This table lists the benchmark results for the high-res multi-view scenario. The following metrics are evaluated:

(*) For exact definitions, detailing how potentially incomplete ground truth is taken into account, see our paper.

The datasets are grouped into different categories, and result averages are computed for a category and method if results of the method are available for all datasets within the category. Note that the category "all" includes both the high-res multi-view and the low-res many-view scenarios.

Methods with suffix _ROB may participate in the Robust Vision Challenge.

Click a dataset result cell to show a visualization of the reconstruction. For training datasets, ground truth and accuracy / completeness visualizations are also available. The visualizations may not work with mobile browsers.




Method Infoallhigh-res
multi-view
indooroutdoorbotani.boulde.bridgedoorexhibi.lectur.living.loungeobserv.old co.statueterrac.
sort bysort bysort bysort bysort bysort bysorted bysort bysort bysort bysort bysort bysort bysort bysort bysort by
test_fmvsm_n_192098.44 4198.61 2397.92 14199.27 10195.18 183100.00 198.90 4798.05 1299.80 1899.73 8092.64 12699.99 3699.58 3899.51 10398.59 221
iter_conf05_1196.12 14995.46 15598.10 12998.62 14795.52 167100.00 196.30 34896.54 6099.81 1599.80 5169.19 34699.10 17698.92 7099.91 6699.68 111
DELS-MVS98.54 3398.22 4499.50 3099.15 10898.65 51100.00 198.58 8797.70 2098.21 13199.24 13992.58 12999.94 7798.63 9399.94 5499.92 81
Christian Sormann, Emanuele Santellani, Mattia Rossi, Andreas Kuhn, Friedrich Fraundorfer: DELS-MVS: Deep Epipolar Line Search for Multi-View Stereo. Winter Conference on Applications of Computer Vision (WACV), 2023
PVSNet_Blended97.94 6497.64 7498.83 8199.59 8196.99 109100.00 199.10 3195.38 9298.27 12799.08 14889.00 19299.95 6999.12 5899.25 11999.57 139
MM98.83 2198.53 2799.76 1099.59 8199.33 899.99 599.76 698.39 399.39 7399.80 5190.49 17199.96 6199.89 1699.43 11199.98 48
testing393.92 20994.23 18892.99 31597.54 21890.23 30299.99 599.16 3090.57 26091.33 24898.63 19792.99 11592.52 38182.46 34095.39 21496.22 255
test_fmvsmconf_n98.43 4398.32 4098.78 8298.12 18396.41 12799.99 598.83 5998.22 699.67 3999.64 10191.11 15899.94 7799.67 3699.62 9099.98 48
test_cas_vis1_n_192096.59 13296.23 12697.65 15898.22 17494.23 20799.99 597.25 28297.77 1799.58 5499.08 14877.10 29699.97 5397.64 13699.45 10898.74 215
ET-MVSNet_ETH3D94.37 19993.28 21797.64 15998.30 16797.99 6999.99 597.61 24394.35 12471.57 38599.45 11996.23 3195.34 35596.91 15885.14 30099.59 132
CS-MVS97.79 7697.91 6597.43 17199.10 10994.42 20099.99 597.10 29695.07 9899.68 3899.75 7192.95 11798.34 22898.38 10099.14 12499.54 145
alignmvs97.81 7397.33 8699.25 4498.77 13898.66 4999.99 598.44 12394.40 12398.41 12099.47 11693.65 9899.42 16298.57 9494.26 23099.67 115
lupinMVS97.85 6997.60 7698.62 9397.28 23697.70 8199.99 597.55 24995.50 9199.43 6799.67 9690.92 16298.71 19798.40 9999.62 9099.45 159
EC-MVSNet97.38 9697.24 8997.80 14697.41 22595.64 16299.99 597.06 30194.59 11499.63 4499.32 13089.20 19098.14 24498.76 8399.23 12199.62 126
IB-MVS92.85 694.99 17993.94 19698.16 12497.72 20895.69 16099.99 598.81 6094.28 12992.70 23196.90 25995.08 5299.17 17396.07 16773.88 36999.60 131
Christian Sormann, Mattia Rossi, Andreas Kuhn and Friedrich Fraundorfer: IB-MVS: An Iterative Algorithm for Deep Multi-View Stereo based on Binary Decisions. BMVC 2021
fmvsm_l_conf0.5_n_a99.00 1498.91 1499.28 4399.21 10297.91 7499.98 1598.85 5698.25 499.92 299.75 7194.72 6499.97 5399.87 1999.64 8899.95 71
fmvsm_l_conf0.5_n98.94 1598.84 1799.25 4499.17 10697.81 7799.98 1598.86 5398.25 499.90 399.76 6594.21 8299.97 5399.87 1999.52 10099.98 48
fmvsm_s_conf0.5_n97.80 7497.85 6897.67 15799.06 11194.41 20199.98 1598.97 4097.34 2999.63 4499.69 8987.27 20799.97 5399.62 3799.06 12898.62 220
test_vis1_n_192095.44 17095.31 16195.82 22098.50 15788.74 32299.98 1597.30 27697.84 1699.85 999.19 14266.82 35899.97 5398.82 7999.46 10798.76 213
EIA-MVS97.53 8697.46 8097.76 15398.04 18694.84 19199.98 1597.61 24394.41 12297.90 13999.59 10692.40 13598.87 18498.04 11699.13 12599.59 132
ETV-MVS97.92 6697.80 7098.25 12198.14 18196.48 12499.98 1597.63 23895.61 8699.29 8099.46 11892.55 13098.82 18799.02 6698.54 14099.46 157
CANet98.27 5297.82 6999.63 1799.72 7499.10 2399.98 1598.51 10797.00 4398.52 11599.71 8587.80 20099.95 6999.75 2899.38 11399.83 91
CS-MVS-test97.88 6797.94 6397.70 15699.28 10095.20 18299.98 1597.15 29195.53 8999.62 4799.79 5792.08 14398.38 22498.75 8499.28 11899.52 149
MSLP-MVS++99.13 899.01 1199.49 3299.94 1398.46 5999.98 1598.86 5397.10 4099.80 1899.94 495.92 36100.00 199.51 40100.00 1100.00 1
CNVR-MVS99.40 199.26 199.84 699.98 299.51 699.98 1598.69 6898.20 799.93 199.98 296.82 22100.00 199.75 28100.00 199.99 23
SteuartSystems-ACMMP99.02 1298.97 1399.18 5098.72 14097.71 7999.98 1598.44 12396.85 4699.80 1899.91 1497.57 799.85 10899.44 4699.99 2199.99 23
Skip Steuart: Steuart Systems R&D Blog.
PHI-MVS98.41 4598.21 4599.03 6899.86 5397.10 10699.98 1598.80 6290.78 25899.62 4799.78 6195.30 48100.00 199.80 2599.93 6099.99 23
CLD-MVS94.06 20893.90 19794.55 26196.02 27590.69 29199.98 1597.72 23296.62 5891.05 25198.85 18277.21 29598.47 20998.11 11289.51 25494.48 264
Zhaoxin Li, Wangmeng Zuo, Zhaoqi Wang, Lei Zhang: Confidence-based Large-scale Dense Multi-view Stereo. IEEE Transaction on Image Processing, 2020
thisisatest051597.41 9497.02 10098.59 9797.71 21097.52 8799.97 2898.54 10191.83 22397.45 15099.04 15197.50 899.10 17694.75 19396.37 19299.16 189
Fast-Effi-MVS+95.02 17894.19 18997.52 16697.88 19394.55 19799.97 2897.08 29988.85 29294.47 20997.96 23084.59 23598.41 21689.84 27897.10 17599.59 132
MCST-MVS99.32 399.14 499.86 599.97 399.59 599.97 2898.64 7698.47 299.13 8699.92 1396.38 30100.00 199.74 30100.00 1100.00 1
TSAR-MVS + GP.98.60 3098.51 2898.86 8099.73 7296.63 12099.97 2897.92 21998.07 1198.76 10499.55 11095.00 5799.94 7799.91 1597.68 16399.99 23
jason97.24 10096.86 10598.38 11695.73 28897.32 9799.97 2897.40 26795.34 9498.60 11499.54 11287.70 20198.56 20597.94 12299.47 10599.25 184
jason: jason.
NCCC99.37 299.25 299.71 1499.96 899.15 2199.97 2898.62 8198.02 1399.90 399.95 397.33 16100.00 199.54 39100.00 1100.00 1
CP-MVS98.45 4098.32 4098.87 7999.96 896.62 12199.97 2898.39 15594.43 11998.90 9599.87 2494.30 78100.00 199.04 6399.99 2199.99 23
fmvsm_s_conf0.5_n_a97.73 8197.72 7197.77 15198.63 14694.26 20699.96 3598.92 4697.18 3999.75 3099.69 8987.00 21299.97 5399.46 4498.89 13199.08 197
test_fmvs195.35 17295.68 15294.36 27298.99 11784.98 35299.96 3596.65 33697.60 2299.73 3398.96 16371.58 33699.93 8598.31 10499.37 11498.17 228
GeoE94.36 20193.48 20996.99 18797.29 23593.54 22799.96 3596.72 33388.35 30293.43 22098.94 17082.05 25198.05 25088.12 29696.48 19099.37 168
SED-MVS99.28 599.11 799.77 899.93 2499.30 1299.96 3598.43 13197.27 3499.80 1899.94 496.71 23100.00 1100.00 1100.00 1100.00 1
OPU-MVS99.93 299.89 4599.80 299.96 3599.80 5197.44 13100.00 1100.00 199.98 32100.00 1
save fliter99.82 5898.79 3899.96 3598.40 15297.66 21
test072699.93 2499.29 1599.96 3598.42 14397.28 3299.86 799.94 497.22 18
DPM-MVS98.83 2198.46 3099.97 199.33 9899.92 199.96 3598.44 12397.96 1499.55 5599.94 497.18 20100.00 193.81 21499.94 5499.98 48
TEST999.92 3198.92 2899.96 3598.43 13193.90 14999.71 3599.86 2695.88 3799.85 108
train_agg98.88 1998.65 2099.59 2399.92 3198.92 2899.96 3598.43 13194.35 12499.71 3599.86 2695.94 3499.85 10899.69 3599.98 3299.99 23
test_899.92 3198.88 3199.96 3598.43 13194.35 12499.69 3799.85 3095.94 3499.85 108
region2R98.54 3398.37 3699.05 6699.96 897.18 10199.96 3598.55 9894.87 10599.45 6599.85 3094.07 86100.00 198.67 88100.00 199.98 48
test-LLR96.47 13596.04 13097.78 14997.02 24395.44 16999.96 3598.21 18694.07 13895.55 19596.38 27693.90 9198.27 23790.42 26998.83 13599.64 121
TESTMET0.1,196.74 12596.26 12598.16 12497.36 22996.48 12499.96 3598.29 17891.93 22095.77 19398.07 22495.54 4298.29 23390.55 26698.89 13199.70 108
test-mter96.39 14095.93 14297.78 14997.02 24395.44 16999.96 3598.21 18691.81 22595.55 19596.38 27695.17 4998.27 23790.42 26998.83 13599.64 121
CPTT-MVS97.64 8497.32 8798.58 9899.97 395.77 15399.96 3598.35 16589.90 27298.36 12399.79 5791.18 15799.99 3698.37 10199.99 2199.99 23
cascas94.64 19093.61 20297.74 15597.82 19896.26 13499.96 3597.78 23185.76 33494.00 21697.54 23976.95 30099.21 16697.23 14595.43 21397.76 238
DeepPCF-MVS95.94 297.71 8298.98 1293.92 28799.63 7981.76 37099.96 3598.56 9299.47 199.19 8499.99 194.16 84100.00 199.92 1299.93 60100.00 1
test_fmvsmvis_n_192097.67 8397.59 7897.91 14397.02 24395.34 17499.95 5398.45 11897.87 1597.02 16199.59 10689.64 18099.98 4399.41 4899.34 11698.42 224
patch_mono-298.24 5699.12 595.59 22499.67 7786.91 34399.95 5398.89 4997.60 2299.90 399.76 6596.54 2899.98 4399.94 1199.82 7799.88 85
DVP-MVS++99.26 699.09 999.77 899.91 3999.31 1099.95 5398.43 13196.48 6199.80 1899.93 1197.44 13100.00 199.92 1299.98 32100.00 1
FOURS199.92 3197.66 8399.95 5398.36 16395.58 8799.52 60
DVP-MVScopyleft99.30 499.16 399.73 1299.93 2499.29 1599.95 5398.32 17297.28 3299.83 1399.91 1497.22 18100.00 199.99 5100.00 199.89 84
Zhenlong Yuan, Jinguo Luo, Fei Shen, Zhaoxin Li, Cong Liu, Tianlu Mao, Zhaoqi Wang: DVP-MVS: Synergize Depth-Edge and Visibility Prior for Multi-View Stereo. AAAI2025
test_0728_SECOND99.82 799.94 1399.47 799.95 5398.43 131100.00 199.99 5100.00 1100.00 1
MSP-MVS99.09 999.12 598.98 7399.93 2497.24 9899.95 5398.42 14397.50 2699.52 6099.88 2197.43 1599.71 13899.50 4199.98 32100.00 1
Zhenlong Yuan, Cong Liu, Fei Shen, Zhaoxin Li, Jingguo luo, Tianlu Mao and Zhaoqi Wang: MSP-MVS: Multi-granularity Segmentation Prior Guided Multi-View Stereo. AAAI2025
HFP-MVS98.56 3298.37 3699.14 5999.96 897.43 9499.95 5398.61 8294.77 10799.31 7799.85 3094.22 80100.00 198.70 8699.98 3299.98 48
HPM-MVS++copyleft99.07 1098.88 1699.63 1799.90 4299.02 2599.95 5398.56 9297.56 2599.44 6699.85 3095.38 47100.00 199.31 5199.99 2199.87 87
test_prior299.95 5395.78 8199.73 3399.76 6596.00 3399.78 27100.00 1
ACMMPR98.50 3698.32 4099.05 6699.96 897.18 10199.95 5398.60 8494.77 10799.31 7799.84 4193.73 96100.00 198.70 8699.98 3299.98 48
MP-MVScopyleft98.23 5797.97 5999.03 6899.94 1397.17 10499.95 5398.39 15594.70 11198.26 12999.81 5091.84 148100.00 198.85 7899.97 4299.93 76
Rongxuan Tan, Qing Wang, et al.: MP-MVS: Multi-Scale Windows PatchMatch and Planar Prior Multi-View Stereo.
mPP-MVS98.39 4798.20 4698.97 7499.97 396.92 11299.95 5398.38 15995.04 9998.61 11399.80 5193.39 101100.00 198.64 91100.00 199.98 48
PVSNet_BlendedMVS96.05 15295.82 14796.72 19699.59 8196.99 10999.95 5399.10 3194.06 14098.27 12795.80 29189.00 19299.95 6999.12 5887.53 28493.24 342
PAPR98.52 3598.16 4999.58 2499.97 398.77 4099.95 5398.43 13195.35 9398.03 13599.75 7194.03 8799.98 4398.11 11299.83 7399.99 23
PVSNet91.05 1397.13 10596.69 11398.45 11099.52 8895.81 15199.95 5399.65 1294.73 10999.04 8999.21 14184.48 23699.95 6994.92 18698.74 13799.58 138
test_fmvsmconf0.1_n97.74 7997.44 8198.64 9295.76 28596.20 13999.94 6998.05 20698.17 898.89 9699.42 12087.65 20299.90 9199.50 4199.60 9699.82 92
ZNCC-MVS98.31 4998.03 5699.17 5399.88 4997.59 8499.94 6998.44 12394.31 12798.50 11799.82 4693.06 11499.99 3698.30 10599.99 2199.93 76
test_prior498.05 6699.94 69
XVS98.70 2698.55 2599.15 5799.94 1397.50 9099.94 6998.42 14396.22 7399.41 6999.78 6194.34 7699.96 6198.92 7099.95 4999.99 23
X-MVStestdata93.83 21192.06 24499.15 5799.94 1397.50 9099.94 6998.42 14396.22 7399.41 6941.37 40794.34 7699.96 6198.92 7099.95 4999.99 23
SD-MVS98.92 1798.70 1999.56 2599.70 7698.73 4499.94 6998.34 16996.38 6799.81 1599.76 6594.59 6799.98 4399.84 2299.96 4699.97 58
Zhenlong Yuan, Jiakai Cao, Zhaoxin Li, Hao Jiang and Zhaoqi Wang: SD-MVS: Segmentation-driven Deformation Multi-View Stereo with Spherical Refinement and EM optimization. AAAI2024
PVSNet_088.03 1991.80 26290.27 27596.38 20898.27 17190.46 29899.94 6999.61 1493.99 14386.26 33197.39 24471.13 34099.89 9698.77 8267.05 38598.79 212
GST-MVS98.27 5297.97 5999.17 5399.92 3197.57 8599.93 7698.39 15594.04 14298.80 10099.74 7892.98 116100.00 198.16 10999.76 8199.93 76
test0.0.03 193.86 21093.61 20294.64 25595.02 30592.18 25999.93 7698.58 8794.07 13887.96 30698.50 20793.90 9194.96 36081.33 34793.17 24096.78 247
MVS_111021_HR98.72 2598.62 2299.01 7199.36 9797.18 10199.93 7699.90 196.81 5198.67 10999.77 6393.92 8999.89 9699.27 5399.94 5499.96 64
testing1197.48 8897.27 8898.10 12998.36 16396.02 14699.92 7998.45 11893.45 16398.15 13398.70 18995.48 4599.22 16597.85 12795.05 22099.07 198
thisisatest053097.10 10696.72 11198.22 12297.60 21696.70 11899.92 7998.54 10191.11 24797.07 16098.97 16197.47 1199.03 17893.73 21996.09 19598.92 204
PVSNet_Blended_VisFu97.27 9996.81 10798.66 9098.81 13596.67 11999.92 7998.64 7694.51 11696.38 18098.49 20889.05 19199.88 10297.10 14998.34 14499.43 162
DP-MVS Recon98.41 4598.02 5799.56 2599.97 398.70 4699.92 7998.44 12392.06 21798.40 12299.84 4195.68 40100.00 198.19 10799.71 8499.97 58
PLCcopyleft95.54 397.93 6597.89 6798.05 13499.82 5894.77 19599.92 7998.46 11793.93 14797.20 15699.27 13495.44 4699.97 5397.41 14099.51 10399.41 164
Jie Liao, Yanping Fu, Qingan Yan, Chunxia xiao: Pyramid Multi-View Stereo with Local Consistency. Pacific Graphics 2019
testing9197.16 10496.90 10397.97 13798.35 16595.67 16199.91 8498.42 14392.91 17897.33 15398.72 18794.81 6299.21 16696.98 15394.63 22399.03 200
testing9997.17 10396.91 10297.95 13898.35 16595.70 15899.91 8498.43 13192.94 17697.36 15298.72 18794.83 6199.21 16697.00 15194.64 22298.95 203
9.1498.38 3499.87 5199.91 8498.33 17093.22 16999.78 2799.89 1994.57 6899.85 10899.84 2299.97 42
iter_conf0596.07 15195.95 14096.44 20598.43 16097.52 8799.91 8496.85 32394.16 13392.49 23697.98 22998.20 497.34 27797.26 14488.29 27294.45 270
APDe-MVScopyleft99.06 1198.91 1499.51 2999.94 1398.76 4399.91 8498.39 15597.20 3899.46 6499.85 3095.53 4499.79 12399.86 21100.00 199.99 23
Zhaojie Zeng, Yuesong Wang, Tao Guan: Matching Ambiguity-Resilient Multi-View Stereo via Adaptive Patch Deformation. Pattern Recognition
MVSTER95.53 16895.22 16496.45 20398.56 14997.72 7899.91 8497.67 23692.38 20891.39 24597.14 24997.24 1797.30 28194.80 19187.85 27994.34 280
PMMVS96.76 12396.76 10996.76 19498.28 17092.10 26099.91 8497.98 21194.12 13599.53 5899.39 12586.93 21398.73 19496.95 15697.73 16199.45 159
fmvsm_s_conf0.1_n97.30 9797.21 9197.60 16397.38 22794.40 20399.90 9198.64 7696.47 6399.51 6299.65 10084.99 23299.93 8599.22 5599.09 12798.46 222
test_fmvs1_n94.25 20494.36 18493.92 28797.68 21183.70 35899.90 9196.57 33997.40 2899.67 3998.88 17461.82 37499.92 8898.23 10699.13 12598.14 231
SF-MVS98.67 2798.40 3299.50 3099.77 6598.67 4799.90 9198.21 18693.53 15999.81 1599.89 1994.70 6699.86 10799.84 2299.93 6099.96 64
原ACMM299.90 91
HPM-MVScopyleft97.96 6397.72 7198.68 8899.84 5696.39 13099.90 9198.17 19192.61 19498.62 11299.57 10991.87 14799.67 14598.87 7799.99 2199.99 23
Chunlin Ren, Qingshan Xu, Shikun Zhang, Jiaqi Yang: Hierarchical Prior Mining for Non-local Multi-View Stereo. ICCV 2023
EPNet98.49 3798.40 3298.77 8499.62 8096.80 11799.90 9199.51 1797.60 2299.20 8299.36 12893.71 9799.91 8997.99 11998.71 13899.61 129
Wanjuan Su, Wenbing Tao: Efficient Edge-Preserving Multi-View Stereo Network for Depth Estimation. AAAI 2023
CSCG97.10 10697.04 9897.27 18199.89 4591.92 26599.90 9199.07 3488.67 29595.26 20199.82 4693.17 11299.98 4398.15 11099.47 10599.90 83
PAPM98.60 3098.42 3199.14 5996.05 27498.96 2699.90 9199.35 2596.68 5598.35 12499.66 9896.45 2998.51 20899.45 4599.89 6799.96 64
ETVMVS97.03 11196.64 11498.20 12398.67 14397.12 10599.89 9998.57 8991.10 24898.17 13298.59 19993.86 9398.19 24295.64 17595.24 21899.28 181
bld_raw_dy_0_6494.22 20592.97 22297.98 13698.62 14795.09 18699.89 9993.09 38996.55 5992.59 23299.80 5168.57 35099.19 17198.92 7088.69 26499.68 111
114514_t97.41 9496.83 10699.14 5999.51 9097.83 7599.89 9998.27 18188.48 29999.06 8899.66 9890.30 17399.64 14896.32 16499.97 4299.96 64
WTY-MVS98.10 6197.60 7699.60 2298.92 12599.28 1799.89 9999.52 1595.58 8798.24 13099.39 12593.33 10499.74 13497.98 12195.58 21099.78 100
GA-MVS93.83 21192.84 22596.80 19295.73 28893.57 22599.88 10397.24 28392.57 19892.92 22796.66 26878.73 28897.67 26787.75 29994.06 23399.17 188
UniMVSNet (Re)93.07 23492.13 24195.88 21794.84 30696.24 13899.88 10398.98 3892.49 20489.25 28195.40 31087.09 21097.14 29193.13 22978.16 35094.26 283
HPM-MVS_fast97.80 7497.50 7998.68 8899.79 6296.42 12699.88 10398.16 19591.75 22798.94 9399.54 11291.82 14999.65 14797.62 13899.99 2199.99 23
test_vis1_n93.61 22193.03 22195.35 23195.86 28086.94 34199.87 10696.36 34696.85 4699.54 5798.79 18452.41 38799.83 11898.64 9198.97 13099.29 180
test_vis1_rt86.87 32586.05 32789.34 34696.12 27178.07 38199.87 10683.54 40592.03 21878.21 37089.51 37645.80 39199.91 8996.25 16593.11 24290.03 375
DPE-MVScopyleft99.26 699.10 899.74 1199.89 4599.24 1999.87 10698.44 12397.48 2799.64 4399.94 496.68 2599.99 3699.99 5100.00 199.99 23
Kehua Chen, Zhenlong Yuan, Tianlu Mao, Zhaoqi Wang: Dual-Level Precision Edges Guided Multi-View Stereo with Accurate Planarization. AAAI2025
MVS_030498.87 2098.61 2399.67 1699.18 10399.13 2299.87 10699.65 1298.17 898.75 10699.75 7192.76 12399.94 7799.88 1899.44 10999.94 74
MTMP99.87 10696.49 342
CDPH-MVS98.65 2898.36 3899.49 3299.94 1398.73 4499.87 10698.33 17093.97 14499.76 2999.87 2494.99 5899.75 13298.55 95100.00 199.98 48
HQP-NCC95.78 28199.87 10696.82 4893.37 221
ACMP_Plane95.78 28199.87 10696.82 4893.37 221
APD-MVScopyleft98.62 2998.35 3999.41 3899.90 4298.51 5799.87 10698.36 16394.08 13799.74 3299.73 8094.08 8599.74 13499.42 4799.99 2199.99 23
Yuesong Wang, Zhaojie Zeng and etc.: Adaptive Patch Deformation for Textureless-Resilient Multi-View Stereo. CVPR2023
MVS_111021_LR98.42 4498.38 3498.53 10599.39 9595.79 15299.87 10699.86 296.70 5498.78 10199.79 5792.03 14499.90 9199.17 5799.86 7199.88 85
HQP-MVS94.61 19194.50 18294.92 24695.78 28191.85 26699.87 10697.89 22196.82 4893.37 22198.65 19480.65 26998.39 22097.92 12389.60 24994.53 260
CNLPA97.76 7897.38 8398.92 7899.53 8796.84 11499.87 10698.14 19993.78 15296.55 17499.69 8992.28 13899.98 4397.13 14799.44 10999.93 76
SMA-MVScopyleft98.76 2498.48 2999.62 2099.87 5198.87 3299.86 11898.38 15993.19 17099.77 2899.94 495.54 42100.00 199.74 3099.99 21100.00 1
Yufeng Yin; Xiaoyan Liu; Zichao Zhang: SMA-MVS: Segmentation-Guided Multi-Scale Anchor Deformation Patch Multi-View Stereo. IEEE Transactions on Circuits and Systems for Video Technology
plane_prior91.74 27099.86 11896.76 5289.59 251
casdiffmvs_mvgpermissive96.43 13795.94 14197.89 14597.44 22495.47 16899.86 11897.29 27893.35 16496.03 18699.19 14285.39 22798.72 19697.89 12697.04 17899.49 155
Fangjinhua Wang, Qingshan Xu, Yew-Soon Ong, Marc Pollefeys: Lightweight and Accurate Multi-View Stereo With Confidence-Aware Diffusion Model. IEEE T-PAMI 2025
testing22297.08 11096.75 11098.06 13398.56 14996.82 11599.85 12198.61 8292.53 20098.84 9798.84 18393.36 10298.30 23295.84 17294.30 22999.05 199
tttt051796.85 11796.49 12097.92 14197.48 22395.89 15099.85 12198.54 10190.72 25996.63 17198.93 17297.47 1199.02 17993.03 23195.76 20698.85 208
ACMMP_NAP98.49 3798.14 5099.54 2799.66 7898.62 5399.85 12198.37 16294.68 11299.53 5899.83 4392.87 119100.00 198.66 9099.84 7299.99 23
thres20096.96 11396.21 12799.22 4698.97 11998.84 3599.85 12199.71 793.17 17196.26 18298.88 17489.87 17899.51 15294.26 20494.91 22199.31 176
F-COLMAP96.93 11596.95 10196.87 19199.71 7591.74 27099.85 12197.95 21493.11 17395.72 19499.16 14592.35 13699.94 7795.32 17899.35 11598.92 204
test_fmvsmconf0.01_n96.39 14095.74 14898.32 11891.47 36495.56 16599.84 12697.30 27697.74 1897.89 14099.35 12979.62 27899.85 10899.25 5499.24 12099.55 141
SR-MVS98.46 3998.30 4398.93 7799.88 4997.04 10799.84 12698.35 16594.92 10399.32 7699.80 5193.35 10399.78 12599.30 5299.95 4999.96 64
CANet_DTU96.76 12396.15 12898.60 9598.78 13797.53 8699.84 12697.63 23897.25 3799.20 8299.64 10181.36 25999.98 4392.77 23498.89 13198.28 227
casdiffmvspermissive96.42 13995.97 13797.77 15197.30 23494.98 18799.84 12697.09 29893.75 15496.58 17399.26 13785.07 23098.78 19097.77 13397.04 17899.54 145
Fangjinhua Wang, Qingshan Xu, Yew-Soon Ong, Marc Pollefeys: Lightweight and Accurate Multi-View Stereo With Confidence-Aware Diffusion Model. IEEE T-PAMI 2025
HQP_MVS94.49 19594.36 18494.87 24795.71 29191.74 27099.84 12697.87 22396.38 6793.01 22598.59 19980.47 27398.37 22697.79 13189.55 25294.52 262
plane_prior299.84 12696.38 67
BH-w/o95.71 16295.38 15996.68 19798.49 15892.28 25699.84 12697.50 25792.12 21492.06 24198.79 18484.69 23498.67 20195.29 17999.66 8799.09 195
fmvsm_s_conf0.1_n_a97.09 10896.90 10397.63 16195.65 29494.21 20899.83 13398.50 11296.27 7299.65 4199.64 10184.72 23399.93 8599.04 6398.84 13498.74 215
test_fmvs289.47 30989.70 28688.77 35394.54 31275.74 38299.83 13394.70 37794.71 11091.08 24996.82 26754.46 38497.78 26492.87 23288.27 27392.80 350
UniMVSNet_NR-MVSNet92.95 23692.11 24295.49 22594.61 31195.28 17799.83 13399.08 3391.49 23289.21 28496.86 26287.14 20996.73 31793.20 22577.52 35594.46 265
APD-MVS_3200maxsize98.25 5598.08 5598.78 8299.81 6096.60 12299.82 13698.30 17793.95 14699.37 7499.77 6392.84 12099.76 13198.95 6799.92 6399.97 58
PAPM_NR98.12 6097.93 6498.70 8799.94 1396.13 14399.82 13698.43 13194.56 11597.52 14799.70 8794.40 7199.98 4397.00 15199.98 3299.99 23
nrg03093.51 22392.53 23696.45 20394.36 31497.20 10099.81 13897.16 29091.60 22989.86 26597.46 24086.37 21897.68 26695.88 17180.31 33994.46 265
diffmvspermissive97.00 11296.64 11498.09 13197.64 21496.17 14299.81 13897.19 28594.67 11398.95 9299.28 13186.43 21798.76 19298.37 10197.42 16999.33 174
Fangjinhua Wang, Qingshan Xu, Yew-Soon Ong, Marc Pollefeys: Lightweight and Accurate Multi-View Stereo With Confidence-Aware Diffusion Model. IEEE T-PAMI 2025
DU-MVS92.46 24891.45 25795.49 22594.05 31995.28 17799.81 13898.74 6492.25 21289.21 28496.64 27081.66 25596.73 31793.20 22577.52 35594.46 265
ACMP92.05 992.74 24192.42 23993.73 29395.91 27988.72 32399.81 13897.53 25394.13 13487.00 31998.23 21974.07 32798.47 20996.22 16688.86 26193.99 311
Qingshan Xu and Wenbing Tao: Planar Prior Assisted PatchMatch Multi-View Stereo. AAAI 2020
mvsany_test197.82 7297.90 6697.55 16498.77 13893.04 23999.80 14297.93 21696.95 4599.61 5399.68 9590.92 16299.83 11899.18 5698.29 14999.80 96
Fast-Effi-MVS+-dtu93.72 21893.86 19993.29 30697.06 24186.16 34499.80 14296.83 32592.66 19192.58 23397.83 23481.39 25897.67 26789.75 27996.87 18396.05 257
BH-untuned95.18 17494.83 17696.22 21198.36 16391.22 28299.80 14297.32 27490.91 25291.08 24998.67 19183.51 24398.54 20794.23 20599.61 9498.92 204
tfpn200view996.79 12095.99 13299.19 4998.94 12198.82 3699.78 14599.71 792.86 17996.02 18798.87 17789.33 18599.50 15493.84 21194.57 22499.27 182
thres40096.78 12295.99 13299.16 5598.94 12198.82 3699.78 14599.71 792.86 17996.02 18798.87 17789.33 18599.50 15493.84 21194.57 22499.16 189
TAPA-MVS92.12 894.42 19793.60 20496.90 19099.33 9891.78 26999.78 14598.00 20889.89 27394.52 20799.47 11691.97 14599.18 17269.90 38099.52 10099.73 105
Andrea Romanoni, Matteo Matteucci: TAPA-MVS: Textureless-Aware PAtchMatch Multi-View Stereo. ICCV 2019
TSAR-MVS + MP.98.93 1698.77 1899.41 3899.74 6998.67 4799.77 14898.38 15996.73 5399.88 699.74 7894.89 6099.59 14999.80 2599.98 3299.97 58
Zhenlong Yuan, Jiakai Cao, Zhaoqi Wang, Zhaoxin Li: TSAR-MVS: Textureless-aware Segmentation and Correlative Refinement Guided Multi-View Stereo. Pattern Recognition
OPM-MVS93.21 22892.80 22794.44 26893.12 33890.85 29099.77 14897.61 24396.19 7591.56 24498.65 19475.16 32198.47 20993.78 21789.39 25593.99 311
Ray L. Khuboni, Hongjun Xu: Octagram Propagation Matching for Multi-Scale View Stereopsis (OPM-MVS).
v2v48291.30 26890.07 28295.01 24293.13 33693.79 21899.77 14897.02 30488.05 30589.25 28195.37 31480.73 26797.15 29087.28 30580.04 34294.09 302
Baseline_NR-MVSNet90.33 29289.51 29292.81 31892.84 34489.95 31099.77 14893.94 38484.69 34889.04 28895.66 29781.66 25596.52 32490.99 25676.98 36191.97 361
ACMM91.95 1092.88 23892.52 23793.98 28695.75 28789.08 32099.77 14897.52 25593.00 17489.95 26297.99 22876.17 31098.46 21293.63 22188.87 26094.39 274
Qingshan Xu and Wenbing Tao: Multi-Scale Geometric Consistency Guided Multi-View Stereo. CVPR 2019
SR-MVS-dyc-post98.31 4998.17 4898.71 8699.79 6296.37 13199.76 15398.31 17494.43 11999.40 7199.75 7193.28 10899.78 12598.90 7599.92 6399.97 58
RE-MVS-def98.13 5199.79 6296.37 13199.76 15398.31 17494.43 11999.40 7199.75 7192.95 11798.90 7599.92 6399.97 58
BH-RMVSNet95.18 17494.31 18797.80 14698.17 17995.23 18099.76 15397.53 25392.52 20294.27 21399.25 13876.84 30198.80 18890.89 26099.54 9999.35 171
v14890.70 28289.63 28793.92 28792.97 34290.97 28499.75 15696.89 32087.51 31088.27 30395.01 32781.67 25497.04 30087.40 30377.17 36093.75 327
PGM-MVS98.34 4898.13 5198.99 7299.92 3197.00 10899.75 15699.50 1893.90 14999.37 7499.76 6593.24 110100.00 197.75 13599.96 4699.98 48
LPG-MVS_test92.96 23592.71 23093.71 29595.43 29888.67 32499.75 15697.62 24092.81 18290.05 25898.49 20875.24 31798.40 21895.84 17289.12 25694.07 303
thres100view90096.74 12595.92 14399.18 5098.90 13098.77 4099.74 15999.71 792.59 19695.84 19098.86 17989.25 18799.50 15493.84 21194.57 22499.27 182
MP-MVS-pluss98.07 6297.64 7499.38 4199.74 6998.41 6099.74 15998.18 19093.35 16496.45 17699.85 3092.64 12699.97 5398.91 7499.89 6799.77 101
MP-MVS-pluss: MP-MVS-pluss. MP-MVS-pluss
pmmvs590.17 29889.09 29993.40 30392.10 35689.77 31399.74 15995.58 36385.88 33387.24 31895.74 29373.41 33096.48 32688.54 28983.56 31293.95 314
thres600view796.69 12895.87 14699.14 5998.90 13098.78 3999.74 15999.71 792.59 19695.84 19098.86 17989.25 18799.50 15493.44 22394.50 22799.16 189
baseline296.71 12796.49 12097.37 17595.63 29695.96 14899.74 15998.88 5192.94 17691.61 24398.97 16197.72 698.62 20394.83 19098.08 15797.53 244
miper_enhance_ethall94.36 20193.98 19495.49 22598.68 14295.24 17999.73 16497.29 27893.28 16889.86 26595.97 28994.37 7597.05 29892.20 23884.45 30594.19 289
testgi89.01 31488.04 31591.90 32793.49 33084.89 35399.73 16495.66 36193.89 15185.14 33898.17 22059.68 37894.66 36477.73 36488.88 25996.16 256
sss97.57 8597.03 9999.18 5098.37 16298.04 6799.73 16499.38 2393.46 16198.76 10499.06 15091.21 15399.89 9696.33 16397.01 18099.62 126
canonicalmvs97.09 10896.32 12499.39 4098.93 12398.95 2799.72 16797.35 27094.45 11797.88 14199.42 12086.71 21499.52 15198.48 9793.97 23499.72 107
3Dnovator+91.53 1196.31 14495.24 16399.52 2896.88 25398.64 5299.72 16798.24 18395.27 9688.42 30298.98 15982.76 24899.94 7797.10 14999.83 7399.96 64
UWE-MVS96.79 12096.72 11197.00 18698.51 15693.70 22299.71 16998.60 8492.96 17597.09 15898.34 21796.67 2798.85 18692.11 24096.50 18898.44 223
WB-MVSnew92.90 23792.77 22993.26 30896.95 24793.63 22499.71 16998.16 19591.49 23294.28 21298.14 22181.33 26096.48 32679.47 35595.46 21189.68 378
Syy-MVS90.00 30190.63 26788.11 35797.68 21174.66 38599.71 16998.35 16590.79 25692.10 23998.67 19179.10 28593.09 37763.35 39195.95 20096.59 250
myMVS_eth3d94.46 19694.76 17893.55 30197.68 21190.97 28499.71 16998.35 16590.79 25692.10 23998.67 19192.46 13493.09 37787.13 30795.95 20096.59 250
HyFIR lowres test96.66 13096.43 12297.36 17799.05 11293.91 21799.70 17399.80 390.54 26196.26 18298.08 22392.15 14198.23 24096.84 15995.46 21199.93 76
D2MVS92.76 24092.59 23593.27 30795.13 30189.54 31699.69 17499.38 2392.26 21187.59 31094.61 34185.05 23197.79 26291.59 24788.01 27792.47 355
TranMVSNet+NR-MVSNet91.68 26690.61 26894.87 24793.69 32693.98 21599.69 17498.65 7491.03 25088.44 29896.83 26680.05 27696.18 33890.26 27376.89 36394.45 270
V4291.28 27090.12 28194.74 25193.42 33293.46 22999.68 17697.02 30487.36 31389.85 26795.05 32581.31 26197.34 27787.34 30480.07 34193.40 337
testmvs40.60 37244.45 37529.05 38919.49 41314.11 41599.68 17618.47 41220.74 40564.59 39098.48 21110.95 41017.09 40956.66 39811.01 40555.94 402
mvsmamba94.10 20693.72 20195.25 23693.57 32794.13 21099.67 17896.45 34493.63 15891.34 24797.77 23586.29 21997.22 28796.65 16188.10 27694.40 272
RRT_MVS93.14 23192.92 22493.78 29293.31 33490.04 30799.66 17997.69 23492.53 20088.91 29197.76 23684.36 23796.93 30795.10 18186.99 28794.37 275
DeepC-MVS94.51 496.92 11696.40 12398.45 11099.16 10795.90 14999.66 17998.06 20496.37 7094.37 21099.49 11583.29 24699.90 9197.63 13799.61 9499.55 141
Andreas Kuhn, Christian Sormann, Mattia Rossi, Oliver Erdler, Friedrich Fraundorfer: DeepC-MVS: Deep Confidence Prediction for Multi-View Stereo Reconstruction. 3DV 2020
CHOSEN 1792x268896.81 11996.53 11997.64 15998.91 12993.07 23699.65 18199.80 395.64 8595.39 19898.86 17984.35 23999.90 9196.98 15399.16 12399.95 71
Test_1112_low_res95.72 16094.83 17698.42 11397.79 20096.41 12799.65 18196.65 33692.70 18892.86 23096.13 28592.15 14199.30 16391.88 24493.64 23699.55 141
1112_ss96.01 15495.20 16598.42 11397.80 19996.41 12799.65 18196.66 33592.71 18792.88 22999.40 12392.16 14099.30 16391.92 24393.66 23599.55 141
OMC-MVS97.28 9897.23 9097.41 17299.76 6693.36 23499.65 18197.95 21496.03 7797.41 15199.70 8789.61 18199.51 15296.73 16098.25 15099.38 166
test_yl97.83 7097.37 8499.21 4799.18 10397.98 7099.64 18599.27 2791.43 23797.88 14198.99 15795.84 3899.84 11698.82 7995.32 21699.79 97
DCV-MVSNet97.83 7097.37 8499.21 4799.18 10397.98 7099.64 18599.27 2791.43 23797.88 14198.99 15795.84 3899.84 11698.82 7995.32 21699.79 97
MG-MVS98.91 1898.65 2099.68 1599.94 1399.07 2499.64 18599.44 2097.33 3199.00 9199.72 8394.03 8799.98 4398.73 85100.00 1100.00 1
v114491.09 27489.83 28394.87 24793.25 33593.69 22399.62 18896.98 30986.83 32389.64 27394.99 33080.94 26497.05 29885.08 32581.16 32893.87 321
cl2293.77 21593.25 21895.33 23399.49 9194.43 19999.61 18998.09 20190.38 26389.16 28795.61 29890.56 16997.34 27791.93 24284.45 30594.21 288
WR-MVS92.31 25191.25 25995.48 22894.45 31395.29 17699.60 19098.68 7090.10 26888.07 30596.89 26080.68 26896.80 31593.14 22879.67 34394.36 276
SDMVSNet94.80 18293.96 19597.33 17998.92 12595.42 17199.59 19198.99 3792.41 20692.55 23497.85 23275.81 31398.93 18397.90 12591.62 24597.64 239
Effi-MVS+-dtu94.53 19495.30 16292.22 32397.77 20182.54 36399.59 19197.06 30194.92 10395.29 20095.37 31485.81 22297.89 25994.80 19197.07 17696.23 254
DIV-MVS_self_test92.32 25091.60 25194.47 26697.31 23392.74 24499.58 19396.75 33186.99 32087.64 30995.54 30289.55 18296.50 32588.58 28882.44 31894.17 290
FIs94.10 20693.43 21096.11 21394.70 30996.82 11599.58 19398.93 4592.54 19989.34 27997.31 24587.62 20397.10 29594.22 20686.58 28994.40 272
cl____92.31 25191.58 25294.52 26297.33 23292.77 24299.57 19596.78 33086.97 32187.56 31195.51 30589.43 18396.62 32188.60 28782.44 31894.16 295
EPNet_dtu95.71 16295.39 15896.66 19898.92 12593.41 23199.57 19598.90 4796.19 7597.52 14798.56 20492.65 12597.36 27577.89 36398.33 14599.20 187
Wanjuan Su, Wenbing Tao: Efficient Edge-Preserving Multi-View Stereo Network for Depth Estimation. AAAI 2023
v14419290.79 28189.52 29194.59 25893.11 33992.77 24299.56 19796.99 30786.38 32789.82 26894.95 33280.50 27297.10 29583.98 33180.41 33793.90 318
OpenMVScopyleft90.15 1594.77 18593.59 20598.33 11796.07 27397.48 9299.56 19798.57 8990.46 26286.51 32598.95 16878.57 29099.94 7793.86 21099.74 8297.57 243
MVSFormer96.94 11496.60 11697.95 13897.28 23697.70 8199.55 19997.27 28091.17 24499.43 6799.54 11290.92 16296.89 30994.67 19699.62 9099.25 184
test_djsdf92.83 23992.29 24094.47 26691.90 35892.46 25399.55 19997.27 28091.17 24489.96 26196.07 28881.10 26296.89 30994.67 19688.91 25894.05 305
PS-MVSNAJ98.44 4198.20 4699.16 5598.80 13698.92 2899.54 20198.17 19197.34 2999.85 999.85 3091.20 15499.89 9699.41 4899.67 8698.69 218
CDS-MVSNet96.34 14296.07 12997.13 18397.37 22894.96 18899.53 20297.91 22091.55 23195.37 19998.32 21895.05 5497.13 29293.80 21595.75 20799.30 178
Khang Truong Giang, Soohwan Song, Sungho Jo: Curvature-guided dynamic scale networks for Multi-view Stereo. ICLR 2022
xiu_mvs_v2_base98.23 5797.97 5999.02 7098.69 14198.66 4999.52 20398.08 20397.05 4199.86 799.86 2690.65 16799.71 13899.39 5098.63 13998.69 218
PatchMatch-RL96.04 15395.40 15797.95 13899.59 8195.22 18199.52 20399.07 3493.96 14596.49 17598.35 21682.28 25099.82 12090.15 27499.22 12298.81 211
test_method80.79 34979.70 35384.08 36492.83 34567.06 39099.51 20595.42 36554.34 39681.07 35893.53 35444.48 39292.22 38378.90 36077.23 35992.94 347
baseline96.43 13795.98 13497.76 15397.34 23095.17 18499.51 20597.17 28893.92 14896.90 16499.28 13185.37 22898.64 20297.50 13996.86 18499.46 157
miper_ehance_all_eth93.16 23092.60 23294.82 25097.57 21793.56 22699.50 20797.07 30088.75 29388.85 29295.52 30490.97 16196.74 31690.77 26284.45 30594.17 290
v119290.62 28689.25 29694.72 25393.13 33693.07 23699.50 20797.02 30486.33 32889.56 27595.01 32779.22 28297.09 29782.34 34281.16 32894.01 308
v192192090.46 28889.12 29894.50 26492.96 34392.46 25399.49 20996.98 30986.10 33089.61 27495.30 31778.55 29197.03 30282.17 34380.89 33594.01 308
无先验99.49 20998.71 6693.46 161100.00 194.36 20199.99 23
pmmvs492.10 25591.07 26295.18 23892.82 34694.96 18899.48 21196.83 32587.45 31288.66 29696.56 27483.78 24296.83 31389.29 28184.77 30393.75 327
Vis-MVSNet (Re-imp)96.32 14395.98 13497.35 17897.93 19194.82 19299.47 21298.15 19891.83 22395.09 20299.11 14691.37 15297.47 27393.47 22297.43 16799.74 104
API-MVS97.86 6897.66 7398.47 10899.52 8895.41 17299.47 21298.87 5291.68 22898.84 9799.85 3092.34 13799.99 3698.44 9899.96 46100.00 1
旧先验299.46 21494.21 13299.85 999.95 6996.96 155
IterMVS-LS92.69 24392.11 24294.43 27096.80 25792.74 24499.45 21596.89 32088.98 28589.65 27295.38 31388.77 19496.34 33290.98 25782.04 32194.22 286
Fangjinhua Wang, Silvano Galliani, Christoph Vogel, Marc Pollefeys: IterMVS: Iterative Probability Estimation for Efficient Multi-View Stereo.
3Dnovator91.47 1296.28 14795.34 16099.08 6596.82 25697.47 9399.45 21598.81 6095.52 9089.39 27799.00 15681.97 25299.95 6997.27 14399.83 7399.84 90
FC-MVSNet-test93.81 21393.15 21995.80 22194.30 31696.20 13999.42 21798.89 4992.33 21089.03 28997.27 24787.39 20696.83 31393.20 22586.48 29094.36 276
c3_l92.53 24691.87 24894.52 26297.40 22692.99 24099.40 21896.93 31787.86 30788.69 29595.44 30889.95 17796.44 32890.45 26880.69 33694.14 299
EI-MVSNet-Vis-set98.27 5298.11 5398.75 8599.83 5796.59 12399.40 21898.51 10795.29 9598.51 11699.76 6593.60 10099.71 13898.53 9699.52 10099.95 71
新几何299.40 218
QAPM95.40 17194.17 19099.10 6496.92 24897.71 7999.40 21898.68 7089.31 27888.94 29098.89 17382.48 24999.96 6193.12 23099.83 7399.62 126
MTAPA98.29 5197.96 6299.30 4299.85 5497.93 7399.39 22298.28 17995.76 8297.18 15799.88 2192.74 124100.00 198.67 8899.88 6999.99 23
miper_lstm_enhance91.81 25991.39 25893.06 31497.34 23089.18 31999.38 22396.79 32986.70 32487.47 31395.22 32290.00 17695.86 34988.26 29281.37 32694.15 296
v124090.20 29688.79 30594.44 26893.05 34192.27 25799.38 22396.92 31885.89 33289.36 27894.87 33477.89 29497.03 30280.66 35081.08 33194.01 308
EPP-MVSNet96.69 12896.60 11696.96 18897.74 20393.05 23899.37 22598.56 9288.75 29395.83 19299.01 15496.01 3298.56 20596.92 15797.20 17499.25 184
MSDG94.37 19993.36 21597.40 17398.88 13293.95 21699.37 22597.38 26885.75 33690.80 25399.17 14484.11 24199.88 10286.35 31598.43 14398.36 226
EI-MVSNet-UG-set98.14 5997.99 5898.60 9599.80 6196.27 13399.36 22798.50 11295.21 9798.30 12699.75 7193.29 10799.73 13798.37 10199.30 11799.81 94
test22299.55 8697.41 9699.34 22898.55 9891.86 22299.27 8199.83 4393.84 9499.95 4999.99 23
our_test_390.39 28989.48 29493.12 31192.40 35189.57 31599.33 22996.35 34787.84 30885.30 33794.99 33084.14 24096.09 34380.38 35184.56 30493.71 332
ppachtmachnet_test89.58 30888.35 31193.25 30992.40 35190.44 29999.33 22996.73 33285.49 33985.90 33595.77 29281.09 26396.00 34776.00 37182.49 31793.30 340
mvs_anonymous95.65 16695.03 17197.53 16598.19 17795.74 15599.33 22997.49 25890.87 25390.47 25697.10 25188.23 19897.16 28995.92 17097.66 16499.68 111
AUN-MVS93.28 22792.60 23295.34 23298.29 16890.09 30699.31 23298.56 9291.80 22696.35 18198.00 22689.38 18498.28 23592.46 23569.22 37997.64 239
xiu_mvs_v1_base_debu97.43 8997.06 9598.55 10097.74 20398.14 6299.31 23297.86 22596.43 6499.62 4799.69 8985.56 22499.68 14299.05 6098.31 14697.83 234
xiu_mvs_v1_base97.43 8997.06 9598.55 10097.74 20398.14 6299.31 23297.86 22596.43 6499.62 4799.69 8985.56 22499.68 14299.05 6098.31 14697.83 234
xiu_mvs_v1_base_debi97.43 8997.06 9598.55 10097.74 20398.14 6299.31 23297.86 22596.43 6499.62 4799.69 8985.56 22499.68 14299.05 6098.31 14697.83 234
MVS_Test96.46 13695.74 14898.61 9498.18 17897.23 9999.31 23297.15 29191.07 24998.84 9797.05 25588.17 19998.97 18094.39 20097.50 16699.61 129
hse-mvs294.38 19894.08 19295.31 23498.27 17190.02 30899.29 23798.56 9295.90 7898.77 10298.00 22690.89 16598.26 23997.80 12869.20 38097.64 239
testdata199.28 23896.35 71
Vis-MVSNetpermissive95.72 16095.15 16797.45 16997.62 21594.28 20599.28 23898.24 18394.27 13196.84 16698.94 17079.39 28098.76 19293.25 22498.49 14199.30 178
Jingyang Zhang, Yao Yao, Shiwei Li, Zixin Luo, Tian Fang: Visibility-aware Multiview Stereo Network. BMVC 2020
FMVSNet392.69 24391.58 25295.99 21598.29 16897.42 9599.26 24097.62 24089.80 27489.68 26995.32 31681.62 25796.27 33587.01 31185.65 29494.29 282
DeepC-MVS_fast96.59 198.81 2398.54 2699.62 2099.90 4298.85 3499.24 24198.47 11598.14 1099.08 8799.91 1493.09 113100.00 199.04 6399.99 21100.00 1
Andreas Kuhn, Christian Sormann, Mattia Rossi, Oliver Erdler, Friedrich Fraundorfer: DeepC-MVS: Deep Confidence Prediction for Multi-View Stereo Reconstruction. 3DV 2020
dcpmvs_297.42 9398.09 5495.42 22999.58 8587.24 33999.23 24296.95 31294.28 12998.93 9499.73 8094.39 7499.16 17499.89 1699.82 7799.86 89
YYNet185.50 33283.33 33892.00 32590.89 36988.38 33199.22 24396.55 34079.60 37357.26 39692.72 36079.09 28693.78 37277.25 36677.37 35893.84 323
v890.54 28789.17 29794.66 25493.43 33193.40 23299.20 24496.94 31685.76 33487.56 31194.51 34281.96 25397.19 28884.94 32678.25 34993.38 339
MDA-MVSNet_test_wron85.51 33183.32 33992.10 32490.96 36888.58 32799.20 24496.52 34179.70 37257.12 39792.69 36179.11 28493.86 37177.10 36777.46 35793.86 322
ACMMPcopyleft97.74 7997.44 8198.66 9099.92 3196.13 14399.18 24699.45 1994.84 10696.41 17999.71 8591.40 15199.99 3697.99 11998.03 15899.87 87
Qingshan Xu, Weihang Kong, Wenbing Tao, Marc Pollefeys: Multi-Scale Geometric Consistency Guided and Planar Prior Assisted Multi-View Stereo. IEEE Transactions on Pattern Analysis and Machine Intelligence
WR-MVS_H91.30 26890.35 27294.15 27694.17 31892.62 25199.17 24798.94 4188.87 29186.48 32794.46 34684.36 23796.61 32288.19 29378.51 34893.21 343
TAMVS95.85 15795.58 15396.65 19997.07 24093.50 22899.17 24797.82 22991.39 24195.02 20398.01 22592.20 13997.30 28193.75 21895.83 20499.14 192
PS-MVSNAJss93.64 22093.31 21694.61 25692.11 35592.19 25899.12 24997.38 26892.51 20388.45 29796.99 25891.20 15497.29 28494.36 20187.71 28194.36 276
DTE-MVSNet89.40 31088.24 31392.88 31792.66 34889.95 31099.10 25098.22 18587.29 31485.12 33996.22 28176.27 30995.30 35783.56 33575.74 36693.41 336
CP-MVSNet91.23 27290.22 27694.26 27493.96 32192.39 25599.09 25198.57 8988.95 28886.42 32896.57 27379.19 28396.37 33090.29 27278.95 34594.02 306
AdaColmapbinary97.23 10196.80 10898.51 10699.99 195.60 16499.09 25198.84 5893.32 16696.74 16999.72 8386.04 221100.00 198.01 11799.43 11199.94 74
v1090.25 29588.82 30494.57 26093.53 32993.43 23099.08 25396.87 32285.00 34387.34 31794.51 34280.93 26597.02 30482.85 33879.23 34493.26 341
XVG-OURS-SEG-HR94.79 18394.70 18095.08 24098.05 18589.19 31799.08 25397.54 25193.66 15694.87 20499.58 10878.78 28799.79 12397.31 14293.40 23896.25 252
XVG-OURS94.82 18194.74 17995.06 24198.00 18789.19 31799.08 25397.55 24994.10 13694.71 20599.62 10480.51 27199.74 13496.04 16893.06 24396.25 252
IS-MVSNet96.29 14695.90 14497.45 16998.13 18294.80 19399.08 25397.61 24392.02 21995.54 19798.96 16390.64 16898.08 24793.73 21997.41 17099.47 156
v7n89.65 30788.29 31293.72 29492.22 35390.56 29699.07 25797.10 29685.42 34186.73 32194.72 33580.06 27597.13 29281.14 34878.12 35193.49 335
EI-MVSNet93.73 21793.40 21494.74 25196.80 25792.69 24799.06 25897.67 23688.96 28791.39 24599.02 15288.75 19597.30 28191.07 25387.85 27994.22 286
CVMVSNet94.68 18994.94 17493.89 29096.80 25786.92 34299.06 25898.98 3894.45 11794.23 21499.02 15285.60 22395.31 35690.91 25995.39 21499.43 162
baseline195.78 15994.86 17598.54 10398.47 15998.07 6599.06 25897.99 20992.68 19094.13 21598.62 19893.28 10898.69 19993.79 21685.76 29398.84 209
PEN-MVS90.19 29789.06 30093.57 30093.06 34090.90 28899.06 25898.47 11588.11 30485.91 33496.30 27976.67 30295.94 34887.07 30876.91 36293.89 319
test_fmvs379.99 35380.17 35279.45 37084.02 38962.83 39199.05 26293.49 38888.29 30380.06 36386.65 38728.09 39988.00 39188.63 28673.27 37187.54 387
Anonymous2023120686.32 32685.42 32989.02 34989.11 37980.53 37899.05 26295.28 36885.43 34082.82 34893.92 35074.40 32593.44 37566.99 38581.83 32393.08 345
MAR-MVS97.43 8997.19 9298.15 12799.47 9294.79 19499.05 26298.76 6392.65 19298.66 11099.82 4688.52 19799.98 4398.12 11199.63 8999.67 115
Zhenyu Xu, Yiguang Liu, Xuelei Shi, Ying Wang, Yunan Zheng: MARMVS: Matching Ambiguity Reduced Multiple View Stereo for Efficient Large Scale Scene Reconstruction. CVPR 2020
VNet97.21 10296.57 11899.13 6398.97 11997.82 7699.03 26599.21 2994.31 12799.18 8598.88 17486.26 22099.89 9698.93 6994.32 22899.69 110
LCM-MVSNet-Re92.31 25192.60 23291.43 33097.53 21979.27 38099.02 26691.83 39492.07 21580.31 36094.38 34783.50 24495.48 35297.22 14697.58 16599.54 145
jajsoiax91.92 25791.18 26094.15 27691.35 36590.95 28799.00 26797.42 26492.61 19487.38 31597.08 25272.46 33297.36 27594.53 19988.77 26294.13 300
VPNet91.81 25990.46 26995.85 21994.74 30895.54 16698.98 26898.59 8692.14 21390.77 25497.44 24168.73 34997.54 27194.89 18977.89 35294.46 265
PS-CasMVS90.63 28589.51 29293.99 28593.83 32391.70 27498.98 26898.52 10488.48 29986.15 33296.53 27575.46 31596.31 33488.83 28578.86 34793.95 314
FMVSNet291.02 27589.56 28995.41 23097.53 21995.74 15598.98 26897.41 26687.05 31788.43 30095.00 32971.34 33796.24 33785.12 32485.21 29994.25 285
K. test v388.05 31987.24 32190.47 33891.82 36082.23 36698.96 27197.42 26489.05 28176.93 37595.60 29968.49 35195.42 35385.87 32181.01 33393.75 327
tfpnnormal89.29 31287.61 31894.34 27394.35 31594.13 21098.95 27298.94 4183.94 35084.47 34195.51 30574.84 32297.39 27477.05 36880.41 33791.48 365
AllTest92.48 24791.64 25095.00 24399.01 11488.43 32898.94 27396.82 32786.50 32588.71 29398.47 21274.73 32399.88 10285.39 32296.18 19396.71 248
h-mvs3394.92 18094.36 18496.59 20098.85 13391.29 28198.93 27498.94 4195.90 7898.77 10298.42 21590.89 16599.77 12897.80 12870.76 37498.72 217
anonymousdsp91.79 26490.92 26394.41 27190.76 37092.93 24198.93 27497.17 28889.08 28087.46 31495.30 31778.43 29396.92 30892.38 23688.73 26393.39 338
DP-MVS94.54 19293.42 21197.91 14399.46 9494.04 21298.93 27497.48 25981.15 36690.04 26099.55 11087.02 21199.95 6988.97 28498.11 15499.73 105
IterMVS-SCA-FT90.85 28090.16 28092.93 31696.72 26289.96 30998.89 27796.99 30788.95 28886.63 32395.67 29676.48 30695.00 35987.04 30984.04 31193.84 323
IterMVS90.91 27790.17 27993.12 31196.78 26090.42 30098.89 27797.05 30389.03 28286.49 32695.42 30976.59 30495.02 35887.22 30684.09 30893.93 316
Fangjinhua Wang, Silvano Galliani, Christoph Vogel, Marc Pollefeys: IterMVS: Iterative Probability Estimation for Efficient Multi-View Stereo.
Anonymous20240521193.10 23391.99 24596.40 20699.10 10989.65 31498.88 27997.93 21683.71 35394.00 21698.75 18668.79 34799.88 10295.08 18291.71 24499.68 111
VPA-MVSNet92.70 24291.55 25496.16 21295.09 30296.20 13998.88 27999.00 3691.02 25191.82 24295.29 32076.05 31297.96 25595.62 17681.19 32794.30 281
test20.0384.72 33783.99 33286.91 35988.19 38280.62 37798.88 27995.94 35588.36 30178.87 36594.62 34068.75 34889.11 39066.52 38775.82 36591.00 367
XXY-MVS91.82 25890.46 26995.88 21793.91 32295.40 17398.87 28297.69 23488.63 29787.87 30797.08 25274.38 32697.89 25991.66 24684.07 30994.35 279
test111195.57 16794.98 17397.37 17598.56 14993.37 23398.86 28398.45 11894.95 10096.63 17198.95 16875.21 32099.11 17595.02 18398.14 15399.64 121
SCA94.69 18793.81 20097.33 17997.10 23994.44 19898.86 28398.32 17293.30 16796.17 18595.59 30076.48 30697.95 25691.06 25497.43 16799.59 132
ECVR-MVScopyleft95.66 16595.05 17097.51 16798.66 14493.71 22198.85 28598.45 11894.93 10196.86 16598.96 16375.22 31999.20 16995.34 17798.15 15199.64 121
eth_miper_zixun_eth92.41 24991.93 24693.84 29197.28 23690.68 29298.83 28696.97 31188.57 29889.19 28695.73 29589.24 18996.69 31989.97 27781.55 32494.15 296
CL-MVSNet_self_test84.50 33883.15 34188.53 35486.00 38581.79 36998.82 28797.35 27085.12 34283.62 34690.91 37276.66 30391.40 38569.53 38160.36 39492.40 356
test250697.53 8697.19 9298.58 9898.66 14496.90 11398.81 28899.77 594.93 10197.95 13798.96 16392.51 13199.20 16994.93 18598.15 15199.64 121
ACMH+89.98 1690.35 29189.54 29092.78 31995.99 27686.12 34598.81 28897.18 28789.38 27783.14 34797.76 23668.42 35298.43 21489.11 28386.05 29293.78 326
Anonymous2024052185.15 33483.81 33689.16 34888.32 38082.69 36198.80 29095.74 35879.72 37181.53 35590.99 37065.38 36494.16 36772.69 37581.11 33090.63 371
N_pmnet80.06 35280.78 35077.89 37191.94 35745.28 40998.80 29056.82 41178.10 37680.08 36293.33 35577.03 29795.76 35068.14 38482.81 31492.64 351
VDD-MVS93.77 21592.94 22396.27 21098.55 15290.22 30398.77 29297.79 23090.85 25496.82 16799.42 12061.18 37799.77 12898.95 6794.13 23198.82 210
LFMVS94.75 18693.56 20798.30 11999.03 11395.70 15898.74 29397.98 21187.81 30998.47 11899.39 12567.43 35699.53 15098.01 11795.20 21999.67 115
LS3D95.84 15895.11 16898.02 13599.85 5495.10 18598.74 29398.50 11287.22 31693.66 21999.86 2687.45 20599.95 6990.94 25899.81 7999.02 201
Anonymous2024052992.10 25590.65 26696.47 20198.82 13490.61 29498.72 29598.67 7375.54 38293.90 21898.58 20266.23 36099.90 9194.70 19590.67 24798.90 207
dmvs_re93.20 22993.15 21993.34 30496.54 26583.81 35798.71 29698.51 10791.39 24192.37 23798.56 20478.66 28997.83 26193.89 20989.74 24898.38 225
TR-MVS94.54 19293.56 20797.49 16897.96 18994.34 20498.71 29697.51 25690.30 26794.51 20898.69 19075.56 31498.77 19192.82 23395.99 19799.35 171
USDC90.00 30188.96 30293.10 31394.81 30788.16 33298.71 29695.54 36493.66 15683.75 34597.20 24865.58 36298.31 23183.96 33287.49 28592.85 349
VDDNet93.12 23291.91 24796.76 19496.67 26492.65 25098.69 29998.21 18682.81 35997.75 14499.28 13161.57 37599.48 15998.09 11494.09 23298.15 229
EU-MVSNet90.14 29990.34 27389.54 34592.55 34981.06 37498.69 29998.04 20791.41 24086.59 32496.84 26580.83 26693.31 37686.20 31681.91 32294.26 283
mvs_tets91.81 25991.08 26194.00 28491.63 36290.58 29598.67 30197.43 26292.43 20587.37 31697.05 25571.76 33497.32 28094.75 19388.68 26594.11 301
MDA-MVSNet-bldmvs84.09 34081.52 34791.81 32891.32 36688.00 33598.67 30195.92 35680.22 37055.60 39893.32 35668.29 35393.60 37473.76 37376.61 36493.82 325
UGNet95.33 17394.57 18197.62 16298.55 15294.85 19098.67 30199.32 2695.75 8396.80 16896.27 28072.18 33399.96 6194.58 19899.05 12998.04 232
Wanjuan Su, Qingshan Xu, Wenbing Tao: Uncertainty-guided Multi-view Stereo Network for Depth Estimation. IEEE Transactions on Circuits and Systems for Video Technology, 2022
pm-mvs189.36 31187.81 31794.01 28393.40 33391.93 26498.62 30496.48 34386.25 32983.86 34496.14 28473.68 32997.04 30086.16 31775.73 36793.04 346
test_040285.58 32983.94 33490.50 33793.81 32485.04 35198.55 30595.20 37176.01 37979.72 36495.13 32364.15 36896.26 33666.04 38986.88 28890.21 374
ACMH89.72 1790.64 28489.63 28793.66 29995.64 29588.64 32698.55 30597.45 26089.03 28281.62 35497.61 23869.75 34498.41 21689.37 28087.62 28393.92 317
Qingshan Xu and Wenbing Tao: Multi-Scale Geometric Consistency Guided Multi-View Stereo. CVPR 2019
Anonymous2023121189.86 30388.44 31094.13 27898.93 12390.68 29298.54 30798.26 18276.28 37886.73 32195.54 30270.60 34297.56 27090.82 26180.27 34094.15 296
TransMVSNet (Re)87.25 32385.28 33093.16 31093.56 32891.03 28398.54 30794.05 38383.69 35481.09 35796.16 28375.32 31696.40 32976.69 36968.41 38192.06 359
XVG-ACMP-BASELINE91.22 27390.75 26492.63 32093.73 32585.61 34798.52 30997.44 26192.77 18589.90 26496.85 26366.64 35998.39 22092.29 23788.61 26693.89 319
CHOSEN 280x42099.01 1399.03 1098.95 7699.38 9698.87 3298.46 31099.42 2297.03 4299.02 9099.09 14799.35 198.21 24199.73 3299.78 8099.77 101
OpenMVS_ROBcopyleft79.82 2083.77 34381.68 34690.03 34288.30 38182.82 36098.46 31095.22 37073.92 38776.00 37891.29 36955.00 38396.94 30668.40 38388.51 27090.34 372
GBi-Net90.88 27889.82 28494.08 27997.53 21991.97 26198.43 31296.95 31287.05 31789.68 26994.72 33571.34 33796.11 34087.01 31185.65 29494.17 290
test190.88 27889.82 28494.08 27997.53 21991.97 26198.43 31296.95 31287.05 31789.68 26994.72 33571.34 33796.11 34087.01 31185.65 29494.17 290
FMVSNet188.50 31686.64 32294.08 27995.62 29791.97 26198.43 31296.95 31283.00 35786.08 33394.72 33559.09 37996.11 34081.82 34684.07 30994.17 290
COLMAP_ROBcopyleft90.47 1492.18 25491.49 25694.25 27599.00 11688.04 33498.42 31596.70 33482.30 36288.43 30099.01 15476.97 29999.85 10886.11 31896.50 18894.86 259
Johannes L. Schönberger, Enliang Zheng, Marc Pollefeys, Jan-Michael Frahm: Pixelwise View Selection for Unstructured Multi-View Stereo. ECCV 2016
tt080591.28 27090.18 27894.60 25796.26 26987.55 33698.39 31698.72 6589.00 28489.22 28398.47 21262.98 37198.96 18190.57 26588.00 27897.28 245
test12337.68 37339.14 37633.31 38819.94 41224.83 41498.36 3179.75 41315.53 40651.31 40087.14 38519.62 40717.74 40847.10 4003.47 40757.36 401
131496.84 11895.96 13899.48 3496.74 26198.52 5698.31 31898.86 5395.82 8089.91 26398.98 15987.49 20499.96 6197.80 12899.73 8399.96 64
MVS96.60 13195.56 15499.72 1396.85 25499.22 2098.31 31898.94 4191.57 23090.90 25299.61 10586.66 21599.96 6197.36 14199.88 6999.99 23
NR-MVSNet91.56 26790.22 27695.60 22394.05 31995.76 15498.25 32098.70 6791.16 24680.78 35996.64 27083.23 24796.57 32391.41 24877.73 35494.46 265
sd_testset93.55 22292.83 22695.74 22298.92 12590.89 28998.24 32198.85 5692.41 20692.55 23497.85 23271.07 34198.68 20093.93 20891.62 24597.64 239
MS-PatchMatch90.65 28390.30 27491.71 32994.22 31785.50 34998.24 32197.70 23388.67 29586.42 32896.37 27867.82 35498.03 25183.62 33499.62 9091.60 363
pmmvs380.27 35177.77 35687.76 35880.32 39682.43 36498.23 32391.97 39372.74 38978.75 36687.97 38357.30 38290.99 38770.31 37962.37 39289.87 376
SixPastTwentyTwo88.73 31588.01 31690.88 33391.85 35982.24 36598.22 32495.18 37288.97 28682.26 35096.89 26071.75 33596.67 32084.00 33082.98 31393.72 331
EG-PatchMatch MVS85.35 33383.81 33689.99 34390.39 37281.89 36898.21 32596.09 35381.78 36474.73 38193.72 35351.56 38997.12 29479.16 35988.61 26690.96 368
OurMVSNet-221017-089.81 30489.48 29490.83 33591.64 36181.21 37298.17 32695.38 36791.48 23485.65 33697.31 24572.66 33197.29 28488.15 29484.83 30293.97 313
LF4IMVS89.25 31388.85 30390.45 33992.81 34781.19 37398.12 32794.79 37491.44 23686.29 33097.11 25065.30 36598.11 24688.53 29085.25 29892.07 358
RPSCF91.80 26292.79 22888.83 35098.15 18069.87 38898.11 32896.60 33883.93 35194.33 21199.27 13479.60 27999.46 16191.99 24193.16 24197.18 246
pmmvs-eth3d84.03 34181.97 34590.20 34084.15 38887.09 34098.10 32994.73 37683.05 35674.10 38387.77 38465.56 36394.01 36881.08 34969.24 37889.49 381
DSMNet-mixed88.28 31888.24 31388.42 35589.64 37775.38 38498.06 33089.86 39885.59 33888.20 30492.14 36776.15 31191.95 38478.46 36196.05 19697.92 233
MVP-Stereo90.93 27690.45 27192.37 32291.25 36788.76 32198.05 33196.17 35187.27 31584.04 34295.30 31778.46 29297.27 28683.78 33399.70 8591.09 366
Qingsong Yan: MVP-Stereo: A Parallel Multi-View Patchmatch Stereo Method with Dilation Matching for Photogrammetric Application.
UA-Net96.54 13395.96 13898.27 12098.23 17395.71 15798.00 33298.45 11893.72 15598.41 12099.27 13488.71 19699.66 14691.19 25197.69 16299.44 161
new-patchmatchnet81.19 34779.34 35486.76 36082.86 39180.36 37997.92 33395.27 36982.09 36372.02 38486.87 38662.81 37290.74 38871.10 37863.08 39189.19 384
PCF-MVS94.20 595.18 17494.10 19198.43 11298.55 15295.99 14797.91 33497.31 27590.35 26589.48 27699.22 14085.19 22999.89 9690.40 27198.47 14299.41 164
Andreas Kuhn, Shan Lin, Oliver Erdler: Plane Completion and Filtering for Multi-View Stereo Reconstruction. GCPR 2019
WB-MVS76.28 35677.28 35873.29 37681.18 39354.68 40197.87 33594.19 38081.30 36569.43 38890.70 37377.02 29882.06 39935.71 40468.11 38383.13 390
pmmvs685.69 32883.84 33591.26 33290.00 37684.41 35597.82 33696.15 35275.86 38081.29 35695.39 31261.21 37696.87 31183.52 33673.29 37092.50 354
UniMVSNet_ETH3D90.06 30088.58 30894.49 26594.67 31088.09 33397.81 33797.57 24883.91 35288.44 29897.41 24257.44 38197.62 26991.41 24888.59 26897.77 237
TinyColmap87.87 32286.51 32391.94 32695.05 30485.57 34897.65 33894.08 38184.40 34981.82 35396.85 26362.14 37398.33 22980.25 35386.37 29191.91 362
HY-MVS92.50 797.79 7697.17 9499.63 1798.98 11899.32 997.49 33999.52 1595.69 8498.32 12597.41 24293.32 10599.77 12898.08 11595.75 20799.81 94
SSC-MVS75.42 35776.40 36072.49 38080.68 39553.62 40297.42 34094.06 38280.42 36968.75 38990.14 37576.54 30581.66 40033.25 40566.34 38782.19 391
Effi-MVS+96.30 14595.69 15098.16 12497.85 19696.26 13497.41 34197.21 28490.37 26498.65 11198.58 20286.61 21698.70 19897.11 14897.37 17199.52 149
TDRefinement84.76 33582.56 34391.38 33174.58 40184.80 35497.36 34294.56 37884.73 34780.21 36196.12 28763.56 36998.39 22087.92 29763.97 39090.95 369
FMVSNet588.32 31787.47 31990.88 33396.90 25288.39 33097.28 34395.68 36082.60 36184.67 34092.40 36579.83 27791.16 38676.39 37081.51 32593.09 344
KD-MVS_self_test83.59 34482.06 34488.20 35686.93 38380.70 37697.21 34496.38 34582.87 35882.49 34988.97 37867.63 35592.32 38273.75 37462.30 39391.58 364
LTVRE_ROB88.28 1890.29 29489.05 30194.02 28295.08 30390.15 30597.19 34597.43 26284.91 34683.99 34397.06 25474.00 32898.28 23584.08 32987.71 28193.62 333
Andreas Kuhn, Heiko Hirschmüller, Daniel Scharstein, Helmut Mayer: A TV Prior for High-Quality Scalable Multi-View Stereo Reconstruction. International Journal of Computer Vision 2016
KD-MVS_2432*160088.00 32086.10 32493.70 29796.91 24994.04 21297.17 34697.12 29484.93 34481.96 35192.41 36392.48 13294.51 36579.23 35652.68 39792.56 352
miper_refine_blended88.00 32086.10 32493.70 29796.91 24994.04 21297.17 34697.12 29484.93 34481.96 35192.41 36392.48 13294.51 36579.23 35652.68 39792.56 352
mvsany_test382.12 34681.14 34885.06 36381.87 39270.41 38797.09 34892.14 39291.27 24377.84 37188.73 37939.31 39495.49 35190.75 26371.24 37389.29 383
CostFormer96.10 15095.88 14596.78 19397.03 24292.55 25297.08 34997.83 22890.04 27198.72 10794.89 33395.01 5698.29 23396.54 16295.77 20599.50 153
tpm93.70 21993.41 21394.58 25995.36 30087.41 33897.01 35096.90 31990.85 25496.72 17094.14 34990.40 17296.84 31290.75 26388.54 26999.51 151
CMPMVSbinary61.59 2184.75 33685.14 33183.57 36590.32 37362.54 39396.98 35197.59 24774.33 38669.95 38796.66 26864.17 36798.32 23087.88 29888.41 27189.84 377
M. Jancosek, T. Pajdla: Multi-View Reconstruction Preserving Weakly-Supported Surfaces. CVPR 2011
test_f78.40 35577.59 35780.81 36980.82 39462.48 39496.96 35293.08 39083.44 35574.57 38284.57 39127.95 40092.63 38084.15 32872.79 37287.32 388
tpm295.47 16995.18 16696.35 20996.91 24991.70 27496.96 35297.93 21688.04 30698.44 11995.40 31093.32 10597.97 25394.00 20795.61 20999.38 166
new_pmnet84.49 33982.92 34289.21 34790.03 37582.60 36296.89 35495.62 36280.59 36875.77 38089.17 37765.04 36694.79 36372.12 37781.02 33290.23 373
dmvs_testset83.79 34286.07 32676.94 37292.14 35448.60 40796.75 35590.27 39789.48 27678.65 36798.55 20679.25 28186.65 39566.85 38682.69 31595.57 258
UnsupCasMVSNet_eth85.52 33083.99 33290.10 34189.36 37883.51 35996.65 35697.99 20989.14 27975.89 37993.83 35163.25 37093.92 36981.92 34567.90 38492.88 348
MIMVSNet182.58 34580.51 35188.78 35186.68 38484.20 35696.65 35695.41 36678.75 37478.59 36892.44 36251.88 38889.76 38965.26 39078.95 34592.38 357
ab-mvs94.69 18793.42 21198.51 10698.07 18496.26 13496.49 35898.68 7090.31 26694.54 20697.00 25776.30 30899.71 13895.98 16993.38 23999.56 140
test_vis3_rt68.82 35966.69 36475.21 37576.24 40060.41 39696.44 35968.71 41075.13 38450.54 40169.52 39916.42 40996.32 33380.27 35266.92 38668.89 397
EPMVS96.53 13496.01 13198.09 13198.43 16096.12 14596.36 36099.43 2193.53 15997.64 14595.04 32694.41 7098.38 22491.13 25298.11 15499.75 103
tpmrst96.27 14895.98 13497.13 18397.96 18993.15 23596.34 36198.17 19192.07 21598.71 10895.12 32493.91 9098.73 19494.91 18896.62 18599.50 153
FA-MVS(test-final)95.86 15695.09 16998.15 12797.74 20395.62 16396.31 36298.17 19191.42 23996.26 18296.13 28590.56 16999.47 16092.18 23997.07 17699.35 171
dp95.05 17794.43 18396.91 18997.99 18892.73 24696.29 36397.98 21189.70 27595.93 18994.67 33993.83 9598.45 21386.91 31496.53 18799.54 145
EGC-MVSNET69.38 35863.76 36886.26 36190.32 37381.66 37196.24 36493.85 3850.99 4083.22 40992.33 36652.44 38692.92 37959.53 39584.90 30184.21 389
tpm cat193.51 22392.52 23796.47 20197.77 20191.47 28096.13 36598.06 20480.98 36792.91 22893.78 35289.66 17998.87 18487.03 31096.39 19199.09 195
MDTV_nov1_ep13_2view96.26 13496.11 36691.89 22198.06 13494.40 7194.30 20399.67 115
PatchmatchNetpermissive95.94 15595.45 15697.39 17497.83 19794.41 20196.05 36798.40 15292.86 17997.09 15895.28 32194.21 8298.07 24989.26 28298.11 15499.70 108
Fangjinhua Wang, Silvano Galliani, Christoph Vogel, Pablo Speciale, Marc Pollefeys: PatchmatchNet: Learned Multi-View Patchmatch Stereo.
APD_test181.15 34880.92 34981.86 36892.45 35059.76 39796.04 36893.61 38773.29 38877.06 37396.64 27044.28 39396.16 33972.35 37682.52 31689.67 379
MDTV_nov1_ep1395.69 15097.90 19294.15 20995.98 36998.44 12393.12 17297.98 13695.74 29395.10 5198.58 20490.02 27596.92 182
FPMVS68.72 36068.72 36168.71 38265.95 40544.27 41195.97 37094.74 37551.13 39753.26 39990.50 37425.11 40283.00 39860.80 39380.97 33478.87 395
PM-MVS80.47 35078.88 35585.26 36283.79 39072.22 38695.89 37191.08 39585.71 33776.56 37788.30 38036.64 39593.90 37082.39 34169.57 37789.66 380
test_post195.78 37259.23 40693.20 11197.74 26591.06 254
tpmvs94.28 20393.57 20696.40 20698.55 15291.50 27995.70 37398.55 9887.47 31192.15 23894.26 34891.42 15098.95 18288.15 29495.85 20398.76 213
FE-MVS95.70 16495.01 17297.79 14898.21 17594.57 19695.03 37498.69 6888.90 29097.50 14996.19 28292.60 12899.49 15889.99 27697.94 16099.31 176
ADS-MVSNet293.80 21493.88 19893.55 30197.87 19485.94 34694.24 37596.84 32490.07 26996.43 17794.48 34490.29 17495.37 35487.44 30197.23 17299.36 169
ADS-MVSNet94.79 18394.02 19397.11 18597.87 19493.79 21894.24 37598.16 19590.07 26996.43 17794.48 34490.29 17498.19 24287.44 30197.23 17299.36 169
EMVS51.44 37151.22 37352.11 38770.71 40344.97 41094.04 37775.66 40935.34 40442.40 40461.56 40528.93 39865.87 40627.64 40724.73 40245.49 403
PMMVS267.15 36464.15 36776.14 37470.56 40462.07 39593.89 37887.52 40258.09 39360.02 39278.32 39422.38 40384.54 39759.56 39447.03 39981.80 392
GG-mvs-BLEND98.54 10398.21 17598.01 6893.87 37998.52 10497.92 13897.92 23199.02 297.94 25898.17 10899.58 9799.67 115
UnsupCasMVSNet_bld79.97 35477.03 35988.78 35185.62 38681.98 36793.66 38097.35 27075.51 38370.79 38683.05 39248.70 39094.91 36178.31 36260.29 39589.46 382
E-PMN52.30 36952.18 37152.67 38671.51 40245.40 40893.62 38176.60 40836.01 40243.50 40364.13 40227.11 40167.31 40531.06 40626.06 40145.30 404
JIA-IIPM91.76 26590.70 26594.94 24596.11 27287.51 33793.16 38298.13 20075.79 38197.58 14677.68 39592.84 12097.97 25388.47 29196.54 18699.33 174
gg-mvs-nofinetune93.51 22391.86 24998.47 10897.72 20897.96 7292.62 38398.51 10774.70 38597.33 15369.59 39898.91 397.79 26297.77 13399.56 9899.67 115
MIMVSNet90.30 29388.67 30795.17 23996.45 26691.64 27692.39 38497.15 29185.99 33190.50 25593.19 35966.95 35794.86 36282.01 34493.43 23799.01 202
MVS-HIRNet86.22 32783.19 34095.31 23496.71 26390.29 30192.12 38597.33 27362.85 39286.82 32070.37 39769.37 34597.49 27275.12 37297.99 15998.15 229
CR-MVSNet93.45 22692.62 23195.94 21696.29 26792.66 24892.01 38696.23 34992.62 19396.94 16293.31 35791.04 15996.03 34579.23 35695.96 19899.13 193
RPMNet89.76 30587.28 32097.19 18296.29 26792.66 24892.01 38698.31 17470.19 39196.94 16285.87 39087.25 20899.78 12562.69 39295.96 19899.13 193
Patchmatch-test92.65 24591.50 25596.10 21496.85 25490.49 29791.50 38897.19 28582.76 36090.23 25795.59 30095.02 5598.00 25277.41 36596.98 18199.82 92
Patchmtry89.70 30688.49 30993.33 30596.24 27089.94 31291.37 38996.23 34978.22 37587.69 30893.31 35791.04 15996.03 34580.18 35482.10 32094.02 306
PatchT90.38 29088.75 30695.25 23695.99 27690.16 30491.22 39097.54 25176.80 37797.26 15586.01 38991.88 14696.07 34466.16 38895.91 20299.51 151
testf168.38 36166.92 36272.78 37878.80 39750.36 40490.95 39187.35 40355.47 39458.95 39388.14 38120.64 40487.60 39257.28 39664.69 38880.39 393
APD_test268.38 36166.92 36272.78 37878.80 39750.36 40490.95 39187.35 40355.47 39458.95 39388.14 38120.64 40487.60 39257.28 39664.69 38880.39 393
Patchmatch-RL test86.90 32485.98 32889.67 34484.45 38775.59 38389.71 39392.43 39186.89 32277.83 37290.94 37194.22 8093.63 37387.75 29969.61 37699.79 97
LCM-MVSNet67.77 36364.73 36676.87 37362.95 40756.25 40089.37 39493.74 38644.53 39961.99 39180.74 39320.42 40686.53 39669.37 38259.50 39687.84 385
ambc83.23 36677.17 39962.61 39287.38 39594.55 37976.72 37686.65 38730.16 39696.36 33184.85 32769.86 37590.73 370
ANet_high56.10 36752.24 37067.66 38349.27 40956.82 39983.94 39682.02 40670.47 39033.28 40664.54 40117.23 40869.16 40445.59 40123.85 40377.02 396
tmp_tt65.23 36662.94 36972.13 38144.90 41050.03 40681.05 39789.42 40138.45 40048.51 40299.90 1854.09 38578.70 40291.84 24518.26 40487.64 386
MVEpermissive53.74 2251.54 37047.86 37462.60 38459.56 40850.93 40379.41 39877.69 40735.69 40336.27 40561.76 4045.79 41369.63 40337.97 40336.61 40067.24 398
Simon Fuhrmann, Fabian Langguth, Michael Goesele: MVE - A Multi-View Reconstruction Environment. EUROGRAPHICS Workshops on Graphics and Cultural Heritage (2014)
PMVScopyleft49.05 2353.75 36851.34 37260.97 38540.80 41134.68 41274.82 39989.62 40037.55 40128.67 40772.12 3967.09 41181.63 40143.17 40268.21 38266.59 399
Y. Furukawa, J. Ponce: Accurate, dense, and robust multiview stereopsis. PAMI (2010)
Gipumacopyleft66.95 36565.00 36572.79 37791.52 36367.96 38966.16 40095.15 37347.89 39858.54 39567.99 40029.74 39787.54 39450.20 39977.83 35362.87 400
S. Galliani, K. Lasinger, K. Schindler: Massively Parallel Multiview Stereopsis by Surface Normal Diffusion. ICCV 2015
wuyk23d20.37 37520.84 37818.99 39065.34 40627.73 41350.43 4017.67 4149.50 4078.01 4086.34 4086.13 41226.24 40723.40 40810.69 4062.99 405
test_blank0.00 3780.00 3810.00 3910.00 4140.00 4160.00 4020.00 4150.00 4090.00 4100.02 4090.00 4140.00 4100.00 4090.00 4080.00 406
uanet_test0.00 3780.00 3810.00 3910.00 4140.00 4160.00 4020.00 4150.00 4090.00 4100.00 4100.00 4140.00 4100.00 4090.00 4080.00 406
DCPMVS0.00 3780.00 3810.00 3910.00 4140.00 4160.00 4020.00 4150.00 4090.00 4100.00 4100.00 4140.00 4100.00 4090.00 4080.00 406
cdsmvs_eth3d_5k23.43 37431.24 3770.00 3910.00 4140.00 4160.00 40298.09 2010.00 4090.00 41099.67 9683.37 2450.00 4100.00 4090.00 4080.00 406
pcd_1.5k_mvsjas7.60 37710.13 3800.00 3910.00 4140.00 4160.00 4020.00 4150.00 4090.00 4100.00 41091.20 1540.00 4100.00 4090.00 4080.00 406
sosnet-low-res0.00 3780.00 3810.00 3910.00 4140.00 4160.00 4020.00 4150.00 4090.00 4100.00 4100.00 4140.00 4100.00 4090.00 4080.00 406
sosnet0.00 3780.00 3810.00 3910.00 4140.00 4160.00 4020.00 4150.00 4090.00 4100.00 4100.00 4140.00 4100.00 4090.00 4080.00 406
uncertanet0.00 3780.00 3810.00 3910.00 4140.00 4160.00 4020.00 4150.00 4090.00 4100.00 4100.00 4140.00 4100.00 4090.00 4080.00 406
Regformer0.00 3780.00 3810.00 3910.00 4140.00 4160.00 4020.00 4150.00 4090.00 4100.00 4100.00 4140.00 4100.00 4090.00 4080.00 406
ab-mvs-re8.28 37611.04 3790.00 3910.00 4140.00 4160.00 4020.00 4150.00 4090.00 41099.40 1230.00 4140.00 4100.00 4090.00 4080.00 406
uanet0.00 3780.00 3810.00 3910.00 4140.00 4160.00 4020.00 4150.00 4090.00 4100.00 4100.00 4140.00 4100.00 4090.00 4080.00 406
WAC-MVS90.97 28486.10 319
MSC_two_6792asdad99.93 299.91 3999.80 298.41 148100.00 199.96 9100.00 1100.00 1
PC_three_145296.96 4499.80 1899.79 5797.49 9100.00 199.99 599.98 32100.00 1
No_MVS99.93 299.91 3999.80 298.41 148100.00 199.96 9100.00 1100.00 1
test_one_060199.94 1399.30 1298.41 14896.63 5699.75 3099.93 1197.49 9
eth-test20.00 414
eth-test0.00 414
ZD-MVS99.92 3198.57 5498.52 10492.34 20999.31 7799.83 4395.06 5399.80 12199.70 3499.97 42
IU-MVS99.93 2499.31 1098.41 14897.71 1999.84 12100.00 1100.00 1100.00 1
test_241102_TWO98.43 13197.27 3499.80 1899.94 497.18 20100.00 1100.00 1100.00 1100.00 1
test_241102_ONE99.93 2499.30 1298.43 13197.26 3699.80 1899.88 2196.71 23100.00 1
test_0728_THIRD96.48 6199.83 1399.91 1497.87 5100.00 199.92 12100.00 1100.00 1
GSMVS99.59 132
test_part299.89 4599.25 1899.49 63
sam_mvs194.72 6499.59 132
sam_mvs94.25 79
MTGPAbinary98.28 179
test_post63.35 40394.43 6998.13 245
patchmatchnet-post91.70 36895.12 5097.95 256
gm-plane-assit96.97 24693.76 22091.47 23598.96 16398.79 18994.92 186
test9_res99.71 3399.99 21100.00 1
agg_prior299.48 43100.00 1100.00 1
agg_prior99.93 2498.77 4098.43 13199.63 4499.85 108
TestCases95.00 24399.01 11488.43 32896.82 32786.50 32588.71 29398.47 21274.73 32399.88 10285.39 32296.18 19396.71 248
test_prior99.43 3599.94 1398.49 5898.65 7499.80 12199.99 23
新几何199.42 3799.75 6898.27 6198.63 8092.69 18999.55 5599.82 4694.40 71100.00 191.21 25099.94 5499.99 23
旧先验199.76 6697.52 8798.64 7699.85 3095.63 4199.94 5499.99 23
原ACMM198.96 7599.73 7296.99 10998.51 10794.06 14099.62 4799.85 3094.97 5999.96 6195.11 18099.95 4999.92 81
testdata299.99 3690.54 267
segment_acmp96.68 25
testdata98.42 11399.47 9295.33 17598.56 9293.78 15299.79 2699.85 3093.64 9999.94 7794.97 18499.94 54100.00 1
test1299.43 3599.74 6998.56 5598.40 15299.65 4194.76 6399.75 13299.98 3299.99 23
plane_prior795.71 29191.59 278
plane_prior695.76 28591.72 27380.47 273
plane_prior597.87 22398.37 22697.79 13189.55 25294.52 262
plane_prior498.59 199
plane_prior391.64 27696.63 5693.01 225
plane_prior195.73 288
n20.00 415
nn0.00 415
door-mid89.69 399
lessismore_v090.53 33690.58 37180.90 37595.80 35777.01 37495.84 29066.15 36196.95 30583.03 33775.05 36893.74 330
LGP-MVS_train93.71 29595.43 29888.67 32497.62 24092.81 18290.05 25898.49 20875.24 31798.40 21895.84 17289.12 25694.07 303
test1198.44 123
door90.31 396
HQP5-MVS91.85 266
BP-MVS97.92 123
HQP4-MVS93.37 22198.39 22094.53 260
HQP3-MVS97.89 22189.60 249
HQP2-MVS80.65 269
NP-MVS95.77 28491.79 26898.65 194
ACMMP++_ref87.04 286
ACMMP++88.23 274
Test By Simon92.82 122
ITE_SJBPF92.38 32195.69 29385.14 35095.71 35992.81 18289.33 28098.11 22270.23 34398.42 21585.91 32088.16 27593.59 334
DeepMVS_CXcopyleft82.92 36795.98 27858.66 39896.01 35492.72 18678.34 36995.51 30558.29 38098.08 24782.57 33985.29 29792.03 360