This table lists the benchmark results for the high-res multi-view scenario. The following metrics are evaluated:

(*) For exact definitions, detailing how potentially incomplete ground truth is taken into account, see our paper.

The datasets are grouped into different categories, and result averages are computed for a category and method if results of the method are available for all datasets within the category. Note that the category "all" includes both the high-res multi-view and the low-res many-view scenarios.

Methods with suffix _ROB may participate in the Robust Vision Challenge.

Click a dataset result cell to show a visualization of the reconstruction. For training datasets, ground truth and accuracy / completeness visualizations are also available. The visualizations may not work with mobile browsers.




Method Infoallhigh-res
multi-view
indooroutdoorbotani.boulde.bridgedoorexhibi.lectur.living.loungeobserv.old co.statueterrac.
sort bysort bysort bysort bysort bysort bysorted bysort bysort bysort bysort bysort bysort bysort bysort bysort by
test_fmvsm_n_192098.44 4498.61 2797.92 14899.27 10695.18 191100.00 198.90 4798.05 1299.80 1799.73 8192.64 13499.99 3699.58 4199.51 10898.59 231
DELS-MVS98.54 3698.22 4799.50 3099.15 11298.65 53100.00 198.58 8897.70 2098.21 13799.24 14292.58 13799.94 8198.63 9899.94 5599.92 84
Christian Sormann, Emanuele Santellani, Mattia Rossi, Andreas Kuhn, Friedrich Fraundorfer: DELS-MVS: Deep Epipolar Line Search for Multi-View Stereo. Winter Conference on Applications of Computer Vision (WACV), 2023
PVSNet_Blended97.94 6897.64 7998.83 8899.59 8596.99 115100.00 199.10 3195.38 9498.27 13399.08 15189.00 20299.95 7399.12 6199.25 12499.57 145
MM98.83 2198.53 3099.76 1099.59 8599.33 899.99 499.76 698.39 499.39 7499.80 5490.49 18099.96 6599.89 1799.43 11599.98 51
testing393.92 21994.23 19992.99 32497.54 23090.23 31199.99 499.16 3090.57 26791.33 25798.63 20092.99 12492.52 39682.46 35295.39 22296.22 267
test_fmvsmconf_n98.43 4698.32 4398.78 8998.12 19396.41 13699.99 498.83 6098.22 799.67 3999.64 10291.11 16699.94 8199.67 3999.62 9599.98 51
test_cas_vis1_n_192096.59 14196.23 13597.65 16598.22 18394.23 21699.99 497.25 29597.77 1799.58 5499.08 15177.10 31099.97 5797.64 14799.45 11398.74 225
ET-MVSNet_ETH3D94.37 21193.28 22897.64 16698.30 17697.99 7399.99 497.61 25494.35 12871.57 39999.45 12096.23 3395.34 36996.91 16885.14 30999.59 137
CS-MVS97.79 8297.91 6997.43 17999.10 11394.42 20899.99 497.10 30995.07 10099.68 3899.75 7292.95 12698.34 23898.38 10999.14 12999.54 151
MVS_030499.06 1198.84 1799.72 1399.76 6699.21 2199.99 499.34 2598.70 299.44 6699.75 7293.24 11899.99 3699.94 1199.41 11799.95 74
alignmvs97.81 7997.33 9299.25 4698.77 14498.66 5199.99 498.44 12794.40 12798.41 12699.47 11793.65 10699.42 16798.57 9994.26 23899.67 118
lupinMVS97.85 7397.60 8198.62 10097.28 24897.70 8599.99 497.55 26095.50 9399.43 6899.67 9790.92 17098.71 20798.40 10899.62 9599.45 168
EC-MVSNet97.38 10297.24 9597.80 15397.41 23795.64 17199.99 497.06 31594.59 11699.63 4499.32 13389.20 20098.14 25498.76 8899.23 12699.62 130
IB-MVS92.85 694.99 18993.94 20898.16 13297.72 21995.69 16999.99 498.81 6194.28 13492.70 24396.90 26795.08 5499.17 18096.07 17773.88 38199.60 136
Christian Sormann, Mattia Rossi, Andreas Kuhn and Friedrich Fraundorfer: IB-MVS: An Iterative Algorithm for Deep Multi-View Stereo based on Binary Decisions. BMVC 2021
fmvsm_l_conf0.5_n_a99.00 1598.91 1499.28 4599.21 10797.91 7899.98 1598.85 5698.25 599.92 299.75 7294.72 6799.97 5799.87 1999.64 9299.95 74
fmvsm_l_conf0.5_n98.94 1698.84 1799.25 4699.17 11097.81 8199.98 1598.86 5398.25 599.90 399.76 6694.21 9099.97 5799.87 1999.52 10599.98 51
fmvsm_s_conf0.5_n97.80 8097.85 7297.67 16499.06 11594.41 20999.98 1598.97 4097.34 2999.63 4499.69 9087.27 21999.97 5799.62 4099.06 13398.62 230
test_vis1_n_192095.44 17895.31 17095.82 23098.50 16488.74 33299.98 1597.30 28897.84 1699.85 999.19 14566.82 37199.97 5798.82 8399.46 11298.76 223
EIA-MVS97.53 9297.46 8597.76 16098.04 19694.84 19999.98 1597.61 25494.41 12697.90 14599.59 10792.40 14398.87 19398.04 12699.13 13099.59 137
ETV-MVS97.92 7097.80 7498.25 12998.14 19196.48 13399.98 1597.63 24895.61 8899.29 8199.46 11992.55 13898.82 19699.02 7198.54 14799.46 166
CANet98.27 5597.82 7399.63 1799.72 7599.10 2399.98 1598.51 11097.00 4698.52 11999.71 8687.80 21299.95 7399.75 3199.38 11899.83 94
SPE-MVS-test97.88 7197.94 6797.70 16399.28 10595.20 19099.98 1597.15 30495.53 9199.62 4799.79 5892.08 15198.38 23498.75 8999.28 12399.52 157
MSLP-MVS++99.13 899.01 1199.49 3299.94 1398.46 6199.98 1598.86 5397.10 4099.80 1799.94 495.92 38100.00 199.51 43100.00 1100.00 1
CNVR-MVS99.40 199.26 199.84 699.98 299.51 699.98 1598.69 6998.20 899.93 199.98 296.82 22100.00 199.75 31100.00 199.99 23
SteuartSystems-ACMMP99.02 1398.97 1399.18 5298.72 14697.71 8399.98 1598.44 12796.85 4999.80 1799.91 1497.57 799.85 11199.44 4999.99 2199.99 23
Skip Steuart: Steuart Systems R&D Blog.
PHI-MVS98.41 4898.21 4899.03 7399.86 5397.10 11199.98 1598.80 6390.78 26499.62 4799.78 6295.30 50100.00 199.80 2599.93 6199.99 23
CLD-MVS94.06 21893.90 20994.55 27196.02 28790.69 30099.98 1597.72 24196.62 6291.05 26098.85 18577.21 30998.47 21998.11 12289.51 26794.48 276
Zhaoxin Li, Wangmeng Zuo, Zhaoqi Wang, Lei Zhang: Confidence-based Large-scale Dense Multi-view Stereo. IEEE Transaction on Image Processing, 2020
thisisatest051597.41 10097.02 10698.59 10497.71 22197.52 9199.97 2898.54 10291.83 22997.45 15899.04 15497.50 899.10 18594.75 20296.37 19999.16 198
Fast-Effi-MVS+95.02 18894.19 20097.52 17497.88 20494.55 20599.97 2897.08 31388.85 30194.47 22097.96 23784.59 24898.41 22689.84 28897.10 18299.59 137
MCST-MVS99.32 399.14 499.86 599.97 399.59 599.97 2898.64 7798.47 399.13 8999.92 1396.38 32100.00 199.74 33100.00 1100.00 1
TSAR-MVS + GP.98.60 3398.51 3198.86 8799.73 7396.63 12799.97 2897.92 22698.07 1198.76 10999.55 11195.00 5999.94 8199.91 1697.68 17099.99 23
jason97.24 10696.86 11298.38 12395.73 30097.32 10099.97 2897.40 27895.34 9698.60 11899.54 11387.70 21398.56 21597.94 13299.47 11099.25 193
jason: jason.
NCCC99.37 299.25 299.71 1599.96 899.15 2299.97 2898.62 8298.02 1399.90 399.95 397.33 16100.00 199.54 42100.00 1100.00 1
CP-MVS98.45 4398.32 4398.87 8699.96 896.62 12899.97 2898.39 15994.43 12398.90 10099.87 2794.30 85100.00 199.04 6799.99 2199.99 23
fmvsm_s_conf0.5_n_a97.73 8797.72 7597.77 15898.63 15494.26 21599.96 3598.92 4697.18 3999.75 2999.69 9087.00 22499.97 5799.46 4798.89 13799.08 207
test_fmvs195.35 18195.68 16194.36 28298.99 12184.98 36499.96 3596.65 35097.60 2299.73 3398.96 16671.58 35099.93 8898.31 11499.37 11998.17 238
GeoE94.36 21393.48 22096.99 19597.29 24793.54 23599.96 3596.72 34788.35 31293.43 23198.94 17382.05 26498.05 26188.12 30696.48 19799.37 177
SED-MVS99.28 599.11 799.77 899.93 2499.30 1299.96 3598.43 13597.27 3499.80 1799.94 496.71 25100.00 1100.00 1100.00 1100.00 1
OPU-MVS99.93 299.89 4599.80 299.96 3599.80 5497.44 13100.00 1100.00 199.98 32100.00 1
save fliter99.82 5898.79 4099.96 3598.40 15697.66 21
test072699.93 2499.29 1599.96 3598.42 14797.28 3299.86 799.94 497.22 18
DPM-MVS98.83 2198.46 3399.97 199.33 10299.92 199.96 3598.44 12797.96 1499.55 5599.94 497.18 20100.00 193.81 22499.94 5599.98 51
TEST999.92 3198.92 2999.96 3598.43 13593.90 15499.71 3599.86 2995.88 3999.85 111
train_agg98.88 2098.65 2499.59 2399.92 3198.92 2999.96 3598.43 13594.35 12899.71 3599.86 2995.94 3699.85 11199.69 3899.98 3299.99 23
test_899.92 3198.88 3299.96 3598.43 13594.35 12899.69 3799.85 3395.94 3699.85 111
region2R98.54 3698.37 3999.05 7199.96 897.18 10699.96 3598.55 9994.87 10799.45 6599.85 3394.07 94100.00 198.67 93100.00 199.98 51
test-LLR96.47 14496.04 14097.78 15697.02 25595.44 17799.96 3598.21 19394.07 14295.55 20696.38 28493.90 9998.27 24790.42 27998.83 14199.64 124
TESTMET0.1,196.74 13496.26 13498.16 13297.36 24196.48 13399.96 3598.29 18291.93 22695.77 20498.07 23195.54 4498.29 24390.55 27698.89 13799.70 113
test-mter96.39 14995.93 15197.78 15697.02 25595.44 17799.96 3598.21 19391.81 23195.55 20696.38 28495.17 5198.27 24790.42 27998.83 14199.64 124
CPTT-MVS97.64 9097.32 9398.58 10599.97 395.77 16299.96 3598.35 16989.90 28198.36 12999.79 5891.18 16599.99 3698.37 11199.99 2199.99 23
cascas94.64 20193.61 21397.74 16297.82 20996.26 14399.96 3597.78 23985.76 34594.00 22797.54 24776.95 31499.21 17497.23 15595.43 22197.76 249
DeepPCF-MVS95.94 297.71 8898.98 1293.92 29799.63 8381.76 38499.96 3598.56 9399.47 199.19 8699.99 194.16 92100.00 199.92 1399.93 61100.00 1
test_fmvsmvis_n_192097.67 8997.59 8397.91 15097.02 25595.34 18299.95 5398.45 12297.87 1597.02 17199.59 10789.64 19099.98 4799.41 5199.34 12198.42 234
patch_mono-298.24 6099.12 595.59 23499.67 8186.91 35499.95 5398.89 4997.60 2299.90 399.76 6696.54 3099.98 4799.94 1199.82 8199.88 88
DVP-MVS++99.26 699.09 999.77 899.91 3999.31 1099.95 5398.43 13596.48 6399.80 1799.93 1197.44 13100.00 199.92 1399.98 32100.00 1
FOURS199.92 3197.66 8799.95 5398.36 16795.58 8999.52 60
DVP-MVScopyleft99.30 499.16 399.73 1299.93 2499.29 1599.95 5398.32 17697.28 3299.83 1399.91 1497.22 18100.00 199.99 5100.00 199.89 87
Zhenlong Yuan, Jinguo Luo, Fei Shen, Zhaoxin Li, Cong Liu, Tianlu Mao, Zhaoqi Wang: DVP-MVS: Synergize Depth-Edge and Visibility Prior for Multi-View Stereo. AAAI2025
test_0728_SECOND99.82 799.94 1399.47 799.95 5398.43 135100.00 199.99 5100.00 1100.00 1
MSP-MVS99.09 999.12 598.98 8099.93 2497.24 10399.95 5398.42 14797.50 2699.52 6099.88 2497.43 1599.71 14199.50 4499.98 32100.00 1
Zhenlong Yuan, Cong Liu, Fei Shen, Zhaoxin Li, Jingguo luo, Tianlu Mao and Zhaoqi Wang: MSP-MVS: Multi-granularity Segmentation Prior Guided Multi-View Stereo. AAAI2025
HFP-MVS98.56 3598.37 3999.14 6199.96 897.43 9799.95 5398.61 8394.77 10999.31 7899.85 3394.22 88100.00 198.70 9199.98 3299.98 51
HPM-MVS++copyleft99.07 1098.88 1699.63 1799.90 4299.02 2599.95 5398.56 9397.56 2599.44 6699.85 3395.38 49100.00 199.31 5499.99 2199.87 90
test_prior299.95 5395.78 8399.73 3399.76 6696.00 3599.78 27100.00 1
ACMMPR98.50 3998.32 4399.05 7199.96 897.18 10699.95 5398.60 8594.77 10999.31 7899.84 4493.73 104100.00 198.70 9199.98 3299.98 51
MP-MVScopyleft98.23 6197.97 6399.03 7399.94 1397.17 10999.95 5398.39 15994.70 11398.26 13599.81 5391.84 156100.00 198.85 8299.97 4299.93 79
Rongxuan Tan, Qing Wang, et al.: MP-MVS: Multi-Scale Windows PatchMatch and Planar Prior Multi-View Stereo.
mPP-MVS98.39 5098.20 4998.97 8199.97 396.92 11899.95 5398.38 16395.04 10198.61 11799.80 5493.39 109100.00 198.64 96100.00 199.98 51
PVSNet_BlendedMVS96.05 16095.82 15696.72 20499.59 8596.99 11599.95 5399.10 3194.06 14498.27 13395.80 30189.00 20299.95 7399.12 6187.53 29493.24 353
PAPR98.52 3898.16 5299.58 2499.97 398.77 4299.95 5398.43 13595.35 9598.03 14199.75 7294.03 9599.98 4798.11 12299.83 7799.99 23
PVSNet91.05 1397.13 11196.69 12198.45 11799.52 9295.81 16099.95 5399.65 1294.73 11199.04 9499.21 14484.48 24999.95 7394.92 19598.74 14399.58 143
test_fmvsmconf0.1_n97.74 8597.44 8798.64 9995.76 29796.20 14899.94 6998.05 21398.17 998.89 10199.42 12187.65 21499.90 9499.50 4499.60 10199.82 95
ZNCC-MVS98.31 5298.03 5999.17 5599.88 4997.59 8899.94 6998.44 12794.31 13198.50 12299.82 4993.06 12399.99 3698.30 11599.99 2199.93 79
test_prior498.05 7099.94 69
XVS98.70 2998.55 2899.15 5999.94 1397.50 9399.94 6998.42 14796.22 7599.41 7099.78 6294.34 8299.96 6598.92 7699.95 5099.99 23
X-MVStestdata93.83 22192.06 25499.15 5999.94 1397.50 9399.94 6998.42 14796.22 7599.41 7041.37 42294.34 8299.96 6598.92 7699.95 5099.99 23
SD-MVS98.92 1898.70 2099.56 2599.70 7898.73 4699.94 6998.34 17396.38 6999.81 1599.76 6694.59 7099.98 4799.84 2299.96 4699.97 61
Zhenlong Yuan, Jiakai Cao, Zhaoxin Li, Hao Jiang and Zhaoqi Wang: SD-MVS: Segmentation-driven Deformation Multi-View Stereo with Spherical Refinement and EM optimization. AAAI2024
PVSNet_088.03 1991.80 27290.27 28696.38 21598.27 18090.46 30799.94 6999.61 1393.99 14786.26 34297.39 25271.13 35499.89 9998.77 8767.05 39898.79 222
GST-MVS98.27 5597.97 6399.17 5599.92 3197.57 8999.93 7698.39 15994.04 14698.80 10599.74 7992.98 125100.00 198.16 11999.76 8599.93 79
test0.0.03 193.86 22093.61 21394.64 26595.02 31892.18 26799.93 7698.58 8894.07 14287.96 31698.50 21093.90 9994.96 37481.33 35993.17 25196.78 259
MVS_111021_HR98.72 2898.62 2699.01 7799.36 10197.18 10699.93 7699.90 196.81 5498.67 11399.77 6493.92 9799.89 9999.27 5699.94 5599.96 67
WBMVS94.52 20694.03 20495.98 22498.38 16996.68 12599.92 7997.63 24890.75 26589.64 28295.25 33396.77 2396.90 32094.35 21283.57 32194.35 288
testing1197.48 9497.27 9498.10 13798.36 17296.02 15599.92 7998.45 12293.45 16798.15 13998.70 19295.48 4799.22 17397.85 13795.05 22899.07 208
thisisatest053097.10 11296.72 11998.22 13097.60 22896.70 12499.92 7998.54 10291.11 25397.07 17098.97 16497.47 1199.03 18693.73 22996.09 20398.92 214
PVSNet_Blended_VisFu97.27 10596.81 11498.66 9798.81 14196.67 12699.92 7998.64 7794.51 11996.38 19098.49 21189.05 20199.88 10597.10 15998.34 15199.43 171
DP-MVS Recon98.41 4898.02 6099.56 2599.97 398.70 4899.92 7998.44 12792.06 22398.40 12899.84 4495.68 42100.00 198.19 11799.71 8899.97 61
PLCcopyleft95.54 397.93 6997.89 7198.05 14199.82 5894.77 20399.92 7998.46 12193.93 15197.20 16599.27 13795.44 4899.97 5797.41 15199.51 10899.41 173
Jie Liao, Yanping Fu, Qingan Yan, Chunxia xiao: Pyramid Multi-View Stereo with Local Consistency. Pacific Graphics 2019
testing9197.16 11096.90 10997.97 14398.35 17495.67 17099.91 8598.42 14792.91 18497.33 16298.72 19094.81 6499.21 17496.98 16394.63 23199.03 210
testing9997.17 10996.91 10897.95 14498.35 17495.70 16799.91 8598.43 13592.94 18297.36 16198.72 19094.83 6399.21 17497.00 16194.64 23098.95 213
9.1498.38 3799.87 5199.91 8598.33 17493.22 17399.78 2699.89 2294.57 7399.85 11199.84 2299.97 42
APDe-MVScopyleft99.06 1198.91 1499.51 2999.94 1398.76 4599.91 8598.39 15997.20 3899.46 6499.85 3395.53 4699.79 12699.86 21100.00 199.99 23
Zhaojie Zeng, Yuesong Wang, Tao Guan: Matching Ambiguity-Resilient Multi-View Stereo via Adaptive Patch Deformation. Pattern Recognition
MVSTER95.53 17695.22 17396.45 21198.56 15697.72 8299.91 8597.67 24592.38 21491.39 25597.14 25797.24 1797.30 29394.80 20087.85 28994.34 290
PMMVS96.76 13296.76 11696.76 20298.28 17992.10 26899.91 8597.98 21894.12 13999.53 5899.39 12886.93 22598.73 20496.95 16697.73 16899.45 168
UBG97.84 7497.69 7798.29 12798.38 16996.59 13199.90 9198.53 10593.91 15398.52 11998.42 21896.77 2399.17 18098.54 10196.20 20099.11 204
fmvsm_s_conf0.1_n97.30 10397.21 9797.60 17097.38 23994.40 21199.90 9198.64 7796.47 6599.51 6299.65 10184.99 24599.93 8899.22 5899.09 13298.46 232
test_fmvs1_n94.25 21694.36 19593.92 29797.68 22283.70 37199.90 9196.57 35397.40 2899.67 3998.88 17761.82 38999.92 9198.23 11699.13 13098.14 241
SF-MVS98.67 3098.40 3599.50 3099.77 6598.67 4999.90 9198.21 19393.53 16399.81 1599.89 2294.70 6999.86 11099.84 2299.93 6199.96 67
原ACMM299.90 91
HPM-MVScopyleft97.96 6797.72 7598.68 9599.84 5696.39 13999.90 9198.17 19892.61 20198.62 11699.57 11091.87 15599.67 14898.87 8199.99 2199.99 23
Chunlin Ren, Qingshan Xu, Shikun Zhang, Jiaqi Yang: Hierarchical Prior Mining for Non-local Multi-View Stereo. ICCV 2023
EPNet98.49 4098.40 3598.77 9199.62 8496.80 12399.90 9199.51 1697.60 2299.20 8499.36 13193.71 10599.91 9297.99 12998.71 14499.61 134
Wanjuan Su, Wenbing Tao: Efficient Edge-Preserving Multi-View Stereo Network for Depth Estimation. AAAI 2023
CSCG97.10 11297.04 10497.27 18999.89 4591.92 27399.90 9199.07 3488.67 30595.26 21299.82 4993.17 12199.98 4798.15 12099.47 11099.90 86
PAPM98.60 3398.42 3499.14 6196.05 28698.96 2699.90 9199.35 2496.68 5898.35 13099.66 9996.45 3198.51 21899.45 4899.89 7099.96 67
ETVMVS97.03 11896.64 12298.20 13198.67 14997.12 11099.89 10098.57 9091.10 25498.17 13898.59 20293.86 10198.19 25295.64 18595.24 22699.28 190
114514_t97.41 10096.83 11399.14 6199.51 9497.83 7999.89 10098.27 18588.48 30999.06 9399.66 9990.30 18399.64 15196.32 17499.97 4299.96 67
WTY-MVS98.10 6597.60 8199.60 2298.92 13099.28 1799.89 10099.52 1495.58 8998.24 13699.39 12893.33 11299.74 13797.98 13195.58 21899.78 103
GA-MVS93.83 22192.84 23496.80 20095.73 30093.57 23399.88 10397.24 29692.57 20592.92 23996.66 27678.73 30297.67 27887.75 30994.06 24199.17 197
UniMVSNet (Re)93.07 24492.13 25195.88 22794.84 31996.24 14799.88 10398.98 3892.49 21089.25 29195.40 32187.09 22297.14 30293.13 23978.16 36194.26 293
HPM-MVS_fast97.80 8097.50 8498.68 9599.79 6296.42 13599.88 10398.16 20291.75 23398.94 9899.54 11391.82 15799.65 15097.62 14999.99 2199.99 23
test_vis1_n93.61 23193.03 23295.35 24195.86 29286.94 35299.87 10696.36 35996.85 4999.54 5798.79 18752.41 40299.83 12198.64 9698.97 13699.29 189
test_vis1_rt86.87 33886.05 34089.34 36196.12 28378.07 39599.87 10683.54 42092.03 22478.21 38489.51 39145.80 40699.91 9296.25 17593.11 25390.03 390
DPE-MVScopyleft99.26 699.10 899.74 1199.89 4599.24 1999.87 10698.44 12797.48 2799.64 4399.94 496.68 2799.99 3699.99 5100.00 199.99 23
Kehua Chen, Zhenlong Yuan, Tianlu Mao, Zhaoqi Wang: Dual-Level Precision Edges Guided Multi-View Stereo with Accurate Planarization. AAAI2025
MTMP99.87 10696.49 356
CDPH-MVS98.65 3198.36 4199.49 3299.94 1398.73 4699.87 10698.33 17493.97 14899.76 2899.87 2794.99 6099.75 13598.55 100100.00 199.98 51
HQP-NCC95.78 29399.87 10696.82 5193.37 232
ACMP_Plane95.78 29399.87 10696.82 5193.37 232
APD-MVScopyleft98.62 3298.35 4299.41 3899.90 4298.51 5999.87 10698.36 16794.08 14199.74 3199.73 8194.08 9399.74 13799.42 5099.99 2199.99 23
Yuesong Wang, Zhaojie Zeng and etc.: Adaptive Patch Deformation for Textureless-Resilient Multi-View Stereo. CVPR2023
MVS_111021_LR98.42 4798.38 3798.53 11299.39 9995.79 16199.87 10699.86 296.70 5798.78 10699.79 5892.03 15299.90 9499.17 6099.86 7599.88 88
HQP-MVS94.61 20294.50 19294.92 25595.78 29391.85 27499.87 10697.89 22896.82 5193.37 23298.65 19780.65 28398.39 23097.92 13389.60 26294.53 272
CNLPA97.76 8497.38 8998.92 8599.53 9196.84 12099.87 10698.14 20693.78 15796.55 18499.69 9092.28 14699.98 4797.13 15799.44 11499.93 79
SMA-MVScopyleft98.76 2698.48 3299.62 2099.87 5198.87 3399.86 11798.38 16393.19 17499.77 2799.94 495.54 44100.00 199.74 3399.99 21100.00 1
Yufeng Yin; Xiaoyan Liu; Zichao Zhang: SMA-MVS: Segmentation-Guided Multi-Scale Anchor Deformation Patch Multi-View Stereo. IEEE Transactions on Circuits and Systems for Video Technology
plane_prior91.74 27899.86 11796.76 5589.59 264
casdiffmvs_mvgpermissive96.43 14695.94 15097.89 15297.44 23695.47 17699.86 11797.29 29193.35 16896.03 19699.19 14585.39 24098.72 20697.89 13697.04 18599.49 164
Fangjinhua Wang, Qingshan Xu, Yew-Soon Ong, Marc Pollefeys: Lightweight and Accurate Multi-View Stereo With Confidence-Aware Diffusion Model. IEEE T-PAMI 2025
testing22297.08 11796.75 11798.06 14098.56 15696.82 12199.85 12098.61 8392.53 20798.84 10298.84 18693.36 11098.30 24295.84 18294.30 23799.05 209
tttt051796.85 12696.49 12897.92 14897.48 23595.89 15999.85 12098.54 10290.72 26696.63 18198.93 17597.47 1199.02 18793.03 24195.76 21498.85 218
ACMMP_NAP98.49 4098.14 5399.54 2799.66 8298.62 5599.85 12098.37 16694.68 11499.53 5899.83 4692.87 128100.00 198.66 9599.84 7699.99 23
thres20096.96 12196.21 13799.22 4898.97 12398.84 3699.85 12099.71 793.17 17596.26 19298.88 17789.87 18899.51 15694.26 21494.91 22999.31 185
F-COLMAP96.93 12496.95 10796.87 19999.71 7691.74 27899.85 12097.95 22193.11 17995.72 20599.16 14892.35 14499.94 8195.32 18899.35 12098.92 214
test_fmvsmconf0.01_n96.39 14995.74 15798.32 12591.47 37795.56 17499.84 12597.30 28897.74 1897.89 14699.35 13279.62 29299.85 11199.25 5799.24 12599.55 147
SR-MVS98.46 4298.30 4698.93 8499.88 4997.04 11399.84 12598.35 16994.92 10599.32 7799.80 5493.35 11199.78 12899.30 5599.95 5099.96 67
CANet_DTU96.76 13296.15 13898.60 10298.78 14397.53 9099.84 12597.63 24897.25 3799.20 8499.64 10281.36 27399.98 4792.77 24498.89 13798.28 237
casdiffmvspermissive96.42 14895.97 14797.77 15897.30 24694.98 19499.84 12597.09 31293.75 15996.58 18399.26 14085.07 24398.78 19997.77 14497.04 18599.54 151
Fangjinhua Wang, Qingshan Xu, Yew-Soon Ong, Marc Pollefeys: Lightweight and Accurate Multi-View Stereo With Confidence-Aware Diffusion Model. IEEE T-PAMI 2025
HQP_MVS94.49 20794.36 19594.87 25695.71 30391.74 27899.84 12597.87 23096.38 6993.01 23798.59 20280.47 28798.37 23697.79 14289.55 26594.52 274
plane_prior299.84 12596.38 69
BH-w/o95.71 17095.38 16896.68 20598.49 16592.28 26499.84 12597.50 26892.12 22092.06 25198.79 18784.69 24798.67 21195.29 18999.66 9199.09 205
fmvsm_s_conf0.1_n_a97.09 11496.90 10997.63 16895.65 30794.21 21799.83 13298.50 11696.27 7499.65 4199.64 10284.72 24699.93 8899.04 6798.84 14098.74 225
test_fmvs289.47 32089.70 29788.77 36894.54 32575.74 39699.83 13294.70 39294.71 11291.08 25896.82 27554.46 39997.78 27592.87 24288.27 28492.80 361
UniMVSNet_NR-MVSNet92.95 24692.11 25295.49 23594.61 32495.28 18599.83 13299.08 3391.49 23889.21 29496.86 27087.14 22196.73 33093.20 23577.52 36694.46 277
APD-MVS_3200maxsize98.25 5998.08 5898.78 8999.81 6096.60 12999.82 13598.30 18193.95 15099.37 7599.77 6492.84 12999.76 13498.95 7399.92 6499.97 61
PAPM_NR98.12 6497.93 6898.70 9499.94 1396.13 15299.82 13598.43 13594.56 11797.52 15599.70 8894.40 7799.98 4797.00 16199.98 3299.99 23
nrg03093.51 23392.53 24696.45 21194.36 32897.20 10599.81 13797.16 30391.60 23589.86 27497.46 24886.37 23197.68 27795.88 18180.31 35094.46 277
diffmvspermissive97.00 11996.64 12298.09 13897.64 22696.17 15199.81 13797.19 29894.67 11598.95 9799.28 13486.43 23098.76 20198.37 11197.42 17699.33 183
Fangjinhua Wang, Qingshan Xu, Yew-Soon Ong, Marc Pollefeys: Lightweight and Accurate Multi-View Stereo With Confidence-Aware Diffusion Model. IEEE T-PAMI 2025
DU-MVS92.46 25891.45 26795.49 23594.05 33395.28 18599.81 13798.74 6592.25 21889.21 29496.64 27881.66 26996.73 33093.20 23577.52 36694.46 277
ACMP92.05 992.74 25192.42 24993.73 30295.91 29188.72 33399.81 13797.53 26494.13 13887.00 33098.23 22674.07 34198.47 21996.22 17688.86 27493.99 322
Qingshan Xu and Wenbing Tao: Planar Prior Assisted PatchMatch Multi-View Stereo. AAAI 2020
mvsany_test197.82 7897.90 7097.55 17198.77 14493.04 24799.80 14197.93 22396.95 4899.61 5399.68 9690.92 17099.83 12199.18 5998.29 15699.80 99
Fast-Effi-MVS+-dtu93.72 22893.86 21193.29 31597.06 25386.16 35699.80 14196.83 33992.66 19892.58 24497.83 24381.39 27297.67 27889.75 28996.87 19096.05 269
BH-untuned95.18 18494.83 18696.22 21998.36 17291.22 29099.80 14197.32 28690.91 25891.08 25898.67 19483.51 25598.54 21794.23 21599.61 9998.92 214
tfpn200view996.79 12995.99 14299.19 5198.94 12598.82 3799.78 14499.71 792.86 18596.02 19798.87 18089.33 19599.50 15893.84 22194.57 23299.27 191
thres40096.78 13195.99 14299.16 5798.94 12598.82 3799.78 14499.71 792.86 18596.02 19798.87 18089.33 19599.50 15893.84 22194.57 23299.16 198
TAPA-MVS92.12 894.42 20993.60 21596.90 19899.33 10291.78 27799.78 14498.00 21589.89 28294.52 21899.47 11791.97 15399.18 17969.90 39599.52 10599.73 108
Andrea Romanoni, Matteo Matteucci: TAPA-MVS: Textureless-Aware PAtchMatch Multi-View Stereo. ICCV 2019
TSAR-MVS + MP.98.93 1798.77 1999.41 3899.74 7098.67 4999.77 14798.38 16396.73 5699.88 699.74 7994.89 6299.59 15299.80 2599.98 3299.97 61
Zhenlong Yuan, Jiakai Cao, Zhaoqi Wang, Zhaoxin Li: TSAR-MVS: Textureless-aware Segmentation and Correlative Refinement Guided Multi-View Stereo. Pattern Recognition
OPM-MVS93.21 23892.80 23694.44 27893.12 35090.85 29899.77 14797.61 25496.19 7791.56 25498.65 19775.16 33598.47 21993.78 22789.39 26893.99 322
Ray L. Khuboni, Hongjun Xu: Octagram Propagation Matching for Multi-Scale View Stereopsis (OPM-MVS).
v2v48291.30 27990.07 29395.01 25193.13 34893.79 22699.77 14797.02 31988.05 31589.25 29195.37 32580.73 28197.15 30187.28 31580.04 35394.09 313
Baseline_NR-MVSNet90.33 30389.51 30392.81 32892.84 35789.95 31899.77 14793.94 39984.69 35989.04 29895.66 30781.66 26996.52 33790.99 26676.98 37291.97 372
ACMM91.95 1092.88 24892.52 24793.98 29695.75 29989.08 33099.77 14797.52 26693.00 18089.95 27197.99 23576.17 32498.46 22293.63 23188.87 27394.39 284
Qingshan Xu and Wenbing Tao: Multi-Scale Geometric Consistency Guided Multi-View Stereo. CVPR 2019
reproduce_monomvs95.38 18095.07 17996.32 21799.32 10496.60 12999.76 15298.85 5696.65 5987.83 31896.05 29899.52 198.11 25696.58 17181.07 34294.25 295
SR-MVS-dyc-post98.31 5298.17 5198.71 9399.79 6296.37 14099.76 15298.31 17894.43 12399.40 7299.75 7293.28 11699.78 12898.90 7999.92 6499.97 61
RE-MVS-def98.13 5499.79 6296.37 14099.76 15298.31 17894.43 12399.40 7299.75 7292.95 12698.90 7999.92 6499.97 61
BH-RMVSNet95.18 18494.31 19897.80 15398.17 18895.23 18899.76 15297.53 26492.52 20894.27 22499.25 14176.84 31598.80 19790.89 27099.54 10499.35 180
v14890.70 29389.63 29893.92 29792.97 35490.97 29299.75 15696.89 33587.51 32188.27 31395.01 34081.67 26897.04 31287.40 31377.17 37193.75 338
PGM-MVS98.34 5198.13 5498.99 7899.92 3197.00 11499.75 15699.50 1793.90 15499.37 7599.76 6693.24 118100.00 197.75 14699.96 4699.98 51
LPG-MVS_test92.96 24592.71 23993.71 30495.43 31188.67 33499.75 15697.62 25192.81 18890.05 26798.49 21175.24 33198.40 22895.84 18289.12 26994.07 314
reproduce-ours98.78 2498.67 2199.09 6899.70 7897.30 10199.74 15998.25 18797.10 4099.10 9099.90 1894.59 7099.99 3699.77 2899.91 6799.99 23
our_new_method98.78 2498.67 2199.09 6899.70 7897.30 10199.74 15998.25 18797.10 4099.10 9099.90 1894.59 7099.99 3699.77 2899.91 6799.99 23
thres100view90096.74 13495.92 15299.18 5298.90 13598.77 4299.74 15999.71 792.59 20395.84 20198.86 18289.25 19799.50 15893.84 22194.57 23299.27 191
MP-MVS-pluss98.07 6697.64 7999.38 4299.74 7098.41 6399.74 15998.18 19793.35 16896.45 18699.85 3392.64 13499.97 5798.91 7899.89 7099.77 104
MP-MVS-pluss: MP-MVS-pluss. MP-MVS-pluss
pmmvs590.17 30989.09 31093.40 31292.10 36989.77 32199.74 15995.58 37685.88 34487.24 32995.74 30373.41 34496.48 33988.54 29983.56 32293.95 325
thres600view796.69 13795.87 15599.14 6198.90 13598.78 4199.74 15999.71 792.59 20395.84 20198.86 18289.25 19799.50 15893.44 23394.50 23599.16 198
baseline296.71 13696.49 12897.37 18395.63 30995.96 15799.74 15998.88 5192.94 18291.61 25398.97 16497.72 698.62 21394.83 19998.08 16497.53 255
reproduce_model98.75 2798.66 2399.03 7399.71 7697.10 11199.73 16698.23 19197.02 4599.18 8799.90 1894.54 7499.99 3699.77 2899.90 6999.99 23
miper_enhance_ethall94.36 21393.98 20695.49 23598.68 14895.24 18799.73 16697.29 29193.28 17289.86 27495.97 29994.37 8197.05 30992.20 24884.45 31494.19 300
testgi89.01 32588.04 32691.90 33793.49 34384.89 36599.73 16695.66 37493.89 15685.14 34998.17 22759.68 39394.66 37977.73 37788.88 27296.16 268
sss97.57 9197.03 10599.18 5298.37 17198.04 7199.73 16699.38 2293.46 16598.76 10999.06 15391.21 16199.89 9996.33 17397.01 18799.62 130
sasdasda97.09 11496.32 13299.39 4098.93 12798.95 2799.72 17097.35 28194.45 12097.88 14799.42 12186.71 22699.52 15498.48 10493.97 24299.72 110
canonicalmvs97.09 11496.32 13299.39 4098.93 12798.95 2799.72 17097.35 28194.45 12097.88 14799.42 12186.71 22699.52 15498.48 10493.97 24299.72 110
3Dnovator+91.53 1196.31 15395.24 17299.52 2896.88 26598.64 5499.72 17098.24 18995.27 9888.42 31298.98 16282.76 26199.94 8197.10 15999.83 7799.96 67
UWE-MVS96.79 12996.72 11997.00 19498.51 16393.70 23099.71 17398.60 8592.96 18197.09 16898.34 22296.67 2998.85 19592.11 25096.50 19598.44 233
WB-MVSnew92.90 24792.77 23893.26 31796.95 25993.63 23299.71 17398.16 20291.49 23894.28 22398.14 22881.33 27496.48 33979.47 36795.46 21989.68 393
Syy-MVS90.00 31290.63 27888.11 37297.68 22274.66 39999.71 17398.35 16990.79 26292.10 24998.67 19479.10 29993.09 39263.35 40695.95 20896.59 262
myMVS_eth3d94.46 20894.76 18893.55 31097.68 22290.97 29299.71 17398.35 16990.79 26292.10 24998.67 19492.46 14293.09 39287.13 31795.95 20896.59 262
HyFIR lowres test96.66 13996.43 13097.36 18599.05 11693.91 22599.70 17799.80 390.54 26896.26 19298.08 23092.15 14998.23 25096.84 16995.46 21999.93 79
D2MVS92.76 25092.59 24593.27 31695.13 31489.54 32499.69 17899.38 2292.26 21787.59 32194.61 35485.05 24497.79 27391.59 25788.01 28792.47 366
TranMVSNet+NR-MVSNet91.68 27690.61 27994.87 25693.69 34093.98 22399.69 17898.65 7591.03 25688.44 30896.83 27480.05 29096.18 35190.26 28376.89 37494.45 282
V4291.28 28190.12 29294.74 26193.42 34593.46 23799.68 18097.02 31987.36 32489.85 27695.05 33881.31 27597.34 28987.34 31480.07 35293.40 348
testmvs40.60 38744.45 39029.05 40419.49 42814.11 43099.68 18018.47 42720.74 42064.59 40598.48 21410.95 42517.09 42456.66 41311.01 42055.94 417
MGCFI-Net97.00 11996.22 13699.34 4398.86 13898.80 3999.67 18297.30 28894.31 13197.77 15199.41 12586.36 23299.50 15898.38 10993.90 24499.72 110
DeepC-MVS94.51 496.92 12596.40 13198.45 11799.16 11195.90 15899.66 18398.06 21196.37 7294.37 22199.49 11683.29 25899.90 9497.63 14899.61 9999.55 147
Andreas Kuhn, Christian Sormann, Mattia Rossi, Oliver Erdler, Friedrich Fraundorfer: DeepC-MVS: Deep Confidence Prediction for Multi-View Stereo Reconstruction. 3DV 2020
CHOSEN 1792x268896.81 12896.53 12797.64 16698.91 13493.07 24499.65 18499.80 395.64 8795.39 20998.86 18284.35 25199.90 9496.98 16399.16 12899.95 74
Test_1112_low_res95.72 16894.83 18698.42 12097.79 21196.41 13699.65 18496.65 35092.70 19592.86 24296.13 29492.15 14999.30 16991.88 25493.64 24699.55 147
1112_ss96.01 16295.20 17498.42 12097.80 21096.41 13699.65 18496.66 34992.71 19492.88 24199.40 12692.16 14899.30 16991.92 25393.66 24599.55 147
OMC-MVS97.28 10497.23 9697.41 18099.76 6693.36 24299.65 18497.95 22196.03 7997.41 16099.70 8889.61 19199.51 15696.73 17098.25 15799.38 175
test_yl97.83 7597.37 9099.21 4999.18 10897.98 7499.64 18899.27 2791.43 24397.88 14798.99 16095.84 4099.84 11998.82 8395.32 22499.79 100
DCV-MVSNet97.83 7597.37 9099.21 4999.18 10897.98 7499.64 18899.27 2791.43 24397.88 14798.99 16095.84 4099.84 11998.82 8395.32 22499.79 100
MG-MVS98.91 1998.65 2499.68 1699.94 1399.07 2499.64 18899.44 1997.33 3199.00 9699.72 8494.03 9599.98 4798.73 90100.00 1100.00 1
v114491.09 28589.83 29494.87 25693.25 34793.69 23199.62 19196.98 32486.83 33489.64 28294.99 34380.94 27897.05 30985.08 33681.16 33893.87 332
mvsmamba96.94 12296.73 11897.55 17197.99 19894.37 21299.62 19197.70 24293.13 17798.42 12597.92 23888.02 21198.75 20398.78 8699.01 13599.52 157
cl2293.77 22593.25 22995.33 24399.49 9594.43 20799.61 19398.09 20890.38 27089.16 29795.61 30890.56 17897.34 28991.93 25284.45 31494.21 299
WR-MVS92.31 26191.25 26995.48 23894.45 32795.29 18499.60 19498.68 7190.10 27688.07 31596.89 26880.68 28296.80 32893.14 23879.67 35494.36 285
SDMVSNet94.80 19393.96 20797.33 18798.92 13095.42 17999.59 19598.99 3792.41 21292.55 24597.85 24175.81 32798.93 19297.90 13591.62 25797.64 250
Effi-MVS+-dtu94.53 20595.30 17192.22 33397.77 21282.54 37799.59 19597.06 31594.92 10595.29 21195.37 32585.81 23597.89 27094.80 20097.07 18396.23 266
MVSMamba_PlusPlus97.83 7597.45 8698.99 7898.60 15598.15 6599.58 19797.74 24090.34 27399.26 8398.32 22394.29 8699.23 17299.03 7099.89 7099.58 143
DIV-MVS_self_test92.32 26091.60 26194.47 27697.31 24592.74 25299.58 19796.75 34586.99 33187.64 32095.54 31289.55 19296.50 33888.58 29882.44 32894.17 301
FIs94.10 21793.43 22196.11 22194.70 32296.82 12199.58 19798.93 4592.54 20689.34 28997.31 25387.62 21597.10 30694.22 21686.58 29894.40 283
cl____92.31 26191.58 26294.52 27297.33 24492.77 25099.57 20096.78 34486.97 33287.56 32295.51 31589.43 19396.62 33488.60 29782.44 32894.16 306
EPNet_dtu95.71 17095.39 16796.66 20698.92 13093.41 23999.57 20098.90 4796.19 7797.52 15598.56 20792.65 13397.36 28777.89 37698.33 15299.20 196
Wanjuan Su, Wenbing Tao: Efficient Edge-Preserving Multi-View Stereo Network for Depth Estimation. AAAI 2023
v14419290.79 29289.52 30294.59 26893.11 35192.77 25099.56 20296.99 32286.38 33889.82 27794.95 34580.50 28697.10 30683.98 34280.41 34893.90 329
OpenMVScopyleft90.15 1594.77 19693.59 21698.33 12496.07 28597.48 9599.56 20298.57 9090.46 26986.51 33698.95 17178.57 30499.94 8193.86 22099.74 8697.57 254
MVSFormer96.94 12296.60 12497.95 14497.28 24897.70 8599.55 20497.27 29391.17 25099.43 6899.54 11390.92 17096.89 32194.67 20599.62 9599.25 193
test_djsdf92.83 24992.29 25094.47 27691.90 37192.46 26199.55 20497.27 29391.17 25089.96 27096.07 29781.10 27696.89 32194.67 20588.91 27194.05 316
PS-MVSNAJ98.44 4498.20 4999.16 5798.80 14298.92 2999.54 20698.17 19897.34 2999.85 999.85 3391.20 16299.89 9999.41 5199.67 9098.69 228
CDS-MVSNet96.34 15196.07 13997.13 19197.37 24094.96 19599.53 20797.91 22791.55 23795.37 21098.32 22395.05 5697.13 30393.80 22595.75 21599.30 187
Khang Truong Giang, Soohwan Song, Sungho Jo: Curvature-guided dynamic scale networks for Multi-view Stereo. ICLR 2022
xiu_mvs_v2_base98.23 6197.97 6399.02 7698.69 14798.66 5199.52 20898.08 21097.05 4399.86 799.86 2990.65 17599.71 14199.39 5398.63 14598.69 228
PatchMatch-RL96.04 16195.40 16697.95 14499.59 8595.22 18999.52 20899.07 3493.96 14996.49 18598.35 22082.28 26399.82 12390.15 28499.22 12798.81 221
test_method80.79 36479.70 36884.08 37992.83 35867.06 40599.51 21095.42 37854.34 41181.07 37293.53 36844.48 40792.22 39878.90 37277.23 37092.94 358
baseline96.43 14695.98 14497.76 16097.34 24295.17 19299.51 21097.17 30193.92 15296.90 17499.28 13485.37 24198.64 21297.50 15096.86 19199.46 166
miper_ehance_all_eth93.16 24192.60 24194.82 26097.57 22993.56 23499.50 21297.07 31488.75 30388.85 30195.52 31490.97 16996.74 32990.77 27284.45 31494.17 301
v119290.62 29789.25 30794.72 26393.13 34893.07 24499.50 21297.02 31986.33 33989.56 28595.01 34079.22 29697.09 30882.34 35481.16 33894.01 319
v192192090.46 29989.12 30994.50 27492.96 35592.46 26199.49 21496.98 32486.10 34189.61 28495.30 32878.55 30597.03 31482.17 35580.89 34694.01 319
无先验99.49 21498.71 6793.46 165100.00 194.36 21099.99 23
pmmvs492.10 26591.07 27395.18 24792.82 35994.96 19599.48 21696.83 33987.45 32388.66 30596.56 28283.78 25496.83 32689.29 29184.77 31293.75 338
dongtai91.55 27891.13 27192.82 32798.16 18986.35 35599.47 21798.51 11083.24 36885.07 35197.56 24690.33 18294.94 37576.09 38491.73 25597.18 257
balanced_conf0398.27 5597.99 6199.11 6698.64 15398.43 6299.47 21797.79 23794.56 11799.74 3198.35 22094.33 8499.25 17199.12 6199.96 4699.64 124
Vis-MVSNet (Re-imp)96.32 15295.98 14497.35 18697.93 20294.82 20099.47 21798.15 20591.83 22995.09 21399.11 14991.37 16097.47 28593.47 23297.43 17499.74 107
API-MVS97.86 7297.66 7898.47 11599.52 9295.41 18099.47 21798.87 5291.68 23498.84 10299.85 3392.34 14599.99 3698.44 10799.96 46100.00 1
旧先验299.46 22194.21 13799.85 999.95 7396.96 165
IterMVS-LS92.69 25392.11 25294.43 28096.80 26992.74 25299.45 22296.89 33588.98 29489.65 28195.38 32488.77 20496.34 34590.98 26782.04 33194.22 297
Fangjinhua Wang, Silvano Galliani, Christoph Vogel, Marc Pollefeys: IterMVS: Iterative Probability Estimation for Efficient Multi-View Stereo.
3Dnovator91.47 1296.28 15695.34 16999.08 7096.82 26897.47 9699.45 22298.81 6195.52 9289.39 28799.00 15981.97 26599.95 7397.27 15499.83 7799.84 93
FC-MVSNet-test93.81 22393.15 23095.80 23194.30 33096.20 14899.42 22498.89 4992.33 21689.03 29997.27 25587.39 21896.83 32693.20 23586.48 29994.36 285
c3_l92.53 25691.87 25894.52 27297.40 23892.99 24899.40 22596.93 33287.86 31888.69 30495.44 31989.95 18796.44 34190.45 27880.69 34794.14 310
EI-MVSNet-Vis-set98.27 5598.11 5698.75 9299.83 5796.59 13199.40 22598.51 11095.29 9798.51 12199.76 6693.60 10899.71 14198.53 10399.52 10599.95 74
新几何299.40 225
QAPM95.40 17994.17 20199.10 6796.92 26097.71 8399.40 22598.68 7189.31 28788.94 30098.89 17682.48 26299.96 6593.12 24099.83 7799.62 130
MTAPA98.29 5497.96 6699.30 4499.85 5497.93 7799.39 22998.28 18395.76 8497.18 16799.88 2492.74 132100.00 198.67 9399.88 7399.99 23
miper_lstm_enhance91.81 26991.39 26893.06 32397.34 24289.18 32899.38 23096.79 34386.70 33587.47 32495.22 33490.00 18695.86 36288.26 30281.37 33694.15 307
v124090.20 30788.79 31694.44 27893.05 35392.27 26599.38 23096.92 33385.89 34389.36 28894.87 34777.89 30897.03 31480.66 36281.08 34194.01 319
EPP-MVSNet96.69 13796.60 12496.96 19697.74 21493.05 24699.37 23298.56 9388.75 30395.83 20399.01 15796.01 3498.56 21596.92 16797.20 18199.25 193
MSDG94.37 21193.36 22697.40 18198.88 13793.95 22499.37 23297.38 27985.75 34790.80 26299.17 14784.11 25399.88 10586.35 32598.43 15098.36 236
EI-MVSNet-UG-set98.14 6397.99 6198.60 10299.80 6196.27 14299.36 23498.50 11695.21 9998.30 13299.75 7293.29 11599.73 14098.37 11199.30 12299.81 97
test22299.55 9097.41 9999.34 23598.55 9991.86 22899.27 8299.83 4693.84 10299.95 5099.99 23
our_test_390.39 30089.48 30593.12 32092.40 36489.57 32399.33 23696.35 36087.84 31985.30 34894.99 34384.14 25296.09 35680.38 36384.56 31393.71 343
ppachtmachnet_test89.58 31988.35 32293.25 31892.40 36490.44 30899.33 23696.73 34685.49 35085.90 34695.77 30281.09 27796.00 36076.00 38582.49 32793.30 351
mvs_anonymous95.65 17495.03 18197.53 17398.19 18695.74 16499.33 23697.49 26990.87 25990.47 26597.10 25988.23 20997.16 30095.92 18097.66 17199.68 116
AUN-MVS93.28 23792.60 24195.34 24298.29 17790.09 31599.31 23998.56 9391.80 23296.35 19198.00 23389.38 19498.28 24592.46 24569.22 39297.64 250
xiu_mvs_v1_base_debu97.43 9597.06 10198.55 10797.74 21498.14 6699.31 23997.86 23296.43 6699.62 4799.69 9085.56 23799.68 14599.05 6498.31 15397.83 245
xiu_mvs_v1_base97.43 9597.06 10198.55 10797.74 21498.14 6699.31 23997.86 23296.43 6699.62 4799.69 9085.56 23799.68 14599.05 6498.31 15397.83 245
xiu_mvs_v1_base_debi97.43 9597.06 10198.55 10797.74 21498.14 6699.31 23997.86 23296.43 6699.62 4799.69 9085.56 23799.68 14599.05 6498.31 15397.83 245
MVS_Test96.46 14595.74 15798.61 10198.18 18797.23 10499.31 23997.15 30491.07 25598.84 10297.05 26388.17 21098.97 18894.39 20997.50 17399.61 134
hse-mvs294.38 21094.08 20395.31 24498.27 18090.02 31699.29 24498.56 9395.90 8098.77 10798.00 23390.89 17398.26 24997.80 13969.20 39397.64 250
testdata199.28 24596.35 73
Vis-MVSNetpermissive95.72 16895.15 17697.45 17797.62 22794.28 21499.28 24598.24 18994.27 13696.84 17698.94 17379.39 29498.76 20193.25 23498.49 14899.30 187
Jingyang Zhang, Yao Yao, Shiwei Li, Zixin Luo, Tian Fang: Visibility-aware Multiview Stereo Network. BMVC 2020
RRT-MVS96.24 15895.68 16197.94 14797.65 22594.92 19799.27 24797.10 30992.79 19197.43 15997.99 23581.85 26799.37 16898.46 10698.57 14699.53 155
FMVSNet392.69 25391.58 26295.99 22398.29 17797.42 9899.26 24897.62 25189.80 28389.68 27895.32 32781.62 27196.27 34887.01 32185.65 30394.29 292
DeepC-MVS_fast96.59 198.81 2398.54 2999.62 2099.90 4298.85 3599.24 24998.47 11998.14 1099.08 9299.91 1493.09 122100.00 199.04 6799.99 21100.00 1
Andreas Kuhn, Christian Sormann, Mattia Rossi, Oliver Erdler, Friedrich Fraundorfer: DeepC-MVS: Deep Confidence Prediction for Multi-View Stereo Reconstruction. 3DV 2020
dcpmvs_297.42 9998.09 5795.42 23999.58 8987.24 35099.23 25096.95 32794.28 13498.93 9999.73 8194.39 8099.16 18299.89 1799.82 8199.86 92
YYNet185.50 34583.33 35192.00 33590.89 38288.38 34199.22 25196.55 35479.60 38757.26 41192.72 37479.09 30093.78 38777.25 37977.37 36993.84 334
v890.54 29889.17 30894.66 26493.43 34493.40 24099.20 25296.94 33185.76 34587.56 32294.51 35581.96 26697.19 29984.94 33778.25 36093.38 350
MDA-MVSNet_test_wron85.51 34483.32 35292.10 33490.96 38188.58 33799.20 25296.52 35579.70 38657.12 41292.69 37579.11 29893.86 38677.10 38077.46 36893.86 333
ACMMPcopyleft97.74 8597.44 8798.66 9799.92 3196.13 15299.18 25499.45 1894.84 10896.41 18999.71 8691.40 15999.99 3697.99 12998.03 16599.87 90
Qingshan Xu, Weihang Kong, Wenbing Tao, Marc Pollefeys: Multi-Scale Geometric Consistency Guided and Planar Prior Assisted Multi-View Stereo. IEEE Transactions on Pattern Analysis and Machine Intelligence
WR-MVS_H91.30 27990.35 28394.15 28694.17 33292.62 25999.17 25598.94 4188.87 30086.48 33894.46 35984.36 25096.61 33588.19 30378.51 35993.21 354
TAMVS95.85 16595.58 16396.65 20797.07 25293.50 23699.17 25597.82 23691.39 24795.02 21498.01 23292.20 14797.30 29393.75 22895.83 21299.14 201
PS-MVSNAJss93.64 23093.31 22794.61 26692.11 36892.19 26699.12 25797.38 27992.51 20988.45 30796.99 26691.20 16297.29 29694.36 21087.71 29194.36 285
DTE-MVSNet89.40 32188.24 32492.88 32692.66 36189.95 31899.10 25898.22 19287.29 32585.12 35096.22 29076.27 32395.30 37183.56 34675.74 37893.41 347
CP-MVSNet91.23 28390.22 28794.26 28493.96 33592.39 26399.09 25998.57 9088.95 29786.42 33996.57 28179.19 29796.37 34390.29 28278.95 35694.02 317
AdaColmapbinary97.23 10796.80 11598.51 11399.99 195.60 17399.09 25998.84 5993.32 17096.74 17999.72 8486.04 234100.00 198.01 12799.43 11599.94 78
v1090.25 30688.82 31594.57 27093.53 34293.43 23899.08 26196.87 33785.00 35487.34 32894.51 35580.93 27997.02 31682.85 35079.23 35593.26 352
XVG-OURS-SEG-HR94.79 19494.70 19095.08 24998.05 19589.19 32699.08 26197.54 26293.66 16194.87 21599.58 10978.78 30199.79 12697.31 15393.40 24996.25 264
XVG-OURS94.82 19194.74 18995.06 25098.00 19789.19 32699.08 26197.55 26094.10 14094.71 21699.62 10580.51 28599.74 13796.04 17893.06 25496.25 264
IS-MVSNet96.29 15595.90 15397.45 17798.13 19294.80 20199.08 26197.61 25492.02 22595.54 20898.96 16690.64 17698.08 25893.73 22997.41 17799.47 165
v7n89.65 31888.29 32393.72 30392.22 36690.56 30599.07 26597.10 30985.42 35286.73 33294.72 34880.06 28997.13 30381.14 36078.12 36293.49 346
EI-MVSNet93.73 22793.40 22594.74 26196.80 26992.69 25599.06 26697.67 24588.96 29691.39 25599.02 15588.75 20597.30 29391.07 26387.85 28994.22 297
CVMVSNet94.68 20094.94 18493.89 30096.80 26986.92 35399.06 26698.98 3894.45 12094.23 22599.02 15585.60 23695.31 37090.91 26995.39 22299.43 171
baseline195.78 16794.86 18598.54 11098.47 16698.07 6999.06 26697.99 21692.68 19794.13 22698.62 20193.28 11698.69 20993.79 22685.76 30298.84 219
PEN-MVS90.19 30889.06 31193.57 30993.06 35290.90 29699.06 26698.47 11988.11 31485.91 34596.30 28876.67 31695.94 36187.07 31876.91 37393.89 330
test_fmvs379.99 36880.17 36779.45 38584.02 40462.83 40699.05 27093.49 40388.29 31380.06 37786.65 40228.09 41488.00 40688.63 29673.27 38387.54 402
Anonymous2023120686.32 33985.42 34289.02 36489.11 39380.53 39299.05 27095.28 38185.43 35182.82 36293.92 36474.40 33993.44 39066.99 40081.83 33393.08 356
MAR-MVS97.43 9597.19 9898.15 13599.47 9694.79 20299.05 27098.76 6492.65 19998.66 11499.82 4988.52 20799.98 4798.12 12199.63 9499.67 118
Zhenyu Xu, Yiguang Liu, Xuelei Shi, Ying Wang, Yunan Zheng: MARMVS: Matching Ambiguity Reduced Multiple View Stereo for Efficient Large Scale Scene Reconstruction. CVPR 2020
MonoMVSNet94.82 19194.43 19395.98 22494.54 32590.73 29999.03 27397.06 31593.16 17693.15 23695.47 31888.29 20897.57 28197.85 13791.33 25999.62 130
VNet97.21 10896.57 12699.13 6598.97 12397.82 8099.03 27399.21 2994.31 13199.18 8798.88 17786.26 23399.89 9998.93 7594.32 23699.69 115
LCM-MVSNet-Re92.31 26192.60 24191.43 34297.53 23179.27 39499.02 27591.83 40992.07 22180.31 37494.38 36083.50 25695.48 36697.22 15697.58 17299.54 151
jajsoiax91.92 26791.18 27094.15 28691.35 37890.95 29599.00 27697.42 27592.61 20187.38 32697.08 26072.46 34697.36 28794.53 20888.77 27594.13 311
VPNet91.81 26990.46 28095.85 22994.74 32195.54 17598.98 27798.59 8792.14 21990.77 26397.44 24968.73 36297.54 28394.89 19877.89 36394.46 277
PS-CasMVS90.63 29689.51 30393.99 29593.83 33791.70 28298.98 27798.52 10788.48 30986.15 34396.53 28375.46 32996.31 34788.83 29578.86 35893.95 325
FMVSNet291.02 28689.56 30095.41 24097.53 23195.74 16498.98 27797.41 27787.05 32888.43 31095.00 34271.34 35196.24 35085.12 33585.21 30894.25 295
K. test v388.05 33287.24 33390.47 35291.82 37382.23 38098.96 28097.42 27589.05 29076.93 38995.60 30968.49 36395.42 36785.87 33281.01 34493.75 338
tfpnnormal89.29 32387.61 33094.34 28394.35 32994.13 21998.95 28198.94 4183.94 36284.47 35495.51 31574.84 33697.39 28677.05 38180.41 34891.48 376
mmtdpeth88.52 32787.75 32990.85 34795.71 30383.47 37398.94 28294.85 38788.78 30297.19 16689.58 39063.29 38398.97 18898.54 10162.86 40690.10 389
AllTest92.48 25791.64 26095.00 25299.01 11888.43 33898.94 28296.82 34186.50 33688.71 30298.47 21574.73 33799.88 10585.39 33396.18 20196.71 260
h-mvs3394.92 19094.36 19596.59 20898.85 13991.29 28998.93 28498.94 4195.90 8098.77 10798.42 21890.89 17399.77 13197.80 13970.76 38798.72 227
anonymousdsp91.79 27490.92 27494.41 28190.76 38392.93 24998.93 28497.17 30189.08 28987.46 32595.30 32878.43 30796.92 31992.38 24688.73 27693.39 349
DP-MVS94.54 20393.42 22297.91 15099.46 9894.04 22098.93 28497.48 27081.15 38090.04 26999.55 11187.02 22399.95 7388.97 29498.11 16199.73 108
ttmdpeth88.23 33187.06 33491.75 34089.91 39087.35 34998.92 28795.73 37187.92 31784.02 35696.31 28768.23 36696.84 32486.33 32676.12 37691.06 378
IterMVS-SCA-FT90.85 29190.16 29192.93 32596.72 27489.96 31798.89 28896.99 32288.95 29786.63 33495.67 30676.48 32095.00 37387.04 31984.04 32093.84 334
IterMVS90.91 28890.17 29093.12 32096.78 27290.42 30998.89 28897.05 31889.03 29186.49 33795.42 32076.59 31895.02 37287.22 31684.09 31793.93 327
Fangjinhua Wang, Silvano Galliani, Christoph Vogel, Marc Pollefeys: IterMVS: Iterative Probability Estimation for Efficient Multi-View Stereo.
Anonymous20240521193.10 24391.99 25596.40 21399.10 11389.65 32298.88 29097.93 22383.71 36594.00 22798.75 18968.79 36099.88 10595.08 19191.71 25699.68 116
VPA-MVSNet92.70 25291.55 26496.16 22095.09 31596.20 14898.88 29099.00 3691.02 25791.82 25295.29 33176.05 32697.96 26695.62 18681.19 33794.30 291
test20.0384.72 35283.99 34586.91 37488.19 39680.62 39198.88 29095.94 36788.36 31178.87 37994.62 35368.75 36189.11 40566.52 40275.82 37791.00 379
XXY-MVS91.82 26890.46 28095.88 22793.91 33695.40 18198.87 29397.69 24488.63 30787.87 31797.08 26074.38 34097.89 27091.66 25684.07 31894.35 288
test111195.57 17594.98 18397.37 18398.56 15693.37 24198.86 29498.45 12294.95 10296.63 18198.95 17175.21 33499.11 18395.02 19298.14 16099.64 124
SCA94.69 19893.81 21297.33 18797.10 25194.44 20698.86 29498.32 17693.30 17196.17 19595.59 31076.48 32097.95 26791.06 26497.43 17499.59 137
ECVR-MVScopyleft95.66 17395.05 18097.51 17598.66 15093.71 22998.85 29698.45 12294.93 10396.86 17598.96 16675.22 33399.20 17795.34 18798.15 15899.64 124
eth_miper_zixun_eth92.41 25991.93 25693.84 30197.28 24890.68 30198.83 29796.97 32688.57 30889.19 29695.73 30589.24 19996.69 33289.97 28781.55 33494.15 307
CL-MVSNet_self_test84.50 35383.15 35488.53 36986.00 39981.79 38398.82 29897.35 28185.12 35383.62 36090.91 38676.66 31791.40 40069.53 39660.36 40992.40 367
test250697.53 9297.19 9898.58 10598.66 15096.90 11998.81 29999.77 594.93 10397.95 14398.96 16692.51 13999.20 17794.93 19498.15 15899.64 124
ACMH+89.98 1690.35 30289.54 30192.78 32995.99 28886.12 35798.81 29997.18 30089.38 28683.14 36197.76 24468.42 36498.43 22489.11 29386.05 30193.78 337
Anonymous2024052185.15 34783.81 34989.16 36388.32 39482.69 37598.80 30195.74 37079.72 38581.53 36990.99 38465.38 37794.16 38272.69 39081.11 34090.63 384
N_pmnet80.06 36780.78 36577.89 38691.94 37045.28 42498.80 30156.82 42678.10 39080.08 37693.33 36977.03 31195.76 36368.14 39982.81 32492.64 362
VDD-MVS93.77 22592.94 23396.27 21898.55 15990.22 31298.77 30397.79 23790.85 26096.82 17799.42 12161.18 39299.77 13198.95 7394.13 23998.82 220
LFMVS94.75 19793.56 21898.30 12699.03 11795.70 16798.74 30497.98 21887.81 32098.47 12399.39 12867.43 36999.53 15398.01 12795.20 22799.67 118
LS3D95.84 16695.11 17798.02 14299.85 5495.10 19398.74 30498.50 11687.22 32793.66 23099.86 2987.45 21799.95 7390.94 26899.81 8399.02 211
Anonymous2024052992.10 26590.65 27796.47 20998.82 14090.61 30398.72 30698.67 7475.54 39693.90 22998.58 20566.23 37399.90 9494.70 20490.67 26098.90 217
dmvs_re93.20 23993.15 23093.34 31396.54 27783.81 37098.71 30798.51 11091.39 24792.37 24798.56 20778.66 30397.83 27293.89 21989.74 26198.38 235
TR-MVS94.54 20393.56 21897.49 17697.96 20094.34 21398.71 30797.51 26790.30 27594.51 21998.69 19375.56 32898.77 20092.82 24395.99 20599.35 180
USDC90.00 31288.96 31393.10 32294.81 32088.16 34298.71 30795.54 37793.66 16183.75 35997.20 25665.58 37598.31 24183.96 34387.49 29592.85 360
VDDNet93.12 24291.91 25796.76 20296.67 27692.65 25898.69 31098.21 19382.81 37397.75 15299.28 13461.57 39099.48 16498.09 12494.09 24098.15 239
EU-MVSNet90.14 31090.34 28489.54 36092.55 36281.06 38898.69 31098.04 21491.41 24686.59 33596.84 27380.83 28093.31 39186.20 32781.91 33294.26 293
mvs_tets91.81 26991.08 27294.00 29491.63 37590.58 30498.67 31297.43 27392.43 21187.37 32797.05 26371.76 34897.32 29194.75 20288.68 27794.11 312
MDA-MVSNet-bldmvs84.09 35581.52 36291.81 33991.32 37988.00 34598.67 31295.92 36880.22 38455.60 41393.32 37068.29 36593.60 38973.76 38876.61 37593.82 336
UGNet95.33 18294.57 19197.62 16998.55 15994.85 19898.67 31299.32 2695.75 8596.80 17896.27 28972.18 34799.96 6594.58 20799.05 13498.04 242
Wanjuan Su, Qingshan Xu, Wenbing Tao: Uncertainty-guided Multi-view Stereo Network for Depth Estimation. IEEE Transactions on Circuits and Systems for Video Technology, 2022
pm-mvs189.36 32287.81 32894.01 29393.40 34691.93 27298.62 31596.48 35786.25 34083.86 35896.14 29373.68 34397.04 31286.16 32875.73 37993.04 357
MVStest185.03 34882.76 35791.83 33892.95 35689.16 32998.57 31694.82 38871.68 40468.54 40495.11 33783.17 26095.66 36474.69 38765.32 40190.65 383
test_040285.58 34283.94 34790.50 35193.81 33885.04 36398.55 31795.20 38476.01 39379.72 37895.13 33564.15 38196.26 34966.04 40486.88 29790.21 387
ACMH89.72 1790.64 29589.63 29893.66 30895.64 30888.64 33698.55 31797.45 27189.03 29181.62 36897.61 24569.75 35898.41 22689.37 29087.62 29393.92 328
Qingshan Xu and Wenbing Tao: Multi-Scale Geometric Consistency Guided Multi-View Stereo. CVPR 2019
Anonymous2023121189.86 31488.44 32194.13 28898.93 12790.68 30198.54 31998.26 18676.28 39286.73 33295.54 31270.60 35697.56 28290.82 27180.27 35194.15 307
TransMVSNet (Re)87.25 33685.28 34393.16 31993.56 34191.03 29198.54 31994.05 39883.69 36681.09 37196.16 29275.32 33096.40 34276.69 38268.41 39492.06 370
XVG-ACMP-BASELINE91.22 28490.75 27592.63 33093.73 33985.61 35998.52 32197.44 27292.77 19289.90 27396.85 27166.64 37298.39 23092.29 24788.61 27893.89 330
CHOSEN 280x42099.01 1499.03 1098.95 8399.38 10098.87 3398.46 32299.42 2197.03 4499.02 9599.09 15099.35 298.21 25199.73 3599.78 8499.77 104
OpenMVS_ROBcopyleft79.82 2083.77 35881.68 36190.03 35788.30 39582.82 37498.46 32295.22 38373.92 40176.00 39291.29 38355.00 39896.94 31868.40 39888.51 28290.34 385
kuosan93.17 24092.60 24194.86 25998.40 16889.54 32498.44 32498.53 10584.46 36088.49 30697.92 23890.57 17797.05 30983.10 34893.49 24797.99 243
GBi-Net90.88 28989.82 29594.08 28997.53 23191.97 26998.43 32596.95 32787.05 32889.68 27894.72 34871.34 35196.11 35387.01 32185.65 30394.17 301
test190.88 28989.82 29594.08 28997.53 23191.97 26998.43 32596.95 32787.05 32889.68 27894.72 34871.34 35196.11 35387.01 32185.65 30394.17 301
FMVSNet188.50 32886.64 33594.08 28995.62 31091.97 26998.43 32596.95 32783.00 37186.08 34494.72 34859.09 39496.11 35381.82 35884.07 31894.17 301
COLMAP_ROBcopyleft90.47 1492.18 26491.49 26694.25 28599.00 12088.04 34498.42 32896.70 34882.30 37688.43 31099.01 15776.97 31399.85 11186.11 32996.50 19594.86 271
Johannes L. Schönberger, Enliang Zheng, Marc Pollefeys, Jan-Michael Frahm: Pixelwise View Selection for Unstructured Multi-View Stereo. ECCV 2016
tt080591.28 28190.18 28994.60 26796.26 28187.55 34698.39 32998.72 6689.00 29389.22 29398.47 21562.98 38598.96 19090.57 27588.00 28897.28 256
test12337.68 38839.14 39133.31 40319.94 42724.83 42998.36 3309.75 42815.53 42151.31 41587.14 40019.62 42217.74 42347.10 4153.47 42257.36 416
131496.84 12795.96 14899.48 3496.74 27398.52 5898.31 33198.86 5395.82 8289.91 27298.98 16287.49 21699.96 6597.80 13999.73 8799.96 67
MVS96.60 14095.56 16499.72 1396.85 26699.22 2098.31 33198.94 4191.57 23690.90 26199.61 10686.66 22899.96 6597.36 15299.88 7399.99 23
mamv495.24 18396.90 10990.25 35498.65 15272.11 40198.28 33397.64 24789.99 28095.93 19998.25 22594.74 6699.11 18399.01 7299.64 9299.53 155
NR-MVSNet91.56 27790.22 28795.60 23394.05 33395.76 16398.25 33498.70 6891.16 25280.78 37396.64 27883.23 25996.57 33691.41 25877.73 36594.46 277
sd_testset93.55 23292.83 23595.74 23298.92 13090.89 29798.24 33598.85 5692.41 21292.55 24597.85 24171.07 35598.68 21093.93 21891.62 25797.64 250
MS-PatchMatch90.65 29490.30 28591.71 34194.22 33185.50 36198.24 33597.70 24288.67 30586.42 33996.37 28667.82 36798.03 26283.62 34599.62 9591.60 374
pmmvs380.27 36677.77 37187.76 37380.32 41182.43 37898.23 33791.97 40872.74 40378.75 38087.97 39857.30 39790.99 40270.31 39462.37 40789.87 391
SixPastTwentyTwo88.73 32688.01 32790.88 34591.85 37282.24 37998.22 33895.18 38588.97 29582.26 36496.89 26871.75 34996.67 33384.00 34182.98 32393.72 342
EG-PatchMatch MVS85.35 34683.81 34989.99 35890.39 38581.89 38298.21 33996.09 36581.78 37874.73 39593.72 36751.56 40497.12 30579.16 37188.61 27890.96 380
OurMVSNet-221017-089.81 31589.48 30590.83 34891.64 37481.21 38698.17 34095.38 38091.48 24085.65 34797.31 25372.66 34597.29 29688.15 30484.83 31193.97 324
LF4IMVS89.25 32488.85 31490.45 35392.81 36081.19 38798.12 34194.79 38991.44 24286.29 34197.11 25865.30 37898.11 25688.53 30085.25 30792.07 369
RPSCF91.80 27292.79 23788.83 36598.15 19069.87 40398.11 34296.60 35283.93 36394.33 22299.27 13779.60 29399.46 16691.99 25193.16 25297.18 257
pmmvs-eth3d84.03 35681.97 36090.20 35584.15 40387.09 35198.10 34394.73 39183.05 37074.10 39787.77 39965.56 37694.01 38381.08 36169.24 39189.49 396
DSMNet-mixed88.28 33088.24 32488.42 37089.64 39175.38 39898.06 34489.86 41385.59 34988.20 31492.14 38176.15 32591.95 39978.46 37496.05 20497.92 244
MVP-Stereo90.93 28790.45 28292.37 33291.25 38088.76 33198.05 34596.17 36387.27 32684.04 35595.30 32878.46 30697.27 29883.78 34499.70 8991.09 377
Qingsong Yan: MVP-Stereo: A Parallel Multi-View Patchmatch Stereo Method with Dilation Matching for Photogrammetric Application.
UA-Net96.54 14295.96 14898.27 12898.23 18295.71 16698.00 34698.45 12293.72 16098.41 12699.27 13788.71 20699.66 14991.19 26197.69 16999.44 170
new-patchmatchnet81.19 36279.34 36986.76 37582.86 40680.36 39397.92 34795.27 38282.09 37772.02 39886.87 40162.81 38690.74 40371.10 39363.08 40589.19 399
PCF-MVS94.20 595.18 18494.10 20298.43 11998.55 15995.99 15697.91 34897.31 28790.35 27289.48 28699.22 14385.19 24299.89 9990.40 28198.47 14999.41 173
Andreas Kuhn, Shan Lin, Oliver Erdler: Plane Completion and Filtering for Multi-View Stereo Reconstruction. GCPR 2019
WB-MVS76.28 37177.28 37373.29 39181.18 40854.68 41697.87 34994.19 39581.30 37969.43 40290.70 38777.02 31282.06 41435.71 41968.11 39683.13 405
pmmvs685.69 34183.84 34891.26 34490.00 38984.41 36897.82 35096.15 36475.86 39481.29 37095.39 32361.21 39196.87 32383.52 34773.29 38292.50 365
UniMVSNet_ETH3D90.06 31188.58 31994.49 27594.67 32388.09 34397.81 35197.57 25983.91 36488.44 30897.41 25057.44 39697.62 28091.41 25888.59 28097.77 248
TinyColmap87.87 33586.51 33691.94 33695.05 31785.57 36097.65 35294.08 39684.40 36181.82 36796.85 27162.14 38898.33 23980.25 36586.37 30091.91 373
HY-MVS92.50 797.79 8297.17 10099.63 1798.98 12299.32 997.49 35399.52 1495.69 8698.32 13197.41 25093.32 11399.77 13198.08 12595.75 21599.81 97
SSC-MVS75.42 37276.40 37572.49 39580.68 41053.62 41797.42 35494.06 39780.42 38368.75 40390.14 38976.54 31981.66 41533.25 42066.34 40082.19 406
Effi-MVS+96.30 15495.69 15998.16 13297.85 20796.26 14397.41 35597.21 29790.37 27198.65 11598.58 20586.61 22998.70 20897.11 15897.37 17899.52 157
TDRefinement84.76 35082.56 35891.38 34374.58 41684.80 36797.36 35694.56 39384.73 35880.21 37596.12 29663.56 38298.39 23087.92 30763.97 40490.95 381
FMVSNet588.32 32987.47 33190.88 34596.90 26488.39 34097.28 35795.68 37382.60 37584.67 35392.40 37979.83 29191.16 40176.39 38381.51 33593.09 355
KD-MVS_self_test83.59 35982.06 35988.20 37186.93 39780.70 39097.21 35896.38 35882.87 37282.49 36388.97 39367.63 36892.32 39773.75 38962.30 40891.58 375
LTVRE_ROB88.28 1890.29 30589.05 31294.02 29295.08 31690.15 31497.19 35997.43 27384.91 35783.99 35797.06 26274.00 34298.28 24584.08 34087.71 29193.62 344
Andreas Kuhn, Heiko Hirschmüller, Daniel Scharstein, Helmut Mayer: A TV Prior for High-Quality Scalable Multi-View Stereo Reconstruction. International Journal of Computer Vision 2016
KD-MVS_2432*160088.00 33386.10 33793.70 30696.91 26194.04 22097.17 36097.12 30784.93 35581.96 36592.41 37792.48 14094.51 38079.23 36852.68 41292.56 363
miper_refine_blended88.00 33386.10 33793.70 30696.91 26194.04 22097.17 36097.12 30784.93 35581.96 36592.41 37792.48 14094.51 38079.23 36852.68 41292.56 363
mvsany_test382.12 36181.14 36385.06 37881.87 40770.41 40297.09 36292.14 40791.27 24977.84 38588.73 39439.31 40995.49 36590.75 27371.24 38689.29 398
CostFormer96.10 15995.88 15496.78 20197.03 25492.55 26097.08 36397.83 23590.04 27998.72 11194.89 34695.01 5898.29 24396.54 17295.77 21399.50 162
tpm93.70 22993.41 22494.58 26995.36 31387.41 34897.01 36496.90 33490.85 26096.72 18094.14 36390.40 18196.84 32490.75 27388.54 28199.51 160
CMPMVSbinary61.59 2184.75 35185.14 34483.57 38090.32 38662.54 40896.98 36597.59 25874.33 40069.95 40196.66 27664.17 38098.32 24087.88 30888.41 28389.84 392
M. Jancosek, T. Pajdla: Multi-View Reconstruction Preserving Weakly-Supported Surfaces. CVPR 2011
test_f78.40 37077.59 37280.81 38480.82 40962.48 40996.96 36693.08 40583.44 36774.57 39684.57 40627.95 41592.63 39584.15 33972.79 38487.32 403
tpm295.47 17795.18 17596.35 21696.91 26191.70 28296.96 36697.93 22388.04 31698.44 12495.40 32193.32 11397.97 26494.00 21795.61 21799.38 175
new_pmnet84.49 35482.92 35589.21 36290.03 38882.60 37696.89 36895.62 37580.59 38275.77 39489.17 39265.04 37994.79 37872.12 39281.02 34390.23 386
dmvs_testset83.79 35786.07 33976.94 38792.14 36748.60 42296.75 36990.27 41289.48 28578.65 38198.55 20979.25 29586.65 41066.85 40182.69 32595.57 270
UnsupCasMVSNet_eth85.52 34383.99 34590.10 35689.36 39283.51 37296.65 37097.99 21689.14 28875.89 39393.83 36563.25 38493.92 38481.92 35767.90 39792.88 359
MIMVSNet182.58 36080.51 36688.78 36686.68 39884.20 36996.65 37095.41 37978.75 38878.59 38292.44 37651.88 40389.76 40465.26 40578.95 35692.38 368
ab-mvs94.69 19893.42 22298.51 11398.07 19496.26 14396.49 37298.68 7190.31 27494.54 21797.00 26576.30 32299.71 14195.98 17993.38 25099.56 146
test_vis3_rt68.82 37466.69 37975.21 39076.24 41560.41 41196.44 37368.71 42575.13 39850.54 41669.52 41416.42 42496.32 34680.27 36466.92 39968.89 412
EPMVS96.53 14396.01 14198.09 13898.43 16796.12 15496.36 37499.43 2093.53 16397.64 15395.04 33994.41 7698.38 23491.13 26298.11 16199.75 106
tpmrst96.27 15795.98 14497.13 19197.96 20093.15 24396.34 37598.17 19892.07 22198.71 11295.12 33693.91 9898.73 20494.91 19796.62 19299.50 162
FA-MVS(test-final)95.86 16495.09 17898.15 13597.74 21495.62 17296.31 37698.17 19891.42 24596.26 19296.13 29490.56 17899.47 16592.18 24997.07 18399.35 180
dp95.05 18794.43 19396.91 19797.99 19892.73 25496.29 37797.98 21889.70 28495.93 19994.67 35293.83 10398.45 22386.91 32496.53 19499.54 151
EGC-MVSNET69.38 37363.76 38386.26 37690.32 38681.66 38596.24 37893.85 4000.99 4233.22 42492.33 38052.44 40192.92 39459.53 41084.90 31084.21 404
tpm cat193.51 23392.52 24796.47 20997.77 21291.47 28896.13 37998.06 21180.98 38192.91 24093.78 36689.66 18998.87 19387.03 32096.39 19899.09 205
MDTV_nov1_ep13_2view96.26 14396.11 38091.89 22798.06 14094.40 7794.30 21399.67 118
PatchmatchNetpermissive95.94 16395.45 16597.39 18297.83 20894.41 20996.05 38198.40 15692.86 18597.09 16895.28 33294.21 9098.07 26089.26 29298.11 16199.70 113
Fangjinhua Wang, Silvano Galliani, Christoph Vogel, Pablo Speciale, Marc Pollefeys: PatchmatchNet: Learned Multi-View Patchmatch Stereo.
APD_test181.15 36380.92 36481.86 38392.45 36359.76 41296.04 38293.61 40273.29 40277.06 38796.64 27844.28 40896.16 35272.35 39182.52 32689.67 394
MDTV_nov1_ep1395.69 15997.90 20394.15 21895.98 38398.44 12793.12 17897.98 14295.74 30395.10 5398.58 21490.02 28596.92 189
FPMVS68.72 37568.72 37668.71 39765.95 42044.27 42695.97 38494.74 39051.13 41253.26 41490.50 38825.11 41783.00 41360.80 40880.97 34578.87 410
PM-MVS80.47 36578.88 37085.26 37783.79 40572.22 40095.89 38591.08 41085.71 34876.56 39188.30 39536.64 41093.90 38582.39 35369.57 39089.66 395
test_post195.78 38659.23 42193.20 12097.74 27691.06 264
tpmvs94.28 21593.57 21796.40 21398.55 15991.50 28795.70 38798.55 9987.47 32292.15 24894.26 36291.42 15898.95 19188.15 30495.85 21198.76 223
FE-MVS95.70 17295.01 18297.79 15598.21 18494.57 20495.03 38898.69 6988.90 29997.50 15796.19 29192.60 13699.49 16389.99 28697.94 16799.31 185
ADS-MVSNet293.80 22493.88 21093.55 31097.87 20585.94 35894.24 38996.84 33890.07 27796.43 18794.48 35790.29 18495.37 36887.44 31197.23 17999.36 178
ADS-MVSNet94.79 19494.02 20597.11 19397.87 20593.79 22694.24 38998.16 20290.07 27796.43 18794.48 35790.29 18498.19 25287.44 31197.23 17999.36 178
EMVS51.44 38651.22 38852.11 40270.71 41844.97 42594.04 39175.66 42435.34 41942.40 41961.56 42028.93 41365.87 42127.64 42224.73 41745.49 418
PMMVS267.15 37964.15 38276.14 38970.56 41962.07 41093.89 39287.52 41758.09 40860.02 40778.32 40922.38 41884.54 41259.56 40947.03 41481.80 407
GG-mvs-BLEND98.54 11098.21 18498.01 7293.87 39398.52 10797.92 14497.92 23899.02 397.94 26998.17 11899.58 10299.67 118
UnsupCasMVSNet_bld79.97 36977.03 37488.78 36685.62 40081.98 38193.66 39497.35 28175.51 39770.79 40083.05 40748.70 40594.91 37678.31 37560.29 41089.46 397
E-PMN52.30 38452.18 38652.67 40171.51 41745.40 42393.62 39576.60 42336.01 41743.50 41864.13 41727.11 41667.31 42031.06 42126.06 41645.30 419
JIA-IIPM91.76 27590.70 27694.94 25496.11 28487.51 34793.16 39698.13 20775.79 39597.58 15477.68 41092.84 12997.97 26488.47 30196.54 19399.33 183
gg-mvs-nofinetune93.51 23391.86 25998.47 11597.72 21997.96 7692.62 39798.51 11074.70 39997.33 16269.59 41398.91 497.79 27397.77 14499.56 10399.67 118
MIMVSNet90.30 30488.67 31895.17 24896.45 27891.64 28492.39 39897.15 30485.99 34290.50 26493.19 37366.95 37094.86 37782.01 35693.43 24899.01 212
MVS-HIRNet86.22 34083.19 35395.31 24496.71 27590.29 31092.12 39997.33 28562.85 40786.82 33170.37 41269.37 35997.49 28475.12 38697.99 16698.15 239
CR-MVSNet93.45 23692.62 24095.94 22696.29 27992.66 25692.01 40096.23 36192.62 20096.94 17293.31 37191.04 16796.03 35879.23 36895.96 20699.13 202
RPMNet89.76 31687.28 33297.19 19096.29 27992.66 25692.01 40098.31 17870.19 40696.94 17285.87 40587.25 22099.78 12862.69 40795.96 20699.13 202
Patchmatch-test92.65 25591.50 26596.10 22296.85 26690.49 30691.50 40297.19 29882.76 37490.23 26695.59 31095.02 5798.00 26377.41 37896.98 18899.82 95
Patchmtry89.70 31788.49 32093.33 31496.24 28289.94 32091.37 40396.23 36178.22 38987.69 31993.31 37191.04 16796.03 35880.18 36682.10 33094.02 317
PatchT90.38 30188.75 31795.25 24695.99 28890.16 31391.22 40497.54 26276.80 39197.26 16486.01 40491.88 15496.07 35766.16 40395.91 21099.51 160
mvs5depth84.87 34982.90 35690.77 34985.59 40184.84 36691.10 40593.29 40483.14 36985.07 35194.33 36162.17 38797.32 29178.83 37372.59 38590.14 388
testf168.38 37666.92 37772.78 39378.80 41250.36 41990.95 40687.35 41855.47 40958.95 40888.14 39620.64 41987.60 40757.28 41164.69 40280.39 408
APD_test268.38 37666.92 37772.78 39378.80 41250.36 41990.95 40687.35 41855.47 40958.95 40888.14 39620.64 41987.60 40757.28 41164.69 40280.39 408
Patchmatch-RL test86.90 33785.98 34189.67 35984.45 40275.59 39789.71 40892.43 40686.89 33377.83 38690.94 38594.22 8893.63 38887.75 30969.61 38999.79 100
LCM-MVSNet67.77 37864.73 38176.87 38862.95 42256.25 41589.37 40993.74 40144.53 41461.99 40680.74 40820.42 42186.53 41169.37 39759.50 41187.84 400
ambc83.23 38177.17 41462.61 40787.38 41094.55 39476.72 39086.65 40230.16 41196.36 34484.85 33869.86 38890.73 382
ANet_high56.10 38252.24 38567.66 39849.27 42456.82 41483.94 41182.02 42170.47 40533.28 42164.54 41617.23 42369.16 41945.59 41623.85 41877.02 411
tmp_tt65.23 38162.94 38472.13 39644.90 42550.03 42181.05 41289.42 41638.45 41548.51 41799.90 1854.09 40078.70 41791.84 25518.26 41987.64 401
MVEpermissive53.74 2251.54 38547.86 38962.60 39959.56 42350.93 41879.41 41377.69 42235.69 41836.27 42061.76 4195.79 42869.63 41837.97 41836.61 41567.24 413
Simon Fuhrmann, Fabian Langguth, Michael Goesele: MVE - A Multi-View Reconstruction Environment. EUROGRAPHICS Workshops on Graphics and Cultural Heritage (2014)
PMVScopyleft49.05 2353.75 38351.34 38760.97 40040.80 42634.68 42774.82 41489.62 41537.55 41628.67 42272.12 4117.09 42681.63 41643.17 41768.21 39566.59 414
Y. Furukawa, J. Ponce: Accurate, dense, and robust multiview stereopsis. PAMI (2010)
Gipumacopyleft66.95 38065.00 38072.79 39291.52 37667.96 40466.16 41595.15 38647.89 41358.54 41067.99 41529.74 41287.54 40950.20 41477.83 36462.87 415
S. Galliani, K. Lasinger, K. Schindler: Massively Parallel Multiview Stereopsis by Surface Normal Diffusion. ICCV 2015
wuyk23d20.37 39020.84 39318.99 40565.34 42127.73 42850.43 4167.67 4299.50 4228.01 4236.34 4236.13 42726.24 42223.40 42310.69 4212.99 420
mmdepth0.00 3930.00 3960.00 4060.00 4290.00 4310.00 4170.00 4300.00 4240.00 4250.00 4250.00 4290.00 4250.00 4240.00 4230.00 421
monomultidepth0.00 3930.00 3960.00 4060.00 4290.00 4310.00 4170.00 4300.00 4240.00 4250.00 4250.00 4290.00 4250.00 4240.00 4230.00 421
test_blank0.00 3930.00 3960.00 4060.00 4290.00 4310.00 4170.00 4300.00 4240.00 4250.02 4240.00 4290.00 4250.00 4240.00 4230.00 421
uanet_test0.00 3930.00 3960.00 4060.00 4290.00 4310.00 4170.00 4300.00 4240.00 4250.00 4250.00 4290.00 4250.00 4240.00 4230.00 421
DCPMVS0.00 3930.00 3960.00 4060.00 4290.00 4310.00 4170.00 4300.00 4240.00 4250.00 4250.00 4290.00 4250.00 4240.00 4230.00 421
cdsmvs_eth3d_5k23.43 38931.24 3920.00 4060.00 4290.00 4310.00 41798.09 2080.00 4240.00 42599.67 9783.37 2570.00 4250.00 4240.00 4230.00 421
pcd_1.5k_mvsjas7.60 39210.13 3950.00 4060.00 4290.00 4310.00 4170.00 4300.00 4240.00 4250.00 42591.20 1620.00 4250.00 4240.00 4230.00 421
sosnet-low-res0.00 3930.00 3960.00 4060.00 4290.00 4310.00 4170.00 4300.00 4240.00 4250.00 4250.00 4290.00 4250.00 4240.00 4230.00 421
sosnet0.00 3930.00 3960.00 4060.00 4290.00 4310.00 4170.00 4300.00 4240.00 4250.00 4250.00 4290.00 4250.00 4240.00 4230.00 421
uncertanet0.00 3930.00 3960.00 4060.00 4290.00 4310.00 4170.00 4300.00 4240.00 4250.00 4250.00 4290.00 4250.00 4240.00 4230.00 421
Regformer0.00 3930.00 3960.00 4060.00 4290.00 4310.00 4170.00 4300.00 4240.00 4250.00 4250.00 4290.00 4250.00 4240.00 4230.00 421
ab-mvs-re8.28 39111.04 3940.00 4060.00 4290.00 4310.00 4170.00 4300.00 4240.00 42599.40 1260.00 4290.00 4250.00 4240.00 4230.00 421
uanet0.00 3930.00 3960.00 4060.00 4290.00 4310.00 4170.00 4300.00 4240.00 4250.00 4250.00 4290.00 4250.00 4240.00 4230.00 421
WAC-MVS90.97 29286.10 330
MSC_two_6792asdad99.93 299.91 3999.80 298.41 152100.00 199.96 9100.00 1100.00 1
PC_three_145296.96 4799.80 1799.79 5897.49 9100.00 199.99 599.98 32100.00 1
No_MVS99.93 299.91 3999.80 298.41 152100.00 199.96 9100.00 1100.00 1
test_one_060199.94 1399.30 1298.41 15296.63 6099.75 2999.93 1197.49 9
eth-test20.00 429
eth-test0.00 429
ZD-MVS99.92 3198.57 5698.52 10792.34 21599.31 7899.83 4695.06 5599.80 12499.70 3799.97 42
IU-MVS99.93 2499.31 1098.41 15297.71 1999.84 12100.00 1100.00 1100.00 1
test_241102_TWO98.43 13597.27 3499.80 1799.94 497.18 20100.00 1100.00 1100.00 1100.00 1
test_241102_ONE99.93 2499.30 1298.43 13597.26 3699.80 1799.88 2496.71 25100.00 1
test_0728_THIRD96.48 6399.83 1399.91 1497.87 5100.00 199.92 13100.00 1100.00 1
GSMVS99.59 137
test_part299.89 4599.25 1899.49 63
sam_mvs194.72 6799.59 137
sam_mvs94.25 87
MTGPAbinary98.28 183
test_post63.35 41894.43 7598.13 255
patchmatchnet-post91.70 38295.12 5297.95 267
gm-plane-assit96.97 25893.76 22891.47 24198.96 16698.79 19894.92 195
test9_res99.71 3699.99 21100.00 1
agg_prior299.48 46100.00 1100.00 1
agg_prior99.93 2498.77 4298.43 13599.63 4499.85 111
TestCases95.00 25299.01 11888.43 33896.82 34186.50 33688.71 30298.47 21574.73 33799.88 10585.39 33396.18 20196.71 260
test_prior99.43 3599.94 1398.49 6098.65 7599.80 12499.99 23
新几何199.42 3799.75 6998.27 6498.63 8192.69 19699.55 5599.82 4994.40 77100.00 191.21 26099.94 5599.99 23
旧先验199.76 6697.52 9198.64 7799.85 3395.63 4399.94 5599.99 23
原ACMM198.96 8299.73 7396.99 11598.51 11094.06 14499.62 4799.85 3394.97 6199.96 6595.11 19099.95 5099.92 84
testdata299.99 3690.54 277
segment_acmp96.68 27
testdata98.42 12099.47 9695.33 18398.56 9393.78 15799.79 2599.85 3393.64 10799.94 8194.97 19399.94 55100.00 1
test1299.43 3599.74 7098.56 5798.40 15699.65 4194.76 6599.75 13599.98 3299.99 23
plane_prior795.71 30391.59 286
plane_prior695.76 29791.72 28180.47 287
plane_prior597.87 23098.37 23697.79 14289.55 26594.52 274
plane_prior498.59 202
plane_prior391.64 28496.63 6093.01 237
plane_prior195.73 300
n20.00 430
nn0.00 430
door-mid89.69 414
lessismore_v090.53 35090.58 38480.90 38995.80 36977.01 38895.84 30066.15 37496.95 31783.03 34975.05 38093.74 341
LGP-MVS_train93.71 30495.43 31188.67 33497.62 25192.81 18890.05 26798.49 21175.24 33198.40 22895.84 18289.12 26994.07 314
test1198.44 127
door90.31 411
HQP5-MVS91.85 274
BP-MVS97.92 133
HQP4-MVS93.37 23298.39 23094.53 272
HQP3-MVS97.89 22889.60 262
HQP2-MVS80.65 283
NP-MVS95.77 29691.79 27698.65 197
ACMMP++_ref87.04 296
ACMMP++88.23 285
Test By Simon92.82 131
ITE_SJBPF92.38 33195.69 30685.14 36295.71 37292.81 18889.33 29098.11 22970.23 35798.42 22585.91 33188.16 28693.59 345
DeepMVS_CXcopyleft82.92 38295.98 29058.66 41396.01 36692.72 19378.34 38395.51 31558.29 39598.08 25882.57 35185.29 30692.03 371