This table lists the benchmark results for the high-res multi-view scenario. The following metrics are evaluated:

(*) For exact definitions, detailing how potentially incomplete ground truth is taken into account, see our paper.

The datasets are grouped into different categories, and result averages are computed for a category and method if results of the method are available for all datasets within the category. Note that the category "all" includes both the high-res multi-view and the low-res many-view scenarios.

Methods with suffix _ROB may participate in the Robust Vision Challenge.

Click a dataset result cell to show a visualization of the reconstruction. For training datasets, ground truth and accuracy / completeness visualizations are also available. The visualizations may not work with mobile browsers.




Method Infoallhigh-res
multi-view
indooroutdoorbotani.boulde.bridgedoorexhibi.lectur.living.loungeobserv.old co.statueterrac.
sort bysort bysort bysort bysort bysort bysorted bysort bysort bysort bysort bysort bysort bysort bysort bysort by
iter_conf05_1194.23 11093.49 11996.46 9497.51 12191.32 10899.96 194.31 33595.62 2699.32 899.22 2757.79 34598.59 17098.00 5099.64 4099.46 81
test_fmvsm_n_192097.08 2797.55 1495.67 13397.94 10589.61 16199.93 298.48 2497.08 599.08 1599.13 4688.17 7299.93 3899.11 2399.06 7697.47 200
test_fmvsmconf_n96.78 3496.84 2996.61 8595.99 19090.25 13799.90 398.13 4296.68 1198.42 3598.92 7685.34 13699.88 5499.12 2299.08 7499.70 52
PVSNet_Blended95.94 5995.66 6696.75 7698.77 8391.61 10399.88 498.04 4893.64 6494.21 13097.76 13783.50 15699.87 5897.41 6197.75 12098.79 145
fmvsm_l_conf0.5_n_a97.70 1297.80 1197.42 4597.59 11792.91 8399.86 598.04 4896.70 1099.58 299.26 2190.90 3799.94 3499.57 1198.66 9999.40 87
fmvsm_s_conf0.5_n96.19 4996.49 3695.30 14697.37 12789.16 16699.86 598.47 2595.68 2398.87 2399.15 4182.44 18599.92 4099.14 2197.43 12896.83 220
lupinMVS96.32 4595.94 5497.44 4495.05 23194.87 3699.86 596.50 21693.82 5998.04 4998.77 8785.52 12898.09 19096.98 7098.97 8299.37 90
fmvsm_l_conf0.5_n97.65 1397.72 1297.41 4697.51 12192.78 8599.85 898.05 4696.78 899.60 199.23 2690.42 4699.92 4099.55 1298.50 10499.55 72
DELS-MVS97.12 2596.60 3598.68 1098.03 10396.57 1199.84 997.84 6196.36 1895.20 11398.24 12388.17 7299.83 7396.11 8899.60 4999.64 62
Christian Sormann, Emanuele Santellani, Mattia Rossi, Andreas Kuhn, Friedrich Fraundorfer: DELS-MVS: Deep Epipolar Line Search for Multi-View Stereo. Winter Conference on Applications of Computer Vision (WACV), 2023
test_vis1_n_192093.08 14893.42 12192.04 23996.31 17479.36 33699.83 1096.06 24696.72 998.53 3398.10 12958.57 34299.91 4597.86 5598.79 9596.85 219
CANet97.00 2896.49 3698.55 1298.86 8096.10 1699.83 1097.52 13195.90 1997.21 6798.90 7882.66 17899.93 3898.71 2998.80 9299.63 64
fmvsm_s_conf0.5_n_a95.97 5696.19 4395.31 14596.51 16589.01 17299.81 1298.39 2795.46 3099.19 1499.16 3881.44 19999.91 4598.83 2896.97 13797.01 216
MM97.76 1097.39 1998.86 598.30 9396.83 799.81 1299.13 997.66 298.29 4098.96 6885.84 12699.90 5099.72 398.80 9299.85 30
NCCC98.12 598.11 398.13 2499.76 694.46 4899.81 1297.88 5796.54 1398.84 2599.46 1092.55 2699.98 998.25 4699.93 199.94 18
IB-MVS89.43 692.12 16890.83 18195.98 12295.40 21090.78 12599.81 1298.06 4591.23 11185.63 23693.66 25890.63 4298.78 15691.22 16571.85 35198.36 171
Christian Sormann, Mattia Rossi, Andreas Kuhn and Friedrich Fraundorfer: IB-MVS: An Iterative Algorithm for Deep Multi-View Stereo based on Binary Decisions. BMVC 2021
CNVR-MVS98.46 198.38 198.72 999.80 496.19 1599.80 1697.99 5297.05 699.41 499.59 292.89 24100.00 198.99 2599.90 799.96 10
test_fmvsmconf0.1_n95.94 5995.79 6296.40 10092.42 29489.92 15399.79 1796.85 19796.53 1597.22 6698.67 9982.71 17799.84 6998.92 2798.98 8199.43 86
SED-MVS98.18 298.10 498.41 1899.63 1895.24 2599.77 1897.72 8194.17 4599.30 999.54 393.32 1899.98 999.70 499.81 2399.99 1
OPU-MVS99.49 499.64 1798.51 499.77 1899.19 3295.12 899.97 2199.90 199.92 399.99 1
test072699.66 1295.20 3099.77 1897.70 8693.95 5099.35 799.54 393.18 21
DPM-MVS97.86 897.25 2199.68 198.25 9499.10 199.76 2197.78 7396.61 1298.15 4299.53 793.62 16100.00 191.79 16299.80 2699.94 18
SteuartSystems-ACMMP97.25 1997.34 2097.01 6097.38 12691.46 10699.75 2297.66 9594.14 4998.13 4399.26 2192.16 2899.66 9497.91 5499.64 4099.90 22
Skip Steuart: Steuart Systems R&D Blog.
test_cas_vis1_n_192093.86 12293.74 11494.22 18895.39 21186.08 24799.73 2396.07 24596.38 1797.19 7097.78 13665.46 31799.86 6396.71 7498.92 8696.73 221
DVP-MVScopyleft98.07 798.00 698.29 1999.66 1295.20 3099.72 2497.47 14193.95 5099.07 1699.46 1093.18 2199.97 2199.64 799.82 1999.69 55
Zhenlong Yuan, Jinguo Luo, Fei Shen, Zhaoxin Li, Cong Liu, Tianlu Mao, Zhaoqi Wang: DVP-MVS: Synergize Depth-Edge and Visibility Prior for Multi-View Stereo. AAAI2025
test_0728_SECOND98.77 899.66 1296.37 1499.72 2497.68 9099.98 999.64 799.82 1999.96 10
alignmvs95.77 6695.00 8298.06 2897.35 12895.68 1999.71 2697.50 13691.50 10396.16 9398.61 10586.28 11799.00 15096.19 8691.74 20799.51 77
test_fmvsmvis_n_192095.47 7395.40 7195.70 13194.33 25190.22 14099.70 2796.98 19396.80 792.75 15298.89 8082.46 18499.92 4098.36 4098.33 10896.97 217
MSLP-MVS++97.50 1797.45 1797.63 3899.65 1693.21 7299.70 2798.13 4294.61 3797.78 5699.46 1089.85 5499.81 7997.97 5299.91 699.88 26
MCST-MVS98.18 297.95 998.86 599.85 396.60 1099.70 2797.98 5397.18 395.96 9599.33 1992.62 25100.00 198.99 2599.93 199.98 6
jason95.40 7794.86 8497.03 5992.91 28994.23 5499.70 2796.30 22793.56 6696.73 8398.52 10881.46 19897.91 19996.08 8998.47 10698.96 125
jason: jason.
CP-MVS96.22 4896.15 5196.42 9899.67 1089.62 16099.70 2797.61 11090.07 14296.00 9499.16 3887.43 8599.92 4096.03 9099.72 3199.70 52
PHI-MVS96.65 3796.46 3897.21 5499.34 5091.77 9999.70 2798.05 4686.48 24798.05 4899.20 3089.33 5899.96 2898.38 3999.62 4599.90 22
DeepPCF-MVS93.56 196.55 4097.84 1092.68 22698.71 8578.11 34899.70 2797.71 8598.18 197.36 6399.76 190.37 4899.94 3499.27 1699.54 5399.99 1
CS-MVS-test95.98 5596.34 4194.90 16098.06 10287.66 20499.69 3496.10 24293.66 6298.35 3999.05 5686.28 11797.66 22096.96 7198.90 8899.37 90
CS-MVS95.75 6896.19 4394.40 17997.88 10786.22 24199.66 3596.12 24192.69 8098.07 4798.89 8087.09 9597.59 22696.71 7498.62 10099.39 89
save fliter99.34 5093.85 6299.65 3697.63 10795.69 22
ETV-MVS96.00 5396.00 5396.00 12096.56 16191.05 11999.63 3796.61 20693.26 7097.39 6298.30 12186.62 10898.13 18798.07 4997.57 12298.82 142
patch_mono-297.10 2697.97 894.49 17599.21 6183.73 29099.62 3898.25 3295.28 3299.38 698.91 7792.28 2799.94 3499.61 999.22 7199.78 38
MVS_030497.53 1497.15 2298.67 1197.30 13096.52 1299.60 3998.88 1497.14 497.21 6798.94 7486.89 10199.91 4599.43 1598.91 8799.59 71
DP-MVS Recon95.85 6295.15 7797.95 3099.87 294.38 5299.60 3997.48 13986.58 24294.42 12699.13 4687.36 9099.98 993.64 13798.33 10899.48 79
EIA-MVS95.11 8395.27 7494.64 17296.34 17386.51 22999.59 4196.62 20592.51 8294.08 13398.64 10186.05 12298.24 18495.07 11098.50 10499.18 107
TSAR-MVS + GP.96.95 2996.91 2697.07 5798.88 7991.62 10299.58 4296.54 21495.09 3496.84 7798.63 10391.16 3099.77 8599.04 2496.42 14599.81 33
test_prior299.57 4391.43 10698.12 4598.97 6490.43 4598.33 4299.81 23
APDe-MVScopyleft97.53 1497.47 1597.70 3699.58 3093.63 6499.56 4497.52 13193.59 6598.01 5199.12 4890.80 4099.55 10699.26 1799.79 2799.93 20
Zhaojie Zeng, Yuesong Wang, Tao Guan: Matching Ambiguity-Resilient Multi-View Stereo via Adaptive Patch Deformation. Pattern Recognition
test_fmvs192.35 16192.94 13690.57 27297.19 13775.43 35799.55 4594.97 31395.20 3396.82 8097.57 14959.59 34099.84 6997.30 6398.29 11196.46 231
DVP-MVS++98.18 298.09 598.44 1699.61 2495.38 2299.55 4597.68 9093.01 7299.23 1199.45 1495.12 899.98 999.25 1899.92 399.97 7
FOURS199.50 4288.94 17699.55 4597.47 14191.32 10998.12 45
ZNCC-MVS96.09 5195.81 6096.95 6899.42 4791.19 11199.55 4597.53 12789.72 14995.86 10098.94 7486.59 10999.97 2195.13 10899.56 5199.68 56
CLD-MVS91.06 18890.71 18392.10 23794.05 26186.10 24699.55 4596.29 23094.16 4784.70 24397.17 17069.62 28397.82 20694.74 11886.08 25092.39 261
Zhaoxin Li, Wangmeng Zuo, Zhaoqi Wang, Lei Zhang: Confidence-based Large-scale Dense Multi-view Stereo. IEEE Transaction on Image Processing, 2020
Fast-Effi-MVS+91.72 17490.79 18294.49 17595.89 19287.40 21399.54 5095.70 27885.01 27189.28 20495.68 22177.75 22597.57 23083.22 26295.06 16798.51 161
testing387.75 25188.22 23086.36 33594.66 24577.41 35199.52 5197.95 5486.05 25281.12 29596.69 19686.18 12089.31 38361.65 37790.12 23092.35 266
fmvsm_s_conf0.1_n95.56 7295.68 6595.20 14994.35 25089.10 16899.50 5297.67 9494.76 3698.68 2899.03 5881.13 20299.86 6398.63 3297.36 13096.63 223
9.1496.87 2799.34 5099.50 5297.49 13889.41 16298.59 3199.43 1689.78 5599.69 9198.69 3099.62 45
EPNet96.82 3296.68 3497.25 5398.65 8693.10 7599.48 5498.76 1596.54 1397.84 5598.22 12487.49 8499.66 9495.35 10397.78 11999.00 121
Wanjuan Su, Wenbing Tao: Efficient Edge-Preserving Multi-View Stereo Network for Depth Estimation. AAAI 2023
EC-MVSNet95.09 8495.17 7694.84 16395.42 20888.17 19299.48 5495.92 25991.47 10497.34 6498.36 11882.77 17397.41 23797.24 6498.58 10198.94 130
thisisatest051594.75 9494.19 9696.43 9796.13 18892.64 8999.47 5697.60 11287.55 22393.17 14797.59 14794.71 1298.42 17588.28 20293.20 18198.24 178
HFP-MVS96.42 4296.26 4296.90 6999.69 890.96 12299.47 5697.81 6890.54 12796.88 7499.05 5687.57 8299.96 2895.65 9499.72 3199.78 38
ACMMPR96.28 4796.14 5296.73 7899.68 990.47 13499.47 5697.80 7090.54 12796.83 7999.03 5886.51 11399.95 3195.65 9499.72 3199.75 46
PVSNet_BlendedMVS93.36 13893.20 12893.84 20398.77 8391.61 10399.47 5698.04 4891.44 10594.21 13092.63 27883.50 15699.87 5897.41 6183.37 27590.05 337
ET-MVSNet_ETH3D92.56 15891.45 16695.88 12596.39 17194.13 5899.46 6096.97 19492.18 9366.94 37698.29 12294.65 1494.28 34994.34 12683.82 27199.24 102
region2R96.30 4696.17 4896.70 8199.70 790.31 13699.46 6097.66 9590.55 12697.07 7299.07 5386.85 10299.97 2195.43 10199.74 2999.81 33
GST-MVS95.97 5695.66 6696.90 6999.49 4591.22 10999.45 6297.48 13989.69 15095.89 9798.72 9386.37 11699.95 3194.62 12399.22 7199.52 75
SF-MVS97.22 2296.92 2598.12 2699.11 6694.88 3599.44 6397.45 14489.60 15498.70 2799.42 1790.42 4699.72 8998.47 3899.65 3899.77 43
CPTT-MVS94.60 10194.43 9195.09 15399.66 1286.85 22599.44 6397.47 14183.22 29894.34 12998.96 6882.50 17999.55 10694.81 11699.50 5498.88 135
WTY-MVS95.97 5695.11 7998.54 1397.62 11496.65 999.44 6398.74 1692.25 9195.21 11298.46 11786.56 11199.46 11895.00 11392.69 18899.50 78
XVS96.47 4196.37 4096.77 7499.62 2290.66 13099.43 6697.58 11892.41 8796.86 7598.96 6887.37 8799.87 5895.65 9499.43 6099.78 38
X-MVStestdata90.69 19688.66 21996.77 7499.62 2290.66 13099.43 6697.58 11892.41 8796.86 7529.59 40787.37 8799.87 5895.65 9499.43 6099.78 38
PAPR96.35 4395.82 5897.94 3199.63 1894.19 5699.42 6897.55 12392.43 8493.82 13999.12 4887.30 9299.91 4594.02 12999.06 7699.74 47
GeoE90.60 19889.56 19893.72 20795.10 22885.43 26399.41 6994.94 31583.96 28687.21 22196.83 19174.37 24397.05 25080.50 28993.73 17898.67 154
MSP-MVS97.77 998.18 296.53 9299.54 3690.14 14299.41 6997.70 8695.46 3098.60 3099.19 3295.71 499.49 11298.15 4899.85 1399.95 15
Zhenlong Yuan, Cong Liu, Fei Shen, Zhaoxin Li, Jingguo luo, Tianlu Mao and Zhaoqi Wang: MSP-MVS: Multi-granularity Segmentation Prior Guided Multi-View Stereo. AAAI2025
test_prior492.00 9699.41 69
TEST999.57 3393.17 7399.38 7297.66 9589.57 15698.39 3699.18 3590.88 3899.66 94
train_agg97.20 2397.08 2397.57 4299.57 3393.17 7399.38 7297.66 9590.18 13698.39 3699.18 3590.94 3599.66 9498.58 3699.85 1399.88 26
PVSNet87.13 1293.69 12692.83 13896.28 10697.99 10490.22 14099.38 7298.93 1291.42 10793.66 14197.68 14271.29 27499.64 10087.94 20797.20 13298.98 123
test_899.55 3593.07 7699.37 7597.64 10390.18 13698.36 3899.19 3290.94 3599.64 100
MP-MVScopyleft96.00 5395.82 5896.54 9199.47 4690.13 14499.36 7697.41 15190.64 12395.49 10898.95 7185.51 13099.98 996.00 9199.59 5099.52 75
Rongxuan Tan, Qing Wang, et al.: MP-MVS: Multi-Scale Windows PatchMatch and Planar Prior Multi-View Stereo.
thres20093.69 12692.59 14396.97 6697.76 10994.74 4399.35 7799.36 289.23 16491.21 17896.97 18083.42 15998.77 15785.08 23790.96 22297.39 202
CSCG94.87 9094.71 8595.36 14299.54 3686.49 23099.34 7898.15 4082.71 30990.15 19499.25 2389.48 5799.86 6394.97 11498.82 9199.72 50
SD-MVS97.51 1697.40 1897.81 3499.01 7293.79 6399.33 7997.38 15493.73 6198.83 2699.02 6090.87 3999.88 5498.69 3099.74 2999.77 43
Zhenlong Yuan, Jiakai Cao, Zhaoxin Li, Hao Jiang and Zhaoqi Wang: SD-MVS: Segmentation-driven Deformation Multi-View Stereo with Spherical Refinement and EM optimization. AAAI2024
PVSNet_Blended_VisFu94.67 9994.11 9996.34 10497.14 14291.10 11699.32 8097.43 14992.10 9591.53 17196.38 20683.29 16299.68 9293.42 14496.37 14698.25 175
iter_conf0593.48 13293.18 12994.39 18297.15 14194.17 5799.30 8192.97 35392.38 9086.70 22995.42 22695.67 596.59 26794.67 12184.32 26492.39 261
testing1195.33 7894.98 8396.37 10297.20 13592.31 9299.29 8297.68 9090.59 12494.43 12597.20 16690.79 4198.60 16895.25 10692.38 19398.18 182
fmvsm_s_conf0.1_n_a95.16 8295.15 7795.18 15092.06 30088.94 17699.29 8297.53 12794.46 4098.98 1998.99 6279.99 20799.85 6798.24 4796.86 13996.73 221
DPE-MVScopyleft98.11 698.00 698.44 1699.50 4295.39 2199.29 8297.72 8194.50 3998.64 2999.54 393.32 1899.97 2199.58 1099.90 799.95 15
Kehua Chen, Zhenlong Yuan, Tianlu Mao, Zhaoqi Wang: Dual-Level Precision Edges Guided Multi-View Stereo with Accurate Planarization. AAAI2025
test_fmvsmconf0.01_n94.14 11293.51 11896.04 11786.79 36789.19 16599.28 8595.94 25595.70 2195.50 10798.49 11273.27 25499.79 8298.28 4598.32 11099.15 109
mPP-MVS95.90 6195.75 6396.38 10199.58 3089.41 16499.26 8697.41 15190.66 12094.82 11898.95 7186.15 12199.98 995.24 10799.64 4099.74 47
PLCcopyleft91.07 394.23 11094.01 10294.87 16199.17 6387.49 20999.25 8796.55 21388.43 19191.26 17698.21 12685.92 12399.86 6389.77 18697.57 12297.24 207
Jie Liao, Yanping Fu, Qingan Yan, Chunxia xiao: Pyramid Multi-View Stereo with Local Consistency. Pacific Graphics 2019
testing9194.88 8894.44 9096.21 10897.19 13791.90 9899.23 8897.66 9589.91 14593.66 14197.05 17790.21 5198.50 17193.52 13991.53 21698.25 175
MTMP99.21 8991.09 376
testing9994.88 8894.45 8996.17 11297.20 13591.91 9799.20 9097.66 9589.95 14493.68 14097.06 17590.28 5098.50 17193.52 13991.54 21398.12 184
HPM-MVS++copyleft97.72 1197.59 1398.14 2399.53 4094.76 4299.19 9197.75 7695.66 2498.21 4199.29 2091.10 3299.99 597.68 5799.87 999.68 56
CNLPA93.64 13092.74 13996.36 10398.96 7590.01 15299.19 9195.89 26786.22 25089.40 20298.85 8380.66 20599.84 6988.57 19996.92 13899.24 102
test_fmvs1_n91.07 18791.41 16790.06 28694.10 25774.31 36199.18 9394.84 31794.81 3596.37 9097.46 15350.86 37299.82 7697.14 6697.90 11496.04 238
tfpn200view993.43 13592.27 14896.90 6997.68 11294.84 3899.18 9399.36 288.45 18890.79 18196.90 18483.31 16098.75 15984.11 25390.69 22497.12 209
thres40093.39 13792.27 14896.73 7897.68 11294.84 3899.18 9399.36 288.45 18890.79 18196.90 18483.31 16098.75 15984.11 25390.69 22496.61 224
HPM-MVScopyleft95.41 7695.22 7595.99 12199.29 5589.14 16799.17 9697.09 18387.28 22795.40 10998.48 11484.93 14099.38 12895.64 9899.65 3899.47 80
Chunlin Ren, Qingshan Xu, Shikun Zhang, Jiaqi Yang: Hierarchical Prior Mining for Non-local Multi-View Stereo. ICCV 2023
bld_raw_dy_0_6491.37 18189.75 19596.23 10797.51 12190.58 13299.16 9788.98 38795.64 2587.18 22299.20 3057.19 34998.66 16598.00 5084.86 25899.46 81
SMA-MVScopyleft97.24 2096.99 2498.00 2999.30 5494.20 5599.16 9797.65 10289.55 15899.22 1399.52 890.34 4999.99 598.32 4399.83 1599.82 32
Yufeng Yin; Xiaoyan Liu; Zichao Zhang: SMA-MVS: Segmentation-Guided Multi-Scale Anchor Deformation Patch Multi-View Stereo. IEEE Transactions on Circuits and Systems for Video Technology
HQP-NCC93.95 26299.16 9793.92 5287.57 215
ACMP_Plane93.95 26299.16 9793.92 5287.57 215
APD-MVScopyleft96.95 2996.72 3297.63 3899.51 4193.58 6599.16 9797.44 14790.08 14198.59 3199.07 5389.06 6099.42 12397.92 5399.66 3799.88 26
Yuesong Wang, Zhaojie Zeng and etc.: Adaptive Patch Deformation for Textureless-Resilient Multi-View Stereo. CVPR2023
HQP-MVS91.50 17691.23 17092.29 23193.95 26286.39 23499.16 9796.37 22393.92 5287.57 21596.67 19773.34 25197.77 21093.82 13586.29 24592.72 256
test-LLR93.11 14792.68 14094.40 17994.94 23687.27 21899.15 10397.25 16190.21 13491.57 16794.04 24484.89 14197.58 22785.94 22996.13 15198.36 171
TESTMET0.1,193.82 12393.26 12795.49 13895.21 21690.25 13799.15 10397.54 12689.18 16791.79 16294.87 23589.13 5997.63 22386.21 22596.29 15098.60 158
test-mter93.27 14292.89 13794.40 17994.94 23687.27 21899.15 10397.25 16188.95 17491.57 16794.04 24488.03 7797.58 22785.94 22996.13 15198.36 171
plane_prior86.07 24999.14 10693.81 6086.26 247
HPM-MVS_fast94.89 8794.62 8695.70 13199.11 6688.44 19099.14 10697.11 17985.82 25595.69 10498.47 11583.46 15899.32 13593.16 14799.63 4499.35 92
MVS_111021_HR96.69 3596.69 3396.72 8098.58 8891.00 12199.14 10699.45 193.86 5695.15 11498.73 9188.48 6799.76 8697.23 6599.56 5199.40 87
CDPH-MVS96.56 3996.18 4597.70 3699.59 2893.92 6099.13 10997.44 14789.02 17197.90 5499.22 2788.90 6399.49 11294.63 12299.79 2799.68 56
test_vis1_n90.40 19990.27 18990.79 26791.55 31076.48 35399.12 11094.44 32994.31 4397.34 6496.95 18143.60 38399.42 12397.57 5997.60 12196.47 230
BH-w/o92.32 16291.79 15993.91 20196.85 15186.18 24399.11 11195.74 27688.13 20284.81 24197.00 17977.26 22897.91 19989.16 19798.03 11397.64 194
casdiffmvs_mvgpermissive94.00 11593.33 12496.03 11895.22 21590.90 12499.09 11295.99 24890.58 12591.55 17097.37 15779.91 20898.06 19295.01 11295.22 16599.13 112
Fangjinhua Wang, Qingshan Xu, Yew-Soon Ong, Marc Pollefeys: Lightweight and Accurate Multi-View Stereo With Confidence-Aware Diffusion Model. IEEE T-PAMI 2025
GA-MVS90.10 20888.69 21894.33 18392.44 29387.97 19899.08 11396.26 23189.65 15186.92 22593.11 27168.09 29396.96 25282.54 27190.15 22998.05 185
ETVMVS94.50 10593.90 11096.31 10597.48 12492.98 7999.07 11497.86 5988.09 20494.40 12796.90 18488.35 6997.28 24290.72 17592.25 19998.66 157
thres600view793.18 14492.00 15496.75 7697.62 11494.92 3399.07 11499.36 287.96 20990.47 18996.78 19283.29 16298.71 16382.93 26790.47 22896.61 224
MG-MVS97.24 2096.83 3198.47 1599.79 595.71 1899.07 11499.06 1094.45 4296.42 8998.70 9788.81 6499.74 8895.35 10399.86 1299.97 7
thres100view90093.34 13992.15 15196.90 6997.62 11494.84 3899.06 11799.36 287.96 20990.47 18996.78 19283.29 16298.75 15984.11 25390.69 22497.12 209
test_yl95.27 8094.60 8797.28 5198.53 8992.98 7999.05 11898.70 1986.76 23994.65 12397.74 13987.78 7999.44 11995.57 9992.61 18999.44 84
DCV-MVSNet95.27 8094.60 8797.28 5198.53 8992.98 7999.05 11898.70 1986.76 23994.65 12397.74 13987.78 7999.44 11995.57 9992.61 18999.44 84
PS-MVSNAJ96.87 3196.40 3998.29 1997.35 12897.29 599.03 12097.11 17995.83 2098.97 2099.14 4482.48 18199.60 10398.60 3399.08 7498.00 187
HQP_MVS91.26 18290.95 17692.16 23593.84 26986.07 24999.02 12196.30 22793.38 6886.99 22396.52 19972.92 25797.75 21693.46 14286.17 24892.67 258
plane_prior299.02 12193.38 68
xiu_mvs_v2_base96.66 3696.17 4898.11 2797.11 14596.96 699.01 12397.04 18695.51 2998.86 2499.11 5282.19 18999.36 13098.59 3598.14 11298.00 187
MVSTER92.71 15292.32 14693.86 20297.29 13292.95 8299.01 12396.59 20890.09 14085.51 23794.00 24894.61 1596.56 27090.77 17483.03 27792.08 278
thisisatest053094.00 11593.52 11795.43 14095.76 19790.02 15198.99 12597.60 11286.58 24291.74 16397.36 15894.78 1198.34 17786.37 22392.48 19297.94 189
cascas90.93 19189.33 20595.76 12995.69 19993.03 7898.99 12596.59 20880.49 33686.79 22894.45 24165.23 31898.60 16893.52 13992.18 20095.66 241
test_vis1_rt81.31 32380.05 32685.11 34291.29 31570.66 37598.98 12777.39 40385.76 25768.80 36782.40 37436.56 39099.44 11992.67 15586.55 24485.24 378
test0.0.03 188.96 22488.61 22090.03 29091.09 31784.43 28098.97 12897.02 19090.21 13480.29 30396.31 20884.89 14191.93 37372.98 34085.70 25393.73 249
114514_t94.06 11393.05 13297.06 5899.08 6992.26 9498.97 12897.01 19182.58 31192.57 15498.22 12480.68 20499.30 13689.34 19299.02 7999.63 64
sss94.85 9193.94 10897.58 4096.43 16894.09 5998.93 13099.16 889.50 15995.27 11197.85 13181.50 19699.65 9892.79 15494.02 17598.99 122
PAPM96.35 4395.94 5497.58 4094.10 25795.25 2498.93 13098.17 3794.26 4493.94 13598.72 9389.68 5697.88 20296.36 8499.29 6899.62 66
3Dnovator+87.72 893.43 13591.84 15898.17 2295.73 19895.08 3298.92 13297.04 18691.42 10781.48 29397.60 14674.60 23999.79 8290.84 17198.97 8299.64 62
PVSNet_083.28 1687.31 25985.16 27493.74 20694.78 24184.59 27898.91 13398.69 2189.81 14878.59 32493.23 26861.95 33199.34 13494.75 11755.72 38897.30 204
UniMVSNet (Re)89.50 21988.32 22893.03 21592.21 29790.96 12298.90 13498.39 2789.13 16883.22 25592.03 28381.69 19496.34 29086.79 21972.53 34491.81 283
ACMMP_NAP96.59 3896.18 4597.81 3498.82 8193.55 6698.88 13597.59 11690.66 12097.98 5299.14 4486.59 109100.00 196.47 8399.46 5699.89 25
PMMVS93.62 13193.90 11092.79 22196.79 15681.40 31998.85 13696.81 19891.25 11096.82 8098.15 12877.02 22998.13 18793.15 14896.30 14998.83 141
DeepC-MVS_fast93.52 297.16 2496.84 2998.13 2499.61 2494.45 4998.85 13697.64 10396.51 1695.88 9899.39 1887.35 9199.99 596.61 7999.69 3699.96 10
Andreas Kuhn, Christian Sormann, Mattia Rossi, Oliver Erdler, Friedrich Fraundorfer: DeepC-MVS: Deep Confidence Prediction for Multi-View Stereo Reconstruction. 3DV 2020
BH-untuned91.46 17890.84 17993.33 21196.51 16584.83 27698.84 13895.50 29086.44 24983.50 25396.70 19575.49 23597.77 21086.78 22097.81 11697.40 201
testing22294.48 10694.00 10395.95 12397.30 13092.27 9398.82 13997.92 5589.20 16594.82 11897.26 16187.13 9497.32 24191.95 16091.56 21198.25 175
CDS-MVSNet93.47 13393.04 13394.76 16594.75 24289.45 16398.82 13997.03 18887.91 21190.97 17996.48 20189.06 6096.36 28489.50 18892.81 18798.49 162
Khang Truong Giang, Soohwan Song, Sungho Jo: Curvature-guided dynamic scale networks for Multi-view Stereo. ICLR 2022
3Dnovator87.35 1193.17 14691.77 16097.37 4995.41 20993.07 7698.82 13997.85 6091.53 10282.56 26897.58 14871.97 26699.82 7691.01 16899.23 7099.22 105
casdiffmvspermissive93.98 11793.43 12095.61 13695.07 23089.86 15598.80 14295.84 27290.98 11492.74 15397.66 14479.71 20998.10 18994.72 11995.37 16498.87 137
Fangjinhua Wang, Qingshan Xu, Yew-Soon Ong, Marc Pollefeys: Lightweight and Accurate Multi-View Stereo With Confidence-Aware Diffusion Model. IEEE T-PAMI 2025
MVS_111021_LR95.78 6595.94 5495.28 14798.19 9887.69 20198.80 14299.26 793.39 6795.04 11698.69 9884.09 15099.76 8696.96 7199.06 7698.38 168
API-MVS94.78 9394.18 9896.59 8799.21 6190.06 14998.80 14297.78 7383.59 29393.85 13799.21 2983.79 15399.97 2192.37 15799.00 8099.74 47
OpenMVScopyleft85.28 1490.75 19488.84 21496.48 9393.58 27693.51 6898.80 14297.41 15182.59 31078.62 32297.49 15268.00 29599.82 7684.52 24798.55 10396.11 237
nrg03090.23 20388.87 21394.32 18491.53 31193.54 6798.79 14695.89 26788.12 20384.55 24594.61 24078.80 21996.88 25692.35 15875.21 31692.53 260
F-COLMAP92.07 17091.75 16193.02 21698.16 9982.89 30298.79 14695.97 25086.54 24487.92 21297.80 13478.69 22099.65 9885.97 22795.93 15796.53 229
mvsany_test194.57 10395.09 8092.98 21795.84 19482.07 31298.76 14895.24 30692.87 7996.45 8898.71 9684.81 14399.15 14197.68 5795.49 16397.73 192
UniMVSNet_NR-MVSNet89.60 21688.55 22492.75 22392.17 29890.07 14698.74 14998.15 4088.37 19383.21 25693.98 24982.86 17195.93 31086.95 21572.47 34592.25 267
canonicalmvs95.02 8693.96 10798.20 2197.53 12095.92 1798.71 15096.19 23691.78 9895.86 10098.49 11279.53 21299.03 14996.12 8791.42 21999.66 60
DU-MVS88.83 23187.51 23992.79 22191.46 31290.07 14698.71 15097.62 10988.87 17883.21 25693.68 25674.63 23795.93 31086.95 21572.47 34592.36 263
diffmvspermissive94.59 10294.19 9695.81 12795.54 20490.69 12898.70 15295.68 28091.61 10095.96 9597.81 13380.11 20698.06 19296.52 8295.76 15898.67 154
Fangjinhua Wang, Qingshan Xu, Yew-Soon Ong, Marc Pollefeys: Lightweight and Accurate Multi-View Stereo With Confidence-Aware Diffusion Model. IEEE T-PAMI 2025
原ACMM298.69 153
VNet95.08 8594.26 9397.55 4398.07 10193.88 6198.68 15498.73 1890.33 13397.16 7197.43 15579.19 21599.53 10996.91 7391.85 20599.24 102
Vis-MVSNet (Re-imp)93.26 14393.00 13594.06 19596.14 18586.71 22898.68 15496.70 20188.30 19789.71 20197.64 14585.43 13496.39 28288.06 20696.32 14799.08 117
旧先验298.67 15685.75 25898.96 2198.97 15293.84 133
EPP-MVSNet93.75 12593.67 11594.01 19895.86 19385.70 25998.67 15697.66 9584.46 27891.36 17597.18 16991.16 3097.79 20892.93 15093.75 17798.53 160
Fast-Effi-MVS+-dtu88.84 22988.59 22289.58 30293.44 28178.18 34698.65 15894.62 32688.46 18784.12 25095.37 22868.91 28596.52 27382.06 27591.70 20994.06 248
BH-RMVSNet91.25 18489.99 19295.03 15796.75 15788.55 18798.65 15894.95 31487.74 21787.74 21497.80 13468.27 29198.14 18680.53 28897.49 12698.41 165
EPNet_dtu92.28 16492.15 15192.70 22597.29 13284.84 27598.64 16097.82 6592.91 7793.02 15097.02 17885.48 13395.70 32072.25 34494.89 16897.55 199
Wanjuan Su, Wenbing Tao: Efficient Edge-Preserving Multi-View Stereo Network for Depth Estimation. AAAI 2023
Baseline_NR-MVSNet85.83 28384.82 28188.87 31788.73 34883.34 29598.63 16191.66 37180.41 33982.44 27091.35 29974.63 23795.42 32884.13 25271.39 35487.84 359
CANet_DTU94.31 10993.35 12397.20 5597.03 14994.71 4498.62 16295.54 28895.61 2797.21 6798.47 11571.88 26799.84 6988.38 20197.46 12797.04 214
xiu_mvs_v1_base_debu94.73 9593.98 10496.99 6295.19 21795.24 2598.62 16296.50 21692.99 7497.52 5898.83 8472.37 26299.15 14197.03 6796.74 14096.58 226
xiu_mvs_v1_base94.73 9593.98 10496.99 6295.19 21795.24 2598.62 16296.50 21692.99 7497.52 5898.83 8472.37 26299.15 14197.03 6796.74 14096.58 226
xiu_mvs_v1_base_debi94.73 9593.98 10496.99 6295.19 21795.24 2598.62 16296.50 21692.99 7497.52 5898.83 8472.37 26299.15 14197.03 6796.74 14096.58 226
pmmvs585.87 28184.40 29290.30 28288.53 35184.23 28298.60 16693.71 34581.53 32680.29 30392.02 28464.51 32095.52 32482.04 27678.34 30091.15 308
QAPM91.41 17989.49 20097.17 5695.66 20193.42 7098.60 16697.51 13380.92 33481.39 29497.41 15672.89 25999.87 5882.33 27298.68 9798.21 180
SR-MVS96.13 5096.16 5096.07 11699.42 4789.04 17098.59 16897.33 15890.44 13096.84 7799.12 4886.75 10499.41 12697.47 6099.44 5999.76 45
MP-MVS-pluss95.80 6495.30 7297.29 5098.95 7692.66 8698.59 16897.14 17588.95 17493.12 14899.25 2385.62 12799.94 3496.56 8199.48 5599.28 99
MP-MVS-pluss: MP-MVS-pluss. MP-MVS-pluss
PAPM_NR95.43 7495.05 8196.57 9099.42 4790.14 14298.58 17097.51 13390.65 12292.44 15698.90 7887.77 8199.90 5090.88 17099.32 6599.68 56
v2v48287.27 26085.76 26591.78 24889.59 33687.58 20698.56 17195.54 28884.53 27782.51 26991.78 29173.11 25696.47 27882.07 27474.14 33191.30 304
WR-MVS88.54 24187.22 24692.52 22891.93 30589.50 16298.56 17197.84 6186.99 23081.87 28793.81 25374.25 24695.92 31285.29 23574.43 32592.12 276
TSAR-MVS + MP.97.44 1897.46 1697.39 4899.12 6593.49 6998.52 17397.50 13694.46 4098.99 1898.64 10191.58 2999.08 14898.49 3799.83 1599.60 67
Zhenlong Yuan, Jiakai Cao, Zhaoqi Wang, Zhaoxin Li: TSAR-MVS: Textureless-aware Segmentation and Correlative Refinement Guided Multi-View Stereo. Pattern Recognition
v14886.38 27585.06 27590.37 28189.47 34184.10 28598.52 17395.48 29183.80 28880.93 29790.22 33274.60 23996.31 29280.92 28371.55 35390.69 323
无先验98.52 17397.82 6587.20 22899.90 5087.64 21099.85 30
tttt051793.30 14093.01 13494.17 19095.57 20286.47 23198.51 17697.60 11285.99 25390.55 18697.19 16894.80 1098.31 17885.06 23891.86 20497.74 191
ACMP87.39 1088.71 23688.24 22990.12 28593.91 26781.06 32798.50 17795.67 28189.43 16180.37 30295.55 22265.67 31297.83 20590.55 17684.51 26091.47 295
Qingshan Xu and Wenbing Tao: Planar Prior Assisted PatchMatch Multi-View Stereo. AAAI 2020
ACMM86.95 1388.77 23488.22 23090.43 27793.61 27581.34 32198.50 17795.92 25987.88 21283.85 25295.20 23167.20 30297.89 20186.90 21884.90 25792.06 279
Qingshan Xu and Wenbing Tao: Multi-Scale Geometric Consistency Guided Multi-View Stereo. CVPR 2019
test_fmvs285.10 29385.45 27184.02 35089.85 33365.63 38498.49 17992.59 35890.45 12985.43 23993.32 26443.94 38196.59 26790.81 17284.19 26589.85 341
EI-MVSNet-Vis-set95.76 6795.63 7096.17 11299.14 6490.33 13598.49 17997.82 6591.92 9694.75 12098.88 8287.06 9799.48 11695.40 10297.17 13598.70 152
1112_ss92.71 15291.55 16496.20 10995.56 20391.12 11498.48 18194.69 32488.29 19886.89 22698.50 11087.02 9898.66 16584.75 24289.77 23298.81 143
Vis-MVSNetpermissive92.64 15491.85 15795.03 15795.12 22488.23 19198.48 18196.81 19891.61 10092.16 16097.22 16571.58 27298.00 19885.85 23297.81 11698.88 135
Jingyang Zhang, Yao Yao, Shiwei Li, Zixin Luo, Tian Fang: Visibility-aware Multiview Stereo Network. BMVC 2020
Test_1112_low_res92.27 16590.97 17596.18 11095.53 20591.10 11698.47 18394.66 32588.28 19986.83 22793.50 26387.00 9998.65 16784.69 24389.74 23398.80 144
Anonymous20240521188.84 22987.03 24894.27 18598.14 10084.18 28498.44 18495.58 28676.79 35589.34 20396.88 18753.42 36499.54 10887.53 21187.12 24199.09 116
EI-MVSNet-UG-set95.43 7495.29 7395.86 12699.07 7089.87 15498.43 18597.80 7091.78 9894.11 13298.77 8786.25 11999.48 11694.95 11596.45 14498.22 179
APD-MVS_3200maxsize95.64 7195.65 6895.62 13599.24 5887.80 20098.42 18697.22 16688.93 17696.64 8798.98 6385.49 13199.36 13096.68 7699.27 6999.70 52
TAPA-MVS87.50 990.35 20089.05 21094.25 18798.48 9185.17 27098.42 18696.58 21182.44 31687.24 22098.53 10782.77 17398.84 15559.09 38297.88 11598.72 150
Andrea Romanoni, Matteo Matteucci: TAPA-MVS: Textureless-Aware PAtchMatch Multi-View Stereo. ICCV 2019
CHOSEN 1792x268894.35 10893.82 11295.95 12397.40 12588.74 18498.41 18898.27 3192.18 9391.43 17296.40 20378.88 21699.81 7993.59 13897.81 11699.30 97
TAMVS92.62 15592.09 15394.20 18994.10 25787.68 20298.41 18896.97 19487.53 22489.74 19996.04 21584.77 14596.49 27788.97 19892.31 19698.42 164
ACMMPcopyleft94.67 9994.30 9295.79 12899.25 5788.13 19498.41 18898.67 2290.38 13291.43 17298.72 9382.22 18899.95 3193.83 13495.76 15899.29 98
Qingshan Xu, Weihang Kong, Wenbing Tao, Marc Pollefeys: Multi-Scale Geometric Consistency Guided and Planar Prior Assisted Multi-View Stereo. IEEE Transactions on Pattern Analysis and Machine Intelligence
SR-MVS-dyc-post95.75 6895.86 5795.41 14199.22 5987.26 22098.40 19197.21 16789.63 15296.67 8598.97 6486.73 10699.36 13096.62 7799.31 6699.60 67
RE-MVS-def95.70 6499.22 5987.26 22098.40 19197.21 16789.63 15296.67 8598.97 6485.24 13796.62 7799.31 6699.60 67
VDD-MVS91.24 18590.18 19094.45 17897.08 14685.84 25798.40 19196.10 24286.99 23093.36 14598.16 12754.27 36199.20 13896.59 8090.63 22798.31 174
mvsmamba89.99 21189.42 20291.69 24990.64 32386.34 23798.40 19192.27 36291.01 11384.80 24294.93 23376.12 23196.51 27492.81 15383.84 26892.21 271
DeepC-MVS91.02 494.56 10493.92 10996.46 9497.16 14090.76 12698.39 19597.11 17993.92 5288.66 20798.33 11978.14 22399.85 6795.02 11198.57 10298.78 147
Andreas Kuhn, Christian Sormann, Mattia Rossi, Oliver Erdler, Friedrich Fraundorfer: DeepC-MVS: Deep Confidence Prediction for Multi-View Stereo Reconstruction. 3DV 2020
MAR-MVS94.43 10794.09 10095.45 13999.10 6887.47 21098.39 19597.79 7288.37 19394.02 13499.17 3778.64 22199.91 4592.48 15698.85 9098.96 125
Zhenyu Xu, Yiguang Liu, Xuelei Shi, Ying Wang, Yunan Zheng: MARMVS: Matching Ambiguity Reduced Multiple View Stereo for Efficient Large Scale Scene Reconstruction. CVPR 2020
h-mvs3392.47 16091.95 15694.05 19697.13 14385.01 27398.36 19798.08 4493.85 5796.27 9196.73 19483.19 16599.43 12295.81 9268.09 36197.70 193
miper_enhance_ethall90.33 20189.70 19692.22 23297.12 14488.93 17898.35 19895.96 25288.60 18383.14 26092.33 28087.38 8696.18 29886.49 22277.89 30291.55 293
TranMVSNet+NR-MVSNet87.75 25186.31 25792.07 23890.81 32088.56 18698.33 19997.18 17287.76 21581.87 28793.90 25172.45 26195.43 32783.13 26571.30 35592.23 269
AdaColmapbinary93.82 12393.06 13196.10 11599.88 189.07 16998.33 19997.55 12386.81 23890.39 19198.65 10075.09 23699.98 993.32 14597.53 12599.26 101
V4287.00 26285.68 26790.98 26189.91 33086.08 24798.32 20195.61 28483.67 29282.72 26390.67 31474.00 24896.53 27281.94 27774.28 32890.32 330
D2MVS87.96 24787.39 24189.70 29991.84 30683.40 29498.31 20298.49 2388.04 20678.23 32890.26 32873.57 24996.79 26184.21 25083.53 27388.90 353
v114486.83 26585.31 27391.40 25289.75 33487.21 22298.31 20295.45 29383.22 29882.70 26490.78 30973.36 25096.36 28479.49 29274.69 32290.63 325
IS-MVSNet93.00 14992.51 14494.49 17596.14 18587.36 21498.31 20295.70 27888.58 18490.17 19397.50 15183.02 16997.22 24387.06 21296.07 15598.90 134
新几何298.26 205
LFMVS92.23 16690.84 17996.42 9898.24 9591.08 11898.24 20696.22 23383.39 29694.74 12198.31 12061.12 33598.85 15494.45 12592.82 18599.32 95
PGM-MVS95.85 6295.65 6896.45 9699.50 4289.77 15798.22 20798.90 1389.19 16696.74 8298.95 7185.91 12599.92 4093.94 13099.46 5699.66 60
LPG-MVS_test88.86 22888.47 22690.06 28693.35 28380.95 32898.22 20795.94 25587.73 21883.17 25896.11 21266.28 31097.77 21090.19 18085.19 25591.46 296
v14419286.40 27484.89 27990.91 26289.48 34085.59 26098.21 20995.43 29682.45 31582.62 26790.58 32172.79 26096.36 28478.45 30274.04 33290.79 318
VDDNet90.08 20988.54 22594.69 16994.41 24987.68 20298.21 20996.40 22176.21 35693.33 14697.75 13854.93 35998.77 15794.71 12090.96 22297.61 198
VPNet88.30 24386.57 25393.49 20891.95 30391.35 10798.18 21197.20 17188.61 18284.52 24694.89 23462.21 33096.76 26289.34 19272.26 34892.36 263
HyFIR lowres test93.68 12893.29 12694.87 16197.57 11988.04 19698.18 21198.47 2587.57 22291.24 17795.05 23285.49 13197.46 23393.22 14692.82 18599.10 115
FIs90.70 19589.87 19493.18 21392.29 29591.12 11498.17 21398.25 3289.11 16983.44 25494.82 23782.26 18796.17 29987.76 20882.76 27992.25 267
WB-MVSnew88.69 23788.34 22789.77 29794.30 25685.99 25298.14 21497.31 15987.15 22987.85 21396.07 21469.91 27895.52 32472.83 34291.47 21787.80 361
Anonymous2024052987.66 25585.58 26893.92 20097.59 11785.01 27398.13 21597.13 17766.69 38788.47 20996.01 21655.09 35899.51 11087.00 21484.12 26697.23 208
v119286.32 27684.71 28491.17 25689.53 33986.40 23398.13 21595.44 29582.52 31382.42 27290.62 31871.58 27296.33 29177.23 30774.88 31990.79 318
test111192.12 16891.19 17194.94 15996.15 18387.36 21498.12 21794.84 31790.85 11690.97 17997.26 16165.60 31598.37 17689.74 18797.14 13699.07 119
baseline294.04 11493.80 11394.74 16793.07 28890.25 13798.12 21798.16 3989.86 14686.53 23096.95 18195.56 698.05 19491.44 16494.53 17095.93 239
OPM-MVS89.76 21489.15 20891.57 25190.53 32485.58 26198.11 21995.93 25892.88 7886.05 23196.47 20267.06 30497.87 20389.29 19586.08 25091.26 306
Ray L. Khuboni, Hongjun Xu: Octagram Propagation Matching for Multi-Scale View Stereopsis (OPM-MVS).
ECVR-MVScopyleft92.29 16391.33 16895.15 15196.41 16987.84 19998.10 22094.84 31790.82 11791.42 17497.28 15965.61 31498.49 17390.33 17897.19 13399.12 113
v192192086.02 27984.44 29090.77 26889.32 34285.20 26898.10 22095.35 30182.19 31982.25 27790.71 31170.73 27596.30 29576.85 31274.49 32490.80 317
IterMVS-LS88.34 24287.44 24091.04 25994.10 25785.85 25698.10 22095.48 29185.12 26582.03 28391.21 30281.35 20095.63 32283.86 25875.73 31491.63 286
Fangjinhua Wang, Silvano Galliani, Christoph Vogel, Marc Pollefeys: IterMVS: Iterative Probability Estimation for Efficient Multi-View Stereo.
UWE-MVS93.18 14493.40 12292.50 22996.56 16183.55 29298.09 22397.84 6189.50 15991.72 16496.23 20991.08 3396.70 26386.28 22493.33 18097.26 206
RRT_MVS88.91 22688.56 22389.93 29190.31 32781.61 31698.08 22496.38 22289.30 16382.41 27394.84 23673.15 25596.04 30590.38 17782.23 28492.15 274
test22298.32 9291.21 11098.08 22497.58 11883.74 28995.87 9999.02 6086.74 10599.64 4099.81 33
FMVSNet388.81 23387.08 24793.99 19996.52 16494.59 4798.08 22496.20 23485.85 25482.12 27991.60 29474.05 24795.40 32979.04 29580.24 29091.99 281
OMC-MVS93.90 12093.62 11694.73 16898.63 8787.00 22398.04 22796.56 21292.19 9292.46 15598.73 9179.49 21399.14 14592.16 15994.34 17398.03 186
test250694.80 9294.21 9596.58 8896.41 16992.18 9598.01 22898.96 1190.82 11793.46 14497.28 15985.92 12398.45 17489.82 18497.19 13399.12 113
UGNet91.91 17290.85 17895.10 15297.06 14788.69 18598.01 22898.24 3492.41 8792.39 15793.61 25960.52 33799.68 9288.14 20497.25 13196.92 218
Wanjuan Su, Qingshan Xu, Wenbing Tao: Uncertainty-guided Multi-view Stereo Network for Depth Estimation. IEEE Transactions on Circuits and Systems for Video Technology, 2022
cl2289.57 21788.79 21691.91 24097.94 10587.62 20597.98 23096.51 21585.03 26982.37 27591.79 29083.65 15496.50 27585.96 22877.89 30291.61 290
VPA-MVSNet89.10 22287.66 23893.45 20992.56 29191.02 12097.97 23198.32 3086.92 23586.03 23292.01 28568.84 28797.10 24890.92 16975.34 31592.23 269
TR-MVS90.77 19389.44 20194.76 16596.31 17488.02 19797.92 23295.96 25285.52 26088.22 21197.23 16466.80 30598.09 19084.58 24592.38 19398.17 183
FC-MVSNet-test90.22 20489.40 20392.67 22791.78 30789.86 15597.89 23398.22 3588.81 17982.96 26194.66 23981.90 19395.96 30885.89 23182.52 28292.20 273
testdata197.89 23392.43 84
v124085.77 28684.11 29390.73 26989.26 34385.15 27197.88 23595.23 31081.89 32482.16 27890.55 32369.60 28496.31 29275.59 32174.87 32090.72 322
Effi-MVS+-dtu89.97 21290.68 18487.81 32495.15 22171.98 37197.87 23695.40 29791.92 9687.57 21591.44 29774.27 24596.84 25789.45 18993.10 18394.60 247
miper_ehance_all_eth88.94 22588.12 23291.40 25295.32 21286.93 22497.85 23795.55 28784.19 28181.97 28491.50 29684.16 14995.91 31384.69 24377.89 30291.36 301
cl____87.82 24886.79 25290.89 26494.88 23885.43 26397.81 23895.24 30682.91 30880.71 29991.22 30181.97 19295.84 31581.34 28075.06 31791.40 300
DIV-MVS_self_test87.82 24886.81 25190.87 26594.87 23985.39 26597.81 23895.22 31182.92 30780.76 29891.31 30081.99 19095.81 31781.36 27975.04 31891.42 299
SDMVSNet91.09 18689.91 19394.65 17096.80 15490.54 13397.78 24097.81 6888.34 19585.73 23395.26 22966.44 30998.26 18294.25 12886.75 24295.14 242
testmvs18.81 37323.05 3766.10 3904.48 4122.29 41597.78 2403.00 4133.27 40618.60 40662.71 3941.53 4132.49 40914.26 4071.80 40613.50 404
MVSFormer94.71 9894.08 10196.61 8595.05 23194.87 3697.77 24296.17 23886.84 23698.04 4998.52 10885.52 12895.99 30689.83 18298.97 8298.96 125
test_djsdf88.26 24587.73 23689.84 29488.05 35682.21 31097.77 24296.17 23886.84 23682.41 27391.95 28972.07 26595.99 30689.83 18284.50 26191.32 303
AUN-MVS90.17 20689.50 19992.19 23496.21 17982.67 30697.76 24497.53 12788.05 20591.67 16596.15 21083.10 16797.47 23288.11 20566.91 36796.43 232
hse-mvs291.67 17591.51 16592.15 23696.22 17882.61 30897.74 24597.53 12793.85 5796.27 9196.15 21083.19 16597.44 23595.81 9266.86 36896.40 233
c3_l88.19 24687.23 24591.06 25894.97 23486.17 24497.72 24695.38 29883.43 29581.68 29191.37 29882.81 17295.72 31984.04 25673.70 33391.29 305
baseline192.61 15691.28 16996.58 8897.05 14894.63 4697.72 24696.20 23489.82 14788.56 20896.85 18886.85 10297.82 20688.42 20080.10 29397.30 204
XXY-MVS87.75 25186.02 26192.95 21990.46 32589.70 15897.71 24895.90 26584.02 28380.95 29694.05 24367.51 30097.10 24885.16 23678.41 29992.04 280
Syy-MVS84.10 30984.53 28882.83 35595.14 22265.71 38397.68 24996.66 20386.52 24582.63 26596.84 18968.15 29289.89 37945.62 39391.54 21392.87 254
myMVS_eth3d88.68 23989.07 20987.50 32795.14 22279.74 33497.68 24996.66 20386.52 24582.63 26596.84 18985.22 13889.89 37969.43 35391.54 21392.87 254
FMVSNet286.90 26384.79 28293.24 21295.11 22592.54 9097.67 25195.86 27182.94 30480.55 30091.17 30362.89 32795.29 33177.23 30779.71 29691.90 282
DP-MVS88.75 23586.56 25495.34 14398.92 7787.45 21197.64 25293.52 34970.55 37381.49 29297.25 16374.43 24299.88 5471.14 34794.09 17498.67 154
EI-MVSNet89.87 21389.38 20491.36 25494.32 25285.87 25597.61 25396.59 20885.10 26685.51 23797.10 17281.30 20196.56 27083.85 25983.03 27791.64 285
CVMVSNet90.30 20290.91 17788.46 32094.32 25273.58 36597.61 25397.59 11690.16 13988.43 21097.10 17276.83 23092.86 35982.64 26993.54 17998.93 131
WR-MVS_H86.53 27285.49 27089.66 30191.04 31883.31 29697.53 25598.20 3684.95 27279.64 31190.90 30778.01 22495.33 33076.29 31672.81 34190.35 329
baseline93.91 11993.30 12595.72 13095.10 22890.07 14697.48 25695.91 26491.03 11293.54 14397.68 14279.58 21098.02 19694.27 12795.14 16699.08 117
PS-MVSNAJss89.54 21889.05 21091.00 26088.77 34784.36 28197.39 25795.97 25088.47 18581.88 28693.80 25482.48 18196.50 27589.34 19283.34 27692.15 274
testgi82.29 31781.00 32086.17 33787.24 36474.84 36097.39 25791.62 37288.63 18175.85 33995.42 22646.07 38091.55 37466.87 36479.94 29492.12 276
CP-MVSNet86.54 27185.45 27189.79 29691.02 31982.78 30597.38 25997.56 12285.37 26279.53 31493.03 27271.86 26895.25 33279.92 29073.43 33991.34 302
dcpmvs_295.67 7096.18 4594.12 19298.82 8184.22 28397.37 26095.45 29390.70 11995.77 10298.63 10390.47 4498.68 16499.20 2099.22 7199.45 83
pm-mvs184.68 29882.78 30590.40 27889.58 33785.18 26997.31 26194.73 32281.93 32376.05 33592.01 28565.48 31696.11 30278.75 30069.14 35889.91 340
tfpnnormal83.65 31181.35 31790.56 27491.37 31488.06 19597.29 26297.87 5878.51 34676.20 33390.91 30664.78 31996.47 27861.71 37673.50 33687.13 368
Anonymous2023121184.72 29782.65 30890.91 26297.71 11184.55 27997.28 26396.67 20266.88 38679.18 31890.87 30858.47 34396.60 26682.61 27074.20 32991.59 292
TransMVSNet (Re)81.97 31979.61 32889.08 31289.70 33584.01 28697.26 26491.85 37078.84 34373.07 35691.62 29367.17 30395.21 33367.50 36059.46 38288.02 358
pmmvs487.58 25786.17 26091.80 24489.58 33788.92 17997.25 26595.28 30282.54 31280.49 30193.17 27075.62 23496.05 30482.75 26878.90 29790.42 328
v886.11 27884.45 28991.10 25789.99 32986.85 22597.24 26695.36 30081.99 32179.89 30989.86 33774.53 24196.39 28278.83 29972.32 34790.05 337
MTAPA96.09 5195.80 6196.96 6799.29 5591.19 11197.23 26797.45 14492.58 8194.39 12899.24 2586.43 11599.99 596.22 8599.40 6399.71 51
MVS_Test93.67 12992.67 14196.69 8296.72 15892.66 8697.22 26896.03 24787.69 22095.12 11594.03 24681.55 19598.28 18189.17 19696.46 14399.14 110
v1085.73 28784.01 29590.87 26590.03 32886.73 22797.20 26995.22 31181.25 32979.85 31089.75 33873.30 25396.28 29676.87 31172.64 34389.61 345
PS-CasMVS85.81 28484.58 28789.49 30690.77 32182.11 31197.20 26997.36 15684.83 27479.12 31992.84 27567.42 30195.16 33478.39 30373.25 34091.21 307
ppachtmachnet_test83.63 31281.57 31589.80 29589.01 34485.09 27297.13 27194.50 32878.84 34376.14 33491.00 30569.78 28094.61 34663.40 37174.36 32689.71 344
PEN-MVS85.21 29283.93 29689.07 31389.89 33281.31 32297.09 27297.24 16484.45 27978.66 32192.68 27768.44 29094.87 33975.98 31870.92 35691.04 311
mvs_anonymous92.50 15991.65 16295.06 15496.60 16089.64 15997.06 27396.44 22086.64 24184.14 24993.93 25082.49 18096.17 29991.47 16396.08 15499.35 92
our_test_384.47 30382.80 30389.50 30489.01 34483.90 28897.03 27494.56 32781.33 32875.36 34290.52 32471.69 27094.54 34768.81 35576.84 31090.07 335
jajsoiax87.35 25886.51 25589.87 29287.75 36181.74 31497.03 27495.98 24988.47 18580.15 30593.80 25461.47 33296.36 28489.44 19084.47 26291.50 294
eth_miper_zixun_eth87.76 25087.00 24990.06 28694.67 24482.65 30797.02 27695.37 29984.19 28181.86 28991.58 29581.47 19795.90 31483.24 26173.61 33491.61 290
PatchMatch-RL91.47 17790.54 18694.26 18698.20 9686.36 23696.94 27797.14 17587.75 21688.98 20595.75 22071.80 26999.40 12780.92 28397.39 12997.02 215
MS-PatchMatch86.75 26685.92 26389.22 30991.97 30182.47 30996.91 27896.14 24083.74 28977.73 32993.53 26258.19 34497.37 24076.75 31398.35 10787.84 359
LS3D90.19 20588.72 21794.59 17498.97 7386.33 23896.90 27996.60 20774.96 36184.06 25198.74 9075.78 23399.83 7374.93 32497.57 12297.62 197
CL-MVSNet_self_test79.89 33078.34 33184.54 34881.56 38375.01 35896.88 28095.62 28381.10 33075.86 33885.81 36668.49 28990.26 37763.21 37256.51 38688.35 356
LCM-MVSNet-Re88.59 24088.61 22088.51 31995.53 20572.68 36996.85 28188.43 38888.45 18873.14 35390.63 31775.82 23294.38 34892.95 14995.71 16098.48 163
DTE-MVSNet84.14 30782.80 30388.14 32188.95 34679.87 33396.81 28296.24 23283.50 29477.60 33092.52 27967.89 29794.24 35072.64 34369.05 35990.32 330
GBi-Net86.67 26884.96 27691.80 24495.11 22588.81 18196.77 28395.25 30382.94 30482.12 27990.25 32962.89 32794.97 33679.04 29580.24 29091.62 287
test186.67 26884.96 27691.80 24495.11 22588.81 18196.77 28395.25 30382.94 30482.12 27990.25 32962.89 32794.97 33679.04 29580.24 29091.62 287
FMVSNet183.94 31081.32 31891.80 24491.94 30488.81 18196.77 28395.25 30377.98 34778.25 32790.25 32950.37 37394.97 33673.27 33877.81 30691.62 287
v7n84.42 30482.75 30689.43 30788.15 35481.86 31396.75 28695.67 28180.53 33578.38 32689.43 34269.89 27996.35 28973.83 33572.13 34990.07 335
miper_lstm_enhance86.90 26386.20 25989.00 31494.53 24781.19 32496.74 28795.24 30682.33 31780.15 30590.51 32581.99 19094.68 34580.71 28573.58 33591.12 309
mvs_tets87.09 26186.22 25889.71 29887.87 35781.39 32096.73 28895.90 26588.19 20179.99 30793.61 25959.96 33996.31 29289.40 19184.34 26391.43 298
Effi-MVS+93.87 12193.15 13096.02 11995.79 19590.76 12696.70 28995.78 27386.98 23395.71 10397.17 17079.58 21098.01 19794.57 12496.09 15399.31 96
NR-MVSNet87.74 25486.00 26292.96 21891.46 31290.68 12996.65 29097.42 15088.02 20773.42 35093.68 25677.31 22795.83 31684.26 24971.82 35292.36 263
Anonymous2023120680.76 32579.42 32984.79 34684.78 37472.98 36696.53 29192.97 35379.56 34074.33 34488.83 34561.27 33492.15 37060.59 37975.92 31389.24 350
MSDG88.29 24486.37 25694.04 19796.90 15086.15 24596.52 29294.36 33477.89 35179.22 31796.95 18169.72 28199.59 10473.20 33992.58 19196.37 234
tt080586.50 27384.79 28291.63 25091.97 30181.49 31796.49 29397.38 15482.24 31882.44 27095.82 21951.22 36998.25 18384.55 24680.96 28995.13 244
ACMH+83.78 1584.21 30582.56 31089.15 31193.73 27479.16 33796.43 29494.28 33681.09 33174.00 34794.03 24654.58 36097.67 21976.10 31778.81 29890.63 325
anonymousdsp86.69 26785.75 26689.53 30386.46 36982.94 29996.39 29595.71 27783.97 28579.63 31290.70 31268.85 28695.94 30986.01 22684.02 26789.72 343
OpenMVS_ROBcopyleft73.86 2077.99 34075.06 34686.77 33383.81 37877.94 34996.38 29691.53 37467.54 38468.38 36987.13 36043.94 38196.08 30355.03 38781.83 28586.29 372
MDA-MVSNet-bldmvs77.82 34174.75 34787.03 33188.33 35278.52 34496.34 29792.85 35575.57 35848.87 39387.89 34957.32 34892.49 36760.79 37864.80 37390.08 334
IterMVS85.81 28484.67 28589.22 30993.51 27783.67 29196.32 29894.80 32085.09 26778.69 32090.17 33566.57 30893.17 35879.48 29377.42 30890.81 316
Fangjinhua Wang, Silvano Galliani, Christoph Vogel, Marc Pollefeys: IterMVS: Iterative Probability Estimation for Efficient Multi-View Stereo.
IterMVS-SCA-FT85.73 28784.64 28689.00 31493.46 28082.90 30196.27 29994.70 32385.02 27078.62 32290.35 32766.61 30693.33 35579.38 29477.36 30990.76 320
ACMH83.09 1784.60 29982.61 30990.57 27293.18 28682.94 29996.27 29994.92 31681.01 33272.61 35993.61 25956.54 35097.79 20874.31 32981.07 28890.99 312
Qingshan Xu and Wenbing Tao: Multi-Scale Geometric Consistency Guided Multi-View Stereo. CVPR 2019
SCA90.64 19789.25 20694.83 16494.95 23588.83 18096.26 30197.21 16790.06 14390.03 19590.62 31866.61 30696.81 25983.16 26394.36 17298.84 138
MDA-MVSNet_test_wron79.65 33177.05 33687.45 32887.79 36080.13 33196.25 30294.44 32973.87 36551.80 39187.47 35668.04 29492.12 37166.02 36567.79 36490.09 333
YYNet179.64 33277.04 33787.43 32987.80 35979.98 33296.23 30394.44 32973.83 36651.83 39087.53 35267.96 29692.07 37266.00 36667.75 36590.23 332
131493.44 13491.98 15597.84 3295.24 21394.38 5296.22 30497.92 5590.18 13682.28 27697.71 14177.63 22699.80 8191.94 16198.67 9899.34 94
MVS93.92 11892.28 14798.83 795.69 19996.82 896.22 30498.17 3784.89 27384.34 24898.61 10579.32 21499.83 7393.88 13299.43 6099.86 29
EG-PatchMatch MVS79.92 32877.59 33386.90 33287.06 36677.90 35096.20 30694.06 34074.61 36266.53 37888.76 34640.40 38896.20 29767.02 36283.66 27286.61 369
test20.0378.51 33877.48 33481.62 36083.07 37971.03 37396.11 30792.83 35681.66 32569.31 36689.68 33957.53 34687.29 38958.65 38368.47 36086.53 370
MVP-Stereo86.61 27085.83 26488.93 31688.70 34983.85 28996.07 30894.41 33382.15 32075.64 34091.96 28867.65 29896.45 28077.20 30998.72 9686.51 371
Qingsong Yan: MVP-Stereo: A Parallel Multi-View Patchmatch Stereo Method with Dilation Matching for Photogrammetric Application.
EU-MVSNet84.19 30684.42 29183.52 35388.64 35067.37 38296.04 30995.76 27585.29 26378.44 32593.18 26970.67 27691.48 37575.79 32075.98 31291.70 284
test_fmvs375.09 34775.19 34474.81 36877.45 39154.08 39495.93 31090.64 37882.51 31473.29 35181.19 37922.29 39786.29 39085.50 23467.89 36384.06 381
XVG-OURS-SEG-HR90.95 19090.66 18591.83 24295.18 22081.14 32695.92 31195.92 25988.40 19290.33 19297.85 13170.66 27799.38 12892.83 15288.83 23494.98 245
AllTest84.97 29583.12 30090.52 27596.82 15278.84 34095.89 31292.17 36477.96 34975.94 33695.50 22355.48 35499.18 13971.15 34587.14 23993.55 251
COLMAP_ROBcopyleft82.69 1884.54 30182.82 30289.70 29996.72 15878.85 33995.89 31292.83 35671.55 37077.54 33195.89 21859.40 34199.14 14567.26 36188.26 23591.11 310
Johannes L. Schönberger, Enliang Zheng, Marc Pollefeys, Jan-Michael Frahm: Pixelwise View Selection for Unstructured Multi-View Stereo. ECCV 2016
UA-Net93.30 14092.62 14295.34 14396.27 17688.53 18995.88 31496.97 19490.90 11595.37 11097.07 17482.38 18699.10 14783.91 25794.86 16998.38 168
test_040278.81 33576.33 34086.26 33691.18 31678.44 34595.88 31491.34 37568.55 38070.51 36389.91 33652.65 36694.99 33547.14 39279.78 29585.34 377
pmmvs679.90 32977.31 33587.67 32584.17 37678.13 34795.86 31693.68 34667.94 38372.67 35889.62 34050.98 37195.75 31874.80 32766.04 36989.14 351
sd_testset89.23 22088.05 23492.74 22496.80 15485.33 26695.85 31797.03 18888.34 19585.73 23395.26 22961.12 33597.76 21585.61 23386.75 24295.14 242
N_pmnet70.19 35369.87 35571.12 37388.24 35330.63 41295.85 31728.70 41170.18 37568.73 36886.55 36364.04 32293.81 35153.12 38973.46 33788.94 352
XVG-OURS90.83 19290.49 18791.86 24195.23 21481.25 32395.79 31995.92 25988.96 17390.02 19698.03 13071.60 27199.35 13391.06 16787.78 23894.98 245
dmvs_re88.69 23788.06 23390.59 27193.83 27178.68 34295.75 32096.18 23787.99 20884.48 24796.32 20767.52 29996.94 25484.98 24085.49 25496.14 236
Anonymous2024052178.63 33776.90 33883.82 35182.82 38072.86 36795.72 32193.57 34873.55 36772.17 36084.79 36849.69 37592.51 36665.29 36874.50 32386.09 373
K. test v381.04 32479.77 32784.83 34587.41 36270.23 37795.60 32293.93 34283.70 29167.51 37489.35 34355.76 35293.58 35476.67 31468.03 36290.67 324
UniMVSNet_ETH3D85.65 28983.79 29791.21 25590.41 32680.75 33095.36 32395.78 27378.76 34581.83 29094.33 24249.86 37496.66 26484.30 24883.52 27496.22 235
PCF-MVS89.78 591.26 18289.63 19796.16 11495.44 20791.58 10595.29 32496.10 24285.07 26882.75 26297.45 15478.28 22299.78 8480.60 28795.65 16197.12 209
Andreas Kuhn, Shan Lin, Oliver Erdler: Plane Completion and Filtering for Multi-View Stereo Reconstruction. GCPR 2019
SixPastTwentyTwo82.63 31681.58 31485.79 33988.12 35571.01 37495.17 32592.54 35984.33 28072.93 35792.08 28260.41 33895.61 32374.47 32874.15 33090.75 321
USDC84.74 29682.93 30190.16 28491.73 30883.54 29395.00 32693.30 35188.77 18073.19 35293.30 26653.62 36397.65 22275.88 31981.54 28789.30 348
OurMVSNet-221017-084.13 30883.59 29885.77 34087.81 35870.24 37694.89 32793.65 34786.08 25176.53 33293.28 26761.41 33396.14 30180.95 28277.69 30790.93 313
CHOSEN 280x42096.80 3396.85 2896.66 8497.85 10894.42 5194.76 32898.36 2992.50 8395.62 10697.52 15097.92 197.38 23898.31 4498.80 9298.20 181
test_method70.10 35468.66 35774.41 37086.30 37155.84 39294.47 32989.82 38235.18 39966.15 37984.75 36930.54 39377.96 40070.40 35160.33 38089.44 347
new-patchmatchnet74.80 34972.40 35281.99 35978.36 39072.20 37094.44 33092.36 36177.06 35263.47 38279.98 38451.04 37088.85 38560.53 38054.35 38984.92 380
test12316.58 37519.47 3777.91 3893.59 4135.37 41494.32 3311.39 4142.49 40713.98 40744.60 4042.91 4122.65 40811.35 4080.57 40715.70 403
XVG-ACMP-BASELINE85.86 28284.95 27888.57 31889.90 33177.12 35294.30 33295.60 28587.40 22682.12 27992.99 27453.42 36497.66 22085.02 23983.83 26990.92 314
pmmvs372.86 35169.76 35682.17 35773.86 39474.19 36294.20 33389.01 38664.23 39067.72 37280.91 38241.48 38588.65 38662.40 37454.02 39083.68 383
pmmvs-eth3d78.71 33676.16 34186.38 33480.25 38781.19 32494.17 33492.13 36677.97 34866.90 37782.31 37555.76 35292.56 36573.63 33762.31 37885.38 375
CMPMVSbinary58.40 2180.48 32680.11 32581.59 36185.10 37359.56 38994.14 33595.95 25468.54 38160.71 38593.31 26555.35 35797.87 20383.06 26684.85 25987.33 365
M. Jancosek, T. Pajdla: Multi-View Reconstruction Preserving Weakly-Supported Surfaces. CVPR 2011
HY-MVS88.56 795.29 7994.23 9498.48 1497.72 11096.41 1394.03 33698.74 1692.42 8695.65 10594.76 23886.52 11299.49 11295.29 10592.97 18499.53 74
TinyColmap80.42 32777.94 33287.85 32392.09 29978.58 34393.74 33789.94 38174.99 36069.77 36491.78 29146.09 37997.58 22765.17 36977.89 30287.38 363
FMVSNet582.29 31780.54 32187.52 32693.79 27384.01 28693.73 33892.47 36076.92 35474.27 34586.15 36563.69 32589.24 38469.07 35474.79 32189.29 349
RPSCF85.33 29185.55 26984.67 34794.63 24662.28 38693.73 33893.76 34374.38 36485.23 24097.06 17564.09 32198.31 17880.98 28186.08 25093.41 253
DSMNet-mixed81.60 32281.43 31682.10 35884.36 37560.79 38793.63 34086.74 39179.00 34179.32 31687.15 35963.87 32389.78 38166.89 36391.92 20395.73 240
TDRefinement78.01 33975.31 34386.10 33870.06 39873.84 36393.59 34191.58 37374.51 36373.08 35591.04 30449.63 37697.12 24574.88 32559.47 38187.33 365
LF4IMVS81.94 32081.17 31984.25 34987.23 36568.87 38193.35 34291.93 36983.35 29775.40 34193.00 27349.25 37796.65 26578.88 29878.11 30187.22 367
LTVRE_ROB81.71 1984.59 30082.72 30790.18 28392.89 29083.18 29793.15 34394.74 32178.99 34275.14 34392.69 27665.64 31397.63 22369.46 35281.82 28689.74 342
Andreas Kuhn, Heiko Hirschmüller, Daniel Scharstein, Helmut Mayer: A TV Prior for High-Quality Scalable Multi-View Stereo Reconstruction. International Journal of Computer Vision 2016
WB-MVS66.44 35666.29 35966.89 37674.84 39244.93 40393.00 34484.09 39771.15 37155.82 38881.63 37763.79 32480.31 39821.85 40250.47 39575.43 389
tpm89.67 21588.95 21291.82 24392.54 29281.43 31892.95 34595.92 25987.81 21390.50 18889.44 34184.99 13995.65 32183.67 26082.71 28098.38 168
CostFormer92.89 15092.48 14594.12 19294.99 23385.89 25492.89 34697.00 19286.98 23395.00 11790.78 30990.05 5397.51 23192.92 15191.73 20898.96 125
KD-MVS_2432*160082.98 31480.52 32290.38 27994.32 25288.98 17392.87 34795.87 26980.46 33773.79 34887.49 35482.76 17593.29 35670.56 34946.53 39788.87 354
miper_refine_blended82.98 31480.52 32290.38 27994.32 25288.98 17392.87 34795.87 26980.46 33773.79 34887.49 35482.76 17593.29 35670.56 34946.53 39788.87 354
KD-MVS_self_test77.47 34275.88 34282.24 35681.59 38268.93 38092.83 34994.02 34177.03 35373.14 35383.39 37155.44 35690.42 37667.95 35857.53 38587.38 363
ab-mvs91.05 18989.17 20796.69 8295.96 19191.72 10192.62 35097.23 16585.61 25989.74 19993.89 25268.55 28899.42 12391.09 16687.84 23798.92 133
tpm291.77 17391.09 17293.82 20494.83 24085.56 26292.51 35197.16 17484.00 28493.83 13890.66 31587.54 8397.17 24487.73 20991.55 21298.72 150
MIMVSNet175.92 34573.30 35083.81 35281.29 38475.57 35692.26 35292.05 36773.09 36867.48 37586.18 36440.87 38787.64 38855.78 38670.68 35788.21 357
SSC-MVS65.42 35765.20 36066.06 37773.96 39343.83 40492.08 35383.54 39869.77 37754.73 38980.92 38163.30 32679.92 39920.48 40348.02 39674.44 390
UnsupCasMVSNet_eth78.90 33476.67 33985.58 34182.81 38174.94 35991.98 35496.31 22684.64 27665.84 38087.71 35051.33 36892.23 36972.89 34156.50 38789.56 346
tpmrst92.78 15192.16 15094.65 17096.27 17687.45 21191.83 35597.10 18289.10 17094.68 12290.69 31388.22 7197.73 21889.78 18591.80 20698.77 148
EPMVS92.59 15791.59 16395.59 13797.22 13490.03 15091.78 35698.04 4890.42 13191.66 16690.65 31686.49 11497.46 23381.78 27896.31 14899.28 99
mvsany_test375.85 34674.52 34879.83 36373.53 39560.64 38891.73 35787.87 39083.91 28770.55 36282.52 37331.12 39293.66 35286.66 22162.83 37485.19 379
test_f71.94 35270.82 35375.30 36772.77 39653.28 39591.62 35889.66 38475.44 35964.47 38178.31 38720.48 39889.56 38278.63 30166.02 37083.05 386
FA-MVS(test-final)92.22 16791.08 17395.64 13496.05 18988.98 17391.60 35997.25 16186.99 23091.84 16192.12 28183.03 16899.00 15086.91 21793.91 17698.93 131
dp90.16 20788.83 21594.14 19196.38 17286.42 23291.57 36097.06 18584.76 27588.81 20690.19 33484.29 14897.43 23675.05 32391.35 22198.56 159
dmvs_testset77.17 34378.99 33071.71 37187.25 36338.55 40891.44 36181.76 39985.77 25669.49 36595.94 21769.71 28284.37 39152.71 39076.82 31192.21 271
MDTV_nov1_ep13_2view91.17 11391.38 36287.45 22593.08 14986.67 10787.02 21398.95 129
MDTV_nov1_ep1390.47 18896.14 18588.55 18791.34 36397.51 13389.58 15592.24 15890.50 32686.99 10097.61 22577.64 30692.34 195
new_pmnet76.02 34473.71 34982.95 35483.88 37772.85 36891.26 36492.26 36370.44 37462.60 38381.37 37847.64 37892.32 36861.85 37572.10 35083.68 383
PatchmatchNetpermissive92.05 17191.04 17495.06 15496.17 18289.04 17091.26 36497.26 16089.56 15790.64 18590.56 32288.35 6997.11 24679.53 29196.07 15599.03 120
Fangjinhua Wang, Silvano Galliani, Christoph Vogel, Pablo Speciale, Marc Pollefeys: PatchmatchNet: Learned Multi-View Patchmatch Stereo.
test_vis3_rt61.29 35958.75 36268.92 37567.41 39952.84 39791.18 36659.23 41066.96 38541.96 39858.44 39811.37 40694.72 34474.25 33057.97 38459.20 397
FPMVS61.57 35860.32 36165.34 37860.14 40542.44 40691.02 36789.72 38344.15 39442.63 39780.93 38019.02 39980.59 39742.50 39472.76 34273.00 391
PM-MVS74.88 34872.85 35180.98 36278.98 38964.75 38590.81 36885.77 39280.95 33368.23 37182.81 37229.08 39492.84 36076.54 31562.46 37785.36 376
tpm cat188.89 22787.27 24493.76 20595.79 19585.32 26790.76 36997.09 18376.14 35785.72 23588.59 34782.92 17098.04 19576.96 31091.43 21897.90 190
test_post190.74 37041.37 40685.38 13596.36 28483.16 263
tpmvs89.16 22187.76 23593.35 21097.19 13784.75 27790.58 37197.36 15681.99 32184.56 24489.31 34483.98 15298.17 18574.85 32690.00 23197.12 209
EGC-MVSNET60.70 36055.37 36476.72 36586.35 37071.08 37289.96 37284.44 3960.38 4081.50 40984.09 37037.30 38988.10 38740.85 39773.44 33870.97 393
FE-MVS91.38 18090.16 19195.05 15696.46 16787.53 20889.69 37397.84 6182.97 30392.18 15992.00 28784.07 15198.93 15380.71 28595.52 16298.68 153
UnsupCasMVSNet_bld73.85 35070.14 35484.99 34479.44 38875.73 35588.53 37495.24 30670.12 37661.94 38474.81 39041.41 38693.62 35368.65 35651.13 39485.62 374
APD_test168.93 35566.98 35874.77 36980.62 38653.15 39687.97 37585.01 39453.76 39259.26 38687.52 35325.19 39589.95 37856.20 38567.33 36681.19 387
GG-mvs-BLEND96.98 6596.53 16394.81 4187.20 37697.74 7793.91 13696.40 20396.56 296.94 25495.08 10998.95 8599.20 106
ADS-MVSNet287.62 25686.88 25089.86 29396.21 17979.14 33887.15 37792.99 35283.01 30189.91 19787.27 35778.87 21792.80 36274.20 33192.27 19797.64 194
ADS-MVSNet88.99 22387.30 24394.07 19496.21 17987.56 20787.15 37796.78 20083.01 30189.91 19787.27 35778.87 21797.01 25174.20 33192.27 19797.64 194
PMMVS258.97 36255.07 36570.69 37462.72 40255.37 39385.97 37980.52 40049.48 39345.94 39468.31 39215.73 40380.78 39649.79 39137.12 39975.91 388
MIMVSNet84.48 30281.83 31292.42 23091.73 30887.36 21485.52 38094.42 33281.40 32781.91 28587.58 35151.92 36792.81 36173.84 33488.15 23697.08 213
MVS-HIRNet79.01 33375.13 34590.66 27093.82 27281.69 31585.16 38193.75 34454.54 39174.17 34659.15 39757.46 34796.58 26963.74 37094.38 17193.72 250
gg-mvs-nofinetune90.00 21087.71 23796.89 7396.15 18394.69 4585.15 38297.74 7768.32 38292.97 15160.16 39596.10 396.84 25793.89 13198.87 8999.14 110
JIA-IIPM85.97 28084.85 28089.33 30893.23 28573.68 36485.05 38397.13 17769.62 37891.56 16968.03 39388.03 7796.96 25277.89 30593.12 18297.34 203
CR-MVSNet88.83 23187.38 24293.16 21493.47 27886.24 23984.97 38494.20 33888.92 17790.76 18386.88 36184.43 14694.82 34170.64 34892.17 20198.41 165
RPMNet85.07 29481.88 31194.64 17293.47 27886.24 23984.97 38497.21 16764.85 38990.76 18378.80 38680.95 20399.27 13753.76 38892.17 20198.41 165
EMVS39.96 37139.88 37340.18 38759.57 40632.12 41184.79 38664.57 40926.27 40226.14 40344.18 40518.73 40059.29 40617.03 40517.67 40329.12 402
Patchmtry83.61 31381.64 31389.50 30493.36 28282.84 30484.10 38794.20 33869.47 37979.57 31386.88 36184.43 14694.78 34268.48 35774.30 32790.88 315
Patchmatch-RL test81.90 32180.13 32487.23 33080.71 38570.12 37884.07 38888.19 38983.16 30070.57 36182.18 37687.18 9392.59 36482.28 27362.78 37598.98 123
E-PMN41.02 37040.93 37241.29 38661.97 40333.83 40984.00 38965.17 40827.17 40127.56 40146.72 40217.63 40260.41 40519.32 40418.82 40129.61 401
PatchT85.44 29083.19 29992.22 23293.13 28783.00 29883.80 39096.37 22370.62 37290.55 18679.63 38584.81 14394.87 33958.18 38491.59 21098.79 145
Patchmatch-test86.25 27784.06 29492.82 22094.42 24882.88 30382.88 39194.23 33771.58 36979.39 31590.62 31889.00 6296.42 28163.03 37391.37 22099.16 108
LCM-MVSNet60.07 36156.37 36371.18 37254.81 40748.67 40082.17 39289.48 38537.95 39749.13 39269.12 39113.75 40581.76 39259.28 38151.63 39383.10 385
testf156.38 36353.73 36664.31 38064.84 40045.11 40180.50 39375.94 40538.87 39542.74 39575.07 38811.26 40781.19 39441.11 39553.27 39166.63 394
APD_test256.38 36353.73 36664.31 38064.84 40045.11 40180.50 39375.94 40538.87 39542.74 39575.07 38811.26 40781.19 39441.11 39553.27 39166.63 394
ambc79.60 36472.76 39756.61 39176.20 39592.01 36868.25 37080.23 38323.34 39694.73 34373.78 33660.81 37987.48 362
ANet_high50.71 36746.17 37064.33 37944.27 40952.30 39876.13 39678.73 40164.95 38827.37 40255.23 39914.61 40467.74 40236.01 39818.23 40272.95 392
tmp_tt53.66 36652.86 36856.05 38332.75 41141.97 40773.42 39776.12 40421.91 40439.68 40096.39 20542.59 38465.10 40378.00 30414.92 40461.08 396
PMVScopyleft41.42 2345.67 36842.50 37155.17 38434.28 41032.37 41066.24 39878.71 40230.72 40022.04 40559.59 3964.59 40977.85 40127.49 40058.84 38355.29 398
Y. Furukawa, J. Ponce: Accurate, dense, and robust multiview stereopsis. PAMI (2010)
MVEpermissive44.00 2241.70 36937.64 37453.90 38549.46 40843.37 40565.09 39966.66 40726.19 40325.77 40448.53 4013.58 41163.35 40426.15 40127.28 40054.97 399
Simon Fuhrmann, Fabian Langguth, Michael Goesele: MVE - A Multi-View Reconstruction Environment. EUROGRAPHICS Workshops on Graphics and Cultural Heritage (2014)
Gipumacopyleft54.77 36552.22 36962.40 38286.50 36859.37 39050.20 40090.35 38036.52 39841.20 39949.49 40018.33 40181.29 39332.10 39965.34 37146.54 400
S. Galliani, K. Lasinger, K. Schindler: Massively Parallel Multiview Stereopsis by Surface Normal Diffusion. ICCV 2015
wuyk23d16.71 37416.73 37816.65 38860.15 40425.22 41341.24 4015.17 4126.56 4055.48 4083.61 4083.64 41022.72 40715.20 4069.52 4051.99 405
test_blank0.00 3780.00 3810.00 3910.00 4140.00 4160.00 4020.00 4150.00 4090.00 4100.00 4090.00 4140.00 4100.00 4090.00 4080.00 406
uanet_test0.00 3780.00 3810.00 3910.00 4140.00 4160.00 4020.00 4150.00 4090.00 4100.00 4090.00 4140.00 4100.00 4090.00 4080.00 406
DCPMVS0.00 3780.00 3810.00 3910.00 4140.00 4160.00 4020.00 4150.00 4090.00 4100.00 4090.00 4140.00 4100.00 4090.00 4080.00 406
cdsmvs_eth3d_5k22.52 37230.03 3750.00 3910.00 4140.00 4160.00 40297.17 1730.00 4090.00 41098.77 8774.35 2440.00 4100.00 4090.00 4080.00 406
pcd_1.5k_mvsjas6.87 3779.16 3800.00 3910.00 4140.00 4160.00 4020.00 4150.00 4090.00 4100.00 40982.48 1810.00 4100.00 4090.00 4080.00 406
sosnet-low-res0.00 3780.00 3810.00 3910.00 4140.00 4160.00 4020.00 4150.00 4090.00 4100.00 4090.00 4140.00 4100.00 4090.00 4080.00 406
sosnet0.00 3780.00 3810.00 3910.00 4140.00 4160.00 4020.00 4150.00 4090.00 4100.00 4090.00 4140.00 4100.00 4090.00 4080.00 406
uncertanet0.00 3780.00 3810.00 3910.00 4140.00 4160.00 4020.00 4150.00 4090.00 4100.00 4090.00 4140.00 4100.00 4090.00 4080.00 406
Regformer0.00 3780.00 3810.00 3910.00 4140.00 4160.00 4020.00 4150.00 4090.00 4100.00 4090.00 4140.00 4100.00 4090.00 4080.00 406
ab-mvs-re8.21 37610.94 3790.00 3910.00 4140.00 4160.00 4020.00 4150.00 4090.00 41098.50 1100.00 4140.00 4100.00 4090.00 4080.00 406
uanet0.00 3780.00 3810.00 3910.00 4140.00 4160.00 4020.00 4150.00 4090.00 4100.00 4090.00 4140.00 4100.00 4090.00 4080.00 406
WAC-MVS79.74 33467.75 359
MSC_two_6792asdad99.51 299.61 2498.60 297.69 8899.98 999.55 1299.83 1599.96 10
PC_three_145294.60 3899.41 499.12 4895.50 799.96 2899.84 299.92 399.97 7
No_MVS99.51 299.61 2498.60 297.69 8899.98 999.55 1299.83 1599.96 10
test_one_060199.59 2894.89 3497.64 10393.14 7198.93 2299.45 1493.45 17
eth-test20.00 414
eth-test0.00 414
ZD-MVS99.67 1093.28 7197.61 11087.78 21497.41 6199.16 3890.15 5299.56 10598.35 4199.70 35
IU-MVS99.63 1895.38 2297.73 8095.54 2899.54 399.69 699.81 2399.99 1
test_241102_TWO97.72 8194.17 4599.23 1199.54 393.14 2399.98 999.70 499.82 1999.99 1
test_241102_ONE99.63 1895.24 2597.72 8194.16 4799.30 999.49 993.32 1899.98 9
test_0728_THIRD93.01 7299.07 1699.46 1094.66 1399.97 2199.25 1899.82 1999.95 15
GSMVS98.84 138
test_part299.54 3695.42 2098.13 43
sam_mvs188.39 6898.84 138
sam_mvs87.08 96
MTGPAbinary97.45 144
test_post46.00 40387.37 8797.11 246
patchmatchnet-post84.86 36788.73 6596.81 259
gm-plane-assit94.69 24388.14 19388.22 20097.20 16698.29 18090.79 173
test9_res98.60 3399.87 999.90 22
agg_prior297.84 5699.87 999.91 21
agg_prior99.54 3692.66 8697.64 10397.98 5299.61 102
TestCases90.52 27596.82 15278.84 34092.17 36477.96 34975.94 33695.50 22355.48 35499.18 13971.15 34587.14 23993.55 251
test_prior97.01 6099.58 3091.77 9997.57 12199.49 11299.79 36
新几何197.40 4798.92 7792.51 9197.77 7585.52 26096.69 8499.06 5588.08 7699.89 5384.88 24199.62 4599.79 36
旧先验198.97 7392.90 8497.74 7799.15 4191.05 3499.33 6499.60 67
原ACMM196.18 11099.03 7190.08 14597.63 10788.98 17297.00 7398.97 6488.14 7599.71 9088.23 20399.62 4598.76 149
testdata299.88 5484.16 251
segment_acmp90.56 43
testdata95.26 14898.20 9687.28 21797.60 11285.21 26498.48 3499.15 4188.15 7498.72 16290.29 17999.45 5899.78 38
test1297.83 3399.33 5394.45 4997.55 12397.56 5788.60 6699.50 11199.71 3499.55 72
plane_prior793.84 26985.73 258
plane_prior693.92 26686.02 25172.92 257
plane_prior596.30 22797.75 21693.46 14286.17 24892.67 258
plane_prior496.52 199
plane_prior385.91 25393.65 6386.99 223
plane_prior193.90 268
n20.00 415
nn0.00 415
door-mid84.90 395
lessismore_v085.08 34385.59 37269.28 37990.56 37967.68 37390.21 33354.21 36295.46 32673.88 33362.64 37690.50 327
LGP-MVS_train90.06 28693.35 28380.95 32895.94 25587.73 21883.17 25896.11 21266.28 31097.77 21090.19 18085.19 25591.46 296
test1197.68 90
door85.30 393
HQP5-MVS86.39 234
BP-MVS93.82 135
HQP4-MVS87.57 21597.77 21092.72 256
HQP3-MVS96.37 22386.29 245
HQP2-MVS73.34 251
NP-MVS93.94 26586.22 24196.67 197
ACMMP++_ref82.64 281
ACMMP++83.83 269
Test By Simon83.62 155
ITE_SJBPF87.93 32292.26 29676.44 35493.47 35087.67 22179.95 30895.49 22556.50 35197.38 23875.24 32282.33 28389.98 339
DeepMVS_CXcopyleft76.08 36690.74 32251.65 39990.84 37786.47 24857.89 38787.98 34835.88 39192.60 36365.77 36765.06 37283.97 382