PVSNet_Blended | | | 93.13 44 | 92.98 50 | 93.57 64 | 97.47 89 | 83.86 81 | 99.32 1 | 96.73 61 | 91.02 25 | 89.53 114 | 96.21 127 | 76.42 127 | 99.57 54 | 94.29 48 | 95.81 113 | 97.29 143 |
|
DELS-MVS | | | 94.98 13 | 94.49 21 | 96.44 6 | 96.42 111 | 90.59 7 | 99.21 2 | 97.02 29 | 94.40 5 | 91.46 82 | 97.08 106 | 83.32 47 | 99.69 41 | 92.83 71 | 98.70 33 | 99.04 26 |
Christian Sormann, Emanuele Santellani, Mattia Rossi, Andreas Kuhn, Friedrich Fraundorfer: DELS-MVS: Deep Epipolar Line Search for Multi-View Stereo. Winter Conference on Applications of Computer Vision (WACV), 2023 |
NCCC | | | 95.63 6 | 95.94 8 | 94.69 27 | 99.21 7 | 85.15 60 | 99.16 3 | 96.96 35 | 94.11 6 | 95.59 25 | 98.64 21 | 85.07 33 | 99.91 4 | 95.61 33 | 99.10 9 | 99.00 28 |
|
DPM-MVS | | | 96.21 2 | 95.53 11 | 98.26 1 | 96.26 114 | 95.09 1 | 99.15 4 | 96.98 32 | 93.39 9 | 96.45 18 | 98.79 10 | 90.17 10 | 99.99 1 | 89.33 117 | 99.25 6 | 99.70 3 |
|
lupinMVS | | | 93.87 38 | 93.58 40 | 94.75 26 | 93.00 202 | 88.08 16 | 99.15 4 | 95.50 166 | 91.03 24 | 94.90 36 | 97.66 74 | 78.84 88 | 97.56 164 | 94.64 46 | 97.46 77 | 98.62 46 |
|
SED-MVS | | | 95.88 5 | 96.22 4 | 94.87 22 | 99.03 16 | 85.03 62 | 99.12 6 | 96.78 49 | 88.72 55 | 97.79 4 | 98.91 3 | 88.48 17 | 99.82 18 | 98.15 4 | 98.97 17 | 99.74 1 |
|
OPU-MVS | | | | | 97.30 2 | 99.19 8 | 92.31 3 | 99.12 6 | | | | 98.54 22 | 92.06 3 | 99.84 12 | 99.11 1 | 99.37 1 | 99.74 1 |
|
test0726 | | | | | | 99.05 10 | 85.18 55 | 99.11 8 | 96.78 49 | 88.75 53 | 97.65 9 | 98.91 3 | 87.69 22 | | | | |
|
DVP-MVS |  | | 95.58 8 | 95.91 9 | 94.57 29 | 99.05 10 | 85.18 55 | 99.06 9 | 96.46 100 | 88.75 53 | 96.69 13 | 98.76 14 | 87.69 22 | 99.76 25 | 97.90 9 | 98.85 22 | 98.77 35 |
Zhenlong Yuan, Jinguo Luo, Fei Shen, Zhaoxin Li, Cong Liu, Tianlu Mao, Zhaoqi Wang: DVP-MVS: Synergize Depth-Edge and Visibility Prior for Multi-View Stereo. AAAI2025 |
test_0728_SECOND | | | | | 95.14 17 | 99.04 15 | 86.14 34 | 99.06 9 | 96.77 55 | | | | | 99.84 12 | 97.90 9 | 98.85 22 | 99.45 10 |
|
CANet | | | 94.89 14 | 94.64 18 | 95.63 12 | 97.55 88 | 88.12 15 | 99.06 9 | 96.39 112 | 94.07 7 | 95.34 28 | 97.80 69 | 76.83 120 | 99.87 8 | 97.08 19 | 97.64 73 | 98.89 31 |
|
CNVR-MVS | | | 96.30 1 | 96.54 1 | 95.55 14 | 99.31 5 | 87.69 21 | 99.06 9 | 97.12 24 | 94.66 3 | 96.79 12 | 98.78 11 | 86.42 28 | 99.95 3 | 97.59 13 | 99.18 7 | 99.00 28 |
|
SteuartSystems-ACMMP | | | 94.13 29 | 94.44 23 | 93.20 79 | 95.41 135 | 81.35 137 | 99.02 13 | 96.59 84 | 89.50 43 | 94.18 50 | 98.36 30 | 83.68 45 | 99.45 65 | 94.77 42 | 98.45 44 | 98.81 34 |
Skip Steuart: Steuart Systems R&D Blog. |
DeepPCF-MVS | | 89.82 1 | 94.61 18 | 96.17 5 | 89.91 193 | 97.09 104 | 70.21 322 | 98.99 14 | 96.69 68 | 95.57 1 | 95.08 32 | 99.23 1 | 86.40 29 | 99.87 8 | 97.84 11 | 98.66 34 | 99.65 6 |
|
MCST-MVS | | | 96.17 3 | 96.12 6 | 96.32 7 | 99.42 2 | 89.36 10 | 98.94 15 | 97.10 26 | 95.17 2 | 92.11 73 | 98.46 26 | 87.33 24 | 99.97 2 | 97.21 17 | 99.31 4 | 99.63 7 |
|
IB-MVS | | 85.34 4 | 88.67 140 | 87.14 159 | 93.26 76 | 93.12 200 | 84.32 74 | 98.76 16 | 97.27 18 | 87.19 90 | 79.36 221 | 90.45 231 | 83.92 43 | 98.53 130 | 84.41 154 | 69.79 297 | 96.93 153 |
Christian Sormann, Mattia Rossi, Andreas Kuhn and Friedrich Fraundorfer: IB-MVS: An Iterative Algorithm for Deep Multi-View Stereo based on Binary Decisions. BMVC 2021 |
ETH3 D test6400 | | | 95.56 9 | 95.41 13 | 96.00 9 | 99.02 19 | 89.42 9 | 98.75 17 | 96.80 48 | 87.28 85 | 95.88 23 | 98.95 2 | 85.92 30 | 99.41 67 | 97.15 18 | 98.95 20 | 99.18 25 |
|
CS-MVS-test | | | 92.98 49 | 93.67 37 | 90.90 161 | 96.52 110 | 76.87 250 | 98.68 18 | 94.73 206 | 90.36 34 | 94.84 38 | 97.89 62 | 77.94 101 | 97.15 193 | 94.28 50 | 97.80 70 | 98.70 42 |
|
alignmvs | | | 92.97 50 | 92.26 65 | 95.12 18 | 95.54 132 | 87.77 19 | 98.67 19 | 96.38 113 | 88.04 69 | 93.01 63 | 97.45 87 | 79.20 84 | 98.60 126 | 93.25 65 | 88.76 173 | 98.99 30 |
|
jason | | | 92.73 56 | 92.23 66 | 94.21 41 | 90.50 262 | 87.30 25 | 98.65 20 | 95.09 186 | 90.61 28 | 92.76 66 | 97.13 103 | 75.28 154 | 97.30 182 | 93.32 63 | 96.75 101 | 98.02 87 |
jason: jason. |
MSLP-MVS++ | | | 94.28 24 | 94.39 25 | 93.97 47 | 98.30 56 | 84.06 79 | 98.64 21 | 96.93 38 | 90.71 27 | 93.08 62 | 98.70 18 | 79.98 75 | 99.21 85 | 94.12 51 | 99.07 11 | 98.63 45 |
|
PHI-MVS | | | 93.59 40 | 93.63 38 | 93.48 70 | 98.05 69 | 81.76 128 | 98.64 21 | 97.13 23 | 82.60 196 | 94.09 52 | 98.49 25 | 80.35 69 | 99.85 10 | 94.74 44 | 98.62 35 | 98.83 33 |
|
xxxxxxxxxxxxxcwj | | | 94.38 22 | 94.62 19 | 93.68 58 | 98.24 58 | 83.34 93 | 98.61 23 | 92.69 297 | 91.32 19 | 95.07 33 | 98.74 16 | 82.93 52 | 99.38 69 | 95.42 36 | 98.51 38 | 98.32 60 |
|
save fliter | | | | | | 98.24 58 | 83.34 93 | 98.61 23 | 96.57 86 | 91.32 19 | | | | | | | |
|
CS-MVS | | | 92.73 56 | 93.48 42 | 90.48 174 | 96.27 113 | 75.93 269 | 98.55 25 | 94.93 193 | 89.32 46 | 94.54 45 | 97.67 73 | 78.91 87 | 97.02 197 | 93.80 53 | 97.32 84 | 98.49 52 |
|
DP-MVS Recon | | | 91.72 77 | 90.85 87 | 94.34 35 | 99.50 1 | 85.00 64 | 98.51 26 | 95.96 141 | 80.57 224 | 88.08 133 | 97.63 80 | 76.84 119 | 99.89 7 | 85.67 144 | 94.88 121 | 98.13 79 |
|
patch_mono-2 | | | 95.14 12 | 96.08 7 | 92.33 115 | 98.44 48 | 77.84 232 | 98.43 27 | 97.21 20 | 92.58 11 | 97.68 8 | 97.65 78 | 86.88 25 | 99.83 16 | 98.25 3 | 97.60 74 | 99.33 17 |
|
CP-MVS | | | 92.54 65 | 92.60 59 | 92.34 114 | 98.50 45 | 79.90 170 | 98.40 28 | 96.40 109 | 84.75 137 | 90.48 101 | 98.09 46 | 77.40 111 | 99.21 85 | 91.15 88 | 98.23 59 | 97.92 100 |
|
test_prior3 | | | 94.03 33 | 94.34 26 | 93.09 84 | 98.68 29 | 81.91 120 | 98.37 29 | 96.40 109 | 86.08 106 | 94.57 43 | 98.02 52 | 83.14 48 | 99.06 102 | 95.05 40 | 98.79 27 | 98.29 65 |
|
test_prior2 | | | | | | | | 98.37 29 | | 86.08 106 | 94.57 43 | 98.02 52 | 83.14 48 | | 95.05 40 | 98.79 27 | |
|
EPNet | | | 94.06 32 | 94.15 30 | 93.76 53 | 97.27 101 | 84.35 73 | 98.29 31 | 97.64 13 | 94.57 4 | 95.36 27 | 96.88 112 | 79.96 76 | 99.12 99 | 91.30 86 | 96.11 106 | 97.82 108 |
Wanjuan Su, Wenbing Tao: Efficient Edge-Preserving Multi-View Stereo Network for Depth Estimation. AAAI 2023 |
Fast-Effi-MVS+ | | | 87.93 160 | 86.94 164 | 90.92 160 | 94.04 174 | 79.16 190 | 98.26 32 | 93.72 264 | 81.29 212 | 83.94 171 | 92.90 196 | 69.83 209 | 96.68 215 | 76.70 229 | 91.74 155 | 96.93 153 |
|
WTY-MVS | | | 92.65 62 | 91.68 76 | 95.56 13 | 96.00 121 | 88.90 12 | 98.23 33 | 97.65 12 | 88.57 58 | 89.82 108 | 97.22 100 | 79.29 80 | 99.06 102 | 89.57 113 | 88.73 174 | 98.73 40 |
|
PS-MVSNAJ | | | 94.17 27 | 93.52 41 | 96.10 8 | 95.65 130 | 92.35 2 | 98.21 34 | 95.79 151 | 92.42 13 | 96.24 19 | 98.18 35 | 71.04 201 | 99.17 93 | 96.77 21 | 97.39 82 | 96.79 159 |
|
xiu_mvs_v2_base | | | 93.92 35 | 93.26 45 | 95.91 10 | 95.07 146 | 92.02 6 | 98.19 35 | 95.68 156 | 92.06 15 | 96.01 22 | 98.14 40 | 70.83 204 | 98.96 108 | 96.74 22 | 96.57 102 | 96.76 162 |
|
9.14 | | | | 94.26 29 | | 98.10 66 | | 98.14 36 | 96.52 93 | 84.74 138 | 94.83 39 | 98.80 9 | 82.80 55 | 99.37 73 | 95.95 28 | 98.42 46 | |
|
ET-MVSNet_ETH3D | | | 90.01 114 | 89.03 119 | 92.95 91 | 94.38 166 | 86.77 29 | 98.14 36 | 96.31 120 | 89.30 47 | 63.33 337 | 96.72 121 | 90.09 11 | 93.63 319 | 90.70 96 | 82.29 228 | 98.46 54 |
|
CLD-MVS | | | 87.97 159 | 87.48 149 | 89.44 201 | 92.16 228 | 80.54 156 | 98.14 36 | 94.92 194 | 91.41 18 | 79.43 220 | 95.40 146 | 62.34 250 | 97.27 185 | 90.60 97 | 82.90 222 | 90.50 240 |
Zhaoxin Li, Wangmeng Zuo, Zhaoqi Wang, Lei Zhang: Confidence-based Large-scale Dense Multi-view Stereo. IEEE Transaction on Image Processing, 2020 |
DVP-MVS++ | | | 96.05 4 | 96.41 3 | 94.96 21 | 99.05 10 | 85.34 50 | 98.13 39 | 96.77 55 | 88.38 62 | 97.70 6 | 98.77 12 | 92.06 3 | 99.84 12 | 97.47 14 | 99.37 1 | 99.70 3 |
|
FOURS1 | | | | | | 98.51 44 | 78.01 224 | 98.13 39 | 96.21 126 | 83.04 184 | 94.39 46 | | | | | | |
|
TSAR-MVS + GP. | | | 94.35 23 | 94.50 20 | 93.89 49 | 97.38 98 | 83.04 101 | 98.10 41 | 95.29 180 | 91.57 17 | 93.81 53 | 97.45 87 | 86.64 26 | 99.43 66 | 96.28 23 | 94.01 130 | 99.20 23 |
|
test_yl | | | 91.46 84 | 90.53 92 | 94.24 39 | 97.41 93 | 85.18 55 | 98.08 42 | 97.72 10 | 80.94 216 | 89.85 106 | 96.14 128 | 75.61 141 | 98.81 119 | 90.42 103 | 88.56 176 | 98.74 36 |
|
DCV-MVSNet | | | 91.46 84 | 90.53 92 | 94.24 39 | 97.41 93 | 85.18 55 | 98.08 42 | 97.72 10 | 80.94 216 | 89.85 106 | 96.14 128 | 75.61 141 | 98.81 119 | 90.42 103 | 88.56 176 | 98.74 36 |
|
DROMVSNet | | | 91.73 75 | 92.11 69 | 90.58 170 | 93.54 185 | 77.77 234 | 98.07 44 | 94.40 227 | 87.44 81 | 92.99 64 | 97.11 105 | 74.59 165 | 96.87 206 | 93.75 54 | 97.08 89 | 97.11 148 |
|
EIA-MVS | | | 91.73 75 | 92.05 70 | 90.78 166 | 94.52 161 | 76.40 258 | 98.06 45 | 95.34 178 | 89.19 48 | 88.90 122 | 97.28 98 | 77.56 108 | 97.73 158 | 90.77 94 | 96.86 98 | 98.20 71 |
|
DeepC-MVS_fast | | 89.06 2 | 94.48 20 | 94.30 28 | 95.02 19 | 98.86 23 | 85.68 45 | 98.06 45 | 96.64 77 | 93.64 8 | 91.74 79 | 98.54 22 | 80.17 74 | 99.90 5 | 92.28 78 | 98.75 30 | 99.49 8 |
Andreas Kuhn, Christian Sormann, Mattia Rossi, Oliver Erdler, Friedrich Fraundorfer: DeepC-MVS: Deep Confidence Prediction for Multi-View Stereo Reconstruction. 3DV 2020 |
APDe-MVS | | | 94.56 19 | 94.75 16 | 93.96 48 | 98.84 24 | 83.40 92 | 98.04 47 | 96.41 106 | 85.79 112 | 95.00 35 | 98.28 32 | 84.32 40 | 99.18 92 | 97.35 16 | 98.77 29 | 99.28 20 |
|
PVSNet_BlendedMVS | | | 90.05 113 | 89.96 105 | 90.33 179 | 97.47 89 | 83.86 81 | 98.02 48 | 96.73 61 | 87.98 70 | 89.53 114 | 89.61 242 | 76.42 127 | 99.57 54 | 94.29 48 | 79.59 240 | 87.57 309 |
|
ETH3D-3000-0.1 | | | 94.43 21 | 94.42 24 | 94.45 31 | 97.78 77 | 85.78 41 | 97.98 49 | 96.53 92 | 85.29 126 | 95.45 26 | 98.81 8 | 83.36 46 | 99.38 69 | 96.07 25 | 98.53 37 | 98.19 72 |
|
ETV-MVS | | | 92.72 58 | 92.87 52 | 92.28 118 | 94.54 160 | 81.89 122 | 97.98 49 | 95.21 183 | 89.77 41 | 93.11 61 | 96.83 114 | 77.23 116 | 97.50 171 | 95.74 31 | 95.38 115 | 97.44 133 |
|
MG-MVS | | | 94.25 26 | 93.72 36 | 95.85 11 | 99.38 3 | 89.35 11 | 97.98 49 | 98.09 8 | 89.99 37 | 92.34 70 | 96.97 109 | 81.30 63 | 98.99 106 | 88.54 122 | 98.88 21 | 99.20 23 |
|
thisisatest0515 | | | 90.95 96 | 90.26 97 | 93.01 88 | 94.03 176 | 84.27 77 | 97.91 52 | 96.67 70 | 83.18 180 | 86.87 143 | 95.51 144 | 88.66 16 | 97.85 154 | 80.46 191 | 89.01 170 | 96.92 155 |
|
VNet | | | 92.11 70 | 91.22 82 | 94.79 24 | 96.91 105 | 86.98 26 | 97.91 52 | 97.96 9 | 86.38 101 | 93.65 55 | 95.74 135 | 70.16 208 | 98.95 111 | 93.39 60 | 88.87 172 | 98.43 56 |
|
mvs-test1 | | | 86.83 172 | 87.17 156 | 85.81 271 | 91.96 236 | 65.24 342 | 97.90 54 | 93.34 281 | 85.57 117 | 84.51 164 | 95.14 156 | 61.99 255 | 97.19 189 | 83.55 169 | 90.55 161 | 95.00 200 |
|
thres200 | | | 88.92 132 | 87.65 141 | 92.73 101 | 96.30 112 | 85.62 46 | 97.85 55 | 98.86 1 | 84.38 150 | 84.82 158 | 93.99 183 | 75.12 157 | 98.01 146 | 70.86 278 | 86.67 189 | 94.56 210 |
|
3Dnovator+ | | 82.88 8 | 89.63 120 | 87.85 137 | 94.99 20 | 94.49 165 | 86.76 30 | 97.84 56 | 95.74 153 | 86.10 105 | 75.47 270 | 96.02 131 | 65.00 237 | 99.51 61 | 82.91 179 | 97.07 90 | 98.72 41 |
|
TEST9 | | | | | | 98.64 35 | 83.71 85 | 97.82 57 | 96.65 74 | 84.29 154 | 95.16 29 | 98.09 46 | 84.39 36 | 99.36 75 | | | |
|
train_agg | | | 94.28 24 | 94.45 22 | 93.74 54 | 98.64 35 | 83.71 85 | 97.82 57 | 96.65 74 | 84.50 146 | 95.16 29 | 98.09 46 | 84.33 37 | 99.36 75 | 95.91 29 | 98.96 19 | 98.16 75 |
|
test_8 | | | | | | 98.63 37 | 83.64 88 | 97.81 59 | 96.63 79 | 84.50 146 | 95.10 31 | 98.11 45 | 84.33 37 | 99.23 81 | | | |
|
HPM-MVS++ |  | | 95.32 10 | 95.48 12 | 94.85 23 | 98.62 38 | 86.04 35 | 97.81 59 | 96.93 38 | 92.45 12 | 95.69 24 | 98.50 24 | 85.38 31 | 99.85 10 | 94.75 43 | 99.18 7 | 98.65 44 |
|
DPE-MVS |  | | 95.32 10 | 95.55 10 | 94.64 28 | 98.79 25 | 84.87 67 | 97.77 61 | 96.74 60 | 86.11 104 | 96.54 17 | 98.89 7 | 88.39 19 | 99.74 33 | 97.67 12 | 99.05 12 | 99.31 19 |
Kehua Chen, Zhenlong Yuan, Tianlu Mao, Zhaoqi Wang: Dual-Level Precision Edges Guided Multi-View Stereo with Accurate Planarization. AAAI2025 |
agg_prior1 | | | 94.10 30 | 94.31 27 | 93.48 70 | 98.59 39 | 83.13 98 | 97.77 61 | 96.56 88 | 84.38 150 | 94.19 48 | 98.13 41 | 84.66 35 | 99.16 94 | 95.74 31 | 98.74 31 | 98.15 77 |
|
#test# | | | 92.99 48 | 92.99 49 | 92.98 89 | 98.71 27 | 81.12 140 | 97.77 61 | 96.70 65 | 85.75 113 | 91.75 77 | 97.97 59 | 78.47 93 | 99.71 37 | 91.36 85 | 98.41 48 | 98.12 80 |
|
PVSNet_Blended_VisFu | | | 91.24 90 | 90.77 89 | 92.66 103 | 95.09 144 | 82.40 112 | 97.77 61 | 95.87 148 | 88.26 65 | 86.39 145 | 93.94 184 | 76.77 121 | 99.27 78 | 88.80 121 | 94.00 131 | 96.31 176 |
|
SD-MVS | | | 94.84 15 | 95.02 15 | 94.29 37 | 97.87 76 | 84.61 71 | 97.76 65 | 96.19 129 | 89.59 42 | 96.66 15 | 98.17 39 | 84.33 37 | 99.60 51 | 96.09 24 | 98.50 41 | 98.66 43 |
Zhenlong Yuan, Jiakai Cao, Zhaoxin Li, Hao Jiang and Zhaoqi Wang: SD-MVS: Segmentation-driven Deformation Multi-View Stereo with Spherical Refinement and EM optimization. AAAI2024 |
test_prior4 | | | | | | | 82.34 113 | 97.75 66 | | | | | | | | | |
|
SF-MVS | | | 94.17 27 | 94.05 32 | 94.55 30 | 97.56 87 | 85.95 36 | 97.73 67 | 96.43 104 | 84.02 159 | 95.07 33 | 98.74 16 | 82.93 52 | 99.38 69 | 95.42 36 | 98.51 38 | 98.32 60 |
|
3Dnovator | | 82.32 10 | 89.33 124 | 87.64 142 | 94.42 33 | 93.73 181 | 85.70 44 | 97.73 67 | 96.75 59 | 86.73 100 | 76.21 257 | 95.93 132 | 62.17 251 | 99.68 43 | 81.67 185 | 97.81 69 | 97.88 101 |
|
CPTT-MVS | | | 89.72 118 | 89.87 109 | 89.29 203 | 98.33 54 | 73.30 293 | 97.70 69 | 95.35 177 | 75.68 292 | 87.40 137 | 97.44 90 | 70.43 205 | 98.25 140 | 89.56 114 | 96.90 94 | 96.33 175 |
|
PVSNet | | 82.34 9 | 89.02 129 | 87.79 139 | 92.71 102 | 95.49 133 | 81.50 135 | 97.70 69 | 97.29 17 | 87.76 76 | 85.47 152 | 95.12 158 | 56.90 293 | 98.90 115 | 80.33 192 | 94.02 129 | 97.71 116 |
|
iter_conf05 | | | 90.14 112 | 89.79 111 | 91.17 153 | 95.85 125 | 86.93 27 | 97.68 71 | 88.67 343 | 89.93 38 | 81.73 200 | 92.80 197 | 90.37 8 | 96.03 233 | 90.44 101 | 80.65 233 | 90.56 238 |
|
CDPH-MVS | | | 93.12 45 | 92.91 51 | 93.74 54 | 98.65 34 | 83.88 80 | 97.67 72 | 96.26 122 | 83.00 186 | 93.22 60 | 98.24 33 | 81.31 62 | 99.21 85 | 89.12 118 | 98.74 31 | 98.14 78 |
|
ZNCC-MVS | | | 92.75 53 | 92.60 59 | 93.23 78 | 98.24 58 | 81.82 126 | 97.63 73 | 96.50 96 | 85.00 134 | 91.05 93 | 97.74 71 | 78.38 95 | 99.80 24 | 90.48 98 | 98.34 55 | 98.07 83 |
|
HQP-NCC | | | | | | 92.08 230 | | 97.63 73 | | 90.52 29 | 82.30 188 | | | | | | |
|
ACMP_Plane | | | | | | 92.08 230 | | 97.63 73 | | 90.52 29 | 82.30 188 | | | | | | |
|
HQP-MVS | | | 87.91 161 | 87.55 147 | 88.98 208 | 92.08 230 | 78.48 206 | 97.63 73 | 94.80 202 | 90.52 29 | 82.30 188 | 94.56 169 | 65.40 233 | 97.32 180 | 87.67 131 | 83.01 219 | 91.13 232 |
|
testtj | | | 94.09 31 | 94.08 31 | 94.09 45 | 99.28 6 | 83.32 95 | 97.59 77 | 96.61 80 | 83.60 175 | 94.77 41 | 98.46 26 | 82.72 56 | 99.64 47 | 95.29 38 | 98.42 46 | 99.32 18 |
|
HFP-MVS | | | 92.89 51 | 92.86 53 | 92.98 89 | 98.71 27 | 81.12 140 | 97.58 78 | 96.70 65 | 85.20 129 | 91.75 77 | 97.97 59 | 78.47 93 | 99.71 37 | 90.95 89 | 98.41 48 | 98.12 80 |
|
ACMMPR | | | 92.69 60 | 92.67 57 | 92.75 99 | 98.66 32 | 80.57 154 | 97.58 78 | 96.69 68 | 85.20 129 | 91.57 81 | 97.92 61 | 77.01 117 | 99.67 45 | 90.95 89 | 98.41 48 | 98.00 92 |
|
MVS_111021_HR | | | 93.41 42 | 93.39 44 | 93.47 73 | 97.34 99 | 82.83 104 | 97.56 80 | 98.27 6 | 89.16 49 | 89.71 109 | 97.14 102 | 79.77 77 | 99.56 56 | 93.65 56 | 97.94 66 | 98.02 87 |
|
VDD-MVS | | | 88.28 152 | 87.02 162 | 92.06 125 | 95.09 144 | 80.18 166 | 97.55 81 | 94.45 225 | 83.09 182 | 89.10 120 | 95.92 134 | 47.97 327 | 98.49 132 | 93.08 70 | 86.91 188 | 97.52 130 |
|
GeoE | | | 86.36 179 | 85.20 178 | 89.83 196 | 93.17 196 | 76.13 261 | 97.53 82 | 92.11 302 | 79.58 248 | 80.99 204 | 94.01 182 | 66.60 227 | 96.17 231 | 73.48 260 | 89.30 167 | 97.20 147 |
|
MTMP | | | | | | | | 97.53 82 | 68.16 375 | | | | | | | | |
|
region2R | | | 92.72 58 | 92.70 56 | 92.79 98 | 98.68 29 | 80.53 157 | 97.53 82 | 96.51 94 | 85.22 127 | 91.94 75 | 97.98 57 | 77.26 112 | 99.67 45 | 90.83 93 | 98.37 53 | 98.18 73 |
|
plane_prior | | | | | | | 77.96 226 | 97.52 85 | | 90.36 34 | | | | | | 82.96 221 | |
|
API-MVS | | | 90.18 111 | 88.97 121 | 93.80 52 | 98.66 32 | 82.95 103 | 97.50 86 | 95.63 160 | 75.16 296 | 86.31 146 | 97.69 72 | 72.49 185 | 99.90 5 | 81.26 187 | 96.07 107 | 98.56 48 |
|
SMA-MVS |  | | 94.70 17 | 94.68 17 | 94.76 25 | 98.02 70 | 85.94 38 | 97.47 87 | 96.77 55 | 85.32 123 | 97.92 3 | 98.70 18 | 83.09 51 | 99.84 12 | 95.79 30 | 99.08 10 | 98.49 52 |
Yufeng Yin; Xiaoyan Liu; Zichao Zhang: SMA-MVS: Segmentation-Guided Multi-Scale Anchor Deformation Patch Multi-View Stereo. IEEE Transactions on Circuits and Systems for Video Technology |
CSCG | | | 92.02 71 | 91.65 77 | 93.12 82 | 98.53 41 | 80.59 153 | 97.47 87 | 97.18 22 | 77.06 286 | 84.64 162 | 97.98 57 | 83.98 42 | 99.52 58 | 90.72 95 | 97.33 83 | 99.23 22 |
|
Anonymous202405211 | | | 84.41 210 | 81.93 231 | 91.85 134 | 96.78 107 | 78.41 210 | 97.44 89 | 91.34 314 | 70.29 328 | 84.06 166 | 94.26 175 | 41.09 349 | 98.96 108 | 79.46 202 | 82.65 226 | 98.17 74 |
|
tfpn200view9 | | | 88.48 145 | 87.15 157 | 92.47 109 | 96.21 115 | 85.30 53 | 97.44 89 | 98.85 2 | 83.37 177 | 83.99 168 | 93.82 186 | 75.36 151 | 97.93 148 | 69.04 284 | 86.24 195 | 94.17 212 |
|
thres400 | | | 88.42 148 | 87.15 157 | 92.23 119 | 96.21 115 | 85.30 53 | 97.44 89 | 98.85 2 | 83.37 177 | 83.99 168 | 93.82 186 | 75.36 151 | 97.93 148 | 69.04 284 | 86.24 195 | 93.45 225 |
|
OpenMVS |  | 79.58 14 | 86.09 183 | 83.62 205 | 93.50 68 | 90.95 253 | 86.71 31 | 97.44 89 | 95.83 149 | 75.35 293 | 72.64 292 | 95.72 136 | 57.42 290 | 99.64 47 | 71.41 271 | 95.85 112 | 94.13 215 |
|
Regformer-1 | | | 94.00 34 | 94.04 33 | 93.87 50 | 98.41 49 | 84.29 75 | 97.43 93 | 97.04 28 | 89.50 43 | 92.75 67 | 98.13 41 | 82.60 58 | 99.26 80 | 93.55 58 | 96.99 91 | 98.06 84 |
|
Regformer-2 | | | 93.92 35 | 94.01 34 | 93.67 59 | 98.41 49 | 83.75 84 | 97.43 93 | 97.00 30 | 89.43 45 | 92.69 68 | 98.13 41 | 82.48 59 | 99.22 83 | 93.51 59 | 96.99 91 | 98.04 85 |
|
MSP-MVS | | | 95.62 7 | 96.54 1 | 92.86 95 | 98.31 55 | 80.10 167 | 97.42 95 | 96.78 49 | 92.20 14 | 97.11 11 | 98.29 31 | 93.46 1 | 99.10 100 | 96.01 26 | 99.30 5 | 99.38 14 |
Zhenlong Yuan, Cong Liu, Fei Shen, Zhaoxin Li, Jingguo luo, Tianlu Mao and Zhaoqi Wang: MSP-MVS: Multi-granularity Segmentation Prior Guided Multi-View Stereo. AAAI2025 |
BH-w/o | | | 88.24 153 | 87.47 150 | 90.54 172 | 95.03 149 | 78.54 205 | 97.41 96 | 93.82 255 | 84.08 157 | 78.23 231 | 94.51 171 | 69.34 211 | 97.21 187 | 80.21 195 | 94.58 125 | 95.87 184 |
|
GST-MVS | | | 92.43 67 | 92.22 67 | 93.04 87 | 98.17 63 | 81.64 133 | 97.40 97 | 96.38 113 | 84.71 140 | 90.90 95 | 97.40 92 | 77.55 109 | 99.76 25 | 89.75 111 | 97.74 71 | 97.72 114 |
|
XVS | | | 92.69 60 | 92.71 54 | 92.63 105 | 98.52 42 | 80.29 160 | 97.37 98 | 96.44 102 | 87.04 92 | 91.38 83 | 97.83 68 | 77.24 114 | 99.59 52 | 90.46 99 | 98.07 62 | 98.02 87 |
|
X-MVStestdata | | | 86.26 181 | 84.14 198 | 92.63 105 | 98.52 42 | 80.29 160 | 97.37 98 | 96.44 102 | 87.04 92 | 91.38 83 | 20.73 376 | 77.24 114 | 99.59 52 | 90.46 99 | 98.07 62 | 98.02 87 |
|
MP-MVS |  | | 92.61 63 | 92.67 57 | 92.42 112 | 98.13 65 | 79.73 176 | 97.33 100 | 96.20 127 | 85.63 116 | 90.53 99 | 97.66 74 | 78.14 99 | 99.70 40 | 92.12 80 | 98.30 57 | 97.85 105 |
Rongxuan Tan, Qing Wang, et al.: MP-MVS: Multi-Scale Windows PatchMatch and Planar Prior Multi-View Stereo. |
mPP-MVS | | | 91.88 73 | 91.82 73 | 92.07 124 | 98.38 51 | 78.63 204 | 97.29 101 | 96.09 134 | 85.12 131 | 88.45 127 | 97.66 74 | 75.53 144 | 99.68 43 | 89.83 109 | 98.02 65 | 97.88 101 |
|
ETH3D cwj APD-0.16 | | | 93.91 37 | 93.76 35 | 94.36 34 | 96.70 108 | 85.74 42 | 97.22 102 | 96.41 106 | 83.94 162 | 94.13 51 | 98.69 20 | 83.13 50 | 99.37 73 | 95.25 39 | 98.39 51 | 97.97 97 |
|
EPP-MVSNet | | | 89.76 117 | 89.72 112 | 89.87 194 | 93.78 178 | 76.02 266 | 97.22 102 | 96.51 94 | 79.35 251 | 85.11 154 | 95.01 162 | 84.82 34 | 97.10 195 | 87.46 133 | 88.21 180 | 96.50 168 |
|
APD-MVS |  | | 93.61 39 | 93.59 39 | 93.69 57 | 98.76 26 | 83.26 96 | 97.21 104 | 96.09 134 | 82.41 198 | 94.65 42 | 98.21 34 | 81.96 61 | 98.81 119 | 94.65 45 | 98.36 54 | 99.01 27 |
Yuesong Wang, Zhaojie Zeng and etc.: Adaptive Patch Deformation for Textureless-Resilient Multi-View Stereo. CVPR2023 |
CNLPA | | | 86.96 168 | 85.37 176 | 91.72 137 | 97.59 85 | 79.34 186 | 97.21 104 | 91.05 319 | 74.22 303 | 78.90 223 | 96.75 120 | 67.21 222 | 98.95 111 | 74.68 248 | 90.77 160 | 96.88 157 |
|
PAPR | | | 92.74 54 | 92.17 68 | 94.45 31 | 98.89 22 | 84.87 67 | 97.20 106 | 96.20 127 | 87.73 77 | 88.40 128 | 98.12 44 | 78.71 91 | 99.76 25 | 87.99 129 | 96.28 104 | 98.74 36 |
|
QAPM | | | 86.88 170 | 84.51 190 | 93.98 46 | 94.04 174 | 85.89 39 | 97.19 107 | 96.05 137 | 73.62 307 | 75.12 273 | 95.62 141 | 62.02 254 | 99.74 33 | 70.88 277 | 96.06 108 | 96.30 177 |
|
LFMVS | | | 89.27 126 | 87.64 142 | 94.16 44 | 97.16 102 | 85.52 48 | 97.18 108 | 94.66 211 | 79.17 257 | 89.63 112 | 96.57 123 | 55.35 305 | 98.22 141 | 89.52 115 | 89.54 165 | 98.74 36 |
|
HQP_MVS | | | 87.50 164 | 87.09 160 | 88.74 213 | 91.86 240 | 77.96 226 | 97.18 108 | 94.69 207 | 89.89 39 | 81.33 201 | 94.15 179 | 64.77 239 | 97.30 182 | 87.08 135 | 82.82 223 | 90.96 234 |
|
plane_prior2 | | | | | | | | 97.18 108 | | 89.89 39 | | | | | | | |
|
MAR-MVS | | | 90.63 102 | 90.22 98 | 91.86 132 | 98.47 47 | 78.20 220 | 97.18 108 | 96.61 80 | 83.87 166 | 88.18 132 | 98.18 35 | 68.71 213 | 99.75 31 | 83.66 168 | 97.15 88 | 97.63 122 |
Zhenyu Xu, Yiguang Liu, Xuelei Shi, Ying Wang, Yunan Zheng: MARMVS: Matching Ambiguity Reduced Multiple View Stereo for Efficient Large Scale Scene Reconstruction. CVPR 2020 |
PLC |  | 83.97 7 | 88.00 158 | 87.38 152 | 89.83 196 | 98.02 70 | 76.46 256 | 97.16 112 | 94.43 226 | 79.26 256 | 81.98 195 | 96.28 126 | 69.36 210 | 99.27 78 | 77.71 218 | 92.25 150 | 93.77 220 |
Jie Liao, Yanping Fu, Qingan Yan, Chunxia xiao: Pyramid Multi-View Stereo with Local Consistency. Pacific Graphics 2019 |
HPM-MVS_fast | | | 90.38 109 | 90.17 101 | 91.03 157 | 97.61 83 | 77.35 243 | 97.15 113 | 95.48 167 | 79.51 249 | 88.79 123 | 96.90 110 | 71.64 195 | 98.81 119 | 87.01 138 | 97.44 79 | 96.94 152 |
|
thres100view900 | | | 88.30 151 | 86.95 163 | 92.33 115 | 96.10 119 | 84.90 66 | 97.14 114 | 98.85 2 | 82.69 194 | 83.41 176 | 93.66 189 | 75.43 148 | 97.93 148 | 69.04 284 | 86.24 195 | 94.17 212 |
|
thres600view7 | | | 88.06 156 | 86.70 166 | 92.15 122 | 96.10 119 | 85.17 59 | 97.14 114 | 98.85 2 | 82.70 193 | 83.41 176 | 93.66 189 | 75.43 148 | 97.82 155 | 67.13 293 | 85.88 199 | 93.45 225 |
|
sss | | | 90.87 98 | 89.96 105 | 93.60 63 | 94.15 170 | 83.84 83 | 97.14 114 | 98.13 7 | 85.93 110 | 89.68 110 | 96.09 130 | 71.67 193 | 99.30 77 | 87.69 130 | 89.16 168 | 97.66 119 |
|
test-LLR | | | 88.48 145 | 87.98 135 | 89.98 189 | 92.26 221 | 77.23 245 | 97.11 117 | 95.96 141 | 83.76 170 | 86.30 147 | 91.38 215 | 72.30 188 | 96.78 212 | 80.82 188 | 91.92 153 | 95.94 182 |
|
TESTMET0.1,1 | | | 89.83 115 | 89.34 117 | 91.31 147 | 92.54 214 | 80.19 165 | 97.11 117 | 96.57 86 | 86.15 103 | 86.85 144 | 91.83 209 | 79.32 79 | 96.95 200 | 81.30 186 | 92.35 149 | 96.77 161 |
|
test-mter | | | 88.95 130 | 88.60 127 | 89.98 189 | 92.26 221 | 77.23 245 | 97.11 117 | 95.96 141 | 85.32 123 | 86.30 147 | 91.38 215 | 76.37 129 | 96.78 212 | 80.82 188 | 91.92 153 | 95.94 182 |
|
VDDNet | | | 86.44 178 | 84.51 190 | 92.22 120 | 91.56 243 | 81.83 125 | 97.10 120 | 94.64 214 | 69.50 332 | 87.84 134 | 95.19 152 | 48.01 326 | 97.92 153 | 89.82 110 | 86.92 187 | 96.89 156 |
|
canonicalmvs | | | 92.27 68 | 91.22 82 | 95.41 15 | 95.80 126 | 88.31 13 | 97.09 121 | 94.64 214 | 88.49 60 | 92.99 64 | 97.31 94 | 72.68 184 | 98.57 128 | 93.38 62 | 88.58 175 | 99.36 16 |
|
CDS-MVSNet | | | 89.50 121 | 88.96 122 | 91.14 155 | 91.94 239 | 80.93 145 | 97.09 121 | 95.81 150 | 84.26 155 | 84.72 160 | 94.20 178 | 80.31 70 | 95.64 262 | 83.37 174 | 88.96 171 | 96.85 158 |
Khang Truong Giang, Soohwan Song, Sungho Jo: Curvature-guided dynamic scale networks for Multi-view Stereo. ICLR 2022 |
Regformer-3 | | | 93.19 43 | 93.19 47 | 93.19 80 | 98.10 66 | 83.01 102 | 97.08 123 | 96.98 32 | 88.98 50 | 91.35 87 | 97.89 62 | 80.80 65 | 99.23 81 | 92.30 77 | 95.20 117 | 97.32 139 |
|
Regformer-4 | | | 93.06 47 | 93.12 48 | 92.89 94 | 98.10 66 | 82.20 116 | 97.08 123 | 96.92 40 | 88.87 52 | 91.23 90 | 97.89 62 | 80.57 68 | 99.19 90 | 92.21 79 | 95.20 117 | 97.29 143 |
|
nrg030 | | | 86.79 174 | 85.43 174 | 90.87 163 | 88.76 285 | 85.34 50 | 97.06 125 | 94.33 229 | 84.31 152 | 80.45 211 | 91.98 204 | 72.36 186 | 96.36 224 | 88.48 125 | 71.13 284 | 90.93 236 |
|
cascas | | | 86.50 177 | 84.48 192 | 92.55 108 | 92.64 212 | 85.95 36 | 97.04 126 | 95.07 188 | 75.32 294 | 80.50 209 | 91.02 222 | 54.33 312 | 97.98 147 | 86.79 140 | 87.62 183 | 93.71 221 |
|
xiu_mvs_v1_base_debu | | | 90.54 104 | 89.54 114 | 93.55 65 | 92.31 216 | 87.58 22 | 96.99 127 | 94.87 197 | 87.23 87 | 93.27 57 | 97.56 82 | 57.43 287 | 98.32 137 | 92.72 72 | 93.46 138 | 94.74 205 |
|
xiu_mvs_v1_base | | | 90.54 104 | 89.54 114 | 93.55 65 | 92.31 216 | 87.58 22 | 96.99 127 | 94.87 197 | 87.23 87 | 93.27 57 | 97.56 82 | 57.43 287 | 98.32 137 | 92.72 72 | 93.46 138 | 94.74 205 |
|
xiu_mvs_v1_base_debi | | | 90.54 104 | 89.54 114 | 93.55 65 | 92.31 216 | 87.58 22 | 96.99 127 | 94.87 197 | 87.23 87 | 93.27 57 | 97.56 82 | 57.43 287 | 98.32 137 | 92.72 72 | 93.46 138 | 94.74 205 |
|
HPM-MVS |  | | 91.62 81 | 91.53 79 | 91.89 131 | 97.88 75 | 79.22 188 | 96.99 127 | 95.73 154 | 82.07 203 | 89.50 116 | 97.19 101 | 75.59 143 | 98.93 114 | 90.91 91 | 97.94 66 | 97.54 126 |
Chunlin Ren, Qingshan Xu, Shikun Zhang, Jiaqi Yang: Hierarchical Prior Mining for Non-local Multi-View Stereo. ICCV 2023 |
114514_t | | | 88.79 138 | 87.57 146 | 92.45 110 | 98.21 61 | 81.74 129 | 96.99 127 | 95.45 169 | 75.16 296 | 82.48 185 | 95.69 138 | 68.59 214 | 98.50 131 | 80.33 192 | 95.18 119 | 97.10 149 |
|
旧先验2 | | | | | | | | 96.97 132 | | 74.06 305 | 96.10 20 | | | 97.76 157 | 88.38 126 | | |
|
h-mvs33 | | | 89.30 125 | 88.95 123 | 90.36 177 | 95.07 146 | 76.04 263 | 96.96 133 | 97.11 25 | 90.39 32 | 92.22 71 | 95.10 159 | 74.70 161 | 98.86 116 | 93.14 67 | 65.89 330 | 96.16 178 |
|
BH-RMVSNet | | | 86.84 171 | 85.28 177 | 91.49 144 | 95.35 137 | 80.26 163 | 96.95 134 | 92.21 301 | 82.86 190 | 81.77 199 | 95.46 145 | 59.34 272 | 97.64 160 | 69.79 282 | 93.81 134 | 96.57 167 |
|
Vis-MVSNet |  | | 88.67 140 | 87.82 138 | 91.24 151 | 92.68 208 | 78.82 198 | 96.95 134 | 93.85 254 | 87.55 80 | 87.07 142 | 95.13 157 | 63.43 245 | 97.21 187 | 77.58 220 | 96.15 105 | 97.70 117 |
Jingyang Zhang, Yao Yao, Shiwei Li, Zixin Luo, Tian Fang: Visibility-aware Multiview Stereo Network. BMVC 2020 |
Vis-MVSNet (Re-imp) | | | 88.88 134 | 88.87 125 | 88.91 209 | 93.89 177 | 74.43 284 | 96.93 136 | 94.19 236 | 84.39 149 | 83.22 179 | 95.67 139 | 78.24 97 | 94.70 300 | 78.88 210 | 94.40 127 | 97.61 124 |
|
GA-MVS | | | 85.79 188 | 84.04 199 | 91.02 158 | 89.47 280 | 80.27 162 | 96.90 137 | 94.84 200 | 85.57 117 | 80.88 205 | 89.08 246 | 56.56 297 | 96.47 221 | 77.72 217 | 85.35 205 | 96.34 173 |
|
æ— å…ˆéªŒ | | | | | | | | 96.87 138 | 96.78 49 | 77.39 279 | | | | 99.52 58 | 79.95 197 | | 98.43 56 |
|
原ACMM2 | | | | | | | | 96.84 139 | | | | | | | | | |
|
casdiffmvs | | | 90.95 96 | 90.39 94 | 92.63 105 | 92.82 207 | 82.53 108 | 96.83 140 | 94.47 223 | 87.69 78 | 88.47 126 | 95.56 143 | 74.04 170 | 97.54 168 | 90.90 92 | 92.74 143 | 97.83 107 |
|
ACMMP_NAP | | | 93.46 41 | 93.23 46 | 94.17 42 | 97.16 102 | 84.28 76 | 96.82 141 | 96.65 74 | 86.24 102 | 94.27 47 | 97.99 55 | 77.94 101 | 99.83 16 | 93.39 60 | 98.57 36 | 98.39 58 |
|
Anonymous20240529 | | | 83.15 231 | 80.60 249 | 90.80 164 | 95.74 127 | 78.27 214 | 96.81 142 | 94.92 194 | 60.10 358 | 81.89 197 | 92.54 200 | 45.82 334 | 98.82 118 | 79.25 206 | 78.32 256 | 95.31 197 |
|
MVSTER | | | 89.25 127 | 88.92 124 | 90.24 181 | 95.98 122 | 84.66 70 | 96.79 143 | 95.36 175 | 87.19 90 | 80.33 213 | 90.61 229 | 90.02 12 | 95.97 237 | 85.38 147 | 78.64 251 | 90.09 251 |
|
BH-untuned | | | 86.95 169 | 85.94 170 | 89.99 188 | 94.52 161 | 77.46 240 | 96.78 144 | 93.37 280 | 81.80 207 | 76.62 249 | 93.81 188 | 66.64 226 | 97.02 197 | 76.06 236 | 93.88 133 | 95.48 193 |
|
ACMMP |  | | 90.39 107 | 89.97 104 | 91.64 139 | 97.58 86 | 78.21 219 | 96.78 144 | 96.72 63 | 84.73 139 | 84.72 160 | 97.23 99 | 71.22 198 | 99.63 49 | 88.37 127 | 92.41 148 | 97.08 150 |
Qingshan Xu, Weihang Kong, Wenbing Tao, Marc Pollefeys: Multi-Scale Geometric Consistency Guided and Planar Prior Assisted Multi-View Stereo. IEEE Transactions on Pattern Analysis and Machine Intelligence |
IS-MVSNet | | | 88.67 140 | 88.16 133 | 90.20 183 | 93.61 182 | 76.86 251 | 96.77 146 | 93.07 291 | 84.02 159 | 83.62 175 | 95.60 142 | 74.69 164 | 96.24 229 | 78.43 213 | 93.66 136 | 97.49 132 |
|
test_part1 | | | 84.72 203 | 82.85 217 | 90.34 178 | 95.73 129 | 84.79 69 | 96.75 147 | 94.10 242 | 79.05 263 | 75.97 261 | 89.51 243 | 67.69 215 | 95.94 241 | 79.34 203 | 67.50 320 | 90.30 245 |
|
UniMVSNet (Re) | | | 85.31 195 | 84.23 196 | 88.55 216 | 89.75 273 | 80.55 155 | 96.72 148 | 96.89 41 | 85.42 121 | 78.40 229 | 88.93 249 | 75.38 150 | 95.52 269 | 78.58 211 | 68.02 314 | 89.57 261 |
|
EPNet_dtu | | | 87.65 163 | 87.89 136 | 86.93 254 | 94.57 158 | 71.37 315 | 96.72 148 | 96.50 96 | 88.56 59 | 87.12 141 | 95.02 161 | 75.91 137 | 94.01 312 | 66.62 295 | 90.00 163 | 95.42 194 |
Wanjuan Su, Wenbing Tao: Efficient Edge-Preserving Multi-View Stereo Network for Depth Estimation. AAAI 2023 |
VPNet | | | 84.69 205 | 82.92 215 | 90.01 187 | 89.01 284 | 83.45 91 | 96.71 150 | 95.46 168 | 85.71 115 | 79.65 219 | 92.18 203 | 56.66 296 | 96.01 236 | 83.05 178 | 67.84 317 | 90.56 238 |
|
UniMVSNet_NR-MVSNet | | | 85.49 192 | 84.59 188 | 88.21 226 | 89.44 281 | 79.36 184 | 96.71 150 | 96.41 106 | 85.22 127 | 78.11 232 | 90.98 224 | 76.97 118 | 95.14 287 | 79.14 207 | 68.30 311 | 90.12 248 |
|
AdaColmap |  | | 88.81 136 | 87.61 145 | 92.39 113 | 99.33 4 | 79.95 168 | 96.70 152 | 95.58 161 | 77.51 278 | 83.05 182 | 96.69 122 | 61.90 258 | 99.72 36 | 84.29 155 | 93.47 137 | 97.50 131 |
|
SR-MVS | | | 92.16 69 | 92.27 64 | 91.83 135 | 98.37 52 | 78.41 210 | 96.67 153 | 95.76 152 | 82.19 202 | 91.97 74 | 98.07 50 | 76.44 126 | 98.64 123 | 93.71 55 | 97.27 85 | 98.45 55 |
|
EI-MVSNet-Vis-set | | | 91.84 74 | 91.77 75 | 92.04 126 | 97.60 84 | 81.17 139 | 96.61 154 | 96.87 42 | 88.20 66 | 89.19 118 | 97.55 85 | 78.69 92 | 99.14 96 | 90.29 105 | 90.94 159 | 95.80 185 |
|
WR-MVS | | | 84.32 211 | 82.96 214 | 88.41 218 | 89.38 282 | 80.32 159 | 96.59 155 | 96.25 123 | 83.97 161 | 76.63 248 | 90.36 233 | 67.53 218 | 94.86 297 | 75.82 240 | 70.09 295 | 90.06 253 |
|
test1111 | | | 88.11 155 | 87.04 161 | 91.35 146 | 93.15 197 | 78.79 201 | 96.57 156 | 90.78 324 | 86.88 96 | 85.04 155 | 95.20 151 | 57.23 292 | 97.39 177 | 83.88 160 | 94.59 124 | 97.87 103 |
|
TR-MVS | | | 86.30 180 | 84.93 186 | 90.42 175 | 94.63 157 | 77.58 238 | 96.57 156 | 93.82 255 | 80.30 233 | 82.42 187 | 95.16 154 | 58.74 277 | 97.55 166 | 74.88 246 | 87.82 182 | 96.13 180 |
|
ECVR-MVS |  | | 88.35 150 | 87.25 154 | 91.65 138 | 93.54 185 | 79.40 183 | 96.56 158 | 90.78 324 | 86.78 98 | 85.57 151 | 95.25 147 | 57.25 291 | 97.56 164 | 84.73 153 | 94.80 122 | 97.98 94 |
|
thisisatest0530 | | | 89.65 119 | 89.02 120 | 91.53 143 | 93.46 191 | 80.78 149 | 96.52 159 | 96.67 70 | 81.69 209 | 83.79 173 | 94.90 164 | 88.85 15 | 97.68 159 | 77.80 214 | 87.49 186 | 96.14 179 |
|
test0.0.03 1 | | | 82.79 238 | 82.48 224 | 83.74 303 | 86.81 307 | 72.22 300 | 96.52 159 | 95.03 190 | 83.76 170 | 73.00 288 | 93.20 192 | 72.30 188 | 88.88 354 | 64.15 308 | 77.52 259 | 90.12 248 |
|
Baseline_NR-MVSNet | | | 81.22 260 | 80.07 257 | 84.68 288 | 85.32 329 | 75.12 277 | 96.48 161 | 88.80 339 | 76.24 290 | 77.28 239 | 86.40 290 | 67.61 216 | 94.39 306 | 75.73 241 | 66.73 328 | 84.54 340 |
|
zzz-MVS | | | 92.74 54 | 92.71 54 | 92.86 95 | 97.90 72 | 80.85 147 | 96.47 162 | 96.33 117 | 87.92 71 | 90.20 104 | 98.18 35 | 76.71 123 | 99.76 25 | 92.57 75 | 98.09 60 | 97.96 98 |
|
EI-MVSNet-UG-set | | | 91.35 88 | 91.22 82 | 91.73 136 | 97.39 95 | 80.68 151 | 96.47 162 | 96.83 45 | 87.92 71 | 88.30 131 | 97.36 93 | 77.84 104 | 99.13 98 | 89.43 116 | 89.45 166 | 95.37 195 |
|
1112_ss | | | 88.60 143 | 87.47 150 | 92.00 128 | 93.21 194 | 80.97 144 | 96.47 162 | 92.46 299 | 83.64 173 | 80.86 206 | 97.30 96 | 80.24 72 | 97.62 161 | 77.60 219 | 85.49 203 | 97.40 136 |
|
test1172 | | | 91.64 79 | 92.00 71 | 90.54 172 | 98.20 62 | 74.48 283 | 96.45 165 | 95.65 157 | 81.97 206 | 91.63 80 | 98.02 52 | 75.76 139 | 98.61 124 | 93.16 66 | 97.17 87 | 98.52 51 |
|
TAMVS | | | 88.48 145 | 87.79 139 | 90.56 171 | 91.09 251 | 79.18 189 | 96.45 165 | 95.88 146 | 83.64 173 | 83.12 180 | 93.33 191 | 75.94 136 | 95.74 257 | 82.40 180 | 88.27 179 | 96.75 163 |
|
MP-MVS-pluss | | | 92.58 64 | 92.35 62 | 93.29 75 | 97.30 100 | 82.53 108 | 96.44 167 | 96.04 138 | 84.68 141 | 89.12 119 | 98.37 29 | 77.48 110 | 99.74 33 | 93.31 64 | 98.38 52 | 97.59 125 |
MP-MVS-pluss: MP-MVS-pluss. MP-MVS-pluss |
Test_1112_low_res | | | 88.03 157 | 86.73 165 | 91.94 130 | 93.15 197 | 80.88 146 | 96.44 167 | 92.41 300 | 83.59 176 | 80.74 208 | 91.16 220 | 80.18 73 | 97.59 162 | 77.48 222 | 85.40 204 | 97.36 138 |
|
DU-MVS | | | 84.57 207 | 83.33 210 | 88.28 222 | 88.76 285 | 79.36 184 | 96.43 169 | 95.41 174 | 85.42 121 | 78.11 232 | 90.82 225 | 67.61 216 | 95.14 287 | 79.14 207 | 68.30 311 | 90.33 243 |
|
æ–°å‡ ä½•2 | | | | | | | | 96.42 170 | | | | | | | | | |
|
PAPM | | | 92.87 52 | 92.40 61 | 94.30 36 | 92.25 223 | 87.85 18 | 96.40 171 | 96.38 113 | 91.07 23 | 88.72 124 | 96.90 110 | 82.11 60 | 97.37 179 | 90.05 107 | 97.70 72 | 97.67 118 |
|
test2506 | | | 90.96 95 | 90.39 94 | 92.65 104 | 93.54 185 | 82.46 111 | 96.37 172 | 97.35 16 | 86.78 98 | 87.55 136 | 95.25 147 | 77.83 105 | 97.50 171 | 84.07 157 | 94.80 122 | 97.98 94 |
|
VPA-MVSNet | | | 85.32 194 | 83.83 200 | 89.77 199 | 90.25 265 | 82.63 106 | 96.36 173 | 97.07 27 | 83.03 185 | 81.21 203 | 89.02 248 | 61.58 259 | 96.31 226 | 85.02 150 | 70.95 286 | 90.36 241 |
|
UGNet | | | 87.73 162 | 86.55 167 | 91.27 150 | 95.16 143 | 79.11 192 | 96.35 174 | 96.23 124 | 88.14 67 | 87.83 135 | 90.48 230 | 50.65 317 | 99.09 101 | 80.13 196 | 94.03 128 | 95.60 190 |
Wanjuan Su, Qingshan Xu, Wenbing Tao: Uncertainty-guided Multi-view Stereo Network for Depth Estimation. IEEE Transactions on Circuits and Systems for Video Technology, 2022 |
v2v482 | | | 83.46 225 | 81.86 232 | 88.25 224 | 86.19 315 | 79.65 178 | 96.34 175 | 94.02 246 | 81.56 210 | 77.32 238 | 88.23 259 | 65.62 230 | 96.03 233 | 77.77 215 | 69.72 299 | 89.09 273 |
|
CANet_DTU | | | 90.98 94 | 90.04 103 | 93.83 51 | 94.76 155 | 86.23 33 | 96.32 176 | 93.12 290 | 93.11 10 | 93.71 54 | 96.82 116 | 63.08 247 | 99.48 63 | 84.29 155 | 95.12 120 | 95.77 186 |
|
APD-MVS_3200maxsize | | | 91.23 91 | 91.35 81 | 90.89 162 | 97.89 74 | 76.35 259 | 96.30 177 | 95.52 165 | 79.82 243 | 91.03 94 | 97.88 65 | 74.70 161 | 98.54 129 | 92.11 81 | 96.89 95 | 97.77 111 |
|
v148 | | | 82.41 246 | 80.89 243 | 86.99 253 | 86.18 316 | 76.81 252 | 96.27 178 | 93.82 255 | 80.49 227 | 75.28 272 | 86.11 295 | 67.32 221 | 95.75 254 | 75.48 242 | 67.03 326 | 88.42 292 |
|
CHOSEN 1792x2688 | | | 91.07 93 | 90.21 99 | 93.64 60 | 95.18 142 | 83.53 89 | 96.26 179 | 96.13 131 | 88.92 51 | 84.90 157 | 93.10 195 | 72.86 182 | 99.62 50 | 88.86 119 | 95.67 114 | 97.79 110 |
|
diffmvs | | | 91.17 92 | 90.74 90 | 92.44 111 | 93.11 201 | 82.50 110 | 96.25 180 | 93.62 268 | 87.79 75 | 90.40 102 | 95.93 132 | 73.44 178 | 97.42 175 | 93.62 57 | 92.55 145 | 97.41 135 |
|
pmmvs5 | | | 81.34 258 | 79.54 262 | 86.73 258 | 85.02 331 | 76.91 249 | 96.22 181 | 91.65 309 | 77.65 276 | 73.55 281 | 88.61 253 | 55.70 303 | 94.43 305 | 74.12 255 | 73.35 276 | 88.86 285 |
|
mvsmamba | | | 85.17 197 | 84.54 189 | 87.05 252 | 87.94 296 | 75.11 278 | 96.22 181 | 87.79 346 | 86.91 94 | 78.55 227 | 91.77 210 | 64.93 238 | 95.91 244 | 86.94 139 | 79.80 236 | 90.12 248 |
|
PMMVS | | | 89.46 122 | 89.92 107 | 88.06 228 | 94.64 156 | 69.57 329 | 96.22 181 | 94.95 192 | 87.27 86 | 91.37 86 | 96.54 124 | 65.88 229 | 97.39 177 | 88.54 122 | 93.89 132 | 97.23 145 |
|
SR-MVS-dyc-post | | | 91.29 89 | 91.45 80 | 90.80 164 | 97.76 80 | 76.03 264 | 96.20 184 | 95.44 170 | 80.56 225 | 90.72 97 | 97.84 66 | 75.76 139 | 98.61 124 | 91.99 82 | 96.79 99 | 97.75 112 |
|
RE-MVS-def | | | | 91.18 85 | | 97.76 80 | 76.03 264 | 96.20 184 | 95.44 170 | 80.56 225 | 90.72 97 | 97.84 66 | 73.36 179 | | 91.99 82 | 96.79 99 | 97.75 112 |
|
MVS_111021_LR | | | 91.60 82 | 91.64 78 | 91.47 145 | 95.74 127 | 78.79 201 | 96.15 186 | 96.77 55 | 88.49 60 | 88.64 125 | 97.07 107 | 72.33 187 | 99.19 90 | 93.13 69 | 96.48 103 | 96.43 170 |
|
FIs | | | 86.73 176 | 86.10 169 | 88.61 215 | 90.05 270 | 80.21 164 | 96.14 187 | 96.95 36 | 85.56 120 | 78.37 230 | 92.30 201 | 76.73 122 | 95.28 279 | 79.51 201 | 79.27 245 | 90.35 242 |
|
v1144 | | | 82.90 237 | 81.27 241 | 87.78 233 | 86.29 313 | 79.07 195 | 96.14 187 | 93.93 248 | 80.05 239 | 77.38 236 | 86.80 280 | 65.50 231 | 95.93 243 | 75.21 244 | 70.13 292 | 88.33 294 |
|
TranMVSNet+NR-MVSNet | | | 83.24 230 | 81.71 234 | 87.83 231 | 87.71 299 | 78.81 200 | 96.13 189 | 94.82 201 | 84.52 145 | 76.18 258 | 90.78 227 | 64.07 242 | 94.60 302 | 74.60 251 | 66.59 329 | 90.09 251 |
|
Fast-Effi-MVS+-dtu | | | 83.33 227 | 82.60 222 | 85.50 278 | 89.55 278 | 69.38 330 | 96.09 190 | 91.38 311 | 82.30 199 | 75.96 262 | 91.41 213 | 56.71 294 | 95.58 267 | 75.13 245 | 84.90 208 | 91.54 230 |
|
miper_enhance_ethall | | | 85.95 185 | 85.20 178 | 88.19 227 | 94.85 153 | 79.76 172 | 96.00 191 | 94.06 245 | 82.98 187 | 77.74 234 | 88.76 251 | 79.42 78 | 95.46 271 | 80.58 190 | 72.42 279 | 89.36 267 |
|
v144192 | | | 82.43 243 | 80.73 246 | 87.54 240 | 85.81 322 | 78.22 216 | 95.98 192 | 93.78 260 | 79.09 259 | 77.11 241 | 86.49 285 | 64.66 241 | 95.91 244 | 74.20 254 | 69.42 300 | 88.49 288 |
|
PVSNet_0 | | 77.72 15 | 81.70 253 | 78.95 267 | 89.94 192 | 90.77 259 | 76.72 254 | 95.96 193 | 96.95 36 | 85.01 133 | 70.24 308 | 88.53 256 | 52.32 314 | 98.20 142 | 86.68 141 | 44.08 366 | 94.89 201 |
|
F-COLMAP | | | 84.50 209 | 83.44 209 | 87.67 234 | 95.22 140 | 72.22 300 | 95.95 194 | 93.78 260 | 75.74 291 | 76.30 255 | 95.18 153 | 59.50 270 | 98.45 134 | 72.67 264 | 86.59 191 | 92.35 229 |
|
DeepC-MVS | | 86.58 3 | 91.53 83 | 91.06 86 | 92.94 92 | 94.52 161 | 81.89 122 | 95.95 194 | 95.98 140 | 90.76 26 | 83.76 174 | 96.76 118 | 73.24 180 | 99.71 37 | 91.67 84 | 96.96 93 | 97.22 146 |
Andreas Kuhn, Christian Sormann, Mattia Rossi, Oliver Erdler, Friedrich Fraundorfer: DeepC-MVS: Deep Confidence Prediction for Multi-View Stereo Reconstruction. 3DV 2020 |
FMVSNet3 | | | 84.71 204 | 82.71 220 | 90.70 168 | 94.55 159 | 87.71 20 | 95.92 196 | 94.67 210 | 81.73 208 | 75.82 265 | 88.08 262 | 66.99 223 | 94.47 304 | 71.23 273 | 75.38 266 | 89.91 256 |
|
TAPA-MVS | | 81.61 12 | 85.02 199 | 83.67 202 | 89.06 205 | 96.79 106 | 73.27 295 | 95.92 196 | 94.79 204 | 74.81 299 | 80.47 210 | 96.83 114 | 71.07 200 | 98.19 143 | 49.82 356 | 92.57 144 | 95.71 188 |
Andrea Romanoni, Matteo Matteucci: TAPA-MVS: Textureless-Aware PAtchMatch Multi-View Stereo. ICCV 2019 |
ACMP | | 81.66 11 | 84.00 214 | 83.22 212 | 86.33 262 | 91.53 246 | 72.95 298 | 95.91 198 | 93.79 259 | 83.70 172 | 73.79 280 | 92.22 202 | 54.31 313 | 96.89 204 | 83.98 158 | 79.74 239 | 89.16 271 |
Qingshan Xu and Wenbing Tao: Planar Prior Assisted PatchMatch Multi-View Stereo. AAAI 2020 |
ACMM | | 80.70 13 | 83.72 221 | 82.85 217 | 86.31 265 | 91.19 249 | 72.12 303 | 95.88 199 | 94.29 231 | 80.44 228 | 77.02 242 | 91.96 205 | 55.24 306 | 97.14 194 | 79.30 205 | 80.38 234 | 89.67 260 |
Qingshan Xu and Wenbing Tao: Multi-Scale Geometric Consistency Guided Multi-View Stereo. CVPR 2019 |
test222 | | | | | | 96.15 117 | 78.41 210 | 95.87 200 | 96.46 100 | 71.97 321 | 89.66 111 | 97.45 87 | 76.33 130 | | | 98.24 58 | 98.30 64 |
|
V42 | | | 83.04 234 | 81.53 237 | 87.57 239 | 86.27 314 | 79.09 194 | 95.87 200 | 94.11 241 | 80.35 232 | 77.22 240 | 86.79 281 | 65.32 235 | 96.02 235 | 77.74 216 | 70.14 291 | 87.61 308 |
|
TSAR-MVS + MP. | | | 94.79 16 | 95.17 14 | 93.64 60 | 97.66 82 | 84.10 78 | 95.85 202 | 96.42 105 | 91.26 21 | 97.49 10 | 96.80 117 | 86.50 27 | 98.49 132 | 95.54 34 | 99.03 13 | 98.33 59 |
Zhenlong Yuan, Jiakai Cao, Zhaoqi Wang, Zhaoxin Li: TSAR-MVS: Textureless-aware Segmentation and Correlative Refinement Guided Multi-View Stereo. Pattern Recognition |
v1192 | | | 82.31 247 | 80.55 250 | 87.60 236 | 85.94 319 | 78.47 209 | 95.85 202 | 93.80 258 | 79.33 252 | 76.97 243 | 86.51 284 | 63.33 246 | 95.87 246 | 73.11 261 | 70.13 292 | 88.46 290 |
|
v1921920 | | | 82.02 250 | 80.23 254 | 87.41 243 | 85.62 323 | 77.92 229 | 95.79 204 | 93.69 265 | 78.86 264 | 76.67 247 | 86.44 287 | 62.50 249 | 95.83 249 | 72.69 263 | 69.77 298 | 88.47 289 |
|
OPM-MVS | | | 85.84 186 | 85.10 183 | 88.06 228 | 88.34 291 | 77.83 233 | 95.72 205 | 94.20 235 | 87.89 74 | 80.45 211 | 94.05 181 | 58.57 278 | 97.26 186 | 83.88 160 | 82.76 225 | 89.09 273 |
Ray L. Khuboni, Hongjun Xu: Octagram Propagation Matching for Multi-Scale View Stereopsis (OPM-MVS). |
XXY-MVS | | | 83.84 217 | 82.00 230 | 89.35 202 | 87.13 305 | 81.38 136 | 95.72 205 | 94.26 232 | 80.15 237 | 75.92 263 | 90.63 228 | 61.96 257 | 96.52 219 | 78.98 209 | 73.28 277 | 90.14 247 |
|
tttt0517 | | | 88.57 144 | 88.19 132 | 89.71 200 | 93.00 202 | 75.99 267 | 95.67 207 | 96.67 70 | 80.78 219 | 81.82 198 | 94.40 172 | 88.97 14 | 97.58 163 | 76.05 237 | 86.31 192 | 95.57 191 |
|
bld_raw_conf005 | | | 83.53 223 | 82.51 223 | 86.62 260 | 87.38 303 | 73.99 289 | 95.66 208 | 85.25 355 | 85.74 114 | 76.81 245 | 91.39 214 | 55.95 302 | 95.86 247 | 84.87 152 | 79.51 243 | 90.00 255 |
|
IterMVS-LS | | | 83.93 215 | 82.80 219 | 87.31 246 | 91.46 247 | 77.39 242 | 95.66 208 | 93.43 275 | 80.44 228 | 75.51 269 | 87.26 272 | 73.72 174 | 95.16 286 | 76.99 225 | 70.72 288 | 89.39 262 |
Fangjinhua Wang, Silvano Galliani, Christoph Vogel, Marc Pollefeys: IterMVS: Iterative Probability Estimation for Efficient Multi-View Stereo. |
FC-MVSNet-test | | | 85.96 184 | 85.39 175 | 87.66 235 | 89.38 282 | 78.02 223 | 95.65 210 | 96.87 42 | 85.12 131 | 77.34 237 | 91.94 207 | 76.28 131 | 94.74 299 | 77.09 224 | 78.82 249 | 90.21 246 |
|
HyFIR lowres test | | | 89.36 123 | 88.60 127 | 91.63 141 | 94.91 152 | 80.76 150 | 95.60 211 | 95.53 163 | 82.56 197 | 84.03 167 | 91.24 219 | 78.03 100 | 96.81 210 | 87.07 137 | 88.41 178 | 97.32 139 |
|
testdata1 | | | | | | | | 95.57 212 | | 87.44 81 | | | | | | | |
|
cl22 | | | 85.11 198 | 84.17 197 | 87.92 230 | 95.06 148 | 78.82 198 | 95.51 213 | 94.22 233 | 79.74 245 | 76.77 246 | 87.92 264 | 75.96 135 | 95.68 258 | 79.93 199 | 72.42 279 | 89.27 268 |
|
v1240 | | | 81.70 253 | 79.83 261 | 87.30 247 | 85.50 324 | 77.70 237 | 95.48 214 | 93.44 274 | 78.46 269 | 76.53 250 | 86.44 287 | 60.85 262 | 95.84 248 | 71.59 270 | 70.17 290 | 88.35 293 |
|
baseline1 | | | 88.85 135 | 87.49 148 | 92.93 93 | 95.21 141 | 86.85 28 | 95.47 215 | 94.61 216 | 87.29 84 | 83.11 181 | 94.99 163 | 80.70 66 | 96.89 204 | 82.28 181 | 73.72 272 | 95.05 199 |
|
AUN-MVS | | | 86.25 182 | 85.57 172 | 88.26 223 | 93.57 184 | 73.38 291 | 95.45 216 | 95.88 146 | 83.94 162 | 85.47 152 | 94.21 177 | 73.70 176 | 96.67 216 | 83.54 171 | 64.41 334 | 94.73 208 |
|
FMVSNet2 | | | 82.79 238 | 80.44 251 | 89.83 196 | 92.66 209 | 85.43 49 | 95.42 217 | 94.35 228 | 79.06 260 | 74.46 277 | 87.28 270 | 56.38 299 | 94.31 307 | 69.72 283 | 74.68 269 | 89.76 259 |
|
hse-mvs2 | | | 88.22 154 | 88.21 131 | 88.25 224 | 93.54 185 | 73.41 290 | 95.41 218 | 95.89 145 | 90.39 32 | 92.22 71 | 94.22 176 | 74.70 161 | 96.66 217 | 93.14 67 | 64.37 335 | 94.69 209 |
|
miper_ehance_all_eth | | | 84.57 207 | 83.60 206 | 87.50 241 | 92.64 212 | 78.25 215 | 95.40 219 | 93.47 273 | 79.28 255 | 76.41 252 | 87.64 267 | 76.53 125 | 95.24 282 | 78.58 211 | 72.42 279 | 89.01 278 |
|
RRT_MVS | | | 83.88 216 | 83.27 211 | 85.71 274 | 87.53 302 | 72.12 303 | 95.35 220 | 94.33 229 | 83.81 168 | 75.86 264 | 91.28 218 | 60.55 263 | 95.09 292 | 83.93 159 | 76.76 261 | 89.90 257 |
|
PGM-MVS | | | 91.93 72 | 91.80 74 | 92.32 117 | 98.27 57 | 79.74 175 | 95.28 221 | 97.27 18 | 83.83 167 | 90.89 96 | 97.78 70 | 76.12 133 | 99.56 56 | 88.82 120 | 97.93 68 | 97.66 119 |
|
TransMVSNet (Re) | | | 76.94 295 | 74.38 299 | 84.62 291 | 85.92 320 | 75.25 276 | 95.28 221 | 89.18 336 | 73.88 306 | 67.22 317 | 86.46 286 | 59.64 267 | 94.10 310 | 59.24 328 | 52.57 357 | 84.50 341 |
|
LPG-MVS_test | | | 84.20 213 | 83.49 208 | 86.33 262 | 90.88 254 | 73.06 296 | 95.28 221 | 94.13 239 | 82.20 200 | 76.31 253 | 93.20 192 | 54.83 310 | 96.95 200 | 83.72 165 | 80.83 231 | 88.98 279 |
|
c3_l | | | 83.80 218 | 82.65 221 | 87.25 248 | 92.10 229 | 77.74 236 | 95.25 224 | 93.04 292 | 78.58 267 | 76.01 259 | 87.21 274 | 75.25 155 | 95.11 289 | 77.54 221 | 68.89 305 | 88.91 284 |
|
D2MVS | | | 82.67 240 | 81.55 236 | 86.04 269 | 87.77 298 | 76.47 255 | 95.21 225 | 96.58 85 | 82.66 195 | 70.26 307 | 85.46 303 | 60.39 264 | 95.80 251 | 76.40 233 | 79.18 246 | 85.83 333 |
|
Effi-MVS+ | | | 90.70 100 | 89.90 108 | 93.09 84 | 93.61 182 | 83.48 90 | 95.20 226 | 92.79 295 | 83.22 179 | 91.82 76 | 95.70 137 | 71.82 192 | 97.48 173 | 91.25 87 | 93.67 135 | 98.32 60 |
|
baseline2 | | | 90.39 107 | 90.21 99 | 90.93 159 | 90.86 256 | 80.99 143 | 95.20 226 | 97.41 15 | 86.03 108 | 80.07 217 | 94.61 168 | 90.58 6 | 97.47 174 | 87.29 134 | 89.86 164 | 94.35 211 |
|
Anonymous20231211 | | | 79.72 272 | 77.19 278 | 87.33 244 | 95.59 131 | 77.16 248 | 95.18 228 | 94.18 237 | 59.31 360 | 72.57 293 | 86.20 293 | 47.89 328 | 95.66 259 | 74.53 252 | 69.24 303 | 89.18 270 |
|
EI-MVSNet | | | 85.80 187 | 85.20 178 | 87.59 237 | 91.55 244 | 77.41 241 | 95.13 229 | 95.36 175 | 80.43 230 | 80.33 213 | 94.71 166 | 73.72 174 | 95.97 237 | 76.96 227 | 78.64 251 | 89.39 262 |
|
CVMVSNet | | | 84.83 202 | 85.57 172 | 82.63 315 | 91.55 244 | 60.38 356 | 95.13 229 | 95.03 190 | 80.60 223 | 82.10 194 | 94.71 166 | 66.40 228 | 90.19 351 | 74.30 253 | 90.32 162 | 97.31 141 |
|
cl____ | | | 83.27 228 | 82.12 227 | 86.74 255 | 92.20 224 | 75.95 268 | 95.11 231 | 93.27 284 | 78.44 270 | 74.82 275 | 87.02 277 | 74.19 168 | 95.19 284 | 74.67 249 | 69.32 301 | 89.09 273 |
|
DIV-MVS_self_test | | | 83.27 228 | 82.12 227 | 86.74 255 | 92.19 225 | 75.92 270 | 95.11 231 | 93.26 285 | 78.44 270 | 74.81 276 | 87.08 276 | 74.19 168 | 95.19 284 | 74.66 250 | 69.30 302 | 89.11 272 |
|
pm-mvs1 | | | 80.05 269 | 78.02 272 | 86.15 267 | 85.42 325 | 75.81 271 | 95.11 231 | 92.69 297 | 77.13 283 | 70.36 306 | 87.43 269 | 58.44 280 | 95.27 280 | 71.36 272 | 64.25 336 | 87.36 314 |
|
DP-MVS | | | 81.47 256 | 78.28 270 | 91.04 156 | 98.14 64 | 78.48 206 | 95.09 234 | 86.97 348 | 61.14 354 | 71.12 301 | 92.78 199 | 59.59 268 | 99.38 69 | 53.11 348 | 86.61 190 | 95.27 198 |
|
test_low_dy_conf_001 | | | 83.73 220 | 83.18 213 | 85.40 280 | 86.81 307 | 71.09 317 | 95.06 235 | 94.22 233 | 82.79 191 | 77.42 235 | 91.69 211 | 59.07 275 | 95.26 281 | 82.20 183 | 79.32 244 | 89.86 258 |
|
PAPM_NR | | | 91.46 84 | 90.82 88 | 93.37 74 | 98.50 45 | 81.81 127 | 95.03 236 | 96.13 131 | 84.65 142 | 86.10 149 | 97.65 78 | 79.24 83 | 99.75 31 | 83.20 175 | 96.88 96 | 98.56 48 |
|
Effi-MVS+-dtu | | | 84.61 206 | 84.90 187 | 83.72 304 | 91.96 236 | 63.14 349 | 94.95 237 | 93.34 281 | 85.57 117 | 79.79 218 | 87.12 275 | 61.99 255 | 95.61 265 | 83.55 169 | 85.83 200 | 92.41 228 |
|
PS-MVSNAJss | | | 84.91 201 | 84.30 195 | 86.74 255 | 85.89 321 | 74.40 285 | 94.95 237 | 94.16 238 | 83.93 164 | 76.45 251 | 90.11 239 | 71.04 201 | 95.77 252 | 83.16 176 | 79.02 248 | 90.06 253 |
|
MS-PatchMatch | | | 83.05 233 | 81.82 233 | 86.72 259 | 89.64 276 | 79.10 193 | 94.88 239 | 94.59 218 | 79.70 246 | 70.67 304 | 89.65 241 | 50.43 319 | 96.82 209 | 70.82 280 | 95.99 110 | 84.25 343 |
|
dcpmvs_2 | | | 93.10 46 | 93.46 43 | 92.02 127 | 97.77 78 | 79.73 176 | 94.82 240 | 93.86 253 | 86.91 94 | 91.33 88 | 96.76 118 | 85.20 32 | 98.06 145 | 96.90 20 | 97.60 74 | 98.27 68 |
|
OMC-MVS | | | 88.80 137 | 88.16 133 | 90.72 167 | 95.30 138 | 77.92 229 | 94.81 241 | 94.51 220 | 86.80 97 | 84.97 156 | 96.85 113 | 67.53 218 | 98.60 126 | 85.08 148 | 87.62 183 | 95.63 189 |
|
MVSFormer | | | 91.36 87 | 90.57 91 | 93.73 56 | 93.00 202 | 88.08 16 | 94.80 242 | 94.48 221 | 80.74 220 | 94.90 36 | 97.13 103 | 78.84 88 | 95.10 290 | 83.77 163 | 97.46 77 | 98.02 87 |
|
test_djsdf | | | 83.00 236 | 82.45 225 | 84.64 290 | 84.07 340 | 69.78 326 | 94.80 242 | 94.48 221 | 80.74 220 | 75.41 271 | 87.70 266 | 61.32 261 | 95.10 290 | 83.77 163 | 79.76 237 | 89.04 276 |
|
baseline | | | 90.76 99 | 90.10 102 | 92.74 100 | 92.90 206 | 82.56 107 | 94.60 244 | 94.56 219 | 87.69 78 | 89.06 121 | 95.67 139 | 73.76 173 | 97.51 170 | 90.43 102 | 92.23 151 | 98.16 75 |
|
abl_6 | | | 89.80 116 | 89.71 113 | 90.07 185 | 96.53 109 | 75.52 273 | 94.48 245 | 95.04 189 | 81.12 214 | 89.22 117 | 97.00 108 | 68.83 212 | 98.96 108 | 89.86 108 | 95.27 116 | 95.73 187 |
|
WR-MVS_H | | | 81.02 261 | 80.09 255 | 83.79 301 | 88.08 295 | 71.26 316 | 94.46 246 | 96.54 90 | 80.08 238 | 72.81 291 | 86.82 279 | 70.36 206 | 92.65 327 | 64.18 307 | 67.50 320 | 87.46 313 |
|
NR-MVSNet | | | 83.35 226 | 81.52 238 | 88.84 210 | 88.76 285 | 81.31 138 | 94.45 247 | 95.16 184 | 84.65 142 | 67.81 316 | 90.82 225 | 70.36 206 | 94.87 296 | 74.75 247 | 66.89 327 | 90.33 243 |
|
tfpnnormal | | | 78.14 284 | 75.42 290 | 86.31 265 | 88.33 292 | 79.24 187 | 94.41 248 | 96.22 125 | 73.51 308 | 69.81 310 | 85.52 302 | 55.43 304 | 95.75 254 | 47.65 360 | 67.86 316 | 83.95 346 |
|
v8 | | | 81.88 251 | 80.06 258 | 87.32 245 | 86.63 309 | 79.04 196 | 94.41 248 | 93.65 267 | 78.77 265 | 73.19 287 | 85.57 300 | 66.87 224 | 95.81 250 | 73.84 258 | 67.61 319 | 87.11 316 |
|
MVS_Test | | | 90.29 110 | 89.18 118 | 93.62 62 | 95.23 139 | 84.93 65 | 94.41 248 | 94.66 211 | 84.31 152 | 90.37 103 | 91.02 222 | 75.13 156 | 97.82 155 | 83.11 177 | 94.42 126 | 98.12 80 |
|
eth_miper_zixun_eth | | | 83.12 232 | 82.01 229 | 86.47 261 | 91.85 242 | 74.80 279 | 94.33 251 | 93.18 287 | 79.11 258 | 75.74 268 | 87.25 273 | 72.71 183 | 95.32 277 | 76.78 228 | 67.13 324 | 89.27 268 |
|
v10 | | | 81.43 257 | 79.53 263 | 87.11 250 | 86.38 310 | 78.87 197 | 94.31 252 | 93.43 275 | 77.88 273 | 73.24 286 | 85.26 304 | 65.44 232 | 95.75 254 | 72.14 267 | 67.71 318 | 86.72 320 |
|
GBi-Net | | | 82.42 244 | 80.43 252 | 88.39 219 | 92.66 209 | 81.95 117 | 94.30 253 | 93.38 277 | 79.06 260 | 75.82 265 | 85.66 296 | 56.38 299 | 93.84 314 | 71.23 273 | 75.38 266 | 89.38 264 |
|
test1 | | | 82.42 244 | 80.43 252 | 88.39 219 | 92.66 209 | 81.95 117 | 94.30 253 | 93.38 277 | 79.06 260 | 75.82 265 | 85.66 296 | 56.38 299 | 93.84 314 | 71.23 273 | 75.38 266 | 89.38 264 |
|
FMVSNet1 | | | 79.50 274 | 76.54 284 | 88.39 219 | 88.47 290 | 81.95 117 | 94.30 253 | 93.38 277 | 73.14 312 | 72.04 297 | 85.66 296 | 43.86 337 | 93.84 314 | 65.48 302 | 72.53 278 | 89.38 264 |
|
CP-MVSNet | | | 81.01 262 | 80.08 256 | 83.79 301 | 87.91 297 | 70.51 319 | 94.29 256 | 95.65 157 | 80.83 218 | 72.54 294 | 88.84 250 | 63.71 243 | 92.32 330 | 68.58 289 | 68.36 310 | 88.55 287 |
|
CL-MVSNet_self_test | | | 75.81 301 | 74.14 303 | 80.83 325 | 78.33 356 | 67.79 335 | 94.22 257 | 93.52 272 | 77.28 282 | 69.82 309 | 81.54 333 | 61.47 260 | 89.22 353 | 57.59 333 | 53.51 353 | 85.48 335 |
|
jajsoiax | | | 82.12 249 | 81.15 242 | 85.03 284 | 84.19 338 | 70.70 318 | 94.22 257 | 93.95 247 | 83.07 183 | 73.48 282 | 89.75 240 | 49.66 322 | 95.37 274 | 82.24 182 | 79.76 237 | 89.02 277 |
|
PS-CasMVS | | | 80.27 268 | 79.18 264 | 83.52 308 | 87.56 301 | 69.88 324 | 94.08 259 | 95.29 180 | 80.27 235 | 72.08 296 | 88.51 257 | 59.22 274 | 92.23 332 | 67.49 291 | 68.15 313 | 88.45 291 |
|
ppachtmachnet_test | | | 77.19 293 | 74.22 301 | 86.13 268 | 85.39 326 | 78.22 216 | 93.98 260 | 91.36 313 | 71.74 323 | 67.11 319 | 84.87 313 | 56.67 295 | 93.37 323 | 52.21 349 | 64.59 333 | 86.80 319 |
|
mvs_tets | | | 81.74 252 | 80.71 247 | 84.84 285 | 84.22 337 | 70.29 321 | 93.91 261 | 93.78 260 | 82.77 192 | 73.37 283 | 89.46 244 | 47.36 331 | 95.31 278 | 81.99 184 | 79.55 242 | 88.92 283 |
|
PEN-MVS | | | 79.47 275 | 78.26 271 | 83.08 311 | 86.36 311 | 68.58 332 | 93.85 262 | 94.77 205 | 79.76 244 | 71.37 298 | 88.55 254 | 59.79 266 | 92.46 328 | 64.50 306 | 65.40 331 | 88.19 296 |
|
testmvs | | | 9.92 345 | 12.94 348 | 0.84 361 | 0.65 383 | 0.29 385 | 93.78 263 | 0.39 384 | 0.42 377 | 2.85 378 | 15.84 377 | 0.17 384 | 0.30 380 | 2.18 377 | 0.21 377 | 1.91 375 |
|
our_test_3 | | | 77.90 287 | 75.37 291 | 85.48 279 | 85.39 326 | 76.74 253 | 93.63 264 | 91.67 308 | 73.39 311 | 65.72 328 | 84.65 315 | 58.20 281 | 93.13 325 | 57.82 331 | 67.87 315 | 86.57 322 |
|
EG-PatchMatch MVS | | | 74.92 305 | 72.02 310 | 83.62 305 | 83.76 343 | 73.28 294 | 93.62 265 | 92.04 304 | 68.57 334 | 58.88 351 | 83.80 321 | 31.87 364 | 95.57 268 | 56.97 337 | 78.67 250 | 82.00 357 |
|
OpenMVS_ROB |  | 68.52 20 | 73.02 314 | 69.57 320 | 83.37 309 | 80.54 350 | 71.82 309 | 93.60 266 | 88.22 344 | 62.37 347 | 61.98 343 | 83.15 326 | 35.31 359 | 95.47 270 | 45.08 363 | 75.88 263 | 82.82 349 |
|
pmmvs4 | | | 82.54 242 | 80.79 244 | 87.79 232 | 86.11 317 | 80.49 158 | 93.55 267 | 93.18 287 | 77.29 281 | 73.35 284 | 89.40 245 | 65.26 236 | 95.05 294 | 75.32 243 | 73.61 273 | 87.83 302 |
|
mvs_anonymous | | | 88.68 139 | 87.62 144 | 91.86 132 | 94.80 154 | 81.69 132 | 93.53 268 | 94.92 194 | 82.03 204 | 78.87 225 | 90.43 232 | 75.77 138 | 95.34 275 | 85.04 149 | 93.16 141 | 98.55 50 |
|
DTE-MVSNet | | | 78.37 282 | 77.06 279 | 82.32 318 | 85.22 330 | 67.17 338 | 93.40 269 | 93.66 266 | 78.71 266 | 70.53 305 | 88.29 258 | 59.06 276 | 92.23 332 | 61.38 320 | 63.28 340 | 87.56 310 |
|
v7n | | | 79.32 277 | 77.34 276 | 85.28 281 | 84.05 341 | 72.89 299 | 93.38 270 | 93.87 252 | 75.02 298 | 70.68 303 | 84.37 316 | 59.58 269 | 95.62 264 | 67.60 290 | 67.50 320 | 87.32 315 |
|
Anonymous20231206 | | | 75.29 304 | 73.64 305 | 80.22 327 | 80.75 347 | 63.38 348 | 93.36 271 | 90.71 326 | 73.09 313 | 67.12 318 | 83.70 322 | 50.33 320 | 90.85 346 | 53.63 347 | 70.10 294 | 86.44 323 |
|
MVP-Stereo | | | 82.65 241 | 81.67 235 | 85.59 277 | 86.10 318 | 78.29 213 | 93.33 272 | 92.82 294 | 77.75 275 | 69.17 314 | 87.98 263 | 59.28 273 | 95.76 253 | 71.77 268 | 96.88 96 | 82.73 351 |
Qingsong Yan: MVP-Stereo: A Parallel Multi-View Patchmatch Stereo Method with Dilation Matching for Photogrammetric Application. |
1314 | | | 88.94 131 | 87.20 155 | 94.17 42 | 93.21 194 | 85.73 43 | 93.33 272 | 96.64 77 | 82.89 188 | 75.98 260 | 96.36 125 | 66.83 225 | 99.39 68 | 83.52 173 | 96.02 109 | 97.39 137 |
|
1121 | | | 90.66 101 | 89.82 110 | 93.16 81 | 97.39 95 | 81.71 131 | 93.33 272 | 96.66 73 | 74.45 302 | 91.38 83 | 97.55 85 | 79.27 81 | 99.52 58 | 79.95 197 | 98.43 45 | 98.26 69 |
|
MVS | | | 90.60 103 | 88.64 126 | 96.50 5 | 94.25 168 | 90.53 8 | 93.33 272 | 97.21 20 | 77.59 277 | 78.88 224 | 97.31 94 | 71.52 196 | 99.69 41 | 89.60 112 | 98.03 64 | 99.27 21 |
|
pmmvs6 | | | 74.65 307 | 71.67 311 | 83.60 306 | 79.13 354 | 69.94 323 | 93.31 276 | 90.88 323 | 61.05 355 | 65.83 327 | 84.15 319 | 43.43 339 | 94.83 298 | 66.62 295 | 60.63 344 | 86.02 330 |
|
ACMH+ | | 76.62 16 | 77.47 291 | 74.94 293 | 85.05 283 | 91.07 252 | 71.58 313 | 93.26 277 | 90.01 329 | 71.80 322 | 64.76 331 | 88.55 254 | 41.62 347 | 96.48 220 | 62.35 316 | 71.00 285 | 87.09 317 |
|
testgi | | | 74.88 306 | 73.40 306 | 79.32 331 | 80.13 351 | 61.75 352 | 93.21 278 | 86.64 351 | 79.49 250 | 66.56 325 | 91.06 221 | 35.51 358 | 88.67 355 | 56.79 338 | 71.25 283 | 87.56 310 |
|
LS3D | | | 82.22 248 | 79.94 260 | 89.06 205 | 97.43 92 | 74.06 288 | 93.20 279 | 92.05 303 | 61.90 349 | 73.33 285 | 95.21 150 | 59.35 271 | 99.21 85 | 54.54 344 | 92.48 147 | 93.90 219 |
|
ACMH | | 75.40 17 | 77.99 285 | 74.96 292 | 87.10 251 | 90.67 260 | 76.41 257 | 93.19 280 | 91.64 310 | 72.47 319 | 63.44 336 | 87.61 268 | 43.34 340 | 97.16 190 | 58.34 329 | 73.94 271 | 87.72 303 |
Qingshan Xu and Wenbing Tao: Multi-Scale Geometric Consistency Guided Multi-View Stereo. CVPR 2019 |
UA-Net | | | 88.92 132 | 88.48 129 | 90.24 181 | 94.06 173 | 77.18 247 | 93.04 281 | 94.66 211 | 87.39 83 | 91.09 92 | 93.89 185 | 74.92 159 | 98.18 144 | 75.83 239 | 91.43 156 | 95.35 196 |
|
IterMVS-SCA-FT | | | 80.51 267 | 79.10 266 | 84.73 287 | 89.63 277 | 74.66 280 | 92.98 282 | 91.81 307 | 80.05 239 | 71.06 302 | 85.18 307 | 58.04 282 | 91.40 340 | 72.48 266 | 70.70 289 | 88.12 298 |
|
IterMVS | | | 80.67 265 | 79.16 265 | 85.20 282 | 89.79 272 | 76.08 262 | 92.97 283 | 91.86 305 | 80.28 234 | 71.20 300 | 85.14 309 | 57.93 285 | 91.34 341 | 72.52 265 | 70.74 287 | 88.18 297 |
Fangjinhua Wang, Silvano Galliani, Christoph Vogel, Marc Pollefeys: IterMVS: Iterative Probability Estimation for Efficient Multi-View Stereo. |
MVS_0304 | | | 78.43 281 | 76.70 282 | 83.60 306 | 88.22 293 | 69.81 325 | 92.91 284 | 95.10 185 | 72.32 320 | 78.71 226 | 80.29 341 | 33.78 360 | 93.37 323 | 68.77 287 | 80.23 235 | 87.63 306 |
|
MTAPA | | | 92.45 66 | 92.31 63 | 92.86 95 | 97.90 72 | 80.85 147 | 92.88 285 | 96.33 117 | 87.92 71 | 90.20 104 | 98.18 35 | 76.71 123 | 99.76 25 | 92.57 75 | 98.09 60 | 97.96 98 |
|
SCA | | | 85.63 190 | 83.64 204 | 91.60 142 | 92.30 219 | 81.86 124 | 92.88 285 | 95.56 162 | 84.85 135 | 82.52 184 | 85.12 310 | 58.04 282 | 95.39 272 | 73.89 256 | 87.58 185 | 97.54 126 |
|
test_0402 | | | 72.68 315 | 69.54 321 | 82.09 319 | 88.67 288 | 71.81 310 | 92.72 287 | 86.77 350 | 61.52 351 | 62.21 342 | 83.91 320 | 43.22 341 | 93.76 317 | 34.60 367 | 72.23 282 | 80.72 359 |
|
LCM-MVSNet-Re | | | 83.75 219 | 83.54 207 | 84.39 297 | 93.54 185 | 64.14 345 | 92.51 288 | 84.03 361 | 83.90 165 | 66.14 326 | 86.59 283 | 67.36 220 | 92.68 326 | 84.89 151 | 92.87 142 | 96.35 172 |
|
anonymousdsp | | | 80.98 263 | 79.97 259 | 84.01 298 | 81.73 346 | 70.44 320 | 92.49 289 | 93.58 271 | 77.10 285 | 72.98 289 | 86.31 291 | 57.58 286 | 94.90 295 | 79.32 204 | 78.63 253 | 86.69 321 |
|
PatchMatch-RL | | | 85.00 200 | 83.66 203 | 89.02 207 | 95.86 124 | 74.55 282 | 92.49 289 | 93.60 269 | 79.30 254 | 79.29 222 | 91.47 212 | 58.53 279 | 98.45 134 | 70.22 281 | 92.17 152 | 94.07 216 |
|
test20.03 | | | 72.36 317 | 71.15 313 | 75.98 341 | 77.79 357 | 59.16 360 | 92.40 291 | 89.35 334 | 74.09 304 | 61.50 345 | 84.32 317 | 48.09 325 | 85.54 364 | 50.63 354 | 62.15 342 | 83.24 347 |
|
MDA-MVSNet-bldmvs | | | 71.45 320 | 67.94 324 | 81.98 320 | 85.33 328 | 68.50 333 | 92.35 292 | 88.76 340 | 70.40 327 | 42.99 365 | 81.96 330 | 46.57 332 | 91.31 342 | 48.75 359 | 54.39 351 | 86.11 328 |
|
PCF-MVS | | 84.09 5 | 86.77 175 | 85.00 184 | 92.08 123 | 92.06 233 | 83.07 100 | 92.14 293 | 94.47 223 | 79.63 247 | 76.90 244 | 94.78 165 | 71.15 199 | 99.20 89 | 72.87 262 | 91.05 158 | 93.98 217 |
Andreas Kuhn, Shan Lin, Oliver Erdler: Plane Completion and Filtering for Multi-View Stereo Reconstruction. GCPR 2019 |
UniMVSNet_ETH3D | | | 80.86 264 | 78.75 268 | 87.22 249 | 86.31 312 | 72.02 305 | 91.95 294 | 93.76 263 | 73.51 308 | 75.06 274 | 90.16 237 | 43.04 343 | 95.66 259 | 76.37 234 | 78.55 254 | 93.98 217 |
|
miper_lstm_enhance | | | 81.66 255 | 80.66 248 | 84.67 289 | 91.19 249 | 71.97 307 | 91.94 295 | 93.19 286 | 77.86 274 | 72.27 295 | 85.26 304 | 73.46 177 | 93.42 321 | 73.71 259 | 67.05 325 | 88.61 286 |
|
MSDG | | | 80.62 266 | 77.77 274 | 89.14 204 | 93.43 192 | 77.24 244 | 91.89 296 | 90.18 328 | 69.86 331 | 68.02 315 | 91.94 207 | 52.21 315 | 98.84 117 | 59.32 327 | 83.12 217 | 91.35 231 |
|
COLMAP_ROB |  | 73.24 19 | 75.74 302 | 73.00 308 | 83.94 299 | 92.38 215 | 69.08 331 | 91.85 297 | 86.93 349 | 61.48 352 | 65.32 329 | 90.27 234 | 42.27 345 | 96.93 203 | 50.91 353 | 75.63 265 | 85.80 334 |
Johannes L. Schönberger, Enliang Zheng, Marc Pollefeys, Jan-Michael Frahm: Pixelwise View Selection for Unstructured Multi-View Stereo. ECCV 2016 |
EU-MVSNet | | | 76.92 296 | 76.95 280 | 76.83 337 | 84.10 339 | 54.73 367 | 91.77 298 | 92.71 296 | 72.74 316 | 69.57 311 | 88.69 252 | 58.03 284 | 87.43 359 | 64.91 305 | 70.00 296 | 88.33 294 |
|
MDA-MVSNet_test_wron | | | 73.54 310 | 70.43 317 | 82.86 312 | 84.55 333 | 71.85 308 | 91.74 299 | 91.32 315 | 67.63 335 | 46.73 364 | 81.09 336 | 55.11 307 | 90.42 350 | 55.91 341 | 59.76 345 | 86.31 325 |
|
YYNet1 | | | 73.53 311 | 70.43 317 | 82.85 313 | 84.52 335 | 71.73 311 | 91.69 300 | 91.37 312 | 67.63 335 | 46.79 363 | 81.21 335 | 55.04 308 | 90.43 349 | 55.93 340 | 59.70 346 | 86.38 324 |
|
N_pmnet | | | 61.30 330 | 60.20 333 | 64.60 348 | 84.32 336 | 17.00 383 | 91.67 301 | 10.98 382 | 61.77 350 | 58.45 353 | 78.55 346 | 49.89 321 | 91.83 337 | 42.27 365 | 63.94 337 | 84.97 338 |
|
Anonymous20240521 | | | 72.06 319 | 69.91 319 | 78.50 333 | 77.11 361 | 61.67 354 | 91.62 302 | 90.97 321 | 65.52 342 | 62.37 341 | 79.05 345 | 36.32 355 | 90.96 345 | 57.75 332 | 68.52 308 | 82.87 348 |
|
XVG-OURS-SEG-HR | | | 85.74 189 | 85.16 181 | 87.49 242 | 90.22 266 | 71.45 314 | 91.29 303 | 94.09 243 | 81.37 211 | 83.90 172 | 95.22 149 | 60.30 265 | 97.53 169 | 85.58 145 | 84.42 210 | 93.50 223 |
|
SixPastTwentyTwo | | | 76.04 299 | 74.32 300 | 81.22 322 | 84.54 334 | 61.43 355 | 91.16 304 | 89.30 335 | 77.89 272 | 64.04 333 | 86.31 291 | 48.23 324 | 94.29 308 | 63.54 312 | 63.84 338 | 87.93 301 |
|
AllTest | | | 75.92 300 | 73.06 307 | 84.47 293 | 92.18 226 | 67.29 336 | 91.07 305 | 84.43 359 | 67.63 335 | 63.48 334 | 90.18 235 | 38.20 353 | 97.16 190 | 57.04 335 | 73.37 274 | 88.97 281 |
|
XVG-OURS | | | 85.18 196 | 84.38 194 | 87.59 237 | 90.42 264 | 71.73 311 | 91.06 306 | 94.07 244 | 82.00 205 | 83.29 178 | 95.08 160 | 56.42 298 | 97.55 166 | 83.70 167 | 83.42 215 | 93.49 224 |
|
K. test v3 | | | 73.62 308 | 71.59 312 | 79.69 329 | 82.98 344 | 59.85 359 | 90.85 307 | 88.83 338 | 77.13 283 | 58.90 350 | 82.11 329 | 43.62 338 | 91.72 338 | 65.83 301 | 54.10 352 | 87.50 312 |
|
OurMVSNet-221017-0 | | | 77.18 294 | 76.06 286 | 80.55 326 | 83.78 342 | 60.00 358 | 90.35 308 | 91.05 319 | 77.01 287 | 66.62 324 | 87.92 264 | 47.73 329 | 94.03 311 | 71.63 269 | 68.44 309 | 87.62 307 |
|
HY-MVS | | 84.06 6 | 91.63 80 | 90.37 96 | 95.39 16 | 96.12 118 | 88.25 14 | 90.22 309 | 97.58 14 | 88.33 64 | 90.50 100 | 91.96 205 | 79.26 82 | 99.06 102 | 90.29 105 | 89.07 169 | 98.88 32 |
|
new-patchmatchnet | | | 68.85 326 | 65.93 328 | 77.61 335 | 73.57 369 | 63.94 347 | 90.11 310 | 88.73 341 | 71.62 324 | 55.08 358 | 73.60 355 | 40.84 350 | 87.22 360 | 51.35 352 | 48.49 361 | 81.67 358 |
|
CMPMVS |  | 54.94 21 | 75.71 303 | 74.56 298 | 79.17 332 | 79.69 352 | 55.98 363 | 89.59 311 | 93.30 283 | 60.28 356 | 53.85 360 | 89.07 247 | 47.68 330 | 96.33 225 | 76.55 230 | 81.02 230 | 85.22 336 |
M. Jancosek, T. Pajdla: Multi-View Reconstruction Preserving Weakly-Supported Surfaces. CVPR 2011 |
FMVSNet5 | | | 76.46 298 | 74.16 302 | 83.35 310 | 90.05 270 | 76.17 260 | 89.58 312 | 89.85 330 | 71.39 325 | 65.29 330 | 80.42 338 | 50.61 318 | 87.70 358 | 61.05 322 | 69.24 303 | 86.18 327 |
|
USDC | | | 78.65 280 | 76.25 285 | 85.85 270 | 87.58 300 | 74.60 281 | 89.58 312 | 90.58 327 | 84.05 158 | 63.13 338 | 88.23 259 | 40.69 351 | 96.86 208 | 66.57 297 | 75.81 264 | 86.09 329 |
|
test123 | | | 9.07 346 | 11.73 349 | 1.11 360 | 0.50 384 | 0.77 384 | 89.44 314 | 0.20 385 | 0.34 378 | 2.15 379 | 10.72 378 | 0.34 383 | 0.32 379 | 1.79 378 | 0.08 378 | 2.23 374 |
|
pmmvs-eth3d | | | 73.59 309 | 70.66 315 | 82.38 316 | 76.40 364 | 73.38 291 | 89.39 315 | 89.43 333 | 72.69 317 | 60.34 349 | 77.79 348 | 46.43 333 | 91.26 343 | 66.42 299 | 57.06 348 | 82.51 352 |
|
XVG-ACMP-BASELINE | | | 79.38 276 | 77.90 273 | 83.81 300 | 84.98 332 | 67.14 339 | 89.03 316 | 93.18 287 | 80.26 236 | 72.87 290 | 88.15 261 | 38.55 352 | 96.26 227 | 76.05 237 | 78.05 257 | 88.02 299 |
|
ab-mvs | | | 87.08 167 | 84.94 185 | 93.48 70 | 93.34 193 | 83.67 87 | 88.82 317 | 95.70 155 | 81.18 213 | 84.55 163 | 90.14 238 | 62.72 248 | 98.94 113 | 85.49 146 | 82.54 227 | 97.85 105 |
|
tpm | | | 85.55 191 | 84.47 193 | 88.80 212 | 90.19 267 | 75.39 275 | 88.79 318 | 94.69 207 | 84.83 136 | 83.96 170 | 85.21 306 | 78.22 98 | 94.68 301 | 76.32 235 | 78.02 258 | 96.34 173 |
|
pmmvs3 | | | 65.75 329 | 62.18 332 | 76.45 339 | 67.12 371 | 64.54 343 | 88.68 319 | 85.05 357 | 54.77 364 | 57.54 357 | 73.79 354 | 29.40 367 | 86.21 362 | 55.49 343 | 47.77 362 | 78.62 360 |
|
CostFormer | | | 89.08 128 | 88.39 130 | 91.15 154 | 93.13 199 | 79.15 191 | 88.61 320 | 96.11 133 | 83.14 181 | 89.58 113 | 86.93 278 | 83.83 44 | 96.87 206 | 88.22 128 | 85.92 198 | 97.42 134 |
|
TinyColmap | | | 72.41 316 | 68.99 323 | 82.68 314 | 88.11 294 | 69.59 328 | 88.41 321 | 85.20 356 | 65.55 341 | 57.91 354 | 84.82 314 | 30.80 366 | 95.94 241 | 51.38 350 | 68.70 306 | 82.49 354 |
|
TDRefinement | | | 69.20 325 | 65.78 329 | 79.48 330 | 66.04 372 | 62.21 351 | 88.21 322 | 86.12 352 | 62.92 346 | 61.03 347 | 85.61 299 | 33.23 361 | 94.16 309 | 55.82 342 | 53.02 355 | 82.08 356 |
|
KD-MVS_2432*1600 | | | 77.63 289 | 74.92 294 | 85.77 272 | 90.86 256 | 79.44 181 | 88.08 323 | 93.92 249 | 76.26 288 | 67.05 320 | 82.78 327 | 72.15 190 | 91.92 335 | 61.53 317 | 41.62 367 | 85.94 331 |
|
miper_refine_blended | | | 77.63 289 | 74.92 294 | 85.77 272 | 90.86 256 | 79.44 181 | 88.08 323 | 93.92 249 | 76.26 288 | 67.05 320 | 82.78 327 | 72.15 190 | 91.92 335 | 61.53 317 | 41.62 367 | 85.94 331 |
|
tpm2 | | | 87.35 166 | 86.26 168 | 90.62 169 | 92.93 205 | 78.67 203 | 88.06 325 | 95.99 139 | 79.33 252 | 87.40 137 | 86.43 289 | 80.28 71 | 96.40 222 | 80.23 194 | 85.73 202 | 96.79 159 |
|
CHOSEN 280x420 | | | 91.71 78 | 91.85 72 | 91.29 149 | 94.94 150 | 82.69 105 | 87.89 326 | 96.17 130 | 85.94 109 | 87.27 140 | 94.31 173 | 90.27 9 | 95.65 261 | 94.04 52 | 95.86 111 | 95.53 192 |
|
RPSCF | | | 77.73 288 | 76.63 283 | 81.06 323 | 88.66 289 | 55.76 365 | 87.77 327 | 87.88 345 | 64.82 344 | 74.14 279 | 92.79 198 | 49.22 323 | 96.81 210 | 67.47 292 | 76.88 260 | 90.62 237 |
|
KD-MVS_self_test | | | 70.97 322 | 69.31 322 | 75.95 342 | 76.24 366 | 55.39 366 | 87.45 328 | 90.94 322 | 70.20 329 | 62.96 340 | 77.48 349 | 44.01 336 | 88.09 356 | 61.25 321 | 53.26 354 | 84.37 342 |
|
MIMVSNet1 | | | 69.44 323 | 66.65 327 | 77.84 334 | 76.48 363 | 62.84 350 | 87.42 329 | 88.97 337 | 66.96 340 | 57.75 356 | 79.72 344 | 32.77 363 | 85.83 363 | 46.32 361 | 63.42 339 | 84.85 339 |
|
tpmrst | | | 88.36 149 | 87.38 152 | 91.31 147 | 94.36 167 | 79.92 169 | 87.32 330 | 95.26 182 | 85.32 123 | 88.34 129 | 86.13 294 | 80.60 67 | 96.70 214 | 83.78 162 | 85.34 206 | 97.30 142 |
|
UnsupCasMVSNet_eth | | | 73.25 312 | 70.57 316 | 81.30 321 | 77.53 358 | 66.33 340 | 87.24 331 | 93.89 251 | 80.38 231 | 57.90 355 | 81.59 332 | 42.91 344 | 90.56 348 | 65.18 304 | 48.51 360 | 87.01 318 |
|
EPMVS | | | 87.47 165 | 85.90 171 | 92.18 121 | 95.41 135 | 82.26 115 | 87.00 332 | 96.28 121 | 85.88 111 | 84.23 165 | 85.57 300 | 75.07 158 | 96.26 227 | 71.14 276 | 92.50 146 | 98.03 86 |
|
MDTV_nov1_ep13_2view | | | | | | | 81.74 129 | 86.80 333 | | 80.65 222 | 85.65 150 | | 74.26 167 | | 76.52 231 | | 96.98 151 |
|
MDTV_nov1_ep13 | | | | 83.69 201 | | 94.09 172 | 81.01 142 | 86.78 334 | 96.09 134 | 83.81 168 | 84.75 159 | 84.32 317 | 74.44 166 | 96.54 218 | 63.88 309 | 85.07 207 | |
|
dp | | | 84.30 212 | 82.31 226 | 90.28 180 | 94.24 169 | 77.97 225 | 86.57 335 | 95.53 163 | 79.94 242 | 80.75 207 | 85.16 308 | 71.49 197 | 96.39 223 | 63.73 310 | 83.36 216 | 96.48 169 |
|
PatchmatchNet |  | | 86.83 172 | 85.12 182 | 91.95 129 | 94.12 171 | 82.27 114 | 86.55 336 | 95.64 159 | 84.59 144 | 82.98 183 | 84.99 312 | 77.26 112 | 95.96 240 | 68.61 288 | 91.34 157 | 97.64 121 |
Fangjinhua Wang, Silvano Galliani, Christoph Vogel, Pablo Speciale, Marc Pollefeys: PatchmatchNet: Learned Multi-View Patchmatch Stereo. |
LTVRE_ROB | | 73.68 18 | 77.99 285 | 75.74 289 | 84.74 286 | 90.45 263 | 72.02 305 | 86.41 337 | 91.12 316 | 72.57 318 | 66.63 323 | 87.27 271 | 54.95 309 | 96.98 199 | 56.29 339 | 75.98 262 | 85.21 337 |
Andreas Kuhn, Heiko Hirschmüller, Daniel Scharstein, Helmut Mayer: A TV Prior for High-Quality Scalable Multi-View Stereo Reconstruction. International Journal of Computer Vision 2016 |
LF4IMVS | | | 72.36 317 | 70.82 314 | 76.95 336 | 79.18 353 | 56.33 362 | 86.12 338 | 86.11 353 | 69.30 333 | 63.06 339 | 86.66 282 | 33.03 362 | 92.25 331 | 65.33 303 | 68.64 307 | 82.28 355 |
|
PM-MVS | | | 69.32 324 | 66.93 326 | 76.49 338 | 73.60 368 | 55.84 364 | 85.91 339 | 79.32 370 | 74.72 300 | 61.09 346 | 78.18 347 | 21.76 369 | 91.10 344 | 70.86 278 | 56.90 349 | 82.51 352 |
|
test_post1 | | | | | | | | 85.88 340 | | | | 30.24 375 | 73.77 172 | 95.07 293 | 73.89 256 | | |
|
tpmvs | | | 83.04 234 | 80.77 245 | 89.84 195 | 95.43 134 | 77.96 226 | 85.59 341 | 95.32 179 | 75.31 295 | 76.27 256 | 83.70 322 | 73.89 171 | 97.41 176 | 59.53 324 | 81.93 229 | 94.14 214 |
|
tpm cat1 | | | 83.63 222 | 81.38 239 | 90.39 176 | 93.53 190 | 78.19 221 | 85.56 342 | 95.09 186 | 70.78 326 | 78.51 228 | 83.28 325 | 74.80 160 | 97.03 196 | 66.77 294 | 84.05 211 | 95.95 181 |
|
DSMNet-mixed | | | 73.13 313 | 72.45 309 | 75.19 343 | 77.51 359 | 46.82 370 | 85.09 343 | 82.01 366 | 67.61 339 | 69.27 313 | 81.33 334 | 50.89 316 | 86.28 361 | 54.54 344 | 83.80 212 | 92.46 227 |
|
UnsupCasMVSNet_bld | | | 68.60 327 | 64.50 330 | 80.92 324 | 74.63 367 | 67.80 334 | 83.97 344 | 92.94 293 | 65.12 343 | 54.63 359 | 68.23 362 | 35.97 356 | 92.17 334 | 60.13 323 | 44.83 364 | 82.78 350 |
|
new_pmnet | | | 66.18 328 | 63.18 331 | 75.18 344 | 76.27 365 | 61.74 353 | 83.79 345 | 84.66 358 | 56.64 363 | 51.57 361 | 71.85 361 | 31.29 365 | 87.93 357 | 49.98 355 | 62.55 341 | 75.86 362 |
|
FPMVS | | | 55.09 332 | 52.93 335 | 61.57 351 | 55.98 373 | 40.51 376 | 83.11 346 | 83.41 364 | 37.61 367 | 34.95 368 | 71.95 359 | 14.40 373 | 76.95 367 | 29.81 368 | 65.16 332 | 67.25 366 |
|
EGC-MVSNET | | | 52.46 334 | 47.56 337 | 67.15 345 | 81.98 345 | 60.11 357 | 82.54 347 | 72.44 373 | 0.11 379 | 0.70 380 | 74.59 352 | 25.11 368 | 83.26 365 | 29.04 369 | 61.51 343 | 58.09 367 |
|
GG-mvs-BLEND | | | | | 93.49 69 | 94.94 150 | 86.26 32 | 81.62 348 | 97.00 30 | | 88.32 130 | 94.30 174 | 91.23 5 | 96.21 230 | 88.49 124 | 97.43 80 | 98.00 92 |
|
MIMVSNet | | | 79.18 278 | 75.99 287 | 88.72 214 | 87.37 304 | 80.66 152 | 79.96 349 | 91.82 306 | 77.38 280 | 74.33 278 | 81.87 331 | 41.78 346 | 90.74 347 | 66.36 300 | 83.10 218 | 94.76 204 |
|
ADS-MVSNet2 | | | 79.57 273 | 77.53 275 | 85.71 274 | 93.78 178 | 72.13 302 | 79.48 350 | 86.11 353 | 73.09 313 | 80.14 215 | 79.99 342 | 62.15 252 | 90.14 352 | 59.49 325 | 83.52 213 | 94.85 202 |
|
ADS-MVSNet | | | 81.26 259 | 78.36 269 | 89.96 191 | 93.78 178 | 79.78 171 | 79.48 350 | 93.60 269 | 73.09 313 | 80.14 215 | 79.99 342 | 62.15 252 | 95.24 282 | 59.49 325 | 83.52 213 | 94.85 202 |
|
gg-mvs-nofinetune | | | 85.48 193 | 82.90 216 | 93.24 77 | 94.51 164 | 85.82 40 | 79.22 352 | 96.97 34 | 61.19 353 | 87.33 139 | 53.01 366 | 90.58 6 | 96.07 232 | 86.07 142 | 97.23 86 | 97.81 109 |
|
MVS-HIRNet | | | 71.36 321 | 67.00 325 | 84.46 295 | 90.58 261 | 69.74 327 | 79.15 353 | 87.74 347 | 46.09 365 | 61.96 344 | 50.50 367 | 45.14 335 | 95.64 262 | 53.74 346 | 88.11 181 | 88.00 300 |
|
CR-MVSNet | | | 83.53 223 | 81.36 240 | 90.06 186 | 90.16 268 | 79.75 173 | 79.02 354 | 91.12 316 | 84.24 156 | 82.27 192 | 80.35 339 | 75.45 146 | 93.67 318 | 63.37 313 | 86.25 193 | 96.75 163 |
|
RPMNet | | | 79.85 270 | 75.92 288 | 91.64 139 | 90.16 268 | 79.75 173 | 79.02 354 | 95.44 170 | 58.43 362 | 82.27 192 | 72.55 358 | 73.03 181 | 98.41 136 | 46.10 362 | 86.25 193 | 96.75 163 |
|
Patchmatch-RL test | | | 76.65 297 | 74.01 304 | 84.55 292 | 77.37 360 | 64.23 344 | 78.49 356 | 82.84 365 | 78.48 268 | 64.63 332 | 73.40 356 | 76.05 134 | 91.70 339 | 76.99 225 | 57.84 347 | 97.72 114 |
|
Patchmtry | | | 77.36 292 | 74.59 297 | 85.67 276 | 89.75 273 | 75.75 272 | 77.85 357 | 91.12 316 | 60.28 356 | 71.23 299 | 80.35 339 | 75.45 146 | 93.56 320 | 57.94 330 | 67.34 323 | 87.68 305 |
|
PatchT | | | 79.75 271 | 76.85 281 | 88.42 217 | 89.55 278 | 75.49 274 | 77.37 358 | 94.61 216 | 63.07 345 | 82.46 186 | 73.32 357 | 75.52 145 | 93.41 322 | 51.36 351 | 84.43 209 | 96.36 171 |
|
PMMVS2 | | | 50.90 335 | 46.31 338 | 64.67 347 | 55.53 374 | 46.67 371 | 77.30 359 | 71.02 374 | 40.89 366 | 34.16 369 | 59.32 363 | 9.83 378 | 76.14 370 | 40.09 366 | 28.63 370 | 71.21 363 |
|
test_method | | | 56.77 331 | 54.53 334 | 63.49 350 | 76.49 362 | 40.70 375 | 75.68 360 | 74.24 372 | 19.47 373 | 48.73 362 | 71.89 360 | 19.31 370 | 65.80 373 | 57.46 334 | 47.51 363 | 83.97 345 |
|
JIA-IIPM | | | 79.00 279 | 77.20 277 | 84.40 296 | 89.74 275 | 64.06 346 | 75.30 361 | 95.44 170 | 62.15 348 | 81.90 196 | 59.08 364 | 78.92 86 | 95.59 266 | 66.51 298 | 85.78 201 | 93.54 222 |
|
EMVS | | | 31.70 342 | 31.45 344 | 32.48 358 | 50.72 377 | 23.95 381 | 74.78 362 | 52.30 381 | 20.36 372 | 16.08 376 | 31.48 374 | 12.80 374 | 53.60 376 | 11.39 375 | 13.10 375 | 19.88 373 |
|
E-PMN | | | 32.70 341 | 32.39 343 | 33.65 357 | 53.35 376 | 25.70 380 | 74.07 363 | 53.33 380 | 21.08 371 | 17.17 375 | 33.63 373 | 11.85 376 | 54.84 375 | 12.98 374 | 14.04 372 | 20.42 372 |
|
Patchmatch-test | | | 78.25 283 | 74.72 296 | 88.83 211 | 91.20 248 | 74.10 287 | 73.91 364 | 88.70 342 | 59.89 359 | 66.82 322 | 85.12 310 | 78.38 95 | 94.54 303 | 48.84 358 | 79.58 241 | 97.86 104 |
|
LCM-MVSNet | | | 52.52 333 | 48.24 336 | 65.35 346 | 47.63 378 | 41.45 374 | 72.55 365 | 83.62 363 | 31.75 368 | 37.66 367 | 57.92 365 | 9.19 379 | 76.76 368 | 49.26 357 | 44.60 365 | 77.84 361 |
|
ANet_high | | | 46.22 336 | 41.28 341 | 61.04 352 | 39.91 380 | 46.25 372 | 70.59 366 | 76.18 371 | 58.87 361 | 23.09 372 | 48.00 369 | 12.58 375 | 66.54 372 | 28.65 370 | 13.62 373 | 70.35 364 |
|
ambc | | | | | 76.02 340 | 68.11 370 | 51.43 368 | 64.97 367 | 89.59 331 | | 60.49 348 | 74.49 353 | 17.17 372 | 92.46 328 | 61.50 319 | 52.85 356 | 84.17 344 |
|
tmp_tt | | | 41.54 338 | 41.93 340 | 40.38 356 | 20.10 382 | 26.84 379 | 61.93 368 | 59.09 378 | 14.81 375 | 28.51 370 | 80.58 337 | 35.53 357 | 48.33 377 | 63.70 311 | 13.11 374 | 45.96 370 |
|
PMVS |  | 34.80 23 | 39.19 339 | 35.53 342 | 50.18 354 | 29.72 381 | 30.30 378 | 59.60 369 | 66.20 377 | 26.06 370 | 17.91 374 | 49.53 368 | 3.12 380 | 74.09 371 | 18.19 373 | 49.40 358 | 46.14 368 |
Y. Furukawa, J. Ponce: Accurate, dense, and robust multiview stereopsis. PAMI (2010) |
MVE |  | 35.65 22 | 33.85 340 | 29.49 345 | 46.92 355 | 41.86 379 | 36.28 377 | 50.45 370 | 56.52 379 | 18.75 374 | 18.28 373 | 37.84 370 | 2.41 381 | 58.41 374 | 18.71 372 | 20.62 371 | 46.06 369 |
Simon Fuhrmann, Fabian Langguth, Michael Goesele: MVE - A Multi-View Reconstruction Environment. EUROGRAPHICS Workshops on Graphics and Cultural Heritage (2014) |
Gipuma |  | | 45.11 337 | 42.05 339 | 54.30 353 | 80.69 348 | 51.30 369 | 35.80 371 | 83.81 362 | 28.13 369 | 27.94 371 | 34.53 371 | 11.41 377 | 76.70 369 | 21.45 371 | 54.65 350 | 34.90 371 |
S. Galliani, K. Lasinger, K. Schindler: Massively Parallel Multiview Stereopsis by Surface Normal Diffusion. ICCV 2015 |
wuyk23d | | | 14.10 344 | 13.89 347 | 14.72 359 | 55.23 375 | 22.91 382 | 33.83 372 | 3.56 383 | 4.94 376 | 4.11 377 | 2.28 379 | 2.06 382 | 19.66 378 | 10.23 376 | 8.74 376 | 1.59 376 |
|
test_blank | | | 0.00 349 | 0.00 352 | 0.00 362 | 0.00 385 | 0.00 386 | 0.00 373 | 0.00 386 | 0.00 380 | 0.00 381 | 0.00 380 | 0.00 385 | 0.00 381 | 0.00 379 | 0.00 379 | 0.00 377 |
|
uanet_test | | | 0.00 349 | 0.00 352 | 0.00 362 | 0.00 385 | 0.00 386 | 0.00 373 | 0.00 386 | 0.00 380 | 0.00 381 | 0.00 380 | 0.00 385 | 0.00 381 | 0.00 379 | 0.00 379 | 0.00 377 |
|
DCPMVS | | | 0.00 349 | 0.00 352 | 0.00 362 | 0.00 385 | 0.00 386 | 0.00 373 | 0.00 386 | 0.00 380 | 0.00 381 | 0.00 380 | 0.00 385 | 0.00 381 | 0.00 379 | 0.00 379 | 0.00 377 |
|
cdsmvs_eth3d_5k | | | 21.43 343 | 28.57 346 | 0.00 362 | 0.00 385 | 0.00 386 | 0.00 373 | 95.93 144 | 0.00 380 | 0.00 381 | 97.66 74 | 63.57 244 | 0.00 381 | 0.00 379 | 0.00 379 | 0.00 377 |
|
pcd_1.5k_mvsjas | | | 5.92 348 | 7.89 351 | 0.00 362 | 0.00 385 | 0.00 386 | 0.00 373 | 0.00 386 | 0.00 380 | 0.00 381 | 0.00 380 | 71.04 201 | 0.00 381 | 0.00 379 | 0.00 379 | 0.00 377 |
|
sosnet-low-res | | | 0.00 349 | 0.00 352 | 0.00 362 | 0.00 385 | 0.00 386 | 0.00 373 | 0.00 386 | 0.00 380 | 0.00 381 | 0.00 380 | 0.00 385 | 0.00 381 | 0.00 379 | 0.00 379 | 0.00 377 |
|
sosnet | | | 0.00 349 | 0.00 352 | 0.00 362 | 0.00 385 | 0.00 386 | 0.00 373 | 0.00 386 | 0.00 380 | 0.00 381 | 0.00 380 | 0.00 385 | 0.00 381 | 0.00 379 | 0.00 379 | 0.00 377 |
|
uncertanet | | | 0.00 349 | 0.00 352 | 0.00 362 | 0.00 385 | 0.00 386 | 0.00 373 | 0.00 386 | 0.00 380 | 0.00 381 | 0.00 380 | 0.00 385 | 0.00 381 | 0.00 379 | 0.00 379 | 0.00 377 |
|
Regformer | | | 0.00 349 | 0.00 352 | 0.00 362 | 0.00 385 | 0.00 386 | 0.00 373 | 0.00 386 | 0.00 380 | 0.00 381 | 0.00 380 | 0.00 385 | 0.00 381 | 0.00 379 | 0.00 379 | 0.00 377 |
|
ab-mvs-re | | | 8.11 347 | 10.81 350 | 0.00 362 | 0.00 385 | 0.00 386 | 0.00 373 | 0.00 386 | 0.00 380 | 0.00 381 | 97.30 96 | 0.00 385 | 0.00 381 | 0.00 379 | 0.00 379 | 0.00 377 |
|
uanet | | | 0.00 349 | 0.00 352 | 0.00 362 | 0.00 385 | 0.00 386 | 0.00 373 | 0.00 386 | 0.00 380 | 0.00 381 | 0.00 380 | 0.00 385 | 0.00 381 | 0.00 379 | 0.00 379 | 0.00 377 |
|
MSC_two_6792asdad | | | | | 97.14 3 | 99.05 10 | 92.19 4 | | 96.83 45 | | | | | 99.81 21 | 98.08 7 | 98.81 25 | 99.43 11 |
|
PC_three_1452 | | | | | | | | | | 91.12 22 | 98.33 2 | 98.42 28 | 92.51 2 | 99.81 21 | 98.96 2 | 99.37 1 | 99.70 3 |
|
No_MVS | | | | | 97.14 3 | 99.05 10 | 92.19 4 | | 96.83 45 | | | | | 99.81 21 | 98.08 7 | 98.81 25 | 99.43 11 |
|
test_one_0601 | | | | | | 98.91 20 | 84.56 72 | | 96.70 65 | 88.06 68 | 96.57 16 | 98.77 12 | 88.04 20 | | | | |
|
eth-test2 | | | | | | 0.00 385 | | | | | | | | | | | |
|
eth-test | | | | | | 0.00 385 | | | | | | | | | | | |
|
ZD-MVS | | | | | | 99.09 9 | 83.22 97 | | 96.60 83 | 82.88 189 | 93.61 56 | 98.06 51 | 82.93 52 | 99.14 96 | 95.51 35 | 98.49 42 | |
|
IU-MVS | | | | | | 99.03 16 | 85.34 50 | | 96.86 44 | 92.05 16 | 98.74 1 | | | | 98.15 4 | 98.97 17 | 99.42 13 |
|
test_241102_TWO | | | | | | | | | 96.78 49 | 88.72 55 | 97.70 6 | 98.91 3 | 87.86 21 | 99.82 18 | 98.15 4 | 99.00 15 | 99.47 9 |
|
test_241102_ONE | | | | | | 99.03 16 | 85.03 62 | | 96.78 49 | 88.72 55 | 97.79 4 | 98.90 6 | 88.48 17 | 99.82 18 | | | |
|
test_0728_THIRD | | | | | | | | | | 88.38 62 | 96.69 13 | 98.76 14 | 89.64 13 | 99.76 25 | 97.47 14 | 98.84 24 | 99.38 14 |
|
GSMVS | | | | | | | | | | | | | | | | | 97.54 126 |
|
test_part2 | | | | | | 98.90 21 | 85.14 61 | | | | 96.07 21 | | | | | | |
|
sam_mvs1 | | | | | | | | | | | | | 77.59 107 | | | | 97.54 126 |
|
sam_mvs | | | | | | | | | | | | | 75.35 153 | | | | |
|
MTGPA |  | | | | | | | | 96.33 117 | | | | | | | | |
|
test_post | | | | | | | | | | | | 33.80 372 | 76.17 132 | 95.97 237 | | | |
|
patchmatchnet-post | | | | | | | | | | | | 77.09 350 | 77.78 106 | 95.39 272 | | | |
|
gm-plane-assit | | | | | | 92.27 220 | 79.64 179 | | | 84.47 148 | | 95.15 155 | | 97.93 148 | 85.81 143 | | |
|
test9_res | | | | | | | | | | | | | | | 96.00 27 | 99.03 13 | 98.31 63 |
|
agg_prior2 | | | | | | | | | | | | | | | 94.30 47 | 99.00 15 | 98.57 47 |
|
agg_prior | | | | | | 98.59 39 | 83.13 98 | | 96.56 88 | | 94.19 48 | | | 99.16 94 | | | |
|
TestCases | | | | | 84.47 293 | 92.18 226 | 67.29 336 | | 84.43 359 | 67.63 335 | 63.48 334 | 90.18 235 | 38.20 353 | 97.16 190 | 57.04 335 | 73.37 274 | 88.97 281 |
|
test_prior | | | | | 93.09 84 | 98.68 29 | 81.91 120 | | 96.40 109 | | | | | 99.06 102 | | | 98.29 65 |
|
æ–°å‡ ä½•1 | | | | | 93.12 82 | 97.44 91 | 81.60 134 | | 96.71 64 | 74.54 301 | 91.22 91 | 97.57 81 | 79.13 85 | 99.51 61 | 77.40 223 | 98.46 43 | 98.26 69 |
|
旧先验1 | | | | | | 97.39 95 | 79.58 180 | | 96.54 90 | | | 98.08 49 | 84.00 41 | | | 97.42 81 | 97.62 123 |
|
原ACMM1 | | | | | 91.22 152 | 97.77 78 | 78.10 222 | | 96.61 80 | 81.05 215 | 91.28 89 | 97.42 91 | 77.92 103 | 98.98 107 | 79.85 200 | 98.51 38 | 96.59 166 |
|
testdata2 | | | | | | | | | | | | | | 99.48 63 | 76.45 232 | | |
|
segment_acmp | | | | | | | | | | | | | 82.69 57 | | | | |
|
testdata | | | | | 90.13 184 | 95.92 123 | 74.17 286 | | 96.49 99 | 73.49 310 | 94.82 40 | 97.99 55 | 78.80 90 | 97.93 148 | 83.53 172 | 97.52 76 | 98.29 65 |
|
test12 | | | | | 94.25 38 | 98.34 53 | 85.55 47 | | 96.35 116 | | 92.36 69 | | 80.84 64 | 99.22 83 | | 98.31 56 | 97.98 94 |
|
plane_prior7 | | | | | | 91.86 240 | 77.55 239 | | | | | | | | | | |
|
plane_prior6 | | | | | | 91.98 235 | 77.92 229 | | | | | | 64.77 239 | | | | |
|
plane_prior5 | | | | | | | | | 94.69 207 | | | | | 97.30 182 | 87.08 135 | 82.82 223 | 90.96 234 |
|
plane_prior4 | | | | | | | | | | | | 94.15 179 | | | | | |
|
plane_prior3 | | | | | | | 77.75 235 | | | 90.17 36 | 81.33 201 | | | | | | |
|
plane_prior1 | | | | | | 91.95 238 | | | | | | | | | | | |
|
n2 | | | | | | | | | 0.00 386 | | | | | | | | |
|
nn | | | | | | | | | 0.00 386 | | | | | | | | |
|
door-mid | | | | | | | | | 79.75 369 | | | | | | | | |
|
lessismore_v0 | | | | | 79.98 328 | 80.59 349 | 58.34 361 | | 80.87 367 | | 58.49 352 | 83.46 324 | 43.10 342 | 93.89 313 | 63.11 314 | 48.68 359 | 87.72 303 |
|
LGP-MVS_train | | | | | 86.33 262 | 90.88 254 | 73.06 296 | | 94.13 239 | 82.20 200 | 76.31 253 | 93.20 192 | 54.83 310 | 96.95 200 | 83.72 165 | 80.83 231 | 88.98 279 |
|
test11 | | | | | | | | | 96.50 96 | | | | | | | | |
|
door | | | | | | | | | 80.13 368 | | | | | | | | |
|
HQP5-MVS | | | | | | | 78.48 206 | | | | | | | | | | |
|
BP-MVS | | | | | | | | | | | | | | | 87.67 131 | | |
|
HQP4-MVS | | | | | | | | | | | 82.30 188 | | | 97.32 180 | | | 91.13 232 |
|
HQP3-MVS | | | | | | | | | 94.80 202 | | | | | | | 83.01 219 | |
|
HQP2-MVS | | | | | | | | | | | | | 65.40 233 | | | | |
|
NP-MVS | | | | | | 92.04 234 | 78.22 216 | | | | | 94.56 169 | | | | | |
|
ACMMP++_ref | | | | | | | | | | | | | | | | 78.45 255 | |
|
ACMMP++ | | | | | | | | | | | | | | | | 79.05 247 | |
|
Test By Simon | | | | | | | | | | | | | 71.65 194 | | | | |
|
ITE_SJBPF | | | | | 82.38 316 | 87.00 306 | 65.59 341 | | 89.55 332 | 79.99 241 | 69.37 312 | 91.30 217 | 41.60 348 | 95.33 276 | 62.86 315 | 74.63 270 | 86.24 326 |
|
DeepMVS_CX |  | | | | 64.06 349 | 78.53 355 | 43.26 373 | | 68.11 376 | 69.94 330 | 38.55 366 | 76.14 351 | 18.53 371 | 79.34 366 | 43.72 364 | 41.62 367 | 69.57 365 |
|