This table lists the benchmark results for the high-res multi-view scenario. The following metrics are evaluated:

(*) For exact definitions, detailing how potentially incomplete ground truth is taken into account, see our paper.

The datasets are grouped into different categories, and result averages are computed for a category and method if results of the method are available for all datasets within the category. Note that the category "all" includes both the high-res multi-view and the low-res many-view scenarios.

Methods with suffix _ROB may participate in the Robust Vision Challenge.

Click a dataset result cell to show a visualization of the reconstruction. For training datasets, ground truth and accuracy / completeness visualizations are also available. The visualizations may not work with mobile browsers.




Method Infoallhigh-res
multi-view
indooroutdoorbotani.boulde.bridgedoorexhibi.lectur.living.loungeobserv.old co.statueterrac.
sorted bysort bysort bysort bysort bysort bysort bysort bysort bysort bysort bysort bysort bysort bysort bysort by
DeepPCF-MVS89.96 194.20 3194.77 1592.49 10496.52 8780.00 20994.00 18497.08 4390.05 3495.65 2197.29 2789.66 1398.97 7193.95 2398.71 3198.50 26
DeepC-MVS_fast89.43 294.04 3393.79 4094.80 3197.48 6186.78 2495.65 8196.89 5989.40 5292.81 6296.97 4485.37 5099.24 4290.87 8798.69 3498.38 40
Andreas Kuhn, Christian Sormann, Mattia Rossi, Oliver Erdler, Friedrich Fraundorfer: DeepC-MVS: Deep Confidence Prediction for Multi-View Stereo Reconstruction. 3DV 2020
DeepC-MVS88.79 393.31 5292.99 5594.26 5096.07 10285.83 5894.89 12196.99 4789.02 6589.56 12297.37 2582.51 8199.38 3092.20 5598.30 5497.57 90
Andreas Kuhn, Christian Sormann, Mattia Rossi, Oliver Erdler, Friedrich Fraundorfer: DeepC-MVS: Deep Confidence Prediction for Multi-View Stereo Reconstruction. 3DV 2020
3Dnovator+87.14 492.42 6691.37 7495.55 695.63 12188.73 697.07 1896.77 7290.84 1584.02 24896.62 6475.95 15399.34 3387.77 12097.68 7598.59 23
3Dnovator86.66 591.73 7590.82 8694.44 4394.59 16586.37 3997.18 1297.02 4689.20 5784.31 24496.66 5973.74 18999.17 4686.74 13697.96 6797.79 82
TAPA-MVS84.62 688.16 16887.01 17891.62 14496.64 8080.65 18694.39 15596.21 11376.38 30686.19 18895.44 10779.75 11098.08 14662.75 35395.29 11596.13 142
Andrea Romanoni, Matteo Matteucci: TAPA-MVS: Textureless-Aware PAtchMatch Multi-View Stereo. ICCV 2019
PLCcopyleft84.53 789.06 14388.03 15392.15 11897.27 6882.69 13594.29 16195.44 17179.71 26784.01 24994.18 15976.68 14698.75 8877.28 26593.41 15295.02 183
Jie Liao, Yanping Fu, Qingan Yan, Chunxia xiao: Pyramid Multi-View Stereo with Local Consistency. Pacific Graphics 2019
ACMP84.23 889.01 14688.35 14390.99 17694.73 15881.27 16895.07 11195.89 13786.48 13083.67 25694.30 15369.33 24497.99 15387.10 13588.55 21893.72 256
Qingshan Xu and Wenbing Tao: Planar Prior Assisted PatchMatch Multi-View Stereo. AAAI 2020
ACMM84.12 989.14 13788.48 14291.12 16594.65 16481.22 17195.31 9196.12 11885.31 15985.92 19194.34 15070.19 23398.06 14885.65 14988.86 21594.08 233
Qingshan Xu and Wenbing Tao: Multi-Scale Geometric Consistency Guided Multi-View Stereo. CVPR 2019
PCF-MVS84.11 1087.74 17986.08 21492.70 9494.02 18984.43 8489.27 30995.87 13873.62 33584.43 23694.33 15178.48 12998.86 8070.27 31394.45 13394.81 195
Andreas Kuhn, Shan Lin, Oliver Erdler: Plane Completion and Filtering for Multi-View Stereo Reconstruction. GCPR 2019
OpenMVScopyleft83.78 1188.74 15387.29 17093.08 7592.70 23585.39 6596.57 3596.43 9578.74 28280.85 29396.07 8469.64 23999.01 6278.01 25996.65 9494.83 194
HY-MVS83.01 1289.03 14487.94 15692.29 11594.86 15382.77 12892.08 25994.49 21981.52 24586.93 16892.79 21278.32 13198.23 12779.93 23790.55 18495.88 154
LTVRE_ROB82.13 1386.26 23884.90 24790.34 20394.44 17681.50 16092.31 25194.89 20183.03 20879.63 31192.67 21369.69 23897.79 16271.20 30886.26 24991.72 315
Andreas Kuhn, Heiko Hirschmüller, Daniel Scharstein, Helmut Mayer: A TV Prior for High-Quality Scalable Multi-View Stereo Reconstruction. International Journal of Computer Vision 2016
ACMH+81.04 1485.05 26083.46 26889.82 22494.66 16379.37 22494.44 15094.12 23682.19 22578.04 32092.82 20958.23 33097.54 18373.77 29782.90 28092.54 296
IB-MVS80.51 1585.24 25783.26 26991.19 16292.13 24779.86 21391.75 26491.29 31083.28 20380.66 29688.49 31661.28 31198.46 10880.99 22179.46 32595.25 177
Christian Sormann, Mattia Rossi, Andreas Kuhn and Friedrich Fraundorfer: IB-MVS: An Iterative Algorithm for Deep Multi-View Stereo based on Binary Decisions. BMVC 2021
COLMAP_ROBcopyleft80.39 1683.96 27382.04 28089.74 22895.28 13179.75 21594.25 16392.28 27975.17 31978.02 32193.77 18058.60 32997.84 16165.06 34685.92 25091.63 317
Johannes L. Schönberger, Enliang Zheng, Marc Pollefeys, Jan-Michael Frahm: Pixelwise View Selection for Unstructured Multi-View Stereo. ECCV 2016
ACMH80.38 1785.36 25283.68 26590.39 19994.45 17580.63 18794.73 13294.85 20582.09 22677.24 32592.65 21460.01 32297.58 17872.25 30484.87 25892.96 285
Qingshan Xu and Wenbing Tao: Multi-Scale Geometric Consistency Guided Multi-View Stereo. CVPR 2019
PVSNet78.82 1885.55 24884.65 25288.23 26994.72 15971.93 32887.12 33692.75 26778.80 28084.95 22490.53 28264.43 29196.71 24574.74 29093.86 14196.06 148
OpenMVS_ROBcopyleft74.94 1979.51 31377.03 32086.93 29987.00 34976.23 28992.33 24990.74 32368.93 35674.52 34388.23 32149.58 35696.62 24957.64 36384.29 26287.94 357
PVSNet_073.20 2077.22 32374.83 32984.37 32790.70 30571.10 33883.09 36189.67 34272.81 34373.93 34683.13 35560.79 31793.70 33368.54 32550.84 37588.30 355
CMPMVSbinary59.16 2180.52 30579.20 30784.48 32683.98 36267.63 35689.95 30193.84 24664.79 36266.81 36391.14 26857.93 33195.17 31176.25 27688.10 22790.65 333
M. Jancosek, T. Pajdla: Multi-View Reconstruction Preserving Weakly-Supported Surfaces. CVPR 2011
PMVScopyleft47.18 2252.22 34448.46 34863.48 35945.72 38846.20 38373.41 37378.31 37541.03 37730.06 38065.68 3736.05 38783.43 37430.04 37965.86 36260.80 374
Y. Furukawa, J. Ponce: Accurate, dense, and robust multiview stereopsis. PAMI (2010)
MVEpermissive39.65 2343.39 34638.59 35257.77 36056.52 38548.77 38155.38 37658.64 38629.33 38028.96 38152.65 3774.68 38864.62 38228.11 38033.07 37859.93 375
Simon Fuhrmann, Fabian Langguth, Michael Goesele: MVE - A Multi-View Reconstruction Environment. EUROGRAPHICS Workshops on Graphics and Cultural Heritage (2014)
test_fmvsmvis_n_192093.44 4793.55 4793.10 7393.67 20784.26 8795.83 6996.14 11589.00 6692.43 7597.50 1883.37 7398.72 9096.61 397.44 7896.32 134
dmvs_re84.20 27083.22 27187.14 29691.83 25877.81 26290.04 29890.19 32984.70 17481.49 28489.17 30564.37 29291.13 35571.58 30685.65 25392.46 300
SDMVSNet90.19 10489.61 10791.93 12896.00 10583.09 11892.89 23195.98 12788.73 7286.85 17495.20 11872.09 20997.08 22688.90 10789.85 19695.63 166
dmvs_testset74.57 32875.81 32770.86 35387.72 34740.47 38487.05 33777.90 37782.75 21571.15 35785.47 34667.98 26184.12 37345.26 37176.98 33988.00 356
sd_testset88.59 15887.85 15890.83 18096.00 10580.42 19392.35 24794.71 21488.73 7286.85 17495.20 11867.31 26296.43 26779.64 24189.85 19695.63 166
test_fmvsm_n_192094.71 1695.11 1093.50 6395.79 11484.62 7396.15 5297.64 289.85 3997.19 897.89 1286.28 4098.71 9197.11 298.08 6497.17 104
test_cas_vis1_n_192088.83 15288.85 13088.78 25291.15 28476.72 28093.85 19294.93 19983.23 20592.81 6296.00 8661.17 31594.45 31891.67 7394.84 12195.17 179
test_vis1_n_192089.39 13389.84 10488.04 27392.97 22872.64 32294.71 13496.03 12686.18 13891.94 8796.56 6861.63 30795.74 29893.42 3195.11 11995.74 161
test_vis1_n86.56 23086.49 19986.78 30588.51 33472.69 31994.68 13593.78 24879.55 26990.70 10795.31 11148.75 35893.28 33893.15 3593.99 13894.38 219
test_fmvs1_n87.03 21687.04 17786.97 29889.74 32571.86 32994.55 14294.43 22178.47 28591.95 8695.50 10651.16 35393.81 33093.02 3894.56 12995.26 176
mvsany_test185.42 25185.30 23885.77 31687.95 34575.41 29787.61 33380.97 36976.82 30388.68 13595.83 9477.44 13890.82 35785.90 14686.51 24791.08 331
APD_test169.04 33366.26 33777.36 34880.51 36862.79 36785.46 34883.51 36354.11 37059.14 36884.79 34923.40 37789.61 36155.22 36570.24 35379.68 368
test_vis1_rt77.96 32176.46 32182.48 33785.89 35571.74 33290.25 29078.89 37371.03 35271.30 35681.35 36042.49 36691.05 35684.55 16382.37 28484.65 360
test_vis3_rt65.12 33662.60 33872.69 35171.44 37660.71 36987.17 33565.55 38263.80 36453.22 37065.65 37414.54 38489.44 36376.65 27165.38 36367.91 373
test_fmvs283.98 27284.03 25983.83 33287.16 34867.53 35793.93 18892.89 26277.62 29586.89 17393.53 18547.18 36292.02 34990.54 9286.51 24791.93 312
test_fmvs187.34 20087.56 16386.68 30690.59 30771.80 33194.01 18294.04 23878.30 28991.97 8495.22 11556.28 33693.71 33292.89 3994.71 12394.52 207
test_fmvs377.67 32277.16 31979.22 34279.52 37061.14 36892.34 24891.64 30073.98 33178.86 31586.59 33627.38 37487.03 36788.12 11775.97 34289.50 342
mvsany_test374.95 32773.26 33180.02 34174.61 37363.16 36685.53 34778.42 37474.16 32974.89 34186.46 33736.02 36989.09 36482.39 19466.91 36187.82 358
testf159.54 34056.11 34369.85 35569.28 37856.61 37580.37 36776.55 37942.58 37545.68 37475.61 36411.26 38584.18 37143.20 37460.44 37068.75 371
APD_test259.54 34056.11 34369.85 35569.28 37856.61 37580.37 36776.55 37942.58 37545.68 37475.61 36411.26 38584.18 37143.20 37460.44 37068.75 371
test_f71.95 33170.87 33375.21 34974.21 37559.37 37185.07 35185.82 35565.25 36170.42 35883.13 35523.62 37582.93 37578.32 25471.94 35183.33 362
FE-MVS87.40 19886.02 21691.57 14794.56 16979.69 21790.27 28893.72 24980.57 25888.80 13491.62 25265.32 28598.59 10074.97 28994.33 13696.44 131
FA-MVS(test-final)89.66 11988.91 12691.93 12894.57 16880.27 19591.36 27294.74 21384.87 16889.82 12092.61 21674.72 17298.47 10783.97 17093.53 14797.04 111
iter_conf_final89.42 12988.69 13291.60 14595.12 14082.93 12595.75 7392.14 28487.32 11487.12 16594.07 16067.09 26797.55 18190.61 9189.01 21294.32 221
bld_raw_dy_0_6487.60 18986.73 18590.21 20591.72 26180.26 19795.09 11088.61 34685.68 14985.55 19894.38 14963.93 29596.66 24687.73 12187.84 23493.72 256
patch_mono-293.74 4194.32 2292.01 12097.54 5778.37 24793.40 20897.19 3488.02 9694.99 2797.21 3288.35 2198.44 11294.07 2298.09 6299.23 1
EGC-MVSNET61.97 33856.37 34278.77 34489.63 32773.50 31189.12 31382.79 3640.21 3861.24 38784.80 34839.48 36790.04 36044.13 37275.94 34372.79 370
test250687.21 20986.28 20690.02 21795.62 12273.64 31096.25 4771.38 38187.89 10290.45 11096.65 6055.29 34198.09 14486.03 14596.94 8598.33 42
test111189.10 13888.64 13390.48 19495.53 12574.97 29896.08 5684.89 35988.13 9590.16 11696.65 6063.29 29898.10 13686.14 14196.90 8798.39 38
ECVR-MVScopyleft89.09 14088.53 13790.77 18395.62 12275.89 29196.16 5084.22 36187.89 10290.20 11496.65 6063.19 30098.10 13685.90 14696.94 8598.33 42
test_blank0.00 3560.00 3590.00 3690.00 3920.00 3930.00 3800.00 3930.00 3870.00 3880.00 3870.00 3920.00 3880.00 3860.00 3860.00 384
tt080586.92 21885.74 23090.48 19492.22 24379.98 21095.63 8294.88 20383.83 18884.74 22792.80 21157.61 33297.67 16985.48 15284.42 26193.79 247
DVP-MVS++95.98 196.36 194.82 2997.78 5186.00 4898.29 197.49 690.75 1897.62 598.06 692.59 299.61 395.64 999.02 1298.86 10
FOURS198.86 185.54 6498.29 197.49 689.79 4396.29 16
MSC_two_6792asdad96.52 197.78 5190.86 196.85 6299.61 396.03 499.06 999.07 5
PC_three_145282.47 21997.09 1097.07 4192.72 198.04 14992.70 4599.02 1298.86 10
No_MVS96.52 197.78 5190.86 196.85 6299.61 396.03 499.06 999.07 5
test_one_060198.58 1185.83 5897.44 1591.05 1396.78 1498.06 691.45 11
eth-test20.00 392
eth-test0.00 392
GeoE90.05 10789.43 11291.90 13395.16 13780.37 19495.80 7094.65 21783.90 18587.55 15794.75 13778.18 13297.62 17781.28 21593.63 14497.71 84
test_method50.52 34548.47 34756.66 36152.26 38718.98 39041.51 37981.40 36810.10 38144.59 37675.01 36728.51 37268.16 37953.54 36749.31 37682.83 364
Anonymous2024052180.44 30679.21 30684.11 33085.75 35767.89 35392.86 23393.23 25675.61 31575.59 33787.47 33150.03 35494.33 32271.14 31181.21 29890.12 339
h-mvs3390.80 8990.15 9592.75 9096.01 10482.66 13695.43 8795.53 16389.80 4093.08 5395.64 10375.77 15499.00 6692.07 6078.05 33196.60 126
hse-mvs289.88 11689.34 11591.51 14994.83 15581.12 17493.94 18793.91 24389.80 4093.08 5393.60 18475.77 15497.66 17192.07 6077.07 33895.74 161
CL-MVSNet_self_test81.74 29180.53 28985.36 31985.96 35472.45 32690.25 29093.07 25981.24 25179.85 30987.29 33370.93 22092.52 34566.95 33569.23 35691.11 329
KD-MVS_2432*160078.50 31876.02 32585.93 31386.22 35274.47 30284.80 35292.33 27679.29 27176.98 32785.92 34253.81 34893.97 32767.39 33357.42 37289.36 343
KD-MVS_self_test80.20 30879.24 30583.07 33485.64 35865.29 36291.01 27993.93 24078.71 28376.32 33186.40 33959.20 32792.93 34372.59 30269.35 35591.00 332
AUN-MVS87.78 17886.54 19691.48 15194.82 15681.05 17593.91 19193.93 24083.00 20986.93 16893.53 18569.50 24197.67 16986.14 14177.12 33795.73 163
ZD-MVS98.15 3486.62 3197.07 4483.63 19294.19 3296.91 4787.57 3199.26 4191.99 6498.44 50
SR-MVS-dyc-post93.82 3993.82 3993.82 5797.92 4384.57 7596.28 4496.76 7387.46 11093.75 3997.43 2184.24 6499.01 6292.73 4197.80 7297.88 76
RE-MVS-def93.68 4597.92 4384.57 7596.28 4496.76 7387.46 11093.75 3997.43 2182.94 7792.73 4197.80 7297.88 76
SED-MVS95.91 296.28 294.80 3198.77 585.99 5097.13 1497.44 1590.31 2797.71 198.07 492.31 499.58 995.66 799.13 398.84 13
IU-MVS98.77 586.00 4896.84 6481.26 25097.26 795.50 1399.13 399.03 7
OPU-MVS96.21 398.00 4290.85 397.13 1497.08 3992.59 298.94 7492.25 5398.99 1498.84 13
test_241102_TWO97.44 1590.31 2797.62 598.07 491.46 1099.58 995.66 799.12 698.98 9
test_241102_ONE98.77 585.99 5097.44 1590.26 3297.71 197.96 1092.31 499.38 30
SF-MVS94.97 1194.90 1495.20 1197.84 4787.76 996.65 3497.48 1087.76 10695.71 2097.70 1588.28 2399.35 3293.89 2598.78 2598.48 29
cl2286.78 22285.98 21889.18 24492.34 24177.62 26990.84 28194.13 23581.33 24883.97 25090.15 28973.96 18496.60 25484.19 16782.94 27793.33 269
miper_ehance_all_eth87.22 20886.62 19389.02 24992.13 24777.40 27290.91 28094.81 20981.28 24984.32 24290.08 29179.26 11896.62 24983.81 17382.94 27793.04 283
miper_enhance_ethall86.90 21986.18 20989.06 24791.66 26677.58 27090.22 29494.82 20879.16 27484.48 23389.10 30679.19 11996.66 24684.06 16882.94 27792.94 286
ZNCC-MVS94.47 1994.28 2595.03 1598.52 1586.96 1896.85 2897.32 2688.24 8893.15 5197.04 4286.17 4199.62 192.40 4998.81 2298.52 25
dcpmvs_293.49 4594.19 3191.38 15597.69 5476.78 27994.25 16396.29 10288.33 8494.46 2896.88 4888.07 2598.64 9493.62 2898.09 6298.73 16
cl____86.52 23285.78 22588.75 25492.03 25176.46 28490.74 28294.30 22781.83 23883.34 26590.78 27875.74 15996.57 25581.74 20981.54 29693.22 275
DIV-MVS_self_test86.53 23185.78 22588.75 25492.02 25276.45 28590.74 28294.30 22781.83 23883.34 26590.82 27675.75 15796.57 25581.73 21081.52 29793.24 274
eth_miper_zixun_eth86.50 23385.77 22788.68 25791.94 25375.81 29390.47 28694.89 20182.05 22784.05 24790.46 28375.96 15296.77 24282.76 18979.36 32693.46 267
9.1494.47 1897.79 4996.08 5697.44 1586.13 14195.10 2597.40 2388.34 2299.22 4393.25 3498.70 33
uanet_test0.00 3560.00 3590.00 3690.00 3920.00 3930.00 3800.00 3930.00 3870.00 3880.00 3870.00 3920.00 3880.00 3860.00 3860.00 384
DCPMVS0.00 3560.00 3590.00 3690.00 3920.00 3930.00 3800.00 3930.00 3870.00 3880.00 3870.00 3920.00 3880.00 3860.00 3860.00 384
save fliter97.85 4685.63 6395.21 10196.82 6789.44 50
ET-MVSNet_ETH3D87.51 19385.91 22292.32 11293.70 20683.93 9392.33 24990.94 31884.16 17972.09 35292.52 21869.90 23495.85 29289.20 10488.36 22597.17 104
UniMVSNet_ETH3D87.53 19286.37 20191.00 17592.44 23978.96 23594.74 13195.61 15784.07 18285.36 21894.52 14759.78 32497.34 20682.93 18387.88 23296.71 124
EIA-MVS91.95 7091.94 6891.98 12495.16 13780.01 20895.36 8896.73 7788.44 8189.34 12692.16 22983.82 6998.45 11189.35 10197.06 8397.48 93
miper_refine_blended78.50 31876.02 32585.93 31386.22 35274.47 30284.80 35292.33 27679.29 27176.98 32785.92 34253.81 34893.97 32767.39 33357.42 37289.36 343
miper_lstm_enhance85.27 25684.59 25487.31 28791.28 27874.63 30087.69 33094.09 23781.20 25381.36 28889.85 29774.97 16894.30 32381.03 22079.84 32393.01 284
ETV-MVS92.74 6192.66 6092.97 8195.20 13684.04 9295.07 11196.51 9290.73 2192.96 5691.19 26384.06 6598.34 11991.72 7296.54 9596.54 130
CS-MVS94.12 3294.44 1993.17 7096.55 8483.08 11997.63 396.95 5391.71 1093.50 4796.21 7685.61 4598.24 12693.64 2798.17 5798.19 57
D2MVS85.90 24285.09 24288.35 26490.79 30077.42 27191.83 26295.70 14980.77 25780.08 30590.02 29266.74 27496.37 27081.88 20587.97 23191.26 324
DVP-MVScopyleft95.67 396.02 394.64 3798.78 385.93 5397.09 1696.73 7790.27 3097.04 1198.05 891.47 899.55 1595.62 1199.08 798.45 35
Zhenlong Yuan, Jinguo Luo, Fei Shen, Zhaoxin Li, Cong Liu, Tianlu Mao, Zhaoqi Wang: DVP-MVS: Synergize Depth-Edge and Visibility Prior for Multi-View Stereo. AAAI2025
test_0728_THIRD90.75 1897.04 1198.05 892.09 699.55 1595.64 999.13 399.13 2
test_0728_SECOND95.01 1698.79 286.43 3797.09 1697.49 699.61 395.62 1199.08 798.99 8
test072698.78 385.93 5397.19 1197.47 1190.27 3097.64 498.13 191.47 8
SR-MVS94.23 2894.17 3294.43 4598.21 3285.78 6096.40 4096.90 5888.20 9294.33 3097.40 2384.75 6099.03 5793.35 3397.99 6698.48 29
DPM-MVS92.58 6391.74 7195.08 1496.19 9589.31 592.66 23796.56 9183.44 19891.68 9695.04 12486.60 3898.99 6885.60 15097.92 6996.93 117
GST-MVS94.21 2993.97 3794.90 2298.41 2286.82 2296.54 3697.19 3488.24 8893.26 4896.83 5185.48 4899.59 791.43 7798.40 5198.30 46
test_yl90.69 9390.02 10192.71 9295.72 11782.41 14394.11 17195.12 18785.63 15191.49 9894.70 13874.75 16998.42 11486.13 14392.53 16797.31 97
thisisatest053088.67 15487.61 16291.86 13494.87 15280.07 20394.63 13889.90 33884.00 18388.46 13993.78 17966.88 27198.46 10883.30 17892.65 16597.06 109
Anonymous2024052988.09 17086.59 19492.58 10096.53 8681.92 15295.99 6195.84 14074.11 33089.06 13195.21 11761.44 31098.81 8583.67 17687.47 23697.01 113
Anonymous20240521187.68 18086.13 21092.31 11396.66 7980.74 18594.87 12391.49 30580.47 25989.46 12595.44 10754.72 34398.23 12782.19 19889.89 19497.97 71
DCV-MVSNet90.69 9390.02 10192.71 9295.72 11782.41 14394.11 17195.12 18785.63 15191.49 9894.70 13874.75 16998.42 11486.13 14392.53 16797.31 97
tttt051788.61 15687.78 15991.11 16894.96 14677.81 26295.35 8989.69 34185.09 16588.05 14694.59 14566.93 26998.48 10583.27 17992.13 17297.03 112
our_test_381.93 28880.46 29186.33 31088.46 33773.48 31288.46 32291.11 31276.46 30476.69 32988.25 32066.89 27094.36 32168.75 32479.08 32891.14 327
thisisatest051587.33 20185.99 21791.37 15693.49 21179.55 21990.63 28489.56 34480.17 26187.56 15690.86 27467.07 26898.28 12581.50 21393.02 16096.29 136
ppachtmachnet_test81.84 28980.07 29787.15 29588.46 33774.43 30489.04 31592.16 28275.33 31777.75 32288.99 30766.20 28095.37 30965.12 34577.60 33391.65 316
SMA-MVScopyleft95.20 895.07 1195.59 598.14 3588.48 896.26 4697.28 3085.90 14397.67 398.10 288.41 2099.56 1194.66 1699.19 198.71 18
Yufeng Yin; Xiaoyan Liu; Zichao Zhang: SMA-MVS: Segmentation-Guided Multi-Scale Anchor Deformation Patch Multi-View Stereo. IEEE Transactions on Circuits and Systems for Video Technology
GSMVS96.12 143
DPE-MVScopyleft95.57 495.67 495.25 998.36 2587.28 1695.56 8597.51 589.13 6097.14 997.91 1191.64 799.62 194.61 1799.17 298.86 10
Kehua Chen, Zhenlong Yuan, Tianlu Mao, Zhaoqi Wang: Dual-Level Precision Edges Guided Multi-View Stereo with Accurate Planarization. AAAI2025
test_part298.55 1287.22 1796.40 15
thres100view90087.63 18586.71 18790.38 20196.12 9778.55 24095.03 11491.58 30187.15 11588.06 14592.29 22668.91 25298.10 13670.13 31791.10 17794.48 215
tfpnnormal84.72 26583.23 27089.20 24392.79 23480.05 20594.48 14595.81 14182.38 22181.08 29191.21 26269.01 25196.95 23561.69 35580.59 31290.58 337
tfpn200view987.58 19086.64 19090.41 19895.99 10878.64 23894.58 14091.98 29186.94 12288.09 14291.77 24569.18 24998.10 13670.13 31791.10 17794.48 215
c3_l87.14 21386.50 19889.04 24892.20 24477.26 27391.22 27694.70 21582.01 23084.34 24190.43 28478.81 12296.61 25283.70 17581.09 30293.25 273
CHOSEN 280x42085.15 25883.99 26188.65 25892.47 23878.40 24679.68 36992.76 26674.90 32381.41 28789.59 30069.85 23795.51 30479.92 23895.29 11592.03 310
CANet93.54 4493.20 5294.55 4195.65 12085.73 6294.94 11896.69 8291.89 790.69 10895.88 9281.99 9399.54 1993.14 3697.95 6898.39 38
Fast-Effi-MVS+-dtu87.44 19686.72 18689.63 23392.04 25077.68 26894.03 18093.94 23985.81 14482.42 27491.32 26070.33 23197.06 22980.33 23390.23 18894.14 228
Effi-MVS+-dtu88.65 15588.35 14389.54 23593.33 21576.39 28694.47 14894.36 22587.70 10785.43 21189.56 30273.45 19297.26 21485.57 15191.28 17694.97 184
CANet_DTU90.26 10389.41 11392.81 8693.46 21383.01 12293.48 20594.47 22089.43 5187.76 15394.23 15870.54 22999.03 5784.97 15596.39 9996.38 133
MVS_030494.60 1794.38 2195.23 1095.41 12887.49 1496.53 3792.75 26793.82 193.07 5597.84 1483.66 7099.59 797.61 198.76 2898.61 21
MP-MVS-pluss94.21 2994.00 3694.85 2498.17 3386.65 2994.82 12697.17 3886.26 13592.83 6197.87 1385.57 4799.56 1194.37 2098.92 1798.34 41
MP-MVS-pluss: MP-MVS-pluss. MP-MVS-pluss
MSP-MVS95.42 695.56 694.98 1898.49 1786.52 3496.91 2597.47 1191.73 996.10 1896.69 5689.90 1299.30 3994.70 1598.04 6599.13 2
Zhenlong Yuan, Cong Liu, Fei Shen, Zhaoxin Li, Jingguo luo, Tianlu Mao and Zhaoqi Wang: MSP-MVS: Multi-granularity Segmentation Prior Guided Multi-View Stereo. AAAI2025
sam_mvs171.70 21196.12 143
sam_mvs70.60 224
IterMVS-SCA-FT85.45 24984.53 25588.18 27091.71 26376.87 27890.19 29592.65 27185.40 15781.44 28690.54 28166.79 27295.00 31681.04 21881.05 30392.66 294
TSAR-MVS + MP.94.85 1394.94 1294.58 4098.25 2986.33 4096.11 5596.62 8688.14 9496.10 1896.96 4589.09 1898.94 7494.48 1898.68 3698.48 29
Zhenlong Yuan, Jiakai Cao, Zhaoqi Wang, Zhaoxin Li: TSAR-MVS: Textureless-aware Segmentation and Correlative Refinement Guided Multi-View Stereo. Pattern Recognition
xiu_mvs_v1_base_debu90.64 9690.05 9892.40 10793.97 19584.46 8193.32 21095.46 16685.17 16092.25 7694.03 16270.59 22598.57 10190.97 8294.67 12494.18 225
OPM-MVS90.12 10589.56 10891.82 13793.14 21983.90 9494.16 16895.74 14788.96 6787.86 14895.43 10972.48 20597.91 15988.10 11890.18 18993.65 259
Ray L. Khuboni, Hongjun Xu: Octagram Propagation Matching for Multi-Scale View Stereopsis (OPM-MVS).
ACMMP_NAP94.74 1594.56 1795.28 898.02 4187.70 1095.68 7797.34 2288.28 8795.30 2497.67 1685.90 4499.54 1993.91 2498.95 1598.60 22
ambc83.06 33579.99 36963.51 36577.47 37092.86 26374.34 34584.45 35028.74 37195.06 31573.06 30168.89 35990.61 334
MTGPAbinary96.97 49
CS-MVS-test94.02 3494.29 2493.24 6796.69 7883.24 11197.49 596.92 5692.14 492.90 5795.77 9885.02 5598.33 12193.03 3798.62 4398.13 61
Effi-MVS+91.59 7891.11 7993.01 7994.35 18183.39 10994.60 13995.10 18987.10 11790.57 10993.10 20181.43 9798.07 14789.29 10394.48 13297.59 89
xiu_mvs_v2_base91.13 8690.89 8591.86 13494.97 14582.42 14192.24 25295.64 15686.11 14291.74 9593.14 19979.67 11598.89 7789.06 10695.46 11194.28 224
xiu_mvs_v1_base90.64 9690.05 9892.40 10793.97 19584.46 8193.32 21095.46 16685.17 16092.25 7694.03 16270.59 22598.57 10190.97 8294.67 12494.18 225
new-patchmatchnet76.41 32575.17 32880.13 34082.65 36759.61 37087.66 33191.08 31378.23 29269.85 35983.22 35454.76 34291.63 35464.14 34964.89 36589.16 348
pmmvs683.42 27881.60 28288.87 25188.01 34377.87 26094.96 11794.24 23074.67 32578.80 31691.09 27060.17 32196.49 26177.06 27075.40 34492.23 308
pmmvs584.21 26982.84 27788.34 26588.95 33176.94 27792.41 24391.91 29575.63 31480.28 30091.18 26564.59 29095.57 30177.09 26983.47 27292.53 297
test_post188.00 3269.81 38369.31 24695.53 30276.65 271
test_post10.29 38270.57 22895.91 290
Fast-Effi-MVS+89.41 13088.64 13391.71 14294.74 15780.81 18393.54 20395.10 18983.11 20686.82 17690.67 28079.74 11197.75 16780.51 23093.55 14696.57 128
patchmatchnet-post83.76 35271.53 21296.48 262
Anonymous2023121186.59 22985.13 24190.98 17896.52 8781.50 16096.14 5396.16 11473.78 33383.65 25792.15 23063.26 29997.37 20582.82 18781.74 29494.06 234
pmmvs-eth3d80.97 30378.72 31287.74 27784.99 36179.97 21190.11 29791.65 29975.36 31673.51 34786.03 34159.45 32593.96 32975.17 28572.21 34989.29 346
GG-mvs-BLEND87.94 27689.73 32677.91 25787.80 32778.23 37680.58 29783.86 35159.88 32395.33 31071.20 30892.22 17190.60 336
xiu_mvs_v1_base_debi90.64 9690.05 9892.40 10793.97 19584.46 8193.32 21095.46 16685.17 16092.25 7694.03 16270.59 22598.57 10190.97 8294.67 12494.18 225
Anonymous2023120681.03 30279.77 30084.82 32487.85 34670.26 34591.42 27192.08 28673.67 33477.75 32289.25 30462.43 30393.08 34161.50 35682.00 29091.12 328
MTAPA94.42 2494.22 2895.00 1798.42 2186.95 1994.36 16096.97 4991.07 1293.14 5297.56 1784.30 6399.56 1193.43 3098.75 2998.47 32
MTMP96.16 5060.64 385
gm-plane-assit89.60 32868.00 35277.28 30088.99 30797.57 17979.44 244
test9_res91.91 6898.71 3198.07 65
MVP-Stereo85.97 24184.86 24889.32 24090.92 29582.19 14692.11 25794.19 23178.76 28178.77 31791.63 25168.38 25996.56 25775.01 28893.95 13989.20 347
Qingsong Yan: MVP-Stereo: A Parallel Multi-View Patchmatch Stereo Method with Dilation Matching for Photogrammetric Application.
TEST997.53 5886.49 3594.07 17696.78 7081.61 24392.77 6496.20 7787.71 2899.12 50
train_agg93.44 4793.08 5394.52 4297.53 5886.49 3594.07 17696.78 7081.86 23692.77 6496.20 7787.63 2999.12 5092.14 5898.69 3497.94 72
gg-mvs-nofinetune81.77 29079.37 30388.99 25090.85 29977.73 26786.29 34179.63 37274.88 32483.19 26869.05 37160.34 31996.11 28175.46 28294.64 12793.11 280
SCA86.32 23785.18 24089.73 23092.15 24576.60 28291.12 27791.69 29883.53 19685.50 20488.81 31066.79 27296.48 26276.65 27190.35 18796.12 143
Patchmatch-test81.37 29879.30 30487.58 28190.92 29574.16 30780.99 36587.68 35270.52 35376.63 33088.81 31071.21 21592.76 34460.01 36186.93 24595.83 157
test_897.49 6086.30 4394.02 18196.76 7381.86 23692.70 6896.20 7787.63 2999.02 60
MS-PatchMatch85.05 26084.16 25787.73 27891.42 27278.51 24291.25 27593.53 25177.50 29680.15 30291.58 25461.99 30595.51 30475.69 28094.35 13589.16 348
Patchmatch-RL test81.67 29279.96 29886.81 30485.42 35971.23 33682.17 36387.50 35378.47 28577.19 32682.50 35870.81 22293.48 33582.66 19072.89 34895.71 164
cdsmvs_eth3d_5k22.14 35029.52 3530.00 3690.00 3920.00 3930.00 38095.76 1450.00 3870.00 38894.29 15475.66 1600.00 3880.00 3860.00 3860.00 384
pcd_1.5k_mvsjas6.64 3558.86 3580.00 3690.00 3920.00 3930.00 3800.00 3930.00 3870.00 3880.00 38779.70 1120.00 3880.00 3860.00 3860.00 384
agg_prior290.54 9298.68 3698.27 51
agg_prior97.38 6385.92 5596.72 7992.16 7998.97 71
tmp_tt35.64 34939.24 35124.84 36514.87 38923.90 38962.71 37551.51 3886.58 38336.66 37962.08 37644.37 36430.34 38552.40 36822.00 38220.27 380
canonicalmvs93.27 5392.75 5994.85 2495.70 11987.66 1196.33 4196.41 9690.00 3694.09 3494.60 14482.33 8498.62 9792.40 4992.86 16398.27 51
anonymousdsp87.84 17587.09 17490.12 21189.13 32980.54 19094.67 13695.55 16082.05 22783.82 25292.12 23271.47 21497.15 22187.15 13187.80 23592.67 293
alignmvs93.08 5692.50 6394.81 3095.62 12287.61 1295.99 6196.07 12189.77 4494.12 3394.87 12980.56 10298.66 9292.42 4893.10 15998.15 60
nrg03091.08 8790.39 8993.17 7093.07 22286.91 2096.41 3896.26 10588.30 8688.37 14194.85 13282.19 8897.64 17591.09 7982.95 27694.96 187
v14419287.19 21186.35 20289.74 22890.64 30678.24 25193.92 18995.43 17281.93 23285.51 20391.05 27174.21 17997.45 19082.86 18581.56 29593.53 262
FIs90.51 10090.35 9090.99 17693.99 19480.98 17795.73 7497.54 489.15 5986.72 17794.68 14081.83 9597.24 21685.18 15388.31 22694.76 197
v192192086.97 21786.06 21589.69 23290.53 31178.11 25493.80 19395.43 17281.90 23485.33 21991.05 27172.66 20297.41 19982.05 20181.80 29293.53 262
UA-Net92.83 5992.54 6293.68 6196.10 10084.71 7295.66 7996.39 9791.92 693.22 5096.49 6983.16 7498.87 7884.47 16495.47 11097.45 95
v119287.25 20586.33 20390.00 21990.76 30279.04 23493.80 19395.48 16582.57 21885.48 20691.18 26573.38 19597.42 19482.30 19682.06 28793.53 262
FC-MVSNet-test90.27 10290.18 9490.53 18893.71 20479.85 21495.77 7297.59 389.31 5486.27 18694.67 14181.93 9497.01 23284.26 16688.09 22994.71 198
v114487.61 18886.79 18490.06 21491.01 28879.34 22693.95 18695.42 17483.36 20185.66 19691.31 26174.98 16797.42 19483.37 17782.06 28793.42 268
sosnet-low-res0.00 3560.00 3590.00 3690.00 3920.00 3930.00 3800.00 3930.00 3870.00 3880.00 3870.00 3920.00 3880.00 3860.00 3860.00 384
HFP-MVS94.52 1894.40 2094.86 2398.61 1086.81 2396.94 2097.34 2288.63 7693.65 4197.21 3286.10 4299.49 2592.35 5198.77 2798.30 46
v14887.04 21586.32 20489.21 24290.94 29377.26 27393.71 19894.43 22184.84 17084.36 24090.80 27776.04 15197.05 23082.12 19979.60 32493.31 270
sosnet0.00 3560.00 3590.00 3690.00 3920.00 3930.00 3800.00 3930.00 3870.00 3880.00 3870.00 3920.00 3880.00 3860.00 3860.00 384
uncertanet0.00 3560.00 3590.00 3690.00 3920.00 3930.00 3800.00 3930.00 3870.00 3880.00 3870.00 3920.00 3880.00 3860.00 3860.00 384
AllTest83.42 27881.39 28489.52 23695.01 14277.79 26493.12 22190.89 32077.41 29776.12 33393.34 18854.08 34697.51 18568.31 32884.27 26393.26 271
TestCases89.52 23695.01 14277.79 26490.89 32077.41 29776.12 33393.34 18854.08 34697.51 18568.31 32884.27 26393.26 271
v7n86.81 22085.76 22889.95 22090.72 30479.25 23295.07 11195.92 13284.45 17882.29 27590.86 27472.60 20497.53 18479.42 24680.52 31593.08 282
region2R94.43 2294.27 2794.92 1998.65 886.67 2896.92 2497.23 3388.60 7893.58 4397.27 2885.22 5199.54 1992.21 5498.74 3098.56 24
iter_conf0588.85 14888.08 15291.17 16494.27 18281.64 15795.18 10392.15 28386.23 13787.28 16294.07 16063.89 29697.55 18190.63 9089.00 21394.32 221
RRT_MVS89.09 14088.62 13690.49 19292.85 23279.65 21896.41 3894.41 22388.22 9085.50 20494.77 13669.36 24397.31 20789.33 10286.73 24694.51 209
PS-MVSNAJss89.97 11089.62 10691.02 17391.90 25480.85 18295.26 9895.98 12786.26 13586.21 18794.29 15479.70 11297.65 17288.87 10988.10 22794.57 204
PS-MVSNAJ91.18 8590.92 8391.96 12695.26 13382.60 13992.09 25895.70 14986.27 13491.84 9092.46 21979.70 11298.99 6889.08 10595.86 10394.29 223
jajsoiax88.24 16687.50 16490.48 19490.89 29780.14 20095.31 9195.65 15584.97 16784.24 24594.02 16565.31 28697.42 19488.56 11188.52 22093.89 239
mvs_tets88.06 17287.28 17190.38 20190.94 29379.88 21295.22 10095.66 15385.10 16484.21 24693.94 17063.53 29797.40 20188.50 11288.40 22493.87 242
EI-MVSNet-UG-set92.74 6192.62 6193.12 7294.86 15383.20 11394.40 15395.74 14790.71 2292.05 8196.60 6584.00 6698.99 6891.55 7493.63 14497.17 104
EI-MVSNet-Vis-set93.01 5792.92 5693.29 6595.01 14283.51 10594.48 14595.77 14490.87 1492.52 7296.67 5884.50 6299.00 6691.99 6494.44 13497.36 96
HPM-MVS++copyleft95.14 1094.91 1395.83 498.25 2989.65 495.92 6596.96 5191.75 894.02 3696.83 5188.12 2499.55 1593.41 3298.94 1698.28 49
test_prior485.96 5294.11 171
XVS94.45 2094.32 2294.85 2498.54 1386.60 3296.93 2297.19 3490.66 2392.85 5997.16 3785.02 5599.49 2591.99 6498.56 4798.47 32
v124086.78 22285.85 22389.56 23490.45 31277.79 26493.61 20195.37 17781.65 24085.43 21191.15 26771.50 21397.43 19381.47 21482.05 28993.47 266
pm-mvs186.61 22785.54 23189.82 22491.44 26980.18 19895.28 9794.85 20583.84 18781.66 28392.62 21572.45 20796.48 26279.67 24078.06 33092.82 291
test_prior294.12 17087.67 10892.63 6996.39 7286.62 3691.50 7598.67 38
X-MVStestdata88.31 16486.13 21094.85 2498.54 1386.60 3296.93 2297.19 3490.66 2392.85 5923.41 38185.02 5599.49 2591.99 6498.56 4798.47 32
test_prior93.82 5797.29 6784.49 7996.88 6098.87 7898.11 64
旧先验293.36 20971.25 35094.37 2997.13 22486.74 136
新几何293.11 223
新几何193.10 7397.30 6684.35 8695.56 15971.09 35191.26 10396.24 7582.87 7898.86 8079.19 24898.10 6196.07 147
旧先验196.79 7681.81 15495.67 15196.81 5386.69 3597.66 7696.97 115
无先验93.28 21696.26 10573.95 33299.05 5480.56 22996.59 127
原ACMM292.94 230
原ACMM192.01 12097.34 6481.05 17596.81 6878.89 27790.45 11095.92 9082.65 7998.84 8480.68 22798.26 5696.14 141
test22296.55 8481.70 15692.22 25395.01 19268.36 35790.20 11496.14 8280.26 10597.80 7296.05 149
testdata298.75 8878.30 255
segment_acmp87.16 34
testdata90.49 19296.40 8977.89 25995.37 17772.51 34493.63 4296.69 5682.08 9097.65 17283.08 18097.39 7995.94 151
testdata192.15 25587.94 98
v887.50 19586.71 18789.89 22191.37 27479.40 22394.50 14495.38 17584.81 17183.60 25991.33 25876.05 15097.42 19482.84 18680.51 31692.84 290
131487.51 19386.57 19590.34 20392.42 24079.74 21692.63 23895.35 17978.35 28880.14 30391.62 25274.05 18297.15 22181.05 21793.53 14794.12 229
LFMVS90.08 10689.13 12092.95 8296.71 7782.32 14596.08 5689.91 33786.79 12592.15 8096.81 5362.60 30298.34 11987.18 13093.90 14098.19 57
VDD-MVS90.74 9189.92 10393.20 6996.27 9383.02 12195.73 7493.86 24488.42 8392.53 7196.84 5062.09 30498.64 9490.95 8592.62 16697.93 74
VDDNet89.56 12388.49 14192.76 8995.07 14182.09 14796.30 4293.19 25781.05 25591.88 8896.86 4961.16 31698.33 12188.43 11392.49 16997.84 79
v1087.25 20586.38 20089.85 22291.19 28079.50 22094.48 14595.45 16983.79 18983.62 25891.19 26375.13 16497.42 19481.94 20380.60 31192.63 295
VPNet88.20 16787.47 16690.39 19993.56 21079.46 22194.04 17995.54 16288.67 7586.96 16794.58 14669.33 24497.15 22184.05 16980.53 31494.56 205
MVS87.44 19686.10 21391.44 15392.61 23783.62 10292.63 23895.66 15367.26 35881.47 28592.15 23077.95 13398.22 12979.71 23995.48 10992.47 299
v2v48287.84 17587.06 17590.17 20790.99 28979.23 23394.00 18495.13 18684.87 16885.53 20192.07 23874.45 17497.45 19084.71 16181.75 29393.85 245
V4287.68 18086.86 18090.15 20990.58 30880.14 20094.24 16595.28 18083.66 19185.67 19591.33 25874.73 17197.41 19984.43 16581.83 29192.89 288
SD-MVS94.96 1295.33 893.88 5597.25 6986.69 2696.19 4997.11 4290.42 2696.95 1397.27 2889.53 1496.91 23894.38 1998.85 1998.03 69
Zhenlong Yuan, Jiakai Cao, Zhaoxin Li, Hao Jiang and Zhaoqi Wang: SD-MVS: Segmentation-driven Deformation Multi-View Stereo with Spherical Refinement and EM optimization. AAAI2024
GA-MVS86.61 22785.27 23990.66 18491.33 27778.71 23790.40 28793.81 24785.34 15885.12 22189.57 30161.25 31297.11 22580.99 22189.59 20296.15 140
MSLP-MVS++93.72 4294.08 3392.65 9697.31 6583.43 10695.79 7197.33 2490.03 3593.58 4396.96 4584.87 5897.76 16492.19 5698.66 3996.76 121
APDe-MVS95.46 595.64 594.91 2098.26 2886.29 4497.46 697.40 2089.03 6396.20 1798.10 289.39 1699.34 3395.88 699.03 1199.10 4
APD-MVS_3200maxsize93.78 4093.77 4293.80 5997.92 4384.19 8896.30 4296.87 6186.96 12093.92 3897.47 1983.88 6898.96 7392.71 4497.87 7098.26 53
ADS-MVSNet281.66 29379.71 30187.50 28391.35 27574.19 30683.33 35988.48 34872.90 34182.24 27785.77 34464.98 28893.20 34064.57 34783.74 26795.12 180
EI-MVSNet89.10 13888.86 12989.80 22791.84 25678.30 24993.70 19995.01 19285.73 14787.15 16395.28 11279.87 10997.21 21983.81 17387.36 23993.88 241
Regformer0.00 3560.00 3590.00 3690.00 3920.00 3930.00 3800.00 3930.00 3870.00 3880.00 3870.00 3920.00 3880.00 3860.00 3860.00 384
CVMVSNet84.69 26684.79 25084.37 32791.84 25664.92 36393.70 19991.47 30666.19 36086.16 18995.28 11267.18 26693.33 33780.89 22390.42 18694.88 192
pmmvs485.43 25083.86 26390.16 20890.02 32082.97 12490.27 28892.67 27075.93 31280.73 29491.74 24771.05 21795.73 29978.85 25083.46 27391.78 314
EU-MVSNet81.32 29980.95 28782.42 33888.50 33663.67 36493.32 21091.33 30864.02 36380.57 29892.83 20861.21 31492.27 34776.34 27580.38 31791.32 322
VNet92.24 6891.91 6993.24 6796.59 8283.43 10694.84 12596.44 9489.19 5894.08 3595.90 9177.85 13798.17 13188.90 10793.38 15398.13 61
test-LLR85.87 24385.41 23487.25 29090.95 29171.67 33389.55 30389.88 33983.41 19984.54 23187.95 32467.25 26495.11 31381.82 20693.37 15494.97 184
TESTMET0.1,183.74 27782.85 27686.42 30989.96 32171.21 33789.55 30387.88 34977.41 29783.37 26487.31 33256.71 33493.65 33480.62 22892.85 16494.40 218
test-mter84.54 26783.64 26687.25 29090.95 29171.67 33389.55 30389.88 33979.17 27384.54 23187.95 32455.56 33895.11 31381.82 20693.37 15494.97 184
VPA-MVSNet89.62 12088.96 12391.60 14593.86 19882.89 12795.46 8697.33 2487.91 9988.43 14093.31 19174.17 18097.40 20187.32 12982.86 28194.52 207
ACMMPR94.43 2294.28 2594.91 2098.63 986.69 2696.94 2097.32 2688.63 7693.53 4697.26 3085.04 5499.54 1992.35 5198.78 2598.50 26
testgi80.94 30480.20 29583.18 33387.96 34466.29 35891.28 27390.70 32483.70 19078.12 31992.84 20751.37 35290.82 35763.34 35082.46 28392.43 301
test20.0379.95 31079.08 30982.55 33685.79 35667.74 35591.09 27891.08 31381.23 25274.48 34489.96 29561.63 30790.15 35960.08 35976.38 34089.76 340
thres600view787.65 18286.67 18990.59 18596.08 10178.72 23694.88 12291.58 30187.06 11888.08 14492.30 22568.91 25298.10 13670.05 32091.10 17794.96 187
ADS-MVSNet81.56 29579.78 29986.90 30191.35 27571.82 33083.33 35989.16 34572.90 34182.24 27785.77 34464.98 28893.76 33164.57 34783.74 26795.12 180
MP-MVScopyleft94.25 2694.07 3494.77 3398.47 1886.31 4296.71 3196.98 4889.04 6291.98 8397.19 3485.43 4999.56 1192.06 6398.79 2398.44 36
Rongxuan Tan, Qing Wang, et al.: MP-MVS: Multi-Scale Windows PatchMatch and Planar Prior Multi-View Stereo.
testmvs8.92 35211.52 3551.12 3681.06 3900.46 39286.02 3420.65 3910.62 3842.74 3859.52 3840.31 3910.45 3872.38 3840.39 3842.46 383
thres40087.62 18786.64 19090.57 18695.99 10878.64 23894.58 14091.98 29186.94 12288.09 14291.77 24569.18 24998.10 13670.13 31791.10 17794.96 187
test1238.76 35311.22 3561.39 3670.85 3910.97 39185.76 3450.35 3920.54 3852.45 3868.14 3850.60 3900.48 3862.16 3850.17 3852.71 382
thres20087.21 20986.24 20890.12 21195.36 12978.53 24193.26 21792.10 28586.42 13288.00 14791.11 26969.24 24898.00 15269.58 32191.04 18293.83 246
test0.0.03 182.41 28581.69 28184.59 32588.23 34072.89 31690.24 29287.83 35083.41 19979.86 30889.78 29867.25 26488.99 36565.18 34483.42 27491.90 313
pmmvs371.81 33268.71 33581.11 33975.86 37270.42 34486.74 33883.66 36258.95 36768.64 36280.89 36136.93 36889.52 36263.10 35263.59 36683.39 361
EMVS42.07 34841.12 35044.92 36463.45 38435.56 38773.65 37163.48 38433.05 37926.88 38345.45 38021.27 37967.14 38119.80 38223.02 38132.06 379
E-PMN43.23 34742.29 34946.03 36365.58 38237.41 38573.51 37264.62 38333.99 37828.47 38247.87 37919.90 38167.91 38022.23 38124.45 37932.77 378
PGM-MVS93.96 3793.72 4394.68 3698.43 2086.22 4595.30 9397.78 187.45 11293.26 4897.33 2684.62 6199.51 2390.75 8998.57 4698.32 45
LCM-MVSNet-Re88.30 16588.32 14688.27 26694.71 16072.41 32793.15 22090.98 31787.77 10579.25 31491.96 24178.35 13095.75 29783.04 18195.62 10696.65 125
LCM-MVSNet66.00 33562.16 34077.51 34764.51 38358.29 37283.87 35890.90 31948.17 37254.69 36973.31 36916.83 38386.75 36865.47 34261.67 36887.48 359
MCST-MVS94.45 2094.20 3095.19 1298.46 1987.50 1395.00 11597.12 4087.13 11692.51 7396.30 7389.24 1799.34 3393.46 2998.62 4398.73 16
mvs_anonymous89.37 13489.32 11689.51 23893.47 21274.22 30591.65 26894.83 20782.91 21285.45 20893.79 17881.23 9996.36 27286.47 14094.09 13797.94 72
MVS_Test91.31 8291.11 7991.93 12894.37 17880.14 20093.46 20795.80 14286.46 13191.35 10293.77 18082.21 8798.09 14487.57 12494.95 12097.55 92
MDA-MVSNet-bldmvs78.85 31776.31 32286.46 30789.76 32473.88 30888.79 31790.42 32579.16 27459.18 36788.33 31960.20 32094.04 32662.00 35468.96 35891.48 320
CDPH-MVS92.83 5992.30 6594.44 4397.79 4986.11 4794.06 17896.66 8380.09 26392.77 6496.63 6386.62 3699.04 5687.40 12698.66 3998.17 59
test1294.34 4897.13 7086.15 4696.29 10291.04 10585.08 5399.01 6298.13 6097.86 78
casdiffmvspermissive92.51 6492.43 6492.74 9194.41 17781.98 15094.54 14396.23 10989.57 4891.96 8596.17 8182.58 8098.01 15190.95 8595.45 11298.23 55
Fangjinhua Wang, Qingshan Xu, Yew-Soon Ong, Marc Pollefeys: Lightweight and Accurate Multi-View Stereo With Confidence-Aware Diffusion Model. IEEE T-PAMI 2025
diffmvspermissive91.37 8191.23 7791.77 14093.09 22180.27 19592.36 24695.52 16487.03 11991.40 10194.93 12680.08 10697.44 19292.13 5994.56 12997.61 87
Fangjinhua Wang, Qingshan Xu, Yew-Soon Ong, Marc Pollefeys: Lightweight and Accurate Multi-View Stereo With Confidence-Aware Diffusion Model. IEEE T-PAMI 2025
baseline286.50 23385.39 23589.84 22391.12 28576.70 28191.88 26088.58 34782.35 22379.95 30790.95 27373.42 19397.63 17680.27 23489.95 19395.19 178
baseline188.10 16987.28 17190.57 18694.96 14680.07 20394.27 16291.29 31086.74 12687.41 15894.00 16776.77 14496.20 27780.77 22479.31 32795.44 170
YYNet179.22 31577.20 31785.28 32188.20 34272.66 32185.87 34390.05 33574.33 32862.70 36587.61 32966.09 28292.03 34866.94 33672.97 34791.15 326
PMMVS259.60 33956.40 34169.21 35768.83 38046.58 38273.02 37477.48 37855.07 36949.21 37272.95 37017.43 38280.04 37749.32 37044.33 37780.99 367
MDA-MVSNet_test_wron79.21 31677.19 31885.29 32088.22 34172.77 31885.87 34390.06 33374.34 32762.62 36687.56 33066.14 28191.99 35066.90 33973.01 34691.10 330
tpmvs83.35 28082.07 27987.20 29491.07 28771.00 34088.31 32491.70 29778.91 27680.49 29987.18 33469.30 24797.08 22668.12 33183.56 27193.51 265
PM-MVS78.11 32076.12 32484.09 33183.54 36470.08 34688.97 31685.27 35879.93 26474.73 34286.43 33834.70 37093.48 33579.43 24572.06 35088.72 351
HQP_MVS90.60 9990.19 9391.82 13794.70 16182.73 13295.85 6796.22 11090.81 1686.91 17094.86 13074.23 17798.12 13488.15 11489.99 19094.63 199
plane_prior794.70 16182.74 131
plane_prior694.52 17082.75 12974.23 177
plane_prior596.22 11098.12 13488.15 11489.99 19094.63 199
plane_prior494.86 130
plane_prior382.75 12990.26 3286.91 170
plane_prior295.85 6790.81 16
plane_prior194.59 165
plane_prior82.73 13295.21 10189.66 4789.88 195
PS-CasMVS87.32 20286.88 17988.63 25992.99 22776.33 28895.33 9096.61 8788.22 9083.30 26793.07 20273.03 19995.79 29678.36 25381.00 30793.75 254
UniMVSNet_NR-MVSNet89.92 11489.29 11791.81 13993.39 21483.72 9894.43 15197.12 4089.80 4086.46 18093.32 19083.16 7497.23 21784.92 15681.02 30594.49 214
PEN-MVS86.80 22186.27 20788.40 26292.32 24275.71 29495.18 10396.38 9887.97 9782.82 27193.15 19873.39 19495.92 28876.15 27879.03 32993.59 260
TransMVSNet (Re)84.43 26883.06 27388.54 26091.72 26178.44 24495.18 10392.82 26582.73 21679.67 31092.12 23273.49 19195.96 28771.10 31268.73 36091.21 325
DTE-MVSNet86.11 23985.48 23387.98 27491.65 26774.92 29994.93 11995.75 14687.36 11382.26 27693.04 20372.85 20095.82 29474.04 29477.46 33593.20 276
DU-MVS89.34 13588.50 13991.85 13693.04 22483.72 9894.47 14896.59 8889.50 4986.46 18093.29 19377.25 13997.23 21784.92 15681.02 30594.59 202
UniMVSNet (Re)89.80 11789.07 12192.01 12093.60 20984.52 7894.78 12997.47 1189.26 5586.44 18392.32 22482.10 8997.39 20484.81 15980.84 30994.12 229
CP-MVSNet87.63 18587.26 17388.74 25693.12 22076.59 28395.29 9596.58 8988.43 8283.49 26292.98 20475.28 16395.83 29378.97 24981.15 30193.79 247
WR-MVS_H87.80 17787.37 16889.10 24693.23 21778.12 25395.61 8397.30 2887.90 10083.72 25492.01 24079.65 11696.01 28576.36 27480.54 31393.16 278
WR-MVS88.38 16187.67 16190.52 19093.30 21680.18 19893.26 21795.96 13088.57 7985.47 20792.81 21076.12 14996.91 23881.24 21682.29 28594.47 217
NR-MVSNet88.58 15987.47 16691.93 12893.04 22484.16 8994.77 13096.25 10789.05 6180.04 30693.29 19379.02 12097.05 23081.71 21180.05 31994.59 202
Baseline_NR-MVSNet87.07 21486.63 19288.40 26291.44 26977.87 26094.23 16692.57 27284.12 18185.74 19492.08 23677.25 13996.04 28282.29 19779.94 32091.30 323
TranMVSNet+NR-MVSNet88.84 14987.95 15591.49 15092.68 23683.01 12294.92 12096.31 10189.88 3885.53 20193.85 17776.63 14796.96 23481.91 20479.87 32294.50 212
TSAR-MVS + GP.93.66 4393.41 4894.41 4796.59 8286.78 2494.40 15393.93 24089.77 4494.21 3195.59 10587.35 3298.61 9892.72 4396.15 10197.83 80
n20.00 393
nn0.00 393
mPP-MVS93.99 3693.78 4194.63 3898.50 1685.90 5796.87 2696.91 5788.70 7491.83 9297.17 3683.96 6799.55 1591.44 7698.64 4298.43 37
door-mid85.49 356
XVG-OURS-SEG-HR89.95 11289.45 11091.47 15294.00 19381.21 17291.87 26196.06 12385.78 14588.55 13795.73 10074.67 17397.27 21288.71 11089.64 20195.91 152
mvsmamba89.96 11189.50 10991.33 15892.90 23181.82 15396.68 3392.37 27589.03 6387.00 16694.85 13273.05 19797.65 17291.03 8188.63 21794.51 209
MVSFormer91.68 7791.30 7592.80 8793.86 19883.88 9595.96 6395.90 13584.66 17591.76 9394.91 12777.92 13497.30 20889.64 9997.11 8197.24 100
jason90.80 8990.10 9692.90 8493.04 22483.53 10493.08 22494.15 23380.22 26091.41 10094.91 12776.87 14197.93 15890.28 9696.90 8797.24 100
jason: jason.
lupinMVS90.92 8890.21 9293.03 7893.86 19883.88 9592.81 23493.86 24479.84 26591.76 9394.29 15477.92 13498.04 14990.48 9597.11 8197.17 104
test_djsdf89.03 14488.64 13390.21 20590.74 30379.28 23095.96 6395.90 13584.66 17585.33 21992.94 20574.02 18397.30 20889.64 9988.53 21994.05 235
HPM-MVS_fast93.40 5193.22 5193.94 5498.36 2584.83 7097.15 1396.80 6985.77 14692.47 7497.13 3882.38 8299.07 5290.51 9498.40 5197.92 75
K. test v381.59 29480.15 29685.91 31589.89 32369.42 34992.57 24087.71 35185.56 15373.44 34889.71 29955.58 33795.52 30377.17 26769.76 35492.78 292
lessismore_v086.04 31188.46 33768.78 35180.59 37073.01 35090.11 29055.39 33996.43 26775.06 28765.06 36492.90 287
SixPastTwentyTwo83.91 27582.90 27586.92 30090.99 28970.67 34293.48 20591.99 29085.54 15477.62 32492.11 23460.59 31896.87 24076.05 27977.75 33293.20 276
OurMVSNet-221017-085.35 25384.64 25387.49 28490.77 30172.59 32494.01 18294.40 22484.72 17379.62 31293.17 19761.91 30696.72 24381.99 20281.16 29993.16 278
HPM-MVScopyleft94.02 3493.88 3894.43 4598.39 2385.78 6097.25 1097.07 4486.90 12492.62 7096.80 5584.85 5999.17 4692.43 4798.65 4198.33 42
Chunlin Ren, Qingshan Xu, Shikun Zhang, Jiaqi Yang: Hierarchical Prior Mining for Non-local Multi-View Stereo. ICCV 2023
XVG-OURS89.40 13288.70 13191.52 14894.06 18781.46 16491.27 27496.07 12186.14 14088.89 13395.77 9868.73 25597.26 21487.39 12789.96 19295.83 157
XVG-ACMP-BASELINE86.00 24084.84 24989.45 23991.20 27978.00 25591.70 26695.55 16085.05 16682.97 26992.25 22854.49 34497.48 18782.93 18387.45 23892.89 288
casdiffmvs_mvgpermissive92.96 5892.83 5893.35 6494.59 16583.40 10895.00 11596.34 10090.30 2992.05 8196.05 8583.43 7198.15 13392.07 6095.67 10598.49 28
Fangjinhua Wang, Qingshan Xu, Yew-Soon Ong, Marc Pollefeys: Lightweight and Accurate Multi-View Stereo With Confidence-Aware Diffusion Model. IEEE T-PAMI 2025
LPG-MVS_test89.45 12788.90 12791.12 16594.47 17281.49 16295.30 9396.14 11586.73 12785.45 20895.16 12069.89 23598.10 13687.70 12289.23 20893.77 252
LGP-MVS_train91.12 16594.47 17281.49 16296.14 11586.73 12785.45 20895.16 12069.89 23598.10 13687.70 12289.23 20893.77 252
baseline92.39 6792.29 6692.69 9594.46 17481.77 15594.14 16996.27 10489.22 5691.88 8896.00 8682.35 8397.99 15391.05 8095.27 11798.30 46
test1196.57 90
door85.33 357
EPNet_dtu86.49 23585.94 22188.14 27190.24 31572.82 31794.11 17192.20 28186.66 12979.42 31392.36 22373.52 19095.81 29571.26 30793.66 14395.80 159
Wanjuan Su, Wenbing Tao: Efficient Edge-Preserving Multi-View Stereo Network for Depth Estimation. AAAI 2023
CHOSEN 1792x268888.84 14987.69 16092.30 11496.14 9681.42 16690.01 29995.86 13974.52 32687.41 15893.94 17075.46 16298.36 11680.36 23195.53 10797.12 108
EPNet91.79 7291.02 8294.10 5190.10 31785.25 6796.03 6092.05 28792.83 287.39 16195.78 9779.39 11799.01 6288.13 11697.48 7798.05 67
Wanjuan Su, Wenbing Tao: Efficient Edge-Preserving Multi-View Stereo Network for Depth Estimation. AAAI 2023
HQP5-MVS81.56 158
HQP-NCC94.17 18494.39 15588.81 6885.43 211
ACMP_Plane94.17 18494.39 15588.81 6885.43 211
APD-MVScopyleft94.24 2794.07 3494.75 3498.06 3986.90 2195.88 6696.94 5485.68 14995.05 2697.18 3587.31 3399.07 5291.90 7098.61 4598.28 49
Yuesong Wang, Zhaojie Zeng and etc.: Adaptive Patch Deformation for Textureless-Resilient Multi-View Stereo. CVPR2023
BP-MVS87.11 133
HQP4-MVS85.43 21197.96 15594.51 209
HQP3-MVS96.04 12489.77 199
HQP2-MVS73.83 187
CNVR-MVS95.40 795.37 795.50 798.11 3688.51 795.29 9596.96 5192.09 595.32 2397.08 3989.49 1599.33 3695.10 1498.85 1998.66 19
NCCC94.81 1494.69 1695.17 1397.83 4887.46 1595.66 7996.93 5592.34 393.94 3796.58 6687.74 2799.44 2892.83 4098.40 5198.62 20
114514_t89.51 12488.50 13992.54 10298.11 3681.99 14995.16 10696.36 9970.19 35485.81 19295.25 11476.70 14598.63 9682.07 20096.86 9097.00 114
CP-MVS94.34 2594.21 2994.74 3598.39 2386.64 3097.60 497.24 3188.53 8092.73 6797.23 3185.20 5299.32 3792.15 5798.83 2198.25 54
DSMNet-mixed76.94 32476.29 32378.89 34383.10 36556.11 37887.78 32879.77 37160.65 36675.64 33688.71 31361.56 30988.34 36660.07 36089.29 20792.21 309
tpm284.08 27182.94 27487.48 28591.39 27371.27 33589.23 31190.37 32671.95 34784.64 22889.33 30367.30 26396.55 25975.17 28587.09 24394.63 199
NP-MVS94.37 17882.42 14193.98 168
EG-PatchMatch MVS82.37 28680.34 29288.46 26190.27 31479.35 22592.80 23594.33 22677.14 30173.26 34990.18 28847.47 36196.72 24370.25 31487.32 24189.30 345
tpm cat181.96 28780.27 29387.01 29791.09 28671.02 33987.38 33491.53 30466.25 35980.17 30186.35 34068.22 26096.15 28069.16 32282.29 28593.86 244
SteuartSystems-ACMMP95.20 895.32 994.85 2496.99 7286.33 4097.33 797.30 2891.38 1195.39 2297.46 2088.98 1999.40 2994.12 2198.89 1898.82 15
Skip Steuart: Steuart Systems R&D Blog.
CostFormer85.77 24684.94 24688.26 26791.16 28372.58 32589.47 30791.04 31676.26 30986.45 18289.97 29470.74 22396.86 24182.35 19587.07 24495.34 175
CR-MVSNet85.35 25383.76 26490.12 21190.58 30879.34 22685.24 34991.96 29378.27 29085.55 19887.87 32771.03 21895.61 30073.96 29689.36 20595.40 172
JIA-IIPM81.04 30178.98 31187.25 29088.64 33373.48 31281.75 36489.61 34373.19 33882.05 27973.71 36866.07 28395.87 29171.18 31084.60 26092.41 302
Patchmtry82.71 28280.93 28888.06 27290.05 31976.37 28784.74 35491.96 29372.28 34681.32 28987.87 32771.03 21895.50 30668.97 32380.15 31892.32 306
PatchT82.68 28381.27 28586.89 30290.09 31870.94 34184.06 35690.15 33074.91 32285.63 19783.57 35369.37 24294.87 31765.19 34388.50 22194.84 193
tpmrst85.35 25384.99 24386.43 30890.88 29867.88 35488.71 31891.43 30780.13 26286.08 19088.80 31273.05 19796.02 28482.48 19183.40 27595.40 172
BH-w/o87.57 19187.05 17689.12 24594.90 15177.90 25892.41 24393.51 25282.89 21383.70 25591.34 25775.75 15797.07 22875.49 28193.49 14992.39 303
tpm84.73 26484.02 26086.87 30390.33 31368.90 35089.06 31489.94 33680.85 25685.75 19389.86 29668.54 25795.97 28677.76 26084.05 26595.75 160
DELS-MVS93.43 5093.25 5093.97 5295.42 12785.04 6893.06 22697.13 3990.74 2091.84 9095.09 12386.32 3999.21 4491.22 7898.45 4997.65 85
Christian Sormann, Emanuele Santellani, Mattia Rossi, Andreas Kuhn, Friedrich Fraundorfer: DELS-MVS: Deep Epipolar Line Search for Multi-View Stereo. Winter Conference on Applications of Computer Vision (WACV), 2023
BH-untuned88.60 15788.13 15190.01 21895.24 13478.50 24393.29 21594.15 23384.75 17284.46 23493.40 18775.76 15697.40 20177.59 26294.52 13194.12 229
RPMNet83.95 27481.53 28391.21 16190.58 30879.34 22685.24 34996.76 7371.44 34985.55 19882.97 35770.87 22198.91 7661.01 35789.36 20595.40 172
MVSTER88.84 14988.29 14790.51 19192.95 22980.44 19293.73 19695.01 19284.66 17587.15 16393.12 20072.79 20197.21 21987.86 11987.36 23993.87 242
CPTT-MVS91.99 6991.80 7092.55 10198.24 3181.98 15096.76 3096.49 9381.89 23590.24 11396.44 7178.59 12698.61 9889.68 9897.85 7197.06 109
GBi-Net87.26 20385.98 21891.08 16994.01 19083.10 11595.14 10794.94 19583.57 19384.37 23791.64 24866.59 27696.34 27378.23 25685.36 25493.79 247
PVSNet_Blended_VisFu91.38 8090.91 8492.80 8796.39 9083.17 11494.87 12396.66 8383.29 20289.27 12794.46 14880.29 10499.17 4687.57 12495.37 11396.05 149
PVSNet_BlendedMVS89.98 10989.70 10590.82 18196.12 9781.25 16993.92 18996.83 6583.49 19789.10 12992.26 22781.04 10098.85 8286.72 13887.86 23392.35 305
UnsupCasMVSNet_eth80.07 30978.27 31385.46 31885.24 36072.63 32388.45 32394.87 20482.99 21071.64 35588.07 32356.34 33591.75 35273.48 29963.36 36792.01 311
UnsupCasMVSNet_bld76.23 32673.27 33085.09 32383.79 36372.92 31585.65 34693.47 25371.52 34868.84 36179.08 36349.77 35593.21 33966.81 34060.52 36989.13 350
PVSNet_Blended90.73 9290.32 9191.98 12496.12 9781.25 16992.55 24196.83 6582.04 22989.10 12992.56 21781.04 10098.85 8286.72 13895.91 10295.84 156
FMVSNet581.52 29679.60 30287.27 28891.17 28177.95 25691.49 27092.26 28076.87 30276.16 33287.91 32651.67 35192.34 34667.74 33281.16 29991.52 318
test187.26 20385.98 21891.08 16994.01 19083.10 11595.14 10794.94 19583.57 19384.37 23791.64 24866.59 27696.34 27378.23 25685.36 25493.79 247
new_pmnet72.15 33070.13 33478.20 34582.95 36665.68 35983.91 35782.40 36662.94 36564.47 36479.82 36242.85 36586.26 36957.41 36474.44 34582.65 365
FMVSNet387.40 19886.11 21291.30 15993.79 20383.64 10194.20 16794.81 20983.89 18684.37 23791.87 24468.45 25896.56 25778.23 25685.36 25493.70 258
dp81.47 29780.23 29485.17 32289.92 32265.49 36186.74 33890.10 33276.30 30881.10 29087.12 33562.81 30195.92 28868.13 33079.88 32194.09 232
FMVSNet287.19 21185.82 22491.30 15994.01 19083.67 10094.79 12894.94 19583.57 19383.88 25192.05 23966.59 27696.51 26077.56 26385.01 25793.73 255
FMVSNet185.85 24484.11 25891.08 16992.81 23383.10 11595.14 10794.94 19581.64 24182.68 27291.64 24859.01 32896.34 27375.37 28383.78 26693.79 247
N_pmnet68.89 33468.44 33670.23 35489.07 33028.79 38888.06 32519.50 38969.47 35571.86 35484.93 34761.24 31391.75 35254.70 36677.15 33690.15 338
cascas86.43 23684.98 24490.80 18292.10 24980.92 18090.24 29295.91 13473.10 33983.57 26088.39 31765.15 28797.46 18984.90 15891.43 17594.03 236
BH-RMVSNet88.37 16287.48 16591.02 17395.28 13179.45 22292.89 23193.07 25985.45 15686.91 17094.84 13470.35 23097.76 16473.97 29594.59 12895.85 155
UGNet89.95 11288.95 12492.95 8294.51 17183.31 11095.70 7695.23 18289.37 5387.58 15593.94 17064.00 29398.78 8783.92 17196.31 10096.74 123
Wanjuan Su, Qingshan Xu, Wenbing Tao: Uncertainty-guided Multi-view Stereo Network for Depth Estimation. IEEE Transactions on Circuits and Systems for Video Technology, 2022
WTY-MVS89.60 12188.92 12591.67 14395.47 12681.15 17392.38 24594.78 21183.11 20689.06 13194.32 15278.67 12596.61 25281.57 21290.89 18397.24 100
XXY-MVS87.65 18286.85 18190.03 21592.14 24680.60 18993.76 19595.23 18282.94 21184.60 22994.02 16574.27 17695.49 30781.04 21883.68 26994.01 237
EC-MVSNet93.44 4793.71 4492.63 9795.21 13582.43 14097.27 996.71 8090.57 2592.88 5895.80 9683.16 7498.16 13293.68 2698.14 5997.31 97
sss88.93 14788.26 14990.94 17994.05 18880.78 18491.71 26595.38 17581.55 24488.63 13693.91 17475.04 16695.47 30882.47 19291.61 17496.57 128
Test_1112_low_res87.65 18286.51 19791.08 16994.94 14879.28 23091.77 26394.30 22776.04 31183.51 26192.37 22277.86 13697.73 16878.69 25189.13 21096.22 139
1112_ss88.42 16087.33 16991.72 14194.92 14980.98 17792.97 22994.54 21878.16 29383.82 25293.88 17578.78 12397.91 15979.45 24389.41 20396.26 138
ab-mvs-re7.82 35410.43 3570.00 3690.00 3920.00 3930.00 3800.00 3930.00 3870.00 38893.88 1750.00 3920.00 3880.00 3860.00 3860.00 384
ab-mvs89.41 13088.35 14392.60 9895.15 13982.65 13792.20 25495.60 15883.97 18488.55 13793.70 18374.16 18198.21 13082.46 19389.37 20496.94 116
TR-MVS86.78 22285.76 22889.82 22494.37 17878.41 24592.47 24292.83 26481.11 25486.36 18492.40 22168.73 25597.48 18773.75 29889.85 19693.57 261
MDTV_nov1_ep13_2view55.91 37987.62 33273.32 33784.59 23070.33 23174.65 29195.50 169
MDTV_nov1_ep1383.56 26791.69 26569.93 34787.75 32991.54 30378.60 28484.86 22588.90 30969.54 24096.03 28370.25 31488.93 214
MIMVSNet179.38 31477.28 31685.69 31786.35 35173.67 30991.61 26992.75 26778.11 29472.64 35188.12 32248.16 35991.97 35160.32 35877.49 33491.43 321
MIMVSNet82.59 28480.53 28988.76 25391.51 26878.32 24886.57 34090.13 33179.32 27080.70 29588.69 31552.98 35093.07 34266.03 34188.86 21594.90 191
IterMVS-LS88.36 16387.91 15789.70 23193.80 20178.29 25093.73 19695.08 19185.73 14784.75 22691.90 24379.88 10896.92 23783.83 17282.51 28293.89 239
Fangjinhua Wang, Silvano Galliani, Christoph Vogel, Marc Pollefeys: IterMVS: Iterative Probability Estimation for Efficient Multi-View Stereo.
CDS-MVSNet89.45 12788.51 13892.29 11593.62 20883.61 10393.01 22794.68 21681.95 23187.82 15193.24 19578.69 12496.99 23380.34 23293.23 15796.28 137
Khang Truong Giang, Soohwan Song, Sungho Jo: Curvature-guided dynamic scale networks for Multi-view Stereo. ICLR 2022
ACMMP++_ref87.47 236
IterMVS84.88 26283.98 26287.60 28091.44 26976.03 29090.18 29692.41 27483.24 20481.06 29290.42 28566.60 27594.28 32479.46 24280.98 30892.48 298
Fangjinhua Wang, Silvano Galliani, Christoph Vogel, Marc Pollefeys: IterMVS: Iterative Probability Estimation for Efficient Multi-View Stereo.
DP-MVS Recon91.95 7091.28 7693.96 5398.33 2785.92 5594.66 13796.66 8382.69 21790.03 11995.82 9582.30 8599.03 5784.57 16296.48 9896.91 118
MVS_111021_LR92.47 6592.29 6692.98 8095.99 10884.43 8493.08 22496.09 11988.20 9291.12 10495.72 10181.33 9897.76 16491.74 7197.37 8096.75 122
DP-MVS87.25 20585.36 23792.90 8497.65 5583.24 11194.81 12792.00 28974.99 32181.92 28295.00 12572.66 20299.05 5466.92 33892.33 17096.40 132
ACMMP++88.01 230
HQP-MVS89.80 11789.28 11891.34 15794.17 18481.56 15894.39 15596.04 12488.81 6885.43 21193.97 16973.83 18797.96 15587.11 13389.77 19994.50 212
QAPM89.51 12488.15 15093.59 6294.92 14984.58 7496.82 2996.70 8178.43 28783.41 26396.19 8073.18 19699.30 3977.11 26896.54 9596.89 119
Vis-MVSNetpermissive91.75 7491.23 7793.29 6595.32 13083.78 9796.14 5395.98 12789.89 3790.45 11096.58 6675.09 16598.31 12484.75 16096.90 8797.78 83
Jingyang Zhang, Yao Yao, Shiwei Li, Zixin Luo, Tian Fang: Visibility-aware Multiview Stereo Network. BMVC 2020
MVS-HIRNet73.70 32972.20 33278.18 34691.81 25956.42 37782.94 36282.58 36555.24 36868.88 36066.48 37255.32 34095.13 31258.12 36288.42 22383.01 363
IS-MVSNet91.43 7991.09 8192.46 10595.87 11381.38 16796.95 1993.69 25089.72 4689.50 12495.98 8878.57 12797.77 16383.02 18296.50 9798.22 56
HyFIR lowres test88.09 17086.81 18291.93 12896.00 10580.63 18790.01 29995.79 14373.42 33687.68 15492.10 23573.86 18697.96 15580.75 22591.70 17397.19 103
EPMVS83.90 27682.70 27887.51 28290.23 31672.67 32088.62 32081.96 36781.37 24785.01 22388.34 31866.31 27994.45 31875.30 28487.12 24295.43 171
PAPM_NR91.22 8490.78 8792.52 10397.60 5681.46 16494.37 15996.24 10886.39 13387.41 15894.80 13582.06 9198.48 10582.80 18895.37 11397.61 87
TAMVS89.21 13688.29 14791.96 12693.71 20482.62 13893.30 21494.19 23182.22 22487.78 15293.94 17078.83 12196.95 23577.70 26192.98 16196.32 134
PAPR90.02 10889.27 11992.29 11595.78 11580.95 17992.68 23696.22 11081.91 23386.66 17893.75 18282.23 8698.44 11279.40 24794.79 12297.48 93
RPSCF85.07 25984.27 25687.48 28592.91 23070.62 34391.69 26792.46 27376.20 31082.67 27395.22 11563.94 29497.29 21177.51 26485.80 25194.53 206
Vis-MVSNet (Re-imp)89.59 12289.44 11190.03 21595.74 11675.85 29295.61 8390.80 32287.66 10987.83 15095.40 11076.79 14396.46 26578.37 25296.73 9197.80 81
test_040281.30 30079.17 30887.67 27993.19 21878.17 25292.98 22891.71 29675.25 31876.02 33590.31 28659.23 32696.37 27050.22 36983.63 27088.47 354
MVS_111021_HR93.45 4693.31 4993.84 5696.99 7284.84 6993.24 21997.24 3188.76 7191.60 9795.85 9386.07 4398.66 9291.91 6898.16 5898.03 69
CSCG93.23 5593.05 5493.76 6098.04 4084.07 9096.22 4897.37 2184.15 18090.05 11895.66 10287.77 2699.15 4989.91 9798.27 5598.07 65
PatchMatch-RL86.77 22585.54 23190.47 19795.88 11182.71 13490.54 28592.31 27879.82 26684.32 24291.57 25668.77 25496.39 26973.16 30093.48 15192.32 306
API-MVS90.66 9590.07 9792.45 10696.36 9184.57 7596.06 5995.22 18482.39 22089.13 12894.27 15780.32 10398.46 10880.16 23596.71 9294.33 220
Test By Simon80.02 107
TDRefinement79.81 31177.34 31587.22 29379.24 37175.48 29693.12 22192.03 28876.45 30575.01 33991.58 25449.19 35796.44 26670.22 31669.18 35789.75 341
USDC82.76 28181.26 28687.26 28991.17 28174.55 30189.27 30993.39 25478.26 29175.30 33892.08 23654.43 34596.63 24871.64 30585.79 25290.61 334
EPP-MVSNet91.70 7691.56 7392.13 11995.88 11180.50 19197.33 795.25 18186.15 13989.76 12195.60 10483.42 7298.32 12387.37 12893.25 15697.56 91
PMMVS85.71 24784.96 24587.95 27588.90 33277.09 27588.68 31990.06 33372.32 34586.47 17990.76 27972.15 20894.40 32081.78 20893.49 14992.36 304
PAPM86.68 22685.39 23590.53 18893.05 22379.33 22989.79 30294.77 21278.82 27981.95 28193.24 19576.81 14297.30 20866.94 33693.16 15894.95 190
ACMMPcopyleft93.24 5492.88 5794.30 4998.09 3885.33 6696.86 2797.45 1488.33 8490.15 11797.03 4381.44 9699.51 2390.85 8895.74 10498.04 68
Qingshan Xu, Weihang Kong, Wenbing Tao, Marc Pollefeys: Multi-Scale Geometric Consistency Guided and Planar Prior Assisted Multi-View Stereo. IEEE Transactions on Pattern Analysis and Machine Intelligence
CNLPA89.07 14287.98 15492.34 11196.87 7484.78 7194.08 17593.24 25581.41 24684.46 23495.13 12275.57 16196.62 24977.21 26693.84 14295.61 168
PatchmatchNetpermissive85.85 24484.70 25189.29 24191.76 26075.54 29588.49 32191.30 30981.63 24285.05 22288.70 31471.71 21096.24 27674.61 29289.05 21196.08 146
Fangjinhua Wang, Silvano Galliani, Christoph Vogel, Pablo Speciale, Marc Pollefeys: PatchmatchNet: Learned Multi-View Patchmatch Stereo.
PHI-MVS93.89 3893.65 4694.62 3996.84 7586.43 3796.69 3297.49 685.15 16393.56 4596.28 7485.60 4699.31 3892.45 4698.79 2398.12 63
F-COLMAP87.95 17386.80 18391.40 15496.35 9280.88 18194.73 13295.45 16979.65 26882.04 28094.61 14371.13 21698.50 10476.24 27791.05 18194.80 196
ANet_high58.88 34254.22 34672.86 35056.50 38656.67 37480.75 36686.00 35473.09 34037.39 37864.63 37522.17 37879.49 37843.51 37323.96 38082.43 366
wuyk23d21.27 35120.48 35423.63 36668.59 38136.41 38649.57 3786.85 3909.37 3827.89 3844.46 3864.03 38931.37 38417.47 38316.07 3833.12 381
OMC-MVS91.23 8390.62 8893.08 7596.27 9384.07 9093.52 20495.93 13186.95 12189.51 12396.13 8378.50 12898.35 11885.84 14892.90 16296.83 120
MG-MVS91.77 7391.70 7292.00 12397.08 7180.03 20793.60 20295.18 18587.85 10490.89 10696.47 7082.06 9198.36 11685.07 15497.04 8497.62 86
AdaColmapbinary89.89 11589.07 12192.37 11097.41 6283.03 12094.42 15295.92 13282.81 21486.34 18594.65 14273.89 18599.02 6080.69 22695.51 10895.05 182
uanet0.00 3560.00 3590.00 3690.00 3920.00 3930.00 3800.00 3930.00 3870.00 3880.00 3870.00 3920.00 3880.00 3860.00 3860.00 384
ITE_SJBPF88.24 26891.88 25577.05 27692.92 26185.54 15480.13 30493.30 19257.29 33396.20 27772.46 30384.71 25991.49 319
DeepMVS_CXcopyleft56.31 36274.23 37451.81 38056.67 38744.85 37348.54 37375.16 36627.87 37358.74 38340.92 37652.22 37458.39 376
TinyColmap79.76 31277.69 31485.97 31291.71 26373.12 31489.55 30390.36 32775.03 32072.03 35390.19 28746.22 36396.19 27963.11 35181.03 30488.59 353
MAR-MVS90.30 10189.37 11493.07 7796.61 8184.48 8095.68 7795.67 15182.36 22287.85 14992.85 20676.63 14798.80 8680.01 23696.68 9395.91 152
Zhenyu Xu, Yiguang Liu, Xuelei Shi, Ying Wang, Yunan Zheng: MARMVS: Matching Ambiguity Reduced Multiple View Stereo for Efficient Large Scale Scene Reconstruction. CVPR 2020
LF4IMVS80.37 30779.07 31084.27 32986.64 35069.87 34889.39 30891.05 31576.38 30674.97 34090.00 29347.85 36094.25 32574.55 29380.82 31088.69 352
MSDG84.86 26383.09 27290.14 21093.80 20180.05 20589.18 31293.09 25878.89 27778.19 31891.91 24265.86 28497.27 21268.47 32688.45 22293.11 280
LS3D87.89 17486.32 20492.59 9996.07 10282.92 12695.23 9994.92 20075.66 31382.89 27095.98 8872.48 20599.21 4468.43 32795.23 11895.64 165
CLD-MVS89.47 12688.90 12791.18 16394.22 18382.07 14892.13 25696.09 11987.90 10085.37 21792.45 22074.38 17597.56 18087.15 13190.43 18593.93 238
Zhaoxin Li, Wangmeng Zuo, Zhaoqi Wang, Lei Zhang: Confidence-based Large-scale Dense Multi-view Stereo. IEEE Transaction on Image Processing, 2020
FPMVS64.63 33762.55 33970.88 35270.80 37756.71 37384.42 35584.42 36051.78 37149.57 37181.61 35923.49 37681.48 37640.61 37776.25 34174.46 369
Gipumacopyleft57.99 34354.91 34567.24 35888.51 33465.59 36052.21 37790.33 32843.58 37442.84 37751.18 37820.29 38085.07 37034.77 37870.45 35251.05 377
S. Galliani, K. Lasinger, K. Schindler: Massively Parallel Multiview Stereopsis by Surface Normal Diffusion. ICCV 2015