This table lists the benchmark results for the high-res multi-view scenario. The following metrics are evaluated:

(*) For exact definitions, detailing how potentially incomplete ground truth is taken into account, see our paper.

The datasets are grouped into different categories, and result averages are computed for a category and method if results of the method are available for all datasets within the category. Note that the category "all" includes both the high-res multi-view and the low-res many-view scenarios.

Methods with suffix _ROB may participate in the Robust Vision Challenge.

Click a dataset result cell to show a visualization of the reconstruction. For training datasets, ground truth and accuracy / completeness visualizations are also available. The visualizations may not work with mobile browsers.




Method Infoallhigh-res
multi-view
indooroutdoorbotani.boulde.bridgedoorexhibi.lectur.living.loungeobserv.old co.statueterrac.
sort bysort bysort bysort bysort bysort bysorted bysort bysort bysort bysort bysort bysort bysort bysort bysort by
MCST-MVS83.01 183.30 282.15 1092.84 257.58 1493.77 191.10 1075.95 477.10 3793.09 2954.15 3395.57 1285.80 1085.87 3793.31 13
iter_conf05_1179.47 2078.68 2381.84 1287.91 4057.01 2493.27 279.49 22774.74 683.40 894.00 621.51 34494.70 2184.07 1789.68 793.82 7
DELS-MVS82.32 582.50 481.79 1386.80 4856.89 2992.77 386.30 8477.83 277.88 3492.13 4360.24 694.78 2078.97 4589.61 893.69 10
Christian Sormann, Emanuele Santellani, Mattia Rossi, Andreas Kuhn, Friedrich Fraundorfer: DELS-MVS: Deep Epipolar Line Search for Multi-View Stereo. Winter Conference on Applications of Computer Vision (WACV), 2023
SED-MVS81.92 781.75 982.44 789.48 1756.89 2992.48 488.94 3057.50 22884.61 494.09 358.81 1196.37 682.28 2787.60 1894.06 3
OPU-MVS81.71 1492.05 355.97 4892.48 494.01 567.21 295.10 1589.82 292.55 394.06 3
DVP-MVScopyleft81.30 1081.00 1382.20 889.40 2057.45 1792.34 689.99 1857.71 22281.91 1493.64 1355.17 2596.44 281.68 3087.13 2192.72 26
Zhenlong Yuan, Jinguo Luo, Fei Shen, Zhaoxin Li, Cong Liu, Tianlu Mao, Zhaoqi Wang: DVP-MVS: Synergize Depth-Edge and Visibility Prior for Multi-View Stereo. AAAI2025
test_0728_SECOND82.20 889.50 1557.73 1192.34 688.88 3296.39 481.68 3087.13 2192.47 30
test072689.40 2057.45 1792.32 888.63 4357.71 22283.14 1093.96 855.17 25
DPM-MVS82.39 482.36 682.49 580.12 18959.50 592.24 990.72 1469.37 3383.22 994.47 263.81 593.18 3374.02 8493.25 294.80 1
MM82.69 283.29 380.89 2284.38 8355.40 5992.16 1089.85 2075.28 582.41 1193.86 1054.30 3093.98 2590.29 187.13 2193.30 14
CNVR-MVS81.76 881.90 881.33 1990.04 1057.70 1291.71 1188.87 3470.31 2677.64 3693.87 952.58 4093.91 2884.17 1487.92 1692.39 32
PS-MVSNAJ80.06 1679.52 1781.68 1585.58 6160.97 391.69 1287.02 7070.62 2380.75 2193.22 2637.77 19592.50 4682.75 2486.25 3491.57 57
xiu_mvs_v2_base79.86 1779.31 1881.53 1685.03 7360.73 491.65 1386.86 7370.30 2780.77 2093.07 3137.63 20092.28 5282.73 2585.71 3891.57 57
CANet80.90 1181.17 1280.09 3787.62 4254.21 9491.60 1486.47 8073.13 1079.89 2693.10 2749.88 6392.98 3484.09 1684.75 4993.08 19
lupinMVS78.38 2878.11 2879.19 4583.02 11655.24 6391.57 1584.82 12269.12 3476.67 3992.02 4744.82 11690.23 10580.83 3780.09 8592.08 40
NCCC79.57 1979.23 1980.59 2489.50 1556.99 2691.38 1688.17 5267.71 4873.81 5592.75 3446.88 8493.28 3178.79 4884.07 5491.50 61
test_yl75.85 6574.83 7278.91 5288.08 3751.94 14591.30 1789.28 2357.91 21671.19 8989.20 10842.03 15392.77 3869.41 10575.07 13792.01 44
DCV-MVSNet75.85 6574.83 7278.91 5288.08 3751.94 14591.30 1789.28 2357.91 21671.19 8989.20 10842.03 15392.77 3869.41 10575.07 13792.01 44
LFMVS78.52 2477.14 4182.67 389.58 1358.90 791.27 1988.05 5463.22 11874.63 4790.83 7341.38 16294.40 2275.42 7279.90 9094.72 2
MVS_030481.58 982.05 780.20 3182.36 13554.70 8291.13 2088.95 2974.49 780.04 2593.64 1352.40 4193.27 3288.85 486.56 3192.61 28
VDD-MVS76.08 6074.97 6979.44 4184.27 8653.33 11691.13 2085.88 9065.33 8472.37 7589.34 10532.52 26492.76 4077.90 5775.96 12392.22 38
DeepPCF-MVS69.37 180.65 1381.56 1177.94 8185.46 6449.56 19990.99 2286.66 7870.58 2480.07 2495.30 156.18 2090.97 8482.57 2686.22 3593.28 15
VNet77.99 3577.92 3078.19 7587.43 4350.12 18790.93 2391.41 867.48 5175.12 4390.15 9046.77 8691.00 8173.52 8778.46 10293.44 11
CLD-MVS75.60 7075.39 6276.24 11880.69 17952.40 13790.69 2486.20 8674.40 865.01 14388.93 11242.05 15290.58 9476.57 6373.96 14585.73 194
Zhaoxin Li, Wangmeng Zuo, Zhaoqi Wang, Lei Zhang: Confidence-based Large-scale Dense Multi-view Stereo. IEEE Transaction on Image Processing, 2020
jason77.01 4676.45 4878.69 6079.69 19454.74 7990.56 2583.99 14568.26 3874.10 5390.91 7042.14 15089.99 11079.30 4279.12 9691.36 65
jason: jason.
IB-MVS68.87 274.01 8972.03 11279.94 3883.04 11555.50 5490.24 2688.65 4167.14 5361.38 19281.74 22853.21 3694.28 2360.45 17362.41 24890.03 101
Christian Sormann, Mattia Rossi, Andreas Kuhn and Friedrich Fraundorfer: IB-MVS: An Iterative Algorithm for Deep Multi-View Stereo based on Binary Decisions. BMVC 2021
VDDNet74.37 8572.13 10781.09 2179.58 19556.52 3790.02 2786.70 7752.61 28571.23 8887.20 14931.75 27493.96 2774.30 8275.77 12692.79 25
TSAR-MVS + GP.77.82 3677.59 3478.49 6685.25 6950.27 18690.02 2790.57 1556.58 24774.26 5291.60 5954.26 3192.16 5475.87 6679.91 8993.05 20
DeepC-MVS_fast67.50 378.00 3477.63 3379.13 4988.52 2755.12 6889.95 2985.98 8968.31 3771.33 8792.75 3445.52 10290.37 9871.15 9785.14 4591.91 47
Andreas Kuhn, Christian Sormann, Mattia Rossi, Oliver Erdler, Friedrich Fraundorfer: DeepC-MVS: Deep Confidence Prediction for Multi-View Stereo Reconstruction. 3DV 2020
HPM-MVS++copyleft80.50 1480.71 1479.88 3987.34 4455.20 6689.93 3087.55 6566.04 7479.46 2793.00 3253.10 3791.76 6280.40 3889.56 992.68 27
MG-MVS78.42 2776.99 4382.73 293.17 164.46 189.93 3088.51 4864.83 8973.52 5888.09 13148.07 7192.19 5362.24 15484.53 5191.53 59
VPNet72.07 12471.42 11974.04 17878.64 21747.17 26489.91 3287.97 5572.56 1264.66 14785.04 17541.83 15788.33 16561.17 16360.97 25586.62 177
alignmvs78.08 3377.98 2978.39 7183.53 9953.22 11989.77 3385.45 9866.11 6976.59 4191.99 4954.07 3489.05 13477.34 6077.00 11192.89 22
APDe-MVScopyleft78.44 2678.20 2679.19 4588.56 2654.55 8889.76 3487.77 6055.91 25378.56 3192.49 3948.20 7092.65 4279.49 4083.04 5890.39 87
Zhaojie Zeng, Yuesong Wang, Tao Guan: Matching Ambiguity-Resilient Multi-View Stereo via Adaptive Patch Deformation. Pattern Recognition
SteuartSystems-ACMMP77.08 4576.33 5079.34 4380.98 16855.31 6189.76 3486.91 7262.94 12371.65 8191.56 6042.33 14692.56 4577.14 6183.69 5690.15 97
Skip Steuart: Steuart Systems R&D Blog.
Anonymous20240521170.11 15467.88 17076.79 11287.20 4547.24 26389.49 3677.38 27054.88 26766.14 12786.84 15420.93 34791.54 6656.45 21471.62 16691.59 55
CS-MVS-test77.20 4377.25 3977.05 9984.60 7849.04 21289.42 3785.83 9265.90 7572.85 6791.98 5145.10 10791.27 7175.02 7684.56 5090.84 79
DP-MVS Recon71.99 12570.31 13577.01 10290.65 853.44 11089.37 3882.97 16656.33 25063.56 17089.47 10234.02 25092.15 5654.05 22872.41 15985.43 201
EPNet78.36 2978.49 2477.97 7985.49 6352.04 14389.36 3984.07 14273.22 977.03 3891.72 5449.32 6790.17 10773.46 8882.77 5991.69 52
Wanjuan Su, Wenbing Tao: Efficient Edge-Preserving Multi-View Stereo Network for Depth Estimation. AAAI 2023
save fliter85.35 6656.34 4189.31 4081.46 18961.55 145
CSCG80.41 1579.72 1582.49 589.12 2557.67 1389.29 4191.54 559.19 19071.82 8090.05 9259.72 996.04 1078.37 5188.40 1493.75 9
MAR-MVS76.76 5275.60 5880.21 3090.87 754.68 8489.14 4289.11 2662.95 12270.54 9992.33 4141.05 16394.95 1757.90 19886.55 3291.00 76
Zhenyu Xu, Yiguang Liu, Xuelei Shi, Ying Wang, Yunan Zheng: MARMVS: Matching Ambiguity Reduced Multiple View Stereo for Efficient Large Scale Scene Reconstruction. CVPR 2020
test_prior289.04 4361.88 14173.55 5791.46 6348.01 7374.73 7785.46 41
ET-MVSNet_ETH3D75.23 7674.08 7978.67 6184.52 8055.59 5288.92 4489.21 2568.06 4353.13 29490.22 8649.71 6487.62 19572.12 9470.82 17492.82 23
PVSNet_Blended76.53 5476.54 4776.50 11485.91 5451.83 14988.89 4584.24 13967.82 4669.09 10489.33 10746.70 8788.13 17275.43 7081.48 7289.55 111
Anonymous2024052969.71 16567.28 18477.00 10383.78 9550.36 18188.87 4685.10 11647.22 31764.03 16183.37 19727.93 29692.10 5757.78 20167.44 20088.53 139
DPE-MVScopyleft79.82 1879.66 1680.29 2989.27 2455.08 7188.70 4787.92 5655.55 25881.21 1993.69 1256.51 1894.27 2478.36 5285.70 3991.51 60
Kehua Chen, Zhenlong Yuan, Tianlu Mao, Zhaoqi Wang: Dual-Level Precision Edges Guided Multi-View Stereo with Accurate Planarization. AAAI2025
CS-MVS76.77 5176.70 4676.99 10483.55 9848.75 22188.60 4885.18 11166.38 6472.47 7491.62 5845.53 10190.99 8374.48 7982.51 6191.23 69
PHI-MVS77.49 4077.00 4278.95 5185.33 6750.69 16988.57 4988.59 4658.14 21173.60 5693.31 2343.14 13993.79 2973.81 8588.53 1392.37 33
WTY-MVS77.47 4177.52 3677.30 9388.33 3046.25 27788.46 5090.32 1671.40 1972.32 7691.72 5453.44 3592.37 4966.28 12675.42 12993.28 15
9.1478.19 2785.67 5988.32 5188.84 3659.89 17374.58 4992.62 3746.80 8592.66 4181.40 3685.62 40
testing1179.18 2278.85 2180.16 3388.33 3056.99 2688.31 5292.06 172.82 1170.62 9888.37 12357.69 1492.30 5075.25 7476.24 12291.20 70
MVS_111021_HR76.39 5675.38 6379.42 4285.33 6756.47 3888.15 5384.97 11865.15 8766.06 12989.88 9543.79 12792.16 5475.03 7580.03 8889.64 109
patch_mono-280.84 1281.59 1078.62 6390.34 953.77 10188.08 5488.36 5076.17 379.40 2891.09 6455.43 2390.09 10885.01 1280.40 8191.99 46
MS-PatchMatch72.34 11871.26 12075.61 13582.38 13455.55 5388.00 5589.95 1965.38 8256.51 26680.74 23932.28 26792.89 3557.95 19788.10 1578.39 306
HQP-NCC79.02 20688.00 5565.45 7864.48 153
ACMP_Plane79.02 20688.00 5565.45 7864.48 153
HQP-MVS72.34 11871.44 11875.03 15779.02 20651.56 15588.00 5583.68 14965.45 7864.48 15385.13 17237.35 20788.62 15166.70 12173.12 15184.91 208
testing9978.45 2577.78 3280.45 2788.28 3356.81 3287.95 5991.49 671.72 1570.84 9388.09 13157.29 1592.63 4469.24 10775.13 13591.91 47
testing9178.30 3177.54 3580.61 2388.16 3557.12 2387.94 6091.07 1371.43 1870.75 9488.04 13555.82 2292.65 4269.61 10475.00 13992.05 42
iter_conf0573.51 10172.24 10377.33 9187.93 3955.97 4887.90 6170.81 33268.72 3564.04 16084.36 18247.54 7790.87 8671.11 9867.75 19885.13 204
casdiffmvs_mvgpermissive77.75 3777.28 3879.16 4780.42 18554.44 9087.76 6285.46 9771.67 1671.38 8688.35 12551.58 4591.22 7479.02 4479.89 9191.83 51
Fangjinhua Wang, Qingshan Xu, Yew-Soon Ong, Marc Pollefeys: Lightweight and Accurate Multi-View Stereo With Confidence-Aware Diffusion Model. IEEE T-PAMI 2025
canonicalmvs78.17 3277.86 3179.12 5084.30 8454.22 9387.71 6384.57 13167.70 4977.70 3592.11 4650.90 5289.95 11178.18 5577.54 10893.20 17
VPA-MVSNet71.12 13870.66 12872.49 21578.75 21244.43 29787.64 6490.02 1763.97 10165.02 14281.58 23142.14 15087.42 20063.42 14663.38 23785.63 198
test_885.72 5655.31 6187.60 6583.88 14657.84 21972.84 6890.99 6644.99 11088.34 164
TEST985.68 5755.42 5687.59 6684.00 14357.72 22172.99 6490.98 6744.87 11488.58 153
train_agg76.91 4776.40 4978.45 6985.68 5755.42 5687.59 6684.00 14357.84 21972.99 6490.98 6744.99 11088.58 15378.19 5385.32 4391.34 67
SMA-MVScopyleft79.10 2378.76 2280.12 3584.42 8155.87 5087.58 6886.76 7561.48 14880.26 2393.10 2746.53 8992.41 4879.97 3988.77 1192.08 40
Yufeng Yin; Xiaoyan Liu; Zichao Zhang: SMA-MVS: Segmentation-Guided Multi-Scale Anchor Deformation Patch Multi-View Stereo. IEEE Transactions on Circuits and Systems for Video Technology
plane_prior49.57 19787.43 6964.57 9172.84 155
EC-MVSNet75.30 7475.20 6475.62 13480.98 16849.00 21387.43 6984.68 12863.49 11370.97 9290.15 9042.86 14391.14 7874.33 8181.90 6786.71 176
TR-MVS69.71 16567.85 17375.27 15282.94 12048.48 23087.40 7180.86 20057.15 23564.61 15087.08 15132.67 26389.64 12046.38 28171.55 16887.68 156
CDPH-MVS76.05 6175.19 6578.62 6386.51 5054.98 7487.32 7284.59 13058.62 20570.75 9490.85 7243.10 14190.63 9370.50 10184.51 5290.24 92
3Dnovator+62.71 772.29 12070.50 13077.65 8583.40 10451.29 16387.32 7286.40 8259.01 19758.49 23488.32 12732.40 26591.27 7157.04 20782.15 6690.38 88
API-MVS74.17 8872.07 10980.49 2590.02 1158.55 887.30 7484.27 13657.51 22765.77 13587.77 14041.61 15995.97 1151.71 24582.63 6086.94 167
BH-RMVSNet70.08 15668.01 16776.27 11784.21 8751.22 16587.29 7579.33 23558.96 19963.63 16886.77 15533.29 25890.30 10344.63 29073.96 14587.30 164
MTMP87.27 7615.34 409
APD-MVScopyleft76.15 5975.68 5677.54 8788.52 2753.44 11087.26 7785.03 11753.79 27574.91 4591.68 5643.80 12690.31 10174.36 8081.82 6888.87 128
Yuesong Wang, Zhaojie Zeng and etc.: Adaptive Patch Deformation for Textureless-Resilient Multi-View Stereo. CVPR2023
testing22277.70 3877.22 4079.14 4886.95 4654.89 7787.18 7891.96 272.29 1371.17 9188.70 11755.19 2491.24 7365.18 13976.32 12191.29 68
EIA-MVS75.92 6375.18 6678.13 7685.14 7051.60 15487.17 7985.32 10464.69 9068.56 10890.53 7745.79 9891.58 6567.21 11982.18 6591.20 70
test_prior456.39 4087.15 80
casdiffmvspermissive77.36 4276.85 4478.88 5480.40 18654.66 8687.06 8185.88 9072.11 1471.57 8388.63 12250.89 5490.35 9976.00 6579.11 9791.63 54
Fangjinhua Wang, Qingshan Xu, Yew-Soon Ong, Marc Pollefeys: Lightweight and Accurate Multi-View Stereo With Confidence-Aware Diffusion Model. IEEE T-PAMI 2025
cascas69.01 17666.13 20577.66 8479.36 19755.41 5886.99 8283.75 14856.69 24458.92 22481.35 23324.31 32492.10 5753.23 23270.61 17685.46 200
nrg03072.27 12271.56 11574.42 16775.93 26150.60 17186.97 8383.21 16062.75 12567.15 11784.38 18050.07 5886.66 22171.19 9662.37 24985.99 188
114514_t69.87 16367.88 17075.85 13188.38 2952.35 13986.94 8483.68 14953.70 27655.68 27285.60 16830.07 28591.20 7555.84 21771.02 17283.99 222
CP-MVS72.59 11571.46 11776.00 12982.93 12152.32 14086.93 8582.48 17255.15 26263.65 16790.44 8235.03 24188.53 15768.69 11177.83 10687.15 165
ZNCC-MVS75.82 6875.02 6878.23 7483.88 9453.80 10086.91 8686.05 8859.71 17667.85 11390.55 7642.23 14891.02 8072.66 9385.29 4489.87 106
PAPM76.76 5276.07 5478.81 5580.20 18759.11 686.86 8786.23 8568.60 3670.18 10188.84 11551.57 4687.16 20665.48 13286.68 2990.15 97
UWE-MVS72.17 12372.15 10672.21 22182.26 13744.29 29986.83 8889.58 2165.58 7765.82 13385.06 17445.02 10984.35 26854.07 22775.18 13287.99 149
bld_raw_dy_0_6475.36 7373.18 8681.89 1187.91 4057.01 2486.77 8967.69 35078.56 165.01 14393.99 722.18 33994.84 1984.07 1772.45 15893.82 7
Fast-Effi-MVS+72.73 11171.15 12377.48 8882.75 12654.76 7886.77 8980.64 20363.05 12165.93 13184.01 18544.42 12189.03 13556.45 21476.36 12088.64 134
thisisatest051573.64 9972.20 10477.97 7981.63 15253.01 12686.69 9188.81 3762.53 13064.06 15985.65 16752.15 4492.50 4658.43 18669.84 18288.39 141
SF-MVS77.64 3977.42 3778.32 7383.75 9652.47 13686.63 9287.80 5758.78 20274.63 4792.38 4047.75 7591.35 7078.18 5586.85 2691.15 72
BH-w/o70.02 15868.51 15974.56 16382.77 12550.39 17886.60 9378.14 25759.77 17559.65 20785.57 16939.27 18387.30 20349.86 25674.94 14085.99 188
DeepC-MVS67.15 476.90 4976.27 5178.80 5680.70 17855.02 7286.39 9486.71 7666.96 5667.91 11289.97 9448.03 7291.41 6975.60 6984.14 5389.96 103
Andreas Kuhn, Christian Sormann, Mattia Rossi, Oliver Erdler, Friedrich Fraundorfer: DeepC-MVS: Deep Confidence Prediction for Multi-View Stereo Reconstruction. 3DV 2020
TransMVSNet (Re)62.82 26160.76 26369.02 27573.98 28741.61 32686.36 9579.30 23656.90 23752.53 29876.44 28541.85 15687.60 19638.83 30940.61 36477.86 312
MSLP-MVS++74.21 8772.25 10280.11 3681.45 16156.47 3886.32 9679.65 22358.19 21066.36 12692.29 4236.11 22790.66 9167.39 11782.49 6293.18 18
QAPM71.88 12869.33 15179.52 4082.20 13854.30 9286.30 9788.77 3856.61 24659.72 20687.48 14433.90 25295.36 1347.48 27381.49 7188.90 126
WR-MVS67.58 20566.76 19170.04 26675.92 26245.06 29386.23 9885.28 10764.31 9358.50 23381.00 23444.80 11882.00 28749.21 26255.57 30783.06 243
PVSNet_BlendedMVS73.42 10273.30 8473.76 18885.91 5451.83 14986.18 9984.24 13965.40 8169.09 10480.86 23746.70 8788.13 17275.43 7065.92 21581.33 271
ETV-MVS77.17 4476.74 4578.48 6781.80 14454.55 8886.13 10085.33 10368.20 3973.10 6390.52 7845.23 10690.66 9179.37 4180.95 7390.22 93
AdaColmapbinary67.86 19865.48 22175.00 15888.15 3654.99 7386.10 10176.63 28449.30 30657.80 24386.65 15829.39 28988.94 14345.10 28770.21 18081.06 276
OPM-MVS70.75 14769.58 14674.26 17375.55 26651.34 16186.05 10283.29 15961.94 14062.95 17685.77 16634.15 24988.44 15965.44 13671.07 17182.99 244
Ray L. Khuboni, Hongjun Xu: Octagram Propagation Matching for Multi-Scale View Stereopsis (OPM-MVS).
Vis-MVSNetpermissive70.61 14969.34 15074.42 16780.95 17348.49 22986.03 10377.51 26758.74 20365.55 13787.78 13934.37 24785.95 24552.53 24380.61 7788.80 130
Jingyang Zhang, Yao Yao, Shiwei Li, Zixin Luo, Tian Fang: Visibility-aware Multiview Stereo Network. BMVC 2020
Anonymous2023121166.08 23863.67 24173.31 19883.07 11448.75 22186.01 10484.67 12945.27 33156.54 26476.67 28328.06 29588.95 14152.78 23959.95 25882.23 252
EG-PatchMatch MVS62.40 26859.59 27270.81 25373.29 29349.05 21085.81 10584.78 12451.85 29244.19 33973.48 31515.52 36989.85 11240.16 30667.24 20173.54 349
PVSNet_Blended_VisFu73.40 10372.44 9776.30 11681.32 16554.70 8285.81 10578.82 24263.70 10664.53 15285.38 17147.11 8287.38 20267.75 11677.55 10786.81 175
HQP_MVS70.96 14369.91 14374.12 17677.95 22749.57 19785.76 10782.59 17063.60 10962.15 18583.28 19936.04 23088.30 16765.46 13372.34 16084.49 212
plane_prior285.76 10763.60 109
GST-MVS74.87 8173.90 8277.77 8283.30 10653.45 10985.75 10985.29 10659.22 18966.50 12589.85 9640.94 16490.76 8870.94 9983.35 5789.10 123
SD-MVS76.18 5874.85 7180.18 3285.39 6556.90 2885.75 10982.45 17356.79 24274.48 5091.81 5243.72 13090.75 8974.61 7878.65 10092.91 21
Zhenlong Yuan, Jiakai Cao, Zhaoxin Li, Hao Jiang and Zhaoqi Wang: SD-MVS: Segmentation-driven Deformation Multi-View Stereo with Spherical Refinement and EM optimization. AAAI2024
CHOSEN 1792x268876.24 5774.03 8182.88 183.09 11362.84 285.73 11185.39 10069.79 2964.87 14683.49 19541.52 16193.69 3070.55 10081.82 6892.12 39
WB-MVSnew69.36 17268.24 16472.72 20979.26 20149.40 20485.72 11288.85 3561.33 14964.59 15182.38 21834.57 24587.53 19846.82 27970.63 17581.22 275
FMVSNet368.84 17967.40 18273.19 20085.05 7148.53 22785.71 11385.36 10160.90 16157.58 24979.15 25342.16 14986.77 21747.25 27563.40 23484.27 216
MP-MVScopyleft74.99 8074.33 7676.95 10682.89 12253.05 12585.63 11483.50 15457.86 21867.25 11690.24 8443.38 13688.85 14776.03 6482.23 6488.96 125
Rongxuan Tan, Qing Wang, et al.: MP-MVS: Multi-Scale Windows PatchMatch and Planar Prior Multi-View Stereo.
HFP-MVS74.37 8573.13 9178.10 7784.30 8453.68 10385.58 11584.36 13456.82 24065.78 13490.56 7540.70 16990.90 8569.18 10880.88 7489.71 107
ACMMPR73.76 9472.61 9377.24 9783.92 9252.96 12885.58 11584.29 13556.82 24065.12 13990.45 7937.24 21190.18 10669.18 10880.84 7588.58 136
BH-untuned68.28 19266.40 19873.91 18281.62 15350.01 18985.56 11777.39 26957.63 22457.47 25483.69 19236.36 22587.08 20844.81 28873.08 15484.65 211
ETVMVS75.80 6975.44 6176.89 10886.23 5250.38 17985.55 11891.42 771.30 2168.80 10687.94 13756.42 1989.24 12756.54 21074.75 14191.07 74
region2R73.75 9572.55 9577.33 9183.90 9352.98 12785.54 11984.09 14156.83 23965.10 14090.45 7937.34 20990.24 10468.89 11080.83 7688.77 132
xiu_mvs_v1_base_debu71.60 13270.29 13675.55 13877.26 23953.15 12085.34 12079.37 22955.83 25472.54 7090.19 8722.38 33586.66 22173.28 8976.39 11786.85 171
xiu_mvs_v1_base71.60 13270.29 13675.55 13877.26 23953.15 12085.34 12079.37 22955.83 25472.54 7090.19 8722.38 33586.66 22173.28 8976.39 11786.85 171
xiu_mvs_v1_base_debi71.60 13270.29 13675.55 13877.26 23953.15 12085.34 12079.37 22955.83 25472.54 7090.19 8722.38 33586.66 22173.28 8976.39 11786.85 171
fmvsm_s_conf0.5_n74.48 8274.12 7875.56 13776.96 24547.85 25285.32 12369.80 34064.16 9678.74 2993.48 1845.51 10389.29 12686.48 866.62 20689.55 111
NR-MVSNet67.25 21565.99 20971.04 25073.27 29543.91 30385.32 12384.75 12666.05 7353.65 29282.11 22445.05 10885.97 24447.55 27256.18 29983.24 238
fmvsm_l_conf0.5_n_a75.88 6476.07 5475.31 14776.08 25648.34 23585.24 12570.62 33363.13 12081.45 1893.62 1649.98 6187.40 20187.76 676.77 11490.20 95
Effi-MVS+75.24 7573.61 8380.16 3381.92 14157.42 1985.21 12676.71 28260.68 16573.32 6189.34 10547.30 7991.63 6468.28 11379.72 9291.42 62
无先验85.19 12778.00 25949.08 30785.13 25952.78 23987.45 161
FMVSNet267.57 20665.79 21472.90 20582.71 12747.97 24885.15 12884.93 11958.55 20656.71 26278.26 26036.72 22186.67 22046.15 28362.94 24584.07 219
test-LLR69.65 16869.01 15571.60 23978.67 21448.17 24085.13 12979.72 22059.18 19263.13 17382.58 21236.91 21680.24 30460.56 16975.17 13386.39 182
TESTMET0.1,172.86 10972.33 9974.46 16581.98 14050.77 16785.13 12985.47 9666.09 7067.30 11583.69 19237.27 21083.57 27665.06 14078.97 9989.05 124
test-mter68.36 18967.29 18371.60 23978.67 21448.17 24085.13 12979.72 22053.38 27963.13 17382.58 21227.23 30280.24 30460.56 16975.17 13386.39 182
1112_ss70.05 15769.37 14972.10 22380.77 17742.78 31685.12 13276.75 28059.69 17761.19 19492.12 4447.48 7883.84 27153.04 23568.21 19289.66 108
XXY-MVS70.18 15369.28 15372.89 20777.64 23142.88 31585.06 13387.50 6662.58 12962.66 18082.34 22143.64 13289.83 11358.42 18863.70 23185.96 190
MSP-MVS82.30 683.47 178.80 5682.99 11852.71 13185.04 13488.63 4366.08 7186.77 392.75 3472.05 191.46 6883.35 2193.53 192.23 36
Zhenlong Yuan, Cong Liu, Fei Shen, Zhaoxin Li, Jingguo luo, Tianlu Mao and Zhaoqi Wang: MSP-MVS: Multi-granularity Segmentation Prior Guided Multi-View Stereo. AAAI2025
thres20068.71 18467.27 18573.02 20284.73 7646.76 26785.03 13587.73 6162.34 13459.87 20383.45 19643.15 13888.32 16631.25 34567.91 19683.98 224
MVP-Stereo70.97 14270.44 13172.59 21276.03 25951.36 16085.02 13686.99 7160.31 16956.53 26578.92 25540.11 17590.00 10960.00 17790.01 676.41 328
Qingsong Yan: MVP-Stereo: A Parallel Multi-View Patchmatch Stereo Method with Dilation Matching for Photogrammetric Application.
fmvsm_l_conf0.5_n75.95 6276.16 5375.31 14776.01 26048.44 23284.98 13771.08 32963.50 11281.70 1793.52 1750.00 5987.18 20587.80 576.87 11390.32 90
DVP-MVS++82.44 382.38 582.62 491.77 457.49 1584.98 13788.88 3258.00 21483.60 693.39 2067.21 296.39 481.64 3291.98 493.98 5
FOURS183.24 10849.90 19284.98 13778.76 24447.71 31473.42 59
PS-MVSNAJss68.78 18367.17 18673.62 19473.01 29748.33 23784.95 14084.81 12359.30 18858.91 22579.84 24537.77 19588.86 14562.83 15063.12 24383.67 232
v2v48269.55 17067.64 17675.26 15372.32 30753.83 9984.93 14181.94 17965.37 8360.80 19779.25 25141.62 15888.98 14063.03 14959.51 26382.98 245
XVS72.92 10771.62 11476.81 10983.41 10152.48 13484.88 14283.20 16158.03 21263.91 16389.63 10035.50 23489.78 11465.50 13080.50 7988.16 142
X-MVStestdata65.85 24062.20 24876.81 10983.41 10152.48 13484.88 14283.20 16158.03 21263.91 1634.82 40535.50 23489.78 11465.50 13080.50 7988.16 142
dcpmvs_279.33 2178.94 2080.49 2589.75 1256.54 3684.83 14483.68 14967.85 4569.36 10290.24 8460.20 792.10 5784.14 1580.40 8192.82 23
test111171.06 14070.42 13272.97 20479.48 19641.49 32884.82 14582.74 16964.20 9562.98 17587.43 14635.20 23787.92 17858.54 18578.42 10389.49 113
Fast-Effi-MVS+-dtu66.53 23164.10 24073.84 18572.41 30552.30 14184.73 14675.66 29259.51 18056.34 26779.11 25428.11 29485.85 24757.74 20263.29 23883.35 234
ECVR-MVScopyleft71.81 12971.00 12474.26 17380.12 18943.49 30784.69 14782.16 17464.02 9864.64 14887.43 14635.04 24089.21 13061.24 16279.66 9390.08 99
h-mvs3373.95 9072.89 9277.15 9880.17 18850.37 18084.68 14883.33 15568.08 4071.97 7888.65 12142.50 14491.15 7778.82 4657.78 28889.91 105
v114468.81 18166.82 18974.80 16172.34 30653.46 10784.68 14881.77 18664.25 9460.28 20177.91 26240.23 17288.95 14160.37 17459.52 26281.97 254
CANet_DTU73.71 9673.14 8975.40 14382.61 13150.05 18884.67 15079.36 23269.72 3075.39 4290.03 9329.41 28885.93 24667.99 11579.11 9790.22 93
test_vis1_n_192068.59 18768.31 16269.44 27269.16 33341.51 32784.63 15168.58 34658.80 20173.26 6288.37 12325.30 31580.60 29979.10 4367.55 19986.23 184
PVSNet62.49 869.27 17367.81 17473.64 19284.41 8251.85 14884.63 15177.80 26166.42 6359.80 20584.95 17722.14 34180.44 30255.03 22075.11 13688.62 135
fmvsm_s_conf0.1_n73.80 9373.26 8575.43 14273.28 29447.80 25384.57 15369.43 34263.34 11578.40 3293.29 2444.73 11989.22 12985.99 966.28 21389.26 116
mPP-MVS71.79 13170.38 13376.04 12782.65 13052.06 14284.45 15481.78 18555.59 25762.05 18789.68 9933.48 25688.28 16965.45 13578.24 10587.77 153
CL-MVSNet_self_test62.98 25961.14 25968.50 28765.86 35042.96 31384.37 15582.98 16560.98 15753.95 28872.70 32240.43 17083.71 27441.10 30347.93 34078.83 298
OpenMVScopyleft61.00 1169.99 16067.55 17977.30 9378.37 22354.07 9884.36 15685.76 9357.22 23356.71 26287.67 14230.79 28092.83 3743.04 29784.06 5585.01 206
MP-MVS-pluss75.54 7275.03 6777.04 10081.37 16352.65 13384.34 15784.46 13261.16 15269.14 10391.76 5339.98 17888.99 13978.19 5384.89 4889.48 114
MP-MVS-pluss: MP-MVS-pluss. MP-MVS-pluss
PAPR75.20 7774.13 7778.41 7088.31 3255.10 7084.31 15885.66 9463.76 10567.55 11490.73 7443.48 13589.40 12466.36 12577.03 11090.73 81
SR-MVS70.92 14469.73 14574.50 16483.38 10550.48 17584.27 15979.35 23348.96 30966.57 12490.45 7933.65 25587.11 20766.42 12374.56 14285.91 191
v14868.24 19466.35 19973.88 18371.76 31051.47 15884.23 16081.90 18363.69 10758.94 22276.44 28543.72 13087.78 18660.63 16755.86 30482.39 251
UniMVSNet_NR-MVSNet68.82 18068.29 16370.40 25975.71 26442.59 31884.23 16086.78 7466.31 6558.51 23182.45 21551.57 4684.64 26653.11 23355.96 30283.96 226
GeoE69.96 16167.88 17076.22 11981.11 16751.71 15284.15 16276.74 28159.83 17460.91 19584.38 18041.56 16088.10 17451.67 24670.57 17788.84 129
v14419267.86 19865.76 21574.16 17571.68 31153.09 12384.14 16380.83 20162.85 12459.21 21977.28 27239.30 18288.00 17758.67 18457.88 28681.40 268
UGNet68.71 18467.11 18773.50 19680.55 18347.61 25584.08 16478.51 25159.45 18165.68 13682.73 20823.78 32685.08 26052.80 23876.40 11687.80 152
Wanjuan Su, Qingshan Xu, Wenbing Tao: Uncertainty-guided Multi-view Stereo Network for Depth Estimation. IEEE Transactions on Circuits and Systems for Video Technology, 2022
PMMVS72.98 10672.05 11075.78 13283.57 9748.60 22484.08 16482.85 16861.62 14468.24 11090.33 8328.35 29287.78 18672.71 9276.69 11590.95 77
ACMMP_NAP76.43 5575.66 5778.73 5881.92 14154.67 8584.06 16685.35 10261.10 15472.99 6491.50 6140.25 17191.00 8176.84 6286.98 2490.51 86
v119267.96 19765.74 21674.63 16271.79 30953.43 11284.06 16680.99 19963.19 11959.56 21077.46 26937.50 20688.65 15058.20 19258.93 26981.79 257
FIs70.00 15970.24 13969.30 27377.93 22938.55 34283.99 16887.72 6266.86 5757.66 24784.17 18452.28 4285.31 25352.72 24268.80 18984.02 220
MVS_Test75.85 6574.93 7078.62 6384.08 8855.20 6683.99 16885.17 11268.07 4273.38 6082.76 20550.44 5689.00 13765.90 12880.61 7791.64 53
baseline76.86 5076.24 5278.71 5980.47 18454.20 9683.90 17084.88 12171.38 2071.51 8489.15 11050.51 5590.55 9575.71 6778.65 10091.39 63
fmvsm_s_conf0.5_n_a73.68 9873.15 8775.29 15075.45 26748.05 24583.88 17168.84 34563.43 11478.60 3093.37 2245.32 10488.92 14485.39 1164.04 22688.89 127
baseline275.15 7874.54 7576.98 10581.67 15151.74 15183.84 17291.94 369.97 2858.98 22186.02 16359.73 891.73 6368.37 11270.40 17987.48 159
EPP-MVSNet71.14 13770.07 14174.33 17079.18 20346.52 27083.81 17386.49 7956.32 25157.95 24084.90 17854.23 3289.14 13258.14 19369.65 18587.33 162
原ACMM283.77 174
v192192067.45 20965.23 22874.10 17771.51 31452.90 12983.75 17580.44 20662.48 13359.12 22077.13 27336.98 21487.90 17957.53 20358.14 28081.49 262
OpenMVS_ROBcopyleft53.19 1759.20 28556.00 29768.83 27871.13 31944.30 29883.64 17675.02 29846.42 32446.48 33573.03 31818.69 35588.14 17127.74 36061.80 25174.05 345
MVSTER73.25 10472.33 9976.01 12885.54 6253.76 10283.52 17787.16 6867.06 5463.88 16581.66 22952.77 3890.44 9664.66 14164.69 22283.84 229
GBi-Net67.09 22065.47 22271.96 22982.71 12746.36 27283.52 17783.31 15658.55 20657.58 24976.23 28936.72 22186.20 23147.25 27563.40 23483.32 235
test167.09 22065.47 22271.96 22982.71 12746.36 27283.52 17783.31 15658.55 20657.58 24976.23 28936.72 22186.20 23147.25 27563.40 23483.32 235
FMVSNet164.57 24362.11 24971.96 22977.32 23746.36 27283.52 17783.31 15652.43 28754.42 28376.23 28927.80 29886.20 23142.59 30161.34 25483.32 235
baseline172.51 11672.12 10873.69 19185.05 7144.46 29583.51 18186.13 8771.61 1764.64 14887.97 13655.00 2889.48 12259.07 18056.05 30187.13 166
CDS-MVSNet70.48 15169.43 14773.64 19277.56 23448.83 21983.51 18177.45 26863.27 11762.33 18285.54 17043.85 12483.29 28057.38 20674.00 14488.79 131
Khang Truong Giang, Soohwan Song, Sungho Jo: Curvature-guided dynamic scale networks for Multi-view Stereo. ICLR 2022
thisisatest053070.47 15268.56 15876.20 12179.78 19351.52 15783.49 18388.58 4757.62 22558.60 23082.79 20451.03 5191.48 6752.84 23762.36 25085.59 199
Test_1112_low_res67.18 21766.23 20370.02 26778.75 21241.02 33283.43 18473.69 30957.29 23158.45 23682.39 21745.30 10580.88 29450.50 25266.26 21488.16 142
ACMMPcopyleft70.81 14669.29 15275.39 14481.52 16051.92 14783.43 18483.03 16456.67 24558.80 22888.91 11331.92 27288.58 15365.89 12973.39 14985.67 195
Qingshan Xu, Weihang Kong, Wenbing Tao, Marc Pollefeys: Multi-Scale Geometric Consistency Guided and Planar Prior Assisted Multi-View Stereo. IEEE Transactions on Pattern Analysis and Machine Intelligence
tfpn200view967.57 20666.13 20571.89 23684.05 8945.07 29083.40 18687.71 6360.79 16257.79 24482.76 20543.53 13387.80 18328.80 35266.36 21082.78 249
thres40067.40 21366.13 20571.19 24784.05 8945.07 29083.40 18687.71 6360.79 16257.79 24482.76 20543.53 13387.80 18328.80 35266.36 21080.71 281
v124066.99 22364.68 23473.93 18171.38 31752.66 13283.39 18879.98 21461.97 13958.44 23777.11 27435.25 23687.81 18156.46 21358.15 27881.33 271
Baseline_NR-MVSNet65.49 24264.27 23869.13 27474.37 28341.65 32583.39 18878.85 24059.56 17959.62 20976.88 28040.75 16687.44 19949.99 25455.05 31078.28 308
mvsmamba66.93 22664.88 23373.09 20175.06 27147.26 26183.36 19069.21 34362.64 12855.68 27281.43 23229.72 28689.20 13163.35 14763.50 23382.79 248
miper_enhance_ethall69.77 16468.90 15672.38 21878.93 20949.91 19183.29 19178.85 24064.90 8859.37 21479.46 24752.77 3885.16 25863.78 14358.72 27082.08 253
diffmvspermissive75.11 7974.65 7476.46 11578.52 21953.35 11483.28 19279.94 21570.51 2571.64 8288.72 11646.02 9586.08 24077.52 5875.75 12789.96 103
Fangjinhua Wang, Qingshan Xu, Yew-Soon Ong, Marc Pollefeys: Lightweight and Accurate Multi-View Stereo With Confidence-Aware Diffusion Model. IEEE T-PAMI 2025
test_cas_vis1_n_192067.10 21966.60 19668.59 28565.17 35543.23 31183.23 19369.84 33955.34 26170.67 9687.71 14124.70 32276.66 33778.57 5064.20 22585.89 192
test250672.91 10872.43 9874.32 17180.12 18944.18 30283.19 19484.77 12564.02 9865.97 13087.43 14647.67 7688.72 14859.08 17979.66 9390.08 99
ACMP61.11 966.24 23664.33 23772.00 22874.89 27549.12 20883.18 19579.83 21855.41 26052.29 30082.68 20925.83 31186.10 23760.89 16463.94 22980.78 279
Qingshan Xu and Wenbing Tao: Planar Prior Assisted PatchMatch Multi-View Stereo. AAAI 2020
GA-MVS69.04 17566.70 19376.06 12675.11 26952.36 13883.12 19680.23 21063.32 11660.65 19979.22 25230.98 27988.37 16161.25 16166.41 20987.46 160
3Dnovator64.70 674.46 8372.48 9680.41 2882.84 12455.40 5983.08 19788.61 4567.61 5059.85 20488.66 11834.57 24593.97 2658.42 18888.70 1291.85 50
PGM-MVS72.60 11371.20 12276.80 11182.95 11952.82 13083.07 19882.14 17556.51 24863.18 17289.81 9735.68 23389.76 11667.30 11880.19 8487.83 151
LPG-MVS_test66.44 23364.58 23572.02 22674.42 28148.60 22483.07 19880.64 20354.69 26953.75 29083.83 18825.73 31386.98 21060.33 17564.71 22080.48 283
TranMVSNet+NR-MVSNet66.94 22565.61 21970.93 25273.45 29143.38 31083.02 20084.25 13765.31 8558.33 23881.90 22739.92 17985.52 24949.43 25954.89 31283.89 228
test0.0.03 162.54 26362.44 24662.86 32572.28 30829.51 37682.93 20178.78 24359.18 19253.07 29582.41 21636.91 21677.39 33037.45 31258.96 26881.66 260
pm-mvs164.12 24762.56 24568.78 28071.68 31138.87 34082.89 20281.57 18755.54 25953.89 28977.82 26437.73 19886.74 21848.46 26853.49 32380.72 280
EPNet_dtu66.25 23566.71 19264.87 31478.66 21634.12 35682.80 20375.51 29361.75 14264.47 15686.90 15337.06 21372.46 35643.65 29569.63 18688.02 148
Wanjuan Su, Wenbing Tao: Efficient Edge-Preserving Multi-View Stereo Network for Depth Estimation. AAAI 2023
fmvsm_s_conf0.1_n_a72.82 11072.05 11075.12 15570.95 32147.97 24882.72 20468.43 34762.52 13178.17 3393.08 3044.21 12288.86 14584.82 1363.54 23288.54 138
test_fmvsmconf_n74.41 8474.05 8075.49 14174.16 28548.38 23382.66 20572.57 31767.05 5575.11 4492.88 3346.35 9087.81 18183.93 1971.71 16590.28 91
pmmvs562.80 26261.18 25867.66 29169.53 33042.37 32382.65 20675.19 29754.30 27452.03 30378.51 25831.64 27580.67 29748.60 26658.15 27879.95 290
cl____67.43 21065.93 21171.95 23276.33 25148.02 24682.58 20779.12 23761.30 15156.72 26176.92 27846.12 9286.44 22857.98 19556.31 29681.38 270
DIV-MVS_self_test67.43 21065.93 21171.94 23376.33 25148.01 24782.57 20879.11 23861.31 15056.73 26076.92 27846.09 9386.43 22957.98 19556.31 29681.39 269
TAMVS69.51 17168.16 16673.56 19576.30 25348.71 22382.57 20877.17 27362.10 13661.32 19384.23 18341.90 15583.46 27854.80 22373.09 15388.50 140
EI-MVSNet-Vis-set73.19 10572.60 9474.99 15982.56 13249.80 19582.55 21089.00 2866.17 6865.89 13288.98 11143.83 12592.29 5165.38 13869.01 18882.87 247
DP-MVS59.24 28456.12 29668.63 28388.24 3450.35 18282.51 21164.43 35741.10 35046.70 33378.77 25624.75 32188.57 15622.26 37656.29 29866.96 369
miper_ehance_all_eth68.70 18667.58 17772.08 22476.91 24649.48 20382.47 21278.45 25362.68 12758.28 23977.88 26350.90 5285.01 26161.91 15758.72 27081.75 258
cl2268.85 17867.69 17572.35 21978.07 22649.98 19082.45 21378.48 25262.50 13258.46 23577.95 26149.99 6085.17 25762.55 15158.72 27081.90 256
UniMVSNet (Re)67.71 20266.80 19070.45 25774.44 28042.93 31482.42 21484.90 12063.69 10759.63 20880.99 23547.18 8085.23 25651.17 25056.75 29383.19 240
v867.25 21564.99 23174.04 17872.89 30053.31 11782.37 21580.11 21261.54 14654.29 28576.02 29442.89 14288.41 16058.43 18656.36 29480.39 285
ACMM58.35 1264.35 24562.01 25071.38 24374.21 28448.51 22882.25 21679.66 22247.61 31554.54 28280.11 24125.26 31686.00 24151.26 24863.16 24179.64 292
Qingshan Xu and Wenbing Tao: Multi-Scale Geometric Consistency Guided Multi-View Stereo. CVPR 2019
test_fmvsmconf0.1_n73.69 9773.15 8775.34 14570.71 32248.26 23882.15 21771.83 32166.75 5874.47 5192.59 3844.89 11387.78 18683.59 2071.35 16989.97 102
thres600view766.46 23265.12 22970.47 25683.41 10143.80 30582.15 21787.78 5859.37 18456.02 26982.21 22243.73 12886.90 21526.51 36464.94 21980.71 281
c3_l67.97 19666.66 19471.91 23576.20 25549.31 20682.13 21978.00 25961.99 13857.64 24876.94 27749.41 6584.93 26260.62 16857.01 29281.49 262
Effi-MVS+-dtu66.24 23664.96 23270.08 26475.17 26849.64 19682.01 22074.48 30162.15 13557.83 24276.08 29330.59 28183.79 27265.40 13760.93 25676.81 321
our_test_359.11 28755.08 30371.18 24871.42 31553.29 11881.96 22174.52 30048.32 31142.08 34869.28 34528.14 29382.15 28434.35 33245.68 35478.11 311
CPTT-MVS67.15 21865.84 21371.07 24980.96 17050.32 18381.94 22274.10 30346.18 32757.91 24187.64 14329.57 28781.31 29064.10 14270.18 18181.56 261
APD-MVS_3200maxsize69.62 16968.23 16573.80 18781.58 15648.22 23981.91 22379.50 22648.21 31264.24 15889.75 9831.91 27387.55 19763.08 14873.85 14785.64 197
v1066.61 23064.20 23973.83 18672.59 30353.37 11381.88 22479.91 21761.11 15354.09 28775.60 29640.06 17688.26 17056.47 21256.10 30079.86 291
EI-MVSNet-UG-set72.37 11771.73 11374.29 17281.60 15449.29 20781.85 22588.64 4265.29 8665.05 14188.29 12843.18 13791.83 6163.74 14467.97 19581.75 258
ppachtmachnet_test58.56 29554.34 30471.24 24571.42 31554.74 7981.84 22672.27 31949.02 30845.86 33868.99 34626.27 30783.30 27930.12 34743.23 35975.69 331
test_fmvsm_n_192075.56 7175.54 5975.61 13574.60 27949.51 20281.82 22774.08 30466.52 6280.40 2293.46 1946.95 8389.72 11786.69 775.30 13087.61 157
test_040256.45 30753.03 31166.69 30176.78 24750.31 18481.76 22869.61 34142.79 34643.88 34072.13 32922.82 33386.46 22716.57 38850.94 33263.31 377
testing359.97 27960.19 26959.32 34077.60 23230.01 37381.75 22981.79 18453.54 27750.34 31379.94 24248.99 6876.91 33317.19 38750.59 33371.03 363
旧先验281.73 23045.53 33074.66 4670.48 36358.31 190
thres100view90066.87 22765.42 22571.24 24583.29 10743.15 31281.67 23187.78 5859.04 19655.92 27082.18 22343.73 12887.80 18328.80 35266.36 21082.78 249
MVSFormer73.53 10072.19 10577.57 8683.02 11655.24 6381.63 23281.44 19050.28 29976.67 3990.91 7044.82 11686.11 23560.83 16580.09 8591.36 65
test_djsdf63.84 24961.56 25370.70 25468.78 33544.69 29481.63 23281.44 19050.28 29952.27 30176.26 28826.72 30586.11 23560.83 16555.84 30581.29 274
新几何281.61 234
TSAR-MVS + MP.78.31 3078.26 2578.48 6781.33 16456.31 4281.59 23586.41 8169.61 3181.72 1688.16 13055.09 2788.04 17674.12 8386.31 3391.09 73
Zhenlong Yuan, Jiakai Cao, Zhaoqi Wang, Zhaoxin Li: TSAR-MVS: Textureless-aware Segmentation and Correlative Refinement Guided Multi-View Stereo. Pattern Recognition
SR-MVS-dyc-post68.27 19366.87 18872.48 21680.96 17048.14 24281.54 23676.98 27646.42 32462.75 17889.42 10331.17 27886.09 23960.52 17172.06 16383.19 240
RE-MVS-def66.66 19480.96 17048.14 24281.54 23676.98 27646.42 32462.75 17889.42 10329.28 29060.52 17172.06 16383.19 240
V4267.66 20365.60 22073.86 18470.69 32453.63 10481.50 23878.61 24963.85 10359.49 21377.49 26837.98 19287.65 19162.33 15258.43 27380.29 286
DU-MVS66.84 22865.74 21670.16 26273.27 29542.59 31881.50 23882.92 16763.53 11158.51 23182.11 22440.75 16684.64 26653.11 23355.96 30283.24 238
HyFIR lowres test69.94 16267.58 17777.04 10077.11 24457.29 2081.49 24079.11 23858.27 20958.86 22680.41 24042.33 14686.96 21261.91 15768.68 19186.87 169
IterMVS-LS66.63 22965.36 22670.42 25875.10 27048.90 21781.45 24176.69 28361.05 15555.71 27177.10 27545.86 9783.65 27557.44 20457.88 28678.70 299
Fangjinhua Wang, Silvano Galliani, Christoph Vogel, Marc Pollefeys: IterMVS: Iterative Probability Estimation for Efficient Multi-View Stereo.
jajsoiax63.21 25760.84 26270.32 26068.33 34044.45 29681.23 24281.05 19653.37 28050.96 31077.81 26517.49 36185.49 25159.31 17858.05 28181.02 277
RRT_MVS63.68 25261.01 26171.70 23773.48 29045.98 28081.19 24376.08 28954.33 27352.84 29679.27 25022.21 33887.65 19154.13 22655.54 30881.46 265
HPM-MVS_fast67.86 19866.28 20272.61 21180.67 18048.34 23581.18 24475.95 29150.81 29859.55 21188.05 13427.86 29785.98 24258.83 18273.58 14883.51 233
tfpnnormal61.47 27359.09 27768.62 28476.29 25441.69 32481.14 24585.16 11354.48 27151.32 30673.63 31332.32 26686.89 21621.78 37855.71 30677.29 318
IS-MVSNet68.80 18267.55 17972.54 21378.50 22043.43 30981.03 24679.35 23359.12 19557.27 25786.71 15646.05 9487.70 18944.32 29275.60 12886.49 179
eth_miper_zixun_eth66.98 22465.28 22772.06 22575.61 26550.40 17781.00 24776.97 27962.00 13756.99 25976.97 27644.84 11585.58 24858.75 18354.42 31680.21 287
Syy-MVS61.51 27261.35 25662.00 32881.73 14630.09 37180.97 24881.02 19760.93 15955.06 27682.64 21035.09 23980.81 29516.40 38958.32 27475.10 338
myMVS_eth3d63.52 25363.56 24363.40 32181.73 14634.28 35480.97 24881.02 19760.93 15955.06 27682.64 21048.00 7480.81 29523.42 37458.32 27475.10 338
mvs_tets62.96 26060.55 26470.19 26168.22 34344.24 30180.90 25080.74 20252.99 28350.82 31277.56 26616.74 36485.44 25259.04 18157.94 28380.89 278
tttt051768.33 19166.29 20174.46 16578.08 22549.06 20980.88 25189.08 2754.40 27254.75 28080.77 23851.31 4890.33 10049.35 26058.01 28283.99 222
FC-MVSNet-test67.49 20867.91 16866.21 30476.06 25733.06 36180.82 25287.18 6764.44 9254.81 27882.87 20250.40 5782.60 28248.05 27066.55 20882.98 245
sss70.49 15070.13 14071.58 24181.59 15539.02 33980.78 25384.71 12759.34 18566.61 12288.09 13137.17 21285.52 24961.82 15971.02 17290.20 95
HPM-MVScopyleft72.60 11371.50 11675.89 13082.02 13951.42 15980.70 25483.05 16356.12 25264.03 16189.53 10137.55 20388.37 16170.48 10280.04 8787.88 150
Chunlin Ren, Qingshan Xu, Shikun Zhang, Jiaqi Yang: Hierarchical Prior Mining for Non-local Multi-View Stereo. ICCV 2023
pmmvs659.64 28157.15 28867.09 29566.01 34836.86 34980.50 25578.64 24745.05 33349.05 31873.94 30727.28 30186.10 23743.96 29449.94 33578.31 307
IterMVS63.77 25161.67 25170.08 26472.68 30251.24 16480.44 25675.51 29360.51 16751.41 30573.70 31232.08 26978.91 31454.30 22554.35 31780.08 289
Fangjinhua Wang, Silvano Galliani, Christoph Vogel, Marc Pollefeys: IterMVS: Iterative Probability Estimation for Efficient Multi-View Stereo.
IterMVS-SCA-FT59.12 28658.81 28060.08 33870.68 32545.07 29080.42 25774.25 30243.54 34350.02 31473.73 30931.97 27056.74 38051.06 25153.60 32278.42 305
test_fmvsmconf0.01_n71.97 12670.95 12575.04 15666.21 34747.87 25180.35 25870.08 33765.85 7672.69 6991.68 5639.99 17787.67 19082.03 2969.66 18489.58 110
ACMH+54.58 1558.55 29655.24 30068.50 28774.68 27745.80 28480.27 25970.21 33647.15 31842.77 34775.48 29716.73 36585.98 24235.10 33054.78 31373.72 347
Anonymous2023120659.08 28857.59 28563.55 31968.77 33632.14 36680.26 26079.78 21950.00 30349.39 31672.39 32626.64 30678.36 31733.12 33857.94 28380.14 288
131471.11 13969.41 14876.22 11979.32 19950.49 17480.23 26185.14 11559.44 18258.93 22388.89 11433.83 25489.60 12161.49 16077.42 10988.57 137
MVS76.91 4775.48 6081.23 2084.56 7955.21 6580.23 26191.64 458.65 20465.37 13891.48 6245.72 9995.05 1672.11 9589.52 1093.44 11
ACMH53.70 1659.78 28055.94 29871.28 24476.59 24848.35 23480.15 26376.11 28849.74 30441.91 35073.45 31616.50 36690.31 10131.42 34357.63 28975.17 336
Qingshan Xu and Wenbing Tao: Multi-Scale Geometric Consistency Guided Multi-View Stereo. CVPR 2019
pmmvs463.34 25661.07 26070.16 26270.14 32650.53 17379.97 26471.41 32855.08 26354.12 28678.58 25732.79 26282.09 28650.33 25357.22 29177.86 312
MVS_111021_LR69.07 17467.91 16872.54 21377.27 23849.56 19979.77 26573.96 30759.33 18760.73 19887.82 13830.19 28481.53 28869.94 10372.19 16286.53 178
CNLPA60.59 27758.44 28167.05 29779.21 20247.26 26179.75 26664.34 35842.46 34851.90 30483.94 18627.79 29975.41 34237.12 31459.49 26478.47 303
EI-MVSNet69.70 16768.70 15772.68 21075.00 27348.90 21779.54 26787.16 6861.05 15563.88 16583.74 19045.87 9690.44 9657.42 20564.68 22378.70 299
CVMVSNet60.85 27660.44 26662.07 32675.00 27332.73 36379.54 26773.49 31236.98 36056.28 26883.74 19029.28 29069.53 36546.48 28063.23 23983.94 227
AUN-MVS68.20 19566.35 19973.76 18876.37 24947.45 25779.52 26979.52 22560.98 15762.34 18186.02 16336.59 22486.94 21362.32 15353.47 32486.89 168
hse-mvs271.44 13570.68 12773.73 19076.34 25047.44 25879.45 27079.47 22868.08 4071.97 7886.01 16542.50 14486.93 21478.82 4653.46 32586.83 174
PVSNet_057.04 1361.19 27457.24 28773.02 20277.45 23650.31 18479.43 27177.36 27163.96 10247.51 32972.45 32525.03 31883.78 27352.76 24119.22 39584.96 207
PCF-MVS61.03 1070.10 15568.40 16175.22 15477.15 24351.99 14479.30 27282.12 17656.47 24961.88 18886.48 16143.98 12387.24 20455.37 21972.79 15686.43 181
Andreas Kuhn, Shan Lin, Oliver Erdler: Plane Completion and Filtering for Multi-View Stereo Reconstruction. GCPR 2019
test_fmvsmvis_n_192071.29 13670.38 13374.00 18071.04 32048.79 22079.19 27364.62 35662.75 12566.73 11891.99 4940.94 16488.35 16383.00 2273.18 15084.85 210
PLCcopyleft52.38 1860.89 27558.97 27966.68 30281.77 14545.70 28578.96 27474.04 30643.66 34247.63 32683.19 20123.52 32977.78 32937.47 31160.46 25776.55 327
Jie Liao, Yanping Fu, Qingan Yan, Chunxia xiao: Pyramid Multi-View Stereo with Local Consistency. Pacific Graphics 2019
D2MVS63.49 25461.39 25569.77 26869.29 33248.93 21678.89 27577.71 26460.64 16649.70 31572.10 33127.08 30383.48 27754.48 22462.65 24676.90 320
OMC-MVS65.97 23965.06 23068.71 28272.97 29842.58 32078.61 27675.35 29654.72 26859.31 21686.25 16233.30 25777.88 32657.99 19467.05 20285.66 196
PAPM_NR71.80 13069.98 14277.26 9681.54 15853.34 11578.60 27785.25 10953.46 27860.53 20088.66 11845.69 10089.24 12756.49 21179.62 9589.19 120
mvs_anonymous72.29 12070.74 12676.94 10782.85 12354.72 8178.43 27881.54 18863.77 10461.69 18979.32 24951.11 4985.31 25362.15 15675.79 12590.79 80
tt080563.39 25561.31 25769.64 26969.36 33138.87 34078.00 27985.48 9548.82 31055.66 27581.66 22924.38 32386.37 23049.04 26359.36 26683.68 231
test22279.36 19750.97 16677.99 28067.84 34842.54 34762.84 17786.53 15930.26 28376.91 11285.23 202
v7n62.50 26559.27 27672.20 22267.25 34649.83 19477.87 28180.12 21152.50 28648.80 32073.07 31732.10 26887.90 17946.83 27854.92 31178.86 297
test20.0355.22 31454.07 30758.68 34363.14 36525.00 38477.69 28274.78 29952.64 28443.43 34372.39 32626.21 30874.76 34429.31 35047.05 34876.28 329
testdata177.55 28364.14 97
PEN-MVS58.35 29857.15 28861.94 32967.55 34534.39 35377.01 28478.35 25551.87 29147.72 32576.73 28233.91 25173.75 34934.03 33347.17 34677.68 314
WR-MVS_H58.91 29158.04 28361.54 33269.07 33433.83 35876.91 28581.99 17851.40 29548.17 32174.67 30140.23 17274.15 34531.78 34248.10 33876.64 325
CP-MVSNet58.54 29757.57 28661.46 33368.50 33833.96 35776.90 28678.60 25051.67 29447.83 32476.60 28434.99 24272.79 35435.45 32347.58 34277.64 316
PS-CasMVS58.12 29957.03 29061.37 33468.24 34233.80 35976.73 28778.01 25851.20 29647.54 32876.20 29232.85 26072.76 35535.17 32847.37 34477.55 317
tpm68.36 18967.48 18170.97 25179.93 19251.34 16176.58 28878.75 24567.73 4763.54 17174.86 30048.33 6972.36 35753.93 22963.71 23089.21 119
DTE-MVSNet57.03 30355.73 29960.95 33765.94 34932.57 36475.71 28977.09 27551.16 29746.65 33476.34 28732.84 26173.22 35330.94 34644.87 35577.06 319
tpmrst71.04 14169.77 14474.86 16083.19 11055.86 5175.64 29078.73 24667.88 4464.99 14573.73 30949.96 6279.56 31365.92 12767.85 19789.14 122
CostFormer73.89 9272.30 10178.66 6282.36 13556.58 3375.56 29185.30 10566.06 7270.50 10076.88 28057.02 1689.06 13368.27 11468.74 19090.33 89
HY-MVS67.03 573.90 9173.14 8976.18 12384.70 7747.36 25975.56 29186.36 8366.27 6670.66 9783.91 18751.05 5089.31 12567.10 12072.61 15791.88 49
K. test v354.04 31949.42 33067.92 29068.55 33742.57 32175.51 29363.07 36152.07 28839.21 35964.59 35719.34 35282.21 28337.11 31525.31 38878.97 296
Vis-MVSNet (Re-imp)65.52 24165.63 21865.17 31277.49 23530.54 36875.49 29477.73 26359.34 18552.26 30286.69 15749.38 6680.53 30137.07 31675.28 13184.42 214
pmmvs-eth3d55.97 31152.78 31565.54 30861.02 37046.44 27175.36 29567.72 34949.61 30543.65 34267.58 34921.63 34377.04 33144.11 29344.33 35673.15 353
TAPA-MVS56.12 1461.82 27160.18 27066.71 30078.48 22137.97 34575.19 29676.41 28746.82 32057.04 25886.52 16027.67 30077.03 33226.50 36567.02 20385.14 203
Andrea Romanoni, Matteo Matteucci: TAPA-MVS: Textureless-Aware PAtchMatch Multi-View Stereo. ICCV 2019
FMVSNet558.61 29456.45 29265.10 31377.20 24239.74 33674.77 29777.12 27450.27 30143.28 34567.71 34826.15 31076.90 33536.78 31954.78 31378.65 301
FA-MVS(test-final)69.00 17766.60 19676.19 12283.48 10047.96 25074.73 29882.07 17757.27 23262.18 18478.47 25936.09 22892.89 3553.76 23171.32 17087.73 154
SixPastTwentyTwo54.37 31650.10 32567.21 29470.70 32341.46 32974.73 29864.69 35547.56 31639.12 36069.49 34218.49 35884.69 26531.87 34134.20 37875.48 333
F-COLMAP55.96 31253.65 31062.87 32472.76 30142.77 31774.70 30070.37 33540.03 35141.11 35579.36 24817.77 36073.70 35032.80 33953.96 31972.15 355
MSDG59.44 28255.14 30272.32 22074.69 27650.71 16874.39 30173.58 31044.44 33743.40 34477.52 26719.45 35190.87 8631.31 34457.49 29075.38 334
tpm270.82 14568.44 16077.98 7880.78 17656.11 4474.21 30281.28 19460.24 17068.04 11175.27 29852.26 4388.50 15855.82 21868.03 19489.33 115
SDMVSNet71.89 12770.62 12975.70 13381.70 14851.61 15373.89 30388.72 4066.58 5961.64 19082.38 21837.63 20089.48 12277.44 5965.60 21686.01 186
UniMVSNet_ETH3D62.51 26460.49 26568.57 28668.30 34140.88 33473.89 30379.93 21651.81 29354.77 27979.61 24624.80 32081.10 29149.93 25561.35 25383.73 230
UA-Net67.32 21466.23 20370.59 25578.85 21041.23 33173.60 30575.45 29561.54 14666.61 12284.53 17938.73 18886.57 22642.48 30274.24 14383.98 224
Anonymous2024052151.65 33048.42 33261.34 33556.43 37739.65 33873.57 30673.47 31536.64 36236.59 36663.98 35810.75 37672.25 35835.35 32449.01 33672.11 356
ab-mvs70.65 14869.11 15475.29 15080.87 17446.23 27873.48 30785.24 11059.99 17266.65 12080.94 23643.13 14088.69 14963.58 14568.07 19390.95 77
LS3D56.40 30853.82 30864.12 31681.12 16645.69 28673.42 30866.14 35235.30 36843.24 34679.88 24322.18 33979.62 31219.10 38464.00 22867.05 368
testmvs6.14 3758.18 3780.01 3890.01 4120.00 41573.40 3090.00 4130.00 4070.02 4080.15 4070.00 4120.00 4080.02 4070.00 4060.02 404
UnsupCasMVSNet_eth57.56 30155.15 30164.79 31564.57 36033.12 36073.17 31083.87 14758.98 19841.75 35170.03 34122.54 33479.92 30846.12 28435.31 37281.32 273
anonymousdsp60.46 27857.65 28468.88 27663.63 36345.09 28972.93 31178.63 24846.52 32251.12 30772.80 32121.46 34583.07 28157.79 20053.97 31878.47 303
EU-MVSNet52.63 32650.72 32358.37 34462.69 36728.13 38172.60 31275.97 29030.94 37540.76 35772.11 33020.16 34970.80 36135.11 32946.11 35276.19 330
dp64.41 24461.58 25272.90 20582.40 13354.09 9772.53 31376.59 28560.39 16855.68 27270.39 34035.18 23876.90 33539.34 30861.71 25287.73 154
N_pmnet41.25 34539.77 34845.66 36368.50 3380.82 41372.51 3140.38 41235.61 36535.26 37161.51 36420.07 35067.74 36623.51 37240.63 36368.42 367
MDTV_nov1_ep1361.56 25381.68 15055.12 6872.41 31578.18 25659.19 19058.85 22769.29 34434.69 24486.16 23436.76 32062.96 244
YYNet153.82 32149.96 32665.41 31070.09 32848.95 21472.30 31671.66 32544.25 33931.89 37963.07 36123.73 32773.95 34733.26 33639.40 36673.34 350
MDA-MVSNet_test_wron53.82 32149.95 32765.43 30970.13 32749.05 21072.30 31671.65 32644.23 34031.85 38063.13 36023.68 32874.01 34633.25 33739.35 36773.23 352
testgi54.25 31852.57 31759.29 34162.76 36621.65 39172.21 31870.47 33453.25 28141.94 34977.33 27114.28 37077.95 32529.18 35151.72 33178.28 308
KD-MVS_2432*160059.04 28956.44 29366.86 29879.07 20445.87 28272.13 31980.42 20755.03 26448.15 32271.01 33436.73 21978.05 32235.21 32630.18 38376.67 322
miper_refine_blended59.04 28956.44 29366.86 29879.07 20445.87 28272.13 31980.42 20755.03 26448.15 32271.01 33436.73 21978.05 32235.21 32630.18 38376.67 322
PatchmatchNetpermissive67.07 22263.63 24277.40 9083.10 11158.03 972.11 32177.77 26258.85 20059.37 21470.83 33637.84 19484.93 26242.96 29869.83 18389.26 116
Fangjinhua Wang, Silvano Galliani, Christoph Vogel, Pablo Speciale, Marc Pollefeys: PatchmatchNet: Learned Multi-View Patchmatch Stereo.
test1236.01 3768.01 3790.01 3890.00 4130.01 41471.93 3220.00 4130.00 4070.02 4080.11 4080.00 4120.00 4080.02 4070.00 4060.02 404
EPMVS68.45 18865.44 22477.47 8984.91 7456.17 4371.89 32381.91 18261.72 14360.85 19672.49 32336.21 22687.06 20947.32 27471.62 16689.17 121
UnsupCasMVSNet_bld53.86 32050.53 32463.84 31763.52 36434.75 35271.38 32481.92 18146.53 32138.95 36157.93 37320.55 34880.20 30639.91 30734.09 37976.57 326
COLMAP_ROBcopyleft43.60 2050.90 33348.05 33459.47 33967.81 34440.57 33571.25 32562.72 36336.49 36336.19 36873.51 31413.48 37173.92 34820.71 38050.26 33463.92 376
Johannes L. Schönberger, Enliang Zheng, Marc Pollefeys, Jan-Michael Frahm: Pixelwise View Selection for Unstructured Multi-View Stereo. ECCV 2016
MDTV_nov1_ep13_2view43.62 30671.13 32654.95 26659.29 21836.76 21846.33 28287.32 163
test_post170.84 32714.72 40434.33 24883.86 27048.80 264
new-patchmatchnet48.21 33746.55 33953.18 35557.73 37518.19 39970.24 32871.02 33145.70 32833.70 37460.23 36718.00 35969.86 36427.97 35934.35 37671.49 361
pmmvs345.53 34341.55 34757.44 34648.97 38839.68 33770.06 32957.66 36728.32 37834.06 37357.29 3748.50 38366.85 36734.86 33134.26 37765.80 373
tpmvs62.45 26759.42 27471.53 24283.93 9154.32 9170.03 33077.61 26551.91 29053.48 29368.29 34737.91 19386.66 22133.36 33558.27 27673.62 348
tpm cat166.28 23462.78 24476.77 11381.40 16257.14 2270.03 33077.19 27253.00 28258.76 22970.73 33946.17 9186.73 21943.27 29664.46 22486.44 180
PatchMatch-RL56.66 30453.75 30965.37 31177.91 23045.28 28869.78 33260.38 36441.35 34947.57 32773.73 30916.83 36376.91 33336.99 31759.21 26773.92 346
MDA-MVSNet-bldmvs51.56 33147.75 33763.00 32371.60 31347.32 26069.70 33372.12 32043.81 34127.65 38763.38 35921.97 34275.96 33927.30 36232.19 38065.70 374
miper_lstm_enhance63.91 24862.30 24768.75 28175.06 27146.78 26669.02 33481.14 19559.68 17852.76 29772.39 32640.71 16877.99 32456.81 20953.09 32681.48 264
sd_testset67.79 20165.95 21073.32 19781.70 14846.33 27568.99 33580.30 20966.58 5961.64 19082.38 21830.45 28287.63 19355.86 21665.60 21686.01 186
test_fmvs153.60 32352.54 31856.78 34758.07 37330.26 36968.95 33642.19 38332.46 37163.59 16982.56 21411.55 37360.81 37258.25 19155.27 30979.28 293
GG-mvs-BLEND77.77 8286.68 4950.61 17068.67 33788.45 4968.73 10787.45 14559.15 1090.67 9054.83 22187.67 1792.03 43
OurMVSNet-221017-052.39 32848.73 33163.35 32265.21 35438.42 34368.54 33864.95 35438.19 35539.57 35871.43 33313.23 37279.92 30837.16 31340.32 36571.72 358
FE-MVS64.15 24660.43 26775.30 14980.85 17549.86 19368.28 33978.37 25450.26 30259.31 21673.79 30826.19 30991.92 6040.19 30566.67 20584.12 217
test_fmvs1_n52.55 32751.19 32256.65 34851.90 38330.14 37067.66 34042.84 38232.27 37262.30 18382.02 2269.12 38160.84 37157.82 19954.75 31578.99 295
MIMVSNet150.35 33447.81 33557.96 34561.53 36927.80 38267.40 34174.06 30543.25 34433.31 37865.38 35616.03 36771.34 35921.80 37747.55 34374.75 340
test_vis1_n51.19 33249.66 32955.76 35251.26 38429.85 37467.20 34238.86 38732.12 37359.50 21279.86 2448.78 38258.23 37956.95 20852.46 32879.19 294
MTAPA72.73 11171.22 12177.27 9581.54 15853.57 10567.06 34381.31 19259.41 18368.39 10990.96 6936.07 22989.01 13673.80 8682.45 6389.23 118
WB-MVS37.41 35036.37 35140.54 36954.23 37910.43 40665.29 34443.75 38034.86 36927.81 38654.63 37624.94 31963.21 3696.81 40115.00 39647.98 388
MIMVSNet63.12 25860.29 26871.61 23875.92 26246.65 26865.15 34581.94 17959.14 19454.65 28169.47 34325.74 31280.63 29841.03 30469.56 18787.55 158
XVG-OURS-SEG-HR62.02 26959.54 27369.46 27165.30 35345.88 28165.06 34673.57 31146.45 32357.42 25583.35 19826.95 30478.09 32053.77 23064.03 22784.42 214
XVG-OURS61.88 27059.34 27569.49 27065.37 35246.27 27664.80 34773.49 31247.04 31957.41 25682.85 20325.15 31778.18 31853.00 23664.98 21884.01 221
dmvs_re67.61 20466.00 20872.42 21781.86 14343.45 30864.67 34880.00 21369.56 3260.07 20285.00 17634.71 24387.63 19351.48 24766.68 20486.17 185
gg-mvs-nofinetune67.43 21064.53 23676.13 12485.95 5347.79 25464.38 34988.28 5139.34 35266.62 12141.27 38658.69 1389.00 13749.64 25886.62 3091.59 55
dmvs_testset57.65 30058.21 28255.97 35174.62 2789.82 40763.75 35063.34 36067.23 5248.89 31983.68 19439.12 18476.14 33823.43 37359.80 26181.96 255
XVG-ACMP-BASELINE56.03 31052.85 31465.58 30761.91 36840.95 33363.36 35172.43 31845.20 33246.02 33674.09 3059.20 38078.12 31945.13 28658.27 27677.66 315
TinyColmap48.15 33844.49 34259.13 34265.73 35138.04 34463.34 35262.86 36238.78 35329.48 38267.23 3516.46 39073.30 35224.59 36941.90 36266.04 372
MVS-HIRNet49.01 33644.71 34061.92 33076.06 25746.61 26963.23 35354.90 37024.77 38233.56 37536.60 39021.28 34675.88 34029.49 34962.54 24763.26 378
PM-MVS46.92 34043.76 34556.41 35052.18 38232.26 36563.21 35438.18 38837.99 35740.78 35666.20 3525.09 39365.42 36848.19 26941.99 36171.54 360
AllTest47.32 33944.66 34155.32 35365.08 35637.50 34762.96 35554.25 37235.45 36633.42 37672.82 3199.98 37759.33 37524.13 37043.84 35769.13 364
USDC54.36 31751.23 32163.76 31864.29 36137.71 34662.84 35673.48 31456.85 23835.47 37071.94 3329.23 37978.43 31638.43 31048.57 33775.13 337
SSC-MVS35.20 35234.30 35437.90 37152.58 3818.65 40961.86 35741.64 38431.81 37425.54 38852.94 38123.39 33059.28 3776.10 40212.86 39745.78 390
Patchmatch-RL test58.72 29354.32 30571.92 23463.91 36244.25 30061.73 35855.19 36957.38 23049.31 31754.24 37737.60 20280.89 29362.19 15547.28 34590.63 82
SCA63.84 24960.01 27175.32 14678.58 21857.92 1061.61 35977.53 26656.71 24357.75 24670.77 33731.97 27079.91 31048.80 26456.36 29488.13 145
CMPMVSbinary40.41 2155.34 31352.64 31663.46 32060.88 37143.84 30461.58 36071.06 33030.43 37636.33 36774.63 30224.14 32575.44 34148.05 27066.62 20671.12 362
M. Jancosek, T. Pajdla: Multi-View Reconstruction Preserving Weakly-Supported Surfaces. CVPR 2011
LCM-MVSNet-Re58.82 29256.54 29165.68 30679.31 20029.09 37961.39 36145.79 37760.73 16437.65 36572.47 32431.42 27681.08 29249.66 25770.41 17886.87 169
CR-MVSNet62.47 26659.04 27872.77 20873.97 28856.57 3460.52 36271.72 32360.04 17157.49 25265.86 35338.94 18580.31 30342.86 29959.93 25981.42 266
RPMNet59.29 28354.25 30674.42 16773.97 28856.57 3460.52 36276.98 27635.72 36457.49 25258.87 37237.73 19885.26 25527.01 36359.93 25981.42 266
EGC-MVSNET33.75 35430.42 35843.75 36664.94 35836.21 35060.47 36440.70 3860.02 4060.10 40753.79 3787.39 38460.26 37311.09 39435.23 37434.79 392
test_vis1_rt40.29 34738.64 34945.25 36448.91 38930.09 37159.44 36527.07 40124.52 38338.48 36351.67 3826.71 38849.44 38644.33 29146.59 35156.23 380
Patchmtry56.56 30652.95 31367.42 29372.53 30450.59 17259.05 36671.72 32337.86 35846.92 33165.86 35338.94 18580.06 30736.94 31846.72 35071.60 359
TDRefinement40.91 34638.37 35048.55 36050.45 38633.03 36258.98 36750.97 37528.50 37729.89 38167.39 3506.21 39254.51 38217.67 38635.25 37358.11 379
test_fmvs245.89 34144.32 34350.62 35845.85 39224.70 38558.87 36837.84 39025.22 38152.46 29974.56 3037.07 38554.69 38149.28 26147.70 34172.48 354
KD-MVS_self_test49.24 33546.85 33856.44 34954.32 37822.87 38757.39 36973.36 31644.36 33837.98 36459.30 37118.97 35471.17 36033.48 33442.44 36075.26 335
PatchT56.60 30552.97 31267.48 29272.94 29946.16 27957.30 37073.78 30838.77 35454.37 28457.26 37537.52 20478.06 32132.02 34052.79 32778.23 310
mvsany_test143.38 34442.57 34645.82 36250.96 38526.10 38355.80 37127.74 40027.15 37947.41 33074.39 30418.67 35644.95 39244.66 28936.31 37066.40 371
ANet_high34.39 35329.59 35948.78 35930.34 40222.28 38855.53 37263.79 35938.11 35615.47 39436.56 3916.94 38659.98 37413.93 3915.64 40564.08 375
ADS-MVSNet255.21 31551.44 32066.51 30380.60 18149.56 19955.03 37365.44 35344.72 33451.00 30861.19 36522.83 33175.41 34228.54 35553.63 32074.57 342
ADS-MVSNet56.17 30951.95 31968.84 27780.60 18153.07 12455.03 37370.02 33844.72 33451.00 30861.19 36522.83 33178.88 31528.54 35553.63 32074.57 342
RPSCF45.77 34244.13 34450.68 35757.67 37629.66 37554.92 37545.25 37926.69 38045.92 33775.92 29517.43 36245.70 39127.44 36145.95 35376.67 322
new_pmnet33.56 35531.89 35738.59 37049.01 38720.42 39251.01 37637.92 38920.58 38423.45 38946.79 3846.66 38949.28 38820.00 38331.57 38246.09 389
test_fmvs337.95 34935.75 35244.55 36535.50 39818.92 39548.32 37734.00 39518.36 38941.31 35461.58 3632.29 40048.06 39042.72 30037.71 36966.66 370
E-PMN19.16 36818.40 37221.44 38436.19 39713.63 40447.59 37830.89 39610.73 3975.91 40416.59 4003.66 39639.77 3955.95 4038.14 40010.92 400
EMVS18.42 36917.66 37320.71 38534.13 39912.64 40546.94 37929.94 39810.46 3995.58 40514.93 4034.23 39538.83 3965.24 4057.51 40210.67 401
CHOSEN 280x42057.53 30256.38 29560.97 33674.01 28648.10 24446.30 38054.31 37148.18 31350.88 31177.43 27038.37 19159.16 37854.83 22163.14 24275.66 332
LTVRE_ROB45.45 1952.73 32549.74 32861.69 33169.78 32934.99 35144.52 38167.60 35143.11 34543.79 34174.03 30618.54 35781.45 28928.39 35757.94 28368.62 366
Andreas Kuhn, Heiko Hirschmüller, Daniel Scharstein, Helmut Mayer: A TV Prior for High-Quality Scalable Multi-View Stereo Reconstruction. International Journal of Computer Vision 2016
LF4IMVS33.04 35632.55 35634.52 37440.96 39322.03 38944.45 38235.62 39220.42 38528.12 38562.35 3625.03 39431.88 40421.61 37934.42 37549.63 386
Patchmatch-test53.33 32448.17 33368.81 27973.31 29242.38 32242.98 38358.23 36632.53 37038.79 36270.77 33739.66 18073.51 35125.18 36752.06 33090.55 83
PMMVS226.71 36122.98 36637.87 37236.89 3968.51 41042.51 38429.32 39919.09 38813.01 39637.54 3872.23 40153.11 38314.54 39011.71 39851.99 385
FPMVS35.40 35133.67 35540.57 36846.34 39128.74 38041.05 38557.05 36820.37 38622.27 39053.38 3796.87 38744.94 3938.62 39547.11 34748.01 387
PMVScopyleft19.57 2225.07 36322.43 36832.99 37823.12 40922.98 38640.98 38635.19 39315.99 39111.95 40035.87 3921.47 40649.29 3875.41 40431.90 38126.70 397
Y. Furukawa, J. Ponce: Accurate, dense, and robust multiview stereopsis. PAMI (2010)
APD_test126.46 36224.41 36332.62 37937.58 39521.74 39040.50 38730.39 39711.45 39616.33 39343.76 3851.63 40541.62 39411.24 39326.82 38734.51 393
JIA-IIPM52.33 32947.77 33666.03 30571.20 31846.92 26540.00 38876.48 28637.10 35946.73 33237.02 38832.96 25977.88 32635.97 32152.45 32973.29 351
DSMNet-mixed38.35 34835.36 35347.33 36148.11 39014.91 40337.87 38936.60 39119.18 38734.37 37259.56 37015.53 36853.01 38420.14 38246.89 34974.07 344
test_vis3_rt24.79 36422.95 36730.31 38028.59 40418.92 39537.43 39017.27 40812.90 39321.28 39129.92 3971.02 40736.35 39728.28 35829.82 38535.65 391
ambc62.06 32753.98 38029.38 37735.08 39179.65 22341.37 35259.96 3686.27 39182.15 28435.34 32538.22 36874.65 341
mvsany_test328.00 35825.98 36034.05 37528.97 40315.31 40134.54 39218.17 40616.24 39029.30 38353.37 3802.79 39833.38 40330.01 34820.41 39453.45 383
testf121.11 36619.08 37027.18 38230.56 40018.28 39733.43 39324.48 4028.02 40012.02 39833.50 3940.75 40935.09 4007.68 39721.32 39128.17 395
APD_test221.11 36619.08 37027.18 38230.56 40018.28 39733.43 39324.48 4028.02 40012.02 39833.50 3940.75 40935.09 4007.68 39721.32 39128.17 395
LCM-MVSNet28.07 35723.85 36540.71 36727.46 40718.93 39430.82 39546.19 37612.76 39416.40 39234.70 3931.90 40348.69 38920.25 38124.22 38954.51 382
test_f27.12 36024.85 36133.93 37626.17 40815.25 40230.24 39622.38 40512.53 39528.23 38449.43 3832.59 39934.34 40225.12 36826.99 38652.20 384
test_method24.09 36521.07 36933.16 37727.67 4068.35 41126.63 39735.11 3943.40 40314.35 39536.98 3893.46 39735.31 39919.08 38522.95 39055.81 381
wuyk23d9.11 3738.77 37710.15 38740.18 39416.76 40020.28 3981.01 4112.58 4042.66 4060.98 4060.23 41112.49 4064.08 4066.90 4031.19 403
MVEpermissive16.60 2317.34 37113.39 37429.16 38128.43 40519.72 39313.73 39923.63 4047.23 4027.96 40221.41 3980.80 40836.08 3986.97 39910.39 39931.69 394
Simon Fuhrmann, Fabian Langguth, Michael Goesele: MVE - A Multi-View Reconstruction Environment. EUROGRAPHICS Workshops on Graphics and Cultural Heritage (2014)
Gipumacopyleft27.47 35924.26 36437.12 37360.55 37229.17 37811.68 40060.00 36514.18 39210.52 40115.12 4022.20 40263.01 3708.39 39635.65 37119.18 398
S. Galliani, K. Lasinger, K. Schindler: Massively Parallel Multiview Stereopsis by Surface Normal Diffusion. ICCV 2015
tmp_tt9.44 37210.68 3755.73 3882.49 4114.21 41210.48 40118.04 4070.34 40512.59 39720.49 39911.39 3747.03 40713.84 3926.46 4045.95 402
test_blank0.00 3780.00 3810.00 3910.00 4130.00 4150.00 4020.00 4130.00 4070.00 4100.00 4090.00 4120.00 4080.00 4090.00 4060.00 406
uanet_test0.00 3780.00 3810.00 3910.00 4130.00 4150.00 4020.00 4130.00 4070.00 4100.00 4090.00 4120.00 4080.00 4090.00 4060.00 406
DCPMVS0.00 3780.00 3810.00 3910.00 4130.00 4150.00 4020.00 4130.00 4070.00 4100.00 4090.00 4120.00 4080.00 4090.00 4060.00 406
cdsmvs_eth3d_5k18.33 37024.44 3620.00 3910.00 4130.00 4150.00 40289.40 220.00 4070.00 41092.02 4738.55 1890.00 4080.00 4090.00 4060.00 406
pcd_1.5k_mvsjas3.15 3774.20 3800.00 3910.00 4130.00 4150.00 4020.00 4130.00 4070.00 4100.00 40937.77 1950.00 4080.00 4090.00 4060.00 406
sosnet-low-res0.00 3780.00 3810.00 3910.00 4130.00 4150.00 4020.00 4130.00 4070.00 4100.00 4090.00 4120.00 4080.00 4090.00 4060.00 406
sosnet0.00 3780.00 3810.00 3910.00 4130.00 4150.00 4020.00 4130.00 4070.00 4100.00 4090.00 4120.00 4080.00 4090.00 4060.00 406
uncertanet0.00 3780.00 3810.00 3910.00 4130.00 4150.00 4020.00 4130.00 4070.00 4100.00 4090.00 4120.00 4080.00 4090.00 4060.00 406
Regformer0.00 3780.00 3810.00 3910.00 4130.00 4150.00 4020.00 4130.00 4070.00 4100.00 4090.00 4120.00 4080.00 4090.00 4060.00 406
ab-mvs-re7.68 37410.24 3760.00 3910.00 4130.00 4150.00 4020.00 4130.00 4070.00 41092.12 440.00 4120.00 4080.00 4090.00 4060.00 406
uanet0.00 3780.00 3810.00 3910.00 4130.00 4150.00 4020.00 4130.00 4070.00 4100.00 4090.00 4120.00 4080.00 4090.00 4060.00 406
WAC-MVS34.28 35422.56 375
MSC_two_6792asdad81.53 1691.77 456.03 4691.10 1096.22 881.46 3486.80 2792.34 34
PC_three_145266.58 5987.27 293.70 1166.82 494.95 1789.74 391.98 493.98 5
No_MVS81.53 1691.77 456.03 4691.10 1096.22 881.46 3486.80 2792.34 34
test_one_060189.39 2257.29 2088.09 5357.21 23482.06 1393.39 2054.94 29
eth-test20.00 413
eth-test0.00 413
ZD-MVS89.55 1453.46 10784.38 13357.02 23673.97 5491.03 6544.57 12091.17 7675.41 7381.78 70
IU-MVS89.48 1757.49 1591.38 966.22 6788.26 182.83 2387.60 1892.44 31
test_241102_TWO88.76 3957.50 22883.60 694.09 356.14 2196.37 682.28 2787.43 2092.55 29
test_241102_ONE89.48 1756.89 2988.94 3057.53 22684.61 493.29 2458.81 1196.45 1
test_0728_THIRD58.00 21481.91 1493.64 1356.54 1796.44 281.64 3286.86 2592.23 36
GSMVS88.13 145
test_part289.33 2355.48 5582.27 12
sam_mvs138.86 18788.13 145
sam_mvs35.99 232
MTGPAbinary81.31 192
test_post16.22 40137.52 20484.72 264
patchmatchnet-post59.74 36938.41 19079.91 310
gm-plane-assit83.24 10854.21 9470.91 2288.23 12995.25 1466.37 124
test9_res78.72 4985.44 4291.39 63
agg_prior275.65 6885.11 4691.01 75
agg_prior85.64 6054.92 7583.61 15372.53 7388.10 174
TestCases55.32 35365.08 35637.50 34754.25 37235.45 36633.42 37672.82 3199.98 37759.33 37524.13 37043.84 35769.13 364
test_prior78.39 7186.35 5154.91 7685.45 9889.70 11890.55 83
新几何173.30 19983.10 11153.48 10671.43 32745.55 32966.14 12787.17 15033.88 25380.54 30048.50 26780.33 8385.88 193
旧先验181.57 15747.48 25671.83 32188.66 11836.94 21578.34 10488.67 133
原ACMM176.13 12484.89 7554.59 8785.26 10851.98 28966.70 11987.07 15240.15 17489.70 11851.23 24985.06 4784.10 218
testdata277.81 32845.64 285
segment_acmp44.97 112
testdata67.08 29677.59 23345.46 28769.20 34444.47 33671.50 8588.34 12631.21 27770.76 36252.20 24475.88 12485.03 205
test1279.24 4486.89 4756.08 4585.16 11372.27 7747.15 8191.10 7985.93 3690.54 85
plane_prior777.95 22748.46 231
plane_prior678.42 22249.39 20536.04 230
plane_prior582.59 17088.30 16765.46 13372.34 16084.49 212
plane_prior483.28 199
plane_prior348.95 21464.01 10062.15 185
plane_prior178.31 224
n20.00 413
nn0.00 413
door-mid41.31 385
lessismore_v067.98 28964.76 35941.25 33045.75 37836.03 36965.63 35519.29 35384.11 26935.67 32221.24 39378.59 302
LGP-MVS_train72.02 22674.42 28148.60 22480.64 20354.69 26953.75 29083.83 18825.73 31386.98 21060.33 17564.71 22080.48 283
test1184.25 137
door43.27 381
HQP5-MVS51.56 155
BP-MVS66.70 121
HQP4-MVS64.47 15688.61 15284.91 208
HQP3-MVS83.68 14973.12 151
HQP2-MVS37.35 207
NP-MVS78.76 21150.43 17685.12 173
ACMMP++_ref63.20 240
ACMMP++59.38 265
Test By Simon39.38 181
ITE_SJBPF51.84 35658.03 37431.94 36753.57 37436.67 36141.32 35375.23 29911.17 37551.57 38525.81 36648.04 33972.02 357
DeepMVS_CXcopyleft13.10 38621.34 4108.99 40810.02 41010.59 3987.53 40330.55 3961.82 40414.55 4056.83 4007.52 40115.75 399