PVSNet_Blended | | | 93.13 34 | 92.98 38 | 93.57 57 | 97.47 76 | 83.86 77 | 99.32 1 | 96.73 56 | 91.02 24 | 89.53 102 | 96.21 112 | 76.42 114 | 99.57 51 | 94.29 44 | 95.81 100 | 97.29 131 |
|
DELS-MVS | | | 94.98 12 | 94.49 19 | 96.44 6 | 96.42 95 | 90.59 7 | 99.21 2 | 97.02 28 | 94.40 5 | 91.46 72 | 97.08 91 | 83.32 45 | 99.69 39 | 92.83 64 | 98.70 30 | 99.04 24 |
Christian Sormann, Emanuele Santellani, Mattia Rossi, Andreas Kuhn, Friedrich Fraundorfer: DELS-MVS: Deep Epipolar Line Search for Multi-View Stereo. Winter Conference on Applications of Computer Vision (WACV), 2023 |
NCCC | | | 95.63 6 | 95.94 8 | 94.69 26 | 99.21 6 | 85.15 57 | 99.16 3 | 96.96 32 | 94.11 6 | 95.59 24 | 98.64 17 | 85.07 33 | 99.91 4 | 95.61 31 | 99.10 9 | 99.00 26 |
|
DPM-MVS | | | 96.21 2 | 95.53 11 | 98.26 1 | 96.26 98 | 95.09 1 | 99.15 4 | 96.98 30 | 93.39 9 | 96.45 18 | 98.79 8 | 90.17 10 | 99.99 1 | 89.33 107 | 99.25 6 | 99.70 3 |
|
lupinMVS | | | 93.87 29 | 93.58 31 | 94.75 25 | 93.00 188 | 88.08 15 | 99.15 4 | 95.50 154 | 91.03 23 | 94.90 33 | 97.66 60 | 78.84 77 | 97.56 153 | 94.64 42 | 97.46 67 | 98.62 44 |
|
SED-MVS | | | 95.88 5 | 96.22 4 | 94.87 21 | 99.03 15 | 85.03 59 | 99.12 6 | 96.78 44 | 88.72 51 | 97.79 4 | 98.91 2 | 88.48 17 | 99.82 18 | 98.15 4 | 98.97 17 | 99.74 1 |
|
OPU-MVS | | | | | 97.30 2 | 99.19 7 | 92.31 3 | 99.12 6 | | | | 98.54 18 | 92.06 3 | 99.84 12 | 99.11 1 | 99.37 1 | 99.74 1 |
|
test0726 | | | | | | 99.05 9 | 85.18 52 | 99.11 8 | 96.78 44 | 88.75 49 | 97.65 9 | 98.91 2 | 87.69 22 | | | | |
|
DVP-MVS |  | | 95.58 8 | 95.91 9 | 94.57 28 | 99.05 9 | 85.18 52 | 99.06 9 | 96.46 91 | 88.75 49 | 96.69 13 | 98.76 12 | 87.69 22 | 99.76 25 | 97.90 9 | 98.85 21 | 98.77 33 |
Zhenlong Yuan, Jinguo Luo, Fei Shen, Zhaoxin Li, Cong Liu, Tianlu Mao, Zhaoqi Wang: DVP-MVS: Synergize Depth-Edge and Visibility Prior for Multi-View Stereo. AAAI2025 |
test_0728_SECOND | | | | | 95.14 16 | 99.04 14 | 86.14 33 | 99.06 9 | 96.77 50 | | | | | 99.84 12 | 97.90 9 | 98.85 21 | 99.45 10 |
|
CANet | | | 94.89 13 | 94.64 17 | 95.63 11 | 97.55 75 | 88.12 14 | 99.06 9 | 96.39 101 | 94.07 7 | 95.34 26 | 97.80 55 | 76.83 108 | 99.87 8 | 97.08 18 | 97.64 63 | 98.89 29 |
|
CNVR-MVS | | | 96.30 1 | 96.54 1 | 95.55 13 | 99.31 5 | 87.69 20 | 99.06 9 | 97.12 24 | 94.66 3 | 96.79 12 | 98.78 9 | 86.42 29 | 99.95 3 | 97.59 13 | 99.18 7 | 99.00 26 |
|
SteuartSystems-ACMMP | | | 94.13 26 | 94.44 21 | 93.20 71 | 95.41 119 | 81.35 126 | 99.02 13 | 96.59 77 | 89.50 42 | 94.18 44 | 98.36 25 | 83.68 44 | 99.45 61 | 94.77 38 | 98.45 39 | 98.81 32 |
Skip Steuart: Steuart Systems R&D Blog. |
DeepPCF-MVS | | 89.82 1 | 94.61 17 | 96.17 5 | 89.91 180 | 97.09 90 | 70.21 309 | 98.99 14 | 96.69 62 | 95.57 1 | 95.08 30 | 99.23 1 | 86.40 30 | 99.87 8 | 97.84 11 | 98.66 31 | 99.65 6 |
|
MCST-MVS | | | 96.17 3 | 96.12 6 | 96.32 7 | 99.42 2 | 89.36 9 | 98.94 15 | 97.10 26 | 95.17 2 | 92.11 65 | 98.46 22 | 87.33 24 | 99.97 2 | 97.21 17 | 99.31 4 | 99.63 7 |
|
IB-MVS | | 85.34 4 | 88.67 126 | 87.14 146 | 93.26 68 | 93.12 186 | 84.32 71 | 98.76 16 | 97.27 18 | 87.19 88 | 79.36 213 | 90.45 220 | 83.92 42 | 98.53 114 | 84.41 146 | 69.79 290 | 96.93 141 |
Christian Sormann, Mattia Rossi, Andreas Kuhn and Friedrich Fraundorfer: IB-MVS: An Iterative Algorithm for Deep Multi-View Stereo based on Binary Decisions. BMVC 2021 |
CS-MVS-test | | | 92.98 37 | 93.67 28 | 90.90 150 | 96.52 94 | 76.87 239 | 98.68 17 | 94.73 194 | 90.36 33 | 94.84 35 | 97.89 50 | 77.94 89 | 97.15 184 | 94.28 46 | 97.80 60 | 98.70 40 |
|
alignmvs | | | 92.97 38 | 92.26 52 | 95.12 17 | 95.54 116 | 87.77 18 | 98.67 18 | 96.38 102 | 88.04 65 | 93.01 56 | 97.45 72 | 79.20 73 | 98.60 110 | 93.25 59 | 88.76 162 | 98.99 28 |
|
jason | | | 92.73 43 | 92.23 53 | 94.21 38 | 90.50 249 | 87.30 24 | 98.65 19 | 95.09 175 | 90.61 27 | 92.76 59 | 97.13 88 | 75.28 140 | 97.30 173 | 93.32 57 | 96.75 88 | 98.02 77 |
jason: jason. |
MSLP-MVS++ | | | 94.28 21 | 94.39 22 | 93.97 43 | 98.30 49 | 84.06 75 | 98.64 20 | 96.93 35 | 90.71 26 | 93.08 55 | 98.70 15 | 79.98 65 | 99.21 74 | 94.12 47 | 99.07 11 | 98.63 43 |
|
PHI-MVS | | | 93.59 31 | 93.63 29 | 93.48 63 | 98.05 58 | 81.76 118 | 98.64 20 | 97.13 23 | 82.60 187 | 94.09 45 | 98.49 21 | 80.35 59 | 99.85 10 | 94.74 40 | 98.62 32 | 98.83 31 |
|
save fliter | | | | | | 98.24 51 | 83.34 89 | 98.61 22 | 96.57 79 | 91.32 19 | | | | | | | |
|
CS-MVS | | | 92.73 43 | 93.48 33 | 90.48 162 | 96.27 97 | 75.93 258 | 98.55 23 | 94.93 181 | 89.32 43 | 94.54 40 | 97.67 59 | 78.91 76 | 97.02 188 | 93.80 49 | 97.32 74 | 98.49 49 |
|
DP-MVS Recon | | | 91.72 64 | 90.85 73 | 94.34 32 | 99.50 1 | 85.00 61 | 98.51 24 | 95.96 130 | 80.57 215 | 88.08 121 | 97.63 66 | 76.84 107 | 99.89 7 | 85.67 137 | 94.88 105 | 98.13 72 |
|
patch_mono-2 | | | 95.14 11 | 96.08 7 | 92.33 102 | 98.44 43 | 77.84 221 | 98.43 25 | 97.21 20 | 92.58 11 | 97.68 8 | 97.65 64 | 86.88 26 | 99.83 16 | 98.25 3 | 97.60 64 | 99.33 17 |
|
CP-MVS | | | 92.54 52 | 92.60 46 | 92.34 101 | 98.50 40 | 79.90 158 | 98.40 26 | 96.40 99 | 84.75 130 | 90.48 90 | 98.09 37 | 77.40 99 | 99.21 74 | 91.15 79 | 98.23 50 | 97.92 88 |
|
test_prior2 | | | | | | | | 98.37 27 | | 86.08 104 | 94.57 39 | 98.02 43 | 83.14 46 | | 95.05 36 | 98.79 26 | |
|
EPNet | | | 94.06 27 | 94.15 25 | 93.76 48 | 97.27 87 | 84.35 70 | 98.29 28 | 97.64 13 | 94.57 4 | 95.36 25 | 96.88 97 | 79.96 66 | 99.12 86 | 91.30 77 | 96.11 93 | 97.82 96 |
Wanjuan Su, Wenbing Tao: Efficient Edge-Preserving Multi-View Stereo Network for Depth Estimation. AAAI 2023 |
Fast-Effi-MVS+ | | | 87.93 146 | 86.94 151 | 90.92 149 | 94.04 160 | 79.16 179 | 98.26 29 | 93.72 251 | 81.29 203 | 83.94 161 | 92.90 184 | 69.83 199 | 96.68 206 | 76.70 222 | 91.74 143 | 96.93 141 |
|
WTY-MVS | | | 92.65 49 | 91.68 62 | 95.56 12 | 96.00 105 | 88.90 11 | 98.23 30 | 97.65 12 | 88.57 54 | 89.82 96 | 97.22 85 | 79.29 70 | 99.06 89 | 89.57 103 | 88.73 163 | 98.73 38 |
|
PS-MVSNAJ | | | 94.17 24 | 93.52 32 | 96.10 8 | 95.65 113 | 92.35 2 | 98.21 31 | 95.79 140 | 92.42 13 | 96.24 19 | 98.18 30 | 71.04 190 | 99.17 81 | 96.77 20 | 97.39 72 | 96.79 147 |
|
xiu_mvs_v2_base | | | 93.92 28 | 93.26 36 | 95.91 9 | 95.07 130 | 92.02 6 | 98.19 32 | 95.68 145 | 92.06 15 | 96.01 22 | 98.14 34 | 70.83 193 | 98.96 94 | 96.74 21 | 96.57 89 | 96.76 150 |
|
9.14 | | | | 94.26 24 | | 98.10 57 | | 98.14 33 | 96.52 84 | 84.74 131 | 94.83 36 | 98.80 7 | 82.80 50 | 99.37 66 | 95.95 26 | 98.42 40 | |
|
ET-MVSNet_ETH3D | | | 90.01 100 | 89.03 105 | 92.95 80 | 94.38 150 | 86.77 28 | 98.14 33 | 96.31 108 | 89.30 44 | 63.33 329 | 96.72 106 | 90.09 11 | 93.63 310 | 90.70 87 | 82.29 218 | 98.46 51 |
|
CLD-MVS | | | 87.97 145 | 87.48 137 | 89.44 188 | 92.16 216 | 80.54 144 | 98.14 33 | 94.92 182 | 91.41 18 | 79.43 212 | 95.40 133 | 62.34 238 | 97.27 176 | 90.60 88 | 82.90 212 | 90.50 232 |
Zhaoxin Li, Wangmeng Zuo, Zhaoqi Wang, Lei Zhang: Confidence-based Large-scale Dense Multi-view Stereo. IEEE Transaction on Image Processing, 2020 |
DVP-MVS++ | | | 96.05 4 | 96.41 3 | 94.96 20 | 99.05 9 | 85.34 47 | 98.13 36 | 96.77 50 | 88.38 58 | 97.70 6 | 98.77 10 | 92.06 3 | 99.84 12 | 97.47 14 | 99.37 1 | 99.70 3 |
|
FOURS1 | | | | | | 98.51 39 | 78.01 213 | 98.13 36 | 96.21 114 | 83.04 176 | 94.39 41 | | | | | | |
|
TSAR-MVS + GP. | | | 94.35 20 | 94.50 18 | 93.89 45 | 97.38 84 | 83.04 94 | 98.10 38 | 95.29 169 | 91.57 17 | 93.81 46 | 97.45 72 | 86.64 27 | 99.43 62 | 96.28 22 | 94.01 115 | 99.20 22 |
|
test_yl | | | 91.46 70 | 90.53 78 | 94.24 36 | 97.41 80 | 85.18 52 | 98.08 39 | 97.72 10 | 80.94 207 | 89.85 94 | 96.14 113 | 75.61 127 | 98.81 104 | 90.42 94 | 88.56 165 | 98.74 34 |
|
DCV-MVSNet | | | 91.46 70 | 90.53 78 | 94.24 36 | 97.41 80 | 85.18 52 | 98.08 39 | 97.72 10 | 80.94 207 | 89.85 94 | 96.14 113 | 75.61 127 | 98.81 104 | 90.42 94 | 88.56 165 | 98.74 34 |
|
DROMVSNet | | | 91.73 62 | 92.11 56 | 90.58 159 | 93.54 171 | 77.77 223 | 98.07 41 | 94.40 216 | 87.44 79 | 92.99 57 | 97.11 90 | 74.59 151 | 96.87 197 | 93.75 50 | 97.08 78 | 97.11 136 |
|
EIA-MVS | | | 91.73 62 | 92.05 57 | 90.78 155 | 94.52 145 | 76.40 247 | 98.06 42 | 95.34 167 | 89.19 45 | 88.90 109 | 97.28 83 | 77.56 96 | 97.73 146 | 90.77 85 | 96.86 85 | 98.20 66 |
|
DeepC-MVS_fast | | 89.06 2 | 94.48 19 | 94.30 23 | 95.02 18 | 98.86 21 | 85.68 42 | 98.06 42 | 96.64 70 | 93.64 8 | 91.74 70 | 98.54 18 | 80.17 64 | 99.90 5 | 92.28 69 | 98.75 28 | 99.49 8 |
Andreas Kuhn, Christian Sormann, Mattia Rossi, Oliver Erdler, Friedrich Fraundorfer: DeepC-MVS: Deep Confidence Prediction for Multi-View Stereo Reconstruction. 3DV 2020 |
APDe-MVS | | | 94.56 18 | 94.75 15 | 93.96 44 | 98.84 22 | 83.40 88 | 98.04 44 | 96.41 97 | 85.79 109 | 95.00 32 | 98.28 27 | 84.32 39 | 99.18 80 | 97.35 16 | 98.77 27 | 99.28 19 |
|
PVSNet_BlendedMVS | | | 90.05 99 | 89.96 92 | 90.33 167 | 97.47 76 | 83.86 77 | 98.02 45 | 96.73 56 | 87.98 66 | 89.53 102 | 89.61 232 | 76.42 114 | 99.57 51 | 94.29 44 | 79.59 231 | 87.57 299 |
|
ETV-MVS | | | 92.72 45 | 92.87 40 | 92.28 105 | 94.54 144 | 81.89 112 | 97.98 46 | 95.21 172 | 89.77 40 | 93.11 54 | 96.83 99 | 77.23 104 | 97.50 161 | 95.74 29 | 95.38 102 | 97.44 122 |
|
MG-MVS | | | 94.25 23 | 93.72 27 | 95.85 10 | 99.38 3 | 89.35 10 | 97.98 46 | 98.09 8 | 89.99 36 | 92.34 61 | 96.97 94 | 81.30 55 | 98.99 92 | 88.54 113 | 98.88 20 | 99.20 22 |
|
thisisatest0515 | | | 90.95 83 | 90.26 84 | 93.01 78 | 94.03 162 | 84.27 73 | 97.91 48 | 96.67 64 | 83.18 171 | 86.87 132 | 95.51 131 | 88.66 16 | 97.85 142 | 80.46 183 | 89.01 159 | 96.92 143 |
|
VNet | | | 92.11 57 | 91.22 68 | 94.79 23 | 96.91 91 | 86.98 25 | 97.91 48 | 97.96 9 | 86.38 99 | 93.65 48 | 95.74 121 | 70.16 198 | 98.95 96 | 93.39 54 | 88.87 161 | 98.43 53 |
|
test_fmvs1 | | | 87.79 148 | 88.52 115 | 85.62 265 | 92.98 192 | 64.31 332 | 97.88 50 | 92.42 285 | 87.95 67 | 92.24 62 | 95.82 120 | 47.94 314 | 98.44 122 | 95.31 35 | 94.09 112 | 94.09 203 |
|
thres200 | | | 88.92 118 | 87.65 129 | 92.73 88 | 96.30 96 | 85.62 43 | 97.85 51 | 98.86 1 | 84.38 143 | 84.82 149 | 93.99 171 | 75.12 143 | 98.01 134 | 70.86 271 | 86.67 178 | 94.56 197 |
|
3Dnovator+ | | 82.88 8 | 89.63 105 | 87.85 125 | 94.99 19 | 94.49 149 | 86.76 29 | 97.84 52 | 95.74 142 | 86.10 103 | 75.47 261 | 96.02 116 | 65.00 225 | 99.51 57 | 82.91 170 | 97.07 79 | 98.72 39 |
|
TEST9 | | | | | | 98.64 31 | 83.71 80 | 97.82 53 | 96.65 67 | 84.29 146 | 95.16 27 | 98.09 37 | 84.39 35 | 99.36 67 | | | |
|
train_agg | | | 94.28 21 | 94.45 20 | 93.74 49 | 98.64 31 | 83.71 80 | 97.82 53 | 96.65 67 | 84.50 139 | 95.16 27 | 98.09 37 | 84.33 36 | 99.36 67 | 95.91 27 | 98.96 19 | 98.16 69 |
|
test_8 | | | | | | 98.63 33 | 83.64 83 | 97.81 55 | 96.63 72 | 84.50 139 | 95.10 29 | 98.11 36 | 84.33 36 | 99.23 72 | | | |
|
HPM-MVS++ |  | | 95.32 9 | 95.48 12 | 94.85 22 | 98.62 34 | 86.04 34 | 97.81 55 | 96.93 35 | 92.45 12 | 95.69 23 | 98.50 20 | 85.38 31 | 99.85 10 | 94.75 39 | 99.18 7 | 98.65 42 |
|
DPE-MVS |  | | 95.32 9 | 95.55 10 | 94.64 27 | 98.79 23 | 84.87 64 | 97.77 57 | 96.74 55 | 86.11 102 | 96.54 17 | 98.89 6 | 88.39 19 | 99.74 32 | 97.67 12 | 99.05 12 | 99.31 18 |
Kehua Chen, Zhenlong Yuan, Tianlu Mao, Zhaoqi Wang: Dual-Level Precision Edges Guided Multi-View Stereo with Accurate Planarization. AAAI2025 |
PVSNet_Blended_VisFu | | | 91.24 76 | 90.77 75 | 92.66 90 | 95.09 128 | 82.40 104 | 97.77 57 | 95.87 137 | 88.26 61 | 86.39 134 | 93.94 172 | 76.77 109 | 99.27 70 | 88.80 112 | 94.00 116 | 96.31 164 |
|
SD-MVS | | | 94.84 14 | 95.02 14 | 94.29 34 | 97.87 64 | 84.61 67 | 97.76 59 | 96.19 117 | 89.59 41 | 96.66 15 | 98.17 33 | 84.33 36 | 99.60 48 | 96.09 23 | 98.50 36 | 98.66 41 |
Zhenlong Yuan, Jiakai Cao, Zhaoxin Li, Hao Jiang and Zhaoqi Wang: SD-MVS: Segmentation-driven Deformation Multi-View Stereo with Spherical Refinement and EM optimization. AAAI2024 |
test_prior4 | | | | | | | 82.34 105 | 97.75 60 | | | | | | | | | |
|
SF-MVS | | | 94.17 24 | 94.05 26 | 94.55 29 | 97.56 74 | 85.95 35 | 97.73 61 | 96.43 95 | 84.02 151 | 95.07 31 | 98.74 14 | 82.93 48 | 99.38 64 | 95.42 34 | 98.51 34 | 98.32 58 |
|
3Dnovator | | 82.32 10 | 89.33 110 | 87.64 130 | 94.42 31 | 93.73 167 | 85.70 41 | 97.73 61 | 96.75 54 | 86.73 98 | 76.21 249 | 95.93 117 | 62.17 239 | 99.68 41 | 81.67 176 | 97.81 59 | 97.88 89 |
|
CPTT-MVS | | | 89.72 103 | 89.87 96 | 89.29 190 | 98.33 47 | 73.30 280 | 97.70 63 | 95.35 166 | 75.68 284 | 87.40 125 | 97.44 75 | 70.43 195 | 98.25 128 | 89.56 104 | 96.90 81 | 96.33 163 |
|
PVSNet | | 82.34 9 | 89.02 115 | 87.79 127 | 92.71 89 | 95.49 117 | 81.50 124 | 97.70 63 | 97.29 17 | 87.76 72 | 85.47 142 | 95.12 144 | 56.90 279 | 98.90 100 | 80.33 184 | 94.02 114 | 97.71 104 |
|
iter_conf05 | | | 90.14 98 | 89.79 97 | 91.17 142 | 95.85 109 | 86.93 26 | 97.68 65 | 88.67 333 | 89.93 37 | 81.73 191 | 92.80 185 | 90.37 8 | 96.03 224 | 90.44 92 | 80.65 224 | 90.56 230 |
|
CDPH-MVS | | | 93.12 35 | 92.91 39 | 93.74 49 | 98.65 30 | 83.88 76 | 97.67 66 | 96.26 110 | 83.00 178 | 93.22 53 | 98.24 28 | 81.31 54 | 99.21 74 | 89.12 108 | 98.74 29 | 98.14 71 |
|
ZNCC-MVS | | | 92.75 41 | 92.60 46 | 93.23 70 | 98.24 51 | 81.82 116 | 97.63 67 | 96.50 87 | 85.00 127 | 91.05 81 | 97.74 57 | 78.38 83 | 99.80 24 | 90.48 89 | 98.34 46 | 98.07 75 |
|
HQP-NCC | | | | | | 92.08 218 | | 97.63 67 | | 90.52 28 | 82.30 178 | | | | | | |
|
ACMP_Plane | | | | | | 92.08 218 | | 97.63 67 | | 90.52 28 | 82.30 178 | | | | | | |
|
HQP-MVS | | | 87.91 147 | 87.55 135 | 88.98 195 | 92.08 218 | 78.48 195 | 97.63 67 | 94.80 190 | 90.52 28 | 82.30 178 | 94.56 157 | 65.40 221 | 97.32 171 | 87.67 124 | 83.01 209 | 91.13 223 |
|
HFP-MVS | | | 92.89 39 | 92.86 41 | 92.98 79 | 98.71 25 | 81.12 129 | 97.58 71 | 96.70 60 | 85.20 122 | 91.75 69 | 97.97 48 | 78.47 82 | 99.71 36 | 90.95 80 | 98.41 41 | 98.12 73 |
|
ACMMPR | | | 92.69 47 | 92.67 44 | 92.75 86 | 98.66 28 | 80.57 141 | 97.58 71 | 96.69 62 | 85.20 122 | 91.57 71 | 97.92 49 | 77.01 105 | 99.67 43 | 90.95 80 | 98.41 41 | 98.00 82 |
|
MVS_111021_HR | | | 93.41 33 | 93.39 35 | 93.47 65 | 97.34 85 | 82.83 96 | 97.56 73 | 98.27 6 | 89.16 46 | 89.71 97 | 97.14 87 | 79.77 67 | 99.56 53 | 93.65 52 | 97.94 56 | 98.02 77 |
|
VDD-MVS | | | 88.28 138 | 87.02 149 | 92.06 113 | 95.09 128 | 80.18 154 | 97.55 74 | 94.45 214 | 83.09 174 | 89.10 107 | 95.92 119 | 47.97 313 | 98.49 116 | 93.08 63 | 86.91 177 | 97.52 118 |
|
GeoE | | | 86.36 167 | 85.20 168 | 89.83 183 | 93.17 182 | 76.13 250 | 97.53 75 | 92.11 289 | 79.58 239 | 80.99 195 | 94.01 170 | 66.60 215 | 96.17 222 | 73.48 253 | 89.30 156 | 97.20 134 |
|
MTMP | | | | | | | | 97.53 75 | 68.16 371 | | | | | | | | |
|
region2R | | | 92.72 45 | 92.70 43 | 92.79 85 | 98.68 26 | 80.53 145 | 97.53 75 | 96.51 85 | 85.22 120 | 91.94 67 | 97.98 46 | 77.26 100 | 99.67 43 | 90.83 84 | 98.37 44 | 98.18 67 |
|
plane_prior | | | | | | | 77.96 215 | 97.52 78 | | 90.36 33 | | | | | | 82.96 211 | |
|
API-MVS | | | 90.18 97 | 88.97 107 | 93.80 47 | 98.66 28 | 82.95 95 | 97.50 79 | 95.63 148 | 75.16 288 | 86.31 135 | 97.69 58 | 72.49 173 | 99.90 5 | 81.26 178 | 96.07 94 | 98.56 46 |
|
SMA-MVS |  | | 94.70 16 | 94.68 16 | 94.76 24 | 98.02 59 | 85.94 37 | 97.47 80 | 96.77 50 | 85.32 117 | 97.92 3 | 98.70 15 | 83.09 47 | 99.84 12 | 95.79 28 | 99.08 10 | 98.49 49 |
Yufeng Yin; Xiaoyan Liu; Zichao Zhang: SMA-MVS: Segmentation-Guided Multi-Scale Anchor Deformation Patch Multi-View Stereo. IEEE Transactions on Circuits and Systems for Video Technology |
CSCG | | | 92.02 58 | 91.65 63 | 93.12 73 | 98.53 36 | 80.59 140 | 97.47 80 | 97.18 22 | 77.06 276 | 84.64 153 | 97.98 46 | 83.98 41 | 99.52 55 | 90.72 86 | 97.33 73 | 99.23 21 |
|
casdiffmvs_mvg |  | | 91.13 79 | 90.45 80 | 93.17 72 | 92.99 191 | 83.58 84 | 97.46 82 | 94.56 207 | 87.69 74 | 87.19 129 | 94.98 150 | 74.50 152 | 97.60 150 | 91.88 75 | 92.79 130 | 98.34 56 |
Fangjinhua Wang, Qingshan Xu, Yew-Soon Ong, Marc Pollefeys: Lightweight and Accurate Multi-View Stereo With Confidence-Aware Diffusion Model. IEEE T-PAMI 2025 |
Anonymous202405211 | | | 84.41 200 | 81.93 219 | 91.85 122 | 96.78 93 | 78.41 199 | 97.44 83 | 91.34 302 | 70.29 322 | 84.06 156 | 94.26 163 | 41.09 337 | 98.96 94 | 79.46 194 | 82.65 216 | 98.17 68 |
|
tfpn200view9 | | | 88.48 131 | 87.15 144 | 92.47 96 | 96.21 99 | 85.30 50 | 97.44 83 | 98.85 2 | 83.37 168 | 83.99 158 | 93.82 174 | 75.36 137 | 97.93 136 | 69.04 279 | 86.24 185 | 94.17 199 |
|
thres400 | | | 88.42 134 | 87.15 144 | 92.23 106 | 96.21 99 | 85.30 50 | 97.44 83 | 98.85 2 | 83.37 168 | 83.99 158 | 93.82 174 | 75.36 137 | 97.93 136 | 69.04 279 | 86.24 185 | 93.45 214 |
|
OpenMVS |  | 79.58 14 | 86.09 172 | 83.62 196 | 93.50 61 | 90.95 240 | 86.71 30 | 97.44 83 | 95.83 138 | 75.35 285 | 72.64 283 | 95.72 122 | 57.42 276 | 99.64 45 | 71.41 264 | 95.85 99 | 94.13 202 |
|
MSP-MVS | | | 95.62 7 | 96.54 1 | 92.86 83 | 98.31 48 | 80.10 155 | 97.42 87 | 96.78 44 | 92.20 14 | 97.11 11 | 98.29 26 | 93.46 1 | 99.10 87 | 96.01 24 | 99.30 5 | 99.38 14 |
Zhenlong Yuan, Cong Liu, Fei Shen, Zhaoxin Li, Jingguo luo, Tianlu Mao and Zhaoqi Wang: MSP-MVS: Multi-granularity Segmentation Prior Guided Multi-View Stereo. AAAI2025 |
BH-w/o | | | 88.24 139 | 87.47 138 | 90.54 161 | 95.03 133 | 78.54 194 | 97.41 88 | 93.82 242 | 84.08 149 | 78.23 223 | 94.51 159 | 69.34 201 | 97.21 178 | 80.21 188 | 94.58 109 | 95.87 172 |
|
GST-MVS | | | 92.43 54 | 92.22 54 | 93.04 77 | 98.17 54 | 81.64 122 | 97.40 89 | 96.38 102 | 84.71 133 | 90.90 84 | 97.40 77 | 77.55 97 | 99.76 25 | 89.75 101 | 97.74 61 | 97.72 102 |
|
XVS | | | 92.69 47 | 92.71 42 | 92.63 92 | 98.52 37 | 80.29 148 | 97.37 90 | 96.44 93 | 87.04 90 | 91.38 73 | 97.83 54 | 77.24 102 | 99.59 49 | 90.46 90 | 98.07 52 | 98.02 77 |
|
X-MVStestdata | | | 86.26 170 | 84.14 189 | 92.63 92 | 98.52 37 | 80.29 148 | 97.37 90 | 96.44 93 | 87.04 90 | 91.38 73 | 20.73 375 | 77.24 102 | 99.59 49 | 90.46 90 | 98.07 52 | 98.02 77 |
|
MP-MVS |  | | 92.61 50 | 92.67 44 | 92.42 99 | 98.13 56 | 79.73 165 | 97.33 92 | 96.20 115 | 85.63 111 | 90.53 88 | 97.66 60 | 78.14 87 | 99.70 38 | 92.12 71 | 98.30 48 | 97.85 93 |
Rongxuan Tan, Qing Wang, et al.: MP-MVS: Multi-Scale Windows PatchMatch and Planar Prior Multi-View Stereo. |
mPP-MVS | | | 91.88 60 | 91.82 59 | 92.07 112 | 98.38 44 | 78.63 193 | 97.29 93 | 96.09 122 | 85.12 124 | 88.45 115 | 97.66 60 | 75.53 130 | 99.68 41 | 89.83 99 | 98.02 55 | 97.88 89 |
|
iter_conf_final | | | 89.51 106 | 89.21 103 | 90.39 164 | 95.60 114 | 84.44 69 | 97.22 94 | 89.09 326 | 89.11 47 | 82.07 185 | 92.80 185 | 87.03 25 | 96.03 224 | 89.10 109 | 80.89 221 | 90.70 228 |
|
EPP-MVSNet | | | 89.76 102 | 89.72 98 | 89.87 181 | 93.78 164 | 76.02 255 | 97.22 94 | 96.51 85 | 79.35 242 | 85.11 144 | 95.01 148 | 84.82 34 | 97.10 186 | 87.46 126 | 88.21 169 | 96.50 156 |
|
APD-MVS |  | | 93.61 30 | 93.59 30 | 93.69 52 | 98.76 24 | 83.26 90 | 97.21 96 | 96.09 122 | 82.41 189 | 94.65 38 | 98.21 29 | 81.96 53 | 98.81 104 | 94.65 41 | 98.36 45 | 99.01 25 |
Yuesong Wang, Zhaojie Zeng and etc.: Adaptive Patch Deformation for Textureless-Resilient Multi-View Stereo. CVPR2023 |
CNLPA | | | 86.96 157 | 85.37 166 | 91.72 126 | 97.59 72 | 79.34 175 | 97.21 96 | 91.05 307 | 74.22 294 | 78.90 215 | 96.75 105 | 67.21 210 | 98.95 96 | 74.68 241 | 90.77 149 | 96.88 145 |
|
PAPR | | | 92.74 42 | 92.17 55 | 94.45 30 | 98.89 20 | 84.87 64 | 97.20 98 | 96.20 115 | 87.73 73 | 88.40 116 | 98.12 35 | 78.71 80 | 99.76 25 | 87.99 120 | 96.28 91 | 98.74 34 |
|
QAPM | | | 86.88 159 | 84.51 180 | 93.98 42 | 94.04 160 | 85.89 38 | 97.19 99 | 96.05 126 | 73.62 299 | 75.12 264 | 95.62 127 | 62.02 242 | 99.74 32 | 70.88 270 | 96.06 95 | 96.30 165 |
|
LFMVS | | | 89.27 112 | 87.64 130 | 94.16 41 | 97.16 88 | 85.52 45 | 97.18 100 | 94.66 199 | 79.17 248 | 89.63 100 | 96.57 108 | 55.35 290 | 98.22 129 | 89.52 105 | 89.54 154 | 98.74 34 |
|
HQP_MVS | | | 87.50 153 | 87.09 147 | 88.74 200 | 91.86 227 | 77.96 215 | 97.18 100 | 94.69 195 | 89.89 38 | 81.33 192 | 94.15 167 | 64.77 227 | 97.30 173 | 87.08 128 | 82.82 213 | 90.96 225 |
|
plane_prior2 | | | | | | | | 97.18 100 | | 89.89 38 | | | | | | | |
|
MAR-MVS | | | 90.63 88 | 90.22 85 | 91.86 120 | 98.47 42 | 78.20 209 | 97.18 100 | 96.61 73 | 83.87 158 | 88.18 120 | 98.18 30 | 68.71 202 | 99.75 30 | 83.66 160 | 97.15 77 | 97.63 110 |
Zhenyu Xu, Yiguang Liu, Xuelei Shi, Ying Wang, Yunan Zheng: MARMVS: Matching Ambiguity Reduced Multiple View Stereo for Efficient Large Scale Scene Reconstruction. CVPR 2020 |
PLC |  | 83.97 7 | 88.00 144 | 87.38 140 | 89.83 183 | 98.02 59 | 76.46 245 | 97.16 104 | 94.43 215 | 79.26 247 | 81.98 186 | 96.28 111 | 69.36 200 | 99.27 70 | 77.71 210 | 92.25 138 | 93.77 209 |
Jie Liao, Yanping Fu, Qingan Yan, Chunxia xiao: Pyramid Multi-View Stereo with Local Consistency. Pacific Graphics 2019 |
HPM-MVS_fast | | | 90.38 95 | 90.17 88 | 91.03 146 | 97.61 70 | 77.35 232 | 97.15 105 | 95.48 155 | 79.51 240 | 88.79 110 | 96.90 95 | 71.64 184 | 98.81 104 | 87.01 131 | 97.44 69 | 96.94 140 |
|
thres100view900 | | | 88.30 137 | 86.95 150 | 92.33 102 | 96.10 103 | 84.90 63 | 97.14 106 | 98.85 2 | 82.69 185 | 83.41 166 | 93.66 177 | 75.43 134 | 97.93 136 | 69.04 279 | 86.24 185 | 94.17 199 |
|
thres600view7 | | | 88.06 142 | 86.70 154 | 92.15 110 | 96.10 103 | 85.17 56 | 97.14 106 | 98.85 2 | 82.70 184 | 83.41 166 | 93.66 177 | 75.43 134 | 97.82 143 | 67.13 289 | 85.88 189 | 93.45 214 |
|
sss | | | 90.87 85 | 89.96 92 | 93.60 56 | 94.15 156 | 83.84 79 | 97.14 106 | 98.13 7 | 85.93 107 | 89.68 98 | 96.09 115 | 71.67 182 | 99.30 69 | 87.69 123 | 89.16 157 | 97.66 107 |
|
test-LLR | | | 88.48 131 | 87.98 123 | 89.98 176 | 92.26 209 | 77.23 234 | 97.11 109 | 95.96 130 | 83.76 162 | 86.30 136 | 91.38 203 | 72.30 176 | 96.78 203 | 80.82 180 | 91.92 141 | 95.94 170 |
|
TESTMET0.1,1 | | | 89.83 101 | 89.34 102 | 91.31 136 | 92.54 202 | 80.19 153 | 97.11 109 | 96.57 79 | 86.15 101 | 86.85 133 | 91.83 199 | 79.32 69 | 96.95 191 | 81.30 177 | 92.35 137 | 96.77 149 |
|
test-mter | | | 88.95 116 | 88.60 113 | 89.98 176 | 92.26 209 | 77.23 234 | 97.11 109 | 95.96 130 | 85.32 117 | 86.30 136 | 91.38 203 | 76.37 116 | 96.78 203 | 80.82 180 | 91.92 141 | 95.94 170 |
|
VDDNet | | | 86.44 166 | 84.51 180 | 92.22 107 | 91.56 230 | 81.83 115 | 97.10 112 | 94.64 202 | 69.50 326 | 87.84 122 | 95.19 139 | 48.01 312 | 97.92 141 | 89.82 100 | 86.92 176 | 96.89 144 |
|
canonicalmvs | | | 92.27 55 | 91.22 68 | 95.41 14 | 95.80 110 | 88.31 12 | 97.09 113 | 94.64 202 | 88.49 56 | 92.99 57 | 97.31 79 | 72.68 171 | 98.57 112 | 93.38 56 | 88.58 164 | 99.36 16 |
|
CDS-MVSNet | | | 89.50 107 | 88.96 108 | 91.14 144 | 91.94 226 | 80.93 133 | 97.09 113 | 95.81 139 | 84.26 147 | 84.72 151 | 94.20 166 | 80.31 60 | 95.64 252 | 83.37 165 | 88.96 160 | 96.85 146 |
Khang Truong Giang, Soohwan Song, Sungho Jo: Curvature-guided dynamic scale networks for Multi-view Stereo. ICLR 2022 |
nrg030 | | | 86.79 162 | 85.43 164 | 90.87 152 | 88.76 273 | 85.34 47 | 97.06 115 | 94.33 218 | 84.31 144 | 80.45 202 | 91.98 194 | 72.36 174 | 96.36 215 | 88.48 116 | 71.13 277 | 90.93 227 |
|
cascas | | | 86.50 165 | 84.48 182 | 92.55 95 | 92.64 200 | 85.95 35 | 97.04 116 | 95.07 177 | 75.32 286 | 80.50 200 | 91.02 210 | 54.33 297 | 97.98 135 | 86.79 133 | 87.62 172 | 93.71 210 |
|
xiu_mvs_v1_base_debu | | | 90.54 90 | 89.54 99 | 93.55 58 | 92.31 204 | 87.58 21 | 96.99 117 | 94.87 185 | 87.23 85 | 93.27 50 | 97.56 68 | 57.43 273 | 98.32 125 | 92.72 65 | 93.46 124 | 94.74 192 |
|
xiu_mvs_v1_base | | | 90.54 90 | 89.54 99 | 93.55 58 | 92.31 204 | 87.58 21 | 96.99 117 | 94.87 185 | 87.23 85 | 93.27 50 | 97.56 68 | 57.43 273 | 98.32 125 | 92.72 65 | 93.46 124 | 94.74 192 |
|
xiu_mvs_v1_base_debi | | | 90.54 90 | 89.54 99 | 93.55 58 | 92.31 204 | 87.58 21 | 96.99 117 | 94.87 185 | 87.23 85 | 93.27 50 | 97.56 68 | 57.43 273 | 98.32 125 | 92.72 65 | 93.46 124 | 94.74 192 |
|
HPM-MVS |  | | 91.62 67 | 91.53 65 | 91.89 119 | 97.88 63 | 79.22 177 | 96.99 117 | 95.73 143 | 82.07 195 | 89.50 104 | 97.19 86 | 75.59 129 | 98.93 99 | 90.91 82 | 97.94 56 | 97.54 114 |
Chunlin Ren, Qingshan Xu, Shikun Zhang, Jiaqi Yang: Hierarchical Prior Mining for Non-local Multi-View Stereo. ICCV 2023 |
114514_t | | | 88.79 124 | 87.57 134 | 92.45 97 | 98.21 53 | 81.74 119 | 96.99 117 | 95.45 158 | 75.16 288 | 82.48 175 | 95.69 124 | 68.59 203 | 98.50 115 | 80.33 184 | 95.18 103 | 97.10 137 |
|
旧先验2 | | | | | | | | 96.97 122 | | 74.06 297 | 96.10 20 | | | 97.76 145 | 88.38 117 | | |
|
h-mvs33 | | | 89.30 111 | 88.95 109 | 90.36 166 | 95.07 130 | 76.04 252 | 96.96 123 | 97.11 25 | 90.39 31 | 92.22 63 | 95.10 145 | 74.70 147 | 98.86 101 | 93.14 60 | 65.89 322 | 96.16 166 |
|
BH-RMVSNet | | | 86.84 160 | 85.28 167 | 91.49 133 | 95.35 121 | 80.26 151 | 96.95 124 | 92.21 288 | 82.86 182 | 81.77 190 | 95.46 132 | 59.34 259 | 97.64 148 | 69.79 277 | 93.81 119 | 96.57 155 |
|
Vis-MVSNet |  | | 88.67 126 | 87.82 126 | 91.24 140 | 92.68 196 | 78.82 187 | 96.95 124 | 93.85 241 | 87.55 77 | 87.07 131 | 95.13 143 | 63.43 233 | 97.21 178 | 77.58 212 | 96.15 92 | 97.70 105 |
Jingyang Zhang, Yao Yao, Shiwei Li, Zixin Luo, Tian Fang: Visibility-aware Multiview Stereo Network. BMVC 2020 |
Vis-MVSNet (Re-imp) | | | 88.88 120 | 88.87 111 | 88.91 196 | 93.89 163 | 74.43 272 | 96.93 126 | 94.19 224 | 84.39 142 | 83.22 169 | 95.67 125 | 78.24 85 | 94.70 289 | 78.88 201 | 94.40 111 | 97.61 112 |
|
test_fmvs1_n | | | 86.34 168 | 86.72 153 | 85.17 272 | 87.54 290 | 63.64 337 | 96.91 127 | 92.37 287 | 87.49 78 | 91.33 76 | 95.58 129 | 40.81 339 | 98.46 119 | 95.00 37 | 93.49 122 | 93.41 216 |
|
GA-MVS | | | 85.79 178 | 84.04 190 | 91.02 147 | 89.47 268 | 80.27 150 | 96.90 128 | 94.84 188 | 85.57 112 | 80.88 196 | 89.08 235 | 56.56 283 | 96.47 212 | 77.72 209 | 85.35 195 | 96.34 161 |
|
æ— å…ˆéªŒ | | | | | | | | 96.87 129 | 96.78 44 | 77.39 269 | | | | 99.52 55 | 79.95 190 | | 98.43 53 |
|
原ACMM2 | | | | | | | | 96.84 130 | | | | | | | | | |
|
test_vis1_n | | | 85.60 181 | 85.70 161 | 85.33 269 | 84.79 322 | 64.98 330 | 96.83 131 | 91.61 298 | 87.36 82 | 91.00 83 | 94.84 152 | 36.14 345 | 97.18 180 | 95.66 30 | 93.03 128 | 93.82 208 |
|
casdiffmvs |  | | 90.95 83 | 90.39 81 | 92.63 92 | 92.82 195 | 82.53 100 | 96.83 131 | 94.47 212 | 87.69 74 | 88.47 114 | 95.56 130 | 74.04 157 | 97.54 157 | 90.90 83 | 92.74 131 | 97.83 95 |
Fangjinhua Wang, Qingshan Xu, Yew-Soon Ong, Marc Pollefeys: Lightweight and Accurate Multi-View Stereo With Confidence-Aware Diffusion Model. IEEE T-PAMI 2025 |
ACMMP_NAP | | | 93.46 32 | 93.23 37 | 94.17 39 | 97.16 88 | 84.28 72 | 96.82 133 | 96.65 67 | 86.24 100 | 94.27 42 | 97.99 44 | 77.94 89 | 99.83 16 | 93.39 54 | 98.57 33 | 98.39 55 |
|
Anonymous20240529 | | | 83.15 219 | 80.60 238 | 90.80 153 | 95.74 111 | 78.27 203 | 96.81 134 | 94.92 182 | 60.10 353 | 81.89 188 | 92.54 189 | 45.82 321 | 98.82 103 | 79.25 197 | 78.32 247 | 95.31 184 |
|
MVSTER | | | 89.25 113 | 88.92 110 | 90.24 169 | 95.98 106 | 84.66 66 | 96.79 135 | 95.36 164 | 87.19 88 | 80.33 204 | 90.61 218 | 90.02 12 | 95.97 229 | 85.38 140 | 78.64 240 | 90.09 242 |
|
BH-untuned | | | 86.95 158 | 85.94 159 | 89.99 175 | 94.52 145 | 77.46 229 | 96.78 136 | 93.37 267 | 81.80 198 | 76.62 239 | 93.81 176 | 66.64 214 | 97.02 188 | 76.06 229 | 93.88 118 | 95.48 180 |
|
ACMMP |  | | 90.39 93 | 89.97 91 | 91.64 128 | 97.58 73 | 78.21 208 | 96.78 136 | 96.72 58 | 84.73 132 | 84.72 151 | 97.23 84 | 71.22 187 | 99.63 46 | 88.37 118 | 92.41 136 | 97.08 138 |
Qingshan Xu, Weihang Kong, Wenbing Tao, Marc Pollefeys: Multi-Scale Geometric Consistency Guided and Planar Prior Assisted Multi-View Stereo. IEEE Transactions on Pattern Analysis and Machine Intelligence |
IS-MVSNet | | | 88.67 126 | 88.16 121 | 90.20 171 | 93.61 168 | 76.86 240 | 96.77 138 | 93.07 277 | 84.02 151 | 83.62 165 | 95.60 128 | 74.69 150 | 96.24 220 | 78.43 205 | 93.66 121 | 97.49 120 |
|
UniMVSNet (Re) | | | 85.31 186 | 84.23 186 | 88.55 203 | 89.75 261 | 80.55 142 | 96.72 139 | 96.89 37 | 85.42 115 | 78.40 221 | 88.93 238 | 75.38 136 | 95.52 259 | 78.58 203 | 68.02 307 | 89.57 250 |
|
EPNet_dtu | | | 87.65 151 | 87.89 124 | 86.93 242 | 94.57 142 | 71.37 303 | 96.72 139 | 96.50 87 | 88.56 55 | 87.12 130 | 95.02 147 | 75.91 124 | 94.01 303 | 66.62 291 | 90.00 151 | 95.42 181 |
Wanjuan Su, Wenbing Tao: Efficient Edge-Preserving Multi-View Stereo Network for Depth Estimation. AAAI 2023 |
VPNet | | | 84.69 195 | 82.92 205 | 90.01 174 | 89.01 272 | 83.45 87 | 96.71 141 | 95.46 157 | 85.71 110 | 79.65 211 | 92.18 192 | 56.66 282 | 96.01 228 | 83.05 169 | 67.84 310 | 90.56 230 |
|
UniMVSNet_NR-MVSNet | | | 85.49 183 | 84.59 178 | 88.21 213 | 89.44 269 | 79.36 173 | 96.71 141 | 96.41 97 | 85.22 120 | 78.11 224 | 90.98 212 | 76.97 106 | 95.14 276 | 79.14 198 | 68.30 304 | 90.12 239 |
|
AdaColmap |  | | 88.81 122 | 87.61 133 | 92.39 100 | 99.33 4 | 79.95 156 | 96.70 143 | 95.58 149 | 77.51 268 | 83.05 172 | 96.69 107 | 61.90 245 | 99.72 35 | 84.29 147 | 93.47 123 | 97.50 119 |
|
SR-MVS | | | 92.16 56 | 92.27 51 | 91.83 123 | 98.37 45 | 78.41 199 | 96.67 144 | 95.76 141 | 82.19 193 | 91.97 66 | 98.07 41 | 76.44 113 | 98.64 108 | 93.71 51 | 97.27 75 | 98.45 52 |
|
EI-MVSNet-Vis-set | | | 91.84 61 | 91.77 61 | 92.04 114 | 97.60 71 | 81.17 128 | 96.61 145 | 96.87 38 | 88.20 62 | 89.19 105 | 97.55 71 | 78.69 81 | 99.14 83 | 90.29 96 | 90.94 148 | 95.80 173 |
|
WR-MVS | | | 84.32 201 | 82.96 204 | 88.41 205 | 89.38 270 | 80.32 147 | 96.59 146 | 96.25 111 | 83.97 153 | 76.63 238 | 90.36 222 | 67.53 206 | 94.86 286 | 75.82 233 | 70.09 288 | 90.06 244 |
|
test1111 | | | 88.11 141 | 87.04 148 | 91.35 135 | 93.15 183 | 78.79 190 | 96.57 147 | 90.78 312 | 86.88 94 | 85.04 145 | 95.20 138 | 57.23 278 | 97.39 168 | 83.88 152 | 94.59 108 | 97.87 91 |
|
TR-MVS | | | 86.30 169 | 84.93 176 | 90.42 163 | 94.63 141 | 77.58 227 | 96.57 147 | 93.82 242 | 80.30 224 | 82.42 177 | 95.16 141 | 58.74 263 | 97.55 155 | 74.88 239 | 87.82 171 | 96.13 168 |
|
ECVR-MVS |  | | 88.35 136 | 87.25 142 | 91.65 127 | 93.54 171 | 79.40 172 | 96.56 149 | 90.78 312 | 86.78 96 | 85.57 141 | 95.25 134 | 57.25 277 | 97.56 153 | 84.73 145 | 94.80 106 | 97.98 84 |
|
thisisatest0530 | | | 89.65 104 | 89.02 106 | 91.53 132 | 93.46 177 | 80.78 136 | 96.52 150 | 96.67 64 | 81.69 200 | 83.79 163 | 94.90 151 | 88.85 15 | 97.68 147 | 77.80 206 | 87.49 175 | 96.14 167 |
|
test0.0.03 1 | | | 82.79 226 | 82.48 212 | 83.74 293 | 86.81 295 | 72.22 288 | 96.52 150 | 95.03 178 | 83.76 162 | 73.00 279 | 93.20 180 | 72.30 176 | 88.88 347 | 64.15 304 | 77.52 250 | 90.12 239 |
|
Baseline_NR-MVSNet | | | 81.22 249 | 80.07 246 | 84.68 278 | 85.32 318 | 75.12 265 | 96.48 152 | 88.80 329 | 76.24 282 | 77.28 230 | 86.40 281 | 67.61 204 | 94.39 297 | 75.73 234 | 66.73 320 | 84.54 331 |
|
EI-MVSNet-UG-set | | | 91.35 74 | 91.22 68 | 91.73 125 | 97.39 82 | 80.68 138 | 96.47 153 | 96.83 41 | 87.92 68 | 88.30 119 | 97.36 78 | 77.84 92 | 99.13 85 | 89.43 106 | 89.45 155 | 95.37 182 |
|
1112_ss | | | 88.60 129 | 87.47 138 | 92.00 116 | 93.21 180 | 80.97 132 | 96.47 153 | 92.46 284 | 83.64 165 | 80.86 197 | 97.30 81 | 80.24 62 | 97.62 149 | 77.60 211 | 85.49 193 | 97.40 125 |
|
TAMVS | | | 88.48 131 | 87.79 127 | 90.56 160 | 91.09 238 | 79.18 178 | 96.45 155 | 95.88 135 | 83.64 165 | 83.12 170 | 93.33 179 | 75.94 123 | 95.74 247 | 82.40 171 | 88.27 168 | 96.75 151 |
|
MP-MVS-pluss | | | 92.58 51 | 92.35 49 | 93.29 67 | 97.30 86 | 82.53 100 | 96.44 156 | 96.04 127 | 84.68 134 | 89.12 106 | 98.37 24 | 77.48 98 | 99.74 32 | 93.31 58 | 98.38 43 | 97.59 113 |
MP-MVS-pluss: MP-MVS-pluss. MP-MVS-pluss |
Test_1112_low_res | | | 88.03 143 | 86.73 152 | 91.94 118 | 93.15 183 | 80.88 134 | 96.44 156 | 92.41 286 | 83.59 167 | 80.74 199 | 91.16 208 | 80.18 63 | 97.59 151 | 77.48 214 | 85.40 194 | 97.36 127 |
|
DU-MVS | | | 84.57 197 | 83.33 201 | 88.28 209 | 88.76 273 | 79.36 173 | 96.43 158 | 95.41 163 | 85.42 115 | 78.11 224 | 90.82 214 | 67.61 204 | 95.14 276 | 79.14 198 | 68.30 304 | 90.33 235 |
|
æ–°å‡ ä½•2 | | | | | | | | 96.42 159 | | | | | | | | | |
|
PAPM | | | 92.87 40 | 92.40 48 | 94.30 33 | 92.25 211 | 87.85 17 | 96.40 160 | 96.38 102 | 91.07 22 | 88.72 112 | 96.90 95 | 82.11 52 | 97.37 170 | 90.05 98 | 97.70 62 | 97.67 106 |
|
test2506 | | | 90.96 82 | 90.39 81 | 92.65 91 | 93.54 171 | 82.46 103 | 96.37 161 | 97.35 16 | 86.78 96 | 87.55 124 | 95.25 134 | 77.83 93 | 97.50 161 | 84.07 149 | 94.80 106 | 97.98 84 |
|
VPA-MVSNet | | | 85.32 185 | 83.83 191 | 89.77 186 | 90.25 252 | 82.63 98 | 96.36 162 | 97.07 27 | 83.03 177 | 81.21 194 | 89.02 237 | 61.58 246 | 96.31 217 | 85.02 143 | 70.95 279 | 90.36 233 |
|
UGNet | | | 87.73 149 | 86.55 155 | 91.27 139 | 95.16 127 | 79.11 181 | 96.35 163 | 96.23 112 | 88.14 63 | 87.83 123 | 90.48 219 | 50.65 303 | 99.09 88 | 80.13 189 | 94.03 113 | 95.60 177 |
Wanjuan Su, Qingshan Xu, Wenbing Tao: Uncertainty-guided Multi-view Stereo Network for Depth Estimation. IEEE Transactions on Circuits and Systems for Video Technology, 2022 |
v2v482 | | | 83.46 213 | 81.86 220 | 88.25 211 | 86.19 303 | 79.65 167 | 96.34 164 | 94.02 233 | 81.56 201 | 77.32 229 | 88.23 249 | 65.62 218 | 96.03 224 | 77.77 207 | 69.72 292 | 89.09 263 |
|
CANet_DTU | | | 90.98 81 | 90.04 90 | 93.83 46 | 94.76 139 | 86.23 32 | 96.32 165 | 93.12 276 | 93.11 10 | 93.71 47 | 96.82 101 | 63.08 235 | 99.48 59 | 84.29 147 | 95.12 104 | 95.77 174 |
|
APD-MVS_3200maxsize | | | 91.23 77 | 91.35 67 | 90.89 151 | 97.89 62 | 76.35 248 | 96.30 166 | 95.52 153 | 79.82 234 | 91.03 82 | 97.88 51 | 74.70 147 | 98.54 113 | 92.11 72 | 96.89 82 | 97.77 99 |
|
v148 | | | 82.41 234 | 80.89 231 | 86.99 241 | 86.18 304 | 76.81 241 | 96.27 167 | 93.82 242 | 80.49 218 | 75.28 263 | 86.11 286 | 67.32 209 | 95.75 244 | 75.48 235 | 67.03 318 | 88.42 282 |
|
CHOSEN 1792x2688 | | | 91.07 80 | 90.21 86 | 93.64 53 | 95.18 126 | 83.53 85 | 96.26 168 | 96.13 119 | 88.92 48 | 84.90 148 | 93.10 183 | 72.86 169 | 99.62 47 | 88.86 110 | 95.67 101 | 97.79 98 |
|
diffmvs |  | | 91.17 78 | 90.74 76 | 92.44 98 | 93.11 187 | 82.50 102 | 96.25 169 | 93.62 255 | 87.79 71 | 90.40 91 | 95.93 117 | 73.44 165 | 97.42 165 | 93.62 53 | 92.55 133 | 97.41 124 |
Fangjinhua Wang, Qingshan Xu, Yew-Soon Ong, Marc Pollefeys: Lightweight and Accurate Multi-View Stereo With Confidence-Aware Diffusion Model. IEEE T-PAMI 2025 |
pmmvs5 | | | 81.34 247 | 79.54 252 | 86.73 246 | 85.02 320 | 76.91 238 | 96.22 170 | 91.65 296 | 77.65 266 | 73.55 272 | 88.61 242 | 55.70 288 | 94.43 296 | 74.12 248 | 73.35 269 | 88.86 275 |
|
mvsmamba | | | 85.17 188 | 84.54 179 | 87.05 240 | 87.94 284 | 75.11 266 | 96.22 170 | 87.79 337 | 86.91 92 | 78.55 219 | 91.77 200 | 64.93 226 | 95.91 235 | 86.94 132 | 79.80 227 | 90.12 239 |
|
PMMVS | | | 89.46 108 | 89.92 94 | 88.06 215 | 94.64 140 | 69.57 316 | 96.22 170 | 94.95 180 | 87.27 84 | 91.37 75 | 96.54 109 | 65.88 217 | 97.39 168 | 88.54 113 | 93.89 117 | 97.23 132 |
|
SR-MVS-dyc-post | | | 91.29 75 | 91.45 66 | 90.80 153 | 97.76 67 | 76.03 253 | 96.20 173 | 95.44 159 | 80.56 216 | 90.72 86 | 97.84 52 | 75.76 126 | 98.61 109 | 91.99 73 | 96.79 86 | 97.75 100 |
|
RE-MVS-def | | | | 91.18 71 | | 97.76 67 | 76.03 253 | 96.20 173 | 95.44 159 | 80.56 216 | 90.72 86 | 97.84 52 | 73.36 166 | | 91.99 73 | 96.79 86 | 97.75 100 |
|
MVS_111021_LR | | | 91.60 68 | 91.64 64 | 91.47 134 | 95.74 111 | 78.79 190 | 96.15 175 | 96.77 50 | 88.49 56 | 88.64 113 | 97.07 92 | 72.33 175 | 99.19 79 | 93.13 62 | 96.48 90 | 96.43 158 |
|
FIs | | | 86.73 164 | 86.10 158 | 88.61 202 | 90.05 257 | 80.21 152 | 96.14 176 | 96.95 33 | 85.56 114 | 78.37 222 | 92.30 190 | 76.73 110 | 95.28 269 | 79.51 193 | 79.27 234 | 90.35 234 |
|
v1144 | | | 82.90 225 | 81.27 229 | 87.78 220 | 86.29 301 | 79.07 184 | 96.14 176 | 93.93 235 | 80.05 230 | 77.38 227 | 86.80 271 | 65.50 219 | 95.93 234 | 75.21 237 | 70.13 285 | 88.33 284 |
|
TranMVSNet+NR-MVSNet | | | 83.24 218 | 81.71 222 | 87.83 218 | 87.71 287 | 78.81 189 | 96.13 178 | 94.82 189 | 84.52 138 | 76.18 250 | 90.78 216 | 64.07 230 | 94.60 291 | 74.60 244 | 66.59 321 | 90.09 242 |
|
Fast-Effi-MVS+-dtu | | | 83.33 215 | 82.60 211 | 85.50 267 | 89.55 266 | 69.38 317 | 96.09 179 | 91.38 299 | 82.30 190 | 75.96 253 | 91.41 202 | 56.71 280 | 95.58 257 | 75.13 238 | 84.90 198 | 91.54 221 |
|
miper_enhance_ethall | | | 85.95 175 | 85.20 168 | 88.19 214 | 94.85 137 | 79.76 161 | 96.00 180 | 94.06 232 | 82.98 179 | 77.74 226 | 88.76 240 | 79.42 68 | 95.46 261 | 80.58 182 | 72.42 272 | 89.36 256 |
|
v144192 | | | 82.43 231 | 80.73 235 | 87.54 228 | 85.81 310 | 78.22 205 | 95.98 181 | 93.78 247 | 79.09 250 | 77.11 232 | 86.49 276 | 64.66 229 | 95.91 235 | 74.20 247 | 69.42 293 | 88.49 278 |
|
PVSNet_0 | | 77.72 15 | 81.70 242 | 78.95 258 | 89.94 179 | 90.77 246 | 76.72 243 | 95.96 182 | 96.95 33 | 85.01 126 | 70.24 299 | 88.53 245 | 52.32 300 | 98.20 130 | 86.68 134 | 44.08 363 | 94.89 188 |
|
F-COLMAP | | | 84.50 199 | 83.44 200 | 87.67 221 | 95.22 124 | 72.22 288 | 95.95 183 | 93.78 247 | 75.74 283 | 76.30 246 | 95.18 140 | 59.50 257 | 98.45 120 | 72.67 257 | 86.59 180 | 92.35 220 |
|
DeepC-MVS | | 86.58 3 | 91.53 69 | 91.06 72 | 92.94 81 | 94.52 145 | 81.89 112 | 95.95 183 | 95.98 129 | 90.76 25 | 83.76 164 | 96.76 103 | 73.24 167 | 99.71 36 | 91.67 76 | 96.96 80 | 97.22 133 |
Andreas Kuhn, Christian Sormann, Mattia Rossi, Oliver Erdler, Friedrich Fraundorfer: DeepC-MVS: Deep Confidence Prediction for Multi-View Stereo Reconstruction. 3DV 2020 |
FMVSNet3 | | | 84.71 194 | 82.71 209 | 90.70 157 | 94.55 143 | 87.71 19 | 95.92 185 | 94.67 198 | 81.73 199 | 75.82 256 | 88.08 252 | 66.99 211 | 94.47 295 | 71.23 266 | 75.38 258 | 89.91 246 |
|
TAPA-MVS | | 81.61 12 | 85.02 190 | 83.67 193 | 89.06 192 | 96.79 92 | 73.27 282 | 95.92 185 | 94.79 192 | 74.81 291 | 80.47 201 | 96.83 99 | 71.07 189 | 98.19 131 | 49.82 352 | 92.57 132 | 95.71 175 |
Andrea Romanoni, Matteo Matteucci: TAPA-MVS: Textureless-Aware PAtchMatch Multi-View Stereo. ICCV 2019 |
ACMP | | 81.66 11 | 84.00 204 | 83.22 203 | 86.33 249 | 91.53 233 | 72.95 286 | 95.91 187 | 93.79 246 | 83.70 164 | 73.79 271 | 92.22 191 | 54.31 298 | 96.89 195 | 83.98 150 | 79.74 230 | 89.16 260 |
Qingshan Xu and Wenbing Tao: Planar Prior Assisted PatchMatch Multi-View Stereo. AAAI 2020 |
ACMM | | 80.70 13 | 83.72 210 | 82.85 207 | 86.31 252 | 91.19 236 | 72.12 291 | 95.88 188 | 94.29 220 | 80.44 219 | 77.02 233 | 91.96 195 | 55.24 291 | 97.14 185 | 79.30 196 | 80.38 225 | 89.67 249 |
Qingshan Xu and Wenbing Tao: Multi-Scale Geometric Consistency Guided Multi-View Stereo. CVPR 2019 |
test222 | | | | | | 96.15 101 | 78.41 199 | 95.87 189 | 96.46 91 | 71.97 314 | 89.66 99 | 97.45 72 | 76.33 117 | | | 98.24 49 | 98.30 61 |
|
V42 | | | 83.04 222 | 81.53 225 | 87.57 227 | 86.27 302 | 79.09 183 | 95.87 189 | 94.11 229 | 80.35 223 | 77.22 231 | 86.79 272 | 65.32 223 | 96.02 227 | 77.74 208 | 70.14 284 | 87.61 298 |
|
TSAR-MVS + MP. | | | 94.79 15 | 95.17 13 | 93.64 53 | 97.66 69 | 84.10 74 | 95.85 191 | 96.42 96 | 91.26 20 | 97.49 10 | 96.80 102 | 86.50 28 | 98.49 116 | 95.54 32 | 99.03 13 | 98.33 57 |
Zhenlong Yuan, Jiakai Cao, Zhaoqi Wang, Zhaoxin Li: TSAR-MVS: Textureless-aware Segmentation and Correlative Refinement Guided Multi-View Stereo. Pattern Recognition |
v1192 | | | 82.31 235 | 80.55 239 | 87.60 224 | 85.94 307 | 78.47 198 | 95.85 191 | 93.80 245 | 79.33 243 | 76.97 234 | 86.51 275 | 63.33 234 | 95.87 237 | 73.11 254 | 70.13 285 | 88.46 280 |
|
v1921920 | | | 82.02 239 | 80.23 243 | 87.41 231 | 85.62 312 | 77.92 218 | 95.79 193 | 93.69 252 | 78.86 254 | 76.67 237 | 86.44 278 | 62.50 237 | 95.83 239 | 72.69 256 | 69.77 291 | 88.47 279 |
|
OPM-MVS | | | 85.84 176 | 85.10 173 | 88.06 215 | 88.34 279 | 77.83 222 | 95.72 194 | 94.20 223 | 87.89 70 | 80.45 202 | 94.05 169 | 58.57 264 | 97.26 177 | 83.88 152 | 82.76 215 | 89.09 263 |
Ray L. Khuboni, Hongjun Xu: Octagram Propagation Matching for Multi-Scale View Stereopsis (OPM-MVS). |
XXY-MVS | | | 83.84 207 | 82.00 218 | 89.35 189 | 87.13 293 | 81.38 125 | 95.72 194 | 94.26 221 | 80.15 228 | 75.92 254 | 90.63 217 | 61.96 244 | 96.52 210 | 78.98 200 | 73.28 270 | 90.14 238 |
|
tttt0517 | | | 88.57 130 | 88.19 120 | 89.71 187 | 93.00 188 | 75.99 256 | 95.67 196 | 96.67 64 | 80.78 210 | 81.82 189 | 94.40 160 | 88.97 14 | 97.58 152 | 76.05 230 | 86.31 182 | 95.57 178 |
|
IterMVS-LS | | | 83.93 205 | 82.80 208 | 87.31 234 | 91.46 234 | 77.39 231 | 95.66 197 | 93.43 262 | 80.44 219 | 75.51 260 | 87.26 263 | 73.72 161 | 95.16 275 | 76.99 218 | 70.72 281 | 89.39 251 |
Fangjinhua Wang, Silvano Galliani, Christoph Vogel, Marc Pollefeys: IterMVS: Iterative Probability Estimation for Efficient Multi-View Stereo. |
FC-MVSNet-test | | | 85.96 174 | 85.39 165 | 87.66 222 | 89.38 270 | 78.02 212 | 95.65 198 | 96.87 38 | 85.12 124 | 77.34 228 | 91.94 197 | 76.28 118 | 94.74 288 | 77.09 217 | 78.82 238 | 90.21 237 |
|
test_vis1_rt | | | 73.96 299 | 72.40 301 | 78.64 324 | 83.91 332 | 61.16 346 | 95.63 199 | 68.18 370 | 76.32 279 | 60.09 343 | 74.77 346 | 29.01 359 | 97.54 157 | 87.74 122 | 75.94 254 | 77.22 356 |
|
HyFIR lowres test | | | 89.36 109 | 88.60 113 | 91.63 130 | 94.91 136 | 80.76 137 | 95.60 200 | 95.53 151 | 82.56 188 | 84.03 157 | 91.24 207 | 78.03 88 | 96.81 201 | 87.07 130 | 88.41 167 | 97.32 128 |
|
testdata1 | | | | | | | | 95.57 201 | | 87.44 79 | | | | | | | |
|
cl22 | | | 85.11 189 | 84.17 187 | 87.92 217 | 95.06 132 | 78.82 187 | 95.51 202 | 94.22 222 | 79.74 236 | 76.77 236 | 87.92 254 | 75.96 122 | 95.68 248 | 79.93 191 | 72.42 272 | 89.27 257 |
|
v1240 | | | 81.70 242 | 79.83 251 | 87.30 235 | 85.50 313 | 77.70 226 | 95.48 203 | 93.44 261 | 78.46 259 | 76.53 240 | 86.44 278 | 60.85 249 | 95.84 238 | 71.59 263 | 70.17 283 | 88.35 283 |
|
baseline1 | | | 88.85 121 | 87.49 136 | 92.93 82 | 95.21 125 | 86.85 27 | 95.47 204 | 94.61 204 | 87.29 83 | 83.11 171 | 94.99 149 | 80.70 57 | 96.89 195 | 82.28 172 | 73.72 265 | 95.05 187 |
|
AUN-MVS | | | 86.25 171 | 85.57 162 | 88.26 210 | 93.57 170 | 73.38 278 | 95.45 205 | 95.88 135 | 83.94 155 | 85.47 142 | 94.21 165 | 73.70 163 | 96.67 207 | 83.54 162 | 64.41 326 | 94.73 195 |
|
FMVSNet2 | | | 82.79 226 | 80.44 240 | 89.83 183 | 92.66 197 | 85.43 46 | 95.42 206 | 94.35 217 | 79.06 251 | 74.46 268 | 87.28 261 | 56.38 285 | 94.31 298 | 69.72 278 | 74.68 262 | 89.76 248 |
|
hse-mvs2 | | | 88.22 140 | 88.21 119 | 88.25 211 | 93.54 171 | 73.41 277 | 95.41 207 | 95.89 134 | 90.39 31 | 92.22 63 | 94.22 164 | 74.70 147 | 96.66 208 | 93.14 60 | 64.37 327 | 94.69 196 |
|
miper_ehance_all_eth | | | 84.57 197 | 83.60 197 | 87.50 229 | 92.64 200 | 78.25 204 | 95.40 208 | 93.47 260 | 79.28 246 | 76.41 243 | 87.64 257 | 76.53 112 | 95.24 271 | 78.58 203 | 72.42 272 | 89.01 268 |
|
RRT_MVS | | | 83.88 206 | 83.27 202 | 85.71 261 | 87.53 291 | 72.12 291 | 95.35 209 | 94.33 218 | 83.81 160 | 75.86 255 | 91.28 206 | 60.55 250 | 95.09 281 | 83.93 151 | 76.76 252 | 89.90 247 |
|
PGM-MVS | | | 91.93 59 | 91.80 60 | 92.32 104 | 98.27 50 | 79.74 164 | 95.28 210 | 97.27 18 | 83.83 159 | 90.89 85 | 97.78 56 | 76.12 120 | 99.56 53 | 88.82 111 | 97.93 58 | 97.66 107 |
|
TransMVSNet (Re) | | | 76.94 286 | 74.38 290 | 84.62 281 | 85.92 308 | 75.25 264 | 95.28 210 | 89.18 325 | 73.88 298 | 67.22 308 | 86.46 277 | 59.64 254 | 94.10 301 | 59.24 324 | 52.57 352 | 84.50 332 |
|
LPG-MVS_test | | | 84.20 203 | 83.49 199 | 86.33 249 | 90.88 241 | 73.06 283 | 95.28 210 | 94.13 227 | 82.20 191 | 76.31 244 | 93.20 180 | 54.83 295 | 96.95 191 | 83.72 157 | 80.83 222 | 88.98 269 |
|
mvsany_test1 | | | 87.58 152 | 88.22 118 | 85.67 263 | 89.78 260 | 67.18 325 | 95.25 213 | 87.93 335 | 83.96 154 | 88.79 110 | 97.06 93 | 72.52 172 | 94.53 294 | 92.21 70 | 86.45 181 | 95.30 185 |
|
c3_l | | | 83.80 208 | 82.65 210 | 87.25 236 | 92.10 217 | 77.74 225 | 95.25 213 | 93.04 278 | 78.58 257 | 76.01 251 | 87.21 265 | 75.25 141 | 95.11 278 | 77.54 213 | 68.89 298 | 88.91 274 |
|
D2MVS | | | 82.67 228 | 81.55 224 | 86.04 257 | 87.77 286 | 76.47 244 | 95.21 215 | 96.58 78 | 82.66 186 | 70.26 298 | 85.46 294 | 60.39 251 | 95.80 241 | 76.40 226 | 79.18 235 | 85.83 324 |
|
test_fmvs2 | | | 79.59 263 | 79.90 250 | 78.67 323 | 82.86 336 | 55.82 356 | 95.20 216 | 89.55 320 | 81.09 205 | 80.12 208 | 89.80 229 | 34.31 350 | 93.51 312 | 87.82 121 | 78.36 246 | 86.69 311 |
|
Effi-MVS+ | | | 90.70 87 | 89.90 95 | 93.09 75 | 93.61 168 | 83.48 86 | 95.20 216 | 92.79 281 | 83.22 170 | 91.82 68 | 95.70 123 | 71.82 181 | 97.48 163 | 91.25 78 | 93.67 120 | 98.32 58 |
|
baseline2 | | | 90.39 93 | 90.21 86 | 90.93 148 | 90.86 243 | 80.99 131 | 95.20 216 | 97.41 15 | 86.03 105 | 80.07 209 | 94.61 156 | 90.58 6 | 97.47 164 | 87.29 127 | 89.86 153 | 94.35 198 |
|
Anonymous20231211 | | | 79.72 262 | 77.19 269 | 87.33 232 | 95.59 115 | 77.16 237 | 95.18 219 | 94.18 225 | 59.31 355 | 72.57 284 | 86.20 284 | 47.89 315 | 95.66 249 | 74.53 245 | 69.24 296 | 89.18 259 |
|
EI-MVSNet | | | 85.80 177 | 85.20 168 | 87.59 225 | 91.55 231 | 77.41 230 | 95.13 220 | 95.36 164 | 80.43 221 | 80.33 204 | 94.71 154 | 73.72 161 | 95.97 229 | 76.96 220 | 78.64 240 | 89.39 251 |
|
CVMVSNet | | | 84.83 193 | 85.57 162 | 82.63 305 | 91.55 231 | 60.38 347 | 95.13 220 | 95.03 178 | 80.60 214 | 82.10 184 | 94.71 154 | 66.40 216 | 90.19 344 | 74.30 246 | 90.32 150 | 97.31 129 |
|
cl____ | | | 83.27 216 | 82.12 215 | 86.74 243 | 92.20 212 | 75.95 257 | 95.11 222 | 93.27 270 | 78.44 260 | 74.82 266 | 87.02 268 | 74.19 155 | 95.19 273 | 74.67 242 | 69.32 294 | 89.09 263 |
|
DIV-MVS_self_test | | | 83.27 216 | 82.12 215 | 86.74 243 | 92.19 213 | 75.92 259 | 95.11 222 | 93.26 271 | 78.44 260 | 74.81 267 | 87.08 267 | 74.19 155 | 95.19 273 | 74.66 243 | 69.30 295 | 89.11 262 |
|
pm-mvs1 | | | 80.05 259 | 78.02 263 | 86.15 255 | 85.42 314 | 75.81 260 | 95.11 222 | 92.69 283 | 77.13 273 | 70.36 297 | 87.43 259 | 58.44 266 | 95.27 270 | 71.36 265 | 64.25 328 | 87.36 304 |
|
DP-MVS | | | 81.47 245 | 78.28 261 | 91.04 145 | 98.14 55 | 78.48 195 | 95.09 225 | 86.97 339 | 61.14 349 | 71.12 292 | 92.78 188 | 59.59 255 | 99.38 64 | 53.11 344 | 86.61 179 | 95.27 186 |
|
PAPM_NR | | | 91.46 70 | 90.82 74 | 93.37 66 | 98.50 40 | 81.81 117 | 95.03 226 | 96.13 119 | 84.65 135 | 86.10 138 | 97.65 64 | 79.24 72 | 99.75 30 | 83.20 166 | 96.88 83 | 98.56 46 |
|
Effi-MVS+-dtu | | | 84.61 196 | 84.90 177 | 83.72 294 | 91.96 224 | 63.14 339 | 94.95 227 | 93.34 268 | 85.57 112 | 79.79 210 | 87.12 266 | 61.99 243 | 95.61 255 | 83.55 161 | 85.83 190 | 92.41 219 |
|
PS-MVSNAJss | | | 84.91 192 | 84.30 185 | 86.74 243 | 85.89 309 | 74.40 273 | 94.95 227 | 94.16 226 | 83.93 156 | 76.45 242 | 90.11 228 | 71.04 190 | 95.77 242 | 83.16 167 | 79.02 237 | 90.06 244 |
|
MS-PatchMatch | | | 83.05 221 | 81.82 221 | 86.72 247 | 89.64 264 | 79.10 182 | 94.88 229 | 94.59 206 | 79.70 237 | 70.67 295 | 89.65 231 | 50.43 305 | 96.82 200 | 70.82 273 | 95.99 97 | 84.25 334 |
|
dcpmvs_2 | | | 93.10 36 | 93.46 34 | 92.02 115 | 97.77 65 | 79.73 165 | 94.82 230 | 93.86 240 | 86.91 92 | 91.33 76 | 96.76 103 | 85.20 32 | 98.06 133 | 96.90 19 | 97.60 64 | 98.27 64 |
|
OMC-MVS | | | 88.80 123 | 88.16 121 | 90.72 156 | 95.30 122 | 77.92 218 | 94.81 231 | 94.51 209 | 86.80 95 | 84.97 147 | 96.85 98 | 67.53 206 | 98.60 110 | 85.08 141 | 87.62 172 | 95.63 176 |
|
MVSFormer | | | 91.36 73 | 90.57 77 | 93.73 51 | 93.00 188 | 88.08 15 | 94.80 232 | 94.48 210 | 80.74 211 | 94.90 33 | 97.13 88 | 78.84 77 | 95.10 279 | 83.77 155 | 97.46 67 | 98.02 77 |
|
test_djsdf | | | 83.00 224 | 82.45 213 | 84.64 280 | 84.07 330 | 69.78 313 | 94.80 232 | 94.48 210 | 80.74 211 | 75.41 262 | 87.70 256 | 61.32 248 | 95.10 279 | 83.77 155 | 79.76 228 | 89.04 266 |
|
baseline | | | 90.76 86 | 90.10 89 | 92.74 87 | 92.90 194 | 82.56 99 | 94.60 234 | 94.56 207 | 87.69 74 | 89.06 108 | 95.67 125 | 73.76 160 | 97.51 160 | 90.43 93 | 92.23 139 | 98.16 69 |
|
WR-MVS_H | | | 81.02 251 | 80.09 244 | 83.79 291 | 88.08 283 | 71.26 304 | 94.46 235 | 96.54 82 | 80.08 229 | 72.81 282 | 86.82 270 | 70.36 196 | 92.65 319 | 64.18 303 | 67.50 313 | 87.46 303 |
|
NR-MVSNet | | | 83.35 214 | 81.52 226 | 88.84 197 | 88.76 273 | 81.31 127 | 94.45 236 | 95.16 173 | 84.65 135 | 67.81 307 | 90.82 214 | 70.36 196 | 94.87 285 | 74.75 240 | 66.89 319 | 90.33 235 |
|
tfpnnormal | | | 78.14 275 | 75.42 281 | 86.31 252 | 88.33 280 | 79.24 176 | 94.41 237 | 96.22 113 | 73.51 300 | 69.81 301 | 85.52 293 | 55.43 289 | 95.75 244 | 47.65 356 | 67.86 309 | 83.95 337 |
|
v8 | | | 81.88 240 | 80.06 247 | 87.32 233 | 86.63 296 | 79.04 185 | 94.41 237 | 93.65 254 | 78.77 255 | 73.19 278 | 85.57 291 | 66.87 212 | 95.81 240 | 73.84 251 | 67.61 312 | 87.11 306 |
|
MVS_Test | | | 90.29 96 | 89.18 104 | 93.62 55 | 95.23 123 | 84.93 62 | 94.41 237 | 94.66 199 | 84.31 144 | 90.37 92 | 91.02 210 | 75.13 142 | 97.82 143 | 83.11 168 | 94.42 110 | 98.12 73 |
|
bld_raw_dy_0_64 | | | 82.13 237 | 80.76 234 | 86.24 254 | 85.78 311 | 75.03 267 | 94.40 240 | 82.62 357 | 83.12 173 | 76.46 241 | 90.96 213 | 53.83 299 | 94.55 292 | 81.04 179 | 78.60 243 | 89.14 261 |
|
eth_miper_zixun_eth | | | 83.12 220 | 82.01 217 | 86.47 248 | 91.85 229 | 74.80 268 | 94.33 241 | 93.18 273 | 79.11 249 | 75.74 259 | 87.25 264 | 72.71 170 | 95.32 267 | 76.78 221 | 67.13 316 | 89.27 257 |
|
v10 | | | 81.43 246 | 79.53 253 | 87.11 238 | 86.38 298 | 78.87 186 | 94.31 242 | 93.43 262 | 77.88 263 | 73.24 277 | 85.26 295 | 65.44 220 | 95.75 244 | 72.14 260 | 67.71 311 | 86.72 310 |
|
GBi-Net | | | 82.42 232 | 80.43 241 | 88.39 206 | 92.66 197 | 81.95 108 | 94.30 243 | 93.38 264 | 79.06 251 | 75.82 256 | 85.66 287 | 56.38 285 | 93.84 305 | 71.23 266 | 75.38 258 | 89.38 253 |
|
test1 | | | 82.42 232 | 80.43 241 | 88.39 206 | 92.66 197 | 81.95 108 | 94.30 243 | 93.38 264 | 79.06 251 | 75.82 256 | 85.66 287 | 56.38 285 | 93.84 305 | 71.23 266 | 75.38 258 | 89.38 253 |
|
FMVSNet1 | | | 79.50 265 | 76.54 275 | 88.39 206 | 88.47 278 | 81.95 108 | 94.30 243 | 93.38 264 | 73.14 304 | 72.04 288 | 85.66 287 | 43.86 324 | 93.84 305 | 65.48 298 | 72.53 271 | 89.38 253 |
|
CP-MVSNet | | | 81.01 252 | 80.08 245 | 83.79 291 | 87.91 285 | 70.51 306 | 94.29 246 | 95.65 146 | 80.83 209 | 72.54 285 | 88.84 239 | 63.71 231 | 92.32 322 | 68.58 284 | 68.36 303 | 88.55 277 |
|
CL-MVSNet_self_test | | | 75.81 292 | 74.14 294 | 80.83 315 | 78.33 348 | 67.79 322 | 94.22 247 | 93.52 259 | 77.28 272 | 69.82 300 | 81.54 324 | 61.47 247 | 89.22 346 | 57.59 329 | 53.51 348 | 85.48 326 |
|
jajsoiax | | | 82.12 238 | 81.15 230 | 85.03 274 | 84.19 328 | 70.70 305 | 94.22 247 | 93.95 234 | 83.07 175 | 73.48 273 | 89.75 230 | 49.66 308 | 95.37 264 | 82.24 173 | 79.76 228 | 89.02 267 |
|
PS-CasMVS | | | 80.27 258 | 79.18 254 | 83.52 298 | 87.56 289 | 69.88 311 | 94.08 249 | 95.29 169 | 80.27 226 | 72.08 287 | 88.51 246 | 59.22 261 | 92.23 324 | 67.49 286 | 68.15 306 | 88.45 281 |
|
ppachtmachnet_test | | | 77.19 284 | 74.22 292 | 86.13 256 | 85.39 315 | 78.22 205 | 93.98 250 | 91.36 301 | 71.74 316 | 67.11 310 | 84.87 304 | 56.67 281 | 93.37 315 | 52.21 345 | 64.59 325 | 86.80 309 |
|
mvs_tets | | | 81.74 241 | 80.71 236 | 84.84 275 | 84.22 327 | 70.29 308 | 93.91 251 | 93.78 247 | 82.77 183 | 73.37 274 | 89.46 233 | 47.36 318 | 95.31 268 | 81.99 174 | 79.55 233 | 88.92 273 |
|
PEN-MVS | | | 79.47 266 | 78.26 262 | 83.08 301 | 86.36 299 | 68.58 319 | 93.85 252 | 94.77 193 | 79.76 235 | 71.37 289 | 88.55 243 | 59.79 253 | 92.46 320 | 64.50 302 | 65.40 323 | 88.19 286 |
|
testmvs | | | 9.92 344 | 12.94 347 | 0.84 360 | 0.65 382 | 0.29 384 | 93.78 253 | 0.39 383 | 0.42 376 | 2.85 377 | 15.84 376 | 0.17 383 | 0.30 379 | 2.18 376 | 0.21 376 | 1.91 374 |
|
tt0805 | | | 81.20 250 | 79.06 257 | 87.61 223 | 86.50 297 | 72.97 285 | 93.66 254 | 95.48 155 | 74.11 295 | 76.23 248 | 91.99 193 | 41.36 336 | 97.40 167 | 77.44 215 | 74.78 261 | 92.45 218 |
|
our_test_3 | | | 77.90 278 | 75.37 282 | 85.48 268 | 85.39 315 | 76.74 242 | 93.63 255 | 91.67 295 | 73.39 303 | 65.72 320 | 84.65 306 | 58.20 267 | 93.13 317 | 57.82 327 | 67.87 308 | 86.57 313 |
|
EG-PatchMatch MVS | | | 74.92 296 | 72.02 302 | 83.62 295 | 83.76 334 | 73.28 281 | 93.62 256 | 92.04 291 | 68.57 328 | 58.88 345 | 83.80 312 | 31.87 355 | 95.57 258 | 56.97 333 | 78.67 239 | 82.00 348 |
|
OpenMVS_ROB |  | 68.52 20 | 73.02 306 | 69.57 312 | 83.37 299 | 80.54 342 | 71.82 297 | 93.60 257 | 88.22 334 | 62.37 341 | 61.98 335 | 83.15 317 | 35.31 349 | 95.47 260 | 45.08 359 | 75.88 255 | 82.82 340 |
|
pmmvs4 | | | 82.54 230 | 80.79 232 | 87.79 219 | 86.11 305 | 80.49 146 | 93.55 258 | 93.18 273 | 77.29 271 | 73.35 275 | 89.40 234 | 65.26 224 | 95.05 283 | 75.32 236 | 73.61 266 | 87.83 292 |
|
mvs_anonymous | | | 88.68 125 | 87.62 132 | 91.86 120 | 94.80 138 | 81.69 121 | 93.53 259 | 94.92 182 | 82.03 196 | 78.87 217 | 90.43 221 | 75.77 125 | 95.34 265 | 85.04 142 | 93.16 127 | 98.55 48 |
|
DTE-MVSNet | | | 78.37 273 | 77.06 270 | 82.32 308 | 85.22 319 | 67.17 326 | 93.40 260 | 93.66 253 | 78.71 256 | 70.53 296 | 88.29 248 | 59.06 262 | 92.23 324 | 61.38 316 | 63.28 332 | 87.56 300 |
|
v7n | | | 79.32 268 | 77.34 267 | 85.28 270 | 84.05 331 | 72.89 287 | 93.38 261 | 93.87 239 | 75.02 290 | 70.68 294 | 84.37 307 | 59.58 256 | 95.62 254 | 67.60 285 | 67.50 313 | 87.32 305 |
|
Anonymous20231206 | | | 75.29 295 | 73.64 296 | 80.22 317 | 80.75 339 | 63.38 338 | 93.36 262 | 90.71 314 | 73.09 305 | 67.12 309 | 83.70 313 | 50.33 306 | 90.85 339 | 53.63 343 | 70.10 287 | 86.44 314 |
|
MVP-Stereo | | | 82.65 229 | 81.67 223 | 85.59 266 | 86.10 306 | 78.29 202 | 93.33 263 | 92.82 280 | 77.75 265 | 69.17 305 | 87.98 253 | 59.28 260 | 95.76 243 | 71.77 261 | 96.88 83 | 82.73 342 |
Qingsong Yan: MVP-Stereo: A Parallel Multi-View Patchmatch Stereo Method with Dilation Matching for Photogrammetric Application. |
1314 | | | 88.94 117 | 87.20 143 | 94.17 39 | 93.21 180 | 85.73 40 | 93.33 263 | 96.64 70 | 82.89 180 | 75.98 252 | 96.36 110 | 66.83 213 | 99.39 63 | 83.52 164 | 96.02 96 | 97.39 126 |
|
MVS | | | 90.60 89 | 88.64 112 | 96.50 5 | 94.25 153 | 90.53 8 | 93.33 263 | 97.21 20 | 77.59 267 | 78.88 216 | 97.31 79 | 71.52 185 | 99.69 39 | 89.60 102 | 98.03 54 | 99.27 20 |
|
pmmvs6 | | | 74.65 298 | 71.67 303 | 83.60 296 | 79.13 346 | 69.94 310 | 93.31 266 | 90.88 311 | 61.05 350 | 65.83 319 | 84.15 310 | 43.43 326 | 94.83 287 | 66.62 291 | 60.63 337 | 86.02 321 |
|
ACMH+ | | 76.62 16 | 77.47 282 | 74.94 284 | 85.05 273 | 91.07 239 | 71.58 301 | 93.26 267 | 90.01 317 | 71.80 315 | 64.76 323 | 88.55 243 | 41.62 334 | 96.48 211 | 62.35 312 | 71.00 278 | 87.09 307 |
|
testgi | | | 74.88 297 | 73.40 297 | 79.32 321 | 80.13 343 | 61.75 342 | 93.21 268 | 86.64 343 | 79.49 241 | 66.56 317 | 91.06 209 | 35.51 348 | 88.67 348 | 56.79 334 | 71.25 276 | 87.56 300 |
|
LS3D | | | 82.22 236 | 79.94 249 | 89.06 192 | 97.43 79 | 74.06 276 | 93.20 269 | 92.05 290 | 61.90 343 | 73.33 276 | 95.21 137 | 59.35 258 | 99.21 74 | 54.54 340 | 92.48 135 | 93.90 207 |
|
ACMH | | 75.40 17 | 77.99 276 | 74.96 283 | 87.10 239 | 90.67 247 | 76.41 246 | 93.19 270 | 91.64 297 | 72.47 311 | 63.44 328 | 87.61 258 | 43.34 327 | 97.16 181 | 58.34 325 | 73.94 264 | 87.72 293 |
Qingshan Xu and Wenbing Tao: Multi-Scale Geometric Consistency Guided Multi-View Stereo. CVPR 2019 |
UA-Net | | | 88.92 118 | 88.48 116 | 90.24 169 | 94.06 159 | 77.18 236 | 93.04 271 | 94.66 199 | 87.39 81 | 91.09 80 | 93.89 173 | 74.92 145 | 98.18 132 | 75.83 232 | 91.43 145 | 95.35 183 |
|
IterMVS-SCA-FT | | | 80.51 257 | 79.10 256 | 84.73 277 | 89.63 265 | 74.66 269 | 92.98 272 | 91.81 294 | 80.05 230 | 71.06 293 | 85.18 298 | 58.04 268 | 91.40 333 | 72.48 259 | 70.70 282 | 88.12 288 |
|
IterMVS | | | 80.67 255 | 79.16 255 | 85.20 271 | 89.79 259 | 76.08 251 | 92.97 273 | 91.86 292 | 80.28 225 | 71.20 291 | 85.14 300 | 57.93 271 | 91.34 334 | 72.52 258 | 70.74 280 | 88.18 287 |
Fangjinhua Wang, Silvano Galliani, Christoph Vogel, Marc Pollefeys: IterMVS: Iterative Probability Estimation for Efficient Multi-View Stereo. |
MVS_0304 | | | 78.43 272 | 76.70 273 | 83.60 296 | 88.22 281 | 69.81 312 | 92.91 274 | 95.10 174 | 72.32 312 | 78.71 218 | 80.29 332 | 33.78 351 | 93.37 315 | 68.77 282 | 80.23 226 | 87.63 296 |
|
MTAPA | | | 92.45 53 | 92.31 50 | 92.86 83 | 97.90 61 | 80.85 135 | 92.88 275 | 96.33 106 | 87.92 68 | 90.20 93 | 98.18 30 | 76.71 111 | 99.76 25 | 92.57 68 | 98.09 51 | 97.96 87 |
|
SCA | | | 85.63 180 | 83.64 195 | 91.60 131 | 92.30 207 | 81.86 114 | 92.88 275 | 95.56 150 | 84.85 128 | 82.52 174 | 85.12 301 | 58.04 268 | 95.39 262 | 73.89 249 | 87.58 174 | 97.54 114 |
|
test_0402 | | | 72.68 307 | 69.54 313 | 82.09 309 | 88.67 276 | 71.81 298 | 92.72 277 | 86.77 342 | 61.52 345 | 62.21 334 | 83.91 311 | 43.22 328 | 93.76 308 | 34.60 364 | 72.23 275 | 80.72 352 |
|
LCM-MVSNet-Re | | | 83.75 209 | 83.54 198 | 84.39 287 | 93.54 171 | 64.14 334 | 92.51 278 | 84.03 352 | 83.90 157 | 66.14 318 | 86.59 274 | 67.36 208 | 92.68 318 | 84.89 144 | 92.87 129 | 96.35 160 |
|
anonymousdsp | | | 80.98 253 | 79.97 248 | 84.01 288 | 81.73 338 | 70.44 307 | 92.49 279 | 93.58 258 | 77.10 275 | 72.98 280 | 86.31 282 | 57.58 272 | 94.90 284 | 79.32 195 | 78.63 242 | 86.69 311 |
|
PatchMatch-RL | | | 85.00 191 | 83.66 194 | 89.02 194 | 95.86 108 | 74.55 271 | 92.49 279 | 93.60 256 | 79.30 245 | 79.29 214 | 91.47 201 | 58.53 265 | 98.45 120 | 70.22 275 | 92.17 140 | 94.07 204 |
|
test20.03 | | | 72.36 309 | 71.15 305 | 75.98 333 | 77.79 349 | 59.16 351 | 92.40 281 | 89.35 323 | 74.09 296 | 61.50 337 | 84.32 308 | 48.09 311 | 85.54 358 | 50.63 350 | 62.15 335 | 83.24 338 |
|
MDA-MVSNet-bldmvs | | | 71.45 312 | 67.94 317 | 81.98 310 | 85.33 317 | 68.50 320 | 92.35 282 | 88.76 330 | 70.40 321 | 42.99 360 | 81.96 321 | 46.57 319 | 91.31 335 | 48.75 355 | 54.39 346 | 86.11 319 |
|
PCF-MVS | | 84.09 5 | 86.77 163 | 85.00 174 | 92.08 111 | 92.06 221 | 83.07 93 | 92.14 283 | 94.47 212 | 79.63 238 | 76.90 235 | 94.78 153 | 71.15 188 | 99.20 78 | 72.87 255 | 91.05 147 | 93.98 205 |
Andreas Kuhn, Shan Lin, Oliver Erdler: Plane Completion and Filtering for Multi-View Stereo Reconstruction. GCPR 2019 |
UniMVSNet_ETH3D | | | 80.86 254 | 78.75 259 | 87.22 237 | 86.31 300 | 72.02 293 | 91.95 284 | 93.76 250 | 73.51 300 | 75.06 265 | 90.16 226 | 43.04 330 | 95.66 249 | 76.37 227 | 78.55 244 | 93.98 205 |
|
miper_lstm_enhance | | | 81.66 244 | 80.66 237 | 84.67 279 | 91.19 236 | 71.97 295 | 91.94 285 | 93.19 272 | 77.86 264 | 72.27 286 | 85.26 295 | 73.46 164 | 93.42 313 | 73.71 252 | 67.05 317 | 88.61 276 |
|
MSDG | | | 80.62 256 | 77.77 265 | 89.14 191 | 93.43 178 | 77.24 233 | 91.89 286 | 90.18 316 | 69.86 325 | 68.02 306 | 91.94 197 | 52.21 301 | 98.84 102 | 59.32 323 | 83.12 207 | 91.35 222 |
|
COLMAP_ROB |  | 73.24 19 | 75.74 293 | 73.00 299 | 83.94 289 | 92.38 203 | 69.08 318 | 91.85 287 | 86.93 340 | 61.48 346 | 65.32 321 | 90.27 223 | 42.27 332 | 96.93 194 | 50.91 349 | 75.63 257 | 85.80 325 |
Johannes L. Schönberger, Enliang Zheng, Marc Pollefeys, Jan-Michael Frahm: Pixelwise View Selection for Unstructured Multi-View Stereo. ECCV 2016 |
EU-MVSNet | | | 76.92 287 | 76.95 271 | 76.83 329 | 84.10 329 | 54.73 359 | 91.77 288 | 92.71 282 | 72.74 308 | 69.57 302 | 88.69 241 | 58.03 270 | 87.43 353 | 64.91 301 | 70.00 289 | 88.33 284 |
|
MDA-MVSNet_test_wron | | | 73.54 302 | 70.43 309 | 82.86 302 | 84.55 323 | 71.85 296 | 91.74 289 | 91.32 303 | 67.63 329 | 46.73 359 | 81.09 327 | 55.11 292 | 90.42 343 | 55.91 337 | 59.76 338 | 86.31 316 |
|
YYNet1 | | | 73.53 303 | 70.43 309 | 82.85 303 | 84.52 325 | 71.73 299 | 91.69 290 | 91.37 300 | 67.63 329 | 46.79 358 | 81.21 326 | 55.04 293 | 90.43 342 | 55.93 336 | 59.70 339 | 86.38 315 |
|
N_pmnet | | | 61.30 325 | 60.20 328 | 64.60 344 | 84.32 326 | 17.00 382 | 91.67 291 | 10.98 381 | 61.77 344 | 58.45 347 | 78.55 337 | 49.89 307 | 91.83 330 | 42.27 361 | 63.94 329 | 84.97 329 |
|
Anonymous20240521 | | | 72.06 311 | 69.91 311 | 78.50 325 | 77.11 353 | 61.67 344 | 91.62 292 | 90.97 309 | 65.52 336 | 62.37 333 | 79.05 336 | 36.32 344 | 90.96 338 | 57.75 328 | 68.52 301 | 82.87 339 |
|
XVG-OURS-SEG-HR | | | 85.74 179 | 85.16 171 | 87.49 230 | 90.22 253 | 71.45 302 | 91.29 293 | 94.09 230 | 81.37 202 | 83.90 162 | 95.22 136 | 60.30 252 | 97.53 159 | 85.58 138 | 84.42 200 | 93.50 212 |
|
SixPastTwentyTwo | | | 76.04 290 | 74.32 291 | 81.22 312 | 84.54 324 | 61.43 345 | 91.16 294 | 89.30 324 | 77.89 262 | 64.04 325 | 86.31 282 | 48.23 310 | 94.29 299 | 63.54 308 | 63.84 330 | 87.93 291 |
|
AllTest | | | 75.92 291 | 73.06 298 | 84.47 283 | 92.18 214 | 67.29 323 | 91.07 295 | 84.43 350 | 67.63 329 | 63.48 326 | 90.18 224 | 38.20 342 | 97.16 181 | 57.04 331 | 73.37 267 | 88.97 271 |
|
XVG-OURS | | | 85.18 187 | 84.38 184 | 87.59 225 | 90.42 251 | 71.73 299 | 91.06 296 | 94.07 231 | 82.00 197 | 83.29 168 | 95.08 146 | 56.42 284 | 97.55 155 | 83.70 159 | 83.42 205 | 93.49 213 |
|
test_fmvs3 | | | 69.56 315 | 69.19 315 | 70.67 338 | 69.01 362 | 47.05 363 | 90.87 297 | 86.81 341 | 71.31 319 | 66.79 314 | 77.15 341 | 16.40 366 | 83.17 361 | 81.84 175 | 62.51 334 | 81.79 350 |
|
K. test v3 | | | 73.62 300 | 71.59 304 | 79.69 319 | 82.98 335 | 59.85 350 | 90.85 298 | 88.83 328 | 77.13 273 | 58.90 344 | 82.11 320 | 43.62 325 | 91.72 331 | 65.83 297 | 54.10 347 | 87.50 302 |
|
OurMVSNet-221017-0 | | | 77.18 285 | 76.06 277 | 80.55 316 | 83.78 333 | 60.00 349 | 90.35 299 | 91.05 307 | 77.01 277 | 66.62 316 | 87.92 254 | 47.73 316 | 94.03 302 | 71.63 262 | 68.44 302 | 87.62 297 |
|
HY-MVS | | 84.06 6 | 91.63 66 | 90.37 83 | 95.39 15 | 96.12 102 | 88.25 13 | 90.22 300 | 97.58 14 | 88.33 60 | 90.50 89 | 91.96 195 | 79.26 71 | 99.06 89 | 90.29 96 | 89.07 158 | 98.88 30 |
|
new-patchmatchnet | | | 68.85 319 | 65.93 321 | 77.61 327 | 73.57 361 | 63.94 336 | 90.11 301 | 88.73 331 | 71.62 317 | 55.08 353 | 73.60 350 | 40.84 338 | 87.22 354 | 51.35 348 | 48.49 358 | 81.67 351 |
|
CMPMVS |  | 54.94 21 | 75.71 294 | 74.56 289 | 79.17 322 | 79.69 344 | 55.98 354 | 89.59 302 | 93.30 269 | 60.28 351 | 53.85 355 | 89.07 236 | 47.68 317 | 96.33 216 | 76.55 223 | 81.02 220 | 85.22 327 |
M. Jancosek, T. Pajdla: Multi-View Reconstruction Preserving Weakly-Supported Surfaces. CVPR 2011 |
FMVSNet5 | | | 76.46 289 | 74.16 293 | 83.35 300 | 90.05 257 | 76.17 249 | 89.58 303 | 89.85 318 | 71.39 318 | 65.29 322 | 80.42 329 | 50.61 304 | 87.70 352 | 61.05 318 | 69.24 296 | 86.18 318 |
|
USDC | | | 78.65 271 | 76.25 276 | 85.85 258 | 87.58 288 | 74.60 270 | 89.58 303 | 90.58 315 | 84.05 150 | 63.13 330 | 88.23 249 | 40.69 340 | 96.86 199 | 66.57 293 | 75.81 256 | 86.09 320 |
|
test123 | | | 9.07 345 | 11.73 348 | 1.11 359 | 0.50 383 | 0.77 383 | 89.44 305 | 0.20 384 | 0.34 377 | 2.15 378 | 10.72 377 | 0.34 382 | 0.32 378 | 1.79 377 | 0.08 377 | 2.23 373 |
|
pmmvs-eth3d | | | 73.59 301 | 70.66 307 | 82.38 306 | 76.40 356 | 73.38 278 | 89.39 306 | 89.43 322 | 72.69 309 | 60.34 342 | 77.79 339 | 46.43 320 | 91.26 336 | 66.42 295 | 57.06 342 | 82.51 343 |
|
XVG-ACMP-BASELINE | | | 79.38 267 | 77.90 264 | 83.81 290 | 84.98 321 | 67.14 327 | 89.03 307 | 93.18 273 | 80.26 227 | 72.87 281 | 88.15 251 | 38.55 341 | 96.26 218 | 76.05 230 | 78.05 248 | 88.02 289 |
|
ab-mvs | | | 87.08 156 | 84.94 175 | 93.48 63 | 93.34 179 | 83.67 82 | 88.82 308 | 95.70 144 | 81.18 204 | 84.55 154 | 90.14 227 | 62.72 236 | 98.94 98 | 85.49 139 | 82.54 217 | 97.85 93 |
|
tpm | | | 85.55 182 | 84.47 183 | 88.80 199 | 90.19 254 | 75.39 263 | 88.79 309 | 94.69 195 | 84.83 129 | 83.96 160 | 85.21 297 | 78.22 86 | 94.68 290 | 76.32 228 | 78.02 249 | 96.34 161 |
|
pmmvs3 | | | 65.75 323 | 62.18 326 | 76.45 331 | 67.12 365 | 64.54 331 | 88.68 310 | 85.05 348 | 54.77 360 | 57.54 351 | 73.79 349 | 29.40 358 | 86.21 356 | 55.49 339 | 47.77 359 | 78.62 354 |
|
CostFormer | | | 89.08 114 | 88.39 117 | 91.15 143 | 93.13 185 | 79.15 180 | 88.61 311 | 96.11 121 | 83.14 172 | 89.58 101 | 86.93 269 | 83.83 43 | 96.87 197 | 88.22 119 | 85.92 188 | 97.42 123 |
|
TinyColmap | | | 72.41 308 | 68.99 316 | 82.68 304 | 88.11 282 | 69.59 315 | 88.41 312 | 85.20 347 | 65.55 335 | 57.91 348 | 84.82 305 | 30.80 357 | 95.94 233 | 51.38 346 | 68.70 299 | 82.49 345 |
|
TDRefinement | | | 69.20 318 | 65.78 322 | 79.48 320 | 66.04 366 | 62.21 341 | 88.21 313 | 86.12 344 | 62.92 340 | 61.03 340 | 85.61 290 | 33.23 352 | 94.16 300 | 55.82 338 | 53.02 350 | 82.08 347 |
|
KD-MVS_2432*1600 | | | 77.63 280 | 74.92 285 | 85.77 259 | 90.86 243 | 79.44 170 | 88.08 314 | 93.92 236 | 76.26 280 | 67.05 311 | 82.78 318 | 72.15 178 | 91.92 327 | 61.53 313 | 41.62 366 | 85.94 322 |
|
miper_refine_blended | | | 77.63 280 | 74.92 285 | 85.77 259 | 90.86 243 | 79.44 170 | 88.08 314 | 93.92 236 | 76.26 280 | 67.05 311 | 82.78 318 | 72.15 178 | 91.92 327 | 61.53 313 | 41.62 366 | 85.94 322 |
|
tpm2 | | | 87.35 155 | 86.26 156 | 90.62 158 | 92.93 193 | 78.67 192 | 88.06 316 | 95.99 128 | 79.33 243 | 87.40 125 | 86.43 280 | 80.28 61 | 96.40 213 | 80.23 187 | 85.73 192 | 96.79 147 |
|
CHOSEN 280x420 | | | 91.71 65 | 91.85 58 | 91.29 138 | 94.94 134 | 82.69 97 | 87.89 317 | 96.17 118 | 85.94 106 | 87.27 128 | 94.31 161 | 90.27 9 | 95.65 251 | 94.04 48 | 95.86 98 | 95.53 179 |
|
RPSCF | | | 77.73 279 | 76.63 274 | 81.06 313 | 88.66 277 | 55.76 357 | 87.77 318 | 87.88 336 | 64.82 338 | 74.14 270 | 92.79 187 | 49.22 309 | 96.81 201 | 67.47 287 | 76.88 251 | 90.62 229 |
|
KD-MVS_self_test | | | 70.97 314 | 69.31 314 | 75.95 334 | 76.24 358 | 55.39 358 | 87.45 319 | 90.94 310 | 70.20 323 | 62.96 332 | 77.48 340 | 44.01 323 | 88.09 349 | 61.25 317 | 53.26 349 | 84.37 333 |
|
MIMVSNet1 | | | 69.44 316 | 66.65 320 | 77.84 326 | 76.48 355 | 62.84 340 | 87.42 320 | 88.97 327 | 66.96 334 | 57.75 350 | 79.72 335 | 32.77 354 | 85.83 357 | 46.32 357 | 63.42 331 | 84.85 330 |
|
tpmrst | | | 88.36 135 | 87.38 140 | 91.31 136 | 94.36 151 | 79.92 157 | 87.32 321 | 95.26 171 | 85.32 117 | 88.34 117 | 86.13 285 | 80.60 58 | 96.70 205 | 83.78 154 | 85.34 196 | 97.30 130 |
|
UnsupCasMVSNet_eth | | | 73.25 304 | 70.57 308 | 81.30 311 | 77.53 350 | 66.33 328 | 87.24 322 | 93.89 238 | 80.38 222 | 57.90 349 | 81.59 323 | 42.91 331 | 90.56 341 | 65.18 300 | 48.51 357 | 87.01 308 |
|
FA-MVS(test-final) | | | 87.71 150 | 86.23 157 | 92.17 109 | 94.19 155 | 80.55 142 | 87.16 323 | 96.07 125 | 82.12 194 | 85.98 139 | 88.35 247 | 72.04 180 | 98.49 116 | 80.26 186 | 89.87 152 | 97.48 121 |
|
EPMVS | | | 87.47 154 | 85.90 160 | 92.18 108 | 95.41 119 | 82.26 107 | 87.00 324 | 96.28 109 | 85.88 108 | 84.23 155 | 85.57 291 | 75.07 144 | 96.26 218 | 71.14 269 | 92.50 134 | 98.03 76 |
|
MDTV_nov1_ep13_2view | | | | | | | 81.74 119 | 86.80 325 | | 80.65 213 | 85.65 140 | | 74.26 154 | | 76.52 224 | | 96.98 139 |
|
MDTV_nov1_ep13 | | | | 83.69 192 | | 94.09 158 | 81.01 130 | 86.78 326 | 96.09 122 | 83.81 160 | 84.75 150 | 84.32 308 | 74.44 153 | 96.54 209 | 63.88 305 | 85.07 197 | |
|
dp | | | 84.30 202 | 82.31 214 | 90.28 168 | 94.24 154 | 77.97 214 | 86.57 327 | 95.53 151 | 79.94 233 | 80.75 198 | 85.16 299 | 71.49 186 | 96.39 214 | 63.73 306 | 83.36 206 | 96.48 157 |
|
PatchmatchNet |  | | 86.83 161 | 85.12 172 | 91.95 117 | 94.12 157 | 82.27 106 | 86.55 328 | 95.64 147 | 84.59 137 | 82.98 173 | 84.99 303 | 77.26 100 | 95.96 232 | 68.61 283 | 91.34 146 | 97.64 109 |
Fangjinhua Wang, Silvano Galliani, Christoph Vogel, Pablo Speciale, Marc Pollefeys: PatchmatchNet: Learned Multi-View Patchmatch Stereo. |
LTVRE_ROB | | 73.68 18 | 77.99 276 | 75.74 280 | 84.74 276 | 90.45 250 | 72.02 293 | 86.41 329 | 91.12 304 | 72.57 310 | 66.63 315 | 87.27 262 | 54.95 294 | 96.98 190 | 56.29 335 | 75.98 253 | 85.21 328 |
Andreas Kuhn, Heiko Hirschmüller, Daniel Scharstein, Helmut Mayer: A TV Prior for High-Quality Scalable Multi-View Stereo Reconstruction. International Journal of Computer Vision 2016 |
LF4IMVS | | | 72.36 309 | 70.82 306 | 76.95 328 | 79.18 345 | 56.33 353 | 86.12 330 | 86.11 345 | 69.30 327 | 63.06 331 | 86.66 273 | 33.03 353 | 92.25 323 | 65.33 299 | 68.64 300 | 82.28 346 |
|
PM-MVS | | | 69.32 317 | 66.93 319 | 76.49 330 | 73.60 360 | 55.84 355 | 85.91 331 | 79.32 363 | 74.72 292 | 61.09 339 | 78.18 338 | 21.76 362 | 91.10 337 | 70.86 271 | 56.90 343 | 82.51 343 |
|
test_post1 | | | | | | | | 85.88 332 | | | | 30.24 374 | 73.77 159 | 95.07 282 | 73.89 249 | | |
|
tpmvs | | | 83.04 222 | 80.77 233 | 89.84 182 | 95.43 118 | 77.96 215 | 85.59 333 | 95.32 168 | 75.31 287 | 76.27 247 | 83.70 313 | 73.89 158 | 97.41 166 | 59.53 320 | 81.93 219 | 94.14 201 |
|
tpm cat1 | | | 83.63 211 | 81.38 227 | 90.39 164 | 93.53 176 | 78.19 210 | 85.56 334 | 95.09 175 | 70.78 320 | 78.51 220 | 83.28 316 | 74.80 146 | 97.03 187 | 66.77 290 | 84.05 201 | 95.95 169 |
|
DSMNet-mixed | | | 73.13 305 | 72.45 300 | 75.19 335 | 77.51 351 | 46.82 364 | 85.09 335 | 82.01 358 | 67.61 333 | 69.27 304 | 81.33 325 | 50.89 302 | 86.28 355 | 54.54 340 | 83.80 202 | 92.46 217 |
|
FE-MVS | | | 86.06 173 | 84.15 188 | 91.78 124 | 94.33 152 | 79.81 159 | 84.58 336 | 96.61 73 | 76.69 278 | 85.00 146 | 87.38 260 | 70.71 194 | 98.37 124 | 70.39 274 | 91.70 144 | 97.17 135 |
|
test_vis3_rt | | | 54.10 329 | 51.04 332 | 63.27 347 | 58.16 369 | 46.08 368 | 84.17 337 | 49.32 380 | 56.48 359 | 36.56 364 | 49.48 367 | 8.03 376 | 91.91 329 | 67.29 288 | 49.87 354 | 51.82 366 |
|
UnsupCasMVSNet_bld | | | 68.60 320 | 64.50 324 | 80.92 314 | 74.63 359 | 67.80 321 | 83.97 338 | 92.94 279 | 65.12 337 | 54.63 354 | 68.23 358 | 35.97 346 | 92.17 326 | 60.13 319 | 44.83 361 | 82.78 341 |
|
new_pmnet | | | 66.18 322 | 63.18 325 | 75.18 336 | 76.27 357 | 61.74 343 | 83.79 339 | 84.66 349 | 56.64 358 | 51.57 356 | 71.85 357 | 31.29 356 | 87.93 350 | 49.98 351 | 62.55 333 | 75.86 357 |
|
test_f | | | 64.01 324 | 62.13 327 | 69.65 339 | 63.00 368 | 45.30 369 | 83.66 340 | 80.68 360 | 61.30 347 | 55.70 352 | 72.62 353 | 14.23 368 | 84.64 359 | 69.84 276 | 58.11 340 | 79.00 353 |
|
mvsany_test3 | | | 67.19 321 | 65.34 323 | 72.72 337 | 63.08 367 | 48.57 362 | 83.12 341 | 78.09 364 | 72.07 313 | 61.21 338 | 77.11 342 | 22.94 361 | 87.78 351 | 78.59 202 | 51.88 353 | 81.80 349 |
|
FPMVS | | | 55.09 328 | 52.93 331 | 61.57 348 | 55.98 370 | 40.51 373 | 83.11 342 | 83.41 355 | 37.61 364 | 34.95 365 | 71.95 355 | 14.40 367 | 76.95 364 | 29.81 365 | 65.16 324 | 67.25 361 |
|
EGC-MVSNET | | | 52.46 331 | 47.56 334 | 67.15 340 | 81.98 337 | 60.11 348 | 82.54 343 | 72.44 368 | 0.11 378 | 0.70 379 | 74.59 347 | 25.11 360 | 83.26 360 | 29.04 366 | 61.51 336 | 58.09 363 |
|
GG-mvs-BLEND | | | | | 93.49 62 | 94.94 134 | 86.26 31 | 81.62 344 | 97.00 29 | | 88.32 118 | 94.30 162 | 91.23 5 | 96.21 221 | 88.49 115 | 97.43 70 | 98.00 82 |
|
MIMVSNet | | | 79.18 269 | 75.99 278 | 88.72 201 | 87.37 292 | 80.66 139 | 79.96 345 | 91.82 293 | 77.38 270 | 74.33 269 | 81.87 322 | 41.78 333 | 90.74 340 | 66.36 296 | 83.10 208 | 94.76 191 |
|
ADS-MVSNet2 | | | 79.57 264 | 77.53 266 | 85.71 261 | 93.78 164 | 72.13 290 | 79.48 346 | 86.11 345 | 73.09 305 | 80.14 206 | 79.99 333 | 62.15 240 | 90.14 345 | 59.49 321 | 83.52 203 | 94.85 189 |
|
ADS-MVSNet | | | 81.26 248 | 78.36 260 | 89.96 178 | 93.78 164 | 79.78 160 | 79.48 346 | 93.60 256 | 73.09 305 | 80.14 206 | 79.99 333 | 62.15 240 | 95.24 271 | 59.49 321 | 83.52 203 | 94.85 189 |
|
gg-mvs-nofinetune | | | 85.48 184 | 82.90 206 | 93.24 69 | 94.51 148 | 85.82 39 | 79.22 348 | 96.97 31 | 61.19 348 | 87.33 127 | 53.01 364 | 90.58 6 | 96.07 223 | 86.07 135 | 97.23 76 | 97.81 97 |
|
MVS-HIRNet | | | 71.36 313 | 67.00 318 | 84.46 285 | 90.58 248 | 69.74 314 | 79.15 349 | 87.74 338 | 46.09 361 | 61.96 336 | 50.50 365 | 45.14 322 | 95.64 252 | 53.74 342 | 88.11 170 | 88.00 290 |
|
CR-MVSNet | | | 83.53 212 | 81.36 228 | 90.06 173 | 90.16 255 | 79.75 162 | 79.02 350 | 91.12 304 | 84.24 148 | 82.27 182 | 80.35 330 | 75.45 132 | 93.67 309 | 63.37 309 | 86.25 183 | 96.75 151 |
|
RPMNet | | | 79.85 260 | 75.92 279 | 91.64 128 | 90.16 255 | 79.75 162 | 79.02 350 | 95.44 159 | 58.43 357 | 82.27 182 | 72.55 354 | 73.03 168 | 98.41 123 | 46.10 358 | 86.25 183 | 96.75 151 |
|
Patchmatch-RL test | | | 76.65 288 | 74.01 295 | 84.55 282 | 77.37 352 | 64.23 333 | 78.49 352 | 82.84 356 | 78.48 258 | 64.63 324 | 73.40 351 | 76.05 121 | 91.70 332 | 76.99 218 | 57.84 341 | 97.72 102 |
|
Patchmtry | | | 77.36 283 | 74.59 288 | 85.67 263 | 89.75 261 | 75.75 261 | 77.85 353 | 91.12 304 | 60.28 351 | 71.23 290 | 80.35 330 | 75.45 132 | 93.56 311 | 57.94 326 | 67.34 315 | 87.68 295 |
|
PatchT | | | 79.75 261 | 76.85 272 | 88.42 204 | 89.55 266 | 75.49 262 | 77.37 354 | 94.61 204 | 63.07 339 | 82.46 176 | 73.32 352 | 75.52 131 | 93.41 314 | 51.36 347 | 84.43 199 | 96.36 159 |
|
PMMVS2 | | | 50.90 332 | 46.31 335 | 64.67 343 | 55.53 371 | 46.67 365 | 77.30 355 | 71.02 369 | 40.89 362 | 34.16 366 | 59.32 361 | 9.83 374 | 76.14 367 | 40.09 363 | 28.63 369 | 71.21 358 |
|
APD_test1 | | | 56.56 327 | 53.58 330 | 65.50 341 | 67.93 364 | 46.51 366 | 77.24 356 | 72.95 367 | 38.09 363 | 42.75 361 | 75.17 345 | 13.38 369 | 82.78 362 | 40.19 362 | 54.53 345 | 67.23 362 |
|
test_method | | | 56.77 326 | 54.53 329 | 63.49 346 | 76.49 354 | 40.70 372 | 75.68 357 | 74.24 366 | 19.47 372 | 48.73 357 | 71.89 356 | 19.31 363 | 65.80 372 | 57.46 330 | 47.51 360 | 83.97 336 |
|
JIA-IIPM | | | 79.00 270 | 77.20 268 | 84.40 286 | 89.74 263 | 64.06 335 | 75.30 358 | 95.44 159 | 62.15 342 | 81.90 187 | 59.08 362 | 78.92 75 | 95.59 256 | 66.51 294 | 85.78 191 | 93.54 211 |
|
EMVS | | | 31.70 341 | 31.45 343 | 32.48 357 | 50.72 376 | 23.95 380 | 74.78 359 | 52.30 379 | 20.36 371 | 16.08 375 | 31.48 373 | 12.80 370 | 53.60 375 | 11.39 374 | 13.10 374 | 19.88 372 |
|
E-PMN | | | 32.70 340 | 32.39 342 | 33.65 356 | 53.35 373 | 25.70 379 | 74.07 360 | 53.33 378 | 21.08 370 | 17.17 374 | 33.63 372 | 11.85 372 | 54.84 374 | 12.98 373 | 14.04 371 | 20.42 371 |
|
Patchmatch-test | | | 78.25 274 | 74.72 287 | 88.83 198 | 91.20 235 | 74.10 275 | 73.91 361 | 88.70 332 | 59.89 354 | 66.82 313 | 85.12 301 | 78.38 83 | 94.54 293 | 48.84 354 | 79.58 232 | 97.86 92 |
|
LCM-MVSNet | | | 52.52 330 | 48.24 333 | 65.35 342 | 47.63 377 | 41.45 371 | 72.55 362 | 83.62 354 | 31.75 365 | 37.66 363 | 57.92 363 | 9.19 375 | 76.76 365 | 49.26 353 | 44.60 362 | 77.84 355 |
|
ANet_high | | | 46.22 333 | 41.28 340 | 61.04 349 | 39.91 379 | 46.25 367 | 70.59 363 | 76.18 365 | 58.87 356 | 23.09 371 | 48.00 368 | 12.58 371 | 66.54 371 | 28.65 367 | 13.62 372 | 70.35 359 |
|
testf1 | | | 45.70 334 | 42.41 336 | 55.58 350 | 53.29 374 | 40.02 374 | 68.96 364 | 62.67 374 | 27.45 367 | 29.85 367 | 61.58 359 | 5.98 377 | 73.83 369 | 28.49 368 | 43.46 364 | 52.90 364 |
|
APD_test2 | | | 45.70 334 | 42.41 336 | 55.58 350 | 53.29 374 | 40.02 374 | 68.96 364 | 62.67 374 | 27.45 367 | 29.85 367 | 61.58 359 | 5.98 377 | 73.83 369 | 28.49 368 | 43.46 364 | 52.90 364 |
|
ambc | | | | | 76.02 332 | 68.11 363 | 51.43 360 | 64.97 366 | 89.59 319 | | 60.49 341 | 74.49 348 | 17.17 365 | 92.46 320 | 61.50 315 | 52.85 351 | 84.17 335 |
|
tmp_tt | | | 41.54 337 | 41.93 339 | 40.38 355 | 20.10 381 | 26.84 378 | 61.93 367 | 59.09 376 | 14.81 374 | 28.51 369 | 80.58 328 | 35.53 347 | 48.33 376 | 63.70 307 | 13.11 373 | 45.96 369 |
|
PMVS |  | 34.80 23 | 39.19 338 | 35.53 341 | 50.18 353 | 29.72 380 | 30.30 377 | 59.60 368 | 66.20 373 | 26.06 369 | 17.91 373 | 49.53 366 | 3.12 379 | 74.09 368 | 18.19 372 | 49.40 355 | 46.14 367 |
Y. Furukawa, J. Ponce: Accurate, dense, and robust multiview stereopsis. PAMI (2010) |
MVE |  | 35.65 22 | 33.85 339 | 29.49 344 | 46.92 354 | 41.86 378 | 36.28 376 | 50.45 369 | 56.52 377 | 18.75 373 | 18.28 372 | 37.84 369 | 2.41 380 | 58.41 373 | 18.71 371 | 20.62 370 | 46.06 368 |
Simon Fuhrmann, Fabian Langguth, Michael Goesele: MVE - A Multi-View Reconstruction Environment. EUROGRAPHICS Workshops on Graphics and Cultural Heritage (2014) |
Gipuma |  | | 45.11 336 | 42.05 338 | 54.30 352 | 80.69 340 | 51.30 361 | 35.80 370 | 83.81 353 | 28.13 366 | 27.94 370 | 34.53 370 | 11.41 373 | 76.70 366 | 21.45 370 | 54.65 344 | 34.90 370 |
S. Galliani, K. Lasinger, K. Schindler: Massively Parallel Multiview Stereopsis by Surface Normal Diffusion. ICCV 2015 |
wuyk23d | | | 14.10 343 | 13.89 346 | 14.72 358 | 55.23 372 | 22.91 381 | 33.83 371 | 3.56 382 | 4.94 375 | 4.11 376 | 2.28 378 | 2.06 381 | 19.66 377 | 10.23 375 | 8.74 375 | 1.59 375 |
|
test_blank | | | 0.00 348 | 0.00 351 | 0.00 361 | 0.00 384 | 0.00 385 | 0.00 372 | 0.00 385 | 0.00 379 | 0.00 380 | 0.00 379 | 0.00 384 | 0.00 380 | 0.00 378 | 0.00 378 | 0.00 376 |
|
uanet_test | | | 0.00 348 | 0.00 351 | 0.00 361 | 0.00 384 | 0.00 385 | 0.00 372 | 0.00 385 | 0.00 379 | 0.00 380 | 0.00 379 | 0.00 384 | 0.00 380 | 0.00 378 | 0.00 378 | 0.00 376 |
|
DCPMVS | | | 0.00 348 | 0.00 351 | 0.00 361 | 0.00 384 | 0.00 385 | 0.00 372 | 0.00 385 | 0.00 379 | 0.00 380 | 0.00 379 | 0.00 384 | 0.00 380 | 0.00 378 | 0.00 378 | 0.00 376 |
|
cdsmvs_eth3d_5k | | | 21.43 342 | 28.57 345 | 0.00 361 | 0.00 384 | 0.00 385 | 0.00 372 | 95.93 133 | 0.00 379 | 0.00 380 | 97.66 60 | 63.57 232 | 0.00 380 | 0.00 378 | 0.00 378 | 0.00 376 |
|
pcd_1.5k_mvsjas | | | 5.92 347 | 7.89 350 | 0.00 361 | 0.00 384 | 0.00 385 | 0.00 372 | 0.00 385 | 0.00 379 | 0.00 380 | 0.00 379 | 71.04 190 | 0.00 380 | 0.00 378 | 0.00 378 | 0.00 376 |
|
sosnet-low-res | | | 0.00 348 | 0.00 351 | 0.00 361 | 0.00 384 | 0.00 385 | 0.00 372 | 0.00 385 | 0.00 379 | 0.00 380 | 0.00 379 | 0.00 384 | 0.00 380 | 0.00 378 | 0.00 378 | 0.00 376 |
|
sosnet | | | 0.00 348 | 0.00 351 | 0.00 361 | 0.00 384 | 0.00 385 | 0.00 372 | 0.00 385 | 0.00 379 | 0.00 380 | 0.00 379 | 0.00 384 | 0.00 380 | 0.00 378 | 0.00 378 | 0.00 376 |
|
uncertanet | | | 0.00 348 | 0.00 351 | 0.00 361 | 0.00 384 | 0.00 385 | 0.00 372 | 0.00 385 | 0.00 379 | 0.00 380 | 0.00 379 | 0.00 384 | 0.00 380 | 0.00 378 | 0.00 378 | 0.00 376 |
|
Regformer | | | 0.00 348 | 0.00 351 | 0.00 361 | 0.00 384 | 0.00 385 | 0.00 372 | 0.00 385 | 0.00 379 | 0.00 380 | 0.00 379 | 0.00 384 | 0.00 380 | 0.00 378 | 0.00 378 | 0.00 376 |
|
ab-mvs-re | | | 8.11 346 | 10.81 349 | 0.00 361 | 0.00 384 | 0.00 385 | 0.00 372 | 0.00 385 | 0.00 379 | 0.00 380 | 97.30 81 | 0.00 384 | 0.00 380 | 0.00 378 | 0.00 378 | 0.00 376 |
|
uanet | | | 0.00 348 | 0.00 351 | 0.00 361 | 0.00 384 | 0.00 385 | 0.00 372 | 0.00 385 | 0.00 379 | 0.00 380 | 0.00 379 | 0.00 384 | 0.00 380 | 0.00 378 | 0.00 378 | 0.00 376 |
|
MSC_two_6792asdad | | | | | 97.14 3 | 99.05 9 | 92.19 4 | | 96.83 41 | | | | | 99.81 21 | 98.08 7 | 98.81 24 | 99.43 11 |
|
PC_three_1452 | | | | | | | | | | 91.12 21 | 98.33 2 | 98.42 23 | 92.51 2 | 99.81 21 | 98.96 2 | 99.37 1 | 99.70 3 |
|
No_MVS | | | | | 97.14 3 | 99.05 9 | 92.19 4 | | 96.83 41 | | | | | 99.81 21 | 98.08 7 | 98.81 24 | 99.43 11 |
|
test_one_0601 | | | | | | 98.91 18 | 84.56 68 | | 96.70 60 | 88.06 64 | 96.57 16 | 98.77 10 | 88.04 20 | | | | |
|
eth-test2 | | | | | | 0.00 384 | | | | | | | | | | | |
|
eth-test | | | | | | 0.00 384 | | | | | | | | | | | |
|
ZD-MVS | | | | | | 99.09 8 | 83.22 91 | | 96.60 76 | 82.88 181 | 93.61 49 | 98.06 42 | 82.93 48 | 99.14 83 | 95.51 33 | 98.49 37 | |
|
IU-MVS | | | | | | 99.03 15 | 85.34 47 | | 96.86 40 | 92.05 16 | 98.74 1 | | | | 98.15 4 | 98.97 17 | 99.42 13 |
|
test_241102_TWO | | | | | | | | | 96.78 44 | 88.72 51 | 97.70 6 | 98.91 2 | 87.86 21 | 99.82 18 | 98.15 4 | 99.00 15 | 99.47 9 |
|
test_241102_ONE | | | | | | 99.03 15 | 85.03 59 | | 96.78 44 | 88.72 51 | 97.79 4 | 98.90 5 | 88.48 17 | 99.82 18 | | | |
|
test_0728_THIRD | | | | | | | | | | 88.38 58 | 96.69 13 | 98.76 12 | 89.64 13 | 99.76 25 | 97.47 14 | 98.84 23 | 99.38 14 |
|
GSMVS | | | | | | | | | | | | | | | | | 97.54 114 |
|
test_part2 | | | | | | 98.90 19 | 85.14 58 | | | | 96.07 21 | | | | | | |
|
sam_mvs1 | | | | | | | | | | | | | 77.59 95 | | | | 97.54 114 |
|
sam_mvs | | | | | | | | | | | | | 75.35 139 | | | | |
|
MTGPA |  | | | | | | | | 96.33 106 | | | | | | | | |
|
test_post | | | | | | | | | | | | 33.80 371 | 76.17 119 | 95.97 229 | | | |
|
patchmatchnet-post | | | | | | | | | | | | 77.09 343 | 77.78 94 | 95.39 262 | | | |
|
gm-plane-assit | | | | | | 92.27 208 | 79.64 168 | | | 84.47 141 | | 95.15 142 | | 97.93 136 | 85.81 136 | | |
|
test9_res | | | | | | | | | | | | | | | 96.00 25 | 99.03 13 | 98.31 60 |
|
agg_prior2 | | | | | | | | | | | | | | | 94.30 43 | 99.00 15 | 98.57 45 |
|
agg_prior | | | | | | 98.59 35 | 83.13 92 | | 96.56 81 | | 94.19 43 | | | 99.16 82 | | | |
|
TestCases | | | | | 84.47 283 | 92.18 214 | 67.29 323 | | 84.43 350 | 67.63 329 | 63.48 326 | 90.18 224 | 38.20 342 | 97.16 181 | 57.04 331 | 73.37 267 | 88.97 271 |
|
test_prior | | | | | 93.09 75 | 98.68 26 | 81.91 111 | | 96.40 99 | | | | | 99.06 89 | | | 98.29 62 |
|
æ–°å‡ ä½•1 | | | | | 93.12 73 | 97.44 78 | 81.60 123 | | 96.71 59 | 74.54 293 | 91.22 79 | 97.57 67 | 79.13 74 | 99.51 57 | 77.40 216 | 98.46 38 | 98.26 65 |
|
旧先验1 | | | | | | 97.39 82 | 79.58 169 | | 96.54 82 | | | 98.08 40 | 84.00 40 | | | 97.42 71 | 97.62 111 |
|
原ACMM1 | | | | | 91.22 141 | 97.77 65 | 78.10 211 | | 96.61 73 | 81.05 206 | 91.28 78 | 97.42 76 | 77.92 91 | 98.98 93 | 79.85 192 | 98.51 34 | 96.59 154 |
|
testdata2 | | | | | | | | | | | | | | 99.48 59 | 76.45 225 | | |
|
segment_acmp | | | | | | | | | | | | | 82.69 51 | | | | |
|
testdata | | | | | 90.13 172 | 95.92 107 | 74.17 274 | | 96.49 90 | 73.49 302 | 94.82 37 | 97.99 44 | 78.80 79 | 97.93 136 | 83.53 163 | 97.52 66 | 98.29 62 |
|
test12 | | | | | 94.25 35 | 98.34 46 | 85.55 44 | | 96.35 105 | | 92.36 60 | | 80.84 56 | 99.22 73 | | 98.31 47 | 97.98 84 |
|
plane_prior7 | | | | | | 91.86 227 | 77.55 228 | | | | | | | | | | |
|
plane_prior6 | | | | | | 91.98 223 | 77.92 218 | | | | | | 64.77 227 | | | | |
|
plane_prior5 | | | | | | | | | 94.69 195 | | | | | 97.30 173 | 87.08 128 | 82.82 213 | 90.96 225 |
|
plane_prior4 | | | | | | | | | | | | 94.15 167 | | | | | |
|
plane_prior3 | | | | | | | 77.75 224 | | | 90.17 35 | 81.33 192 | | | | | | |
|
plane_prior1 | | | | | | 91.95 225 | | | | | | | | | | | |
|
n2 | | | | | | | | | 0.00 385 | | | | | | | | |
|
nn | | | | | | | | | 0.00 385 | | | | | | | | |
|
door-mid | | | | | | | | | 79.75 362 | | | | | | | | |
|
lessismore_v0 | | | | | 79.98 318 | 80.59 341 | 58.34 352 | | 80.87 359 | | 58.49 346 | 83.46 315 | 43.10 329 | 93.89 304 | 63.11 310 | 48.68 356 | 87.72 293 |
|
LGP-MVS_train | | | | | 86.33 249 | 90.88 241 | 73.06 283 | | 94.13 227 | 82.20 191 | 76.31 244 | 93.20 180 | 54.83 295 | 96.95 191 | 83.72 157 | 80.83 222 | 88.98 269 |
|
test11 | | | | | | | | | 96.50 87 | | | | | | | | |
|
door | | | | | | | | | 80.13 361 | | | | | | | | |
|
HQP5-MVS | | | | | | | 78.48 195 | | | | | | | | | | |
|
BP-MVS | | | | | | | | | | | | | | | 87.67 124 | | |
|
HQP4-MVS | | | | | | | | | | | 82.30 178 | | | 97.32 171 | | | 91.13 223 |
|
HQP3-MVS | | | | | | | | | 94.80 190 | | | | | | | 83.01 209 | |
|
HQP2-MVS | | | | | | | | | | | | | 65.40 221 | | | | |
|
NP-MVS | | | | | | 92.04 222 | 78.22 205 | | | | | 94.56 157 | | | | | |
|
ACMMP++_ref | | | | | | | | | | | | | | | | 78.45 245 | |
|
ACMMP++ | | | | | | | | | | | | | | | | 79.05 236 | |
|
Test By Simon | | | | | | | | | | | | | 71.65 183 | | | | |
|
ITE_SJBPF | | | | | 82.38 306 | 87.00 294 | 65.59 329 | | 89.55 320 | 79.99 232 | 69.37 303 | 91.30 205 | 41.60 335 | 95.33 266 | 62.86 311 | 74.63 263 | 86.24 317 |
|
DeepMVS_CX |  | | | | 64.06 345 | 78.53 347 | 43.26 370 | | 68.11 372 | 69.94 324 | 38.55 362 | 76.14 344 | 18.53 364 | 79.34 363 | 43.72 360 | 41.62 366 | 69.57 360 |
|