DeepPCF-MVS | | 93.97 1 | 96.61 45 | 97.09 14 | 95.15 153 | 98.09 99 | 86.63 267 | 96.00 242 | 98.15 54 | 95.43 10 | 97.95 25 | 98.56 21 | 93.40 20 | 99.36 104 | 96.77 28 | 99.48 37 | 99.45 42 |
|
DeepC-MVS_fast | | 93.89 2 | 96.93 29 | 96.64 38 | 97.78 30 | 98.64 64 | 94.30 34 | 97.41 124 | 98.04 81 | 94.81 32 | 96.59 64 | 98.37 39 | 91.24 56 | 99.64 59 | 95.16 83 | 99.52 28 | 99.42 48 |
Andreas Kuhn, Christian Sormann, Mattia Rossi, Oliver Erdler, Friedrich Fraundorfer: DeepC-MVS: Deep Confidence Prediction for Multi-View Stereo Reconstruction. 3DV 2020 |
DeepC-MVS | | 93.07 3 | 96.06 56 | 95.66 60 | 97.29 51 | 97.96 105 | 93.17 67 | 97.30 139 | 98.06 74 | 93.92 59 | 93.38 148 | 98.66 17 | 86.83 116 | 99.73 36 | 95.60 74 | 99.22 65 | 98.96 88 |
Andreas Kuhn, Christian Sormann, Mattia Rossi, Oliver Erdler, Friedrich Fraundorfer: DeepC-MVS: Deep Confidence Prediction for Multi-View Stereo Reconstruction. 3DV 2020 |
3Dnovator+ | | 91.43 4 | 95.40 72 | 94.48 94 | 98.16 15 | 96.90 160 | 95.34 16 | 98.48 21 | 97.87 103 | 94.65 42 | 88.53 269 | 98.02 72 | 83.69 157 | 99.71 40 | 93.18 126 | 98.96 82 | 99.44 44 |
|
3Dnovator | | 91.36 5 | 95.19 81 | 94.44 96 | 97.44 46 | 96.56 183 | 93.36 62 | 98.65 11 | 98.36 18 | 94.12 54 | 89.25 254 | 98.06 67 | 82.20 193 | 99.77 32 | 93.41 123 | 99.32 56 | 99.18 66 |
|
PLC |  | 91.00 6 | 94.11 110 | 93.43 121 | 96.13 106 | 98.58 68 | 91.15 135 | 96.69 190 | 97.39 167 | 87.29 271 | 91.37 192 | 96.71 150 | 88.39 94 | 99.52 85 | 87.33 244 | 97.13 141 | 97.73 169 |
Jie Liao, Yanping Fu, Qingan Yan, Chunxia xiao: Pyramid Multi-View Stereo with Local Consistency. Pacific Graphics 2019 |
TAPA-MVS | | 90.10 7 | 92.30 185 | 91.22 202 | 95.56 135 | 98.33 80 | 89.60 178 | 96.79 179 | 97.65 127 | 81.83 339 | 91.52 188 | 97.23 126 | 87.94 98 | 98.91 153 | 71.31 361 | 98.37 103 | 98.17 148 |
Andrea Romanoni, Matteo Matteucci: TAPA-MVS: Textureless-Aware PAtchMatch Multi-View Stereo. ICCV 2019 |
ACMM | | 89.79 8 | 92.96 158 | 92.50 158 | 94.35 198 | 96.30 199 | 88.71 211 | 97.58 107 | 97.36 172 | 91.40 147 | 90.53 208 | 96.65 157 | 79.77 234 | 98.75 166 | 91.24 167 | 91.64 226 | 95.59 252 |
Qingshan Xu and Wenbing Tao: Multi-Scale Geometric Consistency Guided Multi-View Stereo. CVPR 2019 |
HY-MVS | | 89.66 9 | 93.87 120 | 92.95 134 | 96.63 68 | 97.10 147 | 92.49 82 | 95.64 258 | 96.64 233 | 89.05 216 | 93.00 156 | 95.79 208 | 85.77 132 | 99.45 95 | 89.16 209 | 94.35 189 | 97.96 157 |
|
ACMP | | 89.59 10 | 92.62 172 | 92.14 167 | 94.05 212 | 96.40 194 | 88.20 228 | 97.36 132 | 97.25 181 | 91.52 140 | 88.30 274 | 96.64 158 | 78.46 258 | 98.72 171 | 91.86 152 | 91.48 231 | 95.23 276 |
Qingshan Xu and Wenbing Tao: Planar Prior Assisted PatchMatch Multi-View Stereo. AAAI 2020 |
PCF-MVS | | 89.48 11 | 91.56 212 | 89.95 251 | 96.36 92 | 96.60 178 | 92.52 81 | 92.51 343 | 97.26 179 | 79.41 353 | 88.90 258 | 96.56 169 | 84.04 154 | 99.55 77 | 77.01 343 | 97.30 135 | 97.01 197 |
Andreas Kuhn, Shan Lin, Oliver Erdler: Plane Completion and Filtering for Multi-View Stereo Reconstruction. GCPR 2019 |
OpenMVS |  | 89.19 12 | 92.86 164 | 91.68 183 | 96.40 87 | 95.34 242 | 92.73 76 | 98.27 33 | 98.12 59 | 84.86 311 | 85.78 312 | 97.75 93 | 78.89 253 | 99.74 35 | 87.50 241 | 98.65 92 | 96.73 207 |
|
LTVRE_ROB | | 88.41 13 | 90.99 241 | 89.92 253 | 94.19 205 | 96.18 204 | 89.55 181 | 96.31 224 | 97.09 191 | 87.88 253 | 85.67 313 | 95.91 199 | 78.79 254 | 98.57 186 | 81.50 312 | 89.98 256 | 94.44 315 |
Andreas Kuhn, Heiko Hirschmüller, Daniel Scharstein, Helmut Mayer: A TV Prior for High-Quality Scalable Multi-View Stereo Reconstruction. International Journal of Computer Vision 2016 |
ACMH+ | | 87.92 14 | 90.20 266 | 89.18 273 | 93.25 253 | 96.48 190 | 86.45 269 | 96.99 164 | 96.68 230 | 88.83 226 | 84.79 322 | 96.22 185 | 70.16 322 | 98.53 188 | 84.42 288 | 88.04 274 | 94.77 305 |
|
COLMAP_ROB |  | 87.81 15 | 90.40 260 | 89.28 271 | 93.79 230 | 97.95 106 | 87.13 255 | 96.92 169 | 95.89 268 | 82.83 333 | 86.88 305 | 97.18 128 | 73.77 302 | 99.29 111 | 78.44 334 | 93.62 200 | 94.95 284 |
Johannes L. Schönberger, Enliang Zheng, Marc Pollefeys, Jan-Michael Frahm: Pixelwise View Selection for Unstructured Multi-View Stereo. ECCV 2016 |
ACMH | | 87.59 16 | 90.53 257 | 89.42 268 | 93.87 226 | 96.21 201 | 87.92 237 | 97.24 143 | 96.94 207 | 88.45 238 | 83.91 333 | 96.27 183 | 71.92 309 | 98.62 181 | 84.43 287 | 89.43 262 | 95.05 282 |
Qingshan Xu and Wenbing Tao: Multi-Scale Geometric Consistency Guided Multi-View Stereo. CVPR 2019 |
IB-MVS | | 87.33 17 | 89.91 271 | 88.28 284 | 94.79 180 | 95.26 252 | 87.70 243 | 95.12 280 | 93.95 338 | 89.35 208 | 87.03 300 | 92.49 323 | 70.74 318 | 99.19 118 | 89.18 208 | 81.37 339 | 97.49 182 |
Christian Sormann, Mattia Rossi, Andreas Kuhn and Friedrich Fraundorfer: IB-MVS: An Iterative Algorithm for Deep Multi-View Stereo based on Binary Decisions. BMVC 2021 |
PVSNet | | 86.66 18 | 92.24 189 | 91.74 181 | 93.73 232 | 97.77 117 | 83.69 312 | 92.88 338 | 96.72 225 | 87.91 252 | 93.00 156 | 94.86 248 | 78.51 257 | 99.05 141 | 86.53 255 | 97.45 129 | 98.47 129 |
|
PVSNet_0 | | 82.17 19 | 85.46 317 | 83.64 320 | 90.92 313 | 95.27 249 | 79.49 349 | 90.55 356 | 95.60 281 | 83.76 325 | 83.00 339 | 89.95 348 | 71.09 315 | 97.97 251 | 82.75 305 | 60.79 376 | 95.31 269 |
|
OpenMVS_ROB |  | 81.14 20 | 84.42 322 | 82.28 328 | 90.83 314 | 90.06 356 | 84.05 307 | 95.73 253 | 94.04 336 | 73.89 365 | 80.17 352 | 91.53 338 | 59.15 359 | 97.64 287 | 66.92 368 | 89.05 265 | 90.80 361 |
|
CMPMVS |  | 62.92 21 | 85.62 316 | 84.92 313 | 87.74 338 | 89.14 362 | 73.12 366 | 94.17 304 | 96.80 222 | 73.98 364 | 73.65 365 | 94.93 244 | 66.36 343 | 97.61 291 | 83.95 294 | 91.28 236 | 92.48 346 |
M. Jancosek, T. Pajdla: Multi-View Reconstruction Preserving Weakly-Supported Surfaces. CVPR 2011 |
PMVS |  | 53.92 22 | 58.58 345 | 55.40 348 | 68.12 361 | 51.00 388 | 48.64 384 | 78.86 374 | 87.10 374 | 46.77 377 | 35.84 383 | 74.28 373 | 8.76 387 | 86.34 376 | 42.07 379 | 73.91 361 | 69.38 375 |
Y. Furukawa, J. Ponce: Accurate, dense, and robust multiview stereopsis. PAMI (2010) |
MVE |  | 50.73 23 | 53.25 347 | 48.81 352 | 66.58 362 | 65.34 386 | 57.50 382 | 72.49 376 | 70.94 387 | 40.15 380 | 39.28 382 | 63.51 378 | 6.89 389 | 73.48 383 | 38.29 380 | 42.38 378 | 68.76 376 |
Simon Fuhrmann, Fabian Langguth, Michael Goesele: MVE - A Multi-View Reconstruction Environment. EUROGRAPHICS Workshops on Graphics and Cultural Heritage (2014) |
test_fmvsmvis_n_1920 | | | 96.70 40 | 96.84 26 | 96.31 94 | 96.62 176 | 91.73 101 | 97.98 59 | 98.30 25 | 96.19 4 | 96.10 83 | 98.95 1 | 89.42 79 | 99.76 33 | 98.90 3 | 99.08 76 | 97.43 184 |
|
dmvs_re | | | 90.21 265 | 89.50 267 | 92.35 279 | 95.47 234 | 85.15 291 | 95.70 254 | 94.37 329 | 90.94 162 | 88.42 270 | 93.57 307 | 74.63 294 | 95.67 346 | 82.80 303 | 89.57 261 | 96.22 218 |
|
SDMVSNet | | | 94.17 104 | 93.61 109 | 95.86 118 | 98.09 99 | 91.37 120 | 97.35 133 | 98.20 44 | 93.18 90 | 91.79 182 | 97.28 121 | 79.13 244 | 98.93 150 | 94.61 100 | 92.84 207 | 97.28 191 |
|
dmvs_testset | | | 81.38 330 | 82.60 326 | 77.73 353 | 91.74 348 | 51.49 383 | 93.03 336 | 84.21 379 | 89.07 214 | 78.28 358 | 91.25 340 | 76.97 275 | 88.53 374 | 56.57 375 | 82.24 336 | 93.16 335 |
|
sd_testset | | | 93.10 150 | 92.45 160 | 95.05 158 | 98.09 99 | 89.21 199 | 96.89 171 | 97.64 129 | 93.18 90 | 91.79 182 | 97.28 121 | 75.35 291 | 98.65 177 | 88.99 211 | 92.84 207 | 97.28 191 |
|
test_fmvsm_n_1920 | | | 97.55 9 | 97.89 3 | 96.53 73 | 98.41 74 | 91.73 101 | 98.01 56 | 99.02 1 | 96.37 3 | 99.30 1 | 98.92 3 | 92.39 35 | 99.79 31 | 99.16 2 | 99.46 39 | 98.08 155 |
|
test_cas_vis1_n_1920 | | | 94.48 98 | 94.55 91 | 94.28 203 | 96.78 168 | 86.45 269 | 97.63 102 | 97.64 129 | 93.32 84 | 97.68 30 | 98.36 40 | 73.75 303 | 99.08 134 | 96.73 29 | 99.05 77 | 97.31 190 |
|
test_vis1_n_1920 | | | 94.17 104 | 94.58 87 | 92.91 265 | 97.42 135 | 82.02 325 | 97.83 76 | 97.85 108 | 94.68 39 | 98.10 21 | 98.49 28 | 70.15 323 | 99.32 107 | 97.91 5 | 98.82 86 | 97.40 185 |
|
test_vis1_n | | | 92.37 180 | 92.26 165 | 92.72 272 | 94.75 279 | 82.64 317 | 98.02 55 | 96.80 222 | 91.18 155 | 97.77 29 | 97.93 78 | 58.02 361 | 98.29 209 | 97.63 9 | 98.21 107 | 97.23 194 |
|
test_fmvs1_n | | | 92.73 170 | 92.88 137 | 92.29 282 | 96.08 213 | 81.05 333 | 97.98 59 | 97.08 192 | 90.72 168 | 96.79 52 | 98.18 60 | 63.07 354 | 98.45 194 | 97.62 10 | 98.42 102 | 97.36 186 |
|
mvsany_test1 | | | 93.93 118 | 93.98 101 | 93.78 231 | 94.94 267 | 86.80 260 | 94.62 286 | 92.55 351 | 88.77 231 | 96.85 50 | 98.49 28 | 88.98 84 | 98.08 233 | 95.03 86 | 95.62 170 | 96.46 215 |
|
APD_test1 | | | 79.31 333 | 77.70 336 | 84.14 346 | 89.11 363 | 69.07 371 | 92.36 346 | 91.50 359 | 69.07 368 | 73.87 364 | 92.63 321 | 39.93 373 | 94.32 359 | 70.54 365 | 80.25 343 | 89.02 366 |
|
test_vis1_rt | | | 86.16 310 | 85.06 311 | 89.46 330 | 93.47 323 | 80.46 339 | 96.41 212 | 86.61 375 | 85.22 304 | 79.15 355 | 88.64 354 | 52.41 367 | 97.06 320 | 93.08 129 | 90.57 249 | 90.87 360 |
|
test_vis3_rt | | | 72.73 335 | 70.55 338 | 79.27 351 | 80.02 376 | 68.13 373 | 93.92 313 | 74.30 386 | 76.90 361 | 58.99 375 | 73.58 375 | 20.29 384 | 95.37 352 | 84.16 289 | 72.80 364 | 74.31 374 |
|
test_fmvs2 | | | 89.77 276 | 89.93 252 | 89.31 332 | 93.68 315 | 76.37 359 | 97.64 100 | 95.90 266 | 89.84 195 | 91.49 189 | 96.26 184 | 58.77 360 | 97.10 319 | 94.65 98 | 91.13 239 | 94.46 313 |
|
test_fmvs1 | | | 93.21 143 | 93.53 113 | 92.25 284 | 96.55 185 | 81.20 332 | 97.40 128 | 96.96 205 | 90.68 170 | 96.80 51 | 98.04 69 | 69.25 327 | 98.40 197 | 97.58 11 | 98.50 96 | 97.16 195 |
|
test_fmvs3 | | | 83.21 325 | 83.02 322 | 83.78 347 | 86.77 370 | 68.34 372 | 96.76 182 | 94.91 314 | 86.49 284 | 84.14 329 | 89.48 352 | 36.04 375 | 91.73 369 | 91.86 152 | 80.77 342 | 91.26 359 |
|
mvsany_test3 | | | 83.59 323 | 82.44 327 | 87.03 341 | 83.80 371 | 73.82 364 | 93.70 319 | 90.92 364 | 86.42 285 | 82.51 340 | 90.26 345 | 46.76 370 | 95.71 344 | 90.82 172 | 76.76 355 | 91.57 354 |
|
testf1 | | | 69.31 339 | 66.76 342 | 76.94 355 | 78.61 377 | 61.93 379 | 88.27 366 | 86.11 376 | 55.62 373 | 59.69 373 | 85.31 366 | 20.19 385 | 89.32 371 | 57.62 372 | 69.44 369 | 79.58 371 |
|
APD_test2 | | | 69.31 339 | 66.76 342 | 76.94 355 | 78.61 377 | 61.93 379 | 88.27 366 | 86.11 376 | 55.62 373 | 59.69 373 | 85.31 366 | 20.19 385 | 89.32 371 | 57.62 372 | 69.44 369 | 79.58 371 |
|
test_f | | | 80.57 331 | 79.62 333 | 83.41 348 | 83.38 373 | 67.80 374 | 93.57 326 | 93.72 339 | 80.80 347 | 77.91 359 | 87.63 362 | 33.40 376 | 92.08 368 | 87.14 250 | 79.04 350 | 90.34 363 |
|
FE-MVS | | | 92.05 196 | 91.05 206 | 95.08 157 | 96.83 165 | 87.93 236 | 93.91 314 | 95.70 274 | 86.30 287 | 94.15 130 | 94.97 241 | 76.59 277 | 99.21 116 | 84.10 290 | 96.86 143 | 98.09 154 |
|
FA-MVS(test-final) | | | 93.52 134 | 92.92 135 | 95.31 148 | 96.77 170 | 88.54 217 | 94.82 282 | 96.21 257 | 89.61 199 | 94.20 128 | 95.25 233 | 83.24 165 | 99.14 125 | 90.01 182 | 96.16 158 | 98.25 145 |
|
iter_conf_final | | | 93.60 129 | 93.11 129 | 95.04 159 | 97.13 145 | 91.30 122 | 97.92 68 | 95.65 280 | 92.98 102 | 91.60 185 | 96.64 158 | 79.28 242 | 98.13 222 | 95.34 80 | 91.49 230 | 95.70 248 |
|
bld_raw_dy_0_64 | | | 92.37 180 | 91.69 182 | 94.39 196 | 94.28 299 | 89.73 175 | 97.71 90 | 93.65 341 | 92.78 110 | 90.46 210 | 96.67 156 | 75.88 284 | 97.97 251 | 92.92 136 | 90.89 246 | 95.48 254 |
|
patch_mono-2 | | | 96.83 35 | 97.44 10 | 95.01 162 | 99.05 39 | 85.39 287 | 96.98 165 | 98.77 6 | 94.70 38 | 97.99 24 | 98.66 17 | 93.61 19 | 99.91 1 | 97.67 8 | 99.50 33 | 99.72 10 |
|
EGC-MVSNET | | | 68.77 341 | 63.01 346 | 86.07 345 | 92.49 340 | 82.24 324 | 93.96 310 | 90.96 363 | 0.71 386 | 2.62 387 | 90.89 341 | 53.66 365 | 93.46 363 | 57.25 374 | 84.55 315 | 82.51 369 |
|
test2506 | | | 91.60 208 | 90.78 216 | 94.04 213 | 97.66 123 | 83.81 308 | 98.27 33 | 75.53 384 | 93.43 79 | 95.23 109 | 98.21 57 | 67.21 338 | 99.07 138 | 93.01 134 | 98.49 97 | 99.25 62 |
|
test1111 | | | 93.19 145 | 92.82 140 | 94.30 202 | 97.58 132 | 84.56 300 | 98.21 43 | 89.02 368 | 93.53 74 | 94.58 120 | 98.21 57 | 72.69 306 | 99.05 141 | 93.06 130 | 98.48 99 | 99.28 59 |
|
ECVR-MVS |  | | 93.19 145 | 92.73 146 | 94.57 190 | 97.66 123 | 85.41 285 | 98.21 43 | 88.23 369 | 93.43 79 | 94.70 118 | 98.21 57 | 72.57 307 | 99.07 138 | 93.05 131 | 98.49 97 | 99.25 62 |
|
test_blank | | | 0.00 356 | 0.00 359 | 0.00 369 | 0.00 392 | 0.00 393 | 0.00 380 | 0.00 393 | 0.00 387 | 0.00 388 | 0.00 387 | 0.00 392 | 0.00 388 | 0.00 386 | 0.00 386 | 0.00 384 |
|
tt0805 | | | 91.09 236 | 90.07 248 | 94.16 207 | 95.61 225 | 88.31 222 | 97.56 109 | 96.51 242 | 89.56 200 | 89.17 255 | 95.64 217 | 67.08 342 | 98.38 202 | 91.07 169 | 88.44 272 | 95.80 238 |
|
DVP-MVS++ | | | 98.06 1 | 97.99 1 | 98.28 9 | 98.67 58 | 95.39 11 | 99.29 1 | 98.28 29 | 94.78 34 | 98.93 7 | 98.87 8 | 96.04 2 | 99.86 8 | 97.45 16 | 99.58 21 | 99.59 20 |
|
FOURS1 | | | | | | 99.55 1 | 93.34 63 | 99.29 1 | 98.35 21 | 94.98 24 | 98.49 16 | | | | | | |
|
MSC_two_6792asdad | | | | | 98.86 1 | 98.67 58 | 96.94 1 | | 97.93 97 | | | | | 99.86 8 | 97.68 6 | 99.67 6 | 99.77 1 |
|
PC_three_1452 | | | | | | | | | | 90.77 165 | 98.89 9 | 98.28 55 | 96.24 1 | 98.35 204 | 95.76 63 | 99.58 21 | 99.59 20 |
|
No_MVS | | | | | 98.86 1 | 98.67 58 | 96.94 1 | | 97.93 97 | | | | | 99.86 8 | 97.68 6 | 99.67 6 | 99.77 1 |
|
test_one_0601 | | | | | | 99.32 22 | 95.20 20 | | 98.25 37 | 95.13 19 | 98.48 17 | 98.87 8 | 95.16 7 | | | | |
|
eth-test2 | | | | | | 0.00 392 | | | | | | | | | | | |
|
eth-test | | | | | | 0.00 392 | | | | | | | | | | | |
|
GeoE | | | 93.89 119 | 93.28 126 | 95.72 127 | 96.96 159 | 89.75 174 | 98.24 39 | 96.92 212 | 89.47 204 | 92.12 175 | 97.21 127 | 84.42 147 | 98.39 201 | 87.71 231 | 96.50 153 | 99.01 83 |
|
test_method | | | 66.11 343 | 64.89 345 | 69.79 360 | 72.62 383 | 35.23 390 | 65.19 378 | 92.83 348 | 20.35 381 | 65.20 370 | 88.08 360 | 43.14 372 | 82.70 378 | 73.12 356 | 63.46 373 | 91.45 358 |
|
Anonymous20240521 | | | 86.42 306 | 85.44 306 | 89.34 331 | 90.33 354 | 79.79 347 | 96.73 184 | 95.92 264 | 83.71 326 | 83.25 336 | 91.36 339 | 63.92 352 | 96.01 337 | 78.39 335 | 85.36 300 | 92.22 349 |
|
h-mvs33 | | | 94.15 106 | 93.52 115 | 96.04 111 | 97.81 115 | 90.22 161 | 97.62 104 | 97.58 136 | 95.19 16 | 96.74 54 | 97.45 114 | 83.67 158 | 99.61 60 | 95.85 59 | 79.73 345 | 98.29 144 |
|
hse-mvs2 | | | 93.45 136 | 92.99 132 | 94.81 176 | 97.02 155 | 88.59 214 | 96.69 190 | 96.47 244 | 95.19 16 | 96.74 54 | 96.16 189 | 83.67 158 | 98.48 193 | 95.85 59 | 79.13 349 | 97.35 188 |
|
CL-MVSNet_self_test | | | 86.31 308 | 85.15 310 | 89.80 328 | 88.83 364 | 81.74 328 | 93.93 312 | 96.22 255 | 86.67 281 | 85.03 319 | 90.80 342 | 78.09 265 | 94.50 356 | 74.92 348 | 71.86 365 | 93.15 336 |
|
KD-MVS_2432*1600 | | | 84.81 320 | 82.64 324 | 91.31 307 | 91.07 351 | 85.34 289 | 91.22 350 | 95.75 272 | 85.56 299 | 83.09 337 | 90.21 346 | 67.21 338 | 95.89 339 | 77.18 341 | 62.48 374 | 92.69 341 |
|
KD-MVS_self_test | | | 85.95 313 | 84.95 312 | 88.96 333 | 89.55 361 | 79.11 353 | 95.13 279 | 96.42 246 | 85.91 294 | 84.07 331 | 90.48 343 | 70.03 324 | 94.82 355 | 80.04 323 | 72.94 363 | 92.94 338 |
|
AUN-MVS | | | 91.76 203 | 90.75 218 | 94.81 176 | 97.00 157 | 88.57 215 | 96.65 194 | 96.49 243 | 89.63 198 | 92.15 173 | 96.12 190 | 78.66 255 | 98.50 190 | 90.83 171 | 79.18 348 | 97.36 186 |
|
ZD-MVS | | | | | | 99.05 39 | 94.59 28 | | 98.08 66 | 89.22 211 | 97.03 47 | 98.10 63 | 92.52 33 | 99.65 52 | 94.58 101 | 99.31 57 | |
|
SR-MVS-dyc-post | | | 96.88 31 | 96.80 31 | 97.11 60 | 99.02 42 | 92.34 85 | 97.98 59 | 98.03 83 | 93.52 75 | 97.43 35 | 98.51 26 | 91.40 53 | 99.56 75 | 96.05 51 | 99.26 61 | 99.43 46 |
|
RE-MVS-def | | | | 96.72 35 | | 99.02 42 | 92.34 85 | 97.98 59 | 98.03 83 | 93.52 75 | 97.43 35 | 98.51 26 | 90.71 67 | | 96.05 51 | 99.26 61 | 99.43 46 |
|
SED-MVS | | | 98.05 2 | 97.99 1 | 98.24 10 | 99.42 7 | 95.30 17 | 98.25 36 | 98.27 32 | 95.13 19 | 99.19 2 | 98.89 6 | 95.54 5 | 99.85 17 | 97.52 12 | 99.66 10 | 99.56 26 |
|
IU-MVS | | | | | | 99.42 7 | 95.39 11 | | 97.94 96 | 90.40 184 | 98.94 6 | | | | 97.41 19 | 99.66 10 | 99.74 7 |
|
OPU-MVS | | | | | 98.55 3 | 98.82 52 | 96.86 3 | 98.25 36 | | | | 98.26 56 | 96.04 2 | 99.24 114 | 95.36 79 | 99.59 17 | 99.56 26 |
|
test_241102_TWO | | | | | | | | | 98.27 32 | 95.13 19 | 98.93 7 | 98.89 6 | 94.99 11 | 99.85 17 | 97.52 12 | 99.65 12 | 99.74 7 |
|
test_241102_ONE | | | | | | 99.42 7 | 95.30 17 | | 98.27 32 | 95.09 22 | 99.19 2 | 98.81 12 | 95.54 5 | 99.65 52 | | | |
|
SF-MVS | | | 97.39 12 | 97.13 13 | 98.17 14 | 99.02 42 | 95.28 19 | 98.23 40 | 98.27 32 | 92.37 119 | 98.27 19 | 98.65 19 | 93.33 21 | 99.72 39 | 96.49 37 | 99.52 28 | 99.51 34 |
|
cl22 | | | 91.21 231 | 90.56 226 | 93.14 258 | 96.09 212 | 86.80 260 | 94.41 295 | 96.58 239 | 87.80 256 | 88.58 268 | 93.99 292 | 80.85 215 | 97.62 290 | 89.87 187 | 86.93 284 | 94.99 283 |
|
miper_ehance_all_eth | | | 91.59 209 | 91.13 205 | 92.97 263 | 95.55 229 | 86.57 268 | 94.47 291 | 96.88 216 | 87.77 258 | 88.88 260 | 94.01 290 | 86.22 124 | 97.54 296 | 89.49 196 | 86.93 284 | 94.79 302 |
|
miper_enhance_ethall | | | 91.54 214 | 91.01 207 | 93.15 257 | 95.35 241 | 87.07 256 | 93.97 309 | 96.90 213 | 86.79 280 | 89.17 255 | 93.43 313 | 86.55 119 | 97.64 287 | 89.97 184 | 86.93 284 | 94.74 306 |
|
ZNCC-MVS | | | 96.96 26 | 96.67 37 | 97.85 24 | 99.37 16 | 94.12 43 | 98.49 20 | 98.18 49 | 92.64 114 | 96.39 74 | 98.18 60 | 91.61 48 | 99.88 4 | 95.59 75 | 99.55 24 | 99.57 23 |
|
dcpmvs_2 | | | 96.37 51 | 97.05 17 | 94.31 201 | 98.96 46 | 84.11 305 | 97.56 109 | 97.51 144 | 93.92 59 | 97.43 35 | 98.52 25 | 92.75 27 | 99.32 107 | 97.32 20 | 99.50 33 | 99.51 34 |
|
cl____ | | | 90.96 244 | 90.32 232 | 92.89 266 | 95.37 239 | 86.21 275 | 94.46 293 | 96.64 233 | 87.82 254 | 88.15 280 | 94.18 285 | 82.98 174 | 97.54 296 | 87.70 232 | 85.59 295 | 94.92 290 |
|
DIV-MVS_self_test | | | 90.97 243 | 90.33 231 | 92.88 267 | 95.36 240 | 86.19 276 | 94.46 293 | 96.63 236 | 87.82 254 | 88.18 279 | 94.23 282 | 82.99 173 | 97.53 298 | 87.72 229 | 85.57 296 | 94.93 288 |
|
eth_miper_zixun_eth | | | 91.02 240 | 90.59 224 | 92.34 281 | 95.33 245 | 84.35 301 | 94.10 306 | 96.90 213 | 88.56 236 | 88.84 262 | 94.33 274 | 84.08 153 | 97.60 292 | 88.77 216 | 84.37 318 | 95.06 281 |
|
9.14 | | | | 96.75 33 | | 98.93 47 | | 97.73 85 | 98.23 42 | 91.28 151 | 97.88 27 | 98.44 34 | 93.00 24 | 99.65 52 | 95.76 63 | 99.47 38 | |
|
uanet_test | | | 0.00 356 | 0.00 359 | 0.00 369 | 0.00 392 | 0.00 393 | 0.00 380 | 0.00 393 | 0.00 387 | 0.00 388 | 0.00 387 | 0.00 392 | 0.00 388 | 0.00 386 | 0.00 386 | 0.00 384 |
|
DCPMVS | | | 0.00 356 | 0.00 359 | 0.00 369 | 0.00 392 | 0.00 393 | 0.00 380 | 0.00 393 | 0.00 387 | 0.00 388 | 0.00 387 | 0.00 392 | 0.00 388 | 0.00 386 | 0.00 386 | 0.00 384 |
|
save fliter | | | | | | 98.91 49 | 94.28 35 | 97.02 160 | 98.02 86 | 95.35 12 | | | | | | | |
|
ET-MVSNet_ETH3D | | | 91.49 216 | 90.11 244 | 95.63 131 | 96.40 194 | 91.57 112 | 95.34 268 | 93.48 343 | 90.60 179 | 75.58 362 | 95.49 225 | 80.08 228 | 96.79 330 | 94.25 105 | 89.76 259 | 98.52 121 |
|
UniMVSNet_ETH3D | | | 91.34 226 | 90.22 241 | 94.68 184 | 94.86 273 | 87.86 240 | 97.23 147 | 97.46 152 | 87.99 249 | 89.90 230 | 96.92 143 | 66.35 344 | 98.23 212 | 90.30 180 | 90.99 243 | 97.96 157 |
|
EIA-MVS | | | 95.53 71 | 95.47 64 | 95.71 128 | 97.06 151 | 89.63 176 | 97.82 77 | 97.87 103 | 93.57 69 | 93.92 136 | 95.04 240 | 90.61 68 | 98.95 148 | 94.62 99 | 98.68 91 | 98.54 119 |
|
miper_refine_blended | | | 84.81 320 | 82.64 324 | 91.31 307 | 91.07 351 | 85.34 289 | 91.22 350 | 95.75 272 | 85.56 299 | 83.09 337 | 90.21 346 | 67.21 338 | 95.89 339 | 77.18 341 | 62.48 374 | 92.69 341 |
|
miper_lstm_enhance | | | 90.50 259 | 90.06 249 | 91.83 293 | 95.33 245 | 83.74 309 | 93.86 315 | 96.70 229 | 87.56 265 | 87.79 285 | 93.81 298 | 83.45 163 | 96.92 327 | 87.39 242 | 84.62 313 | 94.82 297 |
|
ETV-MVS | | | 96.02 58 | 95.89 58 | 96.40 87 | 97.16 142 | 92.44 83 | 97.47 121 | 97.77 113 | 94.55 43 | 96.48 69 | 94.51 263 | 91.23 58 | 98.92 151 | 95.65 68 | 98.19 108 | 97.82 167 |
|
CS-MVS | | | 96.86 32 | 97.06 15 | 96.26 100 | 98.16 96 | 91.16 134 | 99.09 3 | 97.87 103 | 95.30 14 | 97.06 46 | 98.03 70 | 91.72 44 | 98.71 172 | 97.10 21 | 99.17 69 | 98.90 96 |
|
D2MVS | | | 91.30 228 | 90.95 208 | 92.35 279 | 94.71 282 | 85.52 283 | 96.18 234 | 98.21 43 | 88.89 223 | 86.60 306 | 93.82 297 | 79.92 232 | 97.95 258 | 89.29 202 | 90.95 244 | 93.56 330 |
|
DVP-MVS |  | | 97.91 3 | 97.81 4 | 98.22 12 | 99.45 3 | 95.36 13 | 98.21 43 | 97.85 108 | 94.92 25 | 98.73 11 | 98.87 8 | 95.08 8 | 99.84 22 | 97.52 12 | 99.67 6 | 99.48 40 |
Zhenlong Yuan, Jinguo Luo, Fei Shen, Zhaoxin Li, Cong Liu, Tianlu Mao, Zhaoqi Wang: DVP-MVS: Synergize Depth-Edge and Visibility Prior for Multi-View Stereo. AAAI2025 |
test_0728_THIRD | | | | | | | | | | 94.78 34 | 98.73 11 | 98.87 8 | 95.87 4 | 99.84 22 | 97.45 16 | 99.72 2 | 99.77 1 |
|
test_0728_SECOND | | | | | 98.51 4 | 99.45 3 | 95.93 5 | 98.21 43 | 98.28 29 | | | | | 99.86 8 | 97.52 12 | 99.67 6 | 99.75 5 |
|
test0726 | | | | | | 99.45 3 | 95.36 13 | 98.31 29 | 98.29 27 | 94.92 25 | 98.99 5 | 98.92 3 | 95.08 8 | | | | |
|
SR-MVS | | | 97.01 25 | 96.86 24 | 97.47 45 | 99.09 34 | 93.27 65 | 97.98 59 | 98.07 71 | 93.75 64 | 97.45 32 | 98.48 31 | 91.43 52 | 99.59 64 | 96.22 43 | 99.27 59 | 99.54 30 |
|
DPM-MVS | | | 95.69 65 | 94.92 78 | 98.01 18 | 98.08 102 | 95.71 9 | 95.27 274 | 97.62 132 | 90.43 183 | 95.55 103 | 97.07 134 | 91.72 44 | 99.50 89 | 89.62 194 | 98.94 83 | 98.82 105 |
|
GST-MVS | | | 96.85 34 | 96.52 43 | 97.82 26 | 99.36 18 | 94.14 42 | 98.29 31 | 98.13 57 | 92.72 111 | 96.70 56 | 98.06 67 | 91.35 54 | 99.86 8 | 94.83 91 | 99.28 58 | 99.47 41 |
|
test_yl | | | 94.78 94 | 94.23 98 | 96.43 85 | 97.74 118 | 91.22 125 | 96.85 174 | 97.10 189 | 91.23 153 | 95.71 97 | 96.93 140 | 84.30 149 | 99.31 109 | 93.10 127 | 95.12 177 | 98.75 107 |
|
thisisatest0530 | | | 93.03 155 | 92.21 166 | 95.49 141 | 97.07 148 | 89.11 204 | 97.49 120 | 92.19 353 | 90.16 187 | 94.09 131 | 96.41 176 | 76.43 281 | 99.05 141 | 90.38 178 | 95.68 169 | 98.31 143 |
|
Anonymous20240529 | | | 91.98 198 | 90.73 219 | 95.73 126 | 98.14 97 | 89.40 189 | 97.99 58 | 97.72 119 | 79.63 352 | 93.54 143 | 97.41 117 | 69.94 325 | 99.56 75 | 91.04 170 | 91.11 240 | 98.22 146 |
|
Anonymous202405211 | | | 92.07 195 | 90.83 215 | 95.76 121 | 98.19 93 | 88.75 210 | 97.58 107 | 95.00 309 | 86.00 293 | 93.64 140 | 97.45 114 | 66.24 346 | 99.53 81 | 90.68 176 | 92.71 210 | 99.01 83 |
|
DCV-MVSNet | | | 94.78 94 | 94.23 98 | 96.43 85 | 97.74 118 | 91.22 125 | 96.85 174 | 97.10 189 | 91.23 153 | 95.71 97 | 96.93 140 | 84.30 149 | 99.31 109 | 93.10 127 | 95.12 177 | 98.75 107 |
|
tttt0517 | | | 92.96 158 | 92.33 163 | 94.87 172 | 97.11 146 | 87.16 254 | 97.97 65 | 92.09 354 | 90.63 175 | 93.88 137 | 97.01 138 | 76.50 278 | 99.06 140 | 90.29 181 | 95.45 172 | 98.38 139 |
|
our_test_3 | | | 88.78 287 | 87.98 287 | 91.20 310 | 92.45 342 | 82.53 319 | 93.61 325 | 95.69 276 | 85.77 296 | 84.88 320 | 93.71 300 | 79.99 230 | 96.78 331 | 79.47 328 | 86.24 289 | 94.28 321 |
|
thisisatest0515 | | | 92.29 186 | 91.30 197 | 95.25 150 | 96.60 178 | 88.90 208 | 94.36 297 | 92.32 352 | 87.92 251 | 93.43 147 | 94.57 262 | 77.28 273 | 99.00 145 | 89.42 198 | 95.86 164 | 97.86 163 |
|
ppachtmachnet_test | | | 88.35 292 | 87.29 291 | 91.53 302 | 92.45 342 | 83.57 313 | 93.75 318 | 95.97 263 | 84.28 317 | 85.32 318 | 94.18 285 | 79.00 252 | 96.93 326 | 75.71 346 | 84.99 309 | 94.10 323 |
|
SMA-MVS |  | | 97.35 13 | 97.03 19 | 98.30 8 | 99.06 38 | 95.42 10 | 97.94 66 | 98.18 49 | 90.57 180 | 98.85 10 | 98.94 2 | 93.33 21 | 99.83 25 | 96.72 30 | 99.68 4 | 99.63 15 |
Yufeng Yin; Xiaoyan Liu; Zichao Zhang: SMA-MVS: Segmentation-Guided Multi-Scale Anchor Deformation Patch Multi-View Stereo. IEEE Transactions on Circuits and Systems for Video Technology |
GSMVS | | | | | | | | | | | | | | | | | 98.45 131 |
|
DPE-MVS |  | | 97.86 4 | 97.65 6 | 98.47 5 | 99.17 32 | 95.78 7 | 97.21 149 | 98.35 21 | 95.16 18 | 98.71 13 | 98.80 13 | 95.05 10 | 99.89 3 | 96.70 31 | 99.73 1 | 99.73 9 |
Kehua Chen, Zhenlong Yuan, Tianlu Mao, Zhaoqi Wang: Dual-Level Precision Edges Guided Multi-View Stereo with Accurate Planarization. AAAI2025 |
test_part2 | | | | | | 99.28 25 | 95.74 8 | | | | 98.10 21 | | | | | | |
|
thres100view900 | | | 92.43 176 | 91.58 186 | 94.98 165 | 97.92 109 | 89.37 191 | 97.71 90 | 94.66 321 | 92.20 123 | 93.31 150 | 94.90 246 | 78.06 266 | 99.08 134 | 81.40 314 | 94.08 192 | 96.48 213 |
|
tfpnnormal | | | 89.70 277 | 88.40 282 | 93.60 239 | 95.15 256 | 90.10 162 | 97.56 109 | 98.16 53 | 87.28 272 | 86.16 310 | 94.63 260 | 77.57 271 | 98.05 240 | 74.48 349 | 84.59 314 | 92.65 343 |
|
tfpn200view9 | | | 92.38 179 | 91.52 189 | 94.95 168 | 97.85 113 | 89.29 195 | 97.41 124 | 94.88 316 | 92.19 125 | 93.27 152 | 94.46 268 | 78.17 262 | 99.08 134 | 81.40 314 | 94.08 192 | 96.48 213 |
|
c3_l | | | 91.38 221 | 90.89 209 | 92.88 267 | 95.58 227 | 86.30 272 | 94.68 285 | 96.84 220 | 88.17 245 | 88.83 263 | 94.23 282 | 85.65 133 | 97.47 303 | 89.36 199 | 84.63 312 | 94.89 292 |
|
CHOSEN 280x420 | | | 93.12 149 | 92.72 147 | 94.34 199 | 96.71 174 | 87.27 248 | 90.29 357 | 97.72 119 | 86.61 283 | 91.34 193 | 95.29 230 | 84.29 151 | 98.41 196 | 93.25 125 | 98.94 83 | 97.35 188 |
|
CANet | | | 96.39 50 | 96.02 55 | 97.50 44 | 97.62 126 | 93.38 60 | 97.02 160 | 97.96 94 | 95.42 11 | 94.86 115 | 97.81 89 | 87.38 110 | 99.82 27 | 96.88 26 | 99.20 67 | 99.29 57 |
|
Fast-Effi-MVS+-dtu | | | 92.29 186 | 91.99 172 | 93.21 256 | 95.27 249 | 85.52 283 | 97.03 158 | 96.63 236 | 92.09 128 | 89.11 257 | 95.14 237 | 80.33 224 | 98.08 233 | 87.54 240 | 94.74 186 | 96.03 229 |
|
Effi-MVS+-dtu | | | 93.08 152 | 93.21 128 | 92.68 275 | 96.02 214 | 83.25 315 | 97.14 155 | 96.72 225 | 93.85 62 | 91.20 203 | 93.44 311 | 83.08 170 | 98.30 208 | 91.69 158 | 95.73 167 | 96.50 212 |
|
CANet_DTU | | | 94.37 99 | 93.65 108 | 96.55 72 | 96.46 191 | 92.13 93 | 96.21 232 | 96.67 232 | 94.38 49 | 93.53 144 | 97.03 137 | 79.34 240 | 99.71 40 | 90.76 173 | 98.45 101 | 97.82 167 |
|
MVS_0304 | | | 97.04 23 | 96.73 34 | 97.96 22 | 97.60 129 | 94.36 33 | 98.01 56 | 94.09 334 | 97.33 1 | 96.29 76 | 98.79 14 | 89.73 78 | 99.86 8 | 99.36 1 | 99.42 45 | 99.67 11 |
|
MP-MVS-pluss | | | 96.70 40 | 96.27 52 | 97.98 20 | 99.23 30 | 94.71 27 | 96.96 167 | 98.06 74 | 90.67 171 | 95.55 103 | 98.78 15 | 91.07 60 | 99.86 8 | 96.58 34 | 99.55 24 | 99.38 52 |
MP-MVS-pluss: MP-MVS-pluss. MP-MVS-pluss |
MSP-MVS | | | 97.59 8 | 97.54 7 | 97.73 35 | 99.40 11 | 93.77 53 | 98.53 15 | 98.29 27 | 95.55 9 | 98.56 15 | 97.81 89 | 93.90 15 | 99.65 52 | 96.62 32 | 99.21 66 | 99.77 1 |
Zhenlong Yuan, Cong Liu, Fei Shen, Zhaoxin Li, Jingguo luo, Tianlu Mao and Zhaoqi Wang: MSP-MVS: Multi-granularity Segmentation Prior Guided Multi-View Stereo. AAAI2025 |
sam_mvs1 | | | | | | | | | | | | | 82.76 180 | | | | 98.45 131 |
|
sam_mvs | | | | | | | | | | | | | 81.94 199 | | | | |
|
IterMVS-SCA-FT | | | 90.31 261 | 89.81 257 | 91.82 294 | 95.52 230 | 84.20 304 | 94.30 300 | 96.15 259 | 90.61 177 | 87.39 293 | 94.27 279 | 75.80 286 | 96.44 333 | 87.34 243 | 86.88 288 | 94.82 297 |
|
TSAR-MVS + MP. | | | 97.42 10 | 97.33 12 | 97.69 39 | 99.25 27 | 94.24 38 | 98.07 52 | 97.85 108 | 93.72 65 | 98.57 14 | 98.35 41 | 93.69 18 | 99.40 100 | 97.06 22 | 99.46 39 | 99.44 44 |
Zhenlong Yuan, Jiakai Cao, Zhaoqi Wang, Zhaoxin Li: TSAR-MVS: Textureless-aware Segmentation and Correlative Refinement Guided Multi-View Stereo. Pattern Recognition |
xiu_mvs_v1_base_debu | | | 95.01 83 | 94.76 81 | 95.75 123 | 96.58 180 | 91.71 103 | 96.25 228 | 97.35 173 | 92.99 97 | 96.70 56 | 96.63 164 | 82.67 181 | 99.44 96 | 96.22 43 | 97.46 125 | 96.11 226 |
|
OPM-MVS | | | 93.28 141 | 92.76 142 | 94.82 174 | 94.63 285 | 90.77 148 | 96.65 194 | 97.18 182 | 93.72 65 | 91.68 184 | 97.26 124 | 79.33 241 | 98.63 179 | 92.13 145 | 92.28 215 | 95.07 280 |
Ray L. Khuboni, Hongjun Xu: Octagram Propagation Matching for Multi-Scale View Stereopsis (OPM-MVS). |
ACMMP_NAP | | | 97.20 16 | 96.86 24 | 98.23 11 | 99.09 34 | 95.16 22 | 97.60 105 | 98.19 47 | 92.82 108 | 97.93 26 | 98.74 16 | 91.60 49 | 99.86 8 | 96.26 40 | 99.52 28 | 99.67 11 |
|
ambc | | | | | 86.56 343 | 83.60 372 | 70.00 369 | 85.69 370 | 94.97 311 | | 80.60 348 | 88.45 355 | 37.42 374 | 96.84 329 | 82.69 306 | 75.44 358 | 92.86 339 |
|
MTGPA |  | | | | | | | | 98.08 66 | | | | | | | | |
|
CS-MVS-test | | | 96.89 30 | 97.04 18 | 96.45 84 | 98.29 82 | 91.66 107 | 99.03 4 | 97.85 108 | 95.84 6 | 96.90 49 | 97.97 76 | 91.24 56 | 98.75 166 | 96.92 25 | 99.33 55 | 98.94 91 |
|
Effi-MVS+ | | | 94.93 88 | 94.45 95 | 96.36 92 | 96.61 177 | 91.47 116 | 96.41 212 | 97.41 166 | 91.02 161 | 94.50 122 | 95.92 198 | 87.53 106 | 98.78 161 | 93.89 113 | 96.81 145 | 98.84 104 |
|
xiu_mvs_v2_base | | | 95.32 75 | 95.29 71 | 95.40 146 | 97.22 138 | 90.50 155 | 95.44 265 | 97.44 161 | 93.70 67 | 96.46 71 | 96.18 186 | 88.59 93 | 99.53 81 | 94.79 96 | 97.81 118 | 96.17 221 |
|
xiu_mvs_v1_base | | | 95.01 83 | 94.76 81 | 95.75 123 | 96.58 180 | 91.71 103 | 96.25 228 | 97.35 173 | 92.99 97 | 96.70 56 | 96.63 164 | 82.67 181 | 99.44 96 | 96.22 43 | 97.46 125 | 96.11 226 |
|
new-patchmatchnet | | | 83.18 326 | 81.87 329 | 87.11 340 | 86.88 369 | 75.99 361 | 93.70 319 | 95.18 302 | 85.02 309 | 77.30 360 | 88.40 356 | 65.99 347 | 93.88 362 | 74.19 353 | 70.18 367 | 91.47 357 |
|
pmmvs6 | | | 87.81 297 | 86.19 301 | 92.69 274 | 91.32 349 | 86.30 272 | 97.34 134 | 96.41 247 | 80.59 349 | 84.05 332 | 94.37 272 | 67.37 337 | 97.67 284 | 84.75 283 | 79.51 347 | 94.09 325 |
|
pmmvs5 | | | 89.86 274 | 88.87 277 | 92.82 269 | 92.86 333 | 86.23 274 | 96.26 227 | 95.39 289 | 84.24 318 | 87.12 297 | 94.51 263 | 74.27 297 | 97.36 312 | 87.61 239 | 87.57 278 | 94.86 293 |
|
test_post1 | | | | | | | | 92.81 340 | | | | 16.58 385 | 80.53 219 | 97.68 283 | 86.20 261 | | |
|
test_post | | | | | | | | | | | | 17.58 384 | 81.76 201 | 98.08 233 | | | |
|
Fast-Effi-MVS+ | | | 93.46 135 | 92.75 144 | 95.59 134 | 96.77 170 | 90.03 163 | 96.81 178 | 97.13 186 | 88.19 244 | 91.30 196 | 94.27 279 | 86.21 125 | 98.63 179 | 87.66 236 | 96.46 156 | 98.12 150 |
|
patchmatchnet-post | | | | | | | | | | | | 90.45 344 | 82.65 184 | 98.10 229 | | | |
|
Anonymous20231211 | | | 90.63 255 | 89.42 268 | 94.27 204 | 98.24 86 | 89.19 202 | 98.05 53 | 97.89 99 | 79.95 350 | 88.25 277 | 94.96 242 | 72.56 308 | 98.13 222 | 89.70 191 | 85.14 304 | 95.49 253 |
|
pmmvs-eth3d | | | 86.22 309 | 84.45 316 | 91.53 302 | 88.34 366 | 87.25 249 | 94.47 291 | 95.01 308 | 83.47 329 | 79.51 354 | 89.61 351 | 69.75 326 | 95.71 344 | 83.13 299 | 76.73 356 | 91.64 352 |
|
GG-mvs-BLEND | | | | | 93.62 238 | 93.69 314 | 89.20 200 | 92.39 345 | 83.33 380 | | 87.98 284 | 89.84 350 | 71.00 316 | 96.87 328 | 82.08 310 | 95.40 173 | 94.80 300 |
|
xiu_mvs_v1_base_debi | | | 95.01 83 | 94.76 81 | 95.75 123 | 96.58 180 | 91.71 103 | 96.25 228 | 97.35 173 | 92.99 97 | 96.70 56 | 96.63 164 | 82.67 181 | 99.44 96 | 96.22 43 | 97.46 125 | 96.11 226 |
|
Anonymous20231206 | | | 87.09 301 | 86.14 302 | 89.93 327 | 91.22 350 | 80.35 340 | 96.11 236 | 95.35 292 | 83.57 328 | 84.16 327 | 93.02 316 | 73.54 304 | 95.61 347 | 72.16 358 | 86.14 291 | 93.84 328 |
|
MTAPA | | | 97.08 20 | 96.78 32 | 97.97 21 | 99.37 16 | 94.42 32 | 97.24 143 | 98.08 66 | 95.07 23 | 96.11 82 | 98.59 20 | 90.88 65 | 99.90 2 | 96.18 49 | 99.50 33 | 99.58 22 |
|
MTMP | | | | | | | | 97.86 71 | 82.03 381 | | | | | | | | |
|
gm-plane-assit | | | | | | 93.22 328 | 78.89 355 | | | 84.82 312 | | 93.52 308 | | 98.64 178 | 87.72 229 | | |
|
test9_res | | | | | | | | | | | | | | | 94.81 93 | 99.38 51 | 99.45 42 |
|
MVP-Stereo | | | 90.74 251 | 90.08 245 | 92.71 273 | 93.19 329 | 88.20 228 | 95.86 248 | 96.27 252 | 86.07 292 | 84.86 321 | 94.76 253 | 77.84 269 | 97.75 279 | 83.88 295 | 98.01 113 | 92.17 351 |
Qingsong Yan: MVP-Stereo: A Parallel Multi-View Patchmatch Stereo Method with Dilation Matching for Photogrammetric Application. |
TEST9 | | | | | | 98.70 56 | 94.19 39 | 96.41 212 | 98.02 86 | 88.17 245 | 96.03 85 | 97.56 111 | 92.74 28 | 99.59 64 | | | |
|
train_agg | | | 96.30 53 | 95.83 59 | 97.72 36 | 98.70 56 | 94.19 39 | 96.41 212 | 98.02 86 | 88.58 234 | 96.03 85 | 97.56 111 | 92.73 29 | 99.59 64 | 95.04 85 | 99.37 54 | 99.39 50 |
|
gg-mvs-nofinetune | | | 87.82 296 | 85.61 305 | 94.44 193 | 94.46 290 | 89.27 198 | 91.21 352 | 84.61 378 | 80.88 344 | 89.89 232 | 74.98 372 | 71.50 312 | 97.53 298 | 85.75 272 | 97.21 138 | 96.51 211 |
|
SCA | | | 91.84 201 | 91.18 204 | 93.83 227 | 95.59 226 | 84.95 296 | 94.72 284 | 95.58 283 | 90.82 163 | 92.25 171 | 93.69 301 | 75.80 286 | 98.10 229 | 86.20 261 | 95.98 160 | 98.45 131 |
|
Patchmatch-test | | | 89.42 279 | 87.99 286 | 93.70 235 | 95.27 249 | 85.11 292 | 88.98 364 | 94.37 329 | 81.11 342 | 87.10 299 | 93.69 301 | 82.28 191 | 97.50 301 | 74.37 351 | 94.76 184 | 98.48 128 |
|
test_8 | | | | | | 98.67 58 | 94.06 46 | 96.37 219 | 98.01 89 | 88.58 234 | 95.98 89 | 97.55 113 | 92.73 29 | 99.58 67 | | | |
|
MS-PatchMatch | | | 90.27 262 | 89.77 259 | 91.78 297 | 94.33 295 | 84.72 299 | 95.55 260 | 96.73 224 | 86.17 291 | 86.36 308 | 95.28 232 | 71.28 314 | 97.80 274 | 84.09 291 | 98.14 111 | 92.81 340 |
|
Patchmatch-RL test | | | 87.38 299 | 86.24 300 | 90.81 315 | 88.74 365 | 78.40 356 | 88.12 368 | 93.17 345 | 87.11 275 | 82.17 342 | 89.29 353 | 81.95 198 | 95.60 348 | 88.64 218 | 77.02 353 | 98.41 136 |
|
cdsmvs_eth3d_5k | | | 23.24 351 | 30.99 353 | 0.00 369 | 0.00 392 | 0.00 393 | 0.00 380 | 97.63 131 | 0.00 387 | 0.00 388 | 96.88 145 | 84.38 148 | 0.00 388 | 0.00 386 | 0.00 386 | 0.00 384 |
|
pcd_1.5k_mvsjas | | | 7.39 355 | 9.85 358 | 0.00 369 | 0.00 392 | 0.00 393 | 0.00 380 | 0.00 393 | 0.00 387 | 0.00 388 | 0.00 387 | 88.65 90 | 0.00 388 | 0.00 386 | 0.00 386 | 0.00 384 |
|
agg_prior2 | | | | | | | | | | | | | | | 93.94 111 | 99.38 51 | 99.50 37 |
|
agg_prior | | | | | | 98.67 58 | 93.79 51 | | 98.00 90 | | 95.68 99 | | | 99.57 74 | | | |
|
tmp_tt | | | 51.94 349 | 53.82 349 | 46.29 365 | 33.73 389 | 45.30 388 | 78.32 375 | 67.24 388 | 18.02 382 | 50.93 378 | 87.05 365 | 52.99 366 | 53.11 384 | 70.76 363 | 25.29 382 | 40.46 380 |
|
canonicalmvs | | | 96.02 58 | 95.45 65 | 97.75 34 | 97.59 130 | 95.15 23 | 98.28 32 | 97.60 133 | 94.52 44 | 96.27 78 | 96.12 190 | 87.65 103 | 99.18 120 | 96.20 48 | 94.82 183 | 98.91 95 |
|
anonymousdsp | | | 92.16 192 | 91.55 187 | 93.97 218 | 92.58 339 | 89.55 181 | 97.51 114 | 97.42 165 | 89.42 206 | 88.40 271 | 94.84 249 | 80.66 216 | 97.88 268 | 91.87 151 | 91.28 236 | 94.48 312 |
|
alignmvs | | | 95.87 63 | 95.23 72 | 97.78 30 | 97.56 133 | 95.19 21 | 97.86 71 | 97.17 184 | 94.39 48 | 96.47 70 | 96.40 177 | 85.89 129 | 99.20 117 | 96.21 47 | 95.11 179 | 98.95 90 |
|
nrg030 | | | 94.05 113 | 93.31 125 | 96.27 99 | 95.22 253 | 94.59 28 | 98.34 27 | 97.46 152 | 92.93 105 | 91.21 202 | 96.64 158 | 87.23 113 | 98.22 213 | 94.99 88 | 85.80 294 | 95.98 230 |
|
v144192 | | | 91.06 238 | 90.28 235 | 93.39 248 | 93.66 316 | 87.23 251 | 96.83 177 | 97.07 194 | 87.43 267 | 89.69 237 | 94.28 278 | 81.48 205 | 98.00 247 | 87.18 248 | 84.92 310 | 94.93 288 |
|
FIs | | | 94.09 111 | 93.70 106 | 95.27 149 | 95.70 223 | 92.03 96 | 98.10 49 | 98.68 9 | 93.36 83 | 90.39 212 | 96.70 152 | 87.63 104 | 97.94 259 | 92.25 141 | 90.50 252 | 95.84 234 |
|
v1921920 | | | 90.85 247 | 90.03 250 | 93.29 252 | 93.55 317 | 86.96 259 | 96.74 183 | 97.04 199 | 87.36 269 | 89.52 244 | 94.34 273 | 80.23 226 | 97.97 251 | 86.27 259 | 85.21 303 | 94.94 286 |
|
UA-Net | | | 95.95 61 | 95.53 62 | 97.20 57 | 97.67 121 | 92.98 71 | 97.65 96 | 98.13 57 | 94.81 32 | 96.61 62 | 98.35 41 | 88.87 86 | 99.51 86 | 90.36 179 | 97.35 132 | 99.11 75 |
|
v1192 | | | 91.07 237 | 90.23 239 | 93.58 241 | 93.70 313 | 87.82 241 | 96.73 184 | 97.07 194 | 87.77 258 | 89.58 240 | 94.32 276 | 80.90 214 | 97.97 251 | 86.52 256 | 85.48 297 | 94.95 284 |
|
FC-MVSNet-test | | | 93.94 117 | 93.57 110 | 95.04 159 | 95.48 232 | 91.45 118 | 98.12 48 | 98.71 7 | 93.37 81 | 90.23 215 | 96.70 152 | 87.66 102 | 97.85 269 | 91.49 161 | 90.39 253 | 95.83 235 |
|
v1144 | | | 91.37 223 | 90.60 223 | 93.68 237 | 93.89 308 | 88.23 227 | 96.84 176 | 97.03 201 | 88.37 240 | 89.69 237 | 94.39 270 | 82.04 195 | 97.98 248 | 87.80 228 | 85.37 299 | 94.84 294 |
|
sosnet-low-res | | | 0.00 356 | 0.00 359 | 0.00 369 | 0.00 392 | 0.00 393 | 0.00 380 | 0.00 393 | 0.00 387 | 0.00 388 | 0.00 387 | 0.00 392 | 0.00 388 | 0.00 386 | 0.00 386 | 0.00 384 |
|
HFP-MVS | | | 97.14 19 | 96.92 23 | 97.83 25 | 99.42 7 | 94.12 43 | 98.52 16 | 98.32 23 | 93.21 86 | 97.18 40 | 98.29 53 | 92.08 40 | 99.83 25 | 95.63 70 | 99.59 17 | 99.54 30 |
|
v148 | | | 90.99 241 | 90.38 230 | 92.81 270 | 93.83 310 | 85.80 279 | 96.78 181 | 96.68 230 | 89.45 205 | 88.75 265 | 93.93 294 | 82.96 176 | 97.82 273 | 87.83 227 | 83.25 329 | 94.80 300 |
|
sosnet | | | 0.00 356 | 0.00 359 | 0.00 369 | 0.00 392 | 0.00 393 | 0.00 380 | 0.00 393 | 0.00 387 | 0.00 388 | 0.00 387 | 0.00 392 | 0.00 388 | 0.00 386 | 0.00 386 | 0.00 384 |
|
uncertanet | | | 0.00 356 | 0.00 359 | 0.00 369 | 0.00 392 | 0.00 393 | 0.00 380 | 0.00 393 | 0.00 387 | 0.00 388 | 0.00 387 | 0.00 392 | 0.00 388 | 0.00 386 | 0.00 386 | 0.00 384 |
|
AllTest | | | 90.23 264 | 88.98 275 | 93.98 216 | 97.94 107 | 86.64 264 | 96.51 207 | 95.54 284 | 85.38 301 | 85.49 315 | 96.77 148 | 70.28 320 | 99.15 123 | 80.02 324 | 92.87 205 | 96.15 223 |
|
TestCases | | | | | 93.98 216 | 97.94 107 | 86.64 264 | | 95.54 284 | 85.38 301 | 85.49 315 | 96.77 148 | 70.28 320 | 99.15 123 | 80.02 324 | 92.87 205 | 96.15 223 |
|
v7n | | | 90.76 249 | 89.86 254 | 93.45 247 | 93.54 318 | 87.60 245 | 97.70 92 | 97.37 170 | 88.85 224 | 87.65 288 | 94.08 289 | 81.08 209 | 98.10 229 | 84.68 284 | 83.79 326 | 94.66 309 |
|
region2R | | | 97.07 21 | 96.84 26 | 97.77 32 | 99.46 2 | 93.79 51 | 98.52 16 | 98.24 39 | 93.19 89 | 97.14 42 | 98.34 44 | 91.59 50 | 99.87 7 | 95.46 77 | 99.59 17 | 99.64 14 |
|
iter_conf05 | | | 93.18 148 | 92.63 149 | 94.83 173 | 96.64 175 | 90.69 150 | 97.60 105 | 95.53 286 | 92.52 115 | 91.58 186 | 96.64 158 | 76.35 282 | 98.13 222 | 95.43 78 | 91.42 233 | 95.68 250 |
|
RRT_MVS | | | 93.10 150 | 92.83 139 | 93.93 224 | 94.76 277 | 88.04 233 | 98.47 22 | 96.55 240 | 93.44 78 | 90.01 228 | 97.04 136 | 80.64 217 | 97.93 262 | 94.33 104 | 90.21 255 | 95.83 235 |
|
PS-MVSNAJss | | | 93.74 126 | 93.51 116 | 94.44 193 | 93.91 307 | 89.28 197 | 97.75 82 | 97.56 140 | 92.50 116 | 89.94 229 | 96.54 170 | 88.65 90 | 98.18 218 | 93.83 116 | 90.90 245 | 95.86 231 |
|
PS-MVSNAJ | | | 95.37 73 | 95.33 70 | 95.49 141 | 97.35 136 | 90.66 152 | 95.31 271 | 97.48 147 | 93.85 62 | 96.51 67 | 95.70 214 | 88.65 90 | 99.65 52 | 94.80 94 | 98.27 105 | 96.17 221 |
|
jajsoiax | | | 92.42 177 | 91.89 176 | 94.03 214 | 93.33 327 | 88.50 219 | 97.73 85 | 97.53 142 | 92.00 132 | 88.85 261 | 96.50 172 | 75.62 289 | 98.11 228 | 93.88 114 | 91.56 229 | 95.48 254 |
|
mvs_tets | | | 92.31 184 | 91.76 178 | 93.94 222 | 93.41 324 | 88.29 223 | 97.63 102 | 97.53 142 | 92.04 130 | 88.76 264 | 96.45 174 | 74.62 295 | 98.09 232 | 93.91 112 | 91.48 231 | 95.45 259 |
|
EI-MVSNet-UG-set | | | 96.34 52 | 96.30 51 | 96.47 81 | 98.20 91 | 90.93 141 | 96.86 173 | 97.72 119 | 94.67 40 | 96.16 81 | 98.46 32 | 90.43 70 | 99.58 67 | 96.23 42 | 97.96 115 | 98.90 96 |
|
EI-MVSNet-Vis-set | | | 96.51 47 | 96.47 45 | 96.63 68 | 98.24 86 | 91.20 129 | 96.89 171 | 97.73 117 | 94.74 37 | 96.49 68 | 98.49 28 | 90.88 65 | 99.58 67 | 96.44 38 | 98.32 104 | 99.13 71 |
|
HPM-MVS++ |  | | 97.34 14 | 96.97 21 | 98.47 5 | 99.08 36 | 96.16 4 | 97.55 112 | 97.97 93 | 95.59 8 | 96.61 62 | 97.89 80 | 92.57 32 | 99.84 22 | 95.95 56 | 99.51 31 | 99.40 49 |
|
test_prior4 | | | | | | | 93.66 54 | 96.42 211 | | | | | | | | | |
|
XVS | | | 97.18 17 | 96.96 22 | 97.81 27 | 99.38 14 | 94.03 47 | 98.59 12 | 98.20 44 | 94.85 27 | 96.59 64 | 98.29 53 | 91.70 46 | 99.80 29 | 95.66 65 | 99.40 48 | 99.62 16 |
|
v1240 | | | 90.70 253 | 89.85 255 | 93.23 254 | 93.51 320 | 86.80 260 | 96.61 200 | 97.02 202 | 87.16 274 | 89.58 240 | 94.31 277 | 79.55 238 | 97.98 248 | 85.52 274 | 85.44 298 | 94.90 291 |
|
pm-mvs1 | | | 90.72 252 | 89.65 265 | 93.96 219 | 94.29 298 | 89.63 176 | 97.79 80 | 96.82 221 | 89.07 214 | 86.12 311 | 95.48 226 | 78.61 256 | 97.78 276 | 86.97 252 | 81.67 337 | 94.46 313 |
|
test_prior2 | | | | | | | | 96.35 220 | | 92.80 109 | 96.03 85 | 97.59 108 | 92.01 41 | | 95.01 87 | 99.38 51 | |
|
X-MVStestdata | | | 91.71 204 | 89.67 263 | 97.81 27 | 99.38 14 | 94.03 47 | 98.59 12 | 98.20 44 | 94.85 27 | 96.59 64 | 32.69 381 | 91.70 46 | 99.80 29 | 95.66 65 | 99.40 48 | 99.62 16 |
|
test_prior | | | | | 97.23 54 | 98.67 58 | 92.99 70 | | 98.00 90 | | | | | 99.41 99 | | | 99.29 57 |
|
旧先验2 | | | | | | | | 95.94 245 | | 81.66 340 | 97.34 38 | | | 98.82 158 | 92.26 139 | | |
|
新几何2 | | | | | | | | 95.79 251 | | | | | | | | | |
|
新几何1 | | | | | 97.32 49 | 98.60 65 | 93.59 55 | | 97.75 114 | 81.58 341 | 95.75 96 | 97.85 86 | 90.04 74 | 99.67 50 | 86.50 257 | 99.13 73 | 98.69 113 |
|
旧先验1 | | | | | | 98.38 78 | 93.38 60 | | 97.75 114 | | | 98.09 65 | 92.30 39 | | | 99.01 80 | 99.16 67 |
|
无先验 | | | | | | | | 95.79 251 | 97.87 103 | 83.87 324 | | | | 99.65 52 | 87.68 235 | | 98.89 99 |
|
原ACMM2 | | | | | | | | 95.67 255 | | | | | | | | | |
|
原ACMM1 | | | | | 96.38 90 | 98.59 66 | 91.09 136 | | 97.89 99 | 87.41 268 | 95.22 110 | 97.68 97 | 90.25 71 | 99.54 79 | 87.95 225 | 99.12 74 | 98.49 126 |
|
test222 | | | | | | 98.24 86 | 92.21 90 | 95.33 269 | 97.60 133 | 79.22 354 | 95.25 108 | 97.84 88 | 88.80 88 | | | 99.15 71 | 98.72 110 |
|
testdata2 | | | | | | | | | | | | | | 99.67 50 | 85.96 269 | | |
|
segment_acmp | | | | | | | | | | | | | 92.89 25 | | | | |
|
testdata | | | | | 95.46 145 | 98.18 95 | 88.90 208 | | 97.66 125 | 82.73 334 | 97.03 47 | 98.07 66 | 90.06 73 | 98.85 156 | 89.67 192 | 98.98 81 | 98.64 116 |
|
testdata1 | | | | | | | | 95.26 276 | | 93.10 95 | | | | | | | |
|
v8 | | | 91.29 229 | 90.53 227 | 93.57 242 | 94.15 300 | 88.12 232 | 97.34 134 | 97.06 196 | 88.99 218 | 88.32 273 | 94.26 281 | 83.08 170 | 98.01 246 | 87.62 238 | 83.92 324 | 94.57 311 |
|
1314 | | | 92.81 168 | 92.03 170 | 95.14 154 | 95.33 245 | 89.52 184 | 96.04 239 | 97.44 161 | 87.72 261 | 86.25 309 | 95.33 229 | 83.84 155 | 98.79 160 | 89.26 203 | 97.05 142 | 97.11 196 |
|
LFMVS | | | 93.60 129 | 92.63 149 | 96.52 74 | 98.13 98 | 91.27 124 | 97.94 66 | 93.39 344 | 90.57 180 | 96.29 76 | 98.31 50 | 69.00 328 | 99.16 122 | 94.18 106 | 95.87 163 | 99.12 74 |
|
VDD-MVS | | | 93.82 123 | 93.08 130 | 96.02 112 | 97.88 112 | 89.96 170 | 97.72 88 | 95.85 269 | 92.43 117 | 95.86 92 | 98.44 34 | 68.42 332 | 99.39 101 | 96.31 39 | 94.85 181 | 98.71 112 |
|
VDDNet | | | 93.05 154 | 92.07 168 | 96.02 112 | 96.84 163 | 90.39 160 | 98.08 51 | 95.85 269 | 86.22 290 | 95.79 95 | 98.46 32 | 67.59 335 | 99.19 118 | 94.92 89 | 94.85 181 | 98.47 129 |
|
v10 | | | 91.04 239 | 90.23 239 | 93.49 244 | 94.12 301 | 88.16 231 | 97.32 137 | 97.08 192 | 88.26 243 | 88.29 275 | 94.22 284 | 82.17 194 | 97.97 251 | 86.45 258 | 84.12 320 | 94.33 318 |
|
VPNet | | | 92.23 190 | 91.31 196 | 94.99 163 | 95.56 228 | 90.96 139 | 97.22 148 | 97.86 107 | 92.96 104 | 90.96 204 | 96.62 167 | 75.06 292 | 98.20 215 | 91.90 149 | 83.65 327 | 95.80 238 |
|
MVS | | | 91.71 204 | 90.44 228 | 95.51 139 | 95.20 255 | 91.59 110 | 96.04 239 | 97.45 157 | 73.44 366 | 87.36 294 | 95.60 219 | 85.42 135 | 99.10 129 | 85.97 268 | 97.46 125 | 95.83 235 |
|
v2v482 | | | 91.59 209 | 90.85 213 | 93.80 229 | 93.87 309 | 88.17 230 | 96.94 168 | 96.88 216 | 89.54 201 | 89.53 243 | 94.90 246 | 81.70 203 | 98.02 245 | 89.25 204 | 85.04 308 | 95.20 277 |
|
V42 | | | 91.58 211 | 90.87 210 | 93.73 232 | 94.05 304 | 88.50 219 | 97.32 137 | 96.97 204 | 88.80 230 | 89.71 235 | 94.33 274 | 82.54 185 | 98.05 240 | 89.01 210 | 85.07 306 | 94.64 310 |
|
SD-MVS | | | 97.41 11 | 97.53 8 | 97.06 61 | 98.57 69 | 94.46 30 | 97.92 68 | 98.14 56 | 94.82 31 | 99.01 4 | 98.55 23 | 94.18 14 | 97.41 309 | 96.94 24 | 99.64 13 | 99.32 56 |
Zhenlong Yuan, Jiakai Cao, Zhaoxin Li, Hao Jiang and Zhaoqi Wang: SD-MVS: Segmentation-driven Deformation Multi-View Stereo with Spherical Refinement and EM optimization. AAAI2024 |
GA-MVS | | | 91.38 221 | 90.31 233 | 94.59 185 | 94.65 284 | 87.62 244 | 94.34 298 | 96.19 258 | 90.73 167 | 90.35 213 | 93.83 295 | 71.84 310 | 97.96 256 | 87.22 246 | 93.61 201 | 98.21 147 |
|
MSLP-MVS++ | | | 96.94 28 | 97.06 15 | 96.59 71 | 98.72 55 | 91.86 100 | 97.67 93 | 98.49 14 | 94.66 41 | 97.24 39 | 98.41 37 | 92.31 38 | 98.94 149 | 96.61 33 | 99.46 39 | 98.96 88 |
|
APDe-MVS | | | 97.82 5 | 97.73 5 | 98.08 17 | 99.15 33 | 94.82 26 | 98.81 7 | 98.30 25 | 94.76 36 | 98.30 18 | 98.90 5 | 93.77 17 | 99.68 48 | 97.93 4 | 99.69 3 | 99.75 5 |
|
APD-MVS_3200maxsize | | | 96.81 36 | 96.71 36 | 97.12 59 | 99.01 45 | 92.31 87 | 97.98 59 | 98.06 74 | 93.11 94 | 97.44 33 | 98.55 23 | 90.93 63 | 99.55 77 | 96.06 50 | 99.25 63 | 99.51 34 |
|
ADS-MVSNet2 | | | 89.45 278 | 88.59 280 | 92.03 288 | 95.86 216 | 82.26 323 | 90.93 353 | 94.32 332 | 83.23 331 | 91.28 200 | 91.81 335 | 79.01 250 | 95.99 338 | 79.52 326 | 91.39 234 | 97.84 164 |
|
EI-MVSNet | | | 93.03 155 | 92.88 137 | 93.48 245 | 95.77 221 | 86.98 257 | 96.44 208 | 97.12 187 | 90.66 173 | 91.30 196 | 97.64 104 | 86.56 118 | 98.05 240 | 89.91 185 | 90.55 250 | 95.41 260 |
|
Regformer | | | 0.00 356 | 0.00 359 | 0.00 369 | 0.00 392 | 0.00 393 | 0.00 380 | 0.00 393 | 0.00 387 | 0.00 388 | 0.00 387 | 0.00 392 | 0.00 388 | 0.00 386 | 0.00 386 | 0.00 384 |
|
CVMVSNet | | | 91.23 230 | 91.75 179 | 89.67 329 | 95.77 221 | 74.69 362 | 96.44 208 | 94.88 316 | 85.81 295 | 92.18 172 | 97.64 104 | 79.07 245 | 95.58 349 | 88.06 223 | 95.86 164 | 98.74 109 |
|
pmmvs4 | | | 90.93 245 | 89.85 255 | 94.17 206 | 93.34 326 | 90.79 147 | 94.60 287 | 96.02 262 | 84.62 314 | 87.45 290 | 95.15 236 | 81.88 200 | 97.45 305 | 87.70 232 | 87.87 276 | 94.27 322 |
|
EU-MVSNet | | | 88.72 288 | 88.90 276 | 88.20 336 | 93.15 330 | 74.21 363 | 96.63 199 | 94.22 333 | 85.18 305 | 87.32 295 | 95.97 195 | 76.16 283 | 94.98 354 | 85.27 277 | 86.17 290 | 95.41 260 |
|
VNet | | | 95.89 62 | 95.45 65 | 97.21 56 | 98.07 103 | 92.94 72 | 97.50 115 | 98.15 54 | 93.87 61 | 97.52 31 | 97.61 107 | 85.29 136 | 99.53 81 | 95.81 62 | 95.27 175 | 99.16 67 |
|
test-LLR | | | 91.42 219 | 91.19 203 | 92.12 286 | 94.59 286 | 80.66 335 | 94.29 301 | 92.98 346 | 91.11 158 | 90.76 206 | 92.37 325 | 79.02 248 | 98.07 237 | 88.81 214 | 96.74 147 | 97.63 173 |
|
TESTMET0.1,1 | | | 90.06 269 | 89.42 268 | 91.97 289 | 94.41 293 | 80.62 337 | 94.29 301 | 91.97 356 | 87.28 272 | 90.44 211 | 92.47 324 | 68.79 329 | 97.67 284 | 88.50 220 | 96.60 152 | 97.61 177 |
|
test-mter | | | 90.19 267 | 89.54 266 | 92.12 286 | 94.59 286 | 80.66 335 | 94.29 301 | 92.98 346 | 87.68 262 | 90.76 206 | 92.37 325 | 67.67 334 | 98.07 237 | 88.81 214 | 96.74 147 | 97.63 173 |
|
VPA-MVSNet | | | 93.24 142 | 92.48 159 | 95.51 139 | 95.70 223 | 92.39 84 | 97.86 71 | 98.66 11 | 92.30 120 | 92.09 177 | 95.37 228 | 80.49 220 | 98.40 197 | 93.95 110 | 85.86 293 | 95.75 245 |
|
ACMMPR | | | 97.07 21 | 96.84 26 | 97.79 29 | 99.44 6 | 93.88 49 | 98.52 16 | 98.31 24 | 93.21 86 | 97.15 41 | 98.33 47 | 91.35 54 | 99.86 8 | 95.63 70 | 99.59 17 | 99.62 16 |
|
testgi | | | 87.97 294 | 87.21 294 | 90.24 324 | 92.86 333 | 80.76 334 | 96.67 193 | 94.97 311 | 91.74 136 | 85.52 314 | 95.83 203 | 62.66 356 | 94.47 358 | 76.25 344 | 88.36 273 | 95.48 254 |
|
test20.03 | | | 86.14 311 | 85.40 308 | 88.35 334 | 90.12 355 | 80.06 345 | 95.90 247 | 95.20 301 | 88.59 233 | 81.29 344 | 93.62 306 | 71.43 313 | 92.65 367 | 71.26 362 | 81.17 340 | 92.34 347 |
|
thres600view7 | | | 92.49 175 | 91.60 185 | 95.18 152 | 97.91 110 | 89.47 185 | 97.65 96 | 94.66 321 | 92.18 127 | 93.33 149 | 94.91 245 | 78.06 266 | 99.10 129 | 81.61 311 | 94.06 195 | 96.98 198 |
|
ADS-MVSNet | | | 89.89 272 | 88.68 279 | 93.53 243 | 95.86 216 | 84.89 297 | 90.93 353 | 95.07 307 | 83.23 331 | 91.28 200 | 91.81 335 | 79.01 250 | 97.85 269 | 79.52 326 | 91.39 234 | 97.84 164 |
|
MP-MVS |  | | 96.77 38 | 96.45 48 | 97.72 36 | 99.39 13 | 93.80 50 | 98.41 25 | 98.06 74 | 93.37 81 | 95.54 105 | 98.34 44 | 90.59 69 | 99.88 4 | 94.83 91 | 99.54 26 | 99.49 38 |
Rongxuan Tan, Qing Wang, et al.: MP-MVS: Multi-Scale Windows PatchMatch and Planar Prior Multi-View Stereo. |
testmvs | | | 13.36 352 | 16.33 355 | 4.48 368 | 5.04 390 | 2.26 392 | 93.18 330 | 3.28 391 | 2.70 384 | 8.24 385 | 21.66 382 | 2.29 391 | 2.19 386 | 7.58 384 | 2.96 384 | 9.00 382 |
|
thres400 | | | 92.42 177 | 91.52 189 | 95.12 156 | 97.85 113 | 89.29 195 | 97.41 124 | 94.88 316 | 92.19 125 | 93.27 152 | 94.46 268 | 78.17 262 | 99.08 134 | 81.40 314 | 94.08 192 | 96.98 198 |
|
test123 | | | 13.04 353 | 15.66 356 | 5.18 367 | 4.51 391 | 3.45 391 | 92.50 344 | 1.81 392 | 2.50 385 | 7.58 386 | 20.15 383 | 3.67 390 | 2.18 387 | 7.13 385 | 1.07 385 | 9.90 381 |
|
thres200 | | | 92.23 190 | 91.39 192 | 94.75 183 | 97.61 127 | 89.03 205 | 96.60 202 | 95.09 306 | 92.08 129 | 93.28 151 | 94.00 291 | 78.39 260 | 99.04 144 | 81.26 318 | 94.18 191 | 96.19 220 |
|
test0.0.03 1 | | | 89.37 280 | 88.70 278 | 91.41 306 | 92.47 341 | 85.63 281 | 95.22 277 | 92.70 349 | 91.11 158 | 86.91 304 | 93.65 305 | 79.02 248 | 93.19 366 | 78.00 336 | 89.18 264 | 95.41 260 |
|
pmmvs3 | | | 79.97 332 | 77.50 337 | 87.39 339 | 82.80 374 | 79.38 351 | 92.70 341 | 90.75 365 | 70.69 367 | 78.66 356 | 87.47 364 | 51.34 368 | 93.40 364 | 73.39 355 | 69.65 368 | 89.38 365 |
|
EMVS | | | 52.08 348 | 51.31 351 | 54.39 364 | 72.62 383 | 45.39 387 | 83.84 372 | 75.51 385 | 41.13 379 | 40.77 381 | 59.65 380 | 30.08 378 | 73.60 382 | 28.31 382 | 29.90 381 | 44.18 379 |
|
E-PMN | | | 53.28 346 | 52.56 350 | 55.43 363 | 74.43 381 | 47.13 385 | 83.63 373 | 76.30 383 | 42.23 378 | 42.59 380 | 62.22 379 | 28.57 380 | 74.40 381 | 31.53 381 | 31.51 379 | 44.78 378 |
|
PGM-MVS | | | 96.81 36 | 96.53 42 | 97.65 40 | 99.35 20 | 93.53 57 | 97.65 96 | 98.98 2 | 92.22 121 | 97.14 42 | 98.44 34 | 91.17 59 | 99.85 17 | 94.35 103 | 99.46 39 | 99.57 23 |
|
LCM-MVSNet-Re | | | 92.50 173 | 92.52 157 | 92.44 277 | 96.82 167 | 81.89 326 | 96.92 169 | 93.71 340 | 92.41 118 | 84.30 325 | 94.60 261 | 85.08 139 | 97.03 322 | 91.51 160 | 97.36 131 | 98.40 137 |
|
LCM-MVSNet | | | 72.55 336 | 69.39 340 | 82.03 349 | 70.81 385 | 65.42 377 | 90.12 360 | 94.36 331 | 55.02 375 | 65.88 369 | 81.72 369 | 24.16 383 | 89.96 370 | 74.32 352 | 68.10 371 | 90.71 362 |
|
MCST-MVS | | | 97.18 17 | 96.84 26 | 98.20 13 | 99.30 24 | 95.35 15 | 97.12 156 | 98.07 71 | 93.54 73 | 96.08 84 | 97.69 96 | 93.86 16 | 99.71 40 | 96.50 36 | 99.39 50 | 99.55 29 |
|
mvs_anonymous | | | 93.82 123 | 93.74 105 | 94.06 211 | 96.44 192 | 85.41 285 | 95.81 250 | 97.05 197 | 89.85 194 | 90.09 225 | 96.36 179 | 87.44 109 | 97.75 279 | 93.97 109 | 96.69 150 | 99.02 80 |
|
MVS_Test | | | 94.89 90 | 94.62 85 | 95.68 129 | 96.83 165 | 89.55 181 | 96.70 188 | 97.17 184 | 91.17 156 | 95.60 102 | 96.11 193 | 87.87 100 | 98.76 165 | 93.01 134 | 97.17 140 | 98.72 110 |
|
MDA-MVSNet-bldmvs | | | 85.00 318 | 82.95 323 | 91.17 311 | 93.13 331 | 83.33 314 | 94.56 289 | 95.00 309 | 84.57 315 | 65.13 371 | 92.65 319 | 70.45 319 | 95.85 341 | 73.57 354 | 77.49 352 | 94.33 318 |
|
CDPH-MVS | | | 95.97 60 | 95.38 68 | 97.77 32 | 98.93 47 | 94.44 31 | 96.35 220 | 97.88 101 | 86.98 276 | 96.65 60 | 97.89 80 | 91.99 42 | 99.47 92 | 92.26 139 | 99.46 39 | 99.39 50 |
|
test12 | | | | | 97.65 40 | 98.46 70 | 94.26 36 | | 97.66 125 | | 95.52 106 | | 90.89 64 | 99.46 93 | | 99.25 63 | 99.22 64 |
|
casdiffmvs |  | | 95.64 67 | 95.49 63 | 96.08 107 | 96.76 173 | 90.45 157 | 97.29 140 | 97.44 161 | 94.00 56 | 95.46 107 | 97.98 75 | 87.52 107 | 98.73 168 | 95.64 69 | 97.33 133 | 99.08 77 |
Fangjinhua Wang, Qingshan Xu, Yew-Soon Ong, Marc Pollefeys: Lightweight and Accurate Multi-View Stereo With Confidence-Aware Diffusion Model. IEEE T-PAMI 2025 |
diffmvs |  | | 95.25 77 | 95.13 75 | 95.63 131 | 96.43 193 | 89.34 192 | 95.99 243 | 97.35 173 | 92.83 107 | 96.31 75 | 97.37 118 | 86.44 121 | 98.67 175 | 96.26 40 | 97.19 139 | 98.87 101 |
Fangjinhua Wang, Qingshan Xu, Yew-Soon Ong, Marc Pollefeys: Lightweight and Accurate Multi-View Stereo With Confidence-Aware Diffusion Model. IEEE T-PAMI 2025 |
baseline2 | | | 91.63 207 | 90.86 211 | 93.94 222 | 94.33 295 | 86.32 271 | 95.92 246 | 91.64 358 | 89.37 207 | 86.94 302 | 94.69 256 | 81.62 204 | 98.69 173 | 88.64 218 | 94.57 188 | 96.81 205 |
|
baseline1 | | | 92.82 167 | 91.90 175 | 95.55 137 | 97.20 140 | 90.77 148 | 97.19 150 | 94.58 324 | 92.20 123 | 92.36 168 | 96.34 180 | 84.16 152 | 98.21 214 | 89.20 207 | 83.90 325 | 97.68 172 |
|
YYNet1 | | | 85.87 314 | 84.23 318 | 90.78 318 | 92.38 344 | 82.46 321 | 93.17 331 | 95.14 304 | 82.12 337 | 67.69 366 | 92.36 328 | 78.16 264 | 95.50 351 | 77.31 339 | 79.73 345 | 94.39 316 |
|
PMMVS2 | | | 70.19 338 | 66.92 341 | 80.01 350 | 76.35 379 | 65.67 376 | 86.22 369 | 87.58 372 | 64.83 371 | 62.38 372 | 80.29 371 | 26.78 381 | 88.49 375 | 63.79 369 | 54.07 377 | 85.88 367 |
|
MDA-MVSNet_test_wron | | | 85.87 314 | 84.23 318 | 90.80 317 | 92.38 344 | 82.57 318 | 93.17 331 | 95.15 303 | 82.15 336 | 67.65 367 | 92.33 331 | 78.20 261 | 95.51 350 | 77.33 338 | 79.74 344 | 94.31 320 |
|
tpmvs | | | 89.83 275 | 89.15 274 | 91.89 291 | 94.92 268 | 80.30 342 | 93.11 334 | 95.46 288 | 86.28 288 | 88.08 281 | 92.65 319 | 80.44 221 | 98.52 189 | 81.47 313 | 89.92 257 | 96.84 204 |
|
PM-MVS | | | 83.48 324 | 81.86 330 | 88.31 335 | 87.83 368 | 77.59 357 | 93.43 327 | 91.75 357 | 86.91 277 | 80.63 347 | 89.91 349 | 44.42 371 | 95.84 342 | 85.17 280 | 76.73 356 | 91.50 356 |
|
HQP_MVS | | | 93.78 125 | 93.43 121 | 94.82 174 | 96.21 201 | 89.99 166 | 97.74 83 | 97.51 144 | 94.85 27 | 91.34 193 | 96.64 158 | 81.32 207 | 98.60 182 | 93.02 132 | 92.23 216 | 95.86 231 |
|
plane_prior7 | | | | | | 96.21 201 | 89.98 168 | | | | | | | | | | |
|
plane_prior6 | | | | | | 96.10 211 | 90.00 164 | | | | | | 81.32 207 | | | | |
|
plane_prior5 | | | | | | | | | 97.51 144 | | | | | 98.60 182 | 93.02 132 | 92.23 216 | 95.86 231 |
|
plane_prior4 | | | | | | | | | | | | 96.64 158 | | | | | |
|
plane_prior3 | | | | | | | 90.00 164 | | | 94.46 45 | 91.34 193 | | | | | | |
|
plane_prior2 | | | | | | | | 97.74 83 | | 94.85 27 | | | | | | | |
|
plane_prior1 | | | | | | 96.14 209 | | | | | | | | | | | |
|
plane_prior | | | | | | | 89.99 166 | 97.24 143 | | 94.06 55 | | | | | | 92.16 220 | |
|
PS-CasMVS | | | 91.55 213 | 90.84 214 | 93.69 236 | 94.96 264 | 88.28 224 | 97.84 75 | 98.24 39 | 91.46 143 | 88.04 282 | 95.80 205 | 79.67 236 | 97.48 302 | 87.02 251 | 84.54 316 | 95.31 269 |
|
UniMVSNet_NR-MVSNet | | | 93.37 138 | 92.67 148 | 95.47 144 | 95.34 242 | 92.83 73 | 97.17 152 | 98.58 12 | 92.98 102 | 90.13 220 | 95.80 205 | 88.37 95 | 97.85 269 | 91.71 156 | 83.93 322 | 95.73 247 |
|
PEN-MVS | | | 91.20 232 | 90.44 228 | 93.48 245 | 94.49 289 | 87.91 239 | 97.76 81 | 98.18 49 | 91.29 148 | 87.78 286 | 95.74 211 | 80.35 223 | 97.33 313 | 85.46 275 | 82.96 332 | 95.19 278 |
|
TransMVSNet (Re) | | | 88.94 283 | 87.56 289 | 93.08 260 | 94.35 294 | 88.45 221 | 97.73 85 | 95.23 300 | 87.47 266 | 84.26 326 | 95.29 230 | 79.86 233 | 97.33 313 | 79.44 330 | 74.44 360 | 93.45 333 |
|
DTE-MVSNet | | | 90.56 256 | 89.75 261 | 93.01 261 | 93.95 305 | 87.25 249 | 97.64 100 | 97.65 127 | 90.74 166 | 87.12 297 | 95.68 215 | 79.97 231 | 97.00 325 | 83.33 297 | 81.66 338 | 94.78 304 |
|
DU-MVS | | | 92.90 162 | 92.04 169 | 95.49 141 | 94.95 265 | 92.83 73 | 97.16 153 | 98.24 39 | 93.02 96 | 90.13 220 | 95.71 212 | 83.47 161 | 97.85 269 | 91.71 156 | 83.93 322 | 95.78 240 |
|
UniMVSNet (Re) | | | 93.31 140 | 92.55 154 | 95.61 133 | 95.39 236 | 93.34 63 | 97.39 129 | 98.71 7 | 93.14 93 | 90.10 224 | 94.83 250 | 87.71 101 | 98.03 244 | 91.67 159 | 83.99 321 | 95.46 258 |
|
CP-MVSNet | | | 91.89 200 | 91.24 200 | 93.82 228 | 95.05 261 | 88.57 215 | 97.82 77 | 98.19 47 | 91.70 137 | 88.21 278 | 95.76 210 | 81.96 197 | 97.52 300 | 87.86 226 | 84.65 311 | 95.37 266 |
|
WR-MVS_H | | | 92.00 197 | 91.35 193 | 93.95 220 | 95.09 260 | 89.47 185 | 98.04 54 | 98.68 9 | 91.46 143 | 88.34 272 | 94.68 257 | 85.86 130 | 97.56 294 | 85.77 271 | 84.24 319 | 94.82 297 |
|
WR-MVS | | | 92.34 182 | 91.53 188 | 94.77 181 | 95.13 258 | 90.83 145 | 96.40 216 | 97.98 92 | 91.88 134 | 89.29 251 | 95.54 223 | 82.50 186 | 97.80 274 | 89.79 189 | 85.27 302 | 95.69 249 |
|
NR-MVSNet | | | 92.34 182 | 91.27 199 | 95.53 138 | 94.95 265 | 93.05 69 | 97.39 129 | 98.07 71 | 92.65 113 | 84.46 323 | 95.71 212 | 85.00 140 | 97.77 278 | 89.71 190 | 83.52 328 | 95.78 240 |
|
Baseline_NR-MVSNet | | | 91.20 232 | 90.62 222 | 92.95 264 | 93.83 310 | 88.03 234 | 97.01 163 | 95.12 305 | 88.42 239 | 89.70 236 | 95.13 238 | 83.47 161 | 97.44 306 | 89.66 193 | 83.24 330 | 93.37 334 |
|
TranMVSNet+NR-MVSNet | | | 92.50 173 | 91.63 184 | 95.14 154 | 94.76 277 | 92.07 94 | 97.53 113 | 98.11 62 | 92.90 106 | 89.56 242 | 96.12 190 | 83.16 167 | 97.60 292 | 89.30 201 | 83.20 331 | 95.75 245 |
|
TSAR-MVS + GP. | | | 96.69 42 | 96.49 44 | 97.27 53 | 98.31 81 | 93.39 59 | 96.79 179 | 96.72 225 | 94.17 53 | 97.44 33 | 97.66 100 | 92.76 26 | 99.33 105 | 96.86 27 | 97.76 121 | 99.08 77 |
|
n2 | | | | | | | | | 0.00 393 | | | | | | | | |
|
nn | | | | | | | | | 0.00 393 | | | | | | | | |
|
mPP-MVS | | | 96.86 32 | 96.60 39 | 97.64 42 | 99.40 11 | 93.44 58 | 98.50 19 | 98.09 65 | 93.27 85 | 95.95 90 | 98.33 47 | 91.04 61 | 99.88 4 | 95.20 82 | 99.57 23 | 99.60 19 |
|
door-mid | | | | | | | | | 91.06 362 | | | | | | | | |
|
XVG-OURS-SEG-HR | | | 93.86 121 | 93.55 111 | 94.81 176 | 97.06 151 | 88.53 218 | 95.28 272 | 97.45 157 | 91.68 138 | 94.08 132 | 97.68 97 | 82.41 189 | 98.90 154 | 93.84 115 | 92.47 213 | 96.98 198 |
|
mvsmamba | | | 93.83 122 | 93.46 118 | 94.93 171 | 94.88 272 | 90.85 144 | 98.55 14 | 95.49 287 | 94.24 52 | 91.29 199 | 96.97 139 | 83.04 172 | 98.14 221 | 95.56 76 | 91.17 238 | 95.78 240 |
|
MVSFormer | | | 95.37 73 | 95.16 74 | 95.99 114 | 96.34 197 | 91.21 127 | 98.22 41 | 97.57 137 | 91.42 145 | 96.22 79 | 97.32 119 | 86.20 126 | 97.92 263 | 94.07 107 | 99.05 77 | 98.85 102 |
|
jason | | | 94.84 92 | 94.39 97 | 96.18 105 | 95.52 230 | 90.93 141 | 96.09 237 | 96.52 241 | 89.28 209 | 96.01 88 | 97.32 119 | 84.70 143 | 98.77 164 | 95.15 84 | 98.91 85 | 98.85 102 |
jason: jason. |
lupinMVS | | | 94.99 87 | 94.56 88 | 96.29 98 | 96.34 197 | 91.21 127 | 95.83 249 | 96.27 252 | 88.93 222 | 96.22 79 | 96.88 145 | 86.20 126 | 98.85 156 | 95.27 81 | 99.05 77 | 98.82 105 |
|
test_djsdf | | | 93.07 153 | 92.76 142 | 94.00 215 | 93.49 321 | 88.70 212 | 98.22 41 | 97.57 137 | 91.42 145 | 90.08 226 | 95.55 222 | 82.85 178 | 97.92 263 | 94.07 107 | 91.58 228 | 95.40 263 |
|
HPM-MVS_fast | | | 96.51 47 | 96.27 52 | 97.22 55 | 99.32 22 | 92.74 75 | 98.74 9 | 98.06 74 | 90.57 180 | 96.77 53 | 98.35 41 | 90.21 72 | 99.53 81 | 94.80 94 | 99.63 14 | 99.38 52 |
|
K. test v3 | | | 87.64 298 | 86.75 299 | 90.32 323 | 93.02 332 | 79.48 350 | 96.61 200 | 92.08 355 | 90.66 173 | 80.25 351 | 94.09 288 | 67.21 338 | 96.65 332 | 85.96 269 | 80.83 341 | 94.83 295 |
|
lessismore_v0 | | | | | 90.45 321 | 91.96 347 | 79.09 354 | | 87.19 373 | | 80.32 350 | 94.39 270 | 66.31 345 | 97.55 295 | 84.00 293 | 76.84 354 | 94.70 307 |
|
SixPastTwentyTwo | | | 89.15 281 | 88.54 281 | 90.98 312 | 93.49 321 | 80.28 343 | 96.70 188 | 94.70 320 | 90.78 164 | 84.15 328 | 95.57 220 | 71.78 311 | 97.71 282 | 84.63 285 | 85.07 306 | 94.94 286 |
|
OurMVSNet-221017-0 | | | 90.51 258 | 90.19 243 | 91.44 305 | 93.41 324 | 81.25 330 | 96.98 165 | 96.28 251 | 91.68 138 | 86.55 307 | 96.30 181 | 74.20 298 | 97.98 248 | 88.96 212 | 87.40 282 | 95.09 279 |
|
HPM-MVS |  | | 96.69 42 | 96.45 48 | 97.40 47 | 99.36 18 | 93.11 68 | 98.87 6 | 98.06 74 | 91.17 156 | 96.40 73 | 97.99 74 | 90.99 62 | 99.58 67 | 95.61 72 | 99.61 16 | 99.49 38 |
Chunlin Ren, Qingshan Xu, Shikun Zhang, Jiaqi Yang: Hierarchical Prior Mining for Non-local Multi-View Stereo. ICCV 2023 |
XVG-OURS | | | 93.72 127 | 93.35 124 | 94.80 179 | 97.07 148 | 88.61 213 | 94.79 283 | 97.46 152 | 91.97 133 | 93.99 133 | 97.86 85 | 81.74 202 | 98.88 155 | 92.64 138 | 92.67 212 | 96.92 202 |
|
XVG-ACMP-BASELINE | | | 90.93 245 | 90.21 242 | 93.09 259 | 94.31 297 | 85.89 278 | 95.33 269 | 97.26 179 | 91.06 160 | 89.38 247 | 95.44 227 | 68.61 330 | 98.60 182 | 89.46 197 | 91.05 241 | 94.79 302 |
|
casdiffmvs_mvg |  | | 95.81 64 | 95.57 61 | 96.51 77 | 96.87 161 | 91.49 114 | 97.50 115 | 97.56 140 | 93.99 57 | 95.13 112 | 97.92 79 | 87.89 99 | 98.78 161 | 95.97 55 | 97.33 133 | 99.26 61 |
Fangjinhua Wang, Qingshan Xu, Yew-Soon Ong, Marc Pollefeys: Lightweight and Accurate Multi-View Stereo With Confidence-Aware Diffusion Model. IEEE T-PAMI 2025 |
LPG-MVS_test | | | 92.94 160 | 92.56 153 | 94.10 209 | 96.16 206 | 88.26 225 | 97.65 96 | 97.46 152 | 91.29 148 | 90.12 222 | 97.16 129 | 79.05 246 | 98.73 168 | 92.25 141 | 91.89 224 | 95.31 269 |
|
LGP-MVS_train | | | | | 94.10 209 | 96.16 206 | 88.26 225 | | 97.46 152 | 91.29 148 | 90.12 222 | 97.16 129 | 79.05 246 | 98.73 168 | 92.25 141 | 91.89 224 | 95.31 269 |
|
baseline | | | 95.58 69 | 95.42 67 | 96.08 107 | 96.78 168 | 90.41 159 | 97.16 153 | 97.45 157 | 93.69 68 | 95.65 101 | 97.85 86 | 87.29 111 | 98.68 174 | 95.66 65 | 97.25 137 | 99.13 71 |
|
test11 | | | | | | | | | 97.88 101 | | | | | | | | |
|
door | | | | | | | | | 91.13 361 | | | | | | | | |
|
EPNet_dtu | | | 91.71 204 | 91.28 198 | 92.99 262 | 93.76 312 | 83.71 311 | 96.69 190 | 95.28 296 | 93.15 92 | 87.02 301 | 95.95 197 | 83.37 164 | 97.38 311 | 79.46 329 | 96.84 144 | 97.88 162 |
Wanjuan Su, Wenbing Tao: Efficient Edge-Preserving Multi-View Stereo Network for Depth Estimation. AAAI 2023 |
CHOSEN 1792x2688 | | | 94.15 106 | 93.51 116 | 96.06 109 | 98.27 83 | 89.38 190 | 95.18 278 | 98.48 16 | 85.60 298 | 93.76 139 | 97.11 132 | 83.15 168 | 99.61 60 | 91.33 164 | 98.72 90 | 99.19 65 |
|
EPNet | | | 95.20 80 | 94.56 88 | 97.14 58 | 92.80 335 | 92.68 77 | 97.85 74 | 94.87 319 | 96.64 2 | 92.46 164 | 97.80 91 | 86.23 123 | 99.65 52 | 93.72 117 | 98.62 93 | 99.10 76 |
Wanjuan Su, Wenbing Tao: Efficient Edge-Preserving Multi-View Stereo Network for Depth Estimation. AAAI 2023 |
HQP5-MVS | | | | | | | 89.33 193 | | | | | | | | | | |
|
HQP-NCC | | | | | | 95.86 216 | | 96.65 194 | | 93.55 70 | 90.14 216 | | | | | | |
|
ACMP_Plane | | | | | | 95.86 216 | | 96.65 194 | | 93.55 70 | 90.14 216 | | | | | | |
|
APD-MVS |  | | 96.95 27 | 96.60 39 | 98.01 18 | 99.03 41 | 94.93 25 | 97.72 88 | 98.10 64 | 91.50 141 | 98.01 23 | 98.32 49 | 92.33 36 | 99.58 67 | 94.85 90 | 99.51 31 | 99.53 33 |
Yuesong Wang, Zhaojie Zeng and etc.: Adaptive Patch Deformation for Textureless-Resilient Multi-View Stereo. CVPR2023 |
BP-MVS | | | | | | | | | | | | | | | 92.13 145 | | |
|
HQP4-MVS | | | | | | | | | | | 90.14 216 | | | 98.50 190 | | | 95.78 240 |
|
HQP3-MVS | | | | | | | | | 97.39 167 | | | | | | | 92.10 221 | |
|
HQP2-MVS | | | | | | | | | | | | | 80.95 210 | | | | |
|
CNVR-MVS | | | 97.68 6 | 97.44 10 | 98.37 7 | 98.90 50 | 95.86 6 | 97.27 141 | 98.08 66 | 95.81 7 | 97.87 28 | 98.31 50 | 94.26 13 | 99.68 48 | 97.02 23 | 99.49 36 | 99.57 23 |
|
NCCC | | | 97.30 15 | 97.03 19 | 98.11 16 | 98.77 53 | 95.06 24 | 97.34 134 | 98.04 81 | 95.96 5 | 97.09 45 | 97.88 82 | 93.18 23 | 99.71 40 | 95.84 61 | 99.17 69 | 99.56 26 |
|
114514_t | | | 93.95 116 | 93.06 131 | 96.63 68 | 99.07 37 | 91.61 108 | 97.46 123 | 97.96 94 | 77.99 358 | 93.00 156 | 97.57 109 | 86.14 128 | 99.33 105 | 89.22 205 | 99.15 71 | 98.94 91 |
|
CP-MVS | | | 97.02 24 | 96.81 30 | 97.64 42 | 99.33 21 | 93.54 56 | 98.80 8 | 98.28 29 | 92.99 97 | 96.45 72 | 98.30 52 | 91.90 43 | 99.85 17 | 95.61 72 | 99.68 4 | 99.54 30 |
|
DSMNet-mixed | | | 86.34 307 | 86.12 303 | 87.00 342 | 89.88 358 | 70.43 367 | 94.93 281 | 90.08 366 | 77.97 359 | 85.42 317 | 92.78 318 | 74.44 296 | 93.96 361 | 74.43 350 | 95.14 176 | 96.62 209 |
|
tpm2 | | | 89.96 270 | 89.21 272 | 92.23 285 | 94.91 270 | 81.25 330 | 93.78 317 | 94.42 327 | 80.62 348 | 91.56 187 | 93.44 311 | 76.44 280 | 97.94 259 | 85.60 273 | 92.08 223 | 97.49 182 |
|
NP-MVS | | | | | | 95.99 215 | 89.81 173 | | | | | 95.87 200 | | | | | |
|
EG-PatchMatch MVS | | | 87.02 302 | 85.44 306 | 91.76 299 | 92.67 337 | 85.00 294 | 96.08 238 | 96.45 245 | 83.41 330 | 79.52 353 | 93.49 309 | 57.10 363 | 97.72 281 | 79.34 331 | 90.87 247 | 92.56 344 |
|
tpm cat1 | | | 88.36 291 | 87.21 294 | 91.81 295 | 95.13 258 | 80.55 338 | 92.58 342 | 95.70 274 | 74.97 363 | 87.45 290 | 91.96 333 | 78.01 268 | 98.17 219 | 80.39 322 | 88.74 269 | 96.72 208 |
|
SteuartSystems-ACMMP | | | 97.62 7 | 97.53 8 | 97.87 23 | 98.39 77 | 94.25 37 | 98.43 24 | 98.27 32 | 95.34 13 | 98.11 20 | 98.56 21 | 94.53 12 | 99.71 40 | 96.57 35 | 99.62 15 | 99.65 13 |
Skip Steuart: Steuart Systems R&D Blog. |
CostFormer | | | 91.18 235 | 90.70 220 | 92.62 276 | 94.84 274 | 81.76 327 | 94.09 307 | 94.43 326 | 84.15 319 | 92.72 163 | 93.77 299 | 79.43 239 | 98.20 215 | 90.70 175 | 92.18 219 | 97.90 160 |
|
CR-MVSNet | | | 90.82 248 | 89.77 259 | 93.95 220 | 94.45 291 | 87.19 252 | 90.23 358 | 95.68 278 | 86.89 278 | 92.40 165 | 92.36 328 | 80.91 212 | 97.05 321 | 81.09 319 | 93.95 196 | 97.60 178 |
|
JIA-IIPM | | | 88.26 293 | 87.04 297 | 91.91 290 | 93.52 319 | 81.42 329 | 89.38 363 | 94.38 328 | 80.84 345 | 90.93 205 | 80.74 370 | 79.22 243 | 97.92 263 | 82.76 304 | 91.62 227 | 96.38 216 |
|
Patchmtry | | | 88.64 289 | 87.25 292 | 92.78 271 | 94.09 302 | 86.64 264 | 89.82 361 | 95.68 278 | 80.81 346 | 87.63 289 | 92.36 328 | 80.91 212 | 97.03 322 | 78.86 332 | 85.12 305 | 94.67 308 |
|
PatchT | | | 88.87 286 | 87.42 290 | 93.22 255 | 94.08 303 | 85.10 293 | 89.51 362 | 94.64 323 | 81.92 338 | 92.36 168 | 88.15 359 | 80.05 229 | 97.01 324 | 72.43 357 | 93.65 199 | 97.54 181 |
|
tpmrst | | | 91.44 218 | 91.32 195 | 91.79 296 | 95.15 256 | 79.20 352 | 93.42 328 | 95.37 291 | 88.55 237 | 93.49 145 | 93.67 304 | 82.49 187 | 98.27 210 | 90.41 177 | 89.34 263 | 97.90 160 |
|
BH-w/o | | | 92.14 194 | 91.75 179 | 93.31 251 | 96.99 158 | 85.73 280 | 95.67 255 | 95.69 276 | 88.73 232 | 89.26 253 | 94.82 251 | 82.97 175 | 98.07 237 | 85.26 278 | 96.32 157 | 96.13 225 |
|
tpm | | | 90.25 263 | 89.74 262 | 91.76 299 | 93.92 306 | 79.73 348 | 93.98 308 | 93.54 342 | 88.28 242 | 91.99 178 | 93.25 314 | 77.51 272 | 97.44 306 | 87.30 245 | 87.94 275 | 98.12 150 |
|
DELS-MVS | | | 96.61 45 | 96.38 50 | 97.30 50 | 97.79 116 | 93.19 66 | 95.96 244 | 98.18 49 | 95.23 15 | 95.87 91 | 97.65 101 | 91.45 51 | 99.70 45 | 95.87 57 | 99.44 44 | 99.00 86 |
Christian Sormann, Emanuele Santellani, Mattia Rossi, Andreas Kuhn, Friedrich Fraundorfer: DELS-MVS: Deep Epipolar Line Search for Multi-View Stereo. Winter Conference on Applications of Computer Vision (WACV), 2023 |
BH-untuned | | | 92.94 160 | 92.62 151 | 93.92 225 | 97.22 138 | 86.16 277 | 96.40 216 | 96.25 254 | 90.06 189 | 89.79 234 | 96.17 188 | 83.19 166 | 98.35 204 | 87.19 247 | 97.27 136 | 97.24 193 |
|
RPMNet | | | 88.98 282 | 87.05 296 | 94.77 181 | 94.45 291 | 87.19 252 | 90.23 358 | 98.03 83 | 77.87 360 | 92.40 165 | 87.55 363 | 80.17 227 | 99.51 86 | 68.84 366 | 93.95 196 | 97.60 178 |
|
MVSTER | | | 93.20 144 | 92.81 141 | 94.37 197 | 96.56 183 | 89.59 179 | 97.06 157 | 97.12 187 | 91.24 152 | 91.30 196 | 95.96 196 | 82.02 196 | 98.05 240 | 93.48 120 | 90.55 250 | 95.47 257 |
|
CPTT-MVS | | | 95.57 70 | 95.19 73 | 96.70 65 | 99.27 26 | 91.48 115 | 98.33 28 | 98.11 62 | 87.79 257 | 95.17 111 | 98.03 70 | 87.09 114 | 99.61 60 | 93.51 119 | 99.42 45 | 99.02 80 |
|
GBi-Net | | | 91.35 224 | 90.27 236 | 94.59 185 | 96.51 187 | 91.18 131 | 97.50 115 | 96.93 208 | 88.82 227 | 89.35 248 | 94.51 263 | 73.87 299 | 97.29 315 | 86.12 264 | 88.82 266 | 95.31 269 |
|
PVSNet_Blended_VisFu | | | 95.27 76 | 94.91 79 | 96.38 90 | 98.20 91 | 90.86 143 | 97.27 141 | 98.25 37 | 90.21 185 | 94.18 129 | 97.27 123 | 87.48 108 | 99.73 36 | 93.53 118 | 97.77 120 | 98.55 118 |
|
PVSNet_BlendedMVS | | | 94.06 112 | 93.92 102 | 94.47 192 | 98.27 83 | 89.46 187 | 96.73 184 | 98.36 18 | 90.17 186 | 94.36 124 | 95.24 234 | 88.02 96 | 99.58 67 | 93.44 121 | 90.72 248 | 94.36 317 |
|
UnsupCasMVSNet_eth | | | 85.99 312 | 84.45 316 | 90.62 319 | 89.97 357 | 82.40 322 | 93.62 324 | 97.37 170 | 89.86 192 | 78.59 357 | 92.37 325 | 65.25 350 | 95.35 353 | 82.27 309 | 70.75 366 | 94.10 323 |
|
UnsupCasMVSNet_bld | | | 82.13 329 | 79.46 334 | 90.14 325 | 88.00 367 | 82.47 320 | 90.89 355 | 96.62 238 | 78.94 355 | 75.61 361 | 84.40 368 | 56.63 364 | 96.31 335 | 77.30 340 | 66.77 372 | 91.63 353 |
|
PVSNet_Blended | | | 94.87 91 | 94.56 88 | 95.81 120 | 98.27 83 | 89.46 187 | 95.47 264 | 98.36 18 | 88.84 225 | 94.36 124 | 96.09 194 | 88.02 96 | 99.58 67 | 93.44 121 | 98.18 109 | 98.40 137 |
|
FMVSNet5 | | | 87.29 300 | 85.79 304 | 91.78 297 | 94.80 276 | 87.28 247 | 95.49 263 | 95.28 296 | 84.09 320 | 83.85 334 | 91.82 334 | 62.95 355 | 94.17 360 | 78.48 333 | 85.34 301 | 93.91 327 |
|
test1 | | | 91.35 224 | 90.27 236 | 94.59 185 | 96.51 187 | 91.18 131 | 97.50 115 | 96.93 208 | 88.82 227 | 89.35 248 | 94.51 263 | 73.87 299 | 97.29 315 | 86.12 264 | 88.82 266 | 95.31 269 |
|
new_pmnet | | | 82.89 327 | 81.12 332 | 88.18 337 | 89.63 359 | 80.18 344 | 91.77 347 | 92.57 350 | 76.79 362 | 75.56 363 | 88.23 358 | 61.22 358 | 94.48 357 | 71.43 360 | 82.92 333 | 89.87 364 |
|
FMVSNet3 | | | 91.78 202 | 90.69 221 | 95.03 161 | 96.53 186 | 92.27 89 | 97.02 160 | 96.93 208 | 89.79 197 | 89.35 248 | 94.65 259 | 77.01 274 | 97.47 303 | 86.12 264 | 88.82 266 | 95.35 267 |
|
dp | | | 88.90 285 | 88.26 285 | 90.81 315 | 94.58 288 | 76.62 358 | 92.85 339 | 94.93 313 | 85.12 307 | 90.07 227 | 93.07 315 | 75.81 285 | 98.12 227 | 80.53 321 | 87.42 281 | 97.71 170 |
|
FMVSNet2 | | | 91.31 227 | 90.08 245 | 94.99 163 | 96.51 187 | 92.21 90 | 97.41 124 | 96.95 206 | 88.82 227 | 88.62 266 | 94.75 254 | 73.87 299 | 97.42 308 | 85.20 279 | 88.55 271 | 95.35 267 |
|
FMVSNet1 | | | 89.88 273 | 88.31 283 | 94.59 185 | 95.41 235 | 91.18 131 | 97.50 115 | 96.93 208 | 86.62 282 | 87.41 292 | 94.51 263 | 65.94 348 | 97.29 315 | 83.04 300 | 87.43 280 | 95.31 269 |
|
N_pmnet | | | 78.73 334 | 78.71 335 | 78.79 352 | 92.80 335 | 46.50 386 | 94.14 305 | 43.71 389 | 78.61 356 | 80.83 345 | 91.66 337 | 74.94 293 | 96.36 334 | 67.24 367 | 84.45 317 | 93.50 331 |
|
cascas | | | 91.20 232 | 90.08 245 | 94.58 189 | 94.97 263 | 89.16 203 | 93.65 323 | 97.59 135 | 79.90 351 | 89.40 246 | 92.92 317 | 75.36 290 | 98.36 203 | 92.14 144 | 94.75 185 | 96.23 217 |
|
BH-RMVSNet | | | 92.72 171 | 91.97 173 | 94.97 166 | 97.16 142 | 87.99 235 | 96.15 235 | 95.60 281 | 90.62 176 | 91.87 180 | 97.15 131 | 78.41 259 | 98.57 186 | 83.16 298 | 97.60 123 | 98.36 141 |
|
UGNet | | | 94.04 114 | 93.28 126 | 96.31 94 | 96.85 162 | 91.19 130 | 97.88 70 | 97.68 124 | 94.40 47 | 93.00 156 | 96.18 186 | 73.39 305 | 99.61 60 | 91.72 155 | 98.46 100 | 98.13 149 |
Wanjuan Su, Qingshan Xu, Wenbing Tao: Uncertainty-guided Multi-view Stereo Network for Depth Estimation. IEEE Transactions on Circuits and Systems for Video Technology, 2022 |
WTY-MVS | | | 94.71 96 | 94.02 100 | 96.79 64 | 97.71 120 | 92.05 95 | 96.59 203 | 97.35 173 | 90.61 177 | 94.64 119 | 96.93 140 | 86.41 122 | 99.39 101 | 91.20 168 | 94.71 187 | 98.94 91 |
|
XXY-MVS | | | 92.16 192 | 91.23 201 | 94.95 168 | 94.75 279 | 90.94 140 | 97.47 121 | 97.43 164 | 89.14 213 | 88.90 258 | 96.43 175 | 79.71 235 | 98.24 211 | 89.56 195 | 87.68 277 | 95.67 251 |
|
EC-MVSNet | | | 96.42 49 | 96.47 45 | 96.26 100 | 97.01 156 | 91.52 113 | 98.89 5 | 97.75 114 | 94.42 46 | 96.64 61 | 97.68 97 | 89.32 80 | 98.60 182 | 97.45 16 | 99.11 75 | 98.67 115 |
|
sss | | | 94.51 97 | 93.80 104 | 96.64 66 | 97.07 148 | 91.97 98 | 96.32 223 | 98.06 74 | 88.94 221 | 94.50 122 | 96.78 147 | 84.60 144 | 99.27 112 | 91.90 149 | 96.02 159 | 98.68 114 |
|
Test_1112_low_res | | | 92.84 166 | 91.84 177 | 95.85 119 | 97.04 154 | 89.97 169 | 95.53 262 | 96.64 233 | 85.38 301 | 89.65 239 | 95.18 235 | 85.86 130 | 99.10 129 | 87.70 232 | 93.58 203 | 98.49 126 |
|
1112_ss | | | 93.37 138 | 92.42 161 | 96.21 104 | 97.05 153 | 90.99 137 | 96.31 224 | 96.72 225 | 86.87 279 | 89.83 233 | 96.69 154 | 86.51 120 | 99.14 125 | 88.12 222 | 93.67 198 | 98.50 124 |
|
ab-mvs-re | | | 8.06 354 | 10.74 357 | 0.00 369 | 0.00 392 | 0.00 393 | 0.00 380 | 0.00 393 | 0.00 387 | 0.00 388 | 96.69 154 | 0.00 392 | 0.00 388 | 0.00 386 | 0.00 386 | 0.00 384 |
|
ab-mvs | | | 93.57 132 | 92.55 154 | 96.64 66 | 97.28 137 | 91.96 99 | 95.40 266 | 97.45 157 | 89.81 196 | 93.22 154 | 96.28 182 | 79.62 237 | 99.46 93 | 90.74 174 | 93.11 204 | 98.50 124 |
|
TR-MVS | | | 91.48 217 | 90.59 224 | 94.16 207 | 96.40 194 | 87.33 246 | 95.67 255 | 95.34 295 | 87.68 262 | 91.46 190 | 95.52 224 | 76.77 276 | 98.35 204 | 82.85 302 | 93.61 201 | 96.79 206 |
|
MDTV_nov1_ep13_2view | | | | | | | 70.35 368 | 93.10 335 | | 83.88 323 | 93.55 142 | | 82.47 188 | | 86.25 260 | | 98.38 139 |
|
MDTV_nov1_ep13 | | | | 90.76 217 | | 95.22 253 | 80.33 341 | 93.03 336 | 95.28 296 | 88.14 247 | 92.84 162 | 93.83 295 | 81.34 206 | 98.08 233 | 82.86 301 | 94.34 190 | |
|
MIMVSNet1 | | | 84.93 319 | 83.05 321 | 90.56 320 | 89.56 360 | 84.84 298 | 95.40 266 | 95.35 292 | 83.91 321 | 80.38 349 | 92.21 332 | 57.23 362 | 93.34 365 | 70.69 364 | 82.75 335 | 93.50 331 |
|
MIMVSNet | | | 88.50 290 | 86.76 298 | 93.72 234 | 94.84 274 | 87.77 242 | 91.39 348 | 94.05 335 | 86.41 286 | 87.99 283 | 92.59 322 | 63.27 353 | 95.82 343 | 77.44 337 | 92.84 207 | 97.57 180 |
|
IterMVS-LS | | | 92.29 186 | 91.94 174 | 93.34 250 | 96.25 200 | 86.97 258 | 96.57 206 | 97.05 197 | 90.67 171 | 89.50 245 | 94.80 252 | 86.59 117 | 97.64 287 | 89.91 185 | 86.11 292 | 95.40 263 |
Fangjinhua Wang, Silvano Galliani, Christoph Vogel, Marc Pollefeys: IterMVS: Iterative Probability Estimation for Efficient Multi-View Stereo. |
CDS-MVSNet | | | 94.14 109 | 93.54 112 | 95.93 115 | 96.18 204 | 91.46 117 | 96.33 222 | 97.04 199 | 88.97 220 | 93.56 141 | 96.51 171 | 87.55 105 | 97.89 267 | 89.80 188 | 95.95 161 | 98.44 134 |
Khang Truong Giang, Soohwan Song, Sungho Jo: Curvature-guided dynamic scale networks for Multi-view Stereo. ICLR 2022 |
ACMMP++_ref | | | | | | | | | | | | | | | | 90.30 254 | |
|
IterMVS | | | 90.15 268 | 89.67 263 | 91.61 301 | 95.48 232 | 83.72 310 | 94.33 299 | 96.12 260 | 89.99 190 | 87.31 296 | 94.15 287 | 75.78 288 | 96.27 336 | 86.97 252 | 86.89 287 | 94.83 295 |
Fangjinhua Wang, Silvano Galliani, Christoph Vogel, Marc Pollefeys: IterMVS: Iterative Probability Estimation for Efficient Multi-View Stereo. |
DP-MVS Recon | | | 95.68 66 | 95.12 76 | 97.37 48 | 99.19 31 | 94.19 39 | 97.03 158 | 98.08 66 | 88.35 241 | 95.09 113 | 97.65 101 | 89.97 75 | 99.48 91 | 92.08 148 | 98.59 94 | 98.44 134 |
|
MVS_111021_LR | | | 96.24 55 | 96.19 54 | 96.39 89 | 98.23 90 | 91.35 121 | 96.24 231 | 98.79 5 | 93.99 57 | 95.80 94 | 97.65 101 | 89.92 76 | 99.24 114 | 95.87 57 | 99.20 67 | 98.58 117 |
|
DP-MVS | | | 92.76 169 | 91.51 191 | 96.52 74 | 98.77 53 | 90.99 137 | 97.38 131 | 96.08 261 | 82.38 335 | 89.29 251 | 97.87 83 | 83.77 156 | 99.69 46 | 81.37 317 | 96.69 150 | 98.89 99 |
|
ACMMP++ | | | | | | | | | | | | | | | | 91.02 242 | |
|
HQP-MVS | | | 93.19 145 | 92.74 145 | 94.54 191 | 95.86 216 | 89.33 193 | 96.65 194 | 97.39 167 | 93.55 70 | 90.14 216 | 95.87 200 | 80.95 210 | 98.50 190 | 92.13 145 | 92.10 221 | 95.78 240 |
|
QAPM | | | 93.45 136 | 92.27 164 | 96.98 63 | 96.77 170 | 92.62 78 | 98.39 26 | 98.12 59 | 84.50 316 | 88.27 276 | 97.77 92 | 82.39 190 | 99.81 28 | 85.40 276 | 98.81 87 | 98.51 123 |
|
Vis-MVSNet |  | | 95.23 78 | 94.81 80 | 96.51 77 | 97.18 141 | 91.58 111 | 98.26 35 | 98.12 59 | 94.38 49 | 94.90 114 | 98.15 62 | 82.28 191 | 98.92 151 | 91.45 163 | 98.58 95 | 99.01 83 |
Jingyang Zhang, Yao Yao, Shiwei Li, Zixin Luo, Tian Fang: Visibility-aware Multiview Stereo Network. BMVC 2020 |
MVS-HIRNet | | | 82.47 328 | 81.21 331 | 86.26 344 | 95.38 237 | 69.21 370 | 88.96 365 | 89.49 367 | 66.28 369 | 80.79 346 | 74.08 374 | 68.48 331 | 97.39 310 | 71.93 359 | 95.47 171 | 92.18 350 |
|
IS-MVSNet | | | 94.90 89 | 94.52 92 | 96.05 110 | 97.67 121 | 90.56 153 | 98.44 23 | 96.22 255 | 93.21 86 | 93.99 133 | 97.74 94 | 85.55 134 | 98.45 194 | 89.98 183 | 97.86 116 | 99.14 70 |
|
HyFIR lowres test | | | 93.66 128 | 92.92 135 | 95.87 117 | 98.24 86 | 89.88 171 | 94.58 288 | 98.49 14 | 85.06 308 | 93.78 138 | 95.78 209 | 82.86 177 | 98.67 175 | 91.77 154 | 95.71 168 | 99.07 79 |
|
EPMVS | | | 90.70 253 | 89.81 257 | 93.37 249 | 94.73 281 | 84.21 303 | 93.67 322 | 88.02 370 | 89.50 203 | 92.38 167 | 93.49 309 | 77.82 270 | 97.78 276 | 86.03 267 | 92.68 211 | 98.11 153 |
|
PAPM_NR | | | 95.01 83 | 94.59 86 | 96.26 100 | 98.89 51 | 90.68 151 | 97.24 143 | 97.73 117 | 91.80 135 | 92.93 161 | 96.62 167 | 89.13 83 | 99.14 125 | 89.21 206 | 97.78 119 | 98.97 87 |
|
TAMVS | | | 94.01 115 | 93.46 118 | 95.64 130 | 96.16 206 | 90.45 157 | 96.71 187 | 96.89 215 | 89.27 210 | 93.46 146 | 96.92 143 | 87.29 111 | 97.94 259 | 88.70 217 | 95.74 166 | 98.53 120 |
|
PAPR | | | 94.18 103 | 93.42 123 | 96.48 80 | 97.64 125 | 91.42 119 | 95.55 260 | 97.71 123 | 88.99 218 | 92.34 170 | 95.82 204 | 89.19 81 | 99.11 128 | 86.14 263 | 97.38 130 | 98.90 96 |
|
RPSCF | | | 90.75 250 | 90.86 211 | 90.42 322 | 96.84 163 | 76.29 360 | 95.61 259 | 96.34 249 | 83.89 322 | 91.38 191 | 97.87 83 | 76.45 279 | 98.78 161 | 87.16 249 | 92.23 216 | 96.20 219 |
|
Vis-MVSNet (Re-imp) | | | 94.15 106 | 93.88 103 | 94.95 168 | 97.61 127 | 87.92 237 | 98.10 49 | 95.80 271 | 92.22 121 | 93.02 155 | 97.45 114 | 84.53 146 | 97.91 266 | 88.24 221 | 97.97 114 | 99.02 80 |
|
test_0402 | | | 86.46 305 | 84.79 314 | 91.45 304 | 95.02 262 | 85.55 282 | 96.29 226 | 94.89 315 | 80.90 343 | 82.21 341 | 93.97 293 | 68.21 333 | 97.29 315 | 62.98 370 | 88.68 270 | 91.51 355 |
|
MVS_111021_HR | | | 96.68 44 | 96.58 41 | 96.99 62 | 98.46 70 | 92.31 87 | 96.20 233 | 98.90 3 | 94.30 51 | 95.86 92 | 97.74 94 | 92.33 36 | 99.38 103 | 96.04 53 | 99.42 45 | 99.28 59 |
|
CSCG | | | 96.05 57 | 95.91 57 | 96.46 83 | 99.24 28 | 90.47 156 | 98.30 30 | 98.57 13 | 89.01 217 | 93.97 135 | 97.57 109 | 92.62 31 | 99.76 33 | 94.66 97 | 99.27 59 | 99.15 69 |
|
PatchMatch-RL | | | 92.90 162 | 92.02 171 | 95.56 135 | 98.19 93 | 90.80 146 | 95.27 274 | 97.18 182 | 87.96 250 | 91.86 181 | 95.68 215 | 80.44 221 | 98.99 146 | 84.01 292 | 97.54 124 | 96.89 203 |
|
API-MVS | | | 94.84 92 | 94.49 93 | 95.90 116 | 97.90 111 | 92.00 97 | 97.80 79 | 97.48 147 | 89.19 212 | 94.81 116 | 96.71 150 | 88.84 87 | 99.17 121 | 88.91 213 | 98.76 89 | 96.53 210 |
|
Test By Simon | | | | | | | | | | | | | 88.73 89 | | | | |
|
TDRefinement | | | 86.53 304 | 84.76 315 | 91.85 292 | 82.23 375 | 84.25 302 | 96.38 218 | 95.35 292 | 84.97 310 | 84.09 330 | 94.94 243 | 65.76 349 | 98.34 207 | 84.60 286 | 74.52 359 | 92.97 337 |
|
USDC | | | 88.94 283 | 87.83 288 | 92.27 283 | 94.66 283 | 84.96 295 | 93.86 315 | 95.90 266 | 87.34 270 | 83.40 335 | 95.56 221 | 67.43 336 | 98.19 217 | 82.64 307 | 89.67 260 | 93.66 329 |
|
EPP-MVSNet | | | 95.22 79 | 95.04 77 | 95.76 121 | 97.49 134 | 89.56 180 | 98.67 10 | 97.00 203 | 90.69 169 | 94.24 127 | 97.62 106 | 89.79 77 | 98.81 159 | 93.39 124 | 96.49 154 | 98.92 94 |
|
PMMVS | | | 92.86 164 | 92.34 162 | 94.42 195 | 94.92 268 | 86.73 263 | 94.53 290 | 96.38 248 | 84.78 313 | 94.27 126 | 95.12 239 | 83.13 169 | 98.40 197 | 91.47 162 | 96.49 154 | 98.12 150 |
|
PAPM | | | 91.52 215 | 90.30 234 | 95.20 151 | 95.30 248 | 89.83 172 | 93.38 329 | 96.85 219 | 86.26 289 | 88.59 267 | 95.80 205 | 84.88 141 | 98.15 220 | 75.67 347 | 95.93 162 | 97.63 173 |
|
ACMMP |  | | 96.27 54 | 95.93 56 | 97.28 52 | 99.24 28 | 92.62 78 | 98.25 36 | 98.81 4 | 92.99 97 | 94.56 121 | 98.39 38 | 88.96 85 | 99.85 17 | 94.57 102 | 97.63 122 | 99.36 54 |
Qingshan Xu, Weihang Kong, Wenbing Tao, Marc Pollefeys: Multi-Scale Geometric Consistency Guided and Planar Prior Assisted Multi-View Stereo. IEEE Transactions on Pattern Analysis and Machine Intelligence |
CNLPA | | | 94.28 101 | 93.53 113 | 96.52 74 | 98.38 78 | 92.55 80 | 96.59 203 | 96.88 216 | 90.13 188 | 91.91 179 | 97.24 125 | 85.21 137 | 99.09 132 | 87.64 237 | 97.83 117 | 97.92 159 |
|
PatchmatchNet |  | | 91.91 199 | 91.35 193 | 93.59 240 | 95.38 237 | 84.11 305 | 93.15 333 | 95.39 289 | 89.54 201 | 92.10 176 | 93.68 303 | 82.82 179 | 98.13 222 | 84.81 282 | 95.32 174 | 98.52 121 |
Fangjinhua Wang, Silvano Galliani, Christoph Vogel, Pablo Speciale, Marc Pollefeys: PatchmatchNet: Learned Multi-View Patchmatch Stereo. |
PHI-MVS | | | 96.77 38 | 96.46 47 | 97.71 38 | 98.40 75 | 94.07 45 | 98.21 43 | 98.45 17 | 89.86 192 | 97.11 44 | 98.01 73 | 92.52 33 | 99.69 46 | 96.03 54 | 99.53 27 | 99.36 54 |
|
F-COLMAP | | | 93.58 131 | 92.98 133 | 95.37 147 | 98.40 75 | 88.98 206 | 97.18 151 | 97.29 178 | 87.75 260 | 90.49 209 | 97.10 133 | 85.21 137 | 99.50 89 | 86.70 254 | 96.72 149 | 97.63 173 |
|
ANet_high | | | 63.94 344 | 59.58 347 | 77.02 354 | 61.24 387 | 66.06 375 | 85.66 371 | 87.93 371 | 78.53 357 | 42.94 379 | 71.04 376 | 25.42 382 | 80.71 379 | 52.60 377 | 30.83 380 | 84.28 368 |
|
wuyk23d | | | 25.11 350 | 24.57 354 | 26.74 366 | 73.98 382 | 39.89 389 | 57.88 379 | 9.80 390 | 12.27 383 | 10.39 384 | 6.97 386 | 7.03 388 | 36.44 385 | 25.43 383 | 17.39 383 | 3.89 383 |
|
OMC-MVS | | | 95.09 82 | 94.70 84 | 96.25 103 | 98.46 70 | 91.28 123 | 96.43 210 | 97.57 137 | 92.04 130 | 94.77 117 | 97.96 77 | 87.01 115 | 99.09 132 | 91.31 165 | 96.77 146 | 98.36 141 |
|
MG-MVS | | | 95.61 68 | 95.38 68 | 96.31 94 | 98.42 73 | 90.53 154 | 96.04 239 | 97.48 147 | 93.47 77 | 95.67 100 | 98.10 63 | 89.17 82 | 99.25 113 | 91.27 166 | 98.77 88 | 99.13 71 |
|
AdaColmap |  | | 94.34 100 | 93.68 107 | 96.31 94 | 98.59 66 | 91.68 106 | 96.59 203 | 97.81 112 | 89.87 191 | 92.15 173 | 97.06 135 | 83.62 160 | 99.54 79 | 89.34 200 | 98.07 112 | 97.70 171 |
|
uanet | | | 0.00 356 | 0.00 359 | 0.00 369 | 0.00 392 | 0.00 393 | 0.00 380 | 0.00 393 | 0.00 387 | 0.00 388 | 0.00 387 | 0.00 392 | 0.00 388 | 0.00 386 | 0.00 386 | 0.00 384 |
|
ITE_SJBPF | | | | | 92.43 278 | 95.34 242 | 85.37 288 | | 95.92 264 | 91.47 142 | 87.75 287 | 96.39 178 | 71.00 316 | 97.96 256 | 82.36 308 | 89.86 258 | 93.97 326 |
|
DeepMVS_CX |  | | | | 74.68 359 | 90.84 353 | 64.34 378 | | 81.61 382 | 65.34 370 | 67.47 368 | 88.01 361 | 48.60 369 | 80.13 380 | 62.33 371 | 73.68 362 | 79.58 371 |
|
TinyColmap | | | 86.82 303 | 85.35 309 | 91.21 309 | 94.91 270 | 82.99 316 | 93.94 311 | 94.02 337 | 83.58 327 | 81.56 343 | 94.68 257 | 62.34 357 | 98.13 222 | 75.78 345 | 87.35 283 | 92.52 345 |
|
MAR-MVS | | | 94.22 102 | 93.46 118 | 96.51 77 | 98.00 104 | 92.19 92 | 97.67 93 | 97.47 150 | 88.13 248 | 93.00 156 | 95.84 202 | 84.86 142 | 99.51 86 | 87.99 224 | 98.17 110 | 97.83 166 |
Zhenyu Xu, Yiguang Liu, Xuelei Shi, Ying Wang, Yunan Zheng: MARMVS: Matching Ambiguity Reduced Multiple View Stereo for Efficient Large Scale Scene Reconstruction. CVPR 2020 |
LF4IMVS | | | 87.94 295 | 87.25 292 | 89.98 326 | 92.38 344 | 80.05 346 | 94.38 296 | 95.25 299 | 87.59 264 | 84.34 324 | 94.74 255 | 64.31 351 | 97.66 286 | 84.83 281 | 87.45 279 | 92.23 348 |
|
MSDG | | | 91.42 219 | 90.24 238 | 94.96 167 | 97.15 144 | 88.91 207 | 93.69 321 | 96.32 250 | 85.72 297 | 86.93 303 | 96.47 173 | 80.24 225 | 98.98 147 | 80.57 320 | 95.05 180 | 96.98 198 |
|
LS3D | | | 93.57 132 | 92.61 152 | 96.47 81 | 97.59 130 | 91.61 108 | 97.67 93 | 97.72 119 | 85.17 306 | 90.29 214 | 98.34 44 | 84.60 144 | 99.73 36 | 83.85 296 | 98.27 105 | 98.06 156 |
|
CLD-MVS | | | 92.98 157 | 92.53 156 | 94.32 200 | 96.12 210 | 89.20 200 | 95.28 272 | 97.47 150 | 92.66 112 | 89.90 230 | 95.62 218 | 80.58 218 | 98.40 197 | 92.73 137 | 92.40 214 | 95.38 265 |
Zhaoxin Li, Wangmeng Zuo, Zhaoqi Wang, Lei Zhang: Confidence-based Large-scale Dense Multi-view Stereo. IEEE Transaction on Image Processing, 2020 |
FPMVS | | | 71.27 337 | 69.85 339 | 75.50 357 | 74.64 380 | 59.03 381 | 91.30 349 | 91.50 359 | 58.80 372 | 57.92 376 | 88.28 357 | 29.98 379 | 85.53 377 | 53.43 376 | 82.84 334 | 81.95 370 |
|
Gipuma |  | | 67.86 342 | 65.41 344 | 75.18 358 | 92.66 338 | 73.45 365 | 66.50 377 | 94.52 325 | 53.33 376 | 57.80 377 | 66.07 377 | 30.81 377 | 89.20 373 | 48.15 378 | 78.88 351 | 62.90 377 |
S. Galliani, K. Lasinger, K. Schindler: Massively Parallel Multiview Stereopsis by Surface Normal Diffusion. ICCV 2015 |