This table lists the benchmark results for the high-res multi-view scenario. The following metrics are evaluated:

(*) For exact definitions, detailing how potentially incomplete ground truth is taken into account, see our paper.

The datasets are grouped into different categories, and result averages are computed for a category and method if results of the method are available for all datasets within the category. Note that the category "all" includes both the high-res multi-view and the low-res many-view scenarios.

Methods with suffix _ROB may participate in the Robust Vision Challenge.

Click a dataset result cell to show a visualization of the reconstruction. For training datasets, ground truth and accuracy / completeness visualizations are also available. The visualizations may not work with mobile browsers.




Method Infoallhigh-res
multi-view
indooroutdoorbotani.boulde.bridgedoorexhibi.lectur.living.loungeobserv.old co.statueterrac.
sorted bysort bysort bysort bysort bysort bysort bysort bysort bysort bysort bysort bysort bysort bysort bysort by
DeepPCF-MVS89.96 194.20 3494.77 1792.49 11496.52 8780.00 21994.00 19497.08 4490.05 3595.65 2997.29 3789.66 1398.97 7593.95 3398.71 3298.50 27
DeepC-MVS_fast89.43 294.04 3893.79 4694.80 3297.48 6186.78 2595.65 9096.89 6089.40 5392.81 7296.97 5485.37 5399.24 4390.87 9798.69 3598.38 41
Andreas Kuhn, Christian Sormann, Mattia Rossi, Oliver Erdler, Friedrich Fraundorfer: DeepC-MVS: Deep Confidence Prediction for Multi-View Stereo Reconstruction. 3DV 2020
DeepC-MVS88.79 393.31 6092.99 6594.26 5196.07 10385.83 5994.89 13196.99 4889.02 6989.56 13297.37 3582.51 8999.38 3192.20 6598.30 5597.57 94
Andreas Kuhn, Christian Sormann, Mattia Rossi, Oliver Erdler, Friedrich Fraundorfer: DeepC-MVS: Deep Confidence Prediction for Multi-View Stereo Reconstruction. 3DV 2020
3Dnovator+87.14 492.42 7691.37 8495.55 795.63 12288.73 697.07 1896.77 7490.84 1684.02 26596.62 7475.95 16399.34 3487.77 13097.68 7898.59 24
3Dnovator86.66 591.73 8590.82 9694.44 4494.59 17186.37 4097.18 1297.02 4789.20 6084.31 26196.66 6973.74 19999.17 4786.74 14697.96 6897.79 85
TAPA-MVS84.62 688.16 17887.01 18891.62 15496.64 8080.65 19694.39 16596.21 11876.38 32686.19 20195.44 11779.75 11998.08 15662.75 37095.29 12596.13 156
Andrea Romanoni, Matteo Matteucci: TAPA-MVS: Textureless-Aware PAtchMatch Multi-View Stereo. ICCV 2019
PLCcopyleft84.53 789.06 15388.03 16392.15 12897.27 6882.69 14594.29 17195.44 18079.71 28684.01 26694.18 16976.68 15698.75 9377.28 27893.41 16295.02 199
Jie Liao, Yanping Fu, Qingan Yan, Chunxia xiao: Pyramid Multi-View Stereo with Local Consistency. Pacific Graphics 2019
ACMP84.23 889.01 15688.35 15390.99 18694.73 16381.27 17895.07 12195.89 14486.48 13983.67 27394.30 16369.33 25497.99 16387.10 14588.55 23593.72 272
Qingshan Xu and Wenbing Tao: Planar Prior Assisted PatchMatch Multi-View Stereo. AAAI 2020
ACMM84.12 989.14 14788.48 15291.12 17594.65 16981.22 18195.31 10196.12 12385.31 17185.92 20594.34 16070.19 24398.06 15885.65 15988.86 23294.08 249
Qingshan Xu and Wenbing Tao: Multi-Scale Geometric Consistency Guided Multi-View Stereo. CVPR 2019
PCF-MVS84.11 1087.74 18986.08 22592.70 10494.02 20084.43 8989.27 32995.87 14573.62 35584.43 25394.33 16178.48 13998.86 8470.27 32894.45 14394.81 211
Andreas Kuhn, Shan Lin, Oliver Erdler: Plane Completion and Filtering for Multi-View Stereo Reconstruction. GCPR 2019
OpenMVScopyleft83.78 1188.74 16387.29 18093.08 8192.70 24985.39 6796.57 3696.43 9778.74 30280.85 31096.07 9469.64 24999.01 6378.01 27296.65 10094.83 210
HY-MVS83.01 1289.03 15487.94 16692.29 12594.86 15882.77 13892.08 27094.49 22881.52 26386.93 17892.79 22278.32 14198.23 13779.93 25090.55 20095.88 169
LTVRE_ROB82.13 1386.26 25184.90 26090.34 21394.44 18281.50 17092.31 26294.89 21083.03 22479.63 32992.67 22369.69 24897.79 17271.20 32186.26 26991.72 332
Andreas Kuhn, Heiko Hirschmüller, Daniel Scharstein, Helmut Mayer: A TV Prior for High-Quality Scalable Multi-View Stereo Reconstruction. International Journal of Computer Vision 2016
ACMH+81.04 1485.05 27383.46 28189.82 23594.66 16879.37 23494.44 16094.12 24682.19 24178.04 34092.82 21958.23 34797.54 19373.77 31082.90 30092.54 312
IB-MVS80.51 1585.24 27083.26 28491.19 17292.13 26379.86 22391.75 27691.29 32183.28 21980.66 31388.49 33461.28 32598.46 11580.99 23479.46 34595.25 193
Christian Sormann, Mattia Rossi, Andreas Kuhn and Friedrich Fraundorfer: IB-MVS: An Iterative Algorithm for Deep Multi-View Stereo based on Binary Decisions. BMVC 2021
COLMAP_ROBcopyleft80.39 1683.96 28882.04 29789.74 23995.28 13479.75 22594.25 17392.28 28975.17 33978.02 34193.77 19058.60 34697.84 17165.06 36285.92 27091.63 334
Johannes L. Schönberger, Enliang Zheng, Marc Pollefeys, Jan-Michael Frahm: Pixelwise View Selection for Unstructured Multi-View Stereo. ECCV 2016
ACMH80.38 1785.36 26583.68 27890.39 20994.45 18180.63 19794.73 14294.85 21482.09 24277.24 34592.65 22460.01 33797.58 18872.25 31784.87 27892.96 301
Qingshan Xu and Wenbing Tao: Multi-Scale Geometric Consistency Guided Multi-View Stereo. CVPR 2019
PVSNet78.82 1885.55 26184.65 26588.23 28494.72 16471.93 34387.12 35892.75 27778.80 30084.95 24090.53 29464.43 30396.71 25874.74 30393.86 15196.06 163
OpenMVS_ROBcopyleft74.94 1979.51 33377.03 34086.93 31487.00 36976.23 29992.33 26090.74 33568.93 37874.52 36388.23 33949.58 37696.62 26257.64 38284.29 28287.94 377
PVSNet_073.20 2077.22 34374.83 34984.37 34490.70 32471.10 35383.09 38389.67 35572.81 36473.93 36683.13 37560.79 33293.70 35068.54 34050.84 39688.30 375
CMPMVSbinary59.16 2180.52 32279.20 32684.48 34383.98 38267.63 37289.95 31993.84 25664.79 38466.81 38391.14 27857.93 34895.17 32776.25 28988.10 24490.65 353
M. Jancosek, T. Pajdla: Multi-View Reconstruction Preserving Weakly-Supported Surfaces. CVPR 2011
PMVScopyleft47.18 2252.22 36648.46 37063.48 38145.72 41046.20 40473.41 39578.31 39541.03 39930.06 40265.68 3956.05 40983.43 39630.04 40065.86 38260.80 396
Y. Furukawa, J. Ponce: Accurate, dense, and robust multiview stereopsis. PAMI (2010)
MVEpermissive39.65 2343.39 36838.59 37457.77 38256.52 40748.77 40255.38 39858.64 40829.33 40228.96 40352.65 3994.68 41064.62 40428.11 40133.07 40059.93 397
Simon Fuhrmann, Fabian Langguth, Michael Goesele: MVE - A Multi-View Reconstruction Environment. EUROGRAPHICS Workshops on Graphics and Cultural Heritage (2014)
testing9187.11 22486.18 21989.92 23194.43 18375.38 31091.53 28292.27 29086.48 13986.50 18990.24 29961.19 32997.53 19482.10 21190.88 19896.84 130
testing1186.44 24885.35 25089.69 24394.29 19075.40 30991.30 28790.53 33784.76 18585.06 23790.13 30558.95 34597.45 20282.08 21291.09 19496.21 153
testing9986.72 23785.73 24289.69 24394.23 19274.91 31391.35 28690.97 32986.14 15186.36 19590.22 30059.41 34197.48 19882.24 20890.66 19996.69 136
UWE-MVS83.69 29483.09 28785.48 33393.06 23665.27 37990.92 29786.14 37279.90 28386.26 19990.72 29157.17 35195.81 30971.03 32692.62 17695.35 190
ETVMVS84.43 28282.92 29188.97 26594.37 18574.67 31491.23 29188.35 36383.37 21686.06 20489.04 32455.38 35895.67 31567.12 35091.34 18896.58 140
testing22284.84 27783.32 28289.43 25394.15 19775.94 30191.09 29489.41 35884.90 18085.78 20789.44 31952.70 37096.28 28970.80 32791.57 18696.07 161
WB-MVSnew83.77 29283.28 28385.26 33891.48 28771.03 35491.89 27187.98 36478.91 29584.78 24290.22 30069.11 26194.02 34364.70 36390.44 20190.71 352
fmvsm_l_conf0.5_n_a94.20 3494.40 2393.60 6795.29 13384.98 7195.61 9296.28 10886.31 14496.75 1697.86 2187.40 3398.74 9597.07 897.02 8997.07 114
fmvsm_l_conf0.5_n94.29 2894.46 2193.79 6395.28 13485.43 6695.68 8596.43 9786.56 13896.84 1497.81 2387.56 3298.77 9297.14 696.82 9697.16 112
fmvsm_s_conf0.1_n_a93.19 6493.26 5892.97 8892.49 25283.62 10996.02 6795.72 15786.78 13396.04 2298.19 182.30 9398.43 12396.38 1395.42 12296.86 129
fmvsm_s_conf0.1_n93.46 5393.66 5392.85 9593.75 21583.13 12496.02 6795.74 15487.68 11395.89 2598.17 282.78 8698.46 11596.71 1096.17 10896.98 121
fmvsm_s_conf0.5_n_a93.57 5093.76 4993.00 8695.02 14683.67 10696.19 5096.10 12587.27 12195.98 2498.05 1383.07 8298.45 11996.68 1195.51 11696.88 128
fmvsm_s_conf0.5_n93.76 4694.06 4192.86 9495.62 12383.17 12296.14 5796.12 12388.13 9995.82 2698.04 1683.43 7598.48 11196.97 996.23 10796.92 125
MM95.10 1194.91 1395.68 596.09 10188.34 996.68 3394.37 23495.08 194.68 3697.72 2482.94 8399.64 197.85 198.76 2899.06 7
WAC-MVS64.08 38259.14 379
Syy-MVS80.07 32779.78 31680.94 35991.92 27059.93 39089.75 32187.40 37081.72 25678.82 33487.20 35266.29 29191.29 37347.06 39187.84 25191.60 335
test_fmvsmconf0.1_n94.20 3494.31 2893.88 5792.46 25484.80 7596.18 5296.82 6889.29 5795.68 2898.11 585.10 5698.99 7097.38 497.75 7797.86 80
test_fmvsmconf0.01_n93.19 6493.02 6493.71 6589.25 34884.42 9196.06 6496.29 10589.06 6494.68 3698.13 379.22 12898.98 7497.22 597.24 8497.74 87
myMVS_eth3d79.67 33278.79 33182.32 35791.92 27064.08 38289.75 32187.40 37081.72 25678.82 33487.20 35245.33 38491.29 37359.09 38087.84 25191.60 335
testing380.46 32379.59 32183.06 35293.44 22664.64 38193.33 22085.47 37684.34 19379.93 32590.84 28644.35 38692.39 36357.06 38487.56 25592.16 326
SSC-MVS67.06 35666.56 35868.56 37980.54 38940.06 40787.77 35077.37 40072.38 36661.75 38882.66 37963.37 31186.45 39024.48 40348.69 39879.16 390
test_fmvsmconf_n94.60 1894.81 1693.98 5394.62 17084.96 7296.15 5597.35 2289.37 5496.03 2398.11 586.36 4199.01 6397.45 397.83 7397.96 73
WB-MVS67.92 35567.49 35769.21 37781.09 38841.17 40588.03 34678.00 39773.50 35662.63 38683.11 37763.94 30686.52 38925.66 40251.45 39579.94 388
test_fmvsmvis_n_192093.44 5593.55 5593.10 7993.67 21984.26 9395.83 7796.14 12089.00 7092.43 8597.50 2883.37 7898.72 9696.61 1297.44 8196.32 147
dmvs_re84.20 28583.22 28687.14 31191.83 27677.81 27290.04 31690.19 34284.70 18881.49 30189.17 32264.37 30491.13 37571.58 31985.65 27392.46 316
SDMVSNet90.19 11489.61 11791.93 13896.00 10683.09 12892.89 24295.98 13488.73 7686.85 18495.20 12872.09 21997.08 23988.90 11789.85 21395.63 181
dmvs_testset74.57 34875.81 34770.86 37387.72 36740.47 40687.05 35977.90 39882.75 23171.15 37785.47 36667.98 27284.12 39545.26 39276.98 35988.00 376
sd_testset88.59 16887.85 16890.83 19096.00 10680.42 20392.35 25894.71 22388.73 7686.85 18495.20 12867.31 27396.43 28079.64 25489.85 21395.63 181
test_fmvsm_n_192094.71 1795.11 1093.50 6995.79 11584.62 7896.15 5597.64 289.85 4097.19 897.89 1986.28 4398.71 9797.11 798.08 6597.17 108
test_cas_vis1_n_192088.83 16288.85 14088.78 26791.15 30376.72 29093.85 20294.93 20883.23 22192.81 7296.00 9661.17 33094.45 33491.67 8394.84 13195.17 195
test_vis1_n_192089.39 14389.84 11488.04 28892.97 24272.64 33794.71 14496.03 13386.18 14991.94 9796.56 7861.63 32195.74 31393.42 4195.11 12995.74 176
test_vis1_n86.56 24286.49 20986.78 32088.51 35472.69 33494.68 14593.78 25879.55 28890.70 11795.31 12148.75 37893.28 35593.15 4593.99 14894.38 235
test_fmvs1_n87.03 22787.04 18786.97 31389.74 34471.86 34494.55 15294.43 23078.47 30591.95 9695.50 11651.16 37393.81 34793.02 4894.56 13995.26 192
mvsany_test185.42 26485.30 25185.77 33187.95 36575.41 30887.61 35580.97 38976.82 32388.68 14595.83 10477.44 14890.82 37785.90 15686.51 26791.08 350
APD_test169.04 35366.26 35977.36 36880.51 39062.79 38785.46 37083.51 38354.11 39259.14 39084.79 36923.40 39989.61 38155.22 38570.24 37379.68 389
test_vis1_rt77.96 34176.46 34182.48 35585.89 37571.74 34790.25 30878.89 39371.03 37471.30 37681.35 38242.49 38891.05 37684.55 17382.37 30484.65 380
test_vis3_rt65.12 35862.60 36072.69 37171.44 39860.71 38987.17 35765.55 40463.80 38653.22 39265.65 39614.54 40689.44 38376.65 28465.38 38367.91 395
test_fmvs283.98 28784.03 27283.83 34987.16 36867.53 37393.93 19892.89 27277.62 31586.89 18393.53 19547.18 38292.02 36790.54 10286.51 26791.93 329
test_fmvs187.34 21087.56 17386.68 32190.59 32671.80 34694.01 19294.04 24878.30 30991.97 9495.22 12556.28 35493.71 34992.89 4994.71 13394.52 223
test_fmvs377.67 34277.16 33979.22 36279.52 39261.14 38892.34 25991.64 31173.98 35178.86 33386.59 35627.38 39687.03 38788.12 12775.97 36289.50 362
mvsany_test374.95 34773.26 35180.02 36174.61 39563.16 38685.53 36978.42 39474.16 34974.89 36186.46 35736.02 39189.09 38482.39 20466.91 38187.82 378
testf159.54 36256.11 36569.85 37569.28 40056.61 39680.37 38976.55 40142.58 39745.68 39675.61 38611.26 40784.18 39343.20 39560.44 39068.75 393
APD_test259.54 36256.11 36569.85 37569.28 40056.61 39680.37 38976.55 40142.58 39745.68 39675.61 38611.26 40784.18 39343.20 39560.44 39068.75 393
test_f71.95 35170.87 35375.21 36974.21 39759.37 39285.07 37385.82 37465.25 38370.42 37883.13 37523.62 39782.93 39778.32 26771.94 37183.33 382
FE-MVS87.40 20886.02 22791.57 15794.56 17579.69 22790.27 30693.72 25980.57 27688.80 14491.62 26265.32 29798.59 10674.97 30294.33 14696.44 144
FA-MVS(test-final)89.66 12988.91 13691.93 13894.57 17480.27 20591.36 28594.74 22284.87 18189.82 13092.61 22674.72 18298.47 11483.97 18093.53 15797.04 117
iter_conf_final89.42 13988.69 14291.60 15595.12 14482.93 13595.75 8192.14 29587.32 12087.12 17594.07 17067.09 27897.55 19190.61 10189.01 22994.32 237
bld_raw_dy_0_6487.60 19986.73 19590.21 21591.72 27980.26 20795.09 12088.61 36085.68 16185.55 21394.38 15963.93 30896.66 25987.73 13187.84 25193.72 272
patch_mono-293.74 4794.32 2692.01 13097.54 5778.37 25793.40 21897.19 3588.02 10194.99 3597.21 4288.35 2198.44 12194.07 3298.09 6399.23 1
EGC-MVSNET61.97 36056.37 36478.77 36489.63 34673.50 32689.12 33382.79 3840.21 4081.24 40984.80 36839.48 38990.04 38044.13 39375.94 36372.79 392
test250687.21 21986.28 21690.02 22795.62 12373.64 32596.25 4871.38 40387.89 10790.45 12096.65 7055.29 36098.09 15486.03 15596.94 9098.33 43
test111189.10 14888.64 14390.48 20495.53 12774.97 31196.08 6184.89 37988.13 9990.16 12696.65 7063.29 31298.10 14686.14 15196.90 9298.39 39
ECVR-MVScopyleft89.09 15088.53 14790.77 19395.62 12375.89 30296.16 5384.22 38187.89 10790.20 12496.65 7063.19 31498.10 14685.90 15696.94 9098.33 43
test_blank0.00 3780.00 3810.00 3910.00 4140.00 4160.00 4020.00 4150.00 4090.00 4100.00 4090.00 4140.00 4100.00 4090.00 4080.00 406
tt080586.92 22985.74 24190.48 20492.22 25979.98 22095.63 9194.88 21283.83 20384.74 24492.80 22157.61 34997.67 17985.48 16284.42 28193.79 263
DVP-MVS++95.98 196.36 194.82 3097.78 5186.00 4998.29 197.49 690.75 1997.62 598.06 1192.59 299.61 495.64 1999.02 1298.86 11
FOURS198.86 185.54 6598.29 197.49 689.79 4496.29 18
MSC_two_6792asdad96.52 197.78 5190.86 196.85 6399.61 496.03 1499.06 999.07 5
PC_three_145282.47 23597.09 1097.07 5192.72 198.04 15992.70 5599.02 1298.86 11
No_MVS96.52 197.78 5190.86 196.85 6399.61 496.03 1499.06 999.07 5
test_one_060198.58 1185.83 5997.44 1591.05 1496.78 1598.06 1191.45 11
eth-test20.00 414
eth-test0.00 414
GeoE90.05 11789.43 12291.90 14395.16 14180.37 20495.80 7894.65 22683.90 20087.55 16794.75 14778.18 14297.62 18781.28 22893.63 15497.71 88
test_method50.52 36748.47 36956.66 38352.26 40918.98 41341.51 40181.40 38810.10 40344.59 39875.01 38928.51 39468.16 40153.54 38749.31 39782.83 384
Anonymous2024052180.44 32479.21 32584.11 34785.75 37767.89 36992.86 24493.23 26675.61 33575.59 35787.47 34950.03 37494.33 33871.14 32481.21 31890.12 359
h-mvs3390.80 9990.15 10592.75 10096.01 10582.66 14695.43 9795.53 17289.80 4193.08 6395.64 11375.77 16499.00 6892.07 7078.05 35196.60 138
hse-mvs289.88 12689.34 12591.51 15994.83 16081.12 18493.94 19793.91 25389.80 4193.08 6393.60 19475.77 16497.66 18192.07 7077.07 35895.74 176
CL-MVSNet_self_test81.74 30880.53 30685.36 33585.96 37472.45 34190.25 30893.07 26981.24 26979.85 32787.29 35170.93 23092.52 36266.95 35169.23 37691.11 348
KD-MVS_2432*160078.50 33876.02 34585.93 32886.22 37274.47 31784.80 37492.33 28679.29 29076.98 34785.92 36253.81 36793.97 34467.39 34857.42 39289.36 363
KD-MVS_self_test80.20 32679.24 32483.07 35185.64 37865.29 37891.01 29693.93 25078.71 30376.32 35186.40 35959.20 34392.93 36072.59 31569.35 37591.00 351
AUN-MVS87.78 18886.54 20691.48 16194.82 16181.05 18593.91 20193.93 25083.00 22586.93 17893.53 19569.50 25197.67 17986.14 15177.12 35795.73 178
ZD-MVS98.15 3486.62 3297.07 4583.63 20794.19 4296.91 5787.57 3199.26 4291.99 7498.44 51
SR-MVS-dyc-post93.82 4493.82 4593.82 6097.92 4384.57 8096.28 4596.76 7587.46 11693.75 4997.43 3184.24 6899.01 6392.73 5197.80 7497.88 78
RE-MVS-def93.68 5297.92 4384.57 8096.28 4596.76 7587.46 11693.75 4997.43 3182.94 8392.73 5197.80 7497.88 78
SED-MVS95.91 296.28 294.80 3298.77 585.99 5197.13 1497.44 1590.31 2897.71 198.07 992.31 499.58 1095.66 1799.13 398.84 14
IU-MVS98.77 586.00 4996.84 6581.26 26897.26 795.50 2399.13 399.03 8
OPU-MVS96.21 398.00 4290.85 397.13 1497.08 4992.59 298.94 7892.25 6398.99 1498.84 14
test_241102_TWO97.44 1590.31 2897.62 598.07 991.46 1099.58 1095.66 1799.12 698.98 10
test_241102_ONE98.77 585.99 5197.44 1590.26 3397.71 197.96 1792.31 499.38 31
SF-MVS94.97 1294.90 1595.20 1297.84 4787.76 1096.65 3597.48 1087.76 11195.71 2797.70 2588.28 2399.35 3393.89 3598.78 2598.48 30
cl2286.78 23385.98 22989.18 25892.34 25777.62 27990.84 29994.13 24581.33 26683.97 26790.15 30473.96 19496.60 26784.19 17782.94 29793.33 285
miper_ehance_all_eth87.22 21886.62 20389.02 26392.13 26377.40 28290.91 29894.81 21881.28 26784.32 25990.08 30779.26 12796.62 26283.81 18382.94 29793.04 299
miper_enhance_ethall86.90 23086.18 21989.06 26191.66 28477.58 28090.22 31294.82 21779.16 29384.48 25089.10 32379.19 12996.66 25984.06 17882.94 29792.94 302
ZNCC-MVS94.47 2194.28 3095.03 1698.52 1586.96 1996.85 2897.32 2788.24 9293.15 6197.04 5286.17 4499.62 292.40 5998.81 2298.52 26
dcpmvs_293.49 5294.19 3691.38 16597.69 5476.78 28994.25 17396.29 10588.33 8894.46 3896.88 5888.07 2598.64 10093.62 3898.09 6398.73 17
cl____86.52 24485.78 23688.75 26992.03 26776.46 29490.74 30094.30 23781.83 25483.34 28290.78 28975.74 16996.57 26881.74 22281.54 31693.22 291
DIV-MVS_self_test86.53 24385.78 23688.75 26992.02 26876.45 29590.74 30094.30 23781.83 25483.34 28290.82 28775.75 16796.57 26881.73 22381.52 31793.24 290
eth_miper_zixun_eth86.50 24585.77 23888.68 27291.94 26975.81 30490.47 30494.89 21082.05 24384.05 26490.46 29575.96 16296.77 25582.76 19979.36 34693.46 283
9.1494.47 2097.79 4996.08 6197.44 1586.13 15395.10 3397.40 3388.34 2299.22 4493.25 4498.70 34
uanet_test0.00 3780.00 3810.00 3910.00 4140.00 4160.00 4020.00 4150.00 4090.00 4100.00 4090.00 4140.00 4100.00 4090.00 4080.00 406
DCPMVS0.00 3780.00 3810.00 3910.00 4140.00 4160.00 4020.00 4150.00 4090.00 4100.00 4090.00 4140.00 4100.00 4090.00 4080.00 406
save fliter97.85 4685.63 6495.21 11196.82 6889.44 51
ET-MVSNet_ETH3D87.51 20385.91 23392.32 12293.70 21883.93 9992.33 26090.94 33084.16 19472.09 37292.52 22869.90 24495.85 30689.20 11488.36 24297.17 108
UniMVSNet_ETH3D87.53 20286.37 21191.00 18592.44 25578.96 24594.74 14195.61 16684.07 19785.36 23394.52 15759.78 33997.34 21982.93 19387.88 24996.71 135
EIA-MVS91.95 8091.94 7891.98 13495.16 14180.01 21895.36 9896.73 7988.44 8589.34 13692.16 23983.82 7398.45 11989.35 11197.06 8797.48 97
miper_refine_blended78.50 33876.02 34585.93 32886.22 37274.47 31784.80 37492.33 28679.29 29076.98 34785.92 36253.81 36793.97 34467.39 34857.42 39289.36 363
miper_lstm_enhance85.27 26984.59 26787.31 30291.28 29774.63 31587.69 35294.09 24781.20 27181.36 30589.85 31374.97 17894.30 33981.03 23379.84 34393.01 300
ETV-MVS92.74 7192.66 7092.97 8895.20 14084.04 9895.07 12196.51 9490.73 2292.96 6691.19 27384.06 6998.34 12991.72 8296.54 10196.54 143
CS-MVS94.12 3794.44 2293.17 7696.55 8483.08 12997.63 396.95 5491.71 1193.50 5796.21 8685.61 4898.24 13693.64 3798.17 5898.19 58
D2MVS85.90 25585.09 25588.35 27990.79 31977.42 28191.83 27495.70 15880.77 27580.08 32290.02 30866.74 28596.37 28381.88 21887.97 24891.26 343
DVP-MVScopyleft95.67 396.02 394.64 3898.78 385.93 5497.09 1696.73 7990.27 3197.04 1198.05 1391.47 899.55 1695.62 2199.08 798.45 36
Zhenlong Yuan, Jinguo Luo, Fei Shen, Zhaoxin Li, Cong Liu, Tianlu Mao, Zhaoqi Wang: DVP-MVS: Synergize Depth-Edge and Visibility Prior for Multi-View Stereo. AAAI2025
test_0728_THIRD90.75 1997.04 1198.05 1392.09 699.55 1695.64 1999.13 399.13 2
test_0728_SECOND95.01 1798.79 286.43 3897.09 1697.49 699.61 495.62 2199.08 798.99 9
test072698.78 385.93 5497.19 1197.47 1190.27 3197.64 498.13 391.47 8
SR-MVS94.23 3194.17 3794.43 4698.21 3285.78 6196.40 4196.90 5988.20 9694.33 4097.40 3384.75 6499.03 5893.35 4397.99 6798.48 30
DPM-MVS92.58 7391.74 8195.08 1596.19 9589.31 592.66 24896.56 9383.44 21391.68 10695.04 13486.60 4098.99 7085.60 16097.92 7096.93 124
GST-MVS94.21 3293.97 4394.90 2398.41 2286.82 2396.54 3797.19 3588.24 9293.26 5896.83 6185.48 5199.59 891.43 8798.40 5298.30 47
test_yl90.69 10390.02 11192.71 10295.72 11882.41 15394.11 18195.12 19685.63 16391.49 10894.70 14874.75 17998.42 12486.13 15392.53 17897.31 101
thisisatest053088.67 16487.61 17291.86 14494.87 15780.07 21394.63 14889.90 35184.00 19888.46 14993.78 18966.88 28298.46 11583.30 18892.65 17597.06 115
Anonymous2024052988.09 18086.59 20492.58 11096.53 8681.92 16295.99 6995.84 14774.11 35089.06 14195.21 12761.44 32498.81 8983.67 18687.47 25697.01 119
Anonymous20240521187.68 19086.13 22192.31 12396.66 7980.74 19594.87 13391.49 31680.47 27789.46 13595.44 11754.72 36298.23 13782.19 20989.89 21197.97 72
DCV-MVSNet90.69 10390.02 11192.71 10295.72 11882.41 15394.11 18195.12 19685.63 16391.49 10894.70 14874.75 17998.42 12486.13 15392.53 17897.31 101
tttt051788.61 16687.78 16991.11 17894.96 15177.81 27295.35 9989.69 35485.09 17788.05 15694.59 15566.93 28098.48 11183.27 18992.13 18397.03 118
our_test_381.93 30580.46 30886.33 32588.46 35773.48 32788.46 34291.11 32376.46 32476.69 34988.25 33866.89 28194.36 33768.75 33979.08 34891.14 346
thisisatest051587.33 21185.99 22891.37 16693.49 22379.55 22990.63 30289.56 35780.17 27987.56 16690.86 28467.07 27998.28 13581.50 22693.02 17096.29 149
ppachtmachnet_test81.84 30680.07 31487.15 31088.46 35774.43 31989.04 33592.16 29375.33 33777.75 34288.99 32566.20 29295.37 32565.12 36177.60 35391.65 333
SMA-MVScopyleft95.20 895.07 1195.59 698.14 3588.48 896.26 4797.28 3185.90 15597.67 398.10 788.41 2099.56 1294.66 2699.19 198.71 19
Yufeng Yin; Xiaoyan Liu; Zichao Zhang: SMA-MVS: Segmentation-Guided Multi-Scale Anchor Deformation Patch Multi-View Stereo. IEEE Transactions on Circuits and Systems for Video Technology
GSMVS96.12 157
DPE-MVScopyleft95.57 495.67 495.25 1098.36 2587.28 1795.56 9597.51 589.13 6397.14 997.91 1891.64 799.62 294.61 2799.17 298.86 11
Kehua Chen, Zhenlong Yuan, Tianlu Mao, Zhaoqi Wang: Dual-Level Precision Edges Guided Multi-View Stereo with Accurate Planarization. AAAI2025
test_part298.55 1287.22 1896.40 17
thres100view90087.63 19586.71 19790.38 21196.12 9778.55 25095.03 12491.58 31287.15 12288.06 15592.29 23668.91 26398.10 14670.13 33291.10 19094.48 231
tfpnnormal84.72 27983.23 28589.20 25792.79 24880.05 21594.48 15595.81 14882.38 23781.08 30891.21 27269.01 26296.95 24861.69 37280.59 33290.58 357
tfpn200view987.58 20086.64 20090.41 20895.99 10978.64 24894.58 15091.98 30286.94 12988.09 15291.77 25569.18 25998.10 14670.13 33291.10 19094.48 231
c3_l87.14 22386.50 20889.04 26292.20 26077.26 28391.22 29294.70 22482.01 24684.34 25890.43 29678.81 13296.61 26583.70 18581.09 32293.25 289
CHOSEN 280x42085.15 27183.99 27488.65 27392.47 25378.40 25679.68 39192.76 27674.90 34381.41 30489.59 31669.85 24795.51 32079.92 25195.29 12592.03 327
CANet93.54 5193.20 6194.55 4295.65 12185.73 6394.94 12896.69 8491.89 890.69 11895.88 10281.99 10299.54 2093.14 4697.95 6998.39 39
Fast-Effi-MVS+-dtu87.44 20686.72 19689.63 24692.04 26677.68 27894.03 19093.94 24985.81 15682.42 29191.32 27070.33 24197.06 24280.33 24690.23 20594.14 244
Effi-MVS+-dtu88.65 16588.35 15389.54 24893.33 22876.39 29694.47 15894.36 23587.70 11285.43 22689.56 31873.45 20297.26 22785.57 16191.28 18994.97 200
CANet_DTU90.26 11389.41 12392.81 9693.46 22583.01 13293.48 21594.47 22989.43 5287.76 16394.23 16870.54 23999.03 5884.97 16596.39 10596.38 146
MVS_030494.60 1894.38 2595.23 1195.41 13087.49 1596.53 3892.75 27793.82 293.07 6597.84 2283.66 7499.59 897.61 298.76 2898.61 22
MP-MVS-pluss94.21 3294.00 4294.85 2598.17 3386.65 3094.82 13697.17 3986.26 14692.83 7197.87 2085.57 5099.56 1294.37 3098.92 1798.34 42
MP-MVS-pluss: MP-MVS-pluss. MP-MVS-pluss
MSP-MVS95.42 695.56 694.98 1998.49 1786.52 3596.91 2597.47 1191.73 1096.10 2096.69 6689.90 1299.30 4094.70 2598.04 6699.13 2
Zhenlong Yuan, Cong Liu, Fei Shen, Zhaoxin Li, Jingguo luo, Tianlu Mao and Zhaoqi Wang: MSP-MVS: Multi-granularity Segmentation Prior Guided Multi-View Stereo. AAAI2025
sam_mvs171.70 22196.12 157
sam_mvs70.60 234
IterMVS-SCA-FT85.45 26284.53 26888.18 28591.71 28176.87 28890.19 31392.65 28185.40 16981.44 30390.54 29366.79 28395.00 33281.04 23181.05 32392.66 310
TSAR-MVS + MP.94.85 1494.94 1294.58 4198.25 2986.33 4196.11 6096.62 8888.14 9896.10 2096.96 5589.09 1898.94 7894.48 2898.68 3798.48 30
Zhenlong Yuan, Jiakai Cao, Zhaoqi Wang, Zhaoxin Li: TSAR-MVS: Textureless-aware Segmentation and Correlative Refinement Guided Multi-View Stereo. Pattern Recognition
xiu_mvs_v1_base_debu90.64 10690.05 10892.40 11793.97 20684.46 8693.32 22195.46 17585.17 17292.25 8694.03 17270.59 23598.57 10790.97 9294.67 13494.18 241
OPM-MVS90.12 11589.56 11891.82 14793.14 23283.90 10094.16 17895.74 15488.96 7187.86 15895.43 11972.48 21597.91 16988.10 12890.18 20693.65 275
Ray L. Khuboni, Hongjun Xu: Octagram Propagation Matching for Multi-Scale View Stereopsis (OPM-MVS).
ACMMP_NAP94.74 1694.56 1995.28 998.02 4187.70 1195.68 8597.34 2388.28 9195.30 3297.67 2685.90 4799.54 2093.91 3498.95 1598.60 23
ambc83.06 35279.99 39163.51 38577.47 39292.86 27374.34 36584.45 37028.74 39395.06 33173.06 31468.89 37990.61 354
MTGPAbinary96.97 50
CS-MVS-test94.02 3994.29 2993.24 7396.69 7883.24 11997.49 596.92 5792.14 592.90 6795.77 10885.02 5998.33 13193.03 4798.62 4498.13 62
Effi-MVS+91.59 8891.11 8993.01 8594.35 18983.39 11794.60 14995.10 19887.10 12490.57 11993.10 21181.43 10698.07 15789.29 11394.48 14297.59 93
xiu_mvs_v2_base91.13 9690.89 9591.86 14494.97 15082.42 15192.24 26395.64 16586.11 15491.74 10593.14 20979.67 12498.89 8189.06 11695.46 12094.28 240
xiu_mvs_v1_base90.64 10690.05 10892.40 11793.97 20684.46 8693.32 22195.46 17585.17 17292.25 8694.03 17270.59 23598.57 10790.97 9294.67 13494.18 241
new-patchmatchnet76.41 34575.17 34880.13 36082.65 38759.61 39187.66 35391.08 32478.23 31269.85 37983.22 37454.76 36191.63 37264.14 36664.89 38589.16 368
pmmvs683.42 29581.60 29988.87 26688.01 36377.87 27094.96 12794.24 24074.67 34578.80 33691.09 28060.17 33696.49 27477.06 28375.40 36492.23 324
pmmvs584.21 28482.84 29488.34 28088.95 35176.94 28792.41 25491.91 30675.63 33480.28 31791.18 27564.59 30295.57 31777.09 28283.47 29292.53 313
test_post188.00 3479.81 40569.31 25695.53 31876.65 284
test_post10.29 40470.57 23895.91 304
Fast-Effi-MVS+89.41 14088.64 14391.71 15294.74 16280.81 19393.54 21395.10 19883.11 22286.82 18690.67 29279.74 12097.75 17780.51 24393.55 15696.57 141
patchmatchnet-post83.76 37271.53 22296.48 275
Anonymous2023121186.59 24185.13 25490.98 18896.52 8781.50 17096.14 5796.16 11973.78 35383.65 27492.15 24063.26 31397.37 21882.82 19781.74 31494.06 250
pmmvs-eth3d80.97 32078.72 33287.74 29284.99 38179.97 22190.11 31591.65 31075.36 33673.51 36786.03 36159.45 34093.96 34675.17 29872.21 36989.29 366
GG-mvs-BLEND87.94 29189.73 34577.91 26787.80 34878.23 39680.58 31483.86 37159.88 33895.33 32671.20 32192.22 18290.60 356
xiu_mvs_v1_base_debi90.64 10690.05 10892.40 11793.97 20684.46 8693.32 22195.46 17585.17 17292.25 8694.03 17270.59 23598.57 10790.97 9294.67 13494.18 241
Anonymous2023120681.03 31979.77 31884.82 34187.85 36670.26 36191.42 28492.08 29773.67 35477.75 34289.25 32162.43 31793.08 35861.50 37382.00 31091.12 347
MTAPA94.42 2694.22 3395.00 1898.42 2186.95 2094.36 17096.97 5091.07 1393.14 6297.56 2784.30 6799.56 1293.43 4098.75 3098.47 33
MTMP96.16 5360.64 407
gm-plane-assit89.60 34768.00 36877.28 32088.99 32597.57 18979.44 257
test9_res91.91 7898.71 3298.07 66
MVP-Stereo85.97 25484.86 26189.32 25490.92 31482.19 15692.11 26894.19 24178.76 30178.77 33791.63 26168.38 27096.56 27075.01 30193.95 14989.20 367
Qingsong Yan: MVP-Stereo: A Parallel Multi-View Patchmatch Stereo Method with Dilation Matching for Photogrammetric Application.
TEST997.53 5886.49 3694.07 18696.78 7281.61 26192.77 7496.20 8787.71 2899.12 51
train_agg93.44 5593.08 6294.52 4397.53 5886.49 3694.07 18696.78 7281.86 25292.77 7496.20 8787.63 2999.12 5192.14 6898.69 3597.94 74
gg-mvs-nofinetune81.77 30779.37 32288.99 26490.85 31877.73 27786.29 36379.63 39274.88 34483.19 28569.05 39360.34 33496.11 29575.46 29594.64 13793.11 296
SCA86.32 25085.18 25389.73 24192.15 26176.60 29291.12 29391.69 30983.53 21185.50 21988.81 32866.79 28396.48 27576.65 28490.35 20496.12 157
Patchmatch-test81.37 31579.30 32387.58 29690.92 31474.16 32280.99 38787.68 36870.52 37576.63 35088.81 32871.21 22592.76 36160.01 37886.93 26595.83 172
test_897.49 6086.30 4494.02 19196.76 7581.86 25292.70 7896.20 8787.63 2999.02 61
MS-PatchMatch85.05 27384.16 27087.73 29391.42 29178.51 25291.25 29093.53 26177.50 31680.15 31991.58 26461.99 31995.51 32075.69 29394.35 14589.16 368
Patchmatch-RL test81.67 30979.96 31586.81 31985.42 37971.23 35182.17 38587.50 36978.47 30577.19 34682.50 38070.81 23293.48 35282.66 20072.89 36895.71 179
cdsmvs_eth3d_5k22.14 37229.52 3750.00 3910.00 4140.00 4160.00 40295.76 1520.00 4090.00 41094.29 16475.66 1700.00 4100.00 4090.00 4080.00 406
pcd_1.5k_mvsjas6.64 3778.86 3800.00 3910.00 4140.00 4160.00 4020.00 4150.00 4090.00 4100.00 40979.70 1210.00 4100.00 4090.00 4080.00 406
agg_prior290.54 10298.68 3798.27 52
agg_prior97.38 6385.92 5696.72 8192.16 8998.97 75
tmp_tt35.64 37139.24 37324.84 38714.87 41123.90 41262.71 39751.51 4106.58 40536.66 40162.08 39844.37 38530.34 40752.40 38822.00 40420.27 402
canonicalmvs93.27 6192.75 6994.85 2595.70 12087.66 1296.33 4296.41 9990.00 3794.09 4494.60 15482.33 9298.62 10392.40 5992.86 17398.27 52
anonymousdsp87.84 18587.09 18490.12 22189.13 34980.54 20094.67 14695.55 16982.05 24383.82 26992.12 24271.47 22497.15 23487.15 14187.80 25492.67 309
alignmvs93.08 6692.50 7394.81 3195.62 12387.61 1395.99 6996.07 12889.77 4594.12 4394.87 13980.56 11198.66 9892.42 5893.10 16998.15 61
nrg03091.08 9790.39 9993.17 7693.07 23586.91 2196.41 3996.26 11088.30 9088.37 15194.85 14282.19 9797.64 18591.09 8982.95 29694.96 203
v14419287.19 22186.35 21289.74 23990.64 32578.24 26193.92 19995.43 18181.93 24885.51 21891.05 28174.21 18997.45 20282.86 19581.56 31593.53 278
FIs90.51 11090.35 10090.99 18693.99 20580.98 18795.73 8297.54 489.15 6286.72 18794.68 15081.83 10497.24 22985.18 16388.31 24394.76 213
v192192086.97 22886.06 22689.69 24390.53 33078.11 26493.80 20395.43 18181.90 25085.33 23491.05 28172.66 21297.41 21282.05 21481.80 31293.53 278
UA-Net92.83 6992.54 7293.68 6696.10 10084.71 7795.66 8896.39 10091.92 793.22 6096.49 7983.16 7998.87 8284.47 17495.47 11997.45 99
v119287.25 21586.33 21390.00 22990.76 32179.04 24493.80 20395.48 17482.57 23485.48 22191.18 27573.38 20597.42 20782.30 20682.06 30793.53 278
FC-MVSNet-test90.27 11290.18 10490.53 19893.71 21679.85 22495.77 8097.59 389.31 5686.27 19894.67 15181.93 10397.01 24584.26 17688.09 24694.71 214
v114487.61 19886.79 19490.06 22491.01 30779.34 23693.95 19695.42 18383.36 21785.66 21191.31 27174.98 17797.42 20783.37 18782.06 30793.42 284
sosnet-low-res0.00 3780.00 3810.00 3910.00 4140.00 4160.00 4020.00 4150.00 4090.00 4100.00 4090.00 4140.00 4100.00 4090.00 4080.00 406
HFP-MVS94.52 2094.40 2394.86 2498.61 1086.81 2496.94 2097.34 2388.63 8093.65 5197.21 4286.10 4599.49 2692.35 6198.77 2798.30 47
v14887.04 22686.32 21489.21 25690.94 31277.26 28393.71 20894.43 23084.84 18384.36 25790.80 28876.04 16197.05 24382.12 21079.60 34493.31 286
sosnet0.00 3780.00 3810.00 3910.00 4140.00 4160.00 4020.00 4150.00 4090.00 4100.00 4090.00 4140.00 4100.00 4090.00 4080.00 406
uncertanet0.00 3780.00 3810.00 3910.00 4140.00 4160.00 4020.00 4150.00 4090.00 4100.00 4090.00 4140.00 4100.00 4090.00 4080.00 406
AllTest83.42 29581.39 30189.52 24995.01 14777.79 27493.12 23290.89 33277.41 31776.12 35393.34 19854.08 36597.51 19668.31 34384.27 28393.26 287
TestCases89.52 24995.01 14777.79 27490.89 33277.41 31776.12 35393.34 19854.08 36597.51 19668.31 34384.27 28393.26 287
v7n86.81 23185.76 23989.95 23090.72 32379.25 24295.07 12195.92 13984.45 19282.29 29290.86 28472.60 21497.53 19479.42 25980.52 33593.08 298
region2R94.43 2494.27 3294.92 2098.65 886.67 2996.92 2497.23 3488.60 8293.58 5397.27 3885.22 5499.54 2092.21 6498.74 3198.56 25
iter_conf0588.85 15888.08 16291.17 17494.27 19181.64 16795.18 11392.15 29486.23 14887.28 17294.07 17063.89 30997.55 19190.63 10089.00 23094.32 237
RRT_MVS89.09 15088.62 14690.49 20292.85 24679.65 22896.41 3994.41 23288.22 9485.50 21994.77 14669.36 25397.31 22089.33 11286.73 26694.51 225
PS-MVSNAJss89.97 12089.62 11691.02 18391.90 27280.85 19295.26 10895.98 13486.26 14686.21 20094.29 16479.70 12197.65 18288.87 11988.10 24494.57 220
PS-MVSNAJ91.18 9590.92 9391.96 13695.26 13782.60 14992.09 26995.70 15886.27 14591.84 10092.46 22979.70 12198.99 7089.08 11595.86 11194.29 239
jajsoiax88.24 17687.50 17490.48 20490.89 31680.14 21095.31 10195.65 16484.97 17984.24 26294.02 17565.31 29897.42 20788.56 12188.52 23793.89 255
mvs_tets88.06 18287.28 18190.38 21190.94 31279.88 22295.22 11095.66 16285.10 17684.21 26393.94 18063.53 31097.40 21488.50 12288.40 24193.87 258
EI-MVSNet-UG-set92.74 7192.62 7193.12 7894.86 15883.20 12194.40 16395.74 15490.71 2392.05 9196.60 7584.00 7098.99 7091.55 8493.63 15497.17 108
EI-MVSNet-Vis-set93.01 6792.92 6693.29 7195.01 14783.51 11394.48 15595.77 15190.87 1592.52 8296.67 6884.50 6699.00 6891.99 7494.44 14497.36 100
HPM-MVS++copyleft95.14 1094.91 1395.83 498.25 2989.65 495.92 7396.96 5291.75 994.02 4696.83 6188.12 2499.55 1693.41 4298.94 1698.28 50
test_prior485.96 5394.11 181
XVS94.45 2294.32 2694.85 2598.54 1386.60 3396.93 2297.19 3590.66 2492.85 6997.16 4785.02 5999.49 2691.99 7498.56 4898.47 33
v124086.78 23385.85 23489.56 24790.45 33177.79 27493.61 21195.37 18681.65 25885.43 22691.15 27771.50 22397.43 20681.47 22782.05 30993.47 282
pm-mvs186.61 23985.54 24389.82 23591.44 28880.18 20895.28 10794.85 21483.84 20281.66 30092.62 22572.45 21796.48 27579.67 25378.06 35092.82 307
test_prior294.12 18087.67 11492.63 7996.39 8286.62 3891.50 8598.67 39
X-MVStestdata88.31 17486.13 22194.85 2598.54 1386.60 3396.93 2297.19 3590.66 2492.85 6923.41 40385.02 5999.49 2691.99 7498.56 4898.47 33
test_prior93.82 6097.29 6784.49 8496.88 6198.87 8298.11 65
旧先验293.36 21971.25 37294.37 3997.13 23786.74 146
新几何293.11 234
新几何193.10 7997.30 6684.35 9295.56 16871.09 37391.26 11396.24 8582.87 8598.86 8479.19 26198.10 6296.07 161
旧先验196.79 7681.81 16495.67 16096.81 6386.69 3797.66 7996.97 122
无先验93.28 22796.26 11073.95 35299.05 5580.56 24296.59 139
原ACMM292.94 241
原ACMM192.01 13097.34 6481.05 18596.81 7078.89 29790.45 12095.92 10082.65 8798.84 8880.68 24098.26 5796.14 155
test22296.55 8481.70 16692.22 26495.01 20168.36 37990.20 12496.14 9280.26 11497.80 7496.05 164
testdata298.75 9378.30 268
segment_acmp87.16 36
testdata90.49 20296.40 8977.89 26995.37 18672.51 36593.63 5296.69 6682.08 9997.65 18283.08 19097.39 8295.94 166
testdata192.15 26687.94 103
v887.50 20586.71 19789.89 23291.37 29379.40 23394.50 15495.38 18484.81 18483.60 27691.33 26876.05 16097.42 20782.84 19680.51 33692.84 306
131487.51 20386.57 20590.34 21392.42 25679.74 22692.63 24995.35 18878.35 30880.14 32091.62 26274.05 19297.15 23481.05 23093.53 15794.12 245
LFMVS90.08 11689.13 13092.95 9096.71 7782.32 15596.08 6189.91 35086.79 13292.15 9096.81 6362.60 31698.34 12987.18 14093.90 15098.19 58
VDD-MVS90.74 10189.92 11393.20 7596.27 9383.02 13195.73 8293.86 25488.42 8792.53 8196.84 6062.09 31898.64 10090.95 9592.62 17697.93 76
VDDNet89.56 13388.49 15192.76 9995.07 14582.09 15796.30 4393.19 26781.05 27391.88 9896.86 5961.16 33198.33 13188.43 12392.49 18097.84 82
v1087.25 21586.38 21089.85 23391.19 29979.50 23094.48 15595.45 17883.79 20483.62 27591.19 27375.13 17497.42 20781.94 21680.60 33192.63 311
VPNet88.20 17787.47 17690.39 20993.56 22279.46 23194.04 18995.54 17188.67 7986.96 17794.58 15669.33 25497.15 23484.05 17980.53 33494.56 221
MVS87.44 20686.10 22491.44 16392.61 25183.62 10992.63 24995.66 16267.26 38081.47 30292.15 24077.95 14398.22 13979.71 25295.48 11892.47 315
v2v48287.84 18587.06 18590.17 21790.99 30879.23 24394.00 19495.13 19584.87 18185.53 21692.07 24874.45 18497.45 20284.71 17181.75 31393.85 261
V4287.68 19086.86 19090.15 21990.58 32780.14 21094.24 17595.28 18983.66 20685.67 21091.33 26874.73 18197.41 21284.43 17581.83 31192.89 304
SD-MVS94.96 1395.33 893.88 5797.25 6986.69 2796.19 5097.11 4390.42 2796.95 1397.27 3889.53 1496.91 25194.38 2998.85 1998.03 70
Zhenlong Yuan, Jiakai Cao, Zhaoxin Li, Hao Jiang and Zhaoqi Wang: SD-MVS: Segmentation-driven Deformation Multi-View Stereo with Spherical Refinement and EM optimization. AAAI2024
GA-MVS86.61 23985.27 25290.66 19491.33 29678.71 24790.40 30593.81 25785.34 17085.12 23689.57 31761.25 32697.11 23880.99 23489.59 21996.15 154
MSLP-MVS++93.72 4894.08 3892.65 10697.31 6583.43 11495.79 7997.33 2590.03 3693.58 5396.96 5584.87 6297.76 17492.19 6698.66 4096.76 132
APDe-MVScopyleft95.46 595.64 594.91 2198.26 2886.29 4597.46 697.40 2089.03 6796.20 1998.10 789.39 1699.34 3495.88 1699.03 1199.10 4
Zhaojie Zeng, Yuesong Wang, Tao Guan: Matching Ambiguity-Resilient Multi-View Stereo via Adaptive Patch Deformation. Pattern Recognition
APD-MVS_3200maxsize93.78 4593.77 4893.80 6297.92 4384.19 9496.30 4396.87 6286.96 12793.92 4897.47 2983.88 7298.96 7792.71 5497.87 7198.26 54
ADS-MVSNet281.66 31079.71 31987.50 29891.35 29474.19 32183.33 38188.48 36272.90 36282.24 29485.77 36464.98 30093.20 35764.57 36483.74 28795.12 196
EI-MVSNet89.10 14888.86 13989.80 23891.84 27478.30 25993.70 20995.01 20185.73 15987.15 17395.28 12279.87 11897.21 23283.81 18387.36 25993.88 257
Regformer0.00 3780.00 3810.00 3910.00 4140.00 4160.00 4020.00 4150.00 4090.00 4100.00 4090.00 4140.00 4100.00 4090.00 4080.00 406
CVMVSNet84.69 28084.79 26384.37 34491.84 27464.92 38093.70 20991.47 31766.19 38286.16 20295.28 12267.18 27793.33 35480.89 23690.42 20394.88 208
pmmvs485.43 26383.86 27690.16 21890.02 33982.97 13490.27 30692.67 28075.93 33280.73 31191.74 25771.05 22795.73 31478.85 26383.46 29391.78 331
EU-MVSNet81.32 31680.95 30482.42 35688.50 35663.67 38493.32 22191.33 31964.02 38580.57 31592.83 21861.21 32892.27 36576.34 28880.38 33791.32 341
VNet92.24 7891.91 7993.24 7396.59 8283.43 11494.84 13596.44 9689.19 6194.08 4595.90 10177.85 14798.17 14188.90 11793.38 16398.13 62
test-LLR85.87 25685.41 24687.25 30590.95 31071.67 34889.55 32389.88 35283.41 21484.54 24887.95 34267.25 27595.11 32981.82 21993.37 16494.97 200
TESTMET0.1,183.74 29382.85 29386.42 32489.96 34071.21 35289.55 32387.88 36577.41 31783.37 28187.31 35056.71 35293.65 35180.62 24192.85 17494.40 234
test-mter84.54 28183.64 27987.25 30590.95 31071.67 34889.55 32389.88 35279.17 29284.54 24887.95 34255.56 35695.11 32981.82 21993.37 16494.97 200
VPA-MVSNet89.62 13088.96 13391.60 15593.86 20982.89 13795.46 9697.33 2587.91 10488.43 15093.31 20174.17 19097.40 21487.32 13982.86 30194.52 223
ACMMPR94.43 2494.28 3094.91 2198.63 986.69 2796.94 2097.32 2788.63 8093.53 5697.26 4085.04 5899.54 2092.35 6198.78 2598.50 27
testgi80.94 32180.20 31283.18 35087.96 36466.29 37491.28 28890.70 33683.70 20578.12 33992.84 21751.37 37290.82 37763.34 36782.46 30392.43 317
test20.0379.95 32979.08 32882.55 35485.79 37667.74 37191.09 29491.08 32481.23 27074.48 36489.96 31161.63 32190.15 37960.08 37676.38 36089.76 360
thres600view787.65 19286.67 19990.59 19596.08 10278.72 24694.88 13291.58 31287.06 12588.08 15492.30 23568.91 26398.10 14670.05 33591.10 19094.96 203
ADS-MVSNet81.56 31279.78 31686.90 31691.35 29471.82 34583.33 38189.16 35972.90 36282.24 29485.77 36464.98 30093.76 34864.57 36483.74 28795.12 196
MP-MVScopyleft94.25 2994.07 3994.77 3498.47 1886.31 4396.71 3196.98 4989.04 6691.98 9397.19 4485.43 5299.56 1292.06 7398.79 2398.44 37
Rongxuan Tan, Qing Wang, et al.: MP-MVS: Multi-Scale Windows PatchMatch and Planar Prior Multi-View Stereo.
testmvs8.92 37411.52 3771.12 3901.06 4120.46 41586.02 3640.65 4130.62 4062.74 4079.52 4060.31 4130.45 4092.38 4070.39 4062.46 405
thres40087.62 19786.64 20090.57 19695.99 10978.64 24894.58 15091.98 30286.94 12988.09 15291.77 25569.18 25998.10 14670.13 33291.10 19094.96 203
test1238.76 37511.22 3781.39 3890.85 4130.97 41485.76 3670.35 4140.54 4072.45 4088.14 4070.60 4120.48 4082.16 4080.17 4072.71 404
thres20087.21 21986.24 21890.12 22195.36 13178.53 25193.26 22892.10 29686.42 14288.00 15791.11 27969.24 25898.00 16269.58 33691.04 19693.83 262
test0.0.03 182.41 30281.69 29884.59 34288.23 36072.89 33190.24 31087.83 36683.41 21479.86 32689.78 31467.25 27588.99 38565.18 36083.42 29491.90 330
pmmvs371.81 35268.71 35581.11 35875.86 39470.42 36086.74 36083.66 38258.95 38968.64 38280.89 38336.93 39089.52 38263.10 36963.59 38683.39 381
EMVS42.07 37041.12 37244.92 38663.45 40635.56 41073.65 39363.48 40633.05 40126.88 40545.45 40221.27 40167.14 40319.80 40523.02 40332.06 401
E-PMN43.23 36942.29 37146.03 38565.58 40437.41 40873.51 39464.62 40533.99 40028.47 40447.87 40119.90 40367.91 40222.23 40424.45 40132.77 400
PGM-MVS93.96 4293.72 5094.68 3798.43 2086.22 4695.30 10397.78 187.45 11893.26 5897.33 3684.62 6599.51 2490.75 9998.57 4798.32 46
LCM-MVSNet-Re88.30 17588.32 15688.27 28194.71 16572.41 34293.15 23190.98 32887.77 11079.25 33291.96 25178.35 14095.75 31283.04 19195.62 11496.65 137
LCM-MVSNet66.00 35762.16 36277.51 36764.51 40558.29 39383.87 38090.90 33148.17 39454.69 39173.31 39116.83 40586.75 38865.47 35861.67 38887.48 379
MCST-MVS94.45 2294.20 3595.19 1398.46 1987.50 1495.00 12597.12 4187.13 12392.51 8396.30 8389.24 1799.34 3493.46 3998.62 4498.73 17
mvs_anonymous89.37 14489.32 12689.51 25193.47 22474.22 32091.65 28094.83 21682.91 22885.45 22393.79 18881.23 10896.36 28586.47 15094.09 14797.94 74
MVS_Test91.31 9291.11 8991.93 13894.37 18580.14 21093.46 21795.80 14986.46 14191.35 11293.77 19082.21 9698.09 15487.57 13494.95 13097.55 96
MDA-MVSNet-bldmvs78.85 33776.31 34286.46 32289.76 34373.88 32388.79 33790.42 33879.16 29359.18 38988.33 33760.20 33594.04 34262.00 37168.96 37891.48 339
CDPH-MVS92.83 6992.30 7594.44 4497.79 4986.11 4894.06 18896.66 8580.09 28192.77 7496.63 7386.62 3899.04 5787.40 13698.66 4098.17 60
test1294.34 4997.13 7086.15 4796.29 10591.04 11585.08 5799.01 6398.13 6197.86 80
casdiffmvspermissive92.51 7492.43 7492.74 10194.41 18481.98 16094.54 15396.23 11489.57 4991.96 9596.17 9182.58 8898.01 16190.95 9595.45 12198.23 56
Fangjinhua Wang, Qingshan Xu, Yew-Soon Ong, Marc Pollefeys: Lightweight and Accurate Multi-View Stereo With Confidence-Aware Diffusion Model. IEEE T-PAMI 2025
diffmvspermissive91.37 9191.23 8791.77 15093.09 23480.27 20592.36 25795.52 17387.03 12691.40 11194.93 13680.08 11597.44 20592.13 6994.56 13997.61 91
Fangjinhua Wang, Qingshan Xu, Yew-Soon Ong, Marc Pollefeys: Lightweight and Accurate Multi-View Stereo With Confidence-Aware Diffusion Model. IEEE T-PAMI 2025
baseline286.50 24585.39 24789.84 23491.12 30476.70 29191.88 27288.58 36182.35 23979.95 32490.95 28373.42 20397.63 18680.27 24789.95 21095.19 194
baseline188.10 17987.28 18190.57 19694.96 15180.07 21394.27 17291.29 32186.74 13487.41 16894.00 17776.77 15496.20 29180.77 23779.31 34795.44 185
YYNet179.22 33577.20 33785.28 33788.20 36272.66 33685.87 36590.05 34874.33 34862.70 38587.61 34766.09 29492.03 36666.94 35272.97 36791.15 345
PMMVS259.60 36156.40 36369.21 37768.83 40246.58 40373.02 39677.48 39955.07 39149.21 39472.95 39217.43 40480.04 39949.32 39044.33 39980.99 387
MDA-MVSNet_test_wron79.21 33677.19 33885.29 33688.22 36172.77 33385.87 36590.06 34674.34 34762.62 38787.56 34866.14 29391.99 36866.90 35573.01 36691.10 349
tpmvs83.35 29782.07 29687.20 30991.07 30671.00 35688.31 34491.70 30878.91 29580.49 31687.18 35469.30 25797.08 23968.12 34683.56 29193.51 281
PM-MVS78.11 34076.12 34484.09 34883.54 38470.08 36288.97 33685.27 37879.93 28274.73 36286.43 35834.70 39293.48 35279.43 25872.06 37088.72 371
HQP_MVS90.60 10990.19 10391.82 14794.70 16682.73 14295.85 7596.22 11590.81 1786.91 18094.86 14074.23 18798.12 14488.15 12489.99 20794.63 215
plane_prior794.70 16682.74 141
plane_prior694.52 17682.75 13974.23 187
plane_prior596.22 11598.12 14488.15 12489.99 20794.63 215
plane_prior494.86 140
plane_prior382.75 13990.26 3386.91 180
plane_prior295.85 7590.81 17
plane_prior194.59 171
plane_prior82.73 14295.21 11189.66 4889.88 212
PS-CasMVS87.32 21286.88 18988.63 27492.99 24176.33 29895.33 10096.61 8988.22 9483.30 28493.07 21273.03 20995.79 31178.36 26681.00 32793.75 270
UniMVSNet_NR-MVSNet89.92 12489.29 12791.81 14993.39 22783.72 10494.43 16197.12 4189.80 4186.46 19193.32 20083.16 7997.23 23084.92 16681.02 32594.49 230
PEN-MVS86.80 23286.27 21788.40 27792.32 25875.71 30595.18 11396.38 10187.97 10282.82 28893.15 20873.39 20495.92 30276.15 29179.03 34993.59 276
TransMVSNet (Re)84.43 28283.06 28988.54 27591.72 27978.44 25495.18 11392.82 27582.73 23279.67 32892.12 24273.49 20195.96 30171.10 32568.73 38091.21 344
DTE-MVSNet86.11 25285.48 24587.98 28991.65 28574.92 31294.93 12995.75 15387.36 11982.26 29393.04 21372.85 21095.82 30874.04 30777.46 35593.20 292
DU-MVS89.34 14588.50 14991.85 14693.04 23883.72 10494.47 15896.59 9089.50 5086.46 19193.29 20377.25 14997.23 23084.92 16681.02 32594.59 218
UniMVSNet (Re)89.80 12789.07 13192.01 13093.60 22184.52 8394.78 13997.47 1189.26 5886.44 19492.32 23482.10 9897.39 21784.81 16980.84 32994.12 245
CP-MVSNet87.63 19587.26 18388.74 27193.12 23376.59 29395.29 10596.58 9188.43 8683.49 27992.98 21475.28 17395.83 30778.97 26281.15 32193.79 263
WR-MVS_H87.80 18787.37 17889.10 26093.23 23078.12 26395.61 9297.30 2987.90 10583.72 27192.01 25079.65 12596.01 29976.36 28780.54 33393.16 294
WR-MVS88.38 17187.67 17190.52 20093.30 22980.18 20893.26 22895.96 13788.57 8385.47 22292.81 22076.12 15996.91 25181.24 22982.29 30594.47 233
NR-MVSNet88.58 16987.47 17691.93 13893.04 23884.16 9594.77 14096.25 11289.05 6580.04 32393.29 20379.02 13097.05 24381.71 22480.05 33994.59 218
Baseline_NR-MVSNet87.07 22586.63 20288.40 27791.44 28877.87 27094.23 17692.57 28284.12 19685.74 20992.08 24677.25 14996.04 29682.29 20779.94 34091.30 342
TranMVSNet+NR-MVSNet88.84 15987.95 16591.49 16092.68 25083.01 13294.92 13096.31 10489.88 3985.53 21693.85 18776.63 15796.96 24781.91 21779.87 34294.50 228
TSAR-MVS + GP.93.66 4993.41 5694.41 4896.59 8286.78 2594.40 16393.93 25089.77 4594.21 4195.59 11587.35 3498.61 10492.72 5396.15 10997.83 83
n20.00 415
nn0.00 415
mPP-MVS93.99 4193.78 4794.63 3998.50 1685.90 5896.87 2696.91 5888.70 7891.83 10297.17 4683.96 7199.55 1691.44 8698.64 4398.43 38
door-mid85.49 375
XVG-OURS-SEG-HR89.95 12289.45 12091.47 16294.00 20481.21 18291.87 27396.06 13085.78 15788.55 14795.73 11074.67 18397.27 22588.71 12089.64 21895.91 167
mvsmamba89.96 12189.50 11991.33 16892.90 24581.82 16396.68 3392.37 28589.03 6787.00 17694.85 14273.05 20797.65 18291.03 9188.63 23494.51 225
MVSFormer91.68 8791.30 8592.80 9793.86 20983.88 10195.96 7195.90 14284.66 18991.76 10394.91 13777.92 14497.30 22189.64 10997.11 8597.24 104
jason90.80 9990.10 10692.90 9293.04 23883.53 11293.08 23594.15 24380.22 27891.41 11094.91 13776.87 15197.93 16890.28 10696.90 9297.24 104
jason: jason.
lupinMVS90.92 9890.21 10293.03 8493.86 20983.88 10192.81 24593.86 25479.84 28491.76 10394.29 16477.92 14498.04 15990.48 10597.11 8597.17 108
test_djsdf89.03 15488.64 14390.21 21590.74 32279.28 24095.96 7195.90 14284.66 18985.33 23492.94 21574.02 19397.30 22189.64 10988.53 23694.05 251
HPM-MVS_fast93.40 5993.22 6093.94 5698.36 2584.83 7497.15 1396.80 7185.77 15892.47 8497.13 4882.38 9099.07 5390.51 10498.40 5297.92 77
K. test v381.59 31180.15 31385.91 33089.89 34269.42 36592.57 25187.71 36785.56 16573.44 36889.71 31555.58 35595.52 31977.17 28069.76 37492.78 308
lessismore_v086.04 32688.46 35768.78 36780.59 39073.01 37090.11 30655.39 35796.43 28075.06 30065.06 38492.90 303
SixPastTwentyTwo83.91 29082.90 29286.92 31590.99 30870.67 35893.48 21591.99 30185.54 16677.62 34492.11 24460.59 33396.87 25376.05 29277.75 35293.20 292
OurMVSNet-221017-085.35 26684.64 26687.49 29990.77 32072.59 33994.01 19294.40 23384.72 18779.62 33093.17 20761.91 32096.72 25681.99 21581.16 31993.16 294
HPM-MVScopyleft94.02 3993.88 4494.43 4698.39 2385.78 6197.25 1097.07 4586.90 13192.62 8096.80 6584.85 6399.17 4792.43 5798.65 4298.33 43
Chunlin Ren, Qingshan Xu, Shikun Zhang, Jiaqi Yang: Hierarchical Prior Mining for Non-local Multi-View Stereo. ICCV 2023
XVG-OURS89.40 14288.70 14191.52 15894.06 19881.46 17491.27 28996.07 12886.14 15188.89 14395.77 10868.73 26697.26 22787.39 13789.96 20995.83 172
XVG-ACMP-BASELINE86.00 25384.84 26289.45 25291.20 29878.00 26591.70 27895.55 16985.05 17882.97 28692.25 23854.49 36397.48 19882.93 19387.45 25892.89 304
casdiffmvs_mvgpermissive92.96 6892.83 6893.35 7094.59 17183.40 11695.00 12596.34 10390.30 3092.05 9196.05 9583.43 7598.15 14392.07 7095.67 11398.49 29
Fangjinhua Wang, Qingshan Xu, Yew-Soon Ong, Marc Pollefeys: Lightweight and Accurate Multi-View Stereo With Confidence-Aware Diffusion Model. IEEE T-PAMI 2025
LPG-MVS_test89.45 13788.90 13791.12 17594.47 17881.49 17295.30 10396.14 12086.73 13585.45 22395.16 13069.89 24598.10 14687.70 13289.23 22593.77 268
LGP-MVS_train91.12 17594.47 17881.49 17296.14 12086.73 13585.45 22395.16 13069.89 24598.10 14687.70 13289.23 22593.77 268
baseline92.39 7792.29 7692.69 10594.46 18081.77 16594.14 17996.27 10989.22 5991.88 9896.00 9682.35 9197.99 16391.05 9095.27 12798.30 47
test1196.57 92
door85.33 377
EPNet_dtu86.49 24785.94 23288.14 28690.24 33472.82 33294.11 18192.20 29286.66 13779.42 33192.36 23373.52 20095.81 30971.26 32093.66 15395.80 174
Wanjuan Su, Wenbing Tao: Efficient Edge-Preserving Multi-View Stereo Network for Depth Estimation. AAAI 2023
CHOSEN 1792x268888.84 15987.69 17092.30 12496.14 9681.42 17690.01 31795.86 14674.52 34687.41 16893.94 18075.46 17298.36 12680.36 24495.53 11597.12 113
EPNet91.79 8291.02 9294.10 5290.10 33685.25 6996.03 6692.05 29892.83 387.39 17195.78 10779.39 12699.01 6388.13 12697.48 8098.05 68
Wanjuan Su, Wenbing Tao: Efficient Edge-Preserving Multi-View Stereo Network for Depth Estimation. AAAI 2023
HQP5-MVS81.56 168
HQP-NCC94.17 19494.39 16588.81 7285.43 226
ACMP_Plane94.17 19494.39 16588.81 7285.43 226
APD-MVScopyleft94.24 3094.07 3994.75 3598.06 3986.90 2295.88 7496.94 5585.68 16195.05 3497.18 4587.31 3599.07 5391.90 8098.61 4698.28 50
Yuesong Wang, Zhaojie Zeng and etc.: Adaptive Patch Deformation for Textureless-Resilient Multi-View Stereo. CVPR2023
BP-MVS87.11 143
HQP4-MVS85.43 22697.96 16594.51 225
HQP3-MVS96.04 13189.77 216
HQP2-MVS73.83 197
CNVR-MVS95.40 795.37 795.50 898.11 3688.51 795.29 10596.96 5292.09 695.32 3197.08 4989.49 1599.33 3795.10 2498.85 1998.66 20
NCCC94.81 1594.69 1895.17 1497.83 4887.46 1695.66 8896.93 5692.34 493.94 4796.58 7687.74 2799.44 2992.83 5098.40 5298.62 21
114514_t89.51 13488.50 14992.54 11298.11 3681.99 15995.16 11696.36 10270.19 37685.81 20695.25 12476.70 15598.63 10282.07 21396.86 9597.00 120
CP-MVS94.34 2794.21 3494.74 3698.39 2386.64 3197.60 497.24 3288.53 8492.73 7797.23 4185.20 5599.32 3892.15 6798.83 2198.25 55
DSMNet-mixed76.94 34476.29 34378.89 36383.10 38556.11 39987.78 34979.77 39160.65 38875.64 35688.71 33161.56 32388.34 38660.07 37789.29 22492.21 325
tpm284.08 28682.94 29087.48 30091.39 29271.27 35089.23 33190.37 33971.95 36984.64 24589.33 32067.30 27496.55 27275.17 29887.09 26394.63 215
NP-MVS94.37 18582.42 15193.98 178
EG-PatchMatch MVS82.37 30380.34 30988.46 27690.27 33379.35 23592.80 24694.33 23677.14 32173.26 36990.18 30347.47 38196.72 25670.25 32987.32 26189.30 365
tpm cat181.96 30480.27 31087.01 31291.09 30571.02 35587.38 35691.53 31566.25 38180.17 31886.35 36068.22 27196.15 29469.16 33782.29 30593.86 260
SteuartSystems-ACMMP95.20 895.32 994.85 2596.99 7286.33 4197.33 797.30 2991.38 1295.39 3097.46 3088.98 1999.40 3094.12 3198.89 1898.82 16
Skip Steuart: Steuart Systems R&D Blog.
CostFormer85.77 25984.94 25988.26 28291.16 30272.58 34089.47 32791.04 32776.26 32986.45 19389.97 31070.74 23396.86 25482.35 20587.07 26495.34 191
CR-MVSNet85.35 26683.76 27790.12 22190.58 32779.34 23685.24 37191.96 30478.27 31085.55 21387.87 34571.03 22895.61 31673.96 30989.36 22295.40 187
JIA-IIPM81.04 31878.98 33087.25 30588.64 35373.48 32781.75 38689.61 35673.19 35982.05 29673.71 39066.07 29595.87 30571.18 32384.60 28092.41 318
Patchmtry82.71 29980.93 30588.06 28790.05 33876.37 29784.74 37691.96 30472.28 36881.32 30687.87 34571.03 22895.50 32268.97 33880.15 33892.32 322
PatchT82.68 30081.27 30286.89 31790.09 33770.94 35784.06 37890.15 34374.91 34285.63 21283.57 37369.37 25294.87 33365.19 35988.50 23894.84 209
tpmrst85.35 26684.99 25686.43 32390.88 31767.88 37088.71 33891.43 31880.13 28086.08 20388.80 33073.05 20796.02 29882.48 20183.40 29595.40 187
BH-w/o87.57 20187.05 18689.12 25994.90 15677.90 26892.41 25493.51 26282.89 22983.70 27291.34 26775.75 16797.07 24175.49 29493.49 15992.39 319
tpm84.73 27884.02 27386.87 31890.33 33268.90 36689.06 33489.94 34980.85 27485.75 20889.86 31268.54 26895.97 30077.76 27384.05 28595.75 175
DELS-MVS93.43 5893.25 5993.97 5495.42 12985.04 7093.06 23797.13 4090.74 2191.84 10095.09 13386.32 4299.21 4591.22 8898.45 5097.65 89
Christian Sormann, Emanuele Santellani, Mattia Rossi, Andreas Kuhn, Friedrich Fraundorfer: DELS-MVS: Deep Epipolar Line Search for Multi-View Stereo. Winter Conference on Applications of Computer Vision (WACV), 2023
BH-untuned88.60 16788.13 16190.01 22895.24 13878.50 25393.29 22694.15 24384.75 18684.46 25193.40 19775.76 16697.40 21477.59 27594.52 14194.12 245
RPMNet83.95 28981.53 30091.21 17190.58 32779.34 23685.24 37196.76 7571.44 37185.55 21382.97 37870.87 23198.91 8061.01 37489.36 22295.40 187
MVSTER88.84 15988.29 15790.51 20192.95 24380.44 20293.73 20695.01 20184.66 18987.15 17393.12 21072.79 21197.21 23287.86 12987.36 25993.87 258
CPTT-MVS91.99 7991.80 8092.55 11198.24 3181.98 16096.76 3096.49 9581.89 25190.24 12396.44 8178.59 13698.61 10489.68 10897.85 7297.06 115
GBi-Net87.26 21385.98 22991.08 17994.01 20183.10 12595.14 11794.94 20483.57 20884.37 25491.64 25866.59 28796.34 28678.23 26985.36 27493.79 263
PVSNet_Blended_VisFu91.38 9090.91 9492.80 9796.39 9083.17 12294.87 13396.66 8583.29 21889.27 13794.46 15880.29 11399.17 4787.57 13495.37 12396.05 164
PVSNet_BlendedMVS89.98 11989.70 11590.82 19196.12 9781.25 17993.92 19996.83 6683.49 21289.10 13992.26 23781.04 10998.85 8686.72 14887.86 25092.35 321
UnsupCasMVSNet_eth80.07 32778.27 33385.46 33485.24 38072.63 33888.45 34394.87 21382.99 22671.64 37588.07 34156.34 35391.75 37073.48 31263.36 38792.01 328
UnsupCasMVSNet_bld76.23 34673.27 35085.09 34083.79 38372.92 33085.65 36893.47 26371.52 37068.84 38179.08 38549.77 37593.21 35666.81 35660.52 38989.13 370
PVSNet_Blended90.73 10290.32 10191.98 13496.12 9781.25 17992.55 25296.83 6682.04 24589.10 13992.56 22781.04 10998.85 8686.72 14895.91 11095.84 171
FMVSNet581.52 31379.60 32087.27 30391.17 30077.95 26691.49 28392.26 29176.87 32276.16 35287.91 34451.67 37192.34 36467.74 34781.16 31991.52 337
test187.26 21385.98 22991.08 17994.01 20183.10 12595.14 11794.94 20483.57 20884.37 25491.64 25866.59 28796.34 28678.23 26985.36 27493.79 263
new_pmnet72.15 35070.13 35478.20 36582.95 38665.68 37583.91 37982.40 38662.94 38764.47 38479.82 38442.85 38786.26 39157.41 38374.44 36582.65 385
FMVSNet387.40 20886.11 22391.30 16993.79 21483.64 10894.20 17794.81 21883.89 20184.37 25491.87 25468.45 26996.56 27078.23 26985.36 27493.70 274
dp81.47 31480.23 31185.17 33989.92 34165.49 37786.74 36090.10 34576.30 32881.10 30787.12 35562.81 31595.92 30268.13 34579.88 34194.09 248
FMVSNet287.19 22185.82 23591.30 16994.01 20183.67 10694.79 13894.94 20483.57 20883.88 26892.05 24966.59 28796.51 27377.56 27685.01 27793.73 271
FMVSNet185.85 25784.11 27191.08 17992.81 24783.10 12595.14 11794.94 20481.64 25982.68 28991.64 25859.01 34496.34 28675.37 29683.78 28693.79 263
N_pmnet68.89 35468.44 35670.23 37489.07 35028.79 41188.06 34519.50 41169.47 37771.86 37484.93 36761.24 32791.75 37054.70 38677.15 35690.15 358
cascas86.43 24984.98 25790.80 19292.10 26580.92 19090.24 31095.91 14173.10 36083.57 27788.39 33565.15 29997.46 20184.90 16891.43 18794.03 252
BH-RMVSNet88.37 17287.48 17591.02 18395.28 13479.45 23292.89 24293.07 26985.45 16886.91 18094.84 14470.35 24097.76 17473.97 30894.59 13895.85 170
UGNet89.95 12288.95 13492.95 9094.51 17783.31 11895.70 8495.23 19189.37 5487.58 16593.94 18064.00 30598.78 9183.92 18196.31 10696.74 134
Wanjuan Su, Qingshan Xu, Wenbing Tao: Uncertainty-guided Multi-view Stereo Network for Depth Estimation. IEEE Transactions on Circuits and Systems for Video Technology, 2022
WTY-MVS89.60 13188.92 13591.67 15395.47 12881.15 18392.38 25694.78 22083.11 22289.06 14194.32 16278.67 13596.61 26581.57 22590.89 19797.24 104
XXY-MVS87.65 19286.85 19190.03 22592.14 26280.60 19993.76 20595.23 19182.94 22784.60 24694.02 17574.27 18695.49 32381.04 23183.68 28994.01 253
EC-MVSNet93.44 5593.71 5192.63 10795.21 13982.43 15097.27 996.71 8290.57 2692.88 6895.80 10683.16 7998.16 14293.68 3698.14 6097.31 101
sss88.93 15788.26 15990.94 18994.05 19980.78 19491.71 27795.38 18481.55 26288.63 14693.91 18475.04 17695.47 32482.47 20291.61 18596.57 141
Test_1112_low_res87.65 19286.51 20791.08 17994.94 15379.28 24091.77 27594.30 23776.04 33183.51 27892.37 23277.86 14697.73 17878.69 26489.13 22796.22 152
1112_ss88.42 17087.33 17991.72 15194.92 15480.98 18792.97 24094.54 22778.16 31383.82 26993.88 18578.78 13397.91 16979.45 25689.41 22096.26 151
ab-mvs-re7.82 37610.43 3790.00 3910.00 4140.00 4160.00 4020.00 4150.00 4090.00 41093.88 1850.00 4140.00 4100.00 4090.00 4080.00 406
ab-mvs89.41 14088.35 15392.60 10895.15 14382.65 14792.20 26595.60 16783.97 19988.55 14793.70 19374.16 19198.21 14082.46 20389.37 22196.94 123
TR-MVS86.78 23385.76 23989.82 23594.37 18578.41 25592.47 25392.83 27481.11 27286.36 19592.40 23168.73 26697.48 19873.75 31189.85 21393.57 277
MDTV_nov1_ep13_2view55.91 40087.62 35473.32 35884.59 24770.33 24174.65 30495.50 184
MDTV_nov1_ep1383.56 28091.69 28369.93 36387.75 35191.54 31478.60 30484.86 24188.90 32769.54 25096.03 29770.25 32988.93 231
MIMVSNet179.38 33477.28 33685.69 33286.35 37173.67 32491.61 28192.75 27778.11 31472.64 37188.12 34048.16 37991.97 36960.32 37577.49 35491.43 340
MIMVSNet82.59 30180.53 30688.76 26891.51 28678.32 25886.57 36290.13 34479.32 28980.70 31288.69 33352.98 36993.07 35966.03 35788.86 23294.90 207
IterMVS-LS88.36 17387.91 16789.70 24293.80 21278.29 26093.73 20695.08 20085.73 15984.75 24391.90 25379.88 11796.92 25083.83 18282.51 30293.89 255
Fangjinhua Wang, Silvano Galliani, Christoph Vogel, Marc Pollefeys: IterMVS: Iterative Probability Estimation for Efficient Multi-View Stereo.
CDS-MVSNet89.45 13788.51 14892.29 12593.62 22083.61 11193.01 23894.68 22581.95 24787.82 16193.24 20578.69 13496.99 24680.34 24593.23 16796.28 150
Khang Truong Giang, Soohwan Song, Sungho Jo: Curvature-guided dynamic scale networks for Multi-view Stereo. ICLR 2022
ACMMP++_ref87.47 256
IterMVS84.88 27583.98 27587.60 29591.44 28876.03 30090.18 31492.41 28483.24 22081.06 30990.42 29766.60 28694.28 34079.46 25580.98 32892.48 314
Fangjinhua Wang, Silvano Galliani, Christoph Vogel, Marc Pollefeys: IterMVS: Iterative Probability Estimation for Efficient Multi-View Stereo.
DP-MVS Recon91.95 8091.28 8693.96 5598.33 2785.92 5694.66 14796.66 8582.69 23390.03 12995.82 10582.30 9399.03 5884.57 17296.48 10496.91 126
MVS_111021_LR92.47 7592.29 7692.98 8795.99 10984.43 8993.08 23596.09 12688.20 9691.12 11495.72 11181.33 10797.76 17491.74 8197.37 8396.75 133
DP-MVS87.25 21585.36 24992.90 9297.65 5583.24 11994.81 13792.00 30074.99 34181.92 29995.00 13572.66 21299.05 5566.92 35492.33 18196.40 145
ACMMP++88.01 247
HQP-MVS89.80 12789.28 12891.34 16794.17 19481.56 16894.39 16596.04 13188.81 7285.43 22693.97 17973.83 19797.96 16587.11 14389.77 21694.50 228
QAPM89.51 13488.15 16093.59 6894.92 15484.58 7996.82 2996.70 8378.43 30783.41 28096.19 9073.18 20699.30 4077.11 28196.54 10196.89 127
Vis-MVSNetpermissive91.75 8491.23 8793.29 7195.32 13283.78 10396.14 5795.98 13489.89 3890.45 12096.58 7675.09 17598.31 13484.75 17096.90 9297.78 86
Jingyang Zhang, Yao Yao, Shiwei Li, Zixin Luo, Tian Fang: Visibility-aware Multiview Stereo Network. BMVC 2020
MVS-HIRNet73.70 34972.20 35278.18 36691.81 27756.42 39882.94 38482.58 38555.24 39068.88 38066.48 39455.32 35995.13 32858.12 38188.42 24083.01 383
IS-MVSNet91.43 8991.09 9192.46 11595.87 11481.38 17796.95 1993.69 26089.72 4789.50 13495.98 9878.57 13797.77 17383.02 19296.50 10398.22 57
HyFIR lowres test88.09 18086.81 19291.93 13896.00 10680.63 19790.01 31795.79 15073.42 35787.68 16492.10 24573.86 19697.96 16580.75 23891.70 18497.19 107
EPMVS83.90 29182.70 29587.51 29790.23 33572.67 33588.62 34081.96 38781.37 26585.01 23988.34 33666.31 29094.45 33475.30 29787.12 26295.43 186
PAPM_NR91.22 9490.78 9792.52 11397.60 5681.46 17494.37 16996.24 11386.39 14387.41 16894.80 14582.06 10098.48 11182.80 19895.37 12397.61 91
TAMVS89.21 14688.29 15791.96 13693.71 21682.62 14893.30 22594.19 24182.22 24087.78 16293.94 18078.83 13196.95 24877.70 27492.98 17196.32 147
PAPR90.02 11889.27 12992.29 12595.78 11680.95 18992.68 24796.22 11581.91 24986.66 18893.75 19282.23 9598.44 12179.40 26094.79 13297.48 97
RPSCF85.07 27284.27 26987.48 30092.91 24470.62 35991.69 27992.46 28376.20 33082.67 29095.22 12563.94 30697.29 22477.51 27785.80 27194.53 222
Vis-MVSNet (Re-imp)89.59 13289.44 12190.03 22595.74 11775.85 30395.61 9290.80 33487.66 11587.83 16095.40 12076.79 15396.46 27878.37 26596.73 9797.80 84
test_040281.30 31779.17 32787.67 29493.19 23178.17 26292.98 23991.71 30775.25 33876.02 35590.31 29859.23 34296.37 28350.22 38983.63 29088.47 374
MVS_111021_HR93.45 5493.31 5793.84 5996.99 7284.84 7393.24 23097.24 3288.76 7591.60 10795.85 10386.07 4698.66 9891.91 7898.16 5998.03 70
CSCG93.23 6393.05 6393.76 6498.04 4084.07 9696.22 4997.37 2184.15 19590.05 12895.66 11287.77 2699.15 5089.91 10798.27 5698.07 66
PatchMatch-RL86.77 23685.54 24390.47 20795.88 11282.71 14490.54 30392.31 28879.82 28584.32 25991.57 26668.77 26596.39 28273.16 31393.48 16192.32 322
API-MVS90.66 10590.07 10792.45 11696.36 9184.57 8096.06 6495.22 19382.39 23689.13 13894.27 16780.32 11298.46 11580.16 24896.71 9894.33 236
Test By Simon80.02 116
TDRefinement79.81 33077.34 33587.22 30879.24 39375.48 30793.12 23292.03 29976.45 32575.01 35991.58 26449.19 37796.44 27970.22 33169.18 37789.75 361
USDC82.76 29881.26 30387.26 30491.17 30074.55 31689.27 32993.39 26478.26 31175.30 35892.08 24654.43 36496.63 26171.64 31885.79 27290.61 354
EPP-MVSNet91.70 8691.56 8392.13 12995.88 11280.50 20197.33 795.25 19086.15 15089.76 13195.60 11483.42 7798.32 13387.37 13893.25 16697.56 95
PMMVS85.71 26084.96 25887.95 29088.90 35277.09 28588.68 33990.06 34672.32 36786.47 19090.76 29072.15 21894.40 33681.78 22193.49 15992.36 320
PAPM86.68 23885.39 24790.53 19893.05 23779.33 23989.79 32094.77 22178.82 29981.95 29893.24 20576.81 15297.30 22166.94 35293.16 16894.95 206
ACMMPcopyleft93.24 6292.88 6794.30 5098.09 3885.33 6896.86 2797.45 1488.33 8890.15 12797.03 5381.44 10599.51 2490.85 9895.74 11298.04 69
Qingshan Xu, Weihang Kong, Wenbing Tao, Marc Pollefeys: Multi-Scale Geometric Consistency Guided and Planar Prior Assisted Multi-View Stereo. IEEE Transactions on Pattern Analysis and Machine Intelligence
CNLPA89.07 15287.98 16492.34 12196.87 7484.78 7694.08 18593.24 26581.41 26484.46 25195.13 13275.57 17196.62 26277.21 27993.84 15295.61 183
PatchmatchNetpermissive85.85 25784.70 26489.29 25591.76 27875.54 30688.49 34191.30 32081.63 26085.05 23888.70 33271.71 22096.24 29074.61 30589.05 22896.08 160
Fangjinhua Wang, Silvano Galliani, Christoph Vogel, Pablo Speciale, Marc Pollefeys: PatchmatchNet: Learned Multi-View Patchmatch Stereo.
PHI-MVS93.89 4393.65 5494.62 4096.84 7586.43 3896.69 3297.49 685.15 17593.56 5596.28 8485.60 4999.31 3992.45 5698.79 2398.12 64
F-COLMAP87.95 18386.80 19391.40 16496.35 9280.88 19194.73 14295.45 17879.65 28782.04 29794.61 15371.13 22698.50 11076.24 29091.05 19594.80 212
ANet_high58.88 36454.22 36872.86 37056.50 40856.67 39580.75 38886.00 37373.09 36137.39 40064.63 39722.17 40079.49 40043.51 39423.96 40282.43 386
wuyk23d21.27 37320.48 37623.63 38868.59 40336.41 40949.57 4006.85 4129.37 4047.89 4064.46 4084.03 41131.37 40617.47 40616.07 4053.12 403
OMC-MVS91.23 9390.62 9893.08 8196.27 9384.07 9693.52 21495.93 13886.95 12889.51 13396.13 9378.50 13898.35 12885.84 15892.90 17296.83 131
MG-MVS91.77 8391.70 8292.00 13397.08 7180.03 21793.60 21295.18 19487.85 10990.89 11696.47 8082.06 10098.36 12685.07 16497.04 8897.62 90
AdaColmapbinary89.89 12589.07 13192.37 12097.41 6283.03 13094.42 16295.92 13982.81 23086.34 19794.65 15273.89 19599.02 6180.69 23995.51 11695.05 198
uanet0.00 3780.00 3810.00 3910.00 4140.00 4160.00 4020.00 4150.00 4090.00 4100.00 4090.00 4140.00 4100.00 4090.00 4080.00 406
ITE_SJBPF88.24 28391.88 27377.05 28692.92 27185.54 16680.13 32193.30 20257.29 35096.20 29172.46 31684.71 27991.49 338
DeepMVS_CXcopyleft56.31 38474.23 39651.81 40156.67 40944.85 39548.54 39575.16 38827.87 39558.74 40540.92 39752.22 39458.39 398
TinyColmap79.76 33177.69 33485.97 32791.71 28173.12 32989.55 32390.36 34075.03 34072.03 37390.19 30246.22 38396.19 29363.11 36881.03 32488.59 373
MAR-MVS90.30 11189.37 12493.07 8396.61 8184.48 8595.68 8595.67 16082.36 23887.85 15992.85 21676.63 15798.80 9080.01 24996.68 9995.91 167
Zhenyu Xu, Yiguang Liu, Xuelei Shi, Ying Wang, Yunan Zheng: MARMVS: Matching Ambiguity Reduced Multiple View Stereo for Efficient Large Scale Scene Reconstruction. CVPR 2020
LF4IMVS80.37 32579.07 32984.27 34686.64 37069.87 36489.39 32891.05 32676.38 32674.97 36090.00 30947.85 38094.25 34174.55 30680.82 33088.69 372
MSDG84.86 27683.09 28790.14 22093.80 21280.05 21589.18 33293.09 26878.89 29778.19 33891.91 25265.86 29697.27 22568.47 34188.45 23993.11 296
LS3D87.89 18486.32 21492.59 10996.07 10382.92 13695.23 10994.92 20975.66 33382.89 28795.98 9872.48 21599.21 4568.43 34295.23 12895.64 180
CLD-MVS89.47 13688.90 13791.18 17394.22 19382.07 15892.13 26796.09 12687.90 10585.37 23292.45 23074.38 18597.56 19087.15 14190.43 20293.93 254
Zhaoxin Li, Wangmeng Zuo, Zhaoqi Wang, Lei Zhang: Confidence-based Large-scale Dense Multi-view Stereo. IEEE Transaction on Image Processing, 2020
FPMVS64.63 35962.55 36170.88 37270.80 39956.71 39484.42 37784.42 38051.78 39349.57 39381.61 38123.49 39881.48 39840.61 39876.25 36174.46 391
Gipumacopyleft57.99 36554.91 36767.24 38088.51 35465.59 37652.21 39990.33 34143.58 39642.84 39951.18 40020.29 40285.07 39234.77 39970.45 37251.05 399
S. Galliani, K. Lasinger, K. Schindler: Massively Parallel Multiview Stereopsis by Surface Normal Diffusion. ICCV 2015