32744.72 30651.00 28261.19 33822.83 30275.41 31428.54 33253.63 29474.57 315
ADS-MVSNet56.17 28251.95 29268.84 25380.60 16753.07 11755.03 34470.02 31744.72 30651.00 28261.19 33822.83 30278.88 29028.54 33253.63 29474.57 315
new-patchmatchnet48.21 31046.55 31253.18 32857.73 34818.19 37270.24 30471.02 31245.70 30033.70 34760.23 34018.00 32869.86 33727.97 33634.35 34971.49 335
ambc62.06 30253.98 35229.38 35035.08 36279.65 20841.37 32559.96 3416.27 36282.15 26035.34 30238.22 34174.65 314
patchmatchnet-post59.74 34238.41 16879.91 284
DSMNet-mixed38.35 32135.36 32547.33 33448.11 36114.91 37637.87 36036.60 36219.18 35834.37 34559.56 34315.53 33853.01 35520.14 35646.89 32274.07 317
KD-MVS_self_test49.24 30846.85 31156.44 32354.32 35122.87 36057.39 34073.36 30044.36 31037.98 33759.30 34418.97 32371.17 33333.48 31142.44 33375.26 310
RPMNet59.29 25654.25 27974.42 14873.97 26556.57 2960.52 33376.98 26035.72 33757.49 22758.87 34537.73 17685.26 23227.01 34059.93 23481.42 241
UnsupCasMVSNet_bld53.86 29350.53 29763.84 29363.52 33734.75 32971.38 30081.92 17146.53 29338.95 33457.93 34620.55 31780.20 28039.91 28434.09 35276.57 301
pmmvs345.53 31641.55 32057.44 32048.97 35939.68 31370.06 30557.66 34028.32 34934.06 34657.29 3478.50 35466.85 34034.86 30834.26 35065.80 346
PatchT56.60 27852.97 28567.48 26872.94 27546.16 25757.30 34173.78 29238.77 32754.37 25757.26 34837.52 18178.06 29632.02 31752.79 30178.23 285
Patchmatch-RL test58.72 26654.32 27871.92 21063.91 33544.25 27861.73 32955.19 34257.38 20349.31 29054.24 34937.60 17980.89 26962.19 13547.28 31890.63 73
EGC-MVSNET33.75 32530.42 32943.75 33964.94 33136.21 32760.47 33540.70 3570.02 3770.10 37853.79 3507.39 35560.26 34511.09 36635.23 34734.79 363
FPMVS35.40 32333.67 32640.57 34146.34 36228.74 35341.05 35657.05 34120.37 35722.27 36153.38 3516.87 35844.94 3648.62 36747.11 32048.01 360
mvsany_test328.00 32925.98 33134.05 34628.97 37415.31 37434.54 36318.17 37716.24 36129.30 35653.37 3522.79 36933.38 37430.01 32520.41 36753.45 356
test_vis1_rt40.29 32038.64 32245.25 33748.91 36030.09 34659.44 33627.07 37224.52 35438.48 33651.67 3536.71 35949.44 35744.33 26746.59 32456.23 353
test_f27.12 33124.85 33233.93 34726.17 37915.25 37530.24 36722.38 37612.53 36628.23 35749.43 3542.59 37034.34 37325.12 34526.99 35952.20 357
new_pmnet33.56 32631.89 32838.59 34249.01 35820.42 36551.01 34737.92 36020.58 35523.45 36046.79 3556.66 36049.28 35920.00 35731.57 35546.09 361
APD_test126.46 33324.41 33432.62 35037.58 36621.74 36340.50 35830.39 36811.45 36716.33 36443.76 3561.63 37641.62 36511.24 36526.82 36034.51 364
gg-mvs-nofinetune67.43 18664.53 21176.13 11685.95 4747.79 23364.38 32288.28 4139.34 32566.62 10141.27 35758.69 1389.00 12549.64 23586.62 2891.59 49
PMMVS226.71 33222.98 33737.87 34336.89 3678.51 38042.51 35529.32 37019.09 35913.01 36737.54 3582.23 37253.11 35414.54 36211.71 36951.99 358
JIA-IIPM52.33 30247.77 30966.03 28171.20 29446.92 24440.00 35976.48 27037.10 33246.73 30537.02 35932.96 23477.88 30135.97 29852.45 30373.29 324
test_method24.09 33621.07 34033.16 34827.67 3778.35 38126.63 36835.11 3653.40 37414.35 36636.98 3603.46 36835.31 37019.08 35922.95 36355.81 354
MVS-HIRNet49.01 30944.71 31361.92 30476.06 23946.61 24863.23 32554.90 34324.77 35333.56 34836.60 36121.28 31575.88 31229.49 32662.54 22263.26 351
ANet_high34.39 32429.59 33048.78 33230.34 37322.28 36155.53 34363.79 33238.11 32915.47 36536.56 3626.94 35759.98 34613.93 3635.64 37664.08 348
PMVScopyleft19.57 2225.07 33422.43 33932.99 34923.12 38022.98 35940.98 35735.19 36415.99 36211.95 37135.87 3631.47 37749.29 3585.41 37431.90 35426.70 368
Y. Furukawa, J. Ponce: Accurate, dense, and robust multiview stereopsis. PAMI (2010)
LCM-MVSNet28.07 32823.85 33640.71 34027.46 37818.93 36730.82 36646.19 34912.76 36516.40 36334.70 3641.90 37448.69 36020.25 35524.22 36254.51 355
testf121.11 33719.08 34127.18 35330.56 37118.28 37033.43 36424.48 3738.02 37112.02 36933.50 3650.75 38035.09 3717.68 36921.32 36428.17 366
APD_test221.11 33719.08 34127.18 35330.56 37118.28 37033.43 36424.48 3738.02 37112.02 36933.50 3650.75 38035.09 3717.68 36921.32 36428.17 366
DeepMVS_CXcopyleft13.10 35721.34 3818.99 37910.02 38110.59 3697.53 37430.55 3671.82 37514.55 3766.83 3727.52 37215.75 370
test_vis3_rt24.79 33522.95 33830.31 35128.59 37518.92 36837.43 36117.27 37912.90 36421.28 36229.92 3681.02 37836.35 36828.28 33529.82 35835.65 362
MVEpermissive16.60 2317.34 34213.39 34529.16 35228.43 37619.72 36613.73 37023.63 3757.23 3737.96 37321.41 3690.80 37936.08 3696.97 37110.39 37031.69 365
Simon Fuhrmann, Fabian Langguth, Michael Goesele: MVE - A Multi-View Reconstruction Environment. EUROGRAPHICS Workshops on Graphics and Cultural Heritage (2014)
tmp_tt9.44 34310.68 3465.73 3592.49 3824.21 38210.48 37218.04 3780.34 37612.59 36820.49 37011.39 3457.03 37813.84 3646.46 3755.95 373
E-PMN19.16 33918.40 34321.44 35536.19 36813.63 37747.59 34930.89 36710.73 3685.91 37516.59 3713.66 36739.77 3665.95 3738.14 37110.92 371
test_post16.22 37237.52 18184.72 241
Gipumacopyleft27.47 33024.26 33537.12 34460.55 34529.17 35111.68 37160.00 33714.18 36310.52 37215.12 3732.20 37363.01 3428.39 36835.65 34419.18 369
S. Galliani, K. Lasinger, K. Schindler: Massively Parallel Multiview Stereopsis by Surface Normal Diffusion. ICCV 2015
EMVS18.42 34017.66 34420.71 35634.13 37012.64 37846.94 35029.94 36910.46 3705.58 37614.93 3744.23 36638.83 3675.24 3757.51 37310.67 372
test_post170.84 30314.72 37534.33 22383.86 24648.80 241
X-MVStestdata65.85 21562.20 22276.81 10083.41 9452.48 12784.88 12883.20 15158.03 18563.91 1414.82 37635.50 21189.78 10765.50 11080.50 7688.16 124
wuyk23d9.11 3448.77 34810.15 35840.18 36516.76 37320.28 3691.01 3822.58 3752.66 3770.98 3770.23 38212.49 3774.08 3766.90 3741.19 374
testmvs6.14 3468.18 3490.01 3600.01 3830.00 38573.40 2850.00 3840.00 3780.02 3790.15 3780.00 3830.00 3790.02 3770.00 3770.02 375
test1236.01 3478.01 3500.01 3600.00 3840.01 38471.93 2980.00 3840.00 3780.02 3790.11 3790.00 3830.00 3790.02 3770.00 3770.02 375
test_blank0.00 3490.00 3520.00 3620.00 3840.00 3850.00 3730.00 3840.00 3780.00 3810.00 3800.00 3830.00 3790.00 3790.00 3770.00 377
uanet_test0.00 3490.00 3520.00 3620.00 3840.00 3850.00 3730.00 3840.00 3780.00 3810.00 3800.00 3830.00 3790.00 3790.00 3770.00 377
DCPMVS0.00 3490.00 3520.00 3620.00 3840.00 3850.00 3730.00 3840.00 3780.00 3810.00 3800.00 3830.00 3790.00 3790.00 3770.00 377
pcd_1.5k_mvsjas3.15 3484.20 3510.00 3620.00 3840.00 3850.00 3730.00 3840.00 3780.00 3810.00 38037.77 1730.00 3790.00 3790.00 3770.00 377
sosnet-low-res0.00 3490.00 3520.00 3620.00 3840.00 3850.00 3730.00 3840.00 3780.00 3810.00 3800.00 3830.00 3790.00 3790.00 3770.00 377
sosnet0.00 3490.00 3520.00 3620.00 3840.00 3850.00 3730.00 3840.00 3780.00 3810.00 3800.00 3830.00 3790.00 3790.00 3770.00 377
uncertanet0.00 3490.00 3520.00 3620.00 3840.00 3850.00 3730.00 3840.00 3780.00 3810.00 3800.00 3830.00 3790.00 3790.00 3770.00 377
Regformer0.00 3490.00 3520.00 3620.00 3840.00 3850.00 3730.00 3840.00 3780.00 3810.00 3800.00 3830.00 3790.00 3790.00 3770.00 377
uanet0.00 3490.00 3520.00 3620.00 3840.00 3850.00 3730.00 3840.00 3780.00 3810.00 3800.00 3830.00 3790.00 3790.00 3770.00 377
FOURS183.24 10149.90 18384.98 12478.76 22847.71 28673.42 47
MSC_two_6792asdad81.53 1491.77 456.03 4191.10 696.22 881.46 1986.80 2592.34 30
No_MVS81.53 1491.77 456.03 4191.10 696.22 881.46 1986.80 2592.34 30
eth-test20.00 384
eth-test0.00 384
IU-MVS89.48 1757.49 1591.38 566.22 5188.26 182.83 987.60 1792.44 27
save fliter85.35 6056.34 3689.31 3781.46 17861.55 120
test_0728_SECOND82.20 889.50 1557.73 1192.34 588.88 2496.39 481.68 1587.13 2092.47 26
GSMVS88.13 127
test_part289.33 2355.48 5082.27 10
sam_mvs138.86 16588.13 127
sam_mvs35.99 209
MTGPAbinary81.31 181
MTMP87.27 7015.34 380
test9_res78.72 3485.44 3991.39 57
agg_prior275.65 5185.11 4391.01 66
agg_prior85.64 5454.92 6983.61 14372.53 6088.10 159
test_prior456.39 3587.15 73
test_prior78.39 6386.35 4554.91 7085.45 8889.70 11090.55 74
旧先验281.73 20945.53 30274.66 3570.48 33658.31 170
新几何281.61 213
无先验85.19 11478.00 24349.08 27985.13 23652.78 21787.45 141
原ACMM283.77 159
testdata277.81 30345.64 261
segment_acmp44.97 96
testdata177.55 25964.14 78
test1279.24 3786.89 4156.08 4085.16 10372.27 6447.15 7091.10 7185.93 3390.54 76
plane_prior777.95 21248.46 219
plane_prior678.42 20749.39 19436.04 207
plane_prior582.59 16088.30 15265.46 11372.34 14684.49 188
plane_prior348.95 20364.01 8162.15 163
plane_prior285.76 9863.60 90
plane_prior178.31 209
plane_prior49.57 18887.43 6364.57 7372.84 142
n20.00 384
nn0.00 384
door-mid41.31 356
test1184.25 127
door43.27 353
HQP5-MVS51.56 147
HQP-NCC79.02 19188.00 5165.45 6064.48 131
ACMP_Plane79.02 19188.00 5165.45 6064.48 131
BP-MVS66.70 101
HQP4-MVS64.47 13488.61 13884.91 185
HQP3-MVS83.68 13973.12 138
HQP2-MVS37.35 184
MDTV_nov1_ep13_2view43.62 28471.13 30254.95 23859.29 19336.76 19546.33 25887.32 143
ACMMP++_ref63.20 215
ACMMP++59.38 240
Test By Simon39.38 160