This table lists the benchmark results for the high-res multi-view scenario. The following metrics are evaluated:

(*) For exact definitions, detailing how potentially incomplete ground truth is taken into account, see our paper.

The datasets are grouped into different categories, and result averages are computed for a category and method if results of the method are available for all datasets within the category. Note that the category "all" includes both the high-res multi-view and the low-res many-view scenarios.

Methods with suffix _ROB may participate in the Robust Vision Challenge.

Click a dataset result cell to show a visualization of the reconstruction. For training datasets, ground truth and accuracy / completeness visualizations are also available. The visualizations may not work with mobile browsers.




Method Infoallhigh-res
multi-view
indooroutdoorbotani.boulde.bridgedoorexhibi.lectur.living.loungeobserv.old co.statueterrac.
sort bysort bysort bysort bysort bysort bysorted bysort bysort bysort bysort bysort bysort bysort bysort bysort by
PVSNet_Blended93.13 3492.98 3893.57 5797.47 7683.86 7799.32 196.73 5691.02 2489.53 10296.21 11276.42 11499.57 5194.29 4495.81 10097.29 131
DELS-MVS94.98 1294.49 1996.44 696.42 9590.59 799.21 297.02 2894.40 591.46 7297.08 9183.32 4599.69 3992.83 6498.70 3099.04 24
Christian Sormann, Emanuele Santellani, Mattia Rossi, Andreas Kuhn, Friedrich Fraundorfer: DELS-MVS: Deep Epipolar Line Search for Multi-View Stereo. Winter Conference on Applications of Computer Vision (WACV), 2023
NCCC95.63 695.94 894.69 2699.21 685.15 5799.16 396.96 3294.11 695.59 2498.64 1785.07 3399.91 495.61 3199.10 999.00 26
DPM-MVS96.21 295.53 1198.26 196.26 9895.09 199.15 496.98 3093.39 996.45 1898.79 890.17 1099.99 189.33 10799.25 699.70 3
lupinMVS93.87 2993.58 3194.75 2593.00 18888.08 1599.15 495.50 15491.03 2394.90 3397.66 6078.84 7797.56 15394.64 4297.46 6798.62 44
SED-MVS95.88 596.22 494.87 2199.03 1585.03 5999.12 696.78 4488.72 5197.79 498.91 288.48 1799.82 1898.15 498.97 1799.74 1
OPU-MVS97.30 299.19 792.31 399.12 698.54 1892.06 399.84 1299.11 199.37 199.74 1
test072699.05 985.18 5299.11 896.78 4488.75 4997.65 998.91 287.69 22
DVP-MVScopyleft95.58 895.91 994.57 2899.05 985.18 5299.06 996.46 9188.75 4996.69 1398.76 1287.69 2299.76 2597.90 998.85 2198.77 33
Zhenlong Yuan, Jinguo Luo, Fei Shen, Zhaoxin Li, Cong Liu, Tianlu Mao, Zhaoqi Wang: DVP-MVS: Synergize Depth-Edge and Visibility Prior for Multi-View Stereo. AAAI2025
test_0728_SECOND95.14 1699.04 1486.14 3399.06 996.77 5099.84 1297.90 998.85 2199.45 10
CANet94.89 1394.64 1795.63 1197.55 7588.12 1499.06 996.39 10194.07 795.34 2697.80 5576.83 10899.87 897.08 1897.64 6398.89 29
CNVR-MVS96.30 196.54 195.55 1399.31 587.69 2099.06 997.12 2494.66 396.79 1298.78 986.42 2999.95 397.59 1399.18 799.00 26
SteuartSystems-ACMMP94.13 2694.44 2193.20 7195.41 11981.35 12699.02 1396.59 7789.50 4294.18 4498.36 2583.68 4499.45 6194.77 3898.45 3998.81 32
Skip Steuart: Steuart Systems R&D Blog.
DeepPCF-MVS89.82 194.61 1796.17 589.91 18097.09 9070.21 30998.99 1496.69 6295.57 195.08 3099.23 186.40 3099.87 897.84 1198.66 3199.65 6
MCST-MVS96.17 396.12 696.32 799.42 289.36 998.94 1597.10 2695.17 292.11 6598.46 2287.33 2499.97 297.21 1799.31 499.63 7
IB-MVS85.34 488.67 12687.14 14693.26 6893.12 18684.32 7198.76 1697.27 1887.19 8879.36 21390.45 22083.92 4298.53 11484.41 14669.79 29096.93 141
Christian Sormann, Mattia Rossi, Andreas Kuhn and Friedrich Fraundorfer: IB-MVS: An Iterative Algorithm for Deep Multi-View Stereo based on Binary Decisions. BMVC 2021
CS-MVS-test92.98 3793.67 2890.90 15096.52 9476.87 23998.68 1794.73 19490.36 3394.84 3597.89 5077.94 8997.15 18494.28 4697.80 6098.70 40
alignmvs92.97 3892.26 5295.12 1795.54 11687.77 1898.67 1896.38 10288.04 6593.01 5697.45 7279.20 7398.60 11093.25 5988.76 16298.99 28
jason92.73 4392.23 5394.21 3890.50 24987.30 2498.65 1995.09 17590.61 2792.76 5997.13 8875.28 14097.30 17393.32 5796.75 8898.02 77
jason: jason.
MSLP-MVS++94.28 2194.39 2293.97 4398.30 4984.06 7598.64 2096.93 3590.71 2693.08 5598.70 1579.98 6599.21 7494.12 4799.07 1198.63 43
PHI-MVS93.59 3193.63 2993.48 6398.05 5881.76 11898.64 2097.13 2382.60 18794.09 4598.49 2180.35 5999.85 1094.74 4098.62 3298.83 31
save fliter98.24 5183.34 8998.61 2296.57 7991.32 19
CS-MVS92.73 4393.48 3390.48 16296.27 9775.93 25898.55 2394.93 18189.32 4394.54 4097.67 5978.91 7697.02 18893.80 4997.32 7498.49 49
DP-MVS Recon91.72 6490.85 7394.34 3299.50 185.00 6198.51 2495.96 13080.57 21588.08 12197.63 6676.84 10799.89 785.67 13794.88 10598.13 72
patch_mono-295.14 1196.08 792.33 10298.44 4377.84 22198.43 2597.21 2092.58 1197.68 897.65 6486.88 2699.83 1698.25 397.60 6499.33 17
CP-MVS92.54 5292.60 4692.34 10198.50 4079.90 15898.40 2696.40 9984.75 13090.48 9098.09 3777.40 9999.21 7491.15 7998.23 5097.92 88
test_prior298.37 2786.08 10494.57 3998.02 4383.14 4695.05 3698.79 26
EPNet94.06 2794.15 2593.76 4897.27 8784.35 7098.29 2897.64 1394.57 495.36 2596.88 9779.96 6699.12 8691.30 7796.11 9397.82 96
Wanjuan Su, Wenbing Tao: Efficient Edge-Preserving Multi-View Stereo Network for Depth Estimation. AAAI 2023
Fast-Effi-MVS+87.93 14686.94 15190.92 14994.04 16079.16 17998.26 2993.72 25181.29 20383.94 16192.90 18469.83 19996.68 20676.70 22291.74 14396.93 141
WTY-MVS92.65 4991.68 6295.56 1296.00 10588.90 1198.23 3097.65 1288.57 5489.82 9697.22 8579.29 7099.06 8989.57 10388.73 16398.73 38
PS-MVSNAJ94.17 2493.52 3296.10 895.65 11392.35 298.21 3195.79 14092.42 1396.24 1998.18 3071.04 19099.17 8196.77 2097.39 7296.79 147
xiu_mvs_v2_base93.92 2893.26 3695.91 995.07 13092.02 698.19 3295.68 14592.06 1596.01 2298.14 3470.83 19398.96 9496.74 2196.57 8996.76 150
9.1494.26 2498.10 5798.14 3396.52 8484.74 13194.83 3698.80 782.80 5099.37 6695.95 2698.42 40
ET-MVSNet_ETH3D90.01 10089.03 10592.95 8094.38 15086.77 2898.14 3396.31 10889.30 4463.33 32996.72 10690.09 1193.63 31090.70 8782.29 21898.46 51
CLD-MVS87.97 14587.48 13789.44 18892.16 21680.54 14498.14 3394.92 18291.41 1879.43 21295.40 13362.34 23897.27 17690.60 8882.90 21290.50 232
Zhaoxin Li, Wangmeng Zuo, Zhaoqi Wang, Lei Zhang: Confidence-based Large-scale Dense Multi-view Stereo. IEEE Transaction on Image Processing, 2020
DVP-MVS++96.05 496.41 394.96 2099.05 985.34 4798.13 3696.77 5088.38 5897.70 698.77 1092.06 399.84 1297.47 1499.37 199.70 3
FOURS198.51 3978.01 21398.13 3696.21 11483.04 17694.39 41
TSAR-MVS + GP.94.35 2094.50 1893.89 4597.38 8483.04 9498.10 3895.29 16991.57 1793.81 4697.45 7286.64 2799.43 6296.28 2294.01 11599.20 22
test_yl91.46 7090.53 7894.24 3697.41 8085.18 5298.08 3997.72 1080.94 20789.85 9496.14 11375.61 12798.81 10490.42 9488.56 16598.74 34
DCV-MVSNet91.46 7090.53 7894.24 3697.41 8085.18 5298.08 3997.72 1080.94 20789.85 9496.14 11375.61 12798.81 10490.42 9488.56 16598.74 34
DROMVSNet91.73 6292.11 5690.58 15993.54 17177.77 22398.07 4194.40 21687.44 7992.99 5797.11 9074.59 15196.87 19793.75 5097.08 7897.11 136
EIA-MVS91.73 6292.05 5790.78 15594.52 14576.40 24798.06 4295.34 16789.19 4588.90 10997.28 8377.56 9697.73 14690.77 8596.86 8598.20 66
DeepC-MVS_fast89.06 294.48 1994.30 2395.02 1898.86 2185.68 4298.06 4296.64 7093.64 891.74 7098.54 1880.17 6499.90 592.28 6998.75 2899.49 8
Andreas Kuhn, Christian Sormann, Mattia Rossi, Oliver Erdler, Friedrich Fraundorfer: DeepC-MVS: Deep Confidence Prediction for Multi-View Stereo Reconstruction. 3DV 2020
APDe-MVS94.56 1894.75 1593.96 4498.84 2283.40 8898.04 4496.41 9785.79 10995.00 3298.28 2784.32 3999.18 8097.35 1698.77 2799.28 19
PVSNet_BlendedMVS90.05 9989.96 9290.33 16797.47 7683.86 7798.02 4596.73 5687.98 6689.53 10289.61 23276.42 11499.57 5194.29 4479.59 23187.57 299
ETV-MVS92.72 4592.87 4092.28 10594.54 14481.89 11297.98 4695.21 17289.77 4093.11 5496.83 9977.23 10497.50 16195.74 2995.38 10297.44 122
MG-MVS94.25 2393.72 2795.85 1099.38 389.35 1097.98 4698.09 889.99 3692.34 6196.97 9481.30 5598.99 9288.54 11398.88 2099.20 22
thisisatest051590.95 8390.26 8493.01 7894.03 16284.27 7397.91 4896.67 6483.18 17186.87 13295.51 13188.66 1697.85 14280.46 18389.01 15996.92 143
VNet92.11 5791.22 6894.79 2396.91 9186.98 2597.91 4897.96 986.38 9993.65 4895.74 12170.16 19898.95 9693.39 5488.87 16198.43 53
test_fmvs187.79 14888.52 11585.62 26592.98 19264.31 33297.88 5092.42 28587.95 6792.24 6295.82 12047.94 31498.44 12295.31 3594.09 11294.09 203
thres20088.92 11887.65 12992.73 8896.30 9685.62 4397.85 5198.86 184.38 14384.82 14993.99 17175.12 14398.01 13470.86 27186.67 17894.56 197
3Dnovator+82.88 889.63 10587.85 12594.99 1994.49 14986.76 2997.84 5295.74 14286.10 10375.47 26196.02 11665.00 22599.51 5782.91 17097.07 7998.72 39
TEST998.64 3183.71 8097.82 5396.65 6784.29 14695.16 2798.09 3784.39 3599.36 67
train_agg94.28 2194.45 2093.74 4998.64 3183.71 8097.82 5396.65 6784.50 13995.16 2798.09 3784.33 3699.36 6795.91 2798.96 1998.16 69
test_898.63 3383.64 8397.81 5596.63 7284.50 13995.10 2998.11 3684.33 3699.23 72
HPM-MVS++copyleft95.32 995.48 1294.85 2298.62 3486.04 3497.81 5596.93 3592.45 1295.69 2398.50 2085.38 3199.85 1094.75 3999.18 798.65 42
DPE-MVScopyleft95.32 995.55 1094.64 2798.79 2384.87 6497.77 5796.74 5586.11 10296.54 1798.89 688.39 1999.74 3297.67 1299.05 1299.31 18
Kehua Chen, Zhenlong Yuan, Tianlu Mao, Zhaoqi Wang: Dual-Level Precision Edges Guided Multi-View Stereo with Accurate Planarization. AAAI2025
PVSNet_Blended_VisFu91.24 7690.77 7592.66 9095.09 12882.40 10497.77 5795.87 13788.26 6186.39 13493.94 17276.77 10999.27 7088.80 11294.00 11696.31 164
SD-MVS94.84 1495.02 1494.29 3497.87 6484.61 6797.76 5996.19 11789.59 4196.66 1598.17 3384.33 3699.60 4896.09 2398.50 3698.66 41
Zhenlong Yuan, Jiakai Cao, Zhaoxin Li, Hao Jiang and Zhaoqi Wang: SD-MVS: Segmentation-driven Deformation Multi-View Stereo with Spherical Refinement and EM optimization. AAAI2024
test_prior482.34 10597.75 60
SF-MVS94.17 2494.05 2694.55 2997.56 7485.95 3597.73 6196.43 9584.02 15195.07 3198.74 1482.93 4899.38 6495.42 3498.51 3498.32 58
3Dnovator82.32 1089.33 11087.64 13094.42 3193.73 16785.70 4197.73 6196.75 5486.73 9876.21 24995.93 11762.17 23999.68 4181.67 17697.81 5997.88 89
CPTT-MVS89.72 10389.87 9689.29 19098.33 4773.30 28097.70 6395.35 16675.68 28487.40 12597.44 7570.43 19598.25 12889.56 10496.90 8196.33 163
PVSNet82.34 989.02 11587.79 12792.71 8995.49 11781.50 12497.70 6397.29 1787.76 7285.47 14295.12 14456.90 27998.90 10080.33 18494.02 11497.71 104
iter_conf0590.14 9889.79 9791.17 14295.85 10986.93 2697.68 6588.67 33389.93 3781.73 19192.80 18590.37 896.03 22490.44 9280.65 22490.56 230
CDPH-MVS93.12 3592.91 3993.74 4998.65 3083.88 7697.67 6696.26 11083.00 17893.22 5398.24 2881.31 5499.21 7489.12 10898.74 2998.14 71
ZNCC-MVS92.75 4192.60 4693.23 7098.24 5181.82 11697.63 6796.50 8785.00 12791.05 8197.74 5778.38 8399.80 2490.48 8998.34 4698.07 75
HQP-NCC92.08 21897.63 6790.52 2882.30 178
ACMP_Plane92.08 21897.63 6790.52 2882.30 178
HQP-MVS87.91 14787.55 13588.98 19592.08 21878.48 19597.63 6794.80 19090.52 2882.30 17894.56 15765.40 22197.32 17187.67 12483.01 20991.13 223
HFP-MVS92.89 3992.86 4192.98 7998.71 2581.12 12997.58 7196.70 6085.20 12291.75 6997.97 4878.47 8299.71 3690.95 8098.41 4198.12 73
ACMMPR92.69 4792.67 4492.75 8698.66 2880.57 14197.58 7196.69 6285.20 12291.57 7197.92 4977.01 10599.67 4390.95 8098.41 4198.00 82
MVS_111021_HR93.41 3393.39 3593.47 6597.34 8582.83 9697.56 7398.27 689.16 4689.71 9797.14 8779.77 6799.56 5393.65 5297.94 5698.02 77
VDD-MVS88.28 13887.02 14992.06 11395.09 12880.18 15497.55 7494.45 21483.09 17489.10 10795.92 11947.97 31398.49 11693.08 6386.91 17797.52 118
GeoE86.36 16785.20 16889.83 18393.17 18276.13 25097.53 7592.11 28979.58 23980.99 19594.01 17066.60 21596.17 22273.48 25389.30 15697.20 134
MTMP97.53 7568.16 371
region2R92.72 4592.70 4392.79 8598.68 2680.53 14597.53 7596.51 8585.22 12091.94 6797.98 4677.26 10099.67 4390.83 8498.37 4498.18 67
plane_prior77.96 21597.52 7890.36 3382.96 211
API-MVS90.18 9788.97 10793.80 4798.66 2882.95 9597.50 7995.63 14875.16 28886.31 13597.69 5872.49 17399.90 581.26 17896.07 9498.56 46
SMA-MVScopyleft94.70 1694.68 1694.76 2498.02 5985.94 3797.47 8096.77 5085.32 11797.92 398.70 1583.09 4799.84 1295.79 2899.08 1098.49 49
Yufeng Yin; Xiaoyan Liu; Zichao Zhang: SMA-MVS: Segmentation-Guided Multi-Scale Anchor Deformation Patch Multi-View Stereo. IEEE Transactions on Circuits and Systems for Video Technology
CSCG92.02 5891.65 6393.12 7398.53 3680.59 14097.47 8097.18 2277.06 27684.64 15397.98 4683.98 4199.52 5590.72 8697.33 7399.23 21
casdiffmvs_mvgpermissive91.13 7990.45 8093.17 7292.99 19183.58 8497.46 8294.56 20787.69 7487.19 12994.98 15074.50 15297.60 15091.88 7592.79 13098.34 56
Fangjinhua Wang, Qingshan Xu, Yew-Soon Ong, Marc Pollefeys: Lightweight and Accurate Multi-View Stereo With Confidence-Aware Diffusion Model. IEEE T-PAMI 2025
Anonymous20240521184.41 20081.93 21991.85 12296.78 9378.41 19997.44 8391.34 30270.29 32284.06 15694.26 16341.09 33798.96 9479.46 19482.65 21698.17 68
tfpn200view988.48 13187.15 14492.47 9696.21 9985.30 5097.44 8398.85 283.37 16883.99 15893.82 17475.36 13797.93 13669.04 27986.24 18594.17 199
thres40088.42 13487.15 14492.23 10696.21 9985.30 5097.44 8398.85 283.37 16883.99 15893.82 17475.36 13797.93 13669.04 27986.24 18593.45 214
OpenMVScopyleft79.58 1486.09 17283.62 19693.50 6190.95 24086.71 3097.44 8395.83 13875.35 28572.64 28395.72 12257.42 27699.64 4571.41 26495.85 9994.13 202
MSP-MVS95.62 796.54 192.86 8398.31 4880.10 15597.42 8796.78 4492.20 1497.11 1198.29 2693.46 199.10 8796.01 2499.30 599.38 14
Zhenlong Yuan, Cong Liu, Fei Shen, Zhaoxin Li, Jingguo luo, Tianlu Mao and Zhaoqi Wang: MSP-MVS: Multi-granularity Segmentation Prior Guided Multi-View Stereo. AAAI2025
BH-w/o88.24 13987.47 13890.54 16195.03 13378.54 19497.41 8893.82 24284.08 14978.23 22394.51 15969.34 20197.21 17880.21 18894.58 10995.87 172
GST-MVS92.43 5492.22 5493.04 7798.17 5481.64 12297.40 8996.38 10284.71 13390.90 8497.40 7777.55 9799.76 2589.75 10197.74 6197.72 102
XVS92.69 4792.71 4292.63 9298.52 3780.29 14897.37 9096.44 9387.04 9091.38 7397.83 5477.24 10299.59 4990.46 9098.07 5298.02 77
X-MVStestdata86.26 17084.14 18992.63 9298.52 3780.29 14897.37 9096.44 9387.04 9091.38 7320.73 37577.24 10299.59 4990.46 9098.07 5298.02 77
MP-MVScopyleft92.61 5092.67 4492.42 9998.13 5679.73 16597.33 9296.20 11585.63 11190.53 8897.66 6078.14 8799.70 3892.12 7198.30 4897.85 93
Rongxuan Tan, Qing Wang, et al.: MP-MVS: Multi-Scale Windows PatchMatch and Planar Prior Multi-View Stereo.
mPP-MVS91.88 6091.82 5992.07 11298.38 4478.63 19397.29 9396.09 12285.12 12488.45 11597.66 6075.53 13099.68 4189.83 9998.02 5597.88 89
iter_conf_final89.51 10689.21 10390.39 16495.60 11484.44 6997.22 9489.09 32689.11 4782.07 18592.80 18587.03 2596.03 22489.10 10980.89 22190.70 228
EPP-MVSNet89.76 10289.72 9889.87 18193.78 16476.02 25597.22 9496.51 8579.35 24285.11 14495.01 14884.82 3497.10 18687.46 12688.21 16996.50 156
APD-MVScopyleft93.61 3093.59 3093.69 5298.76 2483.26 9097.21 9696.09 12282.41 18994.65 3898.21 2981.96 5398.81 10494.65 4198.36 4599.01 25
Yuesong Wang, Zhaojie Zeng and etc.: Adaptive Patch Deformation for Textureless-Resilient Multi-View Stereo. CVPR2023
CNLPA86.96 15785.37 16691.72 12697.59 7279.34 17597.21 9691.05 30774.22 29478.90 21596.75 10567.21 21098.95 9674.68 24190.77 14996.88 145
PAPR92.74 4292.17 5594.45 3098.89 2084.87 6497.20 9896.20 11587.73 7388.40 11698.12 3578.71 8099.76 2587.99 12096.28 9198.74 34
QAPM86.88 15984.51 18093.98 4294.04 16085.89 3897.19 9996.05 12673.62 29975.12 26495.62 12762.02 24299.74 3270.88 27096.06 9596.30 165
LFMVS89.27 11287.64 13094.16 4197.16 8885.52 4597.18 10094.66 19979.17 24889.63 10096.57 10855.35 29098.22 12989.52 10589.54 15498.74 34
HQP_MVS87.50 15387.09 14788.74 20091.86 22777.96 21597.18 10094.69 19589.89 3881.33 19294.15 16764.77 22797.30 17387.08 12882.82 21390.96 225
plane_prior297.18 10089.89 38
MAR-MVS90.63 8890.22 8591.86 12098.47 4278.20 20997.18 10096.61 7383.87 15888.18 12098.18 3068.71 20299.75 3083.66 16097.15 7797.63 110
Zhenyu Xu, Yiguang Liu, Xuelei Shi, Ying Wang, Yunan Zheng: MARMVS: Matching Ambiguity Reduced Multiple View Stereo for Efficient Large Scale Scene Reconstruction. CVPR 2020
PLCcopyleft83.97 788.00 14487.38 14089.83 18398.02 5976.46 24597.16 10494.43 21579.26 24781.98 18696.28 11169.36 20099.27 7077.71 21092.25 13893.77 209
Jie Liao, Yanping Fu, Qingan Yan, Chunxia xiao: Pyramid Multi-View Stereo with Local Consistency. Pacific Graphics 2019
HPM-MVS_fast90.38 9590.17 8891.03 14697.61 7077.35 23297.15 10595.48 15579.51 24088.79 11096.90 9571.64 18498.81 10487.01 13197.44 6996.94 140
thres100view90088.30 13786.95 15092.33 10296.10 10384.90 6397.14 10698.85 282.69 18583.41 16693.66 17775.43 13497.93 13669.04 27986.24 18594.17 199
thres600view788.06 14286.70 15492.15 11096.10 10385.17 5697.14 10698.85 282.70 18483.41 16693.66 17775.43 13497.82 14367.13 28985.88 18993.45 214
sss90.87 8589.96 9293.60 5694.15 15683.84 7997.14 10698.13 785.93 10789.68 9896.09 11571.67 18299.30 6987.69 12389.16 15797.66 107
test-LLR88.48 13187.98 12389.98 17692.26 20977.23 23497.11 10995.96 13083.76 16286.30 13691.38 20372.30 17696.78 20380.82 18091.92 14195.94 170
TESTMET0.1,189.83 10189.34 10291.31 13692.54 20280.19 15397.11 10996.57 7986.15 10186.85 13391.83 19979.32 6996.95 19181.30 17792.35 13796.77 149
test-mter88.95 11688.60 11389.98 17692.26 20977.23 23497.11 10995.96 13085.32 11786.30 13691.38 20376.37 11696.78 20380.82 18091.92 14195.94 170
VDDNet86.44 16684.51 18092.22 10791.56 23081.83 11597.10 11294.64 20269.50 32687.84 12295.19 13948.01 31297.92 14189.82 10086.92 17696.89 144
canonicalmvs92.27 5591.22 6895.41 1495.80 11088.31 1297.09 11394.64 20288.49 5692.99 5797.31 7972.68 17198.57 11293.38 5688.58 16499.36 16
CDS-MVSNet89.50 10788.96 10891.14 14491.94 22680.93 13397.09 11395.81 13984.26 14784.72 15194.20 16680.31 6095.64 25283.37 16588.96 16096.85 146
Khang Truong Giang, Soohwan Song, Sungho Jo: Curvature-guided dynamic scale networks for Multi-view Stereo. ICLR 2022
nrg03086.79 16285.43 16490.87 15288.76 27385.34 4797.06 11594.33 21884.31 14480.45 20291.98 19472.36 17496.36 21588.48 11671.13 27790.93 227
cascas86.50 16584.48 18292.55 9592.64 20085.95 3597.04 11695.07 17775.32 28680.50 20091.02 21054.33 29797.98 13586.79 13387.62 17293.71 210
xiu_mvs_v1_base_debu90.54 9089.54 9993.55 5892.31 20487.58 2196.99 11794.87 18587.23 8593.27 5097.56 6857.43 27398.32 12592.72 6593.46 12494.74 192
xiu_mvs_v1_base90.54 9089.54 9993.55 5892.31 20487.58 2196.99 11794.87 18587.23 8593.27 5097.56 6857.43 27398.32 12592.72 6593.46 12494.74 192
xiu_mvs_v1_base_debi90.54 9089.54 9993.55 5892.31 20487.58 2196.99 11794.87 18587.23 8593.27 5097.56 6857.43 27398.32 12592.72 6593.46 12494.74 192
HPM-MVScopyleft91.62 6791.53 6591.89 11997.88 6379.22 17796.99 11795.73 14382.07 19589.50 10497.19 8675.59 12998.93 9990.91 8297.94 5697.54 114
Chunlin Ren, Qingshan Xu, Shikun Zhang, Jiaqi Yang: Hierarchical Prior Mining for Non-local Multi-View Stereo. ICCV 2023
114514_t88.79 12487.57 13492.45 9798.21 5381.74 11996.99 11795.45 15875.16 28882.48 17595.69 12468.59 20398.50 11580.33 18495.18 10397.10 137
旧先验296.97 12274.06 29796.10 2097.76 14588.38 117
h-mvs3389.30 11188.95 10990.36 16695.07 13076.04 25296.96 12397.11 2590.39 3192.22 6395.10 14574.70 14798.86 10193.14 6065.89 32296.16 166
BH-RMVSNet86.84 16085.28 16791.49 13395.35 12180.26 15196.95 12492.21 28882.86 18281.77 19095.46 13259.34 25997.64 14869.79 27793.81 11996.57 155
Vis-MVSNetpermissive88.67 12687.82 12691.24 14092.68 19678.82 18796.95 12493.85 24187.55 7787.07 13195.13 14363.43 23397.21 17877.58 21296.15 9297.70 105
Jingyang Zhang, Yao Yao, Shiwei Li, Zixin Luo, Tian Fang: Visibility-aware Multiview Stereo Network. BMVC 2020
Vis-MVSNet (Re-imp)88.88 12088.87 11188.91 19693.89 16374.43 27296.93 12694.19 22484.39 14283.22 16995.67 12578.24 8594.70 28978.88 20194.40 11197.61 112
test_fmvs1_n86.34 16886.72 15385.17 27287.54 29063.64 33796.91 12792.37 28787.49 7891.33 7695.58 12940.81 33998.46 11995.00 3793.49 12293.41 216
GA-MVS85.79 17884.04 19091.02 14789.47 26880.27 15096.90 12894.84 18885.57 11280.88 19689.08 23556.56 28396.47 21277.72 20985.35 19596.34 161
无先验96.87 12996.78 4477.39 26999.52 5579.95 19098.43 53
原ACMM296.84 130
test_vis1_n85.60 18185.70 16185.33 26984.79 32264.98 33096.83 13191.61 29887.36 8291.00 8394.84 15236.14 34597.18 18095.66 3093.03 12893.82 208
casdiffmvspermissive90.95 8390.39 8192.63 9292.82 19582.53 10096.83 13194.47 21287.69 7488.47 11495.56 13074.04 15797.54 15790.90 8392.74 13197.83 95
Fangjinhua Wang, Qingshan Xu, Yew-Soon Ong, Marc Pollefeys: Lightweight and Accurate Multi-View Stereo With Confidence-Aware Diffusion Model. IEEE T-PAMI 2025
ACMMP_NAP93.46 3293.23 3794.17 3997.16 8884.28 7296.82 13396.65 6786.24 10094.27 4297.99 4477.94 8999.83 1693.39 5498.57 3398.39 55
Anonymous2024052983.15 21980.60 23890.80 15395.74 11178.27 20396.81 13494.92 18260.10 35381.89 18892.54 18945.82 32198.82 10379.25 19778.32 24795.31 184
MVSTER89.25 11388.92 11090.24 16995.98 10684.66 6696.79 13595.36 16487.19 8880.33 20490.61 21890.02 1295.97 22985.38 14078.64 24090.09 242
BH-untuned86.95 15885.94 15989.99 17594.52 14577.46 22996.78 13693.37 26781.80 19876.62 23993.81 17666.64 21497.02 18876.06 22993.88 11895.48 180
ACMMPcopyleft90.39 9389.97 9191.64 12897.58 7378.21 20896.78 13696.72 5884.73 13284.72 15197.23 8471.22 18799.63 4688.37 11892.41 13697.08 138
Qingshan Xu, Weihang Kong, Wenbing Tao, Marc Pollefeys: Multi-Scale Geometric Consistency Guided and Planar Prior Assisted Multi-View Stereo. IEEE Transactions on Pattern Analysis and Machine Intelligence
IS-MVSNet88.67 12688.16 12190.20 17193.61 16876.86 24096.77 13893.07 27784.02 15183.62 16595.60 12874.69 15096.24 22078.43 20593.66 12197.49 120
UniMVSNet (Re)85.31 18684.23 18688.55 20389.75 26180.55 14296.72 13996.89 3785.42 11578.40 22188.93 23875.38 13695.52 25978.58 20368.02 30789.57 250
EPNet_dtu87.65 15187.89 12486.93 24294.57 14271.37 30396.72 13996.50 8788.56 5587.12 13095.02 14775.91 12494.01 30366.62 29190.00 15195.42 181
Wanjuan Su, Wenbing Tao: Efficient Edge-Preserving Multi-View Stereo Network for Depth Estimation. AAAI 2023
VPNet84.69 19582.92 20590.01 17489.01 27283.45 8796.71 14195.46 15785.71 11079.65 21192.18 19256.66 28296.01 22883.05 16967.84 31090.56 230
UniMVSNet_NR-MVSNet85.49 18384.59 17888.21 21389.44 26979.36 17396.71 14196.41 9785.22 12078.11 22490.98 21276.97 10695.14 27679.14 19868.30 30490.12 239
AdaColmapbinary88.81 12287.61 13392.39 10099.33 479.95 15696.70 14395.58 14977.51 26883.05 17296.69 10761.90 24599.72 3584.29 14793.47 12397.50 119
SR-MVS92.16 5692.27 5191.83 12398.37 4578.41 19996.67 14495.76 14182.19 19391.97 6698.07 4176.44 11398.64 10893.71 5197.27 7598.45 52
EI-MVSNet-Vis-set91.84 6191.77 6192.04 11497.60 7181.17 12896.61 14596.87 3888.20 6289.19 10597.55 7178.69 8199.14 8390.29 9690.94 14895.80 173
WR-MVS84.32 20182.96 20488.41 20589.38 27080.32 14796.59 14696.25 11183.97 15376.63 23890.36 22267.53 20694.86 28675.82 23370.09 28890.06 244
test111188.11 14187.04 14891.35 13593.15 18378.79 19096.57 14790.78 31286.88 9485.04 14595.20 13857.23 27897.39 16883.88 15294.59 10897.87 91
TR-MVS86.30 16984.93 17690.42 16394.63 14177.58 22796.57 14793.82 24280.30 22482.42 17795.16 14158.74 26397.55 15574.88 23987.82 17196.13 168
ECVR-MVScopyleft88.35 13687.25 14291.65 12793.54 17179.40 17296.56 14990.78 31286.78 9685.57 14195.25 13457.25 27797.56 15384.73 14594.80 10697.98 84
thisisatest053089.65 10489.02 10691.53 13293.46 17780.78 13696.52 15096.67 6481.69 20083.79 16394.90 15188.85 1597.68 14777.80 20687.49 17596.14 167
test0.0.03 182.79 22682.48 21283.74 29386.81 29572.22 28896.52 15095.03 17883.76 16273.00 27993.20 18072.30 17688.88 34764.15 30477.52 25090.12 239
Baseline_NR-MVSNet81.22 24980.07 24684.68 27885.32 31875.12 26596.48 15288.80 32976.24 28277.28 23086.40 28167.61 20494.39 29775.73 23466.73 32084.54 331
EI-MVSNet-UG-set91.35 7491.22 6891.73 12597.39 8280.68 13896.47 15396.83 4187.92 6888.30 11997.36 7877.84 9299.13 8589.43 10689.45 15595.37 182
1112_ss88.60 12987.47 13892.00 11693.21 18080.97 13296.47 15392.46 28483.64 16580.86 19797.30 8180.24 6297.62 14977.60 21185.49 19397.40 125
TAMVS88.48 13187.79 12790.56 16091.09 23879.18 17896.45 15595.88 13583.64 16583.12 17093.33 17975.94 12395.74 24782.40 17188.27 16896.75 151
MP-MVS-pluss92.58 5192.35 4993.29 6797.30 8682.53 10096.44 15696.04 12784.68 13489.12 10698.37 2477.48 9899.74 3293.31 5898.38 4397.59 113
MP-MVS-pluss: MP-MVS-pluss. MP-MVS-pluss
Test_1112_low_res88.03 14386.73 15291.94 11893.15 18380.88 13496.44 15692.41 28683.59 16780.74 19991.16 20880.18 6397.59 15177.48 21485.40 19497.36 127
DU-MVS84.57 19783.33 20188.28 20988.76 27379.36 17396.43 15895.41 16385.42 11578.11 22490.82 21467.61 20495.14 27679.14 19868.30 30490.33 235
新几何296.42 159
PAPM92.87 4092.40 4894.30 3392.25 21187.85 1796.40 16096.38 10291.07 2288.72 11296.90 9582.11 5297.37 17090.05 9897.70 6297.67 106
test250690.96 8290.39 8192.65 9193.54 17182.46 10396.37 16197.35 1686.78 9687.55 12495.25 13477.83 9397.50 16184.07 14994.80 10697.98 84
VPA-MVSNet85.32 18583.83 19189.77 18690.25 25282.63 9896.36 16297.07 2783.03 17781.21 19489.02 23761.58 24696.31 21785.02 14370.95 27990.36 233
UGNet87.73 14986.55 15591.27 13995.16 12779.11 18196.35 16396.23 11288.14 6387.83 12390.48 21950.65 30399.09 8880.13 18994.03 11395.60 177
Wanjuan Su, Qingshan Xu, Wenbing Tao: Uncertainty-guided Multi-view Stereo Network for Depth Estimation. IEEE Transactions on Circuits and Systems for Video Technology, 2022
v2v48283.46 21381.86 22088.25 21186.19 30379.65 16796.34 16494.02 23381.56 20177.32 22988.23 24965.62 21896.03 22477.77 20769.72 29289.09 263
CANet_DTU90.98 8190.04 9093.83 4694.76 13986.23 3296.32 16593.12 27693.11 1093.71 4796.82 10163.08 23599.48 5984.29 14795.12 10495.77 174
APD-MVS_3200maxsize91.23 7791.35 6790.89 15197.89 6276.35 24896.30 16695.52 15379.82 23491.03 8297.88 5174.70 14798.54 11392.11 7296.89 8297.77 99
v14882.41 23480.89 23186.99 24186.18 30476.81 24196.27 16793.82 24280.49 21875.28 26386.11 28667.32 20995.75 24475.48 23567.03 31888.42 282
CHOSEN 1792x268891.07 8090.21 8693.64 5395.18 12683.53 8596.26 16896.13 11988.92 4884.90 14893.10 18372.86 16999.62 4788.86 11095.67 10197.79 98
diffmvspermissive91.17 7890.74 7692.44 9893.11 18782.50 10296.25 16993.62 25587.79 7190.40 9195.93 11773.44 16597.42 16593.62 5392.55 13397.41 124
Fangjinhua Wang, Qingshan Xu, Yew-Soon Ong, Marc Pollefeys: Lightweight and Accurate Multi-View Stereo With Confidence-Aware Diffusion Model. IEEE T-PAMI 2025
pmmvs581.34 24779.54 25286.73 24685.02 32076.91 23896.22 17091.65 29677.65 26673.55 27288.61 24255.70 28894.43 29674.12 24873.35 26988.86 275
mvsmamba85.17 18884.54 17987.05 24087.94 28475.11 26696.22 17087.79 33786.91 9278.55 21991.77 20064.93 22695.91 23586.94 13279.80 22790.12 239
PMMVS89.46 10889.92 9488.06 21594.64 14069.57 31696.22 17094.95 18087.27 8491.37 7596.54 10965.88 21797.39 16888.54 11393.89 11797.23 132
SR-MVS-dyc-post91.29 7591.45 6690.80 15397.76 6776.03 25396.20 17395.44 15980.56 21690.72 8697.84 5275.76 12698.61 10991.99 7396.79 8697.75 100
RE-MVS-def91.18 7197.76 6776.03 25396.20 17395.44 15980.56 21690.72 8697.84 5273.36 16691.99 7396.79 8697.75 100
MVS_111021_LR91.60 6891.64 6491.47 13495.74 11178.79 19096.15 17596.77 5088.49 5688.64 11397.07 9272.33 17599.19 7993.13 6296.48 9096.43 158
FIs86.73 16486.10 15888.61 20290.05 25780.21 15296.14 17696.95 3385.56 11478.37 22292.30 19076.73 11095.28 26979.51 19379.27 23490.35 234
v114482.90 22581.27 22987.78 22086.29 30179.07 18496.14 17693.93 23580.05 23077.38 22786.80 27165.50 21995.93 23475.21 23770.13 28588.33 284
TranMVSNet+NR-MVSNet83.24 21881.71 22287.83 21887.71 28778.81 18996.13 17894.82 18984.52 13876.18 25090.78 21664.07 23094.60 29174.60 24466.59 32190.09 242
Fast-Effi-MVS+-dtu83.33 21582.60 21185.50 26789.55 26669.38 31796.09 17991.38 29982.30 19075.96 25391.41 20256.71 28095.58 25775.13 23884.90 19891.54 221
miper_enhance_ethall85.95 17585.20 16888.19 21494.85 13779.76 16196.00 18094.06 23282.98 17977.74 22688.76 24079.42 6895.46 26180.58 18272.42 27289.36 256
v14419282.43 23180.73 23587.54 22885.81 31078.22 20595.98 18193.78 24779.09 25077.11 23286.49 27664.66 22995.91 23574.20 24769.42 29388.49 278
PVSNet_077.72 1581.70 24278.95 25889.94 17990.77 24676.72 24395.96 18296.95 3385.01 12670.24 29988.53 24552.32 30098.20 13086.68 13444.08 36394.89 188
F-COLMAP84.50 19983.44 20087.67 22195.22 12472.22 28895.95 18393.78 24775.74 28376.30 24695.18 14059.50 25798.45 12072.67 25786.59 18092.35 220
DeepC-MVS86.58 391.53 6991.06 7292.94 8194.52 14581.89 11295.95 18395.98 12990.76 2583.76 16496.76 10373.24 16799.71 3691.67 7696.96 8097.22 133
Andreas Kuhn, Christian Sormann, Mattia Rossi, Oliver Erdler, Friedrich Fraundorfer: DeepC-MVS: Deep Confidence Prediction for Multi-View Stereo Reconstruction. 3DV 2020
FMVSNet384.71 19482.71 20990.70 15794.55 14387.71 1995.92 18594.67 19881.73 19975.82 25688.08 25266.99 21194.47 29571.23 26675.38 25889.91 246
TAPA-MVS81.61 1285.02 19083.67 19389.06 19296.79 9273.27 28295.92 18594.79 19274.81 29180.47 20196.83 9971.07 18998.19 13149.82 35292.57 13295.71 175
Andrea Romanoni, Matteo Matteucci: TAPA-MVS: Textureless-Aware PAtchMatch Multi-View Stereo. ICCV 2019
ACMP81.66 1184.00 20483.22 20386.33 24991.53 23372.95 28695.91 18793.79 24683.70 16473.79 27192.22 19154.31 29896.89 19583.98 15079.74 23089.16 260
Qingshan Xu and Wenbing Tao: Planar Prior Assisted PatchMatch Multi-View Stereo. AAAI 2020
ACMM80.70 1383.72 21082.85 20786.31 25291.19 23672.12 29195.88 18894.29 22080.44 21977.02 23391.96 19555.24 29197.14 18579.30 19680.38 22589.67 249
Qingshan Xu and Wenbing Tao: Multi-Scale Geometric Consistency Guided Multi-View Stereo. CVPR 2019
test22296.15 10178.41 19995.87 18996.46 9171.97 31489.66 9997.45 7276.33 11798.24 4998.30 61
V4283.04 22281.53 22587.57 22786.27 30279.09 18395.87 18994.11 22980.35 22377.22 23186.79 27265.32 22396.02 22777.74 20870.14 28487.61 298
TSAR-MVS + MP.94.79 1595.17 1393.64 5397.66 6984.10 7495.85 19196.42 9691.26 2097.49 1096.80 10286.50 2898.49 11695.54 3299.03 1398.33 57
Zhenlong Yuan, Jiakai Cao, Zhaoqi Wang, Zhaoxin Li: TSAR-MVS: Textureless-aware Segmentation and Correlative Refinement Guided Multi-View Stereo. Pattern Recognition
v119282.31 23580.55 23987.60 22485.94 30778.47 19895.85 19193.80 24579.33 24376.97 23486.51 27563.33 23495.87 23773.11 25470.13 28588.46 280
v192192082.02 23980.23 24387.41 23185.62 31277.92 21895.79 19393.69 25278.86 25476.67 23786.44 27862.50 23795.83 23972.69 25669.77 29188.47 279
OPM-MVS85.84 17685.10 17388.06 21588.34 27977.83 22295.72 19494.20 22387.89 7080.45 20294.05 16958.57 26497.26 17783.88 15282.76 21589.09 263
Ray L. Khuboni, Hongjun Xu: Octagram Propagation Matching for Multi-Scale View Stereopsis (OPM-MVS).
XXY-MVS83.84 20782.00 21889.35 18987.13 29381.38 12595.72 19494.26 22180.15 22875.92 25490.63 21761.96 24496.52 21078.98 20073.28 27090.14 238
tttt051788.57 13088.19 12089.71 18793.00 18875.99 25695.67 19696.67 6480.78 21081.82 18994.40 16088.97 1497.58 15276.05 23086.31 18295.57 178
IterMVS-LS83.93 20582.80 20887.31 23491.46 23477.39 23195.66 19793.43 26280.44 21975.51 26087.26 26373.72 16195.16 27576.99 21870.72 28189.39 251
Fangjinhua Wang, Silvano Galliani, Christoph Vogel, Marc Pollefeys: IterMVS: Iterative Probability Estimation for Efficient Multi-View Stereo.
FC-MVSNet-test85.96 17485.39 16587.66 22289.38 27078.02 21295.65 19896.87 3885.12 12477.34 22891.94 19776.28 11894.74 28877.09 21778.82 23890.21 237
test_vis1_rt73.96 29972.40 30178.64 32483.91 33261.16 34695.63 19968.18 37076.32 27960.09 34374.77 34629.01 35997.54 15787.74 12275.94 25477.22 356
HyFIR lowres test89.36 10988.60 11391.63 13094.91 13680.76 13795.60 20095.53 15182.56 18884.03 15791.24 20778.03 8896.81 20187.07 13088.41 16797.32 128
testdata195.57 20187.44 79
cl2285.11 18984.17 18787.92 21795.06 13278.82 18795.51 20294.22 22279.74 23676.77 23687.92 25475.96 12295.68 24879.93 19172.42 27289.27 257
v124081.70 24279.83 25187.30 23585.50 31377.70 22695.48 20393.44 26178.46 25976.53 24086.44 27860.85 24995.84 23871.59 26370.17 28388.35 283
baseline188.85 12187.49 13692.93 8295.21 12586.85 2795.47 20494.61 20487.29 8383.11 17194.99 14980.70 5796.89 19582.28 17273.72 26595.05 187
AUN-MVS86.25 17185.57 16288.26 21093.57 17073.38 27895.45 20595.88 13583.94 15585.47 14294.21 16573.70 16396.67 20783.54 16264.41 32694.73 195
FMVSNet282.79 22680.44 24089.83 18392.66 19785.43 4695.42 20694.35 21779.06 25174.46 26887.28 26156.38 28594.31 29869.72 27874.68 26289.76 248
hse-mvs288.22 14088.21 11988.25 21193.54 17173.41 27795.41 20795.89 13490.39 3192.22 6394.22 16474.70 14796.66 20893.14 6064.37 32794.69 196
miper_ehance_all_eth84.57 19783.60 19787.50 22992.64 20078.25 20495.40 20893.47 26079.28 24676.41 24387.64 25776.53 11295.24 27178.58 20372.42 27289.01 268
RRT_MVS83.88 20683.27 20285.71 26187.53 29172.12 29195.35 20994.33 21883.81 16075.86 25591.28 20660.55 25095.09 28183.93 15176.76 25289.90 247
PGM-MVS91.93 5991.80 6092.32 10498.27 5079.74 16495.28 21097.27 1883.83 15990.89 8597.78 5676.12 12099.56 5388.82 11197.93 5897.66 107
TransMVSNet (Re)76.94 28674.38 29084.62 28185.92 30875.25 26495.28 21089.18 32573.88 29867.22 30886.46 27759.64 25494.10 30159.24 32452.57 35284.50 332
LPG-MVS_test84.20 20383.49 19986.33 24990.88 24173.06 28395.28 21094.13 22782.20 19176.31 24493.20 18054.83 29596.95 19183.72 15780.83 22288.98 269
mvsany_test187.58 15288.22 11885.67 26389.78 26067.18 32595.25 21387.93 33583.96 15488.79 11097.06 9372.52 17294.53 29492.21 7086.45 18195.30 185
c3_l83.80 20882.65 21087.25 23692.10 21777.74 22595.25 21393.04 27878.58 25776.01 25187.21 26575.25 14195.11 27877.54 21368.89 29888.91 274
D2MVS82.67 22881.55 22486.04 25787.77 28676.47 24495.21 21596.58 7882.66 18670.26 29885.46 29460.39 25195.80 24176.40 22679.18 23585.83 324
test_fmvs279.59 26379.90 25078.67 32382.86 33655.82 35695.20 21689.55 32081.09 20580.12 20889.80 22934.31 35093.51 31287.82 12178.36 24686.69 311
Effi-MVS+90.70 8789.90 9593.09 7593.61 16883.48 8695.20 21692.79 28183.22 17091.82 6895.70 12371.82 18197.48 16391.25 7893.67 12098.32 58
baseline290.39 9390.21 8690.93 14890.86 24380.99 13195.20 21697.41 1586.03 10580.07 20994.61 15690.58 697.47 16487.29 12789.86 15394.35 198
Anonymous2023121179.72 26277.19 26987.33 23295.59 11577.16 23795.18 21994.18 22559.31 35572.57 28486.20 28447.89 31595.66 24974.53 24569.24 29689.18 259
EI-MVSNet85.80 17785.20 16887.59 22591.55 23177.41 23095.13 22095.36 16480.43 22180.33 20494.71 15473.72 16195.97 22976.96 22078.64 24089.39 251
CVMVSNet84.83 19385.57 16282.63 30591.55 23160.38 34795.13 22095.03 17880.60 21482.10 18494.71 15466.40 21690.19 34474.30 24690.32 15097.31 129
cl____83.27 21682.12 21586.74 24392.20 21275.95 25795.11 22293.27 27078.44 26074.82 26687.02 26874.19 15595.19 27374.67 24269.32 29489.09 263
DIV-MVS_self_test83.27 21682.12 21586.74 24392.19 21375.92 25995.11 22293.26 27178.44 26074.81 26787.08 26774.19 15595.19 27374.66 24369.30 29589.11 262
pm-mvs180.05 25978.02 26386.15 25585.42 31475.81 26095.11 22292.69 28377.13 27370.36 29787.43 25958.44 26695.27 27071.36 26564.25 32887.36 304
DP-MVS81.47 24578.28 26191.04 14598.14 5578.48 19595.09 22586.97 33961.14 34971.12 29292.78 18859.59 25599.38 6453.11 34486.61 17995.27 186
PAPM_NR91.46 7090.82 7493.37 6698.50 4081.81 11795.03 22696.13 11984.65 13586.10 13897.65 6479.24 7299.75 3083.20 16696.88 8398.56 46
Effi-MVS+-dtu84.61 19684.90 17783.72 29491.96 22463.14 33994.95 22793.34 26885.57 11279.79 21087.12 26661.99 24395.61 25583.55 16185.83 19092.41 219
PS-MVSNAJss84.91 19284.30 18586.74 24385.89 30974.40 27394.95 22794.16 22683.93 15676.45 24290.11 22871.04 19095.77 24283.16 16779.02 23790.06 244
MS-PatchMatch83.05 22181.82 22186.72 24789.64 26479.10 18294.88 22994.59 20679.70 23770.67 29589.65 23150.43 30596.82 20070.82 27395.99 9784.25 334
dcpmvs_293.10 3693.46 3492.02 11597.77 6579.73 16594.82 23093.86 24086.91 9291.33 7696.76 10385.20 3298.06 13396.90 1997.60 6498.27 64
OMC-MVS88.80 12388.16 12190.72 15695.30 12277.92 21894.81 23194.51 20986.80 9584.97 14796.85 9867.53 20698.60 11085.08 14187.62 17295.63 176
MVSFormer91.36 7390.57 7793.73 5193.00 18888.08 1594.80 23294.48 21080.74 21194.90 3397.13 8878.84 7795.10 27983.77 15597.46 6798.02 77
test_djsdf83.00 22482.45 21384.64 28084.07 33069.78 31394.80 23294.48 21080.74 21175.41 26287.70 25661.32 24895.10 27983.77 15579.76 22889.04 266
baseline90.76 8690.10 8992.74 8792.90 19482.56 9994.60 23494.56 20787.69 7489.06 10895.67 12573.76 16097.51 16090.43 9392.23 13998.16 69
WR-MVS_H81.02 25180.09 24483.79 29188.08 28371.26 30494.46 23596.54 8280.08 22972.81 28286.82 27070.36 19692.65 31964.18 30367.50 31387.46 303
NR-MVSNet83.35 21481.52 22688.84 19788.76 27381.31 12794.45 23695.16 17384.65 13567.81 30790.82 21470.36 19694.87 28574.75 24066.89 31990.33 235
tfpnnormal78.14 27575.42 28186.31 25288.33 28079.24 17694.41 23796.22 11373.51 30069.81 30185.52 29355.43 28995.75 24447.65 35667.86 30983.95 337
v881.88 24080.06 24787.32 23386.63 29679.04 18594.41 23793.65 25478.77 25573.19 27885.57 29166.87 21295.81 24073.84 25167.61 31287.11 306
MVS_Test90.29 9689.18 10493.62 5595.23 12384.93 6294.41 23794.66 19984.31 14490.37 9291.02 21075.13 14297.82 14383.11 16894.42 11098.12 73
bld_raw_dy_0_6482.13 23780.76 23486.24 25485.78 31175.03 26794.40 24082.62 35783.12 17376.46 24190.96 21353.83 29994.55 29281.04 17978.60 24389.14 261
eth_miper_zixun_eth83.12 22082.01 21786.47 24891.85 22974.80 26894.33 24193.18 27379.11 24975.74 25987.25 26472.71 17095.32 26776.78 22167.13 31689.27 257
v1081.43 24679.53 25387.11 23886.38 29878.87 18694.31 24293.43 26277.88 26373.24 27785.26 29565.44 22095.75 24472.14 26067.71 31186.72 310
GBi-Net82.42 23280.43 24188.39 20692.66 19781.95 10894.30 24393.38 26479.06 25175.82 25685.66 28756.38 28593.84 30571.23 26675.38 25889.38 253
test182.42 23280.43 24188.39 20692.66 19781.95 10894.30 24393.38 26479.06 25175.82 25685.66 28756.38 28593.84 30571.23 26675.38 25889.38 253
FMVSNet179.50 26576.54 27588.39 20688.47 27881.95 10894.30 24393.38 26473.14 30472.04 28885.66 28743.86 32493.84 30565.48 29872.53 27189.38 253
CP-MVSNet81.01 25280.08 24583.79 29187.91 28570.51 30694.29 24695.65 14680.83 20972.54 28588.84 23963.71 23192.32 32268.58 28468.36 30388.55 277
CL-MVSNet_self_test75.81 29274.14 29480.83 31578.33 34867.79 32294.22 24793.52 25977.28 27269.82 30081.54 32461.47 24789.22 34657.59 32953.51 34885.48 326
jajsoiax82.12 23881.15 23085.03 27484.19 32870.70 30594.22 24793.95 23483.07 17573.48 27389.75 23049.66 30895.37 26482.24 17379.76 22889.02 267
PS-CasMVS80.27 25879.18 25483.52 29887.56 28969.88 31194.08 24995.29 16980.27 22672.08 28788.51 24659.22 26192.23 32467.49 28668.15 30688.45 281
ppachtmachnet_test77.19 28474.22 29286.13 25685.39 31578.22 20593.98 25091.36 30171.74 31667.11 31084.87 30456.67 28193.37 31552.21 34564.59 32586.80 309
mvs_tets81.74 24180.71 23684.84 27584.22 32770.29 30893.91 25193.78 24782.77 18373.37 27489.46 23347.36 31895.31 26881.99 17479.55 23388.92 273
PEN-MVS79.47 26678.26 26283.08 30186.36 29968.58 31993.85 25294.77 19379.76 23571.37 28988.55 24359.79 25392.46 32064.50 30265.40 32388.19 286
testmvs9.92 34412.94 3470.84 3600.65 3820.29 38493.78 2530.39 3830.42 3762.85 37715.84 3760.17 3830.30 3792.18 3760.21 3761.91 374
tt080581.20 25079.06 25787.61 22386.50 29772.97 28593.66 25495.48 15574.11 29576.23 24891.99 19341.36 33697.40 16777.44 21574.78 26192.45 218
our_test_377.90 27875.37 28285.48 26885.39 31576.74 24293.63 25591.67 29573.39 30365.72 32084.65 30658.20 26793.13 31757.82 32767.87 30886.57 313
EG-PatchMatch MVS74.92 29672.02 30283.62 29583.76 33473.28 28193.62 25692.04 29168.57 32858.88 34583.80 31231.87 35595.57 25856.97 33378.67 23982.00 348
OpenMVS_ROBcopyleft68.52 2073.02 30669.57 31283.37 29980.54 34271.82 29793.60 25788.22 33462.37 34161.98 33583.15 31735.31 34995.47 26045.08 35975.88 25582.82 340
pmmvs482.54 23080.79 23287.79 21986.11 30580.49 14693.55 25893.18 27377.29 27173.35 27589.40 23465.26 22495.05 28375.32 23673.61 26687.83 292
mvs_anonymous88.68 12587.62 13291.86 12094.80 13881.69 12193.53 25994.92 18282.03 19678.87 21790.43 22175.77 12595.34 26585.04 14293.16 12798.55 48
DTE-MVSNet78.37 27377.06 27082.32 30885.22 31967.17 32693.40 26093.66 25378.71 25670.53 29688.29 24859.06 26292.23 32461.38 31663.28 33287.56 300
v7n79.32 26877.34 26785.28 27084.05 33172.89 28793.38 26193.87 23975.02 29070.68 29484.37 30759.58 25695.62 25467.60 28567.50 31387.32 305
Anonymous2023120675.29 29573.64 29680.22 31780.75 33963.38 33893.36 26290.71 31473.09 30567.12 30983.70 31350.33 30690.85 33953.63 34370.10 28786.44 314
MVP-Stereo82.65 22981.67 22385.59 26686.10 30678.29 20293.33 26392.82 28077.75 26569.17 30587.98 25359.28 26095.76 24371.77 26196.88 8382.73 342
Qingsong Yan: MVP-Stereo: A Parallel Multi-View Patchmatch Stereo Method with Dilation Matching for Photogrammetric Application.
131488.94 11787.20 14394.17 3993.21 18085.73 4093.33 26396.64 7082.89 18075.98 25296.36 11066.83 21399.39 6383.52 16496.02 9697.39 126
MVS90.60 8988.64 11296.50 594.25 15390.53 893.33 26397.21 2077.59 26778.88 21697.31 7971.52 18599.69 3989.60 10298.03 5499.27 20
pmmvs674.65 29871.67 30383.60 29679.13 34669.94 31093.31 26690.88 31161.05 35065.83 31984.15 31043.43 32694.83 28766.62 29160.63 33786.02 321
ACMH+76.62 1677.47 28274.94 28485.05 27391.07 23971.58 30193.26 26790.01 31771.80 31564.76 32388.55 24341.62 33496.48 21162.35 31271.00 27887.09 307
testgi74.88 29773.40 29779.32 32180.13 34361.75 34293.21 26886.64 34379.49 24166.56 31791.06 20935.51 34888.67 34856.79 33471.25 27687.56 300
LS3D82.22 23679.94 24989.06 19297.43 7974.06 27693.20 26992.05 29061.90 34373.33 27695.21 13759.35 25899.21 7454.54 34092.48 13593.90 207
ACMH75.40 1777.99 27674.96 28387.10 23990.67 24776.41 24693.19 27091.64 29772.47 31163.44 32887.61 25843.34 32797.16 18158.34 32573.94 26487.72 293
Qingshan Xu and Wenbing Tao: Multi-Scale Geometric Consistency Guided Multi-View Stereo. CVPR 2019
UA-Net88.92 11888.48 11690.24 16994.06 15977.18 23693.04 27194.66 19987.39 8191.09 8093.89 17374.92 14598.18 13275.83 23291.43 14595.35 183
IterMVS-SCA-FT80.51 25779.10 25684.73 27789.63 26574.66 26992.98 27291.81 29480.05 23071.06 29385.18 29858.04 26891.40 33372.48 25970.70 28288.12 288
IterMVS80.67 25579.16 25585.20 27189.79 25976.08 25192.97 27391.86 29280.28 22571.20 29185.14 30057.93 27191.34 33472.52 25870.74 28088.18 287
Fangjinhua Wang, Silvano Galliani, Christoph Vogel, Marc Pollefeys: IterMVS: Iterative Probability Estimation for Efficient Multi-View Stereo.
MVS_030478.43 27276.70 27383.60 29688.22 28169.81 31292.91 27495.10 17472.32 31278.71 21880.29 33233.78 35193.37 31568.77 28280.23 22687.63 296
MTAPA92.45 5392.31 5092.86 8397.90 6180.85 13592.88 27596.33 10687.92 6890.20 9398.18 3076.71 11199.76 2592.57 6898.09 5197.96 87
SCA85.63 18083.64 19591.60 13192.30 20781.86 11492.88 27595.56 15084.85 12882.52 17485.12 30158.04 26895.39 26273.89 24987.58 17497.54 114
test_040272.68 30769.54 31382.09 30988.67 27671.81 29892.72 27786.77 34261.52 34562.21 33483.91 31143.22 32893.76 30834.60 36472.23 27580.72 352
LCM-MVSNet-Re83.75 20983.54 19884.39 28793.54 17164.14 33492.51 27884.03 35283.90 15766.14 31886.59 27467.36 20892.68 31884.89 14492.87 12996.35 160
anonymousdsp80.98 25379.97 24884.01 28881.73 33870.44 30792.49 27993.58 25877.10 27572.98 28086.31 28257.58 27294.90 28479.32 19578.63 24286.69 311
PatchMatch-RL85.00 19183.66 19489.02 19495.86 10874.55 27192.49 27993.60 25679.30 24579.29 21491.47 20158.53 26598.45 12070.22 27592.17 14094.07 204
test20.0372.36 30971.15 30575.98 33377.79 34959.16 35192.40 28189.35 32374.09 29661.50 33784.32 30848.09 31185.54 35850.63 35062.15 33583.24 338
MDA-MVSNet-bldmvs71.45 31267.94 31781.98 31085.33 31768.50 32092.35 28288.76 33070.40 32142.99 36081.96 32146.57 31991.31 33548.75 35554.39 34686.11 319
PCF-MVS84.09 586.77 16385.00 17492.08 11192.06 22183.07 9392.14 28394.47 21279.63 23876.90 23594.78 15371.15 18899.20 7872.87 25591.05 14793.98 205
Andreas Kuhn, Shan Lin, Oliver Erdler: Plane Completion and Filtering for Multi-View Stereo Reconstruction. GCPR 2019
UniMVSNet_ETH3D80.86 25478.75 25987.22 23786.31 30072.02 29391.95 28493.76 25073.51 30075.06 26590.16 22643.04 33095.66 24976.37 22778.55 24493.98 205
miper_lstm_enhance81.66 24480.66 23784.67 27991.19 23671.97 29591.94 28593.19 27277.86 26472.27 28685.26 29573.46 16493.42 31373.71 25267.05 31788.61 276
MSDG80.62 25677.77 26589.14 19193.43 17877.24 23391.89 28690.18 31669.86 32568.02 30691.94 19752.21 30198.84 10259.32 32383.12 20791.35 222
COLMAP_ROBcopyleft73.24 1975.74 29373.00 29983.94 28992.38 20369.08 31891.85 28786.93 34061.48 34665.32 32190.27 22342.27 33296.93 19450.91 34975.63 25785.80 325
Johannes L. Schönberger, Enliang Zheng, Marc Pollefeys, Jan-Michael Frahm: Pixelwise View Selection for Unstructured Multi-View Stereo. ECCV 2016
EU-MVSNet76.92 28776.95 27176.83 32984.10 32954.73 35991.77 28892.71 28272.74 30869.57 30288.69 24158.03 27087.43 35364.91 30170.00 28988.33 284
MDA-MVSNet_test_wron73.54 30270.43 30982.86 30284.55 32371.85 29691.74 28991.32 30367.63 32946.73 35981.09 32755.11 29290.42 34355.91 33759.76 33886.31 316
YYNet173.53 30370.43 30982.85 30384.52 32571.73 29991.69 29091.37 30067.63 32946.79 35881.21 32655.04 29390.43 34255.93 33659.70 33986.38 315
N_pmnet61.30 32560.20 32864.60 34484.32 32617.00 38291.67 29110.98 38161.77 34458.45 34778.55 33749.89 30791.83 33042.27 36163.94 32984.97 329
Anonymous2024052172.06 31169.91 31178.50 32577.11 35361.67 34491.62 29290.97 30965.52 33662.37 33379.05 33636.32 34490.96 33857.75 32868.52 30182.87 339
XVG-OURS-SEG-HR85.74 17985.16 17187.49 23090.22 25371.45 30291.29 29394.09 23081.37 20283.90 16295.22 13660.30 25297.53 15985.58 13884.42 20093.50 212
SixPastTwentyTwo76.04 29074.32 29181.22 31284.54 32461.43 34591.16 29489.30 32477.89 26264.04 32586.31 28248.23 31094.29 29963.54 30863.84 33087.93 291
AllTest75.92 29173.06 29884.47 28392.18 21467.29 32391.07 29584.43 35067.63 32963.48 32690.18 22438.20 34297.16 18157.04 33173.37 26788.97 271
XVG-OURS85.18 18784.38 18487.59 22590.42 25171.73 29991.06 29694.07 23182.00 19783.29 16895.08 14656.42 28497.55 15583.70 15983.42 20593.49 213
test_fmvs369.56 31569.19 31570.67 33869.01 36247.05 36390.87 29786.81 34171.31 31966.79 31477.15 34116.40 36683.17 36181.84 17562.51 33481.79 350
K. test v373.62 30071.59 30479.69 31982.98 33559.85 35090.85 29888.83 32877.13 27358.90 34482.11 32043.62 32591.72 33165.83 29754.10 34787.50 302
OurMVSNet-221017-077.18 28576.06 27780.55 31683.78 33360.00 34990.35 29991.05 30777.01 27766.62 31687.92 25447.73 31694.03 30271.63 26268.44 30287.62 297
HY-MVS84.06 691.63 6690.37 8395.39 1596.12 10288.25 1390.22 30097.58 1488.33 6090.50 8991.96 19579.26 7199.06 8990.29 9689.07 15898.88 30
new-patchmatchnet68.85 31965.93 32177.61 32773.57 36163.94 33690.11 30188.73 33171.62 31755.08 35373.60 35040.84 33887.22 35451.35 34848.49 35881.67 351
CMPMVSbinary54.94 2175.71 29474.56 28979.17 32279.69 34455.98 35489.59 30293.30 26960.28 35153.85 35589.07 23647.68 31796.33 21676.55 22381.02 22085.22 327
M. Jancosek, T. Pajdla: Multi-View Reconstruction Preserving Weakly-Supported Surfaces. CVPR 2011
FMVSNet576.46 28974.16 29383.35 30090.05 25776.17 24989.58 30389.85 31871.39 31865.29 32280.42 32950.61 30487.70 35261.05 31869.24 29686.18 318
USDC78.65 27176.25 27685.85 25887.58 28874.60 27089.58 30390.58 31584.05 15063.13 33088.23 24940.69 34096.86 19966.57 29375.81 25686.09 320
test1239.07 34511.73 3481.11 3590.50 3830.77 38389.44 3050.20 3840.34 3772.15 37810.72 3770.34 3820.32 3781.79 3770.08 3772.23 373
pmmvs-eth3d73.59 30170.66 30782.38 30676.40 35673.38 27889.39 30689.43 32272.69 30960.34 34277.79 33946.43 32091.26 33666.42 29557.06 34282.51 343
XVG-ACMP-BASELINE79.38 26777.90 26483.81 29084.98 32167.14 32789.03 30793.18 27380.26 22772.87 28188.15 25138.55 34196.26 21876.05 23078.05 24888.02 289
ab-mvs87.08 15684.94 17593.48 6393.34 17983.67 8288.82 30895.70 14481.18 20484.55 15490.14 22762.72 23698.94 9885.49 13982.54 21797.85 93
tpm85.55 18284.47 18388.80 19990.19 25475.39 26388.79 30994.69 19584.83 12983.96 16085.21 29778.22 8694.68 29076.32 22878.02 24996.34 161
pmmvs365.75 32362.18 32676.45 33167.12 36564.54 33188.68 31085.05 34854.77 36057.54 35173.79 34929.40 35886.21 35655.49 33947.77 35978.62 354
CostFormer89.08 11488.39 11791.15 14393.13 18579.15 18088.61 31196.11 12183.14 17289.58 10186.93 26983.83 4396.87 19788.22 11985.92 18897.42 123
TinyColmap72.41 30868.99 31682.68 30488.11 28269.59 31588.41 31285.20 34765.55 33557.91 34884.82 30530.80 35795.94 23351.38 34668.70 29982.49 345
TDRefinement69.20 31865.78 32279.48 32066.04 36662.21 34188.21 31386.12 34462.92 34061.03 34085.61 29033.23 35294.16 30055.82 33853.02 35082.08 347
KD-MVS_2432*160077.63 28074.92 28585.77 25990.86 24379.44 17088.08 31493.92 23676.26 28067.05 31182.78 31872.15 17891.92 32761.53 31341.62 36685.94 322
miper_refine_blended77.63 28074.92 28585.77 25990.86 24379.44 17088.08 31493.92 23676.26 28067.05 31182.78 31872.15 17891.92 32761.53 31341.62 36685.94 322
tpm287.35 15586.26 15690.62 15892.93 19378.67 19288.06 31695.99 12879.33 24387.40 12586.43 28080.28 6196.40 21380.23 18785.73 19296.79 147
CHOSEN 280x42091.71 6591.85 5891.29 13894.94 13482.69 9787.89 31796.17 11885.94 10687.27 12894.31 16190.27 995.65 25194.04 4895.86 9895.53 179
RPSCF77.73 27976.63 27481.06 31388.66 27755.76 35787.77 31887.88 33664.82 33874.14 27092.79 18749.22 30996.81 20167.47 28776.88 25190.62 229
KD-MVS_self_test70.97 31469.31 31475.95 33476.24 35855.39 35887.45 31990.94 31070.20 32362.96 33277.48 34044.01 32388.09 34961.25 31753.26 34984.37 333
MIMVSNet169.44 31666.65 32077.84 32676.48 35562.84 34087.42 32088.97 32766.96 33457.75 35079.72 33532.77 35485.83 35746.32 35763.42 33184.85 330
tpmrst88.36 13587.38 14091.31 13694.36 15179.92 15787.32 32195.26 17185.32 11788.34 11786.13 28580.60 5896.70 20583.78 15485.34 19697.30 130
UnsupCasMVSNet_eth73.25 30470.57 30881.30 31177.53 35066.33 32887.24 32293.89 23880.38 22257.90 34981.59 32342.91 33190.56 34165.18 30048.51 35787.01 308
FA-MVS(test-final)87.71 15086.23 15792.17 10994.19 15580.55 14287.16 32396.07 12582.12 19485.98 13988.35 24772.04 18098.49 11680.26 18689.87 15297.48 121
EPMVS87.47 15485.90 16092.18 10895.41 11982.26 10787.00 32496.28 10985.88 10884.23 15585.57 29175.07 14496.26 21871.14 26992.50 13498.03 76
MDTV_nov1_ep13_2view81.74 11986.80 32580.65 21385.65 14074.26 15476.52 22496.98 139
MDTV_nov1_ep1383.69 19294.09 15881.01 13086.78 32696.09 12283.81 16084.75 15084.32 30874.44 15396.54 20963.88 30585.07 197
dp84.30 20282.31 21490.28 16894.24 15477.97 21486.57 32795.53 15179.94 23380.75 19885.16 29971.49 18696.39 21463.73 30683.36 20696.48 157
PatchmatchNetpermissive86.83 16185.12 17291.95 11794.12 15782.27 10686.55 32895.64 14784.59 13782.98 17384.99 30377.26 10095.96 23268.61 28391.34 14697.64 109
Fangjinhua Wang, Silvano Galliani, Christoph Vogel, Pablo Speciale, Marc Pollefeys: PatchmatchNet: Learned Multi-View Patchmatch Stereo.
LTVRE_ROB73.68 1877.99 27675.74 28084.74 27690.45 25072.02 29386.41 32991.12 30472.57 31066.63 31587.27 26254.95 29496.98 19056.29 33575.98 25385.21 328
Andreas Kuhn, Heiko Hirschmüller, Daniel Scharstein, Helmut Mayer: A TV Prior for High-Quality Scalable Multi-View Stereo Reconstruction. International Journal of Computer Vision 2016
LF4IMVS72.36 30970.82 30676.95 32879.18 34556.33 35386.12 33086.11 34569.30 32763.06 33186.66 27333.03 35392.25 32365.33 29968.64 30082.28 346
PM-MVS69.32 31766.93 31976.49 33073.60 36055.84 35585.91 33179.32 36374.72 29261.09 33978.18 33821.76 36291.10 33770.86 27156.90 34382.51 343
test_post185.88 33230.24 37473.77 15995.07 28273.89 249
tpmvs83.04 22280.77 23389.84 18295.43 11877.96 21585.59 33395.32 16875.31 28776.27 24783.70 31373.89 15897.41 16659.53 32081.93 21994.14 201
tpm cat183.63 21181.38 22790.39 16493.53 17678.19 21085.56 33495.09 17570.78 32078.51 22083.28 31674.80 14697.03 18766.77 29084.05 20195.95 169
DSMNet-mixed73.13 30572.45 30075.19 33577.51 35146.82 36485.09 33582.01 35867.61 33369.27 30481.33 32550.89 30286.28 35554.54 34083.80 20292.46 217
FE-MVS86.06 17384.15 18891.78 12494.33 15279.81 15984.58 33696.61 7376.69 27885.00 14687.38 26070.71 19498.37 12470.39 27491.70 14497.17 135
test_vis3_rt54.10 32951.04 33263.27 34758.16 36946.08 36884.17 33749.32 38056.48 35936.56 36449.48 3678.03 37691.91 32967.29 28849.87 35451.82 366
UnsupCasMVSNet_bld68.60 32064.50 32480.92 31474.63 35967.80 32183.97 33892.94 27965.12 33754.63 35468.23 35835.97 34692.17 32660.13 31944.83 36182.78 341
new_pmnet66.18 32263.18 32575.18 33676.27 35761.74 34383.79 33984.66 34956.64 35851.57 35671.85 35731.29 35687.93 35049.98 35162.55 33375.86 357
test_f64.01 32462.13 32769.65 33963.00 36845.30 36983.66 34080.68 36061.30 34755.70 35272.62 35314.23 36884.64 35969.84 27658.11 34079.00 353
mvsany_test367.19 32165.34 32372.72 33763.08 36748.57 36283.12 34178.09 36472.07 31361.21 33877.11 34222.94 36187.78 35178.59 20251.88 35381.80 349
FPMVS55.09 32852.93 33161.57 34855.98 37040.51 37383.11 34283.41 35537.61 36434.95 36571.95 35514.40 36776.95 36429.81 36565.16 32467.25 361
EGC-MVSNET52.46 33147.56 33467.15 34081.98 33760.11 34882.54 34372.44 3680.11 3780.70 37974.59 34725.11 36083.26 36029.04 36661.51 33658.09 363
GG-mvs-BLEND93.49 6294.94 13486.26 3181.62 34497.00 2988.32 11894.30 16291.23 596.21 22188.49 11597.43 7098.00 82
MIMVSNet79.18 26975.99 27888.72 20187.37 29280.66 13979.96 34591.82 29377.38 27074.33 26981.87 32241.78 33390.74 34066.36 29683.10 20894.76 191
ADS-MVSNet279.57 26477.53 26685.71 26193.78 16472.13 29079.48 34686.11 34573.09 30580.14 20679.99 33362.15 24090.14 34559.49 32183.52 20394.85 189
ADS-MVSNet81.26 24878.36 26089.96 17893.78 16479.78 16079.48 34693.60 25673.09 30580.14 20679.99 33362.15 24095.24 27159.49 32183.52 20394.85 189
gg-mvs-nofinetune85.48 18482.90 20693.24 6994.51 14885.82 3979.22 34896.97 3161.19 34887.33 12753.01 36490.58 696.07 22386.07 13597.23 7697.81 97
MVS-HIRNet71.36 31367.00 31884.46 28590.58 24869.74 31479.15 34987.74 33846.09 36161.96 33650.50 36545.14 32295.64 25253.74 34288.11 17088.00 290
CR-MVSNet83.53 21281.36 22890.06 17390.16 25579.75 16279.02 35091.12 30484.24 14882.27 18280.35 33075.45 13293.67 30963.37 30986.25 18396.75 151
RPMNet79.85 26075.92 27991.64 12890.16 25579.75 16279.02 35095.44 15958.43 35782.27 18272.55 35473.03 16898.41 12346.10 35886.25 18396.75 151
Patchmatch-RL test76.65 28874.01 29584.55 28277.37 35264.23 33378.49 35282.84 35678.48 25864.63 32473.40 35176.05 12191.70 33276.99 21857.84 34197.72 102
Patchmtry77.36 28374.59 28885.67 26389.75 26175.75 26177.85 35391.12 30460.28 35171.23 29080.35 33075.45 13293.56 31157.94 32667.34 31587.68 295
PatchT79.75 26176.85 27288.42 20489.55 26675.49 26277.37 35494.61 20463.07 33982.46 17673.32 35275.52 13193.41 31451.36 34784.43 19996.36 159
PMMVS250.90 33246.31 33564.67 34355.53 37146.67 36577.30 35571.02 36940.89 36234.16 36659.32 3619.83 37476.14 36740.09 36328.63 36971.21 358
APD_test156.56 32753.58 33065.50 34167.93 36446.51 36677.24 35672.95 36738.09 36342.75 36175.17 34513.38 36982.78 36240.19 36254.53 34567.23 362
test_method56.77 32654.53 32963.49 34676.49 35440.70 37275.68 35774.24 36619.47 37248.73 35771.89 35619.31 36365.80 37257.46 33047.51 36083.97 336
JIA-IIPM79.00 27077.20 26884.40 28689.74 26364.06 33575.30 35895.44 15962.15 34281.90 18759.08 36278.92 7595.59 25666.51 29485.78 19193.54 211
EMVS31.70 34131.45 34332.48 35750.72 37623.95 38074.78 35952.30 37920.36 37116.08 37531.48 37312.80 37053.60 37511.39 37413.10 37419.88 372
E-PMN32.70 34032.39 34233.65 35653.35 37325.70 37974.07 36053.33 37821.08 37017.17 37433.63 37211.85 37254.84 37412.98 37314.04 37120.42 371
Patchmatch-test78.25 27474.72 28788.83 19891.20 23574.10 27573.91 36188.70 33259.89 35466.82 31385.12 30178.38 8394.54 29348.84 35479.58 23297.86 92
LCM-MVSNet52.52 33048.24 33365.35 34247.63 37741.45 37172.55 36283.62 35431.75 36537.66 36357.92 3639.19 37576.76 36549.26 35344.60 36277.84 355
ANet_high46.22 33341.28 34061.04 34939.91 37946.25 36770.59 36376.18 36558.87 35623.09 37148.00 36812.58 37166.54 37128.65 36713.62 37270.35 359
testf145.70 33442.41 33655.58 35053.29 37440.02 37468.96 36462.67 37427.45 36729.85 36761.58 3595.98 37773.83 36928.49 36843.46 36452.90 364
APD_test245.70 33442.41 33655.58 35053.29 37440.02 37468.96 36462.67 37427.45 36729.85 36761.58 3595.98 37773.83 36928.49 36843.46 36452.90 364
ambc76.02 33268.11 36351.43 36064.97 36689.59 31960.49 34174.49 34817.17 36592.46 32061.50 31552.85 35184.17 335
tmp_tt41.54 33741.93 33940.38 35520.10 38126.84 37861.93 36759.09 37614.81 37428.51 36980.58 32835.53 34748.33 37663.70 30713.11 37345.96 369
PMVScopyleft34.80 2339.19 33835.53 34150.18 35329.72 38030.30 37759.60 36866.20 37326.06 36917.91 37349.53 3663.12 37974.09 36818.19 37249.40 35546.14 367
Y. Furukawa, J. Ponce: Accurate, dense, and robust multiview stereopsis. PAMI (2010)
MVEpermissive35.65 2233.85 33929.49 34446.92 35441.86 37836.28 37650.45 36956.52 37718.75 37318.28 37237.84 3692.41 38058.41 37318.71 37120.62 37046.06 368
Simon Fuhrmann, Fabian Langguth, Michael Goesele: MVE - A Multi-View Reconstruction Environment. EUROGRAPHICS Workshops on Graphics and Cultural Heritage (2014)
Gipumacopyleft45.11 33642.05 33854.30 35280.69 34051.30 36135.80 37083.81 35328.13 36627.94 37034.53 37011.41 37376.70 36621.45 37054.65 34434.90 370
S. Galliani, K. Lasinger, K. Schindler: Massively Parallel Multiview Stereopsis by Surface Normal Diffusion. ICCV 2015
wuyk23d14.10 34313.89 34614.72 35855.23 37222.91 38133.83 3713.56 3824.94 3754.11 3762.28 3782.06 38119.66 37710.23 3758.74 3751.59 375
test_blank0.00 3480.00 3510.00 3610.00 3840.00 3850.00 3720.00 3850.00 3790.00 3800.00 3790.00 3840.00 3800.00 3780.00 3780.00 376
uanet_test0.00 3480.00 3510.00 3610.00 3840.00 3850.00 3720.00 3850.00 3790.00 3800.00 3790.00 3840.00 3800.00 3780.00 3780.00 376
DCPMVS0.00 3480.00 3510.00 3610.00 3840.00 3850.00 3720.00 3850.00 3790.00 3800.00 3790.00 3840.00 3800.00 3780.00 3780.00 376
cdsmvs_eth3d_5k21.43 34228.57 3450.00 3610.00 3840.00 3850.00 37295.93 1330.00 3790.00 38097.66 6063.57 2320.00 3800.00 3780.00 3780.00 376
pcd_1.5k_mvsjas5.92 3477.89 3500.00 3610.00 3840.00 3850.00 3720.00 3850.00 3790.00 3800.00 37971.04 1900.00 3800.00 3780.00 3780.00 376
sosnet-low-res0.00 3480.00 3510.00 3610.00 3840.00 3850.00 3720.00 3850.00 3790.00 3800.00 3790.00 3840.00 3800.00 3780.00 3780.00 376
sosnet0.00 3480.00 3510.00 3610.00 3840.00 3850.00 3720.00 3850.00 3790.00 3800.00 3790.00 3840.00 3800.00 3780.00 3780.00 376
uncertanet0.00 3480.00 3510.00 3610.00 3840.00 3850.00 3720.00 3850.00 3790.00 3800.00 3790.00 3840.00 3800.00 3780.00 3780.00 376
Regformer0.00 3480.00 3510.00 3610.00 3840.00 3850.00 3720.00 3850.00 3790.00 3800.00 3790.00 3840.00 3800.00 3780.00 3780.00 376
ab-mvs-re8.11 34610.81 3490.00 3610.00 3840.00 3850.00 3720.00 3850.00 3790.00 38097.30 810.00 3840.00 3800.00 3780.00 3780.00 376
uanet0.00 3480.00 3510.00 3610.00 3840.00 3850.00 3720.00 3850.00 3790.00 3800.00 3790.00 3840.00 3800.00 3780.00 3780.00 376
MSC_two_6792asdad97.14 399.05 992.19 496.83 4199.81 2198.08 798.81 2499.43 11
PC_three_145291.12 2198.33 298.42 2392.51 299.81 2198.96 299.37 199.70 3
No_MVS97.14 399.05 992.19 496.83 4199.81 2198.08 798.81 2499.43 11
test_one_060198.91 1884.56 6896.70 6088.06 6496.57 1698.77 1088.04 20
eth-test20.00 384
eth-test0.00 384
ZD-MVS99.09 883.22 9196.60 7682.88 18193.61 4998.06 4282.93 4899.14 8395.51 3398.49 37
IU-MVS99.03 1585.34 4796.86 4092.05 1698.74 198.15 498.97 1799.42 13
test_241102_TWO96.78 4488.72 5197.70 698.91 287.86 2199.82 1898.15 499.00 1599.47 9
test_241102_ONE99.03 1585.03 5996.78 4488.72 5197.79 498.90 588.48 1799.82 18
test_0728_THIRD88.38 5896.69 1398.76 1289.64 1399.76 2597.47 1498.84 2399.38 14
GSMVS97.54 114
test_part298.90 1985.14 5896.07 21
sam_mvs177.59 9597.54 114
sam_mvs75.35 139
MTGPAbinary96.33 106
test_post33.80 37176.17 11995.97 229
patchmatchnet-post77.09 34377.78 9495.39 262
gm-plane-assit92.27 20879.64 16884.47 14195.15 14297.93 13685.81 136
test9_res96.00 2599.03 1398.31 60
agg_prior294.30 4399.00 1598.57 45
agg_prior98.59 3583.13 9296.56 8194.19 4399.16 82
TestCases84.47 28392.18 21467.29 32384.43 35067.63 32963.48 32690.18 22438.20 34297.16 18157.04 33173.37 26788.97 271
test_prior93.09 7598.68 2681.91 11196.40 9999.06 8998.29 62
新几何193.12 7397.44 7881.60 12396.71 5974.54 29391.22 7997.57 6779.13 7499.51 5777.40 21698.46 3898.26 65
旧先验197.39 8279.58 16996.54 8298.08 4084.00 4097.42 7197.62 111
原ACMM191.22 14197.77 6578.10 21196.61 7381.05 20691.28 7897.42 7677.92 9198.98 9379.85 19298.51 3496.59 154
testdata299.48 5976.45 225
segment_acmp82.69 51
testdata90.13 17295.92 10774.17 27496.49 9073.49 30294.82 3797.99 4478.80 7997.93 13683.53 16397.52 6698.29 62
test1294.25 3598.34 4685.55 4496.35 10592.36 6080.84 5699.22 7398.31 4797.98 84
plane_prior791.86 22777.55 228
plane_prior691.98 22377.92 21864.77 227
plane_prior594.69 19597.30 17387.08 12882.82 21390.96 225
plane_prior494.15 167
plane_prior377.75 22490.17 3581.33 192
plane_prior191.95 225
n20.00 385
nn0.00 385
door-mid79.75 362
lessismore_v079.98 31880.59 34158.34 35280.87 35958.49 34683.46 31543.10 32993.89 30463.11 31048.68 35687.72 293
LGP-MVS_train86.33 24990.88 24173.06 28394.13 22782.20 19176.31 24493.20 18054.83 29596.95 19183.72 15780.83 22288.98 269
test1196.50 87
door80.13 361
HQP5-MVS78.48 195
BP-MVS87.67 124
HQP4-MVS82.30 17897.32 17191.13 223
HQP3-MVS94.80 19083.01 209
HQP2-MVS65.40 221
NP-MVS92.04 22278.22 20594.56 157
ACMMP++_ref78.45 245
ACMMP++79.05 236
Test By Simon71.65 183
ITE_SJBPF82.38 30687.00 29465.59 32989.55 32079.99 23269.37 30391.30 20541.60 33595.33 26662.86 31174.63 26386.24 317
DeepMVS_CXcopyleft64.06 34578.53 34743.26 37068.11 37269.94 32438.55 36276.14 34418.53 36479.34 36343.72 36041.62 36669.57 360