| MCST-MVS | | | 83.01 1 | 83.30 2 | 82.15 10 | 92.84 2 | 57.58 14 | 93.77 1 | 91.10 6 | 75.95 3 | 77.10 34 | 93.09 25 | 54.15 28 | 95.57 12 | 85.80 8 | 85.87 36 | 93.31 11 |
|
| DELS-MVS | | | 82.32 4 | 82.50 3 | 81.79 11 | 86.80 42 | 56.89 25 | 92.77 2 | 86.30 77 | 77.83 1 | 77.88 31 | 92.13 39 | 60.24 6 | 94.78 19 | 78.97 41 | 89.61 7 | 93.69 8 |
| Christian Sormann, Emanuele Santellani, Mattia Rossi, Andreas Kuhn, Friedrich Fraundorfer: DELS-MVS: Deep Epipolar Line Search for Multi-View Stereo. Winter Conference on Applications of Computer Vision (WACV), 2023 |
| SED-MVS | | | 81.92 6 | 81.75 8 | 82.44 7 | 89.48 17 | 56.89 25 | 92.48 3 | 88.94 24 | 57.50 218 | 84.61 4 | 94.09 3 | 58.81 11 | 96.37 6 | 82.28 23 | 87.60 17 | 94.06 3 |
|
| OPU-MVS | | | | | 81.71 12 | 92.05 3 | 55.97 43 | 92.48 3 | | | | 94.01 5 | 67.21 2 | 95.10 15 | 89.82 2 | 92.55 3 | 94.06 3 |
|
| DVP-MVS |  | | 81.30 9 | 81.00 12 | 82.20 8 | 89.40 20 | 57.45 17 | 92.34 5 | 89.99 13 | 57.71 212 | 81.91 13 | 93.64 11 | 55.17 20 | 96.44 2 | 81.68 26 | 87.13 20 | 92.72 24 |
| Zhenlong Yuan, Jinguo Luo, Fei Shen, Zhaoxin Li, Cong Liu, Tianlu Mao, Zhaoqi Wang: DVP-MVS: Synergize Depth-Edge and Visibility Prior for Multi-View Stereo. AAAI2025 |
| test_0728_SECOND | | | | | 82.20 8 | 89.50 15 | 57.73 11 | 92.34 5 | 88.88 26 | | | | | 96.39 4 | 81.68 26 | 87.13 20 | 92.47 28 |
|
| test0726 | | | | | | 89.40 20 | 57.45 17 | 92.32 7 | 88.63 36 | 57.71 212 | 83.14 9 | 93.96 6 | 55.17 20 | | | | |
|
| DPM-MVS | | | 82.39 3 | 82.36 5 | 82.49 5 | 80.12 181 | 59.50 5 | 92.24 8 | 90.72 9 | 69.37 26 | 83.22 8 | 94.47 2 | 63.81 5 | 93.18 31 | 74.02 79 | 93.25 2 | 94.80 1 |
|
| MM | | | | | 80.89 20 | | 55.40 54 | 92.16 9 | 89.85 15 | 75.28 4 | 82.41 10 | 93.86 8 | 54.30 25 | 93.98 23 | 90.29 1 | 87.13 20 | 93.30 12 |
|
| CNVR-MVS | | | 81.76 7 | 81.90 7 | 81.33 17 | 90.04 10 | 57.70 12 | 91.71 10 | 88.87 28 | 70.31 19 | 77.64 33 | 93.87 7 | 52.58 35 | 93.91 26 | 84.17 12 | 87.92 15 | 92.39 30 |
|
| PS-MVSNAJ | | | 80.06 15 | 79.52 16 | 81.68 13 | 85.58 55 | 60.97 3 | 91.69 11 | 87.02 63 | 70.62 16 | 80.75 18 | 93.22 22 | 37.77 187 | 92.50 42 | 82.75 20 | 86.25 33 | 91.57 53 |
|
| xiu_mvs_v2_base | | | 79.86 16 | 79.31 17 | 81.53 14 | 85.03 67 | 60.73 4 | 91.65 12 | 86.86 66 | 70.30 20 | 80.77 17 | 93.07 27 | 37.63 192 | 92.28 47 | 82.73 21 | 85.71 37 | 91.57 53 |
|
| CANet | | | 80.90 10 | 81.17 11 | 80.09 32 | 87.62 37 | 54.21 88 | 91.60 13 | 86.47 73 | 73.13 8 | 79.89 23 | 93.10 23 | 49.88 56 | 92.98 32 | 84.09 14 | 84.75 48 | 93.08 17 |
|
| lupinMVS | | | 78.38 24 | 78.11 25 | 79.19 40 | 83.02 109 | 55.24 58 | 91.57 14 | 84.82 115 | 69.12 27 | 76.67 36 | 92.02 43 | 44.82 108 | 90.23 100 | 80.83 33 | 80.09 84 | 92.08 38 |
|
| NCCC | | | 79.57 18 | 79.23 18 | 80.59 21 | 89.50 15 | 56.99 23 | 91.38 15 | 88.17 45 | 67.71 41 | 73.81 52 | 92.75 30 | 46.88 77 | 93.28 29 | 78.79 44 | 84.07 53 | 91.50 57 |
|
| test_yl | | | 75.85 57 | 74.83 63 | 78.91 46 | 88.08 34 | 51.94 140 | 91.30 16 | 89.28 17 | 57.91 206 | 71.19 86 | 89.20 104 | 42.03 145 | 92.77 36 | 69.41 99 | 75.07 130 | 92.01 41 |
|
| DCV-MVSNet | | | 75.85 57 | 74.83 63 | 78.91 46 | 88.08 34 | 51.94 140 | 91.30 16 | 89.28 17 | 57.91 206 | 71.19 86 | 89.20 104 | 42.03 145 | 92.77 36 | 69.41 99 | 75.07 130 | 92.01 41 |
|
| LFMVS | | | 78.52 21 | 77.14 35 | 82.67 3 | 89.58 13 | 58.90 7 | 91.27 18 | 88.05 47 | 63.22 109 | 74.63 44 | 90.83 69 | 41.38 154 | 94.40 20 | 75.42 68 | 79.90 89 | 94.72 2 |
|
| MVS_0304 | | | 81.58 8 | 82.05 6 | 80.20 27 | 82.36 128 | 54.70 76 | 91.13 19 | 88.95 23 | 74.49 5 | 80.04 22 | 93.64 11 | 52.40 36 | 93.27 30 | 88.85 4 | 86.56 30 | 92.61 26 |
|
| VDD-MVS | | | 76.08 54 | 74.97 60 | 79.44 36 | 84.27 79 | 53.33 111 | 91.13 19 | 85.88 83 | 65.33 76 | 72.37 72 | 89.34 101 | 32.52 256 | 92.76 38 | 77.90 53 | 75.96 118 | 92.22 36 |
|
| DeepPCF-MVS | | 69.37 1 | 80.65 12 | 81.56 10 | 77.94 75 | 85.46 58 | 49.56 193 | 90.99 21 | 86.66 71 | 70.58 17 | 80.07 21 | 95.30 1 | 56.18 17 | 90.97 78 | 82.57 22 | 86.22 34 | 93.28 13 |
|
| VNet | | | 77.99 30 | 77.92 27 | 78.19 69 | 87.43 38 | 50.12 181 | 90.93 22 | 91.41 4 | 67.48 44 | 75.12 40 | 90.15 86 | 46.77 79 | 91.00 75 | 73.52 82 | 78.46 101 | 93.44 9 |
|
| CLD-MVS | | | 75.60 61 | 75.39 53 | 76.24 112 | 80.69 171 | 52.40 132 | 90.69 23 | 86.20 79 | 74.40 6 | 65.01 135 | 88.93 108 | 42.05 144 | 90.58 89 | 76.57 59 | 73.96 136 | 85.73 185 |
| Zhaoxin Li, Wangmeng Zuo, Zhaoqi Wang, Lei Zhang: Confidence-based Large-scale Dense Multi-view Stereo. IEEE Transaction on Image Processing, 2020 |
| jason | | | 77.01 40 | 76.45 42 | 78.69 54 | 79.69 186 | 54.74 73 | 90.56 24 | 83.99 138 | 68.26 31 | 74.10 50 | 90.91 66 | 42.14 142 | 89.99 105 | 79.30 38 | 79.12 95 | 91.36 61 |
| jason: jason. |
| IB-MVS | | 68.87 2 | 74.01 79 | 72.03 101 | 79.94 33 | 83.04 108 | 55.50 49 | 90.24 25 | 88.65 34 | 67.14 46 | 61.38 182 | 81.74 218 | 53.21 31 | 94.28 21 | 60.45 166 | 62.41 238 | 90.03 92 |
| Christian Sormann, Mattia Rossi, Andreas Kuhn and Friedrich Fraundorfer: IB-MVS: An Iterative Algorithm for Deep Multi-View Stereo based on Binary Decisions. BMVC 2021 |
| VDDNet | | | 74.37 75 | 72.13 96 | 81.09 19 | 79.58 187 | 56.52 32 | 90.02 26 | 86.70 70 | 52.61 275 | 71.23 85 | 87.20 140 | 31.75 266 | 93.96 25 | 74.30 77 | 75.77 121 | 92.79 23 |
|
| TSAR-MVS + GP. | | | 77.82 31 | 77.59 30 | 78.49 60 | 85.25 63 | 50.27 180 | 90.02 26 | 90.57 10 | 56.58 237 | 74.26 49 | 91.60 55 | 54.26 26 | 92.16 49 | 75.87 62 | 79.91 88 | 93.05 18 |
|
| DeepC-MVS_fast | | 67.50 3 | 78.00 29 | 77.63 29 | 79.13 43 | 88.52 27 | 55.12 63 | 89.95 28 | 85.98 82 | 68.31 30 | 71.33 84 | 92.75 30 | 45.52 95 | 90.37 93 | 71.15 92 | 85.14 44 | 91.91 44 |
| Andreas Kuhn, Christian Sormann, Mattia Rossi, Oliver Erdler, Friedrich Fraundorfer: DeepC-MVS: Deep Confidence Prediction for Multi-View Stereo Reconstruction. 3DV 2020 |
| HPM-MVS++ |  | | 80.50 13 | 80.71 13 | 79.88 34 | 87.34 39 | 55.20 61 | 89.93 29 | 87.55 58 | 66.04 67 | 79.46 24 | 93.00 28 | 53.10 32 | 91.76 57 | 80.40 34 | 89.56 8 | 92.68 25 |
|
| MG-MVS | | | 78.42 23 | 76.99 37 | 82.73 2 | 93.17 1 | 64.46 1 | 89.93 29 | 88.51 41 | 64.83 81 | 73.52 55 | 88.09 125 | 48.07 64 | 92.19 48 | 62.24 147 | 84.53 50 | 91.53 55 |
|
| VPNet | | | 72.07 113 | 71.42 108 | 74.04 170 | 78.64 208 | 47.17 255 | 89.91 31 | 87.97 48 | 72.56 9 | 64.66 138 | 85.04 165 | 41.83 149 | 88.33 159 | 61.17 156 | 60.97 245 | 86.62 167 |
|
| alignmvs | | | 78.08 28 | 77.98 26 | 78.39 65 | 83.53 92 | 53.22 114 | 89.77 32 | 85.45 91 | 66.11 62 | 76.59 38 | 91.99 45 | 54.07 29 | 89.05 128 | 77.34 56 | 77.00 110 | 92.89 20 |
|
| APDe-MVS |  | | 78.44 22 | 78.20 23 | 79.19 40 | 88.56 26 | 54.55 82 | 89.76 33 | 87.77 53 | 55.91 243 | 78.56 28 | 92.49 35 | 48.20 63 | 92.65 40 | 79.49 36 | 83.04 57 | 90.39 80 |
| Zhaojie Zeng, Yuesong Wang, Tao Guan: Matching Ambiguity-Resilient Multi-View Stereo via Adaptive Patch Deformation. Pattern Recognition |
| SteuartSystems-ACMMP | | | 77.08 39 | 76.33 44 | 79.34 38 | 80.98 160 | 55.31 56 | 89.76 33 | 86.91 65 | 62.94 113 | 71.65 78 | 91.56 56 | 42.33 138 | 92.56 41 | 77.14 57 | 83.69 55 | 90.15 88 |
| Skip Steuart: Steuart Systems R&D Blog. |
| Anonymous202405211 | | | 70.11 144 | 67.88 159 | 76.79 106 | 87.20 40 | 47.24 254 | 89.49 35 | 77.38 262 | 54.88 257 | 66.14 120 | 86.84 145 | 20.93 337 | 91.54 61 | 56.45 207 | 71.62 156 | 91.59 51 |
|
| CS-MVS-test | | | 77.20 37 | 77.25 34 | 77.05 93 | 84.60 72 | 49.04 205 | 89.42 36 | 85.83 85 | 65.90 68 | 72.85 64 | 91.98 47 | 45.10 100 | 91.27 66 | 75.02 71 | 84.56 49 | 90.84 72 |
|
| DP-MVS Recon | | | 71.99 114 | 70.31 124 | 77.01 96 | 90.65 8 | 53.44 105 | 89.37 37 | 82.97 159 | 56.33 240 | 63.56 160 | 89.47 98 | 34.02 242 | 92.15 51 | 54.05 220 | 72.41 149 | 85.43 192 |
|
| EPNet | | | 78.36 25 | 78.49 21 | 77.97 73 | 85.49 57 | 52.04 138 | 89.36 38 | 84.07 135 | 73.22 7 | 77.03 35 | 91.72 50 | 49.32 60 | 90.17 102 | 73.46 83 | 82.77 58 | 91.69 48 |
| Wanjuan Su, Wenbing Tao: Efficient Edge-Preserving Multi-View Stereo Network for Depth Estimation. AAAI 2023 |
| save fliter | | | | | | 85.35 60 | 56.34 36 | 89.31 39 | 81.46 182 | 61.55 135 | | | | | | | |
|
| CSCG | | | 80.41 14 | 79.72 14 | 82.49 5 | 89.12 25 | 57.67 13 | 89.29 40 | 91.54 3 | 59.19 180 | 71.82 77 | 90.05 88 | 59.72 9 | 96.04 10 | 78.37 47 | 88.40 13 | 93.75 7 |
|
| MAR-MVS | | | 76.76 46 | 75.60 50 | 80.21 26 | 90.87 7 | 54.68 78 | 89.14 41 | 89.11 20 | 62.95 112 | 70.54 92 | 92.33 37 | 41.05 155 | 94.95 17 | 57.90 191 | 86.55 31 | 91.00 69 |
| Zhenyu Xu, Yiguang Liu, Xuelei Shi, Ying Wang, Yunan Zheng: MARMVS: Matching Ambiguity Reduced Multiple View Stereo for Efficient Large Scale Scene Reconstruction. CVPR 2020 |
| test_prior2 | | | | | | | | 89.04 42 | | 61.88 131 | 73.55 54 | 91.46 59 | 48.01 66 | | 74.73 72 | 85.46 40 | |
|
| ET-MVSNet_ETH3D | | | 75.23 66 | 74.08 70 | 78.67 55 | 84.52 74 | 55.59 47 | 88.92 43 | 89.21 19 | 68.06 36 | 53.13 284 | 90.22 82 | 49.71 57 | 87.62 189 | 72.12 89 | 70.82 164 | 92.82 21 |
|
| PVSNet_Blended | | | 76.53 48 | 76.54 41 | 76.50 108 | 85.91 48 | 51.83 144 | 88.89 44 | 84.24 132 | 67.82 39 | 69.09 97 | 89.33 103 | 46.70 80 | 88.13 166 | 75.43 66 | 81.48 71 | 89.55 102 |
|
| Anonymous20240529 | | | 69.71 155 | 67.28 173 | 77.00 97 | 83.78 88 | 50.36 175 | 88.87 45 | 85.10 109 | 47.22 308 | 64.03 151 | 83.37 188 | 27.93 288 | 92.10 52 | 57.78 194 | 67.44 190 | 88.53 130 |
|
| DPE-MVS |  | | 79.82 17 | 79.66 15 | 80.29 25 | 89.27 24 | 55.08 66 | 88.70 46 | 87.92 49 | 55.55 248 | 81.21 16 | 93.69 10 | 56.51 16 | 94.27 22 | 78.36 48 | 85.70 38 | 91.51 56 |
| Kehua Chen, Zhenlong Yuan, Tianlu Mao, Zhaoqi Wang: Dual-Level Precision Edges Guided Multi-View Stereo with Accurate Planarization. AAAI2025 |
| CS-MVS | | | 76.77 45 | 76.70 40 | 76.99 98 | 83.55 91 | 48.75 214 | 88.60 47 | 85.18 104 | 66.38 57 | 72.47 71 | 91.62 54 | 45.53 94 | 90.99 77 | 74.48 74 | 82.51 60 | 91.23 64 |
|
| PHI-MVS | | | 77.49 34 | 77.00 36 | 78.95 45 | 85.33 61 | 50.69 164 | 88.57 48 | 88.59 39 | 58.14 201 | 73.60 53 | 93.31 19 | 43.14 131 | 93.79 27 | 73.81 80 | 88.53 12 | 92.37 31 |
|
| WTY-MVS | | | 77.47 35 | 77.52 31 | 77.30 87 | 88.33 30 | 46.25 268 | 88.46 49 | 90.32 11 | 71.40 13 | 72.32 73 | 91.72 50 | 53.44 30 | 92.37 45 | 66.28 119 | 75.42 124 | 93.28 13 |
|
| 9.14 | | | | 78.19 24 | | 85.67 53 | | 88.32 50 | 88.84 29 | 59.89 163 | 74.58 46 | 92.62 33 | 46.80 78 | 92.66 39 | 81.40 32 | 85.62 39 | |
|
| MVS_111021_HR | | | 76.39 50 | 75.38 54 | 79.42 37 | 85.33 61 | 56.47 33 | 88.15 51 | 84.97 111 | 65.15 79 | 66.06 122 | 89.88 91 | 43.79 119 | 92.16 49 | 75.03 70 | 80.03 87 | 89.64 100 |
|
| patch_mono-2 | | | 80.84 11 | 81.59 9 | 78.62 57 | 90.34 9 | 53.77 95 | 88.08 52 | 88.36 43 | 76.17 2 | 79.40 25 | 91.09 60 | 55.43 19 | 90.09 103 | 85.01 10 | 80.40 80 | 91.99 43 |
|
| MS-PatchMatch | | | 72.34 108 | 71.26 109 | 75.61 129 | 82.38 127 | 55.55 48 | 88.00 53 | 89.95 14 | 65.38 74 | 56.51 256 | 80.74 229 | 32.28 259 | 92.89 33 | 57.95 190 | 88.10 14 | 78.39 297 |
|
| HQP-NCC | | | | | | 79.02 197 | | 88.00 53 | | 65.45 70 | 64.48 143 | | | | | | |
|
| ACMP_Plane | | | | | | 79.02 197 | | 88.00 53 | | 65.45 70 | 64.48 143 | | | | | | |
|
| HQP-MVS | | | 72.34 108 | 71.44 107 | 75.03 149 | 79.02 197 | 51.56 150 | 88.00 53 | 83.68 142 | 65.45 70 | 64.48 143 | 85.13 163 | 37.35 199 | 88.62 145 | 66.70 114 | 73.12 142 | 84.91 199 |
|
| iter_conf05 | | | 73.51 91 | 72.24 93 | 77.33 85 | 87.93 36 | 55.97 43 | 87.90 57 | 70.81 324 | 68.72 28 | 64.04 150 | 84.36 172 | 47.54 70 | 90.87 80 | 71.11 93 | 67.75 188 | 85.13 195 |
|
| casdiffmvs_mvg |  | | 77.75 32 | 77.28 33 | 79.16 42 | 80.42 177 | 54.44 84 | 87.76 58 | 85.46 90 | 71.67 11 | 71.38 83 | 88.35 119 | 51.58 40 | 91.22 68 | 79.02 40 | 79.89 90 | 91.83 47 |
| Fangjinhua Wang, Qingshan Xu, Yew-Soon Ong, Marc Pollefeys: Lightweight and Accurate Multi-View Stereo With Confidence-Aware Diffusion Model. IEEE T-PAMI 2025 |
| canonicalmvs | | | 78.17 27 | 77.86 28 | 79.12 44 | 84.30 77 | 54.22 87 | 87.71 59 | 84.57 124 | 67.70 42 | 77.70 32 | 92.11 42 | 50.90 47 | 89.95 106 | 78.18 51 | 77.54 107 | 93.20 15 |
|
| VPA-MVSNet | | | 71.12 128 | 70.66 117 | 72.49 206 | 78.75 203 | 44.43 289 | 87.64 60 | 90.02 12 | 63.97 93 | 65.02 134 | 81.58 221 | 42.14 142 | 87.42 193 | 63.42 139 | 63.38 227 | 85.63 189 |
|
| test_8 | | | | | | 85.72 50 | 55.31 56 | 87.60 61 | 83.88 139 | 57.84 209 | 72.84 65 | 90.99 62 | 44.99 102 | 88.34 158 | | | |
|
| TEST9 | | | | | | 85.68 51 | 55.42 51 | 87.59 62 | 84.00 136 | 57.72 211 | 72.99 61 | 90.98 63 | 44.87 106 | 88.58 147 | | | |
|
| train_agg | | | 76.91 41 | 76.40 43 | 78.45 63 | 85.68 51 | 55.42 51 | 87.59 62 | 84.00 136 | 57.84 209 | 72.99 61 | 90.98 63 | 44.99 102 | 88.58 147 | 78.19 49 | 85.32 42 | 91.34 63 |
|
| SMA-MVS |  | | 79.10 20 | 78.76 20 | 80.12 30 | 84.42 75 | 55.87 45 | 87.58 64 | 86.76 68 | 61.48 138 | 80.26 20 | 93.10 23 | 46.53 82 | 92.41 44 | 79.97 35 | 88.77 10 | 92.08 38 |
| Yufeng Yin; Xiaoyan Liu; Zichao Zhang: SMA-MVS: Segmentation-Guided Multi-Scale Anchor Deformation Patch Multi-View Stereo. IEEE Transactions on Circuits and Systems for Video Technology |
| plane_prior | | | | | | | 49.57 191 | 87.43 65 | | 64.57 83 | | | | | | 72.84 146 | |
|
| EC-MVSNet | | | 75.30 64 | 75.20 55 | 75.62 128 | 80.98 160 | 49.00 206 | 87.43 65 | 84.68 121 | 63.49 104 | 70.97 88 | 90.15 86 | 42.86 135 | 91.14 72 | 74.33 76 | 81.90 66 | 86.71 166 |
|
| TR-MVS | | | 69.71 155 | 67.85 162 | 75.27 144 | 82.94 113 | 48.48 223 | 87.40 67 | 80.86 193 | 57.15 225 | 64.61 141 | 87.08 142 | 32.67 255 | 89.64 115 | 46.38 272 | 71.55 158 | 87.68 146 |
|
| CDPH-MVS | | | 76.05 55 | 75.19 56 | 78.62 57 | 86.51 44 | 54.98 69 | 87.32 68 | 84.59 123 | 58.62 195 | 70.75 89 | 90.85 68 | 43.10 133 | 90.63 88 | 70.50 96 | 84.51 51 | 90.24 84 |
|
| 3Dnovator+ | | 62.71 7 | 72.29 110 | 70.50 119 | 77.65 79 | 83.40 97 | 51.29 158 | 87.32 68 | 86.40 75 | 59.01 187 | 58.49 224 | 88.32 121 | 32.40 257 | 91.27 66 | 57.04 200 | 82.15 65 | 90.38 81 |
|
| API-MVS | | | 74.17 78 | 72.07 98 | 80.49 22 | 90.02 11 | 58.55 8 | 87.30 70 | 84.27 129 | 57.51 217 | 65.77 127 | 87.77 131 | 41.61 151 | 95.97 11 | 51.71 237 | 82.63 59 | 86.94 157 |
|
| BH-RMVSNet | | | 70.08 146 | 68.01 156 | 76.27 111 | 84.21 80 | 51.22 160 | 87.29 71 | 79.33 227 | 58.96 189 | 63.63 158 | 86.77 146 | 33.29 250 | 90.30 98 | 44.63 281 | 73.96 136 | 87.30 154 |
|
| MTMP | | | | | | | | 87.27 72 | 15.34 400 | | | | | | | | |
|
| APD-MVS |  | | 76.15 53 | 75.68 48 | 77.54 81 | 88.52 27 | 53.44 105 | 87.26 73 | 85.03 110 | 53.79 265 | 74.91 42 | 91.68 52 | 43.80 118 | 90.31 96 | 74.36 75 | 81.82 67 | 88.87 119 |
| Yuesong Wang, Zhaojie Zeng and etc.: Adaptive Patch Deformation for Textureless-Resilient Multi-View Stereo. CVPR2023 |
| EIA-MVS | | | 75.92 56 | 75.18 57 | 78.13 70 | 85.14 64 | 51.60 149 | 87.17 74 | 85.32 97 | 64.69 82 | 68.56 100 | 90.53 73 | 45.79 91 | 91.58 60 | 67.21 112 | 82.18 64 | 91.20 65 |
|
| test_prior4 | | | | | | | 56.39 35 | 87.15 75 | | | | | | | | | |
|
| casdiffmvs |  | | 77.36 36 | 76.85 38 | 78.88 48 | 80.40 178 | 54.66 80 | 87.06 76 | 85.88 83 | 72.11 10 | 71.57 80 | 88.63 117 | 50.89 49 | 90.35 94 | 76.00 61 | 79.11 96 | 91.63 50 |
| Fangjinhua Wang, Qingshan Xu, Yew-Soon Ong, Marc Pollefeys: Lightweight and Accurate Multi-View Stereo With Confidence-Aware Diffusion Model. IEEE T-PAMI 2025 |
| cascas | | | 69.01 165 | 66.13 194 | 77.66 78 | 79.36 189 | 55.41 53 | 86.99 77 | 83.75 141 | 56.69 234 | 58.92 214 | 81.35 223 | 24.31 316 | 92.10 52 | 53.23 224 | 70.61 165 | 85.46 191 |
|
| nrg030 | | | 72.27 112 | 71.56 104 | 74.42 159 | 75.93 250 | 50.60 166 | 86.97 78 | 83.21 153 | 62.75 115 | 67.15 109 | 84.38 170 | 50.07 53 | 86.66 212 | 71.19 91 | 62.37 239 | 85.99 179 |
|
| 114514_t | | | 69.87 153 | 67.88 159 | 75.85 125 | 88.38 29 | 52.35 134 | 86.94 79 | 83.68 142 | 53.70 266 | 55.68 262 | 85.60 159 | 30.07 277 | 91.20 69 | 55.84 210 | 71.02 162 | 83.99 213 |
|
| CP-MVS | | | 72.59 105 | 71.46 106 | 76.00 123 | 82.93 114 | 52.32 135 | 86.93 80 | 82.48 165 | 55.15 252 | 63.65 157 | 90.44 78 | 35.03 234 | 88.53 151 | 68.69 104 | 77.83 105 | 87.15 155 |
|
| ZNCC-MVS | | | 75.82 60 | 75.02 59 | 78.23 68 | 83.88 87 | 53.80 94 | 86.91 81 | 86.05 81 | 59.71 166 | 67.85 105 | 90.55 72 | 42.23 140 | 91.02 74 | 72.66 88 | 85.29 43 | 89.87 97 |
|
| PAPM | | | 76.76 46 | 76.07 47 | 78.81 49 | 80.20 179 | 59.11 6 | 86.86 82 | 86.23 78 | 68.60 29 | 70.18 94 | 88.84 111 | 51.57 41 | 87.16 197 | 65.48 125 | 86.68 28 | 90.15 88 |
|
| Fast-Effi-MVS+ | | | 72.73 101 | 71.15 112 | 77.48 82 | 82.75 119 | 54.76 72 | 86.77 83 | 80.64 196 | 63.05 111 | 65.93 124 | 84.01 176 | 44.42 113 | 89.03 129 | 56.45 207 | 76.36 117 | 88.64 125 |
|
| thisisatest0515 | | | 73.64 89 | 72.20 94 | 77.97 73 | 81.63 144 | 53.01 121 | 86.69 84 | 88.81 30 | 62.53 120 | 64.06 149 | 85.65 158 | 52.15 39 | 92.50 42 | 58.43 179 | 69.84 172 | 88.39 132 |
|
| SF-MVS | | | 77.64 33 | 77.42 32 | 78.32 67 | 83.75 89 | 52.47 131 | 86.63 85 | 87.80 50 | 58.78 192 | 74.63 44 | 92.38 36 | 47.75 68 | 91.35 65 | 78.18 51 | 86.85 25 | 91.15 66 |
|
| BH-w/o | | | 70.02 148 | 68.51 149 | 74.56 155 | 82.77 118 | 50.39 173 | 86.60 86 | 78.14 249 | 59.77 165 | 59.65 197 | 85.57 160 | 39.27 175 | 87.30 195 | 49.86 248 | 74.94 132 | 85.99 179 |
|
| DeepC-MVS | | 67.15 4 | 76.90 43 | 76.27 45 | 78.80 50 | 80.70 170 | 55.02 67 | 86.39 87 | 86.71 69 | 66.96 49 | 67.91 104 | 89.97 90 | 48.03 65 | 91.41 64 | 75.60 65 | 84.14 52 | 89.96 94 |
| Andreas Kuhn, Christian Sormann, Mattia Rossi, Oliver Erdler, Friedrich Fraundorfer: DeepC-MVS: Deep Confidence Prediction for Multi-View Stereo Reconstruction. 3DV 2020 |
| TransMVSNet (Re) | | | 62.82 250 | 60.76 252 | 69.02 265 | 73.98 276 | 41.61 317 | 86.36 88 | 79.30 228 | 56.90 227 | 52.53 288 | 76.44 276 | 41.85 148 | 87.60 190 | 38.83 300 | 40.61 355 | 77.86 303 |
|
| MSLP-MVS++ | | | 74.21 77 | 72.25 92 | 80.11 31 | 81.45 153 | 56.47 33 | 86.32 89 | 79.65 216 | 58.19 200 | 66.36 118 | 92.29 38 | 36.11 219 | 90.66 86 | 67.39 110 | 82.49 61 | 93.18 16 |
|
| QAPM | | | 71.88 117 | 69.33 141 | 79.52 35 | 82.20 130 | 54.30 86 | 86.30 90 | 88.77 31 | 56.61 236 | 59.72 196 | 87.48 135 | 33.90 244 | 95.36 13 | 47.48 265 | 81.49 70 | 88.90 117 |
|
| WR-MVS | | | 67.58 194 | 66.76 180 | 70.04 256 | 75.92 251 | 45.06 285 | 86.23 91 | 85.28 100 | 64.31 85 | 58.50 223 | 81.00 224 | 44.80 110 | 82.00 277 | 49.21 254 | 55.57 298 | 83.06 234 |
|
| PVSNet_BlendedMVS | | | 73.42 92 | 73.30 75 | 73.76 180 | 85.91 48 | 51.83 144 | 86.18 92 | 84.24 132 | 65.40 73 | 69.09 97 | 80.86 227 | 46.70 80 | 88.13 166 | 75.43 66 | 65.92 205 | 81.33 262 |
|
| ETV-MVS | | | 77.17 38 | 76.74 39 | 78.48 61 | 81.80 136 | 54.55 82 | 86.13 93 | 85.33 96 | 68.20 32 | 73.10 60 | 90.52 74 | 45.23 99 | 90.66 86 | 79.37 37 | 80.95 72 | 90.22 85 |
|
| AdaColmap |  | | 67.86 187 | 65.48 210 | 75.00 150 | 88.15 33 | 54.99 68 | 86.10 94 | 76.63 276 | 49.30 297 | 57.80 233 | 86.65 149 | 29.39 281 | 88.94 137 | 45.10 278 | 70.21 170 | 81.06 266 |
|
| OPM-MVS | | | 70.75 137 | 69.58 136 | 74.26 165 | 75.55 255 | 51.34 156 | 86.05 95 | 83.29 152 | 61.94 130 | 62.95 166 | 85.77 157 | 34.15 241 | 88.44 153 | 65.44 129 | 71.07 161 | 82.99 235 |
| Ray L. Khuboni, Hongjun Xu: Octagram Propagation Matching for Multi-Scale View Stereopsis (OPM-MVS). |
| Vis-MVSNet |  | | 70.61 139 | 69.34 140 | 74.42 159 | 80.95 165 | 48.49 222 | 86.03 96 | 77.51 259 | 58.74 193 | 65.55 129 | 87.78 130 | 34.37 239 | 85.95 236 | 52.53 235 | 80.61 76 | 88.80 121 |
| Jingyang Zhang, Yao Yao, Shiwei Li, Zixin Luo, Tian Fang: Visibility-aware Multiview Stereo Network. BMVC 2020 |
| Anonymous20231211 | | | 66.08 227 | 63.67 230 | 73.31 190 | 83.07 107 | 48.75 214 | 86.01 97 | 84.67 122 | 45.27 322 | 56.54 254 | 76.67 274 | 28.06 287 | 88.95 135 | 52.78 231 | 59.95 248 | 82.23 243 |
|
| EG-PatchMatch MVS | | | 62.40 257 | 59.59 261 | 70.81 243 | 73.29 282 | 49.05 203 | 85.81 98 | 84.78 117 | 51.85 282 | 44.19 330 | 73.48 306 | 15.52 360 | 89.85 107 | 40.16 297 | 67.24 191 | 73.54 340 |
|
| PVSNet_Blended_VisFu | | | 73.40 93 | 72.44 87 | 76.30 110 | 81.32 157 | 54.70 76 | 85.81 98 | 78.82 234 | 63.70 98 | 64.53 142 | 85.38 162 | 47.11 75 | 87.38 194 | 67.75 109 | 77.55 106 | 86.81 165 |
|
| HQP_MVS | | | 70.96 133 | 69.91 132 | 74.12 168 | 77.95 218 | 49.57 191 | 85.76 100 | 82.59 163 | 63.60 101 | 62.15 175 | 83.28 190 | 36.04 222 | 88.30 161 | 65.46 126 | 72.34 150 | 84.49 203 |
|
| plane_prior2 | | | | | | | | 85.76 100 | | 63.60 101 | | | | | | | |
|
| GST-MVS | | | 74.87 71 | 73.90 73 | 77.77 76 | 83.30 99 | 53.45 104 | 85.75 102 | 85.29 99 | 59.22 179 | 66.50 117 | 89.85 92 | 40.94 156 | 90.76 83 | 70.94 94 | 83.35 56 | 89.10 114 |
|
| SD-MVS | | | 76.18 52 | 74.85 62 | 80.18 28 | 85.39 59 | 56.90 24 | 85.75 102 | 82.45 166 | 56.79 232 | 74.48 47 | 91.81 48 | 43.72 122 | 90.75 84 | 74.61 73 | 78.65 99 | 92.91 19 |
| Zhenlong Yuan, Jiakai Cao, Zhaoxin Li, Hao Jiang and Zhaoqi Wang: SD-MVS: Segmentation-driven Deformation Multi-View Stereo with Spherical Refinement and EM optimization. AAAI2024 |
| CHOSEN 1792x2688 | | | 76.24 51 | 74.03 72 | 82.88 1 | 83.09 106 | 62.84 2 | 85.73 104 | 85.39 93 | 69.79 22 | 64.87 137 | 83.49 186 | 41.52 153 | 93.69 28 | 70.55 95 | 81.82 67 | 92.12 37 |
|
| FMVSNet3 | | | 68.84 168 | 67.40 171 | 73.19 192 | 85.05 65 | 48.53 220 | 85.71 105 | 85.36 94 | 60.90 150 | 57.58 239 | 79.15 243 | 42.16 141 | 86.77 208 | 47.25 267 | 63.40 224 | 84.27 207 |
|
| MP-MVS |  | | 74.99 70 | 74.33 67 | 76.95 100 | 82.89 115 | 53.05 120 | 85.63 106 | 83.50 147 | 57.86 208 | 67.25 108 | 90.24 80 | 43.38 128 | 88.85 141 | 76.03 60 | 82.23 63 | 88.96 116 |
| Rongxuan Tan, Qing Wang, et al.: MP-MVS: Multi-Scale Windows PatchMatch and Planar Prior Multi-View Stereo. |
| HFP-MVS | | | 74.37 75 | 73.13 81 | 78.10 71 | 84.30 77 | 53.68 97 | 85.58 107 | 84.36 127 | 56.82 230 | 65.78 126 | 90.56 71 | 40.70 161 | 90.90 79 | 69.18 101 | 80.88 73 | 89.71 98 |
|
| ACMMPR | | | 73.76 84 | 72.61 83 | 77.24 91 | 83.92 85 | 52.96 123 | 85.58 107 | 84.29 128 | 56.82 230 | 65.12 131 | 90.45 75 | 37.24 203 | 90.18 101 | 69.18 101 | 80.84 74 | 88.58 127 |
|
| BH-untuned | | | 68.28 181 | 66.40 187 | 73.91 174 | 81.62 145 | 50.01 183 | 85.56 109 | 77.39 261 | 57.63 214 | 57.47 244 | 83.69 183 | 36.36 217 | 87.08 199 | 44.81 279 | 73.08 145 | 84.65 202 |
|
| region2R | | | 73.75 85 | 72.55 85 | 77.33 85 | 83.90 86 | 52.98 122 | 85.54 110 | 84.09 134 | 56.83 229 | 65.10 132 | 90.45 75 | 37.34 201 | 90.24 99 | 68.89 103 | 80.83 75 | 88.77 123 |
|
| xiu_mvs_v1_base_debu | | | 71.60 121 | 70.29 125 | 75.55 132 | 77.26 230 | 53.15 115 | 85.34 111 | 79.37 221 | 55.83 244 | 72.54 67 | 90.19 83 | 22.38 327 | 86.66 212 | 73.28 84 | 76.39 114 | 86.85 161 |
|
| xiu_mvs_v1_base | | | 71.60 121 | 70.29 125 | 75.55 132 | 77.26 230 | 53.15 115 | 85.34 111 | 79.37 221 | 55.83 244 | 72.54 67 | 90.19 83 | 22.38 327 | 86.66 212 | 73.28 84 | 76.39 114 | 86.85 161 |
|
| xiu_mvs_v1_base_debi | | | 71.60 121 | 70.29 125 | 75.55 132 | 77.26 230 | 53.15 115 | 85.34 111 | 79.37 221 | 55.83 244 | 72.54 67 | 90.19 83 | 22.38 327 | 86.66 212 | 73.28 84 | 76.39 114 | 86.85 161 |
|
| fmvsm_s_conf0.5_n | | | 74.48 72 | 74.12 69 | 75.56 131 | 76.96 236 | 47.85 243 | 85.32 114 | 69.80 331 | 64.16 88 | 78.74 26 | 93.48 14 | 45.51 96 | 89.29 121 | 86.48 6 | 66.62 196 | 89.55 102 |
|
| NR-MVSNet | | | 67.25 204 | 65.99 198 | 71.04 240 | 73.27 284 | 43.91 294 | 85.32 114 | 84.75 119 | 66.05 66 | 53.65 282 | 82.11 214 | 45.05 101 | 85.97 235 | 47.55 264 | 56.18 290 | 83.24 229 |
|
| Effi-MVS+ | | | 75.24 65 | 73.61 74 | 80.16 29 | 81.92 133 | 57.42 19 | 85.21 116 | 76.71 274 | 60.68 154 | 73.32 58 | 89.34 101 | 47.30 72 | 91.63 59 | 68.28 106 | 79.72 91 | 91.42 58 |
|
| æ— å…ˆéªŒ | | | | | | | | 85.19 117 | 78.00 251 | 49.08 298 | | | | 85.13 250 | 52.78 231 | | 87.45 151 |
|
| FMVSNet2 | | | 67.57 195 | 65.79 203 | 72.90 197 | 82.71 120 | 47.97 239 | 85.15 118 | 84.93 112 | 58.55 196 | 56.71 252 | 78.26 250 | 36.72 213 | 86.67 211 | 46.15 274 | 62.94 235 | 84.07 210 |
|
| test-LLR | | | 69.65 158 | 69.01 145 | 71.60 229 | 78.67 205 | 48.17 231 | 85.13 119 | 79.72 213 | 59.18 182 | 63.13 163 | 82.58 203 | 36.91 208 | 80.24 294 | 60.56 162 | 75.17 127 | 86.39 172 |
|
| TESTMET0.1,1 | | | 72.86 99 | 72.33 89 | 74.46 157 | 81.98 132 | 50.77 162 | 85.13 119 | 85.47 89 | 66.09 63 | 67.30 107 | 83.69 183 | 37.27 202 | 83.57 266 | 65.06 133 | 78.97 98 | 89.05 115 |
|
| test-mter | | | 68.36 178 | 67.29 172 | 71.60 229 | 78.67 205 | 48.17 231 | 85.13 119 | 79.72 213 | 53.38 269 | 63.13 163 | 82.58 203 | 27.23 294 | 80.24 294 | 60.56 162 | 75.17 127 | 86.39 172 |
|
| 1112_ss | | | 70.05 147 | 69.37 139 | 72.10 213 | 80.77 169 | 42.78 307 | 85.12 122 | 76.75 272 | 59.69 167 | 61.19 184 | 92.12 40 | 47.48 71 | 83.84 261 | 53.04 227 | 68.21 182 | 89.66 99 |
|
| XXY-MVS | | | 70.18 143 | 69.28 143 | 72.89 199 | 77.64 222 | 42.88 306 | 85.06 123 | 87.50 59 | 62.58 119 | 62.66 170 | 82.34 211 | 43.64 124 | 89.83 108 | 58.42 181 | 63.70 221 | 85.96 181 |
|
| MSP-MVS | | | 82.30 5 | 83.47 1 | 78.80 50 | 82.99 111 | 52.71 126 | 85.04 124 | 88.63 36 | 66.08 64 | 86.77 3 | 92.75 30 | 72.05 1 | 91.46 63 | 83.35 17 | 93.53 1 | 92.23 34 |
| Zhenlong Yuan, Cong Liu, Fei Shen, Zhaoxin Li, Jingguo luo, Tianlu Mao and Zhaoqi Wang: MSP-MVS: Multi-granularity Segmentation Prior Guided Multi-View Stereo. AAAI2025 |
| thres200 | | | 68.71 173 | 67.27 174 | 73.02 194 | 84.73 70 | 46.76 258 | 85.03 125 | 87.73 54 | 62.34 124 | 59.87 193 | 83.45 187 | 43.15 130 | 88.32 160 | 31.25 336 | 67.91 186 | 83.98 215 |
|
| MVP-Stereo | | | 70.97 132 | 70.44 120 | 72.59 203 | 76.03 249 | 51.36 155 | 85.02 126 | 86.99 64 | 60.31 158 | 56.53 255 | 78.92 245 | 40.11 167 | 90.00 104 | 60.00 170 | 90.01 6 | 76.41 319 |
| Qingsong Yan: MVP-Stereo: A Parallel Multi-View Patchmatch Stereo Method with Dilation Matching for Photogrammetric Application. |
| DVP-MVS++ | | | 82.44 2 | 82.38 4 | 82.62 4 | 91.77 4 | 57.49 15 | 84.98 127 | 88.88 26 | 58.00 204 | 83.60 6 | 93.39 16 | 67.21 2 | 96.39 4 | 81.64 28 | 91.98 4 | 93.98 5 |
|
| FOURS1 | | | | | | 83.24 101 | 49.90 186 | 84.98 127 | 78.76 236 | 47.71 305 | 73.42 56 | | | | | | |
|
| PS-MVSNAJss | | | 68.78 172 | 67.17 175 | 73.62 186 | 73.01 286 | 48.33 228 | 84.95 129 | 84.81 116 | 59.30 178 | 58.91 215 | 79.84 235 | 37.77 187 | 88.86 139 | 62.83 143 | 63.12 233 | 83.67 223 |
|
| v2v482 | | | 69.55 160 | 67.64 165 | 75.26 145 | 72.32 296 | 53.83 93 | 84.93 130 | 81.94 172 | 65.37 75 | 60.80 187 | 79.25 241 | 41.62 150 | 88.98 134 | 63.03 142 | 59.51 254 | 82.98 236 |
|
| XVS | | | 72.92 97 | 71.62 103 | 76.81 102 | 83.41 94 | 52.48 129 | 84.88 131 | 83.20 154 | 58.03 202 | 63.91 153 | 89.63 96 | 35.50 226 | 89.78 109 | 65.50 123 | 80.50 78 | 88.16 133 |
|
| X-MVStestdata | | | 65.85 229 | 62.20 237 | 76.81 102 | 83.41 94 | 52.48 129 | 84.88 131 | 83.20 154 | 58.03 202 | 63.91 153 | 4.82 396 | 35.50 226 | 89.78 109 | 65.50 123 | 80.50 78 | 88.16 133 |
|
| dcpmvs_2 | | | 79.33 19 | 78.94 19 | 80.49 22 | 89.75 12 | 56.54 31 | 84.83 133 | 83.68 142 | 67.85 38 | 69.36 95 | 90.24 80 | 60.20 7 | 92.10 52 | 84.14 13 | 80.40 80 | 92.82 21 |
|
| test1111 | | | 71.06 130 | 70.42 121 | 72.97 196 | 79.48 188 | 41.49 319 | 84.82 134 | 82.74 162 | 64.20 87 | 62.98 165 | 87.43 137 | 35.20 229 | 87.92 172 | 58.54 178 | 78.42 102 | 89.49 104 |
|
| iter_conf_final | | | 71.46 124 | 69.68 135 | 76.81 102 | 86.03 46 | 53.49 100 | 84.73 135 | 74.37 294 | 60.27 159 | 66.28 119 | 84.36 172 | 35.14 231 | 90.87 80 | 65.41 130 | 70.51 167 | 86.05 176 |
|
| Fast-Effi-MVS+-dtu | | | 66.53 220 | 64.10 229 | 73.84 177 | 72.41 294 | 52.30 136 | 84.73 135 | 75.66 284 | 59.51 170 | 56.34 257 | 79.11 244 | 28.11 286 | 85.85 238 | 57.74 195 | 63.29 228 | 83.35 225 |
|
| ECVR-MVS |  | | 71.81 118 | 71.00 113 | 74.26 165 | 80.12 181 | 43.49 298 | 84.69 137 | 82.16 167 | 64.02 90 | 64.64 139 | 87.43 137 | 35.04 233 | 89.21 124 | 61.24 155 | 79.66 92 | 90.08 90 |
|
| h-mvs33 | | | 73.95 80 | 72.89 82 | 77.15 92 | 80.17 180 | 50.37 174 | 84.68 138 | 83.33 148 | 68.08 33 | 71.97 75 | 88.65 116 | 42.50 136 | 91.15 71 | 78.82 42 | 57.78 279 | 89.91 96 |
|
| v1144 | | | 68.81 170 | 66.82 178 | 74.80 153 | 72.34 295 | 53.46 102 | 84.68 138 | 81.77 179 | 64.25 86 | 60.28 191 | 77.91 252 | 40.23 164 | 88.95 135 | 60.37 167 | 59.52 253 | 81.97 245 |
|
| CANet_DTU | | | 73.71 86 | 73.14 79 | 75.40 137 | 82.61 124 | 50.05 182 | 84.67 140 | 79.36 224 | 69.72 23 | 75.39 39 | 90.03 89 | 29.41 280 | 85.93 237 | 67.99 108 | 79.11 96 | 90.22 85 |
|
| test_vis1_n_1920 | | | 68.59 176 | 68.31 152 | 69.44 262 | 69.16 322 | 41.51 318 | 84.63 141 | 68.58 337 | 58.80 191 | 73.26 59 | 88.37 118 | 25.30 307 | 80.60 289 | 79.10 39 | 67.55 189 | 86.23 174 |
|
| PVSNet | | 62.49 8 | 69.27 162 | 67.81 163 | 73.64 184 | 84.41 76 | 51.85 143 | 84.63 141 | 77.80 253 | 66.42 56 | 59.80 195 | 84.95 167 | 22.14 332 | 80.44 292 | 55.03 213 | 75.11 129 | 88.62 126 |
|
| fmvsm_s_conf0.1_n | | | 73.80 83 | 73.26 76 | 75.43 136 | 73.28 283 | 47.80 244 | 84.57 143 | 69.43 333 | 63.34 106 | 78.40 29 | 93.29 20 | 44.73 111 | 89.22 123 | 85.99 7 | 66.28 203 | 89.26 107 |
|
| mPP-MVS | | | 71.79 120 | 70.38 122 | 76.04 121 | 82.65 123 | 52.06 137 | 84.45 144 | 81.78 178 | 55.59 247 | 62.05 177 | 89.68 95 | 33.48 248 | 88.28 163 | 65.45 128 | 78.24 104 | 87.77 143 |
|
| CL-MVSNet_self_test | | | 62.98 248 | 61.14 248 | 68.50 277 | 65.86 340 | 42.96 304 | 84.37 145 | 82.98 158 | 60.98 146 | 53.95 278 | 72.70 313 | 40.43 162 | 83.71 264 | 41.10 294 | 47.93 331 | 78.83 289 |
|
| OpenMVS |  | 61.00 11 | 69.99 150 | 67.55 168 | 77.30 87 | 78.37 214 | 54.07 92 | 84.36 146 | 85.76 86 | 57.22 223 | 56.71 252 | 87.67 133 | 30.79 272 | 92.83 35 | 43.04 288 | 84.06 54 | 85.01 197 |
|
| MP-MVS-pluss | | | 75.54 63 | 75.03 58 | 77.04 94 | 81.37 155 | 52.65 128 | 84.34 147 | 84.46 125 | 61.16 141 | 69.14 96 | 91.76 49 | 39.98 170 | 88.99 133 | 78.19 49 | 84.89 47 | 89.48 105 |
| MP-MVS-pluss: MP-MVS-pluss. MP-MVS-pluss |
| PAPR | | | 75.20 67 | 74.13 68 | 78.41 64 | 88.31 31 | 55.10 65 | 84.31 148 | 85.66 87 | 63.76 97 | 67.55 106 | 90.73 70 | 43.48 127 | 89.40 119 | 66.36 118 | 77.03 109 | 90.73 74 |
|
| SR-MVS | | | 70.92 134 | 69.73 134 | 74.50 156 | 83.38 98 | 50.48 170 | 84.27 149 | 79.35 225 | 48.96 300 | 66.57 116 | 90.45 75 | 33.65 247 | 87.11 198 | 66.42 116 | 74.56 133 | 85.91 182 |
|
| v148 | | | 68.24 183 | 66.35 188 | 73.88 175 | 71.76 299 | 51.47 153 | 84.23 150 | 81.90 176 | 63.69 99 | 58.94 212 | 76.44 276 | 43.72 122 | 87.78 180 | 60.63 160 | 55.86 295 | 82.39 242 |
|
| UniMVSNet_NR-MVSNet | | | 68.82 169 | 68.29 153 | 70.40 249 | 75.71 253 | 42.59 309 | 84.23 150 | 86.78 67 | 66.31 58 | 58.51 221 | 82.45 206 | 51.57 41 | 84.64 257 | 53.11 225 | 55.96 293 | 83.96 217 |
|
| GeoE | | | 69.96 151 | 67.88 159 | 76.22 113 | 81.11 159 | 51.71 147 | 84.15 152 | 76.74 273 | 59.83 164 | 60.91 185 | 84.38 170 | 41.56 152 | 88.10 168 | 51.67 238 | 70.57 166 | 88.84 120 |
|
| v144192 | | | 67.86 187 | 65.76 204 | 74.16 167 | 71.68 300 | 53.09 118 | 84.14 153 | 80.83 194 | 62.85 114 | 59.21 209 | 77.28 262 | 39.30 174 | 88.00 171 | 58.67 177 | 57.88 277 | 81.40 259 |
|
| UGNet | | | 68.71 173 | 67.11 176 | 73.50 188 | 80.55 175 | 47.61 246 | 84.08 154 | 78.51 243 | 59.45 171 | 65.68 128 | 82.73 199 | 23.78 318 | 85.08 251 | 52.80 230 | 76.40 113 | 87.80 142 |
| Wanjuan Su, Qingshan Xu, Wenbing Tao: Uncertainty-guided Multi-view Stereo Network for Depth Estimation. IEEE Transactions on Circuits and Systems for Video Technology, 2022 |
| PMMVS | | | 72.98 96 | 72.05 99 | 75.78 126 | 83.57 90 | 48.60 217 | 84.08 154 | 82.85 161 | 61.62 134 | 68.24 102 | 90.33 79 | 28.35 284 | 87.78 180 | 72.71 87 | 76.69 112 | 90.95 70 |
|
| ACMMP_NAP | | | 76.43 49 | 75.66 49 | 78.73 52 | 81.92 133 | 54.67 79 | 84.06 156 | 85.35 95 | 61.10 143 | 72.99 61 | 91.50 57 | 40.25 163 | 91.00 75 | 76.84 58 | 86.98 23 | 90.51 79 |
|
| v1192 | | | 67.96 186 | 65.74 205 | 74.63 154 | 71.79 298 | 53.43 107 | 84.06 156 | 80.99 192 | 63.19 110 | 59.56 200 | 77.46 259 | 37.50 198 | 88.65 144 | 58.20 185 | 58.93 260 | 81.79 248 |
|
| FIs | | | 70.00 149 | 70.24 128 | 69.30 263 | 77.93 220 | 38.55 333 | 83.99 158 | 87.72 55 | 66.86 50 | 57.66 237 | 84.17 175 | 52.28 37 | 85.31 244 | 52.72 234 | 68.80 179 | 84.02 211 |
|
| MVS_Test | | | 75.85 57 | 74.93 61 | 78.62 57 | 84.08 81 | 55.20 61 | 83.99 158 | 85.17 105 | 68.07 35 | 73.38 57 | 82.76 196 | 50.44 51 | 89.00 131 | 65.90 121 | 80.61 76 | 91.64 49 |
|
| baseline | | | 76.86 44 | 76.24 46 | 78.71 53 | 80.47 176 | 54.20 90 | 83.90 160 | 84.88 114 | 71.38 14 | 71.51 81 | 89.15 106 | 50.51 50 | 90.55 90 | 75.71 63 | 78.65 99 | 91.39 59 |
|
| fmvsm_s_conf0.5_n_a | | | 73.68 88 | 73.15 77 | 75.29 142 | 75.45 256 | 48.05 236 | 83.88 161 | 68.84 336 | 63.43 105 | 78.60 27 | 93.37 18 | 45.32 97 | 88.92 138 | 85.39 9 | 64.04 216 | 88.89 118 |
|
| baseline2 | | | 75.15 68 | 74.54 66 | 76.98 99 | 81.67 143 | 51.74 146 | 83.84 162 | 91.94 1 | 69.97 21 | 58.98 211 | 86.02 154 | 59.73 8 | 91.73 58 | 68.37 105 | 70.40 169 | 87.48 149 |
|
| EPP-MVSNet | | | 71.14 127 | 70.07 130 | 74.33 162 | 79.18 194 | 46.52 261 | 83.81 163 | 86.49 72 | 56.32 241 | 57.95 230 | 84.90 168 | 54.23 27 | 89.14 126 | 58.14 186 | 69.65 175 | 87.33 152 |
|
| 原ACMM2 | | | | | | | | 83.77 164 | | | | | | | | | |
|
| v1921920 | | | 67.45 198 | 65.23 217 | 74.10 169 | 71.51 303 | 52.90 124 | 83.75 165 | 80.44 199 | 62.48 123 | 59.12 210 | 77.13 263 | 36.98 206 | 87.90 173 | 57.53 196 | 58.14 271 | 81.49 253 |
|
| OpenMVS_ROB |  | 53.19 17 | 59.20 275 | 56.00 287 | 68.83 268 | 71.13 308 | 44.30 290 | 83.64 166 | 75.02 290 | 46.42 315 | 46.48 326 | 73.03 309 | 18.69 345 | 88.14 165 | 27.74 351 | 61.80 241 | 74.05 336 |
|
| MVSTER | | | 73.25 94 | 72.33 89 | 76.01 122 | 85.54 56 | 53.76 96 | 83.52 167 | 87.16 61 | 67.06 47 | 63.88 155 | 81.66 219 | 52.77 33 | 90.44 91 | 64.66 134 | 64.69 212 | 83.84 220 |
|
| GBi-Net | | | 67.09 209 | 65.47 211 | 71.96 219 | 82.71 120 | 46.36 263 | 83.52 167 | 83.31 149 | 58.55 196 | 57.58 239 | 76.23 280 | 36.72 213 | 86.20 222 | 47.25 267 | 63.40 224 | 83.32 226 |
|
| test1 | | | 67.09 209 | 65.47 211 | 71.96 219 | 82.71 120 | 46.36 263 | 83.52 167 | 83.31 149 | 58.55 196 | 57.58 239 | 76.23 280 | 36.72 213 | 86.20 222 | 47.25 267 | 63.40 224 | 83.32 226 |
|
| FMVSNet1 | | | 64.57 232 | 62.11 238 | 71.96 219 | 77.32 228 | 46.36 263 | 83.52 167 | 83.31 149 | 52.43 277 | 54.42 273 | 76.23 280 | 27.80 290 | 86.20 222 | 42.59 292 | 61.34 244 | 83.32 226 |
|
| baseline1 | | | 72.51 106 | 72.12 97 | 73.69 183 | 85.05 65 | 44.46 287 | 83.51 171 | 86.13 80 | 71.61 12 | 64.64 139 | 87.97 128 | 55.00 23 | 89.48 117 | 59.07 173 | 56.05 292 | 87.13 156 |
|
| CDS-MVSNet | | | 70.48 141 | 69.43 137 | 73.64 184 | 77.56 225 | 48.83 212 | 83.51 171 | 77.45 260 | 63.27 108 | 62.33 172 | 85.54 161 | 43.85 116 | 83.29 270 | 57.38 199 | 74.00 135 | 88.79 122 |
| Khang Truong Giang, Soohwan Song, Sungho Jo: Curvature-guided dynamic scale networks for Multi-view Stereo. ICLR 2022 |
| thisisatest0530 | | | 70.47 142 | 68.56 148 | 76.20 115 | 79.78 185 | 51.52 152 | 83.49 173 | 88.58 40 | 57.62 215 | 58.60 220 | 82.79 195 | 51.03 46 | 91.48 62 | 52.84 229 | 62.36 240 | 85.59 190 |
|
| Test_1112_low_res | | | 67.18 206 | 66.23 192 | 70.02 257 | 78.75 203 | 41.02 323 | 83.43 174 | 73.69 302 | 57.29 221 | 58.45 226 | 82.39 208 | 45.30 98 | 80.88 284 | 50.50 244 | 66.26 204 | 88.16 133 |
|
| ACMMP |  | | 70.81 136 | 69.29 142 | 75.39 138 | 81.52 152 | 51.92 142 | 83.43 174 | 83.03 157 | 56.67 235 | 58.80 218 | 88.91 109 | 31.92 264 | 88.58 147 | 65.89 122 | 73.39 140 | 85.67 186 |
| Qingshan Xu, Weihang Kong, Wenbing Tao, Marc Pollefeys: Multi-Scale Geometric Consistency Guided and Planar Prior Assisted Multi-View Stereo. IEEE Transactions on Pattern Analysis and Machine Intelligence |
| tfpn200view9 | | | 67.57 195 | 66.13 194 | 71.89 226 | 84.05 82 | 45.07 282 | 83.40 176 | 87.71 56 | 60.79 151 | 57.79 234 | 82.76 196 | 43.53 125 | 87.80 177 | 28.80 343 | 66.36 200 | 82.78 240 |
|
| thres400 | | | 67.40 202 | 66.13 194 | 71.19 237 | 84.05 82 | 45.07 282 | 83.40 176 | 87.71 56 | 60.79 151 | 57.79 234 | 82.76 196 | 43.53 125 | 87.80 177 | 28.80 343 | 66.36 200 | 80.71 271 |
|
| v1240 | | | 66.99 212 | 64.68 223 | 73.93 173 | 71.38 306 | 52.66 127 | 83.39 178 | 79.98 207 | 61.97 129 | 58.44 227 | 77.11 264 | 35.25 228 | 87.81 175 | 56.46 206 | 58.15 269 | 81.33 262 |
|
| Baseline_NR-MVSNet | | | 65.49 231 | 64.27 227 | 69.13 264 | 74.37 272 | 41.65 316 | 83.39 178 | 78.85 232 | 59.56 169 | 59.62 199 | 76.88 271 | 40.75 158 | 87.44 192 | 49.99 246 | 55.05 301 | 78.28 299 |
|
| mvsmamba | | | 66.93 215 | 64.88 222 | 73.09 193 | 75.06 260 | 47.26 252 | 83.36 180 | 69.21 334 | 62.64 118 | 55.68 262 | 81.43 222 | 29.72 278 | 89.20 125 | 63.35 140 | 63.50 223 | 82.79 239 |
|
| miper_enhance_ethall | | | 69.77 154 | 68.90 146 | 72.38 209 | 78.93 200 | 49.91 185 | 83.29 181 | 78.85 232 | 64.90 80 | 59.37 204 | 79.46 237 | 52.77 33 | 85.16 249 | 63.78 136 | 58.72 261 | 82.08 244 |
|
| diffmvs |  | | 75.11 69 | 74.65 65 | 76.46 109 | 78.52 210 | 53.35 109 | 83.28 182 | 79.94 208 | 70.51 18 | 71.64 79 | 88.72 112 | 46.02 88 | 86.08 231 | 77.52 54 | 75.75 122 | 89.96 94 |
| Fangjinhua Wang, Qingshan Xu, Yew-Soon Ong, Marc Pollefeys: Lightweight and Accurate Multi-View Stereo With Confidence-Aware Diffusion Model. IEEE T-PAMI 2025 |
| test_cas_vis1_n_1920 | | | 67.10 208 | 66.60 185 | 68.59 275 | 65.17 345 | 43.23 302 | 83.23 183 | 69.84 330 | 55.34 251 | 70.67 90 | 87.71 132 | 24.70 314 | 76.66 328 | 78.57 46 | 64.20 215 | 85.89 183 |
|
| test2506 | | | 72.91 98 | 72.43 88 | 74.32 163 | 80.12 181 | 44.18 293 | 83.19 184 | 84.77 118 | 64.02 90 | 65.97 123 | 87.43 137 | 47.67 69 | 88.72 142 | 59.08 172 | 79.66 92 | 90.08 90 |
|
| ACMP | | 61.11 9 | 66.24 225 | 64.33 226 | 72.00 218 | 74.89 264 | 49.12 201 | 83.18 185 | 79.83 211 | 55.41 250 | 52.29 290 | 82.68 200 | 25.83 303 | 86.10 228 | 60.89 157 | 63.94 219 | 80.78 269 |
| Qingshan Xu and Wenbing Tao: Planar Prior Assisted PatchMatch Multi-View Stereo. AAAI 2020 |
| GA-MVS | | | 69.04 164 | 66.70 182 | 76.06 120 | 75.11 258 | 52.36 133 | 83.12 186 | 80.23 203 | 63.32 107 | 60.65 189 | 79.22 242 | 30.98 271 | 88.37 155 | 61.25 154 | 66.41 199 | 87.46 150 |
|
| 3Dnovator | | 64.70 6 | 74.46 73 | 72.48 86 | 80.41 24 | 82.84 117 | 55.40 54 | 83.08 187 | 88.61 38 | 67.61 43 | 59.85 194 | 88.66 113 | 34.57 238 | 93.97 24 | 58.42 181 | 88.70 11 | 91.85 46 |
|
| PGM-MVS | | | 72.60 103 | 71.20 111 | 76.80 105 | 82.95 112 | 52.82 125 | 83.07 188 | 82.14 168 | 56.51 238 | 63.18 162 | 89.81 93 | 35.68 225 | 89.76 111 | 67.30 111 | 80.19 83 | 87.83 141 |
|
| LPG-MVS_test | | | 66.44 222 | 64.58 224 | 72.02 216 | 74.42 270 | 48.60 217 | 83.07 188 | 80.64 196 | 54.69 259 | 53.75 280 | 83.83 179 | 25.73 305 | 86.98 201 | 60.33 168 | 64.71 210 | 80.48 273 |
|
| TranMVSNet+NR-MVSNet | | | 66.94 214 | 65.61 208 | 70.93 242 | 73.45 280 | 43.38 301 | 83.02 190 | 84.25 130 | 65.31 77 | 58.33 228 | 81.90 217 | 39.92 171 | 85.52 240 | 49.43 251 | 54.89 303 | 83.89 219 |
|
| test0.0.03 1 | | | 62.54 252 | 62.44 235 | 62.86 316 | 72.28 297 | 29.51 367 | 82.93 191 | 78.78 235 | 59.18 182 | 53.07 285 | 82.41 207 | 36.91 208 | 77.39 321 | 37.45 303 | 58.96 259 | 81.66 251 |
|
| pm-mvs1 | | | 64.12 236 | 62.56 234 | 68.78 270 | 71.68 300 | 38.87 331 | 82.89 192 | 81.57 180 | 55.54 249 | 53.89 279 | 77.82 254 | 37.73 190 | 86.74 209 | 48.46 260 | 53.49 314 | 80.72 270 |
|
| EPNet_dtu | | | 66.25 224 | 66.71 181 | 64.87 305 | 78.66 207 | 34.12 347 | 82.80 193 | 75.51 285 | 61.75 132 | 64.47 146 | 86.90 144 | 37.06 205 | 72.46 347 | 43.65 286 | 69.63 176 | 88.02 139 |
| Wanjuan Su, Wenbing Tao: Efficient Edge-Preserving Multi-View Stereo Network for Depth Estimation. AAAI 2023 |
| fmvsm_s_conf0.1_n_a | | | 72.82 100 | 72.05 99 | 75.12 147 | 70.95 310 | 47.97 239 | 82.72 194 | 68.43 338 | 62.52 121 | 78.17 30 | 93.08 26 | 44.21 114 | 88.86 139 | 84.82 11 | 63.54 222 | 88.54 129 |
|
| test_fmvsmconf_n | | | 74.41 74 | 74.05 71 | 75.49 135 | 74.16 274 | 48.38 225 | 82.66 195 | 72.57 310 | 67.05 48 | 75.11 41 | 92.88 29 | 46.35 83 | 87.81 175 | 83.93 15 | 71.71 155 | 90.28 83 |
|
| pmmvs5 | | | 62.80 251 | 61.18 247 | 67.66 282 | 69.53 319 | 42.37 314 | 82.65 196 | 75.19 289 | 54.30 264 | 52.03 293 | 78.51 248 | 31.64 267 | 80.67 287 | 48.60 258 | 58.15 269 | 79.95 280 |
|
| cl____ | | | 67.43 199 | 65.93 200 | 71.95 222 | 76.33 242 | 48.02 237 | 82.58 197 | 79.12 229 | 61.30 140 | 56.72 251 | 76.92 269 | 46.12 85 | 86.44 219 | 57.98 188 | 56.31 287 | 81.38 261 |
|
| DIV-MVS_self_test | | | 67.43 199 | 65.93 200 | 71.94 223 | 76.33 242 | 48.01 238 | 82.57 198 | 79.11 230 | 61.31 139 | 56.73 250 | 76.92 269 | 46.09 86 | 86.43 220 | 57.98 188 | 56.31 287 | 81.39 260 |
|
| TAMVS | | | 69.51 161 | 68.16 155 | 73.56 187 | 76.30 244 | 48.71 216 | 82.57 198 | 77.17 265 | 62.10 126 | 61.32 183 | 84.23 174 | 41.90 147 | 83.46 268 | 54.80 216 | 73.09 144 | 88.50 131 |
|
| EI-MVSNet-Vis-set | | | 73.19 95 | 72.60 84 | 74.99 151 | 82.56 125 | 49.80 189 | 82.55 200 | 89.00 22 | 66.17 61 | 65.89 125 | 88.98 107 | 43.83 117 | 92.29 46 | 65.38 132 | 69.01 178 | 82.87 238 |
|
| DP-MVS | | | 59.24 274 | 56.12 286 | 68.63 273 | 88.24 32 | 50.35 176 | 82.51 201 | 64.43 347 | 41.10 341 | 46.70 324 | 78.77 246 | 24.75 313 | 88.57 150 | 22.26 367 | 56.29 289 | 66.96 360 |
|
| miper_ehance_all_eth | | | 68.70 175 | 67.58 166 | 72.08 214 | 76.91 237 | 49.48 197 | 82.47 202 | 78.45 245 | 62.68 117 | 58.28 229 | 77.88 253 | 50.90 47 | 85.01 252 | 61.91 150 | 58.72 261 | 81.75 249 |
|
| cl22 | | | 68.85 167 | 67.69 164 | 72.35 210 | 78.07 217 | 49.98 184 | 82.45 203 | 78.48 244 | 62.50 122 | 58.46 225 | 77.95 251 | 49.99 54 | 85.17 248 | 62.55 144 | 58.72 261 | 81.90 247 |
|
| UniMVSNet (Re) | | | 67.71 191 | 66.80 179 | 70.45 247 | 74.44 269 | 42.93 305 | 82.42 204 | 84.90 113 | 63.69 99 | 59.63 198 | 80.99 225 | 47.18 73 | 85.23 247 | 51.17 242 | 56.75 284 | 83.19 231 |
|
| v8 | | | 67.25 204 | 64.99 220 | 74.04 170 | 72.89 289 | 53.31 112 | 82.37 205 | 80.11 205 | 61.54 136 | 54.29 275 | 76.02 285 | 42.89 134 | 88.41 154 | 58.43 179 | 56.36 285 | 80.39 275 |
|
| ACMM | | 58.35 12 | 64.35 234 | 62.01 239 | 71.38 233 | 74.21 273 | 48.51 221 | 82.25 206 | 79.66 215 | 47.61 306 | 54.54 272 | 80.11 231 | 25.26 308 | 86.00 232 | 51.26 240 | 63.16 231 | 79.64 282 |
| Qingshan Xu and Wenbing Tao: Multi-Scale Geometric Consistency Guided Multi-View Stereo. CVPR 2019 |
| test_fmvsmconf0.1_n | | | 73.69 87 | 73.15 77 | 75.34 139 | 70.71 311 | 48.26 229 | 82.15 207 | 71.83 314 | 66.75 51 | 74.47 48 | 92.59 34 | 44.89 105 | 87.78 180 | 83.59 16 | 71.35 159 | 89.97 93 |
|
| thres600view7 | | | 66.46 221 | 65.12 218 | 70.47 246 | 83.41 94 | 43.80 296 | 82.15 207 | 87.78 51 | 59.37 174 | 56.02 259 | 82.21 212 | 43.73 120 | 86.90 206 | 26.51 355 | 64.94 209 | 80.71 271 |
|
| c3_l | | | 67.97 185 | 66.66 183 | 71.91 225 | 76.20 246 | 49.31 199 | 82.13 209 | 78.00 251 | 61.99 128 | 57.64 238 | 76.94 268 | 49.41 58 | 84.93 253 | 60.62 161 | 57.01 283 | 81.49 253 |
|
| Effi-MVS+-dtu | | | 66.24 225 | 64.96 221 | 70.08 254 | 75.17 257 | 49.64 190 | 82.01 210 | 74.48 293 | 62.15 125 | 57.83 232 | 76.08 284 | 30.59 273 | 83.79 262 | 65.40 131 | 60.93 246 | 76.81 312 |
|
| our_test_3 | | | 59.11 277 | 55.08 293 | 71.18 238 | 71.42 304 | 53.29 113 | 81.96 211 | 74.52 292 | 48.32 302 | 42.08 339 | 69.28 336 | 28.14 285 | 82.15 274 | 34.35 323 | 45.68 345 | 78.11 302 |
|
| CPTT-MVS | | | 67.15 207 | 65.84 202 | 71.07 239 | 80.96 162 | 50.32 177 | 81.94 212 | 74.10 296 | 46.18 318 | 57.91 231 | 87.64 134 | 29.57 279 | 81.31 280 | 64.10 135 | 70.18 171 | 81.56 252 |
|
| APD-MVS_3200maxsize | | | 69.62 159 | 68.23 154 | 73.80 179 | 81.58 148 | 48.22 230 | 81.91 213 | 79.50 219 | 48.21 303 | 64.24 148 | 89.75 94 | 31.91 265 | 87.55 191 | 63.08 141 | 73.85 138 | 85.64 188 |
|
| v10 | | | 66.61 219 | 64.20 228 | 73.83 178 | 72.59 292 | 53.37 108 | 81.88 214 | 79.91 210 | 61.11 142 | 54.09 277 | 75.60 287 | 40.06 168 | 88.26 164 | 56.47 205 | 56.10 291 | 79.86 281 |
|
| EI-MVSNet-UG-set | | | 72.37 107 | 71.73 102 | 74.29 164 | 81.60 146 | 49.29 200 | 81.85 215 | 88.64 35 | 65.29 78 | 65.05 133 | 88.29 122 | 43.18 129 | 91.83 56 | 63.74 137 | 67.97 185 | 81.75 249 |
|
| ppachtmachnet_test | | | 58.56 285 | 54.34 294 | 71.24 235 | 71.42 304 | 54.74 73 | 81.84 216 | 72.27 312 | 49.02 299 | 45.86 329 | 68.99 337 | 26.27 299 | 83.30 269 | 30.12 338 | 43.23 350 | 75.69 322 |
|
| test_fmvsm_n_1920 | | | 75.56 62 | 75.54 51 | 75.61 129 | 74.60 268 | 49.51 196 | 81.82 217 | 74.08 297 | 66.52 55 | 80.40 19 | 93.46 15 | 46.95 76 | 89.72 112 | 86.69 5 | 75.30 125 | 87.61 147 |
|
| test_0402 | | | 56.45 297 | 53.03 301 | 66.69 292 | 76.78 238 | 50.31 178 | 81.76 218 | 69.61 332 | 42.79 337 | 43.88 331 | 72.13 320 | 22.82 325 | 86.46 218 | 16.57 379 | 50.94 323 | 63.31 368 |
|
| testing3 | | | 59.97 268 | 60.19 258 | 59.32 331 | 77.60 223 | 30.01 364 | 81.75 219 | 81.79 177 | 53.54 267 | 50.34 303 | 79.94 232 | 48.99 61 | 76.91 324 | 17.19 378 | 50.59 324 | 71.03 354 |
|
| 旧先验2 | | | | | | | | 81.73 220 | | 45.53 321 | 74.66 43 | | | 70.48 354 | 58.31 183 | | |
|
| thres100view900 | | | 66.87 216 | 65.42 214 | 71.24 235 | 83.29 100 | 43.15 303 | 81.67 221 | 87.78 51 | 59.04 186 | 55.92 260 | 82.18 213 | 43.73 120 | 87.80 177 | 28.80 343 | 66.36 200 | 82.78 240 |
|
| MVSFormer | | | 73.53 90 | 72.19 95 | 77.57 80 | 83.02 109 | 55.24 58 | 81.63 222 | 81.44 183 | 50.28 290 | 76.67 36 | 90.91 66 | 44.82 108 | 86.11 226 | 60.83 158 | 80.09 84 | 91.36 61 |
|
| test_djsdf | | | 63.84 238 | 61.56 242 | 70.70 244 | 68.78 324 | 44.69 286 | 81.63 222 | 81.44 183 | 50.28 290 | 52.27 291 | 76.26 279 | 26.72 297 | 86.11 226 | 60.83 158 | 55.84 296 | 81.29 265 |
|
| æ–°å‡ ä½•2 | | | | | | | | 81.61 224 | | | | | | | | | |
|
| TSAR-MVS + MP. | | | 78.31 26 | 78.26 22 | 78.48 61 | 81.33 156 | 56.31 37 | 81.59 225 | 86.41 74 | 69.61 24 | 81.72 15 | 88.16 124 | 55.09 22 | 88.04 170 | 74.12 78 | 86.31 32 | 91.09 67 |
| Zhenlong Yuan, Jiakai Cao, Zhaoqi Wang, Zhaoxin Li: TSAR-MVS: Textureless-aware Segmentation and Correlative Refinement Guided Multi-View Stereo. Pattern Recognition |
| SR-MVS-dyc-post | | | 68.27 182 | 66.87 177 | 72.48 207 | 80.96 162 | 48.14 233 | 81.54 226 | 76.98 268 | 46.42 315 | 62.75 168 | 89.42 99 | 31.17 270 | 86.09 230 | 60.52 164 | 72.06 153 | 83.19 231 |
|
| RE-MVS-def | | | | 66.66 183 | | 80.96 162 | 48.14 233 | 81.54 226 | 76.98 268 | 46.42 315 | 62.75 168 | 89.42 99 | 29.28 282 | | 60.52 164 | 72.06 153 | 83.19 231 |
|
| V42 | | | 67.66 192 | 65.60 209 | 73.86 176 | 70.69 313 | 53.63 98 | 81.50 228 | 78.61 241 | 63.85 95 | 59.49 203 | 77.49 258 | 37.98 184 | 87.65 185 | 62.33 145 | 58.43 264 | 80.29 276 |
|
| DU-MVS | | | 66.84 217 | 65.74 205 | 70.16 252 | 73.27 284 | 42.59 309 | 81.50 228 | 82.92 160 | 63.53 103 | 58.51 221 | 82.11 214 | 40.75 158 | 84.64 257 | 53.11 225 | 55.96 293 | 83.24 229 |
|
| HyFIR lowres test | | | 69.94 152 | 67.58 166 | 77.04 94 | 77.11 235 | 57.29 20 | 81.49 230 | 79.11 230 | 58.27 199 | 58.86 216 | 80.41 230 | 42.33 138 | 86.96 203 | 61.91 150 | 68.68 181 | 86.87 159 |
|
| IterMVS-LS | | | 66.63 218 | 65.36 215 | 70.42 248 | 75.10 259 | 48.90 210 | 81.45 231 | 76.69 275 | 61.05 144 | 55.71 261 | 77.10 265 | 45.86 90 | 83.65 265 | 57.44 197 | 57.88 277 | 78.70 290 |
| Fangjinhua Wang, Silvano Galliani, Christoph Vogel, Marc Pollefeys: IterMVS: Iterative Probability Estimation for Efficient Multi-View Stereo. |
| jajsoiax | | | 63.21 246 | 60.84 251 | 70.32 250 | 68.33 329 | 44.45 288 | 81.23 232 | 81.05 189 | 53.37 270 | 50.96 300 | 77.81 255 | 17.49 351 | 85.49 242 | 59.31 171 | 58.05 272 | 81.02 267 |
|
| RRT_MVS | | | 63.68 241 | 61.01 250 | 71.70 227 | 73.48 279 | 45.98 271 | 81.19 233 | 76.08 281 | 54.33 263 | 52.84 286 | 79.27 240 | 22.21 330 | 87.65 185 | 54.13 219 | 55.54 299 | 81.46 256 |
|
| HPM-MVS_fast | | | 67.86 187 | 66.28 191 | 72.61 202 | 80.67 172 | 48.34 227 | 81.18 234 | 75.95 283 | 50.81 288 | 59.55 201 | 88.05 127 | 27.86 289 | 85.98 233 | 58.83 175 | 73.58 139 | 83.51 224 |
|
| tfpnnormal | | | 61.47 262 | 59.09 266 | 68.62 274 | 76.29 245 | 41.69 315 | 81.14 235 | 85.16 106 | 54.48 261 | 51.32 296 | 73.63 304 | 32.32 258 | 86.89 207 | 21.78 369 | 55.71 297 | 77.29 309 |
|
| IS-MVSNet | | | 68.80 171 | 67.55 168 | 72.54 204 | 78.50 211 | 43.43 300 | 81.03 236 | 79.35 225 | 59.12 185 | 57.27 247 | 86.71 147 | 46.05 87 | 87.70 183 | 44.32 283 | 75.60 123 | 86.49 169 |
|
| eth_miper_zixun_eth | | | 66.98 213 | 65.28 216 | 72.06 215 | 75.61 254 | 50.40 172 | 81.00 237 | 76.97 271 | 62.00 127 | 56.99 249 | 76.97 267 | 44.84 107 | 85.58 239 | 58.75 176 | 54.42 307 | 80.21 277 |
|
| Syy-MVS | | | 61.51 261 | 61.35 245 | 62.00 319 | 81.73 138 | 30.09 362 | 80.97 238 | 81.02 190 | 60.93 148 | 55.06 266 | 82.64 201 | 35.09 232 | 80.81 285 | 16.40 380 | 58.32 265 | 75.10 329 |
|
| myMVS_eth3d | | | 63.52 242 | 63.56 232 | 63.40 312 | 81.73 138 | 34.28 345 | 80.97 238 | 81.02 190 | 60.93 148 | 55.06 266 | 82.64 201 | 48.00 67 | 80.81 285 | 23.42 365 | 58.32 265 | 75.10 329 |
|
| mvs_tets | | | 62.96 249 | 60.55 253 | 70.19 251 | 68.22 332 | 44.24 292 | 80.90 240 | 80.74 195 | 52.99 273 | 50.82 302 | 77.56 256 | 16.74 355 | 85.44 243 | 59.04 174 | 57.94 274 | 80.89 268 |
|
| tttt0517 | | | 68.33 180 | 66.29 190 | 74.46 157 | 78.08 216 | 49.06 202 | 80.88 241 | 89.08 21 | 54.40 262 | 54.75 270 | 80.77 228 | 51.31 43 | 90.33 95 | 49.35 252 | 58.01 273 | 83.99 213 |
|
| FC-MVSNet-test | | | 67.49 197 | 67.91 157 | 66.21 295 | 76.06 247 | 33.06 352 | 80.82 242 | 87.18 60 | 64.44 84 | 54.81 268 | 82.87 193 | 50.40 52 | 82.60 272 | 48.05 262 | 66.55 198 | 82.98 236 |
|
| sss | | | 70.49 140 | 70.13 129 | 71.58 231 | 81.59 147 | 39.02 330 | 80.78 243 | 84.71 120 | 59.34 175 | 66.61 114 | 88.09 125 | 37.17 204 | 85.52 240 | 61.82 152 | 71.02 162 | 90.20 87 |
|
| HPM-MVS |  | | 72.60 103 | 71.50 105 | 75.89 124 | 82.02 131 | 51.42 154 | 80.70 244 | 83.05 156 | 56.12 242 | 64.03 151 | 89.53 97 | 37.55 195 | 88.37 155 | 70.48 97 | 80.04 86 | 87.88 140 |
| Chunlin Ren, Qingshan Xu, Shikun Zhang, Jiaqi Yang: Hierarchical Prior Mining for Non-local Multi-View Stereo. ICCV 2023 |
| pmmvs6 | | | 59.64 271 | 57.15 277 | 67.09 286 | 66.01 338 | 36.86 340 | 80.50 245 | 78.64 239 | 45.05 324 | 49.05 308 | 73.94 298 | 27.28 293 | 86.10 228 | 43.96 285 | 49.94 326 | 78.31 298 |
|
| IterMVS | | | 63.77 240 | 61.67 240 | 70.08 254 | 72.68 291 | 51.24 159 | 80.44 246 | 75.51 285 | 60.51 156 | 51.41 295 | 73.70 303 | 32.08 261 | 78.91 305 | 54.30 218 | 54.35 308 | 80.08 279 |
| Fangjinhua Wang, Silvano Galliani, Christoph Vogel, Marc Pollefeys: IterMVS: Iterative Probability Estimation for Efficient Multi-View Stereo. |
| IterMVS-SCA-FT | | | 59.12 276 | 58.81 269 | 60.08 329 | 70.68 314 | 45.07 282 | 80.42 247 | 74.25 295 | 43.54 334 | 50.02 304 | 73.73 300 | 31.97 262 | 56.74 371 | 51.06 243 | 53.60 313 | 78.42 296 |
|
| test_fmvsmconf0.01_n | | | 71.97 115 | 70.95 114 | 75.04 148 | 66.21 337 | 47.87 242 | 80.35 248 | 70.08 328 | 65.85 69 | 72.69 66 | 91.68 52 | 39.99 169 | 87.67 184 | 82.03 25 | 69.66 174 | 89.58 101 |
|
| ACMH+ | | 54.58 15 | 58.55 286 | 55.24 290 | 68.50 277 | 74.68 266 | 45.80 275 | 80.27 249 | 70.21 327 | 47.15 309 | 42.77 338 | 75.48 288 | 16.73 356 | 85.98 233 | 35.10 321 | 54.78 304 | 73.72 338 |
|
| Anonymous20231206 | | | 59.08 278 | 57.59 274 | 63.55 310 | 68.77 325 | 32.14 357 | 80.26 250 | 79.78 212 | 50.00 294 | 49.39 306 | 72.39 317 | 26.64 298 | 78.36 308 | 33.12 329 | 57.94 274 | 80.14 278 |
|
| 1314 | | | 71.11 129 | 69.41 138 | 76.22 113 | 79.32 191 | 50.49 169 | 80.23 251 | 85.14 108 | 59.44 172 | 58.93 213 | 88.89 110 | 33.83 246 | 89.60 116 | 61.49 153 | 77.42 108 | 88.57 128 |
|
| MVS | | | 76.91 41 | 75.48 52 | 81.23 18 | 84.56 73 | 55.21 60 | 80.23 251 | 91.64 2 | 58.65 194 | 65.37 130 | 91.48 58 | 45.72 92 | 95.05 16 | 72.11 90 | 89.52 9 | 93.44 9 |
|
| ACMH | | 53.70 16 | 59.78 269 | 55.94 288 | 71.28 234 | 76.59 239 | 48.35 226 | 80.15 253 | 76.11 280 | 49.74 295 | 41.91 341 | 73.45 307 | 16.50 357 | 90.31 96 | 31.42 334 | 57.63 280 | 75.17 327 |
| Qingshan Xu and Wenbing Tao: Multi-Scale Geometric Consistency Guided Multi-View Stereo. CVPR 2019 |
| pmmvs4 | | | 63.34 245 | 61.07 249 | 70.16 252 | 70.14 315 | 50.53 168 | 79.97 254 | 71.41 321 | 55.08 253 | 54.12 276 | 78.58 247 | 32.79 254 | 82.09 276 | 50.33 245 | 57.22 282 | 77.86 303 |
|
| MVS_111021_LR | | | 69.07 163 | 67.91 157 | 72.54 204 | 77.27 229 | 49.56 193 | 79.77 255 | 73.96 300 | 59.33 177 | 60.73 188 | 87.82 129 | 30.19 276 | 81.53 278 | 69.94 98 | 72.19 152 | 86.53 168 |
|
| CNLPA | | | 60.59 266 | 58.44 270 | 67.05 288 | 79.21 193 | 47.26 252 | 79.75 256 | 64.34 348 | 42.46 339 | 51.90 294 | 83.94 177 | 27.79 291 | 75.41 333 | 37.12 305 | 59.49 255 | 78.47 294 |
|
| EI-MVSNet | | | 69.70 157 | 68.70 147 | 72.68 201 | 75.00 262 | 48.90 210 | 79.54 257 | 87.16 61 | 61.05 144 | 63.88 155 | 83.74 181 | 45.87 89 | 90.44 91 | 57.42 198 | 64.68 213 | 78.70 290 |
|
| CVMVSNet | | | 60.85 265 | 60.44 255 | 62.07 317 | 75.00 262 | 32.73 354 | 79.54 257 | 73.49 305 | 36.98 351 | 56.28 258 | 83.74 181 | 29.28 282 | 69.53 356 | 46.48 271 | 63.23 229 | 83.94 218 |
|
| AUN-MVS | | | 68.20 184 | 66.35 188 | 73.76 180 | 76.37 240 | 47.45 248 | 79.52 259 | 79.52 218 | 60.98 146 | 62.34 171 | 86.02 154 | 36.59 216 | 86.94 204 | 62.32 146 | 53.47 315 | 86.89 158 |
|
| hse-mvs2 | | | 71.44 125 | 70.68 116 | 73.73 182 | 76.34 241 | 47.44 249 | 79.45 260 | 79.47 220 | 68.08 33 | 71.97 75 | 86.01 156 | 42.50 136 | 86.93 205 | 78.82 42 | 53.46 316 | 86.83 164 |
|
| PVSNet_0 | | 57.04 13 | 61.19 263 | 57.24 276 | 73.02 194 | 77.45 227 | 50.31 178 | 79.43 261 | 77.36 263 | 63.96 94 | 47.51 319 | 72.45 316 | 25.03 310 | 83.78 263 | 52.76 233 | 19.22 386 | 84.96 198 |
|
| PCF-MVS | | 61.03 10 | 70.10 145 | 68.40 151 | 75.22 146 | 77.15 234 | 51.99 139 | 79.30 262 | 82.12 169 | 56.47 239 | 61.88 178 | 86.48 152 | 43.98 115 | 87.24 196 | 55.37 212 | 72.79 147 | 86.43 171 |
| Andreas Kuhn, Shan Lin, Oliver Erdler: Plane Completion and Filtering for Multi-View Stereo Reconstruction. GCPR 2019 |
| test_fmvsmvis_n_1920 | | | 71.29 126 | 70.38 122 | 74.00 172 | 71.04 309 | 48.79 213 | 79.19 263 | 64.62 346 | 62.75 115 | 66.73 110 | 91.99 45 | 40.94 156 | 88.35 157 | 83.00 18 | 73.18 141 | 84.85 201 |
|
| PLC |  | 52.38 18 | 60.89 264 | 58.97 268 | 66.68 293 | 81.77 137 | 45.70 276 | 78.96 264 | 74.04 299 | 43.66 333 | 47.63 316 | 83.19 192 | 23.52 321 | 77.78 320 | 37.47 302 | 60.46 247 | 76.55 318 |
| Jie Liao, Yanping Fu, Qingan Yan, Chunxia xiao: Pyramid Multi-View Stereo with Local Consistency. Pacific Graphics 2019 |
| D2MVS | | | 63.49 243 | 61.39 244 | 69.77 258 | 69.29 321 | 48.93 209 | 78.89 265 | 77.71 256 | 60.64 155 | 49.70 305 | 72.10 322 | 27.08 295 | 83.48 267 | 54.48 217 | 62.65 236 | 76.90 311 |
|
| OMC-MVS | | | 65.97 228 | 65.06 219 | 68.71 272 | 72.97 287 | 42.58 311 | 78.61 266 | 75.35 288 | 54.72 258 | 59.31 206 | 86.25 153 | 33.30 249 | 77.88 317 | 57.99 187 | 67.05 192 | 85.66 187 |
|
| PAPM_NR | | | 71.80 119 | 69.98 131 | 77.26 90 | 81.54 150 | 53.34 110 | 78.60 267 | 85.25 102 | 53.46 268 | 60.53 190 | 88.66 113 | 45.69 93 | 89.24 122 | 56.49 204 | 79.62 94 | 89.19 111 |
|
| mvs_anonymous | | | 72.29 110 | 70.74 115 | 76.94 101 | 82.85 116 | 54.72 75 | 78.43 268 | 81.54 181 | 63.77 96 | 61.69 179 | 79.32 239 | 51.11 44 | 85.31 244 | 62.15 149 | 75.79 120 | 90.79 73 |
|
| tt0805 | | | 63.39 244 | 61.31 246 | 69.64 259 | 69.36 320 | 38.87 331 | 78.00 269 | 85.48 88 | 48.82 301 | 55.66 265 | 81.66 219 | 24.38 315 | 86.37 221 | 49.04 255 | 59.36 257 | 83.68 222 |
|
| test222 | | | | | | 79.36 189 | 50.97 161 | 77.99 270 | 67.84 339 | 42.54 338 | 62.84 167 | 86.53 150 | 30.26 275 | | | 76.91 111 | 85.23 193 |
|
| v7n | | | 62.50 254 | 59.27 265 | 72.20 212 | 67.25 335 | 49.83 188 | 77.87 271 | 80.12 204 | 52.50 276 | 48.80 310 | 73.07 308 | 32.10 260 | 87.90 173 | 46.83 270 | 54.92 302 | 78.86 288 |
|
| test20.03 | | | 55.22 304 | 54.07 297 | 58.68 334 | 63.14 355 | 25.00 375 | 77.69 272 | 74.78 291 | 52.64 274 | 43.43 334 | 72.39 317 | 26.21 300 | 74.76 335 | 29.31 341 | 47.05 339 | 76.28 320 |
|
| bld_raw_dy_0_64 | | | 59.75 270 | 57.01 280 | 67.96 280 | 66.73 336 | 45.30 279 | 77.59 273 | 59.97 356 | 50.49 289 | 47.15 321 | 77.03 266 | 17.45 352 | 79.06 304 | 56.92 202 | 59.76 252 | 79.51 283 |
|
| testdata1 | | | | | | | | 77.55 274 | | 64.14 89 | | | | | | | |
|
| PEN-MVS | | | 58.35 288 | 57.15 277 | 61.94 320 | 67.55 334 | 34.39 344 | 77.01 275 | 78.35 247 | 51.87 281 | 47.72 315 | 76.73 273 | 33.91 243 | 73.75 340 | 34.03 324 | 47.17 337 | 77.68 305 |
|
| WR-MVS_H | | | 58.91 281 | 58.04 272 | 61.54 323 | 69.07 323 | 33.83 349 | 76.91 276 | 81.99 171 | 51.40 285 | 48.17 311 | 74.67 292 | 40.23 164 | 74.15 336 | 31.78 333 | 48.10 329 | 76.64 316 |
|
| CP-MVSNet | | | 58.54 287 | 57.57 275 | 61.46 324 | 68.50 327 | 33.96 348 | 76.90 277 | 78.60 242 | 51.67 284 | 47.83 314 | 76.60 275 | 34.99 235 | 72.79 345 | 35.45 314 | 47.58 333 | 77.64 307 |
|
| PS-CasMVS | | | 58.12 289 | 57.03 279 | 61.37 325 | 68.24 331 | 33.80 350 | 76.73 278 | 78.01 250 | 51.20 286 | 47.54 318 | 76.20 283 | 32.85 252 | 72.76 346 | 35.17 319 | 47.37 335 | 77.55 308 |
|
| tpm | | | 68.36 178 | 67.48 170 | 70.97 241 | 79.93 184 | 51.34 156 | 76.58 279 | 78.75 237 | 67.73 40 | 63.54 161 | 74.86 291 | 48.33 62 | 72.36 348 | 53.93 221 | 63.71 220 | 89.21 110 |
|
| DTE-MVSNet | | | 57.03 293 | 55.73 289 | 60.95 328 | 65.94 339 | 32.57 355 | 75.71 280 | 77.09 267 | 51.16 287 | 46.65 325 | 76.34 278 | 32.84 253 | 73.22 344 | 30.94 337 | 44.87 346 | 77.06 310 |
|
| tpmrst | | | 71.04 131 | 69.77 133 | 74.86 152 | 83.19 103 | 55.86 46 | 75.64 281 | 78.73 238 | 67.88 37 | 64.99 136 | 73.73 300 | 49.96 55 | 79.56 303 | 65.92 120 | 67.85 187 | 89.14 113 |
|
| CostFormer | | | 73.89 82 | 72.30 91 | 78.66 56 | 82.36 128 | 56.58 28 | 75.56 282 | 85.30 98 | 66.06 65 | 70.50 93 | 76.88 271 | 57.02 14 | 89.06 127 | 68.27 107 | 68.74 180 | 90.33 82 |
|
| HY-MVS | | 67.03 5 | 73.90 81 | 73.14 79 | 76.18 117 | 84.70 71 | 47.36 250 | 75.56 282 | 86.36 76 | 66.27 59 | 70.66 91 | 83.91 178 | 51.05 45 | 89.31 120 | 67.10 113 | 72.61 148 | 91.88 45 |
|
| K. test v3 | | | 54.04 309 | 49.42 320 | 67.92 281 | 68.55 326 | 42.57 312 | 75.51 284 | 63.07 351 | 52.07 278 | 39.21 350 | 64.59 348 | 19.34 342 | 82.21 273 | 37.11 306 | 25.31 379 | 78.97 287 |
|
| Vis-MVSNet (Re-imp) | | | 65.52 230 | 65.63 207 | 65.17 303 | 77.49 226 | 30.54 359 | 75.49 285 | 77.73 255 | 59.34 175 | 52.26 292 | 86.69 148 | 49.38 59 | 80.53 291 | 37.07 307 | 75.28 126 | 84.42 205 |
|
| pmmvs-eth3d | | | 55.97 301 | 52.78 305 | 65.54 299 | 61.02 360 | 46.44 262 | 75.36 286 | 67.72 340 | 49.61 296 | 43.65 333 | 67.58 340 | 21.63 334 | 77.04 322 | 44.11 284 | 44.33 347 | 73.15 344 |
|
| TAPA-MVS | | 56.12 14 | 61.82 260 | 60.18 259 | 66.71 291 | 78.48 212 | 37.97 336 | 75.19 287 | 76.41 279 | 46.82 311 | 57.04 248 | 86.52 151 | 27.67 292 | 77.03 323 | 26.50 356 | 67.02 193 | 85.14 194 |
| Andrea Romanoni, Matteo Matteucci: TAPA-MVS: Textureless-Aware PAtchMatch Multi-View Stereo. ICCV 2019 |
| FMVSNet5 | | | 58.61 284 | 56.45 282 | 65.10 304 | 77.20 233 | 39.74 327 | 74.77 288 | 77.12 266 | 50.27 292 | 43.28 336 | 67.71 339 | 26.15 302 | 76.90 326 | 36.78 310 | 54.78 304 | 78.65 292 |
|
| FA-MVS(test-final) | | | 69.00 166 | 66.60 185 | 76.19 116 | 83.48 93 | 47.96 241 | 74.73 289 | 82.07 170 | 57.27 222 | 62.18 174 | 78.47 249 | 36.09 220 | 92.89 33 | 53.76 223 | 71.32 160 | 87.73 144 |
|
| SixPastTwentyTwo | | | 54.37 306 | 50.10 315 | 67.21 285 | 70.70 312 | 41.46 320 | 74.73 289 | 64.69 345 | 47.56 307 | 39.12 351 | 69.49 333 | 18.49 348 | 84.69 256 | 31.87 332 | 34.20 369 | 75.48 324 |
|
| F-COLMAP | | | 55.96 302 | 53.65 300 | 62.87 315 | 72.76 290 | 42.77 308 | 74.70 291 | 70.37 326 | 40.03 342 | 41.11 346 | 79.36 238 | 17.77 350 | 73.70 341 | 32.80 330 | 53.96 310 | 72.15 346 |
|
| MSDG | | | 59.44 272 | 55.14 292 | 72.32 211 | 74.69 265 | 50.71 163 | 74.39 292 | 73.58 303 | 44.44 328 | 43.40 335 | 77.52 257 | 19.45 341 | 90.87 80 | 31.31 335 | 57.49 281 | 75.38 325 |
|
| tpm2 | | | 70.82 135 | 68.44 150 | 77.98 72 | 80.78 168 | 56.11 39 | 74.21 293 | 81.28 187 | 60.24 160 | 68.04 103 | 75.27 289 | 52.26 38 | 88.50 152 | 55.82 211 | 68.03 184 | 89.33 106 |
|
| SDMVSNet | | | 71.89 116 | 70.62 118 | 75.70 127 | 81.70 140 | 51.61 148 | 73.89 294 | 88.72 33 | 66.58 52 | 61.64 180 | 82.38 209 | 37.63 192 | 89.48 117 | 77.44 55 | 65.60 206 | 86.01 177 |
|
| UniMVSNet_ETH3D | | | 62.51 253 | 60.49 254 | 68.57 276 | 68.30 330 | 40.88 325 | 73.89 294 | 79.93 209 | 51.81 283 | 54.77 269 | 79.61 236 | 24.80 312 | 81.10 281 | 49.93 247 | 61.35 243 | 83.73 221 |
|
| UA-Net | | | 67.32 203 | 66.23 192 | 70.59 245 | 78.85 201 | 41.23 322 | 73.60 296 | 75.45 287 | 61.54 136 | 66.61 114 | 84.53 169 | 38.73 180 | 86.57 217 | 42.48 293 | 74.24 134 | 83.98 215 |
|
| Anonymous20240521 | | | 51.65 320 | 48.42 322 | 61.34 326 | 56.43 367 | 39.65 329 | 73.57 297 | 73.47 308 | 36.64 353 | 36.59 357 | 63.98 349 | 10.75 367 | 72.25 349 | 35.35 315 | 49.01 327 | 72.11 347 |
|
| ab-mvs | | | 70.65 138 | 69.11 144 | 75.29 142 | 80.87 166 | 46.23 269 | 73.48 298 | 85.24 103 | 59.99 162 | 66.65 112 | 80.94 226 | 43.13 132 | 88.69 143 | 63.58 138 | 68.07 183 | 90.95 70 |
|
| LS3D | | | 56.40 298 | 53.82 298 | 64.12 307 | 81.12 158 | 45.69 277 | 73.42 299 | 66.14 342 | 35.30 359 | 43.24 337 | 79.88 233 | 22.18 331 | 79.62 302 | 19.10 375 | 64.00 218 | 67.05 359 |
|
| testmvs | | | 6.14 365 | 8.18 368 | 0.01 380 | 0.01 402 | 0.00 406 | 73.40 300 | 0.00 404 | 0.00 398 | 0.02 399 | 0.15 398 | 0.00 403 | 0.00 399 | 0.02 398 | 0.00 397 | 0.02 395 |
|
| UnsupCasMVSNet_eth | | | 57.56 291 | 55.15 291 | 64.79 306 | 64.57 350 | 33.12 351 | 73.17 301 | 83.87 140 | 58.98 188 | 41.75 342 | 70.03 332 | 22.54 326 | 79.92 298 | 46.12 275 | 35.31 363 | 81.32 264 |
|
| anonymousdsp | | | 60.46 267 | 57.65 273 | 68.88 266 | 63.63 353 | 45.09 281 | 72.93 302 | 78.63 240 | 46.52 313 | 51.12 297 | 72.80 312 | 21.46 335 | 83.07 271 | 57.79 193 | 53.97 309 | 78.47 294 |
|
| EU-MVSNet | | | 52.63 316 | 50.72 313 | 58.37 335 | 62.69 357 | 28.13 372 | 72.60 303 | 75.97 282 | 30.94 366 | 40.76 348 | 72.11 321 | 20.16 339 | 70.80 352 | 35.11 320 | 46.11 343 | 76.19 321 |
|
| dp | | | 64.41 233 | 61.58 241 | 72.90 197 | 82.40 126 | 54.09 91 | 72.53 304 | 76.59 277 | 60.39 157 | 55.68 262 | 70.39 331 | 35.18 230 | 76.90 326 | 39.34 299 | 61.71 242 | 87.73 144 |
|
| N_pmnet | | | 41.25 335 | 39.77 338 | 45.66 354 | 68.50 327 | 0.82 404 | 72.51 305 | 0.38 403 | 35.61 356 | 35.26 362 | 61.51 355 | 20.07 340 | 67.74 357 | 23.51 363 | 40.63 354 | 68.42 358 |
|
| MDTV_nov1_ep13 | | | | 61.56 242 | | 81.68 142 | 55.12 63 | 72.41 306 | 78.18 248 | 59.19 180 | 58.85 217 | 69.29 335 | 34.69 237 | 86.16 225 | 36.76 311 | 62.96 234 | |
|
| YYNet1 | | | 53.82 311 | 49.96 316 | 65.41 301 | 70.09 317 | 48.95 207 | 72.30 307 | 71.66 318 | 44.25 330 | 31.89 370 | 63.07 352 | 23.73 319 | 73.95 338 | 33.26 327 | 39.40 357 | 73.34 341 |
|
| MDA-MVSNet_test_wron | | | 53.82 311 | 49.95 317 | 65.43 300 | 70.13 316 | 49.05 203 | 72.30 307 | 71.65 319 | 44.23 331 | 31.85 371 | 63.13 351 | 23.68 320 | 74.01 337 | 33.25 328 | 39.35 358 | 73.23 343 |
|
| testgi | | | 54.25 308 | 52.57 307 | 59.29 332 | 62.76 356 | 21.65 382 | 72.21 309 | 70.47 325 | 53.25 271 | 41.94 340 | 77.33 261 | 14.28 361 | 77.95 316 | 29.18 342 | 51.72 322 | 78.28 299 |
|
| KD-MVS_2432*1600 | | | 59.04 279 | 56.44 283 | 66.86 289 | 79.07 195 | 45.87 273 | 72.13 310 | 80.42 200 | 55.03 254 | 48.15 312 | 71.01 325 | 36.73 211 | 78.05 313 | 35.21 317 | 30.18 374 | 76.67 313 |
|
| miper_refine_blended | | | 59.04 279 | 56.44 283 | 66.86 289 | 79.07 195 | 45.87 273 | 72.13 310 | 80.42 200 | 55.03 254 | 48.15 312 | 71.01 325 | 36.73 211 | 78.05 313 | 35.21 317 | 30.18 374 | 76.67 313 |
|
| PatchmatchNet |  | | 67.07 211 | 63.63 231 | 77.40 84 | 83.10 104 | 58.03 9 | 72.11 312 | 77.77 254 | 58.85 190 | 59.37 204 | 70.83 327 | 37.84 186 | 84.93 253 | 42.96 289 | 69.83 173 | 89.26 107 |
| Fangjinhua Wang, Silvano Galliani, Christoph Vogel, Pablo Speciale, Marc Pollefeys: PatchmatchNet: Learned Multi-View Patchmatch Stereo. |
| test123 | | | 6.01 366 | 8.01 369 | 0.01 380 | 0.00 403 | 0.01 405 | 71.93 313 | 0.00 404 | 0.00 398 | 0.02 399 | 0.11 399 | 0.00 403 | 0.00 399 | 0.02 398 | 0.00 397 | 0.02 395 |
|
| EPMVS | | | 68.45 177 | 65.44 213 | 77.47 83 | 84.91 68 | 56.17 38 | 71.89 314 | 81.91 175 | 61.72 133 | 60.85 186 | 72.49 314 | 36.21 218 | 87.06 200 | 47.32 266 | 71.62 156 | 89.17 112 |
|
| UnsupCasMVSNet_bld | | | 53.86 310 | 50.53 314 | 63.84 308 | 63.52 354 | 34.75 343 | 71.38 315 | 81.92 174 | 46.53 312 | 38.95 352 | 57.93 364 | 20.55 338 | 80.20 296 | 39.91 298 | 34.09 370 | 76.57 317 |
|
| COLMAP_ROB |  | 43.60 20 | 50.90 323 | 48.05 324 | 59.47 330 | 67.81 333 | 40.57 326 | 71.25 316 | 62.72 353 | 36.49 354 | 36.19 359 | 73.51 305 | 13.48 362 | 73.92 339 | 20.71 371 | 50.26 325 | 63.92 367 |
| Johannes L. Schönberger, Enliang Zheng, Marc Pollefeys, Jan-Michael Frahm: Pixelwise View Selection for Unstructured Multi-View Stereo. ECCV 2016 |
| MDTV_nov1_ep13_2view | | | | | | | 43.62 297 | 71.13 317 | | 54.95 256 | 59.29 208 | | 36.76 210 | | 46.33 273 | | 87.32 153 |
|
| test_post1 | | | | | | | | 70.84 318 | | | | 14.72 395 | 34.33 240 | 83.86 260 | 48.80 256 | | |
|
| new-patchmatchnet | | | 48.21 327 | 46.55 329 | 53.18 346 | 57.73 365 | 18.19 390 | 70.24 319 | 71.02 323 | 45.70 319 | 33.70 365 | 60.23 358 | 18.00 349 | 69.86 355 | 27.97 350 | 34.35 367 | 71.49 352 |
|
| pmmvs3 | | | 45.53 333 | 41.55 337 | 57.44 337 | 48.97 378 | 39.68 328 | 70.06 320 | 57.66 358 | 28.32 369 | 34.06 364 | 57.29 365 | 8.50 374 | 66.85 358 | 34.86 322 | 34.26 368 | 65.80 364 |
|
| tpmvs | | | 62.45 256 | 59.42 263 | 71.53 232 | 83.93 84 | 54.32 85 | 70.03 321 | 77.61 257 | 51.91 280 | 53.48 283 | 68.29 338 | 37.91 185 | 86.66 212 | 33.36 326 | 58.27 267 | 73.62 339 |
|
| tpm cat1 | | | 66.28 223 | 62.78 233 | 76.77 107 | 81.40 154 | 57.14 22 | 70.03 321 | 77.19 264 | 53.00 272 | 58.76 219 | 70.73 330 | 46.17 84 | 86.73 210 | 43.27 287 | 64.46 214 | 86.44 170 |
|
| PatchMatch-RL | | | 56.66 294 | 53.75 299 | 65.37 302 | 77.91 221 | 45.28 280 | 69.78 323 | 60.38 354 | 41.35 340 | 47.57 317 | 73.73 300 | 16.83 354 | 76.91 324 | 36.99 308 | 59.21 258 | 73.92 337 |
|
| MDA-MVSNet-bldmvs | | | 51.56 321 | 47.75 327 | 63.00 314 | 71.60 302 | 47.32 251 | 69.70 324 | 72.12 313 | 43.81 332 | 27.65 378 | 63.38 350 | 21.97 333 | 75.96 330 | 27.30 353 | 32.19 371 | 65.70 365 |
|
| miper_lstm_enhance | | | 63.91 237 | 62.30 236 | 68.75 271 | 75.06 260 | 46.78 257 | 69.02 325 | 81.14 188 | 59.68 168 | 52.76 287 | 72.39 317 | 40.71 160 | 77.99 315 | 56.81 203 | 53.09 317 | 81.48 255 |
|
| sd_testset | | | 67.79 190 | 65.95 199 | 73.32 189 | 81.70 140 | 46.33 266 | 68.99 326 | 80.30 202 | 66.58 52 | 61.64 180 | 82.38 209 | 30.45 274 | 87.63 187 | 55.86 209 | 65.60 206 | 86.01 177 |
|
| test_fmvs1 | | | 53.60 313 | 52.54 308 | 56.78 338 | 58.07 363 | 30.26 360 | 68.95 327 | 42.19 374 | 32.46 362 | 63.59 159 | 82.56 205 | 11.55 364 | 60.81 363 | 58.25 184 | 55.27 300 | 79.28 284 |
|
| GG-mvs-BLEND | | | | | 77.77 76 | 86.68 43 | 50.61 165 | 68.67 328 | 88.45 42 | | 68.73 99 | 87.45 136 | 59.15 10 | 90.67 85 | 54.83 214 | 87.67 16 | 92.03 40 |
|
| OurMVSNet-221017-0 | | | 52.39 318 | 48.73 321 | 63.35 313 | 65.21 344 | 38.42 334 | 68.54 329 | 64.95 344 | 38.19 346 | 39.57 349 | 71.43 324 | 13.23 363 | 79.92 298 | 37.16 304 | 40.32 356 | 71.72 349 |
|
| FE-MVS | | | 64.15 235 | 60.43 256 | 75.30 141 | 80.85 167 | 49.86 187 | 68.28 330 | 78.37 246 | 50.26 293 | 59.31 206 | 73.79 299 | 26.19 301 | 91.92 55 | 40.19 296 | 66.67 195 | 84.12 208 |
|
| test_fmvs1_n | | | 52.55 317 | 51.19 312 | 56.65 339 | 51.90 373 | 30.14 361 | 67.66 331 | 42.84 373 | 32.27 363 | 62.30 173 | 82.02 216 | 9.12 372 | 60.84 362 | 57.82 192 | 54.75 306 | 78.99 286 |
|
| MIMVSNet1 | | | 50.35 324 | 47.81 325 | 57.96 336 | 61.53 359 | 27.80 373 | 67.40 332 | 74.06 298 | 43.25 335 | 33.31 369 | 65.38 347 | 16.03 358 | 71.34 350 | 21.80 368 | 47.55 334 | 74.75 331 |
|
| test_vis1_n | | | 51.19 322 | 49.66 319 | 55.76 343 | 51.26 374 | 29.85 365 | 67.20 333 | 38.86 378 | 32.12 364 | 59.50 202 | 79.86 234 | 8.78 373 | 58.23 370 | 56.95 201 | 52.46 319 | 79.19 285 |
|
| MTAPA | | | 72.73 101 | 71.22 110 | 77.27 89 | 81.54 150 | 53.57 99 | 67.06 334 | 81.31 185 | 59.41 173 | 68.39 101 | 90.96 65 | 36.07 221 | 89.01 130 | 73.80 81 | 82.45 62 | 89.23 109 |
|
| WB-MVS | | | 37.41 340 | 36.37 341 | 40.54 360 | 54.23 369 | 10.43 397 | 65.29 335 | 43.75 371 | 34.86 360 | 27.81 377 | 54.63 367 | 24.94 311 | 63.21 360 | 6.81 392 | 15.00 387 | 47.98 379 |
|
| MIMVSNet | | | 63.12 247 | 60.29 257 | 71.61 228 | 75.92 251 | 46.65 259 | 65.15 336 | 81.94 172 | 59.14 184 | 54.65 271 | 69.47 334 | 25.74 304 | 80.63 288 | 41.03 295 | 69.56 177 | 87.55 148 |
|
| XVG-OURS-SEG-HR | | | 62.02 258 | 59.54 262 | 69.46 261 | 65.30 343 | 45.88 272 | 65.06 337 | 73.57 304 | 46.45 314 | 57.42 245 | 83.35 189 | 26.95 296 | 78.09 311 | 53.77 222 | 64.03 217 | 84.42 205 |
|
| XVG-OURS | | | 61.88 259 | 59.34 264 | 69.49 260 | 65.37 342 | 46.27 267 | 64.80 338 | 73.49 305 | 47.04 310 | 57.41 246 | 82.85 194 | 25.15 309 | 78.18 309 | 53.00 228 | 64.98 208 | 84.01 212 |
|
| dmvs_re | | | 67.61 193 | 66.00 197 | 72.42 208 | 81.86 135 | 43.45 299 | 64.67 339 | 80.00 206 | 69.56 25 | 60.07 192 | 85.00 166 | 34.71 236 | 87.63 187 | 51.48 239 | 66.68 194 | 86.17 175 |
|
| gg-mvs-nofinetune | | | 67.43 199 | 64.53 225 | 76.13 118 | 85.95 47 | 47.79 245 | 64.38 340 | 88.28 44 | 39.34 343 | 66.62 113 | 41.27 377 | 58.69 13 | 89.00 131 | 49.64 250 | 86.62 29 | 91.59 51 |
|
| dmvs_testset | | | 57.65 290 | 58.21 271 | 55.97 342 | 74.62 267 | 9.82 398 | 63.75 341 | 63.34 350 | 67.23 45 | 48.89 309 | 83.68 185 | 39.12 176 | 76.14 329 | 23.43 364 | 59.80 251 | 81.96 246 |
|
| XVG-ACMP-BASELINE | | | 56.03 300 | 52.85 304 | 65.58 298 | 61.91 358 | 40.95 324 | 63.36 342 | 72.43 311 | 45.20 323 | 46.02 327 | 74.09 296 | 9.20 371 | 78.12 310 | 45.13 277 | 58.27 267 | 77.66 306 |
|
| TinyColmap | | | 48.15 328 | 44.49 332 | 59.13 333 | 65.73 341 | 38.04 335 | 63.34 343 | 62.86 352 | 38.78 344 | 29.48 373 | 67.23 342 | 6.46 381 | 73.30 343 | 24.59 360 | 41.90 353 | 66.04 363 |
|
| MVS-HIRNet | | | 49.01 326 | 44.71 330 | 61.92 321 | 76.06 247 | 46.61 260 | 63.23 344 | 54.90 361 | 24.77 373 | 33.56 366 | 36.60 381 | 21.28 336 | 75.88 331 | 29.49 340 | 62.54 237 | 63.26 369 |
|
| PM-MVS | | | 46.92 330 | 43.76 335 | 56.41 341 | 52.18 372 | 32.26 356 | 63.21 345 | 38.18 379 | 37.99 348 | 40.78 347 | 66.20 343 | 5.09 384 | 65.42 359 | 48.19 261 | 41.99 352 | 71.54 351 |
|
| AllTest | | | 47.32 329 | 44.66 331 | 55.32 344 | 65.08 346 | 37.50 338 | 62.96 346 | 54.25 363 | 35.45 357 | 33.42 367 | 72.82 310 | 9.98 368 | 59.33 366 | 24.13 361 | 43.84 348 | 69.13 355 |
|
| USDC | | | 54.36 307 | 51.23 311 | 63.76 309 | 64.29 351 | 37.71 337 | 62.84 347 | 73.48 307 | 56.85 228 | 35.47 361 | 71.94 323 | 9.23 370 | 78.43 307 | 38.43 301 | 48.57 328 | 75.13 328 |
|
| SSC-MVS | | | 35.20 342 | 34.30 344 | 37.90 362 | 52.58 371 | 8.65 400 | 61.86 348 | 41.64 375 | 31.81 365 | 25.54 379 | 52.94 372 | 23.39 322 | 59.28 368 | 6.10 393 | 12.86 388 | 45.78 381 |
|
| Patchmatch-RL test | | | 58.72 283 | 54.32 295 | 71.92 224 | 63.91 352 | 44.25 291 | 61.73 349 | 55.19 360 | 57.38 220 | 49.31 307 | 54.24 368 | 37.60 194 | 80.89 283 | 62.19 148 | 47.28 336 | 90.63 75 |
|
| SCA | | | 63.84 238 | 60.01 260 | 75.32 140 | 78.58 209 | 57.92 10 | 61.61 350 | 77.53 258 | 56.71 233 | 57.75 236 | 70.77 328 | 31.97 262 | 79.91 300 | 48.80 256 | 56.36 285 | 88.13 136 |
|
| CMPMVS |  | 40.41 21 | 55.34 303 | 52.64 306 | 63.46 311 | 60.88 361 | 43.84 295 | 61.58 351 | 71.06 322 | 30.43 367 | 36.33 358 | 74.63 293 | 24.14 317 | 75.44 332 | 48.05 262 | 66.62 196 | 71.12 353 |
| M. Jancosek, T. Pajdla: Multi-View Reconstruction Preserving Weakly-Supported Surfaces. CVPR 2011 |
| LCM-MVSNet-Re | | | 58.82 282 | 56.54 281 | 65.68 297 | 79.31 192 | 29.09 370 | 61.39 352 | 45.79 368 | 60.73 153 | 37.65 356 | 72.47 315 | 31.42 268 | 81.08 282 | 49.66 249 | 70.41 168 | 86.87 159 |
|
| CR-MVSNet | | | 62.47 255 | 59.04 267 | 72.77 200 | 73.97 277 | 56.57 29 | 60.52 353 | 71.72 316 | 60.04 161 | 57.49 242 | 65.86 344 | 38.94 177 | 80.31 293 | 42.86 290 | 59.93 249 | 81.42 257 |
|
| RPMNet | | | 59.29 273 | 54.25 296 | 74.42 159 | 73.97 277 | 56.57 29 | 60.52 353 | 76.98 268 | 35.72 355 | 57.49 242 | 58.87 363 | 37.73 190 | 85.26 246 | 27.01 354 | 59.93 249 | 81.42 257 |
|
| EGC-MVSNET | | | 33.75 344 | 30.42 348 | 43.75 357 | 64.94 348 | 36.21 341 | 60.47 355 | 40.70 377 | 0.02 397 | 0.10 398 | 53.79 369 | 7.39 375 | 60.26 364 | 11.09 385 | 35.23 365 | 34.79 383 |
|
| test_vis1_rt | | | 40.29 337 | 38.64 339 | 45.25 355 | 48.91 379 | 30.09 362 | 59.44 356 | 27.07 392 | 24.52 374 | 38.48 354 | 51.67 373 | 6.71 379 | 49.44 377 | 44.33 282 | 46.59 342 | 56.23 371 |
|
| Patchmtry | | | 56.56 296 | 52.95 303 | 67.42 284 | 72.53 293 | 50.59 167 | 59.05 357 | 71.72 316 | 37.86 349 | 46.92 322 | 65.86 344 | 38.94 177 | 80.06 297 | 36.94 309 | 46.72 341 | 71.60 350 |
|
| TDRefinement | | | 40.91 336 | 38.37 340 | 48.55 351 | 50.45 376 | 33.03 353 | 58.98 358 | 50.97 366 | 28.50 368 | 29.89 372 | 67.39 341 | 6.21 383 | 54.51 373 | 17.67 377 | 35.25 364 | 58.11 370 |
|
| test_fmvs2 | | | 45.89 331 | 44.32 333 | 50.62 349 | 45.85 382 | 24.70 376 | 58.87 359 | 37.84 381 | 25.22 372 | 52.46 289 | 74.56 294 | 7.07 376 | 54.69 372 | 49.28 253 | 47.70 332 | 72.48 345 |
|
| KD-MVS_self_test | | | 49.24 325 | 46.85 328 | 56.44 340 | 54.32 368 | 22.87 378 | 57.39 360 | 73.36 309 | 44.36 329 | 37.98 355 | 59.30 362 | 18.97 344 | 71.17 351 | 33.48 325 | 42.44 351 | 75.26 326 |
|
| PatchT | | | 56.60 295 | 52.97 302 | 67.48 283 | 72.94 288 | 46.16 270 | 57.30 361 | 73.78 301 | 38.77 345 | 54.37 274 | 57.26 366 | 37.52 196 | 78.06 312 | 32.02 331 | 52.79 318 | 78.23 301 |
|
| mvsany_test1 | | | 43.38 334 | 42.57 336 | 45.82 353 | 50.96 375 | 26.10 374 | 55.80 362 | 27.74 391 | 27.15 370 | 47.41 320 | 74.39 295 | 18.67 346 | 44.95 383 | 44.66 280 | 36.31 361 | 66.40 362 |
|
| ANet_high | | | 34.39 343 | 29.59 349 | 48.78 350 | 30.34 392 | 22.28 379 | 55.53 363 | 63.79 349 | 38.11 347 | 15.47 385 | 36.56 382 | 6.94 377 | 59.98 365 | 13.93 382 | 5.64 396 | 64.08 366 |
|
| ADS-MVSNet2 | | | 55.21 305 | 51.44 310 | 66.51 294 | 80.60 173 | 49.56 193 | 55.03 364 | 65.44 343 | 44.72 325 | 51.00 298 | 61.19 356 | 22.83 323 | 75.41 333 | 28.54 346 | 53.63 311 | 74.57 333 |
|
| ADS-MVSNet | | | 56.17 299 | 51.95 309 | 68.84 267 | 80.60 173 | 53.07 119 | 55.03 364 | 70.02 329 | 44.72 325 | 51.00 298 | 61.19 356 | 22.83 323 | 78.88 306 | 28.54 346 | 53.63 311 | 74.57 333 |
|
| RPSCF | | | 45.77 332 | 44.13 334 | 50.68 348 | 57.67 366 | 29.66 366 | 54.92 366 | 45.25 370 | 26.69 371 | 45.92 328 | 75.92 286 | 17.43 353 | 45.70 382 | 27.44 352 | 45.95 344 | 76.67 313 |
|
| new_pmnet | | | 33.56 345 | 31.89 347 | 38.59 361 | 49.01 377 | 20.42 383 | 51.01 367 | 37.92 380 | 20.58 375 | 23.45 380 | 46.79 375 | 6.66 380 | 49.28 379 | 20.00 374 | 31.57 373 | 46.09 380 |
|
| test_fmvs3 | | | 37.95 339 | 35.75 342 | 44.55 356 | 35.50 388 | 18.92 386 | 48.32 368 | 34.00 386 | 18.36 380 | 41.31 345 | 61.58 354 | 2.29 391 | 48.06 381 | 42.72 291 | 37.71 360 | 66.66 361 |
|
| E-PMN | | | 19.16 358 | 18.40 362 | 21.44 375 | 36.19 387 | 13.63 395 | 47.59 369 | 30.89 387 | 10.73 388 | 5.91 395 | 16.59 391 | 3.66 387 | 39.77 386 | 5.95 394 | 8.14 391 | 10.92 391 |
|
| EMVS | | | 18.42 359 | 17.66 363 | 20.71 376 | 34.13 389 | 12.64 396 | 46.94 370 | 29.94 389 | 10.46 390 | 5.58 396 | 14.93 394 | 4.23 386 | 38.83 387 | 5.24 396 | 7.51 393 | 10.67 392 |
|
| CHOSEN 280x420 | | | 57.53 292 | 56.38 285 | 60.97 327 | 74.01 275 | 48.10 235 | 46.30 371 | 54.31 362 | 48.18 304 | 50.88 301 | 77.43 260 | 38.37 183 | 59.16 369 | 54.83 214 | 63.14 232 | 75.66 323 |
|
| LTVRE_ROB | | 45.45 19 | 52.73 315 | 49.74 318 | 61.69 322 | 69.78 318 | 34.99 342 | 44.52 372 | 67.60 341 | 43.11 336 | 43.79 332 | 74.03 297 | 18.54 347 | 81.45 279 | 28.39 348 | 57.94 274 | 68.62 357 |
| Andreas Kuhn, Heiko Hirschmüller, Daniel Scharstein, Helmut Mayer: A TV Prior for High-Quality Scalable Multi-View Stereo Reconstruction. International Journal of Computer Vision 2016 |
| LF4IMVS | | | 33.04 346 | 32.55 346 | 34.52 365 | 40.96 383 | 22.03 380 | 44.45 373 | 35.62 383 | 20.42 376 | 28.12 376 | 62.35 353 | 5.03 385 | 31.88 395 | 21.61 370 | 34.42 366 | 49.63 377 |
|
| Patchmatch-test | | | 53.33 314 | 48.17 323 | 68.81 269 | 73.31 281 | 42.38 313 | 42.98 374 | 58.23 357 | 32.53 361 | 38.79 353 | 70.77 328 | 39.66 172 | 73.51 342 | 25.18 358 | 52.06 321 | 90.55 76 |
|
| PMMVS2 | | | 26.71 351 | 22.98 356 | 37.87 363 | 36.89 386 | 8.51 401 | 42.51 375 | 29.32 390 | 19.09 379 | 13.01 387 | 37.54 378 | 2.23 392 | 53.11 374 | 14.54 381 | 11.71 389 | 51.99 376 |
|
| FPMVS | | | 35.40 341 | 33.67 345 | 40.57 359 | 46.34 381 | 28.74 371 | 41.05 376 | 57.05 359 | 20.37 377 | 22.27 381 | 53.38 370 | 6.87 378 | 44.94 384 | 8.62 386 | 47.11 338 | 48.01 378 |
|
| PMVS |  | 19.57 22 | 25.07 353 | 22.43 358 | 32.99 369 | 23.12 399 | 22.98 377 | 40.98 377 | 35.19 384 | 15.99 382 | 11.95 391 | 35.87 383 | 1.47 397 | 49.29 378 | 5.41 395 | 31.90 372 | 26.70 388 |
| Y. Furukawa, J. Ponce: Accurate, dense, and robust multiview stereopsis. PAMI (2010) |
| APD_test1 | | | 26.46 352 | 24.41 353 | 32.62 370 | 37.58 385 | 21.74 381 | 40.50 378 | 30.39 388 | 11.45 387 | 16.33 384 | 43.76 376 | 1.63 396 | 41.62 385 | 11.24 384 | 26.82 378 | 34.51 384 |
|
| JIA-IIPM | | | 52.33 319 | 47.77 326 | 66.03 296 | 71.20 307 | 46.92 256 | 40.00 379 | 76.48 278 | 37.10 350 | 46.73 323 | 37.02 379 | 32.96 251 | 77.88 317 | 35.97 312 | 52.45 320 | 73.29 342 |
|
| DSMNet-mixed | | | 38.35 338 | 35.36 343 | 47.33 352 | 48.11 380 | 14.91 394 | 37.87 380 | 36.60 382 | 19.18 378 | 34.37 363 | 59.56 361 | 15.53 359 | 53.01 375 | 20.14 373 | 46.89 340 | 74.07 335 |
|
| test_vis3_rt | | | 24.79 354 | 22.95 357 | 30.31 371 | 28.59 394 | 18.92 386 | 37.43 381 | 17.27 399 | 12.90 384 | 21.28 382 | 29.92 388 | 1.02 398 | 36.35 388 | 28.28 349 | 29.82 376 | 35.65 382 |
|
| ambc | | | | | 62.06 318 | 53.98 370 | 29.38 368 | 35.08 382 | 79.65 216 | | 41.37 343 | 59.96 359 | 6.27 382 | 82.15 274 | 35.34 316 | 38.22 359 | 74.65 332 |
|
| mvsany_test3 | | | 28.00 348 | 25.98 350 | 34.05 366 | 28.97 393 | 15.31 392 | 34.54 383 | 18.17 397 | 16.24 381 | 29.30 374 | 53.37 371 | 2.79 389 | 33.38 394 | 30.01 339 | 20.41 385 | 53.45 374 |
|
| testf1 | | | 21.11 356 | 19.08 360 | 27.18 373 | 30.56 390 | 18.28 388 | 33.43 384 | 24.48 393 | 8.02 391 | 12.02 389 | 33.50 385 | 0.75 400 | 35.09 391 | 7.68 388 | 21.32 382 | 28.17 386 |
|
| APD_test2 | | | 21.11 356 | 19.08 360 | 27.18 373 | 30.56 390 | 18.28 388 | 33.43 384 | 24.48 393 | 8.02 391 | 12.02 389 | 33.50 385 | 0.75 400 | 35.09 391 | 7.68 388 | 21.32 382 | 28.17 386 |
|
| LCM-MVSNet | | | 28.07 347 | 23.85 355 | 40.71 358 | 27.46 397 | 18.93 385 | 30.82 386 | 46.19 367 | 12.76 385 | 16.40 383 | 34.70 384 | 1.90 394 | 48.69 380 | 20.25 372 | 24.22 380 | 54.51 373 |
|
| test_f | | | 27.12 350 | 24.85 351 | 33.93 367 | 26.17 398 | 15.25 393 | 30.24 387 | 22.38 396 | 12.53 386 | 28.23 375 | 49.43 374 | 2.59 390 | 34.34 393 | 25.12 359 | 26.99 377 | 52.20 375 |
|
| test_method | | | 24.09 355 | 21.07 359 | 33.16 368 | 27.67 396 | 8.35 402 | 26.63 388 | 35.11 385 | 3.40 394 | 14.35 386 | 36.98 380 | 3.46 388 | 35.31 390 | 19.08 376 | 22.95 381 | 55.81 372 |
|
| wuyk23d | | | 9.11 363 | 8.77 367 | 10.15 378 | 40.18 384 | 16.76 391 | 20.28 389 | 1.01 402 | 2.58 395 | 2.66 397 | 0.98 397 | 0.23 402 | 12.49 397 | 4.08 397 | 6.90 394 | 1.19 394 |
|
| MVE |  | 16.60 23 | 17.34 361 | 13.39 364 | 29.16 372 | 28.43 395 | 19.72 384 | 13.73 390 | 23.63 395 | 7.23 393 | 7.96 393 | 21.41 389 | 0.80 399 | 36.08 389 | 6.97 390 | 10.39 390 | 31.69 385 |
| Simon Fuhrmann, Fabian Langguth, Michael Goesele: MVE - A Multi-View Reconstruction Environment. EUROGRAPHICS Workshops on Graphics and Cultural Heritage (2014) |
| Gipuma |  | | 27.47 349 | 24.26 354 | 37.12 364 | 60.55 362 | 29.17 369 | 11.68 391 | 60.00 355 | 14.18 383 | 10.52 392 | 15.12 393 | 2.20 393 | 63.01 361 | 8.39 387 | 35.65 362 | 19.18 389 |
| S. Galliani, K. Lasinger, K. Schindler: Massively Parallel Multiview Stereopsis by Surface Normal Diffusion. ICCV 2015 |
| tmp_tt | | | 9.44 362 | 10.68 365 | 5.73 379 | 2.49 401 | 4.21 403 | 10.48 392 | 18.04 398 | 0.34 396 | 12.59 388 | 20.49 390 | 11.39 365 | 7.03 398 | 13.84 383 | 6.46 395 | 5.95 393 |
|
| test_blank | | | 0.00 368 | 0.00 371 | 0.00 382 | 0.00 403 | 0.00 406 | 0.00 393 | 0.00 404 | 0.00 398 | 0.00 401 | 0.00 400 | 0.00 403 | 0.00 399 | 0.00 400 | 0.00 397 | 0.00 397 |
|
| uanet_test | | | 0.00 368 | 0.00 371 | 0.00 382 | 0.00 403 | 0.00 406 | 0.00 393 | 0.00 404 | 0.00 398 | 0.00 401 | 0.00 400 | 0.00 403 | 0.00 399 | 0.00 400 | 0.00 397 | 0.00 397 |
|
| DCPMVS | | | 0.00 368 | 0.00 371 | 0.00 382 | 0.00 403 | 0.00 406 | 0.00 393 | 0.00 404 | 0.00 398 | 0.00 401 | 0.00 400 | 0.00 403 | 0.00 399 | 0.00 400 | 0.00 397 | 0.00 397 |
|
| cdsmvs_eth3d_5k | | | 18.33 360 | 24.44 352 | 0.00 382 | 0.00 403 | 0.00 406 | 0.00 393 | 89.40 16 | 0.00 398 | 0.00 401 | 92.02 43 | 38.55 181 | 0.00 399 | 0.00 400 | 0.00 397 | 0.00 397 |
|
| pcd_1.5k_mvsjas | | | 3.15 367 | 4.20 370 | 0.00 382 | 0.00 403 | 0.00 406 | 0.00 393 | 0.00 404 | 0.00 398 | 0.00 401 | 0.00 400 | 37.77 187 | 0.00 399 | 0.00 400 | 0.00 397 | 0.00 397 |
|
| sosnet-low-res | | | 0.00 368 | 0.00 371 | 0.00 382 | 0.00 403 | 0.00 406 | 0.00 393 | 0.00 404 | 0.00 398 | 0.00 401 | 0.00 400 | 0.00 403 | 0.00 399 | 0.00 400 | 0.00 397 | 0.00 397 |
|
| sosnet | | | 0.00 368 | 0.00 371 | 0.00 382 | 0.00 403 | 0.00 406 | 0.00 393 | 0.00 404 | 0.00 398 | 0.00 401 | 0.00 400 | 0.00 403 | 0.00 399 | 0.00 400 | 0.00 397 | 0.00 397 |
|
| uncertanet | | | 0.00 368 | 0.00 371 | 0.00 382 | 0.00 403 | 0.00 406 | 0.00 393 | 0.00 404 | 0.00 398 | 0.00 401 | 0.00 400 | 0.00 403 | 0.00 399 | 0.00 400 | 0.00 397 | 0.00 397 |
|
| Regformer | | | 0.00 368 | 0.00 371 | 0.00 382 | 0.00 403 | 0.00 406 | 0.00 393 | 0.00 404 | 0.00 398 | 0.00 401 | 0.00 400 | 0.00 403 | 0.00 399 | 0.00 400 | 0.00 397 | 0.00 397 |
|
| ab-mvs-re | | | 7.68 364 | 10.24 366 | 0.00 382 | 0.00 403 | 0.00 406 | 0.00 393 | 0.00 404 | 0.00 398 | 0.00 401 | 92.12 40 | 0.00 403 | 0.00 399 | 0.00 400 | 0.00 397 | 0.00 397 |
|
| uanet | | | 0.00 368 | 0.00 371 | 0.00 382 | 0.00 403 | 0.00 406 | 0.00 393 | 0.00 404 | 0.00 398 | 0.00 401 | 0.00 400 | 0.00 403 | 0.00 399 | 0.00 400 | 0.00 397 | 0.00 397 |
|
| WAC-MVS | | | | | | | 34.28 345 | | | | | | | | 22.56 366 | | |
|
| MSC_two_6792asdad | | | | | 81.53 14 | 91.77 4 | 56.03 41 | | 91.10 6 | | | | | 96.22 8 | 81.46 30 | 86.80 26 | 92.34 32 |
|
| PC_three_1452 | | | | | | | | | | 66.58 52 | 87.27 2 | 93.70 9 | 66.82 4 | 94.95 17 | 89.74 3 | 91.98 4 | 93.98 5 |
|
| No_MVS | | | | | 81.53 14 | 91.77 4 | 56.03 41 | | 91.10 6 | | | | | 96.22 8 | 81.46 30 | 86.80 26 | 92.34 32 |
|
| test_one_0601 | | | | | | 89.39 22 | 57.29 20 | | 88.09 46 | 57.21 224 | 82.06 12 | 93.39 16 | 54.94 24 | | | | |
|
| eth-test2 | | | | | | 0.00 403 | | | | | | | | | | | |
|
| eth-test | | | | | | 0.00 403 | | | | | | | | | | | |
|
| ZD-MVS | | | | | | 89.55 14 | 53.46 102 | | 84.38 126 | 57.02 226 | 73.97 51 | 91.03 61 | 44.57 112 | 91.17 70 | 75.41 69 | 81.78 69 | |
|
| IU-MVS | | | | | | 89.48 17 | 57.49 15 | | 91.38 5 | 66.22 60 | 88.26 1 | | | | 82.83 19 | 87.60 17 | 92.44 29 |
|
| test_241102_TWO | | | | | | | | | 88.76 32 | 57.50 218 | 83.60 6 | 94.09 3 | 56.14 18 | 96.37 6 | 82.28 23 | 87.43 19 | 92.55 27 |
|
| test_241102_ONE | | | | | | 89.48 17 | 56.89 25 | | 88.94 24 | 57.53 216 | 84.61 4 | 93.29 20 | 58.81 11 | 96.45 1 | | | |
|
| test_0728_THIRD | | | | | | | | | | 58.00 204 | 81.91 13 | 93.64 11 | 56.54 15 | 96.44 2 | 81.64 28 | 86.86 24 | 92.23 34 |
|
| GSMVS | | | | | | | | | | | | | | | | | 88.13 136 |
|
| test_part2 | | | | | | 89.33 23 | 55.48 50 | | | | 82.27 11 | | | | | | |
|
| sam_mvs1 | | | | | | | | | | | | | 38.86 179 | | | | 88.13 136 |
|
| sam_mvs | | | | | | | | | | | | | 35.99 224 | | | | |
|
| MTGPA |  | | | | | | | | 81.31 185 | | | | | | | | |
|
| test_post | | | | | | | | | | | | 16.22 392 | 37.52 196 | 84.72 255 | | | |
|
| patchmatchnet-post | | | | | | | | | | | | 59.74 360 | 38.41 182 | 79.91 300 | | | |
|
| gm-plane-assit | | | | | | 83.24 101 | 54.21 88 | | | 70.91 15 | | 88.23 123 | | 95.25 14 | 66.37 117 | | |
|
| test9_res | | | | | | | | | | | | | | | 78.72 45 | 85.44 41 | 91.39 59 |
|
| agg_prior2 | | | | | | | | | | | | | | | 75.65 64 | 85.11 45 | 91.01 68 |
|
| agg_prior | | | | | | 85.64 54 | 54.92 70 | | 83.61 146 | | 72.53 70 | | | 88.10 168 | | | |
|
| TestCases | | | | | 55.32 344 | 65.08 346 | 37.50 338 | | 54.25 363 | 35.45 357 | 33.42 367 | 72.82 310 | 9.98 368 | 59.33 366 | 24.13 361 | 43.84 348 | 69.13 355 |
|
| test_prior | | | | | 78.39 65 | 86.35 45 | 54.91 71 | | 85.45 91 | | | | | 89.70 113 | | | 90.55 76 |
|
| æ–°å‡ ä½•1 | | | | | 73.30 191 | 83.10 104 | 53.48 101 | | 71.43 320 | 45.55 320 | 66.14 120 | 87.17 141 | 33.88 245 | 80.54 290 | 48.50 259 | 80.33 82 | 85.88 184 |
|
| 旧先验1 | | | | | | 81.57 149 | 47.48 247 | | 71.83 314 | | | 88.66 113 | 36.94 207 | | | 78.34 103 | 88.67 124 |
|
| 原ACMM1 | | | | | 76.13 118 | 84.89 69 | 54.59 81 | | 85.26 101 | 51.98 279 | 66.70 111 | 87.07 143 | 40.15 166 | 89.70 113 | 51.23 241 | 85.06 46 | 84.10 209 |
|
| testdata2 | | | | | | | | | | | | | | 77.81 319 | 45.64 276 | | |
|
| segment_acmp | | | | | | | | | | | | | 44.97 104 | | | | |
|
| testdata | | | | | 67.08 287 | 77.59 224 | 45.46 278 | | 69.20 335 | 44.47 327 | 71.50 82 | 88.34 120 | 31.21 269 | 70.76 353 | 52.20 236 | 75.88 119 | 85.03 196 |
|
| test12 | | | | | 79.24 39 | 86.89 41 | 56.08 40 | | 85.16 106 | | 72.27 74 | | 47.15 74 | 91.10 73 | | 85.93 35 | 90.54 78 |
|
| plane_prior7 | | | | | | 77.95 218 | 48.46 224 | | | | | | | | | | |
|
| plane_prior6 | | | | | | 78.42 213 | 49.39 198 | | | | | | 36.04 222 | | | | |
|
| plane_prior5 | | | | | | | | | 82.59 163 | | | | | 88.30 161 | 65.46 126 | 72.34 150 | 84.49 203 |
|
| plane_prior4 | | | | | | | | | | | | 83.28 190 | | | | | |
|
| plane_prior3 | | | | | | | 48.95 207 | | | 64.01 92 | 62.15 175 | | | | | | |
|
| plane_prior1 | | | | | | 78.31 215 | | | | | | | | | | | |
|
| n2 | | | | | | | | | 0.00 404 | | | | | | | | |
|
| nn | | | | | | | | | 0.00 404 | | | | | | | | |
|
| door-mid | | | | | | | | | 41.31 376 | | | | | | | | |
|
| lessismore_v0 | | | | | 67.98 279 | 64.76 349 | 41.25 321 | | 45.75 369 | | 36.03 360 | 65.63 346 | 19.29 343 | 84.11 259 | 35.67 313 | 21.24 384 | 78.59 293 |
|
| LGP-MVS_train | | | | | 72.02 216 | 74.42 270 | 48.60 217 | | 80.64 196 | 54.69 259 | 53.75 280 | 83.83 179 | 25.73 305 | 86.98 201 | 60.33 168 | 64.71 210 | 80.48 273 |
|
| test11 | | | | | | | | | 84.25 130 | | | | | | | | |
|
| door | | | | | | | | | 43.27 372 | | | | | | | | |
|
| HQP5-MVS | | | | | | | 51.56 150 | | | | | | | | | | |
|
| BP-MVS | | | | | | | | | | | | | | | 66.70 114 | | |
|
| HQP4-MVS | | | | | | | | | | | 64.47 146 | | | 88.61 146 | | | 84.91 199 |
|
| HQP3-MVS | | | | | | | | | 83.68 142 | | | | | | | 73.12 142 | |
|
| HQP2-MVS | | | | | | | | | | | | | 37.35 199 | | | | |
|
| NP-MVS | | | | | | 78.76 202 | 50.43 171 | | | | | 85.12 164 | | | | | |
|
| ACMMP++_ref | | | | | | | | | | | | | | | | 63.20 230 | |
|
| ACMMP++ | | | | | | | | | | | | | | | | 59.38 256 | |
|
| Test By Simon | | | | | | | | | | | | | 39.38 173 | | | | |
|
| ITE_SJBPF | | | | | 51.84 347 | 58.03 364 | 31.94 358 | | 53.57 365 | 36.67 352 | 41.32 344 | 75.23 290 | 11.17 366 | 51.57 376 | 25.81 357 | 48.04 330 | 72.02 348 |
|
| DeepMVS_CX |  | | | | 13.10 377 | 21.34 400 | 8.99 399 | | 10.02 401 | 10.59 389 | 7.53 394 | 30.55 387 | 1.82 395 | 14.55 396 | 6.83 391 | 7.52 392 | 15.75 390 |
|