This table lists the benchmark results for the high-res multi-view scenario. The following metrics are evaluated:

(*) For exact definitions, detailing how potentially incomplete ground truth is taken into account, see our paper.

The datasets are grouped into different categories, and result averages are computed for a category and method if results of the method are available for all datasets within the category. Note that the category "all" includes both the high-res multi-view and the low-res many-view scenarios.

Methods with suffix _ROB may participate in the Robust Vision Challenge.

Click a dataset result cell to show a visualization of the reconstruction. For training datasets, ground truth and accuracy / completeness visualizations are also available. The visualizations may not work with mobile browsers.




Method Infoallhigh-res
multi-view
indooroutdoorbotani.boulde.bridgedoorexhibi.lectur.living.loungeobserv.old co.statueterrac.
sorted bysort bysort bysort bysort bysort bysort bysort bysort bysort bysort bysort bysort bysort bysort bysort by
DeepPCF-MVS93.97 196.61 5297.09 1895.15 16398.09 10186.63 27996.00 25398.15 6295.43 1497.95 3398.56 3193.40 2199.36 11496.77 3899.48 3799.45 47
DeepC-MVS_fast93.89 296.93 3496.64 4697.78 3198.64 6494.30 3597.41 13498.04 8994.81 3996.59 7498.37 4991.24 5999.64 6695.16 9399.52 2899.42 53
Andreas Kuhn, Christian Sormann, Mattia Rossi, Oliver Erdler, Friedrich Fraundorfer: DeepC-MVS: Deep Confidence Prediction for Multi-View Stereo Reconstruction. 3DV 2020
DeepC-MVS93.07 396.06 6695.66 7097.29 5397.96 10993.17 6897.30 14998.06 8293.92 6993.38 15898.66 2786.83 12599.73 4295.60 8499.22 6898.96 94
Andreas Kuhn, Christian Sormann, Mattia Rossi, Oliver Erdler, Friedrich Fraundorfer: DeepC-MVS: Deep Confidence Prediction for Multi-View Stereo Reconstruction. 3DV 2020
3Dnovator+91.43 495.40 8294.48 10498.16 1696.90 16695.34 1698.48 2197.87 11194.65 4988.53 28698.02 8283.69 16799.71 4693.18 13698.96 8899.44 49
3Dnovator91.36 595.19 9194.44 10697.44 4796.56 19193.36 6398.65 1198.36 2494.12 6389.25 27198.06 7782.20 20399.77 3793.41 13399.32 5999.18 72
PLCcopyleft91.00 694.11 12093.43 13196.13 11498.58 6891.15 14196.69 20197.39 17687.29 29191.37 20796.71 16088.39 9999.52 9587.33 25797.13 15197.73 184
Jie Liao, Yanping Fu, Qingan Yan, Chunxia xiao: Pyramid Multi-View Stereo with Local Consistency. Pacific Graphics 2019
TAPA-MVS90.10 792.30 19591.22 21295.56 14598.33 8089.60 18896.79 19097.65 13681.83 36091.52 20397.23 13687.94 10698.91 16371.31 38198.37 11198.17 159
Andrea Romanoni, Matteo Matteucci: TAPA-MVS: Textureless-Aware PAtchMatch Multi-View Stereo. ICCV 2019
ACMM89.79 892.96 16892.50 16894.35 21196.30 21188.71 22197.58 11797.36 18191.40 15990.53 22596.65 16779.77 24498.75 17991.24 17791.64 24695.59 268
Qingshan Xu and Wenbing Tao: Multi-Scale Geometric Consistency Guided Multi-View Stereo. CVPR 2019
HY-MVS89.66 993.87 13092.95 14496.63 7497.10 15392.49 8595.64 27496.64 24289.05 23393.00 16695.79 21885.77 14199.45 10589.16 22294.35 20097.96 171
ACMP89.59 1092.62 18292.14 17794.05 22796.40 20688.20 23897.36 14297.25 19091.52 15288.30 29196.64 16878.46 26998.72 18491.86 16291.48 25195.23 293
Qingshan Xu and Wenbing Tao: Planar Prior Assisted PatchMatch Multi-View Stereo. AAAI 2020
PCF-MVS89.48 1191.56 22589.95 26496.36 9896.60 18692.52 8492.51 36597.26 18879.41 37588.90 27596.56 17984.04 16499.55 8777.01 35997.30 14597.01 213
Andreas Kuhn, Shan Lin, Oliver Erdler: Plane Completion and Filtering for Multi-View Stereo Reconstruction. GCPR 2019
OpenMVScopyleft89.19 1292.86 17491.68 19396.40 9395.34 25892.73 7898.27 3398.12 6784.86 33185.78 33297.75 10378.89 26499.74 4187.50 25498.65 9896.73 223
LTVRE_ROB88.41 1390.99 25489.92 26694.19 22096.18 21689.55 19196.31 23597.09 20087.88 27285.67 33395.91 20978.79 26598.57 19981.50 32789.98 27694.44 334
Andreas Kuhn, Heiko Hirschmüller, Daniel Scharstein, Helmut Mayer: A TV Prior for High-Quality Scalable Multi-View Stereo Reconstruction. International Journal of Computer Vision 2016
ACMH+87.92 1490.20 28189.18 28893.25 26896.48 20186.45 28396.99 17596.68 23988.83 24384.79 34296.22 19570.16 33698.53 20184.42 30188.04 29494.77 324
COLMAP_ROBcopyleft87.81 1590.40 27489.28 28693.79 24597.95 11087.13 26796.92 18095.89 27782.83 35386.88 32597.18 13873.77 31699.29 12178.44 35093.62 22094.95 303
Johannes L. Schönberger, Enliang Zheng, Marc Pollefeys, Jan-Michael Frahm: Pixelwise View Selection for Unstructured Multi-View Stereo. ECCV 2016
ACMH87.59 1690.53 27089.42 28393.87 24196.21 21387.92 24797.24 15396.94 21688.45 25783.91 35396.27 19371.92 32398.62 19484.43 30089.43 28295.05 301
Qingshan Xu and Wenbing Tao: Multi-Scale Geometric Consistency Guided Multi-View Stereo. CVPR 2019
IB-MVS87.33 1789.91 28688.28 30194.79 19095.26 26887.70 25495.12 29793.95 35289.35 22487.03 31892.49 34070.74 33299.19 12889.18 22181.37 35997.49 197
Christian Sormann, Mattia Rossi, Andreas Kuhn and Friedrich Fraundorfer: IB-MVS: An Iterative Algorithm for Deep Multi-View Stereo based on Binary Decisions. BMVC 2021
PVSNet86.66 1892.24 19991.74 19193.73 24797.77 12183.69 32792.88 36096.72 23487.91 27193.00 16694.86 25878.51 26899.05 15186.53 26897.45 13998.47 135
PVSNet_082.17 1985.46 33783.64 34090.92 32995.27 26579.49 36890.55 37895.60 29283.76 34583.00 35989.95 36871.09 32997.97 26582.75 32060.79 39895.31 286
OpenMVS_ROBcopyleft81.14 2084.42 34282.28 34890.83 33090.06 37684.05 32295.73 26894.04 34973.89 38780.17 37291.53 35859.15 37997.64 30366.92 38889.05 28590.80 381
CMPMVSbinary62.92 2185.62 33684.92 33387.74 35789.14 38273.12 38794.17 32696.80 23173.98 38673.65 38594.93 25466.36 36197.61 30783.95 30791.28 25692.48 366
M. Jancosek, T. Pajdla: Multi-View Reconstruction Preserving Weakly-Supported Surfaces. CVPR 2011
PMVScopyleft53.92 2258.58 36755.40 37068.12 38351.00 41048.64 40778.86 39687.10 39646.77 39935.84 40574.28 3958.76 40986.34 39842.07 40073.91 38169.38 397
Y. Furukawa, J. Ponce: Accurate, dense, and robust multiview stereopsis. PAMI (2010)
MVEpermissive50.73 2353.25 36948.81 37466.58 38465.34 40857.50 40372.49 39870.94 40940.15 40239.28 40463.51 4006.89 41173.48 40538.29 40142.38 40068.76 398
Simon Fuhrmann, Fabian Langguth, Michael Goesele: MVE - A Multi-View Reconstruction Environment. EUROGRAPHICS Workshops on Graphics and Cultural Heritage (2014)
testing9191.90 21091.02 21794.53 20396.54 19486.55 28295.86 26095.64 29191.77 14691.89 19293.47 32569.94 33998.86 16690.23 19493.86 21698.18 156
testing1191.68 21890.75 22994.47 20496.53 19686.56 28195.76 26794.51 33891.10 17291.24 21793.59 32068.59 34798.86 16691.10 17994.29 20298.00 170
testing9991.62 22090.72 23294.32 21496.48 20186.11 29295.81 26394.76 33191.55 15191.75 19793.44 32668.55 34898.82 17090.43 18893.69 21798.04 169
UWE-MVS89.91 28689.48 28291.21 32495.88 22978.23 37694.91 30190.26 38589.11 23092.35 18094.52 27468.76 34597.96 27083.95 30795.59 18197.42 200
ETVMVS90.52 27189.14 29094.67 19596.81 17487.85 25195.91 25893.97 35189.71 21392.34 18192.48 34165.41 36897.96 27081.37 33294.27 20398.21 154
testing22290.31 27588.96 29294.35 21196.54 19487.29 25895.50 27993.84 35590.97 17591.75 19792.96 33362.18 37798.00 26082.86 31594.08 20997.76 183
WB-MVSnew89.88 28989.56 27990.82 33194.57 30783.06 33195.65 27392.85 36587.86 27390.83 22294.10 30079.66 24796.88 34476.34 36094.19 20492.54 364
fmvsm_l_conf0.5_n_a97.63 897.76 597.26 5798.25 8692.59 8297.81 8898.68 1394.93 3099.24 398.87 1593.52 2099.79 3399.32 399.21 6999.40 54
fmvsm_l_conf0.5_n97.65 797.75 697.34 5098.21 9292.75 7697.83 8498.73 995.04 2899.30 198.84 2093.34 2299.78 3599.32 399.13 7799.50 40
fmvsm_s_conf0.1_n_a96.40 5896.47 5396.16 11395.48 24790.69 15797.91 7598.33 2994.07 6498.93 999.14 187.44 11799.61 6998.63 1398.32 11398.18 156
fmvsm_s_conf0.1_n96.58 5496.77 4096.01 12396.67 18290.25 17097.91 7598.38 2394.48 5398.84 1699.14 188.06 10399.62 6898.82 1198.60 10198.15 160
fmvsm_s_conf0.5_n_a96.75 4696.93 2996.20 11197.64 12990.72 15698.00 5998.73 994.55 5098.91 1399.08 388.22 10199.63 6798.91 998.37 11198.25 151
fmvsm_s_conf0.5_n96.85 3997.13 1696.04 11998.07 10590.28 16997.97 6798.76 894.93 3098.84 1699.06 488.80 9299.65 5899.06 798.63 9998.18 156
MM97.29 1996.98 2698.23 1198.01 10795.03 2598.07 5295.76 28197.78 197.52 4098.80 2288.09 10299.86 899.44 199.37 5699.80 1
WAC-MVS79.53 36675.56 365
Syy-MVS87.13 32087.02 31587.47 35895.16 27273.21 38695.00 29893.93 35388.55 25486.96 32091.99 35175.90 29594.00 37961.59 39294.11 20695.20 294
test_fmvsmconf0.1_n97.09 2497.06 1997.19 6295.67 23992.21 9497.95 7098.27 3995.78 1098.40 2599.00 689.99 7899.78 3599.06 799.41 4999.59 22
test_fmvsmconf0.01_n96.15 6595.85 6897.03 6792.66 35791.83 10697.97 6797.84 12095.57 1297.53 3999.00 684.20 16199.76 3898.82 1199.08 8199.48 44
myMVS_eth3d87.18 31986.38 31989.58 34895.16 27279.53 36695.00 29893.93 35388.55 25486.96 32091.99 35156.23 38594.00 37975.47 36694.11 20695.20 294
testing387.67 31586.88 31690.05 34396.14 22180.71 35197.10 16792.85 36590.15 20287.54 30794.55 27355.70 38694.10 37873.77 37394.10 20895.35 283
SSC-MVS76.05 35675.83 35976.72 37884.77 39256.22 40594.32 32188.96 39081.82 36170.52 38788.91 37574.79 30788.71 39533.69 40364.71 39485.23 389
test_fmvsmconf_n97.49 1297.56 997.29 5397.44 14092.37 8897.91 7598.88 495.83 898.92 1299.05 591.45 5399.80 3099.12 699.46 3999.69 12
WB-MVS76.77 35576.63 35877.18 37485.32 39156.82 40494.53 31089.39 38882.66 35571.35 38689.18 37475.03 30588.88 39435.42 40266.79 39285.84 388
test_fmvsmvis_n_192096.70 4796.84 3396.31 10096.62 18491.73 10797.98 6198.30 3296.19 596.10 9398.95 889.42 8399.76 3898.90 1099.08 8197.43 199
dmvs_re90.21 28089.50 28192.35 29495.47 25085.15 30695.70 26994.37 34290.94 17688.42 28793.57 32174.63 30895.67 36382.80 31889.57 28196.22 234
SDMVSNet94.17 11493.61 11995.86 12898.09 10191.37 12697.35 14398.20 5293.18 10091.79 19597.28 13179.13 25598.93 16094.61 11092.84 22797.28 207
dmvs_testset81.38 35082.60 34677.73 37391.74 36851.49 40693.03 35884.21 40189.07 23178.28 37891.25 36076.97 28688.53 39656.57 39682.24 35693.16 354
sd_testset93.10 16092.45 17095.05 16898.09 10189.21 20996.89 18297.64 13893.18 10091.79 19597.28 13175.35 30398.65 19088.99 22492.84 22797.28 207
test_fmvsm_n_192097.55 1197.89 396.53 7998.41 7491.73 10798.01 5799.02 196.37 499.30 198.92 1092.39 3799.79 3399.16 599.46 3998.08 167
test_cas_vis1_n_192094.48 10894.55 10194.28 21896.78 17586.45 28397.63 11297.64 13893.32 9497.68 3898.36 5073.75 31799.08 14496.73 3999.05 8397.31 206
test_vis1_n_192094.17 11494.58 9792.91 28097.42 14182.02 34197.83 8497.85 11694.68 4698.10 2998.49 3870.15 33799.32 11797.91 1598.82 9297.40 201
test_vis1_n92.37 19092.26 17592.72 28794.75 29782.64 33398.02 5696.80 23191.18 16797.77 3797.93 8858.02 38198.29 22297.63 1998.21 11797.23 210
test_fmvs1_n92.73 18092.88 14792.29 29796.08 22681.05 34997.98 6197.08 20190.72 18296.79 6298.18 7063.07 37398.45 20797.62 2098.42 11097.36 202
mvsany_test193.93 12893.98 11193.78 24694.94 28586.80 27294.62 30692.55 37088.77 24896.85 6098.49 3888.98 8898.08 24695.03 9695.62 18096.46 231
APD_test179.31 35377.70 35684.14 36689.11 38369.07 39292.36 36891.50 37869.07 39073.87 38492.63 33839.93 39594.32 37670.54 38580.25 36389.02 386
test_vis1_rt86.16 33085.06 33189.46 34993.47 34280.46 35696.41 22386.61 39785.22 32479.15 37588.64 37652.41 38997.06 33693.08 13990.57 26990.87 380
test_vis3_rt72.73 35770.55 36079.27 37180.02 39868.13 39493.92 33574.30 40876.90 38358.99 39773.58 39720.29 40695.37 36984.16 30272.80 38474.31 396
test_fmvs289.77 29389.93 26589.31 35193.68 33476.37 37997.64 11095.90 27589.84 21091.49 20496.26 19458.77 38097.10 33594.65 10891.13 25994.46 332
test_fmvs193.21 15393.53 12392.25 29996.55 19381.20 34897.40 13896.96 21490.68 18496.80 6198.04 7969.25 34298.40 21097.58 2198.50 10497.16 211
test_fmvs383.21 34583.02 34283.78 36786.77 39068.34 39396.76 19394.91 32586.49 30484.14 34989.48 37236.04 39791.73 38991.86 16280.77 36291.26 379
mvsany_test383.59 34382.44 34787.03 36183.80 39373.82 38493.70 34190.92 38386.42 30582.51 36090.26 36546.76 39295.71 36190.82 18376.76 37591.57 374
testf169.31 36166.76 36476.94 37678.61 39961.93 40088.27 38886.11 39855.62 39559.69 39585.31 38820.19 40789.32 39157.62 39369.44 38979.58 393
APD_test269.31 36166.76 36476.94 37678.61 39961.93 40088.27 38886.11 39855.62 39559.69 39585.31 38820.19 40789.32 39157.62 39369.44 38979.58 393
test_f80.57 35179.62 35383.41 36883.38 39567.80 39593.57 34893.72 35680.80 36977.91 37987.63 38433.40 39892.08 38887.14 26379.04 37090.34 383
FE-MVS92.05 20691.05 21695.08 16796.83 17187.93 24693.91 33695.70 28486.30 30794.15 14094.97 25176.59 28899.21 12684.10 30396.86 15398.09 166
FA-MVS(test-final)93.52 14492.92 14595.31 15896.77 17788.54 22794.82 30296.21 26689.61 21594.20 13895.25 24383.24 17599.14 13590.01 19596.16 16898.25 151
iter_conf_final93.60 13993.11 13995.04 16997.13 15191.30 12897.92 7395.65 29092.98 11291.60 20096.64 16879.28 25398.13 23595.34 9091.49 25095.70 264
bld_raw_dy_0_6492.37 19091.69 19294.39 20994.28 31889.73 18597.71 10093.65 35892.78 12090.46 22796.67 16675.88 29697.97 26592.92 14690.89 26695.48 270
patch_mono-296.83 4197.44 1395.01 17299.05 3985.39 30296.98 17698.77 794.70 4597.99 3298.66 2793.61 1999.91 197.67 1899.50 3399.72 11
EGC-MVSNET68.77 36363.01 36886.07 36592.49 36082.24 34093.96 33290.96 3820.71 4082.62 40990.89 36153.66 38793.46 38357.25 39584.55 33582.51 391
test250691.60 22190.78 22794.04 22897.66 12783.81 32398.27 3375.53 40693.43 8995.23 11998.21 6767.21 35699.07 14893.01 14498.49 10599.25 68
test111193.19 15592.82 15094.30 21797.58 13784.56 31598.21 4389.02 38993.53 8494.58 13098.21 6772.69 32099.05 15193.06 14098.48 10799.28 65
ECVR-MVScopyleft93.19 15592.73 15694.57 20197.66 12785.41 30098.21 4388.23 39193.43 8994.70 12898.21 6772.57 32199.07 14893.05 14198.49 10599.25 68
test_blank0.00 3780.00 3810.00 3910.00 4140.00 4160.00 4020.00 4150.00 4090.00 4100.00 4090.00 4140.00 4100.00 4090.00 4080.00 406
tt080591.09 24990.07 26194.16 22295.61 24088.31 23297.56 11996.51 25189.56 21689.17 27295.64 22767.08 36098.38 21591.07 18088.44 29295.80 254
DVP-MVS++98.06 197.99 198.28 998.67 5895.39 1199.29 198.28 3694.78 4198.93 998.87 1596.04 299.86 897.45 2699.58 2199.59 22
FOURS199.55 193.34 6499.29 198.35 2794.98 2998.49 23
MSC_two_6792asdad98.86 198.67 5896.94 197.93 10599.86 897.68 1699.67 699.77 2
PC_three_145290.77 17998.89 1498.28 6596.24 198.35 21795.76 7399.58 2199.59 22
No_MVS98.86 198.67 5896.94 197.93 10599.86 897.68 1699.67 699.77 2
test_one_060199.32 2295.20 2098.25 4595.13 2398.48 2498.87 1595.16 7
eth-test20.00 414
eth-test0.00 414
GeoE93.89 12993.28 13695.72 13796.96 16589.75 18498.24 3996.92 22189.47 22092.12 18797.21 13784.42 15698.39 21487.71 24496.50 16399.01 89
test_method66.11 36564.89 36769.79 38272.62 40535.23 41365.19 40092.83 36720.35 40365.20 39288.08 38243.14 39482.70 40073.12 37663.46 39591.45 378
Anonymous2024052186.42 32685.44 32689.34 35090.33 37479.79 36496.73 19595.92 27383.71 34683.25 35691.36 35963.92 37196.01 35478.39 35185.36 32092.22 369
h-mvs3394.15 11693.52 12596.04 11997.81 11990.22 17197.62 11497.58 14595.19 2096.74 6497.45 12483.67 16899.61 6995.85 6979.73 36598.29 150
hse-mvs293.45 14692.99 14294.81 18697.02 16188.59 22496.69 20196.47 25395.19 2096.74 6496.16 19983.67 16898.48 20695.85 6979.13 36997.35 204
CL-MVSNet_self_test86.31 32885.15 33089.80 34688.83 38481.74 34493.93 33496.22 26486.67 30185.03 33990.80 36278.09 27694.50 37374.92 36771.86 38593.15 355
KD-MVS_2432*160084.81 34082.64 34491.31 32291.07 37185.34 30491.22 37295.75 28285.56 31983.09 35790.21 36667.21 35695.89 35677.18 35762.48 39692.69 360
KD-MVS_self_test85.95 33384.95 33288.96 35289.55 38179.11 37295.13 29696.42 25585.91 31484.07 35190.48 36370.03 33894.82 37280.04 33972.94 38392.94 357
AUN-MVS91.76 21490.75 22994.81 18697.00 16388.57 22596.65 20596.49 25289.63 21492.15 18596.12 20078.66 26698.50 20390.83 18279.18 36897.36 202
ZD-MVS99.05 3994.59 2998.08 7489.22 22797.03 5798.10 7392.52 3599.65 5894.58 11199.31 60
SR-MVS-dyc-post96.88 3696.80 3897.11 6599.02 4292.34 8997.98 6198.03 9193.52 8597.43 4598.51 3691.40 5699.56 8596.05 6199.26 6499.43 51
RE-MVS-def96.72 4399.02 4292.34 8997.98 6198.03 9193.52 8597.43 4598.51 3690.71 7096.05 6199.26 6499.43 51
SED-MVS98.05 297.99 198.24 1099.42 795.30 1798.25 3698.27 3995.13 2399.19 498.89 1395.54 599.85 1897.52 2299.66 1099.56 29
IU-MVS99.42 795.39 1197.94 10490.40 19898.94 897.41 2999.66 1099.74 8
OPU-MVS98.55 398.82 5296.86 398.25 3698.26 6696.04 299.24 12495.36 8999.59 1799.56 29
test_241102_TWO98.27 3995.13 2398.93 998.89 1394.99 1199.85 1897.52 2299.65 1299.74 8
test_241102_ONE99.42 795.30 1798.27 3995.09 2699.19 498.81 2195.54 599.65 58
SF-MVS97.39 1597.13 1698.17 1599.02 4295.28 1998.23 4098.27 3992.37 12998.27 2798.65 2993.33 2399.72 4596.49 4799.52 2899.51 37
cl2291.21 24490.56 23993.14 27396.09 22586.80 27294.41 31696.58 24887.80 27688.58 28593.99 30580.85 22597.62 30689.87 20086.93 30494.99 302
miper_ehance_all_eth91.59 22291.13 21592.97 27895.55 24486.57 28094.47 31296.88 22587.77 27888.88 27794.01 30386.22 13397.54 31289.49 20986.93 30494.79 321
miper_enhance_ethall91.54 22791.01 21893.15 27295.35 25787.07 26893.97 33196.90 22286.79 30089.17 27293.43 32986.55 12897.64 30389.97 19786.93 30494.74 325
ZNCC-MVS96.96 3196.67 4597.85 2599.37 1694.12 4498.49 2098.18 5792.64 12496.39 8498.18 7091.61 5099.88 495.59 8599.55 2499.57 26
dcpmvs_296.37 6097.05 2294.31 21698.96 4684.11 32097.56 11997.51 15393.92 6997.43 4598.52 3592.75 2999.32 11797.32 3099.50 3399.51 37
cl____90.96 25790.32 24592.89 28195.37 25586.21 28994.46 31496.64 24287.82 27488.15 29794.18 29782.98 18497.54 31287.70 24585.59 31594.92 309
DIV-MVS_self_test90.97 25690.33 24492.88 28295.36 25686.19 29094.46 31496.63 24587.82 27488.18 29694.23 29482.99 18397.53 31487.72 24285.57 31694.93 307
eth_miper_zixun_eth91.02 25390.59 23792.34 29695.33 26184.35 31694.10 32896.90 22288.56 25388.84 27994.33 28684.08 16397.60 30888.77 22984.37 33895.06 300
9.1496.75 4198.93 4797.73 9598.23 5091.28 16397.88 3598.44 4493.00 2699.65 5895.76 7399.47 38
uanet_test0.00 3780.00 3810.00 3910.00 4140.00 4160.00 4020.00 4150.00 4090.00 4100.00 4090.00 4140.00 4100.00 4090.00 4080.00 406
DCPMVS0.00 3780.00 3810.00 3910.00 4140.00 4160.00 4020.00 4150.00 4090.00 4100.00 4090.00 4140.00 4100.00 4090.00 4080.00 406
save fliter98.91 4994.28 3697.02 17198.02 9495.35 16
ET-MVSNet_ETH3D91.49 22990.11 25795.63 14196.40 20691.57 11895.34 28593.48 36090.60 19375.58 38295.49 23580.08 23896.79 34794.25 11589.76 27998.52 127
UniMVSNet_ETH3D91.34 23990.22 25494.68 19494.86 29187.86 25097.23 15797.46 16187.99 26889.90 24796.92 15366.35 36298.23 22590.30 19290.99 26397.96 171
EIA-MVS95.53 8195.47 7495.71 13897.06 15789.63 18697.82 8697.87 11193.57 7993.92 14695.04 25090.61 7198.95 15894.62 10998.68 9798.54 125
miper_refine_blended84.81 34082.64 34491.31 32291.07 37185.34 30491.22 37295.75 28285.56 31983.09 35790.21 36667.21 35695.89 35677.18 35762.48 39692.69 360
miper_lstm_enhance90.50 27390.06 26291.83 30895.33 26183.74 32493.86 33796.70 23887.56 28587.79 30293.81 31183.45 17396.92 34387.39 25584.62 33394.82 316
ETV-MVS96.02 6895.89 6796.40 9397.16 14892.44 8697.47 13197.77 12294.55 5096.48 7994.51 27591.23 6198.92 16195.65 7898.19 11897.82 181
CS-MVS96.86 3797.06 1996.26 10698.16 9891.16 14099.09 397.87 11195.30 1897.06 5698.03 8091.72 4698.71 18597.10 3199.17 7398.90 102
D2MVS91.30 24190.95 21992.35 29494.71 30085.52 29896.18 24598.21 5188.89 24086.60 32693.82 31079.92 24297.95 27489.29 21590.95 26493.56 349
DVP-MVScopyleft97.91 397.81 498.22 1399.45 395.36 1398.21 4397.85 11694.92 3298.73 1898.87 1595.08 899.84 2397.52 2299.67 699.48 44
Zhenlong Yuan, Jinguo Luo, Fei Shen, Zhaoxin Li, Cong Liu, Tianlu Mao, Zhaoqi Wang: DVP-MVS: Synergize Depth-Edge and Visibility Prior for Multi-View Stereo. AAAI2025
test_0728_THIRD94.78 4198.73 1898.87 1595.87 499.84 2397.45 2699.72 299.77 2
test_0728_SECOND98.51 499.45 395.93 598.21 4398.28 3699.86 897.52 2299.67 699.75 6
test072699.45 395.36 1398.31 2998.29 3494.92 3298.99 798.92 1095.08 8
SR-MVS97.01 3096.86 3197.47 4699.09 3493.27 6697.98 6198.07 7993.75 7497.45 4298.48 4191.43 5599.59 7496.22 5399.27 6299.54 33
DPM-MVS95.69 7594.92 8898.01 1998.08 10495.71 995.27 29197.62 14190.43 19795.55 11397.07 14491.72 4699.50 9989.62 20798.94 8998.82 111
GST-MVS96.85 3996.52 5197.82 2799.36 1894.14 4398.29 3198.13 6592.72 12196.70 6698.06 7791.35 5799.86 894.83 10199.28 6199.47 46
test_yl94.78 10494.23 10896.43 9197.74 12291.22 13196.85 18597.10 19891.23 16595.71 10796.93 15084.30 15899.31 11993.10 13795.12 18898.75 113
thisisatest053093.03 16592.21 17695.49 15197.07 15489.11 21497.49 13092.19 37290.16 20194.09 14196.41 18676.43 29299.05 15190.38 19095.68 17998.31 149
Anonymous2024052991.98 20890.73 23195.73 13698.14 9989.40 19997.99 6097.72 12879.63 37493.54 15397.41 12769.94 33999.56 8591.04 18191.11 26098.22 153
Anonymous20240521192.07 20590.83 22695.76 13198.19 9588.75 22097.58 11795.00 32086.00 31393.64 15097.45 12466.24 36499.53 9190.68 18792.71 23099.01 89
DCV-MVSNet94.78 10494.23 10896.43 9197.74 12291.22 13196.85 18597.10 19891.23 16595.71 10796.93 15084.30 15899.31 11993.10 13795.12 18898.75 113
tttt051792.96 16892.33 17394.87 18297.11 15287.16 26697.97 6792.09 37390.63 18993.88 14797.01 14876.50 28999.06 15090.29 19395.45 18398.38 145
our_test_388.78 30487.98 30491.20 32692.45 36282.53 33593.61 34795.69 28685.77 31684.88 34093.71 31379.99 24096.78 34879.47 34486.24 30994.28 340
thisisatest051592.29 19691.30 20795.25 16096.60 18688.90 21894.36 31892.32 37187.92 27093.43 15794.57 27277.28 28499.00 15589.42 21195.86 17497.86 177
ppachtmachnet_test88.35 30987.29 30891.53 31792.45 36283.57 32893.75 34095.97 27284.28 33785.32 33894.18 29779.00 26396.93 34275.71 36384.99 32994.10 342
SMA-MVScopyleft97.35 1697.03 2498.30 899.06 3895.42 1097.94 7198.18 5790.57 19498.85 1598.94 993.33 2399.83 2696.72 4099.68 499.63 17
Yufeng Yin; Xiaoyan Liu; Zichao Zhang: SMA-MVS: Segmentation-Guided Multi-Scale Anchor Deformation Patch Multi-View Stereo. IEEE Transactions on Circuits and Systems for Video Technology
GSMVS98.45 137
DPE-MVScopyleft97.86 497.65 898.47 599.17 3295.78 797.21 15998.35 2795.16 2298.71 2098.80 2295.05 1099.89 396.70 4199.73 199.73 10
Kehua Chen, Zhenlong Yuan, Tianlu Mao, Zhaoqi Wang: Dual-Level Precision Edges Guided Multi-View Stereo with Accurate Planarization. AAAI2025
test_part299.28 2595.74 898.10 29
thres100view90092.43 18691.58 19694.98 17597.92 11389.37 20197.71 10094.66 33392.20 13393.31 16094.90 25678.06 27799.08 14481.40 32994.08 20996.48 229
tfpnnormal89.70 29488.40 29993.60 25495.15 27490.10 17297.56 11998.16 6187.28 29286.16 33094.63 27077.57 28298.05 25374.48 36884.59 33492.65 362
tfpn200view992.38 18991.52 19994.95 17897.85 11789.29 20597.41 13494.88 32792.19 13593.27 16294.46 28078.17 27399.08 14481.40 32994.08 20996.48 229
c3_l91.38 23490.89 22092.88 28295.58 24286.30 28694.68 30596.84 22988.17 26488.83 28094.23 29485.65 14297.47 31989.36 21284.63 33294.89 311
CHOSEN 280x42093.12 15992.72 15794.34 21396.71 18187.27 26090.29 37997.72 12886.61 30391.34 20895.29 24084.29 16098.41 20993.25 13598.94 8997.35 204
CANet96.39 5996.02 6497.50 4597.62 13193.38 6197.02 17197.96 10295.42 1594.86 12597.81 9987.38 11999.82 2896.88 3699.20 7199.29 63
Fast-Effi-MVS+-dtu92.29 19691.99 18293.21 27195.27 26585.52 29897.03 16996.63 24592.09 13889.11 27495.14 24780.33 23498.08 24687.54 25394.74 19796.03 245
Effi-MVS+-dtu93.08 16293.21 13892.68 29096.02 22783.25 33097.14 16596.72 23493.85 7291.20 21993.44 32683.08 18098.30 22191.69 16895.73 17796.50 228
CANet_DTU94.37 10993.65 11896.55 7896.46 20392.13 9896.21 24396.67 24194.38 5893.53 15497.03 14779.34 25199.71 4690.76 18498.45 10997.82 181
MVS_030497.04 2896.73 4297.96 2397.60 13494.36 3498.01 5794.09 34797.33 296.29 8698.79 2489.73 8299.86 899.36 299.42 4699.67 13
MP-MVS-pluss96.70 4796.27 6197.98 2199.23 3094.71 2896.96 17898.06 8290.67 18595.55 11398.78 2591.07 6399.86 896.58 4499.55 2499.38 58
MP-MVS-pluss: MP-MVS-pluss. MP-MVS-pluss
MSP-MVS97.59 1097.54 1097.73 3699.40 1193.77 5498.53 1598.29 3495.55 1398.56 2297.81 9993.90 1599.65 5896.62 4299.21 6999.77 2
Zhenlong Yuan, Cong Liu, Fei Shen, Zhaoxin Li, Jingguo luo, Tianlu Mao and Zhaoqi Wang: MSP-MVS: Multi-granularity Segmentation Prior Guided Multi-View Stereo. AAAI2025
sam_mvs182.76 19098.45 137
sam_mvs81.94 209
IterMVS-SCA-FT90.31 27589.81 27091.82 30995.52 24584.20 31994.30 32296.15 26890.61 19187.39 31194.27 29175.80 29896.44 35087.34 25686.88 30894.82 316
TSAR-MVS + MP.97.42 1397.33 1597.69 4099.25 2794.24 3998.07 5297.85 11693.72 7598.57 2198.35 5193.69 1899.40 11097.06 3299.46 3999.44 49
Zhenlong Yuan, Jiakai Cao, Zhaoqi Wang, Zhaoxin Li: TSAR-MVS: Textureless-aware Segmentation and Correlative Refinement Guided Multi-View Stereo. Pattern Recognition
xiu_mvs_v1_base_debu95.01 9394.76 9195.75 13396.58 18891.71 10996.25 23997.35 18292.99 10796.70 6696.63 17482.67 19199.44 10696.22 5397.46 13596.11 242
OPM-MVS93.28 15192.76 15294.82 18494.63 30390.77 15496.65 20597.18 19193.72 7591.68 19997.26 13479.33 25298.63 19292.13 15592.28 23595.07 299
Ray L. Khuboni, Hongjun Xu: Octagram Propagation Matching for Multi-Scale View Stereopsis (OPM-MVS).
ACMMP_NAP97.20 2096.86 3198.23 1199.09 3495.16 2297.60 11598.19 5592.82 11897.93 3498.74 2691.60 5199.86 896.26 5099.52 2899.67 13
ambc86.56 36383.60 39470.00 39085.69 39294.97 32280.60 36888.45 37737.42 39696.84 34682.69 32175.44 37892.86 358
MTGPAbinary98.08 74
CS-MVS-test96.89 3597.04 2396.45 9098.29 8291.66 11399.03 497.85 11695.84 796.90 5997.97 8691.24 5998.75 17996.92 3599.33 5898.94 97
Effi-MVS+94.93 9894.45 10596.36 9896.61 18591.47 12296.41 22397.41 17591.02 17494.50 13295.92 20887.53 11498.78 17493.89 12396.81 15598.84 110
xiu_mvs_v2_base95.32 8595.29 8195.40 15697.22 14490.50 16395.44 28297.44 17093.70 7796.46 8196.18 19688.59 9899.53 9194.79 10697.81 12896.17 237
xiu_mvs_v1_base95.01 9394.76 9195.75 13396.58 18891.71 10996.25 23997.35 18292.99 10796.70 6696.63 17482.67 19199.44 10696.22 5397.46 13596.11 242
new-patchmatchnet83.18 34681.87 34987.11 36086.88 38975.99 38193.70 34195.18 31385.02 32977.30 38088.40 37865.99 36593.88 38274.19 37270.18 38791.47 377
pmmvs687.81 31486.19 32192.69 28991.32 36986.30 28697.34 14496.41 25680.59 37184.05 35294.37 28467.37 35597.67 30084.75 29679.51 36794.09 344
pmmvs589.86 29188.87 29492.82 28492.86 35286.23 28896.26 23895.39 30084.24 33887.12 31594.51 27574.27 31197.36 32887.61 25287.57 29894.86 312
test_post192.81 36216.58 40780.53 22997.68 29986.20 274
test_post17.58 40681.76 21198.08 246
Fast-Effi-MVS+93.46 14592.75 15495.59 14496.77 17790.03 17396.81 18997.13 19588.19 26391.30 21194.27 29186.21 13498.63 19287.66 24996.46 16698.12 162
patchmatchnet-post90.45 36482.65 19498.10 242
Anonymous2023121190.63 26889.42 28394.27 21998.24 8789.19 21298.05 5497.89 10779.95 37288.25 29494.96 25272.56 32298.13 23589.70 20485.14 32495.49 269
pmmvs-eth3d86.22 32984.45 33691.53 31788.34 38687.25 26194.47 31295.01 31983.47 34979.51 37489.61 37169.75 34195.71 36183.13 31376.73 37691.64 372
GG-mvs-BLEND93.62 25393.69 33389.20 21092.39 36783.33 40287.98 30189.84 37071.00 33096.87 34582.08 32595.40 18494.80 319
xiu_mvs_v1_base_debi95.01 9394.76 9195.75 13396.58 18891.71 10996.25 23997.35 18292.99 10796.70 6696.63 17482.67 19199.44 10696.22 5397.46 13596.11 242
Anonymous2023120687.09 32186.14 32289.93 34591.22 37080.35 35796.11 24795.35 30383.57 34884.16 34793.02 33273.54 31895.61 36472.16 37886.14 31193.84 347
MTAPA97.08 2596.78 3997.97 2299.37 1694.42 3397.24 15398.08 7495.07 2796.11 9298.59 3090.88 6899.90 296.18 5999.50 3399.58 25
MTMP97.86 7982.03 403
gm-plane-assit93.22 34778.89 37484.82 33293.52 32298.64 19187.72 242
test9_res94.81 10399.38 5399.45 47
MVP-Stereo90.74 26490.08 25892.71 28893.19 34888.20 23895.86 26096.27 26186.07 31284.86 34194.76 26377.84 28097.75 29583.88 30998.01 12392.17 371
Qingsong Yan: MVP-Stereo: A Parallel Multi-View Patchmatch Stereo Method with Dilation Matching for Photogrammetric Application.
TEST998.70 5694.19 4096.41 22398.02 9488.17 26496.03 9597.56 12192.74 3099.59 74
train_agg96.30 6295.83 6997.72 3798.70 5694.19 4096.41 22398.02 9488.58 25196.03 9597.56 12192.73 3199.59 7495.04 9599.37 5699.39 56
gg-mvs-nofinetune87.82 31385.61 32594.44 20694.46 30989.27 20891.21 37484.61 40080.88 36689.89 24974.98 39471.50 32697.53 31485.75 28597.21 14896.51 227
SCA91.84 21291.18 21493.83 24295.59 24184.95 31194.72 30495.58 29490.82 17792.25 18393.69 31475.80 29898.10 24286.20 27495.98 17098.45 137
Patchmatch-test89.42 29687.99 30393.70 25095.27 26585.11 30788.98 38694.37 34281.11 36487.10 31793.69 31482.28 20197.50 31774.37 37094.76 19598.48 134
test_898.67 5894.06 4796.37 23098.01 9788.58 25195.98 9997.55 12392.73 3199.58 77
MS-PatchMatch90.27 27789.77 27291.78 31294.33 31484.72 31495.55 27696.73 23386.17 31186.36 32895.28 24271.28 32897.80 29084.09 30498.14 12192.81 359
Patchmatch-RL test87.38 31786.24 32090.81 33288.74 38578.40 37588.12 39093.17 36287.11 29582.17 36289.29 37381.95 20895.60 36588.64 23177.02 37398.41 142
cdsmvs_eth3d_5k23.24 37330.99 3750.00 3910.00 4140.00 4160.00 40297.63 1400.00 4090.00 41096.88 15584.38 1570.00 4100.00 4090.00 4080.00 406
pcd_1.5k_mvsjas7.39 3779.85 3800.00 3910.00 4140.00 4160.00 4020.00 4150.00 4090.00 4100.00 40988.65 950.00 4100.00 4090.00 4080.00 406
agg_prior293.94 12199.38 5399.50 40
agg_prior98.67 5893.79 5298.00 9895.68 10999.57 84
tmp_tt51.94 37153.82 37146.29 38733.73 41145.30 41178.32 39767.24 41018.02 40450.93 40087.05 38752.99 38853.11 40670.76 38325.29 40440.46 402
canonicalmvs96.02 6895.45 7597.75 3597.59 13595.15 2398.28 3297.60 14294.52 5296.27 8896.12 20087.65 11199.18 13096.20 5894.82 19498.91 101
anonymousdsp92.16 20291.55 19793.97 23392.58 35989.55 19197.51 12497.42 17489.42 22288.40 28894.84 25980.66 22697.88 28491.87 16191.28 25694.48 331
alignmvs95.87 7395.23 8297.78 3197.56 13895.19 2197.86 7997.17 19394.39 5796.47 8096.40 18785.89 13899.20 12796.21 5795.11 19098.95 96
nrg03094.05 12393.31 13596.27 10595.22 26994.59 2998.34 2797.46 16192.93 11591.21 21896.64 16887.23 12298.22 22694.99 9885.80 31495.98 246
v14419291.06 25190.28 24893.39 26393.66 33587.23 26396.83 18897.07 20387.43 28789.69 25494.28 29081.48 21598.00 26087.18 26184.92 33094.93 307
FIs94.09 12193.70 11695.27 15995.70 23792.03 10198.10 4998.68 1393.36 9390.39 22996.70 16287.63 11297.94 27592.25 15190.50 27295.84 250
v192192090.85 26090.03 26393.29 26793.55 33686.96 27196.74 19497.04 20887.36 28989.52 26194.34 28580.23 23697.97 26586.27 27285.21 32394.94 305
UA-Net95.95 7195.53 7297.20 6197.67 12592.98 7297.65 10698.13 6594.81 3996.61 7298.35 5188.87 9099.51 9690.36 19197.35 14299.11 81
v119291.07 25090.23 25293.58 25693.70 33287.82 25296.73 19597.07 20387.77 27889.58 25794.32 28880.90 22497.97 26586.52 26985.48 31794.95 303
FC-MVSNet-test93.94 12793.57 12095.04 16995.48 24791.45 12498.12 4898.71 1193.37 9190.23 23296.70 16287.66 11097.85 28591.49 17190.39 27395.83 251
v114491.37 23690.60 23693.68 25293.89 32788.23 23796.84 18797.03 21088.37 25989.69 25494.39 28282.04 20597.98 26287.80 24185.37 31994.84 313
sosnet-low-res0.00 3780.00 3810.00 3910.00 4140.00 4160.00 4020.00 4150.00 4090.00 4100.00 4090.00 4140.00 4100.00 4090.00 4080.00 406
HFP-MVS97.14 2396.92 3097.83 2699.42 794.12 4498.52 1698.32 3093.21 9697.18 5098.29 6392.08 4299.83 2695.63 8099.59 1799.54 33
v14890.99 25490.38 24392.81 28593.83 32985.80 29496.78 19296.68 23989.45 22188.75 28293.93 30782.96 18697.82 28987.83 24083.25 34994.80 319
sosnet0.00 3780.00 3810.00 3910.00 4140.00 4160.00 4020.00 4150.00 4090.00 4100.00 4090.00 4140.00 4100.00 4090.00 4080.00 406
uncertanet0.00 3780.00 3810.00 3910.00 4140.00 4160.00 4020.00 4150.00 4090.00 4100.00 4090.00 4140.00 4100.00 4090.00 4080.00 406
AllTest90.23 27988.98 29193.98 23197.94 11186.64 27696.51 21895.54 29585.38 32185.49 33596.77 15870.28 33499.15 13380.02 34092.87 22596.15 239
TestCases93.98 23197.94 11186.64 27695.54 29585.38 32185.49 33596.77 15870.28 33499.15 13380.02 34092.87 22596.15 239
v7n90.76 26289.86 26793.45 26293.54 33787.60 25697.70 10297.37 17988.85 24187.65 30594.08 30281.08 21998.10 24284.68 29783.79 34694.66 328
region2R97.07 2696.84 3397.77 3399.46 293.79 5298.52 1698.24 4793.19 9997.14 5298.34 5491.59 5299.87 795.46 8799.59 1799.64 16
iter_conf0593.18 15892.63 15994.83 18396.64 18390.69 15797.60 11595.53 29792.52 12591.58 20196.64 16876.35 29398.13 23595.43 8891.42 25395.68 266
RRT_MVS93.10 16092.83 14993.93 23994.76 29588.04 24398.47 2296.55 24993.44 8890.01 24597.04 14680.64 22797.93 27894.33 11490.21 27595.83 251
PS-MVSNAJss93.74 13693.51 12694.44 20693.91 32689.28 20797.75 9297.56 14992.50 12689.94 24696.54 18088.65 9598.18 23193.83 12690.90 26595.86 247
PS-MVSNAJ95.37 8395.33 8095.49 15197.35 14290.66 16095.31 28897.48 15693.85 7296.51 7795.70 22488.65 9599.65 5894.80 10498.27 11596.17 237
jajsoiax92.42 18791.89 18694.03 22993.33 34688.50 22997.73 9597.53 15192.00 14288.85 27896.50 18275.62 30198.11 24193.88 12491.56 24995.48 270
mvs_tets92.31 19491.76 18893.94 23793.41 34388.29 23397.63 11297.53 15192.04 14088.76 28196.45 18474.62 30998.09 24593.91 12291.48 25195.45 275
EI-MVSNet-UG-set96.34 6196.30 6096.47 8798.20 9390.93 14796.86 18497.72 12894.67 4796.16 9198.46 4290.43 7399.58 7796.23 5297.96 12598.90 102
EI-MVSNet-Vis-set96.51 5596.47 5396.63 7498.24 8791.20 13596.89 18297.73 12694.74 4496.49 7898.49 3890.88 6899.58 7796.44 4898.32 11399.13 77
HPM-MVS++copyleft97.34 1796.97 2798.47 599.08 3696.16 497.55 12297.97 10195.59 1196.61 7297.89 9092.57 3499.84 2395.95 6699.51 3199.40 54
test_prior493.66 5596.42 222
XVS97.18 2196.96 2897.81 2899.38 1494.03 4898.59 1298.20 5294.85 3496.59 7498.29 6391.70 4899.80 3095.66 7599.40 5099.62 18
v124090.70 26689.85 26893.23 26993.51 33986.80 27296.61 21197.02 21187.16 29489.58 25794.31 28979.55 24997.98 26285.52 28785.44 31894.90 310
pm-mvs190.72 26589.65 27893.96 23494.29 31789.63 18697.79 9096.82 23089.07 23186.12 33195.48 23678.61 26797.78 29286.97 26581.67 35794.46 332
test_prior296.35 23192.80 11996.03 9597.59 11892.01 4395.01 9799.38 53
X-MVStestdata91.71 21589.67 27697.81 2899.38 1494.03 4898.59 1298.20 5294.85 3496.59 7432.69 40391.70 4899.80 3095.66 7599.40 5099.62 18
test_prior97.23 5898.67 5892.99 7198.00 9899.41 10999.29 63
旧先验295.94 25681.66 36297.34 4898.82 17092.26 149
新几何295.79 265
新几何197.32 5198.60 6593.59 5697.75 12381.58 36395.75 10697.85 9690.04 7799.67 5686.50 27099.13 7798.69 119
旧先验198.38 7893.38 6197.75 12398.09 7592.30 4199.01 8699.16 73
无先验95.79 26597.87 11183.87 34499.65 5887.68 24898.89 105
原ACMM295.67 270
原ACMM196.38 9698.59 6691.09 14297.89 10787.41 28895.22 12097.68 10790.25 7499.54 8987.95 23899.12 7998.49 132
test22298.24 8792.21 9495.33 28697.60 14279.22 37695.25 11897.84 9888.80 9299.15 7598.72 116
testdata299.67 5685.96 282
segment_acmp92.89 27
testdata95.46 15598.18 9788.90 21897.66 13482.73 35497.03 5798.07 7690.06 7698.85 16889.67 20598.98 8798.64 122
testdata195.26 29393.10 105
v891.29 24290.53 24093.57 25794.15 31988.12 24297.34 14497.06 20588.99 23588.32 29094.26 29383.08 18098.01 25987.62 25183.92 34494.57 330
131492.81 17892.03 18095.14 16495.33 26189.52 19496.04 25097.44 17087.72 28186.25 32995.33 23983.84 16598.79 17389.26 21697.05 15297.11 212
LFMVS93.60 13992.63 15996.52 8098.13 10091.27 13097.94 7193.39 36190.57 19496.29 8698.31 6069.00 34399.16 13294.18 11695.87 17399.12 80
VDD-MVS93.82 13393.08 14096.02 12197.88 11689.96 18097.72 9895.85 27892.43 12795.86 10298.44 4468.42 35099.39 11196.31 4994.85 19298.71 118
VDDNet93.05 16492.07 17896.02 12196.84 16990.39 16898.08 5195.85 27886.22 31095.79 10598.46 4267.59 35399.19 12894.92 9994.85 19298.47 135
v1091.04 25290.23 25293.49 25994.12 32088.16 24197.32 14797.08 20188.26 26288.29 29294.22 29682.17 20497.97 26586.45 27184.12 34094.33 337
VPNet92.23 20091.31 20694.99 17395.56 24390.96 14597.22 15897.86 11592.96 11490.96 22096.62 17775.06 30498.20 22891.90 15983.65 34795.80 254
MVS91.71 21590.44 24195.51 14995.20 27191.59 11696.04 25097.45 16673.44 38887.36 31295.60 22985.42 14499.10 13985.97 28197.46 13595.83 251
v2v48291.59 22290.85 22493.80 24493.87 32888.17 24096.94 17996.88 22589.54 21789.53 26094.90 25681.70 21398.02 25889.25 21785.04 32895.20 294
V4291.58 22490.87 22193.73 24794.05 32388.50 22997.32 14796.97 21388.80 24789.71 25294.33 28682.54 19598.05 25389.01 22385.07 32694.64 329
SD-MVS97.41 1497.53 1197.06 6698.57 6994.46 3197.92 7398.14 6494.82 3899.01 698.55 3394.18 1497.41 32596.94 3499.64 1399.32 62
Zhenlong Yuan, Jiakai Cao, Zhaoxin Li, Hao Jiang and Zhaoqi Wang: SD-MVS: Segmentation-driven Deformation Multi-View Stereo with Spherical Refinement and EM optimization. AAAI2024
GA-MVS91.38 23490.31 24694.59 19694.65 30287.62 25594.34 31996.19 26790.73 18190.35 23093.83 30871.84 32497.96 27087.22 25993.61 22198.21 154
MSLP-MVS++96.94 3397.06 1996.59 7798.72 5591.86 10597.67 10398.49 1994.66 4897.24 4998.41 4792.31 4098.94 15996.61 4399.46 3998.96 94
APDe-MVScopyleft97.82 597.73 798.08 1899.15 3394.82 2798.81 798.30 3294.76 4398.30 2698.90 1293.77 1799.68 5497.93 1499.69 399.75 6
Zhaojie Zeng, Yuesong Wang, Tao Guan: Matching Ambiguity-Resilient Multi-View Stereo via Adaptive Patch Deformation. Pattern Recognition
APD-MVS_3200maxsize96.81 4296.71 4497.12 6499.01 4592.31 9197.98 6198.06 8293.11 10497.44 4398.55 3390.93 6699.55 8796.06 6099.25 6699.51 37
ADS-MVSNet289.45 29588.59 29792.03 30395.86 23082.26 33990.93 37594.32 34583.23 35191.28 21591.81 35579.01 26195.99 35579.52 34291.39 25497.84 178
EI-MVSNet93.03 16592.88 14793.48 26095.77 23586.98 26996.44 21997.12 19690.66 18791.30 21197.64 11486.56 12798.05 25389.91 19890.55 27095.41 276
Regformer0.00 3780.00 3810.00 3910.00 4140.00 4160.00 4020.00 4150.00 4090.00 4100.00 4090.00 4140.00 4100.00 4090.00 4080.00 406
CVMVSNet91.23 24391.75 18989.67 34795.77 23574.69 38296.44 21994.88 32785.81 31592.18 18497.64 11479.07 25695.58 36688.06 23695.86 17498.74 115
pmmvs490.93 25889.85 26894.17 22193.34 34590.79 15394.60 30796.02 27184.62 33487.45 30895.15 24681.88 21097.45 32187.70 24587.87 29694.27 341
EU-MVSNet88.72 30588.90 29388.20 35593.15 34974.21 38396.63 21094.22 34685.18 32587.32 31395.97 20576.16 29494.98 37185.27 29086.17 31095.41 276
VNet95.89 7295.45 7597.21 6098.07 10592.94 7397.50 12598.15 6293.87 7197.52 4097.61 11785.29 14599.53 9195.81 7295.27 18699.16 73
test-LLR91.42 23291.19 21392.12 30194.59 30480.66 35294.29 32392.98 36391.11 17090.76 22392.37 34379.02 25998.07 25088.81 22796.74 15797.63 188
TESTMET0.1,190.06 28489.42 28391.97 30494.41 31280.62 35494.29 32391.97 37587.28 29290.44 22892.47 34268.79 34497.67 30088.50 23396.60 16297.61 192
test-mter90.19 28289.54 28092.12 30194.59 30480.66 35294.29 32392.98 36387.68 28290.76 22392.37 34367.67 35298.07 25088.81 22796.74 15797.63 188
VPA-MVSNet93.24 15292.48 16995.51 14995.70 23792.39 8797.86 7998.66 1692.30 13092.09 18995.37 23880.49 23098.40 21093.95 12085.86 31395.75 261
ACMMPR97.07 2696.84 3397.79 3099.44 693.88 5098.52 1698.31 3193.21 9697.15 5198.33 5791.35 5799.86 895.63 8099.59 1799.62 18
testgi87.97 31187.21 31190.24 34192.86 35280.76 35096.67 20494.97 32291.74 14785.52 33495.83 21362.66 37594.47 37576.25 36188.36 29395.48 270
test20.0386.14 33185.40 32888.35 35390.12 37580.06 36295.90 25995.20 31288.59 25081.29 36493.62 31971.43 32792.65 38771.26 38281.17 36092.34 367
thres600view792.49 18591.60 19595.18 16297.91 11489.47 19597.65 10694.66 33392.18 13793.33 15994.91 25578.06 27799.10 13981.61 32694.06 21396.98 214
ADS-MVSNet89.89 28888.68 29693.53 25895.86 23084.89 31290.93 37595.07 31883.23 35191.28 21591.81 35579.01 26197.85 28579.52 34291.39 25497.84 178
MP-MVScopyleft96.77 4496.45 5797.72 3799.39 1393.80 5198.41 2598.06 8293.37 9195.54 11598.34 5490.59 7299.88 494.83 10199.54 2699.49 42
Rongxuan Tan, Qing Wang, et al.: MP-MVS: Multi-Scale Windows PatchMatch and Planar Prior Multi-View Stereo.
testmvs13.36 37416.33 3774.48 3905.04 4122.26 41593.18 3523.28 4132.70 4068.24 40721.66 4042.29 4132.19 4087.58 4072.96 4069.00 404
thres40092.42 18791.52 19995.12 16697.85 11789.29 20597.41 13494.88 32792.19 13593.27 16294.46 28078.17 27399.08 14481.40 32994.08 20996.98 214
test12313.04 37515.66 3785.18 3894.51 4133.45 41492.50 3661.81 4142.50 4077.58 40820.15 4053.67 4122.18 4097.13 4081.07 4079.90 403
thres20092.23 20091.39 20294.75 19397.61 13289.03 21596.60 21395.09 31792.08 13993.28 16194.00 30478.39 27199.04 15481.26 33494.18 20596.19 236
test0.0.03 189.37 29788.70 29591.41 32192.47 36185.63 29695.22 29492.70 36891.11 17086.91 32493.65 31879.02 25993.19 38678.00 35289.18 28495.41 276
pmmvs379.97 35277.50 35787.39 35982.80 39679.38 37092.70 36390.75 38470.69 38978.66 37687.47 38651.34 39093.40 38473.39 37569.65 38889.38 385
EMVS52.08 37051.31 37354.39 38672.62 40545.39 41083.84 39475.51 40741.13 40140.77 40359.65 40230.08 40073.60 40428.31 40529.90 40344.18 401
E-PMN53.28 36852.56 37255.43 38574.43 40347.13 40883.63 39576.30 40542.23 40042.59 40262.22 40128.57 40274.40 40331.53 40431.51 40144.78 400
PGM-MVS96.81 4296.53 5097.65 4199.35 2093.53 5897.65 10698.98 292.22 13197.14 5298.44 4491.17 6299.85 1894.35 11399.46 3999.57 26
LCM-MVSNet-Re92.50 18392.52 16792.44 29296.82 17381.89 34296.92 18093.71 35792.41 12884.30 34594.60 27185.08 14897.03 33891.51 17097.36 14198.40 143
LCM-MVSNet72.55 35869.39 36282.03 36970.81 40765.42 39890.12 38294.36 34455.02 39765.88 39181.72 39124.16 40589.96 39074.32 37168.10 39190.71 382
MCST-MVS97.18 2196.84 3398.20 1499.30 2495.35 1597.12 16698.07 7993.54 8396.08 9497.69 10693.86 1699.71 4696.50 4699.39 5299.55 32
mvs_anonymous93.82 13393.74 11594.06 22696.44 20485.41 30095.81 26397.05 20689.85 20990.09 24296.36 18987.44 11797.75 29593.97 11996.69 16099.02 86
MVS_Test94.89 10094.62 9595.68 13996.83 17189.55 19196.70 19997.17 19391.17 16895.60 11296.11 20387.87 10898.76 17893.01 14497.17 15098.72 116
MDA-MVSNet-bldmvs85.00 33882.95 34391.17 32793.13 35083.33 32994.56 30995.00 32084.57 33565.13 39392.65 33670.45 33395.85 35873.57 37477.49 37294.33 337
CDPH-MVS95.97 7095.38 7897.77 3398.93 4794.44 3296.35 23197.88 10986.98 29696.65 7097.89 9091.99 4499.47 10292.26 14999.46 3999.39 56
test1297.65 4198.46 7094.26 3797.66 13495.52 11690.89 6799.46 10399.25 6699.22 70
casdiffmvspermissive95.64 7795.49 7396.08 11596.76 18090.45 16597.29 15097.44 17094.00 6695.46 11797.98 8587.52 11598.73 18195.64 7997.33 14399.08 83
Fangjinhua Wang, Qingshan Xu, Yew-Soon Ong, Marc Pollefeys: Lightweight and Accurate Multi-View Stereo With Confidence-Aware Diffusion Model. IEEE T-PAMI 2025
diffmvspermissive95.25 8795.13 8595.63 14196.43 20589.34 20295.99 25497.35 18292.83 11796.31 8597.37 12886.44 13098.67 18896.26 5097.19 14998.87 107
Fangjinhua Wang, Qingshan Xu, Yew-Soon Ong, Marc Pollefeys: Lightweight and Accurate Multi-View Stereo With Confidence-Aware Diffusion Model. IEEE T-PAMI 2025
baseline291.63 21990.86 22293.94 23794.33 31486.32 28595.92 25791.64 37789.37 22386.94 32294.69 26681.62 21498.69 18688.64 23194.57 19996.81 221
baseline192.82 17791.90 18595.55 14797.20 14690.77 15497.19 16094.58 33692.20 13392.36 17896.34 19084.16 16298.21 22789.20 22083.90 34597.68 187
YYNet185.87 33484.23 33890.78 33592.38 36482.46 33793.17 35395.14 31582.12 35867.69 38892.36 34678.16 27595.50 36877.31 35579.73 36594.39 335
PMMVS270.19 36066.92 36380.01 37076.35 40165.67 39786.22 39187.58 39464.83 39362.38 39480.29 39326.78 40388.49 39763.79 38954.07 39985.88 387
MDA-MVSNet_test_wron85.87 33484.23 33890.80 33492.38 36482.57 33493.17 35395.15 31482.15 35767.65 38992.33 34978.20 27295.51 36777.33 35479.74 36494.31 339
tpmvs89.83 29289.15 28991.89 30694.92 28680.30 35993.11 35695.46 29986.28 30888.08 29892.65 33680.44 23198.52 20281.47 32889.92 27796.84 220
PM-MVS83.48 34481.86 35088.31 35487.83 38877.59 37793.43 34991.75 37686.91 29780.63 36789.91 36944.42 39395.84 35985.17 29376.73 37691.50 376
HQP_MVS93.78 13593.43 13194.82 18496.21 21389.99 17697.74 9397.51 15394.85 3491.34 20896.64 16881.32 21798.60 19593.02 14292.23 23695.86 247
plane_prior796.21 21389.98 178
plane_prior696.10 22490.00 17481.32 217
plane_prior597.51 15398.60 19593.02 14292.23 23695.86 247
plane_prior496.64 168
plane_prior390.00 17494.46 5491.34 208
plane_prior297.74 9394.85 34
plane_prior196.14 221
plane_prior89.99 17697.24 15394.06 6592.16 240
PS-CasMVS91.55 22690.84 22593.69 25194.96 28288.28 23497.84 8398.24 4791.46 15588.04 29995.80 21579.67 24697.48 31887.02 26484.54 33695.31 286
UniMVSNet_NR-MVSNet93.37 14892.67 15895.47 15495.34 25892.83 7497.17 16298.58 1792.98 11290.13 23795.80 21588.37 10097.85 28591.71 16683.93 34295.73 263
PEN-MVS91.20 24590.44 24193.48 26094.49 30887.91 24997.76 9198.18 5791.29 16087.78 30395.74 22180.35 23397.33 32985.46 28882.96 35295.19 297
TransMVSNet (Re)88.94 30087.56 30693.08 27594.35 31388.45 23197.73 9595.23 31187.47 28684.26 34695.29 24079.86 24397.33 32979.44 34674.44 38093.45 352
DTE-MVSNet90.56 26989.75 27493.01 27693.95 32487.25 26197.64 11097.65 13690.74 18087.12 31595.68 22579.97 24197.00 34183.33 31181.66 35894.78 323
DU-MVS92.90 17292.04 17995.49 15194.95 28392.83 7497.16 16398.24 4793.02 10690.13 23795.71 22283.47 17197.85 28591.71 16683.93 34295.78 256
UniMVSNet (Re)93.31 15092.55 16495.61 14395.39 25293.34 6497.39 13998.71 1193.14 10390.10 24194.83 26087.71 10998.03 25791.67 16983.99 34195.46 274
CP-MVSNet91.89 21191.24 21093.82 24395.05 27988.57 22597.82 8698.19 5591.70 14888.21 29595.76 22081.96 20797.52 31687.86 23984.65 33195.37 282
WR-MVS_H92.00 20791.35 20393.95 23595.09 27889.47 19598.04 5598.68 1391.46 15588.34 28994.68 26785.86 13997.56 31085.77 28484.24 33994.82 316
WR-MVS92.34 19291.53 19894.77 19195.13 27690.83 15196.40 22797.98 10091.88 14489.29 26895.54 23382.50 19697.80 29089.79 20285.27 32295.69 265
NR-MVSNet92.34 19291.27 20995.53 14894.95 28393.05 7097.39 13998.07 7992.65 12384.46 34395.71 22285.00 14997.77 29489.71 20383.52 34895.78 256
Baseline_NR-MVSNet91.20 24590.62 23592.95 27993.83 32988.03 24497.01 17495.12 31688.42 25889.70 25395.13 24883.47 17197.44 32289.66 20683.24 35093.37 353
TranMVSNet+NR-MVSNet92.50 18391.63 19495.14 16494.76 29592.07 9997.53 12398.11 7092.90 11689.56 25996.12 20083.16 17797.60 30889.30 21483.20 35195.75 261
TSAR-MVS + GP.96.69 4996.49 5297.27 5698.31 8193.39 6096.79 19096.72 23494.17 6297.44 4397.66 11092.76 2899.33 11596.86 3797.76 13199.08 83
n20.00 415
nn0.00 415
mPP-MVS96.86 3796.60 4797.64 4399.40 1193.44 5998.50 1998.09 7393.27 9595.95 10098.33 5791.04 6499.88 495.20 9299.57 2399.60 21
door-mid91.06 381
XVG-OURS-SEG-HR93.86 13193.55 12194.81 18697.06 15788.53 22895.28 28997.45 16691.68 14994.08 14297.68 10782.41 19998.90 16493.84 12592.47 23396.98 214
mvsmamba93.83 13293.46 12894.93 18194.88 29090.85 15098.55 1495.49 29894.24 6191.29 21496.97 14983.04 18298.14 23495.56 8691.17 25895.78 256
MVSFormer95.37 8395.16 8495.99 12496.34 20991.21 13398.22 4197.57 14691.42 15796.22 8997.32 12986.20 13597.92 27994.07 11799.05 8398.85 108
jason94.84 10294.39 10796.18 11295.52 24590.93 14796.09 24896.52 25089.28 22596.01 9897.32 12984.70 15298.77 17795.15 9498.91 9198.85 108
jason: jason.
lupinMVS94.99 9794.56 9896.29 10496.34 20991.21 13395.83 26296.27 26188.93 23996.22 8996.88 15586.20 13598.85 16895.27 9199.05 8398.82 111
test_djsdf93.07 16392.76 15294.00 23093.49 34088.70 22298.22 4197.57 14691.42 15790.08 24395.55 23282.85 18897.92 27994.07 11791.58 24895.40 279
HPM-MVS_fast96.51 5596.27 6197.22 5999.32 2292.74 7798.74 998.06 8290.57 19496.77 6398.35 5190.21 7599.53 9194.80 10499.63 1499.38 58
K. test v387.64 31686.75 31890.32 34093.02 35179.48 36996.61 21192.08 37490.66 18780.25 37194.09 30167.21 35696.65 34985.96 28280.83 36194.83 314
lessismore_v090.45 33891.96 36779.09 37387.19 39580.32 37094.39 28266.31 36397.55 31184.00 30676.84 37494.70 326
SixPastTwentyTwo89.15 29888.54 29890.98 32893.49 34080.28 36096.70 19994.70 33290.78 17884.15 34895.57 23071.78 32597.71 29884.63 29885.07 32694.94 305
OurMVSNet-221017-090.51 27290.19 25691.44 32093.41 34381.25 34696.98 17696.28 26091.68 14986.55 32796.30 19174.20 31297.98 26288.96 22587.40 30295.09 298
HPM-MVScopyleft96.69 4996.45 5797.40 4899.36 1893.11 6998.87 698.06 8291.17 16896.40 8397.99 8490.99 6599.58 7795.61 8299.61 1699.49 42
Chunlin Ren, Qingshan Xu, Shikun Zhang, Jiaqi Yang: Hierarchical Prior Mining for Non-local Multi-View Stereo. ICCV 2023
XVG-OURS93.72 13793.35 13494.80 18997.07 15488.61 22394.79 30397.46 16191.97 14393.99 14397.86 9581.74 21298.88 16592.64 14892.67 23296.92 218
XVG-ACMP-BASELINE90.93 25890.21 25593.09 27494.31 31685.89 29395.33 28697.26 18891.06 17389.38 26495.44 23768.61 34698.60 19589.46 21091.05 26194.79 321
casdiffmvs_mvgpermissive95.81 7495.57 7196.51 8396.87 16791.49 12097.50 12597.56 14993.99 6795.13 12297.92 8987.89 10798.78 17495.97 6597.33 14399.26 67
Fangjinhua Wang, Qingshan Xu, Yew-Soon Ong, Marc Pollefeys: Lightweight and Accurate Multi-View Stereo With Confidence-Aware Diffusion Model. IEEE T-PAMI 2025
LPG-MVS_test92.94 17092.56 16394.10 22496.16 21888.26 23597.65 10697.46 16191.29 16090.12 23997.16 13979.05 25798.73 18192.25 15191.89 24495.31 286
LGP-MVS_train94.10 22496.16 21888.26 23597.46 16191.29 16090.12 23997.16 13979.05 25798.73 18192.25 15191.89 24495.31 286
baseline95.58 7995.42 7796.08 11596.78 17590.41 16797.16 16397.45 16693.69 7895.65 11197.85 9687.29 12098.68 18795.66 7597.25 14799.13 77
test1197.88 109
door91.13 380
EPNet_dtu91.71 21591.28 20892.99 27793.76 33183.71 32696.69 20195.28 30793.15 10287.02 31995.95 20783.37 17497.38 32779.46 34596.84 15497.88 176
Wanjuan Su, Wenbing Tao: Efficient Edge-Preserving Multi-View Stereo Network for Depth Estimation. AAAI 2023
CHOSEN 1792x268894.15 11693.51 12696.06 11798.27 8389.38 20095.18 29598.48 2185.60 31893.76 14997.11 14283.15 17899.61 6991.33 17498.72 9699.19 71
EPNet95.20 9094.56 9897.14 6392.80 35492.68 7997.85 8294.87 33096.64 392.46 17497.80 10186.23 13299.65 5893.72 12798.62 10099.10 82
Wanjuan Su, Wenbing Tao: Efficient Edge-Preserving Multi-View Stereo Network for Depth Estimation. AAAI 2023
HQP5-MVS89.33 203
HQP-NCC95.86 23096.65 20593.55 8090.14 233
ACMP_Plane95.86 23096.65 20593.55 8090.14 233
APD-MVScopyleft96.95 3296.60 4798.01 1999.03 4194.93 2697.72 9898.10 7291.50 15398.01 3198.32 5992.33 3899.58 7794.85 10099.51 3199.53 36
Yuesong Wang, Zhaojie Zeng and etc.: Adaptive Patch Deformation for Textureless-Resilient Multi-View Stereo. CVPR2023
BP-MVS92.13 155
HQP4-MVS90.14 23398.50 20395.78 256
HQP3-MVS97.39 17692.10 241
HQP2-MVS80.95 220
CNVR-MVS97.68 697.44 1398.37 798.90 5095.86 697.27 15198.08 7495.81 997.87 3698.31 6094.26 1399.68 5497.02 3399.49 3699.57 26
NCCC97.30 1897.03 2498.11 1798.77 5395.06 2497.34 14498.04 8995.96 697.09 5597.88 9293.18 2599.71 4695.84 7199.17 7399.56 29
114514_t93.95 12693.06 14196.63 7499.07 3791.61 11497.46 13397.96 10277.99 38093.00 16697.57 11986.14 13799.33 11589.22 21899.15 7598.94 97
CP-MVS97.02 2996.81 3797.64 4399.33 2193.54 5798.80 898.28 3692.99 10796.45 8298.30 6291.90 4599.85 1895.61 8299.68 499.54 33
DSMNet-mixed86.34 32786.12 32387.00 36289.88 37870.43 38894.93 30090.08 38677.97 38185.42 33792.78 33574.44 31093.96 38174.43 36995.14 18796.62 225
tpm289.96 28589.21 28792.23 30094.91 28881.25 34693.78 33994.42 34080.62 37091.56 20293.44 32676.44 29197.94 27585.60 28692.08 24397.49 197
NP-MVS95.99 22889.81 18395.87 210
EG-PatchMatch MVS87.02 32285.44 32691.76 31492.67 35685.00 30996.08 24996.45 25483.41 35079.52 37393.49 32357.10 38397.72 29779.34 34790.87 26792.56 363
tpm cat188.36 30887.21 31191.81 31095.13 27680.55 35592.58 36495.70 28474.97 38587.45 30891.96 35378.01 27998.17 23280.39 33888.74 28996.72 224
SteuartSystems-ACMMP97.62 997.53 1197.87 2498.39 7794.25 3898.43 2498.27 3995.34 1798.11 2898.56 3194.53 1299.71 4696.57 4599.62 1599.65 15
Skip Steuart: Steuart Systems R&D Blog.
CostFormer91.18 24890.70 23392.62 29194.84 29281.76 34394.09 32994.43 33984.15 33992.72 17393.77 31279.43 25098.20 22890.70 18692.18 23997.90 174
CR-MVSNet90.82 26189.77 27293.95 23594.45 31087.19 26490.23 38095.68 28886.89 29892.40 17592.36 34680.91 22297.05 33781.09 33593.95 21497.60 193
JIA-IIPM88.26 31087.04 31491.91 30593.52 33881.42 34589.38 38594.38 34180.84 36790.93 22180.74 39279.22 25497.92 27982.76 31991.62 24796.38 232
Patchmtry88.64 30687.25 30992.78 28694.09 32186.64 27689.82 38395.68 28880.81 36887.63 30692.36 34680.91 22297.03 33878.86 34885.12 32594.67 327
PatchT88.87 30387.42 30793.22 27094.08 32285.10 30889.51 38494.64 33581.92 35992.36 17888.15 38180.05 23997.01 34072.43 37793.65 21997.54 196
tpmrst91.44 23191.32 20591.79 31195.15 27479.20 37193.42 35095.37 30288.55 25493.49 15593.67 31782.49 19798.27 22390.41 18989.34 28397.90 174
BH-w/o92.14 20491.75 18993.31 26696.99 16485.73 29595.67 27095.69 28688.73 24989.26 27094.82 26182.97 18598.07 25085.26 29196.32 16796.13 241
tpm90.25 27889.74 27591.76 31493.92 32579.73 36593.98 33093.54 35988.28 26191.99 19093.25 33077.51 28397.44 32287.30 25887.94 29598.12 162
DELS-MVS96.61 5296.38 5997.30 5297.79 12093.19 6795.96 25598.18 5795.23 1995.87 10197.65 11191.45 5399.70 5195.87 6799.44 4599.00 92
Christian Sormann, Emanuele Santellani, Mattia Rossi, Andreas Kuhn, Friedrich Fraundorfer: DELS-MVS: Deep Epipolar Line Search for Multi-View Stereo. Winter Conference on Applications of Computer Vision (WACV), 2023
BH-untuned92.94 17092.62 16193.92 24097.22 14486.16 29196.40 22796.25 26390.06 20489.79 25196.17 19883.19 17698.35 21787.19 26097.27 14697.24 209
RPMNet88.98 29987.05 31394.77 19194.45 31087.19 26490.23 38098.03 9177.87 38292.40 17587.55 38580.17 23799.51 9668.84 38693.95 21497.60 193
MVSTER93.20 15492.81 15194.37 21096.56 19189.59 18997.06 16897.12 19691.24 16491.30 21195.96 20682.02 20698.05 25393.48 13090.55 27095.47 273
CPTT-MVS95.57 8095.19 8396.70 7199.27 2691.48 12198.33 2898.11 7087.79 27795.17 12198.03 8087.09 12399.61 6993.51 12999.42 4699.02 86
GBi-Net91.35 23790.27 24994.59 19696.51 19891.18 13797.50 12596.93 21788.82 24489.35 26594.51 27573.87 31397.29 33186.12 27788.82 28695.31 286
PVSNet_Blended_VisFu95.27 8694.91 8996.38 9698.20 9390.86 14997.27 15198.25 4590.21 19994.18 13997.27 13387.48 11699.73 4293.53 12897.77 13098.55 124
PVSNet_BlendedMVS94.06 12293.92 11294.47 20498.27 8389.46 19796.73 19598.36 2490.17 20094.36 13495.24 24488.02 10499.58 7793.44 13190.72 26894.36 336
UnsupCasMVSNet_eth85.99 33284.45 33690.62 33689.97 37782.40 33893.62 34697.37 17989.86 20778.59 37792.37 34365.25 36995.35 37082.27 32470.75 38694.10 342
UnsupCasMVSNet_bld82.13 34979.46 35490.14 34288.00 38782.47 33690.89 37796.62 24778.94 37775.61 38184.40 39056.63 38496.31 35277.30 35666.77 39391.63 373
PVSNet_Blended94.87 10194.56 9895.81 13098.27 8389.46 19795.47 28198.36 2488.84 24294.36 13496.09 20488.02 10499.58 7793.44 13198.18 11998.40 143
FMVSNet587.29 31885.79 32491.78 31294.80 29487.28 25995.49 28095.28 30784.09 34083.85 35491.82 35462.95 37494.17 37778.48 34985.34 32193.91 346
test191.35 23790.27 24994.59 19696.51 19891.18 13797.50 12596.93 21788.82 24489.35 26594.51 27573.87 31397.29 33186.12 27788.82 28695.31 286
new_pmnet82.89 34781.12 35288.18 35689.63 37980.18 36191.77 36992.57 36976.79 38475.56 38388.23 38061.22 37894.48 37471.43 38082.92 35389.87 384
FMVSNet391.78 21390.69 23495.03 17196.53 19692.27 9397.02 17196.93 21789.79 21289.35 26594.65 26977.01 28597.47 31986.12 27788.82 28695.35 283
dp88.90 30288.26 30290.81 33294.58 30676.62 37892.85 36194.93 32485.12 32790.07 24493.07 33175.81 29798.12 24080.53 33787.42 30197.71 185
FMVSNet291.31 24090.08 25894.99 17396.51 19892.21 9497.41 13496.95 21588.82 24488.62 28394.75 26473.87 31397.42 32485.20 29288.55 29195.35 283
FMVSNet189.88 28988.31 30094.59 19695.41 25191.18 13797.50 12596.93 21786.62 30287.41 31094.51 27565.94 36697.29 33183.04 31487.43 30095.31 286
N_pmnet78.73 35478.71 35578.79 37292.80 35446.50 40994.14 32743.71 41178.61 37880.83 36591.66 35774.94 30696.36 35167.24 38784.45 33793.50 350
cascas91.20 24590.08 25894.58 20094.97 28189.16 21393.65 34597.59 14479.90 37389.40 26392.92 33475.36 30298.36 21692.14 15494.75 19696.23 233
BH-RMVSNet92.72 18191.97 18394.97 17697.16 14887.99 24596.15 24695.60 29290.62 19091.87 19397.15 14178.41 27098.57 19983.16 31297.60 13398.36 147
UGNet94.04 12493.28 13696.31 10096.85 16891.19 13697.88 7897.68 13394.40 5693.00 16696.18 19673.39 31999.61 6991.72 16598.46 10898.13 161
Wanjuan Su, Qingshan Xu, Wenbing Tao: Uncertainty-guided Multi-view Stereo Network for Depth Estimation. IEEE Transactions on Circuits and Systems for Video Technology, 2022
WTY-MVS94.71 10694.02 11096.79 7097.71 12492.05 10096.59 21497.35 18290.61 19194.64 12996.93 15086.41 13199.39 11191.20 17894.71 19898.94 97
XXY-MVS92.16 20291.23 21194.95 17894.75 29790.94 14697.47 13197.43 17389.14 22988.90 27596.43 18579.71 24598.24 22489.56 20887.68 29795.67 267
EC-MVSNet96.42 5796.47 5396.26 10697.01 16291.52 11998.89 597.75 12394.42 5596.64 7197.68 10789.32 8498.60 19597.45 2699.11 8098.67 121
sss94.51 10793.80 11496.64 7297.07 15491.97 10396.32 23498.06 8288.94 23894.50 13296.78 15784.60 15399.27 12291.90 15996.02 16998.68 120
Test_1112_low_res92.84 17691.84 18795.85 12997.04 16089.97 17995.53 27896.64 24285.38 32189.65 25695.18 24585.86 13999.10 13987.70 24593.58 22398.49 132
1112_ss93.37 14892.42 17196.21 11097.05 15990.99 14396.31 23596.72 23486.87 29989.83 25096.69 16486.51 12999.14 13588.12 23593.67 21898.50 130
ab-mvs-re8.06 37610.74 3790.00 3910.00 4140.00 4160.00 4020.00 4150.00 4090.00 41096.69 1640.00 4140.00 4100.00 4090.00 4080.00 406
ab-mvs93.57 14292.55 16496.64 7297.28 14391.96 10495.40 28397.45 16689.81 21193.22 16496.28 19279.62 24899.46 10390.74 18593.11 22498.50 130
TR-MVS91.48 23090.59 23794.16 22296.40 20687.33 25795.67 27095.34 30687.68 28291.46 20595.52 23476.77 28798.35 21782.85 31793.61 22196.79 222
MDTV_nov1_ep13_2view70.35 38993.10 35783.88 34393.55 15282.47 19886.25 27398.38 145
MDTV_nov1_ep1390.76 22895.22 26980.33 35893.03 35895.28 30788.14 26692.84 17293.83 30881.34 21698.08 24682.86 31594.34 201
MIMVSNet184.93 33983.05 34190.56 33789.56 38084.84 31395.40 28395.35 30383.91 34180.38 36992.21 35057.23 38293.34 38570.69 38482.75 35593.50 350
MIMVSNet88.50 30786.76 31793.72 24994.84 29287.77 25391.39 37094.05 34886.41 30687.99 30092.59 33963.27 37295.82 36077.44 35392.84 22797.57 195
IterMVS-LS92.29 19691.94 18493.34 26596.25 21286.97 27096.57 21797.05 20690.67 18589.50 26294.80 26286.59 12697.64 30389.91 19886.11 31295.40 279
Fangjinhua Wang, Silvano Galliani, Christoph Vogel, Marc Pollefeys: IterMVS: Iterative Probability Estimation for Efficient Multi-View Stereo.
CDS-MVSNet94.14 11993.54 12295.93 12596.18 21691.46 12396.33 23397.04 20888.97 23793.56 15196.51 18187.55 11397.89 28389.80 20195.95 17198.44 140
Khang Truong Giang, Soohwan Song, Sungho Jo: Curvature-guided dynamic scale networks for Multi-view Stereo. ICLR 2022
ACMMP++_ref90.30 274
IterMVS90.15 28389.67 27691.61 31695.48 24783.72 32594.33 32096.12 26989.99 20587.31 31494.15 29975.78 30096.27 35386.97 26586.89 30794.83 314
Fangjinhua Wang, Silvano Galliani, Christoph Vogel, Marc Pollefeys: IterMVS: Iterative Probability Estimation for Efficient Multi-View Stereo.
DP-MVS Recon95.68 7695.12 8697.37 4999.19 3194.19 4097.03 16998.08 7488.35 26095.09 12397.65 11189.97 7999.48 10192.08 15898.59 10298.44 140
MVS_111021_LR96.24 6496.19 6396.39 9598.23 9191.35 12796.24 24298.79 693.99 6795.80 10497.65 11189.92 8099.24 12495.87 6799.20 7198.58 123
DP-MVS92.76 17991.51 20196.52 8098.77 5390.99 14397.38 14196.08 27082.38 35689.29 26897.87 9383.77 16699.69 5281.37 33296.69 16098.89 105
ACMMP++91.02 262
HQP-MVS93.19 15592.74 15594.54 20295.86 23089.33 20396.65 20597.39 17693.55 8090.14 23395.87 21080.95 22098.50 20392.13 15592.10 24195.78 256
QAPM93.45 14692.27 17496.98 6996.77 17792.62 8098.39 2698.12 6784.50 33688.27 29397.77 10282.39 20099.81 2985.40 28998.81 9398.51 129
Vis-MVSNetpermissive95.23 8894.81 9096.51 8397.18 14791.58 11798.26 3598.12 6794.38 5894.90 12498.15 7282.28 20198.92 16191.45 17398.58 10399.01 89
Jingyang Zhang, Yao Yao, Shiwei Li, Zixin Luo, Tian Fang: Visibility-aware Multiview Stereo Network. BMVC 2020
MVS-HIRNet82.47 34881.21 35186.26 36495.38 25369.21 39188.96 38789.49 38766.28 39180.79 36674.08 39668.48 34997.39 32671.93 37995.47 18292.18 370
IS-MVSNet94.90 9994.52 10296.05 11897.67 12590.56 16198.44 2396.22 26493.21 9693.99 14397.74 10485.55 14398.45 20789.98 19697.86 12699.14 76
HyFIR lowres test93.66 13892.92 14595.87 12798.24 8789.88 18194.58 30898.49 1985.06 32893.78 14895.78 21982.86 18798.67 18891.77 16495.71 17899.07 85
EPMVS90.70 26689.81 27093.37 26494.73 29984.21 31893.67 34488.02 39289.50 21992.38 17793.49 32377.82 28197.78 29286.03 28092.68 23198.11 165
PAPM_NR95.01 9394.59 9696.26 10698.89 5190.68 15997.24 15397.73 12691.80 14592.93 17196.62 17789.13 8799.14 13589.21 21997.78 12998.97 93
TAMVS94.01 12593.46 12895.64 14096.16 21890.45 16596.71 19896.89 22489.27 22693.46 15696.92 15387.29 12097.94 27588.70 23095.74 17698.53 126
PAPR94.18 11393.42 13396.48 8697.64 12991.42 12595.55 27697.71 13288.99 23592.34 18195.82 21489.19 8599.11 13886.14 27697.38 14098.90 102
RPSCF90.75 26390.86 22290.42 33996.84 16976.29 38095.61 27596.34 25883.89 34291.38 20697.87 9376.45 29098.78 17487.16 26292.23 23696.20 235
Vis-MVSNet (Re-imp)94.15 11693.88 11394.95 17897.61 13287.92 24798.10 4995.80 28092.22 13193.02 16597.45 12484.53 15597.91 28288.24 23497.97 12499.02 86
test_040286.46 32584.79 33491.45 31995.02 28085.55 29796.29 23794.89 32680.90 36582.21 36193.97 30668.21 35197.29 33162.98 39088.68 29091.51 375
MVS_111021_HR96.68 5196.58 4996.99 6898.46 7092.31 9196.20 24498.90 394.30 6095.86 10297.74 10492.33 3899.38 11396.04 6399.42 4699.28 65
CSCG96.05 6795.91 6696.46 8999.24 2890.47 16498.30 3098.57 1889.01 23493.97 14597.57 11992.62 3399.76 3894.66 10799.27 6299.15 75
PatchMatch-RL92.90 17292.02 18195.56 14598.19 9590.80 15295.27 29197.18 19187.96 26991.86 19495.68 22580.44 23198.99 15684.01 30597.54 13496.89 219
API-MVS94.84 10294.49 10395.90 12697.90 11592.00 10297.80 8997.48 15689.19 22894.81 12696.71 16088.84 9199.17 13188.91 22698.76 9596.53 226
Test By Simon88.73 94
TDRefinement86.53 32484.76 33591.85 30782.23 39784.25 31796.38 22995.35 30384.97 33084.09 35094.94 25365.76 36798.34 22084.60 29974.52 37992.97 356
USDC88.94 30087.83 30592.27 29894.66 30184.96 31093.86 33795.90 27587.34 29083.40 35595.56 23167.43 35498.19 23082.64 32289.67 28093.66 348
EPP-MVSNet95.22 8995.04 8795.76 13197.49 13989.56 19098.67 1097.00 21290.69 18394.24 13797.62 11689.79 8198.81 17293.39 13496.49 16498.92 100
PMMVS92.86 17492.34 17294.42 20894.92 28686.73 27594.53 31096.38 25784.78 33394.27 13695.12 24983.13 17998.40 21091.47 17296.49 16498.12 162
PAPM91.52 22890.30 24795.20 16195.30 26489.83 18293.38 35196.85 22886.26 30988.59 28495.80 21584.88 15098.15 23375.67 36495.93 17297.63 188
ACMMPcopyleft96.27 6395.93 6597.28 5599.24 2892.62 8098.25 3698.81 592.99 10794.56 13198.39 4888.96 8999.85 1894.57 11297.63 13299.36 60
Qingshan Xu, Weihang Kong, Wenbing Tao, Marc Pollefeys: Multi-Scale Geometric Consistency Guided and Planar Prior Assisted Multi-View Stereo. IEEE Transactions on Pattern Analysis and Machine Intelligence
CNLPA94.28 11193.53 12396.52 8098.38 7892.55 8396.59 21496.88 22590.13 20391.91 19197.24 13585.21 14699.09 14287.64 25097.83 12797.92 173
PatchmatchNetpermissive91.91 20991.35 20393.59 25595.38 25384.11 32093.15 35595.39 30089.54 21792.10 18893.68 31682.82 18998.13 23584.81 29595.32 18598.52 127
Fangjinhua Wang, Silvano Galliani, Christoph Vogel, Pablo Speciale, Marc Pollefeys: PatchmatchNet: Learned Multi-View Patchmatch Stereo.
PHI-MVS96.77 4496.46 5697.71 3998.40 7594.07 4698.21 4398.45 2289.86 20797.11 5498.01 8392.52 3599.69 5296.03 6499.53 2799.36 60
F-COLMAP93.58 14192.98 14395.37 15798.40 7588.98 21697.18 16197.29 18787.75 28090.49 22697.10 14385.21 14699.50 9986.70 26796.72 15997.63 188
ANet_high63.94 36659.58 36977.02 37561.24 40966.06 39685.66 39387.93 39378.53 37942.94 40171.04 39825.42 40480.71 40152.60 39830.83 40284.28 390
wuyk23d25.11 37224.57 37626.74 38873.98 40439.89 41257.88 4019.80 41212.27 40510.39 4066.97 4087.03 41036.44 40725.43 40617.39 4053.89 405
OMC-MVS95.09 9294.70 9496.25 10998.46 7091.28 12996.43 22197.57 14692.04 14094.77 12797.96 8787.01 12499.09 14291.31 17596.77 15698.36 147
MG-MVS95.61 7895.38 7896.31 10098.42 7390.53 16296.04 25097.48 15693.47 8795.67 11098.10 7389.17 8699.25 12391.27 17698.77 9499.13 77
AdaColmapbinary94.34 11093.68 11796.31 10098.59 6691.68 11296.59 21497.81 12189.87 20692.15 18597.06 14583.62 17099.54 8989.34 21398.07 12297.70 186
uanet0.00 3780.00 3810.00 3910.00 4140.00 4160.00 4020.00 4150.00 4090.00 4100.00 4090.00 4140.00 4100.00 4090.00 4080.00 406
ITE_SJBPF92.43 29395.34 25885.37 30395.92 27391.47 15487.75 30496.39 18871.00 33097.96 27082.36 32389.86 27893.97 345
DeepMVS_CXcopyleft74.68 38190.84 37364.34 39981.61 40465.34 39267.47 39088.01 38348.60 39180.13 40262.33 39173.68 38279.58 393
TinyColmap86.82 32385.35 32991.21 32494.91 28882.99 33293.94 33394.02 35083.58 34781.56 36394.68 26762.34 37698.13 23575.78 36287.35 30392.52 365
MAR-MVS94.22 11293.46 12896.51 8398.00 10892.19 9797.67 10397.47 15988.13 26793.00 16695.84 21284.86 15199.51 9687.99 23798.17 12097.83 180
Zhenyu Xu, Yiguang Liu, Xuelei Shi, Ying Wang, Yunan Zheng: MARMVS: Matching Ambiguity Reduced Multiple View Stereo for Efficient Large Scale Scene Reconstruction. CVPR 2020
LF4IMVS87.94 31287.25 30989.98 34492.38 36480.05 36394.38 31795.25 31087.59 28484.34 34494.74 26564.31 37097.66 30284.83 29487.45 29992.23 368
MSDG91.42 23290.24 25194.96 17797.15 15088.91 21793.69 34396.32 25985.72 31786.93 32396.47 18380.24 23598.98 15780.57 33695.05 19196.98 214
LS3D93.57 14292.61 16296.47 8797.59 13591.61 11497.67 10397.72 12885.17 32690.29 23198.34 5484.60 15399.73 4283.85 31098.27 11598.06 168
CLD-MVS92.98 16792.53 16694.32 21496.12 22389.20 21095.28 28997.47 15992.66 12289.90 24795.62 22880.58 22898.40 21092.73 14792.40 23495.38 281
Zhaoxin Li, Wangmeng Zuo, Zhaoqi Wang, Lei Zhang: Confidence-based Large-scale Dense Multi-view Stereo. IEEE Transaction on Image Processing, 2020
FPMVS71.27 35969.85 36175.50 37974.64 40259.03 40291.30 37191.50 37858.80 39457.92 39888.28 37929.98 40185.53 39953.43 39782.84 35481.95 392
Gipumacopyleft67.86 36465.41 36675.18 38092.66 35773.45 38566.50 39994.52 33753.33 39857.80 39966.07 39930.81 39989.20 39348.15 39978.88 37162.90 399
S. Galliani, K. Lasinger, K. Schindler: Massively Parallel Multiview Stereopsis by Surface Normal Diffusion. ICCV 2015