This table lists the benchmark results for the high-res multi-view scenario. The following metrics are evaluated:

(*) For exact definitions, detailing how potentially incomplete ground truth is taken into account, see our paper.

The datasets are grouped into different categories, and result averages are computed for a category and method if results of the method are available for all datasets within the category. Note that the category "all" includes both the high-res multi-view and the low-res many-view scenarios.

Methods with suffix _ROB may participate in the Robust Vision Challenge.

Click a dataset result cell to show a visualization of the reconstruction. For training datasets, ground truth and accuracy / completeness visualizations are also available. The visualizations may not work with mobile browsers.




Method Infoallhigh-res
multi-view
indooroutdoorbotani.boulde.bridgedoorexhibi.lectur.living.loungeobserv.old co.statueterrac.
sort bysort bysort bysort bysort bysort bysorted bysort bysort bysort bysort bysort bysort bysort bysort bysort by
MCST-MVS83.01 183.30 282.15 1092.84 257.58 1493.77 191.10 675.95 377.10 2793.09 1954.15 2795.57 1285.80 385.87 3493.31 11
DELS-MVS82.32 482.50 381.79 1186.80 4256.89 2592.77 286.30 7477.83 177.88 2492.13 3060.24 694.78 1978.97 3089.61 793.69 8
Christian Sormann, Emanuele Santellani, Mattia Rossi, Andreas Kuhn, Friedrich Fraundorfer: DELS-MVS: Deep Epipolar Line Search for Multi-View Stereo. Winter Conference on Applications of Computer Vision (WACV), 2023
SED-MVS81.92 681.75 782.44 789.48 1756.89 2592.48 388.94 2257.50 20184.61 494.09 358.81 1196.37 682.28 1387.60 1794.06 3
OPU-MVS81.71 1292.05 355.97 4392.48 394.01 567.21 295.10 1589.82 192.55 394.06 3
DVP-MVScopyleft81.30 881.00 1182.20 889.40 2057.45 1792.34 589.99 1357.71 19581.91 1293.64 1055.17 2096.44 281.68 1587.13 2092.72 23
Zhenlong Yuan, Jinguo Luo, Fei Shen, Zhaoxin Li, Cong Liu, Tianlu Mao, Zhaoqi Wang: DVP-MVS: Synergize Depth-Edge and Visibility Prior for Multi-View Stereo. AAAI2025
test_0728_SECOND82.20 889.50 1557.73 1192.34 588.88 2496.39 481.68 1587.13 2092.47 26
test072689.40 2057.45 1792.32 788.63 3357.71 19583.14 993.96 655.17 20
DPM-MVS82.39 382.36 582.49 580.12 17559.50 592.24 890.72 969.37 2383.22 894.47 263.81 593.18 2974.02 6693.25 294.80 1
CNVR-MVS81.76 781.90 681.33 1790.04 1057.70 1291.71 988.87 2670.31 1777.64 2693.87 752.58 3493.91 2584.17 587.92 1592.39 28
PS-MVSNAJ80.06 1479.52 1581.68 1385.58 5560.97 391.69 1087.02 6070.62 1480.75 1793.22 1637.77 17392.50 4082.75 1086.25 3191.57 51
xiu_mvs_v2_base79.86 1579.31 1681.53 1485.03 6760.73 491.65 1186.86 6370.30 1880.77 1693.07 2037.63 17892.28 4582.73 1185.71 3591.57 51
CANet80.90 981.17 1080.09 3087.62 3754.21 8691.60 1286.47 7073.13 679.89 2093.10 1749.88 5492.98 3084.09 784.75 4693.08 16
lupinMVS78.38 2378.11 2479.19 3883.02 10955.24 5791.57 1384.82 11269.12 2476.67 2992.02 3444.82 9990.23 9880.83 2280.09 8292.08 36
NCCC79.57 1779.23 1780.59 2089.50 1556.99 2391.38 1488.17 4267.71 3873.81 4392.75 2246.88 7293.28 2878.79 3384.07 5191.50 55
test_yl75.85 5674.83 6178.91 4488.08 3451.94 13891.30 1589.28 1657.91 18971.19 7689.20 9342.03 13492.77 3469.41 8675.07 12792.01 39
DCV-MVSNet75.85 5674.83 6178.91 4488.08 3451.94 13891.30 1589.28 1657.91 18971.19 7689.20 9342.03 13492.77 3469.41 8675.07 12792.01 39
LFMVS78.52 2077.14 3482.67 389.58 1358.90 791.27 1788.05 4463.22 9674.63 3690.83 5841.38 14394.40 2075.42 5579.90 8794.72 2
VDD-MVS76.08 5374.97 5879.44 3484.27 7953.33 10991.13 1885.88 8065.33 6672.37 6289.34 9032.52 23992.76 3677.90 4175.96 11692.22 34
DeepPCF-MVS69.37 180.65 1181.56 977.94 7385.46 5849.56 19090.99 1986.66 6870.58 1580.07 1995.30 156.18 1790.97 7682.57 1286.22 3293.28 12
VNet77.99 2977.92 2678.19 6787.43 3850.12 17890.93 2091.41 467.48 4175.12 3390.15 7546.77 7491.00 7373.52 6978.46 9993.44 9
CLD-MVS75.60 6075.39 5176.24 11080.69 16552.40 13090.69 2186.20 7674.40 465.01 12388.93 9742.05 13390.58 8776.57 4673.96 13385.73 171
Zhaoxin Li, Wangmeng Zuo, Zhaoqi Wang, Lei Zhang: Confidence-based Large-scale Dense Multi-view Stereo. IEEE Transaction on Image Processing, 2020
jason77.01 3976.45 4178.69 5279.69 18054.74 7290.56 2283.99 13568.26 2874.10 4190.91 5542.14 13189.99 10379.30 2779.12 9391.36 59
jason: jason.
IB-MVS68.87 274.01 7572.03 9379.94 3183.04 10855.50 4990.24 2388.65 3167.14 4261.38 16881.74 20053.21 3094.28 2160.45 15362.41 22390.03 89
Christian Sormann, Mattia Rossi, Andreas Kuhn and Friedrich Fraundorfer: IB-MVS: An Iterative Algorithm for Deep Multi-View Stereo based on Binary Decisions. BMVC 2021
VDDNet74.37 7172.13 8981.09 1979.58 18156.52 3290.02 2486.70 6752.61 25671.23 7587.20 12831.75 24993.96 2474.30 6475.77 11992.79 22
TSAR-MVS + GP.77.82 3077.59 2978.49 5885.25 6350.27 17790.02 2490.57 1056.58 22074.26 4091.60 4454.26 2592.16 4775.87 4979.91 8693.05 17
DeepC-MVS_fast67.50 378.00 2877.63 2879.13 4188.52 2755.12 6289.95 2685.98 7968.31 2771.33 7492.75 2245.52 8990.37 9171.15 7985.14 4291.91 42
Andreas Kuhn, Christian Sormann, Mattia Rossi, Oliver Erdler, Friedrich Fraundorfer: DeepC-MVS: Deep Confidence Prediction for Multi-View Stereo Reconstruction. 3DV 2020
HPM-MVS++copyleft80.50 1280.71 1279.88 3287.34 3955.20 6089.93 2787.55 5566.04 5879.46 2193.00 2153.10 3191.76 5580.40 2389.56 892.68 24
MG-MVS78.42 2276.99 3682.73 293.17 164.46 189.93 2788.51 3864.83 7173.52 4688.09 11448.07 6192.19 4662.24 13484.53 4891.53 53
VPNet72.07 10571.42 10074.04 15978.64 20247.17 24389.91 2987.97 4572.56 764.66 12685.04 15341.83 13888.33 15061.17 14360.97 23086.62 157
alignmvs78.08 2777.98 2578.39 6383.53 9253.22 11289.77 3085.45 8866.11 5376.59 3191.99 3654.07 2889.05 12277.34 4377.00 10892.89 19
APDe-MVS78.44 2178.20 2279.19 3888.56 2654.55 8089.76 3187.77 5055.91 22678.56 2392.49 2648.20 6092.65 3879.49 2583.04 5590.39 78
SteuartSystems-ACMMP77.08 3876.33 4379.34 3680.98 15455.31 5589.76 3186.91 6262.94 10071.65 6891.56 4542.33 12792.56 3977.14 4483.69 5390.15 85
Skip Steuart: Steuart Systems R&D Blog.
Anonymous20240521170.11 13367.88 14876.79 10487.20 4047.24 24289.49 3377.38 25454.88 23966.14 10886.84 13320.93 31691.54 5956.45 19471.62 15191.59 49
CS-MVS-test77.20 3677.25 3377.05 9184.60 7249.04 20189.42 3485.83 8265.90 5972.85 5591.98 3745.10 9291.27 6475.02 5884.56 4790.84 70
DP-MVS Recon71.99 10670.31 11377.01 9490.65 853.44 10389.37 3582.97 15656.33 22363.56 14889.47 8734.02 22592.15 4954.05 20672.41 14585.43 178
EPNet78.36 2478.49 2077.97 7185.49 5752.04 13689.36 3684.07 13273.22 577.03 2891.72 4049.32 5890.17 10073.46 7082.77 5691.69 46
Wanjuan Su, Wenbing Tao: Efficient Edge-Preserving Multi-View Stereo Network for Depth Estimation. AAAI 2023
save fliter85.35 6056.34 3689.31 3781.46 17861.55 120
CSCG80.41 1379.72 1382.49 589.12 2557.67 1389.29 3891.54 359.19 16371.82 6790.05 7759.72 996.04 1078.37 3588.40 1393.75 7
MAR-MVS76.76 4575.60 4980.21 2590.87 754.68 7689.14 3989.11 1962.95 9970.54 8192.33 2841.05 14494.95 1757.90 17886.55 2991.00 67
Zhenyu Xu, Yiguang Liu, Xuelei Shi, Ying Wang, Yunan Zheng: MARMVS: Matching Ambiguity Reduced Multiple View Stereo for Efficient Large Scale Scene Reconstruction. CVPR 2020
test_prior289.04 4061.88 11673.55 4591.46 4848.01 6374.73 5985.46 38
ET-MVSNet_ETH3D75.23 6474.08 6778.67 5384.52 7455.59 4788.92 4189.21 1868.06 3353.13 26790.22 7149.71 5587.62 17572.12 7670.82 15892.82 20
PVSNet_Blended76.53 4776.54 4076.50 10685.91 4851.83 14288.89 4284.24 12967.82 3669.09 8689.33 9246.70 7588.13 15775.43 5381.48 6989.55 97
Anonymous2024052969.71 14467.28 16277.00 9583.78 8850.36 17288.87 4385.10 10647.22 28964.03 13983.37 17427.93 27092.10 5057.78 18167.44 18388.53 121
DPE-MVScopyleft79.82 1679.66 1480.29 2489.27 2455.08 6588.70 4487.92 4655.55 23181.21 1593.69 956.51 1694.27 2278.36 3685.70 3691.51 54
Kehua Chen, Zhenlong Yuan, Tianlu Mao, Zhaoqi Wang: Dual-Level Precision Edges Guided Multi-View Stereo with Accurate Planarization. AAAI2025
CS-MVS76.77 4476.70 3976.99 9683.55 9148.75 20988.60 4585.18 10166.38 4872.47 6191.62 4345.53 8890.99 7574.48 6182.51 5891.23 62
PHI-MVS77.49 3377.00 3578.95 4385.33 6150.69 16188.57 4688.59 3658.14 18473.60 4493.31 1443.14 12093.79 2673.81 6788.53 1292.37 29
WTY-MVS77.47 3477.52 3077.30 8588.33 3046.25 25588.46 4790.32 1171.40 1172.32 6391.72 4053.44 2992.37 4366.28 10675.42 12293.28 12
9.1478.19 2385.67 5388.32 4888.84 2759.89 14674.58 3892.62 2546.80 7392.66 3781.40 2185.62 37
MVS_111021_HR76.39 4975.38 5279.42 3585.33 6156.47 3388.15 4984.97 10865.15 6966.06 11089.88 8043.79 10892.16 4775.03 5780.03 8589.64 96
patch_mono-280.84 1081.59 878.62 5590.34 953.77 9388.08 5088.36 4076.17 279.40 2291.09 4955.43 1990.09 10185.01 480.40 7891.99 41
MS-PatchMatch72.34 10071.26 10175.61 12682.38 12755.55 4888.00 5189.95 1465.38 6456.51 24180.74 21132.28 24292.89 3157.95 17788.10 1478.39 281
HQP-NCC79.02 19188.00 5165.45 6064.48 131
ACMP_Plane79.02 19188.00 5165.45 6064.48 131
HQP-MVS72.34 10071.44 9975.03 13879.02 19151.56 14788.00 5183.68 13965.45 6064.48 13185.13 15137.35 18488.62 13766.70 10173.12 13884.91 185
iter_conf0573.51 8472.24 8677.33 8387.93 3655.97 4387.90 5570.81 31368.72 2564.04 13884.36 15947.54 6690.87 7871.11 8067.75 18185.13 181
casdiffmvs_mvgpermissive77.75 3177.28 3279.16 4080.42 17154.44 8287.76 5685.46 8771.67 971.38 7388.35 10851.58 3891.22 6679.02 2979.89 8891.83 45
Fangjinhua Wang, Qingshan Xu, Yew-Soon Ong, Marc Pollefeys: Lightweight and Accurate Multi-View Stereo With Confidence-Aware Diffusion Model. IEEE T-PAMI 2025
canonicalmvs78.17 2677.86 2779.12 4284.30 7754.22 8587.71 5784.57 12167.70 3977.70 2592.11 3350.90 4589.95 10478.18 3977.54 10593.20 14
VPA-MVSNet71.12 11770.66 10872.49 19378.75 19744.43 27687.64 5890.02 1263.97 8265.02 12281.58 20342.14 13187.42 17963.42 12663.38 21285.63 175
test_885.72 5055.31 5587.60 5983.88 13657.84 19272.84 5690.99 5144.99 9488.34 149
TEST985.68 5155.42 5187.59 6084.00 13357.72 19472.99 5290.98 5244.87 9788.58 139
train_agg76.91 4076.40 4278.45 6185.68 5155.42 5187.59 6084.00 13357.84 19272.99 5290.98 5244.99 9488.58 13978.19 3785.32 4091.34 61
SMA-MVScopyleft79.10 1978.76 1980.12 2884.42 7555.87 4587.58 6286.76 6561.48 12380.26 1893.10 1746.53 7792.41 4279.97 2488.77 1092.08 36
Yufeng Yin; Xiaoyan Liu; Zichao Zhang: SMA-MVS: Segmentation-Guided Multi-Scale Anchor Deformation Patch Multi-View Stereo. IEEE Transactions on Circuits and Systems for Video Technology
plane_prior49.57 18887.43 6364.57 7372.84 142
DROMVSNet75.30 6275.20 5375.62 12580.98 15449.00 20287.43 6384.68 11863.49 9370.97 7890.15 7542.86 12491.14 7074.33 6381.90 6486.71 156
TR-MVS69.71 14467.85 15175.27 13582.94 11348.48 21887.40 6580.86 18757.15 20864.61 12987.08 13032.67 23889.64 11246.38 25771.55 15387.68 137
CDPH-MVS76.05 5475.19 5478.62 5586.51 4454.98 6887.32 6684.59 12058.62 17870.75 7990.85 5743.10 12290.63 8670.50 8384.51 4990.24 81
3Dnovator+62.71 772.29 10270.50 10977.65 7783.40 9751.29 15587.32 6686.40 7259.01 17058.49 20988.32 11032.40 24091.27 6457.04 18782.15 6390.38 79
API-MVS74.17 7472.07 9180.49 2190.02 1158.55 887.30 6884.27 12657.51 20065.77 11587.77 12041.61 14095.97 1151.71 22382.63 5786.94 147
BH-RMVSNet70.08 13568.01 14576.27 10984.21 8051.22 15787.29 6979.33 21958.96 17263.63 14686.77 13433.29 23390.30 9644.63 26673.96 13387.30 144
MTMP87.27 7015.34 380
APD-MVScopyleft76.15 5275.68 4777.54 7988.52 2753.44 10387.26 7185.03 10753.79 24774.91 3491.68 4243.80 10790.31 9474.36 6281.82 6588.87 111
Yuesong Wang, Zhaojie Zeng and etc.: Adaptive Patch Deformation for Textureless-Resilient Multi-View Stereo. CVPR2023
EIA-MVS75.92 5575.18 5578.13 6885.14 6451.60 14687.17 7285.32 9464.69 7268.56 8990.53 6245.79 8591.58 5867.21 9982.18 6291.20 63
test_prior456.39 3587.15 73
casdiffmvspermissive77.36 3576.85 3778.88 4680.40 17254.66 7887.06 7485.88 8072.11 871.57 7088.63 10650.89 4790.35 9276.00 4879.11 9491.63 48
Fangjinhua Wang, Qingshan Xu, Yew-Soon Ong, Marc Pollefeys: Lightweight and Accurate Multi-View Stereo With Confidence-Aware Diffusion Model. IEEE T-PAMI 2025
cascas69.01 15466.13 18277.66 7679.36 18355.41 5386.99 7583.75 13856.69 21758.92 19981.35 20524.31 29692.10 5053.23 21070.61 15985.46 177
nrg03072.27 10471.56 9674.42 14875.93 24250.60 16386.97 7683.21 15062.75 10267.15 9884.38 15750.07 5186.66 19871.19 7862.37 22485.99 166
114514_t69.87 14267.88 14875.85 12388.38 2952.35 13286.94 7783.68 13953.70 24855.68 24785.60 14730.07 25991.20 6755.84 19671.02 15683.99 198
CP-MVS72.59 9771.46 9876.00 12182.93 11452.32 13386.93 7882.48 16255.15 23463.65 14590.44 6735.03 21888.53 14368.69 9177.83 10387.15 145
ZNCC-MVS75.82 5975.02 5778.23 6683.88 8753.80 9286.91 7986.05 7859.71 14967.85 9490.55 6142.23 12991.02 7272.66 7585.29 4189.87 93
PAPM76.76 4576.07 4678.81 4780.20 17359.11 686.86 8086.23 7568.60 2670.18 8388.84 10051.57 3987.16 18365.48 11286.68 2790.15 85
Fast-Effi-MVS+72.73 9371.15 10477.48 8082.75 11954.76 7186.77 8180.64 19063.05 9865.93 11284.01 16344.42 10389.03 12356.45 19476.36 11588.64 117
thisisatest051573.64 8272.20 8777.97 7181.63 13853.01 11986.69 8288.81 2862.53 10664.06 13785.65 14652.15 3792.50 4058.43 16669.84 16688.39 123
SF-MVS77.64 3277.42 3178.32 6583.75 8952.47 12986.63 8387.80 4758.78 17574.63 3692.38 2747.75 6491.35 6378.18 3986.85 2491.15 64
BH-w/o70.02 13768.51 13874.56 14482.77 11850.39 17086.60 8478.14 24159.77 14859.65 18285.57 14839.27 16287.30 18149.86 23374.94 12985.99 166
DeepC-MVS67.15 476.90 4276.27 4478.80 4880.70 16455.02 6686.39 8586.71 6666.96 4467.91 9389.97 7948.03 6291.41 6275.60 5284.14 5089.96 90
Andreas Kuhn, Christian Sormann, Mattia Rossi, Oliver Erdler, Friedrich Fraundorfer: DeepC-MVS: Deep Confidence Prediction for Multi-View Stereo Reconstruction. 3DV 2020
TransMVSNet (Re)62.82 23560.76 23669.02 25173.98 26441.61 30286.36 8679.30 22056.90 21052.53 27176.44 25741.85 13787.60 17638.83 28640.61 33777.86 287
MSLP-MVS++74.21 7372.25 8580.11 2981.45 14756.47 3386.32 8779.65 20858.19 18366.36 10692.29 2936.11 20490.66 8467.39 9782.49 5993.18 15
QAPM71.88 10769.33 13079.52 3382.20 12954.30 8486.30 8888.77 2956.61 21959.72 18187.48 12333.90 22795.36 1347.48 25081.49 6888.90 110
WR-MVS67.58 18166.76 16970.04 24275.92 24345.06 27286.23 8985.28 9764.31 7558.50 20881.00 20644.80 10182.00 26349.21 23955.57 28183.06 219
PVSNet_BlendedMVS73.42 8573.30 7173.76 16885.91 4851.83 14286.18 9084.24 12965.40 6369.09 8680.86 20946.70 7588.13 15775.43 5365.92 19581.33 246
ETV-MVS77.17 3776.74 3878.48 5981.80 13454.55 8086.13 9185.33 9368.20 2973.10 5190.52 6345.23 9190.66 8479.37 2680.95 7090.22 82
AdaColmapbinary67.86 17665.48 19675.00 13988.15 3354.99 6786.10 9276.63 26849.30 27857.80 21886.65 13729.39 26388.94 13145.10 26370.21 16481.06 250
OPM-MVS70.75 12669.58 12574.26 15475.55 24751.34 15386.05 9383.29 14961.94 11562.95 15485.77 14534.15 22488.44 14565.44 11671.07 15582.99 220
Ray L. Khuboni, Hongjun Xu: Octagram Propagation Matching for Multi-Scale View Stereopsis (OPM-MVS).
Vis-MVSNetpermissive70.61 12869.34 12974.42 14880.95 15948.49 21786.03 9477.51 25158.74 17665.55 11787.78 11934.37 22285.95 22252.53 22180.61 7488.80 113
Jingyang Zhang, Yao Yao, Shiwei Li, Zixin Luo, Tian Fang: Visibility-aware Multiview Stereo Network. BMVC 2020
Anonymous2023121166.08 21363.67 21673.31 17783.07 10748.75 20986.01 9584.67 11945.27 30356.54 23976.67 25528.06 26988.95 12952.78 21759.95 23382.23 228
EG-PatchMatch MVS62.40 24259.59 24470.81 22973.29 27049.05 19985.81 9684.78 11451.85 26344.19 31273.48 28715.52 33989.85 10540.16 28367.24 18473.54 322
PVSNet_Blended_VisFu73.40 8672.44 8076.30 10881.32 15154.70 7585.81 9678.82 22663.70 8764.53 13085.38 15047.11 7187.38 18067.75 9677.55 10486.81 155
HQP_MVS70.96 12269.91 12174.12 15777.95 21249.57 18885.76 9882.59 16063.60 9062.15 16383.28 17636.04 20788.30 15265.46 11372.34 14684.49 188
plane_prior285.76 9863.60 90
GST-MVS74.87 6973.90 6977.77 7483.30 9953.45 10285.75 10085.29 9659.22 16266.50 10589.85 8140.94 14590.76 8170.94 8183.35 5489.10 107
SD-MVS76.18 5174.85 6080.18 2685.39 5956.90 2485.75 10082.45 16356.79 21574.48 3991.81 3843.72 11190.75 8274.61 6078.65 9792.91 18
Zhenlong Yuan, Jiakai Cao, Zhaoxin Li, Hao Jiang and Zhaoqi Wang: SD-MVS: Segmentation-driven Deformation Multi-View Stereo with Spherical Refinement and EM optimization. AAAI2024
CHOSEN 1792x268876.24 5074.03 6882.88 183.09 10662.84 285.73 10285.39 9069.79 2064.87 12583.49 17241.52 14293.69 2770.55 8281.82 6592.12 35
FMVSNet368.84 15767.40 16073.19 17985.05 6548.53 21585.71 10385.36 9160.90 13357.58 22479.15 22442.16 13086.77 19447.25 25263.40 20984.27 192
MP-MVScopyleft74.99 6874.33 6576.95 9882.89 11553.05 11885.63 10483.50 14457.86 19167.25 9790.24 6943.38 11788.85 13376.03 4782.23 6188.96 109
Rongxuan Tan, Qing Wang, et al.: MP-MVS: Multi-Scale Windows PatchMatch and Planar Prior Multi-View Stereo.
HFP-MVS74.37 7173.13 7478.10 6984.30 7753.68 9585.58 10584.36 12456.82 21365.78 11490.56 6040.70 14990.90 7769.18 8880.88 7189.71 94
ACMMPR73.76 7972.61 7677.24 8983.92 8552.96 12185.58 10584.29 12556.82 21365.12 11990.45 6437.24 18890.18 9969.18 8880.84 7288.58 119
BH-untuned68.28 17066.40 17573.91 16281.62 13950.01 18085.56 10777.39 25357.63 19757.47 22983.69 17036.36 20287.08 18544.81 26473.08 14184.65 187
region2R73.75 8072.55 7877.33 8383.90 8652.98 12085.54 10884.09 13156.83 21265.10 12090.45 6437.34 18690.24 9768.89 9080.83 7388.77 115
xiu_mvs_v1_base_debu71.60 11170.29 11475.55 12777.26 22353.15 11385.34 10979.37 21355.83 22772.54 5790.19 7222.38 30686.66 19873.28 7176.39 11286.85 151
xiu_mvs_v1_base71.60 11170.29 11475.55 12777.26 22353.15 11385.34 10979.37 21355.83 22772.54 5790.19 7222.38 30686.66 19873.28 7176.39 11286.85 151
xiu_mvs_v1_base_debi71.60 11170.29 11475.55 12777.26 22353.15 11385.34 10979.37 21355.83 22772.54 5790.19 7222.38 30686.66 19873.28 7176.39 11286.85 151
NR-MVSNet67.25 19165.99 18571.04 22673.27 27143.91 28185.32 11284.75 11666.05 5753.65 26582.11 19645.05 9385.97 22147.55 24956.18 27383.24 214
Effi-MVS+75.24 6373.61 7080.16 2781.92 13257.42 1985.21 11376.71 26660.68 13773.32 4989.34 9047.30 6891.63 5768.28 9379.72 8991.42 56
无先验85.19 11478.00 24349.08 27985.13 23652.78 21787.45 141
FMVSNet267.57 18265.79 18972.90 18482.71 12047.97 23185.15 11584.93 10958.55 17956.71 23778.26 23136.72 19886.67 19746.15 25962.94 22084.07 195
test-LLR69.65 14769.01 13471.60 21578.67 19948.17 22485.13 11679.72 20559.18 16563.13 15182.58 18736.91 19380.24 27860.56 14975.17 12486.39 162
TESTMET0.1,172.86 9272.33 8274.46 14681.98 13150.77 15985.13 11685.47 8666.09 5467.30 9683.69 17037.27 18783.57 25265.06 12078.97 9689.05 108
test-mter68.36 16767.29 16171.60 21578.67 19948.17 22485.13 11679.72 20553.38 25063.13 15182.58 18727.23 27680.24 27860.56 14975.17 12486.39 162
1112_ss70.05 13669.37 12872.10 19980.77 16342.78 29285.12 11976.75 26459.69 15061.19 17092.12 3147.48 6783.84 24753.04 21368.21 17589.66 95
XXY-MVS70.18 13269.28 13272.89 18677.64 21642.88 29185.06 12087.50 5662.58 10562.66 15882.34 19343.64 11389.83 10658.42 16863.70 20785.96 168
MSP-MVS82.30 583.47 178.80 4882.99 11152.71 12485.04 12188.63 3366.08 5586.77 392.75 2272.05 191.46 6183.35 893.53 192.23 32
Zhenlong Yuan, Cong Liu, Fei Shen, Zhaoxin Li, Jingguo luo, Tianlu Mao and Zhaoqi Wang: MSP-MVS: Multi-granularity Segmentation Prior Guided Multi-View Stereo. AAAI2025
thres20068.71 16267.27 16373.02 18184.73 7046.76 24685.03 12287.73 5162.34 10959.87 17883.45 17343.15 11988.32 15131.25 32267.91 17983.98 200
MVP-Stereo70.97 12170.44 11072.59 19076.03 24151.36 15285.02 12386.99 6160.31 14156.53 24078.92 22640.11 15590.00 10260.00 15790.01 676.41 303
Qingsong Yan: MVP-Stereo: A Parallel Multi-View Patchmatch Stereo Method with Dilation Matching for Photogrammetric Application.
DVP-MVS++82.44 282.38 482.62 491.77 457.49 1584.98 12488.88 2458.00 18783.60 693.39 1267.21 296.39 481.64 1791.98 493.98 5
FOURS183.24 10149.90 18384.98 12478.76 22847.71 28673.42 47
PS-MVSNAJss68.78 16167.17 16473.62 17473.01 27348.33 22284.95 12684.81 11359.30 16158.91 20079.84 21637.77 17388.86 13262.83 13063.12 21883.67 208
v2v48269.55 14967.64 15475.26 13672.32 28353.83 9184.93 12781.94 16965.37 6560.80 17379.25 22241.62 13988.98 12863.03 12959.51 23882.98 221
XVS72.92 9071.62 9576.81 10083.41 9452.48 12784.88 12883.20 15158.03 18563.91 14189.63 8535.50 21189.78 10765.50 11080.50 7688.16 124
X-MVStestdata65.85 21562.20 22276.81 10083.41 9452.48 12784.88 12883.20 15158.03 18563.91 1414.82 37635.50 21189.78 10765.50 11080.50 7688.16 124
dcpmvs_279.33 1878.94 1880.49 2189.75 1256.54 3184.83 13083.68 13967.85 3569.36 8490.24 6960.20 792.10 5084.14 680.40 7892.82 20
test111171.06 11970.42 11172.97 18379.48 18241.49 30484.82 13182.74 15964.20 7762.98 15387.43 12535.20 21487.92 16358.54 16578.42 10089.49 98
iter_conf_final71.46 11469.68 12476.81 10086.03 4653.49 9884.73 13274.37 28660.27 14266.28 10784.36 15935.14 21690.87 7865.41 11770.51 16186.05 165
Fast-Effi-MVS+-dtu66.53 20664.10 21573.84 16572.41 28152.30 13484.73 13275.66 27659.51 15356.34 24279.11 22528.11 26885.85 22457.74 18263.29 21383.35 210
ECVR-MVScopyleft71.81 10871.00 10574.26 15480.12 17543.49 28584.69 13482.16 16464.02 7964.64 12787.43 12535.04 21789.21 11861.24 14279.66 9090.08 87
h-mvs3373.95 7672.89 7577.15 9080.17 17450.37 17184.68 13583.33 14568.08 3071.97 6588.65 10542.50 12591.15 6978.82 3157.78 26289.91 92
v114468.81 15966.82 16774.80 14272.34 28253.46 10084.68 13581.77 17564.25 7660.28 17777.91 23340.23 15288.95 12960.37 15459.52 23781.97 230
CANet_DTU73.71 8173.14 7275.40 13082.61 12450.05 17984.67 13779.36 21669.72 2175.39 3290.03 7829.41 26285.93 22367.99 9579.11 9490.22 82
test_vis1_n_192068.59 16568.31 14169.44 24869.16 30741.51 30384.63 13868.58 32258.80 17473.26 5088.37 10725.30 28980.60 27379.10 2867.55 18286.23 164
PVSNet62.49 869.27 15167.81 15273.64 17284.41 7651.85 14184.63 13877.80 24566.42 4759.80 18084.95 15422.14 31180.44 27655.03 19975.11 12688.62 118
mPP-MVS71.79 11070.38 11276.04 11982.65 12352.06 13584.45 14081.78 17455.59 23062.05 16589.68 8433.48 23188.28 15465.45 11578.24 10287.77 134
CL-MVSNet_self_test62.98 23361.14 23268.50 26265.86 32442.96 28984.37 14182.98 15560.98 13153.95 26172.70 29440.43 15083.71 25041.10 28047.93 31378.83 273
OpenMVScopyleft61.00 1169.99 13967.55 15777.30 8578.37 20854.07 9084.36 14285.76 8357.22 20656.71 23787.67 12130.79 25592.83 3343.04 27384.06 5285.01 183
MP-MVS-pluss75.54 6175.03 5677.04 9281.37 14952.65 12684.34 14384.46 12261.16 12669.14 8591.76 3939.98 15788.99 12778.19 3784.89 4589.48 99
MP-MVS-pluss: MP-MVS-pluss. MP-MVS-pluss
PAPR75.20 6574.13 6678.41 6288.31 3155.10 6484.31 14485.66 8463.76 8667.55 9590.73 5943.48 11689.40 11566.36 10577.03 10790.73 72
SR-MVS70.92 12369.73 12374.50 14583.38 9850.48 16784.27 14579.35 21748.96 28166.57 10490.45 6433.65 23087.11 18466.42 10374.56 13085.91 169
v14868.24 17266.35 17673.88 16371.76 28651.47 15084.23 14681.90 17363.69 8858.94 19776.44 25743.72 11187.78 17060.63 14755.86 27882.39 227
UniMVSNet_NR-MVSNet68.82 15868.29 14270.40 23575.71 24542.59 29484.23 14686.78 6466.31 4958.51 20682.45 19051.57 3984.64 24353.11 21155.96 27683.96 202
GeoE69.96 14067.88 14876.22 11181.11 15351.71 14584.15 14876.74 26559.83 14760.91 17184.38 15741.56 14188.10 15951.67 22470.57 16088.84 112
v14419267.86 17665.76 19074.16 15671.68 28753.09 11684.14 14980.83 18862.85 10159.21 19477.28 24339.30 16188.00 16258.67 16457.88 26081.40 243
UGNet68.71 16267.11 16573.50 17680.55 16947.61 23484.08 15078.51 23559.45 15465.68 11682.73 18523.78 29885.08 23752.80 21676.40 11187.80 133
Wanjuan Su, Qingshan Xu, Wenbing Tao: Uncertainty-guided Multi-view Stereo Network for Depth Estimation. IEEE Transactions on Circuits and Systems for Video Technology, 2022
PMMVS72.98 8972.05 9275.78 12483.57 9048.60 21284.08 15082.85 15861.62 11968.24 9190.33 6828.35 26687.78 17072.71 7476.69 11090.95 68
ACMMP_NAP76.43 4875.66 4878.73 5081.92 13254.67 7784.06 15285.35 9261.10 12872.99 5291.50 4640.25 15191.00 7376.84 4586.98 2290.51 77
v119267.96 17565.74 19174.63 14371.79 28553.43 10584.06 15280.99 18663.19 9759.56 18577.46 24037.50 18388.65 13658.20 17258.93 24481.79 232
FIs70.00 13870.24 11769.30 24977.93 21438.55 31883.99 15487.72 5266.86 4557.66 22284.17 16252.28 3585.31 23052.72 22068.80 17284.02 196
MVS_Test75.85 5674.93 5978.62 5584.08 8155.20 6083.99 15485.17 10268.07 3273.38 4882.76 18250.44 4989.00 12565.90 10880.61 7491.64 47
baseline76.86 4376.24 4578.71 5180.47 17054.20 8883.90 15684.88 11171.38 1271.51 7189.15 9550.51 4890.55 8875.71 5078.65 9791.39 57
baseline275.15 6674.54 6476.98 9781.67 13751.74 14483.84 15791.94 169.97 1958.98 19686.02 14259.73 891.73 5668.37 9270.40 16387.48 139
EPP-MVSNet71.14 11670.07 11974.33 15179.18 18846.52 24983.81 15886.49 6956.32 22457.95 21584.90 15554.23 2689.14 12058.14 17369.65 16887.33 142
原ACMM283.77 159
v192192067.45 18565.23 20374.10 15871.51 29052.90 12283.75 16080.44 19362.48 10859.12 19577.13 24436.98 19187.90 16457.53 18358.14 25481.49 237
OpenMVS_ROBcopyleft53.19 1759.20 25856.00 26968.83 25471.13 29544.30 27783.64 16175.02 28246.42 29646.48 30873.03 29018.69 32488.14 15627.74 33761.80 22674.05 318
MVSTER73.25 8772.33 8276.01 12085.54 5653.76 9483.52 16287.16 5867.06 4363.88 14381.66 20152.77 3290.44 8964.66 12164.69 20083.84 205
GBi-Net67.09 19565.47 19771.96 20582.71 12046.36 25183.52 16283.31 14658.55 17957.58 22476.23 26136.72 19886.20 20847.25 25263.40 20983.32 211
test167.09 19565.47 19771.96 20582.71 12046.36 25183.52 16283.31 14658.55 17957.58 22476.23 26136.72 19886.20 20847.25 25263.40 20983.32 211
FMVSNet164.57 21862.11 22371.96 20577.32 22146.36 25183.52 16283.31 14652.43 25854.42 25676.23 26127.80 27286.20 20842.59 27861.34 22983.32 211
baseline172.51 9872.12 9073.69 17185.05 6544.46 27483.51 16686.13 7771.61 1064.64 12787.97 11755.00 2389.48 11459.07 16056.05 27587.13 146
CDS-MVSNet70.48 13069.43 12673.64 17277.56 21848.83 20883.51 16677.45 25263.27 9562.33 16085.54 14943.85 10583.29 25657.38 18674.00 13288.79 114
Khang Truong Giang, Soohwan Song, Sungho Jo: Curvature-guided dynamic scale networks for Multi-view Stereo. ICLR 2022
thisisatest053070.47 13168.56 13776.20 11379.78 17951.52 14983.49 16888.58 3757.62 19858.60 20582.79 18151.03 4491.48 6052.84 21562.36 22585.59 176
Test_1112_low_res67.18 19366.23 18070.02 24378.75 19741.02 30883.43 16973.69 29357.29 20458.45 21182.39 19245.30 9080.88 27050.50 22966.26 19488.16 124
ACMMPcopyleft70.81 12569.29 13175.39 13181.52 14651.92 14083.43 16983.03 15456.67 21858.80 20388.91 9831.92 24788.58 13965.89 10973.39 13785.67 172
Qingshan Xu, Weihang Kong, Wenbing Tao, Marc Pollefeys: Multi-Scale Geometric Consistency Guided and Planar Prior Assisted Multi-View Stereo. IEEE Transactions on Pattern Analysis and Machine Intelligence
tfpn200view967.57 18266.13 18271.89 21284.05 8245.07 26983.40 17187.71 5360.79 13457.79 21982.76 18243.53 11487.80 16728.80 32966.36 19182.78 225
thres40067.40 18966.13 18271.19 22384.05 8245.07 26983.40 17187.71 5360.79 13457.79 21982.76 18243.53 11487.80 16728.80 32966.36 19180.71 255
v124066.99 19864.68 20973.93 16171.38 29352.66 12583.39 17379.98 19961.97 11458.44 21277.11 24535.25 21387.81 16656.46 19358.15 25281.33 246
Baseline_NR-MVSNet65.49 21764.27 21369.13 25074.37 26141.65 30183.39 17378.85 22459.56 15259.62 18476.88 25240.75 14687.44 17849.99 23155.05 28478.28 283
mvsmamba66.93 20164.88 20873.09 18075.06 25147.26 24083.36 17569.21 31962.64 10455.68 24781.43 20429.72 26089.20 11963.35 12763.50 20882.79 224
miper_enhance_ethall69.77 14368.90 13572.38 19578.93 19449.91 18283.29 17678.85 22464.90 7059.37 18979.46 21852.77 3285.16 23563.78 12358.72 24582.08 229
diffmvspermissive75.11 6774.65 6376.46 10778.52 20453.35 10783.28 17779.94 20070.51 1671.64 6988.72 10146.02 8286.08 21777.52 4275.75 12089.96 90
Fangjinhua Wang, Qingshan Xu, Yew-Soon Ong, Marc Pollefeys: Lightweight and Accurate Multi-View Stereo With Confidence-Aware Diffusion Model. IEEE T-PAMI 2025
test250672.91 9172.43 8174.32 15280.12 17544.18 28083.19 17884.77 11564.02 7965.97 11187.43 12547.67 6588.72 13459.08 15979.66 9090.08 87
ACMP61.11 966.24 21164.33 21272.00 20474.89 25549.12 19783.18 17979.83 20355.41 23352.29 27482.68 18625.83 28586.10 21460.89 14463.94 20580.78 253
Qingshan Xu and Wenbing Tao: Planar Prior Assisted PatchMatch Multi-View Stereo. AAAI 2020
GA-MVS69.04 15366.70 17176.06 11875.11 24952.36 13183.12 18080.23 19663.32 9460.65 17579.22 22330.98 25488.37 14761.25 14166.41 19087.46 140
3Dnovator64.70 674.46 7072.48 7980.41 2382.84 11755.40 5483.08 18188.61 3567.61 4059.85 17988.66 10234.57 22193.97 2358.42 16888.70 1191.85 44
PGM-MVS72.60 9571.20 10376.80 10382.95 11252.82 12383.07 18282.14 16556.51 22163.18 15089.81 8235.68 21089.76 10967.30 9880.19 8187.83 132
LPG-MVS_test66.44 20864.58 21072.02 20274.42 25948.60 21283.07 18280.64 19054.69 24153.75 26383.83 16625.73 28786.98 18760.33 15564.71 19880.48 257
TranMVSNet+NR-MVSNet66.94 20065.61 19470.93 22873.45 26843.38 28783.02 18484.25 12765.31 6758.33 21381.90 19939.92 15885.52 22649.43 23654.89 28683.89 204
test0.0.03 162.54 23762.44 22062.86 30072.28 28429.51 34982.93 18578.78 22759.18 16553.07 26882.41 19136.91 19377.39 30537.45 28958.96 24381.66 235
pm-mvs164.12 22262.56 21968.78 25671.68 28738.87 31682.89 18681.57 17655.54 23253.89 26277.82 23537.73 17686.74 19548.46 24553.49 29780.72 254
EPNet_dtu66.25 21066.71 17064.87 29078.66 20134.12 33182.80 18775.51 27761.75 11764.47 13486.90 13237.06 19072.46 32943.65 27169.63 16988.02 130
Wanjuan Su, Wenbing Tao: Efficient Edge-Preserving Multi-View Stereo Network for Depth Estimation. AAAI 2023
pmmvs562.80 23661.18 23167.66 26769.53 30442.37 29982.65 18875.19 28154.30 24652.03 27778.51 22931.64 25080.67 27148.60 24358.15 25279.95 264
cl____67.43 18665.93 18671.95 20876.33 23448.02 22982.58 18979.12 22161.30 12556.72 23676.92 25046.12 7986.44 20557.98 17556.31 27081.38 245
DIV-MVS_self_test67.43 18665.93 18671.94 20976.33 23448.01 23082.57 19079.11 22261.31 12456.73 23576.92 25046.09 8086.43 20657.98 17556.31 27081.39 244
TAMVS69.51 15068.16 14473.56 17576.30 23648.71 21182.57 19077.17 25762.10 11161.32 16984.23 16141.90 13683.46 25454.80 20273.09 14088.50 122
EI-MVSNet-Vis-set73.19 8872.60 7774.99 14082.56 12549.80 18682.55 19289.00 2166.17 5265.89 11388.98 9643.83 10692.29 4465.38 11969.01 17182.87 223
DP-MVS59.24 25756.12 26868.63 25988.24 3250.35 17382.51 19364.43 33041.10 32346.70 30678.77 22724.75 29488.57 14222.26 35056.29 27266.96 342
miper_ehance_all_eth68.70 16467.58 15572.08 20076.91 22949.48 19382.47 19478.45 23762.68 10358.28 21477.88 23450.90 4585.01 23861.91 13758.72 24581.75 233
cl2268.85 15667.69 15372.35 19678.07 21149.98 18182.45 19578.48 23662.50 10758.46 21077.95 23249.99 5285.17 23462.55 13158.72 24581.90 231
UniMVSNet (Re)67.71 17966.80 16870.45 23374.44 25842.93 29082.42 19684.90 11063.69 8859.63 18380.99 20747.18 6985.23 23351.17 22756.75 26783.19 216
v867.25 19164.99 20674.04 15972.89 27653.31 11082.37 19780.11 19861.54 12154.29 25876.02 26642.89 12388.41 14658.43 16656.36 26880.39 259
ACMM58.35 1264.35 22062.01 22471.38 21974.21 26248.51 21682.25 19879.66 20747.61 28754.54 25580.11 21325.26 29086.00 21851.26 22563.16 21679.64 266
Qingshan Xu and Wenbing Tao: Multi-Scale Geometric Consistency Guided Multi-View Stereo. CVPR 2019
thres600view766.46 20765.12 20470.47 23283.41 9443.80 28382.15 19987.78 4859.37 15756.02 24482.21 19443.73 10986.90 19226.51 34164.94 19780.71 255
c3_l67.97 17466.66 17271.91 21176.20 23849.31 19582.13 20078.00 24361.99 11357.64 22376.94 24949.41 5684.93 23960.62 14857.01 26681.49 237
Effi-MVS+-dtu66.24 21164.96 20770.08 24075.17 24849.64 18782.01 20174.48 28562.15 11057.83 21776.08 26530.59 25683.79 24865.40 11860.93 23176.81 296
our_test_359.11 26055.08 27671.18 22471.42 29153.29 11181.96 20274.52 28448.32 28342.08 32169.28 31728.14 26782.15 26034.35 30945.68 32778.11 286
CPTT-MVS67.15 19465.84 18871.07 22580.96 15650.32 17481.94 20374.10 28846.18 29957.91 21687.64 12229.57 26181.31 26664.10 12270.18 16581.56 236
APD-MVS_3200maxsize69.62 14868.23 14373.80 16781.58 14248.22 22381.91 20479.50 21148.21 28464.24 13689.75 8331.91 24887.55 17763.08 12873.85 13585.64 174
v1066.61 20564.20 21473.83 16672.59 27953.37 10681.88 20579.91 20261.11 12754.09 26075.60 26840.06 15688.26 15556.47 19256.10 27479.86 265
EI-MVSNet-UG-set72.37 9971.73 9474.29 15381.60 14049.29 19681.85 20688.64 3265.29 6865.05 12188.29 11143.18 11891.83 5463.74 12467.97 17881.75 233
ppachtmachnet_test58.56 26854.34 27771.24 22171.42 29154.74 7281.84 20772.27 30249.02 28045.86 31168.99 31826.27 28183.30 25530.12 32443.23 33275.69 306
test_040256.45 28053.03 28466.69 27776.78 23050.31 17581.76 20869.61 31842.79 31943.88 31372.13 30122.82 30486.46 20416.57 36150.94 30663.31 350
旧先验281.73 20945.53 30274.66 3570.48 33658.31 170
thres100view90066.87 20265.42 20071.24 22183.29 10043.15 28881.67 21087.78 4859.04 16955.92 24582.18 19543.73 10987.80 16728.80 32966.36 19182.78 225
MVSFormer73.53 8372.19 8877.57 7883.02 10955.24 5781.63 21181.44 17950.28 27176.67 2990.91 5544.82 9986.11 21260.83 14580.09 8291.36 59
test_djsdf63.84 22461.56 22770.70 23068.78 30944.69 27381.63 21181.44 17950.28 27152.27 27576.26 26026.72 27986.11 21260.83 14555.84 27981.29 249
新几何281.61 213
TSAR-MVS + MP.78.31 2578.26 2178.48 5981.33 15056.31 3781.59 21486.41 7169.61 2281.72 1488.16 11355.09 2288.04 16174.12 6586.31 3091.09 65
Zhenlong Yuan, Jiakai Cao, Zhaoqi Wang, Zhaoxin Li: TSAR-MVS: Textureless-aware Segmentation and Correlative Refinement Guided Multi-View Stereo. Pattern Recognition
SR-MVS-dyc-post68.27 17166.87 16672.48 19480.96 15648.14 22681.54 21576.98 26046.42 29662.75 15689.42 8831.17 25386.09 21660.52 15172.06 14983.19 216
RE-MVS-def66.66 17280.96 15648.14 22681.54 21576.98 26046.42 29662.75 15689.42 8829.28 26460.52 15172.06 14983.19 216
V4267.66 18065.60 19573.86 16470.69 29853.63 9681.50 21778.61 23363.85 8459.49 18877.49 23937.98 17087.65 17362.33 13258.43 24980.29 260
DU-MVS66.84 20365.74 19170.16 23873.27 27142.59 29481.50 21782.92 15763.53 9258.51 20682.11 19640.75 14684.64 24353.11 21155.96 27683.24 214
HyFIR lowres test69.94 14167.58 15577.04 9277.11 22857.29 2081.49 21979.11 22258.27 18258.86 20180.41 21242.33 12786.96 18961.91 13768.68 17486.87 149
IterMVS-LS66.63 20465.36 20170.42 23475.10 25048.90 20681.45 22076.69 26761.05 12955.71 24677.10 24645.86 8483.65 25157.44 18457.88 26078.70 274
Fangjinhua Wang, Silvano Galliani, Christoph Vogel, Marc Pollefeys: IterMVS: Iterative Probability Estimation for Efficient Multi-View Stereo.
jajsoiax63.21 23160.84 23570.32 23668.33 31444.45 27581.23 22181.05 18553.37 25150.96 28477.81 23617.49 33085.49 22859.31 15858.05 25581.02 251
RRT_MVS63.68 22761.01 23471.70 21373.48 26745.98 25881.19 22276.08 27354.33 24552.84 26979.27 22122.21 30987.65 17354.13 20555.54 28281.46 240
HPM-MVS_fast67.86 17666.28 17972.61 18980.67 16648.34 22181.18 22375.95 27550.81 26959.55 18688.05 11627.86 27185.98 21958.83 16273.58 13683.51 209
tfpnnormal61.47 24659.09 24968.62 26076.29 23741.69 30081.14 22485.16 10354.48 24351.32 28073.63 28532.32 24186.89 19321.78 35255.71 28077.29 293
IS-MVSNet68.80 16067.55 15772.54 19178.50 20543.43 28681.03 22579.35 21759.12 16857.27 23286.71 13546.05 8187.70 17244.32 26875.60 12186.49 159
eth_miper_zixun_eth66.98 19965.28 20272.06 20175.61 24650.40 16981.00 22676.97 26362.00 11256.99 23476.97 24844.84 9885.58 22558.75 16354.42 29080.21 261
mvs_tets62.96 23460.55 23770.19 23768.22 31744.24 27980.90 22780.74 18952.99 25450.82 28677.56 23716.74 33485.44 22959.04 16157.94 25780.89 252
tttt051768.33 16966.29 17874.46 14678.08 21049.06 19880.88 22889.08 2054.40 24454.75 25380.77 21051.31 4190.33 9349.35 23758.01 25683.99 198
FC-MVSNet-test67.49 18467.91 14666.21 28076.06 23933.06 33680.82 22987.18 5764.44 7454.81 25182.87 17950.40 5082.60 25848.05 24766.55 18982.98 221
sss70.49 12970.13 11871.58 21781.59 14139.02 31580.78 23084.71 11759.34 15866.61 10288.09 11437.17 18985.52 22661.82 13971.02 15690.20 84
HPM-MVScopyleft72.60 9571.50 9775.89 12282.02 13051.42 15180.70 23183.05 15356.12 22564.03 13989.53 8637.55 18088.37 14770.48 8480.04 8487.88 131
Chunlin Ren, Qingshan Xu, Shikun Zhang, Jiaqi Yang: Hierarchical Prior Mining for Non-local Multi-View Stereo. ICCV 2023
pmmvs659.64 25457.15 25967.09 27166.01 32236.86 32580.50 23278.64 23145.05 30549.05 29173.94 27927.28 27586.10 21443.96 27049.94 30878.31 282
IterMVS63.77 22661.67 22570.08 24072.68 27851.24 15680.44 23375.51 27760.51 13951.41 27973.70 28432.08 24478.91 28954.30 20454.35 29180.08 263
Fangjinhua Wang, Silvano Galliani, Christoph Vogel, Marc Pollefeys: IterMVS: Iterative Probability Estimation for Efficient Multi-View Stereo.
IterMVS-SCA-FT59.12 25958.81 25260.08 31370.68 29945.07 26980.42 23474.25 28743.54 31650.02 28773.73 28131.97 24556.74 35151.06 22853.60 29678.42 280
ACMH+54.58 1558.55 26955.24 27268.50 26274.68 25745.80 26280.27 23570.21 31647.15 29042.77 32075.48 26916.73 33585.98 21935.10 30754.78 28773.72 320
Anonymous2023120659.08 26157.59 25663.55 29568.77 31032.14 34180.26 23679.78 20450.00 27549.39 28972.39 29826.64 28078.36 29233.12 31557.94 25780.14 262
131471.11 11869.41 12776.22 11179.32 18550.49 16680.23 23785.14 10559.44 15558.93 19888.89 9933.83 22989.60 11361.49 14077.42 10688.57 120
MVS76.91 4075.48 5081.23 1884.56 7355.21 5980.23 23791.64 258.65 17765.37 11891.48 4745.72 8695.05 1672.11 7789.52 993.44 9
ACMH53.70 1659.78 25255.94 27071.28 22076.59 23148.35 22080.15 23976.11 27249.74 27641.91 32373.45 28816.50 33690.31 9431.42 32057.63 26375.17 311
Qingshan Xu and Wenbing Tao: Multi-Scale Geometric Consistency Guided Multi-View Stereo. CVPR 2019
pmmvs463.34 23061.07 23370.16 23870.14 30050.53 16579.97 24071.41 31055.08 23554.12 25978.58 22832.79 23782.09 26250.33 23057.22 26577.86 287
MVS_111021_LR69.07 15267.91 14672.54 19177.27 22249.56 19079.77 24173.96 29159.33 16060.73 17487.82 11830.19 25881.53 26469.94 8572.19 14886.53 158
CNLPA60.59 25058.44 25367.05 27379.21 18747.26 24079.75 24264.34 33142.46 32151.90 27883.94 16427.79 27375.41 31437.12 29159.49 23978.47 278
EI-MVSNet69.70 14668.70 13672.68 18875.00 25348.90 20679.54 24387.16 5861.05 12963.88 14383.74 16845.87 8390.44 8957.42 18564.68 20178.70 274
CVMVSNet60.85 24960.44 23962.07 30175.00 25332.73 33879.54 24373.49 29636.98 33356.28 24383.74 16829.28 26469.53 33846.48 25663.23 21483.94 203
AUN-MVS68.20 17366.35 17673.76 16876.37 23247.45 23679.52 24579.52 21060.98 13162.34 15986.02 14236.59 20186.94 19062.32 13353.47 29886.89 148
hse-mvs271.44 11570.68 10773.73 17076.34 23347.44 23779.45 24679.47 21268.08 3071.97 6586.01 14442.50 12586.93 19178.82 3153.46 29986.83 154
PVSNet_057.04 1361.19 24757.24 25873.02 18177.45 22050.31 17579.43 24777.36 25563.96 8347.51 30172.45 29725.03 29283.78 24952.76 21919.22 36884.96 184
PCF-MVS61.03 1070.10 13468.40 14075.22 13777.15 22751.99 13779.30 24882.12 16656.47 22261.88 16686.48 14043.98 10487.24 18255.37 19872.79 14386.43 161
Andreas Kuhn, Shan Lin, Oliver Erdler: Plane Completion and Filtering for Multi-View Stereo Reconstruction. GCPR 2019
PLCcopyleft52.38 1860.89 24858.97 25166.68 27881.77 13545.70 26378.96 24974.04 29043.66 31547.63 29883.19 17823.52 30177.78 30437.47 28860.46 23276.55 302
Jie Liao, Yanping Fu, Qingan Yan, Chunxia xiao: Pyramid Multi-View Stereo with Local Consistency. Pacific Graphics 2019
D2MVS63.49 22861.39 22969.77 24469.29 30648.93 20578.89 25077.71 24860.64 13849.70 28872.10 30327.08 27783.48 25354.48 20362.65 22176.90 295
OMC-MVS65.97 21465.06 20568.71 25872.97 27442.58 29678.61 25175.35 28054.72 24059.31 19186.25 14133.30 23277.88 30157.99 17467.05 18585.66 173
PAPM_NR71.80 10969.98 12077.26 8881.54 14453.34 10878.60 25285.25 9953.46 24960.53 17688.66 10245.69 8789.24 11756.49 19179.62 9289.19 104
mvs_anonymous72.29 10270.74 10676.94 9982.85 11654.72 7478.43 25381.54 17763.77 8561.69 16779.32 22051.11 4285.31 23062.15 13675.79 11890.79 71
tt080563.39 22961.31 23069.64 24569.36 30538.87 31678.00 25485.48 8548.82 28255.66 25081.66 20124.38 29586.37 20749.04 24059.36 24183.68 207
test22279.36 18350.97 15877.99 25567.84 32342.54 32062.84 15586.53 13830.26 25776.91 10985.23 179
v7n62.50 23959.27 24872.20 19867.25 32049.83 18577.87 25680.12 19752.50 25748.80 29273.07 28932.10 24387.90 16446.83 25554.92 28578.86 272
test20.0355.22 28754.07 28058.68 31763.14 33825.00 35777.69 25774.78 28352.64 25543.43 31672.39 29826.21 28274.76 31629.31 32747.05 32176.28 304
bld_raw_dy_0_6459.75 25357.01 26267.96 26566.73 32145.30 26677.59 25859.97 33850.49 27047.15 30377.03 24717.45 33179.06 28856.92 18959.76 23679.51 267
testdata177.55 25964.14 78
PEN-MVS58.35 27157.15 25961.94 30367.55 31934.39 33077.01 26078.35 23951.87 26247.72 29776.73 25433.91 22673.75 32234.03 31047.17 31977.68 289
WR-MVS_H58.91 26458.04 25461.54 30669.07 30833.83 33376.91 26181.99 16851.40 26648.17 29374.67 27340.23 15274.15 31831.78 31948.10 31176.64 300
CP-MVSNet58.54 27057.57 25761.46 30768.50 31233.96 33276.90 26278.60 23451.67 26547.83 29676.60 25634.99 21972.79 32735.45 30047.58 31577.64 291
PS-CasMVS58.12 27257.03 26161.37 30868.24 31633.80 33476.73 26378.01 24251.20 26747.54 30076.20 26432.85 23572.76 32835.17 30547.37 31777.55 292
tpm68.36 16767.48 15970.97 22779.93 17851.34 15376.58 26478.75 22967.73 3763.54 14974.86 27248.33 5972.36 33053.93 20763.71 20689.21 103
MVS_030456.72 27655.17 27361.37 30870.71 29636.80 32675.74 26568.75 32144.11 31352.53 27168.20 32015.05 34074.53 31742.98 27458.44 24872.79 327
DTE-MVSNet57.03 27555.73 27160.95 31265.94 32332.57 33975.71 26677.09 25951.16 26846.65 30776.34 25932.84 23673.22 32630.94 32344.87 32877.06 294
tpmrst71.04 12069.77 12274.86 14183.19 10355.86 4675.64 26778.73 23067.88 3464.99 12473.73 28149.96 5379.56 28765.92 10767.85 18089.14 106
CostFormer73.89 7872.30 8478.66 5482.36 12856.58 2875.56 26885.30 9566.06 5670.50 8276.88 25257.02 1489.06 12168.27 9468.74 17390.33 80
HY-MVS67.03 573.90 7773.14 7276.18 11584.70 7147.36 23875.56 26886.36 7366.27 5070.66 8083.91 16551.05 4389.31 11667.10 10072.61 14491.88 43
K. test v354.04 29249.42 30367.92 26668.55 31142.57 29775.51 27063.07 33352.07 25939.21 33264.59 33019.34 32182.21 25937.11 29225.31 36178.97 271
Vis-MVSNet (Re-imp)65.52 21665.63 19365.17 28877.49 21930.54 34375.49 27177.73 24759.34 15852.26 27686.69 13649.38 5780.53 27537.07 29375.28 12384.42 190
pmmvs-eth3d55.97 28452.78 28865.54 28461.02 34346.44 25075.36 27267.72 32449.61 27743.65 31567.58 32221.63 31377.04 30644.11 26944.33 32973.15 326
TAPA-MVS56.12 1461.82 24560.18 24266.71 27678.48 20637.97 32175.19 27376.41 27146.82 29257.04 23386.52 13927.67 27477.03 30726.50 34267.02 18685.14 180
Andrea Romanoni, Matteo Matteucci: TAPA-MVS: Textureless-Aware PAtchMatch Multi-View Stereo. ICCV 2019
FMVSNet558.61 26756.45 26465.10 28977.20 22639.74 31274.77 27477.12 25850.27 27343.28 31867.71 32126.15 28476.90 30936.78 29654.78 28778.65 276
FA-MVS(test-final)69.00 15566.60 17476.19 11483.48 9347.96 23274.73 27582.07 16757.27 20562.18 16278.47 23036.09 20592.89 3153.76 20971.32 15487.73 135
SixPastTwentyTwo54.37 28950.10 29867.21 27070.70 29741.46 30574.73 27564.69 32947.56 28839.12 33369.49 31418.49 32784.69 24231.87 31834.20 35175.48 308
F-COLMAP55.96 28553.65 28362.87 29972.76 27742.77 29374.70 27770.37 31540.03 32441.11 32879.36 21917.77 32973.70 32332.80 31653.96 29372.15 329
MSDG59.44 25555.14 27572.32 19774.69 25650.71 16074.39 27873.58 29444.44 30943.40 31777.52 23819.45 32090.87 7831.31 32157.49 26475.38 309
tpm270.82 12468.44 13977.98 7080.78 16256.11 3974.21 27981.28 18360.24 14368.04 9275.27 27052.26 3688.50 14455.82 19768.03 17789.33 100
UniMVSNet_ETH3D62.51 23860.49 23868.57 26168.30 31540.88 31073.89 28079.93 20151.81 26454.77 25279.61 21724.80 29381.10 26749.93 23261.35 22883.73 206
UA-Net67.32 19066.23 18070.59 23178.85 19541.23 30773.60 28175.45 27961.54 12166.61 10284.53 15638.73 16686.57 20342.48 27974.24 13183.98 200
Anonymous2024052151.65 30348.42 30561.34 31056.43 35039.65 31473.57 28273.47 29936.64 33536.59 33963.98 33110.75 34772.25 33135.35 30149.01 30972.11 330
ab-mvs70.65 12769.11 13375.29 13480.87 16046.23 25673.48 28385.24 10059.99 14566.65 10080.94 20843.13 12188.69 13563.58 12568.07 17690.95 68
LS3D56.40 28153.82 28164.12 29281.12 15245.69 26473.42 28466.14 32635.30 34143.24 31979.88 21422.18 31079.62 28619.10 35864.00 20467.05 341
testmvs6.14 3468.18 3490.01 3600.01 3830.00 38573.40 2850.00 3840.00 3780.02 3790.15 3780.00 3830.00 3790.02 3770.00 3770.02 375
UnsupCasMVSNet_eth57.56 27355.15 27464.79 29164.57 33333.12 33573.17 28683.87 13758.98 17141.75 32470.03 31322.54 30579.92 28246.12 26035.31 34581.32 248
anonymousdsp60.46 25157.65 25568.88 25263.63 33645.09 26872.93 28778.63 23246.52 29451.12 28172.80 29321.46 31483.07 25757.79 18053.97 29278.47 278
EU-MVSNet52.63 29950.72 29658.37 31862.69 34028.13 35472.60 28875.97 27430.94 34640.76 33072.11 30220.16 31870.80 33435.11 30646.11 32576.19 305
dp64.41 21961.58 22672.90 18482.40 12654.09 8972.53 28976.59 26960.39 14055.68 24770.39 31235.18 21576.90 30939.34 28561.71 22787.73 135
N_pmnet41.25 31839.77 32145.66 33668.50 3120.82 38372.51 2900.38 38335.61 33835.26 34461.51 33720.07 31967.74 33923.51 34940.63 33668.42 340
MDTV_nov1_ep1361.56 22781.68 13655.12 6272.41 29178.18 24059.19 16358.85 20269.29 31634.69 22086.16 21136.76 29762.96 219
YYNet153.82 29449.96 29965.41 28670.09 30248.95 20372.30 29271.66 30744.25 31131.89 35263.07 33423.73 29973.95 32033.26 31339.40 33973.34 323
MDA-MVSNet_test_wron53.82 29449.95 30065.43 28570.13 30149.05 19972.30 29271.65 30844.23 31231.85 35363.13 33323.68 30074.01 31933.25 31439.35 34073.23 325
testgi54.25 29152.57 29059.29 31562.76 33921.65 36472.21 29470.47 31453.25 25241.94 32277.33 24214.28 34177.95 30029.18 32851.72 30578.28 283
KD-MVS_2432*160059.04 26256.44 26566.86 27479.07 18945.87 26072.13 29580.42 19455.03 23648.15 29471.01 30636.73 19678.05 29735.21 30330.18 35676.67 297
miper_refine_blended59.04 26256.44 26566.86 27479.07 18945.87 26072.13 29580.42 19455.03 23648.15 29471.01 30636.73 19678.05 29735.21 30330.18 35676.67 297
PatchmatchNetpermissive67.07 19763.63 21777.40 8283.10 10458.03 972.11 29777.77 24658.85 17359.37 18970.83 30837.84 17284.93 23942.96 27569.83 16789.26 101
Fangjinhua Wang, Silvano Galliani, Christoph Vogel, Pablo Speciale, Marc Pollefeys: PatchmatchNet: Learned Multi-View Patchmatch Stereo.
test1236.01 3478.01 3500.01 3600.00 3840.01 38471.93 2980.00 3840.00 3780.02 3790.11 3790.00 3830.00 3790.02 3770.00 3770.02 375
EPMVS68.45 16665.44 19977.47 8184.91 6856.17 3871.89 29981.91 17261.72 11860.85 17272.49 29536.21 20387.06 18647.32 25171.62 15189.17 105
UnsupCasMVSNet_bld53.86 29350.53 29763.84 29363.52 33734.75 32971.38 30081.92 17146.53 29338.95 33457.93 34620.55 31780.20 28039.91 28434.09 35276.57 301
COLMAP_ROBcopyleft43.60 2050.90 30648.05 30759.47 31467.81 31840.57 31171.25 30162.72 33536.49 33636.19 34173.51 28613.48 34273.92 32120.71 35450.26 30763.92 349
Johannes L. Schönberger, Enliang Zheng, Marc Pollefeys, Jan-Michael Frahm: Pixelwise View Selection for Unstructured Multi-View Stereo. ECCV 2016
MDTV_nov1_ep13_2view43.62 28471.13 30254.95 23859.29 19336.76 19546.33 25887.32 143
test_post170.84 30314.72 37534.33 22383.86 24648.80 241
new-patchmatchnet48.21 31046.55 31253.18 32857.73 34818.19 37270.24 30471.02 31245.70 30033.70 34760.23 34018.00 32869.86 33727.97 33634.35 34971.49 335
pmmvs345.53 31641.55 32057.44 32048.97 35939.68 31370.06 30557.66 34028.32 34934.06 34657.29 3478.50 35466.85 34034.86 30834.26 35065.80 346
tpmvs62.45 24159.42 24671.53 21883.93 8454.32 8370.03 30677.61 24951.91 26153.48 26668.29 31937.91 17186.66 19833.36 31258.27 25073.62 321
tpm cat166.28 20962.78 21876.77 10581.40 14857.14 2270.03 30677.19 25653.00 25358.76 20470.73 31146.17 7886.73 19643.27 27264.46 20286.44 160
PatchMatch-RL56.66 27753.75 28265.37 28777.91 21545.28 26769.78 30860.38 33641.35 32247.57 29973.73 28116.83 33376.91 30836.99 29459.21 24273.92 319
MDA-MVSNet-bldmvs51.56 30447.75 31063.00 29871.60 28947.32 23969.70 30972.12 30343.81 31427.65 35963.38 33221.97 31275.96 31127.30 33932.19 35365.70 347
miper_lstm_enhance63.91 22362.30 22168.75 25775.06 25146.78 24569.02 31081.14 18459.68 15152.76 27072.39 29840.71 14877.99 29956.81 19053.09 30081.48 239
test_fmvs153.60 29652.54 29156.78 32158.07 34630.26 34468.95 31142.19 35532.46 34363.59 14782.56 18911.55 34460.81 34458.25 17155.27 28379.28 268
GG-mvs-BLEND77.77 7486.68 4350.61 16268.67 31288.45 3968.73 8887.45 12459.15 1090.67 8354.83 20087.67 1692.03 38
OurMVSNet-221017-052.39 30148.73 30463.35 29765.21 32838.42 31968.54 31364.95 32838.19 32839.57 33171.43 30513.23 34379.92 28237.16 29040.32 33871.72 332
FE-MVS64.15 22160.43 24075.30 13380.85 16149.86 18468.28 31478.37 23850.26 27459.31 19173.79 28026.19 28391.92 5340.19 28266.67 18784.12 193
test_fmvs1_n52.55 30051.19 29556.65 32251.90 35430.14 34567.66 31542.84 35432.27 34462.30 16182.02 1989.12 35260.84 34357.82 17954.75 28978.99 270
MIMVSNet150.35 30747.81 30857.96 31961.53 34227.80 35567.40 31674.06 28943.25 31733.31 35165.38 32916.03 33771.34 33221.80 35147.55 31674.75 313
test_vis1_n51.19 30549.66 30255.76 32551.26 35529.85 34767.20 31738.86 35832.12 34559.50 18779.86 2158.78 35358.23 35056.95 18852.46 30279.19 269
MTAPA72.73 9371.22 10277.27 8781.54 14453.57 9767.06 31881.31 18159.41 15668.39 9090.96 5436.07 20689.01 12473.80 6882.45 6089.23 102
MIMVSNet63.12 23260.29 24171.61 21475.92 24346.65 24765.15 31981.94 16959.14 16754.65 25469.47 31525.74 28680.63 27241.03 28169.56 17087.55 138
XVG-OURS-SEG-HR62.02 24359.54 24569.46 24765.30 32745.88 25965.06 32073.57 29546.45 29557.42 23083.35 17526.95 27878.09 29553.77 20864.03 20384.42 190
XVG-OURS61.88 24459.34 24769.49 24665.37 32646.27 25464.80 32173.49 29647.04 29157.41 23182.85 18025.15 29178.18 29353.00 21464.98 19684.01 197
gg-mvs-nofinetune67.43 18664.53 21176.13 11685.95 4747.79 23364.38 32288.28 4139.34 32566.62 10141.27 35758.69 1389.00 12549.64 23586.62 2891.59 49
XVG-ACMP-BASELINE56.03 28352.85 28765.58 28361.91 34140.95 30963.36 32372.43 30145.20 30446.02 30974.09 2779.20 35178.12 29445.13 26258.27 25077.66 290
TinyColmap48.15 31144.49 31559.13 31665.73 32538.04 32063.34 32462.86 33438.78 32629.48 35567.23 3246.46 36173.30 32524.59 34641.90 33566.04 345
MVS-HIRNet49.01 30944.71 31361.92 30476.06 23946.61 24863.23 32554.90 34324.77 35333.56 34836.60 36121.28 31575.88 31229.49 32662.54 22263.26 351
PM-MVS46.92 31343.76 31856.41 32452.18 35332.26 34063.21 32638.18 35937.99 33040.78 32966.20 3255.09 36465.42 34148.19 24641.99 33471.54 334
AllTest47.32 31244.66 31455.32 32665.08 32937.50 32362.96 32754.25 34535.45 33933.42 34972.82 2919.98 34859.33 34724.13 34743.84 33069.13 337
USDC54.36 29051.23 29463.76 29464.29 33437.71 32262.84 32873.48 29856.85 21135.47 34371.94 3049.23 35078.43 29138.43 28748.57 31075.13 312
Patchmatch-RL test58.72 26654.32 27871.92 21063.91 33544.25 27861.73 32955.19 34257.38 20349.31 29054.24 34937.60 17980.89 26962.19 13547.28 31890.63 73
SCA63.84 22460.01 24375.32 13278.58 20357.92 1061.61 33077.53 25056.71 21657.75 22170.77 30931.97 24579.91 28448.80 24156.36 26888.13 127
CMPMVSbinary40.41 2155.34 28652.64 28963.46 29660.88 34443.84 28261.58 33171.06 31130.43 34736.33 34074.63 27424.14 29775.44 31348.05 24766.62 18871.12 336
M. Jancosek, T. Pajdla: Multi-View Reconstruction Preserving Weakly-Supported Surfaces. CVPR 2011
LCM-MVSNet-Re58.82 26556.54 26365.68 28279.31 18629.09 35261.39 33245.79 35060.73 13637.65 33872.47 29631.42 25181.08 26849.66 23470.41 16286.87 149
CR-MVSNet62.47 24059.04 25072.77 18773.97 26556.57 2960.52 33371.72 30560.04 14457.49 22765.86 32638.94 16380.31 27742.86 27659.93 23481.42 241
RPMNet59.29 25654.25 27974.42 14873.97 26556.57 2960.52 33376.98 26035.72 33757.49 22758.87 34537.73 17685.26 23227.01 34059.93 23481.42 241
EGC-MVSNET33.75 32530.42 32943.75 33964.94 33136.21 32760.47 33540.70 3570.02 3770.10 37853.79 3507.39 35560.26 34511.09 36635.23 34734.79 363
test_vis1_rt40.29 32038.64 32245.25 33748.91 36030.09 34659.44 33627.07 37224.52 35438.48 33651.67 3536.71 35949.44 35744.33 26746.59 32456.23 353
Patchmtry56.56 27952.95 28667.42 26972.53 28050.59 16459.05 33771.72 30537.86 33146.92 30465.86 32638.94 16380.06 28136.94 29546.72 32371.60 333
TDRefinement40.91 31938.37 32348.55 33350.45 35733.03 33758.98 33850.97 34828.50 34829.89 35467.39 3236.21 36354.51 35317.67 36035.25 34658.11 352
test_fmvs245.89 31444.32 31650.62 33145.85 36324.70 35858.87 33937.84 36125.22 35252.46 27374.56 2757.07 35654.69 35249.28 23847.70 31472.48 328
KD-MVS_self_test49.24 30846.85 31156.44 32354.32 35122.87 36057.39 34073.36 30044.36 31037.98 33759.30 34418.97 32371.17 33333.48 31142.44 33375.26 310
PatchT56.60 27852.97 28567.48 26872.94 27546.16 25757.30 34173.78 29238.77 32754.37 25757.26 34837.52 18178.06 29632.02 31752.79 30178.23 285
mvsany_test143.38 31742.57 31945.82 33550.96 35626.10 35655.80 34227.74 37127.15 35047.41 30274.39 27618.67 32544.95 36344.66 26536.31 34366.40 344
ANet_high34.39 32429.59 33048.78 33230.34 37322.28 36155.53 34363.79 33238.11 32915.47 36536.56 3626.94 35759.98 34613.93 3635.64 37664.08 348
ADS-MVSNet255.21 28851.44 29366.51 27980.60 16749.56 19055.03 34465.44 32744.72 30651.00 28261.19 33822.83 30275.41 31428.54 33253.63 29474.57 315
ADS-MVSNet56.17 28251.95 29268.84 25380.60 16753.07 11755.03 34470.02 31744.72 30651.00 28261.19 33822.83 30278.88 29028.54 33253.63 29474.57 315
RPSCF45.77 31544.13 31750.68 33057.67 34929.66 34854.92 34645.25 35226.69 35145.92 31075.92 26717.43 33245.70 36227.44 33845.95 32676.67 297
new_pmnet33.56 32631.89 32838.59 34249.01 35820.42 36551.01 34737.92 36020.58 35523.45 36046.79 3556.66 36049.28 35920.00 35731.57 35546.09 361
test_fmvs337.95 32235.75 32444.55 33835.50 36918.92 36848.32 34834.00 36618.36 36041.31 32761.58 3362.29 37148.06 36142.72 27737.71 34266.66 343
E-PMN19.16 33918.40 34321.44 35536.19 36813.63 37747.59 34930.89 36710.73 3685.91 37516.59 3713.66 36739.77 3665.95 3738.14 37110.92 371
EMVS18.42 34017.66 34420.71 35634.13 37012.64 37846.94 35029.94 36910.46 3705.58 37614.93 3744.23 36638.83 3675.24 3757.51 37310.67 372
CHOSEN 280x42057.53 27456.38 26760.97 31174.01 26348.10 22846.30 35154.31 34448.18 28550.88 28577.43 24138.37 16959.16 34954.83 20063.14 21775.66 307
LTVRE_ROB45.45 1952.73 29849.74 30161.69 30569.78 30334.99 32844.52 35267.60 32543.11 31843.79 31474.03 27818.54 32681.45 26528.39 33457.94 25768.62 339
Andreas Kuhn, Heiko Hirschmüller, Daniel Scharstein, Helmut Mayer: A TV Prior for High-Quality Scalable Multi-View Stereo Reconstruction. International Journal of Computer Vision 2016
LF4IMVS33.04 32732.55 32734.52 34540.96 36422.03 36244.45 35335.62 36320.42 35628.12 35862.35 3355.03 36531.88 37521.61 35334.42 34849.63 359
Patchmatch-test53.33 29748.17 30668.81 25573.31 26942.38 29842.98 35458.23 33932.53 34238.79 33570.77 30939.66 15973.51 32425.18 34452.06 30490.55 74
PMMVS226.71 33222.98 33737.87 34336.89 3678.51 38042.51 35529.32 37019.09 35913.01 36737.54 3582.23 37253.11 35414.54 36211.71 36951.99 358
FPMVS35.40 32333.67 32640.57 34146.34 36228.74 35341.05 35657.05 34120.37 35722.27 36153.38 3516.87 35844.94 3648.62 36747.11 32048.01 360
PMVScopyleft19.57 2225.07 33422.43 33932.99 34923.12 38022.98 35940.98 35735.19 36415.99 36211.95 37135.87 3631.47 37749.29 3585.41 37431.90 35426.70 368
Y. Furukawa, J. Ponce: Accurate, dense, and robust multiview stereopsis. PAMI (2010)
APD_test126.46 33324.41 33432.62 35037.58 36621.74 36340.50 35830.39 36811.45 36716.33 36443.76 3561.63 37641.62 36511.24 36526.82 36034.51 364
JIA-IIPM52.33 30247.77 30966.03 28171.20 29446.92 24440.00 35976.48 27037.10 33246.73 30537.02 35932.96 23477.88 30135.97 29852.45 30373.29 324
DSMNet-mixed38.35 32135.36 32547.33 33448.11 36114.91 37637.87 36036.60 36219.18 35834.37 34559.56 34315.53 33853.01 35520.14 35646.89 32274.07 317
test_vis3_rt24.79 33522.95 33830.31 35128.59 37518.92 36837.43 36117.27 37912.90 36421.28 36229.92 3681.02 37836.35 36828.28 33529.82 35835.65 362
ambc62.06 30253.98 35229.38 35035.08 36279.65 20841.37 32559.96 3416.27 36282.15 26035.34 30238.22 34174.65 314
mvsany_test328.00 32925.98 33134.05 34628.97 37415.31 37434.54 36318.17 37716.24 36129.30 35653.37 3522.79 36933.38 37430.01 32520.41 36753.45 356
testf121.11 33719.08 34127.18 35330.56 37118.28 37033.43 36424.48 3738.02 37112.02 36933.50 3650.75 38035.09 3717.68 36921.32 36428.17 366
APD_test221.11 33719.08 34127.18 35330.56 37118.28 37033.43 36424.48 3738.02 37112.02 36933.50 3650.75 38035.09 3717.68 36921.32 36428.17 366
LCM-MVSNet28.07 32823.85 33640.71 34027.46 37818.93 36730.82 36646.19 34912.76 36516.40 36334.70 3641.90 37448.69 36020.25 35524.22 36254.51 355
test_f27.12 33124.85 33233.93 34726.17 37915.25 37530.24 36722.38 37612.53 36628.23 35749.43 3542.59 37034.34 37325.12 34526.99 35952.20 357
test_method24.09 33621.07 34033.16 34827.67 3778.35 38126.63 36835.11 3653.40 37414.35 36636.98 3603.46 36835.31 37019.08 35922.95 36355.81 354
wuyk23d9.11 3448.77 34810.15 35840.18 36516.76 37320.28 3691.01 3822.58 3752.66 3770.98 3770.23 38212.49 3774.08 3766.90 3741.19 374
MVEpermissive16.60 2317.34 34213.39 34529.16 35228.43 37619.72 36613.73 37023.63 3757.23 3737.96 37321.41 3690.80 37936.08 3696.97 37110.39 37031.69 365
Simon Fuhrmann, Fabian Langguth, Michael Goesele: MVE - A Multi-View Reconstruction Environment. EUROGRAPHICS Workshops on Graphics and Cultural Heritage (2014)
Gipumacopyleft27.47 33024.26 33537.12 34460.55 34529.17 35111.68 37160.00 33714.18 36310.52 37215.12 3732.20 37363.01 3428.39 36835.65 34419.18 369
S. Galliani, K. Lasinger, K. Schindler: Massively Parallel Multiview Stereopsis by Surface Normal Diffusion. ICCV 2015
tmp_tt9.44 34310.68 3465.73 3592.49 3824.21 38210.48 37218.04 3780.34 37612.59 36820.49 37011.39 3457.03 37813.84 3646.46 3755.95 373
test_blank0.00 3490.00 3520.00 3620.00 3840.00 3850.00 3730.00 3840.00 3780.00 3810.00 3800.00 3830.00 3790.00 3790.00 3770.00 377
uanet_test0.00 3490.00 3520.00 3620.00 3840.00 3850.00 3730.00 3840.00 3780.00 3810.00 3800.00 3830.00 3790.00 3790.00 3770.00 377
DCPMVS0.00 3490.00 3520.00 3620.00 3840.00 3850.00 3730.00 3840.00 3780.00 3810.00 3800.00 3830.00 3790.00 3790.00 3770.00 377
cdsmvs_eth3d_5k18.33 34124.44 3330.00 3620.00 3840.00 3850.00 37389.40 150.00 3780.00 38192.02 3438.55 1670.00 3790.00 3790.00 3770.00 377
pcd_1.5k_mvsjas3.15 3484.20 3510.00 3620.00 3840.00 3850.00 3730.00 3840.00 3780.00 3810.00 38037.77 1730.00 3790.00 3790.00 3770.00 377
sosnet-low-res0.00 3490.00 3520.00 3620.00 3840.00 3850.00 3730.00 3840.00 3780.00 3810.00 3800.00 3830.00 3790.00 3790.00 3770.00 377
sosnet0.00 3490.00 3520.00 3620.00 3840.00 3850.00 3730.00 3840.00 3780.00 3810.00 3800.00 3830.00 3790.00 3790.00 3770.00 377
uncertanet0.00 3490.00 3520.00 3620.00 3840.00 3850.00 3730.00 3840.00 3780.00 3810.00 3800.00 3830.00 3790.00 3790.00 3770.00 377
Regformer0.00 3490.00 3520.00 3620.00 3840.00 3850.00 3730.00 3840.00 3780.00 3810.00 3800.00 3830.00 3790.00 3790.00 3770.00 377
ab-mvs-re7.68 34510.24 3470.00 3620.00 3840.00 3850.00 3730.00 3840.00 3780.00 38192.12 310.00 3830.00 3790.00 3790.00 3770.00 377
uanet0.00 3490.00 3520.00 3620.00 3840.00 3850.00 3730.00 3840.00 3780.00 3810.00 3800.00 3830.00 3790.00 3790.00 3770.00 377
MSC_two_6792asdad81.53 1491.77 456.03 4191.10 696.22 881.46 1986.80 2592.34 30
PC_three_145266.58 4687.27 293.70 866.82 494.95 1789.74 291.98 493.98 5
No_MVS81.53 1491.77 456.03 4191.10 696.22 881.46 1986.80 2592.34 30
test_one_060189.39 2257.29 2088.09 4357.21 20782.06 1193.39 1254.94 24
eth-test20.00 384
eth-test0.00 384
ZD-MVS89.55 1453.46 10084.38 12357.02 20973.97 4291.03 5044.57 10291.17 6875.41 5681.78 67
IU-MVS89.48 1757.49 1591.38 566.22 5188.26 182.83 987.60 1792.44 27
test_241102_TWO88.76 3057.50 20183.60 694.09 356.14 1896.37 682.28 1387.43 1992.55 25
test_241102_ONE89.48 1756.89 2588.94 2257.53 19984.61 493.29 1558.81 1196.45 1
test_0728_THIRD58.00 18781.91 1293.64 1056.54 1596.44 281.64 1786.86 2392.23 32
GSMVS88.13 127
test_part289.33 2355.48 5082.27 10
sam_mvs138.86 16588.13 127
sam_mvs35.99 209
MTGPAbinary81.31 181
test_post16.22 37237.52 18184.72 241
patchmatchnet-post59.74 34238.41 16879.91 284
gm-plane-assit83.24 10154.21 8670.91 1388.23 11295.25 1466.37 104
test9_res78.72 3485.44 3991.39 57
agg_prior275.65 5185.11 4391.01 66
agg_prior85.64 5454.92 6983.61 14372.53 6088.10 159
TestCases55.32 32665.08 32937.50 32354.25 34535.45 33933.42 34972.82 2919.98 34859.33 34724.13 34743.84 33069.13 337
test_prior78.39 6386.35 4554.91 7085.45 8889.70 11090.55 74
新几何173.30 17883.10 10453.48 9971.43 30945.55 30166.14 10887.17 12933.88 22880.54 27448.50 24480.33 8085.88 170
旧先验181.57 14347.48 23571.83 30488.66 10236.94 19278.34 10188.67 116
原ACMM176.13 11684.89 6954.59 7985.26 9851.98 26066.70 9987.07 13140.15 15489.70 11051.23 22685.06 4484.10 194
testdata277.81 30345.64 261
segment_acmp44.97 96
testdata67.08 27277.59 21745.46 26569.20 32044.47 30871.50 7288.34 10931.21 25270.76 33552.20 22275.88 11785.03 182
test1279.24 3786.89 4156.08 4085.16 10372.27 6447.15 7091.10 7185.93 3390.54 76
plane_prior777.95 21248.46 219
plane_prior678.42 20749.39 19436.04 207
plane_prior582.59 16088.30 15265.46 11372.34 14684.49 188
plane_prior483.28 176
plane_prior348.95 20364.01 8162.15 163
plane_prior178.31 209
n20.00 384
nn0.00 384
door-mid41.31 356
lessismore_v067.98 26464.76 33241.25 30645.75 35136.03 34265.63 32819.29 32284.11 24535.67 29921.24 36678.59 277
LGP-MVS_train72.02 20274.42 25948.60 21280.64 19054.69 24153.75 26383.83 16625.73 28786.98 18760.33 15564.71 19880.48 257
test1184.25 127
door43.27 353
HQP5-MVS51.56 147
BP-MVS66.70 101
HQP4-MVS64.47 13488.61 13884.91 185
HQP3-MVS83.68 13973.12 138
HQP2-MVS37.35 184
NP-MVS78.76 19650.43 16885.12 152
ACMMP++_ref63.20 215
ACMMP++59.38 240
Test By Simon39.38 160
ITE_SJBPF51.84 32958.03 34731.94 34253.57 34736.67 33441.32 32675.23 27111.17 34651.57 35625.81 34348.04 31272.02 331
DeepMVS_CXcopyleft13.10 35721.34 3818.99 37910.02 38110.59 3697.53 37430.55 3671.82 37514.55 3766.83 3727.52 37215.75 370