This table lists the benchmark results for the high-res multi-view scenario. The following metrics are evaluated:

(*) For exact definitions, detailing how potentially incomplete ground truth is taken into account, see our paper.

The datasets are grouped into different categories, and result averages are computed for a category and method if results of the method are available for all datasets within the category. Note that the category "all" includes both the high-res multi-view and the low-res many-view scenarios.

Methods with suffix _ROB may participate in the Robust Vision Challenge.

Click a dataset result cell to show a visualization of the reconstruction. For training datasets, ground truth and accuracy / completeness visualizations are also available. The visualizations may not work with mobile browsers.




Method Infoallhigh-res
multi-view
indooroutdoorbotani.boulde.bridgedoorexhibi.lectur.living.loungeobserv.old co.statueterrac.
sorted bysort bysort bysort bysort bysort bysort bysort bysort bysort bysort bysort bysort bysort bysort bysort by
DeepPCF-MVS89.96 194.20 3494.77 1792.49 11996.52 8880.00 22294.00 19597.08 4490.05 3595.65 2997.29 3789.66 1398.97 7593.95 3598.71 3298.50 27
DeepC-MVS_fast89.43 294.04 3893.79 4694.80 3397.48 6186.78 2695.65 9196.89 6089.40 5592.81 7696.97 5485.37 5499.24 4390.87 10398.69 3698.38 41
Andreas Kuhn, Christian Sormann, Mattia Rossi, Oliver Erdler, Friedrich Fraundorfer: DeepC-MVS: Deep Confidence Prediction for Multi-View Stereo Reconstruction. 3DV 2020
DeepC-MVS88.79 393.31 6092.99 6594.26 5296.07 10485.83 6194.89 13096.99 4889.02 7189.56 13797.37 3582.51 9299.38 3192.20 7098.30 5897.57 98
Andreas Kuhn, Christian Sormann, Mattia Rossi, Oliver Erdler, Friedrich Fraundorfer: DeepC-MVS: Deep Confidence Prediction for Multi-View Stereo Reconstruction. 3DV 2020
3Dnovator+87.14 492.42 8191.37 9095.55 795.63 12788.73 697.07 1896.77 7490.84 1684.02 26896.62 7475.95 17099.34 3487.77 13497.68 8198.59 24
3Dnovator86.66 591.73 9090.82 10294.44 4594.59 17786.37 4197.18 1297.02 4789.20 6284.31 26496.66 6973.74 20699.17 4786.74 14997.96 7197.79 88
TAPA-MVS84.62 688.16 18287.01 19291.62 16096.64 8080.65 20094.39 16596.21 12276.38 32886.19 20595.44 11879.75 12698.08 16262.75 37395.29 12996.13 162
Andrea Romanoni, Matteo Matteucci: TAPA-MVS: Textureless-Aware PAtchMatch Multi-View Stereo. ICCV 2019
PLCcopyleft84.53 789.06 15888.03 16792.15 13397.27 6882.69 14794.29 17195.44 18779.71 28884.01 26994.18 17476.68 16398.75 9377.28 28193.41 16795.02 205
Jie Liao, Yanping Fu, Qingan Yan, Chunxia xiao: Pyramid Multi-View Stereo with Local Consistency. Pacific Graphics 2019
ACMP84.23 889.01 16188.35 15890.99 19094.73 16981.27 18295.07 12095.89 15186.48 14083.67 27694.30 16769.33 26097.99 16987.10 14888.55 24093.72 276
Qingshan Xu and Wenbing Tao: Planar Prior Assisted PatchMatch Multi-View Stereo. AAAI 2020
ACMM84.12 989.14 15388.48 15791.12 17994.65 17581.22 18595.31 10296.12 12885.31 17185.92 20994.34 16470.19 25098.06 16485.65 16288.86 23794.08 253
Qingshan Xu and Wenbing Tao: Multi-Scale Geometric Consistency Guided Multi-View Stereo. CVPR 2019
PCF-MVS84.11 1087.74 19386.08 22892.70 10994.02 20584.43 9189.27 33295.87 15273.62 35884.43 25694.33 16578.48 14698.86 8470.27 33194.45 14894.81 218
Andreas Kuhn, Shan Lin, Oliver Erdler: Plane Completion and Filtering for Multi-View Stereo Reconstruction. GCPR 2019
OpenMVScopyleft83.78 1188.74 16787.29 18493.08 8392.70 25385.39 6996.57 3696.43 9878.74 30480.85 31396.07 9469.64 25699.01 6378.01 27596.65 10494.83 217
HY-MVS83.01 1289.03 15987.94 17092.29 13094.86 16482.77 14092.08 27294.49 23581.52 26586.93 18292.79 22578.32 14898.23 14379.93 25390.55 20795.88 175
LTVRE_ROB82.13 1386.26 25484.90 26390.34 21694.44 18881.50 17492.31 26494.89 21783.03 22579.63 33292.67 22669.69 25597.79 17871.20 32486.26 27291.72 335
Andreas Kuhn, Heiko Hirschmüller, Daniel Scharstein, Helmut Mayer: A TV Prior for High-Quality Scalable Multi-View Stereo Reconstruction. International Journal of Computer Vision 2016
ACMH+81.04 1485.05 27683.46 28489.82 23794.66 17479.37 23694.44 16094.12 25282.19 24278.04 34392.82 22258.23 35097.54 19773.77 31382.90 30392.54 315
IB-MVS80.51 1585.24 27383.26 28791.19 17792.13 26779.86 22691.75 27891.29 32583.28 22080.66 31688.49 33761.28 32898.46 12180.99 23779.46 34895.25 199
Christian Sormann, Mattia Rossi, Andreas Kuhn and Friedrich Fraundorfer: IB-MVS: An Iterative Algorithm for Deep Multi-View Stereo based on Binary Decisions. BMVC 2021
COLMAP_ROBcopyleft80.39 1683.96 29182.04 30089.74 24195.28 14079.75 22894.25 17392.28 29575.17 34278.02 34493.77 19358.60 34997.84 17765.06 36585.92 27391.63 337
Johannes L. Schönberger, Enliang Zheng, Marc Pollefeys, Jan-Michael Frahm: Pixelwise View Selection for Unstructured Multi-View Stereo. ECCV 2016
ACMH80.38 1785.36 26883.68 28190.39 21294.45 18780.63 20194.73 14194.85 22182.09 24377.24 34892.65 22760.01 34097.58 19472.25 32084.87 28192.96 304
Qingshan Xu and Wenbing Tao: Multi-Scale Geometric Consistency Guided Multi-View Stereo. CVPR 2019
PVSNet78.82 1885.55 26484.65 26888.23 28794.72 17071.93 34587.12 36192.75 28378.80 30284.95 24390.53 29764.43 30896.71 26274.74 30693.86 15696.06 169
OpenMVS_ROBcopyleft74.94 1979.51 33677.03 34386.93 31787.00 37276.23 30192.33 26290.74 33968.93 38174.52 36688.23 34249.58 37996.62 26557.64 38584.29 28587.94 380
PVSNet_073.20 2077.22 34674.83 35284.37 34790.70 32771.10 35583.09 38689.67 35972.81 36773.93 36983.13 37860.79 33593.70 35368.54 34350.84 39988.30 378
CMPMVSbinary59.16 2180.52 32579.20 32984.48 34683.98 38567.63 37589.95 32293.84 26264.79 38866.81 38691.14 28157.93 35195.17 33076.25 29288.10 24990.65 356
M. Jancosek, T. Pajdla: Multi-View Reconstruction Preserving Weakly-Supported Surfaces. CVPR 2011
PMVScopyleft47.18 2252.22 37148.46 37563.48 38445.72 41546.20 40773.41 40078.31 39841.03 40430.06 40765.68 3996.05 41483.43 39930.04 40465.86 38560.80 399
Y. Furukawa, J. Ponce: Accurate, dense, and robust multiview stereopsis. PAMI (2010)
MVEpermissive39.65 2343.39 37338.59 37957.77 38656.52 41248.77 40555.38 40358.64 41129.33 40728.96 40852.65 4044.68 41564.62 40828.11 40533.07 40559.93 401
Simon Fuhrmann, Fabian Langguth, Michael Goesele: MVE - A Multi-View Reconstruction Environment. EUROGRAPHICS Workshops on Graphics and Cultural Heritage (2014)
dongtai58.82 36858.24 36660.56 38583.13 38845.09 40982.32 38848.22 41567.61 38361.70 39269.15 39638.75 39376.05 40432.01 40341.31 40360.55 400
kuosan53.51 37053.30 37354.13 38976.06 39845.36 40880.11 39548.36 41459.63 39354.84 39563.43 40237.41 39462.07 40920.73 40939.10 40454.96 403
MVSMamba_pp92.75 7592.66 7393.02 8895.09 15082.85 13994.72 14396.46 9686.35 14593.33 6194.96 13981.98 10898.55 11392.35 6498.70 3497.67 92
MGCFI-Net93.03 6892.63 7594.23 5395.62 12885.92 5796.08 6196.33 10789.86 4193.89 5194.66 15582.11 10298.50 11492.33 6792.82 18198.27 52
testing9187.11 22786.18 22289.92 23394.43 18975.38 31291.53 28492.27 29686.48 14086.50 19390.24 30261.19 33297.53 19882.10 21490.88 20596.84 136
testing1186.44 25185.35 25389.69 24594.29 19675.40 31191.30 28990.53 34184.76 18585.06 24090.13 30858.95 34897.45 20682.08 21591.09 20196.21 159
testing9986.72 24085.73 24589.69 24594.23 19774.91 31591.35 28890.97 33386.14 15286.36 19990.22 30359.41 34497.48 20282.24 21190.66 20696.69 142
UWE-MVS83.69 29783.09 29085.48 33693.06 24165.27 38290.92 29986.14 37579.90 28586.26 20390.72 29457.17 35495.81 31271.03 32992.62 18395.35 196
ETVMVS84.43 28582.92 29488.97 26794.37 19174.67 31691.23 29388.35 36683.37 21786.06 20889.04 32755.38 36195.67 31867.12 35391.34 19596.58 146
sasdasda93.27 6192.75 7194.85 2595.70 12287.66 1296.33 4196.41 10090.00 3794.09 4494.60 15882.33 9598.62 10592.40 6192.86 17898.27 52
testing22284.84 28083.32 28589.43 25594.15 20275.94 30391.09 29689.41 36284.90 18085.78 21189.44 32252.70 37396.28 29270.80 33091.57 19396.07 167
WB-MVSnew83.77 29583.28 28685.26 34191.48 29071.03 35691.89 27387.98 36778.91 29784.78 24590.22 30369.11 26794.02 34664.70 36690.44 20890.71 355
fmvsm_l_conf0.5_n_a94.20 3494.40 2393.60 6995.29 13984.98 7395.61 9396.28 11286.31 14696.75 1697.86 2187.40 3398.74 9597.07 897.02 9297.07 119
fmvsm_l_conf0.5_n94.29 2894.46 2193.79 6595.28 14085.43 6895.68 8696.43 9886.56 13996.84 1497.81 2387.56 3298.77 9297.14 696.82 9997.16 117
fmvsm_s_conf0.1_n_a93.19 6593.26 5892.97 9292.49 25683.62 11196.02 6995.72 16486.78 13496.04 2298.19 182.30 9798.43 12996.38 1395.42 12696.86 135
fmvsm_s_conf0.1_n93.46 5393.66 5392.85 9993.75 22083.13 12696.02 6995.74 16187.68 11495.89 2598.17 282.78 8898.46 12196.71 1096.17 11296.98 127
fmvsm_s_conf0.5_n_a93.57 5093.76 4993.00 9095.02 15283.67 10896.19 5096.10 13087.27 12195.98 2498.05 1383.07 8498.45 12596.68 1195.51 12096.88 134
fmvsm_s_conf0.5_n93.76 4694.06 4192.86 9895.62 12883.17 12496.14 5796.12 12888.13 10095.82 2698.04 1683.43 7798.48 11696.97 996.23 11196.92 131
MM95.10 1194.91 1395.68 596.09 10288.34 996.68 3394.37 24095.08 194.68 3697.72 2482.94 8599.64 197.85 198.76 2899.06 7
WAC-MVS64.08 38559.14 382
Syy-MVS80.07 33079.78 31980.94 36291.92 27459.93 39389.75 32487.40 37381.72 25878.82 33787.20 35566.29 29691.29 37647.06 39487.84 25691.60 338
test_fmvsmconf0.1_n94.20 3494.31 2893.88 5992.46 25884.80 7796.18 5296.82 6889.29 5995.68 2898.11 585.10 5798.99 7097.38 497.75 8097.86 83
test_fmvsmconf0.01_n93.19 6593.02 6493.71 6789.25 35184.42 9396.06 6596.29 10989.06 6694.68 3698.13 379.22 13598.98 7497.22 597.24 8797.74 90
myMVS_eth3d79.67 33578.79 33482.32 36091.92 27464.08 38589.75 32487.40 37381.72 25878.82 33787.20 35545.33 38791.29 37659.09 38387.84 25691.60 338
testing380.46 32679.59 32483.06 35593.44 23164.64 38493.33 22185.47 37984.34 19479.93 32890.84 28944.35 38992.39 36657.06 38787.56 25992.16 329
SSC-MVS67.06 35966.56 36168.56 38280.54 39340.06 41287.77 35377.37 40372.38 36961.75 39182.66 38263.37 31486.45 39324.48 40748.69 40179.16 393
test_fmvsmconf_n94.60 1894.81 1693.98 5594.62 17684.96 7496.15 5597.35 2289.37 5696.03 2398.11 586.36 4199.01 6397.45 397.83 7697.96 75
WB-MVS67.92 35867.49 36069.21 38081.09 39241.17 41088.03 34978.00 40073.50 35962.63 38983.11 38063.94 31186.52 39225.66 40651.45 39879.94 391
test_fmvsmvis_n_192093.44 5593.55 5593.10 8193.67 22484.26 9595.83 7996.14 12589.00 7292.43 8997.50 2883.37 8098.72 9696.61 1297.44 8496.32 153
dmvs_re84.20 28883.22 28987.14 31491.83 28077.81 27490.04 31990.19 34684.70 18881.49 30489.17 32564.37 30991.13 37871.58 32285.65 27692.46 319
SDMVSNet90.19 12089.61 12491.93 14396.00 10783.09 13092.89 24495.98 14088.73 7886.85 18895.20 13072.09 22697.08 24288.90 12189.85 22095.63 187
dmvs_testset74.57 35175.81 35070.86 37687.72 37040.47 41187.05 36277.90 40182.75 23271.15 38085.47 36967.98 27884.12 39845.26 39576.98 36288.00 379
sd_testset88.59 17287.85 17290.83 19496.00 10780.42 20792.35 26094.71 23088.73 7886.85 18895.20 13067.31 27996.43 28379.64 25789.85 22095.63 187
test_fmvsm_n_192094.71 1795.11 1093.50 7195.79 11784.62 8096.15 5597.64 289.85 4297.19 897.89 1986.28 4398.71 9797.11 798.08 6897.17 113
test_cas_vis1_n_192088.83 16688.85 14788.78 26991.15 30676.72 29293.85 20394.93 21583.23 22292.81 7696.00 9661.17 33394.45 33791.67 8894.84 13695.17 201
test_vis1_n_192089.39 14989.84 12088.04 29192.97 24772.64 33994.71 14496.03 13886.18 15091.94 10196.56 7861.63 32495.74 31693.42 4395.11 13395.74 182
test_vis1_n86.56 24586.49 21286.78 32388.51 35772.69 33694.68 14593.78 26479.55 29090.70 12195.31 12348.75 38193.28 35893.15 4793.99 15394.38 241
test_fmvs1_n87.03 23087.04 19186.97 31689.74 34771.86 34694.55 15294.43 23778.47 30791.95 10095.50 11751.16 37693.81 35093.02 5094.56 14495.26 198
mvsany_test185.42 26785.30 25485.77 33487.95 36875.41 31087.61 35880.97 39276.82 32588.68 15095.83 10477.44 15590.82 38085.90 15986.51 27091.08 353
APD_test169.04 35666.26 36277.36 37180.51 39462.79 39085.46 37383.51 38654.11 39759.14 39484.79 37223.40 40489.61 38455.22 38870.24 37679.68 392
test_vis1_rt77.96 34476.46 34482.48 35885.89 37871.74 34990.25 31178.89 39671.03 37771.30 37981.35 38542.49 39191.05 37984.55 17682.37 30784.65 383
test_vis3_rt65.12 36162.60 36372.69 37471.44 40360.71 39287.17 36065.55 40763.80 39053.22 39765.65 40014.54 41189.44 38676.65 28765.38 38667.91 398
test_fmvs283.98 29084.03 27583.83 35287.16 37167.53 37693.93 19992.89 27877.62 31786.89 18793.53 19847.18 38592.02 37090.54 10686.51 27091.93 332
test_fmvs187.34 21387.56 17786.68 32490.59 32971.80 34894.01 19394.04 25478.30 31191.97 9895.22 12756.28 35793.71 35292.89 5194.71 13894.52 230
test_fmvs377.67 34577.16 34279.22 36579.52 39661.14 39192.34 26191.64 31573.98 35478.86 33686.59 35927.38 40187.03 39088.12 13175.97 36589.50 365
mvsany_test374.95 35073.26 35480.02 36474.61 40063.16 38985.53 37278.42 39774.16 35274.89 36486.46 36036.02 39689.09 38782.39 20766.91 38487.82 381
testf159.54 36556.11 36969.85 37869.28 40556.61 39980.37 39376.55 40442.58 40245.68 40175.61 38911.26 41284.18 39643.20 39860.44 39368.75 396
APD_test259.54 36556.11 36969.85 37869.28 40556.61 39980.37 39376.55 40442.58 40245.68 40175.61 38911.26 41284.18 39643.20 39860.44 39368.75 396
test_f71.95 35470.87 35675.21 37274.21 40259.37 39585.07 37685.82 37765.25 38770.42 38183.13 37823.62 40282.93 40078.32 27071.94 37483.33 385
FE-MVS87.40 21186.02 23091.57 16294.56 18179.69 23090.27 30993.72 26580.57 27888.80 14991.62 26565.32 30298.59 10974.97 30594.33 15196.44 150
FA-MVS(test-final)89.66 13688.91 14391.93 14394.57 18080.27 20991.36 28794.74 22984.87 18189.82 13592.61 22974.72 18998.47 12083.97 18393.53 16297.04 122
iter_conf05_1192.98 7092.96 6693.03 8695.91 11382.49 15296.06 6596.37 10486.94 12994.09 4495.16 13281.94 10998.67 9991.65 8998.56 4997.95 76
bld_raw_dy_0_6490.17 12189.64 12291.79 15595.65 12582.00 16390.56 30595.93 14475.32 34085.34 23694.26 17282.58 9098.48 11690.30 11096.78 10094.88 214
patch_mono-293.74 4794.32 2692.01 13597.54 5778.37 25993.40 21997.19 3588.02 10294.99 3597.21 4288.35 2198.44 12794.07 3498.09 6699.23 1
EGC-MVSNET61.97 36356.37 36878.77 36789.63 34973.50 32889.12 33682.79 3870.21 4131.24 41484.80 37139.48 39290.04 38344.13 39675.94 36672.79 395
test250687.21 22286.28 21990.02 22995.62 12873.64 32796.25 4871.38 40687.89 10890.45 12596.65 7055.29 36398.09 16086.03 15896.94 9398.33 43
test111189.10 15488.64 14990.48 20795.53 13374.97 31396.08 6184.89 38288.13 10090.16 13196.65 7063.29 31598.10 15286.14 15496.90 9598.39 39
ECVR-MVScopyleft89.09 15688.53 15290.77 19795.62 12875.89 30496.16 5384.22 38487.89 10890.20 12996.65 7063.19 31798.10 15285.90 15996.94 9398.33 43
test_blank0.00 3830.00 3860.00 3960.00 4190.00 4210.00 4070.00 4200.00 4140.00 4150.00 4140.00 4190.00 4150.00 4140.00 4130.00 411
tt080586.92 23285.74 24490.48 20792.22 26379.98 22395.63 9294.88 21983.83 20484.74 24792.80 22457.61 35297.67 18585.48 16584.42 28493.79 267
DVP-MVS++95.98 196.36 194.82 3197.78 5186.00 5098.29 197.49 690.75 1997.62 598.06 1192.59 299.61 495.64 1999.02 1298.86 11
FOURS198.86 185.54 6798.29 197.49 689.79 4696.29 18
MSC_two_6792asdad96.52 197.78 5190.86 196.85 6399.61 496.03 1499.06 999.07 5
PC_three_145282.47 23697.09 1097.07 5192.72 198.04 16592.70 5799.02 1298.86 11
No_MVS96.52 197.78 5190.86 196.85 6399.61 496.03 1499.06 999.07 5
test_one_060198.58 1185.83 6197.44 1591.05 1496.78 1598.06 1191.45 11
eth-test20.00 419
eth-test0.00 419
GeoE90.05 12489.43 12991.90 14895.16 14780.37 20895.80 8094.65 23383.90 20187.55 17394.75 15078.18 14997.62 19381.28 23193.63 15997.71 91
test_method50.52 37248.47 37456.66 38752.26 41418.98 41841.51 40681.40 39110.10 40844.59 40375.01 39228.51 39968.16 40553.54 39049.31 40082.83 387
Anonymous2024052180.44 32779.21 32884.11 35085.75 38067.89 37292.86 24693.23 27275.61 33775.59 36087.47 35250.03 37794.33 34171.14 32781.21 32190.12 362
h-mvs3390.80 10590.15 11192.75 10496.01 10682.66 14895.43 9895.53 17989.80 4393.08 6795.64 11375.77 17199.00 6892.07 7578.05 35496.60 144
hse-mvs289.88 13389.34 13291.51 16494.83 16681.12 18893.94 19893.91 25989.80 4393.08 6793.60 19775.77 17197.66 18792.07 7577.07 36195.74 182
CL-MVSNet_self_test81.74 31180.53 30985.36 33885.96 37772.45 34390.25 31193.07 27581.24 27179.85 33087.29 35470.93 23792.52 36566.95 35469.23 37991.11 351
KD-MVS_2432*160078.50 34176.02 34885.93 33186.22 37574.47 31984.80 37792.33 29279.29 29276.98 35085.92 36553.81 37093.97 34767.39 35157.42 39589.36 366
KD-MVS_self_test80.20 32979.24 32783.07 35485.64 38165.29 38191.01 29893.93 25678.71 30576.32 35486.40 36259.20 34692.93 36372.59 31869.35 37891.00 354
AUN-MVS87.78 19286.54 20991.48 16694.82 16781.05 18993.91 20293.93 25683.00 22686.93 18293.53 19869.50 25897.67 18586.14 15477.12 36095.73 184
ZD-MVS98.15 3486.62 3397.07 4583.63 20894.19 4296.91 5787.57 3199.26 4291.99 7998.44 54
SR-MVS-dyc-post93.82 4493.82 4593.82 6297.92 4384.57 8296.28 4596.76 7587.46 11793.75 5297.43 3184.24 7099.01 6392.73 5397.80 7797.88 81
RE-MVS-def93.68 5297.92 4384.57 8296.28 4596.76 7587.46 11793.75 5297.43 3182.94 8592.73 5397.80 7797.88 81
SED-MVS95.91 296.28 294.80 3398.77 585.99 5297.13 1497.44 1590.31 2897.71 198.07 992.31 499.58 1095.66 1799.13 398.84 14
IU-MVS98.77 586.00 5096.84 6581.26 27097.26 795.50 2399.13 399.03 8
OPU-MVS96.21 398.00 4290.85 397.13 1497.08 4992.59 298.94 7892.25 6898.99 1498.84 14
test_241102_TWO97.44 1590.31 2897.62 598.07 991.46 1099.58 1095.66 1799.12 698.98 10
test_241102_ONE98.77 585.99 5297.44 1590.26 3397.71 197.96 1792.31 499.38 31
SF-MVS94.97 1294.90 1595.20 1297.84 4787.76 1096.65 3597.48 1087.76 11295.71 2797.70 2588.28 2399.35 3393.89 3798.78 2598.48 30
cl2286.78 23685.98 23289.18 26092.34 26177.62 28190.84 30194.13 25181.33 26883.97 27090.15 30773.96 20196.60 27084.19 18082.94 30093.33 288
miper_ehance_all_eth87.22 22186.62 20689.02 26592.13 26777.40 28490.91 30094.81 22581.28 26984.32 26290.08 31079.26 13496.62 26583.81 18682.94 30093.04 302
miper_enhance_ethall86.90 23386.18 22289.06 26391.66 28777.58 28290.22 31594.82 22479.16 29584.48 25389.10 32679.19 13696.66 26384.06 18182.94 30092.94 305
ZNCC-MVS94.47 2194.28 3095.03 1698.52 1586.96 2096.85 2897.32 2788.24 9493.15 6597.04 5286.17 4499.62 292.40 6198.81 2298.52 26
dcpmvs_293.49 5294.19 3691.38 17097.69 5476.78 29194.25 17396.29 10988.33 9094.46 3896.88 5888.07 2598.64 10293.62 4098.09 6698.73 17
cl____86.52 24785.78 23988.75 27192.03 27176.46 29690.74 30294.30 24381.83 25683.34 28590.78 29275.74 17696.57 27181.74 22581.54 31993.22 294
DIV-MVS_self_test86.53 24685.78 23988.75 27192.02 27276.45 29790.74 30294.30 24381.83 25683.34 28590.82 29075.75 17496.57 27181.73 22681.52 32093.24 293
eth_miper_zixun_eth86.50 24885.77 24188.68 27491.94 27375.81 30690.47 30794.89 21782.05 24484.05 26790.46 29875.96 16996.77 25982.76 20279.36 34993.46 286
9.1494.47 2097.79 4996.08 6197.44 1586.13 15495.10 3397.40 3388.34 2299.22 4493.25 4698.70 34
uanet_test0.00 3830.00 3860.00 3960.00 4190.00 4210.00 4070.00 4200.00 4140.00 4150.00 4140.00 4190.00 4150.00 4140.00 4130.00 411
DCPMVS0.00 3830.00 3860.00 3960.00 4190.00 4210.00 4070.00 4200.00 4140.00 4150.00 4140.00 4190.00 4150.00 4140.00 4130.00 411
save fliter97.85 4685.63 6695.21 11296.82 6889.44 53
ET-MVSNet_ETH3D87.51 20685.91 23692.32 12793.70 22383.93 10192.33 26290.94 33484.16 19572.09 37592.52 23169.90 25195.85 30989.20 11888.36 24797.17 113
UniMVSNet_ETH3D87.53 20586.37 21491.00 18992.44 25978.96 24794.74 14095.61 17384.07 19885.36 23594.52 16259.78 34297.34 22382.93 19687.88 25496.71 141
EIA-MVS91.95 8591.94 8391.98 13995.16 14780.01 22195.36 9996.73 7988.44 8789.34 14192.16 24283.82 7598.45 12589.35 11697.06 9097.48 101
miper_refine_blended78.50 34176.02 34885.93 33186.22 37574.47 31984.80 37792.33 29279.29 29276.98 35085.92 36553.81 37093.97 34767.39 35157.42 39589.36 366
miper_lstm_enhance85.27 27284.59 27087.31 30591.28 30074.63 31787.69 35594.09 25381.20 27381.36 30889.85 31674.97 18594.30 34281.03 23679.84 34693.01 303
ETV-MVS92.74 7692.66 7392.97 9295.20 14684.04 10095.07 12096.51 9490.73 2292.96 7091.19 27684.06 7198.34 13591.72 8796.54 10596.54 149
CS-MVS94.12 3794.44 2293.17 7896.55 8583.08 13197.63 396.95 5491.71 1193.50 6096.21 8685.61 4998.24 14293.64 3998.17 6198.19 60
D2MVS85.90 25885.09 25888.35 28190.79 32277.42 28391.83 27695.70 16580.77 27780.08 32590.02 31166.74 29096.37 28681.88 22187.97 25391.26 346
DVP-MVScopyleft95.67 396.02 394.64 3998.78 385.93 5597.09 1696.73 7990.27 3197.04 1198.05 1391.47 899.55 1695.62 2199.08 798.45 36
Zhenlong Yuan, Jinguo Luo, Fei Shen, Zhaoxin Li, Cong Liu, Tianlu Mao, Zhaoqi Wang: DVP-MVS: Synergize Depth-Edge and Visibility Prior for Multi-View Stereo. AAAI2025
test_0728_THIRD90.75 1997.04 1198.05 1392.09 699.55 1695.64 1999.13 399.13 2
test_0728_SECOND95.01 1798.79 286.43 3997.09 1697.49 699.61 495.62 2199.08 798.99 9
test072698.78 385.93 5597.19 1197.47 1190.27 3197.64 498.13 391.47 8
SR-MVS94.23 3194.17 3794.43 4798.21 3285.78 6396.40 4096.90 5988.20 9794.33 4097.40 3384.75 6699.03 5893.35 4597.99 7098.48 30
DPM-MVS92.58 7891.74 8795.08 1596.19 9689.31 592.66 25096.56 9383.44 21491.68 11095.04 13786.60 4098.99 7085.60 16397.92 7396.93 130
GST-MVS94.21 3293.97 4394.90 2398.41 2286.82 2496.54 3797.19 3588.24 9493.26 6296.83 6185.48 5299.59 891.43 9398.40 5598.30 47
test_yl90.69 10990.02 11792.71 10795.72 12082.41 15794.11 18295.12 20385.63 16391.49 11294.70 15174.75 18698.42 13086.13 15692.53 18597.31 105
thisisatest053088.67 16887.61 17691.86 14994.87 16380.07 21694.63 14889.90 35584.00 19988.46 15493.78 19266.88 28798.46 12183.30 19192.65 18297.06 120
Anonymous2024052988.09 18486.59 20792.58 11596.53 8781.92 16795.99 7195.84 15474.11 35389.06 14695.21 12961.44 32798.81 8983.67 18987.47 26097.01 125
Anonymous20240521187.68 19486.13 22492.31 12896.66 7980.74 19994.87 13291.49 32080.47 27989.46 14095.44 11854.72 36598.23 14382.19 21289.89 21897.97 74
DCV-MVSNet90.69 10990.02 11792.71 10795.72 12082.41 15794.11 18295.12 20385.63 16391.49 11294.70 15174.75 18698.42 13086.13 15692.53 18597.31 105
tttt051788.61 17087.78 17391.11 18294.96 15777.81 27495.35 10089.69 35885.09 17788.05 16294.59 16066.93 28598.48 11683.27 19292.13 19097.03 123
our_test_381.93 30880.46 31186.33 32888.46 36073.48 32988.46 34591.11 32776.46 32676.69 35288.25 34166.89 28694.36 34068.75 34279.08 35191.14 349
thisisatest051587.33 21485.99 23191.37 17193.49 22879.55 23190.63 30489.56 36180.17 28187.56 17290.86 28767.07 28498.28 14181.50 22993.02 17596.29 155
ppachtmachnet_test81.84 30980.07 31787.15 31388.46 36074.43 32189.04 33892.16 29975.33 33977.75 34588.99 32866.20 29795.37 32865.12 36477.60 35691.65 336
SMA-MVScopyleft95.20 895.07 1195.59 698.14 3588.48 896.26 4797.28 3185.90 15697.67 398.10 788.41 2099.56 1294.66 2899.19 198.71 19
Yufeng Yin; Xiaoyan Liu; Zichao Zhang: SMA-MVS: Segmentation-Guided Multi-Scale Anchor Deformation Patch Multi-View Stereo. IEEE Transactions on Circuits and Systems for Video Technology
GSMVS96.12 163
DPE-MVScopyleft95.57 495.67 495.25 1098.36 2587.28 1895.56 9697.51 589.13 6597.14 997.91 1891.64 799.62 294.61 2999.17 298.86 11
Kehua Chen, Zhenlong Yuan, Tianlu Mao, Zhaoqi Wang: Dual-Level Precision Edges Guided Multi-View Stereo with Accurate Planarization. AAAI2025
test_part298.55 1287.22 1996.40 17
thres100view90087.63 19986.71 20090.38 21496.12 9878.55 25295.03 12391.58 31687.15 12288.06 16192.29 23968.91 26998.10 15270.13 33591.10 19794.48 237
tfpnnormal84.72 28283.23 28889.20 25992.79 25280.05 21894.48 15595.81 15582.38 23881.08 31191.21 27569.01 26896.95 25261.69 37580.59 33590.58 360
tfpn200view987.58 20386.64 20390.41 21195.99 11078.64 25094.58 15091.98 30686.94 12988.09 15891.77 25869.18 26598.10 15270.13 33591.10 19794.48 237
c3_l87.14 22686.50 21189.04 26492.20 26477.26 28591.22 29494.70 23182.01 24784.34 26190.43 29978.81 13996.61 26883.70 18881.09 32593.25 292
CHOSEN 280x42085.15 27483.99 27788.65 27592.47 25778.40 25879.68 39692.76 28274.90 34681.41 30789.59 31969.85 25495.51 32379.92 25495.29 12992.03 330
CANet93.54 5193.20 6194.55 4395.65 12585.73 6594.94 12796.69 8491.89 890.69 12295.88 10281.99 10799.54 2093.14 4897.95 7298.39 39
Fast-Effi-MVS+-dtu87.44 20986.72 19989.63 24892.04 27077.68 28094.03 19193.94 25585.81 15782.42 29491.32 27370.33 24897.06 24580.33 24990.23 21294.14 248
Effi-MVS+-dtu88.65 16988.35 15889.54 25093.33 23376.39 29894.47 15894.36 24187.70 11385.43 22889.56 32173.45 20997.26 23085.57 16491.28 19694.97 206
CANet_DTU90.26 11989.41 13092.81 10093.46 23083.01 13493.48 21694.47 23689.43 5487.76 16994.23 17370.54 24699.03 5884.97 16896.39 10996.38 152
MVS_030494.60 1894.38 2595.23 1195.41 13687.49 1696.53 3892.75 28393.82 293.07 6997.84 2283.66 7699.59 897.61 298.76 2898.61 22
MP-MVS-pluss94.21 3294.00 4294.85 2598.17 3386.65 3194.82 13597.17 3986.26 14892.83 7597.87 2085.57 5199.56 1294.37 3298.92 1798.34 42
MP-MVS-pluss: MP-MVS-pluss. MP-MVS-pluss
MSP-MVS95.42 695.56 694.98 1998.49 1786.52 3696.91 2597.47 1191.73 1096.10 2096.69 6689.90 1299.30 4094.70 2798.04 6999.13 2
Zhenlong Yuan, Cong Liu, Fei Shen, Zhaoxin Li, Jingguo luo, Tianlu Mao and Zhaoqi Wang: MSP-MVS: Multi-granularity Segmentation Prior Guided Multi-View Stereo. AAAI2025
sam_mvs171.70 22896.12 163
sam_mvs70.60 241
IterMVS-SCA-FT85.45 26584.53 27188.18 28891.71 28476.87 29090.19 31692.65 28785.40 16981.44 30690.54 29666.79 28895.00 33581.04 23481.05 32692.66 313
TSAR-MVS + MP.94.85 1494.94 1294.58 4298.25 2986.33 4296.11 6096.62 8888.14 9996.10 2096.96 5589.09 1898.94 7894.48 3098.68 3898.48 30
Zhenlong Yuan, Jiakai Cao, Zhaoqi Wang, Zhaoxin Li: TSAR-MVS: Textureless-aware Segmentation and Correlative Refinement Guided Multi-View Stereo. Pattern Recognition
xiu_mvs_v1_base_debu90.64 11290.05 11492.40 12293.97 21184.46 8893.32 22295.46 18285.17 17292.25 9094.03 17570.59 24298.57 11090.97 9894.67 13994.18 245
OPM-MVS90.12 12289.56 12591.82 15293.14 23783.90 10294.16 17995.74 16188.96 7387.86 16495.43 12072.48 22297.91 17588.10 13290.18 21393.65 278
Ray L. Khuboni, Hongjun Xu: Octagram Propagation Matching for Multi-Scale View Stereopsis (OPM-MVS).
ACMMP_NAP94.74 1694.56 1995.28 998.02 4187.70 1195.68 8697.34 2388.28 9395.30 3297.67 2685.90 4799.54 2093.91 3698.95 1598.60 23
ambc83.06 35579.99 39563.51 38877.47 39792.86 27974.34 36884.45 37328.74 39895.06 33473.06 31768.89 38290.61 357
MTGPAbinary96.97 50
CS-MVS-test94.02 3994.29 2993.24 7596.69 7883.24 12197.49 596.92 5792.14 592.90 7195.77 10885.02 6098.33 13793.03 4998.62 4598.13 64
Effi-MVS+91.59 9391.11 9593.01 8994.35 19583.39 11994.60 14995.10 20587.10 12490.57 12493.10 21481.43 11398.07 16389.29 11794.48 14797.59 97
xiu_mvs_v2_base91.13 10190.89 10191.86 14994.97 15682.42 15592.24 26595.64 17286.11 15591.74 10993.14 21279.67 13198.89 8189.06 12095.46 12494.28 244
xiu_mvs_v1_base90.64 11290.05 11492.40 12293.97 21184.46 8893.32 22295.46 18285.17 17292.25 9094.03 17570.59 24298.57 11090.97 9894.67 13994.18 245
new-patchmatchnet76.41 34875.17 35180.13 36382.65 39159.61 39487.66 35691.08 32878.23 31469.85 38283.22 37754.76 36491.63 37564.14 36964.89 38889.16 371
pmmvs683.42 29881.60 30288.87 26888.01 36677.87 27294.96 12694.24 24674.67 34878.80 33991.09 28360.17 33996.49 27777.06 28675.40 36792.23 327
pmmvs584.21 28782.84 29788.34 28288.95 35476.94 28992.41 25691.91 31075.63 33680.28 32091.18 27864.59 30795.57 32077.09 28583.47 29592.53 316
test_post188.00 3509.81 41069.31 26295.53 32176.65 287
test_post10.29 40970.57 24595.91 307
Fast-Effi-MVS+89.41 14688.64 14991.71 15894.74 16880.81 19793.54 21495.10 20583.11 22386.82 19090.67 29579.74 12797.75 18380.51 24693.55 16196.57 147
patchmatchnet-post83.76 37571.53 22996.48 278
Anonymous2023121186.59 24485.13 25790.98 19296.52 8881.50 17496.14 5796.16 12373.78 35683.65 27792.15 24363.26 31697.37 22282.82 20081.74 31794.06 254
pmmvs-eth3d80.97 32378.72 33587.74 29584.99 38479.97 22490.11 31891.65 31475.36 33873.51 37086.03 36459.45 34393.96 34975.17 30172.21 37289.29 369
GG-mvs-BLEND87.94 29489.73 34877.91 26987.80 35178.23 39980.58 31783.86 37459.88 34195.33 32971.20 32492.22 18990.60 359
xiu_mvs_v1_base_debi90.64 11290.05 11492.40 12293.97 21184.46 8893.32 22295.46 18285.17 17292.25 9094.03 17570.59 24298.57 11090.97 9894.67 13994.18 245
Anonymous2023120681.03 32279.77 32184.82 34487.85 36970.26 36491.42 28692.08 30173.67 35777.75 34589.25 32462.43 32093.08 36161.50 37682.00 31391.12 350
MTAPA94.42 2694.22 3395.00 1898.42 2186.95 2194.36 17096.97 5091.07 1393.14 6697.56 2784.30 6999.56 1293.43 4298.75 3098.47 33
MTMP96.16 5360.64 410
gm-plane-assit89.60 35068.00 37177.28 32288.99 32897.57 19579.44 260
test9_res91.91 8398.71 3298.07 68
MVP-Stereo85.97 25784.86 26489.32 25690.92 31782.19 16092.11 27094.19 24778.76 30378.77 34091.63 26468.38 27696.56 27375.01 30493.95 15489.20 370
Qingsong Yan: MVP-Stereo: A Parallel Multi-View Patchmatch Stereo Method with Dilation Matching for Photogrammetric Application.
TEST997.53 5886.49 3794.07 18796.78 7281.61 26392.77 7896.20 8787.71 2899.12 51
train_agg93.44 5593.08 6294.52 4497.53 5886.49 3794.07 18796.78 7281.86 25492.77 7896.20 8787.63 2999.12 5192.14 7398.69 3697.94 77
gg-mvs-nofinetune81.77 31079.37 32588.99 26690.85 32177.73 27986.29 36679.63 39574.88 34783.19 28869.05 39760.34 33796.11 29875.46 29894.64 14293.11 299
SCA86.32 25385.18 25689.73 24392.15 26576.60 29491.12 29591.69 31383.53 21285.50 22288.81 33166.79 28896.48 27876.65 28790.35 21196.12 163
Patchmatch-test81.37 31879.30 32687.58 29990.92 31774.16 32480.99 39187.68 37170.52 37876.63 35388.81 33171.21 23292.76 36460.01 38186.93 26995.83 178
test_897.49 6086.30 4594.02 19296.76 7581.86 25492.70 8296.20 8787.63 2999.02 61
MS-PatchMatch85.05 27684.16 27387.73 29691.42 29478.51 25491.25 29293.53 26777.50 31880.15 32291.58 26761.99 32295.51 32375.69 29694.35 15089.16 371
Patchmatch-RL test81.67 31279.96 31886.81 32285.42 38271.23 35382.17 38987.50 37278.47 30777.19 34982.50 38370.81 23993.48 35582.66 20372.89 37195.71 185
cdsmvs_eth3d_5k22.14 37729.52 3800.00 3960.00 4190.00 4210.00 40795.76 1590.00 4140.00 41594.29 16875.66 1770.00 4150.00 4140.00 4130.00 411
pcd_1.5k_mvsjas6.64 3828.86 3850.00 3960.00 4190.00 4210.00 4070.00 4200.00 4140.00 4150.00 41479.70 1280.00 4150.00 4140.00 4130.00 411
agg_prior290.54 10698.68 3898.27 52
agg_prior97.38 6385.92 5796.72 8192.16 9398.97 75
tmp_tt35.64 37639.24 37824.84 39214.87 41623.90 41762.71 40251.51 4136.58 41036.66 40662.08 40344.37 38830.34 41252.40 39122.00 40920.27 407
canonicalmvs93.27 6192.75 7194.85 2595.70 12287.66 1296.33 4196.41 10090.00 3794.09 4494.60 15882.33 9598.62 10592.40 6192.86 17898.27 52
anonymousdsp87.84 18987.09 18890.12 22389.13 35280.54 20494.67 14695.55 17682.05 24483.82 27292.12 24571.47 23197.15 23787.15 14487.80 25892.67 312
alignmvs93.08 6792.50 7894.81 3295.62 12887.61 1495.99 7196.07 13389.77 4794.12 4394.87 14380.56 11898.66 10092.42 6093.10 17498.15 63
nrg03091.08 10290.39 10593.17 7893.07 24086.91 2296.41 3996.26 11488.30 9288.37 15694.85 14682.19 10197.64 19191.09 9582.95 29994.96 209
v14419287.19 22486.35 21589.74 24190.64 32878.24 26393.92 20095.43 18881.93 24985.51 22191.05 28474.21 19697.45 20682.86 19881.56 31893.53 281
FIs90.51 11690.35 10690.99 19093.99 21080.98 19195.73 8397.54 489.15 6486.72 19194.68 15381.83 11197.24 23285.18 16688.31 24894.76 220
v192192086.97 23186.06 22989.69 24590.53 33378.11 26693.80 20495.43 18881.90 25185.33 23791.05 28472.66 21997.41 21682.05 21781.80 31593.53 281
UA-Net92.83 7392.54 7793.68 6896.10 10184.71 7995.66 8996.39 10291.92 793.22 6496.49 7983.16 8198.87 8284.47 17795.47 12397.45 103
v119287.25 21886.33 21690.00 23190.76 32479.04 24693.80 20495.48 18182.57 23585.48 22391.18 27873.38 21297.42 21182.30 20982.06 31093.53 281
FC-MVSNet-test90.27 11890.18 11090.53 20293.71 22179.85 22795.77 8297.59 389.31 5886.27 20294.67 15481.93 11097.01 24884.26 17988.09 25194.71 221
v114487.61 20286.79 19890.06 22691.01 31079.34 23893.95 19795.42 19083.36 21885.66 21591.31 27474.98 18497.42 21183.37 19082.06 31093.42 287
sosnet-low-res0.00 3830.00 3860.00 3960.00 4190.00 4210.00 4070.00 4200.00 4140.00 4150.00 4140.00 4190.00 4150.00 4140.00 4130.00 411
HFP-MVS94.52 2094.40 2394.86 2498.61 1086.81 2596.94 2097.34 2388.63 8293.65 5497.21 4286.10 4599.49 2692.35 6498.77 2798.30 47
v14887.04 22986.32 21789.21 25890.94 31577.26 28593.71 20994.43 23784.84 18384.36 26090.80 29176.04 16897.05 24682.12 21379.60 34793.31 289
sosnet0.00 3830.00 3860.00 3960.00 4190.00 4210.00 4070.00 4200.00 4140.00 4150.00 4140.00 4190.00 4150.00 4140.00 4130.00 411
uncertanet0.00 3830.00 3860.00 3960.00 4190.00 4210.00 4070.00 4200.00 4140.00 4150.00 4140.00 4190.00 4150.00 4140.00 4130.00 411
AllTest83.42 29881.39 30489.52 25195.01 15377.79 27693.12 23390.89 33677.41 31976.12 35693.34 20154.08 36897.51 20068.31 34684.27 28693.26 290
TestCases89.52 25195.01 15377.79 27690.89 33677.41 31976.12 35693.34 20154.08 36897.51 20068.31 34684.27 28693.26 290
v7n86.81 23485.76 24289.95 23290.72 32679.25 24495.07 12095.92 14684.45 19282.29 29590.86 28772.60 22197.53 19879.42 26280.52 33893.08 301
region2R94.43 2494.27 3294.92 2098.65 886.67 3096.92 2497.23 3488.60 8493.58 5697.27 3885.22 5599.54 2092.21 6998.74 3198.56 25
iter_conf0592.85 7292.89 6892.73 10696.58 8482.47 15394.20 17796.16 12384.42 19390.65 12395.56 11685.01 6398.69 9894.96 2698.47 5297.03 123
mamv490.92 10391.78 8688.33 28395.67 12470.75 36092.92 24396.02 13981.90 25188.11 15795.34 12285.88 4896.97 25095.22 2495.01 13497.26 108
PS-MVSNAJss89.97 12789.62 12391.02 18791.90 27680.85 19695.26 10995.98 14086.26 14886.21 20494.29 16879.70 12897.65 18888.87 12388.10 24994.57 227
PS-MVSNAJ91.18 10090.92 9991.96 14195.26 14382.60 15192.09 27195.70 16586.27 14791.84 10492.46 23279.70 12898.99 7089.08 11995.86 11594.29 243
jajsoiax88.24 18087.50 17890.48 20790.89 31980.14 21395.31 10295.65 17184.97 17984.24 26594.02 17865.31 30397.42 21188.56 12588.52 24293.89 259
mvs_tets88.06 18687.28 18590.38 21490.94 31579.88 22595.22 11195.66 16985.10 17684.21 26693.94 18363.53 31397.40 21888.50 12688.40 24693.87 262
EI-MVSNet-UG-set92.74 7692.62 7693.12 8094.86 16483.20 12394.40 16395.74 16190.71 2392.05 9596.60 7584.00 7298.99 7091.55 9093.63 15997.17 113
EI-MVSNet-Vis-set93.01 6992.92 6793.29 7395.01 15383.51 11594.48 15595.77 15890.87 1592.52 8696.67 6884.50 6899.00 6891.99 7994.44 14997.36 104
HPM-MVS++copyleft95.14 1094.91 1395.83 498.25 2989.65 495.92 7596.96 5291.75 994.02 4896.83 6188.12 2499.55 1693.41 4498.94 1698.28 50
test_prior485.96 5494.11 182
XVS94.45 2294.32 2694.85 2598.54 1386.60 3496.93 2297.19 3590.66 2492.85 7397.16 4785.02 6099.49 2691.99 7998.56 4998.47 33
v124086.78 23685.85 23789.56 24990.45 33477.79 27693.61 21295.37 19381.65 26085.43 22891.15 28071.50 23097.43 21081.47 23082.05 31293.47 285
pm-mvs186.61 24285.54 24689.82 23791.44 29180.18 21195.28 10894.85 22183.84 20381.66 30392.62 22872.45 22496.48 27879.67 25678.06 35392.82 310
test_prior294.12 18187.67 11592.63 8396.39 8286.62 3891.50 9198.67 40
X-MVStestdata88.31 17886.13 22494.85 2598.54 1386.60 3496.93 2297.19 3590.66 2492.85 7323.41 40885.02 6099.49 2691.99 7998.56 4998.47 33
test_prior93.82 6297.29 6784.49 8696.88 6198.87 8298.11 67
旧先验293.36 22071.25 37594.37 3997.13 24086.74 149
新几何293.11 235
新几何193.10 8197.30 6684.35 9495.56 17571.09 37691.26 11796.24 8582.87 8798.86 8479.19 26498.10 6596.07 167
旧先验196.79 7681.81 16995.67 16796.81 6386.69 3797.66 8296.97 128
无先验93.28 22896.26 11473.95 35599.05 5580.56 24596.59 145
原ACMM292.94 242
原ACMM192.01 13597.34 6481.05 18996.81 7078.89 29990.45 12595.92 10082.65 8998.84 8880.68 24398.26 6096.14 161
test22296.55 8581.70 17192.22 26695.01 20868.36 38290.20 12996.14 9280.26 12197.80 7796.05 170
testdata298.75 9378.30 271
segment_acmp87.16 36
testdata90.49 20696.40 9077.89 27195.37 19372.51 36893.63 5596.69 6682.08 10497.65 18883.08 19397.39 8595.94 172
testdata192.15 26887.94 104
v887.50 20886.71 20089.89 23491.37 29679.40 23594.50 15495.38 19184.81 18483.60 27991.33 27176.05 16797.42 21182.84 19980.51 33992.84 309
131487.51 20686.57 20890.34 21692.42 26079.74 22992.63 25195.35 19578.35 31080.14 32391.62 26574.05 19997.15 23781.05 23393.53 16294.12 249
LFMVS90.08 12389.13 13792.95 9496.71 7782.32 15996.08 6189.91 35486.79 13392.15 9496.81 6362.60 31998.34 13587.18 14393.90 15598.19 60
VDD-MVS90.74 10789.92 11993.20 7796.27 9483.02 13395.73 8393.86 26088.42 8992.53 8596.84 6062.09 32198.64 10290.95 10192.62 18397.93 79
VDDNet89.56 14088.49 15692.76 10395.07 15182.09 16196.30 4393.19 27381.05 27591.88 10296.86 5961.16 33498.33 13788.43 12792.49 18797.84 85
v1087.25 21886.38 21389.85 23591.19 30279.50 23294.48 15595.45 18583.79 20583.62 27891.19 27675.13 18197.42 21181.94 21980.60 33492.63 314
VPNet88.20 18187.47 18090.39 21293.56 22779.46 23394.04 19095.54 17888.67 8186.96 18194.58 16169.33 26097.15 23784.05 18280.53 33794.56 228
MVS87.44 20986.10 22791.44 16892.61 25583.62 11192.63 25195.66 16967.26 38481.47 30592.15 24377.95 15098.22 14579.71 25595.48 12292.47 318
v2v48287.84 18987.06 18990.17 21990.99 31179.23 24594.00 19595.13 20284.87 18185.53 21992.07 25174.45 19197.45 20684.71 17481.75 31693.85 265
V4287.68 19486.86 19490.15 22190.58 33080.14 21394.24 17595.28 19683.66 20785.67 21491.33 27174.73 18897.41 21684.43 17881.83 31492.89 307
SD-MVS94.96 1395.33 893.88 5997.25 6986.69 2896.19 5097.11 4390.42 2796.95 1397.27 3889.53 1496.91 25594.38 3198.85 1998.03 72
Zhenlong Yuan, Jiakai Cao, Zhaoxin Li, Hao Jiang and Zhaoqi Wang: SD-MVS: Segmentation-driven Deformation Multi-View Stereo with Spherical Refinement and EM optimization. AAAI2024
GA-MVS86.61 24285.27 25590.66 19891.33 29978.71 24990.40 30893.81 26385.34 17085.12 23989.57 32061.25 32997.11 24180.99 23789.59 22696.15 160
MSLP-MVS++93.72 4894.08 3892.65 11197.31 6583.43 11695.79 8197.33 2590.03 3693.58 5696.96 5584.87 6497.76 18092.19 7198.66 4196.76 138
APDe-MVScopyleft95.46 595.64 594.91 2198.26 2886.29 4697.46 697.40 2089.03 6996.20 1998.10 789.39 1699.34 3495.88 1699.03 1199.10 4
Zhaojie Zeng, Yuesong Wang, Tao Guan: Matching Ambiguity-Resilient Multi-View Stereo via Adaptive Patch Deformation. Pattern Recognition
APD-MVS_3200maxsize93.78 4593.77 4893.80 6497.92 4384.19 9696.30 4396.87 6286.96 12793.92 5097.47 2983.88 7498.96 7792.71 5697.87 7498.26 56
ADS-MVSNet281.66 31379.71 32287.50 30191.35 29774.19 32383.33 38488.48 36572.90 36582.24 29785.77 36764.98 30593.20 36064.57 36783.74 29095.12 202
EI-MVSNet89.10 15488.86 14689.80 24091.84 27878.30 26193.70 21095.01 20885.73 16087.15 17895.28 12479.87 12597.21 23583.81 18687.36 26393.88 261
Regformer0.00 3830.00 3860.00 3960.00 4190.00 4210.00 4070.00 4200.00 4140.00 4150.00 4140.00 4190.00 4150.00 4140.00 4130.00 411
CVMVSNet84.69 28384.79 26684.37 34791.84 27864.92 38393.70 21091.47 32166.19 38686.16 20695.28 12467.18 28393.33 35780.89 23990.42 21094.88 214
pmmvs485.43 26683.86 27990.16 22090.02 34282.97 13690.27 30992.67 28675.93 33480.73 31491.74 26071.05 23495.73 31778.85 26683.46 29691.78 334
EU-MVSNet81.32 31980.95 30782.42 35988.50 35963.67 38793.32 22291.33 32364.02 38980.57 31892.83 22161.21 33192.27 36876.34 29180.38 34091.32 344
VNet92.24 8391.91 8493.24 7596.59 8283.43 11694.84 13496.44 9789.19 6394.08 4795.90 10177.85 15498.17 14788.90 12193.38 16898.13 64
test-LLR85.87 25985.41 24987.25 30890.95 31371.67 35089.55 32689.88 35683.41 21584.54 25187.95 34567.25 28195.11 33281.82 22293.37 16994.97 206
TESTMET0.1,183.74 29682.85 29686.42 32789.96 34371.21 35489.55 32687.88 36877.41 31983.37 28487.31 35356.71 35593.65 35480.62 24492.85 18094.40 240
test-mter84.54 28483.64 28287.25 30890.95 31371.67 35089.55 32689.88 35679.17 29484.54 25187.95 34555.56 35995.11 33281.82 22293.37 16994.97 206
VPA-MVSNet89.62 13788.96 14091.60 16193.86 21482.89 13895.46 9797.33 2587.91 10588.43 15593.31 20474.17 19797.40 21887.32 14282.86 30494.52 230
ACMMPR94.43 2494.28 3094.91 2198.63 986.69 2896.94 2097.32 2788.63 8293.53 5997.26 4085.04 5999.54 2092.35 6498.78 2598.50 27
testgi80.94 32480.20 31583.18 35387.96 36766.29 37791.28 29090.70 34083.70 20678.12 34292.84 22051.37 37590.82 38063.34 37082.46 30692.43 320
test20.0379.95 33279.08 33182.55 35785.79 37967.74 37491.09 29691.08 32881.23 27274.48 36789.96 31461.63 32490.15 38260.08 37976.38 36389.76 363
thres600view787.65 19686.67 20290.59 19996.08 10378.72 24894.88 13191.58 31687.06 12588.08 16092.30 23868.91 26998.10 15270.05 33891.10 19794.96 209
ADS-MVSNet81.56 31579.78 31986.90 31991.35 29771.82 34783.33 38489.16 36372.90 36582.24 29785.77 36764.98 30593.76 35164.57 36783.74 29095.12 202
MP-MVScopyleft94.25 2994.07 3994.77 3598.47 1886.31 4496.71 3196.98 4989.04 6891.98 9797.19 4485.43 5399.56 1292.06 7898.79 2398.44 37
Rongxuan Tan, Qing Wang, et al.: MP-MVS: Multi-Scale Windows PatchMatch and Planar Prior Multi-View Stereo.
testmvs8.92 37911.52 3821.12 3951.06 4170.46 42086.02 3670.65 4180.62 4112.74 4129.52 4110.31 4180.45 4142.38 4120.39 4112.46 410
thres40087.62 20186.64 20390.57 20095.99 11078.64 25094.58 15091.98 30686.94 12988.09 15891.77 25869.18 26598.10 15270.13 33591.10 19794.96 209
test1238.76 38011.22 3831.39 3940.85 4180.97 41985.76 3700.35 4190.54 4122.45 4138.14 4120.60 4170.48 4132.16 4130.17 4122.71 409
thres20087.21 22286.24 22190.12 22395.36 13778.53 25393.26 22992.10 30086.42 14388.00 16391.11 28269.24 26498.00 16869.58 33991.04 20393.83 266
test0.0.03 182.41 30581.69 30184.59 34588.23 36372.89 33390.24 31387.83 36983.41 21579.86 32989.78 31767.25 28188.99 38865.18 36383.42 29791.90 333
pmmvs371.81 35568.71 35881.11 36175.86 39970.42 36386.74 36383.66 38558.95 39468.64 38580.89 38636.93 39589.52 38563.10 37263.59 38983.39 384
EMVS42.07 37541.12 37744.92 39163.45 41135.56 41573.65 39863.48 40933.05 40626.88 41045.45 40721.27 40667.14 40719.80 41023.02 40832.06 406
E-PMN43.23 37442.29 37646.03 39065.58 40937.41 41373.51 39964.62 40833.99 40528.47 40947.87 40619.90 40867.91 40622.23 40824.45 40632.77 405
PGM-MVS93.96 4293.72 5094.68 3898.43 2086.22 4795.30 10497.78 187.45 11993.26 6297.33 3684.62 6799.51 2490.75 10598.57 4898.32 46
LCM-MVSNet-Re88.30 17988.32 16188.27 28494.71 17172.41 34493.15 23290.98 33287.77 11179.25 33591.96 25478.35 14795.75 31583.04 19495.62 11896.65 143
LCM-MVSNet66.00 36062.16 36577.51 37064.51 41058.29 39683.87 38390.90 33548.17 39954.69 39673.31 39416.83 41086.75 39165.47 36161.67 39187.48 382
MCST-MVS94.45 2294.20 3595.19 1398.46 1987.50 1595.00 12497.12 4187.13 12392.51 8796.30 8389.24 1799.34 3493.46 4198.62 4598.73 17
mvs_anonymous89.37 15089.32 13389.51 25393.47 22974.22 32291.65 28294.83 22382.91 22985.45 22593.79 19181.23 11596.36 28886.47 15394.09 15297.94 77
MVS_Test91.31 9791.11 9591.93 14394.37 19180.14 21393.46 21895.80 15686.46 14291.35 11693.77 19382.21 10098.09 16087.57 13794.95 13597.55 100
MDA-MVSNet-bldmvs78.85 34076.31 34586.46 32589.76 34673.88 32588.79 34090.42 34279.16 29559.18 39388.33 34060.20 33894.04 34562.00 37468.96 38191.48 342
CDPH-MVS92.83 7392.30 8094.44 4597.79 4986.11 4994.06 18996.66 8580.09 28392.77 7896.63 7386.62 3899.04 5787.40 13998.66 4198.17 62
test1294.34 5097.13 7086.15 4896.29 10991.04 11985.08 5899.01 6398.13 6497.86 83
casdiffmvspermissive92.51 7992.43 7992.74 10594.41 19081.98 16594.54 15396.23 11889.57 5191.96 9996.17 9182.58 9098.01 16790.95 10195.45 12598.23 58
Fangjinhua Wang, Qingshan Xu, Yew-Soon Ong, Marc Pollefeys: Lightweight and Accurate Multi-View Stereo With Confidence-Aware Diffusion Model. IEEE T-PAMI 2025
diffmvspermissive91.37 9691.23 9391.77 15693.09 23980.27 20992.36 25995.52 18087.03 12691.40 11594.93 14080.08 12297.44 20992.13 7494.56 14497.61 95
Fangjinhua Wang, Qingshan Xu, Yew-Soon Ong, Marc Pollefeys: Lightweight and Accurate Multi-View Stereo With Confidence-Aware Diffusion Model. IEEE T-PAMI 2025
baseline286.50 24885.39 25089.84 23691.12 30776.70 29391.88 27488.58 36482.35 24079.95 32790.95 28673.42 21097.63 19280.27 25089.95 21795.19 200
baseline188.10 18387.28 18590.57 20094.96 15780.07 21694.27 17291.29 32586.74 13587.41 17494.00 18076.77 16196.20 29480.77 24079.31 35095.44 191
YYNet179.22 33877.20 34085.28 34088.20 36572.66 33885.87 36890.05 35274.33 35162.70 38887.61 35066.09 29992.03 36966.94 35572.97 37091.15 348
PMMVS259.60 36456.40 36769.21 38068.83 40746.58 40673.02 40177.48 40255.07 39649.21 39972.95 39517.43 40980.04 40249.32 39344.33 40280.99 390
MDA-MVSNet_test_wron79.21 33977.19 34185.29 33988.22 36472.77 33585.87 36890.06 35074.34 35062.62 39087.56 35166.14 29891.99 37166.90 35873.01 36991.10 352
tpmvs83.35 30082.07 29987.20 31291.07 30971.00 35888.31 34791.70 31278.91 29780.49 31987.18 35769.30 26397.08 24268.12 34983.56 29493.51 284
PM-MVS78.11 34376.12 34784.09 35183.54 38770.08 36588.97 33985.27 38179.93 28474.73 36586.43 36134.70 39793.48 35579.43 26172.06 37388.72 374
HQP_MVS90.60 11590.19 10991.82 15294.70 17282.73 14495.85 7796.22 11990.81 1786.91 18494.86 14474.23 19498.12 15088.15 12889.99 21494.63 222
plane_prior794.70 17282.74 143
plane_prior694.52 18282.75 14174.23 194
plane_prior596.22 11998.12 15088.15 12889.99 21494.63 222
plane_prior494.86 144
plane_prior382.75 14190.26 3386.91 184
plane_prior295.85 7790.81 17
plane_prior194.59 177
plane_prior82.73 14495.21 11289.66 5089.88 219
PS-CasMVS87.32 21586.88 19388.63 27692.99 24676.33 30095.33 10196.61 8988.22 9683.30 28793.07 21573.03 21695.79 31478.36 26981.00 33093.75 274
UniMVSNet_NR-MVSNet89.92 13189.29 13491.81 15493.39 23283.72 10694.43 16197.12 4189.80 4386.46 19593.32 20383.16 8197.23 23384.92 16981.02 32894.49 236
PEN-MVS86.80 23586.27 22088.40 27992.32 26275.71 30795.18 11496.38 10387.97 10382.82 29193.15 21173.39 21195.92 30576.15 29479.03 35293.59 279
TransMVSNet (Re)84.43 28583.06 29288.54 27791.72 28378.44 25695.18 11492.82 28182.73 23379.67 33192.12 24573.49 20895.96 30471.10 32868.73 38391.21 347
DTE-MVSNet86.11 25585.48 24887.98 29291.65 28874.92 31494.93 12895.75 16087.36 12082.26 29693.04 21672.85 21795.82 31174.04 31077.46 35893.20 295
DU-MVS89.34 15188.50 15491.85 15193.04 24383.72 10694.47 15896.59 9089.50 5286.46 19593.29 20677.25 15697.23 23384.92 16981.02 32894.59 225
UniMVSNet (Re)89.80 13489.07 13892.01 13593.60 22684.52 8594.78 13897.47 1189.26 6086.44 19892.32 23782.10 10397.39 22184.81 17280.84 33294.12 249
CP-MVSNet87.63 19987.26 18788.74 27393.12 23876.59 29595.29 10696.58 9188.43 8883.49 28292.98 21775.28 18095.83 31078.97 26581.15 32493.79 267
WR-MVS_H87.80 19187.37 18289.10 26293.23 23578.12 26595.61 9397.30 2987.90 10683.72 27492.01 25379.65 13296.01 30276.36 29080.54 33693.16 297
WR-MVS88.38 17587.67 17590.52 20493.30 23480.18 21193.26 22995.96 14388.57 8585.47 22492.81 22376.12 16696.91 25581.24 23282.29 30894.47 239
NR-MVSNet88.58 17387.47 18091.93 14393.04 24384.16 9794.77 13996.25 11689.05 6780.04 32693.29 20679.02 13797.05 24681.71 22780.05 34294.59 225
Baseline_NR-MVSNet87.07 22886.63 20588.40 27991.44 29177.87 27294.23 17692.57 28884.12 19785.74 21392.08 24977.25 15696.04 29982.29 21079.94 34391.30 345
TranMVSNet+NR-MVSNet88.84 16387.95 16991.49 16592.68 25483.01 13494.92 12996.31 10889.88 4085.53 21993.85 19076.63 16496.96 25181.91 22079.87 34594.50 234
TSAR-MVS + GP.93.66 4993.41 5694.41 4996.59 8286.78 2694.40 16393.93 25689.77 4794.21 4195.59 11587.35 3498.61 10792.72 5596.15 11397.83 86
n20.00 420
nn0.00 420
mPP-MVS93.99 4193.78 4794.63 4098.50 1685.90 6096.87 2696.91 5888.70 8091.83 10697.17 4683.96 7399.55 1691.44 9298.64 4498.43 38
door-mid85.49 378
XVG-OURS-SEG-HR89.95 12989.45 12791.47 16794.00 20981.21 18691.87 27596.06 13585.78 15888.55 15295.73 11074.67 19097.27 22888.71 12489.64 22595.91 173
mvsmamba89.96 12889.50 12691.33 17392.90 25081.82 16896.68 3392.37 29189.03 6987.00 18094.85 14673.05 21497.65 18891.03 9788.63 23994.51 232
MVSFormer91.68 9291.30 9192.80 10193.86 21483.88 10395.96 7395.90 14984.66 18991.76 10794.91 14177.92 15197.30 22489.64 11497.11 8897.24 109
jason90.80 10590.10 11292.90 9693.04 24383.53 11493.08 23694.15 24980.22 28091.41 11494.91 14176.87 15897.93 17490.28 11196.90 9597.24 109
jason: jason.
lupinMVS90.92 10390.21 10893.03 8693.86 21483.88 10392.81 24793.86 26079.84 28691.76 10794.29 16877.92 15198.04 16590.48 10997.11 8897.17 113
test_djsdf89.03 15988.64 14990.21 21890.74 32579.28 24295.96 7395.90 14984.66 18985.33 23792.94 21874.02 20097.30 22489.64 11488.53 24194.05 255
HPM-MVS_fast93.40 5993.22 6093.94 5898.36 2584.83 7697.15 1396.80 7185.77 15992.47 8897.13 4882.38 9399.07 5390.51 10898.40 5597.92 80
K. test v381.59 31480.15 31685.91 33389.89 34569.42 36892.57 25387.71 37085.56 16573.44 37189.71 31855.58 35895.52 32277.17 28369.76 37792.78 311
lessismore_v086.04 32988.46 36068.78 37080.59 39373.01 37390.11 30955.39 36096.43 28375.06 30365.06 38792.90 306
SixPastTwentyTwo83.91 29382.90 29586.92 31890.99 31170.67 36193.48 21691.99 30585.54 16677.62 34792.11 24760.59 33696.87 25776.05 29577.75 35593.20 295
OurMVSNet-221017-085.35 26984.64 26987.49 30290.77 32372.59 34194.01 19394.40 23984.72 18779.62 33393.17 21061.91 32396.72 26081.99 21881.16 32293.16 297
HPM-MVScopyleft94.02 3993.88 4494.43 4798.39 2385.78 6397.25 1097.07 4586.90 13292.62 8496.80 6584.85 6599.17 4792.43 5998.65 4398.33 43
Chunlin Ren, Qingshan Xu, Shikun Zhang, Jiaqi Yang: Hierarchical Prior Mining for Non-local Multi-View Stereo. ICCV 2023
XVG-OURS89.40 14888.70 14891.52 16394.06 20381.46 17891.27 29196.07 13386.14 15288.89 14895.77 10868.73 27297.26 23087.39 14089.96 21695.83 178
XVG-ACMP-BASELINE86.00 25684.84 26589.45 25491.20 30178.00 26791.70 28095.55 17685.05 17882.97 28992.25 24154.49 36697.48 20282.93 19687.45 26292.89 307
casdiffmvs_mvgpermissive92.96 7192.83 7093.35 7294.59 17783.40 11895.00 12496.34 10690.30 3092.05 9596.05 9583.43 7798.15 14992.07 7595.67 11798.49 29
Fangjinhua Wang, Qingshan Xu, Yew-Soon Ong, Marc Pollefeys: Lightweight and Accurate Multi-View Stereo With Confidence-Aware Diffusion Model. IEEE T-PAMI 2025
LPG-MVS_test89.45 14488.90 14491.12 17994.47 18481.49 17695.30 10496.14 12586.73 13685.45 22595.16 13269.89 25298.10 15287.70 13589.23 23293.77 272
LGP-MVS_train91.12 17994.47 18481.49 17696.14 12586.73 13685.45 22595.16 13269.89 25298.10 15287.70 13589.23 23293.77 272
baseline92.39 8292.29 8192.69 11094.46 18681.77 17094.14 18096.27 11389.22 6191.88 10296.00 9682.35 9497.99 16991.05 9695.27 13198.30 47
test1196.57 92
door85.33 380
EPNet_dtu86.49 25085.94 23588.14 28990.24 33772.82 33494.11 18292.20 29886.66 13879.42 33492.36 23673.52 20795.81 31271.26 32393.66 15895.80 180
Wanjuan Su, Wenbing Tao: Efficient Edge-Preserving Multi-View Stereo Network for Depth Estimation. AAAI 2023
CHOSEN 1792x268888.84 16387.69 17492.30 12996.14 9781.42 18090.01 32095.86 15374.52 34987.41 17493.94 18375.46 17998.36 13280.36 24795.53 11997.12 118
EPNet91.79 8791.02 9894.10 5490.10 33985.25 7196.03 6892.05 30292.83 387.39 17795.78 10779.39 13399.01 6388.13 13097.48 8398.05 70
Wanjuan Su, Wenbing Tao: Efficient Edge-Preserving Multi-View Stereo Network for Depth Estimation. AAAI 2023
HQP5-MVS81.56 172
HQP-NCC94.17 19994.39 16588.81 7485.43 228
ACMP_Plane94.17 19994.39 16588.81 7485.43 228
APD-MVScopyleft94.24 3094.07 3994.75 3698.06 3986.90 2395.88 7696.94 5585.68 16295.05 3497.18 4587.31 3599.07 5391.90 8598.61 4798.28 50
Yuesong Wang, Zhaojie Zeng and etc.: Adaptive Patch Deformation for Textureless-Resilient Multi-View Stereo. CVPR2023
BP-MVS87.11 146
HQP4-MVS85.43 22897.96 17194.51 232
HQP3-MVS96.04 13689.77 223
HQP2-MVS73.83 204
CNVR-MVS95.40 795.37 795.50 898.11 3688.51 795.29 10696.96 5292.09 695.32 3197.08 4989.49 1599.33 3795.10 2598.85 1998.66 20
NCCC94.81 1594.69 1895.17 1497.83 4887.46 1795.66 8996.93 5692.34 493.94 4996.58 7687.74 2799.44 2992.83 5298.40 5598.62 21
114514_t89.51 14188.50 15492.54 11798.11 3681.99 16495.16 11696.36 10570.19 37985.81 21095.25 12676.70 16298.63 10482.07 21696.86 9897.00 126
CP-MVS94.34 2794.21 3494.74 3798.39 2386.64 3297.60 497.24 3288.53 8692.73 8197.23 4185.20 5699.32 3892.15 7298.83 2198.25 57
DSMNet-mixed76.94 34776.29 34678.89 36683.10 38956.11 40287.78 35279.77 39460.65 39275.64 35988.71 33461.56 32688.34 38960.07 38089.29 23192.21 328
tpm284.08 28982.94 29387.48 30391.39 29571.27 35289.23 33490.37 34371.95 37284.64 24889.33 32367.30 28096.55 27575.17 30187.09 26794.63 222
NP-MVS94.37 19182.42 15593.98 181
EG-PatchMatch MVS82.37 30680.34 31288.46 27890.27 33679.35 23792.80 24894.33 24277.14 32373.26 37290.18 30647.47 38496.72 26070.25 33287.32 26589.30 368
tpm cat181.96 30780.27 31387.01 31591.09 30871.02 35787.38 35991.53 31966.25 38580.17 32186.35 36368.22 27796.15 29769.16 34082.29 30893.86 264
SteuartSystems-ACMMP95.20 895.32 994.85 2596.99 7286.33 4297.33 797.30 2991.38 1295.39 3097.46 3088.98 1999.40 3094.12 3398.89 1898.82 16
Skip Steuart: Steuart Systems R&D Blog.
CostFormer85.77 26284.94 26288.26 28591.16 30572.58 34289.47 33091.04 33176.26 33186.45 19789.97 31370.74 24096.86 25882.35 20887.07 26895.34 197
CR-MVSNet85.35 26983.76 28090.12 22390.58 33079.34 23885.24 37491.96 30878.27 31285.55 21787.87 34871.03 23595.61 31973.96 31289.36 22995.40 193
JIA-IIPM81.04 32178.98 33387.25 30888.64 35673.48 32981.75 39089.61 36073.19 36282.05 29973.71 39366.07 30095.87 30871.18 32684.60 28392.41 321
Patchmtry82.71 30280.93 30888.06 29090.05 34176.37 29984.74 37991.96 30872.28 37181.32 30987.87 34871.03 23595.50 32568.97 34180.15 34192.32 325
PatchT82.68 30381.27 30586.89 32090.09 34070.94 35984.06 38190.15 34774.91 34585.63 21683.57 37669.37 25994.87 33665.19 36288.50 24394.84 216
tpmrst85.35 26984.99 25986.43 32690.88 32067.88 37388.71 34191.43 32280.13 28286.08 20788.80 33373.05 21496.02 30182.48 20483.40 29895.40 193
BH-w/o87.57 20487.05 19089.12 26194.90 16277.90 27092.41 25693.51 26882.89 23083.70 27591.34 27075.75 17497.07 24475.49 29793.49 16492.39 322
tpm84.73 28184.02 27686.87 32190.33 33568.90 36989.06 33789.94 35380.85 27685.75 21289.86 31568.54 27495.97 30377.76 27684.05 28895.75 181
DELS-MVS93.43 5893.25 5993.97 5695.42 13585.04 7293.06 23897.13 4090.74 2191.84 10495.09 13686.32 4299.21 4591.22 9498.45 5397.65 93
Christian Sormann, Emanuele Santellani, Mattia Rossi, Andreas Kuhn, Friedrich Fraundorfer: DELS-MVS: Deep Epipolar Line Search for Multi-View Stereo. Winter Conference on Applications of Computer Vision (WACV), 2023
BH-untuned88.60 17188.13 16690.01 23095.24 14478.50 25593.29 22794.15 24984.75 18684.46 25493.40 20075.76 17397.40 21877.59 27894.52 14694.12 249
RPMNet83.95 29281.53 30391.21 17690.58 33079.34 23885.24 37496.76 7571.44 37485.55 21782.97 38170.87 23898.91 8061.01 37789.36 22995.40 193
MVSTER88.84 16388.29 16290.51 20592.95 24880.44 20693.73 20795.01 20884.66 18987.15 17893.12 21372.79 21897.21 23587.86 13387.36 26393.87 262
CPTT-MVS91.99 8491.80 8592.55 11698.24 3181.98 16596.76 3096.49 9581.89 25390.24 12896.44 8178.59 14398.61 10789.68 11397.85 7597.06 120
GBi-Net87.26 21685.98 23291.08 18394.01 20683.10 12795.14 11794.94 21183.57 20984.37 25791.64 26166.59 29296.34 28978.23 27285.36 27793.79 267
PVSNet_Blended_VisFu91.38 9590.91 10092.80 10196.39 9183.17 12494.87 13296.66 8583.29 21989.27 14294.46 16380.29 12099.17 4787.57 13795.37 12796.05 170
PVSNet_BlendedMVS89.98 12689.70 12190.82 19596.12 9881.25 18393.92 20096.83 6683.49 21389.10 14492.26 24081.04 11698.85 8686.72 15187.86 25592.35 324
UnsupCasMVSNet_eth80.07 33078.27 33685.46 33785.24 38372.63 34088.45 34694.87 22082.99 22771.64 37888.07 34456.34 35691.75 37373.48 31563.36 39092.01 331
UnsupCasMVSNet_bld76.23 34973.27 35385.09 34383.79 38672.92 33285.65 37193.47 26971.52 37368.84 38479.08 38849.77 37893.21 35966.81 35960.52 39289.13 373
PVSNet_Blended90.73 10890.32 10791.98 13996.12 9881.25 18392.55 25496.83 6682.04 24689.10 14492.56 23081.04 11698.85 8686.72 15195.91 11495.84 177
FMVSNet581.52 31679.60 32387.27 30691.17 30377.95 26891.49 28592.26 29776.87 32476.16 35587.91 34751.67 37492.34 36767.74 35081.16 32291.52 340
test187.26 21685.98 23291.08 18394.01 20683.10 12795.14 11794.94 21183.57 20984.37 25791.64 26166.59 29296.34 28978.23 27285.36 27793.79 267
new_pmnet72.15 35370.13 35778.20 36882.95 39065.68 37883.91 38282.40 38962.94 39164.47 38779.82 38742.85 39086.26 39457.41 38674.44 36882.65 388
FMVSNet387.40 21186.11 22691.30 17493.79 21983.64 11094.20 17794.81 22583.89 20284.37 25791.87 25768.45 27596.56 27378.23 27285.36 27793.70 277
dp81.47 31780.23 31485.17 34289.92 34465.49 38086.74 36390.10 34976.30 33081.10 31087.12 35862.81 31895.92 30568.13 34879.88 34494.09 252
FMVSNet287.19 22485.82 23891.30 17494.01 20683.67 10894.79 13794.94 21183.57 20983.88 27192.05 25266.59 29296.51 27677.56 27985.01 28093.73 275
FMVSNet185.85 26084.11 27491.08 18392.81 25183.10 12795.14 11794.94 21181.64 26182.68 29291.64 26159.01 34796.34 28975.37 29983.78 28993.79 267
N_pmnet68.89 35768.44 35970.23 37789.07 35328.79 41688.06 34819.50 41669.47 38071.86 37784.93 37061.24 33091.75 37354.70 38977.15 35990.15 361
cascas86.43 25284.98 26090.80 19692.10 26980.92 19490.24 31395.91 14873.10 36383.57 28088.39 33865.15 30497.46 20584.90 17191.43 19494.03 256
BH-RMVSNet88.37 17687.48 17991.02 18795.28 14079.45 23492.89 24493.07 27585.45 16886.91 18494.84 14870.35 24797.76 18073.97 31194.59 14395.85 176
UGNet89.95 12988.95 14192.95 9494.51 18383.31 12095.70 8595.23 19889.37 5687.58 17193.94 18364.00 31098.78 9183.92 18496.31 11096.74 140
Wanjuan Su, Qingshan Xu, Wenbing Tao: Uncertainty-guided Multi-view Stereo Network for Depth Estimation. IEEE Transactions on Circuits and Systems for Video Technology, 2022
WTY-MVS89.60 13888.92 14291.67 15995.47 13481.15 18792.38 25894.78 22783.11 22389.06 14694.32 16678.67 14296.61 26881.57 22890.89 20497.24 109
XXY-MVS87.65 19686.85 19590.03 22792.14 26680.60 20393.76 20695.23 19882.94 22884.60 24994.02 17874.27 19395.49 32681.04 23483.68 29294.01 257
EC-MVSNet93.44 5593.71 5192.63 11295.21 14582.43 15497.27 996.71 8290.57 2692.88 7295.80 10683.16 8198.16 14893.68 3898.14 6397.31 105
sss88.93 16288.26 16490.94 19394.05 20480.78 19891.71 27995.38 19181.55 26488.63 15193.91 18775.04 18395.47 32782.47 20591.61 19296.57 147
Test_1112_low_res87.65 19686.51 21091.08 18394.94 15979.28 24291.77 27794.30 24376.04 33383.51 28192.37 23577.86 15397.73 18478.69 26789.13 23496.22 158
1112_ss88.42 17487.33 18391.72 15794.92 16080.98 19192.97 24194.54 23478.16 31583.82 27293.88 18878.78 14097.91 17579.45 25989.41 22796.26 157
ab-mvs-re7.82 38110.43 3840.00 3960.00 4190.00 4210.00 4070.00 4200.00 4140.00 41593.88 1880.00 4190.00 4150.00 4140.00 4130.00 411
ab-mvs89.41 14688.35 15892.60 11395.15 14982.65 14992.20 26795.60 17483.97 20088.55 15293.70 19674.16 19898.21 14682.46 20689.37 22896.94 129
TR-MVS86.78 23685.76 24289.82 23794.37 19178.41 25792.47 25592.83 28081.11 27486.36 19992.40 23468.73 27297.48 20273.75 31489.85 22093.57 280
MDTV_nov1_ep13_2view55.91 40387.62 35773.32 36184.59 25070.33 24874.65 30795.50 190
MDTV_nov1_ep1383.56 28391.69 28669.93 36687.75 35491.54 31878.60 30684.86 24488.90 33069.54 25796.03 30070.25 33288.93 236
MIMVSNet179.38 33777.28 33985.69 33586.35 37473.67 32691.61 28392.75 28378.11 31672.64 37488.12 34348.16 38291.97 37260.32 37877.49 35791.43 343
MIMVSNet82.59 30480.53 30988.76 27091.51 28978.32 26086.57 36590.13 34879.32 29180.70 31588.69 33652.98 37293.07 36266.03 36088.86 23794.90 213
IterMVS-LS88.36 17787.91 17189.70 24493.80 21778.29 26293.73 20795.08 20785.73 16084.75 24691.90 25679.88 12496.92 25483.83 18582.51 30593.89 259
Fangjinhua Wang, Silvano Galliani, Christoph Vogel, Marc Pollefeys: IterMVS: Iterative Probability Estimation for Efficient Multi-View Stereo.
CDS-MVSNet89.45 14488.51 15392.29 13093.62 22583.61 11393.01 23994.68 23281.95 24887.82 16793.24 20878.69 14196.99 24980.34 24893.23 17296.28 156
Khang Truong Giang, Soohwan Song, Sungho Jo: Curvature-guided dynamic scale networks for Multi-view Stereo. ICLR 2022
ACMMP++_ref87.47 260
IterMVS84.88 27883.98 27887.60 29891.44 29176.03 30290.18 31792.41 29083.24 22181.06 31290.42 30066.60 29194.28 34379.46 25880.98 33192.48 317
Fangjinhua Wang, Silvano Galliani, Christoph Vogel, Marc Pollefeys: IterMVS: Iterative Probability Estimation for Efficient Multi-View Stereo.
DP-MVS Recon91.95 8591.28 9293.96 5798.33 2785.92 5794.66 14796.66 8582.69 23490.03 13495.82 10582.30 9799.03 5884.57 17596.48 10896.91 132
MVS_111021_LR92.47 8092.29 8192.98 9195.99 11084.43 9193.08 23696.09 13188.20 9791.12 11895.72 11181.33 11497.76 18091.74 8697.37 8696.75 139
DP-MVS87.25 21885.36 25292.90 9697.65 5583.24 12194.81 13692.00 30474.99 34481.92 30295.00 13872.66 21999.05 5566.92 35792.33 18896.40 151
ACMMP++88.01 252
HQP-MVS89.80 13489.28 13591.34 17294.17 19981.56 17294.39 16596.04 13688.81 7485.43 22893.97 18273.83 20497.96 17187.11 14689.77 22394.50 234
QAPM89.51 14188.15 16593.59 7094.92 16084.58 8196.82 2996.70 8378.43 30983.41 28396.19 9073.18 21399.30 4077.11 28496.54 10596.89 133
Vis-MVSNetpermissive91.75 8991.23 9393.29 7395.32 13883.78 10596.14 5795.98 14089.89 3990.45 12596.58 7675.09 18298.31 14084.75 17396.90 9597.78 89
Jingyang Zhang, Yao Yao, Shiwei Li, Zixin Luo, Tian Fang: Visibility-aware Multiview Stereo Network. BMVC 2020
MVS-HIRNet73.70 35272.20 35578.18 36991.81 28156.42 40182.94 38782.58 38855.24 39568.88 38366.48 39855.32 36295.13 33158.12 38488.42 24583.01 386
IS-MVSNet91.43 9491.09 9792.46 12095.87 11681.38 18196.95 1993.69 26689.72 4989.50 13995.98 9878.57 14497.77 17983.02 19596.50 10798.22 59
HyFIR lowres test88.09 18486.81 19691.93 14396.00 10780.63 20190.01 32095.79 15773.42 36087.68 17092.10 24873.86 20397.96 17180.75 24191.70 19197.19 112
EPMVS83.90 29482.70 29887.51 30090.23 33872.67 33788.62 34381.96 39081.37 26785.01 24288.34 33966.31 29594.45 33775.30 30087.12 26695.43 192
PAPM_NR91.22 9990.78 10392.52 11897.60 5681.46 17894.37 16996.24 11786.39 14487.41 17494.80 14982.06 10598.48 11682.80 20195.37 12797.61 95
TAMVS89.21 15288.29 16291.96 14193.71 22182.62 15093.30 22694.19 24782.22 24187.78 16893.94 18378.83 13896.95 25277.70 27792.98 17696.32 153
PAPR90.02 12589.27 13692.29 13095.78 11880.95 19392.68 24996.22 11981.91 25086.66 19293.75 19582.23 9998.44 12779.40 26394.79 13797.48 101
RPSCF85.07 27584.27 27287.48 30392.91 24970.62 36291.69 28192.46 28976.20 33282.67 29395.22 12763.94 31197.29 22777.51 28085.80 27494.53 229
Vis-MVSNet (Re-imp)89.59 13989.44 12890.03 22795.74 11975.85 30595.61 9390.80 33887.66 11687.83 16695.40 12176.79 16096.46 28178.37 26896.73 10197.80 87
test_040281.30 32079.17 33087.67 29793.19 23678.17 26492.98 24091.71 31175.25 34176.02 35890.31 30159.23 34596.37 28650.22 39283.63 29388.47 377
MVS_111021_HR93.45 5493.31 5793.84 6196.99 7284.84 7593.24 23197.24 3288.76 7791.60 11195.85 10386.07 4698.66 10091.91 8398.16 6298.03 72
CSCG93.23 6493.05 6393.76 6698.04 4084.07 9896.22 4997.37 2184.15 19690.05 13395.66 11287.77 2699.15 5089.91 11298.27 5998.07 68
PatchMatch-RL86.77 23985.54 24690.47 21095.88 11482.71 14690.54 30692.31 29479.82 28784.32 26291.57 26968.77 27196.39 28573.16 31693.48 16692.32 325
API-MVS90.66 11190.07 11392.45 12196.36 9284.57 8296.06 6595.22 20082.39 23789.13 14394.27 17180.32 11998.46 12180.16 25196.71 10294.33 242
Test By Simon80.02 123
TDRefinement79.81 33377.34 33887.22 31179.24 39775.48 30993.12 23392.03 30376.45 32775.01 36291.58 26749.19 38096.44 28270.22 33469.18 38089.75 364
USDC82.76 30181.26 30687.26 30791.17 30374.55 31889.27 33293.39 27078.26 31375.30 36192.08 24954.43 36796.63 26471.64 32185.79 27590.61 357
EPP-MVSNet91.70 9191.56 8992.13 13495.88 11480.50 20597.33 795.25 19786.15 15189.76 13695.60 11483.42 7998.32 13987.37 14193.25 17197.56 99
PMMVS85.71 26384.96 26187.95 29388.90 35577.09 28788.68 34290.06 35072.32 37086.47 19490.76 29372.15 22594.40 33981.78 22493.49 16492.36 323
PAPM86.68 24185.39 25090.53 20293.05 24279.33 24189.79 32394.77 22878.82 30181.95 30193.24 20876.81 15997.30 22466.94 35593.16 17394.95 212
ACMMPcopyleft93.24 6392.88 6994.30 5198.09 3885.33 7096.86 2797.45 1488.33 9090.15 13297.03 5381.44 11299.51 2490.85 10495.74 11698.04 71
Qingshan Xu, Weihang Kong, Wenbing Tao, Marc Pollefeys: Multi-Scale Geometric Consistency Guided and Planar Prior Assisted Multi-View Stereo. IEEE Transactions on Pattern Analysis and Machine Intelligence
CNLPA89.07 15787.98 16892.34 12696.87 7484.78 7894.08 18693.24 27181.41 26684.46 25495.13 13575.57 17896.62 26577.21 28293.84 15795.61 189
PatchmatchNetpermissive85.85 26084.70 26789.29 25791.76 28275.54 30888.49 34491.30 32481.63 26285.05 24188.70 33571.71 22796.24 29374.61 30889.05 23596.08 166
Fangjinhua Wang, Silvano Galliani, Christoph Vogel, Pablo Speciale, Marc Pollefeys: PatchmatchNet: Learned Multi-View Patchmatch Stereo.
PHI-MVS93.89 4393.65 5494.62 4196.84 7586.43 3996.69 3297.49 685.15 17593.56 5896.28 8485.60 5099.31 3992.45 5898.79 2398.12 66
F-COLMAP87.95 18786.80 19791.40 16996.35 9380.88 19594.73 14195.45 18579.65 28982.04 30094.61 15771.13 23398.50 11476.24 29391.05 20294.80 219
ANet_high58.88 36754.22 37272.86 37356.50 41356.67 39880.75 39286.00 37673.09 36437.39 40564.63 40122.17 40579.49 40343.51 39723.96 40782.43 389
wuyk23d21.27 37820.48 38123.63 39368.59 40836.41 41449.57 4056.85 4179.37 4097.89 4114.46 4134.03 41631.37 41117.47 41116.07 4103.12 408
OMC-MVS91.23 9890.62 10493.08 8396.27 9484.07 9893.52 21595.93 14486.95 12889.51 13896.13 9378.50 14598.35 13485.84 16192.90 17796.83 137
MG-MVS91.77 8891.70 8892.00 13897.08 7180.03 22093.60 21395.18 20187.85 11090.89 12096.47 8082.06 10598.36 13285.07 16797.04 9197.62 94
AdaColmapbinary89.89 13289.07 13892.37 12597.41 6283.03 13294.42 16295.92 14682.81 23186.34 20194.65 15673.89 20299.02 6180.69 24295.51 12095.05 204
uanet0.00 3830.00 3860.00 3960.00 4190.00 4210.00 4070.00 4200.00 4140.00 4150.00 4140.00 4190.00 4150.00 4140.00 4130.00 411
ITE_SJBPF88.24 28691.88 27777.05 28892.92 27785.54 16680.13 32493.30 20557.29 35396.20 29472.46 31984.71 28291.49 341
DeepMVS_CXcopyleft56.31 38874.23 40151.81 40456.67 41244.85 40048.54 40075.16 39127.87 40058.74 41040.92 40052.22 39758.39 402
TinyColmap79.76 33477.69 33785.97 33091.71 28473.12 33189.55 32690.36 34475.03 34372.03 37690.19 30546.22 38696.19 29663.11 37181.03 32788.59 376
MAR-MVS90.30 11789.37 13193.07 8596.61 8184.48 8795.68 8695.67 16782.36 23987.85 16592.85 21976.63 16498.80 9080.01 25296.68 10395.91 173
Zhenyu Xu, Yiguang Liu, Xuelei Shi, Ying Wang, Yunan Zheng: MARMVS: Matching Ambiguity Reduced Multiple View Stereo for Efficient Large Scale Scene Reconstruction. CVPR 2020
LF4IMVS80.37 32879.07 33284.27 34986.64 37369.87 36789.39 33191.05 33076.38 32874.97 36390.00 31247.85 38394.25 34474.55 30980.82 33388.69 375
MSDG84.86 27983.09 29090.14 22293.80 21780.05 21889.18 33593.09 27478.89 29978.19 34191.91 25565.86 30197.27 22868.47 34488.45 24493.11 299
LS3D87.89 18886.32 21792.59 11496.07 10482.92 13795.23 11094.92 21675.66 33582.89 29095.98 9872.48 22299.21 4568.43 34595.23 13295.64 186
CLD-MVS89.47 14388.90 14491.18 17894.22 19882.07 16292.13 26996.09 13187.90 10685.37 23492.45 23374.38 19297.56 19687.15 14490.43 20993.93 258
Zhaoxin Li, Wangmeng Zuo, Zhaoqi Wang, Lei Zhang: Confidence-based Large-scale Dense Multi-view Stereo. IEEE Transaction on Image Processing, 2020
FPMVS64.63 36262.55 36470.88 37570.80 40456.71 39784.42 38084.42 38351.78 39849.57 39881.61 38423.49 40381.48 40140.61 40176.25 36474.46 394
Gipumacopyleft57.99 36954.91 37167.24 38388.51 35765.59 37952.21 40490.33 34543.58 40142.84 40451.18 40520.29 40785.07 39534.77 40270.45 37551.05 404
S. Galliani, K. Lasinger, K. Schindler: Massively Parallel Multiview Stereopsis by Surface Normal Diffusion. ICCV 2015