| iter_conf05_11 | | | 94.23 110 | 93.49 119 | 96.46 94 | 97.51 121 | 91.32 108 | 99.96 1 | 94.31 335 | 95.62 26 | 99.32 8 | 99.22 27 | 57.79 345 | 98.59 170 | 98.00 50 | 99.64 40 | 99.46 81 |
|
| test_fmvsm_n_1920 | | | 97.08 27 | 97.55 14 | 95.67 133 | 97.94 105 | 89.61 161 | 99.93 2 | 98.48 24 | 97.08 5 | 99.08 15 | 99.13 46 | 88.17 72 | 99.93 38 | 99.11 23 | 99.06 76 | 97.47 200 |
|
| test_fmvsmconf_n | | | 96.78 34 | 96.84 29 | 96.61 85 | 95.99 190 | 90.25 137 | 99.90 3 | 98.13 42 | 96.68 11 | 98.42 35 | 98.92 76 | 85.34 136 | 99.88 54 | 99.12 22 | 99.08 74 | 99.70 52 |
|
| PVSNet_Blended | | | 95.94 59 | 95.66 66 | 96.75 76 | 98.77 83 | 91.61 103 | 99.88 4 | 98.04 48 | 93.64 64 | 94.21 130 | 97.76 137 | 83.50 156 | 99.87 58 | 97.41 61 | 97.75 120 | 98.79 145 |
|
| fmvsm_l_conf0.5_n_a | | | 97.70 12 | 97.80 11 | 97.42 45 | 97.59 117 | 92.91 83 | 99.86 5 | 98.04 48 | 96.70 10 | 99.58 2 | 99.26 21 | 90.90 37 | 99.94 34 | 99.57 11 | 98.66 99 | 99.40 87 |
|
| fmvsm_s_conf0.5_n | | | 96.19 49 | 96.49 36 | 95.30 146 | 97.37 127 | 89.16 166 | 99.86 5 | 98.47 25 | 95.68 23 | 98.87 23 | 99.15 41 | 82.44 185 | 99.92 40 | 99.14 21 | 97.43 128 | 96.83 220 |
|
| lupinMVS | | | 96.32 45 | 95.94 54 | 97.44 44 | 95.05 231 | 94.87 36 | 99.86 5 | 96.50 216 | 93.82 59 | 98.04 49 | 98.77 87 | 85.52 128 | 98.09 190 | 96.98 70 | 98.97 82 | 99.37 90 |
|
| fmvsm_l_conf0.5_n | | | 97.65 13 | 97.72 12 | 97.41 46 | 97.51 121 | 92.78 85 | 99.85 8 | 98.05 46 | 96.78 8 | 99.60 1 | 99.23 26 | 90.42 46 | 99.92 40 | 99.55 12 | 98.50 104 | 99.55 72 |
|
| DELS-MVS | | | 97.12 25 | 96.60 35 | 98.68 10 | 98.03 103 | 96.57 11 | 99.84 9 | 97.84 61 | 96.36 18 | 95.20 113 | 98.24 123 | 88.17 72 | 99.83 73 | 96.11 88 | 99.60 49 | 99.64 62 |
| Christian Sormann, Emanuele Santellani, Mattia Rossi, Andreas Kuhn, Friedrich Fraundorfer: DELS-MVS: Deep Epipolar Line Search for Multi-View Stereo. Winter Conference on Applications of Computer Vision (WACV), 2023 |
| test_vis1_n_1920 | | | 93.08 148 | 93.42 121 | 92.04 239 | 96.31 174 | 79.36 336 | 99.83 10 | 96.06 246 | 96.72 9 | 98.53 33 | 98.10 129 | 58.57 342 | 99.91 45 | 97.86 55 | 98.79 95 | 96.85 219 |
|
| CANet | | | 97.00 28 | 96.49 36 | 98.55 12 | 98.86 80 | 96.10 16 | 99.83 10 | 97.52 131 | 95.90 19 | 97.21 67 | 98.90 78 | 82.66 178 | 99.93 38 | 98.71 29 | 98.80 92 | 99.63 64 |
|
| fmvsm_s_conf0.5_n_a | | | 95.97 56 | 96.19 43 | 95.31 145 | 96.51 165 | 89.01 172 | 99.81 12 | 98.39 27 | 95.46 30 | 99.19 14 | 99.16 38 | 81.44 199 | 99.91 45 | 98.83 28 | 96.97 137 | 97.01 216 |
|
| MM | | | 97.76 10 | 97.39 19 | 98.86 5 | 98.30 93 | 96.83 7 | 99.81 12 | 99.13 9 | 97.66 2 | 98.29 40 | 98.96 68 | 85.84 126 | 99.90 50 | 99.72 3 | 98.80 92 | 99.85 30 |
|
| NCCC | | | 98.12 5 | 98.11 3 | 98.13 24 | 99.76 6 | 94.46 48 | 99.81 12 | 97.88 57 | 96.54 13 | 98.84 25 | 99.46 10 | 92.55 26 | 99.98 9 | 98.25 46 | 99.93 1 | 99.94 18 |
|
| IB-MVS | | 89.43 6 | 92.12 168 | 90.83 181 | 95.98 122 | 95.40 210 | 90.78 125 | 99.81 12 | 98.06 45 | 91.23 111 | 85.63 236 | 93.66 258 | 90.63 42 | 98.78 156 | 91.22 165 | 71.85 351 | 98.36 171 |
| Christian Sormann, Mattia Rossi, Andreas Kuhn and Friedrich Fraundorfer: IB-MVS: An Iterative Algorithm for Deep Multi-View Stereo based on Binary Decisions. BMVC 2021 |
| CNVR-MVS | | | 98.46 1 | 98.38 1 | 98.72 9 | 99.80 4 | 96.19 15 | 99.80 16 | 97.99 52 | 97.05 6 | 99.41 4 | 99.59 2 | 92.89 24 | 100.00 1 | 98.99 25 | 99.90 7 | 99.96 10 |
|
| test_fmvsmconf0.1_n | | | 95.94 59 | 95.79 62 | 96.40 100 | 92.42 294 | 89.92 153 | 99.79 17 | 96.85 197 | 96.53 15 | 97.22 66 | 98.67 99 | 82.71 177 | 99.84 69 | 98.92 27 | 98.98 81 | 99.43 86 |
|
| SED-MVS | | | 98.18 2 | 98.10 4 | 98.41 18 | 99.63 18 | 95.24 25 | 99.77 18 | 97.72 81 | 94.17 45 | 99.30 9 | 99.54 3 | 93.32 18 | 99.98 9 | 99.70 4 | 99.81 23 | 99.99 1 |
|
| OPU-MVS | | | | | 99.49 4 | 99.64 17 | 98.51 4 | 99.77 18 | | | | 99.19 32 | 95.12 8 | 99.97 21 | 99.90 1 | 99.92 3 | 99.99 1 |
|
| test0726 | | | | | | 99.66 12 | 95.20 30 | 99.77 18 | 97.70 86 | 93.95 50 | 99.35 7 | 99.54 3 | 93.18 21 | | | | |
|
| DPM-MVS | | | 97.86 8 | 97.25 21 | 99.68 1 | 98.25 94 | 99.10 1 | 99.76 21 | 97.78 73 | 96.61 12 | 98.15 42 | 99.53 7 | 93.62 16 | 100.00 1 | 91.79 162 | 99.80 26 | 99.94 18 |
|
| SteuartSystems-ACMMP | | | 97.25 19 | 97.34 20 | 97.01 60 | 97.38 126 | 91.46 106 | 99.75 22 | 97.66 95 | 94.14 49 | 98.13 43 | 99.26 21 | 92.16 28 | 99.66 94 | 97.91 54 | 99.64 40 | 99.90 22 |
| Skip Steuart: Steuart Systems R&D Blog. |
| test_cas_vis1_n_1920 | | | 93.86 122 | 93.74 114 | 94.22 188 | 95.39 211 | 86.08 247 | 99.73 23 | 96.07 245 | 96.38 17 | 97.19 70 | 97.78 136 | 65.46 317 | 99.86 63 | 96.71 74 | 98.92 86 | 96.73 221 |
|
| DVP-MVS |  | | 98.07 7 | 98.00 6 | 98.29 19 | 99.66 12 | 95.20 30 | 99.72 24 | 97.47 141 | 93.95 50 | 99.07 16 | 99.46 10 | 93.18 21 | 99.97 21 | 99.64 7 | 99.82 19 | 99.69 55 |
| Zhenlong Yuan, Jinguo Luo, Fei Shen, Zhaoxin Li, Cong Liu, Tianlu Mao, Zhaoqi Wang: DVP-MVS: Synergize Depth-Edge and Visibility Prior for Multi-View Stereo. AAAI2025 |
| test_0728_SECOND | | | | | 98.77 8 | 99.66 12 | 96.37 14 | 99.72 24 | 97.68 90 | | | | | 99.98 9 | 99.64 7 | 99.82 19 | 99.96 10 |
|
| alignmvs | | | 95.77 66 | 95.00 82 | 98.06 28 | 97.35 128 | 95.68 19 | 99.71 26 | 97.50 136 | 91.50 103 | 96.16 93 | 98.61 105 | 86.28 117 | 99.00 150 | 96.19 86 | 91.74 207 | 99.51 77 |
|
| test_fmvsmvis_n_1920 | | | 95.47 73 | 95.40 71 | 95.70 131 | 94.33 251 | 90.22 140 | 99.70 27 | 96.98 193 | 96.80 7 | 92.75 152 | 98.89 80 | 82.46 184 | 99.92 40 | 98.36 40 | 98.33 108 | 96.97 217 |
|
| MSLP-MVS++ | | | 97.50 17 | 97.45 17 | 97.63 38 | 99.65 16 | 93.21 72 | 99.70 27 | 98.13 42 | 94.61 37 | 97.78 56 | 99.46 10 | 89.85 54 | 99.81 79 | 97.97 52 | 99.91 6 | 99.88 26 |
|
| MCST-MVS | | | 98.18 2 | 97.95 9 | 98.86 5 | 99.85 3 | 96.60 10 | 99.70 27 | 97.98 53 | 97.18 3 | 95.96 95 | 99.33 19 | 92.62 25 | 100.00 1 | 98.99 25 | 99.93 1 | 99.98 6 |
|
| jason | | | 95.40 77 | 94.86 84 | 97.03 59 | 92.91 289 | 94.23 54 | 99.70 27 | 96.30 227 | 93.56 66 | 96.73 83 | 98.52 108 | 81.46 198 | 97.91 199 | 96.08 89 | 98.47 106 | 98.96 125 |
| jason: jason. |
| CP-MVS | | | 96.22 48 | 96.15 51 | 96.42 98 | 99.67 10 | 89.62 160 | 99.70 27 | 97.61 110 | 90.07 142 | 96.00 94 | 99.16 38 | 87.43 85 | 99.92 40 | 96.03 90 | 99.72 31 | 99.70 52 |
|
| PHI-MVS | | | 96.65 37 | 96.46 38 | 97.21 54 | 99.34 50 | 91.77 99 | 99.70 27 | 98.05 46 | 86.48 247 | 98.05 48 | 99.20 30 | 89.33 58 | 99.96 28 | 98.38 39 | 99.62 45 | 99.90 22 |
|
| DeepPCF-MVS | | 93.56 1 | 96.55 40 | 97.84 10 | 92.68 226 | 98.71 85 | 78.11 348 | 99.70 27 | 97.71 85 | 98.18 1 | 97.36 63 | 99.76 1 | 90.37 48 | 99.94 34 | 99.27 16 | 99.54 53 | 99.99 1 |
|
| CS-MVS-test | | | 95.98 55 | 96.34 41 | 94.90 160 | 98.06 102 | 87.66 204 | 99.69 34 | 96.10 242 | 93.66 62 | 98.35 39 | 99.05 56 | 86.28 117 | 97.66 220 | 96.96 71 | 98.90 88 | 99.37 90 |
|
| CS-MVS | | | 95.75 68 | 96.19 43 | 94.40 179 | 97.88 107 | 86.22 241 | 99.66 35 | 96.12 241 | 92.69 80 | 98.07 47 | 98.89 80 | 87.09 95 | 97.59 226 | 96.71 74 | 98.62 100 | 99.39 89 |
|
| save fliter | | | | | | 99.34 50 | 93.85 62 | 99.65 36 | 97.63 107 | 95.69 22 | | | | | | | |
|
| ETV-MVS | | | 96.00 53 | 96.00 53 | 96.00 120 | 96.56 161 | 91.05 119 | 99.63 37 | 96.61 206 | 93.26 70 | 97.39 62 | 98.30 121 | 86.62 108 | 98.13 187 | 98.07 49 | 97.57 122 | 98.82 142 |
|
| patch_mono-2 | | | 97.10 26 | 97.97 8 | 94.49 175 | 99.21 61 | 83.73 290 | 99.62 38 | 98.25 32 | 95.28 32 | 99.38 6 | 98.91 77 | 92.28 27 | 99.94 34 | 99.61 9 | 99.22 71 | 99.78 38 |
|
| MVS_0304 | | | 97.53 14 | 97.15 22 | 98.67 11 | 97.30 130 | 96.52 12 | 99.60 39 | 98.88 14 | 97.14 4 | 97.21 67 | 98.94 74 | 86.89 101 | 99.91 45 | 99.43 15 | 98.91 87 | 99.59 71 |
|
| DP-MVS Recon | | | 95.85 62 | 95.15 77 | 97.95 30 | 99.87 2 | 94.38 52 | 99.60 39 | 97.48 139 | 86.58 242 | 94.42 126 | 99.13 46 | 87.36 90 | 99.98 9 | 93.64 137 | 98.33 108 | 99.48 79 |
|
| EIA-MVS | | | 95.11 83 | 95.27 74 | 94.64 172 | 96.34 173 | 86.51 229 | 99.59 41 | 96.62 205 | 92.51 82 | 94.08 133 | 98.64 101 | 86.05 122 | 98.24 184 | 95.07 110 | 98.50 104 | 99.18 107 |
|
| TSAR-MVS + GP. | | | 96.95 29 | 96.91 26 | 97.07 57 | 98.88 79 | 91.62 102 | 99.58 42 | 96.54 214 | 95.09 34 | 96.84 77 | 98.63 103 | 91.16 30 | 99.77 85 | 99.04 24 | 96.42 145 | 99.81 33 |
|
| test_prior2 | | | | | | | | 99.57 43 | | 91.43 106 | 98.12 45 | 98.97 64 | 90.43 45 | | 98.33 42 | 99.81 23 | |
|
| APDe-MVS |  | | 97.53 14 | 97.47 15 | 97.70 36 | 99.58 30 | 93.63 64 | 99.56 44 | 97.52 131 | 93.59 65 | 98.01 51 | 99.12 48 | 90.80 40 | 99.55 106 | 99.26 17 | 99.79 27 | 99.93 20 |
| Zhaojie Zeng, Yuesong Wang, Tao Guan: Matching Ambiguity-Resilient Multi-View Stereo via Adaptive Patch Deformation. Pattern Recognition |
| test_fmvs1 | | | 92.35 161 | 92.94 136 | 90.57 272 | 97.19 137 | 75.43 357 | 99.55 45 | 94.97 313 | 95.20 33 | 96.82 80 | 97.57 149 | 59.59 340 | 99.84 69 | 97.30 63 | 98.29 111 | 96.46 231 |
|
| DVP-MVS++ | | | 98.18 2 | 98.09 5 | 98.44 16 | 99.61 24 | 95.38 22 | 99.55 45 | 97.68 90 | 93.01 72 | 99.23 11 | 99.45 14 | 95.12 8 | 99.98 9 | 99.25 18 | 99.92 3 | 99.97 7 |
|
| FOURS1 | | | | | | 99.50 42 | 88.94 176 | 99.55 45 | 97.47 141 | 91.32 109 | 98.12 45 | | | | | | |
|
| ZNCC-MVS | | | 96.09 51 | 95.81 60 | 96.95 68 | 99.42 47 | 91.19 111 | 99.55 45 | 97.53 127 | 89.72 149 | 95.86 100 | 98.94 74 | 86.59 109 | 99.97 21 | 95.13 108 | 99.56 51 | 99.68 56 |
|
| CLD-MVS | | | 91.06 188 | 90.71 183 | 92.10 237 | 94.05 261 | 86.10 246 | 99.55 45 | 96.29 230 | 94.16 47 | 84.70 243 | 97.17 170 | 69.62 283 | 97.82 206 | 94.74 118 | 86.08 250 | 92.39 261 |
| Zhaoxin Li, Wangmeng Zuo, Zhaoqi Wang, Lei Zhang: Confidence-based Large-scale Dense Multi-view Stereo. IEEE Transaction on Image Processing, 2020 |
| Fast-Effi-MVS+ | | | 91.72 174 | 90.79 182 | 94.49 175 | 95.89 192 | 87.40 213 | 99.54 50 | 95.70 278 | 85.01 271 | 89.28 204 | 95.68 221 | 77.75 225 | 97.57 230 | 83.22 262 | 95.06 167 | 98.51 161 |
|
| testing3 | | | 87.75 251 | 88.22 230 | 86.36 335 | 94.66 245 | 77.41 351 | 99.52 51 | 97.95 54 | 86.05 252 | 81.12 295 | 96.69 196 | 86.18 120 | 89.31 383 | 61.65 377 | 90.12 230 | 92.35 266 |
|
| fmvsm_s_conf0.1_n | | | 95.56 72 | 95.68 65 | 95.20 149 | 94.35 250 | 89.10 168 | 99.50 52 | 97.67 94 | 94.76 36 | 98.68 28 | 99.03 58 | 81.13 202 | 99.86 63 | 98.63 32 | 97.36 130 | 96.63 223 |
|
| 9.14 | | | | 96.87 27 | | 99.34 50 | | 99.50 52 | 97.49 138 | 89.41 162 | 98.59 31 | 99.43 16 | 89.78 55 | 99.69 91 | 98.69 30 | 99.62 45 | |
|
| EPNet | | | 96.82 32 | 96.68 34 | 97.25 53 | 98.65 86 | 93.10 75 | 99.48 54 | 98.76 15 | 96.54 13 | 97.84 55 | 98.22 124 | 87.49 84 | 99.66 94 | 95.35 103 | 97.78 119 | 99.00 121 |
| Wanjuan Su, Wenbing Tao: Efficient Edge-Preserving Multi-View Stereo Network for Depth Estimation. AAAI 2023 |
| EC-MVSNet | | | 95.09 84 | 95.17 76 | 94.84 163 | 95.42 208 | 88.17 192 | 99.48 54 | 95.92 259 | 91.47 104 | 97.34 64 | 98.36 118 | 82.77 173 | 97.41 237 | 97.24 64 | 98.58 101 | 98.94 130 |
|
| thisisatest0515 | | | 94.75 94 | 94.19 96 | 96.43 97 | 96.13 188 | 92.64 89 | 99.47 56 | 97.60 112 | 87.55 223 | 93.17 147 | 97.59 147 | 94.71 12 | 98.42 175 | 88.28 202 | 93.20 181 | 98.24 178 |
|
| HFP-MVS | | | 96.42 42 | 96.26 42 | 96.90 69 | 99.69 8 | 90.96 122 | 99.47 56 | 97.81 68 | 90.54 127 | 96.88 74 | 99.05 56 | 87.57 82 | 99.96 28 | 95.65 94 | 99.72 31 | 99.78 38 |
|
| ACMMPR | | | 96.28 47 | 96.14 52 | 96.73 78 | 99.68 9 | 90.47 134 | 99.47 56 | 97.80 70 | 90.54 127 | 96.83 79 | 99.03 58 | 86.51 113 | 99.95 31 | 95.65 94 | 99.72 31 | 99.75 46 |
|
| PVSNet_BlendedMVS | | | 93.36 138 | 93.20 128 | 93.84 203 | 98.77 83 | 91.61 103 | 99.47 56 | 98.04 48 | 91.44 105 | 94.21 130 | 92.63 278 | 83.50 156 | 99.87 58 | 97.41 61 | 83.37 275 | 90.05 337 |
|
| ET-MVSNet_ETH3D | | | 92.56 158 | 91.45 166 | 95.88 125 | 96.39 171 | 94.13 58 | 99.46 60 | 96.97 194 | 92.18 93 | 66.94 376 | 98.29 122 | 94.65 14 | 94.28 349 | 94.34 126 | 83.82 271 | 99.24 102 |
|
| region2R | | | 96.30 46 | 96.17 48 | 96.70 81 | 99.70 7 | 90.31 136 | 99.46 60 | 97.66 95 | 90.55 126 | 97.07 72 | 99.07 53 | 86.85 102 | 99.97 21 | 95.43 101 | 99.74 29 | 99.81 33 |
|
| GST-MVS | | | 95.97 56 | 95.66 66 | 96.90 69 | 99.49 45 | 91.22 109 | 99.45 62 | 97.48 139 | 89.69 150 | 95.89 97 | 98.72 93 | 86.37 116 | 99.95 31 | 94.62 123 | 99.22 71 | 99.52 75 |
|
| SF-MVS | | | 97.22 22 | 96.92 25 | 98.12 26 | 99.11 66 | 94.88 35 | 99.44 63 | 97.45 144 | 89.60 154 | 98.70 27 | 99.42 17 | 90.42 46 | 99.72 89 | 98.47 38 | 99.65 38 | 99.77 43 |
|
| CPTT-MVS | | | 94.60 101 | 94.43 91 | 95.09 153 | 99.66 12 | 86.85 225 | 99.44 63 | 97.47 141 | 83.22 298 | 94.34 129 | 98.96 68 | 82.50 179 | 99.55 106 | 94.81 116 | 99.50 54 | 98.88 135 |
|
| WTY-MVS | | | 95.97 56 | 95.11 79 | 98.54 13 | 97.62 114 | 96.65 9 | 99.44 63 | 98.74 16 | 92.25 91 | 95.21 112 | 98.46 117 | 86.56 111 | 99.46 118 | 95.00 113 | 92.69 188 | 99.50 78 |
|
| XVS | | | 96.47 41 | 96.37 40 | 96.77 74 | 99.62 22 | 90.66 130 | 99.43 66 | 97.58 118 | 92.41 87 | 96.86 75 | 98.96 68 | 87.37 87 | 99.87 58 | 95.65 94 | 99.43 60 | 99.78 38 |
|
| X-MVStestdata | | | 90.69 196 | 88.66 219 | 96.77 74 | 99.62 22 | 90.66 130 | 99.43 66 | 97.58 118 | 92.41 87 | 96.86 75 | 29.59 407 | 87.37 87 | 99.87 58 | 95.65 94 | 99.43 60 | 99.78 38 |
|
| PAPR | | | 96.35 43 | 95.82 58 | 97.94 31 | 99.63 18 | 94.19 56 | 99.42 68 | 97.55 123 | 92.43 84 | 93.82 139 | 99.12 48 | 87.30 92 | 99.91 45 | 94.02 129 | 99.06 76 | 99.74 47 |
|
| GeoE | | | 90.60 198 | 89.56 198 | 93.72 207 | 95.10 228 | 85.43 263 | 99.41 69 | 94.94 315 | 83.96 286 | 87.21 221 | 96.83 191 | 74.37 243 | 97.05 250 | 80.50 289 | 93.73 178 | 98.67 154 |
|
| MSP-MVS | | | 97.77 9 | 98.18 2 | 96.53 92 | 99.54 36 | 90.14 142 | 99.41 69 | 97.70 86 | 95.46 30 | 98.60 30 | 99.19 32 | 95.71 4 | 99.49 112 | 98.15 48 | 99.85 13 | 99.95 15 |
| Zhenlong Yuan, Cong Liu, Fei Shen, Zhaoxin Li, Jingguo luo, Tianlu Mao and Zhaoqi Wang: MSP-MVS: Multi-granularity Segmentation Prior Guided Multi-View Stereo. AAAI2025 |
| test_prior4 | | | | | | | 92.00 96 | 99.41 69 | | | | | | | | | |
|
| TEST9 | | | | | | 99.57 33 | 93.17 73 | 99.38 72 | 97.66 95 | 89.57 156 | 98.39 36 | 99.18 35 | 90.88 38 | 99.66 94 | | | |
|
| train_agg | | | 97.20 23 | 97.08 23 | 97.57 42 | 99.57 33 | 93.17 73 | 99.38 72 | 97.66 95 | 90.18 136 | 98.39 36 | 99.18 35 | 90.94 35 | 99.66 94 | 98.58 36 | 99.85 13 | 99.88 26 |
|
| PVSNet | | 87.13 12 | 93.69 126 | 92.83 138 | 96.28 106 | 97.99 104 | 90.22 140 | 99.38 72 | 98.93 12 | 91.42 107 | 93.66 141 | 97.68 142 | 71.29 274 | 99.64 100 | 87.94 207 | 97.20 132 | 98.98 123 |
|
| test_8 | | | | | | 99.55 35 | 93.07 76 | 99.37 75 | 97.64 103 | 90.18 136 | 98.36 38 | 99.19 32 | 90.94 35 | 99.64 100 | | | |
|
| MP-MVS |  | | 96.00 53 | 95.82 58 | 96.54 91 | 99.47 46 | 90.13 144 | 99.36 76 | 97.41 151 | 90.64 123 | 95.49 108 | 98.95 71 | 85.51 130 | 99.98 9 | 96.00 91 | 99.59 50 | 99.52 75 |
| Rongxuan Tan, Qing Wang, et al.: MP-MVS: Multi-Scale Windows PatchMatch and Planar Prior Multi-View Stereo. |
| thres200 | | | 93.69 126 | 92.59 143 | 96.97 66 | 97.76 109 | 94.74 43 | 99.35 77 | 99.36 2 | 89.23 164 | 91.21 178 | 96.97 180 | 83.42 159 | 98.77 157 | 85.08 237 | 90.96 222 | 97.39 202 |
|
| CSCG | | | 94.87 90 | 94.71 85 | 95.36 142 | 99.54 36 | 86.49 230 | 99.34 78 | 98.15 40 | 82.71 309 | 90.15 194 | 99.25 23 | 89.48 57 | 99.86 63 | 94.97 114 | 98.82 91 | 99.72 50 |
|
| SD-MVS | | | 97.51 16 | 97.40 18 | 97.81 34 | 99.01 72 | 93.79 63 | 99.33 79 | 97.38 154 | 93.73 61 | 98.83 26 | 99.02 60 | 90.87 39 | 99.88 54 | 98.69 30 | 99.74 29 | 99.77 43 |
| Zhenlong Yuan, Jiakai Cao, Zhaoxin Li, Hao Jiang and Zhaoqi Wang: SD-MVS: Segmentation-driven Deformation Multi-View Stereo with Spherical Refinement and EM optimization. AAAI2024 |
| PVSNet_Blended_VisFu | | | 94.67 99 | 94.11 99 | 96.34 104 | 97.14 142 | 91.10 116 | 99.32 80 | 97.43 149 | 92.10 95 | 91.53 171 | 96.38 206 | 83.29 162 | 99.68 92 | 93.42 144 | 96.37 146 | 98.25 175 |
|
| iter_conf05 | | | 93.48 132 | 93.18 129 | 94.39 182 | 97.15 141 | 94.17 57 | 99.30 81 | 92.97 353 | 92.38 90 | 86.70 229 | 95.42 226 | 95.67 5 | 96.59 267 | 94.67 121 | 84.32 264 | 92.39 261 |
|
| testing11 | | | 95.33 78 | 94.98 83 | 96.37 102 | 97.20 135 | 92.31 92 | 99.29 82 | 97.68 90 | 90.59 124 | 94.43 125 | 97.20 166 | 90.79 41 | 98.60 168 | 95.25 106 | 92.38 193 | 98.18 182 |
|
| fmvsm_s_conf0.1_n_a | | | 95.16 82 | 95.15 77 | 95.18 150 | 92.06 300 | 88.94 176 | 99.29 82 | 97.53 127 | 94.46 40 | 98.98 19 | 98.99 62 | 79.99 207 | 99.85 67 | 98.24 47 | 96.86 139 | 96.73 221 |
|
| DPE-MVS |  | | 98.11 6 | 98.00 6 | 98.44 16 | 99.50 42 | 95.39 21 | 99.29 82 | 97.72 81 | 94.50 39 | 98.64 29 | 99.54 3 | 93.32 18 | 99.97 21 | 99.58 10 | 99.90 7 | 99.95 15 |
| Kehua Chen, Zhenlong Yuan, Tianlu Mao, Zhaoqi Wang: Dual-Level Precision Edges Guided Multi-View Stereo with Accurate Planarization. AAAI2025 |
| test_fmvsmconf0.01_n | | | 94.14 112 | 93.51 118 | 96.04 117 | 86.79 367 | 89.19 165 | 99.28 85 | 95.94 255 | 95.70 21 | 95.50 107 | 98.49 112 | 73.27 254 | 99.79 82 | 98.28 45 | 98.32 110 | 99.15 109 |
|
| mPP-MVS | | | 95.90 61 | 95.75 63 | 96.38 101 | 99.58 30 | 89.41 164 | 99.26 86 | 97.41 151 | 90.66 120 | 94.82 118 | 98.95 71 | 86.15 121 | 99.98 9 | 95.24 107 | 99.64 40 | 99.74 47 |
|
| PLC |  | 91.07 3 | 94.23 110 | 94.01 102 | 94.87 161 | 99.17 63 | 87.49 209 | 99.25 87 | 96.55 213 | 88.43 191 | 91.26 176 | 98.21 126 | 85.92 123 | 99.86 63 | 89.77 186 | 97.57 122 | 97.24 207 |
| Jie Liao, Yanping Fu, Qingan Yan, Chunxia xiao: Pyramid Multi-View Stereo with Local Consistency. Pacific Graphics 2019 |
| testing91 | | | 94.88 88 | 94.44 90 | 96.21 108 | 97.19 137 | 91.90 98 | 99.23 88 | 97.66 95 | 89.91 145 | 93.66 141 | 97.05 177 | 90.21 51 | 98.50 171 | 93.52 139 | 91.53 216 | 98.25 175 |
|
| MTMP | | | | | | | | 99.21 89 | 91.09 376 | | | | | | | | |
|
| testing99 | | | 94.88 88 | 94.45 89 | 96.17 112 | 97.20 135 | 91.91 97 | 99.20 90 | 97.66 95 | 89.95 144 | 93.68 140 | 97.06 175 | 90.28 50 | 98.50 171 | 93.52 139 | 91.54 213 | 98.12 184 |
|
| HPM-MVS++ |  | | 97.72 11 | 97.59 13 | 98.14 23 | 99.53 40 | 94.76 42 | 99.19 91 | 97.75 76 | 95.66 24 | 98.21 41 | 99.29 20 | 91.10 32 | 99.99 5 | 97.68 57 | 99.87 9 | 99.68 56 |
|
| CNLPA | | | 93.64 130 | 92.74 139 | 96.36 103 | 98.96 75 | 90.01 152 | 99.19 91 | 95.89 267 | 86.22 250 | 89.40 202 | 98.85 83 | 80.66 205 | 99.84 69 | 88.57 199 | 96.92 138 | 99.24 102 |
|
| test_fmvs1_n | | | 91.07 187 | 91.41 167 | 90.06 286 | 94.10 257 | 74.31 361 | 99.18 93 | 94.84 317 | 94.81 35 | 96.37 90 | 97.46 153 | 50.86 372 | 99.82 76 | 97.14 66 | 97.90 114 | 96.04 238 |
|
| tfpn200view9 | | | 93.43 135 | 92.27 148 | 96.90 69 | 97.68 112 | 94.84 38 | 99.18 93 | 99.36 2 | 88.45 188 | 90.79 181 | 96.90 184 | 83.31 160 | 98.75 159 | 84.11 253 | 90.69 224 | 97.12 209 |
|
| thres400 | | | 93.39 137 | 92.27 148 | 96.73 78 | 97.68 112 | 94.84 38 | 99.18 93 | 99.36 2 | 88.45 188 | 90.79 181 | 96.90 184 | 83.31 160 | 98.75 159 | 84.11 253 | 90.69 224 | 96.61 224 |
|
| HPM-MVS |  | | 95.41 76 | 95.22 75 | 95.99 121 | 99.29 55 | 89.14 167 | 99.17 96 | 97.09 183 | 87.28 227 | 95.40 109 | 98.48 114 | 84.93 140 | 99.38 128 | 95.64 98 | 99.65 38 | 99.47 80 |
| Chunlin Ren, Qingshan Xu, Shikun Zhang, Jiaqi Yang: Hierarchical Prior Mining for Non-local Multi-View Stereo. ICCV 2023 |
| bld_raw_dy_0_64 | | | 91.37 181 | 89.75 195 | 96.23 107 | 97.51 121 | 90.58 132 | 99.16 97 | 88.98 387 | 95.64 25 | 87.18 222 | 99.20 30 | 57.19 349 | 98.66 165 | 98.00 50 | 84.86 258 | 99.46 81 |
|
| SMA-MVS |  | | 97.24 20 | 96.99 24 | 98.00 29 | 99.30 54 | 94.20 55 | 99.16 97 | 97.65 102 | 89.55 158 | 99.22 13 | 99.52 8 | 90.34 49 | 99.99 5 | 98.32 43 | 99.83 15 | 99.82 32 |
| Yufeng Yin; Xiaoyan Liu; Zichao Zhang: SMA-MVS: Segmentation-Guided Multi-Scale Anchor Deformation Patch Multi-View Stereo. IEEE Transactions on Circuits and Systems for Video Technology |
| HQP-NCC | | | | | | 93.95 262 | | 99.16 97 | | 93.92 52 | 87.57 215 | | | | | | |
|
| ACMP_Plane | | | | | | 93.95 262 | | 99.16 97 | | 93.92 52 | 87.57 215 | | | | | | |
|
| APD-MVS |  | | 96.95 29 | 96.72 32 | 97.63 38 | 99.51 41 | 93.58 65 | 99.16 97 | 97.44 147 | 90.08 141 | 98.59 31 | 99.07 53 | 89.06 60 | 99.42 123 | 97.92 53 | 99.66 37 | 99.88 26 |
| Yuesong Wang, Zhaojie Zeng and etc.: Adaptive Patch Deformation for Textureless-Resilient Multi-View Stereo. CVPR2023 |
| HQP-MVS | | | 91.50 176 | 91.23 170 | 92.29 231 | 93.95 262 | 86.39 234 | 99.16 97 | 96.37 223 | 93.92 52 | 87.57 215 | 96.67 197 | 73.34 251 | 97.77 210 | 93.82 135 | 86.29 245 | 92.72 256 |
|
| test-LLR | | | 93.11 147 | 92.68 140 | 94.40 179 | 94.94 236 | 87.27 218 | 99.15 103 | 97.25 161 | 90.21 134 | 91.57 167 | 94.04 244 | 84.89 141 | 97.58 227 | 85.94 229 | 96.13 151 | 98.36 171 |
|
| TESTMET0.1,1 | | | 93.82 123 | 93.26 127 | 95.49 138 | 95.21 216 | 90.25 137 | 99.15 103 | 97.54 126 | 89.18 167 | 91.79 162 | 94.87 235 | 89.13 59 | 97.63 223 | 86.21 225 | 96.29 150 | 98.60 158 |
|
| test-mter | | | 93.27 142 | 92.89 137 | 94.40 179 | 94.94 236 | 87.27 218 | 99.15 103 | 97.25 161 | 88.95 174 | 91.57 167 | 94.04 244 | 88.03 77 | 97.58 227 | 85.94 229 | 96.13 151 | 98.36 171 |
|
| plane_prior | | | | | | | 86.07 249 | 99.14 106 | | 93.81 60 | | | | | | 86.26 247 | |
|
| HPM-MVS_fast | | | 94.89 87 | 94.62 86 | 95.70 131 | 99.11 66 | 88.44 190 | 99.14 106 | 97.11 179 | 85.82 255 | 95.69 104 | 98.47 115 | 83.46 158 | 99.32 135 | 93.16 147 | 99.63 44 | 99.35 92 |
|
| MVS_111021_HR | | | 96.69 35 | 96.69 33 | 96.72 80 | 98.58 88 | 91.00 121 | 99.14 106 | 99.45 1 | 93.86 56 | 95.15 114 | 98.73 91 | 88.48 67 | 99.76 86 | 97.23 65 | 99.56 51 | 99.40 87 |
|
| CDPH-MVS | | | 96.56 39 | 96.18 45 | 97.70 36 | 99.59 28 | 93.92 60 | 99.13 109 | 97.44 147 | 89.02 171 | 97.90 54 | 99.22 27 | 88.90 63 | 99.49 112 | 94.63 122 | 99.79 27 | 99.68 56 |
|
| test_vis1_n | | | 90.40 199 | 90.27 189 | 90.79 267 | 91.55 310 | 76.48 353 | 99.12 110 | 94.44 329 | 94.31 43 | 97.34 64 | 96.95 181 | 43.60 383 | 99.42 123 | 97.57 59 | 97.60 121 | 96.47 230 |
|
| BH-w/o | | | 92.32 162 | 91.79 159 | 93.91 201 | 96.85 151 | 86.18 243 | 99.11 111 | 95.74 276 | 88.13 202 | 84.81 241 | 97.00 179 | 77.26 228 | 97.91 199 | 89.16 197 | 98.03 113 | 97.64 194 |
|
| casdiffmvs_mvg |  | | 94.00 115 | 93.33 124 | 96.03 118 | 95.22 215 | 90.90 124 | 99.09 112 | 95.99 248 | 90.58 125 | 91.55 170 | 97.37 157 | 79.91 208 | 98.06 192 | 95.01 112 | 95.22 165 | 99.13 112 |
| Fangjinhua Wang, Qingshan Xu, Yew-Soon Ong, Marc Pollefeys: Lightweight and Accurate Multi-View Stereo With Confidence-Aware Diffusion Model. IEEE T-PAMI 2025 |
| GA-MVS | | | 90.10 208 | 88.69 218 | 94.33 183 | 92.44 293 | 87.97 198 | 99.08 113 | 96.26 231 | 89.65 151 | 86.92 225 | 93.11 271 | 68.09 293 | 96.96 252 | 82.54 271 | 90.15 229 | 98.05 185 |
|
| ETVMVS | | | 94.50 105 | 93.90 110 | 96.31 105 | 97.48 124 | 92.98 79 | 99.07 114 | 97.86 59 | 88.09 204 | 94.40 127 | 96.90 184 | 88.35 69 | 97.28 242 | 90.72 175 | 92.25 199 | 98.66 157 |
|
| thres600view7 | | | 93.18 144 | 92.00 154 | 96.75 76 | 97.62 114 | 94.92 33 | 99.07 114 | 99.36 2 | 87.96 209 | 90.47 189 | 96.78 192 | 83.29 162 | 98.71 163 | 82.93 267 | 90.47 228 | 96.61 224 |
|
| MG-MVS | | | 97.24 20 | 96.83 31 | 98.47 15 | 99.79 5 | 95.71 18 | 99.07 114 | 99.06 10 | 94.45 42 | 96.42 89 | 98.70 97 | 88.81 64 | 99.74 88 | 95.35 103 | 99.86 12 | 99.97 7 |
|
| thres100view900 | | | 93.34 139 | 92.15 151 | 96.90 69 | 97.62 114 | 94.84 38 | 99.06 117 | 99.36 2 | 87.96 209 | 90.47 189 | 96.78 192 | 83.29 162 | 98.75 159 | 84.11 253 | 90.69 224 | 97.12 209 |
|
| test_yl | | | 95.27 80 | 94.60 87 | 97.28 51 | 98.53 89 | 92.98 79 | 99.05 118 | 98.70 19 | 86.76 239 | 94.65 123 | 97.74 139 | 87.78 79 | 99.44 119 | 95.57 99 | 92.61 189 | 99.44 84 |
|
| DCV-MVSNet | | | 95.27 80 | 94.60 87 | 97.28 51 | 98.53 89 | 92.98 79 | 99.05 118 | 98.70 19 | 86.76 239 | 94.65 123 | 97.74 139 | 87.78 79 | 99.44 119 | 95.57 99 | 92.61 189 | 99.44 84 |
|
| PS-MVSNAJ | | | 96.87 31 | 96.40 39 | 98.29 19 | 97.35 128 | 97.29 5 | 99.03 120 | 97.11 179 | 95.83 20 | 98.97 20 | 99.14 44 | 82.48 181 | 99.60 103 | 98.60 33 | 99.08 74 | 98.00 187 |
|
| HQP_MVS | | | 91.26 182 | 90.95 176 | 92.16 235 | 93.84 269 | 86.07 249 | 99.02 121 | 96.30 227 | 93.38 68 | 86.99 223 | 96.52 199 | 72.92 257 | 97.75 216 | 93.46 142 | 86.17 248 | 92.67 258 |
|
| plane_prior2 | | | | | | | | 99.02 121 | | 93.38 68 | | | | | | | |
|
| xiu_mvs_v2_base | | | 96.66 36 | 96.17 48 | 98.11 27 | 97.11 145 | 96.96 6 | 99.01 123 | 97.04 186 | 95.51 29 | 98.86 24 | 99.11 52 | 82.19 189 | 99.36 130 | 98.59 35 | 98.14 112 | 98.00 187 |
|
| MVSTER | | | 92.71 152 | 92.32 146 | 93.86 202 | 97.29 132 | 92.95 82 | 99.01 123 | 96.59 208 | 90.09 140 | 85.51 237 | 94.00 248 | 94.61 15 | 96.56 270 | 90.77 174 | 83.03 277 | 92.08 278 |
|
| thisisatest0530 | | | 94.00 115 | 93.52 117 | 95.43 140 | 95.76 197 | 90.02 151 | 98.99 125 | 97.60 112 | 86.58 242 | 91.74 163 | 97.36 158 | 94.78 11 | 98.34 177 | 86.37 223 | 92.48 192 | 97.94 189 |
|
| cascas | | | 90.93 191 | 89.33 205 | 95.76 129 | 95.69 199 | 93.03 78 | 98.99 125 | 96.59 208 | 80.49 336 | 86.79 228 | 94.45 241 | 65.23 318 | 98.60 168 | 93.52 139 | 92.18 200 | 95.66 241 |
|
| test_vis1_rt | | | 81.31 323 | 80.05 326 | 85.11 342 | 91.29 315 | 70.66 375 | 98.98 127 | 77.39 403 | 85.76 257 | 68.80 367 | 82.40 374 | 36.56 390 | 99.44 119 | 92.67 155 | 86.55 244 | 85.24 378 |
|
| test0.0.03 1 | | | 88.96 224 | 88.61 220 | 90.03 290 | 91.09 317 | 84.43 280 | 98.97 128 | 97.02 190 | 90.21 134 | 80.29 303 | 96.31 208 | 84.89 141 | 91.93 373 | 72.98 340 | 85.70 253 | 93.73 249 |
|
| 114514_t | | | 94.06 113 | 93.05 132 | 97.06 58 | 99.08 69 | 92.26 94 | 98.97 128 | 97.01 191 | 82.58 311 | 92.57 154 | 98.22 124 | 80.68 204 | 99.30 136 | 89.34 192 | 99.02 79 | 99.63 64 |
|
| sss | | | 94.85 91 | 93.94 108 | 97.58 40 | 96.43 168 | 94.09 59 | 98.93 130 | 99.16 8 | 89.50 159 | 95.27 111 | 97.85 131 | 81.50 196 | 99.65 98 | 92.79 154 | 94.02 175 | 98.99 122 |
|
| PAPM | | | 96.35 43 | 95.94 54 | 97.58 40 | 94.10 257 | 95.25 24 | 98.93 130 | 98.17 37 | 94.26 44 | 93.94 135 | 98.72 93 | 89.68 56 | 97.88 202 | 96.36 84 | 99.29 68 | 99.62 66 |
|
| 3Dnovator+ | | 87.72 8 | 93.43 135 | 91.84 158 | 98.17 22 | 95.73 198 | 95.08 32 | 98.92 132 | 97.04 186 | 91.42 107 | 81.48 293 | 97.60 146 | 74.60 239 | 99.79 82 | 90.84 171 | 98.97 82 | 99.64 62 |
|
| PVSNet_0 | | 83.28 16 | 87.31 259 | 85.16 274 | 93.74 206 | 94.78 241 | 84.59 278 | 98.91 133 | 98.69 21 | 89.81 148 | 78.59 324 | 93.23 268 | 61.95 331 | 99.34 134 | 94.75 117 | 55.72 388 | 97.30 204 |
|
| UniMVSNet (Re) | | | 89.50 219 | 88.32 228 | 93.03 215 | 92.21 297 | 90.96 122 | 98.90 134 | 98.39 27 | 89.13 168 | 83.22 255 | 92.03 283 | 81.69 194 | 96.34 290 | 86.79 219 | 72.53 344 | 91.81 283 |
|
| ACMMP_NAP | | | 96.59 38 | 96.18 45 | 97.81 34 | 98.82 81 | 93.55 66 | 98.88 135 | 97.59 116 | 90.66 120 | 97.98 52 | 99.14 44 | 86.59 109 | 100.00 1 | 96.47 83 | 99.46 56 | 99.89 25 |
|
| PMMVS | | | 93.62 131 | 93.90 110 | 92.79 221 | 96.79 156 | 81.40 319 | 98.85 136 | 96.81 198 | 91.25 110 | 96.82 80 | 98.15 128 | 77.02 229 | 98.13 187 | 93.15 148 | 96.30 149 | 98.83 141 |
|
| DeepC-MVS_fast | | 93.52 2 | 97.16 24 | 96.84 29 | 98.13 24 | 99.61 24 | 94.45 49 | 98.85 136 | 97.64 103 | 96.51 16 | 95.88 98 | 99.39 18 | 87.35 91 | 99.99 5 | 96.61 79 | 99.69 36 | 99.96 10 |
| Andreas Kuhn, Christian Sormann, Mattia Rossi, Oliver Erdler, Friedrich Fraundorfer: DeepC-MVS: Deep Confidence Prediction for Multi-View Stereo Reconstruction. 3DV 2020 |
| BH-untuned | | | 91.46 178 | 90.84 179 | 93.33 211 | 96.51 165 | 84.83 276 | 98.84 138 | 95.50 290 | 86.44 249 | 83.50 253 | 96.70 195 | 75.49 235 | 97.77 210 | 86.78 220 | 97.81 116 | 97.40 201 |
|
| testing222 | | | 94.48 106 | 94.00 103 | 95.95 123 | 97.30 130 | 92.27 93 | 98.82 139 | 97.92 55 | 89.20 165 | 94.82 118 | 97.26 161 | 87.13 94 | 97.32 241 | 91.95 160 | 91.56 211 | 98.25 175 |
|
| CDS-MVSNet | | | 93.47 133 | 93.04 133 | 94.76 165 | 94.75 242 | 89.45 163 | 98.82 139 | 97.03 188 | 87.91 211 | 90.97 179 | 96.48 201 | 89.06 60 | 96.36 284 | 89.50 188 | 92.81 187 | 98.49 162 |
| Khang Truong Giang, Soohwan Song, Sungho Jo: Curvature-guided dynamic scale networks for Multi-view Stereo. ICLR 2022 |
| 3Dnovator | | 87.35 11 | 93.17 146 | 91.77 160 | 97.37 49 | 95.41 209 | 93.07 76 | 98.82 139 | 97.85 60 | 91.53 102 | 82.56 268 | 97.58 148 | 71.97 266 | 99.82 76 | 91.01 168 | 99.23 70 | 99.22 105 |
|
| casdiffmvs |  | | 93.98 117 | 93.43 120 | 95.61 136 | 95.07 230 | 89.86 155 | 98.80 142 | 95.84 272 | 90.98 114 | 92.74 153 | 97.66 144 | 79.71 209 | 98.10 189 | 94.72 119 | 95.37 164 | 98.87 137 |
| Fangjinhua Wang, Qingshan Xu, Yew-Soon Ong, Marc Pollefeys: Lightweight and Accurate Multi-View Stereo With Confidence-Aware Diffusion Model. IEEE T-PAMI 2025 |
| MVS_111021_LR | | | 95.78 65 | 95.94 54 | 95.28 147 | 98.19 98 | 87.69 201 | 98.80 142 | 99.26 7 | 93.39 67 | 95.04 116 | 98.69 98 | 84.09 150 | 99.76 86 | 96.96 71 | 99.06 76 | 98.38 168 |
|
| API-MVS | | | 94.78 93 | 94.18 98 | 96.59 87 | 99.21 61 | 90.06 149 | 98.80 142 | 97.78 73 | 83.59 293 | 93.85 137 | 99.21 29 | 83.79 153 | 99.97 21 | 92.37 157 | 99.00 80 | 99.74 47 |
|
| OpenMVS |  | 85.28 14 | 90.75 194 | 88.84 214 | 96.48 93 | 93.58 276 | 93.51 68 | 98.80 142 | 97.41 151 | 82.59 310 | 78.62 322 | 97.49 152 | 68.00 295 | 99.82 76 | 84.52 247 | 98.55 103 | 96.11 237 |
|
| nrg030 | | | 90.23 203 | 88.87 213 | 94.32 184 | 91.53 311 | 93.54 67 | 98.79 146 | 95.89 267 | 88.12 203 | 84.55 245 | 94.61 240 | 78.80 219 | 96.88 256 | 92.35 158 | 75.21 316 | 92.53 260 |
|
| F-COLMAP | | | 92.07 170 | 91.75 161 | 93.02 216 | 98.16 99 | 82.89 302 | 98.79 146 | 95.97 250 | 86.54 244 | 87.92 212 | 97.80 134 | 78.69 220 | 99.65 98 | 85.97 227 | 95.93 157 | 96.53 229 |
|
| mvsany_test1 | | | 94.57 103 | 95.09 80 | 92.98 217 | 95.84 194 | 82.07 312 | 98.76 148 | 95.24 306 | 92.87 79 | 96.45 88 | 98.71 96 | 84.81 143 | 99.15 141 | 97.68 57 | 95.49 163 | 97.73 192 |
|
| UniMVSNet_NR-MVSNet | | | 89.60 216 | 88.55 224 | 92.75 223 | 92.17 298 | 90.07 146 | 98.74 149 | 98.15 40 | 88.37 193 | 83.21 256 | 93.98 249 | 82.86 171 | 95.93 310 | 86.95 215 | 72.47 345 | 92.25 267 |
|
| canonicalmvs | | | 95.02 86 | 93.96 107 | 98.20 21 | 97.53 120 | 95.92 17 | 98.71 150 | 96.19 236 | 91.78 98 | 95.86 100 | 98.49 112 | 79.53 212 | 99.03 149 | 96.12 87 | 91.42 219 | 99.66 60 |
|
| DU-MVS | | | 88.83 231 | 87.51 239 | 92.79 221 | 91.46 312 | 90.07 146 | 98.71 150 | 97.62 109 | 88.87 178 | 83.21 256 | 93.68 256 | 74.63 237 | 95.93 310 | 86.95 215 | 72.47 345 | 92.36 263 |
|
| diffmvs |  | | 94.59 102 | 94.19 96 | 95.81 127 | 95.54 204 | 90.69 128 | 98.70 152 | 95.68 280 | 91.61 100 | 95.96 95 | 97.81 133 | 80.11 206 | 98.06 192 | 96.52 82 | 95.76 158 | 98.67 154 |
| Fangjinhua Wang, Qingshan Xu, Yew-Soon Ong, Marc Pollefeys: Lightweight and Accurate Multi-View Stereo With Confidence-Aware Diffusion Model. IEEE T-PAMI 2025 |
| 原ACMM2 | | | | | | | | 98.69 153 | | | | | | | | | |
|
| VNet | | | 95.08 85 | 94.26 93 | 97.55 43 | 98.07 101 | 93.88 61 | 98.68 154 | 98.73 18 | 90.33 133 | 97.16 71 | 97.43 155 | 79.19 215 | 99.53 109 | 96.91 73 | 91.85 205 | 99.24 102 |
|
| Vis-MVSNet (Re-imp) | | | 93.26 143 | 93.00 135 | 94.06 195 | 96.14 185 | 86.71 228 | 98.68 154 | 96.70 201 | 88.30 197 | 89.71 201 | 97.64 145 | 85.43 134 | 96.39 282 | 88.06 206 | 96.32 147 | 99.08 117 |
|
| 旧先验2 | | | | | | | | 98.67 156 | | 85.75 258 | 98.96 21 | | | 98.97 152 | 93.84 133 | | |
|
| EPP-MVSNet | | | 93.75 125 | 93.67 115 | 94.01 198 | 95.86 193 | 85.70 259 | 98.67 156 | 97.66 95 | 84.46 278 | 91.36 175 | 97.18 169 | 91.16 30 | 97.79 208 | 92.93 150 | 93.75 177 | 98.53 160 |
|
| Fast-Effi-MVS+-dtu | | | 88.84 229 | 88.59 222 | 89.58 302 | 93.44 281 | 78.18 346 | 98.65 158 | 94.62 326 | 88.46 187 | 84.12 250 | 95.37 228 | 68.91 285 | 96.52 273 | 82.06 275 | 91.70 209 | 94.06 248 |
|
| BH-RMVSNet | | | 91.25 184 | 89.99 192 | 95.03 157 | 96.75 157 | 88.55 187 | 98.65 158 | 94.95 314 | 87.74 217 | 87.74 214 | 97.80 134 | 68.27 291 | 98.14 186 | 80.53 288 | 97.49 126 | 98.41 165 |
|
| EPNet_dtu | | | 92.28 164 | 92.15 151 | 92.70 225 | 97.29 132 | 84.84 275 | 98.64 160 | 97.82 65 | 92.91 77 | 93.02 150 | 97.02 178 | 85.48 133 | 95.70 320 | 72.25 344 | 94.89 168 | 97.55 199 |
| Wanjuan Su, Wenbing Tao: Efficient Edge-Preserving Multi-View Stereo Network for Depth Estimation. AAAI 2023 |
| Baseline_NR-MVSNet | | | 85.83 283 | 84.82 281 | 88.87 317 | 88.73 348 | 83.34 295 | 98.63 161 | 91.66 371 | 80.41 339 | 82.44 270 | 91.35 299 | 74.63 237 | 95.42 328 | 84.13 252 | 71.39 354 | 87.84 359 |
|
| CANet_DTU | | | 94.31 109 | 93.35 123 | 97.20 55 | 97.03 149 | 94.71 44 | 98.62 162 | 95.54 288 | 95.61 27 | 97.21 67 | 98.47 115 | 71.88 267 | 99.84 69 | 88.38 201 | 97.46 127 | 97.04 214 |
|
| xiu_mvs_v1_base_debu | | | 94.73 95 | 93.98 104 | 96.99 62 | 95.19 217 | 95.24 25 | 98.62 162 | 96.50 216 | 92.99 74 | 97.52 58 | 98.83 84 | 72.37 262 | 99.15 141 | 97.03 67 | 96.74 140 | 96.58 226 |
|
| xiu_mvs_v1_base | | | 94.73 95 | 93.98 104 | 96.99 62 | 95.19 217 | 95.24 25 | 98.62 162 | 96.50 216 | 92.99 74 | 97.52 58 | 98.83 84 | 72.37 262 | 99.15 141 | 97.03 67 | 96.74 140 | 96.58 226 |
|
| xiu_mvs_v1_base_debi | | | 94.73 95 | 93.98 104 | 96.99 62 | 95.19 217 | 95.24 25 | 98.62 162 | 96.50 216 | 92.99 74 | 97.52 58 | 98.83 84 | 72.37 262 | 99.15 141 | 97.03 67 | 96.74 140 | 96.58 226 |
|
| pmmvs5 | | | 85.87 281 | 84.40 292 | 90.30 282 | 88.53 351 | 84.23 282 | 98.60 166 | 93.71 345 | 81.53 326 | 80.29 303 | 92.02 284 | 64.51 320 | 95.52 324 | 82.04 276 | 78.34 300 | 91.15 308 |
|
| QAPM | | | 91.41 179 | 89.49 200 | 97.17 56 | 95.66 201 | 93.42 70 | 98.60 166 | 97.51 133 | 80.92 334 | 81.39 294 | 97.41 156 | 72.89 259 | 99.87 58 | 82.33 272 | 98.68 97 | 98.21 180 |
|
| SR-MVS | | | 96.13 50 | 96.16 50 | 96.07 116 | 99.42 47 | 89.04 170 | 98.59 168 | 97.33 158 | 90.44 130 | 96.84 77 | 99.12 48 | 86.75 104 | 99.41 126 | 97.47 60 | 99.44 59 | 99.76 45 |
|
| MP-MVS-pluss | | | 95.80 64 | 95.30 72 | 97.29 50 | 98.95 76 | 92.66 86 | 98.59 168 | 97.14 175 | 88.95 174 | 93.12 148 | 99.25 23 | 85.62 127 | 99.94 34 | 96.56 81 | 99.48 55 | 99.28 99 |
| MP-MVS-pluss: MP-MVS-pluss. MP-MVS-pluss |
| PAPM_NR | | | 95.43 74 | 95.05 81 | 96.57 90 | 99.42 47 | 90.14 142 | 98.58 170 | 97.51 133 | 90.65 122 | 92.44 156 | 98.90 78 | 87.77 81 | 99.90 50 | 90.88 170 | 99.32 65 | 99.68 56 |
|
| v2v482 | | | 87.27 260 | 85.76 265 | 91.78 248 | 89.59 336 | 87.58 206 | 98.56 171 | 95.54 288 | 84.53 277 | 82.51 269 | 91.78 291 | 73.11 256 | 96.47 278 | 82.07 274 | 74.14 331 | 91.30 304 |
|
| WR-MVS | | | 88.54 241 | 87.22 246 | 92.52 228 | 91.93 305 | 89.50 162 | 98.56 171 | 97.84 61 | 86.99 230 | 81.87 287 | 93.81 253 | 74.25 246 | 95.92 312 | 85.29 235 | 74.43 325 | 92.12 276 |
|
| TSAR-MVS + MP. | | | 97.44 18 | 97.46 16 | 97.39 48 | 99.12 65 | 93.49 69 | 98.52 173 | 97.50 136 | 94.46 40 | 98.99 18 | 98.64 101 | 91.58 29 | 99.08 148 | 98.49 37 | 99.83 15 | 99.60 67 |
| Zhenlong Yuan, Jiakai Cao, Zhaoqi Wang, Zhaoxin Li: TSAR-MVS: Textureless-aware Segmentation and Correlative Refinement Guided Multi-View Stereo. Pattern Recognition |
| v148 | | | 86.38 275 | 85.06 275 | 90.37 281 | 89.47 341 | 84.10 285 | 98.52 173 | 95.48 291 | 83.80 288 | 80.93 297 | 90.22 332 | 74.60 239 | 96.31 292 | 80.92 283 | 71.55 353 | 90.69 323 |
|
| æ— å…ˆéªŒ | | | | | | | | 98.52 173 | 97.82 65 | 87.20 228 | | | | 99.90 50 | 87.64 210 | | 99.85 30 |
|
| tttt0517 | | | 93.30 140 | 93.01 134 | 94.17 190 | 95.57 202 | 86.47 231 | 98.51 176 | 97.60 112 | 85.99 253 | 90.55 186 | 97.19 168 | 94.80 10 | 98.31 178 | 85.06 238 | 91.86 204 | 97.74 191 |
|
| ACMP | | 87.39 10 | 88.71 236 | 88.24 229 | 90.12 285 | 93.91 267 | 81.06 327 | 98.50 177 | 95.67 281 | 89.43 161 | 80.37 302 | 95.55 222 | 65.67 312 | 97.83 205 | 90.55 176 | 84.51 260 | 91.47 295 |
| Qingshan Xu and Wenbing Tao: Planar Prior Assisted PatchMatch Multi-View Stereo. AAAI 2020 |
| ACMM | | 86.95 13 | 88.77 234 | 88.22 230 | 90.43 277 | 93.61 275 | 81.34 321 | 98.50 177 | 95.92 259 | 87.88 212 | 83.85 252 | 95.20 231 | 67.20 302 | 97.89 201 | 86.90 218 | 84.90 257 | 92.06 279 |
| Qingshan Xu and Wenbing Tao: Multi-Scale Geometric Consistency Guided Multi-View Stereo. CVPR 2019 |
| test_fmvs2 | | | 85.10 293 | 85.45 271 | 84.02 350 | 89.85 333 | 65.63 384 | 98.49 179 | 92.59 358 | 90.45 129 | 85.43 239 | 93.32 264 | 43.94 381 | 96.59 267 | 90.81 172 | 84.19 265 | 89.85 341 |
|
| EI-MVSNet-Vis-set | | | 95.76 67 | 95.63 70 | 96.17 112 | 99.14 64 | 90.33 135 | 98.49 179 | 97.82 65 | 91.92 96 | 94.75 120 | 98.88 82 | 87.06 97 | 99.48 116 | 95.40 102 | 97.17 135 | 98.70 152 |
|
| 1112_ss | | | 92.71 152 | 91.55 164 | 96.20 109 | 95.56 203 | 91.12 114 | 98.48 181 | 94.69 324 | 88.29 198 | 86.89 226 | 98.50 110 | 87.02 98 | 98.66 165 | 84.75 242 | 89.77 232 | 98.81 143 |
|
| Vis-MVSNet |  | | 92.64 154 | 91.85 157 | 95.03 157 | 95.12 224 | 88.23 191 | 98.48 181 | 96.81 198 | 91.61 100 | 92.16 160 | 97.22 165 | 71.58 272 | 98.00 198 | 85.85 232 | 97.81 116 | 98.88 135 |
| Jingyang Zhang, Yao Yao, Shiwei Li, Zixin Luo, Tian Fang: Visibility-aware Multiview Stereo Network. BMVC 2020 |
| Test_1112_low_res | | | 92.27 165 | 90.97 175 | 96.18 110 | 95.53 205 | 91.10 116 | 98.47 183 | 94.66 325 | 88.28 199 | 86.83 227 | 93.50 263 | 87.00 99 | 98.65 167 | 84.69 243 | 89.74 233 | 98.80 144 |
|
| Anonymous202405211 | | | 88.84 229 | 87.03 248 | 94.27 185 | 98.14 100 | 84.18 284 | 98.44 184 | 95.58 286 | 76.79 355 | 89.34 203 | 96.88 187 | 53.42 364 | 99.54 108 | 87.53 211 | 87.12 241 | 99.09 116 |
|
| EI-MVSNet-UG-set | | | 95.43 74 | 95.29 73 | 95.86 126 | 99.07 70 | 89.87 154 | 98.43 185 | 97.80 70 | 91.78 98 | 94.11 132 | 98.77 87 | 86.25 119 | 99.48 116 | 94.95 115 | 96.45 144 | 98.22 179 |
|
| APD-MVS_3200maxsize | | | 95.64 71 | 95.65 68 | 95.62 135 | 99.24 58 | 87.80 200 | 98.42 186 | 97.22 166 | 88.93 176 | 96.64 87 | 98.98 63 | 85.49 131 | 99.36 130 | 96.68 76 | 99.27 69 | 99.70 52 |
|
| TAPA-MVS | | 87.50 9 | 90.35 200 | 89.05 210 | 94.25 187 | 98.48 91 | 85.17 270 | 98.42 186 | 96.58 211 | 82.44 316 | 87.24 220 | 98.53 107 | 82.77 173 | 98.84 155 | 59.09 382 | 97.88 115 | 98.72 150 |
| Andrea Romanoni, Matteo Matteucci: TAPA-MVS: Textureless-Aware PAtchMatch Multi-View Stereo. ICCV 2019 |
| CHOSEN 1792x2688 | | | 94.35 108 | 93.82 112 | 95.95 123 | 97.40 125 | 88.74 184 | 98.41 188 | 98.27 31 | 92.18 93 | 91.43 172 | 96.40 203 | 78.88 216 | 99.81 79 | 93.59 138 | 97.81 116 | 99.30 97 |
|
| TAMVS | | | 92.62 155 | 92.09 153 | 94.20 189 | 94.10 257 | 87.68 202 | 98.41 188 | 96.97 194 | 87.53 224 | 89.74 199 | 96.04 215 | 84.77 145 | 96.49 277 | 88.97 198 | 92.31 196 | 98.42 164 |
|
| ACMMP |  | | 94.67 99 | 94.30 92 | 95.79 128 | 99.25 57 | 88.13 194 | 98.41 188 | 98.67 22 | 90.38 132 | 91.43 172 | 98.72 93 | 82.22 188 | 99.95 31 | 93.83 134 | 95.76 158 | 99.29 98 |
| Qingshan Xu, Weihang Kong, Wenbing Tao, Marc Pollefeys: Multi-Scale Geometric Consistency Guided and Planar Prior Assisted Multi-View Stereo. IEEE Transactions on Pattern Analysis and Machine Intelligence |
| SR-MVS-dyc-post | | | 95.75 68 | 95.86 57 | 95.41 141 | 99.22 59 | 87.26 220 | 98.40 191 | 97.21 167 | 89.63 152 | 96.67 85 | 98.97 64 | 86.73 106 | 99.36 130 | 96.62 77 | 99.31 66 | 99.60 67 |
|
| RE-MVS-def | | | | 95.70 64 | | 99.22 59 | 87.26 220 | 98.40 191 | 97.21 167 | 89.63 152 | 96.67 85 | 98.97 64 | 85.24 137 | | 96.62 77 | 99.31 66 | 99.60 67 |
|
| VDD-MVS | | | 91.24 185 | 90.18 190 | 94.45 178 | 97.08 146 | 85.84 257 | 98.40 191 | 96.10 242 | 86.99 230 | 93.36 145 | 98.16 127 | 54.27 361 | 99.20 138 | 96.59 80 | 90.63 227 | 98.31 174 |
|
| mvsmamba | | | 89.99 211 | 89.42 202 | 91.69 249 | 90.64 323 | 86.34 237 | 98.40 191 | 92.27 362 | 91.01 113 | 84.80 242 | 94.93 233 | 76.12 231 | 96.51 274 | 92.81 153 | 83.84 268 | 92.21 271 |
|
| DeepC-MVS | | 91.02 4 | 94.56 104 | 93.92 109 | 96.46 94 | 97.16 140 | 90.76 126 | 98.39 195 | 97.11 179 | 93.92 52 | 88.66 207 | 98.33 119 | 78.14 223 | 99.85 67 | 95.02 111 | 98.57 102 | 98.78 147 |
| Andreas Kuhn, Christian Sormann, Mattia Rossi, Oliver Erdler, Friedrich Fraundorfer: DeepC-MVS: Deep Confidence Prediction for Multi-View Stereo Reconstruction. 3DV 2020 |
| MAR-MVS | | | 94.43 107 | 94.09 100 | 95.45 139 | 99.10 68 | 87.47 210 | 98.39 195 | 97.79 72 | 88.37 193 | 94.02 134 | 99.17 37 | 78.64 221 | 99.91 45 | 92.48 156 | 98.85 90 | 98.96 125 |
| Zhenyu Xu, Yiguang Liu, Xuelei Shi, Ying Wang, Yunan Zheng: MARMVS: Matching Ambiguity Reduced Multiple View Stereo for Efficient Large Scale Scene Reconstruction. CVPR 2020 |
| h-mvs33 | | | 92.47 160 | 91.95 156 | 94.05 196 | 97.13 143 | 85.01 273 | 98.36 197 | 98.08 44 | 93.85 57 | 96.27 91 | 96.73 194 | 83.19 165 | 99.43 122 | 95.81 92 | 68.09 361 | 97.70 193 |
|
| miper_enhance_ethall | | | 90.33 201 | 89.70 196 | 92.22 232 | 97.12 144 | 88.93 178 | 98.35 198 | 95.96 252 | 88.60 183 | 83.14 260 | 92.33 280 | 87.38 86 | 96.18 298 | 86.49 222 | 77.89 302 | 91.55 293 |
|
| TranMVSNet+NR-MVSNet | | | 87.75 251 | 86.31 257 | 92.07 238 | 90.81 320 | 88.56 186 | 98.33 199 | 97.18 172 | 87.76 215 | 81.87 287 | 93.90 251 | 72.45 261 | 95.43 327 | 83.13 265 | 71.30 355 | 92.23 269 |
|
| AdaColmap |  | | 93.82 123 | 93.06 131 | 96.10 115 | 99.88 1 | 89.07 169 | 98.33 199 | 97.55 123 | 86.81 238 | 90.39 191 | 98.65 100 | 75.09 236 | 99.98 9 | 93.32 145 | 97.53 125 | 99.26 101 |
|
| V42 | | | 87.00 262 | 85.68 267 | 90.98 261 | 89.91 330 | 86.08 247 | 98.32 201 | 95.61 284 | 83.67 292 | 82.72 263 | 90.67 314 | 74.00 248 | 96.53 272 | 81.94 277 | 74.28 328 | 90.32 330 |
|
| D2MVS | | | 87.96 247 | 87.39 241 | 89.70 299 | 91.84 306 | 83.40 294 | 98.31 202 | 98.49 23 | 88.04 206 | 78.23 328 | 90.26 328 | 73.57 249 | 96.79 261 | 84.21 250 | 83.53 273 | 88.90 353 |
|
| v1144 | | | 86.83 265 | 85.31 273 | 91.40 252 | 89.75 334 | 87.21 222 | 98.31 202 | 95.45 293 | 83.22 298 | 82.70 264 | 90.78 309 | 73.36 250 | 96.36 284 | 79.49 292 | 74.69 322 | 90.63 325 |
|
| IS-MVSNet | | | 93.00 149 | 92.51 144 | 94.49 175 | 96.14 185 | 87.36 214 | 98.31 202 | 95.70 278 | 88.58 184 | 90.17 193 | 97.50 151 | 83.02 169 | 97.22 243 | 87.06 212 | 96.07 155 | 98.90 134 |
|
| æ–°å‡ ä½•2 | | | | | | | | 98.26 205 | | | | | | | | | |
|
| LFMVS | | | 92.23 166 | 90.84 179 | 96.42 98 | 98.24 95 | 91.08 118 | 98.24 206 | 96.22 233 | 83.39 296 | 94.74 121 | 98.31 120 | 61.12 335 | 98.85 154 | 94.45 125 | 92.82 185 | 99.32 95 |
|
| PGM-MVS | | | 95.85 62 | 95.65 68 | 96.45 96 | 99.50 42 | 89.77 157 | 98.22 207 | 98.90 13 | 89.19 166 | 96.74 82 | 98.95 71 | 85.91 125 | 99.92 40 | 93.94 130 | 99.46 56 | 99.66 60 |
|
| LPG-MVS_test | | | 88.86 228 | 88.47 226 | 90.06 286 | 93.35 283 | 80.95 328 | 98.22 207 | 95.94 255 | 87.73 218 | 83.17 258 | 96.11 212 | 66.28 310 | 97.77 210 | 90.19 180 | 85.19 255 | 91.46 296 |
|
| v144192 | | | 86.40 274 | 84.89 279 | 90.91 262 | 89.48 340 | 85.59 260 | 98.21 209 | 95.43 296 | 82.45 315 | 82.62 267 | 90.58 321 | 72.79 260 | 96.36 284 | 78.45 302 | 74.04 332 | 90.79 318 |
|
| VDDNet | | | 90.08 209 | 88.54 225 | 94.69 169 | 94.41 249 | 87.68 202 | 98.21 209 | 96.40 221 | 76.21 356 | 93.33 146 | 97.75 138 | 54.93 359 | 98.77 157 | 94.71 120 | 90.96 222 | 97.61 198 |
|
| VPNet | | | 88.30 243 | 86.57 253 | 93.49 208 | 91.95 303 | 91.35 107 | 98.18 211 | 97.20 171 | 88.61 182 | 84.52 246 | 94.89 234 | 62.21 330 | 96.76 262 | 89.34 192 | 72.26 348 | 92.36 263 |
|
| HyFIR lowres test | | | 93.68 128 | 93.29 126 | 94.87 161 | 97.57 119 | 88.04 196 | 98.18 211 | 98.47 25 | 87.57 222 | 91.24 177 | 95.05 232 | 85.49 131 | 97.46 233 | 93.22 146 | 92.82 185 | 99.10 115 |
|
| FIs | | | 90.70 195 | 89.87 194 | 93.18 213 | 92.29 295 | 91.12 114 | 98.17 213 | 98.25 32 | 89.11 169 | 83.44 254 | 94.82 237 | 82.26 187 | 96.17 299 | 87.76 208 | 82.76 279 | 92.25 267 |
|
| WB-MVSnew | | | 88.69 237 | 88.34 227 | 89.77 297 | 94.30 256 | 85.99 252 | 98.14 214 | 97.31 159 | 87.15 229 | 87.85 213 | 96.07 214 | 69.91 278 | 95.52 324 | 72.83 342 | 91.47 217 | 87.80 361 |
|
| Anonymous20240529 | | | 87.66 255 | 85.58 268 | 93.92 200 | 97.59 117 | 85.01 273 | 98.13 215 | 97.13 177 | 66.69 387 | 88.47 209 | 96.01 216 | 55.09 358 | 99.51 110 | 87.00 214 | 84.12 266 | 97.23 208 |
|
| v1192 | | | 86.32 276 | 84.71 284 | 91.17 256 | 89.53 339 | 86.40 233 | 98.13 215 | 95.44 295 | 82.52 313 | 82.42 272 | 90.62 318 | 71.58 272 | 96.33 291 | 77.23 307 | 74.88 319 | 90.79 318 |
|
| test1111 | | | 92.12 168 | 91.19 171 | 94.94 159 | 96.15 183 | 87.36 214 | 98.12 217 | 94.84 317 | 90.85 116 | 90.97 179 | 97.26 161 | 65.60 315 | 98.37 176 | 89.74 187 | 97.14 136 | 99.07 119 |
|
| baseline2 | | | 94.04 114 | 93.80 113 | 94.74 167 | 93.07 288 | 90.25 137 | 98.12 217 | 98.16 39 | 89.86 146 | 86.53 230 | 96.95 181 | 95.56 6 | 98.05 194 | 91.44 164 | 94.53 170 | 95.93 239 |
|
| OPM-MVS | | | 89.76 214 | 89.15 208 | 91.57 251 | 90.53 324 | 85.58 261 | 98.11 219 | 95.93 258 | 92.88 78 | 86.05 231 | 96.47 202 | 67.06 304 | 97.87 203 | 89.29 195 | 86.08 250 | 91.26 306 |
| Ray L. Khuboni, Hongjun Xu: Octagram Propagation Matching for Multi-Scale View Stereopsis (OPM-MVS). |
| ECVR-MVS |  | | 92.29 163 | 91.33 168 | 95.15 151 | 96.41 169 | 87.84 199 | 98.10 220 | 94.84 317 | 90.82 117 | 91.42 174 | 97.28 159 | 65.61 314 | 98.49 173 | 90.33 178 | 97.19 133 | 99.12 113 |
|
| v1921920 | | | 86.02 279 | 84.44 290 | 90.77 268 | 89.32 342 | 85.20 268 | 98.10 220 | 95.35 301 | 82.19 319 | 82.25 277 | 90.71 311 | 70.73 275 | 96.30 295 | 76.85 312 | 74.49 324 | 90.80 317 |
|
| IterMVS-LS | | | 88.34 242 | 87.44 240 | 91.04 259 | 94.10 257 | 85.85 256 | 98.10 220 | 95.48 291 | 85.12 265 | 82.03 283 | 91.21 302 | 81.35 200 | 95.63 322 | 83.86 258 | 75.73 314 | 91.63 286 |
| Fangjinhua Wang, Silvano Galliani, Christoph Vogel, Marc Pollefeys: IterMVS: Iterative Probability Estimation for Efficient Multi-View Stereo. |
| UWE-MVS | | | 93.18 144 | 93.40 122 | 92.50 229 | 96.56 161 | 83.55 292 | 98.09 223 | 97.84 61 | 89.50 159 | 91.72 164 | 96.23 209 | 91.08 33 | 96.70 263 | 86.28 224 | 93.33 180 | 97.26 206 |
|
| RRT_MVS | | | 88.91 226 | 88.56 223 | 89.93 291 | 90.31 327 | 81.61 316 | 98.08 224 | 96.38 222 | 89.30 163 | 82.41 273 | 94.84 236 | 73.15 255 | 96.04 305 | 90.38 177 | 82.23 284 | 92.15 274 |
|
| test222 | | | | | | 98.32 92 | 91.21 110 | 98.08 224 | 97.58 118 | 83.74 289 | 95.87 99 | 99.02 60 | 86.74 105 | | | 99.64 40 | 99.81 33 |
|
| FMVSNet3 | | | 88.81 233 | 87.08 247 | 93.99 199 | 96.52 164 | 94.59 47 | 98.08 224 | 96.20 234 | 85.85 254 | 82.12 279 | 91.60 294 | 74.05 247 | 95.40 329 | 79.04 295 | 80.24 290 | 91.99 281 |
|
| OMC-MVS | | | 93.90 120 | 93.62 116 | 94.73 168 | 98.63 87 | 87.00 223 | 98.04 227 | 96.56 212 | 92.19 92 | 92.46 155 | 98.73 91 | 79.49 213 | 99.14 145 | 92.16 159 | 94.34 173 | 98.03 186 |
|
| test2506 | | | 94.80 92 | 94.21 95 | 96.58 88 | 96.41 169 | 92.18 95 | 98.01 228 | 98.96 11 | 90.82 117 | 93.46 144 | 97.28 159 | 85.92 123 | 98.45 174 | 89.82 184 | 97.19 133 | 99.12 113 |
|
| UGNet | | | 91.91 172 | 90.85 178 | 95.10 152 | 97.06 147 | 88.69 185 | 98.01 228 | 98.24 34 | 92.41 87 | 92.39 157 | 93.61 259 | 60.52 337 | 99.68 92 | 88.14 204 | 97.25 131 | 96.92 218 |
| Wanjuan Su, Qingshan Xu, Wenbing Tao: Uncertainty-guided Multi-view Stereo Network for Depth Estimation. IEEE Transactions on Circuits and Systems for Video Technology, 2022 |
| cl22 | | | 89.57 217 | 88.79 216 | 91.91 240 | 97.94 105 | 87.62 205 | 97.98 230 | 96.51 215 | 85.03 269 | 82.37 275 | 91.79 290 | 83.65 154 | 96.50 275 | 85.96 228 | 77.89 302 | 91.61 290 |
|
| VPA-MVSNet | | | 89.10 222 | 87.66 238 | 93.45 209 | 92.56 291 | 91.02 120 | 97.97 231 | 98.32 30 | 86.92 235 | 86.03 232 | 92.01 285 | 68.84 287 | 97.10 248 | 90.92 169 | 75.34 315 | 92.23 269 |
|
| TR-MVS | | | 90.77 193 | 89.44 201 | 94.76 165 | 96.31 174 | 88.02 197 | 97.92 232 | 95.96 252 | 85.52 260 | 88.22 211 | 97.23 164 | 66.80 305 | 98.09 190 | 84.58 245 | 92.38 193 | 98.17 183 |
|
| FC-MVSNet-test | | | 90.22 204 | 89.40 203 | 92.67 227 | 91.78 307 | 89.86 155 | 97.89 233 | 98.22 35 | 88.81 179 | 82.96 261 | 94.66 239 | 81.90 193 | 95.96 308 | 85.89 231 | 82.52 282 | 92.20 273 |
|
| testdata1 | | | | | | | | 97.89 233 | | 92.43 84 | | | | | | | |
|
| v1240 | | | 85.77 286 | 84.11 293 | 90.73 269 | 89.26 343 | 85.15 271 | 97.88 235 | 95.23 310 | 81.89 324 | 82.16 278 | 90.55 323 | 69.60 284 | 96.31 292 | 75.59 321 | 74.87 320 | 90.72 322 |
|
| Effi-MVS+-dtu | | | 89.97 212 | 90.68 184 | 87.81 324 | 95.15 221 | 71.98 371 | 97.87 236 | 95.40 297 | 91.92 96 | 87.57 215 | 91.44 297 | 74.27 245 | 96.84 257 | 89.45 189 | 93.10 183 | 94.60 247 |
|
| miper_ehance_all_eth | | | 88.94 225 | 88.12 232 | 91.40 252 | 95.32 212 | 86.93 224 | 97.85 237 | 95.55 287 | 84.19 281 | 81.97 284 | 91.50 296 | 84.16 149 | 95.91 313 | 84.69 243 | 77.89 302 | 91.36 301 |
|
| cl____ | | | 87.82 248 | 86.79 252 | 90.89 264 | 94.88 238 | 85.43 263 | 97.81 238 | 95.24 306 | 82.91 308 | 80.71 299 | 91.22 301 | 81.97 192 | 95.84 315 | 81.34 280 | 75.06 317 | 91.40 300 |
|
| DIV-MVS_self_test | | | 87.82 248 | 86.81 251 | 90.87 265 | 94.87 239 | 85.39 265 | 97.81 238 | 95.22 311 | 82.92 307 | 80.76 298 | 91.31 300 | 81.99 190 | 95.81 317 | 81.36 279 | 75.04 318 | 91.42 299 |
|
| SDMVSNet | | | 91.09 186 | 89.91 193 | 94.65 170 | 96.80 154 | 90.54 133 | 97.78 240 | 97.81 68 | 88.34 195 | 85.73 233 | 95.26 229 | 66.44 309 | 98.26 182 | 94.25 128 | 86.75 242 | 95.14 242 |
|
| testmvs | | | 18.81 373 | 23.05 376 | 6.10 390 | 4.48 412 | 2.29 415 | 97.78 240 | 3.00 413 | 3.27 406 | 18.60 406 | 62.71 394 | 1.53 413 | 2.49 409 | 14.26 407 | 1.80 406 | 13.50 404 |
|
| MVSFormer | | | 94.71 98 | 94.08 101 | 96.61 85 | 95.05 231 | 94.87 36 | 97.77 242 | 96.17 238 | 86.84 236 | 98.04 49 | 98.52 108 | 85.52 128 | 95.99 306 | 89.83 182 | 98.97 82 | 98.96 125 |
|
| test_djsdf | | | 88.26 245 | 87.73 236 | 89.84 294 | 88.05 356 | 82.21 310 | 97.77 242 | 96.17 238 | 86.84 236 | 82.41 273 | 91.95 289 | 72.07 265 | 95.99 306 | 89.83 182 | 84.50 261 | 91.32 303 |
|
| AUN-MVS | | | 90.17 206 | 89.50 199 | 92.19 234 | 96.21 179 | 82.67 306 | 97.76 244 | 97.53 127 | 88.05 205 | 91.67 165 | 96.15 210 | 83.10 167 | 97.47 232 | 88.11 205 | 66.91 367 | 96.43 232 |
|
| hse-mvs2 | | | 91.67 175 | 91.51 165 | 92.15 236 | 96.22 178 | 82.61 308 | 97.74 245 | 97.53 127 | 93.85 57 | 96.27 91 | 96.15 210 | 83.19 165 | 97.44 235 | 95.81 92 | 66.86 368 | 96.40 233 |
|
| c3_l | | | 88.19 246 | 87.23 245 | 91.06 258 | 94.97 234 | 86.17 244 | 97.72 246 | 95.38 298 | 83.43 295 | 81.68 291 | 91.37 298 | 82.81 172 | 95.72 319 | 84.04 256 | 73.70 333 | 91.29 305 |
|
| baseline1 | | | 92.61 156 | 91.28 169 | 96.58 88 | 97.05 148 | 94.63 46 | 97.72 246 | 96.20 234 | 89.82 147 | 88.56 208 | 96.85 188 | 86.85 102 | 97.82 206 | 88.42 200 | 80.10 293 | 97.30 204 |
|
| XXY-MVS | | | 87.75 251 | 86.02 261 | 92.95 219 | 90.46 325 | 89.70 158 | 97.71 248 | 95.90 265 | 84.02 283 | 80.95 296 | 94.05 243 | 67.51 300 | 97.10 248 | 85.16 236 | 78.41 299 | 92.04 280 |
|
| Syy-MVS | | | 84.10 309 | 84.53 288 | 82.83 355 | 95.14 222 | 65.71 383 | 97.68 249 | 96.66 203 | 86.52 245 | 82.63 265 | 96.84 189 | 68.15 292 | 89.89 379 | 45.62 393 | 91.54 213 | 92.87 254 |
|
| myMVS_eth3d | | | 88.68 239 | 89.07 209 | 87.50 327 | 95.14 222 | 79.74 334 | 97.68 249 | 96.66 203 | 86.52 245 | 82.63 265 | 96.84 189 | 85.22 138 | 89.89 379 | 69.43 353 | 91.54 213 | 92.87 254 |
|
| FMVSNet2 | | | 86.90 263 | 84.79 282 | 93.24 212 | 95.11 225 | 92.54 90 | 97.67 251 | 95.86 271 | 82.94 304 | 80.55 300 | 91.17 303 | 62.89 327 | 95.29 331 | 77.23 307 | 79.71 296 | 91.90 282 |
|
| DP-MVS | | | 88.75 235 | 86.56 254 | 95.34 143 | 98.92 77 | 87.45 211 | 97.64 252 | 93.52 349 | 70.55 373 | 81.49 292 | 97.25 163 | 74.43 242 | 99.88 54 | 71.14 347 | 94.09 174 | 98.67 154 |
|
| EI-MVSNet | | | 89.87 213 | 89.38 204 | 91.36 254 | 94.32 252 | 85.87 255 | 97.61 253 | 96.59 208 | 85.10 266 | 85.51 237 | 97.10 172 | 81.30 201 | 96.56 270 | 83.85 259 | 83.03 277 | 91.64 285 |
|
| CVMVSNet | | | 90.30 202 | 90.91 177 | 88.46 320 | 94.32 252 | 73.58 365 | 97.61 253 | 97.59 116 | 90.16 139 | 88.43 210 | 97.10 172 | 76.83 230 | 92.86 359 | 82.64 269 | 93.54 179 | 98.93 131 |
|
| WR-MVS_H | | | 86.53 272 | 85.49 270 | 89.66 301 | 91.04 318 | 83.31 296 | 97.53 255 | 98.20 36 | 84.95 272 | 79.64 311 | 90.90 307 | 78.01 224 | 95.33 330 | 76.29 316 | 72.81 341 | 90.35 329 |
|
| baseline | | | 93.91 119 | 93.30 125 | 95.72 130 | 95.10 228 | 90.07 146 | 97.48 256 | 95.91 264 | 91.03 112 | 93.54 143 | 97.68 142 | 79.58 210 | 98.02 196 | 94.27 127 | 95.14 166 | 99.08 117 |
|
| PS-MVSNAJss | | | 89.54 218 | 89.05 210 | 91.00 260 | 88.77 347 | 84.36 281 | 97.39 257 | 95.97 250 | 88.47 185 | 81.88 286 | 93.80 254 | 82.48 181 | 96.50 275 | 89.34 192 | 83.34 276 | 92.15 274 |
|
| testgi | | | 82.29 317 | 81.00 320 | 86.17 337 | 87.24 364 | 74.84 360 | 97.39 257 | 91.62 372 | 88.63 181 | 75.85 339 | 95.42 226 | 46.07 380 | 91.55 374 | 66.87 364 | 79.94 294 | 92.12 276 |
|
| CP-MVSNet | | | 86.54 271 | 85.45 271 | 89.79 296 | 91.02 319 | 82.78 305 | 97.38 259 | 97.56 122 | 85.37 262 | 79.53 314 | 93.03 272 | 71.86 268 | 95.25 332 | 79.92 290 | 73.43 339 | 91.34 302 |
|
| dcpmvs_2 | | | 95.67 70 | 96.18 45 | 94.12 192 | 98.82 81 | 84.22 283 | 97.37 260 | 95.45 293 | 90.70 119 | 95.77 102 | 98.63 103 | 90.47 44 | 98.68 164 | 99.20 20 | 99.22 71 | 99.45 83 |
|
| pm-mvs1 | | | 84.68 298 | 82.78 305 | 90.40 278 | 89.58 337 | 85.18 269 | 97.31 261 | 94.73 322 | 81.93 323 | 76.05 335 | 92.01 285 | 65.48 316 | 96.11 302 | 78.75 300 | 69.14 358 | 89.91 340 |
|
| tfpnnormal | | | 83.65 311 | 81.35 317 | 90.56 274 | 91.37 314 | 88.06 195 | 97.29 262 | 97.87 58 | 78.51 346 | 76.20 333 | 90.91 306 | 64.78 319 | 96.47 278 | 61.71 376 | 73.50 336 | 87.13 368 |
|
| Anonymous20231211 | | | 84.72 297 | 82.65 308 | 90.91 262 | 97.71 111 | 84.55 279 | 97.28 263 | 96.67 202 | 66.88 386 | 79.18 318 | 90.87 308 | 58.47 343 | 96.60 266 | 82.61 270 | 74.20 329 | 91.59 292 |
|
| TransMVSNet (Re) | | | 81.97 319 | 79.61 328 | 89.08 312 | 89.70 335 | 84.01 286 | 97.26 264 | 91.85 370 | 78.84 343 | 73.07 356 | 91.62 293 | 67.17 303 | 95.21 333 | 67.50 360 | 59.46 382 | 88.02 358 |
|
| pmmvs4 | | | 87.58 257 | 86.17 260 | 91.80 244 | 89.58 337 | 88.92 179 | 97.25 265 | 95.28 302 | 82.54 312 | 80.49 301 | 93.17 270 | 75.62 234 | 96.05 304 | 82.75 268 | 78.90 297 | 90.42 328 |
|
| v8 | | | 86.11 278 | 84.45 289 | 91.10 257 | 89.99 329 | 86.85 225 | 97.24 266 | 95.36 300 | 81.99 321 | 79.89 309 | 89.86 337 | 74.53 241 | 96.39 282 | 78.83 299 | 72.32 347 | 90.05 337 |
|
| MTAPA | | | 96.09 51 | 95.80 61 | 96.96 67 | 99.29 55 | 91.19 111 | 97.23 267 | 97.45 144 | 92.58 81 | 94.39 128 | 99.24 25 | 86.43 115 | 99.99 5 | 96.22 85 | 99.40 63 | 99.71 51 |
|
| MVS_Test | | | 93.67 129 | 92.67 141 | 96.69 82 | 96.72 158 | 92.66 86 | 97.22 268 | 96.03 247 | 87.69 220 | 95.12 115 | 94.03 246 | 81.55 195 | 98.28 181 | 89.17 196 | 96.46 143 | 99.14 110 |
|
| v10 | | | 85.73 287 | 84.01 295 | 90.87 265 | 90.03 328 | 86.73 227 | 97.20 269 | 95.22 311 | 81.25 329 | 79.85 310 | 89.75 338 | 73.30 253 | 96.28 296 | 76.87 311 | 72.64 343 | 89.61 345 |
|
| PS-CasMVS | | | 85.81 284 | 84.58 287 | 89.49 306 | 90.77 321 | 82.11 311 | 97.20 269 | 97.36 156 | 84.83 274 | 79.12 319 | 92.84 275 | 67.42 301 | 95.16 334 | 78.39 303 | 73.25 340 | 91.21 307 |
|
| ppachtmachnet_test | | | 83.63 312 | 81.57 315 | 89.80 295 | 89.01 344 | 85.09 272 | 97.13 271 | 94.50 328 | 78.84 343 | 76.14 334 | 91.00 305 | 69.78 280 | 94.61 346 | 63.40 371 | 74.36 326 | 89.71 344 |
|
| PEN-MVS | | | 85.21 292 | 83.93 296 | 89.07 313 | 89.89 332 | 81.31 322 | 97.09 272 | 97.24 164 | 84.45 279 | 78.66 321 | 92.68 277 | 68.44 290 | 94.87 339 | 75.98 318 | 70.92 356 | 91.04 311 |
|
| mvs_anonymous | | | 92.50 159 | 91.65 162 | 95.06 154 | 96.60 160 | 89.64 159 | 97.06 273 | 96.44 220 | 86.64 241 | 84.14 249 | 93.93 250 | 82.49 180 | 96.17 299 | 91.47 163 | 96.08 154 | 99.35 92 |
|
| our_test_3 | | | 84.47 303 | 82.80 303 | 89.50 304 | 89.01 344 | 83.90 288 | 97.03 274 | 94.56 327 | 81.33 328 | 75.36 342 | 90.52 324 | 71.69 270 | 94.54 347 | 68.81 355 | 76.84 310 | 90.07 335 |
|
| jajsoiax | | | 87.35 258 | 86.51 255 | 89.87 292 | 87.75 361 | 81.74 314 | 97.03 274 | 95.98 249 | 88.47 185 | 80.15 305 | 93.80 254 | 61.47 332 | 96.36 284 | 89.44 190 | 84.47 262 | 91.50 294 |
|
| eth_miper_zixun_eth | | | 87.76 250 | 87.00 249 | 90.06 286 | 94.67 244 | 82.65 307 | 97.02 276 | 95.37 299 | 84.19 281 | 81.86 289 | 91.58 295 | 81.47 197 | 95.90 314 | 83.24 261 | 73.61 334 | 91.61 290 |
|
| PatchMatch-RL | | | 91.47 177 | 90.54 186 | 94.26 186 | 98.20 96 | 86.36 236 | 96.94 277 | 97.14 175 | 87.75 216 | 88.98 205 | 95.75 220 | 71.80 269 | 99.40 127 | 80.92 283 | 97.39 129 | 97.02 215 |
|
| MS-PatchMatch | | | 86.75 266 | 85.92 263 | 89.22 309 | 91.97 301 | 82.47 309 | 96.91 278 | 96.14 240 | 83.74 289 | 77.73 329 | 93.53 262 | 58.19 344 | 97.37 240 | 76.75 313 | 98.35 107 | 87.84 359 |
|
| LS3D | | | 90.19 205 | 88.72 217 | 94.59 174 | 98.97 73 | 86.33 238 | 96.90 279 | 96.60 207 | 74.96 361 | 84.06 251 | 98.74 90 | 75.78 233 | 99.83 73 | 74.93 324 | 97.57 122 | 97.62 197 |
|
| CL-MVSNet_self_test | | | 79.89 330 | 78.34 331 | 84.54 348 | 81.56 383 | 75.01 358 | 96.88 280 | 95.62 283 | 81.10 330 | 75.86 338 | 85.81 366 | 68.49 289 | 90.26 377 | 63.21 372 | 56.51 386 | 88.35 356 |
|
| LCM-MVSNet-Re | | | 88.59 240 | 88.61 220 | 88.51 319 | 95.53 205 | 72.68 369 | 96.85 281 | 88.43 388 | 88.45 188 | 73.14 353 | 90.63 317 | 75.82 232 | 94.38 348 | 92.95 149 | 95.71 160 | 98.48 163 |
|
| DTE-MVSNet | | | 84.14 307 | 82.80 303 | 88.14 321 | 88.95 346 | 79.87 333 | 96.81 282 | 96.24 232 | 83.50 294 | 77.60 330 | 92.52 279 | 67.89 297 | 94.24 350 | 72.64 343 | 69.05 359 | 90.32 330 |
|
| GBi-Net | | | 86.67 268 | 84.96 276 | 91.80 244 | 95.11 225 | 88.81 181 | 96.77 283 | 95.25 303 | 82.94 304 | 82.12 279 | 90.25 329 | 62.89 327 | 94.97 336 | 79.04 295 | 80.24 290 | 91.62 287 |
|
| test1 | | | 86.67 268 | 84.96 276 | 91.80 244 | 95.11 225 | 88.81 181 | 96.77 283 | 95.25 303 | 82.94 304 | 82.12 279 | 90.25 329 | 62.89 327 | 94.97 336 | 79.04 295 | 80.24 290 | 91.62 287 |
|
| FMVSNet1 | | | 83.94 310 | 81.32 318 | 91.80 244 | 91.94 304 | 88.81 181 | 96.77 283 | 95.25 303 | 77.98 347 | 78.25 327 | 90.25 329 | 50.37 373 | 94.97 336 | 73.27 338 | 77.81 306 | 91.62 287 |
|
| v7n | | | 84.42 304 | 82.75 306 | 89.43 307 | 88.15 354 | 81.86 313 | 96.75 286 | 95.67 281 | 80.53 335 | 78.38 326 | 89.43 342 | 69.89 279 | 96.35 289 | 73.83 335 | 72.13 349 | 90.07 335 |
|
| miper_lstm_enhance | | | 86.90 263 | 86.20 259 | 89.00 314 | 94.53 247 | 81.19 324 | 96.74 287 | 95.24 306 | 82.33 317 | 80.15 305 | 90.51 325 | 81.99 190 | 94.68 345 | 80.71 285 | 73.58 335 | 91.12 309 |
|
| mvs_tets | | | 87.09 261 | 86.22 258 | 89.71 298 | 87.87 357 | 81.39 320 | 96.73 288 | 95.90 265 | 88.19 201 | 79.99 307 | 93.61 259 | 59.96 339 | 96.31 292 | 89.40 191 | 84.34 263 | 91.43 298 |
|
| Effi-MVS+ | | | 93.87 121 | 93.15 130 | 96.02 119 | 95.79 195 | 90.76 126 | 96.70 289 | 95.78 273 | 86.98 233 | 95.71 103 | 97.17 170 | 79.58 210 | 98.01 197 | 94.57 124 | 96.09 153 | 99.31 96 |
|
| NR-MVSNet | | | 87.74 254 | 86.00 262 | 92.96 218 | 91.46 312 | 90.68 129 | 96.65 290 | 97.42 150 | 88.02 207 | 73.42 350 | 93.68 256 | 77.31 227 | 95.83 316 | 84.26 249 | 71.82 352 | 92.36 263 |
|
| Anonymous20231206 | | | 80.76 325 | 79.42 329 | 84.79 346 | 84.78 374 | 72.98 366 | 96.53 291 | 92.97 353 | 79.56 340 | 74.33 344 | 88.83 345 | 61.27 334 | 92.15 370 | 60.59 379 | 75.92 313 | 89.24 350 |
|
| MSDG | | | 88.29 244 | 86.37 256 | 94.04 197 | 96.90 150 | 86.15 245 | 96.52 292 | 94.36 334 | 77.89 351 | 79.22 317 | 96.95 181 | 69.72 281 | 99.59 104 | 73.20 339 | 92.58 191 | 96.37 234 |
|
| tt0805 | | | 86.50 273 | 84.79 282 | 91.63 250 | 91.97 301 | 81.49 317 | 96.49 293 | 97.38 154 | 82.24 318 | 82.44 270 | 95.82 219 | 51.22 369 | 98.25 183 | 84.55 246 | 80.96 289 | 95.13 244 |
|
| ACMH+ | | 83.78 15 | 84.21 305 | 82.56 310 | 89.15 311 | 93.73 274 | 79.16 337 | 96.43 294 | 94.28 336 | 81.09 331 | 74.00 347 | 94.03 246 | 54.58 360 | 97.67 219 | 76.10 317 | 78.81 298 | 90.63 325 |
|
| anonymousdsp | | | 86.69 267 | 85.75 266 | 89.53 303 | 86.46 369 | 82.94 299 | 96.39 295 | 95.71 277 | 83.97 285 | 79.63 312 | 90.70 312 | 68.85 286 | 95.94 309 | 86.01 226 | 84.02 267 | 89.72 343 |
|
| OpenMVS_ROB |  | 73.86 20 | 77.99 340 | 75.06 346 | 86.77 333 | 83.81 378 | 77.94 349 | 96.38 296 | 91.53 374 | 67.54 384 | 68.38 369 | 87.13 360 | 43.94 381 | 96.08 303 | 55.03 387 | 81.83 285 | 86.29 372 |
|
| MDA-MVSNet-bldmvs | | | 77.82 341 | 74.75 347 | 87.03 331 | 88.33 352 | 78.52 344 | 96.34 297 | 92.85 355 | 75.57 358 | 48.87 393 | 87.89 349 | 57.32 348 | 92.49 367 | 60.79 378 | 64.80 373 | 90.08 334 |
|
| IterMVS | | | 85.81 284 | 84.67 285 | 89.22 309 | 93.51 277 | 83.67 291 | 96.32 298 | 94.80 320 | 85.09 267 | 78.69 320 | 90.17 335 | 66.57 308 | 93.17 358 | 79.48 293 | 77.42 308 | 90.81 316 |
| Fangjinhua Wang, Silvano Galliani, Christoph Vogel, Marc Pollefeys: IterMVS: Iterative Probability Estimation for Efficient Multi-View Stereo. |
| IterMVS-SCA-FT | | | 85.73 287 | 84.64 286 | 89.00 314 | 93.46 280 | 82.90 301 | 96.27 299 | 94.70 323 | 85.02 270 | 78.62 322 | 90.35 327 | 66.61 306 | 93.33 355 | 79.38 294 | 77.36 309 | 90.76 320 |
|
| ACMH | | 83.09 17 | 84.60 299 | 82.61 309 | 90.57 272 | 93.18 286 | 82.94 299 | 96.27 299 | 94.92 316 | 81.01 332 | 72.61 359 | 93.61 259 | 56.54 350 | 97.79 208 | 74.31 329 | 81.07 288 | 90.99 312 |
| Qingshan Xu and Wenbing Tao: Multi-Scale Geometric Consistency Guided Multi-View Stereo. CVPR 2019 |
| SCA | | | 90.64 197 | 89.25 206 | 94.83 164 | 94.95 235 | 88.83 180 | 96.26 301 | 97.21 167 | 90.06 143 | 90.03 195 | 90.62 318 | 66.61 306 | 96.81 259 | 83.16 263 | 94.36 172 | 98.84 138 |
|
| MDA-MVSNet_test_wron | | | 79.65 331 | 77.05 336 | 87.45 328 | 87.79 360 | 80.13 331 | 96.25 302 | 94.44 329 | 73.87 365 | 51.80 391 | 87.47 356 | 68.04 294 | 92.12 371 | 66.02 365 | 67.79 364 | 90.09 333 |
|
| YYNet1 | | | 79.64 332 | 77.04 337 | 87.43 329 | 87.80 359 | 79.98 332 | 96.23 303 | 94.44 329 | 73.83 366 | 51.83 390 | 87.53 352 | 67.96 296 | 92.07 372 | 66.00 366 | 67.75 365 | 90.23 332 |
|
| 1314 | | | 93.44 134 | 91.98 155 | 97.84 32 | 95.24 213 | 94.38 52 | 96.22 304 | 97.92 55 | 90.18 136 | 82.28 276 | 97.71 141 | 77.63 226 | 99.80 81 | 91.94 161 | 98.67 98 | 99.34 94 |
|
| MVS | | | 93.92 118 | 92.28 147 | 98.83 7 | 95.69 199 | 96.82 8 | 96.22 304 | 98.17 37 | 84.89 273 | 84.34 248 | 98.61 105 | 79.32 214 | 99.83 73 | 93.88 132 | 99.43 60 | 99.86 29 |
|
| EG-PatchMatch MVS | | | 79.92 328 | 77.59 333 | 86.90 332 | 87.06 366 | 77.90 350 | 96.20 306 | 94.06 340 | 74.61 362 | 66.53 378 | 88.76 346 | 40.40 388 | 96.20 297 | 67.02 362 | 83.66 272 | 86.61 369 |
|
| test20.03 | | | 78.51 338 | 77.48 334 | 81.62 360 | 83.07 379 | 71.03 373 | 96.11 307 | 92.83 356 | 81.66 325 | 69.31 366 | 89.68 339 | 57.53 346 | 87.29 389 | 58.65 383 | 68.47 360 | 86.53 370 |
|
| MVP-Stereo | | | 86.61 270 | 85.83 264 | 88.93 316 | 88.70 349 | 83.85 289 | 96.07 308 | 94.41 333 | 82.15 320 | 75.64 340 | 91.96 288 | 67.65 298 | 96.45 280 | 77.20 309 | 98.72 96 | 86.51 371 |
| Qingsong Yan: MVP-Stereo: A Parallel Multi-View Patchmatch Stereo Method with Dilation Matching for Photogrammetric Application. |
| EU-MVSNet | | | 84.19 306 | 84.42 291 | 83.52 353 | 88.64 350 | 67.37 382 | 96.04 309 | 95.76 275 | 85.29 263 | 78.44 325 | 93.18 269 | 70.67 276 | 91.48 375 | 75.79 320 | 75.98 312 | 91.70 284 |
|
| test_fmvs3 | | | 75.09 347 | 75.19 344 | 74.81 368 | 77.45 391 | 54.08 394 | 95.93 310 | 90.64 378 | 82.51 314 | 73.29 351 | 81.19 379 | 22.29 397 | 86.29 390 | 85.50 234 | 67.89 363 | 84.06 381 |
|
| XVG-OURS-SEG-HR | | | 90.95 190 | 90.66 185 | 91.83 242 | 95.18 220 | 81.14 326 | 95.92 311 | 95.92 259 | 88.40 192 | 90.33 192 | 97.85 131 | 70.66 277 | 99.38 128 | 92.83 152 | 88.83 234 | 94.98 245 |
|
| AllTest | | | 84.97 295 | 83.12 300 | 90.52 275 | 96.82 152 | 78.84 340 | 95.89 312 | 92.17 364 | 77.96 349 | 75.94 336 | 95.50 223 | 55.48 354 | 99.18 139 | 71.15 345 | 87.14 239 | 93.55 251 |
|
| COLMAP_ROB |  | 82.69 18 | 84.54 301 | 82.82 302 | 89.70 299 | 96.72 158 | 78.85 339 | 95.89 312 | 92.83 356 | 71.55 370 | 77.54 331 | 95.89 218 | 59.40 341 | 99.14 145 | 67.26 361 | 88.26 235 | 91.11 310 |
| Johannes L. Schönberger, Enliang Zheng, Marc Pollefeys, Jan-Michael Frahm: Pixelwise View Selection for Unstructured Multi-View Stereo. ECCV 2016 |
| UA-Net | | | 93.30 140 | 92.62 142 | 95.34 143 | 96.27 176 | 88.53 189 | 95.88 314 | 96.97 194 | 90.90 115 | 95.37 110 | 97.07 174 | 82.38 186 | 99.10 147 | 83.91 257 | 94.86 169 | 98.38 168 |
|
| test_0402 | | | 78.81 335 | 76.33 340 | 86.26 336 | 91.18 316 | 78.44 345 | 95.88 314 | 91.34 375 | 68.55 380 | 70.51 363 | 89.91 336 | 52.65 366 | 94.99 335 | 47.14 392 | 79.78 295 | 85.34 377 |
|
| pmmvs6 | | | 79.90 329 | 77.31 335 | 87.67 325 | 84.17 376 | 78.13 347 | 95.86 316 | 93.68 346 | 67.94 383 | 72.67 358 | 89.62 340 | 50.98 371 | 95.75 318 | 74.80 327 | 66.04 369 | 89.14 351 |
|
| sd_testset | | | 89.23 220 | 88.05 234 | 92.74 224 | 96.80 154 | 85.33 266 | 95.85 317 | 97.03 188 | 88.34 195 | 85.73 233 | 95.26 229 | 61.12 335 | 97.76 215 | 85.61 233 | 86.75 242 | 95.14 242 |
|
| N_pmnet | | | 70.19 353 | 69.87 355 | 71.12 373 | 88.24 353 | 30.63 412 | 95.85 317 | 28.70 411 | 70.18 375 | 68.73 368 | 86.55 363 | 64.04 322 | 93.81 351 | 53.12 389 | 73.46 337 | 88.94 352 |
|
| XVG-OURS | | | 90.83 192 | 90.49 187 | 91.86 241 | 95.23 214 | 81.25 323 | 95.79 319 | 95.92 259 | 88.96 173 | 90.02 196 | 98.03 130 | 71.60 271 | 99.35 133 | 91.06 167 | 87.78 238 | 94.98 245 |
|
| dmvs_re | | | 88.69 237 | 88.06 233 | 90.59 271 | 93.83 271 | 78.68 342 | 95.75 320 | 96.18 237 | 87.99 208 | 84.48 247 | 96.32 207 | 67.52 299 | 96.94 254 | 84.98 240 | 85.49 254 | 96.14 236 |
|
| Anonymous20240521 | | | 78.63 337 | 76.90 338 | 83.82 351 | 82.82 380 | 72.86 367 | 95.72 321 | 93.57 348 | 73.55 367 | 72.17 360 | 84.79 368 | 49.69 375 | 92.51 366 | 65.29 368 | 74.50 323 | 86.09 373 |
|
| K. test v3 | | | 81.04 324 | 79.77 327 | 84.83 345 | 87.41 362 | 70.23 377 | 95.60 322 | 93.93 342 | 83.70 291 | 67.51 374 | 89.35 343 | 55.76 352 | 93.58 354 | 76.67 314 | 68.03 362 | 90.67 324 |
|
| UniMVSNet_ETH3D | | | 85.65 289 | 83.79 297 | 91.21 255 | 90.41 326 | 80.75 330 | 95.36 323 | 95.78 273 | 78.76 345 | 81.83 290 | 94.33 242 | 49.86 374 | 96.66 264 | 84.30 248 | 83.52 274 | 96.22 235 |
|
| PCF-MVS | | 89.78 5 | 91.26 182 | 89.63 197 | 96.16 114 | 95.44 207 | 91.58 105 | 95.29 324 | 96.10 242 | 85.07 268 | 82.75 262 | 97.45 154 | 78.28 222 | 99.78 84 | 80.60 287 | 95.65 161 | 97.12 209 |
| Andreas Kuhn, Shan Lin, Oliver Erdler: Plane Completion and Filtering for Multi-View Stereo Reconstruction. GCPR 2019 |
| SixPastTwentyTwo | | | 82.63 316 | 81.58 314 | 85.79 339 | 88.12 355 | 71.01 374 | 95.17 325 | 92.54 359 | 84.33 280 | 72.93 357 | 92.08 282 | 60.41 338 | 95.61 323 | 74.47 328 | 74.15 330 | 90.75 321 |
|
| USDC | | | 84.74 296 | 82.93 301 | 90.16 284 | 91.73 308 | 83.54 293 | 95.00 326 | 93.30 351 | 88.77 180 | 73.19 352 | 93.30 266 | 53.62 363 | 97.65 222 | 75.88 319 | 81.54 287 | 89.30 348 |
|
| OurMVSNet-221017-0 | | | 84.13 308 | 83.59 298 | 85.77 340 | 87.81 358 | 70.24 376 | 94.89 327 | 93.65 347 | 86.08 251 | 76.53 332 | 93.28 267 | 61.41 333 | 96.14 301 | 80.95 282 | 77.69 307 | 90.93 313 |
|
| CHOSEN 280x420 | | | 96.80 33 | 96.85 28 | 96.66 84 | 97.85 108 | 94.42 51 | 94.76 328 | 98.36 29 | 92.50 83 | 95.62 106 | 97.52 150 | 97.92 1 | 97.38 238 | 98.31 44 | 98.80 92 | 98.20 181 |
|
| test_method | | | 70.10 354 | 68.66 357 | 74.41 370 | 86.30 371 | 55.84 392 | 94.47 329 | 89.82 382 | 35.18 399 | 66.15 379 | 84.75 369 | 30.54 393 | 77.96 400 | 70.40 351 | 60.33 380 | 89.44 347 |
|
| new-patchmatchnet | | | 74.80 349 | 72.40 352 | 81.99 359 | 78.36 390 | 72.20 370 | 94.44 330 | 92.36 361 | 77.06 352 | 63.47 382 | 79.98 384 | 51.04 370 | 88.85 385 | 60.53 380 | 54.35 389 | 84.92 380 |
|
| test123 | | | 16.58 375 | 19.47 377 | 7.91 389 | 3.59 413 | 5.37 414 | 94.32 331 | 1.39 414 | 2.49 407 | 13.98 407 | 44.60 404 | 2.91 412 | 2.65 408 | 11.35 408 | 0.57 407 | 15.70 403 |
|
| XVG-ACMP-BASELINE | | | 85.86 282 | 84.95 278 | 88.57 318 | 89.90 331 | 77.12 352 | 94.30 332 | 95.60 285 | 87.40 226 | 82.12 279 | 92.99 274 | 53.42 364 | 97.66 220 | 85.02 239 | 83.83 269 | 90.92 314 |
|
| pmmvs3 | | | 72.86 351 | 69.76 356 | 82.17 357 | 73.86 394 | 74.19 362 | 94.20 333 | 89.01 386 | 64.23 390 | 67.72 372 | 80.91 382 | 41.48 385 | 88.65 386 | 62.40 374 | 54.02 390 | 83.68 383 |
|
| pmmvs-eth3d | | | 78.71 336 | 76.16 341 | 86.38 334 | 80.25 387 | 81.19 324 | 94.17 334 | 92.13 366 | 77.97 348 | 66.90 377 | 82.31 375 | 55.76 352 | 92.56 365 | 73.63 337 | 62.31 378 | 85.38 375 |
|
| CMPMVS |  | 58.40 21 | 80.48 326 | 80.11 325 | 81.59 361 | 85.10 373 | 59.56 389 | 94.14 335 | 95.95 254 | 68.54 381 | 60.71 385 | 93.31 265 | 55.35 357 | 97.87 203 | 83.06 266 | 84.85 259 | 87.33 365 |
| M. Jancosek, T. Pajdla: Multi-View Reconstruction Preserving Weakly-Supported Surfaces. CVPR 2011 |
| HY-MVS | | 88.56 7 | 95.29 79 | 94.23 94 | 98.48 14 | 97.72 110 | 96.41 13 | 94.03 336 | 98.74 16 | 92.42 86 | 95.65 105 | 94.76 238 | 86.52 112 | 99.49 112 | 95.29 105 | 92.97 184 | 99.53 74 |
|
| TinyColmap | | | 80.42 327 | 77.94 332 | 87.85 323 | 92.09 299 | 78.58 343 | 93.74 337 | 89.94 381 | 74.99 360 | 69.77 364 | 91.78 291 | 46.09 379 | 97.58 227 | 65.17 369 | 77.89 302 | 87.38 363 |
|
| FMVSNet5 | | | 82.29 317 | 80.54 321 | 87.52 326 | 93.79 273 | 84.01 286 | 93.73 338 | 92.47 360 | 76.92 354 | 74.27 345 | 86.15 365 | 63.69 325 | 89.24 384 | 69.07 354 | 74.79 321 | 89.29 349 |
|
| RPSCF | | | 85.33 291 | 85.55 269 | 84.67 347 | 94.63 246 | 62.28 386 | 93.73 338 | 93.76 343 | 74.38 364 | 85.23 240 | 97.06 175 | 64.09 321 | 98.31 178 | 80.98 281 | 86.08 250 | 93.41 253 |
|
| DSMNet-mixed | | | 81.60 322 | 81.43 316 | 82.10 358 | 84.36 375 | 60.79 387 | 93.63 340 | 86.74 391 | 79.00 341 | 79.32 316 | 87.15 359 | 63.87 323 | 89.78 381 | 66.89 363 | 91.92 203 | 95.73 240 |
|
| TDRefinement | | | 78.01 339 | 75.31 343 | 86.10 338 | 70.06 398 | 73.84 363 | 93.59 341 | 91.58 373 | 74.51 363 | 73.08 355 | 91.04 304 | 49.63 376 | 97.12 245 | 74.88 325 | 59.47 381 | 87.33 365 |
|
| LF4IMVS | | | 81.94 320 | 81.17 319 | 84.25 349 | 87.23 365 | 68.87 381 | 93.35 342 | 91.93 369 | 83.35 297 | 75.40 341 | 93.00 273 | 49.25 377 | 96.65 265 | 78.88 298 | 78.11 301 | 87.22 367 |
|
| LTVRE_ROB | | 81.71 19 | 84.59 300 | 82.72 307 | 90.18 283 | 92.89 290 | 83.18 297 | 93.15 343 | 94.74 321 | 78.99 342 | 75.14 343 | 92.69 276 | 65.64 313 | 97.63 223 | 69.46 352 | 81.82 286 | 89.74 342 |
| Andreas Kuhn, Heiko Hirschmüller, Daniel Scharstein, Helmut Mayer: A TV Prior for High-Quality Scalable Multi-View Stereo Reconstruction. International Journal of Computer Vision 2016 |
| WB-MVS | | | 66.44 356 | 66.29 359 | 66.89 376 | 74.84 392 | 44.93 403 | 93.00 344 | 84.09 397 | 71.15 371 | 55.82 388 | 81.63 377 | 63.79 324 | 80.31 398 | 21.85 402 | 50.47 395 | 75.43 389 |
|
| tpm | | | 89.67 215 | 88.95 212 | 91.82 243 | 92.54 292 | 81.43 318 | 92.95 345 | 95.92 259 | 87.81 213 | 90.50 188 | 89.44 341 | 84.99 139 | 95.65 321 | 83.67 260 | 82.71 280 | 98.38 168 |
|
| CostFormer | | | 92.89 150 | 92.48 145 | 94.12 192 | 94.99 233 | 85.89 254 | 92.89 346 | 97.00 192 | 86.98 233 | 95.00 117 | 90.78 309 | 90.05 53 | 97.51 231 | 92.92 151 | 91.73 208 | 98.96 125 |
|
| KD-MVS_2432*1600 | | | 82.98 314 | 80.52 322 | 90.38 279 | 94.32 252 | 88.98 173 | 92.87 347 | 95.87 269 | 80.46 337 | 73.79 348 | 87.49 354 | 82.76 175 | 93.29 356 | 70.56 349 | 46.53 397 | 88.87 354 |
|
| miper_refine_blended | | | 82.98 314 | 80.52 322 | 90.38 279 | 94.32 252 | 88.98 173 | 92.87 347 | 95.87 269 | 80.46 337 | 73.79 348 | 87.49 354 | 82.76 175 | 93.29 356 | 70.56 349 | 46.53 397 | 88.87 354 |
|
| KD-MVS_self_test | | | 77.47 342 | 75.88 342 | 82.24 356 | 81.59 382 | 68.93 380 | 92.83 349 | 94.02 341 | 77.03 353 | 73.14 353 | 83.39 371 | 55.44 356 | 90.42 376 | 67.95 358 | 57.53 385 | 87.38 363 |
|
| ab-mvs | | | 91.05 189 | 89.17 207 | 96.69 82 | 95.96 191 | 91.72 101 | 92.62 350 | 97.23 165 | 85.61 259 | 89.74 199 | 93.89 252 | 68.55 288 | 99.42 123 | 91.09 166 | 87.84 237 | 98.92 133 |
|
| tpm2 | | | 91.77 173 | 91.09 172 | 93.82 204 | 94.83 240 | 85.56 262 | 92.51 351 | 97.16 174 | 84.00 284 | 93.83 138 | 90.66 315 | 87.54 83 | 97.17 244 | 87.73 209 | 91.55 212 | 98.72 150 |
|
| MIMVSNet1 | | | 75.92 345 | 73.30 350 | 83.81 352 | 81.29 384 | 75.57 356 | 92.26 352 | 92.05 367 | 73.09 368 | 67.48 375 | 86.18 364 | 40.87 387 | 87.64 388 | 55.78 386 | 70.68 357 | 88.21 357 |
|
| SSC-MVS | | | 65.42 357 | 65.20 360 | 66.06 377 | 73.96 393 | 43.83 404 | 92.08 353 | 83.54 398 | 69.77 377 | 54.73 389 | 80.92 381 | 63.30 326 | 79.92 399 | 20.48 403 | 48.02 396 | 74.44 390 |
|
| UnsupCasMVSNet_eth | | | 78.90 334 | 76.67 339 | 85.58 341 | 82.81 381 | 74.94 359 | 91.98 354 | 96.31 226 | 84.64 276 | 65.84 380 | 87.71 350 | 51.33 368 | 92.23 369 | 72.89 341 | 56.50 387 | 89.56 346 |
|
| tpmrst | | | 92.78 151 | 92.16 150 | 94.65 170 | 96.27 176 | 87.45 211 | 91.83 355 | 97.10 182 | 89.10 170 | 94.68 122 | 90.69 313 | 88.22 71 | 97.73 218 | 89.78 185 | 91.80 206 | 98.77 148 |
|
| EPMVS | | | 92.59 157 | 91.59 163 | 95.59 137 | 97.22 134 | 90.03 150 | 91.78 356 | 98.04 48 | 90.42 131 | 91.66 166 | 90.65 316 | 86.49 114 | 97.46 233 | 81.78 278 | 96.31 148 | 99.28 99 |
|
| mvsany_test3 | | | 75.85 346 | 74.52 348 | 79.83 363 | 73.53 395 | 60.64 388 | 91.73 357 | 87.87 390 | 83.91 287 | 70.55 362 | 82.52 373 | 31.12 392 | 93.66 352 | 86.66 221 | 62.83 374 | 85.19 379 |
|
| test_f | | | 71.94 352 | 70.82 353 | 75.30 367 | 72.77 396 | 53.28 395 | 91.62 358 | 89.66 384 | 75.44 359 | 64.47 381 | 78.31 387 | 20.48 398 | 89.56 382 | 78.63 301 | 66.02 370 | 83.05 386 |
|
| FA-MVS(test-final) | | | 92.22 167 | 91.08 173 | 95.64 134 | 96.05 189 | 88.98 173 | 91.60 359 | 97.25 161 | 86.99 230 | 91.84 161 | 92.12 281 | 83.03 168 | 99.00 150 | 86.91 217 | 93.91 176 | 98.93 131 |
|
| dp | | | 90.16 207 | 88.83 215 | 94.14 191 | 96.38 172 | 86.42 232 | 91.57 360 | 97.06 185 | 84.76 275 | 88.81 206 | 90.19 334 | 84.29 148 | 97.43 236 | 75.05 323 | 91.35 221 | 98.56 159 |
|
| dmvs_testset | | | 77.17 343 | 78.99 330 | 71.71 371 | 87.25 363 | 38.55 408 | 91.44 361 | 81.76 399 | 85.77 256 | 69.49 365 | 95.94 217 | 69.71 282 | 84.37 391 | 52.71 390 | 76.82 311 | 92.21 271 |
|
| MDTV_nov1_ep13_2view | | | | | | | 91.17 113 | 91.38 362 | | 87.45 225 | 93.08 149 | | 86.67 107 | | 87.02 213 | | 98.95 129 |
|
| MDTV_nov1_ep13 | | | | 90.47 188 | | 96.14 185 | 88.55 187 | 91.34 363 | 97.51 133 | 89.58 155 | 92.24 158 | 90.50 326 | 86.99 100 | 97.61 225 | 77.64 306 | 92.34 195 | |
|
| new_pmnet | | | 76.02 344 | 73.71 349 | 82.95 354 | 83.88 377 | 72.85 368 | 91.26 364 | 92.26 363 | 70.44 374 | 62.60 383 | 81.37 378 | 47.64 378 | 92.32 368 | 61.85 375 | 72.10 350 | 83.68 383 |
|
| PatchmatchNet |  | | 92.05 171 | 91.04 174 | 95.06 154 | 96.17 182 | 89.04 170 | 91.26 364 | 97.26 160 | 89.56 157 | 90.64 185 | 90.56 322 | 88.35 69 | 97.11 246 | 79.53 291 | 96.07 155 | 99.03 120 |
| Fangjinhua Wang, Silvano Galliani, Christoph Vogel, Pablo Speciale, Marc Pollefeys: PatchmatchNet: Learned Multi-View Patchmatch Stereo. |
| test_vis3_rt | | | 61.29 359 | 58.75 362 | 68.92 375 | 67.41 399 | 52.84 397 | 91.18 366 | 59.23 410 | 66.96 385 | 41.96 398 | 58.44 398 | 11.37 406 | 94.72 344 | 74.25 330 | 57.97 384 | 59.20 397 |
|
| FPMVS | | | 61.57 358 | 60.32 361 | 65.34 378 | 60.14 405 | 42.44 406 | 91.02 367 | 89.72 383 | 44.15 394 | 42.63 397 | 80.93 380 | 19.02 399 | 80.59 397 | 42.50 394 | 72.76 342 | 73.00 391 |
|
| PM-MVS | | | 74.88 348 | 72.85 351 | 80.98 362 | 78.98 389 | 64.75 385 | 90.81 368 | 85.77 392 | 80.95 333 | 68.23 371 | 82.81 372 | 29.08 394 | 92.84 360 | 76.54 315 | 62.46 377 | 85.36 376 |
|
| tpm cat1 | | | 88.89 227 | 87.27 244 | 93.76 205 | 95.79 195 | 85.32 267 | 90.76 369 | 97.09 183 | 76.14 357 | 85.72 235 | 88.59 347 | 82.92 170 | 98.04 195 | 76.96 310 | 91.43 218 | 97.90 190 |
|
| test_post1 | | | | | | | | 90.74 370 | | | | 41.37 406 | 85.38 135 | 96.36 284 | 83.16 263 | | |
|
| tpmvs | | | 89.16 221 | 87.76 235 | 93.35 210 | 97.19 137 | 84.75 277 | 90.58 371 | 97.36 156 | 81.99 321 | 84.56 244 | 89.31 344 | 83.98 152 | 98.17 185 | 74.85 326 | 90.00 231 | 97.12 209 |
|
| EGC-MVSNET | | | 60.70 360 | 55.37 364 | 76.72 365 | 86.35 370 | 71.08 372 | 89.96 372 | 84.44 396 | 0.38 408 | 1.50 409 | 84.09 370 | 37.30 389 | 88.10 387 | 40.85 397 | 73.44 338 | 70.97 393 |
|
| FE-MVS | | | 91.38 180 | 90.16 191 | 95.05 156 | 96.46 167 | 87.53 208 | 89.69 373 | 97.84 61 | 82.97 303 | 92.18 159 | 92.00 287 | 84.07 151 | 98.93 153 | 80.71 285 | 95.52 162 | 98.68 153 |
|
| UnsupCasMVSNet_bld | | | 73.85 350 | 70.14 354 | 84.99 344 | 79.44 388 | 75.73 355 | 88.53 374 | 95.24 306 | 70.12 376 | 61.94 384 | 74.81 390 | 41.41 386 | 93.62 353 | 68.65 356 | 51.13 394 | 85.62 374 |
|
| APD_test1 | | | 68.93 355 | 66.98 358 | 74.77 369 | 80.62 386 | 53.15 396 | 87.97 375 | 85.01 394 | 53.76 392 | 59.26 386 | 87.52 353 | 25.19 395 | 89.95 378 | 56.20 385 | 67.33 366 | 81.19 387 |
|
| GG-mvs-BLEND | | | | | 96.98 65 | 96.53 163 | 94.81 41 | 87.20 376 | 97.74 77 | | 93.91 136 | 96.40 203 | 96.56 2 | 96.94 254 | 95.08 109 | 98.95 85 | 99.20 106 |
|
| ADS-MVSNet2 | | | 87.62 256 | 86.88 250 | 89.86 293 | 96.21 179 | 79.14 338 | 87.15 377 | 92.99 352 | 83.01 301 | 89.91 197 | 87.27 357 | 78.87 217 | 92.80 362 | 74.20 331 | 92.27 197 | 97.64 194 |
|
| ADS-MVSNet | | | 88.99 223 | 87.30 243 | 94.07 194 | 96.21 179 | 87.56 207 | 87.15 377 | 96.78 200 | 83.01 301 | 89.91 197 | 87.27 357 | 78.87 217 | 97.01 251 | 74.20 331 | 92.27 197 | 97.64 194 |
|
| PMMVS2 | | | 58.97 362 | 55.07 365 | 70.69 374 | 62.72 402 | 55.37 393 | 85.97 379 | 80.52 400 | 49.48 393 | 45.94 394 | 68.31 392 | 15.73 403 | 80.78 396 | 49.79 391 | 37.12 399 | 75.91 388 |
|
| MIMVSNet | | | 84.48 302 | 81.83 312 | 92.42 230 | 91.73 308 | 87.36 214 | 85.52 380 | 94.42 332 | 81.40 327 | 81.91 285 | 87.58 351 | 51.92 367 | 92.81 361 | 73.84 334 | 88.15 236 | 97.08 213 |
|
| MVS-HIRNet | | | 79.01 333 | 75.13 345 | 90.66 270 | 93.82 272 | 81.69 315 | 85.16 381 | 93.75 344 | 54.54 391 | 74.17 346 | 59.15 397 | 57.46 347 | 96.58 269 | 63.74 370 | 94.38 171 | 93.72 250 |
|
| gg-mvs-nofinetune | | | 90.00 210 | 87.71 237 | 96.89 73 | 96.15 183 | 94.69 45 | 85.15 382 | 97.74 77 | 68.32 382 | 92.97 151 | 60.16 395 | 96.10 3 | 96.84 257 | 93.89 131 | 98.87 89 | 99.14 110 |
|
| JIA-IIPM | | | 85.97 280 | 84.85 280 | 89.33 308 | 93.23 285 | 73.68 364 | 85.05 383 | 97.13 177 | 69.62 378 | 91.56 169 | 68.03 393 | 88.03 77 | 96.96 252 | 77.89 305 | 93.12 182 | 97.34 203 |
|
| CR-MVSNet | | | 88.83 231 | 87.38 242 | 93.16 214 | 93.47 278 | 86.24 239 | 84.97 384 | 94.20 338 | 88.92 177 | 90.76 183 | 86.88 361 | 84.43 146 | 94.82 341 | 70.64 348 | 92.17 201 | 98.41 165 |
|
| RPMNet | | | 85.07 294 | 81.88 311 | 94.64 172 | 93.47 278 | 86.24 239 | 84.97 384 | 97.21 167 | 64.85 389 | 90.76 183 | 78.80 386 | 80.95 203 | 99.27 137 | 53.76 388 | 92.17 201 | 98.41 165 |
|
| EMVS | | | 39.96 371 | 39.88 373 | 40.18 387 | 59.57 406 | 32.12 411 | 84.79 386 | 64.57 409 | 26.27 402 | 26.14 403 | 44.18 405 | 18.73 400 | 59.29 406 | 17.03 405 | 17.67 403 | 29.12 402 |
|
| Patchmtry | | | 83.61 313 | 81.64 313 | 89.50 304 | 93.36 282 | 82.84 304 | 84.10 387 | 94.20 338 | 69.47 379 | 79.57 313 | 86.88 361 | 84.43 146 | 94.78 342 | 68.48 357 | 74.30 327 | 90.88 315 |
|
| Patchmatch-RL test | | | 81.90 321 | 80.13 324 | 87.23 330 | 80.71 385 | 70.12 378 | 84.07 388 | 88.19 389 | 83.16 300 | 70.57 361 | 82.18 376 | 87.18 93 | 92.59 364 | 82.28 273 | 62.78 375 | 98.98 123 |
|
| E-PMN | | | 41.02 370 | 40.93 372 | 41.29 386 | 61.97 403 | 33.83 409 | 84.00 389 | 65.17 408 | 27.17 401 | 27.56 401 | 46.72 402 | 17.63 402 | 60.41 405 | 19.32 404 | 18.82 401 | 29.61 401 |
|
| PatchT | | | 85.44 290 | 83.19 299 | 92.22 232 | 93.13 287 | 83.00 298 | 83.80 390 | 96.37 223 | 70.62 372 | 90.55 186 | 79.63 385 | 84.81 143 | 94.87 339 | 58.18 384 | 91.59 210 | 98.79 145 |
|
| Patchmatch-test | | | 86.25 277 | 84.06 294 | 92.82 220 | 94.42 248 | 82.88 303 | 82.88 391 | 94.23 337 | 71.58 369 | 79.39 315 | 90.62 318 | 89.00 62 | 96.42 281 | 63.03 373 | 91.37 220 | 99.16 108 |
|
| LCM-MVSNet | | | 60.07 361 | 56.37 363 | 71.18 372 | 54.81 407 | 48.67 400 | 82.17 392 | 89.48 385 | 37.95 397 | 49.13 392 | 69.12 391 | 13.75 405 | 81.76 392 | 59.28 381 | 51.63 393 | 83.10 385 |
|
| testf1 | | | 56.38 363 | 53.73 366 | 64.31 380 | 64.84 400 | 45.11 401 | 80.50 393 | 75.94 405 | 38.87 395 | 42.74 395 | 75.07 388 | 11.26 407 | 81.19 394 | 41.11 395 | 53.27 391 | 66.63 394 |
|
| APD_test2 | | | 56.38 363 | 53.73 366 | 64.31 380 | 64.84 400 | 45.11 401 | 80.50 393 | 75.94 405 | 38.87 395 | 42.74 395 | 75.07 388 | 11.26 407 | 81.19 394 | 41.11 395 | 53.27 391 | 66.63 394 |
|
| ambc | | | | | 79.60 364 | 72.76 397 | 56.61 391 | 76.20 395 | 92.01 368 | | 68.25 370 | 80.23 383 | 23.34 396 | 94.73 343 | 73.78 336 | 60.81 379 | 87.48 362 |
|
| ANet_high | | | 50.71 367 | 46.17 370 | 64.33 379 | 44.27 409 | 52.30 398 | 76.13 396 | 78.73 401 | 64.95 388 | 27.37 402 | 55.23 399 | 14.61 404 | 67.74 402 | 36.01 398 | 18.23 402 | 72.95 392 |
|
| tmp_tt | | | 53.66 366 | 52.86 368 | 56.05 383 | 32.75 411 | 41.97 407 | 73.42 397 | 76.12 404 | 21.91 404 | 39.68 400 | 96.39 205 | 42.59 384 | 65.10 403 | 78.00 304 | 14.92 404 | 61.08 396 |
|
| PMVS |  | 41.42 23 | 45.67 368 | 42.50 371 | 55.17 384 | 34.28 410 | 32.37 410 | 66.24 398 | 78.71 402 | 30.72 400 | 22.04 405 | 59.59 396 | 4.59 409 | 77.85 401 | 27.49 400 | 58.84 383 | 55.29 398 |
| Y. Furukawa, J. Ponce: Accurate, dense, and robust multiview stereopsis. PAMI (2010) |
| MVE |  | 44.00 22 | 41.70 369 | 37.64 374 | 53.90 385 | 49.46 408 | 43.37 405 | 65.09 399 | 66.66 407 | 26.19 403 | 25.77 404 | 48.53 401 | 3.58 411 | 63.35 404 | 26.15 401 | 27.28 400 | 54.97 399 |
| Simon Fuhrmann, Fabian Langguth, Michael Goesele: MVE - A Multi-View Reconstruction Environment. EUROGRAPHICS Workshops on Graphics and Cultural Heritage (2014) |
| Gipuma |  | | 54.77 365 | 52.22 369 | 62.40 382 | 86.50 368 | 59.37 390 | 50.20 400 | 90.35 380 | 36.52 398 | 41.20 399 | 49.49 400 | 18.33 401 | 81.29 393 | 32.10 399 | 65.34 371 | 46.54 400 |
| S. Galliani, K. Lasinger, K. Schindler: Massively Parallel Multiview Stereopsis by Surface Normal Diffusion. ICCV 2015 |
| wuyk23d | | | 16.71 374 | 16.73 378 | 16.65 388 | 60.15 404 | 25.22 413 | 41.24 401 | 5.17 412 | 6.56 405 | 5.48 408 | 3.61 408 | 3.64 410 | 22.72 407 | 15.20 406 | 9.52 405 | 1.99 405 |
|
| test_blank | | | 0.00 378 | 0.00 381 | 0.00 391 | 0.00 414 | 0.00 416 | 0.00 402 | 0.00 415 | 0.00 409 | 0.00 410 | 0.00 409 | 0.00 414 | 0.00 410 | 0.00 409 | 0.00 408 | 0.00 406 |
|
| uanet_test | | | 0.00 378 | 0.00 381 | 0.00 391 | 0.00 414 | 0.00 416 | 0.00 402 | 0.00 415 | 0.00 409 | 0.00 410 | 0.00 409 | 0.00 414 | 0.00 410 | 0.00 409 | 0.00 408 | 0.00 406 |
|
| DCPMVS | | | 0.00 378 | 0.00 381 | 0.00 391 | 0.00 414 | 0.00 416 | 0.00 402 | 0.00 415 | 0.00 409 | 0.00 410 | 0.00 409 | 0.00 414 | 0.00 410 | 0.00 409 | 0.00 408 | 0.00 406 |
|
| cdsmvs_eth3d_5k | | | 22.52 372 | 30.03 375 | 0.00 391 | 0.00 414 | 0.00 416 | 0.00 402 | 97.17 173 | 0.00 409 | 0.00 410 | 98.77 87 | 74.35 244 | 0.00 410 | 0.00 409 | 0.00 408 | 0.00 406 |
|
| pcd_1.5k_mvsjas | | | 6.87 377 | 9.16 380 | 0.00 391 | 0.00 414 | 0.00 416 | 0.00 402 | 0.00 415 | 0.00 409 | 0.00 410 | 0.00 409 | 82.48 181 | 0.00 410 | 0.00 409 | 0.00 408 | 0.00 406 |
|
| sosnet-low-res | | | 0.00 378 | 0.00 381 | 0.00 391 | 0.00 414 | 0.00 416 | 0.00 402 | 0.00 415 | 0.00 409 | 0.00 410 | 0.00 409 | 0.00 414 | 0.00 410 | 0.00 409 | 0.00 408 | 0.00 406 |
|
| sosnet | | | 0.00 378 | 0.00 381 | 0.00 391 | 0.00 414 | 0.00 416 | 0.00 402 | 0.00 415 | 0.00 409 | 0.00 410 | 0.00 409 | 0.00 414 | 0.00 410 | 0.00 409 | 0.00 408 | 0.00 406 |
|
| uncertanet | | | 0.00 378 | 0.00 381 | 0.00 391 | 0.00 414 | 0.00 416 | 0.00 402 | 0.00 415 | 0.00 409 | 0.00 410 | 0.00 409 | 0.00 414 | 0.00 410 | 0.00 409 | 0.00 408 | 0.00 406 |
|
| Regformer | | | 0.00 378 | 0.00 381 | 0.00 391 | 0.00 414 | 0.00 416 | 0.00 402 | 0.00 415 | 0.00 409 | 0.00 410 | 0.00 409 | 0.00 414 | 0.00 410 | 0.00 409 | 0.00 408 | 0.00 406 |
|
| ab-mvs-re | | | 8.21 376 | 10.94 379 | 0.00 391 | 0.00 414 | 0.00 416 | 0.00 402 | 0.00 415 | 0.00 409 | 0.00 410 | 98.50 110 | 0.00 414 | 0.00 410 | 0.00 409 | 0.00 408 | 0.00 406 |
|
| uanet | | | 0.00 378 | 0.00 381 | 0.00 391 | 0.00 414 | 0.00 416 | 0.00 402 | 0.00 415 | 0.00 409 | 0.00 410 | 0.00 409 | 0.00 414 | 0.00 410 | 0.00 409 | 0.00 408 | 0.00 406 |
|
| WAC-MVS | | | | | | | 79.74 334 | | | | | | | | 67.75 359 | | |
|
| MSC_two_6792asdad | | | | | 99.51 2 | 99.61 24 | 98.60 2 | | 97.69 88 | | | | | 99.98 9 | 99.55 12 | 99.83 15 | 99.96 10 |
|
| PC_three_1452 | | | | | | | | | | 94.60 38 | 99.41 4 | 99.12 48 | 95.50 7 | 99.96 28 | 99.84 2 | 99.92 3 | 99.97 7 |
|
| No_MVS | | | | | 99.51 2 | 99.61 24 | 98.60 2 | | 97.69 88 | | | | | 99.98 9 | 99.55 12 | 99.83 15 | 99.96 10 |
|
| test_one_0601 | | | | | | 99.59 28 | 94.89 34 | | 97.64 103 | 93.14 71 | 98.93 22 | 99.45 14 | 93.45 17 | | | | |
|
| eth-test2 | | | | | | 0.00 414 | | | | | | | | | | | |
|
| eth-test | | | | | | 0.00 414 | | | | | | | | | | | |
|
| ZD-MVS | | | | | | 99.67 10 | 93.28 71 | | 97.61 110 | 87.78 214 | 97.41 61 | 99.16 38 | 90.15 52 | 99.56 105 | 98.35 41 | 99.70 35 | |
|
| IU-MVS | | | | | | 99.63 18 | 95.38 22 | | 97.73 80 | 95.54 28 | 99.54 3 | | | | 99.69 6 | 99.81 23 | 99.99 1 |
|
| test_241102_TWO | | | | | | | | | 97.72 81 | 94.17 45 | 99.23 11 | 99.54 3 | 93.14 23 | 99.98 9 | 99.70 4 | 99.82 19 | 99.99 1 |
|
| test_241102_ONE | | | | | | 99.63 18 | 95.24 25 | | 97.72 81 | 94.16 47 | 99.30 9 | 99.49 9 | 93.32 18 | 99.98 9 | | | |
|
| test_0728_THIRD | | | | | | | | | | 93.01 72 | 99.07 16 | 99.46 10 | 94.66 13 | 99.97 21 | 99.25 18 | 99.82 19 | 99.95 15 |
|
| GSMVS | | | | | | | | | | | | | | | | | 98.84 138 |
|
| test_part2 | | | | | | 99.54 36 | 95.42 20 | | | | 98.13 43 | | | | | | |
|
| sam_mvs1 | | | | | | | | | | | | | 88.39 68 | | | | 98.84 138 |
|
| sam_mvs | | | | | | | | | | | | | 87.08 96 | | | | |
|
| MTGPA |  | | | | | | | | 97.45 144 | | | | | | | | |
|
| test_post | | | | | | | | | | | | 46.00 403 | 87.37 87 | 97.11 246 | | | |
|
| patchmatchnet-post | | | | | | | | | | | | 84.86 367 | 88.73 65 | 96.81 259 | | | |
|
| gm-plane-assit | | | | | | 94.69 243 | 88.14 193 | | | 88.22 200 | | 97.20 166 | | 98.29 180 | 90.79 173 | | |
|
| test9_res | | | | | | | | | | | | | | | 98.60 33 | 99.87 9 | 99.90 22 |
|
| agg_prior2 | | | | | | | | | | | | | | | 97.84 56 | 99.87 9 | 99.91 21 |
|
| agg_prior | | | | | | 99.54 36 | 92.66 86 | | 97.64 103 | | 97.98 52 | | | 99.61 102 | | | |
|
| TestCases | | | | | 90.52 275 | 96.82 152 | 78.84 340 | | 92.17 364 | 77.96 349 | 75.94 336 | 95.50 223 | 55.48 354 | 99.18 139 | 71.15 345 | 87.14 239 | 93.55 251 |
|
| test_prior | | | | | 97.01 60 | 99.58 30 | 91.77 99 | | 97.57 121 | | | | | 99.49 112 | | | 99.79 36 |
|
| æ–°å‡ ä½•1 | | | | | 97.40 47 | 98.92 77 | 92.51 91 | | 97.77 75 | 85.52 260 | 96.69 84 | 99.06 55 | 88.08 76 | 99.89 53 | 84.88 241 | 99.62 45 | 99.79 36 |
|
| 旧先验1 | | | | | | 98.97 73 | 92.90 84 | | 97.74 77 | | | 99.15 41 | 91.05 34 | | | 99.33 64 | 99.60 67 |
|
| 原ACMM1 | | | | | 96.18 110 | 99.03 71 | 90.08 145 | | 97.63 107 | 88.98 172 | 97.00 73 | 98.97 64 | 88.14 75 | 99.71 90 | 88.23 203 | 99.62 45 | 98.76 149 |
|
| testdata2 | | | | | | | | | | | | | | 99.88 54 | 84.16 251 | | |
|
| segment_acmp | | | | | | | | | | | | | 90.56 43 | | | | |
|
| testdata | | | | | 95.26 148 | 98.20 96 | 87.28 217 | | 97.60 112 | 85.21 264 | 98.48 34 | 99.15 41 | 88.15 74 | 98.72 162 | 90.29 179 | 99.45 58 | 99.78 38 |
|
| test12 | | | | | 97.83 33 | 99.33 53 | 94.45 49 | | 97.55 123 | | 97.56 57 | | 88.60 66 | 99.50 111 | | 99.71 34 | 99.55 72 |
|
| plane_prior7 | | | | | | 93.84 269 | 85.73 258 | | | | | | | | | | |
|
| plane_prior6 | | | | | | 93.92 266 | 86.02 251 | | | | | | 72.92 257 | | | | |
|
| plane_prior5 | | | | | | | | | 96.30 227 | | | | | 97.75 216 | 93.46 142 | 86.17 248 | 92.67 258 |
|
| plane_prior4 | | | | | | | | | | | | 96.52 199 | | | | | |
|
| plane_prior3 | | | | | | | 85.91 253 | | | 93.65 63 | 86.99 223 | | | | | | |
|
| plane_prior1 | | | | | | 93.90 268 | | | | | | | | | | | |
|
| n2 | | | | | | | | | 0.00 415 | | | | | | | | |
|
| nn | | | | | | | | | 0.00 415 | | | | | | | | |
|
| door-mid | | | | | | | | | 84.90 395 | | | | | | | | |
|
| lessismore_v0 | | | | | 85.08 343 | 85.59 372 | 69.28 379 | | 90.56 379 | | 67.68 373 | 90.21 333 | 54.21 362 | 95.46 326 | 73.88 333 | 62.64 376 | 90.50 327 |
|
| LGP-MVS_train | | | | | 90.06 286 | 93.35 283 | 80.95 328 | | 95.94 255 | 87.73 218 | 83.17 258 | 96.11 212 | 66.28 310 | 97.77 210 | 90.19 180 | 85.19 255 | 91.46 296 |
|
| test11 | | | | | | | | | 97.68 90 | | | | | | | | |
|
| door | | | | | | | | | 85.30 393 | | | | | | | | |
|
| HQP5-MVS | | | | | | | 86.39 234 | | | | | | | | | | |
|
| BP-MVS | | | | | | | | | | | | | | | 93.82 135 | | |
|
| HQP4-MVS | | | | | | | | | | | 87.57 215 | | | 97.77 210 | | | 92.72 256 |
|
| HQP3-MVS | | | | | | | | | 96.37 223 | | | | | | | 86.29 245 | |
|
| HQP2-MVS | | | | | | | | | | | | | 73.34 251 | | | | |
|
| NP-MVS | | | | | | 93.94 265 | 86.22 241 | | | | | 96.67 197 | | | | | |
|
| ACMMP++_ref | | | | | | | | | | | | | | | | 82.64 281 | |
|
| ACMMP++ | | | | | | | | | | | | | | | | 83.83 269 | |
|
| Test By Simon | | | | | | | | | | | | | 83.62 155 | | | | |
|
| ITE_SJBPF | | | | | 87.93 322 | 92.26 296 | 76.44 354 | | 93.47 350 | 87.67 221 | 79.95 308 | 95.49 225 | 56.50 351 | 97.38 238 | 75.24 322 | 82.33 283 | 89.98 339 |
|
| DeepMVS_CX |  | | | | 76.08 366 | 90.74 322 | 51.65 399 | | 90.84 377 | 86.47 248 | 57.89 387 | 87.98 348 | 35.88 391 | 92.60 363 | 65.77 367 | 65.06 372 | 83.97 382 |
|