This table lists the benchmark results for the high-res multi-view scenario. The following metrics are evaluated:

(*) For exact definitions, detailing how potentially incomplete ground truth is taken into account, see our paper.

The datasets are grouped into different categories, and result averages are computed for a category and method if results of the method are available for all datasets within the category. Note that the category "all" includes both the high-res multi-view and the low-res many-view scenarios.

Methods with suffix _ROB may participate in the Robust Vision Challenge.

Click a dataset result cell to show a visualization of the reconstruction. For training datasets, ground truth and accuracy / completeness visualizations are also available. The visualizations may not work with mobile browsers.




Method Infoallhigh-res
multi-view
indooroutdoorbotani.boulde.bridgedoorexhibi.lectur.living.loungeobserv.old co.statueterrac.
sorted bysort bysort bysort bysort bysort bysort bysort bysort bysort bysort bysort bysort bysort bysort bysort by
DeepPCF-MVS93.97 196.61 5297.09 1895.15 16998.09 10186.63 28296.00 25598.15 6295.43 1497.95 3398.56 3193.40 2199.36 11496.77 3899.48 4099.45 47
DeepC-MVS_fast93.89 296.93 3496.64 4697.78 3198.64 6494.30 3797.41 13398.04 8994.81 3996.59 7698.37 4991.24 5999.64 6695.16 9799.52 3199.42 53
Andreas Kuhn, Christian Sormann, Mattia Rossi, Oliver Erdler, Friedrich Fraundorfer: DeepC-MVS: Deep Confidence Prediction for Multi-View Stereo Reconstruction. 3DV 2020
DeepC-MVS93.07 396.06 6795.66 7397.29 5597.96 10993.17 7097.30 14998.06 8293.92 7193.38 16398.66 2786.83 13299.73 4295.60 9099.22 7198.96 94
Andreas Kuhn, Christian Sormann, Mattia Rossi, Oliver Erdler, Friedrich Fraundorfer: DeepC-MVS: Deep Confidence Prediction for Multi-View Stereo Reconstruction. 3DV 2020
3Dnovator+91.43 495.40 8794.48 10998.16 1696.90 17195.34 1698.48 2197.87 11194.65 4988.53 28998.02 8283.69 17499.71 4693.18 14098.96 9299.44 49
3Dnovator91.36 595.19 9694.44 11197.44 4996.56 19593.36 6598.65 1198.36 2494.12 6589.25 27498.06 7782.20 21099.77 3793.41 13799.32 6299.18 72
PLCcopyleft91.00 694.11 12693.43 13896.13 11998.58 6891.15 14496.69 20397.39 18287.29 29391.37 21196.71 16488.39 10499.52 9587.33 26097.13 15597.73 189
Jie Liao, Yanping Fu, Qingan Yan, Chunxia xiao: Pyramid Multi-View Stereo with Local Consistency. Pacific Graphics 2019
TAPA-MVS90.10 792.30 19891.22 21595.56 15198.33 8089.60 19196.79 19297.65 13981.83 36391.52 20797.23 13787.94 11198.91 16971.31 38498.37 11598.17 164
Andrea Romanoni, Matteo Matteucci: TAPA-MVS: Textureless-Aware PAtchMatch Multi-View Stereo. ICCV 2019
ACMM89.79 892.96 17292.50 17294.35 21496.30 21588.71 22497.58 11697.36 18791.40 16190.53 23096.65 17079.77 25098.75 18591.24 18091.64 25395.59 271
Qingshan Xu and Wenbing Tao: Multi-Scale Geometric Consistency Guided Multi-View Stereo. CVPR 2019
HY-MVS89.66 993.87 13792.95 15096.63 7697.10 15692.49 8795.64 27696.64 24889.05 23593.00 17195.79 22185.77 14899.45 10589.16 22594.35 20697.96 176
ACMP89.59 1092.62 18692.14 18194.05 23096.40 21088.20 24297.36 14197.25 19691.52 15488.30 29496.64 17178.46 27498.72 19091.86 16591.48 25795.23 296
Qingshan Xu and Wenbing Tao: Planar Prior Assisted PatchMatch Multi-View Stereo. AAAI 2020
PCF-MVS89.48 1191.56 22889.95 26796.36 10296.60 19092.52 8692.51 36897.26 19479.41 37888.90 27896.56 18084.04 17199.55 8777.01 36297.30 14997.01 218
Andreas Kuhn, Shan Lin, Oliver Erdler: Plane Completion and Filtering for Multi-View Stereo Reconstruction. GCPR 2019
OpenMVScopyleft89.19 1292.86 17891.68 19696.40 9795.34 26292.73 8098.27 3398.12 6784.86 33385.78 33597.75 10378.89 26999.74 4187.50 25798.65 10296.73 229
LTVRE_ROB88.41 1390.99 25789.92 26994.19 22396.18 22089.55 19496.31 23797.09 20687.88 27485.67 33695.91 21278.79 27098.57 20581.50 33089.98 27994.44 337
Andreas Kuhn, Heiko Hirschmüller, Daniel Scharstein, Helmut Mayer: A TV Prior for High-Quality Scalable Multi-View Stereo Reconstruction. International Journal of Computer Vision 2016
ACMH+87.92 1490.20 28489.18 29193.25 27196.48 20586.45 28696.99 17796.68 24588.83 24584.79 34596.22 19670.16 33998.53 20784.42 30488.04 29794.77 327
COLMAP_ROBcopyleft87.81 1590.40 27789.28 28993.79 24897.95 11087.13 27096.92 18295.89 28382.83 35586.88 32897.18 14073.77 31999.29 12178.44 35393.62 22694.95 306
Johannes L. Schönberger, Enliang Zheng, Marc Pollefeys, Jan-Michael Frahm: Pixelwise View Selection for Unstructured Multi-View Stereo. ECCV 2016
ACMH87.59 1690.53 27389.42 28693.87 24496.21 21787.92 25097.24 15596.94 22288.45 25983.91 35696.27 19471.92 32698.62 20084.43 30389.43 28595.05 304
Qingshan Xu and Wenbing Tao: Multi-Scale Geometric Consistency Guided Multi-View Stereo. CVPR 2019
IB-MVS87.33 1789.91 28988.28 30494.79 19495.26 27287.70 25795.12 30093.95 35689.35 22687.03 32192.49 34370.74 33599.19 12889.18 22481.37 36297.49 202
Christian Sormann, Mattia Rossi, Andreas Kuhn and Friedrich Fraundorfer: IB-MVS: An Iterative Algorithm for Deep Multi-View Stereo based on Binary Decisions. BMVC 2021
PVSNet86.66 1892.24 20291.74 19593.73 25097.77 12183.69 33092.88 36396.72 24087.91 27393.00 17194.86 26178.51 27399.05 15686.53 27197.45 14398.47 140
PVSNet_082.17 1985.46 34083.64 34390.92 33295.27 26979.49 37190.55 38195.60 29783.76 34783.00 36289.95 37171.09 33297.97 27082.75 32360.79 40195.31 289
OpenMVS_ROBcopyleft81.14 2084.42 34582.28 35190.83 33390.06 37984.05 32595.73 27094.04 35373.89 39180.17 37591.53 36159.15 38297.64 30666.92 39189.05 28890.80 384
CMPMVSbinary62.92 2185.62 33984.92 33687.74 36089.14 38573.12 39094.17 32996.80 23773.98 39073.65 38994.93 25766.36 36497.61 31083.95 31091.28 26192.48 369
M. Jancosek, T. Pajdla: Multi-View Reconstruction Preserving Weakly-Supported Surfaces. CVPR 2011
PMVScopyleft53.92 2258.58 37255.40 37568.12 38751.00 41548.64 41278.86 40187.10 39946.77 40435.84 41074.28 4008.76 41486.34 40142.07 40473.91 38469.38 401
Y. Furukawa, J. Ponce: Accurate, dense, and robust multiview stereopsis. PAMI (2010)
MVEpermissive50.73 2353.25 37448.81 37966.58 38965.34 41357.50 40872.49 40370.94 41240.15 40739.28 40963.51 4056.89 41673.48 40938.29 40542.38 40568.76 403
Simon Fuhrmann, Fabian Langguth, Michael Goesele: MVE - A Multi-View Reconstruction Environment. EUROGRAPHICS Workshops on Graphics and Cultural Heritage (2014)
dongtai69.99 36469.33 36671.98 38588.78 38861.64 40589.86 38659.93 41575.67 38874.96 38785.45 39150.19 39481.66 40443.86 40355.27 40272.63 400
kuosan65.27 37064.66 37267.11 38883.80 39761.32 40688.53 39260.77 41468.22 39567.67 39380.52 39749.12 39570.76 41029.67 40953.64 40469.26 402
MVSMamba_pp96.06 6795.92 6796.50 8997.00 16791.81 11097.33 14697.77 12492.49 12696.78 6497.19 13988.50 10399.07 15196.54 4699.67 698.60 126
MGCFI-Net95.94 7695.40 8297.56 4697.59 13694.62 3098.21 4397.57 15094.41 5796.17 9596.16 20087.54 12099.17 13296.19 6494.73 20398.91 101
testing9191.90 21391.02 22094.53 20796.54 19886.55 28595.86 26295.64 29691.77 14891.89 19893.47 32869.94 34298.86 17290.23 19793.86 22298.18 161
testing1191.68 22190.75 23294.47 20896.53 20086.56 28495.76 26994.51 34291.10 17491.24 22293.59 32368.59 35098.86 17291.10 18294.29 20898.00 175
testing9991.62 22390.72 23594.32 21796.48 20586.11 29595.81 26594.76 33591.55 15391.75 20393.44 32968.55 35198.82 17690.43 19193.69 22398.04 174
UWE-MVS89.91 28989.48 28591.21 32795.88 23378.23 37994.91 30490.26 38889.11 23292.35 18594.52 27768.76 34897.96 27483.95 31095.59 18597.42 205
ETVMVS90.52 27489.14 29394.67 19996.81 17987.85 25495.91 26093.97 35589.71 21592.34 18692.48 34465.41 37197.96 27481.37 33594.27 20998.21 159
sasdasda96.02 7095.45 7897.75 3597.59 13695.15 2398.28 3197.60 14594.52 5296.27 9196.12 20287.65 11699.18 13096.20 6294.82 19898.91 101
testing22290.31 27888.96 29594.35 21496.54 19887.29 26195.50 28193.84 35990.97 17791.75 20392.96 33662.18 38098.00 26582.86 31894.08 21597.76 188
WB-MVSnew89.88 29289.56 28290.82 33494.57 31183.06 33495.65 27592.85 36887.86 27590.83 22794.10 30379.66 25396.88 34776.34 36394.19 21092.54 367
fmvsm_l_conf0.5_n_a97.63 897.76 597.26 5998.25 8692.59 8497.81 8998.68 1394.93 3099.24 398.87 1593.52 2099.79 3399.32 399.21 7299.40 54
fmvsm_l_conf0.5_n97.65 797.75 697.34 5298.21 9292.75 7897.83 8598.73 995.04 2899.30 198.84 2093.34 2299.78 3599.32 399.13 8099.50 40
fmvsm_s_conf0.1_n_a96.40 5896.47 5396.16 11895.48 25190.69 16297.91 7698.33 2994.07 6698.93 999.14 187.44 12499.61 6998.63 1398.32 11798.18 161
fmvsm_s_conf0.1_n96.58 5496.77 4096.01 12896.67 18790.25 17497.91 7698.38 2394.48 5498.84 1699.14 188.06 10899.62 6898.82 1198.60 10598.15 165
fmvsm_s_conf0.5_n_a96.75 4696.93 2996.20 11697.64 12990.72 16198.00 6198.73 994.55 5098.91 1399.08 388.22 10699.63 6798.91 998.37 11598.25 156
fmvsm_s_conf0.5_n96.85 3997.13 1696.04 12498.07 10590.28 17397.97 6998.76 894.93 3098.84 1699.06 488.80 9399.65 5899.06 798.63 10398.18 161
MM97.29 1996.98 2698.23 1198.01 10795.03 2698.07 5495.76 28797.78 197.52 4098.80 2288.09 10799.86 899.44 199.37 5999.80 1
WAC-MVS79.53 36975.56 368
Syy-MVS87.13 32387.02 31887.47 36195.16 27673.21 38995.00 30193.93 35788.55 25686.96 32391.99 35475.90 29994.00 38261.59 39594.11 21295.20 297
test_fmvsmconf0.1_n97.09 2497.06 1997.19 6495.67 24392.21 9697.95 7298.27 3995.78 1098.40 2599.00 689.99 7899.78 3599.06 799.41 5299.59 22
test_fmvsmconf0.01_n96.15 6695.85 7097.03 6992.66 36091.83 10997.97 6997.84 12095.57 1297.53 3999.00 684.20 16899.76 3898.82 1199.08 8499.48 44
myMVS_eth3d87.18 32286.38 32289.58 35195.16 27679.53 36995.00 30193.93 35788.55 25686.96 32391.99 35456.23 38894.00 38275.47 36994.11 21295.20 297
testing387.67 31886.88 31990.05 34696.14 22580.71 35497.10 16992.85 36890.15 20487.54 31094.55 27655.70 38994.10 38173.77 37694.10 21495.35 286
SSC-MVS76.05 35975.83 36276.72 38184.77 39656.22 41094.32 32488.96 39381.82 36470.52 39188.91 37874.79 31088.71 39833.69 40764.71 39785.23 392
test_fmvsmconf_n97.49 1297.56 997.29 5597.44 14492.37 9097.91 7698.88 495.83 898.92 1299.05 591.45 5399.80 3099.12 699.46 4299.69 12
WB-MVS76.77 35876.63 36177.18 37785.32 39556.82 40994.53 31389.39 39182.66 35771.35 39089.18 37775.03 30888.88 39735.42 40666.79 39585.84 391
test_fmvsmvis_n_192096.70 4796.84 3396.31 10496.62 18891.73 11197.98 6398.30 3296.19 596.10 9898.95 889.42 8399.76 3898.90 1099.08 8497.43 204
dmvs_re90.21 28389.50 28492.35 29795.47 25485.15 30995.70 27194.37 34690.94 17888.42 29093.57 32474.63 31195.67 36682.80 32189.57 28496.22 240
SDMVSNet94.17 12093.61 12695.86 13398.09 10191.37 13097.35 14298.20 5293.18 10191.79 20197.28 13279.13 26098.93 16694.61 11592.84 23397.28 212
dmvs_testset81.38 35382.60 34977.73 37691.74 37151.49 41193.03 36184.21 40489.07 23378.28 38191.25 36376.97 29188.53 39956.57 39982.24 35993.16 357
sd_testset93.10 16592.45 17495.05 17498.09 10189.21 21296.89 18497.64 14193.18 10191.79 20197.28 13275.35 30698.65 19688.99 22792.84 23397.28 212
test_fmvsm_n_192097.55 1197.89 396.53 8198.41 7491.73 11198.01 5999.02 196.37 499.30 198.92 1092.39 3799.79 3399.16 599.46 4298.08 172
test_cas_vis1_n_192094.48 11394.55 10694.28 22196.78 18086.45 28697.63 11297.64 14193.32 9597.68 3898.36 5073.75 32099.08 14796.73 3999.05 8697.31 211
test_vis1_n_192094.17 12094.58 10292.91 28397.42 14582.02 34497.83 8597.85 11694.68 4698.10 2998.49 3870.15 34099.32 11797.91 1598.82 9697.40 206
test_vis1_n92.37 19492.26 17992.72 29094.75 30182.64 33698.02 5896.80 23791.18 16997.77 3797.93 8858.02 38498.29 22897.63 1998.21 12197.23 215
test_fmvs1_n92.73 18492.88 15392.29 30096.08 23081.05 35297.98 6397.08 20790.72 18496.79 6398.18 7063.07 37698.45 21397.62 2098.42 11497.36 207
mvsany_test193.93 13593.98 11793.78 24994.94 29086.80 27594.62 30992.55 37388.77 25096.85 6198.49 3888.98 8998.08 25195.03 10195.62 18496.46 237
APD_test179.31 35677.70 35984.14 36989.11 38669.07 39592.36 37191.50 38169.07 39473.87 38892.63 34139.93 40094.32 37970.54 38880.25 36689.02 389
test_vis1_rt86.16 33385.06 33489.46 35293.47 34580.46 35996.41 22586.61 40085.22 32679.15 37888.64 37952.41 39297.06 33993.08 14390.57 27390.87 383
test_vis3_rt72.73 36070.55 36379.27 37480.02 40368.13 39793.92 33874.30 41176.90 38658.99 40273.58 40220.29 41195.37 37284.16 30572.80 38774.31 399
test_fmvs289.77 29689.93 26889.31 35493.68 33776.37 38297.64 11095.90 28189.84 21291.49 20896.26 19558.77 38397.10 33894.65 11391.13 26494.46 335
test_fmvs193.21 15993.53 13092.25 30296.55 19781.20 35197.40 13796.96 22090.68 18696.80 6298.04 7969.25 34598.40 21697.58 2198.50 10897.16 216
test_fmvs383.21 34883.02 34583.78 37086.77 39468.34 39696.76 19594.91 32986.49 30684.14 35289.48 37536.04 40291.73 39291.86 16580.77 36591.26 382
mvsany_test383.59 34682.44 35087.03 36483.80 39773.82 38793.70 34490.92 38686.42 30782.51 36390.26 36846.76 39795.71 36490.82 18676.76 37891.57 377
testf169.31 36566.76 36876.94 37978.61 40461.93 40388.27 39386.11 40155.62 40059.69 40085.31 39220.19 41289.32 39457.62 39669.44 39279.58 396
APD_test269.31 36566.76 36876.94 37978.61 40461.93 40388.27 39386.11 40155.62 40059.69 40085.31 39220.19 41289.32 39457.62 39669.44 39279.58 396
test_f80.57 35479.62 35683.41 37183.38 40067.80 39893.57 35193.72 36080.80 37277.91 38287.63 38733.40 40392.08 39187.14 26679.04 37390.34 386
FE-MVS92.05 20991.05 21995.08 17396.83 17687.93 24993.91 33995.70 29086.30 30994.15 14594.97 25476.59 29399.21 12684.10 30696.86 15798.09 171
FA-MVS(test-final)93.52 15092.92 15195.31 16496.77 18288.54 23094.82 30596.21 27289.61 21794.20 14395.25 24683.24 18299.14 13790.01 19896.16 17298.25 156
iter_conf05_1196.17 6596.16 6496.21 11497.48 14390.74 16098.14 4997.80 12292.80 11997.34 4897.29 13188.54 10099.10 14196.40 5099.64 1498.80 115
bld_raw_dy_0_6494.33 11693.90 11995.62 14897.64 12990.95 14995.17 29897.47 16482.34 35991.28 21996.84 16089.10 8899.04 15996.27 5299.00 9096.85 225
patch_mono-296.83 4197.44 1395.01 17799.05 3985.39 30596.98 17898.77 794.70 4597.99 3298.66 2793.61 1999.91 197.67 1899.50 3699.72 11
EGC-MVSNET68.77 36763.01 37386.07 36892.49 36382.24 34393.96 33590.96 3850.71 4132.62 41490.89 36453.66 39093.46 38657.25 39884.55 33882.51 394
test250691.60 22490.78 23094.04 23197.66 12783.81 32698.27 3375.53 40993.43 9095.23 12498.21 6767.21 35999.07 15193.01 14898.49 10999.25 68
test111193.19 16192.82 15594.30 22097.58 14084.56 31898.21 4389.02 39293.53 8694.58 13598.21 6772.69 32399.05 15693.06 14498.48 11199.28 65
ECVR-MVScopyleft93.19 16192.73 16194.57 20597.66 12785.41 30398.21 4388.23 39493.43 9094.70 13398.21 6772.57 32499.07 15193.05 14598.49 10999.25 68
test_blank0.00 3830.00 3860.00 3960.00 4190.00 4210.00 4070.00 4200.00 4140.00 4150.00 4140.00 4190.00 4150.00 4140.00 4130.00 411
tt080591.09 25290.07 26494.16 22595.61 24488.31 23697.56 11896.51 25789.56 21889.17 27595.64 23067.08 36398.38 22191.07 18388.44 29595.80 259
DVP-MVS++98.06 197.99 198.28 998.67 5895.39 1199.29 198.28 3694.78 4198.93 998.87 1596.04 299.86 897.45 2699.58 2499.59 22
FOURS199.55 193.34 6699.29 198.35 2794.98 2998.49 23
MSC_two_6792asdad98.86 198.67 5896.94 197.93 10599.86 897.68 1699.67 699.77 2
PC_three_145290.77 18198.89 1498.28 6596.24 198.35 22395.76 7999.58 2499.59 22
No_MVS98.86 198.67 5896.94 197.93 10599.86 897.68 1699.67 699.77 2
test_one_060199.32 2295.20 2098.25 4595.13 2398.48 2498.87 1595.16 7
eth-test20.00 419
eth-test0.00 419
GeoE93.89 13693.28 14395.72 14296.96 17089.75 18898.24 3996.92 22789.47 22292.12 19397.21 13884.42 16398.39 22087.71 24796.50 16799.01 89
test_method66.11 36964.89 37169.79 38672.62 41035.23 41865.19 40592.83 37020.35 40865.20 39788.08 38543.14 39982.70 40373.12 37963.46 39891.45 381
Anonymous2024052186.42 32985.44 32989.34 35390.33 37779.79 36796.73 19795.92 27983.71 34883.25 35991.36 36263.92 37496.01 35778.39 35485.36 32392.22 372
h-mvs3394.15 12293.52 13296.04 12497.81 11990.22 17597.62 11497.58 14995.19 2096.74 6697.45 12483.67 17599.61 6995.85 7579.73 36898.29 155
hse-mvs293.45 15292.99 14894.81 19097.02 16588.59 22796.69 20396.47 25995.19 2096.74 6696.16 20083.67 17598.48 21295.85 7579.13 37297.35 209
CL-MVSNet_self_test86.31 33185.15 33389.80 34988.83 38781.74 34793.93 33796.22 27086.67 30385.03 34290.80 36578.09 28194.50 37674.92 37071.86 38893.15 358
KD-MVS_2432*160084.81 34382.64 34791.31 32591.07 37485.34 30791.22 37595.75 28885.56 32183.09 36090.21 36967.21 35995.89 35977.18 36062.48 39992.69 363
KD-MVS_self_test85.95 33684.95 33588.96 35589.55 38479.11 37595.13 29996.42 26185.91 31684.07 35490.48 36670.03 34194.82 37580.04 34272.94 38692.94 360
AUN-MVS91.76 21790.75 23294.81 19097.00 16788.57 22896.65 20796.49 25889.63 21692.15 19196.12 20278.66 27198.50 20990.83 18579.18 37197.36 207
ZD-MVS99.05 3994.59 3198.08 7489.22 22997.03 5898.10 7392.52 3599.65 5894.58 11699.31 63
SR-MVS-dyc-post96.88 3696.80 3897.11 6799.02 4292.34 9197.98 6398.03 9193.52 8797.43 4598.51 3691.40 5699.56 8596.05 6799.26 6799.43 51
RE-MVS-def96.72 4399.02 4292.34 9197.98 6398.03 9193.52 8797.43 4598.51 3690.71 7096.05 6799.26 6799.43 51
SED-MVS98.05 297.99 198.24 1099.42 795.30 1798.25 3698.27 3995.13 2399.19 498.89 1395.54 599.85 1897.52 2299.66 1199.56 29
IU-MVS99.42 795.39 1197.94 10490.40 20098.94 897.41 2999.66 1199.74 8
OPU-MVS98.55 398.82 5296.86 398.25 3698.26 6696.04 299.24 12495.36 9499.59 2099.56 29
test_241102_TWO98.27 3995.13 2398.93 998.89 1394.99 1199.85 1897.52 2299.65 1399.74 8
test_241102_ONE99.42 795.30 1798.27 3995.09 2699.19 498.81 2195.54 599.65 58
SF-MVS97.39 1597.13 1698.17 1599.02 4295.28 1998.23 4098.27 3992.37 12998.27 2798.65 2993.33 2399.72 4596.49 4899.52 3199.51 37
cl2291.21 24790.56 24293.14 27696.09 22986.80 27594.41 31996.58 25487.80 27888.58 28893.99 30880.85 23297.62 30989.87 20386.93 30794.99 305
miper_ehance_all_eth91.59 22591.13 21892.97 28195.55 24886.57 28394.47 31596.88 23187.77 28088.88 28094.01 30686.22 14097.54 31589.49 21286.93 30794.79 324
miper_enhance_ethall91.54 23091.01 22193.15 27595.35 26187.07 27193.97 33496.90 22886.79 30289.17 27593.43 33286.55 13597.64 30689.97 20086.93 30794.74 328
ZNCC-MVS96.96 3196.67 4597.85 2599.37 1694.12 4698.49 2098.18 5792.64 12496.39 8798.18 7091.61 5099.88 495.59 9199.55 2799.57 26
dcpmvs_296.37 6097.05 2294.31 21998.96 4684.11 32397.56 11897.51 15893.92 7197.43 4598.52 3592.75 2999.32 11797.32 3099.50 3699.51 37
cl____90.96 26090.32 24892.89 28495.37 25986.21 29294.46 31796.64 24887.82 27688.15 30094.18 30082.98 19197.54 31587.70 24885.59 31894.92 312
DIV-MVS_self_test90.97 25990.33 24792.88 28595.36 26086.19 29394.46 31796.63 25187.82 27688.18 29994.23 29782.99 19097.53 31787.72 24585.57 31994.93 310
eth_miper_zixun_eth91.02 25690.59 24092.34 29995.33 26584.35 31994.10 33196.90 22888.56 25588.84 28294.33 28984.08 17097.60 31188.77 23284.37 34195.06 303
9.1496.75 4198.93 4797.73 9698.23 5091.28 16597.88 3598.44 4493.00 2699.65 5895.76 7999.47 41
uanet_test0.00 3830.00 3860.00 3960.00 4190.00 4210.00 4070.00 4200.00 4140.00 4150.00 4140.00 4190.00 4150.00 4140.00 4130.00 411
DCPMVS0.00 3830.00 3860.00 3960.00 4190.00 4210.00 4070.00 4200.00 4140.00 4150.00 4140.00 4190.00 4150.00 4140.00 4130.00 411
save fliter98.91 4994.28 3897.02 17398.02 9495.35 16
ET-MVSNet_ETH3D91.49 23290.11 26095.63 14696.40 21091.57 12295.34 28793.48 36390.60 19575.58 38595.49 23880.08 24496.79 35094.25 11989.76 28298.52 132
UniMVSNet_ETH3D91.34 24290.22 25794.68 19894.86 29687.86 25397.23 15997.46 16787.99 27089.90 25096.92 15666.35 36598.23 23190.30 19590.99 26897.96 176
EIA-MVS95.53 8695.47 7795.71 14397.06 16089.63 18997.82 8797.87 11193.57 8193.92 15195.04 25390.61 7198.95 16494.62 11498.68 10198.54 130
miper_refine_blended84.81 34382.64 34791.31 32591.07 37485.34 30791.22 37595.75 28885.56 32183.09 36090.21 36967.21 35995.89 35977.18 36062.48 39992.69 363
miper_lstm_enhance90.50 27690.06 26591.83 31195.33 26583.74 32793.86 34096.70 24487.56 28787.79 30593.81 31483.45 18096.92 34687.39 25884.62 33694.82 319
ETV-MVS96.02 7095.89 6996.40 9797.16 15292.44 8897.47 13097.77 12494.55 5096.48 8294.51 27891.23 6198.92 16795.65 8498.19 12297.82 186
CS-MVS96.86 3797.06 1996.26 11098.16 9891.16 14399.09 397.87 11195.30 1897.06 5798.03 8091.72 4698.71 19197.10 3199.17 7698.90 104
D2MVS91.30 24490.95 22292.35 29794.71 30485.52 30196.18 24798.21 5188.89 24286.60 32993.82 31379.92 24897.95 27889.29 21890.95 26993.56 352
DVP-MVScopyleft97.91 397.81 498.22 1399.45 395.36 1398.21 4397.85 11694.92 3298.73 1898.87 1595.08 899.84 2397.52 2299.67 699.48 44
Zhenlong Yuan, Jinguo Luo, Fei Shen, Zhaoxin Li, Cong Liu, Tianlu Mao, Zhaoqi Wang: DVP-MVS: Synergize Depth-Edge and Visibility Prior for Multi-View Stereo. AAAI2025
test_0728_THIRD94.78 4198.73 1898.87 1595.87 499.84 2397.45 2699.72 299.77 2
test_0728_SECOND98.51 499.45 395.93 598.21 4398.28 3699.86 897.52 2299.67 699.75 6
test072699.45 395.36 1398.31 2898.29 3494.92 3298.99 798.92 1095.08 8
SR-MVS97.01 3096.86 3197.47 4899.09 3493.27 6897.98 6398.07 7993.75 7697.45 4298.48 4191.43 5599.59 7496.22 5799.27 6599.54 33
DPM-MVS95.69 8094.92 9398.01 1998.08 10495.71 995.27 29397.62 14490.43 19995.55 11897.07 14891.72 4699.50 9989.62 21098.94 9398.82 113
GST-MVS96.85 3996.52 5197.82 2799.36 1894.14 4598.29 3098.13 6592.72 12196.70 6898.06 7791.35 5799.86 894.83 10699.28 6499.47 46
test_yl94.78 10994.23 11396.43 9597.74 12291.22 13496.85 18797.10 20491.23 16795.71 11296.93 15384.30 16599.31 11993.10 14195.12 19298.75 116
thisisatest053093.03 16992.21 18095.49 15797.07 15789.11 21797.49 12992.19 37590.16 20394.09 14696.41 18776.43 29799.05 15690.38 19395.68 18398.31 154
Anonymous2024052991.98 21190.73 23495.73 14198.14 9989.40 20297.99 6297.72 13179.63 37793.54 15897.41 12769.94 34299.56 8591.04 18491.11 26598.22 158
Anonymous20240521192.07 20890.83 22995.76 13698.19 9588.75 22397.58 11695.00 32486.00 31593.64 15597.45 12466.24 36799.53 9190.68 19092.71 23699.01 89
DCV-MVSNet94.78 10994.23 11396.43 9597.74 12291.22 13496.85 18797.10 20491.23 16795.71 11296.93 15384.30 16599.31 11993.10 14195.12 19298.75 116
tttt051792.96 17292.33 17794.87 18797.11 15587.16 26997.97 6992.09 37690.63 19193.88 15297.01 15176.50 29499.06 15490.29 19695.45 18798.38 150
our_test_388.78 30787.98 30791.20 32992.45 36582.53 33893.61 35095.69 29285.77 31884.88 34393.71 31679.99 24696.78 35179.47 34786.24 31294.28 343
thisisatest051592.29 19991.30 21095.25 16696.60 19088.90 22194.36 32192.32 37487.92 27293.43 16294.57 27577.28 28999.00 16189.42 21495.86 17897.86 182
ppachtmachnet_test88.35 31287.29 31191.53 32092.45 36583.57 33193.75 34395.97 27884.28 33985.32 34194.18 30079.00 26896.93 34575.71 36684.99 33294.10 345
SMA-MVScopyleft97.35 1697.03 2498.30 899.06 3895.42 1097.94 7398.18 5790.57 19698.85 1598.94 993.33 2399.83 2696.72 4099.68 499.63 17
Yufeng Yin; Xiaoyan Liu; Zichao Zhang: SMA-MVS: Segmentation-Guided Multi-Scale Anchor Deformation Patch Multi-View Stereo. IEEE Transactions on Circuits and Systems for Video Technology
GSMVS98.45 142
DPE-MVScopyleft97.86 497.65 898.47 599.17 3295.78 797.21 16198.35 2795.16 2298.71 2098.80 2295.05 1099.89 396.70 4199.73 199.73 10
Kehua Chen, Zhenlong Yuan, Tianlu Mao, Zhaoqi Wang: Dual-Level Precision Edges Guided Multi-View Stereo with Accurate Planarization. AAAI2025
test_part299.28 2595.74 898.10 29
thres100view90092.43 19091.58 19994.98 18097.92 11389.37 20497.71 10194.66 33792.20 13593.31 16594.90 25978.06 28299.08 14781.40 33294.08 21596.48 235
tfpnnormal89.70 29788.40 30293.60 25795.15 27890.10 17697.56 11898.16 6187.28 29486.16 33394.63 27377.57 28798.05 25874.48 37184.59 33792.65 365
tfpn200view992.38 19391.52 20294.95 18397.85 11789.29 20897.41 13394.88 33192.19 13793.27 16794.46 28378.17 27899.08 14781.40 33294.08 21596.48 235
c3_l91.38 23790.89 22392.88 28595.58 24686.30 28994.68 30896.84 23588.17 26688.83 28394.23 29785.65 14997.47 32289.36 21584.63 33594.89 314
CHOSEN 280x42093.12 16492.72 16294.34 21696.71 18687.27 26390.29 38297.72 13186.61 30591.34 21295.29 24384.29 16798.41 21593.25 13998.94 9397.35 209
CANet96.39 5996.02 6597.50 4797.62 13293.38 6397.02 17397.96 10295.42 1594.86 13097.81 9987.38 12699.82 2896.88 3699.20 7499.29 63
Fast-Effi-MVS+-dtu92.29 19991.99 18693.21 27495.27 26985.52 30197.03 17196.63 25192.09 14089.11 27795.14 25080.33 24098.08 25187.54 25694.74 20296.03 251
Effi-MVS+-dtu93.08 16693.21 14592.68 29396.02 23183.25 33397.14 16796.72 24093.85 7491.20 22493.44 32983.08 18798.30 22791.69 17195.73 18196.50 234
CANet_DTU94.37 11493.65 12596.55 8096.46 20792.13 10096.21 24596.67 24794.38 6093.53 15997.03 15079.34 25799.71 4690.76 18798.45 11397.82 186
MVS_030497.04 2896.73 4297.96 2397.60 13594.36 3698.01 5994.09 35197.33 296.29 8998.79 2489.73 8299.86 899.36 299.42 4999.67 13
MP-MVS-pluss96.70 4796.27 6197.98 2199.23 3094.71 2996.96 18098.06 8290.67 18795.55 11898.78 2591.07 6399.86 896.58 4499.55 2799.38 58
MP-MVS-pluss: MP-MVS-pluss. MP-MVS-pluss
MSP-MVS97.59 1097.54 1097.73 3799.40 1193.77 5698.53 1598.29 3495.55 1398.56 2297.81 9993.90 1599.65 5896.62 4299.21 7299.77 2
Zhenlong Yuan, Cong Liu, Fei Shen, Zhaoxin Li, Jingguo luo, Tianlu Mao and Zhaoqi Wang: MSP-MVS: Multi-granularity Segmentation Prior Guided Multi-View Stereo. AAAI2025
sam_mvs182.76 19798.45 142
sam_mvs81.94 216
IterMVS-SCA-FT90.31 27889.81 27391.82 31295.52 24984.20 32294.30 32596.15 27490.61 19387.39 31494.27 29475.80 30196.44 35387.34 25986.88 31194.82 319
TSAR-MVS + MP.97.42 1397.33 1597.69 4199.25 2794.24 4198.07 5497.85 11693.72 7798.57 2198.35 5193.69 1899.40 11097.06 3299.46 4299.44 49
Zhenlong Yuan, Jiakai Cao, Zhaoqi Wang, Zhaoxin Li: TSAR-MVS: Textureless-aware Segmentation and Correlative Refinement Guided Multi-View Stereo. Pattern Recognition
xiu_mvs_v1_base_debu95.01 9894.76 9695.75 13896.58 19291.71 11396.25 24197.35 18892.99 10896.70 6896.63 17582.67 19899.44 10696.22 5797.46 13996.11 248
OPM-MVS93.28 15792.76 15794.82 18894.63 30790.77 15896.65 20797.18 19793.72 7791.68 20597.26 13579.33 25898.63 19892.13 15892.28 24195.07 302
Ray L. Khuboni, Hongjun Xu: Octagram Propagation Matching for Multi-Scale View Stereopsis (OPM-MVS).
ACMMP_NAP97.20 2096.86 3198.23 1199.09 3495.16 2297.60 11598.19 5592.82 11897.93 3498.74 2691.60 5199.86 896.26 5499.52 3199.67 13
ambc86.56 36683.60 39970.00 39385.69 39794.97 32680.60 37188.45 38037.42 40196.84 34982.69 32475.44 38192.86 361
MTGPAbinary98.08 74
CS-MVS-test96.89 3597.04 2396.45 9498.29 8291.66 11799.03 497.85 11695.84 796.90 6097.97 8691.24 5998.75 18596.92 3599.33 6198.94 97
Effi-MVS+94.93 10394.45 11096.36 10296.61 18991.47 12696.41 22597.41 18191.02 17694.50 13795.92 21187.53 12198.78 18093.89 12796.81 15998.84 112
xiu_mvs_v2_base95.32 9095.29 8695.40 16297.22 14890.50 16795.44 28497.44 17693.70 7996.46 8496.18 19788.59 9999.53 9194.79 11197.81 13296.17 243
xiu_mvs_v1_base95.01 9894.76 9695.75 13896.58 19291.71 11396.25 24197.35 18892.99 10896.70 6896.63 17582.67 19899.44 10696.22 5797.46 13996.11 248
new-patchmatchnet83.18 34981.87 35287.11 36386.88 39375.99 38493.70 34495.18 31785.02 33177.30 38388.40 38165.99 36893.88 38574.19 37570.18 39091.47 380
pmmvs687.81 31786.19 32492.69 29291.32 37286.30 28997.34 14396.41 26280.59 37484.05 35594.37 28767.37 35897.67 30384.75 29979.51 37094.09 347
pmmvs589.86 29488.87 29792.82 28792.86 35586.23 29196.26 24095.39 30484.24 34087.12 31894.51 27874.27 31497.36 33187.61 25587.57 30194.86 315
test_post192.81 36516.58 41280.53 23597.68 30286.20 277
test_post17.58 41181.76 21898.08 251
Fast-Effi-MVS+93.46 15192.75 15995.59 15096.77 18290.03 17796.81 19197.13 20188.19 26591.30 21594.27 29486.21 14198.63 19887.66 25296.46 17098.12 167
patchmatchnet-post90.45 36782.65 20198.10 246
Anonymous2023121190.63 27189.42 28694.27 22298.24 8789.19 21598.05 5697.89 10779.95 37588.25 29794.96 25572.56 32598.13 24189.70 20785.14 32795.49 273
pmmvs-eth3d86.22 33284.45 33991.53 32088.34 39087.25 26494.47 31595.01 32383.47 35179.51 37789.61 37469.75 34495.71 36483.13 31676.73 37991.64 375
GG-mvs-BLEND93.62 25693.69 33689.20 21392.39 37083.33 40587.98 30489.84 37371.00 33396.87 34882.08 32895.40 18894.80 322
xiu_mvs_v1_base_debi95.01 9894.76 9695.75 13896.58 19291.71 11396.25 24197.35 18892.99 10896.70 6896.63 17582.67 19899.44 10696.22 5797.46 13996.11 248
Anonymous2023120687.09 32486.14 32589.93 34891.22 37380.35 36096.11 24995.35 30783.57 35084.16 35093.02 33573.54 32195.61 36772.16 38186.14 31493.84 350
MTAPA97.08 2596.78 3997.97 2299.37 1694.42 3597.24 15598.08 7495.07 2796.11 9798.59 3090.88 6899.90 296.18 6599.50 3699.58 25
MTMP97.86 8082.03 406
gm-plane-assit93.22 35078.89 37784.82 33493.52 32598.64 19787.72 245
test9_res94.81 10899.38 5699.45 47
MVP-Stereo90.74 26790.08 26192.71 29193.19 35188.20 24295.86 26296.27 26786.07 31484.86 34494.76 26677.84 28597.75 29883.88 31298.01 12792.17 374
Qingsong Yan: MVP-Stereo: A Parallel Multi-View Patchmatch Stereo Method with Dilation Matching for Photogrammetric Application.
TEST998.70 5694.19 4296.41 22598.02 9488.17 26696.03 10097.56 12192.74 3099.59 74
train_agg96.30 6295.83 7297.72 3898.70 5694.19 4296.41 22598.02 9488.58 25396.03 10097.56 12192.73 3199.59 7495.04 10099.37 5999.39 56
gg-mvs-nofinetune87.82 31685.61 32894.44 21094.46 31389.27 21191.21 37784.61 40380.88 36989.89 25274.98 39971.50 32997.53 31785.75 28897.21 15296.51 233
SCA91.84 21591.18 21793.83 24595.59 24584.95 31494.72 30795.58 29990.82 17992.25 18993.69 31775.80 30198.10 24686.20 27795.98 17498.45 142
Patchmatch-test89.42 29987.99 30693.70 25395.27 26985.11 31088.98 39094.37 34681.11 36787.10 32093.69 31782.28 20897.50 32074.37 37394.76 20098.48 139
test_898.67 5894.06 4996.37 23298.01 9788.58 25395.98 10497.55 12392.73 3199.58 77
MS-PatchMatch90.27 28089.77 27591.78 31594.33 31884.72 31795.55 27896.73 23986.17 31386.36 33195.28 24571.28 33197.80 29384.09 30798.14 12592.81 362
Patchmatch-RL test87.38 32086.24 32390.81 33588.74 38978.40 37888.12 39593.17 36587.11 29782.17 36589.29 37681.95 21595.60 36888.64 23477.02 37698.41 147
cdsmvs_eth3d_5k23.24 37830.99 3800.00 3960.00 4190.00 4210.00 40797.63 1430.00 4140.00 41596.88 15884.38 1640.00 4150.00 4140.00 4130.00 411
pcd_1.5k_mvsjas7.39 3829.85 3850.00 3960.00 4190.00 4210.00 4070.00 4200.00 4140.00 4150.00 41488.65 960.00 4150.00 4140.00 4130.00 411
agg_prior293.94 12599.38 5699.50 40
agg_prior98.67 5893.79 5498.00 9895.68 11499.57 84
tmp_tt51.94 37653.82 37646.29 39233.73 41645.30 41678.32 40267.24 41318.02 40950.93 40587.05 39052.99 39153.11 41170.76 38625.29 40940.46 407
canonicalmvs96.02 7095.45 7897.75 3597.59 13695.15 2398.28 3197.60 14594.52 5296.27 9196.12 20287.65 11699.18 13096.20 6294.82 19898.91 101
anonymousdsp92.16 20591.55 20093.97 23792.58 36289.55 19497.51 12397.42 18089.42 22488.40 29194.84 26280.66 23397.88 28791.87 16491.28 26194.48 334
alignmvs95.87 7895.23 8797.78 3197.56 14195.19 2197.86 8097.17 19994.39 5996.47 8396.40 18885.89 14599.20 12796.21 6195.11 19498.95 96
nrg03094.05 12993.31 14296.27 10995.22 27394.59 3198.34 2697.46 16792.93 11591.21 22396.64 17187.23 12998.22 23294.99 10385.80 31795.98 252
v14419291.06 25490.28 25193.39 26693.66 33887.23 26696.83 19097.07 20987.43 28989.69 25794.28 29381.48 22298.00 26587.18 26484.92 33394.93 310
FIs94.09 12793.70 12395.27 16595.70 24192.03 10398.10 5198.68 1393.36 9490.39 23396.70 16687.63 11897.94 27992.25 15490.50 27695.84 256
v192192090.85 26390.03 26693.29 27093.55 33986.96 27496.74 19697.04 21487.36 29189.52 26494.34 28880.23 24297.97 27086.27 27585.21 32694.94 308
UA-Net95.95 7595.53 7597.20 6397.67 12592.98 7497.65 10698.13 6594.81 3996.61 7498.35 5188.87 9199.51 9690.36 19497.35 14699.11 81
v119291.07 25390.23 25593.58 25993.70 33587.82 25596.73 19797.07 20987.77 28089.58 26094.32 29180.90 23197.97 27086.52 27285.48 32094.95 306
FC-MVSNet-test93.94 13493.57 12795.04 17595.48 25191.45 12898.12 5098.71 1193.37 9290.23 23696.70 16687.66 11597.85 28891.49 17490.39 27795.83 257
v114491.37 23990.60 23993.68 25593.89 33088.23 24196.84 18997.03 21688.37 26189.69 25794.39 28582.04 21297.98 26787.80 24485.37 32294.84 316
sosnet-low-res0.00 3830.00 3860.00 3960.00 4190.00 4210.00 4070.00 4200.00 4140.00 4150.00 4140.00 4190.00 4150.00 4140.00 4130.00 411
HFP-MVS97.14 2396.92 3097.83 2699.42 794.12 4698.52 1698.32 3093.21 9797.18 5198.29 6392.08 4299.83 2695.63 8699.59 2099.54 33
v14890.99 25790.38 24692.81 28893.83 33285.80 29796.78 19496.68 24589.45 22388.75 28593.93 31082.96 19397.82 29287.83 24383.25 35294.80 322
sosnet0.00 3830.00 3860.00 3960.00 4190.00 4210.00 4070.00 4200.00 4140.00 4150.00 4140.00 4190.00 4150.00 4140.00 4130.00 411
uncertanet0.00 3830.00 3860.00 3960.00 4190.00 4210.00 4070.00 4200.00 4140.00 4150.00 4140.00 4190.00 4150.00 4140.00 4130.00 411
AllTest90.23 28288.98 29493.98 23597.94 11186.64 27996.51 22095.54 30085.38 32385.49 33896.77 16270.28 33799.15 13580.02 34392.87 23196.15 245
TestCases93.98 23597.94 11186.64 27995.54 30085.38 32385.49 33896.77 16270.28 33799.15 13580.02 34392.87 23196.15 245
v7n90.76 26589.86 27093.45 26593.54 34087.60 25997.70 10297.37 18588.85 24387.65 30894.08 30581.08 22698.10 24684.68 30083.79 34994.66 331
region2R97.07 2696.84 3397.77 3399.46 293.79 5498.52 1698.24 4793.19 10097.14 5398.34 5491.59 5299.87 795.46 9399.59 2099.64 16
iter_conf0594.01 13194.00 11694.04 23195.06 28388.46 23497.27 15296.57 25592.32 13092.26 18897.10 14688.54 10098.10 24695.10 9991.82 25295.57 272
mamv496.02 7095.84 7196.53 8197.05 16291.97 10597.30 14997.79 12392.32 13096.58 7997.14 14488.51 10299.06 15496.27 5299.64 1498.57 128
PS-MVSNAJss93.74 14393.51 13394.44 21093.91 32989.28 21097.75 9397.56 15492.50 12589.94 24996.54 18188.65 9698.18 23793.83 13090.90 27095.86 253
PS-MVSNAJ95.37 8895.33 8595.49 15797.35 14690.66 16495.31 29097.48 16193.85 7496.51 8095.70 22788.65 9699.65 5894.80 10998.27 11996.17 243
jajsoiax92.42 19191.89 19094.03 23393.33 34988.50 23297.73 9697.53 15692.00 14488.85 28196.50 18375.62 30498.11 24593.88 12891.56 25695.48 274
mvs_tets92.31 19791.76 19293.94 24193.41 34688.29 23797.63 11297.53 15692.04 14288.76 28496.45 18574.62 31298.09 25093.91 12691.48 25795.45 278
EI-MVSNet-UG-set96.34 6196.30 6096.47 9198.20 9390.93 15196.86 18697.72 13194.67 4796.16 9698.46 4290.43 7399.58 7796.23 5697.96 12998.90 104
EI-MVSNet-Vis-set96.51 5596.47 5396.63 7698.24 8791.20 13896.89 18497.73 12994.74 4496.49 8198.49 3890.88 6899.58 7796.44 4998.32 11799.13 77
HPM-MVS++copyleft97.34 1796.97 2798.47 599.08 3696.16 497.55 12197.97 10195.59 1196.61 7497.89 9092.57 3499.84 2395.95 7299.51 3499.40 54
test_prior493.66 5796.42 224
XVS97.18 2196.96 2897.81 2899.38 1494.03 5098.59 1298.20 5294.85 3496.59 7698.29 6391.70 4899.80 3095.66 8199.40 5399.62 18
v124090.70 26989.85 27193.23 27293.51 34286.80 27596.61 21397.02 21787.16 29689.58 26094.31 29279.55 25597.98 26785.52 29085.44 32194.90 313
pm-mvs190.72 26889.65 28193.96 23894.29 32189.63 18997.79 9196.82 23689.07 23386.12 33495.48 23978.61 27297.78 29586.97 26881.67 36094.46 335
test_prior296.35 23392.80 11996.03 10097.59 11892.01 4395.01 10299.38 56
X-MVStestdata91.71 21889.67 27997.81 2899.38 1494.03 5098.59 1298.20 5294.85 3496.59 7632.69 40891.70 4899.80 3095.66 8199.40 5399.62 18
test_prior97.23 6098.67 5892.99 7398.00 9899.41 10999.29 63
旧先验295.94 25881.66 36597.34 4898.82 17692.26 152
新几何295.79 267
新几何197.32 5398.60 6593.59 5897.75 12681.58 36695.75 11197.85 9690.04 7799.67 5686.50 27399.13 8098.69 122
旧先验198.38 7893.38 6397.75 12698.09 7592.30 4199.01 8999.16 73
无先验95.79 26797.87 11183.87 34699.65 5887.68 25198.89 107
原ACMM295.67 272
原ACMM196.38 10098.59 6691.09 14597.89 10787.41 29095.22 12597.68 10790.25 7499.54 8987.95 24199.12 8298.49 137
test22298.24 8792.21 9695.33 28897.60 14579.22 37995.25 12397.84 9888.80 9399.15 7898.72 119
testdata299.67 5685.96 285
segment_acmp92.89 27
testdata95.46 16198.18 9788.90 22197.66 13782.73 35697.03 5898.07 7690.06 7698.85 17489.67 20898.98 9198.64 125
testdata195.26 29593.10 106
v891.29 24590.53 24393.57 26094.15 32288.12 24697.34 14397.06 21188.99 23788.32 29394.26 29683.08 18798.01 26487.62 25483.92 34794.57 333
131492.81 18292.03 18495.14 17095.33 26589.52 19796.04 25297.44 17687.72 28386.25 33295.33 24283.84 17298.79 17989.26 21997.05 15697.11 217
LFMVS93.60 14692.63 16496.52 8398.13 10091.27 13397.94 7393.39 36490.57 19696.29 8998.31 6069.00 34699.16 13494.18 12095.87 17799.12 80
VDD-MVS93.82 14093.08 14696.02 12697.88 11689.96 18497.72 9995.85 28492.43 12795.86 10798.44 4468.42 35399.39 11196.31 5194.85 19698.71 121
VDDNet93.05 16892.07 18296.02 12696.84 17490.39 17298.08 5395.85 28486.22 31295.79 11098.46 4267.59 35699.19 12894.92 10494.85 19698.47 140
v1091.04 25590.23 25593.49 26294.12 32388.16 24597.32 14797.08 20788.26 26488.29 29594.22 29982.17 21197.97 27086.45 27484.12 34394.33 340
VPNet92.23 20391.31 20994.99 17895.56 24790.96 14897.22 16097.86 11592.96 11490.96 22596.62 17875.06 30798.20 23491.90 16283.65 35095.80 259
MVS91.71 21890.44 24495.51 15595.20 27591.59 12096.04 25297.45 17273.44 39287.36 31595.60 23285.42 15199.10 14185.97 28497.46 13995.83 257
v2v48291.59 22590.85 22793.80 24793.87 33188.17 24496.94 18196.88 23189.54 21989.53 26394.90 25981.70 22098.02 26389.25 22085.04 33195.20 297
V4291.58 22790.87 22493.73 25094.05 32688.50 23297.32 14796.97 21988.80 24989.71 25594.33 28982.54 20298.05 25889.01 22685.07 32994.64 332
SD-MVS97.41 1497.53 1197.06 6898.57 6994.46 3397.92 7598.14 6494.82 3899.01 698.55 3394.18 1497.41 32896.94 3499.64 1499.32 62
Zhenlong Yuan, Jiakai Cao, Zhaoxin Li, Hao Jiang and Zhaoqi Wang: SD-MVS: Segmentation-driven Deformation Multi-View Stereo with Spherical Refinement and EM optimization. AAAI2024
GA-MVS91.38 23790.31 24994.59 20094.65 30687.62 25894.34 32296.19 27390.73 18390.35 23493.83 31171.84 32797.96 27487.22 26293.61 22798.21 159
MSLP-MVS++96.94 3397.06 1996.59 7998.72 5591.86 10897.67 10398.49 1994.66 4897.24 5098.41 4792.31 4098.94 16596.61 4399.46 4298.96 94
APDe-MVScopyleft97.82 597.73 798.08 1899.15 3394.82 2898.81 798.30 3294.76 4398.30 2698.90 1293.77 1799.68 5497.93 1499.69 399.75 6
Zhaojie Zeng, Yuesong Wang, Tao Guan: Matching Ambiguity-Resilient Multi-View Stereo via Adaptive Patch Deformation. Pattern Recognition
APD-MVS_3200maxsize96.81 4296.71 4497.12 6699.01 4592.31 9397.98 6398.06 8293.11 10597.44 4398.55 3390.93 6699.55 8796.06 6699.25 6999.51 37
ADS-MVSNet289.45 29888.59 30092.03 30695.86 23482.26 34290.93 37894.32 34983.23 35391.28 21991.81 35879.01 26695.99 35879.52 34591.39 25997.84 183
EI-MVSNet93.03 16992.88 15393.48 26395.77 23986.98 27296.44 22197.12 20290.66 18991.30 21597.64 11486.56 13498.05 25889.91 20190.55 27495.41 279
Regformer0.00 3830.00 3860.00 3960.00 4190.00 4210.00 4070.00 4200.00 4140.00 4150.00 4140.00 4190.00 4150.00 4140.00 4130.00 411
CVMVSNet91.23 24691.75 19389.67 35095.77 23974.69 38596.44 22194.88 33185.81 31792.18 19097.64 11479.07 26195.58 36988.06 23995.86 17898.74 118
pmmvs490.93 26189.85 27194.17 22493.34 34890.79 15794.60 31096.02 27784.62 33687.45 31195.15 24981.88 21797.45 32487.70 24887.87 29994.27 344
EU-MVSNet88.72 30888.90 29688.20 35893.15 35274.21 38696.63 21294.22 35085.18 32787.32 31695.97 20876.16 29894.98 37485.27 29386.17 31395.41 279
VNet95.89 7795.45 7897.21 6298.07 10592.94 7597.50 12498.15 6293.87 7397.52 4097.61 11785.29 15299.53 9195.81 7895.27 19099.16 73
test-LLR91.42 23591.19 21692.12 30494.59 30880.66 35594.29 32692.98 36691.11 17290.76 22892.37 34679.02 26498.07 25588.81 23096.74 16197.63 193
TESTMET0.1,190.06 28789.42 28691.97 30794.41 31680.62 35794.29 32691.97 37887.28 29490.44 23292.47 34568.79 34797.67 30388.50 23696.60 16697.61 197
test-mter90.19 28589.54 28392.12 30494.59 30880.66 35594.29 32692.98 36687.68 28490.76 22892.37 34667.67 35598.07 25588.81 23096.74 16197.63 193
VPA-MVSNet93.24 15892.48 17395.51 15595.70 24192.39 8997.86 8098.66 1692.30 13292.09 19595.37 24180.49 23698.40 21693.95 12485.86 31695.75 266
ACMMPR97.07 2696.84 3397.79 3099.44 693.88 5298.52 1698.31 3193.21 9797.15 5298.33 5791.35 5799.86 895.63 8699.59 2099.62 18
testgi87.97 31487.21 31490.24 34492.86 35580.76 35396.67 20694.97 32691.74 14985.52 33795.83 21662.66 37894.47 37876.25 36488.36 29695.48 274
test20.0386.14 33485.40 33188.35 35690.12 37880.06 36595.90 26195.20 31688.59 25281.29 36793.62 32271.43 33092.65 39071.26 38581.17 36392.34 370
thres600view792.49 18991.60 19895.18 16897.91 11489.47 19897.65 10694.66 33792.18 13993.33 16494.91 25878.06 28299.10 14181.61 32994.06 21996.98 219
ADS-MVSNet89.89 29188.68 29993.53 26195.86 23484.89 31590.93 37895.07 32283.23 35391.28 21991.81 35879.01 26697.85 28879.52 34591.39 25997.84 183
MP-MVScopyleft96.77 4496.45 5797.72 3899.39 1393.80 5398.41 2498.06 8293.37 9295.54 12098.34 5490.59 7299.88 494.83 10699.54 2999.49 42
Rongxuan Tan, Qing Wang, et al.: MP-MVS: Multi-Scale Windows PatchMatch and Planar Prior Multi-View Stereo.
testmvs13.36 37916.33 3824.48 3955.04 4172.26 42093.18 3553.28 4182.70 4118.24 41221.66 4092.29 4182.19 4137.58 4122.96 4119.00 409
thres40092.42 19191.52 20295.12 17297.85 11789.29 20897.41 13394.88 33192.19 13793.27 16794.46 28378.17 27899.08 14781.40 33294.08 21596.98 219
test12313.04 38015.66 3835.18 3944.51 4183.45 41992.50 3691.81 4192.50 4127.58 41320.15 4103.67 4172.18 4147.13 4131.07 4129.90 408
thres20092.23 20391.39 20594.75 19797.61 13389.03 21896.60 21595.09 32192.08 14193.28 16694.00 30778.39 27699.04 15981.26 33794.18 21196.19 242
test0.0.03 189.37 30088.70 29891.41 32492.47 36485.63 29995.22 29692.70 37191.11 17286.91 32793.65 32179.02 26493.19 38978.00 35589.18 28795.41 279
pmmvs379.97 35577.50 36087.39 36282.80 40179.38 37392.70 36690.75 38770.69 39378.66 37987.47 38951.34 39393.40 38773.39 37869.65 39189.38 388
EMVS52.08 37551.31 37854.39 39172.62 41045.39 41583.84 39975.51 41041.13 40640.77 40859.65 40730.08 40573.60 40828.31 41029.90 40844.18 406
E-PMN53.28 37352.56 37755.43 39074.43 40847.13 41383.63 40076.30 40842.23 40542.59 40762.22 40628.57 40774.40 40731.53 40831.51 40644.78 405
PGM-MVS96.81 4296.53 5097.65 4299.35 2093.53 6097.65 10698.98 292.22 13397.14 5398.44 4491.17 6299.85 1894.35 11899.46 4299.57 26
LCM-MVSNet-Re92.50 18792.52 17192.44 29596.82 17881.89 34596.92 18293.71 36192.41 12884.30 34894.60 27485.08 15597.03 34191.51 17397.36 14598.40 148
LCM-MVSNet72.55 36169.39 36582.03 37270.81 41265.42 40190.12 38594.36 34855.02 40265.88 39681.72 39524.16 41089.96 39374.32 37468.10 39490.71 385
MCST-MVS97.18 2196.84 3398.20 1499.30 2495.35 1597.12 16898.07 7993.54 8596.08 9997.69 10693.86 1699.71 4696.50 4799.39 5599.55 32
mvs_anonymous93.82 14093.74 12294.06 22996.44 20885.41 30395.81 26597.05 21289.85 21190.09 24696.36 19087.44 12497.75 29893.97 12396.69 16499.02 86
MVS_Test94.89 10594.62 10095.68 14496.83 17689.55 19496.70 20197.17 19991.17 17095.60 11796.11 20687.87 11398.76 18493.01 14897.17 15498.72 119
MDA-MVSNet-bldmvs85.00 34182.95 34691.17 33093.13 35383.33 33294.56 31295.00 32484.57 33765.13 39892.65 33970.45 33695.85 36173.57 37777.49 37594.33 340
CDPH-MVS95.97 7495.38 8397.77 3398.93 4794.44 3496.35 23397.88 10986.98 29896.65 7297.89 9091.99 4499.47 10292.26 15299.46 4299.39 56
test1297.65 4298.46 7094.26 3997.66 13795.52 12190.89 6799.46 10399.25 6999.22 70
casdiffmvspermissive95.64 8295.49 7696.08 12096.76 18590.45 16997.29 15197.44 17694.00 6895.46 12297.98 8587.52 12298.73 18795.64 8597.33 14799.08 83
Fangjinhua Wang, Qingshan Xu, Yew-Soon Ong, Marc Pollefeys: Lightweight and Accurate Multi-View Stereo With Confidence-Aware Diffusion Model. IEEE T-PAMI 2025
diffmvspermissive95.25 9295.13 9095.63 14696.43 20989.34 20595.99 25697.35 18892.83 11796.31 8897.37 12886.44 13798.67 19496.26 5497.19 15398.87 109
Fangjinhua Wang, Qingshan Xu, Yew-Soon Ong, Marc Pollefeys: Lightweight and Accurate Multi-View Stereo With Confidence-Aware Diffusion Model. IEEE T-PAMI 2025
baseline291.63 22290.86 22593.94 24194.33 31886.32 28895.92 25991.64 38089.37 22586.94 32594.69 26981.62 22198.69 19288.64 23494.57 20596.81 227
baseline192.82 18191.90 18995.55 15397.20 15090.77 15897.19 16294.58 34092.20 13592.36 18396.34 19184.16 16998.21 23389.20 22383.90 34897.68 192
YYNet185.87 33784.23 34190.78 33892.38 36782.46 34093.17 35695.14 31982.12 36167.69 39292.36 34978.16 28095.50 37177.31 35879.73 36894.39 338
PMMVS270.19 36366.92 36780.01 37376.35 40665.67 40086.22 39687.58 39764.83 39862.38 39980.29 39826.78 40888.49 40063.79 39254.07 40385.88 390
MDA-MVSNet_test_wron85.87 33784.23 34190.80 33792.38 36782.57 33793.17 35695.15 31882.15 36067.65 39492.33 35278.20 27795.51 37077.33 35779.74 36794.31 342
tpmvs89.83 29589.15 29291.89 30994.92 29180.30 36293.11 35995.46 30386.28 31088.08 30192.65 33980.44 23798.52 20881.47 33189.92 28096.84 226
PM-MVS83.48 34781.86 35388.31 35787.83 39277.59 38093.43 35291.75 37986.91 29980.63 37089.91 37244.42 39895.84 36285.17 29676.73 37991.50 379
HQP_MVS93.78 14293.43 13894.82 18896.21 21789.99 18097.74 9497.51 15894.85 3491.34 21296.64 17181.32 22498.60 20193.02 14692.23 24295.86 253
plane_prior796.21 21789.98 182
plane_prior696.10 22890.00 17881.32 224
plane_prior597.51 15898.60 20193.02 14692.23 24295.86 253
plane_prior496.64 171
plane_prior390.00 17894.46 5591.34 212
plane_prior297.74 9494.85 34
plane_prior196.14 225
plane_prior89.99 18097.24 15594.06 6792.16 246
PS-CasMVS91.55 22990.84 22893.69 25494.96 28788.28 23897.84 8498.24 4791.46 15788.04 30295.80 21879.67 25297.48 32187.02 26784.54 33995.31 289
UniMVSNet_NR-MVSNet93.37 15492.67 16395.47 16095.34 26292.83 7697.17 16498.58 1792.98 11390.13 24195.80 21888.37 10597.85 28891.71 16983.93 34595.73 268
PEN-MVS91.20 24890.44 24493.48 26394.49 31287.91 25297.76 9298.18 5791.29 16287.78 30695.74 22480.35 23997.33 33285.46 29182.96 35595.19 300
TransMVSNet (Re)88.94 30387.56 30993.08 27894.35 31788.45 23597.73 9695.23 31587.47 28884.26 34995.29 24379.86 24997.33 33279.44 34974.44 38393.45 355
DTE-MVSNet90.56 27289.75 27793.01 27993.95 32787.25 26497.64 11097.65 13990.74 18287.12 31895.68 22879.97 24797.00 34483.33 31481.66 36194.78 326
DU-MVS92.90 17692.04 18395.49 15794.95 28892.83 7697.16 16598.24 4793.02 10790.13 24195.71 22583.47 17897.85 28891.71 16983.93 34595.78 261
UniMVSNet (Re)93.31 15692.55 16895.61 14995.39 25693.34 6697.39 13898.71 1193.14 10490.10 24594.83 26387.71 11498.03 26291.67 17283.99 34495.46 277
CP-MVSNet91.89 21491.24 21393.82 24695.05 28488.57 22897.82 8798.19 5591.70 15088.21 29895.76 22381.96 21497.52 31987.86 24284.65 33495.37 285
WR-MVS_H92.00 21091.35 20693.95 23995.09 28289.47 19898.04 5798.68 1391.46 15788.34 29294.68 27085.86 14697.56 31385.77 28784.24 34294.82 319
WR-MVS92.34 19591.53 20194.77 19595.13 28090.83 15596.40 22997.98 10091.88 14689.29 27195.54 23682.50 20397.80 29389.79 20585.27 32595.69 269
NR-MVSNet92.34 19591.27 21295.53 15494.95 28893.05 7297.39 13898.07 7992.65 12384.46 34695.71 22585.00 15697.77 29789.71 20683.52 35195.78 261
Baseline_NR-MVSNet91.20 24890.62 23892.95 28293.83 33288.03 24797.01 17695.12 32088.42 26089.70 25695.13 25183.47 17897.44 32589.66 20983.24 35393.37 356
TranMVSNet+NR-MVSNet92.50 18791.63 19795.14 17094.76 30092.07 10197.53 12298.11 7092.90 11689.56 26296.12 20283.16 18497.60 31189.30 21783.20 35495.75 266
TSAR-MVS + GP.96.69 4996.49 5297.27 5898.31 8193.39 6296.79 19296.72 24094.17 6497.44 4397.66 11092.76 2899.33 11596.86 3797.76 13599.08 83
n20.00 420
nn0.00 420
mPP-MVS96.86 3796.60 4797.64 4499.40 1193.44 6198.50 1998.09 7393.27 9695.95 10598.33 5791.04 6499.88 495.20 9699.57 2699.60 21
door-mid91.06 384
XVG-OURS-SEG-HR93.86 13893.55 12894.81 19097.06 16088.53 23195.28 29197.45 17291.68 15194.08 14797.68 10782.41 20698.90 17093.84 12992.47 23996.98 219
mvsmamba93.83 13993.46 13594.93 18694.88 29590.85 15498.55 1495.49 30294.24 6391.29 21896.97 15283.04 18998.14 24095.56 9291.17 26395.78 261
MVSFormer95.37 8895.16 8995.99 12996.34 21391.21 13698.22 4197.57 15091.42 15996.22 9397.32 12986.20 14297.92 28294.07 12199.05 8698.85 110
jason94.84 10794.39 11296.18 11795.52 24990.93 15196.09 25096.52 25689.28 22796.01 10397.32 12984.70 15998.77 18395.15 9898.91 9598.85 110
jason: jason.
lupinMVS94.99 10294.56 10396.29 10896.34 21391.21 13695.83 26496.27 26788.93 24196.22 9396.88 15886.20 14298.85 17495.27 9599.05 8698.82 113
test_djsdf93.07 16792.76 15794.00 23493.49 34388.70 22598.22 4197.57 15091.42 15990.08 24795.55 23582.85 19597.92 28294.07 12191.58 25595.40 282
HPM-MVS_fast96.51 5596.27 6197.22 6199.32 2292.74 7998.74 998.06 8290.57 19696.77 6598.35 5190.21 7599.53 9194.80 10999.63 1799.38 58
K. test v387.64 31986.75 32190.32 34393.02 35479.48 37296.61 21392.08 37790.66 18980.25 37494.09 30467.21 35996.65 35285.96 28580.83 36494.83 317
lessismore_v090.45 34191.96 37079.09 37687.19 39880.32 37394.39 28566.31 36697.55 31484.00 30976.84 37794.70 329
SixPastTwentyTwo89.15 30188.54 30190.98 33193.49 34380.28 36396.70 20194.70 33690.78 18084.15 35195.57 23371.78 32897.71 30184.63 30185.07 32994.94 308
OurMVSNet-221017-090.51 27590.19 25991.44 32393.41 34681.25 34996.98 17896.28 26691.68 15186.55 33096.30 19274.20 31597.98 26788.96 22887.40 30595.09 301
HPM-MVScopyleft96.69 4996.45 5797.40 5099.36 1893.11 7198.87 698.06 8291.17 17096.40 8697.99 8490.99 6599.58 7795.61 8899.61 1999.49 42
Chunlin Ren, Qingshan Xu, Shikun Zhang, Jiaqi Yang: Hierarchical Prior Mining for Non-local Multi-View Stereo. ICCV 2023
XVG-OURS93.72 14493.35 14194.80 19397.07 15788.61 22694.79 30697.46 16791.97 14593.99 14897.86 9581.74 21998.88 17192.64 15192.67 23896.92 223
XVG-ACMP-BASELINE90.93 26190.21 25893.09 27794.31 32085.89 29695.33 28897.26 19491.06 17589.38 26795.44 24068.61 34998.60 20189.46 21391.05 26694.79 324
casdiffmvs_mvgpermissive95.81 7995.57 7496.51 8696.87 17291.49 12497.50 12497.56 15493.99 6995.13 12797.92 8987.89 11298.78 18095.97 7197.33 14799.26 67
Fangjinhua Wang, Qingshan Xu, Yew-Soon Ong, Marc Pollefeys: Lightweight and Accurate Multi-View Stereo With Confidence-Aware Diffusion Model. IEEE T-PAMI 2025
LPG-MVS_test92.94 17492.56 16794.10 22796.16 22288.26 23997.65 10697.46 16791.29 16290.12 24397.16 14179.05 26298.73 18792.25 15491.89 25095.31 289
LGP-MVS_train94.10 22796.16 22288.26 23997.46 16791.29 16290.12 24397.16 14179.05 26298.73 18792.25 15491.89 25095.31 289
baseline95.58 8495.42 8196.08 12096.78 18090.41 17197.16 16597.45 17293.69 8095.65 11697.85 9687.29 12798.68 19395.66 8197.25 15199.13 77
test1197.88 109
door91.13 383
EPNet_dtu91.71 21891.28 21192.99 28093.76 33483.71 32996.69 20395.28 31193.15 10387.02 32295.95 21083.37 18197.38 33079.46 34896.84 15897.88 181
Wanjuan Su, Wenbing Tao: Efficient Edge-Preserving Multi-View Stereo Network for Depth Estimation. AAAI 2023
CHOSEN 1792x268894.15 12293.51 13396.06 12298.27 8389.38 20395.18 29798.48 2185.60 32093.76 15497.11 14583.15 18599.61 6991.33 17798.72 10099.19 71
EPNet95.20 9594.56 10397.14 6592.80 35792.68 8197.85 8394.87 33496.64 392.46 17997.80 10186.23 13999.65 5893.72 13198.62 10499.10 82
Wanjuan Su, Wenbing Tao: Efficient Edge-Preserving Multi-View Stereo Network for Depth Estimation. AAAI 2023
HQP5-MVS89.33 206
HQP-NCC95.86 23496.65 20793.55 8290.14 237
ACMP_Plane95.86 23496.65 20793.55 8290.14 237
APD-MVScopyleft96.95 3296.60 4798.01 1999.03 4194.93 2797.72 9998.10 7291.50 15598.01 3198.32 5992.33 3899.58 7794.85 10599.51 3499.53 36
Yuesong Wang, Zhaojie Zeng and etc.: Adaptive Patch Deformation for Textureless-Resilient Multi-View Stereo. CVPR2023
BP-MVS92.13 158
HQP4-MVS90.14 23798.50 20995.78 261
HQP3-MVS97.39 18292.10 247
HQP2-MVS80.95 227
CNVR-MVS97.68 697.44 1398.37 798.90 5095.86 697.27 15298.08 7495.81 997.87 3698.31 6094.26 1399.68 5497.02 3399.49 3999.57 26
NCCC97.30 1897.03 2498.11 1798.77 5395.06 2597.34 14398.04 8995.96 697.09 5697.88 9293.18 2599.71 4695.84 7799.17 7699.56 29
114514_t93.95 13393.06 14796.63 7699.07 3791.61 11897.46 13297.96 10277.99 38393.00 17197.57 11986.14 14499.33 11589.22 22199.15 7898.94 97
CP-MVS97.02 2996.81 3797.64 4499.33 2193.54 5998.80 898.28 3692.99 10896.45 8598.30 6291.90 4599.85 1895.61 8899.68 499.54 33
DSMNet-mixed86.34 33086.12 32687.00 36589.88 38170.43 39194.93 30390.08 38977.97 38485.42 34092.78 33874.44 31393.96 38474.43 37295.14 19196.62 231
tpm289.96 28889.21 29092.23 30394.91 29381.25 34993.78 34294.42 34480.62 37391.56 20693.44 32976.44 29697.94 27985.60 28992.08 24997.49 202
NP-MVS95.99 23289.81 18795.87 213
EG-PatchMatch MVS87.02 32585.44 32991.76 31792.67 35985.00 31296.08 25196.45 26083.41 35279.52 37693.49 32657.10 38697.72 30079.34 35090.87 27192.56 366
tpm cat188.36 31187.21 31491.81 31395.13 28080.55 35892.58 36795.70 29074.97 38987.45 31191.96 35678.01 28498.17 23880.39 34188.74 29296.72 230
SteuartSystems-ACMMP97.62 997.53 1197.87 2498.39 7794.25 4098.43 2398.27 3995.34 1798.11 2898.56 3194.53 1299.71 4696.57 4599.62 1899.65 15
Skip Steuart: Steuart Systems R&D Blog.
CostFormer91.18 25190.70 23692.62 29494.84 29781.76 34694.09 33294.43 34384.15 34192.72 17893.77 31579.43 25698.20 23490.70 18992.18 24597.90 179
CR-MVSNet90.82 26489.77 27593.95 23994.45 31487.19 26790.23 38395.68 29486.89 30092.40 18092.36 34980.91 22997.05 34081.09 33893.95 22097.60 198
JIA-IIPM88.26 31387.04 31791.91 30893.52 34181.42 34889.38 38994.38 34580.84 37090.93 22680.74 39679.22 25997.92 28282.76 32291.62 25496.38 238
Patchmtry88.64 30987.25 31292.78 28994.09 32486.64 27989.82 38795.68 29480.81 37187.63 30992.36 34980.91 22997.03 34178.86 35185.12 32894.67 330
PatchT88.87 30687.42 31093.22 27394.08 32585.10 31189.51 38894.64 33981.92 36292.36 18388.15 38480.05 24597.01 34372.43 38093.65 22597.54 201
tpmrst91.44 23491.32 20891.79 31495.15 27879.20 37493.42 35395.37 30688.55 25693.49 16093.67 32082.49 20498.27 22990.41 19289.34 28697.90 179
BH-w/o92.14 20791.75 19393.31 26996.99 16985.73 29895.67 27295.69 29288.73 25189.26 27394.82 26482.97 19298.07 25585.26 29496.32 17196.13 247
tpm90.25 28189.74 27891.76 31793.92 32879.73 36893.98 33393.54 36288.28 26391.99 19693.25 33377.51 28897.44 32587.30 26187.94 29898.12 167
DELS-MVS96.61 5296.38 5997.30 5497.79 12093.19 6995.96 25798.18 5795.23 1995.87 10697.65 11191.45 5399.70 5195.87 7399.44 4899.00 92
Christian Sormann, Emanuele Santellani, Mattia Rossi, Andreas Kuhn, Friedrich Fraundorfer: DELS-MVS: Deep Epipolar Line Search for Multi-View Stereo. Winter Conference on Applications of Computer Vision (WACV), 2023
BH-untuned92.94 17492.62 16593.92 24397.22 14886.16 29496.40 22996.25 26990.06 20689.79 25496.17 19983.19 18398.35 22387.19 26397.27 15097.24 214
RPMNet88.98 30287.05 31694.77 19594.45 31487.19 26790.23 38398.03 9177.87 38592.40 18087.55 38880.17 24399.51 9668.84 38993.95 22097.60 198
MVSTER93.20 16092.81 15694.37 21396.56 19589.59 19297.06 17097.12 20291.24 16691.30 21595.96 20982.02 21398.05 25893.48 13490.55 27495.47 276
CPTT-MVS95.57 8595.19 8896.70 7399.27 2691.48 12598.33 2798.11 7087.79 27995.17 12698.03 8087.09 13099.61 6993.51 13399.42 4999.02 86
GBi-Net91.35 24090.27 25294.59 20096.51 20291.18 14097.50 12496.93 22388.82 24689.35 26894.51 27873.87 31697.29 33486.12 28088.82 28995.31 289
PVSNet_Blended_VisFu95.27 9194.91 9496.38 10098.20 9390.86 15397.27 15298.25 4590.21 20194.18 14497.27 13487.48 12399.73 4293.53 13297.77 13498.55 129
PVSNet_BlendedMVS94.06 12893.92 11894.47 20898.27 8389.46 20096.73 19798.36 2490.17 20294.36 13995.24 24788.02 10999.58 7793.44 13590.72 27294.36 339
UnsupCasMVSNet_eth85.99 33584.45 33990.62 33989.97 38082.40 34193.62 34997.37 18589.86 20978.59 38092.37 34665.25 37295.35 37382.27 32770.75 38994.10 345
UnsupCasMVSNet_bld82.13 35279.46 35790.14 34588.00 39182.47 33990.89 38096.62 25378.94 38075.61 38484.40 39456.63 38796.31 35577.30 35966.77 39691.63 376
PVSNet_Blended94.87 10694.56 10395.81 13598.27 8389.46 20095.47 28398.36 2488.84 24494.36 13996.09 20788.02 10999.58 7793.44 13598.18 12398.40 148
FMVSNet587.29 32185.79 32791.78 31594.80 29987.28 26295.49 28295.28 31184.09 34283.85 35791.82 35762.95 37794.17 38078.48 35285.34 32493.91 349
test191.35 24090.27 25294.59 20096.51 20291.18 14097.50 12496.93 22388.82 24689.35 26894.51 27873.87 31697.29 33486.12 28088.82 28995.31 289
new_pmnet82.89 35081.12 35588.18 35989.63 38280.18 36491.77 37292.57 37276.79 38775.56 38688.23 38361.22 38194.48 37771.43 38382.92 35689.87 387
FMVSNet391.78 21690.69 23795.03 17696.53 20092.27 9597.02 17396.93 22389.79 21489.35 26894.65 27277.01 29097.47 32286.12 28088.82 28995.35 286
dp88.90 30588.26 30590.81 33594.58 31076.62 38192.85 36494.93 32885.12 32990.07 24893.07 33475.81 30098.12 24480.53 34087.42 30497.71 190
FMVSNet291.31 24390.08 26194.99 17896.51 20292.21 9697.41 13396.95 22188.82 24688.62 28694.75 26773.87 31697.42 32785.20 29588.55 29495.35 286
FMVSNet189.88 29288.31 30394.59 20095.41 25591.18 14097.50 12496.93 22386.62 30487.41 31394.51 27865.94 36997.29 33483.04 31787.43 30395.31 289
N_pmnet78.73 35778.71 35878.79 37592.80 35746.50 41494.14 33043.71 41678.61 38180.83 36891.66 36074.94 30996.36 35467.24 39084.45 34093.50 353
cascas91.20 24890.08 26194.58 20494.97 28689.16 21693.65 34897.59 14879.90 37689.40 26692.92 33775.36 30598.36 22292.14 15794.75 20196.23 239
BH-RMVSNet92.72 18591.97 18794.97 18197.16 15287.99 24896.15 24895.60 29790.62 19291.87 19997.15 14378.41 27598.57 20583.16 31597.60 13798.36 152
UGNet94.04 13093.28 14396.31 10496.85 17391.19 13997.88 7997.68 13694.40 5893.00 17196.18 19773.39 32299.61 6991.72 16898.46 11298.13 166
Wanjuan Su, Qingshan Xu, Wenbing Tao: Uncertainty-guided Multi-view Stereo Network for Depth Estimation. IEEE Transactions on Circuits and Systems for Video Technology, 2022
WTY-MVS94.71 11194.02 11596.79 7297.71 12492.05 10296.59 21697.35 18890.61 19394.64 13496.93 15386.41 13899.39 11191.20 18194.71 20498.94 97
XXY-MVS92.16 20591.23 21494.95 18394.75 30190.94 15097.47 13097.43 17989.14 23188.90 27896.43 18679.71 25198.24 23089.56 21187.68 30095.67 270
EC-MVSNet96.42 5796.47 5396.26 11097.01 16691.52 12398.89 597.75 12694.42 5696.64 7397.68 10789.32 8498.60 20197.45 2699.11 8398.67 124
sss94.51 11293.80 12196.64 7497.07 15791.97 10596.32 23698.06 8288.94 24094.50 13796.78 16184.60 16099.27 12291.90 16296.02 17398.68 123
Test_1112_low_res92.84 18091.84 19195.85 13497.04 16489.97 18395.53 28096.64 24885.38 32389.65 25995.18 24885.86 14699.10 14187.70 24893.58 22998.49 137
1112_ss93.37 15492.42 17596.21 11497.05 16290.99 14696.31 23796.72 24086.87 30189.83 25396.69 16886.51 13699.14 13788.12 23893.67 22498.50 135
ab-mvs-re8.06 38110.74 3840.00 3960.00 4190.00 4210.00 4070.00 4200.00 4140.00 41596.69 1680.00 4190.00 4150.00 4140.00 4130.00 411
ab-mvs93.57 14892.55 16896.64 7497.28 14791.96 10795.40 28597.45 17289.81 21393.22 16996.28 19379.62 25499.46 10390.74 18893.11 23098.50 135
TR-MVS91.48 23390.59 24094.16 22596.40 21087.33 26095.67 27295.34 31087.68 28491.46 20995.52 23776.77 29298.35 22382.85 32093.61 22796.79 228
MDTV_nov1_ep13_2view70.35 39293.10 36083.88 34593.55 15782.47 20586.25 27698.38 150
MDTV_nov1_ep1390.76 23195.22 27380.33 36193.03 36195.28 31188.14 26892.84 17793.83 31181.34 22398.08 25182.86 31894.34 207
MIMVSNet184.93 34283.05 34490.56 34089.56 38384.84 31695.40 28595.35 30783.91 34380.38 37292.21 35357.23 38593.34 38870.69 38782.75 35893.50 353
MIMVSNet88.50 31086.76 32093.72 25294.84 29787.77 25691.39 37394.05 35286.41 30887.99 30392.59 34263.27 37595.82 36377.44 35692.84 23397.57 200
IterMVS-LS92.29 19991.94 18893.34 26896.25 21686.97 27396.57 21997.05 21290.67 18789.50 26594.80 26586.59 13397.64 30689.91 20186.11 31595.40 282
Fangjinhua Wang, Silvano Galliani, Christoph Vogel, Marc Pollefeys: IterMVS: Iterative Probability Estimation for Efficient Multi-View Stereo.
CDS-MVSNet94.14 12593.54 12995.93 13096.18 22091.46 12796.33 23597.04 21488.97 23993.56 15696.51 18287.55 11997.89 28689.80 20495.95 17598.44 145
Khang Truong Giang, Soohwan Song, Sungho Jo: Curvature-guided dynamic scale networks for Multi-view Stereo. ICLR 2022
ACMMP++_ref90.30 278
IterMVS90.15 28689.67 27991.61 31995.48 25183.72 32894.33 32396.12 27589.99 20787.31 31794.15 30275.78 30396.27 35686.97 26886.89 31094.83 317
Fangjinhua Wang, Silvano Galliani, Christoph Vogel, Marc Pollefeys: IterMVS: Iterative Probability Estimation for Efficient Multi-View Stereo.
DP-MVS Recon95.68 8195.12 9197.37 5199.19 3194.19 4297.03 17198.08 7488.35 26295.09 12897.65 11189.97 7999.48 10192.08 16198.59 10698.44 145
MVS_111021_LR96.24 6496.19 6396.39 9998.23 9191.35 13196.24 24498.79 693.99 6995.80 10997.65 11189.92 8099.24 12495.87 7399.20 7498.58 127
DP-MVS92.76 18391.51 20496.52 8398.77 5390.99 14697.38 14096.08 27682.38 35889.29 27197.87 9383.77 17399.69 5281.37 33596.69 16498.89 107
ACMMP++91.02 267
HQP-MVS93.19 16192.74 16094.54 20695.86 23489.33 20696.65 20797.39 18293.55 8290.14 23795.87 21380.95 22798.50 20992.13 15892.10 24795.78 261
QAPM93.45 15292.27 17896.98 7196.77 18292.62 8298.39 2598.12 6784.50 33888.27 29697.77 10282.39 20799.81 2985.40 29298.81 9798.51 134
Vis-MVSNetpermissive95.23 9394.81 9596.51 8697.18 15191.58 12198.26 3598.12 6794.38 6094.90 12998.15 7282.28 20898.92 16791.45 17698.58 10799.01 89
Jingyang Zhang, Yao Yao, Shiwei Li, Zixin Luo, Tian Fang: Visibility-aware Multiview Stereo Network. BMVC 2020
MVS-HIRNet82.47 35181.21 35486.26 36795.38 25769.21 39488.96 39189.49 39066.28 39680.79 36974.08 40168.48 35297.39 32971.93 38295.47 18692.18 373
IS-MVSNet94.90 10494.52 10796.05 12397.67 12590.56 16598.44 2296.22 27093.21 9793.99 14897.74 10485.55 15098.45 21389.98 19997.86 13099.14 76
HyFIR lowres test93.66 14592.92 15195.87 13298.24 8789.88 18594.58 31198.49 1985.06 33093.78 15395.78 22282.86 19498.67 19491.77 16795.71 18299.07 85
EPMVS90.70 26989.81 27393.37 26794.73 30384.21 32193.67 34788.02 39589.50 22192.38 18293.49 32677.82 28697.78 29586.03 28392.68 23798.11 170
PAPM_NR95.01 9894.59 10196.26 11098.89 5190.68 16397.24 15597.73 12991.80 14792.93 17696.62 17889.13 8799.14 13789.21 22297.78 13398.97 93
TAMVS94.01 13193.46 13595.64 14596.16 22290.45 16996.71 20096.89 23089.27 22893.46 16196.92 15687.29 12797.94 27988.70 23395.74 18098.53 131
PAPR94.18 11993.42 14096.48 9097.64 12991.42 12995.55 27897.71 13588.99 23792.34 18695.82 21789.19 8599.11 14086.14 27997.38 14498.90 104
RPSCF90.75 26690.86 22590.42 34296.84 17476.29 38395.61 27796.34 26483.89 34491.38 21097.87 9376.45 29598.78 18087.16 26592.23 24296.20 241
Vis-MVSNet (Re-imp)94.15 12293.88 12094.95 18397.61 13387.92 25098.10 5195.80 28692.22 13393.02 17097.45 12484.53 16297.91 28588.24 23797.97 12899.02 86
test_040286.46 32884.79 33791.45 32295.02 28585.55 30096.29 23994.89 33080.90 36882.21 36493.97 30968.21 35497.29 33462.98 39388.68 29391.51 378
MVS_111021_HR96.68 5196.58 4996.99 7098.46 7092.31 9396.20 24698.90 394.30 6295.86 10797.74 10492.33 3899.38 11396.04 6999.42 4999.28 65
CSCG96.05 6995.91 6896.46 9399.24 2890.47 16898.30 2998.57 1889.01 23693.97 15097.57 11992.62 3399.76 3894.66 11299.27 6599.15 75
PatchMatch-RL92.90 17692.02 18595.56 15198.19 9590.80 15695.27 29397.18 19787.96 27191.86 20095.68 22880.44 23798.99 16284.01 30897.54 13896.89 224
API-MVS94.84 10794.49 10895.90 13197.90 11592.00 10497.80 9097.48 16189.19 23094.81 13196.71 16488.84 9299.17 13288.91 22998.76 9996.53 232
Test By Simon88.73 95
TDRefinement86.53 32784.76 33891.85 31082.23 40284.25 32096.38 23195.35 30784.97 33284.09 35394.94 25665.76 37098.34 22684.60 30274.52 38292.97 359
USDC88.94 30387.83 30892.27 30194.66 30584.96 31393.86 34095.90 28187.34 29283.40 35895.56 23467.43 35798.19 23682.64 32589.67 28393.66 351
EPP-MVSNet95.22 9495.04 9295.76 13697.49 14289.56 19398.67 1097.00 21890.69 18594.24 14297.62 11689.79 8198.81 17893.39 13896.49 16898.92 100
PMMVS92.86 17892.34 17694.42 21294.92 29186.73 27894.53 31396.38 26384.78 33594.27 14195.12 25283.13 18698.40 21691.47 17596.49 16898.12 167
PAPM91.52 23190.30 25095.20 16795.30 26889.83 18693.38 35496.85 23486.26 31188.59 28795.80 21884.88 15798.15 23975.67 36795.93 17697.63 193
ACMMPcopyleft96.27 6395.93 6697.28 5799.24 2892.62 8298.25 3698.81 592.99 10894.56 13698.39 4888.96 9099.85 1894.57 11797.63 13699.36 60
Qingshan Xu, Weihang Kong, Wenbing Tao, Marc Pollefeys: Multi-Scale Geometric Consistency Guided and Planar Prior Assisted Multi-View Stereo. IEEE Transactions on Pattern Analysis and Machine Intelligence
CNLPA94.28 11793.53 13096.52 8398.38 7892.55 8596.59 21696.88 23190.13 20591.91 19797.24 13685.21 15399.09 14587.64 25397.83 13197.92 178
PatchmatchNetpermissive91.91 21291.35 20693.59 25895.38 25784.11 32393.15 35895.39 30489.54 21992.10 19493.68 31982.82 19698.13 24184.81 29895.32 18998.52 132
Fangjinhua Wang, Silvano Galliani, Christoph Vogel, Pablo Speciale, Marc Pollefeys: PatchmatchNet: Learned Multi-View Patchmatch Stereo.
PHI-MVS96.77 4496.46 5697.71 4098.40 7594.07 4898.21 4398.45 2289.86 20997.11 5598.01 8392.52 3599.69 5296.03 7099.53 3099.36 60
F-COLMAP93.58 14792.98 14995.37 16398.40 7588.98 21997.18 16397.29 19387.75 28290.49 23197.10 14685.21 15399.50 9986.70 27096.72 16397.63 193
ANet_high63.94 37159.58 37477.02 37861.24 41466.06 39985.66 39887.93 39678.53 38242.94 40671.04 40325.42 40980.71 40552.60 40130.83 40784.28 393
wuyk23d25.11 37724.57 38126.74 39373.98 40939.89 41757.88 4069.80 41712.27 41010.39 4116.97 4137.03 41536.44 41225.43 41117.39 4103.89 410
OMC-MVS95.09 9794.70 9996.25 11398.46 7091.28 13296.43 22397.57 15092.04 14294.77 13297.96 8787.01 13199.09 14591.31 17896.77 16098.36 152
MG-MVS95.61 8395.38 8396.31 10498.42 7390.53 16696.04 25297.48 16193.47 8995.67 11598.10 7389.17 8699.25 12391.27 17998.77 9899.13 77
AdaColmapbinary94.34 11593.68 12496.31 10498.59 6691.68 11696.59 21697.81 12189.87 20892.15 19197.06 14983.62 17799.54 8989.34 21698.07 12697.70 191
uanet0.00 3830.00 3860.00 3960.00 4190.00 4210.00 4070.00 4200.00 4140.00 4150.00 4140.00 4190.00 4150.00 4140.00 4130.00 411
ITE_SJBPF92.43 29695.34 26285.37 30695.92 27991.47 15687.75 30796.39 18971.00 33397.96 27482.36 32689.86 28193.97 348
DeepMVS_CXcopyleft74.68 38490.84 37664.34 40281.61 40765.34 39767.47 39588.01 38648.60 39680.13 40662.33 39473.68 38579.58 396
TinyColmap86.82 32685.35 33291.21 32794.91 29382.99 33593.94 33694.02 35483.58 34981.56 36694.68 27062.34 37998.13 24175.78 36587.35 30692.52 368
MAR-MVS94.22 11893.46 13596.51 8698.00 10892.19 9997.67 10397.47 16488.13 26993.00 17195.84 21584.86 15899.51 9687.99 24098.17 12497.83 185
Zhenyu Xu, Yiguang Liu, Xuelei Shi, Ying Wang, Yunan Zheng: MARMVS: Matching Ambiguity Reduced Multiple View Stereo for Efficient Large Scale Scene Reconstruction. CVPR 2020
LF4IMVS87.94 31587.25 31289.98 34792.38 36780.05 36694.38 32095.25 31487.59 28684.34 34794.74 26864.31 37397.66 30584.83 29787.45 30292.23 371
MSDG91.42 23590.24 25494.96 18297.15 15488.91 22093.69 34696.32 26585.72 31986.93 32696.47 18480.24 24198.98 16380.57 33995.05 19596.98 219
LS3D93.57 14892.61 16696.47 9197.59 13691.61 11897.67 10397.72 13185.17 32890.29 23598.34 5484.60 16099.73 4283.85 31398.27 11998.06 173
CLD-MVS92.98 17192.53 17094.32 21796.12 22789.20 21395.28 29197.47 16492.66 12289.90 25095.62 23180.58 23498.40 21692.73 15092.40 24095.38 284
Zhaoxin Li, Wangmeng Zuo, Zhaoqi Wang, Lei Zhang: Confidence-based Large-scale Dense Multi-view Stereo. IEEE Transaction on Image Processing, 2020
FPMVS71.27 36269.85 36475.50 38274.64 40759.03 40791.30 37491.50 38158.80 39957.92 40388.28 38229.98 40685.53 40253.43 40082.84 35781.95 395
Gipumacopyleft67.86 36865.41 37075.18 38392.66 36073.45 38866.50 40494.52 34153.33 40357.80 40466.07 40430.81 40489.20 39648.15 40278.88 37462.90 404
S. Galliani, K. Lasinger, K. Schindler: Massively Parallel Multiview Stereopsis by Surface Normal Diffusion. ICCV 2015